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Role of seepage forces on hydraulic fracturing and failure patterns 
 

Abstract.  The mechanical role of seepage forces on hydraulic fracturing and 

failure patterns was studied both by the analytical methods of the continuum mechanics 

and by numerical simulations. Seepage forces are frictional forces caused by gradients 

of pore-fluid pressure. Formation of different failure patterns (localized shear bands or 

tensile fractures) driven by the localized fluid overpressure in the poro-elasto-plastic 

medium was studied using a numerical code specially developed for this purpose. The 

pre-failure condition for different failure patterns and fluid pressure at the failure onset 

was predicted using a new analytical solution.  

In the analytical solution the elliptical cavity filled with fluid in the non-

hydrostatic far-field stress-state is considered. Since, the fluid pressure inside cavity 

differs from the far-field pore-fluid pressure; the poroelastic coupling is taking into 

account in the calculation of the deformation. Using Griffith’s theory for failure and 

this analytical solution, the generalized equation for the effective stress law was 

obtained. This generalized effective stress law controls the failure in the fluid-saturated 

porous medium with a non-homogeneous fluid pressure distribution. 

 

Rôle des forces de succion sur le mode de fracturation des roches en 
présence de fluides 
 

Résumé. L’effet mécanique des forces de succion, forces exercées par un fluide 

qui se déplace dans un milieu poreux, a été étudié dans le cadre de la fracturation 

hydraulique des roches de la croûte terrestre. Cet effet a été étudié par des méthodes 

analytiques issues de la mécanique des milieux continus, et par des simulations 

numériques. Ces forces de succion sont des forces de frottement causées par des 

gradients de pression fluide dans les milieux poreux. Différents modes de fracturation 

(bandes de cisaillement localisées, fractures en mode I) causés par une augmentation 

localisée de la pression fluide dans la croûte ont été reproduits dans un milieu poro-

élastique grâce à plusieurs codes numériques spécialement développés à cet effet. La 

valeur de la pression fluide lors de la nucléation de la fracturation est aussi prédite à 

l’aide d’une nouvelle solution analytique.  

Dans la solution analytique, une cavité elliptique dans un solide poreux est 

remplie avec un fluide à une pression non-hydrostatique. On considère aussi que le 

milieu poreux est soumis à un champ de contrainte externe. Puisque la pression du 
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fluide dans la cavité est différente de la pression de pore dans la roche; le couplage 

poro-élastique est pris en compte dans le calcul des déformations. A partir de la théorie 

de Griffith qui donne une condition pour la propagation d’une fracture, et en utilisant la 

solution analytique obtenue, une équation généralisée a été obtenue pour la contrainte 

effective dans le milieu. Cette nouvelle loi décrit la fracturation dans un milieu poreux 

saturé avec un fluide, et dans lequel la distribution de pression fluide n’est pas 

homogène. 
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1.  INTRODUCTION 
 

In this dissertation I will study the role of gradients of pore-fluid pressure on 

the mechanical strength and failure patterns of the porous, fluid saturated materials. 

Mechanical role of pore-fluid pressure on the failure is well recognized nowadays in 

the literature, starting from the pioneering work of Von Terzaghi [1943], who 

demonstrated on the experimental ground that the failure of the fluid saturated porous 

material is controlled by the effective stress that is equal to the total stress minus fluid 

pressure. Later Murrell [1964] applied Griffith’s theory [1920] to the elliptical crack, 

filled with fluid and demonstrated that Terzaghi’s effective stress principle follows 

from Griffith’s theory of failure. However, the mechanical role of gradients of pore-

fluid pressure on failure is not well recognized. Since, it is common to assume that for 

any variation in pore-fluid pressure, the total stresses are constant. Such an assumption 

is not always warranted; because the gradients in pore-fluid overpressure create seepage 

forces and that these seepage forces modify the total stresses. The recent publications of 

[Mourgues and Cobbold, 2003; Cobbold and Rodrigues, 2007] show the experimental 

evidence that the seepage forces have a strong effect on the initiation and direction of 

propagation for both shear and tensile fractures. In addition, there is a recent 

experimental evidence that the aftershocks can be triggered by the local decrease of  the 

fluid pressure on the fault zone [Miller et al, 2004], these may be explained by the rise 

of seepage forces due to the pore-fluid pressure gradients.  

Since most of the materials like rocks, soils, concretes and human bones are 

porous with a non-homogeneous fluid-pressure distribution, it is very important to 

understand the role of pore-fluid pressure gradients on the mechanical strength and 

possible failure patterns, developed during a mechanical failure. In this dissertation I 

made an attempt to improve the understanding of mechanical role of pore-fluid pressure 

gradients on failure. The investigation was conducted both by the analytical methods of 

the continuum mechanics and by numerical simulations. In order to study a possible 

failure patterns, driven by pore-fluid pressure gradients, I have developed two 

numerical codes (finite difference and finite element) that allowed me to model both 

tensile and shear fractures in porous elastoplastic medium. In order to predict the pre-

failure condition I have developed two analytical solutions in which I calculated the 

seepage forces around the open and closed elliptical crack. These analytical solutions 

are developed using a Complex potentials method [Muskhelishvili, 1977; Timoshenko 
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and Godier,1982] applied to the linear poroelastic medium [Biot, 1941; Rice and 

Cleary, 1976]. Applying a new analytical solution in the Griffith’s theory of failure, I 

have found a new effective stress law that governs the failure in a porous solid with a 

non-homogeneous fluid pressure distribution. 

The dissertation has two parts: the theory and the scientific manuscripts. In the 

first part of the thesis I briefly introduce the theoretical background in the context of the 

previous works, the overview of the literature and the main results of the thesis. In the 

appendix I present the numerical code which was developed to study the failure 

patterns. In the second part I analyze four scientific manuscripts, which reflect the main 

results of the thesis in details. 

 



 

 

4

 

2.  THEORETICAL BACKGROUND 

 

The purpose for this chapter is to give a brief theoretical introduction to the scientific 

manuscripts presented in the second part of the thesis. More detailed description of the 

theory is better explained in the cited literature. 

 

2.1  Poroelasticity and thermoelasticity 

Governing equations 

The poro-elastic model is an extension of linear elasticity that allows for and 

takes into account the presence of a diffusing pore fluid; it is relevant to the 

deformation and fracture of the porous elastic materials with applications to geophysics. 

The pore fluid is free to diffuse through the material and interact with the solid elastic 

skeleton. The diffusion process introduces the time dependence into the otherwise 

quasi-static elasticity equations. The poroelastic equations derived by Biot [1941], 

subsequently reformulated by Rice and Cleary [1976] are that the stress tensor ijσ  is 

given by 

2 2
1 2ij ij kk ij f ij

v p
v

σ με με δ α δ= + +
−

,     (1) 

where the repeated indices denote summation; the relation between the strain tensor ijε  

and the displacements iu  is 1 ( )
2

ji
ij

j i

uu
x x

ε
∂∂

= +
∂ ∂

; δ ij =
1  for  i = j 
0  for  i ≠ j

⎧
⎨
⎩

 is the Kronecker 

delta (the positive compressive stress as a sign convention is used here). 

According to equation (1) the deformation is controlled by the effective stress 

ij ij f ijpσ σ α δ′ = + [Garg and Nur, 1973], thus, the rheology relation for the effective 

stress can be formulated as follows 

2 2
1 2ij ij f ij ij kk ij

vp
v

σ σ α δ με με δ′ = − = +
−

.     (1a) 

The pore pressure fp  is related via  

f kkp Q Qζ α ε= +         (2) 

to the variation of fluid volume content ζ , and the dilation, kke ε= . The constants and 

their physical interpretation are given in the next subsection. Provided there are no body 
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forces or fluid sources in the material the governing equations are written as the 

equilibrium equation for the stresses 

0ij
j jx

σ∂
=

∂∑ .        (3) 

The force balance equation formulated for effective stress as follows 

ij f
j j i

p
x x
σ α∂ ∂′ =

∂ ∂∑ .       (3a) 

The term which appears on the right hand side in equation (3a) is commonly referred as 

seepage force. According to equation (3a) the physical meaning for seepage force is 

equivalent to the volume force which is acting along the gradients of the fluid pressure 

and equal to zero, when the fluid pressure is homogeneous, i.e. when the gradients are 

zero. 

Darcy's law which relates mass flux to the gradient of pore pressure 

0i f
i

q p
x

ρ κ ∂
= −

∂
,        (4) 

and a mass-conservation equation for the pore fluid 

i
i

m q
t x
∂ ∂

= −
∂ ∂

,        (5) 

where m  is the mass of fluid per unit volume and 0ρ  is the reference density. Using 

equations (2, 4 and 5) the fluid diffusion equation for the pore pressure with a coupling 

term for the dilation can be written in the form: 
2

2
f f

j j

p p eQ Q
t x t

κ α
∂ ∂ ∂

− =
∂ ∂ ∂∑ .  .     (6) 

 

Poroelastic constants and their physical interpretation 

The following symbolism is used in the previous subsection: α  is the Biot-

Willis poroelastic constant, that is, the ratio of fluid volume to the volume change of 

solid allowing the fluid to drain, where 0 1α≤ ≤ ; μ  is the shear modulus; , uv v  are 

drained and undrained Poisson ratios, where 10
2uv v≤ ≤ ≤ ; κ  is the permeability 

coefficient; / 1/fd dp Qζ =  is a measure of the change in the fluid content generated in 

a unit reference volume during the change of the pressure with the strains kept constant, 
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where 2

2 ( )
(1 2 )(1 2 )

u

u

v vQ
v v

μ
α

−
=

− −
 and 0Q ≥ ; and finally, ζ  is the variation of fluid 

content per unit reference volume, i.e. mass of fluid per unit volume/initial density 0ρ . 

 

Similarity and difference between poro- and thermo- elasticity 

The thermoelastic continuative equation is equivalent to the poroelastic 

continuative equation (1) if the fluid pressure fp  is changed to the temperature T  

( fp T→ ) and the Biot-Willis poroelastic constant is changed as follows 
1 2

T E
v

αα →
−

, 

where Tα  is the thermal expansion coefficient and E  is a Young modulus [Rice and 

Cleary, 1976; Timoshenko and Goodier, 1982]. The difference between thermo and 

poro elasticity will appear in equation (6), i.e. the heat conduction equation is governed 

by equation 
2

2 0f
h

j j

pT
t x

κ
∂∂

− =
∂ ∂∑ ,        (7) 

here hκ  is the heat conduction coefficient. In equation (7) the change in dilation does 

not contribute to the change in temperature. The seepage force in poroelastic equation 

(3a) is equivalent to the thermal stress in thermoelasticity. 

 

Steady-state (quasi-static) poroelasticity 

In case of a steady-state fluid filtration no time dependence is introduced to the 

fluid diffusion equation (6), which can be simplified to the ordinary Laplace equation as 

the following:  
2

2 0f

j j

p
x

∂
=

∂∑ .         (8) 

Now, as one can see from (6) and (7) in the case of the steady-state problems the 

poroelastic and thermoelastic equations are equivalent. 

 

2.2 Pore-fluid pressure effect on deformation and failure 

It is generally recognized that the pore-pressure has different effects on 

deformation and failure of the fluid saturated porous solid [Terzaghi, 1923; Skempton, 

1961; Garg and Nur, 1973 Jaeger and Cook, 1979; Paterson and Wong, 2005]. Both 

the theoretical analysis and experimental observations show that, provided that the 
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rocks contain a connected system of pores, the failure is controlled by the Terzaghi 

effective stress ijσ ′′  defined as 

   ij ij f ijpσ σ δ′′ = − .       (9) 

However, the deformation is controlled by another effective stress law ijσ ′ , 

formulated as follows 

   ij ij f ijpσ σ α δ′ = − ,       (10) 

where ijσ  is the total stress tensor; fp  is the pore fluid pressure, α  is the Biot-Willis 

coupling poroelastic constant (by convention, compressive stress is positive). 

 

2.3 Failure envelope for rock 

In nature, the rock failure occurs in two different modes: in the shear bands and 

in the tensile fractures. The laboratory triaxial experiments show that the Mohr-

Coulomb criterion provides an accurate prediction for a shear failure [Jaeger and Cook, 

1979; Paterson and Wong, 2005]: 

   sin( ) cos( )m Cτ σ φ φ′′− = ,      (11) 

where 
2

2( )
4

xx yy
xy

σ σ
τ σ

−
= +  is the stress deviator, 

2
xx yy

m fp
σ σ

σ
+

′′ = −  is the mean 

Terzaghi effective stress, C  is the rock cohesion and φ  is the internal friction angle. 

On the other hand, Griffith’s theory provides a theoretical criterion for tensile 

failure of a fluid-filled crack [Murrell, 1964]:  

   m Tτ σ σ′′− = ,        (12) 

where Tσ  is the tensile strength of the rock. This criterion has also been verified 

experimentally [Jaeger, 1963; Paterson and Wong, 2005].  

Both the tensile and shear failure criteria are shown on the Mohr diagram 

(Figure 1), where lm  is the Mohr-Coulomb envelope (eq. 11) and kl  is the tensile cut-

off limit (eq. 12). Any stress-state in a particular point of the solid can be shown by the 

Mohr circle on this diagram with radius τ  and center mσ ′′  (τ  and mσ ′′  are defined after 

equation (11)).  
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Figure 1.  Failure envelope for rocks ( lm  is the Mohr-Coulomb envelope (eq. 

11) and kl  is the tensile cut-off limit (eq. 12)). 
 

All Mohr-circles on the Mohr-diagram located below lm and on the right side of 

kl represent the stable combination of stresses in the elastic domain. However, if the 

Mohr circle touches the failure envelope klm, the solid undergoes the irreversible 

plastic deformation, which leads to the formation of shear bands and tensile fractures. 

Depending on the location of the circle touching the failure envelope, the formation of 

the shear bands (lm) or the tensile fractures (kl) takes place. The shear bands form at the 

angle of 
4 2
π φ
−  to the direction of maximum compressive (Terzaghi effective) stress; 

the tensile fractures develop perpendicularly to the direction of the maximum tensile 

(Terzaghi effective) stress. 

 

2.4  Poro-elasto-plasticity 

In physics and materials science plasticity is a property of a material to undergo 

a non-reversible deformation in response to an applied force. For many natural 

materials, the load applied to the sample will cause the deformation to behave in an 

elastic manner. Each increment of the load is accompanied by a proportional increment 

in extension, and when the load is removed, the piece returns exactly to its original size 

(Figure 2, blue line). However, once the load exceeds some threshold (described by 

equation (11) for shear loading and by equation (12) for tensile loading) the 

deformation increases more rapidly than in the elastic region (Figure 2, green curve), 

and when the load is removed, some amount of the extension remains. The further 

deformation of the material could lead to the fracture. 
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Figure 2.  A stress-strain diagram. (The blue line shows the reversible elastic 

deformation domain, while the green curve shows the irreversible plastic deformation 
in the process zone, which accompanies the formation of the fracture.) 

 

According to the general approach for poro-elasto-plastic deformation [Rice and 

Cleary, 1976; Vermeer, 1990], the full strain rate tensor is given by 

   pe pl
ij ij ijε ε ε= +         (13) 

where the superscripts pe  and pl  denote the poro-elastic and the plastic components, 

respectively. The poro-elastic strain rates can be written as: 

   1 2
2 2 1

f
ij m ijpe m

ij ij
p

G G
σ σ δ σ α νε δ

ν
− − −

= +
+

.    (14) 

The plastic strain rates are given by 

   
0  for  0 or ( 0  and  0)

  for  0 and  0

pl
ij

pl
ij

ij

f f f

q f f

ε

ε λ
σ

= < = <

∂
= = =

′′∂

.    (15) 

The yield function in the form max( , )tension shearf f f= , where tensionf  and shearf  are the 

yield functions for a failure in tension and in shear, respectively, defined as: 

   
sin( ) cos( )

tension m T

shear m

f
f C

τ σ σ
τ σ φ φ

′′= − −
′′= − −

.     (16) 

The parameter λ  in (eq. 15) is the non-negative multiplier of the plastic loading 

[Vermeer, 1990], and q  is the plastic flow function, defined as follows for a tensile (the 

associated flow rule) and shear failure (the non-associated flow rule): 
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sin( )

tension m

shear m

q
q υ

τ σ
τ σ

′′= −
′′= −

 ,      (17) 

where υ  is the dilation angle (υ φ< ), that disappears after a few percent of strain. Note 

that in (eq. 14) the total stress is used, whereas the Terzaghi effective stress (eq. 9) 

applies in the failure equations (15-17). 

Equations (13-17) along with (3, 8, 9) represent the full set of equations which 

governs a quasi-static propagation of the plastic deformations into either shear bands or 

tensile fractures (The numerical code which solves the system of equations is presented 

in the Appendix). The term tensile fracture is not used here in its classical sense as a 

discontinuity in both traction and displacement fields. Rather, it describes the inelastic 

material response in the process zone area that accompanies fracture onset and 

propagation [Ingraffea, 1987]. 

 

2.5. Linear elastic fracture mechanics 

Fracture mechanics is the field of solid mechanics that deals with the behavior of 

the cracked bodies subjected to stresses and strains. The modern fracture mechanics is 

based on the Griffith’s theory [1920], outlined below. 

In order to explain why the experimental tensile strength of brittle materials is 

many times lower than the ultimate stress required for the breaking of the atomic bonds, 

Griffith [1920] proposed that the failure of materials may be controlled by the presence 

of small defects, which may propagate as cracks into the solid. This assumption was 

based on the work of Inglis who showed that the local stress at the tip of an elliptical 

crack can be concentrated many times higher than the macroscopic stress. Griffith 

proposed that the propagation requires the creation of the surface energy, which is 

supplied by the loss of the strain energy accompanying the relaxation of the local 

stresses as the crack advances. The failure occurs when the loss of the strain energy is 

sufficient to provide the increase in the surface energy.  

The Griffith’s theory was not accepted with proper attention for over twenty 

years both in Engineering and Academics communities. The consequences of the 

ignorance are devastating (Figure 3a), as for example, in order to estimate the strength 

of the structural constructions like ships, a simple beam theory (Figure 3b) was 

considered sufficient. The construction engineers measured the stresses in the various 
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parts of the hull with strain-gauges, and “proved” that simple beam theory gave results 

well inside the safety envelope of the materials. [Gordon, 1991].  

 

 
Figure 3a.  Tanker SS Schenectady, fractured a day after its launch in January 1941. 
Figure 3b.  An elastic beam in the gravitation field was used as a standard method for 
calculating of ship’s strength. 

 

Later in 1948, the naval research engineer Irwin formulated the Griffith’s theory 

in terms of stress concentrations rather than in terms of energy. Irwin introduced the 

fracture toughness concept which is universally accepted as the defining property of 

fracture mechanics. Irwin demonstrated that the Griffith’s theory can also be applied to 

ductile materials, provided that the size of the plastic zone located at the fracture tip is 

much smaller than the fracture length. Based on the Griffith’s theory, he represented the 

concept of a strain-energy realize rate, controlling the initiation and propagation of a 

fracture. Later in 1968 Rice introduced the J-integral, a method of calculation of the 

energy realized during a fracture propagation. This method is applicable for the 

materials with a generalized constitutive rheology, for example, for poro-elasto-plastic 

materials. 

The Griffith’s energy criterion can be represented equivalently via the path-

independent J-integral [Rice, 1968; Hellan, 1984]: 

2 Jγ ≤ ,         (18) 
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here 2γ  is the specific surface energy, assigned to one side of the fracture surface; and 

the path-independent J-integral is defined as: 

2
1

[ ]uJ Udx T ds
xΓ

∂
= − ⋅

∂∫ ,       (19) 

here U  is the strain energy density function, defined as [Atkinson and Craster, 1991; 

Wang, 2000]: 

1
2 ij ij fU pσ ε ζ= + ,        (20) 

where ζ  is the variation of fluid content per unit reference volume, introduced in 

equation (2). 

In equation (19) the integral is taken along any path Γ  (counter-clockwise) 

around the crack tip; T  is the vector of traction on Γ , with components i ij jT nσ= , jn  

is the normal to the curve Γ ; s  is the arc length along Γ . Since a path of integration 

can be arbitrary chosen in the poroelastic regime, the curve Γ  can be taken from the 

lower side ( 1x a= , 2 0x −= ), past ( 1x a a= + Δ , 2 0x = ), to the upper side at ( 1x a= , 

2 0x += ). Since 2 0dx = , equation (19) becomes ( [Rice, 1968; Hellan, 1984]): 

2 1 1 1 10

1lim ( ,0, )[ ( ,0 , ) ( ,0 , )]
2

a a

i i ia
a

J x a u x a a u x a a dx
a

σ
+Δ

+ −

Δ →
= + Δ − + Δ

Δ ∫ , (21) 

where 2 1( ,0, )i x aσ  is the stress on the crack tip of the length 2a ; 1( ,0 , )iu x a a± + Δ  are 

the displacements on the crack tip of the length 2( )a a+ Δ  [Hellan, 1984]. 
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3.  SUMMARY OF THE PAPERS 

 

A brief summary of the papers is presented in the following order. The results of 

the papers I and II are based on the new analytical solution derived for a closed crack, 

while in the papers III and IV, I derived the analytical solution for an open crack. Yuri 

Podladchikov introduced me to the numerical modeling which made me possible to 

develop my own numerical codes in order to study the failure patterns in the paper I. 

Both Yuri Podladchikov and Francois Renard helped me to formulate the problem for 

the first manuscript and improve the text. Yuri Podladchikov also helped me to 

formulate the problem for the third paper. Papers II and IV have a single author. 

 

 

Resume of Paper I 

In the first paper we have studied various failure patterns, driven by a localized 

fluid source at the depth. The reasons why the fluid pressure can be laterally localized 

at the depth in the earth’s crust are reviewed in [Hickman et al, 1995]. There have been 

developed two numerical codes using a finite difference and finite element methods 

which allowed to model failure patterns caused by the tensile and/or shear failures in a 

porous elastoplastic medium [Biot, 1941; Rice and Cleary, 1976; Vermeer and de 

Borst, 1984; Wang, 2000]. It is demonstrated that at least five failure patterns (tensile or 

shear) can occur. Moreover, we calculate analytically the critical pressure at which a 

failure nucleates and we propose a phase-diagram of the failure patterns, illustrating the 

dependence on the model parameters. The results of the paper have a direct application 

to the geological problems, because many natural systems, such as magmatic dykes, 

mud volcanoes, hydrothermal vents, or fluid in faults, show the evidence that the pore 

pressure increase is localized instead of being homogeneously distributed. This paper 

contains animations in the Auxiliary Materials section, which illustrate the evolution of 

failure patterns during the increase of the pore-fluid pressure at the localized source. 

 

 

Resume of Paper II 

In the second paper we discuss the effects of the coupling between the 

deformation and pore-fluid diffusion on faulting and failure processes. We consider an 

arbitrarily oriented preexisting fault zone of finite length, located at the depth with a 
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given fluid overpressure in it and surrounded by the porous and permeable rocks. The 

intrinsic elastic and transport properties of these rocks are assumed to be isotropic and 

homogeneous. The seepage forces caused by the steady-state fluid diffusion from the 

fault zone to the surrounding permeable rocks are calculated analytically using the 

complex-potentials method for the pore-elasticity and conformal mapping. The pore-

fluid overpressure required for the fault reactivation is calculated analytically in 2D, 

assuming that the tectonic stress state, the rock intrinsic properties and the geometry of 

the pre-existing fault are known. The solution is applied to the micro-earthquake 

triggering caused by the hydrocarbon withdrawals from a reservoir. Other applications 

such as the storage of carbon dioxide in porous rocks and geothermic exploitation are 

also considered. 

 

Resume of Paper III 

In the third paper we calculate explicitly a seepage forces caused by the 

coupling of pore-pressure gradients to the rock deformation. We apply the obtained 

analytical solution [Auxiliary materials for paper 3] to the Griffith’s theory of failure 

and demonstrate that the failure is controlled by a new effective stress law: 

0
4(1 )
(1 )cWp W p T

a v
γ μσ

π∞ ∞+ + − ≥ =
−

,  

with 1 2 1(1 )22 1 ln

vW cv
a

α −
= −

−
       (22) 

where σ∞  is the macroscopic far-field stress and 0T  is the theoretical tensile strength of 

the material, which depends on the length of preexisting crack a ; the specific surface 

energy γ  required for the creation of a new fractured surface; the shear modulus μ ; 

and the Poisson ratio v ; α  is the Biot-Willis poroelastic constant [Paterson and Wong, 

2005]; c  is the size of a body containing a crack; p∞  is the far-field pore-fluid pressure 

and cp  is the crack fluid pressure. 

According to equation (22), during the uniform rise of the pore fluid pressure 

inside the porous medium the onset of fracture growth is controlled by the remote 

Terzaghi’s effective stress, 

pσ σ∞ ∞′ = + ,         (23) 
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since the fracture pressure cp  at the onset of the fracture growth is equal to the pore 

pressure p∞  in the surrounding fluid-saturated rock. The tensile strength decreases as 

the fracture grows in length. Therefore, the fracture is accelerated by an increase in a 

tensile excess load (and by the release of elastic strain energy), if the remote stress and 

the pore pressure are kept constant. In reality, however, the fracture pressure cp  in a 

propagating double-ended fracture does drop because the volume of the growing 

fracture increases. This causes an inflow of the pore-fluid from the surrounding rock at 

a rate depending on the hydraulic conductivity of the rock. At the same time, the 

decrease in fracture pressure will entail a decrease in the driving stress, which will 

retard, possibly stabilize, or even temporary stop the propagation of a tensile fracture 

inside the fluid saturated rock. Since the rocks in the earth’s crust are mostly under a 

compressive stress state at the depth ( 0σ∞ < ), the presence of fluid in the pores 0p∞ >  

could promote the propagation of fracture during an earthquake, which takes place 

when 

0Wpσ σ∞ ∞′′ = + ≥ .        (24) 

Thus, the main result of this paper is the following: we demonstrate that the 

initiation of a tensile fracture is controlled by the Terzaghi’s effective stress, while the 

propagation of a tensile fracture is controlled by the effective stress: 

1 2
2 1

v p
v

ασ σ∞ ∞
−′′ = +
−

 .       (25) 

 

Resume of Paper IV 

In the forth paper we propose a hydraulic fracturing criterion for an elliptical 

cavity in a permeable poroelastic medium under a non-hydrostatic far-field stress state. 

The elliptical cavity is filled with a constant fluid pressure cp  inside the cavity. The 

far-field pore fluid pressure p∞  is different from the fluid pressure in the cavity 

( cp p∞≠ ), therefore the fluid can infiltrate from the cavity into surrounding permeable 

rock. The diffusive fluid couples to the rock deformation, creating an additional stress 

field via seepage forces which has an additional effect on the initiation of a fracture. We 

considered the steady-state fluid flux from the cavity into a surrounding permeable 

reservoir with the homogeneous and isotropic intrinsic properties. We considered two 

applications of the analytical solution: the hydraulic fracturing of boreholes with an 
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elliptical cross-section and the in situ stress measurements in a highly permeable 

formation. We demonstrate that the small deviations of the borehole’s cross-section 

from the circular have an additional effect on the breakout pressure and show that the 

fluid leakage has a strong influence on the fracture closure pressure. It is shown that if 

a reservoir is highly permeable than a fracture closure pressure is equal to 

1
h

c
pp σ η

η
∞+

= −
−

,        (26) 

where hσ  is the minimum in situ stress, p∞  is the far-field pore pressure; 1 2
2 1

v
v

αη −
=

−
 

here α  is the Biot-Willis poroelastic constant and v  is the Poisson ratio. This formula 

shows that the poroelastic coupling must be taken into account in the highly permeable 

reservoirs, since nowadays it is assumed in industry that c hp σ= − . 
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APPENDIX:  THE NUMERICAL MODELING OF THE FLUID FLOW IN A 

POROUS ELASTOPLASTIC MEDIUM (MatLab code) 

 

In this appendix I will present an explicit finite difference MatLab code based 

on the Fast Lagrange Analysis of Continua, which I have developed during my PhD in 

order to model various failure patterns caused by the localized pore-pressure increase. 

The results of the modeling are presented in the first scientific manuscript. The 

animations that show the evolution of failure patterns during the localized increase of a 

fluid overpressure is presented in the Auxiliary materials for first paper. 

 

The code consists of the main (calling) program: Main.m and five subroutines:   

Pressure_Initialization.m, Pcrit.m, YieldFunction_array.m, YieldFunction_new.m 

and Plasticity.m . 

In order to run the code, all files must be located in the same folder. One should 

run Main.m program in MatLab. 

 
 

Main.m 
clear; 
%physics 
H            = [4,1];     % Box size L and h 
dH           = H(2)/10;   % Fluid source size w 
ro_i         = 1e8;       % 'computational' density 
phi          = 35*pi/180; % friction angle 
psi          = 0*pi/180;  % dilation angle 
tan_phi      = tan(phi); 
sin_phi      = sin(phi); 
cos_phi      = cos(phi); 
sin_psi      = sin(psi); 
A            = 0.2;      % Sh=A*Sv 
Earr         = 2.6667e7; % Young modulus 
nu           = 0.3;      %Poison ratio 
K            = Earr/3/(1 - 2*nu); % Bulk modulus 
G            = Earr/2/(1 + nu);   % Shear modulus 
kf           = 0.4*1.05e6; 
Vp           = sqrt(max(9*K*G/(3*K+G))/ro_i); % Wave velos 
Cohesion     = 0.1; % Cohesion 
St           = Cohesion/8; % Tensile strength 
%numerics 
nx           = [151,51];   % Resolution 
dx           = H./(nx-1);  % 
dt           = 1/4*min(dx)/Vp/2; % Time step 
damp         = 1e-1;  % 'Elastic' damper 
time_out     = 40; 
% initialization 
x            = [0:dx(1):H(1)]'; 
y            = [0:dx(2):H(2)]; 
x2D          = repmat(x,[1,nx(2)]); 
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y2D          = repmat(y,[nx(1),1]); 
xc           = [dx(1)/2:dx(1):H(1)-dx(1)/2]'; 
yc           = [dx(2)/2:dx(2):H(2)-dx(2)/2]; 
x2Dc         = repmat(xc,[1,nx(2)-1]); 
y2Dc         = repmat(yc,[nx(1)-1,1]); 
Pre_flu      = zeros(nx(1),nx(2)); % Fluid pressure 
Pressure_Initialization; % Steady-state fluid pressure calculation 
[Pc,Mode]    =Pcrit(A,phi,Cohesion,St,H(2)/dH,nu); % Pc 'estimation' 
Stress_check = zeros(3,nx(1)-1,nx(2)-1); 
% F_plot       =  zeros(nx(1)-1,nx(2)-1); 
Size_S       = (nx(1)-1)*(nx(2)-1); 
F            = -100*ones(nx(1)-1,nx(2)-1); 
dStrain      = zeros(3,nx(1)-1,nx(2)-1); 
% Terzaghi effective stress 
Txy_eff      =   zeros(nx(1)-1,nx(2)-1); 
Syy_eff      =  -(H(2)- y2Dc(:,:))*1/H(2); 
Sxx_eff      =  -A*(H(2)- y2Dc(:,:))*1/H(2); 
% Total stress 
Txy_tot      = zeros(nx(1)+1,nx(2)+1); 
Syy_tot      = zeros(nx(1)+1,nx(2)+1); 
Sxx_tot      = zeros(nx(1)+1,nx(2)+1); 
  
Vx           = zeros(nx(1),nx(2));%Solid velocity 
Vy           = zeros(nx(1),nx(2)); 
Ux           = Vx; 
Uy           = Vy; 
time = 0; 
  
Pre_flu_cen0 = (Pre_flu(1:end-1,1:end-1) + Pre_flu(2:end,1:end-1)... 
    + Pre_flu(1:end-1,2:end) + Pre_flu(2:end,2:end))/4; 
F_old        = -100; 
while time   < time_out 
    time     = time + dt; 
    if time  <= time_out% increase of pore pressure 
        Pcoef = 0.9*Pc+8*Pc*time/time_out; 
    end 
    % Total stresses 
    Pre_flu_cen              = Pcoef*Pre_flu_cen0; % increase of pore 
pressure 
    Sxx_tot(2:end-1,2:end-1) =  (Sxx_eff - Pre_flu_cen); 
    Syy_tot(2:end-1,2:end-1) =  (Syy_eff - Pre_flu_cen); 
    Txy_tot(2:end-1,2:end-1) =  (Txy_eff); 
    % Boundary conditions for total stress 
    Syy_tot(:,end) = (1- y2Dc(1,end)/H(2));  % Top 
    Txy_tot(:,end) = 0;                      % Top 
    Sxx_tot(:,end) = A*(1- y2Dc(1,end)/H(2));% Top 
  
    Syy_tot(:,1)   = Syy_tot(:,2);        % Bottom 
    Txy_tot(:,1)   = -Txy_tot(:,2);       % Bottom 
    Sxx_tot(:,1)   = Sxx_tot(:,2);        % Bottom 
  
    Syy_tot(1,:)   = Syy_tot(2,:);        % Right 
    Txy_tot(1,:)   = -Txy_tot(2,:);       % Right 
    Sxx_tot(1,:)   = Sxx_tot(2,:);        % Right 
  
    Syy_tot(end,:) = Syy_tot(end-1,:);    % Left 
    Txy_tot(end,:) = -Txy_tot(end-1,:);   % Left 
    Sxx_tot(end,:) = Sxx_tot(end-1,:);    % Left 
    % VELOCITY UPDATE 
    D_Sxx_x  =   (diff(Sxx_tot(:,1:end-1),1,1) +... 



 

 

21

 

        diff(Sxx_tot(:,2:end),1,1))/dx(1)/2; 
    D_Txy_x  =   (diff(Txy_tot(:,1:end-1),1,1) +... 
        diff(Txy_tot(:,2:end),1,1))/dx(1)/2; 
    D_Txy_y  =   (diff(Txy_tot(1:end-1,:),1,2) +... 
        diff(Txy_tot(2:end,:),1,2))/dx(2)/2; 
    D_Syy_y  =   (diff(Syy_tot(1:end-1,:),1,2) +... 
        diff(Syy_tot(2:end,:),1,2))/dx(2)/2; 
     
    Vx       = Vx*(1-damp) + dt*(D_Sxx_x+D_Txy_y)/ro_i; 
    Vy       = Vy*(1-damp) + dt*(D_Txy_x+D_Syy_y-1)/ro_i; 
    % The Boundary Conditions for  VELOCITY 
    Vx(  1,:)     =  0;            %left x 
    Vx(end,:)     =  0;            % right x 
    Vy(:,1)       =  0;            % Down Y 
    % Strains 
    dVx_dx     =  (diff(Vx(:,1:end-1),1,1) + ... 
        diff(Vx(:,2:end),1,1))/dx(1)/2; 
    dVy_dx     =  (diff(Vy(:,1:end-1),1,1) + ... 
        diff(Vy(:,2:end),1,1))/dx(1)/2; 
    dVx_dy     =  (diff(Vx(1:end-1,:),1,2) + ... 
        diff(Vx(2:end,:),1,2))/dx(2)/2; 
    dVy_dy     =  (diff(Vy(1:end-1,:),1,2) + ... 
        diff(Vy(2:end,:),1,2))/dx(2)/2; 
     
    dStrain(:) = [dVx_dx(:) dVy_dy(:) dVy_dx(:)+dVx_dy(:)]'; 
    % Penalty stress 
    Stress_check(1,:,:) =  Sxx_eff  + dt * Earr/(1-2*nu)/(1+nu)* ... 
        ((1-nu)*dVx_dx + nu.*dVy_dy); 
    Stress_check(2,:,:) =  Syy_eff  + dt * Earr/(1-2*nu)/(1+nu)*... 
        ((1-nu)*dVy_dy + nu.*dVx_dx); 
    Stress_check(3,:,:) =  Txy_eff  + dt * Earr/(1-2*nu)/(1+nu)*... 
        (1/2-nu)* (dVx_dy + dVy_dx); 
     
    % Plastic failure search 
    [F(:)]=YieldFunction_array(Size_S,Stress_check,phi,Cohesion,St); 
    ij       = find(F<0); 
    % Elastic update 
    Sxx_eff(ij)  = Stress_check(1,ij); 
    Syy_eff(ij)  = Stress_check(2,ij); 
    Txy_eff(ij)  = Stress_check(3,ij); 
    % 
    if max(F(:))>=0 
        damp=0; 
    end 
    % Plastic update 
    Plasticity; 
    % Displacement 
    Ux = Ux + dt*Vx; 
    Uy=  Uy + dt*Vy; 
    % Graphycs 
    if mod(round(time/dt),400)==400-1 
        damp 
        %Calculation of the strain deviator 
        ex= diff(Ux,1,1); 
        Ex = (ex(:,2:end)+ex(:,1:end-1))/2; 
        ey= diff(Uy,1,2); 
        Ey = (ey(2:end,:)+ey(1:end-1,:))/2; 
        g1 =  diff(Uy,1,1); G1 = (g1(:,2:end)+g1(:,1:end-1))/2; 
        g2 =  diff(Ux,1,2); G2 = (g2(2:end,:)+g2(1:end-1,:))/2; 
        g = (G1+G2)/2; 
        SI= sqrt((Ex-Ey).^2/4+g.^2); % Strain deviator 
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        subplot(211), contour(x2Dc,y2Dc,SI,7), axis equal,  
        axis tight, axis off, shading interp, colorbar 
        subplot(212), pcolor(x2Dc,y2Dc,Syy_eff), axis equal,  
        axis tight, axis off, shading interp, colorbar 
        time 
        drawnow 
    end 
end 
% END OF Main.m 

 
Pressure_Initialization.m 

 
% fluid pressure initialization 
nn      = prod(nx); 
BM      = sparse(nn,nn); 
nbcup   = zeros(nn,1); 
nbclr   = zeros(nn,1); 
nbcD    = zeros(nn,1); 
ij2g    = reshape(1:nn,nx); 
NNN=reshape(ij2g(2:end-1,2:end-1),1,[])*(1+nn)-nn; 
  
BM(NNN)          =  1/dt + 2*kf/dx(1)^2+2*kf/dx(2)^2; 
BM(NNN+nn)       =  -kf/dx(1)^2; 
BM(NNN-nn)       =  -kf/dx(1)^2; 
BM(NNN+nn*nx(1)) =  -kf/dx(2)^2; 
BM(NNN-nn*nx(1)) =  -kf/dx(2)^2; 
for i = 1:nx(1) 
    neqn = ij2g(i,nx(2));  
    BM(neqn,neqn) = 1;nbcup(neqn) = 1; 
end 
for j=1:nx(2) 
    neqn = ij2g(    1,j);   BM(neqn,:)    = 0;   BM(neqn,neqn) = 1; 
nbclr(neqn) = 1; 
    BM(neqn,ij2g(    2,j)) = -1; 
    neqn = ij2g(nx(1),j);    BM(neqn,:)    = 0;  BM(neqn,neqn) = 1; 
nbclr(neqn) = 1; 
    BM(neqn,ij2g(nx(1)-1,j)) = -1; 
end 
for i=1:nx(1) 
    if (x(i)>=(H(1)-dH)/2)&(x(i)<=(H(1)+dH)/2) 
        neqn         = ij2g(i,1); 
        BM(neqn,:)    = 0; 
        BM(neqn,neqn) = 1; nbcD(neqn) = 1; 
    else 
        neqn         = ij2g(i,1);   BM(neqn,:)    = 0;   BM(neqn,neqn) 
= 1; nbcD(neqn) = 2; 
        BM(neqn,ij2g(i,2)) = -1; 
    end 
end 
Rhs          =  zeros(nn,1); 
Rhs(nbcD==1)  = 1; 
Rhs(nbcD==2)  = 0; 
Rhs(nbcup==0&nbcD==0&nbclr==0)  = 
Pre_flu(nbcup==0&nbcD==0&nbclr==0)/dt; 
Pre_flu(:)         =  sparse(BM)\Rhs; 
clear BM, clear Rhs, clear NNN 
% END OF Pressure_Initialization 
 

Pcrit.m 
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function [Pc,Mode]=Pcrit(A,phi,C,St,rhos,nu) 
eta   = (1-2*nu)/(1-nu)/2; 
d1    = 1-eta+eta/log(2*rhos)/2; 
d2    = eta/log(2*rhos)/2; 
Sv    = -1; 
Delta = -(1-A); 
po = [C*cos(phi)/(d1*sin(phi)+d2)      C*cos(phi)/(d1*sin(phi)-d2)       
St/(d1+d2)  St/(d1-d2)  St*log(2*rhos)/eta]; 
av = [ -sin(phi)/(d1*sin(phi)+d2)      -sin(phi)/(d1*sin(phi)-d2)        
-1/(d1+d2)  -1/(d1-d2)  0]; 
ad = [(-1+sin(phi))/(d1*sin(phi)+d2)/2  (1+sin(phi))/(d1*sin(phi)-
d2)/2  0            1/(d1-d2)  0]; 
Pcarr = (po+av*Sv+ad*Delta) 
Pc    = min(Pcarr(Pcarr>0)); % Failure mode 
Mode = find(Pcarr==Pc);      % Failure pattern 
% END OF Pcrit.m 

 
YieldFunction_array.m 

 
function [Ft]=YieldFunction_array(Size_S,Stress,phi,cohesion,St) 
% This function search for elastic/plastic elements 
Ft                = -1000*ones(1,Size_S); 
Ft1               = -1000*ones(1,Size_S); 
Ft2               = -1000*ones(1,Size_S); 
Mean_Stress       = zeros(1,Size_S); 
Mean_Stress(1,:)  = (Stress(1,:)+Stress(2,:))/2;  %Mean stress 
TTau       = zeros(1,Size_S);% Stress deviator 
TTau(1,:)  = (1/4*(Stress(1,:)-Stress(2,:)).^2+Stress(3,:).^2); 
Ft1        = TTau - (Mean_Stress*sin(phi)-cohesion*cos(phi)).^2; 
Ft2        = TTau - (Mean_Stress - St).^2; 
Ft         = max(Ft1,Ft2); 
% END OF YieldFunction_array.m 
 

YieldFunction_new.m 
 
 
 
function [F,dFds,dQds]=... 
    YieldFunction_new(Size_ij,Stress,phi,psi,cohesion,St) 
F                = -10*ones(1,Size_ij); 
F1                = -10*ones(1,Size_ij); 
F2                = -10*ones(1,Size_ij); 
Mean_Stress      = zeros(1,Size_ij); 
Mean_Stress(1,:) = (Stress(1,:)+Stress(2,:))/2; 
tau              = zeros(1,Size_ij); % Stress deviator 
tau(1,:)         = (1/4*(Stress(1,:)-
Stress(2,:)).^2+Stress(3,:).^2).^(1/2); 
% Partial derivative of yield function 
dFds             = zeros(3,Size_ij); 
% Partial derivative of flow function 
dQds             = zeros(3,Size_ij); 
% Yield function for tensile failure 
F1       = tau + Mean_Stress-St; 
% Yield function for shear failure 
F2       = tau + Mean_Stress*sin(phi)-cohesion*cos(phi); 
Mode2            = find(F2 >F1);    % shear 
Mode1            = find(F2 <=F1);    % open 
  
if size(Mode2,1)*size(Mode2,2)>0 
    F(1,Mode2)       = tau(1,Mode2) + ... 
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        Mean_Stress(1,Mode2)*sin(phi)-cohesion*cos(phi); 
    A2=    1/2*(Stress(1,Mode2)-Stress(2,Mode2))./(2*tau(1,Mode2)); 
    B2 = Stress(3,Mode2)./tau(1,Mode2); 
  
    dFds(1,Mode2)    = A2+1/2*sin(phi); 
    dFds(2,Mode2)    = -A2+1/2*sin(phi); 
    dFds(3,Mode2)    =B2; 
  
    dQds(1,Mode2)     = A2+1/2*sin(psi); 
    dQds(2,Mode2)     = -A2+1/2*sin(psi); 
    dQds(3,Mode2)     = B2; 
end 
if size(Mode1,1)*size(Mode1,2)>0 
  
    F(1,Mode1)       = tau(1,Mode1) + Mean_Stress(1,Mode1) - St; 
    A3 = 1/2*(Stress(1,Mode1)-Stress(2,Mode1))./(2*tau(1,Mode1)); 
    B3 = Stress(3,Mode1)./tau(1,Mode1); 
    dFds(1,Mode1)    = A3+1/2*sin(pi/2); 
    dFds(2,Mode1)    = -A3+1/2*sin(pi/2); 
    dFds(3,Mode1)    = B3; 
  
    angle             = pi/2; 
    dQds(1,Mode1)     = A3+1/2*sin(angle); 
    dQds(2,Mode1)     = -A3+1/2*sin(angle); 
    dQds(3,Mode1)     = B3; 
end 
% END OF YieldFunction_new.m 
 

Plasticity.m 
 
 
ij       = find(F>=0); 
Size_ij = length(ij); 
if (Size_ij>0) 
  
    if size(ij,1)~=Size_ij 
        error('size error') 
    end 
    Stress=zeros(3,Size_ij); 
    Stress(1,:)=Sxx_eff(ij); 
    Stress(2,:)=Syy_eff(ij); 
    Stress(3,:)=Txy_eff(ij); 
  
    Strain               = dStrain(:,ij); 
     %Rheology matrix (Mat of coeff before str rate) 
    D     = zeros(3,3,Size_ij); 
    FF            = zeros(3,Size_ij); 
    [F_old ,dFds,dQds] = YieldFunction_new(Size_ij,... 
        Stress,phi,psi,Cohesion,St); 
    % Elastoplastic Rheology 
  
D(1,1,:)    = G * (4 * dFds(3,:) .* G .* dQds(3,:) + 12 .* ... 
    dFds(2,:) .* K .* dQds(2,:) + 4 .* dFds(2,:) .* G .* ... 
    dQds(2,:) + 3 .* K .* dFds(3,:) .* dQds(3,:)) ./... 
    (3 .* dFds(3,:) .* G .* dQds(3,:) + 4 .* dFds(1,:) ... 
    .* G .* dQds(1,:) - 2 .* dFds(1,:) .* G .* dQds(2,:)... 
    + 3 .* dFds(1,:) .* K .* dQds(1,:) +... 
    3 .* dFds(1,:) .* K .* dQds(2,:) + ... 
    3 .* dFds(2,:) .* K .* dQds(1,:) +... 
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    3 .* dFds(2,:) .* K .* dQds(2,:)- ... 
    2 .* dFds(2,:) .* G .* dQds(1,:) +... 
    4 .* dFds(2,:) .* G .* dQds(2,:)); 
  
D(2,1,:) = - G * (-3 * K * dFds(3,:) .* dQds(3,:) +... 
    12 .* dFds(2,:) .* K .* dQds(1,:) + 4 .* dFds(2,:)... 
    .* G .* dQds(1,:) + 2 .* dFds(3,:) .* G .* dQds(3,:)) ./... 
    (4 .* dFds(1,:) .* G .* dQds(1,:) - 2 .* dFds(1,:) .* ... 
    G .* dQds(2,:) + 3 .* dFds(1,:) .* K .* dQds(1,:) +... 
    3 .* dFds(1,:) .* K .* dQds(2,:) - 2 .* dFds(2,:) .*... 
    G .* dQds(1,:) + 4 .* dFds(2,:) .* G .* dQds(2,:) +... 
    3 .* dFds(2,:) .* K .* dQds(1,:) + 3 .* dFds(2,:) .*... 
    K .* dQds(2,:) + 3 .* dFds(3,:) .* G .* dQds(3,:)); 
  
D(3,1,:) = -dFds(3,:) .* G .* (4 .* G .* dQds(1,:) - ... 
    2 .* G .* dQds(2,:) + 3 .* K .* dQds(1,:) + 3 .* ... 
    K .* dQds(2,:)) ./ (4 .* dFds(1,:) .* G .* dQds(1,:)... 
    - 2 .* dFds(1,:) .* G .* dQds(2,:) + 3 .* dFds(1,:) .*... 
    K .* dQds(1,:) + 3 .* dFds(1,:) .* K .* dQds(2,:) -... 
    2 .* dFds(2,:) .* G .* dQds(1,:) + 4 .* dFds(2,:) .*... 
    G .* dQds(2,:) + 3 .* dFds(2,:) .* K .* dQds(1,:) + ... 
    3 .* dFds(2,:) .* K .* dQds(2,:) + ... 
    3 .* dFds(3,:) .* G .* dQds(3,:)); 
  
D(1,2,:) = - G .* (4 .* dFds(1,:) .* G .* dQds(2,:) +... 
    12 .* dFds(1,:) .* K .* dQds(2,:) + 2 .* dFds(3,:) .* ... 
    G .* dQds(3,:) - 3 .* K .* dFds(3,:) .* dQds(3,:)) ./... 
    (4 .* dFds(1,:) .* G .* dQds(1,:) - 2 .* dFds(1,:) .*... 
    G .* dQds(2,:) + 3 .* dFds(1,:) .* K .* dQds(1,:) + ... 
    3 .* dFds(1,:) .* K .* dQds(2,:) - 2 .* dFds(2,:) .* ... 
    G .* dQds(1,:) + 4 .* dFds(2,:) .* G .* dQds(2,:) + ... 
    3 .* dFds(2,:) .* K .* dQds(1,:) + 3 .* dFds(2,:) .*... 
    K .* dQds(2,:) + 3 .* dFds(3,:) .* G .* dQds(3,:)); 
  
D(2,2,:) =  G .* (3 .* K .* dFds(3,:) .* dQds(3,:) + ... 
    4 .* dFds(1,:) .* G .* dQds(1,:) + 12 .* dFds(1,:) .*... 
    K .* dQds(1,:) + 4 .* dFds(3,:) .* G .* dQds(3,:)) ./ ... 
    (4 .* dFds(1,:) .* G .* dQds(1,:) - 2 .* dFds(1,:) .*... 
    G .* dQds(2,:) + 3 .* dFds(1,:) .* K .* dQds(1,:) + ... 
    3 .* dFds(1,:) .* K .* dQds(2,:) - 2 .* dFds(2,:) .* G .* ... 
    dQds(1,:) + 4 .* dFds(2,:) .* G .* dQds(2,:) + ... 
    3 .* dFds(2,:) .* K .* dQds(1,:) + 3 .* dFds(2,:) .* ... 
    K .* dQds(2,:) + 3 .* dFds(3,:) .* G .* dQds(3,:)); 
  
D(3,2,:) = -dFds(3,:)  .* G .* (3 .* K .* dQds(2,:) - ... 
    2 .* G .* dQds(1,:) + 4 .* G .* dQds(2,:) + 3 .* ... 
    K .* dQds(1,:)) ./ (4 .* dFds(1,:) .* G .* dQds(1,:) ... 
    - 2 .* dFds(1,:) .* G .* dQds(2,:) + 3 .* dFds(1,:) ... 
    .* K .* dQds(1,:) + 3 .* dFds(1,:) .* K .* dQds(2,:)... 
    - 2 .* dFds(2,:) .* G .* dQds(1,:) + 4 .* dFds(2,:)... 
    .* G .* dQds(2,:) + 3 .* dFds(2,:) .* K .* dQds(1,:) +... 
    3 .* dFds(2,:) .* K .* dQds(2,:) +... 
    3 .* dFds(3,:) .* G .* dQds(3,:)); 
  
D(1,3,:) = -dQds(3,:) .* G .* (4 .* dFds(1,:) .* G... 
    - 2 .* dFds(2,:) .* G + 3 .* dFds(2,:) .* K +... 
    3 .* dFds(1,:) .* K) ./ (4 .* dFds(1,:) .*... 
    G .* dQds(1,:) - 2 .* dFds(1,:) .* G .* dQds(2,:)... 
    + 3 .* dFds(1,:) .* K .* dQds(1,:) + 3 .* dFds(1,:)... 
    .* K .* dQds(2,:) - 2 .* dFds(2,:) .* G .* dQds(1,:) + ... 
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    4 .* dFds(2,:) .* G .* dQds(2,:) + 3 .* dFds(2,:) .*... 
    K .* dQds(1,:) +  3 .* dFds(2,:) .* K .* dQds(2,:)... 
    + 3 .* dFds(3,:) .* G .* dQds(3,:)); 
  
D(2,3,:) = -dQds(3,:) .* G .* (-2 .* dFds(1,:) .* G ... 
    + 4 .* dFds(2,:) .* G + 3 .* dFds(2,:) .* K + 3 .*... 
    dFds(1,:) .* K) ./ (4 .* dFds(1,:) .* G .* dQds(1,:)... 
    - 2 .* dFds(1,:) .* G .* dQds(2,:) + 3 .* dFds(1,:)... 
    .* K .* dQds(1,:) + 3 .* dFds(1,:) .* K .* dQds(2,:)... 
    - 2 .* dFds(2,:) .* G .* dQds(1,:) + 4 .* dFds(2,:) .*... 
    G .* dQds(2,:) + 3 .* dFds(2,:) .* K .* dQds(1,:) +... 
    3 .* dFds(2,:) .* K .* dQds(2,:)... 
    + 3 .* dFds(3,:) .* G .* dQds(3,:)); 
  
D(3,3,:) = G .* (4 .* dFds(1,:) .* G .* dQds(1,:)... 
    - 2 .* dFds(1,:) .* G .* dQds(2,:) - 2 .* dFds(2,:)... 
    .* G .* dQds(1,:) + 4 .* dFds(2,:) .* G .* dQds(2,:) +... 
    3 .* dFds(1,:) .* K .* dQds(1,:) + 3 .* dFds(1,:)... 
    .* K .* dQds(2,:) + 3 .* dFds(2,:) .* K .* dQds(1,:)... 
    + 3 .* dFds(2,:) .* K .* dQds(2,:)) ./ (4 .* dFds(1,:)... 
    .* G .* dQds(1,:) - 2 .* dFds(1,:) .* G .* dQds(2,:) +... 
    3 .* dFds(1,:) .* K .* dQds(1,:) + 3 .* dFds(1,:) ... 
    .* K .* dQds(2,:) - 2 .* dFds(2,:) .* G .* dQds(1,:)... 
    + 4 .* dFds(2,:) .* G .* dQds(2,:) + 3 .* dFds(2,:)... 
    .* K .* dQds(1,:) + 3 .* dFds(2,:) .* K .* dQds(2,:)... 
    + 3 .* dFds(3,:) .* G .* dQds(3,:)); 
  
FF(1,:) = -(-2 .* G .* dQds(2,:) + 4 .* G .* dQds(1,:) ... 
    + 3 .* K .* dQds(2,:) + 3 .* K .* dQds(1,:)) ./... 
    (4 .* dFds(1,:) .* G .* dQds(1,:) - 2 .* dFds(1,:)... 
    .* G .* dQds(2,:) + 3 .* dFds(1,:) .* K .* dQds(1,:) + ... 
    3 .* dFds(3,:) .* G .* dQds(3,:) + 3 .* dFds(1,:) .*... 
    K .* dQds(2,:) + 3 .* dFds(2,:) .* K .* dQds(1,:)... 
    + 3 .* dFds(2,:) .* K .* dQds(2,:) - 2 .* dFds(2,:) .*... 
    G .* dQds(1,:) + 4 .* dFds(2,:) .* G .* dQds(2,:)); 
  
FF(2,:) = -(4 .* G .* dQds(2,:) - 2 .* G .* dQds(1,:) +... 
    3 .* K .* dQds(2,:) + 3 .* K .* dQds(1,:)) ./ (4 .*... 
    dFds(1,:) .* G .* dQds(1,:) - 2 .* dFds(1,:) .* ... 
    G .* dQds(2,:) + 3 .* dFds(1,:) .* K .* dQds(1,:) + ... 
    3 .* dFds(3,:) .* G .* dQds(3,:) + 3 .* dFds(1,:)... 
    .* K .* dQds(2,:) + 3 .* dFds(2,:) .* K .* dQds(1,:)... 
    + 3 .* dFds(2,:) .* K .* dQds(2,:) - 2 .* dFds(2,:)... 
    .* G .* dQds(1,:) + 4 .* dFds(2,:) .* G .* dQds(2,:)); 
  
FF(3,:) = -3 .* G .* dQds(3,:) ./ (4 .* dFds(1,:) .*... 
    G .* dQds(1,:) - 2 .* dFds(1,:) .* G .* dQds(2,:)... 
    + 3 .* dFds(1,:) .* K .* dQds(1,:) + 3 .* dFds(3,:)... 
    .* G .* dQds(3,:) + 3 .* dFds(1,:) .* K .* dQds(2,:) + ... 
    3 .* dFds(2,:) .* K .* dQds(1,:) + 3 .* dFds(2,:)... 
    .* K .* dQds(2,:) - 2 .* dFds(2,:) .* G .* dQds(1,:)... 
    + 4 .* dFds(2,:) .* G .* dQds(2,:)); 
  
    %****************** 
    Stress               = dt*shiftdim(sum(reshape(reshape( D, ... 
        [9, Size_ij]).*repmat(Strain,3,1), [3,3,Size_ij])),1)... 
        + Stress + [[FF(1,:).*F_old(1,:)];... 
        [FF(2,:).*F_old(1,:)]; [FF(3,:).*F_old(1,:)]]; 
  
    Sxx_eff(ij) = Stress(1,:); 
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    Syy_eff(ij) = Stress(2,:); 
    Txy_eff(ij) = Stress(3,:); 
end 
% END OF Plasticity.m 



 

 

28

 

 

 

 

 

 

 

 

Part II    Scientific papers 



 
 
 
 
 
 
 
 
 

Paper I 



 1

Failure patterns caused by localized rise in pore-fluid overpressure and effective strength 1 

of rocks 2 

 3 

A.Y. Rozhko1, Y.Y. Podladchikov1, and F. Renard1,2  4 
1Physics of Geological Processes, University of Oslo, PO box 1048 Blindern, 0316 5 

Oslo, Norway 6 

2LGCA-CNRS-OSUG, University of Grenoble, BP 53, 38041 Grenoble, France 7 

Abstract.  In order to better understand the interaction between pore-fluid overpressure 8 

and failure patterns in rocks we consider a porous elasto-plastic medium in which a 9 

laterally localized overpressure line source is imposed at depth below the free surface. 10 

We solve numerically the fluid filtration equation coupled to the gravitational force 11 

balance and poro-elasto-plastic rheology equations. Systematic numerical simulations, 12 

varying initial stress, intrinsic material properties and geometry, show the existence of 13 

five distinct failure patterns caused by either shear banding or tensile fracturing. The 14 

value of the critical pore-fluid overpressure cp  at the onset of failure is derived from 15 

an analytical solution that is in excellent agreement with numerical simulations. Finally, 16 

we construct a phase-diagram that predicts the domains of the different failure patterns 17 

and cp  at the onset of failure. 18 

Key words:  pattern formation (4460), fracture and flow (5104), dynamics and 19 

mechanics of faulting (8118), Mechanics, theory and modeling (8020), role of fluids 20 

(8045).21 
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1.  Introduction 22 

The effect of the homogeneous pore-pressure increase on the strength of crustal rocks 23 

and failure modes has been studied by many authors e.g. [Terzaghi, 1923; Skempton, 24 

1961; Paterson and Wong, 2005]. Their results show that, provided that the rocks 25 

contain a connected system of pores, failure is controlled by the Terzaghi’s effective 26 

stress defined as 27 

    ij ij ijpσ σ δ′ = −       (1) 28 

where ijσ  is the total stress; p  is the pore fluid pressure, and ijδ  is the Kronecker delta 29 

(by convention, compressive stress is positive). 30 

However, many geological systems, such as magmatic dykes, mud volcanoes, 31 

hydrothermal vents, or fluid in faults, show evidence that pore pressure increase might 32 

be localized, instead of being homogeneously distributed [Jamtveit et al., 2004]. 33 

Localized pore-pressure variations couple pore-fluid diffusion to rock deformation 34 

through the seepage force generated by pressure gradients [Rice and Cleary, 1976]. The 35 

seepage force introduces localized perturbation of the effective stress field and may 36 

promote various failure patterns. The effect of seepage forces caused by laterally 37 

homogeneous pore-pressure increase on failure patterns was recently studied 38 

experimentally by [Mourgues and Cobbold, 2003]. In the present study, we explore 39 

both numerically and analytically how an essentially two-dimensional, i.e. localized 40 

both at depth and laterally, increase in pore-pressure affects failure patterns in porous 41 

elasto-plastic rocks. In section 2, we discuss the effect of localized pore pressure 42 

increase on tensile and shear failure. Section 3 is devoted to the characterization of the 43 

various failure patterns using finite element and finite difference simulations that solve 44 

the gravitational force balance equation and the fluid filtration equation in a poro-45 

elasto-plastic medium. In section 4, we predict the fluid pressure at the onset of failure 46 

using new analytical solutions. Finally we discuss the geological implications in section 47 

5. 48 

2.  Effect of pore pressure on rock failure 49 
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In nature, rock failure occurs in two different modes: shear bands and tensile fractures. 50 

Laboratory triaxial experiments show that the Mohr-Coulomb criterion (eq. 2) provides 51 

an accurate prediction for shear failure [Paterson and Wong, 2005]: 52 

   sin( ) cos( )m Cτ σ φ φ′− =       (2) 53 

where 2 2( ) / 4xx yy xyτ σ σ σ= − +  is the stress deviator, 
2

xx yy
m p

σ σ
σ

+
′ = −  is the mean 54 

effective stress, C  is the rock cohesion and φ  is the internal friction angle. 55 

On the other hand, Griffith’s theory provides a theoretical criterion for tensile failure of 56 

a fluid-filled crack [Murrell, 1964]:  57 

   m Tτ σ σ′− =          (3) 58 

where Tσ  is the tensile strength of the rock. This criterion has also been verified 59 

experimentally [Jaeger, 1963].  60 

In Figure 1, we show how a homogeneous or localized increase of pore-fluid pressure 61 

influences rock failure. There, lm  is the Mohr-Coulomb envelope (eq. 2) and kl  is the 62 

tensile cut-off limit (eq. 3). The Mohr circle indicates the initial state of stress, with 63 

zero pore-fluid overpressure. As the pore-fluid pressure increases homogeneously by an 64 

amount p , the radius of the Mohr circle remains constant and the circle is displaced to 65 

the left until it touches the failure envelope (blue curve). Depending on the location 66 

where the circle touches the failure envelope, the formation of shear bands or tensile 67 

fractures takes place. In both cases, when pore-fluid pressure increase is homogeneous, 68 

the orientation and onset of failure patterns can be predicted [Paterson and Wong, 69 

2005]. Shear bands form at an angle of 
4 2
π φ
−  to the direction of maximum 70 

compressive stress; tensile fractures develop perpendicularly to the direction of 71 

maximum tensile stress. 72 

We explore a more complex scenario, where the pore-fluid increase is localized into a 73 

narrow source, so that seepage forces modify locally the stress-state. As shown on 74 

Figure 1c-d, the radius of the initial Mohr circle does not remain constant, as for the 75 

homogeneous pore-fluid pressure increase case. For a localized fluid pressure increase 76 

equal to p , the radius of the Mohr circle is changed by an amount of pτβ , and the 77 
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center of the circle is displaced to the left by an amount of pσβ . The two 78 

dimensionless parameters τβ  and σβ  are derived below both by numerical and 79 

analytical means and given by (eqs. 14-15). 80 

 81 
Figure 1.  Effect of homogeneous (a, b) vs. localized (c, d) pore-fluid pressure increase 82 
on the failure. lm  is the Mohr-Coulomb failure envelope (2); kl  is the tensile cut-off 83 
boundary (3). The Mohr circles for initial stress conditions are represented in green. 84 
The Mohr circles after a pore-fluid increase p  are represented in blue (at failure). 85 
Arrows show the transformation of the Mohr circle after pore-fluid pressure increase. 86 
The rock fails either in shear mode, or in tension, when the Mohr circle meets the 87 
failure envelopes kl  or lm , respectively. Note that for localized pore-fluid pressure 88 
increase, the radius of the Mohr circle is changed (increase or decrease) by an amount 89 

pτβ  and the center is displaced to the left by an amount pσβ . The two dimensionless 90 
parameters τβ  and σβ  are given in equations 14-15. 91 

3.  Numerical model and numerical results 92 

We consider a 2D porous medium embedded in a box of length L  and height h L<<  93 

(Figure 2a). At the bottom of this box, we define a pore-fluid over-pressure source of 94 

width w h<< . We consider plane-strain deformation in a material with constant and 95 

homogeneous intrinsic properties. We solve numerically the fluid filtration equation 96 

and the force balance equation, using a poro-elasto-plastic rheology relationship 97 

between the stress and the strain rates. 98 
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 99 
Figure 2.  Geometry of the plane-strain model (a) and representative stages of 100 
deformation before (b) and during failure (c). The color coding represents the pore-fluid 101 
pressure normalized to the pressure at the onset of failure cp . The horizontal layering 102 
represents passive markers of the deformation. 103 

 104 

At initial conditions the deformation of the material and the pore-fluid overpressure are 105 

equal to zero everywhere in the system. The initial mechanical state is chosen below the 106 

failure limits everywhere in the system. The initial vertical stress Vσ  (along y axis) is 107 

equal to the weight of the overburden. The initial horizontal stress Hσ  is proportional 108 

to the vertical stress: 109 

   V

H V

g y

A

σ ρ

σ σ

= −

=
,        (4) 110 
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where ρ  is the total density of the rock including pore fluid, g is the gravitational acceleration, 111 

y−  is the depth and A  is a constant coefficient. The initial shear stress is zero everywhere. 112 

The top boundary ( 0y = ) has a free surface condition, with zero overpressure ( 0fp = ). The 113 

lateral and bottom walls are fixed, with free-slip condition (including the pore-fluid source), 114 

and impermeable (excluding pore-fluid source). The boundary conditions on lateral walls 115 

represent far-field fluid pressure and mechanical state undisturbed by the localized fluid 116 

pressure at the center of the model, which is achieved by using large enough horizontal extent 117 

of the models, max( , )L h w . Perturbations of stress and displacement are negligibly small at 118 

the lateral boundaries, thus either fixed stress or fixed displacement lateral boundary conditions 119 

lead to the similar numerical results. At time 0t = , the fluid pressure is slowly increased 120 

everywhere on the source segment ( ( )fp p t= ), until failure nucleates and propagates. The 121 

process of fluid overpressure build up at a small segment of lower boundary is unspecified but 122 

assumed slow compared to the characteristic time for establishing a steady-state distribution of 123 

the fluid pressure. This quasi-static slowly driven evolution of the pressure field in a domain 124 

with constant permeability is governed by the Laplace equation 125 

   2 0fp∇ = .        (5) 126 

The gravitational force balance equation formulated for the total stress is given by 127 

   
0

0

xyxx

yy yx

x y

g
y x

σσ

σ σ
ρ

∂⎧∂
+ =⎪ ∂ ∂⎪

⎨∂ ∂⎪ + + =⎪ ∂ ∂⎩

      (6) 128 

The initial state of the stress defined in (eq. 4) fulfills this relationship. 129 

Using the general approach for poro-elasto-plastic deformation [Rice and Cleary, 1976; 130 

Vermeer, 1990], the full strain rate tensor is given by 131 

   pe pl
ij ij ijε ε ε= +         (7) 132 

where the superscripts pe  and pl  denote the poro-elastic and the plastic components, 133 

respectively. The poro-elastic constitutive relation can be written as: 134 

   2 2
1 2

pe pe f
ij ij kk ij ij

vG G p
v

σ ε ε δ α δ= + +
−

    (8) 135 
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where α  is the Biot-Willis poro-elastic coupling constant [Paterson and Wong, 2005], 136 

v  is the drained Poisson’s ratio, and G  is the shear modulus. The plastic strain rates 137 

are given by 138 

   
0  for  0 or ( 0  and  0)

  for  0 and  0

pl
ij

pl
ij

ij

f f f

q f f

ε

ε λ
σ

= < = <

∂
= = =

′∂

    (9) 139 

Here, we chose the yield function in the form max( , )tension shearf f f= , where tensionf  and 140 

shearf  are yield functions for failure in tension and in shear, respectively, defined as: 141 

   
sin( ) cos( )

tension m T

shear m

f
f C

τ σ σ
τ σ φ φ

′= − −
′= − −

     (10) 142 

The parameter λ  in (eq. 9) is the non-negative multiplier of the plastic loading 143 

[Vermeer, 1990], and q  is the plastic flow function, defined as follows for tensile 144 

(associated flow rule) and shear failure (non-associated flow rule), respectively: 145 

   
sin( )

tension m

shear m

q
q υ

τ σ
τ σ

′= −
′= −

       (11) 146 

where υ  is the dilation angle (υ φ< ). Note that the total stress is used in (eqs. 6,8), 147 

whereas the Terzaghi’s effective stress (eq. 1) applies in the failure equations (9-11). 148 

Substitution of stresses (eq. 8) into the force balance equation (6) renders gradient of 149 

the fluid pressure, commonly referred as seepage forces, as a cause of the solid 150 

deformation. 151 

Solving this set of equations, we aim to predict the localization and quasi-static 152 

propagation of plastic deformations into either shear bands or tensile fractures. The 153 

term tensile fracture is used here to describe the inelastic material response in the 154 

process zone area that accompanies fracture onset and propagation [Ingraffea, 1987]. 155 

In order to check the independence of the simulation results on the numerical method, 156 

we have developed two codes (finite element and finite difference). Extensive 157 

numerical comparisons indicate that the results converge to the same values when 158 

increasing the grid resolution. The poro-elastic response of codes was tested using a 159 

new analytical solution (see Auxiliary Materials). The plastic response of the code was 160 

tested by stretching or squeezing of lateral walls. The numerical results were consistent 161 
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with both numerical [Poliakov et al., 1993] and laboratory experiments of rock 162 

deformation [Paterson and Wong, 2005]. 163 

In the case when the lateral walls are fixed, but the localized pore-fluid overpressure 164 

increases, the simulations show that the rock starts swelling poro-elastically (Figure 165 

2b). When the pore-fluid pressure exceeds a critical threshold value cp  at the injection 166 

source, the homogeneous deformation evolves into a pattern where either a tensile 167 

fracture or highly localized shear bands nucleate and propagate in a quasi-static manner 168 

(Figure 2c). 169 

Solving equations (5-11), the model selects the failure mode (shear or tensile) and the 170 

propagation direction. Systematic numerical simulations show the existence of five 171 

distinct failure patterns when the pore-fluid pressure exceeds cp  (Figure 3, see 172 

Auxiliary Materials for animations). Deformation patterns I (normal faulting) and II 173 

(reverse faulting) form by shear failure in compressive ( V Hσ σ< ) and in extensional 174 

initial stress states ( V Hσ σ> ), respectively. Patterns III (vertical fracturing) and IV 175 

(horizontal fracturing) are caused by tensile failure in compressive and extensional 176 

initial stress states, respectively. The nucleation of failure for patterns I-IV is located at 177 

the fluid overpressure source. It is located at the free surface for pattern V, which is 178 

also called soil-piping mode in hydrology [Jones, 1971]. After nucleation at the free 179 

surface as tensile fracture in response to swelling caused by the fluid pressure build up, 180 

pattern V develops by downwards propagation of a tensile failure. 181 
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 182 
Figure 3.  Possible failure patterns caused by the localized pore-fluid pressure increase. 183 
Either shear bands (I, II) or tensile fractures (III, IV, V) can develop. Fracture nucleates 184 
either on the fluid source at depth (I, II, III, IV) or on the free surface (V). Horizontal 185 
passive marker layering, arrows, and color coding (contours of strain deviatorγ ) 186 
indicate the displacement and intensity of the deformation. (See Auxiliary Materials for 187 
animations and for numerical parameters used in simulations). 188 

4.  Analytical solution and failure pattern phase diagram 189 

We have derived an analytical solution for pre-failure stress distribution caused by 190 

seepage forces sharing the same set of governing parameters as our numerical setup but 191 

a different geometry of the outer free surface boundary [see Auxiliary Materials]. We 192 

report an excellent agreement between numerical and analytical predictions of the 193 

maximum pre-failure pore-fluid pressure. In order to calculate this critical pore-fluid 194 

pressure cp , we consider the stress and failure conditions at the fluid source (patterns I-195 

IV in Figure 3) and at the free surface (pattern V in Figure 3). 196 

It follows from the analytical solution that the center, mσ , and the radius, τ , of the 197 

Mohr circle do not vary along the fluid source segment. They are related by the 198 

following expressions to the initial (and far field or “global’) stresses and to the fluid 199 

overpressure at the localized source [Auxiliary Materials]: 200 
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2

V H pτ
σ στ β−

= −         (12) 201 

  
2

V H
m m p pσ

σ σσ σ β+′ = − = −       (13) 202 

where two parameters σβ  and τβ  control the shift of Mohr circle and radius change, 203 

respectively (Figure 1): 204 

 1 2 1 11 1 42 1 2 ln( )h
w

σ
α νβ

ν

⎛ ⎞
⎜ ⎟−

= − −⎜ ⎟− ⎜ ⎟
⎝ ⎠

,       (14) 205 

 1 2 1
44 1 ln( )h
w

τ
α νβ

ν
−

=
−

.        (15) 206 

Using τ  and, according to the Terzaghi’s law (eq. 1), m m pσ σ′ = −  in the local (i.e. 207 

evaluated at the potential failure point) failure criteria allows predictions of failure 208 

pattern and initiation criteria as a function of the “global” and undisturbed by the 209 

localized fluid pressure rise far-field stresses Vσ  and Hσ . Equations 12-13 can be 210 

interpreted as a generalized form of the Terzaghi’s law expressed in terms of the far-211 

field stresses for the case of “local” fluid pressure not necessarily equal to the far-filed 212 

fluid pressure. According to (eq. 15), during the fluid pressure increase, the radius of 213 

the Mohr-circle decreases when 42 2 ln( )
V H p

h
w

σ σ η−
−  is positive (patterns I and III) and 214 

increases when it is negative (patterns II and IV). In the case when 4ln( ) 1h
w

, the 215 

radius of the Mohr circle does not vary. If the rock is incompressible ( 0.5ν = ) or if the 216 

Biot-Willis coupling constant is set to zero, then equations (14-15) recovers the 217 

expected Terzaghi’s limit ( 1σβ =  and 0τβ = ) Indeed, the case when the fluid pressure 218 

gradients are not coupled to solid deformation must be in agreement with the classical 219 

effective stress law well supported by experiments with a homogeneous fluid pressure 220 

distribution [Garg and Nur, 1973; Paterson and Wong, 2005]. 221 
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Thus, after evaluating initial stresses at depth y h= −  using (eq. 4) and substitution of τ  222 

and mσ ′  from (eqs. 12-13) using (eqs. 14-15) into the shear and tensile failure 223 

conditions (eqs. 2-3), the critical pore-fluid pressure cp  is calculated. Similarly, using 224 

the analytical solution and equation (4) at the free surface we obtain 0Hσ =  and the 225 

tensile failure condition: 2 c
Tpτβ σ= . for failure pattern V. 226 

Based on the above calculations, we obtain a generalized expression for failure criteria 227 

for all failure patterns as a linear combination of initial stresses evaluated at appropriate 228 

depth: 229 

   ( )( ) c
b H V V H fk k k k pτ σσ σ σ σ− = + + −      (16) 230 

By rearranging, we obtain a unified expression for the critical pore-fluid pressure cp : 231 

   ( )( )b V H V Hc

f

k k k
p

k
τ σσ σ σ σ− + + +

=     (17) 232 

where bk , kτ , kσ , and fk  are constant coefficients (see Table 1) for the various failure 233 

patterns shown on Figure 3. 234 

 235 

 fk  kτ  kσ  bk  

I 2( sin( ) )τ σβ φ β+  2 cos( )C φ  sin( )φ  1 

II 2( sin( ) )τ σβ φ β−  2 cos( )C φ−  sin( )φ−  1 

III 2( )τ σβ β+  2 Tσ  1 1 

IV 2( )τ σβ β−  2 Tσ−  -1 1 

V 2 τβ  Tσ  0 0 

Table 1.  Critical pore-pressure ( )( )b V H V Hc

f

k k k
p

k
τ σσ σ σ σ− + + +

=  at the onset of 236 

failure, corresponding to the various failure patterns (I-V) shown on Figure 3. The 237 
coefficients also define the domains in the phase diagram of Figure 4. 238 
 239 

Using these coefficients and equation (17), the phase-diagram for the different failure 240 

patterns can be calculated. The minimum value of cp  for patterns I-V defines the pore-241 
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fluid overpressure at failure nucleation (Figure 4, red colors). If 0cp ≤ , the rock is at 242 

failure without fluid overpressure (Figure 4, white color). In Figure 4, the vertical axis 243 

corresponds to the vertical stress Vσ  and the horizontal axis to the stress difference 244 

( )V Hσ σ− , both axes being normalized by C , the cohesion of the rock. Any initial 245 

stress state in the model corresponds to a point on the diagram. The contours in the 246 

colored regions plot the dimensionless pressure 2*c c

T

p pτβ
σ

=  at failure onset. If the 247 

value of the localized pore-fluid pressure is smaller than *cp , then the system is stable. 248 

However, if it is equal or larger, then the porous material fails with a predictable 249 

pattern-onset, that depends on the position in the phase diagram. 250 

 251 
Figure 4.  Phase diagram of failure-onset patterns. On the vertical axis the non-252 
dimensional vertical stress is plotted, while on the horizontal axis the non-dimensional 253 
stress-difference between vertical and horizontal stresses is plotted. Stresses are given 254 
at the fluid source at depth. The colored region represents the admissible stress state at 255 
which the rock is stable, while the outer region represents the unstable combination of 256 
stresses. The colors plot the non-dimensional critical fluid pressure. The bold white 257 
lines represent the topology of transitions between the different failure modes. 258 
Interestingly, failure patterns IV and V may occur both in extensional and in 259 
compressive initial stress state. 260 
 261 

White thick lines on Figure 4 define the topology of transition boundaries between 262 

different failure patterns ( c c
i jp p=  where i  and j  are patterns I-V in (eq. 17) and 263 

Table1, i j≠  ). Their equations can be calculated using equation (17) and the 264 
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parameters given in Table 1. If a point in the failure diagram lies on one of these 265 

transition lines, the yield functions for the two corresponding domains are both equal to 266 

zero, implying that both failure modes could occur. 267 

5.  Conclusion 268 

We present an analytical and numerical analysis of the effect of a localized pore-fluid 269 

pressure source on the failure pattern of crustal rocks. The main results are the 270 

following: 271 

- Depending on the initial conditions, the geometry, and the material properties, 272 

five different patterns of failure can be characterized, either with tensile or shear 273 

mode. 274 

- The critical fluid pressure at the onset of failure could also be determined for all 275 

failure patterns and an analytical solution for cp  is given in equation (17) and 276 

Table 1. 277 

These results can be used in many geological applications, including the formation of 278 

hydrothermal vent structures triggered by sill intrusion [Jamtveit et al., 2004], the 279 

aftershocks activities caused by motions of fluids inside faults [Miller et al., 2004], or 280 

the tremors caused by sediments dehydration in subduction zones [Shelly et al., 2006]. 281 

Finally, our simulations did not allow studying any transient effects in the fluid 282 

pressure during fracture propagation. It has also been shown that fluid lubrication 283 

[Brodsky and Kanamori, 2001] could have strong effect on the dynamics of rupture 284 

propagation. We are currently neglecting these additional effects, which could be 285 

integrated in an extended version of our model. 286 

 287 
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Auxiliary Materials 

Failure patterns caused by localized rise in pore-fluid overpressure and effective 

strength of rocks 
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Norway 

2 LGCA-CNRS-OSUG, University of Grenoble, BP 53, 38041 Grenoble, France 
 

In Section A of this Auxiliary Materials, we demonstrate the analytical solution and 

derive equations (12-17) of Section 4 in the article. Section B is devoted to the 

comparison of the analytical solution to numerical tests. Finally, some animations of the 

results shown in Figure 3 are presented in Section C. 

 

A.  Analytical Solution 

In this section we calculate the seepage forces caused by coupling pore-fluid diffusion 

with rock deformation. The procedure for calculating these forces can be divided into six 

successive steps: 

1) The definition of the system of equations for mechanical equilibrium; 

2) the general solution of this system of equations in Cartesian coordinates using the 

complex potential method for poro-elasticity; 

3) the introduction of the curvilinear coordinate system associated with the conformal 

mapping transformation, which allows finding the solution for complex geometry; 

4) the calculation of the general solution of the equilibrium equations for steady-state 

poro-elasticity in curvilinear coordinate system; 

5, 6) and finally, after defining the boundary conditions, the calculation of the particular 

solution. 

 

A1. System of equations for steady-state poro-elastic deformation 

Following the common approach of [Biot, 1941; Rice and Cleary, 1976], the equations 

for steady-state fluid filtration in a poro-elastic solid are given by: 
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- The stress balance equations for the total stress tensor σ ij , without volume forces: 

0xyxx

x y
σσ ∂∂

+ =
∂ ∂

 and 0yy xy

y x
σ σ∂ ∂

+ =
∂ ∂

     (S1) 

- The steady-state fluid filtration governed by the Laplace equation for fluid pressure fp : 

2 2

2 2 0fp
x y

⎛ ⎞∂ ∂
+ =⎜ ⎟∂ ∂⎝ ⎠

       (S2) 

- A constitutive relation between the total stress σ ij and the strain ε ij : 

1 2
2 2 1

f
ij m ij m

ij ij
p

G G
σ σ δ σ α νε δ

ν
− − −

= +
+

     (S3) 

where δij is the Kronecker delta and the intrinsic material properties are the shear 

modulusG , the drained Poisson’s ratio ν , and the Biot-Willis poro-elastic constantα  

[Paterson and Wong, 2005]. 

A2. Complex Potential Method for steady-state poro-elasticity 

Two-dimensional problems in elasticity can be solved using a complex potential method 

(CPM), developed by Kolosov [1909] and Muskhelishvili [1977]. This method has been 

generalized for thermo-elasticity by Lebedev [1937] and others. In this method the 

general solution for the displacements and stresses is represented in terms of two 

analytical functions (potentials) of a complex variable and another complex function for 

temperature distribution [Goodier and Hodge, 1958; Timoshenko and Goodier, 1982]. 

This general solution automatically satisfies the force balance equation and generalized 

Hooke’s law for thermo-elasticity, provided that the function of temperature distribution 

satisfies to the heat conduction equation. The nontrivial part of this method is in 

satisfying the boundary conditions of the specific problem, which is done by conformal 

mapping. 

The equations for poro-elasticity and thermo-elasticity are identical for steady-state fluid 

filtration and heat flow problems. Therefore it is possible to use the complex potential 

method, developed for thermo-elasticity, to solve steady-state poro-elastic problems. 

According to the CPM, the general solution of equations (S1-S3) can be written in the 

form (by convention, compressive stress and strain are positive) [Goodier and Hodge, 

1958; Timoshenko and Goodier, 1982; Muskhelishvili, 1977]: 



 3

[ ]4 Re ( ) 2 ( , )xx yy
fz p z zσ σ ϕ η′+ = − +      (S4) 

[ ] ( , )2 2 ( ) ( ) 2
f

yy xx xy
p z zi z z z d z

z
σ σ σ ϕ ψ η ∂′′ ′− + = − + +

∂∫    (S5) 

2 ( ) ( ) ( ) ( ) ( , )f
x yG u iu z z z z p z z d zχϕ ϕ ψ η′+ = − − + ∫    (S6) 

Where the plane-strain parameters η  and χ  are defined as: 1 2
2 1
α νη

ν
−

=
−

 and 3 4χ ν= − . 

The integrals in (eqs. S5-S6) are indefinite (without the integration constant) and the 

superscript “ ' “ denotes differentiation, i.e. ( )( ) zz
z

ϕϕ ∂′ =
∂

. 

In equations (S4-S6), = +z x iy  is the complex variable, x and y  are the usual Cartesian 

coordinates, 1i −=  is the imaginary unit, and the overbar denotes complex conjugation, 

i.e. z x iy= − . ( )zϕ  and ( )zψ  are the complex potentials, which are analytic functions of 

the complex variable z , and are derived from the biharmonic Airy function 

[Muskhelishvili, 1977]. ( , )fp z z  is the solution of Laplace equation (S2), given as a 

function of two complex variables z and z . By introducing the transformation of 

coordinates
2

z zx +
=  and 

2
z zy

i
−

= , the Laplace equation (S2) can be rewritten in the 

form [Timoshenko and Godier,1982; Lavrent’ev and Shabat, 1972]:  
2

( , ) 0fp z z
z z
∂

=
∂ ∂

.        (S7) 

The fluid filtration pressure creates stresses at the boundaries of the solid. The boundary 

value problem, with given stresses or displacements in curvilinear boundaries, can be 

solved by finding the complex potentials ( )zϕ and ( )zψ  using Muskhelishvili’s method. 

 

A3. Conformal transformation and curvilinear coordinates 

Conformal mapping is a transformation of coordinates that allows for solving a problem 

with a simple geometry (Figure S1a) and transforming its solution to a more complex 

geometry (Figure S1b). The properties of conformal mapping can be found in [Lavrent’ev 

and Shabat, 1972]. 



 4

The transformation of a circular domain into an elliptical one is given in a unique way by 

the Joukowsky transform: 

1( )
4
wz ς

ς
= +           (S8) 

where w  is the width of pore-fluid pressure source as defined in Figure 2 (and Figure 

S1b, red line). The complex variable ς  is defined through polar coordinates ρ  and ϑ  as 

follows (Figure S1a): 
ie ϑς ρ= .         (S9) 

In Figure S1a, *1 ρ ρ≤ ≤  and 0 2ϑ π≤ ≤ ; the internal ( 1ρ = ) and external ( *ρ ρ= ) 

boundaries are shown by the red and brown curves, respectively. 

We use the polar coordinates ρ  and ϑ  in the ς -plane, as a non-dimensional system of 

coordinates for the z -plane. The properties of this coordinate system are considered 

below. Any circle constρ =  and radius constϑ =  in the ς -plane (Figure S1a) are 

transformed into an ellipse and a hyperbola in the z-plane, respectively (Figure S1b). The 

foci of the ellipse and the hyperbola on the z-plane coincide (Figure S1b). As the 

conformal mapping preserves angles, the two lines constϑ =  and constρ =  are 

perpendicular in the z-plane. Therefore, the polar coordinates ρ  and ϑ  can be 

considered as a curvilinear coordinate system in the z-plane. 

 
Figure S1.  Conformal mapping procedure using the Joukowsky transform and systems 
of Cartesian and curvilinear coordinates. Here w  is the length of pore pressure source 
(red line segment) shown on Figure 2a.  
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The Cartesian and curvilinear coordinates on the z-plane are related through: 

2

2

1(1 )cos( )
4

1(1 )sin( )
4

wx

wy

ρ ϑ
ρ

ρ ϑ
ρ

= +

= −
       (S10) 

The Cartesian coordinates of the pore-pressure source (Figure S1b, red line) are given by 

substitution of the circle 1ρ =  (Figure S1a, red circle) into (eq. S10): 

cos( )
2
0

wx

y

ϑ=

=
         (S11) 

The external boundaries *ρ ρ=  are represented as brown curves on Figure S1. If 

* 1ρ >> , the relations (S10) become: 

* 2
*

* 2
*

1cos( )
4

1sin( )
4

wx O

wy O

ρ ϑ
ρ

ρ ϑ
ρ

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
⎛ ⎞

= + ⎜ ⎟
⎝ ⎠

 for * 1ρ ρ= >>     (S12) 

By neglecting the terms 2
*

1O
ρ

⎛ ⎞
⎜ ⎟
⎝ ⎠

and taking *
4h
w

ρ = , the relationship (S12) becomes 

cos( )
sin( )

x h
y h

ϑ
ϑ

=
=

         (S13) 

These equations describe the external boundary, which is given by a circle with radius h , 

for the case when 4 1h
w

>>  (Figure S1b, brown curve). We derive the analytical solution 

for this case where 4 1h
w

>> . 

A4. General solution of plane poro-elasticity in curvilinear coordinates 

According to Muskhelishvili [1977], the stress and the displacement components in the 

Cartesian and Curvilinear coordinate systems are related by:  

ρρ ϑϑσ σ σ σ+ = +xx yy         (S14) 

( )
2

2

( )2 2
( )yy xx xyi iϑϑ ρρ ρϑ

ρ ω ςσ σ σ σ σ σ
ς ω ς

′
− + = − +

′
    (S15) 
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and 

( )
( )

( ) ρ ϑ

ω ςρ
ς ω ς

′
+ = +

′x yu iu u iu        (S16) 

where  

1( ) ( )
4
wzω ς ς

ς
= = +          (S17) 

Note that, if 1ρ = in equations (S15-S16), one obtains using (eq. S17): 

2

2 1
( )
( )

ρ ω ς
ς ω ς

′
= −

′
 and 

2  for 0<( ) sin ( )
for < 2sin( )( )

i
i

i
ϑ πω ς ϑρ

π ϑ πς ϑω ς
′ <⎧

= = ⎨− <′ ⎩
   (S18) 

The equations for stresses (S4-S5) and displacements (S6) in the curvilinear coordinate 

system become: 

( )4 Re ( ) 2 ( , )fpρρ ϑϑσ σ ς η ς ς+ = − Φ +       (S19) 

2 2

2 2

2 2 ( , )2 ( ) ( ) ( ) ( ) ( )
( ) ( )

fpi dϑϑ ρρ ρϑ
ς ς ς ςσ σ σ ω ς ς ω ς ς η ω ς ς
ρ ρ ςω ς ω ς

∂⎡ ⎤′ ′ ′− + = − Φ + Ψ +⎣ ⎦′ ′ ∂∫
           (S20) 

( ) ( )2 ( ) ( ) ( ) ( ) ( , ) ( )
( ) ( )

fG u iu p dρ ϑ
ς ω ς ω ςχϕ ς ϕ ς ψ ς η ς ς ω ς ς
ρ ω ς ω ς

⎛ ⎞′
′ ′+ = − − +⎜ ⎟′ ′⎝ ⎠

∫   (S21) 

where 

( ) ( )( ) and ( )
( ) ( )

ϕ ς ψ ςς ς
ω ς ω ς
′ ′

Φ = Ψ =
′ ′

       (S22) 

Using the properties of conformal mapping ( ( ) 0ω ς′ ≠  and ( ) 0ω ς ≠ ), the Laplace 

equation (S7) becomes: 
2 ( , ) 0

fp ς ς
ς ς

∂
=

∂ ∂
        (S23) 

A5. Boundary conditions  

The boundary conditions for the fluid are: 

*

=   for  1
= 0  for 

f

f

p p
p

ρ

ρ ρ

=

=
        (S24) 

and the boundary conditions for the solid are: 
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*

0 and  0 for 1

0 and 0  for 
xy yu

ρϑ ρρ

σ ρ

σ σ ρ ρ

= = =

= = =
      (S25) 

Note here that if 1ρ = , and using (eqs. S14-S18), one obtains 0xyρϑσ σ= − =  and 

0yu uρ = ± = . 

We define the pore-fluid pressure source inside the continuous medium (Figure S1b, red 

line) as a line segment with constant fluid pressure. The external boundary (Figure S1b, 

brown line) has zero pore pressure. We use mixed boundary conditions for the pore 

pressure source 1ρ =  as in (eq. S25) because the medium is continuous everywhere and 

0y =  is a symmetry line. The external boundary *ρ ρ=  is free from load. 

A6. Solution 

We finally present the analytical solution derived using Muskhelishvili’s method. We do 

not show the derivation here, since it is quite lengthy, but we demonstrate that our 

solution fulfills to the boundary conditions. 

The solution of Laplace equation (S23) with the boundary conditions (S24) is given by, 

( )
2
*

ln
( , )

ln( )
fp p p

ςς
ς ς

ρ
= −         (S26) 

This equation can be simplified, using (eq. S8) as follows 

( )
*

ln
( )

ln( )
fp p p

ρ
ρ

ρ
= −         (S27) 

The boundary conditions (S24) are fulfilled by (eq. S27). This equation (S27) gives the 

solution for pore fluid pressure. 

We calculate the complex potentials, which define the solution of problem, as the 

following: 

( )
2

*

1( )
16 ln

p wη ςϕ ς
ς ρ

+
=        (S28) 

( )*ln
( )

4
p wηψ ς
ς ρ

=         (S29) 

The explicit expression for the stress components can be found after substitution of (eq. 

S26), and (eqs. S28-S29) into (eqs. S19-S20) using (eq. S22), and after simplifications: 
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2 2

2 4

* *

( 1)( cos(2 ))
ln 1

ln( ) 1 2 cos(2 )

p
ρρ

ρ ρ ρ ϑ
σ η

ρ ρ ρ ϑ ρ

− −
= − + −

− +

⎛ ⎛ ⎞ ⎞
⎜ ⎜ ⎟ ⎟
⎝ ⎝ ⎠ ⎠

   (S30) 

2

2 4
* *

( 1)(cos(2 ) 1)
ln 1

ln( ) 1 2 cos(2 )
p

ϑϑ

ρ ρ ϑ
σ η

ρ ρ ρ ϑ ρ
+ −

= − + +
− +

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
   (S31) 

2

2 4
*

( 1) sin(2 )
ln( ) 1 2 cos(2 )

p
ρϑ

ρ ϑ
σ η

ρ ρ ϑ ρ
−

= −
− +

     (S32) 

The explicit expression for the displacements can be found after substitution of (eqs. S26, 

S28-S29) into (eq. S21), using (eqs. S16, S22), and after simplifications we obtain: 

*

* *cos( ) 1
4 ln 1 4 ln 3

32 ln( )
2

x

p
u w

G
η ϑ

χ ρ χ
ρ ρ

ρ ρ
ρ ρ ρ

= + − −
⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞+ + +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦
 

          (S33) 

( )
*

*

sin( ) 1
4 ln 1

32 lny

p
u w

G
η ϑ

χ ρ
ρ

ρ
ρ ρ

= + −
⎛ ⎞⎛ ⎞ ⎛ ⎞+⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠
    (S34) 

In equations (S33-S34), we present the analytical solution for the displacements along x  

and y  axes. This solution is parameterized through curvilinear coordinates ρ  and ϑ . 

The solution for displacements along ρ  and ϑ  axes is too long to be reproduced here. 

One can find this displacements using (eqs. S33-S34) along with (eq. S16). 

Applying the boundary conditions (S25) to equations (S32, S34) shows that the solution 

is fulfilled at the pore overpressure source 1ρ =  (Figure S1, red curve). The non-zero 

stress components at the pore overpressure source are calculated using (eqs. S30-S31) 

along with (eqs. S14-S15) and (eq. S18): 

( )*

for 1
lnyy

p
pρρ

η
σ σ η ρ

ρ
= = − =       (S35) 

 for =1xx pϑϑσ σ η ρ= =        (S36) 

According to equation (1) of the article and equations (S27) and (S35-S36), the effective 

stress at the pore overpressure source becomes 

( )*

 for  1
ln

 yy

p
p pη

σ η ρ
ρ

′ = − =−       (S37) 
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  for  =1xx p pσ η ρ′ = −        (S38) 

At the external boundary *ρ ρ=  (Figure S1, brown curve), we obtain 2
*

1
ρρσ

ρ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

O  

and 2
*

1Oρϑσ
ρ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
, since * 1ρ >> . The boundary conditions (S25) at *ρ ρ=  are also 

fulfilled.  

The circumferential stress at the free surface is given by: 

2
* *

1
ln( )

p
Oϑϑσ η

ρ ρ
= − +

⎛ ⎞
⎜ ⎟
⎝ ⎠

 ( *for =  and =
2xxϑϑ
πσ σ ρ ρ ϑ= )  (S39) 

According to equation (1) of the paper and equations (S27) and (S39), the non-zero 

component of effective stress at the free surface is given by 

*ln( )xx

p
σ η

ρ
′ = −         (S40) 

 

A7. Critical pore pressure 

We now propose an analytical study in order to derive equation (17) of the paper for the 

fluid pressure cp  at the onset of failure. To do this, we add the initial state of stress given 

by equations (4) to the stress of state which is exerted by the fluid overpressure increase 

(obtained in the Section A6). This is possible due to the additivity of linear poroelasticity 

[Rice and Cleary, 1976]. Both the numerical simulations and the analytical solution show 

that failure initiation takes place either at the fluid source or at the free surface. 

Therefore, in order to calculate cp , we consider the stress and failure conditions below, 

first at the fluid source (patterns I-IV in Figure 3), and second at the free surface (pattern 

V in Figure 3). 

Using equations (S37-S38) at ( *
4h
w

ρ = ) and (eq. 4) (at depth y h= − ) for failure patterns 

I-IV, the Terzaghi’s effective stress tensor at the fluid source segment becomes:  

 xx H p pσ σ η′ = − + ,         (S41) 
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 4ln( )
yy V

pp p h
w

ησ σ η′ = − + − ,       (S42) 

 0xyσ ′ = .         (S43) 

The analytical solution given in equations (S41-S45) indicates that the stress components 

on the fluid source do not depend on x (Figure 2a). 

Using (eq. S41-S45), the mean Terzaghi’s effective stress mσ ′  and the stress deviator τ  

can be calculated: 

 42 2 ln( )
H V

m
pp p h
w

σ σ ησ η+′ = − + −       (S44) 

 42 2 ln( )
V H p

h
w

σ σ ητ −
= − .       (S45) 

Substitution of equations (S44) and (S45) into the failure condition (2) for shear failure or 

condition (3) for tensile failure defines cp  for failure patterns 1-IV. Now, referring to the 

parameters σβ  and τβ  defined in Figure 1 and to the definition of η  after equation (S6), 

one obtains from (eqs. S44, S45):  

 1 2 1 11 1 42 1 2 ln( )h
w

σ
α νβ

ν

⎛ ⎞
⎜ ⎟−

= − −⎜ ⎟− ⎜ ⎟
⎝ ⎠

,       (S46) 

 1 2 1
44 1 ln( )h
w

τ
α νβ

ν
−

=
−

.        (S47) 

According to (eq. S47), during the fluid pressure increase, the radius of the Mohr-circle 

decreases when 42 2 ln( )
V H p

h
w

σ σ η−
−  is positive (Patterns I and III) and increases when it 

is negative (Patterns II and IV) in the case, if 4ln( ) 1h
w

 the radius of Mohr circle does 

not change. If the rock is incompressible ( 0.5ν = ) or the Biot-Willis coupling constant is 
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set to zero equations (eqs. S46-S46) give 1σβ =  and 0τβ =  therefore the seepage force 

does not have an additional effect on failure in this case. 

For pattern V in Figure 3, the initial stresses (eq. 4) are zero (at depth 0y = ). Thus after 

substitution of (eq. S40) into (eq. 3) and simplification we obtain the condition for tensile 

failure at the free surface as the following, 

 2 c
Tpτβ σ= .         (S48) 

By assuming 2
1 sin( ) T

C σ
ϕ

>
+

 we obtain that only tensile failure initiation is allowed at the 

free surface. 

B.  Analytical versus numerical approach 

The numerical simulations show that if the initial state of stress ( Vσ  and Hσ ) is taken as 

in the form of equations (4), then the nucleation of failure is allowed either at the pore-

pressure source or at the free surface. We compare cp  predicted with the analytical 

solution ((eq. 17) and Table 1) obtained for the geometry shown on Figure S2a, with cp  

calculated with the finite element method for the geometry shown on Figure S2b. 

 

Figure S2.  Geometry used in the analytical solution (Figure S1) compared to the 
geometry used in the numerical model (Figure 2a). 
 

We studied cp  numerically as a function of all parameters of the model. The vertical 

stress Vσ  (Pa or bar) and the depth h  (m) are chosen to be equal to 1 and all the 

parameters listed below are non-dimensional compared to these values. Plots on Figure 

S3 compare cp  predicted with the analytical solution ( c
ASp ) to cp  calculated with the 
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numerical simulations ( c
NSp ); the different colors representing the various failure patterns. 

The value of cp  is always within a 20% limit between the two approaches. 

 
Figure S3.  Critical pore pressure at the onset of failure predicted using the analytical 
solution c

ASp  for the geometry shown on Figure S2a compared to the solution of the 
numerical simulations c

NSp  for the geometry shown on Figure S2b. Each point 
corresponds to a single simulation. The different colors correspond to the different failure 
patterns of Figure 3 
 

List of parameters and values: 

Poisson’s ratio: [1: 4]
10

ν =  (where the notation [1: 4] denotes the array[1,2,3,4] ). 

Non-dimensional width of overpressure source: 
-[0:5]2
5

w
h
= . 

Non-dimensional horizontal stress: [1: 30]
10

H

V

σ
σ

= . 

Non-dimensional cohesion: 
( )[0:50]ln(1 4) ln(3) ln(1 4)

50
e e

V

C e
σ

− + − −
= . 

Non-dimensional tensile strength: 1 1 1
, ,

3 7 30
T

V V

Cσ
σ σ

⎡ ⎤= ⎢ ⎥⎣ ⎦
. 

Friction angle (in degrees): 10 [1: 3]oϕ = . 
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Fixed non-dimensional parameters: 4L
h
= , 710

V

G
σ

= , 0oυ =  and 1α = . 

 

C.  Animations of the simulations of Figure 3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Pattern I: 

0.2H

V

σ
σ

= , 33oϕ = , 0oυ = , 0.1
V

C
σ

= , 1T

V

σ
σ

= , 0.3ν = , 710
V

G
σ

= , 4L
h
= , -110w

h
= , 

1α = . The first frame in the animation corresponds to the elastic solution at failure 
onset cp p= , the last frame corresponds to the case when 3.5 cp p= . The pore pressure 
increases linearly with time during the animation. 
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Pattern II:  

3H

V

σ
σ

= , 33oϕ = , 0oυ = , 0.1
V

C
σ

= , 0.1T

V

σ
σ

= , 0.3ν = , 710
V

G
σ

= , 4L
h
= , -110w

h
= , 

1α = . The first frame in the animation corresponds to the elastic solution at failure 
onset cp p= , the last frame corresponds to the case when 1.8 cp p= . The pore pressure 
increases linearly with time during the animation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Pattern III: 

0.1H

V

σ
σ

= , 33oϕ = , 0oυ = , 0.8
V

C
σ

= , 0.266T

V

σ
σ

= , 0.3ν = , 710
V

G
σ

= , 4L
h
= , -110w

h
= , 

1α = .The first frame in the animation corresponds to the elastic solution at failure 
onset cp p= , the last frame corresponds to the case when 4 cp p= . The pore pressure 
increases linearly with time during the animation. 
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Pattern IV: 

5H

V

σ
σ

= , 33oϕ = , 0oυ = , 4
V

C
σ

= , 0.266T

V

σ
σ

= , 0.3ν = , 710
V

G
σ

= , 4L
h
= , -110w

h
= , 

1α = .The first frame in the animation corresponds to the elastic solution at failure 
onset cp p= , the last frame corresponds to the case when 3.2 cp p= . The pore pressure 
increases linearly with time during the animation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Pattern V: 

0.1H

V

σ
σ

= , 33oϕ = , 0oυ = , 0.8
V

C
σ

= , 810T

V

σ
σ

−= , 0.3ν = , 710
V

G
σ

= , 4L
h
= , -110w

h
= , 

1α = . The first frame in the animation corresponds to the elastic solution at failure 
onset cp p= , the last frame corresponds to the case when 16 cp p= . The pore pressure 
increases linearly with time during the animation. 
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Role of seepage forces in faulting and earthquake triggering 
 
Alexander Rozhko 
 
Physics of Geological Processes, University of Oslo, PO box 1048 Blindern, 0316 
Oslo, Norway 

 
Abstract  This article discusses the effects of coupling between deformation and pore-fluid 

diffusion on faulting and failure processes. I consider an arbitrarily oriented preexisting fault 

zone of finite length, located at depth, with a given fluid overpressure in it, and surrounded by 

porous and permeable rocks. The intrinsic elastic and transport properties of these rocks are 

assumed to be isotropic and homogeneous. The seepage forces caused by steady-state fluid 

diffusion from the fault zone to the surrounding permeable rocks are calculated analytically 

using the complex-potentials method for poro-elasticity and conformal mapping. The pore-

fluid overpressure required for fault reactivation is calculated analytically in 2D, assuming that 

the tectonic stress state, the rock intrinsic properties and the geometry of the pre-existing fault 

are known. I apply the solution to microseismicity triggering caused by hydrocarbon 

withdrawals from a reservoir. Other applications such as storage of carbon dioxide in porous 

rocks and geothermic exploitation are also considered. Knowledge of the pore-fluid 

overpressure needed to reactivate a fault helps to prevent anthropogenic earthquakes. 

 

1.  Introduction 

 

Fluids exert significant mechanical forces that influence earthquake faulting. The typical effect, 

which is commonly recognized, is the reduction of the tectonic compressive stress by an 

amount equal to the pore-fluid pressure. The role of the fault zone as a fluid conduit is also 

widely recognized [Rice, 1992] and it is accepted that many fault zones can be characterized by 

a pore-fluid overpressure 
 
Δp f  that can vary in time [Sibson, 1990]. Hickman et al. [1995] 

reviewed possible mechanisms that may generate fluid overpressure in faults and shear zones. 

These sources of overpressure include metamorphic fluids generated by dehydration of 

minerals during prograde metamorphism, crustal scale circulation of water [Kerrich et al., 

1984], and mantle-derived water and carbon dioxide that may be upwelling along preexisting 

penetrating faults [Miller et al., 2004]. Maturation of the organic matter may also control the 
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fluid pressure through generation of both liquid and gaseous hydrocarbons [Moore and Vrolijk, 

1992]. Another mechanism that could generate fluid overpressure is industrial injection or 

extraction of fluid from a fault zone or the fractured zone of a reservoir [Economides and 

Nolte, 2000]. 

The pore-fluid overpressure 
 
Δp f  is the difference between the pore-fluid pressures inside the 

fault zone 
 
p f

i  and the hydrostatic fluid pressure p f
o  i.e., 

 
Δp f = p f

i − p f
o ,        (1) 

and the hydrostatic fluid pressure: 

 
p f

o = ρwg h ,         (2) 

where  ρw  is the density of water, g is the gravitational acceleration and  h  is the depth. 

 The failure of the fault zone is controlled by the effective tectonic stress 
 
σ ij

T ′ , 

 
σ ij

T ′ = σ ij
T − p f

i δ ij ,        (3) 

where 
 
σ ij

T is the tectonic stress on the fault, and δ ij is the Kronecker delta (
  
δ ij =

1  for  i = j 
0  for  i ≠ j

⎧
⎨
⎩

) 

[Turcotte and Schubert, 2002; Jaeger and Cook, 1979]. In 2D, the tectonic stress on the fault 

zone can be characterized by two components: the vertical stress  σV
T  and the horizontal 

stress σ H
T : 

 σV
T = ρr g h ,         (4) 

 σ H
T = ρr g h + Δσ H

T ,        (5) 

where  ρr  is the rock density and Δσ H
T  is the tectonic stress difference. 

According to the Coulomb criterion [Jaeger and Cook, 1979; Vermeer and de Borst, 1984], 

shear failure of rocks is controlled by the yield function f , defined as 

  f = τ − ′σm sin(φ) − C cos(φ) ≤ 0 ,      (6) 
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where 
  
τ =

1
2

(σ xx − σ yy )2 + 4σ xy
2  is the stress deviator, ′σm =

σ xx + σ yy

2
− p f  is the mean 

effective stress, φ  is the angle of internal friction, C  is the cohesion, and 
 
σ ij  and p f  are the 

local stress tensor and local pore-fluid pressure, respectively. 

The rock is stable if   f < 0  and fails in shear if f = 0 . 

Substitution of the tectonic stress (4-5) into (6) using (1-2) gives a yield condition on the fault 

zone, 

  
f =

1
2
Δσ H

T − (ρr − ρ f )g h +
Δσ H

T

2
− Δp f

⎛

⎝
⎜

⎞

⎠
⎟ sin(φ) − C cos(φ) ≤ 0 .  (7) 

Equation (7) suggests that a positive value of the pore-fluid overpressure (
  
Δp f > 0 ) increases 

the probability of failure. 

Segall [1985] considered the possibility that the Coalinga earthquake in May 1983 was induced 

by fluid extraction from a reservoir, i.e. by a decrease of pore-fluid pressure. Since equation (7) 

does not support this statement, he suggested that his hypothesis might be explained by the 

linear theory of poroelasticity [Nikolaevski et. al., 1970; Rice and Cleary, 1976; Rudnicki, 

2001]. This theory specifies an additional change of stress, called seepage forces, caused by the 

coupling between pore-fluid diffusion and rock deformation. Pore fluid diffusion is induced by 

a gradient of pore pressure between the fault zone and the surrounding permeable crustal rocks. 

Fluid pressure variations can trigger earthquakes. This has been observed during gas extraction 

in the Valhall and Ekofisk oil fields in Norway [Zoback and Zinke, 2002], and during injection 

of fluid into reservoirs for geothermal energy purposes [Stark, 2003; Majer et al., 2005] or for 

the subsurface geological storage of CO2  [Streit and Hillis, 2004]. 

In the works of Santarelli et al. [1998], Segall and Fitzgerald [1998] and Khan and Teufel, 

[2000], the authors used a one-dimensional linear poro-elastic model to calculate the seepage 

forces. They used a geometry where an infinitely long production layer (fault zone) located at a 

finite depth is oriented parallel to the free surface. A consequence of this geometry is that the 

vertical stress remains constant, which is not the case when the fault has finite length and is 

oriented at an angle to the free surface. In addition, their results are strongly dependent on the 

boundary conditions used on the lateral walls (prescribed displacement or prescribed stress). 
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For example, such models predict that seepage forces are null when the stress is prescribed on 

the lateral boundaries. 

In this paper, I calculate the seepage forces caused by two-dimensional pore-fluid diffusion 

from a fault zone into the surrounding permeable crustal rock. I relax the assumptions of 

infinite length and parallel orientation, and consider a preexisting fault zone with finite length 

and arbitrary orientation (Figure 1). 

 

 
Figure 1. Preexisting fault with length w  (red line) located at depth. The distance between the 
free surface (brown line) and the fault center is h . The origin of the Cartesian coordinate 
system coincides with the fault center. The y -axis is perpendicular to the fault and θ  is the 
angle between the vertical and the y -axis. In this configuration, the fluid overpressure Δp f  is 
prescribed locally in the fault plane. Diffusive fluid flow from the fault zone into the 
surrounding permeable rocks induces seepage forces that provide an additional control on fault 
reactivation. 
 

The article is organized as follows: In the second section, the projection of the tectonic stresses 

on the fault plane (σ ij
T ) is calculated and the seepage forces σ ij

S  caused by fluid diffusion are 

calculated analytically (Figure 1). These calculations are based on the linear theory of poro-

elasticity, the complex potential method and the conformal mapping. In the third section, an 

analytical solution for the full stress tensor σ ij  is proposed, as a superposition of the tectonic 

and the seepage stresses, i.e.  

 
σ ij = σ ij

T + σ ij
S .         (8) 
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Finally, the full stress tensor is combined with the Coulomb failure criterion (6) to calculate the 

critical pore-fluid pressure required for failure triggering during extraction or injection of a 

fluid. 

 2.  Seepage forces and analytical solution of the coupling between fluid flow and 

elastic deformation 

The projection of the tectonic stress on the fault plane can be calculated using the coordinate 

system shown in Figure 1. The origin is chosen at the center of the fault; and the y -axis is 

perpendicular to the fault plane. The fault is oriented at angle θ  to the vertical (Figure 1). The 

stress components on the fault plane are [Turcotte and Schubert, 2002]: 

  
σ xx

T = σV
T +

Δσ H
T

2
+
Δσ H

T

2
cos(2θ ) , 

  
σ xy

T = −
Δσ H

T

2
sin(2θ ) ,        (9) 

and 

  
σ yy

T = σV
T +

Δσ H
T

2
−
Δσ H

T

2
cos(2θ ) . 

The seepage forces 
 
σ ij

S  are caused by the coupling between the diffusive pore fluid and the 

deformation of rock. The procedure for calculating these forces can be divided into six 

successive steps: 

1) the definition of the system of equations for mechanical equilibrium; 

2) the general solution of this system of equations in Cartesian coordinates using the complex 

potential method for poro-elasticity; 

3) the calculation of the curvilinear coordinate system associated with the conformal mapping 

transformation, which allows finding the solution for complex geometry; 

4) the calculation of the general solution of the equilibrium equations for steady-state poro-

elasticity; 

5) the defining of the boundary conditions; and finally 

6) the calculation of the particular solution. 

These six steps are detailed in the following sub-sections. 

2.1 The system of equations for steady-state poro-elastic deformation 
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Following the common approach [Biot, 1941; Nikolaevski et. al., 1970; Rice and Cleary, 

1976], the three equations defining steady-state fluid filtration into a poro-elastic solid are: 

i) The stress balance equation for the total stress tensorσ ij
S , without volume forces: 

0S
ij

j jx
σ∂

=
∂∑ .        (10) 

ii) The steady-state fluid filtration governed by the Laplace equation: 
2

2 0f
j j

P
x
∂

=
∂∑ ,         (11) 

where 
 
Pf  is the fluid overpressure distribution ( Pf = Δp f on the fault zone and 

  
Pf = 0  on the 

free surface). 

iii) A poro-elastic constitutive relation between the total stress σ ij
S and the strainε ij [Wang, 

2000]: 

2 2
1 2

S
ij ij kk ij ij

vG G p
v

σ ε ε δ α δ= + +
−

,      (12) 

where 
1  if 
0  if ij

i j
i j

δ
=⎧

= ⎨ ≠⎩
 is the Kronecker delta; the strain tensor 1 ( )

2
ji

ij
j i

uu
x x

ε
∂∂

= +
∂ ∂

 is defined 

via displacements iu ; the shear modulusG , the Poisson’s ratioν , and the Biot-Willis poro-

elastic constantα  correspond to the intrinsic material properties. The repeated indices denote 

summation. In equation (12) the sign convention is that compressive stress is positive. The 

gravitational acceleration does not appear in equations (10) and (11) because the gravitation 

effects are included in the preexisting tectonic stress (4-5) and the far-field pore pressure (2). 

Equation (11) implies that permeability is homogeneous and isotropic in the surrounding rocks 

outside the fault zone. 

2.2 Complex potential method for steady-state poro-elasticity 

Two-dimensional problems in elasticity can be solved using a complex potential method, 

developed by Kolosov [1909] and Muskhelishvili [1977], and generalized for thermo-elasticity 

by Lebedev [1937] and others. In this method, the general solution for the displacements and 

stresses is represented in terms of two analytic functions (potentials) of a complex variable and 

the temperature distribution [Goodier and Hodge, 1958; Timoshenko and Goodier, 1982]. This 

general solution automatically satisfies the force balance equation and the generalized Hooke’s 
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law for thermo-elasticity. For a physically realistic solution, the temperature distribution must 

then satisfy the heat conduction equation. The nontrivial part of this method is in satisfying the 

boundary conditions of the specific problem. This is done using a conformal mapping 

transformation. 

Since the equations for poro-elasticity and thermo-elasticity are identical for steady-state fluid 

filtration and heat flow problems, it is possible to use the complex potential method developed 

for thermo-elasticity, in order to solve steady-state poro-elastic problems. 

According to this method, the general solution of equations (10), (11) and (12) can be written 

in the form [Goodier and Hodge, 1958; Timoshenko and Goodier, 1982]: 

  
σ xx

S + σ yy
S = −4 Re ′ϕ (z)⎡⎣ ⎤⎦ + 2ηPf (z, z )      (13) 

  
σ yy

S − σ xx
S + 2iσ xy

S = −2 z ′′ϕ (z) + ′ψ (z)⎡⎣ ⎤⎦ + 2η
∂Pf (z, z )

∂z∫ d z    (14) 

  
2G(ux + iuy ) = χϕ(z) − z ′ϕ (z) −ψ (z) +η Pf (z, z )∫ d z    (15) 

where stresses are defined positive for compression. The integrals are indefinite without the 

integration constant and the superscript “ ´ “ denotes differentiation, i.e.
  
′ϕ (z) =

∂ϕ(z)
∂z

. 

In equations (13-15),  z = x + iy  is the complex variable, with x  and  y  the Cartesian 

coordinates,   i = −1  is the imaginary unit and the bar denotes complex conjugation, 

i.e. z = x − iy . Two dimensionless plane-strain parameters η  and χ  complete the system: 

 
η =

α
2

1− 2ν
1− ν

 and  χ = 3− 4ν .       (16) 

The complex potentials   ϕ (z) and ψ (z)  are analytic functions of z . They are derived from the 

biharmonic Airy function [Muskhelishvili, 1977]. Pf (z, z )  is the solution of Laplace equation 

(11), given as a function of two complex variables z and z . By introducing the transformation 

of coordinates 
  
x =

z + z
2

 and 
  
y =

z − z
2i

, the Laplace equation (11) can be rewritten in the form 

[Timoshenko and Godier,1982; Lavrent’ev and Shabat, 1972]:  

  

∂2

∂z∂z
Pf (z, z ) = 0 .        (17) 
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The fluid filtration pressure creates seepage forces, and modifies the stresses at the boundaries 

of the solid. The boundary value problem, with given stresses or displacements on curvilinear 

boundaries, can be solved by calculating the complex potentials   ϕ (z) and   ψ (z)  using 

Muskhelishvili’s method [Muskhelishvili, 1977]. This method allows solving the steady-state 

plane strain or plane stress poro-elastic problems for nontrivial geometry and boundary 

conditions (Figure 2), by using a conformal mapping. 

2.3 Conformal transformation and curvilinear coordinates 

Conformal mapping is a transformation of coordinates that allows solving a problem in simple 

geometry (Figure 2a) and transforming the solution into a more complex geometry (Figure 2b). 

The properties of the conformal mapping transformation can be found in [Lavrent’ev and 

Shabat, 1972]. 

 
Figure 2. Conformal mapping procedure to solve the localized pore pressure increase effect. 
The circular geometry (a) is transformed into an elliptical geometry (b), representing the fault 
plane, using the Joukowski transformation. The fault segment (red line, similar to an infinitely 
thin ellipse) with curvilinear coordinates in the z -plane is represented as a circle (red) with 
cylindrical coordinates in the ς  -plane. 
 

The transformation of a circular domain into an elliptical one is given in a unique way by the 

Joukowsky transform [Lavrent’ev and Shabat, 1972]: 

  
z =

w
4

(ς +
1
ς

) ,         (18) 

where  w  is the width of the pore-fluid pressure source as defined in Figure 1 (Figure 2b, red 

line). The complex variable ς  is defined through its polar coordinates ρ  and ϑ  (Figure 2a): 
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ie ϑς ρ= .         (19) 

In Figure 2a,  1≤ ρ ≤ ρ*  and  0 ≤ ϑ ≤ 2π ; the internal (ρ = 1) and external ( ρ = ρ* ) boundaries 

are shown by the red and brown curves, respectively. 

The polar coordinates ρ  and ϑ  in the ς -plane are used here as a non-dimensional system of 

coordinates for the  z -plane. This polar coordinate system has the following properties: any 

circle with radius ρ = const  and any straight line with an angle ϑ = const on the ς -plane 

(Figure 2a) are transformed into an ellipse and a hyperbola in the z-plane, respectively (Figure 

2b). The foci of the ellipse and the hyperbola on the z-plane coincide (Figure 2b). As the 

conformal mapping transformation preserves angles, the two lines ϑ = const  andρ = const , 

initially perpendicular in the ς -plane, are also perpendicular in the z-plane. Therefore, the 

polar coordinates ρ andϑ  can be considered as a curvilinear coordinate system in the z-plane. 

The Cartesian and curvilinear coordinates on the z-plane are related through 

and  
2

2

1(1 )cos( )
4

1(1 )sin( ).
4

wx

wy

ρ ϑ
ρ

ρ ϑ
ρ

= +

= −
      (20) 

The Cartesian coordinates of the pore-pressure source (Figure 2b, red line) are given by the 

transformation of the circle  ρ = 1 (Figure 2a, red circle) into a line segment (i. e. an infinitely 

thin ellipse) through equation (20) 

cos( ) and 0.
2
wx yϑ= =        (21) 

The external boundary  ρ = ρ*  is represented by a brown curve on Figure 2a&b. If 2
* 1ρ >> , the 

relationships (20) become 

* 2
*

* 2
*

1cos( )
4

1sin( )
4

wx O

wy O

ρ ϑ
ρ

ρ ϑ
ρ

⎫⎛ ⎞
= + ⎪⎜ ⎟

⎝ ⎠⎪
⎬

⎛ ⎞ ⎪= + ⎜ ⎟ ⎪⎝ ⎠ ⎭

 for ρ = ρ* >> 1.    (22) 

By neglecting the terms 
  
O

1
ρ*

2

⎛

⎝
⎜

⎞

⎠
⎟ and takingρ* =

4h
w

, the relationship (22) can be simplified as 

cos( )  and  sin( )x h y hϑ ϑ= = .      (23) 
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These equations describe the external boundary, which is given by a circle with radius h . I 

derive the analytical solution for the case when 24( ) 1h
w

>>  (Figure 2b, brown curve).  

This case is met in some blind faults, for example at Puente Hills in California [Dolan et al., 

2003], or for the Tottori earthquake [Semmane et al., 2005]. The geometry when 24( ) 1h
w

>>  is 

met also in hydrocarbon industrial applications, where oil is extracted from a reservoir whose 

permeability has been enhanced artificially by hydraulic fracturing [Economides and Nolte, 

2000]. In such reservoirs, cracks are produced by pumping a fluid at high pressure, inducing 

subsequent hydraulic fracturing. In order to keep the newly formed cracks open after 

decreasing the fluid pressure, sand is injected into them. It can be assumed that these fractures 

(filled with sand) represent fluid conduits in which the fracture mechanics is controlled by pore 

fluid diffusion. Thus the general mechanical description of these fractures and the fault zones 

are applicable. 

2.4 General solution of plane poro-elasticity in curvilinear coordinates 

According to Muskhelishvili [1977], the stress and the displacement components in Cartesian 

and curvilinear coordinate systems are related by:  

 
σ xx

S + σ yy
S = σ ρρ

S + σϑϑ
S ,       (24) 

  
σ yy

S − σ xx
S + 2iσ x y

S =
ρ2

ς 2

′ω (ς )
′ω (ς )

σϑϑ
S − σ ρρ

S + 2iσ ρϑ
S( ),    (25) 

and 

  
ux + iuy =

ρ
ς

′ω (ς )

′ω (ς )
(uρ + iuϑ ) ;      (26) 

where  

  
ω (ς ) = z =

w
4

(ς +
1
ς

) .         (27) 

Note that, if  ρ = 1 in equations (25) and (26), one obtains using (27): 

 

ρ2

ς 2

′ω (ς )
′ω (ς )

= −1 and 
  

ρ
ς

′ω (ς )

′ω (ς )
= i

sin2(ϑ )
sin(ϑ )

=
i for 0<ϑ < π

−i for π<ϑ < 2π
⎧
⎨
⎩

.   (28) 
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The equations for stresses (13), (14) and displacements (15) in the curvilinear coordinate 

system become: 

  
σ ρρ

S + σϑϑ
S = −4Re Φ(ς )( )+ 2ηPf (ς ,ς ) ,     (29) 

2 2

2 2

( , )2 22 ( ) ( ) ( ) ( ) ( ) ,
( ) ( )

fS S S P
i dϑϑ ρρ ρϑ

ς ςς ςσ σ σ ω ς ς ω ς ς η ω ς ς
ρ ρ ςω ς ω ς

∂
⎡ ⎤′ ′ ′− + = − Φ + Ψ +⎣ ⎦′ ′ ∂∫  

and           (30) 

  
2G(uρ + iuϑ ) =

ς
ρ

′ω (ς )
′ω (ς )

χϕ(ς ) −
ω(ς )
′ω (ς )

′ϕ (ς ) −ψ (ς ) +η Pf (ς ,ς ) ′ω (ς )∫ dς
⎛

⎝
⎜

⎞

⎠
⎟ ; (31) 

where 

 
Φ(ς ) = ′ϕ (ς )

′ω (ς )
and Ψ(ς ) = ′ψ (ς )

′ω (ς )
.      (32) 

Using the properties of the conformal mapping transformation ( ′ω (ς ) ≠ 0 and ω(ς ) ≠ 0 ), the 

Laplace equation (17) becomes 

  

∂2 Pf (ς ,ς )
∂ς ∂ς

= 0 .        (33) 

2.5 Boundary conditions  

The boundary conditions for the fluid overpressure are: 

and 
*

=   for  1

= 0  for ;
f f

f

P p

P

ρ

ρ ρ

Δ =

=
        (34) 

and for the solid: 

and 
*

0 and  0 for 1

0 and 0  for .

S
xy y

S S

u

ρϑ ρρ

σ ρ

σ σ ρ ρ

= = =

= = =
      (35) 

Note here that when ρ = 1, using (24-28), one obtains σρϑ
S = −σ x y

S = 0  and 
  
uρ = ±uy = 0 . The 

boundary conditions on the fault zone (ρ = 1) correspond to the elastic stage before slip onset 

and to a stage when the pore-fluid pressure is not high enough to open a tensile fracture. Thus 

the medium is continuous on the fault zone, and y = 0  is a symmetry line. Therefore the 

boundary conditions on the fault zone (ρ = 1) correspond to the boundary conditions on the 
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symmetry line (Figure 2b, red line). The external boundary (ρ = ρ* ) corresponds to the free 

surface, which is free from the load (Figure 2b, brown line). 

2.6 Analytical solution 

Finally, the analytical solution derived using Muskhelishvili’s method can be calculated. The 

full derivation is not presented here, since it is quite lengthy, but it can be demonstrated that the 

solution fulfills the boundary conditions. 

The solution of the Laplace equation (33) with the boundary conditions (34) is given by 

  
Pf (ς ,ς ) = Δp f

ln
ρ*

2

ςς
⎛

⎝
⎜

⎞

⎠
⎟

ln(ρ*
2 )

.       (36) 

This equation can be simplified, using (18): 

  
Pf (ρ) = Δp f

ln
ρ*

ρ
⎛

⎝
⎜

⎞

⎠
⎟

ln(ρ* )
.       (37) 

The boundary conditions (34) are fulfilled by (37). The spatial distribution of the pore fluid 

overpressure around the fault zone is shown on Figure 3c (left). 

The complex potentials, which define the solution of the problem, can be calculated: 

  
ϕ (ς ) = −Δp f ηw

ς 2 +1
16ς

1−
1

2ln ρ*( )
⎛

⎝
⎜

⎞

⎠
⎟ ,     (38)

 
  
ψ (ς ) =

Δp f ηw

8ς ln ρ*( )
.        (39) 

The explicit expression for the components of the stress tensor can be found after substitution 

of (33), (38-39) into (28-29) using (31), and after simplifications: 

  
σρρ

S = −η
Δp

f

ln(ρ
*
)

ln
ρ

ρ
*

⎛
⎝⎜

⎞
⎠⎟
+ 1−

(ρ 2 − 1)(ρ 2 − cos(2υ ))

1− 2ρ 2 cos(2υ ) + ρ 4

⎛
⎝⎜

⎞
⎠⎟

,    (40) 

  
συυ

S = −η
Δp

f

ln(ρ
*
)

ln
ρ
ρ

*

⎛

⎝⎜
⎞

⎠⎟
+ 1+

(ρ2 + 1)(cos(2υ) − 1)
1− 2ρ2 cos(2υ) + ρ4

⎛

⎝⎜
⎞

⎠⎟
,    (41) 

  
σρυ

S = −η
Δp

f

ln(ρ
*
)

(ρ2 − 1)sin(2υ)
1− 2ρ2 cos(2υ) + ρ4

.      (42) 
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Figure 3a shows the components of the seepage stress tensor in curvilinear coordinates. 

The explicit expression for the displacements can be calculated after substitution of (36-37) 

and (39) into (30), using (25) and (31), and after simplifications: 

  
u

x
= −w

η
32

Δp
f
cos(υ)

G ln(ρ
*
)

2(χ − 1) ln ρ
*( )− χ − 1+ 4ln ρ( )( ) ρ +

1
ρ

⎛
⎝⎜

⎞
⎠⎟
+

8
ρ

⎡

⎣
⎢

⎤

⎦
⎥ , (43) 

and           

  
u

y
= −w

η
32

Δp
f
sin(υ)

G ln(ρ
*
)

2(χ − 1) ln ρ
*( )− χ − 1+ 4ln ρ( )( ) ρ −

1
ρ

⎛
⎝⎜

⎞
⎠⎟

.  (44) 

Figure 3c (center and left) shows the displacements in Cartesian coordinates. In equations (43-

44), the analytical solution for the displacement in a Cartesian coordinate system is calculated. 

The solution in the curvilinear system is straightforward, but too long to be reproduced here. In 

order to get the relationships for the stress components in the Cartesian coordinate system, one 

should use (24-26) along with (40-42) (Figure 3b). The displacement in the curvilinear 

coordinate system can be found using (43-44) along with (26). 

Applying the boundary conditions (35) to equations (42) and (43), one can show that the 

solution is fulfilled at the pore overpressure source ρ = 1 (Figure 2, red curve). The non-zero 

stress components at the pore overpressure source are calculated using (40-41) along with (24-

25) and (28): 

  
σ yy

S = σρρ
S = ηΔp f −

ηΔp
f

ln ρ
*( ) for ρ = 1      (45) 

and  

  
σ xx

S = συυ
S = ηΔp f  for ρ=1       (46) 

At the external boundary  ρ = ρ*  (Figure 2, brown curve), σρρ
S = O

1
ρ*

2

⎛

⎝
⎜

⎞

⎠
⎟ and

  
σρυ

S = O
1
ρ*

2

⎛

⎝
⎜

⎞

⎠
⎟ , 

since ρ* >> 1. The boundary conditions (35) atρ = ρ*  are also fulfilled. 

The non-zero stress component at the free surface is given by: 

  
συυ

S = −η
Δp

f

ln(ρ
*
)
+ O

1
ρ

*
2

⎛

⎝⎜
⎞

⎠⎟
 (συυ

S = σ xx
S  for ρ=ρ*  and ϑ =

π
2

).  (47) 

The boundary conditions can be seen also in Figure 3. 
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Figure 3. Effect of the coupling between pore-fluid diffusion and rock deformation. a) 
Curvilinear components of the seepage stress tensor; b) Cartesian components of the seepage 
stress tensor; c) fluid filtration overpressure and displacements along the  y  and  x  axes. The 
following parameters, representative of crustal rocks, were used in equations (37, 40-44) for 

creating these plots:
  
Δp f = 1,   G = 1, ν = 0.3 , α = 1 and

h
w
= 2 . 
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Finally, this analytical solution (equations 40-44) has been checked against a finite element 

numerical method, specially developed for this purpose and the results are coinciding within of 

error 
2
*

1
O

ρ
⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

3. Stress field on the fault and discussions  

In this section, the critical pore-fluid pressure required for failure initiation is calculated. Using 

equation (9) for the tectonic stress on the fault zone along with equations (45-46) for the 

seepage forces, equation (8) for the full stress, and equations (1-2) for the fluid pressure on the 

fault zone 
 
p f

i  the following expressions for the stress deviator τ  and for the mean effective 

stress  ′σm  can be calculated: 

  

τ =
1
2

Δσ H
T( )2 + ηΔp

f

ln
4h
w

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

2

+ 2Δσ H
T

ηΔp
f

ln
4h
w

⎛
⎝⎜

⎞
⎠⎟

cos(2θ )    (48) 

and 

  

′σm = g h(ρr − ρw ) +
Δσ H

T

2
+ Δp f η −1−

η

2ln
4h
w

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

.    (49) 

The way seepage forces influence the failure is shown on Figure 4. There  ln  is the Coulomb 

envelope given by equation (6) and lk  is the tensile cut-off. The vertical and horizontal axes 

are the stress deviator and the mean effective stress, respectively. The dashed blue Mohr circle 

shows the stress state with zero pore-fluid overpressure. As the pore-fluid overpressure 

increases, the Mohr circle is translated to the left (green). Conversely, when the pore-fluid 

overpressure decreases, the Mohr circle is displaced to the right (red). In compliance with 

equation (48) the radius of the Mohr circle can increase (Figure 4a) or decrease (Figure 4b) 

during pore overpressure increase. The radius τ  of the Mohr circle increases (decreases) if the 

parameter 

  

ηΔp
f

ln
4h
w

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

2

+ 2Δσ H
T

ηΔp
f

ln
4h
w

⎛
⎝⎜

⎞
⎠⎟

cos(2θ )  is positive (negative). Note that, in the general 
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case, the change of the Mohr circle radius is not linearly proportional to the variation of pore 

fluid overpressure. 

 
Figure 4. Effect of seepage forces on failure. Here ln  is the Coulomb envelope, lk  is the 
tensile cut-off, τ  is the stress deviator, and ′σm  is the mean effective stress. The dashed blue 
Mohr circle shows the stress-state with zero pore-fluid overpressure. The green Mohr circles 
represent the stress state when the pore-fluid overpressure has increased. The red Mohr circle 
shows the stress state with decreased pore-fluid overpressure. The radius of the Mohr circle can 
increase a) or decrease b) during pore overpressure increase, conversely to what happen when 
the seepage forces are not considered. 
 

According to equations (48-49) and definition of η  in (6), the seepage forces do not affect 

( 0η = ) the failure on the fault if the surrounding rock is incompressible ( 1
2

v = ) or if the 

coupling Biot-Willis constant is zero. 

Failure occurs when the Mohr circle touches the failure envelope. According to Figure 4b, the 

Mohr circle can also touch the failure envelope even in the case of pore pressure decrease, 

which could explain earthquake triggering during oil/gas extraction from a reservoir. Using 

expressions for the stress deviator τ  and for the mean effective stress mσ ′  (eqs. 48-49) I aim to 
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solve the failure criteria (6) in order to predict the pore fluid overpressure at failure onset. By 

making the substitutions defined in Table 1 for reasons of simplicity I obtain the failure 

condition (6) in the form: 

2 2
1 2 4 3m T T m m Tm+ + = − ,       (50) 

where the parameter T  has to be calculated, as this is the only parameter depending onΔp
f
. 

After squaring and simplification equation (50), one obtains: 
2 2

2 4 32 1 4
2 2
3 3

2
0

1 1
m m m m mT T

m m
+ −

− − =
− −

.      (51) 

The roots of this quadratic equation are the following: 

2 2 2
2 4 3 2 4 3 1 4

1,2 2 2 2
3 3 3

2 21 1 4
2 1 2 1 1

m m m m m m m mT
m m m
+ +⎛ ⎞ −

= ± +⎜ ⎟− − −⎝ ⎠
.   (52) 

 

  m1= Δσ H
T  m 2= 2Δσ H

T cos(2θ)  

  
m3= 2(

1
η
−1)ln

4h
w

⎛
⎝⎜

⎞
⎠⎟
+1

⎛

⎝⎜
⎞

⎠⎟
sin(φ)  ( )4 2 cos( ) 2 ( ) sin( )T

r w Hm C g hφ ρ ρ σ φ= + − + Δ  

4lnf
hT p

w
η ⎛ ⎞= Δ ⎜ ⎟

⎝ ⎠
 

Table 1. Substitution of parameters in equations 50-52. 

 

Using Table 1 one can see that 
2 2 2

2 4 3 1 4
2 2
3 3

2
4 0

1 1
m m m m m

m m
+⎛ ⎞ −

+ ≥⎜ ⎟− −⎝ ⎠
, thus 1T  and 2T  are both real 

roots of equation (51), however the equation (50) has only one root. Assuming that the fault 

geometry, tectonic stress and intrinsic rock properties are known, using Table 1, one can find 

which root satisfies the failure criteria (50): 1T  or 2T . Then, the value of the critical pore-fluid 

overpressure at the onset of failure is calculated as  

4lnf
T hp

wη
⎛ ⎞Δ = ⎜ ⎟
⎝ ⎠

.        (53) 

Knowledge of this critical pore-fluid overpressure can prevent anthropogenic earthquakes that 

might occur during industrial exploitation of reservoirs. 
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4. Conclusion 

I have demonstrated that seepage forces caused by the coupling between fluid diffusion and the 

deformation of crustal rocks provide an additional control on fault reactivation. The model in 

the present study is based on linear poro-elasticity, with a fault of finite length. This model 

predicts the onset of hydraulic failure caused by depletion or increasing of pore-pressure in a 

fault zone. The critical pore-fluid pressure required for triggering slip on a preexisting fault is 

calculated. This model can be applied in several industrial problems (equations 52-53 and 

Table 1). For example: earthquake triggering by fluid extraction has been observed during the 

industrial exploitation of oil fields worldwide and during extraction of hydrothermal energy; 

this may also occur, during geological sequestration of carbon dioxides. In addition, because of 

the similarity between steady-state poro-elasticity and thermo-elasticity, this model can also be 

applied for solving thermo-elastic problems with a (quasi) steady-state thermal flux. 

 

Acknowledgments:  This work was financed by PGP (Physics of Geological 

Processes) a Center of Excellence at the University of Oslo. I would like to thank Galen 

Gisler and Francois Renard for helpful suggestions and Yuri Podladchikov for his 

continued support and encouragement. 

 

References 

Biot, M. A., 1941. General theory of three-dimensional consolidation. Journal of 

Applied Physics 12, 155-164. 

Dolan, J.F., Christofferson, S. A., Shaw, J. H., 2003. Recognition of paleoearthquakes on the 

Puente Hills blind thrust fault, California. Science 300(5616), 115-118. 

Economides, M. J., Nolte, K. G., 2000. Reservoir Stimulation, 3rd Edition, John Wiley & 

Sons, New York. 856 pp. 

Goodier, J.N., Hodge, P.G., 1958. Elasticity and Plasticity: The Mathematical Theory 

of Elasticity and The Mathematical Theory of Plasticity, John Wiley & Sons, New 

York. 152 pp. 

Hickman, S., Sibson, R., Bruhn, R., 1995. Introduction to special section: Mechanical 

involvement of fluids in faulting. Journal of Geophysical Research, 100(B7), 12831-12840. 



 19

Khan, M., Teufel, L.W., 2000. The effect of geological and geomechanical parameters on 

reservoir stress path and its importance in studying permeability anisotropy. SPE Reserv. 

Evalu. Eng. 3, 394–400. 

Kolosov, G. V. (1909). On the Application of the Theory of Functions of a Complex Variable 

to a Plane problem in the Mathematical Theory of Elasticity, Ph.D. diss., Dorpat University 

(in Russian). 

Lavrent'ev, M. A., Shabat, B. V., 1972. Methods of Theory of Complex Variable Functions. 

Nauka, Moscow. 736 pp.. 

Lebedev, N. N., 1937. Thermal Stresses in the Theory of Elasticity [in Russian], ONTI, 

Moscow-Leningrad. 

Majer, E., Baria, R., Fehler, M., 2005. Cooperative research on induced seismicity associated 

with enhanced geothermal systems. Geothermal Resources Council Transactions, 29, GRC 

2005 Annual Meeting, Sept. 25–28. 

Miller, S.A., Collettini, C., Chiaraluce, L., Cocco, M., Barchi, M., and Kaus, B.J.P., 2004. 

Aftershocks driven by a high-pressure 2CO  source at depth. Nature, 427, 724-727. 

Muskhelishvili, N.I., 1977. Some Basic Problems in the Mathematical Theory of 

Elasticity. Springer, Berlin. 768 pp. 

Nikolaevski V.N., Basniev K.S., Gorbunov A.T., Zotov G.A., 1970. Mechanics of Saturated 

Porous Media. Nedra ,Moscow. 336 pp. 

Rice, J. R., 1992. Fault stress states, pore pressure distributions, and the weakness of the San 

Andreas fault, in Faults Mechanics and Transport Properties of Rocks, edited by B. Evans 

and T.-F. Wong, Academic, San Diego, California. 475-503. 

Rice, J. R., Cleary, M. P., 1976. Some basic stress-diffusion solutions for fluid-

saturated elastic porous media with compressible constituents, Reviews of 

Geophysics and Space Physics, 14, 227-241. 

Rudnicki, J.W., 2001. Coupled deformation-diffusion effects in the mechanics of faulting and 

failure of geomaterials. Applied Mechanics Review, 54(6), 483-502. 

Santarelli, F.J., Tronvoll, J.T., Svennekjaer, M., Skeie, H., Henriksen, R., Bratli, R.K., 1998. 

Reservoir stress path: the depletion and the rebound. Society of Petroleum Engineers, 

SPE/ISRM No. 47350. 



 20

Segall, P., 1985. Stress and subsidence resulting from subsurface fluid withdrawal in the 

epicentral region of the 1983 Coalinga earthquake. Journal of. Geophysical Research. 90, 

6801-6816. 

Segall, P., Fitzgerald, S., 1998. A note on induced stress changes in hydrocarbon and 

geothermal reservoirs. Tectonophysics, 289, 117-128. 

Semmane F, Campillo M, Cotton, F., 2005. The 2000 Tottori earthquake: A shallow 

earthquake with no surface rupture and slip properties controlled by depth, Journal of 

Geophysical research, 110 (B3): Art. No. B03306. 

Sibson, R. H., 1990. Conditions for fault-valve behaviour. R. J. Knipe and E. H. Rutter eds. In 

Deformation Mechanisms, Rheology and Tectonics, Geological Society London Special 

Publication 54, 15-28. 

Stark, M., 2003. Seismic evidence for a long-lived enhanced geothermal system (EGS) in the 

Northern Geysers Reservoir. Geotherm. Resources Counc. Trans., 24, 24–27. 

Streit, E.E., Hillis, R. R., 2004. Estimating fault stability and sustainable fluid pressures for 

underground storage of CO2 in porous rock. Energy, 29, 1445-1456. 

Timoshenko, S. P., Goodier, J.N., 1982. Theory of Elasticity. McGraw-Hill, New York. 

608 pp. 

Turcotte, D. L., Schubert, G. 2002. Geodynamics. Cambridge University Presss, Cambridge. 

456 pp. 

Vermeer, P.A., de Borst, R., 1984. Non-associated plasticity for soils, concrete and 

rock. Heron, 29(3), 3-62. 

Wang, H.F., 2000. Theory of Linear Poroelasticity with Applications to Geomechanics 

and Hydrology. Princeton University Press, Princeton and Oxford. 276 pp. 

Zoback, M. D., Zinke, J. C., 2002. Production-induced Normal Faulting in the Valhall and 

Ekofisk Oil Fields. Pure and Applied Geophysics, 159, 403-420. 

 



 
 
 
 
 
 
 
 
 

Paper III 



 

 

1

1

Role of fluid diffusion on failure and effective stress of porous solids 

 

A.Y. Rozhko and Y.Y. Podladchikov 

Physics of Geological Processes (PGP), University of Oslo, P.O. Box 1048 Blindern, 

N-0316 Oslo, Norway 

Abstract.  In 1920 Griffith proposed a criterion for the propagation of a crack into a 

homogeneous elastic solid. However, many natural and industrial materials are porous 

and may contain fluid, which pressure modifies the state of stress. Here we 

demonstrate that when the pore-fluid pressure is not homogeneous, i.e. localized in 

and around a preexisting crack, the failure is controlled by a modified effective stress 

law that we calculate explicitly, extending the Griffith’s theory and coupling it to the 

linear theory of poroelasticity. 

 

There is a considerable volume of experimental work which indicates that the brittle 

failure of a fluid saturated porous medium is controlled by the Terzaghi’s 

(conventional) effective stress rule [Terzaghi, 1943]: 

'ij ij f ijkpσ σ δ= + , with 1k =       (1) 

Here ijσ  is the stress tensor; fp  is the fluid pressure; 
1  if 
0  if ij

i j
i j

δ
=⎧

= ⎨ ≠⎩
 is the 

Kronecker delta. In equation (1) the sign convention is that compressive stress is 

negative. Most of the experiments have been performed using an external fluid-

pressure source connected continuously to the pore system of the solid, with the aim 

of maintaining a constant pore-fluid pressure [Paterson and Wong, 2005]. In order to 

minimize experimental complications from incomplete saturation, the porous solid 

sample typically underwent a special preparation before deformation: air drying in 

vacuum oven and pre-saturation. A typical experimental problem is to attain a pore-

fluid pressure equilibrium value throughout the sample when its permeability is low. 

Experimental values of k  that differ from 1 have been reported in various types of 

porous rock and joints (for example, Boitnott and Scholtz [1990], Gandi and Carlson 

[1996], Patterson and Wong, [2005]). Typically the deviations from conventional 

effective stress rule ( 1k ≠ ) are attributed to experimental variability. For example, 
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Jaeger [1963] performed tensile failure tests on a fine-grained Tasmanian dolerite, and 

found that 0.95k = . He interpreted this discrepancy as an experimental artifact. 

In the present study, we discuss how the inhomogeneity (non-equilibrium) of pore-

fluid pressure may control brittle failure. We assume that the pore-fluid pressure 

perturbation is localized inside the permeable material. Many physical processes 

could generate a pore-fluid pressure perturbation inside a porous solid: incomplete 

saturation, hydration/dehydration reactions, or other internal fluid consumption or 

generation such as mechanical pumping and extraction. 

We consider a 2D elliptical crack of length 2a  and negligible width ( 2 0b = ) 

embedded into a permeable elastic body of radius c , as shown on Figure 1. Plane-

strain deformation is assumed. The crack is filled with fluid at constant pressure cp . 

The fluid pressure on the outer boundary of the body is p∞ . Since the fluid pressure is 

not homogeneous in the body cp p∞≠ , this leads to an additional stress field 

component due to the coupling between diffusive fluid and solid deformation. 

To calculate the brittle tensile strength of this system, we use Griffith’s theory [1920] 

and couple it to the linear theory of poroelasticity [Biot, 1941; Rice and Cleary, 1976 ; 

Wang, 2000]. The Griffith’s theory states that the crack can propagate only if the sum 

of three energy terms is zero or negative: 

1. the surface energy of the newly formed crack surface; 

2. the change in the elastic strain energy of the body; 

3. the change in the potential energy of the loading forces. 

We apply the linear theory of poroelasticity, and assume both homogeneous and 

isotropic intrinsic properties of the porous material surrounding the crack. For 

simplicity reason, a steady-state fluid flow between the crack and the external surface 

of the body is considered. This flow is controlled by Laplace equation 
2

2 0f

j j

p
x

∂
=

∂∑          (2) 

where fp  is the fluid pressure distribution, with given values on the boundaries. The 

force balance equations for the total stress tensor ijσ , without volume forces is 

governed by 

0ij

j jx
σ∂

=
∂∑ .         (3) 
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A constitutive relation between the total stress ijσ  and the strain ijε  is given by 

2 2
1 2ij ij kk ij

v p
v

σ με με δ α= + −
−

,      (4) 

where the repeated indices denote summation, μ  is the solid shear modulus, v  

( 10
2

v≤ ≤ ) is the Poisson’s ratio, and α  ( 0 1α≤ ≤ ) is a coupling Biot-Willis 

poroelastic constant [Wang, 2000; Patterson and Wong, 2005]. 

Finally, the relation between the strain ijε  and the displacements iu  is  

1 ( )
2

ji
ij

j i

uu
x x

ε
∂∂

= +
∂ ∂

.        (6) 

The boundary conditions on the crack circumference for the fluid pressure and for the 

normal ρρσ  and tangential ρϑσ  stresses are 

on the crack

0

f c

c

p p

pρρ

ρϑ

σ

σ

⎫=
⎪

= − ⎬
⎪= ⎭

,       (7) 

where ρ  and ϑ  are curvilinear coordinates associated with the conformal mapping 

procedure (see Auxiliary materials for details). 

The boundary conditions on the external boundary of the body are 

on the external
 

boundary
0

fp p

ρρ

ρϑ

σ σ

σ

∞

∞

⎫=
⎪

= ⎬
⎪= ⎭

.       (8) 

We derived a closed form analytical solution for the equation system (2-6) and 

boundary conditions (7-8) (Figure 1) using the Muskhelishvili‘s complex potentials 

method [Muskhelishvili, 1977; Timoshenko and Godier,1982] and a conformal 

mapping procedure (see the complete demonstration in the Auxiliary materials). 
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Figure 1.  Model setup: An elliptical Griffith crack of length 2a  and width 2b (not 
shown) contains a fluid under pressure cp  and is embedded into a permeable body of 

size 2c  ( 22( ) 1c
a

). A total load σ∞  is applied perpendicularly to the external 

surface of the body. The fluid pressure on the external surface of the body is p∞ . 
 

Stresses and displacements near the tip of the slit-crack are of particular importance. 

Using the analytical solution [Auxiliary materials], we obtain the dominant terms of 

the stress along the extended crack line: 

For 1x a≥ , 

( )

( )

11 1
1

22 1
1

12 1

( ,0) (1 )
2( )

( ,0) (1 )
2( )

( ,0) 0

c

c

ax Wp W p
x a

ax Wp W p
x a

x

σ σ

σ σ

σ

∞ ∞

∞ ∞

= + + −
−

= + + −
−

=

,    (9) 

and the dominant terms of the displacements along the crack sides: 

For 1x a≤ , 

( )

1 1
*

2 1 1

( )1 1( ,0 ) 2( )
8 1 ln

1( ,0 ) (1 ) 2( ) /
4

c
c

c

p pu x a p

u x a Wp W p x a a

ηχ χ η
μ χ ρ
χ σ
μ

± ∞

±
∞ ∞

⎛ ⎞−+ −
= − +⎜ ⎟+⎝ ⎠

+
= ± + + − − −

 (10) 

where the sign “± ” denotes the displacements on the upper “+ ” and lower “− ” edges 

of the crack tip. 

In equations (9) and (10) the parameters η  and χ  are given by 
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1 2Plane strain: 3 4  and 
2 1

3Plane stress:  and (1 )
1 2

v
v

v
v

αχ ν η

ν αχ η

−
= − =

−
−

= = −
+

,     (11) 

and W  is a “weight” parameter calculated as: 

1(1 )2ln
W c

a

η= − .        (12) 

The Griffith energy criterion can be represented equivalently via the path-independent 

J-integral [Rice, 1968; Hellan, 1984]: 

2 Jγ ≤ ,        (13) 

where 2γ  is the specific surface energy, assigned to one side of the fracture surface; 

and the path-independent J-integral is defined as: 

2
1

[ ]uJ Udx T ds
xΓ

∂
= − ⋅

∂∫       (14) 

Here U  is the strain energy density function, defined as [Atkinson and Craster, 1991; 

Wang, 2000]: 

1
2 ij ij fU pσ ε ζ= + ,       (15) 

where ζ  is the variation of fluid content per unit reference volume. 

In equation (14) the integral is taken along any path Γ  (counter-clockwise) around the 

crack tip; iT  is the vector of traction on Γ , i.e. i ij jT nσ= , jn  is the normal to the 

curve Γ ; s  is the arc length along Γ . Since a path of integration can be arbitrary 

chosen in the poroelastic regime, we take the curve Γ  from the lower side ( 1x a= , 

2 0x −= ), past ( 1x a a= + Δ , 2 0x = ), to the upper side at ( 1x a= , 2 0x += ). Since here 

2 0dx = , equation (14) becomes [Rice, 1968; Hellan, 1984]: 

2 1 1 1 10

1lim ( ,0, )[ ( ,0 , ) ( ,0 , )]
2

a a

i i ia
a

J x a u x a a u x a a dx
a

σ
+Δ

+ −

Δ →
= + Δ − + Δ

Δ ∫  (16) 

where 2 1( ,0, )i x aσ  is the stress field given by equations (9). In the limit 0aΔ = , there 

is a translation of the displacement fields at the crack front such that 1( ,0 , )iu x a a± + Δ  

will be the displacement components according to (10) when 1( )x a− −  is replaced by 

1( )a x aΔ − −  [Hellan, 1984]. This leads to 
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( )

( )

2 1
10

10

2

( )1 1(1 ) lim 2
4 2 ( )

1 (1 )
8

a

c a

c

a x a
J a Wp W p dx

a x a

a Wp W p

χ σ
μ

χπ σ
μ

Δ

∞ ∞ Δ →

∞ ∞

Δ − −+
= + + −

Δ −

+
= + + −

∫
 (17) 

Using (13,17), the failure criteria is obtained in the form 

(1 ) 4
( 1)cWp W p

a
γ μσ

π χ∞ ∞+ + − ≥
+

.     (18) 

Considering plain-strain and using (11) and (12), we recieve the expression for the 

“weight” parameter: 

1 2 1(1 )22 1 ln

vW cv
a

α −
= −

−
.        (19) 

Here 10
2

W≤ ≤ ; the case 1
2

W =  being an extremum that occurs when 0v = , 1α =  

and 2c
a
→∞ , which is never realized practically for real materials. 

In the case when the fluid pressure on the crack equals the macroscopic pore pressure 

( cp p∞= ) one gets from (18) the failure criteria: 

4
( 1)

p
a
γ μσ

π χ∞ ∞+ ≥
+

       (20) 

Equation (20) coincides with result derived by Murrell [1964] for the case when the 

fluid pressure is homogeneous ( cp p∞= ). 

Thus, equation (18) suggests that the failure is controlled both by the microscopic 

fluid pressure cp  and the macroscopic fluid pressure p∞ . The microscopic fluid 

pressure has a larger impact on failure because 11
2

W− ≥ . In the case of incomplete 

saturation, the fluid pressure in the crack is null, i.e. 0cp = , and equation (20) 

becomes: 

4
( 1)

Wp
a
γ μσ

π χ∞ ∞+ ≥
+

.       (21) 

The assumption that the ellipsoidal crack width is null ( 2 0b = ) implies that the radius 

of the curvature at the crack tip is zero ( 2 /b a= ). According to equation (9), the 

maximum stress at the crack tip ( 1x a= ) is infinite. However, for a real crack the 
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radius of the curvature cannot be smaller than atomic or molecular dimension [e.g., 

Orowan, 1949] and the crack surfaces must be slightly separated to prevent surface 

forces from closing the crack [Elliot, 1947; Murrel, 1964]. Thus, another approach to 

the tensile failure problem is to calculate the maximum tensile stress at the tip of an 

elliptical crack with finite width b  [Griffith, 1924; Murrel, 1964]. The analytical 

solution [Auxiliary materials] gives the following expression for the maximum tensile 

stress at the crack tip 

( )max

*

( )2 (1 )
ln( )
c

c c
p paWp W p p

bϑϑ
ησ σ

ρ
∞

∞ ∞

−
= + + − − − .   (22) 

If the crack length is much larger than the crack width a b , equation (22) can be 

simplified as 

( )max 2 (1 ) c
aWp W p
bϑϑσ σ∞ ∞≈ + + − .      (23) 

According to the local failure criterion, failure occurs if max
Tϑϑσ σ≥  where Tσ  is the 

ultimate tensile strength equal to the stress needed to break atomic bonds of an ideal 

brittle material. A typical value for Tσ  is about one tenth of the solid Young's 

modulus ( /10E ). By substitution of the maximum tensile stress (23) into the local 

failure criterion we obtain the failure criterion: 

2(1 ) c T
bWp W p
a

σ σ∞ ∞+ + − ≥ .      (24) 

We examined two failure mechanisms: the Griffith’s energy criterion (18) and the 

local failure criterion (24). Calculations show the same expression for the effective 

stress. 

 

Conclusions.  Using both Griffith’s energy criterion and local failure criterion we 

demonstrated that the failure of a fluid-saturated porous solid is controlled both by the 

microscopic pressure in the crack and by the macroscopic pressure (equations 18 and 

19 or 19 and 24). This can explain several experimental deviations from the 

conventional effective stress law. The results of this work have direct implications in 

the systems in which the pore-fluid pressure is not homogeneous due to incomplete 

saturation or due to the internal or external fluid pressure perturbations. 
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Auxiliary Materials 

Role of fluid diffusion on failure and effective stress of porous solids 

 

A.Y. Rozhko and Y.Y. Podladchikov 

Physics of Geological Processes (PGP), University of Oslo, P.O. Box 1048 Blindern, N-0316 

Oslo, Norway 

In this auxiliary material we obtain the analytical solution for the problem presented on Figure 

1 of the paper. The procedure of derivation of the analytical solution is divided into six 

successive steps described in the following subsections: 

1) the definition of the system of equations for mechanical equilibrium; 

2) the general solution of this system of equations in Cartesian coordinates using the complex 

potential method for poro-elasticity; 

3) the introduction of the curvilinear coordinate system associated with the conformal 

mapping, which allows finding the solution for the complex crack geometry; 

4) the calculation of the general solution of the equilibrium equations for steady-state poro-

elasticity in curvilinear coordinate system; 

5, 6) finally, after defining the boundary conditions, the calculation of the particular solution. 

 

A 1 System of equations for steady-state poro-elastic deformation 

Following the common approach [Biot, 1941; Rice and Cleary, 1976; Wang, 2000], the 

equations for steady-state fluid filtration in a poro-elastic solid are given by: 

- The stress balance equations for the total stress tensor σ ij , without volume forces: 

0ij

j jx
σ∂

=
∂∑          (A1) 

- The steady-state fluid filtration governed by the Laplace equation for fluid pressure 

distribution fp : 

2

2 0f

j j

p
x

∂
=

∂∑          (A2) 

- A constitutive elastic relationship between the total stress σ ij and the strain ε ij : 



 2

2 2
1 2ij ij kk ij f

v p
v

σ με με δ α= + −
−

      (A3) 

where δ ij  is the Kronecker delta and the intrinsic material properties are the shear modulusG , 

the drained Poisson’s ratio v , and the Biot-Willis poroelastic constantα  [Paterson and Wong, 

2005]. 

 

A 2 Complex Potential Method for steady-state poro-elasticity 

Two-dimensional problems in elasticity can be solved using a complex potential method 

(CPM), developed by Kolosov [1909] and Muskhelishvili [1977]. This method has been 

generalized for thermo-elasticity by Lebedev [1937]. In this method, the general solution for 

the displacements and stresses is represented in terms of three functions: two complex 

potentials and the temperature distribution [Goodier and Hodge, 1958; Timoshenko and 

Goodier, 1982]. This general solution automatically satisfies the force balance equation and 

generalized Hooke’s law for thermo-elasticity, provided that the function describing the 

temperature distribution satisfies also the heat conduction equation. The nontrivial part of this 

method is in satisfying the boundary conditions of the specific problem, which is done by 

conformal mapping. 

The equations for poro-elasticity and thermo-elasticity are identical for steady-state fluid 

filtration and heat flow problems. Therefore, it is possible to use the complex potential method, 

developed for thermo-elasticity to solve steady-state poro-elastic problems. 

According to the CPM, the general solution of equations (A1-A3) can be written in the form 

(by convention, compressive stress and strain are positive) [Goodier and Hodge, 1958; 

Timoshenko and Goodier, 1982; Muskhelishvili, 1977]: 

[ ]11 22 4 Re ( ) 2 ( , )fz p z zσ σ ϕ η′+ = −       (A4) 

[ ]22 11 12

( , )
2 2 ( ) ( ) 2 fp z z
i z z z d z

z
σ σ σ ϕ ψ η

∂
′′ ′− + = + −

∂∫    (A5) 

1 22 ( ) ( ) ( ) ( ) ( , )fu iu z z z z p z z d zμ χϕ ϕ ψ η′+ = − − + ∫    (A6) 

Where the parameters η  and χ  are defined as:  



 3

1 2Plane strain: 3 4  and 
2 1

3Plane stress:  and (1 )
1 2

v
v

v
v

αχ ν η

ν αχ η

−
= − =

−
−

= = −
+

.    (A7) 

The integrals in Equations A5-A6 are indefinite (without the integration constant) and the 

superscript “ ' “ denotes differentiation, i.e. ( )( ) zz
z

ϕϕ ∂′ =
∂

. 

In equations (A4-A6), 1 2z x ix= +  is the complex variable, 1x and 2x  are the usual Cartesian 

coordinates, 1i −=  is the imaginary unit, and the bar denotes complex conjugation, i.e. 

1 2z x ix= − . ( )zϕ  and ( )zψ  are the complex potentials, which are analytic functions of the 

complex variable z , and are derived from the biharmonic Airy function [Muskhelishvili, 

1977]. ( , )fp z z  is the solution of Laplace equation (A2), given as a function of two complex 

variables z and z . By introducing the transformation of coordinates 1 2
z zx +

=  and 2 2
z zx

i
−

= , 

the Laplace equation (A2) can be rewritten in the form [Timoshenko and Godier,1982; 

Lavrent’ev and Shabat, 1972]:  
2

( , ) 0fp z z
z z
∂

=
∂ ∂

.        (A8) 

The fluid filtration pressure creates stresses at the boundaries of the solid. The boundary value 

problem with given stresses or displacements in curvilinear boundaries can be solved by 

finding the complex potentials ( )zϕ and ( )zψ  using Muskhelishvili’s method. 

 

A 3 Conformal transformation and curvilinear coordinates 

Conformal mapping is a transformation of coordinates that allow solving a problem with a 

simple geometry (Figure A1a) and transforming its solution for a more complex geometry 

(Figure A1b). The properties of conformal mapping can be found in [Lavrent’ev and Shabat, 

1972]. 

The transformation of a circular domain into an elliptical one is given in a unique way by the 

generalized Joukowski transform: 

( )mz R ς
ς

= +           (A9) 



 4

here 0R >  is a constant and has a dimension of length; m ( 0 1m≤ ≤ ) is a non-dimensional 

constant. The complex variable ς  is defined in a non-dimensional polar coordinates ρ  and ϑ  

as follows (Figure A1a): 
ie ϑς ρ= .         (A10) 

where *1 ρ ρ≤ ≤  and 0 2ϑ π≤ ≤ ; the internal ( 1ρ = ) and external ( *ρ ρ= ) boundaries are 

shown by the red and brown curves, respectively on Figure A1a. 

 
Figure  A1.  Conformal mapping procedure and systems of Cartesian and curvilinear 

coordinates. 
 

We use the polar coordinates ρ  and ϑ  in the ς -plane, as a non-dimensional system of 

coordinates for the z -plane. The properties of this coordinate system are considered below. 

Any circle constρ =  and radius constϑ =  in the ς -plane (Figure A1a) are transformed into 

an ellipse and a hyperbola in the z-plane, respectively (Figure A1b). The foci of the ellipse and 

the hyperbola on the z-plane coincide (Figure A1b). As the conformal mapping preserves 

angles, the two lines constϑ =  and constρ =  are perpendicular in the z-plane. Therefore, the 

polar coordinates ρ  and ϑ  can be considered as a curvilinear coordinate system in the z-plane. 

The Cartesian and curvilinear coordinates on the z-plane are related through: 
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1 2

2 2

(1 )cos( )

(1 )sin( )

mx R

mx R

ρ ϑ
ρ

ρ ϑ
ρ

= +

= −
       (A11) 

If 1ρ =  equations (A10) become: 

1

2

(1 )cos( )

(1 )sin( )

x R m

x R m

ϑ

ϑ

= +

= −
        (A12) 

One can see that the equations (A11) are parametric equations for ellipse with semiaxis: 

(1 )R m+  and (1 )R m− . 

The external boundaries *ρ ρ=  are represented as brown curves on Figure A1. If 2
* 1ρ >> , the 

relations (A10) become: 

1 * 2
*

2 * 2
*

1cos( )

1sin( )

x R O

x R O

ρ ϑ
ρ

ρ ϑ
ρ

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
⎛ ⎞

= + ⎜ ⎟
⎝ ⎠

 for 2
* 1ρ >>      (A13) 

Neglecting the terms of order 2
*

1O
ρ

⎛ ⎞
⎜ ⎟
⎝ ⎠

 the equations (A12) become parametric for circle with 

the radius *Rρ . 

Then, if the crack has a width equal to zero ( 1m = ) and a length equal to 2a , one can find 

from (A12, A13) that 
2
aR =  and *

2c
a

ρ = , where c  is defined on Figure 1. We derive below 

the analytical solution for the case when 
22 1c

a
⎛ ⎞ >>⎜ ⎟
⎝ ⎠

, so that the external boundary may be 

considered as circular. 

 

A 4 General solution of plane poro-elasticity in curvilinear coordinates 

According to Muskhelishvili [1977], the stress and the displacement components in the 

Cartesian and Curvilinear coordinate systems are related by: 

11 22 ρρ ϑϑσ σ σ σ+ = + ,        (A14) 
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( )
2

22 11 12 2

( )2 2
( )

i iϑϑ ρρ ρϑ
ρ ω ςσ σ σ σ σ σ
ς ω ς

′
− + = − +

′
,    (A15) 

and 

1 2

( )
( )

( )
u iu u iuρ ϑ

ω ςρ
ς ω ς

′
+ = +

′
;      (A16) 

where 

( ) ( )mz Rω ς ς
ς

= = + .        (A17) 

The equations for stresses (A4-A5) and displacements (A6) in the curvilinear coordinate 

system become: 

( )4 Re ( ) 2 ( , )fpρρ ϑϑσ σ ς η ς ς+ = Φ − ,      (A18) 

2 2

2 2

( , )2 22 ( ) ( ) ( ) ( ) ( )
( ) ( )

fp
i dϑϑ ρρ ρϑ

ς ςς ςσ σ σ ω ς ς ω ς ς η ω ς ς
ρ ρ ςω ς ω ς

∂
⎡ ⎤′ ′ ′− + = Φ + Ψ −⎣ ⎦′ ′ ∂∫ ,   

and           (A19) 

( ) ( )2 ( ) ( ) ( ) ( ) ( , ) ( )
( ) ( ) fu iu p dρ ϑ

ς ω ς ω ςμ χϕ ς ϕ ς ψ ς η ς ς ω ς ς
ρ ω ς ω ς

⎛ ⎞′
′ ′+ = − − +⎜ ⎟′ ′⎝ ⎠

∫ , (A20) 

where 

( ) ( )( ) and ( )
( ) ( )

ϕ ς ψ ςς ς
ω ς ω ς
′ ′

Φ = Ψ =
′ ′

.      (A21) 

Using the properties of conformal mapping ( ( ) 0ω ς′ ≠  and ( ) 0ω ς ≠ ), the Laplace equation 

(A8) becomes: 
2

( , ) 0fp ς ς
ς ς
∂

=
∂ ∂

.        (A22) 

 

A 5 Boundary conditions  

The boundary conditions for the fluid are: 

*

=    for  1

=   for  
f c

f

p p

p p

ρ

ρ ρ∞

=

=
        (A24) 

and the boundary conditions for the solid are: 
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*

  &  0  for 1

    &   0  for 
cpρρ ρϑ

ρρ ρϑ

σ σ ρ

σ σ σ ρ ρ∞

= − = =

= = =
      (A25) 

 

A 6 Solution 

We finally present the analytical solution derived by using Muskhelishvili’s method. We do 

not show the derivation here, since it is quite lengthy, but we demonstrate that our solution 

fulfills the boundary conditions. 

The solution of Laplace equation (A23) with the boundary conditions (A24) is given by 

( )
2
*

ln
( , ) ( )

ln( )f c cp p p p
ςς

ς ς
ρ∞= − − .       (A26) 

This equation can be simplified, using (eq. A10) as follows 

( )
*

ln
( ) ( )

ln( )f c cp p p p
ρ

ρ
ρ∞= − − .      (A27) 

The boundary conditions (A24) are fulfilled by (eq. A27). Equation (A27) gives the solution 

for pore fluid pressure. 

We calculate the complex potentials, which define the solution of problem as following: 

( ) ( )
22 2

2

* *

( ) ( ) 23( ) 2( )
2 ln 4 ln 2

c c cp p p m mpm mR R m Rη η σ ςς ςϕ ς ς
ς ρ ς ρ ς

∞ ∞
⎛ ⎞− − −+ −

= + − + +⎜ ⎟⎜ ⎟
⎝ ⎠

,     

and           (A28) 

( )
2

2 2
2 2

*

( ) 1( ) (1 ) (1 )
ln

c cp p p mR m R m m
m m
σ η ςψ ς ς ς

ς ς ς ρ
∞ ∞

⎛ ⎞+ − +
= + + − +⎜ ⎟⎜ ⎟− − ⎝ ⎠

.  (A29) 

In order to find the stress state and displacements one should substitute the solution for 

complex potentials (A28-A29) along with fluid pressure distribution (A26) into (A18-A20). 

Since the analytical solution for stress tensor components and displacements is too lengthy we 

will present only the solution for the stress field on the crack ( 1ρ = ) and on the external 

boundary ( *ρ ρ= ). 

The normal, circumferential, and tangential stresses on the cavity are given, respectively, by: 
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( )2

2
*

( 1)

(1 ) (1 ) ( )( 1) 2
1 2 cos(2 ) ln( )

( 1) 0

c

c c
c

p

m Wp W p p pp
m m

ρρ

ϑϑ

ρϑ

σ ρ

σ ησ ρ
ϑ ρ

σ ρ

∞ ∞ ∞

= = − ⎫
⎪

− + + − − ⎪= = − − ⎬− + ⎪
⎪= = ⎭

,  (A30) 

where W  is the “weight” parameter: 

1(1 )2ln
W c

a

η= − .        (A31) 

The normal, circumferential, and tangential stresses on the external boundary, respectively, are: 

* 2
*

* 2
* *

* 2
*

1( ) ( )

1( ) ( ) ( )
ln( )

1( ) ( )

c

O

p p O

O

ρρ

ϑϑ

ρϑ

σ ρ ρ σ
ρ

ησ ρ ρ σ
ρ ρ

σ ρ ρ
ρ

∞

∞ ∞

⎫
= = + ⎪

⎪
⎪

= = + − + ⎬
⎪
⎪

= = ⎪
⎭

.    (A32) 

Neglecting the terms 2
*

1( )O
ρ

, since it is reasonable to assume that the crack length is much 

smaller than the size of the body, the boundary conditions (A25) for the solid fulfill the 

equations (A31- A32). 

The stresses near the tip of the slit-crack ( 1m = ) along the extended crack line and the 

displacements along the crack sides are of particular importance. Using the analytical solution 

(A26, A28, A29) and (A18-A19), we obtain the dominant terms of the stress along the 

extended crack line ( 1, 0ρ ϑ→ = ): 

( )

( )

1( 1, 0) (1 ) (1)
( 1)

1( 1, 0) (1 ) (1)
( 1)

( 1, 0) 0

c

c

Wp W p O

Wp W p O

ρρ

ϑϑ

ρϑ

σ ρ ϑ σ
ρ

σ ρ ϑ σ
ρ

σ ρ ϑ

∞ ∞

∞ ∞

⎫→ = = + + − + ⎪− ⎪
⎪→ = = + + − + ⎬− ⎪
⎪→ = =
⎪
⎭

   (A33) 

Using the expressions (A11) for 1m =  and 
2
aR = , we obtain the relationship between 1x  and 

ρ  for the case when 1ρ →  and 0ϑ = : 
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12( 1) 2( 1)
x
a

ρ − = − .       (A34) 

Using (A33, A34) along with (A14, A15) and neglecting the small terms, we obtain the 

expression for the stress components in the Cartesian coordinate system: 

For 1x a≥ , 

( )

( )

11 1
1

22 1
1

12 1

( ,0) (1 )
2( )

( ,0) (1 )
2( )

( ,0) 0

c

c

ax Wp W p
x a

ax Wp W p
x a

x

σ σ

σ σ

σ

∞ ∞

∞ ∞

⎫
= + + − ⎪− ⎪

⎪
⎪= + + − ⎬− ⎪
⎪= ⎪
⎪⎭

,   (A35) 

Using the analytical solutions (A26, A28, A29) and (A20), we obtain the dominant terms of the 

displacements along the crack sides ( 1, 0ρ ϑ= → ): 

( ) 3

2

*

1( 1, 0) (1 ) ( )
2

( )1 1( 1, 0) 2( ) ( )
4 1 ln

c

c
c

u R Wp W p O

p pu R p O

ρ

ϑ

χρ ϑ σ ϑ ϑ
μ

ηχ χρ ϑ η ϑ
μ χ ρ

∞ ∞

∞

+ ⎫= → = + + − + ⎪
⎪
⎬⎛ ⎞−+ − ⎪= → = − + +⎜ ⎟ ⎪+⎝ ⎠ ⎭

.  (A36) 

Using the expressions (A11) for 1m =  and 
2
aR =  we receive the relation between 1x  and ϑ  

for the case when 1ρ =  and 0ϑ →  as the following: 

12 2(1 )
x
a

ϑ = − .       (A37) 

Using (A36, A37) along with (A16) and neglecting the small terms, we get the expression for 

the displacements in the Cartesian coordinate system as the following: 

For 1x a≤ , 

( )

1 1
*

2 1 1

( )1 1( ,0 ) 2( )
8 1 ln

1( ,0 ) (1 ) 2( ) /
4

c
c

c

p pu x a p

u x a Wp W p x a a

ηχ χ η
μ χ ρ
χ σ
μ

± ∞

±
∞ ∞

⎫⎛ ⎞−+ −
= − + ⎪⎜ ⎟+ ⎪⎝ ⎠ ⎬

+ ⎪= ± + + − − − ⎪⎭

, (A38) 

where the sign “± ” denotes the displacements on the upper “+ ” and lower “− ” edges of the 

crack tip. 
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permeable poroelastic reservoirs 
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N-0316 Oslo, Norway 

 

Abstract 

A criterion for initiation of hydraulic fractures from a plain-strain elliptical cavity is 

proposed. The elliptical cavity is considered to be in a non-hydrostatic far-field stress 

state. The fluid is allowed to diffuse through the cavity’s wall. The diffusive pore-

fluid creates an additional stresses around the cavity due-to coupling of pore-pressure 

gradients to the rock deformation, which are calculated analytically. I consider two 

applications of the analytical solution: Hydraulic fracturing of boreholes with the 

elliptical cross-section and in situ stress measurements in highly permeable 

formations. I demonstrate that small deviations of the borehole’s cross-section from 

the circular have an additional effect on the breakout pressure and show that the fluid 

leakage has a strong influence on the fracture closure pressure. 

 

1.  Introduction 

The technology of hydraulic fracturing is widely used in industry to stimulate 

hydrocarbon reservoirs, to enhance permeability in geothermal fields, or, more 

fundamentally, to measure the state of stress in the Earth’s crust [Economides and 

Nolte, 2000]. 

In order to predict hydraulic fracturing fluid pressure, it is typically assumed in 

calculations that the borehole has a circular cross-section [Economides and Nolte, 

2000]. However, the standard log measurements show that the borehole’s cross-

section often deviates from circular. Figure 1 [online data at Schlumberger web site] 

shows a log profile of the large and small axes of borehole, measured by means of 

six-arm caliper.  

In this paper I consider an elliptical cavity (borehole) in a permeable poroelastic 

medium under non-hydrostatic far-field stress state. The elliptical cavity is filled with 
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a constant fluid pressure cp  inside the cavity. Far-field pore fluid pressure p∞  is 

different from the fluid pressure in the cavity ( cp p∞≠ ), therefore the fluid can 

infiltrate from the cavity into surrounding permeable rock. The diffusive fluid couples 

to the rock deformation, creating an additional stress field via seepage forces which 

has additional effects on the initiation of fracture. I considered the steady-state fluid 

flux from the cavity into surrounding permeable reservoir with homogeneous and 

isotropic intrinsic properties. Solution in the literature exist only for circular geometry 

[Haimson and Fairhust, 1967; Economides and Nolte, 2000]. Since the circle is a 

particular case of ellipse, the cited-geometry solution is a particular case of the more 

general solution presented here. 

 

 
Figure 1.  Caliper log profile: red and blue curves show long and short axes of 
borehole; the dashed line is the bit size and the black line is the center of borehole 
[from Schlumberger web site]. 
 

Another important application of presented solution is the in situ stress measurements 

in highly permeable reservoirs. Since, nowadays, it is typically assumed that the 
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fracture closure pressure correspond to the minimum in situ stress, I demonstrate that 

it is not true in the highly permeable formations, and calculate explicitly the fracture 

closure pressure, taking into account the poroelastic coupling. 

This article is constructed as follows: in Section 2 I describe the problem and its 

boundary conditions; in Section 3 I present the system of equations which govern the 

process of fluid filtration in a poroelastic medium and a complex potential method 

which I use to find the solution of the specific problem; in Section 4 I present a 

specific solution to the boundary value problem; I discuss results in Section 5 and 

conclude in Section 6. 

 

2.  Problem description 

Let us consider a vertical borehole drilled in a porous and permeable rock formation 

that is characterized by a non-hydrostatic horizontal in situ stress field, see Figure 2, 

 

 
Figure 2.  Elliptical cavity (borehole), subjected to non-hydrostatic far-field loads 

h Hσ σ≥ . Here Hσ  and hσ  are the far-field major and minor total loads ( 0σ∞ ≤  is 
the far-filed mean stress and 0τ∞ ≥  is the far-field stress deviator); cp is the fluid 
pressure inside the cavity and p∞  is the fluid pressure on the external boundary; a  
and b  are the long and short semi-axes of elliptical cavity; 2c  is the size of reservoir; 
θ  is the angle between the long axis of the cavity and the minor compressive stress; 

1x  is the Cartesian coordinate elongated along the major axis. 
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where the far-field total loads σ∞  and τ∞  are, respectively, the mean stress and stress 

deviator; fp p∞=  is the far field pore-fluid pressure; f cp p=  is the fluid pressure 

inside the cavity (borehole); θ  is the angle between long axis and the minor 

compressive stress hσ σ τ∞ ∞= + . Coordinate axes 1x  and 2x  coincide, respectively, 

with the long and short axes of the borehole. The borehole axes are a  and b  with 

a b≥ ; 2c  is the reservoir size. This problem can be analyzed by assuming plane 

strain conditions [Detournay and Cheng, 1988].  

To simplify the physical consideration of the problem, the loading is decomposed into 

two modes (Figure 3): (I) a far-field isotropic stress including effects of pore-fluid 

filtration; and (II) a far-field stress deviator with zero fluid pressure ( 0fp = ) 

everywhere. 

 
Figure 3.  Decomposition of the problem shown on Figure 2 on two loading modes. 
Mode I has hydrostatic far-field compressive stress σ∞  on the external boundary of 
reservoir; cp  is the fluid pressure inside borehole and p∞  is the fluid pressure on 
external boundary. In mode II, the fluid pressure is zero everywhere with pure tension 
loading τ∞  on the external boundary. 
 

Denoting by the superscript (i), the stress induced by loading mode i, the boundary 

conditions for each of the loading modes are formulated next. 

For loading mode I, the stresses on the cavity wall are: 

 

 

0 for  1

I
c

I

I
f c

p

p p

ρρ

ρϑ

σ

σ ρ

⎫= −
⎪⎪= =⎬
⎪

= ⎪⎭

;       (1) 

while on the external boundary of reservoir they are: 
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*

 

0 for  

I

I

I
fp p

ρρ

ρϑ

σ σ

σ ρ ρ
∞

∞

⎫=
⎪⎪= =⎬
⎪

= ⎪⎭

.       (2) 

Here ρ  and ϑ  are curvilinear coordinates, associated with conformal mapping, 

introduced in Sub-section 3.3 and defined in Figure 4. The meaning of 1ρ =  and 

*ρ ρ=  is also explained in Sub-section 3.3. 

For loading mode II, the stresses on the cavity wall are: 

 

0

0 for  1

 0

II

II

II
fp

ρρ

ρϑ

σ

σ ρ

⎫=
⎪⎪= =⎬
⎪

= ⎪⎭

        (3) 

while on the external boundary of reservoir they are: 

*

 cos(2 2 )

sin(2 2 ) for  

0

II

II

II
fp

ρρ

ρϑ

σ τ θ ϑ

σ τ θ ϑ ρ ρ
∞

∞

⎫= −
⎪⎪= − =⎬
⎪

= ⎪⎭

      (4) 

where θ  is the angle between long axis of borehole 2a  and the minimal far-field 

compressive stress hσ σ τ∞ ∞= + . 

Solutions for the induced stress, pore-fluid pressure and displacements are derived in 

the section 4 for each of fundamental loading modes. First I introduce the system of 

equations, governing the poroelasticity and describe the general solution, using the 

method of complex potentials and conformal mapping in section 3. 

3.  Analytical method 

This section contain the following subsections: 

1) the definition of the system of equations for mechanical equilibrium; 

2) the general solution of this system of equations in Cartesian coordinates using the 

complex potential method for poro-elasticity; 

3) the introduction of the curvilinear coordinate system associated with the conformal 

mapping, which allows finding the solution for the complex geometry; and 

4) the calculation of the general solution of the equilibrium equations for steady-state 

poro-elasticity in curvilinear coordinate system. 

 

3.1  System of equations for steady-state (quasi-static) poro-elastic deformation 
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Following the common approach [Biot, 1941; Rice and Cleary, 1976; Wang, 2000], 

the equations for steady-state fluid filtration in a poro-elastic solid are given by: 

- the stress balance equations for the total stress tensor σ ij , without volume forces: 

0ij

j jx
σ∂

=
∂∑ ;         (5) 

- the steady-state fluid filtration governed by the Laplace equation for fluid pressure 

distribution fp : 

2

2 0f

j j

p
x

∂
=

∂∑ ;         (6) 

and a constitutive elastic relationship between the total stress σ ij and the strain ε ij : 

2 2
1 2ij ij kk ij f ij

v p
v

σ με με δ α δ= + −
−

;     (7) 

where 
1 if
0 ifij

i j
i j

δ
=⎧

= ⎨ ≠⎩
 is the Kronecker delta and the intrinsic material properties are 

the shear modulusG , the drained Poisson’s ratio v , and the Biot-Willis poroelastic 

constantα  [Wang, 2000; Paterson and Wong, 2005]. Substitution of stresses (eq. 7) 

into the force balance equation (5) renders gradient of the fluid pressure, commonly 

referred as seepage forces, as an additional cause of the solid deformation. 

 

3.2  Complex Potential Method for steady-state poro-elasticity 

Two-dimensional problems in elasticity can be solved using a complex potential 

method (CPM), developed by Kolosov [1909] and Muskhelishvili [1977]. This method 

has been generalized for thermo-elasticity by Lebedev [1937]. In this method, the 

general solution for the displacements and stresses is represented in terms of three 

functions: two complex potentials and the temperature distribution [Goodier and 

Hodge, 1958; Timoshenko and Goodier, 1982]. This general solution automatically 

satisfies the force balance equation and generalized Hooke’s law for thermo-elasticity, 

provided that the function describing the temperature distribution also satisfies the 

heat conduction equation. The nontrivial part of this method is in satisfying the 

boundary conditions of the specific problem, which is done by conformal mapping. 

The equations for poro-elasticity and thermo-elasticity are identical for steady-state 

fluid filtration and heat conduction problems. Therefore it is possible to use the 
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complex potential method, developed for thermo-elasticity, to solve steady-state poro-

elastic problems. 

According to the CPM, the general solution of equations (5-7) can be written in the 

form (by convention, compressive stress and strain are positive) [Goodier and Hodge, 

1958; Timoshenko and Goodier, 1982; Muskhelishvili, 1977]: 

[ ]11 22 4 Re ( ) 2 ( , )fz p z zσ σ ϕ η′+ = −  ;     (8) 

[ ]22 11 12

( , )
2 2 ( ) ( ) 2 fp z z
i z z z d z

z
σ σ σ ϕ ψ η

∂
′′ ′− + = + −

∂∫ ;   (9) 

and 

1 22 ( ) ( ) ( ) ( ) ( , )fu iu z z z z p z z d zμ χϕ ϕ ψ η′+ = − − + ∫ .   (10) 

Where the parameters η  and χ  are defined as:  

1 2Plane strain: 3 4  and 
2 1

3Plane stress:  and (1 )
1 2

v
v

v
v

αχ ν η

ν αχ η

−
= − =

−
−

= = −
+

.    (11) 

The integrals in Equations 9-10 are indefinite (without the integration constant) and 

the superscript “ ' “ denotes differentiation, i.e. ( )( ) zz
z

ϕϕ ∂′ =
∂

. 

In equations (8-10), 1 2z x ix= +  is a complex variable, 1x  and 2x  are the usual 

Cartesian coordinates, 1i −=  is the imaginary unit, and the bar denotes complex 

conjugation, i.e. 1 2z x ix= − . ( )zϕ  and ( )zψ  are the complex potentials, which are 

analytic functions of the complex variable z , and are derived from the biharmonic 

Airy function [Kolosov, 1909; Muskhelishvili, 1977]; and ( , )fp z z  is the solution of 

Laplace equation (6), given as a function of two complex variables z and z . By 

introducing the transformation of coordinates 1 2
z zx +

=  and 2 2
z zx

i
−

= , the Laplace 

equation (6) can be rewritten in the form [Timoshenko and Godier,1982; Lavrent’ev 

and Shabat, 1972]:  
2

( , ) 0fp z z
z z
∂

=
∂ ∂

.        (12) 

The fluid filtration pressure creates stresses at the boundaries of the solid. The 

boundary value problem, with given stresses or displacements in curvilinear 
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boundaries, can be solved by finding the complex potentials ( )zϕ and ( )zψ  using 

Muskhelishvili’s method. 

 

3.3  Conformal transformation and curvilinear coordinates 

Conformal mapping is a transformation of coordinates that allows solving a problem 

with a simple geometry (Figure 4a) and transforming its solution for a more complex 

geometry (Figure 4b). The properties of conformal mapping can be found in 

[Lavrent’ev and Shabat, 1972]. 

 
Figure 4.  Conformal mapping procedure using the Joukowsky transform and 
systems of Cartesian and curvilinear coordinates. The polar coordinates ρ  and ϑ  of 
ς  - plane are curvilinear coordinates for the z  - plane. The relationship between 
Cartesian and curvilinear coordinates is given by Joukowsky transformation: 

1 2 ( )i
i

mx ix R e
e

ϑ
ϑρ

ρ
+ = + . Parameters R  are defined in Subsection 3.3. 

 

The transformation of a circular domain into an elliptical one is given in a unique way 

by the generalized Joukowski transform: 

( )mz R ς
ς

= + ,         (13) 

where 0R >  is a constant and has a dimension of length; m  ( 0 1m≤ ≤ ) is a non-

dimensional constant. The complex variable ς  is defined in a non-dimensional polar 

coordinates ρ  and ϑ  as follows (Figure 4a): 
ie ϑς ρ= ,         (14) 
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where *1 ρ ρ≤ ≤  and 0 2ϑ π≤ ≤ ; the internal ( 1ρ = ) and external ( *ρ ρ= ) 

boundaries are shown by the red and brown curves, respectively on, Figure 4a. 

I use polar coordinates ρ  and ϑ  in the ς -plane, as a non-dimensional system of 

coordinates for the z -plane. The properties of this coordinate system are considered 

below. Any circle constρ =  and radius constϑ =  in the ς -plane (Figure 4a) are 

transformed into an ellipse and a hyperbola in the z-plane, respectively (Figure 4b). 

The foci of the ellipse and the hyperbola in the z-plane coincide (Figure 4b). As the 

conformal mapping preserves angles, the two lines constϑ =  and constρ =  are 

perpendicular in the z-plane. Therefore, the polar coordinates ρ  and ϑ  can be 

considered as a curvilinear coordinate system in the z-plane. 

The Cartesian and curvilinear coordinates on the z-plane are related through: 

1 2

2 2

(1 )cos( )

(1 )sin( )

mx R

mx R

ρ ϑ
ρ

ρ ϑ
ρ

⎫= + ⎪⎪
⎬
⎪= −
⎪⎭

.       (15) 

If 1ρ =  equations (15) become: 

1

2

(1 )cos( )

(1 )sin( )

x R m

x R m

ϑ

ϑ

= + ⎫⎪
⎬= − ⎪⎭

 .       (16) 

Equations (16) are parametric equations for an ellipse with semiaxis: (1 )a R m= +  

and (1 )b R m= − . If m  is small, the ellipse’s shape approaches circular. 

The external boundaries *ρ ρ=  are represented as brown curves on Figure 4. 

If 2
* 1ρ >> , the relations (15) become: 

1 * 2
*

2 * 2
*

1cos( ) ( )

1sin( ) ( )

x R O

x R O

ρ ϑ
ρ

ρ ϑ
ρ

⎫= + ⎪⎪
⎬
⎪= +
⎪⎭

 for 2
* 1ρ >> .     (17) 

Neglecting the terms of order 2
*

1O
ρ

⎛ ⎞
⎜ ⎟
⎝ ⎠

 one can see that the equations (17) because 

parametric equations for a circle with the radius *c Rρ= . 

Thus the relation between *, ,  R m ρ  and , ,  ca b  is the following: 
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*

,
2

2and    

a b a bR m
a b

c
a b

ρ

+ − ⎫= = ⎪⎪+
⎬
⎪=
⎪+ ⎭

.       (18) 

According to equations (17 and 18), the external boundary in conformal mapping is 

circular if 
2

2
*

2 1c
a b

ρ ⎛ ⎞= >>⎜ ⎟+⎝ ⎠
. 

 

3.4  General solution of plane poro-elasticity in curvilinear coordinates 

According to Muskhelishvili [1977], the stress and the displacement components in 

the Cartesian and Curvilinear coordinate systems are related by: 

11 22 ρρ ϑϑσ σ σ σ+ = + ,        (19) 

( )
2

22 11 12 2

( )2 2
( )

i iϑϑ ρρ ρϑ
ρ ω ςσ σ σ σ σ σ
ς ω ς

′
− + = − +

′
,    (20) 

and 

1 2

( )
( )

( )
u iu u iuρ ϑ

ω ςρ
ς ω ς

′
+ = +

′
;      (21) 

where 

( ) ( )mz Rω ς ς
ς

= = + .        (22) 

The equations for stresses (8-9) and displacements (10) in the curvilinear coordinate 

system become: 

( )4 Re ( ) 2 ( , )fpρρ ϑϑσ σ ς η ς ς+ = Φ − ,      (23) 

2 2

2 2

( , )2 22 ( ) ( ) ( ) ( ) ( ) ,
( ) ( )

fp
i dϑϑ ρρ ρϑ

ς ςς ςσ σ σ ω ς ς ω ς ς η ω ς ς
ρ ρ ςω ς ω ς

∂
⎡ ⎤′ ′ ′− + = Φ + Ψ −⎣ ⎦′ ′ ∂∫

and           (24) 

( ) ( )2 ( ) ( ) ( ) ( ) ( , ) ( )
( ) ( ) fu iu p dρ ϑ

ς ω ς ω ςμ χϕ ς ϕ ς ψ ς η ς ς ω ς ς
ρ ω ς ω ς

⎛ ⎞′
′ ′+ = − − +⎜ ⎟′ ′⎝ ⎠

∫ ; 

           (25) 

where 

( ) ( )( ) and ( )
( ) ( )

ϕ ς ψ ςς ς
ω ς ω ς
′ ′

Φ = Ψ =
′ ′

       (26) 

Using the properties of conformal mapping ( ( ) 0ω ς′ ≠  and ( ) 0ω ς ≠ ), the Laplace 

equation (12) becomes: 
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2

( , ) 0fp ς ς
ς ς
∂

=
∂ ∂

.        (27) 

 

4.  Analytical solution 

I finally present the analytical solution for each loading modes defined in Figure 3 and 

via boundary conditions in equations (1, 2) and (3, 4). 

4.1  Loading mode I 

The analytical solution for loading mode I is derived using Muskhelishvili’s method. I 

do not show the derivation here, since it is quite lengthy, but I demonstrate that this 

solution fulfills the boundary conditions. 

The solution of Laplace equation (27) with the boundary conditions (1, 2) is given by 

( )
2
*

ln
( , ) ( )

ln( )
I
f c cp p p p

ςς
ς ς

ρ∞= − − .       (28) 

This equation can be simplified, using (eq. 14): 

( )
*

ln
( ) ( )

ln( )
I
f c cp p p p

ρ
ρ

ρ∞= − − .      (29) 

The boundary conditions (1, 2) are fulfilled by (eq. 28). Equation (28) gives the 

solution for pore fluid pressure. 

Next, I calculate the complex potentials, which define the solution of problem as 

follows: 

( ) ( )
22 2

2

* *

( ) ( ) 23( ) 2( )
2 ln 4 ln 2

I c c cp p p m mpm mR R m Rη η σ ςς ςϕ ς ς
ς ρ ς ρ ς

∞ ∞
⎛ ⎞− − −+ −

= + − + +⎜ ⎟⎜ ⎟
⎝ ⎠

, 

and           (30) 

( )
2

2 2
2 2

*

( ) 1( ) (1 ) (1 )
ln

I c cp p p mR m R m m
m m
σ η ςψ ς ς ς

ς ς ς ρ
∞ ∞

⎛ ⎞+ − +
= + + − +⎜ ⎟⎜ ⎟− − ⎝ ⎠

.  (31) 

In order to find the stress state and displacements one should substitute the solution 

for complex potentials (30-31) along with fluid pressure distribution (27) into (23-25). 

Since the analytical solution for the stress tensor components and displacements is 

lengthy I will present only the solution for the stress field on the cavity ( 1ρ = ) and on 

the external boundary ( *ρ ρ= ). 

The normal, circumferential, and tangential stresses on the cavity are given, 

respectively, by: 
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2

2
*

2

( 1)

(1 ) ( )1( 1) 2 21 ln( )1 cos(2 )
1

( 1) 0

I
c

I c c
c

I

p

Wp W p p pm pmm
m

ρρ

ϑϑ

ρϑ

σ ρ

σ ησ ρ
ρϑ

σ ρ

∞ ∞ ∞

⎫
⎪= = −
⎪

+ + − −− ⎪= = − − ⎬+ ⎪−
+ ⎪

⎪= = ⎭

.  (32) 

Where W  is the “weight” parameter calculated as: 

*

1(1 )
ln

W η
ρ

= − .        (33) 

The normal, circumferential, and tangential stresses on the external boundary, 

respectively, are: 

* 2
*

* 2
* *

* 2
*

1( ) ( )

1( ) ( ) ( )
ln( )

1( ) ( )

I

I
c

I

O

p p O

O

ρρ

ϑϑ

ρϑ

σ ρ ρ σ
ρ

ησ ρ ρ σ
ρ ρ

σ ρ ρ
ρ

∞

∞ ∞

⎫
= = + ⎪

⎪
⎪

= = + − + ⎬
⎪
⎪

= = ⎪
⎭

.    (34) 

Neglecting the terms of order 2
*

1( )O
ρ

, since it is reasonable to assume that the 

cavity’s axes are much smaller than the size of the reservoir, the boundary conditions 

(1, 2) for the solid fulfill the equations (29, 32 and 33). 

 

4.2 Loading mode II 

In loading mode II, the solution of Laplace equation (27) with the boundary 

conditions (3, 4) is given by 

( , ) 0II
fp ς ς = .         (35) 

The solution for complex potentials is obtained by the combination of 

Muskhelishvili’s solution on the axial extension of the plate, containing an elliptical 

cavity [Muskhelishvili, 1977]. This solution is written as follows: 

2( )II iR e θτϕ ς
ς
∞= ,        (36) 

and 
2 2

2
2

(1 )( )
( )

i
II i R e mR e

m

θ
θ τ ςψ ς τ ς

ς ς
− ∞

∞

+
= − +

−
.     (37) 

Using (35-37) along with (23-25) I obtain stresses on the borehole’s wall as follows 
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2

2

( 1) 0

4 cos(2 ) cos(2 2 )( 1) 21 1 cos(2 )
1

( 1) 0

II

II

II

m
mm
m

ρρ

ϑϑ

ρϑ

σ ρ

τ θ θ ϑσ ρ
ϑ

σ ρ

∞

⎫
⎪= =
⎪

− − ⎪= = ⎬+ ⎪−
+ ⎪

⎪= = ⎭

,    (38) 

and stresses on the external boundary of reservoir as follows: 

* 2
*

* 2
*

* 2
*

1( ) cos(2 2 ) ( )

1( ) cos(2 2 ) ( )

1( ) sin(2 2 ) ( )

II

II

II

O

O

O

ρρ

ϑϑ

ρϑ

σ ρ ρ τ θ ϑ
ρ

σ ρ ρ τ θ ϑ
ρ

σ ρ ρ τ θ ϑ
ρ

∞

∞

∞

⎫
= = − + ⎪

⎪
⎪

= = − − + ⎬
⎪
⎪

= = − + ⎪
⎭

.     (39) 

This solution corresponds to pure tension loading of a plate containing an elliptical 

cavity, since the mean stress is zero and the stress deviator has the constant value, i.e.  

*

*

2 2

0,
2

and

( ) / 4 ( ) .

II II

II II II

ρρ ϑϑ

ρ ρ

ρρ ϑϑ ρϑ
ρ ρ

σ σ

σ σ σ τ

=

∞
=

+
=

− + =

      (40) 

 

5. Discussion 

Finally, combining solutions for the two loading modes (eqs. 32, and 38) I obtain the 

following expression for the circumferential load on the borehole’s wall: 

( )

1

1

2

2

2
*

2 2

( )

12 (1 ) ( )4 cos(2 ) cos(2 2 ) 1
2 21 ln( )1 cos(2 ) 1 cos(2 )

1 1

II

c
c

c

m Wp W p p pm m pm mm
m m

ϑϑ ϑϑ ϑϑ ρ
σ σ σ

σ ητ θ θ ϑ
ρϑ ϑ

=

∞ ∞
∞∞

= + =

−
+ + − −− − ++ − −

+ − −
+ +

           (41) 

The fracture initiation at cavity’s wall takes place when the maximum value of 

Terzaghi’s effective stress ( max
cpϑϑσ + ) is equal to tensile strength 0T , of the rock 

[Paterson and Wong, 2005], i.e. 
max

0cp Tϑϑσ + = .        (42) 
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First, in order to find the maximum value of the circumferential stress at the 

borehole’s wall I rewrite the equation (41) in the form 

cos(2 ) cos(2 2 )
1 cos(2 )

S T KP
Mϑϑ
θ θ ϑσ

ϑ
+ − −

= − +
−

,     (43) 

where parameters P , S , T , K  and M  are introduced in Table 1 for reasons of 

simplicity. 

 

*

( )
ln( )
c

c
p pP p η

ρ
∞−

= +  ( )
2

2

12 (1 )
1 c

mS Wp W p
m

σ∞ ∞

−
= + + −

+
 

2

4
1

T m
m
τ∞=
+

 
2 2

2 2 2

2
1

m a bM
m a b

−
= =

+ +
, with a bm

a b
−

=
+

 

2

4
1

K
m
τ∞=
+

 

*

1(1 )
ln

W η
ρ

= − , with 
*

2

1 2
2 1

c
a b

v
v

ρ

αη

=
+
−

=
−

 

Table 1.  Substitution of parameters, for reasons of simplicity 

 

After solving the equation 0ϑϑσ
ϑ

∂
=

∂
 with respect to ϑ  and the substitution of the 

solution for ϑ  in equation (43), the equation for maximum and minimum values of 

the circumferential stress at the cavity’s wall becomes 
2 2 2

max
min

2 2

[( ) cos(2 ) ] [ sin(2 )] (1 )( ) cos(2 )
1 1

MT K MS K MS T KMP
M Mϑϑ

θ θθσ
− + + −+ −

= − + ±
− −

           (44) 

The superscripts “max” and “min” (± ) correspond respectively to the maximum and 

minimum values of the circumferential stress at borehole’s wall. The expression 

inside the square root is always positive, because 20 1M≤ ≤  according to Table 1, 

therefore all values of max
ϑϑσ  and min

ϑϑσ  are real. 

To calculate the breakdown fluid pressure at fracture initiation one should note that 

the parameters S  and P  which appear in equation (44) depend on the cavity’s fluid 

pressure cp , according to Table 1. In order to calculate the breakdown fluid pressure 

cp , therefore, one should solve the quadratic equation given by eqs. 42, 44 and Table 

1 and choose an appropriate root. I will not present the solution of this quadratic 
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equation here, since this solution is lengthy and easily calculated. I will rather 

consider two cases of practical interest. 

 

 5.1 Hydraulic fracturing of nearly circular boreholes  

Now, I consider the case when m  is small ( a b≈ ) and *ρ = ∞  i.e. when the 

logarithmic term (
*

1
ln( )ρ

) in parameters P  and W  is omitted. This case is relevant 

for elliptical boreholes. Taking the Taylor expansion of (eq. 44) and keeping only 

linear terms of a bm
a b
−

=
+

 I obtain: 

max
min 2 2 ( ) 4 4cos(2 )( ( ( ) ))c c c c

a bp p p p p p
a bϑϑσ σ η τ θ τ σ η∞ ∞ ∞ ∞ ∞ ∞
−

= + − + ± − ± + − +
+

           (45) 

Equation (45) in the case when a b=  coincides with the well-known solution 

obtained by Detournay and Cheng, [1988], (see also [Economides and Nolte, 2000]). 

Note that I use a sign convention where the compressive stress is negative while the 

cited authors use an opposite sign convection. The solution of Detournay and Cheng 

[1988], is the special case of more general solution given by equation (44). 

After substituting of the maximum Hσ  and minimum hσ  values of the far-field 

compressive stresses ( 0τ∞ ≥ ) 

H

h

σ σ τ
σ σ τ

∞ ∞

∞ ∞

= −
= +

,         (46) 

the equation (45) can be rewritten in the form: 

max 3 2 ( ) 4cos(2 )( ( ) )h H c c h c c
a bp p p p p p
a bϑϑσ σ σ η θ σ η∞ ∞
−

= − + − + − + − +
+

. (47) 

Now, solving the failure equation (42) I obtain the following expression for the 

hydraulic fracturing pressure in the limit, when a b a b+ − : 

0 02 4 2 2cos(2 )
2(1 ) 1c

T p Ta bp
a b

σ τ η τθ
η η

∞ ∞ ∞ ∞− − + − −−
= +

− + −
,    (48) 

or using (eq. 46) I obtain 

0 03 2 cos(2 )
2(1 ) 1

h H H h
c

T p Ta bp
a b

σ σ η σ σθ
η η

∞− + + − + −−
= +

− + −
.   (49) 

The first term in equation (49) coincides with the well known solution obtained by 

Haimson and Fairhust in 1969 (see also Economides and Nolte, 2000). The second 
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term gives the correction to the hydraulic fracturing pressure in the case when a b
a b
−
+

 

is small. 

 

5.2 In situ stress measurements in the highly permeable reservoirs 

Now, I consider a cavity with a hight aspect ratio i.e. a b  and assume that the 

logarithmic term (
*

1
ln( )ρ

) is negligibly small. Than the equation (44) using Table 1 

can be rewritten in the form: 
max

min

2 2

(1 ) cos(2 )2
1

[ (1 ) cos(2 )] [ sin(2 )]
2

1

c
c

c

p pp
m

p p
m

ϑϑ
σ η η τ θσ

σ η η τ θ τ θ

∞ ∞ ∞

∞ ∞ ∞ ∞

+ + − −
= − + ±

−

+ + − − +
±

−

  (53) 

If the crack is perpendicular to the minimum compressive stress ( 2θ π=  and 0τ∞ ≥ ), 

then the equation (53) becomes  

max (1 )(2 ) 4
1

h c
c

p pp
mϑϑ

σ η ησ θ π ∞+ + −
= = − +

−
.     (54) 

Thus, using (54) the failure condition (42) can be rewritten in the form: 

0(1 )
2h c
bp p T
a

σ η η∞+ + − = ,      (55) 

or in the limit 0
2
b
a
→  the failure condition (55) can be rewritten in the form: 

1
h

c
pp σ η

η
∞+

= −
−

.        (56) 

This equation (56) shows that when the fluid is leaking through the fracture wall it 

changes the stress-state around the fracture and the fluid closure pressure is not 

governed by expression c hp σ= −  as it is typically taken in calculations [Economides 

and Nolte, 2000; Haimson and Cornet, 2003]. This effect c hp σ≠ −  was also observed 

experimentally, it was shown that the reopening fluid pressure (the pressure at which 

the preexisting crack opens) deviates from closure fluid pressure [Valko and 

Economides, 1995]. When the fluid pressure opens the preexisting crack, the seepage 

forces caused by fluid leakage are small, since the fluid does not have enough time to 

diffuse through the fracture wall. Thus reopening fluid pressure is equal to c hp σ= − . 
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6.  Concluding remarks 

In this paper I have calculated the hydraulic fracturing criterion for the elliptical 

cavity filled with fluid whose fluid pressure is different from the far- field fluid 

pressure. Far-field stress state is not hydrostatic. I consider an elliptical cavity in the 

permeable formation and calculate a seepage forces caused by a coupling of diffusive 

fluid to the rock deformation. I considered a steady-state fluid filtration from the 

cavity. This solution corresponds to the “long-time” solution when the fluid flux 

established a quasi-static distribution. As a possible application for this solution I 

considered two applications. The first application is a hydraulic fracturing of the 

elliptical boreholes. Since the cross-section of real boreholes could differ from the 

circular one. I approximated this deviation by an elliptical cross-section. The second 

application is in situ stress measurements. The hydraulic fracturing is a common 

technique for stress measurements. It is shown that if the reservoir is highly 

permeable than the fracture closure pressure is equal to 
1

h
c

pp σ η
η

∞+
= −

−
. Where hσ  

is the minimum in situ stress, p∞  is the far-field pore pressure; 1 2
2 1

v
v

αη −
=

−
 here α  

is the Biot-Willis poroelastic constant and v  is the Poisson ratio. This formula shows 

that the poroelastic coupling must be taken into account in the highly permeable 

reservoirs, since nowadays it is assumed in industry that c hp σ= − . 
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