N

N

Modele hydrostatique pour les écoulements a surface
libre tridimensionnels et schémas numériques

Astrid Decoene

» To cite this version:

Astrid Decoene. Modele hydrostatique pour les écoulements & surface libre tridimensionnels et schémas
numériques. Mathématiques [math]. Université Pierre et Marie Curie - Paris VI; Laboratoire Jacques-
Louis Lions, 2006. Francais. NNT: . tel-00180003

HAL Id: tel-00180003
https://theses.hal.science/tel-00180003
Submitted on 17 Oct 2007

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://theses.hal.science/tel-00180003
https://hal.archives-ouvertes.fr

THESE DE DOCTORAT DE L’UNIVERSITE
PARIS 6

PIERRE ET MARIE CURIE

- Ecole Doctorale de Sciences Mathématiques -
de Paris Centre

Spécialité
Mathématiques Appliquées
Présentée par

Astrid DECOENE

Pour obtenir le grade de

DOCTEUR de 'UNIVERSITE PARIS 6

Sujet de la thése :
Modéle hydrostatique pour les écoulements a
surface libre
tridimensionnels et schémas numériques

soutenue le 24 mai 2006 devant le jury composé de :

Jean-Frédéric Gerbeau, Directeur de thése
Benoit Perthame, Directeur de theése
Fausto Saleri, Rapporteur

Charles-Henri Bruneau, Rapporteur
Frédéric Hecht, Président du jury
Jean-Michel Hervouet, Examinateur

SSE==25E=

Mme. Marie-Odile Bristeau, Examinateur.



o -
o -




ot o
o
o

REMERCIEMENTS

Je souhaite remercier toutes les personnes qui ont contribué a ’engagement
et & I’aboutissement de ce long parcours qu’a été ma thése.

Merci donc a Benoit Perthame et Jean-Michel Hervouet de m’avoir pro-
posé ce sujet.

Ma profonde gratitude va & Jean-Frédéric Gerbeau qui m’a patiemment
guidé pendant ces trois années (et quelques...). Merci pour son exigence, sa
disponibilité et son soutien.

Je remercie sincérement Emile Razafindrakoto, en particulier pour la
confiance qu’il a toujours placée en moi.

Je ne voudrais surtout pas oublier Marie-Odile Bristeau, qui m’a si cha-
leureusement acceuillie et dont les conseils et I’expérience m’ont été précieux.

Je tiens également & exprimer toute ma gratitude a mes rapporteurs,
Charles-Henri Bruneau et Fausto Saleri, pour avoir accepté de lire et d’éva-
luer ma thése, ainsi qu’a Frédéric Hecht pour avoir présidé ce jury.

Vincent Martin m’a permis de collaborer sous le soleil marseillais puis
dans les sombres bureaux rocquencourtois & son travail autour des écoule-
ments de sang dans les artéres : cette petite parenthése dans ma thése s’est
avérée extrément enrichissante et satisfaisante, et je I’en remercie.

Je tiens finalement a saluer et remercier mes collégues de 'INRIA et du
LNHE : Emmanuel, Victor (por donde andas 7), Claire, Paola, Manu, Thierry
(merci encore), Reza, Florence, Didier, Mohammed, Cécile, Miguel, Amel,
Nicolas, Iria, Nuno, Paula, Jacques, Loic, Hatem... pour ne citer qu’eux.

Merci bien stir & mon peére et ma mére pour leur soutien inconditionnel,
ainsi qu’a mes soeurettes adorées.

Merci enfin et surtout a Laurent.



iv

Modéle hydrostatique pour les écoulements a surface libre
tridimensionnels et schémas numériques.

Résumé : Cette thése a pour objectif ’approfondissement de 1’étude
des équations régissant les écoulements & surface libre en dimension trois.
Nous proposons d’une part une nouvelle formulation variationnelle du pro-
bléme hydrostatique aboutissant & un probléme semi-discretisé en temps bien
posé. Nous en faisons I’analyse mathématique et nous montrons quelques ré-
sultats numériques obtenus aprés programmation de l'approximation de ce
probléme dans le logiciel Telemac-3D développé au Laboratoire National
d'Hydraulique et Environnement (LNHE) d’edf. D’autre part, nous étudions
la réinterprétation dans le cadre ALE de la méthode de discrétisation verti-
cale de domaines tridimensionnels appelée transformation sigma, et nous en
proposons une généralisation permettant d’améliorer la représentation des
stratifications dans un écoulement. Finalement, nous présentons un schéma
ALE-MURD conservatif pour la résolution des équations de convection li-
néaires posées sur un domaine mobile. Une condition particuliere doit étre
vérifiée afin que le schéma soit conservatif lorsque le domain bouge effective-
ment. Nous montrons comment assurer cette contrainte dans le cas particu-
lier ou le domaine est tridimensionnel et ne bouge que selon la verticale. Ce
résultat est illustré dans le cadre des écoulements & surface libre en dimen-
sion trois.

Mots-clés : équations de Navier-Stokes & surface libre, écoulements tridi-
mensionnels, Telemac-3D, modéle hydrostatique, éléments finis, ALE, trans-
formation sigma, problémes de convection linéaire, schémas distribués, lois
de conservation géométrique.

Hydrostatic model for the three-dimensional free surface
flow problem and numerical schemes.

Abstract : This PhD thesis aims to deepen the analysis of the equations
governing the three-dimensional free surface flows. On one hand we present
a new weak formulation of the hydrostatic problem leading to a well-posed
time-discrete problem. This problem is analysed mathematically and its re-
solution is implemented into the Telemac-3D system, developed at the La-
boratoire National d’'Hydraulique et Environnement (LNHE), edf. Some nu-
merical results are shown. On the other hand, we study the ALE interpre-
tation of the sigma transformation method for the vertical discretization
of three-dimensional domains. Especially we propose a generalization allo-
wing to improve the representation of stratifications in a flow. Finally, we



introduce an ALE-MURD scheme for the linear advection problem posed on
moving domains. A particular constraint must be satisfied for the scheme
to be conservative when the domain moves. We show how to ensure this
constraint in the particular case where the domain is three-dimensional and
only moves in the vertical direction. This result is illustrated numerically in
the framework of the three-dimensional free surface flow problem.

Key words : free-surface Navier-Stokes equations, three-dimensional
flows, Telemac-3D, hydrostatic model, finite elements, ALE, sigma transfor-
mation, linear advection problem, residual distributive schemes, geometric
conservation laws.
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1.1 1

Chapitre 1

Introduction

1.1 Motivation et objectif de la thése

Cette these a été proposée dans le cadre d'une collaboration entre 1'Ins-
titut National de Recherche en Informatique et Automatique (INRIA) et le
Laboratoire National d’'Hydraulique et Environnement (LNHE). Ce dernier
fait partie de la division Recherche et Développement d’EDF. Il a notamment
développé depuis 1987 un systéme hydro-informatique dédié aux écoulements
incompressibles a surface libre. Initialement basé sur un modéle bidimension-
nel (2D) découlant du systéme de Saint-Venant, ce code, baptisé Telemac et
basé sur les travaux de Hervouet et al. [50, 66|, a plus récemment intégré un
module résolvant le probléme en dimension 3 [63].

Suivant cette évolution, cette thése a pour objectif I"approfondissement
de I’étude des équations régissant les écoulements a surface libre en dimension
3, parallélement & I’amélioration de leur résolution par le code Telemac-3D.

Nous nous sommes intéressés aux équations de Navier-Stokes décrivant
le mouvement d’un fluide Newtonien incompressible dans un domaine tridi-
mensionnel (3D) a surface libre. Celles-ci s’appliquent & un nombre incalcu-
lable d’écoulements. Citons par exemple les eaux des lacs, des riviéres, des
océans, ainsi que les écoulements dans ’atmosphére. Leur étude est donc
indispensable dans des domaines d’application tels que I’environnement ou
la climatologie. De fait, la maitrise de ces équations est extrément utile &
la protection de l'environnement, grace par exemple aux études de qualité
de l'eau, a la création et protection des ouvrages qui interagissent avec lui
(impact et stabilité des aménagements) et a la protection de ’homme face
aux catastrophes naturelles. Elle joue en outre un réle primordial en météo
ou dans la prévision des changements climatiques.

Ces équations, pour étre bien connues, n’en sont pas moins trés com-
plexes, en raison notamment de leur caractére instationnaire, de la mobilité
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et de I'inconnaissance a priori du domaine sur lequel elles sont posées, ainsi
que des phénomeénes de turbulence. Elles ont fait et font toujours 'objet
de recherches soutenues en analyse mathématique théorique et numérique.
Hormis pour quelques cas particuliers, ’existence de solutions réguliéres aux
équations de Navier-Stokes 3D n’a d’ailleurs pour l'instant jamais été dé-
montrée. Soulignons ici 'importance de I’analyse mathématique détaillée des
équations régissant un probléme physique, & la fois pour sa compréhension,
sa résolution, mais aussi pour le développement de nouveaux modeéles plus
adaptés aux besoins de l'ingénierie.

La maitrise de la mécanique des fluides a surface libre dans I'ingénierie
était initialement assurée par les maquettes et modeéles physiques. Mais avec
I’avénement de la modélisation numérique, ces outils trop cotiteux et dépas-
sés ne sont plus utilisés aujourd’hui que pour le calibrage et la validation des
modeéles, ou pour des applications tres particuliéres comme les évacuateurs de
crues. En effet, ces 30 derniéres années ont connu le grand essor de la simula-
tion numérique, grace d'une part au progres technologique (la progression de
la capacité de calcul et de mémoire des ordinateurs), et d’autre part au déve-
loppement considérable des méthodes numériques en mécanique des fluides.
Sans oublier le role important joué dans cet avénement par d’autres outils
essentiels comme les logiciels de visualisation et les sytémes d’acquisition de
données et d’information géographique qui ont considérablement simplifié
et cadencé la position des problémes et l'analyse des résultats. C’est 1’en-
semble de ces raisons qui ont conduit les modéles numériques & s’imposer
aujourd’hui comme un outil indispensable & la modélisation d’écoulements &
I’échelle géophysique.

Cependant, les outils accessibles aujourd’hui sont encore loin d’étre en-
tierement satisfaisants, et de nombreux phénomeénes ne peuvent encore étre
simulés, tout particuliérement certains écoulements tridimensionnels & sur-
face libre. L’étude des différents modeéles ainsi que la recherche de nouveaux
algorithmes doivent donc étre poursuivies.

Le code Telemac-3D résout les équations de Navier-Stokes Reynolds-
averaged en dimension 3 pour les écoulements incompressibles, turbulents, a
surface libre et avec approximation de Boussinesq, par la méthode de discréti-
sation spatiale des éléments finis. Il s’applique aux écoulements géophysiques
a surface libre dans des géométries compliquées. Couplé & d’autres modeéles
dans le systéme global Telemac, il s’étend au-dela de ’hydrodynamique, per-
mettant le traitement de problémes liés & 'environnement comme 1’étude de
la qualité de 'eau. Il a été validé par de nombreuses applications pratiques,
la plupart en hydraulique fluviale ou maritime, comme par exemple le trans-
port de sédiments dans des estuaires |83, 84]. Il est notamment connu pour sa
bonne gestion des bancs découvrants et des zones séches, assurant la conser-
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vation exacte de la masse d’eau.

Le systéme présente néanmoins encore de nombreuses faiblesses et son
développement doit étre approfondi. Le temps de calcul ainsi que la précision
des résultats pourraient étre améliorés, mais on pourrait surtout envisager
la simulation de nouveaux phénomeénes, dans de nouvelles géométries.

Aux premiéres heures de cette thése, notre attention a été attirée sur la
supériorité du temps de calcul de Telemac-3D par rapport a d’autres sys-
témes connus résolvant les mémes équations. Cependant, I’étude plus appro-
fondie de ces systémes et de leur technique de discrétisation nous ont montré
que certaines simplifications étaient faites, qui rendent les algorithmes plus
efficaces. Ainsi, un modeéle basé sur la discrétisation en escalier du fond et
de la surface du domaine, et utilisant un maillage fixe, comme par exemple
les modeles développés par Casulli et al. [24, 27| ou par Saleri, Miglio et al.
[42, 97|, gagne naturellement en simplicité et rapidité de calcul. Mais il gagne
dans ces domaines ce qu'il perd en précision (cf. [54, 93]). Signalons toutefois
que la force de ces modeéles ne se résume pas a ces seuls éléments : les algo-
rithmes utilisés sont particuliérement performants méme indépendamment
du maillage.

Un défaut du code Telemac-3D signalé par certains utilisateurs est la
difficulté a représenter des stratifications, notamment les stratifications hori-
zontales dans des domaines & fond fortement variable. Ce probléme est en
fait lié & la transformation sigma classique, méthode choisie dans ce code
pour définir le maillage ainsi que son déplacement. Nous avons proposé une
extension de cette méthode permettant d’adapter davantage le maillage aux
besoins particuliers de chaque application, et notamment & la simulation de
stratifications horizontales.

Cette extension a mis en évidence le défaut de conservativité d'un schéma
de convection de Telemac-3D lorsque la transformation sigma classique n’est
pas utilisée. Cela nous a engagés dans un travail autour des schémas numeé-
riques distribués pour la convection linéaire d’un scalaire, et plus particu-
lierement de leur application aux domaines mobiles. Les résultats obtenus
peuvent s’appliquer au module de convection du code Telemac-3D, ce qui
nous a permis de corriger son défaut de conservativité.

Nous avons donc orienté notre travail dans le sens des attentes formu-
lées initialement. Cependant, nos recherches nous ont également mené dans
d’autres directions. Nous avons notamment proposé une nouvelle formulation
variationnelle du probléme étudié. Celle-ci permet d’obtenir, aprés discréti-
sation en temps et division en pas fractionnaires, un sous-probléme bien posé
couplant la vitesse horizontale du fluide et la surface libre de ’écoulement.
En effet, ce sous-probléme est linéaire, symétrique et surtout coercif. Nous
en avons fait ’analyse mathématique et avons mis en oeuvre sa résolution
dans le code Telemac-3D.
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Indiquons que certains de nos travaux ont d’ores et déja été intégrés dans
le code Telemac-3D. D’autres sont restés au stade d’étude de faisabilité et
seront peut-étre intégrés au systéme une fois optimisés.

LY

1.2 Les écoulements a surface libre : modélisation
et résolution

1.2.1 Les équations fondamentales de ’hydrodynamique

Les équations de Navier-Stokes sont en fait la forme adaptée aux fluides
de la relation fondamentale de la dynamique. Elles ont été établies par Sir
Gabriel Stokes [133] en 1845, se basant en partie sur les travaux de I'ingénieur
Henri Navier [104] datés de 1823, prés de deux siécles aprés la publication
des travaux de Newton en 1687. Elles décrivent tout écoulement de fluide
dans un domaine tridimensionnel a travers sa vitesse U (z,y, z,t), sa densité
p(x,y, z,t) et sa pression p(x,y, z,t), ainsi que le domaine Q(¢) dans lequel
il se meut. Elles sont posées a tout instant ¢ sur £2(¢) et s’écrivent :

% — div(er) = pf + rg,
(1.1)
9p : B
a5 + div(pU) = 0,

ou o désigne le tenseur des contraintes, f(z,vy,z,t) la somme des forces
extérieures pouvant s’appliquer sur le fluide, et g = (0,0, —g) la gravité.

Dans le cas des écoulements & surface libre, le domaine Q(t) varie effecti-
vement en fonction du temps, et cette variation fait partie des inconnues du
probléme, ce qui comme nous le verrons complique considérablement I'étude
et la résolution de ce dernier.

1.2.2 Principaux modéles

Afin de simplifier les équations de I’hydrodynamique a surface libre, di-
verses approximations ont été proposées. Nous ne présentons ici que les trois
d’entre elles qui sont le plus souvent utilisées.

Les variations de densité sont relativement faibles dans les milieux aqueux
naturels. L’approximation de Boussinesq (cf. [130]) consiste alors a négliger
leur effet sur la masse du fluide, mais a tenir compte de leur influence sur la
force de pesanteur appliquée au fluide. Cette approximation permet de sup-
poser la densité constante dans I’équation de continuité, et donc de considérer
un écoulement incompressible.
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Pour faciliter le traitement de la turbulence, les équations de Navier-
Stokes peuvent étre moyennées en temps : ce sont les équations dont I’appel-
lation anglaise est Reynolds-averaged Navier Stokes (RANS) [118]. L’effet des
fluctuations turbulentes sur ’écoulement moyenné est alors pris en compte
par des modeles de turbulence (cf. par exemple [140]).

Enfin, I'approximation hydrostatique consiste a négliger les accélérations
de la vitesse verticale, ainsi que la diffusion et le terme source dans I’équation
de quantité de mouvement sur w, si bien que cette équation se réduit a :

dp
0z
La pression est alors considérée hydrostatique, c’est-a-dire qu’elle ne varie
sur la verticale qu’en fonction du poids de la colonne d’eau. Typiquement,

cette hypothése est appliquée dans les milieux peu profonds, pour des écou-
lements dont la longueur d’onde est grande par rapport & la profondeur.

= —pg. (1.2)

Ces approximations ont permis la dérivation de modéles simplifiés, plus
accessibles a la résolution, mais dont ’analyse mathématique n’est pas,
notons-le, d’autant plus aisée.

Les modeles bidimensionnels existants sont le plus souvent basés sur le
systeme de Saint- Venant, dont 'appellation anglaise est shallow water equa-
tions, de par son application aux écoulements en eaux peu profondes. Ce
systéme, introduit de maniére indépendante en 1871 par Jean-Claude Barré
de Saint-Venant, peut étre vu comme une intégration sur la verticale des
équations de Navier-Stokes tridimensionnelles avec hypothése hydrostatique
et approximation de Boussinesq. Cependant, 1’existence de termes non li-
néaires oblige & quelques hypothéses et approximations supplémentaires. Il
s’agit dans tous les cas d’un systéme 2D portant sur la hauteur d’eau et la
vitesse horizontale moyennée sur la verticale. L’intérét majeur du systéme
de Saint-Venant est de permettre d’aborder des problémes de physique 3D
et instationnaires par un systéme posé sur un domaine 2D et invariant en
temps. Sa validité expérimentale et sa robustesse reconnues, ainsi que la
grande quantité de méthodes numeériques efficaces développées en font, au-
jourd’hui encore, le modeéle le plus utilisé en mécanique des fluides & surface
libre. Cependant, son domaine de validité reste limité aux écoulements en
milieux peu profonds a faible variation de la bathymétrie, a faible accéléra-
tion de la vitesse verticale, & viscosité et coefficient de frottement également
faibles, et dont le gradient de surface libre reste borné (cf. par exemple I’étude
asymptotique du systéme de Saint-Venant effectuée par Perthame et Gerbeau
dans [110]). Notons également que le systéme de Saint-Venant implique une
perte d’information de par I'utilisation d’une vitesse moyennée. La liste des
références sur le sujet étant infiniment longue, nous n’indiquons ici que les
travaux récents de Audusse [7], oil de nombreuses références pourront étre
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trouvées. Notons que le systéme Telemac comprend un module 2D qui résout
le systéme de Saint-Venant. Il en est de méme pour le code industriel TRIM
et sa version pour maillages non structurés UNTRIM, développés par Casulli
et al. [24, 27], et largement utilisés pour des études d’ingénierie notamment
dans des régions cotiéres avec effet de marée.

L’un des premiers modeéles numériques tridimensionnels pour les écoule-
ments a surface libre a été développé a partir de 1970 [33].

Il existe un type de modéle 3D bien établi, basé sur ce qu’on appelle
souvent les équations de Saint-Venant tridimensionnelles. Celles-ci dérivent
des équations de Navier-Stokes avec hypothése hydrostatique et approxima-
tion de Boussinesq. L’équation de continuité est intégrée sur la verticale,
permettant d’obtenir une équation supplémentaire sur la variable surface
libre. L’équation de continuité tridimensionnelle est toutefois conservée dans
le systéme : elle permet de coupler les composantes horizontale et verticale
de la vitesse. Remarquons que cette manipulation sous-entend que la surface
libre est une fonction univoque, qu’elle est donc définie de fagon unique sur
un domaine bidimensionnel. Ceci représente une approximation supplémen-
taire, puisque 1'on rencontre dans la nature des écoulements ne vérifiant pas
cette hypothése, comme par exemple les vagues déferlantes.

Dans leur version pour fluide Newtonien a densité constante, les équa-
tions de Saint-Venant tridimensionnelles portent sur la vitesse horizontale
u(x,y, z,t), la surface libre n(x,y,t) et la vitesse verticale w(z,y, z,t) du
fluide. Elles sont posées a tout instant ¢ sur un domaine (¢) décrit par la
variable surface libre n(z,y,t) et par le fond b(z,y), supposé constant :

%_1: + U -Vu — div(wVu) + gVaonp = ,thTa (1.3)
an o [" o ["

o 9 9 _ 1.4

at+8x/bUdZ+8y/bUdZ " .

divy u + % = 0, (1.5)

on fher désigne le terme source horizontal et Vg, dive sont les opérateurs
de gradient et divergence horizontaux.

Les modeles basés sur ces équations (voir par exemple Heaps [62], Casulli
et al. |25], Miglio, Saleri et al. [42], ainsi que Hervouet |66]), que nous appel-
lerons dans toute la suite modeles hydrostatiques 3D, sont plus riches que
les modéles 2D type Saint-Venant, puisqu’ils donnent un profil vertical de
la vitesse horizontale et permettent de calculer la vitesse verticale. De plus,
ils permettent de tenir compte de facon naturelle des conditions limites au
fond et & la surface, et de simuler certains effets 3D comme les stratifications
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et les recirculations verticales. Cependant, de par ’approximation hydrosta-
tique, leur domaine de validité est également limité aux écoulements en eau
peu profonde et a faible accélération de la vitesse verticale, dans lesquels les
gradients de pression et de fond restent faibles.

L’utilisation de modéles hydrostatiques tridimensionnels dans l'ingénierie
est longtemps restée limitée & cause de leur besoin élevé en temps de calcul. Ils
sont pourtant désormais trés utilisés, et appliqués dans des situations allant
au-deld méme des limites de leur domaine de validité. La plupart des logi-
ciels utilisant ce modele ont été développés par extension d’'un modéle bidi-
mensionnel de type Saint-Venant, afin de décrire des effets tridimensionnels.
Nous pouvons citer les modeéles océanographiques POM [19] et ROMS [123],
ainsi que les codes industriels Delft3D-Flow [38] et ADCIRC [81], dédiés aux
océans, aux milieux cotiers et aux estuaires. Notons que les codes industriels
tridimensionnels (UN)TRIM-3D [24, 27| et Telemac-3D [63] étaient initiale-
ment basés sur le modéle hydrostatique et en proposent toujours 'utilisation.

De nombreux auteurs ont également travaillé sur la résolution compléte
des équations de Navier-Stokes a surface libre, c’est-a-dire sans supposer la
pression hydrostatique.

En 1995, Casulli et Stelling présentent dans [26] le premier algorithme
complet pour la résolution de ces équations. Ils proposent pour cela une
décomposition de la pression p en partie hydrostatique py et correction dy-
namique pg : p = pp + pg- Cette décomposition permet de faire apparaitre
explicitement la variable surface libre. Les modéles basés sur cette idée sont
souvent appelés quasihydrostatiques, et peuvent étre considérés comme une
extension des modeéles hydrostatiques 3D présentés précédemment : ils com-
prennent une étape hydrostatique, dans laquelle sont résolues les équations
de Saint-Venant tridimensionnelles afin de calculer la surface libre, ainsi
qu’une étape nonhydrostatique, dans laquelle les vitesses sont corrigées par
la pression dynamique afin d’assurer ’équation de continuité. Les équations
de Navier-Stokes incompressibles s’écrivent alors comme suit a tout instant
t sur un domaine §2(¢) décrit par la variable surface libre n(z,y,t) et par le
fond b(z,y), supposé constant :

ou

5 T U-Vu - div (VVu) + gVan +Vpg = fhor, (1.6)
ow .
N + U -Vw — div (vVw) +Vpg = f., (1.7)
on a [ a "
! - — = 1.
8t+8$/bUdZ+8y/bUdZ 0, (1.8)
divy u + a—w =0, (19)

0z
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ol u et w sont les composantes horizontale et verticale de la vitesse et f, le
terme source vertical. Mahadevan et al. [82] ont développé un modéle océano-
graphique nonhydrostatique basé sur cette approche. Ils ont de plus démontré
que le probléme nonhydrostatique est bien posé, et qu’il permet de traiter les
conditions limites physiques. Plusieurs modéles quasihydrostatiques 3D ont
été developpés : citons par exemple les travaux de Miglio, Saleri et al. [97]
aingi que Kocyigit et al. [77], et le modeéle 2D vertical de Zhou et Stansby
[144]. Le code Telemac-3D propose depuis 1998 la résolution des équations
nonhydrostatiques avec décomposition de la pression (voir Jankowski [75]),
de méme que le systéeme (UN)TRIM-3D [28|.

D’autres approches ont été développées pour traiter le probléme des écou-
lements tridimensionnels & surface libre, notamment dans des cas particu-
liers. Le mouvement du domaine est alors établi indépendamment de la réso-
lution des équations de Navier-Stokes 3D, grace & des méthodes trés variées.
Nous en détaillerons certaines plus loin dans cette introduction. Citons en
particulier Yost [142|, Maury [89], Hodges [69], ainsi que les travaux plus
récents de Namin et al. [103] et Yuan et al. [141].

Les modeéles nonhydrostatiques permettent de traiter les écoulements
auxquels 'approximation hydrostatique ne s’applique pas. Ceci & cause d’un
fort gradient de surface libre ou de fond, ou de petites longueurs d’onde.
Ils prennent en compte des phénomeénes 3D plus variés, comme les mouve-
ments orbitaux, les recirculations verticales intensives, les écoulements au-
tour d’obstacles, dans lesquels la pression est fortement nonhydrostatique.

De nouveaux modéles sont néanmoins recherchés. Un modéle intermé-
diaire entre Saint-Venant et Navier-Stokes 3D a par exemple été développé
sous le nom de modéle Saint- Venant multi-couches. Le domaine tridimension-
nel est décomposé en plusieurs couches, dont Iinterface est calculée grace a
la résolution du systéme de Saint-Venant sur chacune de ces couches. Cette
résolution permet également d’obtenir une vitesse horizontale moyennée par
couche. Plusieures approches existent, notamment celle de Audusse [8]. Des
intercomparaisons entre les résultats fournis par ce modéle et ceux fournis
par le modéle hydrostatique 3D de Telemac3D ont été réalisées par Bristeau
et al. dans [9].

1.2.3 Apercu des principales méthodes numériques

Trois méthodes d’approximation basées sur la construction de maillages
sont le plus souvent utilisées en mécanique des fluides. La plus ancienne
est celle des différences finies. Elle s’avére trés simple et efficace, permet-
tant la construction de schémas peu coiiteux. Cependant, elle n’est utilisable
qu’avec des maillages structurés et ne s’applique donc qu’aux problémes po-
sés sur des géométries simples. Elle pose en particulier des problémes quant
a imposition des conditions limites et & la conservation de la masse. Cette
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méthode est notamment utilisée en océanographie, oul il n’est pas nécessaire
de discrétiser finement les bords latéraux du domaine, par exemple dans les
modeéles POM [19] et ROMS [123]. Mais elle est également utilisée dans les
logiciels TRIM3D [24] et Delft-3D-Flow [38].

La méthode des éléments finis [113] et celle des volumes finis [138| ont
émergé peu de temps aprés, et leur intérét a immédiatement été reconnu
puisqu’elles sont applicables aux maillages non structurés. Elles offrent une
grande souplesse pour discrétiser des géométries complexes et imposer les
conditions limites. D’une part, la méthode des éléments finis offre un cadre
théorique rigoureux et une mise en oeuvre relativement simple. Les modéles
hydro- et nonhydrostatiques proposés par Miglio, Saleri et al. dans [42, 97]
pour les écoulements 3D & surface libre sont par exemple basés sur la mé-
thode des éléments finis, de méme que les travaux de Yost [142] et Maury [89].
Le code Telemac est entiérement basé sur cette méthode. D’autre part, les
volumes finis permettent de résoudre simplement les équations sous forme
de bilan, et d’assurer ainsi la conservation au niveau local des quantités
calculées. Les éléments finis, eux, ne permettent le plus souvent de 1’assurer
qu’au niveau global. L’imposition des conditions limites est également parfois
facilitée par 'approche volumes finis. Le modéle différence finies TRIM a par
exemple été étendu a la méthode des volumes finis (cf. le modele UNTRIM
[27]) afin de permettre le traitement de maillages non structurés. Mahadevan
a également opté pour cette méthode dans [82].

Aujourd’hui, la tendance est a la combinaison de ces méthodes de dis-
crétisation, afin de tirer parti des avantages de chacune d’entre elles. Les
schémas distributifs [1, 34, 108] par exemple, qui connaissent un fort en-
gouement, en mécanique des fluides, sont basés sur la méthode des volumes
finis mais utilisent la structure de données des éléments finis.

Il existe cependant une alternative, plus récente, a ces trois méthodes
d’approximation : la méthode Smooth Particle Hydrodynamics (SPH), ini-
tialement développée en astrophysique puis appliquée aux écoulements &
surface libre [99]. Il s’agit d’'une méthode entiérement lagrangienne et sans
maillage, utilisant des particules qui se déplacent sous l'influence des forces
de pression, de viscosité et de pesanteur. Elle permet de simuler des cas
complexes, en particulier les écoulements mixtes, le déferlement, et tous les
cas oul la surface libre n’est pas univoque. De plus, elle traite avec grande
précision les fortes déformations de surface libre. Encore peu utilisée en hy-
drodynamique, elle a néanmoins été récemment appliquée & un écoulement
turbulent tridimensionnel dans un canal ainsi qu’a un cas de rupture de bar-
rage [139].

L’une des grandes difficultées des écoulements qui nous occupent vient
du mouvement de la surface libre. Plusieurs approches existent pour le trai-
tement des équations dans un domaine mobile. Il y a d’une part I'approche
lagrangienne, dans laquelle le maillage est délacé a la vitesse du fluide. Elle
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permet de représenter de maniére précise la surface libre et d’y imposer fa-
cilement les conditions limites, mais sa mise en oeuvre est compliquée et son
cotit élevé. De plus, pour de larges distorsions dans ’écoulement les éléments
du maillage peuvent devenir singuliers.

L’approche eulérienne traite au contraire le probléme dans un maillage
fixe. Cette approche est plus simple puisqu’elle ne nécessite pas de remaillage
et que le probléme des éléments déformés ne se pose pas. Cependant, il est
difficile de suivre la surface libre de fagon précise avec ce type de maillages et
d’appliquer les conditions limites naturelles. Cette approche est par exemple
appliquée aux écoulements a surface libre dans [102] et dans les travaux
de Miglio, Saleri et al. [42, 97|, ainsi que dans les systémes TRIM-3D et
UNTRIM-3D [24, 27].

Une nouvelle approche a été introduite en 1971 : la formulation Arbitrary
Lagrangian Eulerian (ALE) [67]. Elle consiste a déplacer le maillage a une
vitesse arbitraire, différente du fluide, permettant ainsi un réarrangement
continu des mailles. De plus, ce formalisme rend la mise & jour du maillage
totalement implicite et permet de s’affranchir de l'interpolation des variables
a chaque pas de temps sur le nouveau maillage. La formulation ALE permet
également de discrétiser plus facilement les dérivées partielles en temps. Elle
a été appliquée aux écoulements a surface libre par de nombreux auteurs,
comme par exemple Huerta et Liu [70]|, Maury [89], Soulaimani et al. [129]
et Cairncross et al. [23]. La transformation sigma est une forme simple de
méthode ALE |66, 144, 77|, qui consiste a déplacer le maillage uniquement
selon la verticale, en suivant la forme et les mouvement du fond et de la
surface libre du domaine. L’utilisation de cette méthode est trés répandue,
notamment en océanographie et en climatologie (cf. les modeles POM [19] et
ROMS [123]), son rapport avec le formalisme ALE reste néanmoins encore
peu connu. Elle assure la représentation précise et continue de la surface
libre et du fond, simplifie la prescription des conditions limites et permet
d’incorporer facilement des couches limites. Cependant, les formes classiques
de la transformation sigma, dont I'une est utilisée dans le code Telemac-3D,
limitent le choix de la discrétisation verticale du domaine et peuvent en-
trainer des erreurs graves. Notons que la premiére partie de cette thése est
consacrée & la description détaillée du formalisme ALE et de son application
en éléments finis, a 'extension d’un type particulier de schémas convectifs
aux domaines variables grace au formalisme ALE, ainsi qu’au développement
d’une forme plus générale de la transformation sigma pour les codes & sur-
face libre.

Mais la difficulté des écoulements & surface libre ne se limite pas au simple
mouvement du domaine. Celui-ci est en fait lui-méme une inconnue du pro-
bléme puisqu’il est défini a chaque instant par la position de la surface libre.
Plusieurs techniques ont été développées pour surmonter cette difficulté sup-
plémentaire. Les modeéles 3D hydrostatiques et quasihydrostatiques utilisent
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ce qu'on appelle le suivi de surface (surface tracking). Les équations réso-
lues font intervenir de fagon explicite la variable surface libre, soit & travers
une équation 2D obtenue par intégration sur la verticale de I'équation de
continuité, soit a travers la condition limite cinématique a la surface libre.
Cette technique permet d’approcher de fagon précise la surface libre, mais
elle sous-entend que celle-ci est une fonction univoque. Le suivi de surface
est également appliqué dans les modéles proposés par Yost [142|,Hodges [69]
et Yuan [141]. Notons que dans [89], Maury utilise la méthode des caractéris-
tiques pour résoudre la condition cinématique & la surface libre, mais celle-ci
n’est définie de fagcon univoque qu’au voisinage de chaque point.

Une alternative a cette méthode consiste a suivre plutét le volume de
fluide, d’ou son appellation anglaise fluid volume tracking. 11 existe aujour-
d’hui deux variantes de cette méthode. D’une part, la méthode MAC (Marker
and Cell [61]) consiste & suivre le domaine grace a des particules sans masse
se déplacant & la vitesse du fluide dans un maillage fixe. La position de la
surface libre est définie par la position des marqueurs dans le domaine. Le
principal inconvénient de cette méthode est qu’elle requiert une importante
place mémoire car un grand nombre de particules est nécessaire pour les si-
mulations. D’autre part, la méthode VOF (Volume of Fluid [68]) consiste &
ajouter une inconnue ¢ au systéme, valant un ou zéro selon la présence ou
I’absence de fluide dans chaque élément du maillage, ainsi qu'une équation
caractérisant le transport de cette fonction par la vitesse du fluide U,

% U-V¢ = 0. (1.10)

ot
La résolution de cette équation exige la mise au point de schémas numériques
parfaitement conservatifs, monotones et a diffusion numérique trés limitée.
Cette méthode est largement répandue (cf. ar exemple [101, 86]), car elle est
trés robuste et permet de représenter une surface libre non-univoque et des
fortes déformations. Mais elle fournit une représentation de la surface libre
moins précise que les méthodes de suivi de surface, et elle pose des difficultés
quant a I'imposition des conditions limites. Notons qu'’il existe des méthodes
mixtes.

En ce qui concerne la résolution proprement dite des équations de Navier-
Stokes, plusieurs choix se présentent. Le schéma en temps établit tout d’abord
le traitement implicite ou explicite de chacun des termes, permettant par
exemple de linéariser les équations. Casulli et al. ont développé un algorithme
semi-implicite en différences finies (étendu plus tard aux volumes finis) pour
la résolution des équations hydrostatiques [25] et nonhydrostatiques [28].
Ils montrent que cet algorithme est inconditionnellement stable. Cette ap-
proche semi-implicite a trés souvent été appliquée [66, 42, 97, 144, 77|, mais
certains auteurs ont également traité le probléme de fagon complétement im-
plicite [103, 141]. Le systéme peut ensuite étre résolu de fagon directe, grace
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a des solveurs non-linéaires et itératifs [70, 142, 103|, ou en utilisant plu-
tot une approche découplée. Cette approche consiste & résoudre le probléme
en plusieurs petits sous-problémes linéaires, en appliquant les méthodes nu-
meériques les plus adaptées aux caractéristiques mathématiques de chacun
d’entre eux. Il existe diverses méthodes permettant le découplage des équa-
tions, comme la méthode des pas fractionnaires (utilisée par exemple dans
[26, 42, 97, 66]), ou les méthodes de projection (appliquées notamment dans
[69, 75]).

Nous nous permettons d’en rester & cette description trés globale des
méthodes numériques existantes pour la résolution des équations de Navier-
Stokes, leur description exhaustive étant aujourd’hui presque impossible.

1.3 Travail effectué

Cette thése a tout naturellement débuté par une phase de recherche bi-
bliographique autour du probléme qui nous intéresse, les écoulement & surface
libre en dimension trois. Nous avons notamment étudié de facon détaillée les
différents modéles traités par le code Telemac-3D, ainsi que les méthodes nu-
meériques utilisées (cf. Hervouet [66]). Nous avons également étudié de fagon
approfondie les modeéles 3D développés par Casulli et al. en différences finies
[25, 26] et en volumes finis [27, 28], ainsi que ceux développés par Miglio,
Saleri et al. en éléments finis [42, 97].

Les travaux de ces auteurs ont tout particuliérement suscité notre in-
térét car leur approche est semblable a celle adoptée par Hervouet pour
les modeles 3D de Telemac. Ils adoptent notamment la méthode de suivi
de surface et proposent, comme Telemac-3D, la résolution des modéles 3D
hydrostatique et quasihydrostatique. Ils utilisent enfin une méthode semi-
implicite pour linéariser et stabiliser les équations, avant de les découpler
afin de simplifier leur résolution. Cependant, deux éléments différencient ces
deux modéles du code Telemac-3D : ils utilisent d’une part une approche
eulérienne pour traiter le mouvement du domaine, et d’autre part la surface
libre ainsi que le fond du domaine sont discrétisés en escalier. Dans le code
Telemac-3D, au contraire, le formalisme ALE est adopté, plus précisément
la transformation sigma, qui permet de suivre de maniére trés précise la
topographie et le déplacement du domaine. Ceci est d'une importance ex-
tréme car ’approche eulérienne simplifie considérablement la mise en oeuvre
d’'un tel modéle, et la discrétisation en escalier permet la construction d’al-
gorithmes trés performants puisque les éléments du maillage sont réguliers.
Cependant, cette approche requiert une résolution trés fine du maillage afin
de représenter de facon précise la surface libre et le fond. De plus, elle pose
de sérieux problémes quant a I'imposition des conditions limites naturelles.
Notons que de nombreuses comparaisons ont été effectuées entre des mo-
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déles utilisant une discrétisation en escalier de la verticale du domaine et
d’autres modeles utilisant la tranformation sigma [22, 54, 88, 93]. Celles-ci
ont montré que les résultats obtenus avec la transformation sigma sont plus
précis. Nous pensons pour cela que ’approche utilisée dans Telemac-3D est
préférable, bien qu’elle alourdisse considérablement les calculs. Par contre,
I'utilisation de I’élément Raviart- Thomas [117] pour discrétiser la vitesse du
fluide, comme cela est fait dans [42, 97|, serait intéressante car cet élément
facilite I'imposition des conditions limites aux surfaces imperméables ainsi
que la conservation de la masse au niveau local.

Nous nous sommes alors intéressés de plus prés a la formulation varia-
tionnelle du probléme hydrostatique 3D & surface libre proposé par Miglio,
Saleri et al. dans [98]. Notons que les termes de diffusion horizontale sont
négligés dans cette formulation. Apreés discrétisation en temps et explicita-
tion des termes de convection, ils obtiennent un sous-probléme couplant la
vitesse horizontale du fluide et sa surface libre. Ce probléme étant non sy-
meétrique, 'une des ses équations est modifiée. Les auteurs font ensuite une
analyse mathématique du probléme rendu symétrique et montrent ’existence
et 'unicité d’une solution au probléme (continu en espace) dans le cadre des
problémes mixtes.

1.3.1 Formulation variationnelle du modéle hydrostatique et
analyse du probléme discrétisé en temps.

Nous avons proposé une nouvelle formulation variationnelle du probléme
hydrostatique. Celle-ci inclut les termes de diffusion horizontale et permet
notamment, aprés discrétisation en temps et explicitation des termes de
convection, d’aboutir & un probléme symétrique et bien posé couplant la
vitesse horizontale et la surface libre, sans modification des équations phy-
siques. Ce probléme, discret en temps, sera nommé dans toute la thése le
probléme u — n, par référence a la vitesse horizontale notée u et a la surface
libre notée n. Nous avons fait I’analyse mathématique du probléme u — 7
et cela nous a permis de montrer qu’il admet une solution unique. Nous
avons ensuite proposé deux approximations de ce probléme : la premiére
correspond a un traitement essentiel de la condition limite d’imperméabilité
aux parois latérales du domaine, I'autre correspond au traitement naturel de
cette condition limite. Ces deux approximations du probléme admettent une
solution unique lorsque le coefficient de diffusion horizontale est non négli-
geable. Dans le cas contraire, il se pourrait que la vérification d’une condition
de type inf-sup soit nécessaire a la stabilité des solutions de ces problémes
discrets. Nous avons pour ce cas proposé un couple d’espaces d’éléments
finis approchant la vitesse horizontale du fluide et la surface libre, et qui
garantit la vérification de cette condition. Notons que l'intérét du probléme
u — 17 ne se limite pas au modele hydrostatique. Il peut également dériver de
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la discrétisation en temps du modeéle quasihydrostatique pour le traitement
complet des équations de navier-Stokes 3D, puisque celui-ci comprend une
étape hydrostatique.

1.3.2 Nouvel algorithme hydrostatique dans le code Telemac-
3D.

L’algorithme qui résout les équations du modeéle hydrostatique dans le
code Telemac-3D, également utilisé, notons-le, pour le modéle nonhydrosta-
tique, comprend la résolution d'un probléme similaire au probléme u —7. Ce
probléme couple également la vitesse horizontale du fluide et la surface libre,
mais il ne présente pas les mémes propriétés mathématiques puisqu’il n’in-
clut pas les termes de diffusion (qui sont traités dans une étape préalable), et
que les équations sont moyennées sur la verticale. Notons que ces manipula-
tions détruisent la propriété de symétrie et de coercivité du probléme u — 7).
Nous avons donc modifié I'algorithme hydrostatique dans le code Telemac-
3D afin de résoudre exactement le probléme u — 7 que nous avons analysé,
et nous avons mis en oeuvre sa résolution. Ce nouvel algorithme hydrosta-
tique a été validé en comparant ses résultats avec la solution analytique des
équations linéaires dans un cas particulier. Il a ensuite été appliqué a de
nombreux cas test, et les résultats obtenus on été comparés a ceux fournis
par la version standard de Telemac-3D, c’est-a-dire en utilisant l'algorithme
hydrostatique standard. Dans la grande majorité des tests réalisés, les ré-
sultats fournis par 'utilisation des deux algorithmes sont quasi-identiques.
Nous espérions pourtant que les résultats seraient, sinon plus précis (notre
algorithme comprend un pas fractionnaire en moins, il devrait donc étre plus
précis en temps), du moins plus stables : en effet, le probléme couplant la
vitesse horizontale et la surface libre dans I’algorithme standard n’est pas
coercif, alors que le probléme u — 7 discret résolu dans le nouvel algorithme,
lui, ’est. Nous avons obtenu des résultats plus stables dans deux cas particu-
liers, que nous présentons dans ce manuscrit, mais ceux-ci ne nous semblent
pas assez probants.

Ce nouvel algorithme a cependant également été motivé par la réduction
du nombre de pas fractionnaires dans la résolution des équations hydrosta-
tiques, et parcequ’il permet un traitement entiérement tridimensionnel du
probléme & surface libre, ouvrant ainsi la voie & 'utilisation dans le code
Telemac-3D de maillages non structurés sur la verticale.

1.3.3 ALE, transformation sigma et généralisation.

Comme nous 'avons indiqué au début de cette introduction, 'un des
objectifs de cette thése a été I'amélioration de la représentation de stratifi-
cations par le code Telemac-3D. Des erreurs relativement graves ont en effet
été observées par certains utilisateurs lors de simulations faisant intervenir
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des stratifications de densité.

Ce probléme est intimement lié a 'utilisation de la tranformation sigma
classique [111] dans le code Telemac-3D. Il intervient plus généralement
lorsque la densité du fluide a une forte influence sur I’écoulement et que
le domaine de calcul présente de forts gradients de bathymétrie. D’impor-
tantes erreurs peuvent alors apparaitre dans le calcul du gradient horizontal
de pression, dues a la déformation des éléments du maillage inhérente a la
transformation sigma. Ce probléme, que I’on appelle I’erreur de gradient hori-
zontal de pression (HPG), a été étudié par de nombreux auteurs, notamment
en océanographie et en modélisation atmosphérique [51, 83, 91, 92, 125, 132].

Etant donné que le lien entre la transformation sigma et la formulation
ALE reste flou dans certaines communautés, nous nous sommes tout d’abord
efforcés de montrer que la premiére n’est qu’un cas particulier de la deuxiéme.
Nous avons pour cela introduit I'approche ALE-Sigma (ALES), qui est une
interprétation ALE de la transformation sigma. Nous avons ensuite établi
que les variantes classiques de la transformation sigma, puisqu’elles limitent
considérablement le choix de la définition verticale du maillage et de son
déplacement, empéchent de I'adapter aux besoins spécifiques de chaque si-
mulation. Plus particuliérement, elles ne permettent pas de s’affranchir de
Ierreur de HPG, ni de toutes les erreurs dues au déformement trop accru
du maillage dans certains cas d’écoulements. C’est pourquoi nous avons pro-
posé, grace a I'approche ALES, une forme bien plus générale de transforma-
tion sigma. Celle-ci permet d’adapter davantage la discrétisation du domaine
sur la verticale. Cette transformation sigma généralisée a été mise en oeuvre
dans le code Telemac-3D, ce qui nous a permis d’illustrer numériquement
certains des avantages de son utilisation, comme par exemple ’amélioration
de la représentation de stratifications horizontales.

1.3.4 Schémas conservatifs pour les équations de convection
a domaine mobile.

Un défaut de conservativité dans deux schémas de convection du code
Tele- mac-3D a été mis en évidence par l'utilisation de la transformation
sigma généralisée. Il s’agit de deux schémas MURD (Multidimensional Re-
sidual Distributive scheme) bien connus, étendus aux maillages 3D prisma-
tiques et mis en oeuvre dans Telemac-3D par Jean-Marc Janin [74] pour la
convection linéaire de traceurs dans un champ de vitesses a divergence nulle.

Les schémas MURD, bien connus pour leur propriétés de conservation,
monotonie et stabilité, ont néanmoins été développés pour des problémes
posés sur un domaine fixe. La préservation de ces propriétés sur un domaine
mobile n’est donc pas garantie. Plusieurs auteurs ont d’ailleurs montré que le
mouvement du domaine peut avoir des conséquences négatives sur certains
schémas numériques (voir par exemple [43, 57, 58|). Dans certains cas, la
vérification d’une condition particuliére assure la préservation de certaines
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propriétés comme la conservation, la stabilité ou méme la précision des sché-
mas. Cette condition est mieux connue sous le nom de loi de Conservation
Géométrique (GCL).

De fait, Janin a montré dans [74] qu'une contrainte particuliére devait
étre vérifiée afin d’assurer la bonne conservation des quantités convectées
dans les schémas MURD mis en oeuvre dans Telemac-3D. Cependant, son
raisonnement est limité a l'utilisation de la transformation sigma classique,
et les schémas cessent d’étre conservatifs dés qu’'une autre méthode ALE est
utilisée.

Nous avons généralisé les travaux de Janin grace a la dérivation dans
le cadre ALE d’une forme générique de schémas MURD pour la résolution
des équations de convection linéaires posées sur un domaine mobile. Nous
avons ensuite formulé la condition supplémentaire que ces schémas doivent
satisfaire pour rester conservatifs quand le domaine bouge effectivement.
Celle-ci est d’ailleurs fortement liée & la notion de GCL. Nous avons enfin
constaté que lorsque le probléme est posé sur un domaine tridimensionnel qui
ne se déplace que dans la direction verticale, cette condition peut étre assurée
trés simplement. Il suffit pour cela de considérer une vitesse de maillage
constante par pas de temps. Des résultats numériques ont été obtenus qui
illustrent ce résultat.

Celui-ci peut notamment étre appliqué aux équations de convection li-
néaires dans le cadre des écoulements tridimensionnels a surface libre en
dimension 3. Il nous a notamment permis de corriger le défaut de conserva-
tivité dans Telemac-3D.

1.3.5 Estimation de paramétres dans un modéle 1D pour les
écoulements sanguins dans les artéres.

Nous présentons finalement en annexe de ce manuscrit un travail effectué
a école d’été du CEMRACS 2004, dont le théme était Mathématiques et
application en biologie et en médecine. 11 a été réalisé en collaboration avec
Vincent Martin, Francois Clément et Jean-Frédéric Gerbeau. Il a été publié
dans ESAIM Proceedings |87| en septembre 2005.

Le but de ce travail est d’identifier certains des parameétres d’'un modele
1D pour les écoulements sanguins dans les artéres [116, 45]. Notons qu'il
s'agit d’un modéle hyperbolique trés proche du systéme de Saint-Venant
décrit au début de cette introduction. Les paramétres du modéle permettent
d’approcher plus ou moins bien des configurations géométriques réalistes
ou des données expérimentales. Il est donc important d’en avoir une bonne
estimation.

L’approche adoptée pour ’estimation des paramétres est celle des moindres
carrés non-linéaires (cf. [13, 14, 15]), basée sur 'optimisation d’une certaine
fonction cotit. Notons que la résolution d’un tel probléme de mini- misation
requiert le calcul efficace et précis du gradient de la fonction coiit par rapport
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aux parameétres. Nous avons choisi d’approcher ce gradient par la méthode
de I’état adjoint.

Le probléme direct utilisé est une discrétisation par le schema de Taylor-
Galerkin du modéle hyperbolique 1D. Notons que, suivant les conseils donnés
dans [13, 14, 15|, nous avons choisi d’inverser le probléme discret et non pas
de discrétiser le probléme inverse. Nous avons donc dérivé (analytiquement)
le probléme adjoint, permettant de calculer le gradient de la fonction cott, a
partir du probléme 1D discret. Remarquons que le probléme adjoint est un
probléme hyperbolique 1D trés similaire au probléme direct.

De premiers résultats probants ont été obtenus pour 'estimation d’un
paramétre lié aux propriétés mécaniques de la paroi artérielle. Les données
utilisées pour cette estimation sont synthétiques. Elles ont été obtenues a
partir d'un modéle beaucoup plus raffiné : un modéle 3D d’interaction fluide-
structure [48, 53]. Les résultats obtenus semblent intéressants notamment du
fait que le paramétre estimé est assez différent de sa valeur a priori.

1.4 Plan de la thése

PARTIE I. Cette partie est dédiée a la formulation ALE et aux propriétés
de conservation des schémas appliqués aux problémes a domaine mobile.

Au chapitre 1 nous décrivons de fagon détaillée la formulation ALE et
nous donnons quelques outils pour son application dans le cadre des Elé-
ments Finis. Nous introduisons également la notion de Loi de Conservation
Géométrique (GCL).

Au chapitre 2 est dérivée une forme générique de schémas ALE-MURD
pour les équations de convection linéaires posées sur un domaine mobile. La
contrainte de conservation de ces schémas est formulée, et il est montré que
cette contrainte est facilement vérifiable dans le cas de problémes posés sur
des domaines tridimensionnels se déplacant uniquement selon la direction
verticale. Une illustration numeérique de ce résultat est donnée.

Le chapitre 3 est dédié a la description détaillée de la transformation
sigma et a sa réinterprétation comme forme particuliére de méthode ALE.
Les avantages et inconvénients de cette transformation et de ses différentes
variantes sont exposés. Une forme trés générale de ce type de transformation
est enfin proposée et mise en oeuvre dans le code Telemac-3D. Des tests nu-
meériques sont finalement présentés, qui montrent I’amélioration des résultats
dans deux cas de simulation grace & la transformée sigma généralisée.

PARTIE II. Cette partie est consacrée au modéle hydrostatique pour les
écoulements tridimensionnels a surface libre.
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Dans le chapitre 4 nous présentons le probléeme des écoulements tri-
dimensionnels & surface libre, ainsi que les modéles 3D hydrostatiques et
nonhydrostatiques qui seront considérés par la suite. Une formulation varia-
tionnelle du probléme hydrostatique est proposée. Celle-ci est ensuite discré-
tisée en temps et linéarisée; les termes de convections sont traités de facon
explicite. Ceci permet d’obtenir trois sous-problémes bien distincts, dont le

probléme u — 7.

Au chapitre 5 nous analysons le probléme semi-discret en temps uw — 7,
ainsi que deux approximations de ce probléme. Nous proposons également
un couple d’éléments finis stables pour ce probléme.

Le chapitre 6 est consacré a I’application au code Telemac-3D des travaux
présentés aux chapitres 2, 3 et 5. Nous détaillons dans une premiére sous-
partie le nouvel algorithme hydrostatique mis en oeuvre dans le code et nous
présentons quelques résultats. Puis nous décrivons comment les schémas de
convection ALE-MURD présentés au chapitre 2 peuvent étre appliqués dans
le cadre du modéle hydrostatique 3D présenté au chapitre 4, afin que la
contrainte de conservation imposée sur les domaines mobiles soit vérifiée.
Nous présentons finalement des résultats obtenus aprés adaptation, grace
a 'approche ALE-MURD, des schémas de convection MURD préexistants
dans le code afin qu’ils soient conservatifs pour toute transformation ALE.

Dans ’annexe A nous présentons le travail autour de I'estimation de pa-
ramétres dans un modeéle 1D pour les écoulements sanguins dans les artéres.

1.5 Conclusion et perspectives

Ce travail nous a menés a travers plusieurs aspects des écoulements tri-
dimensionnels & surface libre.

D’une part, nous avons proposé une nouvelle formulation variationnelle
des équations régissant ces écoulements. Celle-ci permet d’aboutir & un sous-
probléme bien posé couplant la vitesse horizontale et la surface libre. Mais
les résultats numériques obtenus aprés mise en oeuvre de la résolution de ce
sous-probléme dans le logiciel Telemac-3D ne sont pas encore assez probants.
Nous comptons donc poursuivre notre travail sur ce systéme. Il serait notam-
ment intéressant de tester la discrétisation de la vitesse horizontale et de la
surface libre par le couple d’éléments finis stables proposés. Nous envisa-
geons également d’évaluer les conséquences de l’explicitation du terme de
diffusion verticale sur la stabilité des solutions du probléme, car ce terme
n’est pas nécessaire a la coercivité du probléme.

Nous avons d’autre part proposé une forme trés générale de transfor-
mation ALE-sigma pour les domaines 3D se déplagant uniquement selon
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la verticale. Celle-ci permet, davantage que la transformation sigma clas-
sique, d’adapter le maillage aux besoins de chaque simulation, et notamment
d’améliorer la représentation de stratifications. Cette transformation est do-
rénavant utilisée dans le code Telemac-3D. Il serait maintenant intéressant
d’étudier de facon plus approfondie les possibilités de discrétisation verticale
du domaine offertes par cette nouvelle forme de tranformation ALE, ainsi
que leurs avantages et inconvénients dans différents cas d’applications.

La travail effectué autour des schémas ALE-MURD pour la convection
linéaire de scalaires, et de leurs propriétés de conservation lorsqu’ils sont po-
sés sur des domaines mobiles est, nous semble-t-il, intéressant en soi. Il nous
a également permis de mettre & jour les schémas de convection de Telemac-
3D, afin qu'’ils soient conservatifs pour tout cas de transformation ALE du
maillage, tant que celle-ci est uniquement verticale.

Mais notre travail ouvre également la voie & 'extension des modéles basés
sur des maillages se déplacant uniquement selon la verticale, a l'utilisation
de maillages tridimensionnels entiérement non structureés.

D’'une part, la résolution que nous avons proposée du sous-probléme cou-
plant la vitesse horizontale et la surface libre est compatible avec un maillage
non structuré sur la verticale, puisqu’elle n’implique pas l'intégration sur
la verticale des variables ni des termes sources. D’autre part, les schémas
ALE-MURD proposés dans cette thése sont applicables aux problémes de
convection linéaire de scalaires sur tout domaine mobile, pour toute forme
de déplacement du maillage. L’expression de la contrainte de conservativité
de ces schémas étant donnée dans le cas général, nous pourrions envisager de
la vérifier également dans le cas de maillages 3D ne se déplagant pas unique-
ment selon la verticale, autrement dit dans le cas de maillages entiérement
non structurés.

Cette perspective nous semble extrément intéressante car elle permet-
trait la prise en compte de tout obstacle tridimensionnel dans 1’écoulement
a surface libre étudié.

Finalement, nous aimerions également poursuivre le travail entamé au-
tour de l'estimation de paramétres dans un modéle 1D pour les écoulements
sanguins dans les artéres. Nous pensons cependant abandonner la métho- de
du probléme adjoint pour le calcul du gradient de la fonction cotit & minimi-
ser, car cette méthode nous a semblé trop lourde. Nous envisageons d’utiliser
plutét une méthode globale, plus facile & mettre en oeuvre, combinée a une
méthode locale pour accélérer la convergence de la minimisation.
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Premiére partie

Arbitrary Lagrangian Eulerian
Framework and Conservation
Properties.
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Chapitre 2

Arbitrary Lagrangian Eulerian
formulation and Geometric
Conservation Laws

In this chapter we aim to describe in details the Arbitrary Lagrangian Fu-
lerian (ALE) formulation and its application in the Finite Element Method
(FEM) framework. In addition, we wish to introduce the notion of Geome-
tric Conservation Law (GCL), related to the preservation of the stability and
conservation properties of a scheme when posed on a moving domain.

2.1 ALE formulation and finite elements

2.1.1 Principle

The ALE formulation is adopted in order to simplify the difficult treat-
ment of problems with moving boundaries. First introduced by Hirt et al.
[67] in 1974, it consists in defining a reference configuration which is gene-
rally chosen to be fixed — and a mapping that gives the correspondence with
the real domain at each time. The mapping can be chosen arbitrarily, but it
has to be conforming to the evolution of the domain boundaries. It defines
an instantaneous domain velocity, whose discrete counterpart will be the ve-
locity of the mesh. Consequently, the approximation of a problem raised on
a moving domain only requires the construction of a mesh on the reference
configuration : the discretized ALE mapping provides, at any time, the co-
ordinates of each grid node in the real domain. That allows to switch very
simply between the reference frame and the real frame. Moreover, the par-
tial time derivatives of a problem can be turned into the so-called ALE time
derivatives, that are derivatives with respect to the time at a point constant
in the reference configuration. This is very useful because partial time deri-
vatives cannot be discretized in a moving domain using the standard finite
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differences approach.

To illustrate this matter, let 3; be a moving domain defined on a time
interval I. For a function ¢ (x,t) defined at any time ¢ € I on the domain 2
and with values in R, the partial time derivative at & € €; is denoted

9 = 9 (x,t).
ot ot
Let us divide the interval I into N time steps of equal duration A¢. We would
then like to make a first order discretization of the partial time derivative at
t = t" = n x At, using the finite difference approach. This would consist in
making the following approximation :
3¢ w(mvthrl) B ¢(-’Bat")

_ n ~
ot &) At

The problem is that a point belonging to the domain at a given time might
not belong to it anymore one time step later.

Therefore, if £ € Qy,, ¥(x,t") is defined but ¥(x, ") may not. We will
see that this problem doesn’t exist in the case of an ALE time derivative,

YV x thn' (21)

because it takes into account the movement of the domain.

2.1.2 Notations

We now introduce some notations that will be used in the entire work.
Let us consider a moving domain configuration €, C R?, defined on a time
interval I. In order to write the ALE formulation of a problem raised on this
domain, a reference configuration Q c R is defined, as well as a mapping
./th which at each time ¢ € I associates to a point & in Qa point x in Q. It
means, for each ¢ € I, that

A Q—Qp,  m(@,t) = Aa). (2.2)

We shall call & € ) the ALE coordinate and @ € Q the spatial (or eulerian)
coordinate. Throughout, A, will be assumed to be an homeomorphism, that
is A, € C%Q) is invertible with continuous inverse A; 1 € C%(Q;). In
addition, the application

t — m(&,t), TeQ, (2.3)

will be assumed to be differentiable almost everywhere in I.
Throughout we will denote the set

{(z,t) | ey, tel}

by € x I, which is a slight abuse of notation since this set is not a cylinder.
Let then 9 : ©; x I — R be a function defined on the FEulerian frame and
¥ :  x I — R the corresponding function on the ALE frame, defined as

O(&,t) = p(x,t) where @ = A (&). (2.4)
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By a classical abuse of notation, the time derivative on the ALE frame,

0
written in the spatial coordinate, will be denoted by the symbol a—qf L Itis
defined as follows : i

8—1/} Q x I — R,

ot |z

O

X (@) = 5 (@,1) with & = AN x). (2.5)

ot |z

Throughout, when not explicitly mentioned, all the differential operators

0
(—t7 V, div, ...) will be taken with respect to the Eulerian frame.

The instantaneous domain velocity will be defined by

Y
c(xz,t) = ¢e(z,t) = % with & = A7 (), (2.6)
which can also be written, with a convenient abuse of notation,
ox
t)=—1| . 2.7
e(wt) = | 2.7

The Jacobian matrix of .,th will be denoted by jt

- oA
Je = [aﬁ:j]

and by jt its determinant.

2.1.3 The ALE time derivative

Let us now explain why, for the ALE time derivative, the discretization
problem mentioned in section 2.1.1 does not arise. Let us divide the interval
I into N time steps At and define, for every integer n < N, t" =n x At. A

0
first order approximation of 8_1tp ~att=1t" and x € (), is then
T

81[) 61& A Qﬁ(i? thrl) - @(i? tn)
— t") = —(z,t") =~ 2.8
) @) = @) > L ey
with & = A ().
In the Eulerian frame, this approximation is equivalent to :

a 1 n —1 thrl tn+1 _ tn

_w (m,t") ~ w(At +1 OAn (mv )? ) ¢($a ) (29)

ot la At

By construction, if & € Q, then A1 0 A1 (2, ") belongs to Q.- All
the terms are therefore well-defined.
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2.1.4 Some standard formulae

Let ¢ : ; x I — R be regular enough, the chain rule applied to the
time derivative gives :

oY N

_ oY
ot @(m’t) ot

(z,t) = E(m,t) + ¢ Viy(z,t). (2.10)

The Euler expansion formula (see |5]) relates the time evolution of J
to the divergence of the domain velocity field, according to the following
differential equation written in the ALE frame :

o, - . :

5 (A Yx),t) = J (A7 (z),t) dive (2.11)
and valid for any t € I and & € Q). This formula can be interpreted as an
evolution law for the Jacobian determinant. We will see later on that it is
strongly related to the so-called Geometric Conservation Laws that guaran-
tee a specific property to schemes set on moving domains.

Using this formula the following relation is obtained :

d B oY .
pr Qtw(m,t) dx = /Qt <E . + (e, t) div c) dx, (2.12)

which is a variant of the Reynolds transport formula.

2.1.5 Functional spaces in the ALE frame

We introduce here a general type of functional spaces, compatible with
the ALE mapping. They allow to define functions that depend on time and
are defined on a moving domain.

Let us consider a space of functions A?, defined on the reference domain,
and made of functions @@ : O — R that are smooth enough. The ALE
mapping then identifies the corresponding function space on the current
domain :

X() = {w Cx TR, Ylx,t) = DA (), heX } (2.13)

Note that functions of X'(£2;) depend on time only through the ALE mapping.
Indeed,
oy

vpex(@) S| =

0. (2.14)

This space will be used to define the test functions of a problem raised on a
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moving domain. The time dependent solutions will rather be defined in the
following functional space :

X(@t) = { v x TR, G t) = $AT (@),0), D) e X }.
(2.15)

In this work, the main functional spaces we will make use of are L?(Q) and
HY(Q) = { YiQCRISR| peLXQ) and Vi e (L2(Q))° }

and The associated norms are, respectively,

1/2
lolloa = (/fllz}dm) ,

1/2
Wlle = (IR + [VelRae ).

We also introduce the semi-norm on H!((Q) :

Ylie = [IVYloa-

Now, consider a problem whose solution defined on the current space
must belong to H'(£);) at each time ¢t € I. A functional space V defined
on the reference configuration Q) must be determined, such that the time-
dependent functions in the corresponding space V(£,t) belong to H'()
at each time ¢.

The following proposition has been proved in [43] :

Proposition 2.1 Assume that the mapping /it, which is invertible on Q,
satisfies the following conditions :

(1) O = A(Q) s bounded and Lipschitz continuous.  (2.16)

. ~\d
(i) Ae (Wlm(n)) and A7V e (W) (2.17)
Then, for any function ¢ : Qy — R,
veH (YY)  ifandonlyif ¥ = Yol € HYQ). (2.18)

Throughout, we will assume the ALE mappings considered to satisfy condi-
tions (2.16) and (2.17). Consequently, the following properties are satisfied
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by any function space V and its corresponding spaces V(€;) and V(,t) on
the current domain :

If VcL?Q) then V¢ eV(Q) and Yue V(Q,t),
P(t) € L3(Qy) and wu(t) € L2(Qy) Vt €l (2.19)

If VcHYQ) then V¢ e V() and Yue V(Q,t),
W(t) € HY(y) and wu(t) € HY(Q) Vt €1. (2.20)

If VcHYQ) then Vo e V() and Yue V(Q,t),
P(t) € HY(Qy) and wu(t) € HX(Qy) vt €1 (2.21)

2.1.6 Construction of the ALE mapping and finite element
discretization

As already mentioned, the ALE mapping can be chosen arbitrarily inside
the domain, but at the boundaries it has to be conforming to the motion of
the domain. Thus, the mapping must be such that the instantaneous domain
velocity c¢ satisfies, at each time t € I,

cn=p03n (2.22)

on impermeable boundaries i.e., on impermeable solid boundaries and free
surfaces —, where 3 denotes the velocity of the fluid and n the outward
normal to the current domain ;. In addition, on fictitious liquid boundaries
with no normal movement — i.e., open boundaries which do not move in the
normal direction , it must be such that

c-n = 0. (2.23)

Throughout, we will assume that all open boundaries have no normal mo-
vement. We will denote by I, the impermeable boundaries of a moving
domain €2, and by I';;,; its fictitious liquid boundaries.

Moreover, some regularity properties might be required for the mapping,
as for instance the satisfaction of conditions (2.16) and (2.17).

In the literature, several techniques have been proposed to construct the
ALE mapping. For instance, one can solve a parabolic problem with zero
source term and relations (2.22) and (2.23) as boundary condition. We won’t
elaborate on the construction of the continuous mapping and we will rather
switch directly to its discretization.
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In order to be able to write a finite element approximation of a problem
in the ALE frame, the mapping has to be discretized. We point out that,
throughout, we will only consider Lagrangian finite elements.

A triangulation T}, of the reference configuration Q is first introduced.
The union of its elements Ky forms the discrete domain, which will be assu-
med to be identical to Q. We will indicate by N7 the set of nodes composing
the finite element mesh and by &;, for i = 1,..., N7, the coordinate of the
i-th node in ’fh

Let us now introduce the following general finite element space defined
on the reference configuration :

FaslB) = { i @RI e @, ] oM € PL(K)
0
VK, € T } (2.24)

where P, (KR) is the space of polynomials of degree n defined on the reference
element Kpg, and ./\/le0 € P(KR) is a polynomial homeomorphic mapping
of degree k from Kpg to Kg. In general k£ < n, and in particular k is either
equal to 1 in the case of an affine mapping or ton for an isoparametric
mapping. It can be shown that

For(Tn) € H' (D). (2.25)

The ALE mapping is discretized by means of functions in the isopara-
metric space fk,k(’fh), for some specific value of k. This space is chosen for
regularity considerations that will be discussed later. The discrete ALE map-
ping will be denoted by .,Zlhﬂg.

For each t € I, let then 73 ; be the image of 771 by ./Zlh,t, that is

Thy = { K = Apy(Ko), Ko€Th }
Letting €y, ; be the union of the elements of 7}, ;, we have that
Ahﬂt : Q - Qh,t?

that €1y, ; represents the discretization of the current domain (), and that
75, represents a triangulation of €2;. At each time ¢ € I, the position x; of
the i-th node in 7}, ; is then defined by

xz(t) :.Ahﬂg(ii), for i = 1,...,NT.
Moreover, the discrete domain velocity ¢y, is defined by

o 0A
en(@,1) = & (&) = =52 (2.1),

where & = A, 1 (z).
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Remark 2.1.1 According to this definition of the domain triangulation, the
topology of the mesh remains the same during the time evolution and only
the coordinates of the mesh nodes change. Therefore, no interpolation is
required between each timestep. Note that this is an important advantage of
the ALE formulation for problems raised on a moving domain.

2.1.7 Finite element spaces in the ALE frame

In this section we present the finite element spaces that will be used to
discretize the ALE formulation of the problems studied in this work. Let us
recall that we will only use Lagrangian type finite elements and a discrete
ALE mapping as described in section 2.1.6.

If a space of functions X defined on the reference configuration € is
considered, it will be approximated by X, = fnﬂk(’fh) — defined by (2.24),
for some arbitrary value of n and for a value k < n used for all discrete
spaces.

Remark 2.1.2 We point out that the value of the degree k will be the
same for all the finite element spaces used to approximate a same problem.
Particularly, the ALE mapping will be discretized by means of functions of
the finite element function space fk7;€(ﬁl) — see section 2.1.6 — for exactly
this value of k.

The corresponding discrete space X3, (€25,4) on the current approximated
domain is then :

Xp(Qpy) = { Y Qe x I =R, ¢p(x,t) = Qﬁh(-AI;%(m))a Uy € X, }
(2.26)

We will also consider the discrete function space

Xn(Qp,t) = { P Qe x I =R, Yz, t) = ?ﬁh(v‘lﬁ;(m)vt), Uy € X,
(2.27)

Let Nj, be the dimension of X} and let {@i}i:17,,,7]vh be a set of basis
functions for this space. Any function ¢, in X}, can then be decomposed as

follows :
Np,

in(®) = > vdi(z), &eQ, (2.28)

i=1

where v; is the coefficient of 0y, associated to the i-th degree of freedom.
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Clearly, the dimension of A,(£2;,) is also N}, and the set of functions
{ ¥i(t) }iz1,...n, defined by

hi(t) = thio Ay} (2.29)
constitutes a set of basis functions of A, (€4+). Any function vy, in A3 (2, 4)

can then be written as
Np,
vn(@,t) = Y v Pi(x,t), forx € Qyy, el (2.30)
=1

Moreover, for any function vy, in &} (2,4, ), we have that

Np,
vn(@,t) = Y wi(t) di(w,t), for @€ Qyy, eI, (2.31)
=1

with time dependent coefficients v;(t). Thanks to relation (2.14) we may then
write :

0v; n dv;
o @t =D W) i t),  xeQu, tel (2.32)
=1

Remark 2.1.3 We point out that these coefficients are the same regardless
of the domain on which the function is defined. Indeed, the corresponding
function of vy (z,t) on the ALE frame — 05 (t) = vp,(t) o flh,t — can be decom-
posed on the basis functions of its definition space X, as follows :

bn(®,t) = Y wilt) hi(@), e (2.33)

Let us now introduce the following general finite element space defined
on the triangulation 73 ; of the current domain :

FaslBi) = { i uxT—RI v ech@), ] oML € P,
t
VK € Tny ) (2.34)

where ./\/lft can be defined on each element K; € 7}, as follows :

ME K= Ky, ®(n) = M) = > @i(t) i), (2.35)

ieNK
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ne Kp and (%Z EPk(KR).

The choice made in section 2.1.6 of the finite element function space
discretizing the ALE mapping can now be justified. Indeed, it guarantees
that

Xn(Qn,t) = Fo, k(Tnt)s (2.36)

as easily proven using the following proposition stated in [43].

Proposition 2.2 If, at any t € I, the discrete ALE mapping satisfies
. K K . .
Ah,t|K0 © Mk ° = Mk tv VKO € 771) Kt = Ah,t(KO))

and

X, = fn,k(ﬁz)a
then we have that Xy (), defined in (2.26), satisfies :

X)) = Fuk(Thy)-

Finally, for the time and space discretization of a problem in the ALE
frame, we will use the following general finite element space defined on the
triangulation 7, of the domain at any time ¢ = ¢" :

Fuoal) = {0 —R| 0@, ], oM € Puin
VK, € T, }. (2.37)

2.2 The linear advection problem on moving do-
mains

2.2.1 Continuous problem

Let I = [0,7] be an open interval and, for each ¢ € I, let 2y be a time
dependent domain in R? with a smooth enough boundary. We consider the
linear advection equation of a scalar u :

— + div (Bu) = f in Qx1I, (2.38)

u = U in &, at t=0
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where 3 is a general advection velocity, assumed to be sufficiently regular and
f is a source term. The system is closed by a suitable boundary condition :
u is prescribed at the inflow boundaries I';, ; of the domain, i.e.

u(x,t) = up(x,t) Vax el tel, (2.39)
where I';y, ; is defined by

I‘in,t:{weﬁﬁt/,@-n<0}. (240)

Using relation (2.10) , we obtain the ALE formulation of this problem :

%A—Fdiv(ﬂu)—c'VU = f in Q x1, (2.41)

U = ug in Q at t=0,
where ¢(z,t) is the domain velocity defined by the ALE mapping Ay

Let us indicate that in the case of a divergence free advection velocity —
div@ = 0 the advection equation can be reformulated in the following
non-conservative way :

ou

EA—F(ﬁ_C)'VU = f in Qx1, (2.42)

u = ug in O, at t=0.

2.2.2 Weak ALE formulations

Let us consider two spaces Y and X of functions defined on the reference
domain and initially assumed to be regular enough. At each time t € I,
the corresponding spaces on the current domain are respectively )(€2;) and
X (€), defined as in (2.13). Considering a function ¥ € Y, we multiply the
first equation in (2.38) by the time dependent function i(z, t) = P (A; ! (x))
defined in Y(9;) and we obtain the following weak formulation :

/ ¢<@+div (ﬂu)) de= | ¢ fde Ve, tel.
Iy ot iy
(2.43)

The time-dependent solution u(t) is sought in
Xo(,t) = {peX(,t) | () =upn(t) in Ty, tel} . (2.44)

where X' (£, t) is defined by (2.15) and I';, ; denotes the inflow boundary of
the domain.
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The velocity 3 is assumed to satisfy || div B ||p(q,) < co. Consequently,
we require that

vtelI,  u(t)e HY(Q) and (t) € L* ().

Therefore we choose

X = HYQ) and Y = L*Q).

But since condition (2.39) is prescribed, u will be sought in

A non-conservative formulation Transforming the eulerian partial time
derivative in (2.43), we obtain the following non-conservative weak ALE for-
mulation of the problem :

find uw € Xy(,t) such that V¢ € Y(), Vi € I,

v am [ w(div(Bu) - e Vu) do = [ o fda,
Q ot |z Q Q
(2.45)

u(x,0) = wo(x) in Q.

A conservative formulation A conservative formulation can also be ob-
tained, starting again from (2.43) but using relations (2.12) and (2.14) sa-
tisfied by the test functions. The result is the following :

find u € Xy(,t) such that V¢ € Y(), Vi € I,

4 Yude+ [ Ydiv((B—c)u) de = v fde,  (2.46)
dt Jo, o o)

u(x,0) = wuo(x) in Q.

For the derivation of this formulation, see for instance [43].

This formulation is called conservative because the ALE term is itself in
a conservative form. For any V' C ; with sufficiently smooth boundaries and

such that V' C Qy, it is then possible to derive from (2.46) , taking ¢ v 1y,
that

4 udm+/ u(ﬂ—c)-ndfz/fda: vtel. (2.47)
dt Jy av v
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This relation expresses the fact that, in absence of source terms, the variation
of w over V' is only due to contribution coming from the boundary of V. The
ALE term consists indeed of an additional flux of u through the boundary
as a consequence of the movement.

Formulations (2.45) and (2.46) are formaly equivalent at the continuous
level. But we will see that their discrete counterparts are different, and the
discrete system arising from (2.45) may not preserve the conservation pro-
perty just mentioned.

2.2.3 Semi-discrete ALE formulations

In this section, the space discretization of both weak ALE formulations
are derived, using the finite element spaces introduced in sections 2.1.6 and
2.1.7.

First, a triangulation 7}, of the reference configuration €2 is defined. Three
degrees k, n and n/ are then chosen in order to determine the finite element
function spaces

Xy = For(Tn) and Yy = Fui(Th),
defined by (2.24) and approximating X = H'(Q) and Y = L%(Q2). The ALE
mapping is discretized by functions in Fj, (7)) as described in section 2.1.6,

determining the triangulation 7}, ; of the current domain €2; and thus its ap-
proximation €2y, ;.

The discrete ALE mapping then identifies the discrete spaces correspon-
ding to Xp, and ), on the current domain, which according to (2.36) are

X)) = Fok(Thy) and YVp(Qni) = Fok(Tnye)-

These discrete functional spaces will approximate respectively X'(€;) and
V(). The solution u will be approximated in

Xno(Qnt:t) = { hn € Xn(Qnpst) | Yu(t) =upin(t) in Thin, t €I},

(2.48)
where X' (€,t) is defined by (2.27). The two following semi-discrete weak
ALE formulations are obtained :

Semi-discrete non-conservative formulation :

find up, € Xy o(Qny,t) such that Vb, € Vu(Qny) and Vi€ I,
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0 i
?l)h—uh dx + Yy (div (Bup) — ep - Vuy) dx
Qh,t 8t xTr Qh,t

= faibn dz, (2.49)
Qp.t

up(x,0) = upo(x) in Qp,

fr being a suitable discretization of the source term.

semi-discrete conservative formulation :

find up, € Xpo(Qny,t) such that Vo, € Vu(Quy) and Vi€,

¢ d .
— uptp de + Yrdiv (B — cn) up) dx
dt Q¢ Q¢
= Inn de, (2.50)
Q¢
uh(m,O) = uh,o(a}) in Qh,O'

2.3 Conservation and stability properties of the space-
time discretization

As already announced, a numerical scheme deriving from the non-conservative
formulation of the advection problem doesn’t automatically preserve the
conservation property described in the previous section, whereas the conser-
vative formulation does. But there is another property of the continuous
problem that should be preserved at the discrete level.

Let us consider the particular case where the advection velocity 3 is
assumed to be divergence free, i.e.

divd =0 in )y, tel. (2.51)

In this case, the continuous problem can be written as in (2.42) and admits
constant solutions whenever the source term f is zero. We observe that any
numerical scheme deriving from the semi-discrete non-conservative formula-
tion (2.49), preserves this property independently of the time discretization.
On the contrary, it is not automatically preserved by a scheme deriving
from the semi-discrete conservative formulation (2.50). Note however that
this only holds for advection problems raised on moving domains. Indeed, if
¢y, = 0, any numerical scheme admits constant solutions.
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Throughout, we will refer to the ability of a numerical scheme to admit
constant solutions whenever the continuous problem does as the constancy
preservation property. The condition for a numerical scheme set on a moving
domain to verify this property is called the Geometric Conservation Law
(GCL). We will next describe this notion more precisely.

In summary, on moving domains, the conservative formulation ensures
a correct conservation of the advected quantity at the discrete level, whe-
reas the non-conservative formulation ensures the constancy preservation

property.

2.3.1 The Geometric Conservation Law

The notion of GCL has initially been widely investigated in the fra-
mework of the finite difference and finite volume methods applied to fluid
dynamic problems, see in particular [143, 80, 58|. The aim of these laws is
to guarantee that a discrete scheme respects the conservation of geometric
quantities as the continuous problem does. Indeed, the domain movement
can affect in a negative way the solution of a discrete scheme arising from an
ALE formulation, causing a loss of the conservation properties and possible
resulting instabilities. As already mentioned, the GCL is generally defined
as the capability of an ALE numerical scheme to represent a constant solu-
tion. In [58] Guillard and Farhat prove that satisfying the GCL is a sufficient
condition for a particular numerical scheme to be consistent on moving grids.
More generally, these authors claim that a higher accuracy is obtained with
schemes satisfying the GCL compared to schemes that violate it.

This notion has been extended to the finite element method by Formag-
gia and Nobile in [43]. They establish a clear link between the fulfilment of
these laws and the degree of exactness of the time advancing scheme. Fur-
thermore, they prove that the GCL provides a sufficient condition for the
unconditional stability of the backward Fuler scheme, when applied to the
linear advection diffusion problem with divergence free velocity.

The work has been carried on, leading to further characterizations of
the GCL. In [52], Gerbeau et al. studied an ALE formulation of a magne-
tohydrodynamic (MHD) flow problem with a moving interface. The discrete
mass conservation and the global energy inequality of the numerical scheme
proposed are ensured under two conditions, which are strongly related to the
GCL.

However, in [57], it is proven that the GCL is neither a necessary nor
a sufficient condition for an ALE numerical scheme to preserve on moving
grids its order of time-accuracy established on fixed grids. Finally, Formaggia
and Nobile analysed more widely the linear advection diffusion problem in
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[47], and they reached the same conclusions. The time accuracy of the nume-
rical schemes can be preserved irrespectively of the satisfaction of the GCL,
provided that the domain movement is suitably interpolated. Moreover, they
have shown that, except in the case of the Euler backward scheme, the GCL
does not guarantee for unconditional numerical stability.

2.3.2 The GCL in this work

In the next chapter we will present a numerical scheme for the linear ad-
vection problem with divergence-free velocity, derived from the non-conservative
ALE formulation (2.45). We will show that this scheme requires the verifica-
tion of a particular constraint to ensure a good conservation of the advected
quantity when the domain moves. The interesting feature is that the expres-
sion of this constraint is strongly related to the expression of the GCL for
the backward Euler scheme applied to the linear advection diffusion problem
with divergence free velocity derived in [43]. We can therefore conclude that,
for some numerical schemes, a particular discrete relation must be satisfied
to ensure both the conservation and the constancy preservation properties.

With this work, we aim in particular to contribute to the understanding
of the notion of conserving the geometric quantities on moving domains.
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Chapitre 3

A conservative
multidimensional upwind
residual distributive scheme for
the linear advection problem
on moving domains

3.1 Introduction

In this chapter we introduce a numerical scheme for the resolution of
the linear advection problem set on a moving domain. The requirements for
this scheme were a high accuracy and stability of the solution, as well as the
monotonicity- and conservation of the advected quantity.

The idea was to use the Multidimensional Upwind Residual Distributive
(MURD) approach, well-known for its ability to satisfy the properties just
mentioned. However, the schemes based on this approach have been develo-
ped for problems defined on fixed domains, and their extension to moving
domains is not yet well-established. Now, in section 2.3, we have explained
how the domain movement can affect numerical schemes in a negative way.
Indeed, it has been proven by several authors see for instance [43, 57, 58]
that some schemes suffer from a loss of their accuracy, stability or conserva-
tion properties when applied to a problem set on a moving domain. In cer-
tain cases, the satisfaction of a particular condition the so-called Geometric
Conservation Law (GCL) — ensures the preservation of these properties.

Therefore, particular care must be taken when applying a MURD scheme
to a problem set on a domain with moving boundaries, since some of the pro-
perties it satisfies on a fixed domain may be lost. In [74], Janin proposed the
application of two widely-used MURD schemes to the advection of an active
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tracer driven by a three-dimensional free-surface flow. Both schemes were
derived for the particular case where the flow and the tracer are computed
by the Telemac-3D system (see [66]), developed at the LNHE, EDF R&D.
The author showed that a particular constraint must be satisfied to ensure
the accurate conservation of the tracer quantity.

Our aim is to generalize this result and reformulate it in the ALE frame.
In particular, we are interested in relating the additional conditions a MURD
scheme must satisfy when applied to a problem set on a moving domain to
the concept of the GCL. For this purpose we derive a generic form of MURD
schemes for the linear advection problem with moving boundaries formulated
in the ALE frame. Note that these schemes approximate the non-conservative
form of the advection equation. We will refer to this class of schemes as ALE-
MURD schemes for the linear advection problem in non-conservative form.

After introducing more widely the upwind residual distribution approach,
the bases of the ALE-MURD schemes we propose are derived from a non-
conservative ALE formulation of the continuous advection problem with
divergence-free advection velocity. Then, it is shown that the properties ensu-
red by the corresponding residual distributive schemes set on fixed domains
are not altered by the domain movement, except for the conservation of the
advected quantity. Thus, we formulate the additional condition the ALE-
MURD schemes proposed must satisfy to be conservative when the domain
moves. The strong relation between this conservation constraint and the
GCL is discussed. Finally, a conservative advection ALE-MURD scheme is
proposed for the particular framework of three-dimensional domains moving
in the vertical direction only.

3.2 The Multidimensional Upwind Residual Distri-
butive (MURD) schemes

It is now well established that for hyperbolic systems of conservation
laws, upwind methods outperform other space discretizations in terms of
accuracy, control of oscillations near discontinuities and rate of convergence
to steady state. Traditionally associated to the finite volume method, this
concept has also found its way into the finite element framework. In par-
ticular, the Streamline Upwind Petrov-Galerkin (SUPG) method [71] was
developed, based on the modification of the weighting functions in order to
stabilize the standard Galerkin method. This approach considerably reduces
the numerical diffusion with respect to the classical upwind methods, but it
is still not optimal because it doesn’t preserve the monotonic property of an
advected quantity. This means that the method does not prevent the creation
of new extrema on the solution nor the amplification of existing extrema. A
typical consequence of the lack of monotonicity of a numerical scheme is the
possible appearing of “undershoots or overshoots” relative to the amplitude
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of the initial distribution when attempting to represent a discontinuity.

Upwind Residual Distributive schemes also called Fluctuation Splitting
schemes — have emerged as an attractive alternative to the classical finite vo-
lume and finite element upwind methods.

The Residual Distribution approach was pioneered by Ni in [105]. He
proposed a first scheme which was further developed by Morton et al. [100]
and has strong similarities with the Finite Element SUPG scheme on bilinear
quadrilaterals. In 1982, Roe [119] introduced a Residual Distribution frame-
work in an upwind context under the name of Fluctuation Splitting method.
A first scheme [114], developed for quadrilateral cells, was followed by the
development of multidimensional upwind schemes for unstructured meshes
by a long list of authors. We can note Roe, Deconinck, Paillére, Sidilkover
and Struijs (see for instance |34, 106, 108, 134]), as well as Abgrall |2, 3.
These schemes present a number of attractive features such as lower cross-
diffusion due to multidimensional upwinding —, but their main advantage
is that they can be made monotonic by design. First developed for scalar
advection equations — see [107] for a review of the existing scalar advection
schemes in 2 and 3 dimensions , Fluctuation Splitting schemes have then
been extended to systems of conservation laws (see for instance |1] and [35]).

The residual distributive schemes are based on the finite volume me-
thod but they use a finite element data structure. Indeed, the unknowns
are defined at the vertices of linear mesh elements and are approximated by
continuous finite-dimension functions. The method consists in computing,
for each element of the mesh, the residual (or fluctuation) within each time
step — i.e. the source term for the local increment of the unknown. It is then
optimally distributed over the vertices of the element with weighting coeffi-
cients summing up to unity for consistency. These nodal local residuals are
finally assembled in order to retrieve a global increment at each node.

There are several ways to perform the optimal distribution of the residual
inside an element. A significant advantage of the approach lies in the fact
that the different properties required for the numerical scheme can easily be
expressed. The distribution function is then chosen such that the conditions
imposed by these properties are satisfied.

MURD schemes are multidimensionally upwind Fluctuation Splitting
schemes, in the sense that the residual is distributed to downstream nodes
only. High-order, monotonic and shock-capturing advection schemes have
been designed using the MURD approach, with particular concern for the
minimization of cross-diffusion.

The properties required for the class of MURD schemes we derive below
for the linear advection problem set on a moving domain are conservation and
monotonicity, as well as the minimization of oscillations and cross-diffusion
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in the numerical solution. Note that the generic form of these schemes will
be derived from a non-conservative formulation of the advection equation,
because the monotonicity is then more easily ensured.

3.3 A generic form of ALE-MURD schemes for the
linear advection problem in non-conservative
form.

3.3.1 Problem settings

The linear advection problem (2.38) is proposed to be solved in the par-
ticular case where the advection velocity is divergence-free, , i.e.

divB =0 inQ, tel (3.1)

We recall that this problem is closed by a Dirichlet boundary condition (2.39)
at the inflow boundaries of the domain.

Integrating the non-conservative ALE formulation (2.42) of the advection
equation over the current domain 2; leads to the following weak problem

find u € Ap(2,t) such that

[ (2
o, \ 0t

where Xp(€,t) is tdefined by (2.44).

—|—(,6—c)-Vu> de = 0, tel, (3.2)

&

u(0) = wug in Q,,

The problem is first semi-discretized in space as described in sections
2.1.6 and 2.1.7. We indicate that the Lagrangian finite element function
spaces fkk('ﬁl) and fn/7k('fh) — defined by (2.24) — chosen to approximate
respectively the ALE mapping and the functional space A?, are such that the
degrees of freedom are located at the vertices of the mesh elements.

The time interval I is then divided in N; time steps of equal length
At. We denote by €2} the approximation of the real domain at each time
t" =nAt, for n =0,..., V¢, and we introduce the following application, for
any n € [0, V] :

Anpi1 s QF — G Appa(®) = Ay o AL ().

At each time ¢, the solution u(t") will be approximated by wj} in the follo-
wing time-discrete functional space :
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X = {4 Q" —R, ¢y = Ppod d e}, (33)
which, following Proposition 2.2, coincides with F,, 1 (7,") defined in (2.37).

Given the initial condition ug we consider the following explicit Euler
time-advancing scheme :

foreach n=0,...,N;—1 find UZ'H € X}%H such that

/ (uZ'H —up 0o Apyi1,) do (3.4)
Qptt

+ At / By, —cn) -V (upoAey,) de = 0,
2
where Qf and (8, — ¢;)¢ denote respectively the approximations of the real

domain and the ALE advection velocity at some arbitrary time ¢¢ within ¢"
and t"t1,

Note that the advection velocity B is discretized at each time ¢ in some
particular finite element space which is a subset of L?(Q}) and whose de-
grees of freedom are located at the vertices of the mesh elements.

3.3.2 Notations

Throughout the derivation of the scheme we will use an important amount
of notations. For the sake of clarity, let us previously define some of them.
SM™ ! denotes the global increment of the advected quantity wuj, wi-
thin times ¢” and t"*1,
5/\/12}10 denotes the local increment of uy, on the element K,
- At (I)?(ng denotes the local residual on the element Kq within [t", ¢"+1],

~ n+l, . N N .
- (5uz is the increment uZ'H—uh of the advected variable u;, formulated

in the reference configuration,

. o n+1 .
- 5u?+1 denotes the value of the increment (5uz at the i-th node,
(5u?}$ is the contribution of the element Ky containing the i-th node

n+1

to the nodal increment du;

3.3.3 Derivation of the scheme

In the particular case studied here, the global increment M7 *! of the
advected variable uy, is due to the different advective fluxes considered wi-
thin [t",¢"*1] as expressed by (3.4). In order to apply the residual distribution
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principle, we must first reformulate the discrete problem locally. In this way,
the local residual ®g, “source” of the local increment 5./\/127';{10 can be
expressed on each element Ky of the mesh. Each local residual will then
be distributed to the nodes of its corresponding element. Finally, the incre-

ment 5u?+1 will be retrieved at each node ¢, determining the value of uy at

t =t

For this purpose, let us reformulate the global increment on the reference
configuration as follows :

1 1
ot = [ = o Av) de
h

= [ - da

_ sl & ntlo
= [Jhn (5uh da),
Q

Clearly, iy € Xy, at any time t" see the description of the discrete function
spaces in section 2.1.7. The dimension of A?h is denoted by N, and is equal to
the amount of nodes in ’ZZ Fori=1,..., Ny, @@Z indicates the basis function
associated to node ¢ in the mesh. At each time t", the corresponding basis
function of X is then ¢ = 1) 0 A, .

~ 1 N
Following (2.33), 5uZ+ is decomposed on the basis functions of X} and
we obtain :

Np,
SMtt = " suptt / Ty di
i=1 @

Np,
_ n+1l yn+1
= D outtve,
i=1
where
1 Fntl 7 ga 1
VinJr — / Jthr wz de = /n+1 w;wr dx .
) oy
Each nodal increment 5u?+1, for ¢ = 1,..., Ny, is then assumed to result

from the sum of the contributions of each element in the mesh 7, containing
the ¢-th node :

suptt = > sulfl, (3.5)

K()E'fh
i€ Ko

where, with an obvious abuse of notation, ¢ € Ky means that node i belongs
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to the element K.

In this way, the global increment can be formulated as the sum of local
increments :

M = Y (S A ) - Y M, 6o
KoETh 1€Ko K()G'fh
. 1 1 1
with 5/\/12}0 Z 5u?}r{0 yrtt

(2
i€Ko

Let us now reformulate the second term in equation (3.4), that is the
global flux term. It can be expressed as a linear combination of local fluxes
by decomposing uj as in (2.31) :

| B Vo Aey) da

(> u / h—cn) -V (WP o Ay da ),

KoETh i€Ko
(Y u /ﬂh—ch VS da ),
KOETh 1€Ko

where K, = A, .(Ky) and u} is the value of uy at the i-th node. The local
fluxes considered within time step [t", " 1], forn = 0... Ny, will be denoted,
for each element Ky € 7, by

ot = Y / (Bn — ) - VU5 da. (3.7

i€ Ko

Equation (3.4) can thus be expressed locally as follows :
7 1 1
VK € T, My, = — At O (3.8)

Thus, on each element K, € 7j, the local residual within time step [t e
is At @?(ng , since it is the source of the local increment.

The residual distribution principle can now be applied, leading to a first
definition characterizing a more general class of ALE schemes, which we
will refer to as ALE Residual Distributive (ALE-RD) schemes for the linear
advection problem in non-conservative form.
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Definition 3.3.1 The ALE-Residual Distributive schemes for the linear ad-
vection problem in non-conservative form consist in distributing each local
residual @”Ktl, defined by (3.7), to the nodes of its corresponding element,
contributing to the increment of the advected variable wy as follows :

VKo €T, Vie Ko,  oulf! B @t (3.9)

Vn-i—l i, Ko

where the distribution coefficients ﬁ?;}; are chosen such that
; 1
VKo €Th, Y BYL = (3.10)
i€ Ko

in order to guarantee consistency.
The increment du}™!
elements using (3.5). Each nodal value of uy, is thus updated as

is retrieved by assembling contributions from all the

At
utt =l — ST Z Bl Ot Vi=1,.. Ny (3.11)

i KoETh
i€ Ko

Remark 3.3.1 We indicate that this definition is still valid if the scheme is
raised on a fixed domain, considering that, for each node ¢ and at each time
t", V' is equal to a constant value V;.

Definition 3.3.2 A residual distributive scheme is multidimensionally up-
wind if the local residuals are distributed to downstream nodes only ; that
is if the distribution coefficients are chosen such that, for any mesh element
Ky, if i is an upstream node of Ky then (; i, = 0.

We call ALE-MURD scheme a multidimensionally upwind ALE-RD
scheme.

Remark 3.3.2 Because of the explicit character of these schemes, the pres-
cription of the boundary condition (2.39) can be performed independently
from the resolution of the equation : at each time step, once the solution

ZH has been computed, the boundary values are imposed strongly.

At this point we have derived a generic form of ALE-MURD schemes
for the linear advection problem in non-conservative form. Different schemes
can now be designed on this basis by choosing a particular set of distribution
coefficients — making sure that the consistency condition (3.10) as well as the
multidimensional upwinding condition are satisfied. The optimal distribution
can be chosen such that particular properties are satisfied by the scheme.
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3.4 Characterization of the optimal distribution

Referring to [107], four essential design criteria can be imposed on a resi-
dual distributive scheme, ensuring particular properties. We describe below
these criteria, the conditions they impose on the choice of the distribution co-
efficients and the properties they guarantee to residual distributive schemes
set on fixed domains. We also establish whether or not these properties are
preserved on a moving domain.

3.4.1 Consistency

Definition 3.4.1 The consistency condition requires that the distribution
coefficients associated to a same element in the mesh add up to 1, i.e. that

Z Bix, = 1 VKo7

i€Ko

This condition is called consistency condition because it ensures that the
solution computed by the distributive scheme is actually a solution of the
original discrete equation. For instance in the case of the ALE-RD schemes
defined previously, this condition ensures that relation (3.8) holds true, and
therefore that the discrete equation (3.4) is solved.

Remark 3.4.1 Note that any Residual Distributive scheme can be rewritten

as
n+1_§: an
U,L- = mjuj,
J

where the consistency condition implies that ) . m; = 1. Two important
classes of schemes can then be identified : linear schemes, for which the m;
are independent of u, and non-linear schemes for which the m; depend on
U.

Definition 3.4.2 Let us consider an explicit numerical scheme for the linear
advection problem with divergence free velocity, raised on a fixed domain €,.
The scheme is conservative if, at each time step,

/ (UZH — up)dz = — At/ up B - ny, dl, (3.12)
Qn oy,

where Bj is the advection velocity considered within this time step.

Proposition 3.1 A Residual Distributive scheme for the linear advection
problem in non-conservative form, with divergence free advection velocity and
raised on a fized domain Qy, is conservative in the sense of (3.12) if the
consistency condition is satisfied.
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Proof. The Residual Distributive scheme considered is defined as described
in Definition 3.3.1, considering that the domain €, is fixed. Following (3.6)
we have that

/ (up™ —up) de = oMt = Y sMIEL
Qn Ko€eTy,

Since the consistency condition is satisfied at each time step, relation (3.8)
holds true and therefore :

> oMyl = s Y e
KoeTy, KoeTy,
= —At Y Zu?/ B5 - Vs dx
KocT, icKo Ko

= — At B - V5 dx .
Qp

Integrating by parts the flux term we obtain :

/ uptt — o de :—At/ UZﬁicz'nhdF"i'At/ up, div By, dz
Q oy, n

Finally, since the advection velocity is divergence-free, we can state that the
scheme satisfies the conservation property (3.12). $

3.4.2 Multidimensional upwinding

Multidimensional upwinding prevents the numerical solution from un-
physical oscillations and minimizes the creation of cross-diffusion. Indeed,
since no fraction of a local increment is sent to an upstream node, the infor-
mation is sent in the physical propagation direction.

3.4.3 Positivity

Another criterion for the design of non-oscillatory schemes is the so-called
positivity property.

Definition 3.4.3 A scheme is said to be positive if the value of the solution
at the new time can be written as a convex sum of values at the previous
time, 1.e.

Vi € [1, Nh],

Np,
u?“ = Z mj uj, with m; >0 Vj and Z mj =1.
j=1 J
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The following proposition holds :

Proposition 3.2 The positivity of a distributive scheme ensures a mazimum
principle which prohibits the creation of new extrema.

This is easy to verify since

Np,
min u? < u?“ = E m; u? < max u?
J J
J=1
Another criterion more restrictive but easier to implement is the local

positivity.

Definition 3.4.4 A scheme is said to be locally positive if the contribution
of each element Ky € 7}, to the nodal increment (5u?+1 of the solution for
the new time can be written as a convex sum of values at the previous time,
1.€.

Vi € [1, Ny], VK such that i € Ky,

1 . . .
ou;' e, = g mj i, uy,  with mjr, > 0 Vj#i.
Jj€Ko

It is obvious that m; can be made positive for a sufficiently small time step
length At. This condition therefore comes to require that the contribution
of each element to the nodal increment of the unknown be positive.

Proposition 3.3 Local positivity implies global positivity under a global CFL
condition.

Proposition 3.4 Local positivity ensures a discrete mazimum principle which
guarantees for the monotonicity of the scheme.

For the proof of the last proposition and more details about local positivity,
see for instance [107].
3.4.4 Linearity preservation

Definition 3.4.5 A scheme is said to be linearity-preserving (LP) if it pre-
serves the exact steady state solution when this is a piecewise linear polyno-
mial function on the considered triangulation of the domain.

Proposition 3.5 A necessary and sufficient condition for a scheme to be
LP is that, for any element Ky € 7},

if Sr, — 0 then ﬁi,KO b, = 0 Vie K.
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This condition is equivalent to the condition requiring that all the distribution
coefficients (3; i, be bounded.

Indeed, when approaching the steady state, the local residual tends to zero.
This tendance should be preserved when distributing the local residual on
the element nodes. For linear schemes, the following property has been shown
in [106].

Proposition 3.6 On a reqular mesh, LP implies the absence of cross-flow
diffusion for the steady-state solution of the homogenous advection equation,
and hence second-order accuracy.

Another property has been proven by Struijs in [135]. It extends the Godunov
theorem to the multidimensional case.

Proposition 3.7 Only non-linear schemes can combine positivity and linear
preservation.

Clearly, the properties ensured by the multidimensional upwinding, the
positivity local as well as global and the linearity preservation criteria are
preserved on a moving domain. Indeed, neither the conditions they impose
nor the relations they imply are altered by the domain’s movement. On the
contrary, the conservation property is not automatically preserved, since the
expression of the required discrete conservation changes when the domain
moves. We will formulate later on the additional constraint the numerical
scheme must satisfy to be conservative.

3.5 Some particular coefficient distributions

Well-known MURD schemes have been developed by designing particu-
lar distribution functions combining multidimensional upwinding with other
criteria among those described. We will only mention three of them. The
reader may refer to [107] for a more extended list and a precise description
of the existing MURD schemes.

In order to better describe the schemes we present next, we formulate
the local residual on each element Ky as a sum of values of the solution at
the previous time step, that is

n+l __ . n
@Ko - : : kviO Uz s
i€Ko

where k; g, are real coefficients determined by the distribution coefficients of
the scheme. This is always possible for residual distributive schemes because
they are explicit.

For the sake of simplicity, the distribution coefficients characterizing these
schemes will only be given for the two-dimensional case. For this purpose,



3.6 Conservation property of the schemes 51

we assume that the domain is discretized by triangles.

The linear positive scheme with lower cross-diffusion is the N scheme
[120], given by
D; k.
Bk, = —(If’ - (3.13)
Ko

on each element K|, with

max (0, k; k)

— > min(0,kj k) (uff —uf).  (3.14)
Z max(O,tho) Jj€Ko
leKy

e

It is easy to verify that this scheme is positive. But since the distribution
coefficients are not bounded, the linearity preservation is not satisfied. As a
result, the scheme can diffuse even when a steady-state linear solution has
been found.

The MURD version of the SUPG scheme, identical to its finite element
version when the advection velocity is constant, is a linear and linearity-
preserving MURD scheme, but it is not positive.

Finally, we indicate the non-linear PST (Positive Streamwise Invariant)
scheme, developed by Struijs [134]. It can be written as a limited version of
the N scheme, that is as

b,
Biky = ¥ <<1>—KO> (3.15)
Ko
on each element K|, with
U(r) = max (0,min(r,1)). (3.16)

This scheme is upwind, positive under a CFL condition, and linearity-preserving
because the limiter bounds its coefficients.

3.6 Conservation property of the schemes

We have indicated previously that consistency is only a necessary condi-
tion for a distributive scheme to be conservative when set on a moving do-
main. Indeed, further conditions must be satisfied to make sure that the
advected quantity is really conserved.

Let us first define the conservation property required. At the continuous
level, the conservation of a variable u, advected by a velocity 3(¢) in a domain
), moving with the velocity ¢(t), can be expressed as follows :

d

— | uwdx = —/ u(B —c) nydl, (3.17)
dt Jo, Gl



3 A conservative MURD scheme for the linear advection problem on
52 moving domains

where nyj is the outward normal to the current domain. By integrating in
time this relation over [t",¢""1] we obtain :

i ) de - i

n+1 tn

tn+1

u(t") de = _/tn /69 u(B—c) -nydl dt.

According to the time and space discretization (3.4) of the linear advection
problem, the required conservation property is :

/n+1 uptt de —/ up de = — At / (up o Acr) (By, —cp) - my, d.
oy or 098
(3.18)

Moreover, we recall that the ALE mapping A; must be such that the
domain velocity ¢ satisfies

cn =p0-n on Dy, and cn =0 on Iy,

where I';,,;, ; denote the impermeable boundaries of the domain — i.e., imper-
meable solid boundaries and free surfaces , and I';;,; denotes its fictitious
liquid boundaries, assumed to be still in the normal direction — see section
2.1.6. This condition should be preserved at the discrete level. The discrete
ALE mapping flm must therefore be such that, for each n =1,..., N,

c,-np = By -ny on Iy, and c,-np =0 on Iy

A stronger discrete conservation property than (3.18) can therefore be re-
quired at the discrete level, whose definition is the following.

Definition 3.6.1 According to the time and space discretization (3.4) of
the linear advection problem, the discrete conservation property required for
the numerical scheme at each time step is :

/ uZ'H dxz —/
Qntl Q
h

Let us now formulate the conservation constraint of the ALE-RD schemes
for the linear advection problem in non-conservative form, that is the condi-
tion they must satisfy to ensure the required discrete conservation property
(3.19).

up de = — At / (u 0 Acp) (By —cp) - my, dl.
I I

(3.19)
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Assuming that the consistency condition (3.10) is satisfied, the solution
provided by these schemes satisfy the discrete equation (3.4). We can there-
fore write the following equivalences :

(319) / (et aptt = gy aq) da
Q

+ At/ (1 0 Aun) (By — en)C - mp dT' = 0

lig

o [ AR + G- o e

+ At/c (W 0 Aun) (By— )" - mp dT = 0
(using 34) )
& uy, dx —/ up dx
Qptt Qy
= At B Vgod,) d
:

+ At / (uz 0] .Ac,n) (,@h — Ch)c Ny dl’ = 0

h,lig

By decomposing uj on the degrees of freedom we obtain :

3.19) < ul! Yt de — Y dee
B10) o Y { :

- At/ (B, —cn) - Vi dx + At/ U§ (ﬁh—ch)c-nhdf}zo
Qs e

h h,liq

This relation must be true at any time t"” and for any distribution of wuy.
Therefore, we can state the following proposition.

Proposition 3.8 The numerical scheme (3.4) is conservative in the sense

of (3.19) if and only if
Vn=1,...,N, Yi=1,...,Np,

/ it dae — Y dx — At/ (B), — cp)¢ - V¢ dx
QZ+1 QZ Qfl
+ At ¥ (B —en)’-my dl = 0, (3.20)

c
1_‘h,liq

where t¢ is the time at which the advective fluxes are considered within each
time step.
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This expression of the conservation constraint will be usefull for the par-
ticular case of the three-dimensional hydrostatic free surface problem that
will be studied later on. However, for the general case, we will rather make
use of a simplier form of this constraint. For this purpose, we first make the
assumption that the Green Formula can be applied to the global flux term
in (3.20), i.e. that at any time step ¢t and for each node i,

e vt = [ w8 e mar
Qi Fi,liq
= [ ¥ div(B, — ) de. (3.21)
Q5

Note that relation (3.21) holds true provided the space integrals and the
gradient in the local flux terms @?(ng defined by (3.7) are computed exactly
for the particular finite element functions used to approximate the solution,
the ALE advection velocity and the domain.

Using (3.21), relation (3.20) turns to

Yt de — /Qn@b?dm + At/ﬂclbf div (B, —ep) dxe = 0.
h h

n+1
Qh

This expression of the conservation constraint involves the domain velocity
but also the velocity of the fluid. That means it prevents from a loss of the
advected quantity which can arise from the domain movement but also from
an eventual mass-loss of the fluid itself. Obviously, if the discrete velocity of
the fluid 3,, is not locally divergence-free, the advected quantity cannot be
well conserved, even on a fixed domain.

Let us now assume that the advection velocity has been discretized or
computed — such that it is divergence-free at least in the sense of

/¢§ divBfde =0 Vi=1,...,N,, Vtel. (3.22)
a5

The following proposition can be written.

Proposition 3.9 If the local flures (3.7) are computed exactly and if the
discrete advection velocity is divergence-free in the sense of (3.22), then the
numerical scheme (3.4) is conservative in the sense of (3.19) if the following
relation holds :

Vn=1,...,N, Vi=1,...,Np,

/ Yt de — P de — At v§ divey, de = 0,  (3.23)
ot o 5,



3.7 Conservation constraint and GCL 55

where t€ is the time at which the advective fluzes are considered within each
time step.

This conservation constraint only involves terms related to the mesh move-
ment. Clearly, (3.23) is automatically satisfied in the case where the domain
doesn’t move. In fact, this traduces a loss of the advected quantity arising
from the domain movement when a particular condition is not satisfied.
Therefore, it is strongly related to the Geometric Conservation Laws (GCL)
introduced in section 2.3.

3.7 Conservation constraint and GCL

The conservation constraint (3.23) can be viewed as a particular discre-
tization  strongly related to the one used to approximate the problem of
the weak form associated to the Euler expansion formula (2.11).

This can easily be shown by deriving a weak form for the Euler expansion
formula :

O b 4z = /j“; (diveod) di.  wie.
Q

Since Qﬁ does not depend on time, the left term can be integrated over
[t",t"*1], and the weak form finally obtained is

tn+1

YY) da — ¢ (t") / ) dive dx dt
tn

Qn+l

Vip € X (3.24)

In section 2.1.4, we mentioned that the Euler expansion formula can be
interpreted as an evolution law for the Jacobian determinant. Now we have
shown that, when using the scheme presented in this chapter to solve a linear
advection equation set on a moving domain, a particular discrete counter-
part of this evolution law must be verified for the advected quantity to be
well-conserved.

It may be interesting to refer to the analysis by Formaggia and Nobile,
in [43], of a particular FEM numerical scheme for the resolution of the linear
advection diffusion problem with divergence-free velocity raised on a moving
domain. They precisely show that the expression of the GCL  see section 2.3
— for this scheme can be interpreted as a particular discretization of the Eu-
ler expansion formula. Note that the scheme they consider is derived from
a conservative ALE formulation of the continuous problem, which implies
that the unknow is automatically conserved. But we recall that, in the case
of a problem raised on a moving domain, the conservative formulation leads
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to schemes which do not necessarily preserve constant solutions whenever
they are solutions of the continuous problem. The GCL is then defined as
the condition for the scheme to satisfy this property, which we refer to as
the constancy preservation.

We therefore conclude that, for some particular numerical schemes raised
on moving domains, the evolution law for the Jacobian determinant must be
preserved at the discrete level to allow the coexistence of both the conserva-
tion and the constancy preservation properties.

In the next section we describe the application of the ALE-MURD schemes
proposed in this chapter to a particular framework : the linear advection pro-
blems set on three-dimensional domains moving in the vertical direction only.
Especially, we will show how the conservation constraint of these schemes can
be satisfied.

3.8 Conservation in the framework of the linear ad-
vection problem set on a three-dimensional do-
main moving in the vertical direction only

In this section we consider a problem in which the domain is three-
dimensional and only moves in the vertical direction.

Note that, a part from very particular cases, the domain movement as
well as the advection velocity are not known a priori; for instance in a free
surface problem or a fluid-structure interaction problem. In these cases, the
linear advection problem is solved in the framework of a more global problem
providing the position of the domain boundaries and the advection velocity.

The whole problem is formulated in the ALE approach, using a mapping
of the form :

P

.At : Q — Qt, m(ﬁ:,t) = At(i)
with =%, y=¢ and z=Z72(z,y,2,t), (3.25)

where Z (z,y,2,t) is an arbitrary continuous and monotonic (0Z/0z > 0)
function such that the velocity of the domain ¢ satisfies

cn=p0-n on Ly and cn =0 on Iy,

where I';,,; denotes the impervious boundaries of the domain and I';q¢
denotes its fictitious liquid boundaries — which we recall only move in the
vertical direction. Figure 3.1 shows an example of such a mapping. Note that

c=(0,0,¢)T.
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Q@

0>

P

Fig. 3.1 Example of a mapping describing a 3D domain moving in the
vertical direction only.

3.8.1 Space and time discretization

The problem is semi-discretized in space using the finite element spaces
described in sections 2.1.6 and 2.1.7. Then, the time interval I is divided
in Ny time steps of equal length At and a particular time discretization is
chosen. We point out that

the mesh velocity ¢y, is considered constant within each time step.

The motion of the mesh can thus be described by :
= Appi(@) = Apa(@) + At for 2, (3.26)

foreachn=1,...,N; — 1.

The problem is solved as follows. If the domain and the advective velocity
are known a priori, they are discretized. If not, a particular sub-problem is
solved at each time step, updating the values of the advection velocity 3,
and the domain €. Hence the domain velocity ¢;, during the considered time
step can be computed and the ALE advection velocity (3, — cp) is deduced.
Finally, the linear advection problem can be solved on the new domain using
the advection ALE-MURD schemes we have introduced in this chapter — see
Definition 3.3.1.

We indicate next some essential characteristics of the global numerical
scheme. On one hand, the velocity of the fluid 3, is computed or discretized
— such that, at each time t" € I,

Yy divBldz = 0 (3.27)
p

for any function 1y, : QF — R such that ¢y = Qﬁh o ./Zlh,n, where @h is a
function belonging to a particular discrete space X, defined on the reference
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configuration. Note that ), is such that its degrees of freedom are located
at the vertices of the mesh elements.

On the other hand, at each time ¢", the advected variable u(t") is ap-
proximated by ujy in X,ZO, where X} is the discrete space corresponding to
X}, on the current domain Qp and defined by (3.3). The linear advection pro-
blem (2.42) is then discretized by (3.4), that is, given the initial condition
Uo,

foreach n=0,...,N;—1 find uZH € X,%rl such that

/ (uerl —uff 0o Any1,) da (3.28)
Qptt

+ At / (B, —cn) -V (upoA.,) dec = 0,
Qj

where ¢¢ is a particular time within ¢” and ¢"*!. This discrete problem can

thus be solved using an ALE-MURD sheme for the linear advection problem

in non-conservative form.

Finally, we assume that the local flux terms (3.7) are computed exactly for
the advection ALE-MURD scheme, so that relation (3.21) holds true.

Let us now prove that the advection ALE-MURD schemes introduced in
this chapter are automatically conservative in the particular framework just

described.

3.8.2 Discrete conservation of the advected quantity

Let us now explain how the advection ALE-MURD scheme can be made
conservative in the particular framework just described. Let us recall that
we wish the advected quantity to be conserved during the simulation in the
sense of (3.19).

In the following, N, will denote the dimension of X, and {@51}1:17.“,]\% a
set of basis functions. We recall that, at each time ¢", a set of basis functions
{7 }Yiz1,.. N, of A7 can be defined by 7" = 1); o "4}:,11 for each node 3.

Let us state a first lemma.

Lemma 3.1 For any t¢ € [t",t""1], let a be the constant such that
0<a<l1 and tC:at"+1+(1—a)t".

If the approzimated domain Qf and the advection velocity Bf at t = t¢ are
assumed to be respectively the linear combinations

C=aQ+(1-a)QF and Bf=aBi+(1-a)B), (3.29)
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then, for each node i, we have that

/ Vi divBy de = 0. (3.30)
Q2
Proof.

i div By dx
oy

= a/ +1(1/’Z-60An+1,c) divﬁ;z“ de + (1—a)/ (5 0 Ap ) div B} dx

— a/ 1#“ diva ™ dz + (1-a) Y div @) dx
Qpt Qp

= 0.

Following Proposition 3.9, if relation (3.30) is verified and if the local
flux terms (3.7) are computed exactly, the conservation constraint of the
advection scheme (3.28) is :

Vn=1,....,N, Vi=1,...,Np,

/ Pt de — Y de — At/ Yf divef, dz = 0. (3.31)
Qptt Qy Qg
h h h

This constraint is automatically satisfied by the advection scheme in the
particular framework considered here. Let us state the following lemma :

Lemma 3.2 If the approzimated domain velocity within time step [t™, t" 1]
is constant and of the form (0, O,CZ’n"H)T then

/ Pl de — Y de = At / U divep"™tdi. (3.32)
Qptt O

n+1
Qh

Proof. Since the domain only moves in the vertical direction, the Jacobian
determinant of the discrete mapping Ap,; is

Jne = ‘% vtel. (3.33)
’ 0%
Therefore
/ Pl de — Y de = /(j,;““ — M) iy di
Qptt Qptt O

n+1 az
0z

:A(% n)@d@.
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Using relation (3.26) we deduce that

aAn,nJrl R
At / ‘h iy di
Q

Yt de — / Y dx .
QZ+1 82

Qptt
= At / gy divep™t di.
)
¢

Lemma 3.3 If the approzimated domain velocity within time step [t™, "]

is constant and of the form (0, O,CZ’nH)T then

V¢ divef de = / by dive)" ™ da (3.34)
Q5 Q

for any time t¢ in [t" t"T1].

Proof. Writing again that t© = at"*1 4 (1 —a) " with 0 < o < 1, we obtain

that
acn,n—f—l
Y¢ dive§ de = a/ Pttt b gy
Qs Q! 0z
acn,nJrl
+(1-«w Y —h dx.

Moreover, it is easy to establish that for any time ¢ and any discrete function

o Qe — R,

ofn  Ofn 02

- === — Q 3.35

0z 0%z 9z oMb (3:35)

where fj, is the ALE counterpart of f, defined by fh(:i:) = fpo flh,t(ﬁ:) on

). Taking fr(z,y, z) = z we deduce :
0z 0z

1 = and thus jh,t 0

2
=5 5, = L (3.36)

Using relations (3.35)-(3.36) we finally obtain :

R aén,n—f—l R
V¢ dive§ de = / Ui —h—— dz = / Py divel™t da
Q¢ 0 0z a

The following proposition can now be stated.
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Proposition 3.10 If the local fluzes (3.7) are computed exactly and the ad-
vection wvelocity is divergence-free in the sense of (3.30), and if the mesh
moves in the vertical direction only and its velocity is considered constant wi-
thin each time step, then the advection ALE-MURD scheme (3.28) is conser-
vative in the sense of (3.19).

The proof of this proposition becomes trivial by using Proposition 3.9 as well
as lemma 3.2 and 3.3.

From this proposition we can conclude that the advection ALE-MURD
scheme (3.28) is conservative in the particular framework presented in this
section, provided the approximated domain 2j and the advection velocity
B, are defined by (3.29).

3.8.3 Numerical illustration

In this section we aim to evaluate the conservation property of the ALE-
MURD schemes introduced in this chapter, when used in the particular fra-
mework just described. Especially, we want to prove numerically the validity
of Proposition 3.10. For this purpose, we will make use of the PSI scheme
implemented in the Telemac-3D system for the linear advection of a scalar
in the framework of three-dimensional free surface flows. We recall that the
implementation of this scheme was initially made by Janin [74] for a particu-
lar ALE mapping corresponding to the classical sigma transformation we
will describe in the next chapter. Using the generic formulation of the ALE-
MURD schemes derived in section 3.3.3 for the linear advection problem in
non-conservative form , we have extended the implementation of the scheme
to a more general form of ALE mappings.

Before introducing the test case, let us describe some characteristics of
the Telemac-3D system which must be considered when using the advec-
tion schemes. This system solves the Navier-Stokes equations describing the
motion of a free-surface flow in a three-dimensional domain moving in the
vertical direction only. At each time step, the hydrodynamic problem is sol-
ved, providing the velocities of the fluid and the free-surface profile. Then,
the equations describing the motion of the tracers contained in the fluid are
solved in the newly defined domain. The ALE-MURD sheme can be used
for the advection of the fluid velocity components as well as for the tracer
advection.

However, Proposition 3.10, stating the conservation under certain as-
sumptions of the ALE-MURD schemes set on a three-dimensional domain
moving in the vertical direction only, cannot be applied in the particular
framework of the standard Telemac-3D system. Indeed, the assumption that
the advection velocity is divergence free in the sense of (3.30) is not verified.
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In fact, a particular technique is used, consisting in computing the vertical
component of the ALE advection velocity (3;, — ¢p) so that the conserva-
tion constraint of the scheme is verified. Note that this technique will be
described in the second part of this work, devoted more particularly to the
three-dimensional hydrostatic free surface flows — see section in particular
section 7.5. Note also that, for the test presented in this section, we have
supressed the module applying this technique in the Telemac-3D system.

In order to get rid of this difficulty and satisfy the assumptions of Pro-
position 3.10, we won’t use the entire solution of the hydrodynamic problem
provided by the Telemac-3D system. We will rather choose a test case whose
analytical solution is known, and we will impose the analytical free-surface
profile and fluid velocity at each time. Only the scalar advection module of
the system will then be used to simulate the advection of a passive tracer —
1.e. a tracer which has no influence on the hydrodynamics of the fluid.

We have chosen the test case of the oscillating wave in a closed basin. A
sloped free surface profile and zero velocities are imposed at the initial time,
and the fluid is assumed to be not viscous : the total energy is therefore pre-
served and a continuous exchange of potential and kinetic energy takes place.
Note that when the free surface is horizontal, the whole potential energy has
been exchanged into kinetic one. On the contrary, when the highest eleva-
tion is reached at one of the basin boundaries, the maximum potential and
minimum kinetic energy state is achieved, just as at the beginning of the
simulation.

A closed square basin with side L and with a constant bottom at z = —H
is considered, where H is the equilibrium water depth. Since there is no active
tracer the fluid density is constant ; it will be denoted by pg. We assign the
following initial conditions, represented in figure 3.2 :

n(x,y) = no cos (kx),

u=v=w=0, (3.37)

cosh (k(z + H))
cosh (kH)

pa(z,y,2) = —pogn + pogno cos (kx),

where pg denotes the hydrodynamic pressure correction and where

1I
nOZO.lm,k:Z, L =10m and H = 10m.

Note that since the initial free surface slope is parallel to the x-axis, no mo-
tion takes place in the y-axis direction. The following analytical solution is
provided by the small amplitude wave theory for the linear equations see
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z(m

-10
0 10 x(m

F1G. 3.2 — Initial test setting for the standing wave in a closed basin.

for instance [75] :

(1 = no cos(kx) cos (wt),
B cosh (k(z+ H)) . )
U= Wi — (o) sin (kx) sin (wt),
(3.38)
v =0,
B sinh (k(z + H)) )
w = —wiy (o) cos (kx) sin (wt),

with w? = gktanh (kH). The analytical water height profile at x = 0 m is
represented in Figure 3.3, and the analytical velocity at times ¢ = 14s and
t = 30s in figures 3.4 and 3.5 respectively.

A passive tracer T is advected by the flow just described. Its initial dis-
tribution in the domain is the following : T is equal to 25000 everywhere
except inside a ball of radius 2 m whose center is located at &y = (5,5, —5),
where T is equal to 50000.

The simulation will be performed with a time step length of 0.1 seconds
for a time interval of 30 seconds, and with 11 levels along the vertical. The
initial three-dimensional mesh is shown in Figure 3.6. It has been obtain by
piling up the two-dimensional grid presented in Figure 3.7 along the vertical
in the discrete domain. For more visibility, the vertical cross-section of the
three-dimensional mesh at y = 5 m is shown in Figure 3.8.

Let us now describe how we will apply the ALE-MURD advection scheme
of Telemac-3D to the advection of T in this test. At each time step, the dis-
crete advection velocity 3; is determined by interpolating the analytical
fluid velocity on the three-dimensional domain. The mesh velocity ¢, is then
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z(m
0.15+

t(s)

F1G. 3.3 — Temporal profile of the exact water height at x =0 m, y =5 m.

2(m vertical velocity

F1a. 3.4 — Analytical velocities at t=14s. Vertical cross-section at y=bhm.

z(m horizontal velocity u(n's) 2(m vertical velocity w(nt's)
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Fia. 3.5 Analytical velocities at t—30s. Vertical cross-section at y—5m.
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FiGg. 3.6 The initial 3D mesh.

y(m

1.5

0.59

FiGg. 3.7 The horizontal 2D mesh.

evaluated, so that the ALE advection velocity (8;, — ¢p,) can be determined.
Finally, the local fluxes (3.7) are computed exactly. We recall that the dis-
crete problem solved by the scheme is (3.28). Here we choose t¢ = t"*1 : the
problem therefore writes, given the initial condition T,

foreach n=0,...,N; —1 find T;LH'I € X;LZH such that

n+l _ omn
/Q - (T}, T3 o Apg1,n) da (3.39)

+ At /W( =Gt (T o An) o = 0.
h

Since the domain considered in this test case has no liquid boundaries,
the flux through the boundaries is nil and therefore the loss of tracer quantity
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Fia. 3.8 Vertical cross-section of the 3D mesh at y = 5 m.
at each time step [t",t"T!] denoted by AM;’"+1 should be zero :

n,n+l n+1 - n _
AM = /QZ'H T dx /Q Ty dxe =0. (3.40)

n
h

Following Proposition 3.9, since the local fluxes (3.7) are computed exactly,
if the fluid velocity is divergence free in the sense of (3.30) then the scheme
is conservative in the sense of (3.40) if relation (3.31) holds true. In addi-
tion, following Proposition 3.10, this relation is verified if the mesh velocity
is considered constant at each time step.

We would like to evaluate numerically the validity of this statement.
However, the interpolation 3;, of the analytical fluid velocity on the three-
dimensional mesh may not be locally divergence free. Especially, relation
(3.30) may not be satisfied exactly. This interpolation error deteriorates the
conservation property of the scheme and must therefore be taken into account
when evaluating the error on the conservation constraint. We will refer to
this error as the divergence error, and denote its value at each time step
[t", t" 1] by :

eptl = At/ﬁnﬂ Ty div B, dz. (3.41)
h

We will also evaluate the error on relation (3.31), which will be referred
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to as the mesh velocity error and denoted at each time step [t",¢"+!] by :

n,n+l n n
il = / T do — / T da
Qn+1 Qn+1
h h

— At/ 1T}?n+1 dich’n+1 dz . (3.42)
ot

For the reasons exposed previously, the conservation constraint of the
sheme i.e. the condition for the scheme to satisfy the required discrete
conservation property (3.40) — is that relations (3.30) and (3.31) be satisfied.
Therefore, each time step [t", "], the error on the conservation constraint
will be evaluated as the addition of the divergence error and the mesh velocity

error :

nn+l _ ntl n+1
€cons = €Div + €Mesh * (3'43)

Note that the error on the conservation constraint increases with the
length of the time step as well as with the value of the advected quantity.

After each time step of the simulation, we will compute the different
errors and make sure that AMpH = 62‘23- The test will be performed using
two different approximations of the mesh velocity. First, the mesh velocity

is considered constant within each time step. It is computed as follows :

"t = (0,0, with "t = T2 (3.44)

Then, a second order approximation of the mesh velocity will be used, that
is

— 4Zn+1 — 32"+ ZnJrl

’ +1 — ) +1 1 —
" = (0,0,¢")  with ¢ = 5 Az . (3.45)

The evolution of the tracer distribution is shown in Figure 3.9. The pro-
file is the same for both simulations.

However, when looking more carefully at the conservation of the tracer,
we observe a relevant difference between these simulations. Figure 3.10 shows
the values of the loss of T" and the different errors at each time step, for the
case where the mesh velocity is considered constant within each time step.
We can see that the mesh velocity error €resp 05 nil during the entire simula-
tion, so that the loss of tracer quantity is only due to the interpolation error
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Fia. 3.9 Tracer profile at t = 0s, ¢ = 15 s and t = 30 s. Vertical cross-
section at y=>5bm.

€piv on the fluid velocity. Indeed, we observe that, at each time step [t", t" 1]

Y

nn+l _  nntl _ nntl
A]WT = €ons = CDiv

On the contrary, when using a second order approximation of the mesh
velocity, the mesh velocity error €pesp is not nil. Indeed, Figure 3.11 shows
that €psesp oscillates during the simulation between 0 and around 0.8.

In this case we observe that

nn+l _ nntl _ nntl n,n+1
A‘7\4T = €ons = ®Mesh + €Div
at each time step [t",#"*1]. Note that the loss of tracer quantity is then es-
sentially due to the mesh velocity error e€presn,  the interpolation error e€pj,
on the fluid velocity being ten times smaller.

These differences are better shown in Figure 3.12, where the loss of T,
the divergence error and the mesh wvelocity error of the scheme for each
simulation are compared. In addition, Figure 3.13 shows the evolution of the
relative loss of tracer quantity .e.

Js

Ty dx —/ Th o dx
(AMr/ Mp)" = = e

/ Th,O dx
Qo0

during 1000 seconds of simulation. We observe that using a second order
approximation of the mesh velocity, the relative loss of T is 10 times larger
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Fia. 3.10  Values for a simulation using a constant mesh velocity. Top
figure : at each time step, the loss of tracer quantity is equal to the error on
the conservativity constraint. Bottom figure : the error on the conservativity
constraint (solid line with plane circles) vs. the divergence error (dotted line
with circles) and the mesh velocity error at each time step (solid line).

than considering a constant mesh velocity.

We must emphasize that the relative error is very low. Nevertheless, it
may be significant in long time simulations, or with larger surface movements.
Our purpose here was only to show that these results confirm the statements
made in this chapter, and especially Proposition 3.10.

In order to show that the mesh velocity error increases with the length
of the time step as well as with the amplitude of the mesh movement, we
have performed two more simulations. Figure 3.14 shows the evolution of this
error when a time step length of 1 second is used, that is ten times larger
than in the previous simulations. We observe that the mesh velocity error
reaches a maximum of around 50 when using a second order approximation.

In Figure 3.15 the same values are compared for a simulation in which the
free surface oscillation has been amplified taking :

211
=0.2 d k=—.
o an 7
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o e error on the conservativity constraint
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«——e error on the conservativity constraint
-0.61 R - divergence error
-0.84 x——~ mesh velocity error
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Fia. 3.11  Values for a simulation using a second order approximation of
the mesh velocity. Top figure : at each time step, the loss of tracer quantity
is equal to the error on the conservativity constraint. Bottom figure : the
error on the conservativity constraint (solid line with plane circles) vs. the
divergence error (dotted line with circles) and the mesh wvelocity error at
each time step (solid line).

In this case the mesh velocity error reaches a maximum of around 200 when
using a second order approximation.
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Fi1G. 3.12 — Comparison of the tracer quantity lost at each time step and the
values of the different errors using a constant mesh velocity (solid line with
plain circles) vs. a second order approximation of the mesh velocity (solid
line) (with At =0.1 s and k =1I/L).

DT/TO RELATIVE LOSS OF TRACER QUANTITY FOR dt=0.1s k = 2PI/2L
2.2e-04

1.8e-047

1.0e- 047

6. Oe- 057

2. 0e- 05

-2.0e-05 T T T T T T T T T 1
100 200 300 400 500 600 700 800 900 1000
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FiG. 3.13 — Relative loss of tracer quantity after 1000 seconds using a
constant mesh velocity (solid line with plain circles) or a second order ap-
proximation of the mesh velocity (solid line) (with At = 0.1 sand k =1II/L).
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FiG. 3.14 Comparison of the value of the mesh velocity error at each time
step using a constant mesh velocity (solid line with plain circles) vs. a second
order approximation of the mesh velocity (solid line), with a time step length

of At =1 second (and with k =1I/L).

Fia. 3.15 Comparison of the value of the mesh velocity error at each time
step using a constant mesh velocity (line with plain circles) vs. a second
order approximation of the mesh velocity (solid line), with k& = 2II/L ( and
At =1 s).
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Chapitre 4

ALE interpretation of the
sigma transformation for the
three-dimensional free surface
flow problem and
generalization

4.1 Introduction

The three-dimensional free surface flow problem has been widely studied
and many modelling systems have been developed since the early seventies,
motivated by the study of different phenomena, from ocean and coastal cur-
rents to flows in estuaries, rivers, and lakes. In this chapter we focus on a
particular way of treating the domain movement, which is one of the critical
points of this problem.

Several techniques exist to deal with the moving surface of a three di-
mensional domain. Among them, the ALE approach has been adopted by
many authors because of its great adaptability see for instance Huerta
and Liu [70], Maury [89], Soulaimani et al. [129] and Cairncross et al. [23].
But another technique has been widely used, especially in the atmospheric
and oceanographic communities, referred to as the sigma transformation or
topography-following coordinate system. It consists in performing a trans-
formation of the vertical coordinate — the z-coordinate — allowing to adopt
a vertical discretization of the domain which at each time step follows the
bathymetry and the free surface. Different systems have been developed on
this approach, characterized by the choice of the discrete transformation
function.

The link between this technique and the ALE approach is still not clear.
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In the works describing the sigma transformation and its different variants,
no mention is made of the ALE approach. Moreover, in [144] Zhou and Stand-
sby present an ALE formulation based on a particular sigma transformation

the classical sigma transformation described further for a shallow wa-
ter flow problem. They claim that the conventional sigma models are based
on flow equations without accounting for the effect of moving grids in the
vertical direction. Nevertheless, we state the contrary and our purpose is to
show that the sigma transformation is equivalent to the ALE approach for a
particular type of ALE mappings. Therefore, we introduce the ALE-Sigma
(ALES) approach, which consists in an ALE interpretation of the sigma
transformation.

The sigma transformation technique presents many advantages; essen-
tially, the accurate assimilation of the bed and surface boundaries and the
possibility of easily incorporating boundary layers. But the classical variants
of this technique which are still widely used present important drawbacks.
On one hand, they limit the possibilities of vertical discretization and there-
fore prevent from correctly adapting the mesh to the particular needs of the
simulation. Especially, in some cases, they prevent from aplying a uniform
vertical resolution to the boundary layers. On the other hand, they induce
important errors in the computation of the horizontal pressure gradients in
the presence of steep bottom, leading to an inaccurate representation of pos-
sible density-stratifications. Taking advantage of our reinterpretation of the
sigma transformation as a particular ALE formulation, we propose a very
general z-coordinate transformation in the ALES approach. This new point
of view allows for a great adaptability of the vertical discretization and the-
refore overcomes some drawbacks of the classical sigma transformation.

After describing more precisely the sigma transformation technique, we
will define the equivalent ALES approach. A new formulation of the problem
using this approach will be proposed. Then, the source of the horizontal
pressure gradient error will be explained and the different systems developed
to overcome this problem presented. Finally, we will propose a generalization
of the sigma transformation formulated through the ALES approach.

4.2 The sigma transformation approach

Let us first point out that this technique can only be applied to two- or
three-dimensional domains in which the lateral boundaries are perfectly ver-
tical — in the sequel we will only consider three-dimensional domains. This
configuration is widely used for ocean and coastal applications, but also in
other shallow areas. In this case, only the surface and bottom boundaries
move, and they are described by two functions defined on the same two-
dimensional domain. It is then possible to perform a variable change which
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transforms the vertical coordinate of each point in the real domain into a
value contained in a fixed interval for instance [0,1] depending on the
time and on the position of this point in the two-dimensional domain. In fact,
this comes to transform the irregular physical domain into a fixed regular
reference configuration.

Before going further, let us describe more explicitly the considered confi-
guration. Let w be the invariant two-dimensional domain, whereas €2, denotes
the three-dimensional domain at each time ¢ € I. The functions describing
the free surface and the bottom of ; are, respectively, n(x, y,t) and b(x, y, t),
whilst h (z,y,t) = n(x,y,t)—b(x,y,t) denotes the water height. The current
domain is then defined by

Y ={z=(z,y,2) / (v,y) €w and b(z,y) <z<n(zy,t)} (4.1)

The sigma transformation approach consists in transforming the Car-
tesian coordinate system (zx,y, z,t) into a topography-following coordinate
system (&, 7, 2,1), called o-coordinate system and defined by

t=t, 2=z P=vy and 2=o0(z,y,2,1t), (4.2)

where o (z,y,2,t) is an arbitrary continuous and monotonic (do/dz > 0)
function satisfying

o(z, y, b(z,y,t), t) = 0 V(z,yt) ewxI. '
The reference configuration is therefore :
Q={a&= (29,2 / (&) cw and 0<2<1}. (4.4)

An example of such a transformation is shown in Figure 4.1.

A particular transformation function o (z,y, 2,t) is chosen. Then, a trian-
gulation of the invariant two-dimensional domain w is defined and o (x, vy, 2, t)
is discretized. We indicate that in some cases the transformation function
is directly defined at the discrete level. The three-dimensional mesh 771 is
defined on the reference configuration Q by arbitrarily distributing the two-
dimensional mesh as horizontal levels along the vertical. The corresponding
mesh on the real domain is then defined at each time step through the dis-
crete transformation function oy, (x,y, 2,t). Thus, the real mesh only moves
in the vertical direction. For the sake of clarity, we indicate that, if ¢ denotes
a particular node and ¢ denotes a particular time, then the coordinates of
7 in the real domain at ¢ = t™ are

J,',? = i'iv y’? = @Z and Z’? = O—h(xi’yia éi’tn)v (45)
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Fia. 4.1 Example of a sigma transformation

where (Z;, U5, 2;) are the constant coordinates of i in the reference configura-
tion.

The equations describing the flow are then completely written in the re-
ference domain; more precisely all the partial derivatives are transformed
into derivatives with respect to the o-coordinates (x,y, 2).

The adoption of a o-coordinate system allows an accurate and smooth
definition of the bed and surface boundaries at each time. Indeed, the values
of Z at the bottom and the free surface are constant in time and space;
that is respectively 2 = 0 and 2 = 1. In addition, one can easily incorporate
bottom and surface boundary layers, and increase their resolution without
having to increase the global number of layers. This is not possible in the
, in which the
bottom profile is approximated by a staircase form. Such a step-discretization
provoques a loss of accuracy in the assimilation of the bathymetry, as well
as spurious errors. Many comparisons have been made between topography-
following systems and the z-coordinate system ( see for instance [54| and [93]
), and these have shown that inferior numerical results are obtained with the
second one, especially in the simulation of overflow processes and bottom

commonly used z-coordinate system  see for instance [21]

layer dynamics.

Another essential advantage of the sigma transformation approach is the
fact that it simplifies the kinematic boundary condition considerably both
at the bottom and the free surface.

For all these reasons, it has been gaining popularity and is used for a
very large range of ocean, coastal and shallow areas applications. Indeed,
numerous free surface ocean circulation models have been developed on
this approach, including the Princeton Ocean Model (POM) [19], the S-
coordinate Rutgers University Model (SCRUM) [127], and the more recent
Regional Ocean Model System (ROMS) [123]. Originally used mostly for re-
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gional coastal simulations, they are now also applied to basin-scale problems
[66, 144, 77, 141]. The finite element based Telemac-3D system [66] also uses
the sigma transformation. It is mostly applied to coastal, estuarine and river
flows, including transport and non-hydrostatic phenomena.

4.3 The sigma transformation : a particular ALE
formulation

Our purpose here is to show that the application of the sigma transfor-
mation to the free surface flow problem can in fact be interpreted as the
adoption of a particular ALE mapping and a special, unusual ALE formula-
tion.

On one hand, the vertical-coordinate transformation (4.2)-(4.3) can be
performed using the following ALE mapping between the reference configu-
ration {2 and the real domain €2 :

A~

./th : Q — Qt, m(ﬁ:,t) = At(i)

with x =%, y=g and z=Z2(z,y,2,t), (4.6)

where Z (z,y,2,t) is an arbitrary continuous and monotonic (0Z/0z > 0)
function satisfying

Z(2,y,0,t) =n(z,y,t),  V(z,y,t) €wxI, (47)
Z(z,y,1,t) = b(z,y,t). '

Actually, this defines the ALE mappings for which the domain only moves in
the vertical direction. Note that consequently the domain velocity has only
a vertical non zero component, that is ¢ = (0,0,¢)7.

On the other hand, as already mentioned, the sigma transformation
approach states that the equations be completely transformed into the o-
coordinate system. Interpreting the sigma transformation as an ALE map-
ping makes clear that the transformation of the equations consists in a refor-
mulation of the whole derivatives, including the spatial partial derivatives,
into the ALE frame. Especially, the time derivatives are reformulated into
ALE time derivatives — see section 2.1.3. Thus, the effects of the moving
domain are taken into account.

Throughout, we will refer to the ALE interpretation of the sigma trans-
formation as the ALE-Sigma (ALES) approach. We propose next a particular
formulation of the free surface flow problem using this approach.
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4.4 ALES formulation of the three-dimensional free
surface flow problem

We consider the so-called Reynolds-averaged Navier-Stokes equations
[104, 133, 118] describing the mean motion of an incompressible Newtonian
fluid in a three-dimensional moving domain §; of the type defined by (4.1).
Let us indicate that most of the models using topography-following coor-
dinates apply the hydrostatic approximation to the equations, because they
deal with oceanic or atmospheric flows for which the shallow water condition
is fulfilled. Never-theless, in order to be as general as possible, we will here
stick to the non-hydrostatic equations.

4.4.1 Formulation in the Cartesian frame

In the Cartesian frame, these equations are the following, valid for all
t € I and for all € €); :

du . 1

i div (vVu) + ;VQP = f (4.8)

dw 1 dp

4 e 4.

g div (vVw) + ) 02 g (4.9)
divU = 0 (4.10)

where u and w are respectively the horizontal and vertical velocities, U =
(u,w)T is the total velocity, and v = (v, vp, v,)7 is the turbulent kinematic
viscosity coefficient of the fluid. The horizontal source term is denoted by f
and the gravity acceleration by g.

This system is closed by convenient boundary conditions. In particular,
the kinematic condition on the bottom of the domain I', expressing imper-
viousness is

Un =20 on ['yUTYy, (4.11)

where n is the outward normal to the current domain €;. At the free surface
['s ¢, the velocity of the fluid is equal to the velocity of the free surface itself,
which is expressed by the following kinematic condition :
on

— — -mn =0 on Ig,. 4.12
ot >t (4.12)
A complete set of boundary conditions closing the system in a very general
case is given in the second part of this work, devoted more particularly to
the three-dimensional free surface flow problem (see section 5.4).

The free surface hydrodynamic problem also involves the motion of the
tracers, which represent a temperature or any physical quantity contained
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in the water. The non-conservative form of the tracer equation is

%—1; + U-VT — div(vyVT) = fr on Q) (4.13)

where fr is the source term and vp the tracer’s constant diffusion coefficient.

4.4.2 ALES formulation

The generic form (4.6) of an ALE mapping leading to a o-coordinate
system is considered. We intend to write a particular formulation of the pro-
blem in the ALE frame which differs as well from the usual ALE formulation
as from the classical formulation used in the sigma transformation approach.
On one hand, we will not only reformulate the partial time derivatives into
ALE time derivatives, but we will also transform the spatial partial deriva-
tives present in the continuity equation as well as in the advection terms.
On the other hand, we will not transform the second order derivatives in
the diffusion terms, because this would lead to a very long and complex ex-
pression. In addition, we will see in section 4.6 that a transformation of the
horizontal pressure gradient into a topography-following coordinate system
can increase the computational error of this term. We therefore also keep the
partial derivatives in this terms in the Cartesian frame.

Let us now introduce some relations involving the Jacobian determinant
J; of the mapping as well as several derivation formulas that will be needed
to write the equations in the reference configuration 2.

Since the mapping only transforms the vertical coordinates of the system,
the continuous expression of the Jacobian determinant is

) ) YA .
Jt (xvyvz’t) = % (x?y’zvt) .

It can easily be seen from (4.3) that

1
/ Ji(x,y,2) dz2 = h(z,y,t) V(z,y,t) € w x 1. (4.14)
0

Moreover, for any function v : €; — R, its integral on the real domain €2,
is transformed as follows :

/Qh,t yde = / Ty ) d. (4.15)

Q
with dx =dz dy dz and dx =dx dy dzZ .

Throughout, the ALE space derivatives will be denoted by

91 9 a8
orla’ Oyla 03’
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where we recall that & = (z,y, 2) , while the Eulerian space derivatives will
be denoted as usual by

An alternative to (2.10) relating the ALE time derivative of a function ¢ :
; — R to its Eulerian time derivative is

o _ ov| 9200

o = ot T o a5 (4.16)

The following formulas relate the different space partial derivatives of 1) :

‘?)_15 _ g_z o g_j ?Zf, (4.18)
Taking ¢ (x,y, 2z,t) = z, essential relations can be derived :
% = = % @ % = = % @ (4.20)

The definition of a new “pseudo vertical velocity” simplifies the transforma-
tion of the equations :

dz 0% 0% 0% 0z
v === 2 == = 2 inQ 4.22
v dt ot * O * U@y + Yoz s (422)

d
where 7 denotes the total derivative in the real domain. We will see that it

1S more convenient to use :

Gw = oo & a0z L0
tW T Y T 5le T Yarls T Yoyla
:w_é_ﬁ%ﬁc_@%i in Q. (4.23)
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Remark 4.4.1 Note that this definition of w*, which is standard in the fra-
mework of the sigma transformation, can be misleading in the ALE formu-
lation. In particular, the velocity of the domain is contained in this “pseudo
vertical velocity”. This may explain some confusions found in the literature,
and in particular the false idea that models using the sigma transformation
do not take into account the movement of the domain.

The expression of the continuity equation (4.10) in the reference configura-
tion is :

a(jt) + a(jt u) + 5(jt v) + 5(jt w”)

= in Q. (4.24
at e r s y e EE 0 in (4.24)

To obtain this expression, one starts from equation (4.10), multiply with the
Jacobian determinant J;, and then use relations (4.17)-(4.21).

The momentum equations (4.8)-(4.9) can be written in the following non-
conservative form :

duy 0w a0
ot |z or & oy lz 0z
~ 1 o A A
— (le (VVU))O.At + <; Vgp)OAt = f in Q,
ow n . Ow n . ow S ow
— U —— U — w
ot & oz & oy & 0z
. .1 .
— (div (wVw))o Ay + J7t = 8—13 = —g in Q.
p 0z

(4.25)

But using formulation (4.24) of the continuity equation, we deduce a conser-
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vative form of the momentum equations :

o(J; ) (J; ) A(J; 0 @) A(J; w* @)
o e T or e oy e 02
. . al R
- Jt (le (UV’U,)) O.At + Jt (; V2p> O.At = f m
O(J, ) O(Jy i ) O(J, 0 ) O(J, w* i)
o e 0r e oy s 02
— Ji (div (wVw))o A, + ! a—zj = —g in
p 0%
(4.26)

Finally, the tracer equation (4.13) can be written in the reference confi-
guration either in non-conservative form :

or . oT . oT
— + u—| -+

or LT
ot arlea ~ U By

+ =
& waz

= fr in Q, (4.27)

or in conservative form :

mzn+a@an‘

a@@n‘+m£WT)
ot ox

X pE = fr inQ. (4.28)

8
Q
<

Remark 4.4.2 Note that in the case where the hydrostatic assumption is
applied, the system simplifies considerably. Indeed, the accelerations of the
vertical velocity w are then neglected and w disappears completely from
the transformed equations. In that case, only the newly-defined transformed
vertical velocity w* has to be evaluated. The physical vertical velocity can
then be recalculated using relation (4.23).

As we can see, the expression of the advection terms in a o-coordinate
system is quite simple using the Jacobian determinant of the ALE mapping.
Moreover, it perfectly suits to the formulation of the continuity equation in
this system. On the other hand, the kinematic boundary conditions at the
top and bottom surfaces of the domain — (4.11) and (4.12) — can be expressed
in a simple form in the reference configuration ; that is

w* =0 at 2=0 and 2z=1. (4.29)

ol
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This shows a major advantage of using a o-coordinate system.

In the following sections, we will be led to describe some of the different
topography-following coordinate systems developed for three-dimensional
free surface flow modelling, as well as their advantages and drawbacks. The
first and most commonly used o-coordinate system is the one obtained by
the so-called classical sigma transformation, introduced by Phillips in [111].

4.5 The classical sigma transformation

Phillips [111] proposed a linear transformation of the vertical coordinate,
which consists in adopting the following ¢ function :

Z = b($7y7t)

W) (4.30)

g (J:, y? Z? t) =

Note that the discrete counterpart of this transformation involves the discrete
water height and bottom functions hy, (x,y,t) and by (z,y,t). This means
that the z-coordinate of the mesh nodes in the current domain are incre-
mented of by, (x,y,t) and multiplied by the coefficient hy(x,y,t) relatively to
their value in the reference domain. Moreover the relative width of each layer

Az/hp, where Az is the width of the layer is equal to its corresponding
width in the reference configuration, and thus it is constant over the time
and over the whole two-dimensional domain w. Figure 4.2 shows an exemple
of such a mapping.

Q Q(t)

T~
e

0 b(x,y,t)

F1G. 4.2 — Example of a classical sigma-transformation

A clear advantage of this coordinate system is its simplicity. Indeed, not
only the implementation of the transformation is easy, but the formulas for
the variable change between the real and the reference framework are rela-
tively simple. Note in particular that the determinant of the transformation
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is equal to the water height function

0z
02

= h(z,y,t). (4.31)

However, the classical sigma-transformation also presents major draw-
backs, due to the restriction it oppers on the vertical discretization. Indeed,
this transformation implies that all the levels necessarily follow the bot-
tom and free surface functions, and that the relative width of each layer
is constant. As a consequence, it cannot maintain equally high resolution
in particular zones for instance near the surface and the bottom layers
independently of local water height. With a constant number of horizontal le-
vels, deeper zones of the domain can be under-discretized and shallower zones
over-discretized, and the latter may cause severe CFL restrictions. Many ap-
plications need a high resolution of the surface layer everywhere, for instance
to represent accurately a surface mixing process arising from wind, thermal
forcing and turbulence. In addition, the classical sigma-transformation pre-
vents from fixing the mesh in a particular zone of the domain which shall
be solved more accurately. Now the movement of the mesh can generate an
amplification of the numerical diffusion, leading to a relevant perturbation
of the solution. Finally, such a coordinate system can yield important er-
rors, especially in the case of stratified flows over steep topography. This
problem, known as the sigma-coordinate pressure gradient error |51, 76], is
due to the topography-following shape of the mesh and has evoked consi-
derable concern in the meteorological and oceanographic communities. To
overcome these disadvantages, several alternative and more general coordi-
nate systems were developed. Before reviewing them, let us describe more
precisely the sigma-coordinate pressure gradient error.

4.6 The sigma-coordinate pressure gradient error

When the flow is controlled by topographic features a sigma-coordinate
system is optimal. But when the pressure represents a major driving force it
can produce ill-behaved results. In this case it becomes essential to compute
the horizontal pressure gradient (HPG) in the momentum equation accura-
tely.

Now, owing to the sigma-transformation, in the presence of important
bottom or free surface gradients, the grid elements become non-orthogonal
and may even deteriorate quite strongly in shallow areas for instance near
tidal flats. It has been recognized by several authors (see for instance the
pioniers [51], [60] and [76]) that grids of this type cause problems when
computing horizontal gradients.
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4.6.1 Root of the error

This problem has essentially been analysed in the framework of hydro-
static flows, where the hydrostatic approximation reduces the momentum
equation (4.9) on the vertical velocity to

o _
82 - pg

We have therefore focussed on the HPG error in this particular case.

Assuming a constant atmospheric pressure at the free surface and ap-
plying the Boussinesq approximation, the horizontal hydrostatic pressure
gradient reduces to

1 A A
- Vop = gVan — g—’o Van + gV </ =P dZ>, (4.32)
P o z £0

where Ap denotes the fluctuation around an average value pg of the fluid den-
sity p, and V5 denotes the horizontal gradient. Note that the terms involving
Ap form the so-called buoyancy term. We indicate that the hydrostatic ap-
proximation will be described more widely in the second main part of this
work.

Clearly, in the hydrostatic case, the pressure gradient error concerns the
buoyancy term, and more particularly its barotropic part, i.e.,

A
g%(/ =L dz),
z £0o

since it involves the horizontal gradient of a z-dependent function. This term
accounts for the accelerations arising from the slight density variations in the
fluid.

The main difficulty in computing this term is attributed to the deterio-
ration of the grid cells that can render the numerical scheme “hydrostatically
inconsistent”. This means that the difference between the discrete and the
analytical version of the HPG force does not decrease when the resolution is
increased, and that occurs when the so-called hydrostatic consistency condi-
tion (see [76] and [60]) is violated. Tipically this is the case when, in presence
of very steep bottom or free surface gradients, one or more of the nodes at
the bottom of a real mesh element are situated above some nodes at its
top, as illustrated by Figure 4.3 for prismatic elements. Such a situation can
sometimes be avoided already during mesh generation by finer horizontal
discretization or lower vertical discretization, especially when it is only cau-
sed by the bottom gradient. Unfortunately, as pointed out by Mellor et al. in
[91], the hydrostatic consistency condition is quite difficult to fulfil in oceanic
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FiG. 4.3 — Example of hydrostatically consistent (left) and inconsistent
(right) elements.

applications and especially for estuaries.

Such a situation is especially dangerous for the finite difference models
because of the truncation errors inherent to the method. Besides, most of
the authors have analysed this problem for the case of a finite difference
discretization — see for instance [132], [125], [91|. They point out that the
truncation errors in the computation of the gradient are increased by the
transformation of the horizontal gradient in the sigma-coordinate system. For
example, in the case of the classical sigma-transformation, the z-component
of the horizontal gradient force is determined by the sum of two terms; that

1S
1
_1 (‘% 4 A8h> o (4.33)

op  Op ob . ,Oh) Op
& h \Or ox ) 0z

dx Oz

The first term involves the variation of pressure along the grid line in Q) and
the second one involves the usual vertical variation of pressure. Now, near
steep bottom these terms are large, of opposite sign and approximately the
same size. Analytically, these terms compensate to a relatively small quan-
tity, but the sum of the truncation error of each term may be large.

In the case of a finite element method, the errors are of smaller magnitude
because the pressure gradient can be computed to a higher order. Even
so, the HPG error exists and can be relevant. It arises essentially from the
interpolation error on the relative density field, which can be amplified when
computing its gradient. It is thus difficult to catch a stratification in strongly
deformed elements when the interpolation functions are not of high order.
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4.6.2 Effects of the error

An error in the computation of the horizontal pressure gradient can
clearly be detected in the case of an initial density field varying only in
the vertical direction due for instance to a horizontal stratification of the
temperature or the water salinity. In this case, the buoyancy source term is

Ap(z
_y (2)
Po

nil :

N
Von + ng(/ Mclz’) = 0.
z 0

In absence of exterior source terms, the configuration should theoretically
produce zero velocities : this makes spurious velocities easy to detect. Mo-
reover, the density field should remain unchanged, a disturbation of the stra-
tification can therefore illustrate the error.

Other simple test cases of this kind can be performed in order to eva-
luate the accuracy of the computation of horizontal gradients. Many models
using the classical sigma-transformation have been tested on such cases and
they produce artificial flows, sometimes even degrading the solution beyond
an acceptable limit (see in particular the results obtained on the idealized
seamount test case [17], [92]). It has been shown that the pressure gradient
error depends on the coordinate slope, the slope of the isopycnals and the
polynomial degree of the vertical buoyancy distribution. Larger errors are
found in the areas where the pycnoclines intersect the bottom slope, and
especially in shallower zones.

Simulations performed with the finite element Telemac-3D system in re-
gions with non-horizontal bottom have also shown important errors in cases
where strong stratifications are present [83]. Moreover, they appear even
when the hydrostatic consistency condition is fulfilled. Simple test cases have
shown that these errors arise from the interpolation errors on the buoyancy
term [83, 85] inherent to the finite element method.

In order to clarify this matter, let us develop the case where the density
field varies quadratically in the vertical direction only, for instance

Ap(z,y,z,t) = az>+ b in Q x1,

where @ and b are two constants. At the continuous level we have that

T A
Vg(/ —pdz)zo.
z PO

Assume now that the density variations are interpolated by finite element
functions which are piecewise linear in the vertical direction. At the discrete
level, using the trapezium rule for the vertical integration which is exact
for linear functions , and denoting by NV; the number of levels in the mesh,
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we then have that

N—1
™ App 1 Ap (zk) + Ap (241)
v / ——dz) = —V Az
2 ( T ) o V2 (gl kt1/2 5
Ni—1 2 2
1 a(zj + zipq) +20
= —V Az
" 2 ( 51 k+1/2 9
Ni—1 2 2
1 a(zg+zi.,)+20b
= — E ( k ;Jrl V2 A2k+1/2 ) .
I

where 25 is the height of the k-th level and Az 10 = 2p41 — 2% , for
k=1,...,N;. Now in zones where the grid elements are non-orthogonal,
the horizontal gradient of the depth Az, between the layers is not zero.
In addition, because of the interpolation error on Ap, the terms do not com-
pensate. Therefore, the value of the buoyancy term is non-zero, which causes
spurious numerical density currents. This acts like an articial source term,
creating spurious velocities, and if the error is important, like in shallow
areas with steep bottom slopes, it can disturb the stratifications and even
the free surface.

In order to illustrate this numerical phenomenon, let us show some results
obtained on the simple test case of a standing basin using the Telemac-3d
system. We consider a closed rectangular basin with a length of 500m and
a width of 100m, and with a non-horizontal bottom varying quadratically
between —25m and —50m. The three-dimensional mesh is represented in
Figure 4.4. It has been obtained using the classical sigma transformation and
piling up the two-dimensional grid shown in Figure 4.6 at 11 homogeneously
distributed levels on the vertical. Its vertical cross-section at y = 50 m is
shown in Figure 4.5.

The basin is filled with a fluid containing an active tracer 7', acting on
the density p following the linear state equation :

p = po + 0.749979 c,

where ¢ is the concentration of the tracer T'. The initial density field can
therefore be imposed by setting a particular initial distribution of the tra-
cer. We will make the relative density Ap/py vary in the vertical direction
only. At the initial time, the free surface is constant and the velocity of the
fluid nil. In addition, the diffusivity of the tracer is neglected and no exterior
source term is applied. We indicate that the results are independent of the
time step length chosen.
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First, we set a density field varying linearly in the vertical direction only.
The results are presented in Figure 4.7 after 100 seconds. As expected, the
system remains unchanged and no movement is detected.

The initial tracer distribution is then modified so that the density field
varies quadratically in the vertical direction. The results in Figure 4.8 show
spurious velocities, whose amplitude remain small : the maximal value af-
ter 100 seconds is obtained at the bottom, where the horizontal velocity u
reaches 2.21 1073 m/s and the vertical velocity w reaches 2.9 10~%m/s.

The spurious velocities increase significantly when a stratified density
field is set. In the next test, p is piecewise constant and discontinuous at a
horizontal interface as it happens for instance in presence of a horizontal
temperature or salinity stratification. The spurious velocities after 100 se-
conds are shown in figure 4.9. A maximal value of 0,12m/s is obtained for
the horizontal velocity at the surface, while the vertical velocity w reaches
0.041m/s. We also notice a disturbation of the density stratification.

This test cases clearly reveal the appearance of an HPG error when the
density field is not interpolated exactly in the finite element method. In addi-
tion, they show that this error increases with the value of the initial vertical
density gradient. Indeed, the maximal spurious velocities are obtained when
the density field is discontinous, thus when its vertical gradient is infinite.

However, in this particular cases, the HPG error decreases with time.
Indeed, the system tends to a new steady state, in which the tracer distri-
bution and thus the density profile become linear, so that the error decays.
This is illustrated in Figure 4.10, where we show the results obtained after
1000 seconds of simulation with a density stratification. But the error does
not cancel : it seems to converge to a non zero value, as shown by Figure
4.11, where the time evolution of the spurious velocity’s maximal value and
norm are represented.
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FiG. 4.11 Time evolution of the spurious velocities with a horizontal initial
density stratification.

4.6.3 Solutions

Since the stratifications are nearly horizontal in most situations, a z-
coordinate system might be prefered, at least locally. But for applications
where both the topography and the density are essential, this wouldn’t be a
valid option. Another system avoiding the pressure gradient problem is the
so-called isopycnic coordinate system, which uses the density as the vertical
coordinate. As a consequence the mesh is aligned with the density lines and
the first part of the pressure term (4.33) vanishes. But this system is not
adequate to study barotropic flows or whenever topography plays a major
role.

Therefore, important efforts have been invested in the development of
numerical methods improving the approximation of horizontal gradients. A
simple and significant improvement is obtained by substracting the horizon-
tal mean value from the actual density field before computing the HPG force
[91].

A further improvement results from the use of the so-called density-
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Jacobian formulation of the pressure gradient (see [19] and [127]). It is ob-
tained by applying the Leibnitz rule to the baroclinic part of the buoyancy

term in (4.32) :
n
Y (/ Ap dz> (4.34)
z PO

n A A
= g/ v <_p> dz + g =P Vn (4.35)
z £o £o

The density fluctuation term is thus differenciated first and integrated after,
what allows a more accurate approximation. For instance, if the density field
varies linearly, its vertical integration results in a second-order term. Thus,
a second-order accurate differencing method has to be used to achieve an
exact computation of the gradient using expression (4.34). On the contrary,
if expression (4.35) is used, basic first-order derivation and second-order in-
tegration methods can be used. This technique has been convincing for the
finite element system Telemac-3D  see [75] in the case of a linear den-
sity fluctuation Ap. However, for non-linear or discontinuous density fields,
errors still appear.

Other techniques consist in implementing higher-order methods to esti-
mate the pressure gradient term (see [17] and [90]), but they fail in some
cases such as in presence of strongly-stratified flows.

Stelling and Van Kester [132] suggested an alternative method, which
basically transforms the sigma-grid back to a Cartesian system before com-
puting the HPG force, resulting in substancial reduction of the errors. A
systematic underestimation of the calculated gradient was revealed in [125],
leading in some cases to errors even larger than before. Thus, the author
proposed a slight modification of this method, resulting in an important im-
provement of its efficiency. However, this method is very costly, especially
in so-called prognostic simulations, i.e. simulations where the density field
varies in time and has to be recomputed at each time-step. Moreover, sub-
stancial errors remain when there are strong vertical gradients in the density
field.

Another way to overcome the problem is to design more general coor-
dinate systems, combining the advantages of both the topography-following
and the z-coordinate systems. Such a system should allow a transition from
sigma- to z-coordinate, such that the top-most grid lines are almost flat,
while bottom-most are still aligned with topography. In the next section,
we present a brief review of the different topography-following coordinate
systems developed since Phillips’s classical sigma-transformation.
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4.7 General topography-following coordinate sys-
tems

General vertical coordinate systems have been considered by meteoro-
logists and oceanographers since the disadvantages of the classical sigma-
transformation were detected. They consist in using more general forms of
the transformation z = Z(x,y,2,t) see (4.3).

The first generalizations of the sigma-transformation are classified as se-
parable, because they use a non-linear function S(2) that does not depend
on the horizontal coordinates :

Z(x,y,2,t) = S(2) h(z,y,t) (4.36)

Song and Haidvogel introduced in [127] the so-called general s-coordinate
system, developed in order to allow uniformly high resolution near the surface
while maintaining the topography-following properties of the classical sigma-
transformation. This system uses the following non-linear, quasi-separable
transformation function :

Z(z,y,2,t) = (1—=2) n(x,y,t) — 2 hypin + C(2) (b(z,y,t) — hpmin) (4.37)

where

sinh(—0 2) tanh[0 (-2 +1/2)]
sinh(—2) * 0b< tanh(60/2) 1> 4

hmin 18 a constant chosen to be the minimum water height or a width of
the surface or bottom boundary layer, and 6, 8 are two parameters control-
ling the vertical coordinate stretching. Letting 6 approach zero the classical
sigma-transformation is obtained. But the parameter 6 can be chosen so that
the highest resolution is achieved near the surface layer independently of the
bottom bathymetry. In fact, the first term in (4.37) is used to follow the free
surface, the second to prevent possible linear instabilities, and the third is
designed to stretch the interior coordinate lines and follow the bottom. The
system has achieved satisfactory results in accurately representing surface
mixing dynamics. It has also proved to be more accurate and stable in the
case of a strong stratification, because it allows a higher concentration of the
vertical resolution within the isopycnals. However, note that the Jacobian
determinant of this transformation is quite complex, it is thus difficult to
implement.

Other authors have focused on systems that would be less sensitive to
the pressure gradient error. They have worked on hybridization methods
between sigma- and z-level coordinates, allowing a maximum of horizontal
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levels in the real mesh. Such general systems are no longer separable; they
involve full three-dimensional transformations.

In [36] Deleersnijder and Beckers proposed to define a fixed horizontal
level at a constant height z = z., splitting the domain into an upper and
a lower region, and apply the classical sigma-transformation to both sub-
domains. In the case of a slight surface slope, this system leads to almost
horizontal levels in the upper region. It is referenced to as the “double sigma
transformation” and can be defined through the following discrete transfor-
mation function :

+ z if 2> 2.
. (4.39)

>

(n (z,y,t) — 2c)
Zy (z,y,2,t) = {

(ze = by (2, 9,1)) 2 + by (z,y,t) i 2< 2

where Z. is the height of the fixed level in the reference configuration. Figure
4.12 shows a particular vertical discretization of an estuary obtained with
this transformation.

Qy

F1G. 4.12 — Example of a grid obtained with the double sigma transformation

A more general approach was introduced by Gerdes [54] and consists in
assuming a z-level distribution on the whole domain and “correcting” locally
the height of a level whenever its distance from the bottom or the surface
is smaller than a minimal width h;,;, chosen arbitrarily. In such a case the
classical sigma-transformation determines the position of the level. It is also
classified as an s-coordinate system and is obtained using a particular dis-
crete transformation function Zj, (x,y, 2,t) based on a Min-Mod formulation.
It leads to a grid whose levels are horizontal to a certain distance of the bot-
tom and surface boundaries.

However, in real domains the relative importance of topographical effect,
density forcing, inertia and diffusion varies from point to point as well as
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in time, and a models should thus allow to use different types of grids for
different regions. Therefore, a generic discrete vertical transformation func-
tion Zj, should be implemented, allowing for arbitrary level distribution at
each time step. This idea was first introduced by Deleersnijder and Ruddick
in [37], where they applied it to a marine model. The Jacobian determinant
of the mapping plays a central role in a system of this type. Indeed, it cha-
racterizes the particular transformation defined in each grid element and at
each time step, and appears in the expression of the equations driving the
flow written in the reference configuration.

Several systems have adopted such a general coordinate system, provi-
ding the user with more flexibility in the choice of the optimal model grid
for a particular application. Indeed, the recently developed ROMS model
[123] follows this approach. Moreover, in [93], Mellor et al. introduce a ge-
neral coordinate system for the POM model. They propose a wide variety
of particular vertical coordinate systems, including the z-level, the classical
sigma transformation and Gerdes’ s-coordinate systems.

A considerable amount of intercomparisons of the different vertical grids
have been performed with such models. They have confirmed previous re-
sults showing the superiority of terrain-following systems with respect to
the z-level model when the topography effects are important. Nevertheless,
new information is provided; in [93] it is shown that sigma-like models can
handle much lower diffusivities than z-level systems. In [88|, Martins et al.
apply different vertical discretizations to the simulation of the flow in the
Sado estuary. A region of steep bathymetry makes the transition between
the estuary and the coastal waters, and a clear vertical recirculation has
been identified in this zone during the ebb flow, whose intensity is inversely
proportional to the diffusion. Now, the authors show that sigma-like grids
provide similar and accurate results, whereas a bigger number of layers is
necessary to obtain the recirculation with a z-level system. In [22] a model is
presented that uses a generic vertical transformation and solves the equations
integrated on each grid layer, so that layer-averaged quantities are compu-
ted. The authors show that general coordinate systems can be advantageous
compared with classical o- or z-coordinate systems. Anyway, important re-
search is still necessary to understand the effects of the different sigma-like
model grids on the simulated results.

As underscored in the previous section, important errors exist in the com-
putation of the internal horizontal pressure gradient (HPG) in the Telemac-
3D system, which we recall uses the classical sigma transformation. These
errors subsist in spite of hydrostatic consistency and the adoption of the
density-jacobian formulation of the pressure gradient. Moreover, the classical
sigma transformation severely restricts the possibilities of vertical discreti-
zation. Therefore, we decided to implement a generalization of this trans-
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formation allowing for an arbitrary distribution of the layers at each time
step. Especially, this should allow to impose fixed levels in particular zones
of the domain, for instance to capture stratifications. Next, we describe the
implemented coordinate system.

4.8 A generalized o-coordinate system in the ALES
approach

4.8.1 Principle

Let us consider again the general form (4.6) of an ALE mapping between
the reference configuration Q) and the real domain € defined in section 4.3.
We recall that it is characterized by a continuous and monotonic vertical
transformation function Z : Q x I — Q, satisfying

Z(ﬂf,%oat) = n(ﬂf’y’t% (4 40)
Z(z,y,1,t) =b(z,y,t),  V(v,y,t) €wx I '

The reference configuration ) is first discretized by N; horizontal levels,
distributed along the vertical following an arbitrary partition of the interval
[0,1] :

0= <...<%<...<iy=1

The height of the grid nodes located on the k-th level of Ty, is therefore %,
which is constant in space and time. We will denote by ;1o the layer
delimited by levels k and k+ 1, for k =1,...,(N; — 1), and by

AZpy1/2 = 2kl — 2k

its width.

The transformation function Z (x,y, 2,t) is then discretized by means of
piecewise linear functions in the vertical direction. Inside each layer, this
transformation can be expressed as a classical sigma transformation, charac-
terized by the heights — in the real domain — of the levels delimiting the layer.
Indeed, the restriction of the discrete transformation on each layer I} 1 /o can
be defined as follows on w X [Zg, Zx41] X I :

Azk+1/2($7y7t) (A s

Zk+1/2 (.’E, Y, 27 t) = Aék-}—l/Q z = Zk) + 2 (177 Y, t) ’ (441)

where zi (x,y,t) is an arbitrary discrete function describing the current
height of the grid level k at each two-dimensional node and at each time
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step. Then Az /5 (2,9,t) = 2k11 (7,¥,t) — 2x (z,y,t) denotes the width of
the layer Iy, /5.

Obviously, it is the choice of the set of discrete functions

{zk (z,y,t) [ k=1,...,N;}

which determines the discrete mapping to use for a particular simulation.
We point out that they are defined by their value at each node on the two-
dimensional mesh and at each time step. Moreover, they must satisfy the
following conditions for all (z,y,t) € w x I :

21 (mayvt) = bp (Qf,y,t),
ZN, (mayvt) = hp (33>y’t) ) (442)
zp+1 (z,y,t) — 2k (2, y,1) > hpin >0 Vk € [1, N, — 1],

where hp,;, is a constant minimal width chosen arbitrarily.

The discrete current domain €, ; and its triangularisation 7j, ; are then defi-
ned as in section 2.1.6, and the discrete ALE mapping is defined as follows :

Apy: Q— Quy, x(2,t) = Ap(2)

with x==%, y=y and z=Zy(z,y,2,t), (4.43)

where Z, (z,y, 2,t) is a continuous function, linear on each layer lj /5 and
defined by (4.41).

This expression of the discrete mapping is very general and allows a wide
choice of layer distributions. Indeed, by imposing for £k =1,...,(N; — 1)

2k (33>y’t) = hh (33>y’t) 2]6 + bh (wayvt) (444)

the classical sigma transformation is recovered.

One can also impose some levels to be horizontal and fixed in time at
some constant arbitrary height and define classical sigma transformations
in between each one of these levels. This can be very useful to catch hori-
zontal stratifications. Such a grid is illustrated in Figure 4.13. It counts 7
levels — of which 2 are horizontal and fixed in time — and it results from a
discrete transformation function Z, (x,y,t) defined from the following set of
real level-height functions :
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Z5 ($7y7t) = Cs,
Z4 ($7y7t) = (4,
(e (@yt) =Y
zi (z,y,t) = — (2k — 25) + 25 for 5 <k <7,
—b t
zi (x,y,t) = <Z4hA—($7y7)> Zp 4 by (z,y,1) for 1 <k < 4.
\ Z4
Q Q@
1 =y
. /’F\//—/
25 Ah,t 75
24 z4
//\
i Zl:b(t)/\

Fi1G. 4.13 — Example of a grid including one fixed layer obtained with the
generalized sigma transformation

But one could as well imagine to impose fixed but non-horizontal levels
for the case of steep stratifications.

More generally, the real height of each grid node can be imposed at each
time step, defining the discrete function zy (z,y,t) for k = 1,...,(N; — 1).
The evolution of the grid is then controlled during the whole simulation.

We indicate that a test is made at each time step to make sure that
condition (4.42) is satisfied. In the case the height of a level violates this
condition at some node, its value is corrected using a Min-Mod formula.

4.8.2 Jacobian determinant of the discrete mapping

The model must be able to solve the equations for any particular mapping
Ap of the form described previously. Therefore, the Jacobian determinant
Jp,t of the discrete mapping must be expressed in a generic form.

We recall that the Jacobian determinant of the classical sigma transfor-
mation is constant along the vertical and equal to the water depth. This is
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no longer true when the transformation is generalized as it is here. Indeed, in
this case, jh,t varies along the vertical direction but it remains constant on
each grid layer in the vertical direction. Its expression on each layer [} /o,
fork=1,...,(N;—1) is

Azpyi/o (2,9,1)
AZpy1y0

R A 07241179
Jh(xayaz’t) = T-;/

(z,y,2,t) = (4.45)

in wX[2k72k+1], Vtel.

In the following, we will denote by jk+1/2 the restriction of Jj, to layer lkt1/2s
where it is independent of the Z-coordinate :

Azk—i—l/Q (177 Y, t)
AZpy1y0

jk+1/2 (33>y>t) = w, Vtel. (446)

The integral of any discrete function ¢y, : 23 ; — R on the discrete domain
¢ can thus be transformed and decomposed as follows :

T — /Q Jne O d

Qp.t

- Z / jk+1/2 (.T,y,t) QLh (3773/75) dx

k=1,.,N—1 “lkt1/2

- > / Jer1j2 (@,y,t) </Zk“ Un (2,y, %,1) dé) dw .

k=1,...,.N,—1 2k

The value of this discrete Jacobian determinant characterizes the parti-
cular transformation defined in each grid element and at each time step. It
appears in the discrete counterpart of the equations driving the flow when
written in the reference configuration.

4.8.3 Application to the Telemac-3D system

The general o-coordinate system proposed in this work has been imple-
mented in the Telemac-3D system in order to allow more flexibility in the
choice of the optimal vertical domain discretization. The generalization of
the mapping has required an adaptation of the whole system. On one hand,
the update of the grid node coordinates in the real domain at each time step
has considerably changed. On the other hand, the equations written in the
reference configuration were up to now implemented using the value of the
Jacobian determinant corresponding to the particular classical sigma trans-
formation. Therefore, these equations had to be re-written in the general
vertical coordinate system and implemented in this form.
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We indicate that the Telemac-3D system solves the hydrostatic and non-
hydrostatic Navier-Stokes equations using the formulation presented in sec-
tion 4.4 — in the non-conservative form — for the particular case of the clas-
sical sigma transformation. We have extended the resolution to the general
o-coordinate system using the ALES formulation.

4.8.4 Results with the generalized sigma transformation

We will now show numerically some advantages of the general o-coordinate
system just described. For this purpose we present two particular tests cases,
for which we compare the results obtained with the Telemac-3D system using
different grids. Some of those grids can be defined using the classical sigma
transformation, others must be defined using the generalized version.

Test case 1 : Advection of a passive tracer in a 3D closed basin with
a standing wave. In the first test case, we aim to reveal the amplification
of the numerical diffusion due to the movement of the mesh, and show that
it is possible to minimize this phenomenon by fixing some particular zones
of the mesh. For this purpose we consider again the case of the standing
wave in a closed basin introduced in the previous chapter see section 3.8.3.
This time however we highlight the mesh movement by increasing the wave
amplitude and decreasing the wave length ; indeed we choose
211

Mo = 0.2m and ]C:T

The analytical solution is provided by the small amplitude wave theory.
The temporal profile of the analytical free surface at x = 0 m is shown in
Figure 4.14, while the fluid velocity is represented at times ¢t = 14s and
t = 30s in Figure 4.15.

z(m

[ Uy Sy A Sy S AR SRR SRR AR R ARt

t(s)
F1G. 4.14 — Temporal profile of the exact water height at xt =0 m and y =5
m.

In order to get rid of the numerical errors coming from the hydrodyna-
mic computation in the Telemac-3D system, we impose the analytical free
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Fia. 4.15 — Analytical velocities at t = 14 s and ¢ = 30 s. Vertical cross-

section at y—5m.

and we only simulate the

advection of a passive tracer in the basin. At the initial time, T is stratified

Y

surface and velocities of the fluid at each time

: its concentration c is equal to 4 if z > —4.5m, and it is

equal to 2 if z < —4.5m.

along the vertical

A first simulation is performed on a three-dimensional grid obtained using
the classical sigma transformation and made of 11 homogeneously distribu-

ted levels on the vertical. Its vertical cross-section at z = 5 m is shown in

Figure 4.16.

N

F1G. 4.16 — Mesh 1 obtained using the classical sigma transformation. Ver-

tical cross-section at y = 5 m.

A time step length of 0.1 seconds is chosen. The initial state and the re-
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sult obtained after 300 time steps are presented in Figure 4.17.
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N

Initial tracer profile on mesh 1 (left) and tracer profile obtained
are more concentrated in the stratified zone.

on mesh 1 at ¢ = 30 s (right). Vertical cross-section at y = 5 m.

sion of the simulation a second grid is used, represented in Figure 4.18 and

We observe a huge diffusion of the tracer. In order to improve the preci-

such that the levels

Fia. 4.17

o
To & 0 ®» & 10 © ~ ®©® O O
- Lo A

N

: 55, 105 and finally 205

In order to evaluate the precision of these results, we have performed
levels. Figure 4.20 presents the results of these simulations after 30 seconds.

The tracer distribution obtained after 30 seconds is shown in Figure 4.19; it

F1G. 4.18 — Mesh 2 obtained using the classical sigma transformation. Ver-
is slightly less diffused.

the same simulation whith a great number of levels

tical cross-section at y =5 m.
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Initial tracer profile on mesh 2 (left) and tracer profile obtained
on mesh 2 at t = 30 s (right). Vertical cross-section at y = 5 m.

They show that the discrete solution converges to a solution in which the
stratification is almost undisturbed ; more precisely, a solution in which the
diffusion is minimal.

55 levels

Fic. 4.20
levels.

© o] ~ o O S w N = o N

105 levels

205 levels

Tracer profile obtained at ¢ = 30 s increasing the number of

The same simulation is then performed on a third grid, shown in Figure
4.21. It also counts 11 levels, but it has been obtained using the generalized
sigma transformation implemented in the Telemac-3d system. A horizontal
plane is fixed at height z = —3.4m, so that the inferior part of the mesh does
not move. Note that the planes are distributed such that the discretization
of the stratified zone is as fine as in the second grid.
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Fi1G. 4.21 — Mesh 3 obtained using the generalized sigma transformation.

Vertical cross-section at y = 5 m.

The results obtained on this grid are presented in figure 4.22. The fixed plane
has clearly limited the numerical diffusion in the simulation. In conclusion,
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(left) and tracer profile obtained

on mesh 1 at ¢ = 30 s (right). Vertical cross-section at y = 5 m.

Initial tracer profile on mesh 3

FiG. 4.22

the ALES formulation allows to recover with only 11 layers a better result

than the classical sigma transformation with 55 layers.

Let us now

Test case 2 : Density stratification in a standing basin.

consider again the test case of a horizontal density stratification in a standing
basin presented in section 4.6. The results of the simulation performed on a
classical sigma grid clearly revealed the existence of the so-called horizontal

pressure gradient (HPG) error.
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This time, we perform the simulation on a grid obtained using the ge-
neralized sigma transformation. It still counts the same number of levels,
11, but they are distributed differently : a fixed plane is imposed exactly at
the height of the stratification, and a homogeneous classical sigma transfor-
mation is opered in both the lower and the upper parts of the basin. The
resulting mesh is shown in Figure 4.23, and the corresponding result after
300 seconds in figure 4.24.

0 100 200 300 400 500 x(m

Fig. 423 Mesh 2 obtained using the generalized sigma transformation.
Vertical cross-section of the initial 3D mesh at y = 50m.

We observe that no spurious velocities have appeared, and that the stra-
tification is undisturbed. The equilibrium has been completely preserved.
This shows that fixed planes can help to reproduce accurately density stra-
tifications.

Of course this solution is ad hoc since the mesh fits exactely to the shape
of the stratification. Nevertheless, in some practical applications, this shape
and its time evolution may be known, at least approximately. In such cases,
the ALES formulation allows to adapt the mesh in order to reproduce ac-
curately the stratification, getting rid of strong spurious diffusion obtained
with the classical sigma transformation technique.



's/w

p1—0T°9 JMOqe JO oIv S91}100[0A SNOLINdS [RUIIXRUL 9], "UOIJRIYIYRI}s A}ISUop

[RIYTUT [RJUOZLIOY B YIIM g [SOUL UO S ()T = % J8 PAUIRIqO SHNSOY — FZ'F DI

z(m Initial DENSITY profile z(m DENSITY profileat t=100s
RELATIVE
0 DENSITY
-10 0.000 -10
-20 . -0.002 -20
-0.004
-30 -30
-0.006
-40 -0.008  -40
-50 T T T T 1 . -0010 -50 T T T T T T T 1
0 100 200 300 400 500 x(m 0 100 200 300 400 500 x(n
HORIZONTAL VELOCITY a t=100s (ms) VERTICAL VELOCITY at t=100s
z(m z(m
0- 6.0e-14 0 -
. 4.5e-14
-10 -10
3.0e-14
-20- 1.5e-14 -209 . =5 .
304 0.0e+00 204 —
-1.5e-14
-401 -3.0e-14 -407
-50 J T T T ! . -4.5e-14 -50 T T T T T T T T T 1
0 100 200 300 400 500 0 100 200 300 400 500
x(m) -6.0e-14 x( M)

01T

uoryezifelauos pue uro[qoid Moy

90RJINS 99f (J€ 9y I0J UOIJRULIOJSURI) RUISIS 91} Jo uonjejardiojur v ¥



4.8 111

Deuxiéme partie

Three Dimensional Hydrostatic
Model for Free Surface Flows
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Chapitre 5

Three-dimensional hydrostatic
and non-hydrostatic models for
incompressible free surface
flows

5.1 Introduction

In this chapter we aim to introduce the three-dimensional (3D) free sur-
face problem posed on domains whose lateral boundaries are perfectly ver-
tical. Note that the free surface of these domains is assumed to be a single-
valued function.

After describing the domain and its boundaries, we formulate the three-
dimensional Navier-Stokes equations describing the motion of the fluid. The
Boussinesq approximation is made, allowing to consider an incompressible
flow. In order to close the system, we propose a list of convenient boundary
conditions for the problem. Since the free surface is assumed to be a singled-
valued function, the continuity equation expressing the mass conservation of
the fluid can be depth-averaged. This allows to obtain an equation on the
free surface. The entire problem is then formulated in the ALE framework.

Once the hydrostatic approximation has been described, we introduce the
3D hydrostatic model, whose study will be adressed in details in Chapters 6
and 7. Then we present a particular 3D model for the non-hydrostatic pro-
blem, based on the decomposition of the pressure into hydrostatic pressure
and hydrodynamic pressure correction. This decomposition will allow to split
the time-discretized equations into a hydrostatic part — which corresponds
almost exactly to the hydrostatic model and a hydrodynamic part. The
3D hydrostatic model can therefore also be viewed as an intermediate step
in the solution of the full 3D Navier-Stokes equations.

Finally, a weak formulation of the three-dimensional hydrostatic problem
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is proposed. After time-discretization and linearization of the problem, the
equations are splitted, leading to three separate sub-problems : the advection
of the horizontal velocity ; a system coupling the horizontal velocity and the
free surface function, referenced to as the w —n problem ; and the continuity
equation allowing to retrieve the vertical velocity. We point out that the
u — 7 problem is linear, symmetric, and that it is based on the physical free
surface equation. Chapter 6 will be dedicated to its mathematical analysis.

5.2 Description of the domain
We consider a three-dimensional domain in which the lateral boundaries
are perfectly vertical. In order to simplify the problem, we assume the bottom

to be fixed and impervious.

Let w be a fixed bounded region of R?. For any time ¢ € I the domain
); is defined as follows :

Qt:{a::(xvyvz) / (a:,y)Ew and b(:E?y)SZSn(xvyvt)}

where 7 and b are two functions defined on w describing respectively the
free surface and the bottom (see Figure 5.1). We will denote by h the water
height :

h(z,y,t) = n(x,y,t)=b(z,y), (r,y)ecw, tecl.

r, U[CSAY)

REYS

Fic. 5.1 The three-dimensional domain and its boundaries.
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Any integral over the 3D domain €2; can then be written as
n
/ (o) da;:/ </ () dz> du.
Q w b

Note that the free surface as well as the lateral boundaries only move in the
vertical direction.

The boundary of the current domain €; is denoted by 0€2; and can be
decomposed into three separate parts, as illustrated in Figure 5.1 :

1. the free surface I'y ; ,

2. the bottom surface I'y, and

3. the lateral boundaries I'; ;. These can include :
(a) solid lateral boundaries I's,; and

(b) fictitious liquid boundaries I';q ¢, composed of the inflow boun-
dary I';,+ and the outflow boundary I'gyy -

We will use the three-dimensional gradient and divergence operators —
respectively V and div , as well as the corresponding horizontal operators,
that are :

of
Oz

Vof = and diVQ‘f:%‘i‘%.
of ox oy
dy

5.3 The three-dimensional free surface Navier-Stokes
equations

The equations describing the motion of the fluid are the well known
Navier-Stokes equations. They express the mass conservation of the fluid as
well as the conservation of the momentum. These equations, valid Vi € I
and Va € €, can be written as :

% — div(er) = pf + pg,
% b div(pU) = 0, (5:1)

where U = (u,v,w) is the total velocity of the fluid and p its density, o
is the physical stress tensor, f = (fz, fy, f-)T the sum of the external forces
applied on the fluid, and g = (0,0, —g) the gravity acceleration.



116 5 3D hydrostatic and non-hydrostatic free surface flow models

Note that using the mass conservation equation we obtain the so-called non-
conservative formulation of the momentum equation :

dU 1

— 4+ —div (o = + g. 5.2
Gt dvier) = f+g (52)
Now considering only Newtonian fluids, the symmetric stress tensor is ob-
tained adding the pressure p to the viscosity tensor o :

or = —pld + o, (5.3)
with
D11 D12 Dis
o = (0y5) = p | Do Doy Doz |, (5.4)
D31 D3y D33

where D = VU + (VU)7”, and p is the dynamic viscosity coefficient.

5.3.1 Variable density and Boussinesq approximation

In natural water bodies the density variations are relatively small in
the oceans for instance the variations of the relative density are less than
3% of the average density. However, for many applications, these variations
cannot be neglected. In those cases, a state equation relates the fluid density
to the concentration of the tracers interacting with the flow — that can be
temperature, salinity or sediments. In estuaries for instance, it is essential to
consider the fluctuations of the density due to the different salinity concen-
trations.

We suppose that the density can be written as the sum of a reference
value pg and a fluctuation around this value Ap such that Ap/pg << 1. Note
that the state equation has the form

Ap

- f(ThTZa cee 7Tn)7
Po

where T} is the i-th active tracer transported.

The Boussinesq approximation — see [130] — states that small density va-
riations must be taken into account only in those terms of the momentum
equation where they give rise to buoyancy forces. Therefore the density is
supposed constant in the continuity equation, but its variations are conside-
red in the pressure gradient term of the momentum equation. This implies
that the variations of fluid mass are neglected, but their effect on fluid weight
is retained. In addition, the gradient pression is developed to the first order



5.4 The 3D free surface Navier-Stokes equations 117

in Ap :

1 1 1 A
v Ll vys L2
Po (1+p—g’) Po Po

2
|
|
k
<
i

(5.5)

5.3.2 Incompressible fluid

According to the Boussinesq approximation the continuity equation writes
divU =0 in §Q tel, (5.6)

the flow is thus considered incompressible.

Using the continuity equation (5.6) the divergence of the viscosity tensor
can be simplified as follows

div(e) = div(uVU). (5.7)

This yields the following non-conservative expression of the three-dimensional
free surface Navier-Stokes equations :

du . 1 Op
2 q el s
7 iv(wVu) + oz fa
dv ) 1 Op
b | St S
= iv (vVov) + > By fys
(5.8)
dw . 1 Jp
% — div (Z/V'LU) + ; % = —g + fz,
e
Ox oy 0z

where v = u/pg is the kinematic viscosity coefficient of the fluid, and where
p is the real variable density .

Remark 5.3.1 In order to circumvent the problem of turbulence, the equa-
tions are averaged in time, leading to the so-called Reynolds- Averaged Navier-
Stokes equations (RANS) [118] that describe the mean flow. The effects of
the turbulent fluctuations on the mean flow are then taken care of by means
of turbulence models (see for instance [140]). We won’t elaborate on this
matter. Note however that we have made use of some turbulence models
implemented in the Telemac-3D system [66] for the simulations presented in
this work. The eddy viscosity coefficients for the horizontal and the vertical
diffusion can then be different, and they can even vary in space and time.

The system is closed by suitable initial and boundary conditions.
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5.4 Boundary conditions

The boundary conditions prescribed here have been chosen in order to
simplify the problem. However, the analysis can be extended to other types
of conditions. They are valid for any ¢ > 0.

Let n be the outward normal to the current domain ;. We will denote
by ny the horizontal component of n and by n, its vertical component, so
that n = (nxy,nz)T. We will also make use of n,, the outward normal to
the two-dimensional domain w.

Remark 5.4.1 In the general case, n,, # n,, but on the vertical lateral
surfaces,
n, =0 and mng = n, on Iy,

On the solid boundaries, the kinematic condition expressing impervious-
ness is :

Un=20 on [y Ul (5.9)

On the bottom, this is equivalent to

— U Vb = Wy, In w, (5.10)

and on the solid lateral boundaries to

U-Ngy =0 on Dgyy (5.11)

The dynamic condition at the solid boundaries accounts for the shear stress
T acting on the fluid. This stress is opposed to the velocity — it acts as a
brake , and is equivalent to the tangential stress exerced by the fluid, i.e.

ou

TS T,

on Iy U Fsol,t'

Since it depends on the flow, the stress 7 is unknown and must be modeled.
At the bottom, dimensional analysis shows that, supposing u sufficiently far
from the wall, 7 has the form

1
T = = 50Clulu,

where C; is a dimensionless positive friction coefficient. Several formulae,
determined empirically, exist to compute this coefficient. We can use for ins-
tance the Strickler formula, where C'y depends on the water height and the
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bottom roughness. Therefore, we will consider a dynamic condition at the
solid boundaries of the form

Z/a_u
on

where £ : R — R is a given function.

= — F{,(’U/) on I'yu Fsol,t’ (512)

At the free surface, the velocity of the fluid is equal to the velocity of the
free surface itself. This is expressed by the following kinematic condition :

0

a_Z —U-n =0 on T,y (5.13)
which is equivalent to

0 :

a—Z%—u‘Z:n-Vn = W=y in w. (5.14)

The stress vector is continuous at the air-fluid interface ; that is
(o1 n)fiuia = (o1 N)air.

We assume the pressure equal to the atmospherical pressure pg and the vis-
cous air stress negligeable. Therefore, the physical dynamic boundary condi-
tion prescribed at the free surface is :

p=p and o-n =0 on I

However, in view of the variational formulation, it is convenient to adapt
this condition to the particular model used here, in which we assume that
div(e) = div(p VU). Indeed, the following dynamic boundary condition
should be prescribed at the free surface :

ou

p = py and Vo = 0 on Iy (5.15)

On the fictitious liquid boundaries I'j;,;, the effects of the outside are
taken into account. On one hand, the total velocity is prescribed at the
inflow :

U(x,y,z,t) = Uplx,y,z,1t) on Dy (5.16)

On the other hand, the viscous stress is considered nil at the outflow. The
following dynamic condition is therefore prescribed :

o-n =0 on Ly (5.17)
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Note that this condition is not adapted to the variational formulation of the
hydrostatic model we will introduce further in this section. We will see that
a stronger condition is needed at the outflow, that is the prescription of the
free surface and the assumption that the viscous stress is nil :

ou

n(x,y,t) = Nout(x,y,t) and Von = 0 on Doyt (5.18)

5.5 The free surface equation

Proposition 5.1 If the continuity equation (5.6) as well as the kinematic
condition on the bottom (5.10) are satisfied, then

(i) the kinematic condition at the free surface (5.13)

on .
e + U=y VN = w—y, m  w
and
(ii) the following equation on the free surface
on

U
- + div (/ udz) =0 in w (5.19)
ot b

are equivalent.

Proof. Let us assume that the continuity equation (5.6) and the kinematic
condition on the bottom (5.10) are satisfied.

(i) = (ii) Assume first that the kinematic condition at the free sur-
face (5.13) is satisfied. By depth-integrating the continuity equation (5.6) we
obtain

n
/ divow dz + wp,—y —w,—p = 0.
b

Applying the Leibnitz rule
n n
/ divou dz = divy (/ wdz) — Up—y VN + up—y- VD
b b

and thanks to the kinematic conditions at the free surface (5.13) and on the
bottom (5.10)

0

n n
/ divou dz = divg (/ u dz) + an_ W=y + Wz=p-
b b ot

Finally
on

U
— di = 0.
5t + divy (/b u dz) 0
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(ii) = (i) Assume now that the free surface equation is satisfied :

on . n B
a5t + d1V2(/b udz) = 0.

The Leibnitz rule states that

U U
diva (/ udz) = / divou dz + up,— - Vn — u,—,- Vb
b b

The continuity equation yields

no m Hw
/b divouw dz = — i ™ dz = —W,—y + W=y

and the kinematic condition on the bottom (5.10) reads

Therefore

¢

This property allows us to replace the kinematic condition (5.13) by the
free surface equation (5.19), which leads to a more convenient formulation.

5.6 The three-dimensional tracer equation

The free surface hydrodynamic problem also involves the motion of the
tracers, which represent a temperature or any physical quantity contained in
the water. If a tracer interacts with the flow, as for instance the temperature
and the salinity, it is called active ; if not it is passive. The time evolution of
a tracer depends on the velocity of the flow that drives it, the diffusion and
the source sink terms.

The tracer equation in conservative form is

T
% + div (poTU — povpVT) = fr on Uy,

where fr is the source term and vp the tracer’s constant diffusion coefficient.
We recall that U is the divergence-free velocity of the flow and pg its average
density.

Using the continuity equation of the fluid we obtain the following non-
conservative form of this equation :
oT

N + U-VT — div(vrVT) = fr on Q. (5.20)
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This system is closed by suitable boundary conditions. The quantity T
is prescribed at the inflow boundaries I';, ; of the domain, i.e.,

T(x,t) = Tin(x,t) xely, tel, (5.21)
where I';;, ; is defined by
Pintg = {xely/u-ng <0}, (5.22)
In addition, we prescribe a flux law at the free surface of the type :
vpVT -n = aT + b. (5.23)

We also assume the flux of the tracer to be nil on the solid boundaries of the
domain ; that is, Vt € I,

vrVT -n = 0 on O UL, (5.24)

5.7 ALE formulation

The problem is now reformulated in the Arbitrary Lagrangian Eulerian
(ALE) approach. We consider the reference configuration

Q={a&= (47192 / (&9 cw and 0<2<1}

and an ALE mapping of the ALE-Sigma approach form see Part I, section
4.3 —, that is

A QO —Q,  x(@t) = Aa)
with z=%, y=g and z=Z7(z,y,2,t), (5.25)

where Z (z,y,2,t) is an arbitrary continuous and monotonic (0Z/0z > 0)
function satisfying

Z(x,y,1,t) = b(z,y,1). '

Since the domain mowves in the vertical direction only, its velocity ¢ has only
a vertical non zero component :

_ OA,

5 = (0,0,¢)7. (5.27)

We can now write the non-conservative ALE formulation of the considered
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hydrodynamic problem, valid V¢ € I and V& € §2; :

%_IZA + (U - ¢)-VU — div(vVU) + %Vp = f + g (528)
n
U (/ wdz) = 0 (5.29)
ot b
divU = 0 (5.30)
oT .
S|, + U= VT — div(urVT) = fr. (5.31)

It is completed with the folllowing boundary conditions on U and 7 :

( U-n = 0 on I,

U Ny = 0 on Fsol,tv
0
v % = — k(u) on Iy U014,
ou
I/a—n = 0 on 11s,ta (532)

U = U; on Fin,ty

N = Nouwt on I out,ts
ou
V—an = 0 on Fout,ta

and on T :

T = Ty on Ty, tel

vrVT -n = aT + b on Iy, (5.33)

vpVI-n = 0 on anUFsol,t'

Remark 5.7.1 Note that the time derivative on the free surface function 7
is not turned into an ALE time derivative, because this variable is defined
on the fixed two-dimensional domain w.
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5.8 The hydrostatic assumption

The hydrostatic approximation consists in neglecting the vertical acce-
leration, diffusion and source term, so that the momentum equation on the
vertical velocity in (5.8) reduces to :

Op
— = — pg. 5.34
3, Py (5.34)

Rescaling the continuity equation (5.30) and the momentum equation
(5.28) using U, W, L and H, the scales for the horizontal and vertical ve-
locities, for a characteristic horizontal length and for the depth, it can be
shown that :

1. the vertical acceleration is negligible if the horizontal scale of motion
dominates the vertical one, that is if H << L or if W << U, which is
usually the case in shallow water areas and in flows with long waves,

2. the diffusion on the vertical velocity can be neglected if the Reynolds
number

LU

14

R, =
is large, which is the case for turbulent flows with dominating horizon-
tal motions.

For the derivation of the rescaled system see for instance [110].

The hydrostatic approximation can therefore be applied if conditions 1
and 2 are fullfilled. In that case, since the pressure at the free surface is
assumed to be equal to the atmospherical pressure py — considered constant
and known we have that

T Ap
@y t) = pog (n(@yt) —2) + po + 9po / Lz (539
zZ

The horizontal pressure gradient term in the momentum equation is then :

1 1 A
SV = - <gV2n i gvg(/ ol dz)>.
P P z PO

According to the Boussinesq approximation the second order terms in Ap/pg
can be neglected, yielding

1 A A
- Vop ~ QV277—g—pV277+gV2</ —pdz>. (5.36)
P Po z PO

The terms accounting for the effects of the density fluctuation are referenced
to as the buoyancy terms. We will denote them by
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A A
v = =g =L Van + gV, ( |5 dz). (5.37)
£0 z PO

5.9 The three-dimensional hydrostatic model

According to (5.34) and (5.36), the ALE formulation of the equations
describing a three-dimensional hydrostatic free surface flow with divergence
free velocity is :

%—1; + (U—-¢)-Vu — divwVu) + gVan = frr, (5.38)
U
ML iy, (/ wds) = 0, (539
ot b
_ ow
le2 u + a = 0, (540)

(5.41)

where fhor = (fur f)T + fPuoY . This formulation is valid for any ¢ € I and
for all € Q.

Let us explicit the system for more clarity :

ou ou ou ou . on
il e el _ —~ _d Z7 hor
gils T Uar TV Tlwmdg — dveVy +gmn = L7
v v ov ov i on
— _ _ _ — —d Zr hor
gils T Vo T Vg T WAy vV +gm = L

on o [ o " B
E—l—%(/budz)—i—a—y(/bvdz) = 0,

ou o o
\ ox dy 0z

This problem is also referred to as the three-dimensional shallow water equa-
tions.

We observe that the hydrostatic model does not involve the time-derivative
of w. Therefore, no initial condition is needed on the vertical velocity of the
fluid. Moreover, in the momentum equation (5.38) on u, w only appears as
part of (w—¢), which we call the vertical ALE advective velocity and denote
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by
W =w-—c. (5.42)

In fact, the vertical velocity w is not needed separately and we can determine
directly w.

Following this remark, we choose to reformulate the continuity equation
in order to make appear the vertical ALE advective velocity w.
Let us multiply equation (5.40) by the determinant of the ALE mapping.
Then, using the Euler expansion formula (2.11), we obtain the following
ALE formulation of the continuity equation :
0Jy 1 s . _
E(.At (), t) + J (A (z),t) div(U—-¢) =0 on . (5.43)

Denoting the three-dimensional velocity (U — ¢) by
U=U-c¢c= (u,w)", (5.44)
the continuity equation can be written in the ALE frame as follows :

~

A} (divfjo,ftt) — 0 on € (5.45)

This formulation of the continuity equation will only be used for the hy-
drostatic model. It simplifies system (5.38)-(5.40) since the only variables
involved are now the horizontal velocity u, the vertical ALE advective velo-
city w and the free surface function 7.

5.10 The three-dimensional non-hydrostatic model

When the pressure cannot be assumed to be hydrostatic or when the
vertical accelerations are important, the non-hydrostatic model must be used.
This is the case, for instance,

— in deep waters with strong bathymetry gradients, where the influence
of the steep bottom slopes on the velocity field is not damped like in
shallow waters and results in changing the flow direction;
in presence of short waves, where there are important vertical orbital
movements of the fluid particles in the wave ;
in flows around structures, where the pressure field before the obstacle
cannot be considered hydrostatic.

The formulation of the three-dimensional non-hydrostatic model presen-

ted next is based on the pressure decomposition into hydrostatic and hydro-
dynamic parts. This idea was applied by Casulli and Stelling to geophysical
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flows in a finite difference implementation presented in [27]. Saleri et al. also
proceed to this pressure decomposition in [97]|, where they propose a finite
element approximation of the 3D free surface Navier Stokes equations.

The ALE formulation of the non-hydrostatic equations, valid for any

t € I and for all & € (), is then :

%—? . U-Vu — div (vVu) + gVan + %Vgpd = fhor (5.46)
?9_7;)@ + U-Vw — div (vVw) + %% = f
% + divy (/bnudz) =0
dive u + g—i) = 0,
where pg denotes the hydrodynamic pressure correction.
Here again we explicit the system for more clarity :
( %w + u% + v% + (w—c)% — div (vVu) + g% +
%@ + u% + vg—z + (w—c)% — div (vVv) + gg—z +
%—Z}i + ug—i + vg—z + (w—c)g—z) — div (wVw) +

ou, o
L Ox oy

The non-hydrostatic model is more complex but it allows an accurate
computation of the vertical velocity, which is now coupled with the whole

system.

The decomposition of the pressure p as p = pg + pn, where p, is the
hydrostatic pressure given by (5.35), simplifies the resolution of the problem.

(5.47)

(5.48)

(5.49)

Opa
ox

9pa
dy

Opa

0z

op o9 (7 o [
E—i_@_i(/bUdz)—i_@_y(/bvdz)

Jw
0z

hor
T

e

fZ)
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Indeed, it leads to the splitting of the time-discrete equations into :

1. a hydrostatic part, which corresponds almost exactly to the hydrostatic
problem (5.38)-(5.39), with the exception that the vertical velocity is
also advected and diffused. This step provides the free surface function.

2. a hydrodynamic part, in which the total velocity U = (u,v,w) is cor-
rected by the hydrodynamic pressure term pg, ensuring the continuity
equation.

The 3D hydrostatic model can therefore either be viewed as an inde-
pendent model or as an intermediate step in the solution of the full 3D
Navier Stokes equations with free surface. The study of the 3D hydrostatic
model is one of the focus of this thesis and is addressed in details in Chapters
6 and 7.

5.11 Weak formulation of the three-dimensional hy-
drostatic problem

For the sake of simplicity, we will assume the following regularity pro-
perties on the domain at any time t € [ :

nt) € Wh*(w), b € Wh*(w), (5.50)

and
Jho > 0 such that h(t) > hy onw. (5.51)

In addition, we will assume that the Dirichlet condition (5.16) on the velocity
at the inflow is homogeneous, i.e. that

U(x,y,z,t) = 0 on Dy, 4. (5.52)

Let us consider the following functional spaces defined on the reference
configuration ) :

X = H(@Q? Vv =1L%Q) and W = HYQ), (5.53)

as well as the space

M = L[*(w) (5.54)

defined on the two-dimensional domain. The ALE mapping (5.25) then de-
termines the corresponding spaces X' (€;) and X (Q,t), as well as W({)
and V(§,t), defined on the current domain see (2.13) and (2.15) in sec-
tion 2.1.5.
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In addition, we define

X)) = {veX(Q) / ¥({) ny = 0onTy, and
W(t) = Oon Ty, tel} (5.55)

and

Xo(,t) = {PpeX(Q,t) |/ P(t)-ngy = 0onIlyy, and
’lp(t) = 0O on Fm’t, tel } (556)

We will prove later on that these spaces are regular enough for the fol-
lowing weak formulation of the hydrostatic system (5.38)-(5.40) to be well-
defined. For now, let us state the following proposition :

Proposition 5.2 A weak ALE formulation of the 3D hydrostatic free sur-
face flow problem is, given the initial conditions w(0) and n(0),

find u € Xo(,t), we V(Q,t) and n(t) € M such that
V€ Xo(), Vx e M, Vo € W(Q) and for each t € 1,
( ou
— + - de + vVu- -V dx
ot Q,

U-V
/ divg ( / P dz)dv = < F ¢ >yivx,

on n (5.57)
/8txdw+g/)<div2(/udz)dsz,
w b

d

U-Vo¢dr — O u-ng d' = 7

\ Q Tiigt

qbda:

where

<Psva = [ f7vde — [ wwear
Qt Fbursolt
+ / Nout W - Ty dr'. (5.58)
Foutt

Proof.
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Momentum equation Let us consider a test function ¥ = (¢, %,) in
Xo(©2¢). We multiply equation (5.38) by ¢ and we integrate on ;. Then,
classical integration by parts of the flux term gives

/Qt (%—?—l—(U—c)-Vu)"lpdw + /Qtl/VU‘V’lPde

+g Vaon de = / (vVu-n)- -9 dl' + fFhor . ap da.
N o Q

We impose strongly the homogeneous Dirichlet condition (5.52) on the ho-
rizontal velocity at the inflow boundary. In addition, we use the dynamic
boundary conditions (5.12) at the bottom and the solid lateral boundaries,
(5.15) at the free surface, and (5.18) at the outflow. We obtain :

/ (Z/Vu-n)-'l,bdfz—/ k(uw) v dT.
02t TpUTl 501t

On the other hand, since 7 is defined on the two-dimensional domain w, we

n
Von-¢ de = /VQ’I]'(/ 1pdz> dw,
Qt w b

and integrating by parts this term we get :

/WV277-</;1,DCZZ> dw
:—/wndivg (/bnv,bdz) duw + /&un(/bntﬂdz)-nwdv.

Boundary 0w corresponds to the two-dimensional basis of the lateral bounda-
ries I'; ;. Moreover, according to remark (5.4.1), n,, = ngy, on I';;. Therefore
we have that

n n
/n(/tpdz)'nwd'y://ntp'nwdzd'y:/ NP Ngy dl.
ow b ow Jb I

We impose strongly the imperviousness condition on the solid lateral boun-
daries (5.11). Using in addition the prescribed free surface condition at the
outflow we obtain :

/ nw-nwydrz/ Nout - 1y T
Tt Pout,t

can write

This leads to the weak formulation of the momentum equation in (5.57).
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Free surface equation Let x be a function of M. Multiplying equation
(5.39) by g x and integrating on w, we obtain the weak formulation of the
free surface equation in (5.57).

Continuity equation We now multiply equation (5.45) by a test function
¢ in W and integrate on 2 :

00 s [ e N
Qﬁqbdm + /QJt (leUOAt) gbdm = 0.

Since gg and Q) do not depend on time we can write that

oJ, -~ . d Ao d . N 1
— ¢dx = — Jypde = — ¢ dx with ¢ = ¢o A .
a Ot dt Jg ¢ dt Jq, ’ ' o

The divergence term is then integrated by parts :

¢ divU de = — U - Vo¢dx + o U -ndl.
Q4 O 00

On the lateral boundaries, using Remark 5.4.1 and condition (5.11) imposed
strongly :

dU -ndl = O u-ng dl' = O u-mgy dl.
Ty Ty Liig,e

Moreover, we recall that the ALE mapping .,th is such that the velocity of
the domain satisfies
Un= U-c¢)n =0

at the impervious boundaries of the domain. Especially, this holds true at
the free surface I'; ; and at the bottom I%,.

Remark 5.11.1 Note that this comes to impose weakly the imperviousness
conditions (5.13) at the free surface and (5.10) on the bottom.

The boundary term then reduces to

/ (bU'ndI‘:/ O U Ny dl,
o T

lig,t

and we finally get the weak formulation of the continuity equation in (5.57).

%



132 5 3D hydrostatic and non-hydrostatic free surface flow models

Let us now prove that the weak formulation is well-defined for the conti-
nuous functional spaces X', V, W and M introduced in (5.53) and (5.54).

For that purpose, we state two functional analysis results, valid for any
bounded moving domain €; UR?, d > 2, with Lipschitz boundary T';.

Lemma 5.1 Following the trace theorem, at any time t € I, there is a
strictly positive constant cry > 0, depending only on the current domain
Qy, such that

v e H(Q)® o) llope, < cre [¥]ia, (5.59)

where g is the continuous application associaling to each element ¢ €
HY(4)? its trace on 08

We introduce, for any non empty part I'y ; of the domain’s boundary I',
the functional space

Hr, () = {ve HY(Q), v=0 on Ty}

Lemma 5.2 Following Poincaré’s Inequality, at any time t € I, there is a
strictly positive constant cpy > 0, depending only on the current domain €2y,
such that

Vi € Hp, ()°  [[¢lloq, < cpe IVl - (5.60)

This shows that the semi-norm |- |10, in H'(Q:)? is a norm in H ().

There 1s also a strictly positive constant c,, depending only on the two-
dimensional domain w, and such that

Vx € Hy(w), lIixllow < & IXl1w- (5.61)

Let us now prove the following proposition :

Proposition 5.3 Assuming (5.50) and (5.51), for any 1 in H'(Q4)? and
forallt in I,

®)
divy (/bnt ¥ dz) € L*(w)?

and there is a strictly positive constant C(§y) > 0, depending on the domain
Q4 at time t, such that

n(t)
liny ([ d2) 0 < €@ ¥l (5.6
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Proof.
Let 1 be a function in H(Q)? :

n(t)
/\din(/ WP dz) |* dw
w b

n(t)
= /‘/ divo ey dz + Vgn(t)'¢|z:n — ng"lp‘zzb ‘2 dw
w Jb

n(t)
< 2/\/ divetp dz | dw + 2/|V277(t).1,z)|2,7
w b w
— Vbt |° dw
< 2 [|h(t)] ooy I1dive ¥ (G0, + 4 IVan(O ey 191250

+ 4[| Vob|[ ooy 192l -

Now, according to lemma 5.1 we have that

1Y).=pllow < cre 1Yl
and [P pllow < cne ¥l

A

Finally, using that

Idiva 9 [log, < 2 [Vatlloq,
we obtain
_ n(t) )
| diva ( / pdz) By < 4 (2 [0 o)
b
+ & (IVanO ) + V2813 ) ) 113,
&

Following Proposition 5.3, if at each time ¢t €

wu(t) € H1(Q)?, n(t) € L*(w) and w(t) € L*(Qy),
and

P(t) € H () x(t) € L*(w) and () € H (),

then the weak formulation (5.57) of the hydrostatic problem is well defined.
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According to (2.19) and (2.20), the following properties hold :

Vu e Xo(Q,t), u(t)e H(Q)? Vt €1, (5.63)
Vap € Xo(Q), (t) € H(Q)? vVt €1, (5.64)
Vo e V(Qy,t), w(t)eL*(Qy), VYt el, (5.65)
Vo e W), o) e HY(Q) Vit el. (5.66)

5.12 Time discretization and linearization

Let us now introduce the time-advancing scheme chosen for the hydro-
static problem. A discussion on the proper choice of the terms to discretize
implicitly rather than explicitly in a three-dimensional shallow water flow
problem can be found in [26]. The authors show through numerical experi-
ments that the semi-implicit discretization of the free surface gradient and
velocity divergence terms, and the explicitation of the remaining terms is
stable and efficient. We will follow this method. Note that the explicita-
tion of the advection terms allows their treatment through the ALE-MURD
schemes introduced in Chapter 3. The results can be improved by the use of
the so-called #-method (ref).

The time interval [ is divided in NV; time steps of equal length At. We
denote by Q" the approximation of the domain occupied by the fluid at time

t" =nAt, forn =0,..., Ny, and by (u”, n", w") the approximation of the
solution (w(t"), n(t"), w(t™)). Let us introduce the following application :

Appgr : QF — QP Anpi1(®) = A1 04, ().

We introduce the following time-discrete functional spaces
Xn o= {: Q" — R, = oAl PpeX},
Vo= {$:Q" —R, ¢ = poA;l, eV}, (5.67)
Wro= {$:Q" —R, ¢ = g0t deW},

as well as

Xy ={vYeX"/¢p-ny = 0onl,;, and ¥ = OonlYy, }. (5.68)
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Applying Proposition 2.1, we can show that :

xn = HYQ™?, Vv = L2(Q") and W' = HY(Q"). (5.69)

Let us now define some notations we will use in order to simplify the
time-discretized weak formulation of the problem. We will denote by (.,.)on
the scalar product in L?(Q")? :

(Y1, ¥y)an = /Qn’l.bl"l.b2 dex

and by (.,.), the scalar product in L?(w) :

(X1, X2)w = /Xl X2 dw.
w

Moreover, we will make use of the following shortcut, valid for any time-
discrete function f such that, for each n =0,..., Ny, f™ is defined on Q"

for any (ni,n2) € [LN%,  fill = fMoA,,, in Q.

Finally, we will denote, for any time independent function {p defined on the
reference configuration €2 :

Y" = Pod, in Q' forn=0,.. N,

We point out that the time-discretization chosen leads to a linear system.
Moreover, the explicit time-discretization of the advective term uncouples
the continuity equation from the two other ones. Indeed, at each time t",
the system can be solved in two steps : first, the sub-system formed by the
momentum equation and the free surface equation is solved, determining the
horizontal velocity w and the free surface function n at ¢ = t"*1. Then, the
continuity equation is solved independently, by deriving the vertical ALE
advective velocity w at t“» from the values u® and n“* just computed.

Given the initial conditions wg and 79, we consider the following semi-
implicit time-advancing scheme for problem (5.57) :

foreach n=0,...,N; —1,
find w"tl e Xé”l, "t e M and @'t € Y"1 such that,

Vipe Xy, YYEM and VoeW,
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( 1
At

(W =t e+ [ @V g de
Qan
7771
+ v (Vultl vy )gn  — g/ n divy (/ P" dz) dw
w b

1
= < F"* ,’lpn Z(xny xxn

n

n
% (" =" x)w g/xdin (/b uln dz) dw = 0,
(

5.70)
Hpen 1
—Cn d — i n+1 d - n d
\/an v aZ * At (\/Qn-&-l ¢) * Qn ¢) m)
Qen Fﬁ-Z
(5.71)

where t% is a particular time in [t"~! ¢"] and tfn t°n are two particular
times in [t",¢"*1], chosen in order to satisfy some properties. Time tf» is
determined by an implicitness parameter 0 < 6 < 1, defining

="t + (1-0)t"
for each n =0,..., Ny — 1. The corresponding variables are then
o= 0"t 4+ 1-0)n"  and  wf = gurt 4+ (1-0)u"

Finally,

< Fn+17,¢ >(Xn)/><X" = /g; (fhor)erl cap dr — / ﬂ(un) W dl

Tpul'y,

—/ nthtap - ny, drU. (5.72)

out

Remark 5.12.1 The uncoupling of the vertical velocity from the horizontal
velocity and the free surface function simplifies the solution, but it has an
important drawback, which is inherent to the hydrostatic model : all inac-
curacy in the computation of the horizontal velocity will result in errors on
the vertical ALE advective velocity.
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5.13 Fractional step method

In order to simplify the analysis and the approximation of the hydrosta-
tic problem, the first oder in time fractional step method is applied : the
momentum equation on the horizontal velocity w is splitted so that the ALE
advective term is isolated from the rest. Consequently, system (5.70)-(5.71)
is separated into three parts, which can be treated separately using the most
appropriate numerical methods according to the mathematical properties of
the operators.

First, u is advected, leading to an intermediate value w :

(w — u",Y")on + / (U - Vu )¢ de = 0. (5.73)
Qoan

The hyperbolic nature of the advection equations implies that the space deri-
vatives must be upwinded. Appropriate numerical methods for solving these
equations in the finite element framework are for example the characteristic
methods (see for instance [112]), the SUPG method [71] and the MURD
schemes (see for instance [107]). Note that the latter are extended to moving
domains in Chapter 3, leading to ALE-MURD schemes. The application of
these schemes to the advection equations present in the 3D hydrostatic free
surface flow problem will be discussed later on in this work see section 7.5
in the next chapter.

Then, the rest of the momentum equation coupled with the free surface

equation is solved, determining w1l and nn+1 :
1 ~
A7 (upt™ — @, " )or + v (Vulrt!, V™) gn

,n'n.
[% : n n+1 n
— nd Y dz)do = < F"7 " > xnyxn,
g/wU Vg (/b z) (XY xX (5.74)

n

n
(" — " X)) + g/xdiV2 (/b ulr dz) dw = 0.
w

| At

Finally, the continuity equation gives the value of w® :

O 1
—Cn _ - n+1 _ n
/an ot —~ de = A7 (/Qn+l Q" de - ¢" dax)

- / u - Vyo™ de / ¢ U - mgy dl. (5.75)
Qecn ren

lig
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The semi-discrete problem (5.74) will throughout be referenced to as the
u — 1 problem.

Note that Miglio and Saleri proposed in [98| a semi-discrete weak formu-
lation of a linearized version of the hydrostatic free surface problem, in which
the horizontal diffusion was neglected. By treating the advection terms ex-
plicitly, they achieve a problem coupling the horizontal velocity and the free
surface which is very similar to the u — n problem presented here. However,
the problem they obtain is non-symmetric. The authors then proceed to a
modification of the free surface equation in order to achieve a symmetric
system. We point out that our formulation (5.74) of the problem coupling
the horizontal velocity and the free surface is symmetric and based on the
physical free surface equation.

In the next chapter we will analyse the w — 1 problem.
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Chapitre 6

The u — n problem.

6.1 Introduction

In this chapter we aim to analyse problem (5.74), arising from the time-
discretization of the three-dimensional free surface flow problem introduced
previously, and coupling the horizontal velocity and the free surface function.
We call this problem the u — n problem.

We wish to point out that Miglio and Saleri have introduced in [98] a
similar problem, obtained from a semi-discrete weak formulation of the hy-
drostatic free surface problem, in which the horizontal diffusion was neglec-
ted and the advection terms treated explicitly. This problem also couples
the horizontal velocity and the free surface but it is non-symmetric. The
authors analyse the problem after modifying the free surface equation in or-
der to achieve a symmetric system. An existence and uniqueness result is
then derived in the mixed problem framework for the modified symmetric
semi-discrete problem.

We underline that the w —n problem analysed in this chapter is symme-
tric and based on the physical free surface equation. In addition, it includes
the horizontal diffusion terms.

For the sake of clarity, we will drop the time subscripts of the variables
and functions. Consequently, we will consider a continuous time-independent
problem. Note that this problem can be viewed as part of the hydrostatic
as well as the non-hydrostatic free surface flow models, but it may also arise
from completely different problems.

We will first analyse the continuous problem in the Lax-Milgram fra-
mework, yielding an existence and uniqueness result. However, this analysis
only holds in the case where a particular parameter «, corresponding to the
viscosity coefficient of the fluid in the free surface flow problem, is not zero.
In addition, when this parameter gets very small, the a priori estimation of
the solution deteriorates. Therefore we will also analyse the continous u — 7



140 6 The uw — n problem.

problem in the mixed problem framework. This will allow us to prove the
existence and uniqueness of a solution independently of the value of «.

Then, we will analyse an approximation of the u—7 problem through the
Galerkin method. The analysis is made in the Lax-Milgram framework first,
yielding an existence and uniqueness result as well as an estimation of the
error between the solution of the continous problem and its approximation.
The analysis is then made in the mixed problem framework, leading to the
proof of existence and uniqueness of a solution to the discrete u —n problem
provided a particular discrete inf-sup condition is satisfied. In this case, an
error estimation is given, valid for any value of the parameter a. We also
propose a pair of stable discrete spaces approximating the horizontal velocity
and the free surface. That means that the discrete inf-sup condition required
is satisfied for these spaces.

Finally, we introduce an alternative approximation of the continuous u—n
problem, allowing the weak treatment of the imperviousness condition at the
lateral boundaries. The existence and uniqueness of a solution to this discrete
problem can be proven in the Lax-Milgram framework for the case where «
is non zero. It can also be proven in the mixed problem framework, inde-
pendently of «, provided a particular discrete inf-sup condition is satisfied.
However, since this is not an internal approximation of the continuous weak
formulation, we will not provide an estimation of the approximation error.
A complex analysis using non-standard techniques would be needed for such
an estimation.

6.2 The continuous u — 7 problem.

We consider in this chapter a generic form of the space-continuous weak
u—n problem (5.74) arising from a time discretization of the three-dimensional
hydrostatic model (5.38)—(5.40) — or from the non-hydrostatic model (5.46)—
(5.40) introduced in the previous chapter.

We recall that these models are posed on three-dimensional domains of
the form

U ={x=(x,9,2) / (z,y) cw and b(z,y) <z<n(x,y,1)},

where w is the two-dimensional domain — a fixed bounded region of R? —,
and where 7(x,y,t) and b(z,y) are two functions defined on w and describing
respectively the free surface and the bottom (see Figure 6.1). We also recall
that the boundary of this domain is denoted by 0€2; and can be decomposed
into three separate parts, as illustrated in Figure 6.1 : the free surface I'; ;,
the bottom surface I, and the lateral boundaries I';;. The latter can in-
clude solid lateral boundaries Iy, ;, an inflow boundary I';, ; and an outflow
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nx,y,t

SETIT

FiGg. 6.1 The three-dimensional domain and its boundaries.

boundary gy ¢

For the sake of clarity, let us recall the ALE formulation of the equations
describing the hydrostatic free surface flow model, valid for any ¢t € I and
for all  in the three-dimensional domain €2; :

.
%—1; 4+ (U—-¢)-Vu — divwVu) + gVan = fhor,
n
n + divy (/ udz) = 0, (6.1)
ot b
, ow
\ divy u + 5 0,

where U is the velocity of the fluid, u and w its horizontal and vertical
components, 7 is the free surface variable and ¢ = (0,0, ¢)T the velocity
of the domain. In addition, f"°" is the horizontal source term, comprising
the external forces applied on the fluid as well as the bouyancy terms (5.37).
This system is closed by the following boundary conditions see section 5.4 :
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U-n = 0 on I},
u-ng = 0 on Igyy,
ou
Voo = T k(u) on TyUTg,,
15
8_7t7 —U-n = 0 on Iy,
ou
— =0 T
V@n on DIy,
U(z,y,z,t) = Uplz,y,2,t) on Ty,
77($7 Y, t) = TNout (.’E, Y, t) on 11out,t )
0
I/—u = 0 on Foutt .
\ on ’

For the sake of simplicity, we will consider a constant density, homoge-
neous boundary conditions, no external forces and a gravity acceleration of
1, which means that i.e. p = po, Uin = 0, Nowr = 0,6 = 0, fpy =0
and g = 1.

In order to derive a generic time-independent form of this problem, we
consider a three-dimensional domain €, defined through the two-dimensional
domain w, the bottom function b(x,y) and a generic free surface function
n(x,y) as follows :

Q={x=(x,y,2) / (z,y) €w and b(z,y) <z<7q(z,yt)}. (6.2)

We will denote by [, the solid lateral boundaries of the domain  and by

I';,, its inflow boundary.
The following regularity assumptions are made on the domain Q-
e WhWw), b e Wh®(w), (6.3)

and  Jhg > 0 suchthat h=7—b > hy onw.  (6.4)

We will use the following functional spaces :

M = L*w), X = HYQ) (6.5)
Xo = {pecH (Q?/¢% ny = 0onTyy and b = 0on Ty, }.
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Let us introduce two space-independent bilinear forms :

A1, ) = /Q Vo, - Vb, da, (6.6)

by, x) = —/de (/bnw dz) dw. (6.7)

The bilinear form b( -, +)_defines the linear oberator B : Xy — M’ and its
transpose BT : M — (Xp)' as

<BY, X >axm = < BT X > g5 = W, X). (6.8)

We consider the following generic form of the continuous weak u — n

problem :
find weXy and neM such that,
Vipe Xy and Vye M,
O(u, ¢l + adlu,$) + b ¢) = <GP>p.5,
§(n,X)w — blx,u) = <HX>mxm,
(6.9)

where ¢ is a strictly positive and « a positive parameter, and

<G?¢>22’><)2 = 5(a7¢)fp
<H’X>M/><./\/l = (5(777)()4»7

with @ a function in L?(Q)2.

Remark 6.2.1 When the u — n problem arises from the time-discrete free
surface flow problem, we have that

1
6= —, a= v,
At
where At is the time step length and v the viscosity coefficient of the fluid.
Note that many simulations are performed without diffusion, or with a very
small viscosity coefficient. It is therefore worthwhile to note that « can be
very small and even zero. This case will be adressed in Remark 6.2.4.
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6.2.1 Analysis in the Lax-Milgram framework

The variational problem (6.9) can be written as follows. Given @ and 7,
find . )
(u,n) € Xy x M suchthat, VYV (v, x) € Ay x M,

L((u,n), (¥, x)) = F((¥,x)), (6.10)

where

L{(rsx1) s (. x2)) = 0 (%1, 92)q + ad(thy, v)
+ (%2, x1) = b1, x2) + 0 (s xe)e,

F((,lva)) :<G7¢>)E‘/X)E‘ + <H7X>M’><M'

Proposition 6.1 Under the regularity assumptions (6.3) and (6.4) on the

~ - 2
domain Q, the bilinear form L(-,-) is symmetric and continuous on (Xo X M) )

Proof. Let us consider (b1, x1) and (1, x2) in (Xy x M)2.

IL((1, xa) 5 (2, x2)) [ < 0 llhllgq 19allon

+ o I Veillon IV9sllea + 0 lxillow Ixallow
n n
+HMWWM%¢MMw+MMMWMA%WWM

Using Proposition 5.3 :
< Olallig Ia2llig + alltillig [l -

+ 3 lxallow Ixellow + C@ (Ixellow I1ll1a +Ixllow Il )

< Max (5+0a,6,0@)  (Iillg Iealg

+ [hallow [Ixellow + lxallow ¥4l a + lxallow ||¢2\|1,Q>

< l(aaéaﬂ) || (11[)17)(1) || XXM H (¢27X2) ||)€'><_/\/l

where

I(a,6,Q) = 8 Max (5+a,5, C(Q)) (6.11)

is the continuity constant of L(-,-) and depends on «, d, and on the domain

Q. O
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- 2

Proposition 6.2 The bilinear form L(-,-) is coercive on (Xo X M) .
Proof. Let us consider (¢, ) in Xy x M.

L((,x), (¥, x) = dll9lhg + allVeITg + 6 lIxli.

> alyllg + 0l

> Mino,8) (Wl + i)

Following Poincaré’s Lemma, the semi-norm ||, 5 is a norm in Xy. Therefore
) 1,0 0

L((¢,x). (%, x)) = cr@0) (%) % »

where

cr(a,0,) = Min(a, d) > 0. (6.12)

is the coercivity constant of L(-,-) and depends on a and 4. {

Proposition 6.3 Application F(-) is conlinuous on X x M.
Proof. Let us consider (3, ) in X x M.

(%, X)) | = |<5/Qﬁ'¢dw T 6/ﬁxdw\
< Slalog 1¥lon + 0 llow Ixlow

< f(ﬁ77775) ||(11Z)7X)HA~’><M ’

where
f@,7,6) = V25 Max{ |a]lgg + 70w} (6.13)
is the continuity constant of F'(-).

We can now state the following existence and uniqueness result, whose
proof is an immediate consequence of the Lax-Milgram Theorem.

Theorem 6.1
Under the regularity assumptions (5.50) and (5.51) on the domain, for every

@ € X, problem (6.10) has a solution (w,7), which is unique in Xy x M and

satisfies : )
i, 7, 0,0)
2 2 (f@1,6,9)

lulllg + lnllow < c1(@,0) :

where cr (o, 0) and f(@,7,0) are defined respectively by (6.12) and (6.13).

(6.14)
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As explained in Remark 6.2.1, a can be equal to zero. In that case, the
analysis just presented is not valid because the bilinear form L(-,-) is not
coercive on (Xy x M)? and the Lax-Milgram theorem cannot be applied.

In addition, for a very small value of « the estimation of the solution
deteriorates : the majoration gets very large. This can be interpreted as the
consequence of the fact that the coercivity of the bilinear form L(-,-) is gua-
ranteed by the presence of a term controlling the norm of the gradient of the
solution u. Since this term is proportional to «, the well-posedness of the
problem can degenerate when a becomes too small.

For these reasons we will next analyse the problem in another framework.

6.2.2 Analysis in the mixed problem framework

Let us now introduce the following bilinear forms :

a(hy, Py) = 6 (Y1, ¥y)q + ad(y, ¥,),

m(xi, x2) = =6 (X1, X2)w-

The variational problem (6.9) can be reformulated into a mixed problem
as follows. Given u and 17,

find (w,n) € Xy x M such that
v(’lﬁb7X) € /%OXM

(1#’77) = <G7¢>)E‘/><)€‘7 (615)
U’X) = _<H’X>M’><M'

e SN
—~

+
+

This formulation fits in with a very general form of mixed problems
more general than the one used for the Stokes problem where m(-, -) = 0.
An existence and uniqueness result for this general form has been proven by
Brezzi and Fortin in [20].

In order to apply the theorem proving the existence and uniqueness of
a solution, we must first verify that the bilinear forms defining our problem
satisfy some particular properties.

Proposition 6.4 The bilinear form a(-, -) is symmetric and continous on

X2,
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Proof.
Let us consider (¢;,1,) in X2

a(r. )| < S lllog I¥allog + alilialsli g

<
< (0+a) il g [l g
< ale0) [Pl g [lall1 g

where
ala,0) = 0 + «

is the continuity constant of a(-, - ), depending on ¢ and «.$

Proposition 6.5 The bilinear form a( -, -) is coercive on (Xp)?.

Proof. Consider v in H ().
(e, $)| = dllbleg + alplly > cala) ¥lg,

where ca(a) = a >0 is the coercivity constant of a(-, ).

Proposition 6.6 Under the regularity assumptions (6.3) and (6.4) on the
domain S, the bilinear form b(-, -) is continuous on X x M.

Proof. Let us consider (3, ) in X x M.

- n
\M%XHSI/MMNA¢WMM

n
SIMwH%NA¢me
Using Proposition 5.3 :
< @) Inlow %l 4

< () Ixllow %14,
where b(Q) = C(Q) is the continuity constant of i?( )

Proposition 6.7 Under the reqularity assumptions (6.3) and (6.4) on the
domain 0, the following inf-sup condition holds :

33>0 suchthat, ¥ xeM, 3IpeXy such that

b, x) = Blelig Ixllow- (6.16)
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For the proof of this proposition we need to introduce the following two-
dimensional functional space :

Yo = {veHYw)? /v = 0on dwy, }, (6.17)

where Ow;, denotes the boundary of the 2D domain w corresponding to the
inflow. In addition, we need the two following lemma.

Lemma 6.1 Under the reqularity assumptions (6.3) and (6.4) on the do-
main ), for any v € ) :

hveY, and € Wo.

SN

Moreover, the function v : (z,y,z) — R defined by v(z,y,2) = v(z,y)
belongs to the space Xy and the following inequality holds :

1917 g < lAl e ol (6.18)

Proof. Let us consider v € ).

v 1 ~ ~
/|V2 <Z> > do < HZHiw(w) /\thv — v Voh |* dw

1 -
< 2 \|Z||4Loo(w) </\hvgv|2 dw + /|uv2u|2 dw)
w w
1 ~
< 20213 (IV20l30 + I92hll ) I0)3.)
h
1 2 7112 2
< 20zl (LHIV2RI ) ol
< o0

/|v2(iw) Rdw < /|ﬁ|2\v2v|2 dw + /|v|2\v2m2 d
w w w

IN

17l 1V20050 + V2Rl 00,

IN

(171, + 19200 ) T0IR
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/jf;\Qdm - [\V@Pdm
Q Q

= /ﬁ|v\2 dw + /B\V2v|2 dw
w w

< Al o) 0IA
< o0

1812 4

In addition, since the lateral boundaries are perfectly vertical, if v = 0 on

Owip, then v = 0 on the corresponding inflow boundary I';, of the three
dimensional domain. <»

Let us now introduce the following bilinear form :
v?4: Yy x LP(w) — R
Viv, x) = — /Xdiv (ﬁv) dw. (6.19)
w

Remark 6.2.2 We point out that 132‘1( -, +) is defined on Yy x L?(w), where
o is a space of functions defined in the two-dimensional domain w, whereas
b(-, ) is defined on H'(Q) x L?(w), where H(2) is a space of functions
defined in the three-dimensional space Q.

Lemma 6.2 Under the reqularity assumptions (6.3) and (6.4) on the do-
main, the following inf-sup condition holds :

3321 >0 such that, ¥ xe L*(w), Jvedy such that

v, x) = 0 vl e Ixlow- (6.20)

Proof. The operator div : Yy — L?(w)’ is surjective.
Moreover, lemma 6.1 allows us to state that application

f:Yo— o, with f(v) = ho
is continuous and surjective.
Let B : Yy — L?(w)" be the operator corresponding to the bilinear form
v’4(.,-) —ie. B = divo f. We deduce that B is surjective, which is equi-

valent to stating that b27( -, -) satisfies condition(6.20). <

We can now proceed with the proof of Proposition 6.7.
Proof. Let us consider x in L?(w). We choose v in ) such that inequality
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(6.20) is satisfied. Following lemma 6.1, function v : (z,y,2) — R defined
by o(x,y,z) = v(z,y) belongs to Ay and

19174 < Ml oo II0IR,-

Therefore

b(v, x) = b*(v, x) B2 [0l 1w lIxll o

B2d

(res

v

v

1/2 1] 1,Q X1 0,0 -

We have finally proven that, for any y in L?(w), there is a function ¢ in X
such that

(v, x) = B lYllg Ixllow,

with

22d
3= i > 0. (6.21)

(I

o

Proposition 6.8 The bilinear form m(-, -) is symmetric, continuous and
coercive on M?2.

Proof. We have that
Im(x1,x2)l < m() [xallow IIxallow
where m(d) = 0 is the continuity constant of m(-,-). Moreover, since

mO,x) = 0 Ixlf.w,

m(0) is also its coercivity coefficient.

We are now in position to state the following existence and uniquenes result,
which is an immediate consequence of Theorem 1.2 in [20)].

Theorem 6.2
Under the regularity assumptions (5.50) and (5.51) on the domain, for every

@ € X, the variational problem (6.15) has a solution (w,n), which is unique
in Xy x M and satisfies :

lulli g + lnllow < K1 lIGllar + Ko [[H|ae (6.22)
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where

and Ky — (CA@H((Z(@)&)B)Q) (1“(&(056))2

We recall that

ala,d) = 0+ a, cala) = a,
B > 0 only depends on the domain Q,

1Gllar = dlallgg and [Hlm = 0 lnlow -

Remark 6.2.3 Two additional assumptions are necessary for the applica-
tion of the theorem proving the existence and uniqueness of a solution to
the general mixed problem. On one hand, we must have that Let us consider
two assumptions, necessary for the application of the theorem prooving the
existence and uniqueness of a solution to the general mixed problem. On one
hand, we must have that

H < Im B, (6.24)

and on the other hand that

Jco >0 suchthat Vo€ ICer(BT)J' and Ve >0,

the solution ¢y € Ker(BT) of equation

e (Y0: X)o + m(to,x) = — m(¥,x) Vx € Ker(8") (6.25)
is bounded by g [[to]low < [Pl 0w-

In the particular case treated here, these assumptions are trivially verified,
since Im(B) = M’ and Ker(BT) = {0}, as can be deduced from Proposition
6.7.

Remark 6.2.4 In the case where v = 0, the existence and uniqueness of a
solution to the variational problem (6.15) can still be proven in the mixed
problem framework, but the proof is slightly different. In fact, the proof is
then very similar to the proof made by Miglio and Saleri in [98] of the exis-
tence and uniqueness of a solution to the semi-discrete weak formulation
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they propose of a linearized version of the hydrostatic free surface problem,
in which the horizontal diffusion is neglected. Let us give the general idea of
this proof.

If a = 0, the definition space for the variable w can be enlarged to

Xy = { pel*Q)? / (divy (/bna,z) dz)) € L2w)? }.  (6.26)

No Dirichlet boundary condition can then be imposed strongly at the inflow,
therefore 4 must be sought in

/%2,,2 = {'d)e/%/'(pnxy = Oonfsol}a (6-27)

where we recall that T's,; denotes the solid lateral boundaries of the domain
Q.

Let us consider the bilinear form a(-, -) with a = 0. Clearly, it is sym-
metric and continous on (2?2)2, with a continuity constant equal to §. In
addition, defining the linear operator B : 9\?2,z — M’ and its transpose
BT : M — (X)) by

< Bath, X >pixm = <%, By X > (i, = 0¥, X) S (6.28)

we have that
Ker(By) = {4 € Xy, / (dive (/bntﬂ dz)) = 0in L*(w)? }.

Therefore, a( -, -) with a = 0 is coercive on Ker(Bz), the coercivity constant
being equal to § > 0.
Finally, note that X C X5 and, following Proposition 5.3,

. ﬁ ~
| divs ( /b ¥ d2) low < CEO) |9l 4, (6.29)

where C(Q) is a strictly positive constant depending only on the domain Q.
Using these properties, we can easily extend Proposition 6.7 to the space Xbs.

Theorem 1.2 in [20] can therefore also be applied to problem (6.15) in
the case where @ = 0, replacing X by 22273 : the existence and uniqueness
result for the continuous w — 77 problem given by Theorem 6.2 holds true
when a = 0. Note that a(«, ) and c4(«) must then be replaced by ¢ in 6.23.

6.3 Approximation of the u — 7 problem

We now analyse the finite element approximation of problem (6.9) through
the Galerkin method. For this purpose we consider a triangulation ’Tth of
the two-dimensional domain w as well as a triangulation 7, of the three-
dimensional domain €.
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Remark 6.3.1 In order to simplify the analysis, we assume that the two-
dimensional domain, as well as the three-dimensional real domain are poly-
hedral, so that they remain unchanged after triangulation : wy, = w and
Q, = Q. Especially, this implies that 7, = 7 and b;, = b.

On one hand, a Lagrangian finite element space on ’Z;fd is chosen for the
discrete space M, approximating M(w). On the other hand, two degrees k
and n satisfying £ < n are chosen in order to determine the finite element
function space ~

Xy = (Fuu(Tn)”, (6.30)

a Lagrangian finite element defined in (2.24) and approximating X = H*(Q)2.
In addition, we define :

/{’h,o = {1j)h€é\~fh | ¥, -ngy = 0only,y and o, = 0only, }.
(6.31)

where Ty, denotes the solid lateral boundaries of the domain € and T';,, its
inflow boundary. Note that the discrete functional spaces verify :

X, ¢ HY(Q)?  and M, C L*(w), (6.32)
and thus the approximation is internal ; i.e.

‘)Eh,O C ‘)EO and M C M.

We can now write the fully-discretized problem. Given @ and 7, find

up € QE;LO and 7y € My such that,

Vi, € Ao and Yy € My,

§ (un, ¥y)g + adlun, ¥,) + b, ¥y) = <Guy, > X x Xy
§ (Mhs Xn)w — b(xn,un) = < Hp,xn > My x My,
(6.33)
where
< Gh711bh >‘)€il1><‘)€h = 90 (ﬂ‘hu ’d)h)fp

< Hp, Xn >y xnmt, = 0 (s Xa)w-



154 6 The uw — n problem.

6.3.1 Analysis in the Lax-Milgram framework

The discrete variational problem (6.33) can be written as follows. Given
up, and 17,

find (wp,nn) € )Eh,o X My, such that
V(%y, Xn) € Xnox Mp,

L((un,nn), (Yn, xn)) = F((Yy, xn))- (6.34)

Since Xj o C H'(Q)? and M;, C L*(w), the coercivity and continuity
of the bilinear form L(,-) are still verified on (&), o x My)? for the norm of
X x M, as well as the continuity of the linear application F(-). In addition,
the continuity and coercivity coefficients remain unchanged. We can therefore
apply the Lax-Milgram theorem and the Céa lemma in order to prove the
following proposition :

Proposition 6.9 Under the reqularity assumptions (5.50) and (5.51) on
the domain , for every uy, € X, the discrete problem (6.34) has a solution
(wp,mp), which is unique in ?Eh,o X My, and satisfies the following a priori
error estimation :

lw—wunll1 g+ ln—mnllow

~ 2
I, 6,2) , :
< (m) ( lnfqphejh’o l[w — vyl Lo T infy,enm, [ = xallow ) .

(6.35)

We recall that :

l(,8,Q,) = 8Max(5+a,5,0(ﬁ))
and cr(a,0) = Min(a, J),

where C'(Q2) is a constant defined in Proposition 5.3 and depending on the

domain 2 only.

Next, we analyse the discrete problem in the framework of the mixed
problems.
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6.3.2 Analysis in the mixed problem framework

The discrete variational problem (6.33) can be reformulated into a mixed
problem as follows. Given wj; and 7,

find (wp,nn) € )Eh,o x My, such that

Y (%, xn) € Xnox My,

a(wn, ¥y) + by, ) = <Gy >xax,

m(nn, xn) + 0(un, xn) = — < HpXn >0y <y, -
(6.36)
Since Ay, C H'(Q)? and M, C L?(w), the continuity and coercivity of
the bilinear form af(-,-) are still verified on (X}, )% for the norm of X. This

also holds for m(-,-) on M3 for the norm of M. Applying Proposition 2.11
in [20] we can prove the following proposition :

Proposition 6.10 Under the reqularity assumptions (5.50) and (5.51) on
the domain Q, if the discrete spaces Xy and My, are chosen such that the
following discrete inf-sup condition holds :

3B, >0 such that V Xn EMy TPy, € /’%h,O such that
b(Pn,xn) = Bu lnll g Ixallow, (6.37)

then, for every @y, € Xy, the discrete problem (6.36) has a solution (wn,mp)
which is unique in X0 X My, and satisfies the following a priori error
estimation :

lw—unlly o + [In—mnllow

(6.38)
< Kz infy, 3 lu—pll, 6 + Ka infy,em, [[7—xnllow,
where
Ki = 1+ 2K bQ)? + 2 Ko (m(6))?
K3 = 1 + 2 K1 (a(e,0))® + 2 K b(Q)%,

- (s (259 (+(52)

B o= cA:EC!) <4+ CA:ECM)> <1+2< (gh5)> ) i (5;21)2 '
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We recall that

b(Q) =g C(QY) and m(d) =9,

where C(2) is a constant defined in Proposition 5.3 and depending on the

domain 2 only.

In the next section we propose a pair of finite element spaces approxima-
ting the horizontal velocity and the free surface function, and such that the
discrete inf-sup condition (6.37) is satisfied.

6.3.3 A pair of compatible finite element spaces

Let us first recall the following definition.

Definition 6.3.1 Consider two Hilbert spaces X and M, and a continuous
bilinear form b(-,-) on X x M. Two finite element spaces X and M, ap-
proximating X and M are said to be compatible for the bilinear form b if
the following discrete inf-sup condition holds :

36y >0 suchthat Vgp e My Fwvpedl such that

b(vh,qn) = Bn lvnllx llanllar- (6.39)

Our aim in this section is to construct two discrete spaces X C Hl(fl)2
and Mj C L%(w), approximating respectively the horizontal velocity and
the free surface and such that the corresponding finite element space -)Eh,o
and M), are compatible for the bilinear form b(-,-) — i.e. the discrete inf-sup
condition (6.37) holds.

For this purpose we consider a triangulation ’Z;fd of the two-dimensional
domain w composed of triangles. By piling up this mesh along the vertical
in Q we obtain a prismatic mesh 7, of the three-dimensional domain, as
illustrated in Figure 6.2.

We will denote by Tgr the reference triangle for ’Tth and by Pgr the
reference prism for 7. Note that the prism Pp is straight, its triangular
basis coincides with the reference triangle T and its vertical is [—1,1]. In
addition, each triangle T' € '];fd and each prism P € 7y are given by

T = MF(Tg) and P = MP(Pp),
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Free surface

\

< N

Bottom

Fia. 6.2 Example of a three-dimensional mesh 7; obtained by piling up
the two-dimensional mesh Tth.

where ./\/l? and MF are two homeomorphic mappings from, respectively, Tx
to T and Pg to P. Note that M7 is of degree 1. For each triangle T € Tth
we will denote :

hy = diam(T) and pr = sup { diam(B) / Bbal CcT }.

Let us now recall the definition of the bilinear form b%¢(-,-) introduced
in section 6.2.2 of this chapter :

b4 Yy x L(w) — R

Vi(v,x) = —/Xdiv (ﬁv) dw .

The idea is to choose two finite element spaces V), C H'(w)? and M, C
L?(w) compatible for the bilinear form %4( -, -), i.e., such that the following
discrete inf-sup condition holds :

= B}%d >0 such that V x, € M, Jwvp € Vo such that

0 (vn, xn) = Bt vl 1w xall 0w (6.40)

where Yo = {vh €y, | v = 0 on Owip }.

Let V), be the three-dimensional function space defined from ), by

yh = { v: (.T,y,Z) — R | f}h(xvyvz) = ’Uh(.l',y), vy € yh } (641)
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A sufficient condition for (6.37) to be verified is then to choose a finite element
space X, € HY(Q)? such that ), C &j. Indeed, the following proposition
can be proven :

Proposition 6.11 Let Y, C HY(w)?> and M, C L*(w) be two finite
element spaces such that Ypo and My, are compatible for the bilinear form
v2e( -, ). In addition, let Xy, be a finite element space approzimating H'(Q)?

and Yy, defined from Yy, by (6.41).

If Y» C X, then the finite element spaces ?Eh,o and My, are compa-
tible for the bilinear form b(-, -), ie, the discrete inf-sup condition (6.37) is
verified.

Proof. Consider x; € Mj,. We choose vy, € Vj o such that the inequality in
the discrete inf-sup condition (6.40) holds. We define vy, in

Voo = {0, €V | ¥, =0 on Iy}

by vp(z,y,z) = vp(z,y). Clearly, since Vi C X, Oy, € /fh@. Moreover, since

X, C HY(2)? see (6.32) , we can apply Lemma 6.1 and state that

1

lvalie = —
¢ 1] £oo (w)

\|17h||21,g :
We can then write that :

i
bo(On, xn) = — [ xu dive (/ vy, dz) dw
b

Xh dng (h Uh) dw

T

= Z)Zd( Uhy Xh )
using (6.40)

> B onll 1w 1xnllow
3 _
> " ||Tall1 g IXnllow
([172]] oo @y )12 ’
> B llonlla lIxnllow
where ~od
- B
B = £

(]| ooy )2
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Let us now choose the finite element spaces My, Xj, and M.

For this purpose we introduce a function ¢ : T — R, defined on the
reference triangle T and such that :

S0176]16(1—"1%)? 0 S Db Sl and gOb(OR) = 17

where C'g is the barycenter of the reference triangle Tr. We denote by
Br = Vect{ gy} the vectorial space generated by the functions ¢} defined
on the reference triangle corresponding to each element T in %Qd.

A well-known example of a function ¢ is the bubble function, defined
as the product of the barycentric coordinates in the triangle. The notion of
bubble function was introduced by Crouzeix and Raviart in [16]. Arnold,
Brezzi and Fortin proved in [6] the compatibility for the Stokes operator
of the discrete spaces associated to the Pi-bubble/P; element, where the
P1-bubble element consists of the set of piecewise linear functions enriched
with a bubble function on each triangle. As a result, it has four degrees of
freedom on each triangle, situated at the three vertices of the triangle and
at the barycenter.

A variant of this function is the quasi-bubble function, first introduced
in [94]. The reference triangle Tx is divided in 3 sub-triangles by linking the
three vertices to the triangle’s barycenter Cp, as illustrated by figure 6.3.
The function ¢y is then defined as the piecewise linear function on each one

L

[45)

FiG. 6.3 The P;-quasi-bubble element

of the sub-triangles which has the value 1 at Cr and 0 at the vertices of
Tgr. The advantage of this function with respect to the bubble function is
its lower polynomial degree. The compatibility analysis made in [6] for the
P;-bubble/P; element can be applied to the Pj-quasi-bubble/P; element.
This element is used for instance in the Telemac-2d system to approach the
two-dimensional z-averaged horizontal velocity and the water height when
solving a particular part of the Shallow-Water equations see [65].
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Let us introduce the following finite element spaces on ’Tth :

Fia(T2) = {vh:w—>R\ un € CO(@), vh(ToMlTepl(TR),

VT € T, } , (6.42)
8171(7712(1) = { Vp + W — R ‘ Vp € CO((D), Uh‘T o M{ S BR(TR),
VT € T2 } . (6.43)

The dimension of 8171(7;1201) equal to the number of triangles in the two-
dimensional mesh —, will be denoted by Np. We define the following set of
basis functions :

{bk Y k=1, .Np, With @y = SObO(MlTk)fl n w, (6.44)

where T}, denotes the triangle in ’Z;fd referenced by k.

The discrete functional space )}, is then defined on the two-dimensional
domain as follows :

2
In = (AT & BT ) (6.45)
which corresponds to the P;-bubble element.

Denoting by Py ., — respectively P; , — the set of piecewise linear func-
tions in z and y (respectively z), we introduce the three-dimensional space
Pl = ]P)ny X ]P)l,z: i.e.,

Pl = {p(xayuz) = Q(«T,y) T(Z)a S ]P)l,xya (S ]P)l,z } (646)

We can now introduce the first order prismatic finite element space on 7y,
illustrated in figure 6.4 and defined by :

Pa(T) = {9 Q—=R| v e®@), | oM"ePi(Pr),
VPeT, }. (6.47)

We will denote by N34 the dimension of P; 1, equal to the number of nodes
in the three-dimensional mesh. Moreover, { 1; }Z-:17,,,7N3d will indicate a par-
ticular set of basis functions.

The discrete functional space X, is defined on the three-dimensional confi-
guration and is thus generated by basis functions defined on each prism Py
in 7. We choose some of these basis functions to be independent of z. In
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F1G. 6.4 — The first order prismatic element

fact, the finite element space chosen to approximate the horizontal velocity
coincides with Pj 1(7},), enriched with a bubble function on each triangle T°
in ’];fd. Thus, X}, can be written as follows :

X, = (771,1(771) © Bi1(7,2% )2. (6.48)

As a result, it has (N3q + Np) degrees of freedom, situated at the vertices of
the prisms in 7}, and at the barycenters of each triangle in Tth, as illustrated
by figure 6.5.

free surface level

bottom level

F1G. 6.5 — Degrees of freedom in a column of prisms in 7},
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Clearly, the dimension of X}, is (N3q + Nr), and any function vy, in X,
can be decomposed as follows :

N3q N
vh(x,y,z) = Z (% llji(xayuz) + Z (%3 Sob,k(xuy% (649)
=1 k=1

where v; and v denote the coefficient of v, associated, respectively, to the
node ¢ and the triangle k. Note that v; is equal to the value of vy at node 1.

Finally, we define
My, = Fii(T,2). (6.50)

For the finite element spaces just defined, we have the following results.

We recall that a set of meshes (7,2¢);, is regular if there is a constant o > 0,
independent of h, such that
hr

vV h, max — < o.
TeT,* pT

Proposition 6.12 If the affine set of meshes (Thw)h 1s regqular, the discrete
inf-sup condition (6.40) holds uniformly with respect to h, which means that
the constant ﬂ%d 15 independent of h.

The proof of this proposition is a variant of the proof of compatibility for
the Stokes operator of spaces Yy, o and M, made in [6]. We will now prove
the same property for the bilinear form 52d( -, +). In this proof we will make
use of the following lemma, owed to Fortin [49].

Lemma 6.3 Consider two Hilbert spaces X and M, a bilinear form b(-,-)
on X x M, and assume the existence of a constant 8 > 0 such that

b(v,q)

o > (6.51)
[vllx llalla

infeem SUPvex

Then, two finite element spaces Xp C X and My C M are compatible for
b(-,-) if and only if

I, >0 such that Yve X I Iy(v) € Xy, such that
(6.52)
Van € Mp, b(v,qn) = b(IIx(v),qn) and [IIx(v)[x < 7 [lv]lx.
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Proof. (Proposition 6.12)

Following the same arguments as for Lemma 6.2, we can prove that the
continuous inf-sup condition (6.51) holds for X = Hj(w)* , M = L*(w)
and b(-,-) = b2, ).

Consider a function v in ). We wish to build IIj(v) € Yy such that
YV € My, / np divy (W II,(v)) dw = / np diva (hv) dw.
w w
Since Mj, C H'(w) this identity is equivalent to

Vi € My, > /ﬁHh(v)-Vnh ar =y /iw.vnh dT.
T T

TeT, TeT,

Moreover V1, € Po(T)?, this relation thus holds if

vT € T, /i}nh(v) dT = /?wdT. (6.53)
T T

Let us now introduce the Clement operator (cf. [30]), that we will denote by
Cr (). According to the Clement Lemma for the continuous space ) and its
approximation Y o, if the mesh is regular, there is a constant c¢; > 0 such
that :

Vv €y, I Ch(v) € Yy such that

VT eT [Cr(v) —vllor < ca hr |v]1,0r (6.54)
and
ICh()llor < ca lvll1,Dr (6.55)

where Dy = UFOT#@ .

We define :

Nt
My(v) = Ch(v) + Y (% e +77 € ) v (6.56)
k=1

where (e!, e?) is the canonic basis of R?. Clearly, IT;(v) € V0.
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Relation (6.53) holds if, for k =0,..., Ny and | = {1, 2},

. /Tkiz('vl — Ch('v)l> aTr

Te = _ )
/ h@b,k dT
Tk

where v! and Cj,(v)! denote the cartesian components of v and Cp,(v).

We now wish to bound |IIj(v)|1 . On one hand, the mesh being affine,
we have that

meas(T")
det = —7
Therefore :
| | heprdT | > inf(h) | / opr dT| = cg inf(h) meas(T}),
T w T w
where
/ wp dTR
cp = SR
R meas(Tg)

On the other hand, ’Z;fd being regular, there is a constant ¢ > 0 such that
for any triangle T}, :

| b 1w < ¢ hp? meas(T).

Let us now bound | 7} | :
[ 1Rl = enw)' | ar
T

|/}~L90b,de‘
T

1Al ooy lv = Ca(@)]lor
cr infyu(|h]) meas(Ty)"?

IN

|7 |

IN

Using (6.54) :

ca hr ||| poo ()
cr infy(| h|) meas(Ty)"?

[ [oll1,pr -
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We then have that

NT NT
> (e + %) el < D (WP + 17%1P) lesalie
k=1 k=1

Nr

7112
(Ccl)2 [|A]] %0 (w) 9
< 2c¢ > > ol o
2 M b
(cr) inf,, (h)? Py T

7

2
- ~ U
L

2 .
lLw -

Using relation (6.55) we can bound |Cp(v) |
Nrp

[Ch@) [ < cp ICHO)IIR. < cp Y ICHO)IID
k=1

Nt
< cpea IolBp, < Cslvl3,.
k=1

Finally we obtain that :

| IIL(v) |10 < C2M + C1 | 1w,
’ inf,, (h) ’

where C'y and Cs are two strictly positive constants.

We just have shown that, setting

3 17| oo ()
N (PO il C RO ) 6.57
h ( " nf,([R]) 2 (6.57)

for any v € ) there is a discrete function ITj,(v) € Yy such that, for all
gn in My, ,
v, qr) = P*N(Mu(v), qn) and |Tu(v) 1w < Fnlvfi.-

This allows us to apply lemma 6.3 and conclude that the finite element
spaces Vp, o and M, are compatible for the bilinear form b2(., ), ie. the
discrete inf-sup condition (6.40) holds.



166 6 The uw — n problem.

Let us now consider the three-dimensional function space Y, defined from
Y by

)N)h:{f):(x’y,z) — R | f)h(xayaz) = ’Uh(ﬂ?,y), 'Uheyh }

We are in position to state the following proposition.

Proposition 6.13 Consider the finite element spaces Yy, My, and Xy, defi-

ned respectively by (6.45), (6.50) and (6.48). If the two- and three-dimensional
meshes 72d and Ty, are such that Yy, C X, then, the finite element spaces X,
and My, are compatible for the bilinear form b( -), i.e., the discrete inf-sup
condition (6.37) holds.

6.4 Approximation of the u —n problem with weak
treatment of the imperviousness condition at
the lateral boundaries

6.4.1 Treatment of the imperviousness condition

The strong treatment of the imperviousness condition (5.11) at the solid
lateral boundaries i.e. w-ny, =0 on 'y, is difficult to implement.

The natural idea is to define the discrete space ?Eh,o approximating the
horizontal velocity as follows :

Xpo = {vnedy | vy = 0onTly,, and vy npyy = 0on Ty e b,

where we denote by I'j, ;, the inflow boundary and by I'j, 4, the solid lateral
boundaries of the discretized domain €. Now the construction of a finite
element space of functions with zero normal component is delicate, especially
if the domain is polyhedral and the degrees of freedom on the boundary are
located at the vertices.

Indeed, it requires the construction of the outgoing normal vectors ny at
the vertices of the solid boundaries, and these are not defined on a polyhe-
dral domain, as illustrated in figure 6.6. Note that most of the discretized
domains are polyhedral. Several methods exist to overcome this problem.
When required, the undefined normal vector can be constructed such that
it preserves some particular properties satisfied at the continuous level. For
instance, nj, can be defined at each node of the boundary 9, of a discrete
domain §2j, such that, for any discrete function vy, : Q) — R,

/ diVQ[)h de = ﬂ)h Ny dr'.
Qp, oy,
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Fi1G. 6.6 Polyhedral domain whose normal vector is undefined at the boun-
dary nodes.

See [39] for a description of this method. One can also use the normal vector
to the regular domain. This particular approximation of the imperviousness
condition has been studied by Verfiirth [137] in the framework of the Stokes
problem. He shows that the resulting scheme is still convergent provided
compatible finite element spaces are used —, but the error is in O(h1/2) in-
dependently of the finite element spaces chosen. Note that such a scheme is
costly because the imperviousness condition couples the components of the
fluid velocity.

One way to overcome these difficulties is to impose the condition weakly.
This idea was first introduced in the framework of compressible fluids
see for instance [121] —, and has been applied in several other contexts. In
particular, it has been widely studied by Pares [109] in the case of the Stokes
problem. Our purpose is to apply this method to the w — n problem studied
here.

6.4.2 Weak treatment of the imperviousness condition

In order to prescribe the imperviousness condition (5.11) at the lateral
boundaries as a natural condition, we could derive an alternative variational
formulation of the continuous w — 7 problem using the bilinear form

bu(9, X) = /Qvgx-zbdw (6.58)

instead of

(Y, x) = —/deiV2(/bﬁ¢dz)dw.
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Assuming that the free surface function 7 as well as the related test function
x belong to H'(w), the momentum equation can be written as

5(u7¢)f2 + Oéd(’u,,’lﬁ) + z’w(nﬂﬁ) :<G7’lp>)2‘/><_)€‘7

and the free surface equation as

5 (0, X)w — bulx,u) + /{)wx</bnudZ>-nw dry

=< H,x>mxm -

Using the natural imperviousness condition at the lateral boundaries, and
imposing strongly the Dirichlet condition on the free surface at the out-

n
flow boundary, the boundary term / X (/ u dz> - n, dy vanishes. This

Ow b
leads to a weak formulation for which the functional spaces defining the va-
riables u and 7 are, respectively,

Xy = {peH®Q? / ¥ =0 on Iy} (6.59)

and

No = {xeHYw) / x =0 on Owou }. (6.60)

Clearly, X,, is much easier to construct than Xy — defined by (6.5). Ho-
wever, this alternative weak formulation of the continous problem cannot
be analysed as done in section 6.2. Indeed, on one hand, the corresponding
bilinear form

Lw((¢1’>fl)v(¢2’x2))~: d (Y1, v9) + ad~(¢1a¢2)
+ bw(te, x1) — bw(®P1, x2) + 0 (X1, Xx2)w (6.61)

is symmetric and continuous, but it is not coercive on (2\;0 x Np)?. The Lax-
Milgram theorem can therefore not be applied to prove the existence and
uniqueness of a solution. On the other hand, the analysis in the mixed pro-
blem framework seems difficult with this alternative formulation, because it
requires the proof that the bilinear form Bw( -, - ) satisfies the inf-sup condi-
tion on the functional spaces X,, x N, where Ny € H'(w).

Therefore, we only use this idea at the discrete level. For this purpose,
we consider two Lagrangian finite element spaces X} and N}, approximating
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respectively X = H'(Q)? and M = L?(w), and such that

X, C Hl(Q)2 and N, C Hl(w). (6.62)

In addition we define :

Xhw = {Pp€X [/ ¥, =0 on Ty} (6.63)

and

th = {xh€Ny / xp =0 on Owou }- (6.64)

The following alternative approximation of the w — 1 problem is consi-
dered. Given up, and 7,

find wj, € A, and 7, € Ny such that,

Vb, € Xnw and Yy € Ny,

S (un,p)g + ad(un, ¥,) + bulnn, ¥)

= < Gp, Yy, > BBy (6.65)

O (Mhs Xh)w — bw(xn, un) = < Hpy X >Nsn -

It is worthwhile to note that this is not an internal approximation of the
continuous weak u — 7 problem (6.9). Indeed, the bilinear form by(-,-) is
different from 5(, -). Therefore, we cannot use the standard techniques as
for instance the Céa Lemma — in order to estimate the error between the
solution of the discrete problem and the solution of the continuous problem.

In fact, a more complex analysis would be needed to estimate this error.
Note that in [109], Parés analyses an approximation of the Stokes problem
with weak treatment of the imperviousness condition. Using non standard
techniques, he establishes an error estimate of the solution of the discrete
problem for the case where the velocity and the pressure are approximated
in the P;-bubble/P; space. This error estimate is in O(h!/?). He also shows
that this estimate is independent of the finite element spaces chosen, provi-
ded the inf-sup condition is verified.

We will not make such an analysis. We will only prove the existence and
uniqueness of a solution to the discrete problem (6.65) introduced here, both
in the Lax-Milgram and in the mixed problem frameworks.
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6.4.3 Analysis in the Lax-Milgram framework

Under the regularity assumptions (6.3) and (6.4) on the domain €, the
bilinear form L (-, -) defined in (6.61) is symmetric, continuous and coercive
on the discrete space (.)Eh,w x Npo)? for the norms || - ||17Q and || - [low-
Therefore, the Lax-Milgram theorem can be applied, leading to the following
proposition.

Proposition 6.14 Under the reqularity assumptions (6.3) and (6.4) on the
domain Q, for every u, € (X)), problem (6.65) has a solution (wp,np),
which is unique in Xp 4, X Nh,o and satisfies :

5 1\’
2 2 u( '
kg + Il < (2225 (6.66)

where cpy,(a, 8) is the coercivity coefficient of Ly (-, ) and fr(9) the continuity
coefficient of the right hand side.

We indicate that :

ar, (a,0) = Min(«a, J)
and  fr(6) = V26 max(|anloq + linllow)-

6.4.4 Analysis in the mixed problem framework

Since QE;Lw C Hl(())Q7 the continuity and coercivity of the bilinear form
a(-,-) is verified on (&j,,,)? for the norm | - | 1. On the other hand, since
Npo C L?*(w), the bilinear form m(-,-) is continuous and coercive on (N 0)?
for the norm || - || o . Therefore, Theorem 1.2 in [20] can be applied for the
discrete spaces /f’h,w and N}, o, and for the norms || - || 1o and [[-flow - It
leads to the following proposition concerning the existence and uniqueness
of a solution to the discrete problem.

Proposition 6.15 Under the reqularity assumptions (6.3) and (6.4) on the

domain , if the discrete spaces X, and Ny, are chosen such that the following
discrete inf-sup condition holds :

3 Bh,w >0 such that ¥ xp € Npo 3¢y, € ‘)Eh,w such that

bu(Pns xn) = B [¥nll1a Ixallow, (6.67)

then, for every @y, € (Xy), the discrete problem (6.65) has a solution (wp, ),

which is unique in Xp 4, X Nh,o and satisfies
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lunlli o + Imellow < KillGhllyg + K2 [Hallow (6.68)

where

2
_ 1 1 a"(a,0) 2
k= cal) <4+CA(04)> 1+2< Bh,w ) i (Bh,w)Q
1 "(a,0) (0,))
and Ko = m+2<m> 1+2<m>

We recall that a(a) = a and ca(e, ) = d + « are respectively the continuity
and coercivity coefficients of the bilinear form a(-, -). In addition,

Gl = dlallgq and [|Hallxy = 9 [nllow -
h ) h

Note also that the finite element spaces introduced in section 6.3.3 are
compatible for the bilinear form by (-, -) as well, with the norms in H*(Q)
and L?(w). Indeed, choosing

- 2
X = (7’1,1(%) & 31,1(7;1261))

and
o= ‘7_—171(7712d)’

where 7 1(7,2?) is defined by (6.42), By1(7,2?) by (6.43) and Py 1(7) by
(6.47), the discrete inf-sup condition (6.67) is verified.

This result can be proven following almost the same arguments as in the
proof of Proposition 6.13. Indeed, defining the finite element space

2
Vh = ( Fii(T) @ Bia(T,2) ) ;
we can show that Proposition 6.11 is still valid for the bilinear form by(-, -)

and the discrete spaces ‘)Eh,w and Nh,o, observing that the restriction to
Vho X Ny of bilinear form by (-, -) is equal to b(-, - ).
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Chapitre 7

Application to the Telemac-3D
system

7.1 Introduction

The Telemac-3D system solves the three-dimensional hydrostatic and
non-hydrostatic free surface problems using the finite element method.

To deal with the moving domain, it uses the sigma-transformation ap-
proach, which is a particular ALE method described in Chapter 4. The two-
dimensional domain w is discretized by a triangular mesh Tth, so that the
three-dimensional mesh 7," at each time t" is prismatic, as illustrated by
Figure 6.2. The three-dimensional velocity U and the dynamic pressure py
are discretized by means of functions in the first order prismatic finite ele-
ment space 77171(’12) defined in (6.47), while the free surface 7 is discretized
by means of two-dimensional piecewise linear functions — belonging to the
finite element space JF1(7,2?) defined in (6.42). For a precise description we
refer the reader to [66].

The equations are splitted using the first order in time fractional step
method. The solution of the hydrostatic, as well as the non-hydrostatic equa-
tions, involves the solution of a sub-problem which is similar to the u — 7
problem introduced in the previous chapter, though it doesn’t have the same
mathematical properties. We have modified the structure of the Telemac-3D
system so that exactly the u —n problem analysed in the previous chapter is
solved. We have then implemented the approximation of the u — 7 problem
into the system.

But the hydrodynamic problem also involves the resolution of the linear
advection equations of the velocity components and the tracer. Several me-
thods all of them explicit exist in the Telemac-3D system to solve these
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equations : a characteristic method, the SUPG method and two MURD
schemes. However, the latter were implemented for the particular use of the
classical sigma transformation defined in section 4.8. When we generalized
the Telemac-3D system to the use of a larger range of sigma transformations
— i.e. of discrete ALE mappings — as described in section 4.8, we observed
that the conservation property of these MURD schemes was deteriorated.
Therefore, we updated these schemes using the ALES-MURD approach des-
cribed in Chapter 3, so that they be compatible with any mapping.

In this chapter, we will describe the modifications opered on the algo-
rithm solving the hydrostatic equations in the Telemac-3D system. Note that
these modifications also affect the solution of the non-hydrostatic equations,
since they involve a hydrostatic intermediate step. Especially, we will des-
cribe the implementation of the approximation of the u —n problem into the
system. Some numerical results obtained with this new algorithm will then
be shown and compared to the results obtained on the same test cases with
the standard algorithm. Then, we will describe how the ALE-MURD schemes
introduced in Chapter 3 can be applied to solve the advection equation of the
horizontal velocity and the tracer in the framework of the three-dimensional
hydrostatic free surface problem. Note that we used this description when
adapting the advection module in Telemac-3D to the generalized sigma co-
ordinate system.

But let us first describe the general structure of the Telemac-3D system,
more precisely the different fractional steps solved. In particular, we describe
the standard algorithm solving the hydrostatic equations.

7.2 The Standard Telemac-3D system

7.2.1 The standard hydrostatic algorithm.

After time discretization, the hydrostatic problem (5.38)-(5.40) is splitted
almost as described in section 5.13, except that the diffusion term in the
momentum equation on the horizontal velocity w is also splitted. The system
is thus divided into 4 sub-systems, solved independently :

— (h1) the advection of the horizontal velocity wu,

1 " ou”

— (a—u") + u™ - Vau" + (w")™ = 0 in Q"
L (@) N ,
where w* is the “pseudo-vertical velocity” defined in (4.22), accounting
for the domain movement, and ¢%" is a particular time in [t"~1, ¢"]

— (hg) the diffusion of w,

1
Az

Y

ul — @) + div (UVud> —  fhor i Qn
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— (hs3) the problem coupling v and 7,

1

Kt (un—l—l_ud) + gv2n0n — 0 in Q"

77"
A% (" =n") + g divy (/b udz) = 0 in Q"
(h4) the continuity equation that allows to recover the vertical velocity
w7

divU™ = 0 in Q"

where U = (u®",w) and t° is a particular time in [t", ¢"T1].

Asin section 5.13, the velocity divergence and the free surface gradient terms
in the u — 1 problem are semi-implicited using the f-method. Time t% is
determined by an implicitness parameter 0 < 6 < 1, defining

="t + 1-0)t"
for each n =0,..., Ny — 1. The corresponding variables are then

o =0t + 1—6) " and w = gurtt 4 (1-6) un

7.2.2 The standard non-hydrostatic algorithm.

The non-hydrostatic problem (5.46)-(5.49) is solved by splitting the time-
discrete equations into a hydrostatic and a hydrodynamic part. The hydro-
static part corresponds almost to the hydrostatic problem (5.38)-(5.40) : it
is composed of the momentum equation (5.38) on the horizontal velocity
u and the free surface equation (5.39). But it also includes the advection
and diffusion of the vertical velocity w. The hydrodynamic part consists in
the correction by the hydrodynamic pressure term pg of the total velocity
U = (u,v,w) so that it becomes divergence free.

Each part is then splitted independently, dividing the non-hydrostatic
system in the following 6 sub-systems :
(nhy) the advection of the horizontal velocity wu,
r L Ou”

E(u—u)—i—u"-vgu + (w") 9% 0 in Q"

— (nhg) the advection of the vertical velocity w,

1 ~ *aan : n
AL (0w —w™) + w™ - Vou" + (w)™ g; = 0 in Q"
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— (nhg) the diffusion of wu,

1

= (@) + div (Vvud) —  fhor i Qn

— (nhy) the diffusion of w,

é (w? — o) + div (I/de) = f. in Q"

— (nhs) the problem coupling w and 7,

1
AL (" —ud) + gVon’» = 0 in Q"

n

n
Tt =) + g dive (/ whndz) = 0 in Q"
At A

providing the free surface function.
— (nhg) the so-called continuity step,

1 1
~ Uttt —uhy + ;Vp'g“ = 0 in Q"
divU™t = 0 in Q",

in which the total velocity is updated ensuring the continuity equation.

Note that the sub-systems (nhi), (nhs) and (nhs) correspond exactly to
(h1), (he) and (hg) in the hydrostatic algorithm presented in the previous
section, except for the step ensuring the continuity equation. Therefore, in
the Telemac-3D system, the solution of the non-hydrostatic problem involves
the solution of the hydrostatic equations .

We indicate that sub-system (nhg) is manipulated to obtain a Poisson
equation on the hydrodynamic correction pSH. The total velocity U™ is
then updated according to :

vttt = Ut - gVpg“ in Q"
p

We will now focus on the resolution of the problem coupling the horizontal
velocity and the free surface function.
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7.2.3 Standard algorithm solving the problem coupling u
and 7.

We describe now the practical procedure used up to now in the Telemac-
3D system to solve sub-system (hg) in the hydrostatic algorithm presented
previously — or sub-system (nhs) in the non-hydrostatic algorithm. We point
out that this problem is equivalent to the w—n problem analysed in Chapter
6 without diffusion and without source term. However, it is solved in a very
particular way in the Telemac-3D system : the equations are depth-integrated
at the discrete level. Indeed, at each time t"*!, the variables sought are on
one hand the depth-averaged horizontal velocity

(o)

1 Lo 1
a"t = — / u" dz,
h gy

and on the other hand the water height h"T!. Sub-system 3. is thus solved
in two steps :

- (hS,a)
1
Kt (ﬂn—f—l_ﬁd) + nghG" = — gV in w,
A% (R — ") + g diva(B" @) = 0 in w.

This system is defined on the two-dimensional domain w, and we ob-
serve that it is very similar to the Saint- Venant system without advec-
tion and without friction term. In fact, it is solved in the Telemac-2D
system, which treats the two-dimensional shallow water equations.

(h3p)

unJrl(xuya Z) = ud($7y7 Z) - ﬁd($7y) + ﬁnJrl(xay) :
The vertical profile of u is retrieved afterwards using the averaged
value @ and the value u? obtained at the diffusion step.

Let us now focus on system (hs3,). The imperviousness condition on the
solid lateral boundaries is imposed weakly. Note that an analysis was made
by Goutal in [56] of the time-discretized Saint-Venant system without advec-
tion and with essential treatment of the imperviousness condition at the solid
lateral boundaries. Now this analysis cannot be applied to problem (h3 ),
since the diffusion is treated explicitly and the imperviousness condition is
treated weakly. We will not analyse this problem either. However, we can
make some relevant remarks.

Since there is no diffusion term on w, the operator on @ is not coercive
on H%(w)? x H¥(w)? : the existence of a solution to the space-continuous



178 7 Application to the Telemac-3D system

problem can therefore not be proven in the Lax-Milgram framework. The
analysis can nevertheless be made in the mixed problem framework. But
this suggests the necessity, at the discrete level, of satisfying a particular
mf-sup condition.

The algebraic form of the space-discrete problem is, for n =0, ..., Vg,
L M2 cT 1 2d
At U U n+1
= , (7.1)
g n+1 2d
- B N M3 H R

where U"! and H"*! are the unknown vectors containing, respectively, the
discrete values of the depth-averaged horizontal velocity @, and the water
height hy at t = "1, ijd and MIQ_Id are the two-dimensional mass matrices
in wy, for w and h respectively. The matrices C' and E™ are defined by

Cij = gt Vaxi(z,y) - pj(z,y) drdy,

wp

and

(E™)i; = 90 / W Vo xi(y) - ;(x.y) ddy,
Wh

where x; denotes the basis function corresponding to the i-th degree of free-

dom for the water height h, and ¢; is the basis function corresponding to

2d

the j-th degree of freedom for the variable w. The terms Q%le and R;% 4

account for boundary conditions and for the explicit terms.

We observe that the linear system to solve is not symmetric. In this form,
we cannot determine easily whether or not it is invertible. However, spurious
oscillations have been noticed in some numerical test cases. They seem to
be due to the fact that the finite element spaces used to approximate the
depth-averaged velocity w and the water height A do not satisfy a particu-
lar inf-sup condition required. In [65], it is shown that these oscillations can
be suppressed by either using a higher accuracy or by adopting a compa-
tible discretization. For this reason, the so-called quasi-bubble element was
implemented to enrich the linear finite element space .7-_1,1(7;12d) for the ap-
proximation of the depth-averaged velocity w. This element is described in
section 6.3.3.

Another algorithm, referenced to as the pseudo wave equation, has been
implemented in the Telemac-2D system to avoid these spurious oscillation.
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It consists in solving the dual system of problem h3q, that is

-1
(2 s+ ) o = R+ e () a2,
grtl — At (M[Zjd) -1 oT gntl + (M[Zjd) -1 Zil ’
where

G = At B (M%}d)_lcT.

To simplify the problem, the matrix G is approximated by the two-dimensional
diffusion matrix D, with a particular coefficient (c,)? depending on the
time step At, the implicitness parameter 6, the variable h™ and on g :

G ~ (c,)? D% .

This choice is justified by the term in dive (V2h) appearing when the same
manipulation is made on system hg3 , at the continuous level i.e. eliminating
@ in the continuity equation. The problem finally reduces to an equation of
the form

g 2d 2 2d) _
I M )2 D) H = F,
(At + (en)

which does not require the verification of the inf-sup condition to be well
posed. Note that in dimension 1, by dividing it by At, this equation can
be interpreted as a wave propagation of celerity c¢. For a more detailed des-
cription of this algorithm see [66] and [65]. We indicate that this solver is
faster than the primal problem solver. However, spurious oscillations have
been detected in some cases, and they appear to be lower when solving the
primal problem with the quasi-bubble discretization.

In any case, the depth-integration of the equations has the obvious advan-
tage of simplifying their resolution, since it leads to a considerably smaller
linear system. Moreover, this system did not require an important imple-
mentation effort since the two-dimensional module was available. However,
this approach also has some drawbacks.

1. It requires the resolution of an additional step, the diffusion step, which
is three-dimensional and quite costly.

2. By splitting the diffusion term in the momentum equation, it modi-
fies an important property of the operator on w : its coercivity, which
ensures the existence and uniqueness of a solution to the discrete pro-
blem when the viscosity coefficient is not negligible, without having to
satisfy a particular discrete inf-sup condition. In addition, by depth-
integrating the equations, the symmetry of the problem’s mixed for-
mulation is lost.
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3. It forces the system to use a vertically-structured mesh in order to
allow the exact depth-integration of the discrete functions.

We propose in the next section a new approach to solve the 3D hydro-
static problem — and through it also the non-hydrostatic problem.

7.3 New hydrostatic algorithm for the Telemac-3D
system

7.3.1 The new hydrostatic algorithm.

We have modified the hydrostatic part of the Telemac-3D system in or-
der to circumvent some of the drawbacks described previously. The new
hydrostatic algorithm comprises the same sub-sytems (h1) and (hg) as the
standard hydrostatic algorithm — see section 7.2.1 — | but it puts together
sub-systems (hg) and (hs) into one unique problem coupling the horizontal
velocity and the free surface : that is the w —n problem analysed in Chapter
6. The new hydrostatic algorithm is the following :

— (h}) the advection of the horizontal velocity wu,

1 du”
& (@—u") + e Vau () &“’z — 0 i O,

where w* is the “pseudo-vertical velocity” defined in (4.22), accounting
for the domain movement, and ¢%" is a particular time in [t"~1, ¢"]
— (h%) the w — 7 problem,

Y

1

= (W —a) - div (I/V’ugn) Y gV = 0 in Q"
9 1 : " 0 :
= (" =n") + g divo (/ um"dz) = 0 in Q"
At b

(h%) the continuity equation that allows to recover the vertical velocity
w7
divU = 0 in Q"
where U = (u®",w) and t°* is a particular time in [t " F1].
Sub-system (h}) is approximated by the discrete u — 7 problem (6.65) pre-

sented in section 6.4, involving the weak treatment of the imperviousness
condition.

We would like to highlight the fact that this new algorithm implies no
splitting of the diffusion term and no depth-integration of the equations.
There are several reasons for testing such a solver.
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On one hand, we have analysed the w — n problem in chapter 6. This
analysis has shown that, when the viscosity coefficient is not negligible, the
continuous problem as well as its approximation have a unique solution re-
gardless of the satisfaction of a particular inf-sup condition. Now if the diffu-
sion term is dropped, we don’t know if this property holds true. In this case,
the existence and uniqueness of a solution can be proven in the mixed pro-
blem framework provided a particular inf-sup condition is satisfied. It may
thus be necessary to use compatible finite element spaces to approximate the
problem in absence of the diffusion term. Therefore, it seems more convenient
to keep the diffusion term inside the u-n system for more stability.

On the other hand, solving the complete three-dimensional u—7 problem
may be less costly than solving successively the three-dimensional diffusion
step (hg), the depth-integrated problem on w and 1 (hs,), and deducing
the three-dimensional horizontal velocity using equation (hs3). In addition,
a reduction of the number of equation splittings improves the treatment of
the boundary conditions.

Finally, the possibility for the Telemac-3D system to be extended to
vertically-unstructured meshes seems interesting. Now the depth-integration
of the equations in the system (hg,) coupling uw and n does not allow such
a discretization. On the contrary, solving the complete three-dimensional
u — 1 problem (h}), especially with a weak treatment of the impervious-
ness condition at the solid lateral boundaries, allows any type of vertical
discretization. Note however that the adaptation of the whole system to a
vertically-unstructured mesh would in all cases require a considerable imple-
mentation effort, and has not yet been done.

7.3.2 Solving the discrete u — n problem.

As already mentioned, we approximate the w — n problem (k) by the
discrete weak problem (6.65).

Its algebraic form is, for n =0,..., Ny :
An (B'n)T Un+1 Qn+1
= (7.2)
—_Bn M[2{d Sn+1 Rn-{-l’

where U"+! and S"*! are the unknown vectors containing the discrete values
"+l and the two-
dimensional free surface n"*! at t = "1, The time-dependent matrix A" is
defined as follows :

of, respectively, the three-dimensional horizontal velocity w

1
An = Kt Mgd + HV_Dn,

where M3 is the three-dimensional mass matrix in QF for the variable w
and D™ is the three-dimensional diffusion matrix in Q.
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The matrix B™ is the algebraic counterpart of the operator B defined in
(6.8), that is :

(Bn)z] = ge on V2X2($7y)11b](xayuz) d.’137
h

where x; denotes the two-dimensional basis function corresponding to the
i-th degree of freedom for the water height h, and 1, the three-dimensional
basis function corresponding to the i-th degree of freedom for the unknown w.

Here again, the terms Q"*! and R™*! account for boundary conditions and
for the explicit terms.

We point out that the linear system is definite positive whenever the vis-
cosity coefficient is not zero see the Lax-Milgram analysis of the discrete
problem in section 6.4.3. In addition, the system has a symmetry property,
since it gets symmetric by multiplying the second equation with —1. This
makes it easier to analyse, and simplifies the implementation of its solution.

The structure of the matrices as well as the degrees of freedom of the
unknown quantities depend on the particular choice of the space discretiza-
tion. We have implemented the resolution of this linear system taking profit
of the finite element basis already implemented in the Telemac-3D system.
Therefore, we have chosen to approximate :

the horizontal velocity w in the first order prismatic finite element
space Py.1(7,) defined in (6.47),
the free surface n in the Lagrangian finite element space .7:1,1(7;1%)
defined in (6.42).
That means that the degrees of freedom of w and 7 are respectively the
three-dimensional nodes in ’fh, and the two-dimensional nodes in ’Z;fd. For
the sake of clarity, we will denote by N34 the amount of nodes in 75, and by
Nyg the amount of nodes in ’];fd. The dimensions of the vectors U"*! and
H™ 1 are then, respectively, N3z and Nog.

It is not known if the inf-sup condition (6.67) is verified or not with these
finite element spaces. We may therefore expect to obtain instabilities when
the viscosity coefficient is negligible. In that case, the implementation of the
resolution using the compatible spaces introduced in section 6.3.3 would be
useful. Note that we have not yet implemented this alternative discretization.

Since the matrix B” is quite particular, and its storage has been the most
delicate part of the implementation, let us focus on its structure.
As easily verified, B™ is a rectangular matrix of dimension Nog X N3q4.
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No structure of this type exists in the finite element basis of the
Telemac-3D system. Therefore, we have adapted an existing structure
to the storage of the matrix. We point out however that this storage
is not optimal.

Remark 7.3.1 The Telemac-3D system uses essentially the element-
by-element (EBE) storage |55|. This technique is based on the fact
that any matrix M can be decomposed on the elements of the mesh
as follows :

M =" Qx Mx (Qx)",
K

where K denotes an element of the mesh, M is the elementary matrix
corresponding to K and (g is the matrix which makes the transition
between the element K and the global mesh Qg is derived from the
connectivity table. Any matrix-vector product can then be performed
easily using the elementary and the transition matrices. Therefore, the
matrices are not assembled, only the elementary matrices are stored.
This technique is easy to implement, and it is very efficient for finite
element systems using iterative resolution methods as it is the case in
the Telemac-3D system —, because the essential matrix manipulation is
then the multiplication with a vector. However, the EBE storage pre-
vents from using preconditioning that requires the assembled matrix,
for instance the uncomplete Cholesky decomposition or the Cahouet-
Chabard [10] preconditioning developed for the Stokes problem.

Another particularity of the matrix B™ is that it is defined as an inter-
action between two-dimensional and three-dimensional basis functions.
Thus, particular care must be taken for the matrix-vector product. In-
deed, B"™ is decomposed in the following unusual way :

B" = Z QTP Blg (QP)Ta

PeT,

where @7, is the transition matrix between the basis triangle Tp of
prism P and the two-dimensional mesh ’];fd, while @ p is the transition
matrix between P and the three-dimensional mesh 7,".

We have therefore adapted the modules performing the matrix-vector
product to the treatment of the particular B™ matrix.

The elementary matrices Bj have 3 rows and 6 columns. They are
defined as follows for each element P in 7y, :

(BR)y = 90 /P Vaoxi(y) - ,(@,y,2) dP,
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where ¢ = 1,2,3 is the local node in the basis triangle Tp of prism
P,and j=1,...,6 is the local node in prism P.

Since x; is a piecewise linear function in the two-dimensional mesh
Tth, and since the three-dimensional mesh considered here is vertically
structured  i.e. the prisms are arranged in columns with the same
triangular basis, as illustrated in figure 6.5 —, its gradient is constant
on each prism. Therefore :

(B = (Vaxi)| 1, - /P (., 2) dP,

where Tp denotes the triangular basis of the prism P. In addition,
since the lateral faces of the prisms are vertical, we have that :

/Pwlsz /Pwmp,
[ wzar = [ s ap.

/ngdP: /Pu)ﬁdP,

where local nodes 1 and 4 — respectively 2 and 5, 3 and 6 — are located
on the same vertical, as illustrated in figure 6.4.

As a result, each elementary matrix B has only 9 distinct values, we
could thus store them in 3 x 3 - dimensional arrays. Unfortunately
this is not possible in the Telemac system, because any value in an
elementary matrix can be modified before the linear system is solved

and

by the imposition of the Dirichlet boundary conditions. The symmetry
described can then be broken.

Remark 7.3.2 Note that the third point is only valid for our particular
discretization of the mesh and the variables. We point out however that the
elementary matrices B% can be constructed independently of this decompo-
sition, for any choice of finite element spaces and on any three-dimensional
mesh.

Once the matrices are constructed, system (7.2) can be solved. For this
purpose, the efficient GMRES iterative method is used. We indicate that
although it was already implemented in the Telemac-3D system, it had to be
adapted to the structure of our system. No convenient preconditioning being
available, the simple diagonal preconditioner is adopted. Of course, this is
far from being optimal for the system we want to solve.
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Remark 7.3.3 For the reasons previously exposed, the resolution of the
complete © — 1 problem we have implemented is not optimal. We would
like to point out that our aim up to now was to study the feasibility of the
algorithm. The resolution could surely be optimized, on one hand, by using
a structure adapted to the storage of the matrix B", improving the efficiency
of the matrix-vector product. On the other hand, a better preconditioning
could significantly improve the resolution of the linear system.

In the next section we present some results obtained with the new algo-
rithm.

7.4 Evaluation of the new hydrostatic algorithm

In order to evaluate the new hydrostatic algorithm, it has been applied
to a very large range of three-dimensional test cases. The results have been
compared to those obtained on the same test cases with the standard version
of the Telemac-3D system. In one particular case — the standing wave in a
closed basin the results have also been compared to the analytical solution
of the linear equations for an inviscid fluid provided by the small amplitude
wave theory.

We have chosen to present four of these numerical tests in this section. We
will describe them and show the results obtained with both the standard and
the new algorithms. The respective CPU times will not be specified, since
the new implementation has not been optimized yet and the data would
therefore not be significant. After analysing these results, we will conclude
on the validity of the resolution and the interest of the new formulation.

7.4.1 Oscillating wave in a closed basin

We first present the results obtained on the test case of the oscillating
wave in a closed basin, introduced in section 3.8.3 and already used twice in
this work — see also test case 1 in section 4.8.4. A closed square basin with
side L and with a constant bottom at z = —H is considered, where H is the
equilibrium water depth. In this test no tracer is contained in the fluid. At
the initial time the fluid is at rest and the free surface profile imposed is the
same as in section 3.8.3, i.e.

n(z,y) = nocos (kz),
u=v=w=0,

cosh (k(z + H))
cosh (kH)

pa(r,y,z) = —pogn + pogno cos (kz),
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where p; denotes the hydrodynamic pressure correction and where

II
o =01m, k= T L=10m and H = 10m.

We recall that such an initial configuration generates a wave motion with
continuous exchange of potential and kinetic energy. In addition, the fluid
is assumed inviscid : there is no energy loss and the oscillation continues
forever. Note also that since the initial free surface slope is parallel to the
x-axis, no motion takes place in the y-axis direction.

In order to compare the results with the analytical formulas given by the
small amplitude wave theory, the nonlinear terms are neglected. Therefore,
and because there is no source term, the hydrostatic part of the discrete
equations reduces to the u — 7 problem with no diffusion terms, that is sub-
system (hg) formulated in section 7.2.1 :

1

E (unJrl _un) + g V2779n — 0
in Q"
,nTL
Ai ("t — ) 4+ g divy (/ u dz) = 0.
t b

In this case, the new resolution of the hydrostatic problem is equivalent to
its standard resolution. We therefore expect to obtain the same results with
the two methods. This test case can in fact be used as a wvalidation test of
the newly implemented scheme.

The simulation is performed with a time step length of 0.1 seconds for
a time interval of 30 seconds. The resolution is of approximately 0.2 m in
the horizontal direction and 1 m in the vertical direction. The initial three-
dimensional mesh is the same as in section 3.8.3. It counts 11 levels, dis-
tributed along the vertical in the discrete domain using the classical sigma-
transformation. Figure 7.2 shows its vertical cross-section at y = 5, and Fi-
gure 7.1 the two-dimensional grid used to build it. Note that a semi-implicit
scheme has been used for all simulations, using the implicitness parameter

0 = 0.55.

The simulation is first performed using the hydrostatic model. The com-
puted water height at the basin boundary x = 0 m is shown as a function
of time in figure 7.3. As expected, the free surface profiles obtained with the
standard and the new hydrostatic algorithms are exactly the same. The wave
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F1G. 7.1 — The horizontal 2D mesh.

Fia. 7.2 Vertical cross-section of the 3D mesh at y =5 m.
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amplitude remains constant for a considerably long time, and is then pro-
gressively damped, due to numerical diffusion introduced by the fractional
step method. This gives a measure of the energy loss. We also observe that
the period of oscillation does not correspond to the analytical one. In fact,
the hydrostatic model reproduces the unphysical long wave period.

We have therefore performed the same simulation using the non-hydrostatic
model. The time series for water height obtained with this model are repro-
duced in Figure 7.4. Here again, the free surface profiles obtained with the
two algorithms are identical. But this time the period of oscillation is repro-
duced exactly at the beginning of the simulation, although it progressively
gets slightly longer. However, we observe that the wave damping is stronger
with the non-hydrostatic model : the energy conservation is deteriorated. In
fact, the numerical diffusion is increased because of the additional fractional
step.

z(m

- \“ = T nE T - /\ T - 1
0 5 10 15 20 25 30
t(s)

Fia. 74  Temporal profile of the exact water height (dotted line) vs.
the computed water height obtained using the non-hydrostatic model in
Telemac-3D with the standard (solid line) and the new (solid line with plane
circles) hydrostatic algorithms.

A comparison between the analytical velocity and the velocities obtained
using the non-hydrostatic model in Telemac-3D with the standard and the
new hydrostatic algorithms is given in vertical cross-sections at y = 5 m.
Figures 7.5, 7.6 and 7.7 show these results at respectively t = 0.1 s, t =
1 s and t = 10 s. We can say that the numerical results are in relative
good agreement with the analytical solution. The velocities provided by the
two different schemes are almost identical. Moreover, the conservation of
the water mass is in both cases very satisfactory : the total mass-loss is
of —0.5710713 with the standard algorithm and —0.1210713, what can be
considered as negligible.
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new hydrostatic algorithms.
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F1G. 7.6 — Analytical velocity at t = 1 s vs. the simulated velocity obtained
using the non-hydrostatic model in Telemac-3D with the standard and the
new hydrostatic algorithms.

7.4.2 Flow in an estuary

We now present the simulation of a flow in the transition zone between
an estuary and the coastal waters, whose geometrical characteristics are very
close to those of the Sado estuary in Portugal — see for instance [88]. The
interest of this test case lies in the three-dimensional features of the flow
caused by the strong bathymetry variations in the domain. Indeed, a recir-
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Fia. 7.7 Analytical velocity at ¢ = 10 s vs. the simulated velocity obtained
using the non-hydrostatic model in Telemac-3D with the standard and new
hydrostatic algorithms.

culation flow in the vertical plane is observed during the ebb period in the
region of steep bathymetry. Note that this feature is considered important for
the sediment transport in that region. Our purpose is to see if the numerical
solutions provided by the two variants of the Telemac-3D system reproduce
this phenomenon and if they are different.

We consider a chanel of length L = 625 m and width { = 100 m. Its ends
are open, and the bottom elevation decreases from z = 0 to 2z = —8 in a
non-uniform way. The initial three-dimensional mesh is shown in Figure 7.8,
and its vertical cross-section at y = 50 m in Figure 7.9. It counts 10 levels
along the vertical axis. The inflow boundary is situated at the left end of the
chanel, the outflow boundary at its right end. Note that in order to improve
the visualisation, a distorsion coefficient of 30 has been used for the vertical
direction with respect to the horizontal one. The two-dimensional grid used
to generate the 3D mesh is shown in Figure 7.10.

At the initial time, the free surface is constant at z = 0 m, and a uni-
form velocity field is prescribed in the x direction only. During the whole
simulation, a constant discharge of Q = 50 m?/s is prescribed at the inflow
boundary, and a constant free surface 7,,; = 0 m is imposed at the outflow.

The water depth is very small with respect to the length of the chanel :
the flow is therefore shallow water. However, the bottom gradients being
relatively important, it is not clear whether or not the hydrostatic approxi-
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FiGg. 7.8 The initial 3D mesh.
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FiGg. 7.9 Vertical cross-section of the initial 3D mesh at y = 50m.

mation can be applied. Therefore the simulations are performed using both
the hydrostatic and the non-hydrostatic models.

For the simulations we have used a time step of length At = 2 seconds,
for a time interval of 2000 seconds. The first simulations have been perfor-
med with a horizontal viscosity of v, = 0.01 m?/s and a vertical viscosity
coefficient of v, = 1079 m?/s. The friction is prescribed through a Strickler
coefficient of 50. Note that the velocity advection step subsystem (hy) in
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F1G. 7.10 — The horizontal 2D mesh.

section 7.2.1 for the hydrostatic model, subsystems (nh;) and (nhg) for the
non-hydrostatic model — is solved using the Characteristic method.

The velocity profiles obtained after 2000 seconds using Telemac-3D with
the new hydrostatic algorithm are shown in Figure 7.11, while those obtai-
ned using the standard algorithm are presented in Figure 7.12. Note that
these figures show both the solution provided by the hydrostatic model (top
figures) and the one provided by the non-hydrostatic model (bottom figures).
We observe that the velocity profiles are very close : there is no relevant diffe-
rence between the solutions provided by the standard and the new resolution,
neither with the hydrostatic nor with the non-hydrostatic model.

The relative mass-loss at the end of the simulation is of 107 when using
the new algorithm, and 2.10~* when using the standard one.

As explained in [88], the recirculation appears when the high momentum
of the top layers is not efficiently transported to the lower layers. Since the
transport is mainly diffusive, that happens when the vertical diffusion of
momentum is low, and this concerns as well the physical diffusion as the
numerical one. In order to illustrate this statement, we have performed a
second simulation with a higher vertical viscosity : v, = 0.02 m?/s. Figure
7.13 shows the results obtained with the hydrostatic model using the standard
(top figure) and the new (bottom figure) algorithms.

We observe that for such a high vertical viscosity coefficient there is
no recirculation. Again, there is no relevant difference between the results
obtained with the two different algorithms.
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7.4.3 Wind-driven circulation

An interesting test case is the simulation of a wind-driven flow in a
long closed basin with shallow water. We consider a rectangular domain
whose length, width and depth are respectively L = 500m, [ = 100m and
b = —10.5m. The initial three-dimensional mesh is shown in Figure 7.14.
It has been obtained using the classical sigma transformation, distributing
homogeneously 15 levels along the vertical. Note that a distorsion coefficient
of 15 has been used for the vertical direction with respect to the horizontal
one in order to improve the visualisation. The horizontal two-dimensional
grid used is shown in Figure 7.15.

FiGg. 7.14 The initial 3D mesh.
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Fi1G. 7.15 — The horizontal 2D mesh.

At the initial time, the water height is constant and equal to 10.5 m, and
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no motion is taken. A wind shear force is applied on the basin through the
dynamic boudary condition at the free surface :

ou

v Pair
on

= Qind W ||w|| (74)

on D'y,

where pg;- is the air density, taken equal to 1.29 kg/m?, u is the horizontal
velocity of the fluid and w is the wind velocity at 10 m above the water level.
The coefficient g is dimensionless and given by Flather [41]. (for a more
detailed description of the wind forcing in the Telemac-3D system see [66]).
In this simulation we consider a wind blowing only in the z-axis direction,
whose velocity is 10 m/s.

The simulation is performed with a time step length of At = 1 s, for a
time interval of 20000 seconds. The velocity advection step is solved using
the PSI MURD scheme. The horizontal viscosity coefficient is taken constant
at v, = 0.1 m?/s, while the value of the vertical viscosity is succesively taken
equal to v, = 0.1, v, = l.e — 4 and v, = l.e — 6 m?/s. Note that although
the flow is shallow water, we will use the non-hydrostatic model because of
the strong accelerations of the vertical velocity generated by the wind.

We give an indication of the efficiency of the new hydrostatic algorithm
compared to the standard one by indicating the number of GMRES itera-
tions necessary to solve each step of these algorithms see sections 7.2 and
7.3 to identify these steps.

Standard algorithm :

v, =0, =01]v,=011v,=10"%] 1, =0.1, v, =106
(ho)u 1 2 2
(hg)v 1 2 3
(hs.q) 1 1 1

New algorithm :

vp =1, =0.1

v, =0.1, v, = 1072

vp,=0.1, v, =106

(5)

1

2

3

Note that (hg2), and (ha), denote the systems corresponding to the dif-
fusion of each component of the horizontal velocity, respectively u and v.

Test 1.

: vertical viscosity v, = 0.1 m?/s.
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Figures 7.16 and 7.17 present, respectively, the computed water height
and the velocities at ¢ = 20000 s in the laminar case with a vertical viscosity
of v, = 0.1 m?/s. The results obtained using Telemac-3D with the standard
and the new hydrostatic algorithms are almost exactly the same : the free
surface leans towards the left end boundary of the domain, and a clear and
widespread circulation is obtained over the entire area of the basin. Note
that the fluid decelerates smoothly when reaching the wall.

In fact, the difference between the two resolutions only gets visible when
a lower vertical viscosity is used. This can be explained by the fact that in
that case the velocities are less homogenous along the vertical direction. We
can thus expect that a three-dimensional resolution of the complete problem
coupling the horizontal velocity and the free surface function provides dif-
ferent results than its standard resolution, which involves the splitting of the
diffusion term and the depth-integration of the momentum equation.

Test 2. : vertical viscosity v, = 107% m?/s.

The results obtained at time ¢t = 20000 seconds with a lower vertical
viscosity coefficient of v, = 107% m? /s are shown in Figures 7.18 and 7.19.

We observe clear spurious oscillations on the free surface, although they
are slight since their maximal amplitude is of 3.1073m. They strongly look
like oscillations due to a lack of inf-sup conditions. We could therefore think
that the finite elements discretizing the horizontal velocity and the free sur-
face do not verify the inf-sup conditions for the sub-problem (hs,) solved in
the standard hydrostatic algorithm see section 7.2.3.

The oscillations also occur when using the new hydrostatic algorithm,
although they are lower. Since the vertical viscosity coefficient is very small
~ v, = 107*m?/s — it is indeed possible that these oscillations arise from a
lack of inf-sup conditions. Indeed, in Chapter 6 we have analysed the discrete
u — 1) problem solved in the new hydrostatic algorithm — i.e. sub-problem
(h}). We have proven for the case where the parameter o  corresponding
to the viscosity coefficient — is not zero that the problem has a unique solu-
tion. We have also observed that the error estimation given by this analysis
deteriorates when this parameter gets too small. For these cases — o =0 or
« very small  we have proven the existence and uniqueness of a solution
provided a particular inf-sup condition is verified. The oscillations observed
in the actual test case could therefore come from the lack of this condition.

These oscillations have been detected very recently. Thus, we haven’t
really studied the problem yet. But we have some ideas on the matter that
will be exposed in the conclusion of this section.
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Let us now look at the velocity profiles shown in Figure 7.19. The profiles
obtained using the two different hydrostatic algorithms are clearly different.
We cannot say for sure which one is better, since the analytical solution is
not known, but it looks like the velocity profile obtained with the standard
hydrostatic algorithm is not correct. Indeed, we notice in figure b) that the
velocity in the second top layer is inconsistent : this layer should be dragged
by the first top layer on which the horizontal velocity is very strong. Now
on the very left part of the second top layer the velocities change direction.
This does not happen in the results shown in figure a) obtained with the
new algorithm.

Test 3 : vertical viscosity v, = 107% m?/s.

Finally, the results obtained at time ¢ = 20000 seconds with an almost
negligible vertical viscosity coefficient of v, = 107¢ m?/s are shown in Fi-
gures 7.20 and 7.21.

The oscillations detected in the previous test case are also visible on the
results obtained with the standard hydrostatic algorithm in this test, and
their amplitude has grown the maximal amplitude is now 6.1072 m. On
the contrary, the oscillations are significantly lower using the new hydrosta-
tic algorithm.

The velocity profiles obtained with the two algorithms are again very dif-
ferent. But this time, the results obtained with the new algorithm are clearly
better. Indeed, figure b) presenting the profile obtained with the standard
algorithm reveals a strong oscillation of the velocity on the four top layers. In
addition, the vertical velocities on the left wall of the domain are inconsistent.

Therefore, it seems that the new hydrostatic algorithm is more stable
than the standard algorithm in presence of low vertical viscosities.
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the (b) new hydrostatic algorithms.
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FIG. 7.18 — Free surface at ¢t = 2000 s obtained for v, = 0.1 m?/s and
vy, = 107% m?/s, using the non-hydrostatic model of Telemac-3D with the
(a) standard and the (b) new hydrostatic algorithms.
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7.4.4 Transcritical flow over a bump.

We consider now the classical test of the stationary flow over a parabolic
bump, with a hydraulic jump downstream. It takes place in a chanel which
is 2 m wide and about 21 m long. Its bottom is flat, at z = —0.2 m, except
between the abscissae x = 7.12 m and z = 12.88 m, where there is a parabolic
bump culminating at £ = 10 m at elevation 0, according to the formula :

b(z,y) = max(—0.2, —0.0246875(z — 10)?). (7.5)

A vertical cross-section at y = 1 m of the initial three-dimensional mesh
is shown in Figure 7.22. It counts 6 levels along the vertical axis, and the
two-dimensional grid is shown in Figure 7.23.
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FiG. 7.22  Vertical cross-section of the 3D mesh at y = 5 m.
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F1G. 7.23 — 2D mesh.

At the initial time the free surface is constant at z = 0.4 m and no motion
is taken. But after the first time step a constant discharge of @ = 2 m3/s
is prescribed at the chanel’s inflow boundary, as well as a depth of 60 cm at
the outflow. The simulation is continued until a steady state is achieved. The
flow is assumed to be viscous, with a constant horizontal viscosity coefficient
v, = 107* m?/s and a vertical viscosity coefficient given by a mizing length
turbulence model. The friction is given trough a Strickler coefficient of 50.

For the simulations we have used a time step of length At = 0.01 seconds.
Although the flow is shallow water, the flow is non-hydrostatic because of
the strong bottom gradient and the strong surface gradient of the solution.
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We therefore perform the simulations with both the hydrostatic and the non-
hydrostatic models of Telemac-3D, and for each model we show the results
obtained using the standard and the new hydrostatic algorithms. Note that
the velocity advection step is solved using the Characteristic method.

Let us first indicate the number of GMRES iterations that have been
necessary to solve the hydrostatic equations using the standard and the new
algorithms :

(hg) u | 4
standard algorithm : | (he) v | 6 new algorithm :
(h3,a) 1

The results obtained using the hydrostatic model of Telemac-3D are
shown first. Figure 7.24 presents the three-dimensional profiles of the so-
lutions obtained at ¢ = 100 s. Note that in this figure, the inflow boundary
is situated at the right end of the chanel, the outflow boundary at its left
end. We observe strong oscillations both along the z- and the y-axis. We
think that they arise from a serious problem in the treatment of the boun-
dary condition on the vertical velocity at the inflow. This is a very common
problem in hydrostatic models, since there is no advection nor diffusion on
the vertical velocity w, and therefore no Dirichlet condition is to be imposed
on w. This problem has been detected in several other test cases using the
Telemac-3D system, but we have not yet tried to solve it. Anyway, it seems
that the solution b) obtained with the new hydrostatic algorithm is more
stable.

Figure 7.25 compares the free surface profiles obtained solving the hydrosta-
tic model with the standard (solid line) and the new (dotted line) algorithms.
The profiles are given at two different times ¢t = 50 s and ¢t = 100 s. We have
verified that the schemes have converged at ¢ = 100 s. Figure 7.26 compares
the horizontal and vertical velocities obtained solving the hydrostatic model
with the standard (a) and the new (b) algorithms. We observe slight diffe-
rences in the free surface and the velocity profiles.

These differences disappear when using the non-hydrostatic Telemac-
3D system. The surface profiles obtained with the standard and the new
hydrostatic algorithms are shown in Figure 7.27 : they are identical. The
velocity profiles are also identical. Therefore we only show one profile in
Figure 7.28. In addition, there are no oscillations on the free surface.

Note that the dynamic pressure correction, shown at the bottom of Figure
7.28, reveals that the flow is hydrostatic everywhere except at the location of
the hydraulic jump. Note also that the hydraulic jump is less marked and is
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followed by an undulation, which is more in conformity with the observation.

The stability of this solution confirms our idea that the oscillations ob-
tained with the hydrostatic model come from the bad prescription of the
boundary condition on the vertical velocity w. Indeed, this problem does
not exist in the non-hydrostatic model since the vertical velocity is advected
and diffused, and therefore the Dirichlet boundary conditions on w can be
prescribed correctly.

7.4.5 Conclusion and perspectives

We have implemented a new hydrostatic algorithm into the Telemac-3D
system, involving the resolution of the w — 7 problem analysed in Chapter 6.

The main motivation for this alternative algorithm was the symmetry
property of the w — 1 problem and its well-posedness whenever the viscosity
coefficient v is not negligible. Indeed, the space-continuous w — 7 problem as
well as its approximation are definite positive for a non-zero value of v.

But the evaluation of the feasability of this new algorithm was also moti-
vated by the fact that it reduces the number of equation splittings and allows
a complete three-dimensional treatment of the free-surface problem, opening
a way to the extension of the Telemac-3D system to vertically-unstructured
meshes.

The new algorithm has been validated through several test cases, in par-
ticular the case of an oscillating wave in a closed basin — see section 7.4.1 :
the results of the simulation performed with the nonhydrostatic model in
Telemac-3D using the new algorithm are in good agreement with the ana-
lytical results for the linear equations. In addition, they are identical to the
results obtained using the standard algorithm.

Unfortunately, we have not found a test case showing a satisfactory im-
provement in the stability of the solution through the new algorithm. In
fact, we were expecting to find a case in which the solution provided by the
Telemac-3D system using the standard algorithm would have shown typical
inf-sup oscillations for a non-negligible value of the horizontal viscosity co-
efficient. Because of the well-posedness of the approximation of the u — 7
problem when the diffusion coefficient is non-zero, these oscillations would
have disappeared when using the new hydrostatic algorithm. But this “ideal”
test case has not been found.

Nevertheless, in the test cases presented in sections 7.4.3 and 7.4.4, the
results obtained using the new hydrostatic algorithm are less unstable than
those obtained using the standard one.
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The first one of these tests, corresponding to the simulation of a wind-
driven circulation, has been performed recently. It is more interesting since
spurious oscillations are observed for very small values of the vertical visco-
sity coefficent, which strongly look like oscillations due to a lack of inf-sup
conditions. We could have verified this matter by analysing the kernel of the
matrix inverted in this particular test case, but it seemed difficult because
the matrices are not assembled in the Telemac-3D system. Note that the idea
that the oscillations could come from a lack of inf-sup conditions is confirmed
by the analysis of the w — 7 problem made in Chapter 6. Indeed, we have
shown that the analysis in the Lax-Milgram framework is not appropriate
when the viscosity coefficent is zero  or negligible . The existence and uni-
city of a solution to the w — n problem can then be proven in the mixed
problem framework provided that a particular inf-sup condition is verified.
This condition may not be satisfied at the discrete level in this particular
test case, and that would explain the spurious oscillations observed when v
is very small.

We point out that a pair of compatible finite element spaces approxima-
ting the horizontal velocity and the free surface function has been proposed
in section 6.3.3. The particular inf-sup condition possibly required by the
u — 1) problem is satisfied on these spaces. It would therefore be worthwhile
to implement this discretization and see if it makes the spurious oscillations
disappear.

However, it can be shown that the vertical diffusion term is not neces-
sary to the well-posedness of the u — ) problem. Indeed, the analysis in the
Lax-Milgram framework of the space-continuous and discrete problems — see
sections 6.2.1 and 6.3.1 can also be made in the case where the diffusion is
only horizontal, i.e. when the bilinear form d( -, - ) defined in (6.6) is replaced
by

d~(¢1’¢2) = /QV2TP1'V21P2 dx,

where V5 is the horizontal gradient operator. An explicit treatment of the
vertical diffusion in the u —n problem may therefore be sufficient to stabilize
the problem when the vertical viscosity coefficient is very small.

We intent to test both ideas in a very near future. We also indicate that
the new hydrostatic algorithm we have implemented may be optimized and
integrated to the Telemac-3D system.
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(a) standard hydrostatic algorithm.

10

x(m)

(b) new hydrostatic algorithm.

x(m)

Fi1G. 7.24 — Three-dimensional results obtained at ¢ = 100 s using the hy-
drostatic model of Telemac-3D with the standard (a) and the modified (b)
hydrostatic algorithms.
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Fia. 7.25  Free surface profiles obtained at (a) ¢ = 50 seconds and (b) t =
100 seconds using the hydrostatic model of Telemac-3D with the standard
(black solid line) and the new (red dotted line) algorithms. Vertical cross-
section at y = 1 m.
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Fia. 7.27  Free surface profiles obtained at (a) ¢ = 50 seconds and (b)
t = 100 seconds using the non-hydrostatic model of Telemac-3D with the
standard (black solid line) and the new (red dotted line) algorithms. Vertical
cross-section at y = 1 m.
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7.5 Application of an ALE-MURD scheme to the
linear advection equations in the hydrostatic
model

We are now interested in the resolution of the advection equations present
in the hydrostatic model, using the ALE-MURD schemes introduced in
Chapter 3. As explained in section 5.13, the fractional step method allows
to isolate the ALE advective terms in the momentum equation (5.38) on
the horizontal velocity w, as well as in the tracer equation (5.20). An ALE-
MURD scheme can thus be applied to the resolution of the linear advection
equations on the horizontal velocity and on the tracer.

We recall that, in order to ensure the correct conservation of the advec-
ted quantities on a moving domain, the scheme must satisfy a particular
constraint. In the framework analysed here, although the domain is three-
dimensional and only moves in the vertical direction, we do not proceed
as in section 3.8 to satisfy this constraint. Indeed, the vertical velocity w
is not sought separately in the hydrostatic model presented in this work
see section 5.9. In fact, the vertical ALE velocity w = w — ¢ is sought. It
is recovered a posteriori from the horizontal fluid velocity w by solving the
semi-discrete continuity equation (5.75). Therefore, the total velocity U can
not be assumed divergence free in the sense of (3.30) and Proposition 3.10
stating the conservation property under this assumption of the ALE-MURD
schemes described in Chapter 3 cannot be applied.

On the other hand, the conservation constraint of these schemes in the
framework of the hydrostatic model coincides with a particular discretization
of the weak formulation (5.40) of the continuity equation written in the ALE
frame. This was already observed by Janin in [74], where he proposed an
extension of the N and PSI distributive schemes to the advection of an
active tracer driven by a three-dimensional hydrostatic free-surface flow, in
the particular configuration of the Telemac-3D system. But his results were
limited to the use of the classical sigma transformation, which is a particular
ALE mapping described in Chapter 4. We have extended this observation
to the general form of ALE mappings for three-dimensional domains moving
in the vertical direction only. This has led us to deduce how to ensure the
conservation property of the ALE-MURD schemes in the framework of the
hydrostatic free surface flow problem.

Following this result, we have extended the MURD schemes implemented
in the Telemac-3D system to the ALE-MURD aproach. They are now adap-
ted to the use of any ALE mapping for three-dimensional domains moving
in the vertical direction only. In particular, they are conservative for the use
of any of these mappings, including the generalized sigma coordinate sys-
tem introduced in section 4.8 and implemented lately into the Telemac-3D
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System.

We will first recall the semi-discrete weak ALE formulation of the advec-
tion equations to be solved in the hydrostatic model considered. The conser-
vation constraint of the ALE-MURD schemes in this particular framework
will then be expressed. We will then show how to solve the three-dimensional
continuity equation so that the advection scheme is conservative. Finally,
we will present some results obtained with an ALE-MURD scheme in the
Telemac-3D system. In particular, we will show the correct conservation of
the advected quantities when using the generalized sigma coordinate system.

7.5.1 Formulation of the advection equation on the horizon-
tal velocity

Let us first define ) = Hl(ﬁ) and its time-discrete counterpart at each
time ¢™ :

V= {9:Q" —R, P = oA, Pe)}. (7.6)

For the sake of simplicity, we will assume that the Dirichlet condition (5.16)
on the horizontal velocity at the inflow is homogeneous, i.e. that

u(x,y,z,t) = 0 on Dy (7.7)

The horizontal velocity u™ at t = t" will therefore be sought in

={yeYy" / =0 on I }. (7.8)

For any time independent function 'l,Ab € )>, we will use the notation :

Y" = hod, in Q2 forn=0,... N,

After splitting the advection terms in the momentum equation in (5.70),
we obtain the time-discrete non-conservative weak ALE form (5.73) of the
linear advection equation on the horizontal velocity w, that is :

given the initial condition ug, for n =0,..., Ny — 1,

find @=(a,9) € (V)? suchthat Vep = (Yu,v) € (V)2

/ (@ — ) " da O -vul ) ¢ de =0,  (7.9)
n Qan

/ (0 — ") ) de / Vop ) girde = 0, (7.10)
n Qan
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where, for each n = 0,..., N; — 1, t% is a particular time in [t"~! ¢?]. We
recall that U = U — ¢ is the ALE advective velocity, with U the total
velocity of the fluid and ¢ = (0,0, ¢)? the domain velocity.

7.5.2 Formulation of the advection equation on the tracer

Again, for the sake of simplicity, we assume that the Dirichlet condition
(5.21) on the tracer at the inflow is homogeneous, i.e. that

T(xz,y,z,t) = 0 on  Tipt. (7.11)

The following weak ALE formulation of the tracer equation (5.20) is consi-

dered :

find T € Yo(,t) such that Vo € Y(y), Vtel,

/ (8—T + U—-¢)-VI) Y de + / vrVT - Vi dx (7.12)
Q4 625 T O

= Qth?/)d-’B—l-/Fs’t(aT—i—b)wdF—i—/ T 4 dr.

Fout,t

Note that this weak form has been obtained imposing weakly boundary
condition (5.24).
The equation is then discretised in time as follows :

/ (T -1 ) Yt de + At/ (U™ -vT;) ¢ de
Qn+1 Qan

+ vpVT vyt da

" +1 n+l (7.13)
:/ lfT Y dx

n+
1 1
—i—/F?H(aT;‘H—Fb) Yt dl + [n+1 T, "t dr,

out

where, for each n =0,..., Ny — 1, t9" is a particular time in [t", t"1].

A splitting finally leads to the following semi-discrete non-conservative
weak ALE form of the linear advection equation on the tracer T.

Given the initial condition Ty, forn =0,..., Ny — 1,

find T e yg“ such that Vo € ),

T n n+1 " rdn n " _
/QW(T—T,MW x4+ At/mn (O - VT ¢ dw = 0.
(7.14)
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Note that in (7.14), the tracer is advected in the current domain between
times " and t"*1, i.e., the movement of the domain from Q" to Q"*! is taken
into account. On the contrary, in (7.9) and (7.10), the horizontal velocity is
advected in the domain between times t"~! and ¢, i.e. : there is a time delay
of one time step, so that it is the movement of the domain from Q"1 to Q"
which is taken into account during this advection.

7.5.3 Space discretization

Let us now consider a space discretization of the semi-discrete hydro-
static flow problem (5.73)-(5.74)-(5.75) through the Galerkin method. We
denote by ’Z;fd the triangulation of the two-dimensional domain w, and by
7;, the triangulation of the three-dimensional reference configuration Q). The
mapping and the different functional spaces are assumed to be discretized
following the description in Chapter 2, sections 2.1.6 and 2.1.7.

We indicate that the continuous spaces X = H'(Q)?, V = L*(Q) and
M = L?(w) are approximated by some finite element spaces denoted by X,
Vi and My, At each time, the horizontal velocity w(t") and the vertical ALE
velocity w(t") are approximated respectively in X}' and V;' — defined as in
(3.3). The free surface n(t") is approximated in My,.

We choose Y = H(2) to be approximated by the Lagrangian finite ele-
ment space Y, = (.7:”/7;{(’]71))2 for some particular degree n’ > k. At each
time , the corresponding space Y" on the current domain is then approxi-
mated by Vi = Fpr 1 (7,") -

Moreover, in order to apply the ALE-MURD scheme, we choose the test
functions for the advection equations (7.9), (7.10) and (7.14) to be approxi-
mated by constant functions on the whole three-dimensional mesh 7}, — the
equation will then be solved in L'(€,).

This way, the fully-discretized formulation of the linear advection equa-
tions to be solved corresponds to (3.4); that is for each n =0,..., Ny — 1,

find (ap,0n) € (VPy)? such that

up, — up de + At U -vul!  de =0,
/Qn“h “h on Y M (7.15)

/ oy, — vy de + At U," Vo, de =0,
{ Jan

an
Qh
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and

find T) € y,”;gl such that

3 ) (7.16)
/ Ty =Ty iy dx + At Uy -viy, de = 0.
Qn+1

an
Qh

The ALE-MURD scheme detailed in section 3.3, can now be constructed.
As explained in this description, if the distribution chosen for the scheme is
locally positive, it is monotonic. Moreover, it satisfies the required conserva-
tion property provided a particular constraint is satisfied.

7.5.4 Conservation constraint

Let us first express the discrete conservation property to be satified by
the advection schemes just presented. Following Definition 3.6.1 and accor-
ding to the time and space discretization (7.15) and (7.16) of each problem,
the discrete comservation property required at each time step for the hori-
zontal velocity is expressed by :

/ up, dx —/ up de = — At / Uy o, (UR" - T gy) AT, (7.17)
o ! D
and for the tracer :
/ Ty, dx —/ Ty de = — At/ T3 o (W' -1 gy) dT . (7.18)
oy o VO

As already anounced in section 3.6, in the particular case of the hydrosta-
tic flow problem we apply Proposition 3.8 to determine the condition making
the ALE-MURD scheme conservative.

In the following, Ny will denote the dimension of Y, and {Qﬁi}izlw,Nh a

set of basis functions for J,.We recall that, at each time ", a corresponding
set of basis functions {9} };i—1,... N, of Y}/ can be defined by 7" = ) o .A,;}l
for each node 1.

For the advection of the velocities u and v, the conservation constraint is :
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( Vn=0,...,N,—1, VYi=1,...,Np,
Yt de — Y dr — At Uy - Vi dx
/Q;;“ ! on Qpn ! (7.19)
+ At ) P ug" gy dI = 0.
\ Fh,?iq

For the tracer advection, the expression of the conservation constraint is
the following :

Yn=0,...,N,—1, Yi=1,...,Np,

Yt de — Y de — At / Ul vy dx
/Q;;“ on Qm " (7.20)

- At/q I w4, dT = 0.
F”L

h,lig

We would like to highlight that the results we present in the following
sections are based on the work by Janin [74].
7.5.5 Conservativity and continuity

Let us now consider the following space-discretization of the semi-discrete
continuity equation (5.75), providing an approximation of the vertical ALE
advection velocity w =w —c. For n =0,..., Ny :

find w," € thfé such that, Vo, € Wh,o,

lolorid

—Cn h Cn Cn Cn ,,Cn

/th 52 dx +/cuh-V2¢)h dx —/C WU T gy dl
Qh"n. Q n F"n.

h h,liq

1 / 1
- — ot de — op de) = 0, (7.21)
At ( QZ+1 h Q'Z h )

where t° is a particular time between " and ¢"T! and where Wh is the
discrete space approximating W = H'(Q). In addition,

1
V}?,O = { Qbh € V}TZ ‘ Cbh Nh2 = u;;»'i‘ *Mpgy O Fh,b }
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and
1
WIZO = { ¢h € W}Tzl | ¢h Npz = UZJF *Mp gy ON Fh,b }

Assume the continous space W is approximated by the same Lagrangian
finite element space F, 1(75) as ), so that at each time ¢" :

Wy = Fu () = V. (7.22)

Note that the dimension of VAV;LO is then equal to Nj minus the number
of nodes situated on the bottom I'j,; of the domain. Indeed, a set of basis
functions for Wj, ¢ is

{wi}’iefhyi¢rh,b’
where, with an obvious abuse of notation, ¢ € 7, means that the node ¢

belongs to 7y, and i ¢ T'pp means that it does not belong to the bottom
boundary.

The discrete vertical ALE advection velocity wy, is then sought such that
wy" € YV, at each time ¢ and

Vn=0,...,N;—1, Vi e [1,Np]suchthat i ¢ I'y;,

o
[ S de [ wpVaurde — [ ar
Q;n z Q;Lin Tcn

h,lig

i Vit de — Yrdr) = 0.
( At | o+t Q5 )

(7.23)

We observe that, taking t9» = t°» for each n =0, ..., Ny — 1, the relation
associated to the node ¢ in (7.20) is identical to component of the continuity
equation (7.23) associated to the same node, except for those nodes i situated
on the bottom I'j,; of the domain. In that case, the conservation constraint
for the tracer advection reduces to :

Vn=20,...,N;y —1, VithJ,,

Pt de — Y de — At Uy" - Vst dz
Qptt op Qfn " (7.24)

4 At/ e TS my, dT = 0,
rem

\ h,lig
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where ¢ is the particular time between t" and t"*! used in the continuity
equation (7.21) for the ALE velocity Uj. We can state the following inter-
mediate result.

Lemma 7.1 If the discrete ALE velocity of the fluid U}, satisfies the discrete
continuity equation (7.21) and if, for n=10,..., Ny — 1, t9 =" | then the

advective scheme (7.16) for the tracer T is conservative in the sense of (7.18)
if relation (7.24) holds.

Let us now assume that t% = t“~1 foreachn =0,..., N; —1. The com-
ponent of the continuity equation (7.23) associated to each node i ¢ I'y}, is
identical to the relation associated to the same node 7 in (7.19) In this case,
the conservation constraint for the horizontal velocity also reduces to (7.24).

We can thus state a second intermediate result.

Lemma 7.2 If the discrete ALE velocity of the fluid U}, satisfies the discrete
continuity equation (7.23) and if, for n =1,... Ny, t% = t»=1  then the

advective scheme (7.15) for the horizontal velocity w is conservative in the
sense of (7.17) if relation (7.24) holds.

This leads us to the following proposition.

Proposition 7.1 In the framework of the semi-discrete hydrodynamic pro-
blem (5.73)-(5.74)-(5.75), the advection scheme (7.15) for the horizontal ve-
locity w is conservative in the sense of (7.17) and the advection scheme (7.16)
for the tracer T is conservative in the sense of (7.18) if

i) the tracer T and the two components of the horizontal velocity w are ap-
prozimated by the same Lagrangian finite element space as the test functions
of the continuity equation (5.75),

ii) the time orders for the ALE advection velocity Uy, satisfy t%n = ten—1
and ti" =t for each n =0,..., Ny — 1,

iii) relation (7.24) holds.

In the next section, we give the example of a finite element space ap-
proximating ) for which the conservation constraint (7.24) can easily be
satisfied.
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7.5.6 Conservation and free surface equation

Consider a triangulation ’Tth of the two-dimensional domain w compo-
sed of triangles. Assume that ’fh is a prismatic mesh obtained by piling up
’Tth along the vertical in Q, as illustrated by Figure 6.2 in section 6.3.3.
We will denote by N; the number of horizontal levels in 7;, and by Zi, for
k=1,...,(N;—1), the height of level k. The layer delimited by levels k and

k+1 will be denoted by Iy /2 and by AZp ., its width.

We choose to approximate the continuous space Y= Hl(Q) by the finite
element space P;,1(7) defined in (6.47) :

Vi = Pii(Tn). (7.25)

In the following we will drop the subscript ; on the discrete variables and
functions for the sake of clarity.

Remark 7.5.1 Any function ) in P 1(7,) can be written as the product
of a function 1" defined on the two-dimensional discrete domain Wh_ and a
function @b"’ defined on the vertical of the three-dimensional domain € :

b(x,y,2) = WM(z,y) PU(2), V&= (z,y2) €

Moreover, each basis function @@Z of 77171(’171) associated to node i can be
decomposed as follows on each prism P belonging to 73 and containing ¢ :

1/;1‘ (x,y,z) = djzhh (xvy) 1[}2)1,(2) in P, (726)

where ij denotes the associated node in ’Z;fd and %, the level on which node
1 is situated, as illustrated by Figure 7.29.

Function @@;"U is chosen such that its support is composed of layers l;, ;12
and l;,_1/o when they exist. Its derivative with respect to 2 is then constant
and defined by :

B 2k 21t
~ ks 2k
Aziv+1/2 A
OV
gfv = 71 in [7:’]6,1 ﬁk] (727)
“ AZiy_1/2 ’
L 0 in [0, ﬁkfl] @] [?:’kJrl, 1]
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A A
P : prismin Th
< T : trianglein T
k=iv+1
A
5 i : nodein Tp
i ’ ih : nodein T
\\x\_ k:|V v
iv : lowerlevelin P
— .
S in P Wi =Pih, Yiy
ih T | bottom level
T k=1

T

Fia. 7.29 A prism column in the reference mesh T

We recall that the ALE mapping used in this problem is of the form
(5.25). This is precisely the general form of the mappings used in the ALE-
Sigma (ALES) approach described in Chapter 4, section 4.3, for which the
formulae (4.17)—(4.21) have been derived. We can therefore apply them here
to any function 1 : Qp — R, at any time ¢".

In particular, we can reformulate as follows the conservation constraint
for the advection of w and T — i.e. system (7.19) for a,, = ¢, or equivalently
system (7.20) for ¢, = ¢, :

( Vn=0,...,N;—1, Vie [1,Np]suchthati ¢ I'y,

[(jnH_J") i die — At / o aen . Vol di
Q Q

. O . .
— At/(Jw*)C" wf dﬁ:+At/ Jram -n o, dl = 0,
A 0z Frig
(7.28)
where J w* is a “pseudo-vertical velocity” defined in by
- 0z 0z
Ju' = b - —ag| -0 7.29
w w ¢ bo| D 9y | (7.29)
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We recall that for any function ¢ : Q" — R, 1[1 = o A, is the corres-
ponding function on the ALE frame.

Remark 7.5.2 Note that the continuous “pseudo-vertical velocity” jt w*
was already introduced in section 4.4 to simplify the ALE-Sigma (ALES)
formulation of the three-dimensional free surface Navier-Stokes equations.

System (7.28) can now be decomposed using (7.26), leading to :

¥n=0,...,N,—1, Vih=1,...,N, and Viv=1,...,N,

/<J"“—J"> vh oY, di — Atf Jen (@ Vol ) Y div
O Q

. Oy
— At J * \Cn f Ty d'\
[ iy vl S aa
+ At/ Jonph v g .om dl = 0.
\ 12‘liq
(7.30)

Let us now consider the following equation :
nen
/(nn+1 —n") Yl dw — At [ @l divy (/ u dz) dw = 0, (7.31)
w Wh, b

where 7" denotes the approximation in My, of the free surface n(¢t") at time
t", for n € [0, Ny — 1].

We can state the following result.
Lemma 7.3 By summing up the components of system (7.30) associated to

the nodes situated on the same vertical axis in T, — i.e., the components
corresponding to the same node th in ’Z;fd we obtain equation (7.51).

Proof. The sum over the levels v of functions Qﬁ;’v(é) is equal to 1 at any 2

in [0, 1]. In addition, the sum of 0; @@fy is zero. Therefore, summing up the
components of system (7.30) over iv = 1,..., N; we obtain :

/Q(j"“—j”) prode - At/ﬁjc" - V] di

+ At[ Joypl g .mdl = 0.
Fliq
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Since this relation only contains partial derivatives with respect to the hori-
zontal coordinates x and y, it can be reformulated in the current domain as
follows :

Yl dx —/ Yhode - At/ u™ - Vool dx
Qn Qcn

Qn+1

+ At/ Pl ou-ndl = 0,
Tiig

nen
VAN /(h”“—h’”) Y dw - At/vgng(/ u’r dz> dw
w w b

nen
+ At/ 1/thh (/ u’" dz> ‘n, dy = 0.
Ow b

Assuming that the Green Formula can be applied to the horizontal flux term,
we obtain equation (7.31). Note that the Green Formula can be applied
provided the local flux terms @"Ktl defined by (3.7) are computed exactly in
the ALE-MURD advection scheme.
¢

We notice that equation (7.31) is a particular space-discretization of the
semi-discrete free surface equation in (5.74). Indeed, taking t'» = ¢ for
each n = 0,..., Ny — 1, and choosing M, = F11(7,2?), the semi-discrete
weak ALE formulation of the free surface equation in (5.74) can be approxi-
mated by equation (7.31).

This result shows that, if the relations composing system (7.30) are sa-
tisfied for th =1,..., N, and v = 2,..., N;, and if the discrete form of the
free surface equation solved is (7.31), then the relations composing system
(7.30) are also satisfied for iv = 1, which denotes the bottom level. In this
case, the components of the conservation constraint associated to the nodes

situated on the bottom I'y, ; of the domain do not have to be ensured.

The following proposition can finally be stated.

Proposition 7.2 In the framework of the semi-discrete hydrodynamic pro-

blem (5.78)-(5.74)-(5.75), if

i) the two-dimensional domain w is discretized using a triangular mesh

~

’];fd, and the three-dimensional reference configuration 0 is triangularized
by a prismatic mesh T, obtained piling up T,%¢ along the vertical
. h b h . Y
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ii) the continuous space M defining the free surface function n and the test
functions for the free surface equation in (5.74) is approximated by the finite
element space My, = .7:1,1(7}1261),

iii) the continuous space W defining the test functions for the continuity
equation (5.75) is approxzimated by the finite element space Wy, = P1.1(7),

iv) the continuous space Y defining the tracer T and the components of
the horizontal velocity u and v is approzimated by the finite element space

V=W, = Pl,l(ﬁz):

v) foreachn=0,...,N;, t% = t91 gnd tin = ton = tn,

then the advection scheme (7.15) for the horizontal velocity w is conser-
vative in the sense of (7.17) and the advection scheme (7.16) for the tracer
T is conservative in the sense of (7.18).

7.5.7 A particular time and space discretization of the hy-
drostatic flow problem leading to a conservative advec-
tive ALE-MURD scheme

Following the successive results obtained in this section, we are now able
to propose a particular time and space discretization of the weak hydrosta-

tic flow problem (5.57) and the tracer equation (7.12), allowing the use of a
conservative ALE-MURD scheme to solve the advection equations.

For this purpose we first set

Vi = Pia(Tn), Wi = Pia(Zn) and My, = Fi1(7,2).

Here again we drop the subscript , on the discrete variables for the sake of
clarity.

The fully-discretized hydrostatic flow problem mentioned is the following.
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Given the initial conditions ug and 7, for each n=0,..., N, — 1,

find @ € Yy, such that

J

(u — u")de + / U vul  dx =0,

7 " e
(7.32)
find uw"t' € APt and "' € M, such that,
Vi € Ay and Vx € My,
1
At (upt™ — ", P)ap + v (Vur™, Vop)on
,,777.
— g/ nendiVQ(/ P dz) dw
Wh b
= < FpL > amysan (7.33)
g
~ (" =0t xX)e = gbalx, ut) =0, (7.34)
find @’ € V,OLT‘O such that V@@ € Wh,o
tn
/ LA M / w’ - oyt da
Qon 8,2 Qon
- / " uf . n dD (7.35)
A
+ (/ " da —/ " dz) = 0
At Qn+1 n o ’
find T € y;;jgl such that
/ (T_T;;-i-l) de + At U9"~VT£Z de = 0,
Qn+1 Qan
(7.36)

where t9% = 0 t"*!1 + (1—0) " is a particular time in [t",¢"*1], determined
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by the implicitness parameter 0 < 6 < 1. Moreover,

n’ro= 0"t + (1-0) ", u = futt 4+ (1-06) un,

= 9"t 4+ (1-6) a0, U = (u u).

Proposition (7.2) can be applied to this system, proving the conservation
property of the advective schemes (7.32) and (7.36).

7.5.8 Conservation of the ALE-MURD schemes in the
Telemac-3D system

The time and space discretization proposed previously is exactly the one
used in the Telemac-3D system to solve the hydrostatic part of the equations
as well for the hydrostatic as for the non-hydrostatic problem. This scheme
was chosen for the same reasons we have given in our work, that is in order to
ensure the conservation property of the two existing MURD schemes solving
the linear advection equations of the hydrodynamic problem.

However, the demonstration — see the work by Janin [74] — was only
made for the particular use of the classical sigma transformation which is
equivalent to using a particular ALE mapping, as explained in Chapter 4.
Therefore it was not clear whether or not the conservation property would
hold for any mapping.

In addition, the implementation of a generalized sigma coordinate system
into the Telemac-3D system revealed a serious loss of the conservation pro-
perty of the MURD schemes when a transformation other than the classical
sigma transformation was used.

For these reasons we have generalized the demonstration in the ALE
formulation, taking profit of the description of the ALE-MURD schemes
presented in Chapter 3. This has lead to the results presented in sections
7.5.5 to 7.5.7.

These results have allowed us to find the reasons for the loss of advected
quantity that occured systematically when using a different mapping than
the classical sigma transformation.

On one hand, an approximation was made in the computation of the
terms in the free surface equation (7.34) and in the continuity equation
(7.35), so that the property stated by Lemma 7.3 did not hold true.

On the other hand, in some cases the mass term in the free surface
equation is mass-lumped, and this was not taken into account up to now,
leading to the same problem.

In fact, these points were corrected so that Lemma 7.3 could be appli-
cable, but only for the particular case of the classical sigma transformation.
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Thus, important conservation errors appeared when using a different map-
ping.

We have corrected these errors and made the ALE-MURD schemes conser-
vative up to a very satisfactory level. Let us illustrate it trough a numerical
test simulating the effect of a heat source in the middle of a closed basin.
We are interested in evaluating the conservation property of the PSI ALE-
MURD scheme implemented in Telemac-3D.

We first consider a square closed basin of side L = 4000 m, with a
constant bottom at z = —10 m. At the initial time the water height is flat
(h = 10 m) and no motion is taken. Figure 7.30 shows the vertical cross-
section of the initial three-dimensional mesh at y = 2000 m and Figure 7.31
the horizontal two-dimensional grid used to build it.

Classical sigma grid

N

P T T T PAS

o@m\lmmbwmb—\03
T

7 T T )
0 1000 2000 3000 x(m 4000

Fi1G. 7.30 — Vertical cross-section at y = 2000 m of the 3D mesh.

After one time step, water is discharged with an excess temperature of
T = 333°C from a point source located in the middle of the water column at
the centre of the model. The coordinates of this source point are x = 2000 m,
y = 2000 m and z = —5 m. The water discharge of the source is Q = 20m3/s.
A constant horizontal viscosity coefficient of v, = 10™* and no vertical dif-
fusion are chosen for the fluid velocities. No diffusion at all is considered on
the tracer, so that only the advection scheme is evaluated. We indicate that
all the simulations are performed with a time step length of 5 seconds for a
time interval of 30 minutes.

We first simulate the advection of a passive tracer : the temperature is
assumed to have no influence on the fluid. The advection is performed using
successively the characteristic method and the PST ALE-MURD scheme. Fi-
gure 7.32 gives the evolution of the relative loss of tracer quantity during the
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F1G. 7.31 — The horizontal 2D mesh.

simulation. It reveals that the characteristic method has a serious problem
with conservation. On the contrary, the conservation property of the MURD
scheme is excellent : the relative loss of tracer quantity during the simulation
is of about 107!2.

The temperature profiles obtained with both schemes at ¢ = 1800 seconds
are shown in vertical cross-sections at y = 2000 m in Figure 7.33. Since the
tracer is assumed to be passive, the heat spreads out in all directions.
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FiGa. 7.32 Passive tracer : relative loss of advected quantity using the cha-
racteristic method (solid red line with plane circles) and the ALE-MURD
scheme (solid black line with crosses).

A second simulation is performed in the same configuration but conside-
ring the temperature as an active tracer : a state equation relates the fluid
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Fia. 7.33 Passive tracer : temperature profiles obtained at ¢ = 1800 s using
(a) the characteristic method and (b) the PST ALE-MURD scheme.

density to the temperature (see section 5.3.1). Figure 7.34 gives the evolu-
tion of the relative loss of tracer quantity during the simulation. Again, the
conservation of the advected quantity is not satisfactory with the characte-
ristic method, whereas it is excellent with the MURD scheme.

The temperature profiles after 30 minutes are shown in Figure 7.35. The
effect of the heat on the flow has been taken into account : the velocities are
mainly vertical and their amplitude is ten times larger than in the previous
results where the tracer was considered passive. In addition, these velocities
are oriented in the direction of the free surface : the heat goes upwards. We
observe that the heat does not reach the free surface when advected with
the characteristic method, what reveals a further problem of this method.
However the MURD scheme seems to be more diffusive.

275.
u 247

1000 2000 3000 x(m 4000 u 220.

192.
165.
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F1G. 7.34 — Active tracer : relative loss of advected quantity using the cha-
racteristic method (solid red line with plane circles) and the ALE-MURD
scheme (solid black line with crosses).
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Fia. 7.35 Active tracer : temperature profiles obtained at ¢ = 1800 s using
(a) the characteristic method and (b) the PST ALE-MURD scheme.
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The simulations presented next have been performed on a different confi-
guration. A cone-shaped obstacle is placed on the bottom at the middle
of the domain. The influence of the temperature on the fluid is taken into
consideration again, but this time we only use the ALE-MURD scheme to
convect the tracer. In fact, we compare the results obtained with this scheme
on two different meshes, whose vertical cross-sections are shown in Figure
7.36 : mesh (a) has been obtained using the classical sigma transformation
whereas mesh (b) has been obtained using another mapping, included in the
recently implemented generalized sigma coordinate system. Note that mesh
(b) has a fixed horizontal plane at z = —4, so that the layers containing the
heat source do not move during the entire simulation.

zZ(m a) Cassical sigma grid
0
-1 T
-2 1 ) B
-3 ]
-4 = m H
.5 AN
-6 H i H
-7 - —
-8 T e
-9 - =
-10 i T i )
0 1000 2000 3000 x(m 4000
z(m b) Ceneralized sigma grid
0
-1
-2
-3
-4
-5
-6 =N
-7
-8
-9
-10 . . . :
0 1000 2000 3000 x(m 4000

F1G. 7.36 — Mesh (a) has been obtained using the classical sigma transfor-
mation. Mesh (b) has been obtained using a more general sigma coordinate
System.

Figure 7.37 gives the evolution of the relative loss of tracer quantity
during the simulation. On both meshes, the ALE-MURD scheme is perfectly
conservative.



7.5 Application of an ALE-MURD scheme to the linear advection equations
in the hydrostatic model 235

RELATI VE LOSS
OF TRACER QUANTI TY

le-
8e-
6e-
4de-
2e-

- 2e-
- de-
- Ge-
- 8e-
- le-

© ® N ® s WN PR OZ

'
=
o

z(m

[ T S N T S T
© 00 N O g b W N BF O

'
=
o

10+
114
111
114
114

0

e o DTREL murd SGE

x DTREL nurd SCL

——

117
117
117
114

X
—x B N
e w———§ o " S i
\

10

250 500 750 1000 1250 1500 1750
t(s)

Fi1G. 7.37 — Relative loss of advected quantity using the classical sigma mesh
a) (solid line with crosses) and the sigma generalized mesh b) (solid line with
plane circles).

a) Cassical signa grid

0
2
4
6
1000 2000 3000 x(m 4000 22.8
(u, 100w) (n's)
— 1.00 b) Ceneralized sigma grid 19.0
2
NN T 12 4

1000 2000 3000 x(m 4000

F1G. 7.38 — Temperature profiles obtained at ¢ = 1800 s using (a) the classical
sigma mesh and (b) the sigma generalized mesh.
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We recall that the advected quantity was not conserved on a mesh obtai-
ned with a different mapping than the classical sigma transformation before
updating the MURD schemes in Telemac-3D by extending them to the ALE-
MURD approach.

Figure 7.38 (and Figure 7.39 for more clarity) shows the temperature
profiles obtained after 360 time steps, using both meshes, as vertical-cross
sections at y = 2 m. The result obtained using the generalized sigma mesh
(b) is more satisfactory, since the heat only goes upwards. This does not hold
when using the classical sigma mesh (a) : the temperature also spreads out in
the bottom direction. We point out that this result confirms the advantage
of the general sigma coordinate introduced in Chapter 4 and implemented
in Telemac-3D : the mesh can be adapted to the particular needs of the
applications.

7.5.9 Conclusion

We have updated the MURD schemes implemented in the Telemac-3D
system taking profit of the ALE-MURD approach introduced in Chapter 3.
These advection schemes are now compatible with any ALE mapping for a
three-dimensional domain moving in the vertical direction only. In particu-
lar, they are conservative up to a very satisfactory level with any vertical
discretization of the domain.

Note that the conservation property of the ALE-MURD schemes is ensu-
red in the same way for the hydrostatic and the nonhydrostatic models in the
Telemac-3D system. We think that this is not optimal for the nonhydrostatic
model : it would be more convenient to apply the proceedure described in
section 3.8, valid for linear advection problems with divergence free-velocity,
posed on three-dimensional domains moving in the vertical direction only.
Indeed, in the non-hydrostatic model the total velocity U = (u,w) can easily
be computed such that it is divergence-free at least in the sense of (3.30).
If this relation is satisfied, and if the mesh velocity is considered constant
within each time step, Proposition 3.10 states that the ALE-MURD schemes
are conservative.
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F1a.7.39 Temperature profiles obtained at ¢ = 1800 s using (a) the classical
sigma mesh and (b) the sigma generalized mesh.
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Annexe A

Parameter identification for a
one-dimensional blood flow
model

This work has been carried out in collaboration with Vincent Martin,
Francois Clément and Jean-Frédéric Gerbeau. It was published in ESAIM
Proceedings [87], September 2005.

Introduction

We focus in this study on the parameter estimation of a 1-d blood flow
model, [116, 45] :

oA 0Q _ |

9Q 9 [aQ? aop 5'2_’
«

8t+8z<A)+;8z+KT<Z> =0

where the pressure P, the area A and the flux @ are the unknowns of the
problem. We denoted by z the abscissa, ¢ the time, p the density of the blood.
Two parameters, the Coriolis coefficient o and the friction parameter K, are
introduced in this model. This system is closed with a wall displacement law
of the form

P(t, Z) — Py = B (A1/2 - A(1)/2) s

that links the pressure and the area. We introduced the external pressure
P..:, the area at rest Ay and a coeflicient B that takes into account the
mechanical characteristics of the arterial wall. The parameters («, B, K,, Ap)
used in this model are related to physiological data or to the velocity profile.
Thus our aim is to identify some of these parameters.
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Motivations Two main objectives can be thought of to motivate the para-
meter estimation in 1-d models. The first goal may have interesting clinical
applications. Knowing some non-invasive clinical data measured on a patient,
one would like to retrieve the actual physiological or mechanical constants of
this patient. For instance, it is possible to measure unintrusively the mean
fluxes and areas as a function of time at two or three different sections of an
artery. From these data, one would like to identify the mechanical properties
of the arterial wall : we could thus obtain the compliance of the wall and the
pressure in a totally non-invasive manner.

The second objective is consists in making a coarsening of models. One
is now able to solve the full 3D fluid structure interaction problem on real
geometries, coming from real patients. However the resolution of this problem
is quite expensive and this complex model cannot probably be afforded for an
intensive numerical study requiring lots of resolutions. This can occur when
one wishes to modify the configuration of the flux or the boundary conditions
for instance. In this case, a single resolution of the accurate but expensive
3D model could provide data, such as the flux and the area for all sections of
the mesh. Then one can estimate the 1-d parameters from the 3D data ; this
would allow to make use of the cheap 1-d model for intensive computations,
but using the parameters that take into account data coming from a real
geometry and a physically more detailed model. This multiscale approach has
already been used in a medical application : some 3D Navier-Stokes (without
compliant walls) were performed to obtain a simple numerical /experimental
law that was used in ulterior 0-d simulations, {96, 95|. The difference is that
in this study, we base our parameter identification on sound mathematical
tools, and we focus on 1-d models that provide a more accurate description of
wave propagation in the large arteries. One of the conclusions of this work is
that the coefficient estimated by solving the inverse problem is quite different
from the coefficient one would have chosen a priori (an a priori expression for
B is provided in Section A.1). Thus this approach could provide 1-d models
that are suitable for a 3D-1-d coupling in multiscale computations, see [44].
This illustrates the relevance of our approach.

To conclude on the motivations, one can either aim at estimating physi-
cal parameters from experimental unintrusive measurements, or at having a
cheap 1-d model to be as close as possible to an expensive 3D model, in or-
der to make realistic configuration studies using this cheap model. We note
here that the methodology remains identical for both objectives, the only
difference being the expression of the measurement operator.

Methodology We followed a standard nonlinear least squares approach
to parameter estimation, [13, 14, 15|. It is based on the optimization of an
appropriate cost function. The resolution of such a minimization problem
generally requires the efficient and accurate computation of the gradient of
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the cost function with respect to the parameters, [13]. We discretized the
1-d model with a second order Taylor-Galerkin scheme, [4]. We computed
analytically the gradient of the discrete cost function, using an adjoint ap-
proach. The adjoint problem obtained is, as expected, a linear 1-d hyperbolic
system, but has nonstandard discretization and boundary conditions, that
are due to the differentiation of the Taylor-Galerkin scheme.

A previous attempt was made in [78]| to estimate the elasticity of the
arteries. However, instead of differentiating the discrete equations as we do
here, the author differentiated first the continuous equations and then dis-
cretized the continuous adjoint problem thus obtained. We believe this is a
possible reason for the very slow convergence he reached in the minimization
process (about 1500 iterations for three parameters).

Finally, this approach allows to make a sensitivity analysis, [11, 79], that
can provide information on the relevant parameters to estimate, and on the
type of measurements to perform. But this goes beyond the scope of this
study.

Results The analytical discrete gradient was implemented and validated
by comparison with finite differences approximations. The adjoint problem
was not computed by automatic code differentiation, but directly implemen-
ted. Thus we could easily control the memory required by the gradient code.
We used a constrained optimization code based on a quasi-Newton method
with active constraints.

We present some preliminary numerical results. In these numerical simu-
lations, we mainly focused on determining the parameter B that is linked
to the mechanical properties, i.e. the compliance, of the arterial walls. The
synthetic data we used to estimate the parameter were obtained from a nu-
merical computation performed with a 3D fluid structure interaction model.
We first used as data the values of the areas and fluxes at only two or three
points of the domain (boundaries plus maybe the middle point). Although
the data at two points do not seem to be enough to find a stable value, it
seems that with three points, one can obtain a 5 relatively stable (i.e. it is
little changed when the estimation is made with all available spatial data).
In the second numerical tests, we used all data available from the 3D compu-
tation. These first numerical results seem promising and should be followed
by further developments.

In Section A.1, we present briefly the continuous 1-d model, that is de-
rived in Section A.2 with the Taylor-Galerkin scheme. In Section A.3, the
gradient of the least squares cost function is computed with the adjoint ap-
proach. Numerical results are presented in Section A.4, and some conclusions
and perspectives in Section A.5.
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A.1 Direct model : 1-d blood flow model

We present in this section a 1-d blood flow model based on the works
in [46, 124]. See also [116]. It is a 1-d vectorial hyperbolic problem, with a
2 x 2 flux matrix that admits two real eigenvalues with opposite signs under
physiological conditions.

We leave the problem of the parameterization and of the measurements
for the next sections, see Section A.3.1.

A.1.1 Continuous blood flow model

Let Q = (0,L) be a 1-d domain of length L > 0. Let I = (0,T}), with
Ty > 0, the time interval of simulation. The continuous system of equations
reads, for the abscissa z € Q and the time ¢t € T

A
6_ % = 0, 2z€Q, tel,

00 o (e Aor O /&% (A1)
E+£<T>+55+K’"<Z> — 0, 2€Q, tel,

where U = [A,Q]" is the vectorial unknown of the problem, made of the
area A and of the flux Q. The pressure P is an intermediary unknown. We
denoted by p the blood density that we assume perfeclty known in this study.
Two parameters, the Coriolis coefficient « and the friction parameter K.,
are introduced when deriving this model. This system of partial differential
equations is completed with an initial condition

U(0,z) = Up(z), z€Q, (A.2)
and some adapted boundary conditions

¢o(U(t,0),p) = qo(t), tel,
¢L0(U(t,L),p) = Zi(t), tel. (A.3)

In equations (A.2) and (A.3), Uy, qo and gy, are given initial and boundary
data. The definition of the real-valued boundary functions ¢g, ¢, is discussed
in Section A.2.2.
The system (A.1) is closed with a wall displacement law of the form,
see [126] for instance and the reference therein,
AN\P
()]

where 8 = (f3p, 51) is a pair of positive real parameters. The power coefficient
B1 is often taken equal to 1/2, which means that the pressure difference is

P(t,z) = Peot = 9(A; Ao, B) = o

proportional to the wall displacement, and, in this case, a linear elastic law
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can provide an expression for 3y, if the mechanical properties of the arterial
wall are known a priors,

howE
VrhowE (A.5)
vV Ao(l - I/2)
where hg,, is the wall thickness, E is the wall Young modulus, and v is
the Poisson coefficient. We can reformulate the wall displacement law in the

pr=1/2, fo=

following way :
P(t,2) = Peat = (A; Ao, B) = 208 [A2 = 4% (A0)

ﬂO _ ﬁho,wE
20A0  2pAp(1 —1v2)’
We introduce the following quantity

with  g=

Gt (AN

c=c(A;49,8) = (A7)

pOA
which has the dimension of a velocity and is related to the speed of propa-
gation of simple waves along the tube. We also introduce the integral of the
square of the celerity ¢ with respect to the area
A A A Bi+1
oAy <_) _ 1] . (AS)
Ao

. _ 20 . _
C’(A,Ao,,@)—/AOc (13 A0,3)dr = P

Defining the flux function

Q
F(U,p) = 2 A9
we)=| @ (4.9)
A
and the source term
0 Q Aoy dAy AodyvdB 0C dAy 0C dS
= By =K,y 27 200 A0V o 20 TR O
5(U.p) [BJ’ 2=yt oA, 4 p0Bdz 94y d= 9B dr
(A.10)
we can write the complete problem in a conservative form
ou 0
T = Al
T —i—az[F(U,p)]—l—B(U,p) 0, zeQ tel. ( )
We introduce the jacobian matrix
0 1
OF
H(U,p):a—U: P Q 2 QQQ , (A.12)
A A

whose eigenvalues are real, distinct, see [116]. It is also noted that for common
values of the blood flow in human arteries, these eigenvalues have opposite
signs. We assume in the rest of the article that this hypothesis holds.
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Remark 1 We can make two remarks concerning the initial and boundary
terms. First, when simulating a phenomenon that is periodic in time such
as the arterial flow, the initial data Ug should not interfere on the results.
Therefore we did not consider it as one of the parameters to be estimated.

Second, as already noticed, the boundary conditions must be properly
chosen. The number of boundary conditions to impose at each end of the
vessel equals the number of characteristics entering the domain through that
boundary. As the eigenvalues are distinct with opposite signs, i.e. the flow is
sub-critical everywhere, one must impose exactly one scalar boundary condi-
tion at z =0 and z = L, see [116].

Thus the boundary conditions in equation (A.3) are correctly set, provi-
ded that the scalar functions ¢q, ¢, are properly chosen.

A.2 Discrete blood flow model

In this section, we give the discretization of the continuous problem (A.11).

In the rest of this article, the upper-scripts will be devoted to time steps
numbers, whereas the lower indices will in general denote the space indices,
or the component index of a vector. For instance, for a vector v, the at®
component of v at time t" and at abscissa z; will be denoted (vq)}".

A.2.1 Taylor-Galerkin scheme

We discretize our system by a second order Taylor-Galerkin scheme [4],
which might be seen as the finite element counterpart of the Lax-Wendroff
scheme. It has been chosen for its excellent dispersion error characteristic
and its relative simplicity of implementation. See [45] for details concerning
the derivation of the scheme for the blood flow model.

Let the interval Q = (0, L) be subdivided into N+1 elements €1 = [2i) Zit1]

fori=0,...,N and 241 = 2 + h; 1, with 20 = 0, and Zz’]\iohﬂ-l =171,
2 2
where hi+1 > 0 is the local element size. Let A > 0 be the smallest diameter
2

i+%,i =0,...,N. We discretize the time interval I = (0,T%)
in the same way : let (¢"),n = 0,...,N;, be Ny + 1 instants such that
to=0<...<t" <t < <tV =Ty We call Atz = 1 —n >
the time step between t” and "', n =0,...,N; — 1.

The space discretization is carried out using the finite element method
[115]. Let Wy, be the space of continuous piecewise linear finite element func-
tions, also denoted Py, and ¥;, = [Up)%, while ¥, o = [¥)0)> = {¢), €
W), |9, =0 at z =0 and z = L}. Let 1); be the Pj linear finite element nodal
function associated to the node at z = z;, i =7 =20,..., N+1. Thus one can
write Uy, = span{t;, i =0,..., N + 1} while ¥}, o = span{¢;, i =1,...,N}.
We will denote a generic vector valued test function by 1, € ¥j,. The discrete

Y

of all elements e
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continuity and momentum equations are recovered by taking test functions
of the form v, = [tbn, 0|7 and 4, = [0,3]7, respectively, with 1y, € ¥y 0.
At each time step we seek the solution U, € W¥;, that we may write
Uj(z,t) = Zij\i—gl Uli(z,t), with U = [A}, Q7] the approximation of A
and ) at mesh node z;.
Further, we note the L?(0,L) = L2(Q) scalar product (u,v)q = fOLu~
vdz .

Introducing the notations for U € ¥, By = %,
. Atz
1w (U) =F(U) - ——H(U)B(U)
and Biw(U)=B(U) — By(U)B(U) ,

2

we write in equation (A.13) the Taylor-Galerkin discretization of the pro-
blem (A.11).
Given U(,]Z7 forn = 0,1,..., Ny — 1, find UZ'H € Wy, such that for all

Y, € Pho
ntl = n n+3 n n d¢h
(U Yn)e = (Up,¢p)o + A" LW(Uh),ﬁ
Q
— (Briw (UR), ¥n)a}

(A2 (o OF oy @on
+ {~ (monron. ). o

2 0z
OF (U}
+(Bun =t v, ) b
z Q
+B.C. 2=0 equation on UFT(0) ,
+B.C.z=1L equation on UPT(L) .

In the system (A.13), by taking internal test functions 1, = [1;,0]7 and
¥y, = |0, Q/)Z‘]T, for i =1,... N, we obtain N discrete equations for continuity
and momentum, respectively, for a total of 2(N + 2) unknowns (A; and Q;
for i =0,..., N + 1). Thus boundary and compatibility conditions have to
provide four additional scalar relations, see next section.

To fully discretize the equation in (A.13), we need to determine how
the non-linear terms are computed and which numerical integration is per-
formed. We choose to approximate the vectors F and B depending on U}
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in (A.13) in the space P;, and the matrices H and By in the space of element-

wise constant functions P := {vh € L(Q) | Uh|e.+1 =cst, 1 =0,... ,N}.
T2

With this hypothesis, the integrations in (A.13) can easily be made exactly.

Thus for a vectorial function v : ¥), — R2, U + v(U) = [v1,v]", we
define

N+1 N+1 T
vp(U) = [Z v (Ui, ) U2(Ui)1/1i] €Wy,
i=0 i=0

and for a matrix M : ¥), — R**2, U — M(U) = (Mup)a =12, we define

N
Mu(U) = (Mhap(U))g pr0r Mias(U) =D My 511,41 € Pog
i=0

(A.14)
with the mean value M), ,5 ;.1 = 2 (Map(U;) + Mup(Ujsq)) over the ele-
bl K 2
ment e, 1 = [2;,2;41], and the characteristic function 1, 1 of the interval
2 2
[Zi,ZiJrl], for ¢ = O,...,N.

With these notations, we can write the fully discretized Taylor-Galerkin
scheme (A.13). Using the notation

Fiow(U) = Fi(U) —

H,(U)B,(U)

At’l’l‘f'%

and By w(U) = By(U) — (Bu)n(U)B,(U),

and introducing the operator for U, W € ¥y
ap(U,W;p) = At""2 {( h,LW(U),—dZ > - (Bh,LW(U)?W)Q}
Q

(A f Oy 1y AW
OF},

# (@0 FEw.w) .

(A.15)
the fully discretized scheme (A.13) yields :
Given UY € ¥, find Uy, := (UP),=1,.n, € (¥;)" such that for n =
0,1,...,N, — 1

(UZJrlu 1/)h)9 = (U27 1/)h)Q + QZ(UZ7 ¢h7 p) v’l/)h € ‘Ilh,() )
B.C. on Upt', (A.16)

n+1
B.C. on Uh,N+1'

In the discrete approximate problem (A.16), all the integrals can be com-
puted exactly as they involve only the products of two functions belonging
either to P; or to Fy.

We need to add boundary conditions and compatibility conditions at

z =0 and z = L to close the system.
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A.2.2 Boundary conditions

In this section and in the next sections A.2.3 and A.2.4, we will omit the
subscript A in the variable names, for the sake of simplicity.

As noticed in Remark 1, the hyperbolic problem (A.11) is well posed
under sub-critical flow hypothesis when one imposes as boundary conditions
one scalar equation at each side of the tube. These conditions can be the
prescribed incoming characteristics, the prescribed pressure or the prescribed
flux, for instance. It is not possible to impose exactly at the same boundary
both the flux and the pressure, see [45].

We decide to give a flux at the inlet and a pressure at the outlet :

el Bo(qo(t™™h), p) = qo(t™™)
0
AT = b (pr(th), p), (A.17)

where qq is the flux and py, is the pressure to be imposed at the boundaries,
whereas ¢;,7 = 0,L are given functions. The function ¢y is in this case
the identity, and ¢y transforms the given pressure p; at the outlet into
the conservative unknown A. With the pressure law (A.4), it becomes A =

1/61
¢1(pL,P) = Ao (1 + g—g) :

A.2.3 Compatibility conditions

To close the discrete system we need two more conditions on the boun-
daries. These conditions are a numerical artefact that is linked to the type of
scheme we adopted. They are called compatibility conditions and are chosen
to be non-reflecting conditions at each side of the tube. We assume that these
conditions are treated explicitly and linearly, imposing some conditions on
the pseudo-characteristic variables, [116]. Thus they can take the following
form :

IJ(UMUIT —Th(U") = 0 at z=0,

L (UMURL - Ti(U") = 0 atz=1, (4.18)

where 1;(U") € R?,i = 1,2 are the two left eigenvectors depending on U™
associated to the matrix H defined in equation (A.12), and T} and T5 are
some scalar functions depending on U”.

A.2.4 Fully discretized problem

Gathering the boundary and compatibility conditions (A.17) and (A.18)
and reintroducing the parameters p, we obtain

Oo(U",p)U; ' = To(U",p) = 0

OL(U", p)ULL — T, (U"p) = 0, (4.19)
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with at 2 =29 =0

@T 0 1 q (tn-i-l)
) Un’ — 0,1 :| — |: :|’ T Un7 — |: 0 ’
o(U%P) [ ©02(U", p) 1, (U",p) o(U"P) = | 7y un, p)
and at z = zy41 = L

ouwp) = [ TSP [ [N - [ C) ]

Finally, reintroducing the subscript h, adding the boundary and compa-
tibility conditions (A.19) to the completely discretized scheme (A.16), the
problem to be solved reads :

Given U?L € Wy, find Uy, := (U})p=1,..N, € (®,)Nt such that for n =
0,1,...,N:—1

U n)a = (Ug e+ a(Upvusp) Ve, € Pao s
60(U27P)UZ:5 - TO(UZ7p) )
@L(Uz’p)UZj\/}Jrl = TL(U27P) .

(A.20)

Remark 2 The problem (A.11) is a 1-d nonlinear hyperbolic problem, but
the Taylor-Galerkin discretization (A.20) contains (second order) parabolic
terms. Thus, one needs to impose not only the boundary conditions (A.17)
that are natural for a hyperbolic problem, but also the compatibility condi-
tions (A.18). Therefore at each time step, before computing the solution at
internal nodes, one has to compute the boundary values UZ’ng and UZE+1,
by solving the two (2 x 2) linear systems (A.19).

A.3 Gradient of the discrete problem

We present in this section the gradient of the discrete problem (A.20)
using the adjoint approach. We recall that we used and implemented the
rule (advocated in [15], [13], [14]) : disretize first, differentiate after. In Sec-
tion A.3.1, some notations are defined in order to present briefly in Sec-
tion A.3.2 the adjoint state approach, and to compute analytically the gra-
dient in Section A.3.3.

A.3.1 Forward operators

State equation

The equation (A.20) defines a state equation that relates the parameters
p to the state variables Uy,

E(p,Uy) =0, (A.21)
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where the parameters are

pP= (avﬁ()vﬂlaKT’AO’QquL)T € RP ) (A22)

with the dimension P > 0 of the parameter space to be defined further, and
the state variable are

Un = (Uh)n=t,...v0 = <[A?’Q?]T>i=0,...,N+1; n=1,..,N¢ € (Tn)™ = RY,
(A.23)

with /' = 2Ny(N + 2).
In equation (A.23), we have assimilated the finite functional space (¥)
and the space RV It will also be done for ¥, and R2V+2)_ In the rest of the
article, for simplicity but with an abuse of notation, we may use the same
notation W} for an element of ¥}, or of R2(N+2),

As there exists a unique solution Uy, j to the problem (A.21) for a given
set of parameters p, see [45], we can define the direct application

N

0:RP — RV,

A24
p — oP)=Upn, (A-24)

The parameters p in (A.22) are supposed to be constant with time and
are to be estimated. The issue of the parameterization will be addressed in
the section A.3.1.

Measurement operator

Let M be a measurement (or observation) operator

M:RN — RM,

U — M(U)=V, (4.25)

with M > 0 the dimension of the measurement space. Different measurement
operators can be devised, linear or nonlinear, according to the type of data
that are provided.

For instance, an experiment could provide the flux and area of a vessel
at two different points (y < (3, (1 — (o = L, at given (V; + 1) instants
Op=0<...<0” <@t <...< @ =Ty It is then reasonable to perform
the 1-d simulation between these two points, and therefore take zg = (g and
zN+1 = (1. One can also assume for simplicity that the temporal discretiza-
tion is chosen such that the instants (9”),,:07,“% constitutes a subsequence of
(t")n=o0,....N,- Therefore, let ¢, : {0,1,...,V;} — {0,1,..., N;} be the increa-
sing function such that t?®) = ¥ with ¢;(0) = 0 and ¢;(V;) = N;. With
these hypotheses, the measurement operator is simply a weighted sampling
of the direct solution Uy, 5. It is linear and can be expressed

M) = ([, A7 0, Q) o
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and M=2xVi+1)x2,

where the coefficients szu and wiQV are positive weights attributed to each

measure, representing the “degree of confidence”, i.e. the inverse of the incer-
tainty, one has in this measure.

When the data come from a numerical 3D fluid structure computation,
one can exploit the numerical results on (V,+1) internal sections (¢;)j=o,... V.
of the 3D domain : V, = 1,2 or more. In this case, apply the same tech-
nique for the spatial discretization as the one shown above for the temporal
sampling, and introduce the increasing indexation function ¢, in the same
manner as ¢;. The measurement operator becomes this time

_ A p0e(v) | Q AP T
M(U) = <[wjv” A () Wi Qo.7) )j:o,.--,vz; v=0,....V (4.26)
and
M=20V+1)(V. +1), (A.27)
with the positive weights wﬁy and w]Qy, 7=0,....V,; v=0,..., V.

Forward function

Let F' = M oy be the forward function, from the parameter space to the
measlre space

F:RP — RM,
p o Flp)= Vo= MU = M)

Cost function

The resolution of the inverse problem consists in minimizing a cost func-
tion that computes the least squares error between the measured data and the
numerical results computed with the 1-d model. Thus the inverse problem
amounts to an optimization problem. To solve it, it is necessary to define
the cost function to minimize, that depends on the type of problem under
consideration. Then one must choose an adequate technique to perform the
minimization of this cost function.

We assume that the measurement operator is defined by (A.26). Consider
a given data vector Z € RM and we call Z,, € RM this vector multiplied by
the positive weights introduced in (A.26),

Z = ([AdY, Qd4]")j=0,...v.; v=0,..v, €RM,

Zw = ([wﬁy Ad]V7 wfy Qd],/']T)jZO,...,VZ; v=0,...,V¢ S RM )

where Ad}’, and respectively Qd}’, represent the data area, respectively the
data flux, given at space index j and time index v.
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Let J be the cost function
J:RF — R,

1 (A.29)
p — J(P)=;lZw— M(Upn)lgr
where || -||g» is the discrete I norm in R”, associated with the scalar product
< - >pn, n > 0.
The cost function can be expressed easily, with Uy, = ([A?,Q7]7) €
RV,

Vi V.
1 A2 v b)) Q \2 v A2
J<p>—§z()zg{<wj,y> (Ads = 420) + @) (Qay Qi) ¢ -
v=0 j=
(A.30)
Parameterization

It is important to define the parameterization properly, see [31], and a
sensitivity analysis can provide some information on this matter. In this
section, we consider a general parameterization. The parameters are only
supposed to satisfy some constraints determined by some physiological consi-
derations, such that the parameters p belong to a subset C' of R”.

A.3.2 Optimization : adjoint state approach

In order to perform correctly the optimization of the cost function (A.29)
with a descent method, one needs to compute the gradient of the cost func-
tion in a fast and accurate way. It is known that the finite difference method
is not efficient, see [13, 11]. One could rely on a direct computation of the
jacobian of the forward map F', with a cost that is proportional to the num-
ber P of parameters. We decided to compute the gradient using an adjoint
state approach that we present briefly here. As in our numerical experiments,
see section A.4, the number of parameters to identify is very low, we could
have fruitfully taken the former approach. However, we preferred the adjoint
method, that allows to identify, in a second step, more parameters, with a
cost that remains independent of the dimension of the parameter space.

To compute the gradient of a function G = G(p, V) which is an explicit
function of the parameter vector p and the output vector V. = F(p), we
introduce the Lagrangian

Lp,U,N)=Gp,MU))+ < E(p,U),\ >~ , (A.31)

where the Lagrange multiplier A\ € RV is the adjoint variable of U.
With these notations, we can state the following proposition, (see [15]) :
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Proposition 1 Let (A.21) be a state equation and (A.25) an observation
operator. Let G(p, V) and F(p), given by (A.28), two regular enough func-
tions. Let L(p, U, \) be a Lagrangian defined by (A.31) associated with the
equation (A.21).

Then p € C C R? — G(p, F(p)) € R is differentiable, and its gradient
VG is given by the gradient equation :

E(p,Up,)\p)ép Vop € R” | (A.32)

0
< VG,5p >RP= %

where
* Up € RN is the solution of the direct equation

E(p,U)=0, (A.33)
* Ap € RN is the solution of the adjoint equation

%(p,Up, AU =0 VU € sRY . (A.34)

In this context, Uy is called the direct state, and Ap the adjoint state.

From the formula (A.34), the adjoint equation yields :

OE i
{8—U(p, U)} A+ M' (U)W G(p, V) =0. (A.35)
This presentation has the advantage of synthetizing the different appli-
cations according to the choice on function G(p, V) :
- if G(p,V) =< V,e; >pram where e; is a basis vector of the measure
space, then :
VG = F’(p)Tei,
and the adjoint approach enables a line-wise computation of the jaco-
bian of the function F(p).
— if G(p, V) =< V, g, >pm where g, is a given vector in RM, then :

VG = F'(p)' go-
~ if G(p, V) = 3||Zw — V||?, i.e. is equal to the cost function J(p), then :

VG =VJ.

A.3.3 Gradient of the discrete problem

We compute in this section the gradient of the discrete problem (A.20)
using the adjoint approach. First, we define the Lagrangian in section A.3.3,
then we differentiate the Lagrangian with respect to the state variable to
obtain the adjoint problem in section A.3.3. Finally, the gradient is computed
by differentiation with respect to the parameters in section A.3.3.
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Lagrangian of the discrete problem

We define the Lagrangian of our particular discrete 1-d blood flow mo-
del (A.20). Two sets of Lagrange multipliers are introduced. The first ones
are associated with the boundary conditions (A.19) at z=0and z =L :

Hzih = (#?i,h)nil,---,Nt € (RQ)Nt , 1=0,L, (A'?’G)

and the second ones are associated with the equations on the internal nodes (A.16)
and live in the space of the test functions :

M= (Ap)n=1,..5 € (¥h )" = (R?)NXN (A.37)

The Lagrangian associated with the forward discrete problem (A.20) and
to the generic function G = G(p, V) is hence :

‘C(p’ U’ )\ha Hz0,hs )uzL,h) = G(pa M(Uh))

N¢—1

+Z (Ut X g — (U, AP g — af (UR, AP p)]
Nt 1

+ > > [0:(Ur, p) Ut — To(UR, p)] - il
n=0 :=0,L

(A.38)
where Uh,L = Uh,N+1 = Uh(t, L).

Discrete adjoint problem

We differentiate the Lagrangian (A.38) with respect to the state Uy,
remarking that §UY = 0, and omitting for the sake of conciseness the de-
pendency to the parameters p, to obtain

or OM T rag\
a0, Pho Uhs Abs ta0.hs e,n)00n = (6—Uh(Uh)> <W> ~0Up,
N¢—1
da¥
£ X U AR o - OUL o - k(0,007 40)
Ni—1 90. oT
Un 5Un+1 1 u») (sU Un+1 ur 5Un n+1
+ nz:l ZXO:L |: 6U ( h)( » S hi ) 8Uh( ) 'U‘zzh
+OULMa+ Y [0:((UR) 68U}, - il

1=0,L
=0 VYU, € (T,
(A.39)

In equation (A.39), we formulated explicitely the dependency of the term

gfj’; with respect to Uy and dUy, that derives from the nonlinearity of the




254 Parameter identification for a 1D blood flow model

operator aj. A discrete integration by parts in time to order the terms in
function of U}, yields

oL

pr— h .
90, —~—(Pn, Un, Ans z0,h, p20,0)0Up [Vu,M(Uy) VyG] - 06U,
+OUN N+ Y [0(U ) oups | -l
i=0,L
Ne—1 San
n n n n+1 n yn+1
+ Z [w Ao — (SUR, AL )Q—aU (Up, UL, A} )}
o=l (A.40)
+ > > [eiUrh U] i,
n=1 i=0,L
Ne—1 oT
5Un UnJ'rl Un 5Un n+1

=0 Y5U, € ()M

First, taking care of the final time t"¢ ie. 6Uj, = 5U}]th, we take successi-
vely internal test functions (5UhNt = 1)), € ¥j, o and boundary test functions
SUNt = by, ; € ¥y, i = 0, L, where 1, (0) = 1, (L) = 1. Thus we have
to solve the two following problems at time ¢t :

Find A\Y* € W}, ¢ such that, for all 4, € ¥},

N = = [Vu,MUY) VG| -y (A41)
and then find ,uzZ n € R2, i =0, L such that

Ol (UN Ny, = = [Tu, MUN) VvG] s = O 9y e
(A.42)
Next, we take care successively of time steps n,n = Ny — 1, Ny —2, ..., 1.
We use as test functions 6U} = 1), € ¥y ¢ and dUy = vy, ;, i = 0, L. Thus
we have to solve the two following problems at time t" :

Find A € ¥, ¢ such that, for all 4, € ¥, ¢

8 n
O = = Vo, M(UR) TvG] -ty + G du)a + 5ot (U, i)
orT; . n
- E |: Q/Jha n+1) aUh (Uh)¢h :U’z;rhl’

1=0,L
(A.43)
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and then find u7; , € R2,i =0, L such that

ol (U Yty = —[Vu,M(UR) VvG] -9y, o
(Ah7¢hz)ﬂ+()‘n+lv¢hz)9+ 8U ( h 1rbhi7)‘n+1)
n 8 n
j=0,L
(A.44)

The equations (A.41)-(A.42) and (A.43)-(A.44) consitute the adjoint pro-
blem associated with the direct problem (A.20). Some details concerning the
derivatives that appeared in the equations (A.43)-(A.44), in particular a way

n
to express analytically %, will be given in a forecoming article.

h
Several remarks can be made.

Remark 3 First, one can note that equations at final time tVt+1 (A 41)--
(A.42) are deduced from the general equations (A.43)-(A.44), with the as-
sumption that AN+ =0 and ,ui\?;fl =0,7=0,L.

Second, the adjoint problem is, as expected, linear in (Ap, ft20.h, 2L h)
and backward in time. It requires the full knowledge of Uy at all instants
and nodes. As our problem is 1-d, we can afford to store this information,
and no special technique is required to solve the adjoint problem.

Third, the adjoint problem has the same form as the direct problem (A.20).
It is essentially a 1-d linear hyperbolic problem, but as we used a Taylor-
Galerkin discretization for the direct problem that contains (second order)
parabolic terms, the formulation (A.43)-(A.44) contains also nontrivial se-
cond order terms. The generic function G (or the cost function J) introduces
a source term in the adjoint equation.

Fourth, the equations on the boundaries can be solved at each time step
n, after the computation of the internal Lagrange multiplier A}}. They involve
the inversion of two 2 x 2 matrices that are the transpose of the ones in the
direct systems (A.19).

Discrete gradient equation

At this stage, to compute the gradient, one has simply to apply the
proposition 1. The equation (A.32) yields for a ép € R”

Ne—1
< VG,0p >pr = VpG(p, M(Uy))-dp + Z — Uy, At p) - p

N¢—1
90, ., o, .
3D [ap% L) UL - S z,p>] Wi b
n=0 =0,L

(A.45)
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A.4 Numerical results

In this section, some first numerical results obtained with the para-
meter estimation method presented in the previous sections are shown. In
this study, only synthetic data were used for the optimization and a single
constant parameter was estimated : in this section, the parameter vector is
defined as p = 3 € R, where 3 is the compliance given in the equation (A.6),
such that 8 = (2pAp3,1/2). In order to simplify the optimization for these
preliminary tests, # was supposed constant in space.

After validating the computation of the discrete cost function gradient,
the estimation method was tested using different data and different amounts
of data, in order to evaluate the sensitivity of the method with respect to
the information given.

A.4.1 Computing the 3d synthetic data

The data used for the parameter estimation was computed from two
different 3D fluid structure interaction models.

The first simulation was made using a shell model for the structure [53,
12].

For the second simulation, the model used is implemented in the lifev
code, [48]. A linear Venant Kirchoff model was used for the structure. The
fluid was modeled by the incompressible Navier-Stokes equations for a New-
tonian fluid. The interaction algorithm uses an exact Jacobian preconditio-
ner, [40].

Fig. A1  Left : fluid mesh. Right : structure mesh.

The domain used for both simulations is a cylindrical tube of length
L3g = 5 along the z axis, with a circular basis of radius at rest Ry = 0.5. A
relatively coarse mesh was chosen for the simulation, as shown at Figure A.1:
the mesh is made of 30720 tetrahedra for the structural mesh and 68160 for
the fluid mesh. The initial mesh is unstructured in the Oxy plane, but all
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nodes are contained in one of the 41 sections at altitude z = i x L3;/40, i =
0,1,...,40.

The wall density p,, was taken equal to 1.2 and the Poisson coefficient
vy equal to 0.3. Two different values of the Young modulus F and the wall
thickness at rest hg, were used. For the first simulation, £y = 3.E6 and
h(l)’w = 0.05, whereas for the second one Fy = 4.F6 and h%’w = 0.1. The
density of the fluid chosen was py = 1.0 and its viscosity vy = 0.03.

The temporal discretization used was quite fine (dt = 1E — 4) in order
to obtain a sufficient amount of data for the optimization. The number of
timesteps computed was 99 for the first simulation and 79 for the second
one. The simulations were stopped once the pressure wave arrived at the end
of the tube, in order to avoid unphysiological reflexion.

The data obtained from each simulation was post-processed in order to
have, at each time step and at each section of the tube, the values of the area
Ad, the flux Qd and the pressure Pd of the blood flow (see the notations in
section A.3.1).

Figures A.2 and A.3 show two examples at the same instant of a 3D
model solution for two different Young modulus (the second is computed
using a much coarser mesh, for visualizations purposes only).

One notes the effect when one increases the Young modulus : the pressure

F1G. A.2 — Solution of the 3D model at time ¢t = 50F —4 for a Young modulus
FEy = 4F6. Left : fluid velocity along the z axis. Right : displacement of the
structure along y axis.

wave is extended in space and decreased in amplitude.

A.4.2 Solving the 1-d-model

In order to find the optimal value of a parameter, the algorithm does a
series of simulations of the direct 1-d model.

The parameter estimated here was (= 25—1‘210) ; all other parameters were

kept constant : 3y =1/2, a =1, K, =8mv ~0.75, p=1, Ag = 7R ~ 0.78.
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Fia. A.3 Solution of the 3D model at time ¢t = 50E —4 for a Young modulus
FE7 = 6F6. Left : fluid velocity along the z axis. Right : displacement of the
structure along y axis.

The 1-d domain, denoted by £2, was chosen to be slightly shorter than the
cylindrical tube used for the 3D simulations : Q = [0.5,4.5], and its length
was therefore L = 4. This was done in order to avoid the problems arising
from the difference in the type of the boundary conditions between the 3D
and the 1-d models.

The 1-d computations were made with a spatial discretization of N = 128
elements of constant length L/N = 4/128, and a time step dt = 1.e —5, that
is ten times smaller than the 3D time step. These values ensure the Courant
condition to be always respected.

A.4.3 Measurement operator and cost function

For each test case, a series of estimations of 3 was done using different
amounts of data. This means that the measurement operator used for the
optimization was changed, and so was, consequently, the expression of the
cost function J.

As explained in section A.3.1, the measurement operator is a weighted
sampling of the direct solution expressed by (A.26). The weights used here
were w4 = 1 and w¥ = 0.1 for all measures. They were chosen to compensate
the orders of magnitude of the area (O(1)) and the flux (O(10)) in the vessel.
Three different space samplings were chosen : the first one uses 33 measures
taken at (; = 0.5 + j x (4/32), for j = 0,...,32. The second one uses 3
measures, at (1 = 0.5, (3 = 2.5 and (3 = 4.5, and the last one only two, at
¢1 = 0.5 and (3 = 4.5. The time sampling consists in using the data at either
all the instants available or only at every ten of them. For the first simulation,
that means the measures are taken at 8, = v x dt for v = 0,...,99, or at
0, = 10v x dt for v = 0,...,9. For the second simulation, they are taken at
0,=vxdtforv=0,...,79 or at 6, = 10v x dt for v =0,...,T.
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Let us note that the cost function minimized during each estimation is
normalized. Its expression is the following (cf. (A.30)) :

2 2
PRSP { (Ad]”- - Af;i((;;) + (0.1)2 (Qd; _ Qf;t(é%) }
: Yoo Z}Zo{ (Ad)2 + (0.1)2 (QdY)? } '

J(B)

A.4.4 Validating the computation of the cost function gra-
dient

In order to validate the computation of the cost function gradient using
the method presented here, its value was compared with the value obtained
with the finite difference method. This method consists in computing an
approximation of the derivative of the cost function J(/3) with respect to [,

that is : 5 T ) )
J JB+h)—J
Z708) = 1

o (8) = lim

The cost function gradient was computed in some test cases with both me-

thods and the results, made in double precision, showed 6 to 7 identical

(A.46)

numbers.

A.4.5 Expected results of the estimation

Let us recall the role of the parameter 3. As exposed in section 2, to derive
the 1-d blood model from the 3D one, a wall displacement law (cf. (A.4)) is
used, that introduces two positive real parameters Gy and ;. In these tests,
the power coefficient (3 is taken equal to 1/2 and the law is reformulated
into the expression (A.6), that only involves one positive parameter (3.

A linear elastic law provides the following expression for g :

VTho wE
N S L A4
Paa 2pAp(1 — Vz%)’ (4.47)

where E, hg,, and v, are the wall Young modulus, the wall thickness at rest
and the Poisson coefficient used to compute the 3D data.

The optimal value of 3, minimizing the difference between the results of
the 1-d and 3D models, is therefore expected to be B34. It will be shown that
this is not the case : the results obtained computing the 1-d model with the
estimated optimal value, Bestim, fit better to the 3d data than the results
obtained with F34. The accuracy of the estimation algorithm is therefore not
to be evaluated from the accuracy on (3, but from the accuracy on the error
between the 1-d results and the data.
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A.4.6 Test case 1 : shell structure, £ = 3.E6 and hy,, = 0.05

The first test was made using the 3D data obtained with a shell / Navier-
Stokes coupling. The structure has a Young modulus equal to 3.F6 and a
wall thickness equal to 0.05. The number of iterations needed for the opti-
mization varied between 6 and 10 for all the different estimations.

Results of the optimization

The results obtained are shown in tables A.1 and A.2 : for each estima-

tion, the optimal value Begtip is given, as well as the corresponding value of
the minimized cost function J and the value 1 — \/j, that gives the order of
explained data.
In order to better compare the precision of the different estimations, we also
give the value of a general cost function, called “fine cost function”, and de-
noted by Jyne. This function Jy;,. computes the least squares error between
the 3D data measured at each of the 99 timesteps and the 33 sections, and
the 1-d data obtained with the estimated value Bestim.

Nb Zmeas 33 3 2
Bestim 1.3E5 | 1.32FE5 | 1.41E5
J 0.048 | 0.027 |1.6E —5
1—VJ | 781% | 83.4% | 99.6%
Jfine 0.048 | 0.048 0.052
1—/Jfine | 781% | 8% 77.2%

TaB. A.1 — Results using 99 time measurements and 33, 3 or 2 spatial mea-
surements for a 3D data such that : £ = 3E6 and hg,, = 0.05.

Nb Zmeas 33 3 2
Bestim 1.32E5 | 1.33E5 | 1.41E5
J 0.038 | 0.02 [3E—6
1—VJ | 80.6% | 85.9% | 99.8%
Jfine 0.048 | 0.048 | 0.052
1— /Jfine | 78.0% | 78.0% | 77.2%

TAB. A.2 — Results using 9 time measurements and 33, 3 or 2 spatial mea-
surements for a 3D data such that : £ = 3E6 and hg,, = 0.05.
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We can see that, logically, the most accurate estimation is obtained in
the case where the biggest amount of 3D data is used for the optimization.
But the results do not degenerate too much when the number of time or
space measurements is reduced. In fact, the value of 3 estimated from only 9
time and 2 space measurements, provides results that explain 77,2% of the
data.

The results are actually quite stable with respect to the amount of data
used. Particularly, when the number of time measures varies from 99 to 9,
the estimated value of § remains almost constant. On the other hand, we
notice that the value of Bestip, 18 more sensitive to the variation of the number
of space measures. But this sensitivity remains relatively low, the maximal
variation of Besrim being of 10%, when the amount of space measurements
changes from 33 to 2.

Results of the 1-d model using the estimated value Gcstim

For this test case, the expected value of 3, according to relation (A.47),
is B3q = 1.87TE5. In order to compare this value with the results of the
different estimations, the 1-d model has also been computed using F34. The
percentage of explained data obtained with this simulation, measured with
the function 1 — /Jfine, is of 64%, which is far bellow the one obtained with
the different estimations made (see tables A.1 and A.2).

We show next the results of the 1-d model computed using the estimated
value (estim = 1.30E5, obtained from 99 time and 33 space measurements
of the 3D data. The results are compared with the 3D data and with the
1-d results computed using (34. Note that there is a difference of about 30%
between the values Begstim and (34. Figures A.4 and A.5 represent the area of
the vessel and the flux of the blood flow in the whole domain, after 50 and
90 time steps. Figure A.6 shows the time evolution of the area and the flux
at the middle of the tube, that is at z = L/2.
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F1G. A4 — Area and flux obtained from the 1-d model using [estim (blue
dotted line) and 34 (green dashed line), compared to the 3D data (red line),
after 50 timesteps.
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FiG. A.5 — Area and flux obtained from the 1-d model using (Bestim (blue
dotted line) and 34 (green dashed line), compared to the 3D data (red line),
after 90 timesteps.
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Fia. A6 Area and flux obtained from the 1-d model using Bestim (blue
dotted line) and (334 (green dashed line), compared to the 3D data (red line),
at z = L/2.

As an additional information, the pressure of the blood flow was compu-
ted from the 1-d results according to the wall displacement law (A.6). It is
displayed after 50 and 90 time steps in Figure A.7.

On these figures, we observe that the results of the 1-d model manage to
capture quite well the phase of the waves of the 3D data, but not its shape
and amplitude. Particularly, the waves of the 3D data are significantly larger.
This can be explained by one of the assumptions made for the derivation of
the 1-d model, that considers the vessel as a sequence of independent rings.
On the contrary, the 3D model used to compute the data takes into account
the propagation in the structure. On the other hand, the difference in the
amplitude can be due to the more important diffusivity of the 3D models.

In addition, we can see that the results obtained with the estimated
optimal value Bestim are closer to the 3D data than those computed using
the expected value (334. This becomes particularly true after 90 timesteps
and at the middle of the tube, where the waves obtained with 334 are clearly
in advance with respect to the data. On the contrary, the phase error of the
waves obtained with (et remains relatively small.
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F1G. A.7 — Pressure obtained from the 1-d model using Bestim (blue dotted
line) and fs4 (green dashed line), compared to the 3D data (red line). Left :
after 50 timesteps. Right : after 90 timesteps.

This result has to be emphasized, because it proves the existence of a
more optimal value of 3 than the one given by (A.47), a relation resulting
from physical considerations.

Sensitivity of the estimation with respect to the space measure-
ments

Next, the optimal values Bestirm 0Obtained from different amounts of space
measurements are compared, the number of time measurements being constant
and equal to 99. The results of the 1-d model computed with these values
are shown in figures (A.8) and (A.9). The comparison between the values es-
timated from 9 time measures is not made because, as deduced from tables
A.1 and A.2, there is almost no difference.

Area at t=90 for 99 time data and 2/3/33 space data
0.87 30
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F1G. A.8 — Results of the 1-d model using the value Bestim obtained from 99
time measurements and 33 (blue dotted line), 3 (green dashed line) or 2 (red
line) space measurements, compared to the 3D data (mauve small-dotted
line), after 90 timesteps.

We can see that the optimal values of § estimated from 33 and 3 space
measures provide almost the same 1-d results. But when changing to 2 space
measurements, the phase error of the 1-d results grows significantly, so that
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F1G. A.9 — Results of the 1-d model using the value Bestim obtained from 99
time measurements and 33 (blue dotted line), 3 (green dashed line) or 2 (red

line) space measurements, compared to the 3D data (mauve small-dotted
line), at z = L/2.

the advance of the area and flux waves with respect to the data increases
largely. This means that with 2 space measurements, the estimation is not
yet stable.

Sensitivity of the estimation with respect to the time measure-
ments

The comparison is now made between the optimal values of § obtained
from 99 and 9 time measurements, the number of space measurements being
constant and equal to 2, which is the minimum. The results of the 1-d model
computed with these values are shown in figures (A.10) and (A.11).

Area at t=90 for 99/9 time data and 2 space data Fluxes at t=90 for 99/9 time data and 2 space data
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F1G. A.10 — Results of the 1-d model using the value Bestirm obtained from
2 space measurements and 99 (blue dotted line) or 9 (red line) time mea-
surements, compared to the 3D data (mauve small-dotted line), after 90
timesteps. The two curves with 9 and 99 are almost identical.

We observe that, in both cases, the curves are perfectly superposed. The
quantity of explained data is thus already stable at 9 time measures.
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F1G. A.11 — Results of the 1-d model using the value Bestim obtained from
2 space measurements and 99 (blue dotted line) or 9 (red line) time measu-
rements, compared to the 3D data (mauve small-dotted line), at z = L/2.
The two curves with 9 and 99 are almost identical.

A.4.7 Test case 2 : 3D structure, I/ = 4.E6 and hy, = 0.1

The second test was made using the 3D data obtained with a 3D structure
model with a Young modulus of 4. 6 and a wall thickness of 0.1. Here again,
the number of iterations necessary for the optimization was bounded by 6
and 10.

Results of the optimization

The results obtained are shown in tables A.3 and A.4. The fine cost
function computes here the least squares error between the 3D data measured
at each of the 79 timesteps and the 33 sections, and the 1-d data obtained
with the estimated value Gestim,.

Nb Zimeas 33 3 2
Bestim 3.13E5 | 3.20E5 | 3.67E5
J 0.013 | 0.0049 [ 1.4E —5
1—+J | 888% | 93% 99.6%
Jfine idem | 0.013 0.025
1 — /Jpine | idem | 88.6% | 84.1%

TaB. A.3 Results using 79 time measurements and 33, 3 or 2 spatial mea-
surements for a 3D data such that : £ = 4E6 and hg,, = 0.1.

As expected, the most accurate estimation is obtained with the biggest
amount of 3D data, that is 79 time and 33 space measurements. The percen-
tage of explained data, measured with the function 1—/J¢ipe, is in this case
of 88.8%. But in the case where only 7 time and 2 space measurements are
used, this percentage is of 87.4%, which is not much lower. Here again, the
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Nb Zmeas 33 3 2
Boestim | 5.64E5 | 5.74F5 | 5.98E5
Bestim 3.19E5 | 3.24F5 | 3.38E5

J 0.0087 | 0.0017 | 1.1IE =5
1—+vJ |90.7% | 95.9% | 99.7%
J fine 0.013 | 0.013 0.016

1 — /Jpine | 88.7% | 88.4% | 87.4%

TAB. A4 Results using 7 time measurements and 33, 3 or 2 spatial mea-
surements for a 3D data such that : ' = 4F6 and hg,, = 0.1.

accuracy of the estimation does not decrease significantly with the amount
of data.

But the results of the estimation are less stable than in the first case.
Particularly, the variation of the estimated value when the time sampling
changes is quite important. Indeed, when only 2 space measurements are
considered, the relative variation of Begim reaches 17% when the amount of
time measurements is decreased from 79 to 7.

Results of the 1-d model using the estimated value G.g,

For this test case, the expected value of §, according to the relation
(A.A47), is B3q = 4.96 E5. This value provides 1-d results that explain 71% of
the data, which is again far bellow the percentage obtained with the different
estimations made (see tables A.3 and A.4). Note that the maximal difference
between the estimated value Sesim and (34 is of about 38%.

Next, we show the results of the 1-d model, computed using the estima-
tion Bestim = 3.13E5, which provides the highest value of 1 — /J. They are
compared with the 3D data and with the 1-d results computed using Fsq4.
Figures A.12 and A.13 represent the area of the vessel and the flux the blood
flow in the whole domain, after 50 and 70 time steps. Figure A.14 shows the
time evolution of the area and the flux at the middle of the tube, that is at
z=LJ2.

Firstly, we observe that in this case the results of the 1-d model fit much
better to the 3D data than in the test case one. In fact, not only the phase of
the waves is captured, but their shape and amplitude is also well approached.
Let us note that the 3D model used here to compute the data is linear for
the structure. This is probably the reason why, in this case, the linear 1-d
model is closer to the 3D one.

We can also see that the results obtained with the value Gestip, are much
better than those obtained with (34. Indeed, the waves obtained with this
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F1G. A.12 — Results of the 1-d model using (estim (blue dotted line) and fsq
(green dashed line), compared to the 3D data (red line), after 50 timesteps.
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Fia. A.13  Results of the 1-d model using Bestim, (blue dotted line) and fsq
(green dashed line), compared to the 3D data (red line), after 70 timesteps.

last value are much too advanced with respect to the data, whilst the phase
error of the waves obtained with (e, remains relatively small, even after
70 timesteps.

Sensitivity of the estimation with respect to the space measure-
ments

The optimal values Bestim Obtained from different amounts of space mea-
surements are now compared, the number of time measurements being fixed
at 79. The results of the 1-d model computed with these values are shown
in figures (A.15) and (A.16).

These figures show that, here again, a significant variation in the 1-d
results only occures when dicreasing the amount of space measurements from
3 to 2. In that case, the phase of the waves is lost, so that the area and flux
appear to be much more in advance with respect to the data. Thus, we can
say that the estimation starts to be stable from 3 space measurements.
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Fi1G. A.14 — Results of the 1-d model using Bestim (blue dotted line) and f3q
(green dashed line), compared to the 3D data (red line), at z = L/2.
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F1G. A.15 — Results of the 1-d model using the value Ses¢im obtained from 79
time measurements and 33 (blue dotted line), 3 (green dashed line) or 2 (red

line) space measurements, compared to the 3D data (mauve small-dotted
line), after 70 timesteps.

Sensitivity of the estimation with respect to the time measure-
ments

Here, the comparison is made between the estimated values of 5 obtained
using 79 and 7 time measurements. The amount of space measurements is
first fixed at 33 and later at 2. The results of the first comparison are shown
in figures A.17 and A.18. For the second one, the results are shown in figures
A.19 and A.20.

From the observation of these figures, we can say that, when 33 space
measurements are used, the estimation is stable with respect to the amount
of time measurements. On the contrary, when the data is only considered at
2 points in space, the estimation is unstable and varies significantly with the
amount of time measurements provided.

These numerical tests show that it is possible to identify the parameter
(3 in a stable way from 3 measures in space and 7 measures in time (in the
first test case already from 2 measures in space and 9 in time). Moreover,
the estimations obtained are more optimal than the expected value (34, as
they provide 1-d results that explain a bigger percentage of data.
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F1G. A.16 — Results of the 1-d model using the value Sestim obtained from 79
time measurements and 33 (blue dotted line), 3 (green dashed line) or 2 (red

line) space measurements, compared to the 3D data (mauve small-dotted
line), at z = L/2.
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Fia. A.17 Results of the 1-d model using the value Bt obtained from
33 space measurements and 79 (blue dotted line) or 7 (red line) time mea-
surements, compared to the 3D data (mauve small-dotted line), after 70
timesteps.

A.5 Conclusions

In this work, the parameter identification of a 1-d blood flow model using
the adjoint approach was studied. Starting from the discretization of the mo-
del with a second order Taylor-Galerkin scheme, the discrete adjoint problem
was derived. We obtained a linear 1-d hyperbolic system, with non-standard
discretization and boundary conditions. The resolution of the adjoint pro-
blem allows to compute the gradient of a cost function, which evaluates the
least squares error between the measured data and the 1-d results. The ana-
lytical discrete gradient is necessary to minimize the cost function in order
to find the optimal values of the parameters. Its computation was therefore
implemented and validated using the finite difference method. Some preli-
minary numerical tests were performed. A single parameter was estimated —
the arterial compliance S  which is the most important parameter from a
biomedical point of view. In order to simplify the estimation, 3 was assumed
to be constant in space. The optimization was made using data provided by
two different 3D models, and for two different values of the Young modulus
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F1G. A.18 — Results of the 1-d model using the value Bestim obtained from
33 space measurements and 79 (blue dotted line) or 7 (red line) time mea-
surements, compared to the 3D data (mauve small-dotted line), at z = L/2.
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Fiac. A.19 Results of the 1-d model using the value Bt obtained from
2 space measurements and 79 (blue dotted line) or 7 (red line) time mea-

surements, compared to the 3D data (mauve small-dotted line), after 70
timesteps.

and the wall thickness at rest. In all cases, the estimated values of G obtained
were very different from the expected value (34", the difference going from
30 to 38%. However, the 1-d results computed with the estimated values
appeared to be significantly closer to the data than those obtained with (3.
Actually, the percentage of explained data obtained with these estimations
was of about 75% to 89%, depending on the test case and the amount of
data used for the optimization (this is not surprising as in the first case the
data were computed using a shell model with a non-linear constitutive law).
Thus, it is possible to retrieve the pressure of the blood flow in an artery in
a non-intrusive way.

The interest of this work first lies in the application of a parameter es-
timation method to a 1-d blood flow model, using a rigorous mathematical
approach. Second, the method used for the optimization is efficient. Indeed,
once the adjoint state has been derived from the discrete 1-d model, the
estimation can quite simply be extended to more parameters and especially

!given by an analytical formula and dependent on the values of the wall Young modulus
E, the wall thickness at rest hg ., and the Poisson coefficient v,.
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F1G. A.20 — Results of the 1-d model using the value Gegtim Obtained from 2
space measurements and 79 (blue dotted line) or 7 (red line) time measure-
ments, compared to the 3D data (mauve small-dotted line), at z = L/2.

to parameters depending on space.

This work is a first step in the parameter identification for the 1-d blood
flow model. The tests were for the moment limited to the estimation of a
single parameter, assumed to be constant in space and time. The optimi-
zation should now be extended to other parameters, possibly depending on
space. After a sensitivity analysis, it would be interesting to estimate the
area at rest Ag at each discretization point of the 1-d domain, because this
could allow to localize a possible tapering in the vessel. Another relevant
application of the method would be the parameter estimation involved in a
bifurcation.
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