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jet RDC-HNHN.

5



Pendant quelques semaines, j’ai travaillé avec Isabel Ayala et Cécile Giustini au
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Résumé

Développement et applications de méthodes RMN rapi-

des pour l’étude de la structure et de la dynamique des

protéines

La RMN multidimensionnelle (nD) est la méthode de choix pour l’étude struc-
turale et dynamique des protéines en solution avec une résolution atomique. Une
limitation de la RMN-nD est la longue durée de l’acquisition de données nD: le
temps d’acquisition du jeu de données nécessaire pour une étude structurale est
souvent de l’ordre de plusieurs semaines. De plus les processus cinétiques, qui
se passent à l’échelle de la seconde, ne sont pas accessibles aux études en temps
réel par RMN-nD en utilisant les méthodes standards. Ce travail présente des
développements méthodologiques qui visent à accélérer la RMN-nD en optimisant
la relaxation longitudinale des protons amides. Les méthodes proposées permet-
tent d’acquérir des spectres de corrélation 2D 1H-15N (3D 1H-15N-13C) en quelques
secondes (quelques minutes). En plus, en combinaison avec des méthodes exis-
tantes (encodage spatial, encodage Hadamard), le temps d’acquisition pour des
spectres 2D peut être réduit à une seconde. Des applications à l’étude de phéno-
mènes cinétiques des protéines sont presentées. Cette thèse présente également
une nouvelle expérience qui permet d’évaluer rapidement la qualité d’un échantil-
lon de protéine, et une méthode pour mesurer des couplages résiduels dipolaires
entre protons amides avec une meilleure sensibilité que les méthodes existantes.

Mots Clés: RMN multidimensionnelle, relaxation longitudinale, Effect Over-
hauser Nucléaire, Couplage Résiduel Dipolaire, repliement de protéines, échange
H/D des protons amides, impulsions sélectives

Laboratoire de thèse: Institut de Biologie Structurale Jean-Pierre Ebel, UMR
5075, C.E.A.; C.N.R.S.; U.J.F. Laboratoire de Résonance Magnétique Nucléaire. 41
rue Jules Horowitz, 38027 Grenoble Cedex, France.
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Abstract

Development and application of fast NMR methods for

the study of protein structure and dynamics

Multidimensional (nD) NMR is the method of choice for atom-resolved studies of
protein structure and dynamics in solution. Among its current limitations are the
long acquisition times required, translating to experimental times of several days
or weeks for the set of experiments required for structural studies of proteins. Fur-
thermore, real-time studies of kinetic processes occurring on a seconds time scale
are inaccessible to standard nD NMR. This thesis is concerned with the develop-
ment of fast nD NMR techniques based on longitudinal relaxation optimization.
It is shown that 2D 1H-15N (3D 1H-15N-13C) correlation spectra can be obtained
in only a few seconds (few minutes) of acquisition time for samples at millimolar
concentration. In addition, the longitudinal relaxation optimized methods, when
combined with alternative data sampling such as spatial or Hadamard encoding,
can yield site-resolved 2D 1H-15N correlation spectra in acquisition times down to
one second. Applications of fast 2D methods to the study of protein folding and
unfolding are shown. This thesis also presents a longitudinal relaxation optimized
method for the sensitivity-enhanced measurement of residual dipolar couplings
between amide protons, as well as a fast and simple experiment for characterizing
protein samples, which can be very useful in the context of screening of sample
conditions.

Key Words: Multidimensional NMR, longitudinal relaxation, Nuclear Over-
hauser Effect, Residual Dipolar Coupling, protein folding, amide proton exchange,
molecular kinetics, selective pulses
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Résumé: Méthodes rapides pour
l’étude des protéines par RMN

Introduction

Les principaux acteurs des processus biologiques sont les protéines et les acides
nucléiques. Pour comprendre leur fonctionnement au niveau moléculaire, il est
souvent indispensable de connaı̂tre leur structure tri-dimensionnelle, ce qui est le
sujet de recherche de la Biologie Structurale.

Parmi les méthodes qui se prêtent à une étude structurale de biomolécules, la
spectroscopie par Résonance Magnétique Nucléaire (RMN) joue un rôle crucial, car
elle est pour le moment la seule technique qui permet de résoudre la structure de
biomolécules en solution avec un résolution atomique. Au cours des 20 dernières
années, la RMN s’est donc établie comme la principale méthode pour l’étude de la
structure, la dynamique et des interactions biomoléculaires en solution.

Un pas crucial dans le développement de la RMN, qui a permis son grand
succès, a été l’introduction de la RMN multidimensionnelle (nD: n égal à 2, 3,...). La
RMN nD a permis d’augmenter la résolution des spectres RMN par une séparation
des signaux dans un espace multidimensionnel, en corrélant les fréquences de
résonance de plusieurs noyaux atomiques (par exemple la fréquence de résonance
du noyau de l’azote amide et celle du proton directement lié). Cette augmentation
de résolution a permis de passer de l’étude de petites molécules vers celle de plus
grandes molécules, comme les protéines.

Un problème associé à la RMN nD est lié au temps nécessaire pour collecter
un spectre nD. Pour un spectre 2D, ce qui est le minimum pour résoudre les sig-
naux qui correspondent à des atomes individuels dans une protéine, le temps
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expérimental nécessaire est de l’ordre de quelques minutes. Le temps expérimental
nécessaire pour l’acquisition de spectres en 3D est de l’ordre de quelques heures,
et la durée expérimentale augmente de façon exponentielle avec la dimensionalité.

Ces longues durées expérimentales ont des conséquences pratiques pour les
études RMN: Pour le jeu de spectres nécessaires à une étude structurale d’une
protéine, le temps d’acquisition est souvent de l’ordre de plusieures semaines, ce
qui limite l’utilité de la RMN dans le contexte d’études à haut débit (comme par
exemple dans des études de génomique structurale). En plus, et plus fondamen-
talement, les méthodes standards de RMN multidimensionnelle, avec des temps
d’acquisition de l’ordre de plusieures minutes au minimum, sont incapables de
suivre en temps réel des processus qui se passent à l’échelle de la seconde. Par ex-
emple, les méthodes standards ne permettent pas de suivre les changements spec-
traux au cours du repliement de protéines, un processus qui se passe à l’échelle de
la milliseconde jusqu’à la minute.

En vue de ces limitations, les dernières dix à quinze années ont vu un effort
considérable afin de réduire le temps expérimental pour la RMN nD. Le travail
présenté ici s’inscrit dans ce contexte.

Résultats et Conclusion

Pour l’acquisition de spectres multidimensionnels RMN, d’après le schéma clas-
sique, il est nécessaire de répéter un élément de base (un ’scan’) de multiples
fois. Entre deux répétitions, un délai d’attente est nécessaire pour rééquilibrer le
système (par un processus que l’on appelle relaxation longitudinale). L’accélération
de l’acquisition de spectres nD est donc possible à deux niveaux: soit le nombre de
répétitions nécessaires est diminué, soit le délai d’attente est raccourci.

Differentes méthodes qui visent à diminuer le nombre de répétitions ont été
proposées dans la littérature (voir chapitre 2.2). Dans ce travail, nous avons suivi
l’autre stratégie: la diminution du délai d’attente entre deux scans. Pour celà,
la relaxation longitudinale des spins nucléaires étudiés doit être optimisé. Nous
avons implementé des expériences qui manipulent de façon sélective seulement
un groupe de protons de la protéine, ce qui permet une relaxation plus efficace et
donc une meilleure sensibilité. Le chapitre 2.3 explique en détail les principes de
ces expériences.

Une première expérience basée sur une optimisation de la relaxation longitu-
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dinale, que nous avons appelée SOFAST-HMQC (ce qui signifie band-Selective
Optimized Flip Angle Short Transient Heteronuclear Multiple Quantum Coher-
ence) permet d’acquérir des spectres 2D en seulement quelques secondes pour des
protéines à une concentration de l’ordre d’un millimolaire. Ce type de spectre
2D, qui corrèle la fréquence du proton amide avec celle de l’azote amide ou la
fréquence des protons méthyles avec la fréquence du carbone lié, est à la base
de la majorité des études de structure, de dynamique et d’interaction. La diminu-
tion importante du temps expérimental permet donc d’accélérer considérablement
une partie des études par RMN. En outre, cette technique permet de suivre des
changements spectraux pendant des processus cinétiques, comme le repliement
de protéines, avec une résolution temporelle de quelques secondes.

L’expérience SOFAST HMQC est optimisée en terme de relaxation longitudi-
nale, ce qui permet de répéter l’expérience sans délai d’attente. En combinaison
avec des méthodes existantes qui visent à minimiser le nombre de répétitions
nécessaires, le temps d’acquisition peut encore être reduit. Une expérience SO-
FAST HMQC avec un encodage spatial des fréquences, que nous avons mis au
point en collaboration avec Maayan Gal et Lucio Frydman, de l’institut Weizmann,
permet de réduire le temps d’acquisition pour un spectre 2D à moins d’une sec-
onde dans des cas favorables (voir chapitre 7.2).

Les concepts utilisés pour la spectroscopie à deux dimensions ont été appliqués
à des expériences à plus haute dimensionalité: Le chapitre 5 présente des ap-
proches qui permettent de réduire le temps expérimental nécessaire pour l’acquisition
de spectres 3D à quelques minutes (type HNCO, HNCA etc.). Ce type d’expérience
est utilisé pour l’attribution des signaux, et la réduction du temps expérimental
que les nouvelles expériences offrent se traduit par une accélération de cette étape
clé de toute étude structurale de protéine.

De plus, les expériences qui sont optimisées en terme de relaxation longitudi-
nale permettent non seulement de réduire le temps expérimental en gardant une
bonne sensibilité, mais aussi d’augmenter la sensibilité. Nous avons mis au point
une expérience dédiée à la mesure de couplages résiduel dipolaires entre protons
amides. Ce type d’expérience donne des informations sur l’angle et la distance
entre les protons, et contient donc des informations structurales utiles. La plus
grande sensibilité offerte par la nouvelle expérience proposée ici, comparé aux
méthodes existantes, permet d’obtenir des informations plus précises dans le con-
texte de la détermination de structure.

Les propriétés de relaxation longitudinale des protons amide dans les protéines
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peuvent aussi être exploitées pour obtenir de l’information structurale semi quan-
titative. Le chapitre 8 détaille une méthode simple et rapide qui, en utilisant des
critères de relaxation, permet de caractériser un échantillon, et d’évaluer rapide-
ment quelles sont les parties structurées ou flexibles dans une protéine.

Le chapitre 9 montre deux applications des nouvelles méthodes à l’étude de re-
pliement /dépliement de protéines en temps réel. Les expériences rapides permet-
tent de suivre, résidu par résidu, des changements pendant un processus cinétiques.

Le repliement de la protéine α-lactalbumine d’un état partiellement déplié vers
létat natif a été suivi en temps réel après une initiation rapide de la réaction. Il
était possible de caractériser simultanément les changements structuraux pour la
plupart des résidus de la protéine. En analysant les changements d’intensité nous
avons trouvé une même vitesse de repliement pour tous les résidus en suivant
l’apparition de pics. En outre, pour la première fois, nous avons observé la diminu-
tion de l’intensité des pics qui correspondent à l’état déplié, et ce changement se
passe à une vitesse similaire. Ces observations sont compatibles avec un chemin
de repliement comportant un seul état de transition. Ces données nous permettent
d’exclure la présence d’un état intermédiaire dans le repliement.

Les méthodes rapides nous ont permis aussi d’étudier l’échange H/D des pro-
tons amides avec le solvant dans la protéine ubiquitine dans des conditions où
la vitesse d’échange donne de l’information sur la vitesse de dépliement. Nos
données montrent une hétérogénéité des vitesses de dépliement, avec la partie C-
terminale de la protéine qui se déplie plus rapidement que la partie N-terminale.

Pour conclure, de nouvelles méthodes RMN qui permettent d’une part d’accélérer
l’acquisition des données nécessaires pour des études structurales, et d’autre part
de suivre des cinétiques moléculaires en temps réel, ont été présentés. Ce travail
constitue un avancement qui permet de rendre la RMN plus efficace et utile au
service de la biologie structurale.
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1 Nuclear magnetic resonance
spectroscopy: a powerful tool for
structural biology

Molecular interactions are the basis of biological processes

In his book “What is life?”1, published in 1944, the physicist Erwin Schrödinger
raised a question, which should keep scientists busy for decades since then:

“How can the events in space and time which take place in a living organism be ac-
counted for by physics and chemistry ?” At that time, biology and physics were still
relatively far from each other, but Schrödinger predicted:

“The obvious inability of present-day physics and chemistry to account for such events
is no reason at all for doubting that they can be accounted for by those sciences.”

In fact, the contact of Biology and Physics has triggered the development of
scientific branches that have perhaps been the most active fields of science in the
last 50 years. These bio-physical/bio-chemical disciplines aim at understanding
the molecular (i.e. microscopic) basis of the macroscopic aspects of living organ-
isms. For such a molecular description, one has to identify the actors inside the cell
(mainly proteins and nucleic acids), and study how they interact with each other.

Proteins and nucleic acids are linear chains composed of a well-defined sequ-
ence of basic building blocks (amino acids, nucleotides), and this sequence deter-
mines the function of the molecule. In fact, a large number of weak interactions
between chemical moieties along the chain dictate the three-dimensional structure
(i.e. the shape) that the molecule adopts in solution. A particular, well-defined
structure is generally a prerequisite for the molecule to function properly, e.g. to

1Schrödinger, E. (1944), What is life ? The Physical Aspect of the Living Cell., Cambridge University
Press
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interact with other molecules.
A detailed understanding of the molecular function and interactions therefore

requires knowledge of the three-dimensional structure of the involved molecules,
and understanding the link between the atomic structure of a biomolecule and its
function is the research subject of Structural Biology.

Because of the small size of these molecules, on the order of 10−9 metres, they
escape direct observation, e.g. by optical microscopy. To date only two methods
are capable of giving atomic details of biomolecular structures: Nuclear Magnetic
Resonance spectroscopy and diffraction of X-ray (or neutron) irradiation by crys-
tals of (bio-)molecules.

Nuclear Magnetic Resonance spectroscopy applied to biomolecules

NMR spectroscopy is based on a quantum mechanical property of the nuclei named
nuclear spin. Many of the atoms found in biological macromolecules (in general
several hundreds of atoms even in small proteins or nucleic acids) have a non-zero
nuclear spin, and in NMR experiments each of these atomic nuclei acts as a local spy
inside the molecule, reporting on the local structure and dynamics that it senses.

Collecting information from a large number of local spies allows one to recon-
struct a global, coherent picture of the structure and dynamics of the molecule, or
of the assembly of interacting molecules. The model that one reconstructs has to
be in agreement with all the information that the individual atomic nuclei provide,
and the more information from individual sites is available, the more precise can
such a model be. Retrieving the signal of as many individual nuclei as possible is
therefore crucial.

NMR’s capabilities to give very detailed insight into the structure and dynam-
ics of biomolecules may be exposed with two examples, shown in figure 1.1.

Panel (a) represents the three-dimensional structure of a complex of a protein
with one of its physiological binding partners. The protein molecule U2AF65-
RRM3, and the peptide SF1 are important actors in the splicing of pre-mRNA, a
key step in eukaryotic gene expression. The structures were obtained taking into
account hundreds of distances between individual nuclei, and the position of each
atom in the complex is defined with a precision on the order of one Ångström
(10−10 m).

The information that one can obtain is not limited to the three-dimensional
structure. Figure 1.1(b) gives an example of how NMR can yield insight into dy-
namics of a protein, i.e. transient fluctuations of its structure. Shown is the protein
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(a) (b)

Figure 1.1 Two representative examples underlining NMR’s capabilities for the study of biomole-
cular structure and dynamics. (a) NMR-derived structure of the protein U2AF65-RRM3 in complex
with the peptide SF1 (shown in yellow in the front). For simplicity, only the polypeptide back-
bone is shown in a so-called ribbon representation (Selenko et al. (2003)). (b) Identification of slow
dynamics in the protein lysozyme T4 L99A variant (Mulder et al. (2001)). A cartoon of the three-
dimensional structure is shown in the left panel. The binding site is located in the upper region of
the molecule, as indicated by a blue grid in the right panel. Spheres in the right panel correspond
to amide nitrogen atoms and methyl carbon atoms for which nuclear magnetic relaxation data are
available. The color coding in the right panel displays the difference of the chemical shift (see fol-
lowing chapter) between the ground state and the excited state: purple spheres indicate that the
chemical shift of the corresponding nucleus in the excited state deviates significantly from the one
in the ground state. As the chemical shift is sensitive to local structure, these data indicate that
the structure of the excited state differs from the ground state mainly around the binding site, and
points to an excited state that is structurally different from the ground state especially around the
binding site.

lysozyme T4 L99A, which is known to bind benzenes and substitutes thereof in a
binding site located at the top of the molecule (indicated in the right panel). In-
terestingly, when considering the structure as determined by NMR or X-ray crys-
tallography, the entry of a benzene molecule into this site is sterically impossible.
Therefore, the knowledge of the three-dimensional structure alone cannot explain
why the protein is able to fulfil its function. A phenomenon called nuclear mag-
netic relaxation, which is again sensed by individual atomic nuclei, gives more in-
sight: Such relaxation experiments reveal that there is significant dynamics around
the binding site, and point to an excited state of the protein molecule, in which the
entry of the substrate molecule is possible. In this case, an understanding of the
protein function is only possible with the knowledge of both the protein structure
and dynamics, both of which are accessible to NMR methods.

To conclude, NMR proves a very powerful tool towards an understanding of
biological processes on an atom-resolved basis.
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Outlook

Obtaining detailed information about biomolecules by NMR requires the collec-
tion of a large amount of information from individual nuclei. The work presented
in this thesis focuses on the development of experimental schemes that make cer-
tain aspects of this data collection procedure faster and thus more efficient, and
applies the newly developed methods to the study of structure and dynamics of
proteins.

Chapter 2 briefly reviews some of the relevant theory and introduces NMR
techniques that allow obtaining signals from individual nuclei in proteins. The
problems of current techniques in terms of the experimental time needed for NMR
data collection are identified and strategies to solve them are discussed.

Methods for implementation of longitudinal relaxation optimized protein NMR
spectroscopy are reviewed in chapter 3. Our own methodological developments
done during my thesis are then presented in chapters 4 to 9.

Chapter 4 introduces a new experiment that allows to obtain 2D correlation
spectra, displaying one peak per amino acid in the protein, in experimental times
of only a few seconds. This concept is then extended in chapter 5 to triple-resonance
experiments, that are needed for resonance assignment of backbone atoms in pro-
teins.

A new and very sensitive method for the collection of structural information in
proteins (amide 1H-1H residual dipolar couplings) is then proposed in chapter 6.

Chapter 7 shows the combined implementation of longitudinal relaxation opti-
mization and alternative data sampling schemes, and proposes two methods that
allow obtaining information simultaneously for a large number of sites in a protein
molecule in an acquisition time of approximately one second.

In addition, a new technique for the rapid characterization of the structural
compactness of protein samples is introduced in chapter 8.

Finally, the developed fast NMR techniques were applied to the real-time study
of protein folding and unfolding reaction kinetics, which is demonstrated in chap-
ter 9.

Large parts of the results of chapters 4 to 9 have been published in scientific
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journals. In the present thesis I show some unpublished details, but I skip some of
the published parts that I do not estimate necessary or not up-to-date any more.
The references of the publications can be found on page 221. In addition, the names
of the persons that were also involved in the different projects can be found in the
list of publications. Especially, section 5.2 is to a large portion the work of Ewen
Lescop. For the sake of completeness, and to demonstrate the direct extension of
the concepts introduced in section 5.1, I nevertheless include it into this thesis.
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2 Fast acquisition methods for
multidimensional protein NMR

2.1 Resolution, Sensitivity and Time Requirements in

NMR

The previous chapter has revealed that a wealth of information can be obtained
from NMR spectroscopy about the structure, dynamics and kinetics of (bio-)molecules.
This information is contained in the response of the nuclear spins placed in a static
magnetic field to irradiation by radio-frequency electromagnetic waves.

This response can be obtained for many individual nuclear spins, and the accu-
mulated information of all these spins contains information about molecular struc-
ture, dynamics and interactions. It is generally displayed in the form of a spectrum,
i.e. a plot of signal intensity as a function of frequency.

The way from the spectrum to an atom-resolved molecular picture involves
the quantification of the positions, heights and widths of spectral signals. The
precision with which all these parameters can be extracted therefore determines
the precision of the molecular picture that one gets in the end.

The two crucial factors that govern the precision with which the spectral pa-
rameters can be obtained turn out to be the sensitivity and the spectral resolution.
The next sections will define these quantities.

2.1.1 Brief introduction of some basic concepts

When an ensemble of spins 1
2

is placed in a magnetic field of strength B0, the two
eigenstates, denoted α and β, have different energies and the energy difference,
∆E = Eβ −Eα, is given by the strength of the magnetic field and the gyromagnetic
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ratio of the nucleus, γ:

∆E = ~γB0 or in frequency units ∆E = ~ω0 (2.1)

Here ~ is Planck’s constant devided by 2π and ω0 is the Larmor frequency (in
units of rad/s).

Because of this energy difference the eigenstates are not equally populated, but
the populations, nα, nβ , are given by the Boltzmann distribution:

nα,eq =
1

Z
N exp(−Eα/kT ) nβ,eq =

1

Z
N exp(−Eβ/kT ) (2.2)

where N is the total number of spins, k is Boltzmann’s constant, and T is the
temperature. Z denotes the partition function, and for a spin-1/2 it is given as
exp(−Eα/kt) + exp(−Eβ/kt).

At ambient temperature the energy difference ∆E is very small compared to kT
(high temperature limit), and one can simplify equation 2.2 using exp(−x) ≈ 1− x
and Z ≈ 2 to

nα,eq =
1

2
N(1 − Eα/kT ) nβ,eq =

1

2
N(1 − Eβ/kT ) (2.3)

The population difference, also referred to as spin polarization, is very small at
ambient temperature, even at the highest magnetic field strengths available today.
For example, in an ensemble of 1H spins, the population difference at B0=1 T is
only on the order of 10−4.

2.1.2 Sensitivity in NMR spectroscopy

Sensitivity in NMR, as in any other physical method, describes the experimental
ratio of signal to noise per unit time

Sensitivity =
Signal

Noise
· 1

unit experimental time
or briefly

(
S

N

)

t

(2.4)

Several factors influence the sensitivity. The signal S is proportional to the bulk
magnetization, which is the product of the gyromagnetic ratio, γ, and the polariza-
tion as introduced above. The small population difference between nuclear spin
eigenstates translates to a low sensitivity of NMR experiments, which has been a
major concern of NMR from the early days on.

Other factors related to the sensitivity can be summarized as follows:

(
S

N

)

t

∝ Nspins

V
γexc γ

3/2
det B

3/2
0 n 1/2

s

1
√

Rs(Ta Ts) + Rc(Ta Tc)
(2.5)
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Figure 2.1 Evolution of the signal-to-noise ratio of 0.1% ethylbenzene in CDCl3 for 1H observe
probes since 1970. The numbers above the black squares denote the magnetic field strength (1H
frequency in MHz). Open squares represent data measured with cryogenically cooled probes. The
dashed line indicates the development of conventional probes for a 500 MHz spectrometer. Data
adapted from Kovacs et al. (2005)

where T denotes the temperature in the preamplifier (a), the sample (s) and the
radio-frequency coil (c). Rc is the resistance of the coil originating from an induc-
tive coupling between the sample and the coil, whereas Rs is the resistance of the
sample related to its conductivity. γexc and γdet are the gyromagnetic ratios of the
excited and detected spins, respectively, and Nspins/V is the number of spins per
volume.

In many cases, data accumulation is necessary to obtain acceptable signal-to-
noise. Adding up ns scans increases the signal as ns; the noise also increases, as√

ns, which gives an overall
√

ns dependence for the sensitivity.

Increasing the sensitivity of NMR has been and is still a very active field of
development, and equation 2.5 indicates viable routes.

• The density of the spins (Nspins/V ) can be increased to some extent. However,
for biomolecules concentration is somewhat limited, and concentrations on
the order of a few millimoles per litre can rarely be exceeded.

• High-γ nuclei are predicted to yield superior sensitivity. In protein NMR
experiments (in liquid state) most experiments therefore excite and detect 1H
spins.

Various hardware developments have further increased sensitivity:

• The magnetic field strength B0 has been increased by constant hardware de-
velopment to about 21 T to date.
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• Reduction of the noise level by lowering the temperature of the preamplifier
as well as the coil by cryogenically cooled devices has been shown to yield
sensitivity gains on the order of a factor of 2-4.

The hardware developments (probes, field strengths, electronics) have con-
tributed to a great augmentation of signal-to-noise and this increase over the last
decades is summarized in figure 2.1. This progress translates to a much higher pre-
cision of NMR data, collected in the same amout of time, or significantly reduced
data accumulation times for achieving the same signal-to-noise.

In addition, there is very active research in the field of spin hyperpolariza-
tion, aiming at increasing the spin polarization from the usual 10−4-10−5 to values
that approach unity (Albert et al. (1994); Bowers and Weitekamp (1986); Muller-
Warmuth and Meise-Gresch (1983))

2.1.3 Spectral resolution

Spectral resolution denotes the minimum frequency difference between two sig-
nals that can be identified as individual resonances in a spectrum. The resolution
of an NMR spectrum is determined by the number of resonance lines present in a
given frequency range (the peak density ) and their linewidths.

The Larmor frequency of a nucleus depends on its gyromagnetic ratio and the
magnetic field strength (see equation 2.1); in addition, the chemical environment
of the nucleus alters the magnetic field strength that the nucleus actually senses.
This quantity is expressed as chemical shift δ (in units of parts-per-milion, ppm).
It is defined as a normalized frequency difference with respect to a reference com-
pound:

δ =
ω − ωref

ωref

· 106 (2.6)

The resonance frequency then depends on δ, γ and B0 as:

ω = −γ · (1 + δ) · B0 (2.7)

Because of this normalization with respect to a reference frequency, the chemi-
cal shift of a nucleus at a given position in a molecule is independent of the spec-
trometer operating frequency and depends only on physico-chemical properties of
the molecule.
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Another quantity that is related to resolution is the digital resolution, ∆f , which
is the width of the spectrum, sw relative to the number of data points in a spectrum
(n):

∆f =
sw

n
(2.8)

2.1.4 Fourier transform NMR

In early days of NMR, experiments were performed in a continuous-wave (CW)
manner: the sample was irradiated with a continuous radiofrequency (rf) field
placed in a magnetic field of which the field strength was varied. In the course of
this variation of the field strength, also called sweeping, the nuclear spins come
into resonance only when the radiofrequency matches the energy difference be-
tween the nuclear spin eigenstates.

Consider for example a sample containing molecules that have three differ-
ent 1H sites with different chemical shifts (thus three signals in frequency space).
Sweeping the magnetic field strength while keeping the rf field constant brings the
three different sites into resonance at different stages of the sweeping process.

This is akin to slit-techniques in optical spectroscopy, where the frequency spec-
trum is scanned by observing only a small part of the spectrum which is scanned
over the whole frequency range. Because these techniques only observe a small
portion of the frequency space at a time, they are sometimes called single-channel
techniques.

Focussing at only one such slit of the spectrum at a time has several disadvan-
tages. The sensitivity is low, because only a small slit is observed while a large
fraction of the spectrum is neglected. In addition, achieving a high digital resolu-
tion ∆f requires to detect a large number of points in the frequency range, N (see
equation 2.8), and therefore requires long experimental times related to the slow
sweeping of the frequency range.

The introduction of Fourier transform (FT) NMR (Ernst and Anderson (1966))
has today almost entirely replaced CW NMR and constituted a leap in NMR’s
applicability, resolution and sensitivity. In contrast to CW techniques, FT NMR ex-
cites the whole spetral range at the same time by short radiofrequency pulses, and
the evolution of the excited spins is followed as a function of time. The distribution
of intensities in frequency space, I(ω) is then obtained by a Fourier transformation
of the signal detected as a function of time, s(t), which is sampled from t = 0 to
t = tmax.

I(ω) =

∫ tmax

0

s(t) exp(−iωt)dt (2.9)
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Figure 2.2 Schematic representation of 1D FT NMR. The evolution of the longitudinal component
of the bulk magnetization, Mz , and the transverse component, Mx, are displayed during the three
scans, each consisting of an excitation with a 90◦ pulse, subsequent detection of the transverse
magnetization and a longitudinal relaxation delay. The insets represent pictorially the bulk mag-
netization vector (shown here only for one scan). The signal acquired in the different scans can be
added for increased signal-to-noise before final Fourier transformation.

In practice, the sampling cannot be performed in a continuous manner, but the
time-domain signal is sampled at n discrete steps separated by a so-called dwell
time ∆t. The integral transform in equation 2.9 therefore has to be replaced by a
discrete Fourier transform.

The time-domain signal originates from the superposition of all the excited nu-
clei present, and Fourier transform NMR, unlike CW NMR, can be regarded as
a multi-channel approach. This advantage, that all frequencies are sampled at the
same time by observing a single continous signal in the time domain is referred to
as multiplex advantage.

Figure 2.2 shows schematically the experimental realization of a simple one-
dimensional (1D) FT NMR experiment. Although a rigorous treatment requires a
quantum-mechanical description, a simple vector model introduced by Felix Bloch
suffices for the moment to introduce some concepts, and it will be used at several
places in this work.

In this classical picture, the bulk magnetization of the sample at thermal equi-
librium is represented by a vector parallel to the external magnetic field (figure 2.2).
The effect of a rf pulse (depicted by a narrow filled rectangle) can be represented
in this picture by simple rotations of this vector. For example, a so-called 90◦ pulse
results in the alignment of the bulk magnetization in the xy-plane of the reference
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frame. This is referred to as transverse magnetization. The transverse magnetiza-
tion precesses around the magnetic field with an angular frequency ω, inducing a
current in the surrounding receiver coil. This is exactly the signal s(t) that can be
Fourier transformed according to equation 2.9.

The evolution of the longitudinal and transverse components during this sim-
ple one-pulse FT NMR experiment are schematically summarized in figure 2.2.
For the sake of generality figure 2.2 assumes that the pulse sequence is repeated
numerous times (e.g. in order to increase the signal-to-noise ratio) and three rep-
etitions, or scans are shown. The transverse magnetization present after the pulse
oscillates with the resonance frequency of the nucleus and this oscillation corre-
sponds to a damped (decaying) sinusoidal function. The damping is due to a
dephasing of the individual nuclear magnetic moments in the sample (a loss of
coherence). This process is called transverse relaxation, denoted by a time con-
stant T2. Due to this decay the time-domain signal is called free-induction decay ,
or FID. (Note that the observed signal is in general the superposition of many such
damped sinusoudals, according to the number of spins with different resonance
frequency.)

The longitudinal component in this picture, Mz, is zero after a 90◦ pulse and
it returns to its thermal equilibrium value via a process called longitudinal relax-
ation. This spin magnetization recovery is often assumed to be monoexponential
with an associated time constant T1.1

The transverse relaxation time constant is always smaller or maximally equal
to T1, and in the case of proteins typical T1 and T2 values for protons are on the
order of 1 second and tens of milliseconds, respectively.

Some of the properties of discrete FT NMR will be needed in the following and
are briefly introduced here.

When data are sampled discretely at evenly spaced intervals in time (separated
by ∆t), the highest frequency that can be unambiguously quantified is given by
the Nyquist frequency:

fn =
1

2∆t
(2.10)

Frequencies that are higher than fn are not suffiently sampled and appear in FT
NMR as lower than they actually are (see figure 2.3). The frequency range that
can be observed (i.e. the spectral width sw) is the interval −fn < ν < fn and thus
depends on the sampling interval as

1Section 2.3 will adress this issue in more detail.
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Figure 2.3 Nyquist theorem. A cosine function cos(2πν0 · ∆t) with ν0=1.6 (black curve) is sampled
at discrete points separated by ∆t (green filled circles). This sampling (less than twice per period)
makes it appear at a frequency νa = ν0 − 2 · fn = 0.6 (red curve).

sw =
1

∆t
= 2fn (2.11)

The digital resolution ∆f=sw/n is determined by the maximum data sampling
time tmax as:

∆f =
1

tmax
=

1

n ∆t
(2.12)

This equation states that in order to achieve a certain digital resolution ∆f , a num-
ber n = sw/∆f of points has to be sampled along the time axis.

Another quantity that determines resolution is the width of the signals in fre-
quency space, L. It depends on the decay rate of the corresponding signal in time
space, R2=1/T2.

L =
R2

π
(2.13)

As the transverse relaxation rate of a given nucleus can be considered an intrinsic
property under the experimental conditions, the line width L is also called natural
line width. The natural line width can be considered as an upper limit of the re-
solution that one can achieve by FT NMR (or any other NMR technique). The line
width can be related to the digital resolution (equation 2.12) as

∆f =
1

tmax
= L

(
πR−1

2

tmax

)

(2.14)

Optimal resolution is achieved when the digital resolution is on the order of
the natural line width. Higher digital resolution will not further improve the ca-
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Figure 2.4 One-dimensional 1H spectrum of the protein ubiquitin recorded at 500 MHz 1H Larmor
frequency. The frequency ranges of different types of 1H spins are indicated.

pability to discern separate signals. Equation 2.14 predicts that optimal resolution
is achieved setting tmax = πR−1

2 or n = (πR−1
2 )/(∆t).

2.1.5 FT NMR applied to biological macromolecules: the need for

more resolution

Figure 2.4 shows a 1H spectrum of a small protein; strong overlap between signals
corresponding to different sites in the molecule is observed, and only very few
sites have resolved signals in this 1H spectrum, which makes extraction of atom-
resolved information almost impossible. Increasing the resolution is therefore a
critical issue for the study of biomolecules by NMR and different approaches have
been proposed.

The resolution is related to the peak density and the line widths of the individ-
ual signals. In order to achieve high resolution, the peak density should be low
and the line widths should be as small as possible.

To keep the peak density low, a first prerequisite is to avoid the presence of
molecules that are not of interest; biochemical purification is therefore indispens-
able for biomolecular NMR studies.

However, this is in general not sufficient: the intrinsic peak density in proteins
and nucleic acids is high. This is related to the fact that these molecules are com-
posed of repetitions of a relatively small number of building blocks that all share
a common motif. As the chemical shift is mainly determined by local effects the
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signal positions are confined within a relatively narrow range resulting in a high
peak density even for small proteins.

Equation 2.7 shows that increasing the magnetic field strength B0 is a way to
increase resolution. Assuming that the line width (in Hertz) does not change with
magnetic field strength, resolution increases linearly with B0, which is one of the
factors motivating the ongoing efforts in the hardware development.

The peak density can also be reduced by reducing the number of signals in the
spectrum. This can be done by replacing NMR-active nuclei (such as 1H) by NMR-
invisible nuclei (such as 2H). Deuteration with selective protonation of a few sites
can be a way in this direction.

Besides the peak density, the width of the signal also determines the resolution.
When factors related to the acquisition procedure are set optimal (high digital re-
solution, homogeneous magnetic field), it is the natural line width that determines
the minimal line width. The natural line width is related to a number of factors,
including the nature of the nucleus observed, the molecular environment of this
nucleus (which relates to relaxation mechanisms available and their strength), the
spin state of neighboring nuclei and the dynamics sensed by the given nucleus
(which modulates the coupling strength to the available coupling mechanisms).
For a given nucleus a reduction of the natural line width can therefore be achieved
by either altering the dynamics (higher temperature, lower viscosity (Wand et al.
(1998)), removing relaxation mechanisms by replacing proton spins by deuterons
(Gardner and Kay (1998)), or by use of transverse relaxation optimized spectro-
scopic techniques (Fiala et al. (2000); Pervushin et al. (1997); Sklenar et al. (1993)).

However, all these approaches, from higher field strengths and biochemical pu-
rification to techniques that decrease the natural line width, prove insufficient to
resolve a large number of individual nuclear sites. Detailed atom-resolved infor-
mation about biomolecules is generally inaccessible to 1D NMR.

2.1.6 Multidimensional NMR

Jeener and later Ernst (Aue et al. (1976); Jeener (1971)) have proposed a very el-
egant way to increase resolution and, additionally, spectral information content,
that has revolutionized NMR and opened the way for almost all modern appli-
cations: multidimensional Fourier Transform NMR (in the following referred to
as nD FT NMR). Unlike 1D NMR, it searches to correlate resonance frequencies
and thus spread signals from a one-dimensional into an n-dimensional frequency
space. Not only does this spreading increase resolution, but the correlation of fre-
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quencies along independent frequency axes reveals the presence of an interaction
between spins resonating at the frequencies that are correlated. This correlation
information is extremely valuable and gives insight into structure and dynamics
and can also be used for spatial location in imaging experiments. Much of NMR’s
power is based on multidimensional techniques, and the range of applications
makes NMR today probably one of the most versatile techniques, indispensable in
fields as diverse as medical diagnostics and the investigation of molecular struc-
tures at atomic resolution.

2.1.6.1 The concept of nD NMR

The idea behind nD FT NMR, very much akin to 1D FT NMR, is to collect a signal
that is a function of n time variables, s(t1, t2, ..., tn), and to reconstruct the com-
plete n-dimensional spectral distribution, I(ω1, ω2, ..., ωn), by Fourier transforma-
tion. For the case of a 2D signal this would be:

I(ω1, ω2) =

∫ tmax
1

0

∫ tmax
2

0

s(t1, t2) exp(−iω1t1) exp(−iω2t2) dt1 dt2 (2.15)

From a formal point of view nD FT NMR thus appears as a natural extension
of 1D NMR as can readily be seen by comparing equation 2.15 to equation 2.9.
However, the formal analogy is misleading: Whereas a time-domain signal in one
dimension, s(t), can be acquired by physically observing the current induced in
a detection coil by the spins’ precession, one cannot sample the spins’ evolution
along two time axes simultaneously: time is a one-dimensional quantity by nature.
Acquisition of a signal s(t1, t2), is therefore done by repeating the basic experiment
multiple times, detecting each time the full time domain signal in one dimension,
and incrementing with each repetition of the experiment a delay parameter within
the pulse sequence that reflects the time evolution of the remaining time domain.
For the case of a 2D data set, this is realized with this general scheme:

preparation − evolution in t1(incremented) − mixing − acquisition (t2) (2.16)

In this scheme, an initial preparation step excites the spins of interest, which are
allowed to evolve according to their resonance frequency Ω1 during an (incre-
mented) delay t1. At the end of this delay a mixing period transfers the magne-
tization to other sites - provided that there is an interaction mechanism allowing
this transfer. The resonance frequency of the spins on which the magnetization
resides after mixing, Ω2, is then observed during the final acquisition period. The
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final signal is thus a function of the two time variables that yields the desired 2D
spectrum after 2D FT (equation 2.15). The presence of a signal at frequencies Ω1

and Ω2 in the 2D spectrum reveals the presence of the interaction mechanism be-
tween the two nuclei resonanting at Ω1 and Ω2.

In this scheme, the sampling of ni data points in the indirect time domain re-
quires ni repetitions of the pulse sequence.

Extension to higher dimensionality is straightforward: additional mixing and
evolution steps for each additional spectral dimension have to be introduced and
all the data points in the indirect dimension have to be sampled independently.

Figure 2.5 shows an example of how multidimensional NMR techniques are
used to increase resolution and information content. The sampling scheme along
the indirect time domains, t1, t2 is also shown.

2.1.6.2 Resolution in nD FT NMR

The resolution enhancement brought about by nD NMR is explained by the high-
dimensional space in which the signals are distributed.

For the width of the resonance lines similar considerations apply as in 1D NMR.
Just as in the direct frequency domain, the natural line width is determined by the
transverse relaxation of the nucleus that evolves during the corresponding evo-
lution time. The natural line width, given by equation 2.13 on page 40, can be
considered an upper bound of the achievable resolution.

The digital resolution, just as in 1D, depends on the maximum delay that is
sampled, tmax. For equidistant sampling of ni data points separated by ∆t, it is
given by

∆f =
1

tmax
=

1

ni ∆t
= L

(
πR−1

2

tmax

)

(2.17)

As before, optimal digital resolution is achieved setting tmax = πR−1
2 or ni =

(πR−1
2 )/(∆t). Unlike 1D NMR, achieving higher resolution (while keeping the

spectral width sw constant), can only be achieved by collecting more repetitions
of the experiment.

To put these equations in a context and demonstrate what the numbers are in
a typical case, consider the sampling of the 15N time domain in a magnetic field of
14.1 T (600 MHz 1H frequency). Assume that the spectral width to be covered is 35
ppm (corresponding to 2160 Hz) and further assume a transverse relaxation time
constant R−1

2 of 70 ms , which is a typical value found in a small to medium-sized
protein (Rovnyak et al. (2004b)). In this case, if a resolution is desired that allows to
distinguish signals separated by twice the natural line width (ni = (πR−1

2 )/(2∆t))
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Figure 2.5 Increase in resolution and information content achieved by multidimensional NMR,
demonstrated with the example of the protein ubiquitin. The 1D spectrum of the amide proton
region is displayed in the upper panel (right). It was obtained by Fourier transformation of time
domain data acquired along an axis tdirect (pointing out of the plane). The central panel shows a
correlation spectrum of the same amide protons to the attached 15N nuclei. The time-domain data
set is schematically indicated on the left side. Each point corresponds to the acquisition of a free-
induction decay along the direct time domain. Lower panel: A 3D spectrum correlating the amide
proton, its attached nitrogen and the neighboring carbonyl atom. Two independent time domains
have to be sampled, as indicated by the sampling grid on the left. Note how the peaks that are
overlapping in the 1D spectrum are resolved in the 2D and/or 3D spectra. The experimental time
required for the recording of these data sets is proportional to the number of points on the sampling
grid.
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more than 230 data samples have to be acquired. This is found one of the major
drawbacks of multidimensional NMR: Hundreds of repetitions of the experiment
with incrementation of evolution parameters have to be performed to sample the
additional time domain(s).

2.1.6.3 nD FT NMR and the multiplex advantage

At first sight, the nD acquisition scheme seems to relinquish the advantages in-
troduced into 1D NMR by the FT approach, namely that a full spectrum can be
obtained in one single scan. So do multidimensional NMR techniques still benefit
from the multiplex advantage afforded by 1D FT NMR ?

At this point, one should distinguish between two different issues, sensitivity
and experimental time.

In terms of sensitivity, the full multiplex advantage is retained: all the reso-
nance lines contribute to the signal detected in each and every scan, such that in
a first approximation sensitivity is not reduced. Thus, to a first approximation, it
does not make a difference if multiple scans are accumulated by repeating exactly
the same sequence or if the same number of scans is used to sample an additional
time domain by increasing in each scan a delay parameter within the pulse se-
quence. Multidimensional NMR therefore comes at (almost) no cost in terms of
sensitivity and in cases where sensitivity is the limiting factor governing the ex-
perimental time it even comes at no cost in terms of experimental time.2

The real drawback of nD NMR as compared to its one-dimensional counterpart
is the minimum number of scans (and thus the minimum experimental duration)
required for the sampling of the full n-dimensional data set, even in cases where
sensitivity is abundant in few scans. The above considerations have shown that
for optimal spectral resolution hundreds of scans have to be sampled in each time
domain. As the spin evolutions along different time domains are independent,
the number of scans grows exponentially with the number of dimensions. The
next section will take a closer look at the typical experimental times needed for the
sampling of the data space.

2Here signal losses during the generally longer pulse sequences used for higher-dimensional
experiments (including relaxation losses), and losses due to quadrature detection are not consid-
ered.
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2.1.6.4 Time requirements of nD FT NMR

The minimum experimental time for the recording of an nD data set (with indirect
time domains t1, . . . , tn−1) is given by the duration of one scan, Tscan, times the
number of scans that are performed:

Texperiment = Tscan ·
(

nrepet npc 2n−1 (ni1 ni2 · · · nin−1)
)

︸ ︷︷ ︸

number of scans

(2.18)

Here nik is the number of time points (increments) acquired in the k-th time do-
main (determined by the spectral width swk and the desired resolution in this di-
mension) and the factor 2n−1 arises from the quadrature detection scheme in each
of the n − 1 indirect dimensions, when using one of the usual procedures (States
(States et al. (1982)), TPPI (Marion and Wuthrich (1983)) or TPPI-States (Marion
et al. (1989)). npc is the number of repetitions of the experiment that has to be per-
formed to complete phase cycling (which is used for artifact suppression). nrepet

is the number of repetitions that is done for signal accumulation to increase sen-
sitivity. Using modern hardware, sensitivity is often sufficient using nrepet=1, and
in the situations discussed below this is always assumed; experimental times are
thus not considered to be sensitivity-limited, but determined by data sampling.
Tscan includes the duration of the rf pulse sequence (rf pulses, pulsed field gradi-
ents and delays), the acquisition period and the delay between consecutive scans
(interscan delay; see figure 2.2).

When studying biological macromolecules, typical values for Tscan are on the
order of one second. As for the number of scans, typical values are on the order of
50-100 per indirect time domain. With these values and assuming a phase cycling
scheme with npc = 2 one obtains the following typical values for the minimum
durations of multidimensional data acquisition:

1D

2 seconds

2D

3 minutes

3D

11 hours

4D

92 days

5D

600 months

Because of the long experimental times 4D and 5D spectra are very rare and only
acquired when the number of sampled data points can be significantly reduced
by some means. For the set of experiments that typically have to be performed
for structural studies of biomolecules (several 3D spectra) the spectrometer time
required is on the order of several days to weeks.
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2.1.7 Speeding up multidimensional data acquisition

The long data acquisition times associated with the data sampling is found very
confining for multiple reasons:

• Many biological samples tend to have a limited stability in time. Finishing
the whole set of required experiments within the ’life time’ of the sample is
therefore crucial to obtain reliable information.

• High-throughput structural genomics projects require the collection of large
amounts of data in short times. This also applies to large scale facilities,
where sensitivity is good because of high magnetic fields, but instrumental
time expensive.

• The study of more and more complex systems requires ever higher dimensio-
nal data sets (≥ 4D), that would take unacceptably long experimental times
using standard schemes.

• Following (bio-)chemical reactions in real time requires methods that are ca-
pable of accessing the time scales of these events while resolving individual
nuclear sites. Many biologically relevant reactions occur on time scales of
seconds (or less), which makes them often accessible to 1D techniques but
excludes the use of site-resolved nD NMR studies using standard nD tech-
niques.

In addition, unlike in the early days of NMR, where sensitivity was often the
factor dominating the experimental duration, technical advances in the last decades
have made available high sensitivity in times that are much shorter than the du-
rations dictated by data sampling considerations, a situation that has been known
as sampling-limited regime. The last years have therefore witnessed intense research
efforts to eliminate the time barriers of nD NMR.

As indicated by equation 2.18, there are two possibilities for accelerating nD
techniques: the reduction of the time required to sample one data point, and the
reduction of the number of data points that have to be sampled. All the proposed
methods are based on these two strategies and in many cases different concepts
can be combined, offering now a large pool of techniques for fast nD NMR.

The remainder of this chapter deals with the concepts that have been proposed.
In the first part (section 2.2), approaches for reducing the number of sampled data
points are reviewed. Section 2.3 will then introduce methods that allow a signif-
icant reduction of the interscan delay while retaining high sensitivity. The main
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focus will be on methods used in protein NMR spectroscopy that have been used
and developed in the course of this thesis.

2.2 Accelerated nD NMR I: Reduced number of scans

Different approaches have been proposed to reduce the minimum number of scans
that have to be performed. Here I will not discuss the class of methods that
use non-linear data sampling in combination with non-linear processing meth-
ods, such as the filter diagonalization method (Chen et al. (2003); Mandelshtam
(2000)), maximum entropy methods (Hoch and Stern (1996); Pons et al. (1996)),
three-way decomposition (Orekhov et al. (2001, 2003)), Lagrange interpolation of
non-equispaced data followed by regular FT (Marion (2005)) or brute-force FT of
non-uniformly sampled data (Marion (2006); Pannetier et al. (2007)). Several re-
view articles are available that cover these methods (Freeman and Kupce (2003);
Kupce et al. (2003); Malmodin and Billeter (2005a)).

2.2.1 Phase cycling

Considering equation 2.18, reducing the number npc of phase-cycled scans is a vi-
able approach for speeding up data acquisition. Phase cycling is done by repeating
the experiment npc times with different settings of pulse/receiver phases. It is per-
formed for suppression of spectral artefacts.

Hardware developments have allowed to reduce the number of steps in phase
cycles while preserving good artefact suppression: First, increased spectrometer
stability often allows a clean annulation of artefacts by summing only few (two,
four...) phase-cycled scans. Second, the introduction of pulsed field gradients
has revolutionized artefact suppression and coherence selection strategies. Rather
than by extensive phase cycles, the desired coherence pathways can be selected
in one single scan by the use of pulsed field gradients, and they are applied in al-
most all modern pulse sequences (see, e.g. Bax and Pochapsky (1992); Kontaxis
et al. (1994)). In addition, spectroscopic methods have been proposed that allow to
move axial peaks to regions of the spectrum that do not contain signals of interest
(Simorre and Marion (1991)). To conclude, in many cases phase cycling for artefact
suppression can be reduced or completely skipped.

When the number of phase-cycled scans is already reduced to a minimum, the
next step is the reduction of data points sampled in the indirect time domains.
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2.2.2 Spectral aliasing

Increasing the step size ∆t between data samples results in aliasing (back-folding)
of peaks that have frequencies outside the spectral width (equation 2.11). This can
lead to accidental peak overlap and makes it difficult to know the real frequency
of aliased peaks.

However, if peak positions are known before, one can optimize the spectral
width such that the aliased peaks fall in empty regions of the spectrum or onto
peaks that are not of interest. It is common practice to use spectral widths that
are slightly smaller than the maximum frequency difference of peaks along this
dimension.

A systematic approach can be envisaged: If the peak positions are known along
indirect dimension(s), a numerical optimization of the spectral widths that min-
imize peak overlap can be performed. In this way, one can obtain very dense
spectra with small spectral widths. The spectrum can then be unfolded with the
knowledge of the real (not aliased) peak positions (Jeannerat (2007); Lescop et al.
(2007).

This approach needs a prior knowledge of the spectrum and one may ask the
question in which conditions it can be useful to record a spectrum in which the
peak positions are already known. Two situations may be of interest:

In experiments where the peak intensities are of interest, and the positions are
already known, a systematic spectral aliasing can speed up data acquisition while
retaining all the desired information. This is the case when measuring a series of
nD spectra and varying some parameter from one experiment to the other, e.g. a
delay for the measurement of relaxation rates or diffusion constants.

In addition, extensive spectral aliasing can be useful for fast collection of high-
dimensional (≥ 3D) spectra that are extensions of lower-dimensional spectra al-
ready known. For example, think of a H-N-CO experiment: If the 1H and 15N peak
positions are already known from a 2D spectrum, then a 3D HNCO data set can be
recorded where the spectral width in the 15N dimension is reduced to a minimum.
A small number of data points along the folded 15N dimension is then sufficient
and only along the unknown 13C domain the usual number of data points has to
be recorded. This approach can then be extended from the known 1H, 15N and
13CO peak positions to record 4D H-N-CO-CX experiments (with CX=CA or CB).
How such a systematic spectral aliasing can be used is shown in the appendix,
page 219).
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2.2.3 Linear prediction

If the time domain is not sampled up to sufficiently long tmax, as required for op-
timal spectral resolution (see equation 2.14) one speaks of a truncated FID. This
is general practice for keeping experimental times reasonably short. The con-
sequence of such a truncation , besides decreased resolution, is a distorted line
shape (sinc wiggles). Linear prediction (LP) allows to extrapolate experimental
data points (Barkhuijsen et al. (1985)) and to extend the tail of a time-domain sig-
nal.

LP assumes that the time-domain signal consists of a superposition of complex
sinusoids, and fits a number of such sinusoidal functions to the experimental data
points. LP relies on a regular sampling grid.

LP is often used to extend the FID to longer tmax, and it may also be used to
predict missing data points that are corrupted by instrumental failure (e.g. trans-
mitter breakthrough).

2.2.4 Reduced dimensionality or Projection NMR

The speed problem of nD NMR comes from the need to sample several time do-
mains independently. Reduced dimensionality techniques attack this problem by
linking together the stepwise incrementation of different evolution periods (Brut-
scher et al. (1994); Simorre et al. (1994); Szyperski et al. (1993a,b)).

Consider a three-dimensional experiment, where two indirect evolution times
t1, t2 are varied independently, and assume that an NMR signal has a frequency
Ω1 in t1 and Ω2 in t2. At the end of the first evolution time, a signal cos(Ω1t1) is
transferred to the second spin (with frequency Ω2), and after the second evolution
time the signal prior to acquisition is modulated as

cos(Ω1t1) cos(Ω2t2) (2.19)

Quadrature detection of both time domains requires additional acquisition of
the corresponding signals modulated as cos(Ω1t1) sin(Ω2t2), sin(Ω1t1) cos(Ω2t2) and
sin(Ω1t1) sin(Ω2t2).

In the reduced dimensionality approach (also known as projection NMR), the
two evolution times are incremented jointly as a function of a single evolution time
t, thus t1 and t2 are replaced by t and tλ, where λ = ∆t2/∆t1 is a scaling factor be-
tween the two evolution periods. Figure 2.6 shows the data sampling along such
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Figure 2.6 (a) Standard scheme for sampling of two indendent time domains (as introduced in
figure 2.5). (b) Reduced dimensionality approach. The two evolution periods are linked together,
as explained in the text. Data are acquired along an axis that is tilted with an angle α (λ = tanα)
with respect to t1.

tilted axes (corresponding to different values of λ).

In analogy to equation 2.19, this results in a modulation of the signal according
to

cos(Ω1t) cos(λ Ω2t) (S1)

and as above, quadrature detection with respect to the two evolution periods
can be performed, yielding additionally:

sin(Ω1t) cos(λ Ω2t) (S2)

cos(Ω1t) sin(λ Ω2t) (S3)

sin(Ω1t) sin(λ Ω2t) (S4)

Using trigonometric relations (S1) can be written as

1

2
{cos(Ω1t + λ Ω2t) + cos(Ω1t − λ Ω2t)} (S1′)

and similar relations hold for (S2) to (S4). Inspection of (S1’) reveals that the ac-
quisition along tilted axes results in the detection of weighted sums and differences of
chemical shifts Ω1 and Ω2, rather than individual shifts.

Different possibilities have been proposed to analyse data acquired in this way.
In the original approach (Brutscher et al. (1994); Simorre et al. (1994); Szyperski
et al. (1993a,b)), quadrature detection was performed for only one of the two evo-
lution periods, thus only (S1) and (S2) were recorded. The resulting spectrum con-
tains a chemical shift doublet with peaks at Ω1 + λΩ2 and Ω1 − λΩ2. Determining
their position allows to identify Ω1 and Ω2.
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If quadrature detection is done for both nuclei (i.e. (S3) and (S4) are recorded
additionally), then the two peaks at Ω1 +λΩ2 and Ω1−λΩ2 can be separated in two
subspectra (Brutscher et al. (1995b)).

This approach has been extended to higher dimensionality and formalized as
G-matrix Fourier Transform (GFT) NMR (Kim and Szyperski (2003)). In principle,
the reduced dimensionality approach can be applied twice for two (or more) dis-
tinct sets of chemical shifts, where the chemical shifts of each set are sampled in a
joint manner (Atreya et al. (2005)).

The major advantage of projection NMR is speed: The number of data points
that have to be sampled is considerably reduced with respect to the standard
scheme (compare figures 2.6 (a) and (b)), at least as long as a small number of tilted
planes is sufficient to obtain the desired information (small to medium-sized pro-
teins). This makes it possible to record high dimensional (4D, 5D,...) information,
which is inaccessible to the standard scheme, by reduction to low dimensionality.

In terms of sensitivity, reducing K frequency domains to a (K-1)-dimensional
spectrum results in a sensitivity loss of a factor of

√
2 with respect to the corre-

sponding K-dimensional spectrum. This loss can be partially compensated by ex-
ploiting spectral symmetry relations (Brutscher et al. (1995a)).

Because of the reduction of the dimensionality of the spectrum, accidental over-
lap is more likely than in the corresponding higher-dimensional spectrum. The re-
duced dimensionality approach is therefore especially interesting when the spec-
tral space is relatively sparse, e.g. in protein resonance assignment experiments,
but it is not limited to these experiments.

2.2.4.1 Projection reconstruction technique

The way that data are recorded in the reduced dimensionality approach can also
be viewed in a different light (Kupce and Freeman (2003b, 2004a)).

Data sampling in reduced dimensionality experiments is done along a tilted
axis in the multidimensional time space (see figure 2.6(b)). A Fourier theorem
states that a section through the origin of a two-dimensional time-domain signal
s(t1, t2), which is inclined at an angle α with respect to the t1 axis, transforms as the
projection onto a line through the origin of the two-dimensional frequency-domain
signal S(ω1, ω2), with the same angle α with respect to the ω1 axis (Nagayama et al.
(1978)).
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Figure 2.7 Projection reconstruction technique. (a) When a two-dimensional spectrum is recon-
structed from two one-dimensional projections with 4 peaks in each projection, then 16 potential
cross-peaks are possible. The problem is clearly underdetermined with only two projections and
up to 16-4 of theses peaks may not be real. (b) The degeneracy is released when recording another
projection at a different angle, and in this case the peak positions of the five crosspeaks are unam-
biguously determined from the three projections. However, in many cases more projections have
to be recorded. (c) Experimental example of a typical plane of a H-N-CO spectrum of a protein
containing 4 peaks, which is reconstructed from 18 projections evenly distributed from -90◦ to +
90◦. Note that this reconstruction algorithm (sum-algorithm) results in noise ridges that are spread
from the peak positions in the directions of the projections. These figures are reproduced from
Kupce and Freeman (2004b).

In other words: The 2D spectra ((Ω1, Ω2),Ω3), that results from Fourier transfor-
mation of the data set acquired along the tilted axis in the (t1, t2) plane can be seen
as projections of the 3D (Ω1, Ω2, Ω3) spectrum onto two dimensions. The projection
angle α is given as tan α = ∆t1/∆t2.

Lower-dimensional projections of an object are found in many other fields, such
as astronomy, electron microscopy, computer tomography and other imaging tech-
niques, and in these fields it seems obvious to reconstruct the real three-dimensional
object from the two-dimensional projections. This operation is done by an inverse
Radon transform, empirical backprojection schemes or iterative procedures.

In analogy, reconstructing a higher-dimensional spectrum from lower dimen-
sional projections has also been proposed for NMR spectra (Coggins et al. (2005);
Kupce and Freeman (2003b, 2004a,b); Venters et al. (2005)). Figure 2.7 (c) illus-
trates the sum-algorithm , or backprojection algorithm, where the intensities of all
projections are summed up. Note that this reconstruction algorithm introduces
projection artifacts, that manifest as ridges along the directions of the projections.
Another algorithm, that avoids these artifacts is the lower-value approach. Rather
than summing up all projections, it compares at each point of the spectrum the in-
tensities of the different projections, and uses their lowest value. While removing
the projection ridges, the resulting sensitivity is reduced: The reconstructed signal
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corresponds to the signal of only one projection. Recording more projections thus
does not increase the sensitivity. A hybrid algorithm between these two has also
been proposed (Venters et al. (2005)).

The main advantage of the reconstruction techniques of projected (reduced di-
mensionality) spectra with respect to the original GFT approach is, that the final
result is a usual high-dimensional spectrum. Most NMR spectroscopists are used
to looking at spectra, rather than lists of frequencies, which is the outcome from
the GFT approach described above.

The reduced dimensionality approach can be viewed from yet another angle:
The recording of data points along tilted axes can be viewed as replacing the Carte-
sian sampling grid by a polar sampling grid with a radial and an angular compo-
nent. In such a polar coordinate system, one may implement a straightforward
Fourier transform to create directly the frequency domain spectrum along the two
projected dimensions (Marion (2006)).

2.2.5 Hadamard NMR spectroscopy

The large number of NMR-active spins, and the corresponding large number of
resonance lines, is at the origin of the strong overlap in low-dimensional spectra.
Besides increasing the spectral dimensionality, resolution could also be enhanced
by labeling specifically only few sites in the molecule with NMR-visible nuclei,
which results in a simplified, and potentially resolved spectrum. Imagine, for ex-
ample a protein that is protonated only at glycine residues, whereas all other amino
acids are deuterated. Even a simple 1D 1H spectrum would probably allow to re-
solve many individual glycine protons in such a diluted spectrum. In practice,
this strategy is generally not applied: the high cost of such selective biochemical
labeling, and the need for several samples with different labeling schemes, makes
it unattractive.

Hadamard NMR can be seen as a spectroscopic alternative to such biochemical
labeling. Rather than selecting specific sites by biochemical methods, it makes use
of radiofrequency pulses that are applied selectively to a number of frequencies.
These selective pulses replace the usual free evolution periods in a multidimensio-
nal pulse sequence. Consider for example a 1H-15N correlation experiment. Re-
placing the t1 evolution period by an appropriate selective 15N pulse would result
in a 1D 1H spectrum, which contains only signals from those 1H spins that are cou-
pled to a 15N nucleus with a resonance frequency that matches the frequency of
the selective pulse. In other words, the obtained 1D 1H spectrum can be seen as a
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Figure 2.8 Hadamard encoded NMR spectroscopy shown for the example of a H-4 matrix. Four
lines, A-D, are manipulated by selective pulses so, that their signs are positive or negative (a). From
these four scans, the spectra containing only one line per spectrum (A, B, C, D) can be retrieved by
summing the four scans according to the H-4 matrix (b).

slice of the 2D spectrum at the chosen 15N frequency.

Although this approach would thus resolve certain sites in the molecule it has
a drawback: In order to cover the whole frequency range, many repetitions would
be necessary with different selective pulses, and each such repetition would con-
tain the signal of only one slice. This frequency-space approach actually closely
resembles the continuous-wave techniques of NMR’s early days, with the asso-
ciated drawbacks in sensitivity. Nevertheless, a slightly modified version of this
idea, Hadamard spectroscopy, brings in again the multiplex advantage of FT NMR.

The trick of Hadamard NMR spectroscopy is the following: Rather than apply-
ing one selective pulse, an array of encoding pulses at different frequencies (differ-
ent slices) is applied simultaneously. A number of such scans are performed, and
in each scan the pulses are applied so, that the signal of different slices has either
positive or negative sign, according to a so-called Hadamard-matrix (Hadamard
(1893)).

Figure 2.8 shows this principle applied to the example of four selective encod-
ing pulses. Four scans are performed and in each scan the signal of all slices is
recorded. The individual peaks can then be retrieved by summing the scans ac-
cording to the Hadamard matrix, figure 2.8(b). Note that completion of all scans
of the Hadamard matrix is indispensable to extract individual spectra. Because in
each scan the full signal of all slices is detected, the multiplex advantage is retained,
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making it fundamentally different to the frequency-space CW techniques.
In addition to the shown four-by-four (H-4) matrix, Hadamard matrices of or-

der 2k and of order 4k can be defined, where k is an integer (H-2, H-4, H-8, H-12,
etc).

Hadamard encoding instead of the usual time-encoding has a speed advantage
whenever the number of Hadamard encoding pulses is smaller than the number
of increments in an FT approach would be. Hadamard NMR spectroscopy is there-
fore especially interesting in two cases.

(i) If the spectral space in the indirect dimension contains only few peaks, or if
only a few sites in the spectrum are of interest, then one can focus on these sites by
manipulation with selective Hadamard encoding. In this context, focussing on an
active site in a protein during a reaction or upon ligand binding (Feliz et al. (2006)),
and the study of small molecules with only few lines (Kupce and Freeman (2003a))
have been proposed. In this case, the encoding pulses have in general a small
bandwidth focussing on few sites; this techniques is called site-selective Hadamard
approach.

(ii) If the peak density in the indirect dimension is high, and all peaks are of
interest, then a site-selective approach is not attractive: to cover the whole spectral
range, a large number of Hadamard pulses would have to be performed, resulting
again in many mandatory scans and long experimental times. In this case a band-
selective approach can be used: A rather small number of Hadamard encoding
pulses with relatively large bandwidth can be more or less evenly distributed over
the frequency range of interest. All the peaks resonating within the bandwidth
of the individual pulses would thus not be resolved in the Hadamard-encoded
dimension. However, the additional spectral dimension(s) may be sufficient to
resolve the peaks within one band .

This band-selective approach was first applied to a protein HNCO experiment,
where the CO frequency space is divided in four bands by selective encoding
pulses. The correlation peaks are thus dispersed in four different 2D H-N edited
spectra, where the H-N spin pairs found in different spectra have a neighboring
carbonyl 13C with a different chemical shift (Brutscher (2004)). A related approach
allows to separate methyl correlation peaks into different 2D spectra according to
the chemical shift of the neighboring 13C atom, which depends largely on the type
of the amino acid. In this way, separate spectra are obtained for different types
of amino acids (Van Melckebeke et al. (2004)). In these two cases the Hadamard
dimension serves as a third spectral dimension that allows to separate peaks in
different 2D spectra, and only 4 data points have to be sampled for the additional
dimension.

The speed advantage of these methods comes from the fact that only a few

57



scans have to be performed for the additional spectral dimension.

A drawback of the method is, that the chemical shifts in the additional fre-
quency dimension have to be known. Setting up such an experiment thus requires
some prior knowledge. However, a simple 1D spectrum of the frequency dimen-
sion that one wants to Hadamard-encode suffices and can generally be obtained
very fast.

An additional drawback may arise when the encoding pulses are long. Relax-
ation losses may then translate to reduced sensitivity in Hadamard experiments
compared to their FT NMR counterparts.

A Hadamard-encoded technique for very fast (∼1 second) recording of site-
resolved 1H-15N protein spectra is shown in section 7.1.

2.2.6 Single scan NMR

The long experimental time in standard nD FT NMR comes from the fact, that the
increments in the indirect time domains are recorded in a sequential manner; i.e. in
each scan one value of the incremented time period is obtained. In an ingenious
approach proposed recently, this serial data acquisition is replaced by a parallelized
scheme, where different evolution times are encoded in one single scan (Frydman
et al. (2002)).

This single scan or ultrafast NMR approach imposes different evolution times
on different parts of the sample. Although recently an alternative approach has
been proposed (Bhattacharyya and Frydman (2006)), I will focus here on the orig-
inal scheme, spatial encoding using field gradients. In this approach, applying a
strong magnetic field gradient (typically along the sample axis) creates an inho-
mogeneous spectral distribution within the sample. The resonance frequency is
then space-dependent and the sample can be viewed as composed of independent
subsamples , which can be manipulated independently by frequency-selective rf
pulses.

Now, a train of selective rf pulses, the frequency of which is incremented from
one pulse to the other, or a frequency-chirped pulse can be applied. In this way
spins located in different subsamples are on resonance with the pulses at different
times and are allowed to evolve for different amounts of time. Therefore differ-
ent subsamples will accumulate different phase (figure 2.9 (1)). The effects of the
gradients on the accumulated phase are cancelled out and the phase φ of the mag-
netization at the conclusion of this encoding procedure is only a function of the
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Figure 2.9 Principle of single scan (ultrafast) NMR. (1) Application of a linear z-gradient creates
the spatial frequency dependence along the sample. Different subsamples (here depicted by 5
slices ) can be manipulated by either a train of discrete selective pulses (Frydman et al. (2002)) or a
continuous frequency-chirped pulse (Pelupessy (2003); Shrot et al. (2004)). This results in a helical
winding of the magnetization located in different subsamples . (2) A spatially homogeneous mixing
sequence preserves this space-dependent winding. (3) Acquisition in the presence of a gradient
with identical geometry as the initial encoding-gradient unwinds the magnetization and leads to an
echo (center), after a time determined by the chemical shift of the involved nuclei. The acquisition
gradient is oscillated numberous times (with positive and negative sign) to monitor the evolution
of the detected nucleus (direct dimension), and only the first positive gradient is shown (see also
figure 2.10

spatial coordinate z and the chemical shift Ω1:

φ(z) = CΩ1(z − z0) (2.20)

with C a spatio-temporal ratio under the experimentalist’s control.
After this spatial encoding a spatially homogeneous mixing sequence is ap-

plied, just as in standard experiments. The linear phase gradient3 is preserved by
this mixing sequence, yielding a helical winding of magnetization prior to acqui-
sition (figure 2.9 (3)). Due to this winding, the net magnetization over the sample
volume is zero.

Acquisition relies on a technique used in magnetic resonance imaging, called
echo planar imaging (EPI): application of an acquisition gradient of strength Ga

and of the same spatial dependence as the encoding gradient unwinds the magne-
tization. During this gradient, an echo will form when the following condition is

3This could also be a gradient of amplitudes rather than a phase gradient, depending on the
experimental scheme used (Shrot et al. (2004))
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Figure 2.10 Data sampling in ultrafast NMR. During each oscillated gradient an echo (black: pos-
itive gradient, red: negative gradient) is formed at k = −CΩ1 (see figure 2.9) and the echoes are
modulated in t2 with Ω2. Fourier transformation along t2 reveals Ω2.

fulfilled:

k =

∫ t2

0

γaGa(t)dt = −CΩ1 (2.21)

Here γa is the gyromagnetic ratio of the detected nucleus. Equation 2.21 states
that the time/gradient strength at which the echo forms reflects the chemical shift
Ω1 of the initially encoded nucleus (figure 2.9 (3)). The detected time-domain signal
therefore directly reflects the resonance frequencies along the spatially-encoded di-
mension without any Fourier transformation. After echo formation, the magneti-
zation will be dephased over the sample volume again.

To monitor also the frequency of the detected nucleus, Ω2, the gradient-assisted
re-phasing and de-phasing can be repeated numerous times by oscillating the sign
of the acquisition gradient (figure 2.10). During each such gradient an echo is de-
tected, and the echoes are modulated by Ω2. Fourier transformation of the data
points acquired as a function of t2 will thus reveal the full 2D spectrum in one sin-
gle signal detection.

The reliance on identical spatial dependence of encoding and acquisition gradi-
ents is also the key for acquisition of higher-dimensional single-scan spectra. The
spatial encoding, that was exemplified above for a z-gradient, can in principle be
performed by a gradient of arbitrary geometry, and helical winding of spin packets
can be done simultaneously along independent gradients. Using e.g. two different
gradients with different geometries, two different frequency dimensions can be
spatially encoded. The readout of such a double-encoded magnetization can then
be performed by nested oscillation of the two gradients, i.e. one gradient is oscil-
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lated multiple times within each oscillation period of the other gradient. In this
way, 3D and higher-dimensional spectra can be recorded in a single scan (Shrot
and Frydman (2003)). The drawback of this approach is that the nested oscilla-
tion of multiple gradients requires fast-switching gradients of different geometry.
To circumvent these strong hardware demands, multiple frequency axes can be
encoded with the same gradient. The resulting spectrum then contains multiple
frequencies in a conflated frequency axis, or in other words, a projection of several
dimensions onto one (compare section 2.2.4). This is an example of how different
approaches for fast NMR can be combined together, a feature that will be found in
later chapters of this thesis.

The advantage of single scan NMR is clearly its unique capability to obtain in
principle any multidimensional spectrum in only one scan. In principle, it is thus
the only technique allowing to study e.g. very fast (subsecond) kinetics, and efforts
to this end have been reported (Gal et al. (2006); Shapira et al. (2004a)).

Among its current difficulties are sensitivity limitations: Of course, if the intrin-
sic sensitivity of an experiment under given conditions is insufficient in a single
scan even in 1D, then a single-scan nD technique must fail.

But in addition, there are also sensitivity problems linked to the ultrafast ac-
quisition scheme: Spatial encoding is prone to signal losses due to translational
diffusion, and losses due to pulse imperfections during the encoding pulses.

An additional sensitivity issue comes from the data sampling scheme: In the
presence of the acquisition gradient, the range of frequencies of spins located in
different parts of the sample is very wide. Therefore, in order to detect signal from
the whole sample volume, the receiver filter bandwidth, fbw, has to be opened to:

fbw = γaGaL/2 (2.22)

where L is the length of the detection volume. The noise is proportional to this
band width, which often has to be set to several tens of kilohertz, and the signal-
to-noise is therefore intrinsically lower in ultrafast experiments.

Combination with hyper-polarization techniques seems to be a very promising
way to circumvent sensitivity limitations, as shown by recent development in this
direction (Frydman and Blazina (2007); Shapira et al. (2004c)).

For practical applications, setting up ultrafast experiments is currently not rou-
tine, and the time spent for setting up the experiment is often orders of magnitude
longer than the actual experiment.
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2.2.7 Summary

Many different methods have been proposed to circumvent the sampling prob-
lem in NMR. The range of ideas is very large: from computational approaches in
concert with non-linear data acquisition, to approaches that borrow concepts from
fields as diverse as magnetic resonance imaging (ultrafast NMR) and astronomy
(projection reconstruction).

Interestingly, many of these ideas are compatible with each other: Different
encoding/processing schemes may be combined into one experiment, giving the
experimentalist the freedom to take advantage of the strengths of different meth-
ods in terms of reduced experimental time and enhancement of sensitivity and
resolution.

2.3 Accelerated nD NMR II: Fast pulsing techniques

A different way to acclerate the point-by-point sampling of the multidimensional
time-space is to reduce the duration of the acquisition of each individual point.

This duration, Tscan, consists of the length of the pulse sequence trf , the acqui-
sition period at and the delay between subsequent scans trec. The pulse sequence
duration trf is determined by the information that is sought, and in the context of
protein NMR experiments it is typically on the order of 100 ms or less. The du-
ration of data acquisition, at, is determined by the desired resolution in the direct
time domain and it was shown (equation 2.14) that is is generally limited by the T2

time of the observed nucleus (generally ≤ 100 ms in proteins). These two durations
are relatively short, and changing these periods would have severe consequences
on the outcome of the experiment, which leaves the recovery delay, trec between
two scans as the only parameter to be adjusted.

As mentioned in the discussion on page 38, the sensitivity is proportional to
the magnetization present at the beginning of a given pulse sequence. The de-
lay between consecutive scans allows this magnetization to be (partially) restored,
and reducing the recovery delay will strongly influence the sensitivity. Before con-
sidering experiments that use reduced trec we should take a closer look how the
sensitivity depends on the recovery delay. Again, the classical vector description
of NMR suffices for this discussion.

Consider the following schematic pulse sequence:
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✟✟✟
❍❍❍

scan i-1

fid
r.f. pulses
❄

M b,i−1
z

❄

Ma,i−1
z

scan i

✟✟✟
❍❍❍fid

r.f. pulses
❄

M b,i
z

❄

Ma,i
z

trec trf at✛ ✲✛ ✲✛ ✲

Tscan
✛ ✲

scan i+1

✟✟✟
❍❍❍fid

r.f. pulses

The longitudinal magetization before a given scan i-1 is M b,i−1
z . In the simplest

(and most general) case, and neglecting losses during the pulse sequence, one can
imagine this magnetization being rotated by a rf pulse, leaving after the pulse se-
quence a longitudinal magnetization Ma,i−1

z . The flip angle β of this rotation is
given as cos β = M b

z/M
a
z . At the end of the pulse sequence, the longitudinal com-

ponent is thus proportional to cos β, whereas the transverse component is propor-
tional to sin β.

During the acquisition period and recovery delay the longitudinal magneti-
zation is (partially) restored by relaxation processes leaving at the beginning of
the subsequent scan i a magnetization M b,i

z along the z axis. Although the rate at
which this relaxation occurs can be non-monoexponential, assume, for the sake of
simplicity, a monoexponential recovery with a characteristic time constant T1.

The longitudinal component present at the beginning of the subsequent scan,
M b,i

z , can then be expressed as:

M b,i
z = M0 − (M0 − Ma,i−1

z ) · exp(−at + trec

T1

) (2.23)

where M0 is the thermal equilibrium magnetization. For brevity, the period during
which spins are allowed to relax freely, at + trec, is substituted in the following by
Trec. Under steady state conditions (M b,i

z = M b,i−1
z = M b,eq

z ) and keeping in mind
that Ma

z = M b
z · cos β, the magnetization available at the beginning of each scan

M b,eq
z is thus given by:

M b,eq
z = M0

1 − exp(−Trec/T1)

1 − exp(−Trec/T1) cos β
(2.24)

The detected signal, S, is proportional to the transverse magnetization at the
end of the pulse sequence:

S ∝ M b,eq
z · sin β (2.25)

Considering sensitivity, one must take into account that the noise adds up with
the number of scans as

√
n. The number of scans that can be performed in a given
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Figure 2.11 Simulated dependence of the sensitivity on the recovery delay Trec and the amount of
excitation, expressed as flip angle β, according to equation 2.27. The solid and dot-dashed lines
assume β = 90◦ and the dotted line was generated setting β = 60◦. The relaxation time T1 was set
to 1 second (solid and dotted lines) and 0.5 seconds (dot-dashed line). The effect of the flip angle
can thus be appreciated by comparing the solid and the dotted lines, and comparison between
the solid and the dot-dashed lines demonstrates the sensitivity increase obtained from shorter T1

relaxation. The maximum, found at Trec ≈ 1.25 · T1 when β = 90◦ is indicated for the solid curve.

time (i.e. the repetition rate) depends on the inverse of the duration of one scan.
The sensitivity is therefore proportional to

(
S

N

)

t

∝
√

n ∝ 1√
Tscan

(2.26)

Taking this equation together with equations 2.24 and 2.25 the sensitivity of a
multi-scan experiment can be expressed as a function of the pulse sequence timing
and the excitation angle as:

(
S

N

)

t

∝ (1 − exp(−Trec/T1)) sin β

1 − exp(−Trec/T1) cos β

1√
Tscan

(2.27)

Equation 2.27 is the key equation to keep in mind when trying to speed up
data acquisition by reducing the recovery delay. It predicts the existence of an
optimal recovery delay that maximizes sensitivity; for too short recovery delays
spin relaxation is insufficient and for too long recovery periods too much time is
wasted that could be used for accumulation of scans (see figure 2.11). Equation
2.27 reveals that for an excitation angle of β = π/2, optimal sensitivity is achieved
setting

Trec((S/N)max
t ) ≈ 1.25 · T1 (2.28)

Requirements for fast-pulsing experiments

The above considerations have shown how the sensitivity of an experiment de-
pends on the interscan delay trec. A simple reduction of this delay comes at a price
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Figure 2.12 Optimized excitation angle as a function of the relative interscan delay, Trec/T1, calcu-
lated according to equation 2.29.

in terms of sensitivity, and it was found that for very short interscan delays the sen-
sitivity curve drops steeply (figure 2.11). When studying biomolecules, concentra-
tion is limited and transverse relaxation losses are prominent, such that sensitivity
is generally precious. The drop in sensitivity upon reducing the interscan delay is
therefore most often not acceptable.

Methods that aim at accelerating data acquisition by reducing the recovery de-
lay necessarily have to increase the steady-state longitudinal magnetization in the
fast-pulsing regime. In this context, different methods can be envisaged and the
remainder of section 2.3 will discuss these different strategies.

2.3.1 Partial excitation and the Ernst angle

Ernst and co-workers have developed an elegant way to optimize sensitivity in
simple pulse - acquire one-dimensional experiments when applied at rapid repe-
tition rates. Applying the excitation pulse with an optimized effective excitation
angle (βErnst) accounts for the incomplete recovery of magnetization. It can be
shown (Ernst and Anderson (1966); Ernst et al. (1987)) that optimal sensitivity is
achieved when:

cos βErnst = exp(−Trec/T1) (2.29)

Figure 2.12 shows the optimal flip angle (Ernst angle) as a function of the recov-
ery delay. Ninety degree excitation is the method of choice only using a recovery
delay that is at least 4 times longer than T1, whereas smaller effective flip angles
are best used to account for incomplete magnetization recovery in the fast-pulsing
regime.

The gain in sensitivity that is obtained when using a non-90◦ degree excitation
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for fast repetition rates is shown in figure 2.11 (solid versus dotted line).

In conclusion, an optimization of the flip angle yields significant advantages in
sensitivity when fast repetition of the experiment is desired. However, in complex
pulse sequences for multidimensional NMR, implementation of non-90◦ degree
excitation is generally not straightforward. Some possible methods are shown in
chapter 3 (section 3.1.1).

2.3.2 Accelerating the magnetization recovery by optimized pulse

sequence design

Increasing the repetition rate of an experiment is in general accompanied by a de-
crease in sensitivity. In principle, every (spectroscopic) method that increases sen-
sitivity can therefore be of interest in the context of fast-pulsing techniques. The
range of such spectroscopic methods is very wide, from planar-mixing sensitivity
enhanced methods (Cavanagh et al. (1991); Cavanagh and Rance (1990); Kay et al.
(1992); Palmer et al. (1991)) to transverse relaxation optimized methods (Fiala et al.
(2000); Pervushin et al. (1997); Sklenar et al. (1993)) and many other pulse sequ-
ences that optimize coherence transfer or relaxation properties. These methods
generally yield an overall increase of the sensitivity that is independent of the rep-
etition rate. Discussing all such methods is not within the scope of the current
thesis and the current discussion will only focus on concepts that have been intro-
duced in the context of fast-pulsing techniques.

As can be appreciated from equation 2.27, increasing the speed of recovery of
magnetization (loosely referred to as time constant T1 in equation 2.27) increases
the sensitivity in the fast-pulsing regime. This is shown in figure 2.11 (compare
solid and dot-dashed lines).

2.3.2.1 Strategies

Two groups of strategies to achieve fast magnetization recovery can be distin-
guished:

On the one hand, adding relaxation agents to the sample can be shown to
yield significant sensitivity gains under certain conditions. Paramagnetic relax-
ation agents make use of the large dipole moment of unpaired electrons to en-
hance nuclear spin longitudinal relaxation. Different approaches have been intro-
duced, either aiming at directly accelerating the relaxation rate of the observed
nuclei (Cai et al. (2006); Eletsky et al. (2003)), or by enhancing the rate of water
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1H longitudinal relaxation (Hiller et al. (2005b)), which is of advantage in the case
of exchange of protein-bound protons with water protons. These methods are not
within the scope of this work, and theory and applications can be found in the lit-
erature pointed to above, as well as in a recent review on paramagnetic relaxation
agents (Caravan et al. (1999)).

On the other hand, there are spectroscopic methods that aim at achieving a
rapid magnetization recovery by optimized pulse sequence design. In the context
of biomolecules, longitudinal relaxation enhancement of 1H spins, developed in
the present thesis, has proven very successful. This section (2.3.2) will discuss the
principles underlying this method, especially for application to protein NMR spec-
troscopy.

2.3.2.2 Proton relaxation enhancement by dipolar cross-relaxation: Principles

Virtually all the standard experiments performed in liquid state NMR to study
diamagnetic protein molecules excite and detect proton spins due to their elevated
gyromagnetic ratio and the corresponding sensitivity advantages (see equation 2.5
on page 34). In a multiscan experiment, it is therefore the recovery of proton mag-
netization that is important for the sensitivity.

Proton longitudinal relaxation in diamagnetic proteins is dominated by the
dipole-dipole interaction between 1H spins. A detailed description of relaxation
theory can be found in many textbooks (see e.g. Cavanagh et al. (1995)). Only
some relevant aspects of the theory of dipole-dipole relaxation are introduced in
the next sections, and the consequences for the relaxation in proteins will then be
studied by simulation and experiment.

Proton longitudinal relaxation basics: the two-spin system

To introduce some of the concepts that govern dipolar relaxation, it is useful to
re-examine a simple system containing only two dipolar coupled spins 1

2
, termed

I1 and I2. Each of these two spins has two eigenstates, termed α and β. Four
eigenstates of the coupled spin system exist therefore, and these are donted αα,
βα, αβ and ββ. These four eigenstates in general have different energies, with the
central two states, αβ and βα, being near-degenerate for a homonuclear system at
high magnetic field. For nuclei with positive γ the lowest-energy state is the state
αα. The following scheme summarizes this situation.
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Each of these four energy eigenstates has a population associated with it (ex-
pressed as nlk for the state lk), and under equilibrium conditions it is given by the
Boltzmann distribution (equation 2.2). The longitudinal magnetization of the two
spins, I1z and I2z is given by the differences between the populations of the α and
β states for each of the spins as follows:

I1z =
1

2
nαα − 1

2
nβα +

1

2
nαβ − 1

2
nββ

I2z =
1

2
nαα +

1

2
nβα − 1

2
nαβ − 1

2
nββ (2.30)

Transitions between the four eigenstates involve the change in the state of either
one spin or both spins. The corresponding transition probabilities are expressed as
W . Transitions involving only one spin are referred to as single-quantum transi-
tions (and the corresponding transition probability is given as W1), whereas transi-
tions involving two spins can be either zero-quantum (’flip-flop’) transitions, with
the transition probability W0, or double quantum (’flip-flip’) transitions (W2). The
situation is summarized in the above energy-level diagram.

The energy associated with the single-quantum transitions of spin I is given
by the energy difference between the two involved states, which corresponds to
the Larmor frequency of this spin. Zero- and double quantum transitions involve
transition energies that correspond to the difference and the sum of the Larmor
frequencies.

Transitions between the eigenstates involve energy exchange with the environ-
ment. The spin system thus has to be coupled by some way to the surrounding,
and it is this surrounding that either takes up energy or makes energy available to
the spin system.

It can be shown that radiation-less processes constitute the mechanism for this
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energy exchange, and the energy transfer in these processes occurs between the
spin system and the motional degrees of freedom (Abragam (1961)). To fix ideas:
The two-spin system that we are looking at is embedded in a molecule that has
some motional degrees of freedom given by overall and internal dynamics (stochas-
tic motions). Because of these dynamics, each of the two spins ’sees’ an effective
magnetic field (arising from the other spin) that fluctuates with time, and it is this
fluctuation that causes spin relaxation (dipole-dipole relaxation). The dynamics
are thus induced by the molecular motion, which constitutes the energy bath that
the spin transitions are coupled to. This energy bath is called ’lattice’.

As stated above, the spin transitions require a certain energy from the lattice
that matches the transition energy. In other words, the stochastic fluctuation of the
magnetic field experienced by a spin has to occur at the ’right’ frequency. The effi-
ciency of the spin transitions is correlated to the amount of energy that is present
in the lattice at the relevant frequencies. The amount of motional energy as a func-
tion of the frequency of the motion is quantified by the spectral density function
J(ω). A detailed introduction and definition of the spectral density can be found
in many textbooks (e.g. Abragam (1961); Cavanagh et al. (1995)), and is not within
the scope of this PhD thesis. Here, it should suffice to note that the spectral density
reflects the amount of random fluctuation as a function of the frequency of this
random fluctuation. It can be modeled making assumptions about the motions
present in the molecule, as shown below for the case of isotropic reorientational
motion.

We have now the basic tools and concepts at hand to come back to the relax-
ation in the two-spin system. As seen from equation 2.30, the longitudinal mag-
netization of the two spins can be expressed as differences in the populations of
the energy levels. The time evolution of the population of a given energy level can
be deduced from the transition probabilities to this given energy level from all the
other levels and the transition probabilities from this level to all other energy levels,
as well as the populations of all other energy levels. For example, the evolution of
the population of the level nαα can be written as4:

d

dt
nαα = −W I1

1 nαα − W I2
1 nαα − W2 nαα + W I2

1 nβα + W I1
1 nαβ + W2 nββ (2.31)

Similar equations can be found for all possible energy eigenstates (nαβ , nβα, nββ).
Taking all these relations together with equation 2.30 the longitudinal relaxation of

4To be more exact, thermally corrected transition probabilities should be used here, that account
for the fact that in thermal equilibrium the energy levels have different populations.
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the two spin system can be expressed by the following equations:

− d

dt

(

I1z − I0
1z

I2z − I0
2z

)

=

(

ρ σ

σ ρ

)(

I1z − I0
1z

I2z − I0
2z

)

(2.32)

Here I0
1z is the thermal equilibrium longitudinal magnetization of spin I1, ρ is the

auto-relaxation or leakage rate constant and σ is the cross-relaxation rate constant.
The above relations (2.32) are known as the Solomon equations for a two-spin sys-
tem.

They predict that the recovery of the longitudinal spin magnetization on one
spin (I1) depends on this spin’s deviation from thermal equilibrium (I1z −I0

1z) with
a rate constant of ρ, but also on the deviation of the other spin from its thermal equi-
librium magnetization (I2z−I0

2z), involving the rate constant σ. The former process
is termed auto-relaxation, whereas the latter is designated as cross relaxation. There-
fore, even in this very simple case of only two interacting spins, the relaxation of
one spin cannot be reflected by a single longitudinal relaxation time constant.

The rate constants, ρ and σ, depend on the transition probabilities W0, W1 and
W2. These in turn depend on the distance r between the spins, their gyromagnetic
ratios (assumed here to be the same, homonuclear case) and the spectral densities
at the frequencies 0 (the difference frequency), ω (the Larmor frequency which is
common to both spins) and 2ω (the sum frequency). The rate constants are given
by5:

ρ = W0 + 2W1 + W2 =
1

10
d2 (J(0) + 3J(ω) + 6J(2ω))

σ = W2 − W0 =
1

10
d2 (6J(2ω) − J(0)) (2.33)

with d =
µ0

4π

~γ2

r3
(2.34)

where γ is the gyromagnetic ratio of 1H and µ0 is the magnetic permeability of free
space. The spectral density function describes the dynamics of the system, which
is in general not known in detail. However, it can be modeled either assuming
a certain form of the motion or extracting information from molecular dynamics
simulations, or simply assuming a functional form of the spectral density function
(without specifying the motional model causing the given functional form). For
example, one often assumes a very simple model, where isotropic tumbling of the

5Note that in the literature σ is sometimes found replaced by -Rcross thus with inverted sign.
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molecule is the only motion that modulates the orientation (but not the distance)
between the two spins. The spectral density function in this case is then given by

J(ω) =
τc

1 + ω2 τ 2
c

(2.35)

The resulting rate constants ρ and σ are shown as a function of the characteristic
time constant of this random reorientational motion (the correlation time τc) in fig-
ure 2.13 (a). Whereas the auto-relaxation rate constant is positive irrespective of
the correlation time, the cross-relaxation rate σ is positive only in the case of fast
reorientational motion and becomes negative for larger τc. As can easily be derived
from equations 2.35 and 2.33 the zero-crossing is found when ωτc =

√
5/2 ≈ 1.12.

Proteins under generally used conditions (solvent, temperature, magnetic field
strength) basically always have τc values above this zero-crossing point and cross-
relaxation rate constants are thus generally negative. As will be shown below,
’flip-flop’ processes become very efficient in this regime and this gives rise to a
process called spin diffusion (see below).

It is instructive to examine the relaxation of the two-spin system in two cases
of interest.

Relaxation after non-selective inversion of both spins. The initial conditions
in this situation are I1z = −I0

z and I2z = −I0
z and the solution of the Solomon

equations is:

I1z − I0
z = −2 I0

z e−(ρ+σ)t

I2z − I0
z = −2 I0

z e−(ρ+σ)t (2.36)

Relaxation after selective inversion of spin I2. The initial conditions in this
situation are I1z = I0

z and I2z = −I0
z and the longitudinal magnetizations of the

two spins will evolve according to:

I1z − I0
z = −I0

z (e−(ρ+σ)t − e−(ρ−σ)t)

I2z − I0
z = −I0

z (e−(ρ+σ)t + e−(ρ−σ)t) (2.37)

The behavior of the magnetization for these two cases is illustrated in figure
2.13 for positive σ (c, d) and negative σ (e, f).

Whereas in the case of non-selective inversion the relaxation of both spins is
given by a single time constant (ρ + σ), in the case of selective I2 inversion an ad-
ditional exponential component in I2’s recovery appears that evolves with a rate
(ρ − σ). Whether this component is faster or slower than the one given by ρ + σ

71



1.5

1

0.5

0

-0.5

-1

0.5 10

ρ

σ

correlation time [ns]

re
la

x
a
ti

o
n
 r

a
te

 [
1
/
s
] (a) (b)

3

0

1

2

re
la

x
a
ti

o
n
 t

im
e
 [

s
e
c
]

correlation time [ns]
0 0.4 0.81.5

"T1 minimum"

I1 and I2

I1

I2

recovery time [sec]
0 10 20

1

2

0

-1

1

0

-1

I1 and I2

1

-1

0

recovery time [sec]
0 5 10 15

I1

I2

n
o
rm

a
li
z
e
d

m
a
g
n
e
ti

z
a
ti

o
n

-1

0

2 1

(c) (e)

(d) (f)

n
o
rm

a
li
z
e
d

m
a
g
n
e
ti

z
a
ti

o
n

Figure 2.13 Dipolar relaxation in a two-spin system undergoing isotropic tumbling. (a) Relaxation
rate constants ρ (solid line) and σ (broken line) as a function of the isotropic tumbling correlation
time τc for a pair of proton spins separated by 0.2 nm in a magnetic field of 14.1 T (600 MHz 1H
Larmor frequency). (b) Relaxation time constant T1 = 1/(ρ+σ) in the case of non-selective inversion
of the two spins (see equation 2.36). A minimum T1 is found for τc ≈ 0.17 ns (conditions as in (a)).
(c, d) Time course of the magnetizations in this two-spin system at 14.1 T following non-selective
inversion (c) and selective inversion (d) of spin I2. The correlation time is set to 50 ps (positive σ
regime). Note that the recovery of spin I2 is slower in the selective case than in the non-selective
one. (e, f) As (c, d) but τc is set to 2 ns (negative σ regime). Note the faster effective recovery of spin
I2 in the selective case compared to non-selective inversion.
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depends on the sign of σ (equation 2.33). When the dynamics is fast (small mole-
cule, low viscosity) then selective inversion of one spin leads to a transient hyper-
polarization of the other spin; this causes a retarded relaxation of the inverted spin
(figure 2.13 (d) with respect to the situation of non-selective inversion.

In contrast, for a slowly-tumbling spin pair (e.g. in a macromolecule) σ < 0 and
in this case the additional component found in the selective case is faster. It causes
a rapid (partial) recovery of the inverted spin which decreases the magnetization
of the initially unperturbed spin (figure 2.13 (f). Both spins then fully recover in
one single phase.

Let us briefly summarize the conclusions from this section:

• Even in the very simple case of a dipolar coupled two-spin system the re-
laxation upon excitation can in general not be expressed by a single time
constant. The relaxation of each spin depends on the state of the other spin
(equation 2.32).

• The sign of the cross relaxation constant σ is determined by the spectral den-
sity function at frequencies 0 and 2ωH (equation 2.33). Assuming that relax-
ation is mediated by an isotropic reorientational motion characterized by a
single time constant τ , the cross-relaxation rate constant is negative for values
of ωτ above

√
5/2 (≈ 1.12), which is generally the case for macromolecules at

high fields (negative σ regime).

• In the negative-σ regime, a fast-recovery component is found when a spin is
selectively inverted (while leaving the other spin in equilibrium).

The realization that in macromolecules selectively excited/inverted spins have
a recovery component with a higher rate, as compared to the non-selective case, is
at the heart of what has become known as longitudinal relaxation optimized methods
in biomolecules.

Proton longitudinal relaxation in proteins: Theory

Protein molecules contain a large number of proton spins. The dipolar relaxation
between them underlies the same principles as in the two-spin system, and the
time evolution of the longitudinal magnetization of each spin in a molecule de-
pends on the instantaneous magnetization of all other proton spins. The time evo-
lution of the magnetization of the n 1H spins (I1 to In) is given by the following
differential equations (Solomon equations):

73



− d

dt









I1z − I0
1z

I2z − I0
2z

...

Inz − I0
nz









=










∑

j ρ1j σ12 . . . σ1n

σ21

∑

j ρ2j . . . σ2n

...
...

. . .
...

σn1 . . . . . .
∑

j ρnj


















I1z − I0
1z

I2z − I0
2z

...

Inz − I0
nz









(2.38)

In addition to the 1H spins bound to the molecule, in aqueous solution another
important group of proton spins has to be considered: the proton spins of the
solvent water molecules. Water proton spins can interact with protein protons and
thus influence the relaxation of the latter in two ways: They can have a direct cross-
relaxation (nOe) through space, or they can act via a more indirect mechanism,
namely if a proton bound to the protein is replaced by a water proton spin (water
exchange of labile hydrogen sites).

The first of these two mechanisms is relatively inefficient and the direct water-
protein 1H-1H cross relaxation rates are small. This is explained by the fact that the
residence time of solvation water molecules around proteins is very short, typically
on the subnanosecond time scale (Otting et al. (1991); Wuthrich et al. (1992)).

The second mechanism, exchange of labile hydrogen atoms in the protein for
water protons can cause more pronounced effects, as investigated by simulation
below.

Proton longitudinal relaxation in proteins studied by simulation and experi-
ment

What we initially attempted was to find a way of accelerating the 1H magnetization
recovery. The next sections investigate conditions where this is the case.

A first idea of how the magnetization recovery can be accelerated comes from
the above analysis of the two-spin system. Figure 2.13 (f) showed that in the two-
spin system the recovery of one spin can be significantly faster when this spin is
selectively excited, in comparison to excitation of both spins. This could potentially
be of interest for enhancing longitudinal relaxation and thus sensitivity in fast-
pulsing experiments for proteins.

However, before going deeper into this subject we should briefly stop and an-
alyze if selective-excitation experiments could in principle be feasible and of any
use for applications to proteins.
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Selectively exciting part of the proton spins while leaving part of them unper-
turbed of course has a price: Those spins that are not excited will ultimately not
give any signal. So are there any situations where one can afford not exciting all
the proton spins in the molecule of interest ?

The study of a protein by NMR requires collecting a large amount of infor-
mation: one wants to assign the resonance frequencies of - if possible - all the
present nuclei, collect distance and angle information, measure coupling constants
and relaxation rates. The perfect experiment would offer all this information at
a time. In practice, however, this is not feasible: obtaining a specific piece of in-
formation requires an experiment that has an accurately timed train of pulses and
delays optimized such that the magnetization follows the desired pathway and
ultimately gives the information one is looking for. It is therefore impossible to
collect all different kinds of information with the same experiment. In practice one
records different experiments: experiments that allow assigning the resonances
of the backbone atoms, those that allow connecting the backbone atoms to the
sidechains, homonuclear experiments, heteronuclear 1H-13C or 1H-15N correlation
experiments etc. Among all these experiments there are (many) experiments that
exploit only a subset of the proton spins: the mentioned 1H-13C or 1H-15N corre-
lation experiments exploit only the magnetization of proton spins having a scalar
coupling to 13C or 15N, respectively; experiments that focus on aromatic side chains
only utilize magnetization residing on aromatic protons, many backbone experi-
ments exploit only amide proton magnetization.

Taken together, there are many instances where a selective excitation of only
part of the proton spins suffices to get the information sought. It is therefore po-
tentially of practical relevance to study in more detail proton relaxation under con-
ditions of selective or non-selective excitation and see what can be learned about it
and how one can benefit from selective schemes in cases where rapid relaxation is
sought.

The next sections focus on the relaxation of backbone amide protons, as this
is the group of protons that is exploited for backbone assignment experiments, an
important step in every atom-resolved study of protein structure and dynamics. In
addition, the amide protons are attractive for selective excitation schemes because
their resonance frequenies are generally well-separated from the rest of the proton
spins making selective manipulation by shaped rf pulses feasible. The relaxation
of these protons will be studied by simulation and experiment, which will then
reveal strategies for fast-pulsing, sensitive experiments.
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Amide 1H relaxation in proteins studied by simulation and experiment

A simulation program was written as described in the appendix (section 10.1 on
page 215). Briefly, the algorithm retrieves structural coordinates from a pdb file
and calculates the evolution of the magnetization of all proton spins present in the
molecule using the following assumptions:

• The spectral density function used for the calculation of the relaxation rates
assumes isotropic overall tumbling of the molecule with a correlation time
τc. In addition, fast rotation of the methyl groups has been implemented to
study the effect of internal dynamics on the 1H relaxation.

• Exchange of labile sidechain atoms has been implemented and simulations
can be performed either assuming that water 1H magnetization is in ther-
mal equilibrium or equal to zero and recovering its equilibrium value with
a time constant of 3 seconds. The exchange of labile sidechain hydrogens is
assumed to be very fast. Exchange of amide protons with water 1H has been
neglected. This is justified by the fact that in folded proteins at neutral (or
lower) pH exchange of amide protons generally occurs at much longer time
scales.

• Proton longitudinal relaxation generally has a non-monoexponential behav-
ior. In order to express the potentially complex magnetization recovery of a
given spin by a single value, an effective T1 value is given as the time where
the magnetization reaches ∼ 63% of its thermal equilibrium value. (This is
based on the fact that for a monoexponential recovery the recovered fraction
at the characteristic time is 1 − 1/e=63%.)

To evaluate the simulation program, experimental and simulated inversion re-
covery curves were compared. Figure 2.14 shows the recovery of the longitudinal
magnetization of some representative amide protons in the molecule ubiquitin (8.6
kDa) as revealed by experiment and simulation. Panels (a) and (b) correspond to
non-selective and amide 1H selective inversion, respectively. For the case of selec-
tive amide spin inversion, figure 2.14 (c) shows the time course of the magnetiza-
tion of some representative aliphatic proton spins. The data can be summarized as
follows:

Amide spin relaxation in a compact, folded protein has a different behavior in
the cases of selective and non-selective inversion. The recovery after non-selective
inversion follows to a good approximation a monoexponential behavior, whereas
two exponential components are apparent in the recovery after selective amide
spin inversion. Due to the additional fast component almost-complete restoration
of magnetization is achieved in much shorter time. The fast component in the
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Figure 2.14 Time evolution of the longitudinal magnetization of some representative 1H spins re-
vealed by simulation and experiment. (a) Inversion-recovery of amide protons of residues 13, 29
and 68 after non-selective inversion. Filled circles: experiment, solid line: simulation with methyl
rotation, dashed line: simulation without methyl rotation. (b) Recovery after selective amide 1H in-
version. (c) Evolution of the magnetization of three representative aliphatic 1H spins after selective
amide 1H inversion. Again, circles and solid lines correspond to experimental and simulated (with
methyl rotation) data. In all plots, the normalized magnetization ranges from 1 (thermal equilib-
rium magnetization) to -1 (inversion of the thermal equilibrium populations). Details about the
experiment and the simulation are given in section 10.2 on page 217.
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recovery of amides upon selective excitation can be attributed to cross-relaxation
to aliphatic protons. These aliphatic proton spins are driven away from their initial
equilibrium state with a time constant that is on the order of the time constant of
the fast amide relaxation component (panel (c)). The recovery of the aliphatic 1H
magnetization then follows the same kinetics as the slow component of the amide
1H relaxation, in a similar way as was found for the two-spin system.

The time course of longitudinal amide spin magnetization can be predicted
very well with the simple model used, where methyl rotation is the only mode of
internal dynamics that is considered, as can be appreciated from the good agree-
ment between experimental (circles) and simulated data (solid curves). However,
suppression of the methyl dynamics yields very unsatisfactory predictions (bro-
ken lines). This points to the methyl groups as ’relaxation sinks’ in proteins, a fact
that has been predicted and demonstrated experimentally before (Akasaka et al.
(1990); Olejniczak and Weiss (1990)). Despite the good general agreement, espe-
cially found for amide protons, the simulations fail to correctly reproduce some
experimental recovery curves found for aliphatic 1H spins and 1H spins located in
dynamic regions (see below).

It is interesting to note also that ignoring the methyl rotation has a much more
drastic effect on the amide relaxation in the non-selective case than in the selective
case. In the selective case the simulated recovery upon suppression of the CH3

rotation is still found bi-exponential and the fast component is reproduced well.
In contrast, the predicted slow component is slower than found experimentally. In
the non-selective case ignoring the methyl relaxation yields amide relaxation rates
that are much too slow.

How can we interpret these findings ? The slow overall tumbling of the mole-
cule (macromolecular case) makes cross-relaxation (’flip-flop’ or ’spin diffusion’)
processes very efficient: upon selective excitation the magnetization is quickly
spread over the whole proton spin system. Evacuation of the excitation energy
from the spin system (rather than redistribution), is mediated by the fast dynam-
ics of the methyl groups. In the case of selective excitation, the fast component
corresponds to the rapid redistribution of excitation energy whereas the second
component can be attributed to the evacuation of the energy from the spin system
(compare this behavior to the one found for the two-spin system, figure 2.13(d)).
Suppressing the methyl rotation therefore leads to a reduction of the rate of this
second component, while the fast component is reproduced well.

In the case of non-selective inversion of all proton spins, the situation is dif-
ferent: flip-flop processes are effectively quenched, because all proton spins are
initially in an excited (inverted) state. The rate of recovery of the amide proton
spins is therefore given by the evacuation of the energy from the whole spin sys-
tem, which is mediated by fast dynamics (in a similar way as the slow component
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found upon selective inversion). Suppression of the fast methyl rotation in the
non-selective case therefore leads to dramatically increased relaxation times.

Amide relaxation and water magnetization

Some of the oxygen- or nitrogen-bound sidechain protons in proteins as well as
backbone amide protons can exchange with water, i.e. the bond to the O or N
atom in the protein can be broken and a water proton takes the place instead. Such
exchange of labile protons for water protons introduces spins into the protein that
are in the magnetization state of the water protons. This is a way how the magne-
tization of 1H from water interferes with the protein.

The longitudinal relaxation of water protons is generally longer than the one of
protein-bound protons. If water-1H spins as well as protein-1H spins get excited
by a given pulse sequence then the exchange of protein-bound spins for water-1H
introduces protons that deviate more from the equilibrium state than the protein-
bound protons. This will in turn slow down longitudinal relaxation of the latter.

In contrast, if the water proton magnetization is close to Boltzmann equilib-
rium then the same process would introduce a “relaxed” proton spin which will
then in turn cross-relax neighboring protein-bound protons. Spin diffusion then
propagates the magnetization of this newly introduced proton all over the protein.

The higher the efficiency of spin diffusion, the more pronounced is the effect of
such water exchange for the whole protein molecule. We will thus return to this
issue below when considering the dependence of the 1H relaxation on the protein
size.

The concentration of water in aqueous protein samples is ≈ 104 times larger
than the protein concentration and suppression of the water signal is indispensable
in order to observe protein signal. Use of selective pulses or tailored sequences of
hard pulses (Piotto et al. (1992)) allows to selectively manipulate water magneti-
zation making possible the suppression of water signal without affecting protein
signal. A class of such suppression techniques makes use of magnetic field gradi-
ents to dephase the bulk water magnetization that is in an excited state. However,
from the above consideration it is evident that such techniques, that result in an
excitation of water, can lead to sensitivity losses. Experimental schemes that leave
the water magnetization close to thermal equilibrium have therefore been devel-
oped and are widely implemented in many biomolecular NMR pulse sequences
(Grzesiek and Bax (1993); Redfield et al. (1975); Stonehouse et al. (1994)).

However, no experimental flip-back scheme is perfect, and generally only a
fraction of the water 1H magnetization gets restored at the end of a scan. When
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repetition rates faster than the water 1H longitudinal relaxation rate are used, small
imperfections can lead to significant deviations of the steady-state water magne-
tization from thermal equilibrium. Clearly, clean water flip-back schemes are re-
quired to maximize the steady-state water 1H magnetization. In this context accel-
eration of the water recovery by use of paramagnetic molecules has been proposed
(Hiller et al. (2005b)).

The simulations below consider the extreme cases of either leaving water 1H
magnetization in the thermal equilibrium state or exciting bulk water magnetiza-
tion. Any real case is in between these two scenarios.

Dependence on the size of the molecule

The preceding simulations and experiments have revealed that for a relatively
small protein like ubiquitin, dramatically accelerated amide 1H magnetization re-
covery is found when only the amide spins are excited selectively, while leaving
the aliphatic, aromatic and water protons spins in thermal equilibrium. The mech-
anism for this enhanced recovery is spin diffusion and equations 2.33 and 2.35
predict that the cross-relaxation rate giving rise to spin diffusion depends on the
overall tumbling correlation time. In addition, the number of coupling partners
available, and thus the number of relaxation sources, can also be expected to influ-
ence the effective relaxation rate.

One might therefore ask the question how the relaxation behaves for smaller or
larger systems. Is there a minimal size necessary to observe significant enhance-
ments in the selective scheme?

This issue can be divided into two separate questions. First, how does the num-
ber of spins present in the system (the number of possible acceptors or relaxation
sources) influence the relaxation ? And second, what is the dependence of the ef-
fective relaxation rates on the overall dynamics, which is correlated to the molecu-
lar size and shape ?

To shed light on the first question, simulations were performed as follows: An
amide proton buried deep inside a large molecule was studied (HN of residue 271
in malate synthase G (Tugarinov et al. (2005)). It was taken as the center of spheres
of different radii. The radius of these spheres was varied and only the proton
spins located inside these spheres were taken into account for the simulations. The
relaxation of the central amide proton was studied as a function of the radius of the
spheres, while the overall correlation time was held constant (5 ns). Of course, a
constant tumbling correlation time with varying size of the molecule is physically
unrealistic. However, this simulation aims at separating the effect of the number
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Figure 2.15 Effective relaxation rate of an amide proton in the center of spheres of tightly packed
protein environment as a function of the radius of the spheres. The relaxation time constants in
the case of selective amide excitation and hard excitation are indicated by solid and dashed lines,
respectively.

of spins from the strength of the coupling between them, which is related to the
tumbling correlation time.

Figure 2.15 shows the results of these simulations. For the case of selective
excitation (solid curve), the effective relaxation time is very insensitive to the num-
ber of spins and a very small number of spins seems to be sufficient to insure fast
recovery of the studied proton spin. This is expected from the behavior of the two-
spin system (figure 2.13): distributing the excitation energy to even a relatively
small number of spins greatly enhances the relaxation rate. In the non-selective
case, more spins are needed to relax the spin under investigation.

In both cases, a plateau level is reached for protein fragments with a radius of
more than 9 Å. Even very small proteins are well above this size, indicating that
the number of protons present, even in small proteins, is not the limiting factor for
proton relaxation.

The second factor related to the size of the molecule is the overall tumbling
correlation time τc. This factor directly alters the coupling strength between spins
(see equation 2.33 and 2.35 on page 70). Figure 2.16 shows the average effective
relaxation times in the protein villin HP36 (McKnight et al. (1997), pdb entry 1VII,
4 kDa) as a function of τc for the case of selective excitation of amide protons only,
for non-selective excitation of protein-bound 1H spins with water flip-back and for
non-selective excitation without water flip-back. The left panel shows the range of
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Figure 2.16 Average effective amide 1H relaxation times for the protein villin-HP36 as a function of
the correlation time for overall tumbling, τc. The simulations were done for 600 MHz 1H frequency,
methyl rotation was included as before. The average relaxation time for all amide protons is shown
for the case of amide-selective (solid line), non-selective excitation with water flip-back (dashed
line) and non-selective excitation without water flip-back (dash-dotted line). Water exchange was
included as described above (page 216). The middle panel is a zoom in the low-τc region and
the right panel shows the raise of the relaxation rates in the case of hard excitation without water
flip-back in the limit of very high τc.

τc values typically encountered in biomolecular studies from a few nanoseconds
up to some tens of ns. The central and right panel focus on the sub-nanosecond-
and high-τc range, respectively.

These curves are corroborated by experimental data, shown in figure 2.17 for
two proteins with tumbling correlation times of approximately 4 and 8 ns, respec-
tively. The curves show the sensitivity as a function of the interscan delay. As
shown by equation 2.28 and figure 2.11, the form of these curves depends on the
relaxation time constant T1. For 90◦ excitation (which is the case here) the max-
imum values are found at a recovery time corresponding to 1.25 times T1. The
larger SiR-FP18 shows shorter effective T1 times for both the selective and the non
selective water flip-back (wfb) experiment, in a manner that agrees qualitatively
well with the simulations.

It is instructive to take a closer look at the behavior of these curves to get a
somewhat deeper understanding of the relaxation behavior of coupled spin sys-
tems. It is also useful to remember the behavior found for the two-spin system
(see figure 2.13 on page 72) and compare those results to the multispin system of a
protein.

Figure 2.13 on page 72 showed that the cross-relaxation rate between two spins,
σ, is positive for very small values of τc and has a zero-crossing at ωτc ≈ 1.12 (corre-
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Figure 2.17 Experimental evidence for the τc dependence of the amide T1 relaxation time. The
curves show the sensitivity as a function of the scan time Tscan in an experiment using (left) selec-
tive 90◦ excitation of amide protons only (SOFAST-HMQC, see section 4) and (right) hard-excitation
with water flip-back (se-wfb HSQC). Shown are data recorded at 25◦C and 600 MHz 1H frequency
for ubiquitin (8.6 kDa, τc = 4 ns, upper panels) and SiR-FP18 (E. coli sulfite reductase flavodoxine-
like domain, PDB entry 1YKG, 18 kDa, τc ≈ 8 ns). These curves are adapted from figure 4.2 on page
107 and details can be found there.

sponding to ≈ 0.29 ns at 600 MHz 1H frequency). For larger τc, the cross-relaxation
rate is negative and its absolute value constantly increases. Because of this change
in sign of σ, the selective relaxation of one spin is found to be slowed down for ωτc <
1.12 relative to the non-selective case, whereas for ωτc > 1.12 an excited spin re-
laxes faster when its coupling partner is in equilibrium rather than excited (2.13(d,
f)).

A similar behavior is found for selecive amide 1H excitation in the multispin-
system, shown in figure 2.16: As τc increases, the effective relaxation time found
for the amide 1H spins decreases. This can be attributed to the higher efficiency of
spin-diffusion that ”transports” the excitation energy to mobile sites where it gets
efficiently evacuated (especially methyl groups). It is also interesting to note that
the curves representing selective and non-selective excitation have a crossing point
at low τc (central panel). For tumbling correlation times below this point the non-
selective excitation yields faster recovery of the amide spins. This point is found at
0.29 ns (ωτc = 1.12), as expected from the σ dependence.

The behavior of the relaxation times upon non-selective excitation is less intu-
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itive. The effective average T1 value has a minimum for very fast tumbling (at τc ≈
0.17 ns) and a maximum of T1 is found for τc ≈ 3 ns. How can we interpret these
results based on the observations made for the two-spin system ?

For the two-spin system a minimum of T1 = 1/(σ + ρ) upon non-selective exci-
tation was found for τc ≈ 0.17 ns (at 600 MHz 1H frequency, figure 2.13(b) on page
72). This corresponds exactly to the minimum found for the average amide 1H T1,
indicating that at very small τc, where the cross-relaxation rate is very small the
multi-spin system basically behaves like a collection of two-spin systems.

For higher τc values, T1 in the two-spin system continuously increases with
increasing overall tumbling correlation time, leaving open the question why in the
multi-spin system a maximum and a subsequent decrease in T1 is found. This effect
can again be explained by cross relaxation as follows. Spin diffusion transports the
energy efficiently to the sites where it gets evacuated, namely the mobile groups
having high auto-relaxation rate constants. Note that the fast dynamics at these
sites is retained irrespective of the overall tumbling correlation time. The higher τc

the more efficient is this process.
There are therefore two counteracting processes: the increasing T1 based on in-

creasing 1/(σ + ρ) as predicted by the two-spin system on the one hand and the
higher efficiency of spin diffusion together with local relaxation sinks on the other
hand. As τc increases the latter effect outweighs the former and the balance of these
processes therefore results in a maximum, which in principle can be expected to
depend on the number and position of the mobile groups. Here a maximum is
found in the range of a few nanoseconds. Many routine protein NMR studies hap-
pen to fall close to this range, which is from a proton longitudinal relaxation point
of view the worst case in terms of sensitivity.

Finally, another factor can be studied, namely the effect of water exchange on
the T1 value in non-selective experiments. As discussed before, when water is in
an excited state, exchange will result in slower magnetization recovery of protein-
bound protons, which can be seen by comparing the dashed (water flip-back) and
the dot-dashed (water-excite) curves in figure 2.16. The general behavior of T1 as
a function of τc is similar in the low-τc range, except for the absolute values of T1,
which is lower when water is in thermal equilibrium. However, for larger τc values
an interesting feature is observed in the simulations: T1 values increase again when
τc exceeds some ≈ 50 ns. How can this be explained ?

In these simulations exchangeable sidechain protons were assumed to be in
very fast exchange with water, and protons at these sites therefore relax with the
relaxation rate of bulk water (3 seconds). As spin diffusion gets more and more
efficient, the magnetization at the water-exchangeable sites is rapidly spread over
the whole protein and in the extreme case it completely determines the relaxation
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behavior of all protein-bound proton spins. The average effective amide 1H T1 is
thus approaching the T1 value of bulk water (here: 3 seconds). For very large pro-
teins, a good water flip-back performance is therefore even more important than
for smaller proteins, although for small proteins the losses are also substantial. De-
creasing the bulk-water T1 is another strategy that can be expected to be valuable,
especially for large molecules (Hiller et al. (2005b)).

In summary, the τc dependence of T1 yields insight into the mechanisms of pro-
ton relaxation in a multispin system. The relaxation behavior can be deduced from
the one of the two-spin system taking into account spin diffusion and the differen-
tial auto-relaxation rates for different sites in the molecule. As spin diffusion gets
very efficient, magnetization is efficiently “transported” to the sites where auto-
relaxation is fast and where the energy of the spin system is evacuated efficiently.

Dependence on the magnetic field strength

The advent of higher magnetic field strengths is accompanied by several advan-
tages in terms of resolution and sensitivity due to the higher Boltzmann popula-
tions and the larger frequency spread. What is generally less considered is the
effect of higher field strength on the relaxation rates which in turn affects the sen-
sitivity. Figure 2.18 shows the dependence of the average effective amide pro-
ton relaxation time constant in ubiquitin on the proton Larmor frequency in the
case of selective amide excitation and non-selective excitation of protein protons
while keeping water proton magnetization in equilibrium (water flip-back). In-
terestingly, in the case of non-selective excitation of protein proton spins, the re-
laxation rate continuously increases with increasing magnetic field strength. This
finding highlights a feature of high magnetic fields that is rarely considered: al-
though the equilibrium one-scan sensitivity increases due to the higher Boltzmann
populations, longitudinal relaxation is slower and thus in multiscan experiments
the sensitivity does not increase as much as one expects from the Boltzmann pop-
ulations.

In the case of selective excitation the effective longitudinal relaxation time con-
stant is almost independent of the field strength above ca. 200 MHz. The gain that
selective excitation schemes offer thus increases with the magnetic field strength -
making these schemes therefore more and more attractive. Note again a crossing
point at a proton Larmor frequency of ≈ 45 MHz (which corresponds to ωτc ≈
1.12).

These simulation data on ubiquitin are corroborated by experimental data (fig-
ure 2.19). Whereas the optimal recovery delay (and thus the effective relaxation
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Figure 2.18 Simulated dependence of the effective relaxation time of the amide protons on the
magnetic field strength. Shown are data for ubiquitin, the simulations were performed as before
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Figure 2.20 Simulated average proton longitudinal relaxation rate in ubiquitin as a function of
the aliphatic/aromatic proton spin magnetization. 1 and -1 correspond to the aliphatic/aromatic
magnetization vector aligned along +z and -z, respectively.

time) is almost independent of the magnetic field strength in the case of selective
excitation, a clear shift to longer times when going to higher field is observed in
the non-selective (water flip-back) experiment.

Amide relaxation and the initial magnetization of non-amide protons

So far only two extreme cases have been considered: either aliphatic and aromatic
proton spins were fully aligned along +z (selective), or they were excited (i.e. in the
transverse plane, non-selective). In practice, however, it might be difficult to keep
the aliphatic/aromatic magnetization perfectly unperturbed when amide spins are
excited and intermediate situations will be encountered. To estimate how much the
amide relaxation will be altered in these intermediate situations, simulations were
performed where the amount of aliphatic and aromatic magnetization is varied
between a fully unperturbed state and a fully inverted state.

Figure 2.20 shows the average effective longitudinal relaxation time of amide
protons in ubiquitin as a function of the initial state of the non-amide proton spin
magnetization. These simulations show that fast amide relaxation critically relies
on keeping the aliphatic/aromatic magnetization as closely as possible in an un-
perturbed state. Reducing the amount of magnetization on C-bound protons to
half the maximum value yields a more than two-fold increase in the effective lon-
gitudinal relaxation. The slowest amide relaxation occurs in the case where the
aliphatic spin magnetization is completely inverted yielding a more than 7-fold in-
crease in the relaxation time.
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Amide proton relaxation and internal dynamics

In all the above simulations, the protein was regarded as a rigid structure and
the only internal dynamics that was considered was fast methyl rotation. This is
of course an oversimplification and protein dynamics are omnipresent and often
crucial for stability and function. Significant backbone and sidechain fluctuations
are found especially in loop regions and terminal sequences, whereas the tightly
packed secondary structure elements are often rather rigid.

The presence of such dynamics and structural heterogeneity has a number of
consequences for amide proton relaxation that have hitherto been ignored.

First, internal dynamics change the spectral density function and therefore the
auto- and cross-relaxation rates that govern the relaxation behavior (compare the
corresponding expressions for methyl groups, equations 10.2 on page 215).

Second, dynamic (loop) regions are often located close to the protein surface
in solvent-exposed regions of the protein. These regions are characterized by a
less tight packing of atoms and therefore a smaller density of coupled spins. Addi-
tionally, amide protons in surface-exposed regions can undergo chemical exchange
with water molecules.

All these factors alter the magnetization recovery and their exact nature is dif-
ficult to quantify in a simulation. To assess the role of internal dynamics on pro-
ton relaxation, experimental inversion-recovery data were analysed for amide 1H
spins in residues located in different structural elements. The behavior following
non-selective and selective inversion is shown for three representative amide sites
located in a rigid secondary structure, in a connecting loop, and at the C-terminus
of ubiquitin (figure 2.21).

The residue located in a secondary structure (figure 2.21, Residue 4) senses the
presence of many neighboring spins and the interactions are modulated basically
by the overall tumbling time. This translates to a fast, bi-exponential recovery
upon amide-selective inversion and a relatively slow recovery after non-selective
inversion.

On the opposite extreme, the C-terminal amide proton (Residue 76) recovers
its magnetization faster after non-selective inversion compared to amide HN 4, but
the recovery after non-selective excitation is slower, and does not show clear evi-
dence for a bi-exponential behavior. Less effective spin diffusion and fewer cou-
pling partners seem to be at the origin of this behavior.

Note that some structural and dynamic information is contained in the relax-
ation properties: large differences between the magnetization recovery following
non-selective and selective inversion/excitation are found for amide sites located
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Figure 2.21 Experimental recovery curves of amide protons of Phe 4, Gly 10 and Gly 76 in ubiq-
uitin following selective HN inversion (filled squares) and non-selective inversion (filled circles).
The solid lines are biexponential (monoexponential) fits to the experimental data for selective
(non-selective) inversion. The dot-dashed and dotted lines represent simulations, with simula-
tion parameters as used before. The locations of the three amide sites are indicated on the three-
dimensional structure. The experimental conditions were as described in the caption of figure 2.14.

in rigid structures, whereas the differences are much smaller for exposed, dynamic
amide sites. This property can actually be exploited to obtain a measure of struc-
tural compactness, as shown in chapter 8 (page 179).

The effect of deuteration on amide relaxation rates

The high density of proton spins in proteins does not only have consequences for
the longitudinal relaxation but also for the transverse relaxation. In large proto-
nated proteins, transverse relaxation rate constants are high, leading to severe line
broadening and signal losses. This realization has led to the introduction of deuter-
ation schemes that replace non-exchangeable protons by deuterons (Browne et al.
(1973); LeMaster (1989, 1990a,b)).

Although deuteration proves a good method to decrease transverse relaxation
rates (and therefore reduce signal losses), longitudinal relaxation is also slowed
down.

Longitudinal relaxation-enhanced schemes can therefore be of special interest
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Figure 2.22 Effect of deuteration on the average effective T1 values of amide protons in villin-HP36.
(a) Simulation. Non-labile hydrogen sites were randomly protonated or deuterated corresponding
to the displayed fraction of deuteration. Solid, dashed and dot-dashed lines correspond to selective,
non-selective wfb, and non-selective non-wfb scenarios, respectively. For the latter case, water
exchange and a bulk water T1 value of 3 seconds was assumed, as before. The overall tumbling
correlation time was set to 4 ns. (b) Experimental data of S/Nt on a sample of 75% deuterated SiR-
FP18 for a selective experiment (upper panel) and an experiment that excites all protons (including

water 1H). As before, the maximum of these curves, indicated by dotted lines, is found at 1.25 Ṫ1

(assuming monoexponential recovery). The data were measured with a BEST-Jcomp-HNHN-RDC
experiment presented in chapter 6) and a non-selective version (Wu and Bax (2002)), also described
there. These data are taken from figure 6.2 on page 146 and details can be found there. Note that the
simulations were not performed with the same molecule (and τc) as the experiment, and a direct
comparison is therefore not possible. However, the trend seen in the simulation is confirmed by
experiment.

in such dilute proton spin systems. However, the selective excitation schemes il-
lustrated above rely on the presence of a dipolar coupled network of spins, which
raises the question whether they still are of benefit when applied to (partially)
deuterated molecules.

Figure 2.22 (a) shows the average effective T1 value for amide protons in villin-
HP36 (in H2O) as a function of the fraction of deuteration at non-exchangeable
hydrogen sites. Here the percentage refers to the fraction of non-labile (generally
carbon-bound) hydrogen sites that are occupied by 2H. Exchangeable hydrogen
sites were protonated. These curves predict that even for highly deuterated mole-
cules substantially decreased amide 1H relaxation times can be obtained upon se-
lective excitation.

Spin diffusion in the network of remaining protons (all labile and part of the
non-labile 1H) still afford an efficient mechanism for cross-relaxation. As the frac-
tion of deuteration approaches 100%, the recovery rate in selective and non-selective
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experiments are approaching each other.

Figure 2.22 (b) displays experimental data found for ≈ 75% deuterated SiR-
FP18 in H2O for a selective experiment and a non-selective water-excite experi-
ment. As above, the maxima of these curves are found at ≈ 1.25 times T1. The
experimentally found effective T1, ≈ 1 second and 3 seconds, are in qualitative
agreement with the simulations for SiR-FP18 at 75% deuteration (simulated data of
SiR-FP18 not shown), although about 15-25% too high. The observed overestima-
tion of T1 may be due to the fact that other relaxation mechanisms (e.g. deuterium
relaxation) as well as direct amide-water exchange was completely neglected in
the simulation. Especially for very high degrees of deuteration, neglecting these
effects should lead to an overestimation of the T1 values.

In summary, even in highly deuterated molecules, where non-selective T1 val-
ues can be on the order of several seconds, considerable acceleration of the amide
relaxation rate is found by simulation and experiment for amide-selective experi-
ments as compared to standard hard-excitation experiments.

Extension to a different group of protons: Longitudinal-relaxation optimized
spectroscopy of aromatic rings

The concepts for enhanced longitudinal relaxation of amide proton spins intro-
duced above can be extended to other spins. From the discussion about HN spins,
two requirements have to be met to obtain a significant effect: The number of pro-
tons that are excited in a selective-excitation experiment should be small compared
to the spins left in equilibrium, and it must be experimentally feasible to solely ex-
cite the protons of interest with minimal perturbation of surrounding protons. In
proteins two groups of protons, besides amide 1H, appear to fulfill these criteria:
aromatic protons and methyl protons.

Selective methyl experiments are shown in this thesis (chapter 4). Although
some increase in their 1H longitudinal relaxation is observed, the effects are rel-
atively small for small to medium sized proteins, which can be assigned to the
fact that their high mobility makes longitudinal relaxation fast already in the non-
selective case. However, simulations show that for very large proteins the effect
becomes more substantial (data not shown).

Aromatic protons are very promising candidates: They are relatively rare in
most proteins and their resonance frequency is well separated from other proton
spins, making it possible to manipulate them by selective pulses. Located in the
hydrophobic core of proteins, they have a high proton-density in their environ-
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Figure 2.23 Longitudinal relaxation enhancement for aromatic protons. Sensitivity as a function of
the scan time was measured for aromatic protons in ubiquitin (2 mM, 25◦, 600 MHz 1H frequency)
using a standard se-wfb-HSQC sequence (right) and a SOFAST-HMQC experiment (left, see chap-
ter 4). The displayed values are integrations of 1D spectra from 7 to 8 ppm. The se-wfb-HSQC
experiment was used as implemented in the Varian BioPack, the SOFAST-HMQC experiment uses
selective PC9 (Kupce and Freeman (1994)) and REBURP (Geen and Freeman (1991) pulses centered
at 7.8 ppm with a band width of 3.5 ppm. The shift in the maximum of the curves indicates a ∼
two-fold reduction in the effective T1.

ment and their internal dynamics on fast time scales is generally rather restricted;
their location also makes them a valuable source of structural information.

Figure 2.23 shows the dependence of sensitivity as a function of the scan time
in a selective experiment (left) and a non-selective experiment, demonstrating that
the effective longitudinal relaxation time can be almost halved when using selec-
tive excitation.

Recently an experiment for resonance assignment of aromatic protons with flip-
back of aliphatic proton spins has been proposed (Eletsky et al. (2005)).

Proton longitudinal relaxation in proteins: Summary and guidelines

The preceding pages have introduced the main features of proton longitudinal
relaxation and it is worth summarizing the main conclusions that will also serve
as guidelines for the design of relaxation-optimized fast-pulsing methods.

• The evolution of proton magnetization in proteins is governed by two main
mechanisms: dipole-dipole interaction between the protons and exchange of
labile hydrogen sites with proton spins from the solvent water.

• In compact, folded proteins, a simple model that ignores internal dynamics
except fast methyl rotation reproduces experimental recovery data very well.
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This points to the methyl groups as the main relaxation sink, while the slow
overall tumbling allows for efficient spin-diffusion (see figure 2.14).

• Solvent exchange of labile protons introduces protons that are in the mag-
netization state of water protons into the protein. Therefore when water 1H
magnetization is in equilibrium, this process constitutes a pathway that evac-
uates excitation energy from the protein; in contrast, slowly-relaxing water
1H spins that get incorporated to the protein slow down protein 1H relax-
ation. Leaving water 1H spins in an unperturbed state is therefore important
for fast longitudinal relaxation of protein protons. The difference between
water flip-back and water-excited experiments gets more important with in-
creasing molecular weight due to the more efficient spin diffusion (see figure
2.16).

• Higher magnetic field strengths increase the effective proton relaxation times
in non-selective experiments, whereas T1 is almost independent of magnetic
field strength, which makes these longitudinal relaxation optimized experi-
ments particularly attractive at high fields.

• For rapid relaxation of amide proton spins, the unperturbed spins should be
as close as possible to their thermal equilibrium magnetization. A deviation
from the thermal equilibrium magnetization by only 50% already leads to a
more than two-fold increase in the amide relaxation time (see figure 2.20).

• The proton relaxation upon selective and non-selective excitation depends on
the structural context. In flexible regions of a protein the gain achieved with
selective-excitation techniques is smaller (figure 2.21). The relaxation behav-
ior of an amide proton after selective and non-selective excitation contains
information about its structural environment (see also chapter 8).

• Even in highly (randomly) deuterated molecules amide proton relaxation can
be enhanced using selective-excitation schemes.

The practical implementation of longitudinal relaxation enhanced experiments,
guided by these conclusions, is shown in chapter 3

2.4 Summary

This chapter has introduced Fourier transform NMR, with a focus on its applica-
tion to proteins. In order to resolve the signals of individual atoms, multidimensio-
nal techniques were found indispensable.
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The canonical scheme for multidimensional NMR is intrinsically time consu-
ming. In cases where the intrinsic sensitivity is low, this is not problematic, be-
cause in such cases multiple repetitions of the experiment have to be performed
for reasons of signal accumulation. However, technical developments have greatly
enhanced the sensitivity of many NMR experiments and often the duration of
nD NMR experiments is no longer dictated by sensitivity considerations but by
the need to sample the multidimensional data space; this situation is called sam-
pling limited regime. Long experimental times are especially confining in situations
where the sample stability is limited, in high-throughput NMR studies or when
studying fast kinetic events.

This situation has triggered the development of different strategies to reduce
the experimental time required to record multidimensional NMR spectra. The
toolbox of methods is very rich today, and the approaches can be classified roughly
in two groups: one aims at reducing the number of repetitions that are necessary
to retrieve the desired spectral information, wheres the other tries to reduce the
duration of one repetition.

Interestingly, these tools are often compatible with each other, and can be com-
bined to yield optimized results in terms of sensitivity, speed and resolution for a
given application. For example, the speed advantages of longitudinal relaxation
optimized fast-pulsing approaches can be combined with reduced dimensionality,
Hadamard, or spatial frequency encoding (Atreya and Szyperski (2004); Brutscher
(2004); Gal et al. (2007); Schanda and Brutscher (2006); Schanda et al. (2006), see
also chapter 7).

This chapter has introduced the principles underlying these approaches, and
chapter 3 will focus on the practical implementation of longitudinal relaxation op-
timized NMR techniques for fast protein NMR.
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3 Methods for longitudinal relaxation
optimized protein NMR

Two promising spectroscopic methods for sensitive fast-pulsing NMR have been
revealed in the preceding chapter: optimization of the effective flip angle (which
results in a partial excitation) and selective excitation of a subgroup of protons
(while leaving the other, unused protons in thermal equilibrium). Here, possibili-
ties for the implementation of these two features are discussed, with a special focus
on heteronuclear correlation experiments (1H-15N out-and-back techniques and re-
lated experiments). Some of these ideas were developed by other groups before or
during my PhD thesis.

3.1 Review of experimental approaches

3.1.1 Implementation of Ernst angle excitation in nD experiments

Optimized flip angle excitation was initially proposed for the case of simple 1D
‘pulse-acquire’ experiments using a hard excitation pulse. The implementation of
non-90◦ excitation in this case is achieved by simple reduction of the pulse length.

The situation becomes less straightforward for more complex pulse sequences
used for multidimensional NMR. For example, a simple reduction of the pulse flip
angle α of the initial pulse in an INEPT transfer block will not leave any proton
magnetization aligned along +z: the concluding 90◦(y) pulse of the INEPT block
will convert the component cos αHz into cos αHx, thus depleting the proton magne-
tization. Implementation of partial excitation in multidimensional NMR requires
therefore a more careful design of pulse sequences.

In one case, however, Ernst angle excitation is still straightforward: In HMQC-
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Figure 3.1 Implementation of Ernst-angle excitation in heteronculear H-X correlation experiments.
(a) A simple adjustment of the initial excitation pulse angle α can be done in HMQC type exper-
iments. This results in a longitudinal magnetization of cos α, and after the 180◦ refocusion pulse
the final longitudinal magnetization is given by cos(180◦ − α). (b) Partial excitation in a HMQC
experiment using a J coupling delay < 1/(2J), resulting in a remaining Hz term at point c, which
is retained by the two following π rotations. (c) HSQC implementation of the same idea as in (b).
For simplicity, the gradient pulses and phase settings for quadrature detection are omitted in the
pulse schemes.

type experiments applying a pulse with flip angle α > 90◦ results in a partial
restoration of proton magnetization after the subsequent π pulse. Figure 3.1(a)
shows a Ernst-angle HMQC sequence, called Fast-HMQC, proposed by Ross et al.
(1997). The authors proposed the experiment for fast ligand screening and demon-
strated gains of ∼ 25 % when using this optimized flip-angle Fast-HMQC pulse
sequence relative to a comparable HMQC sequence employing 90◦ excitation. 1

A different way of implementing a partial excitation is to use a 90◦ excitation
pulse, and then separate the coherence in two components, and flip back one of
the components, thereby achieving a net partial excitation.

For example, a Hy coherence of a proton coupled to a heteronucleus will evolve
during a delay ∆′ as sin(πJ∆′) 2HxNz + cos(πJ∆′) Hy. Setting the delay ∆′ to a

1Note, however, that a comparison to the standard pulse sequence used for the same purpose,
sensitivity-enhanced HSQC (Kay et al. (1992)), reveals that it performs actually less well than se-
HSQC, except for short recovery delays Trec ≤ 100 ms, where it becomes comparable to its HSQC
counterpart (Schanda and Brutscher (2005)). This can be attributed to the difference of the quadra-
ture detection schemes in the two experiments.
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value shorter than 1/(2J) leaves a non-zero Hy component, which can be manipu-
lated independently from the orthogonal 2HxNz.

Kupce and Freeman (2007) have shown this concept for a 1H-13C HMQC-type
experiment (figure 3.1b). The component Hy that results from incomplete J cou-
pling evoution can be converted to Hz by a 90◦ 1H pulse, thereby resulting in the
desired partial excitation. The 2HxCz coherence is not affected by this pulse, and
ultimately gives rise to the detected signal.

This experiment has an additional nice feature: not only is a part of the magneti-
zation of the proton spins of interest (coupled to X) restored, but the magnetization
of all the non-X-coupled spins is also retained in equilibrium, and this magnetiza-
tion can then be used to accelerate the recovery of the magnetization of the used 1H
spins. The experiment was proposed for natural abundance samples (for 1H-13C
correlation experiments), where all the magnetization of 12C bound proton spins is
effectively restored before acquisition.

In principle, a similar idea can be used also for HSQC experiments, although
this has not yet been demonstrated in the literature. Figure 3.1(c) shows how such
a Ernst-angle HSQC sequence may be designed. As in the preceding HMQC exam-
ple, incomplete J-coupling evolution is used to create 2HxNz and Hy coherences.
In this case, however, the component that did not evolve under the coupling is
spin-locked in the transverse plane by the second 90◦ pulse. After t1 evolution
(and maybe additional transfer steps), the concluding reINEPT block transforms
the Hy component back into Hz, resulting thus in a partial flip-back.

The advantage of such a sequence is that it creates single-quantum 15N coher-
ence, which is favorable in terms of transverse relaxation as compared to multiple-
quantum evolution (see e.g. Cavanagh et al. (1995), page 429). This method could
in principle be extended to triple-resonance experiments. The drawback of this
technique comes from the fact that the magnetization, which is ultimately flipped
back, is stored as Hy during the sequence. Transverse relaxation losses during
the t1 evolution can result in decreased flip-back performance, especially for large
molecules. Keeping in mind that the magnetization that is flipped back was ini-
tially separated from the one that actually gives rise to the detected signal, this
partial excitation approach may not yield higher sensitivity than a 90◦ excitation
with properly set delays ∆′ = ∆ = 1/(2J).

To conclude, partial excitation in multidimensional NMR experiments is not
straightforward, but may be implemented in some selected cases. Especially, a
simple adjustment of the excitation angle can be implemented in HMQC-type ex-
periments. As this approach does not rely on the intermediate creation of proton
coherence that is then converted to Hz, it seems to be the most promising approach
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for large molecules, such as proteins. We therefore focus on this strategy (see be-
low).

3.1.2 Selective excitation of a subgroup of protein proton spins

Separating the observed spins, that follow the desired coherence pathway and ul-
timately give rise to the signal, from the unused spins, that are kept close to their
equilibrium state, is at the heart of longitudinal relaxation optimized (L-opt) pro-
tein NMR. L-opt experiments have to meet two criteria to yield high sensitivity:
First, as in any experiment, the main coherence transfer pathway, which deter-
mines the type of information that is obtained, should be as efficient as possible.
Relaxation losses and pulse imperfections should be as small as possible. Second,
the flip-back of the unused proton spins should be as “clean” as possible to ob-
tain an optimal longitudinal relaxation enhancement on the observed proton spins.
Only when the unused spins are close to thermal equilibrium maximal longitudi-
nal relaxation enhancement of the observed spins is achieved (see figure 2.20 on
page 87). In the following we consider the amide 1H spins as the actually observed
spins.

Selective manipulation of the different subgroups can be based on different
physical principles: either the different J coupling topology e.g. of 15N and 13C
bound protons is exploited, or the frequency separation between used and unused
spins is exploited by application of selective pulses.

3.1.2.1 Separation by scalar couplings

Those methods that exploit J couplings to separate used from unused spins, can
again be divided in two groups:

The first group achieves a separation by the coupling that is exploited in the
main coherence transfer pathway (i.e. the 1JNH coupling in 1H-15N experiments).
This results in a uniform flip-back of all not-15N bound proton spins and is referred
to as passive separation. An example of such a technique was recently proposed
by Diercks and co-workers (Diercks et al. (2005)) for HNCX (CX=CO,CA) experi-
ments. In principle, this approach should give perfect flipback of all unused spins.
In practice, however, this is not observed: only 30 to 50% of the aliphatic magne-
tization could be restored back by this scheme (Diercks et al. (2005)), which yields
only minor amide relaxation enhancements (see figure 2.20 on page 87). Trans-
verse relaxation losses of the non-15N bound spins, as well as pulse imperfections
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Figure 3.2 Selective HSQC experiments proposed previously. (a) Simply replacing the water flip-
back pulse by a selective pulse covering aliphatic and water protons is the simplest method to
achieve (partial) flip-back of these protons. Filled and open symbols denote 90◦ and 180◦ pulses,
and the shaped pulse is a EBURP* flip-back pulse (time reversed EBURP) covering the range -1 to
5 ppm. Coherence selection by gradients is performed as described elsewhere (Kay et al. (1992)).
Delays ∆ are set to 1/(4JNH). This is the aliphatic flip-back pulse sequence used for collecting
the data shown in figure 4.3(c) on page 109. (b) Longitudinal relaxation optimized (L-opt) HSQC
sequence proposed by Pervushin et al. (2002). Filled and open selective pulses are applied with a
EBURP, and REBURP shape, respectively, covering a bandwidth of 4 ppm; the pulse indicated with
an asterisk is a EBURP* flip-back pulse. The delay τ1 is set to 2.4 ms, τ2, τ3 are set to a shorter value
(ca. 1 ms at 600 MHz) to account for coupling evolution during the REBURP pulse. This sequence
was used to record the data shown in figure 4.2 and 4.3(b).

were identified as the main sources for aliphatic magnetization loss.

The second approach uses actively the scalar coupling of the unused carbon-
bound 1H spins to create 2HzCz spin order, while the 15N bound proton spins
evolve to 2HzNx. The (slowly relaxing) two-spin order 2HzCz is then converted to
Hz by the following INEPT blocks. Examples were proposed for TROSY-type H-
N correlation experiments (Pervushin et al. (2002)) and HNCO-type experiments
(Diercks et al. (2005)). The advantage of this scheme is that the main coherence
pathway is not affected: in the simplest case, only 13C pulses have to be inserted in
the 1H-15N INEPT blocks.

However, transverse relaxation losses, the non-uniformity of 1H-13C coupling
constants and pulse imperfections lead to significant reduction of the aliphatic
magnetization that gets restored at the end of the pulse sequences, and only negli-
gibly small sensitivity advantages are reported by Diercks et al. (2005).

3.1.2.2 Separtion by selective pulses

Based on their good spectral separation (see figure 2.4), amide or aromatic protons
can be manipulated independently from the other proton spins. Here, one can dis-
criminate between experiments that use selective pulses either for the unused or
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for the observed protons. Figure 3.2(a) shows the simplest example of a 1H-15N
experiment with aliphatic flip-back, where a selective pulse is applied to the ali-
phatic and H2O signals after the initial INEPT transfer block (replacing the water
flip-back pulse often applied at this place). The remaining part of the sequence
then results in a net 720◦ rotation, restoring longitudinal magnetization 1H spins
resonating in the frequency range covered by the selective pulse. A related exper-
iment for aromatic HCCH correlation spectra has been reported by Eletsky et al.
(2005).

The drawback of these approaches is that the unused protons go through long
coherence transfer pathways, spending thus much time in the transverse plane,
which leads to less-than-optimal flip-back performance because of T2 losses.

Diercks and co-workers have therefore proposed a HNCO/CA experiment,
which applies with each hard proton 90◦ pulse a band-selective aliphatic flip-back
pulse. The ratio of aliphatic flip-back that can be achieved with this scheme is
about 50 to 60% in the slow pulsing limit (Diercks et al. (2005), see section 5.3). The
problem of this approach is that the aliphatic proton spins are manipulated by a
large number of selective and non-selective pulses, and pulse imperfections and
B1 inhomogeneity can rapidly deterior the performance of this scheme.

Selective manipulation of the used proton spins, rather than flip-back of the
unused spins, is an alternative (Deschamps and Campbell (2006); Pervushin et al.
(2002)). The pulse sequence in figure 3.2(b) is one way to implement an amide-
proton selective HSQC. It does not rely on separation by scalar coupling evolution,
and the aliphatic proton spins do not spend any time in the transverse plane (the
flip-back performance is therefore not deteriorated by transverse relaxation losses).

The drawback of methods that rely on selective pulses is that signals outside the
chosen pulse bandwidth, or close to the edge, may be absent in the spectrum, or
may have reduced intensity. In addition, the efficiency of coherence transfer on the
main coherence transfer pathway may be reduced when using selective pulses, as
compared to the use of hard pulses. A careful choice of selective pulses that have
a good performance within the excitation bandwidth and a clean off-resonance
behavior is therefore crucial for these methods.

In terms of flip-back performance, we find that the selective manipulation of
the used spins yields the best results (see section 5.3). We have therefore focussed
on methods using selective amide 1H pulses.
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4 SOFAST-HMQC experiments for
recording two dimensional
heteronuclear correlation spectra of
proteins within a few seconds

4.1 Introduction

1H-15N correlation spectra serve as a fingerprint of proteins by NMR spectroscopy:
yielding one correlation peak per amino acid, they often suffice to resolve most of
the signals corresponding to the individual residues along the polypeptide chain.
Their amino-acid resolved information makes such spectra generally the first step
in every protein study by NMR. In principle, 1H-15N correlation maps are very
useful either to screen many different samples (or sample conditions) or to follow
spectral changes, e.g. during a kinetic reaction. However, standard methods gen-
erally require experimental times on the order of minutes, which excludes many
interesting phenomena in proteins occurring on a seconds time-scale from site-
resolved studies.

In an attempt to speed up data acquisition for site-resolved NMR, we introduce
here a new experiment for very fast data acquistion. It makes use of Ernst angle
excitation combined with longitudinal relaxation optimization. We show that 2D
correlation spectra of proteins at millimolar concentrations can be acquired in sev-
eral seconds. The proposed experiment proves very useful not only for very rapid
data acquisition, but we also show that it is the most sensitive technique compared
to previously proposed experiments, such as se-wfb HSQC (Kay et al. (1992)).
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4.2 SOFAST-HMQC experiments

4.2.1 General features of SOFAST-HMQC

The pulse sequences used to record band-Selective Optimized-Flip-Angle Short-
Transient (SOFAST) HMQC spectra are shown in figure 4.1. These pulse sequen-
ces provide the required high sensitivity to perform fast heteronuclear H-X cor-
relation experiments of macromolecules by using very short recycle delays (trec).
The main features of SOFAST-HMQC are the following: (i) the HMQC-type H-X
transfer steps require only few rf pulses which limits signal loss due to B1-field
inhomogeneities and pulse imperfections. A reduced number of rf pulses will be
especially important if the experiment is performed on a cryogenic probe, where
B1-field inhomogeneities are more pronounced. (ii) The band-selective 1H pulses
reduce the effective spin-lattice relaxation times (T1) of the observed 1H spins. The
presence of a large number of non-perturbed 1H spins, interacting with the ob-
served 1H via dipolar interactions (NOE effect), significantly reduces longitudi-
nal relaxation times whereby the equilibrium spin polarization is more quickly
restored. As will be shown later on, the longitudinal relaxation optimization en-
hancement effect depends on the number and type of the applied 1H pulses. The
use of only 2 (band-selective) 1H pulses in SOFAST-HMQC ensures minimal per-
turbation of the undetected proton spins, and provides higher enhancement fac-
tors than observed with other longitudinal relaxation optimized pulse schemes
(Pervushin et al. (2002)). As long as the water resonance is outside the selected
1H pulse bandwidth, the WATERGATE-type (Piotto et al. (1992)) pulse sequence
element G1-180◦ (1H)-G1 yields efficient water suppression within a single scan.
The selective 1H manipulation also removes coupling evolution between excited
1H spins and passive 1H spins from frequency bands that are not perturbed by
the selective pulses. (iii) The adjustable flip angle (Ernst angle) of the 1H excita-
tion pulse allows further enhancement of the available steady-state magnetization
for a given recycle delay. Ernst-angle excitation in HMQC-type correlation experi-
ments has been proposed previously (Ross et al. (1997), figure 3.1(a)). With respect
to this Fast-HMQC, our new SOFAST-HMQC experiment has several advantages:
Because of the selective 1H manipulations, 1H spin-lattice relaxation times are sig-
nificantly reduced, and 1H-1H coupling evolution during t1 and the transfer de-
lays ∆ is refocused. An additional

√
2 sensitivity gain is achieved because of the

amplitude-modulated instead of phase-modulated quadrature detection scheme,
required in the non-selective Fast-HMQC experiment of Ross et al. for efficient
solvent suppression in aqueous protein samples. As only one of the 2 orthogonal
components present after the 15N frequency labeling (t1) is transferred into observ-
able 1H coherence by the Fast-HMQC sequence, this phase-modulated quadrature
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Figure 4.1 Pulse sequences used to record SOFAST-HMQC 1H-X (X=13C or 15N) correlation spec-
tra: (a) basic pulse scheme, (b) IPAP version, and (c) CT version. Filled and open pulse symbols
indicate 90◦ and 180◦ rf pulses, except for the 1H excitation pulse applied with flip angle α. The
variable-flip-angle pulse has a polychromatic PC9 shape (Kupce and Freeman (1994)), and band-
selective 1H refocusing is realized using either REBURP (Geen and Freeman (1991)) or r-SNOB
(Kupce et al. (1995)). The transfer delay ∆ is set to 1/(2JHX), and trec is the recycle delay between
scans. The delay δ accounts for spin evolution during the PC9 pulse, and has to be adjusted prior
to data acquisition to yield pure-phase spectra in the 1H dimension. The CT delay T in (c) is set to
T = n/JXX with n an integer. Quadrature detection in t1 is obtained by phase incrementation of
ϕ1 according to STATES or TPPI-STATES. In standard SOFAST-HMQC (a) adiabatic WURST-2 de-
coupling (Kupce and Wagner (1995)) is applied on X during detection. For IPAP-SOFAST-HMQC
two experiments are recorded as indicated in the inserts of (b). In experiment (I), 1H-X coupling
evolution during ∆ is refocused by application of a 180◦ X pulse. In experiment (II), 1H-X coupling
evolution is active during ∆. The 90◦ X pulse applied before final detection converts any remain-
ing antiphase coherence of the type 2HxXz into undetectable multiple quantum coherence. This
purge pulse is mainly useful for the measurement of H-X coupling constants of partially aligned
protein samples. The two data sets (I) and (II) are then added or subtracted prior to Fourier trans-
formation to yield the upfield or downfield components of the 1H doublet line, respectively. Note
that IPAP filtering can also be applied in the CT-SOFAST-HMQC sequence shown in (c) by simply
omitting the X decoupling during detection, and replacing the back-transfer delay ∆ by the two
inserts shown in (b). The graph in the upper right corner shows a comparison of the performance
of REBURP (upper curve) and r-SNOB (lower curve) when used in the SOFAST-HMQC sequence
(a) to record 1H-15N correlation spectra. The data were recorded at 600 MHz 1H frequency on a
sample of 15N-labeled ubiquitin using a flip angle α=90◦.
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detection scheme results in a
√

2-sensitivity loss relative to amplitude-modulated
quadrature detection used in SOFAST-HMQC (Schanda and Brutscher (2005)).

4.2.2 Band-selective 1H pulses in SOFAST-HMQC

The performance of SOFAST-HMQC critically depends on the choice of the pulse
shapes for the band-selective excitation and refocusing pulses on the 1H channel.
We have tested several pulses to achieve excitation and refocusing with minimal
perturbation of aliphatic proton spins and minimal B1 inhomogeneity losses.

For refocusing we initially chose a r-SNOB profile (Kupce et al. (1995)), which
presents the advantage of a short pulse length thus reducing signal loss due to
transverse spin relaxation. However, we find that for the recording of 1H-15N
correlation spectra, a REBURP profile, although of a three times longer duration,
yields higher sensitivity. An experimental comparison of r-SNOB and REBURP
performance in 1H-15N SOFAST-HMQC is shown in figure 4.1(a). A signal in-
crease of up to 50% is observed when using REBURP instead of r-SNOB for short
scan times. This surprising result can be explained by the better off-resonance per-
formance of REBURP, resulting in less perturbation of the aliphatic 1H spin polar-
ization and, as a consequence, shorter longitudinal relaxation times of the amide
proton spins. This is manifest by the maximum of the intensity curves, shifted
towards shorter scan times for the experiments realized using REBURP. A similar
behavior was also observed for other proteins varying in size and different mag-
netic field strengths (data not shown).

In order to implement the feature of optimized flip-angle band-selective exci-
tation in the SOFAST-HMQC we have explored the literature for suitable pulse
shapes. Most of the band-selective top-hat pulse shapes commonly used for NMR
spectroscopy, e.g. BURP (Geen and Freeman (1991)), Gaussian pulse cascades (Em-
sley and Bodenhausen (1992)), or SNOB (Kupce et al. (1995)), have only been op-
timized for discrete flip angles of 90◦ or 180◦, and generally are not useful for
variable flip angle excitation purposes. In contrast, polychromatic (PC) selective
pulses have been shown to perform well for a whole range of flip angles (Kupce
and Freeman (1994)). These PC pulses are based on a series of simultaneously
applied, frequency shifted basic pulse elements. For the present applications we
have used the PC9 pulse shape, which has the desired ”top-hat” excitation profile
for flip angles 0◦ < α <120◦. For the flip-angles of 120◦ to 150◦ used in this work,
the excitation profile slightly deteriorates, but the PC9 pulse shape still yields good
experimental results. For the 90◦ to 150◦ flip-angles used in this work the combi-
nation of PC9 and REBURP (or r-SNOB) pulses was found a robust choice. Unlike
other band-selective excitation pulses that yield ”pure-phase” transverse magne-
tization, the PC9 pulses produce phase that is a linear function of the frequency
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offset. Schematically, one can thus replace a PC9 pulse by the combination of a
pure-phase excitation pulse followed by a delay δ. The chemical shift and scalar
JHX coupling evolution occurring during this delay δ can be accounted for by ad-
justing the subsequent transfer delay of the HMQC sequence to 1/(2JHX) − δ (see
Figure 4.1). If the delay ∆ has been properly adjusted prior to data acquisition
no first-order phase correction is required in the 1H dimension. Otherwise, pure-
phase spectra can still be obtained by applying a first order phase correction.

4.2.3 IPAP-SOFAST-HMQC and CT-SOFAST-HMQC

Alternatives to the basic SOFAST-HMQC pulse scheme are shown in Figs. 4.1(b)
and c. In IPAP-SOFAST-HMQC (Figure 4.1b) the heteronuclear X decoupling dur-
ing acquisition (t2) is replaced by an IPAP filter (Andersson et al. (1998); Ottiger
et al. (1998)). The IPAP filter is realized by the two sequence blocks shown in
the inserts of figure 4.1b. Two spectra have to be recorded with and without re-
focusing of the 1H-X coupling evolution during the back-transfer delay ∆, thus
increasing the minimal experimental time by a factor of 2. Addition or subtraction
of these spectra then separates the two 1H doublet components in different sub-
spectra. Each of the 2 sub-spectra has a 2-times lower S/N ratio than a standard
SOFAST-HMQC spectrum recorded in the same experimental time (corresponding
to the acquisition of both sub spectra). A single correlation spectrum is obtained by
adding the 2 sub-spectra after appropriate shifting of the two spectra with respect
to each other in the 1H dimension by an amount of ±(JHX)/2. This results in a

√
2

increase in S/N ratio, and consequently the sensitivity (S/N per unit experimen-
tal time) of IPAP-SOFAST-HMQC is decreased by a factor

√
2 with respect to the

standard SOFAST-HMQC pulse scheme of Figure 4.1a. For larger molecules and
high magnetic field strengths cross-correlated relaxation effects induce differential
broadening of the 1H doublet lines in the absence of 15N decoupling. Adding the
2 lines, a broad and a narrow one, will result in complicated (non Lorentzian) line
shapes in the 1H dimension, but also increases the sensitivity of IPAP-SOFAST-
HMQC (TROSY effect). The main interest of the IPAP-version of SOFAST-HMQC
is that it does not require composite X decoupling during detection. Reducing
rf power becomes an important issue when applying the SOFAST-HMQC exper-
iment on NMR spectrometers equipped with a cryogenic probe. In this case the√

2-sensitivity loss due to the IPAP filtering is largely compensated by the 2 to 4-
times higher sensitivity provided by the probe. IPAP-SOFAST-HMQC also offers
the possibility of fast measurement of heteronuclear H-X (scalar or residual dipo-
lar) spin-spin coupling constants yielding useful additional probes of structural
changes occurring during kinetic processes that can be monitored by real-time
NMR. SOFAST-HMQC can also be combined with constant time (CT) frequency
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editing in the indirect dimension (t1). The pulse sequence for CT-SOFAST-HMQC
is shown in Figure 4.1c. This CT version is mainly useful for removing line split-
tings due to 13C-13C couplings in 1H-13C correlation experiments, thus providing
increased spectral resolution at the expense of sensitivity. The experiment can be
either implemented with heteronuclear decoupling during detection or an IPAP
filter for application on cryogenic probes, or measurement of 1H-X spin coupling
constants.

4.3 Application to proteins

4.3.1 1H-15N SOFAST-HMQC

The SOFAST-HMQC pulse sequences of figure 4.1 have been designed to pro-
vide high sensitivity for fast repetition rates. To examine the performance of the
SOFAST-HMQC experiment for the desired short interscan delays we have mea-
sured 1D spectra of 15N-labeled ubiquitin (7 kDa, 2 mM, 25◦C, pH 6.2) and of
13C,15N-labeled SiR-FP18 (18 kDa, 1.8 mM, 25◦C, pH 7.0), the flavodoxin-like do-
main of the E. coli sulfate reductase, at magnetic field strengths corresponding to
600 and 800 MHz 1H frequency using the pulse sequence of figure 4.1(a) with-
out 15N decoupling during detection, and setting t1=0. The 800 MHz spectrom-
eter was equipped with a cryogenic probe, whereas the experiments at 600 MHz
1H frequency were performed on a standard (non cryogenic) probe. Figure 4.2
shows the measured S/N ratios for constant experimental time as a function of
the duration of a single repetition of the experiment Tscan (taking into account the
length of the pulse sequence, data acquisition time, and recycle delay) for ubiq-
uitin (figs. 4.2a and b) and for SiR-FP18 (figs. 4.2c and d). Each intensity point
was obtained by scaling all spectra to the same noise level according to the num-
ber of applied scans, and integrating the spectral intensity over the range 7.0 to
9.5ppm. The curves are therefore representative of the average behavior of the
experiment for all amide sites in the protein. The SOFAST-HMQC data for three
different flip angles (90◦, 120◦, and 150◦) are compared to results from a sensitivity-
enhanced (se) water-flipback (wfb) HSQC pulse sequence as implemented in the
Varian Bio-pack, and from a longitudinal relaxation optimized HSQC (LHSQC) ex-
periment (Pervushin et al. (2002)). The peak intensities in the se-wfb-HSQC spectra
were up-scaled by a factor of

√
2 to account for the sensitivity-enhanced quadra-

ture detection providing a
√

2-signal enhancement in the 2D version of the exper-
iment with respect to standard quadrature detection as implemented in SOFAST-
HMQC and LHSQC. Theoretically we expect that the different quadrature detec-
tion schemes translate into a sensitivity advantage of

√
2 for se-wfb-HSQC with
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Figure 4.2 Sensitivity plotted as a function of the scan time (Tscan) obtained with different 1H-
15N correlation experiments for (a) ubiquitin (6.8 kDa) at 600MHz, (b) ubiquitin at 800 MHz, (c)
SiR-FP18 (18 kDa) at 600 MHz, and (d) SiR-FP18 at 800 MHz. The 800 MHz spectrometer was
equipped with a cryogenic probe. The intensities were extracted from 1D spectra recorded using
the SOFAST-HMQC sequence of fig. 4.1a (t1=0) with flip angles of α = 90◦ (squares), 120◦ (triangles)
and 150◦ (open circles), LHSQC (open triangles), and se-wfb HSQC (filled circles). Band-selective
1H pulses in the SOFAST-HMQC and LHSQC experiments were centered at 8.0 ppm covering
a bandwidth of 4.0 ppm. Variable flip angle excitation and refocusing in SOFAST-HMQC were
realized using PC9 and REBURP pulse shapes, respectively. The se-wfb-HSQC experiments were
recorded using the pulse sequence implemented in the Varian Bio-pack. The LHSQC sequence was
set up as described by Pervushin et al. (2002), except for the final INEPT delays τ2 and τ3 that were
reduced to 1.0 ms to account for spin evolution during the REBURP pulse. The inserts show an
expansion of the data for short scan times. Each spectrum was acquired in the same experimental
time, and the spectra were scaled to the same noise level. The se-wfb-HSQC spectra were scaled up
by a factor

√
2 to account for the gain in S/N ratio obtained by the sensitivity-enhanced quadrature

detection in the 2D version of the experiment. Intensities were obtained by integration of the 1D
1H spectra over the spectral range 7.0 to 9.5 ppm. The solid lines are smoothened interpolations of
the experimental data points. Fitting the data points to equation 2.27 shows systematic deviations,
which is explained by the non-monoexponential behavior (see the builup curves in figure 2.14 on
page 77).
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respect to SOFAST-HMQC and LHSQC at long recycle delays. In practice, we find
that this sensitivity difference is partly or completely compensated by the larger
number of pulses applied in se-wfb-HSQC leading to increased signal losses due
to pulse imperfections and B1-field inhomogeneities. As expected, this effect is
more pronounced for the data acquired using a cryogenic probe (Figs. 4.2(b) and
(d)), characterized by larger B1-field gradients across the detection volume. For
shorter scan times the reduced spin-lattice 1H relaxation times become important,
resulting in a higher sensitivity for the longitudinal-relaxation optimized pulse se-
quences (SOFAST-HMQC and LHSQC). The more efficient spin-lattice relaxation is
reflected in the shift of the maximum of the intensity curves (T opt) towards shorter
scan times. This shift is more pronounced for SOFAST-HMQC than for LHSQC.
This observation is most likely explained by the larger number of 1H pulses re-
quired for LHSQC, resulting in some perturbation of the aliphatic and water 1H
equilibrium spin polarization. Using the relation T opt = 1.25·T1 (see eq. 2.28 on
page 64) one can estimate average amide 1H spin-lattice relaxation times of T1 ≈
0.9-1.4 s for HSQC, of T1 ≈ 0.4-0.5 s for LHSQC, and of T1 ≈ 0.3-0.4 s for SOFAST-
HMQC (α = 90◦). For all experiments, we observe an increase in the average T1

times with increasing B0 field strength and with decreasing molecular weight (or
tumbling correlation time) of the molecule (see simulations in section 2.3.2.2, pages
82 and 86). For very short scan times the sensitivity advantage of SOFAST-HMQC
with respect to se-wfb HSQC and LHSQC becomes even more pronounced when
using larger flip angles α >90◦. As shown in the inserts of figs. 4.2a-d important
signal enhancements are observed for Tscan < 200 ms when using SOFAST-HMQC
instead of se-wfb HSQC or LHSQC. This sensitivity enhancement allows signifi-
cantly reduced experimental times for a given S/N ratio.

The 1D spectra in Figure 4.2 provide only information on the average sig-
nal to noise ratio obtained by the different pulse sequences. In order to look in
more detail at the spread of peak intensities among the amide protons in SOFAST-
HMQC, we have recorded a 2D 1H-15N correlation map of ubiquitin at 600 MHz
1H frequency using a short scan time of Tscan=165 ms and an optimized flip an-
gle α=120◦ (see figure 4.2a). This spectrum, shown in Figure 4.3a can be com-
pared to spectra recorded using se-wfb-HSQC (Fig. 4.3d), LHSQC (Fig. 4.3b),
and sensitivity-enhanced aliphatic-flip-back HSQC (se-afb-HSQC) pulse sequen-
ces (Fig. 4.3c). For se-afb-HSQC the water flip-back pulse in the standard se-wfb-
HSQC sequence has been replaced by a band-selective EBURP flip-back pulse cov-
ering the 1H frequency range from -1 to 5 ppm. Although, for this scan time all
longitudinal-relaxation optimized experiments provide a significant gain in sig-
nal to noise ratio with respect to the standard se-wfb-HSQC experiment, SOFAST-
HMQC is by far the most sensitive. A residue-by-residue analysis of the peak
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Figure 4.3 Comparison of 2D 1H-15N correlation spectra of ubiquitin recorded at 600MHz using (a)
the SOFAST-HMQC pulse sequence of fig. 4.1a (α = 120◦), (b) the LHSQC sequence of Pervushin
et al. (2002), (c) a longitudinal-relaxation optimized se-afb-HSQC sequence and (d) a standard se-
wfb-HSQC sequence as provided by the Varian Bio-pack. For se-afb-HSQC, the water flip-back
pulse in the standard se-wfb-HSQC sequence was replaced by a band-selective EBURP flip-back
pulse covering the 1H frequency range from -1 to 5 ppm (see figure 3.2a). All spectra were acquired
with a scan time of Tscan = 165 ms, and the acquisition times were set to tmax

1 =28 ms, and tmax
2 =

40 ms. 15N-decoupling during t2 was realized using WURST-2 (Kupce and Wagner (1995)) at an
average field strength of γB1/2π=550 Hz. Additional 2D spectra were recorded with a longer t1
acquisition time of tmax

1 =50 ms (not shown). In (e) intensity ratios are plotted as a function of the
peptide sequence: SOFAST-HMQC over se-wfb HSQC for tmax

1 = 28 ms (filled circles) and tmax
1 =

50 ms (open circles), and LHSQC over se-wfb HSQC (filled triangles).
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intensities measured in the different 2D spectra of figure 4.3 shows a sensitivity
gain for SOFAST-HMQC with respect to se-wfb-HSQC varying between 2 and 6,
whereas this gain is only about 1.5 to 3.5 for LHSQC, and even less for se-afb-
HSQC despite its

√
2-sensitivity advantage provided by the sensitivity-enhanced

quadrature detection scheme. This sensitivity advantage of SOFAST-HMQC with
respect to se-wfb-HSQC is slightly reduced when using longer t1 acquisition times,
e. g. tmax

1 =50 ms (open circles) instead of tmax
1 =28 ms (filled circles), because of the

shorter transverse relaxation times of 1H-15N multiple quantum (MQ) coherence
in HMQC-type sequences with respect to 15N single-quantum (SQ) coherence evo-
lution in HSQC-type sequences (see e.g. Cavanagh et al. (1995), page 429). The
variations in the measured intensity ratio along the protein backbone are indica-
tive of differences in the local proton density at the individual amide sites and/or
differences in local dynamics. This effect has already been shown in figure 2.21,
and chapter 8 will come back to this issue.

The principal conclusions from these experimental results are the following: (i)
If optimized acquisition parameters (scan time, flip angle) are used, and moder-
ate t1 acquisition times are acceptable, SOFAST-HMQC yields the most sensitive
1H-15N correlation spectra of folded proteins. (ii) In the context of very fast data ac-
quisition, SOFAST-HMQC provides a much higher sensitivity than se-wfb HSQC
using the same scan times, and a similar sensitivity as se-wfb HSQC recorded with
optimized inter-scan delays. The intensity curves shown in Figure 4.2 also provide
some guidelines for setting up SOFAST-HMQC experiments. The highest sensiti-
vity is obtained for scan times between 200 and 300 ms using a flip angle of α=120◦,
independent of the molecular size or magnetic field strength, whereas for shorter
scan times (Tscan < 200 ms) flip angles of α=130◦-150◦ are advantageous.

4.3.2 SOFAST-HMQC using cryogenic probes

The use of a cryogenic probe is very attractive in the context of fast data acquisition
as cryogenic probes provide the required high sensitivity to record protein correla-
tion spectra in a short overall experimental time. Unfortunately, the rf power nec-
essary for the standard SOFAST-HMQC pulse sequence (figure 4.1a) at high mag-
netic field using short inter-scan delays results in high duty cycles, and it may be
of interest to have a rf power-reduced experiment. We therefore propose an alter-
native sequence where the X-decoupling is replaced by an IPAP filter. This IPAP-
SOFAST-HMQC sequence, shown in figure 4.1b, has allowed us to record a 1H-15N
correlation spectrum on a 15N-labelled sample of ubiquitin (0.9 mM, 25◦C, pH 6.2)
at submillimolar concentration on a 800 MHz spectrometer equipped with a cryo-
genic probe. The spectrum recorded in an overall experimental time of 12 seconds
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Figure 4.4 1H-15N correlation spectrum of 15N-labeled ubiquitin (0.9 mM, 25◦C, pH 6.2) recorded
on an 800 MHz INOVA spectrometer equipped with a cryogenic probe using the IPAP-SOFAST-
HMQC sequence of Fig. 4.1b. The band-selective 1H excitation (PC9) and refocusing (REBURP)
pulses were centered at 8.0ppm covering a bandwidth of 4.0 ppm. The acquisition parameters
were set to α=140◦, ∆=5.4 ms, δ=1.2 ms, tmax

1 = 22 ms, tmax
2 = 40 ms, and trec = 1.0 ms. Forty

complex data points were acquired in the t1 dimension, n=80 + 4 dummy scans. Two data sets
were recorded as explained in the caption to figure 4.1b, in an overall experimental time of 12 s.
For data processing, the two raw data sets were first added and subtracted yielding the new data
sets S1 and S2. Then a first order phase shift ∆ϕ1 = +(2πswJHN )/2 and ∆ϕ2 = −(2πswJHN )/2
was applied in the t2 dimension to S1 and S2, respectively, with sw the spectral width in the 1H
dimension. Finally the two data sets were added and Fourier transformed as usual. Boxes indicate
cross peaks with a 15N frequency outside the chosen 15N spectral width of 1800 Hz that are folded
back into the spectrum.

is shown in figure 4.4. Data acquisition details are provided in the figure caption.
The high S/N ratio obtained in this short experimental time is highlighted by the
1D trace extracted along the 15N dimension, demonstrating the performance of the
IPAP-SOFAST-HMQC for application on high-field NMR spectrometers equipped
with cryogenic probes.

Although this rf power-reduced version may be safely applied to any cryogeni-
cally cooled probe, it suffers from two-fold longer minimal experimental times and
a sensitivity loss of

√
2 with respect to the standard, 15N decoupled version, as

described above. In an attempt to circumvent these problems, we investigated in
more detail the effects of fast-pulsing 15N-decoupled SOFAST-HMQC on cryogenic
probes. On the assayed probes (Varian ColdProbe) we find that even when using
very short recovery delays, 15N decoupled SOFAST-HMQC can be used without
any restriction. Therefore, it is in general preferable to use the decoupled version
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rather than the IPAP version.

However, some precautions are found necessary: The temperature of the probe
initially rises when running fast-pulsing decoupled experiments. This may change
the peak intensities. The internal feedback regulation of the probe controling sys-
tem accounts for this rf heating, and after about one minute this down-regulation
re-establishes the normal temperature (25 K) of the cold probe. However, the inten-
sities extracted from experiments recorded during this time may vary, and in cases
where accurate intensities are measured (e.g. for measuring kinetics) we therefore
like to perform “dummy scans” (i.e. repetitions of the experiment without signal
acquisition) for ca. one minute to reach stable conditions of the probe, before actu-
ally starting the measurement. Once stable conditions are reached we do not find
problems concerning instability of the probe (t1 noise).

Another important finding is the considerable detuning of the 15N channel,
which increases the 90◦ pulse length by about 15-20%. This seems to be a common
feature on the current cryo-probes in experiments where high rf load is applied
to the 15N transmitter, and is also found in other experiments applying high B1

fields to the heteronuclear transmitter channel (e.g. CPMG-type sequences used
for measurements of 15N transverse relaxation). We account for this detuning by
calibrating the 90◦ pulse under fast-pulsing conditions.

4.3.3 Fast measurement of 1H-15N coupling constants

Another interest of the IPAP-SOFAST-HMQC sequence is that it allows fast mea-
surement of H-X (1H-15N or 1H-13C) spin coupling constants from the 1H fre-
quency difference of cross peaks detected in the two sub-spectra corresponding
to the α and β spin states of the attached hetero-nuclei. The quantification of one-
bond spin coupling constants is especially interesting in the presence of an align-
ment medium that induces a dipolar contribution to the line splitting (Tjandra and
Bax (1997)). These residual dipolar couplings provide valuable information about
molecular structure and dynamics (Blackledge (2005)).

For fully-protonated, partially-aligned protein samples, one-bond (scalar and
residual dipolar) spin coupling constants can be accurately measured from the
line splitting observed along the heteronuclear frequency dimension in spin-state-
selective H-X correlation experiments. In IPAP-SOFAST-HMQC the couplings are
measured in the directly detected 1H dimension, which is intrinsically less ac-
curate. The 1H line shape for aligned protein samples is generally asymmetric
because of the presence of numerous 1H-1H dipolar interactions inducing a fine
structure in the peak shape, and cross-correlated relaxation effects responsible for
unequal line widths and intensities of the individual multiplet lines (Brutscher
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Figure 4.5 Experimental demonstration of fast 1H-15N coupling measurement using SOFAST-
HMQC. Spectra were recorded at a 800 MHz spectrometer equipped with a cryogenic probe on
a 2 mM sample of ubiquitin aligned in an alcohol mixture (Ruckert and Otting, 2000) at 30◦C. Two
data sets were acquired using the IPAP-version of SOFAST-HMQC as explained in the caption to
figure 4.1b. A small part of the two sub-spectra containing the downfield and upfield doublet
components are shown in (a) and (b), respectively. A cross in (b) indicates the position of the cor-
responding doublet peak in spectrum (a). In addition, residue number and type information is
given in (a), and the measured coupling constants (in Hz) are provided in (b). The same acquisition
parameters were used as reported for the spectrum of figure 4.4 yielding an overall experimental
time of 12 seconds. In (c) the measured coupling constants are plotted against the line splittings
measured in the 15N dimension from a pair of TROSY-type 1H-15N spin-state selective correlation
spectra (Weigelt, 1998) recorded in an experimental time of 25 minutes.
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(2000)). This induces some systematic error in the coupling measurements. In or-
der to evaluate experimentally the performance of IPAP-SOFAST-HMQC, in terms
of accuracy and precision for the measurement of 1H-15N (scalar and residual dipo-
lar) coupling constants, we have performed an IPAP-SOFAST-HMQC experiment
on a partially-aligned 2mM sample of 15N-labeled ubiquitin, dissolved in aque-
ous solution containing a 5% C12E5/hexanol mixture (r=0.85) (Ruckert and Otting
(2000)). The quadrupolar 2H line splitting observed for these conditions was about
30 Hz at 30◦C. The IPAP-SOFAST-HMQC sub-spectra, corresponding to the down-
and upfield 1H doublet components, are shown in Figs. 4.5a and b. A total of 58
coupling constants could be quantified from non-overlapping cross peaks in these
spectra, obtained in an overall experimental time of only 12 seconds. These results
can be compared to couplings measured along the 15N dimension of TROSY-type
spin-state selective 1H-15N correlation spectra (Weigelt (1998)) recorded in an ex-
perimental time of 25 minutes. The correlation of the two data sets, shown in
Fig. 4.5c, is quite good, although a systematic error (as mentioned above) tends
to slightly underestimate the couplings measured using the fast IPAP-SOFAST-
HMQC approach. In conclusion, IPAP-SOFAST-HMQC is certainly not the best
method for precise and accurate measurement of 1H-15N residual dipolar cou-
plings for NMR structure determination, but the quality of the data, nevertheless,
demonstrates the potential of SOFAST-HMQC for probing structural changes in
proteins that occur on a time scale of seconds via the fast measurement of one-
bond spin couplings in partially aligned protein samples.

4.3.4 1H-13C SOFAST-HMQC of methyl groups

The SOFAST-HMQC experiment is not limited to 1H-15N correlation spectroscopy,
but can also be used to record 1H-13C correlation spectra of sub-ensembles of ali-
phatic and aromatic protons in the protein. As an attractive first example we
demonstrate here its application to methyl groups. Methyl groups are valuable
probes of structure and dynamics as they are dispersed throughout the primary se-
quence and often located in the hydrophobic core of proteins. Due to the rapid ro-
tation, methyl groups possess three equivalent protons, which intrinsically yields
a threefold intensity improvement. Their location in the hydrophobic core should
make them excellent probes for following folding reactions, where the hydropho-
bic core is formed starting from a highly solvent-exposed structural ensemble. It
has also been shown that methyl groups are useful probes for the study of molec-
ular interfaces, and drug binding (Hajduk et al. (2000)). Thus there is an interest in
methods that allow recording very fast 1H-13C methyl correlation spectra.

The relatively good spectral separation of methyl 1H resonances (-0.5 to 1.5
ppm) from other aliphatic proton resonances makes the extension of SOFAST-
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Figure 4.6 Methyl 1H-13C SOFAST-HMQC spectra of (a) SiR-FP18 (1.5 mM, 30◦C, 800 MHz), (b)
ubiquitin (2 mM, 25◦C, 600 MHz), both recorded using the pulse sequence of figure 4.1a, and (c)
ubiquitin (2 mM, 25◦C, 600 MHz) using the CT-SOFAST-HMQC sequence of Fig. 4.1c. The band-
selective 1H excitation (PC9) and refocusing (r-SNOB) pulses were centered at 0.7ppm covering
a bandwidth of 2.0 ppm. The acquisition parameters at 800MHz were set to α=150◦, ∆=3.8 ms,
δ=2.5 ms, tmax

1 = 30 ms, tmax
2 = 40 ms, and trec = 1.0 ms. 120 complex data points were acquired

in t1, n=240 + 4 dummy scans, yielding a total experimental time of 16s for the spectrum in (a).
At 600 MHz the following parameters were used: α=150◦, ∆=3.8 ms, δ=3.4 ms, tmax

1 = 30 ms (23
ms), tmax

2 = 40 ms, and trec = 1.0 ms. 80 (60) complex data points were acquired in t1, n=160
(120) + 4 dummy scans, yielding a total experimental time of 10s for the spectra in (b) and (c).
The values in parenthesis correspond to the settings of the CT experiment shown in (c). Multiple-
band selective 13C decoupling during methyl 13C frequency editing was realized by a train of CA-
WURST-2 (Kupce and Freeman (1996)) pulses of lengths τp=5 ms, centered at 37, 53, and 70 ppm,
and covering bandwidths of 12 ppm each (Van Melckebeke et al. (2004)).
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Figure 4.7 Sensitivity plotted as a function of the scan time (Tscan) obtained with different 1H-13C
methyl correlation experiments for ubiquitin (2 mM, 25◦C) at 600 MHz. 2D spectra were recorded
using the SOFAST-HMQC sequence of fig. 4.1a with flip angles of α = 90◦ (filled squares), 120◦

(triangles), 140◦ (open squares) and 150◦ (open circles), and using a standard HSQC sequence (filled
circles). Acquisition parameters are identical to those used for the spectrum in Fig. 4.6b except that
no homonuclear 13C decoupling was applied during t1. The plotted data points correspond to the
sum of the intensities measured for 27 well-resolved methyl cross peaks in the 2D spectra

HMQC to this spin system straightforward. Figures 4.6a and b show 1H-13C methyl
correlation spectra of SiR-FP18 (1.5mM, 30◦C, 800MHz), and of ubiquitin (2 mM,
25◦C, 600 MHz), respectively, recorded with the pulse sequence of figure 4.1a. The
spectra were recorded on standard triple-resonance (non cryogenic) probes in an
overall experimental time of 16s (Fig. 4.6a) and 10s (Fig.4.6b). Contrary to amide
1H-15N SOFAST-HMQC, for methyl spectra the use of an r-SNOB pulse shape for
1H refocusing yielded better results than the use of a REBURP pulse. This finding
already indicates that the longitudinal relaxation enhancement effect is less pro-
nounced for methyl protons than for amide protons. Further experimental details
are given in the figure caption. Methyl correlation spectra of proteins often suffer
from severe signal overlap. To increase spectral resolution, additional homonu-
clear 13C decoupling (Y channel in figure 4.1a) was applied during t1 as described
in detail previously (Van Melckebeke et al. (2004)). This homo-decoupling removes
JCC line splittings in the 13C dimension except for methyls at the δ position of
isoleucine and leucine residues and therefore also yields a gain in sensitivity. An
alternative to homonuclear decoupling is the use of CT 13C editing, allowing in-
creased spectral resolution in the 13C dimension at the expense of sensitivity. Be-
cause of the relatively long transverse relaxation times of 1H-13C MQ coherences
in methyl groups, CT editing only slightly reduces the sensitivity of the experi-
ment for small proteins such as ubiquitin. A 1H-13C CT-SOFAST-HMQC recorded
using the pulse sequence of figure 4.1(c) in an experimental time of 10 s is shown
in figure 4.6c. 1D traces extracted along the 13C dimension highlight the sensiti-
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vity and spectral resolution obtained by the SOFAST-HMQC experiments. Methyl
proton spin-lattice relaxation is dominated by the dipolar interaction among the
methyl 1H and 13C that is time modulated by the fast methyl rotation, and only
to a smaller extent by interactions with non-methyl protons in the surrounding.
Therefore the longitudinal 1H relaxation enhancement using selective methyl 1H
manipulation in SOFAST-HMQC is minor, yielding only a slight signal enhance-
ment with respect to a standard HSQC experiment. This is demonstrated in figure
4.7 showing the average sensitivity of the methyl cross peaks as a function of the
scan time. Much larger effects are expected for other more rigid aliphatic or aro-
matic 1H sites in the protein. Still, for short inter-scan delays the optimized flip
angle in SOFAST-HMQC provides on average a 50% signal increase with respect
to standard HSQC.

SOFAST-HMQC may also prove useful for application to large molecular sys-
tems with a high level of deuteration and specific 1H and 13C labels at the methyl
positions. (Rosen et al. (1996)), where the MQ coherence evolution yields TROSY-
type line narrowing (Tugarinov et al. (2003)), and the optimized flip angle provides
increased sensitivity for short inter-scan delays.

4.4 Conclusions

SOFAST-HMQC provides a robust new tool for biomolecular NMR. It allows to
adjust the acquisition time of two-dimensional heteronuclear correlation spectra
of proteins as a function of the available sensitivity down to a minimal time of a
few seconds. It also provides higher signal to noise ratio for a given experimen-
tal time than other 1H-15N correlation experiments. Different implementations of
SOFAST-HMQC have been presented, that are optimized for the use on standard
or cryogenic NMR probes, for additional homonuclear decoupling in the indirect
frequency dimension, and for the measurement of (scalar and residual dipolar)
spin coupling constants. In view of the continuously increasing sensitivity of bio-
molecular NMR instruments, it can be expected that SOFAST-HMQC will become
a widespread tool for high-throughput and real-time NMR investigations of pro-
tein structure, dynamics, and kinetics.
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5 Speeding Up Three-Dimensional
Protein NMR Experiments to a Few
Minutes

5.1 Band-selective Excitation Short Transient HNCO/CA

5.1.1 Introduction

Triple-resonance experiments, that correlate backbone amide 1H, 15N to CA, CO,
CB atoms, are a prerequisite for resonance assignment of proteins. Here, the longi-
tudinal relaxation optimized approach used in the 2D SOFAST-HMQC experiment
is extended to triple resonance experiments by incorporating additional coherence
transfers to carbon spins. A different approach than in SOFAST-HMQC is used,
to create in single-quantum 15N coherence, rather than multiple-quantum 1H-15N
coherence, which is more prone to transverse relaxation losses (see e.g. Cavanagh
et al. (1995), page 429).

It is demonstrated that the sensitivity provided by these experiments is suffi-
cient to record 3D H-N-CO and 3D H-N-CA spectra of 13C/15N-labeled proteins
within a few minutes of data collection.

5.1.2 BEST HNCO/CA experiments

The new Band-selective Excitation Short-Transient (BEST) HNCO/CA pulse se-
quences are shown in Figure 5.1. The coherence transfer pathway is identical to
standard sensitivity-enhanced HNCO/CA, and it makes use exclusively of band-
selective pulses to the amide proton spins or pairs of broadband inversion pulses.
The choice of band-selective pulses has been optimized in terms of minimal pertur-
bation of spins resonating outside the chosen frequency band, and minimal signal
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Figure 5.1 BEST-HNCO/CA pulse sequences to record HNCO or HNCA correlation spectra of pro-
teins. Filled and open pulse symbols indicate 90◦ and 180◦ rf pulses. All selective 1H pulses are
centered at ∼8.0ppm covering a band width of 4.0ppm with the following shapes: (1) REBURP
(Geen and Freeman (1991)) (2) PC9 (Kupce and Freeman (1994)) and (3) EBURP-2 (Geen and Free-
man (1991)). A star indicates a flip back pulse obtained by time and phase inversion. The particular
pulse shapes have been chosen to minimize signal loss because of transverse spin relaxation and
B1-field inhomogeneities. Open squares on 1H indicate BIP-720-50-20 pulses (Smith et al. (2001)).
CO pulses have the shape of the center lobe of a sinx/x function, whereas CA pulses are applied
with a rectangular shape and zero-excitation at the CO frequency. The relative durations of G7

and G8 are given by the gyromagnetic ratios G7/G8=γH/γN . Quadrature detection in t1 and t2 is
obtained by time-proportional phase incrementation ϕ1=x,y and ϕ2=x,-x, respectively. In addition,
the sign of G7 is inverted for experiments with ϕ2=-x. At 600 MHz the following pulse lengths
and delays were used: EBURP-2: 1.9 ms, RE-BURP: 2.0 ms, and PC9: 3.0 ms, τ1 =100 µs, τ2 =1.4
ms, τ3=400 µs, T =12-15 ms, and δ1 =t2/2 + δ, with the delay δ ∼ 200 µs adjusted to suppress
JNH coupling evolution during the N→C transfer delay 2T. The maximal evolution times are set
to tmax

1 ∼ 10-15 ms, tmax
2 ∼ 20-25 ms, and tmax

3 ∼ 40 ms. Adiabatic 15N WURST-40 (Kupce and
Wagner (1995)) decoupling (γB1/2π ∼ 500 Hz) is applied during detection.

losses due to relaxation and pulse imperfections. This ensures the high sensitivity
that is needed for short repetition delays trec.

Choice of band-selective pulses

The pulse sequence in figure 5.1 has the same coherence transfer pathway as stan-
dard HNCO/CA experiments, based on an initial INEPT transfer block, and a con-
cluding planar-mixing sequence element, and figure 5.2 illustrates the properties
of the chosen selective pulses during the relevant sequence elements.

The initial 1H-15N INEPT-transfer step requires an excitation, a refocusing and
a flip-back pulse (figure 5.2). We have chosen a REBURP shape for refocusing be-
cause of its clean off-resonance performance with respect to other pulse shapes,
e.g. r-SNOB. In order to minimize 1H transverse relaxation delays, we have cho-
sen PC9 pulses for excitation and flip back. Unlike pure-phase pulses that yield
uniform phase over the pulse bandwidth, like EBURP, E-SNOB..., these pulses al-
low chemical shift and JNH-coupling evolution during part of the pulse duration
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Figure 5.2 Selection of optimal pulse shapes for BEST-HNCO/CA. (a) and (b): Optimization of the
initial INEPT transfer. (a) Coupling evolution is active during the delay indicated by an arrow,
including the duration of the REBURP pulse and half of each PC9 pulse. (b) Bloch simulations of
the PC9 excitation profile: Hx and Hy components are plotted as a function of frequency offset.
The PC9 pulse length was set to 3.0 ms, corresponding to an excitation band width of 4.0 ppm at
600 MHz. From these simulations, one can estimate the phase gradient that is accumulated during
the pulse, and thus the fraction of the pulse duration, during which chemical shift evolution is ac-
tive. In addition, experimental optimization of the sensitivity as a function of τ1 reveals that JNH

coupling is also active during half of the pulse duration. (c) Band-selective planar mixing trans-
fer sequence required for sensitivity-enhanced 15N quadrature detection. The 2 relevant coherence
transfer pathways corresponding to 1H-15N back-transfer of the orthogonal 15N coherences are rep-
resented on the bottom. (d) and (e) Bloch simulations of the planar mixing sequence. 1H transverse
coherence created (d) by the first pulse sandwich EBURP2 REBURP EBURP2*, and present (e) after
the complete planar mixing sequence block shown in (c) simulated for coherence transfer pathway
II. Again, chemical shift and JNH -coupling evolution is active during ∼50% of the EBURP2 pulse
length, that allows to shorten the transfer delays τ3 accordingly. The resulting planar-mixing sequ-
ence thus makes optimal use of the long duration of the band-selective 1H pulses (∼2.0 ms at 600
MHz), and avoids extensive signal loss due to B1-field inhomogeneities.
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(∼50% of the pulse length, as estimated from simulations, figure 5.2(b), and exper-
iment). The coupling evolution is therefore active during 2 times ca. 1.5 ms (at
600 MHz) during the PC9 pulses, and during the whole duration of the REBURP
pulse. This allows to reduce the coupling evolution delay τ1 between the pulses, as
compared to a sequence using pure-phase pulses, and reduce transverse relaxation
losses during this INEPT transfer step.

The final planar mixing sequence (Kay et al. (1992)) retains two orthogonal pro-
jections for detection, which increases the sensitivity by a factor of up to

√
2. The

two relavant coherence transfer pathways are indicated in figure 5.2(c).
Again REBURP pulses have been chosen for refocusing. For the 90◦ rotations,

EBURP-2 pulse shapes are used that create pure-phase coherence from z mag-
netization. The first EBURP-2 pulse is applied at the end of the N→C transfer
delay (2T). JNH-coupling evolution then occurs between the two 90◦ 15N pulses
(∆1 ∼ 1/(2JNH)). In principle, general rotation pulses are required for the two re-
maining 90◦ pulses. The central 90◦ pulse (applied along the y-axis) has to restore
the Hx coherence along the z-axis (pathway I) without affecting the 2NyHy coher-
ence that needs to be transferred during the delay ∆2 ∼1/(2JNH) (pathway II). The
last 90◦ pulse has to create Hy coherence from Hz (pathway I) without affecting Hx

(pathway II).

In principle, general rotation pulses, e.g. UBURP, Q5, can be used to achieve
this goal, but these pulses have been shown to be particularly sensitive to B1-field
inhomogeneities and pulse miscalibration. We thus explored possibilities to use
pulse shapes that are more robust, although not optimized as general rotation
pulses. The use of EBURP-2 pulses proved successful; although this pulse shape is
optimized for excitation (Hz → Hx) and its time-reversed counterpart achieves the
opposite action (Hx → Hz), it also have the following unexpected and unreported
properties:

(i) Hy coherence present at the beginning of a (flip back) EBURP-2* pulse (phase
set to y) evolves as if the pulse was a spin-lock field (during ∼ half of the pulse
length) followed by a free evolution (and JNH coupling) delay. This property is
used for the central 90◦ pulse in the scheme of figure 5.2(c). The resulting superpo-
sition of Hx and Hy of magnetization from coherence pathway II (which is present
as Hy before this pulse) is shown in figure 5.2(d).

(ii) Similarly, and related to (i), the superposition of Hx and Hy, created by this
pulse (and a subsequent π pulse) is left in the transverse plane during a EBURP-
2 pulse (phase x). Again, it appears that this pulse can be thought of as a free
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evolution delay followed by a spin-lock field. These two properties allow to cre-
ate a pure-phase Hx magnetization from 2HzNx (pathway II) with the sequence
element EBURP-2 (x) - REBURP - EBURP-2* (y) - REBURP - EBURP-2 (x) (figure
5.2(e)). While doing so, the coherence pathway I follows the normal properties of
the EBURP-2 pulses: flip-back of a pure-phase Hx coherence by the central EBURP-
2*, and excitation Hz → Hy by the concluding EBURP-2.

(iii) Another interesting feature is that a flip-back pulse EBURP-2* applied to Hz

creates transverse magnetization with a close to linear phase gradient over the ex-
citation profile. In other words, the flip-back pulse applied to Hz can be thought
of as a shorter pulse followed by a free evolution delay (similar to the PC9 pulse).
This property allows to use part of the duration of the pulse for coupling and
chemical shift evolution. This is exploited in a related selective experiment for the
sensitive measurement of 1H-1H coupling constants (chapter 6).

The two π pulses used for 1H decoupling (marked with “4” in figure 5.1) do
not necessarily have to be applied in a band-selective manner. When applied as
hard pulses, they result in a 360◦ rotation of the aliphatic proton spins, which still
allows a net flip-back of aliphatic magnetization. Non-selective pulses have ad-
vantages due to their shorter durations. To investigate whether hard pulses or
selective pulses at these two positions perform better, we implemented the two
1H decoupling pulses as selective pulses (REBURP, ISNOB), hard pulses and op-
timized Broadband Inversion Pulses (BIP, Smith et al. (2001)). We find the best
results when using BIP pulses:1 they afford a much cleaner inversion profile as
compared to rectangular hard pulses, resulting in significant sensitivity gains in
the fast-pulsing regime (see figure 5.3).

This has been noted before, and it can generally be recommended to replace
hard inversion pulses by BIP. In addition, it has also been shown that replacing
refocusing pulses by two BIP pulses yields signal gains on the order of a few per-
cent, and they are therefore attractive in many experiments (Diercks et al. (2005);
Keppetipola et al. (2006)).

5.1.3 Enhanced sensitivity afforded by BEST-HNCO/CA

The sensitivity of BEST-HNCO/CA is plotted in Figure 5.4 as a function of the
recycle delay and compared to results obtained for a standard pulse scheme us-

1A BIP pulse termed BIP-720-50-20 denotes a pulse that has a duration equivalent to a 720◦

square pulse, compensating for 50% frequency offset and 20 % B1 field inhomogeneity.
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(a) (b)

Figure 5.3 Comparison of 1H-15N projections of HNCO spectra of ubiquitin recorded with the
BEST-HNCO experiment using (a) rectangular 180◦ pulses and (b) BIP 720-50-20 pulses for proton
decoupling. The data were acquired in the fast pulsing regime (trec set to 100 ms).

ing two different 13C/15N-labeled protein samples: ubiquitin and SiR-FP18 (E. coli
sulfite reductase flavodoxine-like domain, PDB: 1YKG). Signal gains of up to a
factor of 2.8 are observed for both proteins when using the BEST sequences with
high repetition rates. The absolute maximum of these curves is comparable for the
standard and the BEST experiments. Therefore, BEST experiments are especially
interesting in cases where fast data acquisition is required.

As deuteration is now widely used when studying larger proteins, we have
also evaluated the performance of BEST-HNCO/CA for a deuterated (ca. 75%)
sample of SiR-FP18. Despite the small number of remaining protons, a significant
sensitivity gain is observed, as shown in Figure 5.5. These data encourage the use
of BEST-HNCO/CA when studying partially deuterated protein samples.

5.1.4 Application to proteins: Acquisition of HNCO/CA spectra

in a few minutes

To demonstrate that the sensitivity provided by the BEST sequences is sufficient to
record 3D HNCO and HNCA spectra in a few minutes of acquisition time on stan-
dard high-field NMR spectrometers, we have performed experiments on small- to
medium-sized 13C/15N-labeled proteins at millimolar concentration.

Figure 5.6(a) shows N-CO planes extracted from a 3D H-N-CO correlation spec-
trum recorded for 13C/15N ubiquitin on a 600 MHz spectrometer equipped with a
room-temperature triple-resonance probe. The data set was acquired with 1 scan
per (t1,t2) increment in an experimental time of only 10 min. Note that the BEST se-
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Figure 5.4 Sensitivity (i.e. signal-to-noise per unit time) measured using different recycle delays trec

for BEST-HNCO/CA (circles), and standard wfb-se-HNCO/CA (squares) as implemented in the
Varian BioPack. The intensity ratios (BEST over standard) are plotted on top. 2D 1H-15N data sets
were recorded at 600 MHz for (left curves) ubiquitin (8.6 kDa, pH 6.2, 25◦C) and (right curves) SiR-
FP18 (18 kDa, pH 7.5, 30◦C). Each point corresponds to the sum of all amide cross peak intensities.

Figure 5.5 Sensitivity plotted as a function of the recycle delay trec for BEST-HNCO/CA (filled cir-
cles) and standard se-wfb HNCO/CA (filled squares) for deuterated (∼75%) SiR-FP18 (18kDa, pH
7, 25◦C). The sensitivity ratio of the two experiments is plotted on top. The data were obtained as
an intensity sum of all cross peaks in the spectrum. Spectra were recorded on a Varian DirectDrive
600MHz spectrometer equipped with a room-temperature probe.
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Figure 5.6 N-CO planes extracted from (a) a 3D BEST-HNCO spectrum recorded in 10 min, and
(b) a BEST-HNCO spectrum reconstructed using a minimal value algorithm (Kupce and Freeman
(2004a)) from a set of 6 2D projections, recorded in an overall time of only 2 min. For spectrum (a)
30 (13C) × 27 (15N) complex points were acquired with trec = 50 ms. 2D projections were obtained
by setting ∆t1 = |cos(α)| /SWtilt and ∆t2 = |sin(α)| /SWtilt, with α the projection angle and SWtilt

the spectral width in the projected dimension. All data were recorded at 600 MHz, 25◦C on the 1.9
mM ubiquitin sample.

quences yield good water suppression within a single scan. In order to obtain spec-
tra of comparable S/N ratio using a standard sequence, either a ∼5-times longer
recycle delay or a ∼10-times longer acquisition time would have been required
(see Figure 5.4(a)). All expected cross peaks were observed in this BEST-HNCO
spectrum with an average S/N ratio of 50:1.

In addition, we have recorded a set of 6 2D projections for angles α=0◦, ±30◦,
±60◦, and 90◦ in an acquisition time of 20 seconds per projection. A first possibility
of extracting the correlated frequency triplets from these projections is to recon-
struct the 3D spectral space using retro-projection techniques (Kupce and Freeman
(2004a)). Figure 5.6(b) shows the same N-CO planes as plotted in (a) extracted
from the reconstructed 3D H-N-CO spectrum, obtained in a total acquisition time
of only 120 seconds.

An alternative strategy consists in extracting the frequency information directly
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Figure 5.7 HN-CA strips extracted from a 3D BEST-HNCA spectrum of 1.8 mM 13C/15N-labelled
SiR-FP18 (30◦C). 30 (13C) × 27 (15N) complex points were acquired with trec = 150 ms in an exper-
imental time of 15 min.

from a set of projection spectra using symmetry criteria as implemented in several
assignment programs (Hiller et al. (2005a); Malmodin and Billeter (2005b); Morelle
et al. (1995)). For small globular proteins, 2 or 3 projection spectra are generally suf-
ficient to retrieve the complete 3D spectral information (Bersch et al. (2003)). This
approach further reduces the required acquisition time to less than one minute.

To further investigate the applicability of BEST-HNCO/CA to larger proteins
in the 100-200 residues range, we recorded a 3D HNCA spectrum of SiR-FP18 (167
residues). The experiment was performed on a 1.8 mM 13C/15N-labelled sample,
in an experimental time of 15 min. Figure 5.7 shows a series of strips extracted at
the H, N frequencies of residues V92 to F102 illustrating the potential of sequential
resonance assignment using fast 3D BEST-HNCA.

5.1.5 Conclusions

In summary, we have shown that 3D H-N-CO and H-N-CA protein correlation
spectra can be recorded within a few minutes, sometimes even less, of data col-
lection. We have also shown that the BEST experiments are compatible with pro-
jection NMR techniques to further reduce acquisition times. It is equally possi-
ble to combine BEST-HNCO/CA with other fast acquisition techniques such as
Hadamard-type or spatially encoded 15N and/ or 13C frequency labeling.

The BEST sequences can be easily extended to other correlation experiments
involving only amide protons, e.g. sequential, intra-residue, and bi-directional
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H-N-CA, H-N-CO, and H-N-CB correlation experiments required for backbone
resonance assignment, as well as scalar and residual dipolar coupling, and auto-
and cross-correlated relaxation rate constant measurements.
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5.2 Extension of the BEST concept to a full set of triple-

resonance experiments for protein resonance as-

signment

5.2.1 Introduction

For full backbone resonance assignment in proteins, a set of H-N-C correlation
experiments has to be collected. Here, the BEST-concept introduced in section 5.1
is extended to the complete series of sequential, intra-residue, and bi-directional H-
N-C (C = CO, Cα, or Cβ) correlation experiments. We demonstrate that 3D data sets
can be recorded in about 15 to 40 min using uniform time domain sampling. These
acquisition times proved to be sufficient to detect all expected correlation peaks
in the spectra of a 2 mM sample of ubiquitin recorded on a 600 MHz spectrometer
equipped with a cryogenically cooled probe. Interestingly, these BEST experiments
do not require any particular data processing tools.

5.2.2 BEST triple resonance experiments

Figure 5.8 shows BEST-HNCO, BEST-HN(CO)CA, and BEST-HN(CO)CACB pulse
sequences for sequential correlation of the amide group of residue i with the CO,
Cα, or Cβ carbon of residue (i-1).

Figure 5.9 shows BEST-iHN(CA)CO, BEST-iHNCA, and BEST-iHNCACB pulse
sequences for correlation of the amide group with the CO, Cα, or Cβ of the same
residue. The pulse sequence elements used to perform intra-residue N→Cα coher-
ence transfer have been introduced and described previously (Brutscher (2002);
Nietlispach (2004); Tossavainen and Permi (2004)).

Finally, figure 5.10 shows BEST-HNCA, BEST-HNCACB, and BEST-HN(CA)CO
pulse sequences used to correlate the amide group with the CO, Cα, or Cβ car-
bons of both the same and the preceding residue. As usual, the parentheses in the
experiment name indicate a nuclear spin that is involved in the coherence trans-
fer pathway, but not frequency labeled. Note that the CACB-type experiments
can be tuned to yield correlation peaks either with only the Cβ ((CA)CB-type,
∆2=1/(4JCC)), or with both the Cα and Cβ carbons (CACB-type, ∆2=1/(8JCC)). The
coherence transfer pathways of these BEST experiments are of the out and back
type, and identical to the corresponding hard-pulse based correlation experiments
that are routinely used for resonance assignment of 13C/15N labeled proteins.

The only difference, besides the use of band-selective 1H pulses, is the absence
of any composite 1H decoupling during 15N and 13Cα,β transverse coherence evo-
lution times that is generally applied to reduce relaxation-induced signal losses
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Figure 5.8 BEST pulse sequences to record sequential correlation spectra of proteins: (a) BEST-
HNCO, (b) BEST-HN(CO)CA, and (c) BEST-HN(CO)CACB and BEST-HN(COCA)CB. The four
experiments differ by the sequence elements represented inside brackets. Filled and open pulse
symbols indicate 90◦ and 180◦ rf pulses. Unless indicated, all pulses are applied with phase x. All
selective 1H pulses are centered at 8.2 ppm, covering a bandwidth of 4.0 ppm, with the following
shapes: (1) REBURP, (2) PC9, and (3) EBURP-2. A star indicates a flip back pulse obtained by time
and phase inversion. Open squares on 1H indicate BIP-720-50-20 pulses. CO pulses have the shape
of the center lobe of a sinx/x function, whereas CA pulses are applied with a rectangular shape and
zero excitation at the CO frequency. The delays are set to: τ1=2.4 ms 0.5 δ1, τ2=2.4 ms, τ3=2.4 ms
0.5 δ2, τ4=2.7 ms, T=14.5 ms, ∆1=4.5 ms, ∆2= 3.5 ms for CACB-type or ∆2=7.1 ms for (CA)CB-type
experiments. The delays δ1, δ2, and δ3, correspond to the pulse lengths of the PC9, E-BURP2, and
G8 gradient, respectively. These settings do not take into account the durations of the 180◦ rf pulses
applied during the transfer delays that need to be subtracted. Pulsed field gradients, G1G8 are ap-
plied along the z-axis (PFGz) with durations of 200 µs to 2 ms and field strengths ranging from 540
G/cm. The phase cycling is: ϕ1= x,-x, ϕ2= x, ϕ3= 2(x), 2(-x), ϕ4= y, and the receiver ϕrec= -x, x, x,
-x. In the 3D applications shown here, only a 2-step cycle of ϕ1 and ϕrec is performed. The relative
durations of G7 and G8 are given by the gyromagnetic ratios G7/G8=γH/γN . Quadrature detection
in t1 is obtained by time-proportional phase incrementation of ϕ1 and ϕ4 (if present) according to
TPPI-States. For quadrature detection in t2, echo-antiecho data are recorded by inverting the sign
of gradient G7 and phaseϕ2. In addition, phase ϕ3 is inverted for every second t2 increment.
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Figure 5.9 BEST pulse sequences to record intra-residue correlation spectra of proteins: (a) BEST-
iHNCA, (b) BEST-iHNCACB and BEST-iHN(CA)CB, and (c) BEST-iHNCO. The BEST-iHNCACB
and BEST-iHN(CA)CB experiments differ from BEST-iHNCA by the sequence elements repre-
sented inside brackets. The delays and phases are identical to those given in the caption of figure
5.8, except for T=17-20 ms (for sequences a and b) and T=22-25 ms (for sequence c), and ε=T-17
ms. The grey shaped pulses applied in sequence (c) on the CA and CO channels to achieve selec-
tive CA→CO transfer are applied with a REBURP profile covering a band width of 20 ppm, and
centered at 175 ppm and 56 ppm, respectively.
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(Tossavainen and Permi (2004)). In BEST experiments, the signal loss arising from
the perturbation of the aliphatic spin polarization by the composite 1H decoupling
would counterbalance the signal gain due to the longer transverse relaxation times
of Nx (Cx) with respect to 2NxHz (2CxHz) coherence. In a recent work, Diercks et al.
(2005) have compared the performance of different broadband 1H decoupling se-
quences with respect to the perturbation of aliphatic 1H polarization, and obtained
the best results with an XY-16 sequence. We have tested the performance of our
BEST experiments using either BIP-based XY-16, band-selective IBURP-based XY-
8, or no 1H composite decoupling during the 15N-13C transfer periods. For ubiqui-
tin using short inter-scan delays (trec < 500 ms), highest sensitivity was obtained
for the sequences without additional 1H decoupling (data not shown), and there-
fore 1H decoupling was omitted in the final BEST experiments.

The initial coherence transfer steps for the sequential, intra-residue, and bi-
directional BEST experiments are given by the following equations:

H i
z

JNH→ 2H i
zN

i
z

JNC′ ,JNH−→ 2N i
zCOi−1

z

JNC′ ,JNH−→ 4N i
zCOi−1

z CAi−1
z

...→ ... (5.1)

H i
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...→ ... (5.2)

H i
z

JNH→ 2H i
zN

i
z

JNCα ,JNH−→ 2N i
zCAi−1

z + 2N i
zCAi

z
...→ ... (5.3)

A special case is the BEST-iHNCO experiment of figure 5.9c for which the co-
herence transfer pathway is given by:

H i
z

JNH→ 2H i
zN

i
z

JNC′ ,JNCα ,JNH−→ 8N i
zCOi−1

z CAi−1
z CAi

z

JC′Cα→ 8N i
zCAi−1

z CAi
zCOi

z (5.4)

5.2.3 Sensitivity of BEST experiments

In order to compare the performance of the BEST sequences presented here with
standard hard pulse sequences, we have focused on the intra-residue iHN(CA)CB
experiment which presents the worst-case scenario for the BEST approach because
of the long transverse N→CA (∼ 90 ms) and CA→CB (∼ 30 ms) transfer delays
involved, and the absence of 1H decoupling during these periods. Series of 1D
spectra were acquired as a function of the scan time (pulse sequence length plus
recycle delay) for both BEST (figure 5.9b) and standard pulse sequences on a 2 mM
sample of 13C/15N-labeled ubiquitin (pH 6.3, 25◦C) on a 600 MHz spectrometer
equipped with a cryogenic triple-resonance probe. For the standard pulse sequ-
ence, band-selective HN pulses in the sequence of figure 5.9b were replaced by
hard pulses, and additional composite 1H decoupling, and water flip-back pulses
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Figure 5.10 BEST pulse sequences to record bi-directional correlation spectra of proteins: (a) BEST-
HNCA, (b) BEST-HN(CA)CO, and (c) BEST-HNCACB and BEST-HN(CA)CB. The four experiments
differ by the sequence elements represented inside brackets. The delays and phases are identical to
those given in the caption of figure 5.8, except for T=12 ms. The grey shaped pulses applied in sequ-
ence (b) on the CA and CO channels to achieve selective CACO transfer are applied with a REBURP
profile covering a band width of 20 ppm, and centered at 175 ppm and 56 ppm, respectively.

were added as usual. The CA→CB transfer delays were tuned to ∆2=1/4JCC for
complete transfer to the Cβ carbons. The 1D spectra were integrated in the range
7.2 to 9.2 ppm. The measured intensities normalized for equal acquisition times
are plotted as a function of the scan time (Tscan) in figure 5.11a. As expected from
the longitudinal relaxation enhancement effect, the maximum of these sensitivity
curves is shifted from Tscan ≈1.5 s for the standard pulse sequence to Tscan ≈0.5 s
for the new BEST sequence. This results in a small absolute sensitivity gain (∼25%)
for the BEST experiment if optimal inter-scan delays are used for both sequences
(optimal sensitivity regime). Higher sensitivity gains are achieved for high repeti-
tion rates of both pulse sequences. Average sensitivity gains of ∼50% and ∼100%
are observed for scan times of 500 ms and 350 ms, respectively, while keeping a
high overall sensitivity for the BEST experiment. Even higher gains are obtained
for scan times < 350 ms (fast pulsing regime) at the expense of a reduced overall
sensitivity. In order to evaluate the sensitivity gain for individual amide sites along
the polypeptide chain we have also recorded 2D BEST-iHN(CA)CB and standard
iHN(CA)CB data sets for an inter-scan delay of trec=200 ms (Tscan=370 ms). The
spectra are shown in figures 5.11c and 5.11d, and a histogram of the measured in-
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Figure 5.11 (a) Sensitivity plotted as a function of the scan time Tscan for iHN(CA)CB spectra
recorded using the BEST implementation (squares) and a standard hard-pulse version (circles).
1D spectra were recorded on ubiquitin (pH 6.3, 25◦C) at 600 MHz using a cryoprobe. Integrals in
the range 7.2 to 9.5 ppm are displayed. 2D 1H-15N spectra recorded using (c) standard and (d)
BEST versions of the iHN(CA)CB experiments were obtained with a recycle delay trec set to 200
ms (Tscan=370 ms). The total duration of both experiments was identical (∼17min). The intensity
ratios obtained for individual correlation peaks are plotted in panel (b).

tensity ratios (BEST/standard) is plotted in figure 5.11b. These data confirm the
average gain of about a factor of 2 as predicted by the sensitivity curves of figures
5.11a. The sensitivity gain varies from a factor of 1.5 up to a factor of ∼3.0 for
individual amides, clearly demonstrating the interest of the BEST approach when
high repetition rates are desired to reduce the overall experimental time required
to record a complete set of 3D H-N-C correlation spectra. Even higher gains are
expected for the other experiments of the BEST series.

5.2.4 Application to the fast collection of assignment experiments

A set of 11 3D BEST H-N-C spectra has been acquired on a 2 mM sample of
13C/15N-labeled ubiquitin (pH 6.3, 25◦C) on a 600 MHz spectrometer equipped
with a cryogenic triple-resonance probe. The inter-scan delay was again set to
trec=200 ms for all experiments, presenting a good compromise between high sen-
sitivity and high repetition rates. In addition, we have used ASCOM optimization
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Table 5.1 Acquisition parameters and statistics of 3D H-N-C spectra recorded on a 2 mM sample
of 13C-15N labeled ubiquitin on a 600 MHz spectrometer equipped with a cryogenically cooled
triple-resonance probe

3D BEST SWN /SWC No. of complex Exp. time No. of peaks Relative

experiment (kHz) points nN /nC (min) observed/expecteda S/N ratio

HNCO 0.772/1.2 19/25 21 69/69 100d

HN(CO)CA 0.772/2.0 19/30 27 69/69 37

HNCA 0.772/2.0 15/30 20 138/138 22/9

intra/seq

HN(COCA)CB 0.772/8.0 15/50 38 65/65 20

HN(CO)CACB 0.772/8.0 15/50 36 134/134 24/14

Cα/Cβ

iHNCA 0.772/2.0 19/30 28 69/69 15

iHN(CA)CO 0.772/1.2 15/25 25 65/69b 9

iHN(CA)CB 0.772/8.0 15/50 39 64/64 12

iHNCACB 0.772/8.0 15/50 38 133/133 13/9

Cα/Cβ

HN(CA)CO 0.772/1.2 19/25 17 130/138b 11/5

intra/seq

HNCACB 0.772/8.0 15/50 34 263/267c 19/11-8/5

intra Cα/Cβ - seq Cα/Cβ

The relative signal to noise (S/N) ratios were calculated for the average peak intensity in each
experiment and normalized with respect to the HNCO experiment. The numbers of peaks expected
in each spectra were calculated on the basis of residues with significant intensities in the 15N-HSQC
spectra.
a Among the 76 residues the 3 prolines and the N-terminal residues are not detected. Residues
24 and 53 have been excluded from the analysis because of extensive line broadening, as well as
residue 36 for which the amide 1H frequency is on the edge (6.15 ppm) of the excitation bandwidth
chosen for the band-selective 1H pulses.
b Cross-peaks with Cα of glycine residues have low intensity or are missing.
c Four sequential correlation peaks are missing (HN9-CA8, HN9-CB8, HN25-CA24, HN65-CA64).
d The absolute average signal-to-noise ratio measured for correlation peaks in the BEST-HNCO
spectrum was 800:1.

(Lescop et al. (2007), see page 219) to minimize the 15N spectral width without
creating any additional peak overlap in the 1H-15N correlation spectrum. Using
a 2-step phase cycle for axial peak suppression this resulted in acquisition times
ranging from 17 to 39 min per 3D experiment depending on the spectral width
and resolution chosen for the 13C dimension. The acquisition parameters, record-
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Figure 5.12 1HN -13C strips extracted at the 1HN /15N chemical shifts of residues Y59 (panel a) and
N60 (panel b) from nine 3D BEST experiments used for backbone chemical shift assignment. From
the left to the right: HNCO, iHNCO, HN(CA)CO, HN(CO)CA, iHNCA, HNCA, HN(CO)CACB,
iHNCACB and HNCACB. The spectra were recorded as indicated in table 1. Positive and negative
correlation peaks are shown in black and grey, respectively.

ing times, number of peaks, and the relative signal to noise ratios observed in
these spectra are summarized in table 5.1. The major conclusions are that all ex-
pected correlation peaks were observed in these spectra, except for 4 missing se-
quential correlation peaks in the HNCACB spectra. The undetected cross peaks in
the BEST-iHN(CA)CO and BEST-HN(CA)CO spectra involve glycine residues for
which the C chemical shift evolution is not refocused by the band-selective 180◦

pulses applied during the CA→CO transfer steps. Note that the bandwidth and
carrier frequency of the amide 1H pulses need to be adjusted to cover the complete
chemical shift range of a given protein. Amide 1H chemical shifts at the edge or
outside the chosen excitation bandwidth will result in cross peaks of reduced or
no intensity for this residue. On the other hand, widening the excitation band may
reduce the sensitivity of the BEST experiment because of partial perturbation of
aliphatic and water protons.

In summary, we have presented a set of 3D BEST H-N-C experiments that yield
significantly increased sensitivity for high repetition rates with respect to standard
pulse sequences. We have demonstrated that these BEST pulse sequences allow
recording a complete set of 3D correlation spectra required for sequential pro-
tein resonance assignment in only a few hours. Short overall acquisition times
are of particular relevance for unstable protein samples degrading rapidly, and for
monitoring fast processes. More generally, the BEST sequences allow adjusting
the acquisition times to the intrinsic sensitivity of the experimental set up (sam-
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ple and spectrometer). The economized spectrometer time can then be used ad-
vantageously for other less sensitive protein samples, or for spending more time
recording NMR data providing quantitative information on the protein structure
and dynamics (nOes, RDCs, relaxation rate constants, J coupling constants, etc).
We have shown recently for the 18 kDa protein SiR-FP18 that the application of
BEST sequences is not limited to small proteins, but it proves also advantageous
in terms of sensitivity for larger proteins. Interestingly, even for a 75% deuterated
sample of SiR-FP18, the longitudinal relaxation enhancement of BEST experiments
still leads to sensitivity gains compared to standard experiments (figure 5.5).

137



5.3 Aliphatic flip-back performance of SOFAST HMQC

and BEST experiments

The sensitivity gains of the proposed experiments arise mainly from longitudinal
relaxation enhancement of amide proton spins. The efficiency of this enhancement
critically depends on the fraction of magnetization of non-used (mainly aliphatic)
spins that is retained in a thermal equilibrium state (see figure 2.20).

To analyze the flip-back performance of the proposed experiments we have ac-
quired 1D spectra of 13C bound protons immediately after the pulse sequence of
SOFAST-HMQC or BEST-HNCO. Such spectra reveal the amount of aliphatic mag-
netization left at the conclusion of the pulse sequence (figure 5.13(a)). For compar-
ison, we have also performed the same analysis for an experiment that uses hard
pulses in combination with a number of band-selective flip-back pulses applied
to the aliphatic and water 1H spins. This experiment was found to have the best
aliphatic flip-back performance out of a number of experiments proposed recently
(Diercks et al. (2005)).

Figure 5.13(b) shows the fraction of polarization of 13C-bound 1H spins (HC) left
after H-N correlation experiments as a function of the recycle delay trec between
scans. The value at very long trec reflects the intrinsic performance of the pulse
sequences to recover HC polarization. SOFAST-HMQC and BEST HNCO have an
intrinsic flip-back performance of more than 95 and 80%, respectively. The lower
value for BEST-HNCO can be assigned to the larger number of pulses, accumulat-
ing the effects of pulse imperfections.

At shorter recycle delays, the amount of recovered longitudinal HC magnetiza-
tion drops, meaning that the perturbed 1H magnetization does not recover com-
pletely between subsequent scans, and reaches a steady-state after a few repeti-
tions. Two reasons can be identified for the perturbation of HC spins: (i) pulse
imperfections, which lead to a less-than-complete flip-back in one scan (as seen
from the values at long trec) accumulate in the fast pulsing regime, and (ii) the HC

polarization is reduced by cross-relaxation from the excited amide spins (see fig-
ure 2.14(c)). However, due to their good intrinsic flip-back performance, SOFAST-
HMQC and BEST-HNCO/CA retain more than 70 and 60% of the longitudinal HC

magnetization in the fast pulsing regime, respectively.

The same analysis performed for the experiment using aliphatic flip-back pulses
(Diercks et al. (2005)) reveals a lower level of retained aliphatic polarization in the
fast-pulsing limit; finally a simple aliphatic flip-back HSQC sequence (shown in
figure 3.2(a)) retains less than 10% of the aliphatic polarization under fast-pulsing
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Figure 5.13 (a) 1D spectra of the aliphatic proton region of ubiquitin recorded with a 1H-13C HSQC
sequence at 600 MHz. The spectra were acquired immediately after the last pulse of a BEST HNCO
experiment performed for about half a minute with the respective recycle delay trec to reach steady
state conditions. For the reference spectrum on the right, the BEST-HNCO block was omitted.
(b) Fraction of the aliphatic proton polarization present at the end of a BEST-HNCO experiment
(filled circles), SOFAST HMQC (open circles), and a optimized HNCO pulse sequence making
extensive use of aliphatic flip-back pulses (Diercks et al. (2005), open squares). For recycle delays
trec longer than 3 seconds the fraction of recovered HC polarization does not change significantly
and the shown values reflect the intrinsic capability of the pulse sequence to restore unused HC

polarization.

conditions (data not shown), which also explains that only moderate gains are
achieved with this pulse sequence (see figure 4.3(c)).

In conclusion, minimal perturbation of unused aliphatic proton spins seems to
be best achieved using carefully chosen selective pulses applied to the amide spins.
In contrast, pulse sequences that make extensive use of hard pulses in combination
with flip-back pulses perform less well.
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6 Sensitivity-optimized experiment
for the measurement of residual
dipolar couplings between amide
protons

6.1 Abstract

High signal to noise is a necessity for the quantification of NMR spectral param-
eters to be translated into accurate and precise restraints on protein structure and
dynamics. An important source of long-range structural information is obtained
from 1H-1H residual dipolar couplings measured for weakly aligned molecules.
For sensitivity reasons, such measurements are generally performed on highly
deuterated protein samples. Here we show that high sensitivity is also obtained for
protonated protein samples if the pulse schemes are optimized in terms of longi-
tudinal relaxation efficiency and J-mismatch compensated coherence transfer. The
new sensitivity-optimized quantitative J-correlation experiment yields important
signal gains reaching factors of 1.5 to 8 for individual correlation peaks when com-
pared to previously proposed pulse schemes.

6.2 Introduction

Residual dipolar couplings (RDCs), Blackledge (2005); Prestegard et al. (2004);
Tjandra and Bax (1997)) complement or replace more classical NMR data such
as nuclear Overhauser effects (nOes) and scalar coupling constants (J). Whereas
nOe-based distance restraints are affected by indirect spin interactions (spin dif-
fusion), and J-coupling-derived torsion angles rely on empirical Karplus curves,
RDCs directly reflect the interaction strength between two nuclear spins that can
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be translated into structural restraints of high accuracy using a well-known analyt-
ical formula. RDCs therefore provide access to more precise definition of local and
long-range molecular structure. It has also been shown that RDCs, measured in
several alignment media, are particularly attractive for RDC-based de novo protein
fold determination (Beraud et al. (2002); Hus et al. (2001); Kontaxis et al. (2005)),
and the characterization of molecular dynamics at an atomic level occurring at
time scales of pico- to milliseconds (Bouvignies et al. (2005); Lakomek et al. (2005);
Meiler et al. (2001)).

Nowadays RDCs are routinely measured between covalently attached nuclei,
e.g. N-H, C-H, N-C, and C-C, mainly in the protein backbone, as part of the stan-
dard data set recorded for NMR structure elucidation. The distance and orienta-
tional information provided by long-range RDCs between more distant nuclei is
still less exploited. It has been shown recently for proteins and nucleic acids that
1H-1H RDCs can be accurately measured between protons separated by more than
7 Å, provided that the 1H spin coupling network in these molecules is simplified
by means of either deuteration, band-selective homonuclear decoupling, or both
(Boisbouvier et al. (2003); Meiler et al. (2001); Wu and Bax (2002)). Here, we will
focus on the measurement of long-range RDCs between amide protons in small to
medium sized proteins. The sensitivity of the experimental schemes proposed so
far greatly benefits from perdeuteration followed by back-protonation of the labile
(amide) hydrogen sites. Most NMR experiments, commonly used for the study of
small to medium-sized proteins, do not require perdeuteration. In order to make
amide 1H-1H RDC measurements more attractive for fully protonated (or only par-
tially deuterated) samples we have developed a new pulse sequence that provides
greatly improved sensitivity over existing methods. Signal enhancements, ranging
from a factor of 1.5 to 8, are observed for individual correlation peaks, as illustrated
for 15N labeled ubiquitin under weak alignment conditions.

6.3 Sensitivity-enhanced double 15N-edited 1H-1H cor-

relation experiment

In contrast to experiments for the measurement of one- or two bond couplings,
long-range 1H-1H RDCs are most conveniently measured by a quantitative J corre-
lation experiment (Bax et al. (1994)), where part of the magnetization is transferred
from proton HA to proton HB yielding a cross peak at the resonance frequency
of HB and a diagonal peak at the frequency of HA in the final spectrum. The spin
coupling constant is then easily retrieved from the ratio of the measured intensities
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Figure 6.1 (a) Pulse sequence for the 3D BEST-Jcomp-HMQC2 experiment for the measurement
of 1H1H residual dipolar couplings. The inserts labeled (E1) and (E2) correspond to J-mismatch
compensation elements as explained in the text. The optional z-filter at the end suppresses 2HxHz-
type coherence prior to detection. All radio-frequency (rf) pulses are applied along the x-axis
unless indicated. 90◦ and 180◦ rf pulses are represented by filled and open pulse symbols, re-
spectively. The dashed 15N pulses are broadband inversion pulses applied with a BIP-360-30-5
shape (Smith et al. (2001)). All shaped 1H pulses are centered at 8.2 ppm covering a band width
of 4.0 ppm corresponding to the amide 1H spectral region. The following shapes are used: (1) RE-
BURP, (2) time-reversed EBURP-2 (EBURP*), and (3) EBURP-2 (Geen and Freeman (1991)). For
pairs of successive 180◦ rotations (1*) ISNOB5 pulses (Kupce et al. (1995)) instead of REBURP
are applied because of their cleaner band-selective inversion profile. The transfer delays are ad-
justed to τ1 = 1/(2JNH) − δ1/2, τ2 = 1/(4JNH) − δ2/2, τ3 = 1/(2JNH), τ4 = 1/(2JNH) − δ1, and
T ≈ 30 − 60 ms, with δ1 and δ2 the lengths of the EBURP and REBURP pulses, respectively. The
transfer delays ∆1 and ∆2 take into account 1H-1H coupling evolution during the selective pulses:
∆1 = 2τ1 +4τ2 +T and ∆2 = 2τ3 +4τ2 +T . Pulsed field gradients, G1 - G8 are applied along the z-
axis (PFGz) with a duration of 200 µs and field strengths ranging from 5 to 40 G/cm. Phase cycling:
ϕ1 = x,−x, x,−x, ϕ2 = y,−y,−y, y, ϕ3 = 2y, 2(−y), ϕ4 = x, ϕ5 = 4y, 4(−y), ϕ6 = 4y, 4(−y), and
the receiver ϕrec = x,−x. Quadrature detection in the t1 (t2) dimension is obtained by simultane-
ous time-proportional phase incrementation of ϕ1 (ϕ4) and decrementation of ϕ2 (ϕ5) according to
TPPI-STATES. (b) Bloch simulations illustrating the effect of EBURP-2 and time-reversed EBURP-2
pulses in the pulse sequence (a). Coupling evolution has not been taken into account for the simula-
tions. The plotted offset profiles represent the 1H spin state after different pulse combinations start-
ing from pure z-magnetization (Hz): (left panel) EBURP*x, (center) EBURP*x-∆-180◦-∆-EBURPx,
and (right) EBURP*x-∆-180◦-∆EBURPy .
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of cross- and diagonal peaks (see below). The new pulse sequence of Figure 6.1a
is a modified version of the Semi-Selective HMQC2 (SS-HMQC2) experiment (Wu
and Bax (2002), see figure 10.1 on page 217) that consists of two successive HMQC
blocks sandwiching a COSY-type 1H mixing pulse. In the following we will refer
to our new experiment as BEST-Jcomp-HMQC2 (BEST: Band-selective-Excitation
Short-Transient, Jcomp: J-mismatch compensated).

Before describing in more detail the new features of BEST-Jcomp-HMQC2, we
will briefly summarize the relevant coherence transfer pathways common to the
double-HMQC experiment. Amide 1H chemical shift, scalar and dipolar cou-
pling evolutions with aliphatic protons are refocused by the band-selective 180 1H
pulses applied in the middle of each HMQC building block. In contrast, HN -HN

RDCs evolve during the transfer delay ∆1 as HA
y → HA

y cos(πDHH∆1) +2HA
x HB

z

sin(πDHH∆1), where DHH is the residual dipolar coupling constant between spins
HA and HB and interactions with other amide protons are neglected. The follow-
ing 90◦ 1H pulse then converts 2HA

x HB
z to −2HA

z HB
x while leaving HA

y (which gives
rise to the diagonal peak) unaffected. During the subsequent ∆2 transfer period,
the antiphase coherence −2HA

z HB
x partially refocuses to HB

y sin(πDHH∆2) that is
then detected as a crosspeak. Remaining 2HA

z HB
x and 2HA

x HB
z coherences that are

apparent as dispersive antiphase signals in the 1H (ω3) dimension of the spectrum
can be suppressed by an additional z-filter element that will be explained in more
detail below. Contrary to the experiment of Wu and Bax (2002), where 1H an-
tiphase suppression is an integral part of the pulse scheme, removing the z-filter
element from the sequence of Figure 6.1a does not alter the main coherence transfer
pathways (see below). Therefore the experiment may also be performed without
z-filter. During both 1H-1H dephasing times ∆1 and ∆2, the 15N chemical shift
of the covalently attached amide is labeled using HMQC-type 1H-15N correlation
schemes. The residual dipolar coupling D = DHH is then obtained from the 4 peak
intensities measured at positions (ω1, ω2, ω3): IA

cross(ω
A
N , ωB

N , ωB
H), IB

cross (ωB
N , ωA

N , ωA
H),

IA
diag (ωA

N , ωA
N , ωA

H), IB
diag (ωB

N , ωB
N , ωB

H) using the following relation:

IA
crossI

B
cross

IA
diagI

B
diag

= (6.1)

λ2 sin2(πD∆1) sin2(πD∆2

λ2 cos2(πD∆1) cos2(πD∆2) + 2λ(1 − λ) cos(πD∆1) cos(πD∆2) + (1 − λ)2

with λ a correction factor taking into account the protonation level at the amide
sites in the protein (Wu and Bax, 2002), e.g. λ = 0.9 for a 10%/90% D2O/H2O
mixture.

Solving equation 6.1 for a measured intensity ratio yields the magnitude of the
DHH coupling constant, given by
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|DHH | =
γ2

Hµ0h

16π3r3
HH

∣
∣
∣
∣
Aa(3 cos2 θ − 1) +

3

2
Ar sin2 θ cos 2ϕ

∣
∣
∣
∣

(6.2)

with Aa and Ar the axial and rhombic components of the alignment tensor, θ
and ϕ the polar angles defining the HN -HN vector orientation with respect to the
alignment frame, and rHH the inter-proton distance.

The sensitivity of BEST-Jcomp-HMQC2 greatly benefits from two new features,
longitudinal relaxation enhancement and J-mismatch compensation, that will be
discussed in detail in the following.

6.3.1 Longitudinal relaxation enhancement

In slowly tumbling diamagnetic molecules such as proteins the efficiency of 1H
spin lattice relaxation is mainly determined by the dipolar-coupled 1H spin net-
work (1H-1H nOes). Therefore, if only a subset of protons is observed in a par-
ticular NMR experiment, spin-lattice relaxation can be enhanced by manipulating
the remaining proton spins during the pulse sequence in a way that their spin
state before detection is close to thermal equilibrium. The effective longitudinal
spin-lattice relaxation of labile solvent-accessible amide 1H is also influenced by
chemical exchange with water hydrogens. Partial saturation of the water proton
spins translates via this exchange mechanism to a reduced steady state polariza-
tion of the fast exchanging amides at the beginning of each scan. Again, longi-
tudinal relaxation is enhanced when the water is in a relaxed state between sub-
sequent scans. Shorter longitudinal relaxation times allow for higher repetition
rates of the pulse sequence, and thus provide increased signal to noise (S/N) in
a given amount of experimental time (higher sensitivity). Longitudinal relaxation
enhancement has recently been successfully exploited for proteins in the context
of resonance assignment experiments (Atreya and Szyperski (2004); Diercks et al.
(2005); Pervushin et al. (2002); Schanda et al. (2006)), ultrafast two-dimensional
data acquisition (sections 4, 5 and chapter 7), and fast characterization of struc-
tural compactness and heterogeneity of polypeptide chains (chapter 8).

In the pulse sequence of Figure 6.1a, only shaped 1H pulses are applied that
selectively manipulate amide 1H while leaving aliphatic 1H mostly unaffected.
The BEST concept, consisting of the use of amide 1H-selective pulses only, has
been shown to yield superior results in terms of leaving aliphatic 1H polarization
unperturbed compared to hard-pulse-based sequences using additional selective
”flip-back” pulses (section 5.3). In the sequence of Figure 6.1a, a single 180◦ 1H
pulse is applied with a REBURP shape, whereas for pairs of consecutive 180◦ 1H
pulses ISNOB5 pulse shapes are preferred because of their better off-resonance per-
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Figure 6.2 Average S/N ratios per unit time (intensity) plotted as a function of the scan time (pulse
sequence duration plus recycle delay) obtained with the BEST-Jcomp HMQC sequence without z-
filter (diamonds), with additional z-filter (circles), and using the SS-HMQC2 sequence of Wu and
Bax (squares) for fully protonated ubiquitin at (a) 600 MHz and (c) 800 MHz 1H frequency, and for
75% partially deuterated SiR-FP18 at (b) 600 MHz and (d) 800 MHz 1H frequency. Intensities were
obtained by adding the peak intensities of all detected amide (excluding NH2) correlation peaks
observed in the 2D spectra.

formance. A time-reversed EBURP2 pulse (EBURP2*), initially optimized for flip-
back purposes, is used for 1H excitation. As illustrated by the Bloch simulations
in Figure 6.1b, EBURP2* leaves chemical shift evolution (and spin-spin coupling)
active during half of the pulse duration thereby creating a linear phase gradient.
This phase gradient is refocused during the subsequent 90◦ pulse applied with an
EBURP2 shape and a 90◦ phase shift with respect to the EBURP2* pulse. An in-
phase Hy coherence is created for the component that has not evolved under dipo-
lar coupling. At the same time the EBURP2 creates inphase Hx coherence from Hz,
and flips back orthogonal transverse coherence along the z-axis (see Figure 6.1b),
thereby converting the antiphase coherence 2HA

x HB
z to −2HA

z HB
x . The combina-

tion EBURP2*-∆-180◦-∆-EBURP2 allows efficient use of the relatively long pulse
durations (on the order of 2 ms), and avoids general rotation 90◦ pulses that are
known to be more sensitive to B1-field inhomogeneities and pulse imperfections.

Figure 6.2 illustrates the effect of the BEST modifications on the sensitivity of
the experiment for two protein samples at 1H frequencies of 600 and 800 MHz: (a,
c) 76-residue fully protonated ubiquitin and (b, d) a 167-residue fragment of the
Escherichia coli sulfate reductase (SiR-FP18) deuterated at a level of 75% (Sibille
et al. (2005)). 2D BEST-HMQC2 spectra were recorded without the J-mismatch
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compensation filters setting the effective evolution delays ∆1 and ∆2 to 26 ms.
The average sensitivity (intensity per unit time) of BEST-HMQC2 is plotted as a
function of the scan time (sum of pulse sequence duration and recovery delay),
and compared to results obtained using the SS-HMQC2 sequence (Wu and Bax
(2002), figure 10.1) recorded under comparable conditions. As a result of the se-
lective 1H manipulation in BEST-HMQC2 the maximum in the sensitivity curves
shifts towards shorter scan times, reflecting the significant decrease in effective
longitudinal relaxation times. For protonated ubiquitin, scan times of ∼600 ms are
optimal, whereas for the highly deuterated sample of SiR-FP18 a scan time of ∼1.5
s provides highest S/N ratios. These optimal repetition rates depend only little
on the magnetic field strength. An average sensitivity gain of a factor of ∼2, and
individual gains of up to a factor of 4 (data not shown) are observed for ubiquitin
if the scan times of both experiments are optimized independently. Even for the
deuterated sample of SiR-FP18, an average sensitivity gain of 20% at 600 MHz and
50% at 800 MHz is obtained. This observation can be explained by the fact that
most methyl groups remain protonated at least at one of the three methyl hydro-
gen sites. 1H-1H spin diffusion to methyl groups then still allows quite efficient
energy dissipation at these sites of high mobility (methyl rotation). Additionally,
and in contrast to the SS-HMQC2 experiment, water polarization is left unper-
turbed rather than dephased, which also contributes to faster effective relaxation
of the exchangeable amide protons. Even higher sensitivity gains are observed
in the fast pulsing regime when using short recycle delays for both SS-HMQC2
and BEST-HMQC2 experiments. This may be relevant for situations where short
overall acquisition times become important, e.g. for sample stability reasons.

6.3.2 J-mismatch compensation

Each of the two HMQC building blocks in the sequence of Figure 6.1a requires
the adjustment of two transfer delays τ = 1/(2JNH), where JNH is the heteronu-
clear coupling constant between amide 1H and 15N. While the scalar J couplings
are quite uniform along the polypeptide chain with very little variation from one
amide site to another, in weakly aligned molecules the RDC adds to the J cou-

pling resulting in effective spin coupling constants Jeff
NH = JNH + DNH that cover

a range of typically ± 20-40% with respect to the mean value. It is therefore no
longer possible to adjust the τ delays for all amide sites simultaneously, resulting
in a sensitivity loss that depends on the degree of J-mismatch fmis

NH = 2τJmis
NH .

In a standard HMQC experiment the main coherence transfer pathway (PI) is
as follows:

Hy

Jeff
NH−→ 2HxNy(t1)

Jeff
NH−→ Hy sin2(πfmis

NH/2) (6.3)
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Figure 6.3 Simulations of 1H-15N transfer efficiencies (see Eqs. 6.3 and 6.4) in HMQC-type experi-
ments with (2) and without (1) the additional J-mismatch compensation elements of Figure 6.1(a).
The transfer efficiency of the additional coherence transfer pathway (PII ) created by the J-mismatch
compensation elements is plotted as a dashed line. In addition, the expected signal gain for a single
HMQC block as a function of J-mismatch is shown on top.

The efficiency of the heteronuclear transfer steps, given by sin2(πfmis
NH/2) ne-

glecting spin relaxation, translates into a signal loss of ≈ 20% for a J-mismatch
of fmis

NH = 0.7 or 1.3 (see Figure 6.3). In order to increase the performance of the
HMQC sequence for partially aligned protein samples, J-mismatch compensation
elements (denoted (E1) and (E2) in the sequence of Figure 6.1a) are inserted. The J-
mismatch compensation technique used here is conceptually similar to previously
proposed broadband INEPT schemes (Nielsen et al. (1989); Wimperis and Boden-
hausen (1986)). J-mismatch compensation allows recovering part of the ”lost”
magnetization by creating a second coherence transfer pathway (PII) that adds
to the detected NMR signal:

Hy

Jeff
NH−→ 2HxNx(t1)

Jeff
NH−→ Hy cos2(πfmis

NH/2) sin2(πfmis
NH/2) (6.4)

The transfer efficiency in J-mismatch compensated HMQC is then given by the
sum of the two pathways PI and PII . In the J-mismatch range 0.7 < fmis

NH < 1.3
the 1H-15N transfer becomes almost independent of the effective coupling con-

stant Jeff
NH with transfer efficiencies of more than 0.95 over the whole range (Figure

6.3). The amide 1H-1H coupling evolution is not affected by these additional pulse
sequence elements because no 90◦ 1H pulse is required. The J-mismatch compen-
sation elements can thus be inserted in the 1H-1H coupling evolution periods of
the BEST-HMQC blocks. Therefore, no additional delays are required and the im-
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proved heteronuclear transfer efficiency of the HMQC blocks directly translates
into intensity gains for the cross- and diagonal peaks depending on the J-mismatch
of the involved amide groups. The only price to pay for the J-mismatch compen-
sation, besides a few additional pulses, is a reduction (by ∼11 ms ) in the available
maximal t1 and t2 evolution times. This however does not present a strong limi-
tation as long as transfer delays ∆1, ∆2 > 30 ms are chosen for the amide 1H-1H
coupling evolution.

6.3.3 Artefact suppression using an additional z-filter

To suppress undesired antiphase 2HzHx coherences before detection, while leav-
ing inphase Hy coherence unperturbed, an optional z-filter element can be used.
In short, the filter works as follows: the inphase Hy coherence is stored along the
z-axis by a 90◦ EBURP2* pulse while antiphase 2HxHz coherence is converted to
zero-quantum (ZQ) and double-quantum (DQ) coherences by the same pulse. The
DQ coherence is destroyed by a pulsed field gradient. The ZQ coherence, that
remains unaffected by the gradient pulse, evolves during a delay 1/(2JNH) into
8H+H− NzNz-type coherence that is not detected in the presence of 15N decoupling
during data acquisition. The use of a high-performance 15N composite decoupling
sequence, such as WALTZ-16, is important to avoid partial detection of undesired
coherence transfer pathways resulting in phase distortions in the 1H dimension.
The subsequent EBURP2 pulse then converts Hz to Hy for final detection. Finally,
a WATERGATE sequence (Piotto et al. (1992)) is added for water suppression pur-
poses.

6.4 Experimental results

The performance of the BEST-Jcomp-HMQC2 experiment has been tested on a 1.25
mM sample of fully protonated 15N-labeled ubiquitin. To create a weak align-
ment in the magnetic field, the ubiquitin sample was dissolved in a 15% w/v
DMPC/DHPC mixture at a molar ratio of 3:1. The pH of the sample was ad-
justed to 6.6 in a 10 mM phosphate buffer. The resulting molecular alignment
tensor, characterized on the basis of a set of DNH coupling constants measured
from IPAP-HSQC spectra (Andersson et al. (1998); Ottiger et al. (1998)) and the
ubiquitin solution structure (pdb entry 1D3Z), showed an axial component of Aa

= 17.8· 10−4 and a rhombic component of Ar = 2.6· 10−4. Under these alignment
conditions the J-mismatch for individual amide sites ranged from 0.6 to 1.3 as-
suming a scalar coupling constant JNH = 92 Hz. All spectra were acquired at 800
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Figure 6.4 2D 15N (ω1)-15N (ω2) strips extracted at the amide 1H (ω3) frequency of several residues
in the β-sheet of ubiquitin. 3D data sets were recorded at 800 MHz (28◦ C) on a sample of 15N-
labelled, fully protonated ubiquitin dissolved in a DMPC/DHPC mixture. The results obtained
with the following pulse sequences are shown: (1) SS-HMQC2, (2) BEST- HMQC2 without J-
mismatch compensation and z-filter, (3) BEST-Jcomp-HMQC2 with additional J-mismatch com-
pensation, and (4) BEST-Jcomp-HMQC2 with J-mismatch compensation and z-filter. For all exper-
iments the 1H-1H transfer delays (corresponding to ∆1 and ∆2 in the sequence of figure 6.1a) were
adjusted to 41 ms. 43 (t1) × 43 (t2) × 400 (t3) complex points were recorded for spectral widths
of 2400 Hz (ω1), 2400 Hz (ω2) and 10000 Hz (ω3). Optimal recycle delays were used for all experi-
ments: 450 ms for BEST-Jcomp-HMQC2, and 1.4 s for SS-HMQC2. The total acquisition time was
10 hours for the BEST experiments, and 24 hours for the SS-HMQC2 spectrum. The intensities
in the SS-HMQC2 spectrum were scaled by a factor 0.65 to account for the unequal experimental
times. A star indicates a residual peak from another 1H plane (residue). (b) Schematic drawing of
the β-sheet structure in ubiquitin. The arrows indicate amide pairs for which RDCs could be mea-
sured from the spectral regions displayed in (a), illustrating that important long-range structural
information is obtained from these data.
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MHz 1H frequency and 28◦C sample temperature on a Varian INOVA spectrom-
eter equipped with a cryogenic triple-resonance probe and shielded z-gradients.
3D spectra were recorded using different options of the pulse sequence displayed
in Figure 6.1a: with/without J-mismatch compensation, and with/without z-filter.
In addition, a SS-HMQC2 spectrum (Wu and Bax, 2002) was acquired for compar-
ison using identical acquisition parameters except for the interscan delay, which
was set to 450 ms in BEST- HMQC2 and to 1.4 s in SS-HMQC2 for optimal sen-
sitivity in both experiments. Examples of 2D (ω1, ω2) strips extracted from these
data sets are shown in Figure 46.4a. On average, a sensitivity gain of approxi-
mately a factor of 2 is obtained from longitudinal relaxation enhancement when
using BEST-Jcomp-HMQC2 instead of SS-HMQC2. This gain, however, is not uni-
form along the peptide chain and enhancement factors of 3 to 5 are observed for
amide groups in the hydrophobic core of the protein characterized by a high local
proton density and little internal dynamics. Interestingly, these are also the molec-
ular regions where the most useful long-range structural information is obtained,
as illustrated for the β-sheet structure of ubiquitin (Figure 6.4b). J-mismatch com-
pensation yields significant further signal enhancements for amide groups with
large DNH couplings. Sensitivity gains of up to a factor of 2 are observed when
adding the J-mismatch compensation elements for cross and diagonal peaks were
both amide groups involved in the correlation show large J-mismatch. The com-
bination of both effects yields enhancement factors of the S/N ratio for individual
correlation peaks in the range of ∼1.5 to 8. The increased sensitivity allowed us to
quantify additional peaks and thus obtain more structural restraints as compared
to the SS-HMQC2 experiment.

In addition to the 113 cross peaks that are observed in both experiments 41 ad-
ditional cross peaks with intensities above a cutoff level of 3 times the noise level
could be quantified. Exceptions are correlations between amide 1H and the NH2

groups of Asn and Gln side chains. These cross peaks have significantly reduced
intensity in BEST-Jcomp-HMQC2 because of the additional JNH coupling evolu-
tion of 2NyHx-type coherence during the J-compensation pulse sequence elements
(see residue L15 in Figure 6.4a). Figure 6.5a shows the correlation of DHH val-
ues extracted from 3D spectra measured using the SS-HMQC2 and BEST-Jcomp-
HMQC2 sequences, illustrating that the same level of accuracy is obtained from the
two experiments, although with a significantly higher precision for the sensitivity-
optimized BEST-Jcomp-HMQC2 version.

We have also experimentally evaluated the effect of the additional z-filter el-
ement on the overall sensitivity of the BEST-Jcomp-HMQC2 experiment and the
accuracy of the measured amide 1H-1H RDCs. Overall the intensity of most cor-
relation peaks recorded with the additional z-filter is slightly reduced, by about
10-15% in the case of the weakly aligned ubiquitin sample used for this study (Fig-
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Figure 6.5 (a) Correlation plot of amide 1H-1H RDCs measured using the BEST-Jcomp-HMQC2
sequence of Figure 6.1a (x-axis) and SS-HMQC2 (Wu and Bax (2002)) (y-axis). The total acquisition
time was 10 hours for BEST-Jcomp-HMQC2 and 24 hours for SS-HMQC2. (b) Correlation plot of
amide 1H-1H RDCs extracted from 3D BEST-Jcomp-HMQC2 spectra recorded with (x-axis) and
without (y-axis) the additional z-filter. The experimental error bars were estimated on the basis of
intensity uncertainties of 1.5 times the noise level. (b) The absolute values of the DHH coupling
constants were extracted from a single spectrum. Therefore all DHH couplings were assumed to
be in the 0 to 1/2∆=12.2 Hz range (∆ = ∆1 = ∆2). The periodicity of the trigonometric functions
in Eq. 6.1 does not allow the distinction between coupling constants D and 1/∆ − D. In order to
solve this ambiguity a second data set recorded using a different transfer delay ∆ is required. The
inserts in (b) show 1H line shape distortions observed for some cross peaks (right spectrum) that
are completely removed by addition of the z-filter (left spectrum).

ure 6.4a), which is in agreement with the data shown in Figure 6.2. There are two
possible sources of signal losses: first, and probably most importantly, 1H longi-
tudinal relaxation during the z-filter element and 1H transverse relaxation during
the WATERGATE sequence of ∼2 ms duration; second, as can be seen from Figure
6.2, the optimal scan time is slightly shifted towards longer delays as compared to
the experiment without the z-filter element, indicating that the additional pulses
decrease the steady-state polarization of the aliphatic protons, and thus the sen-
sitivity of the experiment. The small intensity increase observed for some cross
peaks is explained by the removal of artifacts with negative intensity in the ω3(1H)
dimension. The difference in the RDC values extracted from the two experiments
recorded with and without z-filter is surprisingly small for most of the observed
correlations (Figure 6.5b), indicating that also without the z-filter meaningful struc-
tural restraints can be obtained. Only a few peaks show significant distortions
along the 1H dimension (see inserts in Figures 6.5b) that result in erroneous peak
intensities and thus stronger deviations in the measured DHH coupling constants.
These peak distortions are absent in the spectra recorded with the additional z-
filter illustrating that the antiphase 2HxHz coherence is efficiently suppressed. The
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z-filtered version of the experiment thus yields higher accuracy at the expense of a
small loss in sensitivity. However, the outliers are easily identified from inspection
of the peak shape and accurate coupling constants can also be obtained from the
experiment without the z-filter element if these peaks are manually removed from
the analysis.

6.4.1 Conclusions

We have presented BEST-Jcomp-HMQC2, a new pulse sequence that allows accu-
rate measurement of amide 1H-1H residual dipolar couplings in weakly aligned
proteins. 1H-1H RDC measurements provide important long-range restraints for
NMR structure determination. This information is available immediately after
backbone resonance assignment without the need for any additional tedious side
chain resonance assignment or NOE analysis. 1H-1H RDCs are therefore espe-
cially useful in the context of fast de novo fold elucidation using only a limited
set of NMR-derived structural restraints. It has been shown recently (Bouvignies
et al. (2006)) that high structural precision is obtained by combining local orien-
tational information from RDCs between covalently-bound nuclei in the protein
backbone with long-range translational and orientational information from amide
1H-1H RDCs. The high sensitivity provided by the BEST-Jcomp-HMQC2 exper-
iment makes it attractive to measure amide 1H-1H RDCs on a routine basis for
partially aligned protein samples without the need for (per)deuteration.
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7 Combination of fast-pulsing
techniques with alternative data
sampling

The experiments introduced in previous chapters used standard sampling of in-
direct time domains, and achieved accelerated data acquisition by reducing the
recovery delay between scans. Because of the need to sufficiently sample these
time domains, the minimal experimental time of these techniques is limited by the
number of scans.

Interestingly, fast-pulsing methods are compatible with alternative sampling
schemes, and the next sections show the combination of the SOFAST HMQC ap-
proach with Hadamard- and spatial encoding. Both approaches allow the acquisi-
tion of site-resolved 2D information in experimental times of ca. 1 second.
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7.1 Hadamard frequency-encoded SOFAST-HMQC for

ultrafast two dimensional protein NMR

7.1.1 Introduction

Multidimensional nuclear magnetic resonance (NMR) has proven a useful tool for
the structural and dynamical characterization of biological macromolecules. Mul-
tidimensional NMR is also very powerful for real-time site-resolved studies of ki-
netic processes in these biomolecules. An important limitation for such applica-
tions, however, remains the intrinsically low time resolution provided by multi-
dimensional NMR because each 2D spectrum requires at least a few minutes, each
3D spectrum a few hours of data acquisition to obtain an acceptable spectral re-
solution. Recently there has been an increasing interest in developing new meth-
ods for faster multidimensional data acquisition (for a review see Freeman and
Kupce (2003)). The experimental time required to record a complete spectrum is
determined by the number of repetitions of the basic pulse scheme (scan) and the
duration of a single scan. The number of repetitions has to take into account phase
cycles and quadrature detection, and it determines the spectral resolution in the
individual indirect frequency dimensions. The length of a single scan is generally
dominated by the time required for the spin system to relax towards its thermal
equilibrium after a multiple pulse sequence (recycle delay). Most approaches pro-
posed for fast NMR data acquisition aim at reducing the number of recorded data
points. Examples are projection NMR (Brutscher et al. (1994); Kim and Szyper-
ski (2003); Kupce and Freeman (2004a); Szyperski et al. (1993b)), Hadamard NMR
(Brutscher (2004); Kupce et al. (2003)), single scan NMR (Frydman et al. (2002)),
and non-linear data recording and processing (Hoch and Stern (2001); Mandelsh-
tam (2000); Rovnyak et al. (2004a)). Alternatively, one may reduce the length of a
single scan, generally dominated by the time required for the spin system to relax
towards its thermal equilibrium after a multiple-pulse sequence (recycle delay).
The sensitivity of certain pulse sequences for short recycle delays can be enhanced
by the use of spin-lattice relaxation enhancement techniques (Atreya and Szyper-
ski (2004); Pervushin et al. (2002)) or Ernst-angle excitation (Ernst et al. (1987); Ross
et al. (1997)). Recently we have introduced SOFAST HMQC (Schanda and Brut-
scher (2005)), an experiment that combines the advantages of spin-lattice relax-
ation enhancement and Ernst-angle excitation to reduce inter-scan delays. SOFAST
HMQC has proven to provide the required sensitivity to record well-resolved 1H-
15N and 1H-13C correlation spectra of proteins at millimolar concentration within
a few seconds of acquisition time. IPAP SOFAST HMQC, a slightly modified ver-
sion of the originally proposed experiment, allows application on spectrometers
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equipped with cryogenic probes (Schanda et al. (2005)). In the IPAP SOFAST
HMQC experiment the heteronuclear decoupling during acquisition is replaced
by an IPAP filter (Andersson et al. (1998); Ottiger et al. (1998)) thus reducing probe
heating and duty cycle problems for the short inter-scan delays required in SO-
FAST HMQC. Here, we show that SOFAST HMQC combined with Hadamard-
type frequency editing in the 15N dimension allows to further reduce the minimal
experimental time. As demonstrated for the protein ubiquitin this ”hybrid” tech-
nique, Hadamard-encoded SOFAST HMQC or IPAP SOFAST HMQC, provides
site-specific resolution for a large number of nuclei in the protein within one sec-
ond of data acquisition. This is, to the best of our knowledge, the first time that
such 2D spectral information is obtained on a fairly concentrated protein sample (2
mM) in about one second of experimental time using a standard high-field NMR
spectrometer. The increased time resolution provided by the Hadamard-encoded
SOFAST HMQC opens the way to real-time investigations of protein kinetics with
characteristic time constants of less than a second.

7.1.2 Hadamard-encoded SOFAST HMQC

The pulse sequence for Hadamard-encoded SOFAST-HMQC is shown in figure
7.1a. The basic features of Hadamard-encoded SOFAST-HMQC are the same as
discussed previously for SOFAST-HMQC (Schanda and Brutscher (2005)) except
for the 15N time-domain frequency labeling which is replaced by a Hadamard en-
coding scheme. Therefore only the main features will be summarized shortly. First,
1H pulses are applied band-selectively which ensures that the unobserved protons
remain in their equilibrium state and provide a thermal bath of proton spin po-
larization which enables faster spin-lattice relaxation of the excited 1H spins via
dipolar interactions. Second, the first 1H pulse has an adjustable flip angle α that
allows further optimization of the sensitivity of the experiment for a chosen (short)
scan time. In practice, a flip angle 90◦ ≤ α ≤ 160◦ is chosen to ensure that part of the
1H magnetization is restored along the z-axis by the following 180◦ pulse. Third,
the small number of rf pulses reduces signal loss due to pulse imperfections and B1

field inhomogeneities, and limits the effects of sample and probe heating. The ap-
plication of only 2 (band-selective) 1H pulses also ensures minimal perturbation of
the unobserved proton spin polarization, thus optimally exploiting the spin-lattice
relaxation enhancement effect discussed above.

In the sequence of Fig. 7.1a the free evolution delay t1 of the standard SOFAST-
HMQC is replaced by a Hadamard-type 15N frequency encoding. In Hadamard
spectroscopy (Kupce et al. (2003)) N different frequency ”channels” or ”bands”
are defined (Fig. 7.1b) and each band is manipulated individually by means of
frequency-selective radio-frequency (rf) pulses.
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Figure 7.1 (a) Hadamard-encoded SOFAST-HMQC pulse sequence to record fast 1H-15N correla-
tion spectra of proteins. The flip angles of the individual rf pulses, all applied along the xaxis, are
given above the pulse symbols. Shaped pulse symbols indicate the use of bandselective pulses.
The pulse with variable flip angle α has a polychromatic PC9 shape (Kupce and Freeman (1994))
and band-selective 1H refocusing is realized using a REBURP profile (Geen and Freeman (1991)).
The transfer delay ∆ is set to 1/2JHN , the delay δ accounts for spin evolution during the PC9 pulse,
and is adjusted to yield pure phase spectra in the 1H dimension. trec is the recycle delay between
scans. Adiabatic WURST-2 decoupling (Kupce and Freeman (1996)) is applied on X during de-
tection. Hadamard 15N frequency labeling is realized using band-selective refocusing pulses with
a sinc profile. The phase of these pulses is interchanged between x and y to realize (+) and (-)
encoding, respectively, according to the appropriate Hadamard matrix. The Hadamard encoding
pulses were generated by vector addition of the individual band-selective pulse shapes (Kupce and
Freeman (1993)). (b) For Hadamard encoding N different (non-overlapping) frequency bands are
defined in the 15N spectrum. N experiments need to be recorded with a sign encoding according to
a Hadamard matrix of order N. The same matrix is then used to disentangle the NMR signals from
the individual frequency bands during data processing. The Hadamard matrix for the case N=8
is shown in (c). The all-(+) frequency band (B0) is prone to experimental artifacts and is not used.
Therefore only N-1 frequency bands have to be defined, although N experiments are recorded. If
necessary the experiment may be repeated n-times in order to increase the signal to noise ratio.
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Figure 7.2 (a) Definition of the 15N frequency bands used for the Hadamard-encoded SOFASTH-
MQC spectrum of ubiquitin shown in (b). The center positions of the individual 15N frequency
bands are indicated by dotted lines. The band width of about 3 ppm covered by the Hadamard
encoding pulses used for recording spectrum (b) is exemplified for band B2. The spectrum in (a)
has been recorded with a standard 1H-15N HSQC-sequence as provided by the Varian BioPack. The
spectrum in (b) has been recorded on a 600MHz spectrometer on a 2mM sample of ubiquitin (pH
6.2, 25◦C) using the pulse sequence of figure 7.1a with the following parameter settings: α=130◦,
∆ =5.4 ms, δ = 1.6 ms, trec = 10 ms, tmax

2 = 40 ms, N = 8, n = 64 (+ 4 dummy scans). The band-
selective 1H excitation (PC9) and refocusing pulses (REBURP) were centered at 8.0 ppm covering
a bandwidth of 4.0 ppm, resulting in pulse lengths of 3.0 ms (PC9) and 2.03 ms (REBURP). The
Hadamard encoding pulses were applied with a sinc shape truncated after the first side lobe and
a pulse length of 22ms covering an effective band width of about 180 Hz (3 ppm). 15N decoupling
during t2 was realized using WURST-2 Kupce and Freeman (1996) at an average field strength of
γB1/2π= 550 Hz. The experimental time was 1 minute.

One may distinguish between frequency-selective Hadamard NMR spectro-
scopy, where the band width covered by the selective encoding pulses equals the
line width of the individual resonances in the Hadamard encoded frequency di-
mension, or band-selective Hadamard spectroscopy, where larger band widths are
chosen resulting in the projection of all resonance lines within this band on a sin-
gle point along the Hadamard dimension. The sign of the NMR signal originating
from the N bands is changed according to a Hadamard matrix of order N (Fig.
7.1c). This sign encoding ensures that each frequency band contributes fully to the
detected signal in each of the experimental repetitions, thus providing the same
multiplex advantage as standard time-domain NMR spectroscopy. N experiments
need to be recorded to separate the individual bands during the processing stage
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by an inverse Hadamard transformation. The main interest of Hadamard spec-
troscopy is that the number of bands, and thus the number of repetitions of the
experiment, can be freely adjusted without compromising spectral resolution, as
long as a Hadamard matrix exists for this particular choice (Hadamard matrices
exist for orders N=4j and N=2j with j an integer).

Hadamard frequency encoding in the sequence of figure 7.1a is realized by
band-selective 15N refocusing pulses with phase +x for (+) encoding and +y for (-)
encoding. The individual band-selective refocusing pulses are combined to a sin-
gle shape by vector addition (Kupce and Freeman (1993)), and a different shaped
pulse is applied for each of the N experiments. In addition, a 1H 180◦ pulse is
applied simultaneously to the Hadamard encoding pulses to refocus 1H chemical
shift evolution. The heteronuclear JNH coupling evolution, however, is not refo-
cused by this 180◦ pulse sandwich. For NH spin systems the multiple quantum
coherence remains unaffected by scalar JNH coupling evolution during the Ha-
damard encoding. For NH2 spin systems, however, the peak intensities in the
Hadamard-encoded SOFAST-HMQC spectrum are modulated as a function of the
encoding time. Proper adjustment of the delay between the two 90◦ 15N pulses thus
allows filtering out signals from NH2 spin systems. An example of a Hadamard-
encoded SOFAST-HMQC experiment is shown in figure 7.2 for the small protein
ubiquitin (76 residues). From a standard 1H-15N correlation map seven 15N fre-
quency bands were selected, distributed over the whole frequency range as shown
in Fig. 7.2a. An additional ”dummy” band was assigned to the all-(+) frequency
band (B0) that contains signals from 15N spins whose chemical shifts are not or
only partially refocused by the Hadamard encoding pulses (see figure 7.3).

7.1.2.1 Choice of Hadamard encoding pulses

Our principal aim was to detect as many peaks as possible in the Hadamard-
encoded 1H-15N correlation spectrum without too much of peak overlap in the
1H dimension. Therefore, 5 bands were equally spaced along the 15N dimension
(∆ν =190 Hz) in the most crowded spectral region, and 2 additional bands were
defined in the down-field region comprising only few resonances. Different band-
selective refocusing pulse shapes were tested to realize band-selective Hadamard
encoding of about 3 ppm band width (corresponding to 180 Hz on a 600 MHz
spectrometer). Bloch simulations of the spin evolution during the Hadamard 15N
encoding using Gaussian, sinc or rSNOB shapes are shown in figure 7.3. The best
compromise between short pulse length and high selectivity was obtained from
sinc pulses, truncated after the first side lobe.
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Figure 7.3 Bloch simulations of the spin evolution during Hadamard 15N encoding based on the
frequency bands defined in figure 7.2. The calculations, performed using the Varian ”Pulsetool”,
assume an initial Ny state of the spin system and neglect spin relaxation effects. The Ny component
present after the Hadamard encoding pulses is plotted. (a) Refocusing performance of the Hada-
mard pulses used for the different experiments (Exp 1 - Exp 8) as a function of the 15N frequency for
a sinc shape (1 side lobe) of 22 ms length. (b) Same simulations as in (a), but the plots correspond
to the results after decoding with the appropriate Hadamard matrix to separate the signals from
the individual bands (B0 - B7). (c) Results obtained for a Gaussian pulse shape (truncation level
0.01) of 30 ms length. (d) Results obtained for a r-SNOB pulse shape (Kupce et al. (1995)) of 62 ms
length.
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7.1.3 Application to ubiquitin

The result of a Hadamard-encoded 1H-15N SOFAST-HMQC experiment performed
with sinc-encoding pulses (pulse length of 22 ms at 60MHz 15N frequency) and
N=8 is shown in Fig. 7.2b. The spectrum was recorded on a 2mM sample of ubiq-
uitin (25◦C, pH 6.2) on a 600MHz Varian INOVA spectrometer equipped with a
standard (non cryogenic) triple resonance probe. The series of 1D spectra cor-
responds to projections of the 2D spectrum (Fig. 7.2a) along the 15N dimension
over the individual bands. No signals from the NH2 groups in Asn and Gln side
chains are detected in this spectrum, because they are filtered out by the JNH cou-
pling evolution during the chosen Hadamard encoding pulse length. Repeating
the whole experiment 64 times (n) increased the signal to noise ratio, and allowed
to evaluate the spectral quality and to detect artifacts induced by this particular
Hadamard encoding. As can be appreciated from Fig. 7.2b the individual spec-
tra show little artifacts, and correspond to quite nicely resolved 1D amide proton
spectra of ubiquitin.

Once the feasibility of our method demonstrated, we have repeated the same
experiment in only about 1 second of acquisition time by setting n = 1. The re-
sulting spectrum is shown in figure 7.4. Despite the reduced signal to noise ra-
tio, because of the short overall experimental time, most of the amide protons in
ubiquitin are visible in this spectrum, and a significant number of them is spec-
trally resolved. Overall we count from the spectrum in figure 7.4 a total of 42
resolved peaks, 11 peaks corresponding to 2 overlapping resonances, and an addi-
tional peak where 3 resonances superpose. This clearly demonstrates the potential
of Hadamard-encoded SOFAST-HMQC for obtaining residue-specific information
on a large number of amide sites within one second of experimental time.

7.1.4 Conclusions

In summary, we have shown that site-resolved spectral information can be ob-
tained within one second of acquisition time on a 15N labeled sample of a small
protein at millimolar concentration using a high field NMR spectrometer and Ha-
damard encoded SOFAST-HMQC. The experiment can be designed to focus on
only a few sites of particular interest using frequency-selective Hadamard encod-
ing, or cover most of the spectral range, as demonstrated here, using band-selective
Hadamard encoding. The use of higher field magnets will allow increasing the se-
lectivity of the Hadamard encoding without increasing the lengths of the encoding
pulses. It is also possible to adjust the width for each band individually in order
to optimize the number of resolved amide peaks. Higher selectivity will be im-
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Figure 7.4 Ultrafast Hadamard-encoded SOFAST-HMQC spectrum of ubiquitin recorded with the
pulse sequence of figure 7.1(a). The same frequency bands and acquisition parameters were used
as described in figure 7.2, except for the number of repetitions which was set to N = 8, n=1 (+ 4
dummy scans) resulting in an experimental time of about 1 second. Assignments (residue number
and type) are shown for the detected amide correlation peaks. 67 amide resonances are detected
in this spectrum, out of the 70 cross peaks observed in the standard HSQC spectrum shown in fig.
7.2a.

portant for application to larger proteins in order to resolve individual amide sites
in the Hadamard-encoded spectra. The reduced sensitivity, because of relaxation
losses during the longer Hadamard encoding pulses, may be compensated by the
use of cryogenic probes and Hadamard encoded IPAP SOFAST HMQC. The ex-
periment is equally well suited for fast recording of 1H-13C correlation spectra of
proteins. Hadamard-encoded SOFAST HMQC provides a new tool for following
the changes in peak intensities occurring during some kinetic event with a sec-
onds resolution for a selected number of nuclear sites. Interesting examples are
the measurement of H/D exchange rates, or the measurement of some slow bind-
ing kinetics. It is less suited for monitoring processes that do not only change the
peak intensities but also their positions, as frequency changes in the 15N dimension
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within one band do not translate into changes in the Hadamard-encoded spectra.
Hadamard-encoded SOFAST-HMQC is only one example of what one could call
”hybrid” fast acquisition methods. It is equally possible to combine SOFASTH-
MQC with spatial frequency encoding (see section 7.2) or the use of non-linear
data acquisition and processing schemes. If the intrinsic sensitivity of NMR spec-
trometers continues to increase as observed over the last decade, one may expect
that such (ultra-) fast acquisition schemes will soon become applicable to a wide
range of biomolecular systems.
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7.2 UltraSOFAST HMQC NMR and the Repetitive Ac-

quisition of 2D Protein Spectra at a Rate of a sec-

ond

7.2.1 Abstract

Following unidirectional biophysical events such as the folding of proteins or the
equilibration of binding interactions, requires experimental methods that yield in-
formation at both atomic-level resolution and at high repetition rates. Towards
this end a number of different approaches enabling the rapid acquisition of 2D
NMR spectra have been recently introduced, including spatially-encoded ultrafast
2D NMR spectroscopy and SOFAST HMQC NMR. Whereas the former accelerates
acquisitions by reducing the number of scans that are necessary for completing
arbitrary 2D NMR experiments, the latter operates by reducing the delay between
consecutive scans while preserving sensitivity. Given the complementarities be-
tween these two approaches it seems natural to combine them into a single tool,
enabling the acquisition of full 2D protein NMR spectra at high repetition rates.
We demonstrate here this capability with the introduction of ultraSOFAST HMQC
NMR, a spatially-encoded and relaxation-optimized approach that can provide 2D
protein correlation spectra at ∼1 sec repetition rates for samples in the ∼2 mM con-
centration range. The principles, relative advantages and current limitations of this
new approach are discussed, and its application is exemplified with a study of the
fast hydrogendeuterium exchange characterizing amide sites in Ubiquitin.

7.2.2 Introduction

Multidimensional nuclear magnetic resonance (NMR) spectroscopy is a widely
used tool in the study of biomolecular dynamics. Whereas fluctuations in proteins
and nucleic acids on a pico- to millisecond timescale are best studied by relax-
ation measurements, residual dipolar couplings or spectral line shapes (Blackledge
(2005); Mittermaier and Kay (2006); Palmer (2004)) unidirectional dynamic changes
such as the exchange of amide protons for deuterons (H/D exchange) or the pro-
gression of an unfolded ensemble towards a folded structure, can be more natu-
rally followed by real-time NMR spectral changes (Dempsey (2001); Dobson and
Hore (1998); Zeeb and Balbach (2004)). An important limitation to such real-time
measurements comes from the fact that conventional 1D NMR spectroscopy lacks
the resolution needed to cope with multiple overlapping lines; on the other hand,
the 2D NMR methods that are capable of resolving the individual atomic peaks
arising from a macromolecule are intrinsically time-consuming. These longer ac-
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quisition times come as a result of the manner by which the data, and in particu-
lar the indirect-domain spectral components, are sampled in 2D NMR (Aue et al.
(1976); Jeener (1971)) Whereas the t2-domain is directly monitored in 2D acqui-
sitions by a single-transient physical digitization, the indirect-domain evolution
is recorded by repeating the pulse sequence numerous times in association with
increments of a corresponding delay parameter t1. Given the identical Nyquist cri-
teria defining bandwidth and resolution along both time-domains this means that,
even if sensitivity were sufficient to monitor the data being sought in a single scan,
multiple repetitions will still have to be performed. The total experimental time
will in such cases be given by the product of the number of scans Nscans required
for appropriately sampling the indirect domain, times a single-scan duration Tscan

usually dominated by the need for allowing spins to relax back to thermal equi-
librium prior to repeating an additional measurement. In contemporary protein
NMR spectroscopy this recycle delay is associated with a 1H spin-lattice relaxation
time T1 on the order of seconds; this in turn translates into acquisition times on the
order of minutes even for the most sensitive kinds of 2D NMR experiments. Very
rapid repetition rates on the order of Hz, which might be of great interest for the
study of fast biomolecular events, are therefore unavailable to standard real-time
2D NMR acquisitions.

Driven partly by this need recent years have witnessed an increased interest in
accelerating the acquisition of 2D NMR data, and to this end several methods have
been proposed (Freeman and Kupce (2003)). In general terms these methods can be
catalogued as acting either by reducing the Tscan repetition delay between the var-
ious increments, or by decreasing the overall number Nscans of scans needed to re-
trieve the spectra. The former group aims at maximizing sensitivity while allowing
for very short recycle delays; this can be achieved by accelerating the spin-lattice
relaxation of the spins of interest, (Diercks et al. (2005); Pervushin et al. (2002))
and in certain specific experiments by relying on optimized flip-angles (e.g., the
Ernst angle) to enhance the steady-state magnetization of the excited spins (Ross
et al. (1997)). Moreover, proposals have been recently made that combine these
two features into single 2D and 3D NMR protocols (Schanda and Brutscher (2005);
Schanda et al. (2005, 2006)), including the band-Selective Optimized Flip-Angle
Short-Transient HMQC (SOFAST HMQC) NMR experiment. SOFAST HMQC en-
ables a reduction of Tscan down to .100 ms while preserving high sensitivity, thus
allowing for the recording of conventionally-sampled 2D 1H-15N or 1H-13C cor-
relation spectra within minimal experimental times of just several seconds. Im-
portant among the group of experiments whose aim is to reduce the total number
of necessary Nscans count accordion and projection NMR methods (Bersch et al.
(2003); Ding and Gronenborn (2002); Kim and Szyperski (2003); Kupce and Free-
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man (2004a); Szyperski et al. (1993b) Hadamard spectroscopy (Brutscher (2004);
Kupce et al. (2003)), and other ingenious schemes that carry a nonlinear sampling
of data points together with an appropriate data processing (Bruschweiler and
Zhang (2004); Hoch and Stern (2001); Mandelshtam (2000); Rovnyak et al. (2004a)).
Arguably, the most dramatic reduction in the number of required scans is achie-
ved by ultrafast NMR; a protocol which allows one to record full, arbitrarily-high
multi-dimensional NMR data sets within a single transient (Frydman et al. (2003,
2002); Shrot and Frydman (2003)). At the heart of this approach lies replacing the
stepwise incrementation of the temporal parameter t1 involved in 2D NMR, by an
analogous encoding of the indirect-domain evolution along a spatial dimension z.
This procedure can be carried out in a variety of different ways, usually involving
the combined application of pulsed field gradients and frequency-swept spin ma-
nipulations, so as to replace the Ω1t1 time encoding by an analogous CΩ1(z − z0)
spatial encoding with C ∝ tmax

1 (sample length) a constant under our control and
z0 denoting an arbitrary spatial origin. The spatial winding of the spins entailed
by this phase expression is preserved, just as in traditional 2D NMR experiments,
by a coherent mixing scheme, to be subsequently unwound and read out over the
course of the data acquisition using pulsed field gradients. This reading process
can be repeated numerous times by oscillating the sign of the readout field gradi-
ents, allowing one to monitor a set of indirect-domain spectra as a function of the
direct-domain t2 evolution. Fourier transformation of the resulting data along t2
thus provides the full I(Ω1,Ω2) spectral information being sought, within a single
transient.

Although the spatially-encoded NMR principles just described can yield 2D
NMR spectra within a single scan, a full dynamic characterization will in general
entail collecting a large number of transients. This demand will be intrinsic to real-
time methods that look at unidirectional biomolecular processes by monitoring the
full range of 2D NMR spectral changes occurring as a function of time. Moreover,
even if ultrafast NMR makes the acquisition of 2D data feasible within a single
scan, practical sensitivity and solvent suppression considerations often demand
the signal averaging of at least a minimal number of transients. Indeed contempo-
rary NMR hardware limits the per-scan sensitivity of ultrafast 2D acquisitions to
the low-mM range (Shapira et al. (2004b)); these concentrations may exceed those
typically encountered in biomolecular measurements attempting to detect tran-
sient chemical species, implying that several scans may have to be averaged any-
how to achieve an acceptable signal-to-noise ratio (SNR). Bearing these needs in
mind it becomes clear that, even when considering the use of single-scan 2D NMR
within a real-time biomolecular dynamic setting, this approach could also benefit
from protocols that shorten the repetition delay Tscan while preserving maximum
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SNR. The present study explores such possibilities by demonstrating that, if the
very short inter-scan delays afforded by the SOFAST protocol are merged with the
single-scan capabilities of ultrafast NMR, full 2D protein correlation spectra can be
repeatedly retrieved at unprecedented rates. A number of provisions to be taken
into account for maximizing the efficiency of the resulting ultraSOFAST NMR ex-
periment are discussed, its ability to acquire real-time 2D NMR spectra of proteins
undergoing a uni-directional dynamic process at mM concentrations within 1-2 sec
experimental times is illustrated, and its benefits and drawbacks vis-à-vis other re-
cent proposals in the field are compared.

7.2.3 Methods

Different variants could be considered for combining the single-scan capabilities of
ultrafast NMR with the rapid repetition benefits of SOFAST protocols. The pulse
sequence chosen to test the general performance of such spatially-encoded 2D vari-
ants is shown in Figure 7.5A; shown also for completeness in the Figure is an addi-
tional amplitude-modulated (am) ultrafast HSQC sequence previously proposed
to obtain 1H-15N 2D protein correlations in real-time (Gal et al. (2006)). As the
new sequence in Fig. 7.5A incorporates a SOFAST excitation it also possesses the
main features of this experiment (Schanda et al. (2005)). Firstly, it applies all 1H
pulses band-selectively on the subset of protons that are of interest - in this case
the amide protons - while leaving all other protons unperturbed. This assists in
efficiently relaxing the excited spins, significantly decreasing their effective spin-
lattice relaxation time T1. Secondly, instead of relying on a π/2 1H excitation, a par-
tial excitation optimized for short recycle delays (with flip angles α > 90◦ followed
by a 180◦ refocusing) is employed to further enhance sensitivity per unit acquisi-
tion time. The new pulse sequence also incorporates spatial encoding to monitor
the indirect-domain 15N-dimension using a constant-time evolution period based
on bipolar gradients and linear frequency π sweeps (Pelupessy (2003)). This was
preferred over alternative incremented-time versions due to the ease with which
constant-time procedures can simultaneously deal with the gradients and with
an effective 1H decoupling. Moreover, given that we sought an indirect-domain
multiple-quantum dimension free from all 1H effects, two such pairs of linearly-
swept 15N inversion pulses were placed symmetrically with respect to the central
1H refocusing pulse. In this way both the gradients as well as chemical shifts be-
come effectively erased from the course of the 1H evolution, and only 15N effects
are encoded.

As it was found that even with these provisions single-scan experiments were
insufficient to deliver the desired SNR for the targeted protein concentration ranges,
another provision was adopted to increase sensitivity: the multi-scan acquisition
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Figure 7.5 Ultrafast 2D NMR pulse sequences assayed towards the real-time characterization of
protein dynamics. In all cases the frequency-chirped pulses applied for the sake of encoding the
15N evolution were given WURST-like modulations and amplitudes suitable for executing π/2 or
π nutations. Suppression of residual solvent signals was achieved by phase-cycling the first among
the different 15N pulses in concert with the receiver phase in a simple 2-step (+x,-x) cycle; further
clean ups of the undesired signals were introduced by short purging gradient pulses. (A) UltraSO-
FAST HMQC pulse sequence introduced in this study incorporating, in addition to a constant-time
spatial encoding, amide-selective PC9 1H excitation pulses (Kupce and Freeman (1994)) applied at
8 ppm with a 4 ppm bandwidth and a flip angle α > 90◦, optimized experimentally together with
the subsequent REBURP (Geen and Freeman (1991)) π-pulse for a given Tscan time. The delay ∆
was set to 5.4 ms; the delay δ accounting for spin evolution during the PC9 pulse was adjusted in a
1D version of the experiment omitting all 15N pulses to yield pure-phase spectra in the 1H dimen-
sion. (B) Ultrafast HSQC pulse sequence based on an amplitude-modulation of the indirect do-
main (Shrot et al. (2004)), incorporating Watergate (Piotto et al. (1992)), aided by the non-encoding
x-gradient, for the sake of solvent suppression. (C) Principle of the data interleaving procedure,
incorporated in both of the assayed sequences (A,B) for improving SNR. For the N = 2 case that
is here demonstrated an initial acquisition delay ∆t02 is set to 0 and ∆t2/2 in alternate scans (with
an intermediate 15N π-pulse for J-refocusing, panel A) and data collected under +Ga (filled circles)
and −Ga (open circles) gradients are combined in the interleaved fashion indicated by the scheme.
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of interleaved data transients. Acquiring spatially-encoded scans in this manner
(Fig. 7.5C) is attractive because SNR increases then with the number of interleaved
scans rather than with their square root, as is traditional in signal averaging. As
reminder (Matsui et al. (1985)) data interleaving is an imaging-derived procedure
that introduces ∆t02(n) = ∆t2(n − 1)/N delays prior to acquisition of the 1 6 n 6

N transient (with t2 = 2Ta the direct-domain dwell time, cf. Fig. 7.5), and merges
data obtained in such manner into a single set prior to Fourier transform along
t2. Whereas the direct-domain spectral width in single-scan acquisitions is given
by (2Ta)

−1 this becomes (2Ta/N)−1 after the data interleaving, thereby allowing
one to increase the gradient oscillation time Ta by a factor N without compro-
mising the direct-domain spectral width. This in turn allows one to reduce the
acquisition gradient strength Ga by the same factor while preserving unaltered the
indirect-domain spectral width, which is proportional to kmax = γaTaGa. As the

noise penalty of ultrafast experiments is usually proportional to G
1/2
a (due to the

Ga-dependent increase in filter bandwidth) it follows that noise per scan drops
by a factor of N1/2, and the averaging of these transients leads to a full N SNR
increase. Notice that in order to refocus the scalar coupling evolution occurring
during these additional ∆t02(n) delays a 15N π-pulse was applied in their center; a
two-scan ±180◦ phase cycling was also generally incorporated on the initial 15N
excitation pulse of every interleaved set, leading to Nscans = 2N .

7.2.4 Results and Discussion

Based on the 2D ultraSOFAST HMQC sequence and processing strategy just de-
scribed, a series of spectra on 15N-labeled Ubiquitin were acquired for a variety
of sample concentrations and acquisition times. Figure 7.6 shows representative
spectra recorded in this manner on 500 and 800 MHz NMR spectrometers, and
compares them with a reference 500 MHz SOFAST 2D HMQC spectrum. As can
be appreciated from this Figure the ultraSOFAST HMQC sequence clearly has the
potential to discern a large number of resolved cross-peaks within ∼1 second rep-
etition rates, for proteins at ∼2-3 mM concentrations. Comparisons between these
2D NMR data sets show clear resolution benefits upon going to higher magnetic
fields; this is in part reflecting the relatively large line widths that all indirect-
domain peaks exhibited as a result of having kept the encoding times relatively
short (chosen in turn this way to prevent relaxation losses which might otherwise
compromise sensitivity). On the other hand the sensitivity enhancement resulting
from the increase in field is only modest, in accordance to the B0 (as opposed to

B
3/2
0 ) dependence expected for ultrafast experiments (Shapira et al. (2004b)).

To further explore the ultraSOFAST potential a fast kinetic process, the hy-
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Figure 7.6 Comparison between different 2D HMQC NMR spectra of 15N-labeled Ubiquitin
recorded under different conditions. The analyzed solution was prepared by dissolving the His-
tagged powder (Asla Biotech) in a 90%/10% H2O/D2O phosphate buffer (pH = 7.5). As all re-
maining spectra in this manuscript these data were collected at either 500 MHz on a Varian Inova
console equipped with a conventional triple-axis HCN probe head, or at 800 MHz on a Bruker
Avance spectrometer equipped with a QXI probe. Dashed boxes contain folded peaks arising from
amine groups. (A) Reference HMQC NMR spectrum recorded at 500 MHz in 4 minutes total ex-
perimental time, serving as benchmark for our comparisons. (B) 500 MHz ultraSOFAST 2D HMQC
NMR spectrum recorded using the pulse sequence in Fig. 7.5A utilizing three interleaved scans,
each of them with phase-cycling of the receiver and of the 15N π/2 excitation pulse. Additional
experimental parameters included Ge = 40 G/cm, RF sweep range = ±16 kHz, tmax

1 = 11.6 ms, N2

= 15, Ta = 1.43 ms, Ga = 2.7 G/cm, a 2 µs physical acquisition dwell time and ≈6.8 kHz analog
filtering of the data. Under these conditions, indirect- and direct-domain spectral widths of ≈2500
and 1100 Hz were covered. Overall Nscan = 6 were collected at Tscan = 300 ms, leading to a 1.8
sec total acquisition time. Data processing involved arranging the collected FIDs in the interleaved
fashion shown in Fig. 7.5C into two 715×60 k/ν1,t2 data matrices (one corresponding to data col-
lected with positive Ga and the other to negative Ga), zero-filling these sets to 2048×128, weighting
along indirect and direct dimensions with a Gaussian function, 1D FT of both data sets along t2,
magnitude calculation of the spectra, and co-addition of both data sets for the sake of increasing
SNR. (C) 800 MHz ultraSOFAST HMQC spectra recorded in a total time of 1.4 seconds using four
interleaved scans (Nscan = 8 with the phase-cycling, Tscan = 175 ms). Other acquisition parameters
involved Ge = 31.8 G/cm, RF sweep range = ±35 kHz, tmax

1 = 14 ms, N2 = 16, Ta = 350 µs, Ga =
12.6 G/cm, a 2 µs physical acquisition dwell time and ≈125 kHz analog filtering of the data. (D)
Idem as (B) but involving Nscan = 8 with Tscan = 112 ms (four interleaves) resulting in a 0.9 sec total
acquisition time.
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Figure 7.7 Representative series of real-time 2D ultraSOFAST HMQC NMR spectra recorded on a
≈3 mM Ubiquitin solution, following the dissolution of an initially fully protonated lyophilized
powder onto a D2O-based buffer (final uncorrected pH = 8.9). The times indicated in each frame
correspond to the approximate delay elapsed since the dissolution was suddenly triggered. Acqui-
sition parameters were akin to those in Fig. 7.6B (with Nscan = 8, Tscan = 250 ms) and so was the
data processing. The repetition time between full recordings was ≈2.4 sec and data were moni-
tored over a 20 minute interval; only a subset of the collected and processed spectra is shown. The
kinetics of the highlighted peaks are depicted by the corresponding graphs in Figure 7.9.
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Figure 7.8 The fast mixing device used in this ultrafast H/D exchange study

drogen/deuterium exchange (H/D-exchange) in Ubiquitin was monitored in real
time. Knowing such H/D-exchange rates can give valuable insight into both the
thermodynamics as well as the kinetics of local and global unfolding/folding of
proteins in native conditions (Arrington and Robertson (1997); Dempsey (2001);
Huyghues-Despointes et al. (1999)); for the particular case of Ubiquitin such rates
of H/D exchange have been recently measured by a variety of 2D techniques in-
cluding ultrafast HSQC (Gal et al. (2006)) and Hadamard spectroscopy NMR (Bou-
gault et al. (2004)).

For the present measurements an adaptation of the procedure described in ref.
(Gal et al. (2006)) was used: 15 mg of 15N-labeled lyophilized Ubiquitin were dis-
solved in 50 µl H2O inside a Shigemi NMR tube, placed inside a properly tuned
NMR system, and rapidly diluted by the addition of ∼400 µl of D2O. This injection
was now driven by triggering a KinTek RQF-3 quench-flow apparatus, and chan-
neled using a small custom-made nozzle placed inside the NMR tube in order to
fill the sample coil region (Scheme 7.8). Although the solvent injection lasted itself
a fraction of a second, ca. 1.5 seconds had to elapse in order to let the sample tur-
bulence settle and enable the reliable acquisition of spatially-encoded data. Even
prior to this sudden D2O injection the NMR spectrometer was already collecting
ultraSOFAST HMQC spectra at a rate of one every 2.4 seconds. Further details
on the parameters involved in this acquisition are given in the caption to Figure
7.7, which illustrates how the hydrogen-deuterium exchange manifests itself as a
decay of the intensity of various NH resonances after the addition of D2O. The
data evidence the disappearance of various sites as a function of time, while prob-
ing life times at faster rates and shorter dead-times (∼0.4 Hz and 2 sec) than had
been approachable by our previous ultrafast dynamic studies for similar protein
concentrations (∼0.13 Hz and 30 sec respectively; Gal et al. (2006)). Some peak in-
tensity profiles, chosen due to their relatively fast exchange kinetics, are displayed
as a function of time after initiation of the experiments in Figure 7.9.
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Figure 7.9 H/D exchange plots extracted from the data in Figure 7.7 for four residues exhibiting
fast kinetic processes. Experimental points reflect peak heights in the ultraSOFAST HMQC 2D
spectra; the t1/2 exchange lifetimes given in the figure were obtained by fitting the data points to
the equation I(τ) = Io ∗ exp(−τ/t1/2) + I∞ . The points chosen over the course of the first 50
measurements (time τ 6 120 sec) arise from full separate 2D acquisitions, each of these 2.4 sec long.
Thereafter, for the sake of reducing scattering and in view of the slowing down of the dynamics,
ten consecutive spectra (50 through 60, 60 through 70, etc.) were co-added and the exchange time
assigned to the center time of this average. We ascribe the shorter lifetimes arising from these fits
vis-à-vis their counterparts reported in Ref. (Gal et al. (2006)), to the higher pH (8.9 vs. 6.5) in which
measurements were now performed.

Given that a number of different ultrafast variants have been previously pro-
posed and demonstrated for the recording of 1H-15N correlation spectra, it is perti-
nent to compare their general performance against the present ultraSOFAST exper-
iments. Previous tests included HSQC versions carried out in sensitivity-enhanced
and amplitude-modulated (am) modes (Pelupessy (2003); Shrot et al. (2004)). The
former achieved its encoding in combination with a double reverse-INEPT ele-
ment retaining both orthogonal antiphase components (Kay et al. (1992)), yielding
in principle a sensitivity advantage with respect to amHSQC. In practice, how-
ever, we did not witness these theoretical expectations; perhaps owing to the for-
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mer’s constant-time implementation leading to an enhanced transverse relaxation,
or due to its additional INEPT step susceptible to increased relaxation or pulse-
imperfection losses. In any case, in view of this behavior and given our more
extensive experience with amHSQC NMR, we opted for comparing this ultrafast
correlation protocol against the performance of the new ultraSOFAST HMQC se-
quence.

With the monitoring of biomolecular dynamics as general objective, the target
of such ultraSOFAST HMQC vs amHSQC comparison focused on measuring the
sensitivity afforded by these different protein 2D NMR acquisition modes per unit
time. Toward this end Figure 7.10A shows - using as benchmark data obtained
from comparable ultrafast amHSQC and ultrafast SOFAST HMQC acquisitions -
how the normalized sum of intensities arising from identical, well-resolved peaks
in each spectrum changes as a function of the duration of a single scan Tscan. The
relative ratio between the intensities afforded by these two experiments is plotted
in Fig. 7.10B. These tests show that for relative long scan times (Tscan >2 sec) the
performances of both experiments are comparable, suggesting that in this regime
the potential T2 losses of the multiple-quantum constant time ultraSOFAST HMQC
evolution offset the gains that may arise from the enhanced spin-lattice relaxation.
For shorter Tscan times, however, on the order of 100-300 ms, the sensitivity of ul-
traSOFAST HMQC NMR exceeds that of amHSQC by up to a factor of 3. Within
the context of fast acquisitions these curves imply that if the inter-scan delay are
chosen at the maximum sensitivity of the SOFAST curve (Schanda et al. (2005)), the
ultraSOFAST HMQC will give sensitivity gains of ca. 2 over its amHSQC counter-
part for the same total acquisition times; and that if even faster repetition rates
are desired, the ultraSOFAST gain could lead to factors approaching 3 for identical
experimental times.

Less satisfactory but also important to include in an SNR comparison, is the
issue of water suppression. Good water suppression is of course a crucial proce-
dure, that is challenged in rapid mixing ultrafast NMR by two non-conventional
issues. One of these relates to the fact that sudden-injections of the kind illus-
trated in Figure 7.8 will usually take place on unshimmed samples susceptible to
initial turbulence and foaming, factors which combined lead to less-than-optimal
peak line widths. Another concern arises from the fact that in ultrafast NMR the
spectral width associated to the physical data sampling is usually kept larger than
normal to allow for the simultaneous digitization of the two spectral axes; an un-
desired folding-over of residuals and/or forbidden echoes from the water signal,
is therefore facilitated. We found, for instance, that water-flip back schemes of the
kind usually employed in standard HSQC experiments (Kay et al. (1994)) are usu-
ally insufficient for acquiring dynamic ultrafast amHSQC spectra, unless extensive
phase cycling of the encoding pulses is used. UltraSOFAST HMQC, which uses se-
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Figure 7.10 Experimental comparison between spatially-encoded ultraSOFAST HMQC and amH-
SQC NMR experiments, as given by the signal per unit time of 2D 15N-1H correlation spectra
recorded with each sequence (amHSQC open triangles, ultraSOFAST HMQC open circles). The ac-
quisition parameters were set akin to those introduced in Fig. 7.6; the duration of each frequency-
chirped pulse was set to 11.6 ms for the amHSQC and 2.9 ms for the ultraSOFAST HMQC experi-
ments, resulting in a max

1 that is twice as long for the former than for the latter and thereby yielding
the same effective degree of encoding for both experiments. The data points whose intensity are
plotted on the top graph as a function of Tscan were obtained by summing the intensities of 17
identical, well-resolved cross-peaks in both spectra. Each spectrum was recorded in the same total
time (set to 74 seconds to increase the precision of the obtained data) and scaled to the same noise
level according to the number of scans. The intensity ratio between both data sets is indicated by
the filled triangles of the lower plot, with a line at a ratio 1 added as visual aid.
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lective pulses not to store back but rather to minimize the overall water excitation,
is also handicapped in the quality of its water suppression. Indeed we found that
the reliance on such selective spectral manipulations did not yield, following a ba-
sic ±x two-scan phase cycling, as complete a water suppression as that observed
in ultrafast experiments incorporating Watergate-type schemes particularly when
the latter relied on gradient dephasing along a transverse, non-encoding axis. The
partial excitation occurring in ultraSOFAST HMQC NMR of the H2O background
was particularly noticeable in the rapid-mixing 500 MHz tests; these interferences
were much weaker at 800 MHz, where the separation between the water resonance
and the amide region exceeds 3 kHz. On the other hand, in experiments like those
in Figure 7.7 relying on dilution by a mostly deuterated solvent, these water sup-
pression issues were not severe. The SOFAST procedure had the added advantage
of keeping the H2O magnetization always in thermal equilibrium; this was an aid
for observing amides at neutral or basic pH (e.g., pH 8.9 in Fig. 7.7) whose pro-
tons are prone to undergo rapid exchange with water molecules and thus lead to
SNR losses if using saturation/dephasing of the H2O resonance. Still, we ascribe
the longer signal averaging times that were needed in the rapid mixing, mostly-
deuterated solvent experiments (Fig. 7.7) over those carried out in equilibrated
protonated solutions (Fig. 7.6) to the need to overcome noise problems arising
from incomplete solvent suppression, rather than to inherent limitations in the
available signal.

7.2.5 Conclusion

A new 2D NMR pulse scheme for the acquisition of 1H-15N correlation spectra at
ca. 2 mM protein concentrations and at repetition rates approaching 1 Hz was
presented, combining the benefits of SOFAST HMQC and of spatial encoding. Al-
though previously presented spatially encoded techniques had been able to yield
a 2D protein HSQC NMR spectra in a single scan, practical sensitivity consider-
ations makes this possible only at relatively high concentrations (ca. 3 mM for
state-of-the-art hardware). Moreover, monitoring protein dynamics by executing
multiple such HSQC acquisitions at high repetition rates, would still be challenged
by the usual requirements of spin relaxation. The proposed combination of SO-
FAST and ultrafast techniques is definitely a valuable step towards alleviating
this situation, enabling the repetition of 2D NMR measurements at the highest
possible frame rate. In fact SOFAST HMQC NMR has already been shown com-
patible with another fast acquisition method, Hadamard-encoding, a combination
which decreases the number of necessary scans significantly and also allows one to
record 2D 1H-15N correlations within second-long timescales (Schanda and Brut-
scher (2006), see section 7.1). Unlike Hadamard spectroscopy, however, the pro-
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posed spatially-encoded ultraSOFAST HMQC experiment results in full 2D spec-
tral correlations rather than in a series of 1D projections, yielding an unbiased
range of spectral changes along both dimensions. We believe that this may be
an aid to study processes where peak positions might be changing due to the dy-
namics, as would be the case upon following protein folding. We trust that, with
further increases in sensitivity brought about by advances in magnet and probe
technology and with additional pulse-sequence developments including better ap-
proaches to solvent suppression, the proposed experiment will eventually become
a useful route to study fast biomolecular kinetics at a site-resolved level and within
sub-second timescales.
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8 HET-SOFAST NMR: Longitudinal
proton relaxation exploited for fast
detection of structural compactness
and heterogeneity along polypeptide
chains

8.1 Abstract

Structure elucidation of proteins by either NMR or X-ray crystallography often
requires the screening of a large number of samples for promising protein con-
structs and optimal solution conditions. For large-scale screening of protein sam-
ples in solution, robust methods are needed that allow a rapid assessment of the
degree of structural compactness of a polypeptide under diverse sample condi-
tions. Here we present HET-SOFAST NMR, a highly sensitive new method for
semi-quantitative characterization of the structural compactness and heterogene-
ity of polypeptide chains in solution. Based on one-dimensional 1H HET-SOFAST
NMR data, obtained on well-folded, molten globular, partially- and completely
unfolded proteins, we define empirical thresholds that can be used as quantita-
tive benchmarks for protein compactness. For 15N-enriched protein samples, two-
dimensional 1H-15N HET-SOFAST correlation spectra provide site-specific infor-
mation about the structural heterogeneity along the polypeptide chain.

8.2 Introduction

A large amount (30 to 60%) of the protein sequences encoded in the eukaryotic
genomes is predicted to be predominantly unstructured. Dunker and Obradovic
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(2001); Uversky (2002) In structural proteomics projects, concerned with the three-
dimensional structure determination of all proteins from a particular genome, a
significant fraction of the expressed proteins is thus expected to be at least par-
tially unfolded. For these proteins, structure elucidation by either NMR or X-ray
crystallography will be difficult, if not impossible, in the absence of an appropriate
binding partner that increases the structural compactness. Therefore, experimen-
tal methods are required that allow fast identification of promising protein con-
structs and sample conditions for structure determination. Besides being a well-
established technique for obtaining structural and dynamic information at atomic
resolution of moderately sized proteins in solution, NMR is also a powerful tool
for fast screening of protein samples for the presence of stable structures along
the polypeptide chain. (Prestegard et al. (2001); Rehm et al. (2002); Staunton et al.
(2003)) A close look at the 1D 1H NMR spectrum provides a first idea of the struc-
tural compactness and heterogeneity of the polypeptide chain(s) present in the
NMR sample tube. The 1H chemical shift dispersion is indicative of the presence of
secondary and tertiary structure. Konrat and coworkers have shown recently that
a statistical analysis of the 1H spectrum yields a global measure of the structural
compactness of the protein(Hoffmann et al. (2005)). Furthermore, the line shape
of the peaks reports on the molecular dynamics, and especially on the rotational
molecular tumbling correlation time that is directly related to the oligomerization
state of the protein. If 15N isotope enrichment is available, a two-dimensional 1H-
15N correlation spectrum provides further information on the purity of the sam-
ple by comparing the number of detected cross peaks with the number of non-
proline residues in the polypeptide sequence. Large differences in peak intensities
among the correlation peaks in the 2D spectrum are indicative of structural and
dynamic heterogeneities. Other more sophisticated NMR experiments provide
semi-quantitative information on the protein structure and dynamics. One of the
most prominent examples is the measurement of the 1H-15N heteronuclear NOE
that can be related to the amplitude of fast local motions experienced by the N-H
vectors along the polypeptide chain. The measurement of amide-water hydrogen
exchange rates (Hwang et al. (1997); Krishna et al. (2004)) or 1H-1H spin diffusion
(noe) effects (Kutyshenko and Cortijo (2000)) has also been proposed in the past
as a measure of structural compactness and rigidity in native and molten globular
states of proteins. Here we present new 1D 1H and 2D 1H-15N NMR experiments
that measure the effect on the amide 1H spectrum of either perturbing the water 1H
or aliphatic 1H spin polarization. The 1D experiments yield global observables λex

and λnoe that provide a measure of the overall solvent accessibility (λex) and proton
density (λnoe) at the amide proton sites, and thus the two parameters yield com-
plementary information on the structural compactness of the protein. In the 2D
version, λex and λnoe values are obtained for each resolved correlation peak, pro-
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viding a means of assessing the structural and dynamic heterogeneity along the
polypeptide chain. The experiments are simple and easily implemented on any
standard NMR spectrometer. The high sensitivity of the pulse schemes allows ap-
plication to low-concentrated protein samples with acquisition times ranging from
a few seconds to a few minutes. Fast 1D and 2D data acquistion is particularly at-
tractive for large-scale screening of proteins under various sample conditions (pH,
temperature, salt concentration, osmolytes, etc.), or in the presence of different lig-
ands.

8.3 HET-SOFAST NMR experiments

In order to measure the degree of structure in a particular protein or protein frag-
ment, we have developed one-dimensional (1D) and two-dimensional (2D) ver-
sions of what we like to call a HETerogeneity-SOFAST experiment. The pulse
sequences of the 2D 1H-15N HET-SOFAST-HMQC and 1D 1H HET-SOFAST ex-
periments are displayed in Figs. 8.1a and b, respectively. The pulse schemes are
derived from a band-Selective Optimized-Flip-Angle Short-Transient (SOFAST)-
HMQC experiment. SOFAST-HMQC combines the advantages of a small number
of radio-frequency pulses, Ernst-angle excitation, and longitudinal relaxation opti-
mization to obtain significantly increased sensitivity for high repetition rates of the
pulse sequence. In the new HET-SOFAST NMR experiments an additional band-
selective inversion pulse is added at the beginning of the recycle period or contact
time tc on the Hsat proton channel. The experiment measures the effect of this per-
turbation (saturation) on the spin polarization of the amide protons after a contact
time tc. Two data sets are recorded, with and without the Hsat inversion pulse. An
example of such a set of 2D 1H-15N HET-SOFAST-HMQC spectra recorded for a 2.0
mM sample of native-state ubiquitin (600 MHz, 25◦C) in only 10 seconds of acqui-
sition time per data set is shown in Figs. 8.1c and d, illustrating the high sensitivity
obtained by these experiments. The ratio of the peak intensities (λ = Isat/Iref ) mea-
sured in the two spectra then provides insight into the interaction between amide
protons (HN ) and saturated protons (Hsat). For the 1D version of the HET-SOFAST
experiments, shown in Fig. 8.1b, the 15N pulses and the incremented time period
(t1) are simply omitted.

Two types of proton interactions may be monitored by the HET-SOFAST ex-
periments of Fig. 8.1. If the Hsat pulses are applied to the aliphatic protons, the
experiment measures the 1H-1H spin diffusion or NOE effect (λnoe). If the water
polarization is inverted, the intensity ratios (λnoe) provide a measure of the amide-
water hydrogen exchange rates. The two observables, λnoe and λex yield comple-
mentary information on the structure and mobility of the polypeptide chain. The
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Figure 8.1 Pulse sequences to record (a) 2D 1H-15N HET-SOFAST-HMQC and (b) 1D 1H HET-
SOFAST NMR spectra. The pulses and gradient outside the brackets are common to both 1D and
2D experiments. Filled and open pulse symbols indicate 90◦ and 180◦ rf pulses, except for the
HN excitation pulse applied with flip angle α (typically set to 120◦). The variable-flip-angle HN
pulse has a polychromatic PC9 shape and band-selective HN refocusing is realized using REBURP
(Geen and Freeman (1991)). The HN pulses are centered at 9.5 ppm and cover a band width of
4.0 ppm. For the HETex-SOFAST experiments a selective Hsat inversion pulse is applied at the
water frequency with a Gaussian shape and a pulse duration of 100ms at 600 MHz, correspond-
ing to a band-width of 9.0 Hz. For aliphatic 1H inversion (Hsat) in HETnoe-SOFAST experiments
an I-SNOB5 (Kupce et al. (1995)) pulse is applied 3.0 ppm shifted from the water resonance, and
covering a band width of 4.0 ppm, corresponding to a pulse length of 1.88 ms at 600 MHz. The
transfer delay ∆ is set to 1/(2JHN ) ≈ 5.4 ms, and tc is the inter-scan delay or contact time. The
delay δ (≈1.6 ms) accounts for spin evolution during the PC9 pulse, and has to be adjusted prior to
data acquisition to yield pure-phase spectra in the 1H dimension. Pulsed field gradient pulses G1
and G2 are applied along the z-axis (PFGz) for solvent and artefact suppression. They are typically
applied with gradient strength of 10-20 G/cm during 200µs followed by a recovery delay of 100
µs. To avoid extensive first order phase corrections in the t1 dimension of experiment (a), the 90◦-
t1-90◦ pulse sequence element on the 15N channel is applied simultaneously to the REBURP pulse
on the 1H channel. Quadrature detection in t1 is obtained by phase incrementation of ϕ accord-
ing to STATES or STATES-TPPI. Adiabatic WURST-2 15N decoupling (Kupce and Wagner (1995))
is applied at a field strength of γB1/2π = 550 Hz. Additional HETnoe-SOFAST-HMQC spectra
recorded without (ref-spectrum) and with (sat-spectrum) aliphatic spin inversion are plotted in (c)
and (d), respectively. The 2D data were recorded at 600 MHz 1H frequency on a sample of 2.0 mM
15N-labeled ubiquitin using the following acquisition parameters: α=120, ∆=5.4 ms, δ = 1.57 ms,
tmax
acq =40 ms, tc=50 ms. 40 complex points were recorded for tmax

1 =29 ms, resulting in a total exper-
imental time of 10 s per spectrum. Site-specific λnoe values can be extracted from the spectra in (c)
and (d) by calculating the intensity ratio Isat/Iref for each cross peak.
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Figure 8.2 Illustration of 1H-1H spin diffusion and amide-water hydrogen exchange effects in (a)
an elongated polypeptide chain, characterized by a low-density flexible 1H network and a high
water accessibility of the amides, and (b) a globular well-structured protein characterized by a high
density rigid 1H network and a low water accessibility of the amides.

λnoe values report on the local 1H spin network, i.e. the number, density, and mo-
bility of protons close to a particular amide, whereas the λex values are indicative of
the water accessibility of the amide hydrogens. As illustrated in Fig. 8.2, a hydro-
gen atom inside a well structured globular protein is surrounded by many other
hydrogens, but generally not easily accessible to water molecules (Fig. 8.2b). This
situation allows efficient proton spin diffusion (λnoe << 1), but only little hydro-
gen exchange (λex ≈ 1). The inverse is found in the case of an elongated peptide
chain as depicted in Fig. 8.2a, characterized by a low proton density (λnoe ≈ 1) and
a high solvent accessibility (λex << 1).

8.3.0.1 HETnoe-SOFAST: measurement of 1H-1H spin diffusion or NOE

The dipolar coupled spin network in a folded polypeptide chain provides the main
mechanism for spin-lattice relaxation of the 1H spins after a perturbation of the
equilibrium spin polarization. If only a few 1H spins, e.g. all amide 1H, are excited
by means of selective rf pulses, the energy put into the spin system is transferred
efficiently within the 1H spin network via 1H-1H NOEs, and evacuated to the lat-
tice at the sites of high mobility, e.g. methyl groups or highly-flexible parts of the
peptide chain (selective case). This is the situation found during the contact time
tc in the reference experiment. In the saturation experiment, where most of the 1H
spins are out of their thermal equilibrium state at the beginning of tc, the 1H-1H
spin diffusion efficiency is considerably reduced, resulting in less efficient energy
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Figure 8.3 Experimental evaluation of the influence of the contact time tc and the sample temper-
ature (tumbling correlation time) on the measured λnoe values. 1D HETnoe-SOFAST NMR spectra
were recorded at 600 MHz on a sample of cytochrome c553 (9 kDa), and the measured intensity
ratios are plotted as a function of the contact time for data measured at 15◦C (τc ≈ 6.6 ns, filled cir-
cles), 25◦C (τc ≈ 5.0 ns, open circles), 35◦C (τc ≈ 3.9 ns, filled squares), and 45◦C (τc ≈ 3.1 ns, filled
triangles). In addition, open squares represent λnoe values measured for urea-denatured ubiquitin
at 25◦C.

dissipation in the dipolar-coupled 1H spin network (non-selective case). HETnoe-
SOFAST NMR provides a measure of the ratio of effective spin-lattice relaxation
rates in the selective (reference) and non-selective (saturation) experiments.

The 1H-1H spin diffusion effect, and thus the measured λnoe values depend on
the effective tumbling correlation time (τc) and the contact time (tc). To evaluate
experimentally the effect of these two parameters on the measured intensity ratios,
we have performed 1D HETnoe-SOFAST experiments on a sample of cytochrome
c553 at 600 MHz 1H frequency using different contact times (50 to 500 ms). In
order to estimate the influence of the molecular tumbling correlation time, the ex-
periments were repeated for different sample temperatures varying from 15◦C to
45◦C. In addition, we have measured λnoe values as a function of the contact time tc
for a sample of urea-denatured ubiquitin. Several conclusions can be drawn from
the results of this comparison, shown in Fig. 8.3. First, one observes an increase in
the λnoe values for increasing contact times as expected for a cross-relaxation effect.
Interestingly this increase is less pronounced for the unfolded polypeptide chain
than for the globular protein. Therefore the use of short contact times increases the
dynamic range of structural compactness that can be probed by the λnoe values. A
second observation is that the spread in λnoe values obtained for different tempera-
tures (mainly altering the overall tumbling correlation times) of the folded peptide
chain is quite independent of the contact time used. The covered range on the λnoe

scale is about 0.1 for τc values ranging from about 3 to 7 ns. A part of these λnoe

variations is expected to be a consequence of the reduced fold stability at higher
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temperatures. The observed range of about 0.1 can thus be considered an upper
limit of the effect of the tumbling correlation time on the measured λnoe values.
Note that for slower tumbling molecules (τc > 7 ns) we do not expect a significant
further decrease in λnoe, as the τc-dependent 1H-1H spin diffusion process will no
longer be the limiting step for the 1H spin-lattice relaxation efficiency in the refer-
ence experiment. For slowly tumbling globular proteins, the λnoe values are mainly
determined by the internal flexibility of the polypetide chain, responsible for the
energy dissipation to the lattice. In practice, λnoe values below 0.2 are rather un-
likely to be detected for the contact times of around 100 ms used in this study (see
Figure 8.5). We have also experimentally tested the influence of the HN excitation
flip angle (α) on the measured λnoe ratios. No significant changes were observed
when changing the excitation angle between 90◦ and 120◦ (data not shown). There-
fore, for short contact times in the range 50 to 200 ms, a flip angle α ≈ 120◦ will
yield optimal sensitivity. (Schanda and Brutscher (2005); Schanda et al. (2005)) In
addition, no changes in the measured λnoe values are expected from variations in
the pH of the solution. Therefore, 1D HETnoe-SOFAST measurements on differ-
ent protein samples using a fixed contact time allows to compare the behavior of
these proteins in terms of structural compactness, independent of their molecular
weight and the particular sample conditions used.

8.3.0.2 HETex-SOFAST: measurement of amide-water hydrogen exchange

Hydrogen atoms at the polar groups of the polypeptide chain such as amides are in
continual exchange with solvent hydrogens. The exchange rates critically depend
on the pH, the local pKa values, the temperature, and the solvent accessibility of
the individual amides. As a consequence of the differential protection (H-bonding)
in a folded polypetide chain, the characteristic exchange times are spread over sev-
eral orders of magnitude (milliseconds to days or months). The measurement of
hydrogen exchange rates for amides has been used for many years in protein NMR
to probe differential solvent protection along the polypeptide chain. (Krishna et al.
(2004); Wagner and Wuthrich (1982)) The HETex-SOFAST experiment of Fig. 8.1
has been designed to monitor fast hydrogen exchange. The experiment provides a
measure of the 1H spin polarization that is transferred between the exchangeable
amide and water hydrogen atoms after selective perturbation of the water reso-
nance. In order to detect a measurable effect, a significant fraction of amide hy-
drogen atoms must have been exchanged with solvent hydrogens during the con-
tact time tc. For contact times of a few hundred milliseconds, this means that the
HETex-SOFAST experiment is sensitive to hydrogen exchange at the sub-second
time scale. The experiment is thus most appropriate for samples at neutral or basic
pH and ambient temperature, where hydrogen residence times of less than a sec-
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Figure 8.4 Influence of Hsat pulse shape parameters on the measured λnoe values. (a) λex and (b)
λnoe values measured for a heterogeneous polypeptide chain at neutral pH. In all experiments the
1H carrier was positioned on the water resonance (4.7 ppm). For the HETnoe-SOFAST measure-
ments, the aliphatic 1H inversion pulse (Hsat) was centered at 1.7 ppm covering a band width of
4.0 ppm (filled squares), at 2.0 ppm covering a band width of 4.0 ppm (filled circles), and at 2.0
ppm covering a band width of 6.0 ppm (open circles). The residues (correlation peaks) have been
sorted for increasing λnoe values (filled circles). The different pulse calibrations mainly affected the
measured λnoe ratios for amides characterized by low λex values, while the noe ratios for amides
with high ex values were only little changed.

ond are observed for amides located in the flexible, loosely structured parts of the
polypeptide chain. The strong dependency on solvent conditions, however, makes
it difficult to compare the λex values measured for different protein samples.

8.3.0.3 Optimization of shaped 1H pulse parameters

The HET-SOFAST experiments require selective spin manipulations of amide, ali-
phatic, and water protons. It is therefore important that the 1H pulse shapes are
adjusted in a way that these proton species can be considered as spectroscopically
independent (similar to heteronuclear spin systems). The amide and aliphatic 1H
pulses have been adjusted to yield minimal perturbation of the water resonance,
while covering most of the amide or aliphatic 1H spectral region. For the inver-
sion of the water resonance a compromise between pulse duration and selectivity
is required. The optimized pulse parameters are given in the caption to Fig. 1. To
demonstrate the importance of pulse parameter optimization for the measurement
of λnoe values, the results of an experimental comparison using different aliphatic
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1H inversion pulses are shown in Fig. 8.4. If the aliphatic pulses affect the water
spin polarization (filled and open circles in Fig. 8.4b), the measured λ values are
a mixture of spin diffusion (λnoe) and exchange effects (λex). As a consequence of
this interference, low λnoe values will be measured for the well-structured part of
the polypeptide chain because of the 1H-1H spin diffusion effects, while hydrogen
exchange effects with the (partially) saturated water will also yield reduced λnoe

values for the flexible water-accessible sites. This partly hides the information on
the structural (and dynamical) heterogeneity along the polypeptide chain. Fig. 8.4
demonstrates that a careful choice of the selective pulse parameters renders the
two effects independent.

8.4 Application to protein sample screening and char-

acterization

1D and 2D HET-SOFAST experiments were performed on a Varian INOVA 600
spectrometer equipped with a triple resonance (room-temperature) probe and shiel-
ded z-gradients. Unless indicated in the text, data were acquired at a sample tem-
perature of 25◦C. Data processing was achieved using either FELIX (Biosym Tech-
nologies) or NMRPipe(Delaglio et al. (1995)) Typically, the 1D data were multiplied
by a squared cosine function and zero-filled to 8096 complex data points prior to
Fourier transformation. Intensities Isat and Iref were obtained by integrating the
spectrum from about 7.0 to 12.0 ppm. 2D data sets were zero-filled to final matrices
of 2048 (1H) × 1024 (15N) complex data points. Spectral resolution was increased
by signal apodization in the 1H dimension using a 40◦ shifted cosine function, and
by forward linear prediction in the 15N dimension. The maximum peak heights
obtained from a grid search algorithm were used as Isat and Iref values for the
calculation of the amide-specific λnoe/ex values.

The following protein samples were used in this study: human ubiquitin (8.6
kDa) native (N)-state (Vijay-Kumar et al. (1987)) at pH 6.2, 2.0 mM, ubiquitin A-
state (Brutscher et al. (1997)) in 60%/40% methanol/water mixture at pH 2.0, 0.7
mM, ubiquitin denatured in 8M urea (U-state) at pH 2.0, 1.0 mM (Peti et al. (2001)),
D. vulgaris cytochrome c553 (Blackledge et al. (1995)) (9.0 kDa) at pH 5.9, 5.0 mM,
human α-synuclein (14.5 kDa) in SDS micelles (Ulmer and Bax (2005)) at pH 7.0,
0.5 mM, bovine α-lactalbumin (16.2 kDa) at pH 7.2, 0.6 mM (Wijesinha-Bettoni
et al. (2001)), bovine α-lactalbumin in molten globular state (MG) at pH 2.5 (Arai
and Kuwajima (2000)), 1.0 mM,S. hindustanus bleomycine-resistance protein (BRP,
30.4 kDa) in free form and in complex with Zn2+-ligated bleomycine (Vanbelle et al.
(2003)) at pH 6.5, 1.0 mM, E. coli SiR-FP18 (Champier et al. (2002)) (18.0 kDa) at pH
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Figure 8.5 Classification of polypeptide samples, based on measured λnoe values, in categories cor-
responding to different degrees of structural compactness. The classification is based on thresholds
determined form experimental 1D HETnoe-SOFAST NMR data measured on various protein sam-
ples at 600 MHz using a contact time of tc=100 ms. For accurate and reproducible results it is
important to fine-tune the power level of the REBURP HN refocusing pulse for minimal water and
maximal amide proton signal in a single-scan 1D reference SOFAST experiment.

7.0, 1.5 mM, and 3 proteins involved in heavy-metal resistance in R. metallidurans
CH 34 (Mergeay et al. (2003)), MerAa (Rossy et al. (2004)) (8.2 kDa) at pH 7.5, 1.5
mM, CopK (Tricot et al. (2005)) (8.3 kDa) at pH 6.5, 1.5 mM, and a third protein with
a molecular weight of 13.2 kDa which we will refer to as HMR-3 (for confidential
reasons) at pH 6.0, 0.9 mM.

8.4.0.4 1D HET-SOFAST NMR: semi-quantitative characterization of the over-
all compactness of polypeptide chains

1D 1H NMR is a valuable tool for fast NMR screening of protein samples as it does
not require isotope enrichment, and because spectra can be acquired in a very short
experimental time (typically a few minutes) for samples as dilute as several µM on
a high field NMR spectrometer equipped with a cryogenic probe. Although the
1D 1H spectrum contains a great amount of information on the structure and dy-
namics of the polypeptide chain(s) in the NMR sample, it is not straightforward
to quantify this information. Here we show that 1D HETnoe-SOFAST NMR can be
used as a very simple tool for classification of the overall compactness of a partic-
ular polypeptide chain. Fig. 8.5 shows the results of 1D HETnoe-SOFAST measure-
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Figure 8.6 Calcium-induced changes in structural compactness of the protein α-lactalbumin moni-
tored by 1D HET-SOFAST NMR at 600 MHz using a contact time of tc=200 ms. The measured λnoe

and λex values are plotted as a function of the Ca2+ concentration. In addition, 1H spectra (amide
region) are plotted for the different protein states: calcium-free form (apo), calcium-bound form
(holo) and calcium-saturated form (final).

ments for a representative number of protein samples available in our laboratory.
These samples vary in structure, molecular weight, and solvent conditions. The
measured λnoe values can be classified into 3 categories: (i) λnoe = 0.2 to 0.35: well-
folded globular proteins with a limited number of loop regions; (ii) λnoe = 0.35
to 0.55: polypeptide chains with large parts of unstructured peptide fragments,
or protein samples containing a significant amount of small peptide chains (e.g.
from protein degradation); (ii) λnoe = 0.55 to 0.75: mostly unfolded (random coil)
polypeptide chains. λnoe values below 0.2 or above 0.8 are generally not found
for larger polypeptide chains, but they are indicative of compact secondary struc-
tural elements and small flexible peptide chains, respectively. Such λnoe values are
observed in 2D 1H-15N HETnoe-SOFAST spectra (see below).

We have also investigated the possibility of using 1D HETnoe-SOFAST and 1D
HETex-SOFAST NMR to monitor subtle changes in the overall compactness of a
polypeptide chain upon variation of solvent conditions. Bovine α-lactalbumin,
the regulatory component of the lactose synthase complex, presents an interest-
ing test case for such a study. In the apo form, α-lactalbumin forms a compact
tertiary structure comprising 4 α-helices, several short 310 helices, and a triple-
stranded antiparallel β-sheet (Pike et al. (1996)). α-lactalbumin has a conserved
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high-affinity Ca2+ binding site, and it has been shown that upon Ca2+ binding
(holo form) the protein shows an increased stability but only little change in the
overall structure (Chrysina et al. (2000); Wijesinha-Bettoni et al. (2001)). It is there-
fore interesting to test whether the HET-SOFAST experiments are able to monitor
these slight changes in the overall compactness of α-lactalbumin upon Ca2+ bind-
ing. The results of a titration study are shown in Fig. 8.6. The Ca2+-depleted apo
form of α-lactalbumin was obtained by adding 10 mM EDTA to a ca. 0.6 mM pro-
tein solution (pH 7.3). The Ca2+ titration was achieved by adding small quantities
of a concentrated stock solution of CaCl2 (same buffer and pH) to the apo-sample.
We observe a decrease in the measured λnoe values from 0.34 to 0.28, and an in-
crease in the λex values from 0.60 to 0.75 when adding CaCl2. These observations
are in agreement with a polypeptide chain becoming more and more compact with
increasing Ca2+ concentration. A maximum (minimum) of the titration curves is
reached at a Ca2+ concentration of about 10-12 mM, where both EDTA and the
high-affinity binding site of α-lactalbumin are occupied by a Ca2+ ion. For even
higher calcium levels the λnoe (and λex) value again slightly increases (and de-
creases). This finding is explained by the presence of a second Ca2+ binding site
of lower affinity. It has been shown by analytical affinity chromatography that the
occupancy of this second binding site increases the surface hydrophobicity, sug-
gesting a destabilization of the protein structure similar to the apo form.(Fitzgerald
and Swaisgood (1989))

The availability of both observables λnoe and λex makes sure that the observed
changes are not due to slight differences in the tumbling correlation time or in
the pH of the sample, but they are explained by a change in the overall structural
compactness. The experimental results obtained for α-lactalbumin clearly demon-
strate that HET-SOFAST NMR is able to detect subtle changes in the structural
compactness and stability of polypeptide chains in different solution conditions.
Monitoring such slight changes is certainly not easily accomplished by a simple
inspection of the corresponding 1D spectra (see Fig. 8.6).

8.4.0.5 2D HET-SOFAST NMR: fast characterization of the structural hetero-
geneity of polypeptide chains

Site-specific structural information in protein NMR requires the recording of (at
least) 2D correlation spectra. In the context of fast sample screening, 1H-15N exper-
iments are especially attractive because of their high intrinsic sensitivity that en-
ables short acquisition times for moderately concentrated samples. As the required
15N isotope enrichment is relatively inexpensive as long as the protein is obtained
from a suitable expression system, it is quite feasible to acquire such data for a
large number of samples during the screening of optimal sample conditions or in
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Figure 8.7 λnoe-dispersion profiles obtained for several protein samples from a set of 2D HET-
SOFAST-HMQC spectra recorded at 600 MHz using tc=200 ms: a well-structured globular protein
(circles), two heterogeneous proteins comprising structured and unstructured domains (triangles),
and a polypeptide chain under denaturing conditions (squares). The residues (correlation peaks)
for all 4 proteins have been sorted for increasing λnoe values.

a high throughput sample preparation pipeline. The 2D HET-SOFAST-HMQC ex-
periments introduced in Fig. 8.1 present a simple and fast NMR method for mea-
suring the amount of local structure and dynamics along the polypeptide chain
on a residue-by-residue basis. Fig. 8.7 shows the λnoe profiles obtained with the
2D HETnoe-SOFAST-HMQC pulse sequence for 4 different protein samples, repre-
sentative for a well-folded globular protein (BRP), an unfolded polypeptide chain
(ubiquitin U-state), and 2 heterogeneous proteins (α-synuclein, HMR-3) compris-
ing both, folded and unfolded domains. Note that a third example of a heteroge-
neous peptide chain is shown in Fig. 8.3. The measured intensity ratios have been
sorted by increasing λnoe value. Quite distinct profiles are obtained for the differ-
ent types of proteins. For the globular protein the majority of residues show λnoe

values below 0.3 indicative of well-structured compact peptide segments. Higher
values are obtained for the loop regions connecting these secondary structural el-
ements. For the unfolded peptide chain most λnoe values are between 0.4 and 0.6,
indicating the absence of any permanent structure in this particular polypeptide
chain. Finally, the two heterogeneous protein constructs display the features of
both, structured and unstructured proteins. A significant number of residues have
λnoe values below 0.3, corresponding to a well-structured protein fragment. But a
second ”plateau” is detected around λnoe = 0.6, indicative of a random coil struc-
ture of the corresponding protein fragment. This illustrates that, in the absence of
any resonance assignment, 2D HETnoe-SOFAST-HMQC can be used in a fast and
straightforward way for the characterization of the structural heterogeneity, and
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Figure 8.8 2D HETnoe-SOFAST-HMQC and HETex-SOFAST-HMQC experiments performed on (a)
the native N-state, (b) the methanol-induced A-state, and (c) the urea-denatured U-state of ubiqui-
tin. The measured λnoe (filled circles) and λex (open circles) intensity ratios are plotted as a function
of the polypeptide sequence. The dashed horizontal line corresponding to λnoe=0.2 has been added
as a visual aid for the comparison of the individual data sets. Structural elements are indicated on
top of (b) and (c), whereas the proline motive P37-P38 is highlighted in (a).

for the estimation of the relative percentage of folded and unfolded parts of the
polypeptide chain.

Once the backbone resonance assignment is known for a protein sample, the
same 2D HETnoe-SOFAST-HMQC data can be used to identify or confirm the pres-
ence and absence of local structure along the polypeptide chain. This is shown
in Fig. 8.8 for the polypeptide chain of ubiquitin in several structural states ob-
tained using different solvent conditions: (a) native (N) state (water, pH 6.2), (b)
A-state (60% methanol, 40% water, pH 2.0), and (c) U-state (8M urea, pH 2.0).
For the N-state, only some loop regions appear to be less compactly structured
than the rest of the protein with the lowest λnoe values observed for the central
part of the α-helix. The A-state also displays a quite homogeneous behavior with
λnoe values ranging from 0.2 to 0.5. This confirms that the A-state of ubiquitin
is characterized by the presence of well-stabilized secondary structural elements.
(Brutscher et al. (1997); Cordier and Grzesiek (2004)) The relatively low λnoe val-
ues observed for the non-native C-terminal helix, which has been shown to have

192



no long-lived long-range contacts with the other secondary structural elements,
indicates that these λnoe measurements are mainly sensitive to short-range local
order. Finally, the U-state data show some type of ”bell-shaped” curve reflecting
the tumbling properties of polypeptide chains in solution. This feature has also
been seen from other NMR data such as relaxation rates and residual dipolar cou-
plings (Louhivuori et al. (2003)). Except for the terminal residues, all λnoe values
are between 0.4 and 0.7, indicative of the absence of any persistent local structure.
Nevertheless, the variations observed along the polypeptide chain may be indica-
tive of differential residual structure. Especially the segment comprising residues
36 to 44 displays slightly reduced λnoe values. This segment comprises the two
adjacent proline residues P37 and P38. It has been shown that proline residues
are restricting the conformational freedom of the polypeptide chain, thus inducing
some local order in the vicinity of these residues (Bernado et al. (2005))

Figure 8.8 also shows the results of 2D HETex-SOFAST-HMQC experiments
performed on the same ubiquitin samples. These values do not provide useful
information for the unfolded state due to the low pH and the slow intrinsic ex-
change rates. Very similar profiles are obtained by the λex and λnoe measurements,
reflecting the close relationship between structural compactness and solvent ac-
cessibility. Because of the low pH of 2.0, hydrogen exchange for amides in the
A-state and U-state samples is much too slow to yield significant variations in the
λex values.

8.5 Conclusions

We have presented HET-SOFAST NMR, a simple and robust method for the char-
acterization of structural compactness in polypeptide chains. Application of the
method to a selection of proteins comprising partially or fully unfolded as well
as folded proteins shows that the method is able to distinguish reliably between
these types of polypeptides in 1D experiments without the need of isotope label-
ing. The data obtained on α-lactalbumin in the apo- and Ca2+ -bound holo form
demonstrate that the presented method is able to detect very subtle changes in
the stability of the fold. If a 15N-labeled protein sample is available, the 2D ver-
sion of the experiments yields site resolved information providing insight into the
structural heterogeneity of the polypeptide chain. If no resonance assignment is
available this information is useful for the design and selection of optimized con-
structs of proteins being subject to structure elucidation by either NMR or X-ray
crystallography. 2D HET-SOFAST HMQC may also be used for a fast confirmation
of the presence and localization of secondary structural elements and loop regions
in proteins with known 1H-15N resonance assignment.
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The high sensitivity of the experiment allows data recording in a short exper-
imental time even for low concentrated protein samples (µM). For higher sample
concentrations (mM), the short acquisition times of 2D HET-SOFAST-HMQC may
also allow real-time NMR measurements of changes in structural heterogeneity
and solvent accessibility during protein folding or other kinetic processes occur-
ring on a time scale of seconds. In addition, the availability of two complementary
observables λnoe and λex prevents from an erroneous interpretation of the data, as
changes in sample conditions and molecular structure have a distinguishable effect
on these two parameters. Therefore we believe that HET-SOFAST NMR will prove
a valuable new tool for the ongoing efforts in large-scale structure determination
of proteins and protein complexes.
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9 Protein folding and unfolding
studied at atomic resolution by fast
2D NMR spectroscopy

9.1 Introduction

A detailed description of the structural changes occurring during the folding and
unfolding of proteins still remains a challenging objective in biophysics. The un-
derstanding of the fundamental mechanisms of the folding process will also shed
light on the factors leading to protein misfolding responsible for neurodegenera-
tive diseases such as Alzheimer’s and Parkinson’s disease (Dobson (2004)). The
ideal method to study protein folding/unfolding provides structural information
at atomic resolution, and is sensitive to changes occurring on time scales ranging
from microseconds to minutes, a task that no single technique is able to fulfill.

Nuclear Magnetic Resonance (NMR) spectroscopy is especially well adapted to
obtain detailed atomistic information about the mechanisms, kinetics, and energet-
ics of the folding/unfolding process for virtually every nuclear site in the protein.
NMR methods are sensitive to molecular dynamics occurring over a wide range of
time scales (Fig. 9.1a). While steady-state NMR methods are well suited to charac-
terize equilibrium molecular dynamics occurring on a sub-second time scale (Mit-
termaier and Kay (2006); Palmer (2004)), unidirectional processes are best studied
by real-time NMR (Van Nuland et al. (1998); Zeeb and Balbach (2004)) where a
series of NMR spectra is recorded during the reaction (Fig. 9.1b).

Two difficulties have hampered so far the widespread application of real-time
NMR to the study of protein folding. The first problem is the low intrinsic sensi-
tivity of NMR at ambient temperature, a consequence of the small transition en-
ergies involved, compared to other spectroscopic techniques. Recent progress in
NMR technology (magnetic field strength, cryogenic probes, electronics,...), how-

195



Figure 9.1 (a) Time scales of biophysical processes such as protein folding or amide hydrogen ex-
change, and NMR methods available to study the kinetics of these processes at atomic resolution.
(b) Principle of SOFAST real-time 2D NMR. A series of 2D FTA-SOFAST- HMQC spectra is recorded
after initiating a kinetic change in the protein state. Each cross peak reports on the local structure
and dynamics at the site of a single amide group. The bottom spectrum has been recorded in an
experimental time of 4 s on a 0.2 mM 15N-labeled sample of ubiquitin at a magnetic field strength
of 18.8 T using a cryogenically cooled probe.
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ever, has greatly enhanced the sensitivity of NMR experiments, allowing acqui-
sition of 1D spectra of proteins at sub-millimolar concentration at ∼ 1 to 10 s−1

rates. The second limitation concerns the time requirements to record higher-
dimensional (≥ 2D) NMR spectra indispensable to resolve the large number of nu-
clear resonances in a protein. Whereas a 1D NMR spectrum can be obtained in less
than a second within a single scan by physical detection of the NMR time-domain
signal induced in a receiver coil, the recording of a 2D NMR data set requires nu-
merous repetitions (typically ∼ 100) of the basic pulse sequence in order to sample
the evolution of the nuclear spins in the additional time dimension (Ernst et al.
(1987)). This has limited in the past the application of real-time 2D NMR methods
to relatively slow kinetic processes with characteristic time constants of minutes to
hours. A major challenge for real-time NMR is therefore to achieve reduced acqui-
sition times allowing to extend real-time NMR methods to the missing NMR time
window of seconds to minutes (Fig. 9.1a). This will make the technique applicable
to the study of a larger variety of molecular kinetics. Here we introduce SOFAST
real-time 2D NMR, a method that allows site-resolved studies of kinetic processes
in proteins with a time resolution down to a few seconds. We demonstrate the
potential of this method for the study of protein folding and unfolding reactions.

9.2 Results and Discussion

9.2.1 SOFAST real-time 2D NMR spectroscopy.

To overcome the inherent time limitation of 2D NMR spectroscopy, two conceptu-
ally different approaches can be envisaged. First, the number of scans required to
sample the multidimensional time space may be reduced using spectral aliasing,
non-linear data sampling techniques, spatial frequency encoding, or Hadamard-
type frequency-space spectroscopy. Second, accelerating the recovery of spin po-
larization between scans by means of optimized pulse sequences or the addition
of relaxation agents to the solution, allows higher repetition rates of the pulse se-
quence. Here, we propose a fluid-turbulence-adapted (FTA) version of 1H-15N 2D
SOFAST-HMQC to follow a kinetic process for individual amide sites in a protein
(figure 9.2). Longitudinal relaxation optimization in FTA-SOFAST HMQC allows
the use of scan times of less than 100 ms without a significant reduction in sensi-
tivity (signal to noise per unit time), resulting in experimental times on the order
of 5 seconds per 2D 1H-15N correlation spectrum, which shows one correlation
peak for each non-proline residue of the protein. The advantage of the SOFAST
approach with respect to other fast 2D NMR techniques, such as Hadamard or
spatial frequency encoding, is the higher sensitivity provided by this technique for
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Figure 9.2 FTA-SOFAST-HMQC experiment used for SOFAST real-time 2D NMR measurements.
The small angle (α < 90◦) 1H pulse (filled symbol) is applied with a PC9 shape (Kupce and Freeman
(1994)), while for the 1H 180◦ pulses (open symbol) an iSNOB-5 shape (Kupce et al. (1995)) is used.
The α angle is typically set between 40◦ and 60◦ depending on the scan time chosen. The transfer
delays ∆ are set to 1/(2JHN ), and the small delay δ takes into account spin evolution during the PC9
pulse, and is adjusted to half of the PC9 pulse length. For 15N chemical shift editing in t1, the basic
sequence is repeated n-times using short inter-scan delays (between 1 and 50 ms) resulting in scan
times of ∼ 100 ms. Heteronuclear decoupling is performed using WURST-40 (Kupce and Freeman
(1995)). The pulsed field gradients (PFGz) are applied for 100 µs with a strength of typically 30
G/cm.

the short acquisition times of a few seconds. High quality 2D spectra are obtained
by the FTA-SOFAST-HMQC experiment on a modern high-field NMR spectrome-
ter for protein samples in the sub-millimolar concentration range, as illustrated in
Fig. 9.1b for a 0.2 mM sample of ubiquitin recorded in 4 s acquisition time. If faster
sampling of the kinetic time domain is desired, this minimal experimental time
required for FTA-SOFAST-HMQC can be further reduced to about 1 second using
computer-optimized spectral aliasing in the 15N dimension (Lescop et al. (2007),
page 219).

In order to fully benefit from the increased time resolution provided by the
FTA-SOFAST-HMQC experiment for real-time kinetic studies, a device is required
that allows initiation of the kinetic event inside the magnet. The triggering of ki-
netic reactions can be achieved either by a sudden change of the protein state it-
self, e.g. by a photo-induced excitation or cleavage of chemical bonds (Rubinstenn
et al. (1998); Wenter et al. (2005)), or by a change of environment, such as the sol-
vent composition, temperature, or pH (Buevich et al. (2000); Zeeb and Balbach
(2004)). Here we opted for an initiation of the reaction by an abrupt change in
the solvent conditions achieved by rapid mixing of two solutions inside the NMR
magnet (Mok et al. (2003); Van Nuland et al. (1998)). The fast mixing device used
for this study (figure 9.7a on page 207) allows complete mixing in less than 300 ms
as demonstrated by dye injection experiments into water solutions (figure 9.7b).
A drawback of the fast injection is the presence of turbulences of the liquid over
times significantly longer than the mixing time. Many modern NMR experiments
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make use of pairs of pulsed field gradients for spectral artifact suppression. In
the presence of bulk liquid motion incomplete refocusing of spin coherence due to
translational diffusion during the time delay between the two pulsed field gradi-
ents yields uniformly reduced NMR signal intensities. The FTA-SOFAST-HMQC
experiment has been optimized for minimal signal loss in the presence of bulk liq-
uid motion, yielding dead times after the injection of less than two seconds (figure
9.8).

We have chosen two conceptually different applications in order to demon-
strate the potential of SOFAST real-time 2D NMR to provide accurate measures
of kinetic rate constants for a large number of amide sites: The first example con-
cerns the folding of α-lactalbumin from a molten-globule to the native state. In the
second application, the unfolding kinetics experienced by individual residues of
ubiquitin under native equilibrium conditions are investigated.

9.2.2 Conformational transition kinetics of α-lactalbumin from a

molten-globule to the native state studied in real time.

The protein α-lactalbumin serves as a model system to investigate the structural
transition from a partially folded to the native state using SOFAST real-time 2D
NMR. This protein has been extensively used as a model system for protein folding
studies. The structure of native α-lactalbumin (14 kDa) comprises two domains,
one containing four α-helices and a short 310 helix, and the other one containing a
three-stranded β-sheet and another 310 helix. Here, we focused on the Ca-free (apo)
form of α-lactalbumin. Under destabilizing conditions such as low pH, addition of
co-solvents, high temperature, or combinations thereof, apo α-lactalbumin exists
in a molten-globular (MG) state. The MG state is characterized by the absence of
long-lived tertiary structure, but it still contains a high degree of secondary struc-
ture (Mok et al. (2005); Troullier et al. (2000)), with a radius of gyration only ∼10%
larger than the native state (Balbach (2000); Kataoka et al. (1997)). The MG state of
α-lactalbumin has recently attracted considerable interest when it was realized that
it may act as an important component causing apoptosis of tumor cells (Gustafsson
et al. (2004)).

Pioneering work on the use of time-resolved NMR methods for monitoring
protein refolding was performed on α-lactalbumin (Balbach (2000); Balbach et al.
(1996, 1995); Forge et al. (1999); Van Nuland et al. (1998)). 1D 1H NMR spectra
recorded during the refolding reaction of apo α-lactalbumin provided evidence
that the MG state, accumulated during the early stages of the folding reaction,
shows similar spectral characteristics (poorly dispersed and broad resonances),
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Figure 9.3 FTA-SOFAST-HMQC spectra of bovine α-lactalbumin at pH 2.0 (left spectrum), imme-
diately after a sudden pH jump to pH 8.0 that triggers folding (center spectrum) and 120 s after
injection (right spectrum). Each spectrum shows the sum of two acquisitions of 10.9 s duration.
Peaks corresponding to the MG state that disappear during folding are annotated.

and therefore similar dynamical properties of the conformational ensemble, as
those observed for the MG state stabilized at acidic pH (Balbach et al. (1995)).
Additional diffusion-edited and nOe-transfer NMR measurements allowed mon-
itoring the compactness of the protein and the establishments of native tertiary
contacts, respectively (Balbach (2000); Forge et al. (1999)). The folding kinetics of
apo α-lactalbumin have also been studied previously at a residue level by line
shape analysis of individual cross peaks detected in a single 2D NMR spectrum
recorded during the refolding event (Balbach et al. (1996)). This technique, how-
ever, is limited to relatively slow kinetics (several minutes), and is prone to large
experimental uncertainties. In the study of Balbach et al. (1996), folding rates for
a total of 25 backbone amides could be quantified with an estimated experimental
error of ∼25%. Because of the small number and the high uncertainties of the mea-
sured rate constants, these data did not allow to definitely exclude the presence of
differential folding kinetics along the polypeptide chain.

In order to illustrate the improvements provided by SOFAST real-time 2D NMR
for the measurement of residue-specific folding rates, we monitored the same re-
folding reaction as Balbach et al. from the MG state, formed at pH 2, to the native
state. Refolding was initiated by a sudden pH jump (from 2 to 8), and the reaction
was monitored by a series of FTA-SOFAST-HMQC spectra recorded at a 0.1 s−1

rate. Spectra acquired before injection, immediately after, and 2 min after injection
are shown in Fig. 9.3. The central spectrum provides a snapshot of the transient
MG state under native conditions. The broad and weak signals in this spectrum are
indicative of large-scale dynamics occurring on a micro- to millisecond timescale.
These data are in agreement with this transient MG-state being a compact, highly
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dynamic ensemble of conformational states. All NMR signals observed during the
folding process can be assigned either to the MG or the native state. No additional
peaks indicative of a significantly populated folding intermediate were detected
in agreement with previous findings (Balbach (2000); Balbach et al. (1996); Forge
et al. (1999)). The refolding kinetics could be quantified for a total of 92 out of 121
backbone amide sites in the protein from intensity measurements of well- resolved
cross peaks in the 1H-15N correlation spectra (Fig. 9.4). In addition, for the first
time the intensity decay of 5 cross peaks characteristic for the MG state could be
quantified. Under the experimental conditions chosen (15◦C, pH 8, Ca2+ -free),
the NMR intensity decay and buildup curves can be fitted to mono-exponential
functions. Fitting the data to more complex e. g. bi-exponential or stretched expo-
nential functions does not yield statistically significant improvements. The folding
time constants measured for individual amide sites of the native protein and the
MG state are identical (τf = 109 ± 5 s) within the experimental uncertainty. The
obtained folding kinetics are consistent with results from fluorescence measure-
ments (figure 9.5), yielding a characteristic time constant of 110 ± 10 s for the es-
tablishment of native tertiary structure. The good agreement with the fluorescence
measurements demonstrates the accuracy obtained by SOFAST real-time 2D NMR
experiments.

The MG state of apo α-lactalbumin explores a large conformational space, pos-
sibly including the presence of native and non-native secondary structures (Troul-
lier et al. (2000)). Therefore the transition from this MG state to the native state
requires a large decrease in conformational entropy, known as entropy bottleneck
effect (Bushmarina et al. (2006); Wolynes et al. (1995)). This is the main reason for
the significantly slower folding kinetics observed for the apo form compared to the
holo form of α-lactalbumin (Bushmarina et al. (2006)). The high precision of rate
constants (error of ∼5-10%) obtained in our study for a large number of individual
amide sites allows to draw some conclusions on the energy landscape and folding
pathways. The finding of equal kinetic rates for the buildup of the native state, and
the disappearance of the MG state indicates a transition between only two states,
the MG ensemble representing a large number of conformational sub-states inter-
converting on the micro- to millisecond time scale, and the native state. In other
words, the establishment of the native tertiary structure is not accompanied by a
change in the structural and dynamic properties of the MG ensemble as folding
proceeds. These observations are in agreement with the assumption of a smooth
energy landscape where the folding rate is controlled by a single transition state
ensemble originating from the conformational entropy bottleneck effect. The ex-
istence of a unique transition state is in agreement with conclusions drawn from
other biophysical folding experiments (Bushmarina et al. (2006)).
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Figure 9.4 Refolding kinetics of bovine α-lactalbumin from the MG-state to the native state. The
measured peak intensities are plotted as a function of the folding time. Shown are three residues
situated in loop (K17), β-sheet (Q44) and α-helical regions (V91) that are indicated on the struc-
ture (PDB entry 1F6R). In addition, the signal decay observed for a peak assigned to the MG state
is shown. Solid lines represent best fits to a three-parameter exponential function. A histogram
shows the measured folding time constants for 92 residues in the native state, as well as the 5 rates
measured for the disappearance of the MG state.

Figure 9.5 The refolding kinetics of bovine α-lactalbumin studied by fluorescence (squares) is com-
pared to the intensity buildup of the amide 1H-15N signal of residue 51 in SOFAST real-time 2D
NMR (red circles). For reasons of better comparability the buildup of NMR intensity is plotted from
top to bottom. For experimental details see the Methods section (page 207).
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9.2.3 Ubiquitin unfolding kinetics under equilibrium conditions

revealed by EX1 amide hydrogen exchange measurements.

To further illustrate the potential of SOFAST real-time 2D NMR to detect differen-
tial kinetic behavior along the polypeptide chain, we have investigated the unfold-
ing kinetics of human ubiquitin under non-denaturing equilibrium conditions by
amide hydrogen-deuterium (H/D) exchange methods. H/D exchange is a pow-
erful tool for the study of protein structure, folding, unfolding, and binding (Fer-
raro et al. (2004); Krishna et al. (2004)). The exchange between amide and solvent
hydrogens requires that the amide group is in an exchange-competent, solvent-
accessible conformation. This can be achieved by local, sub-global or global pro-
tein unfolding fluctuations (opening reactions) that transiently break the exchange-
protecting structures, e.g. hydrogen bonds. The measurement of amide H/D ex-
change rates thus provides residue-specific information on the otherwise invisible
manifold of partially or globally unfolded excited conformational states populated
at a very low level. Despite their low population under native conditions, such
high energy states may be crucial for protein function (Eisenmesser et al. (2002);
Frauenfelder et al. (1991)), or they may represent intermediate states on the pro-
tein folding pathway (Neudecker et al. (2006)). Especially interesting are H/D ex-
change measurements in the so-called EX1 regime, where the measured exchange
rate constants directly reflect the kinetics of the unfolding reaction at individual
amide sites (Ferraro et al. (2004)). EX1 conditions are generally reached at high
pH. However, for most proteins, H/D exchange at high pH is too fast to measure
by conventional 2D real-time NMR. Therefore previous EX1 studies had to focus
on a small number of well-protected amide sites. It has been shown that the EX1
exchange rates measured for a few slowly exchanging amide sites in ubiquitin cor-
respond to the rate of global unfolding observed with other biophysical methods
(Sivaraman et al. (2001)). The SOFAST real-time 2D NMR method, presented here,
allows to extend H/D exchange measurements under EX1 conditions to a signif-
icantly larger number of amide sites, yielding a more comprehensive picture of
the potentially heterogeneous unfolding processes along the polypeptide chain.
Representative exchange curves measured for the 76-residue protein ubiquitin at
pH 11.95 and 25◦C are shown in Fig. 9.6. For all amides, even in the most pro-
tected parts of the protein, exchange time constants τex < 200 s were observed.
The high quality of the data allowed accurate quantification of exchange kinetics
down to τex ∼ 5 s, with a detection limit of τex ∼ 1 s. This proved to be sufficient
to measure exchange rates for amides in secondary structural elements, whereas
H/D exchange in loop regions was generally completed during the dead time of
the experiment. In the upper drawing of Fig. 9.6, the measured exchange rates
are color-coded on the ribbon structure of ubiquitin. The slowest H/D exchange
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is observed for residues in strands I and II of the β-sheet (residues 3-5, 15), and
the central part of the α-helix (residue 27), while amide hydrogens located in other
parts of the molecule, comprising strands III to V, exchange much faster. Interest-
ingly, a gradual increase in the kinetics of opening fluctuations across the β-sheet is
observed, indicating non-cooperative unfolding events in this β-sheet, reminiscent
of a hydrophobic zipper folding mechanism (Dill et al. (1993)).

Ubiquitin has been used over the past 20 years as a model system for the study
of protein stability and folding using a variety of biophysical techniques, denatu-
ration methods, protein engineering studies, and computational approaches (Jack-
son (2006)). Therefore, it is interesting to compare the results presented here with
previous findings on the thermodynamic stability, folding and unfolding kinetics
of ubiquitin under different experimental conditions. H/D exchange rates mea-
sured under EX2 conditions (Bougault et al. (2004); Pan and Briggs (1992)) provide
a measure of the thermodynamic equilibrium constant K = kopen/kclose, rather
than a kinetic rate constant as obtained under EX1 conditions. Interestingly, the
residue-specific equilibrium constants also show differential stability among the
secondary structural elements of ubiquitin, with notably the first two β-strands
and the α-helix being the most stable parts. The kinetic information obtained from
H/D exchange measurements under EX1 conditions complements these former
results, indicating that the differential thermodynamic stability observed for ubiq-
uitin is mainly determined by the unfolding kinetics (opening rates). Differen-
tial non-cooperative unfolding has also been observed by NMR studies of ubiq-
uitin under denaturing conditions. The populations of non-native conformational
states can be enhanced by changing the temperature, pressure, or pH, or by adding
alcohol co-solvents. A cold-denaturation study by Wand and co-workers shows
for reverse-micelle-encapsulated ubiquitin that the mixed β-sheet is progressively
destabilized from the C-terminal side in the temperature range from -20◦ to -30◦C
(Babu et al. (2004); Pometun et al. (2006)). In a NMR study by Cordier and Grze-
siek (Cordier and Grzesiek (2002)), the change in hydrogen bond strength with
increasing temperature was measured. The N-terminus of β-strand V was found
to be the least thermally stable, whereas strands I and II remain stable even at ele-
vated temperatures. Spectral changes observed upon high-pressure denaturation
at ambient temperature indicate the presence of a partially unfolded intermediate
in which the C-terminal part (residues 70-76) as well as residues 33-42 and residue
8 are denatured (Kitahara and Akasaka (2003)). The higher stability of the sec-
ondary structural elements in the N-terminal part of ubiquitin (βI-βII strand and
α-helix) is also evidenced by the observation of a partially structured state (A state)
at low pH in a 60%/40% methanol/water mixture (Wilkinson and Mayer (1986)).
In the A-state, the N-terminal part of ubiquitin retains native-like secondary struc-
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Figure 9.6 Hydrogen/deuterium exchange data obtained for human ubiquitin at pH 11.95 using
SOFAST real-time 2D NMR. The measured exchange rates are color coded on the ubiquitin struc-
ture in the top panel. Examples of exchange curves corresponding to different exchange regimes
are shown in the lower panels together with the fitted exchange time constants. For residues color-
coded in white, no signal decay was observed as the cross peak intensity has decreased to its
plateau value during the dead time of the experiment. In the schematic representation of ubiq-
uitin’s β-sheet, the orientation of the N-H bonds is indicated by half-circles.
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ture, whereas the C-terminal part undergoes a conformational transition form the
native state to an ensemble of conformational states with high helical propensity
(Brutscher et al. (1997)). Finally, a recent time-resolved infrared (IR) study reveals
a complex thermal unfolding behavior of ubiquitin spanning a wide range of time
scales (Chung et al. (2005)), indicating a gradual, rather than a cooperative, unfold-
ing process. All experimental data from both equilibrium and transient unfolding
studies support the picture of non-cooperative unfolding events taking place in the
native environment. The C-terminal part, comprising β-strands III to V, is signifi-
cantly less stable, with unfolding rates that are up to 2 orders of magnitude higher
than those observed for β-strands I and II, and the α-helix in the N-terminal part.
The observed conformational dynamics under native conditions, and the presence
of partially unfolded conformational states may be of importance for the biological
function of ubiquitin, as it has been shown that incorporation of a disulfide bridge
between residues 4 and 66, stabilizing the connection between strands I and V of
the β-sheet, leads to a 70-80% decrease of activity in signaling proteolysis (Ecker
et al. (1989)).

SOFAST real-time 2D NMR closes the gap (seconds to minutes) on the kinetic
time scale (see fig.9.1). This makes possible H/D exchange measurements for a
large number of amide sites at any desired pH by 2D NMR methods. The com-
bined interpretation of H/D exchange rates measured under EX1 as well as the
more common EX2 conditions presents an attractive new tool to access residue-
specific kinetic folding and unfolding rates of proteins under native (physiological)
conditions. In concert with other NMR data, providing the same atomic resolution,
e. g. spin relaxation measurements or NMR spectra recorded under denaturing
conditions, H/D exchange measurements will help to gain a deeper insight into
the nature of partially unfolded conformational states present under native condi-
tions, and the rates of interconversion between those excited states and the native
state.

In summary, we have demonstrated that SOFAST real-time 2D NMR allows the
accurate measurement of kinetic rate constants up to about 1 s−1 simultaneously
for a large number of amide sites in a protein. The time frame ranging from a
few seconds to roughly a minute used to be inaccessible to conventional 2D NMR
methods. We have illustrated the potential of SOFAST real-time 2D NMR to pro-
vide accurate residue-specific kinetic information on protein folding and unfold-
ing events either by direct real-time studies of folding/unfolding, or indirectly by
real-time measurements of H/D exchange kinetics. The kinetic rates measured
for the refolding of α-lactalbumin are uniform throughout the protein indicating a
smooth energy landscape for the transition from the molten globule to the native
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state. On the contrary, the kinetic data collected for the protein ubiquitin indicate a
highly non-cooperative unfolding behavior under native conditions in agreement
with previous results from NMR and infrared spectroscopy. The methodology pre-
sented here can be easily applied to protein systems with molecular weights rang-
ing between ∼5 and ∼20 kDa where deuteration is not a prerequisite for obtaining
well-resolved H- N correlation spectra. Here we have focused on the application of
SOFAST real-time 2D NMR to the study of protein folding and unfolding, but the
method also offers new opportunities for residue-specific kinetic measurements
of other unidirectional events occurring on a time scale of seconds such as bind-
ing, enzymatic reactions, and chemical exchange. Combined with recent advances
towards NMR studies of proteins inside intact living cells (Reckel et al. (2005); Se-
lenko et al. (2006)), SOFAST real-time 2D NMR may also become a powerful exper-
imental tool for in situ time- and site-resolved observation of kinetic events such
as protein folding and posttranslational modifications in a cellular environment.

9.3 Methods

9.3.1 A fast injection device for real-time NMR studies: Principle,

problems and solutions

A schematic illustration of the fast-injection device that allows rapid mixing of two
solutions inside the magnet is shown in figure 9.7(a).

Figure 9.7 (a) Sketch of the fast injection device used for SOFAST real-time 2D NMR applications.
(b) Photographs of the NMR sample tube taken after fast injection of 50 µL blue dye into 350 µL
of water using a rapid injection device. Homogeneous mixing is completed within approximately
100 milliseconds.
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When building this device it was found important to have strong turbulences,
in order to achieve a homogeneous mixing. This could be obtained paying atten-
tion to a number of factors: (i) The velocity of the injection should be high. To
achieve this, the bottom of the injection tube has a small diameter: Whereas the
main part of the Teflon tube (which is connected to the syringe) has an inner di-
ameter of 0.5 mm, its end diameter is smaller. In practice this was done by pulling
the tube under heat, and then cutting the tube at the constricted part, where the
diameter is smallest. One has to make sure the the solution is injected in the axis
of the device (straight, see ii). (ii) The solution has to hit a plane surface in the
NMR-tube, and should not hit the sidewalls, otherwise it just flows down on one
side of the tube and is slowed down. To this end a Shigemi tube (flat bottom) was
used, and the injection device was built so that the solution is injected straight to
the bottom. The injection device was kept in the middle of the NMR tube using
Teflon mountings (a Teflon tube with an outer diameter that closely matches the
inner diameter of the NMR tube was fixed around the injection device). The use
of a Shigemi tube has another advantage: The volume can be reduced to ca. 350 to
400 µL.

Figure 9.7(b) illustrates that with such an injection device homogeneous mixing
is achieved in less than 100ms.

However, the turbulences of the solution, that are necessary for the fast homo-
geneous mixing, are found confining when using pairs of magnetic field gradients.

Figure 9.8 Fast injection and magnetic field gradients. See text for details.

To illustrate this, figure 9.8 shows the Gly-Hα signal intensity measured after
rapid injection of glycine into D2O for two different gradient echo sequences: 50
µL of a 2M glycine solution (in D2O) were injected in 350 µL D2O and the signal in-
tensity of glycine’s Hα-peak was followed as a function of time using a 1D gradient
spin-echo pulse sequence (small-flip-angle pulse - PFGz - τ/2 - 180◦ pulse - τ/2 -
PFGz - acquisition). This sequence is sensitive to translational diffusion effects, and
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thus to the fluid turbulences created by the fast injection. It mimics the situation
found in more complex NMR experiments such as SOFAST-HMQC. Results are
shown for dephasing times of τ = 20 ms (filled squares), corresponding to the sit-
uation in standard SOFAST-HMQC, and τ= 1 ms (open circles), corresponding to
the situation in fluid-turbulence-adapted FTA-SOFAST-HMQC. Stable conditions
are reached in less than ∼ 2 s using the short dephasing time, while ∼ 15 s elapse
until equilibrium is reached when using the longer delay, emphasizing the interest
of FTA-SOFAST-HMQC when using a rapid injection device. This behavior can be
expected to depend somewhat on the mixing device used and on the speed of the
injection; nevertheless, the trend has been found reproducible when repeating this
test.

9.3.2 SOFAST real- time 2D NMR

All NMR experiments were performed on a Varian INOVA spectrometer operating
at 800 MHz 1H frequency equipped with a cryogenic probe. To keep the dead time
as short as possible the acquisition of the first spectrum was started after the dead
time of the mixing required to stabilize the fluid turbulence, which was about two
seconds (see above, figure 9.8). In order to achieve high time resolution while re-
taining good spectral quality without the need of advanced spectral processing we
used alternate phase cycling in subsequent spectra as follows. Each experiment is
performed with only one scan per increment in t1, ensuring highest repetition rates
of experiments, and the sign of the 15N excitation pulse phase and receiver phase in
FTA-SOFAST-HMQC is alternated between subsequent experiments. Whereas the
sign of the 15N encoded signal of the protein is retained in the two experiments,
artefacts have opposite sign. Adding 2 succeeding spectra (1 and 2, 2 and 3, 3
and 4,...) along the kinetic time dimension removes spectral artifacts such as axial
peaks or t1 noise at the water frequency and improves the base line. Figure 9.9a
demonstrates this approach for a H/D exchange experiment on ubiquitin. This
allows a more accurate and precise measurement of spectral parameters, such as
peak positions and intensities.

How does this procedure affect the kinetic information that can be extracted?
Figure 9.9b investigates this issue for the case of a monoexponential function. The
black solid line represents the exponential change in peak intensity that is sampled
at a rate determined by the acquisition time of one spectrum, as indicated by black
circles. Co-adding two successive spectra corresponds to replacing two data points
by their linear average and assigning this summed value to the central time point
in between the experimentally measured data points. These data points (which
for reasons of clarity were scaled in the figure) are indicated as green circles and
the linear approximation connecting the experimental data points is indicated by

209



Figure 9.9 Alternate phase cycling in real-time 2D NMR. (a) Two spectra, acquired at times t =0
(left panel) and t = ∆t (central panel), where ∆t is the duration of one 2D experiment, are acquired
with one scan per t1 increment. The phases of the first 15N pulse and the receiver are alternated
by 180◦ between the two experiments. The right panel shows the sum of these two spectra. (b)
Analysis of the effect of this co-addition procedure on the extracted exponential decay rates.

black straight lines. The mono-exponential rate determined by these co-added
data points corresponds exactly to the actual rate, which is explained by the fact
that these data points are shifted by a constant offset independent of time. The
only prize to pay is a longer dead time, as can be appreciated from the position of
the first data point (green) in the co-added data set.

9.3.3 Real-time folding of bovine α-lactalbumin

Nitrogen-15 labeled bovine α-lactalbumin (M90V) was expressed and purified as
described previously (Grobler et al. (1994)). The MG-state was prepared by dis-
solving 8.8 mg protein in 350 L H2O/D2O (10:1) and adjusting the pH to 2.0 with
1M HCl solution. Fifty µL of a refolding buffer solution (H2O/D2O: 10:1), contain-
ing 800 mM Tris and 80 mM EDTA, pH 9.1, were loaded in the injection device, and
refolding was initiated inside the spectrometer by rapid injection into the protein
solution. The folding reaction was followed by a series of FTA-SOFAST-HMQC
experiments of 10.9 s duration using a scan time of 130 ms and 40 complex data
points in t1 (80 scans per 2D spectrum). The final pH measured after the folding
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reaction was 8.0, the final protein concentration was 1.55 mM. NMR assignments
were taken from the work by Forge et al. (1999). The reproducibility of the real-
time folding data has been evaluated by repeating the experiment twice. The dif-
ference in the rate constants obtained from the two measurement series is smaller
than the experimental error estimated from Monte Carlo simulations of a single
data set.

The protocol used for the fluorescence measurements (protein concentration,
pH-jump, solvent...) is identical to that used for the time-resolved NMR experi-
ments, except for the initiation of the folding reaction. For the fluorescence mea-
surements manual mixing yielded a dead time of about 1 minute. The excitation
wavelength is 295 nm (bandwidth: 1 nm) and the fluorescence change is moni-
tored at 340 nm (bandwidth: 3 nm). Non-optimal sample volume, and the result-
ing small detection window, as well as auto-quenching effects because of the high
sample concentration explain the relatively low signal-to-noise ratio obtained by
the fluorescence experiment. A high protein concentration was chosen to mimic
the NMR conditions, resulting in a small volume for the available amount of 2 mg
15N-labeled protein. The same recombinant 15N-labeled α-lactalbumin has been
used for NMR and fluorescence experiments because the recombinant protein (ex-
pressed in E. Coli) is less stable than the natural protein, and this has an effect on
the refolding kinetics (Ishikawa et al. (1998)). The experimental data were fitted to
mono-exponential decay.

9.3.4 Amide hydrogen exchange measurements in ubiquitin

For the SOFAST real-time 2D NMR amide hydrogen exchange measurements, 2.5
mg of human ubiquitin were dissolved in 50 µL of H2O buffer containing 50 mM
glycine and loaded into the injection device. H/D exchange was initiated by in-
jection of the protein solution into 350 µL D2O buffer, resulting in a final protein
concentration of 0.7 mM. The resulting pH, corrected for the electrode isotope ef-
fect was 11.95. The decay of peak intensities due to exchange was followed by
recording a series of FTA-SOFAST-HMQC spectra of 6.7 s duration using a scan
time of 112 ms, and recording 30 complex data points (60 scans). NMR assign-
ments at pH 11.95 were obtained from published data at pH 6.6 (Cornilescu et al.
(1998)), and a series of 1H-15N SOFAST-HMQC spectra recorded in the pH range 7
to 12.
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9.3.5 Validating the correctness of extracted H/D exchange rates

from SOFAST-HMQC experiments

SOFAST NMR makes use of longitudinal amide 1H relaxation enhancement to
increase the experimental sensitivity for high repetition rates of the experiment.
Shorter spin-lattice relaxation times are achieved by the use of amide-proton se-
lective radio-frequency pulses that leave the polarization of other 1H spins, e. g.
aliphatic and water 1H, unperturbed. The energy put into the system is then ef-
ficiently dissipated within the dipolar-coupled 1H spin network by spin diffusion
(nOe) effects. In the course of H/D exchange, amide hydrogens are progressively
exchanged for deuterons. This alters the 1H spin coupling network in the protein
from one 2D experiment to the other, which influences the relaxation properties
of the amide 1H spins. How does this change in the 1H network change the peak
heights, and thus the extracted H/D exchange rates ?

In a non-selective experiment the exchange of amide protons for deuterons
should have negligible effects on the intensity of the remaining amide protons:
The relaxation after non-selective excitation is governed by the evacuation of ex-
citation energy from the whole spin system (see the discussion in section 2.3.2.2,
e.g. figure 2.14). Removal of amide protons during H/D exchange means only a
small relative change in the total number of 1H spins present, and therefore only
a negligible relative change of the excitation energy present after non-selective ex-
citation. The relaxation of the remaining amide protons is therefore almost not
changed by the exchange of some amide protons for deuterons. This is confirmed
by simulations (data not shown).

In selective experiments however, the situation is different: The energy that has
to be evacuated from the spin system is determined by the number of amide pro-
tons present in the protein, because only these are excited. The excitation energy
present in the spin system at the beginning of H/D exchange (when all amide sites
are still protonated) may therefore be much larger then at a later time point, when
many amide sites are deuterated. The longitudinal relaxation of a given (slowly
exchanging) amide 1H spin may therefore significantly change during H/D ex-
change. The peak intensities measured at different times may therefore not cor-
rectly reflect the H/D exchange process of such a proton, but may be due to the
changing relaxation properties, and the extracted H/D exchange rates in SOFAST
HMQC experiments would be incorrect.

We have investigated the question of accuracy of exchange rates determined
from SOFAST HMQC by experiment and computer simulation. Figure 9.10a shows
a comparison of exchange rates obtained from a series of se-wfb HSQC spectra and
SOFAST HMQC experiments. As the rates of the former should not (significantly)
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be influenced by the changing 1H network, and thus reflect the true kinetic rates,
this comparison is a measure of the accuracy of the SOFAST HMQC experiments.

Figure 9.10 Evaluation of the accuracy of measured H/D exchange time constants using SOFAST
real-time 2D NMR. (a) τex values measured using the FTA-SOFAST-HMQC sequence of Fig. 9.2
are compared to results obtained using standard HSQC-based 2D NMR methods. H/D exchange
was monitored during 24 hours for ubiquitin at 25◦C at two different pH values : 7.3 (black circles),
and 9.8 (red circles). HSQC (expt. time: 3 min 15 s, recycle delay: 0.9 s) and FTA-SOFAST-HMQC
(expt. time: 25 s, recycle delay: 50 ms) spectra were recorded in an interleaved manner resulting
in a 0.14 min sampling rate of the exchange process. H/D exchange was initiated by fast injection
of 50 µL of a H2O solution into 350 µL D2O solution. Under these experimental conditions, the
data recorded at pH 9.8 (red circles) represent the 15 most slowly exchanging amides, whereas the
data measured at pH 7.3 allowed quantifying the exchange rates for less protected amide sites. (b)
Computer simulation of the relaxation behavior of a given amide proton when all other amide sites
are protonated (solid curves) and when all other amide sites are deuterated.

The good correlation of the data obtained with the two methods (correlation
coefficient of R=0.997) shows that the changing 1H network does not have signifi-
cant effect on the H/D exchange rates from SOFAST-HMQC experiments.

The experimental results shown in (a) may be rationalized by computer simu-
lations, shown in figure 9.10(b). The buildup of amide 1H polarization has been
calculated for ubiquitin by numerical integration of the Solomon equations, as
described in section 2.3, assuming a magnetic field strength of 18.8 T (800 MHz
1H frequency), and different rotational correlation times τc of the protein. Two
extreme cases have been considered: (i) all backbone amide sites are protonated
(solid curves), and (ii) only the observed amide site is protonated while all others
are deuterated (dashed curves). The result of these simulations is that polarization
recovery is slightly faster for the second case. This can be understood by the fact
that fewer amide protons are excited in the molecule, and therefore less energy
has to be evacuated from the spin system to restore the equilibrium polarization.
Nevertheless, for the fast pulsing conditions used here (indicated by an arrow),
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and the tumbling correlation time of ubiquitin at 25◦C (τc=4 ns), the difference in
the restored polarization is negligible (< 1%). For larger proteins the difference
increases (see curves obtained for τc= 15 ns) because of the more efficient spin dif-
fusion. However, if higher repetition rates (shorter recovery times) are used for
such large proteins, the difference becomes again negligible.
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10 Appendix

10.1 Algorithm for simulation of longitudinal relax-

ation in a multispin system.

To get more insight into proton relaxation in proteins, a simulation program was
written (in Python language), based on equation 2.38 to follow the time course of
the polarization of every proton spin in a molecule. The program is based on the
following principles:

• The coordinates of the proton spins and the internuclear distances are read
from a PDB file (using the package BioPython, http://biopython.org)

• For the calculation of the relaxation rate constants ρ and σ the spectral den-
sity function is modeled with a simple model: overall tumbling is assumed
to be isotropic with a correlation time τc. Internal dynamics is ignored ex-
cept for methyl rotation where a rotation around the methyl axis is assumed.
With these assumptions, interactions between non-methyl protons and inter-
actions between a methyl proton and a non-methyl proton are modeled using
equation 2.33 with the following expression for the spectral densities:

J(ω) =
τc

1 + ω2 τ 2
c

(10.1)

Interactions within a methyl group were modeled with a generalized order
parameter S2, which describes the rotation of the methyl group around the
symmetry axis, and a correlation time τi for this rotation (yielding an effective
correlation time τ−1

e = τ−1
c + τ−1

i ). The order parameter was set to 0.11, which
reflects the covalent geometry of the methyl group (Woessner (1962)) and the
correlation time constant for methyl rotation τi was set to 50 ps, which is on
the order of experimentally found values (Urbauer et al. (1996)).

J(ω) =

(
S2τc

1 + ω2 τ 2
c

+
(1 − S2)τe

1 + ω2 τ 2
e

)

(10.2)
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• The time evolution of the spin system was calculated by straightforward
multiplication of equation 2.38. The time derivative d (Iz − I0

z )/dt was calcu-
lated in intervals using a step-size of approximately 0.5 ms.

• Water exchange effects were accounted for as follows: Direct exchange of
amide protons with water was ignored. This is justified by the fact that in
compact secondary structures in proteins exchange is generally much slower
than the time scale of milliseconds that is relevant for the longitudinal relax-
ation. The exchange of the solvent-exchangeable sidechain hydrogen atoms
(Asn Hδ, Gln Hǫ, Arg Hǫ and Hζ , Cys Hγ, His Hǫ2 and Hδ1, Tyr Hζ , Ser Hγ
and Thr Hγ1) was assumed to be very fast. This is justified by experimental
results (Wider (1998)). In the simulation their state of polarization was set
equal to the polarization state of the water proton spins at each time point of
the calculation. In the simulations of water flip-back experiments (i.e. where
the water magnetization is aligned along +z at the beginning of the recycle
delay) the polarization of these sidechain atoms was therefore held constant
along +z. In simulations where water is excited a longitudinal relaxation time
of 3 seconds was assumed for water and thus also for these fast-exchanging
protons. Any alteration of the bulk water proton polarization by this ex-
change can safely be neglected, as the concentration of water is on the order
of 50000 times higher than the concentration of protein. The water 1H relax-
ation time of 3 seconds is based on experimental observations (Hiller et al.
(2005b))

• The highly non-monoexponential nature of relaxation in multispin systems
precludes the description of the recovery by a single T1 value. In cases where
“relaxation times” are reported these were determined as follows. If relax-
ation was monoexponential with a characteristic time constant T1 then after
90◦ excitation the polarization would reach a level of ≈ 63% (i.e. 1−1/e) after
a time T1. Based on this and in order to reflect the relaxation process as one
single number the reported effective T1 times refer to the time when 63% of
the longitudinal magnetization is restored after 90◦ excitation.

• For the relaxation simulations on ubiquitin, the very dynamic four C-terminal
residues were removed before simulation. Because of their dynamics the
model is found too simplistic to reproduce their relaxation behavior (see fig-
ure 2.21).

Despite the simplicity of the model concerning internal dynamics it is found to
predict sufficiently well the behavior in compact protein structures and it is con-
sidered here to be sufficient to elucidate the general trends and guide and motivate
the design of relaxation-optimized pulse sequences.
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10.2 Experimental details for the measurement and sim-

ulation of ubiquitin proton longitudinal relaxation

The experimental proton inversion recovery data in figure 2.14 on page 77 were
recorded at 298K on a 600 MHz Varian INOVA spectrometer using an inversion-
recovery experiment: either a selective inversion pulse (panel (a), ISNOB5 pulse
(Kupce et al. (1995)) centered at 8.5 ppm covering a range of 4 ppm, pulse length
of 1.88 ms) or a hard 180◦ pulse (panel (b)) was followed by a strong magnetic field
gradient (ca. 30 G/cm, 1 ms) and a relaxation delay Trelax (“recovery time”), after
which the longitudinal magnetization of the amide proton spins, or the aliphatic
spins, was read out using a 1H-15N (or a 1H-13C) HSQC experiment (Kay et al.
(1992)). A long delay (5 seconds) was inserted between two such scans to ensure
full recovery to thermal equilibrium.

In the simulations, the overall tumbling correlation time was assumed to be 4
ns, which is in agreement with values reported in the literature (Brutscher et al.
(1997); Schneider et al. (1992); Song et al. (2007); Tjandra et al. (1995); Wang et al.
(2003)), methyl rotation was included as in equation 10.2 with a correlation time τi

of 50 ps (see section 10.1).

10.3 Previously proposed experiment for the measure-

ment of amide 1H-1H RDCs in weakly aligned

proteins

Figure 10.3 shows the pulse scheme of the 3D SS-HMQC2 experiment proposed by
Wu and Bax (2002). Narrow and wide pulses correspond to flip angles of 90◦ and
180◦, respectively. Low amplitude corresponds to selective (1 ms) 90◦ H2O pulses.
All pulses are along x, unless specified otherwise. The four shaped 15N 180◦ pulses

Figure 10.1

are of the hyperbolic secant adiabatic inversion type with durations of 1 ms each;
shaped 1H pulses are 180◦ reBURP (Geen and Freeman (1991). 13C decoupling (not
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shown) is used for samples that include 13C enrichment. Prior to time point g, the
1H carrier is at 8 ppm; after g it is switched to H2O. Delay durations: τ = 5.3 ms; TA

and TB are typically in the 30-80 ms range. Phase cycling: ϕ1 = x,-x; ϕ2 = 2x,2(-x);
receiver = x,-x,-x,x. Quadrature in both 15N dimensions is obtained by altering ϕ1

and ϕ2, respectively, in the regular States-TPPI manner. Pulsed field gradients are
sine-bell shaped with durations of G0,1,2,3 = 1, 1, 0.5, 0.5 ms, with peak amplitudes
of 25 G/cm, and directions G0,1,2,3 = (xy), x, y, z.
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Multidimensional (nD) NMR spectroscopy is a versatile tool for

the study of molecular structure, dynamics, and kinetics in solution.

In an ideal NMR experiment, each correlation peak reports on the

physicochemical properties of the molecular environment at the

site of a nuclear spin. For larger molecules, or molecules with a

low chemical shift dispersion, an increasing number of spins needs

to be correlated in a single 2D, 3D, 4D, or higher-dimensional

spectrum to solve the NMR overlap problem. A major drawback

of nD NMR is the increase in experimental time by about 2 orders

of magnitude for each additional dimension. In protein NMR, the

acquisition time of many common experiments exceeds the time

required to achieve a sufficient signal-to-noise ratio. To make nD

NMRmore time-efficient, alternative sampling schemes are required

that allow free adjustment of the acquisition time to the intrinsic

sensitivity of the experimental setup (sample, spectrometer, pulse

sequence). Many elegant approaches for fast data acquisition have

been proposed recently, for example, nonlinear data sampling,

projection NMR, Hadamard spectroscopy, spatial frequency encod-

ing,1 and fast-pulsing techniques.2 Here we present automated

spectral compression (ASCOM), a complementary fast NMR

technique that exploits available knowledge from prior collected

data to increase the peak density in spectral space without loss of

information. We demonstrate the use of ASCOM for the study of

molecular kinetics based on a series of 1H-15N correlation spectra

recorded at 1 s-1 rates and for chemical shift assignment using 4D

experiments that can be performed in a few hours.

In Fourier-transform (FT) NMR, the choice of the spectral width

SW determines the number of (complex) data points n to be

recorded to achieve a given spectral resolution ∆ν via the relation

n ) SW/∆ν. A reduced spectral width results in fewer repetitions

of the pulse sequence and thus in shorter experimental times. If

SW is chosen smaller than the chemical shift range of the observed

nuclear spins, this results in spectral aliasing (folding). Resonance

frequency offsets ν0 outside the chosen spectral width give rise to

NMR signals at ν ) ǫ
k [ν0 - k sign(ν0)SW] depending whether

the time domain data are complex (ǫ ) 1) or real (ǫ ) -1). The

variable k is the number of times the peak has been aliased. To

avoid accidental peak overlap, spectral aliasing is generally kept

to a minimum. If the chemical shifts of one or several nuclear spin

species are already known from previously recorded spectra, this

information can be exploited to minimize SW for further data

acquisition involving the same nuclear spins. For example, 1H-
15N and 1H-13C correlation experiments are generally performed

during the early stage of an NMR protein study. We have developed

a simple algorithm that optimizes SWX (X )
15N or 13C) based on

the (1H, X) peak list of a protein (ASCOM-1). Spectra are calculated

for each SWX by representing the cross-peaks by ellipses defined

by line width parameters in the two dimensions (Supporting

Information, Figure S2). The number of resolved cross-peaks is

computed as a function of SWX. Here we focus on complex data

as obtained from STATES,3a STATES-TPPI,3b or echo/antiecho3c

quadrature detection. For complex NMR data, the ASCOM

optimization is independent of the X carrier frequency and thus

requires less computation. Fast computation becomes important

when using ASCOM directly on the NMR spectrometer for

automated optimization of acquisition parameters. Figure 1a shows

that, for small to medium sized proteins, high degrees of compres-

sion with minimal or no loss of spectral information are achieved

from ASCOM-1 optimization of the 15N spectral width. 1H-15N

spectra recorded for ubiquitin using SWN ) 25 ppm (85 resolved

peaks) and SWN) 5.7 ppm (81 resolved peaks) are shown in Figure

1b.

As a first application of interest, a series of SOFAST-HMQC
1H-15N spectra2a can be recorded with a repetition rate of ∼1

spectrum/second to follow a kinetic process in real time. So far,

Figure 1. (a) ASCOM-1 optimization of SWN (B0 ) 18.8 T, ∆νH ) ∆νN

) 30 Hz) for 1H-15N correlation experiments of different proteins: 76-
residue ubiquitin (top), a 103-residue fragment of Hyl1 (Hyl1-1)4 (center),
and 147-residue WZB (bottom, BMRB 6934). ASCOM-1 is particularly
attractive for small proteins with a low intrinsic peak density. (b) Ubiquitin
1H-15N correlation spectra recorded for different 15N spectral widths. (c)
ASCOM-2SW (top) and ASCOM-2proj (bottom) optimizations assuming B0
) 14.1 T, ∆νH ) 30 Hz, ∆νN ) ∆νCO ) 15 Hz. Results are shown for the
natively unstructured γ-synuclein (left, BMRB 7244), Hyl1-1 (center), and
malate synthase G (right, BMRB 5471). In ASCOM-2proj a peak is counted
as resolved if it does not overlap in at least one of the two projections.
Parameter combinations for which a maximum of cross-peaks (number given
in the upper left corner) are resolved are color-coded in black. The additional
gray surface areas indicate the ASCOM-2SW results for a number of resolved
cross-peaks equal to the maximum obtained by ASCOM-2proj. For smaller
proteins, the two approaches yield comparable results. For large or
unstructured protein, only ASCOM-2SW resolves all possible peaks while
providing significant data compression.
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the time resolution of 2D real-time protein NMR has been limited

to ∼5 s using standard SOFAST-HMQC. Hadamard-encoded

SOFAST-HMQC2b or spatially encoded ultraSOFAST HMQC2c

also yield 1 s-1 repetition rates, but the former focuses on a set of

selected amide sites, and the latter requires very high protein

concentrations. ASCOM-optimized SOFAST-HMQC yields 1 s

time resolution simultaneously for all amide sites resolved in the
1H-15N correlation map using moderate protein concentrations. To

illustrate this method, we have measured fast amide hydrogen-

deuterium exchange in ubiquitin under weak denaturing conditions

at high pH. The H/D exchange rates measured under such conditions

provide useful information on global unfolding events in the

protein.5 Representative examples of exchange curves are shown

in Figure 2. These results clearly demonstrate that real-time 2D

NMR measurements of kinetic events down to characteristic time

constants τex of a few seconds are accessible to ASCOM-1

optimized SOFAST-HMQC. Other interesting applications of

ASCOM-1 comprise 15N relaxation measurements, 13C, 15N-edited

3D and 4D 1H-1H NOESY, and 3D H-N-X correlation experi-

ments as required for resonance assignment.

The ASCOM approach can be extended to 3-dimensional spectral

space if chemical shift information for three correlated nuclei is

available. In ASCOM-2, two spectral parameters are optimized

simultaneously, either (i) the spectral widths in the two indirect

dimensions (ASCOM-2SW) or (ii) a tilt angle and a tilted spectral

width for recording a pair of plane projections (ASCOM-2proj).6

Here, we focus on correlation experiments required for protein

resonance assignment. Recording of 4D NMR spectra with high

resolution generally requires unreasonably long acquisition times

of >1 week. Therefore, resonance assignment is usually performed

based on a set of 3D spectra. With ASCOM-2, however, recording

of 4D H-N-CO-X spectra becomes possible in an experimental

time comparable to a 3D experiment. The peak density is optimized

on the basis of the correlated frequency information obtained from

a prior recorded 3D H-N-CO data set. The small number of

HNCO peaks (about one per residue), makes ASCOM-2 an efficient

tool. For small proteins, ASCOM-2proj yields highest data compres-

sion, while still resolving most of the correlation peaks. For larger

or unstructured proteins, however, fewer peaks are resolved in the

ASCOM-2proj-optimized projections than in the 3D spectrum, as

illustrated in Figure 1c.

Even for the 723-residue MSG protein, ASCOM-2SW yields

optimized 15N, 13CO spectral widths of only ∼500 Hz.

Figure 3 shows 2D strips extracted from ASCOM-2SW optimized

sequential and intraresidue 4D HNCO-CACB experiments (Figure

S5) of Hyl1-1. These experiments provide chemical shift informa-

tion for five nuclei in a single data set. The 4D spectra solve

ambiguities remaining in a 3D spectrum because of overlapping
1H-15N correlations, by dispersing the peaks along an additional

CO dimension. Therefore they greatly facilitate spectral analysis

and sequential assignment, especially for the crowded central

spectral regions. By combining ASCOM-2 optimization with the

BEST concept,2d introduced recently for fast pulsing NMR, a

complete 4D HNCO-CACB data set can be recorded in less than

4 h as long as sensitivity is not the limiting factor. This is

demonstrated for a 2 mM sample of ubiquitin in Supporting

Information Figure S6.

In summary, we have introduced ASCOM a simple tool that

optimizes the peak density in 2D or 3D spectral space in order to

reduce data acquisition times. We expect that this approach will

prove very useful for the study of larger molecular systems,

unfolded or partially folded proteins using higher-dimensional

NMR, as well as for the study of unidirectional biophysical

processes by real-time 2D NMR spectroscopy.
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Figure 2. H/D exchange rates measured for amide sites in ubiquitin (1.4
mM, pH 10.8, 2 M urea, 25 °C, 18.8 T). The exchange reaction was initiated
by fast injection2e of a 50 µL protein-H2O solution into 350 µL of D2O.
The dead time of the experiment was ∼2 s. The ASCOM-1 optimized 15N
spectral width for this sample (48 cross-peaks observable) was 4.9 ppm.
SOFAST-HMQC2a spectra were recorded with eight complex points in t1
(5 ms recycle delay) in an overall time of 1 s.

Figure 3. (a) Central part of a 1H-15N HSQC spectrum of Hyl1-1. (b, c)
2D 1H-13C strips extracted from 3D and 4D seq-HNCO-CACB and intra-
HNCO-CACB spectra at ωH ) 8.2 ppm, ωN ) 122.2 ppm, and ωCO )

174.6, 175.0, and 179.7 ppm for the 4D data sets. The 4D spectra shown
in panels b and c were recorded at 600 MHz on a 0.4 mM sample in an
experimental time of 20 and 40 h, respectively, using ASCOM-2SW
optimized 15N and 13CO spectral widths of 141 and 483 Hz, respectively.
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Résumé

La RMN multidimensionnelle (RMN-nD) est la méthode de choix pour l'étude de la structure et de la 

dynamique des protéines en solution avec une résolution atomique. Une limitation de la RMN-nD est la 

longue durée  de l'acquisition:  le  temps d'acquisition du jeu de  données  nécessaire  pour une  étude 

structurale  est  souvent  de l'ordre  de plusieurs semaines.  De plus,  des processus  cinétiques,  qui  se 

passent à l'échelle de la seconde, ne sont pas accessibles aux études en temps réel par RMN-nD en 

utilisant les méthodes standards.  Ce travail présente des développements méthodologiques qui visent à 

accélérer  la  RMN-nD en optimisant  la  relaxation longitudinale  des  protons  amides.  Les  méthodes 

proposées permettent d'acquérir des spectres de corrélation 2D  
1
H-

15
N (3D  

1
H-

15
N-

13
C) en quelques 

secondes (quelques minutes). En plus, en combinaison avec des méthodes  existantes (encodage spatial, 

encodage Hadamard), le temps d'acquisition pour des spectres 2D peut être réduit à une seconde. Des 

applications à l'étude de phenomène cinétiques des protéines sont montrées.

Cette thèse  présente aussi une nouvelle expérience RMN qui permet d'évaluer rapidement la qualité 

d'un échantillon de protéine, et une nouvelle méthode pour mesurer des couplages dipolaires résiduels 

entre  protons amides avec une meilleure sensibilité que les méthodes existantes.

Abstract

Multidimensional (nD) NMR is the method of choice for atom-resolved studies of protein structure and 

dynamics in solution. Among its current limitations are the long acquisition times required, translating 

to experimental times of several days or weeks for the set of experiments required for structural studies 

of proteins. Furthermore, real-time studies of kinetic processes occurring on a seconds time scale are 

inaccessible to standard nD NMR. This thesis is concerned with the development of fast nD NMR 

techniques based on longitudinal relaxation optimization. It is shown that 2D 
1
H-

15
N (3D 

1
H-

15
N-

13
C) 

correlation spectra can be obtained in only a few seconds (few minutes) of acquisition time for samples 

at  millimolar  concentration.  In  addition,  the  longitudinal  relaxation  optimized  methods,  when 

combined with alternative data sampling such as spatial or Hadamard encoding, can yield site-resolved 

2D  
1
H-

15
N  correlation  spectra  in  acquisition  times  down to  one  second.  Applications  of  fast  2D 

methods to the study of protein folding and unfolding are shown.

This  thesis  also  presents  a  longitudinal  relaxation  optimized  method  for  the  sensitivity-enhanced 

measurement  of  residual  dipolar  couplings  between  amide  protons,  as  well  as  a  fast  and  simple 

experiment for the characterization of protein samples, which can be very useful in the context of 

screening of sample conditions.

___________________________________________________________________________________

Mots Clés: RMN multidimensionnelle, relaxation longitudinale, Effet Overhauser Nucléaire, Couplage 

Résiduel Dipolaire, protéine, repliement de protéines, échange H/D des protons amides

___________________________________________________________________________________
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