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Introdution générale
Le ontexte : L'hydrodynamique �tière et de surfaeAvant de parler de vagues et de irulation oéanique, je souhaiterais introduire leontexte générale de ette étude. L'étude de la irulation oéanique, et de l'oéan engénéral, est au arrefour de nombreux enjeux, et il semble opportun d'en dresser uneliste rapide pour avoir une idée des appliations pratiques de la présente reherhe.À l'éhelle du globe, la irulation oéanique intéresse partiulièrement pourson impat sur le limat. À l'éhelle �tière, les intérêts sont plus divers, depuis laonnaissane et la prévision des mouvements des masses d'eau pour appliation à labiologie, à la biogéohimie, l'halieuthique, à la défense sous-marine, jusqu'au suivides pollutions et au sauvetage en mer. En�n à l'éhelle littorale, l'hydrodynamiquede l'oéan est étudiée prinipalement pour ses appliations à l'érosion des otes, autransport sédimentaire.Pour beauoup d'appliations parmi elles itées i-dessus, un des pré-requis estde posséder un modèle de l'oéan qui représente orretement les transports parti-ulaires près de la surfae (suivi des pollutions, sauvetage en mer, étude des dérivesde larves en halieuthique), qui représente orretement le mélange des ouhes desurfae oéaniques , ave les yles diurnes et saisonniers (études limatiques, bio-géohimie), et qui représente orretement la irulation aux abords immédiats desplages, dans la zone de déferlement des vagues et au-delà, sur le plateau interne(érosion des plages, transport des sédiments, suivi des polluants rejetés de la �te).En fait une grande partie des ativités de reherhe oéanographiques néessitentune bonne onnaissane de l'hydrodynamique près de la surfae et près de la �te,et e n'est pas surprenant puisque l'essentiel des ativités humaines et animales s'yonentrent.Voila e qui onstitue la motivation pour étudier l'hydrodynamique de ettepartie de l'oéan, et plus préisément l'impat des vagues sur elle-i.11



12 Introdution généraleProblématique : L'impat des vaguesLes vagues jouent un r�le prépondérant dans la dynamique de l'oéan au niveaulittoral. Par exemple, des vagues d'inidene oblique gênèrent des ourants le long desplages, et es ourants sont généralement plus importants que les ourants rées parle vent, la marée ou les ourants du large. Les modèles hydrodynamiques littorauxintègrent don les vagues omme un forçage essentiel.Au ontraire, dans les modèles �tiers d'oéan, à des éhelles de grandeur del'ordre d'une baie, d'une région ou d'un bassin oéanique, l'oéan évolue uniquementen réponse au vent, à la marée et aux di�érents forçages sur la température etsur la salinité. Les vagues, et plus généralement l'état de mer, ne sont pas prisen ompte. Hors de la zone de déferlement bathymétrique, les vagues sont ainsilargement ignorées.Pourtant, l'énergie inétique turbulente (TKE) produite par le déferlement desvagues est supérieure, au moins d'un ordre de grandeur, à la prodution de TKEpar le isaillement du ourant d'Ekman (Terray et al., 1996). De même, la pseudo-quantité de mouvement des vagues, intégrée vertialement (.à.d. le transport deStokes des vagues) est de l'ordre de grandeur du transport d'Ekman orrespondantau vent qui les a réées : MWilliams and Restrepo (1999), ainsi que Polton etal. (2005), ont donné une première estimation de e transport de Stokes à 40% dutransport d'Ekman aux moyennes latitudes. Cependant, une analyse plus réalistetenant ompte du fait que les vagues sont rarement omplètement développées parvent fort serait ertainement plus prohe de 10%. En surfae, la dérive de Stokesdes vagues de vent a été estimée par Kenyon (1969) à plus de 3% de la vitesse duvent à 10 m, une vitesse omparable à la dérive due au vent des partiules d'eau à lasurfae. En�n, le transfert de la quantité de mouvement du vent vers l'oéan passegénéralement à plus de 80% par les vagues, alors que 20% ou moins sont dus auxfrottements visqueux à la surfae (Donelan, 1998; Banner and Peirson, 1998).Ces diverses observations et analyses ont amené à reonsidérer l'importane desvagues dans la desription de l'oéan, y ompris loin de la �te. En partiulier pourdes problématiques liées aux dérives près de la surfae ou liées au mélange près dela surfae, les vagues doivent jouer un r�le important, ompte tenu des ordres degrandeurs préédents.Également il apparaît un fossé entre la desription littorale, ave vagues, et ladesription �tière, sans vagues, de l'oéan. Pourtant, la zone intermédiaire, au-delàde la zone de déferlement des vagues et que nous nommerons pré-littorale ommeDenamiel (2006), est d'importane ruiale en terme de transports de sédiment, dematériel biologique ou himique, puisque 'est dans ette zone que se retrouvent tous



Introdution générale 13les matériels issus de la zone littorale. Une desription ohérente des ourants induitspar les vagues, depuis la plage jusqu'au large, au même titre que les ourants induitspar les autres forçages tels le vent ou la marée, est ainsi néessaire pour modéliserette zone pré-littorale.Plan de l'exposéPare que l'impat général des vagues sur l'hydrodynamique est à heval surdi�érents hamps d'investigations, depuis la l�ture turbulente et le mélange vertialjusqu'à la irulation littorale, la bibliographie n'a pas été, omme il est d'usagehabituellement, regroupée dans une partie spéi�que. Au ontraire, haune desdi�érentes parties traite de sa bibliographie spéi�que.Notre exposé s'artiule en 3 parties.Les aspets généraux seront rappelés dans un hapitre préliminaire. J'y ferainotamment une desription simple des vagues et du transport de masse qui leurest assoié. La séparation du hamp de vitesse en une partie vagues et une partieourant moyen y sera présentée, ainsi que la fore de Stokes-Coriolis. Ces deuxnotions reviendront de façon réurrente tout au long de e travail.Ensuite une première partie traitera plus préisément de l'e�et des vagues surl'hydrodynamique loin de la �te. L'étude sera alors à une dimension vertiale ets'attahera à dérire de façon ohérente les ourants d'Ekman et la dérive près de lasurfae sous l'e�et des vagues. On y abordera également les problèmes de mélangeinduit par les vagues et de l�ture turbulente, et ses onséquenes sur les pro�ls devitesse près de la surfae.Une deuxième partie reviendra sur le mélange lié aux vagues, mais ette fois surson impat sur la profondeur de la ouhe de mélange. Les modèles et les paramètrespour prendre en ompte e mélange induit par les vagues seront disutés, ainsi quel'impat sur la formation et l'érosion des thermolines.En�n une troisième partie présentera une desription de la irulation induite parles vagues depuis la zone de déferlement jusqu'au plateau ontinental. Les aspets liésà la non-uniformité du hamp de vagues, onnus par exemple sous le terme "tensionsde radiation", seront abordés. L'analyse séparée des vagues et des ourants, ainsique ses onséquenes sur la ompréhension des ourants de la zone infra-littorale,sera abordée.



14 Introdution générale



General introdution in english
The ontext: The hydrodynamis near the oast andnear the surfaeBefore disussing the waves and their impat on the oean irulation, I would liketo introdue the general ontext of this study. The study of the oeani irulation,and more generally the study of the oean, might bene�t to many ativities and ashort review might be helpful to understand the possible appliations of the presentthesis.At global sale, the oean irulation is under partiular interest for its impaton the limate. But at oastal sale, the motivations are more diverse, from theunderstanding and foreasting of the water mass transport for appliations to biol-ogy, biohemistry, halieuti, submarine defense, to pollutants monitoring and searhand resue. Also at nearshore sale, the oean hydrodynamis is mainly studied forappliations to oastal erosion or sedimentary transport.For many of the appliations ited above, one neessary step is to build an oeanmodel whih orretly desribes the transports of partiles lose to the surfae (pol-lutants monitoring, searh and resue, drift of larvae), whih orretly desribes themixing in the upper oean with the resolution of the diurnal and seasonal yle (li-mati studies, biohemistry), and whih orretly represents the irulation in theviinity of the shore, in the surf-zone and beyond in the inner-shelf zone (oastal ero-sion, sedimentary transport, monitoring of the pollutants rejeted from the oast).Atually a large part of the oean researh ativities need an aurate understandingof the near-surfae and nearshore hydrodynamis, and this is not surprising sinemost animal and human ativities onentrate in those areas.This sets up a motivation to study the hydrodynamis of this part of the oean,and more preisely to study the impat of waves on it.15



16 General introdution in englishThe issue: The impat of wavesWaves play a dominant role in the oean dynamis lose to the shore. For instane,obliquely inident waves reate alongshore urrents, and those urrents are generallylarger than the urrents reated by the wind, the tides or the o�-shore urrents.Therefore nearshore hydrodynamis models use the waves as an essential foring.On the ontrary in the oastal models, at the sale of a bay, of a region or ofan oean, the oean evolves only in response to the wind, the tide and the di�erentforings of the temperature and the salinity. Waves, and more generally the seastate, are then largely ignored outside of the surf-zone.Nevertheless, the turbulent kineti energy (TKE) produed by the wave breakingis at least an order of magnitude larger than the TKE produed by the shear of theEkman urrents (Terray et al., 1996). Also the vertially-integrated waves pseudo-momentum (i.e. the Stokes transport of the waves) is of the order of the Ekmantransport orresponding to the wind whih reated those waves. MWilliams andRestrepo (1999) and Polton et al. (2005) gave a �rst estimation of this Stokes trans-port around 40% of the Ekman transport at mid-latitude. We note however thata more realisti estimation would be lose to 10% given that the waves are seldomfully-developed under strong winds. At the surfae, the Stokes drift was estimatedby Kenyon (1969) to be more than 3% of the wind speed at 10 m, a veloity ofthe same order as the drift veloity of partiles at the surfae. Finally, the momen-tum from the wind transfers to the oean generally through the wave �eld at 80%,whereas only 20% or less are due to the visous frition at the surfae (Donelan,1998; Banner and Peirson, 1998).All those observations have lead us to reonsider the importane of waves inthe desription of the oean, even far from the oast. In partiular for studies ofnear-surfae drift or near-surfae mixing, waves might play an important role giventhe previously listed orders of magnitude.Also there is a gap between the nearshore desriptions (with waves) and theoastal desriptions (without waves) of the oean. Yet the intermediate zone, theinner-shelf zone, is of ruial importane in terms of sedimentary transport, hemialor biologial transport, sine all the materials oming from the surf-zone �nally endup there. A oherent desription of wave-indued urrents, from the shore to theopen oean, as well as the urrents indued by the other forings, is a neessary stepto build a model of that inner-shelf zone.



General introdution in english 17ContentsAs the general impat of waves on the hydrodynamis deals with many di�erenttopis, ranging from the turbulent losure and vertial mixing to the nearshoreirulation, the bibliography has not been, as it is onventionally done, gathered ina spei� part. On the ontrary, eah part deals with its spei� bibliography.The thesis is split into three parts.The general onepts will be realled in a preliminary hapter. I will made asimple desription of the waves and of the assoiated mass transport. The separationof the veloity �eld into a wave part and a mean �ow part will be presented, as wellas the Stokes-Coriolis fore. Those onepts will appear all along the thesis.Then a �rst part will deal more preisely with the e�ets of waves on the dynamisin the open oean. The study inorporates only one (vertial) dimension and willtry to desribe in a oherent manner the Ekman urrents and the drift lose to thesurfae in the presene of waves. Also the vertial mixing due to the waves will beparameterized with an appropriate turbulene losure. Its impat on the veloitypro�les lose to the surfae will be disussed.A seond part will also fous on the wave-indued mixing, but more preiselyon its impat on the mixed layer depth. Models and parameters to inlude thewave-indued mixing will be disussed, as well as the impat on the thermolineformation and erosion.Finally, a third part be devoted to the desription of the wave-indued irulationfrom the surf-zone to the shelf. Aspets linked to horizontally non-uniform wave�elds, for instane known as radiation stress e�ets, will be disussed. The separatedanalysis of waves and urrents, as well as its onsequene on the understanding ofthe inner-shelf urrents, will be disussed.
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Chapter 1General oneptsThis hapter aims to introdue general onepts used in this study. We �rst reallthe typial length and time sales of the waves, and the impliations for the wavemodelling. Then we introdue the Stokes drift of the waves and we disuss on asimple example the two major di�ulties whih appear for the modelling of wavesand urrents. The �rst di�ulty is the motion of the free surfae, for whih a speialaveraging is needed. The seond di�ulty omes from the quite di�erent physis ofthe mean �ow and of the waves Stokes drift, for whih a separation of waves andmean �ow is needed to obtain suitable parameterizations. Finally, emphasis is madeon the fat that the mean �ow dynamis is di�erent than the total drift dynamis,for instane with the appearane of the Stokes-Coriolis fore for an horizontallyuniform ase.1.1 Lengths and time salesThe present thesis investigates the role of the waves on the 3D dynamis of theupper oean, and also on the 3D dynamis of the nearshore and ostal oeans.We reall here that the waves, i.e. short gravity waves at the surfae, have typialwavelengths of 100 m, heights of 1 m and periods of 10 s. Those sales are rathersmall ompared to the typial length and time sales of the oean irulation, butit should be noted that the large sale variations of the wave �eld are muh largerthan the sale of a single wave and are omparable to those oean irulation sales.The variety of oeani phenomenons in�uened by waves is large, the typialhorizontal sales spanning the range from hundreds of kilometers for large salevariations of the wave �eld to a meter for the energy ontaining eddies of the wave-stirred turbulent surfae layer, and even less for the mirosale breaking of thesmallest waves. 19



20 Chapter 1Beause of the limited numerial resoures and beause one also needs to analyzethe physial features, it is ustomary for the purpose of oean irulation to onsiderhorizontal length sale smaller than a hundred of meters horizontally and one metervertially as subgrid phenomenons. The present study will keep in mind thesetypial sales and try to �nd adapted desriptions and parameterizations, of smallsale wave-indued turbulene for instane.Also, we fous in the present thesis on wave-driven urrents with time variationsslower than the wave period. We therefore use a spetral approah, without resolv-ing the phase of the waves, following the method employed in most of the wavepredition systems whih simulate the generation, the propagation and the dissipa-tion of the waves. In this kind of desription, the sea state is onsidered as a sumof monohromati waves, spread over a frequeny-diretional energy spetrum (e.gKomen et al., 1994).
1.2 Waves, Stokes drift, averagingLet us take a monohromati wave propagating in the x diretion, in deep waterand without urrent. The equations of motion, valid for z < η, are (e.g. Mei, 1989)





η = a cos(ωt− kx)

u = aω cos(ωt− kx) exp(kz)

w = aω sin(ωt− kx) exp(kz),

(1.1)where a is the amplitude, ω the radian frequeny, k the wavenumber, η the surfaeelevation and u, w the horizontal and vertial omponents of the wave motion. Notethat the previous expressions, as well as most formulae in this hapter, are valid inthe limit of small wave slope ka ≪ 1. For simpliity, I will not disuss further theorder of eah approximations.Now let us average in time this veloity, de�ning the time average u = 1
T

∫ T
0 udtover a wave period T . Assuming u = 0 for z ≥ η, we get




u ≃ aω

π

√
1 − z

a
2 for − a < z < a,

u = 0 for z < −a.
(1.2)In that Eulerian desription, the Stokes drift, i.e. the time-averaged mass transport,is onentrate between the rests and the troughs of the waves (�g. 1.1, upperpanel).



General onepts 21However the Lagrangian mean speed of a partile moving with the wave is
uL = u(x(t), z(t), t)

=
∂u

∂x
x(t) +

∂u

∂z
z(t), (1.3)where (x(t), z(t)) are the oordinates of the partile. The orrelation between thedisplaement and the non-uniform veloity �eld yields a residual motion of the �uidpartiles. In other words, the orbits of the partiles are not losed. The residualdrift is the Stokes drift and is equal to

Us = a2ωk exp(2kz), (1.4)where the vertial oordinates z represents this time the mean position of a partileof water.This simple example illustrates the ompliations whih appear due to the mov-ing surfae, even for linear waves, and the neessity of a areful averaging lose tothe surfae. The hoie of oordinates to desribe both wave-indued motion andmean urrent is of great importane and must be disussed here.Most �eld measurements are time averages made at almost �xed loations.Therefore the Eulerian desription is traditionally used for oeani irulation, andhas been hosen in many studies on wave-driven mean �ows. In the Eulerian de-sription, the interfae is distributed between the rest z = a and the trough z = −a.When onsidering the mean �elds, it is usually assumed that they an be analyti-ally extended between the trough and the mean surfae z = η = 0. For example,the vertial integral of the veloity is de�ned as
Tm =

∫ η

−h
udz. (1.5)In the same time, the wave mass transport of the waves is either assumed to be asurfae mass transport (Hasselmann, 1971; Stive and Wind, 1986; Newberger andAllen, 2007b) equal to

Mw =
∫ η

η
udz, (1.6)or to be distributed aording to the Lagrangian Stokes drift pro�le (MWilliamset al., 2004). Clearly, the Eulerian averaging proedure presents some oddities inits surfae representation. The analytial extension of the �elds is made whereasthe phase relations between the �eld and the surfae is of great importane. For



22 Chapter 1the example of the veloity, it leads to the wave Stokes drift. Although Eulerianaveraging might give orret representation of the Stokes drift with a areful analysis(e.g. MWilliams et al., 2004), a not so detailed analysis might miss the full vertialdistribution of the Lagrangian motion (Hasselmann, 1971; Stive and Wind, 1986;Newberger and Allen, 2007b).For this reason, many authors have hosen to use a hange of oordinates tomake a proper averaging of the waves (e.g. Jenkins, 1986). The most simple one wasreently proposed by Mellor (2003). It is simply the use of a partiular σ-oordinatesystem, the one following the �uid vertial motion (to lowest order in the waveslope), to bring the partiles bak to their �xed vertial mean loation and thento average in time the veloity (�g. 1.1, middle panel). For the ase of the wavemotion disussed above, the mean veloity obtained by this method is in agreementwith the Lagrangian desription of the Stokes drift. More ompliated but along thesame idea, Andrews and MIntyre (1978a) introdued the Generalized LagrangianMean (GLM). In that ase, the partiles are also horizontally displaed bak totheir mean position during a wave period (�g. 1.1, lower panel). The omplexity ofthe mapping of Andrews and MIntyre (1978a) is ompensated by the simpliity ofexat phase-averaged equations.1.3 Wave / Mean �ow separationA key point of the present work is the separation between the wave part and themean �ow. If we go bak to the monohromati waves of the previous setion, onea proper wave-averaging proedure is applied (Mellor (2003) or GLM), one gets amean Lagrangian veloity equal to the Stokes drift of the waves. Now adding abarotropi urrent brings no di�ulties. One gets then a mean Lagrangian veloityequal to the Stokes drift of the waves plus the mean urrent. The mean urrent isthen similar to the Eulerian mean urrent below the troughs.On that simple example of monohromati waves over a mean barotropi urrent,we an notie that the Lagrangian �ow is vertially sheared beause it inludesthe residual Lagrangian drift due to the wave motion, i.e. the waves Stokes drift.However, applying on the shear of that residual drift a vertial mixing term equalto the vertial mixing we would applied on a omparably sheared mean urrentwould be physially meaningless. In fat the turbulene does not at similarly onthe urrent and on the waves residual Stokes drift. In addition, the Stokes driftpropagates with the waves group speed, whereas the mean urrent is adveted atthe muh smaller urrent veloity. This leads us a entral idea of this thesis, theseparation of the mean �ow and of the wave part. By separating them, and by
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Figure 1.1: This �gure was taken from Ardhuin et al. (2007b). Averaging proedures(left) and examples of resulting veloity pro�les (right) in the ase of (a) Eulerianaverages (e.g. Rivero and Arilla, 1995; MWilliams et al., 2004), (b) the GeneralizedLagrangian Mean (Andrews and MIntyre, 1978a), and () sigma transform (Mellor,2003; Ardhuin et al., 2007). The thik blak bars onnet the �xed points x wherethe average �eld is evaluated, to the displaed points x+ ξ where the instantaneous�eld is evaluated. For averages in moving oordinates the points x + ξ at a givenvertial level ξ are along the gray lines. The drift veloity is the sum of the (quasi-Eulerian) urrent and the wave-indued mass transport. In the present illustrationan Airy wave of amplitude 3 m and wavelength 100 m in 30 m depth, is superimposedon a hypothetial urrent of veloity u(z) = −0.5− 0.01z m/s for all z < η(x). Theurrent pro�le is not represented in () sine it is not diretly given in Mellor'stheory, although it an obviously be obtained by taking the di�erene of the othertwo pro�les.parameterizing them separately beause they are physially di�erent, one an expetsigni�ant improvement of the modelling of ombined waves and urrent.That waves / mean �ow separation is easy with a depth-uniform mean urrent,



24 Chapter 1as mentioned above. But the disussion is strongly ompliated if we introdue avertially varying urrent. Both averaging of Mellor (2003) and the GLM give theLagrangian motion uL. That Lagrangian motion an be separated into a residualwave motion P and a mean �ow û.
uL = P + û. (1.7)It should be noted that the mean �ow is desribed in quasi-Eulerian oordinates. Itis di�erent from the Eulerian mean (at a �xed loation).Related to this, the residual wave part

P =
∂ul

∂x
xl(t) +

∂ul

∂z
zl(t) (1.8)has been alled the wave pseudo-momentum (see MIntyre, 1981, for a full disus-sion). Here ul is the perturbation of the veloity �eld from the Lagrangian mean,and xl, zl is the displaement. P might be di�erent from the Stokes drift de�ned asthe Lagrangian motion uL minus the Eulerian mean u.Also, in the ase of vertially varying urrent, the residual motion P of the wavesis di�erent than the residual motion without urrent, beause the vertial shear ofthe mean urrent an add to the vertial shear of the wave motion, modifying theorrelation between the veloity and the displaement in formula 1.3. For simpliity,the rest of the thesis will ignore this distintion exept in part III.A more detailed desription of the GLM separation of waves and mean �ow hasbeen made in Ardhuin et al. (2007b).1.4 The Stokes-Coriolis e�etThere is a mass transport assoiated with the wave motion. Aording to the linearwave theory, the vertial integral of the Stokes drift of a monohromati wave (equ.1.4) is

Mw =
∫ 0

−H
Usdz

=
a2ω

2
. (1.9)For large swells (i.e. waves not related to the loal wind), this transport an be ofthe order of the Ekman transport of a moderate wind at mid-latitude, as noted byMWilliams and Restrepo (1999) and Polton et al. (2005).However it was outlined by Ursell (1950) that in an invisid oean, horizontally



General onepts 25uniform, in in�nite depth, and in a rotation frame, irrotational waves annot havea steady net mass transport. This paradox was resolved by Hasselmann (1970),introduing a fore alled later the Stokes-Coriolis fore or Hasselmann fore. Xuand Bowen (1994) made apparent the physial meaning of this fore. They madea simple alulation of the impat of the Earth rotation on the wave dynamis andshowed that there is slight tilting of the orbits of the partiles under passing waves.As a onsequene there is an assoiated supplementary �ux of momentum to themean �ow, equivalent to a fore equal to fUs and oriented to the right of the wavepropagation. In other words, the Coriolis fore ats on the wave pseudo-momentum,but the orresponding �ux of momentum is released from the wave part to the mean�ow as a the body fore. This fore drives a vertially integrated transport opposedto the Stokes transport of the waves.Now examining the vertial distribution of the wave mass transport and of theStokes-Coriolis fore, two typial length sales appears, the Stokes sale δs = 1/2kand the Ekman sale δe (equal to √2Kz/f if the vertial visosity Kz is supposeduniform). As showed by Polton et al. (2005), if δs ≫ δe, then û = −P so that themean �ow totally ompensates the Stokes drift of the waves (�g. 1.2, upper panel).This might be the ase for a long swell, as studied in Part III. However the Stokesdrift of a spetrum of wind waves is strongly surfae trapped so that, in the preseneof a strong vertial mixing, δs ≪ δe and the mean �ow driven by the Stokes-Coriolisfore annot ompensate the Stokes drift of the waves lose to the surfae (�g. 1.2,lower panel). Then the net wave-indued drift is approximately equal to the Stokesdrift, whih an be signi�ant as shown in Part I.
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Part IImpat of waves on the near-surfaedynamis of the open oean.One-dimensional study.
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One-Dimensional study:IntrodutionWe start with the study of the impat of waves on the near surfae o�-shore dynam-is, in its most simple desription : a wind sea without any horizontal variations ofthe wind, waves or strati�ation.First, the Stokes drift of the waves of a wind sea is evaluated. Previous evalu-ations were made using the spetrum of Pierson and Moskowitz (1964) by Kenyon(1969), Lewis and Belher (2004) and Polton et al. (2005), leading to surfae valuesof the Stokes drift around 3% of the wind speed at 10m. However the high frequenyrange of the spetrum, i.e. the small waves, makes a large ontribution to the Stokesdrift at the surfae (see �gure 4.1). Therefore we used a more realisti spetrum,the one of Kudryavtsev et al. (1999), were the high frequeny range was arefullydesigned for appliations to remote sensing. It leads to values of the surfae Stokesdrift muh smaller, around 1.2% of the wind speed at most.Seondly, the mean �ow driven by the wind, i.e. the Ekman urrent, is evalu-ated using reent observations (e.g. Agrawal et al., 1992) and models (e.g. Craig andBanner, 1994; Noh, 1996) of the strong near surfae mixing, attributed to breakingwaves, in moderate and strong winds. Essentially, these models use a TKE alu-lation with a surfae �ux of TKE and use a mixing length with a presribed largevalue at the surfae. The onsequent Ekman urrent is quite weak at the surfae inthe presene of wave breaking.The impat of the Stokes-Coriolis fore on the mean urrent is also estimated.This impat is quite weak given that the wind stress is always muh larger than theequivalent Stokes-Coriolis stress of the orresponding wind waves.The surfae drift, whih is the sum of the Stokes drift of the waves and themean urrent, appears then mainly due to the Stokes drift of the waves, raisingthe question of diret parameterization from the wind speed, a ommon engineeringpratie (see Spaulding, 1999).Finally, available observations of surfae urrents are disussed in the light of thepresent physial desription. Essentially, observations are separated into Lagrangian29



observations with drifters and observations of mean urrents with urrent meters.Most of the data are useless for a detailed investigation beause of no lear separationbetween mean �ow and wave part (e.g. Shudlih and Prie, 1998), or beause ofno available informations on waves (e.g. Churhill and Csanady, 1983). Previouslyused observations, namely, observations of mean urrent shears very lose to thesurfae during SMILE (Santala, 1991) and of mean Ekman spirals during LOTUS3(Lewis and Belher, 2004; Polton et al., 2005) are reanalyzed to �nd evidene of theexposed physis.The hapter 2 treats the ase of an uniform oean without strati�ation. Thebasis of this physial desription are outlined and brie�y ompared to observations.The hapter 3 adds the strati�ation, omments on its e�et on the net wave-indueddrift, and makes a more rigorous omparison with the observations.



Chapter 2One-Dimensional desription: Part 1:without strati�ationThis hapter is written as an independent paper :Drift and mixing under the oean surfae. Aoherent one-dimensional desription withappliation to unstrati�ed onditions
Niolas Rasle(1), Fabrie Ardhuin(1), Eugene A. Terray(2)Published in Journal of Geophysial ResearhMarh 2006

(1) Centre Militaire d'Oéanographie, SHOM, BREST, Frane
(2) Dept. of Applied Oean Physis and Engineering, Woods Hole OeanographiInstitution, Woods Hole, Massahusetts, USA
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32 Chapter 2AbstratWaves have many e�ets on near surfae dynamis : breaking waves enhane mixing,waves are assoiated with a Lagrangian mean drift (the Stokes drift), waves at onthe mean �ow by reating Langmuir irulations, and also a return �ow oppositeto the Stokes drift, and, last but not least, waves modify the atmospheri surfaeroughness. A realisti oean model is proposed to embrae all these aspets, fousingon near surfae mixing and surfae drift assoiated with the wind and generatedwaves. The model is based on the Generalized Lagrangian Mean that separatesthe momentum into a wave pseudo-momentum and a quasi-Eulerian momentum.A wave spetrum with a reasonable high-frequeny range is used to ompute theStokes drift. A turbulent losure sheme based on a single evolution equation forthe turbulent kineti energy inludes the mixing due to breaking wave e�ets andwave-turbulene interations. The roughness length of the losure sheme is adjustedusing observations of turbulent kineti energy near the surfae. The model is appliedto unstrati�ed and horizontally uniform onditions, showing good agreement withobservations of strongly mixed quasi-Eulerian urrents near the surfae, when wavesare developed. Model results suggest that a strong surfae shear persists in thedrift urrent, due to the Stokes drift ontribution. In the present model the surfaedrift only reahes 1.5% of the wind speed. It is argued that strati�ation and theproperties of drifting objets may lead to a supplementary drift as large as 1% ofthe wind speed.2.1 IntrodutionThe oean surfae is where the vast majority of marine ativities take plae, anddi�erent dynamial desriptions have been invoked to desribe the 100 m that strad-dle both sides of the air-sea interfae. Di�erent solutions have been developed forappliations suh as wave foreasting for safety at sea [e.g. Komen et al., 1994℄,foreasting of drift for searh and resue or pollution mitigation [e.g. Youssef andSpaulding 1993℄, or modelling of the general oean irulation with appliations tolimate studies [e.g. Semtner, 1995; Blek, 2002℄.Unfortunately, these desriptions of the upper oean are often inoherent, notalways based on �rst priniples, and may not give parameters ompatible availablemeasurements that ould onstrain numerial foreasting models. Work for eahof the three appliations listed above have often foused on one key parameter,the signi�ant wave height Hs, the surfae drift urrent Uς=0, or the mixed layertemperature Ts. The advent of the Global Oean Observing System (GOOS), and



1D Desription without strati�ation 33e�orts towards operational modelling of the oean on global and regional sales, aregood opportunities for �nally ahieving a ommon desription of the oean interfaethat would involve all the relevant dynami proesses : geostrophi urrents, oeanwaves, tides, internal waves, and known turbulent strutures suh as wind rolls in theatmospheri boundary layer, and both breaking waves and Langmuir irulations inthe oean mixed layer [Ardhuin et al., 2005℄. Many good fundamental ontributionshave studied one or two of these proesses, inluding joint e�ets of wave motionand mean urrents [e.g. Weber, 1981; Jenkins, 1987℄, wave breaking and Langmuirirulations e�ets on upper oean mixing [Agrawal et al., 1992; Craig and Banner,1994; Thorpe et al., 2003; Mellor and Blumberg, 2004℄.A reent onvergene of di�erent approahes to the upper oean dynamis showsa lear inonsisteny. Mellor and Blumberg (2004) demonstrated that a parameter-ization for the strong mixing due to wave breaking, previously observed by Agrawalet al. (1992) and others, leads to improved hindasts of mixed layer depth and tem-perature of the lassi dataset from the Gulf of Alaska station Papa. This strongmixing also leads to a rather uniform Eulerian urrent pro�le, whih has to be small,beause the depth-integrated transport is the known Ekman transport. Mellor andBlumberg (2004) �nd surfae urrents less than 0.6% of the wind speed. Suh avalue of the Eulerian urrent may be larger than the quasi-Eulerian urrent ob-served by Santala and Terray (1992), but it is paradoxially small for experts in theforeasting of surfae drift, for whom it is well established that the drift veloity isoften lose to 2 or 3% of the wind speed at 10 meters, U10 [Spaulding, 1999℄. Botha strong mixing and a strong veloity shear at the surfae should be obtained whensurfae waves are aounted for in a onsistent way, inluding both wave breakingand wave-indued Stokes drift.The goal of the present paper is to evaluate how well a simple but oherent modelof the upper oean performs in terms of drift veloities, Eulerian veloities, eddyvisosities and turbulent dissipation. Sine waves are learly an important part ofthe oeani mixed layer, we shall also explore whih wave parameters are importantand how the mixed layer is modi�ed. In partiular the e�et of the Hasselmannfore [Hasselmann, 1970℄ that was reported to be signi�ant by Lewis and Belher(2004) is re-examined with a realisti parameterization of near-surfae mixing. Thepresent paper fouses on onditions that are statistially stationary and homogenousin the horizontal dimensions. The wave foring and resulting wave properties aredesribed in setion 2. These drive a model for turbulent and mean Eulerian proper-ties, as desribed in setion 3. That model is based on the approximation, to seondorder in the wave slope, of the Generalized Lagrangian Mean (GLM2, see Andrewsand MIntyre (1978a), and Groeneweg (1999)) applied to the Reynolds-Averaged



34 Chapter 2Navier-Stokes (RANS) equations. This GLM2-RANS formalism an be obtained bysubtrating the wave pseudo-momentum from the total momentum equation givenby Mellor (2003), and valid for horizontally-uniform onditions. This step, as wellas a derivation from the equations of Andrews and MIntyre (1978a), is desribedby Ardhuin (2005). The numerial alulations use the omputer ode by Craig andBanner (1994), extended to aount for wave e�ets spei� to our GML2-RANSequations. In setion 4, the various e�ets of the waves on the turbulent, Eule-rian and Lagrangian properties are ompared to observations of turbulent kinetienergy dissipation, quasi-Eulerian and Lagrangian veloities. Conlusions follow insetion 5.
2.2 Wave dynamis2.2.1 Spetral wave evolutionOean surfae waves, generated by the wind, have a large in�uene on air-sea �uxes.In partiular, waves are generally believed to absorb more than 50% the wind-to-oean momentum �ux τa [Donelan, 1998;Banner and Peirson, 1998℄. This largefration of the wind stress τa is the wave-indued stress τ in. However, only a smallfration of τ in, possibly up to 5%, is radiated in the wave �eld momentum �ux,the vast majority is ontinuously lost by waves as they dissipate, essentially due towave breaking [Donelan, 1998; Janssen et al., 2004; Ardhuin et al., 2004℄. Anothere�et of interest to oastal oeanographers is that for a given wind speed, τa an beinreased by as muh as a fator three in oastal areas, due to the di�erent natureof the wave �eld [e.g. Drennan et al. 2003; Lange et al. 2004℄.Beause oean waves are generated by the wind, many authors have sought adiret parameterization of wave e�ets from the wind �eld. However, waves are notuniquely de�ned by the loal wind speed and diretion, in partiular in oastal areasand marginal seas (like the Mediterranean sea), where wave development is limitedby the feth, but also in the tropis and mid-latitudes where a large part of thewave energy is due to long period waves (swell) that have propagated from distantstorms, sometimes half-way round the Earth [Snodgrass et al. 1966℄. In general,one needs to take into aount the wave dynamis that are, on these large sales,statistially well de�ned by the diretional wave spetrum E(k, θ), that distributesover wavenumbers k and diretions θ the wave energy Ew = ρwg

∫
E(k, θ)dkdθ. Theevolution of the spetrum is generally modelled using the energy balane equation



1D Desription without strati�ation 35[Geli et al., 1957℄,
d

dt
E(k, θ) = S in(k, θ) + Snl(k, θ) + Sds(k, θ) + Sbot(k, θ), (2.1)where the Lagrangian time derivative inludes propagation e�ets, and S in, Snl, Sds,

Sbot are `soure terms' (either positive for true soures or negative for atual sinks)that represent the energy given to the spetral omponent (k, θ) by the atmosphere,the other wave omponents, the oean turbulene in the water olumn and surfaeboundary layer, and the bottom boundary layer and sediments, respetively. Thisequation is easily extended to take into aount varying urrents [Komen et al. 1994;White 1999℄. Eah energy soure terms an be onverted in a momentum soureterm [e.g. Phillips 1977℄,
τ i = ρwg

∫
Si(k, θ)

C
dkdθ, (2.2)where C is the wave intrinsi phase speed. Of partiular interest will be τ in and

−τds, the momentum �uxes, per unit surfae of the oean, input to waves from thewind, and delivered to the mean �ow by the waves, respetively.2.2.2 The Stokes driftIt is also well known that waves possess a pseudo-momentum that is equal to themass transport veloity or Stokes drift Us [e.g. MIntyre 1981℄. This drift arises asthe wave-indued orbits of partiles are not exatly losed. From an Eulerian pointof view this drift is zero everywhere below the wave troughs, and the wave-induedmass transport ours between the deepest troughs and the highest rests. However,suh an Eulerian view `di�uses' the air-sea interfae over a vertial distane of theorder of the signi�ant wave height Hs, whih is not pratial for investigating thesurfae gradient of any quantity. We shall thus prefer the Lagrangian point of view[e.g. Andrews and MIntyre, 1976℄, that yields, orret to seond order in the waveslope, the following expression [Kenyon, 1969℄ for deep-water waves,
Us (z) = 2

∫ 2π
0

∫
∞

0 uθkσe
2kzE(k, θ)dkdθ

= 2
g

∫ 2π
0

∫
∞

0 uθσ
3e2kzE(k, θ)dkdθ. (2.3)That expression uses the intrinsi wave radian frequeny, as given by the deep waterdispersion relation for linear gravity waves, σ =

√
gk, g is the aeleration of gravity,and uθ = (cos θ, sin θ) is the unit vetor in the diretion of propagation. The originof the vertial oordinate z is at the mean water level.
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Us is learly muh smaller than the orbital wave veloity, by a fator ε that is thewave slope, typially less than 0.1. Us is also strongly sheared at the surfae beausethe ontribution of eah wave omponent deays exponentially over its Stokes depth

1/(2k), and the high-wavenumber omponents give a signi�ant ontribution to Us,but near the surfae only (�gure 1). Using a spetral shape proposed by Kudryavtsevet al. (1999), a wind of U10 = 10 m s−1 yields a surfae drift of Us(z = 0) =

0.11 m s−1, when only wave omponents with 2π/k > 5 m are inluded , whereasall omponents up to 2π/k = 0.1 m yield up to 0.13 m s−1. The omparisonwith a monohromati omponent shows the di�erenes between wind sea and swellontributions : the swell-indued Stokes drift at the surfae is typially less than
30% of the drift assoiated with a wind sea of same peak period and signi�ant waveheight. A large swell and a wind sea due to a weak wind an then produe surfaeStokes drifts of the same order.The Stokes transport

Mw =
∫ 0

−H
Usdz =

∫ 2π

0

∫
∞

0
uθσE(k, θ)dkdθ (2.4)is slightly less in�uened by the short (and slower) waves. Nevertheless the shortwaves ontribute relatively more to Mw than to the wave energy, as the ontributionof eah spetral omponent to Mw is its surfae elevation variane divided by theintrinsi phase speed.2.2.3 Pratial alulation of wave parametersBeause short waves are important, with Us(z = 0) and Mw proportional to thethird and �rst moments of the frequeny spetrum, respetively, a numerial esti-mation of Us based on (2.3) should use a wave spetrum that is well de�ned inthat range. For general appliations using numerial wave models suh as WAM[WAMDI Group, 1988℄, the expliitly resolved spetrum an be arefully extendedby a high-frequeny tail. In the present study, we use the family of spetra proposedfor remote-sensing appliations by Kudryavtsev et al. (1999), and governed by thetwo main parameters that are the wind speed and the stage of wave development.These spetra have been arefully designed to reprodue both the long wave spe-trum, with a spetral shape similar to that of Donelan et al. (1985), and the shortwave spetrum with, in partiular, a seond moment of the wavenumber spetrum(or fourth moment of the frequeny spetrum) that is well onstrained by the op-tial measurements of the mean sea surfae slope by Cox and Munk (1954). Onean thus assume that the intermediate third moment that is the Stokes drift is well
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Figure 2.1: Stokes drift pro�le for a wind speed U10 = 10 m s−1 and a feth largerthan 1000 km (fully developed sea), based on the KMC spetrum [Kudryavtsev etal. (1999)℄ , and the integral (2.3). Di�erent pro�les are shown that only inludewavelengths longer than a minimum value λmin. For omparison, the drift due toa single wave omponent is also indiated. That single omponent has same peakwavelength and surfae elevation variane (period Tp = 8s, Hs = 2.8m) as the wavespetrum.



38 Chapter 2represented by this model.These spetra yield values of Us(z = 0) that an be larger than typial mean Eu-lerian urrents, with a transport Mw of the order of the Ekman (1905) transport atmid-latitudes, exept for short fethes or weak winds (�gure 2). For fully developedwaves, Us(z = 0) = 0.0125U10 is onsistent with reent observations of the drift ofnear-surfae louds of bubbles by Smith (manusript submitted to JPO, 2005). In
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(c) 100 Mw/MEckFigure 2.2: (a). Signi�ant wave height at full development given by several param-eterizations of the wave spetrum E(k, θ): PM is Pierson and Moskowitz (1964),AB is Alves and Banner (2003), DHH is Donelan et al. (1985), JONSWAP is Has-selmann et al. (1973), ETCV is Elfouhaily et al. (1997), and KMC is Kudryavtsevet al. (1999). For DHH and JONSWAP, full development is obtained by setting thepeak frequeny fp to 0.123g/U10. (b) Surfae Stokes drift as a funtion of feth andwind speed U10 for the KMC spetrum, expressed as a perentage of U10. () Mag-nitude of the vertially-integrated Stokes mass transport Mw as a funtion of fethand U10, expressed as a perentage of the orresponding Ekman (1905) transport
u2
∗
/f at mid-latitudes, with f = 10−4.the following alulations, the wind speed at 10 m height U10 is taken to be in thediretion θ = 0. The frition veloity u⋆ is determined from U10 using Charnok'sexpression [1955℄,

U10 =
ua⋆

κ
log

(
z

za0

)
, (2.5)with

za0 = 0.018 u2
a⋆/g, (2.6)
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2
⋆ = ρau

2
a⋆ is the wind stress, ρw and ρa are the densities ofwater and air. However it is well established that the sea-state and the wind speedare oupled, beause of the dependane of the wind pro�le on the roughness of thesea [e.g. Janssen, 2004℄. Donelan (1998) gives a parameterization of za0 that usesthe wave age cp/U10 (where cp is the phase speed at the peak of the wave frequenyspetrum) and the signi�ant wave height Hs,

za0/Hs = 1.67 ∗ 10−4 (U10/cp)
2.6 . (2.7)This e�et will be evaluated in setion 2.4.3.2.3 Wave-averaged mixed layer equationsOeani motions are separated in three omponents, mean �ow, waves and tur-bulene. Turbulene is separated from other motions by a an average over �owrealizations for given wave phases. The mean �ow and wave motions are then av-eraged with a Lagrangian mean so that the mean momentum is separated into amean �ow and a wave part. The vertial mean wave momentum is zero while thehorizontal total mean momentum ρwU is split in a quasi-Eulerian mean ρwû and aStokes drift,

U = û + Us. (2.8)This separation omes naturally with the de�nition of the Generalized LagrangianMean [Andrews and MIntyre, 1978℄. Please note that U and Us are U
L and p intheir notations and are evaluated at a slightly displaed vertial position [MIntyre,1988℄. In measurements, this separation may be di�ult to ahieve [e.g. Santalaand Terray, 1992; Hristov et al., 1998℄. Although the Stokes drift Us orrespondsto the wave-indued drift that arises from the orrelations of wave-indued dis-plaements and wave-indued veloity gradients, as de�ned by Phillips (1977), thequasi-Eulerian veloity û is more di�ult to interpret. û is the mean veloity ofa water partile U, minus Us, but it is not easily related to Eulerian mean velo-ities. Another interesting veloity, in partiular in remote-sensing appliations, isthe mean of the veloity at a point that is �xed horizontally but moves up and downwith the surfae elevation ζ . That mean surfae veloity is û(ζ) = û(ζ̂) + Us(ζ̂)/2,at seond order in the wave slope.If waves do not interat with the mean �ow, û is the mean �ow veloity in thelimit of vanishingly small wave amplitudes. However, waves do generally interatwith the mean �ow.



40 Chapter 22.3.1 The in�uene of waves on the mean �owWe will use now the equations established in Ardhuin et al. (2004b), whih arean extension of Mellor's [2003℄ equations, valid for horizontally-uniform onditions.These are essentially a generalization in three dimensions of the equations of Garrett(1976), also disussed in Ardhuin et al. (2004a). These equations are also equivalentto the Generalized Lagrangian Mean equations as given by Groeneweg and Klopman(1998), negleting the modulations of turbulent properties on the sale of the wavephase [Ardhuin, 2005℄. Following Ekman (1905) we assume that the wave, velo-ity, and turbulent properties are uniform horizontally. In this ase, the horizontalmomentum onservation simpli�es as
∂û

∂t
= −fez × (û + Us) +

∂

∂z
û′ŵ′ − Tds(z), (2.9)with the following boundary onditions, de�ning our vertial oordinate so that themean sea level is at z = ζ̂ = 0,

û′ŵ′

∣∣∣
z=0

=
τa

ρw
− τ in

ρw
(2.10)and

u|z=−H = 0. (2.11)Here Tds is a vertial distribution of τds, so that τds = ρw

∫ 0
−H T

dsdz.The in�uene of the wave motion on the quasi-Eulerian �ow appears with theHasselmann fore −fez × Us [Hasselmann, 1970℄, that ombines the Coriolis pa-rameter and the Stokes drift [e.g. Xu and Bowen, 1994℄, and in the momentumtransfer from wind to the mean �ow. One part of the momentum from the windgoes diretly to the mean �ow via the surfae shear stress ρw û′ŵ′

∣∣∣
z=0

. It is the diretmean visous drag of air on water. The other part τ in goes to the wave �eld, it isthe form drag of wind over water plus the wave-indued modulations of the visousstresses [Longuet-Higgins, 1969℄. Then the wave �eld is also dissipated, releasingits momentum to the mean �ow. This is the fore −Tds(z). This latter fore isonstituted by visous dissipation (the virtual wave stress is part of it), interationsof waves with the turbulene [e.g. Teixeira and Belher, 2002℄, and wave breaking[Melville et al., 2002℄.Observations of wave growth with feth shows that the momentum retained bythe wave �eld is around 5% of the momentum input (see setion 2.2.1). This leads tothe good approximation τds ≃ −τ in. Furthermore, supposing that the momentumis released by the wave �eld at the surfae (i.e. T ds = τdsδ(z)/ρw), equations for



1D Desription without strati�ation 41the mean �ow appear now with their usual form (T ds = 0 and τ in = 0 in eq.2.9 and2.10), exept for the Hasselmann fore.2.3.2 Turbulent losureEq.2.9 involves the divergene of the Reynolds stresses û′ŵ′ that should now beomputed or parameterized. We will use the turbulent losure model of Craig andBanner (1994). It is a "level 2.5" turbulent losure sheme adapted from Mellorand Yamada (1982), with the dissipation of surfae waves taken into aount byintroduing a near-surfae injetion of turbulent kineti energy (TKE).The Reynolds stress is assumed to be linearly related to the shear : û′ŵ′ =

Kz∂u/∂z, with the eddy visosity Kz = lqSm, where b = q2/2 is the TKE per unitmass, and l the mixing length. The later is parameterized as
l = κ(z0 − z), (2.12)where κ = 0.4 is the von Kármán's onstant and z0 is a roughness length.The bottom has almost no e�et on the near surfae dynamis, provided thatthe depth is substantially greater than the Stokes depth (see setion 2.2.2) and theEkman sale, whih is u∗/4f beause the turbulent visosity varies nearly linearlywith depth [Craig and Banner, 1994℄. Therefore, the bottom boundary layer ofCraig and Banner (1994) is not desribed here.The equation for the evolution of TKE is :

∂b

∂t
=

∂

∂z

(
lqSq

∂b

∂z

)

︸ ︷︷ ︸
a

+ lqSm



(
∂û

∂z

)2

+

(
∂v̂

∂z

)2



︸ ︷︷ ︸
b

− q3

Bl︸︷︷︸
c

−ϕds(z)︸ ︷︷ ︸
d

, (2.13)where Sm, Sq and B are model onstants for whih the appropriate values are 0.39,0.2 and 16.6. û and v̂ are the omponents of the quasi-Eulerian veloity û.The TKE evolution omes from a transport term(a), a prodution term by theshear of the mean �ow (b), a dissipation term () and a wave-indued soure term(d). The transport term is parameterized by the eddy di�usivity lqSq.The onversion of wave kineti and potential energy into TKE is the non-visous



42 Chapter 2wave "dissipation" Φoc (per unit mass and unit surfae) of the wave �eld,
Φoc = g

∫
Sds(k, θ)dkdθ. (2.14)

Sds is distributed over depth as
∫ 0

−H
ϕds(z)dz = Φoc. (2.15)Alternatively [Craig and Banner, 1994℄, Φoc may be presribed as a surfae �uxof TKE and parameterized by Φoc = αu3

∗
with α ≃ 100, onsistent with the knownloss of energy from the waves. How the presription as a surfae �ux modi�es theTKE pro�les will be studied in setion 2.4.1. The onsequenes of negleting thevariations of α with the wave age (from 50 for young waves and fully-developedwaves to 150 otherwise) will be dealt with in setion 2.4.3. The boundary onditionfor the TKE is then :

lqSq
∂b

∂z

∣∣∣∣∣
z=0

= αu3
∗
, (2.16)whih loses the model.We will now fous our attention on the steady state solutions, when wind- andwave-indued inertial osillations are damped. The sea state is again modelled byKudryavtsev et al.'s [1999℄ spetrum. It is assumed that the wave �eld is loallyuniform even if the sea is not fully developed. In other words, the gradients ofthe radiation stresses are supposed muh smaller than the leading terms in themomentum balane that are the Coriolis fore, the Hasselmann fore and the vertialmixing (see Ardhuin et al. (2004a) for a disussion of the impat of the radiationstress tensor in feth limited onditions).2.4 Model results and validation2.4.1 Calibration of the model with observed pro�les of TKEdissipationTwo parameters remain unknown in this model : the roughness length z0 and thesale α of the surfae �ux of TKE. α may pratially ome from a wave model, andis therefore supposed to be known [e.g. Janssen et al., 2004℄. z0 is determined frommeasurements of TKE dissipation near the surfae.In terms of TKE, the surfae layer an be divided in a "prodution layer" and a"di�usion layer" [Craig and Banner, 1994℄. In the deeper layer, the TKE equationis dominated by shear prodution and dissipation. Closer to the surfae, the TKE



1D Desription without strati�ation 43balane is between di�usion from the surfae �ux and dissipation. One importantmodi�ation brought by the present model to the one of Craig and Banner is theaddition of the Stokes-Coriolis e�et (the Hasselmann fore). This e�et modi�esthe Eulerian veloities over the whole water olumn (see setion 2.4.2). But inthe di�usion layer, the TKE prodution due to the shear of the mean �ow has noimportane. Therefore, the TKE is expeted to remain unhanged near the surfaeby the addition of the Stokes-Coriolis term. The Numerial model results on�rmthis expetation, with relative hanges in the magnitude of q less than 2% near thesurfae.As a result, we an rely on previous works without the Stokes-Coriolis e�et,providing a parameterization of z0 based on measurements of TKE dissipation ǫ inthe di�usion layer. Terray et al. (1996) proposed a saling of the roughness lengthwith the signi�ant wave height Hs. It omes from the physial hypothesis that thesurfae mixing is proportional to the height of the breaking waves, whih an beevaluated by Hs. Other salings of z0, linked to the wind speed or to the fritionveloity are reported to fail [e.g. Soloviev and Lukas, 2003℄ beause of no expliit de-pendane on the wave development. Terray et al. (2000) used the model of Craig andBanner (1994) to �t z0 using dissipation data from several �eld experiments, withvarious stages of wave development [Drennan et al., 1996℄. They found z0 = 1.6Hs.As was pointed out by the authors, the model does not �t very well the data atdepths of the order of Hs. Therefore they proposed a modi�ed length sale whihseems to �t better the observations. However, if we attempt a Lagrangian inter-pretation of their Eulerian measurements, there is water between their uppermostdata points and the surfae where TKE dissipation also ours. Even if we supposethat ǫ deays linearly from 2Φoc/Hs at z = −Hs to Φoc/Hs at z = 0, the vertiallyintegrated dissipation rate in the �gure 1 in Terray et al. (2000), between the surfaeand −Hs, is greater than the wave input �ux Φoc of TKE. This annot be explainedby the prodution of TKE by the shear of the mean �ow, whih is negligible near thesurfae. Besides, a derease of ǫ between z = −Hs and the surfae is not supportedby the Lagrangian averaged data of Soloviev and Lukas (2003). The data and themodi�ed mixing length of Terray et al. (2000) are not ompatible, unless evideneis shown of very small dissipation rate between z = −Hs and the surfae. Thereforewe do not take the modi�ed form of the mixing length, as did Mellor and Blumberg(2004), and stik to (2.12). Soloviev and Lukas (2003) also used measurements ofdissipation to estimate z0, and found z0 = 0.6Hs. However the ontribution of swellto the signi�ant wave height was not evaluated, whih may have lead to an under-estimation of the ratio z0/Hs.



44 Chapter 2As the TKE equilibrium near the surfae is between injetion, dissipation anddi�usion, one may wonder if a better representation of injetion may not improvethe model. The external soure of TKE is the dissipation Sds of the wave �eld, whihis, in the ase of a wind-sea, due to breaking Sbreak and wave-turbulene intera-tions Sturb. The visous dissipation, whih is negligible, does not onstitute a soureof TKE. The separation between breaking and turbulene e�ets is not simple, butthese two e�ets probably yield di�erent depths of TKE injetion, whih an modifythe pro�les of TKE and of TKE dissipation.Teixeira and Belher (2002) used rapid distorsion theory to derive an expres-sion for the prodution of TKE due to interations between turbulene and highfrequeny waves,
ϕturb(z) = û′ŵ′ ∂Us/∂z. (2.17)Using Lagrangian average of the Reynolds-average Navier-Stokes equations, Ardhuinand Jenkins (2006) extended this expression to low frequeny waves with the assump-tion that the turbulent �uxes are not orrelated with the wave phases. The sameexpression was used in di�erent studies of Langmuir irulations [e.g. MWilliams etal., 1997℄, this time derived from the equations of Craik and Leibovih (1976). Theresulting pro�le of TKE injetion follows the pro�le of ∂Us/∂z sine the momentum�ux is often more uniform than Us over the Stokes depth, whih is typially smallerthan the Ekman depth. The use of a spetral distribution of waves leads to a pro�leof ∂Us/∂z muh more sheared at the surfae than the pro�le of Us, whereas theuse of a monohromati wave would strongly over-estimate the depth of injetion ofTKE (see �g.2.3). It follows from this alulation that

Φturb
oc ≃ û′ŵ′ Us(z = 0) ≃ 10 × u3

∗
, (2.18)whih is around 10% of Φoc = αu3

∗
. That means that the dissipation of the wavesby interations with turbulene is only 10% of the total waves dissipation. Howeverthe orrelations between wave groups and enhaned breaking [Banner et al., 2000℄may lead to a greater fration of the total dissipation.In the ase of dissipation by breaking, an injetion over a ertain depth linkedto the wavelength of the breaking wave may be more realisti. Sullivan et al. (2004)proposed a pro�le for the injetion of momentum by a breaking wave, based on thelaboratory data of Melville et al. (2002). That pro�le an be approximated, after



1D Desription without strati�ation 45integration over time and horizontal dimensions of their breaker, by
f(z) = 4.227

(
1 +

5z

λ

)2

exp

(
−5

(
5z

λ

)2
)
. (2.19)With this expression, most of momentum of breaking waves is released between thesurfae and a depth of λ/5, where λ is the wavelength of the breaking wave. We willsuppose that, for a given wavelength, the injetion of TKE and momentum followthe same depth pro�les. To determine whih waves are breaking, we will determinethe spetral distribution of dissipation as in Donelan (1998), by supposing that thepredominant terms in eq.2.1 are the input and the dissipation,

Sin + Sds = 0, (2.20)whih is formally valid only at the peak of the wave spetrum. Then the spetraldistribution of dissipation an be obtained from Sin. The formulation of Makin andKudryavtsev (1999) is, negleting the sheltering e�et [Hara and Belher, 2002℄,
Sin =

∫
β(k, θ)E(k, θ)dkdθ, (2.21)with

β = 32
ρa

ρw

(
1 − 1.3

(
c

U10

)5
)(

u∗
c

)2

cos(θ)|cos(θ)|. (2.22)Using (2.19)-(2.22) provides an estimation of ϕbreak(z).The appropriate surfae boundary ondition is now a zero �ux of TKE, lqSq∂b/∂z =

0. Figure 2.3 shows the pro�les of ϕds assuming that the dissipation of wave �eldomes entirely from breaking (ϕds = ϕbreak) or entirely from wave-turbulene inter-ations (ϕds = ϕturb). Both pro�les are onentrated near the surfae, muh moreso than the Stokes drift. A realisti ase would be that wave dissipation omes fromboth phenomena with a ratio of the order of 20% for the wave-turbulene inter-ations (ϕds = 0.8ϕbreak + 0.2ϕturb). Resulting pro�les of dissipation are shown in�g.2.4, as well as pro�les of dissipation with surfae �ux of TKE and di�erent valuesof the roughness length.As expeted, in the extreme ase of total dissipation due to wave-turbuleneinterations, the TKE penetrates deeper whih leads to more uniform dissipationpro�les. The e�et of depth injetion is omparable to an inrease of the roughnesslength. This is also true for the momentum, when the surfae soure is distributedover depth (not shown). The roughness length, whih is �tted to measurements ofdissipation, is supposed to take this e�et into aount. It an be seen from �g.2.4



46 Chapter 2that a surfae roughness at least of the order of Hs is needed, even if all the TKE isdeeply injeted with the pro�le of ∂Us/∂z.
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∗
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Figure 2.5: Evolution of pro�les with an inreasing feth (wave heights from 0.6 mat 10 km o�shore to the fully-developed value 2.5 m). (a) Quasi-Eulerian veloitypro�les beome more uniform. (b) Turbulent visosity inreases. The wind is set to
U10 = 10ms−1, and the water depth is 300m.In this ase, they showed that the ontribution of the Hasselmann fore is similar tothe addition of a surfae stress to the right of the wind, with a magnitude related tothe Stokes transport Mw. This is also true in our model sine we are onsidering anunstrati�ed water olumn (large Ekman depth) and a wind sea (small Stokes depth).Using a full spetrum to ompute the Stokes drift is not important when looking atthe Stokes-Coriolis e�et on the quasi-Eulerian veloity û. Eulerian veloities spiralin an Ekman fashion, and vanish at a depth given by the Ekman depth u∗/4f . TheHasselmann fore has thus an in�uene muh deeper than the Stokes drift [Xu andBowen, 1994℄. Beause the transport indued by this Stokes-Coriolis term is equalto the Stokes transport [Hasselmann, 1970℄, an estimation of the importane of thise�et is the ratio of the Stokes transport to the Ekman transport (�g.2.2), whihan be more than 30% for mid-latitudes.Substantial modi�ations at the surfae (20%) and over the whole water olumn(30% at 100m) are found in the ase of a developed sea (�g.2.6).Lewis and Belher (2004), and also Polton et al. (2005), studied the impat ofthe Stokes-Coriolis term on the Eulerian Ekman spiral, with an unstrati�ed waterolumn and with an eddy visosity that varies linearly with depth. They reportedthat this Stokes-Coriolis term ould explain the tendeny of the spiral to be shifted
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50 Chapter 2in the diretion opposite to the wind, as observed in some �eld experiments, suh asLOTUS3 [Prie and Sundermeyer, 1999℄. We must notie that they took small valuesof z0, of the order of 1cm. Suh values are ommonly used in order to �t surfae driftobservations (see setion 2.4.3) with the Eulerian surfae urrent (around 3% of thewind speed U10, e.g. q = 0.03 in table 3 of Lewis and Belher (2004)). The presentmodel was used to simulate onditions observed during the LOTUS3 experiment.The model mixing Kz is enhaned by breaking (z0 ≃ 2.5m), whih leads to quasi-Eulerian urrents near the surfae muh redued ompared to Polton et al. (2005)(less than 1% of the wind speed U10, �g.2.7). Polton et al. (2005) reported minorshanges of veloity in the bulk Ekman layer to the values of z0. But they used
z0 ≃ 1m, whih is two orders of magnitude below the values of the present model.Also it is the near-surfae dynamis, within the �rst 10m, that is of interest hereand it is quite sensitive to values of z0 larger than 1m, as pointed out by Craig andBanner [1994, setion 5℄, due to a very large inrease in Kz. Therefore the goodagreement found by Lewis and Belher (2004) and by Polton et al. (2005) for the twouppermost urrent-meters (z = −5 and z = −10 m, �gure 7) is not obtained withthe present model. The value of the rosswind omponent of the model's veloityis only 50% of the observed value at z = −5 m. If the sub-surfae de�etion ofthe quasi-Eulerian veloity due to the Stokes-Coriolis e�et is still signi�ant, thevertial pro�les and veloity spiral are more di�erent from the observations thanwith the models of Lewis and Belher (2004) and Polton et al. (2005). This mis�tmay be explained by the strati�ation : the mixed layer was only 10 to 25m thikduring LOTUS3 [Prie and Sundermeyer, 1999℄, with a strong diurnal yling.Terray et al. (2000) ompared results of the Craig and Banner model (without theStokes-Coriolis term) to quasi-Eulerian veloity pro�les and shears, obtained with awave-follower muh loser the surfae [Santala and Terray, 1992℄. The addition ofthe Stokes-Coriolis term does not substantially modify the shear, but the magnitudeof the urrents is modi�ed. However the �eld data used in Terray et al. (2000) wasobtained with relatively young waves (Cp/U10 ≃ 0.74), so that urrents driven bythe Hasselmann fore are one order of magnitude smaller than urrents driven by thewind. Therefore this dataset is not ideal for highlighting the Stokes-Coriolis e�et(�g.2.8). A dataset with fully-developed waves would have been more useful for thatpurpose. Moreover, the water olumn was strati�ed below 20m depth. Thereforethe present omparison of their data and the model remains qualitative. Howeverroughness length one order of magnitude smaller than Hs is learly not ompatiblewith this dataset.MWilliams et al. (1997) used Large Eddy Simulations (LES) to study the im-pats of Langmuir irulations (LCs) on the mixed layer in a weakly strati�ed
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54 Chapter 22.4.3 Lagrangian driftThe mean drift veloity U is the sum of the quasi-Eulerian �ow û, omputed withthe model desribed above, and the Stokes drift Us. Now onsidering the net wave-indued mass transport, the Stokes-Coriolis term is of prime importane. In terms ofmass transport in the downwind diretion, that term reates an Eulerian return �owwhih ompensates the Stokes transport, leading to a zero wave-indued transportin steady onditions given by eq.2.9 [see also Hasselmann, 1970℄. Beause turbulenedi�uses vertially the momentum soure that is the Hasselmann fore, the return�ow is less sheared than the Stokes drift. Therefore the return �ow does not om-pensate the Stokes drift near the surfae, and overompensates it below. Instead ofquasi-Eulerian and Lagrangian , �g.2.10 shows a deomposition into quasi-Eulerianurrent driven by the wind û′ and Stokes drift plus quasi-Eulerian urrent driven bythe Hasselmann fore Us + δu = Us + û − û′.
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1D Desription without strati�ation 55essentially due to the Stokes drift (at least 80%), for fully-developed waves. Thepratial simpli�ation that takes the surfae drift to be the sum of the usual EkmanEulerian urrent, from an oean irulation model without the Stokes-Coriolis term,plus the Stokes drift [e.g. Annika et al., 2001℄, leads to slight over-estimations (lessthan 5%), for fully-developed waves. For very young waves, the Eulerian urrent isof same order as the Stokes drift but the Hasselmann fore is redued so that itse�et an also be negleted in terms of surfae drift.In the rosswind diretion, the wave-indued drift is the quasi-Eulerian urrentdue to the Stokes-Coriolis stress. Although the total transport is zero in this dire-tion, the veloity is not zero at eah depth, leading to a small wave-indued drift tothe right of the wind near the surfae and to the left below (see �g.2.6 and setion2.4.2).The mean wind-indued drift of a water partile at the surfae is not well known.Huang (1979) reviewed �eld and laboratory experiments about surfae drift of water,ie, oil and objets, but laboratory experiments or �oating objets observations arenot supposed to give the same drift than water partiles in presene of developedwaves. The di�erent results are sattered roughly around 3% of the wind speed U10.Churhill and Csanady (1983) studied Lagrangian motions of drogues and driftersand found surfae drifts between 2 and 2.5% of the wind speed U10. The presentmodel yields smaller veloities, around 1.5%.This ratio of 1.5% does not vary muh with feth (�g.2.11 and 2.12). For shorterfethes, the Stokes drift is small and the Eulerian veloity is larger, thanks to a smallmixing (�gure 2.12, dotted lines). Note that we omputed the Stokes drift for veryshort fethes with Kudryavtsev et al.'s [1999℄ spetrum, whereas this spetrum is notexpeted to behave orretly for suh young seas (B. Chapron, personal ommuni-ation). The e�et of the dependene of the atmospheri roughness length with thesea state is also shown : a wind-waves oupling represented by (2.7) is used insteadof the Charnok relation (2.6). This oupling leads to an inrease of the surfaestress for young seas, and thus to a inrease of the Eulerian urrent (dashed-dottedlines). Furthermore, the TKE �ux is Φoc = αu3
∗
, where α is also known to depend onthe wave age. We use here an analytial �t to the distribution of α as a funtion of

cp/u∗a of �g.8 in Terray et al. (1996). α an be taken around 60 for very young waves(age Cp/u∗a ≃ 5). It inreases to 180 for developing waves (10 < Cp/u∗a < 20), andthen dereases to 80 for fully-developed waves (Cp/u∗a ≃ 30). As this e�et slightlyredues the mixing for very young waves and for fully-developed waves, the quasi-Eulerian urrent at the surfae slightly inreases. It is the ontrary for developingwaves, for whih the mixing is slightly enhaned (�gure 2.12, solid lines). However,
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1D Desription without strati�ation 57it is the inrease of the roughness length z0 that dominates the evolution of the nearsurfae mixing with wave development, as expeted from Craig and Banner (1994) :
Kz ∝ u∗α

1/3z0.8
0 (z0 − z)0.2. (2.23)The Lagrangian surfae drift appears to be almost independent of the feth(�gure 2.11). This drift strongly depends on the depth, due to the vertial shearof the Stokes drift (and also, for short fethes, to the shear of the quasi-Eulerianurrent).
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∗
with α = 100. Dashed-dotted lines : using the oupling ofDonelan (1998) and α = 100. Solid line : using the oupling of Donelan (1998) anda variable α from Terray et al. (1996). The wind is set to U10 = 10ms−1.

2.5 General disussionClearly, the surfae drift is more sensitive to the surfae mixing of the model thanto the Stokes-Coriolis term. Near surfae pro�les are, as pointed out by Craig andBanner (1994), strongly dependent on the roughness length. However, if the salingof Terray et al. (1996) is valid, i.e. z0 and Hs are of the same order, whih ison�rmed by observations, then the unertainty on the quasi-Eulerian veloity is



58 Chapter 2not that large. A muh smaller roughness length like z0 = 0.6Hs, as presribed bySoloviev and Lukas (2003), leads to Eulerian surfae urrents 1,5 times larger thanwith the present value z0 = 1.6Hs. In terms of Lagrangian surfae drift, the under-estimation would be smaller, from 10% for long fethes to 20% for short fethes.Thus a hopefully more physially sound de�nition for z0, suh as an average size ofbreaking waves, is not expeted to give signi�ant di�erenes in drift.Although there is a reasonable agreement between the present model and quasi-Eulerian veloity shears measured by Santala and Terray (1992), there is a largedi�erene between preditions of Lagrangian drift and drifter observations. It ispossible that a seond order approximation may not be aurate enough for steepwaves, and wave-wave interations (modulations) may enhane the Stokes drift in arandom wave �eld. Melsom and Sæatra (2004) have inluded fourth-order terms intheir estimation of the Stokes drift for monohromati waves but the e�et of theseterms is typially less that 10% of the seond order terms, even for the steepestwaves. It is more likely that turbulent strutures assoiated with breaking frontsmay ontribute to the drift at the surfae, and need to be parameterized.Breaking wave fronts may over an area of the order of a few perent of the seasurfae. One may use empirially derived distributions Λ(C)dC for the length ofbreaking rest with a phase speed between C and C + dC per unit area [Melvilleand Matusov, 2002 ℄, one �nds that objets randomly distributed at the surfae ofthe oean will have an extra drift of
u =

∫
LCΛ(C)dC, (2.24)with L the displaement at the passage of a breaker. Sine breakers propagate at aspeed of about 0.8 C and the breaker lifetime is about the wave period T = 2πC/g,one �nds that u is of the order of 6 × 10−3 m s−1 for U10 = 10 m s−1, and thisveloity inreases with the ube of the wind speed. Therefore this e�et may beomesigni�ant for large wind speeds, but it only a�ets depths down to a small frationof the wavelength, typially a few perent [Melville et al., 2002℄. This alulationonly inludes transient large-sale breakers. Miro-sale breakers, with a relativelylonger lifetime, may yield a larger ontribution.The other turbulent strutures that are likely to aount for most of the disrep-any between observed drift speeds and the model are the Langmuir irulations.These strutures extend down to the base of the mixed layer and have been re-peatedly observed as soon as the wave and winds and steady enough that the ellsan develop, even in shallow water [e.g. Marmorino et al., 2005℄. LCs are hara-terized by strong variations ∆u of the downwind veloity with maxima assoiated



1D Desription without strati�ation 59with onvergene zones at the surfae. ∆u is reported to be of the order of 1�3%of the wind speed by Smith (1998). As a slightly buoyant objet would tend tobe trapped in the onvergene zones, it an easily drift with a mean veloity largerthan the atual mean by 1% of the wind speed. This "Langmuir bias" ould thusbe the prinipal reason why measured drift veloities are larger than given by thepresent model, and also larger than the HF-radar measurements by Dobson et al.(1989). Langmuir irulations further raise the issue of the adequay of the tur-bulent losure with a k − l model to model mixing due to suh organized vortiesreated by wave-urrent interations. Reent studies [e.g. Noh et al., 2004℄ haveinvestigated Langmuir irulations with Large Eddy Simulations that do not usesuh a simple losure sheme. However, these studies still need to be validated with�eld observations suh as those of Smith (1999).Finally, the impat of a density strati�ation an be inluded in the presentmodel. A redued mixed layer depth leads to an inrease of the quasi-Eulerianveloity beause the Ekman transport is onserved. As shown in �g.2.8, it mayinrease the quasi-Eulerian veloity by a fator 2 or 3, whih would be signi�antalso in terms of Lagrangian surfae drift.2.6 ConlusionWe presented here a model of a uniform and homogeneous oean driven by wind andassoiated waves. Distintion is made between wave motion, inluding the Stokesdrift, and a quasi-Eulerian motion, driven by the momentum �ux from atmosphere,by the Coriolis fore and by the Hasselmann fore (also alled "Stokes-Coriolis ef-fet"). The waves are supposed to be a linear superposition of monohromati om-ponents whih satisfy the usual dispersion relation. The sea state is thus modelledby a diretional spetrum of sea surfae elevation variane. The Stokes drift and thevertially integrated Stokes transport are respetively the third and �rst momentsof the frequeny spetrum, and are therefore sensitive to the high frequeny part ofthe spetrum, i.e. the short waves. Thus a spetrum designed for remote-sensingappliations (�tted to reprodue the fourth moment of the spetrum) is supposedto give reasonable results for the Stokes drift alulation. This Stokes drift is foundto be around 1.2% of the wind speed U10, and the orresponding Stokes transportaround 20 to 30% of the Ekman transport at mid-latitudes, for developed waves.The use of a monohromati wave annot represent well the surfae drift value, thevertially integrated transport, and the depth involved.The wave �eld in�uenes the quasi-Eulerian motion via two di�erent e�ets :the Stokes drift, in a rotating frame, reates the Hasselmann fore whih drives an



60 Chapter 2Eulerian return �ow to ompensate the Stokes transport. The presene of waves alsoinreases the near surfae mixing. A simple turbulent losure sheme gives an eddyvisosity that an be used to represent the latter e�et. The roughness length for thislosure sheme is evaluated aording to observations of TKE dissipation near thesurfae. The model result is then examined and we an summarize it by omparisonto the near surfae physis of most oean irulation models (OCMs), whih usesmall mixing at the surfae (represented here by a small roughness length z0 < 0.1m).(i) A surfae mixing at least one order of magnitude greater than in urrent OCMs(and dependant on the sea state) seems realisti. Signi�ant onsequenes on the seasurfae temperature are expeted [Mellor and Blumberg, 2004℄. (ii) As a onsequeneof this strong mixing, there is a strong redution of the vertial shear of the quasi-Eulerian veloity near the surfae (see �g.2.13). (iii) However, Lagrangian driftveloity is highly sheared due to the shear of the Stokes drift near the surfae (see�g.2.13), leading to near surfae pro�les quite lose to those of the Eulerian urrentin some OCMs. (iv) Although observations of surfae drift and omparisons withthe wind speed are not very reliable, an important part of the surfae drift of objetsmay be still missing in the present formulation. The "Langmuir bias", whih is theorrelation of surfae onvergene and inreased veloity, should explain some of thismissing drift, as well as the strati�ation whih was not taken into aount. (v) TheHasselmann fore has a signi�ant impat in terms of vertial pro�les of Eulerianveloities (this fore leads to urrent magnitudes of 20 to 30% of the magnitude ofurrents driven by the wind stress). This impat is relatively small on the surfaeLagrangian drift, whih ould be approximated by the sum of the Stokes drift plusthe Eulerian urrent driven only by the wind stress. (vi) In terms of Lagrangiandrift at di�erent depth, stationary waves reate a mass transport in the wind-wavesdiretion near the surfae, and in the opposite diretion below, until a depth ofthe order of the Ekman depth. If properties are homogeneously distributed in thissurfae layer then wave transport an be ignored. Otherwise it should be omputed.(vii) For really young seas, as it happens in some ostal areas or lakes, the nearsurfae dynamis are loser to that desribed by traditional OCMs, with a smallStokes drift and a relatively weak mixing.In onlusion, the surfae drift and mixing annot be understood without thewaves. However there still are very few datasets that are omplete. The reason isthat �elds experiments on Ekman urrents or mixed layers and studies on wavesare rarely made simultaneously. Furthermore near surfae Lagrangian, Eulerian orquasi-Eulerian averaging are often signi�antly di�erent but hardly well identi�ed.The present study demonstrates the need for more near surfae measurements togather all this information.
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64 Chapter 3AbstratA model of the oean surfae urrents is presented. It inludes the enhaned near-surfae mixing due to the waves, the Stokes drift of the waves, the Stokes-Coriolise�et and the strati�ation. The near-surfae urrent shears from this model areompared with the shears of the quasi-Eulerian urrents measured using a wave-following platform during the Shelf Mixed Layer Experiment (SMILE). It is shownthat the downwind urrent shears observed during SMILE are well modelled. How-ever, the observed rosswind shears are in poor agreement with the model. TheStokes-Coriolis (SC) term ould qualitatively explain this mis�t but it is one orderof magnitude too weak. The Ekman-Stokes spiral of the model are ompared tothe spiral observed during the long time series of measurements Long Term UpperOean Study 3 (LOTUS3). The e�ets of strati�ation are arefully treated. Themean veloity pro�les of the model losely agree with observations. However, we�nd no evidene of the SC e�et on the shape of the observed Ekman spiral. Theobserved shape is found to be a onsequene of the reti�ation due to the strati�-ation. The SC e�et alulated from an aurate numerial wave hindast is weak,but should have been observed. In fat, it is estimated that the wave-indued biasin the urrent measurements is larger than the SC e�et. Finally, it is shown thatthe wave age e�et on the surfae drift, whih was found to be small in unstrati�edonditions, is important in the presene of shallow mixed layers.3.1 IntrodutionWaves are known to dramatially enhane the near-surfae mixing. This was inferredfrom turbulent kineti energy (TKE) dissipation measurements (Agrawal et al., 1992;Terray et al., 1996), and it was also observed in measurements of downwind urrentvertial shear very lose to the surfae during the Shelf Mixed Layer Experiment(SMILE) (Santala, 1991; Terray et al., 2000). Aordingly, the surfae mean urrentis rather weak, around 0.5% of the wind speed at 10 meters U10 when the oean is notstrati�ed and when the waves are developed. This quasi-Eulerian mean urrent isde�ned as the Lagrangian drift minus the wave Stokes drift (see for details Jenkins,1987; Rasle et al., 2006; Ardhuin et al., 2007b). This small quasi-Eulerian driftan be overwhelmed by large surfae drift due to the wave Stokes drift, whih anbe as large as 1.2% of U10 (Rasle et al., 2006, hereinafter Part 1). However, theseproesses may not be well represented or, more likely, other proesses are importantfor the drift of surfae-trapped buoyant objets to reah surfae drifts of the orderof 2 or 3% of U10 (Huang, 1979). The surfae trapping of the Ekman urrent in the



1D Desription with strati�ation 65presene of strati�ation may be an important fator.Waves are also assoiated with a Stokes-Coriolis urrent (Hasselmann, 1970; Xuand Bowen, 1994; MWilliams and Restrepo, 1999). Namely, in a rotating frameof referene, a wave-indued stress perpendiular to the waves propagation modi�esthe pro�le of the Ekman urrent. In an invisid oean, this stress drives a meanurrent whih ompensates the Stokes drift of the waves when averaged over theinertial period. However, in the presene of a strong vertial mixing, this return�ow is made vertially uniform. Beause the Stokes drift of a wind sea is stronglysurfae trapped, the return �ow only ompensates the Stokes drift when vertiallyintegrated over depth, and there is a net drift at every depth. This was shown inPart 1 without any strati�ation, and the question raised is to whih extend thisremains valid if the Ekman urrent is also surfae trapped, by a shallow mixed layerfor instane.Furthermore, when onsidering vertially integrated transports, the Stokes-Coriolise�et do ompensate the Stokes transport in a steady state. It is also the only meh-anism invoked to ompensate it. Observations have been made by Smith (2006a), inwhih the modulations of the Stokes drift by the passing wave groups was ompletelyompensated, presumably by the �ow assoiated with long infra-gravity waves. Wealso note that laboratory measurements fail to reprodue the Stokes drift (Moni-smith et al., 2007). However, the steady Stokes transport and the Stokes-Coriolise�et on it have never been learly observed yet. Evidene of this e�et has beensought by Lewis and Belher (2004) and Polton et al. (2005) in the observations ofthe sub-surfae Ekman urrent during Long Term Upper Oean Study 3 (LOTUS3)(Prie et al., 1987). Unfortunately, neither the wave-enhaned surfae mixing northe quite shallow diurnal mixed layer during LOTUS3 have been taken into aountin these previous works, although they an radially hange the interpretation ofthe observed Ekman spiral (Prie and Sundermeyer, 1999). Also, evidene of theStokes-Coriolis foring have not been sought yet in measurements muh loser tothe surfae, suh as those of SMILE.In this paper the e�et of strati�ation will be added to the model presented inPart 1 in order to make a quantitative omparison with some available observationsof near-surfae urrent. More preisely the remaining issues are : How well thismodel an reprodue the vertial shears observed lose to the surfae, both in thedownwind and the rosswind diretion? What is the impat of the Stokes-Coriolise�et on the Eulerian and Lagrangian urrents pro�les in shallow mixed layers? Isthere any observational evidene of this e�et? Is the surfae drift reahing realistivalues in the presene of shallow mixed layers?The model used for this study is introdued in setion 3.2. The near-surfae



66 Chapter 3shears of the quasi-Eulerian urrents observed during SMILE are analyzed in setion3.3. The Ekman-Stokes spirals from the LOTUS3 data are analyzed in setion 3.4.Finally, the surfae drift of the model in the presene of waves and strati�ation isdisussed in setion 3.5.3.2 The modelFor the sake of simpliity and beause we want to simulate a period of hundredsof days, a simple one dimensional eddy visosity model with a TKE losure shemewill be used. This model is adapted from Craig and Banner (1994), as disussedin Part 1. It was hosen beause it is able to reprodue the wave-enhaned nearsurfae mixing by the addition of a TKE �ux at the surfae and the spei�ationof a large roughness length z0. Aording to Terray et al. (1996), the TKE �ux isparameterized as Φoc = αu3
∗
, with α = 100 and where u∗ is the waterside fritionveloity. The roughness length is set to z0 = 1.6Hs, as in Terray et al. (2000), with

Hs the signi�ant wave height of the wind sea, a proxy for the sale of the breakingwaves that are responsible for the mixing. The extension to a strati�ed oean istaken from Noh (1996). The parameterization of the e�ets of strati�ation on theeddy di�usivities is made via a turbulent Rihardson number, where the destrutionof turbulene by strati�ation is made regardless of the origin of turbulene, byshear prodution or by downward di�usion from the wave layer. This model washosen for its ability to reprodue the diurnal thermoline. Justi�ation for theuse of suh a simple eddy visosity model an be found by omparing the veloitypro�les of the model to the veloity pro�les of more sophistiated models like thelarge eddy simulations (LES) of MWilliams et al. (1997) or Noh et al. (2004). Suhomparisons have shown reasonable agreement (e.g. Kantha and Clayson, 2004).3.3 Analysis of the near-surfae shears - The SMILEdata3.3.1 The experimentThe SMILE data of Santala (1991) are of partiular interest beause one buoy (theSASS) inluded measurements of the veloity very lose to the surfae, at depthssmaller than Hs. These unique measurements of the mean urrent used a surfaefollower and were orreted for a wave bias due to orrelations between the SASSmeasurements and the waves motion. The most useful measurements ourred on



1D Desription with strati�ation 6727 and 28 February 1989. The wind speed was 13.6 m s−1 and the wave height was
2.3 m, both approximately aligned and steady. The mixed layer depth was 20 m.More information on this data an be found in Santala (1991) and Terray et al.(2000).3.3.2 The modelFor omparison with these data, the model is run with a steady wind of the ob-served wind speed. The temperature is initialized to �t the observed pro�le, with athermoline around 20 m, and a zero surfae heat �ux is used in order to reproduethe neutral mixed layer and its slow deepening. To ompute the Stokes-Coriolisfore, waves are alulated using a JONSWAP spetrum (Hasselmann et al., 1973),assuming a feth of 100 km, giving the observed signi�ant wave height. The peakperiod of the waves is slightly underestimated with this method, giving 6.4 s whereas
7.8 s was observed. The Stokes transport of the waves, important to measure themagnitude of the Stokes-Coriolis fore, might then be slightly overestimated. Themodel results, averaged over an inertial period, are plotted on �g. 3.1 (upper panel).For omparison, the model results without strati�ation are plotted on �g. 3.1 lowerpanel.3.3.3 Previous analysisThe measurements have already been analyzed by Santala (1991), and part of its re-sults were used by Terray et al. (2000) and in Part 1. Here we will brie�y summarizetheir analysis and the di�erent tehnique used in the present analysis.Four sensors were mounted on the SASS buoy, at depths from 1 to 5m. Thevertial shear an be estimated between eah pair of adjaent sensors by a �nitedi�erene. Santala (1991) saled the depth with u2

∗
/g, whih is equivalent to salewith the signi�ant wave height Hs if one supposes a full development and if oneomits the swell in Hs. The shear was saled with u∗/z, the law of the wall saling.This leads to their �gure 7-5, whih we reprodue here for the SASS data only (�g.3.2).The analysis of this plot, together with deeper measurements from a onventionalmooring, leads these authors to infer a desription of the downwind shear in a 3layer struture, namely an upper layer with almost no shear, a lower layer followinga log-law and a transition layer in between. However, suh a transition is hardlypereptible with only the SASS data, beause the lowest shear estimate falls inthe transition region (�g. 3.2, upper panel). In the rosswind diretion, the shearwas found roughly onstant with depth. This analysis leads to the �gure 7-11 in
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1D Desription with strati�ation 71However the observed shear in the rosswind diretion (�g. 3.5, lower panel) is oneorder of magnitude larger than the model predition.
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1D Desription with strati�ation 73is not isotropi. However none of these simulations are foused enough on the near-surfae dynamis to provide any reliable piture of what the mean surfae urrentsand mixing should be.Also, if Langmuir irulations were present, the SASS buoy ould have beentrapped into surfae onvergene zones. Santala (1991) investigated the vertialveloity reords and did �nd a non-zero downward veloity, interpreted as evidene ofa non-uniform sampling of the Langmuir ells. The onsequent bias of the horizontalveloity measurement annot be exluded to explain the observed large rosswindshear.3.4 Analysis of the urrent magnitude - The LO-TUS dataThe impat of the Stokes-Coriolis e�et and of the strati�ation is small on theurrent shear, but is more apparent on the magnitude of the urrent : the Ekmantransport is trapped in the mixed layer, leading to large values of the rosswindurrent, while the Stokes-Coriolis e�et gives small values, if not negative, of thedownwind urrent (see e.g. �g. 3.1, upper panel). Are the observed urrent inagreement with that expeted shape?Field measurements of the Ekman urrents always inlude a lot of noise, whih�nds its origins in inertial osillations and in the diverse transient phenomenons,some of them being surfae-trapped. It is thus di�ult to separate other proessesfrom the mean wind-driven urrent. During SMILE (previous setion), the urrentswere averaged over 40 mn. This allows an analysis of the vertial shears but it isinsu�ient to investigate the magnitude of the urrent. One solution to get rid ofthis noise is to average the urrent over a long time period. This method has beenemployed by Prie et al. (1987) with the LOTUS3 data set. The measurement tookplae in the summer of 1982, under light to moderate winds and a strong diurnalheating. The urrent measurement ame from a onventional mooring, with theupper measurement at 5 m depth. In the typial light wind enountered, the waveswere not really large so that the wave bias, i.e. the orrelation between the motion ofthe mooring and the orbital motion of the waves, was �rst estimated to be small atthe measurement depths using Vetor Measuring Current Meters (VMCM) instru-ments (Shudlih and Prie, 1998). We will further disuss this point below. FinallyPrie et al. (1987) used a oherent averaging method to follow the low frequenyhanges in wind diretion. The resulting urrent pro�le an then be quantitativelyompared to theoretial models of the Ekman urrent. These observed urrent have



74 Chapter 3the expeted pro�le of an Ekman spiral, with a depth integrated transport in agree-ment with the Ekman transport. However some features of these urrents wereunexpeted. First, the sub-surfae de�etion is quite large, around 75◦ at a depthof 5 m. Seond, the deay with depth is stronger than the lokwise rotation (thespiral is '�at').To explain this �atness of the spiral, Prie and Sundermeyer (1999) invoked thetemporal variation of strati�ation. The mixed layer depth varied typially from
10 m during the day to 25 m at night. The mean urrent, time-averaged over thediurnal yle, should then show a di�erent vertial pro�le than the urrent inferredfrom the mean vertial strati�ation. This di�erene is a problem of reti�ation ofthe Ekman layer (see e.g. MWilliams and Hukle, 2006).However, Lewis and Belher (2004) reported potential problems in this inter-pretation. Mainly, the approah of Prie and Sundermeyer (1999) is not able toreonile the observed large sub-surfae de�etion of 75◦ and a small surfae de-�etion of 10 to 45◦ typially observed (Huang, 1979). Lewis and Belher (2004),followed by Polton et al. (2005), argued that the Stokes-Coriolis fore an explain thelarge sub-surfae de�etion, together with a small surfae de�etion. The agreementbetween their models and the LOTUS3 observations is then quite good.Other problems appear in turn in these models. First, the small surfae de-�etions reviewed in Huang (1979) partly omes from observations of Lagrangiansurfae drift. As noted in Part 1, the Lagrangian surfae drift is the sum of theStokes drift and the quasi-Eulerian urrent. A large surfae de�etion of the quasi-Eulerian urrent is not ontrary to a small surfae de�etion of the Lagrangian drift,beause of the Stokes drift. In relation to this, the surfae mixing in the modelsof Lewis and Belher (2004) and Polton et al. (2005) is likely to be several ordersof magnitude too small. But, as noted in Part 1 without strati�ation, a realistisurfae mixing gives a quasi-Eulerian urrent muh more uniform than modelledby the previous authors, ruining the agreement with the data (see Part 1, �g. 7).Strati�ation is therefore needed to reexamine the LOTUS 3 data. Here we alsoreexamine whether or not the LOTUS 3 data o�er an observational evidene of theStokes-Coriolis e�et on the Ekman urrent.3.4.1 A simple model of the diurnal yleFollowing the idealized model of Prie and Sundermeyer (1999), the present model isrun with the mean wind stress observed during the period, u∗ = 0.0083 m s−1. Thewaves are expeted to be fully developed with that wind stress, whih gives a signif-iant wave height of Hs = 1.6 m, based on the JONSWAP spetrum (Hasselmann



1D Desription with strati�ation 75et al., 1973).The temperature is initialized with the temperature observed at the beginningof the �eld experiment. The surfae heat �ux is not alulated using a bulk formulabeause no measurement of the relative humidity was available (see Stramma etal., 1986). Instead, we use an analytial �t of the solar insolation measured duringlear sky days and we suppose that a steady heat loss equilibrates the surfae heatbudget,
Q = max

(
0, 1000 cos

(
2πt

Tday

))
− 1000

π
, (3.1)where t is the time and Tday is a period of one day. With these surfae �uxes,the mixed layer depth varies between 8 m and 35 m. Those values agree with theobservations of the strati�ation during LOTUS3. However the vertial pro�le ofthe urrent do not look like the observed urrent pro�le. The urrent of the modelis too large and too muh homogeneous within the mixed layer (�g. 3.6).The veloity pro�le is not well reprodued when we use the observed solar �uxbut the mean wind stress, and it is not surprising. The reti�ation over sub-periodswith weak wind should not leave a mean veloity pro�le homogeneous in the upper

8 m. Similarly, if a strong wind event ourred during the period, its e�et must beapparent on the mean veloity pro�le below 30 m deep.3.4.2 A more elaborate model : onstraining the strati�a-tionThe previous results are enouraging but the pro�le of the mean urrent exhibitsa large sensitivity to the mixed layer depth history. The temperature variability isnot well reprodued with suh a simple model of the diurnal yle. We will thereforeattempt a more realisti simulation of the LOTUS3 data.Sine there is no lear indiation of what the damping of the inertial osillationsshould be in a one dimensional model (e.g. Mellor, 2001), the wind is supposedto blow in a onstant diretion, in agrement with the oherent averaging of Prieet al. (1987). The bulk formulation of COAMPS (Patrik Marhesiello, personalommuniation) for the atmospheri boundary layer is used to alulate the windstress. The relative humidity is set to 75%, as in Stramma et al. (1986). The windstress is set to the 6 hours low-pass �ltered alulated wind stress, updated every
15 mn. Using the averaged wind stress and not the averaged wind speed onservesthe stress. This minimizes the reti�ation errors. Finally, the urrent of the model,averaged over one hour, is stored and used to alulate the mean over the wholetime period (170 days).
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1D Desription with strati�ation 77When one wants to reprodue the strati�ation, both the heat budget and thelarge sale advetion of heat ome into play (see e.g. Gaspar et al., 1990). We willavoid those problems by onstraining the temperature to the observed temperature.A �rst simulation sets the temperature to the mean observed temperature every6 hours. The analytial �t (3.1) for the heat �ux is still used to reprodue thehigh-frequeny diurnal yle. The temperature of the simulation is therefore inlose agrement with the observed temperature, inluding the diurnal strati�ation(shown for a few depths in �g. 3.7), exept during a few episodes of exeptionallyweak solar insolation. As a onsisteny hek, a seond simulation uses a nudgingof the temperature to the 6 hours low-pass �ltered observed temperature. The timesale of the nudging is 1000 s. The temperature of this seond simulation is also ingood agreement with the observed temperature, exept that the diurnal warming issomewhat weakened by the nudging. The results in terms of mean Ekman urrent arequite similar between the di�erent methods to reprodue the temperature, validatingthe reprodution of the impat of the strati�ation on the urrent.
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Figure 3.7: Time series of the temperatures observed during LOTUS 3, at depths of
0.6, 15 and 35 m. Also shown is the temperature of the model, onstrained to thelow-pass �ltered observed temperature and with a typial solar insolation. Exeptduring rare events, the temperature is reprodued in a satisfatory manner.The omparison between the modelled urrent averaged over the entire periodand the oherent averaging of Prie and Sundermeyer (1999) is very good (�g. 3.8



78 Chapter 3and 3.9). The rosswind urrent agrees very well with the observation. The ross-wind transport of the model is equal to the Ekman transport, orresponding to themean stress, while the rosswind transport alulated with a trapezoidal extensionof the data is slightly (8%) inferior (see also Prie et al., 1987). The downwindurrent, if we omit the Stokes-Coriolis e�et, is also very lose to the observations.Both the downwind transports of the model and of the extrapolation of the data arenil.3.4.3 Validating the wave-indued mixing parameterization.Suh agreement between the model and the observations is surprising. It providesthe opportunity to hek the sensitivity to the di�erent parameterizations of themodel. In partiular, one may wonder if the mean urrent pro�les observed duringLOTUS 3 are useful to verify the e�ets of the wave-indued mixing on the urrent.We tested the model sensitivity to the roughness length. As shown in �g. 3.8,the mean veloity pro�le is mainly determined by the strati�ation and the onse-quent reti�ation e�et. The wave-indued mixing is not disernable on veloitymeasurements below 5 m deep.3.4.4 The Stokes-Coriolis e�etThe Stokes drift has been alulated by supposing the wave �eld fully developedwith the orresponding wind averaged over 6 hours. This gives an upper bound ofthe Stokes-Coriolis e�et.A more realisti estimation of that e�et is also needed. The omplete historiof the waves during the period is preferable, beause it inludes possible orrelationsbetween large wave events, strong wind events and partiular strati�ation eventslike deep mixed layers. Therefore, a global wave model of 1◦ resolution is usedto produe the sea state at the LOTUS3 station (34.0N, 70.0W). The wave modelis based on the WAVEWATCH III (WW3) ode (Tolman et al., 2002), in whihthe wind-wave evolution parameterizations have been replaed by those of Bidlotet al. (2005). Although these parameterizations still have some problems in ostaland swell-dominated areas (Ardhuin et al., 2007a), they provide good results forthe mean parameters Hs and Tm02 when ompared to the North Atlanti buoysmeasurements (Ardhuin and Le Boyer, 2006, Jean Bidlot personal ommuniation).The omparison with the nearby buoy 41001 (34.7N, 72.7W) of the National DataBuoy Center (NDBC) shows an rms error of 0.43 m on Hs (25% of the rms Hs)and of 0.57 s on the mean period Tm02 (9.8% of the rms Tm02), for the period from14 May to 30 November 1982. Note that no wave data were available at that buoy
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1D Desription with strati�ation 81The wave spetra at the LOTUS3 station were used to ompute the Stokes drift.Sine the Stokes drift is a high moment of the spetrum, it is often aligned withthe wind. Consistently with the average of Prie et al. (1987) whih follows thewind diretion, we used the norm of the Stokes drift and presribed it aligned withthe wind. This avoids any disussions between the observed wind diretion and thereanalyzed wind diretion.The numerial results with that lower bound of the Stokes-Coriolis term showthat its e�et, although small, should be observed from the urrent measurements.Aording to the model, the downwind transport should be negative in the obser-vations.However the observed downwind transport is almost zero. Consistently, thedownwind urrent pro�le of the model is loser to the data when omitting the Stokes-Coriolis term. In this regard, the present work is onsistent with the work of Prieand Sundermeyer (1999), showing that the '�atness' of the spiral results from thestrati�ation, ontrary to Polton et al. (2005) whih laimed it results from theStokes-Coriolis e�et.
3.4.5 The wave biasOne explanation emerges for that apparent mis�t of the model when inluding theStokes-Coriolis e�et : the nearly zero observed downwind transport was supposedto be Eulerian but ould have been ontaminated by the wave-indued buoy motion.Shudlih and Prie (1998) used the method of Santala (1991) to disuss the wavebias. In partiular, one an suppose that the buoy moves vertially with the surfaeand that the mooring line was taut, a reasonable assumption given the large lengthof the hain ompared to the depths of the urrent meters onsidered. Then, foreah monohromati wave train, one gets in addition to the quasi-Eulerian urrenta bias equal to

umin
bias(z) =

1

2
a2ωk exp(−kz), (3.2)where z is the elevation measured downward, a is the wave amplitude, ω is theradian frequeny and k the wavenumber. This gives a lower bound of the wave-bias.If one supposes that the buoy moves both vertially and horizontally, then one getsan upper-bound of the wave-bias

umax
bias (z) = a2ωk exp(−kz). (3.3)



82 Chapter 3For omparison, the Stokes drift of a monohromati wave is
Us(z) = a2ωk exp(−2kz). (3.4)As the wave-indued motions of the urrent meters are larger than the wave-induedmotions of the partiles, the maximum bias is larger than the Stokes drift (theequality arises at the surfae only).The vertial integral of the bias is bounded by
a2ω

2
≤
∫ 0

−H
ubiasdz ≤ a2ω, (3.5)while the vertially integrated Stokes transport is

Mw =
∫ 0

−H
Usdz =

a2ω

2
. (3.6)Therefore, if the unbiased theoretial downwind transport is equal to minus theStokes transport, we then expet to �nd a biased transport omprised between

0 and +Mw. The observed downwind transport in LOTUS 3 is approximatelyzero. It was interpreted by Prie et al. (1987) as an evidene that the Ekmantransport is rosswind. Furthermore, in the winter measurements of LOTUS 4, apositive downwind transport was found and was interpreted by Shudlih and Prie(1998) as a wave bias, oming from the large winter waves. The present desriptionsupports the more nuaned onlusion that both the LOTUS3 and the LOTUS4measurements are likely biased by the waves in the downwind diretion.3.5 Surfae driftOne aim of the present model is a better understanding of the surfae Lagrangiandrift, for appliations to searh and resue, �sh larvae reruitment or any otherstudies following �oating materials. The present model, following Garrett (1976)and Jenkins (1989), separates the �ow into a wave Stokes drift and an Eulerianurrent. In partiular, the introdution of the wave age should bring new insightin the near-surfae dynamis. One remarkable result obtained in Part 1 is thatthe surfae drift is almost independent of the wave age : as the waves gets moremature, the Stokes drift inreases. But the mixing is also more e�ient and leaves anEkman urrent more homogeneous, thus reduing the surfae quasi-Eulerian urrentand ompensating the inrease of the Stokes drift. This result is realled in �g. 3.10.
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1D Desription with strati�ation 85quasi-Eulerian urrent is almost rosswind. Consequently, the redution of the quasi-Eulerian urrent, when waves get more developed and mixing more e�ient, is notompensated by the inrease of the Stokes drift of the waves, ontrary to whathappens in unstrati�ed onditions. In addition, the mixed layer of the model getsthiker with a larger wave-indued mixing, whih inreases furthermore the wave agedependane of the surfae drift during strong heating events. That latter behavioris physially sound but requires further veri�ations. This requires a full oupling ofthe mixed layer with the wave foring, a task that is beyond the sope of the presentstudy and is left for future work.3.6 ConlusionA model of the surfae layer of the oean was presented in Part 1. Essentially, theurrent was separated into a wave Stokes drift and a quasi-Eulerian urrent. Thatphysial desription leaded to a di�erent analysis of the observations of urrentspro�les lose to the surfae, whether the measurements are Eulerian or Lagrangian.That analysis agreed qualitatively with a few available data of Lagrangian driftpro�les, of Eulerian veloity pro�les and of TKE dissipation rates. Motivated bythese results, we added the strati�ation to the model of Part 1 and tried a morequantitative validation of the urrent pro�les.We performed a reanalysis of the near-surfae quasi-Eulerian veloity measure-ments during SMILE. The near-surfae shears were previously investigated by om-parison to shears at greater depths obtained with an additional buoy (Santala, 1991).Here we made no hypothesis on the struture of that shear. The near-surfae shearsobtained in this more general analysis are found to be in good agreement with thedownwind shears expeted in the presene of a strong wave-indued mixing. How-ever, rosswind shears found are an order of magnitude larger than expeted. TheStokes-Coriolis fore (or Hasselmann fore) appeared as a good andidate but is tooweak in magnitude to produe suh shears. Consequently, the physis of the presentmodel is still not su�ient to explain the observed shears. Models and omple-mentary observations of Langmuir ells appear therefore to be neessary for furtherinvestigations of these urrents measurements.The long term observations of Ekman spirals during LOTUS 3 provide an oppor-tunity to investigate the Stokes-Coriolis e�et. The use of a long time series reduesthe noise in the measurement, enabling an analysis of the magnitude of the wind-driven urrent. However, it introdues reti�ation e�ets beause of the temporalvariations of the wind and of the strati�ation. The wind variability was taken intoaount by using the oherent averaging of Prie et al. (1987), whih follows the
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Figure 3.12: E�et of the wave age on the vertial pro�les (upper panel) and on thesurfae values (lower panel) of the Stokes drift, of the quasi-Eulerian urrent andof the Lagrangian drift. Veloities are expressed as a perentage of the wind speed
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1D Desription with strati�ation 87wind diretion, and hanges in the strati�ation were represented by onstrainingthe temperature to the observed temperature. The Ekman spiral of the model thenshowed very good agreement with the observations. However, we did not found anyevidene of the Stokes-Coriolis e�et, whereas aurate wave hindasts suggest thatit should be signi�ant. The nature of the measurement is then in question, be-ause the bias indued by the waves on near surfae measurements from a buoy anbe larger than the Stokes transport. Seeking evidene of the Stokes-Coriolis e�etsuh long time averaging, as attempted by Lewis and Belher (2004) and Polton etal. (2005), still appears to be feasible but preferene should be aorded to mea-surements from �xed towers or bottom mounted Aousti Doppler Current Pro�lers(ADCPs) to get rid of that wave bias.Finally, we investigated the surfae drift preditions of the model in the preseneof strati�ation. It is shown that the wave age e�et on the surfae drift, whih wasfound to be small in unstrati�ed onditions, is important in the presene of shallowdiurnal mixed layers. In suh ase, onsidering separately the wave �eld and themean urrent should give signi�ant di�erenes on surfae drift preditions.Aknowledgments.The initial version of the omputer ode for the mixed layer model was kindlyprovided by Yign Noh. We aknowledge the National Buoy Data Center (NDBC)and the Upper Oean Mooring Data Arhive of the Woods Hole OeanographiInstitution (WHOI) for their web-available data. N.R. aknowledges the support ofa CNRS-DGA dotoral researh grant.
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Chapter 4One-Dimensional study: Epilogueand Perspetives
4.1 Is the surfae drift due to the wind or due tothe waves ?It was shown in hapter 2 that the surfae drift, when the wind-waves are developed,is rather due to the Stokes drift of the waves than to the wind-driven mean urrent. Afast interpretation ould be that the surfae drift in the present desription is relatedto the waves and is not related to the loal wind anymore. This interpretation mustlearly be nuaned.Firstly, it is true that the Stokes drift not only depends on the wind speed butalso depends on the wave age. Developed wind-waves have a larger energy and alarger surfae Stokes drift than young wind-waves. But what is the impat of thewave age on the surfae drift ? This question has been treated in the previoushapters, showing in partiular that, at least in an unstrati�ed oean, the surfaedrift is not muh modi�ed by the wave development (see �g. 2.12).Seondly, if the surfae drift mainly omes from the waves Stokes drift, is itpossible that the swell, i.e. waves not related to the loal wind and propagating farfrom their generation areas, has an important ontribution to the surfae drift ? Wewant here to disuss that issue, the impat of the swell on the surfae drift.The ontribution of the short waves to the surfae Stokes drift is important,beause the latter is a third moment of the frequeny spetrum (�g. 4.1). Thoseshort waves are less important for the Stokes transport as it is a �rst moment of thespetrum (�g. 4.1). We note however that the diretional spreading of the shortwaves redues their ontribution to the surfae Stokes drift.Consequently, the Stokes drift of a low frequeny swell with a sharp spetral89



90 Chapter 4distribution is muh smaller than the Stokes drift of a wind sea of the same energy,espeially if the swell period is large. For illustration purpose, we plotted in �g.4.2 the spetra orresponding to the variane of the surfae elevation (the energy,upper panel) and to the surfae Stokes drift (lower panel), for young wind-waves,old wind-waves, long period and small period swells. The swell were supposed tobe narrow-banded, with a Gaussian distribution of the energy around the peakfrequeny, with a spreading of 0.02 Hz. The surfae Stokes drift of the young wind-waves (feth of 100 km, Hs = 1.6 m, Tp = 5.5 s) is 10.2 m s−1, that of the developedwind-waves (feth larger than 1000 km, Hs = 2.8 m, Tp = 8 s) is 12.9 m s−1, thatof the short period swell (Hs = 2.8 m, Tp = 8 s) is 5.2 m s−1 and that of the longperiod swell (Hs = 2.8 m, Tp = 12 s) is 1.6 m s−1.The surfae drift, even if it was found mainly due to the Stokes drift of thewaves, remains then orrelated to the loal wind, with only a small ontribution ofthe swell, typially of the order of a few entimeters per seond in deep water.4.2 Further veri�ations of the present desription4.2.1 The drifters observations and the model of Kudryavtsevet al. (2007)The major weakness of the model presented in this part is its high dependeny on theroughness length, whereas that latter is poorly physially de�ned. Suh additionaltuning parameters might denote that the physis of the model fails to desribed thenear-surfae zone. One of the interpretation of this roughness length is that it isa substitute for the depth injetion of TKE and momentum due to wave breaking.In hapter 2, we used the model of Sullivan et al. (2004) and the observations ofMelville et al. (2002) to injet the momentum and the TKE over a ertain depth.Our onlusion was that this annot substitute to the use of a large roughness length,of the order of Hs. Kudryavtsev et al. (2007) injeted the TKE and the momentumto a depth proportional to the wavenumber of the wave that dissipates and theyfound that their model is onsistent with previous observations of TKE dissipationrates lose to the surfae, and also with new observations of near-surfae drifters.Interestingly, they do not need a large roughness length to obtain this agreement(they set z0 to a few entimeters). The di�erenes with our similar experiment madein hapter 2 are not lear. The depth injetion of TKE and momentum is around
λ/5 in our work and is around 1/k = λ/2π in their model.More interestingly, Kudryavtsev et al. (2007) argued that the quasi-Lagrangianmotion expeted for a drogue in the presene of waves, almost similar to the Stokes
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Figure 4.1: Frequeny spetrum integrated over the diretion ∫ E(f, θ)dθ, for a windsea with a wind speed of U10 = 10 m s−1 and a feth larger than 1000 km (fullydeveloped sea, period Tp = 8s, signi�ant wave height Hs = 2.8m), based on theKMC spetrum [Kudryavtsev et al. (1999)℄. Also shown is the �rst moment of thespetrum f
∫
E(f, θ)dθ (orresponding to the the Stokes transport), the third mo-ment f 3

∫
E(f, θ)dθ and the e�et of the diretional spreading on the third moment

f 3
∫
E(f, θ)cos(θ)dθ (orresponding to the Stokes drift). Eah spetrum is normal-ized with its integral over frequeny. One an see that the Stokes drift depends onthe most energeti waves near the spetral peak but with non negligible importaneof the small waves, although the diretional spreading of the small waves reduesthis importane.
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Figure 4.2: (Upper panel) Frequeny spetrum integrated over the diretion∫
E(f, θ)dθ. The integrals over frequeny gives the "energy" E, i.e. the variane ofthe surfae elevation, related to Hs by Hs = 4 ∗

√
E.(Lower panel) ∫ E(f, θ)2kωdθ,whih integrates over frequeny to give the surfae Stokes drift Us. The wind speed isset to U10 = 10 m s−1. Four di�erent spetra are shown: in red, the waves are young(feth of 100 km, Hs = 1.6 m, Tp = 5.5s), in blak the waves are fully-developed(feth larger than 1000 km, Hs = 2.8 m, Tp = 8 s), based on the KMC spetrum(Kudryavtsev et al., 1999). In blue, we show the ase of swells with a gaussianspetral distribution with the same energy than developed waves (Hs = 2.8 m) andfor two di�erent peak periods, Tp = 8 s in solid line and Tp = 12 s in dashed line.By omparing the areas below eah urves, one an see the inrease of both thewave height and the surfae Stokes drift as the wind sea gets more developed. Onean also see that a narrow-banded swell, although of same energy than developedwind-waves, reates a small surfae Stokes drift, and even smaller as the swell periodgets larger.



1D Desription, Epilogue and Perspetives 93drift that would experiene a perfet Lagrangian drifter, is muh smaller than theobserved displaements. Consequently, they analyzed the drifters motions in termsof mean urrent only, without any onsiderations of the Stokes drift of the waves.This approah would appear to ompletely ontradit the results obtained in hapter2 for fully developed waves. However, the quite small waves enountered during their�eld measurement (Hs ≤ 0.5 m) suggest that either the wind was quite low or thefeth quite short. As noted in hapter 2, for short fethes, the Stokes drift is smalland the Eulerian urrent may dominate the surfae drift. Further work is learlyneeded to reonile the two models.4.2.2 Other determinations of the roughness lengthWe essentially used the works of Terray et al. (1996, 2000) whih relates the rough-ness length to the signi�ant wave height : z0 = 1.6Hs. These results were inferredfrom observations of TKE dissipation lose to the surfae.The same kind of alulation was onduted by Soloviev and Lukas (2003) andthey found smaller value of the proportionality onstant z0 = 0.6Hs. However, if aswell was present in this Central Pai� experiment, this onstant might be slightlyunderestimated.Also, Gemmrih and Farmer (1999) used measurements of temperature gradientslose to the surfae and found smaller values of the roughness length, z0 ≃ 0.2m.Although this di�erent measurement tehnique ould be argued to produe naturallydi�erent results, Gemmrih and Farmer (2004) also estimated dissipation rates fromnear-surfae wavenumber spetra of veloity. These latter measurements are foundto be generally onsistent with smaller z0 values than expeted from Terray et al.(1996). In this ase, their measurement devie was following the up and down motionof the waves, and would thus be a more adequate measurement than those madeat �xed depth by Terray et al. (1996). We may only onlude that measurementsof turbulene in the upper oean are learly onsistent with values of z0 that are asigni�ant fration of a meter, but with an elusive saling, logially related to theheight of breaking waves, but only tentatively related to the wind sea wave height.
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Chapter 5Impat of waves on the oean mixedlayer
Part I of the present thesis analyzed the veloity pro�les in the surfae layer. Itwas made lear that the vertial shear of the veloity lose to the surfae is mainlydue to the Stokes drift of the waves, rather than due to a sheared surfae urrent.This is a onsequene of the observed strong near-surfae mixing, likely due to wavebreaking, at moderate and high wind speeds.In parallel, sine this expeted strong wave-indued surfae mixing has been a-tually measured, several authors have disussed its in�uene on the temperature ofthe surfae layers of the oeans. Namely, the whole desription of the turbulene inthe near-surfae layer was modi�ed. The lassial view on the oean mixed layer isa transposition of the atmospheri boundary layer over land, whih is well desribedby Monin-Obukhov theory, as veri�ed in the Kansas experiments. Turbulent ki-neti energy (TKE) is produed by veloity shears and unstable strati�ation, andmay be destroyed by stable strati�ation. In stably strati�ed ases, this leads toa desription of the mixed layer depth through a ompetition between the shearprodution by the mean urrent and the buoyany damping, leading to de�nitionsof Rihardson numbers based on their ratio.A signi�ant di�erene in the oean mixed layer is given by the surfae �ux ofTKE, assoiated with wave breaking, whih dominates by far the prodution by themean shear (e.g. Terray et al., 1996). Noh (1996) showed that this surfae �ux ofturbulene is a neessary ingredient to obtain a thermoline in the presene of bothwind and stabilizing buoyany �ux. This explain why the diurnal oean surfae layerexhibits a thermoline while the noturnal atmospheri bottom boundary layer doesnot.Li et al. (1995) studied the impat of Langmuir ells on the mixed layer depth.97



98 Chapter 5This impat was inferred from an investigation of the downward veloity due toLangmuir ells at the base of the mixed layer. This ause of thermoline erosion wasthen ompared to erosion due to the shear urrent of inertial osillations. However,the shear of the mean �ow was onsidered as the dominant soure of turbulene,whereas for shallow mixed layers, the downward di�usion from the surfae mightertainly dominate.5.1 A methodology to study the impat of waves onthe mixed layer depthLarge Eddy Simulations (LES) are the most realisti models of the mixed layer.They are able to resolve the full 3D turbulene, inluding wave-indued turbulene,with a resolution of about 1 m. They are used to understand speial aspets ofthe near-surfae dynamis, to interpret small sales observations, and even to sub-stitute to missing (beause di�ult to ahieve) measurements. But due to theirhigh omputational osts, they are not suited for seasonal or annual simulationsof mixed layers, and they also annot be implemented in a Oean General Ciru-lation Model (OGCM) to produe simulations and analysis of mixed layers wherehorizontal advetion is important.Therefore the traditional approah of mixed layers studies uses LES, in idealizedsituations, to analyze the impat of the di�erent important physial proesses :Langmuir irulations (MWilliams et al., 1997), horizontal Coriolis fore, wavebreaking (Noh et al., 2004), surfae heating (Min and Noh, 2004),...Results of these LES studies are used to onstrut simpler and omputationallyless expensive parameterizations (e.g. Kantha and Clayson, 2004; MWilliams andSullivan, 2001; Smyth et al., 2002), and to implement them either in 1D vertialmodels or in full 3D OGCM to inlude horizontal advetion. Long term, seasonalor annual, mixed layers preditions of suh models are then onsidered as indiretheks of the role of the di�erent physial proesses inluded (Gaspar et al., 1990;Large et al., 1994; Noh et al., 2005; Mellor and Blumberg, 2004).We note, however, that LES models of the oean mixed layer have failed so farto atually inlude wave motions, and only phase-averaged parameterizations havebeen used with, in some ases, the addition of momentum and TKE pulses meantto represent breaking waves. Reent model results on breaking waves (Lubin etal.2006) ould likely be applied to this problem.Here we will not attempt another LES simulation to evaluate the impat ofwaves on the mixed layer depth. Instead, we will fous on the following step of the



Impat of waves on the oean mixed layer 99approah desribed above : we will use previous theoretial works to identify whihparameters are useful to represent the wave-indued mixing. Then we will turnour interest on an estimation of these parameters, using a global wave model. We�nally will evaluate the impat of suh parameters on mixed layer depths alulatedwith an OGCM. In partiular, we want to examine whether waves are a plausibleandidate to explain mixed layer depths mis�ts of OGCMs ompared to unresolvedinertial osillations, unertainty on the surfae �uxes, unresolved internal waves orothers.5.2 Whih parameters for wave-indued mixing ?5.2.1 Wave-indued mixing in the near-surfae zoneWhiteaps of surfae waves provide an intense soure of TKE ompared to the shearof the mean urrent. Also, waves are believed to be at the origin of the Langmuirells (Langmuir, 1938), whih generally dominate the vertial mixing produed bythe breaking waves (Noh et al., 2004), exept probably in the near-surfae zone.Regardless of it physial origin, that near-surfae mixing, enhaned in the pres-ene of waves ompared to the mixing lose to a rigid wall, has been suessfullymodeled with simple Mellor-Yamada type TKE models, by adding a TKE surfae�ux Φoc and by setting the mixing length at the surfae z0 proportional to the waveheight (see Part I). The surfae �ux of TKE omes from the dissipation of waves.5.2.2 Wave-indued mixing through the whole mixed layerObservations of Langmuir turbulene have revealed that the turbulent veloity wrmsassoiated with the Langmuir ells sales with the surfae Stokes drift (Smith, 1998).Also, Langmuir turbulene is supposed to our for small values of the Langmuirparameter La =
√
u∗/Us(z = 0). Nevertheless, we note that the vertial shear ofthe Stokes drift is absent from these dimensional analysis, whereas the tilting of thevortiity of the mean �ow by the Stokes drift shear is a dominant mehanism forthe generation of Langmuir ells. Reently, Harourt and D'Asaro (2006) proposeda revised Langmuir parameter LaSt, in whih the mean Stokes drift between thesurfae and one �fth of the mixed layer depth is used instead of its surfae value.That number was hosen to inlude in the dimensional analysis the ratio of the mixedlayer depth to the Stokes depth, whih haraterizes the vertial shear of the Stokesdrift through the mixed layer. Based on LES simulations, the turbulent veloityof the Langmuir ells was found to depend on that modi�ed Langmuir number by



100 Chapter 5the formula wrms = u∗La
−2/3
St . These authors further argued that the observationshardly exhibit suh trend beause of inverse orrelations between winds speeds andwave ages in the �eld measurements.5.3 Estimations of the wave-related parametersWave-related parameters may be obtained from numerial models. One should bearelful that suh models are mostly veri�ed in terms of signi�ant wave height andpeak or mean period only, so that other parameters, in partiular those related tothe high-frequeny end of the spetrum may not be well estimated. Here we havehosen to use the spetral phase-averaged model WAVEWATCH III (Tolman, 2002),as modi�ed by Ardhuin et al. (2007a) to inlude the generation and dissipation pa-rameterizations of Bidlot et al. (2005). Although these parameterizations still resultin large biases (about 30%) in the swell-dominated Eastern tropial Pai�, due toa lak of swell attenuation by the wind, they also provided the smallest randomerrors of all other parameterizations in use in operational wave models for mid andhigh latitudes (Jean Bidlot, personnal ommuniation). Our model on�guration isglobal (80◦S to 80◦N) with 1◦ resolution, and has been extensively validated againstall in situ buoys reporting to the WMO Global Transmission System and all satellitealtimeters (Fabrie Ardhuin and Pierre Que�eulou, personnal ommuniation). Thismodel is fored here with 10-m winds and sea ie onentrations from the EuropeanCenter for Medium-Range Foreasts (ECMWF) 40-year reanalysis (ERA40).5.3.1 The Stokes drift UsThe Stokes drift at the surfae was estimated by Kenyon (1969). He supposed thatthe waves are fully-developed and omputed the Stokes drift with the spetrum ofPierson and Moskowitz (1964). He obtained values around 3% of the wind speed at

10 m. These results were reevaluated in Part I, using the more realisti spetrumof Kudryavtsev et al. (1999), and we obtained that the Stokes drift an reah amaximum value of 1.2% of the wind speed. This ratio was found to be maximumfor high wind speeds. However, for strong winds, the waves are seldom fully devel-oped. Therefore we estimated the Stokes drift using the waves hindasts. Here theStokes drift is only omputed over the frequeny range of the spetrum, i.e. witha maximum frequeny of 0.4 Hz. The mean ratio over January 2004 is shown in�g. 5.2. This ratio is around 0.3% at low latitudes and about 0.6% at mid-latitude.Maximum values are only around 1.0%, in areas of large wind speeds.
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Figure 5.1: Wind speed U10 (m s−1) at 10m. Values shown are mean values overJanuary 2004.
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Figure 5.2: Ratio of the surfae Stokes drift Us(z = 0) to the wind speed U10 at 10m, in perentage. Values shown are mean values of the ratio, < Us(z = 0)/U10 >,over January 2004.



102 Chapter 55.3.2 The Stokes transport TsThe Stokes transport (i.e. the vertially integrated Stokes drift) of a wind sea wasestimated by MWilliams and Restrepo (1999) and Polton et al. (2005), using thespetrum of Pierson and Moskowitz (1964). It was shown to reah maximum valuesaround 40% of the orresponding Ekman transport, depending on the latitude. Inpart I, we reevaluated this ratio using the spetrum of (Kudryavtsev et al., 1999)and found smaller values, around 30% at best at 45◦ of latitude. The ratio wasshown to reah maximum values for high wind speeds. However, one again, wavesare seldom fully developed for large wind speeds. Indeed, Pierson and Moskowitzonly found about 20 ases of fully developed waves in several years of data (see alsoAlves et al. 2003). Therefore we reevaluated this ratio using a wave hindasts. Theatmospheri boundary layer of the wave model is used to alulate the surfae stress.The �g. 5.3 shows that monthly mean values of the ratio are around 5%. Maximumvalues only reah 10%, and are found in the viinity of areas with large wind speeds.
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Figure 5.3: Ratio of the Stokes transport Ts to the Ekman transport TEk = u∗2/f ,in perentage. Values shown are mean values of the ratio, < Ts/TEk >, over January2004. Values of the ratio as muh as 200 are obtained during partiular events of verylight wind and presene of swell. Suh events introdue highly loalized bias in themonthly mean and were avoided by averaging only over the events with Ts/TEk < 1.



Impat of waves on the oean mixed layer 1035.3.3 The roughness length z0The roughness length z0 is physially understood as the sale of the breaking wavesresponsible for the high mixing levels lose to the surfae. It has been shown byCraig and Banner (1994) and by Mellor and Blumberg (2004) that this length saleis even more important in terms of mixing than the amount of TKE injeted. Thismeans that the atual size of the mixing pattern is important, even more than theenergy of this mixing. That length sale has been related to the signi�ant waveheight Hs of the waves (Terray et al., 1996, 2000) with
z0 = 1.6Hs. (5.1)Given that the swells (waves not related to the loal wind) have a small surfae slopeand generally do not break, the wave height of the wind sea only (Hsws) is probablythe appropriate parameter in 5.1. We performed the separation between swell andwind-waves by imposing that wind-waves must experiene a positive foring fromthe wind, namely

Hsws = 4

√∫

Sin(k)>0
E(k)dk, (5.2)where E(k) is the variane of the surfae elevation for a given wavenumber k and

Sin is the energy input term in the wave energy equation. For developped waves alarge fration of the energy orresponds to waves propagating slightly faster than thewind and for whih Sin < 0. Our de�nition (5.2) thus yields a smaller height thanthe usual swell-sea partition based on the analysis of loal minima in the spetrum.As a onsequene, for a young wind-sea without swell, Hsws = Hs, whereas for afully-developed wind sea, Hsws < Hs. This is onsistent with the Fig. 9 of Banneret al. (2000) whih showed observations that waves around the spetral peak do notbreak when the waves are fully-developed. It might also be onsistent with a smallervalue of z0/Hs found by Soloviev and Lukas (2003) for developed waves. The �g.5.4 shows the mean values of Hsws over January 2004.Mellor and Blumberg (2004) have related the roughness length z0 to the windstress u∗, using an approximate equation for the height of the waves as a funtionof the wind stress,



Hs = β

0.85
u∗2

g
,

β = 665
(

Cp

u∗

a

)1.5
,

(5.3)
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Figure 5.4: Signi�ant wave height of the wind sea, Hsws (m), as estimated from thewave model with 5.2. Values shown are mean values < Hsws > over January 2004.where Cp/u
∗

a is the wave age, i.e. the ratio of the phase speed of the dominant wavesto the atmospheri frition veloity.Note that Mellor and Blumberg (2004) did use the de�nition of the mixing length
l = κmax(z′0, |z|), with the orresponding roughness length z′0 ≃ 0.85Hs (Terray etal., 2000), whereas, as already disussed in Part I, we stayed with l = κ(z0 + |z|)and z0 ≃ 1.6Hs. Beause of these di�erent de�nitions of the roughness length, wewill rather disuss here the values of the wave height.For a wave age of Cp/ua∗ = 30, i.e. fully developed waves, formula 5.3 gives




Hs = β

0.85
u∗2

g
,

β = 1.E5.
(5.4)Estimations of z0 by Staey (1999), from veloity pro�les observations, gave value of

β even larger, β = 2.E5, although the waves were quite young during their Canadianfjord measurements. Therefore Mellor and Blumberg (2004) investigated values of
β between 1.E5 and 2.E5.Indeed, waves are not always fully-developed, and the omparison between theparameterization 5.4 of the wave height and the alulation from the wave model,using 5.2, shows a large disrepany at mid-latitude (�g. 5.5). Note however that



Impat of waves on the oean mixed layer 105the agreement is aeptable at low latitude.The wave age Cp/u
∗

a is obviously missing in a diret parameterization of thewind-wave height from the wind. However, seeking for suh a simple parameteriza-tion, why do the authors suppose fully developed waves ? Waves are always fully-developed under weak winds and are often quite young under strong winds (�g.5.6). Although we warmly reommend using wave parameters from a wave model,we nevertheless propose here a better approximation of the wind-wave height, forthose who do not want to use a wave model. This approximation supposes that thewave age is a funtion of the wind speed,
Cp

u∗a
= 30 tanh

u∗ref

u∗
, (5.5)where u∗ref is a typial frition veloity above whih the wave growth is durationlimited (see �g. 5.8, left panel). Here we set u∗ref = 0.020. The wave height is then





Hs = β
0.85

u∗2

g
,

β = 665
(
30 tanh

u∗

ref

u∗

)1.5

.
(5.6)It is shown in �g. 5.7 that this parameterization 5.6 orrets the overestimationof the wave height at mid-latitude.We modestly propose the use of the formula 5.6 instead of 5.4 to roughly pa-rameterize the wave-breaking e�et on the mixing, for instane for appliation to anOGCM.The next step to built a more aurate simple formula ould be to supposethat the wave age is a funtion of both the wind speed and the spae, Cp/U10 =

f(U10, x, y). This would lead us to built a limatology of wave ages, and ouldroughly represent the young sea states in the west parts of the oeans, due to thefeth limited growths of the waves.However, as is emphasized in setion 5.4, the use of a wave model in additionto the oean irulation model is by far preferable to suh simple limatologialparameters.



106 Chapter 5
H

s
=1.E5/0.85 u*2/g

 

 

−150 −100 −50 0 50 100 150

−60

−40

−20

0

20

40

60

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

H
sws

/(1.E5/0.85 u*2/g)

 

 

−150 −100 −50 0 50 100 150

−60

−40

−20

0

20

40

60

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.5: (Upper panel) Signi�ant wave height (m), alulated from the windstress with 5.4. Values shown are mean values < βu∗2/(0.85g) >, with β = 1.E5,over January 2004. Color sale stops at 5m although values up to 10m are foundat mid-latitude. (Lower panel) Ratio of the signi�ant wave height of the wind seaas inferred from 5.2 to the estimation with 5.4. Values shown are ratio of the meanvalues, < Hsws > / < βu∗2/(0.85g) >, over January 2004. The estimation supposingfully-developed waves is not bad at low latitudes but largely overestimates the waveheight at mid-latitudes.
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Figure 5.7: (Upper panel) Signi�ant wave height Hsnewfit (m) alulated from thewind stress with 5.6. Values shown are mean values < Hsnewfit > over January 2004.(Lower panel) Ratio of the signi�ant wave height of the wind sea as inferred from5.2 to the estimation Hsnewfit with 5.6. Values shown are ratio of the mean values,
< Hsws > / < Hsnewfit >, over January 2004. The estimation supposing fully-developed waves is still good at low latitudes but the large overestimation of thewave heights at mid-latitudes, due to duration limited growths, has been orreted.



Impat of waves on the oean mixed layer 1095.3.4 The TKE �ux αu∗3The TKE �ux Φoc to the oean omes from the dissipation of the waves. It hasbeen modelled during the past as Φoc = αu∗3. Terray et al. (1996) alulated thedissipation of the waves using the energy input from the wind, Sin, from Donelan andPierson (1987), integrated over a large variety of observed wave energy spetrum.They obtained values of α between 50 and 150, depending on the wave age (see the�g. 8 of Terray et al. (1996)). Nevertheless, it should be noted that the wind-wavegrowth term of Donelan and Pierson (1987) was later revised by Donelan (1990),with the dimensionless growth onstant inreased from 0.19 to 0.28. We thus expetsuh a proportional inrease to apply to Φoc. Mellor and Blumberg (2004) �ttedthe (underestimated) �ux data shown in Terray et al.'s �gure 8 (see �g. 5.8, rightpanel), with the expression
α = 15

Cp

u∗a
exp


−

(
0.04

Cp

u∗a

)4

 . (5.7)
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∗

a as funtion of the frition veloity u∗/u∗ref ,from our estimation 5.5. (Right panel) Fit of the parameter α = Φoc/u
∗3 of the TKE�ux from the waves to the oean, as a funtion of the wave age Cp/u

∗

a. Blak line isthe �t made by Mellor and Blumberg (2004) over the �g. 8 of Terray et al. (1996),whih used the wind-wave growth term of Donelan and Pierson (1987). Blue line istwie the blak line, as the present wave model uses a larger growth term.Janssen et al. (2004) evaluated with the 2003 version of the ECMWF wave model(ECWAM) the monthly mean values of α. As shown by this author, the monthlymean value of this parameter, namely < α >=< Φoc/u
∗3 >, was of the order ofthe estimations of Terray et al. (1996), i.e. around 50 − 150 (Janssen et al., 2004,�g. 14). Our estimations of the monthly mean values of α is of the same order
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Figure 5.9: Monthly mean parameter α = Φoc/u
∗3 of the TKE �ux from the wavesto the oean. Values shown are mean values of α, alulated as < Φoc/u

∗3 >, overJanuary 2004.than the one of Janssen et al. (2004), also slightly larger, by a fator of roughly 1.5.This might ome from a di�erent parameterization of the dissipation in the wavemodel, sine it was later hanged by Bidlot et al. (2005). But more importantly, themonthly mean largely hides the variability of the parameter α. Under strong winds,
α an reah values as large as 600 (�g. 5.10).Janssen et al. (2004) further highlighted the spatial distribution of the parameter
α, whih exhibits a strong latitude dependeny, beause the wave �eld is often lessdeveloped at mid-latitudes (see their �g. 14). One again, the wave age is oftenorrelated with the wind stress, leading to a orrelation between the parameter αand the wind stress (�g.5.10). Rather than supposing the parameter α onstant, asimple parameterization of α as a funtion of the wind stress would be more aurate.Of ourse, we again insist that using a wave model to derive these parameters wouldbe better, sine suh an empirial �t annot reprodue the full variability due to thewave �eld. If, as in the previous setion, one supposes that the wave-age dependson the wind stress via 5.5, then one ould use the formula 5.7 to estimate α diretlyfrom the wind stress. It is shown in �g. 5.10 that suh estimation of α exhibitsthe good trend, and we propose its use in an OGCM instead of a �xed value of α.However, as already noted, the formula 5.7 seems to underestimate the wind input
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Figure 5.10: Parameter α = Φoc/u
∗3 of the TKE �ux from waves to the oean, asa funtion of the waterside frition veloity u∗. One value orresponds to one wavemodel output, every 3 hours, for January 2004. Three loations of the North Atlantiare shown, one from the Tropial Atlanti, one from the North-East Atlanti andone from the North-West Atlanti. The parameter α, over 3 hours, largely overtakesthe usual values of 50−150, and so does the daily mean (not shown). Also shown inblak solid line is the parameter α by supposing that the wave age is a funtion ofthe wind speed (equ. 5.5), and with formula 5.7. As the latter formula appears tounderestimate the wind input of our wave model, we have also plotted a blue solidline equal to twie the blak line.



112 Chapter 5of our wave model, by a fator 2 (�g. 5.10).
5.4 The spatial and temporal distribution of mix-ing events. A diret parameterization from thewind ?In the previous setion, we have evaluated the wave-indued mixing parameters. Itwas highlighted that most of them are strongly orrelated to the wind speed, forinstane, the roughness length proportional to the height of the breaking waves, theTKE surfae �ux, the Stokes drift at the surfae. A rough approximation of thewave age as a dereasing funtion of the wind speed was found to roughly representthe smallest wave development at mid-latitude, due to the short durations of thestorms. The main features of the wave �eld at a global sale were obtained, exeptthe short fethes e�ets in the west part of the oeans in the westerlies regimes.However, for ostal studies or when details matter, a diret representation of themixing with the wind is learly not preise enough. In this setion, we wish to insiston the di�erent features of the wave-related mixing ompared to a wind-relatedmixing.At a global sale, as already mentioned, the highest waves areas are shifted tothe west ompared to the highest wind speeds areas (�g. 5.6) at mid-latitudes.But suh di�erenes also our at smaller sales. It is obvious, when onsideringthe wave height, that the wave �eld exhibits less spatial variability than the wind�eld. Waves at like a spatial �lter, damping the high wavenumber omponents ofthe wind stress. For instane, the spatial extension of a storm is largely thinner ifone onsiders the trak of the high winds areas than the trak of the large wavesareas (�g. 5.11). Note however that our strit de�nition of the wind-waves, aswaves experiening a positive foring from the wind, whih might be suited for thebreaking-waves, redues the spreading of the wave-indued mixing ompared to thewind-indued mixing.We also note �nally that the waves, in addition to the spatial �ltering, onstitutea temporal integrator of the wind. This has already been disussed by Janssen etal. (2004), with the analysis of the ase of a passing front. Both the momentumand the TKE �uxes to the oean were shown to slowly relax after the sudden windhange.
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Figure 5.11: (Upper panel) Mean frition veloity < u∗ >, averaged over the period8th-10th January 2004. The trak of a west propagation storm in the North Pai�is apparent. (Lower panel) Setion along the longitude 200E, showing the meanwind stress < u∗2 >, signi�ant wave height of the wind sea < Hsws >, and thetotal signi�ant wave height Hs, averaged over the period 8th-10th January 2004.A similar storm in the early spring might onstitute an important mixing event andthus largely impat on the mixed layer depth.



114 Chapter 55.5 The di�erent kinds of vertial mixing models forappliations in OGCMsThere are di�erent kinds of vertial mixing models for the mixed layer of the oean.The bulk models onsider that the mixed layer is approximately uniform in termsof temperature and veloity. The mixed layer depth evolves then using onsidera-tions on buoyany ontent, depending on the surfae �uxes and the buoyany justbelow the mixed layer, and onsiderations on the TKE, with strong importane ofthe TKE at the base of the mixed layer to deepen the mixed layer.On the other hand, there are models whih solve a full vertial distribution of themixed layer. These models generally parameterize the vertial turbulent transportswith eddy di�usivities. These di�usivities are determined using the TKE and anadditional parameter, suh as a mixing length or a dissipation rate.One of the major drawbaks of these models is their use of eddy visosity. Theturbulent transport is then loally parameterized as a down-gradient �ux. Thisremains true as long as the typial length sale of the important eddies is less than thevertial disretisation of the model. Otherwise, larger but unresolved eddies (beauseof hydrostati assumption for example) an arry �uxes whih are not neessarydown-gradient. For that reason, models have appear whih use bulk parameters ofthe mixed layer in addition to loal parametrization. The most widely used modelin that lass is the K-pro�le parameterization (KPP) of Large et al. (1994).5.6 A model to estimate the impat of waves on themixed layer depthIf, for any physial reason, waves are important in terms of the mixed layer depth,then all the di�erent models presented above might already inlude, to some extend,an impliit parameterization of the e�et of waves on the mixing, beause thesemodels are alibrated to give realisti values of the mixed layer depths ompared tothe observations.However, we wish here to isolate the wave e�ets on these models, in order toinvestigate the mixed layer struture under di�erent wave onditions. We leaveaside the bulk models (e.g. Li et al., 1995), beause vertial pro�les are her underinterest, but we also leave aside the KPP model, beause the mixed layer depth ofthe model is alulated using a bulk formulation with the near-surfae veloity anddensity. For instane, any modi�ation of the di�usivity pro�le lose to the surfae tobetter parameterize the wave-breaking, suh as the one proposed by MWilliams and



Impat of waves on the oean mixed layer 115Hukle (2006), modi�es the surfae veloity and onsequently the bulk Rihardsonnumber used to alulate the depth of the mixed layer. This modi�ation is notphysially sounded, beause in this ase the TKE �ux from the surfae dominatesthe TKE prodution by the shear of the urrent.In ontrast, the models with a TKE alulation, inluding TKE di�usion, appearpartiularly well designed for our purpose. Also, the wave breaking e�ets havealready been added to suh models, with a surfae �ux of TKE and with a surfaeroughness length (see part I).5.7 Preliminary results on the impat of waves onthe mixed layer depthThe model used in this setion is the model of Noh (1996). This model is quitesimilar to the model of Gaspar et al. (1990). The main ommon feature is thatthe roughness length is equal to the buoyant length sale when the strati�ation isstrong.However, strange features of the model of Gaspar et al. (1990) were observed.The model was used with a vertial grid of 1 m. Depending on the time step
dt, the mixed layer depth obtained under wind mixing (u∗ = 0.001 m s−1) andstabilizing buoyany �ux (500 W m−2) was either proportional to the Ekman depth(for dt ≃ 300 s) or proportional to the Monin-Obukov length (for dt ≃ 10 s), thistime without any dependeny on the Coriolis parameter f . With the low temporalresolution, the thermoline appears only after 1 day, whereas it appears immediatelywith the high temporal resolution. The reason for this is unlear, but lari�ationof this might be of importane for a high temporal resolution aiming to inlude thediurnal yle with this kind of model.The model of Noh (1996) was run, as in part I, with a time step dt = 10 s. Itis shown in �g. 5.12 that the mixed layer depth obtained with this model in thepresene of both wind- and wave-indued mixing and a stabilizing buoyany �uxstrongly depends on the sea state. Also, in a ase without buoyany �ux, the rateof thermoline erosion by the wind- and wave-indued mixing depends on the seastate.This sensitivity study on�rms that, as the near surfae mixing depends on thesea state, the mixed layer depth also depends on the wave age. This result is relevantfor shallow mixed layers. An estimation of the depths reahed by the downward �uxof the TKE is around a few times z0 (see Craig and Banner, 1994, their equ. 27).That downward �ux of TKE due to surfae waves might then be important for



116 Chapter 5depths of the order of a few tens of meters.However at greater depths, other proesses might dominate the mixing. Amongthem one an ite the Langmuir irulations and the urrent shear due to inertialosillations (Li et al., 1995). Clearly, more sophistiated models are needed toompare the intensity and the depths those di�erent soures of mixing an reah.Similarly, the TKE dissipation measurements used to build simple TKE modelsof the near-surfae wave-indued mixing where made at quite shallow depths (e.g.Terray et al., 2000). Extension of these results to greater depths must be hekedwith other measurements.
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Figure 5.12: Impat of the wave development on the diurnal mixed layer depth, asinferred from a simple TKE model (Noh, 1996; Noh and Kim, 1999). The temper-ature pro�le is alulated from an initially uniform temperature of T = 20◦C, after6 hours of stabilizing buoyany �ux of 500Wm−2 and of mixing due to a wind of
10ms−1 and its assoiated wind sea. Solid line is for fully developed waves (Hs = 2.8m) while dashed line is for a limiting feth of 100km (Hs = 1.5 m). Those are typi-al on a ontinental shelf during onshore and o�shore wind events. More developedwaves provide more intense near-surfae mixing, whih reates a deeper diurnalmixed layer. Also shown is the impat of variations of the TKE �ux : dotted line iswith a parameter α twie as large.
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Part IIIImpat of waves on the nearshoreand shelf irulation
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Chapter 6Nearshore and Shelf irulation :Introdution
6.1 IntrodutionIn the previous parts of this thesis, the wave �eld was supposed horizontally homoge-neous. More preisely the gradients of the radiation stresses due to inhomogeneouswave �eld were supposed muh smaller than the leading terms in the steady o�-shore momentum balane that are the Coriolis fore, the Stokes-Coriolis fore andthe vertial mixing. However, lose to the shore, variations of the wave �eld aremuh more important, mainly beause of shoaling, refration and intense breakingin the surf zone. Waves are then a dominant foring of the irulation.I will attempt here a short review of the theories of wave-fored urrents. Iwill not fous on the feedbak of urrents on waves, although it is to some extendinluded in the wave momentum equation (see setion 6.4), whih is a neessary stepto proeed to the analysis of the mean �ow.To �x the ideas, I will take the following example : we suppose that the �ow isuniform in the y diretion along shore, and we an onsider a swell normally inidentin the x diretion, supposing that a steady state is reahed. I will shortly disussthe vertially integrated equations, following Smith (2006b). Here I will only showa sketh of the wave-driven momentum equations, with emphasis on the origin ofthe important terms. The omplete GLM equations an be found in hapter 7.6.2 Total �ow equationsThe radiation stress tensor is similar to the Reynolds tensor for the turbulent motion: the wave �utuations indue a �ux of momentum. Gradients in the wave �eld leads121



122 Chapter 6to gradients in that momentum �ux, whih is equivalent to a fore. That fore atson the total momentum M =
∫ η
−h u

Ldz, whih is the sum of the wave Pseudo-momentum Mw =
∫ η
−h Pdz and the mean urrent momentum Mm =

∫ η
−h ûdz.For our example, the total momentum balane is (e.g Smith, 2006b; Ardhuin,2005)
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(6.1)where pw is the mean Eulerian pressure, D = h+η is the water depth and U = Mx/Dis the barotropi ross-shore veloity assoiated with the mass transport. As thewaves are normally inident, the 2D form of the radiation stress is

Srad =


 Sj + CgM

w
x 0

0 Sj


 . (6.2)The isotropi part of the radiation stress is alled Sj,

Sj = gD
kE

sinh(2kD)
. (6.3). When the waves shoal on the inner-shelf and break in the surf zone, a supple-mentary foring arises from the divergene of the radiation stress Srad.Longuet-Higgins and Stewart (1962) �rst introdued the onept of the radia-tion stress, for the vertially integrated equations. This 2D radiation stress onepthas been widely used in nearshore modelling (see Battjes (1988) for a review). Inthese desriptions, the total momentum is obtained, inluding the wave Pseudo-momentum. The latter is then either ignored or subtrated from a separate ompu-tation. Several studies have used vertial extensions of this theory (e.g. Stive andWind, 1986) or disussed it (Rivero and Arilla, 1995), most of them in an Eule-rian frame. Reently, Mellor (2003) used a vertial oordinate transformation toderive a more rigorous vertial extension of the equations and found supplementaryterms for the 3D radiation stress, ompared to the previous extensions. Also, theGLM of Andrews and MIntyre (1978a) was used by Groeneweg (1999) to obtain3D equations for the total momentum.



Nearshore and Shelf irulation : Introdution 1236.3 Mean �ow equationsThe radiation stress determines the evolution of the total momentum. But partof the radiation stress divergene is in fat a divergene of the wave momentum�ux. For various reasons (see setion 1.3), it is be advantageous to onsider theevolution of the mean �ow only, and to parameterize the evolution of the wavepseudo-momentum separately.The wave momentum equation is
∂Mw
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τds
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, (6.4)where −τds

x is the momentum released by the waves to the urrent when they dissi-pate, and u is the advetion veloity of waves by the mean �ow, equal here to thebarotropi veloity u = Mm
x /D.The divergene of the radiation stress an then be written as a gradient of aBernoulli head plus the wave dissipation,
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. (6.5)The two remaining terms on the right in 6.5 are an advetive term, whih ombineswith the total momentum advetion to give a vortex fore, and the time variation ofthe wave �eld, ontained in the time variation of total momentum. One thus obtainfrom 6.1 and 6.4 an equation for the ross-shore mean �ow
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(6.6)This kind of equations for the mean �ow have been disussed after the intro-dution of the radiation stress. Hasselmann (1971) introdued the onept of theinteration stress to denote the part of the radiation stress that ats on the mean�ow. Also, the impat of waves on the mean �ow, written with a vortex fore formu-lation, have been used for a long time to explain the Langmuir irulation (Craik andLeibovih, 1976; Garrett, 1976). Smith (2006b) extended the initial 2D equationsof Garrett (1976) to deep water. A 3D extension was made by MWilliams et al.(2004), with a rigorous asymptoti expansion assuming small parameters (essentially



124 Chapter 6wave slope and urrent-waves ratio) and using an Eulerian frame (see also Newbergerand Allen, 2007b). Reently, Ardhuin (2005) tried to derive similar equations forthe mean �ow while avoiding the ambiguous Eulerian averaging lose to the surfae.The vertial oordinate hange of Mellor (2003) was investigated but left aside forpratial reasons (Ardhuin et al., 2007), as well as the GLM equations for the total�ow (Ardhuin, 2005). Finally the GLM equations for the mean �ow were hosen(Ardhuin et al., 2007b), leading to equations similar to those of MWilliams et al.(2004). This similarity between the two di�erent sets of equations an be onsideredas a veri�ation of the di�erent derivations from the Navier-Stokes equations. It alsoprovides a physial interpretation to the not-quite-Eulerian average of MWilliamset al. (2004).6.4 On the oupling of waves and urrentIt must be noted that the equations for the mean �ow involve a vortex fore and aBernoulli head. These equations are obtained in the di�erent theory by using thewave momentum equation. In partiular, the vortex fore omes from the advetionof urrent by the waves. In other words, the equations for the mean �ow haveinluded a oupling between the waves and the urrent. Even if the waves arepresribed as a foring without any oupling with the urrent, this oupling is tosome extend inluded via the use of the equations for the mean momentum (see alsothe disussion in MWilliams et al. (2004) setion 14). Lane et al. (2007) showedthat the use of the deomposition into a Bernoulli head and a vortex fore, althoughequivalent with the interation stress representation, inorporates more informationon the wave-urrent oupling, and therefore leads to approximations more onsistentthan the interation stress formulations.6.5 Models and observationsFor historial reasons, there has been a gap between the large sale oean iru-lation researh ommunity and the nearshore ommunity. This gap applies bothto the model and to the observations : large sale models usually end at the o�-shore boundary of the surf zone, where begin the nearshore models. Reently, withthe apparition of 3D primitive equations for the wave-driven urrents, models haveappeared whih begin to �ll this gap : Delft 3D (Walstra et al., 2001), POM (New-berger and Allen, 2007a), Symphonie (Denamiel, 2006), ROMS (Warner et al., 2006,and the present thesis). Also in the �eld measurements, very few studies have fo-used on the inner-shelf zone (i.e. between the surf zone, around 10 or 15m deep,



Nearshore and Shelf irulation : Introdution 125and the mid-shelf, around 50 to 100m). Among them, one an ite the work ofLentz et al. (1999), whih showed that the radiation stress is important for the mo-mentum balane even outside the surf zone. However a lear separation of the wavemomentum and of the mean momentum is still missing in their disussion, espeiallywhen they examine urrent measurements from �xed towers and interpret them astotal �ows, whereas the wave part is obviously absent from the measurement. Forinstane, Lentz et al. (1999) disussed the unorrelation between the alongshoreCoriolis fore fu and the forings, fu being identi�ed to f(û+P ). If only the mean�ow was measured at the 4m and 8m depth loations, then analysis in term of mean�ow momentum balane inludes di�erent terms, suh as the Stokes-Coriolis term
fP whih is, as noted by Xu and Bowen (1994), of the order of the measured fûand might partly anel it. The �gure 6.1 illustrates this inonsisteny. In passing,the �gure 6.2 shows the importane of the Stokes-Coriolis fore on the wave-drivenveloity pro�les.
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Figure 6.1: Results from a numerial simulation of the alongshore-uniform irula-tion indued by a normally inident swell (narrow-banded, with an o�-shore signif-iant wave height Hs = 3m and a period of T = 12s) over a narrow shelf (linearbeah pro�le, with a slope of 0.1%). The reader is referred to the next hapterfor more details, with a similar simulation but with a di�erent bottom slope, withobliquely inident swell and more foused on the nearshore zone. Here we showthe sea surfae elevation. The set-down and set-up in the surf zone are visible onthe right. Solid line is the surfae elevation if the Coriolis and Stokes-Coriolis termare inluded, dashed line is the one if the Stokes-Coriolis term is omitted but theCoriolis term inluded. The mean �ow is seaward, as it ompensates the shorewardmass transport of the waves. If the Stokes-Coriolis term is omitted, as in Lentz et al.(1999), the Coriolis fore ats on the mean �ow to reate an alongshore jet, whihinreases in time. This jet is in geostrophi equilibrium with a surfae elevation.This surfae elevation do not appear if the Stokes-Coriolis fore is inluded.
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Chapter 7Nearshore and Shelf irulation: Atwo dimensional studyThis hapter is written as an independent paper :Wave-fored shelf irulation using approximateGLM equations
Niolas Rasle(1),(2), Fabrie Ardhuin(1)Paper in preparationJuly 2007

(1) Centre Militaire d'Oéanographie, SHOM, BREST, Frane
(2) Laboratoire de Physique des Oéans, Université de Bretagne Oidentale, Brest,Frane
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130 Chapter 7AbstratAn approximate Generalized Lagrangian Mean (GLM) is used to modify a primitiveequation model, taking into aount the e�ets of surfae gravity waves. The modelis run here in a simple two-dimensional test ase. To the representation of wavee�ets by a vortex fore and a Bernoulli head, the GLM theory adds the e�et ofthe urrent shear on the Bernoulli head. That latter e�et both modi�es the waveset-up and the strength of the nearshore irulation. Also, the depth-distributedwave pseudo-momentum modi�es the momentum exhange between the waves andthe mean �ow ompared to a surfae wave pseudo-momentum often used. Finally,the e�et of the urrent shear on the wave pseudo-momentum is disussed, as wellas a �nite amplitude e�et. The latter give rise to a large shoreward drift underinipient breaking waves, even outside the surf zone.7.1 IntrodutionReently, three-dimensional primitive equation models have been modi�ed to repro-due the wave-averaged nearshore urrents (Walstra et al., 2001; Newberger andAllen, 2007a; Denamiel, 2006; Warner et al., 2006). Advantageously suh modelsould be used from the surf zone to the shelf, inluding the important but still poorlyunderstood inner-shelf zone (Lentz et al., 1999). These models inlude the e�ets ofwind, waves, Earth rotation and tides, thus �lling the gap existing between modelsof the nearshore irulation, mainly wave-driven, and of the shelf irulation, wherewaves are often ignored. These models might therefore bring a new framework forappliations to sediment transport, pollutants dispersion or larval migrations. Theyould also be embedded into larger sale ostal models, for instane for appliationto biohemistry of ostal waters. Furthermore, by properly representing the wave-urrent interations, these models might bring better parameterizations in existingnearshore models (e.g. Apotsos et al., 2007), and should also be relevant for theanalysis of rip urrents and surf-zone maro-vorties (Büler, 2000; Brohini et al.,2004).To ahieve suh modelling, a number of theoretial developments have been madeto derive pratial equations for the wave-indued foring on the wave-averaged mean�ow. Among the latest developments are the equations for the Lagrangian �ow ofMellor (2003), with a proper averaging of the moving surfae, the equations for themean �ow of Newberger and Allen (2007b) and the adiabati equations for the mean�ow of MWilliams et al. (2004), with an asymptotial derivation from an Eulerianaveraging. However, Ardhuin et al. (2007) reported problems in the derivation of



Nearshore and Shelf irulation : a two dimensional study 131the equations of Mellor (2003). In order to overome these limitations, Ardhuinet al. (2007b) approximated the Generalized Lagrangian Mean (GLM) equations ofAndrews and MIntyre (1978a) to derive equations for the mean �ow, alled GLM2z.The latter equations are generally onsistent with the equations of MWilliams et al.(2004), derived for adiabati small amplitude waves. Both the equations of Ardhuinet al. (2007b) and of MWilliams et al. (2004) an be onsidered as extensions of thework of Newberger and Allen (2007b), with some relaxations of hypotheses. Namely,Newberger and Allen (2007b) represented the wave mass transport as a surfae mass�ux. They further assumed that the adiabati part of the wave foring was depth-uniform and also negleted e�ets of the vertial shear of the mean urrent. Yet noattempt was made to implement the GLM2z equations for the mean �ow in a 3Dprimitive equations model and to desribe the physis of the di�erent terms. It isthe goal of this paper.Neither the equations of MWilliams et al. (2004), with an addition of the di-abati proesses, nor those of Ardhuin et al. (2007b) or those of Newberger andAllen (2007b), apply properly in the surf zone, mainly beause they all are derivedassuming small wave slope. But it is ommon pratie to assume that the physisderived theoretially under simpli�ations (linear wave theory for instane) is robustto a relaxation of the hypothesis, in spite of known large bias (e.g. Cokelet, 1977).However, beause the original GLM equations are exat, the GLM2z equations anbe orreted for errors made in the approximations.Newberger and Allen (2007a) have implemented in a 3D primitive equationsmodel the equations of Newberger and Allen (2007b) for the wave-fored mean �ow.They ompared its results to the �eld measurement obtained during DUCK94. Theresults in terms of undertow pro�le and alongshore jet were espeially evaluated anda sensitivity study to various parameterizations, suh as the bottom boundary layer,the surfae layer, the inlusion of a roller model and even the unertainty on thewave inidene angle, was onduted. Suh a sensitivity study will not be repeatedhere. Instead, and beause the GLM2z equations are to some extend similar to thoseof Newberger and Allen (2007b), we shall fous on the physis added by the GLM2zequations. In addition to the results in terms of ross-shore mean undertow andalongshore jet, the results in terms of Lagrangian motion, essential for the pratialappliations of suh nearshore models, will be disussed.The GLM2z equations are realled in setion 7.2. The simple steady test asefor our numerial experiment is desribed in setion 7.3, as well as the wave modeland the irulation model. The basi features of the solution, namely the alongshorejet, the set-up of the sea level, the undertow, and the assoiated momentum andmass equilibrium, are desribed in setion 7.4. The model is ompared to the one



132 Chapter 7of Newberger and Allen (2007a) in setion 7.5. The e�et of the urrent shear onthe Bernoulli head and on the wave pseudo-momentum is disussed in setion 7.6.Finally, the non-linear e�et on the pseudo-momentum of nearly breaking waves isdisussed in setion 7.7.
7.2 GLM desription of the �owIn this setion, the essential features of the work of Ardhuin et al. (2007b) arerealled.7.2.1 Wave / mean �ow separationThe �ow is averaged using the GLM theory whih provides a lean averaging loseto the surfae and also separates the Lagrangian veloity uL into a wave pseudo-momentum P and a quasi-Eulerian mean momentum û = uL −P. Below the wavetroughs, that separation of uL into û + P is not very di�erent from the separationinto Eulerian mean �ow u plus Stokes drift uS.

P an be approximated using linear wave theory for weak urrent urvature,
Pα ≃ mE

sinh2(kD)

[
σkα cosh(2kz + 2kh) +mkα sinh(2kz + 2kh)uθ ·
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+m2kα
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2

 , (7.1)where k is the wavenumber of the wave, σ the intrinsi radian frequeny, a the waveamplitude, D the water depth, h the bottom elevation and m a shear orretionparameter here set to unity for the sake of simpliity. z is the vertial oordinateoriented upward, uθ is a unit vetor in the diretion of wave propagation, α = 1, 2 isthe index for the horizontal omponents. The last two terms in 7.1 are orretionsoming from the vertial shear of the mean �ow and are further disussed in setion7.6.1.The vertial omponent of the pseudo-momentum is

P3 ≃ −Pα(−h) ∂h
∂xα

−
∫ z

−h

∂Pα(z′)

∂xα

dz′, (7.2)where the summation is impliit over repeated indies.



Nearshore and Shelf irulation : a two dimensional study 1337.2.2 Equations of motionThe equations of motion are the following :1. The mass onservation is
∂ûα

∂xα

+
∂ŵ

∂z
= 0. (7.3)2. The horizontal momentum equation is

∂ûα

∂t
+ ûβ

∂ûα

∂xβ
+ ŵ

∂ûα

∂z
+ P3

∂ûα

∂z︸ ︷︷ ︸
+ǫα3βfûβ + ǫα3β (f + ω3)Pβ︸ ︷︷ ︸

= −1

ρ

∂pH

∂xα
+ Dh + Dv −

∂

∂xα

(
SJ + Sshear

)

︸ ︷︷ ︸
−Twc

α − T turb
α − T bfric

α︸ ︷︷ ︸,(7.4)where the underbrae highlights the wave foring terms and where f is thevertial Coriolis parameter, ω3 is the vertial omponent of the vortiity,
ω3 =

∂û2

∂x1

− ∂û1

∂x2

, (7.5)
ρ is the water density, pH is the hydrostati pressure, Dh and Dv representhorizontal and vertial di�usions of momentum, respetively. SJ and Sshearmake up the isotropi Bernoulli's head,

SJ =
gkE

sinh 2kD
, (7.6)

Sshear = − E


mσuθ ·

∂u

∂z
(ζ) tanh(kD) +

m2

2

∣∣∣∣∣
∂u

∂z
(ζ)

∣∣∣∣∣

2



−
∫ ζ

−h
ûα
∂Pβ

∂xβ

dz, (7.7)where g is the gravity and ζ is the mean surfae elevation.3. The vertial momentum equation is redued to the hydrostati equilibrium
∂pH

∂z
= −ρg, (7.8)beause the mean �ow is assumed hydrostati and the wave-modi�ed pressureterms are integrated to provide the terms SJ and Sshear.



134 Chapter 74. The traer equation, written here for the temperature T, is
∂T

∂t
+ ûβ

∂T

∂xβ

+ Pβ
∂T

∂xβ︸ ︷︷ ︸
+ŵ

∂T

∂z
+ P3

∂T

∂z︸ ︷︷ ︸
= FT + DT , (7.9)where FT and DT are foring and di�usive terms for the temperature, respe-tively.7.2.3 Vertial boundary onditionsThe vertial boundary onditions an be presribed as follows :1. The surfae kinemati ondition is

∂ζ

∂t
+ ûα

∂ζ

∂xα
+ Pα

∂ζ

∂xα︸ ︷︷ ︸
= ŵ + P3︸︷︷︸ at z = ζ. (7.10)2. The surfae �ux of momentum is

ρwKz
∂ûα

∂z
= τa

α − τw
α︸︷︷︸− τds

α︸︷︷︸ at z = ζ, (7.11)where τw
α is the �ux of momentum from atmosphere to waves (the form drag),and τds

α is the release of wave momentum to the oean due to breaking, in-terations with turbulene or visous e�ets. It must be noted that we madeno separation between the dissipation ourring at the surfae, like the vis-ous virtual wave stress, and the other proesses ourring through the waterolumn. Here, for simpliity, all the momentum oming from the wave �eld,mainly beause of breaking, is injeted at the surfae of the oean, although adepth-distributed mean fore or depth-distributed intermittent breakers maybe more appropriate. However, the dissipation of waves due to bottom fritionis omitted in the term τds as, if the bottom wave boundary layer (where thestreaming ours) is not resolved, the �ux of momentum from the waves endsup diretly in the bottom (see Ardhuin, 2006, and Ardhuin et al., 2007b, fordetails).3. The surfae �ux of traer is
KT

∂T

∂z
= Q at z = ζ, (7.12)where Q is the heat �ux at the surfae.
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uL

α

∂(−h)
∂xα

= ŵ + P3︸︷︷︸ at z = −h. (7.13)5. The bottom �ux of momentum is
ρwKz

∂ûα

∂z
= τ b

α at z = −h, (7.14)where the bottom stress τ b
α is alulated using a quadrati drag law. Thebottom �ux of momentum ould be modi�ed to inlude the streaming, withoutresolving the wave bottom boundary layer, by speifying a non-zero veloityat the bottom of the lowest grid box. However, we have negleted this e�etfor simpliity and let the latter veloity to zero.6. The bottom �ux of traer is zero,

KT
∂T

∂z
= 0 at z = −h. (7.15)7.3 Desription of the numerial experimentWe want to estimate the di�erent terms of the GLM2z desription, in a simple butrealisti ase. We onsider a west oast, with the x axis to the east and y to thenorth. The bathymetry is uniform in the alongshore diretion. The swell is narrow-banded, with an o�-shore signi�ant wave height Hs = 3m and a period of T = 12s.This swell is obliquely inident from the North-West, with an o�-shore angle of 20◦relative to the beah normal. The beah pro�le is linear, with a slope of 1%.7.3.1 The wave modelThe evolution of the wave energy and derived parameters is based on the modelof Thornton and Guza (1983), using a oe�ient B = 1 (i.e. the dissipation in abreaking wave is given by the dissipation in a hydrauli jump of the same height),and a breaking to depth ratio γ given by Battjes and Stive (1985). Reent workssuggest that this latter expression is not optimal (Ruessink et al., 2003). However,the main soure of error in suh a model is probably the underlying assumption oflinear wave theory that is used to estimate the energy �ux and the momentum �ux.We note in partiular that in reent investigations with suh a model, the set-upis typially underestimated by about 30% at the beah fae (Apotsos et al., 2007),



136 Chapter 7whih is of the order of the expeted bias on the momentum �ux (Cokelet, 1977,�gure 18).7.3.2 The oean modelThe Regional Oean Modelling System (ROMS) has been modi�ed to resolve theGLM2z equations. More details are given in Appendix A. The temperature andsalinity are supposed homogeneous. For the sake of simpliity, the turbulenelosure sheme is disarded and the vertial visosity and di�usivity are set to
Kz = 0.03m2s−1. The bottom stress is quadrati, with a roughness length of 10−3m.No wave-urrent interations were used in the bottom boundary layer. The Cori-olis parameter is set to f = 10−4. The horizontal resolution of the model is 10m,extending to 4km o� shore, and the model has 40 vertial σ-levels. The barolinitime step is dt= 3s, and there are 50 barotropi time steps of the 2D submodelwithin one barolini step. The oean is initially at rest and the swell is added untila steady state is reahed. Close to the shore, the steady state is reahed after a fewhours, whereas o�-shore the Coriolis fore gives a longer spin-up time.7.4 Analysis of the solution7.4.1 Desription of the di�erent terms of the equationsThe wave foring ats on the mean �ow in di�erent ways. As the wave pseudo-momentum is shoreward outside the surf zone and zero at the oast, the wave masstransport is onvergent in the surf zone. As a onsequene the mass onservationdrives a vertially averaged mean �ow seaward.The radiation stress adds on this e�et and is omposed of two parts : aBernoulli's head −∇(SJ + Sshear) and the diabati part τds. The latter omes fromthe release of momentum by the waves as they break, modelled here for simpliityas a surfae stress. The ross-shore omponent of this stress is responsible for theset-up of the sea level in the surf zone (�g. 7.1), and it also drives a vertial reir-ulation of the mean �ow, shoreward lose to the surfae and seaward lose to thebottom, the undertow (�g. 7.2). The alongshore omponent of this stress drives analongshore jet southward.The term −∇SJ is depth-uniform and orresponds to the modi�ation of thepressure by the waves. It only modi�es the sea level. As the wave shoal outside thesurf zone, this term is negative (�g. 7.3) and therefore yields a set-down (�g. 7.1).In the surf zone, this term beomes positive and gives a slight set-up.



Nearshore and Shelf irulation : a two dimensional study 137The term −∇Sshear will be desribed in the setion 7.6.2.The vortex fore −ǫα3βω3Pβ has a omponent in the ross-shore diretion, ω3Py,whih tends to onentrate the jet. But this omponent is very small and negligibleompared to the others ross-shore forings (�g. 7.3). On the ontrary the along-shore omponent −ω3Px is a dominant alongshore foring (�g. 7.6, upper panel). Itdrives the jet loser to the shore and in its absene the jet tends to widen (�g. 7.5).The Stokes-Coriolis term −ǫα3βfPβ is the only term subsisting o�-shore, wherethe horizontal gradients are small (Hasselmann, 1970). The momentum balanethen writes
ǫα3βfûβ + ǫα3βfPβ =

∂

∂z
Kz

∂ûα

∂z
. (7.16)This Stokes-Coriolis fore is oriented to the right of the wave propagation and drivesa vertially-integrated mass transport whih anels the vertially integrated wavesmass transport. In the limit of a Stokes length sale δs = 1/2k muh larger thanthe Ekman sale δe =

√
2Kz/f , this anellation is perfet at eah depth, û = −P(see for example Polton et al., 2005, their equ. 13). For the swell onsidered here,

δs = 18m and δs = 24m, so that this trend is hardly pereptible in a water depth of
40m, our o�-shore maximum depth.
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140 Chapter 77.4.2 Desription of the alongshore and ross-shore momen-tum balaneThe alongshore momentum balane is detailed in �g. 7.6, upper panel. The mainequilibrium is between the southward surfae stress, whih drives the southwardalongshore jet, and the northward bottom stress. But that main equilibrium ismodi�ed by the vortex fore, whih shifts the jet towards the shore, and the adve-tion.The ross-shore momentum balane is detailed in �g. 7.6, lower panel. The ross-shore momentum balane is between the shoreward surfae stress and the pressuregradient. This reates the set-up of the sea level, whih is slightly enhaned by theshoreward bottom stress. The advetion also slightly modi�es this equilibrium.
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142 Chapter 77.5 Comparison with the model of Newberger andAllen (2007a)If we omit the e�ets of the vertial shear of the mean �ow on the wave pseudo-momentum (see setion 7.6 and if we omit Sshear, the GLM2z equations are thenvery lose to the equations of NA07. The Earth rotation is omitted in NA07. Itse�et has been disussed above. The only other di�erenes remain in the desriptionof the Lagrangian mass �ux and in the vertial distribution of the vortex fore.7.5.1 Lagrangian mass �ux in NA07Consistently with the Eulerian desription of Hasselmann (1971), all the Stokestransport ours at the surfae in the work of NA07. This leads to the followingequations,
∂ûα

∂xα
+
∂ŵ

∂z
= 0, (7.17)with

ŵ =
∂ζ

∂t
+ ûα

∂ζ

∂xα
+ w0 at z = ζ, (7.18)where

w0 =
∂

∂xα

∫ ζ

−h
Pαdz. (7.19)These equations are onsistent with the GLM2z equations, but the advetions aredi�erent.In NA07, the momentum and traer advetions are

∂ûα

∂t
+ ûβ

∂ûα

∂xβ

+ ŵ
∂ûα

∂z
, (7.20)

∂T

∂t
+ ûβ

∂T

∂xβ

+ ŵ
∂T

∂z
, (7.21)respetively, while the orresponding GLM2z advetions are

∂ûα

∂t
+ ûβ

∂ûα

∂xβ
+ ŵ

∂ûα

∂z
+ P3

∂ûα

∂z
, (7.22)

∂T

∂t
+ ûβ

∂T

∂xβ
+ ŵ

∂T

∂z
+ Pβ

∂T

∂xβ
+ P3

∂T

∂z
. (7.23)



Nearshore and Shelf irulation : a two dimensional study 143Clearly, the last term in 7.22 and the last two terms in 7.23 are omitted in NA07.The implementation of the NA07 equations in a 3D primitive oean model ismuh more simple than the GLM2z equations beause, in the interior, the wavepseudo-momentum is zero and there is only the mean �ow.On the ontrary, in the GLM equations, the di�erene between the quasi-Eulerianmomentum advetion and the Lagrangian traer advetion ompliates the imple-mentation in a model with a mode barolini / barotropi mode splitting. In fat,the time-stepping of suh model is designed to onserve both the integral and theonstany of the traer. For that, one needs to ompute a mass onservation and anadvetion in perfet agreement. This would be simple for the barotropi variables,but as the traer is adveted one a barolini step, one needs it for the barolinivariables and this leads to a fairly ompliated time-stepping (Shhepetkin andMWilliams, 2003). The addition of di�erent advetions for the momentum and forthe traer further ompliates the time-stepping.Instead, ompliations like those do not arise with a wave pseudo-momentum atthe surfae, as in NA07. It is then of pratial importane to larify whether ornot the physial simpli�ation of the NA07 desription leads to strong di�erenesompared to the GLM formulation.The traer horizontal advetion by the waves is obviously missing in NA07 (thelast but one term in 7.23). Therefore we will not disuss further the traer but wewill fous on the quasi-Eulerian urrent.In the momentum equation 7.20 of NA07, one vertial advetion term is missingompared to 7.22. This term modi�es the momentum exhange between the wavesand the mean �ow. That momentum exhange, orresponding to the mass exhangebetween the waves and the mean �ow, an be seen when vertially integrating theequation for the momentum advetion,
∂ûα

∂t
+ ûβ

∂ûα

∂xβ
+ ŵ

∂ûα

∂z
(7.24)transforms, using the mass onservation, to the �ux form

∂ûα

∂t
+
∂ûβ ûα

∂xβ

+
∂ŵûα

∂z
, (7.25)whih in turns integrates to

∂

∂t

∫ ζ

−h
ûαdz +

∂

∂xβ

∫ ζ

−h
ûβûαdz + w0ûα(ζ). (7.26)



144 Chapter 7The last term represents the exhange of momentum due to the exhange of mass.The veloity of the water mass exhanged between the wave part and the mean �owis the veloity of the surfae urrent.On the ontrary, the mass �ux is distributed through the whole water olumn inthe GLM2z equations, leading to the orresponding exhange of momentum
∂ûα

∂t
+ ûβ

∂ûα

∂xβ
+ ŵ

∂ûα

∂z
+ P3

∂ûα

∂z

=
∂ûα

∂t
+

∂ûβ ûα

∂xβ
+
∂ŵûα

∂z
+
∂P3ûα

∂z
+ ûα

∂Pβ

∂xβ
, (7.27)where we have used the mass onservation (7.3). The veloity of the water massexhanged between the wave part and the mean �ow at the depth z is in the GLMdesription the veloity of the urrent at the depth z. Equ. 7.27 integrates to

∂

∂t

∫ ζ

−h
ûαdz +

∂

∂xβ

∫ ζ

−h
ûβûαdz

+
∂ζ

∂xβ

ûα(ζ)Pβ(ζ) − ∂(−h)
∂xβ

ûα(−h)Pβ(−h) +
∫ ζ

−h
ûα
∂Pβ

∂xβ

dz. (7.28)The last three terms an be rewritten as
∂ζ

∂xβ
ûα(ζ)Pβ(ζ) − ∂(−h)

∂xβ
ûα(−h)Pβ(−h) +

∫ ζ

−h
ûα
∂Pβ

∂xβ
dz

=
∂

∂xβ

∫ ζ

−h
ûαPβdz −

∫ ζ

−h

∂ûα

∂xβ
Pβdz

= uAα
∂

∂xβ

∫ ζ

−h
Pβdz +

∂uAα

∂xβ

∫ ζ

−h
Pβdz −

∫ ζ

−h

∂ûα

∂xβ
Pβdz (7.29)where we have de�ned the advetion veloity

uAα

∫ ζ

−h
Pβdz =

∫ ζ

−h
ûαPβdz. (7.30)Supposing that the last two terms in equ. 7.29 approximately anel, equ. 7.28beomes

∂

∂t

∫ ζ

−h
ûαdz +

∂

∂xβ

∫ ζ

−h
ûβûαdz + uAα

∂

∂xβ

∫ ζ

−h
Pβdz, (7.31)whih we an ompare to equ. 7.26. Clearly, when the urrent is vertially uniform,the momentum exhange between the wave part and the mean �ow is similar be-tween the GLM and NA07. This is not true in the ase of a vertially sheared meanurrent, beause of the di�erent loations of the mass exhange.



Nearshore and Shelf irulation : a two dimensional study 145

−2000 −1800 −1600 −1400 −1200 −1000 −800 −600 −400 −200
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Cross−shore coordinate x (m)

V
er

tic
al

ly
 a

ve
ra

ge
d 

al
on

gs
ho

re
 c

ur
re

nt
 v

ba
r 

(m
 s

−
1 )

 

 

vbar GLM model
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146 Chapter 7
Vertically integrated cross−shore advection (m2 s−2)
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∂x

∫
ûûdz), middle panel is the ver-tially integrated soure of momentum (−w0û(ζ) for NA07, − ∂ζ

∂xβ
û(ζ)Pβ(ζ) +

∂(−h)
∂xβ

û(−h)Pβ(−h) − ∫ ζ
−h û

∂Pβ

∂xβ
dz for the GLM). Lower panel is the total advetion.The ross-shore advetion is modi�ed by the di�erent loations of the soure of massand by the assoiated di�erent momentum exhanges.horizontal advetion. But the advetion is negligible in the ross-shore momentumbalane, whereas it is not in the alongshore balane, whih explains why the along-shore veloities are modi�ed between the two desriptions, whereas the ross-shoreveloities are not.7.5.2 Vortex fore in NA07Another di�erene is that the vortex fore is vertially uniform in the work of NA07(ǫα3βPβ∂v̂/∂x, where the overline denotes a depth averaging), whereas it is depthdistributed aording to the Stokes drift pro�le and to the vertial vortiity pro�le inthe GLM equations (ǫα3βPβ∂v̂/∂x). The �gure 7.5 shows the alongshore jet hangein strength and position with a depth-uniform vortex fore. As the vertial vortiityand the pseudo-momentum are both maximum at the surfae, ignoring their depthdistributions results in a slight underestimation of the depth-averaged vortex foreand neglets the torque of the vortex fore. However, for the averaged irulation
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Vertically integrated alongshore advection (m2 s−2)
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NA06Figure 7.9: Same as �g. 7.8 but for the alongshore advetion. The alongshoreadvetion is modi�ed by the di�erent loations of the soure of mass and by theassoiated di�erent momentum exhanges.studied here, these hanges are quite modest.7.6 E�et of the urrent shear7.6.1 E�et of the urrent shear on the Stokes driftWithout mean urrent, the orbits of the partiles during a wave period are notexatly losed. The orresponding mean drift in the wave propagation diretion isthe wave pseudo-momentum P. In the presene of a mean urrent shear, the orbitsare further modi�ed, and so is the wave pseudo-momentum P. This results in thelast two terms in 7.1.The wave pseudo-momentum is modi�ed by the urrent shear with terms ofthe order of 1/σ∂u/∂z. These terms beome important when approahing the surfzone, where ∂u/∂z is of the order of σ (�g. 7.4). The wave pseudo-momentumwithout urrent shear e�et is almost depth-uniform for linear waves in shallowwater. On the ontrary the wave pseudo-momentum is largely enhaned with theurrent shear e�et and exhibits a strong surfae shear, related to the shear of theross-shore urrent in the surf zone (�g. 7.2). As a onsequene of the enhaned



148 Chapter 7shoreward wave mass transport, the undertow and all the vertial reirulation arealso enhaned.7.6.2 E�et of the urrent shear on the radiation stressWhen taking into aount the urrent shear e�et, 2 supplementary terms −∇Sshear
homand −∇Sshear

cis add to the Bernoulli's head −∇SJ of the radiation stress.The �rst term, −∇Sshear
hom where

Sshear
hom = −E


σuθ ·

τds

ρKz

tanh(kD) +
1

2

∣∣∣∣∣
τds

ρKz

∣∣∣∣∣

2

 , (7.32)is vertially uniform and thus only modi�es the set-up equilibrium. This term isnegative lose to the shore as both the wave amplitude and the surfae stress dueto the wave dissipation are dereasing toward the shore (�g. 7.3). However in theo�-shore part of the surf zone, the surfae stress is inreasing toward the shore sothat −∇Sshear

hom > 0. As a onsequene of this term, the transition from set-down toset-up is displaed further o�-shore and the slope of the surfae is redued (�g. 7.1).The seond term, −∇Sshear
cis where
Sshear

cis = −
∫ ζ

−h
ûα
∂Pβ

∂xβ
dz, (7.33)is vertially non uniform and so drives both a barotropi response and a vertialreirulation. At any depth z, Sshear

cis (z) inreases from the o�shore value, reahesa maximum inside the surf zone and then dereases approahing the beah. Thee�et of the depth integral of −∇Sshear
cis on the set-up is then similar to the e�et of

−∇Sshear
hom , i.e. an o�-shore displaement of the transition from set-down to set-upand a redution of the slope of the set-up. Also, −∇Sshear

cis = 0 at the surfae and itsabsolute value inreases with depth. The resulting torque ampli�es the undertowreirulation lose to the beah whereas it is opposed to this reirulation in theo�shore part of the surf zone.



Nearshore and Shelf irulation : a two dimensional study 1497.7 E�et of the wave non-linearityThe linear wave theory have been used for simpliity in many nearshore irulationmodels. This is justi�ed beause the wave energy, the wave phase speed or thegroup speed are roughly well predited with linear theory. The vertially integratedwave pseudo-momentum is also well approximated (Rasle and Ardhuin, manusriptin preparation). Without the urrent shear e�ets, the linear theory predits awave pseudo-momentum almost depth-uniform in shallow water kD ≪ 1. On theontrary, the pseudo-momentum of a steep wave, with non-linear e�ets, exhibitssigni�ant deviations from the linear theory, beoming strongly sheared lose to thesurfae. In this setion, we will evaluate the impat of suh phenomenon on oursteady test ase.In Rasle and Ardhuin (manusript in preparation), it is proposed a orretion ofthe linear wave pseudo-momentum P, based on a numerial fully non-linear solutionof the potential �ow over a �at bottom. This formula is valid for nearly breakingwave. In order to obtain a �rst upper-bound of this e�et, we will thus suppose thatall the waves reah this limiting steepness.First, for omparison with the linear theory used above, the wave energies, am-plitudes and wavenumbers are not orreted from the linear values. The vertiallyintegrated mass transport of the waves is then similar between the linear and thenon-linear alulations, only the vertial pro�le of P has been hanged. It is shownin �g. 7.10 that the strongly sheared pseudo-momentum does not modify the quasi-Eulerian urrent, as long the vertially integrated transport is not modi�ed. If, asinferred from the non-linear analysis, the transport is enhaned by 10 or 20%, theundertow is enhaned proportionally, but the other features of the irulation, suha the strength of the jet and the set-up level, remain unmodi�ed (not shown).The main modi�ation from the wave non-linearity is on the shoreward La-grangian drift lose to the surfae. This drift is largely enhaned, by a fator 2 (�g.7.10). This is espeially important immediately seaward of the surf zone (around
1000 m o�shore, �g. 7.10), were the shoreward mean urrent is small.Probably even more important is the signi�ant larger momentum �ux assoiatedwith �nite amplitude waves. Cokelet (1977) reported potential errors up to 40% inthe radiation stress omponent Sxx. Suh errors may be even larger in the preseneof a vertial urrent shear. That e�et may be omputed with the original GLMequations and parameterized with a bias in the surfae stress τds and in the Bernoullihead SJ . It may then aount for most of the errors in set-up preditions (Apotsoset al., 2007).
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Nearshore and Shelf irulation : a two dimensional study 1517.8 ConlusionIn this paper, the reently derived GLM2z equations for the wave-fored mean �ow(Ardhuin et al., 2007b) have been used in a simple two-dimensional steady simu-lation of the shelf irulation, inluding the surf-zone . These approximate GLMequations represent the adiabati wave-foring with a vortex fore and a Bernoullihead. Suh representation has already been studied and ompared to measurementsin Newberger and Allen (2007a). But the GLM2z formulation further brings newphysis ompared to this previous desription :Firstly, in the GLM desription, the wave pseudo-momentum is distributed alongthe vertial. Consequently, a diverging horizontal wave pseudo-momentum withinthe water olumn modi�es the momentum exhange between the wave part and themean �ow, ompared to a diverging surfae wave pseudo-momentum as in Newbergerand Allen (2007a). This e�et is equal to the addition of the vortex fore due to thevertial wave pseudo-momentum P3, as derived in MWilliams et al. (2004).Seondly, the GLM desription inludes urrent shear e�ets. The urrent shearmodi�es the Bernoulli head via two terms. The �rst one is depth-uniform while theseond one reates a small torque, enhaning the vertial reirulation of the surfzone onshore of the jet and reduing it o�shore. Both terms shift the transitionfrom set-down to set-up slightly seaward. The urrent shear also enhanes the wavepseudo-momentum, and thus the undertow strength.Thirdly, the GLM formalism, by separating the mean �ow and the wave pseudo-momentum, enables an analysis of the Lagrangian drift within and outside of thesurf-zone. In this regard, the e�et of the wave non-linearity in inreasing the vertialshear of the wave pseudo-momentum, is disussed. This e�et strongly alters thedesription of the near-surfae drift, giving rise to surfae shoreward veloities aslarge as 0.5m s−1. This is believed to be espeially important in the proximity of thesurf-zone, beause steep waves might then be able to drive buoyant objets towardsthe surf zone.The present work only gave a simple illustration of the wave-fored irulationon the shelf inferred from the GLM2z equations. However, it is believed that thisequations might give more spetaular results in modelling more omplex wave-urrent interations phenomena, suh as the rip urrents or the maro-vorties.



152 Chapter 77.9 Appendix A : modi�ation of ROMS to solvethe GLM equations7.9.1 Equations in σ-oordinatesEquations solved in ROMS are equations for the "semi-Lagrangian" �ow (ûα, w
L),i.e. for the quasi-Eulerian �ow (ûα, ŵ) plus the vertial pseudo-momentum (0, P3).They are transformed into σ-oordinates using Hz ≡ ∂z

∂s
.The mass onservation writes

∂Hz

∂t
+
∂Hzûα

∂xα
+
∂HzΩ

L

∂s
+
∂HzPα

∂xα︸ ︷︷ ︸
= 0, (7.34)where we have de�ned the Lagrangian sigma-vertial veloity

Ω
L

=
1

Hz

(
ŵ − ∂z

∂t
− ûα

∂z

∂xα
− Pα

∂z

∂xα

)
. (7.35)The time derivative and advetive terms in momentum equation transform tothe strethed oordinates to

1

Hz

[
∂Hzûα

∂t
+
∂Hzûαûβ

∂xβ
+
∂HzûαΩ̂

∂s
+ ûα

(
Hz

∂Pα

∂xα
− ∂z

∂xα

∂Pα

∂s

)]
, (7.36)whih writes alternatively

1

Hz


∂Hzûα

∂t
+
∂Hzûαûβ

∂xβ

+
∂HzûαΩ̂

∂s
+ ûα


∂HzPα

∂xα

+
∂Hz

(
Ω

L − Ω̂
)

∂s




 , (7.37)where we have de�ned

Ω̂ =
1

Hz

(
ŵ − ∂z

∂t
− ûα

∂z

∂xα

)
, (7.38)the "semi-Lagrangian" sigma-vertial veloity. Note that a orretion arise fromthe advetive form to the �ux form of the equations due to the diverging "semi-Lagrangian" veloity �eld. This orretion does not appear in the time derivativeand advetion of the traer beause it is adveted by the Lagrangian veloity whihis a non-divergent �eld :

1

Hz



∂HzT

∂t
+
∂HzûβT

∂xβ
+
∂HzPβT

∂xβ︸ ︷︷ ︸
+
∂HzΩ

L
T

∂s


 . (7.39)



Nearshore and Shelf irulation : a two dimensional study 153The boundary onditions are simpli�ed :
Ω

L
= 0 at s = 0 and s = −1, (7.40)7.9.2 Depth-integrated equationsThe depth average of a quantity A is given by

A =
1

D

∫ 0

−1
HzAds, (7.41)where D = η(t, x, y) + h(x, y) is the total depth of the water olumn.The depth average of the mass onservation (equ. 7.34) is

∂η

∂t
+
∂Dûα

∂xα
+
∂DPα

∂xα︸ ︷︷ ︸
= 0, (7.42)where we have used

∂Hz

∂t
=
∂η

∂t
(7.43)and the boundary onditions 7.10 and 7.13.The fast evolving part of the 2D equation must be separated from another partthat will remain onstant during the barotropi steps. The depth average of themomentum advetion (equ. 7.37) is

∂Dûα

∂t
+
∂Dûαûβ

∂xβ
+ ûα(0)Pβ(0)

∂z

∂xβ
− ûα(−1)Pβ(−1)

∂z

∂xβ

+
∫ 0

−1
ûα


∂HzPα

∂xα
+
∂Hz

(
Ω

L − Ω̂
)

∂s


 ds, (7.44)where we have used

Ω̂ = Ω
L

+
1

Hz

(
Pα

∂z

∂xα

)
. (7.45)No simple expression of the 2D momentum advetion in terms of the fast evolving2D veloities ûα was found. Therefore the fast part was left as in the original ROMSformulation,

∂Dûα

∂t
+
∂Dûα ûβ

∂xβ

+ ǫα3βfDûβ = −
(
D

ρw

∂pH

∂xα

)

fast

+ Du − τb + Rslow, (7.46)



154 Chapter 7with Rslow ontaining the barolini to barotropi ontribution, i.e. the remainingpart of the 2D equations (terms like ûαûβ − ûα ûβ) left onstant during the fastbarotropi time step.The modi�ations in the 2D sub-model are then restrited to the 2D free surfaeevolution. All the terms added by the wave foring are kept onstant during abarolini time step.



Nearshore and Shelf irulation : a two dimensional study 1557.10 Complements : Numerial implementation ofthe GLM equations in ROMS7.10.1 Modi�ation of the time stepping to inlude the di-verging mean �owHereinafter, we do not make any distintion between Stokes drift, noted ust, andthe horizontal wave pseudo-momentum P. The main routines of a time step, oldones and new ones, are desribed below, following their order of appearane duringthe barolini step (in step).
• ana_stokes At the beginning of eah barolini time step, the Stokes drift
ust at tn is alulated.

• set_HUVstokes The lateral mass �ux of the grid box due to the Stokes drift
Huson = Hz ust

n
is alulated orrespondingly to Huon = Hz u

n
as alulated inset_HUV

• omega W = Hz Ω
L

mn
= −div Huon− div Huson is the σ-vertial veloity of theLagrangian �ow. Additional vertial veloity Wstqe = Hz Ω̂

mn
for the mean �owadvetion is alulated using Wstqe = W + ust

n
∂z
∂ξ
.

• prsgrd not modi�ed
• rhs3d Wstqe is used for the vertial advetion, as well as terms for the orre-tion to the �ux form (last term in equ. 7.37)
• pre_step3d In the preliminary step, the pseud-ompressible algorithm for thealulation of Hzhalf uses the divergene of W +Huon+Huson onsistentlywith the modi�ed mass onservation. The traer is alulated at time n + 1

2(preditor) inluding the horizontal advetion by the Stokes drift. The advaneof the veloity u has not been hanged. In partiular, the barotropi mass �uxof the veloity u at time tn+ 1

2

, unknown at this moment, is set as in the originalversion as an interpolation of the veloity at time tn and time tn−1.
• u3dmix not modi�ed
• step2D The barotropi submodel is modi�ed using ustbar the vertial averageof the Stokes drift. The free surfae evolves using the divergene of the lateralmass �ux of the Stokes drift Duston = Dustbar

n
in addition to the mass �ux ofthe Eulerian veloity Duston = Dubar

n
.
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ustbar, as ust, is kept onstant during the barotropi time steps, but as thefree surfae evolves, Duston also evolves. Consequently, Duston is averagedin time as Duon for the purpose of oupling with the 3D equation, leadingto DUST_avg1 and DUST_avg2 to orret the Stokes veloity at time step
tn+1 and tn+ 1

2

, respetively.
• set_HUV2 As well as for the veloity, the Stokes drift ust is orreted usingthe result DUST_avg2 from the 2D submodel and the �ux Huson at time
tn+ 1

2

is omputed.
• omega treated above
• prsgrd not modi�ed
• rhs3d treated above
• step3d_uv1 not modi�ed
• step3d_uv2 ust at time tn is orreted using DUST_avg1 from the 2Dsubmodel. Then ust is interpolated bak to time tn+ 1

2

using the values of tn,
tn+1 and the result DUST_avg2 from the 2D submodel. Finally Huson attime tn+ 1

2

is reomputed.
• omega treated above
• step3d_t Finalize the advane of the traer with div Huson added to div Huon+

divW . All values at time tn+ 1

2

were then orreted to give a traer time stepboth onservative and onstany preserving, as in the original ROMS ode.7.10.2 DisussionThe development of ROMS to solve the GLM equations is muh ompliated dueto the body soure of mass when one solves only the "semi-Lagrangian" veloities
(û, ŵ + P3) = (û, wL). The �ow is then divergent, as well as the horizontal wavepart Px, and the traer is not adveted in a similar way. A sketh of the "semi-Lagrangian" equations is





∂û
∂x

+ ∂wL

∂z
+∂Px

∂x
= 0,

∂û
∂t

+ û∂û
∂x

+wL ∂û
∂z

= Fu,
∂T
∂t

+ (û+ Px)
∂T
∂x

+wL ∂T
∂z

= FT ,
∂ζ
∂x

+ û∂ζ
∂z

+Px
∂ζ
∂x

= wL at z = ζ.

(7.47)



Nearshore and Shelf irulation : a two dimensional study 157This approah was hosen beause we originally omitted the vertial omponentof the wave pseudo-momentum P3. On the ontrary, the introdution of the vertialwave pseudo-momentum P3, onsistently with the Stokes pseudo-vertial veloity ofMWilliams et al. (2004), separates the mean �ow and the wave part suh that bothare non-divergent. Does this lead to muh simpler equations to implement ? Theequations of motion beome :




∂û
∂x

+ ∂ŵ
∂z

= 0,
∂û
∂t

+ û∂û
∂x

+ ŵ ∂û
∂z

= Fu − P3
∂û
∂z
,

∂T
∂t

+ û∂T
∂x

+ ŵ ∂T
∂z

= FT − Px
∂T
∂x

− P3
∂T
∂z
,

∂ζ
∂x

+ û∂ζ
∂z

+ Px
∂ζ
∂x

= ŵ + P3 at z = ζ.

(7.48)These equations an now be solved in terms of (û, ŵ), whih is a non divergent �eld.The vertial advetion by P3 appears now on the right hand side of the momentumequation and an be onsidered as the missing omponent of the full 3D vortex fore.Also, the boundary ondition for wL are hanged to boundary ondition for ŵ (seealso MWilliams et al., 2004, equ. 9.12). However it seems that the di�ulties toobtain a time step both integral and onstany preserving are not muh reduedusing this form of the equations, beause the advetive terms for the traer equationare still di�erent than those for the momentum, involving the horizontal advetionby the wave pseudo-momentum.Another option to simplify the numerial implementation is to suppose that thewave mass transport ours at the surfae, as in Newberger and Allen (2007a).Then, we only need to add a surfae vertial veloity and the only routines to bemodi�ed are omega and 2D submodel step2D. However, the simpli�ation is onlyvalid if the traer advetion is not onsidered, as the advetion by the horizontalwave pseudo-momentum Px is important ompared to the advetion by the mean�ow.7.10.3 Momentum foring termsThe additional momentum soure terms due to the waves are added through di�erentways.The dissipation of the waves is put as a surfae stress.Gradients of the Bernoulli's head are added to the pressure gradient (routineprsgrd). Some terms are vertially uniform (SJ , S
hom
sh ) and are simply added to thesurfae pressure, while the term Scis

sh is added separately.Wave foring terms like the vortex fore and the Stokes-Coriolis fore are addedto the right hand side of the momentum equation ru in the routine rhs3d.



158 Chapter 7There is no need to add those fores in the 2D submodel if they are supposed toremain onstant during the barotropi steps.7.10.4 Volume onservation and boundary onditionsThe overall volume is onserved if the mass whih enters with the wave �eld isompensated by an outgoing mass of the mean �ow. Namely
∫ ∫

(û + Us) · n = 0, (7.49)where the integral is over the boundary of the domain and n is the normal tothe surfae. At a global sale, the wave �eld is nil at the boundary so that thevolume is onserved. However at the regional sale, we need to add additionalboundary ondition to ensure that onservation. We used û = −Us at the o�-shore boundary, whereas û = −Us would be su�ient and less imposing. However,imposing the pro�le of the outgoing mass does not seem to impat strongly on theinterior irulation, exept in the viinity of the boundary.



General onlusionIn this PhD thesis, we studied the impat of waves on the near-surfae and on thenearshore oean irulations. This study was made with a separation of the wavepart and of the mean �ow using the Generalized Lagrangian Mean (GLM) formalismof Andrews and MIntyre (1978a). The mean �ow is desribed in a quasi-Eulerianaverage, whih is lose to an Eulerian average below the troughs but is also wellde�ned, although di�ult to measure, from the trough to the mean sea surfae. Inaddition, a Lagrangian Stokes drift, or wave pseudo-momentum, is assoiated withthe waves.The Stokes drift of wind-sea waves has been alulated with an appropriatespetrum, and was shown to reah a signi�ant fration of the wind speed U10,around 1.2% when the waves are developed. That Stokes drift depends on the wavedevelopment, but also depends on the wind : for a narrow-banded swell, this driftis quite small, of the order a few entimeters per seond.Waves also indue a strong near-surfae mixing. This mixing an be well rep-resented with a Mellor-Yamada type model, by speifying a surfae mixing lengthof the order of the wave height and by inluding an additional Turbulent KinetiEnergy (TKE) soure oming from the energy dissipation of the waves.There is also, in addition to the momentum �ux from the wind to the mean �ow,a Stokes-Coriolis fore assoiated with the waves. This fore an be understood asthe ation of the Coriolis fore on the wave pseudo momentum, this momentum �uxbeing in turn released to the mean �ow through the Stokes-Coriolis fore.In part one, all these ingredients were gathered to study the impat of waves onthe open oean near-surfae dynamis. O�shore, where the horizontal gradients ofthe wave �eld and the assoiated fores an be negleted, the mean �ow momentumbalane redues to an Ekman-Stokes equilibrium, i.e. an equilibrium between theCoriolis fore and the di�usion of momentum from both the wind and the Stokes-Coriolis stress. There are two important features of this equilibrium : Firstly, due tothe strong wave-indued mixing, the mean �ow is rather uniform lose to the surfae,reahing only to small surfae values, around 0.5% of the wind speed. Seondly,159



160 General onlusionthe Stokes-Coriolis fore, whih drives a vertially integrated mean �ow transportopposed to the Stokes transport, does not drive a surfae mean �ow whih anelsthe surfae Stokes drift, beause of the strong mixing.As a onsequene of those features, it was made lear that the surfae Lagrangiandrift due to the wind is dominated by the Stokes drift when the waves are developed.Thus, if the surfae drift an be well represented in oean irulation models ignoringwaves, this will be to the detriment of the near-surfae mixing. On the ontrary,waves and the assoiate Stokes drift an reonile a large surfae mixing and arealisti surfae drift.This �rst result has been onfronted to observations. The mixing is omparableto the observations of TKE dissipation rates lose to the surfae, as the mixingmodel was designed for that purpose. The omparison with urrent measurementsis likely to be of the good magnitude order, but a preise validation is di�ult toahieve. In fat, useful data sets should inlude wave measurements, it must bedetermined whether the urrent is Eulerian, quasi-Eulerian of Lagrangian, and thewind- and wave-indued omponents must be separated from the other proesses.We attempted a reanalysis of the SMILE and LOTUS3 data-sets, sine they havealready been used for this kind of studies during the past (Santala, 1991; Terrayet al., 2000; Polton et al., 2005) and they appeared to be suited for that purpose.However, it did not lead to lear onlusions, ontrary to what has been laimed inthe past.A seond part aimed to evaluate the impat of the wave mixing on the mixedlayer depth. The role of the Langmuir ells has not been investigated, as it needsspei� numerial simulations, based on LES for instane. However, it is likely thatthe wave-breaking is an important soure of mixing lose to the surfae. Relatedparameters suh as the surfae value of the mixing length z0 and the surfae �ux ofTKE Φoc (= αu∗3) have been alulated from a wave model and analyzed in termsof global distributions. Compared to previous estimations of these parameters, ithas been shown that the wave height is largely overestimated when supposing fulldevelopment at high latitude, and more importantly, it has been shown that theparameter α was strongly underestimated by the previous analysis of Terray et al.(1996) or by the monthly mean analysis of Janssen et al. (2004).The importane of these two parameters z0 and α has been highlighted withmixed layer numerial simulations, using a simple TKE mixing model. It was shownthat the diurnal mixed layer is muh thinner when the waves are young than whenthe waves are developed. It was also shown that the erosion of a thermoline is moree�ient when the waves get more developed.



General onlusion 161We note that many unertainties remain : The dissipation term of the wave modelis still more poorly onstrained than the wave energy. Also, a preise estimation ofthe roughness length is still to be sought, and we believe that a omparison withthe breaking wave height, like alulated here, might be helpful.Finally, pratial parameterizations diretly from the wind speed have been pro-posed, but it is argued that the wave parameters should better be alulated witha wave model, instead of adding errors and bias from unknown wave ages to thepreviously mentioned unertainties.The third and last part dealt with the e�ets of an horizontally non-uniformwave �eld. Three dimensional pratial equations for the interations of waves andurrent have only reently appeared (MWilliams et al., 2004; Ardhuin et al., 2007b).Although these equations will surely give new insights into a lot of fully three-dimensional phenomena, suh as rip urrents, the maro-vorties or infra-gravitywaves, they were studied in the present thesis for their onsequenes on the steadyirulation over the shelf.Until reently, the irulation over the shelf has never been done in one pieefrom the surf zone to the mid-shelf. Generally, the Earth rotation was taken intoaount over the mid-shelf and waves were ignored, and the opposite in the surfzone. That left a large gap in between, and the momentum balane on the inner-shelf zone is still poorly understood (Lentz et al., 1999). It was therefore hosen touse the newly derived equations to attempt to �ll this gap.The approximate GLM2z equations of Ardhuin et al. (2007b) have been imple-mented in a regional oean irulation model, ROMS, and the results were om-pared to the existing simpler model of (Newberger and Allen, 2007a). One impor-tant aspet represented by these equations is the full desription of the Lagrangian�ow within and immediately outside the surf-zone. Suh a model thus gathers thequasi-Eulerian urrent, related to the Eulerian measurements, and the Lagrangianmotion, more important for many appliations. Further, the impat of a wave �nite-amplitude e�et, by modifying the wave pseudo-momentum, was disussed in termsof its impat on the mean �ow and on the surfae drift.Through the study of the impat of waves on the oean irulation, the presentthesis helped to take a new insight into the near-surfae dynamis, mainly by relatingthe wave-mixing and the surfae drift to the waves. Suh better understanding maybene�t to many further studies, ranging from ostal engineering to remote-sensingappliations, air-sea interations, oean-atmosphere exhange, oil drift preditionsor searh and resue. But what ould be a diret appliation of this thesis ?



162 General onlusionAs mentioned earlier, the presene of waves allows the presene of both a strongmixing and a large surfae drift, whih is otherwise impossible. Suh a desriptionan signi�antly modify the trajetory of Lagrangian partiles : the vertial distri-bution an be more homogeneous due to the strong mixing but the drift of surfaetrapped materials an remain large. This was highlighted o�-shore but might alsobe important in the surf and inner-shelf zones, where the materials, sedimentary orbiologial, are seldom uniformly distributed along the vertial. A better representa-tion of the vertial mixing and of the vertial shear of the urrent may then bene�tto the modelling of the drift of materials in this key area, link between the ontinentand the oean.



Brève onlusion générale en françaisAu ours de ette thèse, nous avons abordé l'étude de l'impat des vagues surl'hydrodynamique littorale et de surfae. Cette étude est motivée par les nom-breuses appliations pratiques auxquelles une meilleure onnaissane de es partiesde l'oéan peut béné�ier.Il est apparu en première partie que les vagues onstituaient une part dominantede la dérive près de la surfae liée au vent. Ainsi, si ette dérive près de la surfaepeut être bien représentée dans les modèles de irulation oéanique ignorant lesvagues, 'est alors au détriment du mélange prohe de la surfae. Les vagues, ouplus préisément la dérive de Stokes qui leur est assoiée, permettent au ontrairede onilier un fort mélange près de la surfae et une dérive en surfae réaliste. Cepremier résultat a été onfronté aux observations. Même si une validation préisen'a pas pu être e�etuée, en partie pare que les données de ourants "propres"en présene de vagues sont enore rares, les ordres de grandeurs des observationssont en aord ave ette desription. Une telle desription de la ouhe de surfaepeut modi�er sensiblement les trajetoires de traeurs lagrangiens : la distributionvertiale est ainsi plus homogène, grâe au mélange plus important, alors que ladérive des matériels piégés en surfae restera importante.La deuxième partie évaluait l'impat du mélange lié aux vagues sur la profondeurde la ouhe de mélange. Si le r�le des irulations de Langmuir n'a pas été abordé,pare que néessitant une modélisation spéi�que (à base de LES par exemple),l'impat du déferlement des vagues est lair sur les ouhes de mélange de faiblesprofondeurs, les ouhes de mélange diurnes par exemple. Il apparaît ainsi que, parétats de mer jeunes, la ouhe de mélange diurne est moins profonde que lorsque lesvagues sont développées.En�n, une troisième partie regardait les avanées en termes d'hydrodynamiquede la zone de déferlement et de la zone infra-littorale. La modélisation ohérentedes vagues et des ourants, néessaire dans ette zone, en est à ses premiers pas,les équations théoriques tridimensionnelles étant enore en phase de validation. Unepremière implémentation dans un modèle de irulation régionale, ROMS, a été e�e-tuée. Les premiers résultats ont été omparés aux modélisations issues de théories163



164 Brève onlusion généraleplus simples. Dans la zone littorale et infra-littorale, les transports lagrangienssont, omme au large, modi�és sous l'e�et de la dérive de Stokes. Mais aussi, lanon-linéarité des vagues, importante pour les vagues sur le point de déferler, peutsensiblement augmenter la dérive de Stokes assoiée aux vagues. Une telle desrip-tion séparée des vagues et du ourant de retour, peut, omme au large, onilier fortmélange et fort isaillement de ourant. Les divers matériels, biologiques ou sédi-mentaires, étant rarement distribués uniformément sur la vertiale, une meilleuredesription des isaillements de ourants et du mélange devrait permettre de mieuxmodéliser les déplaements de es matériels dans ette zone lef, interfae entre laterre et l'oéan.
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Annexe A : Equations GLM2z 169Expliit wave-averaged primitiveequations using a GeneralizedLagrangian Mean
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Annexe A : Equations GLM2z 171AbstratThe generalized Langrangian mean theory provides exat equations for generalwave-turbulene-mean �ow interations in three dimensions. For pratial applia-tions, these equations must be losed by speifying the wave foring terms. Here anapproximate losure is obtained under the hypotheses of small surfae slope, weakhorizontal gradients of the water depth and mean urrent, and weak urvature of themean urrent pro�le. These assumptions yield analytial expressions for the meanmomentum and pressure foring terms that an be expressed in terms of the wavespetrum. A vertial hange of oordinate is then applied to obtain glm2z-RANSequations (55) and (57) with non-divergent mass transport in artesian oordinates.To lowest order, agreement is found with Eulerian-mean theories, and the presentapproximation provides an expliit extension of known wave-averaged equations toshort-sale variations of the wave �eld, and vertially varying urrents only limitedto weak or loalized pro�le urvatures. Further, the underlying exat equations pro-vide a natural framework for extensions to �nite wave amplitudes and any realistisituation. The auray of the approximations is disussed using omparisons withexat numerial solutions for linear waves over arbitrary bottom slopes, for whihthe equations are still exat when properly aounting for partial standing waves.For �nite amplitude waves it is found that the approximate solutions are proba-bly aurate for oean mixed layer modelling and shoaling waves, provided that anadequate turbulent losure is designed. However, for surf zone appliations the ap-proximations are expeted to give only qualitative results due to the large in�ueneof wave nonlinearity on the vertial pro�les of wave foring terms.8.1 Introdution>From wave-indued mixing and enhaned air-sea interations in deep water, towave-indued urrents and sea level hanges on beahes, the e�ets of waves onoean urrents and turbulene are well doumented (e.g. Battjes 1988, Terray etal. 1996). The refration of waves over horizontally varying urrents is also wellknown, and the modi�ations of waves by vertial urrent shears have been thetopi of a number of theoretial and laboratory investigations (e.g. Biesel 1950,Peregrine 1976, Kirby and Chen 1989, Swan et al. 2001), and �eld observations(e.g. Ivonin et al. 2004). In spite of this knowledge and the importane of thetopi for engineering and sienti� appliations, ranging from navigation safety tosearh and resue, beah erosion, and de-biasing of remote sensing measurements,



172 Annexe ATheory averaging momentum variable main limitationsPhillips (1977) Eulerian total (U) 2D, du/dz = 0Garrett (1976) Eulerian mean �ow (U −Mw/D) 2D, du/dz = 0, kh≫ 1Smith (2006) Eulerian mean �ow (U −Mw/D) 2D, du/dz = 0GLM (A&M 1978a) GLM mean �ow (uL − P) none (exat theory)aGLM (A&M 1978a) GLM total (uL) none (exat theory)Leibovih (1980) Eulerian mean �ow (uL − P) 2nd order, ν onstantJenkins (1987) GLM mean �ow (uL − P) 2nd order, horizontal uniformityGroeneweg (1999) GLM total (uL) 2nd orderMellor (2003) following ξ3 total (uL) 2nd order, �at bottomMRL04 Eulerian mean �ow (u) below troughs, u≪ C, ν = 0NA07 Eulerian mean �ow (u) below troughs, 2nd order, kH ≪ 1present paper GLM mean �ow (uL − P) 2nd orderTable 8.1: Essential attributes of some general wave-urrent oupling theories. Seelist of symbols for details (table 2 at the end of the paper). Although Mellor (2003)derived his wave-averaged equations with spatially varying wave amplitudes, his useof �at-bottom Airy wave kinematis is inonsistent with the presene of bottomslopes (see ARB07). MRL04 stands for MWilliams et al. (2004) and NA2007stands for Newberger and Allen (2007).there is no well established and generally pratial numerial model for wave-urrentinterations in three dimensions.Indeed the problem is made di�ult by the di�erene in time sales betweengravity waves and other motions. When motions on the sale of the wave period anbe resolved, Boussinesq approximation of nearshore �ows has provided remarkablenumerial solutions of wave-urrent interation proesses (e.g. Chen et al. 2003,Terrile et al. 2006). However, suh an approah still misses some of the importantdynamial e�ets as it annot represent real vertial urrent shears and their mixinge�ets (Putrevu and Svendsen 1999). This shortoming has been partly orretedin quasi-three dimensional models (e.g. Haas et al. 2003), or multi-layer Boussinesqmodels (e.g. Lynnett and Liu 2005).The alternative is of ourse to use fully three dimensional (3D) models, basedon the primitive equations. These models are extensively used for investigatingthe global, regional or oastal oean irulation (e.g. Blek 2002, Shhepetkin andMWilliams 2003). An average over the wave phase or period is most useful dueto pratial onstraints on the omputational resoures, allowing larger time stepsand avoiding non-hydrostati mean �ows. Wave-averaging also allows an easierinterpretation of the model result. A summary of wave-averaged models in 2 or 3dimensions is provided in table 1.



Annexe A : Equations GLM2z 1738.1.1 Air-water separationIn 3D, problems arise due to the presene of both air and water in the region betweenwave rests and troughs. Various approahes to the phase or time averaging of �owproperties are illustrated in �gure 8.1 (see also Ardhuin et al. 2007b, hereinafterARB2007). For small amplitude waves, one may simply take a Taylor expansionof mean �ow properties (e.g. MWilliams et al. 2004, hereinafter MRL04). Us-ing a deomposition of the non-linear advetion term in the equations of motion
u · ∇u = ∇u2 + u × ∇u, MWilliams et al. (2004, see also Lane et al. 2007) ob-tained a relatively simple set of equation for onservative wave motion over shearedurrents, for a given hoie of small parameters. These parameters inlude the sur-fae slope ε1 = k0a0 and the ratio of the wavelength and sale of evolution of thewave amplitude. Further, these equations were derived with a saling orrespond-ing to a non-dimensional depth k0h0 of order 1, with k0, a0 and h0 typial valuesof the wavenumber, wave amplitude and water depth, respetively. These authorsalso assumed that the urrent veloity was of the same order as the wave orbitalveloity, both weaker than the phase speed by a fator ε1. That latter assumptionmay generally be relaxed sine the equations of motion are invariant by a hangeof referene frame, so that only the urrent vertial shear may need to be smallompared to the wave radian frequeny, provided that the urrent, water depth andwave amplitudes are slowly varying horizontally.For waves of �nite amplitude, a proper separation of air and water in the averagedequations of motion requires a hange of oordinates that maps the moving freesurfae to a level that is �xed, or at least slowly varying. This is usual pratie inair-sea interation studies, and it has provided approximate solutions to problemssuh as wind-wave generation or wave-turbulene interations (e.g. Jenkins 1986,Teixeira and Belher 2002) but it brings some ompliations. The most simplehange of oordinate was reently proposed by Mellor (2003), but it appears to beimpratial in the presene of a bottom slope beause its aurate implementationrequires the wave kinematis to �rst order in the wave slope (Ardhuin et al., 2007b,hereinafter ARB07).8.1.2 Separation of wave and urrent momentum �uxesAnother approah is to use one of the two sets of exat averaged equations derivedby Andrews and MIntyre (1978a). Groeneweg (1999) suessfully used the seondset, the alternative Generalized Lagragian Mean equations (aGLM), approximatedto seond order in wave slope, for the investigation of urrent pro�le modi�ationsindued by waves (see also Groeneweg and Klopman 1998, Groeneweg and Battjes



174 Annexe A2003). This work was also loosely adapted for engineering use in the numerialmodel Delft3D (Walstra et al. 2001).However, aGLM equations desribe the evolution of the total �ow momentum,whih inludes the wave pseudo-momentum per unit mass P. That vetor quantityis generally lose to the Lagrangian Stokes drift uS (see below), and it is not mixedby turbulene1, unlike the mean �ow momentum. Further, P is arried by thewave �eld at the group veloity, whih is typially one order of magnitude fasterthan the drift veloity. Thus bundling P with the rest of the momentum may leadto large errors with the turbulene losure. Other pratial problems arise due tothe strong surfae shear of P and uS (e.g. Rasle et al. 2006) whereas the quasi-Eulerian urrent is relatively uniform in deep water (e.g. Santala and Terray 1992).Thus solving for the total momentum (inluding P) requires a high resoltion nearthe surfae. Finally, a onsistent expression of the aGLM equations with a slopingbottom and wave �eld gradients is di�ult due to the divergene of vertial �uxesof momentum (vertial radiation stresses) that must be expressed to �rst order inall the small parameters that represent the slow wave �eld evolution (bottom slope,wave energy gradients, urrent shears...). This same problem arises with Mellor's(2003) equations and is disussed in ARB07.The �rst set of GLM equations desribes the evolution of the quasi-Eulerianurrent only, and, just like the deomposition of u · ∇u used by MRL04, it doesnot require the evaluation of these vertial radiation stresses. These equations wereused by Leibovih (1980) to derive the Craik-Leibovih equations that is the basisof theories for Langmuir irulations. However, in that work he did not attempt anexpliit integration of the GLM set, and thus did not express the wave foring termsfrom wave amplitudes or spetra. The general mathematial struture of the GLMequations and their onservatin properties are also well detailed in Holm (2002) andreferenes therein.Further, the GLM �ow is generally divergent as the averaging operator intro-dues an impliit hange of the vertial oordinate. This question has been largelyoverlooked by previous users of GLM theory (Leibovih 1980, Groeneweg 1999).Further, in order to be implemented in a numerial model, the wave-indued foringterms must be made expliit using approximate solutions for wave-indued motionsand pressure. We will assume that the slowly varying spetrum is known, typiallyprovided by a wave model. Given the degree of auray attained by modelled wavespetra in a wide variety of onditions this is generally appropriate (e.g. Herberset al. 2000, Ardhuin et al. 2003, 2007, Magne et al. 2007). We note in passing1The Stokes drift is a residual veloity over the wave yle, its mixing is not possible without aprofound modi�ation of the wave kinematis.



Annexe A : Equations GLM2z 175that no expliit and theoretially satisfying theory is available for the transport ofthe wave ation spetrum over vertially and horizontally sheared urrents. Indeed,the exat theory of Andrews and MIntyre (1978b) is impliit and would require anexpliit approximation of the wave ation from know wave kinematis, similar tothe approximation of the wave pseudo-momentum performed here.The goal of the present paper is to provide a pratial and aurate method forwave-urrent oupling that is general enough for appliations ranging from the oeanmixed layer to, possibly, the surf zone. GLM equations, for the reasons listed above,are a good andidate for this appliation. Although not as simple as an Eulerianaverage, the GLM operator is apable of properly separating air and water in therest to trough region, leading to physially understandable de�nitions of meanproperties on either side of the air-sea interfae. The pratial use of GLM requiressome approximations and transformations. We provide in setion 2 a derivationof expliit and approximate glm2z-RANS equations. Given the large literature onthe subjet, we explore in setion 3 the relationships between GLM, aGLM andother forms of wave-averaged 3D and depth-integrated 2D equations. A preliminaryanalysis of the expeted errors due to the approximations are provided in setion 4,and onlusions follow in setion 5. Full numerial solutions using the glm2z-RANSequations will be reported elsewhere, in partiular in the dotorate thesis of NiolasRasle.8.2 glm2-RANS equations8.2.1 Generalities on GLM and linear wave kinematisWe �rst de�ne the Eulerian average φ (x, t) of φ (x, t), where the average may bean average over phase, realizations, time t or spae. We now take this average atdisplaed positions x+ξ, with ξ = (ξ1, ξ2, ξ3) a displaement vetor, and we de�ningthe veloity v at whih the mean position is displaed when the atual positionmoves at the �uid veloity u(x + ξ). One obtains the orresponding GLM of φ
φ(x, t)

L
= φ(x + ξ, t) (8.1)by hoosing the displaement �eld ξ so that

• the mapping x → x + ξ is invertible
• ξ (x, t) = 0

• v (x, t) = v (x, t), whih gives v = u(x, t)
L.



176 Annexe ASuh a mapping is illustrated in �gure 1. for linear waves. Lagrangian perturbationsare logially de�ned as the �eld minus its average, i.e.,
φ(x, t)

l
= φ(x + ξ, t) − φ(x, t)

L
= φ(x + ξ, t) − φ(x + ξ, t). (8.2)Here we shall take our Eulerian average to be a phase average2. Given any Eulerian�ow �eld u(x, t), one may de�ne a �rst displaement by

ξ′(x, t,∆t) =
∫ t+∆t

t
u(x + ξ′(x, t, t′ − t), t′)dt′. (8.3)The mean drift veloity is de�ned as v(x, t) = lim∆t→0 ξ′(x, t,∆t)/(∆t). The GLMdisplaement �eld is then given by ξ = ξ′ − vt − ξ′ − vt. This onstrution of vand ξ guarantees that the required properties are obtained, provided that the limit

∆t → 0 ommutes with the averaging operator. For periodi motions one may alsotake v = (ξ′(t+ TL) − ξ′(t))/(TL), with TL the Lagrangian wave period (the timetaken by a water partile to return to the same wave phase). This de�nition will beused for Mihe waves in setion 4.2.Clearly GLM di�ers from the Eulerian mean. The di�erene between the twois given by the Stokes orretion (Andrews et MIntyre 1978a). Below the wavetroughs, the Stokes orretion for the veloity is the Stokes drift, by de�nition,
uS ≡ uL − u. (8.4)More generally, for a ontinuously di�erentiable �eld φ the Stokes orretion is givenby (Andrews and MIntyre 1978a, equation 2.27),

φ
L ≡ φ+ φ

S
= φ+ ξj

∂φ

∂xj
+

1

2
ξjξk

∂2φ

∂xj∂xk
+O

(
max
i,j,k

{
∂3φ

∂xi∂xj∂xk

}
|ξ|3

)
, (8.5)with an impliit summation over repeated indies.The GLM average ommutes with the Lagrangian derivative, thus the GLMveloity uL is the average drift veloity of water partiles. One should however beareful that the GLM average does not ommute with most di�erential operators,for example the url operator. Indeed the GLM veloity of irrotational waves isrotational, whih is learly apparent in the vertial shear of the Stokes drift (seealso Ardhuin and Jenkins 2006 for a alulation of the lowest order mean shears

∂uα/∂z
L and ∂u3/∂x

L).2For unorrelated wave omponents the phase average is obtained by the sum of the phaseaverages of eah omponent. In the presene of phase orrelations, suh as in the ase of partiallystanding waves or nonlinear phase ouplings, the sum has to be averaged in a oherent manner.



Annexe A : Equations GLM2z 177One of the interesting aspets of GLM theory is that it learly separates thewave pseudo-momentum P from the quasi-Eulerian mean momentum û = uL − P.This is a key aspet for numerial modelling sine P is transported by the wave �eldat the group veloity, of the order of 5 m s−1 in deep water, while û is transportedat the muh slower veloity uL. P is de�ned by (Andrews and MIntyre 1978a, eq.3.1),
Pi = −ξj,i

(
ul

j + ǫjklfkξl/2
)
, (8.6)where ǫijkAjBk is the i-omponent of the vetor produt A × B, and fk/2 is the

k-omponent of the rotation vetor of the referene frame. In the appliations on-sidered here the e�et of rotation an be negleted in (8.6) due to the muh largerrotation period of the Earth ompared to the wave period. We will thus take
Pi = −ξj,iul

j. (8.7)For pratial use, the GLM equations have to be losed by speifying the wave-indued foring terms. In order to give expliit approximations for the wave-induede�ets, we will approximate the wave motion as a sum of linear wave modes, eahwith a loal wave phase ψ giving the loal wave number k = (k1, k2) = ∇ψ,and radian frequeny ω = −∂ψ/∂t, and an intrinsi linear wave radian frequeny
σ = [gk tanh(kD)]1/2 = ω − k · UA, where UA is the phase advetion veloity, Dis the loal mean water depth, and g the aeleration due to gravity and Earthrotation. De�ning h(x1, x2) as the loal depth of the bottom and ζ(x1, x2, t) asthe free surfae elevation, one has D = ζ + h. We assume that the wave slope
ε1 = max (|∇ζ |) is small ompared to unity (this will be our �rst hypothesis H1),with ∇ denoting the horizontal gradient operator. We also restrit our investiga-tions to ases for whih the Ursell number is small Ur = (a/D)/(kD)2 < 1 (this ishypothesis H2). We further restrit our derivations to �rst order in the slow spatialsale ε2. That small parameter may be de�ned as the maximum of the slow spa-tial sales |(∂a/∂x)/(ka)|, |(∂u/∂x)/(σ)|, |(∂D/∂x)|, and time sales |(∂a/∂t)/(σa)|,
|k(∂û/∂t)/(σ)2, and |(∂D/∂t)k/σ| (hypothesis H3). It will also appear that the ur-rent pro�le may ause some di�ulties. Sine we have already assumed a small wavesteepness we may use Kirby and Chen's (1989) results, giving the dispersion relation

ω = σ + kα

∫ ζ

−h
ûα

2k cosh [2k(z + h)]

sinh(2kD)
dz +O(ε3), (8.8)where α is a dummy index representing any horizontal omponent 1 or 2, and thesummation is impliit over repeated indies. The index 3 will represent the vertialomponents positive upwards, along the diretion z = x3. In partiular we shall



178 Annexe Aassume that their orretion to the lowest order stream funtion (their eq. 23)is relatively small, whih may be obtained by requiring that the urvature of theurrent is weak or onentrated in a thin boundary layer, i.e. ε3 ≪ 1 (hypothesisH4) with
ε3 =

1

ω sinh(kD)

∫ ζ

−h

∣∣∣∣∣
∂2u

∂z2

∣∣∣∣∣ sinh [2k(z + h)] dz. (8.9)For simpliity we will further require that a2 [∂3uα/∂z
3/(σ)] ≤ ε3 (hypothesis H5),whih may be more restritive than H4. Finally, we will neglet the vertial veloity

ŵ in the vertial momentum equation for the mean �ow momentum (i.e. we assumethe mean �ow to be hydrostati, this is our hypothesis H6).In the following we take ε = max εi, 1 ≤ i ≤ 3. The wave-indued pressure andveloity are given by
p̃ = ρwga [FCC cosψ +O(ε)] (8.10)
ũα = aσ

kα

k
[FCS cosψ +O(ε)] (8.11)

ũ3 = aσ [FSS sinψ + O(ε)] , (8.12)where a is the loal wave amplitude, ρw is the water density, taken onstant inthe present paper. We have used the short-hand notations FCC = cosh(kz +

kD)/ cosh(kD), FCS = cosh(kz+kD)/ sinh(kD), and FSS = sinh(kz+kD)/ sinh(kD).>From now on, only the lowest order approximations will be given unless ex-pliitly stated otherwise. In order to estimate quantities at displaed positions, thezero-mean displaement �eld is given by
ul

i ≡ u(x + ξ) − uL
i

≃ ũi + ξj
∂ui

∂xj

+

(
ξj
∂ũi

∂xj

− ξj
∂ũi

∂xj

)
+

1

2

(
ξ2
j − ξ2

j

) ∂2ui

∂x2
j

. (8.13)Thanks to the de�nition of uL, we also have
ul

i =
∂ξi
∂t

+ uL
j

∂ξi
∂xj

≃ ∂ξi
∂t

+ uL
α

∂ξi
∂xα

, (8.14)in whih the vertial veloity has been negleted. The greek indies α and β standfor horizontal omponents only.To lowest order in the wave amplitude, the displaements ξi and Lagrangianveloity perturbations ul
i are obtained from (8.13) and (8.14),

ul
3 = ũ3 (8.15)
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ξ3 = am [FSS cosψ] (8.16)
ul

α = ũα + ξ3
∂uα

∂z
+ ξβ

∂uα

∂xβ
+O

(
σka2

)
cos 2ψ +O

(
a3∂

2uα

∂z3

) (8.17)
≃ a

[
σ
kα

k
FCS +mFSS

∂uα

∂z

]
cosψ (8.18)

ξα = −am
[
kα

k
FCS +

m

σ

∂uα

∂z
FSS

]
sinψ +O

(
a2

σ

∂2uα

∂z2

)
sin 2ψ

+O

(
a

σ

∂uα

∂xβ

)
cosψ +O

(
a3

σ

∂2uα

∂z3

)
, (8.19)The shear orretion parameter m, arising from the time-integration of (8.14), isgiven by

m(x,k, z, t) =
σ

ω − k · uL(x, z, t)
. (8.20)Based on (8.8) m di�ers from 1 by a quantity of order σ−1∂u/∂z.Using our assumption (H5) the last term in eq. (8.19) may be negleted. Thelast two term in eq. (8.17) have been negleted beause they will give negligible

O(ε3) terms in P, ζL or other wave-related quantities, when multiplied by otherzero-mean wave quantities.Using the approximate wave-indued motions, one may estimate the Stokes drift
uS ≡ uL − u ≃ ξ · ∇ũ+

1

2
ξ2
3

∂2uα

∂z2

=
ma2

4 sinh2(kD)

[
2σk cosh(2kz + 2kh) + km sinh(2kz + 2kh)

k

k
·

∂u

∂z

+
∂2u

∂z2
sinh2(kz + kh)

]
, (8.21)the horizontal wave pseudo-momentum

Pα = − ∂ξβ
∂xα

ul
β − ∂ξ3

∂xα

wl

≃ ma2

4 sinh2(kD)

[
2σk cosh(2kz + 2kh) + 2kαm sinh(2kz + 2kh)

kα

k
·

∂u

∂z

+2m sinh2(kz + kh)

(
∂u

∂z

)2

 , (8.22)and the GLM position of the free surfae

ζ
L

= ζ + ζ
S

= ζ +
∂ζ

∂xα

ξα|z=ζ = ζ +
ma2

2

[
k

tanh kD
+
mk

σ
·

∂u

∂z
|z=ζ

]
. (8.23)



180 Annexe AThus the GLM of vertial positions in the water is generally larger than the Eulerianmean of the position of the same partiles (see also MIntyre 1988). This is easilyunderstood, given that there are more partiles under the rests than under thetroughs (�gure 8.1.). As a result, the original GLM equations are divergent (∇ ·

uL 6= 0) and require a oordinate transformation to yield a non-divergent veloity�eld. That transformation is small, leading to a relative orretion of order ε2
1.That transformed set of equation is a modi�ed primitive equation that may beimplemented in existing oean irulation models.The horizontal omponent of the wave pseudo-momentum Pα di�ers from theStokes drift uS

α due to the urrent vertial shear. Therefore the quasi-Eulerian meanveloity ûα = uL
α − Pα also di�ers from the Eulerian mean veloity uα = uL

α − uS
α

ûα = uα +
1

2
ξ2
3

∂2uα

∂z2
+O(ε3). (8.24)The vertial wave pseudo-momentum P3 = 0 is, at most, of order σε3/k. Al-though it may be negleted in the momentum equation, it plays an important role inthe mass onservation equation, and will thus be estimated from Pα. In partiular,for m = 1 and in the limit of small surfae slopes, it is straightforward using (8.7)to prove that P is non-divergent, giving,

P3 = −Pα(−h) ∂h
∂xα

−
∫ z

−h

∂Pα(z′)

∂xα
dz′. (8.25)Although this equality is not obvious for m 6= 1 and nonlinear waves, orretionsto (8.25) are expeted to be only of higher order. In partiular, one P is transformedto z oordinates, sine, in the absene of a mean �ow P = uL and it is non-divergent(see setion 2.1.1).glm2-RANS equationsThe veloity �eld is assumed to have a unique deomposition in mean, wave andturbulent omponents u = u + ũ +u′, with 〈u′〉 = 0, the average over the �ow real-izations for presribed wave phases. The turbulene will be assumed weak enoughso that its e�et on the sea surfae position is negligible. We note X the divergeneof the Reynolds stresses, i.e. Xi = ∂

〈
u′iu

′

j

〉
/∂xj , and we apply the GLM average tothe Reynolds-Average Navier-Stokes equations (RANS). We shall now seek an ap-proximation to the GLM momentum equations by retaining all terms of order ρwgε

3and larger in the horizontal momentum equation, and all terms of order ρwgε
2 inthe vertial momentum equation. The resulting equations, that may be alled the"glm2-RANS" equations, are thus more limited in terms of wave nonlinearity than



Annexe A : Equations GLM2z 181the Eulerian mean equations of MRL04. At the same time, random waves are on-sidered here and that the mean urrent may be larger than the wave orbital veloity.Indeed we make no hypothesis on the urrent magnitude, but only on the horizontalurrent gradients and on the urvature of the urrent pro�le. The present derivationdi�ers from that of Groeneweg (1999) by the fat that we use the GLM instead ofthe aGLM equations (see table 1). The name for these equations is loosely bor-rowed from Holm (2002) who instead derived an approximate Lagrangian to obtainthe momentum equation, and did not inlude turbulene.In order to simplify our alulations we shall use the form of the GLM equationsgiven by Dingemans (1997, eq. 2.596) with ρw onstant, whih, among other things,removes terms related to the �uid thermodynamis. The evolution equation for thequasi-Eulerian veloity û is,
D

L
ûi + ǫi3jf3u

L
j +

∂

∂xi


p

L

ρw

− ul
ju

l
j

2


− X̂i + gδi3 = Pj

∂uL
j

∂xi

, (8.26)where the Lagrangian derivative DL is a derivative following the �uid at the La-grangian mean veloity uL, p is the full dynami pressure, δ is Kroneker's symbol,and the visous and/or turbulent fore X̂ is de�ned by
X̂i = X

L
i +

∂ξj
∂xi

(
X

L
j −Xj

)
. (8.27)These exat equations will now be approximated using (8.10)-(8.16). We �rstevaluate the wave foring terms in (8.26) using monohromati waves, with a surfaeelevation variane E = a2/2. The result for random waves follows by summationover the spetrum and replaing E with the spetral density E(k).We �rst onsider the vertial momentum balane, giving the pressure �eld. Itshould be noted that the Lagrangian mean Bernoulli head term ul

ju
l
j/2 di�ers fromits Eulerian ounterpart u′ju′j/2 by a term K2, whih arises from the orrelation ofthe mean urrent perturbation at the displaed position x+ξ, with the wave-induedveloity, i.e. the seond term in (8.17). Eqs. (8.10)�(8.16) give

1

2

(
ul

ju
l
j

)
=
gkE

2
[FCCFCS + FSCFSS] +K2, (8.28)with

K2 = ũαξ3
∂uα

∂z
+
ξ2
3

2

∣∣∣∣∣
∂u

∂z

∣∣∣∣∣

2

= E
σ

k
k ·

∂û

∂z
mFCSFSS +

E

2

∣∣∣∣∣
∂u

∂z

∣∣∣∣∣

2

m2F 2
SS. (8.29)



182 Annexe AThe vertial momentum equation (8.26) for ŵ = û3 is,
∂ŵ

∂t
+ ŵ

∂ŵ

∂z
+ P3

∂ŵ

∂z
+ (ûβ + Pβ)

∂ŵ

∂xβ

+
1

ρw

∂pL

∂z
+ g

=
∂

∂z

[(
ũαũα + w̃2

)
/2 +K2

]
+ Pβ

∂

∂z
(ûβ + Pβ) + P3

∂

∂z
(û3 + P3) ,(8.30)For small bottom slopes we may neglet the last term, but we rewrite it in orderto ompare with other sets of equations. Now using the lowest order wave solution(8.11)�(8.16), eq. (8.30) transforms to

1

ρw

∂

∂z

[
pL + ρwgz − ρw

σ2E

2

(
F 2

CS + F 2
SS

)
− ρwK2

]
= −∂ŵ

∂t
− ŵ

∂ŵ

∂z

− (ûβ + Pβ)
∂ŵ

∂xβ
+ Pβ

∂

∂z
(ûβ + Pβ) + P3

∂

∂z
(ŵ + P3) .(8.31)We add to both sides the depth-uniform term −σ2E (F 2

CC − F 2
SS) /2, and integrateover z to obtain

p(z)
L

ρw
= −g [(z − zs) − kEFCCFCS] +K2 +K1 −

gkE

4 sinh(2kD)
(8.32)where the hydrostati hypothesis (H6, see above) has be made for the mean �ow.The depth-integrated vertial omponent of the vortex-like fore K1 is de�ned by

K1 = −
∫ ζ

L

z
Pβ

∂

∂z′
(ûβ + Pβ) dz′ +

∫ ζ
L

z
P3

∂

∂xβ
(Pβ) dz′, (8.33)where eq. (8.25) has been used. The integration onstant zs is given by the surfaeboundary ondition

p(ζ)
L

= −ρwg
(
ζ

L − zs − kEFCCFCS −K2(ζ
L
)/g

)
= pa. (8.34)Using (8.23) we �nd that zs = ζ + pa/(ρwg) −K2((ζ)

L
)/g and (8.32) beomes

pL

ρw
=
pH

ρw
+ gkEFCCFCS +K1 +K2 −K2(ζ

L
), (8.35)with pH the hydrostati pressure de�ned equal to the mean atmospheri pressure atthe mean sea surfae, pH = ρwg(ζ − z) + pa.

Below the wave troughs the Stokes orretion for the pressure (8.5) gives the
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p = pL − ρwgkmE

(
FCSFCC + FSSFSC +

k

kσ
·

∂u

∂z
mFSSFCC

)
. (8.36)Thus equation (8.32) gives the following relationship, valid to order ε2

1 below thewave troughs, between the Eulerian-mean pressure p and pL,
p = pH − ρwgkEFSSFSC + ρw


K1 −K2(ζ

L
) +

E

2

∣∣∣∣∣
∂u

∂z

∣∣∣∣∣

2

m2F 2
SS




+ρwgk(1 −m)EFCCFCS. (8.37)For a spetrum of random waves, the modi�ed pressure term that enters thehorizontal momentum equation may be written as
p̂ ≡ pL − ρwul

ju
l
j

2
− Pj

∂uL
i

∂z
= pH + ρwS

J + ρwS
shear, (8.38)with the depth-uniform wave-indued kinemati pressure term

SJ = g
∫

k

kE(k)

sinh 2kD
dk (8.39)and a shear-indued pressure term, due to the integral of the vertial omponent ofthe vortex fore K1, and K2(ζ

L
),

Sshear = −
∫

k

E(k)


σ
k
kβm

∂ûβ(ζ
L
)

∂z
tanh(kD) +

m2

2

∣∣∣∣∣
∂û

∂z
(ζ

L
)

∣∣∣∣∣
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 dk

+
∫

k

∫ ζ
L

z

[
P3(k)

∂Pβ(z′,k)

∂xβ

− Pβ(k)
∂ [ûβ(z′) + Pβ(k)]

∂z′

]
dz′dk. (8.40)Now onsidering the horizontal momentum equations, we rewrite (8.26) for thehorizontal veloity,

∂ûα

∂t
+ (ûβ + Pβ)

∂ûα

∂xβ

+ ŵ
∂ûα

∂z
+ ǫα3βf3 (ûβ + Pβ) +

1

ρw

∂pH

∂xα

= − ∂

∂xα

(
SJ + Sshear

)
+ Pβ

∂ûβ

∂xα

− P3
∂ûα

∂z
+ X̂α, (8.41)Grouping all Pβ terms, as in Garrett (1976 eq. 3.10 and 3.11), leads to anexpression with the `vortex fore' ǫα3βω3Pβ. This fore is the vetor produt of thewave pseudo-momentum P and mean �ow vertial vortiity ω3. Equation (8.41)
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∂ûα

∂t
+ ûβ

∂ûα

∂xβ
+ ŵ

∂ûα

∂z
+ ǫα3β [f3ûβ + (f3 + ω3)Pβ] +

1

ρw

∂pH

∂xα

= − ∂

∂xα

(
SJ + Sshear

)
− P3

∂ûα

∂z
+ X̂α. (8.42)The vortex fore is a momentum �ux divergene that ompensates for the hangein wave momentum �ux due to wave refration over varying urrents, and inludesthe �ux of momentum resulting from û momentum adveted by the wave motion(Garrett 1976).The turbulent losure is the topi of ongoing researh and will not be expliitlydetailed here. We only note that it di�ers in priniple from the losure of the aGLMequations of Groeneweg (1999), whih ould be extended to inlude the seondterm in eq. (8.27). A proper losure involves a full disussion of the distortion ofturbulene by the waves when the turbulent mixing time sale is larger than thewave period (e.g. Walmsley and Taylor 1996, Janssen 2004, Teixeira and Belher2002). One should onsider with aution the rather bold but pratial assumptionsof Groeneweg (1999) who used a standard turbulene losure to de�ne the visositythat ats upon the wave-indued veloities, or the assumption of Huang and Mei(2003) who assumed that the eddy visosity instantaneously adjusts to the passage ofwaves. These e�ets may have onsequenes on the magnitude of wave attenuationthrough its interation with turbulene, and the resulting vertial pro�le of X̂α. Herewe only note that any momentum lost by the wave �eld should be gained by eitherthe atmosphere, the bottom or the mean �ow. Thus a possible parameterization forthe diabati soure of momentum is

X̂α =
∂Rαβ

∂xβ
+

∂

∂z

(
Kz

∂ûα

∂z

)
− Twc

α − T turb
α − T bfric

α , (8.43)with Rαβ the horizontal Reynolds stress, and Kz a vertial eddy visosity, while thelast three terms orrespond to the dissipative momentum �ux from waves to themean �ow, through whiteapping, wave-turbulene interations, and bottom fri-tion. Although the momentum lost by the waves via bottom frition was shown toeventually end up in the bottom (Longuet-Higgins 2005), the intermediate aelera-tion of the mean �ow, also known as Eulerian streaming, is important for sedimenttransport, and should be inluded with a vertial pro�le of T bfric
α onentrated nearthe bottom, provided that the wave boundary layer is atually resolved in the 3Dmodel (e.g. Walstra et al. 2001).



Annexe A : Equations GLM2z 185The GLM mass onservation writes
∂ (J)

∂t
+
∂
(
JuL

α

)

∂xα

+
∂
(
JwL

)

∂z
= 0, (8.44)where the Jaobian J is the determinant of the oordinate transformmatrix (δij + ∂ξi/∂xj)from Cartesian oordinates to GLM. (Andrews and MIntyre 1978a, eq. (4.2)-(4.4)with ρξ = ρw).8.2.2 glm2-RANS equations in z-oordinatesEquations (8.42) and (8.44) hold from z = −h to z = ζ

L, whih overs the entire`GLM water olumn'. All terms in (8.42) are de�ned as GLM averages, exept forthe hydrostati pressure pH whih does orrespond to the Eulerian mean position.For pratial numerial modelling, it is however preferable that the height of thewater olumn does not hange with the loal wave height. We will thus transformeq. (8.42), exept for pH , by orreting for the GLM-indued vertial displaements.This will naturally remove the divergene of the GLM �ow related to J 6= 1. TheGLM vertial displaement ξL

3 is a generalization of eq. (8.23)
ξ

L

3 (x, z, t) =
∫
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E(k)m
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k
sinh [2k(z + h)]

2 sinh2(kD)
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sinh2 [k(z + h)]

sinh2(kD)

k

σ
·

∂uα

∂z

]
dk. (8.45)and the Jaobian is J = 1 + J2 + O(ε3

1). Beause the GLM does not indue hori-zontal distortions, a vertial distane dz′ = Jdz in GLM orresponds to a Cartesiandistane dz, giving,
J2 = −∂ξ

L

3

∂z
. (8.46)One may note that

∫ ζ
L

−h
Jdz = ζ

L
+ h− ξ

L

3 (0) = D. (8.47)We now impliitly de�ne the vertial oordinate z⋆ with
s = z⋆ + ξ

L

3 (8.48)Any �eld φ(x1, x2, z, t) transforms to φ⋆(x⋆
1, x

⋆
2, z

⋆, t⋆) with
∂φ

∂t
=

∂φ⋆

∂t⋆
− st

sz

∂φ⋆

∂z⋆
(8.49)
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∂φ

∂xα
=

∂φ⋆

∂x⋆
α

− sα

sz

∂φ⋆

∂z⋆
(8.50)

∂φ

∂z
=

1

sz

∂φ⋆

∂z⋆
(8.51)with st, sz and sα the partial derivatives of s with respet to t⋆, z⋆ and x⋆

α, respe-tively. The oordinate transform was built to obtain the following identity
szJ = 1 +O

(
ε3
1

)
. (8.52)Removing the ⋆ supersripts from now on, the mass onservation (8.44) multi-plied by sz may be written as

∂
(
uL

α

)

∂xα
+
∂ (W )

∂z
= 0, (8.53)where the vertial veloity,

W = J
[
wL − uL

αsα − st

]
= ŵ

1 +O(ε)

∂ξ
L

3 /∂z
, (8.54)is the Lagrangian mass �ux through horizontal planes.Negleting terms of order ε3

1 and higher, the produt of (8.42) and szJ is re-written as,
∂ûα

∂t
+ ûβ

∂ûα

∂xβ

+ ŵ
∂ûα

∂z
+ ǫα3β [f3ûβ + (f3 + ω3)Pβ] +

∂pH

∂xα
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∂xα

(
SJ + Sshear

)
− P3

∂ûα

∂z
+ X̂α, (8.55)with

ŵ = J
[
wL − ûαsα − st

]
− P3 = W − P3 + JPαsα

= W − P3 +O(σε4
1ε2/k), (8.56)the quasi-Eulerian advetion veloity through horizontal planes. >From now onwe shall use exlusively these glm2z-RANS equations in z oordinate, with a non-divergent GLM veloity �eld uL.Using eq. (8.25), we may re-write (8.53) as

∂ûα

∂xα
+
∂ŵ

∂z
= 0. (8.57)



Annexe A : Equations GLM2z 187Surfae boundary onditionsTaking an impermeable boundary, the kinemati boundary ondition is given byAndrews and MIntyre (1978a, setion 4.2),
∂ζ

L

∂t
+ uL

α

∂ζ
L

∂xα
= wL at z = ζ

L
. (8.58)It is transformed to z oordinates as

∂ζ

∂t
+ uL

α

∂ζ

∂xα
= W = ŵ + P3 at z = ζ. (8.59)When the presene of air is onsidered, it should be noted that the GLM positionis disontinuous in the absene of visosity, beause the Stokes orretions for ζhave opposite signs in the air and in the water. This disontinuity arises from thedisontinuity of the horizontal displaement ξα (air and water wave-indued motionsare out of phase). A proper treatment would therefore require to resolve the visousboundary layer at the free surfae. This question is left for further investigation.However, we note that due to the large wind veloities and possibly large surfaeurrents unrelated to wave motions, a good approximation is given by negletingthe Stokes orretions for the horizontal air momentum,
û+

α = û−α + P−

α , (8.60)where the − and + exponents refer to the limits when approahing the boundaryfrom below and above, respetively.For the mean horizontal stress, we use the results of Xu and Bowen (1994),
τα = Snnnα + Snsn3 at z = ζ (8.61)with S the stress tensor, with normal Snn and shear Sns stresses on the surfae,generally de�ned by
Sij = −pδij + ρwν

(
∂ui

∂xj

+
∂uj

∂xi

)
, (8.62)with ν the kinemati visosity, and the loal unit vetor normal to the surfae, to�rst order in ε1,

n = (0, 0, 1) −
(
∂ζ

∂x1

,
∂ζ

∂x2

, 0

)
. (8.63)



188 Annexe ATaking the Lagrangian mean of (8.61), one obtains,
τa
α = τα

L = τw
α + ρwν

∂ûα

∂z
+ ρwν

∂Pα

∂z
at z = ζ, (8.64)where τa

α is the total air-sea momentum �ux (the wind stress), as an be measuredabove the wave-perturbed layer (e.g. Drennan et al. 1999). τw
α is the α omponentof the wave-supported stress due to surfae-slope pressure orrelations,

τw
α = p

∂ζ

∂xα

L

. (8.65)The seond visous term ρwν∂Pα/∂z was estimated using the GLM average ofwave orbital shears (Ardhuin and Jenkins 2006), it is the well-known virtual wavestress (e.g. Xu and Bowen 1994, eq. 18). That stress orresponds to wave mo-mentum lost due to visous dissipation, and it an be absorbed into the boundaryonditions beause it is onentrated within a few millimeters from the surfae (Ban-ner et Peirson 1998). At the base of the visous layer of thikness δs, (8.64) yields,using an eddy visosity Kz,
τa
α − τw

α − ρwν
∂Pα

∂z
= ρwKz

∂ûα

∂z
at z = −δs. (8.66)Bottom boundary onditionsThe same approah applies to the bottom boundary onditions. The kinematiboundary ondition writes

∂h
L

∂t
+ (ûα + Pα)

∂h
L

∂xα
= (ŵ + P3) at z = −hL

. (8.67)If an adherene ondition is spei�ed at the bottom, whih shall be used below,the bottom boundary ondition further simpli�es as hL
= h. It may also simplifyunder the ondition that the wave amplitude is not orrelated with the small salevariations of h, whih is not generally the ase (e.g. Ardhuin and Magne 2007). Forthe dynami boundary onditions, pressure-slope orrelations give rise to a partialre�etion of waves, that may be represented by a sattering stress (e.g. Hara and Mei1987, Ardhuin and Magne 2007). This stress modi�es the wave pseudo-momentumwithout any hange of wave ation (see also Ardhuin 2006).The e�et of bottom frition is of onsiderable interest for sediment dynamisand deserves speial attention. For the sake of simpliity, we shall here use theondution solution of Longuet-Higgins for a onstant visosity over a �at sea bedas given in the appendix to the proeedings of Russel and Osorio (1958). We shall



Annexe A : Equations GLM2z 189brie�y onsider waves propagating along the x-axis, and we assume that the meanurrent in the wave bottom boundary layer (WBBL) is at most of the order of thewave orbital veloity outside of the WBBL. Instead of (8.11)�(8.16) the orbital waveveloity and displaements near the bottom take the form,
u1 = u0

[
cosψ − e−ẑ cos(ψ − ẑ)

] (8.68)
w =

u0kδf
2

[
2ẑ sinψ − sin(ψ − ẑ)e−ẑ + sinψ + cos(ψ − ẑ)e−ẑ − cosψ

](8.69)
ξ1 = −u0

ω

[
sinψ − sin(ψ − ẑ)e−ẑ

] (8.70)
ξ3 =

u0kδf
2ω

[
2ẑ cosψ − cos(ψ − ẑ)e−ẑ + cosψ + sin(ψ − ẑ)e−ẑ − sinψ

](8.71)where ψ = kx − ωt is the wave phase, δf = (2ν/ω)1/2 is the depth sale for theboundary layer, ẑ = (z + h)/δf is a non-dimensional vertial oordinate, u0 =

aσ/ sinh(kD) is the orbital veloity amplitude outside the boundary layer.Based on these veloities and displaements, the wave pseudo-momentum P , is
P1 = −ξ1,1u1 − ξ3,1w =

u2
0

2C

[
1 + e−2ẑ cos(2ẑ) − 2 cos ẑe−ẑ

]
. (8.72)This is equal to the Stokes drift uS = u1,1ξ1 + u1,3ξ3 omputed by Longuet-Higgins.Besides, the rate of wave energy dissipation indued by bottom frition is Sbfric =

ρwωu
2
0/2 giving a bottom frition stress ∫∞

−h T
bfric
α dz = kαSbfric/(ρwσ).Generalizing this approah to a turbulent bottom boundary layer (e.g. Longuet-Higgins 2005) one may replae the onstant visosity with a depth-varying eddyvisosity. If the wave bottom boundary layer (WBBL) is resolved, τ b

α will alsoinlude the momentum lost by waves through bottom frition, as given by the depth-integral of T bfric
α . One may estimate P from the vertial pro�les of the wave orbitalveloities ũα and w̃, and the modi�ed pressure (8.38) has to be orreted for thehange in wave orbital veloities in the WBBL. Many WBBL models are availablefor estimating these wave-indued quantities.If the bottom boundary layer is not resolved, on may take the lowest model levelat the top of the wave boundary layer. The bottom stress may then be omputedfrom a parameterization of the bottom roughness z0a′ (e.g. Mathisen and Madsen1996, 1999), whih relates the bottom stress

τ b
α = −ρwu

2
⋆c

ûα

û
, (8.73)



190 Annexe Ato the urrent veloity ûα at the lowest model level z,
ûα = κu⋆c ln

[
z + h

z0a′

]
, for z + h < δf . (8.74)Then the near-bottom veloity ûα should be taken equal to the Eulerian streamingveloity ∼ 1.5Pα (see e.g. Marin 2004, for turbulent ases with rippled beds).Further, in this ase the bottom stress τ b
α should not inlude the depth integralof T bfric

α . This latter remark also applies to depth-integrated equations. Indeed,
τwb
α =

∫−h+δf

−h T bfric
α dz is a �ux of momentum into the bottom due to wave bottomfrition, τwb

α does not partiipate in the momentum balane that gives rise to a sealevel set-down and set-up (Longuet-Higgins 2005).8.3 Relations between the present theory and knownequations8.3.1 Depth-integrated GLM for a onstant density ρwUsing (8.59) the mass onservation equation in z oordinates (8.53) lassially gives(e.g. Phillips 1977)
∂

∂t

∫ ζ

−h
ρwdz = − ∂

∂xα

∫ ζ

−h
ρwu

L
αdz (8.75)whih is exatly the lassi shallow-water mass onservation for onstant density,

∂D

∂t
= −∂Mα

∂xα

, (8.76)with the depth-integrated volume �ux vetor3 M de�ned by
M =

∫ ζ

−h
uLdz. (8.77)In the momentum equation, the advetion terms may be transformed in �uxform using mass onservation. However, beause some of the original GLM adve-tion terms are inluded in the vortex fore, the remaining terms do not simplifyompletely. Using (8.57) one has,

ρw

[
∂ûα

∂t
+ ûβ

∂ûα

∂xβ
+ ŵ

∂ûα

∂z

]
+ P3

∂ûα

∂z3Phillips (1977) uses the notation M̃ instead of M, and M instead of M
w.
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=

∂

∂t
(ρwûα) +

∂

∂xβ
(ρwûβûα) +

∂

∂z
[ρw (ŵ + P3) ûα] − ûα

∂P3

∂z
. (8.78)Using (8.59), (8.67) and (8.25), and after integration by parts, these advetion termsintegrate to

∂Mm
α

∂t
+

∂

∂xβ

(∫ ζ

−h
ρwûαûβdz

)
+ uAα

∂Mw
β

∂xβ
+
∂uAα

∂xβ
Mw

β −
∫ ζ

−h
Pβ
∂ûα

∂xβ
dz, (8.79)where the zeroth order wave advetion veloity uA is de�ned by,

uAαM
w
β ≡

∫ ζ

−h
ûαPβdz, (8.80)whih is equal, at lowest order, to the seond term in (8.8). The wave-indued masstransport is the depth-integrated pseudo-momentum,

Mw =
∫ ζ

−h
Pdz. (8.81)Finally, the quasi-Eulerian volume �ux is de�ned by Mm = M −Mw.For terms uniform over the depth (∂pH/∂xα and ∂SJ/∂xα) the integral is simplythe integrand times the depth.It should be noted that the depth-integrated vortex fore involves the advetionveloity uA, ∫ ζ

L

−h
ǫα3β (f3 + ω3)Pβdz = ǫα3β (f3 + Ω3)M

w
β , (8.82)with

Ω3 = ǫ3αβ (∂uAβ/∂xα − ∂uAα/∂xβ) . (8.83)The vertial integration of (8.55) thus yields
∂Mm

α

∂t
+

∂

∂xβ

(∫ ζ

−h
ρwûαûβdz

)
+ ǫα3βf3M

m
β +D

∂

∂xα

(
ρwgζ + pa

)

= −ǫα3β (f3 + Ω3)M
w
β − uAα

∂Mw
β

∂xβ

− ∂uAα

∂xβ

Mw
β +

∫ ζ

−h
Pβ
∂ûα

∂xβ

dz

−D∂S
J

∂xα

−
∫ ζ

−h

∂Sshear

∂xα

dz −
∫ ζ

−h
P3
∂ûα

∂z
dz +X int. (8.84)The soure of momentum X int is simply the sum of the mean momentum �uxesat the top and bottom, and the soure of momentum due to diabati wave-mean�ow interations (i.e. breaking and wave-turbulene interations), orresponding toSmith's kiD

W .These equations are very similar to those of Smith (2006, eq. 2.29), our term
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SJ is simply termed J in Smith (2006). The only di�erenes are due to the vertialshear in the urrent. The advetion veloity uAα replaes Smith's mean �ow veloity.Sine uAα is the proper lowest order advetion veloity for the wave ation (Andrewsand MIntyre 1978b), this is a simple extension of Smith's result to depth-varyingurrents. The term involving Sshear is also obviously absent from Smith's equations.The last di�erenes in (8.84) are the last two terms on the seond line, but they alsoanel for a depth-uniform urrent ûα.8.3.2 Equations of MWilliams et al. (2004)The approah of MRL04 is in the line of perturbation theories presented by Mei(1989) for Eulerian variables and monohromati waves. Although the result ofMRL04 orresponds to a partiular hoie of the relative ordering of small param-eters, it is given to a high enough order so that it does over most situations at alower order. In partiular MRL04 have pushed the expansion to order ε4

1 for someterms beause they assumed a ratio σ/f3 of order ε4
1, with ε1 the wave slope. Thisratio, in pratie, may only be attained for relatively steep wind waves (developedwind seas and swells generally have slopes of the order of 0.05). They also assumedthat ε2

1 ∼ ε2 (the wave envelope varies on a sale relatively larger than the wave-length ompared to the present theory in whih ε1 ∼ ε2 is possible). These authorsalso separated the motion into waves, long waves and mean �ow, and onsideredin detail the rotational part of the wave motion aused by the vertial shear of theurrent.MRL04 thus obtained Eulerian-mean equations that only orrespond to measur-able Eulerian averages under the level of the wave troughs. Beause they use ananalyti ontinuation of the veloity pro�les aross the air-sea interfae, the physi-al interpretation of their average is unlear between the rests and troughs of thewaves. We shall neglet here their terms of order ε4
1 (i.e. terms that involve thewave amplitude to the power of four), whih amounts to hoosing a slightly di�er-ent saling. Sine we shall onsider here random waves, this avoids umbersomeonsiderations of the wave bispetrum.The Eulerian-mean variables of MRL04 should be related to the Lagrangianmean values by the Stokes orretions (8.5), so that their horizontal Eulerian-meanveloity q orresponds to uL − uS. Beause they have subtrated the hydrostatipressure with the mean water density ρw0, their mean pressure 〈p〉 should be equalto the Eulerian mean pressure p + ρw0gz, with p related to the GLM pressure viaeq. (8.37).Absorbing the long waves in the mean �ow (i.e. allowing the mean �ow to vary



Annexe A : Equations GLM2z 193on a the wave group sale, see also Ardhuin et al. 2004), MRL04 equations for the`Eulerian' mean veloity (q1, q2, w) an be written as
∂qα
∂t

+

(
qβ

∂

∂xβ

+ w
∂

∂z

)
qα + ǫα3βf3qβ +

1

ρw

∂〈p〉
∂xα

= − ∂

∂xα

(K1 + K2) + Jα(8.85)
∂〈p〉
∂z

= (ρw − ρw0)g −
∂

∂z
(K1 + K2) +K (8.86)

∂qβ
∂xβ

+
∂w

∂z
= 0 (8.87)

〈p〉 = ρwg
(
ζ − kEFSCFSS

)
− P0 at z = 0 (8.88)

w = −wSt at z = 0 (8.89)with
K1 =

ũjũj

2
= −1

2
[FCCFCS + FSSFSC ] gkE (8.90)

Jα = −ǫα3β (f3 + ω3)u
S
β − wSt∂qα

∂z
(8.91)

K = uS
β

∂qβ
∂z

(8.92)
K2 =

σkβE

k

∫ z

−h

∂2qβ(z′)

∂z2
FCS(z′)FSS(z′)dz′ (8.93)

P0 = O(
g

k
ε4
1) (8.94)The original notations of MRL04 (see also Lane et al. 2007) have been translatedto the notations used above and order ε4

1 terms have been negleted.These equations are learly analogue to the glm2z-RANS equations presentedhere. In partiular the vertial vortex fore term K orresponds to our K1 thatgets into Sshear, the dynamially relevant kinemati pressure pressure 〈p〉+K1 +K2orresponds to our pressure p̂ de�ned by (8.38), and the vertial Stokes veloity wStorresponds to our P3. There are only two di�erenes. One is between the surfaeboundary onditions for these two pressures, with a di�erene only due to K2(z =

0) 6= −K2(ζ
L
). Integrating by parts to estimate K2(z = 0), this di�erene is foundto be of the order of gkEε3. Suh a di�erene is of the same order as extra termsthat would arise when using wave kinematis to �rst order in the urrent urvature(Kirby and Chen 1989), and properly transforming û in u. The seond di�erenebetween MRL04 and the present equations is that the wave pseudo-momentum Pdi�ers from the Stokes drift uS when the urrent shear is large, and both generallydi�er from the expression for uS given by MRL04. Sine MRL04 took the urrentand wave orbital veloity to be of the same order, in that ontext the di�erene
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P − uS is of higher order and thus the two sets of equations are onsistent in theirommon range of validity.A general omparison of 2D depth-integrated equations is disussed by Lane etal. (2006). The present work therefore brings a further veri�ation of their 3D formof the equations, and an extension to relatively strong urrents, possibly as large asthe phase veloities. As expeted, the Eulerian averages of MWilliams et al. (2004)are idential to the quasi-Eulerian �elds in GLM theory, beause they obey the sameequations, exept for urrent pro�le urvature e�ets, whih were partly negletedhere. The "Eulerian" mean urrent of MRL04 an thus be physially interpretedas a quasi-Eulerian average, de�ned as the GLM average minus the wave pseudo-momentum. Exept for a Jaobian that introdues relative orretions of seondorder in the wave slope, this averaging is idential to the proedure used by Swanet al. (2001). Above the trough level, this average should not be onfused witha truly Eulerian average, as obtained from in-situ measurements for example. Insuh measurements the Stokes drift would be reorded in the trough-to-rest region(�gure 1.a).8.4 Limitations of the approximationsThe glm2z-RANS equations have been obtained from the exat GLM equations,under 6 restriting hypotheses related to the wave slope and Ursell number (H1 andH2), the horizontal sales of variation of the wave amplitude (H3), the urrent pro�le(H4 and H5) and the vertial mean veloity (H6). These hypotheses essentiallyallowed us to use the linear wave-indued quantities given by eqs. (8.11)�(8.19). Inpratial onditions, these hypotheses may not be veri�ed and the resulting glm2z-RANS equations may have to be modi�ed. Here we investigate the importane ofH3, H2 and H1, using numerial solutions from an aurate oupled mode modelfor irrotational wave propagation over any bottom topography, and an aurateanalytial solution for inipient breaking waves, respetively.8.4.1 Bottom slope and standing wavesIn absene of dissipation and given proper lateral boundary onditions the �ow inwave shoaling over a bottom slope is irrotational and an thus be obtained by anumerial exat solution of Laplae's equation with bottom, surfae, and lateralboundary onditions. For waves of small amplitudes this an be provided by a so-lution to this system of equations to seond order in the wave slope. Belibassakisand Athanassoulis (2002) have developed a seond order version of the National



Annexe A : Equations GLM2z 195Tehnial University of Athens numerial model (NTUA-nl2) to solve this problemin two dimensions. Here we apply their model to the simple ase of monohromati,unidiretional waves propagating along the x axis, with a topography uniform alongthe y axis. The topography h(x) varies only for 0 < x < L and is onstant h(x) = h1for x < 0 and h(x) = h2 for x > L. In that ase the Eulerian mean urrent ∇φ0(x)is irrotational, and uniform over the vertial as x approahes ±∞ (e.g. Belibas-sakis and Athanassoulis 2002, table 1 and �gure 5). We shall further restrit ourinvestigation to the ase of a monohromati wave train of known radian frequeny
ω and inident amplitude a, giving rise to re�eted and transmitted wave trains ofamplitudes Ra and Ta. Numerial alulations are given for a bottom pro�le asgiven by Roseau (1976) for whih the re�etion oe�ient R is known analytially,thus providing a hek on the quality of the numerial solution.The bottom is de�ned here by x and z oordinates given by the real and imagi-nary part of the omplex parametri funtion of the real variable x′,

Z(x′) = x+ iz =
h1(x

′ − iα0) + (h2 − h1) ln(1 + ex′
−iα0)

α0

. (8.95)We hoose h1 = 6 m and h2 = 4 m and a wave frequeny of 0.19 Hz (ω = 1.2 rad s−1).For α0 = 15π/180 the maximum bottom slope is ε2 = 2.6× 10−2 (�gure 1), and there�etion oe�ient for wave amplitude is R = 1.4 × 10−9 (Roseau 1976), so thatre�eted waves may be negleted in the momentum balane. Due to the shoalingof the inident waves, the mass transport indued by the waves inreases in shallowwater, and thus the mean urrent must hange in the x diretion to ompensate forthe divergene in the wave-indued mass transport. We shall further take a zero-mean surfae elevation as x → −∞. The seond order mean elevation is obtainedas a result of the model. We also veri�ed that the vertial wave pseudo-momentumompensates for the divergene of the horizontal omponent so that in this ase forlinear waves the wave pseudo-momentum is non-divergent (�gure 3).For mild bottom slopes, the re�etion oe�ient is small as predited by Roseau(1976). The NTUA-nl2 model used here generally gives aurate re�etion oe�-ients, but it tends to overestimate very weak re�etions. In the �rst ase investi-gated here, the numerial re�etion is R = 1×10−3, with no signi�ant e�et on thewave dynamis. The NTUA-nl2 model is used to provide the Fourier amplitudesof the mean, �rst and seond harmoni omponents of the veloity potential, overa grid of 401 (horizontal) by 101 (vertial) points. From these disretized poten-tial �elds, the mean, �rst and seond harmoni veloity omponents are obtainedusing seond order entered �nite di�erenes. As expeted, the numerial solutiongives a horizontal mean �ow u that ompensates the divergene of the wave mass



196 Annexe Atransport and is thus of order σ/kε2. Further u is almost uniform over the verti-al and is irrotational (�gure 8.2.b). The vertial mean veloity is of higher order.The GLM momentum balane is thus dominated by the hydrostati and dynamipressure terms pH and SJ. Although these two terms are individually of the orderof 0.01 m2 s−2, their sum is less than 2 × 10−16 m2 s−2 in the entire domain, atthe roundo� error level. It thus appears that this part of the momentum balaneis muh more aurate than expeted from the asymptoti expansion. Indeed, forany bottom slope, in the limit of small surfae slopes and for irrotational �ow andperiodi waves, the Stokes orretion (8.5) for the pressure and the time averageof the Bernoulli equation give the following expression for the modi�ed kinematipressure (8.38)
p̂ =

pL

ρw
− ul

ju
l
j

2
=

p

ρw
+
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ρw
ξj
∂p̃

∂xj
− ũjũj
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= −gz +
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∂p̃

∂xj
− ũj ũj = −gz − ξj
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∂xj∂t
− ∂ξ̃j

∂t

∂φ̃

∂xj

= −gz − ∂

∂t
ξjũj = −gz (8.96)where the equalities only hold to seond order in the surfae slope. Thus the kine-mati modi�ed pressure p̂ has no dynamial e�et to seond order in the wave slope,as already disussed by MWilliams et al. (2004) and Lane et al. (2007). For ir-rotational �ow, this remains true for any bottom topography and even for rapidlyvarying wave amplitudes, inluding variations on sales shorter than the wavelength.Thus the only wave e�et is the stati hange in mean water level (set-up orset-down), and dynami onsequenes in the WBBL, where SJ goes to zero, leavingthe hydrostati pressure gradient to drive a mean �ow that an only be balaned bybottom frition. For slowly varying wave amplitudes the mean sea level is given byLonguet-Higgins (1967, eq. F1)

ζ(x) = − kE

sinh(2kD)
+

k0E0

sinh(2k0)
(8.97)where the 0 subsript orrespond to quantities evaluated at any �xed horizontalposition, the hoie of whih being irrelevant to the estimation of horizontal gradientsof ζ.Equation (8.97) is well veri�ed by the NTUA-nl2 result for the ase onsideredso far (�gure 8.4.a). However, this is no longueur true for rapid variations in thewave amplitude a(x), i.e. due to partially standing waves. In that ase one should
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ζ(x) = −

[
ũβũβ − ũ2

3

2g

]

z=0

+

[
ũβũβ − ũ2

3

2g

]

z=0,x=x0

, (8.98)with ũβ and ũ3 given by linear wave theory. Eq. (8.98) is a generalization of Mihe's(1944a) mean sea level solution under standing waves. Contrary to propagatingwave groups, for whih the mean sea level is depressed under large waves, here thedepression ours at the nodes of the standing wave, where the horizontal veloitiesare largest and amplitudes are smallest (�gure 8.4.).Eq. (8.98) is well veri�ed in the presene of partially standing waves. To illus-trate this, we have modi�ed the bottom topography, adding a sinusoidal bottomperturbation for x > 180 m with an amplitude of 5 m and a bottom wavelengthhalf of the loal waves' wavelength, whih maximizes wave re�etion (Kreisel 1949).This yields a wave amplitude re�etion R = 0.03, for ω = 1.2 rad s−1, of the orderof observed wave re�etions over gently sloping beahes (e.g. Elgar et al. 1994).The bottom is shown on �gure 8.4.b. Although the standing wave pattern is hardlynotieable in the surfae elevation (the amplitude modulation is only 6%, �gure8.4.), the small pressure modulation our at muh smaller sales, so that the as-soiated gradient an overome the large sale gradients of the hydrostati pressure(�gure 8.4.d). As a result small partial stading waves an dominating the momen-tum balane in the WBBL (see Longuet-Higgins 1953, Yu and Mei 2000 for solutionsobtained with onstant visosity).In the presene of suh standing waves, and in the absene of strong wave dis-sipation, the hydrostati pressure on the sale of the standing waves (e.g. given byMihe 1944a) drives the �ow in the WBBL towards the nodes of the standing wave(Longuet-Higgins 1953), and is balaned by bottom frition. This WBBL �ow drivesan opposite �ow above, losing a seondary irulation ell. This seondary irula-tion is important for nearshore sediment transport just outside of the surf zone (Yuand Mei 2000). If these sub-wavelength irulations are to be modelled, the present
glm2z-RANS theory should be extended to resolve the momentum balane on thesale of partial standing waves.This extension is relatively simple as it only introdues additional standing waveterms in all quadrati wave-related quantities, arising from phase-ouplings of theinident and re�eted waves. This extension provides a generalization of eq. (8.98)in the presene of other proesses. For example, eq. (8.39) now beomes

SJ = g
∫

kI

kE(k)

sinh 2kD

[(
1 +R2

)
− 2R2(k) cos(2ψ′(k))

]
dk (8.99)



198 Annexe Awith R(k) the amplitude re�etion oe�ient and 2ψ′(k) is the phase of the partialstanding waves de�ned by ∇ψ′ = k and ∂ψ′/∂t = −k · UAt suh that it is zeroat the rest of the inident waves. Note that the integral is over the inident wavenumbers only (e.g. for wave propagation diretions from 0 to π). Similar expressionsare easily derived for the other wave foring terms.8.4.2 E�ets of wave non-linearityDeep or intermediate water waves do not break very often in most onditions (e.g.Banner et al. 2000, Babanin et al. 2001), thus the partiular kinematis of breakingor very steep waves likely ontributes little to the average foring of the urrent.However, most of the waves break in the surf zone and deviations from Airy wavekinematis may introdue a systemati bias when the glm2z-RANS equations areapplied in that ontext. Many wave theories have been developed that are generallymore aurate than the Airy wave theory (e.g. Dean 1970). However, they may laksome realisti features found in breaking waves, suh as sharp rests. In order toexplore the magnitude of this bias, we shall use the kinematis of two-dimensionalinipient breaking waves as given by the approximate theory of Mihe (1944b).Mihe's theory is based on the asymptoti expansion of the potential �ow fromthe triangular rest of a steady breaking wave, extending Stokes' 120◦ orner �ow to�nite depth. >From this Mihe obtained his riterion for the maximum steepnessof a steady breaking wave, i.e. h/λ = 0.14 tanh(kh) with h the breaking waveheight and λ the wavelength, whih favorably ompares with observations. TheMihe wave potential φ and streamfuntion ψ̃ are expressed impliitly as a funtion
G of the oordinates x − xc + i(z − zc), with origin on the wave rest (xc, zc).The oe�ients in the series representing the reiproal funtion G′ are obtainedfrom the boundary ondition at the surfae and bottom. Unfortunately, these areimposed only under the wave rest and trough, so that the bottom streamline maynot be horizontal away from the rest. This is partiularly true for small valuesof kh. Due to the expansion of G′ in powers of φ + iψ̃, the shape of the waveis nevertheless aurate near the rest, and sine the overall drift veloities aredominated by the orner �ow near the rest (see also Longuet-Higgins 1979), theapproximations of Mihe have little onsequene on the drift veloities. The funtion
G′ was modi�ed here to make the bottom atually �at, and the vertial under thetrough an equipotential. This deformation adds a weak rotational omponent tothe motion and the wave streamlines are weakly modi�ed at the bottom under thewave trough4. The resulting wave for kh = 0.58 (orresponding to b = 1 in Mihe4This orretion leads to negligible di�erenes ompared to the exat solution as veri�ed with



Annexe A : Equations GLM2z 1991944b) is shown in �gure 8.5.a. A numerial evaluation of that solution is obtainedat 201 equally spaed values of ψ and 401 equally spaed values of φ (�gure 8.5.b).The GLM displaement �eld ξ is omputed as desribed in setion 2.1. Sine thestreamlines are known in the frame of referene of the wave, Lagrangian positionsof 201 partiles initially plaed below the rest at xi(0) = 0, were traked over fourEulerian wave periods. The positions (xi(t), zi(t)) are given by the potential φi(t)and streamfuntion ψi. The Lagrangian period for eah partile TL
i is determinedby deteting the �rst time when the partiles pass under the rest again. TheLagrangian mean veloity of eah partile is then xi(T

L
i )/TL

i , and it orrespondsto a vertial position zi =
∫ T L

i
0 zi(t)dt. This de�nes the Lagrangian mean veloity

uL(zi) in GLM oordinates. Following the oordinate transformation in setion 2,we further transform the GLM veloity pro�le to z oordinate (�gure 8.5.). Theresulting pro�le of uL has a horizontal tangent at z = 0, as disussed by Mihe(1944b).Contrary to Mihe (1944b) who de�ned the phase speed C of his wave by im-posing a zero mass transport, we have de�ned C so that P = uL with the pseudo-momentum P estimated from eq. (7) using �nite di�erenes applied to the displae-ment �eld. The two pro�les of P, estimated from eq. (7), and uL, estimated by timeintegration of partile positions oinide almost perfetly. Thus the estimation of Pprovides a pratial method for separating the mean urrent from the wave motion.Starting from any value of C, the di�erene between uL and P is the mean urrentveloity û. Here C was orreted to have û = 0.>From ξ, Bernoulli's equation an be used to obtain the GLM of veloities andpressure. Compared to linear wave theory, the Stokes drift in a Mihe wave ismuh more sheared. It should be noted that in the noidal theory investigated byWiegel (1959) this drift veloity is depth-uniform. Thus noidal wave theories mayprodue inaurate results for 3D wave-urrent interations when extrapolated tobreaking waves. This marked di�erene in the 3D mean �ow foring due to breakingwaves ompared to linear waves alls for a deeper investigation of this question.Investigating suh kinematis, may provide a rationale for the parameterization ofnonlinearity in the glm2z-RANS equations proposed here. Suh a parameterizationis proposed by Rasle and Ardhuin (manusript in preparation for the Journal ofGeophysial Researh).
streamfuntion theory to 60th order.



200 Annexe A8.5 ConlusionWe have approximated the exat Generalized LagrangianMean (GLM) wave-averagedmomentum equations of Andrews and MIntyre (1978a), to seond order in the waveslope, allowing for strong and sheared mean urrents with limited urvature in theurrent pro�le. These approximated equations were then transformed by a hangeof the vertial oordinate, giving a non-divergent GLM �ow in z oordinates. Theresulting onservation equations for horizontal momentum (8.55) and mass (8.57),with boundary onditions (8.59)�(8.74) may be solved using slightly modi�ed ver-sions of existing primitive equations models, fored with the results of spetral wavemodels. Although the Stokes drift introdues a soure of mass at the surfae forthe quasi-Eulerian �ow, this is does not pose any partiular problem, and suh masssoure have long been introdued for the simulation of upwellings. The HYCOMmodel (Blek 2002) was modi�ed by R. Baraille to solve a simpli�ed set of thepresent equations, retaining only the wave-indued mass transport in both the massand momentum equations, and the traer equation (in whih the advetion veloityis simply uL, see also MRL04). This work was applied to the a hindast of the traje-tories of sub-surfae oil pellets released by the tanker Prestige-Nassau, whih sanko� Northwest Spain in November 2002 (presentation at the 2004 WMO-JCOMM`Oeanops' onferene held in Toulouse, Frane). The full equations derived herehave also been implemented in the oean irulation model ROMS (Shhepetkinand MWilliams 2003), and results will be reported elsewhere. The equations pre-sented here have also been applied for the modelling of the oean mixed layer inhorizontally-uniform onditions (Rasle et al. 2006).Although a general expression for the turbulent losure has been given, it has notbeen made expliit in terms of the wave and mean �ow quantities beyond a heuristilosure that ombines an eddy visosity mixing term with the known soures ofmomentum due to wave dissipation. A proper turbulent losure is left for furtherwork, possibly extending and ombining the approahes of Groeneweg and Klopman(1998), with those of Teixeira and Belher (2002). Further, some wave foringquantities have been expressed in terms of the Eulerian mean urrent u instead ofthe quasi-Eulerian mean urrent û. The onversion from one to the other, an bedone using eq. (8.24), to the order of approximation used here. However, it would bemore appropriate, in partiular for large urrent shears, to start from quasi-Eulerianwave kinematis, instead of Eulerian solutions of the kind given by Kirby and Chen(1989, our eq. 10�12).Beyond the turbulene losure, there are essentially two pratial limitations tothe approximate glm2z-RANS equations derived here. First, the expansion of wave



Annexe A : Equations GLM2z 201quantities to seond order in the surfae slope is only qualitative in the surf zone.Although this was aeptable in two dimensions (see Bowen 1969 and most of theliterature on this subjet), it is expeted to be insu�ient in three dimensions dueto a signi�ant di�erene in the pro�le of the wave-indued drift veloity P, whihexhibits a vertial variation with surfae values exeeding bottom values by a fatorof 3, even for kh < 0.2 in whih ase linear wave theory predits a depth-uniform
P. This onlusion is based on both the approximate theory of Mihe (1944b),and results of the streamfuntion theory of Dalrymple (1974) to 80th order. Suhnumerial results an be used to provide a parameterization of these e�ets. Furtherinvestigations using more realisti depitions of the kinematis of breaking waves willbe needed. Seond, the vertial pro�le of the mean urrent in the surf zone may besuh that the wave kinematis are not well desribed by the approximations usedhere. A strong nonlinearity ombined with a strong urrent shear and urvature anlead to markedly di�erent wave kinematis (e.g. da Silva and Peregrine 1988).With these aveats, the equations derived here provide a generalization of exist-ing equations, extending Smith (2006) to three dimensions and vertially shearedurrents, or MWilliams et al. (2004) to strong urrents. Of ourse, mean �owequations an be obtained, at least numerially, using any solution for the wavekinematis with the original exat GLM equations, as illustrated in setion 8.4.2.The wave-foring on the mean �ow is a vortex fore plus a modi�ed pressure, adeomposition that allows a learer understanding of the wave-urrent interations,ompared to the more traditional radiation stress form. This is most important forthe three-dimensional momentum balane and/or in the presene of strong urrents,e.g. when a rip urrent is widened by opposing waves, as observed by Ismail andWiegel (1983) in the laboratory. Suh a situation was also reently modelled by Shiet al. (2006).Aknowledgments. The orret interpretation of the vertial wave pseudo-momentum
P3 would not have been possible without the insistent questioning of John Allen.The ritiques and omments from Jaak Monbaliu and Rodolfo Bolaños helped or-ret some misinterpretation of the equations and greatly improved the present paper.N.R. aknowledges the support of a CNRS-DGA dotoral researh grant.



202 Annexe ASymbol name where de�ned1 and 2 indies of the horizontal dimensions after (8.8)
3 index of the vertial dimension after (8.8)
a wave amplitude after (8.12)

D = h+ ζ mean water depth after (8.7)
f = (f1, f2, f3) Coriolis parameter vetor (twie the rotation vetor) after (8.6)

FCC , FCS , FSC and FSS Vertial pro�le funtions after (8.12)
g aeleration due to gravity and Earth rotation after (8.7)
h depth of the bottom (bottom elevation is z = −h) before (8.8)
J Jaobian of GLM average after (8.44)

k = (k1, k2) wavenumber vetor after (8.7)
K1 Depth-integrated vertial vortex fore (8.33)
K2 Shear-indued orretion to Bernoulli head (8.29)
Kz vertial eddy visosity (8.43)
(·)l Lagrangian perturbation (8.2)
(·)

L Lagrangian mean (8.1)
m shear orretion parameter (8.20)
M depth-integrated momentum vetor (8.77)
Mw depth-integrated wave pseudo-momentum vetor (8.81)
Mm depth-integrated mean �ow momentum vetor after (8.81)
n unit normal vetor (8.63)Table 8.2: Table of symbolsSymbol name where de�ned

p full dynami pressure after (8.26)
p̃ wave-indued pressure (8.10)
pH hydrostati pressure after (8.35)

P = (P1, P2, P3) wave pseudo-momentum (8.6)
t time before (8.1)

u = (u1, u2, u3) veloity vetor
ũ wave-indued veloity (8.11) and (8.68)
uL Lagrangian mean veloity after (8.1)
uA advetion veloity for the wave ation (8.80)

ûα = uL
α − Pα quasi-Eulerian horizontal veloity before (8.24)

s = z + ξ
L

3 GLM to z transformation funtion (8.48)
(·)

S Stokes orretion (8.5)
Sij stress tensor (8.62)
SJ wave-indued kinemati pressure (8.39)

SShear shear-indued orretion to SJ (8.40)
w = u3 vertial veloity before (8.30)

ŵ = uL
3 − P3 quasi-Eulerian vertial veloity before (8.30)
W GLM vertial veloity in z oordinates (8.54)

x = (x1, x2, x3) position vetor before (8.1)Table 8.2: Table of symbols, ontinued
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Symbol name where de�ned
X diabati soure of momentum after (8.24)
X̂ diabati soure of quasi-Eulerian mean momentum (8.27)

z = x3 vertial position after (8.8)
α and β dummy indies for horizontal dimensions
δij Kroneker's symbol, zero unless i = j after (8.26)
ε generi small parameter after (8.8)
ε1 maximum wave slope after (8.7)
ε2 maximum horizontal gradient parameter after (8.7)
ε3 maximum urrent urvature parameter (8.9)

ǫijkAjBk omponent i of the vetor produt A× B after (8.6)
ζ free surfae elevation before (8.8)
λ wavelength setion 4.2
ν kinemati visosity of water after (8.62)

ξ = (ξ1, ξ2, ξ3) wave-indued displaement before (8.1)
ρw density of water (onstant) after (8.12)
σ relative radian frequeny after (8.7)
τij mean stress tensor (8.61)
ψ wave phase after (8.7)
ω absolute radian frequeny after (8.7) and (8.8)
Ω3 depth-weighted vertial vortiity of the mean �ow (8.83)
∇ horizontal gradient operator after (8.7)Table 8.2: Table of symbols, ontinued
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Thèse de Dotorat de l'Université de Bretagne OidentaleTitre : Impat des vagues sur la irula-tion oéaniqueAuteur : Niolas RasleRésumé : L'objetif de ette thèse estd'analyser l'impat des vagues sur la irula-tion oéanique. La partie vagues est séparéedu ourant moyen et les deux sont déritesdi�éremment. Divers aspets sont abordés.Dans la première partie, la dérive en surfaeest analysée à l'aide un modèle à 1 dimension,ave l'utilisation d'une paramétrisation dumélange lié au déferlement des vagues. Ilapparaît que la dérive de Stokes des vaguesdomine la dérive d'Ekman en surfae. Cettedesription apparaît ohérente ave les ordresde grandeurs des observations de dissipationd'énergie inétique turbulente, de ourantseulériens et de dérives lagrangiennes. Cepen-dant, plusieurs aspets de ette desription,l'e�et Stokes-Coriolis par exemple, n'ont pasenore été validés par des observations. Unedeuxième partie aborde l'impat des vagues surle mélange et en partiulier sur la profondeurde la ouhe de mélange. La profondeur de laouhe de mélange diurne apparaît très sensibleà l'état de mer. Une réanalyse de vagues estutilisée pour évaluer l'ordre de grandeur desparamètres importants pour e mélange, ainsique la distribution de es paramètres à l'éhelleglobale. En�n, la séparation des vagues et duourant est étudiée en zone �tière, aux abordsde la zone de déferlement, et est omparéeaux autres desriptions de la dynamique dela zone littorale et de ses abords immédiats.En partiulier, l'impat de la non-linéaritédes vagues sur les transports lagrangiens estévaluée.Mots lés : interations vagues/ourant,dérive de Stokes, mélange et dérive ensurfae

Title: Impat of waves on the oeanirulationAuthor: Niolas RasleAbstrat : The purpose of this thesis isto study the impat of waves on the oeanirulation. The wave part is separated fromthe mean urrent and both are desribeddi�erently. Many aspets are investigated. Inthe �rst part, the surfae drift is analyzedwith a one-dimensional model, with the use ofa parameterization of the mixing indued bywave breaking. It appears that the Stokes driftof the waves generally dominates the Ekmandrift at the surfae. This desription agreeswith the orders of magnitude of the observa-tions of turbulent kineti energy dissipation,of Eulerian urrents and of Lagrangian drifts.However, many aspets of this desription, theStokes-Coriolis e�et for instane, have notbeen validated yet by observations. One reasonis that one need a data set fully Eulerian orfully Lagrangian, long enough to allow the�ltering out of other proesses, with simulta-neous observations of waves. A seond partdeals with the impat of waves on the mixing,and more partiularly on the mixed layerdepth. The diurnal mixed layer shows muhsensitivity to the sea state. A waves reanalysisis used to estimate the parameters importantfor this mixing, as well as their global saledistributions. Finally, the waves / mean �owseparation is studied lose to the surf zone, andis ompared to the other desriptions of the surfzone and inner-shelf dynamis. In partiular,the impat of the waves non-linearity on theLagrangian transports is evaluated.Keywords: waves/urrent interations,Stokes drift, surfae drift and mixing


