INFLUENCE DES FLUCTUATIONS SUR L'ECHANTILLONNAGE ET LA QUANTIFICATION DANS LE SYSTEME VISUEL

Cédric Duchêne

gipsa-lab/DIS Grenoble Images Signal Parole et Automatique

Directeurs de thèse Pierre-Olivier Amblard et Steeve Zozor

gipsa-lab

Sa-) B

Les premières couches du système visuel

1 La rétine

2 Les photorécepteurs

3 Les globes oculaires

Codage au niveau du nerf optique

 \Rightarrow Variabilité neuronale (bruit)

Échantillonnage par les photorécepteurs

 \Rightarrow Irrégularité rétinienne (bruit)

Asservissement de position Orientation du regard

 \Rightarrow Déplacements aléatoires (bruit)

LA VARIABILITÉ NEURONALE

Les neurones communiquent par des séquences de potentiels d'action

Réponses neuronales sont entachées de bruit intrinsèque

IRRÉGULARITÉ RÉTINIENNE

Répartition non-uniforme et irrégulière des photorécepteurs sur la rétine

- Cônes : région fovéale (vision diurne)
- Bâtonnets : périphérie (vision nocturne)
- Absence de photorécepteurs : tâche aveugle

LES MOUVEMENTS OCULAIRES

2 catégories de mouvements oculaires

Phase de poursuite : lorsque la cible et/ou l'individu se déplace

Mouvements oculaires microscopiques sont aléatoires \Rightarrow bruit extrinsèque

Plan de l'exposé

Première partie

Influence du bruit externe

- 1 Images proches des scènes naturelles
- 2 Modèles de rétine simples
- 3 Mesure de cohérence

澎	2度に初くれたく
畫	THE HEAD IN CONTRACT OF
戀.	武徳 新聞: 新知道: 新知道:
'墨-	420 LEI 201 1
콭.	
惷	春慶七般 割行した
-	When the state of

Seconde partie

Influence du bruit interne

- 1 Problèmes de test d'hypothèses binaires
- 2 Réseau de neurones à seuils
- 3 Probabilité d'erreur

Modèle de scène

Scène naturelle¹ : processus aléatoire bi-bidimensionnel

Approximation de scène naturelle

Loi en puissance

$$\Gamma(\boldsymbol{f}) \propto \frac{1}{|\boldsymbol{f}|^{2+\kappa}}$$

avec
$$\kappa \in [-\frac{1}{2}; \frac{1}{2}]$$

Densité spectrale de puissance $\propto rac{1}{|m{f}|^3}$

Auto-corrélation

$$\begin{split} \mathcal{C}_S(\boldsymbol{u}) &= \frac{1}{\sigma_S^2} \mathsf{E}[S(\boldsymbol{x})S(\boldsymbol{x}-\boldsymbol{u})] \\ &\propto \ \ \mathrm{e}^{-\beta(\boldsymbol{u}^T\boldsymbol{u})^{1/2}} \end{split}$$

¹D.L. Ruderman *The statistics of natural images* ? Computation in Neural System, 1994 Cédric Duchêne (gipsa-lab)

- 1 Modèle à 1 seul type de photorécepteur
- 2 Bruit de grille $\epsilon_n \sim f_{\epsilon_n}$
- 3 Micro-mouvements $\boldsymbol{\xi}(t) \sim f_{\boldsymbol{\xi}}$

- 1 Modèle à 1 seul type de photorécepteur
- 2 Bruit de grille $\epsilon_n \sim f_{\epsilon_n}$
- 3 Micro-mouvements $\boldsymbol{\xi}(t) \sim f_{\boldsymbol{\xi}}$

- 1 Modèle à 1 seul type de photorécepteur
- 2 Bruit de grille $\epsilon_n \sim f_{\epsilon_n}$
- 3 Micro-mouvements $\boldsymbol{\xi}(t) \sim f_{\boldsymbol{\xi}}$

- 1 Modèle à 1 seul type de photorécepteur
- 2 Bruit de grille $\epsilon_n \sim f_{\epsilon_n}$
- 3 Micro-mouvements $\boldsymbol{\xi}(t) \sim f_{\boldsymbol{\xi}}$

- 1 Modèle à 1 seul type de photorécepteur
- 2 Bruit de grille $\epsilon_n \sim f_{\epsilon_n}$
- 3 Micro-mouvements $\boldsymbol{\xi}(t) \sim f_{\boldsymbol{\xi}}$

- 1 Modèle à 1 seul type de photorécepteur
- 2 Bruit de grille $\epsilon_n \sim f_{\epsilon_n}$
- 3 Micro-mouvements $\boldsymbol{\xi}(t) \sim f_{\boldsymbol{\xi}}$

Mesure des performances

Cohérence : corrélation instantanée entre 1 point de l'image S positionné en x et l'échantillon $S_a(x_n,t)$ du $n^{\text{ème}}$ photorécepteur

$$\mathcal{C} = \frac{\mathsf{E}[S(\boldsymbol{x})S_a(\boldsymbol{x}_n, t)]}{\left[\mathsf{E}[S(\boldsymbol{x})^2] \; \mathsf{E}[S_a(\boldsymbol{x}_n, t)^2] \;\right]^{\frac{1}{2}}}$$

Stationnarité (Homogénéité) $\Rightarrow \mathcal{C} \iff \mathcal{C}(\boldsymbol{u}, \sigma, \sigma_{\epsilon})$

 $oldsymbol{u} = oldsymbol{x} - oldsymbol{x}_n$ distance d'inter-corrélation

 σ^2 puissance des micro-mouvements

 σ_{ϵ}^2 puissance du bruit de grille

$$\mathcal{C}(\boldsymbol{u},\sigma,\sigma_{\epsilon}) = \mathcal{C}_{\boldsymbol{S}} * f_{\sigma\boldsymbol{\xi}} * a * f_{\sigma_{\epsilon}\epsilon}(\boldsymbol{u})$$

$\mathcal{C}_S * f_{\sigma\xi}$: Cas général

Pour un modèle de scène défini par $\mathcal{C}_S(m{u}) \propto \mathsf{e}^{-eta(m{u}^Tm{u})^{1/2}}$

 $\mathcal{C}(\boldsymbol{u},\sigma) \propto \mathsf{E}[S(\boldsymbol{x})S_a(\boldsymbol{x_n},t)]$

- Si u = 0 ⇒ Les micro-mouvements dégradent les performances (information déjà présente)
- Si $u \neq 0 \Rightarrow$ Amélioration possible en fonction de σ

$\mathcal{C}_S * f_{\sigma\xi}$: EXEMPLE

Densité de probabilité des fluctuations $f_{\sigma\xi}$ uniforme

Pour $u = 0 \Rightarrow$ pas d'amélioration

• Pour $u \neq 0 \Rightarrow$ amélioration de la cohérence par le bruit

- Apport d'information par les déplacements
- Le maximum de C diminue avec u
- Modèle simple \Rightarrow expression théorique de σ optimal : σ^m

$C_S * f_{\sigma\xi} * a$: Filtrage excitateur

• Pour $\boldsymbol{u} = 0 \Rightarrow \mathsf{pas} \mathsf{ d'amélioration}$

Pour u ≠ 0 ⇒ 2 cas différents
La largeur de la fenêtre α conditionne l'effet d'amélioration

$C_S * f_{\sigma\xi} * a$: Filtrage excitateur

Informations déjà présentes dans le champs visuel photorécepteur

Apport d'informations supplémentaires du voisinage de la cible

 $C_S * f_{\sigma\xi} * a * f_{\sigma_{\epsilon}\epsilon}$: Influence du bruit de grille

Sur grille irrégulière : 2 sources de bruit

$$\left. \begin{array}{c} \xi(t) & \mbox{micro-mouvements} \\ \\ \epsilon_n & \mbox{bruit de grille} \end{array} \right\} \quad \zeta(n,t) = \xi(t) + \epsilon_n \sim f_{\sigma_\zeta \zeta}$$

la somme des 2 bruits \Rightarrow bruit spatio-temporel de puissance $\sigma_{\zeta}^2 = \sigma_{\xi}^2 + \sigma_{\epsilon}^2$

$$\mathcal{C}^{i}(\boldsymbol{u},\sigma_{\xi},\sigma_{\epsilon}) \approx \mathcal{C}^{r}(\boldsymbol{u},\sqrt{\sigma_{\xi}^{2}+\sigma_{\epsilon}^{2}})$$

Conclusions : Première partie

Influence des micro-mouvements et de l'irrégularité rétinienne

Résumé de l'étude

- Modèle de scène proche des images naturelles
- Modèle de rétine à 1 dimension
- Mesure de performances locale & à l'ordre 2
- Évaluation performances par noyaux de convolution

Conclusions

- Amélioration de la cohérence par les fluctuations
- Compromis entre puissance du bruit de grille et puissance des fluctuations
- Extension des résultats en 2 dimensions (hypothèse d'isotropie)
- Rôle utile des micro-mouvements aléatoires de la vision

Plan de l'exposé

Première partie

Influence du bruit externe

- 1 Images proches des scènes naturelles
- 2 Modèles de rétine simples
- 3 Mesure de cohérence

澎	2度に初くれたく
畫	THE HEAD IN CONTRACT OF
戀.	武徳 新聞: 新知道: 新知道:
'墨-	420 LEI 201 1
콭.	
惷	春慶七般 割行した
-	When the state of

Seconde partie

Influence du bruit interne

- 1 Problèmes de test d'hypothèses binaires
- 2 Réseau de neurones à seuils
- 3 Probabilité d'erreur

DÉTECTION : TÂCHE COGNITIVE PARTICULIÈRE

Observations indépendantes et identiquement distribuées $m{x} = \{x_i\}_{i=1}^N$

$$\begin{cases} H_0 (\pi_0) &: \boldsymbol{x} \sim f_0 \\ H_1 (\pi_1) &: \boldsymbol{x} \sim f_1 \end{cases}$$

■ Solutions optimales : Neyman Pearson, Bayes, etc... Détecteur idéal ⇒ Test du rapport de vraisemblance

$$\Lambda(oldsymbol{x}) = \log l(oldsymbol{x}) = \sum_{i=1}^{N} \log l(x_i) egin{array}{c} H_1 \ lpha \ H_1 \ H_0 \end{array} \eta$$

Transformée non linéaire $l = f_1/f_0$ des observations x

Solutions sous-optimales :

- **Quand** f_0 et f_1 ne sont pas connues
- $\blacksquare \ \ Quand \ l \ difficile \ \ a \ calculer$

Structure de détecteur identique au détecteur optimal

DÉTECTION : TÂCHE COGNITIVE PARTICULIÈRE

Observations indépendantes et identiquement distribuées $m{x} = \{x_i\}_{i=1}^N$

$$\begin{cases} H_0 (\pi_0) &: \boldsymbol{x} \sim f_0 \\ H_1 (\pi_1) &: \boldsymbol{x} \sim f_1 \end{cases}$$

■ Solutions optimales : Neyman Pearson, Bayes, etc... Détecteur idéal ⇒ Test du rapport de vraisemblance

$$\Lambda(oldsymbol{x}) = \log l(oldsymbol{x}) = \sum_{i=1}^{N} \log l(x_i) egin{array}{c} H_1 \ \gtrless \ H_0 \end{array} \eta$$

Transformée non linéaire $l = f_1/f_0$ des observations $oldsymbol{x}$

■ Solutions sous-optimales :

$$\boldsymbol{x} \longrightarrow G(x_i) \longrightarrow (\Sigma_i) \longrightarrow y \stackrel{H_1}{\underset{H_0}{\gtrless}} \boldsymbol{y}$$

Détecteur : transformation non-linéaire des observations \boldsymbol{x} Réseau de neurones de type *pooling*

 \Rightarrow Modèle simple de neurones :

- 1 Non-linéarité : seuil
- 2 Variabilité neuronale : bruit

Détecteur : transformation non-linéaire des observations ${\boldsymbol x}$ Réseau de neurones de type *pooling* à seuils

- \Rightarrow Modèle simple de neurones :
- 1 Non-linéarité : seuil
- 2 Variabilité neuronale : bruit

Détecteur : transformation non-linéaire des observations xRéseau de neurones de type *pooling* à seuils \Leftrightarrow Quantifieur²

 \Rightarrow Modèle simple de neurones :

- 1 Non-linéarité : seuil
- 2 Variabilité neuronale : bruit

²S.A. Kassam, B. Picinbono & P.Duvaut, H.V. Poor, etc ...

Cédric Duchêne (gipsa-lab)

Détecteur : transformation non-linéaire des observations xRéseau de neurones de type *pooling* à seuils bruités²

 \Rightarrow Modèle simple de neurones :

- 1 Non-linéarité : seuil
- 2 Variabilité neuronale : bruit

²N.G. Stocks *Information transmission in parallel threshold arrays* Phys. Rev. E, 2001 Cédric Duchêne (gipsa-lab) 17 / 25

Détecteur : transformation non-linéaire des observations xRéseau de neurones de type *pooling* à seuils bruités \Leftrightarrow Quantifieur stochastique

 \Rightarrow Modèle simple de neurones :

- 1 Non-linéarité : seuil
- 2 Variabilité neuronale : bruit

 \Rightarrow Problèmes de détection par quantifieurs stochastiques

Probabilité d'erreur

Probabilité d'erreur d'un quantifieur déterministe
Pour Q(t, q) le test est fondé sur

$$T_Q(oldsymbol{x}) = \sum_{i=1}^N Q(x_i) \gtrless \eta$$
 $T_Q \sim$ loi multinomiale

Probabilité d'erreur P_e

$$P_{e} = \pi_{0} P_{f} + \pi_{1} (1 - P_{d})$$

= $\pi_{0} \Pr \left[T_{Q}(\boldsymbol{x}) > \eta | H_{0} \right] + \pi_{1} \left(1 - \Pr \left[T_{Q}(\boldsymbol{x}) > \eta | H_{1} \right] \right)$

Probabilité d'erreur d'un quantifieur stochastique
Pour Q(t, q) le test est fondé sur

$$T_{\widetilde{Q}}(\boldsymbol{x}) = \sum_{i=1}^{N} \widetilde{Q}(x_i) \gtrless \eta$$

or $T_{\widetilde{O}}$ n'est pas multinomiale

 \Rightarrow Estimation de \widetilde{P}_e par méthode Monte-Carlo

DÉTECTION DE CONSTANTE

Problème de détection symétrique (canal laplacien)

$$\begin{cases} H_0: x_i = \xi_i - s &, x_i \sim f_0(x) = f_{\xi}(x+s) \\ H_1: x_i = \xi_i + s &, x_i \sim f_1(x) = f_{\xi}(x-s) \end{cases}$$

Bruit de seuils : moyenne α + fluctuations $\tau_k \sim U(0, \sigma)$ \Rightarrow Seuils bruités = seuils + $(\alpha + \tau_k) = (\text{seuils} + \alpha) + \tau_k$ Détecteur "correct" si centré en 0

En A : mauvaise position du quantifieur \Rightarrow bruit dégrade Cédric Duchêne (gipsa-lab)

DÉTECTION DE CONSTANTE

Problème de détection symétrique (canal laplacien)

$$\begin{cases} H_0: x_i = \xi_i - s &, x_i \sim f_0(x) = f_{\xi}(x+s) \\ H_1: x_i = \xi_i + s &, x_i \sim f_1(x) = f_{\xi}(x-s) \end{cases}$$

Bruit de seuils : moyenne α + fluctuations $\tau_k \sim U(0, \sigma)$ \Rightarrow Seuils bruités = seuils + $(\alpha + \tau_k) = (\text{seuils} + \alpha) + \tau_k$ Détecteur "correct" si centré en 0

En B : mauvaise position du quantifieur \Rightarrow bruit améliore

Cédric Duchêne (gipsa-lab)

DÉTECTION DE CONSTANTE

Problème de détection symétrique (canal laplacien)

$$\begin{cases} H_0: x_i = \xi_i - s &, x_i \sim f_0(x) = f_{\xi}(x+s) \\ H_1: x_i = \xi_i + s &, x_i \sim f_1(x) = f_{\xi}(x-s) \end{cases}$$

Bruit de seuils : moyenne α + fluctuations $\tau_k \sim U(0, \sigma)$ \Rightarrow Seuils bruités = seuils + $(\alpha + \tau_k) = (\text{seuils} + \alpha) + \tau_k$

Détecteur "correct" si centré en 0

 $\label{eq:EnC} \mbox{En C}: \mbox{Bruit de seuil} \Rightarrow \mbox{correction stochastique en recentrant le quantifieur} \\ \mbox{Cédric Duchêne (gipsa-lab)}$

INFLUENCE VARIABILITÉ TEMPORELLE

Quantifieur tiré pour chaque échantillon x_i

 $\Rightarrow N$ quantifieurs pour réaliser le test

Phénomène de correction stochastique amélioré par variabilité temporelle ⇒ Diversité de traitement

INFLUENCE DE LA DENSITÉ DE BRUIT DE SEUIL

Bruit de seuils $\sim \mathcal{B}_{a,\sigma}$ forme : a moyenne : $2\sigma(2a+1)^{1/2}$

Quand *a* augmente σ_{opt} diminue (moyenne augmente)

- **Expérimentalement** σ_{opt} se comporte en $a^{-1/2}$
- Correction idéale : moyenne égale à 1

INFLUENCE DES AUTRES PARAMÈTRES

1 La taille M du quantifieur

2 La densité du bruit de canal

Quand la taille ${\cal M}$ augmente

- σ_{opt} augmente
- $P_e(\sigma_{opt})$ diminue
- \Rightarrow compromis puissance/performances
- f_{ξ} gaussienne généralisée

$$f_{\xi}(u) \propto \mathrm{e}^{-A(p)\left|\frac{u}{\sigma}\right|^{p}}$$

 \Rightarrow robustesse / variations de canal

 σ_{opt} identique

Conclusions : Deuxième partie

Influence du bruit interne en détection (variabilité neuronale)

Quantification stochastique

- Bruit de seuils peut corriger position du quantifieur ⇒ correction stochastique
- Variabilité temporelle des fluctuations apporte de la diversité ⇒ amélioration des performances
- Schéma de détection robuste si détecteur intrinsèquement bruité

Réseaux de neurones

- Modélisation simple de réseaux de neurones par des quantifieurs
- Correction stochastique dans un réseau à seuils
- Influence bénéfique des fluctuations internes

Conclusions générales & Perspectives

2 études sur l'influence du bruit dans le système visuel

⇒ EFFETS BENEFIQUES DU BRUIT

1 Bruit extrinsèque – micro-mouvements aléatoires

- **a** amélioration de la cohérence par le bruit influence de κ (facteur de scène), stationnarité du bruit, non-linéarité, etc ...
- établissement d'une mesure globale supérieure à ordre 2, extension à plusieurs photorécepteurs
- vérifications expérimentales par mesure des micro-mouvements des yeux
- liens avec les phénomènes d'hyperacuité fovéale et périphérique

2 Bruit intrinsèque – variabilité neuronale

- amélioration de la probabilité d'erreur de détection par le bruit problèmes de discrimination multiple, estimation
- influence de différents paramètres : bruits de seuils corrélés, couplage entre neurones, processus ponctuels
- confrontation expérimentale (domaine des neurosciences et de la biologie)

INFLUENCE DES FLUCTUATIONS SUR L'ECHANTILLONNAGE ET LA QUANTIFICATION DANS LE SYSTEME VISUEL

Cédric Duchêne

gipsa-lab/DIS Grenoble Images Signal Parole et Automatique

Directeurs de thèse Pierre-Olivier Amblard et Steeve Zozor

gipsa-lab

Sa-) B

