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1. INTRODUCTION

Striking photographs of artificial arrangements of a few xenon atoms (Eigler and

Schweizer, 1990) and studies of single Rydberg atoms (Goy et al., 1983) recently illustrated

the ability of physicists to deal with individual elementary constituents of matter. The

trapping of single electrons with electronic and magnetic fields (Van Dyck et al., 1986) had

demonstrated before that electrons could also be isolated in vaccuum chambers. In the

present work, single electrons are manipulated one by one in the solid state. The metallic

circuits we have fabricated are the first genuine"electronic" devices, in the sense that they

deal with single electrons at the macroscopic level. They are based on the combination

of two well-known ingredients: the quantum tunneling effect and classical electrostatics.

Spectacular consequences of such a combination were predicted in 1984 and 1986 (Zorin

and Likharev, 1984; Averin and Likharev, 1986): firstly, the tunneling of electrons through

a small-capacitance tunnel junction should be suppressed at low temperatures and low

voltages because tunneling of a single electron would increase by too large an amount

the electrostatic energy of the junction. These authors called this effect the Coulomb

blockade of tunneling. Secondly, they predicted the existence of voltage oscillations across

a current biased small-capacitance junction. Despite substantial experimental efforts, the

Coulomb blockade of tunneling had never been clearly observed in circuits containing only

one junction before our work. The reason for this failure is that, in practice, the biasing

circuit cannot be made perfect enough to forbid quantum fluctuations of the junction

capacitor charge larger than the electron charge e. The starting point of our work is a

thorough understanding of how these fluctuations suppress the Coulomb blockade. From

this understanding a different approach of the problem emerged. The key concept lies in

the fact that the charge on an isolated piece of metal ("island") must correspond to an

integer number of electron charges. This quantization of the macroscopic charge results in

the quenching of the charge fluctuations and thus leads to Coulomb blockade.

To see this, let us start from the beginning and examine what happens when a battery

charges a capacitor. The charge Q on the surface of the metal electrodes of the capacitor

arises from the very small displacement of the electrons with respect to the fixed metal ions.
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The variable Q is therefore continuous, and is not constrained to be an integer number

of elementary charges e. However, if one opens a switch placed between the capacitor and

the battery, a metallic island is created. Just as an isolated ion carries a well defined

number of electrons, the charge of this island, disconnected from any charge reservoir,

corresponds to an integer number of electrons which remains constant. An intermediate

situation is achieved when the switch is replaced by a tunnel junction (see Fig. 1.1) with

high tunnel resistance RT. We have called this circuit a "single electron box" (see Fig. 1.2).

In the single electron box, electrons are able to tunnel in and out of the island through the

junction. The charge which tunnels through the junction can only be an integer number of

electron charges. The instantaneous charge of the island, in units of e, is thus constrained

to be an integer number n. IT one wishes to control this number, its thermal fluctuations

have to be suppressed. This is achieved by lowering the temperature until the typical

energy kBT of the fluctuations is much lower than the energy e2/2(C + Cs) required

to charge the island with one electron (C and Cs are the capacitances of the junction

and of the capacitor, respectively). Under this condition, the number of electrons in the

island will anchor itself to the integer nmin which minimizes the electrostatic energy of

the whole circuit. In fact, in addition to being subject to thermally induced fluctuations,

n is also subject to quantum fluctuations. However, these fluctuations are negligible if

RT ~ RK, where RK = hie2 ~ 25.8 kO is the resistance quantum. In practice, the

conditions needed to observe the anchoring phenomenon can be achieved by fabricating

circuits with tunnel junctions with RT ~ 100 kO and areas of the order of (100 nm)2, which

results in capacitances below 1 fF. The capacitance Cs can be made smaller than 1 fF by

designing a micron size island and avoiding large metallic islands in the neighbourhood.

With capacitances of this magnitude, the condition e2/2(C + Cs) ~ kBT is satisfied at

dilution refrigerator temperatures (T ~ 50 mK).
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(a)

(b)

Fig. 1.1 (a) Tunnel Junction: a tunnel Junction consists of two pieces of

metal separated by a thin insulating layer. This insulator is a tunnel barrier

for electrons. The current I(t) through such a tunnel Junction is proportional

to the voltage applied to it (provided the voltage is much lower than the Fermi

energies of the metals). The ratio between the voltage and the current defines

the "tunnel resistance" R T of the Junction. It is generally believed (A verin

and Likharev, 1986) that zf RT is much larger that the quantum of resistance

R K = hie2 :::: 25.8 kf], the electrons are localized on either side of the junction

tunnel barrier. The electrons tunnel through the barrier as separate entities,

and this quantum mechanical process occurs in less than 10-15 s. The current

through such a tunnel Junction as a function of time (b) is then composed of

peaks of area e, each one corresponding to the tunneling of a single electron

through the tunnel barrier (Fig. 1.1). The time between peaks is a random

variable whose average value determines the value of the current. The current

noise resulting from this Poisson process is called shot noise; its spectrum at

low enough temperature (kBT ~ eRTI) is given by B[(w) = eI. While this

spectrum was measured as early as 1922, the individual peaks have never been

observed.
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n

Fig. 1.2 Single electron box. This basic circuit contains a metallic "island",

which is the electrode between the dielectric of the capacitor and the insulat

ing layer of the junction. The number n of extra electrons on the island is

controlled by a voltage source U. The island capacitance is the sum of the

junction capacitance C and of the capacitance Cgo RT is the junction tunnel

resistance.

ORGANIZATION OF THIS WORK

In chapter 2, we examine how the circuit connected to a small-capacitance tunnel

junction influences the tunneling rate of electrons. We show that the tunneling through

one junction can be blocked only if the junction is placed in an environment with a high

impedance, such as the one provided by i) a small capacitor, ii) another small junction or

iii) a very large ohmic resistance (compared to RK). We show that the simplest way to

observe Coulomb blockade of tunneling is in circuits containing a metallic island, such as

the electron box and, more generally, in circuits with several junctions connected in series.

The case of a large resistor is the most difficult to implement experimentally (Cleland et

al., 1990).

The experimental setup, including our filtering and measurement techniques, is pre

sented in chapter 3, together with the computer programs we have used to calculate planar

capacitances and to simulate the behaviour of one-dimensional arrays of junctions. We also

describe the nanolithography techniques that we used to fabricate the devices.
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We describe in chapter 4 the experiment on the electron box, which is the first device

containing only one junction to display the Coulomb blockade of tunneling. Furthermore,

in this device, we controlled the charge of an island at the level of the single electron charge

by applying a capacitively-coupled gate voltage.

At this point, the question naturally arises whether one can also control a current elec

tron by electron. We have designed and operated two devices which achieve this controlled

transfer: the" turnstile" and the "pump". Here the transfer is clocked by external signals

applied to gates. This is the central subject of chapter 5. At the end of this chapter, appli

cations of pumps and turnstiles to metrology are discussed: circuits manipulating charges

in the quantum limit are candidates for a new representation of the ampere, in the same

way as Josephson junction arrays provide a representation of the volt and quantum Hall

samples a representation of the ohm. The limits in precision of present day single-electron

devices are discussed: the most serious source of error to the regular transfer of single

electrons is the possibility of simultaneous tunneling through several junctions. This is

discussed in appendix 3.

Two papers are included in appendices 4 and 5. Paper 1 (ref. Devoret et al., 1990a)

deals with the influence of the electromagnetic environment on the tunneling rate through a

tunnel junction. It gives the extension of the calculation of chapter 2 to finite temperatures.

The results of paper 1 were developed in later publications (Devoret et al., 1990bj Grabert

et al., 1991a&b). Paper 2 describes the first device with which we transferred electrons one

by one: a "turnstile", that we operated in collaboration with Geerligs, Anderegg, Holweg

and Mooij of T.U. Delft (Geerligs et al., 1990a). This complements chapter 5, where the

experimental results were obtained using a different sample. The turnstile and the pump

have also been discussed in other publications (Anderegg et al., 1990; Devoret et al., 1991j

Pothier et al., 1991a&bj Urbina et al., 1991a&b).
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2. LOCAL VERSUS GLOBAL RULES:

EFFECT OF THE ELECTROMAGNETIC ENVIRONMENT

ON THE TUNNELING RATE OF A SMALL TUNNEL JUNCTION

The environment of a tunnel junction determines the Coulomb blockade of tunneling

through it. The understanding of the role of the environment is essential for the design of

circuits using the Coulomb blockade of tunneling and for the simulation of their behaviour.

The calculations of this chapter show that the tunnel rates in the circuit we designed are

given by a simple expression, known as the" global rule". They are used in the SETCAD

program presented in section 2.2.2 and are the basis for the chapters 4 and 5.

Historically, the Coulomb blockade of tunneling through a tunnel junction placed in

a circuit was described using two simplified approaches. The first one was to assume that,

since tunneling occurs fast, only the part of the circuit which is very close to the junction

determines the blockade (Likharev and Zorin, 1985): the rest of the circuit" does not have

time" to be involved. The radius around the junction which participates was called the

"electromagnetic horizon". This radius was thought by some to be determined by the

speed of light and the traversal time of tunneling (Biittiker and Landauer, 1986). For

others, it was thought to be the distance associated with a "quantum time" hit1E, where

t1E is the thermal energy kBT or eV (Delsing et al., 1989; Nazarov, 1989). Whatever

it may be, a local energy change of the system therefore determines the blockade: this

gives the local rule (Geigenmiiller and Schon, 1989). The second way is to consider the

junction and the circuit as a whole coherent unit, and the blockade of tunneling through

the junction depends on the energy change of the whole circuit when one electron tunnels:

this is the global rule (Geigenmiiller and Schon, 1989; Likharev et al., 1989).

Cleland et al. (1990) first approached the solution of the problem by considering

the quantum fluctuations of the junction capacitor charge due to the electromagnetic

environment of the junction. Using a semiclassical picture of tunneling across a junction

whose capacitor charge is fluctuating, they found that Coulomb blockade only occurs when

the quantum fluctuations of the junction charge are much less than one electron charge.

Here, we present a calculation of the single electron tunneling rate through a junction
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connected to an environment of impedance Z(w) in the limit ofzero traversal time (the case

of finite traversal time, which is relevant in semiconductor circuits with Schottky barriers,

has been considered by Nazarov (1991)). We treat the environment and the electronic

degrees of freedom quantum mechanically, and use the Fermi Golden rule to compute

the probability that an electron tunnels and induces an excitation of the environment.

These inelastic tunneling channels are the dominant ones only if the fluctuations of the

junction charge are much below e. Coulomb blockade occurs when the elastic channel has

a vanishing probability: tunneling can then only occur at a bias voltage V large enough

to provide an energy eV sufficient to excite the environmental modes. We will finally see

in this chapter that although their derivations were not correct, the local and global rules

do correspond to two limiting cases of this more general theory taking into account the

influence of the environment of the junction.

We first present the general formalism to describe the environment (2.1) and distin

guish two types of environment: low-pass and high-pass. For both, we give the hamiltonian

of the circuit (2.2.1 and 2.3.1) and calculate the tunneling rate (2.2.2 and 2.3.2) as a func

tion of the impedance of the environment. In the case of a single mode environment, the

probabilities of the different channels can be explicitely written down, and the rate has a

transparent expression (2.2.2.1). Finally, we conclude on the observability of the Coulomb

blockade of tunneling in the low-pass and high-pass cases (2.1.3 and 2.2.3) and summarize

the different expressions of the rate (2.4).

2.1. DESCRIPTION OF THE DEGREES OF FREEDOM OF THE CIRCUIT

The circuit embedding the junction consists of the biasing circuits and possibly of

other junctions. Since we compute the single electron tunneling rate at the second order in

the tunneling hamiltonian, the other junctions can be treated as pure capacitors. Higher

order processes ("co-tunneling") are considered in appendix 3. The external circuit is thus

an electrical dipole described by a voltage source V is series with an impedance Z(w) (see

Fig. 2.1). We call the environmental mode those of the circuit consisting of the junction

capacitance in parallel with Z(w). These modes constitute a set of harmonic oscillators.
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l(W) 1-----,

Fig. 2.1 Small tunnel [unction in a linear circuit. Usinq Theuenin's theorem,

the electromaqnetic enoironment of the [unction reduces to an impedance Z(w)

in series wz'th a voltage source V.

(a)

~ Rr

(b)

c

Fig. 2.2 A tunnel junction (a) is symbolz'zed by a double box. It consists of

two basic electrical elements (b): a pure tunnel element of tunnel resistance

RT (symbolized by a double T) and a capacitance C.
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The electronic degrees of freedom in the junction electrodes, described by quasiparticle

states populated according to a Fermi distribution, are assumed to be entirely decoupled,

in absence of tunneling, from the electromagnetic degrees of freedom.

2.1.1. Description of the tunnel junction

The tunnel junction is modelled by a capacitor in parallel with a pure tunnel element

(Fig. 2.2): the capacitance is the geometrical capacitance between the two electrodes of the

junction (denoted in what follows as "left" and" right"), and the pure tunnel element has

a tunnel resistance R T • In the one dimensional model of the tunnel junction, the matrix

element t associated with the tunneling through the barrier is related to RT by

(2.1.1)

where PL and PR are the densities of states at the Fermi level on the left and right elec

trodes, and R K = hje2 is the quantum of resistance (Cohen et al., 1962). We assume that

the matrix element t is independent of the energy of the incident quasiparticle. This ap

proximation accounts for the linear dependence of the current as a function of the applied

voltage in metallic junctions. We will make use of this model in what follows.

2.1.2. The low-pass and high-pass environments

We distinguish two different types of environment differing in the behaviour of their

impedance at zero frequency: we call them "low-pass" and "high-pass".

If Z(w) does not diverge near w = 0, there is no capacitance (either a pure capacitor

or another junction) in series with the junction: the junction is not connected to an island

in the sense described in chapter 1, and tunneling is not expected to be blocked if the

circuit always remains in thermal equilibrium. A blockade of tunneling could only result

from the dynamics of the environment. In the following, we call an environment which

satisfies

lim wZ(w) = 0
w-+O

a "low-pass environment". In particular, if Z(w) = 0 for all frequencies, the charge on the

9



lim W 2(w) = _._1_
w-o JCext

limWZlw)=o
w-o

\
:-DexI '-----~;.:,;;,,;..;;.;.J

~
• x 2Zf(w)

Cext + C

(a)

2P(w)= 1
,C.C ext -1
J

C
C W+2 o(W)

+ ext

(b)

Fig. 2.3 The circuit seen by the pure tunnel element can be of two types:

(a) low-pass: the circuit conducts at de. It is then equivalent to the impedance

Zt (w) (defined as the parallel combination of the [unction capacitance C and

the impedance Z(w)) in series with a voltage source V.

(b) high-pass: the circuit does not conduct at de. One electrode of the tun

nel function thus forms an island of capacitance C + Cext. The rest of the

environment acts as a reduced voltage source K,V and an impedance K,2Z~(w)

where K, = Cext/ (C + Cext).
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junction does not change after a tunnel event because it is always equal to q = CV: there

is no Coulomb blockade of tunneling in a perfectly voltage biased junction.

The opposite limit, where Z(w) is infinite at all frequencies, corresponds to an ideal

current bias. This case was treated by Likharev: he predicted the Coulomb blockade of

tunneling. If Z(w) diverges only at w = 0, which we call a "high-pass environment", the

electrons tunneling through the junction charge an island: we showed in section 1.3 that

the charge doesn't fluctuate thermally (if kBT « e2 / 2C) or quantum mechanically (if

RT >> RK ) on this island except for particular values of the voltage bias, and tunneling

is expected to be blocked even when the junction is in thermal equilibrium. Therefore, the

low-pass and the high-pass cases will be treated separately.

2.1.3. The electromagnetic environment of the pure tunnel element

Using Thevenin's and Norton's theorems, we reduce the circuit connected to the

pure tunnel element by an effective impedance Zef/(w) in series with an effective volt

age source VelI.

If the impedance Z (w) is such that

lim wZ(w) = 0,
w-+O

(low-pass environment) this effective impedance is

Zell(w) = Zt(w) = (jCw + l/Z(W))-l

and the effective voltage source is Veil = V (Fig. 2.3a).

If, on the contrary, the impedance Z(w) is such that

lim wZ(w) i= 0,
w-+O

(high-pass environment) we define a capacitance Cez t by

l/(jCez t ) = lim wZ(w)
w-+O

and an impedance Zo(w) = Z(w) - l/(jCez t w). Then

11
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Fig. 2.4 Decomposition of a low pass environment impedance Zt(w) into an

infinite collection of LC oscillators.

Fig. 2.5 Quantum mechanical operators used in the hamiltonian description

of the environment of the pure tunnel element: (Pm is the flux in the inductor

Lm , Qm is the charge on the capacitor Cm . The voltage source is modelled by

an infinite capacitor c,, charged by Qx.

12



where

Z~(W) = (jCCCext W+ 1/Z0(W))-1
+ Cext

and", = Cext/(C+Cext) (see Fig. 2.3b). The voltage source is also reduced into VelI = ",V.

The impedance Zt(w) or ZP(w) has no poles at w = 0 or w = 00. Since it is the Fourier

transform of a causal response function, and since the function

z(w) = Zt(w) - lim (Zt(w))
w-+O

is a complex function of the real variable w, the function z(p), where the complex variable

p replaces w, is analytical and regular in the half plane where Im(p) ~ 0 (see Abragam,

1961). Therefore,

z(w) = lim (z(w + if)) .
£-+0-

When modellizing an impedance, it must be taken care that this latter relation, equivalent

to the Kramers-Kronlg relations, is satisfied. For example, the correct expression for the

impedance of a parallel LC circuit is:

The real part of the impedance Zt(w), properly written to satisfy the Kramers-Kronig

relations, defines completely the impedance, and can be written as:

Re (Zt(w)) = lim (f= 3!-o(w - m~w)) ,
.6.w-+O c;

m=1

where the parameters Cm are real. Note that there is no term at m = 0 because Zt(w)

has no pole at w = O. Since Re (Zt(w)) is an even function, it can also be written as:

Re (Zt(w)) = lim (f= C1I" (o(w - wm) - o(w +Wm))) ,
.6.w-+O 2 m

m=1

(2.1.4)

where W m = m~w. Each term of the sum is the real part of the impedance of a parallel

LC circuit of capacitance Cm and inductance Lm = (CmW~) -I . Therefore, Zt(w) can be

treated as an infinte collection of LC oscillators (see Fig. 2.4).
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2.2. LOW-PASS ENVmONMENT

2.2.1. The hamiltonian of the circuit

We make the hypothesis that in absence of tunneling the circuit can be described by

two independent types of degrees of freedom: the quasiparticle operators in both junction

electrodes ("left" and "right", corresponding respectively to the bottom and top electrodes

of Fig. 2.5). Quasiparticle states are supposed to be populated according to Fermi dis

tributions in both electrodes. We call J.LL and J.LR the electrochemical potentials of both

electrodes. In order to describe the junction in its electromagnetic environment, we define

a flux ~(t):

The voltage source is described by a huge capacitor Ox charged with Q~ through a

very large inductance Lx placed in parallel with CX, such that

lim Q~ = v.
ox-+oo Ox

When nt quasiparticles have tunneled from the right to the left (from the top to the bottom

in Fig. 2.5), the charge of this capacitor is Qx = Q~ - nte.

We call Q~(t) = - s: ~m(t')/Lm dt' the charge that went through the inductor

L m, the current ~m/L m being the current in inductor L m from the left to the right in

Fig. 2.5. Then Q~ = Qm + nte. Since Q~ = -~m/L m , the electromagnetic part of the

circuit can be described in Hamilton's formalism with the variables ~m and Q~. It is

obtained by summing the electric and magnetic energies stored in all the capacitors and

inductances of the circuit. It reads:

This hamiltonian accounts for the classical equations of the circuit:

. 8H Qm
e., = 8Qt = oj

m m

14



Q
· t _ 8H _ ~m

m - - 8~m - - L
m

.

The flux ~x through Lx is conjugated to Q&. The fluxes ~m and the flux ~x are

related to the flux through the tunnel element by:

~ = L~m+~x
m

(2.2.1)

The conjugated variables ~m and Q:" are in a quantum treatement of the circuit

conjugated operators, and their commutator is

The hamiltonian of the circuit reads then:

Hem = L (~m + (Q:" - nte)2) + (Q& - nte)2
2Lm 20m 20x

m

(2.2.2)

With the sign conventions chosen for the charges and the currents, fluxes are position

like operators and charges are momentum-like operators: in particular,

e., = vh~m (cm+ ctn)

Q~ = J2;m (cm~ ctn )

(2.2.3)

(2.2.4)

where Cm is the bosonic annihilation operator of a photon in the harmonic oscillator m.

Quasiparticles are described by the hamiltonian:

H qp = L fkLnkL +L fkRnkR
kL kR

(2.2.5)

where kt. indexes states in the left electrode and kR in the right electrode; nkL = at akL;

nkR = alR akR where at and akL are the fermionic quasiparticle creation and annihilation

operators in the left electrode, alR and akR in the right one; fkR and fk L denote the

kinetic energies of quasiparticle states kR and kL • The number of quasiparticles nt that

went through the tunnel element is related to the total numbers nt. = EkL at akL and

n u = E kR alR akR of quasiparticles in the left and right electrodes:

15



The tunneling hamiltonian is written in the usual way (Cohen et al., 1962):

tt, = L tat akR + h.c.
L,R

The relation between t and RT is given by (2.1.1). The total hamiltonian is:

H = Hqp +Hem + H t .

(2.2.6)

( 2.2J)

In this hamiltonian, quasiparticles are charged: the number nt of quasiparticles which

have tunneled through the tunnel element interact with the charges of all the capacitors

of the circuit. This is no longer the case in the base deduced from the former one by the

unitary transformation defined by the operator U = ei en t <1J / \ where a wave function I\II)

transforms into I\II)' = U I\II) , and where the hamiltonian is deduced from the former one

by:

H -+ UHU- 1
•

This unitary transformation transforms Hem into

(2.2.8)

where Q~ must now be interpreted as the charge of the junction in the former basis:

and Q~ as the charge of the capacitor Ox in the former basis. Therefore, in what follows,

we will write Qm for Q~ and Qx for Q&.

Hqp remains unchanged in the unitary transformation:

The unitary transformation transforms H, into

HT = L tat akRexp (ie~/1i) + h.c.
L,R

16

(2,'2.9)



The effect of the hamiltonian HT is to "kick" the electromagnetic environment states:

according to relation (2.2.1), the operator exp(ie~/h) shifts the charge the charge of each

oscillator and the charge Q~ on the "source" capacitor ex by -e. These shifts can possibly

excite the electromagnetic degrees of freedom.

We assume that the environment is in its ground state IG) /Qx) before each tunnel

event (or is in thermodynamic equilibrium at finite temperature, see 2.2.2.4). This is only

valid if the characteristic relaxation time of the environment r is much shorter than the

time between tunnel events e]I, where I is the de current through the tunnel element.

Since the current I is at most V / RT, this condition reads

After a tunnel event from the left electrode to the right electrode, the environment is in a

state described by:

IN) IQx - e) = I N 1 N2 ... Nm ... ) IQx - e)

The initial and final quasiparticle states are denoted by:

II >=1 ... k L - 1 kL k L+1 ... >1 ... k R - 1 kR +1 ... >

and

11 >=/ ... kL - 1 k L+1 ... >1 ... kR - 1 kR kR +1 ... >

The complete initial and final states of the system are of the form:

Ii >=1 I >1 G> IQx);

1f >=11 >1 N > IQx - e)

We compute the probability per unit time that an electron tunnels from left to right by

using Fermi's Golden Rule

P
'
-+ r = L 2; 1< i 1HT If >1 2 6(Ei - EI)

i,1

17
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Fig. 2.6 Tunnel junction biased by a voltage source V through an inductor L.

The circuit seen by the tunnel element is the parallel combination Zt{w) of

the capacitance C of the junction and of the impedance L.

All the oscillators are in their ground state before the tunnel event. The conservation

of energy forbids transition to states where the energy of the environmental state is higher

than eV. The total tunnel probability is therefore reduced by the existence of this excited

states. This contributes to the Coulomb blockade of tunneling. The calculation at zero

temperature is done in detail in the following section; the finite temperature is developed

in paper 1.

2.2.2. Tunneling rate calculation

2.2.2.1. The basic calculation: one junction in series with an inductance at zero tempera

ture

Let us consider the circuit of Fig. 2.6, where the environment reduces to an inductance

L and a voltage source V. Following section 2.1,

jLw 11'"

Zt(w) = 1 _ LCw2 + 2C (6(w - wd - 6(w + wd)

The circuit has only one mode, of pulsation WI = (LC)-1/2. The system state is given by

18



the number N of photons in this mode, by the charge Qx on the capacitor modelling the

voltage source, and by the quasiparticle occupation numbers. The initial oscillator state

is 10> and all quasiparticle states below the Fermi energy are occupied in both electrodes.

Since ~ = ~ 1 + ~x, and since ~ 1 acts only on the oscillator state and ~x only on the

charge on the source capacitor Qx,

exp(ie~/n)10) IQx) = exp(ie~d 10) exp(ie~x) IQx)

Since

where

with

+00 eJr)N
exp(ie~dn) 10 >= exp(-r/2) Eo l~ IN) (2.2.11)

z=~,
the oscillator has a probability of absorbing any number of photons (Fig. 2.7). The prob

ability of absorbing N photons is given by

The projection of the translated ground state wave function onto the wave functions of the

oscillator states with N photons is therefore determined by r. If r ~ 1, the dominant com

ponent of the translated state is the ground state itself; if r ~ 1, the dominant component

of the translated state are the states with energy near e2/2C.

The oscillator energy in the state IN) is (N +1/2) nwl; in the ground state, it is nwd2.

Since

exp(ie~x) IQx) = IQx - e)

the final source energy is (Qx - e)2 /2Cx and the initial same energy is Q5e/2Cx. We now

take the limit where Qx and Cx go to infinity in such a way that V = Qx/Cx and find

that the work performed by the source is given by

lim ((Qx - e)2 _ Q5e) = -eVe
Qx,cx-+oo 2Cx 2Cx

19
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Thus, the energy difference of the entire system between the final and initial states is

Ef - E; = (E:r - E]) +Ntu», - eV where E:r - E] is the energy given to the quasiparticles

(at zero temperature, E:r - E] ~ 0).

The only allowed transitions are those conserving the global energy of the circuit.

Therefore the transition to the state with N photons is forbidden if eV < Nhwl' At

voltages multiple of hwde a new channel for conduction opens. If r « 1, all the weight

of the translated oscillator state is in the ground state, which is at the same energy than

the initial state: the dominant conduction chanel is "opened" as soon as V is finite, which

corresponds to the absence of blockade of tunneling. On the other hand, if r ~ 1, the

dominant conduction channels open only at voltages around e/2C, which corresponds to

a blockade of tunneling at lower voltages.

If eV > Nhwl' the excess energy eV - Nnwl is absorbed by quasiparticles. We make

the asumption that the density of states PL and PR in the electrodes are constant. The

number of combinations of states in the left and the right electrodes such that fkL + fk R =
eV - Nhw is directly proportional to eV - Ntu». Therefore, the tunneling rate from left

to right in a low-pass environment r L reads:

(2.2.13)

and the current is given by I = ef'L since the tunneling rate from right to left is zero at

zero temperature. The corresponding current-voltage characteristic and its derivative are

shown in Fig. 2.8.

Note that the transition probability corresponding to the elastic channel N = 0 is

finite. This means that when the electron tunnels, the source can perform the work eV

instantaneously and without exciting the oscillator. This seems paradoxical in a classical

approach since the source is usually much farther than the junction"electromagnetic hori

zon" , which is the speed of light multiplied by the tunneling time (10- 15 s). The solution

to this paradox is that the system behaves quantum mechanically: the junction and the

source are in a coherent state. When this state changes both junction and source are

affected at the same time. This elastic tunneling is similar to the recoilless emission of a

/ ray by an atom in a crystal (Mossbauer effect).
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Fig. 2.7 Effect of the tunnel hamiltonian HT on the environmental oscillator 1 with

energy level spacing hWl (a). Initially the oscillator is in its ground state N = 0

(b). After a tunnel event, the wave function Wo (Q)of the oscillator is shifted by

e (c). Depending on the ratio r of the charging energy e2 / 2C and the energy level

spacing hWll the main component of eie 4> / li. wo (b) is state N = 0 (r ~ 1) or the

state whose energy is closest to e2 / 2C (r ~ N).
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2.2.2.2. General calculation at zero temperature

At zero temperature, the environment ground state has no photon present,

1G) = 1 0 0 ... 0 ) ,

and EG = O. After a tunneling event, the energy et. of the hole created in the left electrode

and the energy fR of the electron created in the right one are positive. The kinetic

energies of all the other quasiparticles remain unchanged. Using the Fermi statistics of

quasiparticles and Eq. (2.2.10) we express the total tunneling rate rL, where now there

are an arbitrary number of environmental modes available:

r+oo

Jo dfRPLPR I(i IHTI f) 12

(
Q3c ( (Qx - e)2))

X 0 2G
x

- fL + en + EN + 2G
x

(2.2.14)

Since EN ~ EG , et. + fR ~ eV, we introduce E' = -fL + eV(~ 0) and E" = fR(~ E').

Making use of equation (2.2.12), the argument of the delta function reads (E' - E" - EN).

Noting now that in equilibrium (<1» = (<1>x) and that (Qx lexp(ie<1>x)1 Qx - e) = 1, we

define ep = <1> - <1> x and obtain:

2 t2lev lEIrL = 1rPLPR dE' dE" P (E' - E")
h 0 0

where

P(E) = L I(G [exp(ieep/h) IN)1
2 0 (E - EN)

N

Note that the function P(E) is normalized:

/
+00

-00 P(E) dE = 1

We now calculate the Fourier transform of P(E): the relations

1 /+00o(x) = - eizudu
21r -00
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Fig. 2.8 I - V characteristic (a) and its derivative (b) for a tunnel Junction biased

with a voltage V through an inductance L for the values of r = 7r(LjC)1/2IRK of

Fig. 2.7: r = 0.2 (dotted line) and 5 (full line); we have also represented r = 1

(dashed line), and in (a) the r --. 0 and r --. 00 limits with thin continuous lines.
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where

and

Cm(t) - C e-iwmt
- m ,

1
Wm = .

VLmCm

By making use of Eq. (2.1.4), we finally arrive at:

2 100

dw .R (t) = -R -Re tz, (w)] e-1wt
K 0 W

and

J(t) = -2i t dt' roo dwRe(Zt(w)) e-iwt' ,
10 10 RK

(2.2.20)

(2.2.21)

where RK = h/e2 •

Expressions (2.2.15), (2.2.17), (2.2.18) and (2.2.20) when combined, provide the re

lation between the impedance Zt(w) and the I - V characteristic of the junction. We

combine (2.2.17) and (2.2.18) to write

and write (2.2.15) as

1 r: ( iEt)P(E) = 21rh 1-
00

dt exp J(t) + h '

eV E'

rL = -+- r dE' r dE"P(E' - E")
e RT 10 10

= -+- rev dE t" dE' P(E').
e RT 10 10

(2.2.22)

(2.2.23)

The current is simply given by I = ef L.

This formula can be implemented on a computer equipped with Fast Fourier Transform

and integration algorithms. Some care must be taken, however, if Zt(w) does not vanish

for w ---+ O. This point is discussed further in section 2.2.2.3.
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= (G IX (t)1 N)

L IN) (NI = 1
N

(where X is an operator; here X = exp(iecpjh)) lead to

P (E) = /+00 !:!..-eiEtjtl.P(t)
-00 21T'h

with

P(t) = (Glexp(iecp(t)jh)exp(-iecp(O)jh)IG)

We now make use of the Glauber identity (see Cohen-Tannoudji, 1973)

(G [exp (A) exp (B)I G) = exp {~ (G I(A + B)2 + [A, Bli G) } ,

(2.2.17)

(2.2.17')

where A and B are operators linear in the bosonic creation Cm and annihilation c:n oper

ators of the set of harmonic oscillators describing Zt (w), and get

P (t) = exp [J (t)] ,

where

J(t) = R(t) - R(O)

with

We now use the relation (2.2.1) which reads

cp = ~ - ~x = L ~m
m

and obtain

cp (t) = L Jh~m (cm(t) + ctn(t)) ,
m
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R
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Fig. 2.9 Tunnel Junction biased by a voltage source V through a resistance R.

The circuit seen by the tunnel element is the parallel combination Zt(w) of

the capacitance C of the Junction and of the resistance R.

3r-------,--------,------------:>I

I 12~RT

2

V12eC
2 3

Fig. 2.10 The I - V characteristic of a tunnel Junction biased with voltage V

through a resistance R for r = 2R/RK = 0.05 (dotted line), 0.5 (dashed line)

and 5 (full line). We have also represented the R -+ 0 and R -+ 00 limits

with thin continuous lines.

27



Discussion: asymptote of the current voltage characteristic at large voltages

At very large voltages all the modes of the environment can be excited, hence all the

charging energy of the junction e2/2C will be left in the environment. This appears in the

relation

1+ 00 EP(E)dE = ~.
-00 2C

Using this relation and the normalization (2.2.16') of P(E), we integrate expression (2.2.23)

by parts and find

I = ~ (v _~ + {+oo (E _ v) P(E)dE)
R T 2C lev e

(2.2.24)

Since at very large frequencies the impedance Zt(w) describing Z(w) in parallel with the

junction capacitance behaves like a capacitance, it follows that P(E) ,..., IIE 3 when E --+

+00 and the integral in (2.2.24) vanishes as I/V. Therefore

(2.2.24')

This corresponds to a voltage offset in the current-voltage characteristic at high voltage, in

agreement with the predictions of the "local rules" (Geigenmiiller and Schon, 1989). We

will show in section 2.2.2.3 that, for a low impedance environment, the asymptote yielding

the" local rules" voltage offset is reached below the limit V = (RT IR) (eIC) over which the

present theory does not apply (see section 2.2.1: the relaxation time for the environment

is here T = RC).

Relevant frequencies

One can also show that P(E) obeys the integral equation

EP(E) = (E dE' P(E') Re(Zt(E - E'))
lo RK I2 (2.2.25)

(Falci et al., 1991). This equation indicates that the relative value of the current at

a voltage V depends only on Z(w) at frequencies lower than eVIn. There is however a

normalisation factor that depends on the impedance at all frequencies: the integral of

P(E) over all energies is normalised to unity. Therefore, the absolute current at a given
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bias voltage depends on the value of the impedance at all frequencies. However, if we

assume that Zt(w) is small compared with RK at all frequencies, we can make a linear

expansion in expression (2.2.18) and get

P(eV)
RT d21

-e-dV 2

~ ~ [(1- rXJ

dw Re (Zt(w))) 6(V)
e Jo w RKI2

Re (Zt{eV Iii)) 1]
+ RKI2 V

(2.2.26)

This expansion is valid only when the integral on the right hand side converges. It shows

that in a low impedance environment the second derivative of the current at a non zero

voltage V is determined by the value of the impedance at frequency w such that tu» = eV.

The above calculation of the the tunneling rate in a normal metal junction is readily

adapted to the superconducting state in which charge carriers are Cooper pairs: this is

developed in appendix 1.

2.2.2.3. Application to a purely resistive environment

Let us consider the case of Fig. 2.9 where the environment reduces to a pure resistance

R and a voltage source V. The impedance in series with the junction is Z(w) = R. Since

limw-+o wZ(w) = 0, the total impedance is then

R
Zt(w) = "RC

1 +J w

and

( ) - 2i1t ,100
R ( . ')J t = -R dt dw 2R2C2exp -~wt ,

K 0 0 l+w

or, introducing the reduced variables T = 2RIRK, l' = RC, x = t i r , Y = t'IT, Z = WT, we

write

1
:1: 100 1J(x) = -iT dy dz 2exp(-izt).

o 0 1 + z
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(2.2.27)

(2.2.28)

Then one has to calculate

"Ii lev T
/

ti 111. /+00fL= 2R du dv dx exp{J(x) +ivx}.
27re T'f a 0-00

A problem arises if one calculates expression (2.2.27) numerically, since the finite value

of Zt(O) makes J(x) diverge for x ~ 00. This divergence causes the function I(V) to be

non-analytic at v=o except for integer values of r. However, after some algebra, one can

show that Eq. (2.2.27) is equivalent to

f
L

= "Ii exp(-rC)
27re2RT'f r (r)

x iev T
/

ti

du iV. dv [r (v) e s (v) + s (v)]

where

(2.2.28')

and

(2.2.28")

where the symbols ®,f,E),C denote the convolution product, the gamma and the Heaviside

functions, and Euler's constant (C = 0.577 ...) respectively. We have plotted in Fig. 2.10 the

function I(V) for values of r equal to 0.05, 0.5 and 5. Although the curves are now smooth,

as expected since the environment consists of an infinite number of oscillators, they are

built from the non analytic function s(v) which diverges at v = 0 for all r less than unity,

i.e. when the resistor R is below half of the resistance quantum RK . Therefore, whereas

the current at a given voltage depends on the impedance at all frequencies, the finiteness

of the slope of the I - V characteristic at the origin is only determined by Z(O)/(RK /2).

Asymptotic behaviour

If the impedance R if much smaller than RK (which is the case in most experiments)

we can use the expansion (2.2.26) at large energies (Ingold et al., 1991):

2"Ii2 1
P(E) ~ RR

KC
2 E3
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and substitute it in (2.2.24). We then find

I _1 (v _-=- + RK (e/C)2)
v -+00 RT 2C 411"2 R V .

Therefore, the "local rules" result 1= (1/RT)(V - e/2C) is reached when

More precisely, the tangent to the I - V characteristic taken at V ~ (R K/ 411" 2R) (e/C)

intersects the V axis at

v = -=- (1 _2RK e/2C)
9 2C 11"2 R V

The tangent extrapolates to e/2C with an error of 1% when taken at

Since the present theory is only valid when V < (RT/ R)(e/C) (see section 2.2.1), this

prediction applies only if RT ~ 10RK. Experimentally, the offset in the I-V characteristic

at large voltages was observed in single junctions by Geerligs et al. (1989), but only with

low tunnel resistance junctions.

2.2.2.4. Calculation at finite temperature

The calculation is carried out in paper 1 and applications to simple situations were

described by Ingold and Grabert (1991). The rate from left to right at finite temperature

is:

rL = e2~T 1-:00

dE1-:00

dE'f(E) [1 - f(E')] P(E' - E - eV) (2.2.28)

where P(E) has the same definition as in (2.2.22), f(E) = (1 + exp (_{3E))-l is the Fermi

function, and where J(t) is now given by

J(t)
= (+oo dw Re [Zt(W)]

10 w RK

x (coth (~{31iW) [cos(wt) - 1] - iSin(wt))
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The current from left to right is the product of e and of the difference between the rates

from left to right and from right to left. Note that the phase cp introduced in this paper

differs from the flux cp in what precedes by a factor equal to the flux h / e. Also this phase

is not the phase conjugated to the charge of the junction, but the difference between the

phase of the junction and the phase of the source. It thus only describes the fluctuating

part of the junction phase.

2.2.3. Observability of the Coulomb blockade of tunneling on a junction in a

low-pass electromagnetic environment

In a low-pass circuit, the Coulomb Blockade of tunneling only occurs if the charge

fluctuations are small enough. This is only the case in a very high impedance environment:

in order to have the current significantly decreased at the gap voltage e/20, the impedance

must be higher than the quantum of resistance RK at all frequencies below e2 /20h. If

O = 1 fF, this frequency is 20 GHz. Experimentally, this requires a large ohmic resistor

within a few millimeters from to the junction to avoid stray capacitance.This is of great

difficulty since it has to be both a high impedance and a cold conductor. Cleland et al.

succeeded partially this experimental tour de force (Cleland et al., 1990) by fabricating on

chip NiCr and CuAu resistors within a few millimeters from the junction. They observed

a partial Coulomb blockade of tunneling on the single junction. We will demonstrate in

the following section that the case of many junctions in series or that of a junction in series

with a true capacitor are much simpler from the technological point of view because the

Coulomb blockade of tunneling occurs even without any impedance implemented on chip.
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2.3. HIGH-PASS ENVIRONMENT

2.3.1. Hamiltonian of the circuit

The circuit seen by the pure tunnel element is now the island capacitance O, = C+Cext

in series with an impedance 1t 2ZP(w) and a voltage source ltV where It = Cext!(C + Cext)

(Fig. 2.11). Note that in the low-pass environment Zt describes the junction capacitance C

in parallel with the impedance Z(w), whereas here ZP(w) describes the series capacitance

CCext!Cj in parallel with the non-diverging part Zo(w) of Z(w). Therefore the description

of a single junction is applicable but we have to add the degree of freedom of the capacitance

C j : we call q the charge of this capacitance and t/J its conjugate flux. q and t/J obey the

commutation relation [t/J, q] = in. The hamiltonian describing the electromagnetic degrees

of freedom has an extra term q2j2Cj and the phases are now related through cP = t/J +
Lm cP m + cPx· Therefore, since t/J, cP m and cPx commute, the operator at akRexp(iecPjn)

couples a state with a charge state Iq) on C, to a charge state Iq - e). Note that the charge

Qx and the capacitance Cx describing the voltage source now obey the relation QxjCx =

/\,V. With those definitions, the initial and final states coupled by the hamiltonian for

tunneling from left to right are:

Ii) = 11) IG) IQx) Iq) i If) = 11) IN) IQx - e) Iq - e)

2.3.2. Calculation of the rate

The change of energy between the initial and the final state now reads:

Eo' - Ef = (E + E + Qk +!L) _(E + E + (Qx - e)2 + (q - e)2)
• I G 2Cx 2Cj T N 2Cx 2Cj

e (q - ej2)
= (EI - ET) + (EG - EN) + /\,eV + Cj (2.3.1)

The fluctuating part of the flux on the junction (see section 2.2.2.4) is now ep = cP-cPx-t/Ji

noting that exp(iet/J) Iq) = Iq - e), we write the rate for tunneling from left to right as in
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Fig. 2.11 High-pass environment: the environment has one more degree of

freedom than a low pass environment, namely the charge q of the island

capacitor Ci= C + Cext' The eigenvalues of q are integers because q changes

only when electrons tunnel through the tunnel element.

Q -Q

Q~

Fig. 2.12 The "global rules" for the high-pass environment: tunneling is blocked,

i.e. the tunneling rate r is zero, when the junction charge is below the critical

charge Qc determined by the external capacitance Cext (see Fig. 2.3) and the

junction capacitance C. The critical charge is Qc= (e/2) (1 + Cext/C)-l .
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section 2.2.2.4:

1 1+00 1+00
r H = e2R

T
-00 dE -00 dE' f(E) [1 - f(E')]

x P (~"E - E'+ KeV + e (q ~ie/2))

1 1+00 E ( e(q - e/2) )=~R dE ( f3E) P K, - E + KeV + C
e T -00 1 - exp - i

where

1 1+00 ( iEt)P(K, E) = 21f-f/, -00 dt exp K
2
J(t) + T

and J(t) has the same definition than in section 2.2.2.4:

(2.3.3)

(2.3.3')

J(t)
= roo dw Re [ZP(w)]

10 w RK

X (coth (~f31iW) [cos(wt) - 1] - iSin(wt)) (2.3.3")

J(t) does not describe the phase fluctuations on the tunnel junction as it did in section

2.2.2.2, but on the series capacitance CCext/Ci. In other words, the environment only

feels one capacitor, and has no means of knowing that there are actually two capacitors in

series. Mathematically, this corresponds to a different definition of Zt (w) in the low-pass

as opposed to high-pass environment in Eq. (2.1.2) and (2.1.3).

At zero temperature, the expression (2.3.3) simplifies into

which is very similar to Eq. (2.2.23).

Thus, the tunneling rate r H (V) calculated in the high-pass case is equal to the rate

rL (KeV + e(q - e/2)/Ci) calculated in the low-pass case with the reduced impedance

K 2Z~(w), Z~(w) being given by the impedance of the parallel combination of the series

capacitance CCext/Ci and the impedance Zo(w). We now deduce the observability of

Coulomb blockade in the case of the high-pass environment.
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2.3.3. Observability of the Coulomb blockade of tunneling in a high-pass envi

ronment

The non-diverging part of the environment impedance is characterized by an imped

ance ",,2 Zf(w) which, as in the case of a low-pass environment, is compared to R K to

distinguish two limiting regimes: the very high impedance regime, for which we obtained

the Coulomb blockade of tunneling in low-pass environments; and the very low impedance

regime, for which the Coulomb blockade is completely washed out in the case of a low-pass

environment at voltages of the order of elC, and only appears at voltages much larger

than eIG. In the following, we make use of the relation between r Hand r L to derive an

expression for the Coulomb gap in a high-pass environment.

Coulomb gap

At zero temperature r dE) is zero for E < O. Therefore, whatever the impedance

Zt(w), rH(V) is zero for V < [e - 2q)IGezt . This is what we call the Coulomb gap.

It is an important result based on energy conservation which can be obtained from the

representation of the circuit in Fig. 2.11: the energy of the state of the circuit after

tunneling is at least the electrostatic energy corresponding to a charge «e having passed

through the source V and to an increase of the charge of the island between the junction

and the capacitor by e(e- 2q)IGezt . The tunneling is therefore blocked at low voltages for

a topological reason, the presence of a metallic island in the circuit. However, as we will

show in the appendix 2, there is a finite current even through a series of tunnel junctions

below the Coulomb gap which is obtained by perturbations theory at orders larger than

two. We call the higher-order processes "co-tunneling" processes. The calculations in

this chapter give the tunneling rate through only one junction, whatever the external

impedance. Simple expressions are derived in the following for the two limiting cases of a

very low impedance and a very large impedance.

2.3.3.1. Very low impedance
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If 1C 2ZF(W) « RK, the function P(E) reduces to a delta function 6(E). The rate

then reads:

where

r
H

= _ l _ ~E
e2RT 1 - exp]-fJ~E)

AE V e(q - e/2)
~ = ICe + --'---=-'--";"

Cj

(2.3.4)

(2.3.4')

(Likharev et al., 1989). Although this energy difference depends on the whole system

including the source, it is possible to formulate it in terms of the average value Q of the

junction charge before the tunnel event, which corresponds to the junction charge one

would obtain using classical electrostatics:

Q = CCez t (V + -q-)
C +Cezt c.;

(2.3.5)

where the "critical charge" Qc is:

(2.3.5')

and Cez t is the capacitance in series with the junction.

This critical charge is always below e/2: tunneling is possible for Qc ~ Q ~ e/2, which

would not be the case if the" local rules" would apply. At zero temperature, the rate is

then (Fig. 2.12):

r H = 0 for Q ~ Q c

r H = _1_ Q - Q c for Q > Q c
RTC e

(2.3.6)

For example in a linear array of N identical tunnel junctions of capacitance C, the

critical charge is Qc = (e/2)(1 - l/N) for each junction. The Coulomb gap is therefore

(N - 1)(e/2C). At large bias voltages, the rate is at equilibrium the same through all

junctions and the current is given by the rate through any junction:
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(the tunneling rate in the opposite direction is negligible).

Those very simple expressions, called the" global rules" (Geigenmiiller and Schon,

1989), will be fundamental in the description of the circuits of chapters 4 and 5 since

they correspond to the experimental case where a true capacitance or other junctions are

in series with the junction, and where the circuit does not contain any large impedance

added on the chip. In these setups, connection leads present in the microwave range an

impedance .....100 0, low compared to the impedance quantum, and the present calculation

applies. In particular, we asked at the end of chapter 1 how long it takes for the system to

go from the a state with n extra electrons in the island to the state with n + 1 electrons

(when this is of course energetically favourable). The answer is typically RTC, which for

usual experimental parameters is of the order of 0.1 ns.

Asymptotes of the I - V characteristic

As with a low-pass environment, the local rules apply in the limit of very large bias

voltages. Hence, in a linear array of tunnel junctions, the asymptote at large voltage corre

sponds to the voltage offset ofthe local rules e/2Ct ot, where Ct ot is the total capacitance of

array. In the particular case of N identical junctions in series, the offset of the asymptote is

N elC, It differs from the offset at intermediate voltages which we found to be given by the

global rules by (N - l)e/C. These two offsets were measured experimentally by Geerligs

et al. (1990b) on four samples with double junctions. They found a factor of 1.5 between

the two offset voltages instead of the expected factor 2. We attribute this discreapancy to

a measurement if the large scale asymptotes at a too low voltage (see section 2.2.2.3).

2.3.3.2. Very high impedance

If ZP(w) » RK, we found in paper 1 that on a junction in a low-pass environment

the rate fL is zero for V ::; e/2C and is (V - e/2C) /eRt for V > e/2C. Therefore, in a

high-pass environment of high impedance, the rate is zero for

(2.3.7)
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(JIi,2 results from the transposition of the calculation in the low-pass case with an effective

impedance Jli,2 Zt). This condition can be re-written as

e e - 2q
V<-+--

- 2C 2Cex t

On the contrary, if

V
e e - 2q

>-+--
2C »c.:

the rate is given by (2.3.4) where

.6.E = eV _ ~ _ e(e - 2q) = .:.. (Q _=-)
2C sc.: C 2

(2.3.8)

(2.3.9)

(2.3.10)

As in the case of a very low impedance, we can define a "critical charge" equal to Qc = ej2

and write the rate as in the Eq. (2.3.6). Therefore, at zero temperature, tunneling is blocked

when the charge on the tunnel junction is below ej2: this corresponds to the "local rules".

Measuring this extra blockade of tunneling due to the environment is even more difficult

than on one junction in a low-pass circuit because the coupling to the impedance ZP(w)

is reduced by a factor ",,2.
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for Q ~ o,
for Q> o.,

(2.4.1)

2.4. CONCLUSION

We have distinguished two types of environments of a tunnel junction, low-pass (con

taining no capacitors or junctions in series) and high-pass (containing at least one capacitor

or another junction in series), and calculated in both cases the junction tunneling rate. We

have given simple expressions in two limiting cases: zero and infinite external impedance,

for which the tunneling rate can be expressed as a function of the charge Q of the junction

and of a "critical charge" Qc: at finite temperature, this is given by formulas (2.3.4) and

(2.3.5). At zero temperature, they simplify to (2.3.6): we recall these equations

r=o
r=_l_Q-Qc

RTG e

We summarize these results in the following table:

Zt(W) -e; RK general case Zt(w) ~ RK

low pass Cf. Eq. (2.2.28)
e

Qc = 0 Qc =-
2

high pass
e 1

Cf. Eq. (2.3.3)
e

Qc = - G Qc =-
2 1 + --==! 2

G

When Zt(w) ~ RK , the "global rules" apply: the critical charge depends on all the

capacitances of the circuit. However, when Zt(w) ~ RK, the "local rules" apply: the

critical charge is e12. The local rules also apply in the case Zt(w) ~ RK at voltages much

higher than (R KI41r2R) (eIG) (where R is the de resistance of the environment). We

described the asymptotic behaviour of the current-voltage characteristic in sections 2.2.2.3

(low-pass) and 2.3.3.1 (high-pass).

In all of the devices we fabricated, the environment of the junction was always high

pass (many junctions in series or a junction in series with a capacitor) and low impedance,

and we operated the device at voltages much below (R KI41r 2 R) (eIG). Hence, we will

always use in what follows the global rules expressions (2.3.4) and (2.3.5) with

e 1
Qc = - G '

21+~
G

Gext being the external capacitance seen by the junction considered.
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3. EXPERIMENTAL TECHNIQUES

This chapter is devoted to the experimental techniques that were employed in the

experiments that are described in chapters 4 and 5.

The realisation of circuits which exhibit charging effects requires the fabrication of

tunnel junctions of nanometric dimensions ('" 100 x 100 nm2). We used a scanning electron

microscope (SEM) for the lithography and the technique of the shadow mask evaporation

for the metal deposition. This is described in section 3.1.

In circuits exhibiting charging effects, not only the junction capacitances need to be

small: so does the capacitance to ground of the islands between them needs also to be

small. Moreover, it is important, as we shall see, to capacitively couple gate lines to these

islands, while avoiding cross-talk between these lines. All this requires a precise design

of the planar electrodes which define the circuit. For this purpose we wrote a computer

program which calculates the capacitance matrix of an arbitrary set of planar electrodes.

This program is described in section 3.2.1. Another important design tool is a simulation

program that predicts the behavior of a circuit with a given set of parameters. This is

achieved by our SETCAD program which is described in section 3.2.2. It has greatly

helped us in understanding the roles of the various parameters in our circuits.

Experiments were carried out at low temperatures using a dilution refrigerator. The

low noise electrical measurement techniques are described in section 3.3.

3.1. FABRICATION OF JUNCTIONS

Junctions were fabricated by making overlap two aluminium thin films, using the

method of the suspended bridge (Niemeyer, 1974; Dolan and Dunsmuir, 1988). The alu

minium has the advantages of evaporating at a relatively low temperature, and of having

a good quality oxide. The details of the procedure were inspired by those of Geerligs in

Delft (Geerligs, 1990) and Delsing in Goteborg (Delsing, 1990).

The tunnel junctions for experiments on charging effects must have high tunnel re

sistance (RT » RK ) and small capacitance (C« e2/2kB T ). In a junction where the
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EVAPORATION #2 EVAPORATION,,; I

Fig. 3.1 Junction fabrication with the method of "shadow mask evaporation":

two evaporations at different angles through a suspended mask produce two

films with an overlap of nanometric dimensions. This overlap constitutes the

junction.

a_Exposure

b _Development

C_ Ge etch

d, PMMA
overetch

ELECTRONS
36 keV

lllU lllU
L 1) .. ) - germanium

•.. \ PMMA

Y///###/A - Si substrate

:aRC

Fig. 3.2 Fabrication steps of the suspended mask: (a) a PMMA resist cov

ering a thin layer of germanium and a spacer of PMMA is exposed to the

electron beam; (b) the regions exposed are dissolved in the developer; (c) the

germanium is etched by a SF6 plasma through the windows opened in the

upper layer by the development; (d) the lower layer of PMMA is etched in an

oxygen plasma, first at J.Lb pressure and high power in order to etch vertically

into the layer, then at mb pressure and low power in order to etch under the

qermaruum, thus defining a bridge like the one of Fig. 3.1.
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tunnel barrier is 1 nm thick, the area needs to be around 0.01 J1,m2 to obtain a capaci

tance of 1 fF. The shape of the electrodes is fixed by lithography. The minimal dimensions

achievable with a particular lithographic technique is of the order of the wave length of

the radiation. Although UV radiation (200 nm) has been successfuly used by Martinis

(Martinis et al., 1990) to make single junctions with them, this technique is not suitable

to fabricate complex devices. X-rays (30 nm) and electron-beams (10 nm) are in fact the

only available nanolithographic tools. We used the electron beam of a Scanning Electron

Microscope (SEM).

Alignment at the 100 nm scale can be a serious problem. With the method of "shadow

mask evaporation" (Dolan and Dunsmuir, 1988), the two electrodes are self-aligned: the

principle is to take advantage of the shadow of a suspended bridge on the substrate to

define separate conductors (Fig. 3.1). The junction is formed by the partial overlap of

two metallic layers evaporated at two different angles through a suspended mask. An

intermediate oxidation step creates the insulating barrier.

The mask with a nanometric suspended bridge is made by SEM lithography. The

bridge is made out of germanium, a tough material that evaporates at a relatively low

temperature. The mask far from the bridge lies on a resist layer of PMMA [plexiglass]

200 nm thick. The pattern was defined by writing with the SEM on a thin PMMA layer on

top of the germanium; the developped pattern is later transfered to the germanium. The

fabrication of the mask therefore requires three layers (Fig. 3.2a): an underlying PMMA

spacer, a thin germanium film and a thin PMMA layer for e-beam patterning.

3.1.1. Wafer preparation

We fabricated our samples on oxidized 2-inch silicon wafers. The wafers were first

cleaned in a bath of pure nitric acid, then rinsed in deionised water. After the spinning of

the first 200 nm thick PMMA spacing layer, 20 nm of germanium were Joule-evaporated

at the rate of 0.1 tuii]«. Finally, the upper PMMA layer was spun, with a thickness of only

60 nm, in order to reduce the broadening due to back-scattered electrons.

The wafer, covered with the three layers, was then cut into 8 mm x 8 mID chips, which
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were treated one by one during the steps that are described below.

3.1.2. Electron-beam patterning

The electron beam patterning (Fig. 3.2a) was done with a JEOL 840A scanning elec

tron microscope, in which the deflecting coils were controlled by a real-time Hewlett

Packard 1000 computer through digital to analog converters (DAC) (Fig. 3.3). The whole

pattern, from the junction bridges up to the millimeter-size connection pads, was exposed

in the SEM. We thus avoided using any optical lithography for the coarse features of the

pattern. Hence, no alignment was needed during the lithography.

The computer program for patterning

The patterns are defined on a 4092 x 4092 pixels grid. A pattern is decomposed into

square and trapezoidal boxes. The coordinates of the corners of the boxes, the values of

two iteration steps dX and dY, the number of repetitions n and the relative charge dose d

for each box, are stored in a file. A typical pattern file corresponding to the design of the

electron pump of Fig. 5.13 is given in Appendix 2. The program calculates the coordinates

of a sequence of points inside each box so as to define a scan from one box edge to the

opposite one. This scanning is performed in steps of size dX in the X direction and dY in

the Y direction; the time between steps is calculated in order to obtain after n identical

scans d times the standard charge dose for the box. The standard charge dose is 2 pC / J-Lm2
•

It is necessary to be able to change the values of the iteration steps dX and dY and the

number of repetitions n because the time step of the computer is coded on only 8 bits.

The polymerization of the PMMA at a given point of the chip is due to the back

scattered electrons from several neighbouring points of the scan. As a consequence, the

narrowest boxes need a higher relative dose d because fewer neighboring points contribute

there to the exposure.

The exposure

Since the grid used for the definition of a pattern is only 4092 x 4092 pixels, we use
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Fig. 3.3 Electron beam [e-beam} patterning set-up: a computer with a real

time operating system controls the currents in the deflecting and blanking

coils of a Scanning Electron Microscope (SEM).
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four different magnifications of the SEM to define all the features, large and small, of a

design. At the 100 nm scale, the field of exposure is 18 utx: X 24 usix (magnification x 5000).

After the finest pattern was exposed, the SEM magnification was successively lowered to

xlO00, x180 and x30. Small shifts of the center of the image occur when changing the

magnification (a few urn between x5000 and xl000, and xl000 and x180j tens of tux:

between X 180 and x30), but these are reproducible and were systematically compensated

for.

The electrons are accelerated by a voltage of 36 kV. The electron beam is brought into

focus using two spots of silver paint placed on opposite edges of the chip. The current is

13 pA for the two smallest scales. Since little precision was needed for the coarse features at

magnifications x 180 and x30, a higher current of 10 nA was used at these magnifications

to save time. The exposure of the pattern of an entire device took less than half an hour.

3.1.3. Development. Etching

The development (Fig. 3.2b) was done in a solution of MIBK(I) - propanol-2(3) dur

ing 45 seconds at 20°C. The time for the development proved to be very temperature

dependent. The sample was then etched (Fig. 3.2cd) in three steps in a reactive ion

etching (RIE) reactor:

flow pressure rf sample holder time
etch of gas (seem) (mb) power polarization (min)

(W) (V)

Ge SF6 5 210-3 10 85 1/2
PMMA O2 5 210-3 50 175 3

PMMA O2 20 0.1 10 65 10

(seem stands for standard cube centimeter per second).

In the two first steps, laser interferometry was used to detect the end of the etch: too

long an etch would broaden the lines and increase the capacitance of the junctions.

The last etch was intended to dig under the germanium bridge, where the two elec

trodes of the junction should overlap. If this etch is stopped too early, the lift-off removes

the junctions; if it is stopped too late, the germanium bridge collapses. After this last step,
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the sample was ready for evaporation.

3.1.4. Evaporation of aluminium. Lift-off

We used two types of evaporation systems: a Joule-effect evaporator and an electron

beam evaporator. In the Joule-effect installation, we pumped down to 5.10-7 mb with

a diffusion pump and evaporated at 1.5 nm/s. A liquid nitrogen cooled trap was placed

in the chamber in order to lower the water vapor partial pressure. In the electron-gun

evaporation system, a turbo-molecular pump could reach 5.10-8 mb, and the evaporation

rate was 0.4 tuu]«. The sample was mounted on a tiltable holder and was cooled to around

5°C during the process.

The thickness of the aluminium films was 30 nm for the first layer and 50 nm for the

second one. The first layer was oxidized in pure oxygen, at a pressure of a few millibars,

at room temperature, for 15 mn to 45 mn depending on the required RT.

The PMMA-germanium mask was then lifted-off by placing the sample in a 50°0 bath

of acetone for 20 minutes. The junctions were immediatly tested with 1 MO resistors in

series with a hand-held multimeter. We found that we had to be extremely careful when

handling with the junctions: electrostatic discharges could very easily destroy them. All the

wires were therefore grounded before measurements. We often observed that our junctions

became shorts after a period of a few hours. We interpreted this as a rearrangement of

the aluminium films at the atomic level.

3.2. DESIGN OF DEVICES

3.2.1. Calculation of planar capacitances

In order to design islands with specified capacitance we wrote a program called C2D

(Capacitances in 2 Dimensions) to calculate the capacitance matrix of a set of planar

electrodes. The principle of this program is to minimise the electrostatic energy of a set

of conductors a, {J, ..., polarized at potentials Va, V.a, ..., with respect to the distribution of

charges on all those conductors. Each conductor is divided into square pixels (indexed by
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Fig. 3.4 Representation of the planar conductors for the calculation of their

capacitance matrix. The conductors are defined on a grid. The interaction

between pixels i and j depends on the product of their charges and of a pa

rameter fi,j depending on the distance.

Fig. 3.6 Interdigitated capacitor: the capacitance Co between the long guarded

finger and the island with two fingers is ten times larger than the cross

talk capacitance Cx to the neighbouring rectangular island. For a spacing of

0.2jlm, we found Co= 0.105 fF and Cx = 0.010 fF.
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i) of area 12 uniformely charged with a charge qi (Fig. 3.4). We call a:(i) the conductor

to which pixel i belongs. For a given charge distribution, the electrostatic energy of the

system of conductors can be written as

where
€r + 1

€= €o--
2

accounts for the fact that half of the space is empty and the other half is the substrate

(whose thickness can be taken as infinite at the micrometer scale of the conductors),

whose dielectric constant is €r, and where Ii,j is the interaction potential between the

two uniformely charged square pixels i and j. The first term in E is the electrostatic

interaction between all pairs (i, j) of charged pixels. The electrostatic interaction energy

associated with the charged pixels i and j depends only on the product of their charges

qiqj and on the distance rij between their centers. If the pixels were reduced to points,

this distance dependence would simply be [; = r;/. Here, pixels are squares of finite

dimension and we took into account the first correction, which is the quadrupolar one:

lij = r;/ + 112 ri/. This correction is independent of the orientation of the squares with

respect to the line joining their centers. We calculated the lij for the first, second and

third neighbouring pixels even more carefully by dividing the pixels themselves into smaller

pixels and calculating the interaction potential in a self-consistent way. The self-energy of

a square pixel (rij = 0) was calculated analytically.

At each step of the calculation, the charge of all the pixels is modified sequentially,

each pixel correction 8qi being given by

where K is a convergence parameter. When the iterative calculation has converged, the

charge is summed on all the pixels of each capacitor:

qO/ = Lqi
i
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Fig. 3.5 Effect of a planar guard electrode (1) of width w at potential VI on

the cross-talk between two electrodes (0) and (2) at potentials Vo and V2 • (a)

The figure corresponds to the case w = 7. (b) Numerical calculation of the

charge induced by (2) on (0): the guarding effect is imperfect and decreases

slowly with w.
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where the summation is carried out on the pixels i of the conductor a. Since

qa = .LCa{3 (V{3 - Va)
{3

we finally arrive at the capacitances Ca {3 between conductors a and {3.

This program showed that guarding lines in two dimensions are never perfect (see

Fig. 3.5). We made a compromise between the necessity of guarding and the requirement

of small capacitances to ground, and obtained cross-talks nearly ten times smaller than the

desired couplings. The best way to design a planar capacitor is to make interdigitated fin

gers as in Fig. 3.6. The capacitances we calculated agreed with the measured capacitances

within the experimental accuracy.

3.2.2. Simulation of small junction circuits

The detailed prediction of the behaviour of circuits containing more than one junction

is rather complicated: the current results from the combination of tunnel events through

all the junctions, and the rate of each tunnel event depends not only on the precise values

of the gates and bias voltages, but also on the charge configuration of all the islands, which

is determined by the history of the system. In order to find the right design parameters for

the devices we fabricated, and in order to make comparisons with experimental measure

ments, we wrote a program called SETCAD (Single Electron Tunneling Computer Aided

Design), which simulates the charge dynamics in linear arrays of small tunnel junctions.

The parameters of the simulation are the junctions and gates capacitances, the voltages

applied to the gates and across the array, and the temperature. The tunnel resistance

RT of a junction of capacitance C is fixed by forcing the same RTC product to all the

junctions since it depends only on the parameters of the oxidation process.

Use of SETCAD

The SETCAD program can be used in two modes: i) the display mode, where the

islands and junctions charges are displayed after each tunnel event. The voltages can be
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modulated automatically or interactively; ii) the calculation mode, where the current is

calculated as a function of the de value of one voltage (gate or bias); a modulation can be

added to one or several voltages.

Principle of the SETCAD program

The global rules of Eq. (2.3.4) are used to calculate the tunneling rates. According

to Eq. (2.3.5), the tunneling rate through one junction is proportionnal to the difference

between this junction's charge and its critical charge. Both are calculated in the SETCAD

program with the inverse capacitance matrix C- 1 of the array, deduced from the junction

and gate capacitances. To second order in RT / RK, the co-tunneling rates are calculated

using Eq. (A.I.1), and the energies are calculated from the junction charges according to

Eq. (2.3.5).

C- 1 is calculated at the beginning of the program, when the capacitance values are

introduced. The critical charges are deduced as simple linear combinations of the matrix

elements of C- 1 • At each step of the simulation the program calculates the electrical

potential of each island as a product of C- 1 and the column vector of the effective charges

of the islands (the effective charge on one island is the sum of the number of extra electrons

on it and of the charge induced by the gate attached to it). The difference between the

electrical potentials of two neighbouring islands gives the charge on the junction between

them.

According to the tunneling rates calculated for all the junctions, the program randomly

chooses whether or not a tunnel event occurs, and, if one occurs, through which junction

(or junctions in the case of co-tunneling) and in which direction the electron tunnels. The

number of extra electrons on the two islands next to this junction are then changed by

one. The time variable is then iterated and the new values of the voltages are calculated

for the next step.

3.3. MEASUREMENT TECHNIQUES

Samples were mounted in a copper box thermally anchored to the mixing chamber
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Fig. 3.7 Wiring of the experimental set up. The current through the device

under study was measured by recording the voltage drop across the cold resistor

Rm • This voltage was sent to room temperature through a twisted pair. A

feed-back loop at room temperature compensates the voltage drop across Rm .
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of a dilution refrigerator. Measurements were performed between 300 mK and 20 mK.

Since the critical temperature for superconductivity in aluminium is 1.2 K, a magnetic

field of 0.5 T was applied parallel to the surface of the sample with a superconducting

coil in order to bring the aluminium in the normal state. The wiring of the experiment is

showed in Fig. 3.7. A voltage dividing bridge (Rp , r) provides a voltage bias. Current was

determined by measuring the voltage drop across a nominally 10 MO resistor cooled to

4 K. The resistance Rm of this resistor was measured at 4 K and found to be 12.07 MO.

The voltage across this resistor was connected to a battery-powered PAR 113 amplifier

with a twisted-pair in a grease-filled tube. Two types of microwave filters were used on the

bias and measurement lines: distributed RC filters and lossy inductive filters. Distributed

RC filters (Fig. 3.8a) were made with resistive films (60 O/square, 50 x 2 mm2 ) pressed

between insulating Mylar films by two brass blocks. The distributed filter was enclosed in a

brass box. Lossy inductive filters (Fig. 3.8b) consisted of a manganin wire spiral immersed

in copper powder. Attenuation at 4 K for both types of filters was found to be better than

60 dB at 1 GHz. Gate lines were coaxial lines with 40 dB total attenuation provided by

two thermally anchored Radiall microwave-frequency attenuators.

When a current I flows through the device, the voltage VN is RmI and the voltage

across the junction VM - RmI. We used a feed-back loop so that VM - VN = VB/lOOO. The

time-response of the loop was around 1 s. The circuit was therefore floating at the voltage

VN • No correction was applied to the gate voltages to compensate with the variations of

VN which were small.
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Fig. 3.8 Microwave filters:

(a) exploded view of a distributed RC filter: the current through the filter

passes through a conductive resistive film pressed against metallic surfaces

connected to ground.

(b) cut-away view of a lossy inductive filter: the copper powder provides skin

depth losses.
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4. OBSERVATION OF THE

COULOMB BLOCKADE OF TUNNELING

IN A "SINGLE ELECTRON BOX"

4.1. THERMAL EQUILIBRIUM AVERAGES

The essence of the Coulomb blockade of tunneling through a junction in a high-pass

low impedance environment is that tunneling is blocked when the charge Q on the tunnel

junction is below a critical charge Qc, determined by the external capacitance and the

capacitance of the junction (see chapter 2). As a result, when charging with a voltage

source U a junction of capacitance 0 in series with a capacitance Os (Fig. 1.3), tunneling

is blocked as long as Q= OsU < e12. At this point Q = Qc and one electron can enter

the island. From the definition of Q cs the energy of the entire circuit is the same before

and after the tunnel event which occurs when the charge of the junction is exactly Qc. The

tunneling of one electron is then reversible: after one electron has entered the island, the

junction charge is equal to -QQ. (Q) is related to the thermal average (n) of the number

n of extra electrons on the island:

(Q) = ~i [(n) (-e) + Q] (4.1.1)

where O, = 0 + Os.

(n) is an odd function of the bias voltage U. Moreover, (n) - OsUleis a periodic

function of OsU with period e. This is explained in Fig. 4.1 by considering two electrically

equivalent dipoles from which we can deduce the translation property:

(4.1.2)

At zero temperature, n has no fluctuations i.e. (n) is the integer nmin minimizing the total

energy. Using these properties and the fact that (n) is an increasing function of U, we

obtain the result that nmin is a staircase function of U (Fig. 4.2a). At finite temperature

this staircase becomes rounded. The distribution of n is given by a Boltzmann law:

+00
(n) = (liZ) L n exp(-fjEn )

n=-oo
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Fig. 4.1 The voltage response to a charge signal of dipoles (a) and (b) are

the same (c), so they are electrically equivalent. When they are connected

to a tunnel junction in series with an arbitrary circuit, the charges relaxes

the same way in both cases (a' and b'). We call Qs the equilibrium charge

on C, in [a']: the equilibrium charge on Cs in (b/) is therefore Qs-me. If

the charge of the island is n(-e) in [a'}, the junction charge in (a/) and, by

equivalence, also in (b/), is n( -e) - Qs' The final island charge in (b/)
IS

therefore (n + m)( -e). Thus, U -+ U + m(ejCs) => n -+ n + m.
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Fig. 4.2 (a) Number of extra electrons nmin on the island that minimizes

the energy of the electron box (see Fig. 1.2), plotted as a function of the

polarization charge Q= CS U in units of e. (b) Variations of the island average

electron number (n) for 0 = kaT (Cs+C) /e2 = 0.01 (solid lines), 0.1 (dashed

lines) and 10 (dotted line).
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+00
Z = L exp(-f3En )

n=-oo

The energy En is the n-dependent part of the electrostatic energy of the whole circuit.

The variations of (n) are given in Fig. 4.2b for various temperatures. This expression has

already been considered by Glazman and Schekhter (1989) in the context of quantum dots.

The function (Q) versus Q is therefore a sawtooth function, with zero mean value. As

the temperature increases, this function becomes progresssively rounded. The dependance

of (Q) [e on Qle is plotted in Fig. 4.3 for various temperatures. In the limit where Cs ~ C

which was considered by Biittiker (1987) in the context of Bloch oscillations, the oscillations

shown in Fig. 4.3 are analogous to the SET oscillations (Averin and Likharev, 1986) of

Q versus It for a junction biased with a current I. We showed in chapter 2 that, when

the island is connected to the outside world through only one junction, the tunneling

rate when U is increased above e/2Cs is given by r L = (Q - Qc)/(eRTC) in a low

impedance environment. If the experimental parameters are such that (RTC)-l ~ 0.1 ps,

the tunneling can be considered instantaneous as long as C (dUIdt) [e << 1 GHz. In

this case, the system will always remain in thermodynamic equilibrium. We make the

ergodic hypothesis, i.e, we assume that the time-averaged value Q of Q corresponds to

its thermodynamic value (Q). We therefore have access to (Q) versus Qby measuring Q

versus Q with an averaging time constant much larger than 1 ns.

Experimentally, the measurement of (Q) requires measuring a charge with sub electron

accuracy, without increasing noticeably the capacitance of the island to ground. Further

more, the disturbance of the island charge by the back-action of the measuring apparatus

has to be negligible on the same scale. These requirements are not met by off-the-shelf

electrometers: their sensitivity is at most 100 e/VRZ, and any wire going from the is

land to the electrometer would increase the capacitance of the island by many picofarads.

Hence we used an on-chip" SET transistor" (SET standing for Single Electron Tunneling)

to measure (Q) (Lafarge et al., 1991). It consists of two small tunnel junctions biased

below the Coulomb gap. Its sensitivity was first demonstrated experimentally by Fulton

and Dolan (Fulton and Dolan, 1987).
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Fig. 4.3 Variations, in the single electron box, of the junction average charge

(Q) for () = kaT (Cs+C) je2= 0.01 (solid line), 0.1 (dashed line) and 10 (dot

ted line), as a function of the polarization charge Q= CsU.
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4.2. THE SET TRANSISTOR

4.2.1. Device description

The SET transistor consists of two tunnel junctions in series and of a gate capacitor

connected to the island between them. The two junctions are voltage biased by a source

V (see Fig. 4.4a) j a voltage source Uo couples through a capacitance Go to the island

betweeen the junctions. It can be seen as a single electron box with separate "in" and

"out" lines. The behaviour of this device can be analyzed using the numbers nL and

n R of extra electrons on the island that would minimize the energy if the other one was

considered as a pure capacitor: nL (nR) corresponds to tunneling being allowed through

junction L (R) only. nL(UO) and nR(UO)are identical staircase functions but shifted by V.

They are plotted in Fig. 4.4b for V < el C«.

Let us consider first that Uo is such that GoUo ~ (n + Ij2)e. Then nl (Uo) = 0 and

n2(UO) = 1. Suppose now that the initial island configuration is n = 1. This state is stable

with respect to tunneling through junction R; but it is unstable with respect to tunneling

through junction R: the tunneling of one electron through junction R will lead to a state

of lower energy. Therefore the system will switch to the configuration n = O. This state

is stable with respect to tunneling through junction L, but it is unstable with respect to

tunneling through junction R, which would lead to a new state n = 1 (this new state differs

from the initial one, because in the complete sequence leading from one to another one

electron went through the device). The system will then switch to this new n = 1 state.

After one cycle 1 ~ 0 ~ 1', one electron has gone through the device and the cycle can

start again. This cascade process continues indefinitely, the charge on the intermediate

island being alternatively 0 and 1, and a current flows then through the device (Fig. 4.4c).

If on the contrary Uo is such that GoUo ~ ne, the two functions nL(Uo) and nR(UO)

coincide and will be, as follows from the analysis of the single electron box, anchored to the

value n. Thermal fluctuations are too small to induce charge fluctuations for these values

of Uo and V : no current can flow through the device.

Since the functions nL(Uo) and nR(Uo) are ejGo periodic, the current through the
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Fig. 4.4 (a) SET transistor biased by a voltage source V and coupled to a

gate voltage V o through a capacitor Co. The island is delimited by a dashed

line. (b) Numbers of extra electrons llL and llR on the island minimizing

the energy with respect to tunneling through junction L only (full line) and

through junction R only (dotted line). (c) Current through the SET transistor

as a function of the gate voltage. The current is non zero only when llL# llR;

the island charge oscillates then between nr, and llR.
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junctions is modulated by Uo with a period elCo (Fig. 4.4c). A small modulation of

the charge CoUo, even smaller than the electron charge e modulates the current by a

noticeable fraction of its maximum value. The SET transistor can therefore be used as an

electrometer.

4.2.2. Experimental determination of the parameters of the the SET transistor

and performances as an electrometer

The current-voltage characteristics of the electrometer we fabricated (Fig. 4.5) corre

spond qualitatively to the results obtained with our SETCAD simulation program. For

CoUo = a modulo e, the I - V characteristic shows a clear gap structure corresponding to

the Coulomb blockade of the SET transistor. When CoUo = etz modulo e, the character

istic is gapless. The modulation of I with Uo at a given bias voltage (Fig. 4.6) is periodic,

as expected from the (Q) versus Qfunction for the electron box (Fig. 4.3); assuming that

the period is elCo we found Co = 73 ± 1 aF. This value is in reasonable agreement with

the estimation Co = 50 aF calculated with the C2D program.

The amplitude of the modulation of the current with U is maximal when the elec

trometer is biased at the Coulomb gap. Using a lock-in amplifier, we estimated the gate

capacitor charge sensitivity to be at least 10-4 e]VHZ at 1 kHz.
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Fig. 4.6 Electrometer current I versus electrometer gate voltage Uo for a set

of values of bias voltage V separated by 25 J.LV. The temperature is 20 mK.
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4.3. DETAILED OBSERVATION AND CONTROL OF THE COULOMB

BLOCKADE OF TUNNELING IN THE ELECTRON BOX

We have measured the variations of {Q) versus Q in the electron box using the SET

electrometer described in the previous section. The experimental setup (shown schemati

cally in Fig. 4.7a) consists of a 2-junction-in-parallel version of the electron box of Fig. 1.3,

with the island b connected by a coupling capacitor Cc to island m of the electrometer.

Nominally Cs = C; = Co = C /10. When the average charge in the electron box is (Q),

the charge on O; is simply (Cc/C) (Q). As a consequence, the change in the electrometer

current I due to a variation t1 (Q) of (Q) is

t11 = Cc
( dI ) t1 (Q)

C CodUo

were the slope of the 1- Uo characteristic is measured at the polarisation point Uo.

The circuit pattern is shown in Fig. 4.7b, where the numbers and letters labeling the

aluminium electrodes refer to the corresponding nodes of the circuit shown in Fig. 4.7a.

A SEM photograph of the effective circuit is shown is Fig. 4.8. The large-scale shape of

the electrodes and their guards were designed to minimize cross-talk capacitances. Before

a run, the junctions were checked by measuring the resistance between pads 1 and 3 and

between pads 4 and 6. Because all four junctions have nominally the same area 50 x 50nm2,

these two resistances should have the same value. This checking procedure is why the

box measurement was carried on a parallel combination of two junctions instead of one:

immediately after the junction resistance check, pads 1 and 3 were connected together

using a strip of silver paint. At room temperature, the resistance of the SET transistor

was found to be 460 kO and that of the electrometer 450 kO. At 4 K the total resistance

of the electrometer was 620 kO.

The variations of I with U (see Fig. 4.9) are a superposition of a small-amplitude

short-period sawtooth modulation and a large-amplitude large-period modulation. We

attribute the slower modulation to a small cross-talk capacitance between pads 2 and m:

assuming that the period of this modulation was e/C2m , we deduced C2m ~ 9 aF, in good

agreement with our estime from a C2D calculation, which was 8 aF. A small correcting
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Fig. 4.7 (a) Schematic representation of the experimental set up. An electron

box with two junctions iFl parallel is coupled to the SET transistor used as

an electrometer. (b) Electron beam lithography implementation of the circuit

shown in (a). Superfluous electrodes (see Fig. 4.8) resulting from the use of

the shadow evaporation technique have been omitted for clarity.

65



Fig. 4.8 SEM photograph of the single electron box coupled to the SET tran

sistor. The black bar corresponds to 1 j.LID. Superfluous electrodes, which are

artifacts of the shadow mask evaporation technique, are visible. The different

contrasts correspond to different metal thicknesses.
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Fig. 4.9 Electrometer current I versus electron box voltage U at 20 mK. The

curve is clipped near U = 0 because one aiienuator in the U line filtering sys

tem became superconductinq at the lowest temperature when too little current

flowed through it.
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voltage equal to (C2m/CO)U was superimposed on Uo to compensate for the modulation

of I due to this cross-talk. By polarizing the electrometer with Uo at a point of maximal

slope (dI/dUo) (see Fig. 4.6), we obtained the largest electrometer gain. Furthermore, in

order to get rid of low frequency noise, we then used a lock-in amplifier with a 1 KHz,

40}.LV modulation on the U input (corresponding to a e/50 modulation of the polarization

charge Q) and recorded the variations of dI/dU as a function of U. Very sharp peaks

appear that correspond each to an increase of the charge of the island b by one electron.

The resulting curve at 20 mK is shown in Fig. 4.10. After integration, we finally arrived at

the genuine variations of (Q) versus Q (Fig. 4.11). The calibration of the horizontal axis

involves the value of C8 while the calibration of the vertical axis involves both the values

of the ratio Cc/C and a prior calibration of the electrometer using the voltage Uo and the

capacitance Co. Assuming that the periodicity of the sawtooth variations is f, we found

C8 = 85 ± 1aF, Cc = 74 ± 1aF, which are close to the expected values. Since the scan took

50 s per oscillations, the SET current through the junctions was 3 10-2 1A.

Given the signal to noise ratio of the charge variations, this indicates that the leakage

current from island b and its offset charge drift was at least one order of magnitude less than

this value. Note that the downward variations of (Q) , which should be relatively sharp

at 20 mK, look rounded when compared with the theoretical prediction of Eq. (4.1.1)

and (4.1.3) (dashed line in Fig. 4.11). In order to investigate this rounding we performed

measurements at various temperatures. The results at different temperatures are shown in

Fig. 4.12 (solid lines) where we also show for comparison the predictions of Eq. (4.1.1) and

(1.3.2) (dashed lines). Since the electrometer gain is temperature dependent, a calibration

was performed at every temperature. Although the experimental results are in agreement

with the theoretical predictions above 100 mK, there is a discrepancy at lower temperatures

between the thermometer temperature and the temperature that would fit the data. At

20 mK this discrepancy is 40 mK. 25 % of this discrepancy can be explained as due to

the back action noise induced by electrometer on the box island, which we have calculated

at finite temperature using numerical simulations. Parasitic rf signals on the Uo and U

lines could induce a broadening of the charge variations, although checks were performed

to ensure that the direct influence of the background noise in the laboratory had no effect.
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A further contribution could come from quantum fluctuations of the electron number n. It

has been assumed so far that n is a classical variable, since the junctions tunnel resistance

is much greater than the resistance quantum RK. The quantum calculation of the average

junction charge (Q) calculated with second order perturbations (i.e. taking into account

the fluctuations n --+ n + 1 and n --+ n - 1) gives

Quantitatively, this correction does not explain the rounding observed in the experiment,

but the expression diverges logarithmically when Q = ej2 where one expects (Q) = 0 by

symmetry: a non-perturbative calculation is clearly needed.

We also performed experiments in the superconducting case, by suppressing the mag

netic field which was applied to bring the sample in the normal case. In the superconducting

case, the optimum electrometer gain is located at the superconducting gap. The result

of the measurement of (Q) versus Q are plotted in Fig. 4.11 (solid curve labeled "8");

the improved signal-to-noise ratio in the superconducting case originates from the larger

electrometer gain. The sawtooth variations of (Q) with Qcorrespond as in the normal

case to charges of value e tunneling through the junctions. The small value of the cur

rent (3 10-21 A) through the junctions of the box implies that the e-periodicity of the

variations of (Q) could be due to the presence of only one quasiparticle in the island.
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Fig. 4.10 Lock-in signal as a function of electron box voltage V, in the presence

of a correcting signal superimposed on the de value of Vo. The temperature is

20 mK. Each peak is associated with the charge of the island b (see Fig. 4. 5)

increasing by one electron.
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Fig. 4.11 Charge variations on the [unction in the normal state (N) and in

the supercondueting state (8) at 20 mK. For clarity, the curve labeled 8 has

been shifted vertically.
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temperatures, plotted in units of e; dashed lines: theoretical predictions of

Eq.4.1.1.
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A possible extension of this experiment would be to measure single tunnel events of

electrons in the normal case or Cooper pairs in the superconducting case using two or

more junctions in series instead of one. Indeed, the present experiment measures only

the thermodynamic expectation (Q) of Q, as explained in section 4.1, and single elctron

tunneling events are not resolved: the tunneling from one state to one next was very fast

compared to the frequency of the U sweep. By"closing" the electron box with more

junctions, the transitions would be radically slowed down because at the threshold U =

ej2Co an electron charge can enter the box only by a co-tunneling through all the junctions

(see appendix 3). This process is of higher order in the perturbation theory than the

tunneling through one junction, and its rate is be much lower. We estimate that a box

locked by four junctions would let the electron out at a rate close to 1 Hz, which is slow

enough for individual events to be resolved.
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5. CONTROLLED TRANSFER

OF SINGLE CHARGES

In the electron box, single charges are moved in and out of the island in a controlled

way. However, in order to transfer single charges through a device, the "in" and "out"

ports must be different. In the SET transistor, a gate controls the current through two

voltage biased junctions. At low bias voltages and low temperatures, we have shown that

the number of extra electrons in the island between the junctions was either constant or

oscillating between two successive integers, depending on the value of the gate voltage

Uo : a tunnel event through one junction is always followed by a tunnel event through

the other one, resulting in a de current. Thus, in a certain sense, electrons flow through

the electrometer one by one, but the control provided by the gate is only a control of the

rates, not of the time at which the transfer of each electron occurs through the device. In

order to control this time, the electron must be trapped and then released in a controlled

fashion.

To understand how this can be done, we have to generalize the concept of the Coulomb

blockade that we developed in chapter 1 for the electron box to the more general case of

a linear array of junctions. In a linear array of N junctions of capacitance 0, such as

those of Fig. S.la and Fig. S.lDa, an integer number of extra electrons will sit on each

metallic island between two junctions. We call these numbers {nil = (nbn2, ...,nN-l)

the electrostatic "configuration" of the device (Urbina et al., 1991). Two configurations

are called neighbours if one can be reached from the other by a single tunnel event on

one junction of the array. For a given set of gate voltages, with a V across the array set

to zero, particular configurations {nil exist for which the energy of all its neighbours is

higher by an amount of the order of e2 / 20 . If the junctions are small enough, this energy

is much higher than the characteristic energy of thermal fluctuations. Tunneling is then

blocked in all of the junctions, and the circuit is trapped in a configuration {nil, hereafter

referred to as a "stable configuration". When the gate voltages are now changed, the

configuration will remain stable until the charge of one of the junctions reaches its critical

value. Then the circuit may move to a new stable configuration by undergoing one or
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more tunnel events. Charges can thus be transferred in a controlled way by modulating

the gate voltages along a trajectory of configuration space so as to follow a sequence of

stable configurations.

We have designed and operated two types of circuits, which we called "turnstiles" and

"pumps", for which there exist a sequence of stable configurations.

In the turnstile (Fig. 5.1), a gate is connected to the central island of a linear array

biased below the Coulomb gap. The charge of each junction is therefore below its critical

charge. By then decreasing the gate voltage, the charge on the junctions on the left arm

of the gate is increased to their critical charge. A cascade of tunnel events in the left arm

transfers then a charge +e to the central island. When the gate voltage is then increased,

the charge +e escapes from the island through the right arm. In the turnstile, the electron

transfer is irreversible because the electrons are transferred in the direction imposed by

the bias voltage: it is impossible to force the electrons against the bias voltage with only

a single gate.

The pump (Fig. 5.10), as opposed to the turnstile, is however a reversible device. It

can be operated with zero bias voltage. A charge e is taken from the leftmost electrode

to the left island by decreasing the left gate voltage; the electron is then transferred from

the left island to the right island by increasing the first gate voltage while decreasing the

second one; finally it is transferred from the right island to the rightmost electrode by

increasing the second gate voltage. The circuit being driven from one stable configuration

to a neighbouring stable configuration, the transport is adiabatic. The modulation of the

gates in the opposite sequence transfers the charge in the opposite direction. In practice

two phase-shifted sinusoidal signals are used, and one electron is "pumped" per cycle

through the device.

In both the turnstile and the pump, the current generated by the repetition of

the transfer sequence at a frequency I is equal to e], where e ~ 1.6022 10-19 C ,...,

0.16022 fA/MHz.

In the following we describe the detailed operation of the turnstile and of the pump, so

as to demonstrate their "generic" nature (generic in the sense that they transfer electrons
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one by one, irrespectively of the precise value of the capacitances and tunnel resistances

of the junctions, as well as the precise values of the driving voltages) and why they are

"minimal" (no simpler devices could achieve the same type of control of individual charge

carriers).

5.1. THE TURNSTILE

5.1.1. Operation principle

The turnstile (Fig. 5.1a) is a two-arm, one gate device like the SET transistor, but in

which the electrons enter and leave the center at two different values of the gate voltage

U. This separation of the entrance and the exit voltages is obtained by placing at least

two junctions in each arm the device. In the same way as a SET transistor can be viewed

as a single electron box with separate "in" and "out" lines, a turnstile can be viewed as a

"single electron trap" with separate" in" and" out" lines.

The single electron trap

The single electron trap (Fig. 5.2) consists of two tunnel junctions of capacitance C

biased by a voltage source U through a capacitor Cs' This circuit cannot accommodate

any extra electrons on the island between the two junctions (one junction charge would be

larger than e/2 which is always larger than the critical charge). Thus, a stable configuration

has no extra electron in the island between the junctions and n extra electrons on the island

connected to the capacitor Cs' For Q = CsU = 0, n = 0 is the stable configuration. When

Q is increased from zero, n = 0 becomes unstable at the point wherethe charges of each

junction Q = (C/(2C + Cs))Q reaches the critical charge Qc = (e/2)(1 - Cs/(2Cs + C)),

i.e. when Q/e = 1/2 + Cs/2C. The trap switches then to the configuration n = 1 by

undergoing two tunnel events. If Q is then decreased, the configuration n = 1 becomes

unstable when Q = (C/(2Cs + C))(Q + e), which is less than or equal to zero, reaches

-Qc, i.e. when Q/e = 1/2 - Cs/2C. The electron trap is therefore bistable for Q/e E

[1/2 - Cs/2C, 1/2 + Cs/2C] . This bistability is due to the energy barrier between stable

configurations due to the charging energy of the intermediate island. In consequence of
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Fig. 5.1 (a) Single electron turnstile schematic. The device consists of four

tunnel junctions and one gate. The number of extra electrons in the central

island is denoted by n. (b) Turnstile stability diagram in the (U,V) plane

for the particular capacitance ratio in (a). For example n = 1 is locally stable

when the voltages parameters are inside the dashed line square. One cycle

along the trajectory shown transfers one electron across the device in the

direction imposed by V.
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Fig. 5.2 (a) Single electron trap. Two Junctions in series are biased through

a true capacitance. No electrons can be stored in the island between the two

Junctions. The stable configurations are described by the number n of extra

electrons on the leftmost island. (b) Stable configurations of the trap as a

function of Q= C,U. For certain ranges of Q there exists two locally stable

configurations.
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Fig. 5.3 Locally stable configurations of the turnstile with gate capacitance

C/2 (cf. Fig. 5.1) with respect to tunneling through the left arm only (top

pannel}, through the right arm only (middle pannel] and both (bottom pan

nell. The shift between the two upper curves corresponds to a bias voltage

V = e/3C. One cycle along the trajeetoru shown transfers one electron across

the device.

79



this bistability, the turnstile is hysteretic, irreversible and dissipative.

Stability of the configurations of the turnstile

We now analyze the behaviour of the turnstile of Fig. 5.1a with the numbers n t. and

nR of extra electrons on the central island that would minimize the electrostatic energy if

tunneling was allowed only through the left arm (the right junction), the right one (the

left one) behaving like a true capacitor. If we assume that tunneling occur through one

arm, the turnstile can be viewed as a trap, voltage biased by U/2 ± V /4 through C8 = C.

We define Q = CU/2. The numbers ndQ) and nR(Q) are therefore identical bivalued

functions of Q, shifted from one another by CV/2 (Fig. 5.3). If Qis increased from zero,

the configuration n = 0 becomes first unstable to transfer across the left arm: one electron

enters the island through the left arm, and n = 1 is the new stable configuration. If Q is

then decreased, n = 1 becomes unstable relative to tunneling through the right arm: the

electron leaves the island through the right arm and n = 0 is the new configuration. This

state differs from the initial one: overall one electron went through the turnstile from left

to right. In short, one electron is transferred through the device, by sweeping Q over one

hysteresis region. In the same way, N electrons are transferred when Q is modulated back

and forth over N hysteresis regions: the island first stores N electrons coming through the

left arm and then empties itself through the right arm. Note that if Q is modulated with

an amplitude N e, the number of hysteresis regions encircled is N or N - 1, depending on

the central value of the modulation.

Direct description of the turnstile with its stability diagram

The hysteresis of the turnstile can also be deduced from the stability diagram of its

configurations (Fig. 5.1b). Different stability domains overlap in the (U, V) plane, which

means that the turnstile is hysteretic. A cut of the stability diagram at a given bias voltage

corresponds to the preceding description (Fig. 5.3). Therefore a modulation of U like the

one depicted in Fig. 5.1b is the same as the one depicted in Fig. 5.3: it transfers one

electron per cycle.
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Fig. 5.4 SEM photograph of a 2+2 junction turnstile. The central island is

larger than the islands of the arms in order to have a large gate capacitance.

The cross in the upper right corner of the picture was used for alignment

between two magnifications. This device was fabricated before we developped

a good understanding of two dimensional electrostatics (see section 3.2.1):

no interdigitated capacitors were used, and the guarding scheme was far from

being optimal.
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5.1.2. Controlled transfer of single electrons one by one in 2+2 junction turn

stiles

We performed experiments with turnstiles consisting of two or three tunnel junctions

in each arm. Paper 2 reports the operation of a 2 + 2 turnstile fabricated in Delft. We

report here results on another 2 + 2 turnstile fabricated in Saclay.

A SEM photograph of the 2+ 2 turnstile fabricated in Saclay is shown in Fig. 5.4. The

gate line is coupled to the central island with a large capacitance. Two other gate lines

couple weakly to the islands in the arms. They are meant to correct the offset charges

(Likharev, 1988) appearing on those islands when the sample is cooled down. Offset

charges reduce the charging energy of the intermediate state, which diminishes the width

of the hysteretic regions. Only de voltages are applied to these correcting gates.

The parameters of the turnstile

The four junctions of the turnstile were identical. We call RT and C the tunnel

resistance and the capacitance of one junction. We deduced R T and C from the I - V

characteristic at medium scale: the slope of the asymptotes gave roughly the total tunnel

resistance of the device: 4RT ~ 2.16 MO, so RT ~ 540 kf]. The offset of 980 p,V between

the two linear sections of the I - V characteristic at positive and negative voltage should

be equal to 3 x efO, which gives C = 0.54 fF.

We measured the dependance of the current on the gate voltage when the turnstile

is polarized over the Coulomb gap. From the period efO, of this modulation we deduced

Cs = 0.14 fF.

The transfer of electrons

We measured the current through the device as a function of the de value U of the gate

voltage, and also while superposing to U an alternating vtage of frequency f = 3 MHz,

and amplitude near e j Ce- These measurements are the two lowest curve of Fig. 5.5. With

rf, the current oscillates between zero and e], A current of e] is obtained for the values of
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Fig. 5.5 Current I through the turnstile as a function of the gate voltage U.

The bias voltage V = 100 J.LV is below the Coulomb gap. The current of the

lowest curve is due to co-tunneling through all the junctions of the. turnstile.

The other curves were obtained by superimposing on the dc value of U a

rf voltage at f = 3 MHz with peak-to-peak amplitudes that were multiples of

2ejC. The dashed lines indicate the current at multiples of ef ~ 0.48 pA. This

figure was obtained from a photograph of the screen of a storage oscilloscope.
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U for which the alternating voltage sweeps over a complete hysteresis region. For example

with a peak to peak amplitude of 2ejGs, a trajectory centered at U = ej2Gs encircles

one hysteresis region, and the current is e] whereas a trajectory centered at U = efC;

encircles two hysteresis regions, and the current is 2ef (see Fig. 5.3).

We repeated this measurement with peak to peak amplitudes of the alternative voltage

proportional to ejGs (Fig. 5.5). As the de gate voltage is swept, the current oscillates

between two values. These two values are well given by two successive multiples of ef.

They correspond to the number of hysteresis regions encircled by a trajectory of constant

amplitude.

We measured the current voltage characteristics with the de gate voltage set near

ej2Gs according to the interpretation of the current versus gate voltage measurement,

and a rf voltage of amplitude around ejGs peak to peak at frequencies between 1 and

10 MHz. The characteristics exhibit plateaus of constant current whose height depend on

the frequency (see Fig. 5.6). In Fig. 5.7, we plot the current measured at the inflexion

points as a function of frequency. The current obeys the relation I = ef within the

experimental accuracy, which was around one percent.

5.1.3. Deviations from the ideal 1= ef behaviour

Whereas one would expect from the description of section 5.1.1 to find perfectly flat

plateaus at I = e], the experimental plateaus are not. The rounding of the plateaus is

attributed to various "error" mechanisms that either cause missed cycles or parasitic tun

neling events. Some of these errors can be explained within the "global rules" : parasitics

events occur due to a non-zero bath temperature; some events are lost because the op

eration frequency is not negligible compared to the characteristic frequency of tunneling

(RTG)-l. Other error sources are due to more complex processes: electrons get hotter

than the phonons due to the weak electron-phonon coupling, and co-tunneling makes it

possible for electrons to take paths other thann the desired ones. Another error source is

the cross-talk between the central gate and the lateral islands that slightly modulates the

energy barrier for tunneling across the two arms.
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Fig. 5.6 I - V characteristic of the turnstile without rf on the gate (dashed

line) and with rf at f = 1, 2, 3, 4, 5, 6 MHz (solid lines, from bottom to top).

Equally spaced plateaus can be observed. Their rounding is more pronounced

at higher frequencies.
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Fig. 5.7 Current at the inflexion point of the plateau of the I - V character

istic as a function of the rf frequency f (open dots). The solid line indicates

1= ef.
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5.1.3.1. Effect of the temperature

According to the global rules (Eq. 2.3.4), at zero temperature the tunneling rate

through a junction is zero when its charge Q is below its critical charge Qc. This is not the

case at finite temperature. In particular, if kBT « I~EI, where ~E = (eIG)(Q - Qc),

r ~ e2~T ~E (1 + exp (~~:)) if ~E ~ 0
r ~ e2~T I~Elexp (-~::I) if ~E::; 0

It results in an imperfect blockade of tunneling. The consequences for the operation of

the turnstile operation are i) a finite current flows below the Coulomb gap ; ii) there is

a non-zero probability for one electron to enter the central island through the "wrong"

arm. We measured the temperature dependence of the current-voltage characteristic of a

turnstile (see Fig. 5.8), which clearly demonstrated the rounding of the plateau induced

by an increase of the temperature.

5.1.3.2. Effect of the operation frequency

The characteristic frequency scale for tunnel events is (RTG) -1. If the operation

frequency is not small compared to this characteristic frequency, some tunnel events will

not have enough time to occur.

More precisely, in the turnstile operation, the charge of each junction varies in a pe

riodic fashion with a typical amplitude Qc, and the tunneling rates are of the order of

(RTC)-l(Qcle). If the operation frequency is not low enough compared to the frequency

(RTC)-l(Qcle), some tunnel events will be missed during the cycle because of the stochas

tic nature of the tunnel process. Consider for simplicity a square modulation of the gate

voltage with mean value U = efO, with a peak to peak amplitude of etc, at the bias

voltage V = e13G. Then when n = 0 and U = el O, the charge on a junction of the right

arm is Q = 5e/12. Since Qc = e13, an electron is expected to tunnel through this arm

inside the island. The probability for this event not to occur during a half-eycle of U is:

POI = exp ( - [/2/ r(t) dt) = exp (- 24f~TG)
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Fig. 5.8 Temperature dependence of the I - V characteristic of the turn

stile without rf (dashed line) and with rf (solid line) at f = 5.05 MHz; dotted

line corresponds to 1= ef ~ 0.81 pA : (a) T = 20 mKj (b) T = 36 mKj (c)

T = 103 mK.
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Hence, the probability of missing a cycle is 10-2 for f RTG = 10-2 and 10-18 for f RTG =
10-3

• This effect is much more sensitive when using a sinusoidal modulation of U, since

for most of the cycle the tunneling rate is lower than with a square-wave modulation.

We measured the I - V s at different frequencies between 1 and lOMHz. Figure 5.6

shows examples between 1 and 6 MHz. These characteristics clearly illustrate the rounding

of the plateau with increasing frequency.

5.1.3.3. Hot electron effects

The turnstile operation is based on the existence of metastable configurations. When

a tunnel event occurs, the difference of electrostatic energy is converted in kinetic energy

of the tunneling electron. A change of stable configuration of the turnstile is obtained by

the tunneling of an electron through one arm, i.e. at least two junctions. Even if the first

tunnel event occurs at the threshold Qc, the second tunnel event will occur well above the

threshold and the energy at least equal to ~E = e2 / 3G will be transformed into kinetic

energy. The energy e2 /Gcorresponds in our experiment to a temperature of 1.1 K. The hot

electron is scattered both by the other electrons and by the phonons, and it thermalises

through these two channels (Fig. 5.9). The coupling of the electron gas to the phonon

gas can be very small at low temperatures, as demonstrated by Roukes et al. (1985)

and Wellstood (1988), so the temperature of the electrons can be different to the phonon

temperature when heated by hot electrons.In the following we evaluate quantitatively the

effect of the heating of the electron gas by the tunneling electrons. The input power

provided by the tunneling electrons at frequency f in the operation of the turnstile heats

the electron gas. In order to estimate the equilibrium electron gas temperature Ts ; we

follow Wellstood and write:

where:

i) n is the volume of metal

ii) E is a coupling constant given by E ~ 0.5240:*1' where we call 0:* the thermally averaged

electron-phonon scattering constant and I' the ratio of the electronic heat capacity per unit
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power

Fig. 5.9 Heating of the electron gas during the turnstile operation. The energy

of the tunneling electrons is redistributed within the electron gas. The finite

power flow between the electron gas and the phonon gas, characterized by the

parameter E, causes the two temperatures T e and Tph to differ.
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volume and the electron gas temperature: 1 = Gel/Te. 0:* is itself given by

with €(3) ~ 1.202; s is the velocity of sound is the metal; M5 = (n/2J.Ls)(2fF/3)2; J.L is its

mass density; fF is its Fermi energy. Using the parameters for aluminium (Kittel, 1963):

fF = 11.63 eV; J.L = 2.7103 kg/m3; s = 3040 m/s; 1Mole = 9.12 1O-4 J / (mol.K2
) we found

finally ~Al ~ 3.8.109 W/(K5.m3). Similar evaluations for copper, silver and gold-copper

lead to values of ~ roughly half those obtained in experiments (Wellstood, 1988).

The total volume of all the metallic islands in our device is n ~ 10-19 m". The power

dissipated per cycle in all the islands is roughly P ~ 2(e2/3G)1 (the factor of 2 accounts

for the two tunnel events occuring during one cycle: the first one when the electron enters

the island, the second one when it leaves it). Assuming that the phonon bath temperature

is 20 mK, the electron gas temperature is therefore given by

2 2 1/5

T ~ ( ic1 + (20.10-3)5)
e 3.8 10-10

With G = 0.5 fF we find:

( )
1/ 5

Te[mK] ~ 20 1 + 30/[MHz]

At 1 = 1 MHz this leads to T; ~ 40 mK, and at 1 = 10 MHz to T; ~ 60 mK. This values

corresponds to the temperature we had to introduce in the simulations of the current

voltage characteristics to account for the experimental results of paper 2.

5.1.3.4. Effect of co-tunneling

As the operation of the turnstile is based on the use of metastable states, co-tunneling

events may degrade the regularity. Two types of effects result from co-tunneling: some give

an increase in the current, others a decrease. First, the entrance of an electron onto the

island can occur by co-tunneling through the wrong arm: this decreases the net current.

Second, when the electron has entered the island, it can leave it by co-tunneling for certain
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combinations of V and U while another one replaces it: two electrons will have been

transferred during the cycle. Similar errors can occur in the second part of the cycle.

However, the tunnel resistance of the devices we used were high enough so that the

largest errors were due to thermal fluctuations. Nevertheless, for the design of a turnstile

for metrological applications, those processes should be taken into account when estimating

the precision.
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5.2. THE PUMP

The pump consists of three junctions with capacitances G, G' and G", and two gates

whose capacitances G1 and G2 are much smaller than the junction capacitances (see

Fig. 5.10a). By modulating both gate voltages, an electron can be driven from island

to island in a reversible way.

5.2.1. Controlled transfer of electrons one by one in a 3-junction pump

The bias voltage and the two voltages applied to the gate capacitors are denoted by V,

U1 and U2. The configuration of the circuit is given by the island integer charges (nl' n2)'

Figure 5.10b shows, for V = °and G = G' = G", the stability domains of the

different couples (nl' n2) in the G1U1 ®G2U2 plane. These domains are elongated hexagons

and tile the plane to form a lattice with quadratic symmetry, the periods being e along

both axes. Neighbouring domains in parameter space correspond to nearest neighbours in

configuration space. The boundaries of three mutual neighbouring domains share a triple

point: for example, point P of Fig. 5.10b is shared by domains (0,0), (1,0) and (0,1). The

pumping of electron is based on this topological property, and does not depend on the

precise values of the capacitances. Note that there are two triple points per unit cell of the

quadratic lattice [see points P and Q in Fig. 5.lOb]. Every neighbour of a "P type" triple

point is a "Q type" triple point and vice versa. At finite bias voltage V, the honeycomb

pattern of Fig. 5.10b is distorted: the triple points are replaced by triangle-shaped regions,

inside which no stable configurations can exist and where conduction thus takes place

(Fig. 5.11). The size of these regions increases linearly with the bias voltage.

The pump is operated by first applying dc voltages to the gates so as to place the

circuit in the vicinity of a triple point. The bias voltage is kept well below the Coulomb gap

voltage e/3C. Two periodic signals with the same frequency f but dephased by ~ "'" 11"/2

are then superimposed on the gate voltages. The circuit thus follows a closed trajectory

like the circle shown around point P in Fig 5.10b. The frequency is chosen low enough

[f ~ (RC)-1] to let the system adiabatically follow its ground state, which changes along
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Fig. 5.10 (a) Electron pump. The stable configurations are given by the num

bers TIl and TI2 of extra electrons on the two islands. Since the gate capaci

tances C I and C2 are much smaller than the capacitance C of the junctions,

the gates provide a quasi charge bias of the islands. I denotes the current

through the pump. A bias voltage V can be applied, but is not necessary for

the pumping of electrons. (b) Stability diagram of the configurations TIl, TI2

of the pump at zero bias voltage as a function of the bias charges C I Uland

C2 U2 • A closed trajectory around point P, such as the one shown, transfers

one electron per cycle through the pump (see Fig. 5.1B). The direction of the

transfer depends only on the direction of the rotation.
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Fig. 5.11 Stability diagram of the configurations nil n2 of the pump at finite

(positive) bias voltage V. The pump conducts in the grey triangular regions,

where no configuration is stable.
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the trajectory. In Fig. 5.12 we shown both the trajectory in configuration space and

the corresponding sequence of states in the real space. Suppose that the initial island

configuration is (0,0) and that the trajectory is followed counterclockwise. The circuit

goes first from (0,0) to (1,0) by letting one electron tunnel through the leftmost junction.

Then the island configuration changes to (0,1) when one electron goes through the central

junction. Finally, the system returns to its initial island configuration (0,0) by letting one

electron out through the rightmost junction. In a complete cycle one electron is transferred

from left to right. If the sense of rotation in parameter space is reversed, in practice by

adding 1r to the phase shift ~, the electron transfer will take place in the opposite direction.

Note also that the same original positive rotation around a "Q type" triple point produces

a transfer from right to left. In summary, these geometrical considerations show that for

zero bias voltage V, two rf gate voltages induce a current I = ef to flow through the

circuit, provided the de gate voltages are set in the vicinity of a triple point. The direction

of current is solely determined by the phase shift and the type of triple point.

As the voltage V is increased, electrons can still be pumped provided that the tra

jectory followed in parameter space encloses the conduction regions. Note that this can

occur even if V and I have opposit signs. Numerical simulations have shown that regular

electron transfers can persist up to one-fifth of the Coulomb gap voltage for an optimal rf

amplitude. Coherent simultaneous tunnel events (co-tunneling) on two junctions, which

provide the mechanism for transitions between next nearest neighbour configurations, are

expected to slightly degrade the pump regularity. The same type of operation should in

principle lead to the pumping of Cooper pairs, with a current I = 2ef, provided the de

vice is in an ideal superconducting state with no quasi-particles present. By contrast, the

principle of the turnstile cannot directly be generalized to Cooper pairs since it involves

dissipative tunnel events. Finally, let us mention for completeness that a pump for nor

mal electrons based on an heterojunction structure and operating on a totally different

principle has been considered by Niu (Niu, 1990).
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Fig. 5.12: Principle of the operation of the pump in both gate voltages space

(a) and in real space (b). The circle trajectory in (a) is obtained by adding

two phase shifted rf voltages on top of the de value e/3C 1 (resp. e/3C2) of

gate voltage U 1 [resp. U2 ) . Each time the trajectory in gate voltage space

crosses a border between the stability regions of two configurations (a), the

configuration of the pump changes due to a tunnel event through one [unction

(b). Therefore a complete cycle around point P results in the transfer of one

charge e through the entire pump. A rotation in the same direction around

point Q would transfer one electron per cycle in the opposite direction.
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Fig. 5.13 SEM photograph of a pump. The two guarded gate lines couple to

the pump islands with interdiqitated lines. The Junctions of the pump are

located at the overlap between the shifted films near the center of the picture.

Two test Junctions are visible in the upper left and lower right corners of the

Image.
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Preliminary results on a pump in which the geometry of the gates was not optimized

to diminish the cross-talk were published (Pothier et al., 1991a). We report here measure

ments on an optimized pump with a total normal resistance of 380 kn. A SEM photograph

of the device is shown in Fig. 5.13. The average junction capacitance was estimated from

the Coulomb gap (Fig. 5.14) to be about 0.4 fF. In Fig. 5.15 we show the results of an

experiment in which the current through the array was recorded as the dc gate voltages

utc and vr were scanned. The bias voltage V was set to zero and two 0.3 mV amplitude

rf signals in quadrature at frequency f = 4 MHz were superimposed on the de gate volt

ages. In the top panel of Fig. 5.15 we show the result of a scan of vr. utc being kept

constant. This panel represents a cut though a current surface which is represented in the

bottom panel, the position of the cut being indicated by a dotted line. For clarity, we have

represented the current "hills" and "valleys" using the following convention: A white dot

means a positive current of between +0.8ef and +1.05ef (upper pair of dashed lines in top

panel), a black dot means a negative current of between -0.8ef and -1.05ef (lower pair of

dashed lines) and the absence of dots means a current between -0.8ef and +0.8ef. Apart

from a slight global deformation and an overall translation, the pattern of hills and valleys

reproduces the honeycomb pattern of Fig. 5.10b, a hill (valley) corresponding to a P-type

(Q-type) triple point. We attribute the slight deformation of this experimental honeycomb

pattern to the cross-capacitance Cx between islands and gates. We have calculated the

ground state diagram for arbitrary C1 , C2 , C«, (C +C")/C' and (C - C")/C'. The best fit

to the data is shown in the bottom panel of Fig. 5.15 and corresponds to C1 = 74 ± 2 aF,

C2 = 61±2 aF, Cx = 7±1 aF, (C+C")/C' = 2.1±.5 and (C-C")/C' = -0.3±0.06. In

the fitting, we have of course allowed an overall translation of the diagram corresponding

to arbitrary offset charges (Likharev, 1988) on the gate capacitors. Although these offset

charges were found constant on a time scale of a few hours, abrupt shifts of the pattern

on longer time intervals were often observed. The capacitances that we obtain from the fit

agree with the values estimated from the geometry of the nanolithographic mask. Fig. 5.16

shows the bias voltage dependence of the current at a "P type" triple point with f = 4 MHz

and for two phase shifts separated by 7l'; a plateau is observed near the center of the I-V

curve. The sign of the height of the plateau reverses abruptly as the phase shift between
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Fig. 5.14 I - V characteristic of the pump. The characteristic is not symet

rical because the two gate voltages were not zero.
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Fig. 5.15 Current through the device at zero bias voltage (V = 0) as a function

of the de gate voltages. Two in quadrature rf signals have been superposed

on the dc gate voltages. Amplitude and frequency of this rf gate modulation

were 0.3 mV and 4 MHz. In bottom panel, white (black) dots denote current

of between O.8ef and l.05ef (-l.05ef and -O.8ef). A typical measurement,

taken along the dashed line of the bottom panel, is shown in the top panel,

together with the lines 1= ±O.8ef and at I = ±l.05ef. Full lines represent the

calculated ground state diagram that best fits experimental data.
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Fig. 5.16 I - V characteristic with and without f = 4 MHz gate voltage mod

ulation around a "P-type" point (white point in Fig. 5.15). The U1 and U2 rf

amplitudes were respectively 1 mV and 0.6 mV. Dashed lines mark I = ±ef.

Full lines are fits calculated with the SETCAD program by taking co-tunneling

into account.
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Fig. 5.17 I - V characteristic of the pump operated at f = 3 MHz (curves

labeled 1), 6 MHz (curves labeled 2), 9 MHz (curves labeled 3) and 12 MHz

(curves labeled 4). The two curves at each frequency correspond to phase shifts

between gates differing by 1l".
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the rf voltages is varied continuously from +71" /2 to -71" /2. We also show for comparison the

I-V curve with no rf.

We have measured the I-V characteristics for various frequencies (see typical charac

teristics in Fig. 5.17) and measured the current at the inflexion point for various frequencies

between 2 and 20 MHz. As shown in Fig. 5.18, we find that this current satisfies the ex

pected relation 1= ef within the experimental uncertainty !::J.I = 0.05 pA.

The precision of the transfer in our 3-junction pump is not better than 1%. However,

we will see that the error sources are well understood, and that a better accuracy can be

obtained with a pump containing more junctions: the N -pump. The error sources of the

3-pump are going to be evaluated directly in the N-pump.

5.2.2. Operation principle of the N-pump

The N-pump consists of N junctions in series and N-1 gates attached to the islands

between them (Fig. 5.19) .. We call Oi the charge induced by the i-th gate voltage on the i

th island. The configuration of the circuit is given by the numbers (n1, n2, ...n N -1) of extra

electrons on the islands. Like the pump with 3 junctions, the N-pump operation is based

on a topological property of its configuration stability diagram: the N - 1 configurations

with one electron on one island have the same energy that the configuration with empty

islands when Oi = e]N on all the gates. This point is called the multiple point.

The principle of the transfer

A trajectory in the vicinity of the multiple point crossing all the borders between

different stability regions once drives one electron successively across all the islands. One

electron charge is in the end transferred through the entire array. The direction of the

transfer is determined solely by the direction of the trajectory.

In practice, a simple way to transfer a single charge through the N-pump, is to apply

shifted triangle shaped pulses to the gates so that a potential well containing one electron

is propagated from one end of the array to the other (see Fig. 5.20).
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Fig. 5.18 Current at the inflexion points of the plateaus of the I - V charac

teristics of the pump as a function of the rf frequency. The full line represents

1= ef.

N

N-pump

Fig. 5.19 N-pump. A gate couples to each one of the N - 1 islands of the

linear array of N [unetione.
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5.2.3. Deviations from a regular transfer of single charges in a pump

5.2.3.1. Co-tunneling effects in the 3-junction pump

In Fig. 5.16 we show the detailed shape of the rf induced plateau (dots) compared with

the result of a finite temperature numerical simulation which takes into account coherent

simultaneous tunnel events on two junctions (full line). All parameters entering in this

calculation were chosen within the accuracy range of previous measurements, except the

value of the phase shift whose precise value was fitted since it had only been estimated by

rf measurements at room temperature. The extension of the plateau on either side of the

inflexion point is well explained by the double tunnel events. At the precision level of the

simulation which was 1 part in 103 , the tangent to the calculated curve at the inflexion

point is the I = ef line. We attribute the deviation between experiment and theory at

larger voltages as mostly due to higher order tunnel processes not taken into account by

the simulation, although it is possible that hot electron effects could also playa role.

5.2.3.2. Frequency dependence of the current at zero bias voltage

We now consider for a 3-junction pump the triangle-shaped trajectory in the (U, V)

plane shown in Fig. 5.21, which corresponds to the general gate modulation scheme for a

N pump for N = 3. We calculate the probability for one transition not to occur due to

the stochastic nature of tunneling.

Consider the transition (0,0) -+ (0,1). The tunneling rate through junction 1 is given

at zero temperature by:

r
1

= Q1 - Qc
eRrC

when Q1 > Qc, r 1 = 0 otherwise. We call x = (2Q1 - e) Ie. Then Q1 = (x + 1)e13 and

r 1 = xl(3RrC) when x > 0, 0 otherwise. The probability to miss the tunnel event is then

Using now x = 6f, we get P = exp (-1/(36RrCI)).
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Fig. 5.20 Signals on the three gate voltages VI, V 2 , V 3 of a 4-junction pump

which lead to the transfer of one electron. The electron follows the potential

well created by the gate voltages.

Fig. 5.21 Trajectory in the (V I' V 2) plane which corresponds to triangular

signals like in Fig. 5.20 applied to the gates of the 9-junction pump.
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N-pump

Fig. 5.22 Co-tunneling process leading to an error in the operation of the

N-pump: instead of one tunnel event through one junction (full line arrow),

N - 1 tunnel events occur coherently through all the other J'unction (dashed

line arrows). The net effect of this co-tunneling process is to transfer a charge

from right to left.
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This result can be readily generalized to the case of the N-junction pump, where

Ql = (x + l)Qc and x = 2Nft. We then get

P = exp (-(N - 1)/(8N2RTG1)),

With the parameters of the 3-junction-pump presented in section 5.2.1, the probability

to miss a transition during the whole cycle is

Pi« = 3 exp (-550/f [MHz]).

Therefore, the frequency limitation for a precision of 10-8 in the electron transfer at zero

bias voltage is 30 MHz. This is clearly not a dominant source of error in our pump. But

for a 5-junction pump that would have the same parameters,

Pi« = 5 exp(-395/f[MHz])

and a lower bound for the frequency limitation for a precision of 10-8 III the electron

transfer at zero bias voltage would be with the same parameters of junctions than in our

3-junction pump 20 MHz. However, this is a severe estimation because we considered only

the part of the cycle when the potential hill was in the neighbouring island.

5.2.3.3. Hot electron effects in the N-junction pump

The pump was designed as a device which could reversibly transfer single electrons.

When the pump is operated at very low frequency, each electron tunnels at the threshold

point, without energy dissipation, as opposed to the turnstile where the entrance of one

electron in the central island is obtained by at least one tunnel event well above the

threshold, even at zero frequency. However, when operated at higher frequency, the pump

is also dissipative: the transitions do not occur at the threshold where the rate is zero,

but at a slightly higher charge. We then expect the electron gas to be heated as in the

turnstile. We calculate this heating effect in this section.

We estimate the average power delivered to the electron gas P by "hot" electrons by

calculating at first the average junction charge at which the tunnel events occur:

p= ef (Q-Qc)
G
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With the notations of the last section, (Q - Qc) = (x) Qc and

and hence

(Q - Qc) ~ 0.54eJ(N - 1)1RTG

Note how close to the threshold the tunnel event occurs: for the parameters of the 3

junction pump presented here, RTG ~ (20 GHz)-l so at 1 = 10 MHz (Q - Qc) ~ 2 1O-2e.

Finally, one obtains
2

P ~ 0.54~ J(N -1) RTG 13
/

2

t; is determined using P= ~n (T: - T:h ) (Wellstood, 1988):

2 1/5

T. ( 0.54 eG J(N - 1) RTG )
_e rv 1 + 13/ 2

T p h - ~A1T:hn

Numerically, for Tp h = 20 mK and G = 0.4 fF, it gives

Te ~ (1 + 2VN _ 113/ 2) 1/ 5
Tp h

where 1 is in MHz. For N = 3 and Tph = 20 mK, it gives: at 1 = 1 MHz, T; ~ 26 mK; at

1 = 10 MHz, T; ~ 50 mK. At the same frequencies, T; would be only 2 mK higher in a

5-junction pump.

Therefore, electron overheating is reduced in the pump compared to the turnstile.

5.2.3.4. Co-tunneling rates in the N-pump operation

The simulations of section 5.2.3.1. for the 3-junetion pump indicate that co-tunneling

is the major cause for the rounding of the plateaus. Is it possible to decrease the probability

of co-tunneling events? As in the turnstile, the solution is to increase the number of

junctions. How many junctions are needed so as not to be limited by co-tunneling errors?
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This section attempts to answer this question by calculating an upper bound of the error

rate in a N-junction pump.

In the N-pump operation there are only two types of co-tunneling processes that affect

the ideal precision of the device. The first type is co-tunneling through the whole array.

It can be reduced quite radically by increasing the number of junctions of the device (see

Appendix 3). The second type is co-tunneling events through N-l junctions, occuring at

the same time as a single normal pump tunnel event (Fig. 5.22): when the bias charges of

two neighbouring islands are sweept so as to let one electron tunnel from one island to the

next one, the most probable tunnel event is through the junction between the two islands.

But another possible process is that N-l tunnel events in the opposite direction happen

coherently on all the other junctions. If all the succeeding transitions occur as desired, the

whole transfer cycle will not have transferred any electrons.

Calculation of the co-tunneling rate

The co-tunneling process considered here is the co-tunneling through N-l junctions

as shown in Fig. 5.22. We begin in the situation where one electron is on the k-th island

and has to be transferred to the (k+ l)-th island under the influence of the bias charges Qk

and Qk+l. We calculate the co-tunneling rate at zero bias voltage and zero temperature

along the lines of appendix 3.

Before any tunnel events, the charge Qo is the same on all the junctions (except the

k-th one), as Qk+l = e - Qk and one electron charges the k-th island:

Therefore the probability amplitude for each path (corresponding to one sequence of tunnel

events: see appendix 2) is equal. As in appendix 2, we call ~Q the increase of charge of

all the other tunnel junctions when an electron tunnels through one of them. We use the

global rules to calculate the change of electrostatic energy of the circuit associated with

the i-th virtual tunnel event,
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and substitute Qc = (e - !:lQ)/2 to get the electrostatic energy of the circuit after i virtual

tunnel events:

E, = ~i (e - 2Qo - i!:lQ).
2C

The direct transition and the co-tunneling transitions become possible at the same value

of Qk+l when V = 0 : Qk+l = e/2. We calculate the co-tunneling rate for qk+l E [O.5e, e].

We call x = (2Qk+l - e)/e. Then

2
E. > _e_i(N - 2 - i)
'-2NC '

and
N-3 (2 )N-3ne, ~ 2~C (N - 3)!2
1=1

Since
e2

EN-2 = NC(N - 2)(1- x)

and since the final energy reads

e2

EN-l = 2NC (N - 1)z,

we calculate an upper bound for the co-tunneling rate:

This expression is surprisingly independant on the tunneling resistance of the junc

tions. This is discussed at the end of the present section.

An artificial divergence occurs at x = 1 because the energy of the last intermediary

state is the same as that of the initial state. The rate is of course finite at this point where

the last virtual tunnel event becomes allowed in the first order perturbation theory in t 2 •

We get rid of this artificial divergence by limiting the range of x to O.ge in the integrals.

Calculation of the error rate

The dominant decay process of the state with the electron on the k-th island is single

tunneling to the state with the electron on the (k+l)-th island. The rate for this tunneling
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process is given by the global rules: since the energy difference between the initial and

the final state is EN -1 (at zero bias voltage, the final energy is the same whatever the

direction along with the electron was transferred), it reads:

r 211" e2 2 N - 1
1 = ---t x

Ii 2C N

The probability for this transition not to have occured at a certain value of x is:

(
[ X dX')

exp - 10 rI(x')7 .

The probability for the co-tunneling event to occur is therefore:

We call
1211" e2 2 N - 1

a = ----t± Ii 2C N

and
1 211" e2 2 N-l (N - 1)2N-l

f3 = ±h2C (t ) N(2N - 3)!(N _ 3)!2

The co-tunneling probability is then

t" x2N
-

3 (a)
Pc - t = f3 10 (1 _ x)2 exp -2"x

2
dx

In order to give a lower bound to the precision of the devices, we calculate a very rough

upper bound of the co-tunneling probability using (1 - x)-2 ~ 100 and J~·g(...)dx <

J; x2N-3e-x2 dx = IN. We then get

(
Ii 2C .) N-2 100(N _ 1)NNN-2

Pc- t ~ 211"~x (2N _ 3)!(N _ 3)!2 IN

The integrals IN are given by the recurrence relation

-1
IN = - + (N - 2)IN- 1

2e

and by 12 = (1 - 1/e)/2. If we call / the operation frequency of the turnstile, ± = 2N/.

Finally:

112



As noted before, this result does not depend on the tunneling resistance of the junc

tion: there is an exact compensation between the dependance of r 1 and of r N - 1 in RT •

Nevertheless, Rt was supposed to be much larger than RK , because we neglected higher

orders in the perturbation theory. Assuming Rt ~ RK, the only relevant parameters are

then the capacitance of the junction, the operation frequency and, of course, the number

of junctions in the device.

Numerically, Pc-t < f(N) (RKCf/7r2)N-2, where approximate values of f(N) are

given for some values of N in the following table:

5

5000

6

9000

The error rate is given by N Pc-to Co-tunneling causes tunneling events to happen in the

wrong direction: the error rate corresponds to a decrease of the current. At f = 1 MHz,

with C = 1 fF, (RKCf /7r2) ~ 2.5 10-6 so the co-tunneling rate per transition is smaller

than 10-8 with N = 4. With N = 5, the error rate for the whole cycle is smaller than

10-8 at all frequencies below 30 MHz.

In conclusion, we have calculated an upper limit of the error due to co-tunneling in

the N-pump operation at zero temperature and zero voltage. We find that this error is

very strongly reduced when the number of junctions is increased, and that a 5-junetion

pump could meet the requirements of metrological applications discussed in next section.
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5.3. SINGLE ELECTRON DEVICES AND METROLOGY

The turnstile and the pump operated until now are accurate with only a one percent

precision accuracy. Nevertheless, the realisation of a current standard has seriously been

considered by metrological laboratories of several countries (France, Germany, Holland,

USA). A second possible metrological application was pointed out by Williams and Mar

tinis: the precise measurement of the fine structure constant a. In this section, we discuss

the reasons of interest for these metrological applications. We then compare the expected

accuracy of turnstiles and pumps and discuss some possible new experiments using the

present state of the art of junction fabrication.

5.3.1. Transferring electrons one by one: what for?

The present definition of the ampere is defined by the Laplace force between two

infinite wires. This definition is not convenient to realize in practise, and metrologists

have adopted a representation of the ampere given by the combination of the quantum

Hall effect (von Klitzing, 1986) and the Josephson effect (Josephson, 1969): the volt is

represented by the voltage inducing an oscillation frequency of 483597.9 GHz in the ac

Josephson effect, and the ohm as one part in 25812.807 of the "von Klitzing" resistance

RK-90 (defined as the ratio of the Hall voltage and the current corresponding to the

plateau i = 1 in the quantum Hall effect). The question arises as to the consistency of

such a representation of the ampere. One way to check it is to close the "metrological

triangle" (Fig. 5.23) by comparing two currents: one obtained through the combination

of the Josephson effect and of the quantum Hall effect; the second directly obtained from

a single charge transferring device. Such a device could provide the missing link in the

triangle.

The second metrological application proposed by Williams and Martinis is a new

measurement of the fine structure constant a. This would allow an accurate comparison

between the predictions of Quantum Electrodynamic (QED) and the measurements for the

electron anomalous magnetic moment (g - 2). It would be achieved by measuring, with a

voltmeter calibrated with the ac Josephson effect, the voltage across a capacitor charged
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Fig. 5.23 The triangle of quantum metrology showing the relation between sin

gle electron tunneling effects and the two other macroscopic quantum effects:

the ac Josephson effect and the quantum Hall effect.

N/2 N/2

---ffi---rO}--
2C/Nc

N- turnstile

Fig. 5.24 N-turnstile. One gate couples to the central island of a linear array

of N junctions of capacitance C. The gate capacitance is 2C/N. The principle

of the operation is the same as a 2+2 turnstile. The larger the number of

junctions in each arm, the lower the co-tunneling rates.
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with a known number of electrons; the value of the capacitance would be compared to that

of a calculable capacitor (Shields et al., 1989) which is related to the vacuum impedance

Zvac. This measurement would be, with a known numerical factor, the ratio of (e/iI!o) and

(l/Zvac), which is 40'.

5.3.2. Is metrological accuracy achievable?

We accounted in sections 5.1.3 and 5.2.3 for the inaccuracy of turnstiles and pumps

due to finite electron temperature and to co-tunneling effects. In both cases, errors in

the transfer involve intermediate configurations of higher energy than the initial and final

configurations. Clearly, the more intermediate states and the higher their energies, the

fewer the errors. Since the energy barrier for the passage of a single charge across p

junctions is approximatly (p/4)( e2 /2C) (see appendix 3), the number of errors due to

the finite temperature will decrease as exp (-Ne2 /16Ck BT). The exponential factor for

thermal activation is also the reason why the combination of co-tunneling and thermal

activation is always negligible compared to co-tunneling alone. Therefore, the co-tunneling

constitutes the main limitation to the accuracy of our devices. As we saw in sections

5.1.3.4 and 5.2.3.4, N-turnstiles and N-pumps are quite different as far as co-tunneling is

concerned.

The N-turnstile:

The N-turnstile (Fig. 5.24) operates only at a finite bias voltage, of the order of half

the Coulomb gap voltage. Therefore, even at zero frequency, a current flows through the

whole device due to co-tunneling through the whole turnstile (see Appendix 3). This

current is given by erN. At V = e/4C, a current below 10-8 pA is achievable with N = 8

junctions.

The co-tunneling error sources during the transfer are of many different orders, de

pending on the bias voltage and the amplitude of the modulation. They have not yet been

calculated until now.
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The N-pump (Fig. 5.19):

We calculated in section 5.2.3.4 that the error in the transfer of single charges in a

five-junction pump could be made smaller than 10-8 . Moreover, the lower the operation

frequency is, the more precise the transfer becomes.

What experiments for metrology?

The realisation of a current standard faces many difficulties because of the smallness

of the currents (a few pA) obtained with our devices. The design of a current comparator

(Gutmann and Niemeyer, private communication) at this level would itself be a major

technological problem. Much hope has been put into the parallelization of our devices:

this approach is dual to the series combination of Josephson junctions forthe standard of

the volt. However, the problem of offset charges needs to be solved to make parallelization

achievable. Recent results by Delsing in the direction of offset charge suppression (Delsing

et al., 1991) are encouraging. A more direct way to obtain higher currents would be to

decrease the junction capacitances so as to speed up the operation. This is not only a

challenging technological problem, but raises also the problem of knowing how close to the

atomic dimensions the notion of capacitance will still be valid.

The measurement of the fine structure constant 0' by a new method seems more

feasible. The 5-pump seems to be precise enough for this measurement since an operation

frequency of 1 MHz would be enough to built up a voltage of 10 V on a 1 pF capacitance

within one minute. The pump would have the advantage that electrons can be pumped

in, then pumped out; the measurement of a zero voltage across the capacitor after a cycle

would ensure the absence of errors during the operation.

5.3.3. Conclusion

We demonstrated that given our state of knowledge on multi-junction devices, a precise

transfer of charge carriers should be achievable. This in turn, should allow to test the

consistency of an electrical system of units based only on macroscopic quantum effects and
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allow a new measurement of the fine structure constant a.
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6. CONCLUDING SUMMARY

Single electron effects were originally predicted to occur in current-biased small

capacitance tunnel junctions because of the large change of the electrostatic energy of the

junction when a single electron tunnels. In chapter 2, we showed that these effects were

very difficult to observe because, in practice, the biasing circuit induces zero point charge

fluctuations much larger than e on the junction capacitor. We evaluated quantitatively

this effect by calculating the electron tunneling rate through a small-capacitance junction

in a low-pass environment, i.e. in series with a de conducting impedance and a voltage

source. Only if this impedance is larger than the quantum of resistance RK = hie2 are the

charge fluctuations on the junction smaller than e. Then electrons can tunnel inelastically,

by exciting the environmental modes. The energy of the dominant inelastic channels are

around e2/2C; the tunneling rate is therefore reduced at voltages below the "Coulomb

gap" e/2C. This situation changes radically when a true capacitor or other junctions are

in series with the junction considered ("high-pass" environment): the circuit contains an

island connected to the rest of the circuit only through capacitors and tunnel junctions.

The charge of this island is quantized because it can change only when electrons tunnel

through the junction. Its charge fluctuations are therefore quenched, and the Coulomb

blockade of tunneling occurs without any high resistor in series.

The simplest circuit containing an island consists of one junction in series with a

true capacitor and a voltage source. We have called this circuit the "single electron box"

because it allows to control at the single electron level the charge of the island by changing

the value of the voltage. We have fabricated a single electron box in which the dimensions

of the junction were of the order of 0.1 usu. We have used a SET transistor, composed

of two tunnel junctions in series and a gate, as an ultra sensitive electrometer in order to

measure the charge of the junction, which was always below the electron charge e. The

variations of the junction charge as a function of the bias voltage were in good agreement

with the theory of the Coulomb blockade.

The single electron box is the building block for more complex devices with which we

have controlled the current one electron at a time. The first of these devices, nicknamed
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"turnstile", is based on an hysteretic version of the box, called the "trap", that contains

at least two junctions in series. The turnstile consists of a single gate coupled to the

central island of a linear array of 2N junctions (N ~ 2). The direction of the transfer is

determined by the sign of the bias voltage. We have operated two 4-junction turnstiles at

frequencies between 1 MHz and 20 MHz and observed plateaus on the I - V characteristics

at 1= ef with a 1% accuracy. The rounding of the plateaus was attributed to the heating

of the electron gas by the tunneling electrons and to co-tunneling. The second device

transferring electrons one by one is the "pump". It consists of a linear array of tunnel

junctions with a gate attached to each island. The electron is moved along the array by

shifting a potential well induced by the modulation of the gate voltages. The direction

of the transfer of electrons is only determined by the direction of the shift of this well.

No bias voltage is needed to transfer the charges. We operated a 3-junction pump where

the relation I = ef between the current I through the pump and the frequency f of the

modulation of the gates was also obeyed at the 1% precision level. The error sources of

the 3-junction pump are quantitatively explained, the main one being co-tunneling. The

same error sources should nevertheless allow a precision better than one part in 108 in a

5-junction pump. Metrological applications have already been considered: the realization

of a current standard with a pump or a turnstile faces the difficulty of the small value of

the currents, but a precise measurement of the fine structure constant a in an experiment

combining a pump and a calculable capacitor seems possible.

The devices we presented here were mainly operated with normal metal junctions.

Experiments in the superconducting state were also performed in order to manipulate

single Cooper pairs. We showed in chapter 4 that in the superconducting electron box the

period and the amplitude of the sawtooth modulation of the junction charge were the same

than in the normal case, whereas they should have been twice as large. In fact, the presence

of only one quasi-particle in the electrodes of the Josephson junction could explain that the

results were the same than in the normal state. Similar experiments with a "trap" instead

of a box are more promising because it could be possible to have a lower co-tunneling rate

for quasiparticles than for Cooper pairs. The realization of this project is in progress. We
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have also tried to transfer Cooper pairs one by one in a superconducting version of the

pump, and we saw plateaus close to I = 2ef (Geerligs et al., 1991). However, many details

of this experiment are not well understood at the moment. In fact the superconducting

case in many experiments is poorly understood (Geerligs et al., 1990b; Fulton et al., 1989).

Only the measurement of the influence of the environment on the tunneling of Cooper pairs

seem to agree with the theoretical predictions that are given in appendix 1 (Haviland et

al., 1991).

The experimental study of the influence of the environment on the tunneling rate

through a single junction focused much effort, both in the normal (Cleland et al., 1990)

and in the superconducting case (Haviland et al., 1991); the effort was put on junctions in

high impedance environments, which is technologically difficult to achieve because of the

low value of the vacuum impedance Zvac = 377 n. In chapter 2, we showed that even a low

impedance environment manifests itself, in the way the I - V characteristic approaches its

asymptote at large voltages.

Another extension of this work could be the study, both theoretical and experimental,

of the charging effects when the junction tunnel resistance is of the order or smaller than

the resistance quantum RK. A non-perturbative approach is needed when the expansion

parameter of the perturbation theory RKI(47r2RT) is not much smaller than one. In par

ticular, a very important question concerns the co-tunneling current at the Coulomb gap

of a SET transistor: how much does it increase when RT is lowered? The understanding

of this problem determines the ultimate sensitivity of the SET transistor used as an elec

trometer. It could be investigated experimentally in semiconductor devices, where tunnel

barriers can be modulated (Glattli et al., 1991; Kouwenhoven et al., 1991). Moreover,

semiconductor systems could make it also possible to investigate the interplay between

charging effects and other quantum effects, such as the Aharonov-Bohm effect (Beenakker

et al., 1991) or ballistic transport (Averin and Nazarov, 1990).
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APPENDIX l.

THE INCOHERENT COOPER PAIR TUNNELING RATE

The calculation of the quasi-particle tunneling rate in the normal state (2.2.28) can

be transposed to the case of incoherent Cooper pair tunneling in the superconducting case

(Averin et al., 1990; Falci et al., 1991). First, the tunnel hamiltonian H T is replaced by

the Josephson hamiltonian

(where EJ is the Josephson energy and S the superconducting phase difference between

the electrodes of the junction). This expression is similar to that of HT in (2.2.9") where

t --+ -EJ /2 and eCP In --+ S. As S is conjugate to a number of Cooper pairs this last

transformation is equivalent to e --+ 2e. If the temperature is well below the superconduct

ing transition temperature and if the bias voltage V is such that eV < 2A (where A is

the superconducting energy gap), the initial and final states are free from quasi-particles.

Therefore, we substitute in (2.2.15) E' = 2eV and E" = 0 and obtain for the tunneling

rate of for Cooper pairs:

where Ps(E) is the function P(E) calculated with the quantum of charge 2e instead of e.

It follows from relations (2.2.17), (2.2.18) and (2.2.21) that Ps(E) has the same expression

than the function P(E) but for an impedance Zt(w) four times larger. In other words,

P(t) = exp(J(t)) ; Ps(t) = exp(4J(t))

The superconducting current at zero temperature is given by Is = 2efar-

We therefore predict a simple relation between the second derivative of the current

voltage characteristic in the normal state and the current voltage characteristic in the

superconducting state below the superconducting gap (at zero temperature) since:
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and

hIs(Vo) _ P (2 TT)
E 2 - e s eyo

1r J

where IN and Is are the normal and superconducting currents. In particular, a sharp

Coulomb gap in the normal state should correspond to a current peak at twice the voltage

in the supercoducting case.

Very recently, the details of the I - V characteristic of small Josephson junctions in a

low pass high impedance environment were compared with the predictions of this theory

and a good agreement was found (Haviland et al., 1991).
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APPENDIX 2:

PUMP PATTERN FILE FOR THE SEM

We describe in this section a typical file used for the e-beam lithography with the

Scanning Electron Microscope. This file was used by the H P - 1000 computer to generate

the scan of the e-beam on a chip. It defines the pattern of a pump at the highest scale

(magnification x5000). The corresponding final device is shown in Fig. 5.13.

The file (Fig. A2.1) starts with the standard charge dose st expressed in pC I tut:
2

•

For the resist we use, the appropriate dose is around 2 pC Ip,m2
• The third and fourth

line define the magnification g and the SEM current i, expressed in pA. The setting of

those parameters is done on the microscope prior to each exposition step. The rest of

the file is the definition of the pattern itself. All the coordinates are given in uiu. The

origin of the coordinates system is the center of the field. The pattern is composed of

quadrilaterals, either rectangles, scanned horizontally (box) or vertically (boy) and defined

by the coordinates of their lower left corner and of their higher right corner, or trapezoidals

whose parallel sides are horizontal (trx) or vertical (try), and defined by the Y (resp.

X) coordinates of their parallel sides and by the X (resp. Y) coordinates of all the

corners. The definition of each type of quadrilateral is followed by a remark between

stars (e.g. * * «ile gauche * ** means left island). The next line contains the coordinates

of the quadrilateral considered: for the first one (a box), (-1.615 .07 .065 .17) means

that the coordinates of the lower left corner are (-1.615,0.07) in tun, and those of the

higher right corner are (0.065,0.17)). The last data of this line is the relative dose d for

this quadrilateral. The next line contains the steps dX, dY and the number of scans n

(see section 3.1.2). The first quadrilateral is the small left island of the pump: its dose

needs to be d = 2.3 higher than the standard dose st = 2 pAlp,m2
• Such a dose can be

obtained with dX = 2, dY = 1, n = 1. The optimal values for the relative doses were

obtained with test lines at different doses (like at the end of this pattern file, boxes after

* * «croix alignement * **).
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st ***pomps avec petites iles et capa .nterdigitees***

q , i
5000 13.

box ***ile qauche***
-1.615 .(l] .()65 .17 2.3
2 1 1
box ***ile droile***
-.065 -.17 1.615 -.07 2.3
2 1 1
boy ***doiqt ile galJche***
-1.3 .17 -1.2 1.57 2.3
2 1 1
boy ***doigt ile gauche***
-.4 . 17 -. :~, 1..57 2.:,
2 1
boy ***doigt ile droite***
.3 -1.57 .4 -.17 2.3
2 1 1
boy ***doigt ile droite***
1 ".' -1.57 1.:,:: --.17 2.3
2 1 1
box ***electrode gauche***
-6.2 -.17 -1.585 -.07 2.3
:;:' 1 1
box ***electrode droite***
1.585 .07 6.2 .17 2.3
:;:' 1 1
box ***ent~ee jonctions gauche***
-11.9 -.27 -6 .27 1.5
:: 2 1
box ***entr"ee jonctioflS droite***
6 -.27 11.9 .27 1.5
:2 2 1
boy ***piste gate gauche***
-.9 .47 -.7 8.5 2.
"221
boy ***piste gate droite***
.7 --8.5 .9 --.47 2.
221
box ***jonction test gauche***
--8.515 3.07 -7 3.17 2.3
:<: 1
box ***jonction test gauche***
-10 2.83 -8.485 2.93 2.3
2 1 1
box ***jonction test droite***
7 -3.17 8.565 -3.07 2.3
2 1 1
box ***jonction test droite***
8.435 -2.93 10 -2.83 2.3
2 1 1
boy ***contact tsst gauche***
-10 2.8 -9.5 8 1.5

boy ***contact test droite***
9.5 -8 10 -2.8 1.5
221
boy ***cor.tact test gauche***
-7.5 3 --7 8 1.5
221
boy ***contact test d~oite***

'7 -8 7.5 --.:, 1.5
2 ::~ 1
trK ***garde piste gate gauche***
-5 -2 6.8 '-5.5 -2.4 7.5 1.5
221
trK ***qarde piste gate gauche-**
.4 3.4 6.8 .8 3.9 7.5 1.5
221
boy ***garde piste gate gauche***
-2.1 3.5 -1.2 6.8 1.5
221

boy ***garde piste gate gauche***
--.4 3.5 .5 6.8 1.5

1
trK ***garde piste gate gauche***
-3.8 -2.1 5 -·5 -2.1 6.8 1.5
~:' ::.' 1
trK ***ga~de piste gate gauche***
.5 2.2 5 .5 3.4 6.8 1.5
221
trx ***ga~de piste gate droite***
2.4 5.5 -7.5 2 5 -6.8 1.5
221
trx ***garde piste gate droite***
-,3.9 -.8 -7.5 -3.4 -.4 -6.8 1.5
221
boy ***garde piste gate droite***
1 . 2 -6. 8 2. 1 --3. 5 1. 5
221
boy ***ga~de piste gate droite***
-.5 -6.8 .4 -3.5 1.5
221
trK ***garde piste gate d~oite***

2.1 5 '--6.8 2.1 3.8 -5 1.5
:2 2 1
trx ***garde piste gate droite***
-3.4 -.5 -6.8 -2.2 -.5 -5 1.5
221
boy ***c~oix alignement***
10.5 5 11 6 1.5
221
boy ***croix alignement***
10.5 3.5 11 4.5 1.5
221
box ***ligne 100 A***
-11 -3 -9 -2.99 3
2 1 1
box ***ligne 100 A***
-11 -3.5 -9 -3.49 2.8
;.' 1
box ***ligne 200 A***
-11 -4 -8.5 -3.98 2.8
2 1 1
box ***ligne 200 A***
-11 -4.5 -8.5 -4.48 2.5
2 1 1
box ***ligne 300 A***
-11 -5 -8 -4.97 2.5
2 1 1
box ***ligne 300 A***
-11 -5.5 -8 -5.47 2.3
211
bOH ***ligne 400 A***
'-11 -6 -7.5 ~-5.96 2.3
2 1 1
box ***ligne 400 A***
-11 -6.5 -7.5 -6.46 2
2 1 1
box ***ligne 500 A***
-11 -7 -7 -6.95 2.3
2 1 1
box ***ligne 500 A***
-11 -7.5 -7 -7.45 2
2 1
end

Fig. A2.1 Listing of the pattern file which defines the design of a pump at

magnification x5000.
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APPENDIX 3.

CO-TUNNELING

"Electrons like freedom."

(Yu. Nazarov, Les Houches, 1991)

The tunnel hamiltonian HT = t LL R a! akLexp(ieep/h) + h.c, treated by second, R

order perturbation theory only couples states deduced one from another by the tunnel-

ing of one quasi-particle through one junction. Higher order processes have to be taken

into account when RK /411"2 RT is not much smaller than unity. They correspond to con

comitant tunnel events through several junctions and are called "co-tunneling". In the

simplest situation of two identical junctions of capacitance C in series biased with voltage

V below the Coulomb gap e/2C, tunneling through any of the two junction is forbidden

at low temperature because it would increase the charging energy of the island between

the junctions. In fourth order in perturbation theory, tunneling is no longer forbidden:

if two quasi-particle tunnel simultaneously through the two junctions, the charge of the

island remains unchanged. This results in a finite current through the two junctions for

V < e/2C even at zero temperature. This current was calculated by Averin and Odintsov

(Averin and Odintsov, 1989) using perturbation theory, and a good agreement was found

with their results in experiments by Geerligs (Geerligs ei al., 1990c). The same authors

calculated in the same article the co-tunneling rate through a series of N junctions at low

voltage. These calculations being of major importance for the precision of single electron

devices, we rederive them in the case of finite temperature. We also calculate the rate

of transfer of a single charge between two neighbouring islands by a co-tunneling event

through all the junctions in the array but the one between the neighbouring islands (see

Fig. 5.2.2); this rate is needed to analyze the N-pump.

A3.1. CO-TUNNELING RATE THROUGH TWO JUNCTION IN SERIES

We consider here a SET transistor with junctions of capacitances C1 and C2 (Fig.

A3.1) biased below the Coulomb gap e/(C1 + C2 + Co). Co-tunneling is the coherent
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Fig. A3.1 SET transistor with junction capacitances C l and C2 , gate capac

itance Co. n denotes the number of extra electrons on the island.

Fig. A3.2 Co-tunneling through the N junctions of a linear array: when the

bias voltage V is below e/2C, current through the array is due to coherent

tunnel event through the N junctions. fl' f3, ... , f2N-l are the energies of

the holes created and f2, f4, ... , f2N are the energies of the electrons created

in the N tunnel events.
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tunneling of two electrons through the two junctions. After this coherent tunneling, one

electron has left the leftmost electrode and one has appeared in the rightmost one; the

island contains an electron and a hole. The charge of these particles cancel each other on

a time scale given by the plasma frequency. As we have done for the tunnel proces itself,

we take this cancellation to occur instantaneously, and use an electrostatic expression for

the intermediate energies. Hence, in a virtual intermediate state, the island is charged by

±e (depending on the junction through which the first tunnel event takes place) and the

energies of the two possible intermediary states are:

where C; = Co + C1 + C2 is the total capacitance of the island, El and E3 are the kinetic

energies of the quasi-holes left in the leftmost and middle electrodes, E2 and E4 the kinetic

energies of the quasi-electrons created in the middle and rightmost electrodes (Fig. A3.2).

The final energy after the two tunnel events is :

The co-tunneling rate is given by the Fermi Golden rule (Schiff, 1955):

where the effective matrix element for the transition is given by second order pertubation

theory (Roman, 1965):

M - t2 ( 1 + 1 )
£1,£2,£3,£4 - E 1 + (E2 + Ed - Ei E2 + (E4 + E3) - Ei

and where PF is the density of states at the Fermi energy. Note that the paths for the tran

sition with different quasi-particles final states are discernables, hence they do not interfere.

However, given the quasi-particle final energies, two paths are possible, depending on the

order in which the tunnel events take place: these two paths do interfere constructively

(see the" +" sign between the two fractions in the preceding equation).
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At zero temperature, the kinetic energies fi are positive. A straightforward integration

gives then:

(Al.1)

yielding the current I = ef'. At low voltage, it is found that the current is proportional to

V 3 •

A3.2. CO-TUNNELING RATE THROUGH A LINEAR ARRAY

Consider a linear array of N identical tunnel junctions of capacitance C. We make

the assumption that the initial charge on each island is zero. The Coulomb gap voltage

is (N - 1)e/2C according to the global rules. Below the Coulomb gap, the current is

by definition zero in first order in RK / (41f2RT ) . The co-tunneling current is given by

higher order perturbation theory: at low bias voltage, in a sense given in the following, it

corresponds to the coherent tunneling of N electrons through the N junctions (Fig. A3.2).

The co-tunneling rate results therefore from the sum of the rates corresponding to

all the processes with the allowed final quasi-particle energies. Each of these processes is

constructed from the interference of the Nt different paths defined by all the sequences of

tunnel events through the N junctions. The Fermi Golden rule reads then:

where

is the effective matrix element for the N-th order transition (Roman, 1965) and E; is the

energy of the system after the i-th tunnel event. This energy is the sum of an electrostatic

energy, of the order of the charging energy e2/2C, and of the quasi-particles energies.

Since the sum of those quasi-particle energies is, after the N tunnel events, equal to eV,

we neglect them in the low bias voltage limit for the evaluation of the effective matrix

element. The sum over the quasi-particle energies only gives then a factor gN(eV, kBT).
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Calculation of the factor QN due to quasi-particles

where j(f.) = 1/(1 + exp(-f./kBT)) denotes the Fermi function. This integral is evaluated

by noticing that it is a convolution product and calculating it in the Fourier space (Averin,

private communication). Using the residu theorem we get that gN(eV,kBT) is the residu

at .x. = 0 of the function:

+00 +00 (. V)q
h(A) = I: C~N I: ~e 1 .x.2 (p- N )+ q

p=O q=O q.

(

+00 r ,\2r (1 _ 2I+2r)1r2(I+r) ) p

X ~ 2(-1) (32(I+r) 12(1 + r)]! IB2(I+ r)I

where
p _ (2N)!

C2N - p!(2N _ p)!

and where Bk denotes the Bernouilli numbers. We also used the notation (3 = (kBT) -1.

We have calculated explicitly gN(eV,kBT) for low values of N:

1 a 4 2
g2 =31 (eV) + - (eV) (1rkBT)

· 6
1( s 1 a 2 8 4

gg =-51 eV) + - (eV) (1rkBT) + - (eV) (1rkBT)
· 6 15

1 ( 7 1 S 2 7 s 4 16 6
g4 =71 eV) + - (eV) (1rkBT) + - (eV) (1rkBT) + - (eV) (1rkBT)

· 90 45 35
1 9 1 7 2 13 S 4 82 a 6

gs =91 (eV) + - (eV) (1rkBT) + - (eV) (1rkBT) + - (eV) (1rkBT)
· 3024 1080 567

128 8
+ 315 (eV) (1rkBT)

At zero temperature, s» = (eV)2N-l /(2N - I)! (Averin and Odintsov, 1989).

Calculation of the matrix element M:

We approximate the intermediate energy E; with the electrostatic energy alone, and

neglect quasiparticle energies. A shortcut in the evaluation of E; is to use the global

rules: suppose that the i-th tunnel event happens through the k-th junction. The change

130



in electrostatic energy of the total circuit when one electron tunnels through the k-th

junction is related to the difference between the charge Qk of this junction before the

tunnel event and the critical charge Qc (which is the same for all the junctions in the

present case):
e

E; - Ei-l = 0 (Qk - Qc)

We evaluate Qk by calculating in two different ways the change of the charge of a junction

through which a electron tunnels from the right to the left: when an electron tunnels

through a junction of the chain, the charge of this junction decreases by 2Q c (if its charge

was equal to the critical charge Qc, tunneling would not change the energy of the circuit

by definition of Qc j so the reverse tunnel event would have the same property after the

first one has occured: the charge after the tunnel event is -Qc). The charge of all the

other junctions increases by the same amount 6Q, which is also the charge transferred

through the source. In order to calculate 6Q, we relate it to the change of charge of

the junction through which the electron tunneled: since the charge of the neighbouring

junctions increased by 6Q and as the charge of the island where one hole left decreased

bye, the charge of the junction increased by 6Q - e. Finally we get 2Q c = e - 6Q and

hence 6Q = e - 2Qc.

On the other hand, after i - 1 tunnel event, the charge of the junction k through

which no tunnel event happened before is OV/N + (i -1)6Q, where CV/N is the charge

induced by the voltage source, and:

We finally deduce the electrostatic energy after i tunnel events:

s, = ::!. (i(i - 1)6Q _ iQ ) = i. ((N - i)~ - ev)c 2 c N 20

We now deduce the validity range of this N-th order perturbation theory: all the

intermediate energies must be positive, otherwise the dominant process for the current

would be a combination of co-tunneling and "real" tunnel events. The energy of the

system after N-1 tunnel events is

N -1 (e 2
)

EN -1 = N 20 - eV .
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The validity condition of the present approach is therefore: V < ej2C. More precisely, since

E, = 0 for V = (N - i)e/2C, the dominant conduction process at V E [ie/2C, (i + I)ej2C]

is the succession of co-tunneling events through N - i junctions and" real" tunnel events

through the i junctions left. One should also note that a second validity criterium for this

theory is that the thermal population of the leftmost islands must be negligible. Otherwise

there would be a contribution to the current via co-tunneling events at a lower order. This

condition is satisfied at 20 mK. with femtofarad junctions even at very low bias voltages

because of the Boltzmann factor

At V << e/2C, the V-term in E, is negligible and

N-I ._(e2 )N-I Nl(N -1)1II E, - 2C NN
i=1

The matrix element for the transition is therefore independent of the order of the tunnel

events: the Nl sequences give the same amplitude for the transition. The matrix element

for the N-th order transition is finally:

( t)N-ItM - NI__--.:..P_F -:-:-- _
€1,€2,.··€2N - • ( e2 ) N -I N!(N _ 1)1

2C NN

Final expression of the co-tunneling rate

We substitute the matrix element in the Fermi Golden rule and get the co-tunneling

rate through N junctions:

21r ( RK ) N N 2N (2C) 2N-2
I'N = h 41r2 RT (N _ 1)12 -;2 gN(eV, kBT)

At zero temperature gN(eV, kBT) = (eV)2N-I/(2N - 1)1, hence

2 2 (R )N N 2N ( V ) 2N-I

f N = :;C 41r2~T (N - I)!2(2N - 1)1 e/2C
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For the sake of comparison, we give the tunneling rate r 1 through one voltage biased

junction:

Hence,
fN (RK )N-l N2N ( V )2(N-l)
f 1 = 411"2 RT (N - 1)!(2N - 1)! e/2C

The exponent N of (RK /411"2 RT) is the number of tunneling events necessary to transfer

one electron through the array. The power of V reflects the increased number of accessible

electronic states when the voltage increases. At finite temperature, extra terms with a lower

power of V account for the largest number of accessible states due to a thermal distribution

of quasi-particles. Those corrections increase significantly the current at temperatures and

voltages such that eV !:::: 1I"kBT. Numerically, for 1 femtofarad junctions, the crossover

temperature is T = 300 mK for V = e/2C.
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APPENDIX 4.

PAPER 1:

EFFECT OF THE ELECTROMAGNETIC ENVIRONMENT ON THE

COULOMB BLOCKADE IN ULTRASMALL TUNNEL JUNCTIONS

Published in: Phys. Rev. Lett. 64, 1824 (1990)

Referred to as: Devoret et al., 1990a.
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Effect of the electromagnetic environment

on the Coulomb blockade

in ultrasmall tunnel junctions

M. H. Devoret-, D. Esteve", H. Grabert",

G.-L. Ingold", H. Pothier", C. Urbina'

1 Service de Physique du Solide et de Resonance Magnetique,

Centre d'Etudes Nucleaires des Sa clay, 91191 Gif-Sur- Yvette, France

2 Fachbereich Physik, Universittit-GHS Essen, 4300 Essen

Federal Republic of Germany

The current-voltage characteristic of an ultrasmall tunnel junction is cal
culated for arbitrary frequency dependence of the impedance presented
to the junction by its electromagnetic environment. It is shown that the
Coulomb blockade of tunneling is washed out by quantum fluctuations
of the charge on the junction capacitor except for ultrahigh impedance
environments. Two simple cases where the environment can be treated
as an inductor or resistor are examined in detail. Effects of finite tem
peratures are discussed.



New effects have been predicted! to arise in ultrasmall tunnel junctions with capac

itance C such that the charging energy of a single electron e2 / 2C exceeds the char
acteristic energy kBT of thermal fluctuations. Simple energy considerations suggest

that the tunneling of a single electron is completely blocked when the junction capac
itor holds a charge less than e/2. A large body of experimental data now exists2- 4

that seems to support the theoretical ideas underlying this Coulomb blockade of tun

neling. The effect is clearly seen in multi-junction configurations? while the existence
of elementary charging effects in single tunnel junctionsv" is still questionable.

An obvious objection against existing theories of the Coulomb blockade in single
junctions comes from considering the effective junction capacitance. Should it not

include contributions from the on-chip electromagnetic environment of the junction
like the leads and pads? They might easily enlarge the capacitance to values where

elementary charging effects become unobservably small. One point of view" is that the

tunneling electron probes the electromagnetic environment at distances r < CTt where
Tt is the traversal time of the electron passing through the potential barrier and C the

speed of charge propagation in the electrical circuit surrounding the junction. On the

other hand, recent experimental work" suggests that the electron probes distances

r < he]t::.E where t::.E = max(eV, kBT), V being the dc voltage across the junction."

In this Letter we show that the quantum mechanical nature of the electromagnetic
environment can severely reduce Coulomb charging effects in single junctions. For a
tunneling electron to change effectively the charge on the junction capacitor and thus

lead to the Coulomb blockade effect it has to excite electromagnetic modes of the

coupled system formed by the junction and its electromagnetic environment. Since
the energy liw of these modes is quantized, they will not be excited unless the voltage

V across the junction reaches liwIe. The larger the impedance of the environment

the stronger the junction couples to low frequency modes. Thus, charging effects

will usually be only observable when the junction is placed in a very high impedance

environment or for large voltages. The situation here is reminiscent of the well

known Mossbauer effect1 where naive reasoning suggests that gamma quanta are
emitted with a shifted frequency due to the recoil of the nucleus. An analogy can be

drawn between a change of the momentum of the nucleus and a change of the local

charge on the capacitor of a tunnel junction so that the occurrence of a frequency

shift corresponds to the Coulomb blockade. The Mossbauer effect arises because the

probability to excite crystal modes coupled to the nucleus is small when the average

recoil energy does not match the energy of the dominant crystal modes. From another
point of view the change of the momentum of the nucleus due to recoil is small

compared with its spontaneous zero point fluctuations. Hence, recoilless transitions

are favored. Likewise, we will find that the Coulomb charging effect in single junctions

1~t- (2)



is washed out by quantum fluctuations of the electric charge in practical cases where
the impedance of the environment is not well above the resistance quantum RQ =

h/2e2
•

Our treatment of electron tunneling in a normal junction imbedded in an electrical
circuit is based on the assumption that the tunneling Hamiltonian takes the form:

HT = LTkqCLCquAe +h.c.
ukq

where TkqcLcqu is the usual tunneling term'' which transfers a quasi electron from one
side of the junction to the other and where Ae is an operator changing the charge Q

on the capacitor plates of the junction: AeQA! = Q - e. Here, Q is assumed to be
an operator with continuous spectrum. In contrast with the conventional treatment
of tunneling, our scheme takes into account - albeit in a minimal fashion - the
rearrangement of the electric charge density on the junction during a tunneling event.
Introducing the phase 9,10 <p(t) = (e/1i) J~oo V(t')dt' as the integral over the voltage
across the junction, Ae can be expressed as Ae = ei<p by making use of the commutation
relation [Q, <p] = ie. We further assume that Q and <p commute with the quasielectron
creation and annihilation operators.

As a simple model for the electromagnetic environment we may consider the circuit
depicted in Fig. 1a where the leads attached to the junction are represented through
a series inductance L and a shunt capacitance Cs' [For the case of a general circuit
see below.] The practical observation of Coulomb charging effects requires junction
capacitances less than a few femtofarads and the leads attached to such a junction
will easily produce shunt capacitances that are several orders of magnitude larger,
i.e. C, ~ C. The change of the charge Qs on the shunt capacitor caused by a tun
neling event is therefore entirely negligible and the current-biased junction depicted
in Fig. 1a can thus effectively be replaced by the voltage-biased junction shown in
Fig. Ib.'! For this latter model, the total Hamiltonian includes the usual kinetic and
chemical potential terms for quasielectrons, the tunneling Hamiltonian HT , and the
Hamiltonian of the electromagnetic environment

Hem = (Q2 /2C) + (1i2/2e2L)<p2 - QV

which describes the Coulomb charging energy on the capacitor and the magnetic
energy of the self inductance of the leads. Then, assuming a constant tunneling
matrix element Tkq, one finds for the tunneling current along the standard line of
reasoning 12

1= e~T1:00

dE1:00

dE' {f(E) [1 - f(E')] P(E + eV - E')

- [1 - f(E)] f(E')P(E' - E - eV)} (1)

1.3 8



where 1/RT is the usual tunneling conductance which is proportional to ITI 2 and
f(E) = [1 +exp(,BE)J-l is the Fermi function with 13 = l/kBT. The novel feature
here is the appearance of the function

in which

r:P(E) = (211"1i)-1 Loo dtexp[J(t) + iEt/li]

J(t) = ([<p(t) - <p(O)]<p(O)}

(2)

(3)

IS the equilibrium phase correlation function. P(E) gives the probability that a
tunneling electron creates an excitation with energy E of the electromagnetic envi
ronment described by Hem. In the conventional treatment where the coupling to the
environment is disregarded one has P(E) = 8(E) and Eq. (1) reduces to the well
known Ohmic law I = V/RT . Because of Cr,p = (e/n)Q, the equilibrium correlation
function J(t) is intimately connected with the spontaneous charge fluctuations on
the junction capacitor arising from the coupling to the electromagnetic environment.
Using properties of the Fermi function and the detailed balance symmetry obeyed by
P(E), the result (1) may be written as

1 r+oo 1 - e-!3eV

1= eR
T

1-
00

dE E 1 _ c!3E P(eV - E).

For the circuit shown in Fig. l b, we have

where WL = (LC)-1/2 is the oscillation frequency of the environmental mode described
by the Hamiltonian Hem and p = 11" /2C RQWL is the ratio of the single electron charging
energy e2/ 2C and the mode excitation energy nWL. This leads to an 1-V-characteristic
of the form

where f n = eV - nnwL and In(x) is the modified Bessel function. Each term corre
sponds to a tunneling channel where the electron creates or absorbs n quanta of the
environmental mode. For zero temperature this result simplifies to read13

1 nmaz p"
1= -Re- P L -, (eV - nnwt} for V > 0

e T n=O n.



where nm ax is the largest integer below eV/liwL. At T = 0, a tunneling electron
can only excite the environment and create at most n m ax quanta. It is important
to note that the differential conductance dI/dV displays a series of steps at voltages
Vn = nliwL/e. Usually, for low voltages, the I-V-characteristic will be dominated by
the elastic channel (n = 0). This behavior is analogous to the presence of a strong
elastic line in the Mossbauer gamma spectrum. Inelastic processes are negligible
when the mode energy liWL exceeds the single electron charging energy, that is for
p ~ 1. This will mostly be the case since typical series inductances will be well
below (li2 / e4 )C even for ultrasmall junctions. At least for low voltages the Coulomb
charging effects are then suppressed. Finite temperatures make the deviation from
Ohmic behavior even less pronounced. Another way of understanding the suppression
of the Coulomb blockade effect is to estimate the spontaneous charge fluctuations on
the junction capacitor arising form the coupling to the external circuit. From the
Hamiltonian Hem we find

(hQ2) = ~Ii (C/ L)I/2 coth (~,8liwL)

which at T = 0 exceeds e2 unless p~ 1.

For the case of a general electromagnetic environment with arbitrary frequency de
pendence the coupled junction-circuit system may be characterized by the diagram
in Fig. l b with the series inductance L replaced by a general frequency dependent
impedance Z(w). Since the electromagnetic environment is dissipative but linear
[there is no other junction in the circuit] we may follow Caldeira and Leggett '" and
treat this environment as if it were an infinite collection of LC-oscillators. The Hamil
tonian Hem is then replaced by a corresponding Hamiltonian with an infinite number
of environmental modes with a spectral density determined by Z(w). The result
(3) for the I-V-characteristic remains valid for the general case. The environmental
influence is again described through the function P(E), Eq. (2), which gives the
probability that the tunneling electron transfers the energy E to the circuit. The
phase correlation function now takes the form

J (t) = 100

~Re~w){coth (~f3liw) [cos(wt) - 1] - i sin(wt)} (4)

where

1
Zt(w) = iwC + Z-l(w)

is the total impedance of the junction in parallel with the environmental impedance.
The formulae (2), (3), and (4) allow for the determination of the I-V-characteristic



for arbitrary frequency dependence of the electromagnetic environment at finite tem
peratures.

Let us first extract the 1-V-characteristic at large voltages. There only the behavior
of P(E) for large energies E is relevant which in turn is related to the short time
behavior of the phase correlation function. Using J(t) = -(i1r'/2C)t- (e/hC)2(8Q2)t 2

for t -.. 0, we find I = RTI(V - e/2C) for eV ~ kBT, e2/2C. This describes an offset
of magnitude e/2C, the so-called Coulomb gap. For low voltages the behavior of
the I-V-characteristic depends on the spectrum of charge fluctuations at frequencies
beloweV/h. Only when the impedance Re[Zt(w)] in this frequency range exceeds the
quantum resistance will the offset still be noticeable.

As a concrete example let us consider a tunnel junction connected to a long dis
sipative transmission line with characteristic impedance R. In that case Z(w) = R
[see inset of Fig. 2], and we recognize that the phase correlation function (4) behaves
like the mean square displacement of a quantum Brownian particle.P At zero tem
perature the phase correlation grows logarithmically for large t, J(t) '" -a In(wRltl),
where a = R/~ and WR = 1/RC. This implies a power-law decay proportional to
t- CX of the Fourier transform of P(E). As a consequence, for a < 1, the function P(E)
has a singularity at E = 0

P(E) = exp(-a,) 1 (£)CX 8(E) for E -.. 0
f(a) E hWR

where, = 0.5772 ... is Euler's constant. We see that quasi-elastic transitions with
small energy transfer E to the environment are most probable. Using (3), this yields
for the I-V-characteristic

1= exp(-a,) V (eIVI)CX for V -.. o.
I'(o + 2) RT hWR

which is non-analytic at V = 0 and shows a suppression of the Coulomb gap for
a < 1. The same low-voltage behavior of the characteristic is obtained for a general
frequency dependent impedance Z(w) with a finite Ohmic component R = Z(O).
At finite temperatures, the logarithmic growth of the phase correlation function is
replaced by a linear growth, J(t) '" -(1ra/h,B) ItI for t -.. ±oo, and I(V) is now'
analytic at V = 0, but at low temperatures and for voltages between kBT/e and
e/C the behavior is close to the zero temperature case. Fig. 2 displays numerically

integrated 1-V-curves for various values of R/RQ at T = O. Clearly, the Coulomb
gap only survives at low voltages for resistance values of the order or larger than the
resistance quantum ~.

In conclusion, by a quantum mechanical treatment of the electromagnetic environ
ment of a tunnel junction we have calculated the I-V-characteristic as a function of

"14.1 (6)



the environment impedance Z(w) [Eqs. (2), (3), and (4)]. We have shown that the
junction capacitance C will be revealed in the 1-V -characteristic as a voltage offset
e/2C only if the impedance of the environment Z (w) at frequencies below e2

/ 2nC
exceeds the resistance quantum Rq. The influence of the electromagnetic environ
ment is not associated with the finite duration of the electron tunneling process. In
fact, the simple model employed here entirely disregards the finite traversal time.
We thus predict that in experimental setups designed to provide a high impedance
environment for a single junctiorr'", the Coulomb gap should be observable. We have
stressed that the suppression of the Coulomb gap for a junction in a low impedance
electrical circuit occurs for much the same reason as the absence of a frequency shift
of gamma radiation from nuclei embedded in a crystal. In linear junction arrays,
the presence of islands that can accomodate only an integer number of elementary
charges is manifest in a Coulomb gap which can be observed even for low impedance
environments.

This work has benefited from fruitful discussions with V. Anderegg, B. Geerligs, U.
Geigenmiiller, K. K. Likharev, J. E. Mooij, and G. Schon and was partially supported
by the Deutsche Forschungsgemeinschaft through Sonderforschungsbereich 237.
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Figure Captions

FIG. 1. (a) A current-biased tunnel junction coupled to an external circuit with

impedance of leads modeled by a series inductor L and a shunt capacitor Cs' (b) An

equivalent voltage-biased junction in the limit Cs ~ C.

FIG. 2. The I-V-characteristic of a tunnel junction coupled to an environment charac

terized by a resistance R (see inset) is shown for R/RQ = 0,0.1,1,10, and 00.
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Frequency-locked turnstile device for singleelectrons.

L.J. Geerligs, V.F. Anderegg, P.A.M. Holweg,(a) J.E. Mooij

Department of Applied Physics, Delft University of Technology,
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H. Pothier, D. Esteve, C. Urbina, M.H. Devoret

Service de Physique du Solide et de Resonance Magnetique,

Centre d'Etudes Nucleaires de Saclay, 91191 Gif-Sur-Yvette, France

We have fabricated an array of ultrasmall tunnel junctions which acts like a turnstile

for single electrons. When alternating voltage of frequency f is applied to a gate, one

electron is transferred per cycle through the device. This results in a current plateau in

the current-voltage characteristic at I=ef. The overall behavior of the device is well

explained by the theory of Coulomb blockade of electron tunneling. We discuss the

accuracy limitations of this device.

PACS: 73.40.G, 06.20.H, 73.40.R
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With present-day lithographic techniques it has become possible to fabricate tunnel

junctions with capacitance C small enough to make the charging energy of a single

electron, Ec=e2/2C, much larger than thermal energies at dilution refrigerator

temperatures. Typical capacitances are below to-15 F for junction areas below (100

nm)2, hence Ec/kB> I K. Under this condition the discreteness of electron tunneling

leads to new phenomena, charging effects, as reviewed by Averin and Likharev.[1] In a

pioneering paper Fulton and Dolan [2] confirmed experimentally the existence of

charging effects in small circuits of planar tunnel junctions. In linear arrays of small

tunnel junctions charge is transferred by mutually repulsing charge-solitons,[3]

resulting in time-correlated tunneling events with fundamental frequency lie. Delsing et

al. [4] demonstrated this effect by application of a signal with frequency f, leading to

resonances at current levels I=ef and I=2ef. The resonances show up in the differential

resistance only. In this paper, we present a new device in which a single electron is

transferred per cycle of an externally applied rf signal. In this voltage biased device a

current flows which is equal to the frequency times the electron charge. The device is

based on a turnstile effect resulting from the Coulomb blockade in linear arrays of

tunnel junctions. It opens the possibility of a high accuracy, frequency-determined

current standard. In many respects resembling a single electron shift register, the device

exemplifies the prospects of using charging effects for practical logic circuits.[5]

The Coulomb blockade of single electron tunneling manifests itself in voltage

biased linear arrays as a voltage gap in their current-voltage (I-V) characteristic. This

Coulomb gap arises because for an electron to transfer through the array it has to

occupy intermediate positions on the metal "islands" between the junctions. For bias

voltages well below e/C (C being the junction capacitance) the energy of these

intermediate states is higher than the energy of the initial state. Conduction is thus

energetically suppressed. Consider the energy of a device constructed, like in our

experiment, of both tunnel junctions and true capacitors, biased from several voltage

sources. The energy associated with a given electron position is the sum of the

capacitive energy for the resulting charge distribution and the work performed by the

bias voltage sources.[3] If, under the influence of particular bias conditions, the

absolute value of the charge on a junction of the array exceeds a critical charge, an

electron can tunnel across this junction. The difference ~Ek between the fmal and initial

energy for the tunnel event across junction k of the array can be expressed as:

(1)

where Qk and Ck are the charge and capacitance of junction k, respectively. The critical

charge Qck=e/[2(1 +Cek/Ck)] depends apart from the junction capacitance only on the
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equivalent capacitance Cek of the circuit in parallel with junction k. With this concept of

a critical charge Qc the principle of the present experiment can be understood. It is

illustrated in Fig. 1. A linear array of 4 junctions of capacitance C is biased by a drive

voltage V, which is applied symmetric to ground. The central island, between junctions

2 and 3, is capacitively coupled to a gate voltage Vg.[2,5] If the gate capacitor Cg is

chosen to equal C/2, all junctions have the same critical charge for tunneling, Qc=e/3.

For V and Vg within a certain window, the critical charge will be exceeded for the

junctions in the left arm, but not for the junctions in the right arm. Once an elementary

charge has entered the central island, part of it will polarize the gate capacitor, and the

charge on all junctions will be lower than the critical charge. Therefore the elementary

charge is trapped on the central island until bias conditions are changed. It is also

impossible for another charge to move to the central island. To make the charge leave by

the right arm, the gate voltage is decreased. The junctions on the right arm will first

exceed the critical charge because of the asymmetry caused by the bias voltage.

Cyclically changing the bias conditions by applying an alternating voltage in addition to

a de voltage to the gate capacitor moves one electron per cycle through the chain. We

emphasize that after an arbitrary long time, the total charge transferred will be known to

within a single electron. The principle will work for a general T-shaped structure of 2n

junctions with a gate capacitance of about C/n. However, at least two junctions on each

side are needed to avoid the unwanted entering or leaving of a charge.

We will discuss why the stochastic nature of electron tunneling need not perturb the

deterministic transfer of electrons through the device. At finite temperature T the

tunneling rate is for arbitrary Llli given by [l]

r Llli/2~RC[exp(L\ BT)-l] (2)

where R is the tunneling resistance of the junction. This shows the two main

prerequisites for deterministic electron transfer. The ac cycle should last long enough to

let tunneling to and from the central island happen with high probability, i.e. f must be

much smaller than (RC)-l to avoid cycles being lost. On the other hand an electron

trapped on the central electrode should have a negligible probability to escape by a

thermally assisted transfer. At finite temperature there is a tradeoff between the two

requirements: a thermally assisted escape will be more probable for lower frequencies.

We will discuss the consequences of these limitations more quantitatively below.

Finally, we note that eq. (2) is strictly valid only for negligible tunnel conductance.

Quantum charge fluctuations associated with a tunnel resistance not much larger than

h/e2 [6,7] generally suppress the charging effects. We have not investigated the

consequences of this aspect for the present experiment.
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The physical layout of the device is very close to the circuit shown in Fig.1, with 4

junctions of about 0.5 fF and 340 kOhm «RC)-1=::5 GHz) and a gate capacitance Cg of

0.3 fF. The values of Rand C were determined from the large scale I-V curve,[6] and

Cg was determined from the period of the current modulation by the gate voltage. This

period ~Vg yields the gate capacitance as Cg=e/~Vg. An important refinement over the

circuit of Fig. 1 is the use of two small auxiliary gate capacitances (0.06 fF) to tune out

non-integer trapped charges [5] on the remaining two islands. This device was

fabricated with nanolithographic methods as described elsewhere,[6] with planar

aluminum-aluminum oxide-aluminum junctions. It was thermally anchored to the

mixing chamber of a dilution refrigerator, and a magnetic field of 2 Tesla was applied to

bring the junctions in the normal (i.e., non-superconducting) state. All leads were low

pass filtered by a stage which was also thermally anchored to the mixing chamber. In

addition, the gate voltages were strongly attenuated. The gate voltages were applied by

room temperature dc voltage sources referenced to cryostat ground. In addition, an ac

voltage could be applied to the central gate capacitor. The voltage bias was symmetric

with respect to cryostat ground. The measurement was performed with a two-wire

method: a FET-opamp circuit with virtually shorted input terminals, in series with

voltage source and sample, was used to measure the current.

Fig. 2 shows I-V curves of the device, without ac gate voltage applied (dotted

curve) and with ac gate voltage of different frequencies between 4 and 20 MHz.

Without ac gate voltage, a large zero-current Coulomb gap is present. With ac gate

voltage of frequency f, wide current plateaus develop inside the Coulomb gap at a

current level I=ef. The plateaus even extend to voltages outside the gap. In Fig. 2 the de

gate voltages were the same for each curve, the ac amplitude was adjusted for the widest

plateau, which required more power at higher frequencies. Thermometer temperature

varied from 10 to 40 mK, depending on applied ac power. Good plateaus were

observed up to 40 Mhz, but only for frequencies below about 10 MHz were part of the

plateaus flat within experimental current noise (about 0.05 pA, DC to 1 Hz). Fig. 3

shows the dependence of the I-V curve on ac amplitude at a frequency of 5 MHz.

Clearly, the height of the plateaus is not dependent on the ac amplitude, although the

width is. For high amplitudes, we have observed a tendency to form plateaus at I=2ef.

Another sample with n=3 junctions in each arm showed the same behavior, although

with somewhat rounded plateaus. We attribute this rounding to the larger capacitances

(about 2 fF) of the junctions in this device.

A gate voltage adjustment was necessary to obtain wide plateaus. A suitable

procedure was to maximize the Coulomb gap without ac voltage, using the auxiliary

gate voltages. Next the current versus de gate voltage would be recorded at fixed bias

voltage, with ac gate voltage applied. This shows an oscillating behavior with minima
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and maxima at I=ef, I=2ef or even higher multiples, depending on the ac amplitude. An

example is shown in the inset of Fig. 2. The I-V curves of Fig. 2 were obtained with de

gate voltage in the middle of a 1-Vg plateau at I=ef, corresponding to half the elementary

charge induced on the gate capacitor. When misadjusting both auxiliary gates on

purpose, we could still obtain plateaus in the I-V curve, but not as wide as in Fig. 2.

The dependence of the I-V curves on ac amplitude, as shown in Fig. 3, are very

well simulated by numerical calculations based on eq. (1) and (2). Results are shown in

the same figure as dashed curves on the right of the measurements. No fitting

parameters were used. The only adjustments made were assuming 1 dB attenuation in

the ac voltage line to be present in addition to the known attenuators, and introducing a

higher temperature (50-75 mK) than the thermometer indicated during the experiments

00-20 mK) to roughly account for remaining noise or heating of the sample.

In Table 1 we compare the current step height Is, obtained by taking half the

measured current distance between the positive and the negative plateaus, with the

prediction Is=ef. Up to 10 MHz, regions could be found (around 0.15 mY) where the

plateau was flat within the current noise. In those cases about 50 points were taken in

the central parts of these regions to determine the average current with its standard

deviation am' Above 10 MHz, the current level at the inflexion point was taken in a

similar way. The measured current step coincides with ef within experimental accuracy,

which is around 0.3 %. We attribute the deviation of more than 3am at 20 and 30 MHz

to the difficulty of determining the inflexion point. To discuss the expected intrinsic

accuracy of the current step height, we return to the example shown in Fig. 1. For an

electron transfer in the circuit shown in Fig. 1 the first tunnel event of each half of the

cycle (~E=-0.le2/C) can occur in two junctions with a rate r=(lORC)-I. For a square

wave modulation this yields a probability to miss a cycle of about

exp(-r/f)=exp(-l/lOfRC). For the device used in the experiments, (RC)-1::=5 GHz, so

at 5 MHz this probability is exp(-l00)::=lO-44, while at 50 MHz it is already about 10

5. Obviously, the required accuracy puts an upper limit to the allowed frequency. Next,

to estimate the effect of thermal fluctuations, we compare the rate for unwanted

tunneling events, f', with the one for favorable events, r. From eq. (2) we find that the

ratio is of order exp(-~E/kBT). For an accuracy of e.g. 10-8, it is necessary to have

f'/f::=1O-8, which combined with the requirement r/f=103 yields exp(-~ElkBT)=lO-11,

or kBT::=~125. Since typically ~E is on the order ofO.1e2/C, for the present device this

corresponds to temperatures of about 15 mK. Comparable problems with unwanted

transitions could arise from insufficient screening from noise and interference in the

experiments. The simulations in Fig. 3 suggest that in the present experiment these

disturbances seem to be described well by a temperature of not more than 50 mK,

which is already close to the temperature requirement derived above. More careful
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screening is possible. These limitations are relaxed by the use of smaller junctions. For

junctions of 0.1 fF with the same resistance, the requirement that f<10- 3/RC

corresponds to f<30 MHz and kBT<0.le2/C to T<75 mK.

In conclusion, we have fabricated a device producing a current clocked by an

externally applied high frequency voltage. Charge transfer is controlled at the level of

single electrons. The theoretical limitations on the accuracy are very promising. The

good agreement between the I-V curves and the theory shows that the de and ac

behavior of small capacitance normal metal tunnel junctions is well understood, and that

device behavior can be reliably predicted.
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Figure 2.

Current-voltage characteristics without ac gate voltage (dotted) and with applied ac gate

voltage at frequencies f from 4 to 20 Mhz in 4 Mhz steps (a-e). Current plateaus are

seen at 1=ef. The inset shows current versus de gate voltage characteristics for f=5

MHz. The curves tend to be confined between levels at 1=nef and 1=(n+l)ef, with n

integer. The bias voltage was fixed at 0.15 mY. For the bottom curve, which is nearly

flat, the ac gate voltage amplitude is O. For the other curves the calculated ac amplitude

at the sample increases from 0.60e/C for the lowest one to 3.4e/C for the upper one,

where e/C=O.30 mY.
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Figure 1.

Principle of controlled single electron transfer through a linear array of small tunnel

junctions. Junctions, with capacitance C, are denoted by crossed capacitor symbols, the

gate voltage Vg is applied via a true (non-tunneling) capacitance Cg. If Cg=C/2,

tunneling across any junction can only occur if for that junction IQI>Qe, with Qe=e/3.

The voltages and charges are indicated in units of e/C and e. 1-6 indicate consecutive

times in the cycle. Left: First half of the cycle, Vg=2. An elementary charge (- in a

circle) ends up trapped on the central electrode. Right: Second half of the cycle, Vg=O.

The charge can only leave on the right hand side. No further tunneling can occur in the

emptied array.
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Figure 3.

Current-voltage characteristics at f=5 Mhz for different levels of applied ac gate voltage.

The dotted horizontal lines are at intervals ef=O.80 pA.The I-V curves have all been

offset in x-direction by 15 ~V to compensate for opamp voltage offset in the current

measuring circuit, and individually in y-direction to display them more clearly. From

top to bottom the calculated ac voltage amplitudes at the sample are 0,0.60,0.95, 1.50,

and 1.89, expressed in units of e/C=0.30 mY. On the right, the corresponding

simulated I-V curves are shown as dashed lines. For these calculations, 1 dB extra ac

attenuation was assumed, and temperatures of 50 mK (upper 3 curves) and 75 mK

(lower 2) were used.
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Table 1. Comparison of the measured current plateau Is with the relation Is=ef. am is

the standard deviation of Is.

f Is am er-r,

(MHz) (fA) (fA) (fA)

4.012 635 2 8

6.011 967 2 -4

8.031 1287 2 0

10.040 1610 2 -1

12.029 1930 2 -3

14.028 2243 2 5

16.026 2560 3 7

18.063 2890 3 4

20.011 3196 3 10

30.036 4856 3 -44
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