Ecole doctorale IAEM Lorraine

Nancy-Université

7
 J

S Université Nancy 2 UFR mathématiques et informatique

Problemes de
Géométrie Algorithmique
sur les Droites et les Quadriques

en Trois Dimensions

MEMOIRE

présenté et soutenu publiquement le 24/09/2007

pour l'obtention de

Habilitation de I’Université Nancy 2

(Spécialité Informatique)
par

Sylvain Lazard

Composition du jury
Président : Jean-Daniel Boissonnat, Directeur de recherche INRIA

Rapporteurs : Claude Puech, Professeur & l'université de Paris 11
Gunter Rote, Professeur & 'université libre de Berlin

Examinateurs : Said Benachour, Professeur a 'université de Nancy 2
Michel Pocchiola, Maitre de conférence a 1’Ecole Normale Supérieure
Autres rapporteurs

Micha Sharir, Professeur a I'université de Tel Aviv

Laboratoire Lorrain de Recherche en Informatique et ses Applications — UMR 7503







Table des matieres

Table des figures Vil
Liste des tableaux Xi
| Introduction 1
1 Introduction 3
1.1 Context . . . . . . . . e e 3
1.2 Overview and methodology . . . . .. . ... ... ... ... ...... 4
2 3D visibility and lines in space 11
2.1 Introduction . . . . . . . . . .. e 11
2.2 Summary of contributions . . . ... ... Lo 13
3 Geometric computing with low-degree algebraic surfaces @
3.1 Introduction . . . . . . . ... e 29
3.2 Summary of contributions . . . . ... ... oL 30
4 Conclusion 51

Il Propriétés des droites et segments d&3 et problémes de visibilité

tridimensionnelle 53
5 Common tangents to spheres ifR3 55
5.1 Introduction . . . . . . . . . . 55
5.2 Preliminaries . . . . . . . . .. 56

5.3 Affinelyindependentcenters . . . . . . .. .. ... ... ... ... 58



TABLE DES MATIERES

54 Coplanarcenters . . . . . . . . . . 58
5.5 Collinearcenters . . . . . . . . . . . e 63
5.6 Conclusion . . . .. . .. 64
6 Transversals to line segments in three-dimensional space 67
6.1 Introduction . . . . . . . . . . . .. 67
6.2 Ourresults . . . . . . . . . 68
6.3 Proofof Theorem®6.1 . . .. .. .. .. ... ... .. .. .. .. ..... 69
6.4 Algorithmic considerations and conclusion . . . . ... ........ 72
7 Lines tangent to four triangles in three-dimensional space 75
7.1 Introduction . . . . . . . ... 75
7.2 Aconstruction with62tangents . . . . . . ... ... ... ... ... 77
7.3 Upper bound for disjoint triangles in general position .. . . . . . . . .. 79
7.4 Upper bounds on the number of components . . . . . ... ... ... 81
7.5 Randomtriangles . . . . . . . ... 81
8 Predicates for line transversals in 3D 85
8.1 Introduction. . . . . . . . . . . .. 85
8.2 Computing lines through fourlines . . ... ... ........... 86
8.3 Predicates . . . . . . ... 89
8.4 Experiments . . . . . .. .. 96

9 Lines and free line segments tangent to arbitrary three-dinensional convex

polyhedra 99
9.1 Introduction . . . . . . . . ... e 99
9.2 Mainlemma . . .. .. . ... 103
9.3 Upperbounds . . . . ... ... .. ... 113
9.4 Lowerbounds. .. .. .. ... .. ... 116
9.5 Algorithm . . . . . . . 117
9.6 Conclusion . . . . . . . ... e 122

10 Towards an implementation of the 3D visibility skeleton 23
10.1 Introduction . . . . . . . . .. e 231
10.2 Thealgorithm . . . . . . . . .. . . ... . . . 312

10.3 Implementation issues and technical details . . . . . ... ...... 124



TABLE DES MATIERES i

11 The expected number of 3D visibility events is linear 127
11.1 Introduction . . . . . . . . . L e 271
11.2 Ourmodelandresults . . . .. .. ... . ... .. .. ... .. ... 291
11.3 The expected number ©#i-segments is at most linear . . . . . .. .. .. 130
11.4 The expected number ©#i-segments is at leastlinear . . . .. ... ... 141
11.5 The expected size of the visibility complexislinear. .. .. ... ... 142
11.6 Worst-case lowerbound . . . .. ... ... ... ... ... ... 143
11.7 Generalizations . . . . . . . . . . e 144
11.8 Conclusion . . . . . . ... 147
11.9 Appendix A. Volume of the intersection of a 3D hippodeowith a ball . . 148
11.10Appendix B. Volume oK . . . . . . . . ... 150
11.11Appendix C. Volume of the intersection of two

sphericalshells . . . . . .. .. .. .. ... .. 155

12 An upper bound on the average size of silhouettes 159
12.1 Introduction . . . . . . . . . . 59
12.2 Definitions . . . . . . .. 160
12.3 Mainresults . . . . . . . . . 116
12.4 Conclusion . . . . . . .. 170

13 Between umbra and penumbra 171
13.1 Introduction . . . . . . . . .. 71
13.2 Preliminaries . . . . . . . . . 721
13.3 The penumbraboundary . . . ... .. ... ... ... ... ...... 731
13.4 Upperbounds . . . . . . . . . . e 175
13,5 Lowerbounds . . . . . . . ... .. 178
13.6 Conclusion . . . . . ... 184

[l Géométrie algorithmique non linéaire sur les quadriques en trois
dimensions 185

14 Near-optimal parameterization of the intersection of qadrics : I. The generic
algorithm 187
14.1 Introduction . . . . . . . . . .. e 871



TABLE DES MATIERES

14.2 Notation and preliminaries . . . . . . . . . . .. .. ... ... ... 190
14.3 Levin'spencilmethod . . ... .. ... .. .. ... ... .. .. ... 191
14.4 Genericalgorithm . . . . . . . . . ... . 931
14.5 Canonical forms and proof of Theorem14.3. . . . . ... .. ...... . 197
14.6 Optimality of the parameterizations . . . . ... ... .. ....... 199
14.7 Near-optimality in the smooth quarticcase ... .. .. ...... .. .. 201
14.8 Examples . . . . . . e e 207
14.9 ConcClusion . . . . . . . 208
14.10Appendix : The parameterizations of Table 14.3 atkftdi . . . . . . . . 210

15 Near-optimal parameterization of the intersection of qadrics : Il. A classifica-

tion of pencils 213
15.1 Introduction . . . . . . . . . 12
15.2 Classification of pencils of quadrics over the complexes . . . . . . .. 214
15.3 Classification of regular pencilsBf(R) overthereals . . . . . ... ... 220
15.4 Classification of singular pencilsBf(R) overthereals . . ... ... .. 230
15.5 Classifying degenerate intersections . . . . .. .. ... ... ... . 233
15.6 Examples . . . . . . 236
15.7 Conclusion . . . . . .. 241

16 Near-optimal parameterization of the intersection of gadrics : lll. Paramete-

rizing singular intersections 243
16.1 Introduction . . . . . . . . . .. 4
16.2 Parameterizing degenerate intersections : regutenilpe. . . . . . . . .. 244
16.3 Parameterizing degenerate intersections : singatails . . . . . . . . .. 255
16.4 Examples . . . . . . . e 258
16.5 Conclusion . . . . . . .. 259
16.6 Appendix A: A primeron Galoistheory . . . . . ... ... ... ... 261
16.7 Appendix B : Rational canonical form for the case of fone$ forming a

skew quadrilateral . . . . . ... ... 262
16.8 Appendix C: Examplesinallcases . .. .. ... ... ..... ... 263

17 Near-optimal parameterization of the intersection of quadrics : IV. An efficient

and exact implementation 269

17.1

Introduction . . . . . . . . ... e 6P



TABLE DES MATIERES %

17.2 Preliminaries . . . . . . . . . . 712
17.3 Algorithmdescription . . . . . . . . . .. . ... 271
17.4 Height of output coefficients : smooth quartics . . . . ...... ... .. 274
17.5 Height of output coefficients : singular intersections. . . . . . .. ... 277
17.6 Implementation . . . . . . . .. .. 842
17.7 Experimentalresults . . . . .. . ... .. ... ... 286
17.8 Examples . . . . . . . 288
17.9 Conclusion . . . . . . . 292
18 The Voronoi diagram of three lines 295
18.1 Introduction . . . . . . . . ... e 9
18.2 Structure of the trisector . . . . . . . . . . .. ... ... .. .. 297
18.3 Properties of the Voronoidiagram . . . . .. ... ... ... ..... 306
18.4 Topology of the Voronoidiagram . . . . . ... ... ... ...... 309
18.5 Configurations of three lines whose trisector contalimeea . . . . . . . . 311
18.6 Algorithms . . . . . . . . 311
18.7 ConcClusion . . . . . . . 315
18.8. Appendix : Maple-sheet computations . . . .. ... ... ......... 315

Bibliographie 321






11

2.1
2.2

2.3
2.4
2.5
2.6

3.1
3.2

3.3
5.1
6.1

6.2
6.3

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

8.1

8.2
9.1

Table des figures

A chess set modeled entirely with quadrics. . . . . . ... .......... 6

Two examples of quadruples of spheres with infinitely yy@mmon tangents. 17
Two views of a hyperboloid of one sheet containing faue Begments and their

four connected components of transversals. . . .. .. ... ... .... 18
Four segments having three connected components eb&naals. . . . . . . . 19
Triangles with many commontangents . . . . . . . ... .. .. .. ... .. 20

A line tangent at a vertex of eachlopolytopes. . . . . . . .. ... ... ... 23
Four connected components of umbra cast on a plane byreesélight source

inthe presence oftwo triangles. . . . . . .. ... .. ... ... ... .. 28

A gallery of intersections of quadrics. . . . . ... .. ... ........ 32
Intersection of an elliptic cylinder and a hyperbolofcbae sheet in a smooth
quartiC. . . . . 40
Voronoi diagram of threelines . . . . . . . .. ... ... ... ...... 48

Two examples of quadruples of spheres with infinitely yyr@mmon tangents. 56

Two views of a hyperboloid of one sheet containing faue Begments and their

four connected components of transversals. . . . . ... ... ...... 70
Four segments having three connected components etémaals. . . . . . . . 71
Four coplanar segments having four connected compooétransversals. . . 72
Hyperbolic paraboloid spanned by threelines. . . . . . ............. 76
Configurationinplangy. . . .. ... . . ... . .. .. 77
Conicsintheplanas. . . . . . . . . . . . . . .. 78
Configurationinplangy. . . . . . .. ... . ... .. 79
Stabbing and non-stabbing configurations. . . . ... .. ... ...... 80
Configurations with 26 and 25 contributing triples. . . .. ... ... ... 80
Lines stabbingtwo triangles. . . . . . . . . . ... ... e 81
Triangles with many commontangents. . . ... ... ... .. ........ 82

(a) : Transversdl intersects segmerq only if (¢®op) (¢ oq) < 0. (b-c) :
An illustration for the proof of Lemma 8.10. . . . . . . . ... .. .. ... 90
Plane$; andP, suchthaPi <P, . . . . . . . . . .. . . .. ... ...... 94

A terrain of sizen with Q(n*) maximal free line segments tangent in four points. 100

vii



viii

TABLE DES FIGURES

9.2 Aline tangent at a vertex of eachlopolytopes. . . . . . . ... .. ... ... 102
9.3 Plandl; contains edge and intersects polytopd3 Q, andR in polygonsR;,

Qe andRe. . . . e 104
9.4 A bitangent td% and(Q; is tangent td? along an edge. The plamg is F-critical. 104
9.5 PlandliisF-critical. . . . . . . . . . . . e 106
9.6 Plandl contains a linam such that (iymlies in a plané¥ # I+ containing a

face ofP, and (i) mis tangent to polygoPNY at some pointnotoh. . . . . 107
9.7 LinesthrougkxinTl; and tangentt® andQ;. . .. .. ... ... ... ... 108
9.8 Linemistangenttd® alongafaceinplan® My, . . ... ... ... ... 110
9.9 mistangent td® along a face it¥ and (a) toQ "W only onle or (b) toQ along

afaceinW. . . . . 111
9.10 Lower bound examples forLemmas 9.27and9.28. . .. ... ... ... 116
9.11 The sweep plane in which the combinatorial bitangelit support edges;

andesiscreated. . . . . . .. e e e 119
9.12 I-criticalevent. . . . . . . ... e 121
10.1 One position of the sweep plane and the view inside teegwlane. . . . . . 124
10.2 The 2D visibility skeleton for Figure 10.1(b). . . . . . . . . . . .. .. .. 124
11.1 H(pi, pi,2) andFH (tj,t,1) are shownshaded. . . . . ... ... ... ..... 131
11.2 For the sketch of the proof of Lemma 11.94((0,1)). . . . . . . .. ... .. 136
11.3 For the sketch of the proof of Lemma 11.17. . . . ... ... ....... ... 138
11.4 Forthe proof of Lemma11.19. . . . . . . . . . . . . ... ... 139
11.5 Quadratic view fromthe origin[DRO1]. . . . . .. .. ... .. .. ... 143
11.6 Forthe proofof Lemma 11.28. . . . . . . . . . . . . ... . ... ... 145
11.7 lllustration for the case of polygons of bounded aspstes. . . . . . . .. .. 147
11.8 Forthe definitionaofandC. . . . .. .. ... ... .. .. ... ... 148
11.9 For the definitionoh,a’,b,b/. . . . . ... . ... ... ... 149
11.10The height fronp, to P is greater thatjtjjcos8—1. . . . .. ... ... ... 150
11.11The parE of H(pj,pi,1) outsideF. . . . . . ... ... .. ... ... .... 151
11.12G, apart ofdF enclosingenoF. . . . . . . . . . ... . oo 152
11.13Theregio andaplané€l. . .. .. .. ... ... ... ... ........ 152
11.14Section oH by a pland1 intersecting segmem;p atp. . . . . . . . ... .. 152
11.15The length of the circularareb. . . . . . . . .. ... ... ... ...... 153
11.16For the computingaboundf. . . . . .. ... .. ... .. ... ..... 154
11.17For the proof of Proposition 11.37. . . . . . . . . . . . . . . uu. ... 155
11.18For the proof of Proposition 11.37,case1. . . . .. .. ...... .. ... .. 156
12.1 A worst-case linear silhouette of a polyhedron appnating a cylinder. . . . . 160
12.2 Three different notions of silhouettes. . . . . . . . .. ... . ... ... 160
12.3 Two half lanterns of Schwarz. . . . .. ... .. ... ... ... . .... 163
12.4 Length and dihedral angle of an edge and set of directmrwhicheis on the

silhouette. . . . . . . L 163
12.5 Construction of). . . . . . . .. 165

12.6 For the proofs of Lemma 12.4 and Corollary 12.5. . . . . . ...... . . ... 165



TABLE DES FIGURES IX

12.7 Forthe proofof Lemmal12.4.. . . . . . . . . . . ... ... e 167
12.8 Projection odT;, fa(dTH)andD~. . . . . . . . . . .. ... 167
12.9 Forthe proofof Lemma12.6.. . . . . . . . . . . . . . . ... 168
13.1 Q(k%) lowerbound. . . . . . ... ... 174
13.2 Q(ka(k)) lowerbound. . . . . .. ... 174
13.3 Q(na(k)) lowerbound. . . . . . ... o 175
13.4 Q(mK) lowerbound. . . . . ... 176
13.5 Two triangles and a segment light source that cast 4exbet components of

umbraonaplane. . . . . .. ... 178
13.6 The four connected components of umbra rendered vétrethtracer OpenRT. 179
13.7 Superset of the shadow arrangementongdlane. . . . . ... ... ... .. 179
13.8 Views in the sweep plane with bitangents that definethiera. . . . . . . . . 180
13.9 The four connected components of umbra and the fous lised in the proof

of Theorem 13.7. . . . . . . . . 181
13.10Q(n) lowerbound. . . . .. ... 181
13.11Q(nk%) lowerbound. . . . . .. ... 182
13.10(kY lowerbound. . . . ... 182
13.10(n%k3) lowerbound. . . . . ..o 183
13.14(nk%) lowerbound. . . . .. ... 183
15.1 Agallery of intersections of quadrics. . . . . .. ... ... ........ 222
17.1 Examples of intersections of quadrics. . . . . . . . . .. ..o 272
17.2 Evolution of the height ak(u,v) when the intersection is a smooth quartic. . . 277
17.3 Observed height of the parameterization of the cubtbencubic and tangent

linecase. . . .. . . . . . . e 281
17.4 Computation time for the cubic and tangentlinecase. . . . .. ... ... 281
17.5 Evolution of execution time in the smooth quartic casa &unction of the size

of the input for very large inputsizes. . . . . .. ... ... ... ..... 286
17.6 Evolution of execution time in the smooth quartic casa function of the input

SIZE. . e 287
17.7 Computation time for 120 pairs of quadrics coveringra#tisection cases. . . . 288
17.8 Three CSG models made entirely ofquadrics. . . . . . ... ... .. .. 289
17.9 Further examples of intersection. . . . . . . .. .. .. .. ........... 289

18.1 Voronoi diagram of 3 line&;, ¢», and/3 in general position : (a) Voronoi 2D
face of¢, and/, i.e., set of points equidistant t§ and/, and closer to them
than to/s. (b) Orthogonal projection of a 2D face on a plah®ith coordinate
system(X,Y); the plane’s normal is parallel to the common perpendicofar
/1 and/, and theX andY-axes are parallel to the two bisector lines {ijof
the projection o¥; and/; onP. The 2D face is bounded by four branches of a
non-singularquartic. . . . . . . .. .. 296

18.2 Threelinesingeneral position. . . . . . . . . .. .. ... . . 0. .... 298

18.3 The parallelepiped formed By, />, and/3 and the associated franf@, wy, w, ws)
of positive orientation. . . . . . . ... L L e 307



TABLE DES FIGURES

18.4 (a) Projection of the two-dimensional Voronoi ¢élp onto theXY-plane. (b)
Vertical ordering of the sheets of the connected comporaéie two-dimensional
Voronoi diagram cells above each region induced by the ptioje of the trisec-
tor and the silhouette curves of the bisectors ; the ordexvieg the small cell in
the middle isT13 < Ti3 < Toz < T3 (i.e., a vertical line over that cell intersects
twice Tz and twiceTozinthatorder). . . . . ... .. ... .. ... ..... 308

18.5 Separating the two components of a two-dimensionandrcell. . . . . . . 312



Liste des tableaux

2.1 Bounds on the complexity of the set of free lines or maxiinea line segments

among objects of total complexity . . . . . . .. .. ... ... ... ... . 24
2.2 Lower bounds on the number of connected components gret bpunds on

the complexity of the umbra cast on a plane in the presen&eofytopes of

total complexityO(n). . . . . . . . . . 27
2.3 Bounds on the complexity of the union of umbra and penurmmdsaon a plane

by am-gon light source in the presencelopolytopes of total complexit®(n). 27
3.1 Correspondence between quadric inertias and Eucligpas.t . . . . . . . .. 35
3.2 Parameterizations of canonical simple ruled quadtiesq6]. . . ... .. .. 36
3.3 Parameterization of projective quadrics of inertifedént from(3,1). . . . . . 38
3.4 Classification of pencils in the case whérg\, 1) does not identically vanish. . 42
3.5 Classification of pencils in the case wherg\, ) identically vanishes. 43
3.6 Ring of definition of the projective coordinates of thegmeterization of each

component of the intersection and optimality. 45
7.1 Four triangles with 62 common tangents. . 77
7.2 Number of triangles with a given number of tangents bam)o OOO randomly

constructed triangles. . . . . . . . ... .. e 82
7.3 Four triangles with 40 commontangents. . . . . . . ... .. .. ........ 82
8.1 Percentages of failure of the degree 168 and degree Batesiusing double-

precision floating-point interval-arithmetic, fevarying from 10*%t0 1072. . 96
9.1 Published bounds on the complexity of the set of freesloranaximal free line

segments among objects of totalcomplexaty . . . . . ... ... ... ... 103
11.1 Known bounds on the complexity of the set of lines, freed or maximal free

line segments tangent to 4 amongstbjects. . . . . . .. ... ... L. 128
13.1 Lower bounds on the number of connected components @t bounds on

the complexity of the umbra cast on a planekyyolytopes of total complexity

O(N). . 172
14.1 Correspondence between quadric inertias and Eucligpas. . . . . . . . .. 191
14.2 Parameterizations of canonical simple ruled quafres/6]. . . . . . .. .. 192
14.3 Parameterization of projective quadrics of inertféedent from(3,1). . . . . . 193

Xi



Xii

LISTE DES TABLEAUX

15.1 Classification of pencils by Segre symbol in the case evfiéh, 1) does not

identically vanish. . . . . . . ... 217
15.2 Classification of pencils by Segre symbol in the caseabé¢k, ) =0. . . . . 217
15.3 Classification of pencils by Segre symbol in the case eviigh, 1) = 0 and

Da(A ) =0. . . o 217
15.4 Classification of pencils in the case wh®@\, ) does not identically vanish. 218
15.5 Classification of pencils in the case wh&x@, ) identically vanishes. . . . . 219

16.1 Ring of definition of the projective coordinates of thegmaeterization of each
component of the intersection and optimality. . . . . . we o ... 245
16.2 Exhaustive list of examples when the intersection Q- dlmensmnal ove€. 263

17.1 Asymptotic heights of parameterizations in major sastaen the determinantal

equation has a unique multipleroot. . . . . . ... .. .. ... ... ... 278
18.1 Forthe proof of the MainLemma. . . . . ... .. .. ... ... .. ... 302
18.2 About the proof of the MainLemma. . . . . . . . ... ... ... ..... 316
18.3 About the proof of the MainLemma. . . . . . . . ... ... ... ..... 317
18.4 Forthe proofofLemma18.8.. . .. .. ... .. .. ... ... ... ... 318

18.5 Forthe proofof Lemma 18.10. . . . . . . . . . .. ... ... ... . ... 319



Premiere partie

Introduction






Chapitre 1

Introduction

1.1 Context

Even the youngest child playing with his building blocks egapates the inherent difficulty
of three-dimensional geometry. Unfortunately, or luckdgpending on how you lean, geome-
try and geometric models are ubiquitous in science and tdofy and geometric computing
is present in many fields, such as computer-aided designyfactaring, computer graphics,
robotics, molecular biology, geographic information gyss, astrophysics, computer vision,
metrology and many others.

Since the 1970’s, computational geometry has been deditatupplying a solid founda-
tion for the study of geometric algorithms which are relévanall these applications. Com-
putational geometry has traditionally treated linear otgjesuch as line segments and polygons
in the plane, and point sets and polyhedra in higher-dinoeasispace, occasionally, and more
recently, venturing into the world of non-linear curvestsas circles and ellipses. The metho-
dological experience and the know-how accumulated ovepaisethirty years is enormous.

For many applications, particularly in the fields of compupeaphics and solid modeling, it
IS necessary to manipulate more general objects such adeompves and surfaces given in
either implicit or parametric form. Typically such objeetse handled by approximating them
by simple objects such as triangles. This approach is exiseimportant and it has been used
in almost all of the usable software existing in industryagdit does, however, have some
disadvantages. Using a tessellated form in place of itstegemmetry may introduce spurious
numerical errors (the famous gap between the wing and thgdifdtie aircraft), not to mention
that thousands if not hundreds of thousands of trianglelsldmuneeded to adequately represent
the object. Moreover, the curved objects that need to bederesl are not necessarily everyday
three-dimensional objects, but also abstract mathenhatigacts that are not linear, that may
live in high-dimensional space, and whose geometry we daowotrol. For example, the set
of lines in 3D that are tangent to three polyhedra, an objethe core of visibility issues,
span a ruled quadratic surface and the lines tangent to aespbaespond, in projective five-
dimensional space, to the intersection of two quadratielsuyrfaces.

Classical computational geometry has little to offer wheooines to handling the exact
geometry of curved objects. Among the difficulties involveadomputing with curved objects
are, the extension (if not complete rework) of even the masidxdata structures and algorithms

3



4 CHAPITRE 1. INTRODUCTION

(such as Voronoi diagrams, sweep algorithms, and arrangsiméhe massive intrusion of al-

gebraic issues and therefore the need for efficient algebodiware, the explosion of the num-
ber of degenerate cases (in geometric applications, tlreegfean the norm, not the exception)
and therefore the increased difficulty of writing robusttaaire, and the need to incorporate
arithmetic complexity, the assumption that operations @nstant time (real RAM) not being

appropriate in this context.

1.2 Overview and methodology

Over the last few years, | have focused my research actwtieffective geometric compu-
ting dedicated tanon-linear geometric object3 he objects that we consider are not necessarily
everyday three-dimensional curved objects, but also attstnathematical objects that are not
linear and may be defined in higher dimension (such as thefdateotransversals to three
lines). My contributions on this subject are centered ostl¥ir the structural, combinatorial,
and algorithmic properties of geometric structures onsliaed line segments in three dimen-
sions in the context of three-dimensional visibility prefs and, secondly, on the algorithmics
for geometric curved objects and, in particular, quadrics.

Concerning the development of algorithms, | focus on alporg that account for thexact
geometryof the objects, in particular when they are curved. Furtlmeeyeffectiveness a key
issue. Effective algorithms should bebustandefficient By robust we mean algorithms that do
not crash on degenerate inputs and always output topolygommsistent data. By efficient we
mean algorithms that run reasonably quickly on realistta eidhere performance is ascertained
both experimentally and theoretically.

Meeting these computational objectives requires mathieaidbols that are botigeome-
tric andalgebraic In particular, we need further knowledge of the basic gdoyaf lines and
surfaces in a variety of spaces and dimensions as well asafat adphisticated algebraic me-
thods, often computationally prohibitive in the most geheetting, for use in solving seemingly
simple geometric problems.

| present in this document my main contributions on the ®pikc3D visibility and lines in
spaceandgeometric computing with low-degree algebraic surfaces

It should be stressed that these two directions of reseaecstiangly related. A pragmatic
illustration of that fact is that, in many of my contribut®to 3D visibility and lines in space,
the methodology and proof techniques are heavily based @mnigh of low-degree algebraic
surfaces and, in particular, on quadrics (see Chapters 518, Znd 18). More concretely, these
connections are well illustrated by the following two exde® First, the line transversals to
three lines in space span a ruled surface which is quadkitce computing the lines through
four lines, a basic operation in 3D visibility, is akin, inree sense, to intersecting two quadratic
surfaces. Second, it is useful when studying lines in 3D pragent them as the points of
some space. Unfortunately, the parameterization of thes lof projective 3-space cannot be
as simple as for points and planes : it is known that there iSalgebraic model” for the
space of lines that is itself a projective space [PWO01, p. .14Bg best we can hope for is
a parameterization of lines by the points of a quadratic rsyréaceW in projective 5-space
(the so-called Plicker quadric). Now, each tangency cmmdinh 3-dimensional space has an
equivalent in 5-dimensional space : the lines meeting andine correspond to the intersection



1.2. OVERVIEW AND METHODOLOGY 5

of a hyperplane oP°(R) with W and the lines tangent to a sphere correspond to the intiensect
of a hypersurface of degree 2 with. In this way, visibility problems ifP3(R) (or R%) can
be formulated as problems on arrangements of low-degréacssrinP>(RR). This shows that
3D visibility problems are inherently non-linear, even whaealing initially with polyhedral
objects. Knowing how difficult problems on arrangementsowi-degree surfaces already are
in 3-dimensional space should give an idea as to why robsgtiy computations present an
enormous research challenge.

| present in the following subsections a brief descriptidrih@ context and methodology
of my work concerning curved objects, robustness, and effayi. Then, in Chapters 2 and 3, |
present a description of my contributions on the topic8Dfvisibility and lines in spacand
geometric computing with low-degree algebraic surfaaed include the corresponding papers
in Parts Il and .

Curved objects

When confronted with curved objects, most applications adisgc rendering and solid
modeling use polyhedral approximations to these surfandsapply existing algorithms to
manipulate these approximations. This approach leadsiatbg to very large data sets which
has a negative impact on the algorithm’s efficiency. In addjtthe resulting computations are
inaccurate and topological consistency cannot be guagdnte

While research aimed at finding more and more efficient algmst for dealing with tri-
angulated meshes is essential due to the ever increasingleaty of such models, effective
geometric computing may also be achieved by treating dyrexin-linear objects. Unfortu-
nately, computational geometry provides efficient methmdscipally when the models can be
described as large collections of linear objects. Statir@fart algorithmic knowledge is largely
helpless when it comes to robustly and efficiently manipodaeven simple curved objects.

Most objects of interest in computer graphics and solid riogeare (semi-)algebraic, that
is, they are defined by polynomial equations and inequatibimss algebra plays a fundamental
role in non-linear geometric computing. Many operationthatheart of algorithms dealing with
curved primitives boil down to evaluating, manipulatingdasolving systems of polynomial
equations.

Computer algebra and symbolic computation provide a pasagiybroach to the realization
of these operations. Well-known tools such as resultani$hi@er bases and Sturm sequences
have proved to be reliable means of attacking and solvinglsigeometric problems. Each
problem can be formulated algebraically in many differeaysiand computer algebraists know
from experience that the formulation can have a dramati@achpn the computational cost of
the solving process. Also, the algebraic translation ofabl@m tends to obscure the informa-
tion of geometrical nature. Finding formulations that aothbgeometrically meaningful and
that lend themselves well to symbolic manipulation is alsvaydifficult problem. Neverthe-
less, recent advances in computer algebra have opened searck alleys in the domain of
geometric computing with curved surfaces. In particulae, performance of computer algebra
systems has dramatically improved over the past few yeatsian-trivial problems can now
be solved (see, for instance, Chapter 18 on Voronoi diagrdrises). However, performing
algebraic computations efficiently is more of an art thaniars® and reliance on these tools
should enter only at the end of the pipeline, once the prollastbeen completely straightened
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FiG. 1.1 — A chess set modeled entirely with quadrics (modelstesy of SGDL Systems,
Inc.).

out from a geometric standpoint, as the following examplssitates.

Consider the problem of deciding whether four given sphettastanfinitely many common
tangents. This problem can be directly translated into grnmvhial system (of degree twelve)
which can be solved, or, using the geometric characteozati Chapter 5, one can check
whether the four spheres have aligned centers and, if sok eflgether they admit one tangent
(with a low-degree predicate). That the latter proceduré bve computationally much more
efficient than the former should be quite clear. Intuitioacatlictates that the smaller is the
degree of the (class of) surfaces considered, the moredbetaims can take advantage of the
geometry.

In general, the difficulties inherent in extending the cotapianal geometry repertoire to
curved objects are of several natures and mastering thileoga implies developing multidis-
ciplinary research, involvingomputational geometry, computer algebra, mathematicavies
and surfaces, and real and complex algebraic geometry.

Indeed, compared to linear objects, handling even the sishpf curved objects is a major
challenge and the intrusion of mathematics and computebedgis often massive (see Chap-
ter 5 on the characterization of degeneracies of lines tarigespheres, Chapters 14, 15, 16 on
the intersection of two quadrics and Chapter 18 on Vorongjrdias of lines). Furthermore, ba-
sic algorithms have to be revisited and sometimes entisthought to suit the needs of curved
primitives (see, again the work on quadrics, and Chapter ®ompating line segments tangent
to four amongk polytopes). Robustness and degeneracy issues are also twand&dle in the
world of curved objects than in the linear world and oftenuieg) multidisciplinary tools (see
Chapters 5 and 6 on the characterization of degeneraciegegftiingent to spheres or transver-
sal to segments, Chapter 9 on lines tangent to arbitrary qquudg, and Chapters 15 and 16 on
degenerate intersection of two quadrics).
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Robustness

In geometric applications, degeneracies, which occur whenobjects considered lie in
special positions are, in practice, often the norm, not seegtion. This is especially true in
computer graphics and shape modeling. The example of Figlirean serve to illustrate this
point. While the generic intersection between two quads@snon-planar curve of degree four,
it is fairly clear that most if not all of the arcs outliningdghboundary representation of the
knight piece are line segments and conic arcs, and thusamarpln other words, these curves
are degenerate instances of surface intersections.

Completely and correctly accounting for degeneracies isjamshallenge of most geome-
tric software. The overall utility of an implementation mentically depend upon the correct
treatment of special cases. Allowing for degenerate datiwmcreases the number of special
cases and thus the number of exceptional branchings ancldiediprocedures in the software.
One solution to this problem is to symbolically perturb thput, thereby symbolically moving
the geometric problem away from a singular case and regptiegeneracies automatically (see
the survey paper by Sugihara [Sug00]).

While handy, the symbolic perturbation approach is ofteppmapriate, for several reasons.
First, its applicability is limited and it has been workedt @ detail for only a small class
of problems. A perturbation scheme has to move the inputgetteric position for every de-
generate problem instance. Finding such a scheme can ety difficult and in any case
requires recognizing that the input is degenerate to begim which is a substantial part of the
work needed to fully treat degeneracies. Second, a sympelizrbation may unnecessarily
slow down computation. Indeed, solving a generic problestaimce can involve manipulating
arithmetic expressions of longer bit length, and thus bepdationally more costly, than when
the instance is singular. The work on the intersection ofigaa has shown precisely that (see
Chapter 17). Since geometric inputs are often degeneratesygrd (aligned primitives, tou-
ching objects, etc), this can have a dramatic impact on tkeeatlyerformance. Finally, when
the input is degenerate, a geometric software applying slimperturbation does not necessa-
rily solve the given problem instance. Indeed the outputigimed by a limit-taking process
applied to the solution of the perturbed problem ; this limay be structurally different than
the solution to the given instance. For example, when iatgirsg two tangent objects, if the
perturbation scheme moves them apart, the limit of the setgron of the perturbed instance
will be the empty set instead of, say, a point. For applicetiowhere exactness is an issue, this
might well be unacceptable.

By contrast, my work falls within thparadigm of exact geometric computirigecall that
a geometric object is really two things : a combinatorialsture (which, for instance, encodes
the incidences between the constituting elements of thectband a set of numerical quan-
tities describing the embedding of the object in space, white can usually consider to be
algebraic. Since there are consistency constraints giongtime relation between combinatorial
information and numerical quantities, the numerical ib8ity of geometric algorithms is in-
timately linked to this double nature of geometric obje&tsact geometric computing means
performing computations in which numerical quantities @raluated to sufficient precision in
order for the underlying combinatorial structure to be reathatically exact.

The dependence of combinatorial decisions on numericapatation is encapsulated in
the notion ofpredicates Evaluating a geometric predicate consists in determittiegsign of
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some polynomial expression in the input numerical quasitia simple example is “does a
given point lie to the left, to the right or on a given line ?’h&@paradigm of exact geometric
computing requires predicates to be evaluated correatlijich ensures that the branchings
made by the algorithm are correct and thus that the topabgtoucture of the output is exact.
This paradigm does not necessarily require, however, bigabtitput numerical quantities are
exact.

In full generality, solving a geometric problem in this pdiggan amounts to

— characterize (mathematically and geometrically) theedegacies, which can be in-
trinsic or algorithmic;

— translate each geometric decision (and branching of gaigim) into the determi-
nation of the signs of some algebraic expressions;

— exactly and efficiently determine the sign of these algele¢pressions.
Note, however, that resolving each branching of the algoritoes not necessarily require
evaluating algebraic expressions. Indeed, consider &amnte the problem of determining the
number of real roots of a univariate square-free polynoniiais can be done by evaluating pre-
computed polynomials, such as Sturm sequences, or by ditlypusing Descartes’ rule and
Uspensky’s algorithm [RZ04]. It is known that the latter nmeths more efficient than the for-
mer, in particular for high-degree polynomials. Nonethg/enost simple geometric predicates
are usually resolved by evaluating algebraic expressindsiatermining their signs.

Characterizing degenerate situations is crucial becaudisaovered degeneracies usually
result in fatal runtime error or combinatorially invalid tput. Degeneracies are essentially of
two different species : intrinsic degeneracies, which aresient to the problem at hand and
have to be handled by any algorithm that intends to robustiyeshe problem, and algorithmic
degeneracies, which are induced by algorithmic choicesar&fal study of intrinsic degene-
racies can lead to very efficient dedicated algorithms, asvshy our work on intersection
of quadrics (see Chapters 14, 15, 16, and 17). Perhaps legs/ely, a fine analysis of non-
intrinsic, algorithmic degeneracies can suggest strattmodifications to the algorithm and
induce improvements to its efficiency, as shown by the worKkragelier on 2D visibility com-
plexes [Ang02].

Once a geometric predicate has been identified, it canna@rnrergl be resolved using fixed-
precision floating-point arithmetic : if a problem instansenearly degenerate, then the value
of the corresponding expression can be very small, possly than the rounding error in
the floating-point evaluation of the expression. Hence tba-evaluation may be incorrect,
likely resulting, later, in a fatal error. Exact and effidieavaluation of predicates is usually
performed with the use of exact (arbitrary-precision)remétic and filters. When the value of
a polynomial expression is sufficiently far away from zertbefs can compute the exact sign
of the expression without computing its value exactly (fdtgpically use interval arithmetic) ;
otherwise the value of the expression is computed exactly.

The degrees of the polynomials expressing geometric patstids a direct measure of the
arithmetic bit length required for their exact evaluati®he degree is thus a measure of compu-
tational efficiency : the higher the degree of a predicatihesmore often the filters will fail and
the more costly exact evaluation will be. Translating gemimelecisions into low-degree pre-
dicates is thus important to strictly limit the arithmetimdacomputational demands of a robust
implementation. However, measuring the computationatieficy of solving a predicate by the
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degree of the polynomials involved is a model that seemsogpiate only for simple predicates.
Indeed, the above example about determining the numberbfaets of a polynomial shows
the limits of such model. Finally, it should be noted thatideg whether a predicate realizing
a given decision has minimal degree or can be broken dowrpir@dicates of smaller degree
seems to be, in general, a very difficult problem.

While simple enough for basic geometric primitives, the aelotarization of degenerate ins-
tances of a problem and its translation into low-degreeipa¢els can be mathematically invol-
ved even when the primitives are simple. Consider for ingamcenvironment made of spheres
of arbitrary radii. From the point of view of 3D visibility,l@aracterizing degeneracies requires
detecting when quadruples of spheres admit infinitely mamgraon tangents. While one may
be content with such a high-level description, the “infilyitmany common tangents” condition
cannot be easily turned into (a set of) geometric predictddetection will be both expensive
and prone to numerical instability. Recently, we provedr(gdbols from complex projective
geometry) that degenerate instances of quadruples ofephez those with aligned centers and
admitting at least one common tangent (see Chapter 5). N@wadmdition has a much more
geometric flavor and can be efficiently verified by low-deggeemetric predicates.

My approach to geometric problems includes a systematiachkexization of degeneracies
(see Chapters 5, 6, 8, 9, 15, 16, and 17) and the design of Igreel@redicates for making the
corresponding geometric decisions (see Chapters 8). | vy not work on the design of
arithmetic filters which is almost an independent field oeeesh but use existing implementa-
tions such as the one developed in the kernel of the CGAL Wbrar

Efficiency

In computational geometry an algorithneéfficiencyhas been historically measured in terms
of worst-case asymptotic complexity in the real RAM modelahputation. In this model, time
(and space) optimal algorithms are often the ultimate gdl#though worst-case optimal algo-
rithms are clearly important, they are not always the madstient in practice ; quicksort is
recognized as the fastest sorting algorithm in practicaghmnly if it is implemented using the
O(n?) worst-case algorithm rather than the optir@ghlogn) worst-case algorithm. Moreover,
they can be hopelessly complicated ; Chazelle’s linear-atgerithm for triangulating simple
polygons [Cha91] is unanimously considered to be unimpléaida [Ski97, pp. 355-357]. Ne-
vertheless, we will always be interested in the worst-caseptexity of an algorithm because it
provides a starting point for further analysis.

If the size of the output of an algorithm can vary substalytiéthen the goal is to design
algorithms that optimize the worst-case complexity exgpedsn terms of two parameters, input
and output sizes, the so-called output-sensitive algostiAn example of this is the problem of
computing the convex hull of a set of points in 2D. Althougl tdonvex hull may contain all the
input points it may also contain as few as three. An optimaisivoase algorithm computes the
convex hull ofn points in®(nlogn) time whereas there is a simp& nlogh)-time algorithm
whereh is the output size [CSY97]. Clearly, the advantage of the dedpusitive approach is
even greater when the output can be as largeé(@$) which is the case when computing lines
tangent to 4 amongstobjects in three dimensions.

Computational geometry problems, particularly in threelaigtier dimensions, are plagued
by contorted worst-case configurations that simply nevisean practice. Data sets required to
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induce an exponential-time performance of the simplex peeflor linear programming is a
well-known example. When worst-case asymptotic complegityot a relevant measure, ano-
ther option is to do a probabilistic analysis of the algaritim which one assumes a distribution
on the inputs and derives the expected time complexity. iEhaften very difficult even for
some simple cases such as uniform distributions (see, $tance, Chapter 11). Although such
simple distributions are arguably irrelevant since reatld data is not uniformly random, a
probabilistic analysis can give some insight beyond thetrgby a study of the complexity in
the worst-case ; worst-case examples don’t necessariigsept real-world data either!

A randomized algorithm is one which makes random choicesaalysis of a randomized
algorithm yields an expected-time bound that holds forrgdlits ; no assumption on the distri-
bution of inputs is made. Randomized quicksort is the classatnple. Randomized algorithms
have known a tremendous success in computational geonextayibe they are generally incre-
dibly simple to implement and are fast [Sei91]. Though ranided algorithms should perhaps
not be used in critical real-time applications (such asitagpd space shuttle), randomization is
the way to go in graphics and solid-modeling applications.

Efficiency of algorithms can often be improved by first apptysome simple algorithm if
the data exhibits some special characteristics. One exa)@gain, in the quadric intersection
algorithm ; degenerate cases are recognized and handlgquebiakzed faster algorithms (see
Chapters 15, 16, and 17). We advocate this approach. We dbovegyer, advocate the use of
algorithms that solve the problem only in some special casdscrashes or outputs nonsense
otherwise.

A judicious choice of data structures can have a huge impath® efficiency of an algo-
rithm. Hierarchical decompositions of space such as c&igeg classic example from graphics.
When the problem involves answering many queries, this cdadigated by first preproces-
sing the input into some data structure. Obviously, spacerbes an important issue.

When the theoretical analysis of an algorithm shows that prasnising or when we fail
to obtain an analysis because we simply don’t have the ragst the next step would be to
implement the algorithm and analyze its running-time (gomatce) complexity on random and
real data. This step has posed enormous problems to conopaiageometers partly because
of the robustness issues discussed in the previous seltany, possibly most, published geo-
metric algorithms work only on non-degenerate input. Sitygecal graphics scenes contain
degeneracies, it is critical to write algorithms that workadl inputs so that they may be tested.

To summarize, the objective is to design and implement #lguos, correct on all inputs,
that require a reasonable amount of extra storage and thajuigkly on realistic data. The
performance will also be ascertained both theoreticaltytanrough experiments.



Chapitre 2

3D visibility and lines in space

2.1 Introduction

Three-dimensional visibility problems arose about 30 gesgo, with the advent of the
visualization of 3D objects. In three decades, the gap etwbkeory and practice widened
as the performance of hardware gradually supplementeddthkeolf theoretical understanding.
Visibility computations are central in computer graphipplecations and many problems are
often considered solved in practice, though they do notsezndy have satisfying solutions.
For instance, computing the limit of the umbra and penumlast by an area light source,
identifying the set of blockers between any two polygons tgpecal examples of visibility
problems that are essential for the realistic renderinglbk8enes and that do not have any
satisfying solutions : these problems are, in practicey@pmated by many point-to-points
visibility queries. To develop new algorithmic solutiors these questions, we need to improve
the understanding of 3D visibility.

It should be stressed that, for solving most visibility deshs, the graphics community has
moved decades ago to hardware solutions such as dedehidiér hardware or, more recently,
GPUs (Graphics Processing Units). However, these solkisosmmainly used for computing 2D
images though very rarely for computing light-flow simuteis in 3D scenes. The reason for
this is that current hardware solutions are suited for dgakith two-dimensional sets of rays
(for instance, &-buffer can be used for efficiently computing the view fromoan) but are not
suited for general visibility queries which deal by essewté four-dimensional sets of rays
(lines in 3D have 4 degrees of freedom).

My research objectives concerning 3D visibility are priityathe design and implementa-
tion of algorithmic solutions for 3D visibility problemsnlparticular, | am interested in two
major challenges that are (i) to compute the limits of umioié @enumbra cast by an area light
source and (ii) to solve surface-to-surface visibility qeg, that is to answer queries of the
type : are two elements of surfaces mutually (partially)okes?

To reach these objectives, we first need a better undersodithe properties of sets of
lines and line segments that are tangent or transversalj¢gatebn a three-dimensional scene.
This fundamental direction of research is of interest irmhejently of any direct application and
it has been the focus of my research activities on the subjecé 2000. In particular, most of
the work | present here focuses primarily on the structundl@mbinatorial properties of sets

11
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of three-dimensional lines and line segments in the comtexsibility problems.

This work also leads to some algorithmic solutions for 3Dbiigy problems. In particular,
the study of the set of free line segments tangent to four grkpolytopes leads to an algorithm
for computing such segments (see Chapter 9) ; a brief deiseriptan implementation of a pre-
liminary version of this algorithm is given in Chapter 10. Maenerally, this work should also
lead to an algorithm for computing the visibility skelet@ngata structure that encodes visibi-
lity information [DDP97]. Note also that the work on chaextzing degenerate configurations
of lines tangent to polytopes (see Chapters 6 and 9) and theamgpredicates for computing
such lines (see Chapter 8) is critical for any robust implaaten of such algorithms. Finally,
it should be mentioned that the work of Chapter 9 on the praseof lines tangent to polytopes
also led to new combinatorial results on the umbra cast oareegdby polygonal light sources in
the presence of obstacles (see Chapter 13). These resuttitiaes to understand the structure
of the umbra and penumbra cast by non-trivial light sourcesthey should ultimately impact
the techniques for computing such objects exactly and effikyi.

| now present a panorama on 3D visibility and, in Section Bi2e a description of my
contributions on the topic.

Panorama

In a given scene, two points are visible if the line segmemting them is free of any
obstacles in the scene. The study of visibility is thus etsa@nthe study of free line segments.
The set of free line segments is bounded by segments thatragerit to the obstacles; in 3D, a
line is tangent to up to 4 objects in general position. To pahother way, consider a moving
viewpoint in a 3D scene. The view will change when a new obgggears (or disappears)
from behind an obstacle. When this happens there is a linengagwough the viewpoint,
tangent to the obstacle and arriving at the new object (atdhly tangent to it as well). It is
thus imperative to fully understand tangencies betweersland obstacles in order to answer
visibility queries.

As mentioned above, two major challenges in 3D visibilite &) to compute the limits
of umbra and penumbra cast by an area light source and (iplt@ surface-to-surface vi-
sibility queries, that is to answer queries of the type : are ¢élements of surfaces mutually
(partially) visible ? Classical data structures based otiapdecomposition, such as octrees or
binary space partition (BSP) trees, are of little help in teapect. These structures are, indeed,
designed to solve ray-shooting or point-to-point vistgitjueriesj.e., problems that are intrin-
sically of dimension two (the dimension of the set of linesngahrough a point), and they do
that very well, whereas surface-to-surface visibilityatwes the set of lines intersecting two
surfaces, which is four-dimensional.

One data structure that has been proposed for encoding 3flitysinformation is the
visibility complex, which, roughly, is a partition of the &pe of maximal non-occluded line
segments into connected cells of segments that are tangexaittly the same objects. The
structure was introduced by Pocchiola and Vegter in 2D [BY@hd by Durand, Drettakis,
and Puech in 3D [Dur99, DDPO02]. In 2D, the visibility complaas been extensively stu-
died [PV96a, Riv97, HHO02, AP0O3b] as well as its applicationrendering [ORDP96, CF99].
In 3D, because this structure has cells of dimension up tg fourand et al. introduced, for
practical reasons, the visibility skeleton, the structilva consists of the cells of dimension
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zero and one of the visibility complex [DDP97]. They propdseproof-of-concept implemen-
tation showing that the skeleton leads to higher qualitygesan light simulation together with
improved computation time compared to previous algoritibi3P99].

Despite these positive results their pioneering approatfered two major impediments :
the poor performance of their algorithm, based on a sysiereatimeration of all possibilities
leading to worst-case complexi€(n®) and observed complexi®(n>°) thanks to the use of
heuristics [Dur99], and the lack of robustness of their iempéntation which requires a great
deal of time-consuming human intervention to remove degeies from the scenes. As a re-
sult, the largest scene they were able to handle had no mameltb00 triangles [DDP99].

A few years later, Duguet and Drettakis proposed a pragticabust implementation for
computing a two-dimensional section of the visibility sieln in which the lines supporting
the maximal non-occluded line segments are restricted tallomncurrent (possibly at infi-
nity) [DD02]. Their implementation was successfully testen scenes with over 100,000 poly-
gons showing that, in the restricted context of punctudltgr lights at infinity, the approach
leads to higher quality images in light simulation togettéth improved computation time
compared to previous algorithms.

There are two reasons why little research has been done ¢opticeof 3D global visibility.
One is that the problems are formidable because, as hintédrethe problems are intrinsi-
cally non-linear, even when dealing with polyhedral datey are fairly high-dimensional since
the space of lines in 3D is of dimension four. The other reasdhat the space requirements
of global visibility data structures have always been cdex®@d huge due to theoretical com-
plexity bounds : the size of the visibility skeleton@n*) in the worst case fon triangles.
Durand [Dur99] observed a much smaller empirical siz®@fi>4), which was unfortunately
still much too large for real-world graphics applicatiorawever the small size of the scenes
they were able to handle seriously diminishes the signifeant this experimental asymptotic
complexity since it is not clear that it corresponds to thengstotic behavior. | also present, in
the next section, theoretical evidence supporting the tllaathese bounds are, indeed, overly
pessimistic for practical applications.

2.2 Summary of contributions

2.2.1 Introduction

| first present briefly my contributions, and their relevanoe 3D visibility and lines in
space. | then present, in Sections 2.2.2 to 2.2.9, a moréegkthough concise, descriptions of
these results.

First, | present some results on theuctural properties of lines that are tangent or trans-
versal to four primitivesn three dimensions. Chapter 5 first presents a charactenzat the
configurations of four spheres in 3D that admit infinitely maommon tangents. This charac-
terization is complete and elementary : the spheres must &dlayned centers and at least one
common tangent. This elegant characterization settledhgciure by T. Theobald and conclu-
ded a series of (seven) papers that investigated variartkssgbroblem where the spheres are
congruent or some spheres are replaced by lines.
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Chapter 6 then presents a characterization of the set of conmasversals to four (and,
more generally, tm) line segments in three dimensions. We prove, in particthat four seg-
ments in 3D admit at most 4 connected components of commaosveasals and possibly
exactly 4 transversals. This result is fundamental andrsimg since four lines in 3D admit
at most 2 connected components of common transversals.

In Chapter 7, we investigate the number of common tangentsuotfiangles (a line is
tangent to a triangle if it intersects its boundary). We slibat the number of such common
tangents can be, surprisingly, as high as 62. The corregmpednstruction consists of very
thin triangles but we also ran experiments on five millionsdyuples of random triangles;
we obtained several quadruples with 40 common tangents lseheed that quadruples that
admit common tangents have 16 tangents or more with protyadilleast 15%. We also show
an upper bound of 162 which also holds for arbitrary degaeeranfigurations where each
tangent line may become a connected component of tangest linshould be noticed that
while the lower bound of 62 is already surprisingly high, ¢a® between the lower and upper
worst-case bounds remains large.

Related to these problems, Chapter 8 presents a study of sgmiedicates concerning line
transversals to lines and segments in 3D. In particular, evepute the degrees of standard
methods of evaluating these predicates. We show that threelegf some of these methods are
surprisingly high (up to 168), which may explain why compgtiine transversals with finite-
precision floating-point arithmetic is prone to error. Oesults also suggest the need to explore
alternatives to the standard methods of computing thesatitjea. Indeed, efficient predicates
for solving such elementary queries is important for theettigwment of robust and efficient
algorithmic solutions to 3D visibility problems.

| then present several results on ttwnbinatorial properties of geometric structuieshe
context of three-dimensional visibility. Chapters 9 and dduk on the complexity of the visibi-
lity complex, a data structure that encode visibility inf@tion, which is, roughly speaking, the
partition of the space of maximal free line segments intoneated components of segments
that are tangent to the same objects. Chapter 12 focuses eiz¢hef silhouettes of polyhedra
and Chapter 13 on complexity of the umbra and penumbra casimypaint light sources.

Chapter 9 presents new combinatorial bounds on the set & #ind free line segments
tangent to possibly intersecting arbitrary convex polyheth particular, we prove th&tsuch
polytopes with a total oh edges admit, in the worst cag@(n’k?) connected components of
maximal free line segments tangent to at least four pol\gopleis result is a significant improv-
ment over the previous known trivial bound@tn*) and over the sam@(n’k?) bound for the
considerably easier case of disjoint convex polyhedragalaiic general position [EGHHZO00,
BDD'02]. This result also implies that the visibility complexnaits ©(n’k?) vertices, in the
worst case. More generally, this bound also holds for the sfavhole visibility complex but,
if the proof is trivial for polytopes in generic position,ig more subtle (and unpublished) for
polytopes in arbitrary position.

Chapter 11 focuses on the size of the visibility complex fafarmly distributed objects.
We show that, amongatuniformly distributed unit balls ifR3, the expected number of maximal
non-occluded line segments tangent to four balls is linBais bounds generalizes in various
directions. In particular, the bound applies to the the etquk size of the visibility complex
of uniformly distributed unit balls. This also leads tacQ4n?) bound on the expected size of
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the visibility complex of random polyhedra or polygons (ofal complexityO(n)) of bounded
aspect ratio. These results significantly improve the bestipusly known bounds cﬁ)(ng/ 3)
for unit balls [DDPO02].

The results of Chapters 9 and 11 show that taking into accbeniriderlying structure of a
scene provides new insight on the size of 3D visibility datactures. Furthermore, they give
evidence that the previously known bounds (mentioned iptaeious section) were overly pes-
simistic and that the storage requirement for these datatates is not necessarily prohibitive.
There is thus some hope that these structure may be useadl#wvorld graphics applications.

Chapter 12 provides theoretical evidence supporting, fargelclass of objects, the widely
observed phenomenon that the size of the silhouette of dedipn is much smaller than the
size of the whole polyhedron. We prove that the silhoueti@ pdlyhedron that approximates a
surface in a reasonable way has expected®@{z¢n) where the average is taken over all points
of view andn is the complexity of the polyhedron ; the surfaces may be ecumvex and non-
differentiable and they may have boundaries. Note thatibkeage is taken over all viewpoints
for a given surface, and not on a set of surfaces. This confamsdely accepted belief in
computer graphics and is the first complexity result foraiksttes of non-convex polyhedra.

Finally, Chapter 13 presents some combinatorial resultdierutbra and penumbra cast
by non-trivial light sources. A point is in the umbra if it dd@ot see any part of any light
source; itis in full light if it sees entirely all the light scces ; otherwise, it is in the penumbra.
While the common boundary of the penumbra and the full lighaiidy well understood, less
is known about the boundary of the umbra and computing suaticstr boundaries is a difficult
problem in the case of non-point light sources. We preserdgraesurprising lower bounds.
In particular, a segment light source may cast on a plandarptesence of two triangles, up
to four connected components of umbra; also, replacingvileetiangles by two disjoint fat
polytopes of total size induces®(n) connected components of umbra in the worst case. For
polygonal light sources in a scenelopolytopes of total complexity, we show that the umbra
may admitQ(n?k®+nk®) connected components and has compleRity’k?). These results are
the first non-trivial bounds on the size of the umbra and stawthe umbra can be surprisingly
complicated, even in the presence of disjoint fat obstadese generally, this work gives
some insight on the structure of the umbra which may lead ¥o algorithms for computing
them exactly and efficiently.

The above results focus on the structural and combinatmaglerties of sets of lines or line
segments that are tangent or transversal to primitives eSufrthese results are also critical for
the development abbust and efficient algorithnfer 3D visibility. In particular, in Chapter 9,
the study of the set of free line segments tangent to four grkpolytopes leads to an algorithm
for computing such segments (see Section 9.5). Chapter $@rmisea video that describes an
implementation of a preliminary version of this algorithmore generally, this algorithm can
also compute the whole visibility skeleton of disjoint pmlges but its generalization to possibly
intersecting polytopes or disjoint non-convex polyhedréhe subject of future research. Note
also that the work on characterizing degenerate configurabf lines tangent to polytopes (see
Chapters 6 and 9) and the work on predicates for computinglswesh(see Chapter 8) is critical
for any robust implementation of such algorithms.

Finally, | mention a few other results on 3D and 2D visibijtgoblems that | do not include
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in this document because they are only remotely connectétetoesults | mentioned so far.
First, in a context of layer manufacturing in rapid protohyg we have proposed a practical
approximation solution to the problem of computing an oplislicing strategy and drilling
direction so as to minimize the volume of the regions thairsecessible to a two and one-half
degrees of freedom tool during the manufacturing proceeB84, Lau05]. This strategy has
been tested with success and is now used by CIRT&E®search company in rapid prototyping.
We also presented preliminary results on the problem otedkely computing visibility graphs
of spheres [MDCO5] and solved several visibility problemsvio dimensions. In particular,
we proved theoretical bounds and made an experimentalsassatof the size of the visibility
complex of randomly distributed objects in the plane [ELPZ#&nd presented an algorithm for
parabolic ray-shooting [CEKO7].

| now present a more detailed descriptions of these results.

2.2.2 Common tangents to spheres iR3

The lines tangent to spheres has been persistently inastign the recent years. Macdo-
naldet al.[MPTO1] proved that four unit spheres have at most 12 comrangents in general,
and infinitely many common tangents if and only if the centgesaligned. The bound of 12
was independently obtained by Devilleesal. [ DMPTO03]. Examples show that, in the finite
case, this bound is tight [DMPTO03, MPTO01], yet, accordind/egyesi [Meg01], it drops to 8
in the case of unit spheres with coplanar but non-collineaters. However, the upper bound
of 12 remains valid when the spheres have arbitrary raditii®and Theobald [ST02] proved
that there are 2"~1 complex common tangent lines ta 2 2 general spheres iR", and that
there exists a choice of spheres with all common tangents rea

Recently, progress has also been made in understandingriegesgaof common tangents
to spheres and transversals to lines. Theobald [TheO2}idledcthe configurations of three
lines and a sphere having infinitely many common tangeatstrersals. Next, Megyest
al. [MSTO03] characterized the families of two lines and two qugglof P*(C) with infinitely
many tangents/transversals, and applied their resulketoase of two lines and two spheres of
R3. Last, Megyesi and Sottile [MS05] classified the familie®né line and three sphereslot
with infinitely many tangents/transversals.

The question of characterizing the positions of four sphefevarious radii with infinitely
many common tangents remained open. Quoting Theobald ZThéWe conjecture that there
does not exist any configuration with four balls of arbitragdii, non-collinear centers and
infinitely many common tangent linék Chapter 5, we confirm this expectation and prove the
following.

Theorem 2.1. Four distinct spheres ifR3 have infinitely many real common tangent lines if
and only if they have aligned centers and at least one reahcomtangent.

More precisely we prove that four spheres with infinitely naommon real tangents either
intersect in a circle, possibly degenerating to a point,amhesphere has a circle of tangency
with one and the same quadric of revolution with symmetns dlke line through all centers
(see Figure 2.1); such a quadriaisiqueand can be a cone, a cylinder or a hyperboloid of one

Lhttp://www.cirtes.fr
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@

FIG. 2.1 — Two examples of quadruples of spheres with infinitedyyyncommon tangents.

sheet. Furthermore, the common tangents to the four sphsresactly the common tangents
to any three of them.

The idea of the proof is as follows. Considering a line paranetd by a pointp and
a directionv, we first characterize the lines tangent to four spheresasdhutions of three
equations irp andv. We then eliminatg from that system of equations. This gives two cufves
in the 2D projective space of directions, whose interseatantains all directions along which a
common tangent line to the four spheres is observed. We tloee that the two curves intersect
in a finite number of points.

The key idea behind the proof is that if the two curves, emaslaas complex projective
curves, had a common component of positive dimension, tmgponent would intersect, in
complex space, the imaginary comt? = 0 and we show that this is not the case.

It should be stressed that any solution to the problem ofachi@rizing sets of four spheres
with infinitely many tangent lines must be computational éong extent, because while we
are interested in real lines, the “native” system of equmgtis overC. Any understanding of
the system should involve sensitivity to complex degeresaén our proof, computations flow
towards revealing such complex degeneracies, but are-sincuited by use of reality assump-
tions.

2.2.3 Transversals to line segments in three-dimensional space

We address, in Chapter 6, the following basic question : Whheisardinality and geometry
of the set of transversals to an arbitrary collectiomdihe segments ifR3? Here a segment
may be open, semi-open, or closed, and it may degeneratedimtg pegments may intersect
or even overlap. Since a line I?® has four degrees of freedom, it can intersect at most four
lines or line segments in generic position. Conversely\te-known that four lines in generic
position admit zero or two transversals ; moreover, fouitaty lines inR® admit zero, one,
two, or infinitely many transversals [HCV52, p. 164]. In cast, our work shows that four
arbitrary linesegmentadmit up to four or infinitely many transversals.

We completely describe the structure of the connected casmgs of transversals to a col-
lection ofn line segments ifR3. Generically, the set of transversal to four segments sboi
zero, one, or two lines. We catalog the non-generic caseslama thatn > 3 arbitrary line

1A cubic and a quartic when the centers are affinely indepeandetonic and a sextic when the centers are
coplanar with no three aligned.
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FIG. 2.2 — Two views of a hyperboloid of one sheet containing fm& segments and their four
connected components of transversals (corresponding &htided regions). The four segments
are symmetric under rotation about the axis of the hypertiolo

segments ifR3 admit at mosh connected components of line transversals, and that thisdo
can be achieved in certain configurations when the segmentsoalanar, or they all lie on a
hyperboloid of one sheet (see Figure 2.2). This impliesta tigpper bound oh on the number
of geometric permutations of line segment®Rih

More precisely, our results are the following. We say that tinsversals to a collection of
line segments are in the saroennected componeiitand only if one of the transversals can
be continuously moved into the other while remaining a twarsal inR3 to the collection of
line segments. (For the sets of line transversals consldezee, the notions of connected and
path-connected components are equivalent since all s=teari-algebraic.) Equivalently, the
two points in line space (e.g., in Plucker space [PWO01]) spoeding to the two transversals
are in the same connected component of the set of pointsspamding to all the transversals
in R3 to the collection of line segments.

Our main result is the following theorem.

Theorem 2.2. A collection of n> 3 arbitrary line segments iiR® admits any number from
0 to n of connected components of line transversals. Moreigety, the set of line transver-
sals consists of at most two isolated lines unless the segrieim one of the following three
configurations :

1. the n segments are all contained in lines of one ruling pB(hyperbolic paraboloid or
(b) a hyperboloid of one sheet, or

2. they are all concurrent, or

3. they all lie in a plane, with the possible exception of a grofione or more segments that
all meet that plane at the same point.

In cases 1(a) and 2, the transversals form at most one coadecmponent. In cases 1(b) and
3, the transversals can have any number from 0 to n of conti@xmponents. Moreover, in
case 3, if all segments are not coplanar, this number is at mesl.

In cases 1-3, each connected component can consist ofehfimiany lines or reduce to an
isolated line. For example, three segments forming a theaagd a fourth segment intersecting
the interior of the triangle in one point have exactly thremngversals (Figure 2.3 shows a
similar example with infinitely many transversals). Alsbe tfour segments in Figure 2.2 can
be shortened so that the four connected components of &eads reduce to four isolated
transversals.
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FIG. 2.3 — Four segments having three connected componentngirsals.

We also show that a simple consequence of our theorem is tlogviimg bound on the
number of geometric permutationsmegments ifR3.

Corollary 2.3. A set of n> 3 pairwise disjoint segments IR® admits up to n geometric per-
mutations and this bound is tight.

Finally, we also show that a@(nlogn)-time algorithm for computing the transversalato
segments follows directly from the proof of the above theare

The idea of the proof is as follows. We first consider the segsisupporting linesi.e., the
lines containing the given segments (defined as verticakitbrresponding segment is a point).
We prove Theorem 2.2 by studying the set of line transvetsdlsee segments in the following
three different cases, which cover all possibilities betraot exclusive : (i) three supporting lines
are pairwise skew, (ii) two supporting lines are coplanad @ii) all the segments are coplanar.

For instance, in the first case and if, furthermore nalt 3 supporting lines lie in the first
ruling of a hyperboloid of one sheet (see Figure 2.2), the transversals are the lines in the
second ruling and they can be parameterized by points oripsegifor instance, by their inter-
section points with an ellipse lying on the hyperboloid oé@heet. Thus, the set of transversals
to then segments corresponds to the intersectioniotervals on this ellipse. This intersection
can have any number of connected components from zero mypatad any of these connected
components may consist of an isolated point on the elliplse SEt of transversals can thus have
any number of connected components from zero up, &nd any of these connected compo-
nents may consist of an isolated transversal. Figure 2 \@stwo views of a configuration with
n =4 line segments having four connected components of treseige

2.2.4 Lines tangent to four triangles in three-dimensional space

We study in Chapter 7 the basic question : What is the numberrofran tangent lines to
four triangles ? We establish upper and lower bounds on thiger. We show in particular that
this number could be, surprisingly, as high as 62.

We say that a line isangentto a triangle if it meets an edge of the triangle. hét, to,t3,ts)
be number of lines tangent to four triangtest,, t3, andts in R3. This number may be infinite
if the lines supporting the edges of the different trianglessnot in general position.
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to

[V t3
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(b)
FIG. 2.4 — Triangles with many common tangents

Our first step is to consider the algebraic relaxation of gigiemetric problem in which we
replace each edge of a triangle by the liné’f{R) supporting it, and then ask for the set of
lines inP3(C) which meet one supporting line from each triangle. Sincecthee 3 = 81 such
guadruples of supporting lines, this is the disjunction bfistances of the classical problem
of transversals to four given lines IP*(C). As there are two such transversals to four given
lines in general position, we expect that this algebraiax&tion has 162 solutions. We say
that four triangleds, ty,t3,t4 are in (algebraicheneral positiorif each of the 81 quadruples of
supporting lines have two transversal®f{C) and all 162 transversals are distinct. Odie the
configuration space of all quadruples of triangle®fhandT c T consist of those quadruples
which are in general position. Thus(ifi, t2,t3,t4) € T, the numben(t, to,t3,t4) is finite and is
at most 162.

Our primary interest is the number

N = max{n(ty,to,t3,t4) | (t1,t2,t3,t4) € T}.
Our results about this numbBrare two-fold. First, we show th&t > 62.

Theorem 2.4. There are four disjoint triangles in T witB2 common tangent lines.

The idea is to perturb a configuration of four linesRA with two real transversals. The
triangles in our construction are very ‘thin'—the smallasgle among them measures about
10-11 degrees (see Figure 2.4(b)). We ran a computer search ftar'faiangles having many
common tangents, checking the number of tangents to 5 mlilerent quadruples of triangles
over six months of CPU time. It appears that random quadrublesalistic triangles often have
a fair number of common tangents (see Figure 2.4(a)). Seliathas many as 40 common
tangents, and quadruples that admit common tangents haaad#nts or more with probability
at least 15%.

We can improve the upper bound binwhen the triangles are disjoint.

Theorem 2.5. Four triangles in T admit at most62 distinct common tangent lines. This num-
ber is at mostL56if the triangles are disjoint.
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We believe, however, that the upper bounds we give here afeofa optimal. When the
four triangles are not in general position, the number oféent lines can be infinite. In this
case, we may group these tangents by connected componentkne tangents are in the same
component if one may move continuously between the two hmgige staying tangent to the
four triangles. Each quadruple of edges may induce up todomnponents of tangent lines (see
Chapter 6), giving a trivial upper bound of 324. This may beroved.

Theorem 2.6. Four triangles have at mosi62 connected components of common tangents. If
the triangles are disjoint, then this number is at mbs6.

Finally, we also prove the following result about the padfythe number of tangents.
Theorem 2.7.1f (ty,t,t3,t4) € T, then rity, o, t3,t4) is even.

This result may not seem surprising as complex roots comenjugate pairs. However,
this usual argument does not apply because we seek tangerndhgles and not transversals to
lines. Frequently, only one of two real transversals to adguale of supporting lines is tangent
to the triangles.

2.2.5 Predicates for line transversals in 3D

Computing line transversals to lines or segments is an irmpbdperation in solving 3D
visibility problems arising in computer graphics; see Ceapt7, 9, 13 and [DD02, DDP97,
DDP02,EGHHZ00,PD90]. In Chapter 8, we study various predicand their degrees concer-
ning line transversals to lines and segments in 3D.

A predicate is a function that returns a value from a discseteTypically, geometric predi-
cates answer questions of the type “Is a point inside, caitsicon the boundary of a set ?”. We
consider predicates that are evaluated by boolean fursctibmore elementary predicates, the
latter being functions that return the sign, (0 or+) of a multivariate polynomial whose argu-
ments are a subset of the input parameters of the probleantesisee, for instance [BP0O]).
By degreeof a procedure for evaluating a predicate, we mean the mawidegree in the input
parameters among all polynomials used in the evaluatioheoptedicate by the procedure. In
what follows we casually refer to this measure as the dedgrfe@redicate. We are interested
in the degree because it provides a measure of the numbetsafelguired for an exact eva-
luation of our predicates when the input parameters argangeor floating-point numbers; the
number of bits required is then roughly the product of theréegvith the number of bits used
in representing each input value.

In Chapter 8, we first study the degree of standard predicatedetermining the number
of line transversals to four lines or four segments in 3D aligbat four lines inR3 admit 0, 1,

2 or an infinite number of line transversals and that four sagsadmit up to 4 or an infinite
number of line transversals (see Chapter 6). We also conlidepredicate for determining
whether a minimal (i.e., locally shortest) segment trarsaleto four line segments is occluded
by a triangle. Finally, we study the predicate for compantanes through two fixed points,
each containing a third (rational) point or a line transaéte four segments or lines. This
predicate arises in the rotating plane-sweep algorithincthmputes the minimal free segments
tangent to four among convex polyhedra in 3D (see Chapters 9 and 10).
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Our study shows that standard procedures for solving theskgates have high degree. In
particular, we show that determining whether a minimal seginransversal to four line seg-
ments is occluded by a triangle can be evaluated by a predi¢ategree 90 in the coordinates
of the points defining the four segments and the triangleo Alee predicate for comparing, in a
rotational sweep, two planes, each defined by a line trasa&an be evaluated by a procedure
of degree 168 in the coordinates of the points defining thetispgments. These very high de-
grees may help explain why using fixed-precision floating¥parithmetic in implementations
for solving 3D visibility problems are prone to errors whewvem real-world data.

2.2.6 Lines and free line segments tangent to arbitrary three-dimensnal
convex polyhedra

We investigate in Chapters 9 and 10 the complexity and caetgiruof sets of tangent
line segments in a scene of three-dimensional polyhedrgpr@&ent, in Chapter 9, two types
of results. First we present some combinatorial bounds emtimber of lines or free line
segments tangent to four polytopes ; we then present anthlgoior computing such free line
segments. In Chapter 10, we present a short description dea Wiustrating our algorithm and
its implementation in the case of disjoint polytopes. We m@tail these results.

Combinatorial boundsWe show that amon§ polytopes, of total complexity, that mayin-
tersect the number of lines tangent to any four of them is in the woeste either infinite or
O(n?k?). The most surprising aspect of this result is that the bowrdch is tight) is the same
whether the polytopes intersect or not. This is in sharprasnto the 2D case, where the num-
ber of tangents to two convex polygons is always 4 if disjamid could be linear in the size of
the polygons if they intersect. Our result is also valid fotypopes inarbitrary position: we
drop all general position assumptions. The polytopes m@ysact in any way ; they may over-
lap or coincide. They may degenerate to polygons, segmergsiots. While four polytopes
in general position (as defined in [BDMD2]) admit a finite number of common tangents, four
polytopes in arbitrary position may admit an infinite numbecommon tangents which can be
partitioned into connected components.

Our main results are, more precisely, the following.

Theorem 2.8. Given k polytopes ifR3 with n edges in total, there are, in the worst case,
O(n?k?) connected components of maximal free line segments tatmenteast four of the
polytopes. This bound also holds for connected componépisssibly occluded lines tangent
to at least four of the polytopes.

This result is a significant improvment over the previousvmarivial bound ofO(n*) and
over the sam®(nk?) bound for the considerably easier case of disjoint convéyhgalra in
algebraic general position [EGHHZ00, BDD2]. Note that, wherk > 4, neither of the two
results stated in Theorem 2.8 implies the other since a éingent to at least four amorkg
polytopes may contain many, but does not necessarily coataj, maximal free line segments
tangent to four polytopes.

Whenk = 4, Theorem 2.8 implies that there @#n?) connected components of lines tan-
gent to the four polytopes, an improvement on the previokistyvn upper bound dd(n®logn)
which follows from the same bound on the complexity of theaddine transversals to a set of
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FiG. 2.5 — Aline tangent at a vertex of eachkgbolytopes.

polyhedra (here four) with edges in total [Aga94]. Moreover, we prove a tighter boun@mvh
one of the four polytopes has few edges.

Theorem 2.9. Given 3 polytopes with n edges in total and one polytope with m edgese th
are, in the worst cas&(mn) connected components of lines tangent to the four polytopes

We also prove the following result which is more powerfulpilgh more technical, than
Theorem 2.8. Whereas Theorem 2.8 bounds the number of cednesmthponents of tangents,
Theorem 2.10 bounds the number of isolated tangents witle sation of multiplicity. For
example, a line througkvertices and tangent to the correspondimaplytopes (see Figure 2.5)
is counted('g) times which is the number of minimal sets of vertices that iadimat line as an
isolated transversal. Although neither theorem impliesdther, we will prove that the upper
bound of Theorem 2.8 is easily proved using Theorem 2.10.

Theorem 2.10.Given k polytopes ifR3 with n edges in total, there are, in the worst case,
O(n’k?) minimal sets of open edges and vertices, chosen from soime pblytopes, that admit
a possibly occluded isolated transversal that is tangehése polytopes.

Algorithm. We now turn our attention to the computation of all free segimehat are iso-
lated transversals to their set of supports and tangenteadiresponding polytopes. Du-
randet al. [DDP02] proposed an algorithm for this problem with worase time complexity
O((n® 4+ p)logn) wherep is the output size ; this algorithm, based on a double-swegppro-
ven to be difficult to implement. Duraret al. also presented an algorithm wi@(n°) worst-
case time complexity that incorporates interesting héasiseading to reasonable performance
in practice [DDP97]. We present an algorithm that uses, éwirst caseQ(n’k?logn) time
andO(nk?) space, is readily implementable, and uses only simple tfaiztsres ; the polytopes
may intersect and be in arbitrary position. Note that S. HsrfiHor06] recently showed how
the whole visibility complex of a set of disjoint convex pbidra can be computed using this
algorithm as a starting point. A preliminary version of thlgorithm was described for disjoint
convex polyhedra in X. Goaoc’s Ph.D. thesis [Goa04] and emgnted by L. Zhang; Chap-
ter 10 presents a short description of a video illustratimgadgorithm and its implementation.

Theorem 2.11.Given k polytopes if®3 with n edges in total, we can compute, itrék?logn)
time and @nk) space, all the possibly occluded lines that are isolatedsrersals to their set
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| Worst-case | Expected |

free lines to a polyhedron O(n%) (trivial)
free lines above a polyhedral terrain O(n32¢vIedn) [HS94, Pel94]
free lines among disjoint homothetic polytopes Q(n°) [dBEG98]

free lines among unit balls Q(n?) [811], O(n*¢) [AAS04] | ©(n) [811]
free lines among balls Q(n®) [Gli07], O(n%)
max. free segments above a polyhedral terrgin O(n*) [CS89h]

Isolated maximal free segments 202
amongk arbitrary polytopes O(n"k) [89]
maximal free segments among unit balls o(n*) [GIi07] O(n) [811]

TAB. 2.1 — Bounds on the complexity of the set of free lines or maxifree line segments
among objects of total complexity The expected complexities are given for the uniform dis-
tribution of the balls centers.

of supports and tangent to the corresponding polytopes.aife@kso compute, in @?k?logn)
time and @nk?) space, all the minimal free segments that are isolated trarssls to their set
of supports and tangent to the corresponding polytopes.

It should be noted that our algorithm does not provide thepeimds (possibly at infi-
nity) of the maximal free segments. Computing the endpoihtsagh such segment can be
done by shooting rays i®(log®n) time per ray usingd((nk)>*¢) preprocessing time and sto-
rage [AS96]. Such ray-shooting data structures are notehervreadily implementable. Alter-
natively, each ray-shooting query can be answere@(klogn) time afterO(nlogn) prepro-
cessing time and using additior@{n) space by applying the Dobkin-Kirkpatrick hierarchy on
each polytope [DK83].

To emphasize the importance of considering intersectigi@ues, observe that computer
graphics scenes often contain non-convex objects. Thgsetsbhowever, can be decompo-
sed into sets of convex polyhedra. Notice that simply deamsimy these objects into convex
polyhedra with disjoint interiors may induce a scene of mhigfiner complexity than a decom-
position into intersecting polytopes. Moreover, the deposition of a polyhedron into interior-
disjoint polytopes may introduce new tangents which werepnesent in the original scene;
indeed a line tangent to two polytopes along a shared facat imngent to their union.

The importance of considering polytopes in arbitrary positomes from the fact that gra-
phics scenes are full of degeneracies both in the senseotirgbdlytopes may admit infinitely
many tangents and that polytopes may share edges or fa@¥s.Mhy actually be more connec-
ted components of tangents when the objects are in degermosition ; this is, for instance,
the case for line segments (see Chapter 6). Also, we couldntbafperturbation argument that
guarantees the preservation of all (or at least a constactidn of) the connected components
of tangents and we do not believe that finding such a periorbat a simple matter.
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2.2.7 The expected number of visibility events is linear

The visibility complex, a partition of the set of maximal éréine segments, has been pro-
posed as a unified data structure encoding the visibilitgrmftion of a scene [PV96b] and
has been used for rendering purposes [DDPO02]. Other retkdtsd structures include Pelle-
grini's ray-shooting structure [Pel93], the aspect grapB90] and the visual hull [Lau94];
see [Dur00] for a recent survey.

One problem with these types of data structures which maxepteheir application in prac-
tice is their potentially enormous size ; the size of thebiisy complex of a set oh triangles
in R3 is ©(n%) in the worst case [DDP02], which is prohibitive even for seewf relatively
modest size. Worst-case examples are somewhat artifiasalnaieed Durand, Drettakis and
Puech [DDP97] provide empirical evidence indicating tlmaise worst-case upper bounds are
largely pessimistic in practical situations ; they obsexpiadratic growth rate, albeit for rather
small scenes. In 2D, while the worst-case complexity of tls#ility complex is quadratic, ex-
perimental results strongly suggest that the size of thibilfig complex of a scene consisting
of scattered triangles is linear [CF99].

Our goal is to provide theoretical evidence to support thesservations. To this end we
investigate thexpected sizef the visibility complex, or equivalently, the expectedmoer of
visibility events, occurring in scenes B°. A visibility event is a combinatorial change in the
view of a moving observer ; such an event occurs when the mgdirection becomes tangent to
some objects. For sets of convex objects in general positi&?, the viewing direction can be
tangent to at most four objects. Visibility events thus espond to maximal non-occluded line
segments tangent to at most four objects ; combinatorigfgrdnt visibility events correspond
to the faces of the visibility complex.

In Chapter 11, we prove that the expected number of maximabeoluded line segments
tangent to four balls, amongstuniformly distributed unit balls ifR3, is linear. This improves
the previously known upper bound G)‘(ns/?’) by Durand et al. who proved the more general
result that the expected number of (possibly occluded¥ltaagent to four balls i@(n8/3) for
the same model [DDP02]. The intuition behind our proof id,tg&ven a line segment tangent
to four balls, the probability that this segment is not odeld by any other ball is the proba-
bility that a cylinder-like volume of radius 1 about the semmis free from the centers of the
other balls. This probability decays roughly exponenji&ist with the length of the segment,
yielding the result. Using our technigues we then show alit®und on the expected size of
the visibility complex ofn uniformly distributed unit balls ifR3. A simple computation then
provides us with the same result for the Poisson distributio

Our results generalize in the following ways. We show thait,dertain types of visibility
events, the linear bound also applies to balls of varioudbunded radii, to polyhedral objects
enclosed between two concentric balls of fixed radius, areh é@ non-fat objects such as
polygons, enclosed between two concentric circles of fieglius, whose centers and normals
are uniformly distributed. For the remaining types of vildip events (namely those occurring
close to the boundary of the scene — see Section 11.7.3 fdetads), we prove only a®(n?)
bound, which is still an improvement over the boundX$h®/3) by Durand et al. [DDP02].

Of course objects in graphics scenes are seldom distrilowmiéarmly or according to a Pois-
son point process. We chose this model because it allowsiblagroofs of theoretical results.
This is important in a context where there are few rigorowsiite either theoretical or expe-
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rimental. The same model, albeit with significant simplifyiassumptions, has also been used
to study the average complexity of ray shooting [SKHBS02, St8Mand occlusion culling for
2D urban scenes [NFLYCO99]. It is interesting to note thatr8ay-Kalos et al. [SKHBS02],
after establishing bounds on the average complexity of iaptng in scenes consisting of unit
balls distributed according to a Poisson point procesteddkeir algorithms on a small number
of realistic scenes. The results they obtain are consigtimthose predicted by the theoretical
results thus providing some evidence that the model is tlelNb other model has been widely
accepted by the graphics community and, in fact, generatisgningful random scenes usable
for testing algorithms is a major problem. (Note that rathan attempting to generate random
scenes, an alternative approach, which has been used {oteidverage complexity of ray
shooting, is to fix the scene and randomly distribute the rage, for example, [ABCC02].)

2.2.8 An upper bound on the average size of silhouettes

The silhouette of a polyhedron with respect to a given viempis, roughly speaking, the
set of edges incident to a front and a back face. Silhoueties & various problems in com-
puter graphics such as hidden surface removal and shadoputations (see [Dug04, DD02,
EGHHZO00] for some recent references) and algorithms to caenfnem efficiently have been
well-studied (see the survey by Isenberg et al. [IB3]). They are important in shape recog-
nition ; Sander et al. [SG®0] claim that the silhouette “is one of the strongest visums of
the shape of an object”.

It is a widely accepted fact that the silhouette of a polybads usually much smaller than
the whole polyhedron. Sander et al. [SG@®], for instance, state the largely repeated claim
that the silhouette of a mesh is often of si2é,/n) wheren is the number of faces of the
mesh. An experimental study by Kettner and Welzl [KW97] canfirthis for a set of realistic
objects. This experimental study was extended by McGuireGPH] to a larger database of
larger objects for which the observed size of the silhoustégproximatelyn®8.

There are few theoretical results supporting these obsenga Kettner and Welzl [KW97]
prove that a convex polyhedron that approximates a sphete Mausdorff distance has
©(1/¢) edges, and a random orthographic projection of such a gahtiasd(1/+/¢) silhouette
edges. Alt et al. [AGGO03] give conditions under which it casroved that the average sil-
houette of a&onvexpolyhedron has siz&(/n) and give additional conditions under which the
worst-case size is provably sub-linear.

In Chapter 12, we study the average silhouette sizeoofconvexpolyhedra. Convexity is
a very strong assumption, which was crucial in the previbe®tetical results. Here, rather,
we assume that the polyhedron is a good approximation of $ieaek(not necessarily convex)
surface.

We provide theoretical evidence supporting, for a largescta objects, the widely observed
phenomenon that the size of the silhouette of a polyhedrotuish smaller than the size of the
whole polyhedron. We prove that the silhouette of a polybedinat approximates a surface in a
reasonable way has expected $¥g/n) where the average is taken over all points of viewand
Is the complexity of the polyhedron ; the surfaces may becmmvex and non-differentiable and
they may have boundaries. Note that the average is takembbvewpoints for a given surface,
and not on a set of surfaces. This confirms a widely acceptésf becomputer graphics and is
the first complexity result for silhouettes of non-convexypedra.
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| Scenetype | Lower bounds Upper bounds
Segment light source

2 triangles 4 O(1)
2 fat polytopes Q(n) O(n)
k polytopes | Q(nk®+ k%) o(nkd)

n-gon light source
k polytopes | Q(n?k*+nk®) | O(n’k®)

TAB. 2.2 — Lower bounds on the number of connected componentsigpet bounds on the
complexity of the umbra cast on a plane in the presen&gofytopes of total complexit@(n).

| Scenetypel  Lower bound | Upper bound |
| k polytopes| Q(na (k) +km+k?) | O(na (k) + kma (k) + k?) |

TAB. 2.3 — Bounds on the complexity of the union of umbra and pemarchst on a plane by a
m-gon light source in the presencelopolytopes of total complexit(n).

2.2.9 0On the complexity of the umbra and penumbra

Shadows play a central role in human perception [MKK98, ViZdn8 wide variety of ap-
proaches have been considered for simulating and rendshiadows (see, for example, the
surveys [Dur00, WPF90]) and many methods make extensive fugephics hardware (see
the survey [HLHSO03]). Unfortunately, computing realistltadows efficiently is a difficult pro-
blem, particularly in the case of non-point light sourcespdkt of this difficulty arises from
the complicated internal structure that such shadows mes. Nele study, in Chapter 13, this
structure.

A point is in theumbraif it does not see any part of the light source(s); it isfut
light if it sees entirely all the light source(s); otherwise, itiisthe penumbra While the
boundary between the penumbra and the full light is readgnaéll-understood (see Sec-
tion 13.3), less is known about the boundary of the umbraeNbeless, there is an extensive
literature concerning the explicit computation of thesadsgiw boundaries; see, for example,
[DF94,DDP97,DDP99, DDP02, Hec92,NN83, SG94, Tel92].

In Chapter 13, we prove various bounds, summarized in Tabaril 2.3, on the com-
plexity of the umbra and penumbra cast by a segment or poaldight source on a plane in
the presence of polygon or polytopes( convex polyhedral) obstacles. In particular, we show
that a single segment light source may cast, in the presenweodriangles, four connected
components of umbra (see Figure 2.6). We prove that the udddnaed by one segment light
source and two fat convex obstacles of total complaxitgn have(n) connected components.
We also prove a®(nk? +k*) lower bound on the maximum number of connected components
of the umbra and ®(nk®) upper bound on its complexity in a scene consisting of a sagme
light source andk disjoint polytopes of total complexity. Finally, we prove that the umbra cast
on a plane by one (or more) polygonal light source(s)laoohvex obstacles of total complexity
n can haveQ(n’k® + nk®) connected components and has complegitn®k3). These are the
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FIG. 2.6 — Four connected components of umbra cast on a plane dgynaest light source in
the presence of two triangles (the umbra is in light greyurtasy of A. Dietrich.

first bounds on the size of the umbra in terms of dodmdn.

These results are surprising in the sense that they showh®aimbra cast by a single
segment light source may have many connected componem$adtthat the umbra may have
four connected components in the case of two triangle olestaomes as a total surprise. Our
lower bounds of2(nk? + k*) andQ(n?k3 4+ nk®) connected components, fopolytopes of total
complexityn, is rather pathological in the sense that most of the olestaadle very long and
thin. However, we also present a lower bound exampl@@f) connected components with
two fat polygons or polytopes of complexi®(n). Concerning the upper bounds 6{nk®)
and O(nk®), even though these bounds are not a priori tight, they sotislir improve the
only previously known bounds for this problem which were titigial O(n*) andO(n®) upper
bounds. It is also interesting to notice that the proof ofupper bound for a polygonal light
source uses, as a key lemma, the Main Lemma of Chapter 9 on nfigenwf lines intersecting
a given line and tangent to three polytopes. Finally, it teriesting to point out that even for the
simplest case of non-point light sources, obtaining tightris on the complexity of the umbra
and understanding its structure is a very challenging prabl

These results show that the umbra, which is bounded by amags, is intrinsically much
more intricate than the full light/penumbra boundary whiglbounded by line segments and
for which we prove that the worst-case complexity istitna (k) + km+ k?) and O(na (k) +
kmo (k) + k?), wheremis the complexity of the polygonal light source.



Chapitre 3

Geometric computing with low-degree
algebraic surfaces

3.1 Introduction

Low-degree real algebraic surfaces such as quadrics afloevgood compromise between
simplicity, flexibility, and modeling power and they playealing role in the construction of ac-
curate computer models of physical environments for sitrariaand prototyping purposes. As
a consequence, geometric computing with curved surfacea hang and rich history. Never-
theless, our recent work on the exact and optimal paramatem of intersections of quadrics
(see Chapters 14, 15, 16, 17) has proved that, even on wdikdtproblems, startling impro-
vements can be accomplished when the right mathematicsuaiietp motion. Moreover, the
recent advances in exact computation and the constant weipent of the available algebraic
machinery have opened new alleys of research for perfornintpis domain, computations
with certified topology. In particular, the performance eihgputer algebra systems has dra-
matically improved over the past few years and we are nowtaldelve non-trivial problems
(see Chapter 18). However, despite recent success, conghgédra systems remain compu-
tationally intensive and using them efficiently is more ofaahthan a science. Experience has
also proved that having a thorough geometric understardfititge problem before resorting to
such systems greatly increases the chances of succeka Btibbf work remains to be done to
obtain exact scalable geometric algorithms dealing watv{tlegree) curved objects.

In the last few years, | focused my research activities otifiset and effective computations
with quadrics. | have mainly worked on the problems of cormputhe intersection of two qua-
drics and, more generally, on the problems of computing matedcomplexes,ife., piecewise
quadratic surfaces) in the context of boundary evaluati@olds. | have also worked on Voro-
noi diagrams of polyhedral objects. | present below a canpigsentation of my contributions
on the intersection of quadrics and on Voronoi diagramaeii | do not however discuss in this
document my work on computing quadratic complexes, whistilisongoing and unpublished.

29
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3.2 Summary of contributions

3.2.1 Introduction

My main achievement has been the completion of the first-exact, complete, near-
optimal and usable algorithm and implementation for patan®ng the intersection of two
qguadrics in three-dimensional real projective space (sept€hs 14, 15, 16, and 17). This al-
gorithm is a considerable breakthrough on a long-standp&mn @uestion and, though there is
still room for minor improvements, the problem is now lakgelosed.

More precisely, we presented (see Chapter 15) the first itaggin of pairs of quadrics
based on the type of their intersection in real projectivacsge.g.,smooth quartic, nodal quar-
tic, a cubic and a line, two conics, etc.). Using this clasatfon, we presented the first practical
algorithm that correctly identifies, separates and paranzess all the algebraic components of
the intersection and gives all the relevant topologicalinmfation (see Chapters 14 and 16). The
parameterization is moreover simple in the sense thatdiptrameterization is rational whe-
never one exists (otherwise the intersection is a non-fanguartic and the parameterization
involves the square root of a polynomial) and (ii) the nundfesquare roots appearing in the co-
efficients of the parameterization is always minimal, exaep small number of well-identified
cases, in which the coefficients may involve one extra sguaanre We have also implemented
this algorithm in C++ and we showed that our implementatia@xisemely efficient in practice,
on generic, degenerate as well as “real-life” data (see @hapt) ; it can routinely compute
parameterizations of the intersection of quadrics withutrgmefficients having 50 digits in less
than 50 milliseconds on a mainstream PC. Our code can be dadedofrom the LORIA and
INRIA web site€ and it can also be queried via a web interface

| have also recently started working on the problem of coinguthe medial axis or Vo-
ronoi diagram of polyhedra in 3D. Such a diagram is a partitd space into cells, each of
which consists of the points closest to one particular dijegn to any other. Moreover, the
set of points equidistant to two lines (or to a line and a pasa quadric and the set of points
equidistant to three lines is the intersection of two quesdiChapter 18 presents some very nice
results characterizing the topology of the Voronoi diagsashthree lines. We show that the
topology is invariant for lines in general position and wead a monotonicity property on the
arcs of the diagram. We deduce a simple algorithm for sogimigts along such an arc, which
Is presumably of great interest for future efficient algans for computing the medial axis of a
polyhedron. The proof technique, which relies heavily upwdern tools of computer algebra,
is also of great interest in its own right.

| now present, in Sections 3.2.2 and 3.2.3, a more detailecriji¢ion of these results.

3.2.2 Intersection of two quadrics

| present here a detailed, though concise, overview of myribmtions on the problem of
intersecting two quadrics. | start by presenting a panomaimelevant past work on the subject.
Then, after some preliminaries, | briefly recall Levin’s seah algorithm for parameterizing

2http://www.loria.fr . http:/www.inria.fr
Shttp://www.loria.friequipes/vegas/gi
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the intersection of two quadrics and show how this algorithttroduces high-degree algebraic
numbers which induce robustness problems. | then preseobntyibutions.

Section 3.2.2.4 first presents a major improvment over Lewdfyorithm that computes a
near-optimalparameterization of the intersection of two quadrics indkeeric case, that is
when the intersection is a non-singular quartic (see Figutg; the parameterization is near-
optimal in the sense that, when the intersection is a nogugan quartic, the number of square
roots appearing in the coefficients of the parameterizagioninimal or minimal plus one. Then,
Section 3.2.2.5 presents the first classification of pairguafdrics based on the type of their
intersection in real projective spaaad.,smooth quartic, nodal quartic, a cubic and a line, two
conics, etc.). Based on this classification, Section 3.20&6ents near-optimal algorithms for
all possible types of singular intersection (see Figurg JHis induces a practical algorithm that
correctly identifies, separates and computes near-opfiaraimeterizations of all the algebraic
components of the intersection, for all possible type oérisgction. Finally, Section 3.2.2.7
presents an efficient exact implementation of this algorith

3.2.2.1 Panorama

The simplest of all the curved surfaces, quadrics (i.eelaigic surfaces of degree two), are
fundamental geometric objects, arising in such diverseéext®as geometric modeling, statisti-
cal classification, pattern recognition, and computatigeametry. Computing the intersection
of two general quadrics is a fundamental problem and an gaemetric representation of
the intersection is often desirable. For instance, it ishatlasis of such complex geometric
operations as computing convex hulls of quadric patche8gKkarrangements of sets of qua-
drics [BHK™05, MTT05, SWO06, Wol02], and boundary representations ofifjuéased solid
models [KCF 04, Sar83].

Until recently, the only known general method for computingarametric representation of
the intersection between two arbitrary quadrics was duestanl[Lev76,Lev79]. It is based on
an analysis of the pencil generated by the two quadricghiesset of linear combinations of the
two quadrics.

Though useful, Levin’s method has serious limitations. Winenintersection is singular or
reducible, a parameterization by rational functions isvikmto exist, but Levin’s pencil method
fails to find it and generates a parameterization that iregtiie square root of some polynomial.
In addition, when a floating point representation of numieused, Levin's method sometimes
outputs results that are topologically wrong and it may daémo produce any parameterization
at all and crash. On the other hand a correct implementasimy @xact arithmetic is essentially
out of reach because Levin’s method introduces algebraibeus of fairly high degree. A good
indication of this impracticality is that even for the siragieneric example of Section 14.8.2,
an exact parametric form output by Levin’s algorithm (comeplby hand with Maple) fills up
over 100 megabytes of space!

Over the years, Levin’s seminal work has been extended dimedein several different
directions. Wilf and Manor [WM93] use a classification of qtiadntersections by the Segre
characteristic (see [Bro06]) to drive the parameterizatibthe intersection by the pencil me-
thod. Recently, Wang, Goldman and Tu [WGTO3] further improtrezl method by making it
capable of computing structural information on the intetis® and its various connected com-
ponents and able to produce a parameterization by rationatibns when it exists. Whether
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- l.
FiG. 3.1 — A gallery of intersections. a. Nodal quartic. b. Nogartic with isolated singular

point. c. Cubic and secant line. d. Cubic and tangent line. ®. §&c¢ant conics. f. Two double
lines. g. Four lines forming a skew quadrilateral. h. Twa$rand a double line. i. Conic and
two lines not crossing on the conic, the two lines being imagy. j. Four concurrent lines, only
two of which are real. k. Two lines and a double line, the thyeg concurrent. |. Conic and

double line.



3.2. SUMMARY OF CONTRIBUTIONS 33

their refined algorithm is numerically robust is open to quoes

Another method of algebraic flavor was introduced by Fardu&if and O’Connor [FNO89]
when the intersection is degenerate. In such cases, usiomhbimation of classical concepts
(Segre characteristic) and algebraic tools (factorimatb multivariate polynomials), the au-
thors show that explicit information on the morphologicgié of the intersection curve can be
reliably obtained. A notable feature of this method is thagn output an exact parameteriza-
tion of the intersection in simple cases, when the input gaadhave rational coefficients. No
implementation is however reported.

Rather than restricting the type of the intersection, othax®e sought to restrict the type of
the input quadrics, taking advantage of the fact that gexmesights can then help compute
the intersection curve [GM91, Mil87, MG95, SJ92, SJ94]. Gglezed routines are devised to
compute the intersection curve in each particular casen Ehaigh such geometric approaches
are numerically more stable than the algebraic ones, treessentially limited to the class
of so-called natural quadrics (i.e., the planes, right spoecular cylinders and spheres) and
planar intersections.

Perhaps the most interesting of the previously known algms for computing an expli-
cit representation of the intersection of two arbitrary dyues is the method of Wang, Joe and
Goldman [WJGO02]. This algebraic method is based on a biraltimapping between the inter-
section curve and a plane cubic curve. The cubic curve isradataby projection from a point
lying on the intersection. Then the classification and patanzation of the intersection are ob-
tained by invoking classical results on plane cubics. Thieas claim that their algorithm is the
first to produce a complete topological classification ofititersection (singularities, number
and types of connected components, etc.). However, the wiatign of the center of projection
uses (an enhanced version of) Levin’s algorithm. Eithetifiggooint arithmetic is used and the
point will in general not exactly lie on the curve, leadingptassibly incorrect classification, or
exact arithmetic is used and the parameterizations compuiteinvolve algebraic numbers of
very high degree, thereby limiting their practical value.

A related problem to computing the intersection of two queis to classify pencils of qua-
drics based on the type of their intersection. Classifyingcpe of quadrics over the complexes
(that is based on the type of the intersectiof?}C)) was achieved by Segre in the nineteenth
century [Seg83]. Its practical value is however limitedcgiiits proper interpretation lies in the
complex domain (i.e. points on the intersection might béaeaomplex), whereas our concern
Is with real parts of the intersection.

Classifying pencils of quadrics over the reals, that is basethe type of the intersection
in P3(R), is an important problem of independent interest. Such ssiflaation is also critical
for parameterizing the intersection of two quadrics for t@asons. It induces some structural
information on the intersection curve which can be used iieedin algorithm for computing a
near-optimal parameterization of the intersection cusee (Chapter 16); itis also a prerequi-
site for proving the (near-)optimality of a parameteriaatalgorithm (see Chapter 16). | now
recall past work on the classification of pencils of quadoiesr the reals.

In the context of the representation of the geometry of Baoambinations of volumes
bounded by quadric surfaces, Ocken, Schwartz, and Sha&8i88d] showed in 1987 how two
quadrics can be simultaneously diagonalized using a regkgive transformation and used
this diagonalization to parameterize the intersectiorhefdquadrics. The analysis is however
incomplete and some intersection morphologies are oveztibhdeading to possible misclassifi-
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cations. In particular, the cases when the characteristimpmial of the pencil has two double
roots, corresponding to such morphologies as a cubic andamskne or four lines forming a
skew quadrilateral, are missing.

The next result on the classification of pencil of quadricsdoaon the real type of the
intersection was obtained in 2002 by Tu, Wang, and Wang [TWW@#] classified pencils in
the generic case, that is when the intersection is a smodatticjin complex space) whose
number of connected components (in real space) is two, anegro. Note that Wang and
Krasauskas [WKO04] also obtained results on the classificaifopencils in the generic case
when the pencil is furthermore restricted to be generatetiMoyellipsoids in affine space.
Related results have also been obtained by Wang, Wang, andKithe separation of two
ellipsoids in affine space [WWKO1].

In September 2005, Tu, Wang, Mourrain, and Wang publishedearch report [TWMWO05]
presenting a classification of pencils very similar to the oh Chapter 15 (also published in
Dupont’s PhD Thesis in 2004 [Dup04]). They use the Canonieél Porm Theorem of F.
Uhlig as basic mathematical tool and refine the classifinatiopencils of quadrics over the
complexes in exactly the same way as we do. There are howdferedces between the two
approaches. First, we classify pencils using the inertithefquadrics at the multiple roots
of the characteristic polynomial, except for a small numiiecases where simple geometric
conditions allow to discriminate. By contrast, Tu et al. slspencils using the inertia of the
guadrics between the roots of the characteristic polynb(plas the degree of the minimal
polynomial of the characteristic polynomial in some casasy rely on Puiseux expansion
to deduce some information at the (multiple) roots. Sectimel classification of Tu et al. is
limited to non-degenerate pencils (i.e. pencils whoseatttaristic polynomial does not vanish
identically), while ours covers all possible cases. Thindaddition to the enumeration of all
real quadric intersection morphologies, we also provid@idthms for exactly and efficiently
recovering the real projective type of the intersectionad airbitrary given quadrics.

3.2.2.2 Preliminaries

We call aquadric associated to a four-by-four symmetric real ma@ithe setQs = {x
P2 | x" Sx = 0}, whereP" = P(R)" denotes the real projective space of dimensiofNote that
every matrix of the formoS, wherea € R\ {0}, represents the same quad@eg.) When the
ambient space R" instead ofP(R)", the quadric is simpl@s minus its points at infinity.

Given a real symmetric matri@of sizen+ 1, the upper left submatrix of size denotedy,,
is called theprincipal submatrixof S and the determinant &, the principal subdeterminant
of S

Matrix Sbeing symmetric, all of its eigenvalues are real. tétando— be the numbers of
positive and negative eigenvaluesfespectively. Theank of Sis the sum ob™ ando—. We
define theinertia of SandQs as the paifmax(c™,07),min(c*,07)). (Note that it is more
usual to define the inertia as the pé&rt,o~), but our definition, in a sense, reflects the fact
thatQs andQ_s are one and the same quadric.) Matsigand quadridgs are calledsingular if
the determinant o%is zero ; otherwise they are callednsingular

The inertia of a quadric if?® is a fundamental concept which somehow replaces the usual
typesof a quadric ifR®; Table 3.1 recalls the correspondence between inerti&$ and types
in R,
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Inertia of Qs | Inertia of S, Euclidean Euclidean type 0Qs
canonical equation
(4,0) (3,0) X +y +72+1 0 (imaginary ellipsoid)
(3,1) (3,0 Xy +22-1 ellipsoid
(2,1) Xy —Z2+1 hyperboloid of two sheets
(2,0) X4y’ +z elliptic paraboloid
(3,0) (3,0) X +y?+ 2 point
(2,0) X2 +y?+1 0 (imaginary elliptic cylinder)
(2,2) (2,1) Xy -2 -1 hyperboloid of one sheet
(1,1) X2 —y? 4z hyperbolic paraboloid
(2,1) (2,1) Xy’ -2 cone
(2,0) X4y —1 elliptic cylinder
(1,1) X2 —y?+1 hyperbolic cylinder
(1,0) X2 4y parabolic cylinder
(2,0) (2,0) X2+ y? line
(1,0) X2+ 1 0 (imaginary parallel planes
(1,1) (1,1) X2 —y? intersecting planes
(1,0) x2—1 parallel planes
(0,0) X simple plane
(1,0) (1,0) X2 double plane
(0,0) 1 0 (double plane at infinity)

TAaB. 3.1 — Correspondence between quadric inertias and Eucligipas.

In P3, any quadric not of inerti&3,1) is either a ruled surface or not a surface. Also, the
quadrics of inertig3, 1) are the only ones with a strictly negative determinant. Tdresingular
quadrics are those of rank 4, i.e. those of ingdi®), (3,1) and(2, 2). Quadrics of inertid4,0)
are however empty of real points. A quadric of rank 3 is callene The cone is said to be
real if its inertia is (2,1). It is said to beémaginaryotherwise, in which case its real projective
locus is limited to its singular point. A quadric of rank 2 ipair of planes The pair of planes
is real if its inertia is(1,1). It is called imaginary if its inertia i$2,0), in which case its real
projective locus consists of its singular line, i.e. theeliof intersection of the two planes. A
quadric of inertia(1,0) is called adouble planeand is necessarily real.

Let SandT be two real symmetric matrices of the same size anB(letp) = AS+ uT. The
set

{ROW | (W) € PY}
is called thepencil of matricegenerated b andT. For the sake of simplicity, we sometimes
write a member of the pend®(A) =AS—T, AR =RU{»}. Associated to itis pencil of

quadrics{Qrp\ ) | (A, M) € P1}. Recall that the intersection of two distinct quadrics of agile
is independent of the choice of the two quadrics. We call tharly form

D(A,p) = detR(A, 1)
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guadric equgsgr?gii 0) parameterizatioX = [x,y,7], u,v € R

simple plane x=0 X(u,v) = [0,u,V]
double plane =0 X(u,v) = [0,u,V]
parallel planes ad=1 X(u,v) = [\%,u,v], X(u,v) = \/ia,u,v]

intersecting planes| a?—byY =0 | X(u,v) = [ 75V X(u,v) = [ —76M

hyperbolic paraboloid ax* —by? —z=0 X(u,v) =[5, UV
parabolic cylinder ax’ —y=0 X(u,v) = [u,al?,v|
hyperbolic cylinder |  ax¥ —by =1 X(uV) = [+ ) 55 (Ut ).V

TAB. 3.2 — Parameterizations of canonical simple ruled quadiiev76].

the characteristic polynomiabf the pencil.

3.2.2.3 Levin's method

Levin’s quadric intersection algorithm [Lev76, Lev79] bgiseminal in almost all work on
intersection of quadrics, including ours, we start by rioglthe main steps of his algorithm for
computing a parameterized representation of the inteogseof two distinct implicit quadrics
Qs andQr of R3. Starting from this short description, we then identify wé¢his algorithm
introduces high-degree algebraic numbers and why this ielzlgm.

The high-level idea behind Levin’s algorithm is this : if {$&Qs is of some “good” type,
thenQs admits a parameterization which is linear in one of its patans and plugging this pa-
rameterization in the implicit equation Qfr yields a degree 2 equation in one of the parameters
(instead of a degree 4 equation) which can be easily solvgetta parametric representation of
QsNQr. When neitheQs nor Qr has a “good” type, then one can find a quadjgof “good”
type in the pencil generated I6}s andQr, and we are back to the previous case replafgg

by Qr.

The definition of a “good” type is embodied in Levin's notiohsimple ruled quadritand
the existence of such a quad@g is Levin’'s key result :

Theorem 3.1([Lev76]). The pencil generated by any two distinct quadrics containeadt
one simple ruled quadric, i.e., one of the quadrics listedable 3.2, or the empty set.

In more details, Levin’s method is as follows.

1. Find a simple ruled quadric in the penf@g)-rs-T1 | A € R} generated b)s andQr,
or report an empty intersection. Since simple ruled quadrave a vanishing principal
subdeterminant, this is achieved by searching 8§ @ R such that detR,(Ao)) = 0 and
Qr = Qr,) Is simple ruled ; by Theorem 3.1, such a quadric exists or émeipcontains
the empty set. Assume, for the sake of simplicity, that thergection is not empty and
thatQr andQs are distinct. TheilQsN Qr = QsN Qr.

4In [Lev76, Lev79], Levin refers to these quadrics as to niiptéd paras.
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2.

4.

Determine the orthonormal transformation maRpwhich send<®R, in diagonal form by
computing the eigenvalues and the normalized eigenveofdRs. Deduce the transfor-
mation matrixP which send€)g into canonical form. In the orthonormal frame in which
it is canonical Qr admits one of the parameterizatid_ﬁsaf Table 3.2.

. Compute the matri8 = PT SPof the quadri®Qs in the canonical frame ddr and consi-

der the equation

XTSX = a(u)v? + b(u)v+c(u) = 0, (3.1)
whereX has been augmented by a fourth coordinate set to 1. (The padarations of
Table 3.2 are such thatu),b(u) andc(u) are polynomials of degree at most fourur)
Solve (3.1) forv in terms ofu and determine the corresponding domain of validityiof
on which the solutions are defined, i.e., the sat sfich thatA(u) = b?(u) — 4a(u)c(u) >
0. Substitutingv by its expression in terms af in X, we have a parameterization of
QsN Q1 = QsNQrin the orthonormal coordinate system in whiQh is canonical.

OutputP)?(u), the parameterized equation@§N Qr in the global coordinate frame, and
the domain olu € R on which it is valid.

This method is very nice and powerful since it gives an exptepresentation of the in-
tersection of two general quadrics. However, it is far froemly ideal from the point of view
of precision and robustness since it introduces non-ratiommbers at several different places.
Thus, if a floating point representation of numbers is udeelyésult may be wrong (geometri-
cally and topologically) or, worse, the program may crasipéeially in Step 1 when the type of
the quadricr,) are incorrectly computed). In theory, exact arithmetic ldalo, except that
it would seriously slow down the computations. In practlo@yever, a correct implementation
using exact arithmetic seems out of reach because of thedeigtee of the algebraic numbers
involved.

Let us examine more closely the potential sources of nudnstability in Levin’s algo-
rithm.

— Step L Ao is the root of a third degree polynomial with rational coedfids. In the worst

case, it is thus expressed with nested radicals of depthSwae determining iQr,)

is simple ruled involves computing its Euclidean type (nokasy task considering that
Qro—g) @NdQR(x,+¢) May be and often are of different types), this is probablyoiggest
source of non-robustness.

Step 2: SinceQgR is simple ruled, the characteristic polynomialRf is a degree three
polynomial having zero as a root and whose coefficients atfeeifield extensio)(Ao).
Thus, the nonzero eigenvaluesRyfmay involve nested radicals of depth three. Since the
corresponding eigenvectors have to be normalized, thdiceets of the transformation
matrix P are expressed with radicals of nesting depth four in the toase.

Since the coefficients of the parameterizatimf Qg are expressed as square roots of
the coefficients of the canonical equatiQprrp (as in Table 3.2), the coefficients of the
parameterization d@sN Qr can involvenested radicals of depth five the worst case.

— Step 3 Computing the domain of amounts to solving the fourth degree equatidn) =

0 whose coefficients are nested radicals of worst-case digptim Q.

Note that this worst-case picture is the generic case. thdgeen two arbitrary quadrics
with rational coefficients, the polynomial d&,(A\)) will generically have no rational root (a
consequence of Hilbert's Irreducibility Theorem).
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inertia canonical equation parameterizatio = [x,y, W

of S (a,b,c,d > 0) =Y

(4,0) | a¢+by?+cZ+dw =0 Qs—10

, axt + by’ 4 cZ = s is point(0,0,0,

3,0 X+ by +cZ=0 Qsis point(0,0,0,1

(2,2) [ @f+by?—cZ—dw=0| X=[Uiavws us bt o2 ”f/%"t], (u,v),(st) e Pt
21 | ad+b?-cZ=0 X = [uy S50 S0 S, (uvg) € P2

(2,0) a4+ by’ =0 X =10,0,u,v], (u,v) € P!

(1,1) aé —by? =0 1= [u, 2, v 8, X2 = [u,—Yu,vS, (u,v,5) € P
(1,0) al=0 X =1[0,u,v,g, (u,v,s) € P2

TAB. 3.3 — Parameterization of projective quadrics of inertfeecent from (3,1). In the para-
meterization of projective coneB;2 stands for the 2-dimensional real quasi-projective space
defined as the quotient &2\ {0,0,0} by the equivalence relation where(x,y, z) ~ (y1,Y2,Y3)

iff I\ € R\ {0} such thatx,y,z) = (Ay1,Ay2,A%y3).

3.2.2.4 The generic algorithm

We present, in Chapter 14, a first but major improvement to ieypencil method for
computing parametric representations of the interseafagquadrics. This so-called “generic
algorithm” removes most of the sources of radicals in Lesvalgorithm. We prove that this al-
gorithm produces near-optimal parameterizations in tmege case, that is when the intersec-
tion is a non-singular quartic. It is however not optimal &irthe possible types of intersection
and will need later refinements (see Chapters 15 and 16). Basitfficiently simple, robust
and efficient to be of interest to many. We give here a shorrgen of this algorithm and of
the underlying ideas.

We start by introducing the projective framework undertywur approach and stating the
main theorem on which the approach rests. From now on, alhtheé quadrics considered have
equations with rational coefficients.

Key ideas. The first ingredient of our approach is to work not just oR8rbut over the real
projective spac®3. Recall that, in projective space, quadrics are charaetiiy their inertia
(i.e., the number of positive and negative eigenvalues@ftsociated 4 4 matrix), while in
Euclidean space they are characterized by their inertialanahertia of their principal subma-
trix (see Table 3.1).

In our algorithm, quadrics of inertidifferentfrom (3,1) (i.e., ruled quadrics) play the role
of simple ruled quadrics in Levin’s method. In Table 3.3, wegent a new set of faithful
parameterizations of ruled projective quadrics that athk lmear in one of their parameters and
involve, in the worst case, a minimal number of square foots

SA parameterization is faithful if there is a one-to-one espondence between the points of the quadric and
the parameters.

6Note that there is necessarily a trade-off between the nainiragree of a parameterization in one of its para-
meters and the degree of its coefficient field. For instanesg)\MJoe and Goldman [WJG97] give parameterizations
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Another key ingredient of our approach is encapsulated enféHowing theorem, which
mirrors, in the projective setting, Levin’s theorem on tikestence of ruled quadrics in a pencil.

Theorem 3.2.1n a pencil generated by any two distinct quadrics, theSsgftquadrics of inertia
different from(3,1) is not empty. Furthermore, if no quadric fhhas rational coefficients, then
the intersection of the two initial quadrics is reduced to tvistidct points.

This theorem, which we prove using Uhlig’s results [Uhl78]T6] on simultaneous block
diagonalizations of pairs of symmetric real matrices, galimes Theorem 3.1. Indeed, it en-
sures that the two quadrics we end up intersecting havenedtomefficients, except in one very
specific situation where they intersect in only two pointkisTis how we remove the main
source of nested radicals in Levin’'s algorithm.

The last basic ingredient of our approach is the use of Gadgsgtion of quadratic forms for
diagonalizing a symmetric matrix and computing the cararficrm of the associated projec-
tive quadric, instead of the traditional eigenvalues/eigetors approach used by Levin. Since
Gauss transformation is rational (the elements of the mBtwhich send$sinto canonical form
are rational), this removes some layers of nested radioats Levin’s algorithm. Note, also,
that there is no difficulty in parameterizing the reduceddyigsS = PT SPsince, by Sylvester’s
Inertia Law,SandS have the same inertia [Lam73].

Algorithm outline. We can now outline our generic algorithm.

Let R(A) = AS—T be the pencil generated by the quadi@sandQr of P2 andD(A) =
det(R(M)) be the characteristic polynomial of the pencil. Recall th#though working in all
cases, our generic algorithm is best designed wihéx) is not identically zero and does not
have any multiple root. In the other case, a better algorithdescribed in Chapters 15 and 16.
The outline of the intersection algorithm is as follows :

1. Find a quadri€gr with rational coefficients in the pencil, such thatRet O if possible or
detR = 0 otherwise. (If no sucR exists, the intersection is reduced to two points, which
we output.) If the inertia oR is (4,0), output empty intersection. Otherwise, proceed.
Assume for the sake of simplicity th@s # Qg, in such a way thaRsN Qr = QsN Q.

2. If the inertia ofRis not(2,2), apply Gauss reduction ®and compute a frame in which
PTRPis diagonal.
If the inertia ofRis (2, 2), its parameterization of Table 3.3 contains in general wumse
roots but one can be eliminated as follows. First, find a natipoint close enough Qr
such that the quadric in the pencil through this point has#me inertia aQr. Replace
Qr by this quadric. Then use that rational point to compute mé & whichP' RPis the
diagonal matrix diagl,1, —1, —9d), with d € Q.
In the local frameQRg can be described by one of the parameterizatkmd Table 3.3.
Compute the parameterizati®X of Qg in the global frame.

3. Consider the equation

Q: (PX)TS(PX) =0. (3.2)

EquationQ is of degree at most 2 in (at least) one of the parameterseSofer this
parameter in terms of the other(s) and compute the domaheddlution.

of quadrics that have rational coefficients but are quadiatall of their parameters.
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FIG. 3.2 — Intersection of an elliptic cylinder and a hyperbdlof one sheet in a smooth quartic.

4. Substitute this parameter PX, giving a parameterization of the intersection @

andQr.

Example. It should be stressed that even though our algorithm pradacexactparameteri-
zation of the intersection of two quadrics, it tends towax@tioicing “simple” parameterizations.
Itis, in particular, interesting to compare the exact patamzations produced by our algorithm
to the approximated parameterizations produced by otgeritims. We give here one example
(see Chapters 14 and 17 for more).

Consider Example 4 from [WJGO02], that is the intersection okHiptic cylinder and a
hyperboloid of one sheet (see Figure 3.2) of equations :

A2 +72 —wW? =0,
X2 +4y? — 72 —w? =0.

In [WJGO02], the authors find the following parameterizationthe curve of intersection :

X(u) = —16000u® 4-108611602u? — 215040u + 11585237 0.0

0.0 —80.0u+1181019
3_ 2 _
11313708u8 — 57600u2 + 108611602u — 81920 i 0.0 /905006708 — 3328007 1 26963004
16000 + 36202867u? + 51200u+ 115852375 0.0

(3.3)
with u in the closure ofR and such that the square root is defined. The authors reporha c
putation error on this example (measured as the maximumrgistfrom a sequence of sample
points on the curve to the input quadrics) of or@%d.0~). In comparison, our algorithm out-
puts the following exact and simple result (in less than 1@ma standard PC) :

2u®—6u -2
| 7u?+3 u 2 5
XW=1 jo2-6 | = 24 vV —3U*+ 2612 —3.
2u+18u 2

Conclusion. This algorithm already represents a substantial improwtieer Levin’s pencil
method and its subsequent refinements. Indeed, we proyavtin the intersection is a smooth
guartic (the generic case) the algorithm computes a paesin&tion which is optimal in the
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number of radicals involved up to one possibly unnecessguare root. We also show that
deciding (in all cases) whether this extra square root cavbigled is out of reachand that the
parameterization is optimal in some cases. Moreover, ®fitst time, our algorithm enables
to compute in practice an exact form of the parameterizatiotwo arbitrary quadrics with
rational coefficients.

Even though this algorithm focuses on the generic, smoaditigLcase, it can also be used
when the intersection is singular. Unfortunately, thisgioet always lead to a parameterization
of the intersection that involves only rational functiofis particular, when the intersectidh
is a singular quarticQ) is irreducible sinceC itself is, and solvingQ in one of its variables
introduces the square root of a polynomial, while we knowt thare exists a parameterization
of C with rational functions (sinc€ is of genus zero).

Always computing parameterizations with rational funoavhen such parameterizations
are known to exist will necessitate rethinking the basiéqsaiphy of our algorithm. Essentially,
while the idea of the generic algorithm is to use a rationadyic Qr with largestrank as
intermediate quadric for parameterizing the intersectioa refined method will instead use the
rational quadric witrsmallestrank as intermediate quadric.

Proceeding that way will have the double benefit of alwaysmaimg the simplest possible
parameterizations and much better controlling the sizbaif toefficients. The price we pay is
a multiplicity of cases and the need to write dedicated smféwor each (real projective) type
of intersection. This is the subject of Sections 3.2.2.528®.6 and of Chapters 15 and 16.

3.2.2.5 A classification of pencils

We present in Chapter 15 the first classification of pencilsuafdgics based on the type of
their intersection in real projective space. A summary of thassification is given in Tables 3.4
and 3.5. We also show how this classification can be used tpetnefficiently the type of the
real intersection. In particular, we show how computatiafith non-rational numbers can be
avoided for detecting the type of the intersection when tipaii quadrics have rational coeffi-
cients.

As we shall see in Chapter 16, this classification is critioabdir algorithm for paramete-
rizing the intersection of two quadrics. Indeed, our altjon (see Chapter 16) first determine,
using this classification, the real type of the intersectiad then uses the associated structu-
ral information on the intersection curve to drive the aitjon for computing a near-optimal
parameterization of the intersection curve.

It should however be stressed that, even though the clagsficof pencils over the reals
is presented here as an intermediate step in a more glol@g®di.e., parameterization of the
intersection), this classification has an interest on its.dwis used, for instance, in the work of
Chapter 18 on the characterization of the topology of Voraiwagrams of three lines. It could
also be used in a collision detection context to predict ativhime stamps a collision between
two moving objects will happen.

Our proof relies heavily on Uhlig’s Canonical Pair Form Therar{UhI73,UhI76] on simul-
taneous block diagonalizations of pairs of symmetric reafrives. The idea is as follows. For

"Indeed, deciding whether the extra square root can be avaig®unts, in general, to finding a rational point
on a surface of degree 8.
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Segre roots of . ranl'< or| ranI§ or type of . I
string D(A) in C inertia of| inertia of (A2, ) S type of intersection if?3(R)
7 R(A1, 1) |R(A2, H2) ’
. smooth quartic 00; see [Fin37]
1117 | 4 simple roots & [TWW02] (or also Th. 14.5 & 14.25)
[112 1 double root | (3,0) real point
[112 1 doubleroot| (21) real - nodal quartic ; isolated node
[112 1 doubleroot | (2,1) real + nodal quartic ; convex sing.
[112 1 doubleroot | rank 3 complex nodal quartic ; concave sing.
[11(11)] | 1doubleroot| (2,0) real + 0
[11(11)] | 1doubleroot| (2,0) real - two points
[11(11)] | 1doubleroot| (1,1) (2,1) real - two non-secant conics
[11(11)] | 1doubleroot| (1,1) (3,0) real - 0
[11(11)] | 1doubleroot| (1,1) real + two secant conics ; convex sing.
[11(11)] | 1 doubleroot | rank 2 complex | — conic
[11(11)] | 1 double root | rank 2 complex | + two secant conics ; concave sing.
(13 triple root rank 3 cuspidal quartic
[1(2D)] triple root (2,0 double point
[1(2D)] triple root (1,12) two tangent conics
[1(111)] triple root rank1 | (2,1) double conic
[1(112)) triple root rank 1 | (3,0) 0
[4] guadruple root| rank 3 cubic and tangent line
[(31)] | quadruple root (1,1) - conic
conic and two lines crossing
[(31)] | quadruple root (1,1) + on the conic
[(22)] | quadruple root| (2,0) double line
[(22)] | gquadruple root| (1,1) + two single lines & a double line
[(211)] | quadruple root| rank 1 - point
[(212)] | quadruple root| rank 1 + two secant double lines
[(1111)] | quadruple root| rank O any smooth quadric of the pencil
[22] 2 double roots| rank 3 | rank 3 real cubic and secant line
(22 2 double roots| rank3 | rank 3 | complex cubic and non-secant line
[2(11)] | 2 double roots| (3,0) | rank?2 real point
[2(11)] | 2 doubleroots| (2,1) | rank2 real + conic and two intersecting lines
[2(11)] | 2 doubleroots| (2,1) rank 2 real - conic and point
[(11)(11)]| 2 double roots| (2,0) (2,0) real 0
[(11)(11)]| 2 double roots| (2,0) (1,1) real two points
[(11)(11)]| 2 double roots| (1,1) (2,0 real two points
[(11)(11)]| 2 double roots| (1,1) (1,1) real four lines (skew quadrilateral)
[(11)(11)]| 2 double roots| rank2 | rank 2 | complex two secant lines

TaB. 3.4 — Classification of pencils in the case whé&é\, 1) does not identically vanish.
(A1, 1) denotes a multiple root dD(A, ) (if any) and (A2, 2) another root (not necessarily

simple). If (A1, ) is a double root thes denotes the sign 03% at(A,p) = (A1) ; if
(A1,H1) is a quadruple root thesdenotes the sign of d&tS+ uT) for any (A, 1) # (A1, ).

When the characteristic polynomial has multiple roots, thaiteonal simple roots are not indi-
cated. The Segre characteristic is mentioned for claritydonot needed for the classification.
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Segre roots of ir:Z?tli(aO(;f inertia off type of type of intersection ifP3(R)
string | D3(A,p) inC R(A2,H2) | (A2, H2)
R(A1, 1)
[1{3}] no common conic and double line
singular point
[111] | 3 simpleroots| (1,1) (1,1) real four concurrent lines meeting at
[111] | 3 simple roots| (2,0) real point p
[111 | 3 simple roots (2,0) real point p
[111 | 3 simple roots complex two lines intersecting gb
[12] double root | (1,1) 2 lines and a double line meeting @t
[12] double root | (2,0) double line
[1(11)] | doubleroot | rank1 | (1,1) two double lines meeting at
[1(11)] | doubleroot | rank1l | (2,0) point p
[3] triple root rank 2 a line and a triple line meeting at
[(21)] triple root rank 1 a quadruple line
[(112)] triple root rank O any non-trivial quadric of the penci
D3(A,p) =0 same as in Table 15.3

TAaB. 3.5 — Classification of pencils in the case wh&x@\, ) identically vanishes. In the bot-
tom part, the quadrics of the pencil have a singular ppiitt common.D3(A, ) is the deter-
minant of the 3x 3 upper-left matrix oR(A, 1) after a congruence transformation sendiop
(0,0,0,1). The conic associated with a rootDg(A, ) corresponds to the 33 upper-left ma-
trix or R(A, ). (A1, 1) denotes the multiple root @b3(A, p) (if any) and(A2, L) another root.
When D3(A, ) has a multiple root, the additional simple roots are notdatid. The Segre
characteristic is mentioned for clarity but is not neededlie classification.

each possible type (real or complex) and multiplicity of thets of the characteristic polyno-
mial of the pencil, we compute, using Uhlig’s result, theaaisal form of the two quadrics we
intersect. The canonical form of these two quadrics are iegdhose associated matrices are
block diagonal and that are obtained from the two input gigadry the same congruence trans-
formation which preserves the roots (values and multijdis) of the characteristic polynomial
of the pencil. We then deduce from this canonical formoamal formof these two quadrics,
over the reals, by rescaling and translating the roots tocpdarly simple values. This normal
form is in a sense the “simplest pair’ of quadrics having agiveal intersection type. The
normal pencil is equivalent by a real projective transfarorato any pencil of quadrics with
the same real and complex intersection type.

For instance, when the characteristic polynomial of thecpéras one double root and two
simple real roots, the two quadrics, in their normal formyéhaquations? +az +bw? = 0
andxy-+ cw? = 0 with a,b,c equal to+1. Their intersection is a nodal quartic##(C) and,
depending on the values afb, c, it is, in P°(R), a point, a nodal quartic with an isolated node,
or a nodal quartic with a convex singularity (see Table 3.4).

It should be noted that the real projective transformatibias send the input quadrics into
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normal form, if they preserve the real type of the intergetgtmay well involve irrational num-
bers. These transformations are thus not practicabétwally computing the intersection of
two quadrics. However, they serve perfectly their purpasecfassifying pencils of quadrics
depending on their intersection.

3.2.2.6 Parameterizing singular intersections

Our classification of pencils over the reals allows us to mieitee quickly and efficiently
the real type of the intersection of two given quadrics. We ftathermore focus on singular
intersectionsi(e., other than a smooth quartic) since the “generic algorittwihChapter 14
produces near-optimal parameterizations when the irdgosas non-singular.

In Chapter 16, we design, for each real type of non-singularsection, an algorithm for
computing an optimal or near-optimal parameterizatioat iha parameterization with at most
one extra square root in the coefficients. When a parametienza possibly not optimal, we
show that testing if the parameterization is non-optimal, #so, finding an optimal paramete-
rization is equivalent to finding a rational point on a (pbssnon-rational) conic. We also give,
for every type of real intersection, worst-case examplesre/the maximum number of square
roots is reached. A summary of these results is given in Table

Our general philosophy for these refined algorithms is to ifgdtie “generic algorithm”
such that we use for intermediate quadg@g the rational quadric of the pencil of smallest
rank (instead of one of largest rank). As we will see, in Chap& this philosophy has the
double advantage of (i) avoiding the square root of a polyiabrw/4, in all singular cases,
and (ii) minimizing the number of radicals. As an additionahefit, it helps keep the size of the
numbers involved in intermediate computations and in thed parameterizations to a minimum
(see Chapter 17).

3.2.2.7 An efficient and exact implementation

We present, in Chapter 17, the first complete, exact, and exfticmplementation of an
algorithm for parameterizing the intersection of two awdoly quadrics, given in implicit form,
with integer coefficients. (Note that quadrics with ratibaafinite floating-point coefficients
can be trivially converted to integer form.) This implemegidn is based on the parameterization
method described in Chapters 14, 15, and 16.

Precisely, our implementation has the following features :

— it computes an exact parameterization of the intersedtitwo quadrics with integer
coefficients of arbitrary size;

— it places no restriction of any kind on the type of the indet®n or the type of the
input quadrics;;

— it correctly identifies, separates, and parameterizethalbalgebraic components of
the intersection and gives all the relevant topologicadtimfation ;

— the parameterization is rational when one exists ; ottsrifie intersection is a smooth
guartic and the parameterization involves the square rfapolynomial ;

— the parameterization is either optimal in the degree ofetttension ofZ on which
its coefficients are defined or, in a small number of well-idesd cases, involves one
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. : . worst case format worst-case optimality
Segre string real type of intersection o -
of parameterization of parameterization
. . Q(Vd)[E, VA, rational point on
(1117 nonsingular quartic (see part |) AcQWVB)E] degree-8 surface
112 point Q optimal
nodal quartic Q(V3)[E] rational point on conic
two points Q(V/3) optimal
optimal if /3
conic Q(\fé, VHIE] ratiopnal point . i
[11(11)] He Q(Vd) onconic I Ve
] . Q(/¥)-rational point
two non-tangent conics Q(V8,V¥)[g] onQ(v&)-conic
[13 cuspidal quartic Q[¢] optimal
(2] point Q optimal
two tangent conics Q(V3)[E] optimal
[1(111)] double conic Q(Vd)[] rational point on conic
4] cubic and tangent line Q[¢] optimal
conic Q[¢] optimal
[(3D)] conic and two lines .
crossing on the conic Q(\/S) ] optimal
double line Q[¢] optimal
22 t imple skew i .
. cuting a doublefne. | (VA optima
(21 point Q optimal
two double concurrent lines Q(V3)[E] optimal
22 cubic and non-tangent line Qf] optimal
point Q optimal
2(11)] conic and point Q(VO)[E] rational point on conic
conic and two lines . . .
not crossing on the conic QVE)LE rational point on conic
two points K[&],degredK) = 4 optimal
[(12)(11)] two skew lines K[&],degredK) = 4 optimal
four lines (skew quadrilateral) K[g],degreéK) =4 optimal
[ [{3]] | conicanddoubleline | Q[E \ optimal
point Q optimal
[11] two concurrent lines K[&],degredK) =4 optimal
four concurrent lines K[&],degredK) = 4 optimal
double line Q[E] optimal
12 two simple and a doubl .
i “concurtentines | (VO opiima
concurrent simple .
E and triple Iineg Q[E] optimal
[1(10)] point Q optimal
two concurrent double lines Q(V3)[E] optimal
[(21)] quadruple line Q[¢] optimal
] [11] \ quadruple line \ Qf] \ optimal

45

TAB. 3.6 — Ring of definition of the projective coordinates of thargmeterization of each
component of the intersection and optimality, in all casbsm the real part of the intersection
is 0- or 1-dimensionab,d € Q.
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extra possibly unnecessary square root;

— the implementation is carefully designed so that the sfzhe coefficients is kept
small;

— itis fast and efficient, and can routinely compute parargsttons of the intersection
of quadrics with input coefficients having fifty digits in Eethan 50 milliseconds on
a mainstream PC.
Our code can be downloaded from the LORIA and INRIA web &it€he C++ implementation
can also be queried via a web interface

We also prove theoretical bounds on the size of the outpuficeats and compare those
bounds to observed values. Roughly speaking, the heightaitmut coefficient is its logarithm
with base the maximum (in absolute value) of the input quacoefficients. For instance, we
prove that, when the intersection is generic, the outpegeert coefficients have height at most
38+ 50h, wherehp, is the height of the coordinates of the rational pgirthosen near the qua-
dric Qr during step 2 of the generic algorithm. We also observe tbatandom inputs quadrics
with coefficients with up to 10,000 digits, the height of tlaegest coefficients never exceeds
36. This partially follows from the fact that, in practichetcoordinates op are bounded by
some constant and thiag goes to zero when the input size goes to infinity. We howevee ha
no explanation of why the bound of 36 is reached instead of 38.

We also made interesting observations on the height of te#ficents for singular inter-
sections that validate a key choice we made in the design élgorithm. We observe, for
instance, that when the intersection if a cubic and a linedhatangent, the observed height
of the cubic coefficients tend to roughly 8 or 15 depending betier the intermediate quadric
Qr used in the algorithm is chosen with minimal or maximal rathla( is with inertia(2,1) or
(2,2)). This shows that our choice of choosing an intermediat&lgo&gr with minimal rank
is a good strategy regarding the height of the output coefftsi

We also give experimental results and performance evaluati random and real data. For
instance, we show that the intersection of two quadrics vattdom coefficients with up to 50
digits takes roughly 50 ms and that the intersections ofspaiirquadrics in the chess set of
Figure 1.1 take on average 3.4ms on a regular PC.

3.2.3 The Voronoi diagram of three lines

The Voronoi diagram of a set of disjoint objects is a decortmosof space into cells, one
cell per object, such that the cell associated with an olgjeasists of all points that are closer
to that object than to any other object. In Chapter 18, we denshe Voronoi diagram of lines
in R3 under the Euclidean metric.

Voronoi diagrams have been the subject of a tremendous @nbuesearch. For points,
these diagrams and their complexities are well understoddoatimal algorithms as well as
robust and efficient implementations exist for computingnthin any dimension (see for ins-
tance [Aur91,AK99,BDP02,BDS"92,CSY97,CS89a, For97,0BSCO00, PT06, Sei81]). Never-
theless, some important problems remain and are addressecent papers. The same is true

8http://www.loria.fr . http:/www.inria.fr
Shttp://www.loria.friequipes/vegas/gi
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for segments and polygons in two dimensions [Kar04].

For lines, segments, and polyhedra in three dimensions messhs known. In particular,
determining the combinatorial complexity of the Voronaagiiam ofn lines or line segments
in R3 is an outstanding open problem. The best known lower bour@(i€) and the best
upper bound i©(n*+¢) [Sha94]. It is conjectured that the complexity of such déags is near-
guadratic. In the restricted case of a sat bhes with a fixed numbec, of possible orientations,
Koltun and Sharir have shown an upper boun®@i®+¢), for anys > 0 [KS03].

There are few algorithms for computing exactly the Vororiagdam of linear objects. Most
of this work has been done in the context of computing the alextkis of a polyhedron,e.,
the Voronoi diagram of the faces of the polyhedron [Cul009djl Recently, some progress
has been made on the related problem of computing arrandgsmfeguadrics (each cell of the
Voronoi diagram is a cell of such an arrangement) [BHI&, KKM99, MTTO05, SW06, SS97].
Finally, there have been many papers reporting algorittumsdmputing approximations of the
Voronoi diagram (see for instance [DZ02, ER02, HG3O, TT97)).

In Chapter 18, we address the fundamental problem of undelistathe structure of the
Voronoi diagram of three lines. A robust and effective inmpétation of Voronoi diagrams of
three-dimensional linear objects requires a complete lamebtigh treatment of the base cases,
that is the diagrams of three and four lines, points or planésalso strongly believe that this
is required in order to make progress on complexity issusd,im particular for proving tight
worst-case bounds. We provide here a full and complete ctaization of the geometry and
topology of the elementary though difficult case of the Vaiatiagram of three lines in general
position.

Our main result, which settles a conjecture of Koltun andr6figS03], is the following
(see Figure 3.3).

Theorem 3.3. The topology of the Voronoi diagram of three pairwise skewdithat are not
all parallel to a common plane is invariant. The trisectomststs of four infinite branches of
either a non-singular quartf® or of a cubic and a line that do not intersect®i(R). Each cell
of dimension two consists of two connected components on abajipeparaboloid that are
bounded, respectively, by three and one of the branche® afifiector.

The proof technique, which relies heavily upon modern taflsomputer algebra, is of
interest in its own right. We also provide a geometric chinazation of the configurations of
three lines (which are pairwise skew and not all parallel tommon plane) whose trisector is
not generic, that is consists of a cubic and a line.

The characterization of Theorem 3.3 yields some fundarhenigperties of the Voronoi
diagram of three lines which are likely to be critical for #healysis of the complexity and the
development of efficient algorithms for computing Voron@gtams and medial axes of lines
or polyhedra. In particular, we obtain the following result

Monotonicity Property. Given three pairwise skew lines that are not all parallel tocaranon
plane, there is a direction in which all four branches of thisector are monotonic.

Theorem 3.4.Let p be a point that lies in (i) a two-dimensional cell or (it one-dimensional
cell of the Voronoi diagram of three pairwise skew lines that ot all parallel to a common
plane. There are linear semi-algebraic tests for

10By non-singular quartic, we mean an irreducible curve ofrdedour with no singular point ii#3(C).
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Lo

(@) (b)

FiG. 3.3 — Voronoi diagram of three lingg, /2, and/3 in general position : (a) Voronoi 2D
face of /1 and /o, i.e., set of points equidistant té; and /> and closer to them than .
(b) Orthogonal projection of a 2D face on a pldP&vith coordinate syster(X,Y) ; the plane’s
normal is parallel to the common perpendicula¥phind/, and theX andY-axes are parallel
to the two bisector lines (it?) of the projection off; and/, onP. The 2D face is bounded by
four branches of a non-singular quartic.

(i) deciding on which connected components of the two-diraeakcell, point p lies,
or
(i) deciding on which branches of the trisector, point p Jiesspectively.
Furthermore, if the three lines are rational, these lineasts are rational! Moreover, there is
a linear semi-algebraic test for
(i) ordering points on each branch of the trisector.

Notice that the tests (i) and (ii) enable us to answer queieke form, given a point,
determine in which connected component of which cell it Idstice also that tests (i) and (iii)
should be useful for computing the Voronoi diagramndines since it requires to locate the
points equidistant to four lines on a Voronoi arc of threehafse lines.

The idea of the proof of Theorem 3.3 is as follows. We constteze lines ingeneral
position that is, pairwise skew and not all parallel to the same pl&he idea is to prove that
the topology of the trisector is invariant by continuousatafation on the set of all triplets of
three lines in general position and that this set is condedtke result then follows from the
analysis of any example.

We show that the trisector is always homeomorphic to fouedithat do not pairwise in-
tersect. To prove this, we show that the trisector is alwayssingular inP3(R) and has four
simple real points at infinity. To show that the trisectorligays non-singular, we study the type
of the intersection of two bisectors, which are hyperboécgboloids.

We use the classic result that the intersection of two quadsi a non-singular quartic (in
P3(C)) unless the characteristic equation of their pencil hategat) a multiple root. In order

11By rational linear test, we mean that the polynomials (whsigas determine the connected component) are
of degree one in the coordinates of pagmand have rational coefficients.
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to determine when this equation has a multiple root, we deter when its discriminam is
zero.

This discriminant has several factors, some of which awgatly always positive. The re-
maining, so-called gros facteut, can be shown, using Safey’s software [RAG], to be never
negative. This implies that it is zero only when all its palrtierivatives are zero. We thus consi-
der the system that consists of thes facteurand all its partial derivatives, and compute its
Grobner basis. This gives three equations of degree sixoWader separately two components
of solutions, one for which a (simple) polynomHRlis zero, the other for whick # O.

WhenF # 0, some manipulations and simplifications, which are irsting in their own
rights, yield another Grébner basis, with the same reabraaich consists of three equations
of degree four. We show that one of these equations has nea@iawhich implies that the
system has no real root and thus that O has no real root on the considered component. We
can thus conclude that, in this case, the trisector is alaaym-singular quartic i*(R). When
F = 0, we show, by substituting = 0 in A and by using the classification of the intersection
of quadrics over the reals (see Chapter 15), that the trisexeo cubic and a line that do not
intersect inP3(R).

We can thus conclude that the trisector is always a non-Einguartic or a cubic and a line
that do not intersect in real space and thus that the trisictdways non-singular ift3(R).

We then prove that the trisector always contains four simgéé points at infinity and thus
that it is always homeomorphic to four lines that do not paeaintersect. It follows that the
topology of the Voronoi diagram is invariant by continuow$atmation on any connected set
of triplets of lines in general position. Next we prove tha set of triplets of lines in general
position is connected which implies that the topology of Yeeonoi diagram is constant. We
finally determine the topology for (any) one arbitrary teipof lines, which yields the result.
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Chapitre 4

Conclusion

| have presented, in this document, my most significant tewerk on the subject of non-
linear computational geometry dealing with lines and gieadn three dimensions. | have ar-
gued that the study of the fundamental properties and dhgoiés of non-linear geometric
primitives is a useful and necessary direction of resedrahis complementary to, and should
be conducted along with, the more conventional researcleomgtric computing with linear
discretized primitives.

The first part of this document presents a body of work on larekline segments that are
tangent or transversal to three-dimensional objects. Reesults are presented on their struc-
tural and combinatorial properties, as well as on the allgmics for computing them. These
results are applied to the problem of computing global datactures for three-dimensional
visibility problems, which motivated the study of such tants. This work leads me to believe
that we can reasonably expect to obtain robust and certigeditomic solutions to some diffi-
cult three-dimensional visibility problems such as theotxand efficient computation of limits
of umbra and penumbra. It should be again stressed that $gwfitams are not intended to
compete in terms of speed with specialized graphics haelveat rather to provide robust and
exact solutions instead of approximations. It is indeedulte know, from time-to-time, the
correct (certified) answer, in particular, for the purpofeaddating ad-hoc methods.

In the second part of this document, | present substantgrpss on two well-known pro-
blems on geometric computing with simple curved primitjiyeamely, quadrics. The work on
the intersection of two quadrics, aside from providing nleaotretical results, demonstrates that
a careful study of the geometry leads to fast and robust im@ieations. The work on the to-
pology of Voronoi diagrams of three lines (a partition of spédy quadrics patches) shows, in
addition, that state-of-the-art computer algebra systesme reached the point where they can
be used effectively for proving theorems on non-trivial gpetric problems. However, we have
seen that performing such algebraic computations is moae aft than a science, in particular,
because the computations required for even seemingly singi-linear geometric problems
are often at the very limit of such systems. This body of wdr&ves that significant progress
can be made on various classical problems of non-linear atatipnal geometry and that even
non-discretized solutions can be extremely efficient ircfica.

Despite much progress, there is much work left to do. Conogrtiiree-dimensional visi-
bility, algorithmic solutions for efficiently computing sibility structures, such as the visibility
skeleton, are now in sight. This gives hope that the problégiffwiently computing limits of
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umbra and penumbra is tractable, although the problemlidastiely open. However, other
major challenges such as solving exactly and effectivelyasa-to-surface visibility queries
remains entirely open. Many problems also remain in geametrmputing with low-degree
algebraic surfaces. For instance, there is no robust arikeffimplementation for computing
arrangements, or parts of arrangements, of quadrics, trdaelated problem of computing Vo-
ronoi diagrams of polyhedra. State-of-the-art method$aariom being efficient and/or usable
and, though the algorithmic and arithmetic complexitiethese problems are inherently high,
there is certainly a lot of room for improvement, both on thedretical and practical levels.



Deuxieme partie

Propriétés des droites et segments di3 et
problemes de visibilité tridimensionnelle
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Chapitre 5

Common tangents to spheres ifR3

Cet article a été publié dafEscrete Computational GeometiffgGLP06] ainsi que dans la these de
X. Goaoc [Goa04].

Abstract

We prove that four spheres R® have infinitely many real common tangents if and only if thayéd
aligned centers and at least one real common tangent.

5.1 Introduction

A major issue in geometric computing is to handle degenénatgts properly in order to design robust algo-
rithms. This often requires recognizing such an input taregth. In 3D visibility problems, which are ubiquitous
in computer graphics and image synthesis, objects withaf seimmon tangents of improper dimension constitute
degenerate configurations, as detailed in the survey ofridyi@ur00]. In this paper, we determine all degenerate
configurations of four distinct spheres, that is all confegiems of four spheres with infinitely many common
tangents.

The study of real lines tangent to basic geometric objectsbieeen very active in recent years. This topic
includes two closely related directions of research, ngrtied characterization of degenerate configurations and
the enumeration of lines satisfying geometric constraidtsually, these problems are approached by studying
the degeneracies and counting the number of solutions oé specific polynomial system. The difficulty often
resides in eliminating imaginary solutions, solutionsiniity, and components of positive dimension of solutions
in order to retain only real affine solutions.

The case of lines tangent to spheres has been persisterdstigated. Macdonalet al.[MPTO01] proved that
four unit spheres have at most 12 common tangents in gema@ainfinitely many common tangents if and only
if the centers are aligned. The bound of 12 was independebthined by Devilleret al.[DMPTO03]. Examples
show that, in the finite case, this bound is tight [DMPTO03, MR yet, according to Megyesi [Meg01], it drops to
8 in the case of unit spheres with coplanar but non-colliceaters. However, the upper bound of 12 remains valid
when the spheres have arbitrary radii. Sottile and ThediSil62] proved that there are 3"~1 complex common
tangent lines to 2— 2 general spheres iR", and that there exists a choice of spheres with all commagetas
real.

Recently, progress has also been made in understandingatietias of common tangents to spheres and
transversals to lines. Theobald [The02] described the gorations of three lines and a sphere having infinitely
many common tangents/transversals. Next, Megses. [MSTO03] characterized the families of two lines and two
quadrics ofP3(C) with infinitely many tangents/transversals, and appliairtresults to the case of two lines and
two spheres oR3. Last, Megyesi and Sottile [MS05] classified the familiesoo® line and three spheres®f
with infinitely many tangents/transversals.

The question of characterizing the positions of four sphefevarious radii with infinitely many common
tangents remained open. Quoting Theobald [TheO2Ye ‘tonjecture that there does not exist any configuration
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with four balls of arbitrary radii, non-collinear centersna infinitely many common tangent liriel this paper,
we confirm this expectation and prove

Theorem 5.1. Four distinct spheres iiR® have infinitely many real common tangent lines if and onliggfthave
aligned centers and at least one real common tangent.

More precisely we prove that four spheres with infinitely jm@emmon real tangents either intersect in a
circle, possibly degenerating to a point, or each spheraltitle of tangency with one and the same quadric of
revolution with symmetry axis the line through all centessd Figure 5.1) ; such a quadriaiisiqueand can be a
cone, a cylinder or a hyperboloid of one sheet. Furtherntbeecommon tangents to the four spheres are exactly
the common tangents to any three of them.

Fic. 5.1 —Two examples of quadruples of spheres with infinitely manyiwmn tangents.

After introducing some notations and preliminaries in ##c6.2, we treat the case of four spheres with
affinely independent centers in Section 5.3. Next, we haindiection 5.4 the more intricate case of spheres with
coplanar centers, no three aligned. Section 5.5 ends tioé @rdheorem 5.1 with the case of three aligned centers.
We obtain, at the same time, the algebraic and semi-algeboaiditions on radii and mutual distances between
centers, which characterize four spheres with infiniteljpyyneommon real tangents.

5.2 Preliminaries

Notations

Our proofs use points and vectors frd@A and from the real and complex projective spaces of dimensgion
P"(R) andP"(C). We make no distinction between a poménd the vector from the origin of the framepoFor
more clarity, we denote an element®t by (ay,...,an), and an element &"(R) or P"(C) by (a1 : ... : an+1)-

For any two vectors, b of R", P"(R), or P"(C), we denote bya- b their dot product, bya x b their cross
product, and byal? the dot product - a (note that/a|? is not the square of the norm afwhena has imaginary
coordinates).

Let 8; denote the sphere B with centerc; and radius; >0, fori=1,...,4, and(es, e, e3) be an orthonormal
frame ofR3. Without loss of generalityve assume that ¢ is the origin of our frame. Theaxisof a set of spheres
with aligned centers is the line going through these centers

Tangents to four spheres

We begin by reviewing the description of the common tangaaslto four spheres as solutions of a polynomial
system, as in [MPTO1]. We represent a linéRiA by its closest point to the origip € R? and its direction vector
v ¢ P2(R). Let M denote the matrifcy, cs, c4]” and®y andd;(v) be the vectors

|Cal?+12 12 (C2-v)?
o= | |eafP+ri—rf |, P(v)=—| (c3v)?

|Cal? 412 —r2 (Ca-V)
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Lemma 5.2. The lines tangent to the four sphei&s. . ., $4 are the common solutior{®, v) in R3 x P(R) of the
equations

p-v=0, (5.1)
P =13, (5.2)
2V2Mp = (V) + |v|*Po. (5.3)

Proof. A couple(p,v) € R®x P?(R) represents a line if and only if Equation (5.1) is satisfieding (p,v) is
tangent to spher®; if and only if its squared distance tpis r? that is, if and only if

[(ci —p) x V2 =rf|v%.
Expanding this equation yields
6 x V2 [px V2= 2(Gi x V) - (px V) = r2|v]2. (5.4)

Applying to (¢ x v) - (p x v) the scalar triple product identigy- (b x ¢) = b- (c x a), then the vector triple product
identitya x (b x c) = (a-c)b— (a-b)cand finally using Equation (5.1) we get

(pxV)-(GXV)=G- (VX (pXV)=c-((v-v)p—(V-p)V) = [V|?Gi - p.
Sincep andv are orthogonallp x v|? = | p|?|v|? and thus Equation (5.4) becomes
2V p = [ci x V> + [VI*(|p” = rf).
As |ci x V> + (¢ - V)% = [ci|?|v|?, we finally get that
2vPei-p=—(ci-v)? + v (ja P+ |plP—rf). (5.5)

Equation (5.5) foii = 1 is equivalent to Equation (5.2) sinceis the origin of the frame. It follows that the four
equations (5.5) for=1,...,4 are equivalent to the two equations (5.2) and (5.3). O O

The approach used to show that infinitely many tangent lioepheres can only happen when the centers of
the spheres are aligned is as follows. We elimiratmong the equations (5.1)-(5.3), giving two cufviesthe
2D projective space of directions, whose intersectionaiostall directions along which a common tangent line to
the four spheres is observed. We then prove that, when thersare non-collinear, the two curves intersect in a
finite number of points.

The key idea behind the proofs of Section 5.3 (affinely indeleat centers) and Section 5.4 (coplanar centers)
is that if the two curves, envisaged as complex projectiveas) had a common component of positive dimension,
this component would intersect the imaginary comé = 0 and we show that this is not the case. Intersecting
the curve withlv|? = 0 is inspired by the relation of the Grassmannian of lineB3(C) with the (p,v) coordinate
system, well adapted to the representation of lines in theegpartR® c P3(R).

It should be stressed that any solution to the problem ofeacitarizing sets of four spheres with infinitely
many tangent lines must be computational to some exterdauiseavhile we are interested in real lines, the “native”
system of equations is ové&r. Any understanding of the system should involve sensjtisitomplex degeneracies.

In our proof, computations flow towards revealing such caxpmlegeneracies, but are short-circuited by use of
reality assumptions.

A cubic and a quartic when the centers are affinely independetonic and a sextic when the centers are
coplanar with no three aligned.
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5.3 Affinely independent centers

We first investigate the case of spheres with affinely inddpenhcenters.
Proposition 5.3. Four spheres with affinely independent centers have at mesté common tangent lines.

Proof. First note that matriM is invertible since the spheres have affinely independariece Consideringp, v)
in R x P?(R), we havev|? # 0 and thus Equations (5.1)-(5.3) are equivalent to the thgeations

p=M‘1<2§p—k;mQ, (5.6)
(Mfl (D2(v) + |V|2<Do)) -v=0, (5.7)
ML (0(v) + V2 Do) |* = 4rZ|v[*. (5.8)

Equation (5.6) expresses the paorin terms of the direction vecta, proving that there is at most one line tangent
to the four spheres with a given direction. The remainingagiqns are a cubic (5.7) and a quartic (5.8yjrand
their intersection represents the directionsP?(R) along which there is a tangent to the four spheres. We want to
prove that the cubic and the quartic intersect in at most I®pm P?(R). For that purpose we prove this property
in P?(C), by contradiction.

If the cubic and the quartic have #?(C) a common component of positive dimension, this componeet-in
sects the conifv|?> = 0; this is a property of any two curves#¥(C) which does not dispute the fact that the real
solutions of Equations (5.6)-(5.8) satigfyf> # 0. We now prove that the intersectioni(C) of the cubic (5.7),
the quartic (5.8) and the conjig/? = 0 is empty. This system simplifies to

V2 =0,
(M~1dy(v))-v=0,
IM~ta(v)[? =

The first two equations express the fact thiat'®,(v) is on the tangent atto the smooth conitv|?> = 0, and the
last thatM —1d,(v) is itself on that conic. It follows thavl~1d,(v) andv are one and the same projective point.
Thus there existp # 0 in C such that

M~1d,(v) = py, that is®,(v) = pMv.

Expanding this last equality yields(c; - v)? = pg - v, fori = 2,...,4, which implies that every term - v is 0 or

—M. This leads to
ap
Mv = —u( as ) (5.9
au

where eacly; is equal to 0 or 1. Lea denote the vector of tha. Pluggingv = uM~ain the equation of the conic
V|2 = 0 yields
uz\Mfla\z =0.

The vectoM 1ais real, thugi= 0 ora= 0. In both cases, Equation (5.9) implies: 0. Thus there is no common
solution inP?(C) for the system of the conic, the cubic and the quartic, heneectibic (5.7) and quartic (5.8)
cannot intersect in a curve. By Bezout's Theorem, they sgiefrin at most 12 points, and since there is at most one
line tangent to the four spheres with a given direction bydfigm (5.6), this completes the proof. [ O

5.4 Coplanar centers

We now treat the more intricate case of four spheres whodersesre coplanar but such that no three centers
are aligned.
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Proposition 5.4. Four spheres with coplanar centers, no three aligned, havaast twelve common tangents.

Let (p,v) € R® x P?(R) represent a line tangent to the four spheéigs. ., $4. By Lemma 5.2( p, V) is solution
of Equations (5.1)-(5.3). As in Section 5.3, we start by &ting from these equations two equations.in
Without loss of generality, we may assume that the spherexespan the plan@;, e) :

C1 Cp O
M=1|c3 c32 0].
Ci1 Cs2 O

Let M1, be the 2x 2 upper left sub-matrix oM, which is invertible since no three centers are aligned.dfyr
vectora, letaj, be the vector that consists of the first two rowsa@ndagz be its third row.
Let us first assume that # 0. It follows from p-v = 0 that
_ P12-Vva2

P3 = vs (5.10)

andp;2 is characterized using Equation (5.3) :
2v[?p12 = Mgz ((P2(V)) 12+ [VI* (Po)1y) -

Let Wa(V) = M5 (D2(V))1, andWo = M5 (Pg)1,. As D2(v) andW(v) do not depend ow, we may write them
aSCDz(Vlz) andkPZ(vlz). Then
2|V|2p1p = Wa(Va2) + [V[*Wo. (5.11)

Substituting the expression p§ from Equation (5.10) in Equation (5.2) gives
p12-viz) ?
|p12|2+ ( 12 12> _r% -0
V3

Then multiplying by 4v|4v§ and substituting [#|2p;» by its expression from Equation (5.11) gives the following
sextic equation iwv :

V3| Wa(Vi2) + [V2Wol? 4 ((Wa(va2) + V[2Wo) - vi2)? — 4[v["3rZ = 0. (5.12)
For anyp,qin P3(C), we have, by transposition :
(Mp)-q=p-(MTq).

Let w be a non-zero kernel vector bfT. Then(Mp) - w= p- (MTw) = 0. Substituting the expression lfp from
Equation (5.3), we obtain thatmust be on the following conic :

Dy(v12) - 0+ |V|2¢>0 -w=0. (5.13)

Notice that Equations (5.12) and (5.13), obtainedvp# 0, are still valid forvs = 0 by continuity. We thus
get the following lemma.

Lemma 5.5. The direction & P?(R) of a line tangent to the four spher8s, ..., 84 satisfies the sextic (5.12) and
the conic (5.13).

Lemma 5.6. If the sextic (5.12) and the conic (5.13) admit a componepbsitive dimension of common solutions
in P?(C), then it intersects the conijg|?> = 0 and any point v in the intersection satisfies

INEC, Wo(viz) =Avip (5.14)
Dy (vi2) - w=0. (5.15)
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Proof. If Equations (5.12) and (5.13) share a component of positiveension inP?(C), then this component,
seen as a curve @?(C), intersects the coniw|?> = 0. Letv € P?(C) be in this intersection. Then Equation (5.13)
becomes Equation (5.15). Now, it follows from? = 0 thatvi = —|v12/2, and thus Equation (5.12) becomes

— V122 |Wa(v12) > + (Wa(v12) -v12)2 = 0.

Since|x|?|y|? — (x-y)? = det(x,y)? for anyx,y € C?, the equation is equivalent to def,, W (vi2)) = 0 which is
equivalent to Equation (5.14y (s on|v|> = 0 so we cannot havg, = 0). O O

In the following we consider the centetgs = 0,Cp,C3,C4 as 2D points (i.e., we forget the third coordinate,
which is 0). For any vectax € R? we denote by its orthogonal vector obtained by a rotation of angfe.

Lemma 5.7. If Equations (5.14) and (5.15) have a common solutignin P1(C), it must satisfy » = ¢ and
vi2- (Cj—ck) = 0, with {i, j,k} = {2,3,4} (which implies that ¢ ¢y, c3, ¢4 are the vertices of a trapezoid).

Proof. FromMTw = 0 we get

MT o — MIZ Cy W12 _ MIzu)lz + W3y —0
0 0 w3 0 ’

Thuswy = —oog(MIz)—lc4 andws # 0 (otherwise 2 = 0 thusw = 0 contradicting its definition). Now, we can
write Equation (5.15) aéP2(v12))12- 12— (Ca- v12)2w3 = 0, and substituting our expression®f; yields

—033 (P2(V12))12- (M{p) ~*ca) — (Ca-V12)°ws =0,
which simplifies, by transposition, into
(M5 (P2(V12))12) - Ca+ (Ca - V12)* = 0.
Hence, an equivalent expression for Equation (5.15) is :
Wp(Vi2) - €4+ (Ca-V12)2 = . (5.16)
Substituting¥z(v12) = Avi2 from Equation (5.14) into (5.16) leads to
(Ca-V12)? = —ACq-Vi2.

By a similar reasoning, we can express the conic (5.15) usirg c3 in expressions similar to Equation (5.16),
and the above argument yields that :

(Gi-Vi2)®> = —ACi-vip, =234 (5.17)
If ¢i-vi2#0fori =23, and 4 ther(ca — c3) - vi2 = (C2 — €4) - V12 = 0 and, sinceey, ¢z andc, are not aligned,
vi» = 0 contradictingvi» € P1(C). Hence,vi» must be orthogonal to song, i € {2,3,4}. Sincevi, € PY(C),

we can assume that, = cii. Since no three centers are aligneg; is orthogonal to neithec; nor ¢, with
{i,j,k} ={2,3,4}. Thus Equation (5.17) yields

~A=¢j-¢ =c-¢", andso ¢"-(cj—c)=0.

This means that the segmenig; andcjc, are parallel and thus the centers of the spheres are theegedf a
trapezoid. O O

Lemma 5.8. If the sextic (5.12) and the conic (5.13) have a common coergasf positive dimension iA?(C),
Equations (5.14) and (5.15) have at least two distinct $ohstinP1(C).
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Proof. Assume that the sextic (5.12) and the conic (5.13) share paoemt of positive dimension. Then by
Lemmas 5.6 and 5.7, Equations (5.14) and (5.15) admit a canswlationvy, = ¢~ for i = 2,3, or 4. By relabeling
if necessary, we can assumg = c;. Suppose, for a contradiction, that is the uniqgue common solution of
Equations (5.14) and (5.15).

By Lemma 5.6, any point in the intersection of the copié = 0 and the common component of the sex-
tic (5.12) and the conic (5.13) satisfies Equations (5.14) (nl5). Thus any such point satisfies = c; and
Iv|2 =0, and is equal to one of the two points of coordindtgs: +i|c4|). Hence the common component contains
at least one of these two points.

The common component of the sextic (5.12) and the conic tsXther the conic itself or a line. In the latter
case, the equation of the line is real because otherwisernisgate is also contained in the conic and in the sextic
(since their equations are real) ; the sextic then cont@i@sonic, which corresponds to the first case. Hence the
equation of the common component is real in both cases. Bmee the common component contains one of the
two points(c : +ilca|), it also contains its conjugate, hence the two points.

We now discard the case where the common component is the bgrderiving a contradiction with our
assumption that no three centers are collinear. If the deniontained in the sextic, it meeig? = 0 in the two
points(cg : +i|ca|), which are therefore tangency points. This means that Ejuéi. 16), which is our conic mod
|v|2 =0, has a double root &, = c; . Since any degree-two polynomialm, € P1(C) that hasc; as double root
is proportional to(cy - vlz)z, we get that

W (Vi2) - C4 = a(Cq - V12)?

for somea € C and allvy, € P1(C). Computing detMi2)M ;- gives the matrix with columng-c4c], thus our
equation becomes

Wa(vi2)-Ca = Wi/llz)[(cé -C4)(C2-V12)? — (¢5 - €a)(C3-Vi2)?] = a(Ca- Va2)?.

Since the four centers form a trapezoid we haye- v(c, — c3) for somev € R3. Replacingey by its expression
and simplifying by factocy - ¢, = —c5 - c3 yields

(c2-v12)% — (C3-V12)® = K((C2 — C3) - V12)?,

for somek € C. Writing vi, = Xc; +ycsy we obtain
(C2-C3)*(Y? —x* —K(x+Y)?) =0

for all (x,y) € P1(C), which forces the proportionality ak andcz and their alignment witfe;. Thus, if no three
centers are aligned the conic cannot be contained in thiesext

Now we examine the second alternative, when the common coemp@f the sextic (12) and the conic (13)
is a line. This line contains the two points; : +i|cs|) and thus contains the poifit; : v3) for all vz € C. Thus
all the coefficients of the sextic (5.12) viewed as an equatio/s with coefficients depending on, = cj must
vanish. In particular the constant and the coefficientiominus|cs|* times the coefficient o#§ both vanish and
are equal to

W,(cs) -4 +|cal?Wo-cf =0,
\Wa(cp) %+ 2|cal?Wa(cs) - Wo = 0.

From the proof of Lemma 5.7, we know theb(c;) = Acs with A = —c2-¢; = —c3-c4. Thus, the relations
become

|Cal?(A+Wo-c7) =0,
Mcal2(A+2Wo-cf) =0.

Since no three centers are alignke 0 and|c,| # 0, and these two equations imply= 0, a contradiction. [J O
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Lemma 5.9. The sextic (5.12) and the conic (5.13) cannot have a compaigrositive dimension of common
solutions.

Proof. Assume that the sextic (5.12) and the conic (5.13) have a ecomommponent of positive dimension. Lem-
mas 5.7 and 5.8 yield that Equations (5.14) and (5.15) thee &tleast two distinct solutions amofigy , ¢35, ¢; }-
By relabeling the centers, we may assume these solutiorts @edcy . Lemma 5.7 gives that

Cy-(ca—C3)=0 and c3-(Ca—Cp) =0.

Thus,c; is proportional tac, — ¢3, andcs is proportional tacy — ;. Thereforeg, + ¢3 = ¢4 and the centers form a
parallelogram. By translating our frame to the center of fzaallelogram, we may assume that the centers are at
a=(a,a,0), b= (b1,by,0), —aand—b, with corresponding radri, i = 1,...4. On occasion, we abuse notation,
and allowa andb to stand for(az,az), respectively(by, by).

Subtracting Equation (5.5) for= 1 from its expression far= 3 leads to

4(a-p)=ri—ri,
and the same operation fo 2 andi = 4 yields
4(b-p)=ri—r3.

This shows that the first two coordinatpg of p are determined by centers and radii alone, and remain adnsta
Thus, all the common tangents to the four spheres meet th@déirpendicular to the plane of the centerpipn

A theorem in the preprint [MSO05] addresses a situation & tiaEiture and shows that the common tangents
to three spheres which meet at the same time a fixed line céeniafinitely many unless their three centers are
collinear. We give here an independent proof which consrthe above line of thought.

Recall that (12) and (13) were obtained from (1)-(3) by efiating p. Operating “in reverse", it is easy to
see that a one-dimensional component of solutions for (A@)&3) would produce a one-dimensional family of
solutions for (1)-(3). We show now this cannot happen.

Rewriting (5.5) for the centei@andb gives

(@ = V2 (Ja+ ol 503+13) ). (5.18)
(b2 =V (10%-+ [pi2 - 503413 ). (519)

Leta = |af> — 3(r?+r3) andB = [b|?> — 3(r3 +r2). Subtracting (5.19) from (5.18) gives the conic

((a+b)-vi2) (a—b)-viz) = M*(a —B). (5.20)
Multiplying (5.18), (5.19), and? together and dividing bjv[? gives
(a-v12)(B+ | pazl® + PAVE = (b-vi2)?(a + [przl* + PE)V,
or equivalently, using (5.10),
(1125 + (P12-v12)?)((a+b) -vi2)((a—b) - viz) = V3(a(b- vi2)* — B(a- vi2)?). (5.21)

For the conic (5.20) and the quartic (5.21) to have a commenddmensional component, it is necessary that
equality holds for any;, € P! and some adequate value(s) Yar Indeed, the projectiom— v1, of the common
component cannot be constant, for with fixad and (already known) fixe@;», equations (5.10) and (5.18) (or
(5.19)) would determine only a finite number of solutiogs

Evaluating (5.20) and (5.21) af, = (a+b)*, we find no possible value fag, unlessa = . Returning this
necessary condition into (5.20) impligg, = (a+ b)* contradicting the fact that (5.20) and (5.21) holds for all
vy € PL, O O
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We now conclude on the case of spheres with coplanar centers.
Proof of Proposition 5.4. By Lemmas 5.5 and 5.9, there are finitely many directionsgalehich the spheres have
a common tangent. For each such directipa line tangent to the four spheres projects onto a planegaotial
to vinto a point that lies on the common intersection of the fdteles obtained as the boundary of the projec-
tion of each sphere. There are thus at most two lines tangehetfour spheres per direction. Hence there are
finitely many lines tangent to the four spheres. Now, the bloafiil2 directly follows from the non-coplanar case
(Proposition 5.3) by continuity. O

5.5 Collinear centers

We conclude in this section the proof of Theorem 5.1. We feslgish the following lemma.

Lemma 5.10. The common tangents to three distinct spheres with collineaters and no common intersection
are, if any, the ruling(s) of a single quadric of revolutiorittvsymmetry axis the line through all centers. This
guadric can be a cone, a cylinder or a hyperboloid of one sheet

Proof. Suppose that three distinct spheres with collinear ceaigmst a common tangent. Such a tangent is not
orthogonal to the axis of the three spheres since they haeemmon intersection. Furthermore, such a tangent
remains tangent after a rotation about this axis. Thus th&on tangents to the three spheres are the rulings of
a collectionQ of quadrics of revolution with symmetry axis the line thrbuall centers (see Figure 5.1); these
guadrics have to be cylinders, cones, or hyperboloids ofshieet. Assume for a contradiction tatonsists of
more than one quadric.

We take the line through the centers to beyaxis in somex, y)-plane. This plane intersects the quadrics of
Q into a collectionC of conics symmetric with respect to tlgeaxis which have equations of the following form :

X +AY+By+C=0, A<0, B?’—4AC<O0. (5.22)

The(x,y)-plane also intersects the three spheres into three cimldscenterg0,a;) and radiir;, i = 1,...,3, that
are tangent to the conics 6f Since these conics and circles are symmetric with respeahet/-axis, two of them
are tangent if and only if they intersect in exactly two psintith samey-coordinate. Thus a conic (5.22) and a
circle of center(0,a;) and radiug; are tangent if and only if

(0 +AY +By+C) — (¥ + (y—ai)®—rf) =0
has a double solution iy i.e. the discriminant vanishes :
& = (B+20i)>—4(A—1)(C+r2—a?) =0. (5.23)

For the three circles, this gives a system of three equatiotize three indeterminatg#\, B,C). This system is
linear inC (with a non-zero coefficient sind® < 0) and thus has more than one solution only if the linear syste
in (A,B)

S —8=((02—a2)—(r?—r3))A+ (a1 —a2)B+r2—r3=0

8 — 8= ((of —af) — (r{—r§))A+ (a1 —0az)B+ri—r§=0

does, that is only if the determinant of the coefficienté\@ndB, and the determinant of the constant coefficients
and the coefficients d both vanish. The sum of these determinants also vanisheis andal to

az —a3 o1 —az

= (01 —ay) (a1 — 03) (02 — O3).
o —a? 01— O (ap—02) (ag—az) (a2 —as)

Hence at least two centers are equal which implies that dmersjis strictly contained in another. The three spheres
thus have no common tangent, a contradiction. O O
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Remark 5.11. Actually solving the syste(®.23) i = 1,2,3, yields, in terms of radii and oriented distances bet-
ween centersifd= o —q; :

1
A= 5 (ridas+r5ds+r3dh),

-1
B> —4AC= GyadardisD (r1doz+radz1+radio) (r1daz+rodzs —radio)

(r1daz—radg+radiz) (—r1daz+radag+radiz),
where D= dy3d3;dio+ I’% do3z+ l’% d31+ I’% dio.

We can now prove Theorem 5.1.

Proof of Theorem 5.1. Consider four distinct spheres with infinitely many real coom tangents. By Proposi-
tions 5.3 and 5.4, the centers of at least three of the sphesesigned.

If these three spheres intersect in a circle, their commpgetats are the tangents to that circle in its plane.
To be tangent to infinitely many of these lines, the fourthesphhas to contain that circle (and, if that circle is
degenerate to a point, the four spheres must have the sagentgiane at this point). Thus all four spheres have
aligned centers.

If the three spheres with aligned centers do not have a connmtensection, then by Lemma 5.10 their common
tangents are the rulings of a single quadric having thes agiaxis of revolution. To be tangent to infinitely many
lines contained in this quadric, the fourth sphere must ligveenter on the axis of the quadric (and adequate
radius as determined below), hence the four spheres hayedlcenters.

Conversely, four spheres with aligned centers and at legstommon tangent have infinitely many common
tangents, by symmetry of revolution. This concludes thepod Theorem 5.1 and provides the finer geometric
characterization stated in Section 5.1. O

As shown above, four spheres with collinear centers and mavamn intersection admit infinitely many real
common tangents if and only if there exists a conic (5.22) sehcoefficientd B,C satisfy Equation (5.23) for
alli=1,...,4. These four equations admit a solution if and only if thatieh obtained by eliminating, B,C is
satisfied. One can put the result in the permutation invaf@m in terms of the oriented distanceg = aj —
and the radiry :

(5.24)
Z Hl;ékdkl
In order to obtain infinitely manyeal common tangents, the coefficied, C must also satisfy the semi-algebraic
conditions

A<0, B?>—4AC<0 (5.25)

noted in (5.22)A andB? — 4AC can be obtained in terms of tilg andry by solving the system of equations, as
illustrated after Lemma 7.

The case of four spheres intersecting in a common circlergyetat in a common point is a limit case of the
situation above, and thereby subject to the same algebrdisemi-algebraic conditions.

Remark 5.12. When a configuration of four spheres is given in terms of theeS&n coordinates of the four
centers ¢= (X, Vi,z) and the correspondlng radii rexpressmg the colllnearlty of the centers involves gatidr

equations in their coordinates, and, in wewaﬁf Xk 2 §Jk 5: —2 Z andqe —%)2+(y; —Yi)?+(z —

z)?, testing Condition$5.24)and (5.25)amounts to evaluating polynomials of degree at most fiveaiiCrtesian
coordinates and radii.

5.6 Conclusion

This paper answers a question left open for several yearhdmacterizing the sets of four spheres of various
radii with infinitely many common tangent lines. This contpkethe description of degeneracies for common
tangents to spheres &P,
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Some of our results generalize to the case of quadric swfat@ companion paper [BGLPO03] we characte-
rize the families of quadrics if*3(C) whose common tangents sweep another quadric surface. 3tié oéthe
present paper appears as a particular case obtained byleongireal tangents taeal spheres. Extending our
characterization to quadruples of quadrics with infinitelgny real common tangents remains an open problem.

Results of the kind proved in this paper have applicatioribérfield of 3D visibility. Given a 3D scene, com-
binatorial changes appearing in the view of a moving obgeseeur when traversing special surfaces known as
visual event surfacessuch surfaces are swept by lines having prescribed cowititthe objects of the scene.
Various data structures based on visual events, like thlsilitis complex or the visibility skeleton [Dur00], have
been proposed to speed up visibility computations. Thentedsional elements of these structures appear as dis-
crete lines tangent to four objects. Failing to recognizt thur objects admit infinitely many tangent lines leads
to errors in the computations of these types of data strestifience, recognizing configurations of four objects
with infinitely many tangent lines is crucial to the robusts®f visibility computations. Our theorem settles the
case of four spherical objectsR?.






Chapitre 6

Transversals to line segments in
three-dimensional space

Cet article a été publié damiscrete Computational GeometfEL " 05].
Abstract

We completely describe the structure of the connected caee of transversals to a collection
of nline segments ifR3. Generically, the set of transversal to four segments sbo$izero or two
lines. We catalog the non-generic cases and showntbaB arbitrary line segments iR® admit at
mostn connected components of line transversals, and that thisdoan be achieved in certain
configurations when the segments are coplanar, or theyeadinlia hyperboloid of one sheet. This
implies a tight upper bound of on the number of geometric permutations of line segmenksin

6.1 Introduction

A k-transversal to a family of convex sets Rf is an affine subspace of dimensikr(e.g. a point, line,
plane, or hyperplane) that intersects every member of tindyfaGoodman, Pollack, and Wenger [GPW93a] and
Wenger [Wen98] provide two extensive surveys of the richjettof geometric transversal theory. In this paper,
we are interested in 1-transversals (also called linewesals, or simply transversals) to line segment®3rthis
guestion was studied in the 1980’s by Edelsbrunner et al HEB2] : they proved that the set of transversalsito
line segments has total description complexdn) and can be computed @(nlogn) time ; moreover, it follows
from their work that the set of transversals consists of upd¢onnected components (see Section 6.3.3). Here we
study the subject iiR3.

We address the following basic question : What is the caritjnahd geometry of the set of transversals to
an arbitrary collection of line segments ifiR3? Here a segment may be open, semi-open, or closed, and it may
degenerate to a point; segments may intersect or even pv8&itace a line irR® has four degrees of freedom, it
can intersect at most four lines or line segments in genaitipn. Conversely, it is well-known that four lines
or line segments in generic position admit zero or two trarsals ; moreover, four arbitrary lines R® admit
zero, one, two, or infinitely many transversals [HCV52, p4[L& contrast, our work shows that four arbitrary line
segmentadmit up to four or infinitely many transversals.

Our interest in line transversals to segment®&is motivated by visibility problems. In computer graphics
and robotics, scenes are often represented as unions otoessarily disjoint polygonal or polyhedral objects.
The objects that can be seen in a particular direction fronoaimg viewpoint may change when the line of sight
becomes tangent to one or more objects in the scene. Siniedtwd sight then becomes a transversal to a subset
of the edges of the polygons and polyhedra representingctirees questions about transversals to segments arise
very naturally in this context.

67
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As an example, the visibility complex [DDP02, PV96b] andvitsibility skeleton [DDP97] are data structures
that encode visibility information of a scene; an edge obéhstructures corresponds to a set of segments lying
in line transversals to soneedges of the scene. GenericallyRd, k is equal to three. In degenerate configura-
tions, howeverk can be arbitrarily large. Such degenerate configurationsadiae, for instance in architectural
scenes, which frequently contain many coplanar edgesthus essential for computing these data structures to
characterize and compute the transversals gegments irR3. Also, to bound the size of the visibility complex
one needs to bound the number of connected components s¥éraals tk arbitrary line segments. The present
paper establishes the actual bound.

As mentioned above, in the context of 3D visibility, linesgent to objects are more relevant than transversals ;
lines tangent to a polygon or polyhedron along an edge hajgplea transversals to this edge. (For bounds on the
space of transversals to convex polyhedr®&frsee [PS92].) The literature related to lines tangent toatbjialls
into two categories. The one closest to our work deals wittratterizing the degenerate configurations of curved
objects with respect to tangent lines. MacDonald, Pach,Tdrebbald [MPTO01] give a complete description of
the set of lines tangent to four unit ballsik?. Megyesi, Sottile, and Theobald [MST03] describe the sédines
meeting two lines and tangent to two sphereBfor tangent to two quadrics iF®. Megyesi and Sottile [MS05]
describe the set of lines meeting one line and tangent to htliree spheres iR3. A nice survey of these results
can be found in [The97]. Very recently, in an as yet unpulklisihhanuscript, Borcea, Goaoc, Lazard, and Petitjean
completed this study by characterizing the set of lineseantp four sheres iR

The other category of results deals with lines tangerk &mongn objects inR3. For polyhedral objects,
de Berg, Everett, and Guibas [dBEG98] showed(a®) lower bound on the number of free (i.e., non-occluded
by the interior of any object) lines tangent to four amandisjoint homothetic convex polyhedra. Bréonnimann
et al. [BDD"02] showed that, under a certain general position assumpti@ number of lines tangent to four
amongk bounded disjoint convex polyhedra of total complexitys O(nk?). For curved objects, Devillers et
al. [DDE*03] presented a simpl@(n?) lower bound on the number of free maximal segments tangefuiLio
amongn unit balls, and give a bound 61(n®) (due to Devillers and Ramos) fararbitrarily sized balls. Agarwal,
Aronov, and Sharir [AAS99] showed an upper boun@¢i*+¢) on the complexity of the space of line transversals
to n balls; recently, with Koltun, they showed that the same ufgmeind holds for the complexity of the set of
lines that do not interseat balls [AAKS05]. Durand et al. [DDP02] showed an upper bouh®n®3) on the
expected number of possibly occluded lines tangent to foworg n uniformly distributed unit balls. Under the
same model, Devillers et al. [DDB3] recently showed a bound 6fn) on the expected number of maximal free
line segments tangent to four amomgalls.

A topic closely related to line transversals is that of getrimgermutations. Ageometric permutatiomf

pairwise disjoint convex objects iR is an ordering of the objects (or its reverse) such that tectbare met in
that order by a line transversal. Worst-case bounds forrgénenvex objects are known n2- 2 is tight in two
dimensions [ES90], while in any dimension the best knowmidstareQ (n?-1) [KLL92] and O(n%~2) [Wen90].
The gap was closed for spheres by Smorodinsky et al. [SMS$@), showed thah spheres ifRY admit up to
e(nd‘l) geometric permutations, and the same bound was also shoeiotr “fat” objects [KV01]. Recently,
Cheong et al. [CGN05] improved the known bounds for congrietis, by showing than balls inRY of same
radius admit at most two geometric permutations 3 9, and at most three otherwise.

6.2 Our results

We say that two transversals to a collection of line segmargsin the sameonnected componeiftand
only if one of the transversals can be continuously movedl ihé other while remaining a transversalRA to
the collection of line segments. (For the sets of line transals considered here, the notions of connected and
path-connected components are equivalent since all sstseami-algebraic.) Equivalently, the two points in line
space (e.g., in Plucker space [PWO01]) corresponding to theramsversals are in the same connected component
of the set of points corresponding to all the transversalsito the collection of line segments.

Our main result is the following theorem.

Theorem 6.1. A collection of n> 3 arbitrary line segments iiR® admits any number from 0 to n of connected
components of line transversals. More precisely, the skheftransversals consists of at most two isolated lines
unless the segments lie in one of the following three corsigurs :
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1. the n segments are all contained in lines of one ruling pa(hyperbolic paraboloid or (b) a hyperboloid
of one sheet, or

2. they are all concurrent, or

3. they all lie in a plane, with the possible exception of augr@f one or more segments that all meet that
plane at the same point.

In cases 1(a) and 2, the transversals form at most one coedecmponent. In cases 1(b) and 3, the transversals
can have any number from 0 to n of connected components. Maréo case 3, if all segments are not coplanar,
this number is at mosta 1.

In cases 1-3, each connected component can consist ofehfiniiany lines or reduce to an isolated line.
For example, three segments forming a triangle and a foegment intersecting the interior of the triangle in one
point have exactly three transversals (Figure 6.2b shoivsilsexample with infinitely many transversals). Also,
the four segments in Figure 6.1 can be shortened so thattihedonected components of transversals reduce to
four isolated transversals.

A simple consequence of our theorem is the following bounthemnumber of geometric permutationsrof
segments ifR3.

Corollary 6.2. A set of n> 3 pairwise disjoint segments iR® admits up to n geometric permutations and this
bound is tight.

Proof. By the theorem abova) segments ifR3 admit up ton connected components of line transversals. Wi-
thin a connected component, the lines transversals mussett the segments in the same order. Otherwise by
continuity there would exist a line in that component wheve bbjects would intersect somewhere on that line, a
contradiction. Hence the upper bound. The lower bound iggardoy the configuration of Figure 6.1 generalized
to n segments : tha geometric permutations are all the permutations of the form+1,...,n.1,...,i —1) for
1<i<n O

Finally, as discussed in the conclusion,@fmlogn)-time algorithm for computing the transversalstseg-
ments follows directly from the proof of Theorem 6.1.

6.3 Proof of Theorem 6.1

Every non-degenerate line segment is contained suipgporting line We define the supporting line of a point
to be the vertical line through that point. We prove Theorefint® considering the following three cases which
cover all possibilities but are not exclusive.

1. Three supporting lines are pairwise skew.
2. Two supporting lines are coplanar.
3. All the segments are coplanar.

We can assume in what follows thidte supporting lines are pairwise distindhdeed, if disjoint segments
have the same supporting lidethen/ is the only transversal to those segments, and so the setnsivirsals is
either empty or consists dfand the theorem is satisfied. If some non-disjoint segmeaus the same supporting
line, then any transversal must meet the intersection adéenents. In that case, we can replace these overlapping
segments by their common intersection and the theorem &sitinaller collection will imply the result for the
original collection.

6.3.1 Three supporting lines are pairwise skew

Three pairwise skew lines lie on a unique doubly-ruled hgpkrid, namely, a hyperbolic paraboloid or a
hyperboloid of one sheet (see the discussion in [PW01, 88thErmore, they are members of one ruling, say
the “first” ruling, and their transversals are the lines ia thecond” ruling that are not parallel to any of the three
given skew lines.



70 CHAPITRE 6. TRANSVERSALS TO LINE SEGMENTS

Fic. 6.1 —Two views of a hyperboloid of one sheet containing four liegraents and their four connected
components of transversals (corresponding to the shadexhs}. The four segments are symmetric under rotation
about the axis of the hyperboloid.

Consider first the case where there exists a fourth segmergensupporting liné does not lie in the first
ruling. Either/ is not contained in the hyperboloid or it lies in the secorithgu In both cases, there are at most
two transversals to the four supporting lines, which aredinf the second ruling that meet or coincide with
£ [HCV52, p. 164]. Thus there are at most two transversalse¢o tme segments.

Now suppose that all the > 3 supporting lines of the segmergslie in the first ruling of a hyperbolic
paraboloid. The lines in the second ruling can be paranzegtiby their intersection points with any linef the
first ruling. Thus the set of lines in the second ruling thattr@segmens; corresponds to an interval on lime
Hence the set of transversals to theegments corresponds to the intersection witervals onr, that is, to one
interval on this line, and so the transversals form one col@gecomponent.

Consider finally the case where the= 3 supporting lines lie in the first ruling of a hyperboloid afeosheet
(see Figure 6.1). The lines in the second ruling can be paesined by points on a circle, for instance, by their
intersection points with a circle lying on the hyperbolofiboe sheet. Thus the set of transversals totbegments
corresponds to the intersectionmfntervals on this circle. This intersection can have any beinof connected
components from zero up t@ and any of these connected components may consist of atedgboint on the
circle. The set of transversals can thus have any numbermofezted components from zero uprtoand any of
these connected components may consist of an isolated#raat Figure 6.1 shows two views of a configuration
with n= 4 line segments having four connected components of treselge

6.3.2 Two supporting lines are coplanar

Let /1 and/> be two (distinct) coplanar supporting lines in a platheFirst consider the case wheflgand/,
are parallel. Then the transversals to theegments all lie iH. If some segment does not intersetcthen there
are no transversals ; otherwise, we can replace each segsnistintersection witlH to obtain a set of coplanar
segments, a configuration treated in Section 6.3.3.

Now suppose that and/; intersect at poinp. Consider all the supporting lines notth If no such line exists
then all segments are coplanar; see Section 6.3.3. If sueb éxist and any one of them is paralleHdhen all
transversals to thesegments lie in the plane containipgnd that line. We can again replace each segment by its
intersection with that plane to obtain a set of coplanar ggs) a configuration treated in Section 6.3.3.

We can now assume that there exists a supporting line nbt iSBuppose that all the supporting lines not
in H go throughp. If all the segments lying in these supporting lines confaithen we may replace all these
segments by the poiqtwithout changing the set of transversals toteegments. Then all resulting segments are
coplanar, a configuration treated in Section 6.3.3. Nownissegmens does not contaip then the only possible
transversal to tha segments is the line containisgnd p.

We can now assume that there exists a supportingfigersectingd in exactly one poing distinct fromp
(see Figure 6.2(a)). L&t be the plane containing and/s. Any transversal to the lineg, ¢», and/3 lies inK and
goes througlp, or lies inH and goes througb.

If there exists a segmestthat lies neither irH nor in K and goes through neith@rnor g, then there are at
most two transversals to tmesegments, namely, at most one linekirthroughp ands and at most one line iAl
throughq ands.
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Fic. 6.2 —(a) Lines¢; and/s intersect at poinp, and linels intersects planél in a pointq distinct fromp. (b)
Four segments having three connected components of traatse

We can thus assume that all segments lieliar K or go throughp or g. If there exists a segmenthat goes
through neithemp nor q, it lies in H or K. If it lies in H then all the transversals to tinesegments lie iH (see
Figure 6.2(b)). Indeed, no line K throughp intersects except possibly the linpg which also lies irH. We can
again replace each segment by its intersection Witb obtain a set of coplanar segments ; see Section 6.3.3. The
case wheralies inK is similar.

We can now assume that all segments go thropgin g (or both). Letn, be the number of segments not
containingp, andng be the number of segments not containipdlote thatny 4 ng < n.

Among the lines irH throughg, the transversals to thresegments are the transversals torthsegments not
containingg. We can replace thesg segments by their intersections wiihto obtain a set ofi; coplanar segments
in H. The transversals to these segmentd ithroughg can form up tayg connected components. Indeed, the lines
in H throughg can be parameterized by a point on a circle, for instancehéy polar angle irR/TZ. Thus the
set of lines inH throughq and through a segment 4 corresponds to an interval &/7Z. Hence the set of
transversals to theq segments corresponds to the intersectionghtervals inR /TZ which can have up tog
connected components.

Similarly, the lines inK throughp that are transversals to tinesegments can form up tg, connected com-
ponents. Note furthermore that the lipgis a transversal to all segments and that the connected cmnpof
transversals that contains the lipe is counted twice. Hence there are at mogt-ng— 1 < n— 1 connected
components of transversals to theegments.

To see that the bound of— 1 connected components is reached, first considé| lines inH throughp, but
not throughg. Their transversals througiare all the lines irH throughq, except for the lines that are parallel
to any of the|n/2| given lines. This gives$n/2| connected components. Shrinking hg'2] lines to sufficiently
long segments still given/2] connected components of transversalllithroughg. The same construction with
[n/2] line segments in plan€ gives[n/2] connected components of transversalk ithroughp. This givesn— 1
connected components of transversals tortlsegments since the component containing the figés counted
twice. Figure 6.3(a) shows an example of four segments bahiree connected components of transversals.

6.3.3 All the segments are coplanar

LetH be the plane containing all thresegments. There exists a transversal nét ihand only if all segments
are concurrent at a poit In this case, the transversals consist of the lines thrgughether with the transversals
lying in H. To see that they form only one connected component, ndiateany transversal inl can be trans-
lated top while remaining a transversal throughout the translatia.thus can assume in the following that all
transversals lie itd, and we consider the problemR?.

We consider the usual geometric transform (see e.g. [E82P where a line ifR? with equationy = ax+b
is mapped to the poir(l, b) in the dual space. The transversals to a segment are travesfdp a double wedge ;
the double wedge degenerates to a line when the segment istaTite apex of the double wedge is the dual of
the line containing the segment.
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(a) (b)

Fic. 6.3 —(a) Four segments having three connected components siéamals. (b) Four coplanar segments
having four connected components of transversals.

Atransversal to tha segments is represented in the dual by a point in the intibvseaf all the double wedges.
There are at most+ 1 connected components of such points [EN8R] (see also [Ede87a, Lemma 15.3]). Indeed,
each double wedge consists of two wedges separated by timal/éne through the apex. The intersection of all
the double wedges thus consists of at mmstl convex regions whose interiors are separated by at mastical
lines.

Notice that if there are exactly+ 1 convex regions then two of these regions are connectefirityrby the
dual of some vertical line, in which case the segments hawatical transversal. Thus the number of connected
components of transversals is at most

To see that this bound is sharp consider the configuratiomgur& 6.3(b) of four segments having four com-
ponents of transversals. Three of the components consisblated lines and one consists of a connected set of
lines throughp (shaded in the figure). Observe that the line segrabmheets the three isolated lines. Thus the
set of transversals to the four initial segments and segateobnsists of the three previously mentioned isolated
transversals, the linpb which is isolated, and a connected set of lines thropghhis may be repeated for any
number of additional segments, giving configurationa ocbplanar line segments withconnected components of
transversals.

6.4 Algorithmic considerations and conclusion

While algorithmic issues have not been the main concern gbdiper, we note that the proof of Theorem 6.1
leads to arD(nlogn)-time algorithm in the real RAM model of computation. Firetuce inO(nlogn) time the
set of segments to the case of pairwise distinct supportiregs.| Choose any three of these lines. Either they
are pairwise skew or two of them are coplanar. If they arewis@ skew (see Section 6.3.1), their transversals,
and hence the transversals to mbegments, lie in one ruling of a hyperboloid. Any segment ithi@rsects the
hyperboloid in at most two points admits at most two transaisrthat lie in that ruling. Checking whether these
lines are transversals to tikesegments can be done in linear time. Consider now the cassegraent that lies
on the hyperboloid. Its set of transversals, lying in théngilcan be parameterized in constant time by an interval
on a line or a circle depending on the type of the hyperbolBmmputing the transversals to thesegments thus
reduces in linear time to intersectimgintervals on a line or on a circle, which can be doneimlogn) time.
If two supporting lines are coplanar (see Section 6.3.2ymting the transversals to tinesegments reduces in
linear time to computing transversals to at mesegments in one or two planes, which can be dor@(imogn)
time [EMP"82].

Finally, note that we did not consider in this paper, for dioity, segments that can extend to lines or half-
lines inR3 although our theorem holds in those situations as well. kKamgle, inR3, the transversals o > 3
lines of one ruling of a hyperboloid of one sheet are all thediof the other ruling with the exception of the lines
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parallel to then given lines. Thus, ifR3, the transversals form connected components. Notice however that our
theorem does not hold for lines in projective sp&@e in this case, our proof directly yields that, if a set of bne
admit infinitely many transversals, they form one connectedponent.
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Chapitre 7

Lines tangent to four triangles In
three-dimensional space

Cet article a été accepté pour publication dBrscrete Computational GeometiigDLS07].
Abstract

We investigate the lines tangent to four triangle®fh By a construction, there can be as many as
62 tangents. We show that there are at most 162 connectecoemis of tangents, and at most 156
if the triangles are disjoint. In addition, if the trianglase in (algebraic) general position, then the
number of tangents is finite and it is always even.

7.1 Introduction

Motivated by visibility problems, we investigate lines ¢gmt to four triangles ifR3. In computer graphics
and robotics, scenes are often represented as unions otoessarily disjoint polygonal or polyhedral objects.
The objects that can be seen in a particular direction frono@img viewpoint may change when the line of sight
becomes tangent to one or more objects in the scene. Sisd@hdf sight is tangent to a subset of the edges of
the polygons and polyhedra representing the scene, wesirdeal to questions about lines tangent to segments
and to polygons. Four polygons will typically have finitelyany common tangents, while five or more will have
none and three or fewer will have either none or infinitely gnan

This paper follows a series of papers by the authors and dodletborators investigating such questions.
The paper [BDD 07] investigated the lines of sight tangent to four convelylpedra in a scene df convex
but not necessarily disjoint polyhedral objects, and pdotreat there could be up to but no more tHamM?k?)
connected components of such lines. The same bound for tis&devably easier case of disjoint convex polyhedra
in algebraic general position was proved earlier [EGHHZIDD"02]. The paper [BELL05] offers a detailed
study of transversals toline segments ifR® and proved that although there are at most two such trarssdos
four segments in (algebraic) general position, there aractn such connected components of transversals in
any case. Dealing with curved objectsRA, the paper [BGLP06] studies the tangent lines to four ahjtspheres
and [DDE"03] shows that there is a linear expected number of maximalavzluded line segments tangent to
four amongn uniformly distributed unit balls.

Halperin and Sharir [HS94], and Pellegrini [Pel94], provkdt, in a polyhedral terrain, the set of free lines
with n edges has near-cubic complexity. De Berg, Everett and G(BEG98] showed &(n?) lower bound on
the complexity of the set of free lines (and thus free segs)arongn disjoint homothetic convex polyhedra.
Recently, Agarwal et al. [AAKSO05] proved that the set of ftiees amongn unit balls has complexitp(n*#).

For related books and surveys, see [Ede87b, GPW93b, PW018]Ven9

In this paper, we consider the case of four trianglé&inand establish lower and upper bounds on the number

of tangent lines.

75
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FiG. 7.1 —The linests, /> and/3 span a hyperbolic parabolo@which meets liné, in two points. The two lines
A1 andA, are the transversals to the lin@st», /3, and/,.

A triangle in R3 is the convex hull of three distinct (and non-collinear)rsiin R3. A line is tangentto
a triangle if it meets an edge of the triangle. Note that a targent to each of four triangles forming a scene
corresponds to an unoccluded line of sight in that scendnelfet arek > 4 triangles, then the boun@(k*) of
[BDD*07] stands (as the total number of edges-is3k and one of the lower bound examples is made of triangles).
We thus investigate the case of four triangles. h@f,ty,t3,t4) be number of lines tangent to four triangtests,
t3, andts in R3. This number may be infinite if the lines supporting the edufehe different triangles are not in
general position.

Ouir first step is to consider the algebraic relaxation of gleismetric problem in which we replace each edge
of a triangle by the line irCP® supporting it, and then ask for the set of linesd&® which meet one supporting
line from each triangle. Since there are=381 such quadruples of supporting lines, this is the disjonaf 81
instances of the classical problem of transversals to fivengines inCPP3. As there are two such transversals to
four given lines in general position, we expect that thisshhgic relaxation has 162 solutions. We say that four
trianglesty, to,t3,t4 are in (algebraicheneral positionf each of the 81 quadruples of supporting lines have two
transversals irfCP3 and all 162 transversals are distinct. [®be the configuration space of all quadruples of
triangles inR3 andT c T consist of those quadruples which are in general positibnsTf (t1,to,t3,t4) € T, the
numbem(ts, tz,t3,ta) is finite and is at most 162.

Our primary interest is the number

N = max{n(ty,to,t3,ta) | (t1,t2,t3,t2) € T}.
Our results about this numbbBlrare two-fold. First, we show th&t > 62.
Theorem 7.1. There are four disjoint triangles in T with2 common tangent lines.

The idea is to perturb a configuration of four lineskiA with two real transversals, such as in Figure 7.1. The
triangles in our construction are very ‘thin'—the smallesgl® among them measures about #0degrees. We
ran a computer search for ‘fatter’ triangles having many iwmm tangents, checking the number of tangents to 5
million different quadruples of triangles. It appears treatdom quadruples of realistic triangles often have a fair
number of common tangents. Several had as many as 40 commgenta, and quadruples that admit common
tangents have 16 tangents or more with probability at I€5. Trhis is discussed in Section 7.5.

We can improve the upper bound binwhen the triangles are disjoint.

Theorem 7.2. Four triangles in T admit at mosgit62 distinct common tangent lines. This number is at mM&&tif
the triangles are disjoint.

We believe, however, that the upper bounds we give here afeofa optimal. When the four triangles are
not in general position, the number of tangent lines can fikiti@. In this case, we may group these tangents by
connected components : two line tangents are in the samear@mnpif one may move continuously between the
two lines while staying tangent to the four triangles. Eaohdruple of edges may induce up to four components
of tangent lines [BELL05], giving a trivial upper bound of 324. This may be improved
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FiG. 7.2 —Configuration in planey.

Theorem 7.3. Four triangles have at most62 connected components of common tangents. If the triangdes a
disjoint, then this number is at mak56.

We have one more result which we do not prove in this papeiishurbved in the companion research report
[BDLSO05] and is relevant to mention here.

Theorem 7.4. If (t1,t2,t3,t4) € T, then rfty, to, t3,t4) is even.

This result may not seem surprising as complex roots comerijugate pairs. However, this usual argument
does not apply because we seek tangents to triangles andumsiérsals to lines. Frequently, only one of two real
transversals to a quadruple of supporting lines is tangettitet triangles. The main new idea behind Theorem 7.4
is that such tangent lines essentially come in pairs.

In our proof of Theorem 7.4, we consider famovingtriangles, and show that common tangents are created
and destroyed in pairs, and so the parityn(tf,t»,t3,t4) does not change. There are two cases to consider. The
first is when two real tangents which are transversal to theedaur edges coalesce and become a pair of complex
conjugate transversals ; this is the ‘usual’ argument. Huoisd case is when a real transversal to edgesy,
€3, andeq moves off ofeg and is thus no longer tangent to the four triangles. In domgtsmust pass through a
vertexv of 4. In this case, there is a real transversal to edgges,, e3, and somether edgee, meetingv which
simultaneously moves off @f,, also passing through the vertexTheorem 7.4 follows as there are triangleJin
with no common tangents. We give a complete proof in the rebaaport version [BDLS05].

Theorems 7.1, 7.2, and 7.3 are proved in Sections 7.2, 7d37 &n respectively. Section 7.5 discusses our
search for ‘fat’ triangles with many common tangents.

7.2 A construction with 62 tangents

Consider the four triangles whose vertices are given inéfatl.

~105,1,—105)
5628568345479573470378601.5628568345479573470378601
.562856834547268746056207(#9999999999822994290647 2456285683454 726874605620706

~105,-1,105)
1.394218989475-1, —1.394218989475

(
11 (
(
(
(
(1.39424069118114399545971611.00002378846948812754392711.39424069118114399545971)61
(
(
(
(
(
(

t2

~9.5,-9.5,.25)
.685825.685825.25)

t3
.691217306160636473035191389121730616063647303519138069756890079842876805653

9.5,0,0)
~.511,0,0)

ta
—1.0873912730501133759642986.51645811088049333541289347

TAB. 7.1 —Four triangles with 62 common tangents.
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Fic. 7.3 —Conics in the planes,.

Theorem 7.1. There are exactl$2 lines tangent to the four triangles of Tallel.

This can be verified by a direct computation. Software is jole on this paper’s web pageMore illumina-
ting perhaps is our construction. The idea is to perturb digoration of four lines inR® with two transversals
such as in Figure 7.1. The resulting triangles of Theorerhafelvery thin. In degrees, their smallest angles are

t1: 6.482x 10712 t: 8.103x 1075, t,: 4.253x 1072, and ts: 2.793.

The construction. The lines given parametrically by
El : (tal7t)7 62 : (t7_1a_t)? 63 : (tvta%)v and 64 : (tvoao)a

have two transversabs; @ (3,2t,t) andA, : (—3,2t,—t).

Foreach = 1,2 3 4, letQ; be the hyperboloid spanned by the lines other thafor exampleQs has equation
z=xy. The intersection o; with a plane containing; will be a conic which meet§ in two points (corresponding
to the common transversals andA, att = i%). We choose the plarm so that these two points lie in the same
connected component of the conic. Here is one possible €hoic

T: X=2, Th: X=-2, Ta: X=Yy, and m: y=0.

For each, letC; be the coniat N Q;, shown in the plang; in Figure 7.3. Here, the horizontal coordinate,is
the parameter of the ling, while the vertical coordinate is—1 for 1y, y+1 for 1, z—zl1 for 13, andz for 1.

For eachi =1,...,4, rotate line/; in planets very slightly about a point that is far from the colig obtaining
a new linek; in 15 which also meet€; in two points. Consider now the transversalgto k;, fori =1,...,4.
Becausd; is close tof; and there were two transversaldio/,, /3, {4, there will be two transversals to each of the
16 quadruples of lines obtained by choosing oné o k; for i = 1,...,4. By our choice of the point of rotation,
all of these will meet; andk; in one of the two thin wedges they form. In this wedge, formangle by adding a
third side so that the edges énandk; contain all the points where the transversals meet the.lifies resulting
triangles will then have at least 32 common tangents. Wendllaat by carefully choosing the third side (and tuning
the rotations) we are able to get 30 additional tangents.

To begin, look at Figure 7.4 which displays the configurationy given by the four triangles from Table 7.1.
Since the lined; andk; for i = 1,2 are extremely close, the four conics given by transversatiem and to
{3 cannot be resolved in these pictures. The same is true foiotlreconics given byks, so that each of the
apparent two conics are clusters of four nearby conics. Tdtarp on the left is a view of this configuration in the
coordinates fory of Figure 7.3. It includes a secant ling to the conics. We choose coordinates on the right so
thatmy is vertical, but do not change the coordinateggrThe horizontal scale has been accentuated to separate
the two clusters of conics. The three linég,ks, andmy form the triangld,. Let its respective edges bg, f4, and
04. Each edge meets each of the eight conics in two points asd #&points of intersection give 48 lines tangent
to the four triangles.

This last assertion that the 16 lines transversap@nd to¢; Uk; for i = 1,2,3 meet the edges of the triangles
t1, tz, andtz needs justification. Consider for example the transvetedlsg ¢,, and/3. These form a ruling of the
doubly-ruled quadri€, and are parameterized by their point of intersection WithThe intersection o€, with
Ty is the conicCy. Since the intersections of the corlg with the segmenty, supported onmy lie between its

Thitp :/ww.math.tamu.edu/"sottile/stories/Atriangle slindex.html
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FiG. 7.4 —Configuration in planey.

intersections withi4 andky, the corresponding transversalstio ¢, ¢3, andgs meeté, between points of; met
by common transversals tq Uk, and /s, ¢2, and/¢3. The same argument for the other lines and for all 8 conics
justifies the assertion.

Naively, we would expect that this same construction (tlvel tide cutting all eight conics i) could work
to select each of the remaining sides of the triangg )., andg;, and that this would give four triangles having
32+ 16416+ 16+ 16 = 96 common tangents. Unfortunately this is not the case dreénlier conference version
of this paper [BDLS04], we gave a construction that we claimeuld yield 88 common tangents. Attempting
that construction using Maple revealed a flaw in the arguraadtthe current construction of four triangles with
62 common tangents is the best we can accomplish.

In Ty, the conics come in two clusters, depending upon whetheotahey correspond té; or to ks. In order
for the edgeay, to cut all conics, the angle betweénandk, has to be large, in fact significantly larger than the
angle betwee#i; andks. Thus inTi, the conics corresponding fg are quite far from the conics corresponding to
ks, and the sidgs can only be drawn to cut four of the conics, giving eight aiddial common tangents. Similarly,
g2 can only cut two conics, argi only one. In this way, we arrive at four triangles havingi3P6+8+4+2 = 62
common tangents, which has been verified by computer. O

7.3 Upper bound for disjoint triangles in general position

Four triangles in general position have at most 162 commogetats. If the triangles are disjoint, we slightly
improve this upper bound to 156. Our method will be to show tiat all 81= 3* quadruples of edges can
give rise to a common tangent. Our proof follows that for tipper bound on the number of tangents to four
polytopes [BDD 02], limiting the number of configurations for disjoint tnigles inR3. We divide the proof into
two lemmas, which do not assume general position. The ajdit of the lemmas to the proof of [BDM?2],
however, requires the general position assumption.

In order for a tangent to meet an edgéehe plane it spans with must meet one edge from each of the other
triangles. A triple of edges, one from each of the other gias, iscontributingif there is a plane containing
which meets the three edges. We say that an edggbsa trianglet if its supporting line meets the interior of

Lemma 7.5. Let e be an edge of some triangle. If e stabs exactly one otliee wiangles, then there are at most
26 contributing triples of edges. If e stabs no other trianghesn there are at mo&5 contributing triples.

It is not hard to see that & stabs at least two of the other triangles, then each of the 2¥triples of edges
can be contributing.

Proof. Suppose thais an edge of some triangle. Leta) be the pencil of planes containieg(This is paramete-
rized by the angler.) For each edgé of another trianglé, there is an interval of anglesfor which 1i(a) meetsf.
Figure 7.5 illustrates the two possible configurations li@sk intervals, which depend upon whether orawiaibs
the trianglet. The intervals are labeled 1, 2, and 3 for the three edged/dhene stabg, these intervals cover the
entire range ofx and the picture is actually wrapped. Call thistabbing diagramWhen the supporting line of
e does not meet, these intervals do not cover the entire range,0ind there are two endpoints and onerior
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Fic. 7.5 —Stabbing and non-stabbing configurations.
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Fic. 7.6 —Configurations with 26 and 25 contributing triples.

vertexof the diagram. If the supporting line efmeets an edge df then the two endpoints of the non-stabbing
diagram wrap around and coincide. Call either of these Vasttonfigurations a non-stabbing diagram.

To count contributing triples, we line up (overlay) diagafrom each of the three triangles not containing
and count how many of the 27 triplé4, 2,3}3, one from each triangle, occur at some valueofor example,
Figure 7.6 displays a configuration with 26 contributinghes (wheree stabs a single triangle) and a configuration
with 25 contributing triplesd stabs no other triangles). The configuration on the left ssing the triplg2,3,3),
while the configuration on the right is missing the trip{@s2, 3) and(3,3,2).

These configurations are the best possible. Indeed, bethirtwio non-stabbing diagrams in which all 9 pairs
of edges occur. (If only 8 pairs occurred, there would be &trid contributing triples.) The unique way to do this
up to relabeling the edges is given by the lower two diagranether picture in Figure 7.6. These two diagrams
divide the domain oft into six intervals (the two at the ends are wrapped). The faiespnvolving 1 occur in two
intervals, but four exceptional paif$2,2), (2,3), (3,2), (3,3)} occur uniquely in different intervals.

Consider now a third diagram. An exceptional pair extendfitee contributing triples only if all three sides
in the third diagram meet the interval corresponding to gt If the third diagram is stabbing, then one of its
three vertices lies in that interval—thus there is at leasttdple which does not contribute. If the third diagram is
non-stabbing, then either the middle vertex or else botlpeints must lie in that interval—thus there are at least
two triples which do not contribute. O

Lemma 7.6. At most78 quadruples of edges of four disjoint triangles can lead t@mmon tangent.

Proof. First consider the maximum number of stabbing edges betiveeiriangles. If the triangles are disjoint,
then there are at most three stabbing edges ; one triangle lcave three edges stabbing the other. Indeed, if at
least two supporting lines of a triangleneet another trianglé which is disjoint fromt, thent lies entirely on one
side of the plane supportirt§ and thus no supporting lines tbfcan meet. Figure 7.7(a) shows a configuration in
which all three supporting lines ofstabt’.

Consider now the bipartite graph between 12 nodes repiagahte edges of the four triangles and 4 nodes
representing the triangles. This graph has an arc betweedgee and a trianglé if the line supportinge stabg.

(We assume thatis not an edge df.) We just showed that the edges of one triarigtan have at most three arcs
incident on another triangké, and so this graph has at most 18 edges.

Let the weight of a triangle be the number of arcs emanatimg fits edges in this graph. As the graph has at
most 18 arcs, at least one triangle has weight less than 5rghfe ¢hat there is a triangle of weight at most 3. This
is immediate if the graph has 15 or fewer edges. On the othnet, ltlais graph has more structure. If it has 18 edges,
then all pairs of triangles are in the configuration of Figdré(a), and so every triangle has weight a multiple of
3, which implies that some triangle has weight at most 3.dfdhaph has 17 edges, then there is exactly one pair
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Fic. 7.7 —(a) Two disjoint triangles can have at most 3 stabbing ligsTwo intersecting triangles may have
up to four.

of triangles with only two stabbing edges, and so the possildights less than 5 are 0, 2, and 3. If the graph has
16 edges, then there is one pair with only one edge stabhimgpgairs with two edges stabbing. There can be at
most two triangles of weight 4, and again we conclude thattieea triangle with weight at most 3.

If a triangle has weight at most three, either all three edg@ls a unique triangle, or else one edge stabs no
triangles and another edge stabs at most one other triatvglsum the number of contributing triples over the
edges of this triangle. By Lemma 7.5, this sum will be at m&t25+26=78 if all three edges stab a unique
triangle and at most 27+26+25=78 if not. This proves the lamm O

Remark 7.7. There exist four disjoint triangles whose bipartite grapdstexactly 18 edges. Thus the previous
argument cannot be improved without additional ideas. itaaceivable that further restrictions to the bipartite
graph may exist, leading to a smaller upper bound.

Remark 7.8. This proof does not enable us to improve the bound when thiegies are not disjoint. Two inter-
secting triangles can induce up to four arcs (see Figurety))7dnd thus the total number of arcs is bounded above
by 24. The minimal weight of a triangle is then 6, and the eadesich a triangle could all have degree 2, which
leads to no restrictions.

7.4 Upper bounds on the number of components

Let F andJ be the sets of quadruples of edges, one from each of fougteésnwhose supporting lines have
finitely and infinitely, respectively, many common tran®ads. Letngy andny be the sum over all quadruples of
edges irg andJ, respectively, of the numbers of connected componentsrofitan transversals to each quadruple
of edges. Note that the number of quadruple$ and3J is |F| + |J| = 81.

Consider a connected componenbf common transversals to a quadruple of edgesJ. The arguments
of [BEL"05] show that contains a line that meets a vertex of one of the four edges [iffe is thus transversal
to another quadruplg of edges. Thus, the connected comporasftcommon transversals tpis connected with
a connected componecitof common transversals . If ¢ € F we charge the componeot ¢’ to ¢’. Otherwise
g andd' are both irfl and the componemtUc’ is counted twice. The number of connected components oétarg
to four triangles is thus at mosg + ny /2.

Since any four lines admit at most two or infinitely many trarsals,ny < 2|F]. Also, any four segments
admit at most four connected components of common trareedBEL"05], thusn; < 4|J|. Hence, the number
of connected components of tangents to four triangles isoat 87| + 2|J| = 162.

This still may overcount the number of connected componaftemngents, but further analysis is very delicate.
Such complicated arguments are not warranted as we hawdwlobtained the upper bound of 162 common
tangents to four triangles in. As in Section 7.3, if the triangles are disjoint, then ndgalkadruples of edges can
contribute, which lowers this bound to 156.

7.5 Random triangles

We proved Theorem 7.1 by exhibiting four triangles havingc6thmon tangents. We do not know if that is
the best possible. Since the geometric problem of detengpitiie tangents to four triangles is computationally
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Number 0 2 4 6 8 10 12 14

Frequency|| 1515706| 331443 | 646150| 403679| 637202 | 327159| 358312| 238913

16 18 20 22 24 26 28 30 32 | 34 | 36| 38| 40
253396 | 114046| 80199 | 44870| 27726| 12426| 5796 | 2016 | 813|111 30| 3 | 4

TAB. 7.2 —Number of triangles with a given number of tangents, out d&@00 randomly constructed triangles.

Triangle Vertices
t1 (—4,—731,-336) | (297,—507,978) | (824 —62, —359
to (531,-631,—-820) | (—24,—-716713 (807,377,177)
t3 (586,—205,952) (861,774,235 | (—450,758161)
ta (330 —141,—908) | (942 -920651) | (—226,489 968

TAB. 7.3 —Four triangles with 40 common tangents.

feasible—it is the disjunction of 81 problems with algebidégree 2 and simple inequalities on the solutions—we
investigated it experimentally.

For this, we generated 5000 000 quadruples of triangles evheices were points with integral coordinates
chosen uniformly at random from the cupe100Q 10002. For each, we computed the number of tangents. The
resulting frequencies are recorded in Table 7.2. This seewosumed over six months of CPU time on 1.2GHz
processors at the MSRI and a DEC Alpha machine at the UniyesMassachusetts in 2004. It is archived on
the web pagkaccompanying this article.

In this search, we found four different quadruples of triasgvith 40 common tangents, and none with more.
Based on thisiiid random model, we find that the probabilty that the four trlaadhave at least one tangent is
around 69.7%, and that the expected number of tangents isvaoam around 6.325, with a standard deviation of
about 12.93. The vertices of one are given in Table 7.3. Tirgmagles are rather ‘fat’, in that none have very
small angles. Contrast that to the triangles of our constmdn Section 7.3. In Figure 7.8 we compare these
two configurations of triangles. On the left is the configinmabof triangles from Table 7.3, together with their 40
common tangents, while on the right is the configuration iahgyles having 62 common tangents. The triangles
are labeled in the second diagram, as they are hard to digmérom the lines. As we remarked in Section 7.3,
many of the lines are extremely close and cannot be easiiynglisshed ; that is why one can only count eight
lines in this picture.

/ to
\‘\\\,\_\;‘ 4(‘-/1/111// t t3
S 4
g \7\ ¥
i
)%;/ g

FiG. 7.8 —Triangles with many common tangents.

Twww.math.tamu.edu/  ~sottile/stories/4triangles/index.html
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Chapitre 8

Predicates for line transversals in 3D

Cet article a été soumis@omputational Geometry : Theory and Applicatigg& L +06]. Une version courte est
parue dans les proceedings dd.&h Canadian Conference on Computational Geometry

Abstract

In this paper we study various geometric predicates forradeténg the existence of and catego-
rizing the configurations of lines in 3D that are transvetedines or segments. We compute the
degrees of standard procedures of evaluating these presliddne degrees of some of these proce-
dures are surprisingly high (up to 168), which may explairywbmputing line transversals with
finite-precision floating-point arithmetic is prone to err®ur results suggest the need to explore
alternatives to the standard methods of computing thesetitjea.

8.1 Introduction

Computing line transversals to lines or segments is an itapboperation in solving 3D visibility problems
arising in computer graphics [BD®7,DD02,DDP97,DDP02, EGHHZ00, PD90]. In this paper, welgtarious
predicates and their degrees concerning line transveshifies and segments in 3D.

A predicate is a function that returns a value from a discsetie Typically, geometric predicates answer
questions of the type “Is a point inside, outside or on thendamy of a set?”. We consider predicates that are
evaluated by boolean functions of more elementary pregc#lie latter being functions that return the sign@
or +) of a multivariate polynomial whose arguments are a sulfstitedinput parameters of the problem instance
(see, for instance [BP0O]). Bgegreeof a procedure for evaluating a predicate, we mean the mawichegree
in the input parameters among all polynomials used in th&uatian of the predicate by the procedure. In what
follows we casually refer to this measure as the degree obpttbeicate. We are interested in the degree because
it provides a measure of the number of bits required for arctesgaluation of our predicates when the input
parameters are integers or floating-point numbers ; the rumitbits required is then roughly the product of the
degree with the number of bits used in representing each ugue.

In this paper, we first study the degree of standard procedaraletermining the number of line transversals
to four lines or four segments in 3D ; recall that four linesRA admit 0, 1, 2 or an infinite number of line
transversals and that four segments admit up to 4 or an mfimimber of line transversals [BED5]. We also
consider the predicate for determining whether a minimal,(locally shortest) segment transversal to four line
segments is intersected by a triangle. These predicatebigngtous in 3D visibility problems. The latter predicate
for instance, can be used for determining whether two ttemgee each other in a scene of triangles (that is, for
determining whether there exists a segment joining the tiandles and that does not properly intersect any of the
other triangles). Finally, we study the predicate for omigplanes through two fixed points, each plane containing
a third rational point or a line transversal to four segmentses. This predicate arises in the rotating plane-sweep
algorithm that computes the minimal free segments tangeiouir amongk convex polyhedra in 3D [BDDO7].

85
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Our study shows that standard procedures for solving theskgates have high degrees. We study, in particu-
lar, procedures that involve computing the Plicker coatdis of the line transversals involved in the predicates.
Throughout the paper, the points defining input geometiioigives (which can be lines, segments, and triangles)
are, by assumption, given by their Cartesian coordinatestendegrees of the procedures for evaluating predicates
are expressed in these coordinates. We show that, for dategithe number of transversals to four lines or four
segments, such standard methods lead to procedures obd2ym 36, respectively. For determining whether a
minimal segment transversal to four line segments is iatéesl by a triangle, we show that these methods lead to
a procedure of degree 78. Also, for ordering, in a rotatiemadep about a line, two planes, each defined by a line
transversal to four lines, such methods lead to a procedutegree 144. Furthermore, in some implementations,
the Plicker coordinates of the relevant line transversals@mputed in a way that the degrees of these procedures
are even higher; for instance, the procedure for evaludtindatter predicate for ordering planes then become
of degree 168 instead of 144. These very high degrees mayekplgin why using fixed-precision floating-point
arithmetic in implementations for solving 3D visibility gislems are prone to errors when given real-world data
(see, for instance, [Gla07]).

The degrees we present are tight, that is, they correspotitetonaximum degree of the polynomials to
be evaluated, in the worst case, in the procedures we conlidbould be stressed that these degrees refer to
polynomials used in specific evaluation procedures and wema claim on the optimality of these procedures.

In the next section we describe a standard method used fquugorg the line transversals to four lines, which
is common to all our predicates. In Section 8.3 we describgtlkdicates and their degrees. Some experimental
results are presented in Section 8.4.

8.2 Computing lines through four lines

We describe here a method for computing the line transwgetedbur lines in real projective spa@&8. This
method is a variant, suggested by Devillers and Hall-HoOHHDO] and also described in Redburn [Red03], of that
by Hohmeyer and Teller [HT99] ; note that, for evaluatingdicates, the latter method is not appropriate because
it uses singular value decomposition for which we only kndwumerical methods and thus the line transversals
cannot be computed exactly, when needed.

Each line can be described using Pliicker coordinates (dex98} for example, for a review of Plucker
coordinates). If a liné in R3 is represented by a direction vectband a pointp in R® then/ can be represented
by the six-tuple(U, U x 5{)) in real projective spacB5, whereO is any arbitrarily, fixed, origin anc denote the
cross product. The side produgtof any two six-tupled = (a1, ay, 83,a4,as,85) andk = (Xg, X, X3,Xa, X5, Xg) IS
L Ok = agxg + agXo + agXs + agXq + a2Xs + asXs. The fundamental importance of the side product lies in o f
that a six-tupl&k € P5 represents a line in 3D if and onlykf> k = 0 ; this defines a quadric iP5 called the Pliicker
quadric. More generally, recall that two lines interseatial projective space®(R) if and only if the side product
of their Plicker coordinates is zero. Notice that this ireplihat there is a predicate for determining whether two
lines intersect ifP3(R) which is of degree two in the Pliicker coordinates of the liaed, if the lines are each
defined by two points, of degree three in the Cartesian coates of these points.

Oriented lines oR3, with direction vectoti and through a poinp, can be represented similarly by a six-tuple

(0,0 x (Tf)) in real oriented projective spacie(, the quotient ofR6\ {0} by the equivalence relation induced by
positive scaling). The sign (positive or negative) of thiesbperator of two oriented linédsandk then determines
on which “side” of/, k lies; for instance, ibp andoq are two lines oriented fror to p and fromo to g and/
is an arbitrarily oriented line such thétp, g, ando are not coplanar, theft © op) (¢ ® oq) < 0 if and only if ¢
intersects segmeity (see Figure 8.1(a)).

Given four lines?y, ..., ¢4, our problem here is to compute all links= (x1,%2, X3,X4,Xs5,%s) € P5 such that
ke ¢ =0, for 1< i < 4, which can be written in the following form :

X1
a a5 ag a a ag X2 0
bs bs bs by by bs xx |_| O (8.1)
C4 C Cg C C2 C3 X4 0
di ds dg di db ds X5 0
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where the rows of the # 6 matrix contain the Pliicker coordinates of the four lindsisTan be rewritten as

a a1 a a3 X3 auX1 + asX2 0
bg b1 by b bax1 + bsx 0
6 D1 D2 D3 X4 n 4X1 + D5X2 _ (8.2)
Cg C1 Cr C3 X5 C4X1 + CsX2 0
ds di dr ds X6 daxq + dsxo 0

Let 6 denote the determinant of the above 4 matrix. Assuming # 0, we can solve the system fgsg, X4, X5,
andxg in terms ofx; andxz. Applying Cramer’s rule, we get

X3 = —(01x1+PBix2)/d
Xa = —(02X1+P2x2)/d
Xs = —(03X1+B3x2)/d
Xe = —(0axy+PBax2)/d

whereq; (respectivelyB;) is the determinand with the i!" column replaced byas, bs,cs,ds)T (respectively
(as, bs, Cs, d5)T). We rewrite this system as

X1 = -—ud
X = -V
X3 = Oiu+pBgv (8.3)
X4 = 0Opu+Bv
Xs = O3u+Pav
X6 agu+Bav
with (u,v) € P1. Sincek is a line, we hav&® k = 0, which implies
X1X4 + XoXs + XgXe = 0.
Substituting in the expressions far. .. xg, we get
AP +Buv+CV =0 (8.4)
where
A = 0104— 020,
B = 0a1Bs+B104—P20—039,
C = BiPa—Bsd

Solving this degree-two equation {m,v) and replacing in (8.3), we get (assuming thag 0) that the Plicker
coordinates of the transversal lineare :

Xy = B&F&VBZ—4AC

X2 = —2A0

X3 = —Boai1+2AB1+a1v B2 —4AC

X4 = —Bay+2AB+0,vB2—-4AC (8.5)
Xs = —Baz+2AB3+aszy B2 —4AC

X¢ = —Bog+2ABs+ 04V B2 —4AC.

Lemma 8.1. Consider four lines, given by the Cartesian coordinatesadfsof points, that admit finitely many
line transversals irP3(R). If the four lines are not parallel to a common plane, the RErccoordinates of their
transversals ifP3(R) can be written asy + ¢iv/A, i = 1,...,6, where@, ¢;, andA are polynomials of degree at
most17, 6, and 22, respectively, in the coordinates of the input points. @tliee, the Plicker coordinates of the
transversals can be written as polynomials of degree at rh@sWoreover, these bounds are, in the worst case,
reached for three of the coordinates.
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Proof. The assumption that the four lines admit finitely many transals inP3(R) ensures that the 4 6 matrix

of Plicker coordinates (in (8.1)) has rank 4. Consider firstdase where the four input lines are not all parallel to
a common plane. Then, the<3 matrix of the direction vectors of the four lines has ranBgthe basis extension
theorem, this matrix can be complemented by one of the otbleinms of the matrix of Plicker coordinates
(of (8.1)) in order to get a 4 4 matrix of rank 4. We can thus assume, without loss of gegrtiat the 4x 4
matrix of (8.2) has rank 4.

Since, by assumption, the four lines admit finitely many sxamsals inP3(R), A, B, andC in (8.4) are not
all zero. We compute the degree, in the coordinates of thet ippints, of the various polynomial terms in (8.5).
For each input ling;, the first three and last three coordinates of its Pliickeresgmtation have degree 1 and 2,
respectively. Hencd, a1, andp; have degree 5 armt and3; have degree 6 fdr= 2, 3,4. Hence A, B, andC have
degree 11 and the bounds on the degrees, ¢f, andA follow. Note, in particular, that, i # 0, these bounds are
reached for = 4,5, 6.

Consider now the case where the four input lines are patalle&lcommon plane. Since the four lines admit
finitely many transversals i3(R), they are not parallel. It follows that the43 matrix of the direction vectors of
the four lines has rank 2. Two vectors, say, b;, i, d;) fori = 1,2, are thus linearly independent and, by the basis
extension theorem, the corresponding 2 matrix can be complemented by two other columns (&b, ¢, d;)
for i = 4,5) of the matrix of Plicker coordinates (of (8.1)) in ordedgfine a 4< 4 matrix of rank 4. As above, a
straightforward computation gives the Plicker coordisatethe line transversal. We get

X1 =01U, Xp=02U, X3=-Ud, Xg4=03U+P3V, Xs=04U+PsV, Xg=—VO
where(u,v) € P1(R) is solution of the equation
AW +Buv=0 where A'=aia3+004 and B =a1B3+ aoPs+ 52 (8.6)

0,01,02, B3, B4 have degree 6 amulz, a4 have degree 7 (argh = B2 = 0) thusA’ andB’ have degree 13 and 12,
respectively. Note thad' andB’ are not both zero since there are finitely many transver$hks Pliicker coordi-
nates of the transversals can thus be written as polynowiialegree at most 19 and, for one of the transversals
(the one not in the plane at infinity), this bound is reachedtfaee coordinates (namely, xs, Xg). O

Lemma 8.2. Consider four lines, given by the Cartesian coordinatesairfgof points, that admit finitely many line
transversals ifP3(R). If the four lines are not parallel to a common plane, we campate on each transversal two
points whose homogeneous coordinates have thedp#ndi /A, i = 1,. .., 4, where@, ¢i, andA are polynomials
of degree at most7, 6, and 22, respectively, in the coordinates of the input points. @tlige, we can compute
on each transversal two points whose homogeneous cooediaat polynomials of degree at ma$t Moreover,
these bounds are reached, in the worst case, for some ca@bedin

Proof. Denote byw; (resp.wy) the vector of the first (resp. last) three coordinate&ef. . ., Xs), the Plicker coor-
dinates of a lind, and letn denote any vector d&2. Then, if the four-tupléw, x n,w; - n) is not equal tq0, 0, 0, 0),

itis a point (in homogeneous coordinates) on the kifiey Lagrange’s triple product expansion formula). By censi
dering the axis unit vectors far, we get that the four-tuple®,Xs, —Xs,x1), (—Xe,0,X4,X%2), (X5, —X4,0,X3) that
are non-zero are points on the transversal llndsther five of the six Plicker coordinatesloére zero or at least
two of these four-tuples are non-zero and thus are poinkslorthe latter case, the result follows from Lemma 8.1.
In the former case, two points with coordinates 0 or 1 canyebsi computed on lin& since the line is then one
of the axis or a line at infinity defined by the directions ogboal to one of the axis. O

Remark 8.3. In some implementations (for instance, the one of [Red@B§4 x 4 submatrix of the matrix of
Plicker coordinates (se@.1)) used for computing the line transversals is chosen, byuliefas the leftmost sub-
matrix whose determinant has degree 7 in the coordinatdsedifiput points. In this case, the Pliicker coordinates
of the line transversals are written g+ ¢;v/A, i = 1,...,6, whereq, ¢;, andA are polynomials of degree at most
20, 7, and 26, respectively, in the coordinates of the input points (drese bounds are reached). Similarly for the
homogeneous coordinates of two points on the transversals.
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8.3 Predicates

8.3.1 Preliminaries

We start by two straightforward lemmas on the degree of pegds for determining the sign of simple alge-
braic numbers. Ik is a polynomial expression in some variables, we denote bgyxji¢he degree ok in these
variables. This first lemma is trivial and its proof is omitte

Lemma 8.4. If a,b, and c are polynomial expressions of (input) rational nemnsbthe sign of & b,/c can be
determined by a predicate of degneeu{2deda),2dedb) +degc)}.

Lemma 8.5. If a;, Bi, 8, 1, i= 1,2, are polynomial expressions of (input) rational numbers,gign ofx; + B1 v+
(a2 +B2Vd) /I can be obtained by a predicate of degree

max{4deda1), 4dedfi)+2dedd), 4dedaz)+2dedu), 4dedpz)+2dedd)-+2dedy),
2dedaq) +2dedP1) +degd), 2dedoay)+2dedf.)+2dedp)+ degd)}.

Proof. The predicate is to evaluate the sign of an expression ofdha &+ b,/[i, wherea = a3 + B1V/3,

b = a, + B2v/3, andai, Bi, & are rational. This can be done by evaluating the sigra bf anda® — b?u. The
first two signs can be obtained by directly applying Lemma @# the other hand? — b?is equal toA+ Bv/3
with A = a2 + 325 — aZp— B3ud andB = 201 B; — 2a,B21. The sign ofA+ B/ can be determined by another
application of Lemma 8.4, which gives the result. O

8.3.2 Transversals to four lines

We consider first the predicate of determining whether fomad admit 0, 1, 2, or infinitely many line transver-
sals inP3(R) (that is lines inP3(R) that intersect, ifP3(R), the four input lines). An evaluation of this predicate
directly follows from the algorithm described in Sectio 8&r computing the line transversals. Recall that, in the
sequel, all input points are, by assumption, given by thait&sian coordinates.

Theorem 8.6. Given four lines defined by pairs of points, there is a predic# degree22 in the coordinates of
these points to determine whether the four lines admit 0, & Bifinitely many line transversals it®(R).

Proof. We consider three cases. First, if the four lines are paralleich can easily be determined by a predicate
of degree 3, then they admit infinitely many line transvergaP3(R). Second, if the four lines are not parallel but
parallel to a common plane, which can easily be determined fmedicate of degree 3, then the four lines admit
infinitely many transversals if Equation (8.6) is identigadero and, otherwise, 2 line transversal®it{R) ; this
can thus be determined with a predicate of degree 13 (seedbégs Lemma 8.1). Finally, if the four lines are not
parallel to a common plane, they admit infinitely many traarsals if Equation 8.4 is identically zero and, other-
wise, 0, 1, or 2 transversals depending on the sigh @ Lemma 8.1) which is of degree 22 in the coordinates of
the points defining the lines. O

Note that if the leftmost (instead of the rightmostik4 submatrix of the matrix of Pliicker coordinates
(in (8.1)) is used for computing line transversals (see Rkr8aB) then the procedure described in the above
proof has degree 26 instead of 22.

All line transversals are defined & except in the case where the four input lines are paralleldonamon
plane, in which case the intersection of this plane with tla@e at infinity is a line transversal at infinity. Note
also that, determining whether a line transvers@3(R) is transversal ifR® amounts to determining whether the
transversal is parallel to one of the four input lirgsthat is if their direction vectors are collinear. This can b
done, by Lemmas 8.1 and 8.4, by a predicate of degree 36 inattestan coordinates of the points defining the
input lines.

Note, however, that if the points defining thehave rational coordinates and if the transversal is partalle
one of the?;, the Plicker coordinates of the transversal are ratiomaleed, the multiplicative factor of the di-
rection vectors is rational (since one of the coordinatethefdirection vector of the transversal is ratioreag,
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Fic. 8.1 — (a) : Transversdl intersects segmengq only if (¢®op) (¢ ®oq) < 0. (b-c) : An
illustration for the proof of Lemma 8.10.

X2 in (8.5)) and thus all the coordinates of this direction ve@re rational, which implies thdt is a square in
(8.5). Hence, deciding whether a transversal is parallehwof the input lineg; can be done by first determining
whetherA is a square and, if so, testing whether the direction veet@sollinear. It thus follows from Lemma 8.1
that determining whether a transversal is parallel to onta@finput lines; can be done with a fixed-precision
floating-point arithmetic using a number of bits roughly alio 22 times the number of bits used in representing
each input value. This should be compared to the degree Bé akiove procedure. In this paper we have restricted
our attention to evaluation procedures for predicatesdbasist entirely of determining the signs of polynomial
expressions in the input parameters. We see here an exafrpleredicate which may be more effeciently eva-
luated by a procedure which permits other operations, s ¢hse, dertermining whether a rational number is a
square. This provides an interesting example of a geonmkiticate whose algebraic degree does not seem to be
an entirely adequate measure of the number of bits needddef@omputation.

8.3.3 Transversals to four segments

We consider here the predicate of determining how manyeasals four segments &f° admit. Recall that
four segments may admit up to 4 or infinitely many line tramsats [BEL"05]. In this section, we prove the
following theorem.

Theorem 8.7. Given four line segments, there is a predicate of degree 36artoordinates of their endpoints to
determine whether those segments admit 0, 1, 2, 3, 4, ortgffimhany line transversals.

Note that if, the leftmost (instead of the rightmostk 4l submatrix of the matrix of Pliicker coordinates
(in (8.1)) is used for computing line transversals (see RkrzB) then the procedure described below for the
predicate of Theorem 8.7 has degree 42 instead of 36.

We consider, in the following, the supporting lines of theifeegments, that is, the lines containing the
segments; in the case where one (or several) segment iseetiu@a point, we consider as supporting line, any
line through this point and parallel to at least another sutopg line. We first consider the case where the four
supporting lines admit finitely many transversalsPii; this can be determined by a predicate of degree 22, by
Theorem 8.6.

Lemma 8.8. Given four segments iR3 whose supporting lines admit finitely many line transver a3, deter-
mining the number of transversals to the four segments calobe with a predicate of degree 36 in the coordinates
of their endpoints.

Proof. Let/ denote an (arbitrarily) oriented line, as well as its Plird@ordinates, that is transversals to the four
lines ;¢ can be computed as described in Section 8.2. We considerdtieate of determining whethéintersects
each of the four segments, in turn. Lepgandq denote the endpoints of one of these segments. For any ttuoctlis
pointsr ands, denote by's the Plicker coordinates of the limg oriented fronr to s; depending on the context,
rs also denotes the line througlands or the segment fromto s.
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If a pointo does not lie in the plane containing lidend segmenpq (see Figure 8.1(a)), then lifantersects
segmentpq if and only if the oriented lin¢ is on opposite sides of the two oriented lines froto p and fromo
to g, thatis if (¢ ©op) (¢®0q) < 0 (recall that> denotes the side operator — see Section 8.2).

On the other hand, poirttlies in a plane containing linéand segmenpq if and only if £ intersects (irP3)
both linesop andog, that is both side operatofs> op and/® oqare zero. By choosing pointto be for instance
(1,0,0), (0,1,0), (0,0,1), or (1,1,1), we ensure that one of these points will not be coplanar withd segment
pq unless segmeniq lies on/.

Hence the predicate follows from the sign of side operatbtseline transversal and of a line defined by two
points, one of which with coordinates equal to 0 or 1. The degf the Plucker coordinates of the line through
these two points is thus 1 (in the coordinates of the inpubtsdi Hence, by Lemma 8.1, the predicate can be
computed by determining the sign of polynomials of degrema@sdt 20 if the input lines are parallel to a common
plane and, otherwise, by determining the sign of expressidrthe forma+ b,/c wherea, b andc have degree
at most 18, 7, and 22, respectively ; moreover, these bouredseached. By Lemma 8.4, the predicate thus has
degree 36, which concludes the proof. O

We now consider the case where the four lines admit infinitedyy transversals. Recall thati#8, four lines
or line segments admit infinitely many transversals onBE[L05] :

1. they lie in one ruling of a hyperbolic paraboloid or a hyp#oid of one sheet,
2. they are all concurrent, or

3. they all lie in a plane, with the possible exception of augrof one or more that all meet that plane at
the same point.

We treat the cases independently.

Lemma 8.9. Given four segments IR3 whose supporting lines are pairwise skew and admit infnitehny line
transversals, determining the number of their line tramsaks can be done with a predicate of degree at most 36
in the coordinates of their endpoints.

Proof. When four lines are pairwise skew, their common transversatsbe parameterized by their points of
intersection with one of the lines; moreover, the set of camriransversals to the four segments corresponds
(through this parameterization) to up to four intervals battline and the transversals that correspond to the
endpoints of these intervals contain (at least) one entipbihe segments [BELO5]. We can compute and order
all these interval endpoints and determine whether thestsea transversal (to the four segments) through each
midpoint of two consecutive distinct interval endpointy: &nstruction and by [BELO5], the four segments
admit such a transversal if and only if they admit infinitelgmy transversals.

The set of interval endpoints, on, say, segm&ns a subset of the endpoints sf and of the intersection
points ofs; with the planes containing: and an endpoint of; or 4 and of the intersection points ef with the
planes containingz and an endpoint of;. The coordinates of these points can be trivially computethtional
expressions of degree 4 in the coordinates of the segmepbetsl The coordinates of the midpoints are thus
rational expressions of degree at most 8.

The transversal to the four lines through (any) one of theisipomts intersects liné; and lies in the plane
containing line/z and the considered midpoint; the coordinates of the inttisepoint between this plane arg
are rational expressions of degree at most 19. Finallyyiehiéeng whether a transversal (to the four lines) through
two points whose coordinates are rational expressions gfede8 and 19 is a transversal to each of the four
segments can be done, as in the proof of Lemma 8.8, using gatators. Hence, we can decide whether the four
segments admit infinitely many transversals with a predictlegree at most 36 since the Plucker coordinates of
the line transversal are of degree at most 35.

Now, if the four segments admit finitely many transversals,can determine the number of transversals as
follows. As mentioned above, the set of transversals carabenpeterized by intervals on a line and the interval
endpoints correspond to transversals that go through aesggendpoint. A transversal is isolated if and only if
it corresponds to an interval that is reduced to a point. Tausansversal is isolated only if it goes through two
distinct segment endpoints (the segments necessarilydistiect endpoints since, by assumption, their suppor-
ting lines are pairwise skew and thus no segment is reducadotiint). Determining whether the lines through
two distinct endpoints intersect the other segments caly égsdone, as described in the proof of Lemma 8.8, by
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computing the sign of side operators which are here of degjie¢he coordinates of the segment endpoints

Lemma 8.10. Given four segments iR3 whose supporting lines are not pairwise skew and admit tefinimany
line transversals, determining the number of their linengaersals can be done with a predicate of degree 7 in the
coordinates of their endpoints.

Proof. First, note that testing whether two segments intersecbeatione using side operators with a predicate
of degree 3. The four lines containing the segments are rinkipa skew and they admit infinitely many line
transversals. Thus, they are all concurrent or they alhlie planeH, with the possible exception of a group of one
or more that all meet that plane at the same point [B&%]. Four cases may occur :

(i) all four lines lie in a planed,

(i) three lines lie in a planél and the fourth line intersects in exactly one point,

(iii) two lines lie in a planeH and two other lines intersekt in exactly one and the same point,
(iv) three lines are concurrent but not coplanar.

Differentiating between these cases can be done by detegnirhether sets of four segment endpoints are copla-
nar (which is a predicate of degree 3). We study each caserin tu

Case (i). The four segments are coplanar. Any component of trandsegeatains a line through two distinct
segment endpoints. Hence the four segments have finitely tnamsversals if and only if any line through two
distinct endpoints that is a transversal to the four segmisntin isolated transversal. This only océérsee
Figure 8.1(b)) when the transversal goes through the entipof three segments such that the segment, whose
endpoint is in between the two others, liesihon the opposite side of the transversal than the two otlgenests.

This can be tested by computing the sign of scalar produdside operators between the transversal and the lines
through a poinb not inH and the segment endpoints (see Figure 8.1(b)). This leaapredicate of degree 4.

Case (ii). Three lines lie in a plankl. Testing whether the fourth segment intersects the gtanan easily be
done by computing the point of intersection betwétmnd the line containing the fourth segment, leading to a
predicate of degree 3. If the fourth segment does not irtepsaneH, the four segments have no transversal unless
the first three segments are concurrent in which case thesBgments have one or infinitely many transversals
depending on whether the four lines supporting the segrmaetgoncurrent. Otherwise, lptdenote the point

of intersection. We assume that the three segmenit$ &e not concurrent; otherwise the four segments have
infinitely many transversals. Thus, any component of trarsals contains a line throughand through a segment
endpoint. Hence the four segments have finitely many trasaigif and only if any line througp and a segment
endpoint that is a transversal to the four segments is aatebltransversal. Testing whether such a line is a
transversal to all segments can be done, as in the proof ofrize&8, by computing the sign of side operators of
the line transversal and of lines through a segment endpath&s poinb not inH ; the coordinates of poirp are
rational expressions of degree 4, thus the Pliicker codetirad the transversal have degree at most 6, which leads
to a predicate of degree 7. Such a line transversal is isblate Figure 8.1(c)) if and onlyff the transversal
goes through two endpoints of two distinct segments thatri¢ghe same side (in plari¢) of the transversal or
not depending whethgr is in between the two endpoints or not. This test can be dorebputing the sign of
scalar products and side operators between the transaa#he lines through a poiotot inH and the segment
endpoints (see Figure 8.1(c)). This test also leads to dqatedof degree 7. We can thus determine the number of
isolated transversals with a predicate of degree 7.

Case (iii). Two lines lie in a planéd and two other lines intersekt in exactly one and the same point. (Note
that there may be two instances of platdor a given configuration.) This case can be treated siryilasl Case

(ii).

2For simplicity, we do not discuss here the case where theatamsversal contains one of the four segments.
13we assume here for simplicity that the line transversalaiostno segment.
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Case (iv). Three lines are concurrent but not coplanar. If none of theeticorresponding segments intersect,
they have no common transversal. If only two segments iaterthe three segments have exactly one transversal ;
checking whether that transversal intersects the fougimset can easily be done with a predicate of degree 3.
Now, if the three segments intersect, then the four segnieawvs infinitely many transversals if they are concur-
rent or if their supporting lines are not concurrent. Othisewif the four segments are not concurrent but their
supporting lines are, the four segments then have a unigneversal. This can also be checked with a predicate
of degree 3. O

We can now conclude the proof of Theorem 8.7. By Theorem 86;am determine with a predicate of degree
22 whether the four lines containing the four segments afiniiely many transversals i#3. If the four lines
admit finitely many transversals, then, by Lemma 8.8, det@ng the number of transversals to the four segments
can be done with a predicate of degree 36. Assume now thabthdifies admit infinitely many transversals.
Note that determining whether the input lines are pairwisawscan easily be done with a predicate of degree 3.
Thus, by Lemmas 8.9 and 8.10, determining whether the fa@meats admit 0, 1, 2, 3, 4, or infinitely many line
transversals can be done by a predicate of degree at moseB86eHwve can determine the number of transversals
to four segments with a predicate of degree 36. O

8.3.4 Transversals to four segments and a triangle

We consider here the predicate of determining whether amalsegment transversal to four line segments is
intersected by a triangle. Given a line transvefdal a setS of segments, a triangl€ occluded if ¢ intersectsl
and if there exist two segments@whose intersections withlie on opposite sides &f. We describe a method for
evaluating the predicate for determining whether a triamgicludes a transversal to a given set of line segments
and establish its degree.

Theorem 8.11. Let/ be a line transversal to four line segments that admit fipitelny transversals and let T be
a triangle. There is a predicate of degree 78 in the coordinaif the points defining the segments and the triangle
to determine whether T occludés

Proof. Let ¢ denote an oriented line transversal to segments ., s, each defined by two pointg and fj,
i=1,...,4,and lefl be atriangle defined by three poimtsy, andr. The Plicker coordinates étan be computed
as described in Section 8.2. We only consider the case wher®tr lines containing segmergshave finitely
many transversals because, otherwise, since the four segadmit finitely many transversals, each transversal
goes through at least one endpoint of the four segments @&nstiaightforward that the degree of the predicate is
then much smaller.
We first determine whethet intersectsT by taking the side product of with each supporting line of
(oriented consistently)é intersectsT if and only if no two side products have opposite signs. (+1). Similarly
as in the proof of Lemma 8.8, there is a predicate of degree3@dtermining the sign of these side operators.
Assuming that’ intersectsT, we next find the point of intersection. By Lemma 8¢2can be represented
parametrically in the formm+ pt. We determine the value offor which the determinant o, g,r, T+ pt is equal
to zero ; denote this value bby tg. This determinant has the forag + bgtg, where, by Lemma 8.2 andbg are
polynomials of degree 22 &, ..., s are parallel to a common plane or, otherwise, have the fp#nd /A where
¢,¢, andA have degree 20, 9, and 22, respectively, in the coordindtpsior, g, f;.
Now, for each segmerst, we compute the point of intersection §fwith ¢ in terms of the parameteérusing
the method similar to that of the previous section : chooseiat p; not in the plane determined iy and/ and
compute the valué for which the determinant of, fi, o;, T+ pt equals 0. Denote this value Iy Sinceo; can
be chosen with all coordinates equal to 0 or 1, we get, silpiks in the previous paragraph, that each of these
determinants has the form + bjt; wherea; andb; are polynomials of degree 21 4f,...,s are parallel to a
common plane or, otherwise, have the fapm ¢+/A whereg, ¢, andA have degree 19, 8, and 22, respectively.
Determining whethell occludes/ is now only a matter of determining whethigrlies between two of the
valuest;,i = 1,...,4, which requires only that we be able to compaxalues, that is, compute sifn—t;). Ob-
serve that; —t; = %b‘?b" < 0, so sigrit —tj) = sign(ajb; — a;b;) sign(b;) sign(b;). It follows from the above
characterization of the; andb; that a produc;b; is either a polynomial of degree 43sf,...,s are parallel
to a common plane or, otherwise, has the fagm ¢+/A where@, ¢, andA have degree at most 39, 28, and 22,
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V1, V2

Fic. 8.2 — Plane®; andP, such thaP; < P,

respectively (and these bounds are reached in the worst édggalying Lemma 8.4 yields a predicate of degree
78, which concludes the proof. O

Note that, if the leftmost (instead of the rightmostk 4l submatrix of the matrix of Pliicker coordinates
(in (8.1)) is used for computing line transversals (see R&rBa3) then the procedure described above for the
predicate of Theorem 8.11 has degree 90 instead of 78.

8.3.5 Ordering planes through two fixed points, each containing a third
(rational) point or a line transversal

Let ¢ be a line defined by two pointg andvo, and? be the linef oriented in the directiomvs.

We define an ordering of all the planes containingith respect to the oriented linkand a reference point
O (not onY). Let Py be the plane containin@ and/, and letP; andP, be two planes containing We say that
P, < Py if and only if Py is encountered strictly befof® when rotating counterclockwise abala plane fronPy
(see Figure 8.2a).

Let p; be any point on plan®& but not on¢, fori = 1,2, and letD(p,q) denote the determinant of the four
points(vi, Vo, p,d) given in homogeneous coordinates.

Lemma 8.12. Withx = D(O, p1) - D(O, p2) - D(p1, p2), we have :
(@) Ifx>0thenR > P,.
(b) Ifx<OthenR < P,.
(c) Ifx=0then
() ifD(p1,p2) =0,then R =P,
(i) elseif D(O,p1) =0, then R < Py,
(iii) else R > P,.

Proof. Assume first thaD(O, p1) - D(O, p2) > 0, that is, thaip; and p; lie strictly on the same side of the plane
Py (see Figure 8.2b). Then the orderfyfandP;, is determined by the orientation of the four poif\s, v2, p1, p2),
that is by the sign ob(p1, p2). It is then straightforward to notice thBt > P, if and only if D(p1, p2) > 0. Hence,

if x > 0, thenP; > P, and, ifx < 0, thenP, < P..

Suppose now thdd (O, p1) - D(O, p2) < 0, that is, thaip; and p; lie strictly on opposite sides of the plaRe
(see Figure 8.2c). The order Bf andP; is then still determined by the sign Bf p1, p2). However,P; > P, if and
only if D(p1, p2) < 0. Hence, we have in all cases thaty i- 0, thenP; > P and, ifx < 0, thenP; < P,.

Suppose finally thgt = 0. If D(p1, p2) = 0, thenp; andp, are coplanar, anB, = P,. Otherwise, iD(O, p1) =
0, thenPy = Py thusP; is smaller to all other planes (containiﬁ}; and in particulaP; < P,. Furthermore, since
D(p1, p2) # 0, P1 # P, and thusP, < P,. OtherwiseD(O, pz) = 0 and we get similarly tha®, < P;. O
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Computing a point on a plane defined by and a line transversal. We want to order planeg

that are defined by liné and either a rational point not dhor by a line transversal tband three other lines. In
the latter case, we consider a point on the line transvendatl is non-rational, in general ; see Lemma 8.2). The
following lemma tells us that, in general, such a pl&eontains no rational points outside ©fand that in the
cases where it does contain such a rational point, the Bmswersal is then rational. Hence, if the points computed
on the line transversal, as described in Lemma 8.2, are tiohad, there is no need to search for simpler points on
the plane (but not of).

Lemma 8.13. The plane P containing a rational linéand a line transversal té and three other segments, each
determined by two rational points, contains in general ntaal points except od. Furthermore, if plane P
contains a rational point not oA then the line transversal is rational.

Proof. Suppose that the plafecontains a rational poirt not oné. Then the plane contains three (hon-collinear)
rational pointsp and two points orf, and thusP is a rational plane. This plane intersects the three otlggnsats

in three points, all of which are rational and lie on the traansal. So the transversal is a rational line which implies
that the discriminanB? — 4AC in Equation (8.5) is a square, which is not the case in general O

Comparing two planes. We want to order planeB that are defined by either lineand another (input
rational) point not or?, or by line/ and a line transversal tband three other lines.

By Lemma 8.12, ordering such planes abéamounts to computing the sign of determinants of four points
(in homogeneous coordinates). Two of these points are ifgffine rational) points o (v; andv,) and each of
the two other points is either an input (affine rational) pojni = 1,2, or is, by Lemma 8.2 (and Lemma 8.13), a
pointu; whose homogeneous coordinates have degree at most 19 ¢iodtdinates of the input points) or a point
of the formp; + g V4, i = 1,2, where thé\; have degree 22 and where theandg; are points with homogeneous
coordinates of degree at most 17 and 6, respectively. Ifdhegdoints are all input points, then the determinant of
the four points has degree 3 in their coordinates.

If only three of the four points are input points, then theetlgtinant of the four points is either a polynomial
of degree 22 or it has the for®(p1,r1) + D(q1,r1) vA; where the degrees of tig() are 20 and 9, respectively,
in the coordinates of the input points. Hence, by Lemma 8&lstgn of this expression can be determined with a
predicate of degree 40.

Finally, if only two of the four points are input points, théme determinant has one of the following forms
(depending on whether the quadruples of lines defining testrersals are parallel to a common plane); the
degrees are given in terms of the coordinates of the inputgoi

(i) D(ug,u2) which is of degree 40.
(i) D(ug, p1)+D(u1,q2) VA where theD() have degree 38 and 27, respectively.
(iii) D(p1,p2) + D(d1, p2) VA1 + (D(p1,G2) + D(a1,d2) VA1) VA2 where theD() have degree 36, 25,
25, and 14, respectively.
Hence, by Lemma 8.5, the sign of these expressions can lrenite¢el with a predicate of degree at most 144 (and
the bound is reached in the worst case). We thus get the fiolipresult.

Theorem 8.14. Let/ be an oriented line defined by two points, lgthe a point not ort, and let B be the plane
determined by and . Given two planes £P, containing/ there is a predicate which determines the relative
order of R and B about/ with respect to f’having the following degree in the coordinates of the inmints :
(i) degree 3if Ri = 1,2 are each specified by a (input) point;p
(ii) degree 40 if R is specified by a pointjpand B is determined by a line transversal fcand three
other linesty, ¢», {3, each specified by two (input) points;
(iii) degree 144ifRi = 1,2 are each determined by a line transversaf &nd three other line§ 1,4 », ¢ 3,
each specified by two (input) points.

Remark 8.15. Similarly as before, note that, if the leftmost (insteachefitightmost¥ x 4 submatrix of the matrix
of Pliicker coordinates (ii§8.1)) is used for computing line transversals (see Remark 863) the predicates of
Theorem 8.14 have degree 3, 46, and 168.



96 CHAPITRE 8. PREDICATES FOR LINE TRANSVERSALS IN 3D

. ®ll1012 | 100 | 108 | 10% | 104 | 102
predicate
degree 168 99.6% | 50.4% | 7.6% | 0.8% | 0.08% | 0.008%
degree 3 99.5% | 8.2% | 0.08% | 0.001%

TAaB. 8.1 — Percentages of failure of the degree 168 and degreedscates using double-
precision floating-point interval-arithmetic, fervarying from 1012 to 102

8.4 Experiments

In this section, we report the results of experiments thatyae the behavior of the predicate for ordering,
in a rotational sweep about a line, two planes each definedlibg &ransversal to four lines, that is the predicate
related to Theorem 8.14(iii). The degree of the procedureisefor evaluating this predicate is 168 because we
use for computing line transversals to four lines the codeaxfburn [Red03], which, as noted in Remarks 8.3 and
8.15, leads to degree 168 instead of 144 as in Theorem 8)14(ii

The standard approach to comparing two such planes is tefisstiate the predicate using fixed-precision
interval-arithmetic. This is very efficient but may fail whehe sign of an expression cannot be successfully
determined because the result of the evaluation of the sgimre is an interval that contains zero. If this hap-
pens, the answer to the predicate is then obtained by eitladwaging exactly the expression (and thus its sign)
using exact arithmetic or by increasing the precision ofititerval arithmetic until either the result of the eva-
luation of the expression is an interval that does not carzaro or the separation bound is attained (see for
instance [BFM 01, Mig82, Sch00, Yap97]) ; in both approaches the compnati much slower than when using
fixed-precision interval-arithmetic. We are thus integésin determining how often the fixed-precision interval-
arithmetic evaluation of our predicate fails.

To test our predicate, we generate pairs of planes, eachedefin two lines, one chosen at random and
common to the two planes, and the other defined as a trankt@its@& common line and to three other random
lines. We are interested in evaluating our predicate in #se evhere the two planes are very close together, that is,
when there is significant risk of producing an error when giinite-precision floating-point arithmetic.

We generate two sets of four lines. Each line of the first sdetermined by two points, all of whose coor-
dinates are double-precision floating-point numbers ahaséormly at random from the interv@-500Q 5000.

The second set of lines is obtained by perturbing the poietinidg three of the lines of the first set; the fourth
line is not perturbed and is thus common to the two sets. Taugiea pointp, we translate it to a point chosen
uniformly at random in a sphere centeregatvith radiuse.

We compute, for each of these two sets of four lines, a linestrarsal. If either set of four lines does not admit
a transversal (which happens roughly 24% of the time), wewthout that data and start again. Otherwise, we
choose a transversal in a consistent way for the two setauofifees, that is, such that one transversal converges
to the other wheig tends to zero. Each transversal, together with the commendiefines a plane.

For various values of, varying from 102 to 1019, we evaluate the predicate using double-precision floating
point interval arithmetic until we obtain 1000 pairs of pdarfor which the computation of the predicate fails. We
measure the percentage of time that the computation fdiksrd@sults of these experiments are shown in Table 8.1.

We observe, as expected, that wheeis sufficiently small (1019), that is, when the two planes are often
close enough to each other, the fixed-precision intenitiiraetic predicate fails with high probability and thatghi
probability decreases asincreases. Whea = 102, the probability of failure is close to zero. Finally, we leav
also observed that the predicate fails when the angle betinestwo planes is less than roughly $radians,
which is, of course, independentof

Note finally that the percentage of failure of the degree I&8lipate using fixed-precision interval-arithmetic
is, as expected, high compared to lower-degree predicBbte 8.1 also shows the failure rate for the degree 3
predicate related to Theorem 8.14(i). We use the same expetal scheme as above, that is, we chose at random
three points that define a plane and perturb one of thesesgmjrat most.

All the experiments were made on a i686 machine with AMD Athlh73 GHz CPU and 1 GB of main
memory using the CGAL interval number type with double-gien floating-point numbers [CGA].
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Lines and free line segments tangent to
arbitrary three-dimensional convex
polyhedra
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Abstract

Motivated by visibility problems in three dimensions, weéstigate the complexity and construc-
tion of the set of tangent lines in a scene of three-dimersipalyhedra. We prove that the set of
lines tangent to four possibly intersecting convex polyhdad R2 with a total ofn edges consists
of ®(n?) connected components in the worst case. In the generic easke connected component
is a single line, but our result still holds for arbitrarilggenerate scenes. More generally, we show
that a set ok possibly intersecting convex polyhedra with a totahaddges admits, in the worst
case,0(n’k?) connected components of maximal free line segments tangertieast four poly-
topes. Furthermore, these bounds also hold for possiblyded lines rather than maximal free line
segments.

Finally, we present ®(n’k?logn) time andO(nk?) space algorithm that, given a scen&gissibly
intersecting convex polyhedra, computes all thi@imalfree line segments that are tangent to any
four of the polytopes and are isolated transversals to thefsdges they intersect; in particular,
we compute at least one line segment per connected compaitangent lines.

9.1 Introduction

Computing visibility relations in a 3D environment is a plain central to computer graphics and engineering
tasks such as radio propagation simulation and fast puitagy Examples of visibility computations include de-
termining the view from a given point, and computing the uaand penumbra cast by a light source. In many
applications, visibility computations are well-known tecaunt for a significant portion of the total computation
cost. Consequently a large body of research is devoted tsmeup visibility computations through the use of
data structures (see [Dur00] for a survey).

One such structure, the visibility complex [DDP02, PV9@hsjcodes visibility relations by partitioning the set
of maximal free line segments. The size of this partitiomitmately related to the number of maximal free line
segments tangent to four objects in the scene ; for a scemiziahgles inR3, the complex can have sign?) in

99
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Fic. 9.1 —A terrain of sizen with Q(n*) maximal free line segments tangent in four points.

the worst case [DDP02], even when the triangles form a tefsge [CS89b] or Figure 9.1). The complex is thus
potentially enormous, which has hindered its applicatiopriactice. However, there is evidence, both theoretical
and practical, that this estimation is pessimistic. Thediolound examples, which are carefully designed to exhibit
the worst-case behavior, are unrealistic in practice. €alistic scenes, Durared al.[DDP97] observe a quadratic
growth rate, albeit for rather small scenes. For randomes;eDevillerset al. [DDE™03] prove that the expected
size of the visibility complex is much smaller; for uniforyndlistributed unit balls the expected size is linear and
for polygons or polyhedra of bounded aspect ratio and similge it is at most quadratic. Also, in 2D, while the
worst-case complexity of the visibility complex is quadcaexperimental results strongly suggest that the size of
the visibility complex of a scene consisting of scatteréahigles is linear [CF99].

While these results are encouraging, most scenes are natmathal fact, most scenes have a lot of structure
which we can exploit; a scene is typically represented byyntaangles which form a much smaller number of
convex patches. In particular, if a scene consistsdigjointconvex polyhedra with a total efedges, then under a
strong general position assumption, the number of maxirealline segments tangent to four of the polyhedra is at
mostO(n?k?) ; this follows directly from the bound proved in [EGHHZ00] tite number of combinatorial changes
of the silhouette map viewed from a point moving along a ghreline, and was also later proved in [BDD2].

We present in this paper a generalization of these resuitist preliminary definitions, we give a detailed account
of our results and then present related previous work.

Preliminary definitions. We consider a scene that consists of a finite number of padgtopot necessarily dis-
joint, not necessarily fully dimensional, and in arbitragsition. The definitions below are standard, yet carefully
phrased in a way that remains valid in those situations.

A polytopeis the convex hull of a point set. A planetangentto a polytope if it intersects the polytope and
bounds a closed half-space that contains the polytope.d gactedge, or a vertex of a polytopeRA is the 2, 1 or
0-dimensional intersection of the polytope with a tangdahe. Note that, with this usual definition of polytopes,
edges and faces are closed and they are not subdivided ingny w

A line or segment igangentto a polytope (whether or not the latter is fully dimensignflt intersects the
polytope and is contained in a tangent plane. In a given pladi@e is tangent to a polygon if it intersects the
polygon and bounds a closed half-plane that contains thggpol With these definitions, given a polygon in a
planet, and a line contained im that intersects the relative interior of this polygon, theelis tangent to the
polygon when considered as a polytopéRify but not tangent to the polygon in the plame

The set of lines iR® has a natural topological structure, namely, that of Pliiskace [Sto91]. The set of
lines tangent to at least four polytopes is a subspace, wdwseected componentsrrespond to lines that can be
continuously moved one into the other while remaining tamge at least four polytope. A line or line segment
is freeif it is tangent to each polytope that its relative interinteirsects'® otherwise it isoccluded A free line
segment is anaximal free line segmeiftit is not properly contained into another free line segmé&ime space of
line segments also has a natural topological structuretembhnected componerd§ maximal free line segments
tangent to at least four among tk@olytopes are defined similarly as for lines.

14The set of polytopes to which the line is tangent might chahgeng the motion.

15When the polytopes are fully dimensional, a segment is fréedbes not intersect the interior of any of
them. Our definition ensures that a segment is free also wheteisects and is coplanar with a two-dimensional
polytope. The endpoints of a free segment may also lie ondhadary of a polytope.
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A support vertexf a line is a polytope vertex that lies on the lines@pport edgef a line is a polytope edge
that intersects the line but has no endpoint on it (a supple éntersects the line at only one point of its relative
interior). A supportof a line is one of its support vertices or support edges. Tipparts of a segment are defined
similarly. Notice that it follows from the definition of palgpes that any line has at most two supports in any given
polytope.

A line is isolated with respect ta set of edges and vertices if the line cannot be moved canisty while
remaining a common transversal to these edges and veFiggbermore, we say that a sedf edges and vertices
admits an isolated transversiilthese edges and vertices admit a common transversaktistiated with respect
to 8. Finally, a line isisolatedif it is isolated with respect to a set of some, and hence gitssupports.

Our results. In this paper we present two types of results, combinatboahds and algorithms.

Combinatorial boundsWe generalize the result of [BDI®2, EGHHZO00] in two ways. First, we consider poly-
topes that mayntersect We show that among polytopes of total complexity, the number of lines tangent to
any four of them is in the worst case either infinite@(n?k?). The most surprising aspect of this result is that the
bound (which is tight) is the same whether the polytopessete or not. This is in sharp contrast to the 2D case,
where the number of tangents of two convex polygons is alwaislisjoint, and could be linear in the size of
the polygons if they intersect. Second, we consider poBgaparbitrary position : we drop all general position
assumptions. The polytopes may intersect in any way ; thgyawerlap or coincide. They may degenerate to poly-
gons, segments or points. While four polytopes in generatipngas defined in [BDD 02]) admit a finite number
of common tangents, four polytopes in arbitrary positioryrmdmit an infinite number of common tangents which
can be partitioned into connected components.

Our main results are, more precisely, the following.

Theorem 9.1. Given k polytopes ifR® with n edges in total, there are, in the worst cag¢nk?) connected
components of maximal free line segments tangent to at feastof the polytopes. This bound also holds for
connected components of possibly occluded lines tangertieast four of the polytopes.

These results improve the trivial bound ©fn*). Note that, wherk # 4, neither of the two results stated in
Theorem 9.1 implies the other since a line tangent to at feastamongk polytopes may contain many, but does
not necessarily contain any, maximal free line segmentgetatrio four polytopes.

Whenk = 4, Theorem 9.1 implies that there aB§n?) connected components of lines tangent to the four
polytopes, an improvement on the previously known uppemnbaoef O(n®logn) which follows from the same
bound on the complexity of the set of line transversals td afggolyhedra (here four) with edges in total [Aga94].
Moreover, we prove a tighter bound when one of the four pplgtohas few edges.

Theorem 9.2. Given3 polytopes with n edges in total and one polytope with m edbjeg are, in the worst case,
©(mn) connected components of lines tangent to the four polytopes

We also prove the following result which is more powerfubulygh more technical, than Theorem 9.1. Whe-
reas Theorem 9.1 bounds the number of connected comporfaatsgents, Theorem 9.3 bounds the number of
isolated tangents with some notion of multiplicity. For exae, the line in Figure 9.2 is counte@) times which
is the number of minimal sets of vertices that admit that &eean isolated transversal. Although neither theorem
implies the other, we will prove in Proposition 9.23 that tigper bound of Theorem 9.1 is easily proved using
Theorem 9.3.

Theorem 9.3. Given k polytopes iiR® with n edges in total, there are, in the worst ca@én?k?) minimal sets of
open edges and vertices, chosen from some of the polytbpésidmit a possibly occluded isolated transversal
that is tangent to these polytopes.

Algorithm. We now turn our attention to the computation of all free segimehat are isolated transversals to
their set of supports and tangent to the corresponding @ud. Duranckt al. [DDP02] proposed an algorithm
for this problem with worst-case time complexi®((n® + p)logn) where p is the output size ; this algorithm,
based on a double-sweep, has proven to be difficult to impienDrirandet al. also presented an algorithm with
O(n%) worst-case time complexity that incorporates interestiagristics leading to reasonable performance in
practice [DDP97]. We present an algorithm that uses, in thesixcaseO(n?k?logn) time andO(nk?) space,
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Fic. 9.2 —A line tangent at a vertex of each kpolytopes.

is readily implementable, and uses only simple data stresturhe polytopes may intersect and be in arbitrary
position. A preliminary version of this algorithm was debed for disjoint convex polyhedra in X. Goaoc’s Ph.D.
thesis [Goa04].

Theorem 9.4. Given k polytopes ifR® with n edges in total, we can compute, itir@k?logn) time and Qnk)
space, all the possibly occluded lines that are isolateshgxersals to their set of supports and tangent to the
corresponding polytopes. We can also compute, {n’&¥logn) time and Qnk?) space, all the minimal free
segments that are isolated transversals to their set ofatipnd tangent to the corresponding polytopes.

It should be noted that our algorithm does not provide thgeimds (possibly at infinity) of the maximal free
segments. Computing the endpoints of each such segmentecdane by shooting rays i@(log2 n) time per
ray usingO((nk)?+¢) preprocessing time and storage [AS96]. Such ray-shootite structures are not, however,
readily implementable. Alternatively, each ray-shootingry can be answered @ klogn) time afterO(nlogn)
preprocessing time and using additio@{h) space by applying the Dobkin-Kirkpatrick hierarchy on eaoly-
tope [DK83].

To emphasize the importance of considering intersectingtques, observe that computer graphics scenes
often contain non-convex objects. These objects, howeasr,be decomposed into sets of convex polyhedra.
Notice that simply decomposing these objects into convéyheara with disjoint interiors may induce a scene
of much higher complexity than a decomposition into intetieg polytopes. Moreover, the decomposition of a
polyhedron into interior-disjoint polytopes may introdunew tangents which were not present in the original
scene; indeed a line tangent to two polytopes along a shacedd not tangent to their union.

The importance of considering polytopes in arbitrary posicomes from the fact that graphics scenes are
full of degeneracies both in the sense that four polytopeg adanit infinitely many tangents and that polytopes
may share edges or faces. There may actually be more codrmmtgponents of tangents when the objects are
in degenerate position ; this is, for instance, the caseifier $egments [BEL05]. Also, we could not find a
perturbation argument that guarantees the preservatiatl ¢br at least a constant fraction of) the connected
components of tangents and we do not believe that finding apeiturbation is a simple matter.

Related results.Previous results on this topic include those that bound dinepdexity of sets of free lines or free
line segments among different sets of objects. They are suired in Table 9.1.

Recently, Agarwakt al.[AAS04] proved that the set of free lines amamgnit balls has complexit®(n3*#).
Devillerset al. showed a simple bound 6f(n?) [DDE*03] for this problem, and Koltun recently sketched a bound
of Q(n®) (personal communication, 2004).

The complexity of the set of free line segments amomglls is trivially O(n*). Devillers and Ramos showed
that the set of free line segments can have compl&ity’) (personal communication 2001, see also [DDA]).
When the balls are unit size, tif%n?) lower bound for the set of free lines holds. A lower boundX§f*) that
applies to either case was recently sketched by Glisseqp&rsommunication, 2004).

We mention two results for polyhedral environments. Hatpand Sharir [HS94] and Pellegrini [Pel94] pro-
ved that, in a polyhedral terrain withedges, the set of free lines has near-cubic complexity. Dg, Bsverett and
Guibas [dBEG98] showed@(n®) lower bound on the complexity of the set of free lines (andtiee segments)
amongn disjoint homothetic convex polyhedra.
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] \ Worst-case |  Expected |
free lines to a polyhedron o(n?) (trivial)
free lines above a polyhedral terrain O(n32¢vIean) [HS94, Pel94]
free lines among disjoint homothetic polytopes Q(n®) [dBEG98]
free lines among unit balls Q(r?) [DDE*03], O(n**¥) [AAS04] | ©(n) [DDE*03]
max. free segments above a polyhedral terrain O(n*) [CS89Db]
|solateq mellx.m.]al free segments among ©(n?k2) [EGHHZ00, BDD' 02]
k generic disjoint convex polyhedra
max. free segments among unit balls Q(n?) [DDE*03], O(n%) O(n) [DDE*03]

TAB. 9.1 —Published bounds on the complexity of the set of free linesiaximal free line segments among
objects of total complexity. The expected complexities are given for the uniform distion of the balls centers.

This paper is organized as follows. We prove the upper boahditeorems 9.1, 9.2, and 9.3 in Sections 9.2
and 9.3, and the lower bounds in Section 9.4. In section Hresent our algorithm for computing free segments.

9.2 Main lemma

We prove in this section a lemma which is fundamental for tte®fs of the upper bounds of Theorems 9.1,
9.2, and 9.3. Consider four polytopesQ, R, andSin R3, with p, g, r, ands > 1 edges, respectively, and kbe
an edge ofs.

MAIN LEMMA. There are @p+qg+r) isolated lines intersecting e and tangentRpQ, R and S excluding
those that lie in planes that contain e and are tangent toall fpolytopes.

The proof of the Main Lemma is rather complicated becausaritkes polytopes which may intersect as well
as all the degenerate cases. To assist the reader, we festirgiwerview of the proof. We then state preliminaries
and definitions in Section 9.2.2. In Sections 9.2.3 and 9Welbound the number of so-called “generic tangent
lines”. In Section 9.2.5, we bound the number of “non-gen&angent lines”. Finally, in Section 9.2.6, we pull
these results together to conclude the proof of the Main Lamm

9.2.1 Proof overview

The proof is inspired by a method which was, to our knowledigst, used in [BDEG94] (and later in [dB-
HOVK97, EGHHZ00, BDD 02]). We present here an overview of the proof in which we doatluress most of
the problems arising from degeneracies. In particular,esdefinitions and remarks will require more elaboration
in the context of the complete proof.

We sweep the space with a plafigrotating about the line containirey The sweep plane intersects the three
polytopesP, Q, andR in three, possibly degenerate or empty, convex polygonetdd®, Q;, andR;, respectively
(see Figure 9.3). During the sweep, we tracktitangentsthat is, the lines tangent & andQ, or toQ; andR;,
in ;. As the sweep plane rotates, the three polygons deform arutdngents move accordingly. Every time two
bitangents become aligned during the sweep, the commothiayeform is tangent t®, Q, andR.

In any given instance of the sweep pldig we consider the pairs of bitangents (one involih@ndQ;, and
the otherQ; andR;) that share a vertex @@ (see Figure 9.3). The isolated lines intersectrgnd tangent t®, Q,

R andS are isolated transversals with respect to a tuple of suppioat consists of and the supports of two such
bitangents. We consider alandidatesuch tuples of supports as the sweep plane rotates.

Such a tuple induced by an instance of the sweep plane chardles plane rotates only when a support of a
bitangent changes. We defiostical planesin such a way that the supports of the bitangents do not chasgee
sweep plane rotates between two consecutive critical plagethe sweep plane rotates, the supports of a bitangent
change if a support starts or ceases to be swept, or if, diteamgotion, the bitangent becomes tangent to one of
the polygons along an edge of that polygon (see Figure :4hel latter case, this means that the bitangent crosses
a face or contains an edge of one of the polytopes. We thusedeimtypes of critical planes : an instance of the
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Fic. 9.3 —Planefll; contains edge and intersects polytopds Q, andR in polygonsk, Q;, andR.
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Fic. 9.4 —A bitangent toR andQ; is tangent td% along an edge. The plamg is F-critical.

sweep plane is critical if it contains a vertex of one of théy/mpes, or if it contains a line that lies in the plane
containing a face of one of the polytopes, and is tangentathan of the polytopes (see Figures 9.4 and 9.5). We
will show that the number of critical planes@{p+q+r).

When the polytopes intersect there may exist a linear numtgtamgents in an instance of the sweep plane
(two intersecting convex polygons may admit a linear nuntdfdritangents, as is the case for two regulagons
where one is a rotation of the other about its center). Theretban be a linear number of candidate tuples induced
by any instance of the sweep plane, and the linear numbeiticbtplanes leads to a quadratic bound on the total
number of distinct candidate tuples. In the detailed prddhe lemma, we amortize the count of candidate tuples
over all the critical planes to get a linear bound on the nurobdistinct candidate tuples and thus on the number
of isolated lines intersectingand tangent t®, Q, R andS; this bound will however not hold for those isolated
lines that lie in planes that contagand are tangent to all four polytopes. Indeed, the numbeudf ssolated
tangent lines can be quadratic, in degenerate cases ; fanags four polytopes such that a plane contains edge
e and a face of linear complexity from each other polytope mé@myiain this plane a quadratic number of such
isolated tangent lines (one through each of a quadratic ruoftpairs of vertices).

9.2.2 Preliminaries and definitions

We can assume without loss of generality tRa@Q, R andS havenon-empty interioindeed, since the set of
isolated tangent lines to the four polytopes is zero-diriwarad, there is always room to extend any polytope with
empty interior in such a way that none of the original isalangent lines are lost.
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We say that a ling@roperly intersects a polygon if it intersects its relative interiorthe sequel, we use this
definition only when the line and polygon are coplanar. Notltat a line that contains a segment is tangent to the
segment as well as properly intersects it.

Let | be the line containing and letl; denote the sweep plane parameterized ky[0, 7] such thatlT;
contains the linde for all t and Mg = My Each pland; intersects the three polytop® Q, andR in three,
possibly degenerate or empty, convex polygdhsQ);, andR;, respectively (see Figure 9.3).

For anyt, a bitangentto polygonsP; andQ; is a line tangent t&} andQ; in IM; (the line may intersect the
polygonR; in any way, possibly not at all). For anylet a (P, Q;)-tuplebe the unordered set of all supportsHin
andQ of one of the bitangents to polygois andQ;. Note that a support iR may be identical to a support in
Q, in which case théR;, Q;)-tuple does not contain duplicates. Also note th&BaQ; )-tuple consists of exactly
one support i and one support i (possibly identical) except when the corresponding bigsuhgs tangent to
P (or Q) along a face (either intersecting the face properly oraioirig one of its edges) ; then tiig, Q;)-tuple
contains two supports iR (or Q) instead of one. £Q-tupleis a set of edges and vertices that iPa Q;)-tuple
for somet. We define similarly théQ;, R;)-tuplesandQR-tuples

We say that &R, Q;)-tuple ismaximal for some if it is not contained in any othdiR, Q;)-tuple, for the same
t. Note that a(P;, Q;)-tuple is non-maximal for someif and only if all its supports interse€l; in one and the
same point, an& andQ; are not equal to one and the same point (see Figure 9.7(b)).

For anyt, let a (R, Q;, R)-tuple be the union of &R, Q;)-tuple and & Q;, R )-tuple that share at least one
support inQ. A (R, Q, R)-tuple is maximal for someif it is not contained in any othgiR;, Q;, R;)-tuple, for the
samet. A PQR-tupleis a set of edges and vertices that ifPg Q;, R )-tuple for some. Note that aPQR-tuple
typically consists of three supports, one from each polgt@md consists, in all cases, of at most two supports in
P, at most three supports @, and at most two supports R.

A line intersectinge and tangent t®, Q, R andS is called ageneric tangent linéf and only if it intersects
Sonly oneand is tangent t&, Q;, andR; in some plandl;. Otherwise it is called aon-generic tangent lineA
non-generic tangent line properly intersects a facd of properly intersectg, Q, or R in some planél;. In the
latter case?, Q, or R; is a face or an edge &f, Q, or R lying in IM; ; thus a non-generic tangent line is (in both
cases) tangent 1, Q, R andSin a plane containing a face or two edges of these polytopdsgenerate situation.

In the following three subsections, we bound the number nége and non-generic tangent lines. It is helpful
to keep in mind that, as observed earlier, two convex polggom plandl; (such a$? andQ;) may admit a linear
number of tangents if they intersect.

9.2.3 Generic tangent lines

Lemma 9.5. The set of supports iR, Q, andR of a generic tangent line is BQR-tuple.

Proof. Any generic tangent liné is tangent inf; to R, Q, andR; for some valud. Thus the set of supports
of £in P andQ (resp. inQ andR) is a (R, Q)-tuple (resp. dQ;, R)-tuple). Moreover th€P;, Q;)-tuple and the
(&, R)-tuple contain the same supportsQnand thus their union is @, Q;, R )-tuple, hence #QR-tuple. O

We now define theritical planeslT; in such a way that, as we will later prove, the sef®f Q;, R)-tuples is
invariant fort ranging strictly between two consecutive critical valuég. introduce two types of critical planes :
theV-critical andF-critical planes

A planerl; is V-critical if it contains a vertex oP, Q, or R, not onle. (The constraint that the vertex does
notlie onle ensures that the number of V-critical planes is finite evetteigenerate configurations.) A plaieis
F-critical relative to an ordered pair of polytopég, Q) if (see Figure 9.5) it contains a lirfesuch that

(i) ¢ lies in a plané¥ # IN; containing a face dP, and

(i) £ is tangent in¥ to polygonQ NW¥ or PNW, at some point not oh.

For simplicity, we do not require théiis tangent td? ; this leads to overestimating the number of common tangents
to P, Q, R, andS but only by an asymptotically negligible amount. Note that all lines in¥ tangent toQ are
tangent to the polygo® N'¥ when that polygon is a face or edge@flying in W. Note also that we defing; to

be F-critical wher? is tangent td® N W at some point not ot only for handling the very degenerate case where
QnNWis an edge of) and there exists a line ¥ that properly intersect® "W and is tangent t® N'Y along an
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Fic. 9.5 —Planerll; is F-critical : it contains a line that lies in a plafié containing a face o such that the line
is tangent taQ NP at a point not ore.

edge that has an endpoint kr{see Figure 9.6). Note finally thatéfe M; satisfies (i) and is tangent, #4, toPNWY
at some point not oh, then polytopeQ plays no role and thuB; is F-critical relative to(P,Q) for all polytopes
Q.

F-critical planes relative t0Q,P), (Q,R), and(R,Q) are defined similarly. A planél; is F-critical if it is
F-critical relative to pairs of polytope®, Q), (Q,P), (Q,R), or (R,Q).

The values of corresponding to critical pland% are calleccritical values We callV-critical andF-critical
eventshe ordered pairét, 0) wheret is a critical value and is a vertex or line depending on the type of critical
event. In a V-critical evenp is a vertex ofP, Q, or R that belongs td1; \ l. In an F-critical evento is a line lying
in some planél; and satisfying Conditions (i-ii) above. éxitical eventis a V-critical or F-critical event.

Lemma 9.6. There are at mosg(er g+r) V-critical events an@ (p+2g+r) F-critical events.

Proof. The number of V-critical events is at most the total numbevestices ofP, Q, andR, and hence is less
than two thirds the total number of edgesRfQ, andR. We now count the number of F-critical events relative
to polytopeg P, Q). Let W be a plane containing a face Bf and suppose that for some pldng line ¢ = Ny NY
satisfies Conditions (i-ii). Plar¥’ does not contaify because otherwise bothand/ lie in the two distinct planes
Y andr;, sof = | but then? cannot satisfy Condition (ii). Furthermofeandl, intersect or are parallel since they
both lie inMM;. Thus ifWNle is a point ther? contains it, and otherwis€ Nle = 0 and/ is parallel tole.

If WNleis a point, there are at most four candidates for afimeplaneW¥ going through¥ Nnle and tangent
to QNW or PNW at some point not ohe. Likewise, if WNle is empty, there are at most four candidates for a line
£in planeW that is parallel tde and tangent t@ NW or PN W. In either case, each candidate line is contained in a
unique plandTy, fort € [0, 11, sincel # | (¢ contains a point not o). Hence, a face d?P generates at most four
F-critical events relative t0P, Q). Therefore the number of critical events relativéQ) is at most% p since the
number of faces of a polytope is at most two thirds the numbés @dges. Hence the number of critical events
relative to(P,Q), (Q,P), (Q,R) and(R,Q) is at most§(p-+2q+r). O

The following lemma states that the critical planes havedémgred property. Late be the set of supports of
le in P andQ and letu denote soméR;, Q;)-tuple.

Lemma 9.7. Let t* be the endpoint of a maximal interv&tthroughout which @ ue is a maximal(R, Q;)-tuple.
Then t is a critical value. Moreover, there exists a V-critical evét*,v) or a F-critical event(t*,m) such that u
contains v or an edge with endpoint v, or u is contained in gte§supports of m.

The proof of this lemma is rather long and intricate ; we posit to Section 9.2.4. Note that, as stated, this
lemma only applies under the assumptions thiastmaximal and distinct frome. These assumptions are made in
order to simplify the proof of Lemma 9.7 ; we don't suggest tha lemma is false without them.

16such an interval could be open or closed, a single point oni@mvial of positive length.
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Fic. 9.6 —Planel,- contains a linen such that (iymlies in a plane # MMy containing a face dP, and (ij)mis
tangent to polygo® N'¥ at some point not oh. ; howevermmis not tangent t&@Q N Y. If the definition of F-critical
planes was not considering such pldme to be F-critical then Lemma 9.7 would not hold. Indeed theuset
supports of lind1_¢ "W is a maximal(P;, Q;)-tuple for some but not atlin any open neighborhood 6f, and,
although;- is V-critical, there exists no V-critical evefit*, v) such thau containsv or an edge with endpoimt

Lemma 9.8. Any edge or vertex d® or Q is in at most2 PQ-tuples that are maxim&lP;, Q;)-tuples for all t in
any given non-empty interV&bf R /1Z.

Proof. Letf be an element of a non-empty interdadf R /1Z andx be an edge or vertex & or Q. If x does not
intersect; then no(R, Q¢)-tuple contain. If x intersectd Ty in one point then there are, in general, at most two
lines inMM going throughx and tangent t&; andQ (see Figure 9.7(a)) ; in all cases there are at ma&.3))-
tuples containing (see Figure 9.7(b)), however at most 2 of them are maximalintersectd1; in more than one
point, x is an edge lying ifflz. Then any line iy intersectingk and tangent t& andQ; contains an endpoint of
x and thus< belongs to ndP;, Qr)-tuple.

Hence at most PQ-tuples contairx and are maximalP, Q )-tuples fort = f, and thus at most PQ-tuples
containx and are maxima(lR;, Q;)-tuples for allt in J. O

Lemma 9.9. There are at most -+ q+r) PQR-tuples.

Proof. In order to count the number of distin®,Q;, R)-tuples, we charge each maximd@, Q;, R )-tuple

to a critical event. We then show that each critical eventhigrged at most a constant number of times. It then
follows from Lemma 9.6 that there a@(p+ q+r) distinct maximal(R, Q, R;)-tuples. A maximalR, Q, R )-
tuple consists of at most two supportsRnat most three supports @, and at most two supports R, and thus
contains at most2? — 1)(2% — 1)(2? — 1) distinct subsets with at least one support in eacR,d andR. Each
maximal(R, Q;, R;)-tuple thus contains at most a constant number of disflcQ;, R )-tuples, which implies the
result.
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. N

Fic. 9.7 —Lines throughx in IM; and tangent t& andQ;.

Let s be a maximal(R;, Q;, R)-tuple and lety be any maximal connected subsetRfTiZ such thatsis a
maximal (P, Q, R )-tuple for allt € J. Letu be a maximal(R, Q;)-tuple andu’ a maximal(Q;, R )-tuple such that
the union ofu andu’ is sand such thati andu’ share at least one support@

First, suppose that= R/TZ. Thenu is a maximal(R, Q;)-tuple for allt € R/TZ. Thus each support in
intersectd1; for all t € R/1Z and thus intersects ; moreover each support inintersectd1; only onle for all
t € R/TZ except possibly for one value of SinceP andQ have non-empty interio} U Q; is not reduced to a
point for allt in some interval of positive length. For &lin such an interval, sinceis maximal, the union of the
supports iru intersectdl; in at least two distinct points. These at least two distirh{s lie onle for some values
of t by the above argument. Thus, for these values kfis the only line inl; whose set of supports contains
Henceu is the set of supports df. The same property holds ferand thuss is also the set of supports bf We
can thus assume in the following tHag R /TZ, and only count the maximaR, Q, R;)-tuples that are not the set
of supports ofe.

Interval J is thus a non-empty interval &/TZ; it can be open or closed, a single point or an interval of
positive length. Letvp andw; denote the endpoints 6f£ R/TtZ.

If scontains a vertex, or an edge with endpoint such thawv lies inly, \ le, fori =0 or 1, then we charge
to the V-critical event{w;,v). Otherwise, we chargeto an F-critical eventw;, m) wheremis a line iny, whose
set of supports containsor U'. Such a V-critical or F-critical event exists by Lemma 9.7.

We now prove that each critical event is charged by at moshstaat number of distinct maximé®, Q, R;)-
tuples. As mentioned before, that will imply the result.

Consider a V-critical ever(t*,v) that is charged by a maximé®, Q;, R;)-tuples. By the charging schems,
contains a suppoxrthat isv or an edge with endpoim andsis a maximal R, Q;, R;)-tuple for allt in at least one
of three intervals{t*} and two open intervals having as endpoint ; denote these intervalspyl,, J3.

By Lemma 9.8, at most PQ-tuples contairx and are maximalR, Q; )-tuples for allt in J;. Moreover, each of
thesePQ-tuples contains at most 2 supportsQnand each of these supports belongs to at m@3R2uples that
are maximalQ;, R;)-tuples for allt in J;. Thus at most #QR-tuples contairx and are maximalP;, Q;, R;)-tuples
for all t in J;, for eachi = 1,...,3. Hence any V-critical ever(t*,v) is charged by at most 24 distinct maximal
(R, Q,R)-tuples.

Consider now an F-critical eve(it*,m) that is charged by a maximé®, Q;, R )-tuples, and define as before
u andu’. By the charging scheme, the set of supportsnafontainsu or U’ (or both) ; suppose without loss of
generality that it containg. The set of supports @f contains at most two supportsiand at most two supports
in Q. Sinceu contains at least one supportfrand at least one support@, there are at mosf3hoices fou.

By the charging schemsi,is a maximal(R, Qt, R;)-tuple for allt in at least one of 3 intervalgt*} and two
open intervals having as endpoint ; denote Iiy,J2, I3 these intervals. It follows from Lemma 9.8 that, for each
supportx of Q in u, at most 2QR-tuples contairx and are maximalQ;, R;)-tuples for allt in J;. There are at most
32 choices for (as shown above), 2 fog; 3 fori and 2 for theQR-tuples containing. Hence any F-critical event
(t*,m) is charged by at mosf2« 32 distinct maximal(P, Q, R )-tuples.

Therefore each critical event is charged by at most a constamber of distinct maximalR, Q;, R)-tuples,
which concludes the proof. O

Corollary 9.10. There are at most (p+ q) PQ-tuples.

Proof. ReplaceR by a copy ofQ in Lemma 9.9. AnyPQ-tuple is also aPQQ-tuple, and there are at most
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O(p+q+0q) = O(p+q) of these. 0

Proposition 9.11. There are @p-+q+r) isolated generic tangent lines.

Proof. A generic tangent line is transversalé@nd to the edges and vertices dP@R-tuple, by definition and
Lemma 9.5. An isolated generic tangent line is thus an iedl&ansversal with respect to a set of edges and ver-
tices that consists of RQR-tuple and either edgeor one or both of its endpoints. The number of such sets is four
times the number dPQR-tuples, which is ilO(p+g+r) by Lemma 9.9. The result follows since each such set
consists of at most eight edges and vertices (at most twastgafipom each of the four polytopes) and thus admits
at most eight isolated transversals [BE5]. O

9.2.4 Proof of Lemma 9.7

Recall thatue denotes the set of supportslgin P andQ, and that Lemma 9.7 states the following.

Let t* be the endpoint of a maximal interval throughout whick ue is a maximal(R, Q;)-tuple.
Thent is a critical value. Moreover, there exists a V-critical evé*, v) or a F-critical event(t*, m)
such that u contains v or an edge with endpoint v, or u is cortain the set of supports of m.

We can assume thatcontains no vertex v and no edge with endpoint v, such thaswhl;- \ | because
otherwise(t*,v) is a V-critical event such that containsv or an edge with endpoim which concludes the proof.

We prove a series of lemmas that yields Lemma 9.7. Indeedrove phe existence of a limain N+ whose set
of supports containg (Lemma 9.14) such that (ip lies in a planép £ N+ containing a face oP (Lemma 9.15),
and (i) mis tangent in¥ to polygonQ NY¥ or PNW, at some point not ol (Lemma 9.16). This proves thBk:-
contains a linenwhose set of supports contaimand such thaft*,m) is an F-critical event, which concludes the
proof.

By hypothesis, for any sufficiently small open neighborh®6df t* whose endpoints are denoted tgyand
t1, uis not a maximal(R, Q)-tuple for some € N andu is a maximal(R, Q;)-tuple fort =t* or for allt € (t*,t1)
(or by symmetry for alt € (to,t*)).

We only consider in the following supports hand inQ ; polytopeR plays no role. We start by proving two
preliminary lemmas.

Lemma 9.12. Each support in u intersecfs; in exactly one point (possibly og)] for all t in any sufficiently small
open neighborhoot of t*.

Moreover, the union of all supports in u interse€tsin at least two distinct points for all # t* in N. This
property also holds for & t* if u is a maximal(R+, Q)-tuple.

Proof. Sinceuis a(R,Q;)-tuple for some in every open neighborhood tf, each support i intersectd1; for
somet in every open neighborhood of. It thus follows from the assumption thatcontains no vertex and no
edge with endpoint, such that lies onll;- \ lg, that each support in intersectd1; for all t in any sufficiently
small open neighborhodl of t*. It follows that each support in either lies inle or intersectd1; in exactly one
point for allt € N. However, no edge aflies inlg because otherwise fdenotes such an edge of, sBythen any
line tangent td? in My and intersecting contains an endpoint ofwhich is a vertex oP; thus, by definitionu
does not contair but one of its endpoints. Hence each suppot iitersectd1; in exactly one point for ali € N.

We now prove that the union of the supportsiimtersectdT; in at least two distinct points for artiye N such
thatu is a maximal(R, Q;)-tuple. Suppose for a contradiction that the union of thepeuds inu intersectdT; in
one single point for somet € N such that is a maximal(R, Q;)-tuple. Then polygonB; andQ; are both reduced
to pointv because otherwigeis not maximal (otherwise, a line ifi; tangent td?, andQ; atv can be rotated about
v until it becomes tangent @ or Q; at some other points). Thus= P, = Q is a vertex of° and ofQ because the
polytopes have non-empty interior. Hence {v} because each supporturcontainsv. It follows thatv lies onle
since each support imintersectd1; for all t € N. Moreover, sincd; andQ; are both reduced to poirt= NP =
leNQ, the setue of supports ofe is u, contradicting the hypotheses of Lemma 9.7.

Thus, ifuis a maximal(P;, Q;)-tuple for allt € (t*,t1), the union of the supports imintersectd1; in at least
two distinct points for alt € (t*,t1) and thus for alt # t* in any sufficiently small open neighborhoodtéf Also,
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A face ofPin W

Me- Qe

Fic. 9.8 —Line mis tangent td® along a face in plan® # M.

if uis a maximal(R,Q;)-tuple fort =t*, the union of the supports imintersectd1; in at least two distinct points
fort =t* and thus for alt in any sufficiently small open neighborhoodtéf O

Lemma 9.13. If u is a maximal(P«, Qi+ )-tuple then u consists of at least three supports.

Proof. Note that it follows from Lemma 9.12 thatcontains at least two supports. Suppose for a contradiction
thatu consists of only two supports. By Lemma 9.12, they inter§gdn exactly two distinct points for all in
any sufficiently small open neighborhodd of t*. Thus there exists for atle N a unique linem in M; whose
set of supports contains, moreovem is continuous in terms df Sinceu is a maximal(P+, Qi+ )-tuple, the set
of supports ofm- is u. Thus, for allt in any sufficiently smallN, the set of supports afy is u. Thus the set of
supports ofn is invariant fort € N and sincem is tangent td?+ andQ+, line m is tangent td®? andQ; for all
teN.

Hence, for alt € N, line m;, whose set of supports is is tangent td% andQ; in ;. Thusu is a maximal
(R, Q)-tuple for allt € N. Moreover,m is the unique line iM1; whose set of supports containsthusu is a
maximal (P, Q;)-tuple for allt € N, contradicting the hypotheses of the lemma. O

Lemma 9.14. There exists a line m ifly» whose set of supports contains u that is tangentt@iRd Q- along an
edge of one of them, say qf P

Proof. Consider first the case wheues a maximal(P«, Qi+)-tuple. There exists ifl= a line m tangent toR
andQ;+ whose set of supports is By Lemma 9.13, the setof supports ofn contains at least three supports, and
hence at least two supportsi(or in Q). Furthermore, the supports ofin one polytope interseél;- in distinct
points (by definition of supports). Thusintersectd- (or Q) in at least two distinct points and is tangent®o
andQ+. The result follows sinc®- (andQ;+) is convex.

Consider now the case wheuwds a maximal(R, Q)-tuple for allt € (t*,t;). Then, for allt € (t*,t;), there
exists a line irl; tangent td? andQ; and whose set of supportsiisMoreover, by Lemma 9.12, this line is unique
for eacht € (t*,t1) and varies continuously in terms DE (t*,t1). Whent tends tat*, the line tends to a liney-
in M= which is tangent t&?- andQ;« and whose set of supports containsgf its set of supports strictly contains
u thenm, is tangent td?« andQ- along an edge of one of them because the polygons are comgtheace we
can choosen = m- to complete the proof. Otherwisejs a(R«,Q+)-tuple.

We can suppose thatis a non-maxima(R-, Qi )-tuple since we already treated the case wii@samaximal.
There exists il a line tangent td%+ and Q+ whose set of supports is Sinceu is non-maximal this line is
tangent td3- andQ;+ at a shared vertex, and can be rotated about this verfax iantil it becomes tangent -
andQ;+ at some other points, which must occur becausenon-maximal ; letn denote the resulting line. The set
of supports ofn containsu andmis tangent td?+ andQ;+ along an edge of one of them because the polygons are
convex. O

Lemma 9.15. Line m lies in a planéV # I« containing a face oP.

Proof. By Lemma 9.14m contains an edge &~ ; see Figure 9.8. This edge either intersects the relatteeian
of some face oP in which case we tak® to be the plane containing that face, or it is an edge of which case
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Fic. 9.9 —mis tangent td® along a face i¥ and (a) toQ N only onle or (b) toQ along a face in¥.

we takeW to be a plane, different frofi-, containing one of the two faces Bfincident to that edge. O

Letm be the lineW N T, for all t in any sufficiently small open neighborhoddof t* ; line m is well defined
sinceW Nl is linemby Lemmas 9.14 and 9.15.

Lemma 9.16. Line mis tangent t® N or to Q NV, at some point not ol

Proof. We assume for a contradiction that limedoes not satisfy the lemma, i.en,is not tangent t&> WY or to
QNW at any point other than olk. We prove that the set of supportsrofis u and is a maxima(R;, Q;)-tuple

for all t in any sufficiently small neighborhood tf, contradicting the hypotheses of Lemma 9.7 and thus proving
Lemma 9.16.

Sincemis tangent tdQ (by Lemma 9.14)mis tangent taQ N'Y only onle (see Figure 9.9(a)), an properly
intersectsQ N'W which is then a face or an edge Qf(see Figure 9.9(b}y. Similarly mis tangent td® N only
onle, or m properly intersects it ; howev@N W is necessarily a face & by Lemma 9.15.

The following Lemmas 9.17 and 9.18 imply that the set of sufgpaf m is invariant and equal ta for all t
in any sufficiently small open neighborhoddof t*. Moreover, sincen varies continuously withandm= my is
tangent td?+ andQ;+ (by Lemma 9.14), linen is tangent td® andQ; for allt € N. Henceu is a(P;, Q;)-tuple for
all't € N. We now prove thati is a maximal(R, Q;)-tuple for allt € N.

As we have seen beform = m- is tangent td® in at least two points (by Lemma 9.14), thwe intersects its
supports in at least two distinct points. Moreover the setupfports ofny+ is u. Thus there is a unique line M
whose set of supports contaimsHenceu is a maximal(R+, Qi+ )-tuple.

By Lemma 9.12m is the unique line ifl; whose set of supports containdor all t £ t* in N. Thusu is a
maximal(P;, Q;)-tuple for allt #t* in N.

Henceuis a maximal R, Q)-tuple for allt € N, contradicting the hypotheses of Lemma 9.7 and thus conclu-
ding the proof of Lemma 9.16. O

Lemma 9.17. The set of supports ofiris u for some t in any sufficiently small open neighborhdoaoff t*.

Proof. We first prove that the supports inare supports ofry for all t € N. A support vertex iru lies onle by
Lemma 9.12 and thus lies f; for all t. A support vertex iru also lies ormby Lemma 9.14 and thus lies in plane
Y by Lemma 9.15. Hence, for dlle N, the support vertices inlie onm, and thus are supports of.

In order to prove that the support edgesliare supports ofiy, it is sufficient (by Lemma 9.14) to prove that
the support edges ofi are supports ofry. The support edges ofiin P lie in planeW (see Figure 9.9(b)) because
Y containsm and a face oP (indeed ifm intersects an edge &f not in ¥ thenm contains one of its endpoints,
and thus the edge is not a support). Thus all the support edgebe in W andm contains none of their endpoints
(by definition). Sincem lies inW for all t andm = m, line m; intersects all the support edgesmfind contains
none of their endpoints for dllin any sufficiently small open neighborhoddof t*. Hence the support edgesraf
in P are supports ofiy for allt € N.

Note that in these two situations, two edges of two distiraytopes are then coplanar (in the first case an
edge ofQ ande are coplanar, and in the later case a fac® éd coplanar with a face or an edge @J. Hence
proving this lemma is straightforward under some genersitipm assumption that excludes such situations.
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Consider the case whe@N W is a face or an edge @. Similarly as forP, the support edges ofiin Q lie in
planeW, and thus are supports of for allt € N.

Consider now the case whemeis tangent taQ NW only onle at, say, poin¥ (see Figure 9.9(a)). Thenlies
in W (sincem C W by Lemma 9.15) and also lies ; for all t (sincele C IM; for all t). Hencem, containsv for
allt € N. Moreover,m is tangent tdQ N'Y only atv for all t in any sufficiently small open neighborhoddof t*.
Hence the set of supports f in Q is invariant for allt € N.

We have so far proved that the set of supportsyofontainsu for all t € N.

We now prove that the set of supportsmfis u for somet € N. Consider first the case wheuds a maximal
(P, Q¢+ )-tuple. Then, by Lemma 9.12, the union of the supportsimtersectdli- in at least two distinct points,
thusm = mis the only line inlM- whose set of supports containsMoreover, sincel is a(R-, Qi )-tuple, there
exists a line iMl whose set of supports is Hence the set of supports w§- is u.

Consider now the case wharés a maximal R, Q;)-tuple for allt € (t*,t1). By Lemma 9.12, for alf € (t*,t1),
the union of the supports imintersectd1; in at least two distinct points, thug is the only line inM1; whose set
of supports containa. For allt € (t*,t1), sinceuis a(R,Q)-tuple there exists a line iA; whose set of supports
is u. Hence the set of supportsof is u for all t € (t*,t;). O

Lemma 9.18. The set of supports ofns invariant for t ranging in any sufficiently small open nieiigprhoodN
of t*.

Proof. Firstif m=Ilgthenm =Il¢for allt € N becauséV containsm= |l (by Lemma 9.15) andll; containd for
all t (by definition). Thus the set of supportsrof is invariant for allt € N. We now assume that # |.

Line mis tangent to polygo®- along an edge by Lemma 9.14. Thuds tangent td? in at least two points.
Hence, sinc®NW is a face ofP andmlies in ¥, eitherm properly intersect® "W or mis tangent t® N along
one of its edges. In the later case, the edge does notlliesincem # l¢, thusmis tangent td®NW¥ at some point
not onle, contradicting our assumptions. Herrogroperly intersects the face Bfin W.

It follows that, if m contains a vertex d®, then this vertex is an endpoint of a support edgeadbr all t in any
sufficiently small open neighborhood tf(indeedm lies inW and tends tenwhent tends ta*). By Lemma 9.17,
the set of supports afy is u for somet in any sufficiently small open neighborhoodtéf Hence, ifm contains a
vertex ofP, this vertex is an endpoint of a support edgelilBy assumptioru contains no edge with endpoint on
M=\ le, thusm contains no vertex oP except possibly oife (sincem lies in My+). It thus follows that the set of
supports ofn, in P is invariant fort ranging in any sufficiently small open neighborhood*ofsincem, c W tends
to mwhent tends tat* and all supports ofn lie in W).

Now consider the case whemeproperly intersect® NW which is a face or an edge &f. Similarly as forP,

m contains no vertex a except possibly oft and thus the set of supportsmof in Q is invariant fort ranging in
any sufficiently small open neighborhoodtof

Finally, consider the case whemeis tangent taQ NW¥ only onle. Then, as in the proof of Lemma 9.17, the
set of supports oy in Q is invariant for allt ranging in any sufficiently small open neighborhood gfwhich
concludes the proof. O

9.2.5 Non-generic tangent lines

We count here the number of non-generic tangent lines. Mateas mentioned before, there are no such lines
under some adequate general position assumption.

Proposition 9.19. There are at most b+ g+ r) isolated non-generic tangent lines except possibly fosétthat
lie in planes that contain e and are tangent to all four popgs.

Proof. An isolated non-generic tangent line lies in pldmefor somet and contains (at least) two distinct points,
each of which is a vertex @, Q, R, or S, or a point of tangency between the line and one of the poly&art;,
andR; ; indeed, otherwise the line can be movedlinwhile keeping the same supports.

We count first the isolated non-generic tangent lines thatato two distinct points of tangency with two of
the polygonsR, Q;, andR; in M; for somet. Consider such a liné tangent to, say® andQ; in M. Line ¢ is
non-generic and thus properly intersects a fac8 of a face or an edge & lying in ;. If ¢ properly intersects
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a face ofS or a face or an edge @& lying in M; but not entirely contained ih, thenll; is one of the at most
four planes tangent tB or S. There areéO(p—+ q) lines tangent t& andQ; in two distinct points in each of these
planes and thu®(p+ q) such lines in total. Otherwisé]; intersects each d® andSin an edge contained iR.
The supports of are thus the union of RQ-tuple, and of, in each dR andS, the edge lying ife or one (or
both) of its endpoint. It follows that at most a constant nemif such isolated non-generic tangent lines contain
a givenPQ-tuple in its set of supports. Hence the number of such lis@s most the number &Q-tuples, which

is in O(p—+ q) by Corollary 9.10. It follows that there are at m@tp+ q+r) isolated non-generic tangent lines
that contain two distinct points of tangency with two of thaygonsR, Q;, andR; in M; for somet. We obtain
similarly that there are at mo§&(p+ q+r) isolated non-generic tangent lines that contain two disfioints of
tangency with only one the polygoRs Q;, andR;.

We now count the isolated non-generic tangent lines thabaoa unique vertex d?, Q, R, or Sand a unique
point of tangency with the polygorg, Q;, andR; in IN; for somet. Each vertex of P, Q, R, or S that does not
lie onle is contained in a unique plam& and there are, in that plane, at most six lines throughd tangent t&},
@, or R.. There are thu®(p+qg+r) such lines in total. Consider now a liiéhrough a vertex onle and tangent
to B atw # v in IN; for somet. We can suppose that each@f andR; is either tangent td atw or is properly
intersected by ; indeed otherwisé is tangent to two polygons in two distinct points Qf (or R) is a face ofQ
(resp.R) or an edge not contained igthenl1; is one of the at most two planes tangen@Qdresp.R) and, in each
of these planes, there are at most two lines througd tangent t&}. If Q; (or R,) is tangent td atw such that the
support edges afin P and inQ (resp.R) are not collinear theh goes through a vertex &, Q, R, or Sthat lies
onle, and through a vertex of the intersection of two of these foplgs. There are at most eight vertice$p0,

R, andSonle andO(p+ g+ r) vertices on the intersection of two of these polytopes. &laee thu(p+q-+r)
such lines in total. Otherwis€); (andR) is an edge contained ig or is tangent t& at w such that the support
edges of in P and inQ (resp.R) are collinear ; ther is not isolated.

We finally bound the number of isolated non-generic tangaeslthat contain no point of tangency with the
polygonsP;, Q;, andR; in I, for anyt (and thus contain at least two verticesRfQ, R, andS). Consider such a
line ¢ that lies in plandT; for somet. Line £ is tangent td?, Q, andR and thus properly interseE, Q;, andR; in
planell; which is tangent t®, Q, andR. If planell; is not tangent t&, ¢ goes through an endpoint efsincel is
tangent taS) and there ar®(p+ g+ r) such lined that go through an endpoint e&nd at least another vertex@f
Q, orR. If planel; is tangent tcs, line ¢ lies in a plandT; tangent td?, Q, R, andS, which concludes the proofl

Note that there can l&(n?) isolated non-generic tangent lines that lie in a plane tanigeall four polytopes.
Consider, for instance, four polytopes that admit a comraogént plane containing edgean edgeg’ of P, and
two faces ofQ andR of linear complexity such that all the lines through a veréeach face interseetande’.
All these lines are isolated non-generic tangent lines.

9.2.6 Proof of the Main Lemma

Proposition 9.11, which handles the isolated generic tanlijges, and Proposition 9.19, which handles the
isolated non-generic tangent lines, directly yield the Maémma.

9.3 Upper bounds

We prove in this section the upper bounds of Theorems 9.1,88@ 9.3. The lower bounds are proved in
Section 9.4. Considéek pairwise distinct polytopeBs,. .., P with ng,..., ng edges, respectively, andedges in
total.

Lemma 9.20. For any edge e of;, there are @n; +n +ny) sets of open edges, chosen flBMP;, P, andPp,
that admit an isolated transversal that intersects e andiigyent to these four polytopes.

Proof. Any isolated transversal to a set of edges is isolated witheet to the set of all its supports. It is thus suffi-
cient to bound the number of sets of open edges, chosenHydry, Py, andPy, that are intersected by an isolated
line that intersects and is tangent to these four polytopes. The Main Lemma stlaé¢shere ar©(n; + ny + ny,)
isolated lines intersectingand tangent t®;, P;, P, andPy, excluding those that lie in planes that contaiand



114 CHAPITRE 9. LINES AND FREE LINE SEGMENT TANGENT TO POLYTOPES

are tangent to all four polytopes. Any of thedén; + n; + ny,) isolated lines intersects at most two open edges in
any polytope. Thus there a@n; + n +ny) sets of open edges (chosen frenP;, P, andPy,) that are intersec-
ted by one of these isolated lines. Now consider any isolatedhat lies in a plane that contairsind is tangent

to all four polytopes. This plane contains all the open edbesare intersected by the isolated line. Thus these
edges (and any subset of them) admit no isolated transversal O

Lemma 9.21. A minimal set of open edges and vertices that admit an istlasversal consists of (i) two
vertices, (ii) one vertex and one or two edges, or (iii) twweg, or four edges.

Proof. Consider a minimal set of open edges and vertices that admitsolated transversal. The elements are
necessarily distinct because the set is minimal. If the @etains two vertices, it contains no other element since
the two vertices admit a unique transversal.

Suppose now that the set contains one vertex. None of the eggas contain the vertex because otherwise
such an edge would be redundant. Thus, the vertex and anyesédsfine either a line, and thus admit an isolated
transversal, or they define a plane. If none of the other edg@sect that plane in a unique point, the vertex and
all open edges admit zero or infinitely many common transiers contradiction. Thus there exists an edge that
intersects the plane in a unique point. Hence, the vertex\@aampen edges admit a unique transversal, and the
minimal set contains no other element.

Suppose finally that the set only contains open edges. Thaakazation of the transversals to a set of line
segments [BEIL05] shows that either two, three or four of these line segmadmit at most two transversals, or
that the set of common transversals to all the open line setgoan be parameterized by an open set of parameters
in R?, R or R/TZZ. In the latter case, the edges admit no isolated transyersahtradiction. Hence, the minimal
set of edges consists of two, three or four edges. (Notewadt three edges may admit an isolated transversal if
that transversal contains one or two of the edges.) O

We can now prove the upper bound of Theorem 9.3.

Proposition 9.22. There are @n’k?) minimal sets of open edges and vertices, chosen from soyiepes, that
admit an isolated transversal that is tangent to these pplgs.

Proof. We bound the number of minimal sets depending of their typeraing to Lemma 9.21. First, there are
O(n?) pairs of vertices, pairs of edges, and sets of one vertex a@edge. Hence, at madtn?) such pairs admit
an isolated transversal.

Consider a minimal set of one vertex and two open edges, olios®a some polytopes, that admit an isolated
transversal that is tangent to these polytopes. The opegsatiy not contain the vertex because otherwise they
admit no isolated transversal. Thus the vertex and eachasfges a plane. For each of t@¥n?) planes defined
by a vertex and an open edge not containing it, thereCdke lines in that plane that are tangent to one of the
polytopes at some point other than the vertex. Hence ther®@?k) sets of one vertex and two edges, chosen
from some polytopes, that admit an isolated transversalghiangent to these polytopes.

It is straightforward to show that three open edges admitalated transversal only if the line containing
one of the edges intersects the two other edges. Since anintersects at most two open edges in any ofkhe
polytopes, there ar®(nk?) sets of three open edges that admit an isolated transversal.

Consider now the case of four edges, chosen from at most plotgtopes, that admit an isolated transversal
that is tangent to these polytopes. The two edges chosertlt@same polytope belong to the same face, and the
isolated transversal lies in the plane containing that.fReeh of the two other open edges intersects that plane in
one point, because otherwise the four open edges admit zérfinitely many transversals. For each of {0én)
planes containing a face of one of the polytopes, and eadied(n) edges intersecting that plane in exactly one
point, there are at mosk2ines in that plane that contain this point and are tangewnt® of thek polytopes at
some other point. Hence there &&?k) sets of four open edges, chosen from at most three polyttzsadmit
an isolated transversal that is tangent to these polytopes.

We finally bound the number of sets of four edges, no two chfreen the same polytope. By Lemma 9.20
and by summing over ali edgese of the polytopes, the numbér of sets of four open edges, chosen from four
polytopes, that admits an isolated transversal that isstaing these four polytopes satisfies
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T<n Z C(nj+m+nm),
j<I<m

whereC is some constant. Since eaghl <i <Kk, appear:{kgl) times in the sum, it follows that

T<Cn kni (k;1> —Cr? (k;1>

IRNES

soT is in O(n?k?) as claimed. O

The above result implies the following upper bounds and iti@dar those of Theorem 9.1.

Proposition 9.23. There are @n?k?) connected components of maximal free line segments tatwgatieast four
of the polytopes. This bound also holds for connected coemgsrof possibly occluded lines tangent to at least
four of the polytopes. Furthermore, the same bound holds@ated such segments or lines.

Proof. We prove the proposition for possibly occluded lines tangerat least four of the polytopes; the proof
is similar for maximal free line segments. By PropositioR2) .there aré(n’k?) minimal sets of open edges and
vertices, chosen from some polytopes, that admit an isblagensversal that is tangent to these polytopes. The
bound on the number of connected components thus follows fihe fact that any connected component of lines
tangent to four polytopes contains an isolated line. Indaag non-isolated line can be moved while keeping the
same set of supports until (at the limit) the line interseatew edge or vertex. During the motion, the line remains
tangent to all four polytopes since it keeps the same supextcept at the limit) ; if the line has more than one
degree of freedom, this can be repeated until the line besisonkated. O

We now prove the upper bound of Theorem 9.2. We start by twingreary lemmas.

Lemma 9.24. Four possibly intersecting convex polygonsRA admit at most a constant number of connected
components of line transversals.

Proof. Consider the usual geometric transform where a lin®&3rwith equationy = ax+ b is mapped to the
point (—a,b) in the dual space (see e.g. [SA95, §8.2.1]). The transwetsal convex polygon are mapped to a
region bounded from above by a convermonotone curve and from below by a concaw@onotone curve ; such

a region is called stabbing region, and the curves are esfeéoras the upper and lower boundaries of the stabbing
region. The transversals to four polygons are mapped tatkesiection of four stabbing regions. There exists no
transversal of a given slope if and only if the lower boundzrg stabbing region lies above the upper boundary of
another stabbing region at that slope. Two such boundatiesect in at most two points, and thus the transversals
to four polygons form at most a constant number of conneatetponents of transversals. O

As in Section 9.2, leP, Q, R, andS be four polytopes ifR3, with p, g, r, ands > 1 edges, respectively, and
letebe a closed edge &

Lemma 9.25. There are Qp+ g+r) connected components of lines intersecting e and tangéht@ R and S.

Proof. As in the proof of Proposition 9.23, any connected componélibes intersecting and tangent t®, Q,
R, andS contains an isolated line. The Main Lemma thus yields thexietlareO(p+ q-+r) connected components
of lines intersecting and tangent t®, Q, R andS except for the components that only contain isolated lihas t
lie in planes that contaiaand are tangent to all four polytopes.

We show that there are at most a constant number of connemtegbnents of lines intersectimgand tangent
to P, Q, R andS that lie in planes that contaimand are tangent to all four polytopes. There may be infinitely
many such planes that intersé4tQ, R andS only onlg but all the lines tangent to the four polytopes in all these
planes belong to the same connected component. Besidesiiae®s there are at most two planes contairing
and tangent to all four polytopes. In any such plane, thesltaagent to the four polytopes are the transversals to
the four polygons that are the faces, edges, or verticBs@f R, andSlying in the plane. Lemma 9.24 thus yields
the result. O

We can now prove the upper bound of Theorem 9.2.
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Fic. 9.10 —Lower bound examples for Lemmas 9.27 and 9.28.

Proposition 9.26. Given 3 polytopes with n edges in total and one polytope with m edipese are Gmn)
connected components of lines tangent to the four polytopes

Proof. Let S denote the polytope witm edges. First, ifs consists of a single point, it is straightforward to show
that there aré(n) connected components of lines tangent to the four polytopéserwise, by summing over
all the edges o8, Proposition 9.25 yields that the number of connected carapts of lines tangent to the four
polytopes isO(mn). O

9.4 Lower bounds

We provide in this section the lower-bound examples neededlieorems 9.1, 9.2, and 9.3. The following
proposition proves the lower bound of Theorem 9.2.

Lemma 9.27. There exist four disjoint polytopes of complexity n such tha number of common tangent lines is
finite andQ(n?). There also exist two polytopes of complexity n and two ppa of complexity m such that the
number of common tangent lines is finite a@nn).

Proof. We consider four planar regular polygoRs Q, R, and S, each withn vertices, embedded iR3. P is
centered at the origin and parallel to yeplane,Q is obtained fronP by a rotation of anglé about thex-axis,
andR andS are obtained fronP andQ, respectively, by a translation of length 1 in the positiv@irection (see
Figure 9.10). We transform the polygoRsand Q into the polytoped® andQ by adding a vertex at coordinates
(g,0,0). Similarly, we transform the polygori®andSinto the polytopef andS by adding a vertex at coordinates
(1+¢,0,0).

For ¢ sufficiently small, the lines tangent B) Q, R andS are the lines through a vertex BN Q and a vertex
of RN'S. SincePNQ andRN Shave 4 vertices each, there ar@4tangent lines. Now, moving andS by 2 in
thex direction ensures the disjointness of the polytopes whigsgrving the existence of the tangentsig small

enough.
ReplacingR andSin the above construction by regular polygons each witrertices yields th&(mn) lower
bound in the case of two polytopes of complexitgnd two polytopes of complexity. O

We now prove the lower bounds of Theorems 9.1 and 9.3. Thewolh proposition directly yields these
bounds since the number of isolated tangents to any foureoptiytopes is less or equal to the number of sets
of open edges and vertices in at most four polytopes thattagmisolated transversal that is tangent to these
polytopes.

Lemma 9.28. There exist k disjoint polytopes of total complexity n su@kt the number of maximal free line
segments tangent to four of them is finite &(a’k?). Moreover these segments lie in pairwise distinct lines.
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Proof. The lower bound example is similar to the one with four potitae For simplicity suppose thatandk
are such thaf and'ﬁ are integers. We first take gregular polygomA; in the planex = 0. Next we consider a
copy, By, of A; scaled by a factor ofl + €), and on each edge &, we place;'j points. PolygorB;, 1 <i < ;'j, is
constructed by taking thé& point on each edge &. If € is small enough, the intersection pointsfafandB; are
outside the other polygor; for 1 < j < % andi #£ j. Now theA;, for 2 <i < L—‘l, are constructed as copies/f
scaled by a factor 4 (€ (see Figure 9.10). For the moment, all polygons lie in pbare0. We now construct 4
families of ¥ polygons each :

- B is a copy ofA translated bye in the negativex direction

- Q is a copy ofB; translated bye in the positivex direction

- R is a copy ofB; translated by % i€ in the positivex direction

- §is a copy ofA translated by % i€ in the positivex direction
Any choice of four polygons, one in each fami, Q;, R and Sy, reproduces the quadratic example of
Lemma 9.27 with polygons of siz@ and thus with total number of tangents larger tIQ§|)44(E)2 = %“2. Fur-
thermore the lines tangent @, Q;, R andSy are only occluded by andSy for i’ > i andm’ > m, that is,
beyond the portion of the tangents containing the contaatgaor hek polygons can be transformed irk@onvex

polyhedra as in Lemma 9.27. O

9.5 Algorithm

Using the sweep-plane algorithm outlined in Section 2.1 cese compute ifD(n’k?logn) time all minimal
sets of open edges and vertices, chosen from some of th@pesytthat admit a possibly occluded isolated trans-
versal that is tangent to these polytopes. Now, for some efeHines, the segment joining the contact points
with the polytopes is free. We can use standard, but complicaay-shooting data structures in order to deter-
mine which of thes@(n?k?) segments are free ; this can be don®ifog?n)-time per query usin@((nk)2+¢)
preprocessing time and storage [AS96].

We present in this section a solution that u€¢s?k?logn) time andO(nk?) space. We adapt the algorithm
outlined in Section 2.1 to directly compute the minimal s#tedges and vertices admitting an isolated line trans-
versal that contains a free segment tangent to their ragpguilytopes. Our algorithm has better time and space
complexities than the previously mentioned approach, anéadily implementable. Moreover, the space com-
plexity drops toO(nk) if no occlusion is taken into account. Precisely, we proweftillowing theorem which is
more powerful, though more technical, than Theorem 9.4 aedtty yields it.

Theorem 9.29. Given k polytopes ifR® with n edges in total, we can compute irirBk?logn) time and Qnk)
space all the minimal sets of open edges and vertices, cHazansome of the polytopes, that admit an isola-
ted, possibly occluded, line transversal tangent to thesigtgpes. We can also compute, irirBk?logn) time
and Q(nk?) space, all the minimal sets of open edges and vertices thmit ah isolated line transversal contai-
ning a maximal free segment that is tangent to these polgtdagathermore, the algorithm reports which of the
transversals contains such a free line segment.

For ease of presentation, we describe a simplified versigheoélgorithm in which we assume that the po-
lytopes are in generic position; see Section 9.5.2 for lethising the same techniques as in Section 2, it is
straightforward though tedious to generalize the algoritbr arbitrary situations. We also only detail the algo-
rithm for the case of minimal sets of four edges, no two chdemn the same polytope ; the other sets of at most
four edges and vertices can be computed similarly.

9.5.1 Algorithm overview and data structures

The input to our algorithm is a set of possibly intersectiotytopes structured in a standard way so that classic
incidence queries can be performed in constant time (semdtance, [BY98, §9.1]).

We consider each polytope edgein turn and sweep a plane around it between its two incidergd. During
the sweep we create and maintain the following objects.
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Combinatorial polygonsThe sweep plane intersects each polytope in a (possiblyy@rophvex polygon whose
vertices correspond to polytope edges. For each of theggqmd, we maintain the set of vertices, each represented
by its corresponding polytope edge, in a data structure allatits logarithmic-time vertex insertion, deletion
and look-up operations, as well as ray-shooting queriess @&n be done with a balanced binary search tree
(see [O’'R98, §7.9.1]).

Combinatorial bitangentsThe algorithm keeps track of the lines contained in the swsape and tangent to
two polygons. The polytopes properly intersected by suchamgpent between its two supports arehteckers

A bitangent is represented by (pointers to) its two suppants a set of its blockers, ordered by polytope index,
stored in a balanced binary search tree.

Polytope edgedle associate with each polytope edge a list of pointers tadhginatorial bitangents it supports
in the current sweep plane.

Critical eventsThe sweep stops at critical events at which time combirgtpdlygons and bitangents are updated.
In addition to the V- and F-critical events defined in Sect®B.3, we introduce the following two new types
of events at which the set of blockers of some combinatoitahigents may change. #critical event occurs
whenever three bitangents, supported by@R-tuple, become aligned (see Figure 9.11b). lAgritical event
occurs when the sweep plane contains a point of interselotitmeen an edge and a face of two (distinct) polytopes
(see Figure 9.12).

Each event is represented by a data structure providinggrsito the primitives that define it : a vertex for a
V-event, a bitangent and a face for a F-event, three bitéaadena T-event, and a face and an edge for a I-event.
In addition, for a T-event, we store a bit of information sfpgng which of the line transversals tg and the three
support edges defines the T-event. Note that the criticalkevaf each critical event can be computed in constant
time from the information associated with the event; it tdoes not need to be explicitly stored.

Finally, critical events are sorted in the order in whichytla@pear during the sweep and stored inesiant
gueuesupporting insertion and deletion in logarithmic time.

9.5.2 Generic position assumption

Our generic position assumption is tihé ordered set of events does not change under any arlytariall
perturbation of the input polytopedhis assumption corresponds to (i) the events are gerart (i) no two
events occur in the same sweep plane, except for F- anddatétvents induced by the same pair of edge and face.
The genericity of the events is ensured by (but not charaettby) the following geometric conditions :

V-critical events no vertex lies on a line containing another edge,
F-critical events :no two edges in two distinct polytopes are coplanar,

I-critical events :if an edge intersects a face of another polytope, it doesaueply and not on a line containing
another edge,

T-critical events :any four lines containing polytope edges admit zero or teogversals.

9.5.3 Initialization

For each new sweep, we initialize the event queue and cat#tieicombinatorial polygons and combinatorial
bitangents as follows.

Combinatorial polygonsComputing the combinatorial polygons in the initial swedgng can easily be done in
O(n) time.

Combinatorial bitangentsThe bitangent lines to two polygosandQ in the initial sweep plane through a given
vertex of P can be computed by a binary search@in O(logn) time. The blockers of a given bitangent can be
found using one ray-shooting query per combinatorial pofydor a total time oD(klogn). Altogether, theD(nk)
combinatorial bitangents can thus be compute@(nk?logn) time.

Event queueThere areO(n) V-critical events andD(nk) I-critical events, since an edge intersects a polytope in
at most two faces. Th®(nk) edge-face intersection points are computed and storedimioee the beginning of
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Fic. 9.11 —(a) The sweep plane in which the combinatorial bitangertt aifpport edges; ande, is created. (b)
The sweep plane at a T-critical event induced by the threménts with support edgesei, e, andes. (c-d) A
line ¢ that defines an F-critical event. (d) The F-event defined dgcurs simultaneously with an I-critical event.

the first sweep ; this computation can be done by using brute fim O(n?) time, and withO(nk) space, since it
is done once for all the sweeps. For each sweep, all the V--aritidal events can then be inserteddgnklogn)
time. For each of th©(nk) combinatorial bitangents, we also insert F- and T-criteants inO(klogn) time as
explained in Section 9.5.4 (Lemma 9.30). In total, initialy the event queue tak€¢nk?logn) time per sweep.

Thus, initializing all the combinatorial polygons, bitags, and the event queue can be dor®(ink? logn)
time per sweep plu®(n?) time overhead for a total @(n’k?logn) time as announced in Theorem 9.29.

9.5.4 Updating the event queue

Every time a new combinatorial bitangent is created, we edmand insert into the queue new F- and T-events
as described below. Lej ande; denote the two support edges of a new combinatorial bitsngenlly, denote
the critical plane at which the new combinatorial bitangemtreated.

New T-critical eventsSee Figure 9.11a-b. Consider all the bitangents hagiraps support edge and compute the
set of support edges (distinct froep andey) of all these bitangents. Compute the intersection of thissth the
similar set fore, ; this can be done i®(klogk) time by ordering the edges by their indices. For each egge
in that set, insert a T-event for each line transversdl,te;, e, andes if the transversal is tangent to the three
polytopes containingy, &, andes ; this test can be done in constant time. Each of the at kiosertions into the
event queue taked(logn). Thus computing and inserting the new T-critical eventesd klogn) time per new
bitangent.

New F-critical eventsConsider in turn each of the four faces incident to one of Wwegupport edges. L& and

f denote the considered edge and face. We compute a candidagmf in constant time, as follows. Compute the
line ¢ (if any) that lies in the plan&’ containingf and goes through ande;, (see Figure 9.11c). is tangent to
the polytope containingp, ¢ defines an F-event. We reject this F-evertdoes not interse@ (in such a case, the
edgee; does not intersect the sweep plane at the F-event and thuasitiignatorial bitangent te; ande, would
have been deleted at some V-event before the F-event). Weliatsard this F-event if it occurs at the critical value
to where the (considered) bitangent is created (th&ljscontains?) ; we discard such F-events because when a
bitangent is created at an F-event, we do not re-insert the $aevent into the queue. We thus retain at most four
F-events, at most one for each of the four faces incident éoobthe two support edges. If no F-event is retained,
the bitangent will be deleted at a V-critical event and no keeritical event is created. If more than one F-event
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is retained, we need only keep the first one, since, as we smih Section 9.5.5.2, the combinatorial bitangent
will be deleted at the first of these events.

Again, letf denote the face incident to edggethat induces that F-critical event. If the other supportedg
intersects facd (see Figure 9.11d), then this event will be treated as aitit@lrevent and again we create no new
F-event. Otherwise, we insert the F-event into the que@iogn) time. We thus get the following lemma.

Lemma 9.30. Each time a combinatorial bitangent is created, the everugucan be updated in(®logn) time.

9.5.5 Processing events

9.5.5.1 V-critical events

Let v denote the vertex that induces a V-critical event. As theepw@ane reacheg all edges incident te
start or cease to be swept; we call the forrsrting edges and the latteéerminatingedges. LeQQ denote the
polytope to whichv belongs and lefily, be the sweep plane containimgWhen processing a V-event, we perform
the following operations.

Create and delete combinatorial bitangenBippose first that the critical plane througproperly intersect§).
Consider in turn each combinatorial bitangent supported tgrminating edges, incident tov and leth denote
the other support edge of this bitangent. We check all stadgdges incident te to find the edges such that the
line in My, ¢ throughes andh is tangent taQ for € > 0 arbitrarily small. We create a new combinatorial bitarigen
and delete the old one; in fact, we simply replacdy e; in the combinatorial bitangent, create a pointer from
edges; to the bitangent, and update the event queue. After hanthistast bitangent supported by edgedelete

all the pointers frong to the bitangents.

The critical plane througtcontaingO(k) bitangents through, thus, by continuity, at mo€(k) combinatorial
bitangents are deleted and created. Each deletion andocréaites linear time in the degreewplus O(klogn)
time for updating the event queue (Lemma 9.30). Hence, sheeeum of the degrees of the vertice©is), this
step take©(nk?logn) time in total for all non-extremal V-events.

Suppose now that the critical plane througis tangent tdQ and that all edges incident toare starting. For
each edge not incident to we can decide in constant time whether it supports a bitatrigeoughv in the critical
plane througlv. If so, we check, for each edge incidentaf the line in planelly, ¢ that goes through these two
edges is tangent tQ for € > 0 arbitrarily small. If so, we create a new combinatoriabbgent. By continuity,
O(k) bitangents are created in total tif®n+ kd) whered is the degree of. For each of these newly created
bitangents, we compute its set of blockers in (brute foég)) time and update the event queugdfklogn) time
(Lemma 9.30). This take®(nklogn) time per event, heno®(nk?logn) time per sweep since there are at most
two sweep planes tangent to any polytope.

Finally, if all edges incident te are terminating, we delete all tli&k) bitangents supported by these edges;
for each bitangent, deleting its blockers and the pointanfthe edge not incident tocan be done i©O(k) time.
Hence, this take®(k?) time per critical event an@(k®) time per sweep.

Update the combinatorial polygon associated w@hThis takesO(logn) time per polytope edge incident to
thusO(nlogn) time in total for all V-events.

Hence, processing all V-events take@k?logn) time per sweep.

9.5.5.2 F-critical events

We process an F-critical event as follows. begnd f denote the bitangent and face associated with the event.
Let e; ande; denote the two support edgesko$uch that; is the edge that belong tb(see Figure 9.11c-d). By
construction of F-events (see Section 9.564)Joes not intersect fack(see Figure 9.11c), thus the bitangbris
deleted and a new combinatorial bitangent is created.

Bitangentb is removed from the lists of bitangents supportedebynde, in O(k) time. The support edges
of the new bitangent are» and the edge] # e; of f that is intersected by the line in the platg(containingf)
throughle ande, (see Figure 9.11c). This edggis also one of the two edges adjacenetan its combinatorial
polygon. Edgeg; can thus be computed iB(logn) time. As usual, the new bitangent is added to the lists of
bitangents supported b} ande,. We then compute all the blockers of this new bitangent byopering one
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Fic. 9.12 —I-critical event.

ray-shooting query per combinatorial polygon, for a toitalet of O(klogn). We finally update the event queue in
O(klogn) time (Lemma 9.30).

There areO(k) F-events associated to each polytope face, @) F-events per sweep. Hence, the total
time complexity for processing all F-eventsO$nk?logn) per sweep.

9.5.5.3 I-critical events

An l-event is associated with a fadeof some polytope® and an edge; of some other polytop€. Let
p denote the point of intersection betweérande;. The sweep pland],, that containgp intersects the two
polytopesP andQ in two polygonsR, andQ,. See Figure 9.12. Poimtlies on an edge d®, ; the two endpoints
of this edge are the intersection of two edge$pfayey ande,. These two polytope edges can be computed in
O(logn) time using the combinatorial polygon associated with

Create or delete combinatorial bitangentkthe two polygons?, andQ, are tangent ap (see Figure 9.12a), the
two combinatorial bitangents whose pairs of support edgeéeg, e;) and(e;, e2) are either created or deleted at
the I-event. If these bitangents appear in the list of bitantg having edge; as support, we remove them from
the list and delete them ; this can be done brute ford@(kj time. Otherwise we create these two combinatorial
bitangents. We compute their set of occlude®{klogn) time by intersecting the bitangents with all the polytopes
using their associated combinatorial polygons. Finally,update the event queueQ@tklogn) time.

Update sets of blocker&onsider now each of th@(k) bitangents having; as a support edge except for the two
bitangents that might have just been created. We updatetits blockers as follows. First, note that only polytope
P may have to be added to, or removed from, the set of blockevs.Sltuations occur : either the geometric
bitangent segment joining the two support edgeBljnproperly intersects polygoR,, or not. In the first case
(e.g., segmenpqin Figure 9.12), polytop® was and remains a blocker of the bitangent. In the secondease
segmentpr in Figure 9.12) P has to be either removed from, or added to, the set of blockéis can be done
in O(klogk) time by searching foP in the set (recall that polytopes are ordered by their index binary search
tree).

Processing an l-event thus takeglogn) time. Since any polytope edge intersects any other polyitopé
most two points, there a@(nk) I-events which can be processeddnk?logn) time in total per sweep.

9.5.5.4 T-critical events

Suppose that on the line transversaétpe,, e3 andle (the one associated to the T-event) edge®,, e3 are
met in that order at pointgy, pz2, ps. Let Q; be the polytope containing, 1 <i < 3.

Update sets of blockerklpdate the occluder set for the bitangent with support edgaades by either removing
Q2 (if it appears in the set) or addin@, (if it does not appear in the set) ; this can be don®(logn) time.

Output.First determine if the segmepi ps is unoccluded by checking if the set of blockers of the bieamgvith
support edges; andes is empty or reduced tQ». If so and if the segment intersects the reference edtieen it
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is a free segment transversal to the four edges e, €3. In order to report each such transversal exactly once, we
report it only if the reference edgeis smaller thare, for some global ordering of all edges. This can be done in
constant time.

There areD(nk?) T-critical events per sweep (see the proof of Propositi@2)9.thus all the T-events can be
processed iD(nk?logn) time per sweep.

9.5.6 Complexity

Note first that we assume a model of computation in which bedrdkgree algebraic polynomials may be
evaluated in constant time. See [ELD6] for a detailed description of the predicates concerfimgtransversals
that are used in this algorithm.

In this model of computation, we have describe@l(@a’k?logn)-time algorithm for computing all the minimal
sets of edges, no two chosen from the same polytope, that adnisolated line transversal containing a free
segment that is tangent to all these polytopes. As mentieaelier, the sweep-plane algorithm can be easily
modified to report all types of minimal support sets.

The space used by the algorithm@$nk?) in the worst case. To see this, first notice that storing tmebioa-
torial polygons and the V-, F- and I-critical events u€gsk) space. There are al€(nk) combinatorial bitangents
in any sweep plane. Storing the combinatorial bitangents taquire®©(nk?) space since, in the worst cag¥nk)
of them may be intersected (k) polytopes. Furthermore, there may®gk?) T-events in the queue since each
of the ©(nk) bitangents may share a support waik) other bitangents. This yields the bounds of Theorem 9.4
for computing minimal free segments.

Notice that, with a slight modification to the algorithm, amalincrease in the time complexity, we can reduce
the storage requirement of the T-eventsmk). To do this we maintain the bitangents sorted by polar angle
around each vertex of the combinatorial polygons, whichezsily be done since the cyclic ordering changes only
at T-critical events or when a bitangent is created or dél&dece two bitangents become aligned only when they
are neighbors in this cyclic ordering, we only need to maintiae T-events for pairs of consecutive bitangents and
there can only b©(nk) of these at any one time.

Finally, the bounds of Theorem 9.4 that concern the comjautaf potentially occluded isolated lines tangent
to polytopes are obtained by noticing that we need not maitie sets of blockers of the bitangents which reduces
the space requirements for the combinatorial bitange ).

9.6 Conclusion

We have presented a tight bound on thenberof (connected components of) lines and maximal free line
segments that are tangent to at least four ankgmgssibly intersecting polytopes in arbitrary position. idipiem
that we leave open is to prove that the same bound holds faotdinatorial complexitef the set of all maximal
free line segments amorkgpolytopes.

We have also shown how to compute in near-optimal worst-ttameall theminimalfree line segments that
are isolated transversals to their set of supports and taigehe corresponding polytopes. We believe that our
algorithm can also be made to report all connected sets afiralrfree segments that are transversal to the same
set of edges. A problem that we have not solved, however,dertgoute in the same time and space complexities,
respectively, the polytopes supporting the endpoints®ttirrespondinghaximalfree line segments.



Chapitre 10

Towards an implementation of the 3D
visibility skeleton

Cet article court présentant une vidéo va étre publiée dangrbceedings d23th ACM Annual Symposium on
Computational Geometfz ELW07].

Abstract

In this note we describe the contents of a video illustrangalgorithm for computing the 3D
visibility skeleton of a set of disjoint convex polytopeshelvideo can be found attp://www.
cs.mcgill.ca/~Izhang15/video/ with file namesocg07visidemo.mov

10.1 Introduction

The 3D visibility skeleton is a graph whose vertices coroespto the maximal free line segments that are
transversal to four edges of at least three distinct poBgagmd tangent to those polytopes;; its arcs correspond to
sets of maximal free line segments that are tangent to tholytopes [DDP97]. The visibility skeleton has been
used for visibility computations such as computing shadowundlaries [DDP99, DD02].

This video demonstrates a sweep plane algorithm for caqgiuhie vertices of the 3D visibility skeleton of a
set of polytopes in 3D [Goa04, BDm7].

10.2 The algorithm

The input of the algorithm is a set &fdisjoint convex polytopes in general position withedges in total.
The output of the algorithm is the set©fn?k?) vertices of the 3D visibility skeleton of the input polyhadihe
algorithm, which runs if©(n’k?logn) time, can also be used to compute the arcs of the skeleton.

The algorithm performs a rotational plane sweep around edgee of each polytope, sweeping from one
incident face of that edge to the other incident face. Theepvpdane intersects the polytopes in at modisjoint
convex polygons, which change their shape as the sweep mtates. Figure 10.1(a) shows one position of the
sweep plane, drawn as a faint grid, as it rotates around @dfjpolytopeC. PolytopesA andB are intersected by
the sweep plane. Polytoge lies above the plane, with edgein the plane. Polytop® lies below the plane.
Figure 10.1(b) shows the view inside the sweep plane. ThetquésA and B intersect the plane in convex
polygonsA and B, which support 4 bitangents. Figure 10.2 shows the 2D \ifsitskeleton corresponding to
Figure 10.1(b). The circular cycle of directed arcs gives ahdering of the 4 bitangents around polygbnthe
cycle of the remaining directed arcs gives the ordering eflhitangents around polyg@h

During the sweep, the algorithm maintains the 2D visib#ikgleton of the intersected polytopes [PV96a]. The
2D visibility skeleton for the convex polygons in the inlteweep plane is computed and then used to determine
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(a) (b)

Fic. 10.1 —(a) One position of the sweep plane. (b) The view inside theegpwplane.

Fic. 10.2 —The 2D visibility skeleton for Figure 10.1(b).

the initial queue of critical events that will occur duriniget sweep. The sweep planes at which these critical
events occur are calleent planesAt a critical event, the 2D visibility skeleton may changgetbpology and the
algorithm updates it, as well as the queue of critical events
There are three types of critical eventsVAeventoccurs when the sweep plane encounters a polytope vertex
that supports one or more bitangents in the sweep plarfeeyentoccurs when two or three bitangents become
colinear. AnF-eventoccurs when a bitangent becomes colinear with a face of dquey There ar®(nk?) events
per sweep, and they can be computed and process2akilogn) time in the usual sweep algorithm paradigm.
The vertices of the 3D visibility skeleton are captured dgrihe sweep, as they correspond to \he, F-
events whose associated bitangents intersect theedttigé the sweep plane is rotating about. After theweeps,
a description of the arcs of the 3D visibility skeleton cancbenputed, although the details are not illustrated in
the video.

10.3 Implementation issues and technical details

Although the algorithm as described in [BDD7] works for any set of possibly intersecting convex poly-
topes in any configuration, the current implementation ireguthat the polytopes satisfy certain general position
assumption'$.

18The precise definition of our general position assumptisrstriaightforward but lengthy. It guarantees, for
example, that each critical event corresponds to a unigsiéiqo of the sweep plane.
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The key predicate of the sweep algorithm compares two evanesp, to order their occurrences in the sweep.
A detailed study of this predicate and its degree is giverEliL["06].

The algorithm was implemented in C++ using tBEAL [CGA] library. We used th€ ORElibrary [COR] to
perform exact comparisons of algebraic numbers. To contpet2D visibility skeleton we used the CGAL-based
package due to Angelier and Pocchiola [AP03a], based on thed$ Flip Algorithm [AP0O3b, PVV96a].

The graphical output was produced using @@omviewsoftware [Geo] through the interface provided by the
CGALlibrary. We took snapshots of the Geomview window displayilevrotating the viewpoint to provide a 3D
view of the objects in the display window. Finally, we usbtbvie [iMo] to assemble all the snapshots together
into the final video. We used thudacity[Aud] software for the audio.
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Chapitre 11

The expected number of 3D visibility
events is linear

Cet article est paru dar®iAM Journal on ComputinfPDE* 03] ainsi que dans la thése de X. Goaoc [Goa04].
Abstract

In this paper, we show that, amongsiniformly distributed unit balls ifR3, the expected number of
maximal non-occluded line segments tangent to four balisésr. Using our techniques we show
a linear bound on the expected size of the visibility compedtata structure encoding the visibility
information of a scene, providing evidence that the storaggirement for this data structure is
not necessarily prohibitive. These results significantipiove the best previously known bounds
of O(n%/3) [DDP02].

Our results generalize in various directions. We show thatinear bound on the expected number
of maximal non-occluded line segments that are not too dogbe boundary of the scene and
tangent to four unit balls extends to balls of various butrstad radii, to polyhedra of bounded
aspect ratio, and even to non-fat 3D objects such as polyafdrmunded aspect ratio. We also prove
that our results extend to other distributions such as thesBo distribution. Finally, we indicate
how our probabilistic analysis provides new insight on tkpeeted size of other global visibility
data structures, notably the aspect graph.

11.1 Introduction

Visibility computations are central in computer graphipplecations. Computing the limits of the umbra and
penumbra cast by an area light source, identifying the sktookers between any two polygons and determining
the view from a given point are examples of visibility quertbat are essential for the realistic rendering of 3D
scenes. In global illumination algorithms, where the flowiglt in a scene is simulated according to the laws of
geometrical optics, visibility computations are exceslicostly. In fact, more than half of the overall computatio
time can routinely be spent on visibility queries in radigsimulations [HSD94].

One approach to speeding up rendering is to store globdliltigiinformation in a data structure which can
then be efficiently queried. The visibility complex, a péot of the set of maximal free line segments, has been
proposed as a unified data structure encoding the visiliformation of a scene [PV96b] and has been used for
rendering purposes [DDP02]. Other related data structnobsde Pellegrini’s ray-shooting structure [Pel93], the
aspect graph [PD90] and the visual hull [Lau94] ; see [Dufodh recent survey.

One problem with these types of data structures which mayeptetheir application in practice is their po-
tentially enormous size ; the size of the visibility compleka set ofn triangles inR3 is ©(n*) in the worst
case [DDPO02], which is prohibitive even for scenes of reddyi modest size. Worst-case examples are somew-
hat artificial and indeed Durand, Drettakis and Puech [DDP®Gvide empirical evidence indicating that these
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] \ Worst-case |  Expected |
possibly occluded lines amongst unit balls o(n*) O(n%) [DDPO2]
free lines amongst unit balls Q(n?) [+], O(n®¢) [AAS99] o(n) [+]
free lines amongst disjoint homothetic polytopes Q(n®) [dBEG98]
free segments amongst unit balls Q(n?) [+], O(n%) O(n)[+]
free segments amongst arbitrary sized ballg Q(n®) [DRO1], O(n%)
visibility complex of unit balls Q(n?) [+], O(n%) o(n) [+]

TAB. 11.1 —Known bounds on the complexity of the set of lines, free linesnaximal free line segments
tangent to 4 amongstobjects. The expected complexities are calculated for tiiferum distribution. The results
referenced by are established in this paper.

worst-case upper bounds are largely pessimistic in paldituations ; they observe a quadratic growth rate, albeit
for rather small scenes. In 2D, while the worst-case conifglexX the visibility complex is quadratic, experimen-
tal results strongly suggest that the size of the visibitiynplex of a scene consisting of scattered triangles is
linear [CF99].

Our goal is to provide theoretical evidence to support tlodsservations. To this end we investigate ¢éxpec-
ted sizeof the visibility complex, or equivalently, the expectedmier of visibility events, occurring in scenes in
RR3. A visibility event is a combinatorial change in the view afr®ving observer ; such an event occurs when the
viewing direction becomes tangent to some objects. Foradatsnvex objects in general positionR?, the vie-
wing direction can be tangent to at most four objects. Migjbévents thus correspond to maximal non-occluded
line segments tangent to at most four objects ; combindipddferent visibility events correspond to the faces of
the visibility complex.

In this paper we prove that the expected number of maximalawaiuded line segments tangent to four balls,
amongstn uniformly distributed unit balls irR3, is linear. This improves the previously known upper bouhd o
O(n8/3) by Durand et al. who proved the more general result that thea®rd number of (possibly occluded) lines
tangent to four balls i©(n®/3) for the same model [DDP02]. The intuition behind our proathiat, given a line
segment tangent to four balls, the probability that thisysegt is not occluded by any other ball is the probability
that a cylinder-like volume of radius 1 about the segmentis from the centers of the other balls. This probability
decays roughly exponentially fast with the length of thenseqt, yielding the result. Using our techniques we then
show a linear bound on the expected size of the visibility e of n uniformly distributed unit balls irR3. A
simple computation then provides us with the same resuthfoPoisson distribution.

Our results generalize in the following ways. We show thait,dertain types of visibility events, the linear
bound also applies to balls of various but bounded radii,alghedral objects enclosed between two concentric
balls of fixed radius, and even to non-fat objects such agjooly, enclosed between two concentric circles of fixed
radius, whose centers and normals are uniformly distribier the remaining types of visibility events (namely
those occurring close to the boundary of the scene — seeoBeti7.3 for the details), we prove only @in?)
bound, which is still an improvement over the bound by Durenal. [DDP02].

Of course objects in graphics scenes are seldom distrilouniéaimly or according to a Poisson point process.
We chose this model because it allows tractable proofs afrétieal results. This is important in a context where
there are few rigorous results either theoretical or expeniial. The same model, albeit with significant simpli-
fying assumptions, has also been used to study the averagaedty of ray shooting [SKHBS02, SKM98] and
occlusion culling for 2D urban scenes [NFLYCO99]. Itis irgsting to note that Szirmay-Kalos et al. [SKHBS02],
after establishing bounds on the average complexity of haptng in scenes consisting of unit balls distributed
according to a Poisson point process, tested their algosittn a small number of realistic scenes. The results they
obtain are consistent with those predicted by the the@latsults thus providing some evidence that the model is
helpful. No other model has been widely accepted by the graglommunity and, in fact, generating meaningful
random scenes usable for testing algorithms is a major @nokiNote that rather than attempting to generate ran-
dom scenes, an alternative approach, which has been usedlijotise average complexity of ray shooting, is to
fix the scene and randomly distribute the rays; see, for elg#BCCO02].)

Previous results on this topic include those that bound tieber of lines and the number of free (i.e., non-
occluded) lines amongst different sets of objects. Theysamemarized in Table 11.1. Agarwal, Aronov and Sha-
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rir [AAS99] showed an upper bound @(n*+¢) on the complexity of the space of line transversals ddalls

by studying the lower envelope of a set of functions. A stufithe upper envelope of the same set of functions
yields the same upper bound on the number of free lines tangdaur balls [DRO1]. Agarwal et al. [AAS99]
also showed a lower bound on the complexity of the space efttamsversals af balls of Q(n®) for arbitrarily
sized balls an®(n?) for unit sized balls. De Berg, Everett and Guibas [iBEG98}sd aQ(n?) lower bound on
the number of free lines (and thus free segments) tangeatit@mongsh disjoint homothetic convex polyhedra.
Recently, Devillers and Ramos [DR01] presented a sinifle’) lower bound on the number of free segments
tangent to 4 amongstarbitrarily sized balls, which also holds for non-intertseg balls. We also present a simple
Q(n?) lower bound on the number of free segments tangent to 4 armomngst balls.

In the next section we carefully define the problem and statenain results. In Section 11.3 and Section 11.4
we prove the expected upper and lower linear bounds on thdewuof free segments tangent to four balls. In
Section 11.5 we extend this result to the visibility compMse present in Section 11.6((n?) worst-case lower
bound. In Section 11.7 we discuss extensions of our resusisrhe other models. We conclude in Section 11.8.

11.2 Our model and results

We first describe our objects and their distribution. het N andp be a positive constant. A sample scene
consists ofn unit radius ballsB,,...,By whose centergs, ..., pn are independently chosen from the uniform
distribution over a universal béll of radiusR centered a©. Since we distribute the centepsoverlU, the ballsB;
may intersect each other and are contained in the ball, debict, whose radius iR+ 1 and whose center is that
of U.

We define the radiuR of the universal balll to be a function ofi satisfying

R —n/u (11.2)

The constanfi reflects the density of the balls in the sense that the exgp@tamber of centers lying in any given
solid of volumeV in the universe isj’—T[pV. (The model is interesting only if is asymptotically proportional to
R®. Indeed, if% tends to infinity whem tends to infinity, then the universe gets entirely filled uphwialls and
visibility events only occur irll* \ U. Conversely, if% tends to zero when tends to infinity, then the balls get
scattered so far apart that the probability that any foutl{me) balls have a common tangent goes to zero.)

We now define thevisibility complexof a set of objects [PV96b]. Aree or non-occludedsegment is a line
segment that does not intersect the interior of any objefted segment is maximal if it is not properly contained
in another one. Thus, the endpoints of a maximal free seganerither on an object or at infinity. We say that two
maximal free segments are similar if their endpoints lie ls $ame objects (possibly at infinity). The visibility
complex of a collection of objects is roughly defined as theifian of the space of maximal free segments into
connected components of similar segmé&htlts faces have dimension between 0 and 4 ; when the objexia ar
adequate general positionkalimensional face corresponds to a connected set of siméaimal non-occluded
line segments tangent to-4k objects.

In order to bound the total number of faces of the visibiligmplex, we first bound the number of O-faces.
To do this, we count th& 4-segmentswhich are the free segments tangent to 4 balls with endpainttwo of
those balls. Since there is a one-to-one correspondenaedrD-faces an@l4-segments when the objects are in
adequate general position, this yields a bound on the exgpextmber of vertices of the visibility complex. Note
that since the balls are containedlr, the T4-segments are also contained.in.

Our main result is the following.

Theorem 11.1. The expected number ofidsegments amongst n uniformly distributed unit bali®{s).
We extend this result to the higher dimensional faces of timepdex.

Theorem 11.2. The expected size of the visibility complex of n uniforngjritiuted unit balls i€(n).

Formally, we consider the space of free segments quotidntéle equivalence relation that is the transitive
and reflexive closure of the inclusion. In other words, tweefsegments are identified if they are both contained in
the same maximal free segment. This allows the cells of th#ipa to be connected.
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We also present a@(n?) worst-case lower bound on the numbeiTef-segments amongstunit balls inR3
(see Proposition 11.27). In fact the lower bound holds ferrtbmber ok-faces of the visibility complex, for ak
between 0 and 4.

11.3 The expected number o 4-segments is at most linear

The general idea behind the proof of the upper bound of Thedte1 is the following. For any ordered choice
of four balls, we bound from above the probability that a liséangent to these balls in the given order and is not
occluded in between its contact points with the balls. Thersum these probabilities over all ordered quadruples
of balls and all potential tangent lines to these balls.

For any two pointg andq, and positive real number, let H(p, g, a) denote the union of all the balls of radius
a centered on the line segmep (see Figure 11.1). We first show that a line is tangent to falls B;, B, B, and
By in that order only ifp; andpy are inJ{ (p;, pi, 2). Thus the volume of{ (pi, pi,2) NU gives an upper bound on
the probability that a line tangent to the four balls, in thesg order, exists.

We next show that a segment tangent to four b@j|sB;, Bx andB, in that order, at point, tj, tx andt,
respectively, is not occluded if and only if the centers d¢framaining balls are outside or on the boundary of
H(t;,t,1). The volume ofu \ H (t;,t,1) gives an upper bound on the probability that the tangent sagia not
occluded. Thus, to get an upper bound on that probabilityyeesl a lower bound on the volumeXf(t;,t, 1) NU.

To bound the probability that 84-segment exists, we integrate over the distance betywesmd p;, and over
the distance fronp; to the boundary of the univerdé. This integral is split into three parts covering the cases
where

(i) Bi andB are close to one another,

(ii) at least one oB; andB; is entirely inside the universe,

(iii) Bi andB, are not close to one another and both are partially outselariverse.
In each case we over-estimate the volumg{dfy, p;,2) "U and under-estimate the volumeJf{t;,t,1) N U. We
apply the same general proof technique in each of the thissesciVhile Case (ii) illustrates the main idea behind
the proof (Case (i) being a simplified version), extendirig itiea to Case (iii) is technically challenging because
of the difficulties caused by the boundary of the universe.

11.3.1 Definitions

LetN be the set of ordered 4-tuplésj, k,|) chosen fron{1,2,...,n} such that, j,k,| are pairwise distinct. In
our model, the probability that four centers are collinsardro, so we may assume that any set of four balls admits
at most 12 real common tangent lines [DMPTO01, MPTO01]. Moezgthe real common tangent lines correspond to
the real solutions of a degree 12 system of equations. Fosetrgf four balls we order arbitrarily the 12 solutions
of the associated system.

Given four ballsB;, Bj, B andB, we denote b)&i‘f’m, forwin {1,...,12}, the event that thet" solution of
the system is real, that the corresponding real tangenislitaagent to the four balB;, Bj, By andB; in that order,
and thatp; is not closer tham to the boundary ofl. Whenevetai‘:’j’k.I occurs, we denote the points of tangency of
that line onB;, Bj, By, By byt;, tj, t, ti, respectively. Led?, | be the event that{; | occurs and the line segment
tit; is not occluded. Notice that ﬁ’i‘j’j‘kﬂl occurs, the ballB;, Bj, B, B| define aT 4-segment, and thatB4-segment
corresponds to a uniqu’ , ;.

Letx; be the random variable representing the distance fioim p;, andy; (resp.y;) be the random variable
denoting the distance from (resp.p;) to the boundary of the universe.

In the sequel, a random poiptdenotes a point chosen from the uniform distribution aver

11.3.2 The Proof

There is a one-to-one correspondence betweef4hsegments and the evei§ , | that occur. We thus have
the following straightforward lemma. '
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Q

(@) H(pi, pr,2)

D

B

(b) H(ti,ti,1)
Fic. 11.1 —H (pi, pr,2) andJH (tj,t,1) are shown shaded.

Lemma 11.3. The expected number o#iisegments amongst n uniformly distributed unit balls is

12
> P&
(i,j,kDeNw=1

We bound the probability IPtBI k,) by integrating over the distangdetweenp; andp;, and over the distance
y from p; to the boundary of the unlverie The integral is split into three parts covering the casesre/li) the
balls B; andB, are close to one another, (jb) is at distance at least 1 from the boundaryigfand (iii) the balls
B; andB; are not close to one another apdis at distance less than 1 from the boundarglofNote that in the
last case, |6°’ K oceurs, then both ball centepsandp; are within distance 1 from the boundarylf Two balls
are conS|dered close to one another if their centers arerdban some sufficiently large constant; for technical
reasons which are embedded in the proof of Proposition 1&v@@ctually defineloseto mean distance at most 6.

Lemma 11.4. Pr(éi‘j’j_kJ) < lxge + ly>1+ Ixs6y<1, Where

6
Iy — /X:O PHE?, 4y [ X1 = X) - PIX< Xi) < X+dX),
2R
ly>1= o Pr(& i | Xi) =% ¥i > 1)-Pr(x < xj) <x+dx|yi > 1),
2R r1
lx>6y<1 :/ / Pr(& ki [ X1 =X Yi=Y, Yi <Vi)
x=6.Jy=0 ’
Pri(x<xip <x+d) Ny <Vi) [Yi=Y)
Priy <yi <y+dy).
Proof. By the Total Probability Theorem (see [Pap91]),

2R
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The integral can be split at= 6, giving Ix<s. Then applying the Total Probability Theorem on what rersaime
get

2R rR
/ / Pr(6i‘j’j7k7, [Xii =X Yi=Y) -Pr(X<Xj) <x+dx) |y =Yy) (11.2)
X

=6 Jy=0
-Priy <yi <y+dy)

which can be split ag = 1. The part corresponding yobetween 1 an® is equal to

2R rR
/ / Pr(& i [ X =% yi=y, yi > 1)
x=6Jy=1 Y
Pri(X<xip <x+dx) |yi=Y, ¥i >1)-Prly<yi <y+dy)

2R rR
< /Xfe/nyPr(éﬁ’j,kJ NX<Xip <x+dX) [yi=Y, yi > 1) -Prly<yi <y+dy).
Applying the Total Probability Theorem again, we get

2R
GPV(5i‘f’j,k‘| N(X< X < x+dx) |y > 1)
- :

which is less tham,~1. Consider now the part of (11.2) fglbetween 0 and 1. i, > y; thenéSi‘*’j_k’I does not occur
(by definition ofL{ , |), thus we have '

Pr(&% i [ Xi) =% i =y)-Pr(x< xi) <x+dx) |yi =Y)
= Pr(&fj N(X<xip <x+dx) [yi =Y)
= Pr(& g N(X<xip <x+dx)N(yr <vyi) |yi=y)
= Pr(& ki [ X1 =% Yi=Y, yi <Vi)
Prix<xip <x+dx) Ny <vi) | yi =Y).

Thus, the part of (11.2) foy between 0 and 1 is equal kg.gy1. O

Let = denote any of the following eventsx;( = x), (Xi| =X, yi = 1), Xi) =X, Yi =V, ¥I <Vi). The next three
lemmas are used to bound(B{i_”j,k"I | =) appearing in the three integrdige, ly>1 andly-6y<1.

Lemma 11.5. If a line is tangent to four balls BBj, By, B, in that order at {,tj,t,t,, respectively, then ppy €
H(pi,p,2). Also, the segmenttitis not occluded if and only if the interior ¢f (t;,t,1) does not contain the
center of any other ball.

Proof. Segmentit; is contained ind{ (pj, pi,1). Sincet; andty belong to that segment; andt, are also in
H(pi,pr,1). Thusp;, px are both ird{ (p;, pi,2). See Figure 11.1 (a).

The segmentit; is occluded if and only if some baly, y# i, j,k, |, properly intersects it, that is the center of
By lies in the interior of}{ (tj,t,1). See Figure 11.1 (b). O

(3x+8)

Lemma 11.6. Pr(p € H(pi, pi,2) | =) < =9

Proof.
_ Volume of 3((pi, pi,2)NU ,_ _ Volume of H(pj, pi,2)

Prip € 3(pi, . 2) | Z) Volume of U =< Volume of U
WhenZ= occurs ) = x and the volumes df( (p;, pi, 2) andU are 4 (3x+ 8) and I'R®, respectively. Thus

3x+8
S

Pr(pe H(pi,p,2) | =) <
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(3x+8)2
R6

Proof. If &% | occurs, ther{?, , | necessarily occurs, thus

Lemma 11.7. Pr(8% | | =) < Pr(p & H(ti, by, 1) | L0, D)™

Pr(& i | =) = Pr(8 k) L k) 12) = P& k) [ 2)-Pr& i | Lifjkrs 2)-

By Lemma 11.5, P(’f’ff)j,m | =) is bounded by the probability thatj and px belong toJ{(p;, pi,2) given =, and
Pr(6{*7’j7k’I | ﬁ’i‘f’j,k,ﬂ is equal to the probability that for afl£ i, j, k.1, point py is outsided{(t;,t, 1) given=. Since all
the points are independently and identically drawn fromuhigorm distribution ovefll, Lemma 11.6 yields the
result. O

We consider the three integralgg, ly>1 andlx-ey<1 in the following subsections, and prove that each is
bounded byO (n—la) This will complete the proof of the upper bound of Theoremlldince, by Lemmas 11.3
and 11.4, the expected numberTof-segments is less than ([2(Ix<e + ly>1+ Ix>6y<1)-

B; and B, are close to one another

We prove here thak<g is O (n%) WhenB; andB, are close to one another, the probability that there exist
two other ballsB; andBy, defining a line tangent t8;, Bj, By, B in that order, is small enough that we do not need
to consider occlusions in order to get the bound we want.

We first bound the term Px < x; | < x+dX) appearing in the integréj<s.

2

3
Lemma 11.8. Pr(x < Xj| < X+dx) < %dx.

Proof. Whenp; is given, pp must belong to a spherical shell between two spheres of cgntnd radiix and
X+ dx. The probability Pfx < x| < x+dx), if p; is known, is exactly the volume of the part of the sphericalish
insideU divided by the volume of(. The volume of the part of the spherical shell insitles bounded from above
by the volume of the spherical shell which im&dx. Since the volume of( is %TIR3 we get the claimed bound.
(The exact value of Px < x;| < x+dXx) is actually given in [Mat99, San76] but the above approxerziund is
enough for our purposes.) O

.. . 1
Proposition 11.9. Iy<g is O(n?’)

Proof. Recall that (see Lemma 11.4)
6

Ix<6 = / OPr(Z}i‘:’j.k,I | Xi| =X)-Pr(x < X <X+ dXx).
X=

By Lemma 11.7,

(3x+8)2
R6
(3x+8)2

STR

It thus follows from Lemma 11.8 that

6 (3x+8)2 3x? e, ’ 1
< _— e — = — — .
nge\/X:O =3 dex i /X:OSX (3x+8)“dx o(n3)

Pr(& ki [ Xi) =X) < Prip & H(tit, 1) [ xip =% L0 )"
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Bi is entirely inside U

For the integraly>1, occlusions must be taken into account. To this aim, we bdwml below the volume of
H(ti,t,1) NU in the following lemma.
Lemma 11.10. WhenL{> " k) oceurs andy; > 1, the volume of{(t;,t;,1) N U is greater than:; M5 Xi |-

Proof. LetK be the ball having diametggt;. Note thatk and p; are both contained it and in3(t;,t,1). The
convex hull ofp; andK is thus contained id(t;,t;,1) N U, and its volume is larger than half the volume of the
ballK, 15, plus the volume of a cone of apgk of base a disk whose boundary is a great circli adnd of height
greater thax;| — 1. The volume of that cone is at Iea?!%(xu —1) = 5Xi1 — 15 O

We now bound the probability that a tangent line segnignis not occluded by any of the othar- 4 balls,
given that the line segment; exists and the baB; is entirely contained ifl.

&) n-4 KX
Lemma 11.11. Pr(p &I, 0,1) | Xy =X Vi > 1, Li’j’kJ) < 55exp( 16)
Proof. First notice that

Pr(p g H(i,u,1) [ X1 =X Vyi>1, Li‘f’j,k,l)
_ Volume of 3 (tj,t, 1) NU

B Volume of U b= yiz1, 29

ikl

By Lemma 11.10, the volume &f (t;,t;,1) NU is bounded from below b)flzx. Since the volume ofl is ‘é‘nR3,
we get

n—4 X n—4
Prpe 3ttt D) 1 =xyi 21 £8,) < (1-155) -
Forany 0<t < 1, we havg1—t) < e ! thus

e

(1_t)n—4 < g t(n—4) _ gtnght 55t

//\

n<
Now 0< x < 2RandR > 1 sinceB; is entirely insidéll. Thus 0< < % 1and

p%\

n
Pr<p¢%(ti,tl,l) | X=X Yi>1, Li‘j’j’kﬁ,) < 55exp(

5%0)
UX

=55 exp(— 173)

The following proposition now bounds the integkal;.
o . 1
Proposition 11.12. ly>1 is O (n3>
Proof. Recall that
2R
lyo1 = / PHE kg Dy =% 12 1) Prix g <k dxyi 2 1),
X: :

By Lemmas 11.7 and 11.11 we have

3x+8)? KX
Pr(éi‘?j’k’l [Xig =X, ¥i>1) < % 55e xp(—ﬂ_))

Similarly as in Lemma 11.8 we have

3¢

dex

Prix <xj; <x+dx|yi > 1) <
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Thus we get

R (3x+8)2 uxy 3x2
< [ D aa
'yzl\/xzo Ro 559Xp( 16) re 0¥

B a3y 82 b
<n3 - 3X°(3x+8) 55exp( 1G)dx

Changing‘i—g by zwe get integrals of the kind
/ Z exp(—2z)dz
0

which is bounded by a constant and thys is O (n—lg,) : O

Bi and B, are not close to one another and Bis partially outside U

The only remaining task is to bound the integkalgy.1. As in the previous case, we need to bound from
below the volume ofH(t;,t;,1) NU. Here, however, the tangetit; can be entirely outsidé, so the bound of
Lemma 11.10 does not apply and a more intricate proof is rieétle need to distinguish two cases depending on
the distance of segmetfit; from O, the center otl.

To this aim, we introduce two new types of events. For smyR, let S"i‘j’j’k_rl (s) (resp.Nﬁ7k7| (s)) be the event
thatJLi‘j’j_’k’I occurs and the line segmdiit is at distance greater (resp. less) than 1 — sfrom O. For reasons that

will become clear in the proof of Lemma 11.15, we cons'udefy%.
The next five lemmas are used to bound the first term of therialtgg sy 1.

Lemma 11.13. For any random point p ifil, Pr(5i°:’j,k,| |Xi1 =X, Yi=Y, yI <Yi)is equal to
2
Pr(?i(f)j,k,l (Y3) [ Xi) =X Yi=Y, ¥ < yi)
® 2 n—-4
: Pr(p ¢ fH(tiatl B} 1) ‘ Xi,| = Xa Yi = y7 y| g yi7 gi,j.k_} (ys))

2
+Pr(Ni(f)j.k,| (Y3) [ Xi) =X Yi=Y, Wi < Yi)
2 n—4
~Pr(p¢3{(ta,t|,1) [ X1 =X Yi=Y, ¥ <VYi, Ni‘j’,-,kJ(yS))

Proof. &, impliesL{% | which can be split int&F | (v%), NE ki (y%), and the event that?, ,; occurs and
the line segmerttt; is at distance exactliR+ 1 — y% from O. This later event occurs with probability O, thus
Pr(éic:)j,k,l [ X=X Yi=Y,YI <VYi) =
Pr(8 k1 NI (v3) | Xi) =% Yi=Y, i <Vi)
+Pr(8 k) mNi(f)j,kJ(y%) X=X Yi=VY, Y <Vi),
which can be expanded into
P (V3) [ Xig =% ¥i =Y, i <¥i)
PSP [ X =% Yi =Y, Y1 <Vi, Ty

winy

)
+PrN (V) %01 =% Vi =Y, i <Yi)

2
Pr(8T [ Xin =% Vi =Y, i <Yis N (¥3))-

Whens—"i‘j’j Kl (y%) occurs, the probability

2

Pr& i [Xin =X ¥i =¥, Vi <Vi, T (¥3))
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is the probability that the tangent is not occluded, thapjsjoes not belong t6{(tj,t,1) for all then—4 values
of y#i,j,kI. The same argument holds ﬂsfffj’k., (y%). Since thepy are independent, we get the result. O

In order to bound the two terms in Lemma 11.13,

win

))n74 and

)"

Pr(pgﬂ(ti,thl) [Xit =X Yi =Y, Vi <Yi, T (Y

winNy

Pf(p¢9f(ti,tl,1) [Xit =% Vi =Y, Vi <Yi, N (Y
we need to bound the volume &f(ti, 1, 1) NU from below.

Lemma 11.14. Whenx;; > 6, y; <Vyi < 1, Lf"j 1 occurs and segmenttis at distance less than R1—s,
0 < s< 1, from the center ofl, then the volume dK(tj,t;,1) NU is larger thane\i@ (Xi1 —5)sv/s.

Proof. We give here the idea of the proof; full details can be foundppendix A. Lett be the closest point on
segment;t; from O, andD be a unit radius disk centeredtaih a plane containin®, the center oll. We define

a quadrilateral with verticea,b,a,b’ such thata anda’ are the closest and the farthest points, respectively, in
DNU from O, andb andb’ are the points of intersection 8D and the perpendicular bisector of segmaait(see
Figure 11.2). Lew be equal tdR+ 1 minus the distance froi® to segment;t;. We prove that the convex hull of
a,b, &, and py, which is included in(ti,t,1) N'U, has volume greater tha%q% (Xi1 —5) min(2v/2,v\ ). It
follows that, for any 0< s < 1, if segment;t; is at distance less thd+ 1 — sfrom O, thenv > s and the volume

of 3((t,t,1) NU is greater tha% (X1 —5)sV/s. O

%o

Fic. 11.2 — For the sketch of the proof of Lemma 11.94((0, 1)).

Lemma 11.15. For any random point p ifll, x> 6 and0 <y < 1,

2 n—-4
Pf(péfg{(ti,tl,l) [Xip =% Yi=Y, Y <VYi, Tl (y3)>

u(x5)y2)
<55exp| ————

p( 821

and
© 2 n—-4
Pf(p¢9f(ti,tl,1) |Xi) =X Yi =Y, Vi <VYi, N (y3))

u(X—S)y>
<b5exp( —————|.

p( 8v2m
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Furthermore, if x> 6v/R then

© 2 n—-4
Pf(p¢%(ti,tl,l) [ Xt =X Yi=Y, Vi <Vi, Nijk (y3))

<55 exp(— “éi;;?) .

Proof. Letx;| =X, y; =y and suppose first that eveﬁfﬁ’jyk,l (y%) occurs. Since; is at distancd&r—y from O, the
segment;t; is at distance less th&+ 1 —y from O, and thus, by Lemma 11.14, the volumeJéft;,t;,1) N U is
greater thalﬁﬁ (x—5)y,/¥, which is bigger thar%l—ﬁ (x—5)y? since 0< y < 1 (we boundy,/y from below byy?
only so that we can actually compute the intedrain the proof of Proposition 11.20). We now follow the proof
of Lemma 11.11, except that the volumeJé{t;,t;, 1) NU is now bounded from below bg% (x—5)y? instead of

15X We get

n—-4
Pf(p€9'f(ti7t|,l) [ X1 =X Yi=Y, ¥ <Vi, gi(f)j,kJ(y%))
< 55exp(— u(x—5)y2>.

8v2m

WhenN{ (y%) occurs, the segmett, is at distance less thd- 1—y% from O, and thus, by Lemma 11.14,

the volume of (t;,t,1) N'U is bounded from below b%% (x—5)y31/y = 6—\1@ (x—5)y. Then, as before, we
get

© 2 n—4
Pr(pgg{(ththl) | Xi,| =X, Yi :y7 y| <Yi7 Ni7j,k,| (ya))

< 55exp<—m) .

Now, if x > 6v/R, the length of the tangent, is at least ' R— 2. Sincex > 6, R> 3 and a simple computation
shows that §R— 2 is bigger than 2R+ 1 which is the length of the longest line segment that mayegtlie
insideU™ \ U. Thusdist(O,titj)) < R=R+1—swith s=1 and, by Lemma 11.14, the volume&{t;,t;,1) N U is
greater thar%\l—ﬁ (x—5). Then, as before, we get

" 2 n—4
Pr(pgg{(tiathl) | Xi,| =X, Yi :ya y| < Yi7 Ni,j,kJ (ya))

<55exp<—L;3()\(fzf[)).

O

(3x+8)?
o

Lemma 11.16. Pr(Ni‘j’jﬁk.,(y%) [Xi) =X Yi=Y, VI <Vi) <

Proof. The eveniN{" | (y%) occurs only ifC{ | occurs. The result thus follows since, by Lemmas 11.5 ar@{ 11.

2
PrL s [Xid =%, ¥i =¥, Y1 <¥i) < %- 0

Lemma 11.17.1fy < 1, then

6 2\,2
Pr(&ﬁ‘:’jk,l (v3) | X1 =X, Vi :y) < 81%%.



138CHAPITRE 11. THE EXPECTED NUMBER OF 3D VISIBILITY EVENTS IS LINEAR

Fic. 11.3 —For the sketch of the proof of Lemma 11.17.

Proof. A “far” tangentt;t, is at distance at leaft+ 1 — y% from the centeiO of U. Such a segment also lies in

H(pi,pi,1). Let E be the part ofH(pi, p,1) lying outside of the sphere of radits+ 1—y% and cente©. See
Figure 11.3 (a). Now, botlp; and px must be in the region insidé and within distance 1 frork. Denote this
region byK. Then

Volume ofK \ ?
\Volume of U

2
Pf(?{f’j,m (Y3) [ X1 =% Yi=Y, ¥ < Yi) < (

By Proposition 11.32, which we prove in Appendix B, the votiofK is bounded from above by 1& (x +
6)y, which yields the result. Here we give the intuition of theqft Refer to Figure 11.3. First notice that the “leng-
th” of K is at mostx+ 4. SinceK is enclosed in between a sphere of radand one of radiuR—y%, its “height”
is at mosty%. For the “width”, consider Figure 11.3 (b) which shows a sreection ofK taken with a plane
throughO and perpendicular tp; p;. The “width” of K is no more than 2 times the “width” &. The “height” of

E can be bounded by some constant tirylzesthus its “width” can be bounded by some constant timég = y%.
Thus, intuitively, the volume df is smaller tharfx+ 4)y§ y% = (x+4)y, up to a constant, and the result follows.

We now bound the two last terms of the intedkals y<1.

Lemma 11.18. Pr(y < yj <y-+dy) < s—gy

Proof. The even{y <y; < y-+dy) occurs only ifp; lies in the spherical shell delimited by the two spheresearent
atO of radii R—y andR— y — dy whose volume is smaller tharréR? dy. Dividing by the volume of( proves the
result. |

Lemma 11.19. For 6 < x< 2R and y< 1, we have
6xydx
=
Proof. The probability Pf(x < x;; <Xx+dxX)N(yi <Vi) | Yi =Y) is equal to the volume of the region (shown in

grey in Figure 11.4) which is the intersection of the regiobé&tween the two spheres centere@;and of radiix
andx+ dx, and the region in between the two spheres center®dhat of radiiR andR—y, divided by the volume

Pri(x < xij <x+dx) Ny <vi) |yi=y) <
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of U. We prove in Proposition 11.37 in Appendix C that the volurh¢hat region is at most 8xydx Roughly
speaking, the volume bounded by the four spheres is at nrosg 8xbecause, its “thickness” @, its “height” is
y and its “radius” isx. Dividing by the volume ofl proves the result. O

\\. o

Fic. 11.4 — For the proof of Lemma 11.19.
We can now bound the integrigl.e y<1 of Lemma 11.4.
- . 1
Proposition 11.20. Iy-gy<1 is O (n3)

Proof. Recall that

R 1
ly>6,y<1 :/ / Pr(8 ki [ Xi) =% Yi=Y, yi <Vi)
x=6Jy=0 Y

Pri(x<xip < x+dx)N(yr <Vi) |yi=Yy)
Priy <yi <y+dy).

By Lemmas 11.18 and 11.19, we get

Rt 6xydx 3dy
Ix>6y<1 < /X:6/yzopf(5i°fj,,k,| X1 =% Y=Y W S¥i)—Fg— R

By Lemma 11.13, Rﬁi(f)j,m [ X1 =X Yi=Y, yi <Yi)isequal to

2
Pr(?i(:)j,k,l (Y3) [ X =% Yi=Y, N < yi)
W 2 n—4
~Pf(p€}€(ti,tl,1) [ X1 =X Yi=Y, ¥ <VYi, S:i,j7k7|(y3))
+Pr(Ni0:)j,k,I (V3) [ %1 =% Vi =, Vi < Yi)
2 n—-4
. Pr(p g J'C(tiatl ) 1) ‘ Xi.| = Xa Yi = y7 YI g yi7 Ni(‘:)LkA,I (y3)) .
We split the integral at = 61/R. Whenx > 61/R, the distance fron® to the tangentt, is less tharR (see the

proof of Lemma 11.15), which is less th&a+ 1—y% for anyyin (0,1). Thus, for any > 6y/Randy € (0,1), the
probability Pr(&"i‘f’j Kl (y%) [Xi1 =X VYi=Y, ¥ < yi> is equal to 0. It then follows from Lemmas 11.15, 11.16 and
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11.17 thatlyogy<1 < J1 4 J2+ I3 with

6VR _ B2
:Jl—/x 817 XJ’R? 2 558xp<— “(;(\/;Ly )-6Xg3dx-?,

H(X—5)y 6xydx 3dy
55exp( 8T ) =9 R

Is / / 3x+8) B5ex ( u(XS)).nydx.S’dy
 Jx=6vR P 8V2m RS R’

by zin the three integrals angd by y in J1, we get

6VR 1 (3x+ 8)
1= [ /
y=0

Changmg

sf
1< gy ; [N [ 2y expt-zy)dzay,

K U= 3 rcvVR p1
Js < 10 ZO/Z /yzoz“yexp(—zy)dzdy

— 0 1
J <— / Z'yexp(—z)dzd
3 RI0 UZO 2—0Jy=0 y F( ) y

whereK andc are some positive constants.
Note first thatJz is bounded from above b{— yu=2 [ ,2' exp(—2)dz These integrals are bounded by a

constant, thu§s is O (@
To bound the integral% andJ,, we now compute the integral

Al
/ Z'yexp(—zy)dzdy (11.3)
z=0.Jy=0

forue {0,...,3} andA > 0, for example with Maple [Map]. Far= 0 it is equal to

exp(—A)+A-1

n (11.4)

Foru=1, the integral (11.3) is equal to
exp(—A) +InA+Ei(1,A) +y-1 (11.5)

whereEi(1,A) denotes the exponential integﬂlw dt andy denotes Euler’s constant. Finally, for= 2
or 3, the integral (11.3) is equal to

exp(—A) PL(A u— 1)+ Py(A u—1) (11.6)

whereP, (A,u— 1) denotes a polynomial of degree- 1 in A.
When A tends toe, (11.4) tends to 1, (11.5) is equivalent toAr{sinceEi(1,A) tends to 0) and (11.6) is
equivalent to the leading monomial Bf(A, u— 1) which is of degre@— 1 < 2. This guarantees that fé&r= cv/R

andu € {0,...,3}, the integral (11.3) iO(R). It follows thatJ; andJ, areO (%
SinceR® = n/y, we get thaty-gy<1 < J1+J2+J3=0 (%) =0 (n—lB) O

We can now conclude the proof that the expected numb€&desegments i®(n), because, by Lemmas 11.3,
11.4, and Propositions 11.9, 11.12, and 11.20, the expact®tber ofT 4-segments is smaller than

(i,J,k,znemlz;(o(nl)+o< 1>+O< 1>> =0(n).
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11.4 The expected number ol 4-segments is at least linear

In this section, we prove that the expected numbérésegments amongstuniformly distributed unit balls
is Q(n). To do this, we bound from below the probability that fouragivballs have a givem4-segment. The key
step is to give a condition on the relative positions of fooit balls that guarantees that they have exactly twelve
common tangent lines. We use here the notation as definedfin$é&1.3.1.

Lemma 11.21. Let e be a real number satisfyilfg@ < e< 2and let the radius R dfl be strictly greater than e.
There exists an > 0 such that for any point g U, there exist three ballB1(p), '2(p), ['3(p) of radiuse contained
in U and satisfying the following conditions :
— p and the centers of tHg(p) form a regular tetrahedron with edges of length e, and
— for any triple of pointgp1, p2, p3), pi taken fronT;(p), the four unit balls centered at pg pp; and
have exacthyl 2 distinct tangent lines.

Proof. Macdonald, Pach and Theobald proved [MPTO1, Lemma 3] thatidballs centered on the vertices of
a regular tetrahedron with edges of Iengﬂ%‘/E < e< 2, have exactly 12 distinct real common tangent lines.
Moreover, these 12 tangent lines correspond to the 12 retd of a system of equations of degree 12, thus each
tangent line corresponds teampleroot of that system of equations. It thus follows that for anificiently small
perturbation of the 4 ball centers, the 4 perturbed balllshstve 12 real common tangent lines. lset 0 be such
that the 4 ball centers can move distaade any direction while keeping 12 distinct common tangents.

Now, for any pointp € U, consider a regular tetrahedron with edge lergjtlavingp as a vertex and such that
the other vertices are at distance at leafbm the boundary ot(; for example, we can choose the other three
vertices on a plane perpendicular to the segrdgmtLet1(p), I'2(p), andl 3(p) be the balls of radius centered
at the vertices, distinct from, of that tetrahedron. By the previous reasoning, for@myl 1(p), r € '2(p), and
se '3(p), the four unit balls centered @t g, r ands have exactly twelve tangents. O

Now, by Lemma 11.3, the expected humbefdfsegments is
12

> Pr& )
(i,j,kleNw=1

Thus we only need to bound from below the probability thatabmtéi‘j’j’k’, occurs.

. 1
Lemma 11.22. Pr(ESi‘:’j’kJ) isQ <n3)

Proof. Assume thah > 8y so that the radiuR = 3/n/u of U is larger than 2 and IeE(p) be the sef 1(p) x
2(p) x M3(p) wherel'j(p) ande are defined as in Lemma 11.21. First, note that

Pr(8 1) = P87 1 N (Pis Py, Px) € T(P1))
= Pr((pi, pj, ) € T(P1)) - Pr(& i | (Pi, Py, P) € T (1))

Sincel'1(p), F2(pr), andlz(p;) are three balls of radiwsentirely contained ifil, we have

3
4.3 309
3“5) _ pE
7] =3
STRS n

Pr((pi, pj, k) € T(P1)) = (

By Lemmas 11.5 and 11.21, the ev(aﬁft’j.k_l | (pi, Pj, Px) € T(pr)) occurs if and only if the interior df( (t;,t,1) N
U does not contain the center of any ball. Note that the voluiné @, t;, 1) N'U is at most the volume oK (1,1, 1),
which is at most‘g—‘n+ T(2+ e+ 2¢) since the length dft| is at moste-+ 2+ 2¢. It follows that

n—4
(3 +2+e+2)
Pr(8Y ki | (Pi, Py, ) € T(P1)) = <1_3Volume(U)>
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Sincee < 2, we get, after some elementary calculations, that

6+2e)u\ "4
Pr(&% i | (pi, Py, Px) € T(P1)) > (1—(n)”> : (11.7)
We thus have - o
(e 6+2e)u\
PI(&Y ) > s (1( : ) ) '
4
Since(l— %‘)n tends toe™ (6+2)H whenn tends to infinity, we get
1
PI’( ﬁ)j,k.|) == Q (n?’) .
O

This completes the proof of the lower bound of Theorem lIntesihe expected number d#-segments
amongsh uniformly distributed unit balls is, by Lemmas 11.3 and 21.2

12 12
P = > > Q <nl3> =Q(n).

(i, kT eN =1 (i, kT en =1

11.5 The expected size of the visibility complex is linear

In this section we prove Theorem 11.2, that the expectedddittee visibility complex of a set ofi uniformly
distributed unit balls is linear.

We say that the balls are in general position if &gimensional face of the visibility complex is a connected
set of maximal free segments tangent to exactlykdballs. We can assume that the balls are in general position
since this occurs with probability 1. We give a bound on thgeeted number df-faces, fok =0, ..., 4.

Lemma 11.23. The expected number @ffaces is9(n).

Proof. A O-face of the visibility complex is a maximal free line segmnh tangent to 4 balls. Each maximal free
line segment tangent to 4 balls containB4&segment and eadM-segment is contained in one maximal free line
segment. Thus, by Theorem 11.1, the expected number oE@-fadinear. O

To deal with the faces of dimensid> 1, we divide them into two classes.&face isopenif it is incident
to at least onék — 1)-face, otherwise it i€losed When the balls are in general position, the numbek-tHces
incident to a particulatk — 1)-face is constant. In the proof of the following lemmas, aopstant can be used.
However, for completeness, we will use the exact valueswithbut justifying them.

Lemma 11.24. The expected number bffaces isd(n).

Proof. Note that a O-face corresponds to a maximal free segmenenéang 4 balls and it is incident to those
1-faces corresponding to free segments tangent to 3 amthrags 4 balls. So, a O-face is incident to exactly six
1-faces, which implies that the number of open 1-faces im&githe number of 0-faces, and is ti@@) by the
previous lemma.

Proving that the expected number of closed 1-fac€i§ can be done in a way very similar to the proof of
the upper bound in Theorem 11.1. The difference is that wsidennow only three balls and thus in all proofs,
we forget ballB. We have to consider onlf) triples of balls instead of}) quadruples, but we remove from the
integral the probability Ripx € (pi, pi, 2)|Xi| = X) < %. Since% =, this amounts to dividing the terms over
which we integrate by(3x+ 8) which does not change the general shape of the integraldy@goial multiplied
by an exponential) which are convergent. Notice #aB;, B andw now define a set of segmers, rather than
just a single segment. However, those segments define aldefsee only if none of them is occluded by one of
then— 3 remaining balls. Any particular choice of a tanggtnin the 1-face will give a relevant cylindéc(t;,t, 1)
to use in the proofs. a
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Lemma 11.25. The expected number 2ffaces is9(n).

Proof. Since a 1-face has five incident 2-faces, the tight lineantdan the number of 1-faces gives a tight li-
near bound on the number of open 2-faces. The closed caskvésl similarly to the proof of the upper bound
in Theorem 11.1. We now consid@) pairs of ballsB;,B; and we remove from the integrals the probability

2
Pr(pj., px € H(pi, P, 2)|Xi) =X) < (%) which gives arO(n) bound on the number of closed 2-faces. O

Lemma 11.26. The expected numbers®faces andi-faces ared(n).

Proof. A 3-face, corresponding to lines tangent to a ball, can oslglbsed ifn = 1. The number of open 3-faces
is linear by the fact that in general position a 2-face isdeait to four 3-faces. The number of 4-faces is linear
since a 3-face is incident to three 4-faces. O

11.6 Worst-case lower bound

We provide here &(n?) lower bound on the number &faces in the visibility complex. Recall that for the
case oh arbitrarily sized balls, Devillers and Ramos [DRO1] presera simpleQ(n®) lower bound on the number
of free segments tangent to 4 balls, which is also the nunfhertices in the visibility complex. Their lower bound
(see Figure 11.5) consists of g)balls such that the view from the origin consistsaflisjoint disks centered on
acircle, (i) § balls such that the view from the origin consistsiafisks whose boundaries are concentric circles
intersecting (in projection) all the disks of (i), and (i)tiny balls centered around the origin such that from any
point on thes€; tiny balls the view of the balls in (i) and (ii) is topologidginvariant. Note that finding a(nd)
lower bound on the number of free segments tangent to 4 batisngsin balls of bounded radii, is to the best of
our knowledge, open.

Fic. 11.5 — Quadratic view from the origin [DRO1].

Proposition 11.27. The number of k-faces in the visibility complex of n disjainit balls in R is Q(n?) for all k
betweerD and4.

Proof. We first observe that the size of the visibility complexnadinit balls can trivially be quadratic by having
the balls sparsely distributed in the space such that amyphalls defines a closed 2-face.

Getting a quadratic number of free lines tangent to foursbathongst a set af unit balls can be done by
taking ballsB; centered at2i,0,0) for 1 <i < g and baIIsB’j centered at2j,10,0) for 1 < j < g Then, for
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anyi and j, the line through the point&i + 1,0,1) and (2j + 1,10,1) is free and can be moved down so that it
comes into contact with the four balB, B; 1, B’]- andB’Hl. This argument proves that the numbekéaces, for
0 < k< 2, can be quadratic.

The free segmen(®i, 1,0)(2j,9,0) belongs to the 4-face consisting of maximal free segmerttsavidpoints
onB; and B’j. Thus there is a quadratic number of 4-faces. The bound plsieea to 3-faces by considering lines
tangent taB; and stabbings;.

In the above construction, the balls can be pushed togethey Will intersect) so that they fit inside a sphe-
rical universe of radiusy/n/p without changing the result. Note also that the above coatitn can be slightly
perturbed to obtain the same result for a set ohit balls, disjoint or not, with no 4 centers coplanar. a

11.7 Generalizations

In this section we provide several generalizations of osults.

11.7.1 Poisson distribution

Consider a set of unit balls whose centers are drawn by a 3igs&opoint process of parameiein the
universell. By aPoisson point process of parameter pUfGS92], we mean that we generafeandom points
insideU so that
(1- Volume(U))X - exp( —p- Volume (L))

ki

and for any disjoint subsetd andM’ of U, the number of the points insidé and the number of points insid¢’
are independent random variables. Note that Equation)¥ieRls that the expected number of points insitlies
H-Volume(U) = F'n.

The following simple argument shows that our results exterttis distribution. LeX be the random variable
representing the number of centers of unit balls generatexiRoisson point process with parametén U, and
letY be the random variable representing the numbdrdstegments amongst those balls. The expected number
of T4-segments is

Pr(X=k) = (11.8)

E(Y) = i E(Y|X =K)-Pr(X =K).
k=0

Theorem 11.1 giveE(Y|X = k) = ©(k) and

(3TTn)K- exp(—3mn)
k!

Pr(X =k) =

Thus

Arnk-1
E(Y)=0 (‘3‘11 nexp(—4mn) 3¢, <:(;|7(T_“)1)|>

=0O(n exp(—3mn) exp(3Tn)) = O(n).

Therefore the expected numberd-segments amongatballs whose centers are generated by a Poisson point
process with parameterin U is ©(n). Similarly this bound extends to the expected size of thibiity complex.

We now investigate various models in which we change theesbffhe universe or the nature of the objects.

11.7.2 Smooth convex universe

Our results can be generalized to the case where the uniganedonger a ball, but a homothet of a smooth
convex set with homothety factor proportional . This can be achieved by considering the radius of curvature
of the boundary of the universe, instead®n the proofs of the lemmas dealing with tangents outsideitiiverse.
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11.7.3 Other objects

Let rmin andrmnax be two strictly positive real constants. In the followinge Wwound the expected number of
T4-segments amongst balls whose radii vary in the intgry@l, rmay, amongst polyhedra each enclosed between
two concentric balls of radiimin andrmax and amongst polygons each enclosed between two conceinties of
radii rymin andrmax The centers of the concentric balls or circles are calledténters of the polyhedra or polygons,
respectively. In each caseTd-segment is calleduterif the centers of the two extremal objects it is tangent to are
farther apart thanrg,axand are both at distance less thap 2 from the boundary ofl(. Otherwise thé 4-segment
is calledinner.

For these models, the proof of tiEn) lower bound on the expected numberTaf-segments (Section 11.4)
generalizes directly because, for the kind of objects wesiclam, there always exist placements of four of them
such that they admit at least one common tangent line withijphialty one.

Balls of various radii

We have considered a model where all the balls have the sainesrédf we allow the radii to vary in the
interval [rmin, Fmax, then the proof of the linear upper bound on the expected puofinnerT 4-segments genera-
lizes almost immediately by considering the volurtéq;, pi, 2rmax) andH (ti, t;, rmin) instead ofH(p;, pi,2) and
H(ti, 4, 1),

Section 11.3.2 generalizes immediately to prove that theeed number of 4-segments tangent to four balls
Bi, Bj, B« andB; in that order such that and p, are closer to one another than&y is O(n). The only difficult
task for extending Section 11.3.2 is the proof of the follogvanalog of Lemma 11.10.

Lemma 11.28. Whenx; > 6I'max Yi = 2rmaxand Lf"J w1 occurs, the volume dF((ti, 1, rmin) VU is greater than
zﬂzlrr%ﬂn(xi,l - 6rmax)-

Proof. The proof is similar to the proof of Lemma 11.10. Refer to Fegi1.6. Letm be the midpoint of segment
tit andK be the sphere of diametsf;, centered on the poimtlying on segment; p; at distanc%rmm fromt;. The
sphereK is entirely insideH(ti,t, rmin) N U, mlies in H(t, 4, rmin) and a straightforward computation shows that
mis in U sincet; is in U at distance at leasfax from its boundary ang is at distance at mosyax from U. Thus
H(ti,t,rmin) N U contains the convex hull & andm which contains the cone of apex of base a disk whose
boundary is a great circle ¢f, and of height the distance fromto the centec of K. Now

Xij =|pipi| < [pic|+ [em + [mb[+ [t pi |

1
< Fmax+|cm + E|tit| | + Fmax
1
< 2rmax+|cm + é(xi.l + 2l max)-

Thus|cm > 2x;) — 3rmaxand the volume of the cone is at legst "g2)2(3X; | — 3rmax) = 25 2in(Xi) —6lmay). O

B

t

Fic. 11.6 — For the proof of Lemma 11.28.
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The rest of Section 11.3.2 generalizes easily for proviag tie expected number ®#-segments tangent to
four ballsB;, Bj, B andB, in that order such thas; andp, are farther apart tharr@ax andp; is farther than Bnax
from the boundary of(, is O(n). Hence the expected number of inflet-segments i©(n).

Our proof cannot be extended to provide a linear upper boarti@expected number of oufé4-segments.
This is because, if ballB; andB; are of radiugmax then a line segmertit; tangent toB; andB; might be outside
U and at distance greater thagiy from its boundary. Thed{(t;,t/,rmin) does not intersectl and we cannot
bound3(t;,t, rmin) NU from below by a positive constant as in Lemma 11.14, whichrigial for the proof of
Lemma 11.15 and thus for Proposition 11.20.

However, by not taking into account the occlusion in the pajdroposition 11.20, we get that the expected
number of outeiT 4-segments i©(n?). Refer to the proof of Proposition 11.20 and consigesr,..y<2rmae the
analog ofly 6 y<1 for this case. The analogs of Lemmas 11.6 and 11.7 yield that

3xr2,.,+8r3 )2
Pr(8 1 [ X1 =X Yi =Y, Y1 <Vi) < ( maXRG max) .

Lemma 11.18 still holds and we can easily prove the analogeairha 11.19. Both results imply that

|x>6rmax,y<2rmax X
X=6rmax

1 1
“°(w)-o(%)
Hence the expected number of inflet-segments i©(n) and the expected number of oule4-segments is
O(n?). This still improves the result of Durand et al. [DDP02] whoyed a bound 0©(nf/3) for the same model.
In this section we have assumed that the sphere centers ifmemin distributed but we have made no as-
sumption on the distribution of the radii of the spheres ia ithterval [rmin, rmad, Which are thus assumed to be

worst case. The addition of some hypothesis on the radiildigion may yield better results on the number of
outerT4-segments.

/meax 3xr2aX+8rmax)2 6xydx 3dy
y— R3 R

Polyhedra of bounded aspect ratio

Consider polyhedra of constant complexity, each encloséad®en two concentric balls of radijin andrmay
whose centers are uniformly distributedlin In such a case, as for balls of various radii, @@) bound on the
expected number of inndr4-segments immediately applies as well as@fa?) bound on the expected number
of outerT4-segments.

Polygons of bounded aspect ratio

Our proof technigue can also be generalized to non-fat 3Batbjsuch as polygons. Consider polygons of
constant complexity enclosed between two coplanar coriceirtcles of radiir min andrmax and whose centers and
normals are independently chosen from the uniform digtiobs overR® andS?. Let Ty, ..., T, be such polygons
with respective normalsy, ..., n, and centergs, ..., pp.

Four polygonsT;, Tj, Tc and T, have a common tangent line that meet them in that order orgy éind py lie
in H(pi, pi,2rmax)- This implies, as in Section 11.3.2, that the expected nurob&4-segments tangent to four
polygonsTi, Tj, T andT, in that order such thas andp, are closer to one another than some constant, I5ay,6
is O(n).

When such a tangent, denotig, exists, it is not occluded only if, for any# i, j,k,1, point p, does not lie
in the interior of (t;, 1, rmincosBy) where8, denotes the angle between and the supporting line dft; (see
Figure 11.7 (a) and Lemma 11.5). Lydbe an integer distinct from j, k andl. By the Total Probability Theorem,
the probability thaily does not occlude the tangent line segmignis bounded from above by

/2
/ Pr(py & J(ti 1y, FmincoSBy) | 8, = 8) - Pr(® < 8, < 6+ dO).
6=0
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Supporting line ofjt,

(@)

Fic. 11.7 —lllustration for the case of polygons of bounded aspecbrati

Similarly as in Lemma 11.28, when the tangghtexists X; | > 6rmaxandy; > 2rmay the volume ofH(t;, 1, rmin) N
Wis greater thamg (rmincosBy)?(Xi| — 6rmax). Thus

32R8

The probability thaBy is in betweerB and6 4 d@ is sin8d6, which corresponds to twice the area of the spherical
shell between the latitudésand® + dO on the unit sphere, divided by the area of the unit sphereKgpse 11.7
(b)). Thus wherp; is at distance greater than:6xfrom p; and at distance greater thanngy from the boundary

of U, the probability thally does not occlude the tangent line segngnis bounded from above by

Pr(py & H(ti,ti,rmincoshy) | 8, = 8) < 1

T[/Z (rmin COS@y)Z(X” - 6rmax) . _ l‘%m (Xi7| — 6rmax)
/9:0 (1— 30RE >S|nede_1—96R3

Then, similarly as in Lemma 11.11, the probability that tluegent line segment,; is not occluded, whep; is at
distance greater thamg.x from p; and at distance greater than.gx from the boundary off, is at most

. “r%in (Xi,l — 6l max) )

55 exp( %

We thus get the analog of Proposition 11.12 for the modelidensd here which implies that the expected number
of T4-segments tangent to four polygonsT;j, Tx andT; in that order such tha and p; are farther apart than
6rmaxandp; is farther than Bmax from the boundary oft is O(n).

We thus get that the expected number of infidrsegments i©(n). Moreover, as for balls of various radii,
the expected number of out€4-segments i©(n?).

11.8 Conclusion

In this paper, we proved that the expected numbérstegments amongstuniformly distributed unit balls
in R is ©(n). We also proved that the expected size of the visibility clempf n uniformly distributed unit
balls is©(n). Equivalently the expected number of combinatoriallyetidnt visibility events amongstuniformly
distributed unit balls i®(n). We then proved th#&(n) also bounds the expected numbeTdfsegments occurring
not too close to the boundary of the universe for variousratiedels such as uniformly distributed polyhedra,
or polygons, of bounded aspect ratio and constant compléar these models, we also provide®@?) bound
on the expected number of all th&-segments.

This paper is an attempt to analyze the average-case belodtie size of visibility structures. The distribu-
tion models of scene objects investigated here are theat@tinature since objects in graphics scenes are seldom
distributed uniformly or by a Poisson process. However, results are important in a context where there are
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few rigorous results either theoretical or experimentaley provide theoretical ground to support the empirical
evidence indicating that the worst-case upper bound on tingber of visibility events is largely pessimistic in
practical situations. As a consequence, there is reasoeligyb that an output-sensitive algorithm for computing
all visibility events may work in practice.

Practitioners will be concerned about the size of the com$tiaden in the® notation. We have calculated (in
the proofs of Section 11.3) this constant to be no larger #&p® 4 231 p+ 237e W3 (12 + 1/12). Of course this
is shocking. We suppose that the constant is actually muellemmHowever estimating it in practice is a difficult
problem which is still to be solved. After solving this prebi, an interesting experiment will be to compare
the number of visibility events occurring in a realistic jginéc scene with the theoretical bound for uniformly
distributed objects.

The results proved here also provide new insight on the cexitglof other visibility structures. Consider
for instance the aspect graph, a partition of viewpoint sgato maximal connected regions by surfaces along
which visibility events are observed. As explained in [Bét8he complexity of the aspect graph is dominated by
o™, whered is the degree of the surface corresponding to lines “tariger® objects andn the dimension of the
viewpoint space. For a scene composea disjoint spheresj is trivially O(n?), so the aspect graph h@gn®)
orthographic views an@®(n°) perspective views. However the results of this paper shawttte expected value
of & is ©(n) since the expected number of families of lines tangent teetlobjects (related to the 1-faces of the
visibility complex) is linear and the degree of each fam#iybounded. It would thus be interesting to get a good
bound on the expected value & and&® which is related to bounding the expected value of the sqaagethe
cube of the number of combinatorially different visibiliégyents. Note that the former would also give the standard
deviation of the expected number of combinatorially défarvisibility events. Similar observations hold for the
polyhedral case.

11.9 Appendix A. Volume of the intersection of a 3D hippo-
drome with a ball

Recall thatll is a ball of radiuRR centered a©. Let B; andB, be two unit balls whose centepsandp, are in
U, within distance 1 from its boundary, and distamce 6 apart. Letjt; be a line segment tangentBpandB at its
endpoints. The section is devoted to the proof of the follmyproposition which leads directly to Lemma 11.14.

Proposition 11.29. For any0 < s < 1 such that segmenttis at distance less than-R1— s from O, the volume
of H(t,t,,1) N Wis larger thanB%f2 (X—5)s4/8.

(a)t is not equal td; ort; ; 6 =0. (b)t is equal tat.

Fic. 11.8 —For the definition of andC (C is shown from the side view).

We proceed as follows. Letbe such that the distance frato the segmertit; is R+ 1—v, and lett be the
point on segmertit; closest taO (see Figure 11.8). Assume without loss of generality theicloser ta; than to
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Fic. 11.9 —For the definition of, &, b,b'.

t). LetC (resp.D) be the unit radius circle (resp. disk) centerediatthe plane, denote®, containing the vectors

Ot and the cross product ait andfit. Let6 be the angle between the plane orthogonatitand®. We first prove
the following lemma.

Lemma 11.30. The volume of{(t,t;,1) NU is greater than

%min (2’\/\\/g> -min <)(;2,(x—2) Cose—1> .

Proof. Let a denote the closest point @ from O, & the farthest point il N'U from O, andb andb’ the two
points of intersection of and the perpendicular bisector of segmasit(see Figure 11.9).

The volume ofH(t;,t,1) NU is greater than the volume of the convex hullab,a’,b’ and p because
H(ti,t,1) nU is convex and contains these five points. The volume of thigheadron is equal to one third of
the area of its base, the quadrilateral with vertiagds &', b/, times its height, the distance fropp to the planeP
containinga, b, a’,b’.

We first compute a lower bound on the area of the quadrilatéthiverticesa, b, &, b, If v< 2 (see Figure 11.9
(a) and (b)), then the length af is equal tov, and a simple calculation gives that the lengttbbfis equal to

24/v— sz > \/2v. Thus the area of the quadrilateeb, &, b’ is greater thaﬁ’Tg. If v> 2 (see Figure 11.9 (c)),
thenC is entirely contained ifll and the area of the quadrilaterb,a’,b’ is equal to 2. Thus, the area of the
quadrilateral is at least m(8, V\\g).

The volume of the polyhedron is thus greater tI%amin(Z, %’) times the distance from, to the planeP. We
consider two cases.

First, suppose thatbelongs to the interior of the segmet (see Figure 11.8 (a)). Then, the height is equal to
the distance from tot sincep, anda, b, a’, b’ belong, respectively, to the two planes, orthogonattand passing
throught; andt, respectively. Sincg andt; belong toB; andB, they are at least distange- 2 apart, thus andt
are at least distanc?iizLZ apart. Thus, the height from to P is at Ieast";zz.

Second, suppose thiat t; (see Figure 11.8 (b)};# t; since we assumed thiats closer ta; than tot;. Refer
to Figure 11.10. LeA andB be the orthogonal projections pf andt; onto P, respectively. Note that the lengths
of Ap andBY are the distances from andt, to the planeP, respectively.

Considering the trianglé&\Apt, and that the distance betwegrand p; is 1, we obtain thatfAp| > |AY| —
[tipi| = |AY| — 1, where|ab| denotes the length of segmati SinceA € P and the length oBY; is the distance
fromt to the planeP, the length ofAy is greater than that d@t, thus|Ap| > |Bt| — 1.

To bound the length oBt;, we now consider the triangléBtjit. The angle/Btt is the angle between the
normal of the plan@ andtjt;, that is, by definitionf. So the length oBY; is the length ofit; times co® and, since
[tit/] is at leas — 2, |BY| is greater tharix — 2) cosf. Thus the length oAp is greater tharix — 2) cosd — 1.
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Fic. 11.10 — The height fronp to P is greater thart;jt;| cosd — 1.

Hence the distance from to the planeP is greater than miff52, (x — 2) cosB — 1) and thus the volume of
H(ti,t,1) NU is greater thar% min(2, VW) min(%5= 2 (x—2)cosf—1). O

The following lemma bounds cés

Lemma 11.31. The angled is such thatos > 4.

Proof. Note first that this lemma is intuitively obvious. Indeeddg$ggure 11.8 (b)), ik is sufficiently large and
if tj is the closest point on segmdit to O, then the angle between the plane suppor@rand the segmertt; is
necessarily close tm/2, which implies thaf is close to 0. We now prove the lemma.
Refer to Figure 11.10 and consider the triangl@tt,. Let |ab| denote the length of segmeatt. Then the law
of cosines yields
[eE

|Ot 2+ [tit; |> — 2- |Ot| - tity| - cog § + 6)
Ot 2+ [tit |2+ 2+ |Ot] - [tity| - sin®
which gives that
O[> — |Ot[* — [tity|°
2-|Ot] - [tity|
The centersy andp; of ballsB; andB, are distance > 6 apart and at distance less than 1 from the boundary of
U, soltit;| >4, |Ot| > R—2 and|Ot | < R+ 1. Hence

sinG =

. (R+1)2-(R-22-4> 6(R-2) 3
siné < 2. (R-2)-4 SBR-2) 4

Using co® = /1 — (sinB)2 proves that co8 > Q. O

We can now conclude the proof of Proposition 11.29. For ary <X 1, if segment;t; is at distanceR+
1-v< R+ 1— sfrom the center oll, thenv > s. By Lemma 11.31(x—2)cos8—1 > Xz which means that

m|n( 2 (x—2)cosB—1) > 52 5 . Thus Lemma 11.30 gives that the volumeJddft;,t;,1) N'U is greater than
ef (x 5) min(2v/2,v\/V) > 6\[ (X—5) min(2v/2,5\/3) = 6\1@ Sy/S(x—5) sinces < 1. Hence the volume of
H(t,t,1) NUis greater thalh Sv/S(x—5).

11.10 Appendix B. Volume oK

Recall thatll is a ball of radiusR centered aO and letp; and p; be two points ifll within distance 1 of its
boundary and distanceapart. Lety be a real number such thakOy < 1. LetF be the open ball with cent€ and
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ENdF

oF
ouU

Fic. 11.11 —The partE of H(p;, p, 1) outsideF.

radiusR+ 1—y% andoF its frontier. LetE be the part ofH(p;, pi, 1) that is outsidé- andK be the intersection of
U with the union of all unit balls centered on pointsin(see Figure 11.3). This section is devoted to the proof of
the following proposition used in the proof of Lemma 11.17.

Proposition 11.32. The volume of K is bounded from abovel®ye (x+ 6)y.
Lemma 11.33.1f z € U is at distance less thahfrom E, then z is at distance less thhfrom ENJF.

Proof. Letze U andw € E be two points at distance less than 1 and refer to Figure 1Letiv be the point of
intersection oBF and the ray fron© throughw. For any ballB centered iril, B\ F lies in the cone of cented
and baseBNdF. Thus = H(p;, pi,1) \ F lies in the cone of cente® and basée NdF. Hence the ray fron®
throughw lies in this cone and/ € ENdF. On the other handzw/| < |zw| sinceze F, w € dF andw lies outside
F on the ray fronD throughw'. Thus, sincav € ENJF and|zw| < 1 by hypothesis, the distance franto E NoF
is less than 1. O

The above lemma implies thit is the intersection of( with the union of all unit balls centered dhnoF.
To bound the volume df, we enclosé&= NJF in a subset 0dF that will be easier to deal with.

Let B(p) denote the ball of unit radius centeredpat_et 1(p) be the point that maximizes (under inclusion)
the intersectio®F N B(q) for all q on the ray fromO throughp. A simple computation yields that the distance
betweer(p) andOis

R =1/ (R+1-y$)2—1.

ThusTtis the orthogonal projection onto the sphere centered at radiusR,. Now let (p) be the point that
maximizes (under inclusion) the intersect@éfin B(q) for all g on the radius of( throughp (that is the part inside
U of the ray fromO throughp). Similarly, 1’ is the orthogonal projection onto the sphere center&@latradius

R =min(R Ry).

Let G be the union of the spherical cagis N B(1(p)) for all pon the segment frorp; to p; (see Figure 11.12).
Let H denote the points dfl at distance less than or equal to 1 fr@see Figure 11.13).

Lemma 11.34.K C H.

Proof. ENAF is the union o@F NB(p) for all p on the segmen; p;. Furthermore, for any sugh, 0F NB(p) C
OF NB(1Y(p)) by definition of’ sincep € U. ThusENJF is contained irG.

By Lemma 11.33K is the intersection ofl with the union of all unit balls centered dhnodF. ThusK is
contained irH, the union of all unit balls centered @. O

To bound the volume dfl from above, we first bound the area of its section by pldmélksat containO and
are orthogonal to the plane, denot& p;, p ), containingO, p; andp, (see Figures 11.13 and 11.14).



152CHAPITRE 11. THE EXPECTED NUMBER OF 3D VISIBILITY EVENTS IS LINEAR

R oy

Fic. 11.12 —G, a part ofdF enclosinge NoF.

Fic. 11.14 —Section ofH by a pland intersecting segmer; p; at p.

Lemma 11.35. The area of 1N H is less tharl2my.

Proof. The section ofG by a planel is a circular arc oF. If I intersects the segmeptp;, let p denote the
point of intersection, then the circular arc is the intetisecof dF and the diskB(17(p)) NN (refer to Figures 11.12
and 11.14). Otherwise, the circular arc is the interseadiod and the diskB(t(p;i)) N M or B(T!(p)) N1 (see
Figure 11.12). The disk has radius 1 in the former case ands ks than one in the latter case. In both cases the
center of the disk is at distan® from O. Thus the length of the circular af@N M is maximal if and only ifl1
intersects the segmeptp,. Thus the area dfl NH is maximal if and only iff1 intersects the segmeptp,. Hence
we can assume that is such a plane. Lgt denote its intersection with segmemp;.

Let a andb denote the endpoints @NT1 and refer to Figure 11.14. Poirasandb are the intersection afF
and the circle i1 of radius 1 centered at'(p). The lines(Oa) and (Ob) split M N H into three parts, a left, a
central and a right part. Symmetries with respect to theslj@a) and (Ob) send the left and right parts into the
central one. Hence, the arealdf H is bounded by 3 times the area of its central part. This pallisnited by the

two rays fromO througha andb, and the two circles ifil with centerO and radiiR andey%. So, ifa denotes
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Fic. 11.15 — The length of the circular arab.

the length of the circular arab, the areaA of the central part is

A-— 2 mR-R-y§) a2 <
2n(R+1-y3) 2(R+1-y3)
We now bound the length of the arcab. We choose an orthonormal frani®(p),X,Y) in M such thatO

has coordinate), —R') (see Figure 11.14). Recall thais one of the intersection points of the circle centered at

1¢(p) of radius 1 and the circle centered@of radiusR+1— y%. A simple computation yields that the coordinates
(Xa,Ya) of a are equal to
2
_ (R+1-y3)2—1-R? _ ;

v y3 + 2R— 2R3 — 2y5
a= 2R

If R =R, then
2
2—y3
2R

=1-yi(1+ T2 ) > 12y

which implies that

Xal < /1— (- 2y8)2 = \/ayh —ayd < 28,
Now if R # R, then(R+1—y3)2 — 1 < R? by definition. Expanding this inequality yields
y3 +2R— 2Ry8 — 2y5 <0,

%>y%+2R>7R > 1
Y 2Ry “R1”

N

Thus Zy% > 1 and sincéXa| = /1— Y2 < 1 we get|Xa| < \@y%. Hence, in both cases,

1
[Xa| < 2y3.
Thus the length of the circular aabis (see Figure 11.15)
1
o= (R+1—y%)~2arcsin Lb < (R+l—y%)~2arcsin Lz .
R+1-—ys3 R+1-ys
A straightforward computation shows that ar¢gin- ix < 0 for anyx € [0,1]. Thus

1
a<(Re1-yd).on—2
R+1-ys

Wi

=4my
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Fic. 11.16 —For the computing a bound a&®.

Since the area of the middle part is less than or equab:g%,

A< 4T[y% y% =4my.

This implies that the area &f NH is less than or equal to I8 |

Lemma 11.36. The volume of H is bounded from abovelly® (x+ 6)y.

Proof. We express the volume &f by an integral using spherical coordinate®, ¢) in an orthogonal frame
(0,X,Y,Z) such that the plangD, X, Y) containsp; andp; (see Figure 11.13). A plar= constant contains the
Z-axis and thus is a plarf@. Let 14 (r, 8, @) denote the indicator function &f ; 14(r,8, @) is equal to 1 if the point
of coordinategr, 6, @) belongs tdH and to 0 otherwise. Then

Volume ofH :///1H(r,9,(p)-rzsin(pdrded(p.
@JrJe

SinceH is insidel, r - 14(r,6,0) < R-14(r, 6, 9). Moreover sifp < 1, thus

Volume ofH < R/9 (//1H(r,6,(p)-rdrd(p) de.
QJr

The double integral in parentheses is equal to the area ofdbion ofH by a planellg : 6 = constant. By
Lemma 11.35, this area is less thammd2 which is independent d. Moreover the area is equal to 0 whEg
does not intersedi. Let AB denote the angle between the two extreme plé&hgthat intersecH. Thus we have

Volume ofH < R- 121y - AB.

We now bound\6. Refer to Figure 11.16. Ldlg, andlMg, be the two extreme planes that intersdct_et u;
andu, be the two points of intersection &f with g, andlMg, respectively y; anduy, lie ondU. Let o andoy be
the two points inG at distance 1 fromy; anduj, respectivelys?(p;) and(p;) are at distance 1 from; andoy,
respectively.

The angle between the two extreme plafigsandllg, is, as before,

|UiU||/2 ‘UiU|‘/2:_,_[|UiU||'

Ae = 2 i F
arcsin R R

< 2T

Now we boundu;u| by the length of the polygonal line shown in Figure 11.16.

uiw| < |uioi] + o (pi) | + [T (pi) pil + [pipi |+ [Pt (pn) |+ [T (pr)a| -+ [oru|
=1+1+[(p)pi| +x+|pT(p)|+1+ 1
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We show that!(p;)pi| and|p 0 (pr)| are less than I7'(p;) is insidelUl at distance less than 1 frodf which lies
outsidell. ThusTt () is insideU at distance less than 1 from its frontier. Poinis also insidell at distance less
than 1 from its frontier. Sinc@; and1/(p;) are on the same ray starting fra® they are at distance less than 1
apart. Similarly forr?(p;) andp;. Hence

Therefore
Volume ofH < R-12my- A8 < 1212y (X + 6).

Proposition 11.32 follows from Lemmas 11.34 and 11.36.

11.11 Appendix C. Volume of the intersection of two
spherical shells

We prove in this section the following proposition used ia groof of Lemma 11.19.

Proposition 11.37. Let R> 0, x € [6,2R], y € [0,1] and p be a point at distance Ry from O. The volume of
the intersection of the region in between the two spheretemhat p and of radii x and % dx, and the region

in between the two spheres centered at O and of radii R ard/RRsee Figure 11.17) is bounded from above by
8rixydx.

Fic. 11.17 — For the proof of Proposition 11.37.

Proof. Define the ballB; with centerO and radiusk, B, with centerO and radiuR —y, Bz with centerp and
radiusx and finallyB4 with centerp and radius-+dx. Let'V denote the intersection ¢B; \ Bz) and(B4\ Bz). We
prove that the volume of is less than &xydx

Sincedxis infinitesimally small, the volume d&f is AdxwhereA is the area of the intersection of the sphere
0Bz with By \ By.

Let (p,X,Y,Z) be an orthogonal reference frame whose cent@rand whosex-axis is oriented alonng)
(see Figure 11.17). Notice that all spheres are centeredatraxis. LelC; (resp.Cy,Cs) denote the circle that is
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Cylinder of radius
X .
A Annulus of outer radiug and AX /e _ X2 and

I ius: /x2 — X2
inner radius, /x? — X{ | heightX, — %o

Cylinder of radius«

,,,,,,,,,,,,,,,, and heightX; — X; - B
B1 -
,,,,, Y SN Ll
By
\ .
I Annulus of outer radiux '\ Annulus of outer

\\\ ‘ . .
' 1 and inner radius/x2 — X2 o radius,/x2 — X?

hYe) and inner radius

(@) (b) \/W

Fic. 11.18 — For the proof of Proposition 11.37, case 1.

the boundary of the intersection Bf (resp.By,Bz) and the planép, X,Y) in which Figure 11.17 is drawn. The
equations of these circles are, in the frafpeX.,Y),

Ci: (X+R-y)?+Y2 = R
C: (X+R—y)2+Y?2 = (R-y)?
Cs: X24+Y2 = X2

SinceCs is centered at a point dfp and has radiug > 6 > 1 >y, Cs intersects or enclos€} andC;. In fact,
Cs intersects or enclos€y andC, in one of the three following ways.
Case 1:1f 6 < x < 2R— 2y thenGC; intersects botle; andC; (see Figure 11.17 (a)).
Case 2 :If 2R— 2y < x < 2R—y thenCj intersect$C; and enclose€; (see Figure 11.17 (b)).
Case 3 :If 2R—y < xthenCs3 encloses botl; andC,. In that cas€) is empty and the volume is 0.

In the first case, leX; (resp.Xp) be the abcissa of the points of intersection of cir€legresp.C;) andCs.
Note thatX; > X, and their values can be computed directly from the equabbtise circlesC;,C, andCs :

o _ R —x?—(R—y)? " — —x?
S =N VA 2T 2R—2y

Using the fact thay < x < 2R— 2y we get

Xi—Xo — y(ZR_)—y<1+ y ><2y,

2R—2y 2R—2y
2x% —y(2R—y) X
X — = < < 2X.
X1 — X2 2R72y \2x2R72y\2x

We now bound from above the argaof the surfacedB3 N (B; \ Bz) by the area of a larger surface which
depends on the sign of;. If X; > 0, the surface consists of a cylinder of axis ¥axis, of radiusx and height

X1 — X2, and of two annuli in the planeé = X; andX = X;, of inner radius.\/x2 - X12 and\/x2 — X22, respectively,
and outer radiug (see Figure 11.18 (a)). ¥; < 0, the surface consists of a cylinder of axis ¥waxis, of radius

/X% — Xl2 and heightX; — Xp, and of an annulus in the plade= X,, of inner radius, /x2 — X22 and outer radius

X2 — X2 (see Figure 11.18 (b)). In both cases that surface is langedB3 N (B1 \ By) by convexity.

If X, > 0, the area of the cylinder iS®(X; — X;) < 4rxyand the area of the annuli ame? — 11(x% — X?) = TiX2,
i =1,2. SinceX; > 0, X; < y < xand thugiX? < Txy. We also have from the expressiongfthatR? — x2 — (R—
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y)? > 0 and thus? < y(2R—y). Thus

=T X X ey R X (g Y
TRy Ry SRRy T YRy \" T 2R—2y )

s

It thus follows fromy < x < 2R— 2ythatTr)(22 < 2mxy. HenceA < 7Ty.

If X3 <0, the area of the cylinder isng/x2 — X12(X1 —X2) < 2rmx(2y) and the area of the annulusn'$x2 —
X2) — (X2 — X2) = T(Xg — X2) (— Xz — X1) < 41xy. ThusA < 8mxy.

Consider now the second casR 22y < x < 2R—Yy (see Figure 11.17 (b)). For a fixed valueyfA is the
area of a spherical cap whose perimeter and curvature desrax increases. Thud is a decreasing function of
X. Since the boundl < 8mxy is valid for x = 2R— 2y and 8wy is an increasing function of, A < 8rxy for any
X > 2R—2y. O

<
<
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Chapitre 12

An upper bound on the average size of
silhouettes

Cet article a été soumisBiscrete Computational Geometf@L06]. (Voir également le rapport de
recherche [GLO7].) Une version préliminaire a été publidéesdes proceedings @2th ACM Annual Symposium
on Computational Geometflio6].

Abstract

Itis a widely observed phenomenon in computer graphicshigasize of the silhouette of a polyhe-
dron is much smaller than the size of the whole polyhedrois paper provides, for the first time,
theoretical evidence supporting this for a large class @aib, namely for polyhedra that approxi-
mate surfaces in some reasonable way ; the surfaces may m®neex and non-differentiable and
they may have boundaries. We prove that such polyhedra liaeaisttes of expected siz@(,/n)
where the average is taken over all points of view aiglthe complexity of the polyhedron.

12.1 Introduction

The silhouette of a polyhedron with respect to a given viemgs, roughly speaking, the set of edges incident
to a front and a back face. Silhouettes arise in various problin computer graphics such as hidden surface
removal and shadow computations (see [Dug04, DD02, EGHHicB@ome recent references) and algorithms to
compute them efficiently have been well-studied (see theegury Isenberg et al. [IFH03]). They are important
in shape recognition ; Sander et al. [SEW] claim that the silhouette “is one of the strongest visusds of the
shape of an object”.

It is a widely accepted fact that the silhouette of a polybads usually much smaller than the whole polyhe-
dron. Sander et al. [SG@®O0], for instance, state the largely repeated claim thasilheuette of a mesh is often
of size®(,/n) wheren is the number of faces of the mesh. An experimental study litnKeand Welzl [KW97]
confirms this for a set of realistic objects. This experirabatudy was extended by McGuire [McG04] to a larger
database of larger objects for which the observed size dfitheuette is approximately’8.

There are few theoretical results supporting these obsenga Kettner and Welzl [KW97] prove that a convex
polyhedron that approximates a sphere with Hausdorff tgta has®(1/¢) edges, and a random orthographic
projection of such a polytope h&1/./¢) silhouette edges. Alt et al. [AGGO03] give conditions undéich it can
be proved that the average silhouette ebavexpolyhedron has siz&(,/n) and give additional conditions under
which the worst-case size is provably sub-linear.

The goal of this paper is to study the average silhouettedizmn-convexpolyhedra. Convexity is a very
strong assumption, which was crucial in the previous théaeresults. Here, rather, we assume that the poly-
hedron is a good approximation of some fixed (not necessawityex) surface. Notice that it is very difficult to
guarantee anything on therst-casecomplexity of the silhouette of a polyhedron unless it apprates a strictly

159
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Fic. 12.1 —A worst-case linear silhouette (left) of a polyhedron apgmating a cylinder.

(@) (b) (c)

Fic. 12.2 —Three different notions of silhouettes : (a) outline of aickohs cast by its shadow, (b) rim of an
opaque object, and (c) rim of a transparent object.

convex surface. Alt et al. [AGGO03] give an example of a potytad approximation of a section of a cylinder with
worst-case silhouette sif(n) (see Figure 12.1). Moreover, their example can be modifisdiah a way that the
surface is smooth, and its polyhedral approximation is &="ras one might hope (for instance, it can be required
that the faces are fat triangles that all have almost the séag

In this paper we prove an upper bound onélpected sizef the silhouette for random viewpoints. We prove
that the silhouette of a polyhedron that approximates aseearih a reasonable way has expected Gizgh). Note
that the average is taken over all viewpoints for a givenasgrfand not on a set of surfaces.

In Section 12.2, we define precisely the notion of silhouéttepolyhedra and general surfaces. We then
present and prove our main result in Section 12.3 and coadtu8ection 12.4.

12.2 Definitions

The term silhouette has been used in the literature to repreeveral different notions, depending on the
application, reflecting such issues as : is the object censitiopaque or transparent? Is occlusion taken into
account ? Is one interested by what the eye perceieesa plane curve, or by the space curve which gave birth to
it ? In the area of photography, for instance, a silhouetso(ealled apparent boundary) is defined as an outline of
a solid object, as cast by its shadow, that appears darksigaliyht background (Figure 12.2(a)). In the field of
computer vision, by contrast, the silhouette (also caliex] profile or contour generator) is roughly defined as the
curve on the surface that separates front face regions fierhdck ones, either for opaque (Figure 12.2(b)) or for
transparent (Figure 12.2(c)) objects.

In this paper we prove an upper bound on the size of the tramspsilhouette ; since such a silhouette contains
the apparent boundary and the contour, our bounds also &pplythese types of silhouettes. In the rest of the
paper the term silhouette will be used to mean transparkioistte.
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In the rest of this section we give a formal definition of sillettes of polyhedra and then provide a definition
for more general surfaces.

12.2.1 Polyhedra

The (transparengilhouetteof a polyhedron from a viewpoint (possibly at infinity) is thet of edges that are
adjacent to a front face and a back face. A face is considefamhtface if the angle between its normal vector
and a vector from a point of the face to the viewpoint is acate] a back face if that angle is larger thaf®. If
the point of view is in the plane containing the face, we rédghe definition of silhouettes for the case of general
surfaces. The normal vectors should point outwards, but vefadly matters is that the orientation is consistent for
the two faces that share this edge, so this definition alsbespie non-orientable (necessarily self-intersecting)
polyhedra.

In this paper, we call complexity of a silhouette (of a polgtan) its number of edges.

12.2.2 General surfaces

Our objective is to bound the size of the silhouette of a petiybn. To achieve this goal, we need to relate the
silhouette of the polyhedron to the silhouette of the swid@pproximates, which means we need a definition of
silhouettes that applies to a larger class of objects. Algihadhis may seem unintuitive, we first define the silhouette
as a set of rays, and then relate this to the more usual cooteset of points on the surface.

Let Sbe a compact 2-manifold without boundary. It separ&&# two non-empty open regions ; call and
0" their closures (s@ N ¢’ = Sand ¢ U ¢’ = R3). LetV be a viewpoint not or$ but possibly at infinity. The
(transparent¥ilhouetteof SfromV is the set of ray® starting fromV that are tangent t8in a non-crossing way
(R may crossS elsewhere). More formally, we require that there exists p@nosegment of R that contains a
connected component &1 Sand is contained either iff or &”.

This definition defines a set of rays. The silhouette can atseden as the trace of this set of rays on the
surface. More precisely, for each r&on the silhouette, we consider the closest poin¥ ton each connected
component oRN Sthat satisfies the non-crossing property. This definitiaroissistent with the one given for the
particular case of polyhedra, and is the one we will use & plaper.

For a given viewpoint at infinity, we define the (projectégthof the silhouette as the length (counted with
multiplicity if several points have the same projectionjtté projection of the silhouette, along the direction given
by the viewpoint, on an orthogonal plane.

Remark. The definition of the silhouette can be extended to casesafdisnot a 2-manifold, but an immersion of

a compact 2-manifold. More precisely, we have a 2-mani®lahd an applicatiori : S — RS such thaS= f(S)

and for any point or8 there exists a neighborhott of that point such that) and f (U) are homeomorphic. The
local orientation is sufficient to decide whethRrrossesS or not (note that more complicated things can happen
than crossing or being tangent, even with smooth surfacesngtance, the surface may ripple an infinite number
of times in the neighborhood of a point, making it imposstbldefine on which side & Ris near the intersection
point). This remark extends to the whole paper and, in pdeicto Theorem 12.1. However, we do not give either
a definition or a proof of this, as it would uselessly make ytréng more obscure.

12.3 Main results

Let Sbe a compact 2-manifold without boundary whose silhouétte® finite average length, si®, where
the average is taken over all viewpoints at infinity. Betbe a polyhedron withm triangular faces, that is homeo-
morphic toSthroughf, : P, — S such that :

1. the length of any edge &% is at Ieast% and

2. for any pointx on Py, d(x, fa(X)) < &\/(ﬁx) whereh(x) is the smallest height of the triangle(s) i&f that
contain(s),

wherea andf are two arbitrary positive numbers ad()) denotes the Euclidean distance.
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Theorem 12.1. The expected complexity of the silhouette pfsPO(1/n), where the average is taken over all
viewpoints at infinity. More precisely, for any n, the expdatomplexity is at most

(15[5+ %‘ siIh(S)) NG

Note that the bound is valid for amyand any polyhedroR, satisfying the above assumptions. Note also that
the bound depends @wonly by the average length of its silhouette.

We first clarify the meaning of the hypothesesRrand their implications. We then prove Theorem 12.1 in
Section 12.3.2. We finally show in Section 12.3.3 how Theot@m can be generalized to surfaces with boundary
and viewpoints at finite distance. In particular, we proweftiilowing result.

Let S be any compact two-manifold with boundary of finite lengthl avhose silhouette has finite average
length (taken over all viewpoints at infinity).

Theorem 12.2. Any mesh Pwith n triangular faces that approximate$ &cording to Hypotheses 1 and 2 has a
silhouette of expected complexityZn) when the viewpoint is chosen uniformly at random in a ball.

12.3.1 Meaning of the hypotheses

Hypothesis 1 is here to avoid short edges. The main idea @frthadf is to link the complexity of the silhouette

to its length, and arbitrarily short edges would make thipassible. Now the% factor makes sense : intuitively,

since the polyhedron hasfaces, each face has area of orﬁewhich means that the edges have length of order
1

NGE
Hypothesis 2 is rather technical, and we discuss insteadnttemning of the following two more intuitive
hypotheses, which, together with Hypothesis 1, irdplgypothesis 2.

3. The faces oP, are fat.
4. For anyx on Py, d(x, fa(X)) < ¥, whereyis some positive constant.

Hypothesis 3 is quite natural. Hypothesis 4 ensuresRhapproximates. Furthermore, thé; factor is reaso-

nable ; indeed, in 2D, when considering a regular polygoh wige Iengtt@(%) inscribed in a circle of radius

1, the maximal distance between a point on the polygon anditble is 9(%). The situation is the same in 3D.
Basically it means that the error when approximating théaserwith a plane is of the second order.

Our hypotheses (1-3-4 or 1-2) ensure that the homeomorphidms good properties, that is that, roughly
speaking, the polyhedron can be obtained by only a smallgmtion of the surface while keeping the normal vec-
tors in approximately the same directions. This is cruaabiur proof since otherwise, for example, a cylinder can
be approximated by a lantern of Schwarz [Sch90] (see Fig2t®&(d)) whose silhouette has expected complexity
O(n) and unbounded length.

Notice that the existence of polyhedra with arbitrarilygmumber of edges that approximate the surface
according to these hypotheses is a constraint on the suffaiteevery surface admits such an approximation
(think of the neighborhood of 0 in the surface definedzby (x% +y?)'/8 as shown in Figure 12.3(b)). However,
the class of surfaces for which such approximations exigtiite large. It includes, in particular, smooth surfaces
and polyhedra with fat faces.

12.3.2 Proof of Theorem 12.1

We consider a point of view chosen randomly at infinity. We kalhe length of an edge of polyhedronP,
and6, the exterior dihedral angle associate@{@ee Figure 12.4).

Let Te denote the union of the two triangles adjacent to egl{jacluding e but not the other edges). For any
partR of S, let silh(R) be the average length of the part of the silhouett8 thfat lies inR.

2OIndeed, for anyin P,, Hypotheses 1 and 3 imply thiagx) > &/./n for some positive constadt, Hypothesis 2
then follows from Hypothesis 4 sindg€x)//n > 6/n > 8/y-d(x, fn(X)).
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ine

Fic. 12.3 —(a) Two half lanterns of Schwarz (courtesy of Boris Thibe(th) A surface that cannot be approxi-
mated with the right properties.

2]
’

Fic. 12.4 —(a) Length and dihedral angle of an edge ; (b) set of direstionwhiche s on the silhouette.
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We first recall a classical formula on the expected size bbsiéttes which can also be found, for instance,
in [McGO04].

An edgee is on the silhouette if the direction of view is in the darka the sphere of directions of Fi-
gure 12.4(b). The angular measure of this regionfg #vhich means that the probability farto be on the
silhouette i/t The expected number of edges on the silhouette is thus

1
E== Be.
T[edQXe e °

We now state our main lemma. The general idea of this lemnietamnder strong hypotheseshas bounded
curvature, the edges have Ien@l(l%), and Hypotheses 3 and 4 are satisfied), one can prov@gr@t% for
some constartt. In cases where this inequality does not hold, edigenear some kind of edge of the surface,
or at least some feature that will appear quite often on thewsette and we are going to charge this edge to the
silhouette ofS.

Lemma 12.3. For any edge e on?

C 8m._. ,
< — 4 — T. = )
Be < NP silh(fn(Te)) with C=313

Theorem 12.1 follows from Lemma 12.3. Indeed, siﬁgélas% edges, each of length at qu% (by Hypo-
thesis 1), we get that the expected complexity of the siltteus

because z silh(f, (Te)) = 3 silh(S) since the length of the silhouette Bthat lies in the image (througfy) of
edge e
a triangle is counted three times (once per edge). Hence,

E< (15;3+ i“snh(3)> V=0 (V).

Proof. [Proof of Lemma 12.3] The idea of the proof is as follows. Qdasthe set of directions for whiahis on
the silhouette. We first construct a subSebf these directions whose measure is a constant tB@es% (see

Figure 12.5). We then prove a lower bound on the length of ilhewsette of f,(Te) for all these directions, and
deduce the result.

Let C be a positive constant, whose value will be defined later Espmtion 12.2). For any edgeon P,, we
can assume th&. — % > 0 since, otherwisee < % and there is nothing else to prove.

The set of directions for whichis on the silhouette is the set of directions between thegslaefined by the
faces adjacent te. Rotate each face abogiby an angle szTCm so that the exterior dihedral angle decrease%hby
(see Figure 12.50 is defined to be the set of directions between these two naveglidnat make an angle larger

thantt/3 with the line supporting. The measure of the set of directions between these twogplam6. — %).

Restricting this set of directions to those that make anelager thant/3 with the line supporting, we get, by
integrating on the sphere of directions, that the measu€eisf2 (6. — %).

The remaining step uses the property, which we prove in Goyol2.5, that for all the directions i@, the
silhouette off,(Te) has length at least/4. Assuming this temporarily, we sum this inequality o@rThe smal-

ler side of the inequality is 'g(ee— %). The larger side is the integral of the length of the silhtaief f,(Te)

over all directions i, which is smaller than this same integral over all directidhat is 4tsilh( f,(Te)). Hence
4nsilh(fa(Te)) = 'g(ee— \%), which concludes the proof. O

We now state a lemma and its corollary which we used in thefpgblbemma 12.3 under the hypothesis that
Be — \% > 0. We can thus assume in the sequel that this property holds.

Let € be the segment obtained by clipping fraall the points at distance less th&nfrom its extremities.
Refer now to Figures 12.6(a)—(b).
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Fic. 12.5 —Construction ofQ.

(@) Orthogonal projection (b) For the definition oDy.
along d of € and of the
silhouette offy(Te).

Fic. 12.6 —For the proofs of Lemma 12.4 and Corollary 12.5.
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Lemma 12.4. Any line with direction d= Q that intersects‘ecan be translated in a direction orthogonal to e and
d until it becomes tangent to S ip(Te).

Corollary 12.5. For any direction d inQ, the silhouette of{ Te) has length at Ieas%.

Proof. Consider the projection @& and of the silhouette df,(Te) onto a plane orthogonal th(see Figure 12.6(a)).
It follows from Lemma 12.4 that, in that plane, each pointloa projection o maps to a point on the projected
silhouette in the direction orthogonaléb Hence, the projected silhouette is longer than the prioject €, which

is at Ieas@ times the length of' sinced makes an angle of at least3 with €. Thus the silhouette of,(Te) has
length at Ieas@'fe > IZe- O

Proof. [Proof of Lemma 12.4] LeD denote a line with directiod € Q that intersect®. Let T; and T, denote
the two triangles adjacent wand leth; andh, denote their respective smallest heights. yiet ph;i//n, X* =
max(x1,X2), andx~ = min(x1,x2). Refer now to Figure 12.6(b). We cdll;, t € [-x~,X"], the line obtained
by translatingD at distancelt| in a direction orthogonal to the plane defined dgndd; positive values of
correspond to lines in the half-space bounded by the plafieedebye andD, and not containind@e ; negative
values oft correspond to lines in the other half-space. For claritygeeoteD_,- by D~ andD,+ by D*.

By constructionD is at distancg™ from Te. ThusD* does not intersedi(Te), by Hypothesis 2. We prove
thatD~ intersectsf,(Te) and that no lined; intersects the boundary df(Te). This will imply that, sweepind:
from D to D, the first lineDy, that intersectdy(Te) is tangent tofn(Te) at one of its interior point, which will
conclude the proof.

We first prove that no lin®; intersects the boundary éf(Te). In other words, we prove that, for each edge
€* on the boundary ofe, no lineD; intersectsf,(€*). Let T; be the triangle (ofs) containinge*. By Hypothesis 2,
it is sufficient to prove that the distance betwé®rande* remains greater than or equalyofor all t.

First notice that it is sufficient to prove that the distaneéA®eenD; ande* remains greater than or equalyo
for allt € [-x~,0]. Indeed, then, the distance betwd®n= D ande* is at leasix;, and the distance betweén
ande* increases fot > 0 (see Figure 12.6(b)).

Let I be the smallest anglé can make with the plane containifigand refer to Figure 12.6(c). L& be
the point of intersection betwedh and the plane containing andw be the distance betweeq and the point
on € that realizes the distance betwd@nande®. The distance betwedd, ande* satisfied(Dy,e") > v sinll >
d(A:,€")sinlC. Hence, for proving thatl(D;,e") > x; for t < 0, it is sufficient to prove thad(A;,€") > s,.Xﬁ for
t<0.Weseta= SIX# to simplify the notation.

We just proved thatl(A;,€*) > a impliesd(Dy,e*) > x; (for all t). Conversely, we have thatD;,e*) < x;
implies d(A;,e*) < a. Similarly, for edgee, we get thatd(D;,e) < x; impliesd(A;,e) < a. By definition of Dy,
we have thatl(Dy,e) < x; fort < 0, thusd(A;,e) < afor t < 0. Furthermore, the angle betweeand segment
{A |t € [-x,xT]} is at leastrt/3 because this angle is at least the angle between theirgamiabprojection on
the plane defined bg andD that is the angle betweanandD since allA; lie in the plane spanned iy, which
projects onD ; the lower bound oft/3 follows since the angle betweerandD is at leastri/3 by definition of
Q. Hence, the locus of point, fort < 0, lies in a region, denoted, shown in dark gray in Figure 12.7(a). For
proving thatd(A,e*) > afort < 0, itis thus sufficient to prove that this region does notrseet the set, denoted
Y, of points at distance less tharfrom e* (shown in light gray in Figure 12.7(a)).

Referring to Figures 12.7(b)—(c), Iptbe the endpoint of the closest t&* ands be its projection on the line
supportinge*. If the two regionsy’andY’ intersect, there exists a poigin the intersection that is at distance less

than or equal to%afrom p and at distance less than or equahtisom e*; thusd(p,s) < d(p,e*) < d(p,q) +

d(g,e") < (1+ %)a. On the other handi(p,s) is one fourth of one of the heights of the triangleand thus is

at Ieast%. Hence, if the two regions intersect, th%ng (1+ %) SIX# We postpone to Lemma 12.7 the proof
sinl
concludes the proof that no lir# intersects the boundary &f(Te).
We now prove thab~ intersectsf,(Te). Consider a projectiorp(), along the directioml onto a plane ortho-
gonal tod. We proved that, for any of the two triangl&s Y is at distance at leagt from each edge* # e of T,.
It follows thatY lies in triangleT; and thus thab; intersectsT; for all t < 0. ThereforeD ™ intersectsT; and is at
distance at leagy; from each edge* # e of T;, fori = 1, 2. FurthermoreD~ is at distancg™ = min(x1,X2) from

that, withC = 3133, we have% > (1+ %) Xi_ which implies that the two regionéandY’ are disjoint. This
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(b)

Fic. 12.7 —For the proof of Lemma 12.4.

Fic. 12.8 —Projection ofdT;, f,(dT;) andD~.

e, by definition. We now consider the triandlefor which; = x~. It follows thatD~ is at distance at leagt from
all three edges of;. ThusD~ projects to a poinP = p(D™) inside trianglep(T;), at distance at leag; from the
three edges op(T;) (see Figure 12.8).

Roughly speaking, by Hypothesis 2, the cufyédT;) is at distance less thgg from 0T, (the boundary of
T;) thus its projectiorp(fn(dTi)) is at distance less thag from the edges of(T;). It is thus intuitively clear that
p(D™) intersecty( fn(Ti)), and thus thab~ intersectsfy(Ti) (and thusf,(Te)).

More formally, consider the applicatiap from the trianglep(T;) to the plane containing it such that, for any
point x in T, the pointp(x) is sent to the poingn(p(x)) = p(fn(x)). We first prove that the curves(dT;) and
gn(p(dT;)) are homotopic iR?\ P. Consider the continuous application

F: 0T, x[0,1] — R2
(XA)  — Ap(X)+(1=A)gn(P(X)) = Ap(X) + (1 —A) p(fn(X)).

F is an homotopy between the curve®T;) andgn(p(dT;)) in R?. We prove that the image & does not contain
P, which yields the result. The triangle inequality gives

d(RF(x,A)) = d(P, p(x)) —d(F (x,A), p(x)).

We have already proved that poidts at distance at leag; from p(x) for all pointsx in dT;. On the other hand,
the distance betweep(x) and p(fn(x)) is larger than or equal to the distance betweéx) and their barycenter
F(x,A), for anyA € [0,1]. Hence

d(P.F(x,A)) = Xi —d(p(X), p(fn(x)))-

Finally, sinced(p(x), p(fa(x))) < xi for all x € T, by Hypothesis 2, we have thdfP, F (x,A)) > 0 for all (x,A).

Hence, the image d¥ does not contain poir and thus the curves(dT;) andgn(p(dT;)) are homotopic ifiR?\ P.
Now, we can contragb(0T;) to a point while remaining imp(T;). Composing this witly, gives a contraction

of gn(p(T;)) in gn(p(T;)). ON the other hand, there is no contractiorp@T;) in R?\ P (sinceP is in p(T;)), thus
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P

Fic. 12.9 —For the proof of Lemma 12.6.

there is no contraction of its homotopic cuiyg p(dT;)) in R2\ P. Hence, there exists a curve that is contractible in
gn(p(Ti)) but not inR?\ P. It follows thatgs(p(T;)) is not included ifR?\ P. HenceP is in gn(p(Ti)) = p(fn(Ti)).
ThereforeD™ intersectsf,(T;) and thusf,(Te), which concludes the proof.

O

We finally prove the two following simple technical lemmasigihcomplete the proof of Theorem 12.1. Recall
thatl is the smallest angle a directione Q can make with the plane containifig

Lemma 12.6. sinl = @sin%ﬁ.
Proof. In the following, we identify the sphere of directions witrsphereS embedded irR3; let O denote its
center. We assume that the embedding preserves diredtientof any directiord, the corresponding poitd on
8 is such thatd andOM have the same direction).

Refer to Figure 12.9. Lal be a direction iQ andM be its corresponding point dh Consider one of th&
and let? be the plane containin@ and parallel to the plane containifig Let H be the orthogonal projection of
M onto planeP. Let E andE’ be the two points o8 that correspond to the two (opposite) directions of segment
e. LetK be the orthogonal projection ™ (andH) onto the lineEE’. Finally, let® be the angle#’MKH, ¢ be the
angleZMOK, andy be the anglezMOH.

It follows from these definitions that

HM HM KM

siny = oM~ KM oM = sind sing.

Now, the angley is also the angle between directidnand the plane that contaids. Thuslm = Jngy, by
S

definition of . The angled is the angle between the plane containih@nd the plane containingandd. It thus
follows from the definition o2 thatdinée = z%ﬁ (see Figure 12.5(a)). The angpas the angle betweethand the
€

line containinge. It thus also follows from the definition @ thatdinglz(p: 3. In addition, sincey, 6 andg@ are in
€
[0, 7], we have
sinl” = inf sin inf sin@ = sinL and infsing= sinlT
TS dgS" T 2yn gt P SNg:
Furthermore, the constraints 6rand@in the definition ofQ are independent. Thus, the minimaBodind@ can be
attained for the same directiahin Q. It follows that
inf (sin@ sing) = inf sinB. inf sine.
deQ deQ deQ
We can thus conclude that
sinlC = inf siny = inf sinB sin@= inf sinB inf sing= ésin
deQ deQ deQ deQ

2 7 2yn
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0
Lemma12.7. % > (1+ &) Ji- with C= 313,
Proof. By Lemma 12.6, replacing; andl" by their values in the inequalit&‘f > (1+ %) SI% gives
Bhi
hi ( 2 > NG
—> |1+ —= | —F
4 V3ain( €
) Fan()
or equivalently
2 V3 ./ C
43 (1+ \/§> < ﬁzsm(m> : (12.1)

Notice first that for large enough valuesmfusing the approximation sir X in the neighborhood of zero,
we derive the sufficient condition 168

> (1+ 5@) ~19.9p.

Now, since we want our result for all the computation is more complicated. Recall first that for strictly
concave functiorf, such thatf (0) =0, f(x) > % xforanyx € (0,Xp). It follows that sirk > %xfor anyxe (0,7).

C C 6,
—>0andthusthate(2—ﬁ<7e<g,weget

/N
sin L > g i
2y/n m2yn’
To guarantee inequality (12.1), it is thus sufficient to have

>< V32 C

Since we assumed thég —

<Vn— = ——.

2
45(1+ NG

V3
or equivalently
c> g (2+ Jé) 1B ~ 3127,
which concludes the proof. Note that we can set
C=313p. (12.2)

in the definition ofQ (in the proof of Lemma 12.3) since Inequality (12.1) is théyaonstraint orC. O

12.3.3 Generalizations

We prove here Theorem 12.2. We first show that Theorem 12.&rgkres to the case where the viewpoint
is chosen randomly at finite distance. We then show that derisig surfaces with boundary does not change the
asymptotic expected complexity of the silhouette.

Point of view at finite distance. We have thus far restricted ourselves to the case where ¢hepuint

is chosen uniformly at random at infinity. However, our résuiplies to any distribution of viewpoints such that

the probability for an edge to be on the transparent silhouetteO&.), wherebe is the exterior dihedral angle

associated te; indeed, the expected number of edges on the silhouetteris tE O(Be) and we get the result
edge e

by applying, as before, Lemma 123Such a distribution of viewpoints is obtained, in particulghen the point

of view is chosen uniformly at random in a ball. This is alse tase ifS delimits a bounded regio@w and the

viewpoint is chosen uniformly at random B\ &, for a ballB.

2INote that, in Lemma 12.3, sillf(Te)) always refers to an expected length for a viewpoint chosedaialy
at infinity.
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Surfaces with boundary. LetSbe a 2-manifold with boundar$. We consider that the boundary is always
on the transparent silhouette and so the definition of thesparent silhouette of a 2-manifdBlvith boundary is
exactly that of a 2-manifold without boundary plus the baanydB.

The surfaceS is approximated by a triangulated meBhthat satisfies Hypotheses 1 and 2, as in the case
without boundary, except that now the mesh may not be a pdigine(some edges may have only one adjacent
face rather than two).

To give an upper bound on the number of edges on the silhaafetie mesh, we consider the boundary edges
and the other (non-boundary) edges separately. For théboondary edges, the same reasoning as before still
holds. For the boundary edges, it is easy to see that thehl¢img3D) of the boundary of, cannot be much larger
than the length oB. Indeed, the two are homeomorphic, and the hypotheses itmgiyhe image of an edge of
lengthlg, is a curve whose extremities lie at distance at leasef3 - \'—% = Q(%) apart. This means that the length

of Bis at Ieasﬁ(%) times the number of boundary edgedfHence, the number of boundary edge®pis at
mostO(4/n) times the length oB. So, if the length ofB is bounded, the expected complexity of the silhouette of

Py is O(y/n).

12.4 Conclusion

This paper gives an idea of why, and when, the usual claintiieagilhouette of a triangulated mesh has size
O(y/n) is valid. In particular, we have given a set of conditionshstitat any triangulated mesh approximating
a surface in a way that satisfies those conditions has a sitteoaf expected siz@(,/n). Roughly speaking, the
mesh should have no short edges, its faces should be fahaddtance between it and the surface it approximates
should never be too large. The surface itself is not necéssaerywhere differentiable and may have boundaries.

A natural question to ask is whether meshes satisfying thosditions exist. In fact, for smooth surfaces,
the meshes produced by Boissonnat and Oudot [BOO05] are echeesample. The critical property of the meshes
they compute is that the ratio between the size of the laagesthe smallest triangles remains bounded, although
meshes are non-uniform with small triangles in areas o€lartgvature. However, in order to satisfy our conditions,
non-smooth surfaces with curved sharp edges (such as a figinger with a sharp equatorial arc) would have to
be approximated by small triangles over the whole surfaoceh $neshes would have silhouettes of expected size
O(y/n) but thenn would be much larger than necessary ; it would be reasonabieptace the large number of
triangles used to mesh large flat portions of the surface avigmaller number of large triangles, which would
give a silhouette of size closer to linear. This explains wig/observed expected size of silhouettes, as shown in
[McGO04], is larger tha®(+/n). The fact that non-uniform meshes approximating such sesfappear, in computer
graphics, to have silhouettes of expected size much sntlaflen is thus likely due to additional properties of the
surfaces or the meshes.
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Chapitre 13

Between umbra and penumbra

Une version courte de cet article est parue dans les proggsede |a23rd European Conference on
Computational GeometifpDE07].

Abstract

Computing shadow boundaries is a difficult problem in theeazson-point light sources. A point
is in the umbra if it does not see any part of any light sourtés;in full light if it sees entirely all
the light sources ; otherwise, it is in the penumbra. Whiledbmmon boundary of the penumbra
and the full light is well understood, less is known abouthbbendary of the umbra. In this paper
we prove various bounds on the complexity of the umbra ang#meimbra cast by a segment or
polygonal light source on a plane in the presence of polyggolytope obstacles.

In particular, we show that a single segment light source caay on a plane, in the presence of two
triangles, four connected components of umbra and thatataohvex obstacles of total complexity
n can engende®(n) connected components of umbra. In a scene consisting ofraesedight
source and disjoint polytopes of total complexitp, we prove arQ(nk? + k*) lower bound on
the maximum number of connected components of the umbra @ahkf) upper bound on its
complexity. We also prove that, in the presenck disjoint polytopes of total complexity, some of
which being light sources, the umbra cast on a plane may®év&k3+nk®) connected components
and has complexit®(n3k3).

These are the first bounds on the size of the umbra in termstbfkoandn. These results prove
that the umbra, which is bounded by arcs of conics, is intally much more intricate than the full
light/penumbra boundary which is bounded by line segmemtisvghose worst-case complexity is
in Q(na(k) +km-+k?) andO(na (k) + ko (k) 4 k?), wherem is the complexity of the polygonal
light source.

13.1 Introduction

Shadows play a central role in human perception [MKK98, Vn8 wide variety of approaches have been
considered for simulating and rendering shadows (see xiomple, the surveys [Dur00, WPF90]) and many me-
thods make extensive use of graphics hardware (see theyditieiS03]). Unfortunately, computing realistic
shadows efficiently is a difficult problem, particularly inet case of non-point light sources. A part of this dif-
ficulty arises from the complicated internal structure thath shadows may have. In this paper we study this
structure.

We say that a point is in thembraif it does not see any part of the light source(s) ; it igutl light if it sees
entirely all the light source(s) ; otherwise, it is in thenumbra While the boundary between the penumbra and
the full light is reasonably well-understood (see SectiBB), less is known about the boundary of the umbra.
Nevertheless, there is an extensive literature concethimgxplicit computation of these shadow boundaries ; see,
for example, [DF94, DDP97,DDP99, DDP02, Hec92,NN83, SG82].

171
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| Scenetype | Lower bounds Upper bounds
Segment light source

2 triangles 4 O(1)
2 fat polytopes Q(n) O(n)
k polytopes | Q(nk®+ k%) O(nk®)

n-gon light source
k polytopes | Q(n?k*+nk®) | O(n’k®)

TAB. 13.1 —Lower bounds on the number of connected components and bppads on the complexity of the
umbra cast on a plane lypolytopes of total complexitp(n).

In this paper we prove various bounds, summarized in Tablg, B® the complexity of the umbra cast by
a segment or polygonal light source on a plane in the preseinpelygon or polytopei(e. convex polyhedral)
obstacles. In particular, we show that a single segment dighrce may cast, in the presence of two triangles, four
connected components of umbra. We prove that the umbra ddfinene segment light source and two fat convex
obstacles of total complexity can haveQ(n) connected components. We also provednk? 4 k*) lower bound
on the maximum number of connected components of the umigra @tnk®) upper bound on its complexity in
a scene consisting of a segment light sourceladigjoint polytopes of total complexity. Finally, we prove that
the umbra cast on a plane by a polygonal light sourcekacmhvex obstacles can hag@¥n?k® 4 nk®) connected
components and has complex@®(n3k®). These are the first bounds on the size of the umbra in termetbfkb
andn.

Our results are surprising in the sense that they show thatrttbra cast by a single segment light source may
have many connected components. The fact that the umbra avayfbur connected components in the case of
two triangle obstacles comes as a total surprise. Our lowends ofQ(nk? 4- k%) andQ(n?k® + nk®) connected
components, fok polytopes of total complexity, is rather pathological in the sense that most of the o=tz
very long and thin. However, we also present a lower boundhel@of Q(n) connected components in the case
of two fat polygons or polytopes of complexig(n). Concerning our upper bounds ©fnk®) andO(n3k?), even
though these bounds are not tight, they substantially ingtbe only previously known bounds for this problem
which were the trivialO(n*) and O(n®) upper bounds. Finally, it is interesting to point out thaemvor the
simplest case of non-point light sources, obtaining tightrids on the complexity of the umbra and understanding
its structure is a very challenging problem.

The paper is organized as follows. The next section providéstion and definitions. We give in Section 13.3
almost tight lower and upper bounds on the complexity of tendlary between full light and penumbra cast on a
plane by a polygonal light source in the presence of polytiysacles. We present, in Section 13.4, upper bounds
on the complexity of the umbra, in Section 13.5, lower boumdshe maximal number of connected components
of umbra and conclude in Section 13.6.

13.2 Preliminaries

Letsbe aline segment argla point. We denote bys, p) the set of line transversals sthroughp. Similarly,
for any triple of segments;, s; andsz, we denote by(s;, s, S3) its set of line transversals. It is a well-known fact
that (s1, s, s3) consists of lines belonging to the same regulus of a ruledripiaurface (see.g.[Sall15]). More
precisely, the line transversals lie on a hyperboloid of sineet when the three segments are pairwise skew and
not all parallel to the same plane. If the segments are peéraliew and all parallel to the same plane, then the line
transversals lie on a hyperbolic paraboloid. Otherwisey tie in one or two planes. Hence any set of transversals,
whether(s, p) or (s1,s,s3), forms patches of a quadric (possibly degenerating to or@@planes). Moreover,
the set of transversals consists of at most three patchesomer formally, at most three connected components in
line space [BEL'05]. We let(s, p) and(s;,5,,S3) denote not just sets of lines but also the surface patchgs the
form.
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Let P be a finite set of disjoint convex polygons or polytope®hwith £ ¢ P identified as light sources. A
surfaceo = (e,v) is called arev-surfaceif there exist two distinct object® Q € P so thate is an edge oP, va
vertex ofQ ando intersects a light source. A surfage= (e, e, €3) is called aneee-surfaceif there exist three
distinct objectd®, Q,R € P so thate;, e andes are respectively edges Bf Q andR anda intersects a light source.

Any planell intersects arev-surface or areeesurface in a set of arcs of a conic (each possibly empty or
possibly a line segment). Hence the intersection betwkandall theev andeeE surfaces defines an arrangement
of arcs of conics orn1.

Here we are interested in the arcs of conics that correspostteidow boundaries. In particular, we are interes-
ted in arcs resulting from the intersection betw&eand maximal free line segmeftghat intersect a light source
and are supported by a line which is onenor EeE surface. The intersection of these free line segmentsiwith
defines an arrangement of arcs of conic§owhich we call theshadow arrangememtn theshadow plané].

A point p is in the umbra if for any poing on a light source, the segmepd intersects an object frof\ L.
Similarly, p is in full light if for any pointq on a light source, the segmepd] does not intersect any object from
P\ L. Otherwisepis in the penumbra.

We will make extensive use of the fact that the boundary ofutinéra and penumbra consists of arcs of the
shadow arrangement (see, for example, [Hec92]). Noticenibaall arcs of the shadow arrangement are on the
umbra or penumbra boundaries ; some arcs correspond toligtiiing discontinuities.

Throughout this paper, we consider the regions of umbra andippbra on a plane cast by a segment light
source or polygonal light source(s) in the presence of copaéygons or polytopes.

13.3 The penumbra boundary

We recall here some straightforward and well-known proeerof the penumbra and give bounds on the
complexity of the common boundary of the penumbra and thdidhtk. In this section we refer to the union of the
umbra and penumbra as thleadow region

PROPERTY 1. The shadow region cast by a light source on a plane in treepoe of obstacles is the union of all
the shadow regions cast by each obstacle.

PROPERTY2. The shadow region cast on a pldmdy a polygonal light sourc8in the presence of one polytope
P is the intersection of half-planes i, each of which is defined as the intersectioroWith a half-space that
containsP but notS is bounded by a plane tangent to both of them, and contaiedge of one of them.

Note that these two properties imply that the boundary o$tteglow region is only composed of line segments
induced byev-surfaces.

Theorem 13.1. The complexity of the shadow region cast on a plahby a convex polygonal light source of
complexity m in the presence of k convex polyhedra of totaptexity n is, in the worst case, @(na (k) +km+-k?)
and Q(na (k) + kma () +k?), wherea (k) denotes the pseudo-inverse of the Ackermann function.

Proof. By Property 2, the shadow cast on a pl&hby a polygonal light source in the presence of one polytope is
convex polygon. Furthermore, if the light source hasdges and the polyhedron ha®dges, the shadow region in
M hasO(n; +m) edges. By Property 1, the shadow region in the preserkcpaftopes of total complexity is thus
the union ok convex polygons of total complexi®(n+-km), which has complexit@((n+kmja (k) +k?) [AS97].

For the proof of the stated lower bound consider the follgndnllection of examples. In all constructions the
shadow plan€l is the plane = 0.

Q(k?) example.Refer to Figure 13.1. We consider a point light source at ghiei (large enough) and a grid
consisting ofk thin horizontal and parallel rectangles at height 1 together withk other thin horizontal and
parallel rectangles at height= 2. They form a grid of shadow on plafiewhich has size(k?).

Q(ka(k)) example.Refer to Figure 13.2. Again, the light source is a point wilgk positivez-coordinate. We
consider a set dfline segments in plare= 1 (with positivey coordinates) having, in that plane, an upper envelope

22A maximal free line segmerd a segment that intersects the interior of no object andse/lemdpoints lie on
some object or at infinity.
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light

full light

shadow

Fic. 13.1 —Q(k?) lower bound.

of sizeQ(ka(k)) [WS88]. We transform each line segment into a trapezoidrigki to its projection on thg =0
line (in planez = 1). We get a set of trapezoids whose shadow, in plaae), for a point light source at large
enoughz is basically the upper envelope of the segments. Note teataipezoids can easily be made disjoint by
placing them in different horizontal planes very close t@nglz= 1.

Q(na(k)) example.Refer to Figure 13.3. First modify the aboGEka(k)) example such that the left “vertical”
side of each trapezoid has slopand the right “vertical” side has slopey, for somey large enough. Now, by
some suitable scaling, we make all slopes of the verticabvealictly smaller thaH%T. Assemble} copies of the
previous construction into a large regufggon where each side is, in factke(k) upper envelope. Finally, this
construction can be seenlasonvex 3-gons by connecting all of thg copies of the same trapezoid by extending
their walls.

This set ofk convex 3-gons, embedded in different horizontal planes close t@thd plane, engender, in
the presence of a point light source at large enayghadows of complexitya (k).

Q(mK) example.Refer to Figure 13.4. We use a horizomabon as light source and a thin rectangle as obstacle.
Then the shadow ha3(m) size. Using multiple copies of the obstacle such that tHemint shadows are disjoint
easily gives aff2(mk) example. O

There is still a small gap between tik? + mk+ na(k)) lower bound and th®©(k? + mka (k) -+ na(k))
upper bound. In fact we conjecture that the lower bound & fithe shadow of the different obstacles have some
similarity with homothetic projections of the light, andetunion ofk convex homothetien-gons is©(mk) since
two convex homothetic polygons intersect in at most two {dqiKLPS86].

¢ light

Y

full light

Fic. 13.2 —Q(ka(k)) lower bound.
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37-gon containing an in-

stance of the same segment

in each of the 7 copies of

the upper envelope

light source

k convex 37-gons i

o

Fic. 13.3 —Q(na(k)) lower bound.

13.4 Upper bounds

In this section we prove the following two upper bounds ondbmplexity of the umbra cast by a segment
light source or polygonal light source(s) on a plane.

Theorem 13.2. The complexity of the umbra cast on a plane by one segmentsigghice in the presence of k
disjoint polytopes of total complexity n is{@®).

Theorem 13.3. The complexity of the umbra cast on a plane by a set of k digpoilytopes of total complexity n,
some of which are light sources, igI5k3).
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light

light

obstacle

obstacles

shadow

full light full light

Fic. 13.4 —Q(mK) lower bound.

13.4.1 The umbra cast by a segment light source

We will actually prove an upper bound on the complexity of shadow arrangement which yields the same
bound for the complexity of the umbra. Notice that, in theecafa single segment light source, thee-surfaces
o = (e, e, e3) andev-surfacess = (e,v) that contribute to the shadow arrangement are such that eitte ofe,
e1, & or e is the segment light source amds one of its endpoints.

We prove Theorem 13.2 by considering a plane rotating altmuline supporting the segment light source.
First, if the segment light sourcs, is not parallel to the shadow plafit we apply a projective transformation
to the scene, sending to infinity the point of intersectiotwleen the line containingand pland; this does not
change the complexity of the shadow arrangement. We thusra&ss the rest of this section that the segment
light source is parallel tdl. The sweep plane, denotetlintersects the shadow plane in a line ; we will say that,
throughout the sweep, this line moves from left to right.

We start with two preliminary lemmas concerning the intetiems that one of these sweep planes can have
with the shadow arrangement.

Let a be the conic that is the intersection of the shadow plamad theeee-surfaceo = (s,s1,S) wheresis
the segment light source;, ands, are two other segments, and febe a plane containing the light soursand
intersecting1.

Lemma 13.4.If s, 5, and $ are pairwise skew thertintersectsx in at most a single point.

Proof. First, sincesis parallel tol1, any transversal teand to a point iro N 1tlies in planert If the intersection
betweernmmands; or s, is empty, there exists no line tangent to the three segmemntamnd thustdoes not crosa.
Otherwise, both segments intersadn two pointsp; and pz. The line defined by, and p; is the only line that
is possibly a transversal to the three segments(ihmay not intersect the segmes)t Hence there exists at most
one transversal imwhich defines exactly one point @n O

Notice that the preceding lemma implies that the conic aresngonotonic in the direction of the sweep
(orthogonal tcs).

For the rest of the proof we consider an arrangenfeif arcs of conics which contains the shadow ar-
rangement. We will establish an upper boundaghk®) on the complexity ofA which will yield the bound of
Theorem 13.2. The arrangemextonsists of the intersection &f with (i) those lines that are transversal to the
light sources, and the edges ands; of two other polytopes and that do not intersect the interfdhese polytopes
(the connected components of these lines form patchesméurfaces) and (ii) those lines that are transversal to a
vertex and an edge of two polytopes, one of which is the segligéi source, and that do not intersect the interior
of these polytopes (the connected components of theseftirapatches oEv-surfaces).

We now count the number of crossings between an instance sftbep plana and the arcs ir.

Lemma 13.5. The planert properly intersects at most(®?) arcs of A.

Proof. The arcs ofA are defined as the intersection withof lines ¢ which are (i) transversal to the segment light
sources and tangent to two polytopes, (ii) transversal to an endpafis and tangent to another polytope, or (iii)
transversal t@ and to a polytope vertex.
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An instancert of the sweep plane never properly intersects an arc of typgdince such an arc is either
included inTtor does not intersect it). Now, ifintersects an arc of one of the other two types, theontains the
corresponding liné, which is tangent to two polygons 6fn 1t SinceP N1t consists of at modt disjoint convex
polygons, there ar®(k?) lines inTtthat are tangent to two polygons 8N 1, hence the result. O

Proof. [of Theorem 13.2] We consider an orthogonal frame in planehosevertical axis is parallel to the segment
light sources; the other axis is calleborizontal

We first show that the number of proper intersection pointaeen arcs o\ is O(k?) times the number of
arcs. It follows from Lemma 13.4 (along with a simple argutriathe case that the three segments are not pairwise
skew) that any arc of\ is either horizontally monotone or is a vertical line segi€onsider an arcg and its
rightmost endpoinp (anyone ifag is vertical). We charge tag all points of intersection involving and all arcs
whose rightmost endpoints are strictly to the righpoAny arc properly intersectsg in at mostO(1) points so the
number of intersection points chargedagis bounded by the number of arcs properly intersected bywlees
plane containing. By Lemma 13.5, there are at ma3tk?) such arcs. Thus, each arc is charged at ragkt)
times.

We now bound the number of arcs (and thus the number of ar@érndpgenerating\. Each arc corresponds
either to a patch of aav or EEE surface. Consider first thev-surfaces. Since either the edge or the vertex is on
the light source, there are at m&3tn) such surfaces.

Now consider the arcs generateddse-surfaces. Leh; be the number of vertices of polytope 1 <i < k.

The number ofEE-surfaces involving the light source and edges from polgsspandP; is O(n; +n;) [BDD*07,
Corollary 2.6] (or [BDD' 05, Corollary 9]). Theny ;< j<kO(ni +nj) = O(nk).

There are at mogD(nk) arcs generating. Since each arc is charged with at m&$k?) intersection points,
there are at mogD(nk®) intersection points. The total complexity of the shadowaagement, and thus of the
umbra, is ther®(nk®). O

13.4.2 The umbra cast by polygonal light sources

To prove Theorem 13.3 we consider an arrangeniBenf arcs of conics that, as in the previous section,
contains the shadow arrangement. This arrangeBennsists of the intersections Bfwith (i) the lines that are
transversal to a vertex and an edge of two polytopes and thabtintersect the interior of these polytopes (the
connected components of these lines form patchesvedurfaces) (ii) the lines that are transversal to edges of
three polytopes and that do not intersect the interior ofetolytopes (the connected components of these lines
form patches oEEE-surfaces). Notice th& may contain arcs generated by surfaces that do not intetselight
source or possibly by surfaces that intersect the intefiotteer polytopes in the scene. We will establisb@’k?)
upper bound on the complexity 8fwhich yields the same bound for the complexity of the umbra.

Lemma 13.6. Any line L in1 properly intersects at most(@k?) arcs of B.

Proof. An intersection point betweeln andB corresponds to a line transversal which belongs teamr EEE
surface. Consider firgtv-surfaces. The line transversal lies in a plane which costaand a vertex, say, of one
of the polytopes. There exi€)(n) such planes and in each of them there are at ©¢s} lines throughv that are
tangent to a polytope (since we only consider proper inttises betwee. and the arcs oB). Thus there are at
mostO(nk) points onL N A which correspond to lines iBv-surfaces.

Now we consideEeE-surfaces. Leb; be the number of vertices of polytopg for 1 <i < k. The number of
EEE-surfaces generated by three edges of polytéhey andR, not intersecting the interior ¢, P; andR, and
that intersect. is O(n; +n; +ny) [BDD*05, Main Lemma]. Sincg 1< j<<xO(ni +n;+n) = O(nk?), there are
at mostO(nk+ nk?) = O(nk?) arcs ofB which intersect the liné onT1. O

Proof. [of Theorem 13.3] Here, we introduce an arbitrary coordifaameOxy in the planell. We call Ox the
horizontal axis an@®y the vertical axis.

As in the proof of Theorem 13.2, we first show that the numbentrsection points between arcsBfis
O(nk?) times the number of conic arcs. We first break all conic artsfimaximal horizontally monotone pieces.
This increases the number of arcs only by a constant factorsi@er a conic arag and its rightmost endpoirg
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Fic. 13.5 —Two triangles and a segment light source (viewed from abthat)cast 4 connected components of
umbra on the plane= 0.

alongOx (any endpoint if the arc is vertical). We chargedtgall points of intersection betweeary, and all conic
arcs whose rightmost endpoints are strictly to the right.okny arc properly intersectsg in at mostO(1) points
so the number of intersection points chargedigas bounded by the number of arcs that are properly interdecte
by a vertical line inM and containingp. By Lemma 13.6, there are at ma3tnk?) such arcs. Thus, each arc is
charged at mogD(nk?) times.

We now bound the number of arcs (and thus the number of armarntdpgenerating. Let n; be the number
of vertices of polytopeé?, 1 < i < k ande an edge. The number @&EE-surfaces pertinent tB and involvinge
and edges from polytopdd andP; is O(n; + n;) [BDD*05, Corollary 9]. Thus, for each edge there are, at
most, ¥ 1<i<j<kO(ni +nj) = O(nk) EEE-surfaces having as a generating segment. Furthermore, the number of
Ev-surfaces involving edgeor one of its vertices i©(n). Since there exigt edges, the total number of arcsBn
is thereforeO(n?k).

In conclusion, there are at mo®(nk) arcs generatin@, each of them charged with at ma3{nk?) inter-
section points, hence there are at mo&*k?) intersection points. The total complexity of tBeand, thus of the
umbra, isO(n3k®). m

13.5 Lower bounds

In this section we present several lower bounds on the cotitylaf the umbra.

13.5.1 The umbra cast by a segment light source

Here we concentrate on the umbra cast by a segment lightesoutice presence of various configurations of
obstacles.

Theorem 13.7. A segment light source and two triangles may cast, on a plémg,connected components of
umbra.

Proof. Consider the following scene consisting of a segment lightse s, two triangles;T; andT,, and a shadow
plane,l, the horizontal plane of equatian= 0 ; see Figure 13.5 and Figure 13.6.

Figure 13.7 shows a superset of the shadow arrangementagethday this configuration (the arrangement
A defined in Section 13.4). Although it can be shown that the &fiaded regions in the figure are exactly the
umbra, we will simply argue here that there are at least fonnected components. We do this by illustrating four
segments in the umbra and then arguing that they are eacffiéredi connected components.
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Fic. 13.6 —The scene rendered with the ray tracer OpenRT (the umbralighingrey) ; courtesy of Andreas
Dietrich.

Fic. 13.7 —Superset of the shadow arrangement on plan€he four shaded regions are the regions of umbra.

The idea is to consider a series of planes rotating aboutetmant light source and the intersections of those
planes with the two triangles and the shadow plane ; Figurg 43ows such a sequence. We then examine the
umbra in those planes by considering the relevant bitasgent

Let P, be one such plane (containiggand going through the poiit0, 7,0) andL ;. the intersection o, and
M. Figure 13.8(b) shows the segmenthe intersections betwedh and the two triangle$; andT,, L, and four
bitangents that together define the umbra.enConsider the two segmerfey andR; as shown in Figure 13.8(b).

It is easy to see, by examining the bitangents, BjaendR; are in the umbra. Hence there are two segments of
umbra on the lind_. We obtain two other segmen®; andR;, by taking the symmetric plare_ with respect
to thexzplane (through point0, —7,0) and whose intersections with the scene is shown on FiguBd)}.

Now, we show that the four segmerR$, R;, R} andR; lie in different connected components of umbra.
In order to prove this result, we exhibit two lines Bnwhich contain no point in the umbra and separate the four
segments as shown in Figure 13.9.

First consider the plang= 0 containing the light segmegatand orthogonal to the shadow plafeThis plane
intersectd1 in a line, 31, as shown in Figure 13.9, and separd®&sandR; from R; andR, sinceP, andP_
are symmetric with the plang= 0. To show tha®; contains no point of the umbra, consider the intersection of
they = 0 plane with the segmestand the two triangle3; andT, ; see Figure 13.8(c). A study of the bitangents
reveals that no point aj; lies in the umbra.

Now consider the plane orthogonallf parallel to the two triangle hypotenuses and going thrabghmid-
point ofs. Let &, be the intersection of this plane wikh; see Figure 13.9. Elementary computations show that the
line &, separate®; andR, from R; andR;. There can be no point of the umbra &nsince the plane intersects
the light source but not the triangles (see Figure 13.5) taompletes the proof. O
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(@) (b) ()

(d) (e)

Fic. 13.8 —Views in the sweep plane with bitangents that define the unittr@number of components of umbra
in the intersection of the sweep plane and the plaae) is : (a) one (sweep plane through 10,0)), (b) two
(sweep plané;. through(0,7,0)), (c) zero (sweep plang= 0), (d) two (sweep planB_ through(0,—7,0)), (e)
one (sweep plane throudh, —10,0)).

Note that the line supportingand the lines supporting the triangle hypotenuses are s&irskew and not all
parallel to a same plane. Thus the corresponéigsurface is a hyperboloid of one sheet which intersBcits a
hyperbola. We determine the equation of this hyperbolivetw be 432 — 52xy+ 928= 0. This curve admits two
asymptotes which contain no point in the umbra and whichra¢pahe connected components of umbra. One of
these asymptotes & and we could have chosen the other tadpe

Note also that in our example, the light source is paralléhtoshadow plane, and there are also many sym-
metries. None of this is critical ; the example can be peddréand the result still holds.

We know prove a lower bound for fat polytopes, polytopes wehaspect ratios are bounded from below by a
positive constant when goes to infinity.

Theorem 13.8. The umbra cast on a plane by one segment light source in tisepce of two fat disjoint polytopes
of total complexity n can hav@(n) connected components.

Proof. Our lower-bound example consists of one segment light smira polytopeQ, of sizeO(n), and another
polytope,Qs, of constant size. Refer to Figure 13.10.

First we consider three skew linksD sq, |, andls ando = (s, I2,13) the quadric patch(es) consisting of the
lines stabbingy, |> andls. In the shadow planB, by adding suitable half plan€s andP; as obstacles limited by
the linesl, andls, we obtaina, a single conic arc af NI, bounding the umbra where the umbra is on the concave
side ofa (Figure 13.10-left).

We now considep;, one of the endpoints @, anday, as, the intersections of planés, P; with the cone of
apexp; and base (Figure 13.10-center).
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[

Fic. 13.9 —The four connected components of umbra and the four lineding@e proof of Theorem 13.7.
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Fic. 13.10 —Q(n) lower bound.

Next, we reduce the obstacl® and Ps; to convex polygon€), and Qs by limiting them by a polygonal
approximation ofa; andagz such thatQs remains within (.e., on the convex side ofkz andQ; intersectsa, n
times (Figure 13.10-right). The umbra castdyyon I in the presence d, andQs then consists of connected
components that are the intersection of the concave regiidea and the convex polygon that is the intersection
of the cone of apey; and bas&), with the plandT.

Note that the polygon®, and Q3 are fat sinc&, consists of a segment and of an approximation of a conic
and Qs is of constant size. Finally, polygord, andQs can be trivially transformed into fat polytopes without
changing the umbra. O

Theorem 13.9. The umbra cast on a plane by one segment light source in tlsepee of k disjoint polytopes of
total complexity n can hav@(nk?) connected components.

Proof. Consider three non-parallel segmesitd,, andl; all parallel to the shadow plari¢ and plane$, > |, and
P; D I3 parallel toll, refer to Figure 13.11. The surfa¢®, I, 13) intersectd1 in a conic ara.

Now consider the following setups; is the light source P, hask narrow rectangular holes (or slits) parallel
and arbitrary close ttp ; similarly Ps hask slits parallel and arbitrary close te. (A plane withk such slits can
be modelled byO(k) rectangles.) Each pair of slits; from P, ands; from Ps, together with the light sourcg
induce a piece of penumbralihthat is essentially a thickened copy of the conicarc
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Fic. 13.12 —Q(k*) lower bound.

We thus get that the umbra covers the whole pErexcept fork? curves of penumbra that are all closeoto
(see Figure 13.11-left).

Finally, we trim the two planeB, andPs, creating am-sided convex polygon oRl such that the region out-
side this polygon is in light or penumbra and each edge iatéssall thek? curves. The umbra then consistsntf
regions inside the convex polygon and betweenktheonics (see Figure 13.11-right). Note that k) convex
obstacles can each be transformed into a polytope by thé@udf a single vertex without changing the umbra.

Theorem 13.10. The umbra cast on a plane by a segment light source in the peesa k disjoint polytopes can
haveQ(k*) connected components.

Proof. Refer to Figure 13.12. As in the previous lower-bound examie creaté? curves of penumbra using
parallel thin holes. Making a second set of thin holes in gdahe, we create a second family of curves of light
and penumbra intersecting the first one. The umbra is nowaimplement of the union of these two sets of curves
and it consists o€ (k%) connected components. O

13.5.2 The umbra cast by a polygonal light source

Note that the lower bound @ (nk? + k*) of Section 13.5.1 for a segment light source can easily befiradd
into a lower bound of2(nk® + k®) in the case of a polygonal light source (by adding a third @haith O(k) slits
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Fic. 13.13 —Q(n?k®) lower bound.

k? curves of light, each of which
consists of ©(n) conic arcs that
each intersects each of the &®
conic curves of light

Fic. 13.14 —Q(nk®) lower bound.

and a big polygonal light source). We present here a lowentafiQ(n?k® + nk®) on the complexity of the umbra
cast by a polygonal light source in the presenck pblygonal obstacles.

Theorem 13.11. The umbra cast on a plane by one polygonal light source in thegmce of k disjoint polytopes
of total complexity n can hav@(n’k3) connected components.

Proof. Refer to Figure 13.13. Lep be a point and®; a smalln-gon light source very close tp. Add an-gon
obstacle very close to the light source so that the lighte®behaves like point light sources (when viewed from
the correct side).

Now consider a plane obstacle wkhhin holes parallel to a ling. This createsk parallel thin lines of light
on the shadow plane that can be made arbitrarily close taed. l{bby having thek thin holes sufficiently close to
each other and thepoint light sources sufficiently close to each other). Nbt by duplicating this construction
(and thus with two polygonal light sources which behaverapdnt light sources) we get an arrangement iof 2
lines of light withn?k? connected components of umbra.

Now consider two lines$, andl3 that together witH. admit a quadric as line transversals. Cut this quadric
by a plane and approximate (a pigef) the resulting conic by a convaxpolyline, P.. The set of transversals
to the boundary of this polyline with andlz defines a curve on the shadow plane that tutsdern times. We
define a light source as the convex hull®fand put an obstacle very close to it so that the light sourbenss
as if the polylineP, was the light source (when viewed from the right region). Nmplacingl, andls by two
plane obstacles with ordérthin holes close and parallel tgp andls, respectively, we get? curves of light, each
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of which intersects order times each of thek lines of light close td_. This giveQ(n?k®) connected component
of the umbra.

Note that the two light sourcdy andP, can be merged into one by considergn the same plane &, by
noticing that there are enough degrees of freedois andl, so that the convex hull d?, and an arc of the conic
containsC on its boundary. |

Theorem 13.12. The umbra cast on a plane by one polygonal light source in thegmce of k disjonit polytopes
of total complexity n can hav@(nk®) connected components.

Proof. Refer to Figure 13.14. Consider three horizontal pairwisanslinesly, |2, I3 that lie above a horizontal
planell and letC be the conic intersection of their common transversal WitiReplace each of tHeby a plane
obstacle and thin holes close td and place a large (horizontal) light souisabove these planes obstacles.

Consider now &-gonP that intersect€ ordern times. Lets, andss be two intersecting horizontal segments.
Let P’ be the symmetric oP with respect of the point of intersection betwemrandss. We consideP’ as a light
source and put an obstacle very close to it so that it behavesome-dimensional polygonal light source when
viewed fromC. This induces on the shadow plane a polyline of light thagrsgct< ordern times.

Now perturb segmentg andss so that they do not intersect and replace them by (horizoplahe obstacles
with k thin holes close and parallel $ andss, respectively. We hence get curves of light, each of which consists
of ordern conic arcs that each interse@s hence each of thesé curves of light intersect€ ordern times. By
chosing the holes neér, |, andls sufficiently close to each other, respectively, each okfheurves of light close
to P intersectsO(n) times each of thé® curves of light close t&€. We hence genk® connected components of
umbra. O

13.6 Conclusion

The purpose of this paper is to establish the complexity etthundaries between the umbra, penumbra and
fully-lit regions on a plane in a polyhedral scene consgstik convex objects of total complexity.

The results presented here constitute a first step towarersitachding the intrinsic structure and complexity
of the umbra in this setting. We have proved that if the lightdduced to one line segment, then the umbra may
haveQ(nk?+k%) connected components a@dnk®) complexity. We have also shown that a polygonal light source
could generate an umbra wifh(n’k® + nk®) connected components a@dnk®) complexity. In both cases these
components of umbra are delimited by arcs of conics. Thesdtseprove that the umbra is intrinsically much
more intricate than the boundary between full light and pelota which is bounded by line segments and has
complexityO(na (k) + kmo (k) 4 k?), wherem s the complexity of the light source.

Our upper bounds, in fact, apply to the complexity of the mgement of the curves where the derivative of
the light intensity is discontinuous. These arrangemeletsly include the boundary of the umbra, but also a lot
of curves inside the penumbra that are not relevant to theaurflirthermore, our upper bound on the complexity
of these arrangements is tight for a segment light soureetfeefull paper for details). This perhaps explains why
our bounds on the complexity of the umbra are not tight. Ngpthowever, that we do have tight bounds for small
k (k=0(1)) and for smalh (n = O(k)).
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Near-optimal parameterization of the
Intersection of quadrics : |. The generic
algorithm
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Abstract

We present the first exact and efficient algorithm for comquti parametric representation of the
intersection of two quadrics in three-dimensional reategzven by implicit equations with rational

coefficients. The output functions parameterizing therggetion are rational functions whenever it
is possible, which is the case when the intersection is nota@th quartic (for example, a singular
quartic, a cubic and a line, and two conics). Furthermore pdwameterization is near-optimal in
the sense that the number of square roots appearing in tfeods of these functions is minimal

except in a small number of cases where there may be an extaaesgpot. In addition, the algo-

rithm is practical : a complete, robust and efficient C++ iampéntation is described in Lazard et
al. [LPPO6].

In Part I, we present an algorithm for computing a paramedédn of the intersection of two arbi-

trary quadrics which we prove to be near-optimal in the gensmooth quartic, case. Parts Il and Il
treat the singular cases. We present in Part Il the firstifileestson of pencils of quadrics according

to the real type of the intersection and we show how this iflagion can be used to efficiently

determine the type of the real part of the intersection of &nluitrary quadrics. This classification
is at the core of the design of our algorithms for computingrraptimal parameterizations of the
real part of the intersection in all singular cases. We preseese algorithms in Part Il and give
examples covering all the possible situations in terms d bioe real type of intersection and the
number and depth of square roots appearing in the coefficient

14.1 Introduction

The simplest of all the curved surfaces, quadrics (i.e¢ladgic surfaces of degree two), are fundamental
geometric objects, arising in such diverse contexts as gegarmodeling, statistical classification, pattern re-
cognition, and computational geometry. Computing therssetion of two general quadrics is a fundamental
problem and an exact parametric representation of thesetéon is often desirable. For instance, it is at the
basis of such complex geometric operations as computingegdmulls of quadric patches [HI95], arrangements
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of sets of quadrics [BHK05, MTTO05, SW06, Wol02], and boundary representations ofifodased solid mo-
dels [KCF"04, Sar83].

Until recently, the only known general method for computingarametric representation of the intersection
between two arbitrary quadrics was due to J. Levin [Lev76/19% It is based on an analysis of the pencil generated
by the two quadrics, i.e. the set of linear combinations efttto quadrics.

Though useful, Levin's method has serious limitations. Wthenintersection is singular or reducible, a pa-
rameterization by rational functions is known to exist, bavin's pencil method fails to find it and generates a
parameterization that involves the square root of somenpolyal. In addition, when a floating point representation
of numbers is used, Levin’s method sometimes outputs sethat are topologically wrong and it may even fail to
produce any parameterization at all and crash. On the otirat & correct implementation using exact arithmetic
is essentially out of reach because Levin's method intreduwdgebraic numbers of fairly high degree. A good
indication of this impracticality is that even for the siraeneric example of Section 14.8.2, an exact parametric
form output by Levin’s algorithm (computed by hand with Mapfills up over 100 megabytes of space!

Over the years, Levin’s seminal work has been extended dmedein several different directions. Wilf and
Manor [WM93] use a classification of quadric intersectionghmy Segre characteristic (see [Bro06]) to drive the
parameterization of the intersection by the pencil mettivetently, Wang, Goldman and Tu [WGTO03] further
improved the method by making it capable of computing stmattinformation on the intersection and its various
connected components and able to produce a parametemibgti@tional functions when it exists. Whether their
refined algorithm is numerically robust is open to question.

Another method of algebraic flavor was introduced by FaroNkiff and O’Connor [FNO89] when the inter-
section is degenerate. In such cases, using a combinatassical concepts (Segre characteristic) and algebraic
tools (factorization of multivariate polynomials), thetlors show that explicit information on the morphological
type of the intersection curve can be reliably obtained. fable feature of this method is that it can output an
exact parameterization of the intersection in simple cashen the input quadrics have rational coefficients. No
implementation is however reported.

Rather than restricting the type of the intersection, atawve sought to restrict the type of the input quadrics,
taking advantage of the fact that geometric insights can Hedp compute the intersection curve [GM91, Mil87,
MG95,SJ92,SJ94]. Specialized routines are devised to gtantipe intersection curve in each particular case. Even
though such geometric approaches are numerically morkestan the algebraic ones, they are essentially limited
to the class of so-called natural quadrics (i.e., the plamngist cones, circular cylinders and spheres) and planar
intersections.

Perhaps the most interesting of the previously known algms for computing an explicit representation
of the intersection of two arbitrary quadrics is the methéd\vlang, Joe and Goldman [WJGO02]. This algebraic
method is based on a birational mapping between the intesaesuirve and a plane cubic curve. The cubic curve
is obtained by projection from a point lying on the interg@tt Then the classification and parameterization of
the intersection are obtained by invoking classical resuft plane cubics. The authors claim that their algorithm
is the first to produce a complete topological classificatibthe intersection (singularities, number and types of
connected components, etc.). However, the computatiomeofénter of projection uses (an enhanced version of)
Levin’s algorithm. Either floating point arithmetic is usand the point will in general not exactly lie on the curve,
leading to possibly incorrect classification, or exacthamietic is used and the parameterizations computed will
involve algebraic numbers of very high degree, therebytiimgitheir practical value.

14.1.1 Contributions

In this series of papers, we present the first exact and effiallgorithm for computing a parametric repre-
sentation of the intersection of two quadric surfaces iedhdimensional real space given by implicit equations
with rational coefficients. As a side product of this algamit, we also obtain the first classification of pencils of
quadrics based on the type of the curve of intersection inregective space.

Our algorithm (as well as its implementation [LPPO06]) hasfitllowing main features :

— it computes an exact parameterization of the intersedfitwo quadrics with rational coefficients of arbi-

trary size;

— it places no restriction of any kind on the type of the indet®n or the type of the input quadrics;;

— it correctly identifies, separates and parameterizedalconnected components of the intersection and
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gives all the information on the incidence between the camepts, that is where and how (e.g., tangentially
or not) two components intersect;

— the parameterization is rational when one exists ; otlenilie intersection is a smooth quartic and the

parameterization involves the square root of a polynomial ;

— the parameterizations are either optimal in the degreleeoéxtension of) on which their coefficients are

defined or, in a small number of well-identified cases, ingane extra possibly unnecessary square root.

Note that our complete, robust and efficient C++ implemémafLPP06] of this algorithm, which uses
arbitrary-precision integer arithmetic, can routinelymqmuite parameterizations of the intersection of quadritis wi
input integer coefficients having ten digits in less than 4lisaconds on a mainstream PC.

The above features imply in particular that the output pa&tenization of the intersection is almost as “simple”
as possible, meaning that the parameterization is ratiboale exists, and that the coefficients appearing in the
parameterization are almost as rational as possible. Huisplicity” is, in itself, a key factor for making the
parameterization process both feasible and efficient (byrast, an implementation of Levin's method using exact
arithmetic is essentially out of reach). It is also cructlthe easy and efficient processing of parameterizations in
further applications.

Formally, we prove the following.

Theorem 14.1. In three-dimensional real space, given two quadrics in igipform with rational coefficients,
our algorithm first computes the type of their intersectiomaal projective space. If it is a smooth quartic, there
does not exist any rational parameterization of the intetis® and our algorithm computes a parameterization
such that, in projective space, each coordinate belong&[f+/A] (the ring of polynomials irf and v/A with
coefficients inK), whereg is the (real) parameteid € K[] is a polynomial in§, andK is either the field of
the rationals or an extension @} by the square root of an integer. If the intersection is notreeth quartic, our
algorithm computes a rational parameterization of each ponent of the intersection over a fidkdof coefficients
which isQ or an extension of) of degree 2 or 4 ; this means that each projective coordindtbe@component of
the intersection is a polynomial K[g].

In all cases, eitheK is a field of smallest possible degfé@ver which there exists such a parameterization
or K is an extension of such a smallest field by the square root aftager. In the latter situation, testing if this
extra square root is unnecessary and, if so, finding an opfraeameterization are equivalent to finding a rational
point on a curve or a surface (which is computationally hardi@an even be undecidable).

14.1.2 Overview

Due to the number of contributions and results of this wdris paper has been broken down into three parts. In
Part I, we present a first and major improvement to Levin’scpenethod and the accompanying theoretical tools.
This simple algorithm, referred to from now on as the “gemelgjorithm”, outputs a near-optimal parameterization
when the intersection is a smooth quartic, i.e. the genase .dHowever, the generic algorithm ceases to be optimal
(both from the point of view of the functions used in the pagtenizations and the size of their coefficient field)
in several singular situations. Parts Il and Il refine thaeege algorithm by considering in turn all the possible
types of intersection. In Part Il, we present our classificabf pencils of quadrics based on the type of their
intersection in real projective space. We also show how ¢athis classification to compute efficiently the type of
the real intersection. In Part Ill, we present optimal orragatimal algorithms for each possible type of singular
intersection.

Part | is organized as follows. In Section 14.2, we presesittiefinitions, notation and useful known results.
Section 14.3 summarizes the ideas on which the pencil mathaevin for intersecting quadrics is based and
discusses its shortcomings. In Section 14.4 we presentenarig algorithm. Among the results of independent
interest presented in this section are the almost alwaydesde of a ruled quadric with rational coefficients in

Z3Recall that, ifK is a field extension of), the degreeof the extension is defined as the dimensioKods a
vector space ove). For instance, ifQ(p) is a field extension of) (distinct fromQ), then its degree is 2 since
there is a one-to-one correspondence between any elerae@ip) and(ay,02) € Q2 such thatx = a1 +az p.
Similarly, if Q@ and two field extension®(p) and Q(p’) are pairwise distinct, then the degree@fp,p’) is 4
since there is a one-to-one correspondence between angrelera Q(p) and (ag,0z,03,04) € Q* such that
X=01+02p+03p +0spp.
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a pencil (proved in Section 14.5) and new parameterizatidrrsiled projective quadrics involving an optimal
number of radicals in the worst case (a fact proved in Sedtb6). In Section 14.7, we prove the near-optimality
of the output parameterization in the generic case, thathsmthe intersection curve is a smooth quartic, and
show that the parameterization is optimal in the worst camaning that there are examples in which the possibly
extra square root is indeed needed. Then, in Section 14.8jweeseveral examples and show the result of our
implementation on these examples, before concluding.

14.2 Notation and preliminaries

In what follows, all the matrices considered are real squaagices. Given a real symmetric mat®of size
n+ 1, the upper left submatrix of size denotedy,, is called theprincipal submatrixof Sand the determinant of
S, theprincipal subdeterminandf S.

We call aquadricassociated t&the set

Qs={xeP"|x" =0},

whereP" = P(R)" denotes the real projective space of dimensiofNote that every matrix of the formS, where
a € R\ {0}, represents the same quad@e.) When the ambient space &' instead ofP(R)", the quadric is
simply Qs minus its points at infinity.

In the rest of this paper, geometric objects and paramet@irs are assumed to live in projective space. For
instance, a point dP® has four coordinates. An object (point, line, plane, comadyic, etc.) given by its implicit
equation(s) is said to bational over a fieldK if the coefficients of its equation(s) live in the fidkl Note that,
when talking about parameterizations, some confusion daa hetween two different notions : the rationality of
the coefficients and the rationality of the defining functida quotient of two polynomial functions is often called
a rational function). The meaning should be clear depenalintpe context.

Matrix S being symmetric, all of its eigenvalues are real. bét and g~ be the numbers of positive and
negative eigenvalues & respectively. Theank of Sis the sum oo™ ando~. We define thénertia of SandQs
as the pair

(max(at,07),min(a",07)).

(Note that it is more usual to define the inertia as the &ir, ™), but our definition, in a sense, reflects the fact
thatQs andQ_gs are one and the same quadric.) A matrix of ineftiz0) is calleddefinite It is positive definitef

o~ =0, negative definitetherwise. MatrixS and quadrids are calledsingular if the determinant oS is zero;
otherwise they are callatbnsingular

The inertia of a quadric if#® is a fundamental concept which somehow replaces the usuabfya quadric in
IR3. For the convenience of the reader we recall in Table 14.tdhespondence between inertia®thand types
in R3.

In P2, any quadric not of inerti&3,1) is either a ruled surface or not a surface. Also, the quadfigsertia
(3,1) are the only ones with a strictly negative determinant. Tévesingular quadrics are those of rank 4, i.e. those
of inertia(4,0), (3,1) and(2,2). Quadrics of inertig4,0) are however empty of real points. A quadric of rank 3 is
called acone The cone is said to beal if its inertia is (2,1). It is said to beémaginaryotherwise, in which case
its real projective locus is limited to its singular pointg@adric of rank 2 is @air of planes The pair of planes is
real if its inertia is(1,1). It is called imaginary if its inertia i§2, 0), in which case its real projective locus consists
of its singular line, i.e. the line of intersection of the tplanes. A quadric of inertiél, 0) is called adouble plane
and is necessarily real.

Two real symmetric matriceSandS of sizen are said to baimilar if and only if there exists a nonsingular
matrix P such that

S =plsp

Note that two similar matrices have the same charactepsiynomial, and thus the same eigenvalues. Two ma-
trices are said to beongruentor projectively equivalenif and only if there exists a nonsingular matfwith real
coefficients such that

S=PTSP
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Inertia of Qs | Inertia of§, Euclidean Euclidean type 0Qs
canonical equatior
(4,0) (3,0) X¥+y?+72+1 0 (imaginary ellipsoid)
(3,1) (3,0) Xy +22 -1 ellipsoid
(2,1) Xy -7 +1 hyperboloid of two sheets
(2,0) X4y +z elliptic paraboloid
(3,0) (3,0) X +y?+ 7 point
(2,0) Xy 41 0 (imaginary elliptic cylinder)
(2,2) (2,1) Xy -7 -1 hyperboloid of one sheet
(1,1) X2 —y?+z hyperbolic paraboloid
(2,1) (2,1) Xy -7 cone
(2,0) X4y -1 elliptic cylinder
(1,1) -y +1 hyperbolic cylinder
(1,0 X2 +y parabolic cylinder
(2,0 (2,0) X +y? line
(1,0) X2 +1 0 (imaginary parallel planes
(1,1 (1,1) X2 —y? intersecting planes
(1,0 x—1 parallel planes
(0,0) X simple plane
(1,0) (1,0) X2 double plane
(0,0) 1 0 (double plane at infinity)

TAB. 14.1 —Correspondence between quadric inertias and Euclidea@s.typ

The transformation sendingto S is called acongruencdransformation. Moreover if matriR has rational co-
efficients, the congruence is said to be rational. Sylvissheertia Law asserts that the inertia is invariant under
a congruence transformation [Lam73], i®andS have the same inertia. Note also that the determina&tisf
invariant by a congruence transformation, up to a squaterf@he square of the determinant of the transformation
matrix).

Let SandT be two real symmetric matrices of the same size anB(letp) = AS+ uT. The set

{ROLW) | (A1) € P}

is called thepencil of matrices generated dyandT. For the sake of simplicity, we sometimes write a member
of the pencilR(\) =AS—T, A e€R=RU{w}. Associated to it is a pencil of quadri¢Qg ) | (A, 1) € P1}.
Recall that the intersection of two distinct quadrics of agikis independent of the choice of the two quadrics.
We call the binary form

D(A, 1) = detR(A, )

thecharacteristic polynomiabf the pencil.

14.3 Levin’s pencil method

Since our solution to quadric surface intersection buildgruthe pencil method of [Lev76, Lev79], we start
by recalling the main steps of his algorithm for computingaagmeterized representation of the intersection of
two distinct implicit quadricQs andQr of R3. Starting from this short description, we then identify wéhéhis
algorithm introduces high-degree algebraic numbers angdthik is a problem.

The high-level idea behind Levin’s algorithm is this : if {3&Qs is of some “good” type, the®s admits
a parameterization which is linear in one of its parametecs @lugging this parameterization in the implicit
equation ofQy yields a degree 2 equation in one of the parameters (insfemdegree 4 equation) which can be



192 CHAPITRE 14. INTERSECTION OF QUADRICS : I. THE GENERIC ALGORITHM

. canonical N
quadric equation & b > 0) parameterizatioX = [x,y,7, u,v€ R

simple plane x=0 X(u,v) = [0,u,V]

double plane XX =0 X(u,v) =[0,u,V]

parallel planes ad =1 X(uv)=[Z,uv, X(uv)= [—%,u,v]
intersecting planes | @ —by*=0 [ X(uv) =[J5, %M, X(uv) = (575

hyperbolic paraboloid axX —by>—z=0 X(u,v) =[5, U

parabolic cylinder a—y=0 X(u,v) = [u,al?, V]
hyperbolic cylinder |  ax®—by? =1 X(UV) = [55(U+ §)s 505U+ §)V

TAB. 14.2 —Parameterizations of canonical simple ruled quadrics TBgv

easily solved to get a parametric representatio®€h Q. When neitheQs nor Qr has a “good” type, then one
can find a quadri€g of “good” type in the pencil generated I6)s andQr, and we are back to the previous case
replacingQs by Qr.

The definition of a “good” type is embodied in Levin’s notiohgimple ruled quadr®® and the existence of
such a quadri€g is Levin’s key result :

Theorem 14.2( [Lev76]). The pencil generated by any two distinct quadrics contairisast one simple ruled
quadric, i.e., one of the quadrics listed in Table 14.2, &r émpty set.

In more details, Levin's method is as follows.

1. Find a simple ruled quadric in the pen{ﬂ)R(A):)&T | A € R} generated b®s andQr, or report an empty
intersection. Since simple ruled quadrics have a vanishimipal subdeterminant, this is achieved by
searching for &g € R such that defR,(Ag)) = 0 andQr = Qr(ro) IS Simple ruled ; by Theorem 14.2, such
a quadric exists or the pencil contains the empty set. Assfanthe sake of simplicity, that the intersection
is not empty and tha®r andQs are distinct. Thei®sN Qr = QsN Qr.

2. Determine the orthonormal transformation maRjxvhich send<®, in diagonal form by computing the ei-
genvalues and the normalized eigenvecto® poDeduce the transformation matixwhich send€g into
canonical form. In the orthonormal frame in which it is caiwah Qr admits one of the parameterizations
X of Table 14.2.

3. Compute the matri$ = PT SPof the quadridQs in the canonical frame ddr and consider the equation

XTSX = a(u)v? + b(u)v+c(u) = 0, (14.1)
whereX has been augmented by a fourth coordinate set to 1. (The pteapations of Table 14.2 are such
thata(u), b(u) andc(u) are polynomials of degree at most fournin)

Solve (14.1) fow in terms ofu and determine the corresponding domain of validity of which the solu-
tions are defined, i.e., the setwsuch that\(u) = b?(u) — 4a(u)c(u) > 0. Substitutings by its expression
in terms ofu in X, we have a parameterization@EN Qr = QsN Qg in the orthonormal coordinate system
in which Qg is canonical.

4. OutputPX(u), the parameterized equation @sN Qr in the global coordinate frame, and the domain of
u e R on whichitis valid.

This method is very nice and powerful since it gives an explépresentation of the intersection of two general
guadrics. However, it is far from being ideal from the poifiview of precision and robustness since it introduces
non-rational numbers at several different places. Thus fibating point representation of numbers is used, the
result may be wrong (geometrically and topologically) ogrse, the program may crash (especially in Step 1

24In [Lev76, Lev79], Levin refers to these quadrics as to nliptid paras.
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inertia canonical equation o

of S (a.b.c.d>0) parameterizatioiX = [X,Y, z W]

(4,0) [ a®+by’+cZ+dw =0 Qs—0

(3,0) a +by’+cZ=0 Qsis point(0,0,0,1)

(22) | @@+byP—cZ—dw=0| X =[ULas us i 2 “f/%"‘], (u,v),(s,t) € P?
(2,1) al+byP—c2=0 X = [uy, Y7 Uzzjlb%f,s], (u,v,s) € P*2
(2,0) a +by =0 X =10,0,u,v], (u,v) € P

(1,2) ¢ —by? =0 X1 = [u, ¥2u,v,8, X = [u,— B, v s, (u,v,5) € P2
(1,0) alé=0 X =[0,u,v,8, (u,V,s) € P?

TAB. 14.3 — Parameterization of projective quadrics of inertia difer from (3,1). In the parameteriza-
tion of projective conesP*? stands for the 2-dimensional real quasi-projective spafmet] as the quotient
of R®\ {0,0,0} by the equivalence relation where(x,y,z) ~ (y1,y2,y3) iff I\ € R\ {0} such that(x,y,z) =
()\y].7)\y23)\2y3)'

when the type of the quadri€dr,) are incorrectly computed). In theory, exact arithmetic ldalo, except that it
would highly slow down the computations. In practice, hogrewa correct implementation using exact arithmetic
seems out of reach because of the high degree of the algeliraioers involved.

Let us examine more closely the potential sources of nudristability in Levin’s algorithm.

— Step 1: Ag is the root of a third degree polynomial with rational coeéfids. In the worst case, it is thus
expressed with nested radicals of depth two. Since deterinQg) is simple ruled involves computing
its Euclidean type (not an easy task considering@gf, ) andQr,+¢) May be and often are of different
types), this is probably the biggest source of non-robsstne

— Step 2 SinceQR is simple ruled, the characteristic polynomialRf is a degree three polynomial having
zero as a root and whose coefficients are in the field exterigiap). Thus, the nonzero eigenvaluesiyf
may involve nested radicals of depth three. Since the qooreting eigenvectors have to be normalized, the
coefficients of the transformation matiixare expressed with radicals of nesting depth four in the wors
case.

Since the coefficients of the parameterizatioof Qr are expressed as square roots of the coefficients of
the canonical equatioQprgp (as in Table 14.2), the coefficients of the parameterizatio@s N Qr can
involve nested radicals of depth five the worst case.

— Step 3 Computing the domain of amounts to solving the fourth degree equatign) = 0 whose coeffi-
cients are nested radicals of worst-case depth fii@. in

Note that this worst-case picture is the generic case. thdgeen two arbitrary quadrics with rational coeffi-

cients, the polynomial déR,(A)) will generically have no rational root (a consequence obélit's Irreducibility
Theorem).

14.4 Generic algorithm

We now present a first but major improvement to Levin’s pemgthod for computing parametric representa-
tions of the intersection of quadrics.

This so-called “generic algorithm” removes most of the searof radicals in Levin's algorithm. We prove in
Section 14.7 that it is near-optimal in the generic, smootrtic case. It is however not optimal for all the possible
types of intersection and will need later refinements (seetimments in Section 14.9, and Parts Il and I1l). But it
is sufficiently simple, robust and efficient to be of intersmany.

We start by introducing the projective framework underlymur approach and stating the main theorem on
which the generic approach rests. We then outline our dlgorand detail particular steps in ensuing sections.

From now on, all the input quadrics considered have theifficaents (i.e., the entries of the corresponding
matrices) inQ.
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14.4.1 Key ingredients

The first ingredient of our approach is to work not just oR&rbut over the real projective spa®é. Recall
that, in projective space, quadrics are entirely chareeteby their inertia (i.e., two quadrics with the same iigert
are projectively equivalent), while in Euclidean spaceythee characterized by their inertia and the inertia of their
principal submatrix.

In our algorithm, quadrics of inertia different frof3,1) (i.e., ruled quadrics) play the role of simple ruled
guadrics in Levin’s method. In Table 14.3, we present a neévefsgarameterizations of ruled projective quadrics
that are both linear in one of their parameters and involvéhé worst case, a minimal number of square ropts
which we prove in Section 14.6. That these parameterizatioa faithful parameterizations of the projective qua-
drics (i.e., there is a one-to-one correspondence betvegmaints of the quadric and the parameters) is proved in
the appendix.

Another key ingredient of our approach is encapsulatedearfahowing theorem, which mirrors, in the pro-
jective setting, Levin's theorem on the existence of ruleddfics in a pencil.

Theorem 14.3. In a pencil generated by any two distinct quadrics, theSsef quadrics of inertia different from
(3,1) is not empty. Furthermore, if no quadric &hhas rational coefficients, then the intersection of the taviall
guadrics is reduced to two distinct points.

This theorem, which is proved in Section 14.5.2, generslideeorem 14.2. Indeed, it ensures that the two
quadrics we end up intersecting have rational coefficiaxsept in one very specific situation. This is how we
remove the main source of nested radicals in Levin’s algorit

The last basic ingredient of our approach is the use of Gasksstion of quadratic forms for diagonalizing a
symmetric matrix and computing the canonical form of theaisged projective quadric, instead of the traditional
eigenvalues/eigenvectors approach used by Levin. SinesS@ansformation is rational (the elements of the
matrix P which sendsSinto canonical form are rational), this removes some lagérested radicals from Levin's
algorithm. Note, also, that there is no difficulty paramigiag the reduced quadr® = PT SPsince, by Sylvester’s
Inertia Law,SandS have the same inertia.

14.4.2 Algorithm outline

Armed with these ingredients, we are now in a position toiogtbur generic algorithm.

Let R(\) = AS—T be the pencil generated by the quadi@sandQr of P2 andD(A) = det(R(A)) be the
characteristic polynomial of the pencil. Recall that, altgh working in all cases, our generic algorithm is best
designed whef® (M) is not identically zero and does not have any multiple raothe other case, a better algorithm
is described in parts Il and Ill. The outline of our intersestalgorithm is as follows (details follow in ensuing
sections) :

1. Find a quadridQr with rational coefficients in the pencil, such that Ret O if possible or deR = 0

otherwise. (If no suclR exists, the intersection is reduced to two points, which wtpat.) If the inertia of
Ris (4,0), output empty intersection. Otherwise, proceed.
Assume for the sake of simplicity th@s # Qg, in such a way thaQsNQr = QsN Q.

2. Ifthe inertia ofRis not(2,2), apply Gauss reduction ®and compute a frame in whid RPis diagonal.

If the inertia ofRis (2, 2), its parameterization contains in general two square tmdtsne can be eliminated
as follows. First, find a rational point close enoughQg such that the quadric in the pencil through this
point has the same inertia . ReplaceQr by this quadric. Then use that rational point to compute a
frame in whichPTRPis the diagonal matrix diad., 1, —1, —3), with & € Q.

In the local frameQgr can be described by one of the parameterizati¥raf Table 14.3. Compute the
parameterizatioPX of Qg in the global frame.

3. Consider the equation

Q: (PX)TS(PX) =0. (14.2)

25Note that there is necessarily a trade-off between the nainilegree of a parameterization in one of its para-
meters and the degree of its coefficient field. For instanesmg)\MJoe and Goldman [WJG97] give parameterizations
of quadrics that have rational coefficients but are quadmatall of their parameters.
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EquationQ is of degree at most 2 in (at least) one of the parameterse &dior this parameter in terms of
the other(s) and compute the domain of the solution.
4. Substitute this parameterRX, giving a parameterization of the intersection@fandQy.

14.4.3 Details of Step 1

The detailed description of Step 1 is as follows. Recall fhét) = det(R(A)) is the characteristic polynomial
of the pencil.
1. a. IfD(A) =0, setR= Sand proceed.

b. Otherwise, compute isolating intervals for the real soatD(A) (using for instance a variant of Us-
pensky’s algorithm [RZ04]). Compute a rational numhgiin between each of the separating intervals
and, for each\p such thatD(Ap) > 0, compute the inertia of the corresponding quadrics usiagss
reduction. If one of the inertias i&,0), outputQsN Qr = 0. Otherwise, one of these inertias(i3 2)
and we proceed with the corresponding quadric.

c. Otherwise (i.eD(A) £ 0 andD(A) < O for all A), compute the greatest common divisor gegof D(A)
and its derivative with respect . If gcd(A) has a rational rookg, proceed with the corresponding
quadricQry)-

d. Otherwise (i.eD(A) has two non-rational double real root§sN Qr is reduced to two points. The
quadric corresponding to one of these two roots is of in€gj&) (an imaginary pair of planes). The
singular line of this pair of planes is real and can be pararizetd easily, even though it is not rational.
Intersecting that line with any of the input quadrics gives two points.

To assert the correctness of this algorithm, we have setlérgs to prove. First, we make clear why, when
looking for a quadric in the pencilS T) with inertia different from those o6 and T, the right polynomial to
consider isD(A) :

Lemma 14.4. The inertia of RA) is invariant on any interval ok not containing a root oD (A).

Proof. It suffices to realize that the eigenvaluesRgh) are continuous functions @f and that the characteristic
polynomial ofR(A)

det(R(A) —11)
is a polynomial il whose constant coefficient 8(A), wherel is the identity matrix of size 4. Thus the eigenva-
lues of R(A) may change of signe only at a zero of @&®)). O

Let us now show that Step 1 of our algorithm always outputstgimpersection whef®QsN Qr = 0. This, in
fact, is a direct consequence of Lemma 14.4 and of the fatigwiheorem proved in 1936/1937 by the German
mathematician Paul Finsler.

Theorem 14.5( [Fin37]). Assume 1= 3 and let ST be real symmetric matrices of size n. ThesT @t = 0 if
and only if the pencil of matrices generated by S and T costaimatrix of inertia(n, 0).

In Step 1.dQs andQy intersect in two points by Theorem 14.3. Furthermore, thadgo corresponding to
one of two roots ofD(A) is a real line by the proof of Theorem 14.3.

Finally, note that we can further refine Step 1.b by computirgginertia of the quadricQg,) with positive
determinant only when the characteristic polynomial has feal roots counted with multiplicities. Indeed, in
view of the following proposition, testing for the preserafe definite matrix in the pencil needs to be done only
in that case.

Proposition 14.6. Assume > 3and let ST be real symmetric matrices of size n. Thesr @y = 0 implies that
detAS+ uT) does not identically vanish and that all its roots are real.

Proof. We use the equivalence provided by Theorem 14.5 of the eagstiof the intersection and the existence of
a definite matrix in the pencil. Léd be a definite matrix of the pencil which we choose positiveirfalar proof
goes for negative definite).
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SinceU is positive definite, we can apply to it a Cholesky factoiimat U = HHT, whereH is a lower trian-
gular matrix. Consider the matr& = (H~1)S(H~1)T. SinceC is real symmetric, it has pairs of real eigenvalues
and eigenvectorgv;, x;). Lety; = (H~1)Tx;. Then we have

H(CXi)ZH(\)iXi) = Sy =ViUy;.

Hence all the roots of the characteristic polynomiallof'S are real, which implies that all the roots of (e$+-
pU) = 0 are real. It follows that all the roots of &6+ uT) = 0 are also real. O

14.4.4 Details of Step 2

There are two cases, according to the inerti of

14.4.4.1 The inertia ofRis not (2,2)

When the inertia oR is different from(2,2), we use Gauss reduction of quadratic forms and parameterize
the resulting quadric, whose associated ma®iRPis diagonal. In view of Sylvester’s Inertia Law, the reduced
quadricQprgp has the same inertia k. Thus it can be parameterized with at most one square roatdybthe
parameterizationX of Table 14.3. Since Gauss reduction is rational @.&s a matrix with rational coefficients),
the parameterizatioRX of Qg contains at most one square root.

14.4.4.2 Theinertia ofRis (2,2)

When the inertia oRis (2, 2), the coefficients of the parameterization@f can live, in the worst case, in an
extensionQ(,/m, y/n) of degree 4 of) (see Table 14.3). We show here that there exists, in the beighod of
Qr, a quadridQg with rational coefficients such that

QsNQr =QsNQr=QsNQr

and the coefficients of the parameterizatiorgf are inQ(v/detR').

First, apply Gauss reduction ©Qr. If any of \/ac or v/bd is rational in the parameterization @ (as in
Table 14.3), we are done. Otherwise, compute an arbitraint poc P3(R) on Qg by taking any value of the
parameters like, sagy,v) = (0,1) and(s,t) = (0,1). Approximatep by a pointp’ € P3(Q) not onQsN Q. Then
compute); € Q such thatp’ belongs to the quadriQR()\{)) of the pencil. This is easy to achieve in view of the
following lemma.

Lemma 14.7. In a pencil generated by two quadrics@+ with rational coefficients, there is exactly one quadric
going through a given poirg’ that is not on @N Q. If p’ is rational, this quadric is rational.

Proof. In the pencil generated s andQr, a quadriiQg ) containgp’ if and only if p'T(AS+uT)p’ =0, that
is if and only ifA(p'T ') + u(p’ T Tp') = 0. If p’ is not onQsN Qr, this equation is linear i\, 1) € P! and thus
admits a unique solution. Moreover f is rational, the equation has rational coefficients and thesjuadric of
the pencil containing’ is rational. O

Note that\j and thehg such thaR = R(Ao) get arbitrarily close to one anotherg{sgets close t@. Thus ifp’
is close enough tp, R = R(Ap) has the same inerti@, 2) asR, by Lemma 14.4. We refine the approximatign
of p until R has inertia2, 2).

We now have a quadriQr of inertia(2,2) and a rational point 0@y . Consider any rational line througt
that is not in the plane tangent@y atp’. This line further intersect®g in another poinp”. Pointp” is rational
because otherwisg’ and p” would be conjugate in the field extension @f (since Qg and the line are both
rational) and thug’ would not be rational. Compute the rational transformaBaendingp’, p” onto(1,+1,0,0).
Apply this transformation tdR and then apply Gauss reduction of quadratic forms. In thel fisame,Qgr has
equation (up to a constant factor)

X2 —y? +aZ+pw? =0, (14.3)
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with a3 < 0. Now consider the linear transformation whose matri¥'is

1+4a 0 1-a O

p_1[l-a 0 1+a O
"2 0 2 0o o
0 0 0 x

Applying P’ to the already reduced quadric of Eq. (14.3) gives the equati
X4y — 22— 3w =0, (14.4)
whered = —af3 > 0. The quadric of Eq. (14.4) can be parameterized by

X((u,v),(s,t)) = (ut+vs us—vt,ut —vs %),

with (u,v), (s,t) € P! (see Table 14.3).
The three consecutive transformation matrices have witiopefficients thu€)(v/3) = Q(v/detR) and the
product of these transformation matrices wihis a polynomial parameterization 6z with coefficients in

Q(V3),5€Q.

14.4.5 Details of Step 3

Solving Equation (14.2) can be done as follows. Recall thatdontent in the variable of a multivariate
polynomial is the gcd of the coefficients of tke

Equation (14.2) may be seen as a quadratic equation in orree gfarameters. For instanceRtas inertia
(2,2), Eq. (14.2) is a homogeneous biquadratic equation in thahlas§ = (u,v) andt = (s,t). Using only
gcd computations, we can factor it in its contengifwhich is a polynomial irt or a constant), its content in
and a remaining factor. If the contentgn(or in T) is not constant, solve it im (in §); substituting the obtained
real values inX, we have a parameterization of some componen®f Qr = QsN Qg in the frame in which
Qr is canonical. If the remaining factor is not constant, satviea a parameter in which it is linear, if any, or
in T. Substituting the result iiX, we have a parameterization of the last component of thesité&on. If the
equation which is solved is not linear, the domain of the petarization is the set & such that the degree 4
polynomial A(§) = b?(€) — 4a(&)c(§) is positive, wherea(€),b(€) andc(€) are the coefficients of?, T and 1 in
(14.2), respectively.

14.5 Canonical forms and proof of Theorem 14.3

We now prove Theorem 14.3, the key result stated in the pue\dection. We start by recalling some prelimi-
nary results.

14.5.1 Canonical form for a nonsingular pair of symmetric matrices

We state results, proved by Uhlig [UhI73, Uhl76], we needdomputing the canonical form of a pair of real
symmetric matrices. Though only part of this theory is reggiifor the proof of Theorem 14.3 (Section 14.5.2),
we will need its full power in Part 1l of this paper for charadting real pencils of quadrics.

Let us start by defining the notion of Jordan blocks.

Definition 14.8. Let M be a square matrix of the form

() or
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If| e Rand e= 1, M is called areal Jordan bloclassociated witl. If

a —-b 10
€_<b a)’ abeR, b#0, e_(o 1>7

M is called acomplex Jordan blockssociated with a-ib.
Now we can state the real Jordan normal form theorem for tpeire matrices.

Theorem 14.9(Real Jordan normal form)Every real square matrix A is similar over the reals to a bldégonal
matrixdiag(As, . ..,Ax), called real Jordan normal form of A, in which eachid a (real or complex) Jordan block
associated with an eigenvalue of A.

The Canonical Pair Form Theorem then goes as follows :

Theorem 14.10(Canonical Pair Form)Let S and T be two real symmetric matrices of size n, with Simgus
lar. Let SIT have real Jordan normal fordiag(Js, ..., %, J+1,-..,Jm), where J,...,J, are real Jordan blocks
corresponding to real eigenvalues of 'S and J.1,...,Jn are complex Jordan blocks corresponding to pairs of
complex conjugate eigenvalues of'$. Then :

(a) The characteristic polynomial of 8T anddet(AS— T) have the same roots; with the same (algebraic)
multiplicities m.

(b) S and T are simultaneously congruent by a real congruéacsformation to

diag(€1Es, ..., &Er Erq1,...,Em)

and
dlag(lelJl, e 7Er Erw.]r7 Er+1Jr+l7 ey Em\]m)7

respectively, wherg = +1 and E denotes the square matrix

()

of the same size asfdri =1,...,m. The signs; are unique (up to permutations) for each set of indices i érat
associated with a set of identical real Jordan blocks J

(c) The sum of the sizes of the blocks corresponding to onleedf;tis the multiplicity m if A; is real or
twice this multiplicity ifA; is complex. The number of the corresponding blocks (the ge@multiplicity ofA;)
istj =n—rank(AjS—T), and1 <t; <m;.

Note that the canonical pair form of Theorem 14.10 can beidensd the finest simultaneous block diagonal
structure that can be obtained by a real congruence tranafimm for a given pair of real symmetric matrices, in
the sense that it maximizes the number of blocks in the diaigation ofSandT.

14.5.2 Proof of Theorem 14.3

To prove Theorem 14.3, we consider a pencil of real symmétriel matrices generated by two symmetric
matricesSandT of inertia(3,1). We may suppose that they have the block diagonal form oftibeeatheorem.

If all the blocks had an even size, the determinarswfould be positive, contradicting our hypothesis. Thus,
there is a block of odd size in the canonical fornoft follows that defAS— T) has at least one real root and the
matrix of the pencil corresponding to this root has an iaedtfferent from(3,1). This proves the first part.

If det(AS—T) has a simple real root, there is an interval of values\féor which detAS—T) > 0, and we
are done with any rational value dfin this interval. If detAS— T) has either a double real root and two complex
roots, two rational double real roots or a quadruple real, th@ quadrics corresponding to the real root(s) have
rational coefficients and have inertia different frg&1).
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Thus we are left with the case where @8— T) has two non rational double real roots, which are algebrai-
cally conjugate. In other words,
detAS—T) = c(A —A1)2(A—A2)?,

with A1,A2 € R\ Q andA, = A; its (real algebraic) conjugate. Following the notation bE®rem 14.10, we have
m =mp =2 and 1< t; < 2, fori = 1,2. In other words(t,t2) € {(1,1),(1,2),(2,1),(2,2)}.

We can quickly get rid of the cad#;,t2) = (1,1). Indeed, in this case the blocks have an even sizeSdad
not of inertia(3,1). We can also eliminate the casgs ty) € {(1,2),(2,1)}, because the matricagS— T and
A2S—T are algebraically conjugate, and so must have the same nanthe same number of blocks.

We are thus left with the cagi,tp) = (2,2). In this situationSandT have four blocks, i.e., they are diagonal :

S=diag(e1,€2,€3,€4),
T =diag(g1A1,€2M1,€3M2,€4A2).

The pencihS—T is generated by the two quadrics of rank 2

S = MS-T= diag(O, O, 83()\1 — )\2), 84()\1 7)\2)),
T = )\28— T= diag(sl()\g — )\1),82()\2 — )\1), O, 0)

We have that
det(S +T') = e162e384(A1 — A2)*

is negative since all the quadrics of the pencil have negatdterminant exceids andQy-. Thuseie; andezgs
have opposite signs. It follows that one®fandT’ has inertia2,0) (sayS) and the other has inert{d,1). Thus
Qg is a straight line, which intersects the real pair of pla@gs SinceQg N Q¢ is contained in all the quadrics
of the pencil and since the pencil has quadrics of inéBjd) (which are not ruled), the lin€@g is not included
in Qr and the intersection is reduced to two real points. Sincethations ofQg andQy arez +w? = 0 and
x? —y? = 0 respectively, the two points have coordinatkd, 0,0) and(—1,1,0,0). They are thus distinct. O

Remark 14.11. Pencils generated by two quadrics of inert& 1) and having no quadric with rational coefficients
of inertia different from(3, 1) do exist. Consider for instance

Qs : 2% — 2xz— 2yw+ 22 +W? = 0,
Qr @ 4x% +2y% — 2yw+ 72 — 6xz+ 3w? = 0.

Then,detAS—T) = —(A\?> —5)2.

14.6 Optimality of the parameterizations

We now prove that, among the parameterizations of projedivadrics linear in one of the parameters, the
ones of Table 14.3 have, in the worst case, an optimal nunibadizals. In other words, for each type of projective
quadric, there are examples of surfaces for which the nuoflsgruare roots of the parameterizations of Table 14.3
is required.

More precisely, we prove the following theorem, which widl brucial in asserting the near-optimality of our
algorithm for parameterizing quadric intersections.

Theorem 14.12.1n the set of parameterizations linear in one of the paramsgtbe parameterizations of Table 14.3
are worst-case optimal in the degree of the extensid@ oh which they are defined.

For a quadric Q of equation &+ by? — cZ —dw? = 0 (a,b,c,d > 0), the parameterization of Table 14.3 is
optimal if Q has no rational point, which is the case for somadyics. Knowing a rational point on Q (if any), we
can compute a rational congruence transformation sendimgt®the quadric of equatior’-y? — 22 —abcd W =
0, for which the parameterization of Table 14.3 is optimal.

For a quadric Q of equation &x}- by?> — cZ = 0 (a,b,c > 0), the parameterization of Table 14.3 is optimal if
Q has no rational point other than its singular poit, 0,0, 1), which is the case for some quadrics. Knowing such
a rational point on Q (if any), we can compute a rational comgmce transformation sending Q into the quadric
of equation X +y? — 22 = 0, for which the parameterization of Table 14.3 is rationahd@ahus optimal).

For the other types of projective quadrics, the parameggitns of Table 14.3 are optimal in all cases.
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We prove this theorem by splitting it into four more detaifgdpositions : Proposition 14.13 for inerfia 1),
Proposition 14.14 for inertié2, 1) and Propositions 14.15 and 14.17 for ine(@a2).

Proposition 14.13. A projective quadric Q of equation ax by’ = 0 (a,b > 0) admits a rational parameterization
in Q if and only if it has a rational point outside the singulardix=y = 0, or equivalently iff ab is a square .
If ab is a square i), then the parameterization of Table 14.3 is rational.

Proof. A point (x,y,z,w) on Q not on its singular linex=y = 0 is rational if and only ify/x, z/x, andw/x are
rational. Sincgy/x)? = %E andz andw are not constrained, there exists such a rational pointifaanty if abis a
square.

If there exists a parameterization which is rational d@eithen there exists some rational point outside the
line x =y =0, showinga contrariothat there is no rational parameterizatioalifis not a square.

Finally, if abis the square of a rational number, then the parametenzafidable 14.3 is rational. O

Proposition 14.14. A projective quadric Q of equation &% by’ — cZ = 0 (a,b,c > 0) admits a rational para-
meterization inQ if and only it contains a rational point other than the singupoint (0,0,0,1). Knowing such
a rational point, we can compute a rational congruence tfansation P sending Q into the quadric of equa-
tion X% + y? — 2 = 0 for which the parameterization of Table 14.3 is rationaltilig this parameterization to the
original space by multiplying by matrix P, we have a ratioparameterization of Q.

On the other hand, there are such quadrics without a ratiggwht and thus without a rational parameteriza-
tion, for example the quadric of equatiofy? — 322 = 0.

Proof. If Q has a rational point other tham = y = z= 0), any rational line passing through this point and not
included inQ cutsQ in another rational point. Compute the rational congrudraresformation sending these points
onto(=+1,1,0,0). Applying this transformation tQ gives a quadric of equatioft —y? +r, wherer is a polynomial

of degree at most one kandy. Thus Gauss reduction algorithm leads to the fafmy? +dZ = (X2 +Y?—Z?)/d
whereX = (1+d)x/2+ (1—d)y/2,Y =dzandZ = (1—d)x/2+ (1+d)y/2. The parameterization of Table 14.3
applied to equatioix? 4 Y2 — Z? is clearly rational. Lifting this parameterization backthe original space, we
obtain a rational parameterization @f

Reciprocally, ifQ has no rational point, theQ does not admit a rational parameterization.

Now, suppose for a contradiction that the quadric with eiqua€ +y? — 3z° = 0 has a rational poirii, y, z, w)
different from(0,0,0,1). By multiplying X,y, andz by a common denominator and dividing them by their gcd,
we obtain another rational point on the quadric for which andz are integers that are not all even. Note that
x? is equal, modulo 4, to 0 ik is even and 1 otherwise (indeed, modulo 4=00, 12 =1, 2 =0 and 3 = 1).
Thus,x? +y? — 322 = x> +y> + 72 (mod 4 is equal to the number of odd numbersxiy,z, i.e. 12 or 3. Thus
x? +y? — 322 # 0, contradicting the hypothesis thiaty, z,w) is a point on the quadric. O

Proposition 14.15. Let Q be the quadric of equation &% by’ — cZ — dw? = 0 (a,b,c,d > 0). Any fieldK in
which Q admits a rational parameterization, linear in ondtsfparameters, containg'abcd.

Proof. LetK be a field in whichQ admits a rational parameterization, linear in the paraniete) € P(R). Fixing
the value of the other parametext) € P(K) defines a rational line (in K) contained inQ. L cuts any plane (in
possibly infinitely many points) in projective space. Intadar, L cuts the plane of equatian= 0. SinceL C Q,
L cuts the conic of equatiom? 4 by? — dw? = z= 0 in a pointp = (Xo,Yo,0,1). Moreoverp is rational inK (i.e.,
X0, Yo € K) because it is the intersection of a rational line and thagda= 0.

The plane tangent tQ at p has equatiomxyx+ bypy — dw= 0. We now compute the intersection @fwith
this plane. Sincexd + bys = d anda,b,d > 0, X 0r Yo is nonzero; assume for instance that# 0. Squaring
the equation of the tangent plane yieldsox)? = (byoy — dw)2. By eliminatingx® between this equation and the
equation ofQ, we get

(byoy — dw)2 + axd(by? — cZ —dw?) =0

or

dw?(d — axd) + by?(@x + byg) — 2bdyyw— acxz = 0.
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It follows from ax§ + by3 = d thatbd(y — yow)2 — acxz? = 0 or also

b2d?(y — yow)? — abcd ¥Z = 0. (14.5)
The intersection of) and its tangent plane gtcontains the lind. which is rational inK. Thus, Equation (14.5)
can be factored oveX into two linear terms. Hence/abcdbelongs tdk. O

Remark 14.16. abcd is the discriminant of the quadric, i.e., the determinaf the associated matrix, so it is
invariant by a change of coordinates (up to a square factbhus, if R and Rare two matrices representing the
same quadric in different frames, the fiel@sv/ detR) andQ(v/detR’) are equal.

Proposition 14.17. A projective quadric Q of equation &% by? — cZ —dw? = 0 (a,b,c,d > 0) admits a rational
parameterization inQ(+/abcd) if and only it contains a rational point. Knowing such a ratel point, we can
compute a rational congruence transformation P sendingt®tine quadric of equatior®sy? — 22— abcd w = 0
for which the parameterization of Table 14.3 is rational 0¥@(+v/abcd); lifting this parameterization to the
original space by multiplying by matrix P, we have a ratiopalameterization of Q ove®(v/abcd).

On the other hand, there are such quadrics with no rationéhpand thus without a rational parameterization
in Q(v/abcd), for example the quadric of equatioAx y? — 322 — 11w? = 0.

Proof. If Q admits a rational parameterization@y+/abcd), then it has infinitely many rational points over this
field. If Q has a pointx,y,z w) that is rational ovef)(v/abcd), but not rational ovef), we may suppose without
loss of generality that = 1, by permuting the variables in order thag 0 and then by dividing all coordinates
by x. The conjugate pointl,y,Z,w’) overQ(+/abcd) belongs also t®. The line passing through these points is
rational (overQ), as is the pointl, (y+Y')/2,(z+7)/2,(w+w)/2). Choose a rational frame transformation such
that this line becomes the lirle= w = 0 and this point becomé4, 0,0,0). In this new frame the coordinates of the
conjugate points argl, +ev/abcd 0, 0) for some rational numbes; and the equation @ is abcd éx? —y?+r =0
wherer is a polynomial of degree at most 1 xnandy. Gauss reduction thus provides an equation of the form
abcd éx? —y? + f2 — gw? = 0, and the invariance of the determinant (Remark 14.16) shbatfg is the square

of a rational numbeh. Thus(0,0, g, h) is a rational point of) overQ.

Now, if Q has a rational point ove), one may get another rational point as the intersection efjtredric
and any line passing through the point and not tangent to tla€lrgc. One can compute a rational congruence
transformation such that these points becdrhet1,0,0). In this new frame the equation & has the form
x? —y? —r wherer is a polynomial of degree at most 1 ¥nandy. Gauss reduction provides thus an equation
of the formx? — y? + eZ — fw? = (X2 +Y2 - 22 —efw?) /e, with X = (1 +e)x/2+ (1 —e)y/2,Y = ezandZ =
(1—e)x/2+ (1+e)y/2. By the invariance of the determinastf = g’abcd for some rational numbeg. Putting
W = gw, we get the equatioX? +Y? — Z? —abcd WP = 0 for Q, and the parameterization of Table 14.3 is rational
overQ(vabcd).

It follows from this proof that, if a quadric of inertié2, 2) has a rational point, it has a parameterization in
Q(v/abcd), which is linear in one of the parameters. Conversely, forijmg that such a parameterization does not
always exist, it suffices to prove that there are quadricseftia(2,2) having no rational point ove®. Let us
consider the quadric of equatiaf+y? — 322 — 11w? = 0. If it has a rational pointx, y, z,w), then by multiplying
X, Y, zandw by some common denominator and by dividing them by their g&dmay suppose that y, zandw
are integers which are not all even. As in the proof of Prajmsil4.14,x? +y? — 3z — 11w? is equal modulo 4
to the number of odd numbersxy,z w. Thus all of them are odd. It is straightforward that the sgquad an odd
number is equal to 1 modulo 8. It follows thet+y? — 3722 — 11w? is equal to 4 modulo 8, a contradiction with
X2 4+y? — 372 —11w? = 0. O

14.7 Near-optimality in the smooth quartic case

In this section, we prove that the algorithm given in Secfid outputs, in the generic (smooth quartic) case,
a parameterization of the intersection that is optimal & tlumber of radicals up to one possibly unnecessary
square root. We also show that deciding whether this extarsgroot can be avoided or not is hard. Moreover,
we give examples where the extra square root cannot be elietinfor the three possible morphologies of a real
smooth quartic.
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14.7.1 Algebraic preliminaries

First recall that, as is well known from the classificationgofdric pencils by invariant factors (see [Bro06]
and Part Il for more), the intersection of two quadrics is agiogular quartic exactly wheR (A, ) = detR(A, L)
has no multiple root. Otherwise the intersection is singiNate that the intersection is nonsingular exactly when
ged %, %%) =1.

Moreover, when the intersection is nonsingular, the rardnyfquadric in the pencil is at least three ; indeed,
all the roots ofD(A, p) are simple and thus, in Theorem 14.10(n) = 1, thust; = 1, hence the quadrics associated
with the roots ofD(A, W) have rank 3.

Whether the intersection of two quadrics admits a paranzetioin with rational functions directly follows
from classical results :

Proposition 14.18. The intersection of two quadrics admits a parameterizatiith rational functions if and only
if the intersection is singular.

Proof. First recall that a curve admits a parameterization witionat functions if and only if it has zero ge-
nus [Per95].

Assume first that the intersection of the two quadrics isdgble. InP3(C), if two algebraic surfaces of
degreed; andd; intersect in an irreducible curve, its genus is

k

1 B o Gi@—1)
2d1d2(d1—‘rd2 4)+l i; 5 ,

wherek is the number of singular points aggd_, .. their respective multiplicity [Nam84]. The intersecticuree
has thus genus 1 when it is smooth, 0 otherwise. The resldivel

Assume now that the intersection of the two quadrics is riéstleldf the intersection contains only points, lines
and conics, which can parameterized in a classic way bynatiimnctions, we are done. For the remaining case
(cubic and line), we use the following result. H(C), if two algebraic surfaces of degrele andd, intersect in
two irreducible curves of degrekandd’ and of genug andd’, then [Per95]

1
g -9 (Gler+d)-2) @ o
For quadricsd; +d, = 4, so we gegy = ¢'. So the genus of the cubic is that of the line, i.e. 0. O

Finally consider the equatia : XTSX = 0, obtained in Step 3 of our algorithm, wheXes the parameteri-
zation ofQg andS is the matrix ofQs in the canonical frame dPr. LetCq be the curve zero-set 6f. Depending
on the projective type g, Cq is a bidegreg2, 2) curve inP? x P! (inertia(2,2) or (2,0)), a quartic curve ifP*?
(inertia (2,1)) or a quartic curve iP? (inertia (1,1) or (1,0)). Let C denote the curve of intersection of the two
given quadric®)s andQy. We have the following classical result.

Fact 14.19. The parameterization of Qdefines an isomorphism between C ard @ particular, C and G have
the same genus, irreducibility, and factorization.

14.7.2 Optimality

Assume the intersection is a real nonsingular quartic. Thé¢h, ) has no multiple root, and thudg is
necessarily a quadric of inerti@, 2). After Step 2 of our algorithmQg has a parameterization (/) that
is bilinear in& = (u,v) andt = (s,t). After resolution ofQ and substitution ifQr, we get a parameterization in
Q(V3)[E, vA] with A € Q(v/3)[£] of degree 4.

Proposition 14.18 implies that it cannot be parameterizeditional functions, sa/A cannot be avoided. The
question now is : caw/d be avoided ? The answer is twofold :

1. deciding whethe/3 can be avoided amounts, in the general case, to finding aahtoint on a surface
of degree 8,

2. there are cases in whighd cannot be avoided.
We prove these results in the following two sections.
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14.7.2.1 Optimality test
We first prove two preliminary lemmas.

Lemma 14.20. If the intersection of two given quadrics has a parametéigainvolving only one square root
(i.e., a parameterization i@(v/d)[&] or in Q[E, vA] with A € Q[E]), there exists a quadric with rational coefficients
in the pencil that contains a rational line.

Proof. In what follows, calldegreeof a point the degree of the smallest field extensiorfQo€ontaining the
coordinates of this point.

If the parameterization of the intersection involves onhe@quare root, the intersection contains infinitely
many points of degree at most 2, one for any rational valubeparameters. Now we have several cases according
to the type of points contained in the intersection.

If the intersection contains a poiptof degree 2, it contains also its algebraic conjugat&he line passing
throughp andp is invariant by conjugation, so is rational. Legbe a rational point on this line. The quadric of the
pencil passing througg is rational (Lemma 14.7). Since it also contapmandp (the intersection is contained in
any quadric of the pencil), this quadric cuts the line in aste8 points and thus contains it.

If the intersection contains a regular rational point (agational point which is not a singular point of the
intersection), then the line tangent to the intersectiatiatpoint is rational, and is tangent to any quadric of the
pencil. The quadric of the pencil passing through a ratigaétht of this tangent line contains the contact point ;
thus it contains the tangent line.

If the intersection contains a singular rational pginthen all the quadrics of the pencil which are not singular
at p have the same tangent plangat.et us consider the quadric of the pencil passing througitiarmal pointq
of this tangent plane (or through any rational point, if nofi¢ghe quadrics is regular a. As above, this quadric
contains the rational linpq. O

Lemma 14.21. If a quadric contains a rational line, its discriminant is gare inQ.

Proof. If the quadric has rank less than 4, its discriminant is z&/e.may thus suppose that the discriminant
is not 0 and that the equation of the quadricai€ + by’ — cZ — dw? = 0. Since this quadric contains a ra-
tional line L, and thus a rational point, there is a rational change of ésasuch that the quadric has equation
X2 +y? — 72 —abcdw = 0, by Proposition 14.17. Cut the quadric by the plare 0. Since the intersection of
the planez = 0 and the rational lin& is a rational point, the coné +y? — abcd v = 0 contains a rational point
outside it singular locus. By Proposition 14.14, there iatibnal congruence transformati®sending this cone
into the cone of equatiox’ +y?> —w? = 0. These two cones can be seen as coni® {f)) andP can be seen as
a rational transformation if*?(Q). The discriminant-abcd of the conicx? +y? — abcd W = 0 is thus equal to
(detP)? times—1, the discriminant of the coni? + y> —w? = 0. Henceabcdis a square iff. m

From these two technical results and the results of Sectids Wve obtain the following equivalence.

Proposition 14.22. When the intersection is a nonsingular quartic, it can begpaeterized inQ[E,+/A] with
A € Q[g] if and only if there exists a quadric of the pencil with raibicoefficients having a nonsingular rational
point and whose discriminant is a square(@

Proof. If v/3 can be avoided, there exists, by Lemma 14.20, a quadric opeheil with rational coefficients
containing a rational line. By Lemma 14.21, the discriminafrthis quadric is thus a square@ Moreover, since
the quadrics of the pencil have rank at least three, thenatiine is not the singular line of some quadric (see
Table 14.1) and thus contains a nonsingular point.

Conversely, if there exists a quadric of the pencil withamatil coefficients having a rational nonsingular point
and whose discriminant is a square, then it has a rationahpeterization by Theorem 14.12 and th¢& can be
avoided. O

Mirroring Proposition 14.22, we can devise a general tesdéeiding, in the smooth quartic case, whether the
square root/d can be avoided or not. Consider the equation

02 =det(xX'TX)S— (X' ) T), x=(xy,zc)", (14.6)
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wherec € Q is some constant such that plame- ¢ € Q contains the vertex of no cone (inert@ 1)) of the pencil.
Note that (14.6) has degree 8 in the worst case.

Theorem 14.23.When the intersection is a nonsingular quartic, it can begpaeterized ifQ[€, v/A] with A € Q[E]
if and only Equatior(14.6)has a rational solution.

Proof. Suppose first that (14.6) has a rational solutig Yo, Zo,0o) and letxo = (Xo,Yo,20,¢)" and (Ao, o) =
(ngxo, —xg Xp). The quadridQ = AoQs+ HoQr of the pencil has rational coefficients, contains the ratipoint

X0 = (X0, Yo, 20, c)T and its discriminant is a square, equab@) Moreover, ifQ has inertia(2, 1), thenxg is not its
apex because, by assumption, the plane c contains the vertex of no cone of the pencil. It then followesf
Theorem 14.12 that our algorithm produces a rational paterzation ofQ, and thus a parameterization of the
curve of intersection with rational coefficients.

Conversely, if the curve of intersection can be paramegdria Q[€, /A] (with A € Q[E]) there exists a qua-
dric Q of the pencil with rational coefficients containing a raibtine and whose discriminant is a squaren
by Lemmas 14.20 and 14.21. The quad@icontains a line and thus intersects any plane. Consider kame p
w = c € Q. Since the intersection of a rational line with a rationand is (or contains) a rational point, the inter-
section ofQ with planew = ¢ contains a rational point = (x,y,zc)'. The quadric Q) of the pencil containing
that point has associated matfi Tx) S— (x" ) T and its determinant is a square. Hence Equation (14.6) admit
a rational solution. O

Unfortunately, the question underlying the above optitgd#st is not within the range of problems that can
currently been answered by algebraic number theory. Indeischot known whether the general problem of deter-
mining if an algebraic set contains rational points (knoowerZ, as Hilbert’s 10th problem) is decidable [Poo01].
It is known that this problem is decidable for genus zero esrand, under certain conditions, for genus one
curves [Poo01], but, for varieties of dimension two or meexy little has been proved on the problem of compu-
ting rational points.

The above theorem thus implies that computing parametemnieof the intersections of two arbitrary quadrics
that are always optimal in the number of radicals is curyent of reach.

However, in some particular cases, we can use the followangllary to Theorem 14.23 to prove thefd
cannot be avoided.

Corollary 14.24. If the intersection C of @and G is a nonsingular quartic and the rational hyperelliptic qtia
curveo? = det(S+AT) has no rational point, then the parameterization of Qifw/d)[€, v/A] with A € Q(v/3)[§]
is optimal in the number of radicals.

We use this corollary in the next section.

14.7.3 Worst case examples

We prove here that there are pairs of quadrics, intersetitige different types of real smooth quartic, such
that (14.6) has no rational solution.

In [TWWO02], Tu, Wang and Wang proved that a real smooth quasgtictlme of three different morphologies
according to the number of real roots of the characterisiignmmial. Recall that a set of pointsof P2 is called
affinely finiteif there exists a projective plariesuch thaPNL = 0; L is calledaffinely infiniteotherwise.

Theorem 14.25( [TWWO02]). Let Qs and Qr be two quadrics intersecting i@ in a smooth quartic C. C can be
classified as follows :
— If D(A, ) has four real roots, then C has either two real affinely fint@mected components or is empty.
— If D(A, ) has two real roots and two complex roots, then C has one réakdy finite connected component.
— If D(A, ) has four complex roots, then C has two real affinely infinitenszted components.

Two real affinely finite components

We first look at the case where the quartic has two real affifigite components and start with a preliminary
lemma.
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Lemma 14.26. The equation
y> =ad + ¢ +c+d(3C+x) (14.7)

has no rational solution if &£ = 3 (mod 8, b= 7 (mod 8 and d= 4 (mod 8.

Proof. Assume for a contradiction thék, y) is a rational solution to (14.7). We can write= X /Z andy = Y /Z?,
whereX,Y,Z are integersZ # 0 andX, Z are mutually prime (so are not both even).
Consider first the reduction of Equation (14.7) modulo 8 :

Y2 = 3X* + 7X?Z2 4-32% + 4XZ(X? + Z%) (mod 8.

If both X andZ are odd X? andZ? are equal to 1mod 8). Thus 4X?+Z2) =0 (mod 8 andY2=3+7+3=
5 (mod 8, contradicting the fact that> = 0,1 or 4(mod 8), for all integersy.

If X andZ are not both odd, one 0% andZ? is equal to O(mod 4) and the other is equal to(inod 4). The
reduction of Equation (14.7) modulo 4 thus giws= 3 (mod 4), contradicting the fact that> = 0 or 1(mod 4),
for all integersy. O

Proposition 14.27. Consider the following pair of quadrics intersecting in asth quartic with two real affinely
finite components :

Qs : 5y? + 6xy+ 27 — WP + 6zw= 0,
Qr:3+y?—Z-w=0.
Then the square roo’d is necessary to parameterize the curve of intersection.

Proof. The characteristic polynomial has four simple real root @ find a quadric of inertié2,2) in each of
the intervals on which it is positive (in faQs and Qt are representative quadrics in these intervals). Thus, by
Theorem 14.25, the intersection@§ andQr is a real smooth quartic with two affinely finite components.

We now apply Corollary 14.24 and show that the square ¥dbis necessary to parameterize the curve of
intersection. We have :

0% = det(S+AT),
=34+ 1223 - 57\% — 156\ + 99,
=3\*+7A2+3+4(A3+)) (mod 8,

which has no rational solution by Lemma 14.26 280 cannot be avoided. O

One real affinely finite component
As above, we prove a preliminary lemma.

Lemma 14.28. The equation
y=ad+ b+ +dx+e (14.8)

has no rational solution if &= 2 (mod 4), b,d = 0 (mod 4 and c= 3 (mod 4.

Proof. As before, we assume for a contradiction that (14.8) hasi@nadtsolution(x,y) and writex = X/Z and
y=Y/Z?, whereX,Y,Z are integersZ # 0 andX,Z are mutually prime (so are not both even). We consider the
reduction of Equation (14.8) modulo 4 :

Y2 = 2X* 4+ 3%x2%72 + 274,

If X andZ are not both odd, thev? = 2 (mod 4). If both X andZ are odd, theiv? = 3 (mod 4. In both cases, we
have a contradiction siné¢ = 0 or 1(mod 4), for all integersy . O

We can now prove the following.
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Proposition 14.29. Consider the following pair of quadrics intersecting in aath quartic with one real affinely
finite component :

Qs : 2 — 2xy+ 2XZ— 2XW+ Yy? + 4yz— Ayw+ 27 — 4zw= 0,
Qr : X2 — 2Xy+ 4XZ+ 4XW— y? + 2yZ+ dyw+ 4zw— 2w? = 0.
Then the square roo’d is necessary to parameterize the curve of intersection.

Proof. The characteristic polynomial has two simple real roots fbimmediate that the intersection @& and
Q7 is a real smooth quartic with one affinely finite componentThgorem 14.25.

We again apply Corollary 14.24 and show that the square v@is necessary to parameterize the curve of
intersection. We have :

0% = det(S+AT),
= 220\* + 48\3 — 9\ + 60N + 30,
=2\*+3\2 42 (mod 4,

which has no rational solution by Lemma 14.28,6d cannot be avoided. O

Two real affinely infinite components
We again prove a preliminary result.

Lemma 14.30. The equation
y> =a(xX* +x+1) +bx +cx (14.9)

has no rational solution if & 2 (mod 4, b= 0 (mod 4 and c= 1 (mod 4.
Proof. We proceed as in Lemmas 14.26 and 14.28, and consider thetigedaf Equation (14.9) modulo 4 :
Y2 = 22X+ X272 + 2X 22+ 27°.

If X is even and is odd, the equation reduces¥é = 2XZ+2 = 2 (mod 4. If X is odd andZ is even, we also
haveY? = 2 (mod 4. Finally, if both X andZ are odd, (14.9) reduces ¥¢ = 1+2XZ = 3 (mod 4. In all cases,
we have a contradiction sind® = 0 or 1(mod 4), for all integersy. O

This is enough to prove the following.

Proposition 14.31. Consider the following pair of quadrics intersecting in aath quartic with two real affinely
infinite components :

Qs: X2 — 2y +4zw=0,
Qr : xy+Z+2zw—w? = 0.

Then the square roo’d is necessary to parameterize the curve of intersection.

Proof. The characteristic polynomial has four simple complexs@at it is immediate that the intersection@f
andQy is a real smooth quartic with two affinely infinite componetg Theorem 14.25.
We again apply Corollary 14.24. We have :

02 = det(S+AT),
=2\ A3 L5\ L 2N 42,
=2\ + N2+ 2\ +2 (mod 4,

which has no rational solution by Lemma 14.30,,6d cannot be avoided. O
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Output 1 Execution trace for Example 1.
>> quadric 1: 6%ty + 5%"2 + 2*2"2 + 6*2*'w - w2
>> quadric 2: 3*%"2 + y"2 - 772 + 11*w"2

>> launching intersection

>> characteristic polynomial: 33*"4 - 124*3*m + 137*"2 *mh2 - 32*m”3 - 11*'mM4
>> ged of derivatives of characteristic polynomial: 1

>> number of real roots: 4

>> intervals: 14, O[, 10, 1[, ]2/2"1, 3/2"1], ]3/2"1, 4/2"1 [

>> picked test point 1 at [ -4 1], sign > O -- inertia [ 2 2 ] found

>> picked test point 2 at [ 1 1 ], sign > 0 - inertia [ 4 0 ] found

>> complex intersection: smooth quartic

>> real intersection: enmpty

>> end of intersection

>> time spent: 10 ms

14.8 Examples

We now give several examples of computing a parameterizatighe intersection in case the intersection
of two quadrics is a smooth quartic. The examples preserteer ¢the range of morphologies discussed in the
previous section and illustrate all aspects of optimality aear-optimality. For more examples, see [LPPO06]. All
parameterizations have been computed with a C++ implerientaf our intersection software (see [LPP06]).

14.8.1 Example 1

Our first example consists of the quadrics given in Outputik dcd of the partial derivatives of the characte-
ristic polynomial is 1, so the intersection consists of as§ibly complex) smooth quartic. Since the characteristic
polynomial is found to have four real roots, the intersettiover the reals, is either empty or made of two real
affinely finite components (Theorem 14.25). We find a sampégla in each of the intervals on whi@(A, p) is
positive and compute its inertia. In the first interval, welfenquadric of inerti&2, 2) so we proceed. In the second
interval, we find a quadric of inertigl, 0). By Theorem 14.5, we conclude the intersection is emptyafpeints.

14.8.2 Example 2

Our second example is as in Output 2. The gcd of the two palgidvatives of the characteristic polynomial
is 1, so the intersection (ové&l) is a smooth quartic. The fact that the characteristic pmtyial has two real roots
implies that the smooth quartic is real and that it consibtme affinely finite component (Theorem 14.25). Here,
the two input quadrics have inert{8, 1) and a first quadri€g of inertia(2,2) is found in the pencil between the
two roots ofD. A point is taken orQg and then approximated by a point with integer coordinatdarms out that
the approximation, i.€0,0,1,0), also lies orQgr. We thus use this quadric to parameterize the interse@ioice
the determinant oDr is a square, it can be rationally parameterized (Proposit#b17). The end of the calculation
is as in Section 14.4.

14.8.3 Example 3

Our third example is Example 5 from [WJGO02]. It is the intetg®t of a sphere and an ellipsoid that are
very close to one another. The output of our implementatiorthat example is shown in Output 3. Since the
characteristic polynomial has four simple real roots, titersection is either empty or made of two real affinely
finite components (Theorem 14.25). Picking a sample quadrgach of the intervals on which defA, ) is
positive shows that the pencil contains no quadric of in€rtj0), so the quartic is real. Here, the determinant of
the quadric of inertig2,2) used to parameterize the intersection is not a square, Suatianeterization of the
guartic contains the square root of some integer. It is tmlg mear-optimal in the sense that this square root can
possibly be avoided.
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Output 2 Execution trace for Example 2.
>> quadric 1: x"2 - xty - y"2 - y'w + 22 + w2
>> quadric 2: 2%"2 - xty + y"2 - y*z + y'w + 22

>> launching intersection

>> characteristic polynomial: - 6*1*4 - 124"3*m + 3*"2*m" 2 + 6*Pm"3 - 2*!m™M

>> ged of derivatives of characteristic polynomial: 1

>> complex intersection: smooth quartic

>> real intersection: smooth quartic, one real affinely finite conponent
>> number of real roots: 2

>> intervals: ]-2, -1[, ]-1, Of

>> picked test point 1 at [ -1 1 ], sign > 0 -- inertia [ 2 2 ] found

>> quadric (2,2) found: x"2 + 2*y"2 - y*z + 2*y*w - wh2

>> decomposition of its determinant [a,b] (det = a"2*b): [ 2 1 ]

>> a point on the quadric: [ 0 0 1 0 ]

>> param of quadric (2,2): [- s*u + t'v, - 2*s*v, (2*s + 2*t)*u + (- 4*s + 2*)*v, s*u + th]
>> status of smooth quartic param: opti mal

>> end of intersection

>> paraneterization of snoboth quartic, branch 1:

[ 4*u"3 + ur2*v + B*urv2 + 2*v"3 - u*sqrt(Delta), - 6*u"3 - 8* uN2*v - ArurvA2, - 4*un3
+ 2%uM2%v + (2*u + 2*v)*sqrt(Delta), 4*un3 + 5*uf2tv + 2*urvh 2 + 2%"3 + u*sgrt(Delta)]
>> paraneterization of smooth quartic, branch 2:

[ 4*u"3 + ur2*v + B*urvA2 + 2*v"3 + u*sgrt(Delta), - 6*u”3 - 8* UA2* - 4rurvA2, - 4*un3
+ 202t + (- 2*u - 2*v)*sqrt(Delta), 4*ut3 + 5*u2*v + 2*utv A2 + 223 - u*sqrt(Delta)]

Delta = - 2*uM + 10*u"3*v - Q*uN2*vA2 - 8*u*v"3 - 2*vM4

>> time spent: 10 ms

It turns out that in this particular example it can be avoideahsider the con@g corresponding to the rational
root (Ao, o) = (—1,21) of the characteristic polynomial :

Qr: —Qs+21Qr =2 —y? — w2,

Qr contains the obvious rational poifi,1,0,1), which is not its singular point. This implies that it can fze r
tionally parameterized by Proposition 14.14. Plugging thérameterization in the equation@§ or Qr gives a
simple parameterization for the smooth quartic :

U2+ 22
2uv
u? —2v2
0

X(u,v) = + V2Uh + 4122 + 8VA.

= O O QO

14.8.4 Example 4

Our last example is the one of Proposition 14.31. The reswhown in Output 4. Here, again, the gcd of the
partial derivatives of the characteristic polynomial isa,the intersection curve is, ov€; a smooth quartic. But
sinceD (A, W) has in fact no real root, we know by Theorem 14.25 that the $nmaartic is real and has two affinely
infinite components. Here, the intermediate qua@ycof inertia (2,2) found (which is in factQr) is such that
its determinant is not a square. So the parameterizatidmeodiiartic contains a square root. Our implementation
cannot decide whether this square root is needed or not,tpatsuthat the parameterization is near-optimal. In
this particular example, we know in fact that the parame#gion is optimal, by Proposition 14.31.

14.9 Conclusion

The generic algorithm introduced in Section 14.4 alreaglyagents a substantial improvement over Levin's
pencil method and its subsequent refinements. Indeed, wegtbat, when the intersection is a smooth quartic
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Output 3 Execution trace for Example 3.
>> quadric 1. 19%2 + 2252 + 2122 - 20'W"2
>> quadric 2: x"2 + y"2 + 22 - w2

>> launching intersection

>> characteristic polynomial: - 175560*"4 - 34358*"3*m - 2519%"2*m"2 - 82**m"3 - mM
>> ged of derivatives of characteristic polynomial: 1

>> number of real roots: 4

>> intervals: ]-14/2"8, -13/2"8], ]-26/2"9, -25/2"9[, ]-2 5/219, -24/2"9[, 1-3/2"6, -2/2"6[
>> picked test point 1 at [ -13 256 ], sign > 0 -- inertia [ 2 2 ] fou nd

>> picked test point 2 at [ -3 64 ], sign > 0 -- inertia [ 2 2 ] found

>> complex intersection: smooth quartic

>> real intersection: smooth quartic, two real affinely finite conponents

>> quadric (2,2) found: - 16*x"2 + 5*y"2 - 2*z2"2 + 9*w2

>> decomposition of its determinant [a,b] (det = a"2*b): [ 12 10 ]

>> a point on the quadric: [ 3 0 0 4]

>> param of quadric (2,2): [0, - 24*s*u - 24*t*v, 0, 0] + sart(1 0)*[3*t*u + 6*s*v, 0,
12%s*u - 12**v, - 4%*u + 8*s*]

>> status of smooth quartic param: near - opt i nal

>> end of intersection

>> paraneterization of snooth quartic, branch 1:

[(72*u"3 + 4*u*v"2)*sqrt(10) + 3*v*sqrt(10)*sqrt(Delta) , - 340*u2*v + 10*v"3
- 24*u*sgrt(Delta), (- 118*u"2*v + 5*"3)*sgrt(10) + 12*u* sqrt(10)*sqrt(Delta),
(96*un3 - 12*u*v"2)*sqrt(10) - 4*v*sqrt(10)*sqrt(Delta) ]

>> paraneterization of snooth quartic, branch 2:

[(72*u"3 + 4*u*v"2)*sqrt(10) - 3*v*sqrt(10)*sqrt(Delta) , - 340*ur2*v + 10*"3
+ 24*u*sqrt(Delta), (- 118*u”2*v + 5*v"3)*sqrt(10) - 12*u* sqrt(10)*sqrt(Delta),
(96*un3 - 12*u*v"2)*sqrt(10) + 4*v*sqrt(10)*sqrt(Delta) ]

Delta = 20*uM4 - 140*u"2*v"2 + 5*v"4

>> time spent: 10 ms

(the generic case) our algorithm computes a parametenizatiich is optimal in the number of radicals involved
up to one possibly unnecessary square root. We also shoaedebiding (in all cases) whether this extra square
root can be avoided is out of reach, and that the parametieriza optimal in some cases. Moreover, for the first
time, our algorithms enable to compute in practice an exaot bf the parameterization of two arbitrary quadrics
with rational coefficients.

Even though this first part of our paper has focused on thergeseooth quartic case, this algorithm can also
be used when the intersection is singular. Assume the ieigiate quadri®Qg has inertig 2, 2). When the curve of
intersection consists of a cubic and a line, the equa@@mthe parameters has a cubic factor of bided&#) and
a linear factor of bidegre, 1), in view of Fact 14.19. Similarly, when the curve of interse consists of a conic
and two linesQ factors in a quadratic factor of bidegrék 1) and two linear factors of bidegre#, 0) and(0, 1).
Thus, assuming we know how to fact@r we have a way to parameterize each component of the intiensec

Unfortunately, this does not always lead to a parametévizatf the intersection that involves only rational
functions. When the intersectidd is a singular quarticQ) is irreducible sinceC itself is, and solvingQ for s
in terms ofu (or the converse) introduces the square root of a polyngomikile we know that there exists a
parameterization df with rational functions (the genus of the curve is 0).

Always computing parameterizations with rational funeavhen such parameterizations are known to exist
will necessitate rethinking the basic philosophy of ouraitm. Essentially, while the idea of the generic algo-
rithm is to use the rational quadric withrgestrank as intermediate quadric for parameterizing the iptgian,
the refined method will instead use the rational quadric sfitfallestrank as intermediate quadric.

Proceeding that way will have the double benefit of alwayspating the simplest possible parameterizations
and much better controlling the size of their coefficientse price we pay is a multiplicity of cases and the need
to write dedicated software for each (real projective) tgpantersection. This is the subject of Parts Il and Il of
this paper.
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Output 4 Execution trace for Example 4.
>> quadric 1: x"2 - 2*%y"2 + 4*7*w
>> quadric 2: xty + 22 + 2*z*w - w2

>> launching intersection

>> characteristic polynomial: 2*1*4 + 4*3*m + 5*"2*m"2 + 2PFmA3 + 2*mM
>> ged of derivatives of characteristic polynomial: 1

>> number of real roots: 0

>> complex intersection: smooth quartic

>> real intersection: smoot h quartic, two real affinely infinite conponents
>> quadric (2,2) found: x*y + 22 + 2*2*w - w"2
>> decomposition of its determinant [a,b] (det = a"2*b): [ 2 2 ]
>> a point on the quadric: [ 1 0 0 0 ]
>> param of quadric (2,2): [4**u, - 2*s*v, s*u + t*v, s*u + t*v ]
+ sqri(2)*0, 0, 0, - s*u + t*]
>> status of smooth quartic param: near - opti mal

>> end of intersection

>> paraneterization of smoth quartic, branch 1:

[ 4*u*v"2 + 4*v*sgrt(Delta), - 2*un3 - 8*u*vA2 + 2*u 3*sqrt (2), 4*v"3 - ur2*v*sqrt(2)
+ usqrt(Delta), - 2*u"2*v + 4*"3 + (UN2*v + 4*v"3)*sqrt(2)

+ (u - u*sgrt(2))*sqrt(Delta)]

>> paraneterization of smooth quartic, branch 2:

[- 4*u*v"2 - 4*v*sort(Delta), - 2*u"3 - 8*u*vA2 + 2*un3*sqrt (2), 4*v"3 - ur2*v*sqrt(2)
- utsqrt(Delta), - 2*u"2*v + 4*"3 + (U"2*v + 4*v"3)*sqrt(2)

- (u - u*sart(2))*sqrt(Delta)]

Delta = 2*uM + 10*ur2*v"2 - 4N + (- 2*uM - 4*M)*sqrt(2)

>> time spent: 10 ms

14.10 Appendix : The parameterizations of Table 14.3 are
faithful

We prove in this section that the parameterizations of Tahl8 are not only faithful parameterizations of the
projective quadrics (in the sense that they define one-6oeomrespondences between a dense open subset of the
space of the parameters and a dense open subset of the yjbatititey are bijections between the space of the
parameters and the quadric. The following two lemmas dethlthve parameterizations of quadrics of inef@a2)
and(2,1). For other types of quadrics, it is straightforward to shbattthe parameterizations of Table 14.3 are
bijections.

Lemma 14.32.(u,v), (s,t) — (“‘2?1"5, ”5;22"‘, “\t/;%‘s’s, ”j*%") is a bijection fromP! x P* onto the surfacé (x1, X2, X3, X4) €

P3 | agx? + apx3 — agx3 — asxj = 0}, where a, ap, a3, a4 are positive.

Proof. To prove this lemma, we apply the change of coordinaté@s in

X — a1X1 + /a1azx3 Y — aixy —/a183x3 7_ apXo + (/azxauXy W — —axxX2 + /aauXq
B 2 T 21 e 2 ’ - 2ay ’

or equivalently
X+aY X—aY Z—aW Z+aW
X1 = , X3 = Xo = -

a T am YT w0 Jaam

In the new frame, the equation of the surfac¥%— ZW = 0 and the map becomes

@:(U,v),(st) = (X,Y,Z,W) = (ut,vs us vt).

The map® is clearly a map fromP! x P! into P3 becaused((Au,Av), (us pt)) = Apd((u,v), (s,t)) and
®((u,v),(s,t)) = (0,0,0,0) if and only if (u,v) = (0,0) or (s,t) = (0,0). Moreover, the image o is clearly
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included in the surface of equatiofly — ZW = 0. Conversely, if(X,Y,Z,W) is a point of this surface, at least
one of its coordinates is non zero (we are in a projective pand by symmetry we may suppose thag 0.
Considering(X,Z,W) = (ut,us vt), we haveut # 0, £ = £, and ¥} = ¥. Thus£ uniquely definegs,t) up to a

X T o ur
constant factor and similarly féQf and(u,Vv), which shows the injectivity ob. FurthermoreXY —ZW = 0 implies
Y= %N = %" = vswhich shows tha® is surjective. O

Recall thatP*? denotes the quasi-projective space defined as the quofi@it\o{0,0,0} by the equivalence
relation~ where(xg, X, X3) ~ (Y1,Y2,y3) if and only if I\ € R\ {0} such thai(xs, X2, X3) = (Ay1,Ay2,A%y3).

—apaV?  U4agav?
22, 0 238
{(X1, %2, X3,Xa) € P2 | @1X2 + apx3 — agx3 = 0}, where a, a,, a3 are positive.

Lemma 14.33. (u,Vv,s) — (uv, La s) is a bijection fromP*2 onto the surface

Proof. For this lemma, we consider the change of coordinat@s in

)

V& — X
X =x1, Y = \/BpagXa + aXo, Z = %, W=x4
1aA2

or equivalently

Y —aqaZ Y +agapZ
=X = = =W.
X1 y X2 28 X3 Nk X4

In the new frame, the equation of the surfacXfs- Y Z= 0 and the map becomes
W:(uv,s) — (X,Y,Z,W) = (uv,u?,V2,s).

The map¥ is clearly a map fronP*2 into P2 becausé’(Au, Av,A%s) = A>W(u,v,s) and¥(u,v,s) = (0,0,0,0) if
and only if(u,v,s) = (0,0,0). Moreover, the image 6#¢ is clearly included in the surface of equatdf—Y Z= 0.
Conversely, if(X,Y,Z,W) is a point of this surface, then we have to prove that its pagierconsists in exactly one
point of P*2, If Y = Z = 0, we have als& = 0 and a point of the preimage should satisfy v= 0 it is therefore
unique (inP*?) an it exists byw(0,0,W) = (0,0,0,W).

If Y or Z is nonzero, we may suppose by symmetry tat 0. Considering X,Y,W) = (uv,U?,s) we have
u#0,3 =¥ andy = 5. Thus$ and¥ uniquely defingu,v,s) € P*2 which implies that¥ is injective. Further-

more,Y Z= X? impliesZ = sz = %)2 = V2 which shows tha¥ is surjective. |

Remark 14.34. Although the statements and the proofs of Lemma 14.32 a8 a4 very similar, there is a big
difference between the two bijections : the bijection issmmorphism and a diffeomorpism in Lemma 14.32 but
not in Lemma 14.33 where the space of the parameters is smidththe surface is singular at (0,0,0,1).






Chapitre 15

Near-optimal parameterization of the
Intersection of quadrics : II. A
classification of pencils

Cet article a été accepté dajmurnal of Symbolic ComputatigbLLP07a]. (Voir également le rapport de
recherche [DLLPO5b].) Une version préliminaire a été pibllans les proceedings fioth ACM Annual
Symposium on Computational GeomgbyLP03] et dans la thése de L. Dupont [Dup04].

Abstract

While Part | of this paper was devoted mainly to quadrics s#eting in a smooth quartic, we now
focus on singular intersections. To produce optimal or4ogdimal parameterizations in all cases,
we first determine the the real type of the intersection leefomputing the actual parameterization.
In this second part, we present the first classification o€jeof quadrics based on the type of their
intersection in real projective space and we show how tlassification can be used to compute
efficiently the type of the real intersection. The neariopli parameterization algorithms in all

singular cases will be given in Part I11.

15.1 Introduction

At the end of Part |, we saw that the generic algorithm we thiceed, while being simple and giving optimal
parameterizations in some cases, fails to achieve thedsgai@ of computing (near-)optimal parameterizations
(both in terms of functions and coefficients) of intersetsiof arbitrary quadrics.

Unfortunately, it turns out that achieving this goal invedvmore than simple adaptations to the generic algo-
rithm. Reaching optimality implies looking carefully aachtype ofreal intersection and designing a dedicated
algorithm to handle each situation. For this, we need to tstded precisely which situations can happen over the
reals and thus classify real pencils of quadric®¥R).

Classifying pencils of quadrics over the complexes waseanetd by Segre in the nineteenth century [Seg83].
Its practical value is however limited since its proper iiptetation lies in the complex domain (i.e. points on the
intersection might be real or complex), whereas our conisawith real parts of the intersection.

Accordingly, we refine the Segre classification of pencil®iR) by examining the different cases occurring
over the reals. This refinement is, in itself, of partial sfgsice for the parameterization problem : no more than the
Segre classification can it be “reverse engineered” to catisexplicit representations of the various intersection
components. It is however mandatory for the following twas@ns : it allows us to obtain structural information
on the intersection curve which we use to drive the algoriftbncomputing a near-optimal parameterization of
the intersection curve (Part 1) ; it is also a prerequi$iteproving the (near-)optimality of our parameterization
algorithm.

213
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Contributions. In this second part of our paper, we present a new classificafipencils of quadrics based
on the type of their real projective intersection. A summairthis classification is given in Tables 15.4 and 15.5.
We then show how to use this classification to compute effllgi¢ie type of the real intersection. In particular we
show how computations with non-rational numbers can bedaebior detecting the type of the intersection when
the input quadrics have rational coefficients.

It should be stressed that, even though the classificatiqren€ils over the reals is presented here as an
intermediate step in a more global process (i.e., paraimatien of the intersection), this classification has an
interest on its own. It could be used for instance in a calfigietection context to predict at which time stamps a
collision between two moving objects will happen.

Related work. In the context of the representation of the geometry of Baleombinations of volumes
bounded by quadric surfaces, J. Ocken, J. T. Schwartz, argghitir showed in 1987 showed how two quadrics
can be simultaneously diagonalized using a real projettaresformation and used this diagonalization to para-
meterize the intersection of the quadrics. The analysisugekier incomplete and some intersection morphologies
are overlooked, leading to possible misclassificationgadirticular, the cases when the characteristic polynomial
of the pencil has two double roots, corresponding to suclphwlogies as a cubic and a secant line or four lines
forming a skew quadrilateral, are missing.

The next result on the classification of pencil of quadricsglobon the real type of the intersection was obtained
in 2002 by C. Tu, W. Wang, and J. Wang who who classified peimcitee generic case, that is when the intersection
is a smooth quartic (in complex space) whose number of caedemmponents (in real space) is two, one, or
zero [TWWO02]. Note that W. Wang and R. Krasauskas also obtaemdts on the classification of pencils in the
generic case when the pencil is furthermore restricted tgdmerated by two ellipsoids in affine space [WKO04].
Related results have also been obtained by W. Wang, J. WaddylaKim on the separation of two ellipsoids in
affine space [WWKO1].

In September 2005, Tu, Wang, Mourrain, and Wang publishegsaarch report [TWMWO05] presenting a
classification of pencils very similar to ours. They use tten@hical Pair Form Theorem of F. Uhlig as basic
mathematical tool and refine the classification of pencilguddrics over the complexes in exactly the same
way as we do. There are however differences between the tpraghes. First, we classify pencils using the
inertia of the quadrics at the multiple roots of the chanastie polynomial, except for a small number of cases
where simple geometric conditions allow to discriminatg.d®dntrast, Tu et al. classify pencils using the inertia
of the quadrics between the roots of the characteristicrohyjal (plus the degree of the minimal polynomial
of the characteristic polynomial in some cases), and relyPoiseux expansion to deduce some information at
the (multiple) roots. Second, the classification of Tu etsalimited to non-degenerate pencils (i.e. pencils whose
characteristic polynomial does not vanish identicallyjlesours covers all possible cases. Third, in addition € th
enumeration of all real quadric intersection morphologies also provide algorithms for exactly and efficiently
recovering the real projective type of the intersectionaas airbitrary given quadrics.

The rest of this part is organized as follows. Section 15¢eves the classical Segre classification of pencils of
guadrics over the complexes. We then refine, in Sectionsatild 5.4, the Segre classification over the reals with a
repeated application of the Canonical Pair Form Theoremdos of real symmetric matrices introduced in Part I.
In Section 15.3, we consideggular pencils, i.e., pencils that contain a non-singular quaarid, in Section 15.4,
singularpencils, i.e., pencils that contain only singular quadgcsequivalently, pencils with identically vanishing
characteristic polynomial. In Section 15.5, we use theltesfithe classification of pencils over the reals to design
an algorithm to quickly and efficiently characterize the pbew and real types of the intersection given two input
guadrics. Several examples are detailed in Section 15f@ebeoncluding.

15.2 Classification of pencils of quadrics over the complexes

In this section, we review classical material on the clasaifon of pencils of quadrics. It will serve as the
starting point for our classification of pencils over thelséa Sections 15.3 and 15.4.

In the rest of the paper all quadrics are considered in repégiive spacé®(R) ; their coefficients as well
as the coefficients of the characteristic polynomials ofcjierare thus real. However, we consider the intersection
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of quadrics both iP3(R) and inP3(C). Accordingly, the classification of pencils is consideraxihbover the
complexes and over the reals.

We start in Section 15.2.1 with a proof that the existencesifgularity on the intersection curve is equivalent
either to the existence of a multiple root in the charactierigolynomial or to the fact that the characteristic
polynomial vanishes identically. Then Section 15.2.2 ife¢he basic tenets of the classification of pencils over the
complexes. The well-known Segre characteristic is redatieSection 15.2.2.1 and its relation with the Canonical
Pair Form Theorem for pairs of real symmetric matrices (Partd [UhI73, Uhl76]) is thoroughly explained in
Section 15.2.2.2.

15.2.1 Singular intersections and multiple roots

Recall that, given two 4 by 4 real symmetric matric@and T, the characteristic polynomial) (A, ), of
the pencil generated bg andT is the determinant ok S+ uT. In the ensuing sections, we use the following
equivalence for classifying the singular intersectionstigh the multiplicities of the roots of the characteristic
polynomialD (A, u) and the rank of the corresponding quadrics.

Proposition 15.1. If the intersection of two distinct quadricss@nd Qr has a singular poinp, then
— eitherD = 0and & and Qr are singular atp,
— orD =0and there is a unique quadricgf the pencil that is singular g,
— or D #0, there is a unique quadric = AoQs+ QT that is singular afp and (Ao, o) is a multiple root
of D.
In the last two cases, all the quadrics of the pencil excepskare a common tangent planepat

Proof. First recall that a curv€ defined by implicit equation®s = Qt = 0 is singular ap if and only if p is on
C and the rank of the Jacobian matdof C is strictly less than 2 when evaluatedpat) is the matrix of partial

derivatives :
=lor a0 e oor |- (15.1)
0X ay 0z ow
Let Js andJy be the first and second rows &f
If all the coefficients of] vanish afp, thenp is a singular point of botQs andQy and thus of all quadrics of
the pencil, implying thah = 0.
OtherwiseJ has rank one and there exists a linear relationship betweertvs ofJ evaluated ap :

AoJslp +Hodrlp =0, (Ao, Ho) € PL(R).

Also, there is av € P3(R) such thatl|,v is a non-zero multiple of. This exactly means that the tangent plane

at p of all the quadrics of the pencil is the plaReof equationv - (x y z V\)T = 0, except for the quadric
MoQs+ Q. For this last quadric, all the partial derivativespatanish, implying that it is singular gt and has
rank at most 3.

Now, we may change the generators of the pencil by taky8y+ o T as first generator in place &f This has
the effect of translatingho, Ho) to (1,0). If we change of frame in order that the coordinatep bécome(0,0,0,1)
and that the equation & becomes = 0, the matrices of the generators of the pencil become

A

00

B

00

S = and T'=

O % * %
o O oo
B o% % %
o © o

whereA andB are 2x 2 matrices and the stars denote any element. It follows inmtelg that
det(AS + uT') = —p2det(\A+ uB).

The case déhA+ uB) = 0 proves the second assertion. The casé\det uB) £ 0 proves the last assertion.O
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15.2.2 Classification of pencils by elementary divisors

For the reader’s convenience, we review, in this sectiam cthssical classification of pencils of quadrics as
originally done by the Italian mathematician Segre [Seg8&Bjre recent and accessible accounts can be found
in [Bro06] or [HP53].

15.2.2.1 Segre characteristic

Assume we are given a penB{A, p) = AS+uT of symmetric matrices of sizesuch thatD (A, ) = detR(A, W)
is not identically zero. In generdl) hasn complex roots to which correspomdcomplex projective cones of the
pencil. But there can be exceptions to this when a (hdgtly) of D appears with multiplicity larger than 1. It can
also happen thdho, Lp) makes not only the determinahtvanish but also all its subdeterminants of ordert + 1
say,t > 0. This means that the corresponding quadric has as singptlarlinear space of dimensipn 1.

Let the (Aj,1),i = 1,...,p, be the roots ofD and them; their respective multiplicities. Indicate bygj the
minimum multiplicity with which the rootA;, 1) appears in the subdeterminants of onderj of D. Lett; > 1 be
the smallest integer such tha = 0. We see that/ > m“’l for all j. Define a sequence of indicesas follows :

szmjil_mja j:l7"'ati7

with mP = my. The multiplicitym of (A, ) is the sume! + - + & . We have therefore :

DOAH) = (M — BN)™D* (A1) = (s — AT - (s — A) S D (A, ),

whereD*(Ai, 1) # 0. _

The factors(Ay — p)\i)ql are called theelementary divisorand the exponent&# the characteristic numbers
associated with the rogA;, 1;). Their study goes back to Karl Weierstrass [Wei68]. Segreduced the following
notation to denote the various characteristic numberscaged with the degenerate quadrics that appear in a
pencil :

on=I(e},....e0). (eh,....€2).....(eh....e0)],

with the convention that the parentheses enclosing theacteistic numbers ofA;, 1) are dropped whety = 1.
This is known as th&egre characteristior Segre symbaif the pencil.

The following theorem, essentially due to Weierstrass B8giproves that a pencil of quadrics and the inter-
section it defines are uniquely and entirely characteriaee; the complexes, by its Segre symbol.

Theorem 15.2(Characterization by Segre symholFonsider two pencils of quadrics(R,, 1) = A1S + W Ta
and RAz,l2) = A2 + T2 in P(R). Suppose thadetR(A1, p1) anddetR(A2, ) are not identically zero and let
(A1, i) and (A2, 12i) be their respective roots. Then the two pencils are projegtiequivalent if and only if
they have the same Segre symbol and there is an automorphii®) taking (A1, M) to Az, Ho,i)-

With the above definition, we see that, ) is a root of all subdeterminants BfA, p) of ordern—t; +k,k > 0,
but not of any subdeterminant of order-t;. In other words, the rank of R(A;, 1) is n—t;. In addition, since
m = (—:*,l 4+ 4 (—:,5‘, we have thah—1 > r; > n— m. Enumerating all possible cases for tﬂ#esubject to the
constraints induced by its definition gives rise to all pbkestypes of (complex) intersection and accompanying
Segre symbols. Tables 15.1, 15.2, and 15.3 list the possitsies for pencils i?3(R). Incidentally, we can see
that the pair(m, r;) is sufficient to characterize the pencil except in the caseri) = (4,2).

When the characteristic polynomiBI(A, 1) vanishes identically, i.e., all the quadrics are singiudae(Tables 15.2
and 15.3), the above theory does not apply directly. Thexdvew cases, according to whether the quadrics of the
pencil have singular points in common or not :

— When they do not, the pencil can be characterized by a diffeet of invariants the existence of which was
originally proved by Kronecker. We do not detail here hovs thet is computed (but see [Bro06, p. 55-60]).
Suffice it to say that the cases= 4 andn = 3 are characterized each by a single set of such invariants,
designated by the string${3}] and[{3}] respectively. In Section 15.4.1, we carry out the analykthie
situation whem = 4 without resorting to these special invariants.
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Segre roots of D(A,p) in C and : .
characteristio, rank of aséoci;ted quadric type of intersection i?*(C)
(1117 four simple roots smooth quartic
[112 one double root, rank 3 nodal quartic
[11(11)] one double root, rank 2 two secant conics
[13 triple root, rank 3 cuspidal quartic
[1(21)] triple root, rank 2 two tangent conics
[1(11D)] triple root, rank 1 double conic
[4] guadruple root, rank 3 cubic and tangent line
[(31)] quadruple root, rank 2 conic and two lines crossing on the conig
[(22)] quadruple root, rank 2 two lines and a double line
[(217)] quadruple root, rank 1 two double lines
[(1111) quadruple root, rank 0 smooth quadric
[22] two double roots, both rank 3 cubic and secant line
[2(11)] two double roots, ranks 3 and{2conic and two lines not crossing on the cor
[(11)(11)] two double roots, both rank 2 four lines (skew quadrilateral)

nc

TAB. 15.1 —Classification of pencils by Segre symbol in the case wHi, 1) does not identically vanish.
When the characteristic polynomial has multiple roots, thditeonal simple roots are not indicated : they corres-

pond to rank 3 quadrics.

Segre

characteristios

roots of D3(A,p) in C and
rank of associated conic

type of intersection if?3(C)

| [1{8}]

| no common singular poin

conic and double line \

(111
12
[1(11)]
3]
[(2D)]
[(11D)]

[{3}]

three simple roots
double root, rank 2
double root, rank 1
triple root, rank 2
triple root, rank 1
triple root, rank O
D3()\7 “) =0

four concurrent lines
two lines and a double line
two double lines
line and triple line
guadruple line
cone
see Table 15.3

TAB. 15.2 —Classification of pencils by Segre symbol in the case wHai, 1) = 0. When the quadrics of
the pencil have (at least) one singular pgirih common (bottom part)D3(A, ) is the determinant of the 33

upper-left matrix ofR(A, ) after a congruence transformation sendrtg (0,0,0,1). The conic associated with a
root of D3(A, 1) corresponds to the 33 upper-left matrix oR(A, ).

Segre roots of Da(A,p) in C and . s
characteristio, rank of associated matrix type of intersection i*(C)
] [{3}] | no two common singular points line and plane \
(11 two simple roots quadruple line
2 double root, rank 1 plane
[(12)] double root, rank 0 pair of distinct planes
Do(A,u) =0 double plane

TAB. 15.3 —Classification of pencils by Segre symbol in the case whxpg 1) = 0 andD3(A, 1) = 0. When
the quadrics of the pencil have (at least) two singular ppiandq in common (bottom part)D2(A, ) is the
determinant of the 2 2 upper-left matrix oR(A, W) after a congruence transformation sengirandq to (0,0,0,1)
and(0,0,1,0). The matrix associated with a root ®h (A, ) corresponds to the:2 2 upper-left matrix oR(A, ).
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Segre roots of . ranl_< ol ranl_< or type of . .
string D(A ) in C inertia of| inertia of (Ao ) S type of intersection ifP3(R)
7 R(A1, 1) [R(A2, 2) ’
: smooth quartic 00; see [Fin37]
1117 | 4 simple roots & [TWWO02] (or also Th. 14.5 & 14.25)
[112 1 double root | (3,0) real point
[112 1 doubleroot | (2,1) real - nodal quartic ; isolated node
[112 1 doubleroot | (2,1) real + nodal quartic ; convex sing.
[112 1 doubleroot | rank 3 complex nodal quartic ; concave sing.
[11(11)] | 1 doubleroot| (2,0) real + 0
[11(11)] | 1doubleroot| (2,0) real - two points
[11(11)] | 1doubleroot| (1,1) (2,1) real - two non-secant conics
[11(11)] | 1doubleroot| (1,1) (3,0) real - 0
[11(11)] | 1doubleroot| (1,1) real + two secant conics ; convex sing.
[11(11)] | 1doubleroot| rank2 complex | — conic
[11(11)] | 1double root | rank 2 complex | + two secant conics ; concave sing.
(13 triple root rank 3 cuspidal quartic
[1(2D)] triple root (2,0 double point
[1(2D)] triple root (1,12) two tangent conics
[1(111)] triple root rank1 | (2,1) double conic
[1(111)] triple root rank1 | (3,0) 0
[4] guadruple root| rank 3 cubic and tangent line
[(31)] | quadruple root (1,1) - conic
conic and two lines crossing
[(31)] | quadruple root (1,1) + on the conic
[(22)] | quadruple root| (2,0) double line
[(22)] | quadruple root (1,1) + two single lines & a double line
[(211)] | quadruple root| rank 1 - point
[(212)] | quadruple root| rank 1 + two secant double lines
[(1111)] | quadruple root| rank O any smooth quadric of the pencil
(22 2 double roots| rank3 | rank 3 real cubic and secant line
[22] 2 double roots| rank3 | rank 3 | complex cubic and non-secant line
[2(11)] | 2 double roots| (3,0) rank 2 real point
[2(11)] | 2 doubleroots| (2,1) | rank2 real + conic and two intersecting lines
[2(11)] | 2 doubleroots| (2,1) | rank?2 real - conic and paint
[(11)(11)]| 2 double roots| (2,0) (2,0 real 0
[(11)(11)]| 2 double roots| (2,0) (1,1) real two points
[(11)(11)]| 2 double roots| (1,1) (2,0 real two points
[(11)(11)]| 2 double roots| (1,1) (1,1) real four lines (skew quadrilateral)
[(11)(11)]| 2 double roots| rank2 | rank 2 | complex two secant lines

TAB. 15.4 —Classification of pencils in the case whelg, 1) does not identically vanish{A1, ;) denotes
a multiple root of D(A, ) (if any) and (A2, 2) another root (not necessarily simple).(Mi, 1) is a double root

thens denotes the sign ;‘Q_S;lg; at(A\,l) = (A1,p1); if (A1,1) is a quadruple root themdenotes the sign of

detAS+uT) for any (A, 1) # (A1, 1 ). When the characteristic polynomial has multiple rootsatthditional simple
roots are not indicated. The Segre characteristic is meadidor clarity but is not needed for the classification.
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Segre roots of irﬁ?tli(aocr)f inertia of - type of type of intersection if?3(R)
string | D3(A,p) inC R(A2,H2) | (A2, M)
R(A1, )
[1{3}] o common conic and double line
singular point
[111) | 3 simpleroots| (1,1) (1,1) real four concurrent lines meeting pt
[11] | 3 simple roots| (2,0) real pointp
[11] | 3 simple roots (2,0) real pointp
[11] | 3 simple roots complex two lines intersecting gt
12 doubleroot | (1,1) 2 lines and a double line meetingmt
[12] double root | (2,0) double line
[1(11)] | doubleroot | rank1 | (1,1) two double lines meeting at
[1(11)] | doubleroot | rank1l | (2,0) pointp
[3] triple root rank 2 a line and a triple line meeting pat
[(21)] triple root rank 1 a quadruple line
[(111)] triple root rank O any non-trivial quadric of the pencil
D3(A,w) =0 same as in Table 15.3

TAB. 15.5 —Classification of pencils in the case whegA, ) identically vanishes. In the bottom part, the
quadrics of the pencil have a singular pgirih common.D3(A, ) is the determinant of the:33 upper-left matrix
of R(A, ) after a congruence transformation sending (0,0,0,1). The conic associated with a root Dg(A, 1)
corresponds to the :8 3 upper-left matrix oR(A, ). (A1,11) denotes the multiple root dbs(A, W) (if any) and
(A2,12) another root. WhefD3(A, ) has a multiple root, the additional simple roots are notdattid. The Segre
characteristic is mentioned for clarity but is not neededtie classification.

— When the quadrics do have (at least one) singular point imoam sayp, we may suppose, after a change
of frame, thap has coordinatef0, ..., 0,1). In the new frame, the matrices have their last row and column
filled with zeros. To sort out the different types of interts@e, we may identify the quadrics with their
upper left(n— 1) x (n— 1) matrices and classify the restricted pencils by lookinghat3egre symba,_1
of their characteristic polynomial (of degrae- 1). This is what we have done in Table 15.2 for the case of
quadrics inP3(R).

The above process can be repeated by recursing on dimension.

15.2.2.2 From the complexes to the reals

Theorem 15.2 can be used to find a canonical form for a pengjuatirics wherD(A, ) is not identically
zero (see [HP53]). Consider the penB{\) = AS— T and its characteristic polynomidl(A), with rootsA; of

multiplicity my. Let .

(el,....€8),(e},....60),.... (eh,....e)]
be the Segre symbol of the pencil. Then there exists a chdrggodinates iP"(C) such that, in the new frame,
the pencil writes down a& (A\) =AS —T’, where

S =diag(E},...,El,...,EL,.. ,EF), T =diag(E{d,....ELIL,... ELI,... . ERIP)

are block diagonal matrices with blocks :

0 1
EX= and J=
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of sizee{ﬁ The parentheses in the Segre symbol correspond one-tm-dhe singular quadrics in the pencil. The
root of D corresponding to a singular quadric of symbsfi, . .. ,e,ti) has multiplicitym; = z}(izlqk.

The parallel between the Canonical Pair Form Theorem intred in Section 14.52% and the decomposition
by Segre symbol should now jump to mind : the first is in a senseahversion of the second, i.e. it gives a
canonical form that is projectively equivalent byesal congruence transformation to the original pencil. In the
real form, complex roots of the characteristic polynomial somehow combined in complex Jordan blocks so that
quadric pencils are equivalent by a real projective tramsétion.

WhenA; is real, theJiJ are the real Jordan blocks associated withThe sum of the sizes of the blocks
corresponding t@, is zﬂzlqk = m; and the number of those blockstis= n—rankR(A;), as in Theorem 14.10.

When); is complex, lefAj be its conjugate. It is intuitively clear that= t; in the complex decomposition
and that the associated Jordan blogkandJ¥ have the same sizes, ig.— €. When the complex roots and their

blocks are combined, they give rise to complex Jordan blo€kize Za,k In the real canonical form, the number
of these blocks is agatnbut the sum of their sizes ig1g.

The Segre symbol can thus serve as a starting point for thiy stureal pencils using the Canonical Pair
Form Theorem. We illustrate this with two examples conaegmiencils inP3(R). Consider first the Segre symbol
[(211)]. The associated pencil has a quadruple root, which is natlys®al (otherwise its conjugate would also
be a root of the characteristic polynomial of the pencil)view of the above, the real decomposition of the pencil
has three Jordan blocks, one of size 2 and two of size 1. Nosidenthe Segre symb{#22]. The associated pencil
has two double roots, which can be either both real or bothptexnlif they are real, then each of the roots has one
Jordan block of size 2. If they are complex, then the two rapisear in the same Jordan block of size 4.

15.3 Classification of regular pencils of**(R) over the reals

We now turn to the classification of pencils of quadric®3fR) over the reals. A summary of this classification
is given in Tables 15.4 and 15.5.

In what follows, we make heavy use of the Canonical Pair Foh@ofem for pairs of real symmetric matrices
(Part | and [UhI73, UhI76]). For each possible Segre chargstic, we examine the different cases according to
whether the roots of the characteristic polynomial are oeahot and then examine the conditions leading to
different types of intersection over the reals.

In each case, we start by computing the canonical form of #ire(§, T) for a given Segre characteristic and
type (real or complex) of multiple root(s) of the charact#d polynomial. We then deduce from this canonical
form anormal formof the pencil over the reals by rescaling and translatingabés to particularly simple values.
Recall that the congruence transformation in the Canoitae&rl Form Theorem preserves the roots (values and
multiplicities) of the characteristic polynomial of thermdl. This normal form is in a sense the “simplest pair” of
guadrics having a given real intersection type. The norreatib is equivalent by a real projective transformation
to any pencil of quadrics with the same real and complex $etion type.

A word of caution : the projective transformations involiadhe classification of real pencils, if they preserve
the real type of the intersection, may well involve irratmumbers. This fact should be kept to mind when
interpreting the results.

We treat the first case (nodal quartic) in some detail so tteateader gets accustomed to the techniques we
use. For the other cases, we move directly to the normal fathowt first expliciting the canonical form.

Note that, in the case where the Segre characterigtid i, which corresponds to a smooth quarti@i{C),
the classification on the type of intersectiof#{R) follows from results by Finsler [Fin37] and Tu et al. [TWWO02]
(see also Theorems 14.5 and 14.25). Also, the @46 1)] does not necessitate any further treatment : save for
the quadric corresponding to the quadruple root (whidk*i®)), all the quadrics of the pencil are equal and the
intersection is thus any of those non-trivial quadrics.alfin the case of a vanishing characteristic polynomial,
detR(A, 1) =0, is treated separately in Section 15.4.

Here and in the ensuing sections, a singularity of the iatgisn will be calledconvexif the branches of the
curve are on the same side of the common tangent plane todhehms at the singularitgpncaveotherwise. It
should be stressed that there is a close connection betivegype of the singularity and the notion of affine finite-
ness introduced by Tu et al. [TWWO02]. Recall that the pointsetiledaffinely finiteif it does not intersect some

26\When reference is made to a section or result in another p#regfaper, it is prefixed by the part number.
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projective plane andffinely infiniteotherwise. As we shall see, a convex singularity correspaadin affinely
finite intersection, while a concave one corresponds to famedf infinite intersection. Furthermore, our classifi-
cation directly yields the following theorem which provida global property on the intersection of two quadrics
from a property of the pencil ; note that this theorem is smiih spirit to the theorem due to Finsler [Fin37] (see
Theorem 14.5) which characterizes when two quadrics haesrgaty intersection.

Theorem 15.3. If two distinct quadrics have a pencil whose characteriptitynomial does not identically vanish,
their intersection is affinely finite if and only if there exis quadric of inertia 3, 1) in the pencil.

Proof. Any quadric of inertia(3,1) is affinely finite, thus if the pencil contains such a quadtie, intersection is
affinely finite. Conversely, in the case where the intersedt a smooth quartic (if#*(C)), the property follows
from Tu et al. [TWWO02] (see also Theorem 14.25). Otherwisalibfvs from our classification that, when there is
no quadric of inertig3, 1) in a pencil generated by two distinct quadrics, the intefse@ither contains a line (and
therefore is affinely infinite) or is a nodal quartic with a came singularity or two secant conics with a concave
singularity. In the last two cases, we show below that therggction is affinely infinite. O

An additional benefit of the classification of pencils ovex thals is the ability to draw pictures of all possible
situations. Such a gallery of intersection cases is giveRigure 15.1. The pictures were made with thef
visualization tool [Sur].

15.3.1 Nodal quartic inP3(C), o4 = [112

The characteristic polynomial has a double rdgtwhich is necessarily real (otherwise its conjugate would
also be a double root of defA)). Let A, andA3 be the other roots. The Segre characteristic implies tlesthitee
quadricsR(Ai) have rank 3 (equal to—t; ; see Section 15.2.2.1). The Canonical Pair Form Theoremithplies
that toA; corresponds one real Jordan block of size 2.

There are two cases.

A2 and Ag are real. R(A\;) andR()\3) are projective cones. The Canonical Pair Form Theorem ghatS
andT are simultaneously congruent to the quadrics of equations

{ 261Xy + €22° + g3W? = 0, g§=+1i=123.

261 M 1Xy+ E1Y2 + £9A0Z% + £3A3W2 = 0,
A1S—T andA,S—T are thus simultaneously congruent to the quadrics of egjusti

—&1y”+&2(M — A2)Z + €3(A1 — A3)W? = O,

—£1y2 + 281()\2 — )\1)xy+ 83()\2 — )\3)W2 =0.
Lete = signf2=33 (recall thath; # Az and\; # As). By multiplying the above two equations byes
—&1, respectively, we can rewrite them as

A=Az

e he and

ﬁi:;g Y2 — 8818270‘1’;?&543) Z —gg1e3(A 2 — A\3)W? =0,
Vel (il 2020y [332) - exeathz - rgywe =

Now, we apply the following projective transformation :

y=20 = M)/ B2 x|y~ Y,

‘M 227 /=AW w

A1—Az

A—A3
A2—Ag
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j. K.

Fic. 15.1 —A gallery of intersections. a. Nodal quartic. b. Nodal gigavtith isolated singular point. c. Cubic

and secant line. d. Cubic and tangent line. e. Two secant&oniTwo double lines. g. Four lines forming a skew
guadrilateral. h. Two lines and a double line. i. Conic and liwes not crossing on the conic, the two lines being
imaginary. j. Four concurrent lines, only two of which aralrék. Two lines and a double line, the three being

concurrent. |. Conic and double line.
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We obtain thaR(A1) = A1S—T andR(A2) = A2S—T are simultaneously congruent, by a real projective transfo
mationP, to the quadrics of equations

PTR(A\1)P: y?+aZ +bw? =0, 15.2
{ PTR(A2)P: xy+cw? =0, (15.2)
with a,b,c € {—1,1}. One can further assume that 1 by changing by —x.

From now on we forget about the transformat®and identifyR(A;) with PTR(A;)P, but it should be kept to
mind that things happen in the local frame inducedPby

If aorbis —1, the coneR(A1) has inertia(2,1) and thus is real. Otherwisa & b = 1), the coneR(A1) is
imaginary but for its real apep = (1,0,0,0). The other condR(A,) is always real and contains the apef
R(A1). We distinguish the three following cases.

— a=b=1. The real part of the nodal quartic is reduced to its nodeatiexp of R(A1).

— Only one ofaandbis 1. Assume for instance that= 1,b = —1 (the other case is obtained by exchanging

zandw). By substituting the parameterization of the cgRe- 22 — w? = 0 (see Table 14.3)

2 2 2 2
u-—v-e u V
(s,uv, — er ) (u,v,) € PA(R),

into the other congty+w? = 0, and solving irs, we get the parameterization of the nodal quartic
X (V) = (B +V2)2 —4A2 20v(2 —V2), 202 +2)) ', (u,v) € PL(R).

The nodal quartic is thus real and its node, correspondiribegarameterél, 0) and(0,1), is atp. The
plane tangent to the quadr@z,) at the quartic’s node is y = 0. In a neighborhood of this node~
(U?4v?)?2 > 0 andy = —4uA? < 0 (recall thatX (u,v) is projective, so its coordinates are defined up to
a non-zero scalar). We conclude that the two branches lib@sdame side of the tangent plane and that
the singularity is convex. As can readily be seen, the plare0 does not intersect the quartic, so the
intersection is affinely finite.

— a= -1 b= —1. Parameterizing the nodal quartic as above, we get thengdesization

X(U,v) = (—4A2, (2 +2)2, (P +2) (2 —A), 202 +2) ", (u,v) € PY(R).

It can be checked that the poimt= (1, 0,0,0) which is on the intersection is not attained by any real value
of the parametefu,v) (it is only attained with the complex parametétsi) and(i,1)). The nodal quartic
is thus real with an isolated singular point.
We now argue that we can easily distinguish between these tiases. For this, we first prove the following
lemma.

Lemma 15.4. Given any pencil of quadrics generated by S and T whose ctarstic polynomiadetAS+uT) =
0 has a double roofAs, 1), the sign of% at (A1,H1) is invariant by a real projective transformation of
the pencil and does not depend on the choice of Sand T in thodl.pen

Proof. We suppose thaD(A, ) = detAS+ uT) has a double roofA1,41). The lemma claims that for any real
projective transformatioR and anyay, ...,a4 € R such thatyas — apaz # 0,

D'(N ) = detf NPT (a1 S+ a;T)P+ P (a3S+a4T)P)

has a double rodiA’, 1) such that% at(A1,1) has same sign aﬁ% at(N,1y). We have

D'(N, ) = (detP)?>D(ag)\ + agpl, o\ + aall ).
ThusD’(N, ) = 0 has a double rodd\,, ;) defined by
1l

] I / _ —aghitaily
aoA1 +aath = W M = Za—aga; -

/ / I _ aghi1—agiy
{ Ay +aghy = A1 N { A= ajay—apa3
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It follows that

D'(N, ) D(agA' +agl, aA + aal)

———1 . — (detP)? ajay — apag)”.
T YTy TG e (S T
Hence% at (A}, ;) has same sign lll);\(—)\)it_lzl)z at (A1, Hg). O

Proposition 15.5. If the characteristic polynomiadlefAS+ uT) = 0 has two simple real roots and one double
root (A1, h1) whose associated matri S+ T has rank three, then the intersection of S and Tfris a nodal
quartic whose node is the apexXafS+ i T.

Moreover, if the inertia oA1S+ W T is (3,0) then the real part of the nodal quartic is reduced to its node.

Otherwise the nodal quartic is real ; furthermore43?5’*)\7‘:1T is negative forA, 1) = (A1, 1), the node is isolated
and, otherwise, the singularity is convex.

Proof. The first part of the proposition follows directly from thedde characteristic (see Section 15.2.2.1 and
Table 15.1).

If the inertia ofA1S+ W T is (3,0), thena= b =1 in (15.2) and the result follows as discussed above. Other-
wise, considerin@ = PT (A S—T)PandT’ = PT (A\,S—T)P, (15.2) gives that déxS +uT’) = —ak (bA + )2 /4.
Evaluatingw at(A\p) = (1.7 0), giyes by Lemma 15..4 thatab has same sign a%% at (A1, ).

The result then follows from the discussion above dependinghethem=b= —1 orab= —1. |

A2 and A3 are complex conjugate. The reduction to normal pencil form is slightly more invadvien this
case. Lef\, = a +iB,A3 = A2, # 0. The Canonical Pair Form Theorem gives tBandT are simultaneously
congruent to the quadrics of equations

{ 2exy+ 2zw= 0, e 41

2eA1Xy+ €y + 20zw+ B2 — w2 = 0,
Through this congruence transformatiGs= A1S— T has equation
0= —&y’+BW? —2) +2(\1 —a)zw
= ey’ +B(W+&2) <w— :ELZ> ,
= —gy? + BZW,

whereg is real and positive. Through the congruence transformatitl with the above transformatidnw) —
(Z,w'), Shas equation

0 = 2exy+ 2zw
2 1, 2 1
=2 — ST —Z)Zw ).
RN L (z ¢ *(E a) )

Through the above congruence transformations, the quafitie pencillT’ = BS— 2 f (A1S—T) has equation

E-¢ 2B 2
2ey | Bx+ y|+ ( 4 —EV\/>
( E+§)27) (E+§2\&
Finally, by making a shift orx, rescaling on the four axes, and changing the signsasfdz, we get that the two
quadrics of the pencB andT’ are simultaneously congruent to the quadrics of equations

Y2 +zw=0,
{ Xy+2 — W2 = 0. (15.3)




15.3. CLASSIFICATION OF REGULAR PENCILS OF3(R) OVER THE REALS 225

As before, we now drop reference to the accumulated congeueansformation and work in the local frame.
By substituting the parameterization of the cgAe- zw= 0 (see Table 14.3)

(suvt?, -V, (uvs) € P(R),
into the other quadrigy+ 72 —w? = 0, and solving irs, we get the parameterization of the nodal quartic
X(uv) = (V—ut A2 By, —wd) |, (V) € PL(R).

The nodal quartic is thus real and its node, correspondinige@arametergl, 0) and(0,1), is atp = (1,0,0,0),
the apex oS. The plane tangent to the quadxig+ z2 —w? = 0 at the quartic’s nodg isy = 0. In a neighborhood
of the quartic’s node on the branch corresponding to thenpetier (0,1), x = v* — u* > 0 andy = u?v? > 0. On
the other branch corresponding to the paramgtted), x = v* — u* < 0 andy = u?v? > 0. Hence, the two branches
of the quartic are on opposite sides of the tangent pjar® in a neighborhood of the node, i.e., the singularity is
concave.

Let us briefly show that the intersection is affinely infinitethis case. Consider the plafg + £y + 32+
baw=0, ({1,02,03,04) € IP’3(R), which we intersect with the nodal quartic under considenafT his yields a quartic
equationE in (u,v). If /1 =0, E hasv in factor, meaning that the poiiiL,0,0,0) of parameter0, 1) belongs to
the plane. If; # 0, the coefficients ofi* andv* in E have opposite sign, implying by Descartes’ Sign Rule Fhat
has at least one real non-trivial solution. The nodal qaastihus cut by any plane &(R), implying it is affinely
infinite.

To summarize, we have the following result.

Proposition 15.6. If the characteristic polynomiadefAS+ uT) = 0 has two simple complex conjugate roots and
one double rootA1, 1) whose associated matrgS+ T has rank three, then the intersection of Sand T is a
real nodal quartic with a concave singularity at its nodeg #pex oA 1S+ i T.

15.3.2 Two secant conics if?3(C), o4 = [11(11)]

The characteristic polynomial has a double repaind the rank oR(A1) is 2. A1 is necessarily real and there
are two Jordan blocks of size 1 associated with it in the cabform. LetA, andAs be the other (simple) roots,
associated with quadrics of rank 3. We have two cases.

A2 and Az are real. A, and\3 appear in real Jordan blocks of size 1. The normal forrR(@f ) andR(A>)

IS :
Z+aw =0,
X2 +by? +cw? =0,

with a,b,c e {—1,1}.

The two planes oR(A1) are real if the matrix has inertid, 1), i.e. if a= —1. The coneR(A,) is real if its
inertiais(2,1), i.e. if b= —1 orc= —1. The two conics of the intersection are secant over ths iethle singular
line z=w = 0 of the pair of planes meets the cone in real points, ile=f—1. We have the following cases :

— a=+1b=1.c=1:The planes are real or imaginary and the cone is imagifiae.apex of the cone is

not on the planes, so intersection is empty.

— a=1,b=1c=-1:The planes are imaginary and the cone is real. Their reskiaction is the intersection

of the singular linez=w = 0 of the pair of planes with the cone. The real intersectidhus empty.

— a=1b=-1,c==+1:The planes are imaginary and the cone is real. Thezkaw = O intersects the cone

in two points of coordinategl, 1,0,0) and(—1,1,0,0). The intersection is reduced to these two points.

— a=-1b=1c=-1:The planes and the cone are real. The firew = 0 does not intersect the cone, so

intersection consists of two non-secant conics.

— a=-1,b=-1c=+1: The planes and the cone are real. The lirew = 0 intersects the conics. The

intersection con