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Résumé

Dans cette thèse, nous étudions un modèle de désintégration (decay) d’un système

quantique à plusieurs niveaux appelé le modèle de Friedrichs. Dans un premier tra-

vail, nous considérons un couplage d’un kaon avec un environnement décrit par un

continuum d’énergie. On montre que les oscillations du kaon entre les états K1, K2,

leur decay et la violation CP sont bien décrits par ce type de modèle. Ensuite, nous

appliquons à ce modèle le formalisme de l’opérateur de temps qui décrit la résonance,

c’est-à-dire la probabilité de survie des états instables. Enfin, nous considérons un

gaz de Lorentz comme un ensemble de boules de billard avec des collisions élastiques

contre des obstacles et un système de sphères dures en dimension 2. Nous étudions

la simulation numérique de la dynamique du système et calculons l’augmentation de

l’entropie de non-équilibre au cours du temps sous l’effet des collisions et sa relation

avec les exposants de Lyapounov positifs.

v





Abstract

In this thesis, we first study Lorentz gas as a billiard ball with elastic collision with

the obstacles and a system of hard spheres in 2-dimensions. We study a numerical

simulation of the dynamical system and we investigate the entropy increasing in

non-equilibrium with time under the effect of collisions and its relation to positive

Lyapounov exponents. Then, we study a decay model in a quantum system called

Friedrichs model. We consider coupling of the kaons and environment with continuous

energies. Then, we show that this model is well adapted to describe oscillation,

regeneration, decay and CP violation of a kaonic system. In addition, we apply in

the Friedrichs model, the time super-operator formalism that predicts the resonance,

i.e. the survival probability of the instable states.

vii
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Introduction (En Français)

0.1 Première partie: Systèmes chaotiques classiques

Le théorème-H pour les systèmes dynamiques décrit l’approche à l’équilibre, l’irrévers-

ibilité et l’augmentation d’entropie pour des évolutions déterministes. L’existence

de telles fonctionnelles dans les systèmes dynamiques conservatifs a été l’objet de

plusieurs investigations pendant les dernières décennies, voir [20]- [23], [25], [28, 29,

32]). Dans ce travail, nous étudions ce problème pour le gaz de Lorentz et les disques

durs.

Le gaz de Lorentz à deux dimensions est un système de particules sans interac-

tions se déplaçant avec une vitesse constante et étant élastiquement refléchis par des

diffuseurs périodiquement distribués. Les diffuseurs sont des disques fixes. A cause de

l’absence des interactions entre les particules la distribution statistique du système

est réduit au mouvement d’une boule de billard. Nous étudierons l’augmentation

d’entropie sous l’effet des collisions des particules avec les obstacles.

Dans la première partie de cette thèse, nous calculerons d’abord l’augmentation

d’entropie pour quelques distributions remarquables de non-équilibre au-dessus de

l’espace de phase du billard de Sinäı. Le système de billard est un système hyper-

bolique (avec beaucoup de lignes de singularité) et, afin d’avoir un mélange rapide,

nous considérerons des distributions initiales portées par les fibres dilatantes. De

telles mesures initiales ont été utilisées dans [20, 23, 32]. Pour le billard, les fibres

dilatantes sont des ensembles de particules avec des vitesses parallèles. Nous ap-

pelons cette classe des ensembles initiaux un “faisceau de particules”. Nous calculons

d’abord l’augmentation d’entropie en fonction des collisions pour ces dernières distri-

butions initiales. Nous considérerons les obstacles uniformes finies dans l’espace de

phase. Le calcul prouve que quel que soit le coarsening de ces partitions, l’entropie a
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la propriété monotone dans les premières collisions. Il est clair que, le long du pro-

cessus de mélange, la distribution initiale se répartira dans toutes les cellules jusqu’à

atteindre la valeur d’équilibre. Physiquement, ce processus est dirigé par l’instabilité

forte, elle est exprimée par l’exposant positif de Lyapounov.

Nous considérons également la relation du taux d’augmentation des fonctionnelles

d’entropie aux exposants de Lyapounov du gaz de Lorentz. Notre calcul prouve que

cette relation est exprimée par une inégalité

max(S(n + 1) − S(n)) ≡ △S ≤ ∑
λi≥0 λi = hK−S

Autrement dit l’entropie de Kolmogorov-Sinäı (K − S) est une limite supérieure

du taux d’augmentation de cette fonctionnelle.

Nous considérerons les systèmes de disques durs et calculerons une fonctionnelle de

l’entropie comme l’entropie spatiale sur le tore avec plusieurs cellules. Les probabilités

sont définies comme à l’entropie de l’espace dans le gaz de Lorentz. Nous ferons

également quelques comparaisons entre le thèorem-H et la somme des exposants de

Lyapounov positifs.

0.2 Deuxième partie: “Systèmes instables quan-

tiques”

Les systèmes quantiques instables font l’objet de la deuxième partie de cette thèse.

Nous avons employé le modèle de Friedrichs pour décrire les phénomènes de désin-

tégration (decay) dans l’espace de Hilbert et également dans l’espace de Liouville en

utilisant l’opérateur de temps.

“Phénoménologie du Kaon”

Généralement la mécanique quantique est décrite par les lois unitaires d’évolution

réversible (par l’intermédiaire de l’équation de Schrödinger). Cette description con-

tredit notre expérience journalière où le vieillissement, la dissipation et l’irréversibilité

sont omniprésentes. Dans ce contexte, il est intéressant d’étudier les systèmes quan-

tiques hybrides, qui suffisamment complexes, sont en tout unitaires et dissipatifs

dans des évolutions de temps. Ce but peut être atteint dans le cadre du modèle de

Friedrichs.
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Le modèle d’un niveau de Friedrichs est bien compris [57, 58, 59]: il prévoit

que l’état excité disparâıt et “fond” dans le continuum. Sa probabilité de survie se

désintégre exponentiellement dans le temps. La durée de vie est proportionnelle au

couplage entre le mode discret et le continuum. Les systèmes à decroissance exponen-

tielle sont très communs dans la physique classique et quantique. Ils sont relativement

insignifiants quand nous les considérons du point de vue de l’irréversibilité temporelle

parce que, bien que la loi de décroissance ne soit pas réversible au temps, de tels

systèmes se comportent comme si ils n’ont pas possédé une horloge ou une mémoire

interne : le taux de décroissance est constant dans le temps, et l’état du système

non-désintégré reste le même à tout moment. En général, les systèmes à décroissance

exponentielle montrent un comportement irréversible mais ignorent le vieillissement.

Nous prouverons que le système de deux niveaux de Friedrichs [48] permet à

décrire une classe de systèmes qui montrent des comportements riches et complexes :

les oscillations, régénérations, etc, et décrit un modèle phénoménologique relativement

exact de la physique de kaons. Il y a eu plusieurs approches à la violation de CP

dans les kaons en utilisant la théorie de jauge (Gauge Theory) [91] ou la théorie

de renormalisation [50]. Nous ne considérons pas ces aspects ici, également parce

que la question est toujours partiellement ouverte aujourd’hui. Notre traitement est

basé sur la description des systèmes à désintégration similaires à la généralisation de

l’approche de Weisskopf-Wigner, formulée par Lee, Oehme et Yang (LOY) [51] dans

le cas de la désintégration de kaon. Plus tard, Chiu et Sudarshan [52] ont employé un

modèle de Lee afin d’obtenir une correction de la théorie de LOY pendant des durées

courtes.

Résolvant l’équation du Schrödinger pour le hamiltonien, nous montrons une

équation mâıtresse pour la désintégration des états à deux niveaux. Notre nouvelle ap-

proche est basée sur l’obtention d’une équation mâıtresse d’un hamiltonien décrivant

des modes à décroissance de (K1, K2) et non pas pour des modes de (K0, K
0
) comme

est montré dans la théorie de LOY. En supposant un faible couplage, nous obtenons

une équation markovienne mâıtresse qui nous permet de simuler la durée de vies des

kaons, aussi bien que leurs oscillations et leurs régénérations. Il adapte même plus

étroitement le paramètre de la destruction de la symétrie de CP . Dans un premier

exemple, par le spectre non-borné dans l’énergie, nous obtenons l’angle exact tan-

dis que le module est 14 fois au résultat expérimental. Cependant, nous montrons

qu’en utilisant les différentes fonctions de coupure des degrés continus de liberté, nous

pouvons améliorer l’évaluation ci-dessus.



0.2 Deuxième partie: “Systèmes instables quantiques” 4

Nous montrons aussi, qu’il est possible d’obtenir tous les dispositifs intéressants du

modèle quand le hamiltonien possède un spectre seulement borné de l’inférieur. Dans

ce cas-là, avec la coupure gaussienne, l’évaluation précédente est améliorée et nous

obtenons la valeur de paramètre de violation de CP qui est seulement 3 fois du résultat

expérimental. Notre étude confirme qu’il est possible de calculer quelques dispositifs

essentiels de la phénoménologie très riche de kaon avec un modèle très simple tel

que le modèle à deux niveaux de Friedrichs. Elle confirme également que l’ingrédient

essentiel pour obtenir une dynamique de temps irréversible des sous-ensembles est la

présence des degrés continus de liberté d’environnement.

“Opérateur de temps ”

Le temps apparäıt dans la physique principalement dans la description de mouve-

ment. Mais, ce temps n’est pas celui qui correspond au changement d’état du temps

d’un corps ou d’un système complexe. D’une part, la transformation de temps-orienté

des états de systèmes complexes est déterminé comme le dispositif le plus fondamental

de la thermodynamique. La deuxième loi est le premier rapport faisant une distinc-

tion entre le passé et le futur dans les processus physiques. En parlant de l’état

d’un corps ou d’un système, nous comprenons évidemment un état macroscopique.

Néanmoins, dans la mécanique quantique, la découverte des durées de temps des par-

ticules élémentaires instables a présenté une nouvelle distinction entre le passé et le

futur au niveau microscopique.

Dans l’autre part, nous étudierons les propriétés de la probabilité de survie des

systèmes quantiques instables en utilisant les projections spectrales d’opérateur de

temps établies dans le cadre de la description de Liouville-von Neumann [92, 93].

Nous examinerons ces propriétés dans le modèle de Friedrichs [48]. La probabilité de

survie devrait être une fonction de temps monotone décroissante et cette propriété

ne pourrait pas exister dans le cadre de l’approche mécanique quantique habituelle

[94, 95, 96]. Elle peut seulement être correctement traitée par un opérateur observable

de temps T dont les projections propres décrivent la distribution de probabilité de la

durée de décroissance.
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0.3 Présentation

Cette thèse contient quatre articles. Avant chaque article, un ou plusieurs chapitres

sont consacrés à l’explication des théories appropriées contenue dans l’article qui suit.

Dans ces chapitres, l’idéa principale est une bréve étude des théories. A cette fin,

parfois, j’ai évoqué briévement une partie des références qui sont mentionnés à la fin

de la section.

Dans le premier chapitre nous avons présenté quelques concepts dans les systèmes

dynamiques comme la dynamique différentielle, les exposants de Lyapunov, le gaz de

Lorentz et les sphères dures. Nous avons également fait quelques discussions sur le

théorem de H, la théorie ergodique, l’entropie de Shanonn et entropie de Kolmogorov-

Sinäı (K − S) dans le premier article “Computation of entropy increase for

Lorentz gas and hard disks”, dans le chapitre 2. Dans celui-ci, nous avons d’abord

présenté nos systèmes dynamiques. Ensuite, nous avons calculé l’entropie pour la map

de collision pour le gaz de Lorentz, et l’entropie d’espace pour le gaz de Lorentz et

les disques durs.

Dans le chapitre 3, nous avons discuté au sujet de certains préliminaires mathém-

atiques comme des processus de Markov, définition de quelques espaces et transfor-

mations. Puis, dans le quatrième chapitre nous avons présenté quelques concepts

de mécanique statistique quantique comme la matrice de densité, l’opérateur de

projection, l’enchevêtrement quantique (quantum entanglement), la décohérence et

l’entropie de von Neumann. La théorie de Wiesskopf-Wigner et la théorie de la Lie-

Oehme-Yang (LOY) ont été discutées dans le chapitre 5. Le sixième chapitre contient

le deuxième article, “Two-Level Friedrichs model and kaonic phenomenol-

ogy”. Dans cet article nous avons utilisé le modèle de Friedrichs sans fonction de

coupure et avec l’énergie entre −∞ et +∞, pour expliquer la phénoménologie de kaon

et également une évaluation de paramètre de violation de CP . Dans le troisième ar-

ticle, “Quantum-mechanical decay laws in the neutral kaons”,(chapitre 7),

nous avons utilisé le modèle de Friedrichs avec quelques fonctions de coupure, et nos

résultats sont très proches des résultats expérimentaux.

L’effet quantique de Zeno, l’opérateur de temps et l’asymétrie de temps sont les

autres modèles quantiques de H qui ont été discutés dans le huitième chapitre. A

la fin, dans le dernier chapitre nous avons présenté le quatrième article, “Decay

of quantum-mechanical unstable systems and spectral projections of time

operator in Friedrichs model”, pour obtenir la probabilité de survie d’un système
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instable en employant le modèle à un niveau de Friedrichs. Nos résultats ont été

présentés pour des durées courtes qui ne correspondent pas à un effet quantique de

Zeno.
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- M. Courbage, S.M. Saberi Fathi; “Computation of entropy increase for Lorentz

gas and hard disks”, Communications in nonlinear science and numerical simulation,

13 Issue 2 (2008) 444-455.

- M. Courbage, T. Durt, S.M. Saberi Fathi; “Two-Level Friedrichs model and

kaonic phenomenology,” Physics Letters A 362 (2007) 100-104.

- M. Courbage, T. Durt, S.M. Saberi Fathi; “Quantum-mechanical decay laws in

the neutral kaons,” Journal of Physics A : Math. Theor. 40 (2007) 2773-2785.

- M. Courbage, S.M. Saberi Fathi; “Decay of quantum-mechanical unstable sys-

tems and spectral projections of time operator in Friedrichs model”, soumis.

- M. Courbage, S.M. Saberi Fathi; “A formula for the spectral projection of time

operator”, Sera publié dans le proceeding of XXV Workshop on Geometric Methods

in Physics.

Conférences

- “Quantum Hamiltonian dynamics of the kaons phenomenology”, Chaos, Com-

plexity and Transport: Theory and Applications , Marsielle June 4-8, 2007.

- “Computation of entropy increase for Lorentz gas and hard disks”, 27ème Journées

de Physique Statistique, Paris, 25-26 Janvier 2007.

- “A formula for the spectral projection of time operator,” XXV Workshop on

Geometric Methods in Physics, Bialowieza, Pologne, 2-8 Juillet 2006.

1Les noms des auteurs sont classés dans l’ordre alphabétique.
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Introduction

0.4 First part: Classical chaotic systems

The H -theorem for dynamical systems describes the approach to equilibrium, the

irreversibility and entropy increase for deterministic evolutions. The existence of such

functional in measure-theoretical dynamical systems has been the object of several

investigations during last decades. see [20]- [23], [25], [28, 29, 32]). Here we study

this problem for the Lorentz gas and hard disks.

The Lorentz gas in two dimensions is a system of non-interacting particles moving

with constant velocity and being elastically reflected from periodically distributed

scatterers. The scatterers are fixed disks. On account of the absence of interactions

between particles, the system is reduced to the motion of one billiard ball. We shall

investigate the entropy increase under the effect of collisions of the particles with the

obstacles.

In the first part of this thesis, we will first compute the entropy increase for some

remarkable non-equilibrium distributions over the phase space of the Sinäı billiard.

The billiard system is a hyperbolic system (with many singularity lines) and, in

order to have a rapid mixing, we will consider initial distributions supported by the

expanding fibers. Such initial measures have been used in [20, 23, 32]. For the billiard

the expanding fibers are well approximated by particles with parallel arrows velocity.

We call this class initial beams of particles. We first compute the entropy increase

under the collision map for these initial distributions. For this, we will consider finite

uniform partitions of the phase space. The computation shows that whatever the

coarsening of these partitions, the entropy has the monotonic property in the initial

stage. It is clear that, along mixing process, the initial distribution will spread over

all cells almost reaching the equilibrium value. Physically, this process is directed by

the strong instability, that is expressed by the positive Lyapounov exponent.
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We also consider the relation of the rate of increase of the entropy functionals and

Lyapounov exponents of the Lorentz gas. Our computation shows that this relation

is expressed by an inequality

max(S(n + 1) − S(n)) ≡ △S ≤ ∑
λi≥0 λi = hK−S

where the ”max” is taken over n, which means that Kolmogorov-Sinäı (K − S)

entropy is an upper bound of the rate of increase of this functional.

We shall consider the hard disks systems. We shall compute an entropy functional

similar to the space entropy on extended torus with several cells. The probabilities are

defined for the space entropy in the Lorentz gas. We shall also do some comparisons

of the H-theorem with the sum of normalized positive Lyapounov exponents.

0.5 Second part: Unstable quantum systems

Unstable quantum systems is the second part of this thesis. We have used the

Friedrichs model to describe the decay phenomena in Hilbert space and also in Liou-

ville space by using the time super operator.

“Kaon phenomenology”

In general, Quantum Mechanics provides a continuous, reversible in time and

unitary evolution law (via the Schrödinger equation). This description contradicts our

everyday experience in which ageing, dissipation and irreversibility are omnipresent.

In this context, it is interesting to study hybrid quantum systems, sufficiently complex,

that exhibit altogether unitary and dissipative time evolutions. This goal can be

achieved in the framework of the Friedrichs model.

One-level Friedrichs model is well understood [57, 58, 59]: it predicts that the

excited state disappears and “fuses” into the continuum. Its survival probability

decays exponentially in time. The lifetime is proportional to the coupling between the

discrete mode and the continuum. Exponentially decaying systems are very common

in classical and quantum physics. They are relatively trivial when we consider them

from the point of view of temporal irreversibility because, although the decay law

is not reversible in time, such systems behave as if they did not possess an internal

clock or memory: the decay rate is constant throughout time, and the non-decayed
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system is in the same state at all times. Roughly speaking, exponentially decaying

systems exhibit an irreversible behavior but ignore ageing.

We shall show that the two-level Friedrichs system [48] makes it possible to de-

scribe a class of systems that exhibit rich and complex behaviors: oscillations, regen-

erations and so on, and provides a relatively exact phenomenological model of kaons

physics. There have been several approaches to CP -violations in kaons using Gauge

Theory [91] or Renormalization Theory [50]. We do not consider these aspects here,

also because the question is still partially open today. Our treatment is based on

the description of decaying systems similarly to the generalization of the Weisskopf-

Wigner approach, formulated by Lee, Oehme and Yang (LOY) [51] in the case of

kaonic decay. Later on, Chiu and Sudarshan [52] used a Lee model in order to obtain

a correction to the LOY theory for short times.

Solving the Schrödinger equation for the Hamiltonian, we derive a master equation

for the decaying two-level states. Our new approach is based on the derivation of a

master equation from a Hamiltonian describing (K1, K2) decaying modes and not for

(K0, K
0
) modes as done in LOY theory. Under weak coupling hypothesis this leads to

a Markovian master equation which allows us to simulate the kaonic lifetimes as well

as kaonic oscillations and regeneration. It even fits closer the CP symmetry breaking

parameter. In a first example with non-bounded spectrum in energy, we obtain the

exact angle while the modulus is 14 times the experimental data. However, we show

that using different cut-off functions of the continuous degrees of freedom we can

improve the above estimate.

We prove that it is possible to obtain all the interesting features of the model

when the Hamiltonian possesses a spectrum only bounded from below. In this case,

with Gaussian cut-off the previous estimate is improved and we obtain a CP violation

parameter value only 3 times the experimental data. Our treatment confirms that it

is possible with a very simple model such as the two-level Friedrichs model to compute

some essential features of the very rich kaon phenomenology. It also confirms that

the essential ingredient for deriving an irreversible in time dynamics of subsystems is

the presence of a continuous degrees of freedom of environment.

“Time operator”

Time appears in physics mainly in the description of motion. But this time is not

the one that corresponds to the alteration of time state of a body or a complex system.

On the other hand, the time-oriented transformation of the states of complex systems

is recognized as the most fundamental feature of thermodynamics. The second law
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is the first statement making a distinction between past and future in the physical

processes. In speaking of the state of a body or a system, we obviously understand

a macroscopic state. Nevertheless, in quantum mechanics, the discovery of lifetimes

of unstable elementary particles has introduced a new distinction between past and

future on the microscopic level.

In other hand, we shall study the properties of the survival probability of unstable

quantum systems using the spectral projections of time operator built in the frame-

work of the Liouville-von Neumann description [92, 93]. We shall test these properties

in the Friedrichs model [48]. The survival probability should be a monotonically de-

creasing time function and this property could not exist in the framework of the usual

quantum-mechanical approach [94, 95, 96]. It can only be properly treated through

an observable time operator T whose eigenprojections provide the probability distri-

bution of the time of decay.

0.6 Presentation

This thesis contains four articles. Before each article, one or some chapters exist to

explain the relevant theories. The main idea in these chapters is a short study of the

theories. For this purpose, sometimes, I stated briefly a part of the references which

are maintained in the end of the section.

In the first chapter we introduce some concepts in dynamical systems like, differ-

ential dynamics, Lyapunov exponents, Lorentz gas and hard spheres. We also discuss

about H-theorem, ergodic theory, shannon entropy and K − S entropy to introduce

the first article, “Computation of entropy increase for Lorentz gas and hard

disks” in the chapter 2. In this chapter, we introduce our dynamical systems. Then,

we compute entropy for collision map for Lorentz gas and spatially extended Lorentz

gas and hard disks entropy.

In the chapter 3, we discuss about some mathematical preliminaries like, Markov

process, definition of some space and transformations. Then, in the Fourth chapter

we present some concepts in the quantum statistical mechanics like density matrix,

projection operator, quantum entanglement, decoherence and von Neumann entropy.

The Wiesskopf-Wigner theory and Lee-Oehme-Yang (LOY) theory are discussed in

chapter 5. The Sixth chapter is the second article, “Two-Level Friedrichs model
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and kaonic phenomenology”. In this paper we use the Friedrichs model without

cutoff function and unbounded energy to explain kaon phenomenology and also an

estimation of CP violation parameter. In the third paper, “Quantum-mechanical

decay laws in the neutral kaons” (chapter 7), we use the Friedrichs model with

many cutoff functions, and our results are very near to experimental results.

The quantum Zeno effect, time operator and time asymmetry are the other quan-

tum decay models which are discussed in the eighth chapter. Finally, in the last

chapter we present the fourth article, “ Decay of quantum-mechanical unstable

systems and spectral projections of time operator in Friedrichs model” to

obtain the survival probability of an unstable system by using the one-level Friedrichs

model. Our results present for short-time limit it is not correspond to a quantum Zeno

effect.
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gas and hard disks”, Communications in nonlinear science and numerical simulation,
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- M. Courbage, T. Durt, S.M. Saberi Fathi; “Two-Level Friedrichs model and

kaonic phenomenology,” Physics Letters A 362 (2007) 100-104.

- M. Courbage, T. Durt, S.M. Saberi Fathi; “Quantum-mechanical decay laws in

the neutral kaons,” Journal of Physics A : Math. Theor. 40 (2007) 2773-2785.
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2The authors names appear in alphabetical order.
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Part I

Classical Chaotic Systems
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Chapter 1

Dynamical systems and statistical
mechanics

1.1 Differential dynamics

It is a rarity that a dynamical system can be described by mapping. The far more

common case is that differential equations are required, perhaps even partial differ-

ential equations. In this section, we focus on dynamical systems whose evolution is

modeled by ordinary differential equations. The differential dynamical equations is

of the general type

ṙ = fµ(r) (1.1)

where µ is a map parameter and r ≡ {x1, . . . , xn} ∈ Rn. For example, a simple

pendulum driven by a periodic force and subject to damping proportional to velocity,

has the following Newtonian dynamics

ẍ + Ω2 sin x = ǫ(−αẋ + f cos ωt), (1.2)

where ǫ, ω and f are the parameters of the system. The above equation can be

written under the form of (1.1) in the usual way by defining a new variable y = ẋ. To

obtain the autonomous1 form, we let t → θ and then add dθ/dt = 1 to the differential

system[1].

We refer to a solution of (1.1) as a trajectory depending on the given initial

conditions. We also refer to the trajectories resulting from a neighborhood of initial

1A differential equation is called an autonomous differential equation if it is not dependent ex-
plicitly on time.
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conditions as a flow.

1.1.1 Linearization

The dynamics determined by the vector field fµ(r) on the right-hand side of (1.1)

can be highly nonlinear and complicated. However, as with maps, attracting sets

and fixed points are of special interest. The fixed points are readily recognized as

just those values of r for which fµ(r) is equal to zero. Fixed points can be stable or

unstable, and so the behavior of fixed points is significant. To study this behavior we

must linearize (1.1) in the neighborhood of such a fixed point.

Suppose re to be a fixed point of (1.1) (i.e. re is the solution of fµ(r) = 0), where

for the moment we suppress the map parameter µ. We now make a Taylor expansion

of f(r) around re, assuming of course that f has adequate differentiability properties.

f(r) = f(re) + Df(re)(r − re) + · · · (1.3)

where Df(re) is the matrix of functions ∂fi/∂xj evaluated at the fixed point re. Since

f(re) = 0, for small (r − re) the dynamics is determined solely by the linear term.

By letting y = r − re, Df(re) = A, we have

ẏ = Ay. (1.4)

We see that we can always expand the system to make it autonomous. The above

equation is a valid approximation of (1.1) if only in a sufficiently small neighborhood

of the fixed point re. A specific solution of (1.4) with initial condition y0 is given by

y(t) = etAy0 (1.5)

and the general solution of (1.4) is obtained as linear superposition of n linearly

independent solutions of yi(t), i = 1, · · · , n.

y(t) =
n∑

i=1

ciyi(t) (1.6)

where the n unknown constants are determined by the initial conditions. If the system

is not degenerate we have

yi(t) = etλivi (1.7)
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where λi, and vi, i = 1, · · · , n are the (possible complex) eigenvalues and the eigen-

vectors of the matrix A, respectively. If the system has degeneracies so that λ is an

eigenvalue of A with multiplicity k, then we must compute the generalized eigenvec-

tors. For k = 2 solve for u and v, where

Av = λv, (a − λI)u 6= 0, (a − λI)2u = 0, (1.8)

giving the independent solution vectors [1]

y1(t) = eλtv

y2(t) = eλt[u + t(A − λI)u]. (1.9)

1.2 Lyapounov Exponents

The Lyapounov exponent or Lyapounov characteristic exponent (LCE) of a dynamical

system is a quantity that characterizes the rate of separation of infinitesimally close

trajectories. Quantitatively, two trajectories in phase space with initial separation

δx0 diverge

|δx(t)| ≈ eλt|δx0| (1.10)

The rate of separation can be different for different orientations of initial separation

vectors. Thus, there is a whole spectrum of Lyapounov exponents corresponding to

the number of dimensions of the phase space. It is common to just refer to the largest

one, because it determines the predictability of a dynamical system [35].

1.2.1 The Lyapounov Exponent for a map in one dimension

Consider two point x0 and x0 + ǫ mapped by the function f : I → I, where I ⊂ R is

some bounded interval on the real line R. For n iterations of this map the Lyapounov

exponent λ approximately satisfies the equation

ǫenλ = fn(x0 + ǫ) − fn(x0). (1.11)

where fn(x0) = f(f(· · · (f(x0)) · · · )). Dividing by ǫ and taking ǫ → 0 gives

enλ =
dfn

dx

∣∣
x0

. (1.12)
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By taking n → ∞, then we have the definition for the Lyapounov exponent:

λ ≡ lim
n→∞

1

n
ln

∣∣∣∣
dfn

dx

∣∣
x0

∣∣∣∣ (1.13)

where

dfn

dx

∣∣
x0

=
df

dx

∣∣
xn−1

df

dx

∣∣
xn−2

· · · df

dx

∣∣
x0

= f ′(xn−1)f
′(xn−2) · · · f ′(x0) (1.14)

Thus, equation (1.13) can be rewritten as [1]:

λ ≡ lim
n→∞

1

n

n−1∑

i=0

ln
∣∣f ′(xi)

∣∣. (1.15)

1.2.2 Lyapounov Characteristic Exponents

In the last subsection, we introduced the concept of a Lyapounov Characteristic

Exponent (LCE). In this subsection we expand the result of the previous subsection

to more than one dimension. To state the problem in a more quantitative way, we

consider a general smooth dynamical system

ż = f(z) (1.16)

where z ≡ (r,v) is a phase space of the system. Note that the dynamical system

represented by a differential equation the trajectories are referred to as flows. Let M

denote the phase space manifold of an arbitrary system and denote a flow in M as

φt : M → M. (1.17)

If one takes an initial point z0 ∈ M , then φt maps this initial point to φt(z0) ≡ z(t).

A flow is a one-parameter group of diffeomorphisms2 with the composition law

φt2+t1 = φt2 ◦ φt1 . (1.18)

Let z(t) denote the reference trajectory, and zs(t) a perturbed trajectory connected

to z(t) by a parametrized path with parameter s such that lims→0 zs(t) = z(t). The

associated tangent vector is defined by

δz(t) = lim
s→0

zs(t) − z(t)

s
(1.19)

2A diffeomorphism is an invertible function that maps one differentiable manifold to another,
such that both the function and its inverse are smooth [35].
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Its equation of motion is obtained by linearizing (1.16),

δż(t) = D(z(t)).δz(t) (1.20)

where D(z(t)) = ∂f/∂z is the Jacobi matrix of the system [2]. Then, its solution

according to (1.5) is equal to:

δz(t) = Dφt
z
.δz0 (1.21)

where

Dφt
z

= e
∫ t

t0
dt′D(z(t′))

, (1.22)

is a derivative map on the tangent vectors, i.e. it is a map in TzM (space tangent

of M at z) onto Tφt(z)M (space tangent of M at φt(z)). In the particular case of a

periodic orbit of period tp, Dφ
tp
z is a mapping of TzM onto itself [4].

The composition rule (1.18) implies for Dφt
z

that [1]

Dφt1+t2
z

= Dφt2
φt1(z)

◦ Dφt2
z

(1.23)

Now, we define the LCE of δz0 ∈ Tz0M as:

λ(z0, δz0) = lim
t→∞

1

t
ln

‖δz(t)‖
‖δz0‖

(1.24)

where ‖.‖ denotes the Euclidean norm on TzM .

Oseledec’s multiplicative ergodic theorem [3] states that for ergodic systems under

very general assumptions, λ exists and that in L-dimensional phase space there are

L orthonormal initial vectors δz0 yielding a set of n exponents {λl}, which is referred

to as the Lyapounov spectrum of the system. The exponents are taken to be ordered,

λ1 ≥ λ2 ≥ · · · ≥ λL. Since, according to Oseledec, the λl are independent of the

metric and the initial condition, we can drop the argument z0 [2]. By using (1.21),

the equation (1.24) can be written as:

λ(z0, δz0) = lim
t→∞

1

t
ln ‖Dφt

z
‖ (1.25)

Geometrically the Lyapounov exponents can be interpreted as the mean exponen-

tial growth rates of the principal axes of an infinitesimal ellipsoid surrounding a phase

point and evolving according to (1.11). Thus the Lyapounov spectrum describes the

stretching and contraction characteristics of the phase flow .
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The Lyapounov exponents of the class of symplectic systems3, to which our hard

particles belong if in equilibrium, exhibit a Smale-pair symmetry, λl + λL+1−l = 0,

for l = 1, ..., L. Furthermore, for each quantity conserved by the equations of motion

one Lyapounov exponent vanishes. In a d-dimensional equilibrium system of N hard

particles and phase space dimension L = 2dN the total momentum, the total (kinetic)

energy, and the center of mass coordinates are conserved. Since also one exponent

associated with a displacement in the flow direction equals zero, altogether 2d + 2

Lyapounov exponents vanish in this case.

Nonequilibrium steady-state systems cease to be symplectic and become dissipa-

tive. Nevertheless, the Smale-pairing symmetry is not totally lost for homogeneous

systems for which conjugate pairs of exponents add up to a constant negative value.

Negative total sum of all Lyapounov exponents corresponds to irreversible entropy

production. Furthermore, it can be shown that the sum of all Lyapounov exponents

can be related to the respective macroscopic transport coefficients. The number of

vanishing exponents due to the conserved quantities-center of mass, momentum, and

kinetic energy-in the nonequilibrium case is a more subtle question [2].

Let δz1
0, . . . , δz

k
0, 1 ≤ k ≤ L, be the parallelepiped generated by the linearly

independent vectors δz1
0, . . . , δz

k
0 belonging to TzM . We denote the corresponding

k-dimensional volume by V k(δz1
0, . . . , δz

k
0). The limit

λk(z0, δz
1
0, . . . , δz

k
0) = lim

t→∞

1

t
ln V k(Dφt

z
(δz1

0), . . . ,Dφt
z
δzk

0) (1.26)

where λk are LCE’s of order k.

For almost all vectors δz1
0, . . . , δz

k
0, 1 ≤ k ≤ L belonging to TzM , one has [4]

λk(z0, δz
1
0, . . . , δz

k
0) =

k∑

i=1

λi(z0), k = 1, . . . , L (1.27)

1.2.3 Numerical computation of Lyapounov spectra

The practical computation of Lyapounov spectra according to the classic algorithm of

Benettin et al. [4] proceeds by simultaneously solving the original equations of motion

(1.11) for the reference trajectory z(t) and the linear variational equations (1.20) for

a complete set of offset vectors δz(t), The difficulties associated with the choice of

the generally unknown initial vectors δz0 and the rounding-error off effects of the

3A symplectic system is a nondegenerate closed bilinear system, like a Hamiltonian system.
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computer are overcome by periodic reorthonormalization of the set of offset vectors,

such that the Lyapounov exponents are obtained from the time averaged logarithms

of the respective normalizing factors. The classical method of Benettin et al. [16]

can be straightforwardly applied to differentiable dynamical systems. In principle

the LCE’s of any order k could be obtained by choosing randomly k vectors in TzM

and applying definition (1.25). Practically, naive application of the definition is not

possible, because in general, in the stochastic region, the vectors become too large

and the angles between their directions too small to allow a numerical computation

of volumes. The procedure which follows overcomes these difficulties.

Choose δz1
0, ..., δz

k
0 orthonormal and fix at not-too-large time τ . The idea is to

replace, at regular time intervals τ , the evolved vectors by new orthonormal vectors,

using, the Gram-Smith procedure. Precisely, denoting vi
0 = δzi

0, i = 1, ..., k, one

defines and computes recursively

ṽi
l = Dφτ

φ(l−1)τ (z)(v
i
l−1)

αi
l = ‖(ṽi

l)⊥‖

vi
l =

‖(ṽi
l)⊥‖
αi

l

(1.28)

where (ṽi
l)⊥ stands for the component of ṽi

l orthogonal to all the (already orthonormal)

vj
l with j < i, i.e.,

(ṽi
l)⊥ = ṽi

l , i = 1

(ṽi
l)⊥ = ṽi

l −
i−1∑

j=1

〈vj
l .ṽ

i
l〉vj

l , i > 1, (1.29)

where 〈.〉 is the Euclidean scalar product on TzM . It is then not to difficult to prove,

using the linearity of Dφt
z and relation (1.27), that one has [4]

λi(z0) = lim
L→∞

1

nτ

n∑

l=1

ln αi
l. (1.30)

1.3 Hard spheres model

Hard spheres are the hard balls of radii {a1, a2, . . . , aN} and of masses {m1,m2, . . . , mN},
where N is the total number of hard balls. The motion of hard ball is composed of
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free flights between binary collisions which are elastic and instantaneous. Energy and

the total linear momenta are conserved [26], i.e.

mivi + mjvj = miv
′
i + mjv

′
j (1.31)

1

2
miv

2
i +

1

2
mjv

2
j =

1

2
miv

′2
i +

1

2
mjv

′2
j . (1.32)

where vi ≡ vi(tn) and v′
i ≡ v′

i(tn) are the velocity of ith hard balls before and after

nth collision in time tn respectively. Now, we rewrite the above equations as:




v′
i‖ = vi‖,

v′
j‖ = vj‖,

mivin + mjvjn = miv
′
in + mjv

′
jn,

(1.33)

and
1

2
miv

2
in +

1

2
mjv

2
jn =

1

2
miv

′2
in +

1

2
mjv

′2
jn (1.34)

where the indices ”‖” and ”n” are indicates to the velocities components parallel to

and perpendicular on surface at the collision point. Then, the above equations yield




v′
i‖ = vi‖,

v′
j‖ = vj‖,

v′
in =

2mj

mi+mj
vjn +

mi−mj

mi+mj
vin = vin − 2mj

mi+mj
(vin − vjn),

v′
jn = 2mi

mi+mj
vin +

mj−mi

mi+mj
vjn = vjn + 2mi

mi+mj
(vin − vjn).

(1.35)

Finally, in the vectorial form they can be written as




v′
i = vi − 2mj

mi+mj
(n.vij)n

v′
j = vj + 2mi

mi+mj
(n.vij)n

(1.36)

where vij = (vi − vj) and n =
ri−rj

|ri−rj | , the unit vector perpendicular to surface at the

collision point (in the collision point |ri − rj| = ai + aj).

The free flight between binary collisions are obtained as:

ri(tn) = r′i(tn−1) + (tn − tn−1)v
′
i(tn−1) (1.37)

where the indice ” ′ ” is indicated after collision. Noting that:

ri(tn) = r′i(tn) (1.38)
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and

vi(tn) = v′
i(tn−1) (1.39)

Now, for obtaining the LCE we must calculate the offset vector before and after

collision. Thus, we take the differential from equations (1.36)-(1.39), for position we

have,

δri(tn) = δr′i(tn−1) + (tn − tn−1)δv
′
i(tn−1) (1.40)

where δr′i on time tn can be defined as vi△t by multiply equation (1.36) on △t we

obtain, 



δr′i(tn) = δri(tn) − 2mj

mi+mj
(n.δrij(tn))n

δr′j(tn) = δrj(tn) + 2mi

mi+mj
(n.δrij(tn))n.

(1.41)

where δrij = (δri − δrj). For the velocities we also have,





δv′
i(tn) = δvi(tn) − 2mj

mi+mj
[(δn.vij(tn))n + (n.δvij(tn))n + (n.vij(tn))δn]

δv′
j(tn) = δvj(tn) − 2mi

mi+mj
[(δn.vij(tn))n + (n.δvij(tn))n + (n.vij(tn))δn]

(1.42)

and

δvi(tn) = δv′
i(tn−1). (1.43)

where δvij = (δvi − δvj), and

δn =
1

a1 + a2

(δrij(tn) + vij(tn)δtc). (1.44)

Here δtc is the delating time respect to the reference trajectory by [2]

δtc = −n.δrij(tn).

n.vij(tn)
(1.45)

The next chapter will consider the hard spheres in two dimensions (hard disks)

with the same masses.
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1.4 Lorentz gas

By considering the following assumptions for the hard balls described in the last

section, we can define the Lorentz gas




mi → ∞,

ai → a,

mj → m,

aj → 0.

(1.46)

These assumptions are that the ith hard ball (with infinite mass and radius ai = a)

is fixed and the j hard ball (with mass mj = m and radius aj = 0) is a punctual. In

our simulation in the next chapter we consider all fixed hard balls (for this reason we

have chosen mi = ∞) in two dimensions that are distributed periodically.

1.5 H -theorem

First, we start by the Boltzmann transport equation:

( ∂

∂t
+ v1.∇r +

F

m
.∇v1

)
f1 =

∫
dΩ

∫
d3v2σ(Ω)|v1 − v2|(f ′

2f
′
1 − f2f1) (1.47)

where σ(Ω) is the differential cross section for the collision {v1,v2} → {v′
1,v

′
2}, Ω is

the angle between (v2 −v1) and (v′
2 −v′

1), the prim index is indicated after collision,

and

f1 ≡ f1(r,v1, t)

f2 ≡ f1(r,v2, t)

f ′
1 ≡ f ′

1(r,v
′
1, t) (1.48)

f ′
2 ≡ f1(r,v

′
2, t),

are the distributions functions. The equation (1.47) is a nonlinear integro-differential

equation for f . The equilibrium distribution function of the equation (1.47) is a time

independent function f0(v) that is the limit of distribution function as time goes to

infinity. Assume that there is no external force. Thus, the distribution function is

independent of r, i.e. f(v, t). The equilibrium distribution function,denoted by f0(v),
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is the solution of the equation ∂f0(v)/∂t = 0. The Boltzmann transport equation

(1.47) for f0(v) satisfies the following integral equation

0 =

∫
dΩ

∫
d3v2σ(Ω)|v1 − v2|(f0(v

′
2)f0(v

′
1) − f0(v2)f0(v1)) (1.49)

where v1 is a given velocity. The above equation yields:

f0(v
′
2)f0(v

′
1) − f0(v2)f0(v1) = 0. (1.50)

To show that the necessity of (1.50), we define the following functional:

H(t) ≡
∫

d3vf(v, t) log f(v, t) (1.51)

where f(v, t) is the distribution at time, satisfying

∂f(v1, t)

∂t
=

∫
dΩ

∫
d3v2σ(Ω)|v1 − v2|(f ′

2f
′
1 − f2f1) (1.52)

Differentiation of (1.51) yields

dH(t)

dt
=

∫
d3v

∂f(v, t)

∂t
[1 + log f(v, t)] (1.53)

Therefore, the condition ∂f/∂t = 0 is necessary for dH/dt = 0. Now, we see that the

statement dH/dt = 0 is the same as (1.50). It would then follow that (1.50) is also a

necessary condition of (1.49).

Boltzmann’s H -Theorem: If f satisfies the Boltzmann transport equation,

then
dH(t)

dt
≤ 0. (1.54)

Proof: By substituting (1.47) in (1.53) we obtain

dH(t)

dt
=

∫
d3v1

∫
d3v2

∫
dΩσ(Ω)|v1 − v2|(f ′

2f
′
1 − f2f1)[1 + log f1]. (1.55)

The above integral is invariant under changing v1 and v2 because σ(Ω) is invariant

under this interchanging. We now write the above formula as follows

dH(t)

dt
=

1

2

∫
d3v1

∫
d3v2

∫
dΩσ(Ω)|v1 − v2|(f ′

2f
′
1 − f2f1)[2 + log(f1f2)]. (1.56)
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This integral is invariant under interchanging {v1,v2} and {v′
1,v

′
2} because for each

collision there is an inverse collision with the same cross section. Hence

dH(t)

dt
=

1

2

∫
d3v′

1

∫
d3v′

2

∫
dΩσ′(Ω)|v′

1 − v′
2|(f2f1 − f ′

2f
′
1)[2 + log(f ′

1f
′
2)]. (1.57)

By noting d3v′
1d

3v′
2 = d3v1d

3v2, |v′
1 − v′

2| = |v1 − v2|, σ′(Ω) = σ(Ω) and taking the

sum of two last equation we obtain

dH(t)

dt
=

1

4

∫
d3v1

∫
d3v2

∫
dΩσ(Ω)|v1 − v2|(f ′

2f
′
1 − f2f1)[log(f1f2) − log(f ′

1f
′
2)].

(1.58)

The integrand is always negative. dH(t)/dt = 0 only if integrand becomes zero i.e.

(f ′
2f

′
1−f2f1) = 0, or under an arbitrary initial condition f(v, t) → f0(v) as t → ∞[5].

H -theorem asserts that, if at any instant the value of a certain function H, a prop-

erty of a system or of an ensemble associated with the system, is much greater than

the minimum value of H, this value is very likely to decrease, although fluctuations

away from the minimum value may occur; the minimum value of H is that which pos-

sessed a stationary ensemble of systems, and thus is the equilibrium value. Thus, the

H-theorem is a statistical theorem that gives an expression of the irreversibility char-

acteristic of macroscopic system in terms of a quantity which is a microscopic analogue

of the negative generalized entropy of a system in nonequilibrium thermodynamics[6].

1.6 Ergodic Theory

Why are election polls often inaccurate? Why is racism wrong? Why are your

assumptions often mistaken? The answers to all these questions and to many others

have a lot to do with the non-ergodicity of human ensembles. Many scientists agree

that ergodicity is one of the most important concepts in statistics. So, what is it?

Ergodicity is usually described in terms of objective properties of an ensemble of

objects, and the discussion often gets lost in mathematical subtleties and thus it is

often difficult to understand. Nonetheless, it will be described in bayesian, subjectivist

terms; hopefully this will make the concept very accessible.

Suppose you are concerned with determining what the most visited parks in a city

are. One idea is to take a momentary snapshot to see how many people are at this

moment in park A, how many are in park B and so on. Another idea is to look at

one individual (or few of them) and to follow him for a certain period of time, e.g. a
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year. Then, you observe how often the individual is going to park A, how often he is

going to park B and so on.

Thus, you obtain two different results: one statistical analysis over the entire

ensemble of people at a certain moment in time, and one statistical analysis for one

person over a certain period of time. The first one may not be representative for

a longer period of time, while the second one may not be representative for all the

people. The idea is that an ensemble is ergodic if the two types of statistics give the

same result. Many ensembles, like the human populations, are not ergodic [7].

1.6.1 Introduction

The first aim of ergodic theory in statistical mechanics is to determine the conditions

in which the methods of statistical mechanics can be used to describe dynamical

systems.

In the exact dynamical description, a single macroscopic state corresponds to many

microscopic states. Thus, with exactly solving the simultaneous equations of motion

of, 1024 particles could be handled. Also, if the experimental measurements could

be carried out with accuracy sufficient to yield a complete set of initial conditions

for this equations, the solution gives a purely dynamical description of the system.

But the thermodynamical description of a macroscopic system is characterized by

the comparatively small number of parameters (which normally are the averages of

the microscopic dynamical parameters) needed to specify completely the thermody-

namic state of the system. Statistical mechanics uses ensembles, in order to calculate

thermodynamical properties of a single system. The corresponding properties at one

instant of each ensemble of systems are averaged over this ensemble; these ensemble

averages represent the properties of the single system. It is clear that is not exact

calculation; not only it neglects the weak interaction between particles and but also

it uses some form of approximation. But, the importance of statistical elements is in

the calculation of various thermodynamical properties. As regards these properties

of statistical mechanics is far from being a mere substitute for exact mechanics. But,

in fact, it has a much more positive significance.

Introducing some form of statistical technique is required in passing from a dy-

namical to thermodynamical description of a macroscopic system. Ergodic theory

accepts the dynamical description as basic, and it seeks conditions for the dynami-

cal system to exhibit those thermodynamical properties that may be represented by
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ensemble averages.

The general procedure of statistical mechanics is the Boltzmann method which it

is concerned with a single dynamical system and uses statistical methods to make cal-

culation pertaining to such a system. On the other treatment introduced by Gibbs,

consider a collection of similar systems, together with an appropriate distribution

function, and calculates averages over such ensembles of systems; the statistical con-

siderations are thus much more fundamental in this approach. Gibbs, however, re-

frained on the whole from attributing physical significance to his concept of an en-

semble, and regarded the behavior of an ensemble of systems as being but formally

analogous to that of a single physical system. Ergodic theory, or at any rate, the main

body of ergodic theory, is grounded firmly on the microscopic dynamical description

of a single macroscopic system; it is from this that the statistical description has to

be deduced. It is carried out therefore, for the most part, within the Boltzmann

framework in which the entire theory is based on a priori statistical postulates [6].

1.6.2 Statement of Ergodic Theorem

We turn now to the principal consequence of ergodicity. A function g(ω) ( assumed

to be measurable µ) is said to be invariant if g(Tω) = g(ω). If g(ω) is an invariant

function which is not trivial in the sense of begin a.e. constant, then for some α the

invariant set {ω : g(ω) ≤ α} has a measure strictly between 0 and 1. Thus, T is

ergodic if and only if each invariant function is a.e. constant. Now, we can state the

ergodic theorem as:

Theorem: If f is integrable, then there exists an integrable, invariant function f̂

which is defined as:

f̂(ω) = lim
n→∞

1

n

n−1∑

k=0

f(T kω) (1.59)

and such that 〈f̂〉 =
∫

f̂dP =
∫

fdP = 〈f〉. If T is ergodic then f̂ =
∫

fdP = 〈f〉
[8].

To explain the above ergodic theorem we consider that f̂ represents a time average,

and that 〈f〉 an averaging process, then

〈f〉 = 〈̂f〉 = 〈f̂〉 = f̂ .

the first equality is obviously true for stationary ensembles, and the second follows

from the resumption that one can interchange averaging processes. But the last
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equality follows only if f̂ is the same for all systems in the ensemble, and this is true

only if the system is ergodic [9].

To pure mathematicians it is the existence of the time averages, subject to certain

conditions, that constitutes the ergodic theorem; to physicists, on the other hand the

ergodic theorem expresses the equivalence of time averages and ensemble averages.

The difference in terminology may perhaps have arisen from the fact that in the

classical theory, which has been developed the more by mathematicians, it is the

proof of the existence of the time averages that is the most difficult part of the

above program, whereas in the quantum theory the existence of the time averages

is a trivial problem, and it is determining the conditions under which these may be

replaced by ensemble averages. Here the term the ergodic theorem will be used in

the second sense with respect to both the classical and the quantal treatments. It

should be recognized, however that this is a generic term, referring to any theorem

expressing the equivalence of time and ensemble averages rather than to one specific

set of conditions under which this equivalence holds. In the other words, the ergodic

theorem embraces many ergodic theorems [6].

1.7 Coarse-graining

A measurement which is made on a macroscopic system, but which, although nec-

essarily of limited accuracy, is thought of as being carried out instantaneously, may

be referred to conveniently as an instantaneous macroscopic measurement. Groups

of dynamical states indistinguishable by means of any set of instantaneous macro-

scopic measurements may be termed phase cells, the number of dynamical states

within each phase cell being dependent on the degree of accuracy of the instanta-

neous macroscopic measurements. A set of instantaneous macroscopic measurements

thus yields a description of the system which is much coarser than the microscopic,

dynamical description; it approximates to the dynamical state by means of the phase

cell which includes the dynamical state and to dynamical properties of the system

by means of values characterizing ranges of values of the dynamical properties. This

approximate determination of the microstate of the system may be thought of as an

accurate determination of the instantaneous macro-state of the system, the instanta-

neous macro-state being defined by the appropriate phase cell, and the approximate
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values of the microscopic parameters may be regarded as accurate values of instanta-

neous macroscopic observables, which, whether quantum or classical, possess discrete

spectra. These instantaneous macro-observables are thus coarse-grained forms of the

microscopic observables. It is by way of this coarse-graining that statistical concepts

enter the route leading from the dynamical to the thermodynamical description of a

system, since coarse-graining is equivalent to a statistical averaging over the various

microscopic states in the phase cells. However, the statistical concepts enter in a

very general form namely that there is no requirement anything like as strong as that

of equal probabilities for all microscopic states within each phase cell. Nevertheless,

unlike the time averaging, in which the averaging is carried out over states actually

occupied by the system, there is here a definite introduction of ideas extraneous to

the dynamical description, since in this coarse-grained description there are involved

dynamical states additional to those which the system occupies at the time.

Coarse-graining, in fact, plays so large a part in the transition from dynamical to

thermodynamical treatments that coarse-grained microscopic variables are very often

regarded as being sufficiently close representations of macroscopic observables for the

time averaging over a finite time interval to be used in characterizing the macroscopic

observables; thus macroscopic observables are identified with what have been termed

instantaneous macroscopic observables. As is remarked upon shortly, this permits a

different interpretation of the significance of the time averaging over an infinite period

with which the ergodic theorem deals.

The procedure of coarse-graining brings about a reduction in the number of pa-

rameters used to handle the system theoretically, and such a reduction is necessary

in passing to a thermodynamical description which uses only a small number of in-

dependent macroscopic variables [6].

One it be admitted that it is with coarse-grained quantities that thermodynam-

ical properties are to be associated, it follows that the fine-grained classical ergodic

theorem is f̂ = 〈f〉, where accuracy of measurement is completely unlimited. What

is of interest for thermodynamics is the coarse-grained ergodic theorem

f̂ = 〈f〉 (1.60)

where f represents value of instantaneous coarse-grained quantities. But even if

this coarse-grained theorem can be proved, there remain certain general problems.

Does the time average over an infinite period have any physical significance? Is it

permissible to regard a macroscopic physical system as isolated? And how many
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instantaneous macroscopic observables must be measured in order to determine the

site of the phase cells? Although several attacks have been made on ergodic theory

on the grounds that the proper response to both the first and the second questions

is negative, it seems to be a solution of the third problem, that of defining phase

cells, that ergodic theory needs most. Before such discussions are entered upon,

however, one further feature may be mentioned, namely, that it is with only one type

of thermodynamical variable that ergodic theory deals.

In ergodic theory external parameters of a system, such as the volume of the

system and the intensifies of any fields external to the system, are assumed to have

constant values, and so when the temporal behavior of the system is studied, no

specific account need be taken of the dependence of the properties of the system on

these external parameters. Apart from these external parameters thermodynamical

observables are of one of two types. The first consists of properties that have dynam-

ical, no less than thermodynamical, import; such are, for example, the energy of the

system and the pressure exerted by the system. These thermodynamical properties

may be regarded as coarse-grained, and time-smoothed, forms of the corresponding

fine-grained dynamical variables, and it is with such observables alone that ergodic

theory deals; these are the variables the values of which are evaluated as ensemble

averages in the usual practice of statistical mechanics.

The other kind of thermodynamical variable is of a specifically statistical nature,

and chose variables - temperature, entropy, chemical potentials, and derivative quanti-

ties, such as free energy have no significance with respect to a single microscopic state,

and cannot be expressed in the form of ensemble averages of corresponding dynamical

properties. Moreover, ergodic theory, or at any rate the main body thereof, is con-

cerned with isolated systems, and for such systems neither temperature nor chemical

potentials can be defined in the usual thermodynamical manner; it is when systems

in mutual interaction are discussed that these concepts appear in thermodynamics.

Although statistical mechanics, as distinct from thermodynamics, can provide formal

definitions of temperature and of chemical potentials for an isolated system, entropy

is the only one of these specifically statistical properties to have immediate ther-

modynamical significance for an isolated system. This is not to say, however, that

these specifically statistical quantities do not appear in the development of statisti-

cal mechanics based on ergodic theory. A statistical-mechanical entropy, identifiable

under appropriate conditions with thermodynamical entropy, can be defined easily

in terms of the ergodic distribution, which pertains to equilibrium situations, and
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can be generalized to nonequilibrium situations as well. Unlike the method of the

H -theorem, however, ergodic theory makes no use of this entropy in obtaining the

equilibrium distribution. As regards temperature, chemical potentials and other sta-

tistical quantifies, these, too, although not considered in ergodic theory itself, appear

when systems in mutual interaction are discussed. And in order to relate dynami-

cal and thermodynamical descriptions of a system it is important to consider such

interacting systems; ergodic theory alone, insofar as it deals with an isolated sys-

tem, cannot yield the required relationship, but constitutes merely the first albeit the

fundamental step towards obtaining results of thermodynamical significance from a

dynamical description of a system [6].

1.8 Entropy

1.8.1 Shannon entropy

There exists a quantity that measures the non-predictability degree of a determinis-

tic and conservative dynamical system, it is called Kolmogorov-Sinäı entropy. This

concept is not confused with thermodynamical entropy in nonequilibrium which is

defined by information theory of Shannon. More precisely, it is a global character

and uncertainly in the results of cross-graining observation in spite of it is known

all precedent results. Moreover, the observation is smooth. It is depended on the

instability of motion so that in some conditions K − S entropy is equal to the sum

of the positive Lyapounov exponents. Instability creates the unpredictability. We

memorize some concepts of information theory.

In the information theory, the information is obtained by transmission of a mes-

sage. It is measured by the logarithm of the number of messages possible. For

example, the message of N letters by k alphabet letters (a1, . . . , ak) = α is obtained

as: If in each message of N letters each letter ai is repeated pi-times, then this letter

is produced in the message with Ni = piN frequency. Now, P is

P =
N !

N1! · · ·Nk!
(1.61)

and information is obtained by the transmission of a letter is:

I =
log P

N
(1.62)



1.8 Entropy 33

by using Stirling formula for I we have

I(α) = −
∑

i

pi log pi. (1.63)

If we transmit many letters we must also consider the correlations between successive

letters. We call I(α), I(α1, α2), . . . as the information of one letter, two letters, etc.

For example, to calculate I(α1, α2) the probability p(α1, α2) must be known in a

message of the letter α1,i, then the letter α2,j, successively.

I(α1, α2) = −
∑

i,j

p(α1,i, α2,j) log p(α1,i, α2,j). (1.64)

One can obtain

I(α1, α2) ≤ I(α1) + I(α2) (1.65)

the equal sing is possible when the letters successive are independent. Effectively, we

can first measure the average correlation between two successive letters with condi-

tional information I(α2|α1,i), averaging on the α1,i values:

I(α2|α1) = −
∑

i

p(α1,i)I(α2|α1,i) (1.66)

where

I(α2|α1,i) = −
∑

j

p(α2,j|α1,i) log p(α2,j|α1,i) (1.67)

and

p(α2,j|α1,i) =
p(α2,j, α1,i)

p(α1,i)
. (1.68)

Then, we have

I(α2|α1) ≤ I(α2) (1.69)

the equal is valid only if α1 and α2 are independents. We see that the correlation

between α1 and α2 is reduced the information. Shannon considered the correlation

between a letter and the n precedent letters when n is very large as:

i(α) = lim
n→∞

I(αn|α1, . . . , αn−1) (1.70)

where we used the definitions on the (1.66)-(1.68) and it is defined by information of

a stochastic process. We see that for a determinist system, i.e. a letter determines

the following letters, the equation (1.70) is zero. This quantity is undefinable with

intrinsic uncertainly of the message before its transmission [10].
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1.8.2 K − S entropy

Kolmogorov used the spirit of the Shannon theory to introduce the entropy of a

determinist conservative dynamical system. The essential idea is consisted by mak-

ing the partitions in phase space M , the partition with reversible transformation

S that is a conserved measure, µ, for an initial point x, the cells is appeared as

x, Sx, S2x, . . . , S−1x, S−2, . . .. It is used a partition of M : (P0, P1, . . . , Pn) and to

associate with all x double continuation ui, i = 0,±1,±2, . . . where each ui is the cell

number of the partition which appears Six. That is

x → {ui(x)} : Six ∈ Pui(x) (1.71)

in each point of x is associated a doubly infinite message and Sx is associated with

the shifted message:

ui(Sx) = ui+1(x). (1.72)

the stochastic process (ui) is determined by the probability µ from (1.71):

P (un = i0, u[n + 1 = i1, . . . , un + k = ik) = µ(S−nPi0 ∩S−(n+1)Pi1 ∩ . . .∩S−(n+k)Pik).

(1.73)

This new representation of the transformation S is called a symbolic dynamics. We

can measure the predictability of a dynamical system by predictability of the different

symbolics dynamics associated with different partitions. For a partition P uncertainly

of a future observation (if the ensemble of last observations is known), is defined by:

h(P, S) = lim
n→∞

I(un|u1, . . . , un−1). (1.74)

The K − S entropy is the upper limit of h(P , S) for all the finite partitions [10]:

h(S) = sup
P

h(P, S) (1.75)

1.8.3 Entropy functional under coarse-graining

The explanation of the irreversible approach to equilibrium in conservative systems

by a coarse-graining procedure goes back to Gibbs [11, 12]. This is a summary of his

main ideas.

The macroscopic level of description of a system of N molecules differs from the

microscopic level by the fact that it is concerned with a small number (compared to
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N) of macroscopic observables (yl, ..., yk). Maintaining these observables to definite

values (up to small fluctuations) still allows the system to be found into a wide range

of possible microscopic states of the phase space M of the N molecules, the set

of which defines a certain region of M . Thus, to a distinct k-tuple of fixed values

these observables correspond to disjoint regions of the phase space forming a finite

partition P ≡ (P0, P1, . . . , Pn) of this space. A statistical description of the system

corresponding to the above macroscopic observation does not distinguish between

different microstates into each region and is therefore represented by a probability

distribution which is uniform in each Pi. We shall refer to this type of distribution

as coarse-grained with respect to the observables {yi} or to the partition P.

Let us turn to the quantitive description of a coarse-grained state. The system be-

ing isolated, its state of equilibrium will be described by the microcanonical ensemble

denoted by dµ(x). Let ρt(x) be the probability density (relative to µ) out of equilib-

rium. We assume that initially this distribution is coarse-grained. By definition, this

means that [22, 13]

ρ0(x) =
∑

i

αiχPi
(x) (1.76)

where χPi
(x) denotes the characteristic function of the Pi. Integrating (1.76) over the

set Pj, we obtain the coefficient αj:

αj =
1

µ(Pj)

∫

Pj

ρ0(x)dµ(x) (1.77)

where µ(E) denotes the (equilibrium) probability of the set E.

The Liouvillian time evolution of the initial density under the dynamical flow φt

is given by

(Utρ0)(x) = ρt(x) = ρ0(φ
−tx) (1.78)

where the operators Ut define a group.

It is clear that ρt(x), t > 0 is not necessarily coarse-grained with respect to P ,

but, as we are interested in the macroscopic description, we consider its coarse-grained

projection along P , that is, a new density Pρt, which is constant onto each region Pi.

Following equations (1.76) and (1.77) this density is given by

Pρt =
∑

i

[
1

µ(Pi)

∫

Pi

ρt(y)dµ(y)

]
χPi

(x) (1.79)

In what follows, we shall denote µ(Pi) by µi.
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According to the general arguments of Gibbs, a coarse-grained density will ap-

proach monotonically the microcanonical density ρe(= 1). Here monotonicity is ex-

pressed as the decrease of the following functional:

S(Pρt) =

∫

M

Pρt(x) log Pρt(x)dµ(x) = −H(Pρt) (1.80)

This is the so-called H-theorem and H(Pρt) is interpreted as the nonequilibrium

entropy.

Now, it is well known that the Liouville theorem implies that the functional S(Pρt)

remains constant in time. On the other hand, owing to the convexity of 0, the

following inequality holds:

∫

M

Pρt(x) log Pρt(x)dµ(x) ≤
∫

M

ρt(x) log ρt(x)dµ(x) (1.81)

Unfortunately this does not entail that S(Pρt) decreases monotonically, nor that it

converges to its equilibrium value unless PUtP is a semi-group for t ≥ 0. To secure an

H-theorem one must therefore repeat the coarse-graining operation at regular time

intervals, which is rather artificial.

Our principal objective is to examine the possibility of obtaining an exact H-

theorem for coarse-grained probability distributions. To this end, we will identify the

class of conservative dynamical systems for which Pρt evolves under an irreversible

Markov process, that is a Markov process for which S(Pρt) converges monotonically

to its equilibrium value for any coarse-grained initial state[22].

We shall limit ourselves to discrete time conservative dynamical systems. We

see from (1.79) that the coarse-graining density has a simple representation in the

orthogonal basis (1/µi)χPi
involving the row probability vector

Πt = {νt(Pi)}, i = 0, 1, . . . , k, (1.82)

where νt(E) denotes the time-dependent probability of the set E:

νt(E) =

∫

E

ρt(x)dµ(x). (1.83)

Let us now formulate the H-theorem in terms of Πt. We have

S(Pρt) =

∫

M

Pρt(x) log Pρt(x)dµ(x) =
∑

i

∫

Pi

Pρt(x) log Pρt(x)dµ(x). (1.84)
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But, for any x ∈ Pi, Pρt(x) takes the constant value νt(Pi)/µi (see (1.79)), thus

S(Pρt) =
∑

i

µi

(
νt(Pi)

µi

)
log

(
νt(Pi)

µi

)
, (1.85)

or

S(Pρt) =
∑

i

νt(Pi) log

(
νt(Pi)

µi

)
. (1.86)

It is well known that this is a positive functional which vanishes only if νt(Pi) = µi

and decreases monotonically. Thus, K − S entropy, H(Pρt) = −S(Pρt) increases

monotonically [22, 14]. In the next chapter, we will use equation (1.86) to compute

entropy in our simulations.
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Chapter 2

Computation of entropy increase
for Lorentz gas and hard disks

Abstract: Entropy functionals are computed for non-stationary distributions of particles of Lorentz

gas and hard disks. The distributions consisting of beams of particles are found to have the largest

amount of entropy and entropy increase. The computations show exponentially monotonic increase

during initial time of rapid approach to equilibrium. The rate of entropy increase is bounded by

sums of positive Lyapounov exponents1.

1This paper will be published in Communications in nonlinear science and numerical simulation,
13, Issue 2 (2008) 444-455.



2.1 Introduction 40

2.1 Introduction

The H -theorem for dynamical systems describes the approach to equilibrium, the

irreversibility and entropy increase for deterministic evolutions. Suppose that a dy-

namical transformation T on a phase space X has some “equilibrium” measure µ,

invariant under T , i.e. µ(T−1E) = µ(E) for all measurable subsets E of X. Suppose

also that there is some mixing type mechanism of the approach to equilibrium for

T , i.e. there is a sufficiently large family of non-equilibrium measures ν such that

νt(E) =: ν(T−tE)) −−−→
t→∞µ(E) for all E. Then, the H-theorem means the existence of a

D/2

3D/2

3D/2 5D/2

5D/2

Figure 2.1: The motion of the particle on a toric billiard.

negative entropy functional S(νt) which increases monotonically with t to zero, being

attained only for ν = µ. The existence of such functional in measure-theoretical dy-

namical systems has been the object of several investigations during last decades see

[20]-[23][25, 28, 29, 32]). Here we study this problem for the Lorentz gas and hard

disks. The dynamical and stochastic properties of the Lorentz gas in two dimen-

sions which we consider here was investigated by Sinäı and Bunimovich as an ergodic

dynamical system [30, 18, 19]. Other transport properties have been also studied

numerically (see [26, 33]). This is a system of non interacting particles moving with
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constant velocity and being elastically reflected from periodically distributed scatter-

ers. The scatterers are fixed disks. On account of the absence of interactions between

particles the system is reduced to the motion of one billiard ball. We shall investigate

the entropy increase under the effect of collisions of the particles with the obstacles.

For this purpose, we consider the map T which associates to an ingoing state of a

colliding particle the next ingoing colliding state. The particle moves on an infinite

plane, periodically divided into squares of side D called ”cells”, on the center of which

are fixed the scatterers of radius a ( Fig. 2.1). The ingoing colliding state is described

by an ingoing unitary velocity arrow at some point of the disk. To a colliding arrow

V1(P1) at point P1 on the boundary of the disk the map associates the next colliding

arrow V2(P2) according to elastic reflection law. Thus, the collision map does not

take into account the free evolution between successive collisions.

Let ν be a non-equilibrium measure, which means that ν is a non invariant mea-

sure approaching the equilibrium µ in the future. It is mathematically possible to

define a non-equilibrium entropy for a family of such measures, using conditional

expectations (i.e. a generalized averaging) relatively to the some remarkable parti-

tions, namely the contracting fibers of the hyperbolic dynamics [20]. However, in

our numerical simulations some given finite precision is needed, so that we consider

partitions into cells with positive µ-measure. Here, we use slightly similar entropy

functionals. Starting from the non-equilibrium initial distribution ν, and denoting

by P such partition formed by cells (P1,P2, ..., Pn) and by νt(Pi) = ν ◦ T−t(Pi), the

probability at time t for the system to be in the cell Pi and such that ν(Pi) 6= µ(Pi)

for some i, the approach to equilibrium implies that νt(Pi) → µ(Pi) as t → ∞ for

any i. The entropy functional will be defined by:

S(t, ν,P) = −
N∑

i=1

νt(Pi) ln(
νt(Pi)

µ(Pi)
) := −H(t, ν,P) (2.1)

which we simply denote here after S(t). The H -functional (2.1) is maximal when

the initial distribution is concentrated on only one cell and minimal if and only

if νt(Pi) = µ(Pi),∀i. These properties are shown straightforwardly. This formula

describes the relative entropy of the non-equilibrium measure νt with respect to µ for

the observation associated to P. It coincides with the information theoretical concept

of relative entropy of a probability vector (pi) with respect to another probability

vector (qi) defined as follows: − ln pi being the information of the ith issue under

the first distribution, −∑
i pi ln(pi

qi
), is equal to the average uncertainty gain of the
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experience (pi) relatively to (qi).

A condition under which formula (2.1) shows a monotonic increase with respect to

t is that the process νt(Pi) = ν ◦ T−t(Pi) verifies the Chapman-Kolmogorov equation

valid for Markov chains and other infinite memory chains. For a dynamical system,

this condition is hardly verified for given partition P . However, the very rapid mixing

leads to a monotonic increase of the above entropy, at least during some initial stage,

which can be compared with the relaxation stage in gas theory.

In this paper, we will first compute the entropy increase for some remarkable

non-equilibrium distributions over the phase space of the Sinäı billiard. The billiard

system is a hyperbolic system (with many singularity lines) and, in order to have

a rapid mixing, we will consider initial distributions supported by the expanding

fibers. Such initial measures have been used in [20, 23, 32]. For the billiard the

expanding fibers are well approximated by particles with parallel arrows velocity. We

call this class of initial ensemble beams of particles. We first compute the entropy

increase under the collision map for these initial distributions. We will consider finite

uniform partitions of the phase space as explained below. The entropy functional will

be defined through (2.1). For this purpose, the phase space of the collision map is

described using two angles (β, ψ), where β is the angle between the outer normal at P

and the incoming arrows V(P ), β ∈ [0, π
2
[, and ψ ∈ [0, π] is the angle between x-axis

and the outer normal at P . Thus, the collision map induces a map: (β1, ψ1) → (β2, ψ2)

(see Fig. 2.14) and we shall first use a uniform partition of the (β, ψ) space. The

computation shows that whatever is the coarsening of these partitions the entropy

has the monotonic property in the initial stage. It is clear that, along mixing process,

the initial distribution will spread over all cells almost reaching the equilibrium value.

Physically, this process is directed by the strong instability, that is expressed by the

positive Lyapounov exponent.

We also consider the relation of the rate of increase of the entropy functionals and

Lyapounov exponents of the Lorentz gas. Our computation shows that this relation

is expressed by an inequality

max(S(n + 1) − S(n)) ≡ △S ≤
∑

λi≥0

λi (2.2)

where the “max” is taken over n, which means that the K-S entropy is an upper

bound of the rate of increase of this functional.

In section 3, we shall consider another phase space and another partitions associ-

ated to spatial extension of the motion of the Lorentz gas. Here the space in which
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moves a particle is a large torus divided into rectangular cells, in the center of each

cell there is one disk. Denoting the total number of cells by n and the number of

particles initially distributed in only one region, by N , and following them until each

executes t collisions with obstacles, we compute the probability that a particle is

located in the ith cell as given by:

ρi(t) =
Number of particles in cell i having made t collisions

N

The equi-distribution of the cells leads to take, as equilibrium measure, µi = 1
n
, so

that this “space entropy” is defined by:

Ssp(t) = −
n∑

i=1

ρi(t) ln(ρi(t)n) (2.3)

The maximum of absolute value of this entropy is equal to − ln n. So we normalize

as follows:

ssp(t) =
Ssp(t)

ln n
(2.4)
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Figure 2.2: Entropy of the collision map versus number of collisions for (a) a beam of 640 particles
for a radius a=0.2, neighboring disks centers distance 1 and a partition of (β, ψ) space into 25 × 25
cells, (b) a beam of 512 particles for the obstacles of radius 0.2, neighboring disks centers distance
1 and a partition of (β, ψ) space into 9 × 9 cells.

In section 2.4 we shall consider the hard disks systems. We shall compute an

entropy functional similar to the space-entropy on extended torus with several cells.
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The probabilities are defined as for the space entropy in the Lorentz gas. We shall

also do some comparisons of the H-theorem with the sum of normalized positive

Lyapounov exponents.

2.2 Entropy for collision map

The entropy for the collision map is computed for a beam of N particles on a toric

checkerboard with n cells. We start to calculate the entropy, just after all particles

have executed the first collision. In this computation, all particles have the same

initial velocity and are distributed in a small part of one cell. For each particle we

determine the first obstacle and the angles (β1, ψ1) of the velocity incoming vector

V1(P1) ( see the figures given in the Appendix). For a uniform partition P of the

space of the variables (β, ψ), the entropy S(t)is computed iteratively just after all

particles have executed the tth collision. We use the formula (2.1) where
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Figure 2.3: (a) and (b) are the entropy of the collision map with random initial conditions versus
number of collisions for the system of particles of the Fig. 2.2, respectively.

µ(Pi) =

∫ βi+1

βi

∫ ψi+1

ψi

cos βdβdψ (2.5)

is the invariant measure [30] of the cell Pi = [βi, βi+1[×[ψi, ψi+1[ and νt(Pi) is the

probability that a particle is located after t collisions in Pi computed as

Number of particles inPi having made t collisions

N
.
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The velocity after the collision is computed from the following equation:

V(P2) = V(P1) − 2(V(P1).n)n (2.6)

where n is the normal vector at the collision point. We explain in the Appendix the
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Figure 2.4: Logarithm of the collision map entropy versus number of collisions for the system of
particles of Fig. 2.2.

main geometric formula used for this computation. This entropy increase is shown

in the Fig. 2.2 for various partitions and various initial distributions. The absolute

value of the entropy of a distribution of particles, that we call its amount of entropy,

represents in fact its distance to equilibrium. This is illustrated in the examples of

randomly distributed initial velocity of particles having small amount of entropy (see

Fig. 2.3 ) comparatively with beams of particles. It is to be noted that the amount of

entropy increase under one collision is remarkably greater for the few first ones (more

or less 2-4 collisions) which corresponds to an exponential type increase (Fig. 2.4).

In order to calculate Lyapounov exponents by using the method of Benettin et al

[16], first we calculate the Jacobian matrix in the tangent space of the collision map:




∂β2

∂β1

∂β2

∂α1

∂α2

∂β1

∂α2

∂α1


 .



2.2 Entropy for collision map 46

0 2 4 6 8 10 12 14 16
3,0

3,5

4,0

4,5

5,0

5,5

6,0
Ly

ap
ou

no
v 

ex
po

sa
nt

Number of collisions
(a)

0 2 4 6 8 10 12 14 16

-4,5

-4,0

-3,5

-3,0

-2,5

-2,0

-1,5

-1,0

-0,5

0,0

E
nt

ro
py

 o
f t

he
 c

ol
lis

io
n 

m
ap

Number of collisions
(b)

Figure 2.5: (a) Lyapounov exponent and (b) entropy of the collision map, versus of number of
collisions for each particle. We see that the maximum of the entropy increase between two collisions
is less than of the value of the Lyapounov exponent.

Now, comparing △ S = max(S(t + 1)−S(t)) (where the “max” is taken over t) with

the positive Lyapounov exponent, λ, of the collision map we verify the inequality:

△ S < λ (2.7)

as shown in Fig. 2.5, where this exponent is ∼ 3.2. The maximal entropy increase

by collision for the distribution computed in this figure is not far from this value. So

it could be conjectured that in some suitable refinement limit, the entropy increase

of a beam tends to the positive Lyapounov exponent. The rate of the approach to

equilibrium is thus related to the positive Lyapounov exponent. Furthermore, the

value of Lyapounov exponent is only dependent of D
a
, i.e. the ratio of the distance

between two successive obstacles over the radius of the obstacle, and its variation is

exponential as shown in Fig. 2.6.

Collision number 1 2 3 4 5 6 7
Mean free time 1.966 26.174 5.801 3.820 3.611 4.452 4.177

Collision number 8 9 10 11 12 13 14
Mean free time 4.162 4.208 4.212 3.863 4.272 4.051 4.397

Table 2.1: Mean free time obtained for a beam of 640 particles for a radius a=0.2, neighboring
disks centers distance 1 and a partition of (β, ψ) space 25 × 25 cells.

In order to compare the entropy increase as a function of the collisions with the

entropy increase as a function of time, we compute the distribution of mean free time
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Figure 2.6: Lyapounov exponent versus D/a.
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Figure 2.7: Free time histogram for (a) first, (b) second and (c) third collision.

for the first 3 collisions. From time histogram for the first three collisions of this

system ( Fig. 2.7), we see that a great number of particles have the same mean free

time. As shown in the table 2.1, the mean free time vary during the first three or

four collisions but after those, for the following collisions, rapidly the system comes

near the equilibrium, where we have a constant mean free time approximately.

2.3 Spatially extended Lorentz gas entropy

The computation of the normalized space entropy equation by using (2.4) versus the

number of collisions shows a remarkable exponential increase both for beams and for

random initial distributions (Fig. 2.8). The computation of sum of the two positive

Lyapounov exponents of the flow of one particle is equal to 1.046. Thus, we observe
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Figure 2.8: (a) Normalized space entropy of the Lorentz gas versus number of collisions for a beam
of 640 particles for obstacles of radius a=0.2, neighboring disks centers distance 1 and a partition
of (x, y) space into 25 × 25 cells, (b) Logarithm of the space entropy versus number of collisions for
this system.

that the inequality between the normalized increase of the density of the space entropy

and this sum is verified.

2.4 Hard disks

Considering a uniform space partition of a large toric space we compute the par-

ticles densities, ρi, and the normalized space entropy as a function of time by using

the equation (2.4). Starting with a distribution of disks with localized positions in

some cell and random velocities, we compute binary collisions instants and the tra-

jectories of the hard disks. These instants are determined by checking the distance

between particles, after a time interval is passed. The Lyapounov exponents of the

flow are calculated by using the Benettin et al. algorithm. The result is shown in

the Figs. 2.9 and 2.10. These figures show the entropy and logarithm of monotonic

part of entropy versus time of the same gas with two distinct densities. The system

in the Fig. 2.10 is more dense than the system in Fig. 2.9, and its entropy increases

more rapidly. Fig. 2.11 is a histogram of the number of collisions, so we see that the

number of collisions in a fixed time interval is reduced for large time. From Figs.

2.9 and 2.10 we see that the monotonic part of the non-equilibrium entropy is also
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Figure 2.9: (a) Normalized space entropy and (b) its monotonic part logarithm versus time, for
128 hard disks with radius a=0.05 which are initially localized in the first cell of (x, y) space with
6 × 6 cells and a density σ1 = 0.889 disks per unit area.

varying exponentially with respect to time. This shows that the collision is the main

ingredient responsible of the entropy increase as described in the Boltzmann equation

theory.

Density 1
N

∑
λi>0(

λi

λmax
) △ssp

3.555 0.367 0.139
0.889 0.294 0.115
0.222 0.239 0.144

Table 2.2: The data for the hard disks systems of radius, a = 0.05 and the same initial conditions,
with cells 6 × 6, in terms of the density.

We shall now vary the density σ = N
V

and compute the characteristic quantities.

The graph of the normalized positive Lyapounov exponents spectrum per particle

for the same system as in Fig. 2.9 is shown in Fig. 2.12. The computation of the

normalized sums of the positive Lyapounov exponent, 1
N

∑
λi>0(

λi

λmax
), shows that the

inequality between maximum entropy increase and the sum of normalized of positive

Lyapounov exponents is verified ( Table 2.2 ).
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Figure 2.10: Normalized space entropy and its and its monotonic part logarithm for the same
system as Fig. 2.9, with a density σ2 = 3.555 disks per unit area.

2.5 Concluding remarks

The computations of the entropy amount of some given non-equilibrium initial

distributions relatively to the equilibrium measure show an exponential type increase

for all considered partitions and distributions during initial stage after which the en-

tropy increases slowly and fluctuates near its maximal value. These computations

confirm the existence of a relaxation time generally assumed in the derivation of

kinetic equations [15] and the origin of the rapid increase of the entropy due to the

number of collisions. The dispersive nature of the obstacles is responsible of the expo-

nential mixing type increase. This exponential type increase has been demonstrated

for the Sinäı entropy functional [32] in hyperbolic automorphisms of the torus. On

the other hand, the relation of the entropy increase to Lyapounov exponents can be

understood through Pesin relation and Ruelle inequality. In fact, the rate of entropy

increase should be bounded by the Kolmogorov-Sinäı entropy and such bound have

been found by Goldstein and Penrose for measure-theoretical dynamical systems un-

der some assumptions [28]. An open question is to characterize the measures reaching

the upper bound.

Any entropy functional is not a completely monotonic function of time for any

dynamical system. In order to define a completely monotonic entropy functional for

a dynamical system some conditions on the dynamics should be imposed. We can
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Figure 2.11: Number of collisions histogram system versus time in Fig. 2.9.
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Figure 2.12: Normalized spectrum Lyapounov of exponent of system in Fig. 2.9.

first suppose the map T on a phase space X to be a Bernoulli system or, slightly

more generally, a K-system. This means that there is an invariant measure µ and

some partition ξ0 of X such that Tξ0 becomes finer than ξ0 ( we denote it: Tξ0 ≥ ξ0).

Using the notation: T nξ0 = ξn, we obtain a family of increasingly refined partitions,

in the sense of the above order of the partitions. Moreover, ξn tends, as n → ∞, to

the finest partition of X into points, and ξn tends, as n → −∞, to the most coarse

partition, into one set of measure 1 and another set of measure zero. A physical

prototype of a Bernoulli and a K-system is the above billiard [30, 24]. A geometric

prototype of a Bernoulli and a K-system is uniformly hyperbolic system with Sinäı

invariant measure [31]. A non-equilibrium entropy for a family of initial measures,
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using conditional expectations relatively to the ξn partitions was first obtained as

an equivalence between the unitary group evolution and a semi-group of contraction

operators in the space of square integrable functions L2(µ) successively for the baker

transformation [29], for Bernoulli systems [21] and for K -systems [27]. Its extension

to the space of measures in K-systems has been realized in [20]. In differentiable

hyperbolic dynamical systems where the fibers of the ξn partitions are pieces of con-

tracting fibers, the construction of such entropy functional results from a generalized

coarse-graining with respect to these contracting fibers, each fiber being a piece of

manifold of zero measure.

2.6 Appendix

2.6.1 Collision Map

We shall give the formula of the collision map. We consider a particle which undergoes

the first collision with the disk of center O1 with velocity V1(p1) and the second

collision with the disk of center O2 with velocity V1(p2). Two cases are possible.

First, we consider non-crossing of the centers line as in the Fig. 2.13. In this figure

the angle P̂1P2M is α2 − β2 = −(α1 − β1), where M is such that MP2 is parallel to

O1O2. We can write

P1M = P1P2 cos(β1 − α1) = d − a cos α1 − a cos α2. (2.8)

and

P2M = P1P2 sin(β1 − α1) = a sin α1 − a sin α2, (2.9)

if we eliminate α2 between these equations we arrive at

β2 = arcsin[
d

a
sin(β1 − α1) + sin β1]. (2.10)

In crossing case which we present in Fig. 2.14 we see that the angle P̂2P1M is equal

to α2 − β2 = α1 − β1, and the length of P2M is changed to:

P2M = P1P2 sin(β1 − α1) = a sin α1 + a sin α2, (2.11)
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Figure 2.13: non-crossing Collision.
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Figure 2.14: crossing Collision.

then, we have

β2 = arcsin[
d

a
sin(β1 − α1) − sin β1]. (2.12)

To obtain β2 in the first collision between particle and obstacle Fig. 2.15 , we take

d = OP1, β1 = 0 and α1 = ϑ in the collision map.

2.6.2 Algorithm description

In this section we describe the algorithm which we used in our program for Lorentz

gas. We first define in the main of our program the initial conditions for the particles

and the obstacles positions. In the second step, we compute with which obstacle, a

particle will collide: we measure the angle between velocity of particle and the line

between this particle and the center of obstacle, OP1 in Fig. 2.16, if this angle is less

than or equal to the angle between this line, OP1, and the tangent line on the circle,

i.e. P1N, in brief if ϑ ≤ ϕ in Fig. 2.16, we have a collision. Now, we use the collision
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Figure 2.15: Particle obstacle Collision.

map equation (2.10) or (2.12) to obtain the collision angles, β2, and α2 (see Fig. 2.15).

In this step, we can also obtain the length of arrow of our induced collision map, i.e.

P1P2 (see Fig. 2.15), easily as:

P1P2 =
OP1 − a cos α2

cos ϑ
(2.13)

where α2 = β2 −ϑ. Then, we can calculate the time of flight of particle between two

V
1
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1
)

P
1

O

N

Figure 2.16: Particle obstacle Collision.

collisions, respectively, as t = P1P2/v. This provides the trajectory of a particles.

Let us turn the computation of space entropy. When a particle arrives at a wall of the

big torus, before it does a collision with an obstacle (see on the Fig. 2.1) trajectories

are pursued until it undergoes a collision on the torus. We have to compute the

position of the obstacle that the particle will hit (see Fig. 2.17) and the angle α1
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in the collision map, and to determine which type of collision, i.e. crossing or non-

crossing case, will occur. We first find the angle of collision

β2 = ϑ + ϕ = arcsin[
MO2

a
sin ϑ], (2.14)

then we arrive at α1 and α1 as

V2(p2)

V1(p1)

1
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1O
2

P
1

P
2

1

1

2

M

d

Figure 2.17: The motion of the particle take place on a tours.

{
αn

1 = β1 + arcsin[a
d
(sin β2 − sin β1)], αn

2 = β2 + (β1 − α1)

αc
1 = β1 − arcsin[a

d
(sin β2 + sin β1)], αc

2 = β2 − (β1 − α1)

(2.15)

where the superscript “c” corresponds to crossing case and “n” corresponds to non-

crossing case see equations (2.10) and (2.12), respectively. In the above equations,

the d parameter is unknown, and will be recognized it in the end of this Appendix.

If we subtract the above equations we obtain

αc
1 − αn

1 = − arcsin[
a

d
(sin β2 + sin β1)] − arcsin[

a

d
(sin β2 − sin β1)] (2.16)

We can see the above equation yields αc
1 − αn

1 ≤ 0. It means that in the same

conditions the angle α1 in the non-crossing is greater than crossing case. Also, we

can get the same conclusion for α2, i.e. αc
2 ≤ αn

2 . Now, we initiate the algorithm

in the non-crossing case and we find αc
1 and αn

2 . If ϑ ≤ α2, thus, we had a correct

supposition, otherwise, we must consider the crossing case, and we re-calculate these

angles. In order to find in this case the parameter d = |O1O2|, we calculate it by

approximation method. The equation that recognize d is:

d = vdt cos(β1 − α1) + a(cos α1 + cos α2) (2.17)
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where dt is the time of free flight of particle between two collisions, see Figs. (2.1 and

2.17 ). In the above equation we have two unknown variables, α1 and α2. We use the

zeroth approximation as

d ≈ vdt (2.18)

where we used a ≪ vdt. Now, we calculate the angles, α1 and α2, as mentioned in

above of this Appendix. Then, we re-calculate d with the first approximation, and we

can repeat this procedure. However, the convergence is very rapid.
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Part II

Unstable Quantum Systems
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Chapter 3

Mathematical Preliminaries

3.1 Markov process

3.1.1 Stochastic process

By stochastic processes we mean, in a loose sense, systems which evolve probabilis-

tically in time or more precisely, systems in which a certain time-dependent random

variable X(t) exists. We can measure values x1, x2, x3, . . . , etc., of X(t) at times

tl, t2, t
3, . . . and we assume that a set of joint probability densities exists

P (x1, t1; x2, t2; . . .) (3.1)

which describe the system completely.

In terms of these joint probability density functions, one can also define conditional

probability densities:

P (x1, t1; x2, t2; . . . |y1, τ1; y2, τ2; . . .) =
P (x1, t1; x2, t2; . . . ; y1, τ1; y2, τ2; . . .)

P (y1, τ1; y2, τ2; . . .)
(3.2)

These definitions are valid independently of the ordering of the times, although it is

customary to consider only times which increase from right to left i.e.,

t1 ≥ t2 ≥ · · · ≥ τ1 ≥ τ2 ≥ · · · . (3.3)

The concept of an evolution equation leads us to consider the conditional probabilities

as predictions of the future values of X(t) (i.e., x1, x2, . . . at times tl, t2, . . .), given

the knowledge of the past (values yl, y2, . . ., at times τ1, τ2, . . .).
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The concept of a general stochastic process is very loose. To define the process

we need to know at least all possible joint probabilities of the kind in (3.1). If such

knowledge does define the process, it is known as a separable stochastic process. All

the processes considered here will be assumed to be separable.

The most simple kind of stochastic process is that of complete independence:

P (x1, t1; x2, t2; . . .) =
∏

i

P (xi, ti) (3.4)

which means that the value of X at time t is completely independent of its values

in the past (or future). An even more special case occurs when the P (xi, ti) are

independent of t so that the same probability law governs the process at all times.

We then have the Bernoulli trials, in which a probabilistic process is repeated at

successive times [34].

The next most simple idea is that of the Markov process in which knowledge of

only the present determines the future.

3.1.2 Markov process

The Markov assumption is formulated in terms of the conditional probabilities. We

emphasize that if the times satisfy the ordering (3.3), the conditional probability is

determined entirely by the knowledge of the most recent condition, i.e.,

P (x1, t1; x2, t2; . . . |y1, τ1; y2, τ2; . . .) = P (x1, t1; x2, t2; . . . |y1, τ1) (3.5)

This is simply a more precise statement of the assumptions made by Einstein, Smolu-

chowski and others. It is, even by itself, extremely powerful. For it means that we can

define everything in terms of the simple conditional probabilities P (x1, t1|y1, τ1). For

example, by definition of the conditional probability density P (x1, t1; x2, t2|y1, τ1) =

P (x1, t1|x2, t2; y1, τ1)P (x2, t2|y1, τ1) and using the Markov assumption (3.5), we find

P (x1, t1; x2, t2; y1, τ1) = P (x1, t1|x2, t2)P (x2, t2|y1, τ1) (3.6)

and it is not difficult to see that an arbitrary joint probability can be expressed simply

as

P (x1, t1; x2, t2; . . . ; xn, tn) =

P (x1, t1|x2, t2)P (x2, t2|x3, t3)P (x3, t3|x4, t4) · · · P (xn−1, tn−1|xn, tn) (3.7)
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provided [34]

t1 ≥ t2 ≥ · · · ≥ tn−1 ≥ tn. (3.8)

3.2 Support

A support of a real-valued function F (e.g. continuous function) on a set X (e.g.

topological space as a real line) is the subset of X on which F is nonzero, i.e. the

support of F is the smallest closed subset of X outside of which F is zero.

Compact support: Compact support is a closed and bounded subset of X.

Function with compact support in X is the function with compact support, that is

a compact subset of X. For example, if X is the real line, they are examples of

functions that vanish at infinity. Indeed, they are special cases of such functions that

must vanish at finite bounds. Note that every function on a compact space has a

compact support since every closed subset of a compact space is compact.

We can talk about support of a distribution, e.g. Dirac delta function δ(x) on

the real line, with a smooth test function F , with support not including the point 0.

Thus, if δ(F ) (the distribution δ applied as linear functional to F ) is 0, we can say

that the support of δ is {0} only.

A distribution has a singular support, such that the set X has a subset which

a distribution fails to be a function. For example, the Fourier transform of the

Heaviside step function1 is equal to ∼ 1
x

except at x = 0. Now, we say this transform

distribution has a singular support at {0}. It cannot accurately be expressed as a

function in relation to test functions with support including 0. It can be expressed

as an application of a Cauchy principal value improper integral [35].

3.3 Lp space

Lp space is a space of the p-power integrable function. For example, for any p ≥ 1,

the Euclidean space Rn together with the p-norm (i.e. ‖x‖p = (|x1|p + ... + |xn|p)
1
p )

becomes an Lp space. In Lp , if we have a vectors with infinite number of components,

1Heaviside step function: F (x) =

{
0 x < 0,
1 x > 0.
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real or complex, we can define the vector sum as

(x1, x2, ..., xn, ...) + (y1, y2, ..., yn, ...) = (x1 + y1, x2 + y2, ..., xn + yn, ...), (3.9)

and the scalar action is given by

α(x1, x2, ..., xn, ...) = (αx1, αx2, ..., αxn, ...), (3.10)

then, p-norm is

‖x‖p = (|x1|p + ... + |xn|p + ...)
1
p . (3.11)

Here instead of using a sum for this definition we can use an integral. Now, the series

in the right hand side of the above is not always convergence, for example (1, 1, ...),

and we have an infinite p − norm, for p ≥ 1. Now, we define Lp as the set of all

infinite sequences of real numbers such that the p-norm is finite. We can also define

∞-norm as

‖x‖∞ = lim
p→∞

‖x‖p. (3.12)

The Lp together with its p-norm is a Banach space. Banach space is studied in

functional analysis, and it defined as a vector space over real or complex numbers

with a norm complete.

The some properties of Lp space are [35]:

i) L2 is the Hilbert space.

ii)Lp, 1 < p < ∞ is reflexive, i.e. (Lp)∗ = Lq, where 1
p
+ 1

p
= 1. For example, L1 is

a dual of L∞, and we know that L1 is a dual of C0 which is the space of all sequence

converging to zero, with identical to ‖x‖∞.

3.4 Hardy space

Hardy space Hp(D), for 0 < p < ∞, is the class of functions holomorphic on the open

unit disk D which is satisfy the following condition

sup
0<r<1

(
1

2π

∫ 2π

0

∣∣f(reiθ)
∣∣pdθ

) 1
p

< ∞. (3.13)

Here, p refers to the Hardy space of p-norm which is denoted by ‖f‖Hp . In fact, in the

complex analysis Hardy space is an analogue of the Lp space of functional analysis

[35, 36].
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3.5 Fock space

The Hilbert space in the quantum-mechanical describes a single Schrödinger particle.

The Fock space is an algebraic system (Hilbert space) used in quantum mechanics to

describe quantum states with a variable or unknown number of particles.

For defining the Fock spaces, let be a Hilbert space and denote by Hn the n-fold

tensor product H⊗H⊗ · · · ⊗ H. Set H0 = C and

F(H) =
∞⊕

n=0

Hn (3.14)

F(H) is called the Fock space over H; it will be separable if H is separable. For

example, if H = L2(R), then an element ψ ∈ F(H) is a sequence of functions

ψ = {ψ0, ψ1(x1), ψ2(x1, x2), ψ3(x1, x2, x3), . . .} (3.15)

so that

|ψ0|2 +
∞∑

n=0

∫

Rn

|ψn(x1, . . . , xn)|2dx1 · · · dxn < ∞ (3.16)

Actually, it is not F(H) itself, but two of its subspaces which are used most frequently

in quantum field theory. These two subspaces are defined as follows: let us consider

the Sn as an orthogonal projection with an n-fold symmetric tensor product of H
range. In the case where H = L2(Rn) and Hn = L2(R) ⊗ · · · ⊗ L2(R), SnHn is just

the subspace of L2(Rn) of all functions left invariant under any permutation of the

variables. We now define

Fs(H) =
∞⊕

n=0

SnHn (3.17)

Fs(H) is called the symmetric Fock space over H or the Boson Fock space.

Let us define A as an orthogonal projection on H. AnHn is just the subspace of

L2(Rn) consisting of those functions odd under interchange of two coordinates. The

subspace

Fa(H) =
∞⊕

n=0

AnHn (3.18)

is called the antisymmetric Fock space [40] over H or the Fermion Fock space over H.
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3.6 Hilbert-Schmidt operators

Let H is the Hilbert space and {ei : i ∈ I} is an orthonormal basis of H. A bounded

operator, T , in H with the following property

∑

i∈I

‖Tei‖ < ∞, (3.19)

is called an Hilbert-Schmidt operator. If the above relation is true for one orthonormal

basis it is true for any other orthonormal basis.

Let T1 and T2 are the Hilbert-Schmidt operators, the Hilbert-Schmidt inner product

is defined by

〈T1, T2〉HS =
∑

i∈I

〈T1ei, T2ei〉. (3.20)

This definition is independent of an orthonormal basis [37, 38].

3.7 Convolution

The convolution is a mathematical operator which takes two functions f and g and

produces a third function that in a sense represents the amount of overlap between

f and a reversed and translated version of g. A convolution is a kind of very general

moving average, as one can see by taking one of the functions to be an indicator

function of an interval.

Definition: The convolution of f and g is written f ∗ g. It is defined as the

integral of the product of the two functions after one is reversed and shifted. As such,

it is a particular kind of integral transform:

(f ∗ g)(t) =

∫ t

0

f(τ)g(t − τ)dτ (3.21)

By change of variables, replacing τ by (t − τ), it is sometimes written as:

(f ∗ g)(t) =

∫ t

0

f(t − τ)g(τ)dτ (3.22)

The integration range depends on the domain on which the functions are defined.

While the symbol t is used above, it need not represent the time domain. In the case

of a finite integration range, f and g are often considered to extend periodically in
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both directions, so that the term g(t− τ) does not imply a range violation. This use

of periodic domains is sometimes called a cyclic, circular or periodic convolution. Of

course, extension with zeros is also possible. Using zero-extended or infinite domains

is sometimes called a linear convolution[35, 39].

3.8 Fourier Transforms

3.8.1 Definition

we introduce the Fourier transforms as:

f̂(u) =
1√
2π

∫ ∞

−∞
f(x)eiuxdx (3.23)

f(x) =
1√
2π

∫ ∞

−∞
f̂(u).e−iuxdu (3.24)

We shall call such functions simply Fourier transforms of each other. For example

f(x) = e−|x|, f̂(u) =

√
2

π

1

1 + x2
(3.25)

are the Fourier transforms of each other.

If f(x) is even, f̂(u) = f̂c(x) which is defined as:

f̂c(u) =
1√
2π

∫ ∞

−∞
fc(x) cos ux dx (3.26)

fc(x) =
1√
2π

∫ ∞

−∞
f̂c(u) cos ux du. (3.27)

We shall call functions so related is the Fourier cosine transforms of each other.

If f(x) is odd, f̂(u) = f̂s(x) which is defined as:

f̂s(u) =
1√
2π

∫ ∞

−∞
fs(x) sin ux dx (3.28)

fs(x) =
1√
2π

∫ ∞

−∞
f̂s(u) sin ux du. (3.29)

We shall call functions so related is the Fourier sine transforms of each other [98].
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3.8.2 Generalized Fourier transforms

The existence of the integral defining f̂(u) implies a certain restriction on f(x) at

infinity. Even if f̂(u) does not exist, the functions

f̂+(w) =
1√
2π

∫ ∞

0

f(x)eiwxdx (3.30)

f̂−(w) =
1√
2π

∫ 0

−∞
f(x)eiwxdx (3.31)

where w = u + iv, may exist, the former for sufficiently large positive v, the latter for

sufficiently large negative v. For

f̂+(w) =
1√
2π

∫ ∞

0

f(x)e−vxeiuxdx, (3.32)

so that f̂+(w) is the transformation of the function equal to f(x)e−vx for t > 0, and

to 0 for t < 0. The formula reciprocal to (3.32) is

1√
2π

∫ ∞

−∞
f̂+(u + iv)e−iuxdu =

{
f(x)e−vx, x > 0

0, x < 0
(3.33)

or

1√
2π

∫ ∞

−∞
f̂+(u + iv)e−i(u+iv)xdu =

{
f(x), x > 0

0, x < 0.
(3.34)

There is a similar formula for f̂−. Adding we may write

f(x) =
1√
2π

∫ ia+∞

ia−∞
f̂+(w)e−iwxdw +

1√
2π

∫ ib+∞

ib−∞
f̂−(w)e−iwxdw (3.35)

where a is a sufficiently large positive number, b a sufficiently large negative number.

For example, if f(x) = ex, the we have

f̂+(w) = −
√

1

2π

1

1 + iw

f̂−(w) =

√
1

2π

1

1 + iw
(3.36)

By replacing the above equations in the (3.35)

f(x) = − 1

2π

∫ ia+∞

ia−∞

e−iwx

1 + iw
dw +

1

2π

∫ ib+∞

ib−∞

e−iwx

1 + iw
dw. (3.37)
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Taking the first integral by considering a semi-circle contour in the half-plane superior

we see that this integral is equal to ex, because there is a pole at ”w = i” in this

contour. The second integral is equal to 0, since in the half-plane inferior is no pole

[98].

3.9 Laplace transforms

The formula

F (s) =

∫ ∞

0

f(t)e−stdx (3.38)

is known as Laplace’s integral. If f(t) is given function, F (s) is in general analytic

for Res > 0. The reciprocal formula is [98]

1

2πi

∫ k+i∞

k−i∞
F (s)esxds =

{
f(x), x > 0

0, x < 0.
(3.39)

From the formal point of view the formulae are a particular case of those of Subsection

3.8.1, as is seen on putting s = σ + it.

3.10 Hilbert transforms

The Hilbert transforms formula are defined as:

g(x) =
1

π
P

∫ ∞

−∞

f(t)

t − x
dt (3.40)

f(x) = − 1

π
P

∫ ∞

−∞

g(t)

t − x
dt (3.41)

where P denote principal value and g and f are reciprocity Hilbert transforms of each

other.

Now we introduce a theorem which we admit to do analytical continuation in

Hilbert transforms [98, 36].

Theorem: Let Φ(z) be an analytical function, regular for y > 0, and let

1

πi

∫ ∞

−∞
|Φ(x + iy)|2dx (3.42)
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exist for every positive y, and be bounded. Then, as y → 0, Φ(x + iy) converge in

mean to a function Φ(x), also Φ(x + iy) → Φ(x) for almost all x. For y > 0

Φ(x) =
1

πi

∫ ∞

−∞

Φ(u)

u − z
du, (u real). (3.43)

If Φ(z) = U(x, y)+iV (x, y), Φ(x) = f(x)+ig(x), the functions f and g are conjugate2

and the functions U and V are connected by the following formulae:

U(x, y) = − 1

π

∫ ∞

−∞

t − x

(t − x)2 + y2
g(t)dt (3.44)

V (x, y) = −y

π

∫ ∞

−∞

g(t)

(t − x)2 + y2
g(t)dt. (3.45)

3.11 Paley-Wiener theorem

The Paley-Wiener theorem relates growth properties of entire functions3, F (z) and

Fourier-Laplace transformation of distributions of compact support, ψ(λ), which is

defined as follows:

F (z) =
1

(2π)
n
2

∫
e−iλzψ(λ)dλ, (3.46)

where z is an element in the complex space Cn.

Paley-Wiener theorem: An entire function F on a complex space, Cn, is the

Fourier-Laplace transform of distribution ψ(λ) of compact support if and only if for

all z ∈ Cn,

|F (z)| ≤ C(1 + |z|)NeB|Imz|, (3.47)

for some constants C, B, and N . Additional growth conditions on the entire function

F impose regularity properties on the distribution ψ(λ). For example, if for every

positive N there is a constant CN such that for all z ∈ Cn,

|F (z)| ≤ CN(1 + |z|)−NeB|Imz|, (3.48)

2They are connected by Hilbert transforms (3.40) and (3.41)
3An entire function is a function that is analytic everywhere on the whole complex plane. Typical

examples of entire functions are the polynomials, the exponential function, and sums, products and
compositions of these. Every entire function can be represented as a power series which converges
everywhere. Neither the natural logarithm nor the square root function is entire. Note that an entire
function may have a singularity or even an essential singularity at the complex point at infinity. In
the latter case, it is called a transcendental entire function.
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then ψ(λ) is infinitely differentiable and conversely. In other words, the Paley-Wiener

theorem explicitly describes the Hardy space H2(R) by using the unitary Fourier

transform F . The theorem states that

FH
2(R) = L

2(R+). (3.49)

This is a very useful result as it enables one pass to the Fourier transform of a

function in the Hardy space and perform calculations in the easily understood space

of square-integrable functions supported on the positive axis [98, 35].
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Chapter 4

Some Quantum Statistical
Mechanical Concepts

4.1 Density matrix

Before we define the density matrix let us note that an operator is defined when all

its matrix elements with respect to a complete set of states are defined. Its matrix

elements with respect to any other complete set of states can be found by the well-

known rules of transformation theory in quantum mechanics. Therefore, if all the

matrix elements of an operator are defined in one representation, the operator is

thereby defined in any representation.

Defining the mean of a dynamical operator, B, in a system in a mixed state

|φ〉 =
∑

a P (a)|φa〉 is

〈B〉 =
∑

a

P (a)〈φa|B|φa〉, (4.1)

where P (a) is the probability that each state occurs, this probability is not depending

in quantum effects but simply depending in the randomness of state preparation.

Now, we introduce the density matrix (or operator) ρ by

ρ =
∑

a

P (a)|φa〉〈φa|. (4.2)

Defining trace operation, Tr:

Tr(A) =
∑

n

〈φn|A|φn〉, (4.3)
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where
∑

n |φn〉〈φn| = 1, we can rewrite equation (4.1) as:

〈B〉 =
∑

a

P (a)〈φa|B|φa〉

=
∑

a,n

P (a)〈φa|B|φn〉〈φn|φa〉

=
∑

a,n

P (a)〈φn|φa〉〈φa|B|φn〉

= Tr(ρB) (4.4)

The important properties of density matrix are:

i) Tr(ρ) =
∑

a,n P (a)〈φn|φa〉〈φa|φn〉 =
∑

a P (a) = 1.

ii) For any state |A〉, ρ is always positive, i.e.

〈A|ρ|A〉 =
∑

a P (a)|〈A|φa〉|2 ≥ 0.

iii) For pure state we have P (a) = δ(a, a′), for some a′. Here δ(a, a′) is Dirac

delta-function for continuous spectrum and delta Kronecker for discret state. Thus,

yielding ρ2 = ρ and conversely.

iv) Tr(ρ2) ≤ Tr(ρ), equal is only for pure state.

v) ρ is self-adjoint: ρ† = ρ.

The introduction of the density matrix merely introduces a notation. It does not

introduce new physical content. The usefulness of the density matrix lies solely in the

fact that with its help (4.4) is presented in a form that is manifestly independent of the

choice of the basis φa, although this independence is a property that the expectation

value always possesses [34, 38, 35].

4.2 Quantum Liouville equation

The density operator ρ defined by (4.2) contains all the information about an ensem-

ble. It is independent of time if it commutes with the Hamiltonian of the system and

if the Hamiltonian is independent of time.

This statement is an immediate consequence of the equation of the motion of ρ

is obtained from Schrödinger equation, H|ψ〉 = i∂|ψ〉
∂t

(~ = 1), for any state. We can
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obtain corresponding equation for density matrix as

∂ρ

∂t
=

∑

a

P (a)[(∂t|φa〉)〈φa| + |φa〉(∂t〈φa|)]

= −i(Hρ − ρH). (4.5)

That is,

i
∂ρ

∂t
= [H, ρ] (4.6)

which is quantum Liouville equation [34].

4.3 Projection operator

In linear algebra and functional analysis, a projection is a linear transformation Pa

from a vector space to itself such that P2
a = Pa. Projections map the whole vector

space to a subspace and leave the points in that subspace unchanged . Thus, we use

the projection operator,

Pa = |φa〉〈φa|, (4.7)

for a system in a pure state instead of density matrix. Only 0 and 1 can be an

eigenvalue of a projection.

The subspaces U and V are complementary, i.e. the underlying vector space is the

direct sum X ≡ U ⊕ V. This means that any vector |φ〉 in the domain can uniquely

be written as |φ〉 = |φa〉+
∑

b6=a |φb〉 with |φa〉 ∈ U and {|φb〉} ∈ V. The vector |φa〉 in

this decomposition is given by |φa〉 = Pa|φ〉, where Pa is the projection along V onto

X. The vector
∑

b6=a |φb〉 is given by
∑

b6=a |φb〉 = (1−Pa)|φ〉. The operator 1−Pa is

called the complementary projection[35].

The projection operator has the following proprieties [41]:

i) 〈B〉 = Tr(PaB) = Tr(BPa),

ii) P2
a = Pa,

iii) Tr(Pa) = 1,

iv) i d
dt
Pa = [H,Pa].
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4.4 Density matrix of bipartite system

If we have two systems A and B in the Hilbert space with states |φa〉A ∈ HA and

|φa〉B ∈ HB, those interactions give

√
Pa|φa〉A ⊗ |φa〉B ≡ |ψa〉AB ∈ HA ⊗HB, (4.8)

where ”⊗” is the tensor product. Then, the density matrix of this bipartite quantum

system is written as:

ρAB =
∑

a

Pa|ψa〉AB AB〈ψa|. (4.9)

We also have

ρA = TrB(ρAB), (4.10)

where TrB is partial trace relative to the system B, an ρA is called reduced density

matrix (operator) . we can prove the above equation as follows [34, 38, 35]:

TrB(ρAB) =
∑

a,a′

Pa B〈φa′|ψa〉A B〈ψa|φa′〉B

=
∑

a,a′

Pa B〈φa′|φa〉B ⊗ |φa〉A A〈φa| ⊗ A〈φa|φa′〉B

=
∑

a

Pa|φa〉A A〈φa|

= ρA, (4.11)

where B〈φa′|φa〉B = δaa′ .

4.5 Quantum entanglement

4.5.1 Introduction

Quantum entanglement is a quantum mechanical phenomenon in which the quantum

states of two or more objects have to be described with reference to each other, even

though the individual objects may be spatially separated. This leads to correlations

between observable physical properties of the system. For example, it is possible to

prepare two particles in a single quantum state such that when one is observed to be

spin-up, the other one will always be observed to be spin-down and vice versa, despite
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the fact that it is impossible to predict, according to quantum mechanics, which set of

measurements will be observed. As a result, measurements performed on one system

seem to be instantaneously influencing other systems entangled with it. But quantum

entanglement does not enable the transmission of classical information faster than

the speed of light. It prompts some of the more philosophically oriented discussions

concerning quantum theory. The correlations predicted by quantum mechanics, and

observed in experiment, reject the principle of local realism, which is that information

about the state of a system should only be mediated by interactions in its immediate

surroundings. Different views of what is actually occurring in the process of quantum

entanglement can be related to different interpretations of quantum mechanics.

Entanglement is one of the properties of quantum mechanics which caused Einstein

and others [78] to dislike the theory. In 1935, Einstein, Podolsky, and Rosen formu-

lated the EPR paradox, a quantum-mechanical thought experiment with a highly

counterintuitive and apparently nonlocal outcome. Einstein famously derided entan-

glement as ”spooky action at a distance”.

On the other hand, quantum mechanics has been highly successful in producing

correct experimental predictions, and the strong correlations associated with the phe-

nomenon of quantum entanglement have in fact been observed [35]. One apparent way

to explain quantum entanglement is an approach known as hidden variable theory,

in which unknown, shared, local parameters would cause the correlations. However,

in 1964 Bell derived an upper limit, known as Bell’s inequality, on the strength of

correlations for any theory obeying local realism. Quantum entanglement can lead to

stronger correlations that violate this limit, so that quantum entanglement is experi-

mentally distinguishable from a broad class of local hidden-variable theories. Results

of subsequent experiments have overwhelmingly supported quantum mechanics. Al-

though there are a number of known loopholes in these experiments, high-efficiency

and high-visibility experiments are now in progress which should confirm or disaffirm

the influence of those loopholes.

Observations on entangled states naively appear to conflict with the property

of relativity that information cannot be transferred faster than the speed of light.

Although two entangled systems appear to interact across large spatial separations,

no useful information can be transmitted in this way, so causality cannot be violated

through entanglement. This is the statement of no communication theorem.

Although no information can be transmitted through entanglement alone, it is pos-

sible to transmit information using a set of entangled states used in conjunction with
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a classical information channel. This process is known as quantum teleportation[35].

4.5.2 Entanglement States

Now, we introduce the mathematical form of the entanglement. If we can write a state,

|ψ〉AB, in HA ⊗HB as product of two states in HA and HB, i.e. |ψ〉AB = |φ〉A ⊗ |φ〉B,

we say that |ψ〉AB is separable, else it is an entangled state or nonseparable state. For

example, we consider two following systems:

|φ〉A = α0|0〉A + α1|1〉A and |φ〉B = α0|0〉B + α1|1〉B, (4.12)

and we writing |ψ〉AB, as

|ψ〉AB = α00|0〉A ⊗ |0〉B + α01|0〉A ⊗ |1〉B + α10|1〉A ⊗ |0〉B + α11|1〉A ⊗ |1〉B, (4.13)

thus, |ψ〉AB is a separable state if

α00 = α0α0, α01 = α0α1, α10 = α1α0 and α11 = α1α1, (4.14)

else |ψ〉AB is an entangled state [38, 42].

4.6 Schmidt decomposition theorem

All state |ψ〉AB in HA ⊗HB can be written as the following form

|ψ〉AB =
∑

a

√
Pa|φa〉A ⊗ |φa〉B, (4.15)

with A〈φa|φa′〉A = δaa′ and B〈φa|φa′〉B = δaa′0. Equation (4.15) is called the Schmidt

decomposition of |ψ〉AB. In a bipartite pure state, subsystems A and B separately are

described by density operators ρA and ρB, it follows from equation (4.15) that ρA and

ρB have the same nonvanishing eigenvalues (the Pa’s). The number of nonvanishing

eigenvalues is called the Schmidt number of |ψ〉AB. A bipartite pure state is said to

be entangled if its Schmidt number is greater than one. From expression (4.15) we

can obtain reduced density matrix ρA and ρB as [38, 42]

ρA =
∑

a

Pa|φa〉A A〈φa| and ρB =
∑

a

Pa|φa〉B B〈φa|. (4.16)
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4.7 von Neumann entropy

The density matrix was introduced, with different motivations, by von Neumann

and by Lev Landau. The motivation that inspired Landau was the impossibility of

describing a subsystem of a composite quantum system by a state vector. On the

other hand, von Neumann introduced the density matrix in order to develop both

quantum statistical mechanics and a theory of quantum measurements. Given the

density matrix ρ, von Neumann defined the entropy as

Svn(ρ) = −Tr(ρ log ρ) (4.17)

which is a proper extension of Shannon’s entropy to the quantum case. To compute

(4.17) one has to find a basis in which ρ possesses a diagonal representation. We note

that the entropy Svn(ρ) times the Boltzmann constant kB equals the thermodynamical

or physical entropy. If the system is finite (finite dimensional matrix representation)

the entropy (4.17) describes the departure of our system from a pure state. In other

words, it measures the degree of mixture of our state describing a given finite system.

Properties of the von Neumann entropy:

i) Purity: A pure state ρ = |φ〉〈φ| has Svn(ρ) = 0

ii) Maximum: If ρ has N nonvanishing eigenvalues N -dimensional Hilbert space,

then

Svn(ρ) ≤ log N. (4.18)

The maximum reaches for a maximally mixed state.

iii) Invariance: Svn(ρ) is invariant under unitary changes in the basis of ρ, that

is,

Svn(UρU−1) = Svn(ρ) (4.19)

This is obvious, since Svn(ρ) depends only on the eigenvalues of ρ.

iv) Concavity: For λ1, λ2, . . . , λn ≥ 0 and λ1 +λ2 + · · ·+λn = 1, Svn(ρ) is concave,

that is,

Svn(
n∑

i

λiρi) ≥
n∑

i

λiSvn(ρi) (4.20)

that is, von Neumann entropy is larger if we are more ignorant about how the state

was prepared. This property is a consequence of the convexity of the log function.

v)Subadditivity: Consider a bipartite system AB in the state ρAB. Then

Svn(ρAB) ≤ Svn(ρA) + Svn(ρB) (4.21)
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where ρA = TrBρAB and ρB = TrAρAB, with equality for ρAB = ρA ⊗ ρB. Thus,

entropy is additive for uncorrelated systems, but otherwise the entropy of the whole

is less than the sum of the entropy of the parts.

vi) Strong subadditivity: For any state ρABC of a tripartite system,

Svn(ρABC) + Svn(ρB) ≤ Svn(ρAB) + Svn(ρBC) (4.22)

This property is called “strong” subadditivity in that it reduces to subadditivity in

the event that B is one-dimensional. The proof of the corresponding property of

Shannon entropy is quite simple, but the proof for von Neumann entropy turns out

to be surprisingly difficult. You may find the strong subadditivity property easier

to remember by thinking about it this way: AB and BC can be regarded as two

overlapping subsystems. The entropy of their union (ABC) plus the entropy of their

intersection (B) does not exceed the sum of the entropies of the subsystems (AB and

BC). We will see that strong subadditivity has deep and important consequences.

vii) Triangle inequality:(1) For a bipartite system [35, 38]

Svn(ρAB) ≥ |Svn(ρA) − Svn(ρB)|. (4.23)

4.8 Decoherence

4.8.1 Definition

Unitary evolution condemns every closed quantum system to “purity”. Yet if the

outcome of a measurement are to become independent, with consequences that can

be explored separately, a way must be found to dispose of the excess information.

This disposal can be caused by interaction with the degrees of freedom external to

the system, which we shall summarily refer to as “the environment”.

If the phase relative between two wave function (|φ1〉 and |φ2〉), is constant or it

does not fluctuate randomly with time, these wave function are coherent. Now, the

superposition of two coherent wave functions, i.e.

|φ〉 = (α1|φ1〉 + α2|φ2〉), (4.24)

gives the interference effect in the probability density |φ|2 = 〈φ|φ〉, that is equal to

|φ|2 = |α1|2〈φ1|φ1〉 + α∗
1α2〈φ1|φ2〉 + α∗

2α1〈φ2|φ1〉 + |α2|2〈φ2|φ2〉 (4.25)
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The diagonals terms, i.e. the first and forth terms, in the above equation are the

corresponding to classical probability densities, whereas, the off-diagonals terms, i.e.

the second and third terms, are called interference terms which are the quantum

effect. If this system, φ, is coupled to an environment, the relative phase between

|φ1〉 and |ψ2〉 will typically fluctuate with time, and the interference terms will rapidly

average to zero. Their vanishing is called decoherence, i.e. the different components

of wave function lose their ability to interfere.

We can also use the density matrix to describe the probability distribution for the

alternative outcome, by taking the pure state density matrix

ρ = |α1|2|φ1〉〈φ1| + α∗
1α2|φ2〉〈φ1| + α∗

2α1|φ1〉〈φ2| + |α2|2|φ2〉〈φ2|. (4.26)

Thus, the decay of off-diagonal elements in the density matrix gives the reduced

density matrix as:

ρred = |α1|2|φ1〉〈φ1| + |α2|2|φ2〉〈φ2|. (4.27)

Reduction of the state from ρ to ρred decreases the information available to the ob-

server about the composite system (system+detector). Thus its entropy Svn increases

as it must,

△Svn = Svn(ρred) − Svn(ρ) = |α1|2 log |α1|2 + |α2|2 log |α2|2. (4.28)

The initial state described by ρ was pure, and the reduced state, ρred is mixed. In-

formation gain-the objective of measurement-is accomplished only when the observer

interacts and becomes correlated with the detector in the already precollapsed state

ρred. This must be preceded by an increase in entropy if the outcomes are to become

classical, so that they can used as initial conditions to predict the future [43, 44].

4.8.2 Decoherence free subspace

It might appear as if accelerated decoherence is an inevitable fact, a fundamental

natural law. This is, however, not the case. It is well known by now that certain

subspaces of Hilbert space might be completely decoherence free. Such a situation

arises if the coupling to the environment has a certain symmetry, in the sense that the

interaction Hamiltonian his degenerate eigenvalues. If |φ1〉, |φ2〉, . . . , |φn〉 are eigen-

states of Hint with the same eigenvalue, then there is no accelerated decoherence in

the subspace they span.
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The physical principle behind this is very simple. If the system Hamiltonian can

be neglected, the states of the system are propagated by e−iHintt/~. States that are

eigenstates of Hint with the same eigenvalue acquire exactly the same phase factors

as a function of time. Therefore the phase coherence between such states remains

intact.

The benefits of symmetric couplings have been known for a long time. For exam-

ple, it is well known that rotational tunneling of small molecular groups attached to

large molecules can be observed up to temperatures much higher than what would

correspond to the tunneling frequency. The reason is that the coupling to the en-

vironment has exactly the same symmetry as the hindering potential. This is very

much in contrast to the ordinary tunnel effect in a linear coordinate x, where deco-

herence sets in at temperatures comparable to the tunneling frequency. Another way

of phrasing the robustness against decoherence in rotational tunneling is to say that

single-phonon transitions in the tunneling-split ground state are forbidden owing to

selection rules originating from the symmetry of the coupling to the environment.

Here the latter consists basically of normal vibration modes of the carrier molecule

or of the crystal in which it is embedded.

Recently, decoherence-free subspaces have attracted renewed attention in quan-

tum computing. It has been shown that general Markovian master equations of the

Lindblad form

∂ρ

∂t
= − i

~
[Hs, ρ] + LD[ρ], (4.29)

LD[ρ] =
1

2

M∑

α,β

ααβLαβ[ρ], (4.30)

Lαβ[ρ] = [Fα, ρF †
β ] + [Fαρ, F †

β ] (4.31)

where the coefficients αα,β form a Hermitian matrix. The system operators Fα are

known as “coupling agents” or, in the context of quantum computing, as “error gen-

erators”. They span an M -dimensional Lie algebra. A decoherence-free subspace is

defined as all states ρ with LD[ρ] = 0, since then only the unitary evolution according

to the first terms in (4.29) remains [43].
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Chapter 5

Quantum Decay Models (I)

5.1 Weisskopf-Wigner theory

Weisskopf-Wigner Theory is used in the atomic decay. In this treatment first we

consider an exponential time dependence for states and then the integrating over

continuum energy where we are neglecting the variation of the matrix elements with

energy of the original state. Also, we change the interval of integration over continuum

energy to ] −∞, ∞[. Now, we consider two-level atom Hamiltonian as:

H = H0 + HI (5.1)

where

H0 = ω1|1〉〈1| + ω2|2〉〈2| +
∑

k

ωk|k〉〈k| (5.2)

and

HI =
2∑

i=1

∑

k

[V ∗
i (ωk)|i〉〈k| + Vi(ωk)|k〉〈i|] (5.3)

where we consider ~ = c = 1 and Vi(ωk) a factor form. Now, we write time dependence

Schrödinger equation as:

i∂ψ(t)/∂t = Hψ(t) (5.4)

where ψ(t) ≡ {a1(t)|1〉, a2(t)|2〉, b(ωk, t)|k〉}. Thus, we have

i
∂a1(t)

∂t
= ω1a1(t) +

∑

k

V ∗
1 (ωk)b(ωk, t), (5.5)
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i
∂a2(t)

∂t
= ω2a2(t) +

∑

k

V ∗
2 (ωk)b(ωk, t) (5.6)

and

i
∂b(ωk, t)

∂t
= ωkb(ωk, t) + [V1(ωk)a1(t) + V2(ωk)a2(t)]. (5.7)

Now, we make some approximations [45, 46]. First, replacing summation with inte-

gration as: ∑

k

Vi(ωk) →
∫ ∞

0

dωvi(ω) (5.8)

where we assume that the modes of fields are closely spaced. By solving equation(5.7)

we obtain

b(ω, t) = −ie−iωt

∫ t

0

dτ [v1(ω)a1(τ) + v2(ω)a2(τ)]eiωτ (5.9)

Subsisting the above equation in equation (5.5) yields

i
∂a1(t)

∂t
= ω1a1(t) − i

∫ t

0

dτ

∫ ∞

0

dωv∗
1(ω)e−iωt[v1(ω)a1(τ) + v2(ω)a2(τ)]eiωτ (5.10)

where we have assumed the variations of v1(ω) and v2(ω) over ω are negligible with

|ω| . “uncertainty of the original state energy”, i.e. vi(ω) ≈ vi (i = 1, 2). Also the

other assumption is: the lower limit of integration over ω is replaced by −∞. Now,

the above equation is written as:

i
∂a1(t)

∂t
= ω1a1(t) − i2π

∫ t

0

[|v1|2a1(τ) + v∗
1v2a2(τ)]δ(τ − t)dτ (5.11)

where we used ∫ ∞

−∞
e−iω(τ−t)dω = 2πδ(τ − t) (5.12)

Finally, (5.11) can be written as the following Markovian form

i
∂a1(t)

∂t
= ω1a1(t) − i2π[|v1|2a1(t) + v∗

1v2a2(t)]. (5.13)

Similarly a2(t) is obtained as:

i
∂a2(t)

∂t
= −i2π[v1v

∗
2a1(t) + |v2|2a2(t)] + ω2a2(t). (5.14)

Thus, the reduced Schrödinger is written as follows:

i
∂

∂t

(
a1(t)

a2(t)

)
= (M − iΓ)

(
a1(t)

a2(t)

)
(5.15)
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where

M − iΓ =

(
ω1 − i2π|v1|2 −i2πv∗

1v2

−i2πv1v
∗
2 ω2 − i2π|v2|2

)
. (5.16)

Weisskopf-Wigner treatment also assumes that [45, 46]

(
a1(t)

a2(t)

)
= ψe−νt, (5.17)

then it gives

(M − iΓ)ψ = νψ. (5.18)

5.2 Lee-Oehme-Yang theory (LOY)

5.2.1 Mass-Decay Matrix

By using Weisskopf-Wigner Theory one can write the schrödinger equation as

i
dψ(t)

dt
= Hψ(t) = (M − iΓ)ψ(t) (5.19)

where M and Γ are both 2 × 2 Hermitian matrices. We consider weak interaction as

a perturbation in the total Hamiltonian, i.e. H = Hst +Hel +Hwk, where Hst, Hel and

Hwk are the Strong, Electromagnetic and Weak interactions Hamiltonian, respectively.

Since Hst+Hel commute with CPT , then |K0〉 and |K0〉 are the eigenstates of Hst+Hel

with degenerate mk eigenvalue. Then, weak interaction connects K0 and K
0

with the

other continuum states such as 2π, 3π, πeν etc. Thus, various decay modes removes

their degeneracy [55]. Now, by using perturbation formula, one obtains

(M − iΓ)mn = 〈m|H|n〉 +
∑

l 6=m,n

〈m|Hwk|l〉〈l|Hwk|n〉
mk − (ml + iǫ)

+ O(H3
wk) (5.20)

where m,n can be K0 or K
0

and ǫ is the positive infinitesimal real number. Then,

easily, by eliminating the order O(H3
wk) one obtains,

Mmn = 〈m|H|n〉 +
∑

l 6=m,n

P
〈m|Hwk|l〉〈l|Hwk|n〉

mk − ml

(5.21)
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and

Γmn = π
∑

l 6=m,n

〈m|Hwk|l〉〈l|Hwk|n〉δ(mk − ml). (5.22)

where P indicates the “principal value” and we used the following identity in equation

(5.20)
1

x − x0 + iǫ
= P

1

x − x0

− δ(x − x0). (5.23)

Theorem 1: i)Γ is a positive matrix, i.e.

Γ11 ≥ 0, Γ22 ≥ 0, and Γ ≥ 0. (5.24)

ii) If CPT invariance holds, then independently of T symmetry

Γ11 = Γ22, M11 = M22. (5.25)

iii) If T invariance holds, then independently of CPT symmetry [55]

Γ∗
12

Γ12

=
M∗

12

M12

. (5.26)

Theorem 2: i) if CPT invariance holds, then independently of T invariance [55],

|KS〉 = [2(1 + |ǫ|2)]− 1
2

(
1 + ǫ

1 − ǫ

)
, |KL〉 = [2(1 + |ǫ|2)]− 1

2

(
1 + ǫ

−(1 − ǫ)

)

(5.27)

E = 〈KS|KL〉 is real number.

ii) if T invariance holds, then independently of CPT invariance,

|KS〉 = [2(1 + |δ|2)]− 1
2

(
1 + δ

1 − δ

)
, |KL〉 = [2(1 + δ2)]−

1
2

(
1 − δ

−(1 + δ)

)

(5.28)

E is real imaginary.

5.2.2 CP violation

If both CPT and T were exact symmetries, then CP must be conserved and then

E = 0. Thus, E can be a good CP -violation parameter.
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Now, the eigenvalue equation of equation (5.19) is written as

(M − iΓ)ψ± = ω±ψ± (5.29)

where ψ− = |KS〉 and ψ+ = |KL〉 are the eigenstates which are defined in equation

(5.27). By taking p = 1 + ǫ and q = −(1 − ǫ) in (5.27) we have

ψ± = (|p|2 + |q|2)− 1
2

(
p

±q

)
(5.30)

and corresponding eigenvalues are:

ω± = M11 − iΓ11 ± pq; (5.31)

where p and q are two complex numbers given by

p2 = M12 − iΓ12, q2 = M21 − iΓ21 = M∗
12 − iΓ∗

12. (5.32)

If at the t = 0 a K0 particle is produced, i.e. we have in state |K0〉 =
(1

0

)
, then

ψ(t) =
1

2p
(|p|2 + |q|2) 1

2 [ψ+e−
1
2
ω+t + ψ−e−

1
2
ω−t]. (5.33)

We can write

ω+ = ΓS, and ω− = ΓL + 2i∆m, (5.34)

where ΓS and ΓL are the real numbers which are representing short and long lifetimes,

respectively and ∆m is the mass difference between these two eigenstates.

Now, the fractional number of kaon that decay at time t after production is given

by

N(t)dt = −d[ψ†ψ]. (5.35)

Using equation (5.19) one obtain

N(t) = − d

dt
[ψ†ψ] = ψ†Γψ. (5.36)

By using equation (5.30)-(5.33), the above equation becomes

N(t) =
1

2
(1 + E)−1{γ+e−ΓSt + ΓLe−ΓLt + Ee−

1
2
(ΓS+ΓS)t

×[(ΓS + ΓL) cos ∆mt − 2∆m sin ∆mt]}, (5.37)
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where

E = ψ†
+ψ− =

|p|2 − |q|2
|p|2 + |q|2 , (5.38)

is a real number that represents the nonorthogonalities of these two eigenstates. The

four real numbers ΓS, ΓL, ∆m, E characterize the decay of the kaon and satisfy the

inequalities [51]

ΓS,L ≥ 0, |E|2 ≤ 4ΓSΓL

(ΓS + ΓL)2 + 4(∆m)2
(5.39)

which follow from Γ is positive Hermitian matrix. The experimental values of ΓS and

ΓL indicate that ΓL/ΓS = 1.8 × 10−3 then, |E|2 < 4ΓS/ΓL < 7.2 × 10−3.
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Chapter 6

Two-level Friedrichs model and
kaonic phenomenology

Abstract:In the present paper, we study in the framework of the Friedrichs model the evolution of a

two-level system coupled to a continuum. This unitary evolution possesses a non-unitary component

with a non-Hermitian effective Hamiltonian. We show that this model is well adapted in order to

describe kaon phenomenology (oscillation, regeneration) and leads to a CP violation, although in

this case the prediction is not quantitatively quite satisfying1.

PACS number: 03.65.Ud, 03.67.Dd, 89.70.+c

1This paper was published in Physics Letters A, 2007, 362, p. 100-104
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6.1 Introduction

We shall show that the two-level Friedrichs system [48] makes it possible to describe

a class of systems that exhibit rich and complex behaviors: oscillations, regenerations

and so on, and provides a relatively exact phenomenological model of kaons physics.

There have been several approaches to CP -violations in kaons using Gauge Theory

[91] or Renormalization Theory [50]. We do not consider these aspects here, also

because the question is still partially open today. Our treatment is based on the de-

scription of decaying systems similarly to the generalization of the Weisskopf-Wigner

approach, formulated by Lee, Oehme and Yang (LOY) [51] in the case of kaonic decay.

Later on, Chiu and Sudarshan [52] used a Lee model in order to obtain a correction

to the LOY theory for short times (Zeno effect). Our new approach is based on the

derivation of a master equation from a Hamiltonian description for K1 and K2 decay-

ing modes weakly coupled to the decay product and not for (K0, K
0
) modes as done

in LOY theory. In this letter, we use a simple version of the model with a constant

factor form. This leads to a Markovian master equation which allows us to simulate

the kaonic lifetimes as well as kaonic oscillations and regeneration. It even predicts

a CP symmetry breaking. Unfortunately this last prediction is not very accurate

quantitatively, which, in a sense, is not astonishing for such a simplified approach. In

any case, our computations show that it is possible with a very simple model such

as the two-level Friedrichs model to capture essential features of the very rich kaon

phenomenology, and of their non-trivial temporal survival distributions.

In the second section, we recall the main features of kaon phenomenology. In

the third section we show how to simulate them thanks to the Friedrichs model. We

show that the fit with phenomenological data about CP violation is satisfying since we

recover the experimental data for the phase, but not quantitatively (our estimation of

the modulus effect is fourteen times too strong in comparison to experimental data).

At the end of the paper, we make some remarks on an improvement of the model.

6.2 Main features of kaon phenomenology.

Kaons are bosons that were discovered in the forties during the study of cosmic

rays. They are produced by collision processes in nuclear reactions during which the

strong interactions dominate. They appear in pairs K0, K
0

[53, 54]. It is possible to
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produce preferentially the K0 particle essentially due to the fact that the K
0

kaon is

less probable kinematically and that the threshold pion energy for its production is

higher.

The K mesons are eigenstates of the parity operator P : P |K0〉 = −|K0〉, and

P |K0〉 = −|K0〉. K0 and K
0

are charge conjugate to each other C|K0〉 = |K0〉, and

C|K0〉 = |K0〉. We get thus

CP |K0〉 = −|K0〉, CP |K0〉 = −|K0〉. (6.1)

Clearly |K0〉 and |K0〉 are not CP -eigenstates, but the following combinations

|K1〉 =
1√
2

(
|K0〉 + |K0〉

)
, |K2〉 =

1√
2

(
|K0〉 − |K0〉

)
, (6.2)

are CP -eigenstates.

CP |K1〉 = −|K1〉, CP |K2〉 = +|K2〉. (6.3)

In the absence of matter, kaons disintegrate through weak interactions [54]. Actually,

K0 and K
0

are distinguished by their mode of production, K1 and K2 are distinguished

by their mode of decay. In first approximation we can neglect CP violation so that the

weak Hamiltonian commutes with CP . In this regime, the weak disintegration process

distinguishes the K1 states which decay only into “2π” while the K2 states decay into

“3π, πeν, ...” [55]. The lifetime of the K1 kaon is short (τS ≈ 8.92×10−11 s), while the

lifetime of the K2 kaon is quite longer (τL ≈ 5.17× 10−8 s). The difference of mass of

the 1 and 2 kaons is quite small in comparison to their mass (mL−mS

mS+mL
≈ 0.35× 10−14,

with (mL − mS)c2 ≈ 3.52 × 10−6eV). The amplitude of the mode K1 at time t can

be written as

a1(t) = a1(0)e−
iES

~
te−

ΓS
2~

t, (6.4)

where ES is the total energy of particle and ΓS = ~

τS
is the width of the state. We

can write the amplitude of the mode K2 in a similar fashion for the long lifetime. The

intensity is

I1(t) = a1(t)a
∗
1(t) = a1(0)a∗

1(0)e−
ΓS
~

t

= I1(0)e
− t

τS . (6.5)

Setting ~ = c = 1 and considering a situation during which kaons are at rest we get

that τS is the proper lifetime and ES = mS, the rest mass of the K1 particle. Its

amplitude is then

a1(t) = a1(0)e−(imS+
ΓS
2

)t. (6.6)
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Similarly, for K2,

a2(t) = a2(0)e−(imL+
ΓL
2

)t. (6.7)

From equation (7.14) we can write [53] the corresponding amplitudes of K0 and K
0

as

a0(t) =
1√
2

(
a1(t) + a2(t)

)
, a0(t) =

1√
2

(
a1(t) − a2(t)

)
(6.8)

and the intensities are equal to

I0(t) =
I0(0)

4

(
e−ΓSt + e−ΓLt + 2e−

ΓS+ΓL
2

t cos(△mt)
)

(6.9)

and

I0(t) =
I0(0)

4

(
e−ΓSt + e−ΓLt − 2e−

ΓS+ΓL
2

t cos(△mt)
)
. (6.10)

Here △m = |mL−mS| = 3.52×10−6 and △mτS ≈ 0.47, so that K0− and K
0−intensities

oscillate with the frequency |△m|.
This corresponds to the process called kaonic oscillation. We can explain it in-

tuitively as follows: in the vacuum the disintegration of kaons is due to weak inter-

actions, and the weak Hamiltonian controls and dominates the evolution. Therefore,

the eigenstates of the “free” (weak) Hamiltonian in vacuum are (in first approxima-

tion) the K1 and K2 kaons. In the presence of matter, strong interactions are present

during the collisions between kaons and nuclei. They dominate the decay process

and therefore K0 and K
0

kaons are observed, and it is also possible to distinguish

them experimentally because they possess different disintegration channels. Because

the preparation and measurement bases differ from the eigenbasis of the Hamiltonian

that controls the free evolution, interference effects are likely to occur. This is the

essence of kaonic oscillations. What is interesting is that if we compare their differ-

ence of mass (in convenient units) to the inverse of the lifetime of the K1 kaon, we get

a comparable result: (mL − mS)τS ≈ 0, 47. Thanks to this relation and due to the

fact that it was possible experimentally to carry out observations occurring during

a time comparable to the lifetime of the K1 kaon, which is relatively long in com-

parison to other elementary particles, it was possible to observe kaonic oscillations

experimentally.

Generation and regeneration are similar phenomena. If we produce (in matter, in

the strong regime) K0 particles, no K
0

particle is present, but if we wait (in absence

of matter) during a time long relatively to τS the lifetime of the K1 kaon, the K2
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particle only has survived and the probability to find a K
0

particle is 0.5, so that K
0

particles were generated.

Regeneration is due to the fact that in the presence of matter, the K
0

particle

disintegrates more quickly than the K0 one. Henceforth their respective amplitudes

are not equal in modulus with as a consequence that a1(t) = 1√
2
(a0(t) + a0(t)) differs

from zero. Consequently, even if we wait (in the absence of matter, in the weak

regime) a time longer than the lifetime of the K1 kaon, and that only the K2 particle

is present, the K1 component is re-generated in the presence of matter.

CP -violation is another interesting feature of the kaons phenomenology. It was

discovered by Christenson et al. [56]. CP violation means that the long-lived kaon

can also decay to ”2π” then, the CP symmetry is slightly violated (by a factor of 10−3)

by weak interactions so that the CP eigenstates K1 and K2 are not exact eigenstates

of the decay interaction. Let us consider that KS(S = short-lived ) and KL(L =

long-lived ) are the eigenstates of the decay interaction; they can be expressed as a

superpositions of the K1 and K2 eigenstates. Then

|KL〉 =
1√

1 + |ǫ|2
[
ǫ |K1〉 + |K2〉

]

=
1√

2(1 + |ǫ|2)
[
(1 + ǫ)|K0〉 − (1 − ǫ)|K0〉

]
, (6.11)

and

|KS〉 =
1√

1 + |ǫ|2
[
|K1〉 + ǫ |K2〉

]

=
1√

2(1 + |ǫ|2)
[
(1 + ǫ)|K0〉 + (1 − ǫ)|K0〉

]
, (6.12)

where ǫ is a CP violation parameter, |ǫ| ≪ 1 where ǫ does not have to be real. KL

and KS are the eigenstates of the Hamiltonian for the mass-decay matrix [54, 55], i.e.

H = M − i

2
Γ ≡

(
M11 − i

2
Γ11 M12 − i

2
Γ12

M21 − i
2
Γ21 M22 − i

2
Γ22

)
(6.13)

where M and Γ are individually hermitian since they correspond to observable (mass

and lifetime). The corresponding eigenvalues of the mass-decay matrix are equal to

mL − i

2
ΓL, mS − i

2
ΓS (6.14)
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The CP violation was established by the observation that KL decays not only via

three-pion, which has natural CP parity, but also via the two-pion mode with a |ǫ|
of order 10−3, which is truly unexpected. The experimental value of ǫ is

|ǫ| = (2.27 ± 0.02) × 10−3, arg(ǫ) = 43.37 (6.15)

6.3 Friedrichs’s model and kaon phenomenology

6.3.1 The two-levels Friedrichs model

The Friedrichs interaction Hamiltonian between the two modes and the continuous

degree of freedom is the following [48, 57, 58, 59]:

HFriedrichs =




ω1 0 λ1

0 ω2 λ2

λ1 λ2 ω


 (6.16)

The masses ω1,2 represent the energies of the discrete levels, and the factors λ1,2

represent the couplings to the continuum of decay product. In this model, the energies

ω of the different modes of the continuum range from −∞ to +∞. The two-level

Friedrichs model Schrödinger equation is



ω1 0 λ1

0 ω2 λ2

λ1 λ2 ω







f1(t)

f2(t)

g(ω, t)


 = i

∂

∂t




f1(t)

f2(t)

g(ω, t)


 . (6.17)

which means:

ω1f1(t) + λ1

∫ ∞

−∞
dωg(ω, t) = i

∂f1(t)

∂t
, (6.18)

ω2f2(t) + λ2

∫ ∞

−∞
dωg(ω, t) = i

∂f2(t)

∂t
, (6.19)

and

λ1f1(t) + λ2f2(t) + ωg(ω, t) = i
∂g(ω, t)

∂t
. (6.20)

ω is coupled here through uniform factor forms (λ1, λ2); this constitutes a very rough

approximation which allows an integration of the equation of motion and an illus-

tration of the application to CP violation in kaons. More physical cutoffs that can
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improve our estimation will be studied in a future publication, as well as the analogy

between our model and models used in quantum optics in order to simulate certain

spontaneous radiative processes. Let us now solve the Schrödinger equation and trace

out the continuum in order to derive the master equation for the two-level system.

From the equation (6.20) we can obtain g(ω, t), taking g(ω, 0) = 0, as

g(ω, t) = −ie−iωt

∫ t

0

dτ
[
λ1f1(τ) + λ2f2(τ)

]
eiωτ , (6.21)

where t > 0. Then, we substitute g(ω, t) in the equation (6.18) we obtain

i
∂f1(t)

∂t
= ω1f1(t) − iλ1

∫ ∞

−∞
dωe−iωt

∫ t

0

dτ
[
λ1f1(τ) + λ2f2(τ)

]
eiωτ , (6.22)

we also obtain the same relation for f2(t) from equation(6.19):

i
∂f2(t)

∂t
= ω2f2(t) − iλ2

∫ ∞

−∞
dωe−iωt

∫ t

0

dτ
[
λ1f1(τ) + λ2f2(τ)

]
eiωτ , (6.23)

6.3.2 The two-levels Friedrichs model and kaonic behavior

In this subsection, we shall make use of the Friedrichs model in order to simulate

interesting properties of the kaonic systems. In order to do so, we shall identify the

discrete modes of the Friedrichs model with the K1 and K2 states and ω1 and ω2 with

their masses, respectively. This is our basic postulate according to which we can now

make use of the Friedrichs model in order to establish a phenomenology for the kaonic

behavior. More precisely, we shall assume that

|K1〉 =

(
1

0

)
and |K2〉 =

(
0

1

)
. (6.24)

The continuum mode aims at representing the decay products as explained in

Section 2. Let us consider the solution of two-level Friedrichs model Schrödinger

equation (6.17). According to this equation, the state is at time t superposition of

two components that correspond to the two (complex) eigenvalues of the effective

Hamiltonian. In order to avoid confusion, we shall use different parameters when we

deal with the ”real” kaons that are associated with experimental data and when we

deal with the ”theoretic” ones in the framework of the Friedrichs model.
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It is worth noting that the use of simple two-level models to explain kaon oscilla-

tions goes back to Gell-Man and Pais (see Feynman lectures vol III, p.11-16). What

is new in our paper is that we introduce a continuous degree of freedom (a scalar

field) in a simple and exactly solvable model to describe kaon decay, in which |K1〉
and |K2〉 particles communicate via the decay channel (and not |K0〉 and |K0〉 as in

the LOY theory ).

-The masses mS and mL and the lifetimes τS and τL will remain attributed to the

real objects.

-The parameters ω1, ω2, λ1, λ2, ω+ and ω− will refer to the theoretic quantities.

To solve equations (6.22) and (6.23) we shall compute the integral part of equation

(6.22) f1 and f2 being supposed integrable functions on [0,∞[. We consider a test

function as e−α2ω2
, then we can rewrite it as follows

∫ t

0

dτ(λ1f1(τ) + λ2f2(τ))

∫ ∞

−∞
dωe−iω(t−τ)e−α2ω2

, (6.25)

with the limit α → 0. After integration on ω of in the above equation we obtain

√
π

α

∫ t

0

dτ [λ1f1(τ) + λ2f2(τ)]e−
(t−τ)2

4α2 (6.26)

or √
π

α
[λ1f1(t) + λ2f2(t)] ∗ e−

t2

4α2 (6.27)

where we used the convolution definition, i.e.

∫ t

0

k(t − u)y(u)du = k(t) ∗ y(t). (6.28)

Laplace transformation of the equation (6.27) yields,

π[λ1F1(s) + λ2F2(s)] eα2s2

Erfc(αs), (6.29)

where

Erfc(x) = 1 − Erf(x) = 1 − 2√
π

∫ x

0

e−y2

dy. (6.30)

Taking the limit α → 0 we obtain

π[λ1F1(s) + λ2F2(s)], (6.31)
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and taking and the inverse Laplace transformation yields π[λ1f1(t) + λ2f2(t)]. So we

proved

∫ ∞

−∞
dωe−iωt

∫ t

0

dτ
[
λ1f1(τ) + λ2f2(τ)

]
eiωτ = π[λ1f1(t) + λ2f2(t)]. (6.32)

Now, we substitute the above result in the equations (6.22) and (6.23). Thus, we

obtain

i
∂

∂t

(
f1(t)

f2(t)

)
=

(
ω1 − iπλ2

1 −iπλ1λ2

−iπλ1λ2 ω2 − iπλ2
2

)(
f1(t)

f2(t)

)
. (6.33)

Thus, we obtain an effective non-Hermitian Hamiltonian evolution, Heff = M − iΓ
2
.

The eigenvalues of the system are

ω± =
1

2

{
(ω1 + ω2) − iπ(λ2

1 + λ2
2) ±

[(
(ω1 + ω2) − iπ(λ2

1 + λ2
2)

)2

−4(ω1ω2 − iπ(λ2
1ω2 + λ2

2ω1))

] 1

2
}

, (6.34)

and under the weak coupling constant approximation, they become :

ω+ = ω1 − iπλ2
1 + O(λ4), ω− = ω2 − iπλ2

2 + O(λ4), (6.35)

In a first and very rough approximation, the eigenvectors of the effective Hamiltonian

are the same as the postulated kaons states.

|f+〉 =

(
1

0

)
= |K1〉 and |f−〉 =

(
0

1

)
= |K2〉, (6.36)

and the solutions of Schrödinger equations are superpositions of these two states with

amplitudes

f1(t) = e−iω+t, f2(t) = e−iω−t. (6.37)

Phenomenology imposes that the complex Friedrichs energies ω± coincide with the

observed complex energies. The Friedrichs energies depend on the choice of the four

parameters ω1, ω2, λ1 and λ2 and the observed complex energies are directly derived

from the experimental determination of four other parameters, the masses mS and mL

and the lifetimes τS and τL. We must thus adjust the theoretical parameters in order

that they fit the experimental data. This can be done by comparing the normalized
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intensities 4I0(t)
I0(0)

and 4I0(t)

I0(0)
of equations (6.9) and (6.10) with the theoretical prediction

for the K0 and K
0

intensities:

|f1(t) ± f2(t)|2 = (e−2πλ2
1t + e−2πλ2

2t ± 2e−π(λ2
1+λ2

2)t cos(△ωt)), (6.38)

where △ω = |ω1 − ω2|. From this comparison of experimental and theoretical results

we obtain ( see equations (6.9) and (6.10)).

ω1 = mS, 2πλ2
1 = ΓS,

ω2 = mL, 2πλ2
2 = ΓL. (6.39)

CP violation: Let us study in this case the CP violation. The Friedrichs model

allows us to estimate the value of ǫ. For this purpose, the effective Hamiltonian

(equation (6.33)) acts on the |KS〉 vector states ( equation (6.11)) as an eigenstate

corresponding to the eigenvalue ω+ = ω1 − iπλ2
1 = mS − iΓS

2
, so that we must impose

that Heff

(1

ǫ

)
= ω−

(1

ǫ

)
, from which we obtain after straightforward calculations that

ǫ =
iπλ1λ2

(ω2 − ω1) − iπ(λ2
2 − λ2

1)
(6.40)

and if we replace λ’s and ω’s by corresponding values in equation (6.39) we have,

ǫ =
i
2

√
ΓLΓS

(mL − mS) − i
2
(ΓL − ΓS)

. (6.41)

By using the above experimental values of ΓL, ΓS,mL, mS and the ratio (mL−mS)
−(ΓL−ΓS)

≈
△mτS ≈ 0.47 we obtain the following estimated value for ǫ:

ǫ =
√

(1.82 × 10−3)/2 ei(43.37)◦ (6.42)

which shows that our estimation of the modulus of ǫ is ∼ 14 times greater than its

experimental modulous value while the estimated phase is correct.

Although this last prediction is not very accurate quantitatively, which in a sense

is not astonishing for such a simplified approach, we think that a better fit is possible

provided we finely tune the cut off between the discrete levels and the continuous

modes, especially when negative energy modes are decoupled from the two-level sys-

tem. In any case, our computations show that it is possible with a very simple model

such as the two level Friedrichs model to capture essential features of the very rich

kaon phenomenology, and of their non-trivial temporal survival distributions.
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6.4 Conclusions.

We have shown that the framework of the Friedrichs model is relevant in order to

grasp , despite of its simplicity, essential features of kaons decay. This model allows us

to describe complex temporal evolutions (such as kaonic oscillations, generation and

regeneration) and to simulate at least qualitatively CP violation. We also recover the

experimental value of the phase, 43.37o, as a result of the equations (6.41)-(6.42).

We have to notice that ever since LOY paper, new problems and effects have been

studied in CP violation among then we notice the paper of L.A. Khalfin [60] which

could not be considered in the scope of this letter.

It is also out of the scope of the present paper but it would be very interesting

to study the properties of the Friedrichs model and of kaonic oscillations in terms of

the Time Operator approach. This can be done for the one-level Friedrichs model

[61, 62] but higher level systems present more subtle and involved temporal behavior

[63] so that it is worth studying the Time-Operator in this context.

One should consider situations during which the spectrum of the continuous degree

of freedom is cut off, because an unbounded spectrum in energy is not very sound

from a physical point of view. This will be studied in a future publication as well

as the analogy between our model and models used in quantum optics in order to

simulate certain spontaneous radiative processes.

Finally, it is worth comparing our results with those obtained in Refs.[64, 65]

where it is shown that in the framework of the rigged Hilbert space approach another

effect of CP violation is also predicted despite of the fact that the Hamiltonian

respects the CP symmetry. In our case the Friedrichs Hamiltonian does not respect

this symmetry, that is, if we consider all the degrees of freedom of the system, the

commutator between the Hamiltonian and the CP operator is different from zero. The

commutator is equal to zero when we consider the free Hamiltonian ( corresponding

to λ1 = λ2 = 0 ) . As we noted before, this result can be understood as follows:

in our approach, the continuous degree of freedom mediates an effective weak-like

interaction of order two in the coupling constants, which ”explains” why the CP

violation is small.
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Chapter 7

Quantum-mechanical decay laws in
the neutral kaons

Abstract:The Hamiltonian Friedrichs model [48] describing the evolution of a two-level system

coupled to a continuum is used in order to model the decay of the kaon states K1, K2. Using

different cut-off functions of the continuous degrees of freedom, we show that this model leads to a

CP violation that qualitatively fits with experimental data improving previous numerical estimates.

We also discuss the relation of our model to other models of open systems1.

PACS number: 03.65.Ud, 03.67.Dd, 89.70.+c

1This paper published in Journal of Physics A : Math. Theor., 2007, 40, p. 2773-2785
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7.1 Introduction

There have been several theoretical approaches to CP violation in Kaons (see e.g,

the collection of papers edited in [66]) and the question is partially open today. In

this paper, we use a Hamiltonian model, describing a two-level states coupled to a

continuum of degrees of freedom, that makes is possible to obtain the phenomenol-

ogy of neutral kaons and provides new numerical estimate of the parameters of CP

violation. Solving the Schrödinger equation for the Hamiltonian, we derive a mas-

ter equation for the decaying two-level states similarly to the generalization of the

Weisskopf-Wigner approach formulated by Lee, Oehme and Yang [51](LOY) in the

case of kaonic decay. Later on, Chiu and Sudarshan [52] used a Lee model in order to

obtain a correction to the LOY theory for short times, departing from the exponential

decay. Their Hamiltonian describes (K0, K
0
) modes as done in the LOY theory. In

this paper the authors point out to a numerical Khalfin estimate of the CP violation

parameter ǫ ∼ 0.06 × eiπ/4. That is 30 times the experimental data. Our new ap-

proach is based on the derivation of a master equation from a Hamiltonian describing

(K1, K2) decaying modes and not for (K0, K
0
) modes as done in LOY theory. Under

weak coupling hypothesis this leads to a Markovian master equation which allows us

to simulate the kaonic lifetimes as well as kaonic oscillations and regeneration. It even

fits closer the CP symmetry breaking parameter. Unfortunately this last prediction

is not very quite accurate quantitatively, which, in a sense, is not astonishing for such

a simplified approach. In a first example with non-bounded spectrum in energy, we

obtain the exact angle while the modulus is 14 times the experimental data. However,

we show that using different cut-off functions of the continuous degrees of freedom

we can improve the above estimate.

We prove that it is possible to obtain all the interesting features of the model

when the Hamiltonian possesses a spectrum only bounded from below. In this case,

with Gaussian cut-off the previous estimate is improved and we obtain a CP violation

parameter value only 3 times the experimental data. Our treatment confirms that it

is possible with a very simple model such as the two-level Friedrichs model to compute

some essential features of the very rich kaon phenomenology. It also confirms that

the essential ingredient for deriving an irreversible in time dynamics of subsystems is

the presence of a continuous degrees of freedom of environment.

In general, Quantum Mechanics provides a continuous, reversible in time and

unitary evolution law (via the Schrödinger equation). This description contradicts our
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everyday experience in which ageing, dissipation and irreversibility are omnipresent.

In this context, it is interesting to study hybrid quantum systems, sufficiently complex,

that exhibit altogether unitary and dissipative in time evolutions. This goal can be

achieved in the framework of the Friedrichs model.

One-level Friedrichs model is well understood [57, 58, 59]: it predicts that the

excited state disappears and “fuses” into the continuum. Its survival probability

decays exponentially in time. The lifetime is proportional to the coupling between the

discrete mode and the continuum. Exponentially decaying systems are very common

in classical and quantum physics. They are relatively trivial when we consider them

from the point of view of temporal irreversibility because, although the decay law

is not reversible in time, such systems behave as if they did not possess an internal

clock or memory: the decay rate is constant throughout time, and the non-decayed

system is in the same state at all times. Roughly speaking, exponentially decaying

systems exhibit an irreversible behavior but ignore ageing.

The two-level Friedrichs system makes it possible to describe a class of systems

that exhibit richer behaviors: oscillations, regenerations and so on. If we accept a

general definition [67, 63] according to which each departure from the pure exponential

decay law can be labeled as a Zeno behavior (or anti-Zeno, depending of the sign of

the departure), then, as we shall show the two-level Friedrichs model is rich enough in

order to describe Zeno and anti-Zeno behaviors (for N -levels generalizations see[63]),

and provides a relatively exact phenomenological model of kaons physics.

In the second section we define the two-level Friedrichs model. In the third section,

we recall the main features of kaon phenomenology. In the fourth section we show

how to simulate them thanks to the Friedrichs model when (a) the spectrum of the

continuous mode is unbounded, in the presence of a Gaussian cut-off and (b) in

the presence of a Gaussian cut-off when negative energy levels of the continuum are

decoupled from the two-level system.

In the fifth section, we compare our approach with other recent approaches [68]-

[75] where an open system interacts with its environment having a Lindblad form of

evolution and we also discuss the question of decoherence.
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7.2 The two-level Friedrichs model.

The Friedrichs interaction Hamiltonian between the two discrete modes and the con-

tinuous degree of freedom is given by the operator H on the Hilbert space of the wave

functions of the form | ψ >= {f1, f2, g(ω, t)}, f1, f2 ∈ C, g ∈ L2(R+)

H = H0 + λ1V1 + λ2V2, (7.1)

where λ1 and λ2 are the positive coupling constants, and

H0 | ψ >= {ω1f1, ω2f2, ωg(ω, t)}, (ω1 and ω2 > 0). (7.2)

The operators Vi (i = 1, 2) are given by:

V1{f1, f2, g(ω, t)} = {< v(ω), g(ω, t) >, 0, f1.v(ω)}
V2{f1, f2, g(ω, t)} = {0, < v(ω), g(ω, t) >, f2.v(ω)} (7.3)

where

< v(ω), g(ω, t) >=

∫
dωv∗(ω)g(ω, t), (7.4)

is the inner product. Thus H can be represented as a matrix :

HFriedrichs =




ω1 0 λ1v
∗(ω)

0 ω2 λ2v
∗(ω)

λ1v(ω) λ2v(ω) ω


 (7.5)

ω1,2 represent the energies of the discrete levels, and the factors λiv(ω) (i = 1, 2)

represent the couplings to the continuous degree of freedom. The energies ω of the

different modes of the continuum range from −∞ to +∞ when v(ω) = 1, but we

are free to tune the coupling v(ω) in order to introduce a selective cut off to extreme

energy modes. Let us now solve the Schrödinger equation and trace out the contin-

uum in order to derive the master equation for the two-level system. The two-level

Friedrichs model Schrödinger equation with ~ = 1 is formally written as




ω1 0 λ1v
∗(ω)

0 ω2 λ2v
∗(ω)

λ1v(ω) λ2v(ω) ω







f1(t)

f2(t)

g(ω, t)


 = i

∂

∂t




f1(t)

f2(t)

g(ω, t)


 . (7.6)
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Easily, we obtain

ω1f1(t) + λ1

∫
dωv∗(ω)g(ω, t) = i

∂f1(t)

∂t
, (7.7)

ω2f2(t) + λ2

∫
dωv∗(ω)g(ω, t) = i

∂f2(t)

∂t
, (7.8)

and

λ1v(ω)f1(t) + λ2v(ω)f2(t) + ωg(ω, t) = i
∂g(ω, t)

∂t
. (7.9)

integrating the last equation we obtain g(ω, t) assuming g(ω, t = 0) = 0 :

g(ω, t) = −ie−iωt

∫ t

0

dτ
[
λ1f1(τ) + λ2f2(τ)

]
v(ω)eiωτ , (7.10)

then, we substitute g(ω, t) in the above equation (7.7) we obtain

i
∂f1(t)

∂t
= ω1f1(t) − iλ1

∫
dω|v(ω)|2e−iωt

∫ t

0

dτ
[
λ1f1(τ) + λ2f2(τ)

]
eiωτ , (7.11)

we also obtain the same relation for f2(t) as:

i
∂f2(t)

∂t
= ω2f2(t) − iλ2

∫
dω|v(ω)|2e−iωt

∫ t

0

dτ
[
λ1f1(τ) + λ2f2(τ)

]
eiωτ . (7.12)

In a next section, we shall make use of the Friedrichs model in order to simulate

interesting properties of the kaonic systems. Before we do so, it is useful to recall

certain of them.

7.3 Main features of kaon phenomenology.

Kaons are bosons that were discovered in the forties during the study of cosmic

rays. They are produced by collision processes in nuclear reactions during which the

strong interactions dominate. They appear [53, 54] in pairs K0, K
0
. It is possible to

produce preferentially the K0 particle essentially due to the fact that the K
0

kaon is

less probable kinematically and that the threshold pion energy for its production is

higher.

The K mesons are eigenstates of the parity operator P : P |K0〉 = −|K0〉, and

P |K0〉 = −|K0〉. K0 and K
0

are charge conjugate to each other C|K0〉 = |K0〉, and

C|K0〉 = |K0〉. We get thus

CP |K0〉 = −|K0〉, CP |K0〉 = −|K0〉. (7.13)
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Clearly |K0〉 and |K0〉 are not CP -eigenstates, but the following combinations

|K1〉 =
1√
2

(
|K0〉 + |K0〉

)
, |K2〉 =

1√
2

(
|K0〉 − |K0〉

)
, (7.14)

are CP -eigenstates.

CP |K1〉 = −|K1〉, CP |K2〉 = +|K2〉. (7.15)

In the absence of matter, kaons disintegrate through weak interactions. Actually, K0

and K
0

are distinguished by their mode of production, K1 and K2 are distinguished by

their mode of decay [53]. In first approximation we can neglect CP violation so that

the weak Hamiltonian commutes with CP . In this regime, the weak disintegration

process distinguishes the K1 and the K2 states. The lifetime of the K1 kaon is short

(τS = 1
ΓS

≈ 8.92 × 10−11 s), while the lifetime of the K2 kaon is quite longer (τL ≈
5.17×10−8 s). The difference of mass of the 1 and 2 kaons is quite small in comparison

to their mass (mL−mS

mS+mL
≈ 0.35 × 10−14, with (mL − mS)c2 ≈ 3.52 × 10−6eV). The

amplitudes of state K1 at time t can be written as

a1(t) = a1(0)e−
iES

~
te−

ΓS
2~

t, (7.16)

where ES is the total energy of particle; so ωS = ES

~
is the angular frequency, and

ΓS = ~

τS
is the width of the state. We can write the amplitude of state K2 in a similar

fashion for the long lifetime. The intensity is

I1(t) = a1(t)a
∗
1(t) = a1(0)a∗

1(0)e−
ΓS
~

t

= I1(0)e
− t

τS . (7.17)

Setting ~ = c = 1 and considering a situation during which kaons are at rest we get

that τS is the proper lifetime and ES = mS, the rest mass of the K1 particle. Its

amplitude is then

a1(t) = a1(0)e−(imS+
ΓS
2

)t. (7.18)

Similarly, for K2,

a2(t) = a2(0)e−(imL+
ΓL
2

)t. (7.19)

From equation (7.14) we can write [53] the corresponding amplitudes of K0 and K0

as

a0(t) =
1√
2

(
a1(t) + a2(t)

)
, a0(t) =

1√
2

(
a1(t) − a2(t)

)
(7.20)
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and the intensities are equal to

I0(t) =
I0(0)

4

(
e−ΓSt + e−ΓLt + 2e−

ΓS+ΓL
2

t cos(△mt)
)

(7.21)

and

I0(t) =
I0(0)

4

(
e−ΓSt + e−ΓLt − 2e−

ΓS+ΓL
2

t cos(△mt)
)
. (7.22)

Here △m = |mL−mS| ≈ 3.52×10−6 and △mτS ≈ 0.47, so that K0− and K
0−intensities

oscillate with the frequency |△m|.
This corresponds to the process called strangeness oscillation. We can explain it

intuitively as follows: in the vacuum the disintegration of kaons is due to weak inter-

actions, and the weak Hamiltonian controls and dominates the evolution. Therefore,

the eigenstates of the “free” (weak) Hamiltonian in vacuum are (in first approxima-

tion) the K1 and K2 kaons. In the presence of matter, strong interactions are present

during the collisions between kaons and nuclei. They dominate the decay process and

therefore K0 and K
0

kaons are observed, and it is also possible to distinguish them

experimentally because they possess different disintegration channels. This can be

compared, if we develop the analogy with spin 1/2 systems, to situations in which

the spin is measured along the Z direction while it undergoes a precession due to a

magnetic field along the X direction between preparation and measurement. This

is also analog to what occurs when polarized light propagates in birefringent sup-

ports2. Because the preparation and measurement bases differ from the eigenbasis

of the Hamiltonian that controls the free evolution, interference effects are likely to

occur. This is the essence of strangeness oscillations. What is interesting is that if we

compare their difference of mass (in convenient units) to the inverse of the lifetime

of the K1 kaon, we get a comparable result: (mS − mL)τS ≈ 0, 47. Thanks to this

relation and due to the fact that it was possible experimentally to carry out observa-

tions during a time comparable to the lifetime of the K1 kaon, which is relatively long

in comparison to other elementary particles, it was possible to observe strangeness

oscillations experimentally.

Generation and regeneration are similar phenomena. If we produce (in matter, in

the strong regime) K0 particles, no K
0

particle is present, but if we wait (in absence

of matter) during a time long relatively to τS the lifetime of the K1 kaon, the K2

particle only has survived and the probability to find a K
0

particle is 0.5, so that K
0

particles were generated.

2This analogy is carefully developed in ref.[68]
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Regeneration is due to the fact that in the presence of matter, the K
0

particle

disintegrates more quickly than the K0 one. Henceforth their respective amplitudes

are not equal in modulus with as a consequence that a1(t) = 1√
2
(a0(t) + a0(t)) differs

from zero. Consequently, even if we wait (in the absence of matter, in the weak

regime) a time longer than the lifetime of the K1 kaon, and that only the K2 particle

is present, the K1 component is re-generated in the presence of matter.

CP violation is another interesting feature of the kaons phenomenology. It was

discovered by Christenson et al. [56]. CP violation means that CP symmetry is

slightly violated (by a factor of 10−3) by weak interactions so that the CP eigen-

states K1 and K2 are not exact eigenstates of the decay interaction. Let us consider

that KS(S = short-lived ) and KL(L = long-lived ) are the eigenstates of the decay

interaction; they can be expressed as a superpositions of the K1 and K2 eigenstates.

Then

|KL〉 =
1√

1 + |ǫ|2
[
ǫ |K1〉 + |K2〉

]

=
1√

2(1 + |ǫ|2)
[
(1 + ǫ)|K0〉 − (1 − ǫ)|K0〉

]
, (7.23)

and

|KS〉 =
1√

1 + |ǫ|2
[
|K1〉 + ǫ |K2〉

]

=
1√

2(1 + |ǫ|2)
[
(1 + ǫ)|K0〉 + (1 − ǫ)|K0〉

]
, (7.24)

where |ǫ| ≪ 1 and ǫ does not have to be real. KL and KS are the eigenstates of the

Hamiltonian for mass-decay matrix [53, 54], i.e.

H = M − i

2
Γ ≡

(
M11 − i

2
Γ11 M12 − i

2
Γ12

M21 − i
2
Γ21 M22 − i

2
Γ22

)
(7.25)

where M and Γ are individually Hermitian since they correspond to observables (mass

and lifetime). The corresponding eigenvalues of the mass-decay matrix are equal to

mL − i

2
ΓL, mS − i

2
ΓS (7.26)

The CP violation was established by the observation that KL decays not only via

three-pion, which has natural CP parity, but also via the two-pion mode with a |ǫ|
of order 10−3, which is truly unexpected. The experimental value of ǫ is [76]:

|ǫ| = (28.1 ± 4.1) × 10−4, arg(ǫ) = 43.37 (7.27)



7.4 Friedrichs’s model and kaon phenomenology. 107

7.4 Friedrichs’s model and kaon phenomenology.

In what follows, we shall identify the discrete modes of the Friedrichs model with

the K1 and K2 states. This is our basic postulate according to which we can now

make use of the Friedrichs model in order to establish a phenomenology for the kaonic

behavior. More precisely, we shall assume that

|K1〉 =

(
1

0

)
and |K2〉 =

(
0

1

)
. (7.28)

Let us consider the solution of the two-level Friedrichs model Schrödinger equation

(7.6). According to this equation, the state is at time t superposition of two compo-

nents that correspond to the two (complex) eigenvalues of the effective Hamiltonian.

In order to avoid confusion, we shall use different parameters when we deal with the

“real” kaons that are associated with experimental data and when we deal with the

“theoretic” ones in the framework of the Friedrichs model.

-The masses mS and mL and the lifetime τS and τS will remain attributed to the

real objects.

-The parameters ω1, ω2, λ1, λ2, ω+ and ω− will refer to the theoretic quantities.

7.4.1 Solutions for v(ω) = e−αω2/2, α > 0, α → 0

Case ω ∈] −∞, +∞[

If we substitute v(ω) = e−αω2/2 in the equations (7.11) and integrate from −∞ to ∞
we obtain

i
∂f1(t)

∂t
= ω1f1(t) − iλ1

√
π

α
[λ1f1(t) + λ2f2(t)] ∗ e−

t2

4α , (7.29)

where we used the convolution relation, i.e.

∂y(t)

∂t
= f(t) +

∫ t

0

k(t − u)y(u)du

= f(t) + k(t) ∗ y(t). (7.30)

Then the Laplace transformation of the above equation is

sY (s) − y(0) = F (s) + K(s)Y (s). (7.31)
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Thus we write the Laplace transformation of the equation (7.29) as

i(sF1(s) − f1(0)) = ω1F1(s) − iπλ1[λ1F1(s) + λ2F2(s)] eαs2

Erfc(
√

α s), (7.32)

where

Erfc(x) = 1 − Erf(x) = 1 − 2√
π

∫ x

0

e−y2

dy. (7.33)

Expanding Erfc and exponential functions (this corresponds to the Markovian or

Wigner-Weisskopf regime) we obtain

i(sF1(s) − f1(0)) = ω1F1(s) − iπλ1[λ1F1(s) + λ2F2(s)](1 − 2

√
α

π
s) + O(α). (7.34)

Now, the inverse Laplace transformation yields,

i(1− 2
√

παλ2
1)

∂f1(t)

∂t
= ω1f1(t)− iπλ1[λ1f1(t) + λ2f2(t)] + 2iλ1λ2

√
πα

∂f2(t)

∂t
. (7.35)

We can obtain the same relation for f2. Then we can easily obtain

i
∂

∂t




f1(t)

f2(t)




=




ω1−iπλ2
1

1−2
√

παλ2
1

λ1λ2(− iπ
(1−2

√
παλ2

1)
+ 2

√
παω2

1−2
√

πα(λ2
1+λ2

2)
)

λ1λ2(− iπ
(1−2

√
παλ2

2)
+ 2

√
παω1

1−2
√

πα(λ2
1+λ2

2)

ω2−iπλ2
2

1−2
√

παλ2
2
)




×




f1(t)

f2(t)


 , (7.36)

in which we neglect the O(λ4) contributions. The eigenvalues of the above effective

Hamiltonian, here denoted Heff , are

ω+ =
ω1 − iπλ2

1

1 − 2
√

παλ2
1

+O(λ4) ≈ (ω1−iπλ2
1)(1+2

√
παλ2

1+...) ≈ (1+2
√

παλ2
1)ω1−iπλ2

1, (7.37)

and

ω− ≈ (1 + 2
√

παλ2
2)ω2 − iπλ2

2. (7.38)

In this approximation the eigenvectors of the effective Hamiltonian are obtained as

follows,

|f+〉 =

(
1

0

)
and |f−〉 =

(
0

1

)
. (7.39)
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Comparing the eigenvalues in equations (7.37) and (7.38) with the equations in (7.26)

we obtain

2πλ2
1 = ΓS, ω1 =

mS

1 + 2
√

πα ΓS

≈ mS(1 − 2
√

πα ΓS),

2πλ2
2 = ΓL, ω2 =

mL

1 + 2
√

πα ΓL

≈ mL(1 − 2
√

πα ΓL). (7.40)

CP violation: Let us study in this case the CP violation. The Friedrichs model

allows us to estimate the value of ǫ. If the effective Hamiltonian (equation (7.36))

acts on |KL〉 vector states ( equation (7.23)) as an eigenstate corresponding to the

eigenvalue ω− = (1 + 2
√

παλ2
2)ω2 − iπλ2

2 we must impose (as the sign of ǫ is arbi-

trary), that Heff

(−ǫ

1

)
= ω−

(−ǫ

1

)
, from which we obtain straightforwardly that, at the

dominating order,

ǫ =
−λ1λ2(− iπ

(1−2
√

παλ2
1)

+ 2
√

παω2

1−2
√

πα(λ2
1+λ2

2)
)

[(1 + 2
√

παλ2
2)ω2 − iπλ2

2] − [(1 + 2
√

παλ2
1)ω1 − iπλ2

1]
, (7.41)

and if we expand and neglect the O(λ4) we obtain

ǫ ≈ −λ1λ2(−iπ + 2
√

πα ω2)

(1 + 2
√

παλ2
1)ω2 − (1 + 2

√
παλ2

2)ω1 − iπ(λ2
2 − λ2

1)
. (7.42)

If we replace λ’s and ω’s by their corresponding values from equation (7.40) we have,

ǫ ≈
i
2

√
ΓLΓS(1 + 2i

√
α
π
mS)

(mL − mS) − i
2
(ΓL − ΓS)

, (7.43)

In the zeroth approximation of α we obtain thus

ǫ ≈
√

(1.82 × 10−3)/2 ei(43.37)◦ (7.44)

which shows that our estimation of the modulus of ǫ is ∼ 14 times greater than its

experimental value while the estimated phase is correct. Now, in the case α 6= 0, ǫ is

given as

ǫ ≈
√

(1.82 × 10−3)/2 ei(43.37)◦(1 + 2i

√
α

π
mS) (7.45)

we see that α > 0 both changes the argument of ǫ and increases its modulus. Hence-

forth, a Gaussian test function in ]−∞,∞[ is not a good choice if we aim at improving

the fit with the experimental CP violation.
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Case ω ∈ [0, +∞[

If we substitute v(ω) = e−αω2/2 in the equations (7.11) and integrate from 0 to ∞ we

obtain

i
∂f1(t)

∂t
= ω1f1(t) − i

λ1

2

√
π

α
[λ1f1(t) + λ2f2(t)] ∗ e−

t2

4α Erfc(
it

2
√

α
). (7.46)

The Laplace transformation and the expansion in α of the above equation (7.46) lead

to

i(sF1(s) − f1(0)) = ω1F1(s) −
iπλ1

2
[λ1F1(s) + λ2F2(s)][(1 − 2i

π
) + 2(−1 + i)

√
α

π
s] + O(α).

(7.47)

Now, the inverse Laplace transformation yields,

i(1−(1− i)
√

παλ2
1)

∂f1(t)

∂t
= ω1f1(t)−

(iπ + 2)λ1

2
[λ1f1(t)+λ2f2(t)]+(1+i)λ1λ2

√
πα

∂f2(t)

∂t
.

(7.48)

We can obtain the same relation for f2. Then we can easily obtain

i
∂

∂t


 f1(t)

f2(t)




=




ω1−( iπ

2
+1)λ2

1

1−(1−i)
√

παλ2

1

λ1λ2(− (iπ+2)
2(1−(1−i)

√
παλ2

1
)
+ (1+i)

√
παω2

1−(1−i)
√

πα(λ2

1
+λ2

2
)
)

λ1λ2(− (iπ+2)
2(1−(1−i)

√
παλ2

2
)
+ (1+i)

√
παω1

1−(1−i)
√

πα(λ2

1
+λ2

2
)

ω2−( iπ

2
+1)λ2

2

1−(1−i)
√

παλ2

2

)




×


 f1(t)

f2(t)


 , (7.49)

in which we neglected the O(λ4) contributions. Obtaining the eigenvalues of the

above effective Hamiltonian and comparing with the equations in (7.26) we get

λ2
1 ≈

ΓS

π
(1 − 2mS

√
α

π
), ω1 ≈ mS + ΓS − 6mSΓS

√
α

π
,

λ2
2 ≈

ΓL

π
(1 − 2mL

√
α

π
), ω2 ≈ mL + ΓL − 6mLΓL

√
α

π
. (7.50)
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CP violation: Once again, let us estimate the value of ǫ. We obtain,

ǫ ≈
i
√

ΓLΓS[(1
2
− i 1

π
) + (−2 + iπ+2

π
)mS

√
α
π
]

(mL − mS) − i
2
(ΓL − ΓS)

≈
√

2(1.82 × 10−3)ei(43.37)◦ [(
1

2
− i

1

π
) + (−2 + i

π + 2

π
)mS

√
α

π
].

(7.51)

We see that if mS

√
α
π

= 1
2+π

the imaginary part in the bracket of above equation is

zero and the real part is equal to 0.111, which corresponds to the estimation

ǫ = 6.69 × 10−3ei(43.37)◦ (7.52)

So, in this case, |ǫ| = 6.69×10−3 which is only ∼ 3 times greater than the experimental

value while the estimated phase is correct.

7.5 Discussion of other approaches.

We present here a heuristic discussion of other recent approaches to the decay phe-

nomena in Quantum Mechanics and a comparison with the Friedrichs model. Our

approach in the above sections considers the decay, oscillation, regeneration, and CP

violation of kaons in the Hilbert space. On the other hand the open systems ap-

proach aims, briefly speaking, to study some basic questions namely decoherence,

Bell inequality, nonlocality, etc [68, 77, 78, 75, 71, 72].

The key ingredient for deriving irreversible in time evolution laws from the unitary

Schrödinger evolution is indeed, in open systems approach, to focus on subsystems of

a very large system (system plus environment). The role of the environment is played

in the Friedrichs model by continuous degree of freedom, while the subsystem is a

discrete (two-level in our case) system. As we have shown, these ingredients (discrete

system coupled to a continuum) suffice in order to be able to derive a non-unitary

master equation for the two-level system. It is worth noting that this approach in

which the environment is coupled to the subsystem is very general in quantum physics.

It is for instance the approach followed in order to derive master equations [72, 71],

or to solve the measurement problem in the so-called decoherence approach [79] and

it led to interesting treatments of the general Zeno paradox in the sense of [67, 63].
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In the usual formulation of the Friedrichs model, the border line between system

and environment is ill defined because the Hilbert spaces associated to those degrees

of freedom is not the tensorial product of their respective Hilbert spaces but is rather

their direct sum. Nevertheless it is possible, as we shall see below, to imbed the

direct sum of the Hilbert spaces associated to the discrete and continuous degrees of

freedom into a larger space in which those subspaces (tensorially) factorize, and to

formulate an equivalent Hamiltonian dynamics that contains as a special subset of

solutions all the solutions of the original model. Such a framework is also useful and

necessary, as we shall show, in order to compare our model with other approaches of

open, dissipative, noisy dynamics that have recently been proposed to describe kaon

phenomenology and possible new experimental tests on entangled kaonic pairs.

This modified Friedrichs model can be explained heuristically as follows. Instead

of representing the state of the system at time t by a direct sum of the Hilbert

spaces associated to the discrete and continuous degrees of freedom, we imbed it into

the tensorial products of a three-dimensional Hilbert space C3 (that corresponds to

the two discrete levels plus their decay product) and of a Fock space; C3
⊗Hphoton,

ψkaon =




f0

f1

f2


 and ψphoton =




f 0

f 1(ω
′

)

f 2(ω
′

, ω
′′

)

...




and the state is given by:

Ψ0,1,2,ωi =




f0

0

0




⊗




0

f1(ω
′

)

f 2(ω
′

, ω
′′

)
...

f2(ω
′

, ω
′′

, . . . , ω(n))

· · ·




+




0

f1

f2




⊗




f0

0

0
...




(7.53)

where f0 represents the amplitude of a new discrete state |0〉 that is assumed to contain

the “decay products” resulting from the disintegration of the two discrete kaonic states

|1〉 and |2〉; besides, fn(ω
′

, ω
′′

, ..., ω(n)) (n = 1, 2...) represents the amplitude of the n

environment particles.

Now that we defined our representation of the state of the system, we can define
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the free Hamiltonian:

Hfree =




ω0 0 0

0 ω1 0

0 0 ω2


 ⊗ Id.ω + Id.0,1,2 ⊗ ωa†.a (7.54)

The first part of it represents the energies of the discrete modes, while the second one

contains the energies of the excited modes. Here the operators a†.a count the number

of excitations in the mode ω.

The interaction Hamiltonian, Hint, is equal to

Hint =




0 λ1v(ω) λ2v(ω)

0 0 0

0 0 0


 ⊗ a† +




0 0 0

λ1v
∗(ω) 0 0

λ2v
∗(ω) 0 0


 ⊗ a. (7.55)

In analogy with quantum optics, this interaction represents the decay of the kaonic

“excited” states (1 and 2) to the “ground” state (0), with excitation of a mode

of energy (ω) while by unitarity the inverse process is also possible (diminution of

the energy of a continuous mode by one quantum of energy ω (here ~ = 1), and

repopulation of the discrete states |1〉 and |2〉). If the initial state is such that no

continuous mode is excited (f i(ω
′

, ω
′′

, ..., ω(i), t = 0) = 0∀i > 0), then, the dynamics

of the state Ψ0,1,2,ω(t) is considerably simplified because there will never occur more

than one excitation.

In that case f1(t), f2(t) and f1(ω, t)) obey a closed system of three equations:

ω1f1(t) + λ1

∫
dωv∗(ω)f 1(ω, t) = i

∂f1(t)

∂t
, (7.56)

ω2f2(t) + λ2

∫
dωv∗(ω)f1(ω, t) = i

∂f2(t)

∂t
, (7.57)

and

λ1v(ω)f1(t) + λ2v(ω)f2(t) + ωf1(ω, t) = i
∂f 1(ω, t)

∂t
. (7.58)

where we used 〈v(ω), f 1(ω)〉 =
∫

dωv∗(ω)f1(ω), and the components f0 and f 0 remain

unaffected on the evolution so we take them equal to 1, all the other modes are zero.

After identification of f1(ω, t) and our previous g(ω, t) we recover a system of

equations of evolution that is rigorously identical to the system of equations (7.7),

(9.1) and (7.9) derived in the framework of the Friedrichs model.
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At this level, we can compare the Friedrichs model with other models where a

system interacts with its environment, which leads to a non-unitary evolution for the

reduced system. Quite an amount of recent literature [69, 72, 68], theoretical and

phenomenological, deals precisely with the possibility to treat Kaon properties by

making them an open system. In those dissipative models, the evolution law can

be brought to the Lindblad form (this form is standard provided we assume that

the evolution law is completely positive, not merely positive, an hypothesis which

can be justified, to some extent, on physical grounds [72]). The markovian Lindblad

evolution has the following form:

∂

∂t
ρ = −iHeffρ + iρH†

eff − D(ρ), (7.59)

where Heff is a non-necessary Hermitian Hamiltonian, while D(ρ) is the so-called

dissipator (see e.g. Refs. [71, 69] for its precise description) of which the main effect is

that it induces a loss of coherence of the reduced system. This is not the case with the

Hamiltonian part Heff of the evolution operator as shown by direct computation: the

von Neumann entropy of the reduced system ρN = ρ/(Tr(ρ)), which is by definition

equal to S(ρN(t)) = −Tr(ρN(t) log2 ρN(t)) is constant in time whenever the dissipator

D(ρ) is identically equal to zero throughout time. This means among others that in

this case pure states remain pure states (up to a global decay), which is effectively the

case in our model where the dissipator is identically equal to zero throughout time

as can be seen from the Markovian limits (7.36) and (7.49)(the Wigner-Weisskopf

regime) of equations (7.11) and (7.12). However, another result may be obtained if

we consider a weak coupling limit of the evolution of a kaon system state tensorized

with an equilibrium state of an infinite environment [80]. This is quite different from

our approach and out of the scope of this paper which makes the weak coupling limit

in the frame of the Hilbert space. Here we considered only the process of emission

and absorption of one particle of the environment.

It is worth noting that properties that make kaonic phenomenology so interesting

and attractive such as oscillations, generation and regeneration are a manifestation

of the superposition principle, which is of application precisely because pure states

remain pure throughout time.

Remark: The coherence between the decay products |0〉 at one side and the space

spanned by the kaonic modes |1〉 and |2〉 at the other side is not preserved under the

partial trace. In fact, this comes out from the computation of the partial trace over
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the biorthogonal decomposition of the full state:

Ψ0,1,2,ωi(t) =




1

0

0




⊗




0

f 1(ω1, t)

0
...




+




0

f1(t)

f2(t)




⊗




1

0

0
...




(7.60)

Recall that if |Ψ〉AB =
∑

i,j αij|i〉A ⊗ |j〉B then

TrA(|Ψ〉AB AB〈Ψ|) =
∑

i,j,j′

αijαij′|j〉B ⊗ B〈j′| (7.61)

and

TrB(|Ψ〉AB AB〈Ψ|) =
∑

i,i′,j

αijαij′|i〉A ⊗ A〈i′| (7.62)

Then, taking a partial trace of this state over continuous degrees of freedom it is

easy to check that the reduced density matrix of the discrete (tripartite) degrees of

freedom is equal to:

ρkaons =




‖f 1‖2 0 0

0 |f1|2 f1f
∗
2

0 f∗
1 f2 |f2|2


 (7.63)

where ‖f 1‖2 =
∫
|f1(ω)|2dω and ‖f 1‖2+|f1|2+|f2|2 = 1. This is clearly the incoherent

sum of the decay-products and a pure state that is coherent superposition of the K1

and K2 modes.

7.6 Concluding remarks

We have shown that the framework of the Friedrichs model is relevant in order to

grasp , despite of its simplicity, essential features of kaons decay. This model allows us

to describe complex temporal evolutions (such as kaonic oscillations, generation and

regeneration) and to simulate at least qualitatively CP violation. We also recover the

experimental value of the phase, 43.37o as a results of equations (7.43), (7.44) and

(7.52).
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The measurement problem suggests that two regimes characterize the temporal

evolution of a quantum system: a continuous, unitary evolution in the absence of

measurement, and a sudden, irreversible in time evolution during the measurement

process (quantum jump). In the present paper, we studied an approach in which

the evolution of a two-level system coupled to a continuum is continuous in time but

possesses both a unitary and non-unitary component.

We showed that in the framework of the Friedrichs model the main feature that

is responsible for the derivation of an irreversible in time master equation for the

discrete system is the energy continuum. We also showed that the Friedrichs model is

relevant in order to describe complex temporal evolutions (such as kaonic oscillations,

generation and regeneration) and to simulate at least qualitatively CP violation.

In section 9.4 we discussed the lindbladian approach to decay problem using a

Fock space formulation for the Friedrichs model.

It is out of the scope of the present paper but it would be very interesting to study

the properties of the Friedrichs model and of kaonic oscillations in terms of the Time

Operator approach. This can be done for the one-level Friedrichs model [61, 62] but

higher level systems present more subtle and involved temporal behavior [63] so that

it is worth studying the time-operator in this context.
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Chapter 8

Quantum Decay Models (II)

8.1 One-level Friedrichs model

Hamiltonian for one-level Friedrichs model is written as H = H0 + V where H0 is

equal as (
ω1 0

0 ω

)
, (8.1)

and its eigenstates are {f0, g0} = {1, δ(ω − ν)}. Now, we write the time independent

Schrödinger equation for H, i.e. H|ψ〉 = ν|ψ〉, we have,
(

ω1 λv∗(ω)

λv(ω) ω

)(
f

g(ω)

)
= ν

(
f

g(ω)

)
. (8.2)

The continuous spectrum of H is the same as that of H0. Moreover, H may have one

(even two) point eigenvalues[58].

From the definition of H we see that if {f, g(ω)} is an eigenfunction of this operator

corresponding to the eigenvalue ν, then the following equations must be satisfied

ω1f + λ

∫
dω′v∗(ω′)g(ω′) = νf, (8.3)

and

λv(ω)f + ωg(ω) = νg(ω). (8.4)

If ν is a point eigenvalue then g(ω) must be square integrable. Thus, from the last

equation we arrive at

g(ω) =
λv(ω)f

ν − ω
. (8.5)
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If we assume that

v(ω) 6= 0, ω ∈ [0,∞[, (8.6)

the eigenvalue ν must lie outside the continuous spectrum of H0. Introducing equation

(8.5) into equation (8.3) we get
(

ν − ω1 + λ2

∫ ∞

0

dω′ |v(ω′)|2
ω′ − ν

)
= 0, (8.7)

Therefore ν is a zero of the function

η(z) = z − ω1 + λ2

∫ ∞

0

dω′ |v(ω′)|2
ω′ − z

, (8.8)

and because η(z) is analytic except for a cut along [0,∞[ its zeros are isolated. It is

easy to verify that η(z) has only real simple zeros (H is self-adjoint!). Moreover, if

0 ≤ ω1 < ∞, v(ω) vanishes at the end points and λ is sufficiently small, η(z) has no

zeros and thus H has no point eigenvalue. In the other words, the absence of zeros in

η(z) on the negative axis depends essentially on the absence of H-bound states with

negative energy.

We consider now the continuous spectrum of H, i.e. containing no bound state,

thus the η(z) is a regular analytic function in the z-plane except for a cut along

[0,∞[. If 0 ≤ ν < ∞ the expression given by equation (8.5) is a solution of equation

(8.3) provided we interpret (ω − ν)−1, as a principal part. The general solution of

equation (8.3) is obtained by ”key formulae of scattering theory”, which is introduced

by Jean-Paul Marchand [57] as:

g(ω) = g0 − lim
ǫ→0

g(ω ∓ iǫ) (8.9)

where ”+” is indicated for ”incoming” and ”−” for ”outgoing” wave. Thus, we have

g(ω) = δ(ω − ω′) − lim
ǫ→0

λv(ω)f

ν − ω − iǫ
. (8.10)

Inserting g(ω) in equation(8.3), obtains,

f(ν) =
λv(ν)

η+(ν)
, (8.11)

where η+(z) =: η(z + iǫ) defined as:

η+(z) = z − ω1 + λ2 lim
ǫ→0

∫ ∞

0

dω′ |v(ω′)|2
ω′ − (z + iǫ)

. (8.12)
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η+(z) is an analytic continuation of η(z) that was permitted by existence of the

interaction function (|v(ω)|2) [57], so it has a zero in lower half plane at

z1 = ω̃1 − i
γ

2
(8.13)

where z−1
1 is called the the resonance with energy ω̃1 and a lifetime 1/γ, (~ = 1).

The proof will be given in the next chapter.

8.2 Two-level Friedrichs model

Now, we write the two-level Friedrichs model Schrödinger equation as




ω1 0 λ1v
∗(ω)

0 ω2 λ2v
∗(ω)

λ1v(ω) λ2v(ω) ω







f1

f2

g(ω)


 = ν




f1

f2

g(ω)


 . (8.14)

Easily, we obtain

ω1f1 + λ1

∫
dω′v∗(ω′)g(ω′) = νf1, (8.15)

ω2f2 + λ2

∫
dω′v∗(ω′)g(ω′) = νf2, (8.16)

and

λ1v(ω)f1 + λ2v(ω)f2 + ωg(ω) = νg(ω). (8.17)

from the last equation we have

g(ω) =
λ1v(ω)f1 + λ2v(ω)f2

ν − ω
. (8.18)

Using the ”key formulae of scattering theory”, one obtains

g(ω) = δ(ω − ω′) − lim
ǫ→0

λ1v(ω)f1 + λ2v(ω)f2

ν − ω − iǫ
. (8.19)

Putting the above equation in the equations(8.15) yields

f1 =
λ1v(ν)

η+
1 (ν)

−
(

λ1λ2 lim
ǫ→0

∫
dω

|v(ω)|2
ω − ν − iǫ

)
f2, (8.20)
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where

η+
1 (z) = z − ω1 + λ2

1 lim
ǫ→0

∫
dω

|v(ω)|2
ω − (z + iǫ)

. (8.21)

We can also obtain the similar relations for f2 by changing the indices 1 with 2 and

vis versa, and by replacing f2 in equation(8.20) we obtain

f1(ν) =
1

1 − O(λ4)

(
λ1v(ν)

η+
1 (ν)

− O(λ3)

)
(8.22)

≃ λ1v(ν)

η+
1 (ν)

. (8.23)

In this approximation, the above equation for f1 is the same equation as we obtained

for f in the one-level Friedrichs model (equation (8.5)), i.e. we can write two-level

Friedrichs model as two one-level Friedrichs models, and so on.

8.3 Quantum Zeno effect (QZE)

Zeno’s paradox is a sped arrow which never reaches its target, because at every instant

of time, if we look at the arrow, we see that it occupies a portion of space equal to its

own size. At any given moment the arrow is therefore immobile, and by summing up

may such immobilities it is clearly impossible, according to Zeno, to obtain motion. It

is amusing that some quantum-mechanical states, under particular conditions, behave

in a way that is reminiscent to this paradox.

The main features of the so-called quantum Zeno effect is that the evolution of a

quantum-mechanical state can be slowed down (or even halted in some limit) when

very frequent measurements are performed on the system. In order to check whether

is still in its initial state (if it is being continuously observed), then Zeno’s quantum

arrow (the wave function) does not move.

The very nature of quantum physics is counterintuitive to conventional thinking.

Among the many bizarre quantum characteristics is the quantum Zeno paradox, an

odd mathematical result that is being debated to this day. Assuming an unstable

quantum state, intuition would dictate that eventually, the system will irreversibly

decay in certain amount of time, defined as the Zeno time. However, if the system

is measured in a period shorter than the Zeno time, then the wave function of the

system will repeatedly collapse before decay. In effect, constant measurements of the
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system will actually prevent its collapse! Even more mysterious, if the time interval

between measurements is longer than the Zeno time, the decay rate of the system

will increase, leading to what is termed the inverse Zeno effect [81].

The temporal decay of an unstable system is classically represented as an expo-

nential function. However, for the very short or very long time domain, exponential

decay is not applicable. For the very short time region the decay behavior is Gaussian

and for the very long time region the decay behavior is power tail. It is in the very

short time regime that certain unusual quantum properties can be found.

Let H be the total Hamiltonian of a quantum system and |ψ〉 its initial state at

t=0. The survival probability in state |ψ〉 is

p(t) = |〈ψ|e−iHt|ψ〉|2 (8.24)

and a short time expansion yields a quadratic behavior

p(t) ∼ 1 − t2

τ 2
z

(8.25)

where τz is the Zeno time. It is defined as:

τ−2
z = 〈ψ|H2|ψ〉 − 〈ψ|H|ψ〉2 (8.26)

If we write Hamiltonian as H = H0 + Hint where H0 is a free and Hint is an (off-

diagonal) interaction Hamiltonian, we have

τ−2
z = 〈ψ|H2

int|ψ〉. (8.27)

Perform N (instantaneous) measurements at time τ = t/N , in order to check whether

the system is still in state |ψ〉. The survival probability after measurements (t = Nτ)

reads

p(N)(t) = p(τ)N = p(t/N)N ∼
(
1 − t2

N2τ 2
z

)N N large
−−−−→ e

− t2

Nτ2
z

N→∞−−−−→ 1. (8.28)

If N = ∞ the evolution is completely hindered. For very large N (but finite) the evo-

lution is slowed down: indeed, the survival probability after N pulsed measurements

(t = Nτ) is interpolated by an exponential law [67]

p(N)(t) = p(τ)N = e−γeff(τ)t (8.29)
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where γeff(τ) is an effective decay rate which it was defined by:

γeff(τ) = −1

τ
log p(τ) ≥ 0 (8.30)

For τ → 0 (i.e. N → ∞), hence we have:

p(τ) = e
− τ2

τ2
z , γeff(τ) ∼ τ

τ 2
z

(8.31)

Note that γeff(τ) in equation (8.30) represents the effective decay rate of a system

that evolves freely up to time τ and it is measured at time τ . One expects to recover

the natural decay rate γ (if it exists), in agreement with the fermi “golden” rule, for

sufficiently long times, i.e., after initial quadratic region is over

γeff(τ)
long τ
−−−−→γ (8.32)

The meaning of “long” is that τz is not the right time scale.

We now concentrate our attention on truly unstable systems, with decay rate γ.

We ask whether it is possible to find a finite time τ ∗ such that

γeff(τ ∗) = γ. (8.33)

If such a time exists, then by performing measurements at time intervals τ ∗ the system

decays according to its natural lifetime, as if no measurements were performed. By

equations (8.30) and (8.33) one gets

p(τ ∗) = e−γτ∗

, (8.34)

i.e. τ ∗ is the intersection between the curves p(t) and e−γt. Fig.8.1 illustrates an

example in which such a time τ ∗ exists. By looking at this figure, it is evident that

if τ = τ1 < τ ∗ one obtains a QZE. Vice versa, if τ = τ2 > τ ∗, one obtains an inverse

Zeno effect (IZE). In this sense, τ ∗ can be viewed as a transition time from a quantum

Zeno to an inverse Zeno effect. In general, it is not always possible to determine τ ∗:

equation (8.33) may have no finite solutions. This will be thoroughly discussed in

the following, but it is interesting to anticipate some general conclusions. For an

unstable system and for sufficiently “long” times (the definition of ”long” times will

be sharpened later) the survival probability reads with very good approximation

p(t) ∼ Ze−γt, (8.35)
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Figure 8.1: Determination of τ∗. The solid line is the survival probability, the dashed line is the
exponential e−γt, and the dotted line is the asymptotic exponential ,Ze−γt in equation (8.35)[81].

where Z, the intersection of the asymptotic exponential with the t = 0 axis, is the

wave function renormalization and is given by the square modulus of the residue of

the pole of the propagator. We claim that a sufficient condition for the existence of

a solution τ ∗ of equation (8.33) is that Z < 1. This is easily proved by graphical

inspection. The case Z < 1 is shown in Fig.8.1 : p(t) and e−γt must intersect, since

according to (8.35) p(t) ∼ Ze−γt for large t, and a finite solution τ ∗ can always be

found. The other case, Z > 1, is shown in Fig.8.2 A solution may or may not exist,

depending on the features of the model investigated [81].

Figure 8.2: Study of the case Z > 1. The solid line is the survival probability, the dashed line is
the renormalized exponential e−γt, and the dotted line is the asymptotic exponential Ze−γt. (a) If
p(t) and e−γt do not intersect, then no finite solution τ∗ exists. (b) If p(t) and e−γt intersect, then
a finite solution τ∗ exists[81].
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8.4 Time operator in quantum mechanics

Time appears in physics mainly in the description of motion. But this time is not the

one that corresponds to the alteration of the time state of a body or a complex system.

On the other hand, the time-oriented transformation of the states of complex systems

is recognized as the most fundamental feature of thermodynamics. The second law

is the first statement making a distinction between past and future in the physical

processes. In speaking of the state of a body or a system, we obviously understand

a macroscopic state. Nevertheless, in quantum mechanics, the discovery of lifetimes

of unstable elementary particles has introduced a new distinction between past and

future on the microscopic level.

The mathematical theory of the macroscopic irreversible phenomena follows one

of two directions. The first one, based on empirical observations is the theory of

stochastic processes, which succeeded since the work of Einstein on the Browian mo-

tion to explain basic macroscopic properties like diffusion, viscosity, etc. The second

one strives to derive the irreversible approach to equilibrium from the first principles.

This is the nonequilibrium statistical mechanics. The aspect of driven return to equi-

librium of open systems coupled to “reservoirs” is of secondary importance here. We

are mainly interested in the time evolution of states of autonomous systems under

their own dynamics.

As is well known in classical mechanics, any microscopic system of particles is well

described by its trajectory. But one knows from the early arguments of Maxwell and

Boltzmann that no effective information on the long term motion of a macroscopic

system can be obtained from the Newton equations. This fact is well understood

today by the modern theory of dynamical systems. The trajectories of most com-

plex dynamical, systems are all unstable and have positive Lyapounov exponents.

Therefore, no available information on the long term motion can be derived from the

knowledge of a microscopic state. For these systems, one needs more global informa-

tion. We follow the Gibbs point of view which stipulates that the information on the

system is of a statistical nature and the nonequilibrium state is, therefore, given by

a probability distribution on the phase space.

Time operator T is based on the concept of a lifetime of a dynamical system. It is

impossible to associate such a concept to a trajectory of a system, however complex it

is. It is associated to the statistical states. Consider first, a system in the idealization

of a classical dynamical systems with discrete time t = −∞, . . . ,−1, 0, 1, . . . ,∞. One



8.4 Time operator in quantum mechanics 125

thinks of the iterative action of some more or less chaotic mapping or some Poincaré

section of a flow. The time operator defines a family of subspaces of nonequilibrium

statistical state labeled by t such that the dynamics propagates an initial state along

these spaces. Moreover, it gives a definition of a lifetime and the description of

the approach to the equilibrium state. In fact, the dynamical action transports the

system from one eigenspace of T to an older one in the future. The eigenfunctions

of the time operator are the probability distributions that correspond to states of

the system at different moments of its evolution. These ideas have been developed

in early papers [82, 83, 84]. Here we shall show that the concept of time operator

is suitable to describe the irreversible processes of physics and an even more general

class of irreversible dynamical processes [93].

8.4.1 Definition

We first consider the quantum mechanical time operator. Let the quantum system be

described by the Hamiltonian H acting in the Hilbert space H of wave functions. The

quantum statistical states of the system are density matrices. The time evolution of

any density matrix ρ is generated by:

ρ(t) = e−iHtρeiHt = e−iLtρ (8.36)

where L is the Liouville operator defined on the Liouville space, to which belong all

the quantum statistical states by

Lρ = [H, ρ]. (8.37)

In what follows, Ut = e−iLt is denoted. Pauli has already noted the impossibility

of defining a time operator T in the space of wave functions, since by definition, it

should be canonically conjugated to the time evolution generator H:

[H, T ] = iI. (8.38)

The impossibility follows from the semiboundedness of the spectrum of the Hamil-

tonian. The Liouville operator does not suffer from this inconvenience. A sufficient

condition is that the Hamiltonian has a semiunbounded continuous spectrum [84].

In this case, it is possible to find a family of subspaces of the space of states corre-

sponding to the continuous spectrum of the Liouville space1 Lτ , −∞ < τ < ∞, such

that
1A Liouville space is defined as a direct product of two Hilbert space: L = H⊗H.
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(i)Lτ ⊆ Lτ+t fort ≥ 0

(ii)UtLτ = Lτ+t.

Denote now by Pτ the orthogonal projection operator onto Lτ . The properties (i)

and (ii) then translate respectively into

(i) PτPτ ′ = Pτ , if τ < τ ′ and Pτ ; is a family of spectral projection operators of T

defined by:

T =

∫
τdPτ (8.39)

and (ii)

UtPτU−t = Pτ+t (8.40)

This implies the Weyl relation

U−tTUt = T + tI (8.41)

and T is the canonical conjugate of the Liouville operator. This commutation relation

justifies calls T a time operator. It should be noted that in quantum mechanics, time

operator can only have a continuous spectrum and there is no density matrix that

can be an eigenfuction of T . It is also necessary that H is unbounded continuous

spectrum. In other words, the infinite volume limit is a necessary condition for the

existence of a time operator.

From the above Weyl relation, a new rigorous proof of the fourth uncertainty

relation between time (as an operator) and energy is derived. Thus, the time operator

is also an observable, like spatial position and energy, with the main difference that it

acts only on the space of the statistical states and not on the space of wave functions.

On this level of generality, it also describes the time occurrence of specified events such

as time of arrival of a beam of particles to screen or time of decay of unstable particle.

Since the time of occurrence of such events fluctuates, the spectral projection operator

Pτ gives the probability of occurrence of such an event during any time interval.

The projection of the density matrix ρ on the subspace, L0 corresponds to unde-

cayed states or prepared initial states (also called a coarse-grained projection in the

context of the projection technique theory). This projection obeys a closed equation

(i.e., the projection of ρ(t) depends only on the projection of ρ(0)) which is called the

Master equation, since this evolution is a semigroup for t > 0. In fact, applying the

property (i): UtP0U−t = Pt, one obtains

UtP0 = PtUt. (8.42)
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Multiplying the above equation by P0 and using (ii) one obtains

P0UtP0 = P0PtUt = P0Ut, t > 0. (8.43)

This implies that any initial density matrix ρ satisfies to the equation

P0Utρ = P0UtP0ρ, t > 0. (8.44)

which means that the complementary part (1−P0)ρ0 does not contribute to the evolu-

tion of the projection part P0Utρ, which has, therefore, a closed evolution. Moreover,

the family of evolution operators for the diagonal part Wt = P0UtP0 verifies, owing

to the above relations, the semigroup property for t, t′ > 0:

WtWt′ = P0UtP0P0U
′
tP0

= P0UtU
′
tP0

= P0Ut+t′P0

= Wt+t′ (8.45)

Finally, this decays to zero monotonically. In fact, using the Hilbert-Schmidt norm

on the family of density matrices,

〈ρ1|ρ2〉 = Tr(ρ1ρ2) (8.46)

and the unitarity of Ut, one obtains

‖P0Utρ‖ = ‖U−tP0Utρ‖ = ‖P−tρ‖. (8.47)

Since
⋂

τ Lτ = 0, this quantity decays to zero as t goes to +∞. Unstable statistical

states with finite lifetime are those for which the above decay has an exponential rate

[93].

In fact, two important properties are fullfilled by this subspace which enable it to

be described this way.

First, it was proved that the time operator satisfies the fourth uncertainty relation

between time and energy with the following sense. Considering that a time operator

should be a quantum observable, like spatial position and energy, which describes the

time occurrence of specified events such as the time of arrival of a beam of particles

to a screen or time of decay of unstable particles and extending the von-Neumann
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formulation of quantum mechanics to Liouville space, it is possible to define the states

of a quantum system by normalized elements ρ ∈ L with respect to the scalar product.

The expectation of T in the state ρ is given by:

〈T 〉ρ = 〈ρ|T |ρ〉ρ (8.48)

and the “uncertainty” of the observable T as its fluctuation in the state ρ:

(△T )ρ =
√

〈T 2〉ρ − (〈T 〉ρ)2 (8.49)

Embedding the normalized elements ψ ∈ H as elements ρ = |ψ〉〈ψ| ∈ L, and the

observables A operating on H as observables Â operating on L as a multiplication by

A: Âρ = A.ρ, the above definition coincides with the usual quantum rule giving the

expectation of an observable A, operating on H, in the state ψ ∈ H:

〈A〉ρ = 〈ρ|Â|ρ〉 = 〈ψ|Âψ〉. (8.50)

A density matrix state M (i.e. a positive operator on with Tr(M) = 1), is embedded

in L as element ρ = M1/2. Then, the expectation of the observable A operating on

H in the mixture state M usually given by Tr(M.A) is also preserved, for :

〈A〉ρ = 〈ρ|Â|ρ〉 = Tr(M.A). (8.51)

Let △E be the usual energy uncertainty in the state M given by:

△E =
√

Tr(M.H2) − (Tr(M.H))2 (8.52)

and △T = (△T )M1/2 be the uncertainty of T in the state M defined as in (9.6). It

has been shown that:

△E △ T ≥ 1

2
√

2
(8.53)

This uncertainty relation leads to the interpretation of T as the time occurrence of

specified random events. The time of occurrence of such events fluctuates and we

speak of the probability of its occurrence in a time interval I =]t1, t2]. The observable

T ′ associated to such event in the initial state ρ0 has to be related to the time

parameter t by:

〈T ′〉ρt = 〈T ′〉ρ0 − t (8.54)

where ρt = e−itLρ0. Comparing this condition with the above Weyl relation we see

that we have to define T ′ as: T ′ = −T . Let Qτ be the family of spectral projections
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of T ′, then, in the state ρ, the probability of occurrence of the event in a time interval

I is given, as in the usual von Neumann formulation by:

P(I, ρ) = ‖Qt2ρ‖2 − ‖Qt1ρ‖2 = ‖(Qt2 −Qt1)ρ‖2 := ‖Q(I)ρ‖2 (8.55)

The unstable “undecayed” states prepared at t0 = 0 are the states ρ such that

P(I, ρ) = 0 for any negative time interval I, that is:

‖Qτρ‖2 = 0, ∀τ ≤ 0 (8.56)

In other words, these are the states verifying Q0ρ = 0. It is straightforwardly checked

that the spectral projections Qτ are related to the spectral projections Pτ by the

following relation:

Qτ = 1 − P−τ (8.57)

Thus, the unstable states are those states verifying, ρ = P0ρ and they coincide

with our subspace F0
2. For these states, the probability that a system prepared

in the undecayed state ρ is found to decay sometime during the interval I =]0, t] is

‖Qtρ‖2 = 1 − ‖P−tρ‖2 a monotonically nondecreasing quantity which converges to 1

as t → ∞ for ‖P−tρ‖2 tends monotonically to zero. As noticed by [94], such quantity

could not exist in the usual quantum mechanical treatment of the decay processes and

could not be related to the “survival probability” (pφ(t) = ‖P0e
itHφ‖) for it is not a

monotonically decreasing quantity in the Hilbert space formulation. In the Liouville

space, given any initial state ρ, its survival probability in the unstable space is given

by:

pρ(t) = ‖P0e
−iLtρ‖2 (8.58)

This survival probability and the probability of finding the system to decay sometime

during the interval I =]0, t], qρ(t) = ‖Qtρ‖2 are related by:

qρ(t) = 1 − ‖P−tρ‖2

= 1 − ‖U−tP−tUtρ‖2

= 1 − ‖P0e
−iLtρ‖2

= 1 − pρ(t) (8.59)

The survival probability is monotonically decreasing to 0 as t → ∞. This is true for

for any general initial state as can be seen from the equation (8.59). It should noted

that the projection operator P0 is not a ”factorizable” operator, that is, not of the

form P0ρ = EρE where E is a projection operator [92].

2We define the subspace Ft0 as the set of decaying states prepared at time t0
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8.5 Time asymmetry in quantum mechanics

8.5.1 Rigged Hilbert Space (RHS)

In quantum mechanics, observable quantities are represented by linear operators. The

eigenvalues of an operator represent the possible values of the measurement of the

corresponding observable. These eigenvalues, which mathematically correspond to

the spectrum of the operator, can be discrete (as the energies of a particle in a box),

continuous (as the energies of a free, unconstrained particle), resonant (as in a decay),

or a combination thereof.

The Hilbert space includes only the bound and scattering spectra because the

Hilbert space spectrum of an observable is real, thereby discarding the resonance

spectrum as unphysical. However, radioactive nuclei and unstable elementary par-

ticles are physical objects that ought to have a place in the quantum mechanical

formalism. This is why we need to extend the Hilbert space to a rigged Hilbert space,

within which the resonance spectrum has a place.

When the spectrum of an observable A is discrete and A is bounded, then A is

defined on the whole of the Hilbert space H and the eigenvectors of A belong to H.

In this case, A can be essentially seen as a matrix. This means that, as far as discrete

spectrum is concerned, there is no need to extend A. However, quantum mechanical

observables are in general unbounded and their spectrum has in general a continuous

part. In order to deal with continuous spectrum, we use Dirac’s bra-ket formalism.

This formalism does not fit within the Hilbert space alone, but within the rigged

Hilbert space.

Loosely speaking, a rigged Hilbert space (also called a Gelfand triplet) is a triad

of spaces

Φ ⊂ H ⊂ Φ× (8.60)

such that H is a Hilbert space, Φ is a dense subspace of H, and Φ× is the space

of antilinear functionals over Φ. Mathematically, Φ is the space of test functions,

and Φ× is the space of distributions. The space Φ× is called the antidual space of

Φ. Associated with the rigged Hilbert space (8.60), there is always another rigged

Hilbert space,

Φ ⊂ H ⊂ Φ′ (8.61)

where Φ′ is called the dual space of Φ and contains the linear functionals over Φ.
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The basic reason why we need the space Φ is that unbounded operators are not

defined on the whole of H but only on dense subdomains of H that are not invariant

under the action of the observables. Such non-invariance makes expectation values,

uncertainties and commutation relations not well defined on the whole of H. The

space Φ is the largest subspace of the Hilbert space on which such expectation values,

uncertainties and commutation relations are well defined.

Besides accommodating resonances and Dirac’s bra-ket formalism, the rigged

Hilbert space seems to capture the physical principles of quantum mechanics bet-

ter than the Hilbert space. For example, assuming that the Hilbert space provides

the whole mathematical framework for quantum mechanics may lead one to the con-

clude that Heisenberg’s uncertainty relations are not physical, since they cannot be

defined on the whole of the Hilbert space. Using the rigged Hilbert space, one over-

comes this difficulty after realizing that the commutation relations are well defined

on Φ.

The completeness relation is a good place to appreciate the added value of the

rigged Hilbert space. Consider, for example, the Hamiltonian H of a system. In the

Hilbert space, one writes the completeness relation as
∫

E
dPE = 1 (8.62)

where PE are the spectral projections of H and E is its spectrum. However, within

the rigged Hilbert space one can write
∫ ∞

0

dE|E〉〈E| +
∑

k

|En〉〈En| = 1 (8.63)

where |Ek〉 and |E〉 are the bound and scattering states of H, respectively [85].

Though not part of the traditional axioms these basic hypotheses are usually

augmented by the Dirac kets, e.g., of the Hamiltonian |E〉, and Dirac’s basis vector

expansion [86]

φ =

∫
|E〉〈E|φ〉dE. (8.64)

8.5.2 Breit-Wigner energy distributions

The phenomenological Breit-Wigner i.e.

aBW =
1

E − (ER − iΓ/2)
, 0 ≤ E < ∞, (8.65)
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for which the energy extends over the “physical” values 0 ≤ E < ∞ that cannot be

related to an exponential are

i

2π

∫ ∞

−∞

e−iEt

E − (ER − iΓ/2)
dE = θ(t)ei(ER−iΓ/2)t (8.66)

where θ(t) is a step function and defined as:

θ(t) =

{
1 t ≥ 0

0 t < 0
(8.67)

and
i

E − (ER − iΓ/2)
=

∫ ∞

0

ei(ER−iΓ/2)teiEt dt, −∞ < E < ∞. (8.68)

Mathematics requires that the energy E range over the entire real axis −∞ < E < ∞
and the values of time range only from 0 < t < ∞. In contrast, in the traditional

quantum theory in Hilbert space the time evolves over −∞ < t < ∞ and energy (spec-

trum of the Hamiltonian H) is bounded from below 0 ≤ E < ∞. The usual textbook

derivation of the exponential time evolution for vectors with the Breit-Wigner energy

distributions is one example of the “approximate” character of quantum mechanical

derivations for scattering and decay phenomena [86].

The mathematical results (8.66) and (8.68) show us which way we have to go

to obtain a mathematical theory of quantum mechanical scattering and decay: the

energy must be continued from the “physical” values 0 ≤ E < ∞ of (8.65) into

the complex energy plane, in particular to the negative values of (8.68) and the

exponential time evolution (8.66) is asymmetric, it starts at a “beginning” t = t0 = 0.

Thus using the simple but exact mathematical relations (8.66) and (8.68), not the

usual approximations of textbooks, show already what many have felt about decay

processes namely that the time evolution is asymmetric t > t0 and the decay is an

irreversible process.

The reason for this concern with deviations from the exponential is a mathematical

theorem [87, 88] which states that there is no vector in Hilbert space that has an exact

exponential time evolution. It means if one wants the exponential law cannot take for

a Hilbert space vector, φD. One has to take a vector φD → ψG with the properties

HψG = zψG, z = E − i

2
Γ (8.69)

and

ψG(t) = e−iHt/~ψG(0) = e−izt/~ψG(0) (8.70)
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This vector ψG, which needs to be properly defined, is called a Gamow vector [86].

In addition to (8.63), the rigged Hilbert space gives you an additional completeness

relation in which the resonance states participate:
∫ 0

−∞
dE|E〉〈E| +

∑

R

|zR〉〈zR| +
∑

k

|Ek〉〈Ek| = 1 (8.71)

where |zR〉 are the Gamow (resonance) states of H and the last integral, called the

background, is performed in the complex plane right below the negative real axis of

the second sheet. Thus, the completeness relation (8.71) substitutes the scattering

states contribution by the resonance contribution plus a background, thereby putting

the resonance spectrum on the same footing as the bound and scattering spectra.

It is important to note that the integrals in (8.63) and (8.71) are different, and

that the resonance contribution does not appear in (8.63), because resonances are

not asymptotic states. Also it is important to note that the resonance states, and

therefore expansion (8.71), need a different rigged Hilbert space from that needed by

the scattering states and expansion (8.63) [85].

8.5.3 Lippmann-Schwinger kets representations in Hardy space

The Lippmann-Schwinger equation is one of the cornerstones of scattering theory. It

is written as

|E±〉 = |E〉 +
1

E − H0 ± iǫ
V |E±〉, (8.72)

where |E±〉 are the “in” and “out” Lippmann-Schwinger kets, |E〉 is an eigenket of

the free Hamiltonian H0,

H0|E〉 = E|E〉 (8.73)

and V is the potential. The Lippmann-Schwinger kets are, in particular, eigenvectors

of H:

H|E±〉 = E|E±〉. (8.74)

To the kets |E±〉, there correspond the bras 〈 ±E|, which satisfy

〈 ±E| = 〈E| + 〈 ±E|V 1

E − H0 ∓ iǫ
, (8.75)

The bras 〈 ±E| are left eigenvectors of H,

〈 ±E|H = E〈 ±E|, (8.76)
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and the bras 〈E| are left eigenvectors of H0,

〈E|H0 = E〈E|. (8.77)

The Lippmann-Schwinger equation (8.72) for the “in” |E+〉 and “out” |E−〉 kets has

the scattering “in” and “out” boundary conditions built into the ±iǫ , since equation

(8.72) is equivalent to the time-independent Schrtödinger equation (8.74) subject to

those “in” (+iǫ) and “out” (−iǫ) boundary conditions. Like any bra and ket, the

Lippmann-Schwinger bras and kets do not have a place in the Hilbert space [85].

We define the Gamow vector ψG as energy eigenkets of a self-adjoint Hamiltonian

H, but with complex generalized eigenvalue z = E − i
2
Γ. As a guide to find the

space of analytic wave functions we use the well-known empirical concepts of quan-

tum scattering. The Lippmann-Schwinger kets |E+〉 and |E−〉 are the eigenvectors

of the (self adjoint) Hamiltonian H which fulfill the boundary conditions given by

the Lippmann-Schwinger (integral) equation. They have already energy values with

“infitesimal imaginary part” |E∓〉 = |E∓iǫ〉, ǫ > 0, this means the complex conjugate

of the energy wave functions 〈f |E∓〉 = 〈f |E∓iǫ〉 ≡ f∓(E) can be continued into the

lower (for -) and upper (for +) complex energy plane, or f∓(E) = f∓(E) = 〈 ∓E|f〉
can be continued into the upper (for -) and lower (for +) energy plane. From this

we conjecture that the energy wave functions for the outgoing particles 〈 −E|ψ−〉
and the energy wave functions of the prepared in-states 〈 +E|ψ+〉 form two distinct

spaces of Schwartz functions which can be analytically continued into the upper and

lower complex energy plane, respectively. To make this into a precise hypothesis, we

postulate

(i)The set of prepared in-state wave functions on the positive real semi-axis E ∈
R+{〈 +E|ψ+〉} = S∩H−(R+) are smooth Hardy functions of the lower energy plane.

(ii)The set of observed (detector defined) out-particles wave functions {〈 −E|ψ−〉} =

S ∩ H+(R+) are smooth Hardy function of the upper complex energy plane.

Thus the set of the outparticle “state” vector ψ− is given ψ− by [bohm]

ψ− =

∫ ∞

0

|E−〉〈 −E|ψ−〉dE (8.78)

The set of these vectors ψ− form an abstract linear space which we call Φ+. This is

the abstract Hardy space of vectors ψ−
1 , ψ−

2 , · · · which is mathematically (algebraically

and topologically (has the same meaning of convergence)) equivalent to the function

space (i). S∩H+(R+) is called a realization of the abstract space Φ+ in the same way
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as L2(R+) is the realization of the abstract Hilbert space H by the space of Lebesgue

square integrable functions.

Equivalently, the set of the vectors φ+ given by

φ+ =

∫ ∞

0

|E+〉〈 +E|φ+〉dE (8.79)

using the set of energy wave functions 〈 +E|φ+〉 ∈ S∩H−(R+) form an abstract linear

topological space which we call Φ−. Therewith one has a pair of RHSs of Hardy type

Φ∓ ⊂ H ⊂ Φ×
∓. (8.80)

The same Hilbert space is equipped with two different Hardy spaces and their duals

Φ×
∓ (space of antilinear continuous fuctionals). The Lippmann-Schwinger kets are

then mathematically defined as functionals [86].

Now, we need two RHSs, one for prepared in-states φ+:

{φ+} ∈ Φ− ⊂ H ⊂ Φ×
− (8.81)

and the other for the registered observables |ψ−〉〈ψ−| or detected out-states ψ−:

{ψ−} ∈ Φ+ ⊂ H ⊂ Φ×
+ (8.82)

where H is the same Hilbert space in (8.81) and (8.81). Thus, with the new Hardy

space boundary conditions (8.81) for φ+ ∈ Φ− we have

φ+(t) = e−iHtφ+ ≡ U †
−(t)φ+; 0 ≤ t < ∞. (8.83)

And boundary conditions (8.82) for ψ− ∈ Φ+ we have

ψ−(t) = eiHtψ− ≡ U+(t)ψ−; 0 ≤ t < ∞. (8.84)

Herein we obtain under the new Hardy space boundary conditions (8.81) and (8.81)

the semigroup solution (8.83) and (8.84).

8.5.4 Time evolution of Gamow vector

The Born probability for measuring the observable ψ− in the state φ+,

Pψ−(φ+(t)) = |(ψ−|φ+(t))|2 = |(ψ−(t)|φ+)|2 (8.85)
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are predicted for t ≥ t0 = 0 only.

The Born probability amplitude (ψ−|φ+(t)) to register the observable A− =

|ψ−〉〈ψ−|, ψ− ∈ Φ+, in the state φ+ ∈ Φ− is expressed using the standard notions of

scattering theory as the matrix element of the S-operator:

(ψ−|φ+) = (Ω−ψout|Ω+φin) = (ψout|Sφin) = (ψout|φout) (8.86)

This is essentially the statement of standard scattering theory [100, 90, 91] except that

is that case one speaks of out-states φ− instead of outobservables ψ− ≡ Ω−ψout. But

Born probabilities correlate observables and states, not states and other states, and

the detector in scattering experiments is not built to the specifications of prepared

states, but to the specification of the particles to be registered in the outregion,

which are therefore observables. The matrix element (ψ−|φ+) can now be expressed

using (8.78) and (8.79), and with the use of symmetries (angular momentum, energy

conservation) one obtains

(ψ−|φ+) =

∫ ∞

0

〈ψ−|E−〉S〈 +E|φ+〉 (8.87)

where S ≡ 〈 −E|E+〉 is the S-matrix element. Under the new hypothesis (ii) the en-

ergy wave functions are not only smooth square integrable functions but also analytic

in such a way that the integral in the S-matrix element (8.87) can be continued into

the lower half plane of the second sheet. The contour integration can therefore be de-

formed from the continuous spectrum of H (0 ≤ E < ∞, the scattering energies) into

a contour around the resonance pole and some background integral that corresponds

to (8.65) [89].

In the integrals along the circles around each resonance pole at ZRi
= ERi

− iΓi/2

of (8.87) one uses the expansion

S =
R(i

z − zRi

+ R0 + R1(z − zRi
) + · · · (8.88)

Now, we define the Gamow vectors |z−Ri
〉 as functionals over all ψ− ∈ Φ+:

〈ψ−|z−Ri
〉 =

i

2π

∮

Ci

〈ψ−|z−〉
z − zRi

dz =
i

2π

∫ +∞

−∞II

〈ψ−|E−〉
E − zRi

dE (8.89)

The integral along the energy axis extends from −∞ in the second sheet along the

upper rim of the second sheet to +∞ and the values along the cut 0 ≤ E < ∞ are
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the physical scattering energies. Since the values of 〈ψ−|E−〉 for negative E of Hardy

functions are already determined by their values for 0 ≤ E < ∞, the values in (8.89)

are determined from the scattering energies.

This means we have the following result (as a consequence of the Hardy space

axiom): if we replace the phenomenological Breit-Wigner in (8.65) which is measured

only for 0 ≤ E < ∞ by the “exact” Breit-Wigner of (8.66) for which the energy

extend from −∞ ≤ E < ∞, then one can associate to an ideal Gamow vector ψG ,

defined as the continuous superposition of the Lippmann-Schwinger kets |E−〉 with

the “exact” Breit-Wigner as the wave function of 〈 −E|ψG〉

aBW =
1

E − (ER − iΓ/2)
⇐⇒ ψG = |z−R〉

=
i
√

2πΓ

2π

∫ +∞

−∞II

|E−〉
E − zR

dE (8.90)

where zR = ER − iΓ
2

and −∞II ≤ E < ∞. And we have

〈Hψ−|ψG〉 ≡ 〈ψ−|H×|ψG〉 = (ER − i
Γ

2
)〈ψ−|ψG〉 for all psi− ∈ Φ+. (8.91)

The Gamow vector represents the resonance pole without the background. For this

state vector the exponential time evolution is given as:

ψG(t) ≡ e−iH×tψG = e−iERte−iΓ
2
tψG, for t ≥ 0. (8.92)

Finally, considering the background, the prepared state vector φ+ is given as:

φ+ = φbg +
∑

i

cRi
|z−Ri

〉 (8.93)

where the sum is over all resonances, and φbg is the functional on Φ×
+ = {ψ−} given

by

〈ψ−|φbg〉 =

∫ −∞II

0

〈ψ−|E−〉〈 +E|φ+〉SII(E)dE

=

∫ +∞

0

〈ψ−|E−〉〈 +E|φ+〉b(E)dE (8.94)

where b(E) is background amplitude.
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8.5.5 Summary

To obtain a meaningful theory of resonance and decay phenomena, one needs a vector

with the following properties:

1. It must have a Breit-Wigner energy distribution.

2. It must have an exponential time evolution.

3. The parameter of the Lorentzian Γ and the parameter of the exponential t

must be related by τ = ~/Γ.

The vectors which have these properties are the Gamow vectors of (8.90) defined by

(8.89) as a functional over the Hardy space Φ+. Such vectors cannot exist in Hilbert

space. They cannot even exist as generalized eigenvector defined as functional over

the Schwartz space, like the usual Dirac ket |E〉 ∈ Φ× of (8.60).

The kets that one needs are suggested by the Lippmann-Schwinger equations. The

Lippmann-Schwinger kets (of which there are two kinds |E∓〉, require some analyticity

properties. We give them a mathematical meaning by defining them as functional

over the Hardy spaces of (8.80):

|E∓〉 ∈ Φ×
± (8.95)

They can be analytically continued to |Z∓〉 ∈ Φ×
± for z ∈ CR

∓.

The Gamow state vectors are associated with the singular point of the analytically

continued Lippmann-Schwinger kets |z−. The Gamow vector (8.90) represents a first-

order resonance [86].
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Chapter 9

Decay of quantum-mechanical
unstable systems and spectral
projections of time operator in
Friedrichs model

Abstract: We give a formula of the projection operators of self-adjoint time super-operator in

terms of the spectral representation of the Hamiltonian. We apply this formula to the quantum

mechanical Friedrichs model to compute the excited state decay inside the continuum in term of

time super-operator. Then we show that this formula eliminates the Zeno effect for short-time decay.

We also show that the long-time asymptotics of the survival probability is a sum of an algebraically

decaying term and an exponentially decaying one.

PACS number: 0.3.65-w
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9.1 Introduction

In this paper we shall study the properties of the survival probability of unstable

quantum systems using the spectral projections of time operator built in the frame-

work of the Liouville-von Neumann description [92, 93]. We shall test these properties

in the Friedrichs model [48]. The survival probability should be a monotonically de-

creasing time function and this property could not exist in the framework of the usual

quantum-mechanical approach [94, 95, 96]. It can only be properly treated through

an observable time operator T whose eigenprojections provide the probability distri-

bution of the time of decay. The equation defining time operator is the following:

U−tTUt = T + tI (9.1)

where Ut is the unitary group of states evolution. It is known that such an operator

cannot exist when the evolution is governed by the Schrödinger equation, since the

Hamiltonian has a bounded spectrum from below, and this contradicts the equation:

[H,T ] = iI (9.2)

in the Hilbert space of pure states H. However, a time operator can exist under

some conditions, for mixed states. They can be embedded [92, 97] in the “Liouville

space”, denoted L, that is the space of Hilbert-Schmidt operators ρ on H such that

Tr(ρ∗ρ) < ∞, equipped with the scalar product: < ρ, ρ′ >= Tr(ρ∗ρ′). The time

evolution of these operators is given by the group of operators:

Utρ = e−itHρeitH (9.3)

The infinitesimal self-adjoint generator of this group is the Liouville von-Neumann

operator L given by:

Lρ = Hρ − ρH (9.4)

That is, Ut = e−itL. The states of a quantum system are defined by normalized

elements ρ ∈ L with respect to the scalar product, the expectation of T in the state

ρ is given by:

〈T 〉ρ = 〈ρ, Tρ〉 (9.5)

and the“uncertainty” of the observable T as its fluctuation in the state ρ:

(∆T )ρ =
√

〈T 2〉ρ − (〈T 〉ρ)2 (9.6)
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It is shown that [92] the unstable states are those states verifying ρ = P0ρ. In fact, let

M be a density matrix states and ρ = M1/2, let △E be the usual energy uncertainty

in the state M given by:

△E =
√

Tr(M.H2) − (Tr(M.H))2 (9.7)

and △T = (△T )M1/2 be the uncertainty of T in the state M defined as in (9.6). It

has been shown that:

△E △ T ≥ 1

2
√

2
(9.8)

This uncertainty relation leads to the interpretation of T as the time occurrence of

specified random events. The time of occurrence of such events fluctuates and we

speak of the probability of its occurrence in a time interval I =]t1, t2]. The observable

T ′ associated to such event in the initial state ρ0 has to be related to the time

parameter t by:

〈T ′〉ρt = 〈T ′〉ρ0 − t (9.9)

where ρt = e−itLρ0. Comparing this condition with the above Weyl relation we see

that we have to define T ′ as: T ′ = −T . Let Pτ denote the family of spectral projection

operators of T:

T =

∫

R

τdPτ (9.10)

and let Qτ be the family of spectral projections of T ′, then, in the state ρ, the

probability of occurrence of the event in a time interval I is given, as in the usual von

Neumann formulation, by:

P(I, ρ) = ‖Qt2ρ‖2 − ‖Qt1ρ‖2 = ‖(Qt2 −Qt1)ρ‖2 := ‖Q(I)ρ‖2 (9.11)

The unstable “undecayed” states prepared at t0 = 0 are the states ρ such that

P(I, ρ) = 0 for any negative time interval I, that is:

‖Qτρ‖2 = 0, ∀τ ≤ 0 (9.12)

In other words, these are the states verifying Q0ρ = 0. It is straightforwardly checked

that the spectral projections Qτ are related to the spectral projections Pτ by the

following relation:

Qτ = 1 − P−τ (9.13)

The subspaces Fτ on which project Pτ verify: i)Fτ ⊆ Fτ+t and ii)UtFτ ⊆ Fτ+t for

t ≥ 0. Thus, the unstable states are those states verifying: ρ = P0ρ and they coincide
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with our subspace F0
1. For these states, the probability that a system prepared

in the undecayed state ρ is found to decay sometime during the interval I =]0, t] is

‖Qtρ‖2 = 1−‖P−tρ‖2 a monotonically nondecreasing quantity which converges to 1 as

t → ∞ for ‖P−tρ‖2 tends monotonically to zero. As noticed by Misra and Sudarshan

[94], such quantity could not exist in the usual quantum mechanical treatment of the

decay processes and could not be related to the “survival probability” for it is not a

monotonically decreasing quantity in the Hilbert space formulation. In the Liouville

space, given any initial state ρ, its survival probability in the unstable space is given

by:

pρ(t) = ‖P0e
−itLρ‖2 (9.14)

Then using a standard definition [96] of the survival probability adapted to the Li-

ouville space, given any initial state ρ, its survival probability in the unstable space

is given by:

pρ(t) = ‖P0e
−itLρ‖2

= ‖U−tP0Utρ‖2

= ‖P−tρ‖2 (9.15)

Here we used the following relation: P−t = U−tP0Ut. Then, the survival probability

is monotonically decreasing to 0 as t → ∞. As Pt is a spectral family of projections

pρ(t) → 1 when t → −∞. This survival probability and the probability of finding the

system to decay sometime during the interval I =]0, t], qρ(t) = ‖Qρ(t)‖2 are related

by:

qρ(t) = 1 − pρ(t) (9.16)

on account of its monotonicity, qρ(t) represents an entropy content of ρ(t). For any

given ρ it is shown that [92] P0Utρ = Wtρ where Wt is a semi-group of contracting

operators on L.

The paper is organized as follows: Section 9.2 gives a formula (9.32) for the

projection operator of T in terms of the spectrum of H. Section 9.3 and Appendix A

present the Friedrichs model and its spectral representation of the free Hamiltonian

excited state and Section 9.4 gives its projection on the unstable state space. Sections

9.5 and 9.6 study the short-time and long-time asymptotic of the survival probability.

1We define the subspace Ft0 to the set of decaying states prepared at time t0
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9.2 A formula for the spectral projection of time

operator

The expression of time operator is given in a spectral representation of H. As shown

in [97], H should have an unbounded absolutely continuous spectrum. In the simplest

case, we shall suppose that H is represented as the multiplication operator on H =

L2(R+) :

Hψ(ω) = ωψ(ω). (9.17)

The Hilbert-Schmidt operators on L2(R+) correspond to the square-integrable func-

tions ρ(ω, ω
′

) ∈ L2(R+ × R+) and the Liouville-von Neumann operator L is given by

:

Lρ(ω, ω
′

) = (ω − ω
′

)ρ(ω, ω
′

) (9.18)

Then we obtain a spectral representation of L via the change of variables:

ν = ω − ω
′

(9.19)

and

E = min(ω, ω
′

) (9.20)

This gives a spectral representation of L:

Lρ(ν, E) = νρ(ν, E), (9.21)

where ρ(ν, E) ∈ L2(R×R+). In this representation Tρ(ν, E) = i d
dν

ρ(ν, E) so that the

spectral representation of T is obtained by the inverse Fourier Transform:

ρ̂(τ, E) =
1√
2π

∫ +∞

−∞
eiτνρ(ν, E)dν = (F∗ρ)(τ, E) (9.22)

and

T ρ̂(τ, E) = τ ρ̂(τ, E). (9.23)

The spectral projection operators Ps of T are given in the (τ, E)-representation by:

Psρ̂(τ, E) = χ]−∞,s](τ)ρ̂(τ, E) (9.24)
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where χ]−∞,s] is the characteristic function of ] − ∞, s]. So that we obtain in the

(ν, E)-representation the following expression of these spectral projection operators:

Psρ(ν, E) =
1√
2π

∫ s

−∞
e−iντ ρ̂(τ, E) dτ

= e−iνs

∫ 0

−∞
e−iντ ρ̂(τ + s, E) dτ. (9.25)

Let us denote the Fourier transform Fg(ν) = 1√
2π

∫ ∞
−∞ e−iντ ĝ(τ) dτ and remind of the

Paley-Wiener theorem which says that a function g(ν) belongs to the Hardy class

H+(i.e. the limit as y → 0+ of an analytic function Φ(ν + iy) such that
∫ ∞
−∞ |

Φ(ν +iy) |2 dy < ∞) if and only if it is of the form g(ν) = 1√
2π

∫ ∞
0

e−iντ ĝ(τ) dτ where

ĝ ∈ L2(R+) [98]. Using the Hilbert transformation:

Hg(x) =
1

π
P

∫ ∞

−∞

g(t)

t − x
dt (9.26)

for only g ∈ L2(R), we can write the decomposition:

g(x) =
1

2
[g(x) − iHg(x)] +

1

2
[g(x) + iHg(x)]

:= g+(x) + g−(x) (9.27)

Also according to the Paley-Wiener theorem, g+(x) (resp.g−(x)) belongs to the Hardy

class H+( resp.H−) and this decomposition is unique. Thus taking the Fourier trans-

formation of g we obtain :

F(g)(ν) =
1

2
[F(g)(ν) − iHF(g)(ν)] +

1

2
[F(g)(ν) + iHF(g)(ν)]

=
1√
2π

∫ 0

−∞
e−iντ ĝ(τ) dτ +

1√
2π

∫ ∞

0

e−iντ ĝ(τ) dτ. (9.28)

It follows that:
1√
2π

∫ 0

−∞
e−iντ ĝ(τ) dτ =

1

2
(F(g) − iHF(g)). (9.29)

Now, using the well known property of the translated Fourier transformation σsĝ(τ) =

ĝ(τ + s) we have :

F(σsĝ)(ν) = eiνsF .ĝ(ν) = eiνsg(ν), (9.30)

then (9.25) and (9.29) yield:

Psρ(ν, E) =
1

2
e−iνs[eiνsρ(ν, E) − iH(eiνsρ(ν, E))]. (9.31)
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Thus:

Psρ(ν, E) =
1

2
[ρ(ν, E) − ie−iνsH(eiνsρ(ν, E))]. (9.32)

It is clear from (9.32) that Psρ(ν, E) is in the Hardy class H+ .

9.3 One-level Friedrichs model

The one-level Friedrichs model (see Appendix A) is a simple model of Hamiltonian

in which a discrete eigenvalue of the free Hamiltonian H0 disappears under coupling

with the continuum. It has been often used as a simple model of decay of unstable

states illustrating the Weisskopf-Wigner theory of decaying quantum systems. The

Hamilton operator H is an operator on the Hilbert space of the wave functions of the

form | ψ >= {f0, g(µ)}, f0 ∈ C, g ∈ L2(R+),

H = H0 + λV, (9.33)

where λ is a positive coupling constant, and

H0 | ψ〉 = {ω1f0, µg(µ)}, (ω1 > 0). (9.34)

We shall denote the eigenfunction of H0 by χ = {1, 0}. The operator V is given by:

V {f, g(µ)} = {〈v(µ), g(µ)〉, f0.v(µ)}. (9.35)

where

〈v(µ), g(µ, t)〉 =

∫
dµv∗(µ)g(µ, t), (9.36)

is the inner product. Thus, H can be represented as a matrix :

H =

(
ω1 λv∗(µ)

λv(µ) µ

)
(9.37)

where ω1 represents the energy of the discrete level and v(µ) ∈ L2(R+), it is called a

factor form. The λv(µ) represents the coupling to the continuous degree of freedom.

The energies µ of the different modes of the continuum range from −∞ to +∞ when

v(µ) = 1, but we are free to tune the coupling v(µ) in order to introduce a selective

cut off to extreme energy modes. It has been shown than for λ small enough, H has
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no eigenvalues and that the spectrum of H is continuous extending over R+. The

outgoing spectral representation of the vector χ given in [57] is:

f1(ω) =
λv∗(ω)

η+(ω)
, (9.38)

where

η+(ω) = η(ω + iǫ) := ω − ω1 + λ2 lim
ǫ→0

∫ ∞

0

|v(ω
′

)|2
ω′ − (ω + iǫ)

dω
′

(9.39)

f1(ω) is the spectral representation of χ and Hχ is represented by ωf1(ω). In what

follows, we shall also denote η−(ω) = η(ω − iǫ). η±(ω) are complex conjugate of each

other, we can see that

η±(ω) = ω − ω1 + λ2
P

∫ ∞

0

|v(ω
′

)|2
ω′ − ω

dω
′ ± iπλ2|v(ω)|2, (9.40)

where P indicates the “principal value” and we used the following identity in equation

(9.40)
1

x − x0 ± iǫ
= P

1

x − x0

∓ iπδ(x − x0). (9.41)

By choosing a cutoff v(ω) as (αω/π)1/4e−αω/2, we see that the principal value integral

can be written as:

P

∫ ∞

0

|v(ω
′

)|2
ω′ − ω

dω
′

= (1 − ie−αω
√

απω erf(i
√

αω )) (9.42)

where error function is defined as erf(z) =
∫ z

0
e−x2

dx, and “i erf(i
√

αω )” is a real

function (see (9.45)). By replacing the above equation in the equation(9.40) we have

η+(ω) = ω − ω1 + λ2 [1 + i
√

απωe−αω(1 − erf(i
√

αω ))]. (9.43)

Then,

dη+(ω)

dω
= 1 + λ2 [2α

√
ω + i

√
απ(

1

2
√

ω
− α

√
ω)e−αω(1 − erf(i

√
αω ))], (9.44)

is never equal to zero for small λ, that means η+(ω) has a simple pole in the inferior

complex plan. By using the expansion of error function and exponential function as

x → 0

erf(x) =
1√
π

(2x − 2x3

3
+

x5

5
− x7

21
+ ...) (9.45)
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and

ex = 1 + x +
x2

2!
+

x3

3!
+ ... (9.46)

we can write equation (9.43) for α → 0 as follows:

η+(ω) = ω − ω1 + λ2 [(1 + 2αω +
2(αω)2

3
+

(αω)3

5
+ ...)

+ i
√

απω(1 − αω +
(αω)2

2!
− (αω)3

3!
+ ...)]. (9.47)

Thus, we rewrite the above equation with approximation as

η+(ω) ≈ ω − ω1 + λ2 [(1 + O(α)) + i
√

απω(1 − O(α))]

= ω − zI . (9.48)

where zI = ω̃1 − iγ
2

and

ω̃1 ≈ ω1 − λ2 ≈ ω1 and
γ

2
≈ λ2√απω1. (9.49)

Thus, zI is the resonance with energy ω̃1 and a lifetime 1/γ, (~ = 1). According to

the above calculation, we obtain,

η+(ω) − η−(ω) = iγ. (9.50)

From (9.39), we have

i

2
[

1

η+(ω)
− 1

η−(ω)
] =

πλ2|v(ω)|2
|η+(ω)|2 . (9.51)

Consequently, the two above equations yield

πλ2|v(ω)|2
|η+(ω)|2 =

γ
2

|η+(ω)|2 . (9.52)

This equation will be used in the next section.

The quantity | < χ, e−iHtχ > |2 =
∫ ∞
0

|f1(ω)|2e−iωtdω is usually called the survival

probability at time t. It is however clear that this is not a true probability, since it is

not a monotonically decreasing quantity, although it tends to zero as a result of the

Riemann-Lebesgue lemma.
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Let us now identify the state χ with element ρ = |χ >< χ| of the Liouville space,

that is the kernel operator:

ρ11(ω, ω
′

) = f1(ω)f1(ω
′). (9.53)

We shall compute first the unstable component P0ρ11 and show that P0ρ11 6= ρ11

that is, ρ11 is not in the unstable subspace of T . Then we shall compute the survival

probability of the state ρ and ‖P−sρ‖2 and show how is reached the following limit:

lim
s→∞

‖P−sρ‖2 → 0. (9.54)

9.4 Computation of spectral projections of T in a

Friedrichs model

As explained above the Liouville operator is given by:

Lρ(ω, ω
′

) = (ω − ω
′

)ρ(ω, ω
′

) (9.55)

and the spectral representation of L is given by the change of variables:

ν = ω − ω
′

(9.56)

and

E = min(ω, ω
′

). (9.57)

Thus we obtain for ρ11(ν, E) :

ρ11(ν, E) =





λ2 v(E)
η−(E)

v∗(E+ν)
η+(E+ν)

ν > 0

λ2 v∗(E)
η+(E)

v(E−ν)
η−(E−ν)

ν < 0.

(9.58)

By considering v(ω) a real test function and using the equation (9.52) we obtain

ρ11(ν, E) in the following form:

ρ11(ν, E) = Af(ν, E), (9.59)
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where

f(ν, E) =





1
ν∗

0 (ν+ν0)
ν > 0

1
ν0(ν∗

0−ν)
ν < 0.

(9.60)

where ν0 = a + ib = (E − ω̃1) + iγ
2

and A is the normalization constant which is

obtained as:

|A|2 =

( ∫ ∞

0

dE

∫ ∞

−∞
dν|f(ν, E)|2

)−1

=
γ2

4

(
π

2
+ arctan(

2ω̃1

γ
)

)−2

(9.61)

For obtaining Psf(ν, E) (s < 0), we shall use the formula (9.32). First we compute:

Gs(ν, E) = H(eisνf)(ν) =
1

π
P

∫ ∞

−∞

eisxf(x)

x − ν
dx (9.62)

Now, we substitute (9.60) in (9.62), so we have,

Gs(ν, E) =
1

π
P[

∫ 0

−∞

eisx

ν0(x − ν)(ν∗
0 − x)

dx +

∫ +∞

0

eisx

ν∗
0(x − ν)(ν0 + x)

dx],

(9.63)

which for the ν > 0 has the following form:

Gs(ν, E) =
1

π
[

∫ 0

−∞

eisx

ν0(x − ν)(ν∗
0 − x)

dx + P

∫ +∞

0

eisx

ν∗
0(x − ν)(ν0 + x)

dx]. (9.64)

In the Appendix B we will calculate Gs(ν, E). Finally, Psf(ν, E) is obtained as:

Psf(ν, E) = ie−isν

[ −1

2πν0(ν∗
0 − ν)

( ∫ 0

−∞

e−sy

y + iν∗
0

dy −
∫ 0

−∞

e−sy

y + iν
dy

)

+
1

2πν∗
0(ν + ν0)

( ∫ 0

−∞

e−sy

y − iν0

dy −
∫ 0

−∞

e−sy

y + iν
dy

)]

+





e−isν [ eisν∗0

ν0(ν∗

0−ν)
− e−isν0

ν∗

0 (ν0+ν)
], E < ω̃1

0, E > ω̃1.

(9.65)

In this equation the non integral terms yield the poles and lead to the resonance

shown in equation (9.81), and the integral terms yield an algebraical term analog to
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the background in the Hamiltonian theories [99, 100, 101]. We can also compute the

same result for the case ν < 0.

The above expression is well defined for ν = 0. In fact, for ν → 0 the sum of

the two integrals which are dependent of ν goes to zero as ν log(isν) → 0 and the of

above equation is written as:

lim
ν→0

Psf(ν, E) =
i

2π|ν0|2
(
−

∫ 0

−∞

e−sy

y + iν∗
0

dy +

∫ 0

−∞

e−sy

y − iν0

dy

)

+





1
|ν0|2 [e

isν∗

0 − e−isν0 ], E < ω̃1

0, E > ω̃1.

(9.66)

9.4.1 The case s = 0

Now, we would calculate an analytic expression of P0f(ν, E). For s = 0 equation

(9.65) becomes:

P0f(ν, E) = lim
R→∞

1

2π

[ −i

ν0(ν∗
0 − ν)

( ∫ 0

−R

1

y + iν∗
0

dy −
∫ 0

−R

1

y + iν
dy

)

+
i

ν∗
0(ν + ν0)

( ∫ 0

−R

1

y − iν0

dy −
∫ 0

−R

1

y + iν
dy

)]

+





[ 1
ν0(ν∗

0−ν)
− 1

ν∗

0 (ν0+ν)
], E < ω̃1

0, E > ω̃1.

(9.67)

Here the two first integrals in the above equation are equal to

lim
R→∞

{[log+(iν∗
0) − log+(iν∗

0 − R)] − [log+(iν) − log+(iν − R)]} = − log+(
ν

ν∗
0

),

(9.68)

where log+ z is the analytic function with a cut along the negative y-axis Fig.9.1:

log+ z = log |z| + i arg(z), arg(z) ∈] − π
2
, 3π

2
[ . (9.69)

Also, we used limR→∞ log+( iν−R
iν∗

0−R
) → 0. Similarly, the two last integrals in the equa-

tion (9.67) can be calculated as:

lim
R→∞

{[log+(−iν0) − log+(−iν0 − R)] − [log+(iν) − log+(iν − R)]} = − log+(− ν

ν0

)

(9.70)
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Cut-line

x

y

Figure 9.1: The definition of log+ z.

where we used limR→∞ log+( iν−R
−iν0−R

) → 0.

Finally, the equation (9.67) is obtained as:

P0f(ν, E) =
i

2πν0(ν∗
0 − ν)

log+(
ν

ν∗
0

) − i

2πν∗
0(ν + ν0)

log+(− ν

ν0

)

+





[ 1
ν0(ν∗

0−ν)
− 1

ν∗

0 (ν0+ν)
], E < ω̃1

0, E > ω̃1.

(9.71)

Thus, we have shown that at time equal to zero the projection of f(ν, E), i.e.

P0f(ν, E), is a Hardy class function in the upper plane. This verifies the general

theorem about the properties of the unstable states associated to time operator, as

being in the upper Hardy class[92].

By the above result we can calculate the survival probability at time equal to zero.

It is obtained as:

‖P0f‖2 =

∫ ∞

0

dE

∫ +∞

−∞
|P0f(ν, E)|2dν

=
2π(2ω̃1/γ)

ω̃2
1 + (γ/2)2

(9.72)

and

pρ(0) = |A|2‖P0f‖2 =
π

2(π
2

+ arctan(2ω̃1/γ))2

2ω̃1/γ

(2ω̃1/γ)2 + 1
(9.73)
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which shows that P0f 6= f . Since the equality would imply that pρ(0) = 1.

9.5 Short time behavior of survival probability

To study the Zeno effect for short times we shall obtain the behavior of the survival

probability pρ(−s), (s < 0) in the short time, using the following approximation [102]

lim
s→0

∫ 0

−∞

e−st

t + z
dt = − lim

s→0
esz

∫ ∞

−sz

et

t
dt

= − lim
s→0

esz[γe + log(sz) +
∞∑

k=1

(−sz)k

k!k
], | arg(−sz)| < π, and |z| < ∞.

∼ −esz[γe + log(sz) − sz + · · · ] (9.74)

which is valid in the plane cut along the positive real axis. Here γe = 0.577215 . . . is

Euler’s constant, since it is not important in our computation for simplicity we take

γe ≈ 1
2
.

Now, using (9.75) for the evaluation of (9.65) we can write this equation as s → 0

as,

Psf(ν, E) ∼ eisν [P0f(ν, E) + sg(ν, ν0) + · · · ] (9.75)

where the first order of s is sufficient for our computation (see after equation (9.80)),

P0f(ν, E) is defined by (9.71) and

g(ν, ν0) =
3(1 + 2a − 4iab)ν + 2a|ν0|2

4π|ν0|2(ν∗
0 − ν)(ν0 + ν)

+





2a(i|ν0|2+2bν)
|ν0|2(ν∗

0−ν)(ν0+ν)
, E < ω̃1

0, E > ω̃1.

(9.76)

is a square integrable function. Now, the survival probability can be obtained by

computation of

pρ(−s) = |A|2‖Psf‖2

≃ |A|2
[
‖P0f(ν, E)‖2 + sg1(ω̃1, γ) + s2g2(ω̃1, γ) + · · ·

]

(9.77)
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where

g1(ω̃1, γ) =

∫ ∞

0

dE

∫ ∞

−∞
(g∗(ν, ν0)P0f(ν, E) + C.C.)dν (9.78)

and

g2(ω̃1, γ) =

∫ ∞

0

dE

∫ ∞

−∞
|g(ν, ν0)|2dν (9.79)

where g1(ω̃1, γ) and g2(ω̃1, γ) are the finite nonzero functions. Thus,

∂

∂s
qρ(−s)

]

s=0

= |A|2g1(ω̃1, γ). (9.80)

where qρ(−s) is the decay probability which is defined in the (9.16). In fact, in the

equation (9.75) we do not need the higher order of s, because the differentials relative

to s of order greater than of s in equation at s = 0 are zero. The above result coincides

with the result of the case s = 0 (9.73).

The above equation shows that for short time limit ∂
∂s

pρ(−s)]s=0 6= 0 which means

that at sufficiently small time the survival probability behaves as would be expected

on the basis of exponential decay law2, i.e. this case does not correspond to quantum

mechanical Zeno effect.

9.6 Asymptotical behavior of the survival proba-

bility for t = −s → ∞
We shall study the asymptotical behavior of quantity pρ(−s). By using equations

(9.65) and (9.59) and the approximations for s → −∞ which is shown in Appendix

C, we obtain the decay of the probability as:

pρ11(−s) = ‖Psρ11‖2 =

∫ ∞

0

dE

∫ +∞

−∞
|Psρ11(ν, E)|2dν

∼ |A|2[h(γ, ω̃1)

s4
+

h2(γ, ω̃1)

s2
+ eγsh1(s, γ, ω̃1)] (9.81)

2In the exponential decay law the survival probability is ∼ e−γt, t > 0 and t = −s. Consequently,
the decay probability is equal to qρ(t) = 1 − e−γt, then, we have ∂

∂t
qρ(t)]t=0 = γ. However, In Zeno

effect the continuous measurement effects does not allow the particle to decay as ∂
∂t

qρ(t)]t=0 =
0 [94, 95].
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where:

h(γ, ω̃1) = (
1

π(γ/2)6
)
[ 32

105
+

53π

128
− 53β

64
− 25

64
sin β

− 41

64
sin 2β − 23

192
sin 3β − 5

32
sin 4β − 13

320
sin 5β − 7

192
sin 6β

− 3

448
sin 7β − 21

3584
sin 8β +

2

7(γ/2)

1

(1 +
ω̃2

1

(γ/2)2
)7/2

]
, (9.82)

h1(s, γ, ω̃1) =
2π

γ2

(
−2 arctan β+

1

γs
+

γ sin 2ω̃1s

s(ω̃2
1 + γ2

4
)
+

(ω̃2
1 − γ2

4
) cos 2ω̃1s − γω̃1 sin 2ω̃1s

s(ω̃2
1 + γ2

4
)2

)

(9.83)

and

h2(γ, ω̃1) =
32

γ3

(
− 1

3
(
1 +

ω̃2
1

(γ/2)2

)3/2
+

1

3
− 3β

8
− 1

4
sin 2β − 1

32
sin 4β

)
(9.84)

where β = arctan(−2ω̃1

γ
).

Equation (9.81) shows an algebraically decreasing function and an exponentially

decreasing oscillating functions.

9.7 Conclusion

We have studied the projection of the initial pure state ρ(t) = |ψt〉〈ψt|, onto unstable

state space of time operator. Since P0ρ is not factorizable each of these states has

a positive von Neumann entropy, where the von Neumann entropy of ρ is Svn =

−Tr(ρ log ρ). Moreover, the entropy of P0ρ(t) increases to zero when t → ∞.

Our result shows that the survival probability is decreasing like an exponential

function for short time and both algebraically and exponentially for long time. We

have also shown that the action of the projection operator in the Friedrichs model is

to eleminate the Zeno effect. That is one of the major effects of using time operator

on unstable states. This is not surprising since the effect of the projection operator

P0 is to prepare the system in an unstable state. Preparation in experimental high

energy physics is currently used (see [99, 100, 103]). Although, the Zeno effect has

been observed in some cases, its universality is far from being verified.
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It would be interesting to compute if from (9.75) and (9.77), the short time es-

timate of the survival probability turns out to be less than purely exponentially

decreasing function of time which corresponds to quantum anti-Zeno effect [63, 104].

Recently, we have studied 2-level Friedrichs model with weak coupling interac-

tion for kaonic system [105, 106]. In the next publication, we shall consider 2-level

or n-level Friedrichs by using time super-operator in the Liouville space to study

decoherence of kaonic particles.

9.8 Appendix A

In the usual formulation of the Friedrichs model, the border line between system and

environment is ill defined because the Hilbert spaces associated to those degrees of

freedom is not the tensorial product of their respective Hilbert spaces but is rather

their direct sum. Nevertheless it is possible, as we shall see below, to imbed the

direct sum of the Hilbert spaces associated to the discrete and continuous degrees of

freedom into a larger space in which those subspaces (tensorially) factorize, and to

formulate an equivalent Hamiltonian dynamics that contains as a special subset of

solutions all the solutions of the original model.

This modified Friedrichs model can be explained heuristically as follows. Instead

of representing the state of the system at time t by a direct sum of the Hilbert

spaces associated to the discrete and continuous degrees of freedom, we imbed it

into the tensorial products of a two-dimensional Hilbert space H2 (that corresponds

to the discrete level plus their decay product) and of a Fock space; H2
⊗Hphoton,
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ψdiscret =

(
f0

f1

)
and ψphoton =




f 0

f1(µ
′

)

f 2(µ
′

, µ
′′

)

· · ·




and the state is given by:

Ψ0,1,µi =

(
f0

0

)
⊗




0

f 1(µ
′

)

f2(µ
′

, µ
′′

)
...

f 2(µ
′

, µ
′′

, . . . , µ(n))

· · ·




+

(
0

f1

)
⊗




f 0

0
...




(9.85)

where f0 represents the amplitude of a new discrete state |0〉 that is assumed to

contain the “decay products” resulting from the disintegration of the discrete kaonic

state |1〉; besides, fn(µ
′

, µ
′′

, . . . , µ(n)) (n = 1, 2, . . .) represents the amplitude of the n

environment particles.

Now that we defined our representation of the state of the system, we can define

the free Hamiltonian:

H0 =

(
ω1 0

0 µ

)
⊗ Id.µ + Id.0,1 ⊗ µa†.a (9.86)

The first part of it represents the energies of the discrete mode, while the second one

contains the energies of the excited modes. Here the operators a†.a count the number

of excitations in the mode µ.

The interaction Hamiltonian, Hint = λV , is equal to

Hint =

(
0 λv(µ)

0 0

)
⊗ a† +

(
0 0

λv∗(µ) 0

)
⊗ a. (9.87)

In analogy with quantum optics, this interaction represents the decay of the kaonic

“excited” state (1) to the “ground” state (0), with excitation of a mode of energy

(µ) while by unitarity the inverse process is also possible (diminution of the energy

of a continuous mode by one quantum of energy µ (here ~ = 1), and repopulation of
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the discrete state |1〉). If the initial state is such that no continuous mode is excited

(f i(µ
′

, µ
′′

, . . . , µ(i), t = 0) = 0∀i > 0), then, the dynamics of the state Ψ0,1,µ(t) is

considerably simplified because there will never occur more than one excitation.

In that case f1(t) and f1(µ, t)) obey a closed system of three equations:

ω1f1(t) + λ

∫
dµv∗(µ)f1(µ, t) = i

∂f1(t)

∂t
, (9.88)

and

λv(µ)f1(t) + µf 1(µ, t) = i
∂f 1(µ, t)

∂t
. (9.89)

where we used 〈v(µ), f 1(µ)〉 =
∫

dµv∗(µ)f1(µ), and the components f0 and f0 remain

unaffected on the evolution so we take them equal to 1, all the other modes are zero.

9.9 Appendix B

To obtain the Gs(ν, E), at first, we take the principal value integral in the equation

(9.64), i.e.

P

∫ +∞

0

eisx

ν∗
0(x − ν)(ν0 + x)

dx, (9.90)

using the contour of the Fig. 9.2, we have

Figure 9.2: .
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∮
eisz

ν∗
0(z − ν)(ν0 + z)

dy = lim
ǫ→0

lim
R→∞

( ∫ ν−ǫ

0

+

∫

c1

+

∫ R

ν+ǫ

+

∫ −R

0

+

∫ 0

R

+

∫ 0

−R

e−sy

ν∗
0(iy − ν)(ν0 + iy)

idy

)
= 2πi

∑
a−1.

(9.91)

We note that for a < 0, i.e. E < ω̃1 we have a simple pole as zI = −ν0, then, its

residues is a−1 = −2πie−isν0

ν∗

0 (ν0+ν)
, and for a > 0, i.e. E > ω̃1, we do not have any pole in

the contours then, a−1 = 0. Here the fourth and fifth integrals in the above equation

are zeros, and the second integral gives:

∫

c1

= lim
ǫ→0

∫ 2π

π

eisǫeiθ

ν∗
0((ν + ǫeiθ) − ν)(ν0 + (ν + ǫeiθ))

iǫeiθdθ =
πi

ν∗
0(ν0 + ν)

. (9.92)

Finally we have

P

∫ +∞

0

eisx

ν∗
0(x − ν)(ν0 + x)

dx =
−πi

ν∗
0(ν + ν0)

+ lim
R→∞

i

ν∗
0

∫ 0

−R

e−sy

(y + iν)(y − iν0)
dy

+

{ 2πie−isν0

ν∗

0 (ν0+ν)
E < ω̃1

0 E > ω̃1,
(9.93)

and the integral in the right-hand-side becomes:

∫ 0

−R

e−sy

(y + iν)(y − iν0)
dy =

i

ν + ν0

( ∫ 0

−R

e−sy

y − iν0

dy −
∫ 0

−R

e−sy

y + iν
dy

)
. (9.94)

To calculate the first integral in (9.64), i.e.

∫ 0

−∞

eisx

ν0(x − ν)(ν∗
0 − x)

dx. (9.95)

we use the contour of the Fig. 9.3, the above integral can be written as

∮
eisz

ν0(z − ν)(ν∗
0 − z)

dz = lim
R→∞

∫ 0

−R

e−sy

ν0(iy − ν)(ν∗
0 − iy)

idy = 2πi
∑

a−1 ,

(9.96)

where the other terms in above integration are zero. By using the contour in Fig. 9.3

we have a simple pole as zII = ν∗
0 for a < 0, i.e. E < ω̃1 and corresponding residues
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Figure 9.3: .

is a−1 = 2πieisν∗0

ν0(ν∗

0−ν)
. It has no pole for a > 0, i.e. E > ω̃1 and a−1 = 0. Thus, we have

∫ 0

−∞

eisx

ν0(x − ν)(ν∗
0 − x)

dx =
1

ν∗
0 − ν

( ∫ 0

−R

e−sy

y + iν∗
0

dy −
∫ 0

−R

e−sy

y + iν
dy

)

+

{ 2πieisν∗0

ν0(ν∗

0−ν)
E < ω̃1

0 E > ω̃1.
(9.97)

Now, by using the equations (9.32), (9.60), (9.64), (9.93), (9.94) and (9.97) we can

obtain equation (9.65).

9.10 Appendix C

To prove the equation (9.81). In the first step, we use the following approximation as

s → −∞

∫ 0

−∞

e−sz

y + z
dy = esx

∫ z

−∞

e−su

u
du

= esz

{[
e−su

−su

]z

−∞
−

∫ z

−∞

e−su

su2
du

}

=
1

(−zs)

[
1 +

1

(−zs)
+

2!

(−zs)2
+ · · · + n!

(−zs)n
+ rn(−zs)

]

(9.98)
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where the last result was obtained by integral part by part repetitions, z can be a

complex number, and

rn(z) = (n + 1)!ze−z

∫ z

−∞

et

tn+2
dt. (9.99)

Let z = x + iy then along the segment t = σ + iy (−∞ < σ ≤ x, x ≤ 0) we have ,

|et−z| = eσ−x, |t| ≥ |z| (9.100)

and hence

|rn(z)| ≤ (n + 1)!

|z|n+1

∫ x

−∞
eσ−xdσ =

(n + 1)!

|z|n+1
= O(|z|−n−1). (9.101)

Therefore we have the asymptotic representation

∫ 0

−∞

e−sz

y + z
dy =

1

(−sz)
[

n∑

k=0

k!

(−sz)k
+ O(|sz|−n−1)]. (9.102)

It follows from (9.102) that the convergent series

1

(−sz)

n∑

k=0

k!

(−sz)k
(9.103)

is asymptotic series for
∫ 0

−∞
e−sz

y+z
dy, and we have the estimate

|rn(−sz)| ≤ (n + 1)!

| − sz|n+1
(9.104)

In this case the error committed in approximation of
∫ 0

−∞
e−sz

y+z
dy by the finite number

of terms does not exceed the first neglected term in absolute value [102].

Finally, as follows we show that |rn(z)| = rn(|z|) :

rn(|z|) = (n + 1)!|z|e−|z|
∫ |z|

−∞

et

tn+2
dt

≤ (n + 1)!|z|
∫ |z|

−∞

et−|z|

|z|n+2
dt

≤ (n + 1)!

|z|n+1
(9.105)
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where for rn(|z|) we arrived at the same relation as we arrived at for |rn(z)| in (9.104),

which means that not only we can replace rn(|z|) by |rn(z)| and vice versa but also

we can show

rn(z) = rn(|z|eiθ) = |rn(z)|eiθ (9.106)

where θ = arg(z). Thus, the four integrals in equation (9.65), can be written as:

I ∼ −1

ν0(ν∗
0 − ν)

[( 1

(−iν∗
0s)

+
1

(−iν∗
0s)

2
+ r1(−iν∗

0s)
)
−

( 1

(−iνs)
+

1

(−iνs)2
+ r1(−iνs)

)]

+
1

ν∗
0(ν0 + ν)

[( 1

(iν0s)
+

1

(iν0s)2
+ r1(iν0s)

)
−

( 1

(−iνs)
+

1

(−iνs)2
+ r1(−iνs)

)]

∼ −2a

|ν0|4νs2
− 1

ν0(ν∗
0 − ν)

(
r1(−iν∗

0s) − r1(−iνs)
)

+
1

ν∗
0(ν0 + ν)

(
r1(iν0s) − r1(−iνs)

)
.

(9.107)

by using (9.106) we obtain

I ∼ −2a

|ν0|4νs2
+

(
− e−iδ

ν0(ν∗
0 − ν)

+
eiδ

ν∗
0(ν0 + ν)

)
|r1(iν0s)|

−
(
− 1

ν0(ν∗
0 − ν)

+
1

ν∗
0(ν0 + ν)

)
eiπ/2|r1(−iνs)| (9.108)

where δ = arg(ν0) = arctan( b
a
). Similarly, we can write I∗ as:

I∗ ∼ −2a

|ν0|4νs2
+

(
− eiδ

ν∗
0(ν0 − ν)

+
e−iδ

ν0(ν∗
0 + ν)

)
|r1(iν0s)|

−
(
− 1

ν∗
0(ν0 − ν)

+
1

ν0(ν∗
0 + ν)

)
e−iπ/2|r1(−iνs)|. (9.109)

Now,

I2 = I∗I ∼ I1 + I2 + I3 + I4 (9.110)
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where

|I1|2 =
−4a2

|ν0|8ν2s4
+

( 1

|ν0|2|ν∗
0 − ν|2 +

1

|ν0|2|ν0 + ν|2
)(
|r1(iν0s)|2 + |r1(−iνs)|2

)

(9.111)

|I2|2 =
−2a

|ν0|4νs2

[(
− e−iδ

ν0(ν∗
0 − ν)

+
eiδ

ν∗
0(ν0 + ν)

+ c.c.
)
|r1(iν0s)|

−i
(
− 1

ν0(ν∗
0 − ν)

+
1

ν∗
0(ν0 + ν)

− c.c.
)
|r1(−iνs)|

]
(9.112)

|I3|2 =
(
− e−2iδ

ν2
0(ν

∗2
0 − ν2)

+
e2iδ

ν∗2
0 (ν2

0 − ν2)

)
|r1(iν0s)|2

−
(
− 1

ν2
0(ν

∗2
0 − ν2)

+
1

ν∗2
0 (ν2

0 − ν2)

)
|r1(−iνs)|2 (9.113)

|I4|2 = −i
( e−iδ

|ν0|2|ν∗
0 − ν|2 +

eiδ

|ν0|2|ν0 + ν|2

− e−iδ

ν2
0(ν

∗2
0 − ν2)

− eiδ

ν∗2
0 (ν2

0 − ν2)

)
|r1(iνs)||r1(iν0s)| (9.114)

where “c.c.” is indicated to “complex conjugate”. Now, we replace |r1(z)| ∼ 2
|z1|2

from (9.104), in the above equations and then we calculate
∫ +∞
−∞ |Ii|2dν, i = 1, . . . , 4.

After, taking some contour integrations we obtain:
∫ ∞

−∞
|I|2dν ∼ (

4π

|ν0|6s4
)(

2

b
− 5b

|ν0|2
+

6b3

|ν0|4
+

3b2

|ν0|2
− 2

|ν0|
− 2ab

|ν0|3
). (9.115)

Now, we shall take the integral on E(0 ≤ E < ∞) of the above equation. But at

first, we remember the two following integrals:
∫ ∞

0

dE

|ν0|n
=

∫ ∞

0

dE

(E − ω̃1)2 + b2)n/2

=

∫ ∞

−ω̃1

du

(u2 + b2)n/2
, (u = E − ω̃1)

=
1

bn−1

∫ π
2

β

cosn−2 θdθ, (b tan θ = u). (9.116)

and
∫ ∞

0

a

|ν0|n
dE =

∫ ∞

0

(E − ω̃1)

(E − ω̃1)2 + b2)n/2
dE

=
1

2(n
2
− 1)(ω̃2

1 + b2)n/2−1
, (n 6= 1). (9.117)
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where β = arctan(−ω̃1

b
). Then, we arrive at h(γ, ω̃1)/s

4 where h(γ, ω̃1) is defined

in(9.82).

Now, we compute the square of the remainder (non-integral) part of the equation

(9.65) called IR.

|IR|2 =





|e−isν [ eisν∗0

ν0(ν∗

0−ν)
− e−isν0

ν∗

0 (ν0+ν)
]|2, E < ω̃1

0, E > ω̃1.

(9.118)

Then integrating on ν yields:

∫ +∞

−∞
|IR|2dν =





πeγs

|ν0|2 [
2
γ
− ie2i(E−ω̃1)s

ν∗

0
+ ie−2i(E−ω̃1)s

ν0
], E < ω̃1

0, E > ω̃1.

(9.119)

Finally, by integrating on E from 0 to ∞ and by using the above relation we obtain

∫ ω̃1

0

dE

∫ +∞

−∞
|IR|2dν ∼ h1(s, γ, ω̃1)e

γs (9.120)

where h1(s, γ, ω̃1) is defined in (9.83).

In the last step we must computed
∫ +∞
0

dE
∫ +∞
−∞ dν(I∗

RI+c.c.). First, we calculate

the integral on ν, it is obtained.
∫ +∞

−∞
(I∗

RI + c.c.)dν =
4π

|ν0|5s2
(−a

b
+

b

|ν0|
). (9.121)

Taking integral on E yields:

∫ ω̃1

0

dE

∫ +∞

−∞
(I∗

RI + c.c.)dν =
h2(γ, ω̃1)

s2
(9.122)

where h2(γ, ω̃1) is defined in (9.84). We note that the integration on E in (9.122) is

taken between 0 and ω̃1 because for E > ω̃1 we have IR = 0.

By adding all the terms we have
∫ ∞

0

dE

∫ +∞

−∞
|Psf(ν, E)|2dν ∼ h(γ, ω̃1)

s4
+

h2(γ, ω̃1)

s2
+ eγsh1(s, γ, ω̃1), (9.123)

and finally, we can obtain (9.81).
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