

Optimisation conjointe de codes LDPC et de leurs architectures de décodage et mise en œuvre sur FPGA

Thèse présentée devant l'INSA de Rennes en vue de l'obtention du doctorat d'Électronique

Jean-Baptiste Doré

26 Octobre 2007 à 10H00 – Amphithéâtre de FT R&D Cesson-Sévigné

France Telecom R&D Units

- Broadband Wireless Access
 - Innovative Radio Interface (RESA/BWA/IRI)
 - Broadcasting network Cooporation and radio access Mobility (RESA/BWA/BCM)

Supervisors

- Marie-Hélène Hamon R&D engineer at France Telecom R&D
- Pénard Pierre R&D engineer at France Telecom R&D
- Ramesh Pyndiah ENST Bretagne

Contexts

- PRICE Internal project
 - Prospective Research for Infrastructure and Communication Enhancement
- VERITY Internal project
 - Validation and Evaluation of Research studies in digITal sYstems

- Structured LDPC codes
- Decoding architectures for LDPC decoders
- FPGA implementation of LDPC coder/decoder
- Conclusion

orange[™]

• Introduction Structured LDPC codes Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conclusion

Introduction

- Context
- LDPC codes
- Decoding LDPC codes
- Encoding LDPC codes
- Codes construction

Structured LDPC codes Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conclusion Context
 LDPC codes
 Decoding LDPC codes
 Encoding LDPC codes
 Codes construction

Motivations

Digital communications

- High data rates
 - Base assumption is now Hundreds of Mbit/s
 - 1-10 Gbit/s in the future?
- Low complexity implementation
 - Small component size
 - Low power consumption
 - Low cost

Physical layer

- Forward Error Correction Scheme
 - Close to the theoretical limit

orange[™]

Structured LDPC codes Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conclusion Context

LDPC codes Decoding LDPC codes Encoding LDPC codes Codes construction

Background history

SNR

Shannon

orange[™]

Structured LDPC codes Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conclusion

Context

LDPC codes Decoding LDPC codes Encoding LDPC codes Codes construction

Background history

Berrou & Glavieux

Berrou & Glavieux

Structured LDPC codes Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conclusion Context

LDPC codes
Decoding LDPC codes
Encoding LDPC codes
Codes construction

Definitions

orange

LDPC codes

- Low Density Parity Check codes
- Parity check constraints, M parity equations and N bits

$$\mathbf{H}\underline{x}^t = \underline{\mathbf{0}}^t$$

- Modeling
 - Matrix representation

$$\mathbf{H} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

- Graphical definition
 - Bipartite graph (Tanner graph)

Structured LDPC codes Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conclusion Context LDPC codes • Decoding LDPC codes Encoding LDPC codes Codes construction

Decoding algorithm

Belief Propagation (BP) Algorithm

- Graph based algorithm
- Computation of messages which are propagated along the edges
 - Exchange of extrinsic information
- Optimal decoding
 - No cycle into the code graph

Structured LDPC codes Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conclusion Context LDPC codes Decoding LDPC codes • Encoding LDPC codes Codes construction

Problematic of encoding

Encoding LDPC codes

- Unconstraint parity check matrices
 - Encoding through the generator matrices G

$$\mathbf{G}\mathbf{H}^t = \mathbf{0}$$
 $\underline{x} = \underline{c}\mathbf{G}$

orange[™]

• Introduction Structured LDPC codes Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conclusion Context LDPC codes Decoding LDPC codes • Encoding LDPC codes Codes construction

Problematic of encoding

- Encoding LDPC codes
 - Unconstraint parity check matrices
 - Encoding through the generator matrices G

- Strictly or not dual-diagonal structure

Constraint parity check matrices

Upper/Lower triangular matrices

Quasi-cyclic codes

– Unconstraint

Simple encoding in a linear time

$$\mathbf{H} \underbrace{\mathbf{H}}_{\mathbf{x}} \stackrel{t}{=} \underbrace{\mathbf{0}}^{t}$$
$$\mathbf{H} = [\mathbf{H}_{\mathbf{s}} \mathbf{H}_{\mathbf{p}}] \longrightarrow [\mathbf{H}_{\mathbf{s}} \mathbf{H}_{\mathbf{p}}] \begin{bmatrix} \underline{c}^{t} \\ \underline{p}^{t} \end{bmatrix} = \underbrace{\mathbf{0}}^{t} \longrightarrow \underline{p}^{t} = \mathbf{H}_{\mathbf{p}}^{-1} \mathbf{H}_{\mathbf{s}} \underline{c}^{t}$$
$$\mathbf{H}_{\mathbf{p}} \underline{p}^{t} = \mathbf{H}_{\mathbf{s}} \underline{c}^{t}$$

Structured LDPC codes Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conclusion Context LDPC codes Decoding LDPC codes Encoding LDPC codes Codes construction

Design of LDPC codes

Objective:

orange

- Define the position of all the non null elements into the parity check matrix
 - Degree distribution optimization (EXIT Chart, Density Evolution)

Structured LDPC codes Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conclusion Context LDPC codes Decoding LDPC codes Encoding LDPC codes Codes construction

Design of LDPC codes

Objective:

orange

- Define the position of all the non null elements into the parity check matrix
 - Degree distribution optimization (EXIT Chart, Density Evolution)
- Unconstraint construction
 - Pseudo random construction
 - Progressive Edge-Growth (PEG) algorithm [Hu01]

Structured LDPC codes Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conclusion Context LDPC codes Decoding LDPC codes Encoding LDPC codes Codes construction

Design of LDPC codes

Objective:

orange

- Define the position of all the non null elements into the parity check matrix
 - Degree distribution optimization (EXIT Chart, Density Evolution)
- Unconstraint construction
 - Pseudo random construction
 - Progressive Edge-Growth (PEG) algorithm
- Structured LDPC codes
 - Dual-diagonal structure (RA and IRA codes)
 - Protograph based codes
 - Quasi-Cyclic codes
 - Etc..

• Introduction Structured LDPC codes Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conclusion Context LDPC codes Decoding LDPC codes Encoding LDPC codes Codes construction

Problematic

- How to define an efficient coding system using LDPC codes?
 - Structured LDPC codes family
 - Study the link between architectures and codes design
 - Optimize jointly codes and architectures

A joint definition of the codes and the encoding/decoding methods is highly recommended orange[™]

Introduction

• Structured LDPC codes Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conclusion

Structured LDPC codes

- Structured LDPC codes design
- Codes analysis
- Decoding structured LDPC codes
- Conclusions

Motivations

Introduction

• Structured LDPC codes Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conclusion Structured LDPC codes design Codes analysis Decoding Structured LDPC codes Conclusions

Constraints on family of LDPC codes

Good codes have strictly concentrated CN degree distribution [Chung01]

$$\rho(x) = \rho_i x^{i-1} + (1 - \rho_i) x^i$$

Richardson et al. design rules about degree 2 variables nodes [Richardson01,03]

dual-diagonal structure for H

- Simple characterization
 - Protograph based codes

Parity check matrices designed from permutation matrices

• Structured LDPC codes Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conclusion Structured LDPC codes design
Codes analysis
Decoding Structured LDPC codes
Conclusions

Some definitions

Definition of the code considered

 The parity check matrix H (M x N) is divided into two sub matrices H_s (M x K) and H_p(M x M)

$H = [H_s \ H_p]$

- **H**_p is defined to be a dual-diagonal matrix
 - Stability condition

$$\tilde{\lambda_2} \ge 1 - R$$

• No short cycles involving only degree 2 variable nodes

oranqe™

Introduction

• Structured LDPC codes Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conclusion Structured LDPC codes design Codes analysis Decoding Structured LDPC codes Conclusions

Characterization

Matrix H_s of size MxK is constructed with both:

- Circularly shifted identity matrices of size z x z
 - Notation: I_{δ} , $\delta \ge 0$, is a right shifted identity matrix by δ positions (modulo z)

$$\mathbf{I}_1 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

- Null matrices of size z x z
 - Notation: I_{δ} , δ <0, is a null matrix
- H_s can be defined by a (m x k) block matrix
 - Simple characterization

$$\mathbf{H}_{s} = \begin{bmatrix} \mathbf{I}_{\delta(0,0)} & \mathbf{I}_{\delta(0,1)} & \cdots & \mathbf{I}_{\delta(0,k-1)} \\ \mathbf{I}_{\delta(1,0)} & \mathbf{I}_{\delta(1,1)} & \cdots & \mathbf{I}_{\delta(1,k-1)} \\ \vdots & \vdots & \mathbf{I}_{\delta(i,j)} & \vdots \\ \mathbf{I}_{\delta(m-1,0)} & \mathbf{I}_{\delta(m-1,1)} & \cdots & \mathbf{I}_{\delta(m-1,k-1)} \end{bmatrix}$$

• Structured LDPC codes Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conclusion Structured LDPC codes design
 Codes analysis
 Decoding Structured LDPC codes
 Conclusions

Characterization

orange

- Matrix H_p of size MxM is a dual-diagonal matrix
 - Avoid low weight codeword requires a new definition of H_p

$$\mathbf{H}_{\mathbf{p}} = \begin{bmatrix} \mathbf{I} & & \mathbf{I}_{x} \\ \mathbf{I} & \mathbf{I} & & \\ & \mathbf{I} & \ddots & \\ & & \ddots & \mathbf{I} \\ \mathbf{0} & & & \mathbf{I} & \mathbf{I} \end{bmatrix} \qquad \mathbf{I}_{x} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 1 & & 0 & 0 & 0 \\ & & \ddots & & \vdots \\ 0 & 0 & & 1 & 0 & 0 \\ 0 & 0 & & 0 & 1 & 0 \end{bmatrix}$$

Quasi-Cyclic Irregular Repeat Accumulate Codes (QC IRA) [Tanner99]

$$\underline{p}^{t} = \mathbf{H}_{\mathbf{p}}^{-1} \mathbf{H}_{\mathbf{s}} \underline{c}^{t}$$

$$\mathbf{H}_{\mathbf{s}} \qquad \underbrace{\mathbf{H}_{\mathbf{s}}}_{t} \underbrace{\mathbf$$

• Structured LDPC codes Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conclusion Structured LDPC codes design

Codes analysis
 Decoding Structured LDPC codes
 Conclusions

Distances properties

Framework

- Which kind of configurations are critical for performance?
- Cycles properties
 - How to detect cycles into the code graph?
 - What is the role of short cycles on decoder behavior?

Definition of a design algorithm for the family of codes studied

orange[™]

Introduction

• Structured LDPC codes Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conclusion Structured LDPC codes design

Codes analysis
 Decoding Structured LDPC codes
 Conclusions

Distances properties

Main results

- Based on Return To Zero properties of the dual-diagonal part of H
 - Accumulator code
- Bound on minimal distance
 - Influence the choice of parameter m and the smallest variable node degree q

$d_{\min} \le 2 + mq$

- Rules on permutation coefficients
 - · Weight-Spectrum of the codes can be constrained
 - Avoid the generation of low weight codeword from low weight information word

Equi-repartition of permutation coefficients on [0,z-1] into a column of H_s but not strictly...

Cycles detection

orange

• Structured LDPC codes Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conclusion Structured LDPC codes design

Codes analysis
 Decoding Structured LDPC codes
 Conclusions

- Detection of cycle and enumeration of the distribution
 - Geometrical approach

$$A_0 \xrightarrow{V} A_1 \xrightarrow{H} A_2 \xrightarrow{V} A_3 \xrightarrow{H} A_0$$

• Structured LDPC codes Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conclusion Structured LDPC codes design
Codes analysis
Decoding Structured LDPC codes
Conclusions

Algorithm for code design

orange

Problematic: Find the unknown coefficient which

- Maximizes the cycle length
- Guarantees a minimal cycle length (Target Cycle Length-TCL)
- Application to the description of a design algorithm
 - Incremental construction of the code
 - PEG like algorithm
 - Based on protograph representation of the code

orange[™]

Introduction

• Structured LDPC codes Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conclusion Structured LDPC codes design

Codes analysis
 Decoding Structured LDPC codes
 Conclusions

Improve design algorithm

Additional constraints

- Target Cycle Length (TCL) depends on variable node degree
 - ACE (Approximate Cycle Extrinsic message) [Tian03]

Avoid low weight codeword and pseudo-codeword (Trapping-set)

- Better minimal distance
- Better behavior of the BP decoder

State of art

orange[™]

Introduction

Structured LDPC codes

Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conclusion Structured LDPC codes design Codes analysis • Decoding Structured LDPC codes Conclusions

LDPC codes decoding algorithm

- No a priori information on the code structure
 - BP with flooding scheduling
- When the structure of the code is known
 - Explore other decoding strategies
- Example: Codes defined by a protograph
 - Layered BP decoding

Main idea

orange

Introduction

• Structured LDPC codes Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conclusion Structured LDPC codes design Codes analysis • Decoding Structured LDPC codes Conclusions

What's about the dual-diagonal structure properties?

- "Isolate trellis-like sub graphs and locally applying the MAP algorithm is a good scheduling" [Forney01]
- Modeling of the considered codes
 - Consider the decoder as the dual of the encoder

Association with layer decoding concept

orange[™]

• Structured LDPC codes

Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conclusion Structured LDPC codes design Codes analysis • Decoding Structured LDPC codes Conclusions

Illustration of the sequencing

orange

Structured LDPC codes

Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conclusion Structured LDPC codes design Codes analysis • Decoding Structured LDPC codes Conclusions

Illustration of the sequencing

orange

• Structured LDPC codes

Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conclusion Structured LDPC codes design Codes analysis • Decoding Structured LDPC codes Conclusions

Illustration of the sequencing

orange

• Structured LDPC codes

Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conclusion Structured LDPC codes design Codes analysis • Decoding Structured LDPC codes Conclusions

Illustration of the sequencing

orange[™]

Introduction

Conclusion

• Structured LDPC codes Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Structured LDPC codes design Codes analysis • Decoding Structured LDPC codes

Conclusions

Simulation results

Comparison LBP/TLBP

Rules on permutation coefficients to reach the best possible convergence

orange

Synthesis

Introduction

• Structured LDPC codes Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conclusion Structured LDPC codes design Codes analysis Decoding Structured LDPC codes

Conclusions

Definition of structured LDPC codes

- Good performance
- Simple encoding (linear time)
- Simple characterization

QC IRA codes

orange

Introduction

• Structured LDPC codes Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conclusion Structured LDPC codes design Codes analysis Decoding Structured LDPC codes

Conclusions

Synthesis

Definition of structured LDPC codes

- Good performance
- Simple encoding (linear time)
- Simple characterization
- Analysis of code properties
 - Distance properties
 - Cycles properties

QC IRA codes

Codes design algorithm
orange

Introduction

• Structured LDPC codes Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conclusion Structured LDPC codes design Codes analysis Decoding Structured LDPC codes

Conclusions

Synthesis

Definition of structured LDPC codes

- Good performance
- Simple encoding (linear time)
- Simple characterization
- Analysis of code properties
 - Distance properties
 - Cycles properties

QC IRA codes

Codes design algorithm

- Studies on the decoding of structured LDPC codes
 - A priori information on code structure is exploited at the decoder side

Turbo Layered BP

orange[™]

Introduction Structured LDPC codes

• Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder

Conclusion

Decoding architectures for LDPC decoders

- Conception flow
- Architectures for LBP decoding algorithm
- Architectures for TLBP decoding algorithm
- Conclusions

Conclusion

Structured LDPC codes

• Decoding architectures for LDPC decoders <u>FPGA implementation of LDPC coder/decoder</u>

Conception flow
 Architectures for LBP decoding algorithm
 Architectures for TLBP decoding algorithm
 Conclusions

Framework

orange

- Methodology
 - "Cross stage" design flow

Conclusion

Structured LDPC codes

• Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder

Conception flow
 Architectures for LBP decoding algorithm
 Architectures for TLBP decoding algorithm
 Conclusions

Framework

orange

- Methodology
 - "Cross stage" design flow
 Codes design
 Layered BP
 Decoding Algorithm
 Turbo Layered BP
 Architectures

Conclusion

Structured LDPC codes

• Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder

Conception flow
 Architectures for LBP decoding algorithm
 Architectures for TLBP decoding algorithm
 Conclusions

Framework

orange

- Methodology
 - "Cross stage" design flow
 Codes design
 Layered BP
 Decoding Algorithm
 Turbo Layered BP
 Architectures

Optimization of data rate

Conclusion

Structured LDPC codes

• Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder

Conception flow
 Architectures for LBP decoding algorithm
 Architectures for TLBP decoding algorithm
 Conclusions

Framework

orange

- Methodology
 - "Cross stage" design flow Codes design Layered BP Decoding Algorithm **Turbo Layered BP Optimization of complexity Optimization of processors activity Architectures Optimization of data rate** Hardware integration

A joint design of both code and decoder architecture is highly recommended for the design of an efficient system

Structured LDPC codes

• Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conclusion Conception flow

Architectures for LBP decoding algorithm
 Architectures for TLBP decoding algorithm
 Conclusions

Efficiency of the decoder

orange

Problematic: Maximize the activity of processors?

Layered BP with serial architecture for CNP

- z is the size of a shifted identity matrix
- n_p is the number of processors working in parallel

Structured LDPC codes

• Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conclusion Conception flow

Architectures for LBP decoding algorithm
 Architectures for TLBP decoding algorithm
 Conclusions

Efficiency of the decoder

orange

Problematic: Maximize the activity of processors?

orange[™]

Introduction Structured LDPC codes

• Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conclusion Conception flow

Architectures for LBP decoding algorithm
 Architectures for TLBP decoding algorithm
 Conclusions

Configurations studied

n_p = max z

- Already studied in the literature
 - WiMAX LDPC codes R=1/2 and 2/3
- But
 - Very complex for large z
 - Not very efficient when z is not constant

n_p < max z

- Motivations
 - Optimize the activity of processor
 - Target a complexity
- Goals
 - Look for design rules on permutation coefficients in order to keep the Layered BP properties

orange

Structured LDPC codes

• Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conclusion Conception flow Architectures for LBP decoding algorithm • Architectures for TLBP decoding algorithm Conclusions

Turbo Layered BP: Summary of the work

- Various sequencing have been studied
 - Constraints on the code design

The decoding of a window can start if all the most up-to-date extrinsic information are available

orange

Structured LDPC codes

• Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conclusion Conception flow Architectures for LBP decoding algorithm • Architectures for TLBP decoding algorithm Conclusions

Turbo Layered BP: Summary of the work

- Various sequencing have been studied
 - Serial scheduling (pipelined or not)

orange

Structured LDPC codes

• Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conclusion Conception flow Architectures for LBP decoding algorithm • Architectures for TLBP decoding algorithm Conclusions

Turbo Layered BP: Summary of the work

- Various sequencing have been studied
 - Serial scheduling (pipelined or not)
 - Parallel scheduling (pipelined or not)

orange

Structured LDPC codes

• Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conclusion Conception flow Architectures for LBP decoding algorithm • Architectures for TLBP decoding algorithm Conclusions

Turbo Layered BP: Summary of the work

- Various sequencing have been studied
 - Serial scheduling (pipelined or not)
 - Parallel scheduling (pipelined or not)
- Definition of an efficient multi-rate decoder

orange

Introduction Structured LDPC codes

Conclusion

• Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conception flow Architectures for LBP decoding algorithm • Architectures for TLBP decoding algorithm

Conclusions

Genericity problematic

Exploit the structure of the parity check matrix

Properties of the dual-diagonal structure

Structured LDPC codes

• Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conclusion Conception flow Architectures for LBP decoding algorithm • Architectures for TLBP decoding algorithm Conclusions

Proposed solution

orange

Parallel architecture for SPC processors

■ J₀ messages are processed in parallel

Structured LDPC codes

• Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conclusion Conception flow Architectures for LBP decoding algorithm • Architectures for TLBP decoding algorithm

Conclusions

Proposed solution

orange

Parallel architecture for SPC processors

■ J₀ messages are processed in parallel

 \bigcirc J₀ ones per rows of **H**_s

 $J_0 = 2$

H =		0		0		0		0	1	0	0	0
	0	1	0	1	0	1	0	1	1	1	0	0
	1	0	0	1	1	0	1	0	0	1	1	0
	0	1	1	0	0	1	0	1	0	0	1	1

Structured LDPC codes

 Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conclusion

Conception flow Architectures for LBP decoding algorithm Architectures for TLBP decoding algorithm Conclusions

Proposed solution

orange

Parallel architecture for SPC processors

J₀ messages are processed in parallel

 \bigcirc J₀ ones per rows of **H**_s

 $J_0=2$

Structured LDPC codes

• Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conclusion Conception flow Architectures for LBP decoding algorithm • Architectures for TLBP decoding algorithm Conclusions

Proposed solution

orange

Parallel architecture for SPC processors

■ J₀ messages are processed in parallel

- Extension of the dual-diagonal part
 - Window decoding of the trellis (serial oriented)
 - Memory size proportional to the size of the window
- Efficient method for TLBP algorithm
 - Very flexible scheme if J₀ is well designed

orange

Synthesis

Structured LDPC codes

• Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conclusion Conception flow Architectures for LBP decoding algorithm Architectures for TLBP decoding algorithm

Conclusions

"Architecture driven" approach

Joint design of code and decoder architectures

orange

Synthesis

Structured LDPC codes

• Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conclusion Conception flow Architectures for LBP decoding algorithm Architectures for TLBP decoding algorithm

Conclusions

- "Architecture driven" approach
 - Joint design of code and decoder architectures
- Architectures for Layered BP decoding algorithm
 - Modeling of the CNP processors
 - Study the case of n_p < max z</p>
 - Some open issues
 - Flexible permutation network (barrel shifter)

Structured LDPC codes

• Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder Conclusion Conception flow Architectures for LBP decoding algorithm Architectures for TLBP decoding algorithm **Conclusions**

Synthesis

orange

"Architecture driven" approach

Joint design of code and decoder architectures

Architectures for Layered BP decoding algorithm

- Modeling of the CNP processors
- Study the case of n_p < max z
- Some open issues
 - Flexible permutation network (barrel shifter)

Architectures for Turbo Layered BP decoding algorithm

- Various sequencing have been described
- Problematic of multi-rate decoder

orange[™]

Introduction Structured LDPC codes Decoding architectures for LDPC decoders

• FPGA implementation of LDPC coder/decoder

Conclusion

FPGA implementation of LDPC coder/decoder

- Implementation options
- Quantization
- Complexity considerations
- Simulation results
- Conclusion

- Turbo Layered BP algorithm
 - With and without pipeline

- 2 decoding processors
 - p = 2
 - Duplication of the buffers

Introduction Introduction Structured LDPC codes Quantization Options Decoding architectures for LDPC decoders Orplexity considerations Options Simulation results Conclusion Conclusion Conclusions Conclusion Conclusions Con

Options

- Turbo Layered BP algorithm
 - With and without pipeline

- 2 decoding processors
 - p = 2
 - Duplication of the buffers

Double input memories

- Optimize the processor activity
- Optimize the decoding throughput

Memory banks organization

- Avoid simultaneous access
- Exploit code structure

Structured LDPC codes Decoding architectures for LDPC decoders

• FPGA implementation of LDPC coder/decoder

Implementation options

Quantization
 Complexity considerations
 Simulation results
 Conclusions

Problematic

Continuous to discrete domain

- Influence the performance
 - Lower granularity

Conclusion

- Introduction of erasures
- Influence the complexity of the decoder
 - Size of the memories
 - Size of internal data path
 - Complexity of the basic operators (+, , < ...)

What is the good trade off between performance and complexity?

Introduction Structured LDPC codes

Decoding architectures for LDPC decoders

• FPGA implementation of LDPC coder/decoder

Implementation options

Quantization
 Complexity considerations
 Simulation results
 Conclusions

Problematic

Continuous to discrete domain

- Influence the performance
 - Lower granularity

Conclusion

- Introduction of erasures
- Influence the complexity of the decoder
 - Size of the memories
 - Size of internal data path
 - Complexity of the basic operators (+, -, < ...)

What is the good trade off between performance and complexity?

- Input data
 - Quantization on 4 bits is a good trade off
- Internal data path
 - Various methods have been studied

Structured LDPC codes

Decoding architectures for LDPC decoders

• FPGA implementation of LDPC coder/decoder Conclusion Implementation options Quantization

Complexity considerations Simulation results Conclusions

FPGA integration

orange

ALTERA STRATIX EP1S80 - C6

Structured LDPC codes

Decoding architectures for LDPC decoders

• FPGA implementation of LDPC coder/decoder Conclusion Implementation options Quantization

Complexity considerations Simulation results Conclusions

FPGA integration

orange

ALTERA STRATIX EP1S80 - C6

Structured LDPC codes

Decoding architectures for LDPC decoders

• FPGA implementation of LDPC coder/decoder Conclusion Implementation options Quantization

Complexity considerations Simulation results Conclusions

FPGA integration

orange

ALTERA STRATIX EP1S80 - C6

Conclusion

Structured LDPC codes Decoding architectures for LDPC decoders

• FPGA implementation of LDPC coder/decoder

Implementation options Quantization

Complexity considerations Simulation results Conclusions

<u>&</u>

FPGA integration

orange

ALTERA STRATIX EP1S80 - C6

Drawback of a double input buffer

 Introduction
 Implementation options

 Structured LDPC codes
 Quantization

 Decoding architectures for LDPC decoders
 Complexity considerations

 • FPGA implementation of LDPC coder/decoder
 • Simulation results

 Conclusion
 Conclusions

Simulation context

orange

FPGA Hardware simulation chain

ALTERA Stratix EPS80-C6

- Source
 - PRBS 20
- AWGN Channel
 - Box Muller algorithm
- LDPC decoder/coder
 - 4 loaded codes

Simulation context

FPGA Hardware simulation chain

ALTERA Stratix EPS80-C6

orange™

Introduction Structured LDPC codes Decoding architectures for LDPC decoders

• FPGA implementation of LDPC coder/decoder

Implementation options Quantization Complexity considerations Simulation results

Simulation results
 Conclusions

Conclusion

Simulation context

FPGA Hardware simulation chain

ALTERA Stratix EPS80-C6

VALENTINNO

orange[™]

Introduction Structured LDPC codes

Decoding architectures for LDPC decoders

• FPGA implementation of LDPC coder/decoder

Implementation options Quantization Complexity considerations

0.00 🚖

5.00 🍧

0.25 🚔

100 🍨

R_1_10it.dat

Simulation results

Conclusions

Conclusion

Simulation context

FPGA Hardware simulation chain ALTERA Stratix EPS80-C6

LDPC Evaluation

Results **Transmission Analysis BER/PER Curves** Data rate Bit error rate(1s) Measure start (dB) 7.258 Mbit/s Measure end (dB) 🗧 Synchronized Measure incr. (dB) Bit errors Nb. packet errors Packet errors File name Eb/N0 (dB) 3.25 dB 10-0 10-1 10-0 10-2 10-3 10-1 10-4 10-2 10-5 10-6 10-3 10-7 10-4 10-8 10-5 10-10 10-6 10-7 Measure points 10-8 Nov 9 10:46:41 2006 @ 3.24 dB -> BER = 4.20e-09 | PER = 1.08e-06 -> Thu 10-9 Nov 9 10:50:22 2006 Measure finished 10-10 Eb/NO (dB)

QNX real time OS Automatic measures Real time performance curves

Broadcast context

■ Large block size (≈16 kbits) N = 16320 bits - 15it - QPSK 10⁰ Not Coded R=1/2 Parameters -0- R=2/3 * R=3/4 10⁻² O AWGN, QPSK R=7/8 < − Q_c = 4 bits (+/-7) Ò 10^{-4} 15 it TLBP FER (dot line) BER/FER 0 10^{-6} Ó ۷ 10^{-8} BER (continuous line) 10^{-10} 10^{-12}

2

0

1

3

4

Eb/No

5

6

7

Broadcast context

•

•

■ Large block size (≈16 kbits) N = 16320 bits - 15it - QPSK 10° Not Coded R=1/2 Parameters * R=3/4 10^{-2} R=5/6 -↔- \mathbf{O} AWGN, QPSK R=7/8 Q_c = 4 bits (+/-7) Ô 10^{-4} 15 it TLBP **FER** (dot line) BER/FER n 10^{-6} No early error floor Ò ۷ 10^{-8} BER Validation of both (continuous line) Code design algorithm 10⁻¹⁰ Quantization strategy **Quasi Error Free** 10 1 2 3 5 6 7 0 4 Eb/No
Decoding architectures for LDPC decoders
 FPGA implementation of LDPC coder/decoder

Implementation options Quantization Complexity considerations Simulation results

Conclusions

Conclusion

Duo binary Turbo-Codes vs LDPC

Objectives

- Try to do a fair comparison
 - 8 states duo binary Turbo-codes
 - LDPC codes studied

Difficulties of comparisons

- Usually context are different
 - Coding size, coding rate, coding structure, Target performance
- Implementation choices
 - Architectures, Quantizations
 - FPGA (Altera or Virtex), mm² on x µm for ASIC

Proposed scheme

Similar context (Valentinno)

Decoding architectures for LDPC decoders

• FPGA implementation of LDPC coder/decoder

Implementation options Quantization Complexity considerations

Simulation results

Conclusions

<u>&</u>

Conclusion

Duo binary Turbo-Codes vs LDPC

Performance

- DBTC
 - 10 iterations
 - Max Log Map
- LDPC
 - 20 iterations
 - TLBP

Context

AWGN, QPSK
 Q_c = 4 bits (+/-7)

Decoding architectures for LDPC decoders

• FPGA implementation of LDPC coder/decoder

Implementation options Quantization Complexity considerations

Simulation results

Conclusions

Duo binary Turbo-Codes vs LDPC

Conclusion

Performance

- DBTC
 - 10 iterations
 - Max Log Map
- LDPC
 - 20 iterations
 - TLBP

Context

AWGN, QPSK
 Q_c = 4 bits (+/-7)

Duo binary Turbo-Codes vs LDPC

Implementation aspects

FPGA – ALTERA Stratix EP1S80F C6

Duo binary Turbo-Codes vs LDPC

Implementation aspects

FPGA – ALTERA Stratix EP1S80F C6

Introduction Structured LDPC codes Decoding architectures for LDPC decoders Implementation options Quantization Complexity considerations Simulation results

Conclusions

<u>&</u>

• FPGA implementation of LDPC coder/decoder Conclusion

Duo binary Turbo-Codes vs LDPC

- Performance
 - Duo binary TC have a very good decoding threshold
 - Even for small size
 - Proposed LDPC outperforms TC at low error rate

Decoding architectures for LDPC decoders

• FPGA implementation of LDPC coder/decoder

Implementation options Quantization Complexity considerations Simulation results

Conclusions

L

Conclusion

Duo binary Turbo-Codes vs LDPC

Performance

- Duo binary TC have a very good decoding threshold
 - Even for small size
 - A For large coding size, the gap is reduced
- Proposed LDPC outperforms TC at low error rate
 - It is possible to design DBTC with better behavior at low error rate (3D TC,16 states)

Decoding architectures for LDPC decoders

• FPGA implementation of LDPC coder/decoder

Implementation options Quantization Complexity considerations Simulation results

Conclusions

&

Conclusion

Duo binary Turbo-Codes vs LDPC

Performance

- Duo binary TC have a very good decoding threshold
 - Even for small size
 - A For large coding size, the gap is reduced
- Proposed LDPC outperforms TC at low error rate
 - It is possible to design DBTC with better behavior at low error rate (3D TC,16 states)
- Complexity
 - DBTC outperforms LDPC codes studied

Decoding architectures for LDPC decoders

• FPGA implementation of LDPC coder/decoder

Implementation options Quantization Complexity considerations Simulation results

Conclusions

J.

Conclusion

Duo binary Turbo-Codes vs LDPC

Performance

- Duo binary TC have a very good decoding threshold
 - Even for small size
 - For large coding size, the gap is reduced
- Proposed LDPC outperforms TC at low error rate
 - It is possible to design DBTC with better behavior at low error rate (3D TC,16 states)

Complexity

- DBTC outperforms LDPC codes studied
- however
 - Maturity of the work and architectures

Decoding architectures for LDPC decoders
 FPGA implementation of LDPC coder/decoder

Quantization Complexity considerations

Simulation results
 Conclusions

Implementation options

Conclusion

Duo binary Turbo-Codes vs LDPC

Performance

- Duo binary TC have a very good decoding threshold
 - Even for small size
 - For large coding size, the gap is reduced
- Proposed LDPC outperforms TC at low error rate
 - It is possible to design DBTC with better behavior at low error rate (3D TC,16 states)

Complexity

- DBTC outperforms LDPC codes studied
- A however
 - Maturity of the work and architectures

A FEC technology should be considered into a global system, according to the target application

Integration of the decoders into a FPGA

- Definition of the computational units
- Proof of concept: FPGA integration

Integration of the decoders into a FPGA

- Definition of the computational units
- Proof of concept: FPGA integration

Study of the quantization effects

- Influence of the quantization of channel observations
- Quantization of internal data path

Integration of the decoders into a FPGA

- Definition of the computational units
- Proof of concept: FPGA integration

Study of the quantization effects

- Influence of the quantization of channel observations
- Quantization of internal data path

Applications

- Analysis of architectures proposed for different contexts
- Comparison with duo binary Turbo-Codes
- Low error rate behavior: Track and analyze

Introduction Structured LDPC codes Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder

Conclusion

Conclusions

- General conclusion
- Future prospects
- Discussion

Introduction Structured LDPC codes Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder • Conclusion General conclusion
 Future prospects
 Discussion

- Analysis of QC IRA codes
 - Constraints on permutation coefficients
 - Definition of a new algorithm for the design of codes
 - Joint studies on code design and decoding algorithm definition

Introduction Structured LDPC codes Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder • Conclusion General conclusion
 Future prospects

Future prospects Discussion

- Analysis of QC IRA codes
- Decoding architectures for LDPC codes
 - Layered BP algorithm
 - Turbo Layered BP algorithm

Introduction Structured LDPC codes Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder • Conclusion General conclusion
 Future prospects
 Discussion

- Analysis of QC IRA codes
- Decoding architectures for LDPC codes
- FPGA implementation of LDPC decoders
 - Study of quantization effects
 - Definition of computational units
 - Complexity analysis of the proposed architectures

Introduction Structured LDPC codes Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder • Conclusion General conclusion
 Future prospects

Discussion

- Analysis of QC IRA codes
- Decoding architectures for LDPC codes
- FPGA implementation of LDPC decoders
- Disseminations
 - 7 international conferences
 - 1 journal submission (under review)
 - 5 patents

Introduction Structured LDPC codes Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder General conclusion

Future prospects
 Discussion

Perspectives

Extension of the work

Conclusion

- Integration of the hardware decoder into a realistic context
 - Realistic channel
 - Integration into a whole communication system
- Turbo Layered BP decoding
 - Application to other parity check matrix structures
 - Modified dual-diagonal matrix (WiMax)

Introduction Structured LDPC codes Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder General conclusion

Future prospects
 Discussion

Perspectives

Extension of the work

Conclusion

- Integration of the hardware decoder into a realistic context
 - Realistic channel
 - Integration into a whole communication system
- Turbo Layered BP decoding
 - Application to other parity check matrix structures
 - Modified dual-diagonal matrix (WiMax)

Theoretical aspects

- Analysis the behavior of the sequencing proposed
- How to improve the convergence threshold of the codes?
 - Practical aspect (Finite length)

Introduction Structured LDPC codes Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder General conclusion

Future prospects
 Discussion

Perspectives

Extension of the work

Conclusion

- Integration of the hardware decoder into a realistic context
 - Realistic channel
 - Integration into a whole communication system
- Turbo Layered BP decoding
 - Application to other parity check matrix structures
 - Modified dual-diagonal matrix (WiMax)

Theoretical aspects

- Analysis the behavior of the sequencing proposed
- How to improve the convergence threshold of the codes?
 - Practical aspect (Finite length)
- Implementation issues
 - Explore the problematic of flexible ultra-parallelized LDPC decoder
 - Very high throughput decoding

Introduction Structured LDPC codes Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder • Conclusion

General conclusion

Future prospects
 Discussion

Questions and answers

Optimisation conjointe de codes LDPC et de leurs architectures de décodage et mise en œuvre sur FPGA

Jean-Baptiste Doré

Bibliography

- [Tanner99] R. M. Tanner, "On quasi-cyclic repeat-accumulate codes", in Proc. of. the 37th Allerton Conference, 1999.
- [Forney01] G. D. Forney, "Codes on graphs : Normal realizations", IEEE Transactions on Information Theory, Feb 2001.
- [Chung01] S.-Y. Chung, T. Richardson, and R. Urbanke, "Analysis of sum-product decoding of low-density parity-check codes using a gaussian approximation", *IEEE Transactions on Information Theory*, vol. 47, Feb 2001.
- [Hu01] X.-Y. Hu, E. Eleftheriou, and D.-M. Arnold, "Progressive edge-growth tanner graphs", IEEE Global Telecommunications Conference, vol. 2, Nov 2001.
- [Richardson01] T. Richardson, A. Shokrollahi, and R. Urbanke, "Design of capacity approaching irregular low-density parity-check codes", *IEEE Transactions on Information Theory*, vol. 47, Feb 2001.
- [Tian03] T. Tian, C. Jones, J. D. Villasenor, and R. D. Wesel, "Construction of irregular LDPC codes with low error floors", *IEEE International Conference on Communications*, June 2003.
- [Richardson03] T. Richardson, "Error floors of LDPC codes", 41st Annual Allerton Conferenceon Communications, Control, and Computing, Oct 2003.

Introduction Structured LDPC codes Decoding architectures for LDPC decoders FPGA implementation of LDPC coder/decoder • Conclusion General conclusion Future prospects Discussion

Annexes

Annexes

- Simplification of BP
- Illustration of the design of codes
- Performance example: effects of TCL
- BP/LBP/TLBP
- CNP modeling: case of Min-Sum approximation

Practical implementation of BP algorithm

- Approximation of the function f(x)
- Limit the number of different edges messages

Algorithm for codes design

Description of the algorithm

- Target: > 6 length cycle
- z = 8
- Mask considered:

$$\mathbf{H} = \begin{bmatrix} \mathbf{I}_{\delta_0} & \mathbf{I}_{\delta_3} & \mathbf{I}_{\delta_6} & \mathbf{I}_0 & & \mathbf{I'}_1 \\ \mathbf{I}_{\delta_1} & \mathbf{I}_{\delta_4} & \mathbf{I}_{\delta_7} & \mathbf{I}_0 & \mathbf{I}_0 & \\ \mathbf{I}_{\delta_2} & \mathbf{I}_{\delta_5} & \mathbf{I}_{\delta_8} & & \mathbf{I}_0 & \mathbf{I}_0 \end{bmatrix}$$

Incremental construction

Step	Matrix to analyse	Forbidden co- efficient	Choice
1	$\left[\begin{array}{cccccc} \mathbf{I}_{\delta_0} & \bullet & \bullet & \mathbf{I_0} & & \mathbf{I'_1} \\ \bullet & \bullet & \bullet & \mathbf{I_0} & \mathbf{I_0} \\ \bullet & \bullet & \bullet & & \mathbf{I_0} & \mathbf{I_0} \end{array}\right]$	Ø	$\delta_0 = 0$

Step	Matrix to analyse	Forbidden co- efficient	Choice
1	$\left[\begin{array}{cccccc} \mathbf{I}_{\delta_0} & \bullet & \bullet & \mathbf{I_0} & & \mathbf{I'_1} \\ \bullet & \bullet & \bullet & \mathbf{I_0} & \mathbf{I_0} & \\ \bullet & \bullet & \bullet & & \mathbf{I_0} & \mathbf{I_0} \end{array}\right]$	Ø	$\delta_0 = 0$
2	$\begin{bmatrix} \mathbf{I}_0 & \bullet & \bullet & \mathbf{I}_0 & & \mathbf{I'}_1 \\ \mathbf{I}_{\delta_1} & \bullet & \bullet & \mathbf{I}_0 & \mathbf{I}_0 \\ \bullet & \bullet & \bullet & & \mathbf{I}_0 & \mathbf{I}_0 \end{bmatrix}$	[0]	$\delta_1 = 6$

$$\mathbf{H} = \left[\begin{array}{cccc} \mathbf{I}_{\delta_0} & \mathbf{I}_{\delta_3} & \mathbf{I}_{\delta_6} & \mathbf{I}_0 & & \mathbf{I'_1} \\ \mathbf{I}_{\delta_1} & \mathbf{I}_{\delta_4} & \mathbf{I}_{\delta_7} & \mathbf{I}_0 & \mathbf{I}_0 \\ \mathbf{I}_{\delta_2} & \mathbf{I}_{\delta_5} & \mathbf{I}_{\delta_8} & & \mathbf{I}_0 & \mathbf{I}_0 \end{array} \right]$$

Algorithm for codes design

Step	Matrix to analyse	Forbidden co- efficient	Choice
1	$\left[\begin{array}{cccccc} \mathbf{I}_{\delta_0} & \bullet & \bullet & \mathbf{I_0} & & \mathbf{I'_1} \\ \bullet & \bullet & \bullet & \mathbf{I_0} & \mathbf{I_0} \\ \bullet & \bullet & \bullet & & \mathbf{I_0} & \mathbf{I_0} \end{array}\right]$	Ø	$\delta_0 = 0$
2	$\left[\begin{array}{ccccccc} \mathbf{I}_0 & \bullet & \bullet & \mathbf{I_0} & & \mathbf{I'_1} \\ \mathbf{I}_{\delta_1} & \bullet & \bullet & \mathbf{I_0} & \mathbf{I_0} \\ \bullet & \bullet & \bullet & & \mathbf{I_0} & \mathbf{I_0} \end{array}\right]$	[0]	$\delta_1 = 6$
3	$\begin{bmatrix} \mathbf{I}_0 \bullet \bullet & \mathbf{I}_0 & \mathbf{I'}_1 \\ \mathbf{I}_6 \bullet \bullet & \mathbf{I}_0 & \mathbf{I}_0 \\ \mathbf{I}_{\delta_2} \bullet \bullet & \mathbf{I}_0 & \mathbf{I}_0 \end{bmatrix}$	[7, 6]	$\delta_2 = 3$

$$\mathbf{H} = \left[\begin{array}{cccc} \mathbf{I}_{\delta_0} & \mathbf{I}_{\delta_3} & \mathbf{I}_{\delta_6} & \mathbf{I}_0 & \mathbf{I'_1} \\ \mathbf{I}_{\delta_1} & \mathbf{I}_{\delta_4} & \mathbf{I}_{\delta_7} & \mathbf{I}_0 & \mathbf{I}_0 \\ \mathbf{I}_{\delta_2} & \mathbf{I}_{\delta_5} & \mathbf{I}_{\delta_8} & \mathbf{I}_0 & \mathbf{I}_0 \end{array} \right]$$

Expansion of the protograph to detect the configurations

Step	Matrix to analyse	Forbidden co- efficient	Choice
1	$\left[\begin{array}{cccccc} \mathbf{I}_{\delta_0} & \bullet & \bullet & \mathbf{I_0} & & \mathbf{I'_1} \\ \bullet & \bullet & \bullet & \mathbf{I_0} & \mathbf{I_0} & \\ \bullet & \bullet & \bullet & & \mathbf{I_0} & \mathbf{I_0} \end{array}\right]$	Ø	$\delta_0=0$
2	$\left[\begin{array}{cccccc} \mathbf{I}_0 & \bullet & \bullet & \mathbf{I_0} & & \mathbf{I'_1} \\ \mathbf{I}_{\delta_1} & \bullet & \bullet & \mathbf{I_0} & \mathbf{I_0} \\ \bullet & \bullet & \bullet & & \mathbf{I_0} & \mathbf{I_0} \end{array}\right]$	[0]	$\delta_1 = 6$
3	$\left[\begin{array}{cccccc} \mathbf{I}_0 & \bullet & \bullet & \mathbf{I_0} & & \mathbf{I'_1} \\ \mathbf{I}_6 & \bullet & \bullet & \mathbf{I_0} & \mathbf{I_0} \\ \mathbf{I}_{\delta_2} & \bullet & \bullet & & \mathbf{I_0} & \mathbf{I_0} \end{array}\right]$	[7, 6]	$\delta_2 = 3$
4	$\begin{bmatrix} \mathbf{I}_0 & \mathbf{I}_{\delta_3} & \bullet & \mathbf{I}_0 & & \mathbf{I}'_1 \\ \mathbf{I}_6 & \bullet & \bullet & \mathbf{I}_0 & \mathbf{I}_0 \\ \mathbf{I}_3 & \bullet & \bullet & & \mathbf{I}_0 & \mathbf{I}_0 \end{bmatrix}$	Ø	$\delta_3 = 0$

$$\mathbf{H} = \left[\begin{array}{cccc} \mathbf{I}_{\delta_0} & \mathbf{I}_{\delta_3} & \mathbf{I}_{\delta_6} & \mathbf{I}_0 & & \mathbf{I'_1} \\ \mathbf{I}_{\delta_1} & \mathbf{I}_{\delta_4} & \mathbf{I}_{\delta_7} & \mathbf{I}_0 & \mathbf{I}_0 & \\ \mathbf{I}_{\delta_2} & \mathbf{I}_{\delta_5} & \mathbf{I}_{\delta_8} & & \mathbf{I}_0 & \mathbf{I}_0 \end{array} \right]$$

Step	Matrix to analyse	Forbidden co- efficient	Choice
1	$\left[\begin{array}{cccccc} \mathbf{I}_{\delta_0} & \bullet & \bullet & \mathbf{I_0} & & \mathbf{I'_1} \\ \bullet & \bullet & \bullet & \mathbf{I_0} & \mathbf{I_0} \\ \bullet & \bullet & \bullet & & \mathbf{I_0} & \mathbf{I_0} \end{array}\right]$	Ø	$\delta_0=0$
2	$\left[\begin{array}{cccccc} \mathbf{I}_0 & \bullet & \bullet & \mathbf{I_0} & & \mathbf{I'_1} \\ \mathbf{I}_{\delta_1} & \bullet & \bullet & \mathbf{I_0} & \mathbf{I_0} \\ \bullet & \bullet & \bullet & & \mathbf{I_0} & \mathbf{I_0} \end{array}\right]$	[0]	$\delta_1 = 6$
3	$\left[\begin{array}{cccccc} \mathbf{I}_0 & \bullet & \bullet & \mathbf{I_0} & & \mathbf{I'_1} \\ \mathbf{I}_6 & \bullet & \bullet & \mathbf{I_0} & \mathbf{I_0} \\ \mathbf{I}_{\delta_2} & \bullet & \bullet & & \mathbf{I_0} & \mathbf{I_0} \end{array}\right]$	[7, 6]	$\delta_2 = 3$
4	$\left[\begin{array}{cccccc} \mathbf{I}_0 & \mathbf{I}_{\delta_3} & \bullet & \mathbf{I_0} & & \mathbf{I'_1} \\ \mathbf{I}_6 & \bullet & \bullet & \mathbf{I_0} & \mathbf{I_0} \\ \mathbf{I}_3 & \bullet & \bullet & & \mathbf{I_0} & \mathbf{I_0} \end{array}\right]$	Ø	$\delta_3 = 0$
5	$\begin{bmatrix} \mathbf{I}_0 & \mathbf{I}_0 & \bullet & \mathbf{I}_0 & \bullet & \mathbf{I}'_1 \\ \mathbf{I}_6 & \mathbf{I}_{\delta_4} & \bullet & \mathbf{I}_0 & \mathbf{I}_0 \\ \mathbf{I}_3 & \bullet & \bullet & & \mathbf{I}_0 & \mathbf{I}_0 \end{bmatrix}$	[0,6]	$\delta_4 = 7$

$$\mathbf{H} = \left[\begin{array}{cccc} \mathbf{I}_{\delta_0} & \mathbf{I}_{\delta_3} & \mathbf{I}_{\delta_6} & \mathbf{I}_0 & & \mathbf{I'_1} \\ \mathbf{I}_{\delta_1} & \mathbf{I}_{\delta_4} & \mathbf{I}_{\delta_7} & \mathbf{I}_0 & \mathbf{I}_0 & \\ \mathbf{I}_{\delta_2} & \mathbf{I}_{\delta_5} & \mathbf{I}_{\delta_8} & & \mathbf{I}_0 & \mathbf{I}_0 \end{array} \right]$$

$$\mathbf{H} = \left[egin{array}{cccccccc} \mathbf{I}_{\delta_0} & \mathbf{I}_{\delta_3} & \mathbf{I}_{\delta_6} & \mathbf{I_0} & \mathbf{I'_1} \ \mathbf{I}_{\delta_1} & \mathbf{I}_{\delta_4} & \mathbf{I}_{\delta_7} & \mathbf{I_0} & \mathbf{I_0} \ \mathbf{I}_{\delta_2} & \mathbf{I}_{\delta_5} & \mathbf{I}_{\delta_8} & \mathbf{I_0} & \mathbf{I_0} \end{array}
ight]$$

Step	Matrix to analyse	Forbidden co- efficient	Choice
1	$\left[\begin{array}{cccccc} \mathbf{I}_{\delta_0} & \bullet & \bullet & \mathbf{I_0} & & \mathbf{I'_1} \\ \bullet & \bullet & \bullet & \mathbf{I_0} & \mathbf{I_0} \\ \bullet & \bullet & \bullet & & \mathbf{I_0} & \mathbf{I_0} \end{array}\right]$	Ø	$\delta_0=0$
2	$\left[\begin{array}{cccccc} \mathbf{I}_0 & \bullet & \bullet & \mathbf{I_0} & & \mathbf{I'_1} \\ \mathbf{I}_{\delta_1} & \bullet & \bullet & \mathbf{I_0} & \mathbf{I_0} \\ \bullet & \bullet & \bullet & & \mathbf{I_0} & \mathbf{I_0} \end{array}\right]$	[0]	$\delta_1 = 6$
3	$\left[\begin{array}{ccccc} \mathbf{I}_0 & \bullet & \bullet & \mathbf{I_0} & & \mathbf{I'_1} \\ \mathbf{I}_6 & \bullet & \bullet & \mathbf{I_0} & \mathbf{I_0} & \\ \mathbf{I}_{\delta_2} & \bullet & \bullet & & \mathbf{I_0} & \mathbf{I_0} \end{array}\right]$	[7, 6]	$\delta_2 = 3$
4	$\left[\begin{array}{cccccc} \mathbf{I}_0 & \mathbf{I}_{\delta_3} & \bullet & \mathbf{I_0} & & \mathbf{I'_1} \\ \mathbf{I}_6 & \bullet & \bullet & \mathbf{I_0} & \mathbf{I_0} \\ \mathbf{I}_3 & \bullet & \bullet & & \mathbf{I_0} & \mathbf{I_0} \end{array}\right]$	Ø	$\delta_3 = 0$
5	$\left[\begin{array}{ccccccc} \mathbf{I}_0 & \mathbf{I}_0 & \bullet & \mathbf{I_0} & & \mathbf{I'_1} \\ \mathbf{I}_6 & \mathbf{I}_{\delta_4} & \bullet & \mathbf{I_0} & \mathbf{I_0} \\ \mathbf{I}_3 & \bullet & \bullet & & \mathbf{I_0} & \mathbf{I_0} \end{array}\right]$	[0, 6]	$\delta_4 = 7$
:			
9	$\begin{bmatrix} \mathbf{I}_{0} & \mathbf{I}_{0} & \mathbf{I}_{0} & \mathbf{I}_{0} & \mathbf{I'}_{1} \\ \mathbf{I}_{6} & \mathbf{I}_{7} & \mathbf{I}_{3} & \mathbf{I}_{0} & \mathbf{I}_{0} \\ \mathbf{I}_{3} & \mathbf{I}_{1} & \mathbf{I}_{\delta_{8}} & \mathbf{I}_{0} & \mathbf{I}_{0} \end{bmatrix}$	[3, 0, 1, 5, 7]	$\delta_8 = 6$

Algorithm parameterization: some results

Avoid low length cycle involving low degree variable nodes

Algorithm parameterization: some results

Avoid low length cycle involving low degree variable nodes

BP/LBP/TLBP

Comparison BP/LBP

BP/LBP/TLBP

Comparison LBP/TLBP

Serial implementation of CNP Processors

d_c cycles to compute m_{vc}

$$\begin{array}{rcl} m_{vc} & = & \underbrace{y_v + \sum_{c' \in C_v} m_{c'v}}_{A_v} & - & m_{cv} \end{array}$$

• d_c cycles to compute A_v

$$A_v = y_v + \sum_{c' \in C_v/c} m_{c'v} + m_{cv}$$
$$A_v = m_{vc} + m_{cv}$$

$$D = p \frac{RN}{M(2d_c + \epsilon)it} f_{clk}$$

◀

$$D = p \frac{RN}{M(2d_c + \epsilon)it} f_{clk}$$

$$D = p \frac{RN}{M(2d_c + \epsilon)it} f_{clk}$$

◀

$$D = p \frac{RN}{M(2d_c + \epsilon)it} f_{clk}$$

113

◀

Min-Sum algorithm

- Comparison of the input m_{vc}
 - Two smallest messages
- It can be done during the forward step
 - The backward step is not required
- but...
 - d_c cycles are required for the computation of m_{vc}
 - At least d_c cycles are required for the computation of the min (pipeline)
 - d_c cycles are required to re-estimate A_v

Min-Sum algorithm

 $\hfill\blacksquare$ The proposed model is valid but parameter ϵ depends on the algorithm

$$\epsilon_{BP} > \epsilon_{MS}$$

$$D = p \frac{RN}{M(2d_c + \epsilon)it} f_{clk}$$

