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1
Overview

This document aims at summarizing my research activity in the theory of nonparametric

and semiparametric statistics and shedding some light on the main ideas and tools leading

to the results published in [P1]-[P10]. The three main directions of my research area are:

⊲ statistical inference for continuously observed diffusion processes,

⊲ second-order efficiency in semiparametric estimation,

⊲ dimension reduction and aggregation in nonparametric regression with additive noise.

In this overview I will try to provide a brief account on the results obtained in each of these

research areas. The purpose of this part is to discuss the results informally rather than stating

rigorous mathematical assertions.

1.1 Inference for continuously observed diffusion processes

During my Ph.D. thesis, I started to work on the nonparametric inference for the model of

continuously observed diffusion processes and, till now, it lies in the scope of my scientific

interests. The general statistical problem can be formulated as follows. We have at our dis-

posal one continuous curve xT = {x(t), 0 ≤ t ≤ T} observed on the time interval [0, T]. This

curve may be the time-continuous record of the stock price, the interest rate or some other

random quantity varying continuously in time. We postulate that the curve we observed is

a realization of a time-homogeneous diffusion process and we wish to make an inference on the

parameters describing the stochastic dynamics of the underlying diffusion.

The dynamics of a time-homogeneous diffusion process is described by two functions: the

instantaneous mean S : R+ → R and the instantaneous variance σ2 : R+ → R, which are re-
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ferred to as drift function and diffusion coefficient respectively. Procedures for estimating these

functions appeared in the statistical literature in the end of 1970ies [5, 40]. However, a more

systematic study of nonparametric inference for diffusion processes has been initiated in the

late 1990ies, stimulated by the impressive progress in the general theory of nonparametric

statistics [27, 28, 31, 32, 47] and by the wide application of diffusion processes in finance

[1, 3, 20, 22].

The theoretical criterion that has been mainly retained for assessing the quality of an es-

timating procedure was its aptitude to attain the asymptotically optimal/minimax rate of

convergence when the time of observation T tends to infinity. In the same time, in the theory

of nonparametric estimation for models having simpler stochastic structure, sharper results

have been obtained pushing the theoretical study of optimality of statistical procedures up

to the calculation of the optimal constants.

Thus, the goal of my Ph.D. thesis was to investigate whether it is possible or not to get

asymptotic optimality/minimaxity up to the constant in the model of continuously observed

diffusion processes. It turned out that the answer to this question is affirmative: we proved

that the asymptotic minimaxity up to the optimal constant in the problem of estimating the

drift function can be achieved by a proper choice of the kernel and the bandwidth of the

kernel-type estimator. In the same time, we appropriately modified the L2-risk serving as a

measure of the quality of estimation as well as the functional class to which the unknown

drift is supposed to belong to, by introducing a weight function equal to the square of the

invariant density [P1, P2].

Two points should be stressed right away. First, since we assumed that a time-continuous

record of a trajectory of a diffusion process is observed, the value of the diffusion coeffi-

cient at any point visited by xT is computable using the quadratic variation. That is why

we focused exclusively on the problem of estimating the drift function. Second, we investi-

gated the case of positively-recurrent diffusion processes, considering thus only stationary

processes. Note that this property guarantees the existence of the invariant density.

To construct an estimator of the drift, we used the fact that the value of the drift at some

point x can be expressed as an algebraic function of the values at the point x of the diffu-

sion coefficient, the invariant density and its derivative. Thus, we replaced the problem of

estimating the drift by the problems of estimating the invariant density and its derivative.

The treatment of these problems has been carried out in the same spirit as for estimating the

density of iid observations, by virtu of the nice mixing properties of the underlying diffusion

process.

Considering Sobolev-type smoothness classes, we obtained minimax results for estimating

the derivative of the invariant density and the drift function. These results lie in the stream

of the famous Pinsker theorem [41], which describes the asymptotic behavior, up to the con-

stant, of the minimax risk in the Gaussian sequence model. However, instead of the global

minimax approach of Pinsker, we adopted the local minimax approach which, in our opin-

ion, leads to more elegant theoretical results in the problem of the drift estimation.

As a logical continuation, we addressed in [P4] the issue of the possibility of constructing an

adaptive procedure attaining the asymptotically minimax bound of [P2]. In fact, the estima-
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tor of the drift proposed in [P2] and proved to be asymptotically minimax up to the constant

depends on the parameters of the functional class. Namely, if the drift is assumed to belong

to a Sobolev ball, the computation of the estimator proposed in [P2] requires the knowledge

of the smoothness index and the radius of the aforementioned Sobolev ball. Instead, the

adaptive procedure constructed in [P4] does not depend neither on the smoothness index

nor on the radius of the Sobolev ball and is asymptotically minimax simultaneously over

a broad family of Sobolev balls. The construction of this adaptive procedure is essentially

based on the method, going back to Mallows, of minimizing an unbiased risk estimate. The

version that we used is inspired by the papers [24, 12].

In the context of invariant density estimation, a challenging issue was to investigate the

second-order minimaxity of nonparametric estimators, in order to discriminate between dif-

ferent asymptotically first-order efficient estimators. In fact, it has been shown by Kutoyants

[31] that the local time estimator, kernel-type estimators and a broad class of “unbiased esti-

mators” are first-order asymptotically efficient. In [P3], we obtain a lower bound (up to the

optimal constant) for the second-order minimax risk, and construct an estimator attaining

this lower bound.

The results on the optimal constants and on the sharp adaptation for estimating the drift

of a diffusion process appear to be very much in line with the analogous results in the

classical nonparametric models (estimating a signal in Gaussian white noise, a regression

function or a density of i.i.d. observations). This similarity advocates for a possible equiva-

lence of the model of continuously observed diffusion with classical nonparametric models.

Note that the long standing experience that under an asymptotic point of view the classical

nonparametric models are statistically of the same kind has found its proper mathematical

justification in 1996, when Brown and Low [8] and Nussbaum [39] proved the asymptotic

equivalence of these models in the sense of Le Cam’s theory of equivalent statistical exper-

iments. In essence this means that any decision function developed for one model can be

carried over, at least in an abstract way, to a decision function in the other models with ex-

actly the same asymptotic risk properties. This is an important conceptual gain compared to

the situation before where asymptotic results had to be proved each time separately.

In the papers [P5, P6], we showed strong asymptotic equivalence of the time-continuous

diffusion model with a signal detection or Gaussian shift model, which can be interpreted

as a regression model with random design. Our first results [P5] were established for the

scalar diffusion model because we heavily employed tools from stochastic analysis that are

neither available for time series analysis nor for multidimensional diffusion processes. More

precisely, to prove the asymptotic equivalence we introduced a new coupling method pro-

viding an approximation of the likelihood of the diffusion model by a Gaussian one. The

implementation of this idea was based on the local time of the diffusion process, which ex-

ists only in one-dimensional case.

Considering in a first step drift functions in a shrinking neighborhood of a known function

S0, we obtained local asymptotic equivalence results of the stationary diffusion experiment

with, among others, an accompanying Gaussian regression experiment having the unknown

drift as regression function and the invariant density associated to S0 as design density. Note

that the design can be considered random or deterministic in the sense that it determines the

distance between two design points. This local asymptotic equivalence result has already
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several implications for the statistical theory of diffusion processes. In particular, it can be

used to obtain asymptotically sharp lower risk bounds. In order to transfer also global re-

sults like upper risk bounds to the diffusion case, a global equivalence result was obtained.

In absence of a variance stabilizing transform the globally equivalent experiments are of

compound type. Note that analogous results have been proved by Delattre and Hoffmann

[19] for null recurrent diffusions having compactly supported drift. However, their argu-

ments are well adapted to the null-recurrent case and seem to be inapplicable in the case of

positively recurrent diffusions.

After the publication of our first paper [P5] on the asymptotic equivalence, we were fre-

quently asked whether it is possible or not to adapt our coupling method to some settings

where the local time does not exist. An answer to this question is given in [P6], where we

show that the asymptotic equivalence between the diffusion model and the regression re-

mains valid in the multi-dimensional case as well, in spite of the absence of local time. The

main idea consists in including an additional space-discretization step allowing to replace

the local time by the occupation measure.

Furthermore, similarly to [37], we established the asymptotic equivalence of the continu-

ously observed diffusion model with the discretely observed diffusion with a step of dis-

cretization tending to zero at a suitable rate.

1.2 Second-order efficiency in semiparametrics

When I arrived at the University Paris 6, Sasha Tsybakov proposed me to join an ongoing

project with Yuri Golubev having as target the study of second-order minimax properties

of first-order efficient estimators in semiparametric statistics. To explain our motivation for

tackling this problem, let me briefly recall some notions from semiparametric statistics.

In a semiparametric model, the parameter of interest is partitioned as (ϑ; f ) ∈ Θ × F , with

ϑ being a low-dimensional parameter of interest and f a higher dimensional (often infinite-

dimensional) nuisance parameter. A popular method of estimating ϑ for unknown f is the

profile likelihood maximization [46, 52]. Let ln(ϑ; f ) be the log-likelihood of the model, the

profile likelihood for ϑ is defined as pln(ϑ) = sup f∈F ln(ϑ; f ) and the Profile Likelihood

Estimator (PLE) is ϑPLE = arg maxϑ pln(ϑ). Thus, the nuisance parameter f is eliminated by

taking the supremum over all possible values of f in some a priori chosen class F assumed

to contain the true value of f . Using tools from the empirical process theory, Murphy and

van der Vaart [38] proved that, under mild assumptions, the PLE is semiparametrically first-

order efficient.

Since often F is infinite-dimensional, the maximization in f ∈ F may be difficult to perform

both from theoretical and practical points of view. A useful idea is therefore to regularize

this optimization problem either by replacing F by a finite-dimensional set or by penalizing

the likelihood, or by using another smoothing technique.

A natural question arises: what is the best regularization and what is its impact on the accu-

racy of the resulting estimator? The theory fails to give a complete answer to this question



Section 1.3 Dimension reduction and aggregation in nonparametric regression 9

as long as only the first-order term of the risk is considered. Usually, and it is also the case

for the model of shift estimation for a periodic signal corrupted by a Gaussian white noise

[P7, P8], there is a large variety of regularization methods leading to first-order efficient esti-

mators. A particularly appealing way to choose the “best” estimator among these first-order

efficient estimators consists in comparing the second-order terms of their “worst case” risks.

This leads to the second-order minimax approach which has been firstly developed by Gol-

ubev and Härdle [25, 26] for partial linear models. The techniques used in [25, 26] hardly

rely on the linearity of the model on the parameter of interest ϑ. We were therefore interested

in extending this approach to models having nonlinear structure.

Thus, in [P7, P8], we developed the second-order minimax approach for the model of shift

estimation of a periodic signal corrupted by Gaussian white noise. This is an “idealization”

of the symmetric location problem, which is often considered as a prototype in semipara-

metric inference [48, 49]. As we stressed in [P7], the aforementioned model seems to capture

main difficulties in deriving second-order efficiency, being at the same time simple enough

to avoid irrelevant technicalities. A partial confirmation of this conjecture are the results

of Castillo [11] who, following the general scheme described in [P7], proved quite similar

results for the problem of estimating the scaling parameter of a signal corrupted by Gaus-

sian white noise. While in [P7] second-order efficient estimators of the shift parameter were

proposed in the case where the signal belongs to a Sobolev ball with known smoothness in-

dex and radius, the aim of [P8] was to construct a second-order efficient estimator which is

entirely data-dependent. We achieved this aim by using a penalized profile likelihood esti-

mator based on Stein’s blockwise shrinkage idea and we proved its second-order minimaxity

simultaneously for a large scale of Sobolev balls.

The results of the above mentioned papers grant an increasing importance to the second-

order efficiency in that they show that, in a semiparametric estimation problem, the second-

order term is not dramatically smaller than the first-order term, especially when the nuisance

parameter is not very smooth. Thus, finding second-order efficient estimators is not only a

challenging theoretical problem, but is also of some practical interest.

1.3 Dimension reduction and aggregation in nonparametric reg-

ression

The regression with additive noise is certainly one of the most studied models in statistics. In

spite of this, there are still many challenging open problems related to this model especially

in the case where the explanatory variable is high-dimensional. Usually, statistical proce-

dures designed to work for a relatively large nonparametric class of regression functions

exhibit poor empirical performance. To elaborate more performant statistical procedures

some additional structural assumptions are to be imposed.

The problem we are concerned with is to predict or to explain a response variable Y by

d scalar covariates X(1), . . . , X(d). To accomplish this task, the only thing we have at our

disposal is a sample of size n of these variables. Assume for the moment that there is a

function f characterizing the relationship between Y and X = (X(1), . . . , X(d))⊤. The papers
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[P9, P10] deal with the regression model with additive noise under different assumptions on

the form of f . The main aim is to design statistical procedures that take advantage of the

specific assumption and to infer theoretical results on their performance.

1.3.1 Dimension reduction in multi-index model

We consider the multi-index model with m∗ indices: for some linearly independent vectors

ϑ1, . . ., ϑm∗ and for some function g : R
m∗ → R, the relation f (x) = g(ϑ⊤

1 x, . . . , ϑ⊤
m∗x) holds

for every x ∈ R
d. Here and in the sequel the vectors are understood as one column matrices

and M⊤ denotes the transpose of the matrix M. Of course, such a restriction may lead to a

substantial improvement of statistical performance of procedures only if m∗ < d. The main

argument in favor of using the multi-index model is that for many data sets the underlying

structural dimension m∗ is much smaller than d. Therefore, if the vectors ϑ1, . . ., ϑm∗ are

known, the estimation of f reduces to the estimation of g, which can be performed much

better because of lower dimensionality of the function g compared to that of f .

Another advantage of the multi-index model is that it assesses that only few linear com-

binations of the predictors may suffice for “explaining” the response Y. Considering these

combinations as new predictors leads to a much simpler model (due to its low dimensional-

ity), which can be successfully analyzed by graphical methods, see [18, 15] for more details.

Since it is unrealistic to assume that ϑ1, . . . , ϑm∗ are known, the estimation of these vectors

from the data is of high practical interest. When the function g is unspecified, only the linear

subspace Sϑ spanned by these vectors may be identified from the sample. This subspace

is usually called index space or dimension-reduction (DR) subspace. Clearly, there are many

DR subspaces for a fixed model f . Even if f is observed without error, only the smallest

DR subspace, henceforth denoted by S , can be consistently identified. This smallest DR

subspace, which is the intersection of all DR subspaces, is called effective dimension-reduction

(EDR) subspace [35] or central mean subspace [16].

When I was postdoc in Berlin, Volodia Spokoiny introduced me to the method of structural

adaptation and its applications in multivariate statistics. In particular, in [29], this method

has been used to estimate the EDR subspace. The main idea was to exploit the fact that the

gradient ∇ f of the regression function f evaluated at any point x ∈ R
d belongs to the EDR

subspace in order to construct some vectors β1, . . . , βL nearly lying in the EDR subspace,

and to estimate a basis of the EDR subspace by means of the Principal Component Analysis

(PCA).

A limitation of this method is that the resulting estimator is proved to be
√

n-consistent only

when L is chosen independently on the sample size n. Unfortunately, if L is small with

respect to n, it is hopeless that the subspace spanned by the vectors β1, . . . , βL captures all

the directions of the EDR subspace. Therefore, the empirical experience advocates for large

values of L, even if the desirable feature of
√

n-consistency fails in this case.

The goal of [P9] was to propose an estimator providing a remedy for this dissension between

the theory and the empirical experience. To this end, we introduced a new method of ex-

tracting the EDR subspace from the vectors β1, . . . , βL. If we think of PCA as the solution
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to a minimization problem involving a sum over L terms then, to some extent, our proposal

was to replace the sum by the maximum. This is why we called our procedure Structural

Adaptation via Maximum Minimization (SAMM).

The main advantage of SAMM was that it is proved to give a consistent estimator of the

EDR subspace under a very weak identifiability assumption, even in the case where L is of

polynomial order in n. In addition, the rate of convergence of the proposed estimator is
√

n

(up to a logarithmic factor) when m∗ ≤ 4. We also studied the numerical performance of

SAMM by means of Monte Carlo simulations. The results presented in [P9, Section 4] show

the state-of-the-art performance of SAMM.

1.3.2 Aggregation and sparsity oracle inequalities

The method proposed in [P9] provides an estimator of the EDR subspace in the case where its

dimension is known. This allows one to use standard nonparametric smoothing techniques

in order to define estimators of the regression function, after projecting the covariates onto

the estimated EDR subspace. Since the estimation of the EDR subspace may be done with

parametric rate of convergence, the resulting nonparametric estimators of the regression

function will have the same rate as those using the projection onto the true EDR subspace.

This rate will depend on the underlying structural dimension (dimension of the EDR sub-

space) and not on the real dimension of the explanatory variable. An important limitation

here is that this construction presumes the knowledge of the structural dimension.

One possible approach for overcoming this difficulty passes through the aggregation of re-

gression estimators. In our work, we only consider convex aggregation, the purpose of

which can be formulated as follows: having at hand the data D and a collection of estima-

tors F , choose an element (called aggregate) in the convex hull of F which is nearly as close

to the true regression function as the best estimator from F . Thus, a possible strategy for

efficiently estimating the regression function in the multi-index model without knowing the

structural dimension consists in building in a first step regression estimators for every pos-

sible value of the structural dimension and, in a second step, aggregating these estimators to

obtain an estimator of the regression function which is adaptive with respect to the unknown

structural dimension.

To realize this program, we were looking for results on aggregation of estimators in the

model of regression with deterministic design. Surprisingly, most of results on aggrega-

tion were concerned with the model of regression with random design. Yang [54, Remark

4 on page 151] even questions whether the results on aggregation for random design re-

gression may be carried over the regression with deterministic design. To the best of our

knowledge, the only paper where this issue is addressed is that of Leung and Barron [34].

It should be stressed here that the results of [34] are particularly remarkable given that they

provide sharp oracle inequalities for the aggregate with exponential weights defined with-

out sample-splitting.

However, a limitation of Leung and Barron’s results is that they are heavily based on the

assumption that the regression errors are normally distributed. In the same time, Juditsky,
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Rigollet and Tsybakov [30] give an elegant proof of a sharp oracle inequality (quite similar

to that of [34]) for an aggregation procedure (namely, the cumulative exponential weighting

procedure) in the model of regression with random design and arbitrary noise distribution

having a bounded exponential moment. Thus, one of our objectives in [P10] was to un-

derstand whether the ideas used in [30] may be used for obtaining analogous results in the

model of regression with deterministic design and non-Gaussian noise.

The idea of aggregating with exponential weights has been discussed by many authors ap-

parently since 1970-ies (see [55] for a nice overview of the subject). Most of the work focused

on the important particular case where the set of estimators to aggregate is finite. The in-

equalities that we proved in [P10] are valid for general set of preliminary estimators satis-

fying some mild conditions. Furthermore, to treat non-Gaussian errors we introduced new

techniques of the proof based on dummy randomization which allowed us to obtain the

result for “n-divisible” distributions of errors. We then apply some ideas coming from the

Skorokhod embedding [43] to cover the class of all symmetric error distributions with fi-

nite exponential moments. Our proofs work in the case when the functions to aggregate are

frozen and deterministic. The extension of our results to the case of aggregation of functions

depending on data is an interesting open problem.

Finally, as an application, we considered the case where the class F of functions to aggregate

consists of linear combinations of M known functions. As a consequence of our main result

we obtained a sparsity oracle inequality (SOI). We refer to [50] where the notion of SOI is

introduced in a general context. In an informal way, our result advocates for using as esti-

mator of the coefficients of the unknown “best” linear combination the posterior empirical

mean in the model of linear regression with additive Gaussian noise with a sufficiently large

variance, even if the noise of the true model is not necessarily Gaussian. In the case when the

unknown coefficients of the regression have sparse structure, the use of a prior distribution

with density decreasing polynomially at infinity appeared to lead to a nice remainder term

in the SOI.



2
Main Results

In this chapter, we briefly present the most important results obtained in papers [P1]-[P10].

Instead of stating the results in whole generality, we will only give their simplest versions.

For a discussion on possible extensions, the interested reader is referred to the manuscripts,

which can be downloaded from my web page.

2.1 Continuously observed diffusion processes

Let X be a diffusion process given as the solution of the stochastic differential equation

dXt = S(Xt) dt + σ(Xt) dWt , X0 = ξ, t ≥ 0, (2.1)

where W is a standard Brownian motion and the initial value ξ is a random variable inde-

pendent of W. We assume that a continuous record of observations XT = (Xt, 0 ≤ t ≤ T)
is available. The goal is to estimate the function S(·) or some functional of it. We consider

the case of ergodic diffusions: that is X, which is a Markov process, admits an invariant

measure.

2.1.1 Sharp adaptive estimation of the drift function

The purpose of the paper [P4] is to propose an estimator of the drift function of a one-

dimensional diffusion which is asymptotically minimax up to the optimal constant simul-

taneously for a large variety of Sobolev balls. Let fS denote the density with respect to

the Lebesgue measure on R of the invariant measure of the diffusion process defined by

(2.1) (cf. [23, Ch. 4, § 18] for more details). To quantify the performance of an estimator
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ST(·) = ST(·, XT) of the drift S(·), we use the weighted L2-risk :

RT(ST, S) =
∫

R

ES

[(
ST(x) − S(x)

)2]
f 2
S (x) dx, (2.2)

where ES is the expectation with respect to the law PS of X defined by (2.1). We call an

estimating procedure adaptive if its realization does not require any a priori information on

the estimated function. The only information that we may (and should) use is the one con-

tained in the observations. We call an estimating procedure minimax sharp adaptive or simply

sharp adaptive over some functional class Σ, if it is adaptive and its “worst case” risk over Σ

converges with the best possible rate to the best possible constant.

Let K(·), Q(·) ∈ L2(R) be two positive k-times (k ≥ 1) continuously differentiable symmetric

functions such that
∫

K =
∫

Q = 1, and let α = αT and ν = νT be two positive functions of

T decreasing to zero as T → ∞. We define the kernel-type estimator of S at the point x by

ŜT(x) =
1
α2

∫ T
0 K′( x−Xt

α

)
σ2(Xt) dt

2
ν

∫ T
0 Q

(
x−Xt

ν

)
dt + 2ε

ν e−ℓT |x|
, (2.3)

where ε = εT = e
√

log T and ℓT = (log T)−1. One can come to this estimator using the well

known formula (
σ2(x) fS(x)

)′
= 2S(x) fS(x). (2.4)

In view of the occupations time formula and the martingale representation of the local

time, one can check that (Tα2)−1
∫ T

0 K′((x − Xt)/α
)
σ2(Xt) dt is a consistent estimator of(

σ2(x) fS(x)
)′

. Likewise, 2(Tν)−1
∫ T

0 Q
(
(x − Xt)/ν

)
dt is a consistent estimator of 2 fS(x).

It is now quite natural to define the estimator of S(x) as the quotient of these two estimators.

To simplify the exposition, form now on we suppose that the diffusion coefficient σ(·) is

identically equal to one. For any function h ∈ L2(R), let us denote by ϕh(·) the Fourier

transform of h(·) defined as ϕh(λ) =
∫

R
eiλxh(x) dx. To avoid the double subscripts, we

write ϕ f instead of ϕ fS
. It is proven in [P1, P2], that the estimator (2.3) is asymptotically

minimax over a properly chosen Sobolev ball Σ(k, R) (k is the order of smoothness and R is

the radius) if the kernels and the bandwidths are as follows:

α∗
T =

(
4k

πRT(k + 1)(2k + 1)

) 1
2k+1

, K∗(x) =
1

π

∫ 1

0
(1 − uk+ρT) cos(ux) du, (2.5)

νT = T−1/2 and Q(x) is any positive, differentiable, symmetric function with support in

[−1, 1] and
∫

Q(x)dx = 1. In Eq. (2.5), we used the notation ρT = 1/ log log(1 + T). The

estimator (2.3) defined by such bandwidths and kernels will be denoted by S∗
T(·). Note here

that the Fourier transform of the kernel K∗ is ϕK∗(λ) = (1 − |λ|k+ρT )+. The exact asymptotic

behavior of the maximum over Σ(k, R) of the risk of this estimator is T−2k/(2k+1)P(k, R),

where P(k, R) is Pinsker’s constant [41]. Moreover, the following asymptotic relation holds:

RT(S∗
T, S) ≤ ∆T(α, ϕK∗ , |ϕ f |2)(1 + oT(1))

2πT
,

where oT(1) is a term tending to zero uniformly in S and the functional ∆T is defined by

∆T(α, h, |ϕ f |2) = T
∫

R

∣∣λ(1 − h(αλ))ϕ f (λ)
∣∣2dλ + 4

∫

R

|h(αλ)|2dλ.
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Since for known k the optimal kernel is given by (2.5), it is natural to select the adaptive

kernel among the functions {Kβ(x) = π−1
∫ 1

0 (1 − uβ) cos(ux) du | β ≥ 1} in a data-driven

way. Set

hβ(λ) = (1 − |λ|β)+, ϕ̂T(λ) =
1

T

∫ T

0
eiλXt dt.

On the one hand, |ϕ̂T(λ)|2 − 4/(Tλ2) is a good estimate of |ϕ f (λ)|2. On the other hand,

the minimization of ∆T(α, hβ, |ϕ f |2) w.r.t. parameters α and β is obviously equivalent to the

minimiation of ∆T(α, hβ, |ϕ f |2)− T
∫

R
λ2|ϕ f (λ)|2dλ. This leads us to defining the functional

lT(h) = T
∫

R

λ2
(
h2(λ) − 2h(λ)

)∣∣ϕ̂T(λ)
∣∣2dλ + 8

∫

R

h(λ)dλ,

obtained by substituting |ϕ f (λ)|2 by |ϕ̂T(λ)|2 − 4/(Tλ2) in the expression ∆T(α, hβ, |ϕ f |2)−
T
∫

R
λ2|ϕ f (λ)|2dλ. Let us define

HT =
{

h : x 7→ (1 − |αix|β j)+

∣∣∣ αi ∈ [T−1/3, (log T)−1], j = 1, . . . , ⌊log T⌋
}

,

with αi = (1 + 1/ log T)−i and β j = (1 − j/ log T)−1, for every i, j ∈ N.

Form now on, Q(·) is a positive, symmetric, differentiable kernel function supported by

[−1, 1] and integrable up to one.

Definition 1. Let h̃ be a minimizer of lT(·) over HT, that is lT(h̃T) = minh∈HT
lT(h) and let

K̃T(x) =
1

2π

∫

R

h̃T(λ) cos(λx) dλ

be the inverse Fourier transform of h̃T . The adaptive estimator ŜT of the unknown drift S at any point

x ∈ R is defined by

ŜT(x) =

∫ T
0 K̃′(x − Xt) dt

2
√

T
∫ T

0 Q
(
(x − Xt)

√
T
)

dt + 2
√

T e−ℓT |x|+
√

log T
,

where ℓT = 1/ log T.

Note that the function K̃T(·) is differentiable, since minj β j > 1.

To prove that the estimator ŜT(·) enjoys nice adaptivity properties, we need some assump-

tions. Recall that the solution of the stochastic differential equation (2.1) is a strong Markov

process. We denote by Pt(S, x, A) the transition probability corresponding to the instant t,

that is

Pt(S, x, A) = PS(Xt ∈ A | X0 = x), ∀x ∈ R, ∀A ∈ B(R).

Here PS denotes the probability measure on
(
C(R), BC(R)

)
induced by the process (2.1). For

every x ∈ R and t ≥ 0 the probability measure Pt(S, x, ·) is absolutely continuous with

respect to the Lebesgue measure. The corresponding density will be denoted by pt(S, x, y),

so that for any integrable function g(·), we have

ES[g(Xt)|Fs] =
∫

R

g(y) pt−s(S, Xs, y) dy.

Let k > 0 be an integer and denote by Σ(k) the set of all functions satisfying conditions:
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C1. S is k-times continuously differentiable in R and lim|x|→∞ sgn(x)S(x) < 0.

C2. There exist positive numbers C and ν such that
∣∣S(k)(x)

∣∣ ≤ C
(
1 + |x|ν

)
, ∀x ∈ R.

The problem we consider is the following: we know that xT is a sample path of the process

XT given by (2.1) with a drift function S ∈ Σ = ∪k≥1Σ(k) and we want to estimate the

function S(·). For obtaining minimax results we consider the local setting. For any function

S0 ∈ Σ(k) and for all δ > 0, we define the vicinities

Ṽδ(S0, k) =
{

S ∈ Σ(k)
∣∣∣ sup

x∈R

∣∣S(i)(x) − S
(i)
0 (x)

∣∣ ≤ δ, i = 0, 1, . . . , k − 1
}

.

The center of localization S0(·) is assumed to fulfill the following additional assumptions:

C3. There exist κ > 0 and q > 1 such that ES0

[
supy∈R

p
q
κ(S0, X0, y)

]
< ∞.

C4. Let ϕ0(·) be the Fourier transform of the invariant density fS0
(·). There exists τ > 0

such that
∫

R
|λ|2k+2+τ

∣∣ϕ0(λ)
∣∣2dλ < ∞.

We define now the Sobolev balls; in our setup they also are weighted by the square of the

invariant density. Let us denote

Σ̃δ(k, R, S0) =
{

S ∈ Ṽδ(S0, k)
∣∣∣
∫

R

[(
S − S0

)(k)
(x)
]2

f 2
S (x) dx ≤ R

}
.

Theorem 1. Let S0 satisfy assumptions C1–C4 and let the risk RT(·, ·) be defined by (2.2). If the

initial condition ξ follows the invariant law, then

lim
δ→0

lim
T→∞

sup
S∈Σ̃δ(k,R,S0)

T
2k

2k+1 RT(ŜT, S) = P(k, R),

where P(k, R) = (2k + 1)
(

k
π(k+1)(2k+1)

) 2k
2k+1 R

1
2k+1 is Pinsker’s constant.

2.1.2 Second-order minimax estimation of the invariant density

Let us switch now our attention to the problem of estimating the invariant density fS(·). To

simplify the computations we assume that σ(x) ≡ 1, so the invariant density is given by

fS(x) = G(S)−1 exp
{

2
∫ x

0
S(v) dv

}
,

where G(S) is the normalizing constant. Furthermore, we assume that S ∈ Σγ∗(A∗, C∗, ν∗),

where

Σγ∗(A∗, C∗, ν∗) =

{
S(·) :

sgn(x)S(x) ≤ −γ∗ ∀|x| > A∗∣∣S(x)
∣∣ ≤ C∗(1 + |x|ν∗), ∀x ∈ R

}
.

Here γ∗, A∗, C∗ and ν∗ are some (unknown) positive constants.
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Fix some integer k ≥ 2. The function S(·) is supposed to be (k − 2)-times differentiable with

absolutely continuous (k − 2)th derivative and to belong to the set

Σ(k, R) =
{

S(·) ∈ Σ :
∫

R

[ f
(k)
S (x) − f

(k)
S∗ (x)]2 dx ≤ R

}
,

where R > 0 is some constant and f
(k)
S (·) is the k-th derivative (in the distributional sense)

of the function fS(·). The set Σ(k, R) is a Sobolev ball of smoothness k and radius R centered

at fS∗ = f∗. The choice of the center is not arbitrary, it is assumed to be smoother than the

other functions of the class. For simplicity, we focus our attention on the case S∗(x) = −x

corresponding to an Ornstein-Uhlenbek process. Finally we define the parameter set Σ∗ =
Σ∗(k, R) = Σ(k, R) ∩ Σγ∗(A∗, C∗, ν∗).

In this setting, the problem of first-order minimax estimation of fS(·) under mean integrated

squared loss has been studied by Kutoyants [31], who proved that the minimax rate of esti-

mation is T−1/2 and the nonparametric analogue of the Fisher information is given by

I(S, x) =

[
4 fS(x)2 ES

(
χ{ξ>x} − FS(ξ)

fS(ξ)

)2]−1

,

where ξ is supposed to follow the invariant law and FS(·) is the c.d.f. associated to the prob-

ability density fS(·). Moreover, it is shown that under mild regularity conditions the local-

time estimator

f ◦
T
(x) =

1

T

∫ T

0
sgn(x − Xt) dXt +

|XT − x| − |X0 − x|
T

,

kernel-type estimators f̄K,T(x) and a wide class of unbiased estimators f̃
T
(x) are consistent,

asymptotically normal and asymptotically (first-order) minimax.

In order to discriminate between these first-order minimax estimators, we propose to study

the second-order risk

RT( f̄T, fS) =
∫

R

ES[
(

f̄T(x) − fS(x)
)2

]dx − T−1
∫

R

I(S, x)−1dx,

where f̄T(x) is an arbitrary estimator of the density. It is evident that for first-order asymptot-

ically minimax estimators f̄T , the quantity TRT( f̄T , fS) tends to zero uniformly in Σ∗(k, R), as

T → ∞. It can be shown that for some of these estimators there exists a non degenerate limit

for T
2k

2k−1 supS∈Σ∗(k,R) RT( f̄T, fS) and for the others this limit is equal to infinity. Therefore we

can compare the performance of these estimators according to the limits of this quantity. The

following result describes what is its lowest possible limiting value.

Theorem 2. For every integer k ≥ 2 and for every R, γ∗, A∗, C∗, ν∗ > 0, it holds

lim
T→∞

{
inf
f̄T

sup
S∈Σ∗

T
2k

2k−1 RT( f̄T , fS)
}

= −P̂(k, R),

where P̂(k, R) = 2(2k − 1)
(

4k
π(k−1)(2k−1)

)2k/(2k−1)
R−1/(2k−1).

It is noteworthy that the estimator proved to achieve the minimax bound stated in Theorem 2

is independent on γ∗, A∗, C∗ and ν∗, but relies on the knowledge of parameters k and R.
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We should also acknowledge that the estimator proposed in [P3] is rather complicated for

computation and in most cases it would be better to use simpler estimator which is not

necessarily second-order efficient up to the constant. For example, the kernel estimator with

properly chosen bandwidth is second-order rate-minimax and is easier to compute that the

estimator proposed in [P3].

2.1.3 Statistical equivalence for scalar ergodic diffusions

Let us briefly introduce some basic notation such that we can announce the main results. For

some fixed constants C, A, γ > 0 we consider the nonparametric drift class

Σ ,
{

S ∈ Liploc(R) : sup
x∈R

|S(x)|/(1 + |x|) ≤ C, sup
|x|≥A

S(x) sgn(x) ≤ −γ
}

, (2.6)

where Liploc(R) denotes the set of locally Lipschitz continuous functions S : R → R and

sgn(x) , x/|x|. For a drift S0 ∈ Σ and for any density f0 ∈ L1(R) we introduce their local

neighborhood with parameters ε, ζ, η > 0

Σε,η,ζ(S0, f0) =
{

S ∈ Σ : ‖(S − S0)
2
√

fS‖1 ≤ ε2, ‖(S − S0)
2( fS − f0)‖1 ≤ η2, ‖ fS − f0‖1 ≤ ζ

}
.

It is natural to consider neighborhoods around (S0, fS0
), but it is by no means necessary for

the calculations to enforce f0 = fS0
.

We now define precisely the local experiments E1 and F1, for which we shall prove asymp-

totic equivalence. Note that we define the Gaussian shift experiment on the space R
L2(R)

and not on C(R) via the natural interpretation of the differentials as integrators for L2(R)-

functions. Of course, the law is already characterized by the integration of the functions

1[0,y], y ∈ R, which corresponds to the signal in white noise interpretation on the space C(R)
up to the knowledge of the value at zero.

Definition 2. We define the diffusion experiment localized around (S0, f0)

E1 , E1(S0, f0, T, ε, η, ζ) , (C([0, T]),BC([0,T]), (PT
S )S∈Σε,η,ζ(S0, f0)),

PT
S being the law of the stationary diffusion process with drift S on the canonical space C([0, T]).

The Gaussian shift experiment localized around (S0, f0) is given by

F1 , F1(S0, f0, T, ε, η, ζ) , (R
L2(R),B⊗L2(R)

R
, (QT

S )S∈Σε,η,ζ(S0, f0)),

where QT
S denotes the law of the Gaussian shift experiment

dZx = S(x) f0(x)1/2 dx + T−1/2 dBx, x ∈ R,

with a Brownian motion B on the real line.

Let ∆(E, F) be the Le Cam pseudo-distance between arbitrary two experiments E and F (see

[33] for the precise definition).
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Theorem 3. If for T → ∞ the asymptotics εT = o(T−1/4), ηT = o(T−1/2) and ζT = o(1) hold,

then the following convergence holds true uniformly in S0 ∈ Σ:

lim
T→∞

∆
(
E1

(
S0, f0, T, εT, ηT , ζT

)
, F1

(
S0, f0, T, εT , ηT, ζT

))
= 0.

Without going into details, I would like to say some words about the proof of this theorem.

The only thing we need to know about the Le Cam’s distance is that

P1 If the experiments E and F have the same parameter space Θ and are dominated, then

the equality in law of likelihood processes (indexed by ϑ ∈ Θ) of these experiments

entails their equivalence, that is ∆(E, F) = 0.

P2 If the experiments E and F are defined on the same probability space, have the same

parameter space Θ and are dominated, then the Le Cam distance between E and F is

upper bounded up to a multiplicative constant by the supremum in ϑ of the Kullback-

Leibler divergence between the likelihoods of E and F.

Using the Girsanov and the occupation time formulas, the likelihood of the diffusion exper-

iment can be written as

LT(S) = exp

{ ∫ T

0
(S − S0)(Xt) dWt −

1

2

∫

R

(S − S0)
2(x)Lx

T(X) dx

}
,

where Lx
T(X) is the local time of the diffusion process X at the point x ∈ R up to time T ≥ 0.

Let us now introduce two auxiliary experiments E2 and F2. We define the local experiment

E2 = E2(S0, f0, T, ε, η, ζ) by the observations (XT, V), where XT is a path of ergodic diffusion

with drift S over [0, T] and V = (Vx, x ∈ R) is given by

dVx = S0(x)(T f0(x) − Lx
T(X))1/2

+ dx + dBx, x ∈ R, (2.7)

where B stands for a two-sided Brownian motion on R independent of W and X0 and A+ =

max(A, 0). The second auxiliary experiment, denoted by F2 = F2(S0, f0, T, ε, η, ζ), is defined

by observing the pair (Y, V), where Y is a weak solution of the SDE

dYt =
(
S(Yt)1{L

Yt
t (Y)≤T f0(Yt)} + S0(Yt)1{L

Yt
t (Y)>T f0(Yt)}

)
dt + dWt , t ∈ [0, T],

with initial distribution Y0 ∼ f0, and V is the conditionally to Y Gaussian process

dVx = S(x)(T f0(x) − Lx
T(Y))1/2

+ dx + dBx, x ∈ R, (2.8)

where B is the same as in (2.7).

We proved in [P5] that ∆(E1, E2) = ∆(F1, F2) = 0. Note that the first equality is easily un-

derstandable. Indeed, if we have at our disposal the observation XT, we gain no information

about S by observing V from (2.7). So inference in E2 is not easier than in E1. On the other

hand, since the observation in E2 comprises the observation in E1, the inference in E1 is not

easier than the inference in E2. So it is not surprising that these experiments are statistically

equivalent.
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The equivalence of F1 and F2 is far less obvious. It is proved using the aforementioned

property P1 of the Le Cam distance. Indeed, one easily checks that the log-likelihood of the

model having as observation (Y, V) is given by Z(S) − 1
2〈Z(S)〉, where

Z(S) =
∫ T

0
(S − S0)(Yt)1{L

Yt
t (Y)≤T f0(Yt)} dWt +

∫

R

(S − S0)(x)(T f0(x) − Lx
T(Y))1/2 dBx,

〈Z(S)〉 =
∫ T

0
(S − S0)

2(Yt)1{L
Yt
t (Y)≤T f0(Yt)} dt +

∫

R

(S − S0)
2(x)(T f0(x) − Lx

T(Y)) dx.

Using the extended occupation time formula [43, Ex. VI.1.15], one checks that 〈Z(S)〉 =

T
∫

R
(S − S0)2 f0. This entails that Z(S) is a Gaussian random variable (this can be checked

by computing its Laplace transform). Since Z(S) is a linear functional of S − S0, the same

argument implies that α1Z(S1) + . . . + αpZ(Sp) is a Gaussian random variable for every

α = (α1, . . . , αp) ∈ R
p and S1, . . . , Sp ∈ Σ. Therefore, the log-likelihood of the experiment F2

is a Gaussian process having the same mean and covariance operator as the log-likelihood

of the experiment F1. This implies that ∆(F1, F2) = 0.

To complete the proof of Theorem 3, it suffices to compute the Kullback-Leibler divergence

between the likelihoods of the experiments E2 and F2 (which are defined on the same mea-

surable space) and to show that it goes to zero as T tends to infinity.

It is possible to give a number of statistical experiments equivalent to F1.

Remark 1. The following experiments are equivalent to F1 and F2 for parameters S ∈ Σε,η(S0):

dYx = S(x) dx + T−1/2 f0(x)−1/2 dBx, x ∈ R,

dYx = (S(x)− S0(x))
√

f0(x) dx + T−1/2 dBx, x ∈ R,

dYx = b(F−1
f0

(x)) dx + T−1/2 dBx, x ∈ (0, 1),

where Ff (x) =
∫ x
−∞

f (y) dy and dB is Gaussian white noise. For the proof it suffices to check that

the laws of the likelihood processes coincide.

Remark 2. The preceding asymptotic equivalence result holds in particular for the local parameter

subclass Σ̃ε,T(S0, f0) ,
{

S ∈ Σ

∣∣∣ ‖(S − S0)2
√

fS‖1 ≤ ε2, ‖ f 1/2
S − f0 f−1/2

S ‖∞ ≤ T−1/2
}

, when

ε = εT = o(T−1/4) for T → ∞.

2.1.4 Statistical equivalence for multidimensional ergodic diffusions

We now address the issu of extending previous results to the case of multidimensional er-

godic diffusions. Note that on the one hand, even for simple experiments, as the classical

ones described above, results for asymptotic equivalence in the multidimensional case are

very scarce. We only know of the recent work by Carter [10] who proved asymptotic equiv-

alence for two-dimensional Gaussian regression, but argued that his method fails for higher

dimensions. Brown and Zhang [9] remarked that the two classical experiments and their

accompanying Gaussian shift experiments are not asymptotically equivalent in the case of

nonparametric classes of Hölder regularity β ≤ d/2, where d denotes the dimension. In the
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recent work [42] Reiss proved that the statistical equivalence between the regression experi-

ment and signal in Gaussian white noise model holds for β > d/2.

On the other hand, the methodology we used in the previous section to establish asymptotic

equivalence for scalar diffusions relied heavily on the concept of local time. For multidimen-

sional diffusions local time does not exist. This might explain why the statistical theory for

scalar diffusions is very well developed [32], while inference problems for multidimensional

diffusions are more involved and much less studied. We refer to Bandi and Moloche [4]

for the analysis of kernel estimators for the drift vector and the diffusion matrix and to Aı̈t-

Sahalia [2] for a recent discussion of applications for multidimensional diffusion processes

in econometrics.

We assume that a continuous record XT = {Xt, 0 ≤ t ≤ T} of a d-dimensional diffusion

process X is observed up to time instant T. We denote by Si : R
d → R, i = 1, . . . , d, the

components of the vector valued function S. In what follows, we assume that the drift is

of the form S = −∇V, where V ∈ C2(R
d) is referred to as potential, and σ ≡ Id. This

restriction permits to use strong analytical results for the Markov semigroup of the diffusion

on the L2-space generated by the invariant measure.

For positive constants M1 and M2, we define Σ(M1, M2) as the set of all functions S = −∇V :

R
d → R

d satisfying for any x, y ∈ R
d

|S(x)| ≤ M1(1 + |x|), (2.9)

(S(x) − S(y))T(x − y) ≤ −M2|x − y|2, (2.10)

where | · | denotes the Euclidian norm in R
d. Any such function S is locally Lipschitz-

continuous. Therefore equation (2.1) has a unique strong solution, which is a homogeneous

continuous Markov process, cf. [45, Thm. 12.1]. Set G(S) =
∫

Rd e−2V(u) du and

fS(x) = G(S)−1e−2V(x), x ∈ R
d.

Under condition (2.10) we have G(S) < ∞ and the process X is ergodic with unique invari-

ant probability measure [6, Thm. 3.5]. Moreover, the invariant probability measure of X is

absolutely continuous with respect to the Lebesgue measure and its density is fS. From now

on, we assume that the initial value ξ in (2.1) follows the invariant law such that the process

X is strictly stationary.

We write fS(h) , ES[h(X0)] =
∫

h fS . Let PS,t be the transition semigroup of this process on

L2( fS), that is

PS,th(x) = ES[h(Xt)|X0 = x], h ∈ L2( fS).

The transition density is denoted by pS,t: PS,t f (x) =
∫

f (y)pS,t(x, y) dy.

For any multi-index α ∈ Nd and x ∈ R
d we set |α| = α1 + . . . + αd and xα = xα1

1 · . . . · xαd

d . Let

us introduce the Hölder class

H(β, L) =

{
f ∈ C⌊β⌋(R

d; R) :
|Dα f (x) − Dα f (y)| ≤ L|x − y|β−⌊β⌋

for any α such that |α| = ⌊β⌋

}

where ⌊β⌋ is the largest integer strictly smaller than β and Dα f ,
∂|α| f

∂x
α1
1 ...∂x

αd
d

.
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Let Σβ(L, M1, M2) be the set of functions S ∈ Σ(M1, M2) such that all d components Si of

S are in H(β, L). We fix a function S◦ ∈ Σβ(L, M1, M2). Suppose Σ ⊂ Σ(M1, M2) for some

M1, M2 > 0. For any T > 0 let E(Σ, T) be the statistical experiment of observing the diffusion

with S ∈ Σ.

For any function S ∈ L2( fS◦ ; R
d) = {h : R

d → R
d :

∫
|h|2 fS◦ < ∞} we denote by QS,T

the Gaussian measure on (C(R
d; R

d),BC(Rd ;Rd)) induced by the d-dimensional process Z

satisfying

dZ(x) = S(x) fS◦(x)1/2dx + T−1/2 dB(x), Z(0) = 0, x ∈ R
d, (2.11)

where B(x) = (B1(x), . . . , Bd(x)) and B1(x), . . . , Bd(x) are independent d-variate Brownian

sheets, that is zero mean Gaussian processes with Cov(Bi(x), Bi(y)) = |Rx ∩ Ry| where Rx =

{u ∈ R
d : ui ∈ [0, xi]}.

Definition 3 (Gaussian shift experiment). For Σ ⊂ L2( fS◦ ; R
d) and T > 0 let F(Σ, T) be the

Gaussian shift experiment (2.11) with S ∈ Σ, that is F(Σ, T) =
(
C(R

d; R
d),BC(Rd ;Rd), (QS,T)S∈Σ

)
.

For any positive numbers ε, η and for any hypercube A ⊂ R
d, we define the local neighbor-

hood of S◦

Σ(S◦, ε, η, A) =

{
S ∈ Σβ(L, M1, M2) :

|S(x) − S◦(x)| ≤ ε1A(x), x ∈ R
d,

| fS(x)− fS◦(x)| ≤ η fS◦(x), x ∈ A

}
,

where 1A is the indicator function of the set A.

Theorem 4. If εT and ηT satisfy the conditions

lim
T→∞

T−βε2−d
T = lim

T→∞
T

1
4 + d−2

8β εT(log(Tε−1
T ))1(d=2) = lim

T→∞
TηTε2

T = 0,

then the multidimensional diffusion model is asymptotically equivalent to the Gaussian shift model

(2.11) over the parameter set Σ0,T = Σ(S◦, εT, ηT, A), that is

lim
T→∞

sup
S◦∈Σβ(L,M1,M2)

∆
(
E(Σ0,T, T), F(Σ0,T, T)

)
= 0.

Let us see for which Hölder regularity β on the drift an estimator can attain the local neigh-

borhood, that is |Ŝh(T),T(x) − S(x)| ≤ εT and | f̂h(T),T(x) − fS(x)| ≤ ηT hold with a prob-

ability tending to one (cf. Nussbaum [39] for this concept). By the rates obtained in [P6,

Corollary 1] (see also [7]), and the condition in Theorem 4, this is the case if β > (d − 1 +√
2(d − 1)2 − 1)/2. The critical regularity thus grows like (1/2 + 1/

√
2)d for d → ∞. In

dimension 2 we obtain the condition β > 1 as in the result by Carter [10] for Gaussian

regression. Whether for Hölder classes of smaller regularity asymptotic equivalence fails,

remains a challenging open problem.

2.2 Second-order efficiency in semiparametrics

Consider the “signal in Gaussian white noise model”, that is the observations (xε(t), t ∈
[−1/2, 1/2]) with

dxε(t) = fϑ(t) dt + εdW(t), t ∈ [−1/2, 1/2], (2.12)
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are available, where W(t) is a Brownian motion. Assume that the signal has the form fϑ(t) =

f (t − ϑ), where f : R → R is a symmetric periodic function having 1 as smallest period.

More precisely, we assume that the function f belongs to the set F0 = ∪ρ>0F0(ρ) with

F0(ρ) =
{

f ∈ L2
loc : f (x) = f (−x) = f (x + 1), ∀ x ∈ R; | f1| ≥ ρ

}
,

where we denote by L2
loc is the set of all locally squared integrable functions and by f1 =√

2
∫ 1/2
−1/2

f (t) cos(2πt) dt.

The goal is to estimate the parameter ϑ, which is assumed to lie in Θ ⊂]−T, T] with T < 1/4.

As explained in [P7], the assumption T < 1/4 is necessary for the identifiability of the

parameter ϑ. In this context, the unknown function f is considered as an infinite dimensional

nuisance parameter. The Fisher information in the problem of estimating ϑ with fixed f is

Iε( f ) = ε−2
∫ 1/2

−1/2
f ′(x)2 dx = ε−2 ∑

k∈N

(2πk)2 f 2
k ,

where fk =
√

2
∫ 1/2
−1/2 cos(2πkt) f (t) dt , ε−2‖ f ′‖2.

We call filtering sequence or filter any h = (hk)k∈N ∈ [0, 1]N such that only a finite number of

coefficients hk are non-zero. Define the functional

Φε(τ, h) ,
∞

∑
k=1

hk

( ∫ 1/2

−1/2
cos[2πk(t − τ)] dxε(t)

)2

. (2.13)

It is easy ti check that the Penalized Maximum Likelihood Estimator (PMLE) of ϑ is then

ϑ̂PMLE , arg maxτ Φε(τ, h). The role of the sequence h is to filter out the irrelevant terms in

the right side of (2.13). That is, for a “nice” filter h the values hk corresponding to a small

signal-to-noise ratio | fk|/ε are close to zero.

For deterministic filters h, the asymptotic behavior of the estimator ϑ̂PMLE is studied in [P7].

Under some smoothness assumptions on f , for a broad choice of filters h, ϑ̂PMLE is proved to

be first-order asymptotically efficient. Moreover, it is shown that the second-order term of

its risk expansion is ε2Rε[ f , h]/‖ f ′‖4, where

Rε[ f , h] ,
∞

∑
k=1

(2πk)2
[
(1 − hk)

2 f 2
k + ε2h2

k

]
.

This result suggests to use the filter hopt = arg minh Rε[ f , h] for defining the PMLE of ϑ.

However, this minimizer is uncomputable in practice since it depends on f . To get rid

of this dependence, the minimax approach recommends the utilization of the filter hF =
arg minh sup f∈F Rε[ f , h]. If F is a ball in a Sobolev space, a solution of this minimization

problem is given by the Pinsker filter. The properties of the estimator based on this filter are

studied in [P7, Thm. 2 and 3]. Here we will state the results concerning the adaptive choice

of the filtering sequence and the quality of the resulting estimator of ϑ.

To define the estimator, we need the notation

xk =
√

2
∫ 1/2

−1/2
cos(2πkt) dxε(t),

x∗k =
√

2
∫ 1/2

−1/2
sin(2πkt) dxε(t).

(2.14)
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The adaptive procedure:

1. Choose β∗ > 1 and set Nε = 5 ∨ [(ε2 log ε−5)−
1

2β∗+1 ], νε = [e
√

log Nε ] and ρε = ν−1/3
ε .

2. Define the sequence (κj)j≥1 by

κj =

{
(1 + νε)j−1, j = 1, 2,

κj−1 + ⌊νερε(1 + ρε)j−2⌋, j = 3, 4, . . . ,
(2.15)

and the blocks Bj = {k ∈ N : κj ≤ k < κj+1}.

3. Set ϕj =
√

24 log ε−5/(κj+1 − κj), σ2
j = ∑Bj

(2πk)2 and define

ĥS
k =

(
1 −

ε2σ2
j (1 + ϕj)

(‖y′‖2
(j)

− 2ε2σ2
j )+ + ε2σ2

j

)

+

1{j≤Nε}, ∀k ∈ Bj (2.16)

with ‖y′‖2
(j) = ∑k∈Bj

(2πk)2|yk|2, yk = xk + ix∗k

4. Compute the preliminary estimator ϑ̄ε by

ϑ̄ε =

{
1

2π arctan
(

x∗1/x1

)
, x1 6= 0,

1/4, x1 = 0.

5. Define ϑ̂S
ε as the minimum in Θ̄ε = [ϑ̄ε − ε log(ε−2), ϑ̄ε + ε log(ε−2)] of Φε(·, ĥS) (see

(2.13)).

Note that the only “free” parameter in this procedure is β∗. In practice, if no information on

the regularity of f is available, it appears plausible to assume that f has Sobolev smoothness

β∗ = 2.

Let Tj be the length of the block Bj and Tε = infj Tj. The oracle choice of h in the class H∗(B) of

all filters constant on the blocks B = {Bj}j is denoted by h∗: Rε[ f , h∗ ] = minh∈H∗(B) Rε[ f , h].
Introduce the functional class

F(β∗, L∗, ρ) =
{

f ∈ F0(ρ) : ‖ f (β∗)‖ ≤ L∗
}

,

where β∗ > 1, ρ > 0, L∗ > 0 are some constants.

Theorem 5 (Oracle inequality). If the blocks Bj verify log ε−1 = o(Tε) as ε → 0, then

Iε( f )Eϑ, f [(ϑ̂S
ε − ϑ)2] ≤ 1 + (1 + αε)

Rε[ f , h∗ ]
‖ f ′‖2

,

where αε → 0 as ε → 0 uniformly in f ∈ F(β∗, L∗, ρ).

Remark 3. If the block Bj is large, then more observations (xk, x∗k ) are used for estimating the value

of the oracle h∗κj
. Hence, it is natural to expect that αε decreases as Tε increases. A thorough inspection

of the proof allows to describe this feature with the help of the order relation α2
ε ≍ T−1

ε log ε−1.

Now we consider the class Hmon of filters having decreasing components, that is

Hmon =
{

h ∈ [0, 1]N : hk ≥ hk+1, ∀k ∈ N; hNε = 0
}

.
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The class Hmon is of high interest in statistics because it contains the most common filters

such as the projection filter, the Pinsker filter, the Tikhonov or smoothing spline filter and so

forth.

Proposition 1. Set γε = max1≤j≤J−1(σ2
j+1/σ2

j ). Under the conditions of Theorem 5, it holds

ε−2‖ f ′‖2Eϑ, f [(ϑ̂S
ε − ϑ)2] ≤ 1 + γε(1 + αε)

minh∈Hmon
Rε[ f , h]

‖ f ′‖2
,

where αε → 0 as ε → 0 uniformly in f ∈ F(β∗, L∗, ρ).

Remark 4. For the blocks defined by (2.15), we have Tε = νερε(1 + ρε), σ2
1 ≤ 4π2ν3

ε and −νερε +

νε(1 + ρε)j ≤ κj+1 ≤ 1 + νε(1 + ρε)j. One also checks that γε = maxj σ2
j+1/σ2

j is asymptotically

equivalent to (1 + ρε)3 ∼ 1 + 3ρε as ε → 0. Therefore the factor in the oracle inequality of Propo-

sition 1 is of order (1 + 3ρε + αε). We have already mentioned that α2
ε = O(T−1

ε log ε−1). The

trade-off between αε and ρε leads us to ρε ≍ ν−1/3
ε . This clarifies our choice of ρε, which is slightly

different from the one of [14].

Remark 5. In [13, 44, 51], the weakly geometrically increasing blocks are defined by Tj = ⌊ν(1 +

ρ)j−1⌋. This type of blocks does not lead to a sharp oracle inequality in our case, since we need not

only max(Tj+1/Tj) → 1, but also max(κj+1/κj) → 1 as ε → 0.

To complete the theoretical analysis, we state the result assessing that the estimator ϑ̂S
ε corre-

sponding to the blocks (2.15) enjoys minimax properties over a large scale of Sobolev balls.

Assume that f̄ ∈ F(β∗, L∗, ρ) and define

Fδ,β,L( f̄ ) =
{

f = f̄ + v : ‖v‖ ≤ δ, ‖v(β)‖ ≤ L
}

.

Theorem 6. Assume that the conditions of Theorem 5 are fulfilled. If δ = δε tends to zero as ε → 0

and f̄ ∈ F(β∗, L∗, ρ) with β∗ > β ≥ β∗, then

sup
ϑ∈Θ, f∈Fδ,β,L( f̄ )

Iε( f )Eϑ, f [(ϑ̂S
ε − ϑ)2] ≤ 1 + (1 + o(1))

P̃(β, L)ε
4β−4
2β+1

‖ f̄ ′‖2
,

when ε → 0, with P̃(β, L) = 1
3

( β−1
2π(β+2)

) 2β−2
2β+1 (L(2β + 1))

3
2β+1 . Moreover, the following lower bound

holds:

inf
ϑ̃ε

sup
ϑ∈Θ, f∈Fδ,β,L( f̄ )

Iε( f )Eϑ, f [(ϑ̃ε − ϑ)2] ≥ 1 + (1 + o(1))
P̃(β, L)ε

4β−4
2β+1

‖ f̄ ′‖2
,

where the inf is taken over all possible estimators ϑ̃ε.

2.3 Dimension reduction for nonparametric regression

Throughout this section we assume that we are given n observations (Y1, X1), . . . , (Yn, Xn) ∈
R × R

d from the model

Yi = f (Xi) + ξi = g(ϑ⊤
1 Xi, . . . , ϑ⊤

m∗Xi) + ξi, (2.17)
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where ξ1, . . . , ξn are unobserved errors assumed to be mutually independent zero mean ran-

dom variables, independent of the design {Xi, i ≤ n}.

We are interested in the problem of estimating the subspace Sϑ = Span(ϑk, k ≤ m∗). In

general, for a fixed function f , there are many ways of choosing g, m∗ and {ϑk, k ≤ m∗} so

that f (Xi) = g(ϑ⊤
1 Xi, . . . , ϑ⊤

m∗Xi) for every i = 1, . . . , n. To avoid this unidentifiability issue,

we focus our attention on the estimation of the minimal subspace S , which is the intersection

of all linear subspaces S0 such that, for every i = 1, . . . , n, the value of f at Xi depends only

on the projection of Xi on S0. One easily checks that S coincides with the range of the matrix

∇ f = (∂j f (Xi))j≤d,i≤n. The subspace S we wish to estimate is called effective dimension-

reduction (EDR) subspace. In what follows, we assume that the design {Xi, i ≤ n} is frozen

and deterministic, so S is deterministic as well. We use the notation Xij = Xi − Xj.

The Structure-Adaptive algorithm with Maximum Minimization (SAMM) consists of fol-

lowing steps.

a) Specify positive real numbers aρ, ah, ρ1 and h1. Choose an integer L and select a set

{ψℓ, ℓ ≤ L} of vectors from R
n verifying |ψℓ|2 = n. Set k = 1.

b) Initialize the parameters h = h1, ρ = ρ1 and Π̂0 = 0.

c) Define the estimators ∇̂ f (Xi) for i = 1, . . . , n by formula

(
f̂ (Xi)

∇̂ f (Xi)

)
=

{ n

∑
j=1

(
1

Xij

)(
1

Xij

)⊤
wij + Id+1/n

}−1 n

∑
j=1

Yj

(
1

Xij

)
wij .

where wij = K(X⊤
ij (I + ρ−2Π̂)Xij/h2) with the current values of h, ρ and Π̂. Set

β̂ℓ =
1

n

n

∑
i=1

∇̂ f (Xi)ψℓ,i, ℓ = 1, . . . , L,

where ψℓ,i is the ith coordinate of ψℓ.

d) Define the new value Π̂k by Π̂k ∈ arg minΠ∈Am∗ maxℓ β̂⊤
ℓ
(I − Π)β̂ℓ, where Am∗ = {Π :

Π = Π⊤, 0 � Π � I, Tr(Π) ≤ m∗}.

e) Set ρk+1 = aρ · ρk, hk+1 = ah · hk and increase k by one.

f) Stop if ρ < ρmin or h > hmax, otherwise continue with the step c).

Let k(n) be the total number of iterations. The matrix Π̂k(n) is the desired estimator of the

projector Π∗. We denote by Π̂n the orthogonal projection onto the space spanned by the eigen-

vectors of Π̂k(n) corresponding to the m∗ largest eigenvalues. The estimator of the EDR subspace

is then the image of Π̂n. Equivalently, Π̂n is the estimator of the projector onto S .

The described algorithm requires the specification of the parameters ρ1, h1, aρ and ah, as well

as the choice of the set of vectors {ψℓ}. In what follows we use the values

ρ1 = 1, ρmin = n−1/(3∨m∗), aρ = e−1/2(3∨m∗),

h1 = C0n−1/(4∨d), hmax = 2
√

d, ah = e1/2(4∨d).
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In our assumptions we will implicitly assume that the neighborhood E(k)(Xi) = {x : |(I +

ρ−2
k Π∗)−1/2(Xi − x)| ≤ hk} contains at least d design points different from Xi. The parame-

ters h1, ρ1, aρ and ah are chosen so that the volume of ellipsoids E(k)(Xi) is a non-decreasing

function of k and Vol(E(1)(Xi)) = C0/n. In applications, we define h1 as the smallest real

such that mini=1,...,n #E(1)(Xi) = d + 1.

The set {ψℓ} plays an essential role in the algorithm. The optimal choice of this set is an

important issue that needs further investigation. We content ourselves with giving one par-

ticular choice which agrees with theory and leads to nice empirical results. Let Sj, j ≤ d, be

the permutation of the set {1, . . . , n} satisfying X
(j)
Sj(1)

≤ . . . ≤ X
(j)
Sj(n)

. Let S
−1
j be the inverse

of Sj, i.e. Sj(S
−1
j (k)) = k for every k = 1, . . . , n. Define {ψℓ} as the set of vectors

{(
cos

( 2π(k−1)S−1
j (1)

n

)
, . . . , cos

( 2π(k−1)S−1
j (n)

n

))⊤

(
sin
( 2πkS−1

j (1)

n

)
, . . . , sin

( 2πkS−1
j (n)

n

))⊤ , k ≤ [n/2], j ≤ d

}

normalized to satisfy ∑
n
i=1 ψ2

ℓ,i = n for every ℓ. Above, [n/2] is the integer part of n/2 and k

and j are positive integers.

Theorem 7. Assume that assumptions [P9, (A1)-(A4)] are fulfilled. There exists a constant C > 0

such that for any z ∈]0, 2
√

log(nL)] and for sufficiently large values of n, it holds

P

(
‖Π̂n − Π∗‖2 > Cn− 2

3∨m∗ t2
n +

Cz
√

d√
n(1 − ζn)

)
≤ Lze−

z2−1
2 +

3k(n) − 5

n
,

where tn = O(
√

log(Ln)) and ζn = O(tn n− 1
6∨m∗ ).

This result assesses that for m∗ ≤ 4, the estimator of S provided by the SAMM procedure

is
√

n-consistent up to a logarithmic factor. This rate of convergence is known to be optimal

for a broad class of semiparametric problems.

Let us present now the results of some simulations. In all examples presented below the

number of replications is N = 250. The mean loss erN = 1
N ∑j erj and the standard deviation√

1
N ∑j(erj − erN)2 are reported, where erj = ‖Π̂(j) − Π∗‖ with Π̂(j) being the estimator of

Π∗ for jth replication.

Example 1 (Single-index). We set d = 5 and f (x) = g(ϑ⊤x) with

g(t) = 4|t|1/2 sin2(πt), and ϑ = (1/
√

5, 2/
√

5, 0, 0, 0)⊤ ∈ R
5.

We run SAMM and MAVE procedures on the data generated by the model

Yi = f (Xi) + 0.5 · ξi,

where the design X is such that the coordinates (X
(j)
i , j ≤ 5, i ≤ n) are i.i.d. uniform on

[−1, 1], and the errors ξi are i.i.d. standard Gaussian independent of the design.

Table 2.1 contains the average loss for different values of the sample size n for the first step

estimator by SAMM, the final estimator provided by SAMM and the estimator based on
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Table 2.1: Average loss ‖Π̂ − Π∗‖ of the estimators obtained by SAMM and MAVE procedures in Example

1. The standard deviation is given in parentheses.

n 200 300 400 600 800

SAMM, 1st 0.443 0.329 0.271 0.215 0.155

(.211) (.120) (.115) (.095) (.079)

SAMM, Fnl 0.337 0.170 0.116 0.076 0.053

(.273) (.147) (.104) (.054) (.031)

MAVE 0.626 0.455 0.249 0.154 0.061

(.363) (.408) (.342) (.290) (.161)
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Figure 2.1: (a) Average loss multiplied by
√

n versus n for the first step (full line) and the final (dotted line)

estimators provided by SAMM and for the estimator based on MAVE (broken line) in Example 1, (b) (resp. (c))

Average loss versus d (resp. σ) for the first step (full line) and the final (dotted line) estimators provided by

SAMM and for the estimator based on MAVE (broken line) in Example 2 (resp. Example 3).

MAVE. We plot in Figure 2.1 (a) the average loss normalized by the square rood of the sam-

ple size n versus n. It is clearly seen that the iterative procedure improves considerably the

quality of estimation and that the final estimator provided by SAMM is
√

n-consistent. In

this example, MAVE method often fails to recover the EDR subspace. However, the num-

ber of failures decreases very rapidly with increasing n. This is the reason why the curve

corresponding to MAVE in Figure 2.1 (a) decreases with a strong slope.

Example 2 (Double-index). For d ≥ 2 we set f (x) = g(ϑ⊤x) with

g(x) = (x1 − x3
2)(x3

1 + x2);

and ϑ1 = (1, 0, . . . , 0) ∈ R
d, ϑ2 = (0, 1, . . . , 0) ∈ R

d. We run SAMM and MAVE procedures

on the data generated by the model

Yi = f (Xi) + 0.1 · ξi, i = 1, . . . , 300,

where the design X is such that the coordinates (X
(j)
i , j ≤ d, i ≤ n) are i.i.d. uniform on

[−40, 40], and the errors ξi are i.i.d. standard Gaussian independent of the design. The results

of simulations for different values of d are reported in Table 2.2.

As expected, we found that (cf. Figure 2.1(b)) the quality of SAMM deteriorated linearly in

d as d increased. This agrees with our theoretical results. It should be noted that in this case

MAVE fails to find the EDR space.
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Table 2.2: Average loss ‖Π̂ − Π∗‖ of the estimators obtained by SAMM and MAVE procedures in Example

2. The standard deviation is given in parentheses.

d 4 6 8 10 12

SAMM 1st 0.154 0.242 0.296 0.365 0.421

(.063) (.081) (.071) (.087) (.095)

SAMM, Fnl 0.028 0.048 0.060 0.077 0.098

(.011) (.020) (.021) (.026) (.037)

MAVE 0.284 0.607 0.664 0.681 0.693

(.147) (.073) (.052) (.054) (.044)

Table 2.3: Average loss ‖Π̂ − Π∗‖ of the estimators obtained by SAMM and MAVE procedures in Example

3. The standard deviation is given in parentheses.

σ 200 150 100 50 25 10

SAMM 1st 0.227 0.177 0.141 0.119 0.113 0.106

(.092) (.075) (.055) (.051) (.048) (.043)

SAMM, Fnl 0.125 0.084 0.057 0.039 0.034 0.030

(.076) (.037) (.026) (.019) (.021) (.018)

MAVE 0.103 0.087 0.073 0.062 0.063 0.059

(.041) (.035) (.027) (.023) (.024) (.023)

Example 3. For d = 5 we set f (x) = g(ϑ⊤x) with

g(x) = (1 + x1)(1 + x2)(1 + x3)

and ϑ1 = (1, 0, 0, 0, 0), ϑ2 = (0, 1, 0, 0, 0), ϑ3 = (0, 0, 1, 0, 0). We run SAMM and MAVE

procedures on the data generated by the model

Yi = f (Xi) + σ · ξi, i = 1, . . . , 250,

where the design X is such that the coordinates (X
(j)
i , j ≤ d, i ≤ n) are i.i.d. uniform on

[0, 20], and the errors ξi are i.i.d. standard Gaussian independent of the design.

Figure 2.1(c) shows that the qualities of both SAMM and MAVE deteriorate linearly in σ,

when σ increases. These results also demonstrate that, thanks to an efficient bias reduction,

the SAMM procedure outperforms MAVE when stochastic error is small, whereas MAVE

works better than SAMM in the case of dominating stochastic error (that is when σ is large).

2.4 Aggregation for nonparametric regression

Consider the regression model

Yi = f (xi) + ξi, i = 1, . . . , n, (2.18)
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where x1, . . . , xn are given elements of a set X , f : X → R is an unknown function, and ξi

are i.i.d. zero-mean random variables on a probability space (Ω,F , P) where Ω ⊆ R. The

problem is to estimate the function f from the data Dn = ((x1, Y1), . . . , (xn, Yn)).

Let (Λ,A) be a probability space and denote by PΛ the set of all probability measures de-

fined on (Λ,A). Assume that we are given a family { fλ, λ ∈ Λ} of functions fλ : X → R

such that the mapping λ 7→ fλ is measurable, R being equipped with the Borel σ-field. Func-

tions fλ can be viewed either as weak learners or as some preliminary estimators of f based

on a training sample independent of Y , (Y1, . . . , Yn) and considered as frozen.

We study the problem of aggregation of functions in { fλ, λ ∈ Λ} under the squared loss.

Specifically, we construct an estimator f̂n based on the data Dn and called aggregate such that

the expected value of its squared error

‖ f̂n − f‖2
n ,

1

n

n

∑
i=1

(
f̂n(xi) − f (xi)

)2

is approximately as small as the oracle value infλ∈Λ ‖ f − fλ‖2
n.

In [P10], we consider aggregates that are mixtures of functions fλ with exponential weights.

For a measure π from PΛ and for β > 0 we set

f̂n(x) ,

∫

Λ
ϑλ(β, π, Y) fλ(x) π(dλ), x ∈ X , (2.19)

with

ϑλ(β, π, Y) =
exp

{− n‖Y − fλ‖2
n/β

}
∫

Λ
exp

{
− n‖Y − fw‖2

n/β
}

π(dw)
(2.20)

where ‖Y − fλ‖2
n , 1

n ∑
n
i=1

(
Yi − fλ(xi)

)2
and we assume that π is such that the integral in

(2.19) is finite.

Note that f̂n depends on two tuning parameters: the prior measure π and the “temperature”

parameter β. They have to be selected in a suitable way. Using the Bayesian terminology,

π(·) is a prior distribution and f̂n is the posterior mean of fλ in a “phantom” model Yi =
fλ(xi) + ξ′i , where ξ′i are iid normally distributed with mean 0 and variance β/2.

Our assumptions concern essentially the probability distribution of the i.i.d. errors ξi.

(A) There exist i.i.d. random variables ζ1, . . . , ζn defined on an enlargement of the proba-

bility space (Ω,F , P) such that:

(A1) the random variable ξ1 + ζ1 has the same distribution as (1 + 1/n)ξ1,

(A2) the vectors ζ = (ζ1, . . . , ζn) and ξ = (ξ1, . . . , ξn) are independent.

Note that (A) is an assumption on the distribution of ξ1. If ξ1 satisfies (A1), then we will say

that its distribution is n-divisible.

Hereafter, we will write for brevity ϑλ instead of ϑλ(β, π, Y). Denote by P ′
Λ the set of all the

measures µ ∈ PΛ such that λ 7→ fλ(x) is integrable w.r.t. µ for x ∈ {x1, . . . , xn}. Clearly P ′
Λ
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is a convex subset of PΛ. For any measure µ ∈ P ′
Λ we define

f̄µ(xi) =
∫

Λ
fλ(xi) µ(dλ), i = 1, . . . , n.

We denote by ϑ · π the probability measure A 7→
∫

A ϑλ π(dλ) defined on A. With the above

notation, we have f̂n = f̄ϑ·π .

We will need one more assumption. Let Lζ : R → R ∪ {∞} be the moment generating

function of the random variable ζ1, i.e., Lζ(t) = E(etζ1), t ∈ R.

(B) There exist a functional Ψβ : P ′
Λ ×P ′

Λ → R and a real number β0 > 0 such that





e(‖ f− f̄µ′‖2
n−‖ f− f̄µ‖2

n)/β
∏

n
i=1 Lζ

(
2( f̄µ(xi)− f̄µ′(xi))

β

)
≤ Ψβ(µ, µ′),

µ 7→ Ψβ(µ, µ′) is concave and continuous in the total

variation norm for any µ′ ∈ P ′
Λ,

Ψβ(µ, µ) = 1,

(2.21)

for any β ≥ β0.

Theorem 8. Let π be an element of PΛ such that ϑ · π ∈ P ′
Λ for all Y ∈ R

n and β > 0. If

assumptions (A) and (B) are fulfilled, then the aggregate f̂n defined by (2.19) with β ≥ β0 satisfies

the oracle inequality

E
(
‖ f̂n − f‖2

n

)
≤
∫

‖ fλ − f‖2
n p(dλ) +

βK(p, π)

n + 1
, ∀ p ∈ PΛ, (2.22)

where K(p, π) stands for the Kullback-Leibler divergence between p and π.

Consider now the particular case where Λ is countable. W.l.o.g. we suppose that Λ =
{1, 2, . . . }, { fλ, λ ∈ Λ} = { f j}∞

j=1 and we set πj , π(λ = j). As a corollary of Theorem 8 we

get the following sharp oracle inequalities for model selection type aggregation.

Theorem 9. Assume that π is an element of PΛ such that ϑ · π ∈ P ′
Λ for all Y ∈ R

n and β > 0.

Let assumptions (A) and (B) be fulfilled and let Λ be countable. Then for any β ≥ β0 the aggregate

f̂n satisfies the inequality

E
(
‖ f̂n − f‖2

n

)
≤ inf

j≥1

(
‖ f j − f‖2

n +
β log π−1

j

n + 1

)
.

In particular, if πj = 1/M, j = 1, . . . , M, we have

E
(
‖ f̂n − f‖2

n

)
≤ min

j=1,...,M
‖ f j − f‖2

n +
β log M

n + 1
. (2.23)

The rate of convergence (log M)/n obtained in (2.23) is optimal rate of model selection type

aggregation when the errors ξi are Gaussian.

We now discuss two important cases of Theorem 8 where the errors ξi are either Gaussian

or double exponential.
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Proposition 2. Assume that supλ∈Λ ‖ f − fλ‖n ≤ L < ∞. If the random variables ξi are i.i.d.

Gaussian N (0, σ2), σ2 > 0, then for every β ≥ (4 + 2/n)σ2 + 2L2 the aggregate f̂n satisfies

inequality (2.22).

Assume now that ξi are distributed with the double exponential density

fξ(x) =
1√
2σ2

e−
√

2|x|/σ, x ∈ R.

Aggregation under this assumption is discussed in [56] where it is recommended to modify

the shape of the aggregate in order to match the shape of the distribution of the errors.

The next proposition shows that sharp risk bounds can be obtained without modifying the

algorithm.

Proposition 3. Assume that supλ∈Λ ‖ f − fλ‖n ≤ L < ∞ and supi,λ | fλ(xi)| ≤ L̄ < ∞. Let the

random variables ξi be i.i.d. double exponential with variance σ2 > 0. Then for any β larger than

max

((
8 +

4

n

)
σ2 + 2L2, 4σ

(
1 +

1

n

)
L̄

)

the aggregate f̂n satisfies inequality (2.22).

As discussed above, assumption (A) restricts the application of Theorem 8 to models with

“n-divisible” errors. Using a construction inspired by the Skorokhod embedding, we suc-

ceed in extending the desired oracle inequality to a wider class of noise distributions. For

simplicity we assume that the errors ξi are symmetric, i.e., P(ξi > a) = P(ξi < −a) for all

a ∈ R. The argument can be adapted to the asymmetric case as well, but we do not discuss

it here.

Theorem 10. Fix some α > 0 and assume that supλ∈Λ ‖ f − fλ‖n ≤ L for a finite constant L. If the

errors ξi are symmetric and have a finite second moment E(ξ2
i ), then for any β ≥ 4(1 + 1/n)α + 2L2

we have

E
(
‖ f̂n − f‖2

n

)
≤
∫

Λ
‖ fλ − f‖2

n p(dλ) +
βK(p, π)

n + 1
+ Rn, ∀ p ∈ PΛ, (2.24)

where the residual term Rn is given by

Rn = E∗
(

sup
λ∈Λ

n

∑
i=1

4(n + 1)(ξ2
i − α)( fλ(xi)− f̄ϑ·π(xi))

2

n2β

)

and E∗ denotes expectation with respect to the outer probability P∗.

Corollary 1. Let the assumptions of Theorem 10 be satisfied and let |ξi| ≤ B almost surely where B is

a finite constant. Then the aggregate f̂n satisfies inequality (2.22) for any β ≥ 4B2(1 + 1/n) + 2L2.

Corollary 2. Let the assumptions of Theorem 10 be satisfied and suppose that E(et|ξi |κ) ≤ B for

some finite constants t > 0, κ > 0, B > 0. Then for any n ≥ e2/κ and any β ≥ 4(1 +

1/n)(2(log n)/t)1/κ + 2L2 we have

E
(
‖ f̂n − f‖2

n

)
≤
∫

Λ
‖ fλ − f‖2

n p(dλ) +
βK(p, π)

n + 1
+

16BL2(n + 1)(2 log n)2/κ

n2β t2/κ
, ∀ p ∈ PΛ.

In particular, if Λ = {1, . . . , M} and π is the uniform measure on Λ we get

E
(
‖ f̂n − f‖2

n

)
≤ min

j=1,...,M
‖ f j − f‖2

n +
β log M

n + 1
+

16BL2(n + 1)(2 log n)2/κ

n2β t2/κ
.
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Interestingly, the obtained results can be used to derive sparsity oracle inequalities. Let

φ1, . . . , φM be some functions from X to R. Consider the case where Λ ⊆ R
M and fλ =

∑j λjφj, λ = (λ1, . . . , λM). For λ ∈ R
M denote by J(λ) the set of indices j such that λj 6= 0,

and set M(λ) , Card(J(λ)). For any τ > 0, 0 < L0 ≤ ∞, define the probability densities

q0(t) =
3

2(1 + |t|)4
, ∀t ∈ R,

q(λ) =
1

C0

M

∏
j=1

τ−1 q0

(
λj/τ

)
1(‖λ‖ ≤ L0), ∀λ ∈ R

M,

where C0 = C0(τ, M, L0) is the normalizing constant and ‖λ‖ stands for the Euclidean norm

of λ ∈ R
M.

Sparsity oracle inequalities (SOI) are oracle inequalities bounding the risk in terms of the

sparsity index M(λ) or similar characteristics. The next theorem provides a general tool

to derive SOI from the “PAC-Bayesian” bound (2.22). Note that in this theorem f̂n is not

necessarily defined by (2.19). It can be any procedure satisfying (2.22).

Theorem 11. Let f̂n satisfy (2.22) with π(dλ) = q(λ) dλ and τ ≤ δL0/
√

M where 0 < L0 ≤ ∞,

0 < δ < 1. Assume that Λ contains the ball {λ ∈ R
M : ‖λ‖ ≤ L0}. Then for all λ∗ such that

‖λ∗‖ ≤ (1 − δ)L0 we have

E
(
‖ f̂n − f‖2

n

)
≤ ‖ fλ∗ − f‖2

n +
4β

n + 1 ∑
j∈J(λ∗)

log(1 + τ−1|λ∗
j |) + R(M, τ, L0, δ),

where the residual term is

R(M, τ, L0, δ) = τ2e2τ3 M5/2(δL0)
−3

M

∑
j=1

‖φj‖2
n +

2βτ3 M5/2

(n + 1)δ3L3
0

for L0 < ∞ and R(M, τ, ∞, δ) = τ2 ∑
M
j=1 ‖φj‖2

n.

We now discuss a consequence of the obtained inequality in the case where the errors are

Gaussian. Let us denote by Φ the Gram matrix associated to the family (φj)j=1,...,M, i.e.,

M × M matrix with entries Φj,j′ = n−1 ∑
n
i=1 φj(xi)φj′(xi) for every j, j′ ∈ {1, . . . , M}. We

denote by λmax(Φ) the maximal eigenvalue of Φ. In what follows, for every x > 0, we write

log+ x = (log x)+.

Corollary 3. Let f̂n be defined by (2.19) with π(dλ) = q(λ) dλ and let τ = δL0

M
√

n
with 0 < L0 < ∞,

0 < δ < 1. Let ξi be i.i.d. Gaussian N (0, σ2) with σ2 > 0, λmax(Φ) ≤ K2, ‖ f‖n ≤ L̄ and let

β ≥ (4 + 2n−1)σ2 + 2L2 with L = L̄ + L0K. Then for all λ∗ ∈ R
M such that ‖λ∗‖ ≤ (1 − δ)L0

we have

E
[
‖ f̂n − f‖2

n

]
≤ ‖ fλ∗ − f‖2

n +
4β

n + 1

[
M(λ∗)

(
1+ log+

{M
√

n

δL0

})
+∑

J(λ∗)

log+ |λ∗
j |
]

+
C

nM1/2 min(M1/2, n3/2)
,

where C is a positive constant independent of n, M and λ∗.
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and Paris 7, 2005. https://hal.ccsd.cnrs.fr/ccsd-00014097

[31] KUTOYANTS, YU. A.: Efficient Density Estimation for Ergodic Diffusion, Stat. Inference

Stoch. Process. 1 (1998), 131–155.



Section 2.4 Bibliography 39

[32] KUTOYANTS, YU. A.: Statistical Inference for Ergodic Diffusion Processes, Springer Series

in Statistics, New York, 2003.

[33] LE CAM, L. AND YANG, G. L. Asymptotics in statistics. Some basic concepts. Second edi-

tion. Springer Series in Statistics. Springer-Verlag, New York, 2000.

[34] LEUNG, G. AND BARRON, A.: Information theory and mixing least-square regressions.

IEEE Transactions on Information Theory 52 (2006), 3396–3410.

[35] LI, K. C.: Sliced inverse regression for dimension reduction. With discussion and a

rejoinder by the author. J. Amer. Statist. Assoc. 86 (1991), no. 414, 316–342.

[36] LI, K. C.: On principal hessian directions for data visualization and dimension reduc-

tion: another application of Stein’s lemma. J. Amer. Statist. Assoc., 87 (1992), 1025–1039.

[37] MILSTEIN, G. AND NUSSBAUM, M.: Diffusion approximation for nonparametric au-

toregression. Probab. Theory Related Fields, 112 (1998), no. 4, 535–543.

[38] MURPHY, S. AND VAN DER VAART, A.: On Profile Likelihood. J. Amer. Statist. Assoc. 95

(2000), 449–485.

[39] NUSSBAUM, M.: Asymptotic equivalence of density estimation and Gaussian white

noise. Ann. Statist., 24 (1996), no. 6, 2399–2430.

[40] PHAM, T. D.: Nonparametric estimation of the drift coefficient in the diffusion equa-

tion, Math. Operationsforsch. Statist., Ser. Statistics, 1 (1981), 61–73.

[41] PINSKER, M. S.: Optimal filtration of square-integrable signals in Gaussian noise. Prob-

lems Inform. Transmission 16 (1980), 52–68.

[42] REISS, M.: Asymptotic equivalence for nonparametric regression with multivariate and

random design, submitted.

[43] REVUZ, D. AND YOR, M.: Continuous Martingales and Brownian Motion. Third edition.

Berlin: Springer-Verlag, 1999.

[44] RIGOLLET, PH.: Adaptive density estimation using the blockwise Stein method.

Bernoulli 12 (2006), 351–370.

[45] ROGERS, L. C. G., WILLIAMS, D.: Diffusions, Markov processes, and martingales. Vol. 2.
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