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Résumé

Cette thèse présente principalement des résultats sur la combinatoire des droites et
segments qui apparaissent naturellement dans l’étude des problèmes de visibilité en trois
dimensions. Nous exposons en premier lieu des résultats sur la taille de la silhouette d’un
objet vu d’un point, c’est à dire sur la complexite de l’ensemble des droites ou segments
tangents à l’objet et passant par le point. Nous présentons en particulier les premières
bornes théoriques non triviales pour des polyèdres non-convexes, à savoir que, sous des
hypothèses raisonnables, la complexité moyenne de la silhouette est au plus la racine
carrée de la complexité du polyèdre, phénomène largement observé en infographie. Nous
présentons aussi des bornes, en moyenne et dans le cas le pire, sur le nombre de droites
et segments tangents à quatre objets dans une scène composée d’objets polyédriques ou
sphériques. Ces bornes donnent en particulier l’espoir que la complexité des structures de
données globales comme le complexe de visibilité ne soit pas nécessairement prohibitive.
Les bornes sur les polytopes sont également les premières à tirer parti des propriétés struc-
turelles des scènes composées de triangles organisés en polytopes de facon réaliste, c’est à
dire non nécessairement disjoints. Ces bornes induisent enfin les premières bornes non tri-
viales sur la complexité des ombres induites par des sources lumineuses non ponctuelles.
Les résultats presentés dans cette thèse améliorent significativement l’état de l’art sur
les propriétés combinatoires des structures de visibilité en trois dimensions et devraient
favoriser les développements algorithmiques futurs pour ces problèmes.

Abstract

This thesis mainly presents results on combinatorial problems on lines and segments
that appear naturally in the study of visibility in three dimensions. We first show results
on the size of the silhouette of an object seen from a viewpoint, that is the complexity
of the set of lines tangent to the object that go through the point. In particular, we give
the first non-trivial theoretical bounds for non-convex polyhedra, that is that under some
reasonable hypotheses, the average complexity of the silhouette is at most the square root
of the complexity of the polyhedron, a phenomenon widely observed in graphics. We also
provide bounds, on average and in the worst case, on the number of lines tangent to four
objects where the objects are either polytopes or balls. These bounds give us hope that
the size of global structures like the visibility complex might not be prohibitive. The
bounds on the polytopes are also the first that take advantage of the structure of scenes
where triangles are organized in realistic polytopes, that is polytopes that need not be
disjoint. These bounds eventually induce the first non-trivial bounds on the complexity of
the umbras created by area light sources. The results presented in this thesis significantly
enhance the state of the art on the combinatorial properties of visibility structures in three
dimensions and should help the future algorithmic developments for these problems.
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Chapitre 1

Introduction

La visibilité est un sujet très important en informatique. Elle joue un rôle dans des
thématiques très diverses. F. Durand a écrit un bon panorama des différentes applica-
tions et techniques liées à la visibilité dans [54]. Je ne citerai ici que quelques-uns de ces
problèmes.

En informatique graphique, le premier problème qui se pose est de déterminer les
objets qui sont visibles depuis un point donné, ou de façon duale de supprimer les objets
(ou parties d’objets) qui ne sont pas visibles. C’est un domaine extrêmement vaste qui a
donné lieu à de très nombreux travaux. Il est à noter que c’est loin d’être le seul problème
de visibilité rencontré en infographie. Une fois déterminé quel objet est vu, on a besoin
de savoir de quelle couleur il est vu, c’est-à-dire en particulier s’il est éclairé ou à l’ombre.
Calculer les zones d’ombre est un problème de visibilité : il s’agit de déterminer les régions
qui ne voient pas les sources lumineuses. Pour obtenir un rendu réaliste, une approche est
de simuler l’illumination globale de la scène, c’est-à-dire de calculer les échanges de lumière
entre tous les éléments de surfaces, qui sont considérés à la fois comme des capteurs et des
émetteurs de lumière. L’étape la plus complexe de ce type de calcul consiste à déterminer
le facteur de forme de deux éléments de surface, une mesure de leur visibilité relative
définie comme la proportion de lumière émise par l’un qui est reçue par l’autre ; à ce jour,
la seule méthode effective pour approcher le facteur de forme consiste à échantillonner les
éléments de surface par des nuages de points et à étudier les interactions lumineuses entre
ces points.

La reconnaissance de forme est un autre problème lié à la visibilité. Il s’agit par exemple
de reconnaître dans une image 2D la présence d’un objet dont on connaît un modèle 3D.
Pour cela on calcule généralement d’abord l’ensemble des vues 2D combinatoires possibles
de l’objet avant d’essayer de reconnaître certaines de ces vues dans l’image.

La visibilité apparaît aussi en planification de mouvement. Le plus court chemin d’un
point à un autre dans le plan entre des obstacles est constitué de segments de visibilité
tangentielle entre les objets, donc déterminer ce plus court chemin peut se ramener à un
problème de graphe discret après avoir calculé la visibilité entre les objets.

On distingue deux approches fondamentales aux problèmes de visibilité : le lancer de
rayon et l’approche globale. Les deux sont présentées ci-dessous.

3



4 Chapitre 1. Introduction

Lancer de rayon

Une des techniques les plus utilisées en visibilité est le lancer de rayon. Il s’agit du
problème de visibilité le plus naturel : quel objet voit-on dans cette direction ? Ou plus
géométriquement : étant donnée une demi-droite, quel est l’objet coupé par cette demi-
droite le plus proche de son extrémité ?

Cette requête basique permet en fait de résoudre de façon approchée la plupart des
problèmes plus complexes de visibilité grâce à des échantillonnages. Pour calculer la vue
d’un point, on échantillonne l’ensemble des directions et envoie un rayon dans chacune
des directions sélectionnées. Pour calculer le facteur de forme entre deux éléments de
surface, on prend un échantillon de points sur un des éléments et un échantillon de direc-
tions, on envoie des rayons depuis ces points dans ces directions, et on compte combien
sont arrivés sur l’autre élément. Avec de bons échantillons, on obtient ainsi des réponses
approximatives relativement satisfaisantes à la plupart des problèmes de visibilité.

Grâce à son utilité évidente, cette requête à fait l’objet de nombreux travaux visant
à réduire le temps de réponse. Chang, dans [34], donne une liste des techniques les plus
populaires utilisées pour accélérer le lancer de rayon. Une grande catégorie d’approches
consiste à subdiviser l’espace afin que lorsque le rayon se situe dans une région déterminée
de l’espace on n’ait besoin de tester son intersection qu’avec les rares objets qui appar-
tiennent à cette région. Une autre approxime les objets par des objets beaucoup plus
simples afin de simplifier les tests d’intersection et de n’avoir besoin d’étudier les objets
dans toute leur complexité que lorsque c’est vraiment nécessaire.

La plupart des techniques développées sont des heuristiques dont il n’est pas prouvé
que la complexité soit intéressante, mais qui en pratique sont extrêmement rapides.
D’autres techniques ont été étudiées pour lesquelles les auteurs ont su prouver des bornes
sur le temps maximal que peut prendre une requête, mais ces techniques n’ont générale-
ment pas été implantées.

Approche globale

L’approche consistant à lancer un grand nombre de rayons pour approximer les résul-
tats de visibilité a un certain nombre d’inconvénients. En particulier, dès que l’on modifie
le moindre élément de la scène, il faut tout recalculer. Il est difficile d’exploiter la cohé-
rence spatiale (des rayons proches ont des chances de voir la même chose) et temporelle
(si les objets bougent peu on a des chances de continuer à voir la même chose) avec le
lancer de rayon.

À l’opposé du lancer de rayon, une approche globale a été étudiée. Elle consiste à
calculer toutes les informations de visibilité d’un certain type et les stocker dans une
structure de données. Cette structure est ensuite utilisée pour répondre efficacement aux
diverses requêtes de visibilité. Elle peut aussi être mise à jour lorsque la scène est modifiée.

Selon le problème que l’on cherche à résoudre, les informations de visibilité stockées
dans la structure ne sont pas les mêmes. Une des structures les plus simples est le graphe
de visibilité, qui est un graphe dont les nœuds sont les objets de la scène et les arêtes relient
les objets qui se voient. Une structure beaucoup plus grosse est le graphe d’aspect qui
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partitionne l’espace en composantes connexes de points qui ont la même vue topologique.
Entre les deux on trouve le complexe de visibilité qui partitionne l’ensemble des rayons en
composantes connexes de rayons qui tombent sur le même objet, et sa version simplifiée,
le squelette de visibilité, dont le plongement dans l’espace ambiant correspond au graphe
d’aspect. Une étude plus détaillée du sujet peut être trouvée dans trois thèses récentes :
[53], [65] et [72].

Cette approche globale a une autre particularité que son caractère global : elle peut
être exacte. Elle ne nécessite pas d’approximer la vue par une grille de pixels. Elle permet
donc de produire des images indépendantes de la résolution et dont la validité est ga-
rantie. Ce caractère exact pourrait rendre cette méthode très utile en particulier dans la
vérification des résultats obtenus par les heuristiques et approximations actuellement uti-
lisées en pratique. Le squelette de visibilité a aussi été appliqué avec succès au calcul des
limites d’ombres par Duguet et al. [52], un problème sur lequel les techniques classiques
de raffinement de maillage ont montré leurs limitations.

L’étude de l’approche globale a cependant été freinée par l’impression que les structures
mises en jeu sont généralement trop grosses. En effet, les premières bornes théoriques [56]
découvertes sur sa taille concernaient des scènes artificiellement pathologiques. Une pre-
mière implantation de ces techniques [57] a permis de commencer à regarder la taille de
ces structures sur des scènes réelles, mais les limitations algorithmiques de cette implan-
tation n’ont laissé étudier que des scènes de petite taille, donc peu représentatives de ce
qui est utilisé en pratique.

Ainsi, afin de savoir dans quelles conditions une approche globale peut être raisonnable,
il est important de mieux comprendre la taille des structures impliquées et de développer
des algorithmes efficaces. Cette thèse porte principalement sur l’étude de la taille de telles
structures.

Les objets géométriques centraux de cette étude sont les droites libres (celles qui ne
coupent aucun obstacle) et surtout les segments libres maximaux, c’est-à-dire des segments
(éventuellement infinis) qui ne coupent aucun obstacle mais s’appuient sur des obstacles
(ou l’infini) à leurs deux extrémités. Les droites qui jouent le rôle le plus important sont
les droites tangentes à des objets de la scène. En effet, elles marquent la limite entre les
droites qui coupent un objet et celles qui ne le coupent pas. En 2D, on étudie ainsi les
droites tangentes à un objet et surtout les droites tangentes à deux objets, qui en général
sont en nombre fini. De la même façon, en 3D, on étudie aussi particulièrement les droites
que leurs conditions de tangence définissent comme isolées.

L’étude des structures globales de visibilité se ramène pour l’essentiel à une étude
des propriétés combinatoires des droites libres et segments libres maximaux, ce qui est le
thème principal de cette thèse.

Organisation du document

Le chapitre 2 présente un résumé des différents chapitres de cette thèse. Je précise de
plus à la fin de chaque section les publications dérivées de ces travaux ainsi que ma parti-
cipation et les personnes avec qui j’ai eu la chance de collaborer. Les chapitres reprennent
dans leur majorité les articles essentiellement tels qu’ils ont été publiés, avec parfois à la



6 Chapitre 1. Introduction

fin une section « Bonus » qui présente un résultat supplémentaire non publié.
Dans des scènes constituées de polyèdres, un grand nombre de complexités ne dé-

pendent pas directement de la taille des objets considérés, mais plus de la complexité de
leur silhouette. Il est communément admis que la silhouette d’un polyèdre à n arêtes a
généralement de l’ordre de

√
n arêtes. Après avoir présenté des exemples de polytopes

n’ayant pas une silhouette de faible complexité, je donne dans le chapitre 3 des conditions
sous lesquelles on peut garantir que toutes les silhouettes d’un polyèdre sont de petite
taille. Je prouve ensuite dans le chapitre 4 que, sous des hypothèses raisonnables, la com-
plexité moyenne de la silhouette d’un polyèdre qui approxime une surface est O(

√
n),

pour une direction d’observation aléatoire. À l’exception d’un théorème de Kettner et
Welzl [77] qui ne s’applique qu’à des approximations convexes d’une sphère, il s’agit des
premières bornes théoriques sur la complexité des silhouettes, alors que la propriété de
faible taille des silhouettes est utilisée depuis très longtemps.

L’essentiel de mes travaux porte sur l’approche globale. Dans la partie III (chapitres 5
à 8), j’étudie cette approche dans des scènes constituées de polytopes.

Je regarde d’abord différentes définitions possibles du complexe de visibilité dans le
chapitre 5. En effet, les précédentes études sur le sujet n’ont pas donné de définition
unique de cette structure, et un certain nombre des définitions utilisées posent de sérieux
problèmes.

J’ai particulièrement travaillé sur la taille des structures de visibilité, et pour cela sur
le dénombrement des quadritangentes, c’est-à-dire des droites tangentes à quatre objets.
En effet, des structures comme le complexe de visibilité s’appuient sur une classification
des droites en fonction de leurs relations de tangence aux objets de la scène. L’espace des
droites est de dimension quatre et la propriété d’être tangent à un objet est généralement
de codimension 1. Donc de façon générale les droites définies de façon unique (ou au moins
isolées) par leurs relations de tangence sont les quadritangentes, ce qui fait de ces droites
une des clefs de l’étude des structures globales de visibilité.

Je me suis ainsi d’abord intéressé au nombre maximal de tangentes à quatre objets
dans des scènes constituées de k polytopes avec n arêtes au total. Le chapitre 6 montre
que ce nombre est Θ(n2k2) dans le cas le pire (et explique comment les construire), ce qui
constitue essentiellement la première borne tirant parti de la structure de scènes réalistes
(une borne similaire de O(n2k2) avait déjà été prouvée précédemment [59], mais dans un
cadre plus restrictif). J’étudie ensuite dans le chapitre 7 les applications de ces résultats
à la complexité des ombres dans des scènes constituées de polytopes disjoints.

Pour implanter les algorithmes de construction des structures de visibilité, on a besoin
de prédicats fiables et efficaces permettant de manipuler les droites tangentes à quatre
polytopes, c’est-à-dire en général les droites définies comme transversales à quatre seg-
ments. Le chapitre 8 présente en particulier un prédicat permettant de tester l’existence
d’une droite transversale à quatre segments donnés, et le degré maximal des polynômes
impliqués dans cette implantation est minimal.

J’ai aussi étudié dans la partie IV les problèmes de visibilité dans des scènes constituées
de sphères, un cas particulier d’objet lisse.

Je dénombre en particulier les tangentes à quatre objets dans des scènes constituées
de n boules, aussi bien dans le cas le pire que dans le cadre d’objets placés aléatoirement.
Le chapitre 9 présente un exemple avec Ω(n3) droites libres tangentes à des quadruplets
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de boules, et un autre avec Ω(n4) segments libres maximaux tangents à des quadruplets
de boules unité. Le chapitre 10 montre que dans une scène avec des sphères réparties
uniformément, chaque objet n’interagit qu’avec un nombre borné d’autres objets.

Le paragraphe précédent concerne le calcul d’informations de visibilité pour une scène
complète. Dans certains cas, on veut simplement savoir si deux boules se voient. Il est
très coûteux de déterminer la réponse exacte à cette question, et on présente dans le
chapitre 11 un algorithme permettant de dire plus rapidement si deux boules se voient
« à ε près ». Cet algorithme est dérivé du résultat suivant sur les couvertures de disques :
si des disques unité couvrent un disque unité dans le plan, en n’en gardant qu’environ
ε−1/2 on peut continuer à couvrir tout le disque sauf une surface d’aire inférieure à ε.

Je présente pour terminer deux travaux indépendants. Avant de commencer ma thèse
et de me concentrer sur l’approche globale, je me suis intéressé au lancer de rayon et en
particulier à une technique très classique pour l’accélérer : les octrees. En m’appuyant sur
une mesure de la complexité moyenne de lancer de rayon dans une scène pour un octree
donné, présentée dans [13], j’ai développé un algorithme qui construit pour une scène
donnée un octree quasiment optimal (chapitre 12). J’inclus ce résultat ici car il forme un
contraste intéressant avec l’approche globale.

Enfin, que serait une thèse de géométrie algorithmique sans diagramme de Voronoï ?
J’ai donc étudié le diagramme de Voronoï du polygone le plus éloigné dans le plan, et le
chapitre 13 montre qu’il a une taille linéaire et explique comment le calculer en temps
presque linéaire. Surprenamment, ce diagramme n’avait pas été étudié jusqu’à maintenant.
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Chapitre 2

Résumé des contributions

2.1 Silhouettes

La silhouette d’un polyèdre associée à un point d’observation donné est, grossièrement,
l’ensemble des arêtes situées entre une face qui fait face à l’observateur et une qui lui
tourne le dos. Les silhouettes apparaissent dans divers problèmes en infographie comme la
suppression des surfaces cachées et les calculs d’ombres (voir [51, 52, 59]) et les algorithmes
permettant de les calculer ont été largement étudiés ([74] en présente un survol). Elles
sont importantes en reconnaissance de formes et constituent une des indications visuelles
les plus significatives de la forme d’un objet.

Il est communément admis que la silhouette d’un polyèdre a généralement une com-
plexité bien moindre que celle du polyèdre entier. Sander et al. [94] par exemple énoncent
la propriété souvent répétée que la silhouette d’un maillage a souvent une taille Θ(

√
n)

où n est le nombre de faces du maillage. Une étude expérimentale de Kettner et Welzl
[77] confirme ceci pour un ensemble d’objets réalistes. Ces expériences ont été étendues
par McGuire [81] à un ensemble plus vaste d’objets plus gros pour lesquels il a observé en
moyenne des silhouettes de taille n0.8.

Il y a peu de résultats théoriques permettant de justifier ces observations. Kettner et
Welzl [77] prouvent qu’un polyèdre convexe qui approxime une sphère avec une distance
de Hausdorff ε a Θ(1/ε) arêtes et qu’une projection orthographique aléatoire d’un tel po-
lytope est un polygone à Θ(1/

√
ε) côtés, les arêtes sur le bord du polygone correspondant

à celles sur la silhouette du polytope.
Les techniques utilisées ici s’appuient toutes sur la longueur de la silhouette (dans une

projection orthographique, ce qui correspond à un observateur à l’infini) pour déduire des
bornes sur le nombre d’arêtes qui composent cette silhouette.

On appelle épais un polytope qui est inclus dans une boule et en contient une autre
telles que le rapport des rayons est borné. On dit qu’un polytope a des arêtes comparables
si le rapport de longueur entre la plus grande et la plus courte est borné. Nous montrons
dans le chapitre 3 la propriété suivante :

Théorème 1. Un polytope épais, à faces triangulaires, à arêtes comparables, et de dia-
mètre 1 a des arêtes de longueur Ω(1/

√
n).

9
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Fig. 2.1 – Une silhouette de complexité linéaire.

Un polytope épais de diamètre 1 a forcément une silhouette de longueur Θ(1). Si chaque
arête contribuait à la longueur de la projection une fraction constante de sa longueur, on
aurait une borne de O(

√
n) sur le nombre d’arêtes sur la silhouette. Ce n’est pas toujours

le cas comme le montre la figure 2.1 où un nombre linéaire d’arêtes sont sur la silhouette
mais presque alignées avec la direction d’observation et donc ne contribuent presque pas
à la longueur de la silhouette.

Si on suppose de plus que deux arêtes adjacentes font entre elles un angle minimal, la
borne O(

√
n) devient vraie. Alternativement, si on suppose que les directions des droites

supportant les arêtes sont uniformément réparties, on peut prouver une borne de O(n2/3)
sur le nombre d’arêtes sur la silhouette.

On voit ici qu’il est assez difficile de prouver des bornes intéressantes sur la complexité
de la silhouette pour un observateur particulièrement mal placé. En revanche, il est beau-
coup plus simple d’étudier la complexité moyenne de la silhouette d’un polyèdre donné
pour un observateur situé à un endroit aléatoire à l’infini, ou de façon équivalente une
projection orthographique dans une direction aléatoire. En effet, on remarque rapidement
qu’une arête e est sur la silhouette d’un polyèdre pour un ensemble de directions de mesure
proportionnelle à αe l’angle diédral externe entre les faces adjacentes à e (qui vaut 0 quand
les faces se prolongent et π quand e correspond à un pli maximal). Il suffit alors d’étudier
la somme de ces angles pour connaître la taille moyenne de la silhouette d’un polyèdre.
On remarque de plus que la longueur moyenne que contribue une arête à la silhouette
est proportionnelle à leαe où le est la longueur de l’arête. En d’autres termes, lorsqu’elle
apparaît sur la silhouette, une arête contribue en moyenne une fraction constante de sa
longueur à la longueur de la silhouette. Connaître la longueur des arêtes permet donc de
relier très simplement le nombre d’arêtes sur la silhouette à la longueur de la silhouette,
et les hypothèses du théorème 1 suffisent à obtenir une borne de O(

√
n) sur la complexité

de la silhouette.

Les résultats précédents, présentés dans le chapitre 3, se concentrent sur des poly-
èdres convexes. La convexité est cruciale et sans elle il est facile d’obtenir des silhouettes
de grande taille. Afin de pouvoir prouver des bornes sur la silhouette de polyèdres non
convexes, on a besoin d’une hypothèse forte remplaçant la convexité.

On présente dans le chapitre 4 des résultats sur des polyèdres qui approximent une
surface donnée. Intuitivement, si un polyèdre approxime bien une surface lisse, deux faces
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adjacentes font un angle O(1/
√

n) entre elles. D’autre part, si un polyèdre approxime une
surface non lisse, deux faces n’ont un angle important entre elles que si la surface n’est
pas lisse à cet endroit, et un élément de la silhouette du polyèdre peut être associé à un
élément de silhouette de la surface approximée.

Le résultat précis est le suivant. Soit P un polyèdre avec n faces triangulaires épaisses
qui est homéomorphe à une variété S de dimension 2 compacte sans bord et dont la
silhouette a une longueur moyenne bornée silh(S). On appelle f : P → S l’homéomor-
phisme. On suppose que toutes les arêtes de P mesurent au moins α√

n
et que pour tout

point x de P la distance entre x et f(x) est au plus γ
n

où α et γ sont deux constantes posi-

tives. Alors pour tout point x de P la distance entre x et f(x) est au plus β h(x)√
n

où h(x) est
la plus petite des hauteurs du triangle de P qui contient x et β est une constante positive,
et la complexité moyenne de la silhouette de P est majorée par

(

15 β + 24
α

silh(S)
) √

n.
Je généralise ensuite ce résultat à des surfaces à bord et à d’autres distributions du point
de vue.

Ce résultat est important car il s’agit, pour des polyèdres non convexes de taille n, de la
première confirmation théorique de la propriété communément admise que les silhouettes
sont souvent de taille

√
n.

Le chapitre 3 présente mon travail de DEA, publié à la Canadian Conference on
Computational Geometry, rédigé en collaboration avec H. Alt et X. Goaoc et inclus ici
à cause de son lien fort avec le chapitre 4. Le chapitre 4 a été publié au Symposium on
Computational Geometry [63] et soumis à Discrete and Computational Geometry. J’en
suis l’auteur principal et l’ai rédigé en collaboration avec S. Lazard.

2.2 Tangentes à des polytopes

Une structure intéressante pour la visibilité est le complexe de visibilité [56, 90] qui
encode les relations de visibilité en partitionnant l’ensemble des segments libres maximaux
en fonction des objets qu’ils touchent. Dans le chapitre 5, on s’intéresse à la définition
précise de cette structure. Il s’avère en effet que les définitions proposées précédemment
sont incompatibles entre elles et posent individuellement certains problèmes.

La taille de cette partition est fortement liée au nombre de segments libres maximaux
tangents à quatre objets de la scène. Pour une scène de n triangles, il peut y avoir Θ(n4)
telles droites dans le cas le pire [56], même si ces triangles forment un terrain (voir [39]
ou la figure 2.2). La table 2.1 résume les bornes connues sur le sujet.

Le complexe est donc potentiellement énorme, ce qui a beaucoup freiné son applica-
tion en pratique. Cependant, certains indices, à la fois théoriques et pratiques, semblent
indiquer que cette estimation de taille est trop pessimiste. Les bornes inférieures sont spé-
cialement conçues pour l’occasion et peu réalistes en pratique. Pour des scènes réalistes,
Durand et al. [57] observent une croissance quadratique de la taille du complexe, mais
pour des scènes de petite taille. Pour des scènes aléatoires, Devillers et al. [46] montrent
que la taille du complexe est bien plus petite : pour des boules unité aléatoirement dis-
tribuées l’espérance de la taille est linéaire, et pour des polygones ou polytopes épais
de taille comparable elle est au plus quadratique. De plus, en 2D, même si la taille du
complexe peut être quadratique dans le cas le pire, des résultats expérimentaux suggèrent
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Cas le pire En moyenne

droites libres pour un polyèdre Θ(n4) (trivial)

droites libres au dessus d’un terrain polyédrique O(n32c
√

log n) [67, 89]
droites libres parmi des polytopes homothètes disjoints Ω(n3) [41]

droites libres parmi des boules unité Ω(n2) [46], O(n3+ǫ) [5] Θ(n) [46]
segments libres max. au dessus d’un terrain polyédrique Θ(n4) [39]

segments libres max. isolés parmi
k polyèdres convexes disjoints géné-
riques

Θ(n2k2) [59, 26]

segments libres max. parmi des boules unité Ω(n2) [46], O(n4) Θ(n) [46]

Tab. 2.1 – Bornes publiées sur la complexité de l’ensemble des droites libres ou des
segments libres maximaux parmi des objets de complexité totale n. Les complexités en
moyenne concernent une distribution uniforme des centres des sphères.

Fig. 2.2 – Un terrain de taille n avec Ω(n4) segments libres maximaux tangents en quatre
points.

fortement que la taille du complexe d’une scène consistant en des triangles éparpillés est
linéaire [36].

Si ces résultats sont encourageants, il ne faut pas oublier que la plupart des scènes
ne sont pas aléatoires. En fait, les scènes sont en général très structurées, et on peut
en tirer parti. Une scène est souvent représentée par de nombreux triangles qui forment
un nombre bien moins important de morceaux convexes. En particulier, si la scène est
constituée de k polytopes disjoints avec un total de n arêtes, sous une hypothèse forte
de position générique, le nombre maximal de droites tangentes à quatre polytopes est
O(n2k2). Cela se déduit directement de la borne prouvée dans [59] sur le nombre de
changements combinatoires de la carte des silhouettes vue depuis un point mobile sur une
droite.

Dans le chapitre 6, on présente une généralisation de ce résultat à des polytopes
qui peuvent se couper et être dans des positions dégénérées, pour lesquels la borne de
O(n2k2) reste valide ; nous montrons aussi une borne de Ω(n2k2) dans le cas le pire. Cette
généralisation est très différente du cas 2D où deux polygones disjoints n’ont que quatre
bitangentes alors que deux polygones qui se coupent peuvent en avoir un nombre linéaire.
On généralise aussi ces résultats en montrant que le nombre de composantes connexes
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de segments libres maximaux tangents à au moins quatre polytopes est O(n2k2), et que
cela marche aussi pour des droites (non nécessairement libres). On majore encore par
O(n2k2) le nombre d’ensembles minimaux de sommets et arêtes ouvertes qui admettent
une transversale commune isolée tangente aux polytopes.

L’idée principale de la preuve est de considérer une arête particulière et de balayer
l’espace avec les plans qui contiennent cette arête. Dans ces plans, les polytopes sont des
polygones, et on cherche les positions du plan telles que trois polygones admettent une
tangente commune.

On donne enfin un algorithme qui utilise la même approche de balayage que la tech-
nique d’énumération pour construire ces tangentes en temps O(n2k2 log n). Obtenir un
algorithme de cette complexité n’est pas trivial, car le balayage expliqué ci-dessus fait
apparaître toutes les droites tangentes à quatre polytopes sans prendre en compte les
occlusions possibles et il faut donc être capable d’éliminer les tangentes obstruées sans
coût supplémentaire.

Ces résultats, obtenus en collaboration avec H. Brönnimann, O. Devillers, V. Dujmo-
vić, H. Everett, X. Goaoc, S. Lazard, H.-S. Na et S. Whitesides, ont été présentés à la Ca-
nadian Conference on Computational Geometry [26] et au Symposium on Computational
Geometry [27]. La version complète est publiée dans le SIAM Journal on Computing [28].
J’ai contribué aux versions préliminaires, en particulier pour la borne inférieure.

Le travail sur la définition du complexe, présenté dans le chapitre 5, est plus personnel.

2.3 Ombres de polytopes

Les ombres jouent un rôle central dans la perception humaine [80, 106]. Malheureuse-
ment, calculer des ombres réalistes est un problème très difficile, en particulier quand les
sources de lumière ne sont pas ponctuelles. Une variété d’approches a été considérée pour
rendre les ombres (voir par exemple [54, 110] pour un panorama) et plusieurs techniques
utilisent fortement les possibilités des cartes graphiques modernes (voir [68] pour une vue
d’ensemble).

Un point est à l’ombre s’il ne voit aucune partie d’aucune source lumineuse. Un point
est à la lumière s’il voit entièrement toutes les sources lumineuses. Les autres points sont
dans la pénombre. La limite entre la pénombre et la lumière est raisonnablement bien
comprise, comme on le verra dans la section 7.3. En revanche, on sait moins de choses sur
la limite de l’ombre. Il existe néanmoins une littérature conséquente sur la construction
de ces contours d’ombres (voir par exemple [49, 57, 55, 56, 70, 87, 101, 104]).

Dans le chapitre 7, on prouve diverses bornes résumées dans les tableaux 2.2 et 2.3
sur la complexité de l’ombre et de la pénombre projetées sur un plan par un segment
ou des polytopes lumineux en présence d’obstacles en forme de polytopes. On montre en
particulier qu’un segment lumineux, en présence de deux obstacles triangulaires, peut de
façon surprenante générer quatre composantes connexes d’ombre. On montre aussi des
bornes de Ω(nk2 + k4) sur le nombre maximal de composantes connexes de l’ombre et
O(nk3) sur la complexité de cette ombre dans une scène avec un segment lumineux et k
polytopes disjoints comme obstacles. On prouve enfin que l’ombre portée sur un plan par
un polytope lumineux avec k polytopes obstacles peut avoir Ω(n2k3 + nk5) composantes



14 Chapitre 2. Résumé des contributions

Type de scène Bornes inférieures Bornes supérieures

Source lumineuse : segment
2 triangles 4 O(1)

2 polytopes épais Ω(n) O(n)
k polytopes Ω(nk2 + k4) O(nk3)

Source lumineuse : polytope(s)
k polytopes Ω(n2k3 + nk5) O(n3k3)

Tab. 2.2 – Bornes inférieures sur le nombre de composantes connexes et bornes supérieures
sur la complexité de l’ombre portée sur un plan par k polytopes de complexité totale O(n).
Dans le cas des sources lumineuses polygonales, la borne inférieure utilise un unique
polytope lumineux, de complexité O(n), et la borne supérieure s’applique quelle que soit
la proportion des k polytopes qui sont lumineux.

Sources lumineuses Borne inférieure Borne supérieure

O(1) polytopes de taille m Ω(nα(k) + km + k2) O(nα(k) + kmα(k) + k2)
O(k) polytopes de taille O(n) Ω(nk + k4) O(nkα(k2) + k4)

Tab. 2.3 – Bornes sur la complexité de l’union de l’ombre et de la pénombre portées sur
un plan par un ensemble de k polytopes disjoints de complexité totale n dont certains
sont lumineux.

connexes et a une complexité O(n3k3). Il s’agit des premiers résultats non triviaux sur la
complexité des ombres dans des scènes de polytopes.

On voit alors que l’ombre, qui est délimitée par des arcs de conique, est intrinsèquement
beaucoup plus complexe que la limite entre la lumière et la pénombre qui est bornée par
des segments et dont on prouve que la complexité est Ω(nk + k4) (dans le cas le pire)
et O(nkα(k2) + k4) où α(k) désigne l’inverse de la fonction d’Ackermann. De plus, s’il
n’y a qu’un nombre borné de sources lumineuses de complexité m, la complexité est
Ω(nα(k) + km + k2) (dans le cas le pire) et O(nα(k) + kmα(k) + k2).

Ce travail a été réalisé en collaboration avec J. Demouth, O. Devillers, H. Everett,
S. Lazard et R. Seidel, présenté au Symposium on Computational Geometry [45] et sou-
mis à Computational Geometry: Theory and Applications. Ma contribution porte sur les
résultats de bornes inférieures et en particulier les théorèmes 60, 61 et 62.

2.4 Prédicats sur les tangentes à des polytopes

Comme tous les algorithmes géométriques, les calculs de visibilité s’appuient sur des
tests géométriques de base impliquant un petit nombre d’objets. La réponse d’un prédicat
est discrète, il s’agit typiquement d’un signe +/− /0 qui peut être interprété par quelque
chose comme dedans / dehors / sur le bord, ou plus haut / moins haut / à la même
hauteur... Pour passer de la formulation géométrique d’un prédicat (un point est-il à
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l’intérieur d’un objet ?) à une implantation, il s’agit en général de trouver un ou plusieurs
polynômes en les paramètres qui décrivent les objets, et dont le signe (ou une combinaison
des signes) donne la réponse à la question géométrique.

Pour un problème géométrique donné, déterminer ce qu’est une bonne implantation
est un problème difficile. Entre plusieurs formulations polynomiales, celle dont le degré
maximal des polynômes est le plus petit est souvent préférée car le degré d’un polynôme
est étroitement lié à la précision nécessaire pour calculer exactement le signe.

Pour les problèmes de visibilité étudiés ici, on a besoin de prédicats déterminant si
quatre arêtes admettent une transversale commune, ainsi que de prédicats permettant de
traiter de telles droites en vérifiant si elles coupent un triangle donné où en les triant selon
leur ordre d’apparition dans le balayage d’un plan autour d’une arête.

De tels prédicats ont déjà été étudiés dans [60]. On présente dans le chapitre 8 des
polynômes de degré beaucoup moins élevé. En particulier, si les arêtes sont données par les
coordonnées cartésiennes de leurs deux extrémités, on détermine leur nombre de tangentes
communes avec des polynômes de degré au plus 12 (contre 36 dans [60]) et on compare
deux telles droites dans l’ordre de balayage autour d’une arête avec des polynômes de
degré au plus 36 (contre 144).

Quand le polynôme de plus haut degré impliqué dans un prédicat est irréductible,
surtout si on peut vérifier que son annulation a un sens géométrique essentiel pour le
prédicat, on peut espérer avoir atteint une sorte d’optimalité. C’est effectivement le cas
pour le polynôme de degré 12 mentionné ci-dessus, mais vraisemblablement pas pour celui
de degré 36 dont le plus gros facteur irréductible semble être seulement de degré 24.

Ce travail est réalisé en collaboration avec O. Devillers, S. Lazard et S. Petitjean.

2.5 Tangentes à des sphères

On s’est intéressé dans les parties précédentes aux scènes dont les objets sont des
polytopes. On étudie dans la partie IV les scènes dont les objets sont des sphères.

Dans le chapitre 9, je donne deux bornes inférieures : une borne de Ω(n3) sur la
complexité de l’espace des droites libres dans une scène de n boules (dont le rapport des
rayons n’est pas borné), et une borne de Ω(n4) sur la complexité de l’espace des segments
libres maximaux dans une scène de boules unité. Le seul résultat non trivial précédemment
connu sur le sujet est dû à Agarwal et al. [4] qui ont montré que la complexité maximale
de l’espace des droites libres dans une scène de sphères unité est O(n3+ε) pour tout ε > 0.
Un résumé des résultats existants est donné dans le tableau 2.4.

Droites libres Segments libres maximaux

Boules unité
Ω(n2) trivial Ω(n4) théorème 89

O(n3+ε) [4] O(n4) trivial

Boules quelconques
Ω(n3) théorème 84 Ω(n4) théorème 89
O(n4) trivial O(n4) trivial

Tab. 2.4 – Complexités connues sur les espaces libres.

Des scènes formées de boules peuvent donc avoir un complexe de visibilité de très
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Fig. 2.3 – Une famille couvrante minimale de grande taille.

grande taille. Cependant, les scènes présentées sont très particulières et peu représentatives
de ce qui se passe en pratique. Dans [46], Devillers et al. étudient une scène constituée de
boules unité uniformément distribuées dans un univers en forme de boule en dimension 3
et montrent que dans ce cas le nombre moyen de droites tangentes à quatre de ces sphères
est linéaire en le nombre de sphères.

Dans le chapitre 10, on généralise ce résultat pour des distributions de Poisson. On
montre plus précisément que dans un univers de dimension quelconque avec des sphères
uniformément distribuées, une sphère ne voit en moyenne qu’un nombre borné d’autres
sphères. La borne est assez forte pour montrer aussi qu’une boule ne voit qu’un nombre
borné de triplets d’autres boules, et donc ne participe qu’à un nombre borné de quadri-
tangentes.

Le travail du chapitre 9 sur les bornes inférieures est personnel. Celui du chapitre 10
sur les scènes uniformes a été réalisé en collaboration avec H. Alt.

2.6 Couverture approximative de boules

On dit qu’une famille F d’ensembles couvre un ensemble U si U est inclus dans l’union
des éléments de F. Dans un cadre géométrique, U et les éléments de F sont des sous-
ensembles d’un espace géométrique, par exemples des points, hyperplans, boules dans Rd.
De nombreux problèmes géométriques, en particulier en visibilité, se ramènent à décider
si une famille donnée couvre un objet. Par exemple, à quelques détails près (l’ordre dans
lequel une droite coupe les objets), deux objets se voient si les droites passant par ces
deux objets ne sont pas couvertes par les droites intersectant les obstacles.

Dire qu’une famille F couvre U revient à dire que l’intersection de U avec les complé-
mentaires des éléments de F est vide. Si U est convexe et F se compose de complémentaires
d’objets convexes, on peut donc déduire du théorème de Helly [71] que la taille de la plus
petite sous-famille de F qui couvre U est au plus d + 1. Les cas comme celui-ci où cette
taille est bornée sont rares : pour la plupart des classes d’objets il existe des familles
minimales couvrantes arbitrairement grandes (la figure 2.3 montre une famille minimale
de 8 disques unité qui couvrent un autre disque unité dans le plan).

Pourtant, il semble intuitivement que si une famille F de disques unité couvre un
autre disque unité U , il devrait y avoir un petit sous-ensemble de F qui couvre presque
tout U . On définit donc une ε-couverture de U comme une famille F telle que la partie
de U non couverte par F a une mesure majorée par ε. On étudie dans le chapitre 11



2.7. Octrees optimaux pour le lancer de rayon 17

la taille de la plus petite ε-couverture que l’on peut extraire d’une couverture donnée,
et on montre en particulier que dans plusieurs cas la taille de cette ε-couverture peut
être bornée indépendamment de la famille couvrante utilisée, soit un résultat similaire au
théorème de Helly.

Plus précisément, on montre que si U et les éléments de F sont des boules unité dans Rd,

pour tout ε > 0 on peut extraire de F une ε-couverture de U de taille O
(

ε
1−d
2 polylog 1

ε

)

.

On donne aussi un exemple où toute ε-couverture de U à une taille Ω
(

ε
1−d
2

)

, ce qui montre

que la borne est presque optimale. L’idée de la preuve est de s’inspirer du théorème de
Helly. Si au lieu des boules on avait des demi-espaces, le théorème de Helly dit que l’on
pourrait extraire de F d + 1 boules qui couvrent U . On approxime donc chaque boule par
le demi-espace le plus adapté qui la contient (les demi-espaces couvrent aussi U) et on
ne garde que d + 1 boules dont les demi-espaces couvrent U . La région non couverte de
U se situe entre les boules et les hyperplans, ce qui permet de borner sa taille. Si elle est
supérieure à ε, on applique récursivement ce raisonnement aux régions qui ne sont pas
encore couvertes.

On applique ce résultat à un problème de visibilité. On se place dans R3 avec des
boules unité disjointes. On montre que si deux de ces boules, A et B, ne se voient pas
à cause des autres boules situées entre elles, alors on peut trouver une famille de taille

O
(

ε−
7
2 polylog 1

ε

)

de boules qui suffisent à bloquer la visibilité entre A et B sauf pour un

ensemble de droites de mesure au plus ε.
On étudie aussi le problème de la couverture de cubes de Rd. On montre que là encore,

si on a un cube unité U couvert par une famille F de cubes unité, il existe une borne ne
dépendant que de la dimension d et de ε sur la taille d’une sous-famille qui couvre ce cube
sauf une région de volume au plus ε. En dimension 2 on montre même précisément une
borne optimale de O(ε).

Enfin, en utilisant des techniques de programmation linéaire généralisée, on obtient
pour chacun des résultats précédents un algorithme permettant de trouver un point de U
non couvert par la famille F ou de prouver que F est une ε-couverture de U . La complexité
de cet algorithme est O(|F|f(ε)) où f(ε) est la borne sur la taille des ε-couvertures du
problème concerné.

Ces travaux se distinguent des recherches précédentes qui cherchaient à extraire des
sous-couvertures parfaites de taille proche de l’optimale. Trouver une sous-couverture
minimale est généralement NP-dur, et il a été montré que dans beaucoup de cas chercher
une sous-couverture dont la taille est dans un rapport borné avec la taille minimale est
aussi NP-dur [78, 32, 37].

Ces travaux ont été réalisés en collaboration avec J. Demouth, O. Devillers et X. Goaoc
et soumis au Symposium on Discrete Algorithms.

2.7 Octrees optimaux pour le lancer de rayon

Prévoir et optimiser les performances du lancer de rayon est un sujet très important
en infographie vue son utilisation extensive et la quantité de calcul associée. Aronov et
Fortune [14] sont les premiers à garantir une performance dans un rapport borné avec
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l’optimum dans le modèle de calcul suivant : on construit une triangulation compatible
avec la scène et lance des rayons en localisant le point de départ puis en traversant
la triangulation jusqu’à rencontrer un objet. Cependant, les triangulations ne sont pas
un modèle de calcul très populaire en infographie, contrairement à des décompositions
spatiales telles que les kd-trees et les octrees. Aronov et al. ont développé [13] une mesure
pour de telles décompositions et ont prouvé qu’elle estimait fiablement le coût moyen du
lancer d’un rayon.

Dans le chapitre 12, nous nous intéressons au problème de construire, pour une scène
donnée, un octree qui minimise la mesure de coût précédemment mentionnée. On géné-
ralise en fait à toute dimension d avec des objets qui sont des simplexes de dimension
d− 1. On donne une construction d’un arbre qui a un coût O(M) où M est le minimum
des coûts de tous les arbres possibles. Parfois il est important que l’arbre soit équilibré
(que les cellules voisines aient une profondeur proche) : on montre aussi que rééquilibrer
l’arbre que l’on a construit n’augmente pas sa taille de plus qu’un facteur multiplicatif.
Ces résultats ont depuis été validés expérimentalement par Aronov et al. [12].

Ces travaux, effectués en collaboration avec H. Brönnimann, ont été présentés à la
Canadian Conference on Computational Geometry [31] et au Latin American Theoretical
Informatics Symposium [30] et publiés à Computational Geometry: Theory and Applica-
tions [64]. Ils datent d’avant le début de ma thèse mais constituent mon premier contact
avec les problématiques de la visibilité 3D et contrastent avec l’approche globale étudiée
dans le reste de la thèse.

2.8 Diagramme de Voronoï du polygone le plus éloigné

On considère une famille S d’objets géométriques, appelés sites, dans le plan. Le dia-
gramme de Voronoï du site le plus éloigné de S partitionne le plan en régions, chaque
région étant associée à un site P ∈ S et contenant les points du plan pour lesquels P est
le plus éloigné des sites de S.

Les diagrammes de Voronoï du site le plus proche ont été l’objet d’études très ap-
profondies (voir par exemple [17] pour un survol), mais la variante sur les sites les plus
éloignés a été l’objet d’une attention moindre. Le cas où les sites sont des segments qui
ont le droit de se couper n’a été résolu que récemment par Aurenhammer et al. [18] ;
ils donnent un algorithme de complexité O(n log n) pour calculer ce diagramme pour n
segments.

Les diagrammes de Voronoï du site le plus éloigné ont un certain nombre d’applications
importantes. La plus connue est probablement le problème de trouver le plus petit disque
qui touche tous les sites. Ce disque peut être calculé en temps linéaire une fois connu le
diagramme, car son centre se situe sur un sommet ou un arc du diagramme.

On s’intéresse ici au cas de sites complexes qui ont une description de taille non bornée.
Parmi les premiers à se placer dans ce cadre, on trouve Abellanas et al. [1] : leurs sites
sont des ensembles finis de points, et la distance à un site est la distance au plus proche
de ces points. Cela peut se reformuler en considérant un ensemble de n points coloriés en
utilisant k couleurs, et leur diagramme de Voronoï de la couleur la plus éloignée subdivise
le plan en fonction de la couleur la plus éloignée. L’objectif est celui déjà mentionné de
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P1

P2

P1 P1

(a) (b) (c) (d)

Fig. 2.4 – (a) Le bissecteur de deux polygones peut être une courbe fermée. (b) L’axe
médian de P1. (c) La région de Voronoï de P1. (d) Le diagramme de Voronoï augmenté
de P1 et P2.

trouver le plus petit disque qui contient un point de chaque couleur. C’est un problème de
localisation de services, où l’on cherche une position aussi proche que possible de k types
de services distincts (comme les écoles, les postes, les supermarchés...).

Le diagramme de Voronoï de la couleur la plus éloignée peut être vu comme la pro-
jection de l’enveloppe supérieure des k surfaces de Voronoï correspondant aux k couleurs.
Huttenlocher et al. [73] montrent que cette enveloppe supérieure a une complexité Θ(nk)
pour n points et peut être calculée en temps O(nk log n) (voir aussi le livre de Agarwal
et Sharir [98, Section 8.7]).

Van Kreveld et Schlechter [105] considèrent le diagramme de Voronoï du site le plus
éloigné pour une famille de polygones simples disjoints. À nouveau, ils s’intéressent au
problème de trouver le disque de plus petit rayon qui touche tous les polygones et l’ap-
pliquent ensuite à un problème cartographique de regroupement des îles en archipels. Leur
algorithme s’appuie sur l’affirmation que le diagramme de Voronoï du polygone le plus
éloigné est un cas particulier de diagramme de Voronoï abstrait du site le plus éloigné
tel que défini par Mehlhorn et al. [83]. Mais cette affirmation est fausse, car comme on
le voit sur la figure 2.4, le bissecteur de deux polygones peut être une courbe fermée. En
particulier, les régions peuvent être bornées, ce qui est impossible pour les diagrammes
de Voronoï abstraits.

On remarque que le diagramme de Voronoï du polygone le plus éloigné peut encore
être vu comme une enveloppe supérieure de surfaces, mais cela ne semble pas donner de
borne intéressante sur sa taille ni d’algorithme efficace.

On montre dans le chapitre 13 que, dans une scène avec k polygones simples disjoints
de complexité totale n, la taille du diagramme de Voronoï du polygone le plus éloigné est
O(n). Cette borne reste vraie si on subdivise le plan en régions qui ont non seulement le
même polygone le plus éloigné mais aussi le même sommet ou arête le plus proche sur ce
polygone.

L’idée de la preuve est d’orienter les arcs du diagramme par distance croissante au(x)
polygone(s) le(s) plus éloigné(s). Une liste des différents types de sommets du diagramme
est présentée dans la figure 2.5. Les sommets du diagramme ayant au moins autant d’arcs
entrants que sortants se trouvent tous sur l’axe médian d’un des polygones, ce qui sim-
plifie leur décompte. En remarquant que le nombre d’arcs entrants et d’arcs sortants du
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Fig. 2.5 – Les différents types de sommets du diagramme. Les bissecteurs sont en gras et
les arcs des axes médians en pointillés.

diagramme entier est le même (c’est simplement le nombre d’arcs), on n’a alors pas besoin
de compter les autres types de sommets.

On présente ensuite un algorithme de type « diviser pour régner » pour calculer le dia-
gramme en temps O(n log3 n). L’idée est de séparer les polygones en deux sous-ensembles,
calculer les diagrammes de chacun de ces ensembles, construire une structure de locali-
sation de point sur chacun de ces diagrammes, puis utiliser des techniques de recherche
paramétrée pour trouver des points de départs à partir desquels seront suivies les lignes de
fusion. Cet algorithme donne simplement un algorithme de complexité O(n log3 n) pour
trouver le plus petit disque qui touche tous les polygones.

Notons finalement que dans le cas d’une famille de polygones disjoints convexes, la
situation est beaucoup plus simple et le plus petit disque qui touche tous les polygones
peut être calculé en temps O(n) où n est le nombre total de sommets des polygones [75].

Ces travaux, réalisés en collaboration avec O. Cheong, H. Everett, J. Gudmundsson,
S. Hornus, S. Lazard, M. Lee et H.-S. Na, ont été présentés au European Symposium on
Algorithms [35].
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Chapter 3

On the worst-case complexity of the

silhouette of a polytope

Ces résultats, obtenus avec H. Alt et X. Goaoc, ont été présentés à la Canadian
Conference on Computational Geometry [8].

Given a viewpoint, the apparent boundary of a polyhedron, or silhouette, is the set of
edges incident to a visible face and an invisible one; a face whose supporting plane contains
the viewpoint is considered invisible. The worst-case upper bound on the complexity of
a silhouette is O(n). With this definition, the silhouette of a polytope (i.e., a convex
bounded polyhedron) is a simple closed curve on its surface that separates visible and
invisible faces.

Silhouettes arise in various problems in computer graphics, such as hidden surface
removal [59] or shadow computations [52, 50], so a better understanding of the size of
the silhouette of polyhedra directly improves the theoretical complexity of algorithms in
computer graphics.

Practical observations, supported by an experimental study by Kettner and Welzl [77],
suggest that the number of silhouette edges of a polyhedron is often much smaller than the
total number of edges. In the same paper, they proved that a polyhedral approximation of
a sphere with Hausdorff distance ǫ has Θ(1/ǫ) edges, and a random orthographic silhouette
of such a polyhedron has size Θ(1/

√
ǫ).

In this paper, we investigate the worst-case size of the silhouette of a polytope observed
under orthographic projection. We prove that some classes of polytopes have orthographic
silhouettes with sub-linear complexity in the worst-case. We also give examples with
linear-size silhouette when some of our conditions are not satisfied.

Our approach is to consider the orthogonal projection of the polytope on a plane, since
the boundary of the projected polygon is the projection of the silhouette. We measure the
length of the boundary of this polygon, which we call the apparent length of the polytope.
First we show that all silhouettes of a triangulated fat object with n edges of length Θ(1)
have apparent length O(

√
n). Secondly we derive bounds on the number of silhouette

edges, using an additional condition on the repartition of the directions of the edges.
This paper is organized as follows. In Section 3.1, we review some examples of ill-

shaped polytopes with silhouettes of linear complexity. Next, Section 3.2 studies the
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apparent length of the silhouette, and Section 3.3 relates it to the number of silhouette
edges. Finally, Section 3.4 discusses extensions and applications of our results.

3.1 Examples

The goal of this paper is to find conditions under which polytopes have sub-linear sized
silhouettes in the worst-case. This section examines three examples of ill-shaped polytopes
with silhouette of linear complexity, and identifies the reasons for this behavior.

Figure 3.1: A non-fat triangulated polytope with bounded-length edges.

The example of Fig. 3.1 is characteristic of polytopes that are much longer along one
dimension than along the others. This kind of behavior can be ruled out by considering
fat polytopes, i.e., polytopes such that the ratio of the radius of the smallest enclosing to
the largest enclosed sphere is O(1).

Figure 3.2: A fat triangulated polytope with uneven edges.

Our second example (see Fig. 3.2) illustrates the impact of the length of the edges on
the silhouette. The ratio of the length of the longest edge to the length of the smallest is
Ω(n), where n is the total number of edges. To avoid such behavior, we require that our
polytopes have bounded-length edges, i.e., that all edges are of length Θ(1).

Our last example, in Fig. 3.3, exhibits a linear-size silhouette due to faces with order
n edges. We therefore consider polytopes with faces of bounded complexity. Without loss
of generality, we assume that our polytopes are triangulated.

This set of conditions is minimal in the sense that each of the previous examples
satisfies all but one condition.
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Figure 3.3: A fat polytope with bounded-length edges but with a face of large complexity.

In summary, in the rest of this paper we consider triangulated fat polytopes with
bounded-length edges.

3.2 Apparent length

Recall that the apparent length of a silhouette is defined as the length of the orthogonal
projection of the silhouette on a plane. In this section, we give bounds on the apparent
length of the silhouette of a polytope.

We first recall a classical result on measures of convex sets. A proof can be found in
[95]1.

Lemma 1. Let O and O′ be two convex objects in R2 (resp. R3) such that O contains O′.
Then the length (resp. area) of ∂O is larger than that of ∂O′.

For a polytope P, let A(P) denote its surface area, and L(P) be the maximum apparent
length of its silhouettes. The following lemma relates those two quantities.

Lemma 2. If P is a fat polytope, then L(P) = Θ(
√

A(P)).

Proof. Let r be the radius of the largest enclosed sphere of P, and λr be the radius of the
smallest enclosing sphere. Since P is fat, λ is Θ(1).

First, we apply Lemma 1 to P and its biggest enclosed sphere, and to P and its smallest
enclosing sphere. This yields that A(P) = Θ(r2). Next, consider an orthogonal projection
of P. Each of the two spheres projects onto a circle whose radius is the same as the
radius of the corresponding sphere. Since the projection of P is convex, we can apply
Lemma 1 to these circles and the boundary of that projection, and obtain that the length
of that boundary is Θ(r). Taking the maximum over all possible orthogonal projections,
we obtain that L(P) = Θ(r). It follows that L = Θ(

√

A(P)).

The next lemma bounds the area of a polytope with bounded-length edges.
1In fact, the proof in [95] is much more general than our statement, and applies to any Minkowski

measure, in any dimension.
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Figure 3.4: A triangulated fat polytope with bounded-length edges and a linear-size
silhouette. The front and back faces, of complexity O(

√
n), were not triangulated for

clarity.

Lemma 3. If P is a triangulated polytope with bounded-length edges, then A(P) = O(n).

Proof. Since the polytope has bounded-length edges, the area of any of its triangles is
O(1). By Euler’s formula, a triangulated polytope with n edges has O(n) triangles, and
the result follows.

We can conclude with the following corollary, directly deduced from Lemmas 2 and 3.

Corollary 4. If P is a triangulated fat polytope with n bounded-length edges, then the
apparent length of any of its silhouettes is O(

√
n).

3.3 Complexity of the silhouette

This section uses Corollary 4 to measure the complexity of the silhouette. To exploit
the upper bound on the apparent length of the silhouette, we bound from below the
contribution of silhouette edges to the apparent length. However, the contribution of an
edge can be arbitrarily small, as it can be parallel to the direction of projection, and a
triangulated fat polytope with bounded-length edges can have a linear number of such
silhouette edges, as shown2 in Fig. 3.4. Thus, we need to bound from above the number
of silhouette edges that can be close to the direction of projection.

We give two distinct additional conditions that ensure a sub-linear size for the silhou-
ette. The first one is local.

Lemma 5. Let ǫ be a positive real number and P be a polytope with n bounded-length
edges such that any two incident edges make an angle in the interval [ǫ, π− ǫ]. Then, any
silhouette of P has O(L(P)) edges.

Proof. Let ~δ be a viewing direction . As any two incident edges make an angle in the
interval [ǫ, π− ǫ], two consecutive silhouette edges contribute Ω(ǫ) to the apparent length
of the silhouette. It follows that the number of silhouette edges is O(L(P)). Note that
the constant in the O depends on ǫ.

2See Appendix 3.5.1 for details.
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Notice that if O(L(P)) edges do not satisfy the angle hypothesis, the same reasoning
can be applied to the remaining edges on the silhouette, and the result of Lemma 5 still
holds.

Combining Corollary 4 with Lemma 5 yields:

Theorem 6. Let ǫ be a positive real number and P be a triangulated fat polytope with
n bounded-length edges such that any two incident edges make an angle in the interval
[ǫ, π − ǫ]. Then, any silhouette of P has O(

√
n) edges. This still holds if O(

√
n) edges do

not satisfy the angle hypothesis.

The second condition corresponds to a regular repartition of the directions of the edges
of the polytope and is thus global. The idea is that if the directions of the edges do not
accumulate along a few directions, the number of edges almost collinear with any direction
is bounded, and so is the complexity of the silhouette. The meaning of this accumulation
hypothesis is explained in the next Lemma.

Lemma 7. Let P be a polytope with n bounded-length edges and apparent length O(
√

n)

such that for any direction ~δ, the number of edges of P making an angle smaller than
Θ(n−1/6) with ~δ is O(n2/3). Then any silhouette of P has O(n2/3) edges.

Proof. Let us fix a direction ~δ, and let α be a real number. We count separately the
silhouette edges that make an angle greater than α with ~δ, and the others, and find the
value of α yielding the best trade-off.

If we represent the set of directions by a unit sphere, the directions that make an angle
smaller than α with ~δ form a spherical cap of area Θ(α2). The sphere can be covered
by Θ(1/α2) such spherical caps and the directions of the n edges are distributed over the
sphere, so one of the caps has to contain Ω(α2n) edge directions. This means that, for
some viewing direction, there are Ω(α2n) edges that make an angle less than α. Thus, the
best we can ask is that the number of silhouette edges having a negligible contribution to
the apparent length is O(α2n).

Let k denote the number of silhouette edges that make an angle greater than α with
~δ. The contribution of these k edges to the apparent length of the silhouette is Ω(kα).
Thus, k = O(L/α) = O(

√
n/α).

If we ask that at most O(α2n) edges of the polytope make an angle less than α with
any given direction, then the complexity of the silhouette is bounded from above by

O
(√

n/α + α2n
)

.

The best trade-off one can achieve is to choose
√

n/α = Θ(α2n), which means α =
Θ(n−1/6). In that case, the number of silhouette edges is O(n2/3), and the regular distri-
bution assumption is the one mentioned in the statement of the lemma.

Note that the proof of Lemma 7 establishes a more general result: a weaker condition
on the repartition of the directions of the edges still yields a sub-linear bound on the
complexity of the silhouette, which is in between O(n2/3) and O(n). Besides, if the
repartition condition is satisfied for a given direction ~δ, then the orthographic silhouette
along this direction has a complexity O(n2/3).

Combining Corollary 4 with Lemma 7 yields:
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Theorem 8. Let P be a triangulated fat polytope with n bounded-length edges such that
for any direction ~δ, the number of edges of P making an angle smaller than Θ(n−1/6) with
~δ is O(n2/3). Then any silhouette of P has O(n2/3) edges.

The requirements on the polytopes in Lemmas 5 and 7 are strong, and may describe
empty classes of polytopes. For the case of Theorem 6, Appendix 3.5.2 describes a class
of polytopes that satisfy the requirements of the theorem when we allow O(

√
n) edges to

miss the angular condition. However, to the best of our knowledge, whether there exists
or not a polytope meeting the conditions of Lemma 7 is an open question.

3.4 Discussion

This section discusses our results, giving extensions as well as possible applications.

To begin with, notice that, in the results of Sections 3.2 and 3.3, the fatness assumption
can be weakened: Lemma 2 holds for any polytope P with bounded-length edges that
satisfies d(P)2 = O(A(P)), where d(P) is its diameter. This means having a fat orthogonal
projection with the same diameter, i.e., to be fat along at least two dimensions.

Next, to extend our approach to the perspective case, the distance from the object to
the viewpoint has to be taken into account. When the viewpoint is far from the polytope,
the perspective case should behave as the orthographic case. But when the viewpoint is
close to the polytope, the perspective projection introduces distortion: the length of the
projection of a silhouette edge depends on its distance to the center of the view. Also,
the global hypothesis on the distribution of the directions of the edges has to be adjusted
accordingly.

The results of this paper are only a first step toward the understanding of the com-
plexity of silhouettes, but they still have promising applications.

A first application is the computation of shadow boundaries. Drettakis and Duguet [52,
50] propose a solution based on a visibility skeleton restricted to the visual events generated
by a punctual light source. In their detailed report [50], they show that their algorithm
has complexity O(nsn), where n is the size of the polyhedron that casts a shadow, and sn

the size of its silhouette. Even the orthographic case is of interest, since it corresponds to
a light source at infinity, a simple sun model for instance.

A second application is hidden surface removal, which has a long history as a problem
difficult to address practically [48]. A solution proposed by Efrat et al. [59] is to render
first the silhouettes of the objects, and then optimize the rendering in the single-object
regions. They estimate the number of combinatorial changes to the rendered silhouettes of
polytopes when the viewpoint moves along a line or an algebraic curve. Depending on the
motion, this number depends either linearly or quadratically on the silhouette complexity,
which they bound from above by the complexity of the polytope. Extension of our work
to the perspective case would thus yield a direct improvement of their bounds.
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(a) (b)

Figure 3.5: A face of a polytope for Theorem 6.

3.5 Appendix

3.5.1 The cylinder example

This appendix details the (not necessarily intuitive) construction of the polyhedron of
Fig. 3.4.

First, start with two almost regular polygons of diameter Θ(
√

n) facing each other at
distance Θ(

√
n). These polygons both have Θ(

√
n) edges of alternating length 1±ǫ. Note

that corresponding edges on the two polygons have different length. Next, connect each
pair of corresponding edges by a strip of length Θ(

√
n) and width Θ(1). Thus, each strip

is an almost rectangular trapezoïd.
We then triangulate the extremal polygons and the strips, inserting points on the edges

and inside the faces, so that the triangles have edges of length Θ(1). A triangulation of the
Θ(
√

n)-gons can be made with Θ(n) triangles. There are Θ(
√

n) strips, each triangulated
with Θ(

√
n) triangles. So the total size of the polyhedron is Θ(n).

Now, when looking along the axis of this cylinder-like polytope, the silhouette is
made of Θ(

√
n) polygon edges and all the sides of the strips, that is Θ(

√
n) collections of

Θ(
√

n) edges. This is thus an example of a polytope with a linear-size silhouette. Yet, this
polytope is fat with an aspect ratio close to

√
2, with triangular faces, and bounded-length

edges.

3.5.2 A polytope for Theorem 6

This appendix describes a class of polytopes that satisfy the requirements of Theorem 6
when we allow O(

√
n) edges to miss the angular condition.

Start with a regular tetrahedron, and triangulate each of its faces regularly as shown in
Figure 3.5(a). Then, for each face, perturb the interior points as shown in Figure 3.5(b).
The vertices on every second horizontal line are moved alternatively upward and to the
left, and the remaining vertices are moved in the direction opposite to that of their top-left
neighbour. The scale of the perturbation is chosen to be proportional to the size of the
triangles, so that the angles between edges do not depend on the size of the triangulation.
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Figure 3.6: A triangulation with long edges.

Notice that this perturbation is 2-periodic along each of the 3 main directions of the
triangulation

Now, we slightly inflate the faces of the perturbed polytope so that no two triangles
are coplanar. The resulting polytope is fat, triangulated, has bounded-length edges and
only the O(

√
n) edges included in the edges of the initial tetrahedron are aligned with

some of their neighbours.
Notice that a similar perturbation scheme applied to the triangulation of the lateral

surface of the cylinder in Figure 3.4, brings the size of its silhouette from Θ(n) down to
Θ(
√

n).

3.6 Bonus: a lower bound

It is also possible to give a lower bound on the complexity of the silhouette of a polytope.
However, the assumptions are not exactly the same. Indeed, recursively applying the
triangulation of Fig. 3.6, it is possible to triangulate an equilateral triangle with only
edges of length at least one quarter of the size of the initial triangle. Applying this to a
tetrahedron gives an exemple of a triangulated fat polytope with bounded-length edges
and a constant size silhouette.

Theorem 9. Let P be a fat triangulated polytope with n bounded-length edges and fat
faces. Then all the silhouettes are of complexity Ω(

√
n).

Proof. Assume the length of the edges is Θ(1). Since all the faces are fat triangles, their
area is Θ(1). The total surface of the polytope is then Θ(n); its diameter is Ω(

√
n)

(Lemma 1); its apparent length is Ω(
√

n) and the complexity of the silhouette is Ω(
√

n)
since the length of the edges is O(1). Notice that the fatness assumption can be reduced
to the same 2-dimensional fatness discussed at the beginning of Section 3.4.



Chapter 4

An Upper Bound on the Average Size

of Silhouettes

Ces résultats ont été présentés au Symposium on Computational Geometry [63]
et soumis à Discrete and Computational Geometry (en collaboration avec
S. Lazard pour cette dernière version).

It is a widely observed phenomenon in computer graphics that the size of the silhouette
of a polyhedron is much smaller than the size of the whole polyhedron. This paper
provides, for the first time, theoretical evidence supporting this for a large class of objects,
namely for polyhedra that approximate surfaces in some reasonable way; the surfaces may
be non-convex and non-differentiable and they may have boundaries. We prove that such
polyhedra have silhouettes of expected size O(

√
n) where the average is taken over all

points of view and n is the complexity of the polyhedron.

4.1 Introduction

The silhouette of a polyhedron with respect to a given viewpoint is, roughly speaking, the
set of edges incident to a front and a back face. Silhouettes arise in various problems in
computer graphics such as hidden surface removal and shadow computations (see [51, 52,
59] for some recent references) and algorithms to compute them efficiently have been well-
studied (see the survey by Isenberg et al. [74]). They are important in shape recognition;
Sander et al. [94] claim that the silhouette “is one of the strongest visual cues of the shape
of an object”.

It is a widely accepted fact that the silhouette of a polyhedron is usually much smaller
than the whole polyhedron. Sander et al. [94], for instance, state the largely repeated
claim that the silhouette of a mesh is often of size Θ(

√
n) where n is the number of faces

of the mesh. An experimental study by Kettner and Welzl [77] confirms this for a set
of realistic objects. This experimental study was extended by McGuire [81] to a larger
database of larger objects for which the observed size of the silhouette is approximately
n0.8.

There are few theoretical results supporting these observations. Kettner and Welzl
[77] prove that a convex polyhedron that approximates a sphere with Hausdorff distance

31
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Figure 4.1: A worst-case linear silhouette (left) of a polyhedron approximating a cylinder.

ε has Θ(1/ε) edges, and a random orthographic projection of such a polytope has Θ(1/
√

ε)
silhouette edges. In Section 3.2, we give conditions under which it could easily be proved
that the average silhouette of a convex polyhedron has size O(

√
n) and in Section 3.3 we

give additional conditions under which the worst-case size is provably sub-linear.
The goal of this paper is to study the average silhouette size of non-convex polyhedra.

Convexity is a very strong assumption, which was crucial in the previous theoretical
results. Here, rather, we assume that the polyhedron is a good approximation of some
fixed (not necessarily convex) surface. Notice that it is very difficult to guarantee anything
on the worst-case complexity of the silhouette of a polyhedron unless it approximates a
strictly convex surface. In Section 3.3, we give an example of a polyhedral approximation
of a section of a cylinder with worst-case silhouette size Θ(n) (see Figure 4.1). Moreover,
this example can be modified in such a way that the surface is smooth, and its polyhedral
approximation is as “nice” as one might hope (for instance, it can be required that the
faces are fat triangles that all have almost the same size).

In this paper we prove an upper bound on the expected size of the silhouette for random
viewpoints. We prove that the silhouette of a polyhedron that approximates a surface
in a reasonable way has expected size O(

√
n). Note that the average is taken over all

viewpoints for a given surface, and not on a set of surfaces.
In Section 4.2, we define precisely the notion of silhouette for polyhedra and general

surfaces. We then present and prove our main result in Section 4.3 and conclude in
Section 4.4.

4.2 Definitions

The term silhouette has been used in the literature to represent several different notions,
depending on the application, reflecting such issues as: is the object considered opaque
or transparent? Is occlusion taken into account? Is one interested by what the eye
perceives, i.e., a plane curve, or by the space curve which gave birth to it? In the area
of photography, for instance, a silhouette (also called apparent boundary) is defined as
an outline of a solid object, as cast by its shadow, that appears dark against a light
background (Figure 4.2(a)). In the field of computer vision, by contrast, the silhouette
(also called rim, profile or contour generator) is roughly defined as the curve on the surface
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(a) (b) (c)

Figure 4.2: Three different notions of silhouettes: (a) outline of a solid, as cast by its
shadow, (b) rim of an opaque object, and (c) rim of a transparent object.

that separates front face regions from the back ones, either for opaque (Figure 4.2(b)) or
for transparent (Figure 4.2(c)) objects.

In this paper we prove an upper bound on the size of the transparent silhouette; since
such a silhouette contains the apparent boundary and the contour, our bounds also apply
to all these types of silhouettes. In the rest of the paper the term silhouette will be used
to mean transparent silhouette.

In the rest of this section we give a formal definition of silhouettes of polyhedra and
then provide a definition for more general surfaces.

4.2.1 Polyhedra

The (transparent) silhouette of a polyhedron from a viewpoint (possibly at infinity) is the
set of edges that are adjacent to a front face and a back face. A face is considered a front
face if the angle between its normal vector and a vector from a point of the face to the
viewpoint is acute, and a back face if that angle is larger than π/2. If the point of view
is in the plane containing the face, we refer to the definition of silhouettes for the case of
general surfaces. The normal vectors should point outwards, but what really matters is
that the orientation is consistent for the two faces that share this edge, so this definition
also applies to non-orientable (necessarily self-intersecting) polyhedra.

In this paper, we call complexity of a silhouette (of a polyhedron) its number of edges.

4.2.2 General surfaces

Our objective is to bound the size of the silhouette of a polyhedron. To achieve this
goal, we need to relate the silhouette of the polyhedron to the silhouette of the surface
it approximates, which means we need a definition of silhouettes that applies to a larger
class of objects. Although this may seem unintuitive, we first define the silhouette as a
set of rays, and then relate this to the more usual concept of a set of points on the surface.

Let S be a compact 2-manifold without boundary. It separates R3 in two non-empty
open regions; call O and O

′ their closures (so O ∩ O
′ = S and O ∪ O

′ = R3). Let V be
a viewpoint not on S but possibly at infinity. The (transparent) silhouette of S from V
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is the set of rays R starting from V that are tangent to S in a non-crossing way (R may
cross S elsewhere). More formally, we require that there exists an open segment u of R
that contains a connected component of R ∩ S and is contained either in O or O

′.
This definition defines a set of rays. The silhouette can also be seen as the trace

of this set of rays on the surface. More precisely, for each ray R on the silhouette, we
consider the closest point to V on each connected component of R ∩ S that satisfies the
non-crossing property. This definition is consistent with the one given for the particular
case of polyhedra, and is the one we will use in this paper.

For a given viewpoint at infinity, we define the (projected) length of the silhouette as
the length (counted with multiplicity if several points have the same projection) of the
projection of the silhouette, along the direction given by the viewpoint, on an orthogonal
plane.

Remark. The definition of the silhouette can be extended to cases where S is not a
2-manifold, but an immersion of a compact 2-manifold. More precisely, we have a 2-
manifold S ′ and an application f : S ′ → R3 such that S = f(S ′) and for any point on
S ′ there exists a neighborhood U of that point such that U and f(U) are homeomorphic.
The local orientation is sufficient to decide whether R crosses S or not (note that more
complicated things can happen than crossing or being tangent, even with smooth surfaces;
for instance, the surface may ripple an infinite number of times in the neighborhood of a
point, making it impossible to define on which side of S R is near the intersection point).
This remark extends to the whole paper and, in particular, to Theorem 10. However, we
do not give either a definition or a proof of this, as it would uselessly make everything
more obscure.

4.3 Main results

Let S be a compact 2-manifold without boundary whose silhouettes have finite average
length, silh(S), where the average is taken over all viewpoints at infinity. Let Pn be a
polyhedron with n triangular faces, that is homeomorphic to S through fn : Pn → S,
such that:

1. the length of any edge of Pn is at least α√
n

and

2. for any point x on Pn, d(x, fn(x)) < β h(x)√
n

where h(x) is the smallest height of the
triangle(s) of Pn that contain(s) x,

where α and β are two arbitrary positive numbers and d() denotes the Euclidean distance.

Theorem 10. The expected complexity of the silhouette of Pn is O (
√

n), where the average
is taken over all viewpoints at infinity. More precisely, for any n, the expected complexity
is at most

(

15 β +
24

α
silh(S)

) √
n.
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Note that the bound is valid for any n and any polyhedron Pn satisfying the above
assumptions. Note also that the bound depends on S only by the average length of its
silhouette.

We first clarify the meaning of the hypotheses on Pn and their implications. We then
prove Theorem 10 in Section 4.3.2. We finally show in Section 4.3.3 how Theorem 10 can
be generalized to surfaces with boundary and viewpoints at finite distance. In particular,
we prove the following result.

Let S ′ be any compact two-manifold with boundary of finite length and whose silhou-
ette has finite average length (taken over all viewpoints at infinity).

Theorem 11. Any mesh Pn with n triangular faces that approximates S ′ according to
Hypotheses 1 and 2 has a silhouette of expected complexity O(

√
n) when the viewpoint is

chosen uniformly at random in a ball.

4.3.1 Meaning of the hypotheses

Hypothesis 1 is here to avoid short edges. The main idea of the proof is to link the
complexity of the silhouette to its length, and arbitrarily short edges would make this
impossible. Now the 1√

n
factor makes sense: intuitively, since the polyhedron has n faces,

each face has area of order 1
n
, which means that the edges have length of order 1√

n
.

Hypothesis 2 is rather technical, and we discuss instead the meaning of the following
two more intuitive hypotheses, which, together with Hypothesis 1, imply3 Hypothesis 2.

3. The faces of Pn are fat.

4. For any x on Pn, d(x, fn(x)) < γ
n
, where γ is some positive constant.

Hypothesis 3 is quite natural. Hypothesis 4 ensures that Pn approximates S. Fur-
thermore, the 1

n
factor is reasonable; indeed, in 2D, when considering a regular polygon

with edge length Θ( 1√
n
) inscribed in a circle of radius 1, the maximal distance between a

point on the polygon and the circle is Θ( 1
n
). The situation is the same in 3D. Basically it

means that the error when approximating the surface with a plane is of the second order.
Our hypotheses (1-3-4 or 1-2) ensure that the homeomorphism fn has good properties,

that is that, roughly speaking, the polyhedron can be obtained by only a small perturba-
tion of the surface while keeping the normal vectors in approximately the same directions.
This is crucial for our proof since otherwise, for example, a cylinder can be approximated
by a lantern of Schwarz [96] (see Figure 4.3(a)) whose silhouette has expected complexity
Θ(n) and unbounded length.

Notice that the existence of polyhedra with arbitrarily large number of edges that
approximate the surface according to these hypotheses is a constraint on the surface. Not
every surface admits such an approximation (think of the neighborhood of 0 in the surface
defined by z = (x2 + y2)1/8 as shown in Figure 4.3(b)). However, the class of surfaces for
which such approximations exist is quite large. It includes, in particular, smooth surfaces
and polyhedra with fat faces.

3Indeed, for any x in Pn, Hypotheses 1 and 3 imply that h(x) > δ/
√

n for some positive constant δ;
Hypothesis 2 then follows from Hypothesis 4 since h(x)/

√
n > δ/n > δ/γ · d(x, fn(x)).
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(a) (b)

Figure 4.3: (a) Two half lanterns of Schwarz (courtesy of Boris Thibert). (b) A surface
that cannot be approximated with the right properties.

le

e
θe

(a)

θe

θe

(b)

Figure 4.4: (a) Length and dihedral angle of an edge; (b) set of directions for which e is
on the silhouette.

4.3.2 Proof of Theorem 10

We consider a point of view chosen randomly at infinity. We call le the length of an edge
e of polyhedron Pn and θe the exterior dihedral angle associated to e (see Figure 4.4).

Let Te denote the union of the two triangles adjacent to edge e (including e but not
the other edges). For any part R of S, let silh(R) be the average length of the part of the
silhouette of S that lies in R.

We first recall a classical formula on the expected size of silhouettes which can also be
found, for instance, in [81].

An edge e is on the silhouette if the direction of view is in the dark area of the sphere
of directions of Figure 4.4(b). The angular measure of this region is 4θe, which means
that the probability for e to be on the silhouette is θe/π. The expected number of edges
on the silhouette is thus

E =
1

π

∑

edge e

θe.

We now state our main lemma. The general idea of this lemma is that under strong
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hypotheses (S has bounded curvature, the edges have length Θ( 1√
n
), and Hypotheses 3

and 4 are satisfied), one can prove that θe 6 C√
n

for some constant C. In cases where this
inequality does not hold, edge e is near some kind of edge of the surface, or at least some
feature that will appear quite often on the silhouette and we are going to charge this edge
to the silhouette of S.

Lemma 12. For any edge e on Pn,

θe 6
C√
n

+
8π

le
silh (fn (Te)) with C = 31.3 β.

Theorem 10 follows from Lemma 12. Indeed, since Pn has 3n
2

edges, each of length at
least α√

n
(by Hypothesis 1), we get that the expected complexity of the silhouette is

E 6
1

π

3n

2

C√
n

+ 8

√
n

α
3 silh(S),

because
∑

edge e

silh (fn (Te)) = 3 silh(S) since the length of the silhouette of S that lies in

the image (through fn) of a triangle is counted three times (once per edge). Hence,

E 6

(

15 β +
24

α
silh(S)

) √
n = O

(√
n
)

.

Proof of Lemma 12. The idea of the proof is as follows. Consider the set of directions
for which e is on the silhouette. We first construct a subset Ω of these directions whose
measure is a constant times θe − C√

n
(see Figure 4.5). We then prove a lower bound on

the length of the silhouette of fn(Te) for all these directions, and deduce the result.
Let C be a positive constant, whose value will be defined later (see Equation 2). For

any edge e on Pn, we can assume that θe − C√
n

> 0 since, otherwise, θe 6 C√
n

and there is
nothing else to prove.

The set of directions for which e is on the silhouette is the set of directions between
the planes defined by the faces adjacent to e. Rotate each face about e by an angle of

C
2
√

n
so that the exterior dihedral angle decreases by C√

n
(see Figure 4.5(a)). Ω is defined

to be the set of directions between these two new planes that make an angle larger than
π/3 with the line supporting e; Figure 4.5(b) shows one component of Ω, the other one
consists of the symmetric set of opposite directions. The measure of the set of directions
between these two planes is 4 (θe − C√

n
). Restricting this set of directions to those that

make an angle larger than π/3 with the line supporting e, we get, by integrating on the
sphere of directions, that the measure of Ω is 2 (θe − C√

n
).

The remaining step uses the property, which we prove in Corollary 14, that for all the
directions in Ω, the silhouette of fn(Te) has length at least le/4. Assuming this temporarily,
we sum this inequality over Ω. The smaller side of the inequality is 2 le

4
(θe − C√

n
). The

larger side is the integral of the length of the silhouette of fn(Te) over all directions in Ω,
which is smaller than this same integral over all directions, that is 4π silh(fn(Te)). Hence
4π silh(fn(Te)) > le

2
(θe − C√

n
), which concludes the proof.
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Figure 4.5: Construction of Ω.

We now state a lemma and its corollary which we used in the proof of Lemma 12 under
the hypothesis that θe − C√

n
> 0. We can thus assume in the sequel that this property

holds.
Let e′ be the segment obtained by clipping from e all the points at distance less than

le
4

from its extremities. Refer now to Figures 4.6(a)–(b).

Lemma 13. Any line with direction d ∈ Ω that intersects e′ can be translated in a direction
orthogonal to e and d until it becomes tangent to S in fn(Te).

Corollary 14. For any direction d in Ω, the silhouette of fn(Te) has length at least le
4
.

Proof. Consider the projection of e′ and of the silhouette of fn(Te) onto a plane orthogonal
to d (see Figure 4.6(a)). It follows from Lemma 13 that, in that plane, each point on the
projection of e′ maps to a point on the projected silhouette in the direction orthogonal to
e′. Hence, the projected silhouette is longer than the projection of e′, which is at least

√
3

2

times the length of e′ since d makes an angle of at least π/3 with e′. Thus the silhouette
of fn(Te) has length at least

√
3

2
le
2

> le
4
.

Proof of Lemma 13. Let D denote a line with direction d ∈ Ω that intersects e′. Let T1

and T2 denote the two triangles adjacent to e and let h1 and h2 denote their respective
smallest heights. Let χi = βhi/

√
n, χ+ = max(χ1, χ2), and χ− = min(χ1, χ2). Refer

now to Figure 4.6(b). We call Dt, t ∈ [−χ−, χ+], the line obtained by translating D at
distance |t| in a direction orthogonal to the plane defined by e and d; positive values of t
correspond to lines in the half-space bounded by the plane defined by e and D, and not
containing Te; negative values of t correspond to lines in the other half-space. For clarity,
we denote D−χ− by D− and Dχ+ by D+.

By construction, D+ is at distance χ+ from Te. Thus D+ does not intersect fn(Te),
by Hypothesis 2. We prove that D− intersects fn(Te) and that no line Dt intersects the
boundary of fn(Te). This will imply that, sweeping Dt from D+ to D−, the first line Dt0

that intersects fn(Te) is tangent to fn(Te) at one of its interior point, which will conclude
the proof.
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(a) Orthogonal projection
along d of e′ and of the sil-
houette of fn(Te).

Dt0

D

D+

D−

e

(b) For the definition of Dt.

vt

e∗

Dt

Ate

(c)

Figure 4.6: For the proofs of Lemma 13 and Corollary 14.

We first prove that no line Dt intersects the boundary of fn(Te). In other words, we
prove that, for each edge e∗ on the boundary of Te, no line Dt intersects fn(e∗). Let Ti

be the triangle (of Te) containing e∗. By Hypothesis 2, it is sufficient to prove that the
distance between Dt and e∗ remains greater than or equal to χi for all t.

First notice that it is sufficient to prove that the distance between Dt and e∗ remains
greater than or equal to χi for all t ∈ [−χ−, 0]. Indeed, then, the distance between
D0 = D and e∗ is at least χi, and the distance between Dt and e∗ increases for t > 0 (see
Figure 4.6(b)).

Let Γ be the smallest angle d can make with the plane containing Ti and refer to
Figure 4.6(c). Let At be the point of intersection between Dt and the plane containing Ti

and vt be the distance between At and the point on e∗ that realizes the distance between
Dt and e∗. The distance between Dt and e∗ satisfies d(Dt, e

∗) > vt sin Γ > d(At, e
∗) sin Γ.

Hence, for proving that d(Dt, e
∗) > χi for t 6 0, it is sufficient to prove that d(At, e

∗) >
χi

sin Γ
for t 6 0. We set a = χi

sin Γ
to simplify the notation.

We just proved that d(At, e
∗) > a implies d(Dt, e

∗) > χi (for all t). Conversely,
we have that d(Dt, e

∗) < χi implies d(At, e
∗) < a. Similarly, for edge e, we get that

d(Dt, e) < χi implies d(At, e) < a. By definition of Dt, we have that d(Dt, e) < χi for
t 6 0, thus d(At, e) < a for t 6 0. Furthermore, the angle between e and segment
{At | t ∈ [−χ−, χ+]} is at least π/3 because this angle is at least the angle between their
orthogonal projection on the plane defined by e and D that is the angle between e and D
since all At lie in the plane spanned by Dt which projects on D; the lower bound of π/3
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Figure 4.7: For the proof of Lemma 13.

χi

P

Figure 4.8: Projection of ∂Ti, fn(∂Ti) and D−.

follows since the angle between e and D is at least π/3 by definition of Ω. Hence, the locus
of points At, for t 6 0, lies in a region, denoted Υ, shown in dark gray in Figure 4.7(a).
For proving that d(At, e

∗) > a for t 6 0, it is thus sufficient to prove that this region does
not intersect the set, denoted Υ′, of points at distance less than a from e∗ (shown in light
gray in Figure 4.7(a)).

Referring to Figures 4.7(b)–(c), let p be the endpoint of e′ the closest to e∗ and s be
its projection on the line supporting e∗. If the two regions Υ and Υ′ intersect, there exists
a point q in the intersection that is at distance less than or equal to 2√

3
a from p and at

distance less than or equal to a from e∗; thus d(p, s) 6 d(p, e∗) 6 d(p, q) + d(q, e∗) 6

(1 + 2√
3
)a. On the other hand, d(p, s) is one fourth of one of the heights of the triangle

Ti and thus is at least hi

4
. Hence, if the two regions intersect, then hi

4
6

(

1 + 2√
3

)

χi

sin Γ
.

We postpone to Lemma 16 the proof that, with C = 31.3 β, we have hi

4
>
(

1 + 2√
3

)

χi

sin Γ
,

which implies that the two regions Υ and Υ′ are disjoint. This concludes the proof that
no line Dt intersects the boundary of fn(Te).

We now prove that D− intersects fn(Te). Consider a projection, p(), along the direction
d onto a plane orthogonal to d. We proved that, for any of the two triangles Ti, Υ is at
distance at least χi from each edge e∗ 6= e of Ti. It follows that Υ lies in triangle Ti and thus
that Dt intersects Ti for all t 6 0. Therefore, D− intersects Ti and is at distance at least χi

from each edge e∗ 6= e of Ti, for i = 1, 2. Furthermore, D− is at distance χ− = min(χ1, χ2)
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from e, by definition. We now consider the triangle Ti for which χi = χ−. It follows that
D− is at distance at least χi from all three edges of Ti. Thus D− projects to a point
P = p(D−) inside triangle p(Ti), at distance at least χi from the three edges of p(Ti) (see
Figure 4.8).

Roughly speaking, by Hypothesis 2, the curve fn(∂Ti) is at distance less than χi from
∂Ti (the boundary of Ti) thus its projection p(fn(∂Ti)) is at distance less than χi from
the edges of p(Ti). It is thus intuitively clear that p(D−) intersects p(fn(Ti)), and thus
that D− intersects fn(Ti) (and thus fn(Te)).

More formally, consider the application gn from the triangle p(Ti) to the plane con-
taining it such that, for any point x in Ti, the point p(x) is sent to the point gn(p(x)) =
p(fn(x)). We first prove that the curves p(∂Ti) and gn(p(∂Ti)) are homotopic in R2 \ P .
Consider the continuous application

F : ∂Ti × [0, 1] −→ R2

(x, λ) −→ λ p(x) + (1− λ) gn(p(x)) = λ p(x) + (1− λ) p(fn(x)).

F is an homotopy between the curves p(∂Ti) and gn(p(∂Ti)) in R2. We prove that the
image of F does not contain P , which yields the result. The triangle inequality gives

d(P, F (x, λ)) > d(P, p(x))− d(F (x, λ), p(x)).

We have already proved that point P is at distance at least χi from p(x) for all points x
in ∂Ti. On the other hand, the distance between p(x) and p(fn(x)) is larger than or equal
to the distance between p(x) and their barycenter F (x, λ), for any λ ∈ [0, 1]. Hence

d(P, F (x, λ)) > χi − d(p(x), p(fn(x))).

Finally, since d(p(x), p(fn(x))) < χi for all x ∈ Ti, by Hypothesis 2, we have that
d(P, F (x, λ)) > 0 for all (x, λ). Hence, the image of F does not contain point P and
thus the curves p(∂Ti) and gn(p(∂Ti)) are homotopic in R2 \ P .

Now, we can contract p(∂Ti) to a point while remaining in p(Ti). Composing this
with gn gives a contraction of gn(p(∂Ti)) in gn(p(Ti)). On the other hand, there is no
contraction of p(∂Ti) in R2 \ P (since P is in p(Ti)), thus there is no contraction of its
homotopic curve gn(p(∂Ti)) in R2 \ P . Hence, there exists a curve that is contractible in
gn(p(Ti)) but not in R2 \ P . It follows that gn(p(Ti)) is not included in R2 \ P . Hence
P is in gn(p(Ti)) = p(fn(Ti)). Therefore, D− intersects fn(Ti) and thus fn(Te), which
concludes the proof.

We finally prove the two following simple technical lemmas which complete the proof
of Theorem 10. Recall that Γ is the smallest angle a direction d ∈ Ω can make with the
plane containing Ti.

Lemma 15. sin Γ =
√

3
2

sin C
2
√

n
.
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Figure 4.9: For the proof of Lemma 15

Proof. In the following, we identify the sphere of directions with a sphere S embedded in
R3; let O denote its center. We assume that the embedding preserves directions (i.e., for
any direction d, the corresponding point M on S is such that d and OM have the same
direction).

Refer to Figure 4.9. Let d be a direction in Ω and M be its corresponding point on
S. Consider one of the Ti and let P be the plane containing O and parallel to the plane
containing Ti. Let H be the orthogonal projection of M onto plane P. Let E and E ′ be
the two points on S that correspond to the two (opposite) directions of segment e. Let K
be the orthogonal projection of M (and H) onto the line EE ′. Finally, let θ be the angle
∠MKH, φ be the angle ∠MOK, and γ be the angle ∠MOH.

It follows from these definitions that

sin γ =
HM

OM
=

HM

KM

KM

OM
= sin θ sin φ.

Now, the angle γ is also the angle between direction d and the plane that contains
Ti. Thus Γ = inf

d∈Ω
γ, by definition of Γ. The angle θ is the angle between the plane

containing Ti and the plane containing e and d. It thus follows from the definition of Ω
that inf

d∈Ω
θ = C

2
√

n
(see Figure 4.5(a)). The angle φ is the angle between d and the line

containing e. It thus also follows from the definition of Ω that inf
d∈Ω

φ = π
3
. In addition,

since γ, θ and φ are in [0, π
2
], we have

sin Γ = inf
d∈Ω

sin γ, inf
d∈Ω

sin θ = sin
C

2
√

n
and inf

d∈Ω
sin φ = sin

π

3
.

Furthermore, the constraints on θ and φ in the definition of Ω are independent. Thus,
the minima of θ and φ can be attained for the same direction d in Ω. It follows that

inf
d∈Ω

(sin θ sin φ) = inf
d∈Ω

sin θ . inf
d∈Ω

sin φ.

We can thus conclude that

sin Γ = inf
d∈Ω

sin γ = inf
d∈Ω

sin θ sin φ = inf
d∈Ω

sin θ inf
d∈Ω

sin φ =

√
3

2
sin

C

2
√

n
.
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Lemma 16. hi

4
>
(

1 + 2√
3

)

χi

sin Γ
with C = 31.3 β.

Proof. By Lemma 15, replacing χi and Γ by their values in the inequality hi

4
>
(

1 + 2√
3

)

χi

sin Γ

gives

hi

4
>

(

1 +
2√
3

) βhi√
n

√
3

2
sin
(

C
2
√

n

)

or equivalently

4 β

(

1 +
2√
3

)

<
√

n

√
3

2
sin

(

C

2
√

n

)

. (1)

Notice first that for large enough values of n, using the approximation sin x ≈ x in
the neighborhood of zero, we derive the sufficient condition

C >
16β√

3

(

1 +
2√
3

)

∼ 19.9 β.

Now, since we want our result for all n, the computation is more complicated. Recall
first that for any strictly concave function f , such that f(0) = 0, f(x) > f(x0)

x0
x for

any x ∈ (0, x0). It follows that sin x > 2
π
x for any x ∈ (0, π

2
). Since we assumed that

θe − C√
n

> 0 and thus that 0 < C
2
√

n
< θe

2
< π

2
, we get

sin

(

C

2
√

n

)

>
2

π

C

2
√

n
.

To guarantee inequality (1), it is thus sufficient to have

4 β

(

1 +
2√
3

)

6
√

n

√
3

2

2

π

C

2
√

n
.

or equivalently

C >
8

3

(

2 +
√

3
)

π β ∼ 31.27 β,

which concludes the proof. Note that we can set

C = 31.3 β. (2)

in the definition of Ω (in the proof of Lemma 12) since Inequality (1) is the only constraint
on C.

4.3.3 Generalizations

We prove here Theorem 11. We first show that Theorem 10 generalizes to the case
where the viewpoint is chosen randomly at finite distance. We then show that consider-
ing surfaces with boundary does not change the asymptotic expected complexity of the
silhouette.
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Point of view at finite distance. We have thus far restricted ourselves to the case
where the viewpoint is chosen uniformly at random at infinity. However, our result applies
to any distribution of viewpoints such that the probability for an edge e to be on the
transparent silhouette is O(θe), where θe is the exterior dihedral angle associated to e;
indeed, the expected number of edges on the silhouette is then

∑

edge e

O(θe) and we get the

result by applying, as before, Lemma 12.4 Such a distribution of viewpoints is obtained,
in particular, when the point of view is chosen uniformly at random in a ball. This is
also the case if S delimits a bounded region O and the viewpoint is chosen uniformly at
random in B \ O, for a ball B.

Surfaces with boundary. Let S be a 2-manifold with boundary B. We consider
that the boundary is always on the transparent silhouette and so the definition of the
transparent silhouette of a 2-manifold S with boundary is exactly that of a 2-manifold
without boundary plus the boundary B.

The surface S is approximated by a triangulated mesh Pn that satisfies Hypotheses 1
and 2, as in the case without boundary, except that now the mesh may not be a polyhedron
(some edges may have only one adjacent face rather than two).

To give an upper bound on the number of edges on the silhouette of the mesh, we
consider the boundary edges and the other (non-boundary) edges separately. For the
non-boundary edges, the same reasoning as before still holds. For the boundary edges,
it is easy to see that the length (in 3D) of the boundary of Pn cannot be much larger
than the length of B. Indeed, the two are homeomorphic, and the hypotheses imply that
the image of an edge e, of length le, is a curve whose extremities lie at distance at least
le − 2β · le√

n
= Ω( 1√

n
) apart. This means that the length of B is at least Ω( 1√

n
) times the

number of boundary edges of Pn. Hence, the number of boundary edges of Pn is at most
O(
√

n) times the length of B. So, if the length of B is bounded, the expected complexity
of the silhouette of Pn is O(

√
n).

4.4 Conclusion

This paper gives an idea of why, and when, the usual claim that the silhouette of a
triangulated mesh has size O(

√
n) is valid. In particular, we have given a set of conditions

such that any triangulated mesh approximating a surface in a way that satisfies those
conditions has a silhouette of expected size O(

√
n). Roughly speaking, the mesh should

have no short edges, its faces should be fat, and the distance between it and the surface it
approximates should never be too large. The surface itself is not necessarily everywhere
differentiable and may have boundaries.

A natural question to ask is whether meshes satisfying those conditions exist. In fact,
for smooth surfaces, the meshes produced by Boissonnat and Oudot [23] are one such
example. The critical property of the meshes they compute is that the ratio between

4Note that, in Lemma 12, silh(fn(Te)) always refers to an expected length for a viewpoint chosen
randomly at infinity.
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the size of the largest and the smallest triangles remains bounded, although meshes are
non-uniform with small triangles in areas of large curvature. However, in order to satisfy
our conditions, non-smooth surfaces with curved sharp edges (such as a flying saucer with
a sharp equatorial arc) would have to be approximated by small triangles over the whole
surface. Such meshes would have silhouettes of expected size O(

√
n) but then n would

be much larger than necessary; it would be reasonable to replace the large number of
triangles used to mesh large flat portions of the surface with a smaller number of large
triangles, which would give a silhouette of size closer to linear. This explains why the
observed expected size of silhouettes, as shown in [81], is larger than O(

√
n). The fact

that non-uniform meshes approximating such surfaces appear, in computer graphics, to
have silhouettes of expected size much smaller than n is thus likely due to additional
properties of the surfaces or the meshes.
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Troisième partie

Visibilité en présence de polytopes
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Chapitre 5

Complexe de visibilité de polytopes

5.1 Définition

Pour simplifier les explications, on étudiera uniquement des scènes avec des objets
convexes d’intérieurs disjoints.5 Nous travaillons avec des droites et plus souvent avec
des segments de droite. On appelle segment libre maximal un segment qui n’intersecte
l’intérieur d’aucun objet et qui est maximal au sens de l’inclusion pour cette propriété.
Un tel segment a donc ses extrémités soit à l’infini soit sur le bord d’objets de la scène
étudiée. Il représente une ligne de vision, et les objets vus de chaque côté. On dit qu’une
droite est tangente à un objet si elle intersecte cet objet mais pas son intérieur6. De la
même façon un segment est tangent à un objet si il l’intersecte et que sa droite support
est tangente à l’objet.

Le complexe de visibilité a été introduit en 2D par Pocchiola et Vegter [90]. Il est défini
comme une partition de l’espace des segments libres maximaux (muni d’une topologie
adaptée) découpé le long d’arêtes (les segments tangents à un objet) et de sommets
(les segments tangents à deux objets). Ceci correspond à une partition en composantes
connexes de segments ayant leurs extrémités sur les mêmes objets et tangents aux mêmes
objets. Comme on peut le voir dans la définition, la structure combinatoire (sommets,
arêtes, faces) est essentielle.

Cette définition à été étendue au cas 3D par Durand, Drettakis et Puech [53]. Le
complexe de visibilité est défini comme une partition de l’ensemble des segments libres
maximaux en composantes connexes de segments qui touchent les mêmes objets. Une
discussion plus poussée de cette généralisation peut être trouvée dans [65]. À nouveau,
obtenir une description combinatoire de cette structure est essentiel. Cependant, à la
différence du cas 2D, on ne va généralement pas se contenter de décrire à quel objet une
droite est tangente, on va aussi préciser à quel arête de cet objet, afin d’être capable
d’utiliser plus simplement les cellules. Je me contenterai ici d’étudier le cas où les objets
sont des polytopes.

5Pour les objets plats, on utilise les mêmes définitions en considérant l’intérieur relatif de l’objet, sauf
qu’on autorise plusieurs objets plats à s’intersecter s’ils sont dans le même plan.

6Pour un objet plat, une droite est tangente si elle l’intersecte et soit elle n’intersecte pas son intérieur
relatif soit elle est dans le même plan.
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V

E1

E2

E3

F

E4

Fig. 5.1 – Exemple de EEE se terminant sur un V E.

5.2 Des supports problématiques

5.2.1 Supports naturels

On appelle supports naturels d’un segment l’ensemble des sommets et des arêtes ou-
vertes qu’il intersecte sur les polytopes auxquels il est tangent. [53] utilise aussi des faces
de polytopes comme supports, mais cela n’apporte rien pour mon étude. Les cellules du
complexe de visibilité sont alors définies dans [53, 65] comme des composantes connexes
de droites ayant les mêmes supports. Elles sont décrites par leurs supports et leur bord,
c’est-à-dire les cellules de dimension inférieure adjacentes. Les sommets du complexe sont
en particulier décrits par deux sommets (V V ), un sommet et deux arêtes (V EE) ou quatre
arêtes (EEEE). Les arcs du complexe sont eux décrits par un sommet et une arête (V E)
ou trois arêtes (EEE). Les cellules de dimension 2 sont décrites par un sommet (V ) ou
deux arêtes (EE) et celles de dimension 3 par une arête (E).

Cette description présente un gros inconvénient : elle ne représente pas une structure
de complexe valide. Il existe en particulier des cellules de dimension 2 dont une partie
du bord appartient simplement à une autre cellule de dimension 2 et des cellules de
dimension 1 dont une extrémité n’est pas un sommet. En effet, sur la figure 5.1, on voit
un arc du complexe, engendré par les générateurs E1, E2 et E3 dont une extrémité a pour
générateurs V et E3. Cependant, V et E3 engendrent eux aussi un arc du complexe et non
un sommet. Notons que cette configuration est parfaitement générique. Cependant, dans
certains cas il est possible que l’on ne s’intéresse qu’aux droites tangentes à trois objets
ou à deux objets dans un plan bitangent (voir [65]), auquel cas cette situation ne peut se
produire que dans le cas dégénéré où deux objets se touchent.
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E1 E2 E3

A

B
(a)

(b)

Fig. 5.2 – Trois supports qui définissent autre chose qu’un arc.

5.2.2 Supports intrinsèques

Une arête est un support intrinsèque d’une droite si et seulement si la droite coupe
l’arête fermée et le plan défini par la droite et l’arête est tangent au polytope qui contient
l’arête (si l’arête est incluse dans la droite, on la compte aussi comme support)7. On peut
de façon équivalente demander à ce que dans tout voisinage de cette droite il existe une
droite tangente au polytope en cette arête ouverte. Cette définition s’étend sans problème
aux supports intrinsèques de segments. On définit à nouveau une cellule du complexe
comme une composante connexe de segments libres maximaux ayant les mêmes supports
intrinsèques. La définition des supports intrinsèques revient à appeler support les arêtes
qui engendrent les cellules de dimension 3 adjacentes du complexe. Une arête E qui est un
support naturel est automatiquement un support intrinsèque. Un sommet V correspond
en général sur un polytope à deux supports intrinsèques qui dépendent de la direction du
segment libre maximal. Cependant, lorsque le segment qui passe par le sommet est dans
le plan d’une des faces adjacentes à ce sommet (sans intersecter l’intérieur de cette face),
trois des arêtes adjacentes au sommet sont des supports intrinsèques de la droite. On peut
ainsi aller jusqu’à quatre supports intrinsèques correspondant à un seul sommet quand
le segment libre maximal est dans l’intersection des plans de deux faces (non adjacentes)
incidentes à ce sommet, comme sur la figure 5.3.

Cette définition de support est plus fine que celle des supports naturels, et en particulier
elle ne souffre pas du problème générique montré dans la figure 5.1. En effet les cellules
de dimension 1 ont pour supports (E1, E2, E3) et (E2, E3, E4) et leur intersection a pour
supports (E1, E2, E3, E4).

Malheureusement, il reste un cas dégénéré où les supports intrinsèques ne définissent
pas un complexe satisfaisant. Dans la figure 5.2, on voit deux arêtes E2 et E3 qui s’inter-
sectent en un point B (leurs polytopes supports s’intersectent uniquement en ce point)
et une arête E1 qui intersecte le plan défini par les arêtes E2 et E3 en un point A. Les
droites qui passent par A et intersectent E2 et E3 (et donc sont dans le plan défini par ces

7Si les deux faces incidentes à une arête sont coplanaires, de sorte que l’on pourrait fusionner les deux
faces, l’arête n’est jamais considérée comme support.
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deux arêtes) forment un arc (a). Les droites qui passent par B et intersectent E1 forment
un arc (b). Les deux arcs s’intersectent en un point correspondant à la droite qui passe
par A et B. On remarque alors que les deux arcs (a) et (b) et leur point d’intersection
ont exactement les mêmes supports intrinsèques, à savoir E1, E2 et E3. La cellule du
complexe définie par ces supports correspond donc topologiquement à deux composantes
de dimension 1 qui se coupent en un point qui n’est pas un sommet du complexe (voir la
figure 5.2).

5.3 Tentative de réparation

5.3.1 Supports intrinsèques

Comme on vient de le voir, la notion de support intrinsèque ne permet pas de distinguer
les arcs (a) et (b) de la figure 5.2.

Pour arriver à casser l’arc (a) en deux, on peut décider de subdiviser les arêtes au
niveau de leurs intersections isolées avec d’autres arêtes. Ainsi la moitié de l’arc (a) aura
pour supports E1, E−

2 et E−
3 et l’autre moitié E1, E+

2 et E+
3 alors que la droite (AB) aura

pour supports E1, E−
2 , E+

2 , E−
3 et E+

3 .
Pour casser l’arc (b) en deux, on peut introduire une notion de couplage entre les

supports. Les arêtes E2 et E3 sont dites couplées pour une droite D si les trois sont
coplanaires8, ou alternativement si dans tout voisinage de la droite il existe une droite
tangente aux polytopes de E2 et E3 en des points de E2 et E3 qui ne sont ni leurs
extrémités ni un point d’intersection (isolé) de ces arêtes.

Avec ces deux remarques et en définissant les cellules du complexes comme des com-
posantes connexes de droites ayant les mêmes supports et les mêmes relations de couplage
entre supports, la cellule qui pose problème dans la figure 5.2 se retrouve coupée en quatre
arcs et un sommet, comme il se doit.

Alors que dans la définition originale des supports intrinsèques on s’intéressait uni-
quement aux cellules de dimension 3 adjacentes, les relations de couplage font prendre en
compte aussi des cellules de dimension 2 adjacentes.

On peut aussi noter que la notion de couplage correspond à des plans tangents à deux
objets, c’est-à-dire aux événements visuels de type T++T décrits dans [65].

Cette définition modifiée a cependant perdu beaucoup de sa simplicité par rapport
à celle de départ. Il n’est pas actuellement prouvé si elle définit une bonne structure de
complexe cellulaire.

5.3.2 Supports naturels

Les supports naturels ne permettent pas de décrire en tant que sommet du complexe
l’extrémité de l’arc EEE de la figure 5.1. La seule façon de la décrire est en tant que
segment de droite ayant pour supports V et E3 et se trouvant dans le plan de F .

8On pourrait aussi demander que les trois soient coplanaires et concourantes, ce qui permettrait d’isoler
le point d’intersection de (a) et (b) sans découper les arêtes.
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F1 F2

V

Fig. 5.3 – Exemple de VFF : une droite passant par un sommet et dans l’intersection de
deux des plans incidents à ce sommet sur le polytope.

On est ainsi amené à définir un nouveau type de support naturel : les VF . Il s’agit
d’une paire d’arêtes qui s’intersectent en un point unique et définissent un plan tangent à
leurs deux polytopes (ou leur polytope si elles sont sur le même). Un VF est un support
naturel d’une droite si et seulement si la droite passe par le point et est dans le plan défini
par les deux arêtes9.

On obtient ainsi de nouveaux sommets du complexes engendrés par VF E et de nou-
veaux arcs engendrés par VF . Il s’ajoute du coup automatiquement encore un dernier type
de support, qui engendre à lui seul un sommet du complexe, le VFF (voir la figure 5.3
pour un exemple), qui est une paire de VF partageant le même point.

Cette définition modifiée résout les problèmes posés par les deux figures, mais il n’est
pas non plus prouvé si elle définit correctement une structure de complexe.

5.4 Conclusion

On vient de voir que décrire les cellules du complexe de visibilité de polytopes est
difficile. On propose deux définitions possibles dont on ne sait si elles sont équivalentes,
ni même si elles définissent des complexes valides. Clarifier cette situation sera un point
nécessaire avant de construire explicitement le complexe de visibilité, car pour stocker
utilement le complexe, il faut pouvoir décrire chacune de ses cellules.

9Dans le cas où le point d’intersection est l’extrémité des deux arêtes, on peut ne pas compter la paire
d’arêtes comme un support naturel quand la droite intersecte l’intérieur relatif de l’enveloppe convexe des
deux segments, car on n’est pas sur le bord d’une cellule de droites tangentes aux deux segments ouverts.
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Chapter 6

Lines and free line segments tangent to

arbitrary three-dimensional convex

polyhedra

Ces résultats ont été obtenus avec H. Brönnimann, O. Devillers, V. Dujmović,
H. Everett, X. Goaoc, S. Lazard, H.-S. Na et S. Whitesides. Des versions pré-
liminaires de ce travail ont été présentées à la Canadian Conference on Com-
putational Geometry [26] et au Symposium on Computational Geometry [27].
La version complète est publiée dans Computational Geometry: Theory and
Applications [28].

Motivated by visibility problems in three dimensions, we investigate the complexity
and construction of the set of tangent lines in a scene of three-dimensional polyhedra.
We prove that the set of lines tangent to four possibly intersecting convex polyhedra in
R3 with a total of n edges consists of Θ(n2) connected components in the worst case. In
the generic case, each connected component is a single line, but our result still holds for
arbitrarily degenerate scenes. More generally, we show that a set of k possibly intersecting
convex polyhedra with a total of n edges admits, in the worst case, Θ(n2k2) connected
components of maximal free line segments tangent to at least four polytopes. Furthermore,
these bounds also hold for possibly occluded lines rather than maximal free line segments.

Finally, we present a O(n2k2 log n) time and O(nk2) space algorithm that, given a
scene of k possibly intersecting convex polyhedra, computes all the minimal free line
segments that are tangent to any four of the polytopes and are isolated transversals to
the set of edges they intersect; in particular, we compute at least one line segment per
connected component of tangent lines.

6.1 Introduction

Computing visibility relations in a 3D environment is a problem central to computer
graphics and engineering tasks such as radio propagation simulation and fast prototyping.
Examples of visibility computations include determining the view from a given point,
and computing the umbra and penumbra cast by a light source. In many applications,
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Figure 6.1: A terrain of size n with Ω(n4) maximal free line segments tangent in four points.

visibility computations are well-known to account for a significant portion of the total
computation cost. Consequently a large body of research is devoted to speeding up
visibility computations through the use of data structures (see [54] for a survey).

One such structure, the visibility complex [56, 90], encodes visibility relations by
partitioning the set of maximal free line segments. The size of this partition is intimately
related to the number of maximal free line segments tangent to four objects in the scene;
for a scene of n triangles in R3, the complex can have size Θ(n4) in the worst case [56], even
when the triangles form a terrain (see [39] or Figure 6.1). The complex is thus potentially
enormous, which has hindered its application in practice. However, there is evidence, both
theoretical and practical, that this estimation is pessimistic. The lower bound examples,
which are carefully designed to exhibit the worst-case behavior, are unrealistic in practice.
For realistic scenes, Durand et al. [57] observe a quadratic growth rate, albeit for rather
small scenes. For random scenes, Devillers et al. [46] prove that the expected size of the
visibility complex is much smaller; for uniformly distributed unit balls the expected size
is linear and for polygons or polyhedra of bounded aspect ratio and similar size it is at
most quadratic. Also, in 2D, while the worst-case complexity of the visibility complex is
quadratic, experimental results strongly suggest that the size of the visibility complex of
a scene consisting of scattered triangles is linear [36].

While these results are encouraging, most scenes are not random. In fact, most scenes
have a lot of structure which we can exploit; a scene is typically represented by many
triangles which form a much smaller number of convex patches. In particular, if a scene
consists of k disjoint convex polyhedra with a total of n edges, then under a strong general
position assumption, the number of maximal free line segments tangent to four of the
polyhedra is at most O(n2k2); this follows directly from the bound proved in [59] on the
number of combinatorial changes of the silhouette map viewed from a point moving along
a straight line, and was also later proved in [26]. We present in this paper a generalization
of these results. After preliminary definitions, we give a detailed account of our results
and then present related previous work.

Preliminary definitions. We consider a scene that consists of a finite number of poly-
topes, not necessarily disjoint, not necessarily fully dimensional, and in arbitrary position.
The definitions below are standard, yet carefully phrased in a way that remains valid in
those situations.

A polytope is the convex hull of a point set. A plane is tangent to a polytope if it
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intersects the polytope and bounds a closed half-space that contains the polytope. A face,
an edge, or a vertex of a polytope in R3 is the 2, 1 or 0-dimensional intersection of the
polytope with a tangent plane. Note that, with this usual definition of polytopes, edges
and faces are closed and they are not subdivided in any way.

A line or segment is tangent to a polytope (whether or not the latter is fully dimen-
sional) if it intersects the polytope and is contained in a tangent plane. In a given plane,
a line is tangent to a polygon if it intersects the polygon and bounds a closed half-plane
that contains the polygon. With these definitions, given a polygon in a plane π, and a
line contained in π that intersects the relative interior of this polygon, the line is tangent
to the polygon when considered as a polytope in R3, but not tangent to the polygon in
the plane π.

The set of lines in R3 has a natural topological structure, namely, that of Plücker
space [102]. The set of lines tangent to at least four polytopes is a subspace, whose
connected components correspond to lines that can be continuously moved one into the
other while remaining tangent to at least four polytopes.10 A line or line segment is
free if it is tangent to each polytope that its relative interior intersects;11 otherwise it is
occluded. A free line segment is a maximal free line segment if it is not properly contained
into another free line segment. The space of line segments also has a natural topological
structure and the connected components of maximal free line segments tangent to at least
four among the k polytopes are defined similarly as for lines.

A support vertex of a line is a polytope vertex that lies on the line. A support edge of a
line is a polytope edge that intersects the line but has no endpoint on it (a support edge
intersects the line at only one point of its relative interior). A support of a line is one of its
support vertices or support edges. The supports of a segment are defined similarly. Notice
that it follows from the definition of polytopes that any line has at most two supports in
any given polytope.

A line is isolated with respect to a set of edges and vertices if the line cannot be
moved continuously while remaining a common transversal to these edges and vertices.
Furthermore, we say that a set S of edges and vertices admits an isolated transversal if
these edges and vertices admit a common transversal that is isolated with respect to S.
Finally, a line is isolated if it is isolated with respect to a set of some, and hence all, of
its supports.

Our results. In this paper we present two types of results, combinatorial bounds and
algorithms.

Combinatorial bounds. We generalize the result of [26, 59] in two ways. First, we consider
polytopes that may intersect. We show that among k polytopes of total complexity n,
the number of lines tangent to any four of them is in the worst case either infinite or
Θ(n2k2). The most surprising aspect of this result is that the bound (which is tight) is
the same whether the polytopes intersect or not. This is in sharp contrast to the 2D
case, where the number of tangents of two convex polygons is always 4 if disjoint, and

10The set of polytopes to which the line is tangent might change during the motion.
11When the polytopes are fully dimensional, a segment is free if it does not intersect the interior of

any of them. Our definition ensures that a segment is free also when it intersects and is coplanar with a
two-dimensional polytope. The endpoints of a free segment may also lie on the boundary of a polytope.
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could be linear in the size of the polygons if they intersect. Second, we consider polytopes
in arbitrary position: we drop all general position assumptions. The polytopes may
intersect in any way; they may overlap or coincide. They may degenerate to polygons,
segments or points. While four polytopes in general position (as defined in [26]) admit
a finite number of common tangents, four polytopes in arbitrary position may admit an
infinite number of common tangents which can be partitioned into connected components.

Our main results are, more precisely, the following.

Theorem 17. Given k polytopes in R3 with n edges in total, there are, in the worst case,
Θ(n2k2) connected components of maximal free line segments tangent to at least four of
the polytopes. This bound also holds for connected components of possibly occluded lines
tangent to at least four of the polytopes.

These results improve the trivial bound of O(n4). Note that, when k 6= 4, neither of
the two results stated in Theorem 17 implies the other since a line tangent to at least four
among k polytopes may contain many, but does not necessarily contain any, maximal free
line segments tangent to four polytopes.

When k = 4, Theorem 17 implies that there are Θ(n2) connected components of lines
tangent to the four polytopes, an improvement on the previously known upper bound
of O(n3 log n) which follows from the same bound on the complexity of the set of line
transversals to a set of polyhedra (here four) with n edges in total [3]. Moreover, we
prove a tighter bound when one of the four polytopes has few edges.

Theorem 18. Given 3 polytopes with n edges in total and one polytope with m edges,
there are, in the worst case, Θ(mn) connected components of lines tangent to the four
polytopes.

We also prove the following result which is more powerful, though more technical,
than Theorem 17. Whereas Theorem 17 bounds the number of connected components
of tangents, Theorem 19 bounds the number of isolated tangents with some notion of
multiplicity. For example, the line in Figure 6.2 is counted

(

k
2

)

times which is the number
of minimal sets of vertices that admit that line as an isolated transversal. Although
neither theorem implies the other, we will prove in Proposition 39 that the upper bound
of Theorem 17 is easily proved using Theorem 19.

Theorem 19. Given k polytopes in R3 with n edges in total, there are, in the worst case,
Θ(n2k2) minimal sets of open edges and vertices, chosen from some of the polytopes, that
admit a possibly occluded isolated transversal that is tangent to these polytopes.

Algorithm. We now turn our attention to the computation of all free segments that are
isolated transversals to their set of supports and tangent to the corresponding polytopes.
Durand et al. [56] proposed an algorithm for this problem with worst-case time complexity
O((n3 + p) log n) where p is the output size; this algorithm, based on a double-sweep, has
proven to be difficult to implement. Durand et al. also presented an algorithm with Θ(n5)
worst-case time complexity that incorporates interesting heuristics leading to reasonable
performance in practice [57]. We present an algorithm that uses, in the worst case,
O(n2k2 log n) time and O(nk2) space, is readily implementable, and uses only simple data
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Figure 6.2: A line tangent at a vertex of each of k polytopes.

structures. The polytopes may intersect and be in arbitrary position. A preliminary
version of this algorithm was described for disjoint convex polyhedra in X. Goaoc’s Ph.D.
thesis [65].

Theorem 20. Given k polytopes in R3 with n edges in total, we can compute all the
possibly occluded lines that are isolated transversals to their set of supports and tangent to
the corresponding polytopes in O(n2k2 log n) time and O(nk) space. We can also compute,
in O(n2k2 log n) time and O(nk2) space, all the minimal free segments that are isolated
transversals to their set of supports and tangent to the corresponding polytopes.

It should be noted that our algorithm does not provide the endpoints (possibly at infin-
ity) of the maximal free segments. Computing the endpoints of each such segment can be
done by shooting rays in O(log2 n) time per ray using O((nk)2+ǫ) preprocessing time and
storage [6]. Such ray-shooting data structures are not, however, readily implementable.
Alternatively, each ray-shooting query can be answered in O(k log n) time after O(n log n)
preprocessing time and using additional O(n) space by applying the Dobkin-Kirkpatrick
hierarchy on each polytope [47].

To emphasize the importance of considering intersecting polytopes, observe that com-
puter graphics scenes often contain non-convex objects. These objects, however, can be
decomposed into sets of convex polyhedra. Notice that simply decomposing these objects
into convex polyhedra with disjoint interiors may induce a scene of much higher complex-
ity than a decomposition into intersecting polytopes. Moreover, the decomposition of a
polyhedron into interior-disjoint polytopes may introduce new tangents which were not
present in the original scene; indeed a line tangent to two polytopes along a shared face
is not tangent to their union.

The importance of considering polytopes in arbitrary position comes from the fact
that graphics scenes are full of degeneracies both in the sense that four polytopes may
admit infinitely many tangents and that polytopes may share edges or faces. There may
actually be more connected components of tangents when the objects are in degenerate
position; this is, for instance, the case for line segments [29]. Also, we could not find
a perturbation argument that guarantees the preservation of all (or at least a constant
fraction of) the connected components of tangents and we do not believe that finding such
a perturbation is a simple matter.
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Worst-case Expected

free lines to a polyhedron Θ(n4) (trivial)

free lines above a polyhedral terrain O(n32c
√

log n) [67, 89]
free lines among disjoint homothetic polytopes Ω(n3) [41]

free lines among unit balls Ω(n2) [46], O(n3+ǫ) [5] Θ(n) [46]
max. free segments above a polyhedral terrain Θ(n4) [39]

isolated maximal free segments among
k generic disjoint convex polyhedra

Θ(n2k2) [59, 26]

max. free segments among unit balls Ω(n2) [46], O(n4) Θ(n) [46]

Table 6.1: Published bounds on the complexity of the set of free lines or maximal free
line segments among objects of total complexity n. The expected complexities are given
for the uniform distribution of the balls centers.

Related results. Previous results on this topic include those that bound the complex-
ity of sets of free lines or free line segments among different sets of objects. They are
summarized in Table 6.1.

Recently, Agarwal et al. [5] proved that the set of free lines among n unit balls has
complexity O(n3+ǫ). Devillers et al. showed a simple bound of Ω(n2) [46] for this problem.

The complexity of the set of free line segments among n balls is trivially O(n4). Dev-
illers and Ramos showed that the set of free line segments can have complexity Ω(n3)
(personal communication 2001, see also [46]). When the balls are unit size, the Ω(n2)
lower bound for the set of free lines holds. A lower bound of Ω(n4) that applies to either
case appears in Chapter 9.

We mention two results for polyhedral environments. Halperin and Sharir [67] and
Pellegrini [89] proved that, in a polyhedral terrain with n edges, the set of free lines has
near-cubic complexity. De Berg, Everett and Guibas [41] showed a Ω(n3) lower bound on
the complexity of the set of free lines (and thus free segments) among n disjoint homothetic
convex polyhedra.

This paper is organized as follows. We prove the upper bounds of Theorems 17, 18,
and 19 in Sections 6.2 and 6.3, and the lower bounds in Section 6.4. In section 6.5, we
present our algorithm for computing free segments.

6.2 Main lemma

We prove in this section a lemma which is fundamental for the proofs of the upper bounds
of Theorems 17, 18, and 19. Consider four polytopes P, Q, R, and S in R3, with p, q, r,
and s > 1 edges, respectively, and let e be an edge of S.

Main Lemma. There are O(p + q + r) isolated lines intersecting e and tangent to P,
Q, R and S excluding those that lie in planes that contain e and are tangent to all four
polytopes.

The proof of the Main Lemma is rather complicated because it handles polytopes
which may intersect as well as all the degenerate cases. To assist the reader, we first give
an overview of the proof. We then state preliminaries and definitions in Section 6.2.2. In
Sections 6.2.3 and 6.2.4, we bound the number of so-called “generic tangent lines”. In Sec-
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Figure 6.3: Plane Πt contains edge e and intersects polytopes P, Q, and R in polygons
Pt, Qt, and Rt.

tion 6.2.5, we bound the number of “non-generic tangent lines”. Finally, in Section 6.2.6,
we pull these results together to conclude the proof of the Main Lemma.

6.2.1 Proof overview

The proof is inspired by a method which was, to our knowledge, first used in [20] (and later
in [42, 59, 26]). We present here an overview of the proof in which we do not address most
of the problems arising from degeneracies. In particular, some definitions and remarks
will require more elaboration in the context of the complete proof.

We sweep the space with a plane Πt rotating about the line containing e. The sweep
plane intersects the three polytopes P, Q, and R in three, possibly degenerate or empty,
convex polygons denoted Pt, Qt, and Rt, respectively (see Figure 6.3). During the sweep,
we track the bitangents, that is, the lines tangent to Pt and Qt, or to Qt and Rt, in Πt. As
the sweep plane rotates, the three polygons deform and the bitangents move accordingly.
Every time two bitangents become aligned during the sweep, the common line they form
is tangent to P, Q, and R.

In any given instance of the sweep plane Πt, we consider the pairs of bitangents (one
involving Pt and Qt, and the other Qt and Rt) that share a vertex of Qt (see Figure 6.3).
The isolated lines intersecting e and tangent to P, Q, R and S are isolated transver-
sals with respect to a tuple of supports that consists of e and the supports of two such
bitangents. We consider all candidate such tuples of supports as the sweep plane rotates.

Such a tuple induced by an instance of the sweep plane changes as the plane rotates
only when a support of a bitangent changes. We define critical planes in such a way
that the supports of the bitangents do not change as the sweep plane rotates between
two consecutive critical planes. As the sweep plane rotates, the supports of a bitangent
change if a support starts or ceases to be swept, or if, during its motion, the bitangent
becomes tangent to one of the polygons along an edge of that polygon (see Figure 6.4).
In the latter case, this means that the bitangent crosses a face or contains an edge of one
of the polytopes. We thus define two types of critical planes: an instance of the sweep
plane is critical if it contains a vertex of one of the polytopes, or if it contains a line that
lies in the plane containing a face of one of the polytopes, and is tangent to another of
the polytopes (see Figures 6.4 and 6.5). We will show that the number of critical planes
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Πt−ε
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Figure 6.4: A bitangent to Pt and Qt is tangent to Pt along an edge. The plane Πt is
F-critical.

is O(p + q + r).
When the polytopes intersect there may exist a linear number of bitangents in an

instance of the sweep plane (two intersecting convex polygons may admit a linear number
of bitangents, as is the case for two regular n-gons where one is a rotation of the other
about its center). Thus there can be a linear number of candidate tuples induced by
any instance of the sweep plane, and the linear number of critical planes leads to a
quadratic bound on the total number of distinct candidate tuples. In the detailed proof
of the lemma, we amortize the count of candidate tuples over all the critical planes to
get a linear bound on the number of distinct candidate tuples and thus on the number
of isolated lines intersecting e and tangent to P, Q, R and S; this bound will however
not hold for those isolated lines that lie in planes that contain e and are tangent to all
four polytopes. Indeed, the number of such isolated tangent lines can be quadratic, in
degenerate cases; for instance, four polytopes such that a plane contains edge e and a
face of linear complexity from each other polytope may admit in this plane a quadratic
number of such isolated tangent lines (one through each of a quadratic number of pairs
of vertices).

6.2.2 Preliminaries and definitions

We can assume without loss of generality that P, Q, R and S have non-empty interior.
Indeed, since the set of isolated tangent lines to the four polytopes is zero-dimensional,
there is always room to extend any polytope with empty interior in such a way that none
of the original isolated tangent lines are lost.

We say that a line properly intersects a polygon if it intersects its relative interior. In
the sequel, we use this definition only when the line and polygon are coplanar. Notice
that a line that contains a segment is tangent to the segment as well as properly intersects
it.
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Let le be the line containing e and let Πt denote the sweep plane parameterized by
t ∈ [0, π] such that Πt contains the line le for all t and Π0 = Ππ. Each plane Πt intersects
the three polytopes P, Q, and R in three, possibly degenerate or empty, convex polygons,
Pt, Qt, and Rt, respectively (see Figure 6.3).

For any t, a bitangent to polygons Pt and Qt is a line tangent to Pt and Qt in Πt

(the line may intersect the polygon Rt in any way, possibly not at all). For any t, let a
(Pt, Qt)-tuple be the unordered set of all supports in P and Q of one of the bitangents
to polygons Pt and Qt. Note that a support in P may be identical to a support in Q, in
which case the (Pt, Qt)-tuple does not contain duplicates. Also note that a (Pt, Qt)-tuple
consists of exactly one support in P and one support in Q (possibly identical) except
when the corresponding bitangent is tangent to P (or Q) along a face (either intersecting
the face properly or containing one of its edges); then the (Pt, Qt)-tuple contains two
supports in P (or Q) instead of one. A PQ-tuple is a set of edges and vertices that is a
(Pt, Qt)-tuple for some t. We define similarly the (Qt, Rt)-tuples and QR-tuples.

We say that a (Pt, Qt)-tuple is maximal for some t if it is not contained in any other
(Pt, Qt)-tuple, for the same t. Note that a (Pt, Qt)-tuple is non-maximal for some t if and
only if all its supports intersect Πt in one and the same point, and Pt and Qt are not equal
to one and the same point (see Figure 6.7(b)).

For any t, let a (Pt, Qt, Rt)-tuple be the union of a (Pt, Qt)-tuple and a (Qt, Rt)-tuple
that share at least one support in Q. A (Pt, Qt, Rt)-tuple is maximal for some t if it is
not contained in any other (Pt, Qt, Rt)-tuple, for the same t. A PQR-tuple is a set of
edges and vertices that is a (Pt, Qt, Rt)-tuple for some t. Note that a PQR-tuple typically
consists of three supports, one from each polytope, and consists, in all cases, of at most
two supports in P, at most three supports in Q, and at most two supports in R.

A line intersecting e and tangent to P, Q, R and S is called a generic tangent line
if and only if it intersects S only on e and is tangent to Pt, Qt, and Rt in some plane
Πt. Otherwise it is called a non-generic tangent line. A non-generic tangent line properly
intersects a face of S or properly intersects Pt, Qt, or Rt in some plane Πt. In the latter
case Pt, Qt, or Rt is a face or an edge of P, Q, or R lying in Πt; thus a non-generic
tangent line is (in both cases) tangent to P, Q, R and S in a plane containing a face or
two edges of these polytopes, a degenerate situation.

In the following three subsections, we bound the number of generic and non-generic
tangent lines. It is helpful to keep in mind that, as observed earlier, two convex polygons
in a plane Πt (such as Pt and Qt) may admit a linear number of tangents if they intersect.

6.2.3 Generic tangent lines

Lemma 21. The set of supports in P, Q, and R of a generic tangent line is a PQR-tuple.

Proof. Any generic tangent line ℓ is tangent in Πt to Pt, Qt, and Rt for some value t.
Thus the set of supports of ℓ in P and Q (resp. in Q and R) is a (Pt, Qt)-tuple (resp.
a (Qt, Rt)-tuple). Moreover the (Pt, Qt)-tuple and the (Qt, Rt)-tuple contain the same
supports in Q, and thus their union is a (Pt, Qt, Rt)-tuple, hence a PQR-tuple.



64Chapter 6. Lines and free line segments tangent to arbitrary three-dimensional convex polyhedra

Q

P

Pt

Rt

Πt

Q ∩ Ψ

Qt

e

le

R

Figure 6.5: Plane Πt is F -critical: it contains a line that lies in a plane Ψ containing a
face of P such that the line is tangent to Q ∩Ψ at a point not on le.

We now define the critical planes Πt in such a way that, as we will later prove, the
set of (Pt, Qt, Rt)-tuples is invariant for t ranging strictly between two consecutive critical
values. We introduce two types of critical planes: the V-critical and F-critical planes.

A plane Πt is V-critical if it contains a vertex of P, Q, or R, not on le. (The constraint
that the vertex does not lie on le ensures that the number of V-critical planes is finite
even in degenerate configurations.) A plane Πt is F-critical relative to an ordered pair of
polytopes (P,Q) if (see Figure 6.5) it contains a line ℓ such that

(i) ℓ lies in a plane Ψ 6= Πt containing a face of P, and
(ii) ℓ is tangent in Ψ to polygon Q ∩Ψ or P ∩Ψ, at some point not on le.

For simplicity, we do not require that ℓ is tangent to P; this leads to overestimating the
number of common tangents to P, Q, R, and S but only by an asymptotically negligible
amount. Note that not all lines in Ψ tangent to Q are tangent to the polygon Q ∩ Ψ
when that polygon is a face or edge of Q lying in Ψ. Note also that we define Πt to be
F-critical when ℓ is tangent to P ∩ Ψ at some point not on le only for handling the very
degenerate case where Q ∩ Ψ is an edge of Q and there exists a line in Ψ that properly
intersects Q ∩ Ψ and is tangent to P ∩ Ψ along an edge that has an endpoint on le (see
Figure 6.6). Note finally that if ℓ ∈ Πt satisfies (i) and is tangent, in Ψ, to P∩Ψ at some
point not on le then polytope Q plays no role and thus Πt is F-critical relative to (P,Q)
for all polytopes Q.

F-critical planes relative to (Q,P), (Q,R), and (R,Q) are defined similarly. A plane
Πt is F-critical if it is F-critical relative to pairs of polytopes (P,Q), (Q,P), (Q,R), or
(R,Q).

The values of t corresponding to critical planes Πt are called critical values. We call
V-critical and F-critical events the ordered pairs (t, o) where t is a critical value and o
is a vertex or line depending on the type of critical event. In a V-critical event, o is a
vertex of P, Q, or R that belongs to Πt \ le. In an F-critical event, o is a line lying in
some plane Πt and satisfying Conditions (i-ii) above. A critical event is a V-critical or
F-critical event.

Lemma 22. There are at most 2
3
(p+ q + r) V-critical events and 8

3
(p+ 2 q + r) F-critical
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Figure 6.6: Plane Πt∗ contains a line m such that (i) m lies in a plane Ψ 6= Πt∗ containing
a face of P, and (ii) m is tangent to polygon P∩Ψ at some point not on le; however m is
not tangent to Q∩Ψ. If the definition of F-critical planes was not considering such plane
Πt∗ to be F-critical then Lemma 23 would not hold. Indeed the set u of supports of line
Πt∗−ε ∩ Ψ is a maximal (Pt, Qt)-tuple for some but not all t in any open neighborhood
of t∗, and, although Πt∗ is V-critical, there exists no V-critical event (t∗, v) such that u
contains v or an edge with endpoint v.

events.

Proof. The number of V-critical events is at most the total number of vertices of P, Q,
and R, and hence is less than two thirds the total number of edges of P, Q, and R.
We now count the number of F-critical events relative to polytopes (P,Q). Let Ψ be
a plane containing a face of P, and suppose that for some plane Πt, line ℓ = Πt ∩ Ψ
satisfies Conditions (i-ii). Plane Ψ does not contain le because otherwise both le and ℓ lie
in the two distinct planes Ψ and Πt, so ℓ = le but then ℓ cannot satisfy Condition (ii).
Furthermore ℓ and le intersect or are parallel since they both lie in Πt. Thus if Ψ ∩ le is
a point then ℓ contains it, and otherwise Ψ ∩ le = ∅ and ℓ is parallel to le.

If Ψ ∩ le is a point, there are at most four candidates for a line ℓ in plane Ψ going
through Ψ∩ le and tangent to Q∩Ψ or P∩Ψ at some point not on le. Likewise, if Ψ∩ le
is empty, there are at most four candidates for a line ℓ in plane Ψ that is parallel to le
and tangent to Q ∩ Ψ or P ∩ Ψ. In either case, each candidate line is contained in a
unique plane Πt, for t ∈ [0, π], since ℓ 6= le (ℓ contains a point not on le). Hence, a face
of P generates at most four F-critical events relative to (P,Q). Therefore the number of
critical events relative to (P,Q) is at most 8

3
p since the number of faces of a polytope is

at most two thirds the number of its edges. Hence the number of critical events relative
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Figure 6.7: Lines through x in Πt and tangent to Pt and Qt.

to (P,Q), (Q,P), (Q,R) and (R,Q) is at most 8
3
(p + 2 q + r).

The following lemma states that the critical planes have the desired property. Let ue

be the set of supports of le in P and Q and let u denote some (Pt, Qt)-tuple.

Lemma 23. Let t∗ be the endpoint of a maximal interval12 throughout which u 6= ue is
a maximal (Pt, Qt)-tuple. Then t∗ is a critical value. Moreover, there exists a V-critical
event (t∗, v) or a F-critical event (t∗, m) such that u contains v or an edge with endpoint
v, or u is contained in the set of supports of m.

The proof of this lemma is rather long and intricate; we postpone it to Section 6.2.4.
Note that, as stated, this lemma only applies under the assumptions that u is maximal and
distinct from ue. These assumptions are made in order to simplify the proof of Lemma 23;
we don’t suggest that the lemma is false without them.

Lemma 24. Any edge or vertex of P or Q is in at most 2 PQ-tuples that are maximal
(Pt, Qt)-tuples for all t in any given non-empty interval12of R/πZ.

Proof. Let t̃ be an element of a non-empty interval I of R/πZ and x be an edge or vertex
of P or Q. If x does not intersect Πt̃ then no (Pt̃, Qt̃)-tuple contains x. If x intersects
Πt̃ in one point then there are, in general, at most two lines in Πt̃ going through x and
tangent to Pt̃ and Qt̃ (see Figure 6.7(a)); in all cases there are at most 3 (Pt̃, Qt̃)-tuples
containing x (see Figure 6.7(b)), however at most 2 of them are maximal. If x intersects
Πt̃ in more than one point, x is an edge lying in Πt̃. Then any line in Πt̃ intersecting x and
tangent to Pt̃ and Qt̃ contains an endpoint of x and thus x belongs to no (Pt̃, Qt̃)-tuple.

Hence at most 2 PQ-tuples contain x and are maximal (Pt, Qt)-tuples for t = t̃, and
thus at most 2 PQ-tuples contain x and are maximal (Pt, Qt)-tuples for all t in I.

Lemma 25. There are at most O(p + q + r) PQR-tuples.

Proof. In order to count the number of distinct (Pt, Qt, Rt)-tuples, we charge each maxi-
mal (Pt, Qt, Rt)-tuple to a critical event. We then show that each critical event is charged
at most a constant number of times. It then follows from Lemma 22 that there are
O(p + q + r) distinct maximal (Pt, Qt, Rt)-tuples. A maximal (Pt, Qt, Rt)-tuple consists
of at most two supports in P, at most three supports in Q, and at most two supports in
R, and thus contains at most (22 − 1)(23 − 1)(22 − 1) distinct subsets with at least one

12Such an interval could be open or closed, a single point or an interval of positive length.
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support in each of P, Q and R. Each maximal (Pt, Qt, Rt)-tuple thus contains at most a
constant number of distinct (Pt, Qt, Rt)-tuples, which implies the result.

Let s be a maximal (Pt, Qt, Rt)-tuple and let I be any maximal connected subset of
R/πZ such that s is a maximal (Pt, Qt, Rt)-tuple for all t ∈ I. Let u be a maximal
(Pt, Qt)-tuple and u′ a maximal (Qt, Rt)-tuple such that the union of u and u′ is s and
such that u and u′ share at least one support in Q.

First, suppose that I = R/πZ. Then u is a maximal (Pt, Qt)-tuple for all t ∈ R/πZ.
Thus each support in u intersects Πt for all t ∈ R/πZ and thus intersects le; moreover
each support in u intersects Πt only on le for all t ∈ R/πZ except possibly for one value
of t. Since P and Q have non-empty interior, Pt ∪ Qt is not reduced to a point for all t
in some interval of positive length. For all t in such an interval, since u is maximal, the
union of the supports in u intersects Πt in at least two distinct points. These at least
two distinct points lie on le for some values of t by the above argument. Thus, for these
values of t, le is the only line in Πt whose set of supports contains u. Hence u is the set
of supports of le. The same property holds for v and thus s is also the set of supports
of le. We can thus assume in the following that I 6= R/πZ, and only count the maximal
(Pt, Qt, Rt)-tuples that are not the set of supports of le.

Interval I is thus a non-empty interval of R/πZ; it can be open or closed, a single
point or an interval of positive length. Let w0 and w1 denote the endpoints of I 6= R/πZ.

If s contains a vertex v, or an edge with endpoint v, such that v lies in Πwi
\ le, for

i = 0 or 1, then we charge s to the V-critical event (wi, v). Otherwise, we charge s to an
F-critical event (wi, m) where m is a line in Πwi

whose set of supports contains u or u′.
Such a V-critical or F-critical event exists by Lemma 23.

We now prove that each critical event is charged by at most a constant number of
distinct maximal (Pt, Qt, Rt)-tuples. As mentioned before, that will imply the result.

Consider a V-critical event (t∗, v) that is charged by a maximal (Pt, Qt, Rt)-tuple s.
By the charging scheme, s contains a support x that is v or an edge with endpoint v, and
s is a maximal (Pt, Qt, Rt)-tuple for all t in at least one of three intervals, {t∗} and two
open intervals having t∗ as endpoint; denote these intervals by I1, I2, I3.

By Lemma 24, at most 2 PQ-tuples contain x and are maximal (Pt, Qt)-tuples for all
t in Ii. Moreover, each of these PQ-tuples contains at most 2 supports in Q, and each of
these supports belongs to at most 2 QR-tuples that are maximal (Qt, Rt)-tuples for all t
in Ii. Thus at most 8 PQR-tuples contain x and are maximal (Pt, Qt, Rt)-tuples for all
t in Ii, for each i = 1, . . . , 3. Hence any V-critical event (t∗, v) is charged by at most 24
distinct maximal (Pt, Qt, Rt)-tuples.

Consider now an F-critical event (t∗, m) that is charged by a maximal (Pt, Qt, Rt)-
tuple s, and define as before u and u′. By the charging scheme, the set of supports of
m contains u or u′ (or both); suppose without loss of generality that it contains u. The
set of supports of m contains at most two supports in P and at most two supports in Q.
Since u contains at least one support in P and at least one support in Q, there are at
most 32 choices for u.

By the charging scheme, s is a maximal (Pt, Qt, Rt)-tuple for all t in at least one
of 3 intervals, {t∗} and two open intervals having t∗ as endpoint; denote by I1, I2, I3

these intervals. It follows from Lemma 24 that, for each support x of Q in u, at most 2
QR-tuples contain x and are maximal (Qt, Rt)-tuples for all t in Ii. There are at most
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32 choices for u (as shown above), 2 for x, 3 for i and 2 for the QR-tuples containing
x. Hence any F-critical event (t∗, m) is charged by at most 22 × 33 distinct maximal
(Pt, Qt, Rt)-tuples.

Therefore each critical event is charged by at most a constant number of distinct
maximal (Pt, Qt, Rt)-tuples, which concludes the proof.

Corollary 26. There are at most O(p + q) PQ-tuples.

Proof. Replace R by a copy of Q in Lemma 25. Any PQ-tuple is also a PQQ-tuple, and
there are at most O(p + q + q) = O(p + q) of these.

Proposition 27. There are O(p + q + r) isolated generic tangent lines.

Proof. A generic tangent line is transversal to e and to the edges and vertices of a PQR-
tuple, by definition and Lemma 21. An isolated generic tangent line is thus an isolated
transversal with respect to a set of edges and vertices that consists of a PQR-tuple and
either edge e or one or both of its endpoints. The number of such sets is four times the
number of PQR-tuples, which is in O(p + q + r) by Lemma 25. The result follows since
each such set consists of at most eight edges and vertices (at most two supports from each
of the four polytopes) and thus admits at most eight isolated transversals [29].

6.2.4 Proof of Lemma 23

Recall that ue denotes the set of supports of le in P and Q, and that Lemma 23 states
the following.

Let t∗ be the endpoint of a maximal interval throughout which u 6= ue is a
maximal (Pt, Qt)-tuple. Then t∗ is a critical value. Moreover, there exists a
V-critical event (t∗, v) or a F-critical event (t∗, m) such that u contains v or
an edge with endpoint v, or u is contained in the set of supports of m.

We can assume that u contains no vertex v and no edge with endpoint v, such that v
lies on Πt∗ \ le because otherwise (t∗, v) is a V-critical event such that u contains v or an
edge with endpoint v, which concludes the proof.

We prove a series of lemmas that yields Lemma 23. Indeed, we prove the existence
of a line m in Πt∗ whose set of supports contains u (Lemma 30) such that (i) m lies in a
plane Ψ 6= Πt∗ containing a face of P (Lemma 31), and (ii) m is tangent in Ψ to polygon
Q ∩ Ψ or P ∩ Ψ, at some point not on le (Lemma 32). This proves that Πt∗ contains a
line m whose set of supports contains u and such that (t∗, m) is an F-critical event, which
concludes the proof.

By hypothesis, for any sufficiently small open neighborhood N of t∗ whose endpoints
are denoted by t0 and t1, u is not a maximal (Pt, Qt)-tuple for some t ∈ N and u is a
maximal (Pt, Qt)-tuple for t = t∗ or for all t ∈ (t∗, t1) (or by symmetry for all t ∈ (t0, t

∗)).
We only consider in the following supports in P and in Q; polytope R plays no role.

We start by proving two preliminary lemmas.
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Lemma 28. Each support in u intersects Πt in exactly one point (possibly on le), for all
t in any sufficiently small open neighborhood N of t∗.

Moreover, the union of all supports in u intersects Πt in at least two distinct points
for all t 6= t∗ in N. This property also holds for t = t∗ if u is a maximal (Pt∗ , Qt∗)-tuple.

Proof. Since u is a (Pt, Qt)-tuple for some t in every open neighborhood of t∗, each support
in u intersects Πt for some t in every open neighborhood of t∗. It thus follows from the
assumption that u contains no vertex v and no edge with endpoint v, such that v lies
on Πt∗ \ le, that each support in u intersects Πt for all t in any sufficiently small open
neighborhood N of t∗. It follows that each support in u either lies in le or intersects Πt

in exactly one point for all t ∈ N. However, no edge of u lies in le because otherwise, if
x denotes such an edge of, say, P, then any line tangent to Pt in Πt and intersecting x
contains an endpoint of x which is a vertex of P; thus, by definition, u does not contain
x but one of its endpoints. Hence each support of u intersects Πt in exactly one point for
all t ∈ N.

We now prove that the union of the supports in u intersects Πt in at least two distinct
points for any t ∈ N such that u is a maximal (Pt, Qt)-tuple. Suppose for a contradiction
that the union of the supports in u intersects Πt in one single point v for some t ∈ N such
that u is a maximal (Pt, Qt)-tuple. Then polygons Pt and Qt are both reduced to point
v because otherwise u is not maximal (otherwise, a line in Πt tangent to Pt and Qt at v
can be rotated about v until it becomes tangent to Pt or Qt at some other points). Thus
v = Pt = Qt is a vertex of P and of Q because the polytopes have non-empty interior.
Hence u = {v} because each support in u contains v. It follows that v lies on le since each
support in u intersects Πt for all t ∈ N. Moreover, since Pt and Qt are both reduced to
point v = le ∩P = le ∩Q, the set ue of supports of le is u, contradicting the hypotheses
of Lemma 23.

Thus, if u is a maximal (Pt, Qt)-tuple for all t ∈ (t∗, t1), the union of the supports in
u intersects Πt in at least two distinct points for all t ∈ (t∗, t1) and thus for all t 6= t∗

in any sufficiently small open neighborhood of t∗. Also, if u is a maximal (Pt, Qt)-tuple
for t = t∗, the union of the supports in u intersects Πt in at least two distinct points for
t = t∗ and thus for all t in any sufficiently small open neighborhood of t∗.

Lemma 29. If u is a maximal (Pt∗ , Qt∗)-tuple then u consists of at least three supports.

Proof. Note that it follows from Lemma 28 that u contains at least two supports. Suppose
for a contradiction that u consists of only two supports. By Lemma 28, they intersect Πt

in exactly two distinct points for all t in any sufficiently small open neighborhood N of
t∗. Thus there exists for all t ∈ N a unique line mt in Πt whose set of supports contains
u; moreover mt is continuous in terms of t. Since u is a maximal (Pt∗ , Qt∗)-tuple, the set
of supports of mt∗ is u. Thus, for all t in any sufficiently small N, the set of supports of
mt is u. Thus the set of supports of mt is invariant for t ∈ N and since mt∗ is tangent to
Pt∗ and Qt∗ , line mt is tangent to Pt and Qt for all t ∈ N.

Hence, for all t ∈ N, line mt, whose set of supports is u, is tangent to Pt and Qt in
Πt. Thus u is a maximal (Pt, Qt)-tuple for all t ∈ N. Moreover, mt is the unique line
in Πt whose set of supports contains u, thus u is a maximal (Pt, Qt)-tuple for all t ∈ N,
contradicting the hypotheses of the lemma.
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Πt∗

m = Πt∗ ∩ Ψ

Pt∗

le

face of P in Ψ
Qt∗

Figure 6.8: Line m is tangent to P along a face in plane Ψ 6= Πt∗ .

Lemma 30. There exists a line m in Πt∗ whose set of supports contains u that is tangent
to Pt∗ and Qt∗ along an edge of one of them, say of Pt∗.

Proof. Consider first the case where u is a maximal (Pt∗ , Qt∗)-tuple. There exists in Πt∗

a line m tangent to Pt∗ and Qt∗ whose set of supports is u. By Lemma 29, the set u of
supports of m contains at least three supports, and hence at least two supports in P (or
in Q). Furthermore, the supports of m in one polytope intersect Πt∗ in distinct points
(by definition of supports). Thus m intersects Pt∗ (or Qt∗) in at least two distinct points
and is tangent to Pt∗ and Qt∗ . The result follows since Pt∗ (and Qt∗) is convex.

Consider now the case where u is a maximal (Pt, Qt)-tuple for all t ∈ (t∗, t1). Then, for
all t ∈ (t∗, t1), there exists a line in Πt tangent to Pt and Qt and whose set of supports is
u. Moreover, by Lemma 28, this line is unique for each t ∈ (t∗, t1) and varies continuously
in terms of t ∈ (t∗, t1). When t tends to t∗, the line tends to a line mt∗ in Πt∗ which is
tangent to Pt∗ and Qt∗ and whose set of supports contains u. If its set of supports strictly
contains u then mt∗ is tangent to Pt∗ and Qt∗ along an edge of one of them because the
polygons are convex, and hence we can choose m = mt∗ to complete the proof. Otherwise,
u is a (Pt∗ , Qt∗)-tuple.

We can suppose that u is a non-maximal (Pt∗ , Qt∗)-tuple since we already treated the
case where u is maximal. There exists in Πt∗ a line tangent to Pt∗ and Qt∗ whose set
of supports is u. Since u is non-maximal this line is tangent to Pt∗ and Qt∗ at a shared
vertex, and can be rotated about this vertex in Πt∗ until it becomes tangent to Pt∗ and
Qt∗ at some other points, which must occur because u is non-maximal; let m denote the
resulting line. The set of supports of m contains u and m is tangent to Pt∗ and Qt∗ along
an edge of one of them because the polygons are convex.

Lemma 31. Line m lies in a plane Ψ 6= Πt∗ containing a face of P.

Proof. By Lemma 30, m contains an edge of Pt∗ ; see Figure 6.8. This edge either intersects
the relative interior of some face of P in which case we take Ψ to be the plane containing
that face, or it is an edge of P in which case we take Ψ to be a plane, different from Πt∗ ,
containing one of the two faces of P incident to that edge.

Let mt be the line Ψ∩Πt for all t in any sufficiently small open neighborhood N of t∗;
line mt is well defined since Ψ ∩ Πt∗ is line m by Lemmas 30 and 31.

Lemma 32. Line m is tangent to P ∩Ψ or to Q ∩Ψ, at some point not on le.
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Ψ

m = Πt∗ ∩ Ψ

Πt∗+ε ∩ Ψ

Πt∗−ε ∩ Ψ

le

face of P in Ψ

face of Q in Ψ
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Ψ

m = Πt∗ ∩ Ψ

Πt∗+ε ∩ Ψ
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Q ∩ Ψ

le

face of P in Ψ

Figure 6.9: m is tangent to P along a face in Ψ and (a) to Q ∩Ψ only on le or (b) to Q

along a face in Ψ.

Proof. We assume for a contradiction that line m does not satisfy the lemma, i.e., m
is not tangent to P ∩ Ψ or to Q ∩ Ψ at any point other than on le. We prove that
the set of supports of m is u and is a maximal (Pt, Qt)-tuple for all t in any sufficiently
small neighborhood of t∗, contradicting the hypotheses of Lemma 23 and thus proving
Lemma 32.

Since m is tangent to Q (by Lemma 30), m is tangent to Q ∩ Ψ only on le (see
Figure 6.9(a)), or m properly intersects Q ∩Ψ which is then a face or an edge of Q (see
Figure 6.9(b))13. Similarly m is tangent to P ∩Ψ only on le, or m properly intersects it;
however P ∩Ψ is necessarily a face of P by Lemma 31.

The following Lemmas 33 and 34 imply that the set of supports of mt is invariant and
equal to u for all t in any sufficiently small open neighborhood N of t∗. Moreover, since
mt varies continuously with t and m = mt∗ is tangent to Pt∗ and Qt∗ (by Lemma 30), line
mt is tangent to Pt and Qt for all t ∈ N. Hence u is a (Pt, Qt)-tuple for all t ∈ N. We
now prove that u is a maximal (Pt, Qt)-tuple for all t ∈ N.

As we have seen before, m = mt∗ is tangent to P in at least two points (by Lemma 30),
thus mt∗ intersects its supports in at least two distinct points. Moreover the set of supports
of mt∗ is u. Thus there is a unique line in Πt∗ whose set of supports contains u. Hence u
is a maximal (Pt∗ , Qt∗)-tuple.

By Lemma 28, mt is the unique line in Πt whose set of supports contains u for all
t 6= t∗ in N. Thus u is a maximal (Pt, Qt)-tuple for all t 6= t∗ in N.

Hence u is a maximal (Pt, Qt)-tuple for all t ∈ N, contradicting the hypotheses of
Lemma 23 and thus concluding the proof of Lemma 32.

Lemma 33. The set of supports of mt is u for some t in any sufficiently small open
neighborhood N of t∗.

Proof. We first prove that the supports in u are supports of mt for all t ∈ N. A support
vertex in u lies on le by Lemma 28 and thus lies in Πt for all t. A support vertex in u also
lies on m by Lemma 30 and thus lies in plane Ψ by Lemma 31. Hence, for all t ∈ N, the
support vertices in u lie on mt, and thus are supports of mt.

13Note that in these two situations, two edges of two distinct polytopes are then coplanar (in the first
case an edge of Q and e are coplanar, and in the later case a face of P is coplanar with a face or an
edge of Q). Hence proving this lemma is straightforward under some general position assumption that
excludes such situations.



72Chapter 6. Lines and free line segments tangent to arbitrary three-dimensional convex polyhedra

In order to prove that the support edges in u are supports of mt, it is sufficient (by
Lemma 30) to prove that the support edges of m are supports of mt. The support edges
of m in P lie in plane Ψ (see Figure 6.9(b)) because Ψ contains m and a face of P (indeed
if m intersects an edge of P not in Ψ then m contains one of its endpoints, and thus the
edge is not a support). Thus all the support edges of m lie in Ψ and m contains none of
their endpoints (by definition). Since mt lies in Ψ for all t and mt∗ = m, line mt intersects
all the support edges of m and contains none of their endpoints for all t in any sufficiently
small open neighborhood N of t∗. Hence the support edges of m in P are supports of mt

for all t ∈ N.
Consider the case where Q ∩ Ψ is a face or an edge of Q. Similarly as for P, the

support edges of m in Q lie in plane Ψ, and thus are supports of mt for all t ∈ N.
Consider now the case where m is tangent to Q ∩ Ψ only on le at, say, point v (see

Figure 6.9(a)). Then v lies in Ψ (since m ⊂ Ψ by Lemma 31) and also lies in Πt for all t
(since le ⊂ Πt for all t). Hence mt contains v for all t ∈ N. Moreover, mt is tangent to
Q ∩ Ψ only at v for all t in any sufficiently small open neighborhood N of t∗. Hence the
set of supports of mt in Q is invariant for all t ∈ N.

We have so far proved that the set of supports of mt contains u for all t ∈ N.
We now prove that the set of supports of mt is u for some t ∈ N. Consider first the

case where u is a maximal (Pt∗ , Qt∗)-tuple. Then, by Lemma 28, the union of the supports
in u intersects Πt∗ in at least two distinct points, thus mt∗ = m is the only line in Πt∗

whose set of supports contains u. Moreover, since u is a (Pt∗ , Qt∗)-tuple, there exists a
line in Πt∗ whose set of supports is u. Hence the set of supports of mt∗ is u.

Consider now the case where u is a maximal (Pt, Qt)-tuple for all t ∈ (t∗, t1). By
Lemma 28, for all t ∈ (t∗, t1), the union of the supports in u intersects Πt in at least two
distinct points, thus mt is the only line in Πt whose set of supports contains u. For all
t ∈ (t∗, t1), since u is a (Pt, Qt)-tuple there exists a line in Πt whose set of supports is u.
Hence the set of supports of mt is u for all t ∈ (t∗, t1).

Lemma 34. The set of supports of mt is invariant for t ranging in any sufficiently small
open neighborhood N of t∗.

Proof. First if m = le then mt = le for all t ∈ N because Ψ contains m = le (by Lemma 31)
and Πt contains le for all t (by definition). Thus the set of supports of mt is invariant for
all t ∈ N. We now assume that m 6= le.

Line m is tangent to polygon Pt∗ along an edge by Lemma 30. Thus m is tangent to
P in at least two points. Hence, since P ∩ Ψ is a face of P and m lies in Ψ, either m
properly intersects P ∩ Ψ or m is tangent to P ∩ Ψ along one of its edges. In the later
case, the edge does not lie in le since m 6= le, thus m is tangent to P ∩ Ψ at some point
not on le, contradicting our assumptions. Hence m properly intersects the face of P in Ψ.

It follows that, if m contains a vertex of P, then this vertex is an endpoint of a support
edge of mt for all t in any sufficiently small open neighborhood of t∗ (indeed mt lies in
Ψ and tends to m when t tends to t∗). By Lemma 33, the set of supports of mt is u for
some t in any sufficiently small open neighborhood of t∗. Hence, if m contains a vertex of
P, this vertex is an endpoint of a support edge in u. By assumption u contains no edge
with endpoint on Πt∗ \ le, thus m contains no vertex of P except possibly on le (since m
lies in Πt∗). It thus follows that the set of supports of mt in P is invariant for t ranging
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in any sufficiently small open neighborhood of t∗ (since mt ⊂ Ψ tends to m when t tends
to t∗ and all supports of m lie in Ψ).

Now consider the case where m properly intersects Q∩Ψ which is a face or an edge of
Q. Similarly as for P, m contains no vertex of Q except possibly on le and thus the set of
supports of mt in Q is invariant for t ranging in any sufficiently small open neighborhood
of t∗.

Finally, consider the case where m is tangent to Q ∩ Ψ only on le. Then, as in the
proof of Lemma 33, the set of supports of mt in Q is invariant for all t ranging in any
sufficiently small open neighborhood of t∗, which concludes the proof.

6.2.5 Non-generic tangent lines

We count here the number of non-generic tangent lines. Note that, as mentioned before,
there are no such lines under some adequate general position assumption.

Proposition 35. There are at most O(p+q+r) isolated non-generic tangent lines except
possibly for those that lie in planes that contain e and are tangent to all four polytopes.

Proof. An isolated non-generic tangent line lies in plane Πt for some t and contains (at
least) two distinct points, each of which is a vertex of P, Q, R, or S, or a point of tangency
between the line and one of the polygons Pt, Qt, and Rt; indeed, otherwise the line can
be moved in Πt while keeping the same supports.

We count first the isolated non-generic tangent lines that contain two distinct points
of tangency with two of the polygons Pt, Qt, and Rt in Πt for some t. Consider such a
line ℓ tangent to, say, Pt and Qt in Πt. Line ℓ is non-generic and thus properly intersects
a face of S or a face or an edge of R lying in Πt. If ℓ properly intersects a face of S or a
face or an edge of R lying in Πt but not entirely contained in le, then Πt is one of the at
most four planes tangent to R or S. There are O(p+ q) lines tangent to Pt and Qt in two
distinct points in each of these planes and thus O(p + q) such lines in total. Otherwise,
Πt intersects each of R and S in an edge contained in le. The supports of ℓ are thus the
union of a PQ-tuple, and of, in each of R and S, the edge lying in le or one (or both)
of its endpoint. It follows that at most a constant number of such isolated non-generic
tangent lines contain a given PQ-tuple in its set of supports. Hence the number of such
lines is at most the number of PQ-tuples, which is in O(p+ q) by Corollary 26. It follows
that there are at most O(p + q + r) isolated non-generic tangent lines that contain two
distinct points of tangency with two of the polygons Pt, Qt, and Rt in Πt for some t. We
obtain similarly that there are at most O(p + q + r) isolated non-generic tangent lines
that contain two distinct points of tangency with only one the polygons Pt, Qt, and Rt.

We now count the isolated non-generic tangent lines that contain a unique vertex of
P, Q, R, or S and a unique point of tangency with the polygons Pt, Qt, and Rt in Πt for
some t. Each vertex v of P, Q, R, or S that does not lie on le is contained in a unique
plane Πt and there are, in that plane, at most six lines through v and tangent to Pt, Qt,
or Rt. There are thus O(p + q + r) such lines in total. Consider now a line ℓ through a
vertex v on le and tangent to Pt at w 6= v in Πt for some t. We can suppose that each of
Qt and Rt is either tangent to ℓ at w or is properly intersected by ℓ; indeed otherwise ℓ is
tangent to two polygons in two distinct points. If Qt (or Rt) is a face of Q (resp. R) or
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an edge not contained in le then Πt is one of the at most two planes tangent to Q (resp.
R) and, in each of these planes, there are at most two lines through v and tangent to Pt.
If Qt (or Rt) is tangent to ℓ at w such that the support edges of ℓ in P and in Q (resp.
R) are not collinear then ℓ goes through a vertex of P, Q, R, or S that lies on le, and
through a vertex of the intersection of two of these polytopes. There are at most eight
vertices of P, Q, R, and S on le and O(p + q + r) vertices on the intersection of two of
these polytopes. There are thus O(p + q + r) such lines in total. Otherwise, Qt (and Rt)
is an edge contained in le or is tangent to ℓ at w such that the support edges of ℓ in P

and in Q (resp. R) are collinear; then ℓ is not isolated.
We finally bound the number of isolated non-generic tangent lines that contain no

point of tangency with the polygons Pt, Qt, and Rt in Πt for any t (and thus contain at
least two vertices of P, Q, R, and S). Consider such a line ℓ that lies in plane Πt for
some t. Line ℓ is tangent to P, Q, and R and thus properly intersect Pt, Qt, and Rt in
plane Πt which is tangent to P, Q, and R. If plane Πt is not tangent to S, ℓ goes through
an endpoint of e (since ℓ is tangent to S) and there are O(p + q + r) such lines ℓ that go
through an endpoint of e and at least another vertex of P, Q, or R. If plane Πt is tangent
to S, line ℓ lies in a plane Πt tangent to P, Q, R, and S, which concludes the proof.

Note that there can be Ω(n2) isolated non-generic tangent lines that lie in a plane
tangent to all four polytopes. Consider, for instance, four polytopes that admit a common
tangent plane containing edge e, an edge e′ of P, and two faces of Q and R of linear
complexity such that all the lines through a vertex of each face intersect e and e′. All
these lines are isolated non-generic tangent lines.

6.2.6 Proof of the Main Lemma

Proposition 27, which handles the isolated generic tangent lines, and Proposition 35,
which handles the isolated non-generic tangent lines, directly yield the Main Lemma.

6.3 Upper bounds

We prove in this section the upper bounds of Theorems 17, 18, and 19. The lower bounds
are proved in Section 6.4. Consider k pairwise distinct polytopes P1,. . . , Pk with n1,. . . ,
nk edges, respectively, and n edges in total.

Lemma 36. For any edge e of Pi, there are O(nj + nl + nm) sets of open edges, chosen
from Pi, Pj, Pl, and Pm, that admit an isolated transversal that intersects e and is
tangent to these four polytopes.

Proof. Any isolated transversal to a set of edges is isolated with respect to the set of all its
supports. It is thus sufficient to bound the number of sets of open edges, chosen from Pi,
Pj, Pl, and Pm, that are intersected by an isolated line that intersects e and is tangent to
these four polytopes. The Main Lemma states that there are O(nj +nl+nm) isolated lines
intersecting e and tangent to Pi, Pj, Pl, and Pm, excluding those that lie in planes that
contain e and are tangent to all four polytopes. Any of these O(nj +nl +nm) isolated lines
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intersects at most two open edges in any polytope. Thus there are O(nj +nl +nm) sets of
open edges (chosen from Pi, Pj, Pl, and Pm) that are intersected by one of these isolated
lines. Now consider any isolated line that lies in a plane that contains e and is tangent
to all four polytopes. This plane contains all the open edges that are intersected by the
isolated line. Thus these edges (and any subset of them) admit no isolated transversal.

Lemma 37. A minimal set of open edges and vertices that admit an isolated transversal
consists of (i) two vertices, (ii) one vertex and one or two edges, or (iii) two, three, or
four edges.

Proof. Consider a minimal set of open edges and vertices that admits an isolated transver-
sal. The elements are necessarily distinct because the set is minimal. If the set contains
two vertices, it contains no other element since the two vertices admit a unique transversal.

Suppose now that the set contains one vertex. None of the open edges contain the
vertex because otherwise such an edge would be redundant. Thus, the vertex and any
segment define either a line, and thus admit an isolated transversal, or they define a plane.
If none of the other edges intersect that plane in a unique point, the vertex and all open
edges admit zero or infinitely many common transversals, a contradiction. Thus there
exists an edge that intersects the plane in a unique point. Hence, the vertex and two open
edges admit a unique transversal, and the minimal set contains no other element.

Suppose finally that the set only contains open edges. The characterization of the
transversals to a set of line segments [29] shows that either two, three or four of these
line segments admit at most two transversals, or that the set of common transversals to
all the open line segments can be parameterized by an open set of parameters in R2, R

or R/πZ. In the latter case, the edges admit no isolated transversal, a contradiction.
Hence, the minimal set of edges consists of two, three or four edges. (Note that two or
three edges may admit an isolated transversal if that transversal contains one or two of
the edges.)

We can now prove the upper bound of Theorem 19.

Proposition 38. There are O(n2k2) minimal sets of open edges and vertices, chosen from
some polytopes, that admit an isolated transversal that is tangent to these polytopes.

Proof. We bound the number of minimal sets depending of their type according to
Lemma 37. First, there are O(n2) pairs of vertices, pairs of edges, and sets of one vertex
and one edge. Hence, at most O(n2) such pairs admit an isolated transversal.

Consider a minimal set of one vertex and two open edges, chosen from some polytopes,
that admit an isolated transversal that is tangent to these polytopes. The open edges do
not contain the vertex because otherwise they admit no isolated transversal. Thus the
vertex and each edge define a plane. For each of the O(n2) planes defined by a vertex
and an open edge not containing it, there are O(k) lines in that plane that are tangent to
one of the polytopes at some point other than the vertex. Hence there are O(n2k) sets of
one vertex and two edges, chosen from some polytopes, that admit an isolated transversal
that is tangent to these polytopes.

It is straightforward to show that three open edges admit an isolated transversal only
if the line containing one of the edges intersects the two other edges. Since any line
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intersects at most two open edges in any of the k polytopes, there are O(nk2) sets of
three open edges that admit an isolated transversal.

Consider now the case of four edges, chosen from at most three polytopes, that admit
an isolated transversal that is tangent to these polytopes. The two edges chosen from
the same polytope belong to the same face, and the isolated transversal lies in the plane
containing that face. Each of the two other open edges intersects that plane in one point,
because otherwise the four open edges admit zero or infinitely many transversals. For
each of the O(n) planes containing a face of one of the polytopes, and each of the O(n)
edges intersecting that plane in exactly one point, there are at most 2k lines in that plane
that contain this point and are tangent to one of the k polytopes at some other point.
Hence there are O(n2k) sets of four open edges, chosen from at most three polytopes, that
admit an isolated transversal that is tangent to these polytopes.

We finally bound the number of sets of four edges, no two chosen from the same
polytope. By Lemma 36 and by summing over all n edges e of the polytopes, the number T
of sets of four open edges, chosen from four polytopes, that admits an isolated transversal
that is tangent to these four polytopes satisfies

T 6 n
∑

j<l<m

C (nj + nl + nm),

where C is some constant. Since each ni, 1 6 i 6 k, appears
(

k−1
2

)

times in the sum, it
follows that

T 6 C n
∑

16i6k

ni

(

k − 1

2

)

= C n2

(

k − 1

2

)

so T is in O(n2k2) as claimed.

The above result implies the following upper bounds and in particular those of Theo-
rem 17.

Proposition 39. There are O(n2k2) connected components of maximal free line segments
tangent to at least four of the polytopes. This bound also holds for connected components
of possibly occluded lines tangent to at least four of the polytopes. Furthermore, the same
bound holds for isolated such segments or lines.

Proof. We prove the proposition for possibly occluded lines tangent to at least four of the
polytopes; the proof is similar for maximal free line segments. By Proposition 38, there are
O(n2k2) minimal sets of open edges and vertices, chosen from some polytopes, that admit
an isolated transversal that is tangent to these polytopes. The bound on the number of
connected components thus follows from the fact that any connected component of lines
tangent to four polytopes contains an isolated line. Indeed, any non-isolated line can be
moved while keeping the same set of supports until (at the limit) the line intersects a new
edge or vertex. During the motion, the line remains tangent to all four polytopes since
it keeps the same supports (except at the limit); if the line has more than one degree of
freedom, this can be repeated until the line becomes isolated.

We now prove the upper bound of Theorem 18. We start by two preliminary lemmas.
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Lemma 40. Four possibly intersecting convex polygons in R2 admit at most a constant
number of connected components of line transversals.

Proof. Consider the usual geometric transform where a line in R2 with equation y = ax+b
is mapped to the point (−a, b) in the dual space (see e.g. [99, §8.2.1]). The transversals
to a convex polygon are mapped to a region bounded from above by a convex x-monotone
curve and from below by a concave x-monotone curve; such a region is called stabbing
region, and the curves are referred to as the upper and lower boundaries of the stabbing
region. The transversals to four polygons are mapped to the intersection of four stabbing
regions. There exists no transversal of a given slope if and only if the lower boundary of
a stabbing region lies above the upper boundary of another stabbing region at that slope.
Two such boundaries intersect in at most two points, and thus the transversals to four
polygons form at most a constant number of connected components of transversals.

As in Section 6.2, let P, Q, R, and S be four polytopes in R3, with p, q, r, and s > 1
edges, respectively, and let e be a closed edge of S.

Lemma 41. There are O(p + q + r) connected components of lines intersecting e and
tangent to P, Q, R and S.

Proof. As in the proof of Proposition 39, any connected component of lines intersecting
e and tangent to P, Q, R, and S contains an isolated line. The Main Lemma thus yields
that there are O(p+q+r) connected components of lines intersecting e and tangent to P,
Q, R and S except for the components that only contain isolated lines that lie in planes
that contain e and are tangent to all four polytopes.

We show that there are at most a constant number of connected components of lines
intersecting e and tangent to P, Q, R and S that lie in planes that contain e and are
tangent to all four polytopes. There may be infinitely many such planes that intersect
P, Q, R and S only on le but all the lines tangent to the four polytopes in all these
planes belong to the same connected component. Besides these planes there are at most
two planes containing e and tangent to all four polytopes. In any such plane, the lines
tangent to the four polytopes are the transversals to the four polygons that are the faces,
edges, or vertices of P, Q, R, and S lying in the plane. Lemma 40 thus yields the
result.

We can now prove the upper bound of Theorem 18.

Proposition 42. Given 3 polytopes with n edges in total and one polytope with m edges,
there are O(mn) connected components of lines tangent to the four polytopes.

Proof. Let S denote the polytope with m edges. First, if S consists of a single point, it is
straightforward to show that there are O(n) connected components of lines tangent to the
four polytopes. Otherwise, by summing over all the edges of S, Proposition 41 yields that
the number of connected components of lines tangent to the four polytopes is O(mn).
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Figure 6.10: Lower bound examples for Lemmas 43 and 44.

6.4 Lower bounds

We provide in this section the lower-bound examples needed for Theorems 17, 18, and 19.
The following proposition proves the lower bound of Theorem 18.

Lemma 43. There exist four disjoint polytopes of complexity n such that the number of
common tangent lines is finite and Ω(n2). There also exist two polytopes of complexity n
and two polytopes of complexity m such that the number of common tangent lines is finite
and Ω(mn).

Proof. We consider four planar regular polygons P , Q, R, and S, each with n vertices,
embedded in R3. P is centered at the origin and parallel to the yz-plane, Q is obtained
from P by a rotation of angle π

n
about the x-axis, and R and S are obtained from P and

Q, respectively, by a translation of length 1 in the positive x-direction (see Figure 6.10).
We transform the polygons P and Q into the polytopes P and Q by adding a vertex at
coordinates (ε, 0, 0). Similarly, we transform the polygons R and S into the polytopes R

and S by adding a vertex at coordinates (1 + ε, 0, 0).
For ε sufficiently small, the lines tangent to P, Q, R and S are the lines through a

vertex of P ∩ Q and a vertex of R ∩ S. Since P ∩ Q and R ∩ S have 2n vertices each,
there are 4n2 tangent lines. Now, moving P and S by 2ε in the x direction ensures the
disjointness of the polytopes while preserving the existence of the tangents if ε is small
enough.

Replacing R and S in the above construction by regular polygons each with m vertices
yields the Ω(mn) lower bound in the case of two polytopes of complexity n and two
polytopes of complexity m.

We now prove the lower bounds of Theorems 17 and 19. The following proposition
directly yields these bounds since the number of isolated tangents to any four of the
polytopes is less or equal to the number of sets of open edges and vertices in at most four
polytopes that admit an isolated transversal that is tangent to these polytopes.
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Lemma 44. There exist k disjoint polytopes of total complexity n such that the number
of maximal free line segments tangent to four of them is finite and Ω(n2k2). Moreover
these segments lie in pairwise distinct lines.

Proof. The lower bound example is similar to the one with four polyhedra. For simplicity
suppose that n and k are such that n

k
and k

4
are integers. We first take a n

k
-regular polygon

A1 in the plane x = 0. Next we consider a copy, B0, of A1 scaled by a factor of (1 + ε),
and on each edge of B0 we place k

4
points. Polygon Bi, 1 6 i 6 k

4
, is constructed by

taking the ith point on each edge of B0. If ε is small enough, the intersection points of
A1 and Bi are outside the other polygons Bj for 1 6 j 6 k

4
and i 6= j. Now the Ai, for

2 6 i 6 k
4
, are constructed as copies of A1 scaled by a factor 1+ i

k
ε (see Figure 6.10). For

the moment, all polygons lie in plane x = 0. We now construct 4 families of k
4

polygons
each:

- Pi is a copy of Ai translated by iǫ in the negative x direction

- Qi is a copy of Bi translated by iǫ in the positive x direction

- Ri is a copy of Bi translated by 1− iǫ in the positive x direction

- Si is a copy of Ai translated by 1 + iǫ in the positive x direction

Any choice of four polygons, one in each family Pi, Qj, Rl and Sm, reproduces the
quadratic example of Lemma 43 with polygons of size n

k
and thus with total number of

tangents larger than
(

k
4

)4
4
(

n
k

)2
= n2k2

4
. Furthermore the lines tangent to Pi, Qj, Rl and

Sm are only occluded by Pi′ and Sm′ for i′ > i and m′ > m, that is, beyond the portion
of the tangents containing the contact points. The k polygons can be transformed into k
convex polyhedra as in Lemma 43.

6.5 Algorithm

Using the sweep-plane algorithm outlined in Section 2.1, we can compute in O(n2k2 log n)
time all minimal sets of open edges and vertices, chosen from some of the polytopes, that
admit a possibly occluded isolated transversal that is tangent to these polytopes. Now,
for some of these lines, the segment joining the contact points with the polytopes is free.
We can use standard, but complicated, ray-shooting data structures in order to determine
which of these O(n2k2) segments are free; this can be done in O(log2 n)-time per query
using O((nk)2+ǫ) preprocessing time and storage [6].

We present in this section a solution that uses O(n2k2 log n) time and O(nk2) space.
We adapt the algorithm outlined in Section 2.1 to directly compute the minimal sets of
edges and vertices admitting an isolated line transversal that contains a free segment tan-
gent to their respective polytopes. Our algorithm has better time and space complexities
than the previously mentioned approach, and is readily implementable. Moreover, the
space complexity drops to O(nk) if no occlusion is taken into account. Precisely, we prove
the following theorem which is more powerful, though more technical, than Theorem 20
and directly yields it.
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Theorem 45. Given k polytopes in R3 with n edges in total, we can compute all the
minimal sets of open edges and vertices, chosen from some of the polytopes, that admit
an isolated, possibly occluded, line transversal tangent to these polytopes in O(n2k2 log n)
time and O(nk) space. We can also compute, in O(n2k2 log n) time and O(nk2) space,
all the minimal sets of open edges and vertices that admit an isolated line transversal
containing a maximal free segment that is tangent to these polytopes. Furthermore, the
algorithm reports which of the transversals contains such a free line segment.

For ease of presentation, we describe a simplified version of the algorithm in which
we assume that the polytopes are in generic position; see Section 6.5.2 for details. Using
the same techniques as in Section 2, it is straightforward though tedious to generalize
the algorithm for arbitrary situations. We also only detail the algorithm for the case of
minimal sets of four edges, no two chosen from the same polytope; the other sets of at
most four edges and vertices can be computed similarly.

6.5.1 Algorithm overview and data structures

The input to our algorithm is a set of possibly intersecting polytopes structured in a
standard way so that classic incidence queries can be performed in constant time (see, for
instance, [24, §9.1]).

We consider each polytope edge, e, in turn and sweep a plane around it between its
two incident faces. During the sweep we create and maintain the following objects.

Combinatorial polygons. The sweep plane intersects each polytope in a (possibly empty)
convex polygon whose vertices correspond to polytope edges. For each of these polygons,
we maintain the set of vertices, each represented by its corresponding polytope edge,
in a data structure that admits logarithmic-time vertex insertion, deletion and look-up
operations, as well as ray-shooting queries. This can be done with a balanced binary
search tree (see [88, §7.9.1]).

Combinatorial bitangents. The algorithm keeps track of the lines contained in the sweep
plane and tangent to two polygons. The polytopes properly intersected by such a bitan-
gent between its two supports are its blockers. A bitangent is represented by (pointers to)
its two supports and a set of its blockers, ordered by polytope index, stored in a balanced
binary search tree.

Polytope edges. We associate with each polytope edge a list of pointers to the combina-
torial bitangents it supports in the current sweep plane.

Critical events. The sweep stops at critical events at which time combinatorial polygons
and bitangents are updated. In addition to the V- and F-critical events defined in Sec-
tion 6.2.3, we introduce the following two new types of events at which the set of blockers
of some combinatorial bitangents may change. A T-critical event occurs whenever three
bitangents, supported by a PQR-tuple, become aligned (see Figure 6.11b). An I-critical
event occurs when the sweep plane contains a point of intersection between an edge and
a face of two (distinct) polytopes (see Figure 6.12).

Each event is represented by a data structure providing pointers to the primitives that
define it: a vertex for a V-event, a bitangent and a face for a F-event, three bitangents for
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a T-event, and a face and an edge for a I-event. In addition, for a T-event, we store a bit
of information specifying which of the line transversals to le and the three support edges
defines the T-event. Note that the critical value of each critical event can be computed
in constant time from the information associated with the event; it thus does not need to
be explicitly stored.

Finally, critical events are sorted in the order in which they appear during the sweep
and stored in an event queue supporting insertion and deletion in logarithmic time.

6.5.2 Generic position assumption

Our generic position assumption is that the ordered set of events does not change under
any arbitrarily small perturbation of the input polytopes. This assumption corresponds to
(i) the events are generic, and (ii) no two events occur in the same sweep plane, except
for F- and I-critical events induced by the same pair of edge and face. The genericity of
the events is ensured by (but not characterized by) the following geometric conditions:

V-critical events: no vertex lies on a line containing another edge,

F-critical events: no two edges in two distinct polytopes are coplanar,

I-critical events: if an edge intersects a face of another polytope, it does so properly
and not on a line containing another edge,

T-critical events: any four lines containing polytope edges admit zero or two transver-
sals.

6.5.3 Initialization

For each new sweep, we initialize the event queue and construct the combinatorial poly-
gons and combinatorial bitangents as follows.

Combinatorial polygons. Computing the combinatorial polygons in the initial sweep plane
can easily be done in O(n) time.

Combinatorial bitangents. The bitangent lines to two polygons P and Q in the initial
sweep plane through a given vertex of P can be computed by a binary search on Q in
O(log n) time. The blockers of a given bitangent can be found using one ray-shooting
query per combinatorial polygon, for a total time of O(k log n). Altogether, the O(nk)
combinatorial bitangents can thus be computed in O(nk2 log n) time.

Event queue. There are O(n) V-critical events and O(nk) I-critical events, since an edge
intersects a polytope in at most two faces. The O(nk) edge-face intersection points are
computed and stored once before the beginning of the first sweep; this computation can
be done by using brute force in O(n2) time, and with O(nk) space, since it is done once
for all the sweeps. For each sweep, all the V- and I-critical events can then be inserted in
O(nk log n) time. For each of the O(nk) combinatorial bitangents, we also insert F- and
T-critical events in O(k log n) time as explained in Section 6.5.4 (Lemma 46). In total,
initializing the event queue takes O(nk2 log n) time per sweep.
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Figure 6.11: (a) The sweep plane in which the combinatorial bitangent with support
edges e1 and e2 is created. (b) The sweep plane at a T-critical event induced by the three
bitangents with support edges in e1, e2, and e3. (c-d) A line ℓ that defines an F-critical
event. (d) The F-event defined by ℓ occurs simultaneously with an I-critical event.

Thus, initializing all the combinatorial polygons, bitangents, and the event queue
can be done in O(nk2 log n) time per sweep plus O(n2) time overhead for a total of
O(n2k2 log n) time as announced in Theorem 45.

6.5.4 Updating the event queue

Every time a new combinatorial bitangent is created, we compute and insert into the
queue new F- and T-events as described below. Let e1 and e2 denote the two support
edges of a new combinatorial bitangent. Let Πt0 denote the critical plane at which the
new combinatorial bitangent is created.

New T-critical events. See Figure 6.11a-b. Consider all the bitangents having e1 as
support edge and compute the set of support edges (distinct from e1 and e2) of all these
bitangents. Compute the intersection of this set with the similar set for e2; this can be
done in O(k log k) time by ordering the edges by their indices. For each edge e3 in that set,
insert a T-event for each line transversal to le, e1, e2, and e3 if the transversal is tangent
to the three polytopes containing e1, e2, and e3; this test can be done in constant time.
Each of the at most k insertions into the event queue takes O(log n). Thus computing
and inserting the new T-critical events takes O(k log n) time per new bitangent.

New F-critical events. Consider in turn each of the four faces incident to one of the
two support edges. Let e1 and f denote the considered edge and face. We compute a
candidate F-event, in constant time, as follows. Compute the line ℓ (if any) that lies in
the plane Ψ containing f and goes through le and e2 (see Figure 6.11c). If ℓ is tangent
to the polytope containing e2, ℓ defines an F-event. We reject this F-event if ℓ does not
intersect e1 (in such a case, the edge e1 does not intersect the sweep plane at the F-event
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and thus the combinatorial bitangent to e1 and e2 would have been deleted at some V-
event before the F-event). We also discard this F-event if it occurs at the critical value
t0 where the (considered) bitangent is created (that is Πt0 contains ℓ); we discard such
F-events because when a bitangent is created at an F-event, we do not re-insert the same
F-event into the queue. We thus retain at most four F-events, at most one for each of
the four faces incident to one of the two support edges. If no F-event is retained, the
bitangent will be deleted at a V-critical event and no new F-critical event is created. If
more than one F-event is retained, we need only keep the first one, since, as we shall see
in Section 6.5.5.2, the combinatorial bitangent will be deleted at the first of these events.

Again, let f denote the face incident to edge e1 that induces that F-critical event. If
the other support edge, e2, intersects face f (see Figure 6.11d), then this event will be
treated as an I-critical event and again we create no new F-event. Otherwise, we insert
the F-event into the queue in O(log n) time. We thus get the following lemma.

Lemma 46. Each time a combinatorial bitangent is created, the event queue can be
updated in O(k log n) time.

6.5.5 Processing events

6.5.5.1 V-critical events

Let v denote the vertex that induces a V-critical event. As the sweep plane reaches v,
all edges incident to v start or cease to be swept; we call the former starting edges and
the latter terminating edges. Let Q denote the polytope to which v belongs and let Πt0

be the sweep plane containing v. When processing a V-event, we perform the following
operations.

Create and delete combinatorial bitangents. Suppose first that the critical plane through
v properly intersects Q. Consider in turn each combinatorial bitangent supported by
a terminating edge, et, incident to v and let h denote the other support edge of this
bitangent. We check all starting edges incident to v to find the edge es such that the
line in Πt0+ǫ through es and h is tangent to Q for ǫ > 0 arbitrarily small. We create a
new combinatorial bitangent and delete the old one; in fact, we simply replace et by es in
the combinatorial bitangent, create a pointer from edge es to the bitangent, and update
the event queue. After handling the last bitangent supported by edge et, delete all the
pointers from et to the bitangents.

The critical plane through v contains O(k) bitangents through v, thus, by continuity, at
most O(k) combinatorial bitangents are deleted and created. Each deletion and creation
takes linear time in the degree of v plus O(k log n) time for updating the event queue
(Lemma 46). Hence, since the sum of the degrees of the vertices is O(n), this step takes
O(nk2 log n) time in total for all non-extremal V-events.

Suppose now that the critical plane through v is tangent to Q and that all edges
incident to v are starting. For each edge not incident to v, we can decide in constant time
whether it supports a bitangent through v in the critical plane through v. If so, we check,
for each edge incident to v, if the line in plane Πt0+ǫ that goes through these two edges is
tangent to Q for ǫ > 0 arbitrarily small. If so, we create a new combinatorial bitangent.
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By continuity, O(k) bitangents are created in total time O(n + kd) where d is the degree
of v. For each of these newly created bitangents, we compute its set of blockers in (brute
force) O(n) time and update the event queue in O(k log n) time (Lemma 46). This takes
O(nk log n) time per event, hence O(nk2 log n) time per sweep since there are at most two
sweep planes tangent to any polytope.

Finally, if all edges incident to v are terminating, we delete all the O(k) bitangents
supported by these edges; for each bitangent, deleting its blockers and the pointer from
the edge not incident to v can be done in O(k) time. Hence, this takes O(k2) time per
critical event and O(k3) time per sweep.

Update the combinatorial polygon associated with Q. This takes O(log n) time per poly-
tope edge incident to v, thus O(n log n) time in total for all V-events.

Hence, processing all V-events takes O(nk2 log n) time per sweep.

6.5.5.2 F-critical events

We process an F-critical event as follows. Let b and f denote the bitangent and face
associated with the event. Let e1 and e2 denote the two support edges of b such that
e1 is the edge that belong to f (see Figure 6.11c-d). By construction of F-events (see
Section 6.5.4), e2 does not intersect face f (see Figure 6.11c), thus the bitangent b is
deleted and a new combinatorial bitangent is created.

Bitangent b is removed from the lists of bitangents supported by e1 and e2 in O(k)
time. The support edges of the new bitangent are e2 and the edge e′1 6= e1 of f that is
intersected by the line in the plane Ψ (containing f) through le and e2 (see Figure 6.11c).
This edge e′1 is also one of the two edges adjacent to e1 in its combinatorial polygon. Edge
e′1 can thus be computed in O(log n) time. As usual, the new bitangent is added to the
lists of bitangents supported by e′1 and e2. We then compute all the blockers of this new
bitangent by performing one ray-shooting query per combinatorial polygon, for a total
time of O(k log n). We finally update the event queue in O(k log n) time (Lemma 46).

There are O(k) F-events associated to each polytope face, thus O(nk) F-events per
sweep. Hence, the total time complexity for processing all F-events is O(nk2 log n) per
sweep.

6.5.5.3 I-critical events

An I-event is associated with a face f of some polytope P and an edge e1 of some other
polytope Q. Let p denote the point of intersection between f and e1. The sweep plane,
Πt0 , that contains p intersects the two polytopes P and Q in two polygons Pt0 and Qt0 .
See Figure 6.12. Point p lies on an edge of Pt0 ; the two endpoints of this edge are the
intersection of two edges of P, say e0 and e2. These two polytope edges can be computed
in O(log n) time using the combinatorial polygon associated with P.

Create or delete combinatorial bitangents. If the two polygons Pt0 and Qt0 are tangent
at p (see Figure 6.12a), the two combinatorial bitangents whose pairs of support edges
are (e0, e1) and (e1, e2) are either created or deleted at the I-event. If these bitangents
appear in the list of bitangents having edge e1 as support, we remove them from the list
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Figure 6.12: I-critical event.

and delete them; this can be done brute force in O(k) time. Otherwise we create these
two combinatorial bitangents. We compute their set of occluders in O(k log n) time by
intersecting the bitangents with all the polytopes using their associated combinatorial
polygons. Finally, we update the event queue in O(k log n) time.

Update sets of blockers. Consider now each of the O(k) bitangents having e1 as a support
edge except for the two bitangents that might have just been created. We update its
set of blockers as follows. First, note that only polytope P may have to be added to, or
removed from, the set of blockers. Two situations occur: either the geometric bitangent
segment joining the two support edges in Πt0 properly intersects polygon Pt0 , or not. In
the first case (e.g., segment pq in Figure 6.12), polytope P was and remains a blocker of
the bitangent. In the second case (e.g., segment pr in Figure 6.12), P has to be either
removed from, or added to, the set of blockers. This can be done in O(k log k) time by
searching for P in the set (recall that polytopes are ordered by their index in a binary
search tree).

Processing an I-event thus takes O(k log n) time. Since any polytope edge intersects
any other polytope in at most two points, there are O(nk) I-events which can be processed
in O(nk2 log n) time in total per sweep.

6.5.5.4 T-critical events

Suppose that on the line transversal to e1, e2, e3 and le (the one associated to the T-
event) edges e1, e2, e3 are met in that order at points p1, p2, p3. Let Qi be the polytope
containing ei, 1 6 i 6 3.

Update sets of blockers. Update the occluder set for the bitangent with support edges e1

and e3 by either removing Q2 (if it appears in the set) or adding Q2 (if it does not appear
in the set); this can be done in O(log n) time.

Output. First determine if the segment p1p3 is unoccluded by checking if the set of blockers
of the bitangent with support edges e1 and e3 is empty or reduced to Q2. If so and if the
segment intersects the reference edge e, then it is a free segment transversal to the four
edges e, e1, e2, e3. In order to report each such transversal exactly once, we report it only
if the reference edge e is smaller than e2 for some global ordering of all edges. This can
be done in constant time.
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There are O(nk2) T-critical events per sweep (see the proof of Proposition 38), thus
all the T-events can be processed in O(nk2 log n) time per sweep.

6.5.6 Complexity

Note first that we assume a model of computation in which bounded-degree algebraic
polynomials may be evaluated in constant time. See [60] for a detailed description of the
predicates concerning line transversals that are used in this algorithm.

In this model of computation, we have described a Θ(n2k2 log n)-time algorithm for
computing all the minimal sets of edges, no two chosen from the same polytope, that
admit an isolated line transversal containing a free segment that is tangent to all these
polytopes. As mentioned earlier, the sweep-plane algorithm can be easily modified to
report all types of minimal support sets.

The space used by the algorithm is Θ(nk2) in the worst case. To see this, first notice
that storing the combinatorial polygons and the V-, F- and I-critical events uses O(nk)
space. There are also O(nk) combinatorial bitangents in any sweep plane. Storing the
combinatorial bitangents thus requires Θ(nk2) space since, in the worst case, Θ(nk) of
them may be intersected by Θ(k) polytopes. Furthermore, there may be Θ(nk2) T-events
in the queue since each of the Θ(nk) bitangents may share a support with Θ(k) other
bitangents. This yields the bounds of Theorem 20 for computing minimal free segments.

Notice that, with a slight modification to the algorithm, and no increase in the time
complexity, we can reduce the storage requirement of the T-events to O(nk). To do this
we maintain the bitangents sorted by polar angle around each vertex of the combinatorial
polygons, which can easily be done since the cyclic ordering changes only at T-critical
events or when a bitangent is created or deleted. Since two bitangents become aligned
only when they are neighbors in this cyclic ordering, we only need to maintain the T-
events for pairs of consecutive bitangents and there can only be O(nk) of these at any
one time.

Finally, the bounds of Theorem 20 that concern the computation of potentially oc-
cluded isolated lines tangent to polytopes are obtained by noticing that we need not
maintain the sets of blockers of the bitangents which reduces the space requirements for
the combinatorial bitangents to O(nk).

6.6 Conclusion

We have presented a tight bound on the number of (connected components of) lines and
maximal free line segments that are tangent to at least four among k possibly intersecting
polytopes in arbitrary position. A problem that we leave open is to prove that the same
bound holds for the combinatorial complexity of the set of all maximal free line segments
among k polytopes.

We have also shown how to compute in near-optimal worst-case time all the minimal
free line segments that are isolated transversals to their set of supports and tangent to
the corresponding polytopes. We believe that our algorithm can also be made to report
all connected sets of minimal free segments that are transversal to the same set of edges.



6.7. Bonus : complexité dépendant de la silhouette 87

A problem that we have not solved, however, is to compute in the same time and space
complexities, respectively, the polytopes supporting the endpoints of the corresponding
maximal free line segments.

6.7 Bonus : complexité dépendant de la silhouette

On donne ici deux variantes des résultats de la section 6.3 prenant en compte la taille
de la silhouette des polytopes de la scène.

Proposition 47. En position générique, si on a 4 polytopes disjoints avec n arêtes au
total dont un polytope avec au plus m arêtes sur sa silhouette quel que soit le point de vue,
il y a O(mn) droites isolées tangentes aux quatre polytopes.

Démonstration. On appelle S le polytope dont on connaît la taille de la silhouette. On
somme alors sur les arêtes de ce polytope. Dans la somme, on sépare le décompte des
événements V de celui des événements F. Pour chaque face d’un des polytopes, les autres
polytopes coupent son plan support en trois polygones convexes (éventuellement vides)
et les événements F correspondent à des droites tangentes à deux de ces polygones. Le
nombre d’événements F est donc O(n). Pour compter les événements V, on remarque
que compter le nombre de sommets intervenant pour chaque arête autour de laquelle on
balaye est équivalent à compter pour chaque sommet le nombre d’arêtes de balayage pour
lesquelles il intervient. Ces arêtes sont précisément celles qui sont sur la silhouette de S

vu depuis ce sommet. Le nombre d’événements V est donc O(mn).

Proposition 48. En position générique, si on a k polytopes disjoints avec n arêtes au
total et que depuis tout sommet la somme des tailles des silhouettes des autres polytopes
est bornée par m, il y a O(mnk2) droites isolées tangentes à quatre polytopes.

Démonstration. La technique est la même que dans le lemme précédent. Le nombre total
d’événements F est O(nk2). On doit maintenant compter combien de fois chaque sommet
peut apparaître comme un événement V. Pour chaque arête sur la silhouette d’un des
polytopes (m choix au plus) et pour chaque paire d’autres polytopes (O(k2) choix), le
sommet risque d’être un événement V. Cela laisse O(mk2) possibilités par sommet, soit
un total de O(mnk2) événements V.

Pour fixer les idées, si les k polytopes du lemme précédent ont la même taille n/k
et chacun une silhouette de taille majorée par

√

n/k depuis tout point de vue (voir les
chapitres 3 et 4 pour une raison de faire cette supposition), on a O(n3/2k5/2) droites isolées
tangentes à quatre polytopes, ce qui est mieux que la borne en O(n2k2) utilisée dans le
cas général.
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Chapter 7

On the Complexity of Umbra and

Penumbra

Ce travail, réalisé avec J. Demouth, O. Devillers, H. Everett, S. Lazard et
R. Seidel, a été présenté au Symposium on Computational Geometry [45] et
soumis à Computational Geometry: Theory and Applications.

Computing shadow boundaries is a difficult problem in the case of non-point light
sources. A point is in the umbra if it does not see any part of any light source; it is in
full light if it sees entirely all the light sources; otherwise, it is in the penumbra. While
the common boundary of the penumbra and the full light is well understood, less is
known about the boundary of the umbra. In this paper we prove various bounds on the
complexity of the umbra and the penumbra cast by a segment or polygonal light source
on a plane in the presence of polygonal or polytopal obstacles.

In particular, we show that a single segment light source may cast on a plane, in the
presence of two triangles, four connected components of umbra and that two fat convex
obstacles of total complexity n can give rise to Ω(n) connected components of umbra. In
a scene consisting of a segment light source and k disjoint polytopes of total complexity n,
we prove an Ω(nk2 + k4) lower bound on the maximum number of connected components
of the umbra and a O(nk3) upper bound on its complexity. We also prove that, in the
presence of k disjoint polytopes of total complexity n, some of which are light sources, the
umbra cast on a plane may have Ω(n2k3+nk5) connected components and has complexity
O(n3k3).

These are the first bounds on the size of the umbra in terms of both k and n. These
results prove that the umbra, which is bounded by arcs of conics, is intrinsically much
more intricate than the full light/penumbra boundary which is bounded by line segments
and whose worst-case complexity is, as we will show, in Ω(nk + k4) and O(nkα(k2) + k4);
moreover, if there are only O(1) light sources of total complexity m, then the complexity
is in Ω(nα(k) + km + k2) and O(nα(k) + kmα(k) + k2).

89
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Scene type Lower bounds Upper bounds

Segment light source
2 triangles 4 O(1)

2 fat polytopes Ω(n) O(n)
k polytopes Ω(nk2 + k4) O(nk3)

Polytopal light source(s)
k polytopes Ω(n2k3 + nk5) O(n3k3)

Table 7.1: Lower bounds on the number of connected components and upper bounds on
the complexity of the umbra cast on a plane by k polytopes of total complexity O(n).
In the case of polygonal light sources, the lower bound holds for a single light source of
complexity O(n) and the upper bound when any number of the k polytopes are light
sources.

Light sources Lower bound Upper bound

O(1) polytopes of size m Ω(nα(k) + km + k2) O(nα(k) + kmα(k) + k2)
O(k) polytopes of size O(n) Ω(nk + k4) O(nkα(k2) + k4)

Table 7.2: Bounds on the complexity of the union of umbra and penumbra cast on a plane
by a set of k disjoint polytopes of total complexity n, some of which are light sources.

7.1 Introduction

Shadows play a central role in human perception [80, 106]. Unfortunately, computing
realistic shadows efficiently is a difficult problem, particularly in the case of non-point
light sources. A wide variety of approaches have been considered for rendering shadows
(see, for example, the surveys [54, 110]) and many methods make extensive use of graphics
hardware (see the survey [68]).

A point is in the umbra if it does not see any part of the light source(s); it is in full
light if it sees entirely all the light source(s); otherwise, it is in the penumbra. While
the boundary between the penumbra and the full light is reasonably well understood (see
Section 7.3), less is known about the boundary of the umbra. Nevertheless, there is an
extensive literature concerning the explicit computation of these shadow boundaries; see,
for example, [49, 57, 55, 56, 70, 87, 101, 104].

In this paper we prove various bounds, summarized in Tables 7.1 and 7.2, on the
complexity of the umbra and penumbra cast by segment or polygonal light source(s) on a
plane in the presence of polygon or polytope (i.e. convex polyhedral) obstacles. In partic-
ular, we show that a single segment light source may cast, in the presence of two triangles,
four connected components of umbra. We prove that the umbra defined by one segment
light source and two fat convex obstacles of total complexity n can have Ω(n) connected
components. We also prove an Ω(nk2 + k4) lower bound on the maximum number of
connected components of the umbra and a O(nk3) upper bound on its complexity in a
scene consisting of a segment light source and k disjoint polytopes of total complexity n.
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Finally, we prove that the umbra cast on a plane by a polygonal light source and k convex
obstacles can have Ω(n2k3 + nk5) connected components and has complexity O(n3k3).
These are the first bounds on the size of the umbra in terms of both k and n.

These results are surprising in the sense that they show that the umbra cast by a single
segment light source may have many connected components. The fact that the umbra
may have four connected components in the case of two triangle obstacles comes as a total
surprise. Our lower bounds of Ω(nk2 + k4) and Ω(n2k3 + nk5) connected components, for
k polytopes of total complexity n, are rather pathological in the sense that most of the
obstacles are very long and thin. However, we also present a lower bound example of Ω(n)
connected components in the case of two fat polygons or polytopes of complexity O(n).
Concerning the upper bounds of O(nk3) and O(n3k3), even though these bounds are not a
priori tight, they substantially improve the only previously known bounds for this problem
which were the trivial O(n4) and O(n6) upper bounds. Finally, it is interesting to point
out that even for the simplest case of non-point light sources, obtaining tight bounds
on the complexity of the umbra and understanding its structure is a very challenging
problem.

These results show that the umbra, which is bounded by arcs of conics, is intrinsically
much more intricate than the full light/penumbra boundary which is bounded by line
segments and for which we prove that the worst-case complexity is in Ω(nk + k4) and
O(nkα(k2) + k4), where α(k) denotes the pseudo-inverse of the Ackermann function;
moreover, if there are only O(1) light sources of total complexity m, then the complexity
of the full light/penumbra boundary is in Ω(nα(k)+km+k2) and O(nα(k)+kmα(k)+k2).

The paper is organized as follows. The next section provides notation and definitions.
We give in Section 7.3 almost tight lower and upper bounds on the complexity of the
boundary between full light and penumbra cast on a plane by a polygonal light source
in the presence of polytopal obstacles. We present, in Section 7.4, upper bounds on
the complexity of the umbra, in Section 7.5, lower bounds on the maximal number of
connected components of umbra and conclude in Section 7.6.

7.2 Preliminaries

Let s be a line segment and p a point. We denote by 〈s, p〉 the set of line transversals of s
through p. Similarly, for any triple of segments s1, s2 and s3, we denote by 〈s1, s2, s3〉 its
set of line transversals. It is a well-known fact that 〈s1, s2, s3〉 consists of lines belonging
to the same regulus of a ruled quadric surface (see e.g. [92]). More precisely, the line
transversals lie on a hyperboloid of one sheet when the three segments are pairwise skew
and not all parallel to the same plane. If the segments are pairwise skew and all parallel to
the same plane, then the line transversals lie on a hyperbolic paraboloid. Otherwise, they
lie in one or two planes. Hence any set of transversals, whether 〈s, p〉 or 〈s1, s2, s3〉, forms
patches of a quadric (possibly degenerating to one or two planes). Moreover, the set of
transversals consists of at most three patches, or more formally, at most three connected
components in line space [29]. We let 〈s, p〉 and 〈s1, s2, s3〉 denote not just sets of lines
but also the surface patches they form.

Let P be a finite set of disjoint convex polygons or polytopes in R3 with L ⊂ P
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identified as light sources. A surface σ = 〈e, v〉 is called an ev-surface if there exist two
distinct objects P, Q ∈ P so that e is an edge of P , v a vertex of Q and σ intersects a
light source. A surface σ = 〈e1, e2, e3〉 is called an eee-surface if there exist three distinct
objects P, Q, R ∈ P so that e1, e2 and e3 are respectively edges of P , Q and R and σ
intersects a light source.

Any plane Π intersects an ev-surface or an eee-surface in a set of arcs of a conic (each
possibly empty or possibly a line segment). Hence the intersection between Π and all the
ev and eee surfaces defines an arrangement of arcs of conics on Π.

Here we are interested in the arcs of conics that correspond to shadow boundaries.
In particular, we are interested in arcs resulting from the intersection between Π and
maximal free line segments14 that intersect a light source and are supported by a line
which is on an ev or eee surface. The intersection of these free line segments with Π
defines an arrangement of arcs of conics on Π which we call the shadow arrangement on
the shadow plane Π.

A point p is in the umbra if for any point q on a light source, the segment pq intersects
an object from P \ L. Similarly, p is in full light if for any point q on a light source, the
segment pq does not intersect any object from P \ L. Otherwise, p is in the penumbra.

We will make extensive use of the fact that the boundary of the umbra and penumbra
consists of arcs of the shadow arrangement (see, for example, [70]). Notice that not all
arcs of the shadow arrangement are on the umbra or penumbra boundaries; some arcs
correspond to other lighting discontinuities.

Throughout this paper, we consider the regions of umbra and penumbra on a plane
cast by a segment light source or polygonal light source(s) in the presence of convex
polygons or polytopes.

7.3 The penumbra boundary

We recall here some straightforward and well-known properties of the penumbra and give
bounds on the complexity of the common boundary of the penumbra and the full light.
In this section we refer to the union of the umbra and penumbra as the shadow region.

Property 1. The shadow region cast by a light source on a plane in the presence of
obstacles is the union of all the shadow regions cast by each obstacle.

Property 2. The shadow region cast on a plane Π by a polygonal light source S in the
presence of one polytope P is the intersection of half-planes in Π, each of which is defined
as the intersection of Π with a half-space that contains P but not S, is bounded by a
plane tangent to both of them, and contains an edge of one of them.

Note that these two properties imply that the boundary of the shadow region is only
composed of line segments induced by ev-surfaces.

Theorem 49. The complexity of the shadow region cast on a plane by a set of k disjoint
polytopes of total complexity n, some of which are light sources, is, in the worst case, in

14A maximal free line segment is a segment that intersects the interior of no object and whose endpoints
lie on some object or at infinity.
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Figure 7.1: Ω(k2) and Ω(kα(k)) lower bounds.

Ω(nk+k4) and O(nkα(k2)+k4), where α(k) denotes the pseudo-inverse of the Ackermann
function. If there are only O(1) light sources of total complexity m, then the complexity
of the shadow region is in Ω(nα(k) + km + k2) and O(nα(k) + kmα(k) + k2).

Proof. By Property 2, the shadow cast on a plane Π by a polygonal light source in the
presence of one polytope is a convex polygon. Furthermore, if the light source has m
edges and the polyhedron has ni edges, the shadow region in Π has O(ni + m) edges.
By Property 1, the shadow region in the presence of k polytopes of total complexity n is
thus the union of k convex polygons of total complexity O(n+km), which has complexity
O((n + km)α(k) + k2) [16]. The same bounds hold if there are O(1) light sources of total
complexity m. Similarly, if O(k) of the polytopes of the scene are light sources, of total
complexity n, the shadow region is the union of O(k2) convex polygons of total complexity
O(nk), which has complexity O((nk)α(k2) + k4).

For the proof of the lower bounds, we consider the following collection of examples.
In all constructions the shadow plane Π is the plane z = 0.

Ω(k2) and Ω(k4) examples. Refer to Figure 7.1. We consider a point light source at a
height z (large enough) and a grid consisting of k thin horizontal and parallel rectangles
at height z = 1 together with k other thin horizontal and parallel rectangles at height
z = 2. They form a grid of shadow on plane Π which has size Ω(k2). Replacing the point
light source by k point light sources very close to each other gives, similarly, a shadow
region of complexity Ω(k4).

Ω(kα(k)) example. Refer to Figure 7.1. Again, the light source is a point with large
positive z-coordinate. We consider a set of k line segments in plane z = 1 (with positive y
coordinates) having, in that plane, an upper envelope of size Ω(kα(k))[109]. We transform
each line segment into a trapezoid linking it to its projection on the y = 0 line (in plane
z = 1). We get a set of trapezoids whose shadow, in plane z = 0, for a point light source at
large enough z is basically the upper envelope of the segments. Note that the trapezoids
can easily be made disjoint by placing them in different horizontal planes very close to
plane z = 1.

Ω(nα(k)) example. Refer to Figure 7.2. First modify the above Ω(kα(k)) example such
that the left “vertical” side of each trapezoid has slope γ and the right “vertical” side has
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Figure 7.2: Ω(nα(k)) lower bound.
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slope −γ, for some γ large enough. Now, by some suitable scaling, we make all slopes of
the vertical walls strictly smaller than kπ

n
. Assemble n

k
copies of the previous construction

into a large regular n
k
-gon where each side is, in fact, a kα(k) upper envelope. Finally,

this construction can be seen as k convex 3n
k
-gons by connecting all of the n

k
copies of the

same trapezoid by extending their walls.
This set of k convex 3n

k
-gons, embedded in different horizontal planes close to the

z = 1 plane, engender, in the presence of a point light source at large enough z, shadows
of complexity nα(k).

Ω(mk) example. Refer to Figure 7.3. We use a horizontal m-gon as light source and a
thin rectangle as obstacle. Then the shadow has Ω(m) size. Using multiple copies of the
obstacle such that the different shadows are disjoint easily gives an Ω(mk) example.

full light

light

shadow

obstacle

full light

light

obstacles

shadow

Figure 7.3: Ω(mk) lower bound.

There is still a small gap between the Ω(nk+k4) lower bound and the O(nkα(k2)+k4)
upper bound and between the Ω(k2 +mk +nα(k)) lower bound and the O(k2 +mkα(k)+
nα(k)) upper bound. In fact we conjecture that the lower bounds are tight because the
shadows of the different obstacles cast by a single light source have some similarity with
homothetic projections of the light, and the union of k convex homothetic m-gons is
Θ(mk) since two convex homothetic polygons intersect in at most two points [76].

7.4 Upper bounds

In this section we prove the following two upper bounds on the complexity of the umbra
cast by a segment light source or polygonal light source(s) on a plane.

Theorem 50. The complexity of the umbra cast on a plane by one segment light source
in the presence of k disjoint polytopes of total complexity n is O(nk3).

Theorem 51. The complexity of the umbra cast on a plane by a set of k disjoint polytopes
of total complexity n, some of which are light sources, is O(n3k3).

7.4.1 The umbra cast by a segment light source

We will actually prove an upper bound on the complexity of the shadow arrangement
which yields the same bound for the complexity of the umbra. Notice that, in the case
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of a single segment light source, the eee-surfaces σ = 〈e1, e2, e3〉 that contribute to the
shadow arrangement are such that one of e1, e2 or e3 is the segment light source. Similarly,
when considering ev-surfaces σ = 〈e, v〉 either e is the segment light source or v is one of
its endpoints.

We prove Theorem 50 by considering a plane rotating about the line supporting the
segment light source. First, if the segment light source, s, is not parallel to the shadow
plane Π, we apply a projective transformation to the scene, sending to infinity the point of
intersection between the line containing s and plane Π; this does not change the complexity
of the shadow arrangement. We can thus assume in the rest of this section that the
segment light source is parallel to Π. The sweep plane, denoted π, intersects the shadow
plane in a line parallel to s; we will say that, throughout the sweep, this line moves from
left to right.

We start with two preliminary lemmas concerning the intersections that an instance
of the sweep plane can have with the shadow arrangement.

Let α be the conic that is the intersection of the shadow plane Π and the eee-surface
σ = 〈s, e1, e2〉 where s is the segment light source, e1 and e2 are two other segments, and
let π be a plane containing the light source s and intersecting Π.

Lemma 52. If s, e1, and e2 are pairwise skew then π intersects α in at most a single
point.

Proof. First, since s is parallel to Π, any transversal to s and to a point in α ∩ π lies in
plane π. If the intersection between π and e1 or e2 is empty, there exists no line tangent
to the three segments in π and thus π does not cross α. Otherwise, segments e1 and e2

intersect π in two points p1 and p2, respectively. The line defined by p1 and p2 is the
only line that is possibly a transversal to the three segments in π (it may not intersect
the segment s). Hence there exists at most one transversal in π which defines exactly one
point on α.

Notice that the preceding lemma implies that the conic arcs are monotonic in the
direction of the sweep (orthogonal to s).

For the rest of the proof we consider an arrangement A of arcs of conics which contains
the shadow arrangement. We will establish an upper bound of O(nk3) on the complexity
of A which will yield the bound of Theorem 50. The arrangement A consists of the
intersection of Π with (i) those lines that are transversal to the light source s, and the
edges e1 and e2 of two other polytopes and that do not intersect the interior of these
polytopes (the connected components of these lines form patches of eee-surfaces) and
(ii) those lines that are transversal to a vertex and an edge of two polytopes, one of which
is the segment light source, and that do not intersect the interior of these polytopes (the
connected components of these lines form patches of ev-surfaces).

We now count the number of crossings between an instance of the sweep plane π and
the arcs in A.

Lemma 53. The plane π properly intersects at most O(k2) arcs of A.

Proof. The arcs of A are defined as the intersection with Π of lines ℓ which are (i) transver-
sal to the segment light source s and tangent to two polytopes, (ii) transversal to an
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endpoint of s and tangent to another polytope, or (iii) transversal to s and to a polytope
vertex.

An instance π of the sweep plane never properly intersects an arc of type (iii) (since
such an arc is either included in π or does not intersect it). Now, if π intersects an arc of
one of the other two types, then π contains the corresponding line ℓ, which is tangent to
two polygons of P ∩ π. Since P ∩ π consists of at most k disjoint convex polygons, there
are O(k2) lines in π that are tangent to two polygons of P ∩ π, hence the result.

Proof of Theorem 50. We consider an orthogonal frame in plane Π whose vertical axis is
parallel to the segment light source s; the other axis is called horizontal.

We first show that the number of proper intersection points between arcs of A is O(k2)
times the number of arcs. It follows from Lemma 52 (along with a simple argument in the
case that the three segments are not pairwise skew) that any arc of A is either horizontally
monotone or is a vertical line segment. Consider an arc α0 and its rightmost endpoint p
(any one if α0 is vertical). We charge to α0 all points of intersection involving α0 and all
arcs whose rightmost endpoints are strictly to the right of p. Any arc properly intersects
α0 in at most O(1) points so the number of intersection points charged to α0 is bounded
by the number of arcs properly intersected by the sweep plane containing p. By Lemma
53, there are at most O(k2) such arcs. Thus, each arc is charged at most O(k2) times.

We now bound the number of arcs (and thus the number of arc endpoints) generating
A. Each arc corresponds either to a patch of an ev or eee surface. Consider first the
ev-surfaces. Since either the edge or the vertex is on the light source, there are at most
O(n) such surfaces.

Now consider the arcs generated by eee-surfaces. Let ni be the number of vertices of
polytope Pi, 1 6 i 6 k. The number of eee-surfaces involving the light source and edges
from polytopes Pi and Pj is O(ni + nj) [28, Corollary 2.6]. Then,

∑

16i<j6k O(ni + nj) =
O(nk).

There are at most O(nk) arcs generating A. Since each arc is charged with at most
O(k2) intersection points, there are at most O(nk3) intersection points. The total com-
plexity of the shadow arrangement, and thus of the umbra, is then O(nk3).

Remark. The upper bound of Theorem 50 is not known to be tight. However, we prove,
in Lemma 59, that this is a tight bound on the complexity of the arrangement A.

7.4.2 The umbra cast by polygonal light sources

To prove Theorem 51 we consider an arrangement B of arcs of conics that, as in the
previous section, contains the shadow arrangement. This arrangement B consists of the
intersections of Π with (i) the lines that are transversal to a vertex and an edge of two
polytopes and that do not intersect the interior of these polytopes (the connected compo-
nents of these lines form patches of ev-surfaces) (ii) the lines that are transversal to edges
of three polytopes and that do not intersect the interior of these polytopes (the connected
components of these lines form patches of eee-surfaces). Notice that B may contain arcs
generated by surfaces that do not intersect the light source or possibly by surfaces that
intersect the interior of other polytopes in the scene. We will establish a O(n3k3) upper
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bound on the complexity of B which yields the same bound for the complexity of the
umbra.

Lemma 54. Any line L in Π properly intersects at most O(nk2) arcs of B.

Proof. An intersection point between L and B corresponds to a line transversal which
belongs to an ev or eee surface. Consider first ev-surfaces. The line transversal lies in
a plane which contains L and a vertex, say v, of one of the polytopes. There exist O(n)
such planes and in each of them there are at most O(k) lines through v that are tangent
to a polytope (since we only consider proper intersections between L and the arcs of B).
Thus there are at most O(nk) points on L ∩B which correspond to lines in ev-surfaces.

Now we consider eee-surfaces. Let ni be the number of vertices of polytope Pi,
for 1 6 i 6 k. The number of eee-surfaces generated by three edges of polytopes
Pi, Pj and Pl, not intersecting the interior of Pi, Pj and Pl, and that intersect L is
O(ni + nj + nl) [28, Main Lemma]. Since

∑

16i<j<l6k O(ni + nj + nl) = O(nk2), there are
at most O(nk + nk2) = O(nk2) arcs of B which intersect the line L on Π.

Proof of Theorem 51. Here, we introduce an arbitrary coordinate frame Oxy in the plane
Π. We call Ox the horizontal axis and Oy the vertical axis.

As in the proof of Theorem 50, we first show that the number of intersection points
between arcs of B is O(nk2) times the number of conic arcs. We first break all conic arcs
into maximal horizontally monotone pieces. This increases the number of arcs only by
a constant factor. Consider a conic arc α0 and its rightmost endpoint p along Ox (any
endpoint if the arc is vertical). We charge to α0 all points of intersection between α0 and
all conic arcs whose rightmost endpoints are strictly to the right of p. Any arc properly
intersects α0 in at most O(1) points so the number of intersection points charged to α0

is bounded by the number of arcs that are properly intersected by a vertical line in Π
and containing p. By Lemma 54, there are at most O(nk2) such arcs. Thus, each arc is
charged at most O(nk2) times.

We now bound the number of arcs (and thus the number of arc endpoints) generating
B. Let ni be the number of vertices of polytope Pi, 1 6 i 6 k and e an edge. The number
of eee-surfaces pertinent to B and involving e and edges from polytopes Pi and Pj is
O(ni +nj) [28, Corollary 2.6]. Thus, for each edge e, there are, at most,

∑

16i<j6k O(ni +
nj) = O(nk) eee-surfaces having e as a generating segment. Furthermore, the number of
ev-surfaces involving edge e or one of its vertices is O(n). Since there exist n edges, the
total number of arcs in B is therefore O(n2k).

In conclusion, there are at most O(n2k) arcs generating B, each of them charged with
at most O(nk2) intersection points, hence there are at most O(n3k3) intersection points.
The total complexity of B and, thus of the umbra, is O(n3k3).

7.5 Lower bounds

In this section we present several lower bounds on the complexity of the umbra.
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Figure 7.4: (a) Two triangles and a segment light source (viewed from above) that cast
4 connected components of umbra on the plane z = 0. (b) The scene rendered with the
ray tracer OpenRT (the umbra is in light grey); courtesy of Andreas Dietrich.

7.5.1 The umbra cast by a segment light source

Here we concentrate on the umbra cast by a segment light source in the presence of various
configurations of obstacles.

Theorem 55. A segment light source and two triangles may cast, on a plane, four con-
nected components of umbra.

Proof. Consider the following scene consisting of a segment light source, s, two triangles,
T1 and T2, and a shadow plane, Π, the horizontal plane of equation z = 0; see Figure 7.4(a)
and (b).

Figure 7.5(a) shows a superset of the shadow arrangement generated by this config-
uration (the arrangement A defined in Section 7.4). Although it can be shown that the
four shaded regions in the figure are exactly the umbra, we will simply argue here that
there are at least four connected components. We do this by illustrating four segments in
the umbra and then arguing that they are each in different connected components.

The idea is to consider a series of planes rotating about the segment light source and
the intersections of those planes with the two triangles and the shadow plane; Figure 7.6
shows such a sequence. We then examine the umbra in those planes by considering the
relevant bitangents.

Let P+ be one such plane (containing s) and going through the point (0, 7, 0) and
L+ the intersection of P+ and Π. Figure 7.6(b) shows the segment s, the intersections
between P+ and the two triangles T1 and T2, L+ and four bitangents that together define
the umbra on L+. Consider the two segments R+

1 and R+
2 as shown in Figure 7.6(b). It is

easy to see, by examining the bitangents, that R+
1 and R+

2 are in the umbra. Hence there
are two segments of umbra on the line L+. We obtain two other segments, R−

1 and R−
2 ,
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Figure 7.5: (a) Superset of the shadow arrangement on plane Π. The four shaded regions
are the regions of umbra. (b) The four connected components of umbra and the four lines
used in the proof of Theorem 55.
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Figure 7.6: Views in the sweep plane with bitangents that define the umbra. The number
of components of umbra in the intersection of the sweep plane and the plane z = 0 is : (a)
one (sweep plane through (0, 10, 0)), (b) two (sweep plane P+ through (0, 7, 0)), (c) zero
(sweep plane y = 0), (d) two (sweep plane P− through (0,−7, 0)), (e) one (sweep plane
through (0,−10, 0)).
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by taking the symmetric plane P− with respect to the xz-plane (through point (0,−7, 0)
and whose intersections with the scene is shown on Figure 7.6(d)).

Now, we show that the four segments R+
1 , R−

1 , R+
2 and R−

2 lie in different connected
components of umbra. In order to prove this result, we exhibit two lines on Π which
contain no point in the umbra and separate the four segments as shown in Figure 7.5(b).

First consider the plane y = 0 containing the light segment s and orthogonal to the
shadow plane Π. This plane intersects Π in a line, δ1, as shown in Figure 7.5(b), and
separates R+

1 and R+
2 from R−

1 and R−
2 since P+ and P− are symmetric with the plane

y = 0. To show that δ1 contains no point of the umbra, consider the intersection of the
y = 0 plane with the segment s and the two triangles T1 and T2; see Figure 7.6(c). A
study of the bitangents reveals that no point of δ1 lies in the umbra.

Now consider the plane orthogonal to Π, parallel to the two triangle hypotenuses and
going through the midpoint of s. Let δ2 be the intersection of this plane with Π; see
Figure 7.5(b). Elementary computations show that the line δ2 separates R+

1 and R−
2 from

R−
1 and R+

2 . There can be no point of the umbra on δ2 since the plane intersects the light
source but not the triangles (see Figure 7.4(a)). This completes the proof.

Note that the line supporting s and the lines supporting the triangle hypotenuses are
pairwise skew and not all parallel to a same plane. Thus the corresponding eee-surface is
a hyperboloid of one sheet which intersects Π in a hyperbola. We determine the equation
of this hyperbolic curve to be 41y2 − 52xy + 928 = 0. This curve admits two asymptotes
which contain no point in the umbra and which separate the connected components of
umbra. One of these asymptotes is δ1 and we could have chosen the other to be δ2.

Note also that in our example, the light source is parallel to the shadow plane, and
there are also many symmetries. None of this is critical; the example can be perturbed
and the result still holds.

We now prove a lower bound for fat polytopes, polytopes whose aspect ratios are
bounded from below by a positive constant when n goes to infinity.

Theorem 56. The umbra cast on a plane by one segment light source in the presence of
two fat disjoint polytopes of total complexity n can have Ω(n) connected components.

Proof. Our lower-bound example consists of one segment light source s1, a polytope Q2

of size O(n), and another polytope, Q3, of constant size. Refer to Figure 7.7.
First we consider three skew lines l1 ⊃ s1, l2 and l3 and σ = 〈s1, l2, l3〉 the quadric

patch(es) consisting of the lines stabbing s1, l2 and l3. In the shadow plane Π, by adding
suitable halfplanes P2 and P3 as obstacles limited by the lines l2 and l3, we obtain α, a
single conic arc of σ ∩Π, bounding the umbra where the umbra is on the concave side of
α (Figure 7.7-left).

We now consider p1, one of the endpoints of s1, and α2, α3, the intersections of planes
P2, P3 with the cone of apex p1 and base α (Figure 7.7-center).

Next, we reduce the obstacles P2 and P3 to convex polygons Q2 and Q3 by limiting
them by a polygonal approximation of α2 and α3 such that Q3 remains within (i.e., on
the convex side of) α3 and Q2 intersects α2 n times (Figure 7.7-right). The umbra cast
by s1 on Π in the presence of Q2 and Q3 then consists of n connected components that
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Figure 7.8: Ω(nk2) lower bound.

are the intersection of the concave region outside α and the convex polygon that is the
intersection of the cone of apex p1 and base Q2 with the plane Π.

Note that the polygons Q2 and Q3 are fat since Q2 consists of a segment and of an
approximation of a conic and Q3 is of constant size. Finally, polygons Q2 and Q3 can be
trivially transformed into fat polytopes without changing the umbra.

Theorem 57. The umbra cast on a plane by one segment light source in the presence of
k disjoint polytopes of total complexity n can have Ω(nk2) connected components.

Proof. Consider three non-parallel segments s1, l2, and l3 all parallel to the shadow plane
Π and planes P2 ⊃ l2 and P3 ⊃ l3 parallel to Π, refer to Figure 7.8. The surface 〈s1, l2, l3〉
intersects Π in a conic arc α.

Now consider the following setup: s1 is the light source; P2 has k narrow rectangular
holes (or slits) parallel and arbitrary close to l2; similarly P3 has k slits parallel and
arbitrary close to l3. (A plane with k such slits can be modelled by O(k) rectangles.) Each
pair of slits, s2 from P2 and s3 from P3, together with the light source s1 induce a piece
of penumbra in Π that is essentially a thickened copy of the conic arc α.

We thus get that the umbra covers the whole plane Π except for k2 curves of penumbra
that are all close to α (see Figure 7.8-left).

Finally, we trim the two planes P2 and P3, creating an n-sided convex polygon on Π
such that the region outside this polygon is in light or penumbra and each edge intersects
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Figure 7.9: Ω(k4) lower bound.

all the k2 curves. The umbra then consists of O(nk2) regions inside the convex polygon
and between the k2 conics (see Figure 7.8-right). Note that the O(k) convex obstacles can
each be transformed into a polytope by the addition of a single vertex without changing
the umbra.

Theorem 58. The umbra cast on a plane by a segment light source in the presence of k
disjoint polytopes can have Ω(k4) connected components.

Proof. Refer to Figure 7.9. As in the previous lower-bound example, we create k2 curves
of penumbra using parallel thin holes. Making a second set of thin holes in each plane,
we create a second family of curves of light and penumbra intersecting the first one. The
umbra is now the complement of the union of these two sets of curves and it consists of
Ω(k4) connected components.

We now present a lower bound on the complexity of the arrangement A, introduced in
Section 7.4.1, which proves (together with the proof of Theorem 50) that the complexity
of this arrangement is Θ(nk3).

Lemma 59. The arrangement A cast by one segment light source in the presence of k
convex obstacles of total complexity n can have an Ω(nk3) complexity.

Proof. The proof is obtained by using large obstacles with small holes so that the shadow
plane Π is almost completely in umbra with small curves of penumbra drawn by rays
going through these holes. Such obstacles with small holes can be created using several
convex polygons.

We consider a conic α drawn in Π and a line l1 (containing the light source) intersecting
Π in a point of α.

Let x1 = α ∩ l1 (x1 is at infinity if l1 is parallel to Π) and x2, x3, x4, x5 be four other
points on α and x6, x7 be two other points on l1, then any quadric through these seven
points contains α and l1. Since a quadric is defined by nine points, by choosing the two
other points in different manners we can construct different quadrics containing l1 and α.

First we construct a set of quadrics, σ1, σ2. . .σk, close together. On σi we choose two
lines l2,i and l3,i, such that all the lines lh,i for all i and a given h are close together. Then
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Figure 7.10: Ω(nk3) lower bound on the complexity of arrangement A.

we can construct a (non-convex) polyhedral obstacle of size O(k) with thin holes around
lines lh,i for h = 2, 3; 1 6 i 6 k. We consider a plane P above, and parallel to, Π that
intersects the σi in a family of conics βi that are close together. We can construct in plane
P a convex n-gon Q that intersects all these conics n times each.

Before the introduction of Q, the picture in Π is a slab of penumbra around α. Adding
Q cuts this penumbra in n pieces, and, in each piece, there are k different intensities; in-
deed, when we move a point p along α from a point such that all the k transversals through
p and l1, l2,i, and l3,i are non-obstructed, these transversals through p get obstructed one
after another by Q until they are all obstructed and p is in the umbra (see Figure 7.10
left and center). This defines Ω(nk) regions of penumbra of different intensities of light
around α.

Now, we choose a completely different quadric σ′ far from the σi but still containing
α and l1. Thus, we can choose two lines l′2 and l′3 in the same regulus as l1 and arrange
obstacles to light Π through thin holes around l′2 and l′3. The area lit through these holes
is also a small area around α. We can arrange things such that this area is much thinner
than the previous one, and thus we get a thin curve of penumbra which crosses all the
Ω(nk) regions we have described above. Now, making k holes l′2,i around l′2 and k holes
l′3,j around l′3 we transform this thin penumbra curve into k2 “parallel” curves making the
size of the arrangement Ω(nk3).

7.5.2 The umbra cast by a polygonal light source

Note that the lower bound of Ω(nk2 + k4) of Section 7.5.1 for a segment light source can
easily be modified into a lower bound of Ω(nk3+k6) in the case of a polygonal light source
(by adding a third plane with O(k) slits and a big polygonal light source). We present
here a lower bound of Ω(n2k3 + nk5) on the complexity of the umbra cast by a polygonal
light source in the presence of k polygonal obstacles.

Theorem 60. The umbra cast on a plane by one polygonal light source in the presence
of k disjoint polytopes of total complexity n can have Ω(n2k3) connected components.
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Proof. Refer to Figure 7.11. Let p be a point and P1 a small n-gon light source very close
to p. Add an n-gon obstacle very close to the light source so that the light source behaves
like n point light sources (when viewed from the correct side).

Now consider a plane obstacle with k thin holes parallel to a line l2. This creates nk
parallel thin lines of light on the shadow plane that can be made arbitrarily close to a
line L (by having the k thin holes sufficiently close to each other and the n point light
sources sufficiently close to each other). Note that by duplicating this construction (and
thus with two polygonal light sources which behave as 2n point light sources) we get an
arrangement of 2nk lines of light with n2k2 connected components of umbra.

Now consider two lines l′2 and l′3 that together with L admit a quadric as line transver-
sals. Cut this quadric by a plane and approximate (a piece C of) the resulting conic by
a convex n-polyline, P ′

1. The set of transversals to the boundary of this polyline with l′2
and l′3 defines a curve on the shadow plane that cuts L order n times. We define a light
source as the convex hull of P ′

1 and put an obstacle very close to it so that the light source
behaves as if the polyline P ′

1 was the light source (when viewed from the right region).
Now, replacing l′2 and l′3 by two plane obstacles with order k thin holes close and parallel
to l′2 and l′3, respectively, we get k2 curves of light, each of which intersects order n times
each of the nk lines of light close to L. This give Ω(n2k3) connected component of the
umbra.

Note that the two light sources P1 and P ′
1 can be merged into one by considering P ′′

1

in the same plane as P1, by noticing that there are enough degrees of freedom on l′2 and
l′3 so that the convex hull of P1 and an arc of the conic contains C on its boundary.

Theorem 61. The umbra cast on a plane by one polygonal light source in the presence
of k disjoint polytopes of total complexity n can have Ω(nk5) connected components.

Proof. Refer to Figure 7.12. Consider three horizontal pairwise skew lines l1, l2, l3 that lie
above a horizontal plane Π and let C be the conic intersection of their common transversal
with Π. Replace each of the li by a plane obstacle and k thin holes close to li and place
a large (horizontal) light source S above these planes obstacles.

Consider now an n-gon P that intersects C order n times. Let s4 and s5 be two
intersecting horizontal segments. Let P ′ be the symmetric of P with respect of the point
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of intersection between s4 and s5. We consider P ′ as a light source and put an obstacle
very close to it so that it behaves as a one-dimensional polygonal light source when viewed
from C. This induces on the shadow plane a polyline of light that intersects C order n
times.

Now perturb segments s4 and s5 so that they do not intersect and replace them by
(horizontal) plane obstacles with k thin holes close and parallel to s4 and s5, respectively.
We hence get k2 curves of light, each of which consists of order n conic arcs that each
intersects C; hence each of these k2 curves of light intersects C order n times. By chosing
the holes near l1, l2 and l3 sufficiently close to each other, respectively, each of the k2

curves of light close to P intersects O(n) times each of the k3 curves of light close to C.
We hence get O(nk5) connected components of umbra.

7.6 Conclusion

The purpose of this paper is to establish the complexity of the boundaries between the
umbra, penumbra and fully-lit regions on a plane in a polyhedral scene consisting of k
convex objects of total complexity n.

The results presented here constitute a first step toward understanding the intrinsic
structure and complexity of the umbra in this setting. We have proved that if the light is
reduced to one line segment, then the umbra may have Ω(nk2+k4) connected components
and O(nk3) complexity. We have also shown that a polygonal light source could generate
an umbra with Ω(n2k3 + nk5) connected components and O(n3k3) complexity. In both
cases these components of umbra are delimited by arcs of conics. These results prove that
the umbra is intrinsically much more intricate than the boundary between full light and
penumbra which is bounded by line segments and has complexity O(nα(k)+kmα(k)+k2),
where m is the complexity of the light source.

Our upper bounds, in fact, apply to the complexity of the arrangement of the curves
where the derivative of the light intensity is discontinuous. These arrangements clearly
include the boundary of the umbra, but also a lot of curves inside the penumbra that
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are not relevant to the umbra. Furthermore, our upper bound on the complexity of these
arrangements is tight for a segment light source. This perhaps explains why our bounds
on the complexity of the umbra are not tight. Notice, however, that we do have tight
bounds for small n (n = O(k)) and, in the case of segment light source, for small k
(k = O(1)).

7.7 Bonus : une borne inférieure sur l’arrangement des

ombres

Pour prouver la borne O(n3k3) du théorème 51 sur la complexité de l’ombre, on a
en fait borné la complexité totale de l’arrangement B des arcs de limites d’ombres. Les
théorèmes 60 et 61 présentent des bornes inférieures sur la taille de l’ombre ; j’ajoute ici
une borne inférieure sur la complexité de l’arrangement.

Lemme 62. L’arrangement B projeté par une source lumineuse polygonale en présence
de k polytopes disjoints dans une scène de complexité totale n peut avoir une complexité
Ω(n3).

Démonstration. On considère d’abord une source lumineuse ponctuelle et un polygone à
n côtés. Ils créent sur le plan des ombres un polygone d’ombre P1. On choisit maintenant
une seconde source ponctuelle et un second polygone à n côtés de façon que le polygone
d’ombre P2 qu’ils engendrent coupe P1 en 2n points. Si on remplace les deux sources ponc-
tuelles par de très petites sources lumineuses polygonales à n côtés, chaque sommet des
sources engendre dans B un polygone très proche de celui qui était engendré par la source
ponctuelle. Les polygones d’ombre de départ P1 et P2 avaient 2n points d’intersection.
Chacun est maintenant remplacé par n2 points d’intersection entre les n polygones qui
remplacent P1 et ceux qui remplacent P2, ce qui fait Ω(n3) points d’intersection dans l’ar-
rangement B. Ceci montre en particulier qu’on ne peut pas espérer améliorer l’exposant
de n dans la borne supérieure O(n3k3) sur la complexité de B.
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Chapter 8

Predicates for line transversals to lines

and line segments in three-dimensional

space

Ce travail a été réalisé avec O. Devillers, S. Lazard et S. Petitjean.

Given 4 line segments determined by their endpoints in 3D, we wonder if there are
zero, one, two or an infinite number of lines stabbing these 4 line segments. We propose
an algebraic formulation of degree 12 for that predicate.

8.1 Introduction

The computation of visibility between objects in three-dimensional space is one of the
main problems of computer graphics, useful for hidden parts elimination, umbra and
penumbra computations, radiosity methods. . . [54].

The visibility complex of a set of polyhedra can be computed by sweeping the space
around each edge of the scene [28] in O(n2k2) time for a scene of k convex polyhedra of
total complexity n. In this sweeping algorithm an event corresponds to a line stabbing
four edges of the scene. As any geometric algorithm, visibility computation relies on basic
geometric tests called predicates involving a small number of input objects; the answer of
a predicate is discrete, typically it is a sign +/− /0 that can be interpreted by something
like inside/outside/on boundary or above/below/same height. . . Going from the geometric
formulation of a predicate (is an object above another?) to an actual implementation
consists in finding one (or several) polynomial(s) in the parameters describing the objects
such that the sign (or a combination of the signs) of the polynomial(s) gives the answer
to the geometric question.

For a given geometric problem, what a good design is for a predicate remains a difficult
question. Between several polynomial formulations, the set of polynomials with lowest
maximal degree is often preferred since the degree of a polynomial is closely related to
the precision of the computation needed to evaluate exactly this polynomial, and such
exact evaluation may be needed to solve robustness issues using the exact computation
paradigm [111].

109
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Figure 8.1: Relative orientation of two lines.

For our visibility problems, the predicates needed include: — the existence of a stab-
bing line to four edges (or more edges to take degeneracies into account) and — the
comparison of such stabbing lines in the sweep order.

A first attempt to design these predicates using Plücker coordinates yields to a degree
36 predicate (in the Cartesian coordinates of the endpoints of the segments) for the
existence of a line stabbing four line segments and of a degree 144 predicate for comparing
stabbing lines [60].

In this paper, we investigate various predicates dealing with lines and line segments
in three-dimensional space, we mainly use a direct formulation which gives better results
than Plücker coordinates, more precisely for the two predicates mentioned above, we
reduce the degrees from 36 and 144 down to 12 and 36.

If the involved polynomial of highest degree is irreducible, we can argue that we reach
a kind of optimality, this is indeed the case for the degree 12 predicate while in the other
case the minimal degree must be at least 24 (and is probably really 24).

8.2 Notation and preliminaries

We work in a projective setting so that two parallel lines intersect (at infinity). Let
Pn denote the real projective space of dimension n. Lines in 3D are defined by two
points in P3. More formally, a line A through the points a = (ax : ay : az : aω)T and
a′ = (a′

x : a′
y : a′

z : a′
ω)T in P3 is the set {αa + α′a′; (α, α′) ∈ P1}; a point on A is thus

parameterized by (α, α′) in P1.
The line A can be split in two parts cutting it at points a and a′. Since the projective

space cannot be oriented, to precise these two sets we need to restrict the representative
coordinates of a and a′; namely we will assume in the sequel that all fourth coordinates
ω are non negative. These two parts will be denoted by A = {αa + α′a′; αα′ > 0} and
Ã = {αa + α′a′; αα′ 6 0}; if neither a nor a′ is at infinity (i.e. aω and a′

ω are non-zero),
A is the finite segment and Ã the “segment” going through infinity.

If the points a and a′ are finite we also like to orient the line A from a to a′ that is,
inside A, we consider decreasing α

α′ . Given two oriented lines A and B we say that the
orientation of B is positive with respect to A if the determinant |a b a′ b′ | > 0 (with the
hypotheses that the fourth homogeneous coordinates are non negative). Intuitively, this
means that, if the orientation of B is positive with respect to A, a screwdriver oriented
along A and turning according to B will turn in the positive direction along A, that is it
will screw (see Figure 8.1).
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8.3 A direct approach to transversals to lines and line

segments

8.3.1 Algebraic formulation

For any pair of parameters (α, α′) and (β, β′) in P1, there is a line through αa + α′a′ and
βb+β′b′ that also intersects a line C if and only if the four points αa+α′a′, βb+β′b′, c

and c′ are coplanar (note that such a line transversal is not unique if αa+α′a′ = βb+β′b′).
This condition can be expressed as:

∣

∣

∣

∣

∣

∣

∣

∣

αax + α′a′
x βbx + β′b′

x cx c′x
αay + α′a′

y βby + β′b′
y cy c′y

αaz + α′a′
z βbz + β′b′

z cz c′z
αaω + α′a′

ω βbω + β′b′
ω cω c′ω

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

This can be rewritten with a suitable notation as

0 = |αa + α′a′ βb + β′b′ c c′|
= αβ |a b c c′|+ αβ′ |a b′ c c′|+ α′β |a′ b c c′|+ α′β′ |a′ b′ c c′| . (3)

Similarly, we obtain that there exists a line through αa + α′a′ and βb + β′b′ that stabs
D if and only if:

0 = αβ |a b d d′|+ αβ′ |a b′ d d′|+ α′β |a′ b d d′|+ α′β′ |a′ b′ d d′| . (4)

We have the following lemma.

Lemma 63. There exists a line through αa + α′a′ and βb + β′b′ that intersects lines C
and D if and only if ((α, α′), (β, β′)) is solution of Equations (3) and (4). Furthermore,
such a solution corresponds to a unique line transversal unless αa+ α′a′ = βb+ β′b′ and
that point is either coplanar with lines C and D or on C or D.

Proof. If a line through αa + α′a′ and βb + β′b′ intersects lines C and D, the above
discussion implies that ((α, α′), (β, β′)) is solution of Equations (3-4). Conversely, suppose
that (α, β) is solution of Equations (3-4). If the two points αa + α′a′ and βb + β′b′ are
distinct, then the line through them is unique and Equations (3-4) imply that it intersects
C and D. On the other hand, if αa + α′a′ = βb + β′b′, Equations (3-4) imply that there
exists a line through this point and line C and a line through this point and line D,
but these two lines may be distinct; it is however straightforward that there exists a line
through αa+α′a′ = βb+β′b′ that intersects lines C and D because a point and two lines
always admit a line transversal in P3. Indeed, if the point is on line C, any line through
this point and D is a transversal and there are infinitely many transversals. Otherwise,
the point and C define a plane. If D is in that plane or contains the point, any transversal
to the point and C also intersects D and there are infinitely many transversals. Otherwise
D intersects the plane in a single point which, together with αa + α′a′, defines a unique
transversal.

Lemma 63 directly implies the following corollary.
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Corollary 64. There exists a line that intersects segments A and B and lines C and D
if and only if Equations (3)-(4) admit a solution ((α, α′), (β, β′)) such that αα′ and ββ′

are non-negative.

We now show how Equations (3) and (4) can be transformed into degree-2 equations
in (α, α′) or (β, β′) and into the equation of a line.

By considering Equations (3) and (4) as linear equations in variable (β, β′) with pa-
rameter (α, α′) the system admits (at least) a solution only if

0 =

∣

∣

∣

∣

α |a b c c′|+ α′ |a′ b c c′| α |a b d d′|+ α′ |a′ b d d′|
α |a b′ c c′|+ α′ |a′ b′ c c′| α |a b′ d d′|+ α′ |a′ b′ d d′|

∣

∣

∣

∣

= α2

∣

∣

∣

∣

|a b c c′| |a b d d′|
|a b′ c c′| |a b′ d d′|

∣

∣

∣

∣

+ αα′
(∣

∣

∣

∣

|a b c c′| |a′ b d d′|
|a b′ c c′| |a′ b′ d d′|

∣

∣

∣

∣

+

∣

∣

∣

∣

|a′ b c c′| |a b d d′|
|a′ b′ c c′| |a b′ d d′|

∣

∣

∣

∣

)

+ α′2
∣

∣

∣

∣

|a′ b c c′| |a′ b d d′|
|a′ b′ c c′| |a′ b′ d d′|

∣

∣

∣

∣

= Fαα2 + Gααα′ + Hαα′2. (5)

Similarly considering (α, α′) as the variable, we get

0 =

∣

∣

∣

∣

β |a b c c′|+ β′ |a b′ c c′| β |a b d d′|+ β′ |a b′ d d′|
β |a′ b c c′|+ β′ |a′ b′ c c′| β |a′ b d d′|+ β′ |a′ b′ d d′|

∣

∣

∣

∣

= β2

∣

∣

∣

∣

|a b c c′| |a b d d′|
|a′ b c c′| |a′ b d d′|

∣

∣

∣

∣

+ ββ′
(∣

∣

∣

∣

|a b c c′| |a b′ d d′|
|a′ b c c′| |a′ b′ d d′|

∣

∣

∣

∣

+

∣

∣

∣

∣

|a b′ c c′| |a b d d′|
|a′ b′ c c′| |a′ b d d′|

∣

∣

∣

∣

)

+ β′2
∣

∣

∣

∣

|a b′ c c′| |a b′ d d′|
|a′ b′ c c′| |a′ b′ d d′|

∣

∣

∣

∣

= Fββ2 + Gβββ′ + Hββ′2. (6)

Finally by eliminating αβ between Equations (3) and (4) we get

0 = αβ′
∣

∣

∣

∣

|a b c c′| |a b d d′|
|a b′ c c′| |a b′ d d′|

∣

∣

∣

∣

+ α′β

∣

∣

∣

∣

|a b c c′| |a b d d′|
|a′ b c c′| |a′ b d d′|

∣

∣

∣

∣

+α′β′
∣

∣

∣

∣

|a b c c′| |a b d d′|
|a′ b′ c c′| |a′ b′ d d′|

∣

∣

∣

∣

= Fααβ′ + Fβα′β + Hαβα′β′. (7)

Note that the coefficients Fα and Fβ in Equation (7) are the same as in Equations (5)
and (6). Note also that, if one of these coefficients is non-zero, Equation (7) is the
equation of a line whose equation in affine space is Fα

α
α′ + Fβ

β
β′ + Hαβ = 0. Finally, note

that Hαβ =
Gα+Gβ

2
; indeed, by exchanging the diagonals in the two determinants defining

Gα, we get that

Gα = Hαβ + H ′ where H ′ =

∣

∣

∣

∣

|a′ b c c′| |a′ b d d′|
|a b′ c c′| |a b′ d d′|

∣

∣

∣

∣
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and similarly that Gβ = Hαβ −H ′.
Let ∆ = G2

α − 4FαHα be the discriminant of Equation (5). Note that one can easily
prove that ∆ is also the discriminant G2

β − 4FβHβ of Equation (6) by developing the two
expressions.

Remark 65. The discriminant ∆ also appears naturally as the determinant of the matrix
whose coefficients are the pairwise side operators of the lines A, B, C and D:

∣

∣

∣

∣

∣

∣

∣

∣

0 |a a′ b b′| |a a′ c c′| |a a′ d d′|
|a a′ b b′| 0 |b b′ c c′| |b b′ d d′|
|a a′ c c′| |b b′ c c′| 0 |c c′ d d′|
|a a′ d d′| |b b′ d d′| |c c′ d d′| 0

∣

∣

∣

∣

∣

∣

∣

∣

= ∆.

With ∆ written this way, it is easy to see that exchanging the role of any two lines among
A, B, C, D does not change ∆.

We now prove the following lemmas stating some equivalences between these equations.

Lemma 66. If FαFβ 6= 0 then Systems (3)-(4), (5)-(7), and (6)-(7) are equivalent.

Proof. We have already seen that Equations (3) and (4) imply Equations (5), (6), and
(7). Assume now that FαFβ 6= 0 and Equations (5) and (7) are satisfied. Since Fα 6= 0,
any solution of Equation (5) is such that α′ 6= 0. One can easily verify that equations (3),
(5) and (7) satisfy the relation

α′Fβ.(3) + β′ |a b c c′| .(5) = (α |a b c c′|+ α′ |a′ b c c′|).(7).

Since α′Fβ 6= 0, Equation (3) must be satisfied. The proof that Equation (4) is satisfied
is similar, as well as the equivalence between Systems (3)-(4) and (6)-(7).

Remark 67. Note that exchanging the roles of a and a′, which is equivalent to exchanging
α and α′, yields very similar equations; precisely, it exchanges Fα and Hα, leaves Gα and
∆ unchanged, changes the sign of Fβ, Gβ and Hβ (which means that Eq. (6) is unchanged),

and Hαβ takes the new value of
Gα+Gβ

2
.

Remark 68. The above remark implies that, if Fα or Hα is non-zero and Fβ or Hβ is
non-zero, then after exchanging the role of a and a′ if Fα = 0 and exchanging the role of
b and b′ if Fβ = 0, the new equations are such that FαFβ 6= 0 and Lemma 66 applies.

Lemma 69. If Equation (5) identically vanishes then System (3)-(4) has infinitely many
solutions. If Fα = Hα = 0 and Gα 6= 0, then System (3)-(4) has two solutions.

Proof. If Eq. (5) identically vanishes then System (3)-(4) admits infinitely many solutions
since for any solution of Eq. (5), that is for any (α, α′), there exists a (β, β′) such that
((α, α′), (β, β′)) is solution of the system or (α, α′) cancel the coefficients of β in Equa-
tions (3) and (4); in the latter case, ((α, α′), (1, 0)) is solution of the system (see [40, Th.
3, Ch. 3, §6] for a reference on resultants).

If Fα = Hα = 0 and Gα 6= 0, then the solutions of Eq. (5) are (1, 0) and (0, 1).
Substituting these solutions in Eq. (3)-(4) gives the solutions. When (α, α′) = (1, 0), if
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α

β

0

Equation (4)

Equation (3)

Equation (7)

α1 α2

β2

β1

Figure 8.2: Geometric interpretation in α− β-space.

Equation (3) does not identically vanish, it yields (β, β′) = (|a b′ c c′| ,− |a b c c′|) and
otherwise Equation (4) yields (β, β′) = (|a b′ d d′| ,− |a b d d′|) (which is necessarily
well defined in P1 since, if all four determinants are zero, then Gα = 0). Similarly, for
(α, α′) = (0, 1), (β, β′) = (|a′ b′ c c′| ,− |a′ b c c′|) or (|a b′ c c′| ,− |a b c c′|).

We get the following lemma by exchanging the role of lines A and B in Lemma 69.

Lemma 70. If Equation (6) identically vanishes then System (3)-(4) has infinitely many
solutions. If Fβ = Hβ = 0 and Gβ 6= 0, then System (3)-(4) has two solutions.

8.3.2 Geometric interpretation

We give here a geometric interpretation of the above algebraic formulation. We give this
interpretation in the affine parameter space, that is in the αβ-plane with α′ = β′ = 1.
We assume that the four lines or segments are defined by Euclidean points given in
homogeneous form with their fourth coordinates equal to one. Recall that a point αa+a′

on line A is on segment A for α ∈ [0, +∞] and similarly for points on B. We first consider
the case of four lines or segments and then the case where a fifth line or segment is added.

8.3.2.1 Four lines or line segments

Refer to Figure 8.2. A point in the αβ-space corresponds to the 3D line going through
points αa + a′ and βb + b′ (if these two points are distinct). Equation (3) defines in the
αβ-space the conic corresponding to the lines passing through A, B, and C. Similarly,
Equation (4) defines the conic corresponding to the lines passing through A, B, and D.
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These two conics and the line defined in αβ-space by Equation (7) are in the same pencil
and intersect in the same set of points. Hence, if the two conics intersect, they intersect in
only two points, say, (α1, β1) and (α2, β2), which lie on the line defined by Equation (7).
These two points correspond to 3D lines that intersect the four lines A, B, C and D.
Furthermore α1, α2 (resp. β1, β2) are the two solutions of Equation (5) (resp. (6)). If
αi ∈ [0, +∞] then the line corresponding to (αi, βi) does not only intersect the line A but
also the line segment A; similarly if βi ∈ [0, +∞], the line intersects segment B.

If we embed the αβ-space in 3D by adding a third dimension ζ, the conic (3) can
be viewed as the projection of the intersection of the quadric ζ = αβ with the plane of
equation

ζ
∣

∣a b c c′
∣

∣+ α
∣

∣a b′ c c′
∣

∣+ β
∣

∣a′ b c c′
∣

∣+
∣

∣a′ b′ c c′
∣

∣ = 0 (8)

obtained by substituting ζ to αβ in Equation (3).
The line through αa+a′ and βb+b′ stabs C if the point (α, β, αβ) in α−β− ζ-space

belongs to plane (8). Locating this point with respect to the plane gives the orientation of
the line; assuming |a b c c′| > 0, the line turns positively around C if the point is below
and it turns negatively around C if the point is above.

8.3.2.2 Adding a fifth line

If we add a fifth line E, then we get another conic in αβ-space:

αβ
∣

∣a b e e′
∣

∣+ α
∣

∣a b′ e e′
∣

∣+ β
∣

∣a′ b e e′
∣

∣+
∣

∣a′ b′ e e′
∣

∣ = 0. (9)

This conic can belong to the same pencil as Equations (3), (4) and (7). Then the
two stabbing lines of A, B, C and D stab also E. Otherwise locating points (αi, βi) with
respect to this conic allows to determine if E stabs or turn positively or negatively around
the stabbing lines.

The three Equations (3), (4) and (9) define three planes in αβζ-space whose intersec-
tion is a point M if the planes are affinely independent.

The five lines admit a common stabbing line if the point M lies on the quadric ζ = αβ
which can be verified by solving the system of Equations (3), (4) and (9) and substituting
in the quadric.

8.4 Number of transversals to lines and segments

8.4.1 Number of transversals to four lines

Lemma 71. Given four lines, there is a predicate of degree 12 in the Cartesian coordi-
nates of their defining points to determine whether they admit 0, 1, 2, or infinitely many
transversals.

Proof. We first consider the number of solutions to the system of Equations (3) and (4);
let S denote that system. By Lemmas 69 and 70, if Equation (5) or (6) identically vanishes
then S has infinitely many solutions; otherwise, if Fα = Hα = 0 or Fβ = Hβ = 0, then S
has two solutions. Otherwise, at least one of Fα or Hα is non-zero and at least one of Fβ or
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Hβ is non-zero. By Remark 68, we can then apply Lemma 66 after exchanging, if needed,
the roles of α and α′ and of β and β′. The number, zero, one, or two, of solutions to S is
then given by the sign (negative, null, or positive) of the discriminant ∆ of Equation (5).
Moreover, by Remark 67, this discriminant is not modified by the exchange of α and α′

and of β and β′, thus the number of transversals is given by the sign of the discriminant
of Equation (5) without any exchange.

Now, by Lemma 63, the number of solutions of S is the number of transversals to the
four lines except if lines A and B intersect and either lines C and D are coplanar with
the point of intersection of A and B or the point of intersection of A and B belongs to
line C or D in which cases there are infinitely many line transversals. We notice that in
both of these cases, ∆ = 0; indeed, we first note that the discriminant ∆ does not change
if we exchange the role of any two lines among A, B, C and D, as shown in Remark 65.
If the four lines have infinitely many common transversals, there must be at least one of
these four lines, say A without loss of generality, such that every points on A belongs to
common transversals. This implies that Equation (5) has infinitely many solutions and
thus that its discriminant ∆ is 0.

To sum things up, if ∆ > 0, there are two transversals, if ∆ < 0, there is no transversal
and if ∆ = 0, there may be either a unique transversal or infinitely many transversals.
Precisely, if ∆ = 0, there are infinitely many transversals if and only if lines A and B
intersect at a point that is coplanar with lines C and D or at a point that lies on C or D.

The discriminant ∆ is a degree 16 irreducible polynomial in the homogeneous coordi-
nates of the points defining the lines. If the points are given with affine coordinates, this
degree drops to 12 (and this degree 12 polynomial is irreducible as well). Furthermore, if
∆ = 0, testing whether there are infinitely many transversals can trivially be done with a
predicate of degree lower than 12. Hence, determining the number of transversals to four
lines can be done with a predicate of degree 12.

8.4.2 Number of transversals to four line segments

We study here the degree of predicates for determining the number of transversals to
segments. We study first the case of 1 segment and 3 lines and the case of 2 segments
and two lines; the case of four segments will follow.

Lemma 72. Given a line segment and three lines, there is a predicate of degree 12 in the
Cartesian coordinates of their defining points to determine whether they admit 0, 1, 2, or
infinitely many transversals.

Proof. If Lemma 71 concludes that there is no stabbing line, then the result also applies
for the line segment A. If it concludes that there are infinitely many stabbing lines, then
the result also applies for the line segment A unless this segment is a single point (i.e.
a = a′).

In the case of one or two line transversals to A, B, C, and D, it remains to determine
whether they intersect the line segment A. This is equivalent to determine the sign of the
solutions of Equation (5).
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Figure 8.3: Graph of f depending on the signs of f(0), f ′(0), and ∆.

In fact it is more efficient to first attempt to locate the roots of Equation (5), and
then only resolve Lemma 71 (i.e., evaluate the discriminant ∆) when the root location is
not complete. Precisely, as we show below, we need to evaluate ∆ only in the case where
both roots of Equation (5), if they are real, are non-negative.

If Fα = 0 or Hα = 0, the signs of the roots of Equation (5) are obvious, so we can
restrict ourselves to the case where Fα 6= 0 and Hα 6= 0. We further assume that Fα > 0
(the case Fα < 0 is similar). We define f(x) = Fαx2 + Gαx + Hα after Equation (5).
Figure 8.3 shows possible graphs of f . If f(0) = Hα < 0, f has two real roots, one is
positive and the other one is negative (case (a) on the figure). Otherwise, if f ′(0) = Gα > 0
(case (b)), the minimum of f happens for a non-positive value of x and f has no non-
negative root (it has either two negative roots or no root). Otherwise we need to evaluate
the sign of ∆ to distinguish between case (c) where f has two positive real roots and case
(d) where it has none.

Lemma 73. Given two line segments and two lines, there is a predicate of degree 12 in
the Cartesian coordinates of their defining points to determine whether they admit 0, 1,
2, or infinitely many transversals.

Proof. Applying Lemma 72 once for A, B, C and D and once for A, B, C and D gives
the solution in most cases. One case where this does not give the answer is when A, B,
C and D have infinitely many transversals. Then A, B, C and D may have 0, 1, 2 or
infinitely many transversals.

The other case that remains is when A, B, C and D have two common transversals,
one intersects A and one intersects B. Indeed, we need to check whether the transversal
that intersects A is the same as the one that intersects B. For the sake of simplicity,
we omit the case where a transversal goes through the endpoint of one of the segments.
The values of (α, α′) that correspond to the two transversals are (α1, 1) and (α2, 1) with
α1 < 0 < α2. Similarly the values of (β, β′) are (β1, 1) and (β2, 1) with β1 < 0 < β2. The
two transversals then either match α1 with β1 and α2 with β2 or α1 with β2 and α2 with
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β1. Equation 7 enables us to distinguish the two cases. Indeed, it describes a line that
contains the two points (αi, βj) that are solution. If its slope is positive, we are in the
first case, and otherwise we must be in the second case.

If Lemma 72 detects no stabbing line for A, B, C and D there is no stabbing line for
A, B, C and D.

Lemma 74. Given four line segments, there is a predicate of degree 12 in the Cartesian
coordinates of their endpoints to determine whether they admit 0, 1, 2, 3, 4, or infinitely
many transversals.

Proof. Evaluate Lemma 72 for (A, B, C,D), (A, B,C, D), (A, B, C,D) and (A, B, C, D).
If we find two stabbing lines in all cases then there are two stabbing lines for (A, B, C,D).
If we find no stabbing line in at least one case, then there is no stabbing line for
(A, B, C,D). Otherwise assume without loss of generality that (A, B, C, D) has only one
stabbing line, then we will use Lemma 73 for (A, B,C, D), (A, B, C,D) and (A, B, C, D)
and the final answer is the minimum of the three answers. As for Lemma 71 the predicate
has degree 12 (16 with homogeneous coordinates).

8.4.3 More lines and segments

Lemma 75. Given five lines, there is a predicate of degree 15 in the Cartesian coordi-
nates of their defining points to determine whether they admit 0, 1, 2, or infinitely many
transversals.

Proof. We first write the Plücker coordinates of the five lines in a 6x5 matrix. Two lines
intersect if and only if their side operator is 0. This means that a line T is a common
transversal to all five lines if and only if the vector of its Plücker coordinates (properly
reordered) is in the kernel of this matrix. The five lines might have linearly dependent
Plücker coordinates, in which case we can forget about one of them, because intersecting
the other four implies intersecting this one as well. If the lines are linearly independent
(which is the generic case, even for five lines that admit a common transversal), the 5x5
minors of the matrix define a generator of the dimension 1 kernel of the matrix. All that
remains to be seen is whether this vector corresponds to a line, that is whether its self side
operator is 0. This gives a degree 15 irreducible polynomial in the Cartesian coordinates,
or a degree 20 irreducible polynomial in the homogeneous coordinates.

Remark 76. Notice that in the case where the five lines have linearly independent Plücker
coordinates and they have a common transversal, we managed to compute the Plücker
coordinates of this transversal as a rational fraction in the input. So if all the input
has rational coordinates and we can determine that 4 given lines have 2 transversals and
they have irrational coordinates, then the only way a fifth line can intersect one of these
transversals is if its Plücker coordinates are a linear combination of the Plücker coordinates
of the 4 initial lines, and then it intersects both transversals.

Lemma 77. Given five line segments, there is a predicate of degree 15 in the Cartesian
coordinates of their endpoints to determine whether they admit 0, 1, 2, 3, 4, 5, or infinitely
many transversals.
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Proof. We start by presenting an alternative approach to the previous lemma.
If Equation (9) is a linear combination of Equations (3) and (4), that is all 4 of the

3 × 3 determinants constructed with the coefficients are zero, then one of the lines, say
E, is such that any line stabbing A, B, C, D also stabs E. Thus the answer is obtained
by applying Lemma 71 to lines A, B, C and D.

In αβζ-space, the above three equations can be solved to compute the coordinates of
the intersection point M as a quotient of 3 × 3 determinants built on the coefficients of
these equations. Then, we substitute the coordinates of M in the quadric equation ζ = αβ,
if the equation is verified, there is one stabbing line, otherwise there is no stabbing line.

Using Cartesian coordinates, the degree of this predicate is 18. However, there is only
one polynomial of degree 18 involved in this predicate (the next polynomial of highest
degree has degree 15) and it is not irreducible. We first notice that the side operator
of lines A and B is an irreducible factor of degree 3 of this polynomial. This is quite
natural because, if lines A and B intersect, chosing (α, α′) and (β, β′) so that the two
parametric points are the same solves all equations like 3, 4 and 9 whereas there may not
be any common transversal. The remaining degree 15 factor is exactly the polynomial
computed in the previous approach. Notice that we cannot prove that the degree 18
polynomial is really the product of the degree 15 and the degree 3 polynomials. Indeed,
their developed forms have too many terms for a software like Maple running on a real
computer to compute all of them. However, they appear to give the same value when
evaluated on a large set of random input, which makes us pretty confident.

Coming back to the proof of Lemma 77, we first note that by proceeding as before,
and by verifying that the coordinate (α, α′) of M satisfies αα′ > 0, we can determine,
with a predicate of degree 15, the number of line transversals to one segment and four
lines.

Assuming we are in the case where the 5 lines supporting the segments have a single
common transversal, we now evaluate this predicate for (A, B, C,D, E), (A, B,C,D, E),
(A, B, C,D, E), (A, B, C, D,E) and (A, B, C, D, E). If we find one stabbing line in all
cases then there is exactly one stabbing line for (A, B, C,D, E). If we find no stabbing line
in at least one case, then there is no stabbing line for (A, B, C,D, E). As for Lemma 75
the predicate has degree 15 if we never compute the degree 18 polynomial and only deduce
its sign from the signs of the degree 3 and 15 polynomials.

Degenerate cases need a more complicated handling. When one line is “useless”, mean-
ing that intersecting it is a mere consequence of intersecting the others, we cannot simply
ignore the segment as we were ignoring the line. Instead, we use an equation like Equa-
tion 3 where B is the “useless” line in order to translate the restriction on the values of
(β, β′) in terms of (α, α′). We can then ignore this segment and only remember that the
possible values of (α, α′) are less than the initial set with αα′ > 0.

Lemma 78. Given six or more lines or line segments, there is a predicate of degree 15
in the Cartesian coordinates of their defining points to determine how many transversals
they admit.

Proof. If the input only includes lines, we can write all their Plücker coordinates in a
matrix. If the rank is at most 3 then there are infinitely many common transversals. Oth-
erwise we keep four independent lines and check that they have two transversals (not zero).
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For each other line we check which of the two transversals it intersects using Lemma 75.
The solution is then composed of those of the 2 transversals that were intersected by all
the lines.

For segments, there are two cases. If the lines have finitely many transversals, com-
bining the previous technique with Lemma 77 solves the problem. Otherwise the lines
have infinitely many common tangents. This case is mostly handled in [29].

8.5 Transversals to four segments and a triangle

Lemma 79. Let ℓ be a line transversal to four lines that admit finitely many transversals
and let T be a triangle. There is a predicate of degree 15 in the Cartesian coordinates of
the points defining the lines and the triangle to determine whether ℓ intersects (properly
or not) T .

Proof. This is similar to Lemma 75 but we need to know if a point αi, βi, αiβi correspond-
ing to a stabbing line is above or below the plane of Equation (9). This can be deduced
by testing if M is above or below the quadric ζ = αβ. As for Lemma 75 the predicate
has degree 15.

Given a line transversal ℓ to a set S of segments, a triangle T occludes ℓ if ℓ intersects
T and if there exist two segments in S whose intersections with ℓ lie on opposite sides of
T .

Lemma 80. Let ℓ be a line transversal to four line segments that admit finitely many
transversals and let T be a triangle. There is a predicate of degree 15 in the coordinates
of the points defining the segments and the triangle to determine whether T occludes ℓ.

Proof. This test is performed in two steps. First we check whether the transversal in-
tersects the triangle as in Lemma 79. Then, assuming the transversal does intersect the
triangle, for each of the four supporting lines we check where its intersection point with
the transversal is with respect to the plane supporting the triangle. If all four intersection
points are on the same side of the plane, the transversal is not occluded. If there are
points on both sides of the plane, the transversal is occluded.

In order to check on which side of the plane supporting T the point of intersection of
A and ℓ is, we compute the sign of the determinant |T1 T2 T3 αa + α′a′| where Ti are the
3 vertices of T . This can be rewritten as:

α|T1 T2 T3 a|+ α′|T1 T2 T3 a′|

The two coefficients of this polynomial in (α, α′) are degree 3 polynomials in the input.
Remember that (α, α′) is a solution of Equation 5. Evaluating the sign of a polynomial
at a root of an other polynomial amounts to sorting their respective roots, which means
computing their resultant, that is a degree 12 polynomial in the input. The computation
is exactly the same for the intersection points of ℓ with B, C and D.
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8.6 Sorting transversals around a line

Lemma 81. Given seven lines A, B, C, D, B
∗
, C

∗
, D

∗
with two stabbing lines S1 and

S2 to A, B, C, D, and two stabbing lines S3 and S4 to A, B
∗
, C

∗
, D

∗
, there is a predicate

of degree 36 in the Cartesian coordinates of the points defining the lines for ordering S1,
S2, S3 and S4 around A.

Proof. Writing that |a a′ βb+β′b′ β∗b∗+β∗′b∗′| = 0 describes how β and β∗ corresponding
to the same sweeping plane correspond together. This equation is similar to Equation (3).
Writing β in terms of β∗ and substituting in Equation (6) we get β∗

1 and β∗
2 as solutions

of a degree 2 equation with degree 12 coefficients that we have to compare with β∗
3 and β∗

4

which are solutions of a degree 2 equation with degree 6 coefficients. This yields a degree
36 predicate (degree 48 with homogeneous coordinates).

Remark 82. The degree 36 in the above predicate is likely not optimal. Indeed, after
replacing the coordinates of the points by values of the type xt + y where x and y are
pseudo-random integer values, the resulting polynomial in t can be factored in Q[t] into
one irreducible term of degree 24 and two squared terms of degree three (which are the side
operator of A with B and B

∗
, respectively). This implies that with high probability, the

polynomial of degree 36 is not irreducible. Note that the polynomial of degree 36 cannot
successfully be factored in Maple because it is too large.

Remark 83. Note also that if lines B and B∗ coincide then it is straightforward to show
that the degree of the predicate drops to 24 (which can be presumably factored, as above,
into two polynomials with degrees 21 and 3).
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Chapter 9

Lower bounds on free lines and

maximal free line segments tangent to

balls

9.1 Introduction

Consider a set of objects in R3. A line in R3 is said to be free if it does not intersect the
interior of any object15. A maximal free line segment is a (possibly infinite) segment that
does not intersect the interior of any object and is not contained in any other segment
satisfying the same property. We are interested here in the combinatorial complexity of
the space of free lines and the set of maximal free line segments.

For scenes where the objects are k polytopes of total complexity n, this has been
studied in [28] where the authors give a bound of Θ(n2k2) in the worst case on the number
of isolated maximal free line segments tangent to 4 objects (which is closely related to the
complexity of the space of maximal free line segments). When the objects are unit balls,
an upper bound of O(n3+ǫ) for all ǫ > 0 was proved in [4] on the complexity of the space
of free lines.

Our contribution here is a worst-case lower bound of Ω(n3) on the complexity of the
space of free lines among balls (not of the same radius) and a worst-case lower bound
of Ω(n4) on the space of maximal free line segments among unit balls. Note that the
second bound is trivially tight. Although the first one almost matches the upper-bound
of O(n3+ǫ) from [4], the balls have different radii here instead of having the same radius
as in [4], so both problems remain open for the worst case complexity of the space of free
lines: in the presence of unit balls the complexity is Ω(n2) and O(n3+ǫ) [44] while for balls
of arbitrary radii it is Ω(n3) and O(n4). These complexities are summarized in Table 9.1.

We will describe our examples using a Cartesian coordinate system (x, y, z). Denote
by Mx, My and Mz the coordinates of a point M (or of the center of a ball M) in this
coordinate system.

15We can assume here that all objects have a non-empty interior.
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Free lines Maximal free line segments

Unit balls
Ω(n2) trivial Ω(n4) Theorem 89

O(n3+ε) [4] O(n4) trivial

Any balls
Ω(n3) Theorem 84 Ω(n4) Theorem 89
O(n4) trivial O(n4) trivial

Table 9.1: Know complexities of free spaces.

9.2 Ω(n3) free lines tangent to balls

Theorem 84. The complexity of the space of free lines among n balls is Ω(n3) in the
worst case.

We prove this by giving an example. For convenience, our example involves 3n + 3
balls instead of just n, which does not affect the result.

Consider a set of unit balls B = {B0 . . . Bn} whose centers have coordinates (3(i −
n/2), 0,−1). Now add two sets of balls of radius ε: A− = {A−

0 . . . A−
n } and A+ =

{A+
0 . . . A+

n }. The center of A−
i has coordinates (−3n, 3(i− n/2)ε, 0), and A+

i is its sym-
metric with respect to the yz−plane. Figure 9.1 shows this set of balls seen from z = +∞,
from y = −∞ and from x = −∞. We additionally assume that ε is small enough (more
precisely we will see that small enough means ε < 1

5400n2 ).
We prove Theorem 84 by proving the following bound.

Theorem 85. There are Ω(n3) isolated16 free lines tangent to four of the balls of A± and
B.

We first describe intuitively why our construction gives this Ω(n3) bound. First,
consider only two consecutive balls Bi and Bi+1. We study the lines that are tangent to
them close to the highest points of the balls. These lines are almost in the horizontal
plane z = 0. Now, in this plane, the balls in A− and A+ form two sets of gates which
decompose the set of free lines in Ω(n2) connected components defined by the gates the
line goes through. On the boundary of each component there are lines tangent to the
gates, and in particular there are Ω(n2) free lines tangent to a ball of A− and one of A+

(and to the 2 balls of B). Since this can be done for any two consecutive balls of B,
there are Ω(n3) free lines tangent to four balls, and since the centers of these balls are not
aligned, these tangents are isolated (see [25]).

Our first step is to formalize the fact that we can pretend that the tangents to 2
consecutive balls in B lie in the plane z = 0. We start with the following technical
lemma.

Lemma 86. Let B̃0 and B̃1 be 2 unit balls centered at (0, 0, 0) and (3, 0, 0). Let L be a
line tangent to B̃0 and B̃1 at M0(x0, y0, z0) and M1(x1, y1, z1) respectively. Assume that
z0 and z1 are positive, |y0| and |y1| are smaller than a constant m < 1/25 and |y1− y0| is
smaller than some constant α 6 2m. Then |z1 − z0| is smaller than 110mα and both z0

and z1 are larger than 1− 100m2.

16A line is isolated with repect to a set of tangent balls if the line cannot be moved continuously while
remaining tangent to these balls.
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1
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x0 3−3−3n 3n

0
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(a) Projection on the xy-plane.
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(b) Projection on the xz-plane.
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z
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1

(c) Projection on the yz-
plane.

Figure 9.1: Illustration of our construction for Theorem 84.
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d0
d1

x

y

z

N0
N1

(0, 0, 0) (3, 0, 0)

Π

B̃0
B̃1

R0

R1

M0

M1

Figure 9.2: For the proof of Lemma 86: balls B̃0 and B̃1 viewed from above.

Proof. Notice that the result is intuitively clear. Writing that M0 is on B̃0 gives: x2
0 +y2

0 +
z2
0 = 1. Similarly, (x1−3)2+y2

1+z2
1 = 1. The difference is (x1−3)2−x2

0+y2
1−y2

0+z2
1−z2

0 = 0.
Now, if instead of balls we had disks (flat in the x-direction), we would have x0 = 0, x1 = 3,
|zi| =

√

1− y2
i >
√

1−m2 > 1−m2 and |z1 − z0| = |y1−y0||y1+y0|
|z1+z0| < 2mα

2(1−m2)
< 2mα.

Since the balls are not disks, we need a few more steps. We consider the vertical plane
Π that contains L (see Figure 9.2). It cuts the 2 spheres in two circles of centers N0 and
N1 and radii R0 and R1. First, we prove that |N0y| and |N1y| are smaller than 5m. In
projection on the xy-plane, since M0 and M1 are on L, the absolute value of the slope of
L is |y1−y0|

|x1−x0| 6 2m since |y1− y0| 6 2m and |x1− x0| > 1. Now Ni is in Π so its projection
on the xy-plane is on the projection of L. Since |Nix−xi| 6 2 (Mi and Ni are in the same
unit ball), |Niy − yi| 6 2 · 2m and thus |Niy| 6 |yi|+ 4m 6 5m.

Let di denote the signed distance from the center of B̃i to Π such that di has the same
sign as Niy. Notice that because the two angles shown on Figure 9.2 are equal, they have
the same cosine, that is:

Niy/di = (x1 − x0)/
√

(x1 − x0)2 + (y1 − y0)2.

The right-hand expression can be rewritten as:

1
√

1 +
(

y1−y0

x1−x0

)2
>

1√
1 + 4m2

>
1

2
.

We then have di = χNiy where 0 < χ < 2. This implies that di < 2Niy 6 10m and
|d1−d0| = χ|N1y−N0y| < 2|N1y−N0y|. Once again, the projections of M0, M1, N0 and N1

on the xy- plane are aligned, so the slope of the projection of L is (N1y−N0y)/(N1x−N0x) =
(y1 − y0)/(x1 − x0). Since |N1x −N0x| 6 5, |d1 − d0| < 10α.

The radii of the intersection circles satisfy d2
i + R2

i = 1. This implies that Ri >
√

1− (10m)2. Also, (R1−R0)(R1+R0) = −(d1−d0)(d1+d0), so |R1−R0| 6 10α 20m

2
√

1−(10m)2

< 110mα because, since m < 1/25, 1/
√

1− (10m)2 < 1.1.
We now work in the plane Π, using a Cartesian coordinate system (w, z) (see Fig-

ure 9.3). Let θ be the (unsigned) angle between L and the w-axis. We have zi = Ri cos θ.
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R1
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w

z
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θ

Figure 9.3: For the proof of Lemma 86: intersection of balls B̃0 with plane Π.
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0
L

P
Q L+
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Figure 9.4: A line L for Lemma 87.

Therefore, z1− z0 = (R1−R0) cos θ and |z1− z0| 6 |R1−R0| < 110mα, which is the first
inequality of the lemma.

Consider now the line in Π parallel to L through N1 if R1 6 R0 and through N0

otherwise, as shown on Figure 9.3, and remember that the distance between N0 and N1

is at least 1. We have that sin θ = |R1 − R0|/||N1 − N0|| < 110mα 6 220m2 < 10m.
Hence cos θ >

√

1− (10m)2. We have already proved that Ri >
√

1− (10m)2. Therefore
zi = Ri cos θ > 1 − 100m2 which concludes the proof. Note that all the constants could
easily be improved.

We now prove that roughly speaking a line tangent to two consecutive balls of B

near their pole (their point in the plane z = 0) intersects the convex hull of A− and A+

respectively and thus that the balls of A± play the role of gates as discussed earlier.

Lemma 87. Let i ∈ 0, . . . , n− 1 and let L be a line tangent to Bi and Bi+1 at some
points with positive z-coordinate. Assume that L intersects the plane x = 3n in a point
L+ and the plane x = −3n in a point L− such that |L+

y | and |L−
y | are both smaller than

3nε/2 with ε < 1
5400n2 . Then |L+

z | and |L−
z | are both smaller than ε/2.
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3ε

(3i− 3n/2, 0,−1)

x y

z

|z| < ε/2

Bi

A±l

(a)

ε/2√
3

2 ε

A±lε/2

(b)

Figure 9.5: For the proof of Lemma 88: lines L intersect planes x = ±3n in the shaded
region.

Proof. Let P and Q denote the tangency points of L on Bi and Bi+1 (refer to Figure 9.4).
L−, P , Q and L+ are aligned in this order on L, and |L+

y | and |L−
y | are both smaller than

3nε/2, so |Py| and |Qy| are smaller than 3nε/2. Furthermore, the slope of the projection

of L in the xy-plane is L+
y −L−

y

L+
x −L−

x
= Qy−Py

Qx−Px
. Notice that by hypothesis |L+

y − L−
y | 6 3nε,

L+
x − L−

x = 6n and Qx − Px 6 5 so |Qy − Py| 6 5ε/2. We can now apply Lemma 86
because |Py| and |Qy| are both smaller than m = 3nε/2 which is smaller than 1/25 since
ε < 1/5400n2 and |Qy − Py| 6 5ε/2 which is smaller than 2m = 3nε (n > 2). We thus
get |Qz − Pz| 6 1103nε

2
5ε
2

and |Qz| 6 100(3nε
2

)2.
L−, P , Q and L+ are still aligned on L, and we now compute the slope of the projection

of L on the xz-plane: L+
z −Qz

L+
x −Qx

= Qz−Pz

Qx−Px
. By definition, |L+

x − Qx| < 6n and Qx − Px > 1

so |L+
z | 6 |Qz| + 6n|Qz − Pz| 6 (9

4
100 + 615

4
110)n2ε2 = 2700n2ε2 < ε/2 since ε < 1

5400n2 .
The same holds for |L−

z |

Lemma 88. For any (i,j,k) (except possibly the extremal ones), there are four free lines
tangent to Bi, Bi+1, A−

j and A+
k .

Proof. We consider the projection along the z-axis. In the xy-plane, we denote by S+ and
S− the segments x = ±3n, −3nǫ/2 < y < 3nǫ/2. Any line L as in Lemma 87 projects
to a line that intersects both segments. Reciprocally, consider a line in the xy-plane that
intersects S− and S+. It defines a vertical plane that contains it. This plane intersects
balls Bi and Bi+1 in two disks. Their upper bitangent is the unique line L satisfying the
hypotheses of Lemma 87 that projects to it. There is thus a bijection between the lines
L of Lemma 87 and the lines in the projection plane that intersect both segments. This
property of intersecting both segments gives a natural parameterization of this set of lines
by the y-coordinates of the intersections, called u (for S−) and v (for S+). Notice that
with the notations of Lemma 87, u = L−

y and v = L+
y .

Using this parameterization, we consider this set of line (represented as a square in the
(u, v)-parameter space) and the balls A±

l that each line intersects. Referring to Figure 9.5,
notice that the set of values of u such that for all v the corresponding lines L intersect
a given ball A−

j contains some non-empty interval uj (which depends only on j). More
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v

u
A−jy A−j+1y

A+
k+1y

A+
ky

ε

Figure 9.6: For the proof of Lemma 88: in the system (u, v), the lines in black intersect
a ball in A±, the lines in white are free and the lines in grey are unknown.

precisely, if |u − A−
jy| <

√
3

2
ε, L− is inside A−

j (see Lemma 87) so L obviously intersects
A−

j .
On the other hand, the set of values of u such that there exists a v for which the

corresponding line L intersects a given ball A−
j is contained in an interval u′

j such that
u′

j ∩ u′
l = ∅ if l 6= j. Precisely, if A−

jy + 5
4
ε < u < A−

j+1y − 5
4
ε, then for all points on L

that have a x-coordinate between −3n − ε and −3n + ε, the y-coordinates differ from

u = L−
y by at most |L+

y −L−
y |

L+
x −L−

x
ε (the slope of the projection of L onto the xy-plane times the

difference of the x-coordinates). By definition this is smaller than 3nε2/6n < ε/4, which
means that the y-coordinate stays between A−

jy + ε and A−
j+1y − ε. Therefore L cannot

intersect A−
j or A−

j+1 (and much less the other balls A−).
We have thus proved that for each ball A−

j there is an interval u′
j of values of u outside

of which for all v the line L (parameterized by (u, v)) doesn’t intersect A−
j and that each

u′
j contains a non-empty interval uj of values of u such that for any v the line L intersects

A−
j . Moreover the intervals u′

j are pairwise disjoint. Similarly, we consider the intervals
vk and v′

k.
We now partition the set space of lines L in paramater space (u, v) as follows (see

Figure 9.6): the black region is the set of (u, v) ∈ [−3nǫ
2

, 3nǫ
2

]2 such that u ∈ ul or v ∈ vl

for some l; the white region is the set of (u, v) such that u /∈ ⋃l ul and v /∈ ⋃l vl; the grey
region is the complement of the black and white regions.

Consider a line L that corresponds to a point in a white region. If we decrease u, at
some point the line becomes tangent to some A−

j . Similarly, if we increase u, decrease v or
increase v, at some point the line becomes tangent to A−

j+1, A+
k or A+

k+1 respectively. There
are then 4 balls whose tangents define the boundaries of a connected component of free
lines tangent to Bi and Bi+1. The points where these boundary pieces meet correspond
to lines tangent to 2 consecutive balls of B, one of A− and one of A+.
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Using the result of [25] that shows that four distinct balls can have non-isolated com-
mon tangents only if their centers are aligned, Theorem 85 is a direct consequence of
Lemma 88.

Remark Notice that in our construction several balls are aligned and have infinitely
many common tangents. However, these are not lines we are interested in. By substracting
(i−n/2)2ε2 (where ε2 is very small compared to any other length involved here) from the
z-coordinate of the center of every ball the scene can be made non-degenerate without
changing the number of isolated tangents we consider in the proof. This means that n
balls that admit finitely many free lines tangent to 4 of them may admit Ω(n3) of them
in the worst case.

9.3 Ω(n4) line segments tangent to unit balls

9.3.1 Construction

Theorem 89. The complexity of the space of maximal free line segments among n balls
is Ω(n4) in the worst case.

Once again, we prove this theorem by giving an exemple.
Consider two sets of unit balls A = {A1 . . . An} and B = {B0 . . . Bn}. The center of

Ai has coordinates (−L − 3i, i · ε, 0). The center of Bi has coordinates (−L + 3i, (2 −
η) cos(αi), (2 − η) sin(αi)) where αi = −α

2
+ α

n
i. Figure 9.7 shows an orthogonal view of

the sets A and B along the x−direction.
Now consider the sets C = {C1 . . . Cn} and D = {D0 . . . Gn} obtained by symmetry

with respect to the yz−plane.

Lemma 90. We can choose (in this order) the values α < π, η small enough, ε small
enough, L large enough, so that there are Ω(n4) 4−tuples (i, j, k, l) such that Ai, Bj, Ck

and Dl admit a common non-obstructed tangent line segment.

Proof. Consider the affine transformation changing x into x/L. It flattens the spheres
into ellipsoids. When L tends to infinity, the transformed scene tends to two flat versions
of Figure 9.7 on the planes x = ±1, facing each other. Joining the Θ(n2) intersections
on each side defines Θ(n4) free line segments tangent to 4 of the disks. This means
that for L close enough to infinity, these free line segments still exist. Moreover, each
of the free line segments tangent to four ellipsoids remains tangent by the inverse affine
transformation.

9.3.2 Discussion

It is also possible to give an alternative proof that looks like the proof of Lemma 85. This
other proof has the advantage that it shows how large or small the constants α, η, ε and
L need to be. However, it is very tedious, so we only sketch it here. We consider any
pair of balls, one from A and one from C. First we want to make sure that other balls
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z

x
y

Figure 9.7: View of Ai and Bj.

from A or C don’t occlude their bitangents. If we set α = π/6 for instance, this gives
a condition ε > C0/L (the Ci denote various positive constants that will not be made
explicit). Then we want the balls from B and D to intersect these sets of bitangents:
η > C1n/L. We also need some of those bitangents not to intersect the balls from B

and D: (α/n)2 −C2η −C3nε > C4n/L. When all those conditions are satisfied, the lines
tangent to a ball from A and one from C can be represented in a grid similar to Figure 9.6
and the same arguments makes it possible to conclude the proof. Now we only have to
chose the values of η, ε and L. We can chose them in this order and end up with η ∼ 1

n2 ,
ε ∼ 1

n3 and L ∼ n3. We do not know if it is possible to have as many tangents in a scene
of smaller diameter.
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Chapter 10

Visibility in an environment of spheres

Ce travail a été réalisé en collaboration avec H. Alt.

10.1 Introduction

We have seen in previous chapters a number of interesting results about worst-case scenes,
where in particular the visibility graph (the graph with vertices representing the objects
and edges between the objects that can see each other) can easily have a quadratic size.

However, it is also interesting to know what happens in general, for nicely behaved
scenes. For instance, when walking in the woods, one usually cannot see more than a
hundred meters away, because the trunks of the trees block all the horizontal visibility.
This means that the number of trees one can see from a point is bounded and the visibility
graph has linear size. This result has been known for a long time, in 2D (the case of the
forest) as well as in 3D where it gives rise to Olbers’ famous paradox. This paradox is the
simple observation that in an infinite universe that contains uniformly distributed lumi-
nous stars, the sky at night should be as bright as the sun. Explaining this phenomenon
was an important part of elaborating a consistant model of the universe.

A study in [46] makes it possible to give a linear bound on the number of lines tangent
to 4 spheres in a scene of unit spheres randomly distributed in a universe that is a 3D
ball, or according to a Poisson distribution.

Our aim here is to generalize those results by giving a strong bound on the number of
balls a given ball can see, in any dimension. The bound we present also makes it possible
to bound the average of the square (or any power) of the number of balls a ball can see.
This allows in particular to bound the number of triplets of balls one ball can see, and
thus the number of lines tangent to four balls.

10.2 Basic idea

Let S be a set of randomly distributed points in Rd. Precisely the distribution we consider
is a Poisson measure with intensity λ. This means that the probability to have k points
in a region of volume V is e−λV (λV )k

k!
(so the expected number of points is λV ) and that
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the distributions of any two disjoint regions are independent. The vocabulary used will
correspond to the case where d = 3, and d is considered a constant. The points of S are
the centers of unit balls, and by extension S may also be used to designate this set of
balls. We first prove here that the probability for a ball to see more than n balls decreases
very fast.

Theorem 91. The probability for a ball B to see more than n balls of S is

O

(

(n

λ

)1−1/d

e−Cn1/dλ1−1/d

)

.

Proof. Let B be any unit ball. The purpose is to give an upper-bound on the number of
balls visible from B. Let E be a sphere with the same center as B and radius R. We
want to show that for a large enough value of R, no point of E is visible from B.

Consider B as a light source. A ball of S whose center lies inside E generates on E
an umbra (complete shadow) delimited by a circle of radius 1. Actually, the ball has to
be inside a ball slightly smaller than E, or we have to consider circles of radius slightly
smaller than 1, but the difference is not significant.

Decompose E into small pieces of roughly the same size. Consider the circles of radius
1 that can be drawn on E and call center of such a circle the projection of its real center
onto E (for a large R, those two centers are very close). We want the pieces of E to be
small enough that every unit circle encloses at least one of them. For each piece, consider
the set of centers of unit circles that enclose it (call it the covering zone of this piece).
Since every circle encloses at least one piece, the covering zones cover E. If things are
done properly, all covering zones have roughly the same size. This can be achieved with
O(Rd−1) pieces. The zones then have an area Ω(1).

A zone is a set of centers of circles on E, which correspond to unit balls in E whose
centers lie inside a conical region whose appex is the center of E. This conical region
has volume Ω(R). The probability that such a region does not contain any point of S is
O(e−CλR) for some positive constant C that depends only on d. The probability that at
least one region is empty is O(Rd−1e−CλR). As expected, this tends to 0 when R tends to
+∞.

Let n be a positive integer. We are going to give an upper bound on the probability for
B to see more than n balls. For any value of R, if B can see more than n balls, then either
E contains more than n points of S, or some points of E are visible from B (the two are
not exclusive). All we need now is to chose an appropriate value for R, say for instance
such that n = 2 · λVd(R) where Vd(R) is the volume of a d-dimensional ball of radius

R. The probability for B to see more than n balls is then O
(

(

n
λ

)1−1/d
e−Cn1/dλ1−1/d

)

+

O
(

e−n/2 (n/2)n

n!

)

. The second term is negligible compared to the first one.

10.3 Consequences

This exponential bound on the probability to see many balls implies that the average
number of balls one ball can see is bounded. Morever, for any positive integer k, the
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average of the kth-power of the number of balls one ball can see is bounded (this bound
still depends on k of course). Using this observation, for any data structure that involves
sets of balls that can see each other for which a polynomial upper bound is known, we
know the average case is locally bounded, or in other words the structure has linear size
on average. This includes the visibility graph, skeleton and complex for instance.

The expected distance where visibility ends is O(λ−d). Indeed, it is upper-bounded
by a constant plus a constant times

∫∞
0

Rd−1e−CλR = (d−1)!
(Cλ)d .

10.4 Algorithmic point of view

This study can be seen from an algorithmic point of view. In order to compute all the
balls that a given ball can see, we start with a sphere E that is large enough to contain
on average 20 balls. We then check whether the balls inside E completely occlude E from
the central ball (for instance using the bucket technique presented above for enumeration
purposes). If the balls do occlude E then we stop. Otherwise we try again with a sphere
E twice as large. If we are really interested only in the balls that can see the central ball
and not only a superset of these, we can then check for visibility among the set of balls
inside E, which has a bounded expected size.

We need to be able to determine quickly which balls are inside E. For this, we can for
instance store the balls in a grid with Θ(1) points per cell.

10.5 Other objects

Objects and obstacles are not the same

In the previous analysis, we do not use the fact that the objects we see and the obstacles
are the same, we only require that they have the same density. It would actually work
just as well if the two densities differed only by a constant factor.

Various shapes, same size

Instead of balls, we now have fat objects. We assume that there exist two constants A
and B such that for every object there is a point (called center of the object) for which
the ball of radius A (resp. B) centered at this point is contained in (resp. contains) the
object. We can then replace an object by either its interior ball, when it is considered as
an obstacle, or a union of balls of radius A that cover its enclosing ball but are transparent
to each other, when we are interested in the visibility from this object. All that changes
in the analysis (besides a scaling of factor 1/A is that we now need the visibility from each
of the covering balls to be blocked, so this introduces a constant factor in the probability,
corresponding to the number of balls of radius A that are necessary to cover a ball of
radius B.
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Balls of random size

The objects are still balls with centers uniformly distributed, but now the radius of each
ball is chosen uniformly and independently at random between 0 and 1. We consider as
obstacles the objects of size larger than 1/2. The objects larger than 1/2 are covered with
balls of size 1/2 as in the previous paragraph. If we discard each object with probability
α, we get a similar distribution of density αλ (easy computation). The first remark of this
section, that says that obstacles and objects that can see each other can have densities
that different by a constant factor, is sufficient to prove that the main result extends to
this case.

2D-fat objects with random orientation

We now consider objects that are contained in a ball of radius B and contain a disk of
radius A. We further impose that the constants A and B be the same for all objects. For
each object, the orientation is chosen uniformly and independently at random. The main
difference with the previous case is that the objects that are discarded are not always
the same, they depend on the viewpoint. But simply using the idea that an object has
a certain probability to block visibility as well as a ball of small fixed radius makes this
case similar to the previous one (there are just a few more details to take into account).

10.6 Bounded universe

The study above about an infinite universe is interesting, but it would be even more so
it if was extended to another universe than Rd. However, as soon as the universe has a
boundary, things are not so nice any more. For instance, in a universe that is a half-space
delimited by a hyperplane, a ball that is exactly on the boundary is expected to see an
infinity of other balls, in contrast to the case studied here where each ball could only see a
finite number of other balls with probability 1. Still, the expected number of balls a ball
can see only gets large very close to the boundary of the universe, and the probability for
a ball to be that close to the boundary is correspondingly small, so some bounds could
be obtained with more work. Other types of boundaries for the universe (say a sphere)
have different properties.

Another possible extension would be to study, in a finite universe, how the result is
affected by fixing the total number of balls.
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Helly-type theorems for approximate

covering

Ce travail, réalisé avec J. Demouth, O. Devillers et X. Goaoc, a été soumis
au Symposium on Discrete Algorithms.

Let F be a covering of a unit ball U ⊂ Rd by unit balls. We prove that for any
ǫ > 0, the smallest subset of F leaving at most a volume ǫ of U uncovered has size

O
(

ǫ
1−d
2 polylog 1

ǫ

)

. We give an example showing that this bound is tight in the worst-

case, up to a logarithmic factor, and deduce an algorithm to compute such a small subset

of F in time O
(

|F|ǫ 1−d
2 polylog 1

ǫ

)

. We then extend these results in several directions,

including covering boxes by boxes and visibility among disjoint unit balls in R3.

11.1 Introduction

A family F of sets covers a set U if the union of the elements of F contains U . In
the geometric setting, both U and the elements of F are subsets of a geometric space,
for example points, hyperplanes or balls in Rd. Many geometric problems, for example
visibility problems, reduce to deciding if a given family F covers an object U .

Figure 11.1: Arbitrarily many disks can be necessary to cover another disk.
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A family F covers a set U if and only if the intersection of U with the complement
of the elements of F is empty. Thus, it follows from Helly’s theorem [71] that if U is
convex and the family F consists of complements of convex sets, the smallest subset of
F covering U has size at most d + 1. The cases such that this size is bounded are in
fact rather exceptional: for most classes of objects there exist arbitrarily large minimal
covering families (Figure 11.1 shows an example of a minimal covering of a unit disk by
8 unit disks in the plane).

Yet, it seems clear that if a family F of unit disks covers a unit disk U , then a small
subset of F is sufficient to cover most of U . Let G∪{U} be a collection of measurable sets
in some measurable space, typically Rd. Given a real ǫ > 0, we say that G is an ǫ-covering
of U if at most a measure ǫ of U is not covered by G. In this article, we study the size of
the smallest ǫ-covering contained in a covering. We show that, in several cases, for any
ǫ > 0 this size can be bounded independently of the size of the covering. In other words,
we prove Helly-type theorems for approximate covering.

Our results. Our main results are the following:

• We prove that the size of the smallest ǫ-covering contained in a covering of a unit
ball in Rd by n unit balls can be bounded independently of n (Theorem 92). We
also give examples of covering in which our bound is tight up to a polylogarithmic
factor (Lemma 97).

• We extend this result to two other covering problems: the covering of a unit box
by unit boxes (Theorems 100 and 101) and visibility occlusion among disjoint unit
balls in R3 (Theorem 103). In the particular case of the covering of a unit square
by unit squares in the plane, we also give examples where our bound is tight. In all
cases, our bounds are independent of the size of the covering family.

• For each of the above situations, we obtain algorithms (Theorems 98, 102 and 105)
that, given a family of objects F ∪ {U}, decide in O (|F|f(ǫ))-time that F does not
cover U or that F is an ǫ-cover of U – with f(ǫ) denoting our bound on the size
of the smallest ǫ-covering subset for that situation. More precisely, our algorithms
return either a point in U not covered by F or an ǫ-cover of U of size f(ǫ) contained
in F.

Related work. The classical problem of set cover asks, given a covering F of a set U , for
the smallest subset of F that covers U . Since most versions are NP-hard, approximation
algorithms have been largely investigated; namely, one looks for a subset of F that covers
U and whose size is within some multiplicative factor from the optimal. Approximation
in this setting is also difficult as in many cases, no polynomial-time algorithm yielding
constant factor approximations exists unless P=NP [78]. In the geometric setting, the
situation is essentially the same [32, 37]. In this paper, we relax the covering problem in a
different direction by allowing the covering to be imperfect. We are not aware of previous
results in this direction.
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R ≥ 1

r

≤ 2r

≤ 2r

≤ 4r2

X

XY

Y
≤ 4r2

(a) (b)

Figure 11.2: (a)
(

XY ∩ Y
)

\ (X ∩ Y ) is inscribed in a rectangle of sides at most 2r and
1− cos(sin−1 r) 6 4r2. (b) A covering with disks of radius 4r2 of

(

XY ∩ Y
)

\ (X ∩ Y ).

11.2 Covering a unit ball by unit balls

In this section, we study the case where all objects are unit balls in Rd. We prove:

Theorem 92. Let U be a unit ball in Rd and F a covering of U by unit balls. For any

ǫ > 0, the smallest subset of F, that is an ǫ-covering of U , has size O
(

ǫ
1−d
2 polylog 1

ǫ

)

.

We also give examples for which this bound is tight up to the logarithmic factor (The-
orem 97). For the clarity of the exposition, we prove the result in two dimensions (Sec-
tion 11.2.1) before discussing the general case (Section 11.2.2). Our proof leads to an
algorithm (discussed in Section 11.2.3) for computing, given F, U and ǫ, either a point in
U not covered by F or a small ǫ-covering of U contained in F.

11.2.1 The planar case

Upper bound. For two disks X and Y , we denote by XY the half-plane containing X
and bounded by the tangent to X at the projection17 of the center of Y on the boundary
of X (see Figure 11.2). We denote by FY the collection

{

XY | X ∈ F
}

. We first start by
a technical lemma:

Lemma 93. Let Y be a disk of radius r < 1 and F a covering of a unit disk U by unit
disks. Then, U ∩ Y can be covered by a triple C(Y ) ⊂ F and a collection R(Y ), of at
most 3

r
disks of radius 4r2.

Proof. Since the collection FY covers U , it also covers U ∩ Y and, by Helly’s theorem,
three of these half-planes must cover U ∩ Y . We denote by C(Y ) the corresponding balls
in F. For any disk X ∈ F, the area

(

XY ∩ Y
)

\ (X ∩ Y ) is inscribed in a rectangle (see
Figure 11.2) with sides respectively smaller than 2r and 4r2. This rectangle can thus be
covered by overlapping disks of radius 4r2 centered on its larger axis (Figure 11.2(b)). By

17If the two disks have the same center, we can choose any tangent to X.
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choosing the disks so that the height covered at the intersection between two disks is, at
least, 4r2, we need only 1

r
disks.

We can now prove Theorem 92 for the case d = 2:

Proof of Theorem 92 for d = 2. Let r be a real in the open interval
(

1
100

, 1
10

)

, let R1 be a
covering of U by µr−2 disks of radius r, for some constant µ, and let C1 denote the empty
set. We construct an ǫ-cover by iterating the following operation:

Ci+1 ← Ci ∪
(

⋃

Y ∈Ri

C(Y )

)

and Ri+1 ←
⋃

Y ∈Ri

R(Y ),

where C(·) and R(·) denote the sets defined in Lemma 93. By induction, we have that,
for any i > 0, Ci ∪ Ri covers U . Let αi denote the area covered by disks in Ri; Ci is an
αi-cover of U . The disks in Ri have radius ri satisfying the recurrence relation

ri = 4r2
i−1, with r1 = r,

and thus ri = 1
4
(4r)2i−1

. The number of disks in Ri is governed by the relation

|Ri| 6
3

ri−1

|Ri−1|,

which gives:

|Ri| 6
(

i−1
∏

k=1

12(4r)−2k−1

)

|R1| 6 12i−1(4r)1−2i−1

µr−2,

and:
αi 6 πr2

i |Ri| = 12i−1µπ(4r)2i−1−1.

Moreover, for each element in Ri−1, we add three disks from F to Ci. Thus, the size of Ci

is given by

|Ci| 6 3
i−1
∑

k=1

|Rk| 6 3µr−212i−1

i−1
∑

k=1

(4r)1−2k−1

= O(12ii(4r)1−2i−2

),

for r ∈
(

1
100

, 1
10

)

. Any sufficiently small ǫ > 0 can be expressed as ǫ = 12k−1µπ(4r)2k−1−1

for some integer k and real r ∈
(

1
100

, 1
10

)

. The previous inequalities then give that αi 6 ǫ

and |Ck| = O
(

ǫ−
1
2 log6 1

ǫ

)

.

Lower bound. The following construction shows that the upper bound in Theorem 92
is optimal for d = 2 up to the logarithmic factor.

Lemma 94. There exists a family F of unit disks in R2 covering a unit disk U ⊂ R2 such
that, for arbitrary small ǫ > 0, any ǫ-covering of U contained in F has size Ω(ǫ−

1
2 ).
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Figure 11.3: A family whose smallest ǫ-cover has size Ω
(

1√
ǫ

)

.

Proof. We equip the plane R2 with a frame (O, x, y) where O denotes the center of U . Let
F be the (infinite) family of all unit disks tangent to the x-axis inside U (see Figure 11.3)
and let G be a finite subset of F that covers U except for an area of at most ǫ. Consider
the subset G+ ⊂ G of disks whose centers are above the x-axis and let x1, . . . , xk denote
the abscissae of the tangency points of the disks in G+, sorted increasingly.

Let αi = xi − xi−1. For ǫ small enough, since G is an ǫ-cover we have:

xk − x1 > 1 ⇒
k
∑

i=2

αi > 1.

The uncovered area of U above the x-axis and between the (i − 1)th and the ith disks is

at least α3
i

24
since this area is bounded from below by:

2

∫

αi
2

0

1

2
x2dx =

α3
i

24
.

Thus,
∑k

i=2 α3
i 6 24ǫ and Hölder’s inequality yields:

1 6

k
∑

i=2

αi 6

(

k
∑

i=2

α3
i

)

1
3
(

k
∑

i=2

1
3
2

)

2
3

6 (24ǫ)
1
3 (k − 1)

2
3 .

The statement follows.

Remark. This example involves an infinite covering family, but if we let the disks
intersect the x-axis on arbitrarily small lengths, the same can easily be achieved with a
finite family.

11.2.2 Arbitrary dimension

Upper bound. We start with a generalization of Lemma 93.
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Lemma 95. Let Y be a ball of radius r < 1 and F a covering of a unit ball U ⊂ Rd by
unit balls. Then U ∩Y can be covered by a (d+ 1)-tuple C(Y ) ⊂ F and a collection R(Y )
of O(r1−d) balls of radius ρ(r) = O(r2).

Proof. Given two balls X and Y , we denote by XY the half-space containing X and
bounded by the hyperplane tangent to X at the projection of the center of Y on ∂X.
Notice that this is well defined whenever X and Y have distinct centers. We call FY the
collection of all XY for X in F.

Let Y be some ball. If a ball of F has the same center as Y then it covers Y and we
are done. We can then assume that it is not the case. Since F covers U , FY also covers
U and in particular it covers Y ∩ U and by Helly’s theorem there are d + 1 elements in
FY that cover Y ∩U ; we denote by C(Y ) the corresponding d+1 balls in F. If the radius
of Y is r < 1 then the region

(

XY ∩ Y
)

\ (X ∩ Y ) is included in a cylinder defined by
a (d− 1)−dimensional ball of radius r and an orthogonal segment of length O(r2). This
region can thus be covered by a collection RX(Y ) of O(r1−d) balls of radius ρ(r) = O(r2).
Covering the d + 1 regions corresponding to the d + 1 balls X ∈ C(Y ) gives a collection
R(Y ) =

⋃

X∈C(Y ) RX(Y ) which concludes the proof.

The proof of Theorem 92 for a general d follows the same approach as in the case
d = 2 so we omit the details of the computations.

Proof of Theorem 92. Let F be a covering of a unit ball U by unit balls in Rd. Let
0 < r0 < 1 be small enough so that there exists a constant K > 0 such that for any
0 < r 6 r0, ρ(r) 6 K · r2 for the function ρ introduced in Lemma 95. Call C = Kr0. We
further assume that r0 is small enough so that 0 < C < 1. Again, we construct a small
ǫ-covering from F by starting with a covering R0 of U by O(r−d

0 ) balls of radius r0, setting
C0 = ∅ and iterating:

Ci+1 ← Ci ∪
(

⋃

Y ∈Ri

C(Y )

)

and Ri+1 ←
⋃

Y ∈Ri

R(Y ),

After k iterations, Ck has size at most O(C(1−d)2k−1
Dk−1) (where D is a positive con-

stant) and covers U except for the region covered by the balls in Rk, which consists of
O(C(1−d)2k

Dk) balls of radius O(C2k
). The volume possibly not covered by the balls in

Ck is thus O(C(1−d)2k+d2k
Dk) = O(C2k

Dk)). By choosing k such that ǫ = C2k
Dk, we get

an O(ǫ)-cover of U of size O(ǫ
1−d
2 polylog(1

ǫ
)).

Note that the constant hidden in the O() notation depends on d.

Lower bound. To generalize the lower bound we use the following lemma:

Lemma 96. Let p be a point and R a convex region of volume v of Rd. Let δ be the
distance from p to its furthest point in R. The part of R at distance larger than δ/2 from
p has volume Ω(v).



11.2. Covering a unit ball by unit balls 145

C−

C+
δp qR−

R+

H ′ H

Figure 11.4: For the proof of Lemma 96.

Proof. We refer to Figure 96. We call q ∈ R the furthest point from p (or one of them).
Let H be the hyperplane that consists of points equidistant from p and q and let H ′ be
the hyperplane parallel to H at distance 2δ from q and δ from p.

H intersects R in a convex set U . We draw the half-cone C centered at q and whose
intersection with H is U . The part of R at distance larger than δ/2 from p contains the
part R+ of R that is on the same side of H as q. Furthermore, R+ contains the part C+

of C on the same side of H as q. The part R− of R on the other side of H is contained
in the region C− delimited by C, H and H ′. Since the volumes of C+ is equal to 4d − 1
time that of C−, the statement follows.

We can now prove that the bound of Theorem 92 is optimal up to the logarithmic
factor.

Theorem 97. There exists a family F of unit balls in Rd covering a unit ball U ⊂ Rd

such that for arbitrarily small ǫ > 0 any subset of F that is an ǫ-covering of U has size
Ω(ǫ−

d−1
2 ).

Proof. Let H be an hyperplane through the center of U , let B be the unit ball U ∩H and
let F denote the set of all unit balls tangent to H in a point of B. Observe that F covers
U . We assume that H is given by xd = 0 and, to simplify the description, consider it to
be horizontal.

The portion of U on one side of H is covered by the balls of F that are on that side
of H. We thus only argue about the portion U+of U above H and covered by the set F+

of balls in F above H. We denote by ∂U+ the part of the boundary of U above H.

Let G+ ⊂ F+ be a family of k balls. For each ball X ∈ G+, let PX denote the parabola
with equation 2 ∗ xd =

∑d−1
i=1 (xi − ti)

2 where (t1, ..., td−1, 0) is the tangency point of X
with H. Since X is completely above the parabola PX (see Figure 11.5), the volume of
U not covered by G+ is bounded from below by the volume of the region above B and
under the parabolas and ∂U+.

Let T+ denote the set of tangency points of G+ on H. The height of the lowest
parabola above a point p in B is proportional to the square of the distance from p to the
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∂U+

H

ti tj

Figure 11.5: Approximation of a sphere by a parabola.

closest point in T+. Let C be a cell of the Voronoï diagram of T+ restricted to B and let
v denote its volume. The diameter of C is Ω(v

1
d−1 ) and, by Lemma 96, a subset of C of

volume Ω(v) is at distance Ω(v
1

d−1 ) from its center in T+. The volume between this cell
and the parabola above it is thus Ω(v1+ 2

d−1 ). Since the cells partition B, the sum of their
volumes is Ω(1) and Hölder’s inequality yields:

Ω(1) =
k
∑

i=1

vi 6

(

k
∑

i=1

v
1+ 2

d−1

i

)

d−1
d+1
(

k
∑

i=1

1
d+1
2

)

2
d+1

=

(

k
∑

i=1

v
1+ 2

d−1

i

)

d−1
d+1

k
2

d+1 .

Hence, the volume below the parabolas is Ω(k− 2
d−1 ). To take ∂U+ into account, we

consider the ball B′ obtained by scaling B by a factor 1
2
. The previous argument still

yields that the volume between B′ and the parabolas is Ω(k− 2
d−1 ). Also, above any point

in B′, the ratio of the height of the lowest parabola to that of ∂U+ is bounded. Thus,
the volume above B′ and below the parabolas and ∂U+ is Ω(k− 2

d−1 ). It follows that the
volume not covered by G+ is Ω(k− 2

d−1 ). Equivalently, any subset of F+ leaving a volume
at most ǫ of U+ uncovered has size Ω(ǫ

1−d
2 ).

11.2.3 Algorithm

To turn the proof of Theorem 92 into an algorithm, it suffices to describe how, given a
ball Y , the sets C(Y ) and R(Y ) defined in Lemmas 93 and 95 can be computed. We
consider d as a constant.

Recall that F is a covering of a unit ball U by unit balls, and that Y is some ball
with radius r < 1. After computing FY , in O(|F|) time, the problem becomes to find a
(d + 1)-tuple in FY that covers U ∩ Y . This can be done by turning it into a LP-type
problem, a special class of optimization problems introduced by Sharir and Welzl [100].

Specifically, let φ : 2FY → R be the map that associates to G ⊂ FY the real

φ(G) = min
{

t ∈ [0, +∞)
∣

∣ ∪x∈G x⊕D(t) covers Y ∩ U
}

where ⊕ and D(t) denote respectively the Minkowski sum operator and the disk of radius
t centered at the origin. (FY , φ) is a LP-type problem of dimension d + 1, and thus there
exists a subset H ⊂ FY of size d + 1 such that φ(H) = φ(FY ); thus, if FY covers U ∩ Y
so does H. Moreover, H can be computed in time O(|FY |) (using e.g. the algorithm of
Seidel [97]) and if FY does not cover U∩Y , then the hyperplanes bounding the half-spaces

{

x⊕D(φ(H))
∣

∣x ∈ H
}
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intersect in a point not covered by FY . As a result, we obtain:

Theorem 98. Let F be a covering of a unit ball U ⊂ Rd by unit balls. We can compute

a point in U not covered by F or an ǫ-cover of U of size O
(

ǫ
1−d
2 polylog 1

ǫ

)

contained in

F in time O
(

|F|ǫ 1−d
2 polylog(1

ǫ
)
)

.

This (standard) formulation was obtained using Amenta’s technique [9, 10] for relating
Helly-type theorems and LP-type problems. For the sake of completeness, the details are
presented in Appendix 11.5.1.

11.3 Extensions

11.3.1 Covering by other shapes

11.3.1.1 Smooth convex sets

Lemma 93 requires that (i) given a disk Y , the set U ∩ Y be convex and that (ii) the
difference between XY ∩Y and X ∩Y can be covered by O(1

r
) balls of radius O(r2). If an

object is convex and its boundary has a curvature of bounded norm, then for any point
M on this boundary the object contains a ball (of radius bounded away from 0) and is
contained in a half-space delimited by a hyperplane tangent to both the object and the
ball in M ; this means that covering the region between the ball and the hyperplane is
enough to cover the region between the object and the hyperplane. Theorem 92 thus
extends to:

Corollary 99. Let U be a bounded convex set in Rd and F a covering of U by smooth
convex sets whose curvatures have a norm at most γ. For any ǫ > 0, the smallest subset

of F that is an ǫ-covering of U has size O
(

ǫ
1−d
2 polylog 1

ǫ

)

.

Note that the constant in the O() depends on γ and d.

11.3.1.2 Boxes

While our proof technique requires the covering objects to be smooth, similar results hold
in the non-smooth case. We illustrate this with the example of the covering of a unit box
(i.e. a cube with axis-aligned edges) by unit boxes in Rd.

Upper bounds. First, let us observe that a result similar to Theorem 92 holds in
arbitrary dimension.

Theorem 100. Let U be a unit box in Rd and F a covering of U by unit boxes. For any

ǫ > 0, the smallest subset of F that is an ǫ-covering of U has size O
(

ǫ−O(d2d)
)

.
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Sketch of proof. Let F be a family of unit boxes that covers a unit box U , in Rd. Some
box X ∈ F covers the center c of U and thus completely covers one of the 2d half-sized
boxes of Rd defined by U and the axis-parallel hyperplanes through c. By applying this
idea recursively, we get after k iterations a set of m elements of F that cover all but
possibly s boxes of volume

(

2−k
)d

, with

m =

(

2d − 1
)k − 1

2d − 2
and s =

(

2d − 1
)k

.

Thus, for

k > log 2d

2d−1

1

ǫ
,

we obtain a family of size O
(

ǫ−O(d2d)
)

that leaves uncovered a volume at most ǫ of U .

In the planar case, a better bound can be obtained as follows:

Theorem 101. Let U be a unit square in the plane and F a finite covering of U by unit
squares. For any ǫ > 0, the smallest subset of F that is an ǫ-covering of U has size O

(

1
ǫ

)

.

Proof. Let Y ⊂ U be an axis-aligned rectangle. Since F covers Y , there is a box X1 that
covers the center of Y . Since F is finite, we can chose X1 such that Y ∩ X1 is maximal
for the inclusion. If X1 does not have a corner inside Y , X1 covers at least half of Y .
Otherwise, let p be the corner of X1 that is inside Y . Since F is finite and completely
covers Y , some other square X2 covers p and together, X1 and X2 cover at least half of
Y . Let C(Y ) denote these two squares (or just X1 in the first case) and R(Y ) consist of
the 2 rectangular pieces (at most) of Y not covered by C(Y ).

We define R0 = {U} and C0 = ∅ and iterate:

Ci+1 ← Ci ∪
(

⋃

Y ∈Ri

C(Y )

)

and Ri+1 ←
⋃

Y ∈Ri

R(Y ).

Since the area not covered by Ci is halved at every iteration, we get that Ci is a
2−i-covering of U . Furthermore,

|Ci| 6 2
i−1
∑

k=0

|Rk| 6 2
i−1
∑

k=0

2k = 2i+1 − 2.

The statement follows.

Lower bound. Applying the same technique as in Lemma 97 to the (infinite) family
of squares tangent to one of the diagonals of U (see Figure 11.6) shows that the bound
of Theorem 101 is tight. This construction can be generalized to dimension d using the
same arguments as for balls, and yields a lower bound of Ω(ǫ1−d) which does not match
our upper bound for d > 2.
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Y

U

X1 X2
p

U+

U−

D

Figure 11.6: Left: For the proof of Theorem 101. Right: Lower bound of Ω(1
ǫ
) for the

size of the smallest ǫ-cover of U in F.

Algorithms. The above proof, combined with the technique described in Section 11.2.3,
leads to the following algorithm:

Theorem 102. Given a covering F of a unit square U by unit squares, we can compute

in O
(

|F|
ǫ

)

-time a point in U not covered by F or an ǫ-cover of U of size O
(

1
ǫ

)

contained

in F.

11.3.2 Approximated visibility among 3D unit balls

Two among n objects are visible if they support the endpoint of a segment that intersects
no other object, and such a segment is called a visibility segment. Visibility between
objects can be recast as a covering problem by observing that two objects are mutually
visible if and only if the set of segments they support is not covered by the set of segments
supported by these two objects and intersecting some other object.

A natural “volume” to quantify approximate visibility between two objects – similarly
to the ǫ-coverings discussed so far – is given by the measure of the set of lines supporting
visibility segments between these two objects. In fact, this corresponds, up to normal-
ization, to the form factor used in computer graphics (when constant basis functions are
used) to quantify visibility for simulating illumination. We call this measure the amount
of visibility between the two objects. Building on Theorem 92, we prove:

Theorem 103. Let F ∪ {A, B} be a collection of disjoint unit balls in R3 such that A
and B are mutually invisible. For any ǫ > 0, there exists a subset Gǫ ⊂ F, of size

O
(

ǫ−
7
2 polylog 1

ǫ

)

, such that the amount of visibility between A and B in Gǫ ∪ {A, B} is

O(ǫ).

Measure in line space. Recall that there exists, up to scaling by some constant, a
unique measure over lines in R3 that is invariant under rigid motions [95]. We choose the
constant such that the set of lines intersecting a unit ball has measure 4π2.

Let S be a measurable set of lines, let ~S denote its set of directions and, for u ∈ S2,
let S(u) be the set of lines in S with direction u. Finally, let |~S| denote the area of ~S (on
the unit sphere of directions) and let |S(u)| be the measure of S(u), i.e. the area of the
intercept of S(u) with a plane orthogonal to u.

Lemma 104. The measure of a set of lines S is bounded from above by |~S|×maxu |S(u)|.
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≤ α
L+2

≤ L + 2

x

a pu(x) pv(x)

uv

β

Figure 11.7: How a change of projection affects the projection.

Proof. Let us represent a line by its direction, given in spherical coordinates (θ, φ) ∈
[0, 2π) × [0, π], and a point (x, y) in the plane orthogonal to its direction through the
origin. With our choice of constant, the density of the measure on the space of lines is
then

dG = dxdy sin θdθdφ

and the statement follows from integrating separately along the couples (x, y) and (θ, φ).

We now prove Theorem 103:
Proof of Theorem 103. Let us fix ǫ0 > 0. Let a and b be the respective centers of balls A
and B. Given u = (θ, φ) ∈ S2, we denote by pu(·) the projection on the plane through a
with normal u, equipped with a frame with origin at a and with pu([0, 2π), φ) as x-axis
(in the sequel, points pu(·) are considered in the two-dimensional affine space). The proof
consists of four steps:

Step 1. We first find a small subset of F that blocks visibility between A and B for
some given direction u ∈ S2. Let Fu denote the collection of balls that block visibility
between A and B along u (i.e. a ball X belongs to Fu if some oriented line with direction
u intersects X in-between A and B). Since A and B are mutually invisible, pu(Fu) is
a collection of unit discs that covers pu(A) ∩ pu(B). Furthermore, pu(A) ∩ pu(B) is a
bounded convex set. Hence, Corollary 99 yields that for any ǫ0 > 0, there exists a subset
Hu ⊂ Fu of size at most

|Hu| = O

(

ǫ
− 1

2
0 polylog

1

ǫ0

)

such that pu(Hu) is an ǫ0-covering of pu(A) ∩ pu(B).

Step 2. We now argue that a subset that almost blocks visibility in direction u still
almost blocks visibility in any direction v close enough to u. Let α > 0 be some constant
and v ∈ S2 be a vector making, with u, an angle of at most α

L+2
where L is the distance
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pu(a)

pv(b)

pu(b)

≤ α

Figure 11.8: Area of the difference between the projections.

between a and b. For any ball X ∈ Fu, with center x, we have (see Figure 11.7)

pu(x)pv(x) 6 (L + 2)

(

cos

(

β − α

L + 2

)

− cos β

)

(10)

6 2(L + 2) sin

(

β − α

2(L + 2)

)

sin

(

α

2(L + 2)

)

6 α, (11)

since sin x 6 x for x 6 1. So, the disk with center pu(x) and radius 1− α is contained in
pv(X). It follows that, for any vector v making angle at most α

L+2
with u, pv(Hu) covers

pu(A) ∩ pu(B) but an area of at most:

ǫ0 + 2πα|Hu|.

By definition of pu, we have pu(A) = pv(A) and, for the same reason as above,
pu(b)pv(b) 6 α. Thus, the area of the difference

(pv(A) ∩ pv(B)) \ (pu(A) ∩ pu(B))

is bounded from above by 2α (see Figure 11.8). Hence, pv(Hu) covers pv(A) ∩ pv(B) but
an area of at most:

ǫ0 + 2α + 2πα|Hu|.

Note that for a ball X ∈ Hu, having a non-empty intersection pv(A) ∩ pv(B) ∩ pv(X)
does not guarantee that X blocks visibility between A and B: lines with directions u and
v may intersect the three balls in different orders. It thus remains to remove the area
covered by pv(Hu \ Fv); we claim that this area is O(α) and refer to Appendix 11.5.2 for
the details.

Step 3. We now almost block visibility between A and B by applying the previous
construction to a sample of S2. The directions T of common line transversals to A and B
make up a disc of radius arcsin

(

2
L

)

on S2. We can thus choose a collection D of O (α−2)
directions such that the discs of radii α

L+2
centered on these directions completely cover

T . Let H and h denote respectively:

H =
⋃

u∈D

Hu and h = max
u∈S2
|Hu| = O

(

ǫ
− 1

2
0 polylog

1

ǫ0

)

.
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H has size O (α−2h) and, for any u ∈ S2, pu(H∩Fu) covers pu(A)∩ pu(B) except an area
of at most:

ǫ0 + O(α) + 2παh.

Let V denote the set of lines intersecting A and B and no ball in H between A and B.
Lemma 104 yields that the measure of V is bounded from above by:

(ǫ0 + O(α) + 2παh) π arcsin2

(

2

L

)

= O (ǫ0 + αh) .

Step 4. We now have a set H of size O
(

α−2ǫ
− 1

2
0 polylog 1

ǫ0

)

that blocks visibility between

A and B up to a set of lines of measure V = O (ǫ0 + αh). By choosing α = ǫ
3
2
0 , we get

|H| = O

(

ǫ
− 7

2
0 polylog

1

ǫ0

)

and V = O (ǫ0 + αh) = O

(

ǫ0 polylog
1

ǫ 0

)

.

Finally, setting ǫ0 such that ǫ = ǫ0 polylog 1
ǫ0

, H is a subset of F of size O
(

ǫ−
7
2 polylog 1

ǫ

)

,

such that the amount of visibility between A and B in H ∪ {A, B} is O(ǫ).

Algorithm. Combining the proofs of Theorem 98 and Theorem 103, we obtain:

Theorem 105. Let F be a collection of disjoint unit balls in R3 and let A and B be two

unit balls. We can compute in O
(

|F|ǫ− 7
2 polylog(1

ǫ
)
)

-time a visibility segment between A

and B or a subset Gǫ ⊂ F, of size O
(

ǫ−
7
2 polylog 1

ǫ

)

, such that the amount of visibility

between A and B in Gǫ ∪ {A, B} is O(ǫ).

11.4 Conclusion

In this paper, we considered the problem of, given a covering F of a set U , bounding the
size of the smallest ǫ-covering G ⊂ F of U . We showed that this size can be bounded
independently of |F| for coverings of a unit ball by unit balls, for coverings of a unit box
by unit boxes and for 3-dimensional visibility among disjoint unit balls. We also presented
simple algorithms that, given a family F and a set U , certify either that F does not cover
U or that F misses at most a volume ǫ of U .

Our bounds show that the size of the smallest ǫ-covering depends on the geometry of
the covering sets: our (almost) tight bounds for disks and squares differ by Θ(

√
ǫ). Do

other simple shapes lead to different bounds? Another obvious open problem is closing
the gap between our lower and upper bounds for covering by boxes in dimension d > 3.

11.5 Appendix

11.5.1 For the proof of Theorem 98

We first recall some basic facts on the class of optimization problems called LP-type
problems (or generalized linear programming). Let H be a set and φ a map φ : 2H→ Ω
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from the family of subsets of H to some completely ordered set Ω. The pair (H, φ) is a
LP-type problem if it satisfies two properties:

Monotonicity: if F ⊂ G ⊂ H then φ(F ) > φ(G).

Locality: if F ⊂ G ⊂ H and φ(F ) = φ(G) then for any x ∈ H:

φ(F ∪ {x}) 6= φ(F )⇔ φ(G ∪ {x}) 6= φ(G).

A subset B ⊂ F , such that φ(B) = φ(F ), which is minimal for this property is a basis
of F . The combinatorial dimension of a LP-type problem is the maximal cardinality
of a basis, possibly +∞. Recall that for LP-type problem with constant combinatorial
dimension, a basis B of H can be computed in O(|H|)-time (see [9, Chapter 7]).

We now prove the case d = 2 of Theorem 98. We start by a simple lemma:

Lemma 106. Let H be a family of half-spaces in Rd and Y a ball. We can compute, in
O(|H|)-time, either a (d + 1)-tuple in H that covers Y or a point in Y not covered by H.

Proof. Let φ : 2H→ R be the map that associates to G ⊂ H the real

φ(G) = min
{

t ∈ [0, +∞)
∣

∣ ∪x∈G x⊕D(t) covers Y
}

where ⊕ and D(t) denote respectively the Minkowski sum operator and the disk of radius
t centered at the origin. The problem (H, φ) is clearly a LP-type problem. Furthermore,
Helly’s theorem implies that its combinatorial dimension is bounded, more precisely by
d + 1, and a basis B of H can be computed in O(|H|) time. If φ(B) = 0 then B is a
(d+1)-tuple in H that covers Y , otherwise H does not cover Y . In the latter case, observe
that the boundaries of the half-spaces x⊕D(φ(B)) intersect in a point that is not covered
by ∪x∈Hx.

From there, the proof of Theorem 98 is almost immediate:

Proof of Theorem 98. We construct the sets Ci and Ri by repeating, as indicated in the
proof of Theorem 92, the operation:

Ci+1 ← Ci ∪
(

⋃

Y ∈Ri

C(Y )

)

and Ri+1 ←
⋃

Y ∈Ri

R(Y ).

Assume we are given Ci and Ri. For every ball Y ∈ Ri we run the algorithm described
in Lemma 106 and obtain either a point in Y ∩ U not covered by F or a family C(Y ); in
the former case we stop and return that U is not covered and in the latter, we compute
R(Y ). Overall, the time spent for computing Ci and Ri is respectively O (|Ci| ∗ |F|) and
O(|Ri|). Let k denote the number of iterations performed. Since we need not compute
Rk, the complexity of the algorithm is O (|Ck| ∗ |F|+ |Rk−1|); with the same convention

as in the proof of Theorem 92, |Ck| is O(ǫ
1−d
2 polylog(1

ǫ
)) and |Rk−1| is O

(

ǫ
1−d
2

)

so the

time complexity of the algorithm is O
(

|F|ǫ 1−d
2 polylog(1

ǫ
)
)

.
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A X

B AXB

ABX

b

x
a

Figure 11.9: Two different geometric permutations.

11.5.2 For the proof of Theorem 103

In this appendix we prove the following claim used in the proof of Theorem 103.

Claim. The area covered by pv(Hu \ Fv) is O(α).

Proof : First, observe that if a ball X is in Fu\Fv and is such that pv(X)∩pv(A)∩pv(B) 6= ∅
then the balls {A, B, X} have two distinct geometric permutations (along direction u we
have AXB whereas along direction v the permutation is ABX or XAB). Since these
are disjoint unit balls, the centers of two of them are separated by a distance of at most
2
√

2 (see Figure 11.9). If these two balls are A and B then the theorem holds since they
have at most a constant number of blockers. Otherwise, an immediate packing argument
yields that at most a constant number, say c1, of balls in Fu \ Fv contribute to cover
pv(A) ∩ pv(B). Also, there is some direction w in the interval [u, v] such that pw(X) is
tangent to pw(Y ) with Y ∈ {A, B}. Since

pv(x)pv(y) > pw(x)pw(y)− pw(x)pv(x)− pw(y)pv(y) > 2− 2α

the area pv(X) ∩ pv(Y ) is bounded from above by

2

∫ 1

1−α

√
1− x2dx,

which is, at most, 2α (since
√

1− x2 6 1 on [1−α, 1]). This also bounds the contribution
of pv(X) in covering pv(A) ∩ pv(B) and the claim follows.
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Chapter 12

Octrees with near optimal cost for

ray-shooting

Ce travail a été réalisé avec H. Brönnimann. Des versions préliminaires ont été
présentées à la Canadian Conference on Computational Geometry [31] et au
Latin American Theoretical Informatics Symposium [30]. La version complète
est publiée dans Computational Geometry: Theory and Applications [64].

Predicting and optimizing the performance of ray shooting is a very important problem
in computer graphics due to the severe computational demands of ray tracing and other
applications, e.g., radio propagation simulation. Aronov and Fortune were the first to
guarantee an overall performance within a constant factor of optimal in the following
model of computation: build a triangulation compatible with the scene, and shoot rays
by locating origin and traversing until hit is found. Triangulations are not a very popular
model in computer graphics, but space decompositions like kd-trees and octrees are used
routinely. Aronov and coll.[13] developed a cost measure for such decompositions, and
proved it to reliably predict the average cost of ray shooting.

In this paper, we address the corresponding optimization problem on octrees with the
same cost measure as the optimizing criterion. More generally, we solve the generalization
for generalized octrees in any d dimensions with scenes made up of (d − 1)-dimensional
simplices. We give a construction of trees which yields cost O(M), where M is the infimum
of the cost measure on all trees. Sometimes, a balance condition is important (informally,
balanced trees ensures that adjacent leaves have similar size): we also show that rebal-
ancing does not affect the cost by more than a constant multiplicative factor. These are
the first and only known results that provide performance guarantees on the approxima-
tion factor for 3-dimensional ray shooting with this realistic model of computation. Our
results have been validated experimentally by Aronov and coll.[11].

12.1 Introduction

Given a set S of objects, called a scene, the ray-shooting problem asks, given a ray,
what is the first object in S intersected by this ray. Solving this problem is essential
in answering visibility queries. Such queries are used in computer graphics (e.g., ray
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tracing and radiosity techniques for photo-realistic 3D rendering[62]), radio- and wave-
propagation simulation[22], and a host of other practical problems.

A popular approach to speed up ray-shooting queries is to construct a space decom-
position such as a quadtree in 2D or an octree in 3D. The query is then answered by
traversing the leaves of the tree as they are intersected by the ray, and for each cell in
turn, testing for an intersection between the ray and the subset of objects intersecting
that cell. The performance of such an approach greatly depends on the quality of that
space decomposition.

Unfortunately, not much is understood about how to measure this quality. Practioners
use a host of heuristics and parameters of the scene, of which the object count is less im-
portant than, e.g., the size of the objects in the scene, and other properties of the object
distribution (density, depth complexity, surface area of the subdivision). Those param-
eters are used to develop automatic termination criteria for recursively constructing the
decompositions (see Section 12.3). While they perform acceptably well most of the time,
none of these heuristics performs better than the brute-force method in the worst case.
More importantly, occasionally the termination criteria will produce a bad decomposition,
and in any case there is no way to know the quality of the decomposition because lower
bounds are hard to come by.

In[13], we proposed a measure for bounded-degree space decompositions, based on
the surface area heuristic. This cost measure is a simplification of a more complicated
but theoretically sound cost measure: under certain assumptions on the ray distribution,
the more complicated cost measure provably reflects the cost of shooting an average ray
using the space decomposition. The simplified cost measure has a very similar predicting
power for many scenes encountered in computer graphics. This has been experimentally
verified[13, 11]. We conjecture it would take a very artificially constructed and unrealistic
scene to bring forth a discrepancy. It thus makes sense to try and optimize the data
structure with respect to this simplified cost measure.

In this paper, we are interested in constructing trees with cost as low as possible, with
a guaranteed approximation ratio. First, we observe that tree construction heuristics used
in computer graphics do not have a bounded approximation ratio. We give and analyze
algorithms that produce trees with cost O(M), where M is a lower bound on the cost of
any tree for the given scene. We also examine the effect of rebalancing the tree on the cost
measure, and prove that rebalancing only increases the cost by a constant multiplicative
factor. The only objects we consider are simplices: points and segments inside the unit
square [0, 1]2 in R2, or points, segments and triangles inside the unit cube [0, 1]3 in R3,
and (d − 1)-simplices in Rd. We however assume the real-RAM model so as to avoid a
discussion on the bit-length of the coordinates. (This is also justified by our application.)

In a follow-up paper[11] to[13], we evaluate empirically several heuristics, including
those presented here, to optimize the cost value of an octree for a given scene. Both our
algorithm (3-greedy in this paper’s terminology) and a simpler heuristic (which we call
1-greedy or greedy without lookahead) give the best cost. In fact, we find that all the
reasonable variants end up with approximately the same cost which must be within a
factor O(1) of optimal. There is no guarantee that this cost is within (1 + ε) of optimal,
though. The polynomial-time algorithm suggested in the remark of Section 12.3.4 (full
subdivision to depth log2 n + C followed by dynamic programming) would be guaranteed



12.2. General cost measure results 159

to give a O(1) approximation factor as well, and we’d even expect it to be very close
to optimal, but it was too time- and space-consuming for us to try in[11]. Nevertheless,
we find it hard to believe that the cost to which all these variants converge could be
sub-optimal, and it thus appears experimentally that our procedure yields a near-optimal
tree in practice.

Related work. There has been a lot of work on quadtrees and octrees in the mesh
generation and graphics community (see the book by Samet[93], the thesis of Moore[84],
or the survey by Bern and Eppstein[21] for references). Since they are used for discretizing
the underlying space, usual considerations include the tradeoff between the size of the tree
and their accuracy with respect to a certain measure (that usually evaluates a maximum
approximation error with respect to some surface). These are not usually relevant for ray
shooting.

There is, however, a rich history of data-structure optimization for ray shooting in
computer graphics. (See the surveys in[13, 11, 34] and refs. therein.) Cost measures
have been proposed for ray shooting in octrees by MacDonald and Booth[79], Reinhard
and coll.[91], Whang and coll.[108], and for other structures, such as bounding volume
hierarchies[66, 103, 107], bintrees[79], BSP-trees[86], uniform grids[38] and hierarchical
uniform grids[33]. We should also mention the work of Havran and coll.[69], who propose
a method to determine experimentally the most efficient space subdivision for a given
scene, by picking a similar scene (according to certain characteristics such as size, number
of objects, densities, etc.) in a database of scenes for which the most efficient scheme has
been determined. All of these approaches use heuristic criteria (sometimes very effectively)
but none offer theoretical guarantees. In particular, the cost function c of MacDonald and
Booth is the same as ours (see Section 12.2.1 below) and their greedy procedure almost
identical to our 1-greedy heuristic. They do not however derive the theoretically correct
formulation c∗ nor establish the connection to c, but they do explore a wider parameter
space by allowing the subdivision of their bintree to be different than the spatial median
(which we do not in this work).

12.2 General cost measure results

12.2.1 Motivation, definitions, and problem statement

In this paper we consider the problem of shooting rays into a scene consisting of solids,
represented by their boundaries. In particular, we assume that these boundaries have
already been subdivided into elements of constant combinatorial complexity, so that the
only objects we consider are simplices of dimension at most d − 1 in Rd: points and
segments inside the unit square [0, 1]2 in R2, points, segments and triangles inside the
unit cube [0, 1]3 in R3, and (d− 1)-simplices in Rd.

The algorithm generally used for ray shooting with the help of a (convex) spatial
subdivision T such as a quadtree (in 2D) or an octree (in 3D) is the following: when
shooting a ray, the cells of that subdivision (in our context, the leaves of the octree) are
traversed in the order they are encountered by the ray, starting with the cell that contains
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the origin of the ray. For each cell traversed, all the objects intersecting that cell are tested
against the ray to find the first hit. If a hit is found inside the cell, then the traversal is
stopped and the first such hit is returned, otherwise the algorithm proceeds to the next
cell in the traversal. If it reaches the outside boundary of the enclosing volume, the ray
is declared unoccluded and the algorithm returns “no hit”.

The worst-case cost of this algorithm depends on the stabbing number of the subdi-
vision. While it is not hard to fabricate scenes with a worst-case linear time ray, in a
typical application of ray shooting such as ray tracing or wave propagation simulation,
many rays are shot. The quantity of interest is really the average cost for a random
ray following a certain distribution of rays. A common heuristic in computer graphics
consists of approaching the density of rays hitting a convex cell by its perimeter area,
as motivated by Crofton’s formula in integral geometry[95]. In fact, this is rigorous for
line traversal if the line distribution is the rigid-motion invariant distribution, but this is
ill-defined for rays. In[13], we observed that for a uniform distribution of rays originating
either outside the subdivision or on the surface of objects, the density of rays traversing
a cell was proportional to the area of the perimeter plus the total area of the perimeter of
the objects contained in the cell. The average cost of traversing a cell is proportional to
the number of intersection tests performed multiplied by the density, plus some overhead
γ for finding the next cell in the traversal,18 and thus the following cost measure should
be considered for modeling the total traversal costs[13]:19

c∗S(T) :=
∑

σ∈L(T)

(

γ + |Sσ|
)

×
(

λd−1(σ) + λd−1(Sσ ∩ σ)
)

, (12)

where L(T) is the set of leaves of the tree, Sσ is the set of scene objects intersecting a
leaf σ, λd−1(σ) is the perimeter length (if d = 2) or surface area (if d = 3) of σ, and
λd−1(Sσ ∩ σ) is the perimeter or area of the portion contained in σ of the objects in Sσ.
The last term λd−1(Sσ ∩ σ) is somewhat complicated to evaluate, and so the following
simplification was introduced in[13]:

cS(T) :=
∑

σ∈L(T)

(

γ + |Sσ|
)

× λd−1(σ). (13)

This simplified cost function provably models the cost of finding all the objects intersected
by a random line (with respect to the rigid-motion invariant distribution of lines), and was
already proposed earlier by MacDonald and Booth[79] but without the connection to c∗S.
MacDonald and Booth[79] (for bintrees) and Aronov and coll.[13, 11] (for bounded-degree
spatial subdivisions, with extensive experimentation for octree) argue and provide ample

18Technically speaking, the cost functions make sense only for spatial subdivisions with bounded degree,
so that the cost of finding the next cell in the traversal can be bounded by a constant γ. But this is also
true in an amortized sense for octrees, see[13] for the technical details.

19Strictly speaking, the average cost of shooting a ray is c∗S(T)/µ where µ is the total density of the
ray distribution, i.e. the surface area of the outer perimeter of T plus the total surface area of the objects
in S. For the purpose of optimizing ray shooting costs, however, if the outer bounding box and the scene
are given, the denominator is constant and we need only concentrate on finding the best T optimizing
c∗S(T) or cS(T).
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experimental evidence that this cost function also reflects the average cost of ray shooting
using the spatial subdivision induced by the leaves of T.

The problem we then consider is, given a scene S, an overall bounding box B, and a
cost function such as Eq. (13), to construct an octree T subdividing B which minimizes
cS(T). Note that all the definitions as phrased above are valid for d > 4 as well as
for 2D and 3D, and for the sake of generality we consider below the problem for any
fixed d > 2. Since S and B are also fixed, we will often omit them in the notation
and use simply c(T). In order to obtain theoretical guarantees, we restrain ourselves to
split the octree nodes at their spatial median, although others have investigated other
choices to heuristically improve costs. Even with this, we do not know if our problem is
NP-complete or not. Nevertheless, we are not aware of any work providing optimality or
even any sublinear bound on the approximation ratio. Namely, all the known termination
criteria for subdividing an octree or other constructions mentioned earlier have no known
sublinear bound on their approximation ratio.

12.2.2 Tree and object costs

Observe that the cost measure expressed in Eq. (13) can be decomposed into two terms:
c(T) = ct(T) + co(T). The first term,

ct(T) := γ
∑

σ∈L(T)

λd−1(σ) = γλd−1(L(T)), (14)

where L(T) denotes the set of leaves of T and λd−1 is extended to sets of leaves by
summation, is simply the tree total area (which is more than the surface area of the
bounding box). We call ct the tree cost. The second term

∑

σ∈L(T) |Sσ|λd−1(σ), can be
computed object by object and this leads to

co(T) :=
∑

s∈S

λd−1(Ls(T)), (15)

where Ls(T) denote the set of leaves of T intersected by s, and again λd−1 is extended to
sets of leaves by summation. We call co the object cost. Again, note that λd−1(Ls(T)) is
more than the perimeter of the union ∪s∈SLs(T), as it measures the sum of the perimeters
of all the leaves intersected by the object. (In particular, both sides of a face contribute
if the face belongs to the interior of ∪s∈SLs(T).) It is useful to keep in mind the following
simple observations: when subdividing a leaf σ, the total tree cost of its children is twice
the tree cost of σ, and the contribution within σ to the object cost of an object is multiplied
by m/2d−1 where m ∈ [1 . . . 2d] is the number of children intersected by the object. Note
that m 6 3 for a segment in 2D and m 6 7 for a triangle in 3D (unless they pass through
the center of the cell). As the tree grows finer, the tree cost increases while the object
cost presumably decreases.

The following lemma was given in[31] for quadtrees, and rephrased here to encompass
any dimension as well.

Lemma 107. For any d > 2 and any set S of simplices of dimension at most d − 1 in
[0, 1]d, c(T) > 2dγ + d

√
2
∑

s∈S λd−1(s).
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Proof. The tree cost cannot be less than λd−1([0, 1]d)γ = 2dγ, and the object cost cannot
be less than

∑

s∈S λd−1(s). We can improve this lower bound further by noting that
any leaf σ that is intersected by an object s has area at least d

√
2 times λd−1(s ∩ σ).

Indeed, the smallest ratio λd−1(σ)/λd−1(s ∩ σ) happens when s maximizes λd−1(s ∩ σ);
this happens for a diagonal segment of length

√
2 for the unit square (of perimeter 4),

and for a maximal rectangular section of area
√

2 for the unit cube (of area 6). In fact,
the maximal section of the unit d-cube is

√
2[19], hence the ratio is at least 2d/

√
2 = d

√
2

in any dimension.

12.3 Tree construction schemes

All we have said so far is independent of the particular termination criterion or algorithm
used to construct the tree. In this section, we introduce several construction schemes and
explore their basic properties.

12.3.1 Terminology and notation

We follow the same terminology as[31], and generalize it to encompass any dimension.
For the d-cube [0, 1]d and the cells of the decomposition, we borrow the usual terminology
of polytopes (vertex, facet, h-face, etc.). The square is a quadtree that has a single leaf
(no subdivision), the cube is an octree with a single leaf, and the d-cube is a single-leaf
tree (for any d). We call this tree unit and denote it by T(unit). If we subdivide this
leaf recursively until depth k, we get a complete tree (of depth k), denoted by T

(complete)
k ,

and its leaves form a regular d-dimensional grid with 2k intervals along each direction.
Note that the root has depth 0 and its children have depth 1. In a tree, if only the cells
incident to one facet (resp. d facets sharing a vertex, or touching any of the 2d facets) of
a cell are subdivided, and this recursively until depth k, the subtree rooted at that cell is
called a k-side (resp. k-corner and k-border) tree, and denoted by T

(side)
k (resp. T

(corner)
k

and T
(border)
k ); see Figure 12.3.1 for an illustration of the 2D case. In higher dimensions,

there are other cases (one for each dimension between 1 and d− 2). Generally speaking,
we call the tree obtained by recursively subdividing until depth k all the cells touching
the facets adjacent to given h-face a k-corner of order h (in dimension d), and denote it
T

(h, d-corner)
k . A k-corner is of a corner of order 0, and a k-side is a corner of order d−1. All

this notation is extended to starting from a cell σ instead of a unit tree, by substituting σ
for T: for instance, the complete subtree of depth k subdividing σ is denoted by σ

(complete)
k .

The subdivision operation induces a partial ordering ≺ on trees, whose minimum is
the unit tree. Again, this partial ordering is extended to subtrees of a fixed cell σ.

We consider algorithms for computing a tree for a given set S of objects, which subdi-
vide each cell recursively until some given termination criterion is satisfied. In particular,
we may recursively subdivide the unit cube until each leaf meets at most one object (or
any fixed C). We call this the separation criterion, and the resulting tree the minimum
separating tree, denoted T(sep)(S), with variants where the recursion stops at depth k,
denoted T

(sep)
k (S), or C > 1 denoted T

(sep)
C (S). (Note that the depth of T

(sep)
C is always

infinite if more than C simplices intersect.) In 3D, for non-intersecting triangles, a variant
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Figure 12.1: The k-side quadtree Q
(side)
k (left), a corner Q

(corner)
k (center), and a border

Q
(border)
k (right).

of[14] stops the recursive subdivision also when no triangle edge intersects the leaf (but
any number of non-intersecting triangle interiors may slice the leaf). We will not analyze
this variant in this paper.

12.3.2 Examples of cost computation

As examples and for completeness, we compute the costs of some of the configurations
given above.

With no subdivision, the cost of the unit tree T(unit) is c(T(unit)) = 2d(γ + n).
For points, the cost of a full subdivision at depth k, T

(complete)
k , is at most 2d(2kγ +

2dn
2k(d−1) ) because each point belongs to at most 2d leaves, and at least 2d(2kγ+ n

2k(d−1) ). The

latter is the exact value if all the points fall in a single leaf of T
(complete)
k , and it happens

if the binary expansions of all point coordinates always have at least k + 1 bits.
The tree costs of the k-side, k-corner, and k-border, and more generally of the k-

corner of order h can be computed readily by noting that a k-side is a half-scaled copy
of 2d−1 empty trees and 2d−1 (k − 1)-sides, that a corner is made of

(

d
i

)

half-scaled k-
corners of order i, for every 0 6 i 6 d− 1, and that a k-border is made of 2d half-scaled
(k − 1)-corners:

ct(T
(side)
k ) = 2dγ(k + 1),

ct(T
(corner)
k ) =

2dγ

(2d−1 − 1)2
×
(

k
(

22d−1 − 21+d + 2
)

− 2d−1 + 1 +
2d−1 − 1

2k(d−1)

)

,

ct(T
(border)
k ) = 2ct(T

(corner)
k−1 )

Let Sn denote n distinct points very close to one corner of the unit cell, let’s say the
origin. Here, ‘very close’ means always within the cell incident to that vertex. It’s then
pointless to subdivide the other cells: since they do not contain points of S, their cost
would be doubled. After k levels of recursively subdividing the incident cell, we obtain
the tree T

(sep)
k (Sn) whose cost is c(T

(sep)
k (Sn)) = 12γ + (n − 2γ)22−k for d = 2; for any d,

the cost is

c(T
(sep)
k (Sn)) =

2dn

2(d−1)k
+ 2dγ

(

1 +
1− 2(1−d)k

1− 21−d

)

Whether this is an improvement over T(unit) for any value of k depends on n and γ.
In particular, T

(sep)
k (Sn) has cost lower than the unit tree for large values of k only if
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n > 2γ in 2D, and n > 4
3
γ in 3D (n > 2d−1

2d−1−1
γ in general). This example tells us that

whether subdivision strategies based on the number of objects in a cell—like the separation
criterion—produce optimal or near-optimal trees, depends strongly on the value of γ.

12.3.3 Dynamic programming and greedy strategies

As introduced in[31], the dynamic programming algorithm finds the tree that minimizes
the cost over all trees with depth at most k, which we denote by T

(opt)
k (S) (or σ

(opt)
k (S) if

we start from a cell σ instead of the unit cell): the algorithm starts with the complete tree
T

(complete)
k , and simply performs a bottom-up traversal of all the nodes, while maintaining

the optimum cost of a tree rooted at that node. The decision whether to keep the subtree
of a cell or prune it is based on the cost of the cell vs. the sum of the optimum costs of
the subtrees rooted at its 2d children.

Unfortunately, the memory requirements of this algorithm are huge for large values of
k (although they remain polynomial if k = Θ(log n); see next section). Therefore we also
propose a greedy strategy with bounded lookahead: the algorithm proceeds by recursively
subdiving the nodes with a greedy termination criterion: when examining a cell σ, we run
the dynamic programming within σ with depth p (p is a parameter called lookahead). If
the best subtree σ

(opt)
p (S) does not improve the cost of the unsubdivided node σ, then the

recursion terminates. Otherwise, we replace σ by the subtree σ
(opt)
p (S) and recursively

evaluate the criterion for the leaves of σ
(opt)
p (S). We call this the p-greedy strategy and

denote the resulting tree by T(p-greedy)(S) (or σ(p-greedy)(S) if we start from a cell σ instead
of the unit cube). Note that unlike all the other trees constructed up to now, that tree
could be infinite. We use the notation T

(p-greedy)
k to denote the tree constructed with the

p-greedy lookahead criterion combined with a maximum depth of k.
With one level of lookahead (p = 1), the greedy strategy simply examines whether

subdivision at one level decreases the cost measure. Below, we show that this does not
always yield good trees. We will analyze the greedy strategies with one or more levels of
lookahead, first for points, then for simplices. But first, we must grapple with the issue
of infinite depth.

12.3.4 Pruning beyond a given depth

The “optimal” tree may not have finite depth: it is conceivably possible to decrease the
cost by subdividing ad infinitum. Indeed, this is the case for n > 2γ in the example of
T

(sep)
k (Sn) given at the end of section 12.3.2. So we let M denote the infimum of c(T)

over all trees T for a scene S. (As a consequence of Lemma 107, M > 2dγ.) In order to
have an algorithm that terminates, we usually add an extra termination criterion such as
a maximum depth k.

We now show that pruning a tree beyond depth k for some choice of k increases the
cost at most by a constant factor. We first show it for arbitrary convex obstacles (simplices
in particular). Then we improve on the result for the case of points.

Lemma 108. Let T be a d-dimensional tree which stores a set S of n convex objects of
dimensions at most d− 1. For any fixed constant C and k = log2 n + C, let Tk be the tree
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obtained from T by removing every cell of depth greater than k. Then c(Tk) = O(c(T))
with a constant depending on d, C and γ (not on S nor n).

Proof. First, the tree cost only increases when subdividing, so that ct(Tk) 6 ct(T). The
cells of depth less than k are the same in T and Tk, hence the object cost of those cells
of Tk is at most the object cost of T. It remains to bound the object cost of the leaves of
Tk that have depth k.

Let us consider an arbitrary object, and since we are only concerned with depth k,
let us consider the full subdivision of depth k instead of Tk. We let K be 2k. This is
a d-dimensional grid G of side K, with Kd cells. Our first purpose is to give an upper
bound on the number of cells of this grid that the object can intersect. We could not find
a bound in the literature, so we include it here for completeness:

Lemma 109. Let G be a K × · · · ×K d-dimensional grid subdividing the unit cube, with
Kd cells. Any convex object s of dimension at most d − 1 intersects at most (d + 1) ·
(

4dKd−2 + Kd−1λd−1(s)
)

cells of G.

Proof of Lemma 109. Since the dimension of s is at most d−1, it belongs to a hyperplane
π: consider the coordinate ni of largest absolute value of a vector n normal to π, and
project the object s, the vector n, and the grid G onto a (d − 1)-dimensional object s′,
vector n′, and grid G′ in the hyperplane xi = 0. Note that λd−1(s

′) 6 λd−1(s). By our
choice of projection, each cell of G′ intersected by s′ is the projection of at most d + 1
cells of G intersected by s. This is most easily seen by rewriting the equation of π as
xini + x′n′ = π0, or ∆xini + ∆x′n′ = 0, which means that |∆xi| · |ni| 6 |∆x′ · n′| 6
∑

j 6=i |∆xj| · |nj| 6 |ni|
∑

j 6=i |∆xj|, and thus when ∆x′ is in a cell of G′, |∆xi| is at most
d − 1; in the worst case, this can span d + 1 cells (the bottom and top cells being only
touched by a single point). The (d − 2)-dimensional boundary of s′ is also convex, and
may intersect at most Kd−1 − (K − 4)d−1 6 4dKd−2 cells (by convexity, the worst case
occurs when the boundary is largest possible, hence intersects all the border cells of G′

and their neighbors). The relative interior of s′ cannot contain more than Kd−1 · λd−1(s
′)

cells of G′, and the lemma follows.

Proof of Lemma 108 (cont.) The area of a cell of G is 2dK1−d. The cost of the
object associated to depth k cells is then at most 2d(d + 1) (4d/K + λd−1(s)). Sum-
ming over all objects gives a total of at most 2d(d + 1) (4dn/K +

∑

s λd−1(s)). Sub-
stituting 2log2 n+C for K shows that the combined object costs of the leaves of Tk at
depth k is at most 2d(d + 1)

(

d · 22−C +
∑

s λd−1(s)
)

. By Lemma 107, this is at most
max

{√
2(d + 1), d(d + 1)22−C/γ

}

times the cost of T. Putting everything together, c(Tk) 6
(

1 +
√

2(d + 1) + d(d + 1)22−C/γ
)

c(T).

Remark. A choice of k = log2 n + C ensures that Tk has at most (2k)d = O(nd) leaves,
for any fixed d. Hence the algorithm which computes the full subdivision at depth k and
then applies the dynamic programming heuristic provably computes a tree whose cost is
O(M) in polynomial time, as a consequence of Lemma 108.

Unfortunately, this cannot be extended to yield approximations within (1 + ε). But
as a side note, for scenes consisting of points only and with slightly more restrictive
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hypotheses on T, the depth k can be chosen so that Tk has size O(n1+ 1
d−1 ) = O(n2) (for

any d > 2) and cost as close as desired to that of T.

Lemma 110. Let T be a d-dimensional tree, which stores a set S of n points. Assume
that T does not contain empty internal nodes (i.e. that are subdvided but do not contain
any object). Let Tk be the tree obtained from T by removing every cell of depth greater
than k. Then, for every ε > 0 there exists a C (that depends only on d, ε and γ but not
on S nor n) such that, for k = 1

d−1
log2 n + C, we have

c(Tk) 6 (1 + ε)c(T).

Proof. The cost of a cell σ which contains nσ points and has depth k = 1
d−1

(log2 n+C) is
c(σ) = (γ + nσ)2d · 2−k(d−1) = 2d(γ + nσ)/(2Cn). The proof for points hinges on the fact
that, unlike an arbitrary simplex, a point belongs to at most 2d leaves,20 and that to be
subdivided, a cell needs to contain at least one point. Hence, in Tk there are at most 2dn
leaves that contain a point, and

∑

σ nσ 6 2dn. Summing over all leaves at depth k which
still contain points, one gets

∑

σ∈Lk(T)

c(σ) 6
2d

n
(γ + nσ) · d2d+1(γ + 1)

2C
,

which can be made as small as ε2dγ for an appropriate value of C. By Lemma 107, this
implies that the cost of the non-empty leaves at depth k in Tk is at most εc(T). The leaves
of Tk at depth less than k also belong to T, and the same holds as well for the leaves at
depth k which do not contain any point. Hence their total cost is at most c(T) and the
lemma follows.

This result may seem somewhat anecdotic, but scenes consisting of points only have
some relevance (see Section 12.4.2).

12.4 Constructing trees whose costs approach the op-

timal

12.4.1 General case: simplices

The following lemma was proven in[31] for the case d = 2. Its statement and proof extend
straightforwardly to higher dimensions.

Lemma 111. The lookahead greedy strategy does not always give (asymptotically) a cost-
optimal tree. Specifically, for any k, there is a set S of n objects such that no tree of depth
at most k has cost less than 2d(γ + n), but some tree of depth at least k + 1 has cost less
than 2d(γ + n).

20If this seems like nitpicking, consider that “point” might mean a very small simplex. Thus this result
for points applies equally to any collection of small objects, where “small” means to be contained in some
cube of side 2−k. See also Section 12.4.2.
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Figure 12.2: An example of quadtree Q
(2)
k,m; here m = 2 and d = 4.

The counterexample for d = 2 consists[31] of n copies of the segment pq, where p =
(1−2−m−1, 2−m−1), and q = (2−m−1, 1−2−m−1), and considering the cost-optimal quadtree
Q

(2)
k,m of depth at most k. As long as k 6 m + 1, the situation is similar to the case where

pq is the whole diagonal and the cost-optimal quadtree of depth at most k is the square,
as can easily be verified. When k becomes larger, however, it becomes more cost-effective
to subdivide the corners, as shown by the quadtree in Figure 12.2 whose cost is less than
2d(γ + n).

Although the lookahead greedy strategy does not produce the optimal solution, in the
counter-example above it does give a good approximation. In fact, this can be proven for
all scenes.

Theorem 112. Given a set S of convex objects of dimensions at most d− 1 in the unit
cube, let M be the infimum of c(T) over all trees T storing S. There is an integer p
which depends only on d (p = 3 for d 6 3) such that the tree T(p-greedy) constructed by the
p-greedy strategy has cost c(T(p-greedy)) = O(M).

Proof. The intuition is that small objects behave well, and the cost of a big object is
bounded below by a constant times its size so it cannot be reduced by very much. Let
us look at a cell σ of the tree T(p-greedy): we are going to show that, when the optimal
decomposition of depth at most p of a cell σ does not improve on the cost of σ, then the
cost of σ is O(Mσ) where Mσ is the infimum cost of all the possible tree subdivisions of
σ. If this holds true for every leaf σ of the p-greedy strategy, then c(Q(p-greedy)) = O(M)
as well. We will need a technical lemma:

Lemma 113. Let G be a K × · · · ×K d-dimensional grid subdividing the unit cube, with
Kd cells. For every d and K, there exist constants Gd(K) and Cd(K) > 0 such that for
any convex object s of dimension at most d − 1, either s intersects at most Gd(K) cells
of G, or else λd−1(s) > Cd(K).

Proof of Lemma 113. In two dimensions, a point intersects at most 4 cells, and any seg-
ment intersecting at least five cells of G must have length at least 1/K, hence G2 = 4 and
C2 = 1/K suffices. Intuitively, in three dimensions, the maximum a segment can intersect
is by joining two opposite endpoints of the unit cube, leading to G3(K) = 7K−6; in order
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to intersect any more cells, it must subtend a triangle of height at least half a diagonal of
the cells of G, thus have an area of at least C3(K) =

√
3 × (

√
3/2K)/2 = 3/(4K). The

same argument in higher dimension leads to Gd(K) = 2d(K−1)+1 and some Cd(K) > 0.
Unfortunately, a formal proof is much harder. We give an easier proof which leads to
slightly worse constants but works in any dimension.

Using the same notation as for Lemma 108, s projects onto some hyperplane xi = 0
into an object s′, and s intersects at most (d + 1) cells of G for every cell of G′ intersected
by s′. We now argue that in d − 1 dimensions, either s′ entirely contains a cell of G′ or
else it is contained in a slab of width w = 2d

√
d/K. Recall that any convex set has a pair

of ellipsoids (called the Löwner-John ellipsoids) e′ ⊆ s′ ⊆ e′′ such that s′ ⊆ de′. If the
width of s′ is at least 2d

√
d/K in any direction, then the width of e′ is at least 2

√
d/K

in any direction as well and thus e′ contains a sphere of diameter 2
√

d/K, which in turn
must entirely contain a cell of G′ (of diameter

√
d/K). In that case, λd−1(s) > λd−1(s

′) >

λd−1(e
′) > 1/Kd−2. Otherwise, s′ is contained in a slab of width w as claimed. Any of

the N cells of G′ intersected by this slab is entirely contained in a slab of width w + 2
√

d,
whose intersection with the cube must be of (d− 1)-volume at least N/Kd−1 and at most
w
√

2, since the maximum section of a cube is
√

2[19]. Thus N 6 2d
√

dKd−2. We may
thus take Cd(K) = 1/Kd−2 and Gd(K) = 2d(d + 1)

√
dKd−2.

Proof of Theorem 112 (cont.) We let K = 2p in the lemma, and choose p as
the smallest integer such that Gd(2

p) < (2p)d−1. Assume there are a objects intersecting
at most Gd(2

p) cells, and b other objects. The cost of σ is (γ + a + b)λ1(σ). Since

σ
(complete)
p has cost at most

(

2pγ + a Gd(2p)

2p(d−1) + 2pb
)

λ1(σ), which we assumed to be at least

c(σ), we have c(σ) = (γ + a + b) λ1(σ) 6

(

2pγ + a Gd(2p)

2p(d−1) + 2pb
)

λ1(σ), which implies that

a 6 (γ + b)(2p − 1)
(

1− Gd(2p)

2p(d−1)

)−1

.

By lemma 113, an object which belongs to more than Gd(p) cells has measure at least
Cd(p) so its contribution to the cost is at least (d

√
2Cd(2

p))λd−1(σ). The optimal cost Mσ

is then greater than (γ + bd
√

2Cd(2
p))λd−1(σ). We have then proved that Mσ is at least

a fixed fraction of the cost of σ, and the theorem follows.

Already in 2D, the separating quadtree strategy does not work as well for segments
as for points, especially since it is not able to distinguish between a segment that barely
intersects the corner of the square and the diagonal (in the first case it is usually good to
subdivide, and in the second case it is not). The lookahead p-greedy strategy is thus a
true improvement.

12.4.2 The case of points

Arguably, the case of points is of theoretical interest only, but has relevance since simplices
are usually very small in a graphics scene (when they come from a subdivision surface),
and can be thought of as points. This is lent credence by a recent trend: point cloud data
(PCD) is becoming an important primitive in computer graphics, and several algorithms
for rendering them have been given of late, which are amenable to our cost measure. (A
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good introductory reference is the proceedings of the first Symposium on Point-Based
Graphics[7].)

In the plane, the 1- and 2-greedy strategy may produce a quadtree of cost Θ(n) times
the optimal cost, and so does 1-greedy in higher dimensions. Indeed, this can be seen by
placing n points in the center of the square. With no subdivision, the cost is 4 (γ + n).
With full subdivision to depth k > 1, the cost is 24γ + 16(n − 2γ)/2k which tends to
24γ when k tends to infinity. After one or two subdivisions, then, the cost is 8(n + γ)
or 16γ + 4n, both of which are higher than with no subdivision, hence the tree is not
subdivided according to the 1-greedy or the 2-greedy heuristic. This shows that the
approximation ratio is (n+γ)/6 = Θ(n). In any dimension, the same example shows that
the 1-greedy strategy also has a bad approximation ratio of Θ(n). Nevertheless, 2-greedy
(for d > 3) and 3-greedy (for d = 2) both work near-optimally.

Lemma 114. Given a set S of n points in the unit d-cube, if M is the infimum of c(T)
over all trees T, then c(T(3-greedy)) = O(M) for all d > 2, and c(T(2-greedy)) = O(M) for all
d > 3.

Proof. We prove that 3-greedy is near-optimal, for d > 2. Then we indicate what changes
for 2-greedy when d > 3. The cost of a cell σ is (γ + |Sσ|)λ1(σ). The cost of a complete
subdivision σ

(complete)
3 of σ to depth 3 is (8γ + 1

8d−1

∑

p∈Sσ
np)λd−1(σ), where np is the

number of leaves of that subdivision that contain p. Since np is at most 2d, the latter cost
is at most (8γ + |Sσ|23−2d)λd−1(σ). If σ is a leaf of T(3-greedy), this means that σ

(opt)
3 is just

the leaf σ, then certainly c(σ
(complete)
3 ) is greater than c(σ). Hence 8γ+|Sσ|23−2d > γ+|Sσ|,

i.e. |Sσ| = 7
1−23−2d γ = Cd. The only case when the 3-greedy strategy fails, is when the

lookahead says it is wrong to subdivide whereas it is not. In that case, the number
of points is at most Cdγ. Then the cost is at most (1 + Cd)γλd−1(σ), and because of
Lemma 107 this is O(Mσ), where Mσ is the infimum cost of all the possible quadtree
subdivisions of σ. Since lookahead only subdivides a cell if it has a subtree that actually
improves the cost, necessarily T(3-greedy) is a subtree of T(opt) (where T(opt) is any optimal21

tree). Thus every leaf σ of T(3-greedy) is a cell of T(opt), and since c(σ) = O(Mσ) then
c(T(3-greedy)) = O(T(opt)) = O(M) as well.

Redoing the computation with lookahead p = 2 for d > 3, we find that Cd = 7
1−22−d ,

and the rest of the proof follows similarly.

On the example given in that section, the separation criterion is near optimal. In
fact, Aronov and Schiffenbauer[15] have also and independently proven that Q(AS-sep)(S)
is near-optimal, where Q(AS-sep) uses a slightly different separation criterion: subdivide a
cell whenever it covers more than one point of S, and also if any of its orthogonal (resp.
diagonal) neighbors has depth which differs by more than 1 (resp. 2). Note that their
construction is valid only if all the points in S are distinct and produces smooth quadtrees
(see next section).

21The cost M is an infimum and may not be achieved by any finite-depth tree. But for this proof,
T(opt) can be allowed to have infinite depth. Alternately, one may consider an increasing sequence of

trees (T
(opt)
k )k→∞ whose costs converge to M .
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As for finding the optimal tree, the question is still open whether for given values
of γ (and maybe of n) there exists a p such that the lookahead greedy strategy yields
the optimal result, namely, the sequence c(T

(p-greedy)
k ) converges towards M as k tends to

infinity. All we know is that if n = 5 and γ < 1 tends to 1, the required p tends to infinity.
We can also mention that if every point belongs to at most one cell, then p = 1 leads to
the optimal tree.

12.5 Rebalancing quadtrees and octrees

In all the applications of quadtrees and octrees, it can be important to maintain aspect
ratio (hence starting with a unit cube) and to ensure that two neighboring cells don’t have
wildly differing sizes. This has led several authors to propose balancing for trees. From
our perspective, since the cost measure of[13] provably relates to the cost of traversal only
for balanced trees, we are interested in balancing trees as well. Rebalancing is known to
increase size by at most a constant factor. In this section, we prove that rebalancing also
does not affect the cost by more than a multiplicative constant factor.

Two leaves are k-adjacent if they intersect in a convex portion of dimension k. A
tree is called k-balanced if the depths of any two k-adjacent leaves differ by at most one.
Notice that when considering two k-balanced trees, their intersection, constructed from
the unit tree by subdividing all and only cells that are subdivided in both trees, is k-
balanced. Thus for a tree T, there is a unique balanced tree balk(T) = min{T′ : T ≺
T′ and T′ is k-balanced}, which is called the k-rebalancing of T. For instance, 0-balanced
quadtrees are what Moore called smooth quadtrees[84], and 1-balanced what he called
balanced and others called 1-irregular or restricted.

Theorem 115. Let T be a tree storing both points and/or simplices in the unit cube.
Then for any k, 0 6 k < d, c(balk(T)) = O(c(T)).

Since the cost c(T) = ct(T) + co(T), the proof will be a simple consquence of the next
two lemmas. The following lemma was first proven by Weiser in 2D, and by Moore for
any dimension d > 2, for a cost function which is simply the number of leaves. Here, the
cost function is the total surface area of the leaves but their proof applies as well.

Lemma 116. Let T be a tree. Then for any k > 0, ct(balk(T)) 6 3dct(T).

Proof sketch. The construction suggested by Moore[84] starts with T′ ← T and subdivides
every leaf node of T′ which has a 0-adjacent neighbor whose size is smaller than half, or
equivalently whose depth is greater by more than one. The process iterates until no
further subdivision is necessary. The process must terminate with T′ = bal0(T).

The basic observation is that, if all the neighbors of a leaf node σ have same or smaller
depth, then σ never has to be subdivided[84]. Intuitively, σ will never force any further
subdivision of these neighbors, and so they can only be subdivided as a side, corner, or
border, on the opposite side of σ. Using this, Moore argues that every subdivision of an
internal node σ in T′ which is not an internal node of T can be “blamed” on a 0-adjacent
internal node of T at the same depth as σ, and since a node in T can only be blamed by
its 0-adjacent neighbors in T′ at the same depth (at most 3d of them), the total number m
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of nodes of T′ can only be 3d times the total number of nodes of T. This also holds for the
number ℓ of leaves, since by induction it is not hard to see that ℓ = 1+(2d−1)(m−1)/2d;
indeed, subdividing a leaf σ adds 2d extra leaves to m but σ is no longer counted in ℓ, so
ℓ changes only by 2d − 1. Consult[84] for the details.

Regarding the cost, the above proof adapts naturally by monitoring, instead of the
total number of nodes, the total area ca(T) of the tree (internal and external nodes). By
induction, it is not hard to see that ca = 2ct− 2d; indeed, subdividing σ adds 2λd−1(σ) to
ca but ct changes only by λd−1(σ) since σ is no longer a leaf. When subdividing σ in T′,
the cost of σ’s children can be “blamed” on a 0-adjacent internal node of T at the same
depth as σ, and since a node in T can only be blamed by its 3d neighbors in T′ at the
same depth, we easily have ca(T

′) 6 3dca(T) which implies ct(T
′) 6 3dct(T).

Since T′ = bal0(T), which is a refinement of balk(T), for any k > 0, this implies that
ct(balk(T)) 6 ct(bal0(T)) 6 3dct(T).

Next we prove in Lemma 117 that the object cost of balk(T) is at most twice (for
points) and some constant Bd 6 2d24d (for simplices) times that of T. We prove this for
a single object whose object cost is λd−1(Ls(T)), since the object cost is just the sum over
all objects of that quantity. We conjecture that the best value is Bd = 2d−1.

Lemma 117. Let T be a tree, and consider the object cost of a single object s ∈ S
both in T and in balk(T). If s is a point, then λd−1(s ∩ balk(T)) 6 2λd−1(Ls(T)). If s
is a convex object of dimension at most d − 1, then there is a constant Bd such that
λd−1(s ∩ balk(T)) 6 Bdλd−1(Ls(T)).

Proof. For a point, the worst case is when it falls exactly on the center of a cell: it
then belongs to all the children of the subdivided cell, and thus its contribution to the
object cost is at most doubled. Note that further subdivision will never increase that
contribution.

The situation is more complicated for simplices, but we can prove that the contribution
of an object within a leaf σ of T is never increased by more than a constant factor. The
proof relies in that, when rebalancing, σ is only subdivided along its boundary, because
only its neighbors can force it to subdivide. Thus, the subtree σ′ of σ in balk(T) must
satisfy σ′ ≺ σ∞, where σ∞ is the maximum subdivision of σ along its boundary (an infinite
border). By the next lemma and appropriate scaling, the object cost λd−1(s∩ balk(T)) is
at most Bdλd−1(Ls(T)).

Lemma 118. The object cost of a flat object in T ≺ T
(side)
∞ , and in T ≺ T

(border)
∞ respec-

tively, is bounded by constants Sd = d4d and Bd = 2d24d respectively.

Proof. We first prove the lemma for sides, then for borders. Let d be fixed, and let sk

(resp. ck, bk) be the maximum object cost of a simplex in T
(side)
k (resp. T

(corner)
k , T

(border)
k ).

By construction, a k-side is made up of 2d−1 half-scaled empty cells and 2d−1 half-scale
(k − 1)-sides. Going one level further, it is made of 2d−1 half-scaled empty cells, 22(d−1)

quarter-scale empty cells, and 22(d−1) quarter-scale (k− 2)-sides. If the simplex intersects
all the (k − 2)-sides, then it cannot intersect the half-scaled empty cells, and it thus
intersect only 2d−1 half-scale (k − 1)-sides, thus sk 6 sk−1 (the factor 2d−1 disappears
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because of scaling). On the other hand, if it misses any of the (k − 2)-sides, then the
object cost decreases geometrically (but it may intersect all the empty cells, of total
measure 4d). More explicitly,

sk 6 max

(

sk−1, 4d +
22d−2 − 1

22d−2
sk−2

)

.

This recurrence with s0 = 2d shows that sk is bounded by Sd = d4d for all k. We can
then consider a k-border as the union of 2d half-scaled k-sides (the superpositions only
increase the cost), so that the cost is at most 2d24d.

Remark 1. The constant 3d in Lemma 116 is tight for the number of leaves, but we
do not know if it is tight for the cost of 0-balanced trees. When considering k-balanced
trees, k > 1, it certainly is overly pessimistic. Indeed Moore shows that in the plane, 9 is
tight for 0-balanced quadtrees, but 8 is tight for 1-balanced quadtrees.

Remark 2. Aronov and Schiffenbauer independently proved[15, Th. 2] that for any
quadtree Q (not necessarily balanced), there is a balanced quadtree Q′ such that c(Q′) =
O(c(Q)). Their construction may subdivide more than necessary.

Remark 3. It could also very well be that rebalancing actually decreases the cost.
We don’t know that, and we don’t need it since we are mostly interested in trees for
which c(T) = O(M). In any case, we can ask if there is a reverse theorem (lower bound
on c(balk(T)) in terms of c(T)).

12.6 Conclusion

In this paper we have proved that instead of considering the optimal octree, and without
increasing the cost too much, we may consider the octree given by the lookahead strategy.
Still, this may yield an infinite subdivision. In order to have an effective algorithm, we
need to add a termination criteria such as a depth limit of log2 n. As we have also proven,
this increases again the cost at most by a constant factor. In practice, we find that greedy
with or without lookahead yield the same approximation ratio.

All the results stated in this paper should extend easily to recursive grids and simplicial
trees as well, in two and higher dimensions, with only small differences. However, the
constants involved in the analysis would be even higher than they are here.

We conclude with a few open problems: first, is it true that by pruning at depth
k = Θ(log n), we can approach the cost to within 1 + ε for simplices? Since the optimal
tree might be infinite, there is little sense in asking for an algorithm that constructs the
optimal tree. But if the answer to this question were true, it would be nice to have a
PTAS with respect to the cost measure. We don’t know if the greedy strategy for high
enough lookahead would fit the bill.

Lastly, the cost measure considered here is c(T) but the theoretically sound one that
does model the average traversal cost during ray shooting is c∗(T) (see Eq. 12). Our only
result here is that the greedy strategy does not work.



Chapter 13

Farthest-Polygon Voronoi Diagrams

Ce travail, réalisé avec O. Cheong, H. Everett, J. Gudmundsson, S. Hornus,
S. Lazard, M. Lee et H.-S. Na, a été présenté au European Symposium on
Algorithms [35].

Given a family of k disjoint connected polygonal sites of total complexity n, we consider
the farthest-site Voronoi diagram of these sites, where the distance to a site is the distance
to a closest point on it. We show that the complexity of this diagram is O(n), and give
an O(n log3 n) time algorithm to compute it.

13.1 Introduction

Consider a family S of geometric objects (called “sites”) in the plane. The farthest-site
Voronoi diagram of S subdivides the plane into regions, each region associated with one
site P ∈ S, and containing those points x ∈ R2 for which P is the farthest among the
sites of S.

While closest-site Voronoi diagrams have been studied extensively [17], their farthest-
site cousins have received somewhat less attention. The case of (possibly intersecting)
line segment sites was only solved recently by Aurenhammer et al. [18]; they gave an
O(n log n) time algorithm to compute the diagram for n line segments.

Farthest-site Voronoi diagrams have a number of important applications. Perhaps the
most well-known one is the problem of finding a smallest disk that intersects all the sites.
This disk can be computed in linear time once the diagram is known, since its center is a
vertex or lies on an edge of the diagram. Other applications are finding the largest gap to
be bridged between sites, or building a data structure to quickly report the site farthest
from a given query point.

We are here interested in the case of complex sites with non-constant description
complexity. This setting was perhaps first considered by Abellanas et al. [1]: their sites
are finite point sets, and so the distance to a site is the distance to the nearest point of
that site. Put differently, they consider n points colored with k different colors, and their
farthest color Voronoi diagram subdivides the plane depending on which color is farthest
away. The motivation for this problem is the one mentioned above, namely to find a
smallest disk that contains a point of each color—this is a facility location problem where
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P1

P2

P1 P1

(a) (b) (c) (d)

Figure 13.1: (a) The bisector of two polygons can be a closed curve. (b) The medial
axis M(P1). (c) The Voronoi region R(P1). (d) The farthest-polygon Voronoi diagram
F({P1, P2}).

the goal is to find a position that is as close as possible to each of k different types of
facilities (such as schools, post offices, supermarkets, etc.). In a companion paper [2] the
authors study other color-spanning objects.

The farthest color Voronoi diagram is easily seen to be the projection of the upper
envelope of the k Voronoi surfaces corresponding to the k color classes. Huttenlocher et
al. [73] show that this upper envelope has complexity Θ(nk) for n points, and can be
computed in time O(nk log n) (see also the book by Sharir and Agarwal [98, Section 8.7]).

Van Kreveld and Schlechter [105] consider the farthest-site Voronoi diagram for a
family of disjoint simple polygons. Again, they are interested in finding the center of
the smallest disk intersecting or touching all polygons, which they then apply to the
cartographic problem of labeling groups of islands. Their algorithm is based on the claim
that this farthest-polygon Voronoi diagram is an instance of the abstract farthest-site
Voronoi diagram defined by Mehlhorn et al. [83]—but this claim is false, since the bisector
of two disjoint simple polygons can be a closed curve, see Fig. 13.1(a). In particular,
Voronoi regions can be bounded (which is impossible for regions in abstract farthest-site
Voronoi diagrams).

Note that the farthest-polygon Voronoi diagram can again be expressed as the upper
envelope of k Voronoi surfaces—but this does not seem to lead to anything stronger than
near-quadratic complexity and time bounds. We show in this paper that in fact the
complexity of the farthest-polygon Voronoi diagram of k disjoint simple polygons of total
complexity n is O(n), independent of the number of polygons.

We give a divide-and-conquer algorithm with running time O(n log3 n) to compute the
farthest-polygon Voronoi diagram. Our key idea is to build point location data structures
for the partial diagrams already computed, and to use parametric search on these data
structures to find suitable starting vertices for the merging step. This idea may find
applications to the computation of other complicated Voronoi diagrams. Our algorithm
implies an O(n log3 n) algorithm to compute the smallest disk touching or intersecting all
the input polygons.

We note that for a family of disjoint convex polygons, finding the smallest disk touching
all of them is much easier, and can be solved in time O(n) (where n is the total complexity
of the polygons) [75].
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13.2 Definition of Farthest-Polygon Voronoi Diagrams

We consider a family S of k pairwise-disjoint polygonal sites of total complexity n. Here,
a polygonal site of complexity m is the union of m line segments, whose interiors are
pairwise disjoint, but whose union is connected. (In other words, the corners22 and edges
of a polygonal site form a one-dimensional connected simplicial complex in the plane.)
In particular, the boundary of a simple polygon is a polygonal site and we can model
a polygon with h holes using its h + 1 boundaries and connecting them with at most h
additional edges. For a point x ∈ R2, the distance d(x, P ) between x and a site P ∈ S is
the distance from x to the closest point on P .

We assume that the family S is in general position, that is, no disk touches four edges,
and no two edges are parallel.

The features of a site P are its corners and edges. For a site P ∈ S, we define the
function ΨP : R2 7→ R as ΨP (x) = d(x, P ). The graph of ΨP is a Voronoi surface, it is the
lower envelope of circular cones for each corner of P and of rectangular wedges for each
edge of P . The orthogonal projection of this surface on the plane induces a subdivision
of the plane, the medial axis M(P ) of P . Each cell C of this subdivision corresponds to
a feature w of P , it is the set of all points x ∈ R2 such that w is or contains the unique
closest point on P to x. Here, edges of P are considered relatively open, so the cell of a
corner is disjoint from the cells of its incident edges. The boundaries between cells are
the arcs and vertices of the medial axis. Since the medial axis of P is the closest-site
Voronoi diagram of P ’s features, it can be computed in time O(m log m), where m is the
complexity of P [61].

A pocket of P is a connected component of CH(P ) \ P , where CH(P ) is the convex
hull of P . The medial axis M(P ) contains exactly one tree for each pocket of P . If a
pocket shares an edge with CH(P ) that is not an edge of P , then its medial axis tree
contains exactly one infinite arc. (There can be additional infinite arcs for each corner of
an edge of P that appear on the convex hull.)

We now consider the function Φ : R2 7→ R defined as Φ(x) = maxP∈S ΨP (x). The
graph of Φ is the upper envelope of the surfaces ΨP , for P ∈ S. The surface Φ consists
of conical and planar patches from the Voronoi surfaces ΨP , and the arcs separating
such patches are either arcs of a Voronoi surface ΨP (we call these medial axis arcs), or
intersection curves of two Voronoi surfaces ΨP and ΨQ (we call these pure arcs). The
vertices of Φ are of one of the following three types:

• Vertices of one Voronoi surface ΨP . We call these medial axis vertices.

• Intersections of an arc of ΨP with a patch of another surface ΨQ. We call these
mixed vertices.

• Intersections of patches of three Voronoi surfaces ΨP , ΨQ, ΨR. We call these pure
vertices.

The projection of the surface Φ onto the plane is the farthest-polygon Voronoi diagram
F(S) of S. It is a subdivision of the plane into cells, arcs, and vertices. For a point x ∈ R2,

22We reserve the word “vertex” for vertices of the Voronoi diagram.



176 Chapter 13. Farthest-Polygon Voronoi Diagrams

let us define D(x) = DS(x) as the smallest disk centered at x that intersects all sites P ∈ S.
By definition, there is always at least one site that touches D(x) without intersecting its
interior, and the radius of D(x) is equal to Φ(x). By our general position assumption,
only the following five cases can occur:

• If D(x) touches one site P in only one feature w, and all other sites intersect the
interior of D(x), then x lies in a cell of F(S), and the cell belongs to the feature w
of P .

• If D(x) touches one site P in two or three features, and all other sites intersect the
interior of D(x), then x lies on a medial axis arc or medial axis vertex of F(S), and
is incident to cells belonging to different features of P .

• If D(x) touches one feature w of site P , one feature u of site Q, and all other sites
intersect the interior of D(x), then x lies on a pure arc separating cells belonging to
features w and u.

• If D(x) touches two features of site P and one feature of site Q, and all other sites
intersect the interior of D(x), then x is a mixed vertex incident to a medial axis arc
of P .

• If D(x) touches one feature each of three sites P , Q, and R, and all other sites
intersect the interior of D(x), then x is a pure vertex.

Put differently, vertices of F(S) are points x ∈ R2 where D(x) touches three distinct
features of sites. If all three features are on the same site, the vertex is a medial axis
vertex. If the three features are on three distinct sites, then the vertex is a pure vertex.
In the remaining case, if two features are on a site P , and the third feature is on a different
site Q, the vertex is a mixed vertex.

Consider now an arc α of F(S). If we let x move along α, then Φ(x)—which is the
radius of D(x)—changes continuously. Since the arc is defined by two features (corners
or edges), Φ(x) cannot assume a local maximum in the interior of α, but it can assume a
local minimum. We denote the location of such a local minimum a pseudo-vertex of F(S).
After introducing pseudo-vertices, Φ(x) is a monotone function on each arc, and we can
thus orient all arcs in the direction of increasing Φ(x).

Fig. 13.2 illustrates all different vertex types, including the two types of pseudo-vertices
of degree two (types (c) and (f)).

Since the local shape of F(S) around a vertex v is determined solely by the features
defining the vertex, in each configuration we can uniquely determine the orientation of the
incident arcs. Fig. 13.2 shows the orientation of these arcs in each case. This orientation
plays a crucial role in the next section, where we show that the complexity of the diagram,
that is, the total number of vertices, is only O(n).

In addition to the nine types of vertices discussed above, we need to consider vertices
at infinity, that is, we consider the semi-infinite arcs of F(S) to have a degree-one vertex
at their end. For a vertex v at infinity, the “disk” D(v) is a halfplane, and we have two
cases:
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Figure 13.2: The different types of vertices in the farthest-polygon Voronoi diagram.
Pure arcs are shown solid, medial axis arcs dashed. The arrows indicate the direction of
increasing Φ(x).

• If D(v) touches one site P in two features, and all other sites intersect the interior
of D(v), then D(v) is the “infinite” endpoint of a medial axis arc, and we consider
it a medial axis vertex at infinity.

• If D(v) touches two distinct sites, and all other sites intersect its interior, then D(v)
is the “infinite” endpoint of a pure edge, and we consider it a pure vertex at infinity.

Finally, let us define the Voronoi region of a site P ∈ S. The Voronoi region R(P )
of P is simply the union of all cells, medial axis arcs, and medial axis vertices of F(S)
belonging to features of P . Voronoi regions are not necessarily connected, in fact, a single
Voronoi region can have up to k − 1 connected components.

13.3 Complexity Bound

Consider again Fig. 13.2. Let us call a vertex a source if it has more outgoing pure arcs
than incoming pure arcs, and a sink if it has more incoming pure arcs than outgoing pure
arcs. As shown in the figure, all finite pure vertices are sources. The pure vertices at
infinity are sinks. The only other sinks are the mixed vertices of type (g) and (h). Note
that mixed vertices of type (i) are neither sources nor sinks.

We can now partition the pure arcs of F(S) into disjoint directed paths. Each such
path starts at a source, and ends at a sink. This implies that we can bound the number
of sources by twice the number of sinks, as at most two paths can end in a sink.

We show in the following that the number of pure vertices at infinity is at most 2k−2,
and that the number of mixed vertices is O(n). Since the total number of vertices of all
medial axes M(P ), for P ∈ S, is O(n), this implies the main theorem of this section:

Theorem 119. The complexity of the farthest-polygon Voronoi diagram of a family of
disjoint polygonal sites of total complexity n is O(n).

We first discuss the number of vertices at infinity.
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Lemma 120. The number of pure vertices at infinity of F(S) is at most 2k−2. The total
number of vertices at infinity of F(S) is O(n).

Proof. For two sites P, Q ∈ S, consider the diagram F({P, Q}). A pure vertex at infinity
corresponds to an edge of CH(P ∪Q) supported by a corner of P and a corner of Q. But
CH(P ∪ Q) can have at most two such edges, since P and Q are disjoint and both are
connected, and so F({P, Q}) has at most two pure vertices at infinity.

Consider now again F(S), and let σ(S) denote the sequence of sites whose Voronoi
regions appear at infinity in circular order, starting and ending at the same region. We
claim that σ(S) is a Davenport-Schinzel sequence of order 2, and has therefore length at
most 2k − 1 [98]. Indeed, σ(S) has by definition no two consecutive identical symbols.
Assume now that there are two sites P and Q such that the subsequence PQPQ appears
in σ(S). If we delete all other sites, then σ({P, Q}) would still need to contain the
subsequence PQPQ, and therefore F({P, Q}) would contain at least three pure vertices
at infinity, a contradiction to the observation above.

It now suffices to observe that the pure vertices at infinity are exactly the transitions
between consecutive Voronoi regions, and their number is at most 2k − 2. All remaining
vertices at infinity are medial axis vertices. Since the total complexity of all M(P ), for
P ∈ S, is O(n), the bound follows.

It remains to show that the total number of mixed vertices is O(n). Consider a site
P ∈ S of complexity m. Its medial axis M(P ) has complexity O(m), and we can consider
M(P ) as a graph embedded in R2\P . It consists of a collection of trees. In Lemma 122
below we show that for each tree T of M(P ) the intersection T ∩ R(P ) is a connected
subtree. Since the mixed vertices on T are exactly the finite leaves of this subtree, this
implies that the number of mixed vertices on M(P ) is O(m). Summing over all P ∈ S

then proves that the number of mixed vertices of F(S) is O(n).
It remains to prove Lemma 122. We need another notation: for a point x ∈ R2 and a

site P , let DP (x) denote the largest disk centered at x whose interior does not intersect P
(and which is therefore touching P ). Note that a point x ∈M(P ) is in R(P ) if and only if
DS(x) = DP (x), which is true if and only if all other sites intersect the interior of DP (x).

Lemma 121. Let γ be a path in M(P ), let Q ∈ S\{P} be another site, and let γQ be the
set of points x ∈ γ where DP (x) intersects Q. Then γQ is a connected subset of γ, that
is, a subpath.

Proof. We can assume γ to be a maximal path in T, connecting a corner w of P with
another corner u (or possibly going to infinity). Assume for a contradiction that there
are points x, y, z on γ in this order such that x, z ∈ γQ, but y 6∈ γQ.

The disk DP (y) separates one connected component of R2 \P into two components A
and B. The two endpoints of γ must lie in different components, say w ∈ A and u ∈ B.

We first argue that any disk D that does not intersect P cannot contain points in both
A and B. Indeed, the boundary of D would have to intersect the boundary of DP (y) in
four points, a contradiction.

The disk DP (z) touches P on the boundary of B, and so it contains a point in B—
which implies that it cannot contain a point in A. Since DP (y) does not intersect Q and
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Q is connected, this implies that Q is entirely contained in B. On the other hand, the
disk DP (x) touches P on the boundary of A, and by our claim that means that it cannot
intersect B. That implies that DP (x) ∩Q is empty, and the claim follows.

The following lemma is an easy consequence of Lemma 121.

Lemma 122. Let T be a tree of M(P ). Then T ∩ R(P ) is a connected subtree of T.

13.4 Computing the Voronoi Diagram

The proof of Theorem 119 suggests an algorithm for computing the diagram by tracing
the paths considered there. This is roughly equivalent to computing the surface Φ by
sweeping a horizontal plane downwards, and maintaining the part of Φ above this plane.
This is essentially the approach used by Aurenhammer et al. [18] for the computation of
farthest-segment Voronoi diagrams. It does not seem to work for our diagram because of
the mixed vertices of type (h), where Φ has a local maximum.

We instead offer a divide-and-conquer algorithm.

Theorem 123. The farthest-polygon Voronoi diagram F(S) of a family S of disjoint
polygonal sites of total complexity n can be computed in expected time O(n log3 n).

Proof. Let S = {P1, . . . , Pk}, and let ni be the complexity of Pi. If k = 1, then F(S) is
simply the medial axis M(P1), which can be computed in time O(n log n) [61]. Otherwise,
we split S into two disjoint families S1, S2 as follows:

• If there is a site Pi with complexity ni > n/2, then S1 = {Pi} and S2 = S \ {Pi}.

• Otherwise there must be an index j such that n/4 6
∑j

i=1 ni 6 3n/4. We let
S1 = {P1, . . . , Pj} and S2 = {Pj+1, . . . , Pk}.

We recursively compute F(S1) and F(S2). We show below that we can then merge these
two diagrams to obtain F(S) in time O(n log2 n), proving the theorem.

It remains to discuss the merging step. We are given a family S of disjoint polygonal
sites of total complexity n, and we are given F(S1) and F(S2), where S = S1 ∪ S2 is a
disjoint partition of S.

Consider the diagram F(S) to be computed. We color the Voronoi regions of F(S)
defined by sites in S1 red, and the Voronoi regions defined by sites in S2 blue. A pure arc
of F(S) is red if it separates two red regions, and blue if it separates two blue regions. The
remaining pure arcs, which separate a red and a blue region, are called purple. A vertex
of F(S) is purple if it is incident to a purple arc. We observe that by our general position
assumption, every finite purple vertex is incident to exactly two purple arcs, and so the
purple arcs form a collection of open and closed chains, see Fig. 13.2.

Merging F(S1) and F(S2) can be done in linear time once all purple arcs are known.
In fact, the diagram F(S) consists of those portions of F(S1) lying in the red regions of
F(S), and those portions of F(S2) lying in the blue regions of F(S).
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We show below that if we have a starting vertex on every purple chain, then we can
trace the purple chains in total time O(n). For the open chains, we can use the purple
vertices at infinity as starting vertices, as these are easy to compute. For the closed purple
chains, we make use of the following lemma:

Lemma 124. Any closed purple chain contains a mixed vertex.

Proof. A closed purple chain is a compact set in the plane, and so Φ(x) assumes a maxi-
mum in some point x on this curve. But Φ can assume a local maximum only in mixed
vertices of type (g) and (h), see Fig. 13.2.

It remains to discuss the following three steps: (a) Computing the pure vertices at
infinity; (b) Computing the mixed vertices; (c) Tracing the purple chains. Computing
the pure vertices at infinity is relatively easy, making use of the same Davenport-Schinzel
arguments used in Lemma 120, and we omit the details in this extended abstract.

13.4.1 Tracing the Purple Chains

We first need to discuss a monotonicity property of cells of F(S). Let C be a cell of F(S)
belonging to feature w of site P . For a point x ∈ C, let x∗ be the point on w closest to x.
Let fx be a directed line segment starting at x and extending in direction

−→
x∗x until we

reach M(P ) (a semi- infinite segment if this does not happen). We call fx the fiber of x.
We note that if w is an edge, then all fibers of C are parallel and normal to w; if w is a
corner then all fibers are supported by lines through w.

Lemma 125. For any x ∈ C, the fiber fx lies entirely in C (and therefore in R(P )).

Proof. The disk D(x) touches P in x∗ only, and its interior intersects all other sites. When
we move a point y from x along fx, the disk D centered at y through x∗ keeps containing
D(x), and it therefore still intersects all other sites. This implies that y ∈ C as long as D
does not intersect P in another point. This does not happen until we reach M(P ).

An immediate consequence is that cells are “monotone”, this follows easily from Lemma
125.

Lemma 126. Let C be a cell belonging to feature w. If w is a corner, then any line through
w intersects C in a segment. If w is an edge, then any line normal to w intersects C in
a segment.

Lemma 126 implies that the boundary of a cell C belonging to a feature w consists
of two chains monotone with respect to w (that is, monotone in the direction of an edge,
and rotationally monotone around a corner). The lower chain is closer to the feature and
consists of pure arcs only, the upper chain consists of medial axis arcs only.

An important consequence of Lemma 125 for tracing the purple chains is the following:

Lemma 127. Let fx be a fiber of a cell C in F(S1) or F(S2). Then fx is intersected by
at most one purple arc of F(S).
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Proof. Assume for the contrary that two purple arcs intersect fx in points p and q, where
q lies on fp. Then there is a point p′ on fx very close to p such that p′ ∈ R(P ) in F(S),
where C belongs to site P . But then the fiber fp′ lies in R(P ) in F(S), and cannot intersect
a purple arc at q.

Lemma 127 allows us to trace purple chains very easily. Once we have located a
starting vertex in both F(S1) and F(S2), we trace the chain through both diagrams at the
same time. We observe that every time it intersects a cell boundary in F(S1) or F(S2), we
have indeed found a vertex of the purple chain, so the total number of such intersections
is only O(n).

When we enter a cell C along a purple arc, we simply follow the arc through the cell
as it intersects the fibers of C. We consider the upper and lower chain of C at the same
time, and trace the cells of F(S1) and F(S2) in parallel. This allows us to charge the cost
of tracing to those features of the two cells incident to the fibers the purple chain actually
intersects. Since no fiber is intersected by more than one purple arc, the total tracing
time is O(n).

13.4.2 Computing the Mixed Vertices

This is the hardest part of the algorithm. We start by computing the randomized23

point-location data structure of Mulmuley [85] (see also [43, Chapter 6]) for the two
given Voronoi diagrams F(S1) and F(S2). This data structure only needs two primitive
operations:

• For a given point p in the plane, determine whether the query point x lies left or
right of p; and

• For an x-monotone line segment or parabola arc γ, determine whether the query
point lies above or below γ.

Both cases can be summarized as follows: Given a comparator γ, determine on which side
of γ the query point x lies. The comparator can be either a line or a parabola arc.

We compute the mixed vertices lying on each medial axis M(P ) separately. For each
tree T of M(P ), the intersection T ∩ R(P ) is a connected subtree by Lemma 122. We
can determine the inner vertices of this subtree easily, by performing a point location
operation for each vertex v of T in F(S1) and F(S2). This tells us which site is farthest
from v—and v lies in R(P ) if and only if this is the site P . Let I be the set of vertices of
T that lie in R(P ). We now need to consider two cases.

If I is non-empty, then every arc α of T incident to one vertex in I and one vertex not
in I must contain exactly one mixed vertex x∗ by Lemma 122. We locate this vertex x∗

by using parametric search along the arc α [82]. The idea is to execute two point location
queries in F(S1) and F(S2) using x∗ as the query point. Each query executes a sequence of
primitive operations, where we compare the (unknown) location of x∗ with a comparator

23This is the only use of randomization in our algorithm. It can probably be avoided by using the point
location data structure of Edelsbrunner et al. [58] instead.
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Figure 13.3: (a) pq is a sub-arc of M(P ). p′q′ is the intersection of pq with R(P ). We
also have p′q′ = M(P ) ∩ R(P ). (b) The cylinder C(p, q) of the pair (p, q) in (a). (c) The
cylinder C(q, p) of the pair (q, p) for a parabola arc.

γ (a line or a parabola arc). This primitive operation can be implemented by intersecting
α with γ, resulting in a set of at most four points. In O(log n) time, we can test for each
of these points whether it lies in R(P ). This tells us between which of these points the
unknown mixed vertex x∗ lies, and we can answer the primitive operation.

It follows that we can execute the two point location queries in time O(log2 n), and
we obtain the cells C1 and C2 of F(S1) and F(S2) containing x∗. The mixed vertex x∗ lies
on the bisector of the features w1 and w2 to which these two cells belong (one of them is
necessarily a feature of P ). We compute the intersection of this bisector with α to obtain
x∗.

It remains to consider the case where I is empty, that is, no vertex of T lies in R(P ).
Nevertheless, the region R(P ) may intersect a single arc α of T, and there are then two
mixed vertices on α that we need to find. We first need to identify the arcs of T where
this could happen.

Let p and q be two points on the same arc α of M(P ). We define the cylinder C(p, q)
of the pair (p, q) as

C(p, q) =
⋃

x∈pq

DP (x) \DP (p),

where the union is taken over all points x on the arc α between p and q, see Fig. 13.3.
We define a condition G(p, q) as follows: Let Q be a site farthest from p, and let w be a
feature of Q closest to p. Then G(p, q) is true if w ∈ C(p, q) or if Q intersects DP (q). We
omit the easy proof of the following lemma:

Lemma 128. Let p, q be points on the same arc α of M(P ), such that neither p nor q lie
in R(P ). If α intersects R(P ) between p and q, then G(p, q) and G(q, p) both hold.

Let us call an arc α connecting vertices p and q of T a candidate arc if G(p, q) and
G(q, p) both hold.

Lemma 129. If α is a candidate arc of a tree T of M(P ), then all points in T ∩ R(P )
lie on α.
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Proof. Let α connecting p and q be a candidate arc. Since G(p, q) holds, there is a site
Q 6= P such that Q does not intersect DS(p), but does intersect C(p, q). In particular,
there must be a point x ∈ α such that Q intersects DS(x) ⊃ DP (x). Let now y be a point
on T such that the path from q to y goes through α. By Lemma 121, Q cannot intersect
DP (y), and so y 6∈ R(P ).

Symmetrically, since G(q, p) holds, we find that any point z ∈ T such that the path
from p to z goes through α cannot be in R(P ), and so any point of T ∩ R(P ) must lie
on α.

Lemma 129 implies immediately that if there are two candidate arcs, then T ∩ R(P )
is empty, and there are no mixed vertices on T.

Since we have point-location data structures for F(S1) and F(S2), we can test the
condition G(p, q) in time O(log n) for a given arc α in M(P ) and two points p, q ∈ α.
This allows to identify all candidate arcs in O(m log n) time, where m is the complexity
of T. If there is zero or more than one candidate arcs, we can stop immediately, as there
are no mixed vertices on T.

We briefly sketch how to handle the case of the presence of a single candidate arc α.
We apply parametric search guided by our predicate G(·, ·). This leads either to the
conclusion that R(P ) is empty, or to the discovery of a point inside α ∩ R(P ), which we
can plug in the previous method (when I is not empty) to find the two mixed vertices
on α.

13.5 Bonus : diagramme de Voronoï du polygone le plus

éloigné sur une sphère

Nous considérons ici ce qui se passe sur une sphère au lieu du plan, et la situation est
relativement plus simple.

La première chose que l’on peut remarquer est qu’avec trois polygones, le diagramme
de Voronoï du polygone le plus proche a au plus deux sommets. En effet si les bissecteurs
sont disjoints il n’y a aucun sommet et sinon les relations d’incidences sommet-arête, la
relation d’Euler, et le nombre de faces (trois) implique qu’il y a deux sommets (dans des
cas dégénérés les deux sommets pourraient d’en faire qu’un de degré 4, mais on ignore ici
les cas dégénérés).

On fixe un polygone. Pour chaque autre polygone, on trace le bissecteur avec le poly-
gone fixe. D’après la remarque précédente, deux de ces bissecteurs se coupent en au plus
deux points. De plus, un bissecteur est un cercle topologique. La cellule du diagramme
de Voronoï du polygone le plus éloigné du polygone fixe est ainsi une intersection de
pseudo-disques. Cette cellule est donc connexe et simplement connexe.

Cette propriété fait du diagramme de Voronoï du polygone le plus éloigné (je parle ici
du diagramme le plus dépouillé, qui partitionne juste le plan en régions de points ayant
le même objet le plus éloigné) un graphe planaire dont le nombre de faces est majoré
par le nombre de polygones. La taille du diagramme est donc linéaire en le nombre de
polygones. Si on s’intéresse maintenant au diagramme plus complet qui encode également
l’arête ou le sommet le plus proche sur le polygone le plus éloigné, il suffit de découper
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chaque cellule du diagramme simple le long du diagramme de Voronoï des segments qui
composent le polygone associé, et il est facile de voir que le découpage d’une cellule simple
donne un nombre de cellules au plus linéaire en la taille du polygone.

Les propriétés de connexité et de simple connexité peuvent en partie être transposées
dans le cas plan. Ainsi les cellules ayant une composante finie sont nécessairement connexes
et simplement connexes. Une cellule peut ne pas être simplement connexe uniquement si
elle est la seule à être infinie.
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Conclusion

J’ai étudié dans cette thèse plusieurs questions géométriques et combinatoires liées à la
visibilité 3D. Les résultats sur les silhouettes sont importants car ils donnent un fondement
théorique à l’affirmation classique disant que la silhouette d’un polyèdre de taille n a
en général une taille Θ(

√
n) et montrent aussi ses limites. Il serait intéressant dans des

travaux ultérieurs de montrer que l’on peut aussi, avec des hypothèses plus faibles, donner
des bornes sur la complexité de la silhouette pour des polyèdres opaques. Ces travaux ne
devraient pas avoir d’impact sur la conception des algorithmes de triangulation de surfaces
ou de construction de silhouette. Leur intérêt principal est qu’ils justifient l’analyse de
la complexité d’algorithmes géométriques dans le cadre d’objets polyédriques à petite
silhouette, un cadre qui par certains aspects est plus réaliste que ceux de la scène la pire
ou d’objets uniformément distribués.

J’ai aussi beaucoup étudié la complexité des espaces libres de droites et segments
en 3D. S’il reste dans de nombreux cas des imprécisions dans notre connaissance de la
complexité de l’espace des droites libres (qui s’est avéré surprenamment difficile à étudier),
la complexité de l’espace des segments libres maximaux est aujourd’hui mieux connue.
Elle n’est pas petite, mais dans de nombreux cas elle semble raisonnable, et on comprend
mieux les cas où elle est grande.

Une grande étape qui reste à franchir est, à l’aide d’une implantation efficace, de
confirmer, ou d’infirmer, que les structures globales de visibilité peuvent être réellement
utiles en pratiques. Les bornes de complexité présentées ici nous font espérer qu’il s’agira
d’une confirmation, et ce d’autant plus qu’il reste un certain nombre d’éléments favorables
qui n’ont pas encore été étudiés. Par exemple, il est sans doute possible de ne pas calculer
les structures entières, grâce à une approche hiérarchique ou peut-être en les calculant
localement à la demande. Aussi, une des raisons premières qui ont poussé à étudier les
structures de visibilité est leur capacité supposée à tirer parti de la cohérence spatiale
et temporelle des scènes. Ainsi, même si les structures globales de visibilité n’arrivent
pas à rivaliser avec les approches actuelles sur des scènes statiques, elles pourront encore
s’avérer très utile sur des scènes dynamiques.
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