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Imagination is more important than knowledge.
For knowledge is limited to all we now know and
understand, while imagination embraces the entire
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Résumé

Cette these est consacrée a la catégorification d’invariants polynomiaux d’entre-
lacs et de graphes. Pour tout entier strictement positif n, Khovanov et Rozansky
ont introduit en 2004 une homologie bigraduée d’entrelacs, ainsi qu'une homolo-
gie de graphes planaires. Etant donné n, leur homologie d’entrelacs catégorifie la
n-ieme spécialisation du polynome d’entrelacs HOMFLYPT et leur homologie de
graphes planaires catégorifie un polynome de graphes associé.

Dans cette these, on étudie ces homologies et on généralise leur construc-
tion en introduisant une graduation supplémentaire. Tout d’abord, on généralise
une formule de Jaeger pour les polynomes d’entrelacs aux polynomes de graphes
planaires, ainsi qu’a I’homologie de graphes planaires; on étend ensuite ’homologie
d’entrelacs de Khovanov—Rozansky aux graphes plongés. Puis on construit une
homologie trigraduée d’entrelacs. Cette homologie recouvre I’homologie bigraduée
d’entrelacs de Khovanov et Rozansky. Enfin, on donne des exemples, des applica-
tions et des généralisations de ’homologie trigraduée d’entrelacs. On développe des
outils d’algebre homologique qui permettent de calculer explicitement 1’homologie
trigraduée d’entrelacs pour des exemples et on considere des déformations de
I’homologie trigraduée d’entrelacs.
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Introduction

Cette these est consacrée a un développement récent en théorie des nceuds: la
catégorification d’invariants. Rappelons que la théorie des nceuds a pour but de
classer a isotopie pres les nceuds, c’est-a-dire les plongements continus du cercle
dans I'espace ambiant R3. Le probleme central de la théorie des noeuds est le sui-
vant : étant donnés deux nceuds, ou plus généralement deux entrelacs, déterminer
s’ils sont isotopes ou non (c’est-a-dire §’ils s’obtiennent par déformation continue
I'un de l'autre). Pour cela, on construit généralement des invariants algébriques
d’isotopie et on les évalue sur les entrelacs a distinguer. Il s’agit donc d’associer
a chaque entrelacs un objet algébrique qui peut étre un nombre, un polynome
ou encore un groupe. Pour construire de tels invariants, on utilise souvent un
diagramme pour présenter ’entrelacs, c¢’est-a-dire une projection générique dans
le plan réel R%. Afin de vérifier que 1'on construit bien un invariant, on vérifie que
la quantité associée a I’entrelacs ne dépend pas du diagramme choisi en s’assurant
qu’elle est invariante par mouvements de Reidemeister. Parmi ces invariants citons
le groupe fondamental du complémentaire de I'entrelacs dans R? et le polynome
d’Alexander [8].

En 1984 Vaughan Jones [15] a construit un tel invariant a valeurs dans I’anneau
Z|q,q7 '] des polynomes de Laurent a coefficients entiers. Cette découverte a en-
trainé d’autres développements en théorie des noeuds et la construction d’autres
invariants, appelés “invariants quantiques”, en raison de leur lien avec la théorie,
également nouvelle, des groupes quantiques. En particulier, I'invariant HOM-
FLYPT est un polynome a deux variables P d’entrelacs orientés qui est uniquement
déterminé par sa valeur sur le noeud trivial
a—at
P(O) ===

q—qY

et la relation d’écheveaux suivante [12]:
aP(X)—a‘1P<X ) =(q—q‘1)P<5C)-

Pour tout entier strictement positif n, la spécialisation a = ¢" produit un
invariant P, & valeurs dans I'anneau Z[q,¢~'| des polynomes de Laurent a coef-
ficients entiers. Le cas n = 2 fournit le polynéme de Jones. Pour tout entier n
strictement positif, le polynome de Laurent P, est intimement lié a la catégorie

9



10 INTRODUCTION

des représentations du groupe quantique U, (sl,), [16].

Avant de passer a la catégorification de ces invariants polynomiaux d’entrelacs,
expliquons brievement la démarche mise en ceuvre dans le procédé de catégorifica-
tion. La catégorification consiste par exemple a voir un nombre entier strictement
positif comme la dimension d'un espace vectoriel et un nombre entier en général
comme la caractéristique d’Euler d’'une homologie. De maniere plus élaborée,
on exprime un polynome de Laurent a coefficients positifs comme la dimension
graduée d’un espace vectoriel gradué. La graduation sert ici a coder I'information
de degré, alors que dans le cas de I’homologie la graduation sert a coder 'informa-
tion de signe. De maniere plus générale, on voit que pour catégorifier un polynome
de Laurent quelconque, on a au moins besoin d'un espace vectoriel bigradué.

En 2000, Mikhail Khovanov [22] définit un nouvel invariant H(L) des entrelacs
L sous la forme d'une famille finie de groupes d’homologie a coefficients rationnels
{H"(L)} j)ezz ayant la propriété remarquable suivante :

S (~1)¢dimgH (L) = Py(L)(q).

(1,4)€Z?

Le polynéme de Jones s’exprime comme la caractéristique d’Euler graduée dune
homologie bigraduée H. L’homologie H est appelée homologie de Khovanov et sa
classe d’isomorphisme est un invariant d’entrelacs orientés. On dit que ’homologie
de Khovanov catégorifie le polynome de Jones. La construction de H repose sur
le crochet de Kauffman [18] et fait jouer un role central a ’algebre de Frobenius
Q[z]/?.

En 2004, M. Khovanov et L. Rozansky [24] généralisent I’approche précédente
et construisent pour tout entier n strictement positif et tout entrelacs L une
famille finie de groupes d’homologie sur Q, HKR,, (L) = {H'KR.,(L)} ¢ j)ezz qui
catégorifie la spécialisation sl,, du polynome HOMFLYPT

Y (F)'@PdimgH KR;(L) = Pu(L)(9).

(1,9)€22

L’homologie bigraduée H K R,, est appelée homologie d’entrelacs de Khovanov et
Rozansky et sa classe d’isomorphisme est un invariant d’entrelacs orientés. Cette
catégorification repose sur un calcul graphique du polynéme P, [20, 36] et sur
I'utilisation de factorisations matricielles.

Rappelons leur approche. On considere des graphes planaires orientés obtenus
comme singularisation de diagrammes d’entrelacs orientés (c’est-a-dire des dia-
grammes d’entrelacs ou chaque croisement est transformé en un sommet 4-valent).
De tels graphes sont appelés graphes planaires réguliers. Pour tout entier n > 0,
L. Kauffman et P. Vogel [20] associent a chaque graphe planaire régulier I' un



INTRODUCTION 11

polynome P, (T') € Z[q, ¢~'] par les formules suivantes:

Pn(X):q_IPn(>C)—q_"Pn(X )IanwC)—qnpn(X)-

Ces polynomes de graphes peuvent aussi étre définis de maniere intrinseque grace
a une somme d’état [36]. Il apparait ainsi que ces polynémes n’ont que des co-
effficients positifs. Dans un premier temps, Khovanov et Rozansky catégorifient
ces polynomes de graphes. Ils associent a chaque graphe planaire régulier I' un
complexe de chaines graduées K R, (") 2-périodique a coefficients rationnels. Ce
complexe est construit de maniere locale en utilisant des factorisations matricielles
qui généralisent les complexes 2-périodiques. L’homologie

HKR,(T) = ®;e, HK R}(T)

de KR,(I") est un Q-espace vectoriel Z-gradué de dimension finie qui catégorifie
le polynome des graphes:

> ¢dimgHKRI(T) = P, (T)(q).

JEL
Enfin, ils associent a chaque diagramme D d’entrelacs orienté un complexe K R,,(D)
de complexes de chaines graduées 2-périodiques. L’homologie de ce complexe est
notée HK R, (D) et la classe d’isomorphisme de I’homologie H K R,,(D) ne dépend
que de l'entrelacs L représenté par D.

Dans cette these, on étudie les homologies introduites par Khovanov—Rozansky,
puis on les raffine en introduisant une graduation supplémentaire.

Dans un premier temps, on généralise des résultats sur les invariants polyno-
miaux aux homologies de Khovanov-Rozansky. On étend une formule de Jaeger
[14] pour les polynémes d’entrelacs aux polynomes de graphes planaires réguliers
ainsi qu’a leur homologie. Cette formule permet, par exemple, d’exprimer P (I")
comme une somme de produits P,(I';) P, (I';) ou I'y et I'y sont certains sous-
graphes de I' et m, n > 1 sont des entiers tels que £k = m + n. On étend ensuite
la construction de Khovanov et Rozansky & des graphes orientés plongés dans R3.
Les diagrammes de ces graphes plongés correspondent a des singularisations par-
tielles de diagrammes d’entrelacs orientés. Kauffman a défini pour ces diagrammes
de graphes plongés des mouvements de Reidemeister généralisés [19]. On vérifie
que la construction étendue est invariante par ces mouvements de Reidemeister
généralisés.

Dans un deuxieme temps, on construit pour tout entier n > 0 une homologie
trigraduée d’entrelacs. Cette construction est indépendante de ’étude précédente
de ’homologie des graphes. On associe a chaque diagramme D d’entrelacs ori-
enté, un bicomplexe de complexes de chaines 2-périodique de Q-espaces vectoriels
gradués. On note H,, (D) son homologie. Cette construction repose aussi sur
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I'utilisation de factorisations matricielles, mais remplace 1'utilisation des graphes
planaires réguliers par celle de diagrammes virtuels. On obtient le résultat suivant.

THEOREME. Pour tout diagramme d’entrelacs orienté D, pour tout (1,7, k) €
Z3, le Q-espace vectoriel H:3k (D) est invariant a isomorphisme prés par mouve-
ments de Reidemeister.

En outre, nous montrons que cette homologie triplement graduée recouvre
I’homologie bigraduée de Khovanov et Rozansky.

THEOREME. Pour tout diagramme d’entrelacs orienté D, I’homologie H,, (D)
détermine ’homologie d’entrelacs HKR,,(D) de Khovanov-Rozansky. Pour tout
(i,k) € Z?, on a

H'KRH(D) = @y HEFIHD(D),

On étudie ensuite I’homologie trigraduée H,. On précise le role joué par
I'algebre de Frobenius Q[z]/2z™ dans cette homologie, ce qui permet de calculer
explicitement ’homologie H,, pour le nceud de trefle et I’entrelacs de Hopf. On
développe ensuite pour cette théorie d’homologie des outils d’algebre homologique
tels que les suites exactes et les suites spectrales. Comme application, nous calcu-
lons ’homologie H,, pour les nceuds toriques a deux brins et le nceud de huit.

Pour tout entrelacs orienté L, on définit le polynome de Poincaré P de H,,

PH(L)(u,v,q) = > uv/q*dimgH*(L).
(4,5,k)€Z3
En particulier,
Qn(L)(U> q) = PEH(L)(_L v, Q)

est un invariant polynomial d’entrelacs orientés qui détermine la spécialisation sl,,

de HOMFLYPT,
P.(L)(q) = Qu(L)(¢"*", q).

On utilise cet invariant pour prouver que I’homologie H, est un invariant d’entrelacs
plus fin que HK Ry. Par exemple, pour les deux nceuds 8g et 10199 (i.e., I'image
mirroir de 10799)

on a

H,(8s) 2 Ha(10129),
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alors que
HEK Ry(83) = HK Ry(10199).

On introduit ensuite des déformations de la précédente construction. Etant donné
un diagramme D d’un entrelacs orienté L et un polynome

n+1

p() =Y ara® € Cla, 27,

k=1
étant fixé, on construit un bicomplexe C,(D) de complexes de chaines 2-periodique
de C-espaces vectoriels filtrés. L’homologie H, (D) de ce bicomplexe est un espace
vectoriel de dimension finie bigradué et filtré sur C ; sa classe d’isomorphisme
est un invariant d’entrelacs orientés. De plus, lorsque p(z) = 2" — (n + 1)z,
I'homologie H, (D) est de dimension n' ol [ est le nombre de composantes de L.

Cette these est organisée comme suit. Un chapitre préliminaire introduit les
objets utilisés dans la suite. En particulier, apres des rappels sur les invariants
polynomiaux d’entrelacs et de graphes planaires, on introduit les factorisations ma-
tricielles. Ces factorisations matricielles sont centrales dans les catégorifications
de Khovanov et Rozansky [24, 26], ainsi que dans tout le reste de cette these. Les
catégorifications de Khovanov—Rozansky sont résumées dans le reste du chapitre
préliminaire. Le chapitre 2 est consacrée a I’homologie de graphes planaires et
a I’homologie de graphes plongés. Dans le chapitre 3, on construit 1’homologie
trigraduée d’entrelacs H,,, on prouve son invariance par mouvements de Reide-
meister et on explique comment en extraire I’lhomologie bigraduée d’entrelacs de
Khovanov et Rozansky. Le chapitre 4 est consacrée a I’étude de ’homologie tri-
graduée d’entrelacs H,,. Les chapitres 3 et 4 sont indépendants du chapitre 2.
Dans une appendice, on démontre que les polynomes de graphes planaires sont
uniquement déterminés par un ensemble de relations.

La suite du présent texte est rédigée en anglais.






CHAPTER 1

Link invariants and Khovanov-Rozansky categorification

In this Chapter, we present the general ideas on the procedure of categori-
fication developped by Khovanov and Rozansky [24]. We start in Section 1 by
recalling various definitions of polynomial invariants of graphs and links which are
categorified in Section 3, 4 and 5. In Section 2, we recall definitions and properties
of matrix factorizations. Matrix factorizations are the main tools for the various
constructions of Section 3, 4, 5, and Chapter 3. In Section 3, we present a cat-
egorification by Khovanov and Rozansky of graph polynomials. In Section 4, we
describe the categorification by Khovanov and Rozansky of the sl, link invariants.
Finally, in Section 5, we give a variant description of the categorification of Section
4 [26].

1. Polynomial invariants of links and graphs

We recall some generalities about polynomial link invariants and related poly-
nomial graph invariants, [29, 17].

1.1. Link invariants. The two-variable HOMFLY-PT polynomial P of ori-
ented links in R? is uniquely determined by its value on the unknot and by the
following skein relation , see [12]:

ap<X)—a‘1P<V\>:bP<>C)'

The specialization a = ¢" and b = g — ¢~! for a positive integer n gives a Laurent
polynomial in one-variable q. We denote this one-variable polynomial by P, (L),
where L is an oriented link, or by P, (D) if D is a diagram for L; the normalization

here is
qn _ q—n
Pn(©>:[n]q: q_q_1 .
For all positive integer n, the Laurent polynomial P, is related to the representation
theory of the quantum group U,(sl,). This polynomial is defined for any oriented
link diagram, invariant under Reidemeister moves and therefore is an invariant of
oriented links.

15



16 1. LINK INVARIANTS AND KHOVANOV-ROZANSKY CATEGORIFICATION

FIGURE 1. An open planar regular graph

1.2. Graph invariants. We consider finite oriented graphs of a particular
kind embedded in a disk (for an example see Figure 1). The edges are oriented,
and oriented loops (without vertices) are allowed. The vertices are either 4-valent
and their neighborhood looks like

)

or they are 1-valent and belong to the boundary of the disk. An oriented edge is
internal if none of its endpoints is on the boundary of the disk. Otherwise, the
edge is called external. Such graphs are called open planar reqular graphs. A graph
with no boundary points is called a (closed) planar reqular graph.

Expanding all vertices of a planar regular graph I' as follows,

PN(X) - an(DC)_ann('XI)
= q_lpn(DC)_q_nPn(V\)u

Kauffman and Vogel [20] defined for any integer n > 1 a Laurent polynomial P, (I")
in one variable ¢q. Notice that P,(T") is preserved under ambient isotopy of I" in R?.
The polynomial P, can also be defined as the only polynomial invariant of planar
regular graphs invariant under ambient isotopy of graphs in R? and satisfying the
relations in Figure 2, see [20] and the Appendix. In other words, these relations
are sufficient to compute P,(I') recursively. Murakami, Ohtsuki and Yamada [36]
gave a state sum formula for P,(I") and deduced that P,(I") has only non-negative
coefficients for any planar regular graph I" and any n > 1.

2. Matrix factorizations

We describe in this section an algebraic object, called matrix factorization
which will be useful for the categorifications of Section 3, 4, and 5. They were
introduced in the context of knot theory by Khovanov and Rozansky [24]. They
appeared earlier in the theory of singularities, see [11, 55].
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(1) PO ) =L,

qg—qt

(2) PO ) =[n—1], P ))

5) P(%)+P<%H:P<§<>+P<w>

FIGURE 2. Graph relations

2.1. Generalities. Let k be a positive integer, x a set of variables {1, ..., z;},
R = Q[z] = Q[zy, -+ , x;] the commutative polynomial Q-algebra in the variable
z, and w € R. Consider the ideal I, generated by the partial derivatives 0, ,w,
i =1,..., k. We say that w is a potential if R/, is a finite-dimensional vector

space over Q.

DEFINITION 1.1. A (R, w)-matriz factorization (briefly mf) C' of potential w
over the ring R consists of two free R-modules C°, C* and two R-homomorphisms
0

0 Lot e
such that ' o ¢/ = wldes for all j € 7Z/27.
A matrix factorization C' can be seen as a Z/2Z-graded R-module, i.e. C' =
C° @ C* endowed with an endomorphism D = ( c% 601 ) such that D? = wldc.

It explains the term matriz factorization.

If w =0 and z = (), a matrix factorization is called a 2-periodic chain complex.

DEFINITION 1.2. A mf C is of finite rank if C° and C* are free R-modules of
finite rank.

If C'is a mf of finite rank, then rankz(C?) = rankp(C")
ExampPLE 1.1. Consider the following (R, ab) matriz factorization
RX% R R,

with a,b € R. We denote this matriz factorization by (a,b)g.
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DEFINITION 1.3. Given two (R, w)-matriz factorizations C' and D, a homo-
morphism f : C — D is a pair of R-homomorphisms f° : C° — D° and
fl:CY — D' such that the following diagram commutes:

cl

Cl

0

CO

K

Let M F,, be the category whose objects are matrix factorizations of potential
w and morphisms are homomorphisms of matrix factorizations. This category is
R-linear and additive. Direct sum of mf’s is defined in the obvious way. We denote
by (.) the shift of the Z/2Z-grading, i.e. for all i € Z/27Z, C(1)! = C"L.

CO

DEFINITION 1.4. A homotopy h between homomorphisms f, g : (C,c) — (D, d)
of mf’s is a pair of R-homomorphisms h® : C° — D' and h* : C* — D such that

fo—¢"=htol+d on’, and f' —g' =hoct +d°o .

Let HMF,, be the category whose objects are matrix factorizations of potential
w and morphisms are homomorphisms of matrix factorizations up to homotopy.

DEFINITION 1.5. A homomorphism f : C — D of mf’s is a homotopy equiva-
lence if there exists a homomorphism g : D — C' such that f o g is homotopic to
Idp and g o f is homotopic to Idc.

REMARK 1.1. Two mf’s C and D are said to be homotopic if there exists a
homotopy equivalence f : C'— D. A mf homotopic to 0 is said to be contractible.

2.2. Tensor products. We define three types of tensor products of matrix
factorizations.
Internal tensor products. Let (C,c¢) € MF, over R and (D,d) € MF_,
over R. The tensor product C' ®p D is the 2-periodic chain complex
(C &k D)’ 5 (C@p D) 2= (C @r D),
defined by
(C ®r D) = Bjez/ozC" @p D', for all j € Z/2Z

and for all (j, k) € (Z/22)*, a € C*, b e DI,
F(a®b) = (=1 " (a) @b+ a® & b).
Notice that we use a unusual sign convention.
EXAMPLE 1.2. Consider two mf’s as in Example 1.1, (a,b)r and (¢, d)g, we
) It is a mf over R of
R

a,

denote their internal tensor product over R by . Z

potential ab + cd.
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Tensor product for sums of potentials. Let £, r, and s be positive integers.
Let z = {x1,..., 21}, y = {y1,...,y:}, and z = {z1,..., zs} be sets of variables.
Define R = Qlz], R, :_Q[g, yl, Ry = Q[z, z], and R3 = Q[z, vy, z]. Consider w € R,
wy, € @[Q], and wy € @[g] Eet C e Mle(y)_w@) over R a_nd D e MFw@)_wz(é)
over Ry. Define C' Qg D € M Fy, (y)—ws(z) OVer Rs by

(C Qz] D)Z = @jeZ/QZ(Cj XQ[x] Di_j), for all j € Z/QZ,
and for all (j, k) € (Z/22)"* a € C*, b e DIF,
Fa®@b) = (=17""F) @b+ a® db).

Here, R3 is identified with R; ®q,) 2. Notice that the internal tensor product is
the particular case when y = 2z = 0 and w; = wy = 0.

External tensor product. When the set x is empty in the previous tensor
product, R = Q, and we call it the external tensor product C' ®q D.

We emphasize that the potential is additive under tensor products: Given a
mf C' of potential w over R and a mf C” of potential w’ over R’ , the mf C' ® C” is
a mf of potential w + w’, for all kind of tensor products.

Conventions

In order to give explicit descriptions of tensor products of mf’s, we fix two
conventions. Given two mf’s with prefered basis, these two conventions fix a
prefered basis for the tensor product of two mf’s. First, given two mf’s C' and D,
we fix an ordering on the free R-modules composing (C ®g D)° and (C' ®q D),

(C ®q D)’ =" Ko D& C! R D',
(C ®q D)l =C! 020) D& C° RXq D'.
Second, given two free R-modules U and V of finite rank k& and [ respectively,

choose a prefered basis (uy, ..., u) for U and (vy,...,v;) for V. Then our prefered
basis for U ®q V' is

(Ul®U1,UQ®U1,...,Uk®U1,U1®'U2,...,Uk®vl)

We apply the same conventions when tensor products are over other polynomial
Q-algebras.

2.3. Z-graded matrix factorizations. Consider the following grading on
the ring R: deg(x;)=2 for all i = 1,..., k. Fix a positive integer n.

DEFINITION 1.6. A Z-graded matriz factorization (briefly, gmf) C of potential
w over R is a matrixz factorization such that C° = ®;c;C*°, C' = @;czC' are
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graded free R-modules, w is a homogeneous element of R, and deg(d®) = deg(d') =
n+1.

Notice that when C° = @;c;R®% and C' = @jeJR®lf where the £;’s and [;’s
are positive integers and I and J are finite sets, then the grading on R induces a
grading on C° and C" in the obvious way. A homomorphism of Z-graded matrix
factorizations is required to have degree 0, while a homotopy should have degree
—n — 1. We denote by curly brackets {.} the shift of the Z-grading: for i,k € Z
and j € Z/27Z, C%{k} = C"%J We denote M.F,, the category of graded matrix
factorizations of homogeneous potential w over R. It is R-linear and additive. We
denote by HMUF,, the homotopy category of Z-graded matrix factorizations of
homogeneous potential w over R. It is a graded version of HMF,,,.

EXAMPLE 1.3. The matriz factorization (a,b)r of Example 1.1 is graded if a
and b are homogeneous,

deg(a) + deg(b) = 2(n + 1),
and if we introduce the following shift:

R 2% Ri{n+1—degla)} =% R

DEFINITION 1.7. A gmf C is indecomposable if C and D & E isomorphic in
HMF,, implies that D is contractible or that E is contractible.

An additive category is called Krull-Schmidt if any object has the unique
decomposition property. In other words, if C' = @©,c;C; and C' = @jc ;D; for some
sets I, J and indecomposable C;, D;, then there is a bijection z : I — J such that
CZ' = Dz(i)-

PROPOSITION 1.1. [24, p. 46] The category HMF,, is Krull-Schmidt.

2.4. Homological algebra and graded matrix factorizations.

We consider complexes of gmf’s, bicomplexes of gmf’s and cones of homomor-
phisms of gmf’s.
Complexes of graded matrix factorizations.

To any additive category C associate the category K(C) whose objects are
bounded complexes of objects of C and morphisms are homomorphisms of com-
plexes up to homotopy.

Recall that HMF,, is the category of graded matrix factorizations with po-
tential w, up to homotopy. Let

K, =KMHMZF,),

be the homotopy category of bounded complexes over HMF,,. Thus, an object
of Ky is (Z ® Z @ Zsy)-graded, where the first grading is the grading on the
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complex, the second is the grading on the ring R and the last the grading on
the matrix factorizations. Notice that the differential of a complex of gmf’s is
required to have square equal to zero up to homotopy of the gmf’s. Similarly a
homomorphism of complex of gmf’s should only commute with the differentials
up to homotopy of gmf’s.

Tensor product of complexes of gmf’s.

Consider a complex (A,d4) of gmf’s of potential w over R and a complex
(B,dg) of gmf’s of potential w" over R/,

0 9% it
0—-A"5... 5 A" =0,
do dist
0—-B" 2 ... 5% Bl 0.

Define A ®g B to be the complex of gmf’s of potential w + w’ over R ®q R’ by
(A®q B)' = @jez(A? @g B'™), for all i € Z

and for all (i,j) € Z?,a € AJ, b e B,
Ala®b) = (=1)7d(a) @b+ a®ds’ (b).

We have similar definitions when the tensor products are performed over other
polynomial Q-algebras.

EXAMPLE 1.4. As a particular case when | = 0 and k = 1, denote A° = C,
Al =D, B°=FE, and d = f. We obtain

(C®E)Y % (CoE) L~ (o E)

| O | 1 |

(D® B -~ (D& E) —~ (D E)".

More precisely,

0 1
C0®E0@Cl®E1L>C’1®EO@CO®E1L>CO®EO@CI®E1

| 0 | 1 |

Q Q
D'QFE' o D'QFE'— D' E°@ D' E' — D@ E' @ D! @ E!

with
PO _ AeId Idee! Pl Adeld Idee!
T\ ld®e —cleld /) T\ ldee —P®Id /)

70 _ ffeld 0 7l flold 0
0 fleold )7 0 foxId )’
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o [ d®Ild Idoe [ d'®Id Id®e
@ = ( [dee —d' ®Id ) Q= ( [dee —d®Id )
This complex of gmf’s is denoted by f ® E. Similarly, we define E ® f. In this
case, the morphism of gmf’s is given by the following pair of matrices

0 Id®f0 0 o Id®f0 0
F‘( 0 Id® f! and  F = 0 Wdof )

Bicomplexes of gmf’s

Let
BK, = K(K,)
be the homotopy category of bounded complexes over K,. Thus, an object of
BK,, is a bicomplex over HMF,; It is (Z & Z & Z & Z/27Z)-graded. where the
two first grading are the gradings on the bicomplex, the third is the grading on
the ring R adn the last is the grading on the matrix factorization.

Consider a bicomplex (A,04 = (044,04,) of gmf’s of potential w over R and
a bicomplex (B, g = (0p s, 0p,») of gmf’s of potential w’ over R',
S et R
AbT A8 ATHLT and AT Y AR
g L g L
B L B+l and B 24 Bitld,
where
B0 =0, B est =0, B3 edd = 5t o,
i 00k =0, o0, =0, S 00, = 51l o,
for all 7 and j. Define A ®g B to be the bicomplex of gmf’s of potential w + w’
over R ®g R' by

(A®g B)'" = @ (A ©g BTH7), for all i, j € 77,
and for all (i, 7, k, 1) € Z*,a € A¥' b € BRIl
A (a®b) = (1), @b+a® o7,
Abi(a@b) = (1) @b +am sy

We have similar definitions when the tensor products are performed over other
polynomial QQ-algebras. We state now a general Lemma of homological algebra.

LEMMA 1.1. Given an additive category C, two chain complex A and A’ of
K(C) such that
A=A,
in K(C), then for all B € K(C),
A B2 A ® B in K(C).
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FIGURE 3. An open planar regular graph with marks

ProoF. Straightforward. O

In the rest of this thesis, we will use this Lemma with C = K.
Cones

Given a homogeneous map f : C' — D of gmf’s of potential w having degree
n + 1, define Cone(f) to be the following gmf of potential w:

Cone(f)° 2 Cone(f)*! A, Cone(f)°,
with
Cone(f)° = C°@ D', Cone(f)' = C* @ D",

00 Lo
AO:(;‘O dl),andAlz(_Cfl do)

Notice that the map f is required to have degree n + 1 in order that A° and A!
are homogeneous of the same degree n + 1.

3. Graded matrix factorizations for planar graphs

Given a positive integer n, we follow Khovanov and Rozansky [24] and associate
to any open planar regular graph a gmf and to any closed planar regular graph
a graded 2-periodic chain complex. Given a closed planar regular graph, the
homology of the associated graded 2-periodic chain complex categorifies the graph
polynomial defined in Section 1.

Graded matrix factorization from a planar graph. We decorate an open
planar regular graph with some marks as follows: an internal edge has one or more
marks, boundary points are treated as marks, additional marks on external edges
are allowed, and an oriented loop may or may not have marks.

If T is an open planar regular graph with marks, we denote by m(I") the set of
its marks and by OI' C m(I") the set of boundary points. If ¢ € I, the sign s(7)
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X1 )
T3 T4
FIGURE 4. Near a 4-valent vertex

of 7 is 1 if the edge at 7 is oriented outward, and —1 if the edge is oriented inward.
For instance, boundary points marked 1,2, 7 in Figure 3 have sign 1, while points
4,8,9 have sign —1.

Consider = {; }iem(r), T = {Zi}icor, R = Q[z] and R’ = Q[7]. The ring R’
is a subring of R. Consider the grading on the ring R and R": deg(x;)=2, for all
i € m(I"). We associate to I" the potential

w(l) = s(i)aj™ € R
icdr
To I" we now associate a Z-graded matrix factorization K R, (I") over the ring
R’ with potential w(I"). First, to a 4-valent vertex s bounded by marks 1,2,3,4 as
in Figure 4 we associate a gmf with potential

W = :L'?—H + l,;z—i—l _ l,g—i—l _ [L’Z—H

over Ry = Q[z1, To, T3, 74]. Starting with formal variables z, y, we write 2" ™! +y" !
as a polynomial ¢ in x + y and zy,

g(z+y,zy) = 2" 4y

Explicitly,

g(s1,89) = st 4+ (n+1) Z ( ) (._1)3251“2.

1<i<ndd
The potential w, can be written as follows

ws, = g(r1+ 12, 1179) — g(23 + 24, T374)
= g(x1 4 x9, m122) — g(x3 + x4, T122) + g(23 + 24, T122) — g(23 + T4, T374)
_ g(x1 4+ 29, w129) — g(x3 + T4, T122) (21 + 2 — 5 — 22)
X1+ Xo — XT3z — Xy
g(x3 + 24, T129) — g(x3 + T4, T324)
T1X2 — T3y

(ZL’lfL’g — 1'3113'4).

Denote
_ 9wy + @0, 2129) — g(23 + Ty, 1172)
uy = U1($1,932,933,$4) = )
Tl + X9 — X3 — Ty
B  g(w3 + 2y, 2120) — g(23 + T4, T374)
Ug = u2(x17x27x37x4) — .

1T — XT3y
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FIGURE 5. Arcof D

Then ws = uy(z1 + x9 — x3 — x4) + ug(z122 — x324) and s is assigned the gmf

KR, = ( uy 931+I2—I3—954) (~1}.
R

Us X1y — T34

In other words, K R, is the tensor product over Ry of gmf’s

X (x1+x2—x3—x4)

R, = R{1—n} R,

and
RS & RS{B — n} L (25'15(72 — $3$4)Rs,

with the grading shifted down by 1.
In general, a 4-valent vertex s will be bounded by marks ¢, j, k,[. Then KR, is
defined as above, with 1,2, 3,4 converted into ¢, j, k, [.

If v is an arc in an oriented edge (or in an oriented loop) bounded by marks i
and j and oriented from j to ¢, with no additional marks between (see Figure 5)
we associate to a the gmf L

X5 SCZ‘—Z‘J')

Ro 24 R 1 —n) "2 R,
where R, = Q[z;, z;] and

n+1 n+1
=
J ZT; —l’j

Consider the graded Q-vector space V,, = (Q[z]/x2™){1 — n}. It can be considered
as a 2-periodic chain complex as follows:

V, —0—1V,.

This 2-periodic chain complex is also denoted V,,. In fact, we just put the graded
Q-vector space V,, in Z/2Z-grading zero and took zero differentials. In general, a
graded Q-vector space can always in this way be seen as a graded 2-periodic chain
complex.

To an oriented loop without marks we assign the 2-periodic chain complex
Vo (1):

0 — (Q[z]/z™"){1 —n} — 0.

Finally, we define KR, (I') as the tensor product of the K Ry, for all 4-valent
vertices s, of the LY, for all arcs «, and of the V,,(1), for all markless loops in I'.
The tensor product is formed over suitable intermediate rings so that KR, (I") is
a free module of finite rank over R.
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EXAMPLE 1.5. For instance, to form KR, (') for T in Figure 3, we first tensor
KR, with L2 over the ring Q[z3]. Then tensor the result with KRy, over Q[zs].
Then we tensor K Ry, ®qjuy) Ly Qqjus) K Rs, with L over Q[ag). Finally, we tensor
with V,(1) over Q.

We now list some of the main properties of the gmf’s associated to open planar
graphs.

Properties
Clearly, KR, (T') is a gmf of w(I"). We treat it as a gmf over the ring R’ of poly-
nomials in boundary variables. Then w(I") is a potential in this ring. If a graph
has at least one internal mark, K R, (I") has infinite rank as an R’-module ( but is
of finite rank over R).

PROPOSITION 1.2. [24] For any open planar regular graph I' with marks, the
gmf KR, (') is homotopic to a finite rank gmf over R’.

Suppose that I is obtained from I' by placing a different collection of internal
marks on oriented edges and loops of I". Then the two graphs have the same
potential w(I') = w(I") assigned to them, and gmf’s KR,(I") and KR, (") are
objects of the category HMF 1) since the graphs are the same.

PROPOSITION 1.3. [24] There is a canonical isomorphism in HMF )
KR,(I'") = KR, (T).

In other words, there exist a homotopy equivalence KR, (I') — KR, (I'") which is
canonical up to homotopy.

PROPOSITION 1.4. [24] Given a pair of open planar reqular graphs I'y, T'y with
potential wy and wy, there is a canonical isomorphism in HMF 4w,

KR,(I'y UTy) = KR, (I') ®y KR, (I'y),
where I'y LTy is the disjoint union of I'y and T's.

COROLLARY 1.1. [24] If an open planar regular graph Iy is the disjoint union
of an open planar reqular graph I'y and a circle then

KR, (I'y) 2 KR, (I'y) ®g V,(1).

We recall some relations proved by Khovanov and Rozansky for the gmf’s
associated to open planar regular graphs. In order to simplify the notations we
omit all the marks.

THEOREM 1.1. [24]
The following isomorphisms hold in HMF,,:

ER,( O )= v,(1),
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KR,( O ){1) = @10 K R, () ){2 - n+ 2i),
ki (85 ) = KraK 0y e K-
KR, XX ) = KR,(Z )@ (@d KR O3 —n+21}),

() (1) = (38 ) e (K1)

This theorem is central in the construction of Khovanov and Rozansky; it
contains the technical results needed for the proof of the invariance of their link
homology under Reidemeister moves.

DEFINITION 1.8. Given a (closed) planar regular graph T' (i.e. an open pla-
nar reqular graph without boundary points), KR, (') is a graded 2-periodic chain
complex. Denote its homology by HKR,(I') = H'KR,(T') ® H* KR, (T").

Given a planar regular graph I', perform on each 4-valent vertex of I' the
transformation of Figure 6 to obtain a disjoint union of oriented circles in R2.
Denote p(I') the number of oriented circles modulo 2.

COROLLARY 1.2. [24]
For any planar reqular graph T', the homology HK R,,(T") of K R,,(I") is concentrated
in one of the two Z/27 grading:

HKR,(I') = HPWKR,(I).
Furthermore, the 2-periodic chain complexr KR, () is homotopic to
0 — HWKR,(I') — 0,
where HPW K R, (T) is in homological Z./27-grading p(T).
The Z-grading on R induce a Z-grading on HK R, ("),
HKR,(T') = @iz HK R, (D).
COROLLARY 1.3. [24] For any planar regular graph T,

Py(T)(q) = Y ¢'dimgHK R, (T).

1E€EL

Corollary 1.3 follows from Theorem 1.1 and the graph relations on Figure 2.

Hence, for any planar regular graph I', the graded 2-periodic chain complex
KR,(I') is a categorification of the graph polynomial P,(I'). Notice that since
the graph polynomial P, (I") has only positive coefficients [36], we only require a
Z-graded vector space to categorify it, i.e. HKR,(T') = HPWKR,(T).
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X ) (

FIGURE 6. Smoothing

FIGURE 7. A marked diagram of a tangle

4. Link diagrams and complexes of graded matrix factorizations

Given a positive integer n, we associate, following Khovanov and Rozansky
[24] to any oriented tangle diagram a chain complex of gmf’s and to any oriented
link diagram a chain complex of graded 2-periodic chain complexes. Given an
oriented link diagram, the homology of the chain complex associated categorifies
the sl,, polynomial link invariant defined in Section 1.

By a tangle T' we mean a proper embedding of an oriented compact 1-manifold
into the ball B3. We fix a great circle on the boundary 2-sphere of B* and require
that the boundary points of the embedded 1-manifold lie on this great circle. An
isotopy of a tangle should not move its boundary points. A diagram D of T is
a generic projection of T" onto the plane of the great circle. A marked diagram
(also denoted by D) is a diagram with several marks placed on D so that any
segment bounded by crossings has at least one mark (see an example in Figure 7).
Boundary points also count as marks.

Let m(D) be the set of marks of D, and let 0D C m(D) be the set of boundary
points. Let R be the ring of polynomials in z;, over i € m(D), and R’ the ring of
polynomials in x;, over ¢ € 0D.

Each crossing of D has two types of resolution: the smoothing and the graph,
see Figure 8. We resolve every crossing in one of these two ways and obtain a
resolution I' of D which is an open planar regular graph in R?. A resolution I' of
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N/X\X
\X/

FIGURE 8. Resolutions

D inherits the marks in the obvious way. We associate to [' a gmf over R as in
Section 3.
We define two maps xo and y; of gmf’s between elementary gmf’s:

L T z;
} T — II\XW
X0 It
We define o : KR, (T°) — KRn( ') by the pair of matrices

U0:<:ck;:cj (1])’U1:<fkl _1%‘)

acting on KR2(T'°) and KR.(T'°) respectively, where a = —ugy + (u; + x;uy —

i) /(& — ).
The morphism x; : KR, (I'") — KR, (I'°) is defined by the pair of matrices

VO_(—a zk—:)sj>’vl_<1 :)sk)

acting on KRO( 1) and KR! (T'") respectively, where a = —uy + (u; + zug —
71)/(x;—xy). The maps xo and x; are of degree 1 (for the grading coming from R).

We associate to every crossing of D a short complex of gmf’s as follows. To
simplify the figures, we omit all the marks. To a positive crossing

Tk I
we associate the complex concentrated in degree 0 and —1,
_ 5
KR, X )= (KRN ) 2= KRY(X)

where

KRY( X )=KR,()(){n—1},
ERM X )=KR,( 2% ){n} and 6 = x;.
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All other terms of the complex are equal to 0. To a negative crossing

T /II]'
xk:/ x
we associate the complex concentrated in degree 0 and 1,

KR,(X) = (KX == KrL(X))

Y

where

KRY( X )= KR,()(){1—n},

KRY X ) = KR, ( 3 ){-n} and d = xo.
Again, all other terms of the complex are equal to 0. For simplicity, we denote
KR, (p) for the complex of gmf’s associated to a crossing p. To an arc of D
$k>

we associate the complex concentrated in degree 0,

KRy())=KR)())

where K RY( ) ) = Li. Again, all other terms of the complex are equal to 0. For

simplicity, we replace the notation KR, ( ) ) by L%, thinking of L¢ as a complex
of gmf’s and not just a gmf.

To an oriented loop C without marks we assign the complex of graded 2-periodic
chain complexes concentrated in degree 0,

KR,(C) = KR(C)

where K R?(C) = V,,(1). Again, all other terms of the chain complex are equal to 0.
Similary to the case of arcs, we use the notation V,,(1) instead of KR, (C).

To D associate the complex of gmf’s KR, (D) which is the tensor product of
the K R,,(p) for all crossings, the L7 for all arcs and the V,,(1) for all markless circles
of D. The tensoring is done over appropriate polynomial rings so that KR, (D),
as an R-module, turns out to be free of finite rank.

EXAMPLE 1.6. For instance, to produce KR, (D), from D in Figure 7, we
tensor K R, (p1) with K R,,(p2) over Q and tensor the result with L3 over Q|xs, 5]
and with LY over Q[zg]. Finally tensor the result with V,, (1) over Q, so that

KRn(D> = KRn(p1> ®qQ KRn(pQ) QQlas,zs] Lg QQ[e] L(73 ®qQ Vn<1>'
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For any diagram D, KR, (D) is a complex of finite graded (R, w)-matrix fac-

torizations, where
o n+1
w = E T,

i€dD
with signs determined by orientation of D near boundary points. Thus, KR, (D)
is an object of the category K, over R’

PROPOSITION 1.5. [24] The complezes KR, (D) and KR, (D’) are canonically
isomorphic in K,, = K(HMJF,)if D" differs from D only by marks.

THEOREM 1.2. [24] The complexes KR,,(D) and KR, (D') are isomorphic in
Ky, if D and D' are two diagrams of the same tangle T .

Link homology. When D is a diagram of an oriented link L, the ring R’
is equal to Q, and HMUF is the category of graded 2-periodic chain complexes,
up to homotopy. Applying the homology functor to HMF,, we arrive in the
category of finite-dimensional Z @ Z/27Z-graded Q-vector spaces. Note that for
any resolution I" of D the homology HK R, (") is nontrivial only in the Z/2Z-
grading p(I") corresponding to the number of Seifert circles of D modulo 2. Taking
the homology for the 2-periodic chain complexes, we obtain a complex of graded
vector spaces and its homology HK R, (D) is considered as Z @ Z-graded:

HEKR,(D) = &, ez H'KRI (D),

where i is the grading corresponding to the chain complex structure and j is the
grading corresponding to the grading of R. The homology H K R, (D) categorifies
the link polynomial P, (D) in the sense that,

P.(D)(q) = Y (=1)'¢’dimg H'KR}(D).
i,jEL
The latter follows from Corollary 1.3 and the relations between the graph polyno-
mials and the sl,, link polynomial invariants, see Section 1.

5. Cones and Khovanov-Rozansky construction

In the Appendix of [26], Khovanov and Rozansky give another description of
the complex of gmf’s associated to an oriented tangle diagram D. They describe
the gmf associated to a 4-valent vertex as the cone of a map between the gmf
associated to the smoothing and a gmf associated to a virtual crossing. This
construction is related to the bicomplex construction in Chapter 3.

Define the gmf K R,,( X ) associated to the virtual crossing on Figure 9 to be
(Li @q Li)(1)-
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€T Zj
Tk Ty

FIGURE 9. Virtual crossing

ey xj
T, 5T )

FiGure 10. Morphisms 7y and 7,

We define two “saddle” morphisms 7y and n; of the gmf’s presented graphically
in Figure 10:

10
—_—

i ®q Li Li @q Li(1)
m

with 7y given by the following pair of matrices, acting on K R? and KR! respec-

tively,
0o_ Tkt 1 1 -1
o = T 1 )7 o = Tkl Tkl )

and with 7; given by the following pair of matrices, acting on KR® and KR!

respectively,
1 —1 T 1
0 __ 1 — ikl
771 < Tkl Tkl ) » Th < T 1 )’

Tijk = Z :B“xbxk
0<a,b,c,
a+b+c=n—1,

where

The maps 1y and 7; preserve the Z/2Z-grading and increase the Z-grading by
n — 1. Notice that the maps 79 and 1, depend on the variables z;, z;, z;, and
x;. For convenience, we will generally omit these variables from the notation. If
necessary these morphisms will be denoted by 7y 'k and nM, * Define the following
cones:

Cone() = Cone( L B L{{~1} = Li @q (1) {1}
Cone(n) = Cone(Lj ®q L{1){~1} " Li @ L{{1})
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Notice that the grading shifts make ny and 7; maps of degree n + 1.
THEOREM 1.3. [26] The cones Cone(ny) and Cone(n,)(1) are homotopic to the
gmf KRy( 3K ).
Consider the two natural homomorphisms py and pq,
o : Cone(ng) — Lj, ®g Li{~1},
p 2 L @g L]{1} — Cone(m )(1).
Consider the following complex of gmf’s,
—= —=—1 5 =0
KR.( X )= (KR, (X)) =~ ER,( X))
where 0=
K—R;1( A ) = Cone(no){n}, and & = .
All other terms of the complex are equal to 0. We also define
ER,(X) = (KR X) == FR,( X))
where o e
KR, (X )= Cone(m){1){-n}, and 3 = p,.
Again, all other terms of the complex are equal to 0.
THEOREM 1.4. [26] The following isomorphisms hold in K.,
KR X)) =2 KRy( X))

and

KR,( X )= KR,(X).






CHAPTER 2

Khovanov-Rozansky graph homology

1. Composition product for planar graphs

In analogy with a recursive formula for the HOMFLY-PT polynomial of links
given by Jaeger, we give a recursive formula for the graph polynomial introduced
by Kauffman and Vogel. We show how this formula extends to the Khovanov—
Rozansky graph homology and derive a direct computational formula for this graph
homology.

1.1. Graph polynomials, graph homology and a recursive formula.
Jaeger [14] introduced a recursive formula for the HOMFLY-PT polynomial. In
particular, for any oriented link diagram D and any integers m, n > 1, this
formula allows a computation of P,.,,(D) as a sum of products P,(D;) P,,(D>)
where D and D, run over certain subdiagrams of D. Jaeger calls this formula a
composition product.

In analogy with Jaeger’s composition product, we give a formula computing
P,ym(I) as a sum of products P,(I'1) P, (I's) where I'; and I'y run over certain
planar regular subgraphs of a planar regular I' and m, n > 1 are integers (see
Chapter 1 for a definition of planar regular graph). More precisely, define a
labelling of T' to be a mapping f from the set of edges of I' to the set {1,2} (an
oriented circle is treated as an edge without vertices). We denote by L£(I") the set
of labellings of I' that satisfy the following local condition.

Conservation law: At every vertex v of I' the number of adjacent edges
labelled by 1 (resp. by 2) directed towards v is equal to the number of adjacent
edges labelled by 1 (resp. by 2) directed out of v.

Given f € L(I'), we can erase all edges labelled by 2 (resp. by 1), smooth all
2-valent vertices (see Figure 1) and obtain thus a regular graph denoted I's; (resp.

o).

A s

FIGURE 1. Smoothing of a 2-valent vertex

35
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X ) (

FIGURE 2. Smoothing

XKoo X X
OIS =0 @l =0  {IrlpH=0
lel 1><I2 ZXIZ
OIS =1 QIrlfy =1 @irls) =0

FIGURE 3. Definition of the interaction (v|I'|f)

We define the rotation number of I'. Smooth all the vertices of I' as in Figure 2.
This gives a disjoint union of oriented circles embedded in R?; we call these circles
the Seifert circles of I'. The rotation number of I, denoted by r(I'), is the sum
of the signs of these circles where the sign of a Seifert circle is +1 if it is oriented
counterclockwise and —1 otherwise.

We define the interaction (v|U'|f) € Z of a vertex v of I' with a labelling f
as shown in Figure 3, where 1 and 2 are the values of f on the corresponding
edges. Set (I'|f) = >, (v|I'| f), where v runs over all vertices of I'. Given integers
m, n > 1, set

o, f) =omal, f)=(L, ) +mr(s1) —nr(lys) € Z.

LEMMA 2.1. For all reqular graphs I' C R? and for all integers m, n > 1,

Poym(T) = Y ¢"" Pl 1) P(Ty2).
feL(r)

We have seen in Chapter 1 that Khovanov and Rozansky categorified the graph
polynomial for all positive integer n, in the sense that they constructed a Z-graded
Q-vector space HK R, (T') = @®;ez HK R! (T') such that

(6) P,(I) =Y dimgHKR},(T) ¢'.

1€EZ

We state now our main result of this subsection.



1. COMPOSITION PRODUCT FOR PLANAR GRAPHS 37

qn—i-m —q (n+m)

= = [n+m],

)+[n+m—2]qQ(5C.)

o o) o K1) () 19)

FIGURE 4. Graph relations

THEOREM 2.1. For all reqular graphs I' C R?, for all m, n > 1, i € Z and
J € )27, we have the folllowing isomorphism of Q-vector spaces:

HKR,, D)= @  HER(;) e KR, (){o(, ).

feL(l)
kleZk+1l+ol, f)=1i
r,s €120, r+s=13j

This Theorem yields a categorification of Lemma 2.1 and gives a computation
of HKR,,1,,,(I') in terms of HKR, (I'y1) and HKR,,(I's2). We also derive from
Theorem 2.1 a direct computational formula for H K R,,(I"), see Corollary 2.1.

1.2. Proofs.
1.2.1. Proof of Lemma 2.1. Fix m,n > 1. For any regular graph I' C R?, set

Q) = Quim@) = > "I P(11)Pu(Ty2) € Zlg.q 7).
feL(r)

In order to prove the lemma, it is enough to check that () satisfies the five relations
(7)-(11) on Figure 4, see [20] and the Appendix for a detailed treatment. First we
verify (7):

AO) = PO )+ O)

= q "[nly +q"[mly = [n+ml,
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To prove the other identities, we need to fix more notation: Given a regular graph
', a labelling fy € £(T"), and a subset Fjy of the set of edges of I, set

QT fo,0) = > ¢" T Py(T 1) (T ).
fE'C(FLf'EO:fO‘EO

For example, Q( 1>Q ) is given by a sum over all labellings whose values on the

pictured edges are 1. We recall that the graph polynomial P, satisfy the relation
1-5 of Chapter 1, Figure 2. We now check (8). We have

(12) QYD) = X))+ YD)+ D)+ X))

Applying relation (1) of Chapter 1 to the P,,-terms in Q( >Q ), we obtain

and applying relation (2) to the P,-terms in Q( 1>Q ), we get

QXD ) =g =1, Q).
Similarly, we can apply relation (2) to the P,,-terms in Q( 2>Q ) and relation (1)

to the P,-terms in Q( 2>Q ) and we get that the right hand-side of (12) is equal
to

¢ =1, QD) + ¢ ml, QD)

+q"m =10 Q( ) ) + ¢ ™ 0], Q( D)
= (g7 =g+ ¢ mly) Q)+ (¢"m — 1, + ¢ [nl,) Q)
= fn+m—1, (@) +Q()))
= [n+m-1,Q()).

Hence @ satisfies (8).
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We check (4):

o(X) = (X)) re(X) el

- QB ) o) v (X)) e (X))
+qQ<z><1>+q‘1Q<z><1)+qQ<i><f)
+q‘1Q(i><i>+ q‘1Q<f><i)+qQ(f><l).

Using the relation (3) for the P,-terms and P,,-terms, we easily obtain (4).
We now check (10).

Q(XX) = (XX ) +e(XX)
+Q (X)) + (X
QX))+ (X))
+Q (X )+ (X
Lo (X ) o ( XK.

We apply the relations (1), (2), and (4) to the P,-terms and P,,-terms, so the
latter expression is equal to:

o) rn-3.2006) o)

+@< ) 7l =20 Q) )ﬂ” 2(¢)
10(26) - (30
+q1-" (5£)+qm1n 1,0 (9¢)
re (= )+@< )

= Q(X)+m+m-2,0(0C).
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In order to prove the last relation (11), we put in correspondence the labellings
occuring on the two sides of (11) as in the following two examples:

22 1 1 1 12

12 2 1 22 12

There are 28 different labellings possible for % . Among these labellings, 14
are identified with labellings of §§< as in the first example, and 8 with labellings

of [ >< as in the second example. The remaining 6 labellings are involved in the

following equalities (three other equalities are obtained by exchanging 1 and 2):
Q F 2 : 1 —"_ Q ( %

2

QZZ
)=o)
o g ) o (5 ) el

21 1 1 21

In this way we obtain that @) satisfies (11).
Hence, () satisfies equations (7-11) and since these equations determine P, ,,, we
conclude that Q = P,,,,. Lemma 1 is proved.

1.2.2. Proof of Theorem 2.1. Since the graph polynomial has only non negative
coefficients, we have directly from Lemma 2.1 and Formula (6):

(13)

HKR, (") = D HEK Ry (Tp1) ®@g HE R, (T2){o(T, f)}.

fe L),
kleZk+1+o, f)=1

We need now to precise the Z/27Z-grading. It follows from Corollary 1.2 that for
any planar regular graph I', n > 1, and 7 € Z,

H'KR! (T)=0 ifj=7()+1 (mod 2).
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Furthermore, given a planar regular graph I' and f € £(T'), we have
r(I) =r(Tsa) +7(Cre).

Theorem 2.1 follows from (13) and the latter formula.

1.3. Consequences. Given a planar regular graph I, we denote by L(I") the
subset of labellings of I' such that I'f 5 is a disjoint union of circles. We also define

Given a planar regular subgraph A € S(I') of I, there is a unique labelling fa €
L(I") such that A = I'y;. For A € S(I'), set G(I', A) = (I, fa) where (', fa) is
defined in Subsection 1.1. We need to fix more notations. For all k,[ € Z,

Q{kH) = Biez,jersoz Q{kI(1)™,

where
i Q ifi=Fkand j=1 (mod 2),
7] —_—
Q{k} ) _{ 0 otherwise.

We state a corollary of Theorem 2.1.

COROLLARY 2.1. For all reqular graphs I' C R? and all integers n > 2,

HER,(T) = &P Q3(Ar, -+, A ) Hr(D))

A1€S(F),A2€S(A1) ..... An71€S(An,2)

= (B(A: Air1) +2 r(Aipr)) — (= 1) ()

i=0
with the convention Ay =1T'.

PROOF. From [24, p. 11] we have

Q if I' is a union of circles,

HKR,(T') = { 0 otherwise.

The rest of the argument is just a straightforward induction argument using the
case m = 1 of Theorem 2.1. OJ

We illustrate Theorem 2.1 and Corollary 2.1, for n = 2 and m = 1 in the
following example.
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ExXAMPLE 2.1.

e ()

12

HK R, ( @@ ) @ HK Ry( O) ){-3}(1)
SHER,( O )3} @ HEKRy( () ){1}(1)

eHKRy( O ){-1}1)
Q{—2}2Q{2} Qo Qa Q{—2} ® Q{—4}
oQ{4} 0 Q{2} 2 Q{2} 2 Qo Qo Q{-2}

Remark. Corollary 2.1 suggest an equivalent but direct definition of
HKR,(I'), namely

HEKR,(T") = B Q{o(Ar, ..., &) Hr(I)).

A1€S(T),A2eS5(A1),...., AneS(An_1)

1%

Using this expression as a starting definition of H KR, (T"), it would be interesting
to exhibit explicitly the isomorphism of Theorem 2.1.

1.4. Application. Given an oriented link diagram D, define
g = max{k € Z | HKRY(D) = &, K RE(D) # 0},
g™ = min{k € Z | HKR*(D) = @;jc, H' KR (D) # 0}.
These are numerical invariants for links. Theorem 2.1 was used by Wu, in order
to give a new proof of the following theorem, which is a generalization of the

Morton-Frank-Williams inequality on the degree of the link polynomial invariant
P,.

THEOREM 2.2. [53] Let L be a closed braid with m strands, c positive crossings
and c_ negative crossings. Then

(n—1D(w-m) =2 < g7"(L) < gg™(L) < (n—1)(w+m)+2c,

where w = ¢y — c_ s the writhe of L.
2. Generalization to embedded graphs
We generalize Khovanov—Rozansky construction to the case of graphs embed-

ded in B3. More precisely, we prove that a certain complex of gmf’s associated to a
graph embbeded in B? is invariant under the graph moves introduced by Kauffman.
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2.1. Open regular graphs and complex of graded matrix factoriza-
tions.

We consider finite oriented graphs embedded into a ball B*> C R3. We fix a
great circle on the boundary 2-sphere of B? and require that the boundary points
of the embedded graph lie on this great circle. These graphs are called open
reqular graph. A diagram I' of an open regular graph is a generic projection of
the graph onto the plane of the great circle. An isotopy of such a graph should
not move its boundary points. An embedded graph into B? without boundary
points is called a (closed) regular graph.

In Chapter 1, we associated to any open planar regular graph I" and any positive
integer n a gmf KR, (I"). Moreover, we associated to any tangle diagram D and
any positive integer n a complex of gmf’s K R, (D). In particular, we recall that to
an arc in an oriented edge (or in an oriented loop) of an open planar regular graph
bounded by marks ¢ and j and oriented from j to i, without any other interior
mark as on Figure 5 of Chapter 1 we associate the gmf Lz To an arc of a tangle
diagram bounded by marks 7 and j and oriented from j to i, without any other
interior mark as on Figure 5 of Chapter 1 we associate the complex of gmf’s,

KR,())=KR)())

where KRO( ) ) = Li. All other terms of the complex are equal to 0. The

difference is just that the gmf Lj- is now seen as complex of gmf’s in the most
obvious way. Similarly , in Chapter 1 we associate to a 4-valent vertex s of an
open planar regular graph a gmf KR, (s). Now to a 4-valent vertex in an open
regular graph we associate the complex of gmf’s

KR,( X )=KR)( X))

where K RO ( X )= KR,(s). Again, all other terms of the complex are equal to

0. Given an open regular graph I', we associate a complex of gmf’s in the same
way as in the case of tangle diagrams: Thus, we define

- ()0 @) 1)

where a runs through all arcs in I' starting and ending in marked points that
contain no crossings and no other marked points, p runs through all the positive
and negative crossings of I' and s runs through all 4-valent vertices of I" .

Notice that when there are no 4-valent vertices, then this construction gives
the chain complex of gmf’s associated by Khovanov and Rozansky to the link.
Furthermore, if there are no crossings, we obtain a trivial chain complex of gmf’s



44 2. KHOVANOV-ROZANSKY GRAPH HOMOLOGY

X0 ()
\

x;?%‘[(na) :QT‘LHID)
N A NN

A\ l I11) (Y (1V)

Y (
,8 H (Va) % (VD)

FIGURE 5. Graph moves that generate rigid vertex isotopy

consisting in the gmf associated by Khovanov and Rozansky to the planar regular
graph, lying in homological degree zero.

2.2. Reidemeister moves for graphs. We will consider open regular
graphs embedded in B?® as graphs with rigid vertices. As explained in [19], a
4-valent graph with rigid vertices can be regarded as an embedding of a graph
whose vertices have been replaced by rigid disks. FEach disk has four strands
attached to it, and the cyclic order of these strands is determined via the rigidity
of the disk. An RV-isotopy or rigid vertex isotopy of the embedding of such an
open regular graph I' in B? consists in affine motions of the disks, coupled with
topological ambient isotopies of the strands (corresponding to the edge of T').
An RV-isotopy of an open regular graph should not move its boundary points.
The notion of RV-isotopy is a mixture of mechanical (Euclidian) and topological
concepts. It arise naturally in the building of models for graph embeddings, and
it also arises naturally in regard to creating invariants of graph embeddings.

In [19], Kauffman derived a collection of moves, analogous to Reidemeister
moves, that generates RV-isotopy for diagrams of 4-valent graph embeddings. As
we will only be interested in 4-valent oriented graph embeddings whose oriented
rigid vertex take the basic form

we will present the RV-moves in this case, see Figure 5.

2.3. The main result. We can now state the main result of this section.

THEOREM 2.3. Let KR,(I'1) and KR, (I's) be complexes of gmf’s associated
to diagrams I'y and Ty of open reqular graphs in B3. If there ewist a sequence
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N \¥4

N A

FIGURE 6. Type (IV) move

/}2&\

Lo \ ) / Iy
R

FIGURE 7. Four resolution of I' in the type (IV) move

of RV -moves such that Ty is obtained from I'y then KR,(I'1) and KR, (') are
homotopy equivalent.

As pointed out by Kauffman and Vogel [20], link polynomial invariants give rise
to graph invariants. Thus, the same is true for Khovanov-Rozansky link homology.

PROOF OF THEOREM 2.3. In [24], Khovanov and Rozansky have proved the
invariance of KR, (I') under type (I), (II) and (III) moves, see Figure 5. We prove
the invariance under type (IV) and (V). The invariance under type (IV) follows
directly from the proof of invariance under (IIT). We will use at many level the
proofs by Khovanov and Rozansky, see [24].

Invariance under (IV)

As pointed out by Wu [52], the Khovanov-Rozansky’s proof of the invariance
under Reidemeister (III) can be simplified by using Bar-Natan’s algebraic trick
[5], i.e by using the fact that the homotopy equivalence used for the proof of the
invariance under Reidemeister move (Ila) is a strong deformation retract. If we
think of the proof that way, then the proof of invariance under (IV) is contained
in the one of (III).

We need to show that KR, (I") and K R,,(I") are isomorphic for I, I'" in Figure 6.
The diagram I' has 4 resolutions, denoted by I';; for i,5 € {0,1}: See Figure 7.
The complex KR, (I'){—2n} has the form

KR,(T'n){—1}

0 — K Ry(T'o0) = < KR, (To){—1}

) N KR,(Tu){-2}—0
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with KR, (I'1;){—2} in cohomological degree 0. This complex is shown in Figure 7.

Khovanov and Rozansky proved [24] the following isomorphism:
Furthermore, they proved that

(15) KR,(Too) = KR, (T & T,
where T is defined in [24, Prop. 33].

The differential 92 is injective on KR, (I'11) C KR, (Tgo). In fact, the map
to KR,(I'o1){—1} is injective (which follows from the inclusion KR,(I'y;) C
KR,('y) and the proof of invariance under (Ila), see [24]). The gmf
02(KR,(Tq)) is a direct summand of KR, '(I'){—2n}. Thus KR,(I'){—2n}

contains a contractible summand
(16) 0 — KRy (') = KR, (') — 0.

The direct sum decomposition (14) can be chosen so that

KR,(To){-1} 2 pp0 ?KR,(I'1;) ® KR,(I';1){—2},

where pg; is the projection of KR, '(I'){—2n} onto KR,(T¢p;){—1}. The differ-
ential 97! is injective on KR, (T'11){—2} C KR,(To1){—1}. Furthermore, the
image of KR,(I'1;){—2} € KR,(T'p;){—1} under 972 is a direct summand of
KRY(T'){—2n}. Hence the complex KR, (I'){—2n} contains a contractible direct
summand isomorphic to

(17) 0 — KR,(I1){—2} 5 KR, (Ti){-2} — 0
After splitting off contractible direct summands (16) and (17), the complex
KR, (I'){—2n} reduces to the complex C' defined by

0—71T% KR,(T){~1} — 0

Since both KR, (I"){—2n} and KR,,(I""){—2n} contain KR, (I'1g){—1}, [24, Prop.
33] ensures that we can perform exactly the same reduction to KR, (I'"){—2n}.
Finally, we conclude that

KR,(I') = KR, ().
Invariance under (Va)
We need to show that KR, (') and KR, (I") are isomorphic for the graphs

I', I" shown in Figure 8. The diagram I' has 4 resolutions, denoted by I';; for
i,j € {0,1} and shown in Figure 9. The complex KR, (I') has the form
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8

FIGURE 8. Type (Va) move

S
FOO\H/M

F1GURE 9. Four resolution of I' in the type (Va) move

0= KR (+1} () ) 2 KR,C (1) — 0

where K R,(I'g;) and K R,,(I'1y) are in cohomological degree 0. We have depicted
this complex in Figure 9. Since I'gy and I'1; are isotopic, K R,,(I'g0) and KR, (T'11)
are isomorphic. Khovanov and Rozansky [24] proved that

(18) KR, (I'o) = KRy (Loo){+1} & KRn(T'oo){—1}.

Khovanov-Rozansky’s proof of invariance under (IIa) ensures that the differential
07! is injective on KR, '(Tg). Direct sum decomposition (18) can be chosen so
that

KR,(T10) = p1g0 ' KR, (Do) {+1} @ KR, (Tg0){—1}.

Thus, KR, (") contains a contractible summand

(19) 0 — KRy (Too){+1} > KRy (Too){+1} = 0.
Furthermore, we have
(20) KR,T){-1} =2 KR,T'n) ® KR, (Tg1){—2}.

Differential 9" is surjective onto KR, (1) C KR, (I'11){—1}. Thus KR, (T) con-
tains a contractible summand

(21) 0 — KR(To1) = KRy (To1) — 0.
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I

FIGURE 10. Type (Vb) move
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FIGURE 11. Four resolution of I" in the type (Vb) move

After splitting off the contractible direct summands (19) and (21), the complex
KR, (') reduces to the complex C' of the form

0 — KRy(Ti){-1} & KR, (Dor){—2} — 0
The decomposition (20) ensures that C' is homotpy equivalent to

Invariance under (Vb)
We need to show that KR,(I') and KR,(I") are isomorphic for the graphs T,
I'" shown in Figure 10. The diagram I' has 4 resolutions, denoted by I';; for
i,7 € {0,1} and shown in Figure 11. The complex KR, (I") has the form

0 — KRy(Too){+1} 5 ( gg g?;; ) 2 KR,(Ti){~1} — 0

where KR, (I'g;) and KR,,(I'1y) are in cohomological degree 0. We have depicted
this complex in Figure 11.

Applying Khovanov-Rozansky’s results, we have the following isomorphisms:

n—2

(22) KR,(Too) = @D KR (Goo){2 — n + 2i}(1),

=0
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Q ~ ~ ~
Goo Goi G G

FIGURE 12. The graph G()Q, Gol, G11> G

(23) KRy(Tor) = é_}KRn(Gm){Q—n%—Qi}(D,

(24) KRy(T'11) = @KRn(Gll){Q_n‘l'%}(Da

and :

(25)  KRu(Too) = <@ KR (G){3—n+ 2@}<1>> © KRy (I"),

where Gqog, Go1 and G1; are depicted in Figure 12.

We can twist the direct sum decompositions (22), (23) and (24) so that 9!
and 9° have diagonal form following this decomposition. Furthermore, consider
the following short complexes: For all i € [0,n — 2]

—1 0
0 — KRp(Goo){3—n+2i} = KRy (Go){2—n+2i} % KR,(Gi){1—n+2i} — 0

The proof of invariance under (I) by Khovanov and Rozansky implies that 9; * is
split injective and &9 is split surjective. Since the category HMF,, has splitting
idempotents (see [24, p. 46]), we can decompose K R2(I") as the direct sum

KR)(T) = (5} Im(8;1)> O (5} Yf) ©Ys

in such a way that 09 restrict to an isomorphism from Y} to KR, (G11){1 —n+2i}
for all i = 0,...,n — 2 and 9?(Y3) = 0. Therefore, KR, (T) is isomorphic to the
direct sum of complexes

0 — YVQ — 0,
0 — KR,(Go){3—-n+2} = Im(@") — 0,
0 — Y{ 5 KR,(Gu){l-n+2i} — 0.
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We can decompose further the sum decompositions (22), (23) and (24) so that we
obtain

n—2 n—2
=0 7=0
n—2 n—1
(27) KR, (o) = KR, (G){3 —2n+2(i+j)},
=0 75=0
n—2 n—2
(28) KR, (T') = KR, (G){4—2n+2(i + j)i},
i=0 j5=0
and
n—3 n—2

(29) K R,(Too) ( KR, (G){5— 2n + 2(i + j)}> @ KR,(I"),

i=0 j=0
where G is the right-most graph depicted in Figure 12. From formula (26) to (29)
we obtain

KRY(I') = KR, (Do) ® KR, (o) = KRy (Too){+1} ® KR, (T'11){~1}® KR, (I").

From Proposition 1.1, we know that the category HMF,, is Krull-Schmidt; it im-
plies that Y5 = KR, (I"). Therefore, the complexes KR, (I') and 0 — KR, (I') —
0 are isomorphic. This concludes our proof of the invariance under type (Vb)
move. Theorem 2.3 follows. 0



CHAPTER 3

Triply graded link homology Hi,

For each positive integer n, we build a triply graded link homology H,, from
which we recover the Khovanov—Rozansky bigraded link homology. In Section 1,
we describe the construction and state the two main theorems. In Section 2, we
investigate further the matrix factorizations, in order to prepare the proofs of
Theorem 3.1 and Theorem 3.2 in Section 3. This chapter contains the two main
theorems of this thesis. We emphasize that this construction is related to the
cone description of Khovanov-Rozansky construction, see Chapter 1.5. Rooughly
speaking, we ignore the cones in Khovanov-Rozansky construction and associate
to any link diagram, a bicomplex of 2-periodic chain complexes over Q.

1. The main construction: from bicomplexes to triple grading

Fix a positive integer n. Let D be an oriented link diagram in R% Let
k be a positive integer and {z,...,z;} be a set of marks on the diagram D
such that every arc between two crossings has at least one mark. Each cross-
ing of D has two types of resolution: the smoothing and the virtualization,
see Figure 1. We resolve every crossing in one of these two ways and obtain
a resolution D of D, which is a union of oriented circles in R? with virtual crossings.

We associate to each such resolution D a Z-graded 2-periodic chain complex.
The resolution D of D inherits the marks {z1, ..., 24} in the obvious way. We now
build a gmf out of the elementary pieces shown on Figure 2. We associate to an
arc, as on the left of Figure 2, the gmf L; of potential 2" — :c;-”rl € Qlxi, zj],

%

Qls, 5] T4 Qa2 [{1 —n} "5 Qlay, ),

w/x\x
\X/

FIGURE 1. Resolutions
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with
n 1 1
N k n—k z T — x?Jr
Tij = riay T =
k=0 i

By definition, the gmf C,,( X ) associated to the virtual crossing as on the right

of Figure 2 is equal to (L ®g L7,)(1).

To the resolution D of D, we associate the gmf C, (D) obtained by taking the
tensor products over suitable polynomial Q-algebras of the gmf’s associated
to all pieces of D (see Chapter 1 for the definitions of the tensor products).
The potential of a gmf is additive with respect to these tensor products. As a
consequence C,(D) is a graded 2-periodic chain complex over R = Q[xy, ..., zg].
Moreover, this 2-periodic chain complex has only homology in one of the two
Z)2Z-grading (it is a consequence of Lemma 3.7 and Lemma 3.8).

Using the saddle morphisms 79 and n; defined in Chapter 1.5, we associate to
every crossing of D a bicomplex of gmf’s. To simplify the figures, we omit all the

marks. To a positive crossing
LZN\ Zj
Tk x
we associate the bicomplex of gmf’s over Q[z;, z;, z, 7

Cal K )= CH( K ) ——0

Co( ) 2 oo X )

where

o0 X )= X ) =Cu( ) O)fn -1},

0771,1( X ) _ Cn( >8< )’ 0 = Id and 9, = ng.

All other terms of the bicomplex are equal to 0. To a negative crossing

X
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we associate the bicomplex of gmf’s over Q[z;, x;, zx, x/]
5
Co( X ) = a2 (X ) == X))

L

0 (X))

where

o0 X )y =0 X )=o) ({1 —nl,

CrlL’_l( 'xl ) = Cn( >8< )7 5h = Id7 and 51} =M

Again, all other terms of the bicomplex are equal to 0. To an arc of D
z;

Ca( ) =C0())

we associate the bicomplex

where C%9( ) ) = Li. Again, all other terms of the bicomplex are equal to 0. To
an oriented circle without marks, we associate the bicomplex

c(Oy=cO)

where C29( O ) = V., (1) (see page 22 for a definition of V,,(1)). Again, all other
terms of the bicomplex are equal to 0.

We finally associate to D a bicomplex C, (D) = (C%(D)); jezz of graded 2-
periodic chain complexes over Q by taking the tensor products of the bicomplexes
of the gmf’s associated to crossings and arcs of D. Set

H,.(D) = H(H(H(CW(D),d), ), 0p)-

The symbol d stands for the differential on the 2-periodic chain complexes C%7(D),
(i,7) € Z2. The symbol 6, stands for the differential along the columns and &, for
the differential along the rows. Thus, the Q-vector space Hl, (D) has four gradings:
three homological gradings and one additional grading called quantum grading.
Two of the homological gradings are Z-gradings and come from the bicomplex
structure. The third homological grading is a Z/2Z-grading and comes from the
2-periodic chain complex structure. We refer to the Z-grading coming from the
R-module structure on C,, (D) as the quantum grading.
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Since H,, (D) is concentrated in one of the Z/2Z-grading, we now forget the
7./]27Z-grading and consider H,,(D) as triply graded:

H,(D)= P Hi*D)
(i,5,k)€Z?

where i refers to the horizontal bicomplex grading, j to the vertical bicomplex
grading and k to the quantum grading.

LEMMA 3.1. Given an oriented link diagram D, for all (i,j,k) € 73, the Q-
vector space H:3K(D) is independent of the choice of marks, up to isomorphism.

PRrOOF. This lemma is a consequence of Lemma 3.7 and Lemma 3.8 below. [

We now state our two main theorems.

THEOREM 3.1. Given an oriented link diagram D, for all (i, j, k) € 73, the Q-
vector space Hﬁf’k(D) 1s invariant under Reidemeister moves, up to isomorphism.

The next theorem shows that our construction recovers the Khovanov—
Rozansky link homology.

THEOREM 3.2. Given an oriented link diagram D, the bigraded link homology
HKR, (D) is determined by the triply graded link homology H,,. For all (i, k) € Z?,

H'KRE(D) = @y HFI0H)(D),
Given an oriented link diagram D, we consider the Poincaré polynomial asso-
ciated to H,,(D):
PE(D)(u,v,q) = Y wu'v/q*dimg HH(D).

(4,4,k)€Z3
COROLLARY 3.1. The sl,-polynomial P, is determined by P2

Po(D)(q) = P,(D)(—1,—¢" ", q).

2. More on matrix factorizations

We give useful results on matrix factorizations for the proofs of Theorem 3.1 and
Theorem 3.2. In a first subsection, we give some general results on the cones and
matrix factorizations. In a second subsection, we recall precisely the procedure of
removing marks and the Frobenius structure of V,,. We give also some properties
of the “saddle” morphisms.
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2.1. Cones and matrix factorizations. Consider a complex of matrix fac-

torizations
C:Cod—o>Cld—1>~-~dt>1 de_k>crk+l
Consider the following procedure which transforms the complex C' of matrix fac-
torizations into a matrix factorization denoted Cone(C'). We begin for example,
by taking the cone of the differential d’, we obtain then a complex of matrix
factorizations of lengh k& — 1:
di+1

0 Lot Lot Cone(d) 1S o1y - B ok1)y L o)

We repeat this elementary procedure to all the differentials of the complex. The
final result does not depend on the order in which we took the differentials. This
follows from the lemma below.

LEMMA 3.2. Given a short complex of mf’s
C:O—>Ed—0>Fd—1>G—>O,
the following mf’s are isomorphic:
Cone(Cone(d®) — G(1)) = Cone(E — Cone(d"))

PRrROOF. The isomorphism is given by the following pair of matrices:

Id 0 O Id 0 0
Q=1 0 Id 0 and Q'=1 0 Id 0
0 0 -Id 0 0 -—-Id

Consider mf C', C’", D, and D" and two mf’s morphisms f and g:
f:C—=C'andg: D — D'

LEMMA 3.3. There is an isomorphism between the matriz factorizations
Cone(f) @ Cone(g) and Cone(f ® g).

We do not make precise tensor products, potentials, and rings, because the result
holds in all cases. Furthermore, it is true for gmf’s when f and g are of degree

n + 1.
d 0 a0
fO d/l _fl d/O
CltoCr C'aC",
3 0
go 5/1

ot
_gl 5/0

Proor. We have

Cone(f) = C°q C"

and
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Hence we have

Cone(f) ® Cone(g) = E° =, El i E°

with
EO — (CO D C/l) ® (DO D D/l) D (Cl D C/O) (Dl D D/O)
— (CO ® DO) D (CO ® D/l) D (Cll ® DO) (Cll D/l)
EB(Cl ® Dl) D (Cl ® D/O) D (CIO ® D ) (CIO D/O)7
El — ( C/l) (Dl D D/O) D (Cl D C/O) ( D/l)
— (CO ® D ) (CO ® D/O) D (Cll ® D ) (Cll D/O)
(Cl ® DO) D (Cl ® D/l) D (CIO ® DO) (CIO ® Dll),
Id ® §° 0 0 0 d' @ 1d 0 0 0
[d® ¢ Id® i 0 0 0 d' @ 1d 0 0
0 0 Id ® §° 0 —fl®Id 0 d°®1d 0
PO _ 0 0 [d®g¢" Id®d? 0 —f'®Id 0 d® e Id
Tl d®Id 0 0 0 —Id ® §* 0 0 0 :
0 d’ ®1d 0 0 dog —Id®d"” 0 0
fPeId 0 d' ®1d 0 0 0 —Id ® &t 0
0 fP®1Id 0 d' ®1d 0 0 [d®g¢ —Id®
and
Id ® &t 0 0 0 d'®1d 0 0 0
~ld®g' Id®§° 0 0 0 d*®1d 0 0
0 0 Id ® §! 0 —fl®ld 0 d°®1Id 0
pl_ 0 0 ~ld®g¢' Id®d§° 0 —flold 0 d°®1d
] d®Id 0 0 0 ~Ild® §° 0 0 0
0 d’ ®1d 0 0 ~ld®¢° —Id® 0 0
fPeId 0 d' ®1d 0 0 0 ~Id ® ¢° 0
0 f®Id 0 d"' ®1d 0 0 ~ld®¢* —-Id® i
On the other hand, we have
ld®g
feld lgf®1d ~-ld®g)
fog:=| C®D CDdC'® C’'®D

and

1
COHG(f@Q) — FO_>F1LFO




with

Q=

and

Q' =

FO =
(
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CeD)Yao(CeD) o (C'=D)e (D)
CO ® DO) D (Cl ® Dl) D (CO ® D/l) D (Ol ® D/O)

@(C"O ® Dl) D (Cll ® DO) D (C/O ® DIO) D (Cll ® Dll),

(
(

CeD)}o(CeD) e ((C'2D)"a(C"eD)!
CO ® Dl) ey (Cl ® DO) D (CO ® D/O) D (Cl ® D/l)

(C" @D @ (C"® DY (C° DY) e (C" @ DY),

Id ® §°
d’° ® Id
Id ® ¢°

fP®Id
0

0

Id ® 4!
d’ ® Id
~Id® gt
0
—f"®Id
0
0
0

We exhibit an isomorphism between Cone(f) ® Cone(g) and Cone(f ® g):

B — T 0

wl Yoo Yo )

FY F! FY

OO O oo

0
d' @ 1d

OO O oo

0
d" @ 1d
—Id ® §"°

d*®1d 0 0 0 0 0
—Id® &' 0 0 0 0 0
0 [ded dold 0 0 0
deg¢ d®Ild -Ild®i® 0 0 0
0 0 0 deds dJd'old 0
fleld 0 0 d°®Id —Id® & 0
0 fP®Id 0 ~ld® g! 0 Id ® §"°
0 0 fleld 0 —ld®g¢" d°®@Id —Id® §"
d'®1d 0 0 0 0 0
—Id ® §° 0 0 0 0 0
0 [d®d° dold 0 0 0
~ld®¢" d®Ild -—Idi? 0 0 0
0 0 0 [deds d'eld 0
—fl®ld 0 0 d°®1d —Id® 6 0
0 -f'®1d 0 Id ® ¢° 0 Id ® 6"
0 0 —f'®Id 0 [deg¢t d°®Id
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with
100000 0 0 10 0 0 0000
000010 0 0 00 0 0 1000
010000 0 0 01 0 0 0000

po_|000001 0 o0 qg_]00 0 00100
000000 -1 0 |[° 00 0 0 0010 |
001000 0 0 00 -1 0 0000
000000 0 -1 00 0 0 0001
000100 0 0 00 0 —10000

BY = (A% and B' = (A})7" O

Consider two mf’s C' and D.
LEMMA 3.4. There exists an isomorphism T from C @ D to D ® C'.
Similarly this result holds for all choices of tensor products, potentials and rings.

PrROOF. The isomorphism is given by the following pair of matrices:
o (Id 0 1 ( 0 Id
T_(O—Id and 70 = EE
OJ

Consider a morphism f : (C,¢) — (D, d) of 2-periodic chain complexes. Con-
sider the 2-periodic chain complex Cone(f). Suppose there exist a homotopy
equivalence F': (C',d') — (C,c) and F’': (C,c) — (C',) such that F' o F' = Id,
FoF —Id=hoc+coh,and hoF = 0. Such a homotopy is called a strong
deformation retract, see [5].

LEMMA 3.5. The 2-periodic chain complexes Cone(f) and Cone(f o F') are
homotopic.

PROOF. We give a homotopy equivalence F', I between Cone( f) and Cone( fo
F):

HO H!
Cone(f) = C'a D! s C'a DO = C® D!
T e e
Cone(f o F) = 0" @ D! Q o @ DO Q O @ D
where

S Lo
POZ(;O dl)aP1:<_Cf1 dO)a

/0 0 /1 O
Q(]:(erCOFO d1>7Q1:<_flcoF1 do)a
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—0 F" 0\ =1 _ F* 0
F _<—floh1 )= o 1 )
—0 FO 0 —1 F'' 0
F‘(o Id)’F_<0 Id)’
hY 0 ht 0
0 _ 1_
H_<0 O),andH—<0 0).
The homotopy on the bottom is zero. O

Suppose there exist a strong deformation retract G : (D,d) — (D',d') and
G : (D,d) — (D,d) such that GoG' =1d, G'oG—1d = hod+ do h, and
Goh=0.

LEMMA 3.6. The 2-periodic chain complezes Cone(f) and Cone(G o f) are
homotopic.

Lemma 3.5 and Lemma 3.6 hold in the graded case if f is of degree n+ 1, F, G,
F’" and G’ are of degree 0.

PRrROOF. We give a strong deformation retract G, G’ between Cone(f) and
Cone(G o f):

HO H1
Cone(f) = C'® D! 7 Cto DO C'q D!
(e el wlde o
Cone(G o f) — O D DN Q o1 D Do Q OO o) DN

where

0
0 0 0 0
H0:<0 hl),andH1:<O h,O)

The homotopy on the bottom is zero. O
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2.2. Removing marks, “saddle morphisms” and Frobenius algebra.
We first recall a lemma of Khovanov and Rozansky about the procedure of remov-
ing marks, which is the main tool in the proof of Lemma 3.1 and whose proof will
be useful in the proof of Theorem 3.1. Recall that L; is the following gmf

X x(zi—z;)
Qlzi, 7] — Qlag, ;{1 —n}  —7 Qla;, z;].
LEMMA 3.7. [24, p. 38] The gmf’s L¥Qq,, Li, and L} are canonically homotopy

equivalent as matriz factorizations of potential 7™ — 27" over R = Q[u;, ;).
PROOF. Denote R = Q|x;, x;, z;]. We exhibit the homotopy equivalence given
in[24] between LY ®q,) Lj, and L:

R@®R{2-20) 2> R{l-n}® R{l-n} >R ®R{2- 2}

GO< >F0 G1< >F1 G0< )Fo
XTij x(zi—x;)

R R{1—n} R

where
po— [ ik Ti— Tk pl— ( Tk =T Ti— Tk
Tik Tj— T )’ ik Tk )
P~ (6 0). P =(00).
GOZ 1 Glz 1
Tijk ) L)’
and

¢ : Q[xi>xja xk] B @[[L’Z,l']]
defined by ¢(zy) = x;, ¢(x;) = x;, and ¢(z;) = x;. For a proof that it is in fact a
homotopy equivalence, see [24, Prop. 9] and [24, Prop. 20]. O

REMARK 3.1. The morphism F' that appears in the proof of Lemma 3.7 is
homotopic to the following morphism F', see [24, Prop. 19]:

F=(v 0),F=(0 %),
with
Y Qlai, 24, vi] — Qwy, 7]

defined by v(xy) = x;, (x;) = x;, and Y(z;) = x;. The morphisms F, F and
G will be useful in order to reduce the sizes of the matrixz factorizations involved

in the proof of the invariance under Reidemeister moves. They allow to simplify
objects in the category K(K(HMF,)).
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Applying Lemma 3.7 to the case when j = 7, we get a homotopy equivalence
between the graded 2-periodic chain complex associated to a circle with two marks
and the graded 2-periodic chain complex associated to a circle with one mark. The
next Lemma gives a homotopy equivalence between the graded 2-periodic chain
complex L? associated to a circle with one mark and the graded 2-periodic chain
complex V,,(1) associated to a markless circle.

LEMMA 3.8. [24, p. 40] The graded 2-periodic chain complexes over Q, L% and
V. (1), are homotopic.

ProoF. We give from [24, p. 40] a homotopy equivalence between L% and
Vo (1):
H

X (n+1)z™

/—\ 0
Qlz] ——Qlz]{1 = n} ——Qlz]

GO< )FO Gl< >F1 G0< >F0
0—— (Qlz]/2"){1 - n} ——0
where F* = G° = 0, the morphism F': Q[z]{1 — n} — (Q[z]/2z"){1 — n} is the
natural projection, and the morphism G' : (Q[z]/2"){1 —n} — Q[z]{1 —n} is the
injection. The homotopy H : Q[z]{1 — n} — Q[z] is defined as follows:
k—n

H(z") =0if k <n and H(z") = 7f+1

Furthermore, we have I'o G = Id. O

We recall the Frobenius structure [27] of V,, = (Q[z]/2™){1 — n}. The multi-
plication m is given by

if k> n.

m: V, @V, — V,, 221 —— 't
and the comultiplication A is given by
A Vi — Vi@V, @' ()35 e ek

Notice that m and A are of degree n — 1. Define the unit + : Q — V,,, by
t(1) = 1. The counit € : V;, — Q is defined as follows:

1
n—1 —
(@) n+1
The unit and the counit are of degree 1 — n. Each of ¢ and € induces a natural

map between the graded 2-periodic chain complex V,,(1) and the following graded
2-periodic chain complex,

and e(z') = 0if i #n — 1.

0— Q—0.
We still denote these maps ¢ and e.
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To finish this section we give homotopy equivalent descriptions of the “saddle”
morphisms 7y and 7;. These morphims will appear in the next section. Define two
other “saddle” morphisms 7, and 7;:

i ®q Li L} @q Li(1)

m

with 77, given by the following pair of matrices, acting on C? and C! respectively,

o _( my 1\ a_( 1 -1
o ( —Tijk 1 ) > o ( Tiji Tijk )

and with 77, given by the following pair of matrices, acting on C? and C! respec-

tively,
1 -1 Tiik 1
70 =l ijk
771 ( Wijk 7Tijl ) ) 771 ( _7Tijl 1 ) )

_ E a, b .c

0<a,b,c,
at+b+c=n—1,

where

LEMMA 3.9. The maps n; andm; are homotopic, 1 = 0, 1.
PrOOF. First for n =1, n; =m,, for i = 0,1. Suppose now n > 1 and denote
Tijkl = Z xfx;’xixld

0<a,b,cd,
a+b+c+d=n-—2,

Denote R = Qlx;, x;, x, z;]. We prove that 7y and 7, are homotopic.

PO Pl

R® R{2 —2n} R{1 —n}® R{1 —n} R® R{2 —2n}

0 1
R1-ntaR{1-n —C ~RaOR2 -2} —% ~R{1-n}a®R{1—n)
PO — Tk Tj — 2 pl— Ti — T Tj— T
T Tk —T; )] 1 —Tik ’
0 Ty — T Xj — Tg 1 Ty X; — Ty
Q_( Tk —Til )’Q_<7Tjk Iz—SCi)

H0:< ﬂ(_) 8>,andH1:O.
— ki

where
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The proof that 7, and 7, are homotopic is similar and involves also a homotopy
which contains the term 7. O

3. Proofs of Theorem 3.1 and 3.2

We first prove Theorem 3.2 and see that in fact the vertical grading is hidden
in Khovanov-Rozansky construction. Then, we prove Theorem 3.1.

3.1. Proof of Theorem 3.2. In Section 5 of Chapter 1, we recalled a de-
scription of the construction of Khovanov and Rozansky [26] in terms of cones.
We will use this description on order to prove Theorem 3.2. We introduce some
new notations. Consider the following chain complexes of gmf’s:

e = ()1 == K ) )

with C1( B ) = C( X ) and C°( B ) = Cp( ) (), where all other terms are

equal to zero, and
6 = (6 ) = o X )

with C-1( ) = Cu( X ) and o X ) = C,( ) (), where again all other

terms are equal to zero. Notice that the homological grading here corresponds to
the vertical grading in the bicomplexes. The gmf’s C,( X and C),( '> C ) were

defined in Section 1 of Chapter 4. In this setting, the bicomplex assomated to a
positive crossing can be described as follows:

e )= (€O = e X -1y )

with C-1( DX ) = O % ) and 0 X ) =Cu( ) (), where all other terms are

equal to zero. The morphism J;, corresponds to the natural projection to a quotient
complex. The bicomplex associated to a negative crossing can be described as

follows,
(X)) ( ()1 —np e cn( X ) )

with C1( X ) = € ( B ) and €°( X ) = Cp( ) (), where all other terms are

equal to zero. The morphism ¢, corresponds to the natural injection of a subcom-
plex. Consider the following modification that transforms the graded complexes of

gmf’s C),( ¢ ) and C,( =4 ) into filtered complexes of gmf’s. Here the grading
corresponds to the quantum grading. Denote

Ol %) — ( R ) (1) e T >{1})
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with Ui( =4 ) = Ch( X ) and 62( po4 ) = Cu( ) (), where all other terms are

equal to zero, and
O ) = ((CM O )

with U;l( =4 ) = Cul X ) and USL( =4 ) = Co( ) (), where again all other

terms are equal to zero.
We have shifted the quantum grading such that the morphisms 7y and n

appearing in C,,( )t ) and C,,( =4 ) are now maps of degree n+ 1. We have now

that Cone(C',( % )) = Cone(ny) and Cone(C,,( -4 )) = Cone(n,), see Section 5

of Chapter 1. In terms of resolutions of oriented link diagrams, we resolve every
positive crossing as follows

%
e

%

.

and every negative crossing as follows

(.

=
/
X
.
I8

Define a signed closed planar reqular graph to be a closed planar regular
graph where we assign to any 4-valent vertex a sign. Hence a resolution of an
oriented link diagram gives a signed closed planar regular graph. In the previous
construction, we associate to such a graph a complex C' of graded 2-periodic
chain complexes, whereas in the Khovanov—Rozansky construction we associate a
2-periodic chain complex K R. As we have seen this 2-periodic chain complex K R
can be obtained as the cone of a shifted complex C' of 2-periodic chain complexes.
Denote by H the homology of C' and by H the homology of C. In order to prove
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Theorem 3.2, we need to prove two facts:

Fact 1: The homologyH and H are related as follows:
' = g0+ for all (7,1) € Z2.
Fact 2: The homology of K R is equal to the homology of C.

The differential of the complex C does not respect the quantum grading, but is
still homogeneous of degree n+1. From Lemma 3.7 and Lemma 3.8 ; we know that
the graded 2-periodic chain complexes appearing in C' and C' are homotopic to the
graded 2-periodic chain complexes of their homology. Moreover, their homology is
concentrated in one of the two Z/27Z grading. Hence the complexes C' and C can
be seen as complexes of graded Q-vector spaces. Denote C' = @(j7k)6220j’k where
J is the homological grading and k is the quantum grading. Notice that

C= EB(j,l)eZzUj = @(j p)eze CHFIHY,
Consider the decreasing filtration associated to the quantum grading on the chains
of C,
F'C = @jEZ,l2i6j7l~
The differential on C respects this filtration. When one has a filtered chain com-

plex, there is a spectral sequence associated, see [34]. This spectral sequence
converges to the homology of this filtered chain complex which is bigraded. De-

note (H” )(]l cze the homology of C' and (H7*)(; ;)ez2 the homology of C. In our
case, since the differentials of our filtered chain complex C' are homogeneous of

degree n + 1, the spectral sequence tells us that the relation that holds on the
chains still holds on homology. Finally, we have

T = {0 for all (j,1) € Z*.
This proves Fact 1 and explains the shift in Theorem 3.2.

In order to prove Fact 2, we need to show that the homology of the cone of a
complex (see Section 2 of Chapter 3) is equal to the homology of the same complex.
This is false in general. Nevertheless, since we are taking the cone with respect to
a 2-periodic structure, the result will hold. Let us prove Fact 2. It follows from
Lemma 3.3 that we do not need to take the cone of every saddle morphism and then
perform the tensor product; We can first take tensor products and obtain C' and
then take the cone. Moreover we know that all graded 2-periodic chain complexes
appearing in C' are homotopic to the 2-periodic chain complexes of their homology.
Since these homologies are concentrated in one of the two Z/27Z-grading, it implies
that the homotopies involved satisfy the conditions of Lemma 3.5 and Lemma 3.6.
As a consequence, the homotopy type of Cone(C) does not change under these
modifications. We still denote it Cone(C). Suppose that the homology of the



66 3. TRIPLY GRADED LINK HOMOLOGY H,

2-periodic chain complexes is concentrated in degree 0. The filtered complex C
has the form

k dF —
c =
where for all i = k,...,1, C" is a graded Q-vector space and the differentials d

k—+1 —l

dl71
.« .. ﬁ C

are of degree n + 1. Remember that the C'’s are in the zero 7./27-grading. Then

Cone(C) is the following graded 2-periodic chain complex:

EBjZOUkHj D_0>®j206k+1+2j i}@jzo—k—lﬁj’
where
dd 0 0 --- 0
DY = 0 dt2 0 -+ 0
and
o 0 --- 0 0

pl—|dt 0o 0o - 0

We can directly verify that the homology of Cone(C) is equal to the homology of
C'. Hence the homology of Cone(C) is a graded vector space @ezH' and for all

leZ, H = @jezﬁj’l. Notice now that in order to obtain the graded vector space
associated to the underlying planar regular graph, we do not just take the cone of
the saddle morphisms, but also introduce a shift in the Z/2Z-grading, see Theorem
1.3. Nevertheless, since in both constructions we forget the Z/2Z-grading, it does
not affect the result. Theorem 3.2 follows.

Along the proof of Theorem 3.2, we introduced some notations useful for com-
putations, see Chapter 4. Moreover, we now state a lemma which will be useful in
the proof of Theorem 3.1.

LEMMA 3.10. Given an oriented link diagram D and a resolution I' of D into
a signed planar reqular graph. The complex of graded 2-periodic chain complexes
C,(T') has only homology in even degrees.

PRrROOF. From the proof of Theorem 3.2, we know that the homology of C' is
equal up to shift in the quantum grading to the homology of C. Moreover the
homology of C' is equal to the homology of Cone(C). Consider the case when the
homology is concentrated in the zero Z/2Z-grading as in the end of Theorem 3.2
proof. The homology of Cone(C') is equal after a suitable shift of the Z/2Z-grading
to the homology of KR, (I'). The shift corresponds to the parity of the number
of negative vertices in I'. This number is also the lowest homological grading for
which the chains of C' are non-zero. In the example of Theorem 3.2 proof, this is the

number k. Moreover, from Lemma 1.2, KR, (I") has only homology in one of the
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two Z/27Z-gradings (T is the planar regular graph obtained by forgetting the signs
in the signed planar regular graph I'). In this case it is zero (from the choice we
made for (). Suppose k is even, then the chain complex can only have homology
in the chains GBJZOUH% which corresponds to even grading for the homological
grading of C'. Similarly if k£ is odd, we need to shift by 1 the Z/2Z-grading of

Cone(C') in order to obtain K R, (I") which has still only homology in degree 0.

Hence Cone(C) has only homology in degree 1, ie. in the chains ijZOUHsz )

These chains still correspond to even grading for the homological grading of C'.
Similarly we can work out the case when the homology of C' and KR, (I") are
concentrated in the degree 1 of the Z/2Z-grading. 0

3.2. Proof of Theorem 3.1. In order to prove Theorem 3.1, we prove
the invariance of H,, under Reidemeister moves. The invariance of H, under
Reidemister moves RI, RII will follow from the invariance of the homotopy type
of the bicomplexes of gmf’s and does not require Khovanov—Rozansky proofs
whereas the invariance of H,, under Reidemeister move RIII will follow from a
short exact sequence argument and from Lemma 3.10. Notice that the invariance
of H,, under Reidemeister move RIII requires some properties of the graph
homology HK R,,.

Proof of the invariance under RI
We prove that the one-term bicomplex of graded matrix factorizations

Cu( X0 ) = (X))

with C90( X0 ) = (Li®g L1 /(x; = x;))(1), is homotopy equivalent to the bicom-
plex associated to the diagram on Figure 3.

Cu(xO) = 0 HYO ) 210N O)

5|

(X))

0

with

Co (X0 ) = (L ®q Li,/{w = 2;))(1),
C( 10O ) =)0 ) = (L ®¢ Lj /(w1 = x;)){1 = n},
op = Id, and 8, = (1) 2=,
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i j

vif

F1GURE 3. Marked diagram for RI

First we will reduce the bicomplex Cn(x)) by removing marks. It is isomor-
phic in K(K(HMUF,)) over Q|x;, x| to the following bicomplex:

. &
(Li @ Va) ({1 = n} — (L @ V) ({1 = n} |
| |
0 Ly (1)
with &), = Id and &, = — (7 +7j)1d where 7T, = 32" (s + D)3z}~ '7°. The fact

that these two bicomplexes are isomorphic follows from the following commutative
diagram,

(Li @ L/ (a1 = 2;)) (1) = (Lj, ®g L{ /(e = 2;)){1 — n}

91 < ) f1 92 < > f2
) s, .
Li. (1) (Ly, @ V) (1{1 = n},
where the homomorphisms f;, g1, f2, and gy are given by

fl=(00¢), fi=(0 0),

1 1
0 1 _
5 < ) ’ (‘Wz'jk>’

(0 =1),f5=(0 1),

a-(5)4-(1)

with ¢ : Q[x;, ), zx] — [[EZ,{L’k | which sends z; on x;, z; on w;, and z; on xy.

Notice that fi,g1 and fo, and go are mutual homotopy equivalences of gmf’s, see

Lemma 3.7 and Lemma 3.8. Hence, the diagram is commutative up to homotopy.

We will produce a morphism of bicomplexes of gmf’s which will be a homotopy

equivalence, see Figure 4. We consider F' = 9/, G = —Id ® ¢, h = Id ® ¢, and

H = -4/ o (ld ® €) — Id ® Id, where € is the counit defined in Subsection 2.2
First we check that G o F' = 1d. It is a consequence of the fact that

1 no
n+1 4 +1
Then FoG —1d =9,0h+hod, + H o, +0;, 0o H. We need also to check that H,
G, and F' are well-defined morphisms. For G, there is nothing to check. For H,

—€(=Tijk — 1) =
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h
. G< lF 5, . ‘(—\
(Lj, ® Vo) ({1 — n} —= (Lj(1) — (Li @ Vu) ({1 —n})

\—//

H

FIGURE 4. Reidemeister RI

we check that H o §] = 0, which can be deduced from the fact that G o F' = Id.
For I, we need that ¢, o F' = 0. This is true, up a homotopy on the column, i.e.

L;(1)

Id
l%oF:F
!

Li(1) == (L ® V,)(1){1 — n}.

The proof of the invariance under the Reidemeister RI move involving a positive
crossing is similar.

Proof of the invariance under RlIla

In order to prove the invariance under Reidemeister move Rlla, we first sim-
plify the bicomplex of gmf’s, using homotopically equivalent gmf’s. We describe
graphically in Figure 7 the bicomplex associated to the Figure 6 and algebraically
in Figure 5. To simplify the figures, we omit all the marks in the graphical de-
scription.



—1,1 0,1
op

)
(Lg ®q LE)(1) ®qlusea) (L ®g L3) —— (L¢ ®q LE)(1) ®qius,za) (L} ®g L3) 0

5;1’0 5?)’OT 511),0
510 (Lé ®q L%) OQ[s, 4] (Léll ®q L%) 520

(Lé ®q Lg) ®Qlzs,24] (L}L ®q L?%) - @(Lg ®qQ Lé) ®Qlz3,24] (L% ®q Li) - (Lg ®q Lg) @Qlz3,24] (Lzll ®q L?%)
B(Ls ®q L§) ©oprs.ei) (Li @ L3)

s bt ‘Sg’lT st

0,—1

0 (L2 ®q L) ®qug,zq (L ®g L3)(1) —— (L2 ®q LE) @qjus,zq (L g L3)(1)

where
ot =1d, 6,7 = —1d, 0,0 = 0 @ 1d, 67" = Id @ n**,
Id Id @ 243
5, =10 |,5°=(-1d 0 1d),8 " = = eld |,and 62° = ( ni** @1d Iden*® 0).
Id 0

FiGURE 5. Algebraic bicomplex for Rlla

0L
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21 X w2

T4 < T3

Iy )% g

FIGURE 6. Marked diagram for Reidemeister move Rlla

W Y 0

[[——1le@el[—]]

0 ) )

FiGURE 7. Graphical bicomplex for Rlla

We first simplify all the gmf’s of the bicomplex, by removing internal marks.
We exhibit a homotopy equivalence of bicomplexes. A homotopy equivalence F' is
described in Figure 8, whereas his converse G is described in Figure 9. Notice that
these morphisms of bicomplexes are well defined only up to homotopy of gmf’s
and that the bicomplexes of gmf’s on Figure 8 and 9 are also only well defined, up
to homotopy of gmf’s (i.e. the square of the differentials is 0 up to homotopy of
gmf’s).



—1,1 0,1
O

)
(L§ ®q L)(1) ®qlus,es] (L} ®g L3) —— (L§ ®q L3)(1) ®apua.c (L] ®g L3) 0

55170
(L5 ®q L§) ®qlzs,za) (Li ®g L3)

—1,-1
[

60,0T

v (5,1,’0
(L§3®@ L%z OQls 4] (Lil®@ Lz%,g PR , 1
@<LZ ®qQ Lg) ®Q[I3,$4J (L% ®qQ LAQI) - (L5 ®qQ LG) ®Q[$3,Z4] (L4 ®qQ L%)
@(L5 ®q Lﬁ) QQ[x3,24] (L3 ®o Ls)

sit

ot £o.1 53*1T
671.71
0 - (L5 ®¢ L}) Qqus.aa) (L3 ®q L3)(1) (L3 ®q L}) Qqpus.za) (L3 ®q L3)(1)
f71 0 f0.0
—0,1
(Ls ®q L3)(1) (Ls ®q L3)(1) 0
3;1,0 fO,—l SB,OT fl,—] Sll),o
5}:1,0 (Lé ®Q L%) 52,0
(Ls ®q L§) ®(Ls ®q L§) (Ls ®q L§)
(L3 ®q L3))
351,71 30171T 33},—1
3;1771 1 2 32,71 1 2
0 (L6 ®@ L5)<1> (Le ®Q L5)<1>
FiGURE 8. Removing marks for Rlla

~
=
[=}
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The morphism of bicomplexes of gmf’s F' on Figure 8 is given by,

( 0 1100 ¢ 0000000
FOL— ol (P = ()" = 0O ¢ 000 O0O0O0)”
n n 1_ el _ (¢ 0000000
(f071) _<f 11) - 0 (b 000 O0O00 )
(o100 00 (@ 0 000000
FLO = 10 (FO7 =) = 0 ¢ 000O0O0O0)/
e =(38000800).
N 0 (0000 0¥ 00
0—1 _ ;11 (f(] 1) (fl 1) _<O 0 0 0 'l/) O 0 0)>
f —f - 0.—1\1 17_11 00 00 —¢ 0O 0 O
200
e L )
0 0 f°
where f;"" = f710, f° = f710 and ;" = f,
o _ (0000 000
B fo= 00 0O0O0=y 0O0)°
I= 1 (0000 = 0 00
f= 0000 O —¢v 00)"
QS:@[Ila"'):EG]_)@[Ila"'>$6]7
defined by ¢(z4) = z1, ¢(x3) = 29, and ¢(z;) = x; for i = 1,2,5,6, and
@biQ[!El,---,xﬁ]—>@[$1>---,$6]>

defined by ¥(z3) = x1, ¥(24) = 2, and Y(x;) = x; for i = 1,2, 5,6.
As for the differentials of the bottom bicomplex of gmf’s on Figure 8, they are
given by,
5 =1d, 8, = —1d, 5, = pl6 50T = pl2e6

—=—1,0 Id 0,0
5, =10 ],8"=(-1d 0 1),
1d
71256
—<0,—1 0,0 _
0, =1 m™ ),and 0, =(m*™ m* 0).
0



—1,0

1 2 3’71’1 1 2 52’1
(LG ®qQ L5><1> (LG ®qQ L5)<1> 0
371,0 Sg’oT 31 0
(L} @ L3)
h h

(Lg ®q L3)(1) ®qiasea) (L4

—1,0
[

(Ls ®q L§) ®qius,as (Ly ®g L3) ——

st

gh0
: 1 2 o
5)(1) ®Qlas,zy (L1 ®q L3) 0
62¢0T g1 o

sivo (L3 ®a L§) @i (Li ®o L)
@(Li ®q Lg) QQles,z4] ([? ®q L%)
©(L5 ®g Lg) ®qzs,zq) (L1 ®g L3)

0,—1
&y’ T
0,—1

(Lg ®q Lg) QQlrs,24] (Léll ®qQ Lg)

sut

. 4
(L5 ®q L§) ®qpus.ea) (L @ L)1) —— (L5 @ LY) ®aus.ea) (L ®g LI)(1)

FIGURE 9. Adding marks for Rlla

Q
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Let us now describe the converse homotopy equivalence G: See Figure 9 which
we now comment.

GOl = gL gm0 — g0 01 1ol
1 0 1 0
0 1 0 1
0 T146 0 1
0,1\0 __ /1 —1,1\0 __ —T235 0 0,11 —1,1\1 _ —T46T235 0
() =)= | o | =) = e 0|
0 —T146 0 —1
0 1 0 1
o35 0 T35 0
1 0 1 0
0 1 0 1
0 1 0 T145
-1,000 _ /1,000 _ —T45m236 0 1,00 /o100 —T236 0
(7)) =(g7") = oo o | =) = 1 0 ,
0 -1 0 — 145
0 1 0 1
236 0 236 0
-1 0 0 —1
0  —mi36 T136 0
0 —1 245 0
1,0 1,0 T 0 1.1 1.1 0 1
@ =6 =] T T =) = 0
1 0 0 1
—T245 0 0 —1
0 136 —To45T136 0
g 00
=1 0 @° o |,
0 0 g°
where g2 = g0, (89 = 10 and g8 = g with 5
—T135 0 1 0
0 1 0 —T135
0 —1 0 1
0_ —T246 0 1| moue 0
g = 1 o |'9 7| -1 o
0 1 0 —1
0 1 0 —m3s
—T135T246 0 To46 0
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X1 To
Ts5 Tg

FI1GURE 10. Marked smoothing for Rlla

x3 %& z1
T4 >$2
Ts { T6

FiGUurE 11. Marked diagram for Reidemeister move RIIb

We can now complete the proof of the invariance under RIla. We have F'oG = Id
and G o F' is homotopic to the Id (the homotopies required are homotopies of
gmf’s). Hence, F' and G are inverse isomorphisms in K(K(HMUF,)). We give
on Figure 12 a homotopy equivalence between the reduced bicomplex of gmf’s
obtained by removing marks and the bicomplex associated to the marked diagram
on Figure 10. The homotopy h and the homotopy equivalence F', G on Figure 12
are given by the following formulas:

Ot = —1d, K"’ = ( —=1d —Id 0),hr"'=1d,

Id —1d
M= -Id |, F=| Id |,andG=(Id Id —Id).
0 —1d

Proof of the invariance under Reidemeister move RIIb

Consider the bicomplex associated to the marked diagram on Figure 11. This
bicomplex is described graphically on Figure 13 and algebraically on Figure 14.
We first simplify all the gmf’s of the bicomplex, by removing internal marks. We
exhibit a homotopy equivalence of bicomplexes. A homotopy equivalence F' is
described in Figure 15, whereas his converse G is described in Figure 16. Notice
that these morphisms of bicomplexes are well-defined only up to homotopy of gmf’s
and that the bottom bicomplex of gmf’s on Figure 15 is also only well defined, up
to homotopy of gmf’s (i.e. the square of the differentials is 0 only up to homotopy
of gmf’s).
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L ®q L§
—1,1
(L ®q LE )<1> . (Lg ®q L3)( 0
hO,l
371,0
1 2)

1 2 5, " (L5 1®Q LL2 1 2
(L ®q L§) @ é/l ®QL2)) (Ls ®q L§)
\_/ @9 030) M/
h0,0 hl,O

01 5,
1 2 o 1 2
0 (Ls ®q Ls)(1) (Ls ®q Ls)(1)
\hl’l/

FI1GURE 12. Final homotopy equivalence for Rlla

l

|
» O
S¥
O 5OL— YO
S¥
» O
|

o—— > O{— XD«

l

YK — > Of——2

Ficure 13. Graphical bicomplex for RIIb



—1,1

§ 59,1
(L3 ®q L}) ®qlua,ea (L ®q L3)(1) —— (Lj ®q L}) @qpua,ea) (L ®g L3){1) : 0
510 52’0T L0
- (Li®o L?) ® (L2 ®q L3)
510 3 Qg Qlz2,x4] 6 WQ Lo 50:0

h

(Lé ®qQ LZ) ®Q[5E2,-’r4] (Lg X Lg) — @(Lg ®P L}L)<%> ®Q[1?2,:v4] (Lé ®qQ L§)<1> - (L:13 ®qQ LAQL) ®Q[$2,$4] (Lg ®qQ Lg)
@(Lg X L4) QQ[z2,24] (LG ®o L2>

—1.—1 51,—1
Oy 7 0.—1 v
v 60

0,—1

0 (L% ®q Li)(1) ®qius,ee (L§ ®q L) —— (L3 ®q L) (1) ®qlus,za) (L§ g L3)

where
ot =1d, 6yt = —1d, 6,0 = ' @ 1d, 0y = 1d @ !>,
Id Id @ nl23
5 0=1 0 |.0°=(-Id 0 Id), 6> ' = =i @Id |,and 09° = (n}*? ®1d Id@npi® 0).
Id 0

F1GURE 14. Algebraic bicomplex for RIIb

8L
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674
(Ié ®Q LAZI) ®Q[m27m4] (Lé ®Q L;)<1> }

6;1'0

(L}i ®Q Li) ®Q[z2,fv4] (L<5) ®Q L%)

—1,-1
5’17

—1,1 501
h

(L3 ®q L) ®qls,eq) (Ls ®g L3)(1) 0
68‘0T 6},’0
—1,0 (Lils ®o Légl) QQz2,w4] (Lg ®o L%) 50,0

51/ 0
——/B(L} ®q L) (1) ®gluaes (Lg g L3)(1) —— (L3 ®q L) ®qusza) (L§ ®g L3)

(L} ®q L) @gfes,as (L§ ®q L)

51,—1

v

oLt fO:1 5%*1T
s-L-1
0 g (L:% ®o L}l)<1> QQ[2,4] (Lg ®o L%) (L% ®o Lzll)<1> QQle2,4] (Lg ®o L%)
f—l,O f0,0
5oL o1
(L3 ®q Lg)(1) - (L3 ®q L§)(1) - 0
510 fot S?;VOT / ot L0
sLo (Lil‘) ®q Lg) X0 Vn<1> 500
(L3 ®g Lg) ®q Va(l) (p%%@<> (L3 ®q Lg) ®q Va(l)
D(Ls ®o L) ¢ Vi (1
S 3 YQ ) YQ -
v S?flT v
F et P

(L3 ®q Lg)(1)

FI1GURE 15. Removing marks for RIIb

¢'¢ ANV (& WHYHOHHL J0 Sd004d ‘€
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The morphism of bicomplexes of gmf’s F' on Figure 15 is given by:

(F)° = (0000¢000)’

FOL— oLl 00000 ¢ 00
0 0

0 0

0,1 1 -1,1 1 0 0 —¢ 0 0
<f>—<f>( IR
(
-1,0\0 _ 1,0\0 _ 0 wOOO 0 0 0
L 00 00O0 =Y 00)
4
0.—1\0 1.—1\0 0000 O0O0 (2 0
FOt = et (F) = )_<0000<p0 0 0 )
(fo_l)l—(fl’_l)lz 2 0 0 00000
\ 00 —p 00O0O0O0)”
00 0
00 — 6 00 ’
0 0 f°
where f° = f10 f20 = f~10 and fy° = f with
0= 0O 000 x 0O0O
f= -x 0 0 0 0 0 0 0 )"
n o 0000 —x 00O
~\x 000 O O0O0O0)
with
¢:@[Ila"'>$6]_)Q[xla"'>$6]a
defined by ¢(z3) = x5, ¢(x4) = w6, and ¢(x;) = z; for i = 1,3,5,6,
v Qlay, ..., x6] — Qlxy, ..., x6],
defined by v(z4) = 2, and ¥(z;) = x; for 1 = 1,2,3,5,6,
QOIQ[ZL’l,...,SL’G] %@[ﬂ?l,...,l’ﬁ],

defined by ¢(x3) = x3, p(x4) = x1, and p(x;) = z; for i = 1,3,5,6, and
X - Q[xh e wxﬁ] — Q[xlv’ .. 7:1:6]7
defined by x(x4) = x1, ¢(x2) = x5, and ¢(x;) = x; for i = 1,3,5,6.
The differentials of the bottom bicomplex of gmf’s on Figure 15 are given by:

5, =1d, 8, = 14,5, " = ¢ 1d, 5, = (mias+Tas)ld, 8, = (—Id 0 1d),

—-1,0 A (123 + o)1 <0,0
6o, =1 0 |,d, = T oy 1730 ,and 6, = (¢ Id —ni*Por 0).
Id 0

where 7 was defined in the proof of Lemma 3.4.



0,1

(L3 ®q L§){1) 0
SS’OT 510
5o (L3 ®q L52) ®q 1Vn<1> 300
O(L3 ®q Lg) (L3 ®q L) ®q V(1)
O(Lj ®q Lg) ®q Va(l)
1 30 -1 T g1 511;*1
5ot

-1,0

510

(L3 ®g Lg)(1)

(L§ ®q L?l) ®Q[m2,ac4] (Lg ®qQ Lg)<1>

50‘0/[

~10 (L3 ®q L3) Qqjws.zq (LE Qg L3)

§
(Lé ®q LZ) ®Q[$2,$4] (Lg X L%) —— @(Lg X Lzll)<1> ®Q[$2,$4] (L% ®q Lg)<1>

—1,-1
0y

EB(Ié ®@ LAQL) ®Q[m2,m4] (Lg ®Q L%)

58*‘“[

(Lg ®q L411)<1> ®@[m2,z4] (LZ ®o Lg)

FI1GURE 16. Adding marks for RIIb

510
(L3 ®q L3) Qqjes,eq (LG ®g L3)

st

0,—1

&
- (Lg ®q L411)<1> ®Q[z2,x4] (Lg ®o Lg)

¢'¢ ANV (& WHYHOHHL J0 Sd004d ‘€
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The morphism of bicomplexes of gmf’s G in Figure 16 is given by,

GOl = g g0 = g0 01 Lt
0 —1
456 0
0 —1
0 11,0 - 0 1 IRRIN!
@ =" =] T, | = =
0 1
456 0
0 —To45
0 0
-1 0
0 -1
_1.0\0 0 0 0 101 1
@ =6 =1 o o [ =" =
0 1
-1 0
0 0
0 —1
7146 0
—T235 0
1,0 1,0 0 1 N N
L S
0 1
0 —1
—To35T146 0
&0 0
g0,0_ O g(2)70 80 9
0 0 g5
where g7" = g0, ¢9% = ¢710 and ¢7° = ¢, with ¢ given by
0 —1 0 1
146 0 —T146 )
—T235 0 1 0
0 1 0 —TT
0o_ 1 235
g = 1 o |'9 7| -1 0
0 1 0 —1
0 -1 0 7235
—To35T146 0 146 0

[l N e NeNeNel e

e}
OO~ O

245
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€ T2
Is Te

FIGURE 17. Marked smoothing for RIIb

FicUrE 18. Marked diagram for RIII

We now complete the proof of the invariance under Reidemeister move RIIb. We
have F'o G = Id and G o F' is homotopic to the identity (the homotopies re-
quired are homotopies of gmf’s). Hence, F' and G are inverse isomorphisms in
K(K(HMF,)). We give on Figure 19 a homotopy equivalence between the re-
duced bicomplex of gmf’s obtained by removing marks and the bicomplex asso-
ciated to the marked diagram on Figure 17. The homotopy h and the homotopy
equivalence F', G on Figure 19 are given by the following formulas:

356 o 1536 o
BOL = —Id, B0 = (—gld o7 gld ), B0= | romi®oe |
I3 o 7 1536
7356 o 7
Rl =1d, F = Id yand G = (7o oe Id 7o o€ ),
7356 o 7

where 7 was defined in the proof of Lemma 3.4.
Proof of the invariance under Reidemeister move RIII

In order to prove the invariance under Reidemeister move RIII, we first simplify
the bicomplex of gmf’s using homotopically equivalent gmf’s as in the case of
Reidemeister IT moves. We remove marks. We give directly on Figure 20 the
simplified algebraic bicomplex associated to the diagram on Figure 18. For a
graphical description of this bicomplex, see also Figure 20.



L; ®q Lg
371,1
(L3 ®q Lg)(1) ’ (L3 ®q Lg)(1) 0
o " 00
v F
a
510 (L} 030) Lg) ®g V(1) 500
(L3 ®q Lg) ®q Va(l) 1@(L§ ®q L) L (L3 ®q L) ®q Va(l)
~ eleeleVal) __—
hO’O hl,O
501 giﬁl
5yt
0 (L3 ®q L§)(1) (L3 ®q Lg)(1)
\W/

Ficure 19. Final simplification for RIIb
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SRR R RV SRV I B
1= el Ml T D T

(L ® L ® Li){1)

¢'¢ ANV (& WHYHOHHL J0 Sd004d ‘€

6;3'2
1 2 3
) ) ) 5732 (L4 ®L;® Le)
(Lie Lol e (lielie L)) ® (Lo Lio L)) - ®(Ly ® Ly ® L)
®(Lg®L]® LY)
5;3’1 5;24]\
5o (Ls ® Li @ L§)(1) & (Ls ® L @ L§)(1) 52 (L@ L@ LE)(1)
(Ls ® Li @ L§)(1) & (Ly @ L ® L)(1) & (Ly ® L ® LI)(1) — @(Ll © Lo L)) @ (Lo Lo L)1) " e(lie L2 o L))
®(L: ®L2®L3)(1>@(L1®L§®Lg)<1> &(L) @ L2 ® L3)(1)
5;3,0 6;2"0 T 6;1"0 T
50 (Li® L2 ® L) 520 (Li® L@ Lg) 510
(Li® L3 ® L) B(L; ® L ® Lg) S(L; @ LE® Lj) — (L} ® L3 ® L)
&(L; ® L ® Lg) (Ll ® L? ® LY)

FicUre 20. Graphical and simplified algebraic bicomplex for Reidemeister I11

g8
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The differentials of the simplified algebraic bicomplex on Figure 20 are given
by:
5—3,2 _ ( —ﬁ(1)346 %1256 n8345 )’ 5}:170 _ ( Id Id 1d )’

v

s 1245 0 L2
5ot — | 26 0 | e0 — [ qpiens |
! 0 —7glsss gl ! 72356
nets 0 0 -Id 0 0
M 0 0 0 —-Id 0
5_2’0 . 0 7]5245 0 5_371 _ Id 0 0
v 0 ﬁ(2)356 0 Wh 0 0 1d )
0 0 7t 0 Id 0
0 0 70 0 0 1Id
ﬁé245 _n5245 0 0 0 0
521 — 0 0 26 131 0 0 ’
v 0 0 0 0 1856 51246
et 0 0 —Id 0 O
o =1 0 W o0 |,5*=( 0 1d 0 |,
0 0 7230 0 0 Id
—Id Id 0 Id 0 0 0
5= 1 |,8*=(0 -1d 0 0 -Id 0 |,
Id 0 0 0 —-Id 0 Id
Id Id 0
5= -1d 0 -Id
0 —-Id 1Id
Here, the notations have been simplified as follows: néj M (resp. Mp¥k!) denotes the

tensor product of the morphism néj M (resp. 7o"*) with some identity morphisms.
These tensor products are obvious from the gmf’s on the source and the target
of the differentials. Notice that the algebraic bicomplex on Figure 20 contains
differentials involving morphisms of the type 19 and 7. Since we are working in
the category K(K(HMUF,)), it follows from Lemma 3.9 that we can replace all
morphisms of the type 7y by morphisms of the type 7.

We simplify now the algebraic bicomplex on Figure 20. We exhibit a homotopy
equivalence to a simpler bicomplex, see Figure 21. We give a graphical description
of this homotopy equivalence on Figure 22.



(Lg® LE ® L{)(1)

5;3,2
(Lo Lol (Ll l2e L) o (Lo L LY)

6;&1

(Ls ® Li® L§)(1) & (L ® L}

® L)1) @ (Lj ® L§ ® L)(1)
AN

(Li® L @ L)
o(Ly® L§® L})
®(Li® Li® L3)

5,7'“T

s (L@ L@ LY @ (L ® LE® LE)(1) ;a0 (L ® L ® L§)(1)
—— (Lo Lie L) @ (Li® Lg® LE)(1) —— &(L;© L] ® L)(1)
Sl L3 L)1) e (Lo L@ L3)(1) ®(LL® LE @ L3)(1)

—3,2
(sh

5;73,0 .égz,oT * ht .6;1,0T v
; _ 550 (L@ LEe LY) - 520 IR LE®LY . w0
(LA® 2o L}) - d ~ O(LI®L2® LY) . oli®lie L)) —— (Ll L2 o L})
O(Li® L ® L) S(Li® L2 e L)
* ho AN .
F3 g~31 f2t g~ 2! Fo1 g1t
(Lg ® L ® L})(1)
373,2
532 (Li® L2® LY)
(LRI (e l2eld)d (e 2 LY) a OLLQLE® L3 g20 j20 g10 10
(L ® Li® L)
3;3,1 EEQ’IT
5 K . . E
] p— ) J@§ﬁ®%mhs3 W (e 2o L)1) .
(LyeLie L) e (Lo Li e L)) & (Lie Lfe (1) = &Ly & Lie L)1) & (L@ L§e L) —=— 5 7re e 181y
B(Ly ® LT ® L)(1) & (L} ® L§ ® L3)(1) 4T T I
5,50 g;Q.DT ; 5L
. _ S e
5" (Ly® L ® LY) 5, (Lo Lo L) &'

(Li® L3 ® L})

—— (L} ® L2 ® L})

B(Li®Li LY) S(LI® L2 LY)

F1GURE 21. A reduced version of the bicomplex for RIII

¢'¢ ANV (& WHYHOHHL J0 Sd004d ‘€
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The homotopy equivalence on Figure 21 or Figure 22 is given by

Id —Id 0 Id Id 0
=0 1 o |,g*=01Wd 0 |,
0 0 Id 0 0 Id
d -1d 0 0 0 0 0 -Id 0 0 0
“Id -Id 0 0 0
0 0 Id 0 0 0
—-2,1 —21 0 Id 0 0 0
2= 0 0 0 Id o0 0 |,g2= ,
0 0 Id 0 0
0 0 0 0 Id 0 1
0 0 0 0 0 I 0 0 0 0
0 0 0 0 Id
f_2 0 _ 0 Id 0 ~1.1 Id Id 0 -1,0 __ Id Id 0
0 0 Id ) 0 0 Id )’ 0 0 Id )’
0 0 “1d 0 0 0
g =|(1d 0 |,¢g?*= Id o0 |,qg M Id 0 |,
0 Id 0 Id 0 Id
“Id 0 0
—I1d 0 0 jdg 8
hY = 0 00 |,r=
0 00 0 00
0 00
0 00

All other arrows of the homotopy equivalence are identities. Furthermore, the
differentials of the new bicomplex are given by

5—32 ( 775346 né256 2345 5 Id Id )
771245 0 0 —Id 0 0
—31 9 5
50 = [ g6 s i35 ’50 1245 5h 0 Id o
0 —p30 120 2356 0 0 Id
o ML L Id Id 0
0= 0 [LEM =] 0 0 |,
0 W5245 0 Id O
0 ngSSG 0 0 Id
1245
0 0 0 0 0 1245
——21 5 ;
5 0 778346 _%345 0 0 , 0, = ( 7700 2356 ) )
0 0 0 —pit pie :

|

5—30 1d -21 (Id Id 0 —Id 0 5—20 Id -Id
e =\ )% Lo o —-1d o 1d)'% —\ -1d 1d /-

We now exhibit on Figure 23 a short exact sequence of bicomplexes.
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5] @ w mw ....

&l =
mw (&S] @ __\0.\\A|
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Graphical simplification
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FIGURE



(Lg ® L3 @ Li)(1)

<—3,2

5,
1 2 3
) ) 5782 (L,1 ® L—) &® LG)
(Lo l2ol})e (Lo l2el3)e (Lo L3 L}) - (L ® L ® L)
. B(Li® L3 ® LE)
3;3,1 352,1T
s (Li® L3 ® L3)(1) a1

5 Ll® L2 L3){(1
Lelel))elele )o@ elel)() " — slle ke i))e Lo lerd) *n Lokl
(L} @ I3 o L3)(1)

S(Lie Lo L)1) & (L] Lo LE)(1)

5.0 _ N ET”T . 5
Lo 72 o 73 5 (Li® L3 ® Ly) 5 (Li®L3®LY) & 1 7o s
(Lie Lo Ly o(Lie Ll L) o(Lie i e LY (e ke
f—? 2
(Lg ® Li ® L3)(1) = . U
a,*?
i (Li® L2 ® L)
(Li® Lo L) @ (L@ L§® L}) & (L ® Li ® L) &t @(Ly ® L © L})
®(L)® L L}) ' O(Lg® Li® L)
&(L;® L2 LY)
8,73'1 B . 372,1T B
. i
. - . (L ® Li ® L)(1)
ULl e (LieLlie L)) e (Lol Li)(l) 4" &lieol2el)l)e (Lie e L)1) & (LieLlie L)1)
®(Ly® LE® L3)(1) Ce(lie Lie Ly)(l) @ (L © Ly ® LE)(1) ®(Li® L ® L3)(1)
. &(L @ L LE)(1)
E;3,0 e HJMT E;l,o
| o 12 78 W (Li® L2 LY) 0" (LIQIZQLY) &' 15 1s
(Li® 2@ L) o(ielZol) o(Iie L2 e L)) (L L5® L)
.gixil R g72,1
N AN
(L@ 12 LY) - L (L} ® L2 ® L)
ngSEGT ) ,7‘:2)356T )
£ 4 A

(Ly® Lg @ L)(1)

(L} ® Li @ L)(1)

FIGURE 23. A short exact sequence of bicomplexes of gmf’s for RIII
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We describe the differentials on the middle bicomplex of gmf’s on Figure 23:

E;M e L T )’3}:1’0 =(1d 1d),

773245 0 0 0 —Id 0 O 0
s _ g g _pisas g 3_3 2_ 0 Id 0 0
v 0 _n5356 ,03246 77(%246 h 0 0 Id 0 )
0 0 0 7]8356 0 0 0 -—-Id
0 0 —Id 0 O 0
7]5245 0 Id Id O 0
7720 _ N 0 71 _ 0 0 Id 0
v 0 7]5245 he 0 Id O 0
0 7]8356 0 0 Id Id
0 0 0 0 0 -—-Id
0 7]5245 0 0 0 0
780 _ nézz‘z 7721 _ 0 36 i3 0 0 0
v ne » Yo 0 0 0 _,)73356 n5246 0 )
0 0 0 0 0 0 178356

3—1,0 B ( 7)6245 0 )
v 0 n8356 )

30 _ Id T2 Id d 0 —Id 0 O 720 _ Id -Id
b\l ) —~\0 0 -Id 0 IdId/)>"* ~\-Id Id /-

The morphisms F' and G of the short exact sequence on Figure 23 are given by

Id 0 0 Id 0 0
gz | 0 10|y |0 1d 0
0 0 Id | 0 0 Id |’
0 0 0 0 0 0
g =(0 00 1d),g> =(00 0 1d),
Id 0 0 0 0
Id 0 0 1d 0 0 0
2 0 Id 0 0 Id 0 0
_001 00 0 Id o |
0 0 00 0 0 Id
00 0 0 0
g2 =(00001d),g*=(00 0 1d).

All other arrows of F' are identities, Whereas all other arrows of G are equal to
zero. One can see easily that F' and G are morphisms of bicomplexes of gmf’s and
that the image of F'is the kernel of G. The morphism F' is injective, whereas the
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morphism G is surjective. Remark that the bicomplex on the bottom of Figure 23
is homotopic to zero:

—Id

T

(L@ L2 LY) — " (Ly® L2 @ L})

, —1d ]
778306 /\173306

(Ll ® L2 @ L3)(1) =% (L} ® L2 @ L3)(1)

Now consider a marked oriented link diagram D which is locally of the form
shown on Figure 18. We associate to such a diagram a bicomplex of 2-periodic
chain complexes. It can be obtained by taking a suitable tensor product of
the bicomplex of gmf’s on the top of Figure 23 with the bicomplex C of
gmf’s associated to the rest of the diagram. We perform the same tensor prod-
uct of C' with the bicomplexes of gmf’s on the middle and the bottom of Figure 23.

Fact 1: The short exact sequence on Figure 23 is still exact after tensoring
all the bicomplexes of gmf’s with C.

Fact 1 is a consequence of the fact that the short exact sequence on Figure 23 is
just an injection of a subbicomplex and a projection on a quotient bicomplex. All
the morphisms are identities or zero. More precisely, the tensor product with C'
can be decomposed in tensor products with the elementary bicomplexes of gmf’s
associated to the crossings of the rest of the diagram. We denote C, Cy and C} the
bicomplexes of gmf’s on the top, the middle and the bottom of Figure 23. Since
we want to tensor with the bicomplex of gmf’s associated to a crossing first we
tensor with the gmf associated to a virtual crossing; we obtain three bicomplexes
of gmf’s O, 4, and C5. We still have a short exact sequence,

C] — Cy — C5.

Tensoring the bicomplexes C7, Cy and C3 with the gmf associated to the smoothing,
produces bicomplexes homotopic to C7, Cy and C5. Furthermore we have saddle
morphisms from the C; to the C!, i = 1,2,3, which commute with morphisms of
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the short exact sequences. Hence we obtain the following commutative diagram:

Ch

S N

c Cy c

where all the collumns are exact. Now take the cone of the arrows corresponding
to the saddle morphisms with respect to the vertical grading of the bicomplex and
then the cone of the identities on the left with respect to the horizontal grading
of the bicomplex. We obtain the bicomplexes of gmf’s obtained by tensoring
with the bicomplex associated to a negative crossing. We have still a short exact
sequence.

Fact 2: The bicomplex of 2-periodic chain complexes obtained on the bottom
of this short exact sequence is homotopic to zero.

The fact 2 follows from the more general fact that: given a chain complex F
homotopic to zero then for any chain complex D, E' ® D is homotopic to zero.

Finally for any marked oriented link diagram which locally is of the form on
Figure 18, we have a short exact sequence of bicomplexes of 2-periodic chain
complexes,

Cl — CQ — Cg.
First take the homology with respect to the differential of the 2-periodic chain
complexes. We have now a short exact sequence of bicomplexes of graded vector
spaces over Q. We take then the homology with respect to the differential 9,. It
gives a long exact sequence of complexes of graded vector spaces over Q. Since we
know from Lemma 3.10 that taking homology with respect to the differential ¢,
only produces homology in the even vertical grading, we have that the long exact
sequence of complexes of graded vector spaces over Q splits into many short exact
sequences of complexes of graded vector space over Q. Since (3 is homotopic to
zero, it implies

H,(C1) = H,(Cy).

Similarly, the bicomplex of gmf’s associated to the marked diagram on Figure
25 can be seen as a subbicomplex of the bicomplex of gmf’s C5, see Figure 24.



(L§® L3 @ L})(1)
=—3,2

oy

(L L)oo (Liolie L) o (Lle L2 L})

— (e Lix L})
- o(Li® e L3)

=-3,1

(Lo Lie L)1) & (L@ I Li)(1) & (L] ® L L3)(1) ——

®(L;® LE® LY)

5 2,1T

(LEo L2 L))o (Li® L2 L3)(1) o

0

®(Ly ® L2 @ L3)(1)

6;2,nT

(Lieio L) 5

ST&O
. ) 3730
(Li®L2® L}) .
f—‘l 2
(Lg @ L3 ® L})(1) T
8—3.2

(Li®BoLy) e (Lo Lo LY) & (L © L] ® L)
&L ® L ® L)

——3.1

-

&(Lj® L2® LY)

fo2t

(Li® LE® LY)
s(Liw Lie LY)
a(Li® Li® Ld)
®(L;® LE® LY)

——3,2
dy,

a, E;“T
¥
- (L@ L3 ® L3)(1)
(Lol (el L)) e (Lo l2e L)1) 4.° o(lielie L)) e (Lo LZe LE){(1) 1
®(L] ® LE @ L3)(1) B(L3 @ Li ® L)(1) & (Li ® L§ @ L3)(1)
) ®(L @ Lo L3)(1)
3;3.0 2 Z;MT .
1o 12 6 I3 4 (Li® L3 @ L) o
(LieLi® Ly o(Li® L@ LY)
97311 972A1
A Il = P
(Ll®I2® L) — ‘ (Li® L3 ® LY)
1245 ,2.’&56
wl ) o
(Ly ® L @ L3)(1) (Ly® Li® L§)(1)

FIGURE 24. Another

short exact sequence for RIII

- o(Lie Lie L)1) o (Lie Lk o L)1) ——

h

(L ® Li ® L§)(1)
Ly ® L ® L3)(1)

1.0
dy

LioL2@LY) & .
Sie ity T wenen

(L ® Li ® LE)(1)
B(Li® L ® L)(1)

=—1,0
1,

LioLieLy) @ A
Se ety e e
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Ficure 25. Marked diagram for RIII

The morphisms F' and G of the short exact sequence on Figure 24 are given by

0 0 0 0 0 0

gz |10 0| sy | 1d 00
0 M o0 | 0 1d 0 |

0 0 Id 0 0 I

g3 =(1d 0 0 0), Idooo),
0 0

0 0 0 IdOO 0
pa_ [ 100y IdO o 0
0 I1d 0 IdOO’

0 0 Id 000 0
OOOOId

g>'=(1d 00 0 0),g7>*=(1d 0 0 0).

All other arrows of F' are identities, Whereas all other arrows of G are equal to
zero. One can see easily that F' and G are morphisms of bicomplex of gmf’s and
that the image of F' is the kernel of G. The morphism F' is injective, whereas the
morphism G is surjective. Remark that the bicomplex on the bottom of Figure 24
is homotopic to zero:

—Id

N

(Lo LE® L) (Lo LE® L)

—Id
L2 /—\,75240

(Ll @ L2 @ L3)(1) % (L} @ L2 @ L3)(1)

Let C; be the bicomplex associated to the link diagram D’ which differs only
from D inside a disk; the local picture on Figure 18 is replaced by the local picture
on Figure 25. Using the same arguments, we have H,,(C) = H,,(C>) and finally

H,(C)) = H,(C)).
This completes the proof of Theorem 3.1.






CHAPTER 4

Properties of H,,

We explain how our additional grading can be used to compute H,, for some
knots. In Section 1, we make explicit the role played by the Frobenius algebra
Q[z]/x™ for the triply graded homology H,. As an application, we compute H,
for the trefoil knot and the Hopf link. In Section 2 and 3, we describe short exact
sequences and a spectral sequence for the homology H,,; as an application, we
compute H,, for the two strand torus knots and the figure-eight knot. In Section
4, we derive a polynomial link invariant (), from the Poincaré polynomial of H,,
and use it to prove that Hj is a stronger link invariant than H K Ry. Moreover, the
polynomial link invariant @), satisfies a cubic skein relation. In Section 5, inspired
by the work of Lee [28], Gornik [13] and Wu [52] on KR, we introduce some
deformations of H,,. In Section 6, we generalize Hl, to virtual links.

1. The underlying TQFT

We explain why 1y and n; (defined in Chapter 1.5) should be regarded as
“saddle” morphisms. Given an oriented link diagram D, the morphisms 79 and
71 go pictorially from a union of virtual oriented circles to another one with one
more or one less circle. We would like to see a multiplication or a comultiplication
of a Frobenius algebra, see [27]. This is the content of the next lemma.

LEMMA 4.1. The morphisms of gmf’s

10
——

L, ®q L Li @q Li(1)
7

induce the multiplication m and the comultiplication A of the graded Frobenius
algebra V,, defined in Chapter 3.2. There exist isomorphisms such that the following
square diagrams commute:

97
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00-0000(E
T A

FIGURE 1. Two types of local morphisms (we omit all the marks)

Mo o
H(Cy(Co),d) H(C,(C1),d) H(Cp(Cy),d) H(C,(C3),d)
I i I I i I
I I I o I o
I |- |- |-
| m | | A |
y y y y
v.ev, v, v Vel
&/ \/
A m

where Cy, C1, Co, and Cs are the diagram resolutions shown on Figure 1 and n;
and 0y are the morphisms induced respectively by ny and 1m, on the homology of the
graded 2-periodic chain complexes.

Given an oriented link diagram D, the bicomplex H(C,(D),d) of graded vector
spaces (the differential d stands for the differential on the 2-periodic chain com-
plexes) can be alternatively described without matrix factorizations.

PrOOF. We want to see how the morphisms 7y and 7; look like for the two
kinds of closure of the local picture on Figure 10 of Chapter 1. For the first one,
we have

00__ 0O

This amounts to considering the morphisms 7y and n; with the additional relations
x; = xp and z; = x4

7o
Ly ®q L] /(2 = zp, x5 = 21) Li ®q L, /{w; — x, vy — 2)(1) -

m

We have
H(Lj ®q Lj,/(w: = m, 7 = 1)) = Qla] /(" ){1 —n} =V,
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0

F1GUurE 2. Hopf link

and
H(Lj, ®q L] /(x; = xp, 2 = 1)) = Qlz, y) /{2, y"){2 — 2n} =V, ®q V.

In this case 7y is the multiplication and 7; is the comultiplication of the graded
Frobenius algebra V,,. For the second one, we have

70
m .

This amounts to considering the morphisms 7 and n; with the additional relations
r; = x; and x; = x;, and shifting the Z/2Z-grading by 1. In this case, 7, is the
comultiplication of V,, and n; the multiplication of V,. ]

Given an oriented link diagram D, the bicomplex H(C,(D),d) of graded
vector spaces, can be described only by using the Frobenius algebra V,,. Compare
to the complex of graded vector spaces constructed by Khovanov and Rozansky,
our chains are easier to handle, the differentials are easier to understand since
they are just identities, multiplications and comultiplications of the Frobenius
algebra, but we increase the number of chains.

As a first application of Lemma 4.1, we compute the homology H,, for the Hopf
link and for the trefoil knot.

EXAMPLE 4.1. Consider the bicomplex H(C,,(2%),d) of graded vector spaces as-
sociated to the Hopf link 22 on Figure 2 (the differential d stands for the differential
on the 2-periodic chain complexes):

Vo, @V,
5, ! Vifn — 1}
Ve @ Vu){n —1} eV, {n — 1}

672,0 61,0T

(V, & Vi) {2n - 2) "o 652/%@@@2){{2;”—_2%’} o V) {en - 2)
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5

FIGURE 3. Trefoil knot

where

21 _ 21 (Id O
5= (A A, G _(0 Id),

20 _ [ m 20 ( 1d 10 - 0 (m 0
5 _(_m),ah _(Id),ah (1 -1d), 4 _(O _m).

In a nutshell, the bicomplex H(C,(2%),d) can be summarized as follows:

x 0 0
x x 0
X X X

where the upper-left corner is in bidegree (—2,2) and where the crosss stand for
non-zero graded vector spaces.
A direct computation gives the following Poincaré polynomial:

P(21)(u,0,9) = u0?q  nlg[n — g+ ¢" " nl,.
In particular,
PH2D)(u,q", q) = w2 [n]n — 1], + ¢" 'l
is the Poincaré polynomial for HK R,,, see [38] and
P2 (=1,4"" q) = ¢ nly[n — 1y + ¢" [0, = Pa(2])(q).

ExAMPLE 4.2. Consider now the bicomplex H(C,(31),d) of graded wvector
spaces associated to the trefoil knot 31 on Figure 3:
The bicomplex H(C,(31),d) can be summarized as follows:

x 0 0 O
x x 0 0
X x x 0
X X X X
where the upper-left corner is in bidegree (—3,3).



532

5732 (Vn ® Vn){n — 1}
((Vn ® Vn) D (Vn ® Vn) D (Vn ® Vn)){n - 1} —— @(Vn & Vn){n - 1}
OV, @ V){n -1}

—3,1 —2,1
0y 0y T

VieoVo){2n -2} a0 Vo{2n-2}
Ve V) {2n -2} —* OVo{2n — 2}
(Vo ® Vi){2n — 2} OV, {2n — 2}

530 6;2,0T 6;1,0T

Vn ® Vn){?)n — 3} 520 (Vn (%9 Vn){?)n — 3} 51,0
(V, @ V){3n =3} 2= &V, @ V,){3n—3} 2~ (V, ® V,){3n — 3}
(V, ® V,,){3n — 3} &V, @ V) {3n — 3}

—-3,1
(Sh

Vee Ve Vy){2n -2}

(
@
@

(
(V, @ V,){3n — 3} - ®
@

where

~1d Id 0 Id 0 0
5,=(=m m m),6,=(1d Id Id), 5> = Id |.5*=(0 —-Id 0 0 —Id 0 |,

’ Id 0 0 0 -Id Id

0
I
0
Id Id 0 A A 0 m 0 0
5h2’°(1d 0 Id),aﬁl(A 0 A),aﬁo( ),&leo(o m 0),
0 -Id Id 0 -A A 0 0 m

LAOL ONIATYAANN HHL ‘T

333
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m 0 0
—1d 0 0 m 00
502= 0 1d o |, eze=| YU
0 0 Id 0 m 0
0O 0 m
0O 0 m
~Id 0 0
121 _gd 8 A=A 0 0 0 0
5, = o o0 1 |:aF=l0o 0 A -A 0 0
o Id o 0 0 0 0 —-A A
0 0 Id

Again, a direct computation gives the following Poincaré polynomial:
P(31)(u,v,q) = w0 " n = 1y + u™*0%¢ " [n = 1], + ¢ [n],.
In particular,
P(31)(u, " q) = w7 ¢ [ — 1y +u™2¢*  n = 1y + ¢*" [0,
is the Poincaré polynomial for HK R,,, see [38] and

PI31)(=1,¢"" ) = —=¢" ' n = 1), + ¢ [n — 1], + ¢ *[n]y = P.(31)(q).

2. A canonical spectral sequence

Given an oriented link I with [ components, consider the bicomplex of graded
vector spaces H(C,(L),d). The next theorem relates through a spectral sequence
the homology H., (L) to the homology of the [-component unlink.

THEOREM 4.1. Suppose L is an oriented link with | components, there is a
spectral sequence Ejy, which has Ey term H, (L) and converges to Vn®l.

PRrROOF. Since H(C,(L),d) is a bicomplex of graded vector spaces, there are

two spectral sequences Ej and E}. converging to the total homology of the bicom-
plex H(C,(D),d) and such that

By = H(H(H(C,(D), d),6,)8,) and Ey = H(H(H(Co(D),d),5,)d4),
see [34]. More precisely, we have in particular
EP? = @y HEY (D).

Consider now E; = H(H(C,(D),d),d;). Since the differential d, is the identity,
it follows that F; is equal to the bicomplex of graded vector space associated to
the virtual resolution of D (i.e. the resolution where all crossings are virtualized).
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F1GURE 4. Figure-eight knot

By construction, this bicomplex is just a graded vector space isomorphic to V®.
Hence, E is equal to the graded vector space V.® lying in bidegree (—w, w) where
w is the writhe of D. The spectral sequence E), collapses at its first page and the
total homology of H(C,(D),d) is thus isomorphic to V.®" in degree 0 = w—w. O

We apply this spectral sequence to the computation of H,, for the figure-eight
knot shown on Figure 4.

EXAMPLE 4.3. Consider the bicomplex (H(C,,(41),d) which is of the form

Y

0
0
X
X
X

O O X X X
O X X X X
X X X X X
X X X X ©

where the left-upper corner corresponds to bidegree (—2,2).
It follows from Lemma 3.10 that the bicomplex H(H(C),(41),d),d,) is of the
form

O O X © X
S O X © X
X © X O X
X © X © O
X ©O X © O

where the left-upper corner corresponds to bidegree (—2,2).
By direct computations one can directly see that the differential (5, >°)* is in-

jective and that the differential (5,°)* is surjective. Hence the bicomplex
H(H(H(Co(4).d).5,).8) is of the form

OO OO X
O O X © X
X © X O X
X © X © O
X © O oo
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Theorem 4.1 shows that H(H(H

—~

Cn(41),d),0,),0n) simplifies to

OO OO X
O O X OO
O O X OO
X ©O O oo

0
0
X
0
0

This follows from the fact that the differentials dy, of Ey are of bidegree (k,1 — k)
and that the infinite page of Ej lies on the diagonal. A direct computation gives
the following Poincaré polynomial:

P (4))(u,v,q) = v 20%q n—1],+u"gn—1],+[n] +uqg [n—1],+v*v">qn—1],.
In particular,

PE(4))(u, ¢"t, q) = w2 n—1],+u " q[n—1],+[n]+uqg ™~ [n—1],+u?qg *"[n-1],
is the Poincaré polynomial for HK R,,, see [38] and

Pfl(zll)(_l’ ana q) = q2n+1[n — 1]y — [24[n — 1]y + [n] +q_2n_1[n — 1], = Pu(41)(q).

3. Skein exact sequences for H,

We describe two short exact sequences of bicomplexes that induce long exact
sequences for H,,. As an application we compute H, for the (2,1)-torus knots.

We introduce a few notations. In the proof of Theorem 3.2, we introduced the
complexes of gmf’s C,,( 2 ) and C,( ¥ ). We will consider these complexes as
a bicomplexes lying in horizontal homological grading 0.

LEMMA 4.2. The two following short exact sequences

0—Co( ) C)n— 1} L () L (X )[11{n} — 0,

0—= Co( X [1{=n} L= (X)L Y ()1 —n} —=0,

of bicomplexes induce the following long exact sequences

() O)fn— 1} ——=HE( X)) ——HE+( 330 )[-1]{n}

/

e () () = 1) —= B () o B (R )1 — -



3. SKEIN EXACT SEQUENCES FOR H, 105

and

(OO —n} ——HE (X)) ——H () ()1 - n}

/

HE e () [ —n} —= HEF e (X)) —=HE () Oft —n} — -

where the differentials respect the vertical homological grading and the quantum
grading and [-] is the shift in the horizontal grading.

PROOF. The first short exact sequence can be described as follows

Cu( ) O)fn =1} —0

Id

0— Co( ) n} 2> () C)fn— 13 —=0

Id

0

0

A similar argument as in the proof of the invariance under Reidemeister RIII
move using Lemma 3.10 implies the result. More precisely, taking homology with
respect to §, produce a family of short exact sequences of complexes of graded
vector spaces. This family can be incorporated into a short exact sequence of
complexes of bigraded vector spaces where the differentials respect both gradings.
The differentials of this complexes are induced by ¢,’s. This short exact sequence
produces the long exact sequence for H,,. The proof is similar for the other short
exact sequence. 0]

In order to compute H,, for the (2, )-torus knots, we first consider the following
technical lemma.

LEMMA 4.3. The following bicomplexes of gmf’s are homotopy equivalent:

c < § ) ~ Col )1 {=n — 1},
C, ( § ) ~ Co( X)) [=1]{n + 1},
c, ( § ) ~ Co( FO)[][-2){n + 1},
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Ch ( § > ~ Cn( }93 )[[—1]][2]{—71 - 1}'

where || is the shift in the vertical grading, [-] is the shift in the horizontal grading
and ~ is for homotopy equivalent.

*

Co( EO2)[-1]{—n — 1}. As before, we first remove the internal marks and
simplify the gmf’s, then we exhibit a homotopy equivalence

PrROOF. We exhibit a homotopy equivalence between C), ( 5) and

) (

where
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fPP=g?=1d, " =1d, n' = ( ﬁ ) L = ( 1?1 ) ,g Mt =(—1d 1d ).

We have omitted to precise the shifts in the quantum grading. The proof of the
other relations is similar. 0

REMARK 4.1. This lemma can be thought as a first step in the proof of a theo-
rem similar to Theorem 2.3 but in the case of signed regular graphs and associated
bicomplexes C,,.

Hence with the short exact sequence and Lemma 4.3 and since the homology
of the Hopf link 75 5 and the trefoil knot 75 3 have already been computed, we can
compute by induction the homology of the (2,1)-torus knots 75, for any integer
[ >4.

PROPOSITION 4.1. The Poincaré polynomial of H,, for the torus knot Ty, is
equal to

Pl (Do) (w,v,q) = [n]gn — 1gq~ a0 4 ¢V,

k-1
+ (Z u—2iv2iq(n—1)(2k—2i—1)[n . 1]q> q_l(l + u—1q2n)7

i=1

for k> 2 and
k

Py(Tapus)(u, v, q) = ¢V [n] 1+ (Z u” By g2 1 1]q> ¢ (14wt g,
i=1

with k > 1.

PROOF. Suppose that we can compute H,,(T3y) for all £ < [. We want to
compute H,, (75,41). There are two cases: [ odd or [ even. First consider the case
[ odd. Applying the short exact sequence of Lemma 4.2 we get:

%

H;l—l,*,*(Tz’H_l) - HT—Ll—l,*,* : {n}
o
AN

|o

H, 0 (To){n — 1}

H 5 (Topg) —= -+



108 4. PROPERTIES OF H,

Furthermore, by repeated applications of Lemma 4.3,

%

H;’*’* ' {n} ) H;l—l,l-ﬁ-l,* ( }{ > {_1}
A
By the induction hypothesis, we have
H, " (Tea){n — 1} = HW0 (Ty,) {n — 1},

In particular, we obtain 0 = 0 since 0 respects the vertical grading. This implies
that we can compute the Poincaré polynomial of the (2,1 + 1)-torus knot.
Suppose now that [ is odd. In this case, the short exact sequence is the following

one
§

H;l_l’*’*(TZ,l—i—l) H;l_l’*’* : {n}
X
AN

Jo

0 (Tog){n — 1}

H 5 (Tyg0) — -+

Furthermore, we have by repeated applications of Lemma 4.3

*

mee |70 [y = () )
2
\
By the induction hypothesis, we have
H, " (o) {n = 1} = B (T) - 1} 2 B (6 ) fn -2},

The connecting morphism 0 respects the quantum grading and is induced by the
identity. The result follows from the following equality on graded dimensions:

q"[n]g[n — 1]y — q"_2[n]q[n — 1], = q2n_1[n — 1], - q_l[n — 1],



4. A POLYNOMIAL INVARIANT DERIVED FROM H, 109

4. A polynomial invariant derived from H,,

We derive from the Poincaré polynomial of H, a polynomial invariant (),
which satisfies a certain cubic skein relation. Furthermore, using this invariant we
prove that H is a stronger invariant than H K R,.

Consider the Laurent polynomial (), defined as follows. For any oriented link
L, define

Qu(L)(v,q) = P,(L)(=1,v,q).

So @, is the bigraded Euler characteristic of the complex of bigraded vector spaces
H(H(Cyn(D),d),d,).

THEOREM 4.2. The Laurent polynomial Q,, satisfies the following skein rela-
tion:

Qn 5 =q" 1%(3)%%( R =o' Qu( T 1),

AN

This cubic skein relation is not sufficient to evaluate (), on all oriented link dia-
gram, see [9]. We need another local relation. This relation is said to be cubic
because it involves cube of the braid group generators.

PROOF. Since @), is the bigraded Euler characteristic of the complex of bi-
graded vector spaces H(H(C,(D),d),d,), we have

Qn( % ) = q_lQn( '><| )_q_nQn( X )>
Qn( ) =qQu( ) () = q"Qu( X))

o(3)--ax-ea ()

By Lemma 4.3, we get

(; ) = ¢"'Qu( DX ) +q Q. ( X).

and

Hence, we have

%

Finally, we have
n<)\) q 1"(K) U2 n('><|) q 1U2Qn('/\)'

Since @, is a link invariant, it is in particular invariant under the Reidemeister
move Rlla. Then the previous equality is equivalent to the cubic skein relation. [J
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As an application, we will prove that
H(8s) 2 Hy(10129).

More precisely, we evaluate the difference Q,,(8s) — @, (10199) in terms of @, (61)
and of an explicit Laurent polynomial in ¢ and v. Suppose then that Hy(8g) =
Hy(10199), then Q2(8s) — Q2(10129) = 0 and we get an explicit expression for
(Q2(61). After that by computing partially Hs(6,), we obtain a contradiction. As
a consequence,

H,(8s) 2 Ha(10199),

whereas by [48] we have
HE Ry(8g) = HE Ry(T0129).

Expand @),,(8s) using the cubic skein relation:

() - eo{B () (B
“orlpa()eee (1)
(Ll
)NQn (3 ) +eran (60)
(

G0 ) +UQH(@>

Il
@o

2
'y @n
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Expand Q,,(61) in term of Q,(61):

R
= 0’Q, @ — 0 " 2 4+ ¢ Qn ( @\& )
= ?Q, @ —0*¢" ")l + ¢""Qn ( @\3 ) .

Hence we obtain

(30)

—U_2C]1_"Qn (

) + ql—n[n]z = Qn (
Expand Q,,(10129):

(@) - (&)
{8

o

23

)

=
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+q2(1_n) [n]q + U_2[n]q

= —v2¢"7"Q, ( @ ) +¢" ]2 = P, ( @ )

Hg2m) [n], + v_2[n]q.

Applying equality (30), we obtain

“(0)-=(D)

We compute the difference Q,,(8s) — Qn(10129):
R _o. (T
(@)-+()
= (—*™ —v7)Qy ( @ ) +* V] + 0%l

072G () ) =t (G e (GD) v, (

=0
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Furthermore, @, (52) is equal to:

(@) = el @) e a(®)
ool () (@) o (&)

In particular, it follows from Example 4.3 that

(31) Qn(61) = Qn ( @ ) = a0 + by, + 07,
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where a,, by, ¢, are elements of Q[q, ¢~!]. Consider now the bicomplex of graded
vector spaces H(H(C,(61),d),d,); it has the following form

X x x 0 0 0 O
0O 0 0 0 0 0 O
X X x x x 0 0
0O 0 0 0 0 0 O
X X X X X X X
0O 0 0 0 0 0 O
0 0 x x x X X

where the upper-left corner is in bidegree (—4, 4). We consider the Q-vector spaces
in bidegree (—4,4), (—3,4) and (—2,4). We denote them by V=44 V=34 and V=24,
Consider the following morphisms

A®Id: V? — V3,

[deoA: VP — Ve,

Id@7)o(A®Id): VF? — V&3,

where 7 is the flip. Then by construction, we have

V=4 = Coker(A ® 1d),
V3% = Coker(A®1d)NCoker(Id®A) @ Coker(A®1d)NCoker((Id@7) o (A®1d)),

V2% = Coker(A ® Id) N Coker(Id ® A) N Coker((Id ® 7) o (A ® Id)).

We restrict to the case n = 2 and compute the dimensions:

dim(V~**) =4
dim(V™?*) =4
dim(V~2%) = 1.

As a consequence we conclude that dim(Hj;"*(6,)) > 0 and the Laurent polyno-
mial Q(61) contains a term of the form av? where a € Q[q,q7!]. We obtain a
contradiction with 31. It follows that

Hj(8s) 2 Hz(10129).
5. Deformations of H,

Consider a polynomial p € C[z, z7!] of the form
n+1

p(z) = Z ap_12*.
k=1

Suppose for convenience that a,, = 1. We refine a few notations introduced before.

Denote - .

1 _ xi+ _xj+ C
T, = ————— € [ZE'Z',[L']'],
ZT; —[L’j
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and
wﬁjk = Z xfx;’:cz € Clz;, xj, zx),
0<a,b,c,
a+b+c=1-1,

for any integer I > 1. Set m; =1 and 77}, = 0.

We consider now the more general setting of filtered matrix factorizations
(briefly, fmf), see [52] for a detailed account. Moreover we work over C instead
of Q. We just mention that we consider the increasing filtration associated to the

grading on the polynomial algebra. In particular, define pL;'- to be the following
fmf:

> k=0 “kﬁfj T;—Tj
R7— "R{1-n} — R
where R = Q[z;, z;]. Notice that in particular, d” and w = p(x;) — p(z;) are not
homogeneous. Moreover, d° and d' increase the filtration by n + 1. Furthermore,

similarly to the case of gmf’s, we can define tensor products of fmf’s. Define now
two maps Pny and Pny:

Pmo
—

L ®% L] PLi ®f Li(1)
Pm

with Pny given by the following pair of matrices, acting on C? and C! respectively,

p,r]0 — < Z:%O a’?“ﬂ-zrkl 1 ) pnl — ( " 1 " —1 )
0 - Zr:O arﬂkz L) Zr:() arﬂ;kl Zr:() iy )’
and with Pn; given by the following pair of matrices, acting on C° and C! respec-
tively:

n r
0 = . 1 " -1 Pyt = Zrﬁo a1
‘s ‘s ) r *
Zr:O ArTjk Zr:() Ar T — ZTZO Ar T 1

Replacing L’ by LY, 1 by 1o and 1y by Pny, we can construct for any oriented
link diagram D a bicomplex C,(D) of fmf’s. In particular, notice that H(C,(D),d)
is bicomplex of filtered C-vector spaces and that the differentials respect the fil-
tration. Denote

H, (D) = H(H(H(Cy(D), d),” 6,)on).

It is bigraded and filtered C-vector space. The bigrading corresponds to the bi-
grading of the bicomplex and the filtration to the quantum filtration. Again, we
forget the Z/27Z-grading induced by the mf’s. We can now state a result similar
to Theorem 3.1.
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THEOREM 4.3. For any positive integer n and any polynomial p =
Z:i arp_12* € Clz,27], given an oriented link diagram D, the C-vector space
H,(D) is invariant under Reidemeister moves as a finite dimensional bigraded

and filtered C-vector space up to isomorphism.

ProOF. We point out the main ingredients in the proof of Theorem 3.1 and
adapt them in this case. First, we have always simplified the bicomplex of gmf’s
by removing marks. This can also be done in this setting. In particular, there exist
filtered versions of Lemma 3.7 and Lemma 3.8 respectively, just by replacing
by > g a,miy, in the proof of Lemma 3.7 and V;, by *V,, = C[z]/p/(x){1 — n} in
Lemma 3.8. So we can also perform this simplication for H,. The end of proof of
the invariance under Rlla is exactly the same. For Reidemeister move RI and RII,
we used in the homotopy equivalence the underlying Frobenius structure of V,.
Since PV, is a filtered Frobenius algebra, the proof works similarly. For the proof
of invariance under Reidemeister RIII, we used the fact that H(H(C,(D),d),d,)
has only homology in the even homological degree. This result was a consequence
of the fact that the Khovanov-Rozansky graph homology is concentrated in one
of the two Z /27 grading. Since Wu proved a similar result for the deformations
of Khovanov-Rozansky graph homology (see [52, Prop. 2.19]), it follows that
H(H(Cy(D),d),d,) has only homology in the even homological degree. The rest
of the proof of invariance under RIII is exactly the same. U

We have seen that the bicomplex H(C,(D),d) can be described without any
matrix factorizations just using the Frobenius algebra V,,. The same is true for
H(C,(D),d) using the Frobenius algebra PV,, = C[z]|/p/(x){1 — n}. The next
theorem relates Hl, and H, by a spectral sequence

THEOREM 4.4. For any positive integer n and any polynomial p =

Z:i ap_12% € Clz,27Y], given an oriented link diagram D, there exists a spectral

sequence Ey, converging to H(H(C,(D),d)>6,) with £y = H(H(C,(D),d),d,).
We do not know how this spectral sequence fit with the differentials dy,.

PrROOF. We consider the spectral sequence associated to the filtered chain
complex H(H(Cy(D),d),d,), see [34] It can easily be checked that the part of

the differential 79, which respect the quantum grading is exactly d,. The result
follows. [

We now restrict our attention to the case p(x) = 2" — (n + 1)z consid-
ered by Gornik [13]. We denote C,,(D) = H(Cyn1_(ni1)2(D),d), H,(D) =
Hynt1—(ns1)2(D), and V,, = Clz]/(z™ — 1){1 — n}. The next theorem is similar to
Gornik’s result [13].

THEOREM 4.5. Gien a l-component oriented link L = Ly U ---U Ly, the
dimension of H,,(L) equals n*. Moreover,

— kK
H, (L) = &ezH, " (L)
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and to each map
¥ {components of L} — [0,n — 1]

we assign an element a, in homological bidegree (—k, k) where

k=2 Z k(™" (e1), ¥~ (e2)).

(61762)€H07n_1ﬂ27517£52
The set of the ay’s generate H,(L).

ProoF. Consider the basis {fo(z),..., fu_1(x)} of V, introduced by
Gornik [13]:

§ Il —2klm/n

and ¢ is the square root of —1. Moreover, the multiplication and the comultiplica-
tion of V,, act as follows on this basis [52]:

m(fr(r) ® fi(x)) = nép fr(z),

-z
A(fi()) = ne™ " fi(x) @ fila),
where (k,1) € [0,n —1]*
The decomposition V,, = @}Z}C fi(z) can be written graphically:

O =ai22 O,

In this setting, we can describe the local bicomplex associated to a positive crossing
as follows:

K
Dk, 1)ef0,n—1]2 k£ %I

opst O

Similarly, we can describe the bicomplex associated to a negative crossing. No-
tice now that for a knot K, the only resolutions that are allowed are the smoothing.
Then we obtain that for a knot K, H,(K) is of dimension n and lies in bidegree
(0,0). In general, for an oriented link L, any self-crossing of a component L; has to
be resolved as a smoothing, and any crossing between two components L; and L;
has to be resolved as a smoothing if L; and L; are colored by £ and to be resolved
as a virtual crossing if L; is colored by k and L; by [ (k # l). Hence, the dimension
of H,,(K) is n® and the generators are in one to one correspondance with maps

0

¥ : {components of L} — [0,n — 1].
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Moreover if L; is colored by k and L; by [, we need to resolve every crossing
between L; and L; as a virtual crossing and by construction this add (—r,r) to
the homological bidegree where r = 21k(L;, L;).

O

6. Generalization to virtual links

The construction of the triply graded link homology Hl, generalize in the obvi-
ous way to the case of oriented virtual links. Furthermore, the homology obtained
is clearly invariant under the virtual Reidemeister moves and the semi-virtual Rei-
demeister move. More precisely the invariance under these moves follows from
Lemma 3.7.

THEOREM 4.6. If two oriented diagram D and D' represent the same oriented
virtual links, then the corresponding homology are isomorphic as triply graded Q-
vector space:

H,(D) = H,(D")

One of the consequences of this categorification is that we can define now a
polynomial invariant of virtual links that generalize the classical Sl,, polynomial
invariants of links, for all integer n > 3. If we still denote P (u,v,q) the Poincaré
polynomial of the homology and Q,(v,q) = PY¥(—1,v,q) then Q, satisfies the
following relation:

> %
Qn ( § ) = an_lQn( '/\ ) — vQn( '><| )_I'qn_lQn( >8< )-



Appendix: Graph relations and polynomial invariants of
graphs

For any positive integer n, the existence and the uniqueness of a graph polyno-
mial P, satisfying a set of relations is central in the categorification of Khovanov
and Rozansky. It can be seen as a consequence of the existence and unicity of
the sl,, link polynomial invariants. Nevertheless, we give a direct proof of the fact
that the graph polynomial P, can uniquely be determined by the set of the graph
relations shown on Figure 2. This proof uses a variation of Vogel’s algorithm for
links [47].

THEOREM 4.7. For each integer n > 1, there exist a unique function
P, : {regular planar graphsy — Z[q,q "]
satifying the following five relations:

(32) PO =L,
(33) P YD) =n—1], P D),
(34) P(%) =t n%),

(35) P XX ) =P X ) +n—2, P (),

(36) P(%)w(}ﬂ):p(%)w“%)

We introduce first a few notations and we adapt different lemmas due to Vogel.

DEFINITION 4.1. Given two oriented circle Cy and Cy in S?, Cy and Cy are
said to be compatible if their orientations come from one of the unique annulus
A C S? such that DA = C, U Cy. They are said to be incompatible otherwise.

119
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Given an oriented planar regular graph I', consider its Seifert circles. Define
r(I") to be the number of Seifert circles and h(I') to be the number of pairs of
incompatibles Seifert circles (seen in S?). Notice that

r(0)(r(1) = 1)
) < "

DEFINITION 4.2. A face f of I' is a connected component of R? —T.

A face f is adjacent to an edge e of I ife C f.A face f is adjacent to a Seifert
circle C' of I' if f is adjacent to at least one edge of I contained in C.

A face f is a defect face if f is adjacent to distinct edges e1, e of I' such that
the Seifert circles Cy and Cy of I' going along e1, es are distinct and incompatible.

In this case, an oriented embedded arc ¢ € R? leading from a point of e; to a
point of es and lying (except the endpoints) in f is called a reduction arc ¢ € R?

of I'in f.

LEMMA 4.4. Given an oriented planar reqular graph I and a reduction arc c,
let T" and T be the two regular planar graphs obtained by bending (see Figure 5),
then

0<h

r(T) = r(I"), g (D) =R +1,
{r(F)zr(F’)—i—l, an { h(I) < h(T).

PRrROOF. The relations r(I') = r(I') and A(I') = A(I'") + 1 are similar to the
case of links, see [47]. Furthermore, the relation r(I') = (I") + 1 is obvious and
implies clearly A(I") < h(T). O

LEMMA 4.5. [47] An oriented reqular planar graph T has a defect face if and
only if h(I') # 0.

PROOF. Vogel’s proof works in this framework. O

Define a regular braid graph to be an oriented 4-valent graph obtained as the
singularization of an oriented braid closure diagram.

LEMMA 4.6. [47] An oriented regular planar graph I' with h(I') = 0 is isotopic
in R? to a regular braid graph in S?.

PROOF. Vogel’s proof works in this framework. O

PrROOF OF THEOREM 4.7. The existence of such a polynomial follows from
the work of Murakami, Ohtsuki and Yamada [36]. Let us prove the uniqueness
Given a regular planar graph I', if there is a defect face, apply relation

Po( )= =2], P ) ()= P XK.

Then we have



APPENDIX: GRAPH RELATIONS AND POLYNOMIAL INVARIANTS OF GRAPHS 121
(r

X

7
N

FIGURE 5. Bending

where h(I") < h(I") and A(I"") < h(I"). Repeating this operation permits to express
P,(T') as follows:

P, () = Z qa(rl)Pn(Pi)a
iel
where [ is finite set, a(I")’s are integers and I'"’s are regular braid graph. Moreover
it has been proved by Wu [51] and Rasmussen [39] that the relations (32), (33),
(34) and (36) determine P, (I') when I' is a regular braid graph. Theorem 4.7
follows. 0J
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