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Ambigüıté et déterminisme

This chapter presents a summary of the thesis, in French.
Ce chapitre présente un résumé français de la thèse.

La génération de langue naturelle (GLN) consiste à traduire un but com-
municatif de nature abstraite en langue naturelle. Le module de réalisation de
surface est une petite partie du générateur de langue naturelle et sa tâche est
relativement clairement définie : étant donné une grammaire et une représen-
tation du sens (la plupart du temps une forme logique), il doit produire les
châınes que la grammaire associe à la sémantique. La réalisation de surface
est une des tâches les plus concrètes de la génération et donc une des plus
faciles. C’est d’ailleurs la raison pour laquelle la plus grande partie de la re-
cherche en génération de textes porte sur la réalisation de surface et qu’il existe
un certain nombre de réalisateurs de surface de bonne qualité et réutilisables
comme RealPro, fuf et kpml. Ces réalisateurs ont tous été intégrés pour la
construction de systèmes de génération de langue naturelle.

Bien que la réalisation de surface soit facile, elle ne peut pas être considérée
comme un problème totalement résolu. En particulier, le traitement de la para-
phrase pose encore des problèmes. Nous entendons par paraphrase le fait qu’il
existe souvent plus d’une façon d’exprimer la même chose. Cette caractéristique
des langues a pour conséquence la très grande variété d’énoncés possibles, et
constitue la raison pour laquelle nous sommes capables d’exprimer des nuances
de sens subtiles. Malheureusement, c’est aussi un cauchemar combinatoire. La
thèse qui est résumée ici traite de la façon dont un module de réalisation de
surface doit gérer la paraphrase, que nous appellerons abusivement ambigüıté
pour conserver le parallèle avec l’analyse (le parsing).

La thèse, comme le résumé que nous en faisons ici, se structure de façon
standard autour de deux grandes parties. Nous présentons tout d’abord l’état
de l’art (Chapitres 1–4) puis notre contribution au domaine (Chapitres 5–7).
Cette deuxième partie s’articule autour de trois thèmes qui sont les suivants :

1. L’utilisation de techniques de « filtrage par polarité » pour réduire l’es-
pace de recherche du module de réalisation.

2. Un mécanisme de sélection de la paraphrase, permettant au réalisateur
de renvoyer le meilleur résultat par rapport aux critères (descriptions
linguistiques) donnés par l’utilisateur.

3. Un processus semi-automatisé de débuggage de la grammaire, utilisant
les mêmes descriptions linguistiques pour localiser les causes de surgéné-
ration dans la grammaire.

v



vi AMBIGUÏTÉ ET DÉTERMINISME

F-1 Algorithmes de réalisation de surface

La génération de langue naturelle est généralement vue comme un enchâı-
nement de tâches (on parle traditionnellement de structure en pipeline) tel que
l’illustre la figure ci-dessous. Ces tâches sont regroupées dans deux modules
distincts : le premier est le module stratégique, qui détermine « quoi dire ? »
sur la base de connaissances du domaine, le deuxième est le module tactique,
répondant à « comment le dire? ». Ce dernier fonctionne grâce aux connais-
sances linguistiques. En réalité, on doit faire des distinctions plus fines. A la
fin des années 90, il est devenu clair que certaines tâches devaient utiliser à la
fois les connaissances du domaine (donc extralinguistiques) et les connaissances
linguistiques. On a alors dû utiliser un composant intermédiaire, qu’on a appelé
module de microplanification. Dans notre thèse, nous allons postuler que la réa-
lisation de surface a lieu à la fin du processus (comme c’est la plupart du temps
le cas), et qu’elle utilise en entrée la sortie du module de microplanification.

document 
planner

strategic generation
[domain knowledge]

tactical generation
[linguistic knowledge]

microplanner
surface
realiser

communicative
goal

document
plan

text
specification

sentence

syntactic
realiser

morphological 
generator

uninflected
string

Les différents algorithmes de réalisation de surface peuvent se différencier
sur trois aspects : le parcours de l’arbre syntaxique, l’exploration des espaces
de recherche, et le stockage des résultats intermédiaires. Ce sont ces différents
aspects de la réalisation que nous présentons maintenant.

F-1.1 Parcours de l’arbre

On peut considérer la réalisation de surface comme un processus de décou-
verte d’un arbre syntaxique correspondant à une sémantique d’entrée [Shieber
et al., 1990]. Ce processus peut être abordé par une stratégie descendante,
ascendante ou mixte. Chacune de ces stratégies pose des problèmes pratiques
spécifiques. L’utilisation d’algorithmes descendants nous expose à la récursivité
à gauche ; les algorithmes ascendants demandent trop de restrictions du forma-
lisme grammatical pour être complets et sont trop non-déterministes pour être
utiles en pratique. Les stratégies mixtes comme la génération dirigée par la tête
sémantique (semantic head driven generation ou shdga) [Shieber et al., 1990]
sont de loin les meilleures, et c’est pourquoi nous allons nous centrer sur cette
façon de faire.

shdga peut être vu comme une adaptation du parsing coin gauche (left-
corner parsing) dans laquelle au lieu de chercher le coin gauche de la phrase,
on cherche sa tête sémantique. La tête sémantique d’une règle est le nœud fils
qui a la même sémantique que le nœud père. Précisions toutefois que toutes
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S
s(t(j))

NP VP
j λj.s(t(j))

John VP Adv
λj.t(j) λt(j).s(t(j))

V slowly
λj.t(j)

talks

Fig. 1: parcours shdga

les règles n’ont pas forcément une tête sémantique. Certaines règles ont même
parfois plusieurs nœuds fils qui partagent la sémantique du nœud père, mais
nous allons mettre ces cas de côté pour l’instant. Dans shdga, la grammaire
est pré-traitée et divisée entre les règles enchâınées (celles qui ont une tête
sémantique) et les règles non-enchâınées (celles qui n’en ont pas).

Le traitement commence au symbole de départ de la grammaire. Ensuite, il
trouve un nœud pivot et traite récursivement ses fils. Le pivot est le nœud père
d’une règle non enchâınée dont la partie gauche correspond au but courant. La
sélection du pivot remplit le même rôle que la phase de scan dans un analyseur
coin-gauche : elle décide de l’endroit à partir duquel on commence à remonter
l’arbre d’analyse. Ce processus de remontée (ou de connexion) est lui aussi
récursif : on sélectionne une règle enchâınée, on unifie sa tête sémantique avec le
nœud courant, on traite ses autres fils et ensuite on remonte encore jusqu’à une
autre règle enchâınée ; on ne s’arrête que lorsque le but et le nœud courant se
correspondent. Ce parcours est illustré dans la figure 1, qui montre la réalisation
de slowly(talk(john)) par la grammaire ci-dessous :

c1. S(S) → NP(X) VP(λX.S)
c2. VP(λX.S) → V(λX.S)
c3. VP(λX.S) → VP(λX.V ) Adv(λV.S)
c4. V(λX.talk(X)) → talks
c5. NP(john) → John
c6. Adv(λV.slowly(V )) → slowly

F-1.2 Recherche

En un sens, le choix d’une bonne stratégie de parcours de l’arbre aide les
algorithmes de réalisation de surface à éviter les choix non déterministes. Par
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exemple, les approches dirigées par les têtes de la réalisation sont avantageuses
parce qu’elles manipulent seulement des nœuds avec une sémantique complète-
ment instanciée (et évitent ainsi le non-déterminisme qui peut résulter des dif-
férentes tentatives d’instanciation de la sémantique). La langue naturelle étant
intrinsèquement ambiguë, il est clair que quel que soit le parcours d’arbre qu’on
adopte, il y aura toujours à gérer une part de non-déterminisme. C’est là que
le choix de la stratégie de recherche devient important. Pour pouvoir faire ce
choix, nous devons répondre aux trois questions suivantes :

1. Devrions-nous retourner une seule solution, n solutions, ou toutes les
solutions ? Si nous les voulons toutes, comment pourrions-nous les trier ?

2. Comment l’arbre de recherche (qu’on ne doit pas confondre avec l’arbre
syntaxique) doit-il être exploré ? Parmi les stratégies d’exploration de
l’arbre de recherche, on trouve les recherches dites « en largeur d’abord »,
en « profondeur d’abord », ou « gourmandes ».

3. Les choix que nous faisons sont-ils définitifs ? Un choix extrême serait de
ne pas prendre d’engagement, quel qu’il soit, et d’autoriser tout l’espace
de recherche à être exploré. L’autre attitude extrême serait de se tenir
coûte que coûte aux choix qu’on a faits. Les deux solutions représentent
en fait différents degrés d’élagage.

F-1.3 Stockage des résultats intermédiaires

Jusqu’à maintenant, nous avons parlé d’éviter le non-déterminisme (dans
son aspect de parcours de l’arbre) et de faire les meilleurs choix quand il survient
(dans son aspect recherche). Le troisième aspect de la réalisation consiste à
trouver un moyen de se relever des inévitables mauvais choix que nous aurons
faits. Un tel mécanisme est le retour arrière (backtracking). Si notre stratégie
de recherche rencontre une impasse, on devrait simplement pouvoir revenir
sur nos pas jusqu’au choix le plus récent et essayer un autre choix. Le retour
arrière peut pourtant s’avérer extrêmement inefficace ; il peut inutilement re-
calculer des choix déjà éliminés. Une alternative courante au backtracking est
la méthode de programmation dynamique appelée analyse tabulaire ou « chart
parsing ». Les analyseurs qui utilisent cette méthode stockent des résultats
intermédiaires dans une structure de données et les utilisent pour construire
d’autre résultats intermédiaires qui sont à leur tour stockés et utilisés pour
construire des résultats toujours plus complets.

La génération tabulaire (ou « chart generation ») est une adaptation de
cette technique à la réalisation de surface. Une question qui se pose en gé-
nération tabulaire est de trouver le mécanisme adapté pour indexer les résul-
tats intermédiaires. L’analyse tabulaire utilise des indices de position dans la
châıne, mais cela n’est pas possible en génération parce que l’entrée n’est pas
une châıne. Une approche très citée de ce problème a été introduite par [Kay,
1996], et a été incorporée dans beaucoup de générateurs tabulaires depuis [Car-
roll et al., 1999; Striegnitz, 2000; White, 2004]. L’approche de départ s’appuie
sur l’utilisation d’une sémantique plate. Une formule de sémantique plate est
un ensemble de littéraux où chacun consiste en un prédicat et des indices. La
formule qui suit, par exemple, est une formule de sémantique plate.

run(r), past(r), fast(r), arg1(r,j), name(j, john)
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Il existe plusieurs formalismes de sémantique plate, mais ils ont au moins
cela en commun. L’idée centrale de la méthode est que les indices sémantiques
comme r ou j peuvent aussi servir d’indices pour la génération tabulaire dans
la mesure où les arcs actifs et inactifs doivent se combiner seulement autour
d’un indice sémantique commun. C’est cette approche que nous utilisons dans
la thèse.

F-1.4 Synthèse

Nous pouvons donc récapituler maintenant les trois aspects sur lesquels les
algorithmes de réalisation de surface peuvent se différencier, ainsi que les choix
que nous ferons dans notre travail :

1. La façon de parcourir l’arbre syntaxique : pour notre part, nous utiliserons
une méthode dirigée par les têtes.

2. La stratégie de recherche : nous choisissons de retourner tous les résultats,
et nous nous contentons de techniques d’élagage sûres.

3. Le stockage de résultats intermédiaires : nous utiliserons une génération
tabulaire combinée à une sémantique plate.
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F-2 Sémantique plates à trous

Les langages de représentation sémantiques doivent gérer la récursivité
d’une manière ou d’une autre. En effet, les expressions en langue naturelle
peuvent être d’une longueur indéterminée et une expression peut être construite
à partir d’une autre expression. Plus important encore, le sens d’une expres-
sion peut être construit à partir du sens des autres expressions, et ce, à une
profondeur quelconque. Par exemple, considérons la phrase “A dog barks.” En
logique du premier ordre, on peut la représenter ainsi : ∃d(dog(d) ∧ bark(d)) ;
comme nous le montrons dans l’exemple ci-dessous, cette phrase et sa séman-
tique peuvent être imbriquées indéfiniment.

1. A dog barks.
∃d(dog(d)∧ bark(d))

2. A man complains that a dog barks.
∃m(man(m)∧ complain(m,∃d(dog(d)∧ bark(d))))

3. A neighbour says that a man complains that a dog barks.
∃n(neighbour(n)∧ say(n,∃m(man(m)∧ complain(m,∃d(dog(d)∧ bark(d))))))

4. . . .

Les représentations en sémantique plate sont elles aussi récursives, bien
qu’elles expriment la récursivité de manière moins directe. Au lieu d’inclure les
autres formules sémantiques, la sémantique plate y réfère. N’importe quel lan-
gage de représentation sémantique peut être aplati. Nous montrons ci-dessous
une formule récursive exprimée en logique du premier ordre et dans une repré-
sentation hypothétique en sémantique plate :

(1) Ernest considers buying a dog.
∃d(dog(d)∧ consider(ern, buy(ern, d)))

l1:dog(d), l2:buy(ern,d), l3:consider(ern,l2), l4:and(l2, l3), l5:exists(d,l4)

F-2.1 LU : une application de la sémantique à trous

Le langage de représentation sémantique utilisé dans cette thèse est LU

[Gardent and Kallmeyer, 2003]. Il s’agit d’une reformulation de la Logique des
Prédicats « débranchée » (Predicate Logic Unplugged, désormais PLU) où
les variables lambda sont remplacées par des variables d’unification. La PLU
est une application de la sémantique à trous [Bos, 1995]. Il s’agit d’un système
permettant d’aplatir les langages de représentation sémantique et d’y introduire
une sous-spécification (ainsi, Bos montre comment on peut « débrancher » la
logique du premier ordre et la DRT). Le langage LU simplifie quelque peu
la PLU et ajoute des variables d’unification pour permettre la construction
sémantique :

Définition 1 (formule syntaxique LU ). Soit (i) Ivar un ensemble de variables
d’unification et Icon un ensemble de constantes ; (ii) Lvar un ensemble de va-
riables d’unification « étiquettes » (label unification variables) et Lcon un en-
semble de constantes « étiquettes » (label constants) (iii) H un ensemble de
constantes « trous » et (iv) R un ensemble de relations n-aires sur Ivar ∪ Icon.

Etant donné l ∈ Lvar ∪Lcon, h ∈ H , i1, . . . , in ∈ Ivar ∪ Icon ∪H et Rn ∈ R,
les formules d’unifications (désormais UF pour unifying formulas) de LU sont
définies de la manière suivante :
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S1 S2 S3

Li Lii Liii Liv Lv

Ma MbMa Mb

Fig. 2: Châınes, sens et formes logiques

1. l : Rn(i1, . . . , in) est une UF de LU

2. h ≥ l est une UF de LU

3. Si φ est une UF de LU et ψ est une UF de LU , alors φ, ψ est une UF de
LU

4. rien d’autre n’est une UF de LU

F-2.2 Problème de l’équivalence des formes logiques

Le problème de l’équivalence des formes logiques a été mentionné pour
les premières fois dans [Appelt, 1987] et [Shieber, 1988]. Il est impossible à
traiter (à moins de résoudre le problème de la représentation des connaissances
en intelligence artificielle) et il est l’une des raisons principales à l’utilisation
d’une sémantique plate. Le problème part de considérations somme toute assez
banales. On considère la grammaire comme une façon d’exprimer la relation
entre des châınes et une ou plusieurs formes logiques. Les formes logiques sont
censées être une approximation relativement fiable du sens des châınes. La
relation entre les châınes, les formes logiques et les sens peut se résumer de la
manière suivante :

– Une châıne peut avoir plus d’un sens ;
– Un sens peut être réalisé par plus d’une châıne ;
– Un sens peut être représenté par plus d’une forme logique ;
– D’un autre côté, une forme logique représente un seul sens ;
– En pratique, on attend de la grammaire qu’elle associe une châıne avec

une seule forme logique (par sens). On appelle ceci la forme logique ca-
nonique de la châıne.

La fonction d’un analyseur est de calculer le sens de chaque châıne, en
construisant la(les) forme(s) logique(s) canonique(s). Les systèmes de généra-
tion ont une fonction inverse qui consiste à dériver une châıne à partir d’une
représentation du sens. Mais ce n’est pas si simple. Si l’entrée ne correspond pas
à une forme logique reconnue par la grammaire, nous n’obtenons pas de sortie.
Considérons la figure 2. Si la grammaire n’associe pas Lii à une châıne et que le
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générateur la reçoit en entrée, il ne produira aucun résultat. Plus concrètement,
dans la grammaire jouet ci-dessous, la phrase “John has a cat” est associée à
la sémantique (∃x.white(cat(x)) ∧ has(john, x)). Si on avait fourni une entrée
légèrement différente, par exemple ∃x.has(john, x) ∧ white(cat(x)), on n’au-
rait pas pu obtenir de sortie à partir de la grammaire, bien que les deux formes
soient réellement sémantiquement équivalentes.

t1 S(S) → NP(X) VP(λX.S)
t2 VP(λX.S) → V(λY λX.V ) NP(λY λV.S)
t3 NP(λXλC.S) → Det(λXλRλC.S) N(λX.R)
t4 N(λX.A ∧ N) → Adj(λX.A) N(λX.N)
t5 NP(john) → John
t6 N(λX.cat(X)) → cat
t7 Det(λXλRλC.∃X.(R ∧ C)) → a
t8 Adj(λX.white(X)) → white
t9 V(λY λX.has(X, Y )) → has

Le problème de l’équivalence des formes logiques (désormais LFE pour Lo-
gical Form Equivalence) consiste simplement à trouver le moyen de générer du
texte à partir de toutes les formes logiques qui ont le même sens. Le point cru-
cial est que décider l’équivalence logique est indécidable en logique du premier
ordre. Des algorithmes plausibles et pertinents (comme la conversion à la forme
normale) ne contournent pas ce problème fondamental.

F-2.3 Le cas de la sémantique plate

La sémantique plate peut être utilisée comme une stratégie d’évitement du
problème de l’équivalence des formes logiques. Si calculer l’équivalence logique
est indécidable dans le cas général, on se tourne vers une notion plus modeste
de l’équivalence qui est utile dans la plupart des cas concrets. Ce qu’on peut
faire consiste à autoriser la commutativité et l’associativité de la conjonction.
Calculer ces équivalences avec une sémantique plate peut être fait à moindre
coût. On trie simplement les littéraux et on vérifie que les formes logiques triées
sont identiques syntaxiquement.

Modifieurs intersectifs

Malheureusement, la commutativité et l’associativité de la conjonction ont
un prix : l’ambigüıté de l’ordre des mots. Le manque de contraintes sur l’ordre
des mots est problématique pour ce qu’on appelle les modifieurs intersectifs,
c’est-à-dire pour les cas où plusieurs modifieurs affectent la même entité. Si une
châıne contient un mot avec k modifieurs, le réalisateur va produire 2k versions
de cette châıne, soit une par sous-ensemble de modifieurs. Par exemple, voici
les 23 = 8 sous-ensembles possibles de modifieurs dans “fierce little black cat” :

(2) cat,
fierce cat,
little cat,
black cat,
fierce little cat,
fierce black cat,
little black cat,
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fierce little black cat

Une solution proposée à ce problème est d’adopter une stratégie de réalisa-
tion en deux phases [Carroll et al., 1999] : dans la première phase, les structures
syntaxiques complètes sont construites sans les modifieurs ; dans la deuxième
phase, les modifieurs sont insérés. La clé de cette technique réside dans le fait
qu’elle évite d’insérer des modifieurs dans des structures syntaxiques incom-
plètes, ce qui serait une perte de temps. Ceci ne résoud pas effectivement le
problème des modifieurs intersectifs, mais c’est réellement utile pour en contenir
les effets négatifs en pratique. Adopter cette stratégie requiert que le réalisateur
de surface supporte la notion d’adjonction, c’est à dire l’insertion d’une struc-
ture syntaxique au milieu d’une autre. Comme nous allons le voir plus loin, ceci
est réalisé tout-à-fait naturellement avec le formalisme des grammaires d’arbres
adjoints (grammaires TAG).

F-2.4 Synthèse

Les langages de représentation sémantique sont intrinsèquement récursifs.
Les langages de sémantique plate ne sont pas moins récursifs, mais ils utilisent
un mécanisme de pointage pour exprimer cette récursivité. De telles représen-
tations sont particulièrement intéressantes pour la réalisation de surface parce
qu’elles autorisent la commutativité et l’associativité de la conjonction. Ceci
permet de traiter le problème de l’équivalence de la forme logique, au moins
dans les cas les plus pratiques. Bien entendu, autoriser la commutativité et
l’associativité de la conjonction présente des inconvénients, et particulièrement
pose le problème des modifieurs intersectifs. Pour éviter cela, nous utilisons la
technique de l’insertion différée des modifieurs.
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F-3 Grammaires d’arbres adjoints basées sur
l’unification

Les grammaires d’arbres adjoints (Tree Adjoining Grammars ou TAG) sont
un formalisme qui génère des langages légèrement contextuels (mildly context-
sensitive language). Ceci signifie que ce formalisme peut générer certains lan-
gages que les grammaires hors contextes ne peuvent pas générer, mais qu’il
ne peut pas pour autant générer tous les langages contextuels. Ainsi, les TAG
peuvent décrire le langage anbncn (soit le langage comprenant l’ensemble des
châınes consistant en des a suivis par le même nombre de b et de c), mais elles
ne peuvent pas décrire le langage anbncndnee. En d’autres termes, une gram-
maire TAG est plus puissante qu’une CFG, mais elle n’est pas trop puissante
(elle peut toujours être analysée en temps polynomial, O(n6), pour être précis).
On utilisera les TAG lexicalisées basées sur l’unification (Feature-Based Lexica-
lised TAG ou FB-LTAG), une variante des TAG qui en conserve les propriétés
formelles.

Une FB-LTAG comprend un ensemble d’arbres élémentaires et deux opéra-
tions permettant de combiner ces arbres entre eux, l’opération de substitution
et l’opération d’adjonction. Les arbres résultant d’une de ces opérations sont ap-
pelés arbres dérivés. Les arbres élémentaires sont lexicalisés, c’est-à-dire qu’ils
sont explicitement associés à une composante lexicale (lemme ou une forme
fléchie). Leurs nœuds sont étiquetés par deux structures de traits appelées top
et bottom. Un arbre élémentaire est soit initial, soit auxiliaire. Un arbre initial
est un arbre dont les nœuds feuilles sont soit des nœuds terminaux, soit des
nœuds dits de substitution (marqués par ↓). Un arbre auxiliaire est un arbre
dont l’un des nœuds feuilles est un nœud pied (marqué par �) étiqueté par la
même catégorie que le nœud racine.

NP

Kelvin

S

NP↓ VP

V

runs

=⇒

S

NP VP

Kelvin V

runs

S

NP VP

Kelvin V

runs

VP

VP* Adv

often

=⇒

S

NP VP

Kelvin VP Adv

V often

runs

Fig. 3: Substitution et adjonction TAG
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t1

b1

t

t t1
b1

Fig. 4: Substitution TAG avec structures de traits

L’opération de substitution permet d’insérer un arbre élémentaire ou dérivé
τδ dans un arbre initial τα : le nœud racine de τδ est alors identifié avec un
nœud de substitution dans τα et leurs traits top sont unifiés (topτα = topτδ

).
L’opération d’adjonction permet d’insérer un arbre auxiliaire τβ dans un

arbre quelconque τα à un nœud n : les traits top et bottom du nœud n où
se fait l’adjonction sont alors unifiés avec les traits top du nœud racine de
l’arbre auxiliaire et les traits bottom de son nœud pied respectivement (topn =
topRootτβ

et bottomn = bottomFootτβ
). En fin de dérivation, les traits top et

bottom de chaque nœud de l’arbre dérivé produit sont unifiés.

b2

t1

b1

t2

t
b

t

bb2

t1
b1

t2

b1
t t1

b b2
t2

Fig. 5: Adjonction TAG avec structures de traits

F-3.1 Les FB-LTAG augmentées d’une sémantique plate LU

Le lien entre structure syntaxique et représentation sémantique se fait de la
façon illustrée par la figure ci-dessous. Chaque arbre élémentaire est associé avec
une représentation sémantique où les arguments manquants sont des variables
d’unification. Ces variables apparaissent en outre sur certains nœuds de l’arbre
et sont instanciées par le biais des substitutions et des adjonctions (section
3.3). Ainsi, dans la dérivation de “Kelvin court souvent” illustrée ci-dessous, k
s’unifie avec S et r avec X si bien que la représentation sémantique finale est
l1:nom(k,kelvin), l2:courir(r,k), l3:souvent(r).

F-3.2 Synthèse

Le formalisme FB-LTAG est une petite extension du formalisme TAG, un
formalisme grammatical légèrement contextuel. Il peut être combiné avec LU ,
le langage sémantique utilisé dans cette thèse, en codant la sémantique dans
des structures de traits.
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Nk

Kelvin

l1:nom(k,kelvin)

S

N↓S Vr

court

l2:courir(r,S)

VX

V* Adv

souvent

l3:souvent(X)

⇒ l1:nom(k,kelvin), l2:courir(r,k), l3:souvent(r)

F-4 GenI et SemFRaG

GenI est un réalisateur de surface développé par Carlos Areces et Claire
Gardent [Areces, 2003]. Il utilise une grammaire FB-LTAG, une sémantique LU

et un algorithme ascendant de « chart generation ». Dans ce chapitre, nous
présentons l’algorithme de départ, développé dans le cadre de l’action de re-
cherche concertée INRIA GenI.
SemFRaG est une grammaire FB-LTAG pour le français doublée d’une sé-
mantique LU [Gardent, 2006]. Elle a été utilisée à la fois pour l’analyse avec
une construction sémantique [Parmentier, 2007] et pour la réalisation de sur-
face avec GenI.
La plus grande partie du travail accompli pour mettre en œuvre ce réalisateur
a tourné autour du développement de la grammaire. Dans ce résumé, nous
nous cantonnons à la description de GenI ; en revanche, dans la thèse, nous
décrivons brièvement les systèmes de génération qui lui sont apparentés en fin
de chapitre.

F-4.1 GenI

GenI utilise un algorithme ascendante de génération tabulaire optimisé
pour les grammaires d’arbres adjoints. Nous illustrons son fonctionnement ci-
dessous avec un court exemple :

Supposons que la sémantique donnée en entrée soit l2:courir(r,k), l1:nom(k,
kelvin), l3:souvent(r). L’algorithme procède en quatre étapes : une phase de sé-
lection lexicale, une phase de substitution, une d’adjonction et une d’extraction.

Dans un premier temps, les arbres élémentaires dont la sémantique subsume
une partie de l’entrée sont sélectionnés (c’est ce que nous appellerons la phase
de sélection lexicale).

La sélection lexicale se fait donc à partir (i) d’une sémantique d’entrée et
(ii) d’une grammaire FB-LTAG. La grammaire consiste en un ensemble d’items
lexicaux regroupant un arbre élémentaire et une sémantique lexicale. Plus pré-
cisément :

Définition 2 (item lexical). Un item lexical est une paire 〈T, S〉, où T est un
arbre élémentaire FB-LTAG et S une formule LU . Les variables d’unification
dans l’item lexical ont une portée sur la totalité de l’item, soit T et S.

Pour notre exemple, les arbres sélectionnés seront (entre autres) les arbres
de “Kelvin, court” et “souvent”.
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La deuxième étape (que nous appelons phase de substitution) consiste à
explorer systématiquement les possibilités de combinaisons par substitution.
Pour l’exemple considéré, cette exploration permettra de substituer l’arbre pour
“Kelvin” dans l’arbre pour “court”.

Notez que dans le tableau ci-dessous, les lettres ‘k’, ‘c’ et ‘s’ représentent
les arbres élémentaires qui correspondent respectivement à “Kelvin”, “court” et
“souvent”.

Combinaison Agenda Charte AgendaA
k,c s
c, k s

↓(c,k) kc c,k s
c,k,kc s

La troisième étape (phase d’adjonction) permet de combiner les arbres pro-
duits par adjonction. C’est à ce stade que l’arbre pour “souvent” sera adjoint
à l’arbre dérivé pour “Jean court”. En dernier ressort (phase d’extraction),
les châınes étiquetant les items couvrant la sémantique donnée en entrée sont
produites en l’occurrence : “Kelvin court souvent”.

Combinaison Agenda Charte Résultats
k,kc s
kc s

�(kc,s) kcs s
s kcs

F-4.2 SemFRaG

SemFRaG est une grammaire noyau pour le français. Elle combine une
syntaxe FB-LTAG et une sémantique LU . Le but de SemFRaG est de servir
de grammaire paraphrastique, c’est-à-dire une grammaire associant des réali-
sations syntaxiques différentes, avec le même sens, à une forme logique unique.
Par exemple, les phrases“Jean aime Marie”et “Marie est aimé par Jean”auront
la même représentation sémantique (l1:aimer(e), l1:agent(e,j), l1:patient(e,m)).
Pour pouvoir nous faire une idée de ses capacités de paraphrase, nous avons
construit un suite de tests comprenant plus de 80 cas. Nous avons obtenu un
total de 1582 phrases, avec une moyenne de 18 paraphrases par cas.

F-4.3 Synthèse

GenI est un réalisateur de surface fondé sur le formalisme FB-LTAG aug-
menté d’une sémantique LU . La version de base de l’algorithme utilise une stra-
tégie en deux phases de génération tabulaire qui construit des expressions syn-
taxiquement complètes et ajoute les modifieurs selon les besoins. Ceci conclut
notre survol de l’état de l’art. Dans les trois chapitres suivants de la thèse, nous
présentons notre propre extension de l’algorithme noyau dont il a été question
ici.
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F-5 Filtrage par polarité

La réalisation de surface est une tâche complexe pour deux raisons : l’am-
bigüıté lexicale et le manque de contraintes sur l’ordre des mots. Dans la pre-
mière partie de notre thèse, nous avons présenté des techniques pour gérer
cette complexité en général, ainsi que des techniques pour traiter le manque de
contraintes sur l’ordre des mots (e.g. l’insertion différée des modifieurs). Dans
ce chapitre, nous nous concentrons sur l’ambigüıté lexicale qui constitue l’autre
source de la complexité de la tâche de réalisation. Ce chapitre propose une façon
de limiter les effets de l’ambigüıté lexicale. L’idée est inspirée de l’« étiquetage
électrostatique » présenté par [Perrier, 2003], qui consiste essentiellement à éla-
guer l’espace de recherche initial en appliquant un filtre global sur la première
combinaison possible d’items lexicaux.

F-5.1 Ambigüıté lexicale

Dans la réalisation de surface, l’ambigüıté lexicale entre en jeu après l’étape
de sélection lexicale. A ce moment-là, on a accédé à l’ensemble d’items lexi-
caux dont la sémantique subsume (une partie de) la sémantique d’entrée. Par
exemple, étant donné la sémantique :

l0:tableau(t), l1:coût(c,t,g), l2:élevé(g).

Un réalisateur de surface combiné à une grammaire et un lexique donnés
devrait sélectionner les items lexicaux suivants (voir la figure 6).

– τpeinture ou τtableau pour l0:tableau(t);
– τcout (le nom) ou τcoute pour l1:coût(c,t,g);
– τeleve ou τcher pour l2:élevé(g).
Cette sélection est ici ambiguë dans le sens où il y a plus d’un item disponible

par partie de la sémantique d’entrée. A ce stade, le nombre de combinaisons a
priori possibles est ∏

1≤i≤n

ai

où ai est le degré d’ambiguité lexicale du i-ème littéral, et n, le nombre de
littéraux dans la sémantique donnée en entrée. En d’autres termes, l’espace de
recherche est exponentiel par rapport au nombre de littéraux.

F-5.2 Automates de polarité

Le filtrage par polarités [Perrier, 2003] repose sur l’observation qu’un grand
nombre des séquences a priori possibles ne peuvent pas être valides au plan
syntaxique. Supposons par exemple, que la représentation sémantique donnée
en entrée soit l0:tableau(t), l1:cout(c,t,g), l2:élevé(g). Pour cet ensemble de
littéraux, les arbres TAG sélectionnés pourront inclure ceux indiqués dans le
tableau ci-dessous. A partir de ce tableau, certaines séquences mènent à une
phrase bien formée, d’autres non. Ainsi, la combinaison τtableau, τcoute, τcher

permettra de générer“Le tableau coûte cher”; τtableau, τcout, τest eleve permettra
de générer “Le coût du tableau est élevé”. Mais la séquence τest eleve τpeinture,
τcoute ne peut pas mener à une phrase bien formée puisqu’elle contient deux
verbes conjugués et un seul argument.
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l0:tableau(t) l1:cout(c,t,g) l2:élevé(g)
τtableau τcout τest eleve

τpeinture τcoute τcher

Afin de détecter les séquences invalides, l’information combinatoire présente
de façon implicite dans la grammaire par le biais en particulier des nœuds
de substitution, des nœuds pieds et des nœuds racines, est associée de façon
explicite avec chaque arbre élémentaire sous la forme de polarités. Une polarité
se compose d’une étiquette et d’un nombre relatif, sa charge. Elle reflète le
potentiel combinatoire de l’arbre auquel elle est associée. Ainsi dans l’exemple
ci-dessus, les arbres τcoute et τest eleve seront associés à la polarité -1gn ce
qui, intuitivement, signifie que ces arbres ont besoin d’un arbre GN (Groupe
Nominal) pour être complets. En contrepartie, les arbres GN auront la polarité
+1gn, ce qui signifie qu’ils procurent un GN.

l0:tableau(t) l1:cout(c,t,g) l2:grand(g)
τtableau +1gn τcout 0gn τest eleve -1gn
τpeinture +1gn τcoute -1gn τcher 0gn

Toute combinaison d’arbres lexicaux dont la charge totale n’est pas nulle
est nécessairement syntaxiquement invalide : soit certains besoins ne sont pas
satisfaits, soit certaines ressources ne sont pas utilisées. Par exemple, la com-
binaison τcout, τtableau, τcher a une charge de +1gn et est donc éliminée. En
revanche, la séquence τcout, τtableau, τest eleve a une charge nulle ce qui sans

+gn
GN

Det N

le tableau

+gn -gn
GN

Det N PP

le cout P GN↓
de

-gn
P

GN↓ GV

V Adj

est élevé

+gn
GN

Det N

le peinture

-gn
P

GN↓ GV

V Adj↓
coute

Adj

cher

Fig. 6: Calcul de la polarité des arbres sélectionnés lexicalement
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garantir sa validité syntaxique, ne l’invalide pas — cette séquence sera donc
conservée et explorée par le générateur.

0 +1

tableau,
peinture

+1

0
coute

cout

est élevé

cher

0

-1

+1cher

est élevé

l0:tableau(t) l1:cout(c,t,g) l2:grand(g)

Fig. 7: Automate de polarités après minimisation

Le filtrage par polarités est implémenté comme dans [Perrier, 2003] par le
biais d’un automate à états finis. Cet automate encode toutes les séquences
possibles d’items lexicaux couvrant la sémantique d’entrée. Chaque transition
est étiquetée avec le nom d’un arbre élémentaire réalisant une partie de la
sémantique d’entrée et chaque état avec la polarité cumulée des transitions
menant à cet état. L’état final de l’automate a une charge nulle et une mini-
misation [Hopcroft and Ullman, 1979] de l’automate est exécutée qui élimine
de l’automate tous les états non finaux. L’automate résultant représente ainsi
uniquement les combinaisons d’items lexicaux qui couvrent la sémantique don-
née en entrée et dont la charge totale est nulle. La figure 7 montre l’automate
final pour l’exemple discuté ci-dessus.

Pour préserver la factorisation permise par l’usage de la charte pendant la
génération, le filtrage par polarité doit en outre être intégré avec l’algorithme
de réalisation. En effet, certains chemins dans l’ensemble des chemins définis
par l’automate peuvent avoir des parties communes. Pour éviter de calculer
plusieurs fois ces parties communes, chaque arbre lexical est annoté avec l’en-
semble des chemins auquel il appartient. Pendant la phase de réalisation, deux
items ne sont comparés que si l’intersection de leur ensemble de chemins n’est
pas vide (ils apparaissent dans le même chemin). Le résultat d’une combinai-
son est étiqueté avec l’intersection des étiquettes des constituants combinés. De
cette façon, les items lexicaux apparaissant dans différents chemins de l’auto-
mate ne sont introduits qu’une seule fois dans la charte et la factorisation des
arbres élémentaires ou dérivés communs à plusieurs chemins peut être assurée.

F-5.3 Évaluation du filtrage par polarités

Il y a deux questions pratiques qui doivent être posées à propos de l’utili-
sation de l’automate de polarité. Il faut d’abord savoir à quel point le filtrage
est efficace dans la réduction des effets de l’ambigüıté lexicale, autrement dit
dans l’élimination de certaines combinaisons lexicales. Il faut ensuite s’assurer
que la dépense supplémentaire consistant à construire l’automate de polarité
vaut la peine d’être faite.

Clairement, le filtrage par polarité réduit l’effet de l’ambigüıté lexicale. Il y
a deux façons de le mesurer, d’abord en regardant l’effet direct sur le nombre
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Fig. 8: Construction d’un automate de polarités
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de combinaisons lexicales, ensuite en mesurant des artefacts indirects comme
le nombre d’arbres dérivés construits par le réalisateur de surface. Ci-dessous,
nous présentons les résultats concernant notre test « le pire » (le plus grand,
comprenant 8 littéraux, sans compter les rôles thématiques et permettant 231
paraphrases) :

sans filtrage avec filtrage
combinaisons lexicales 2 436 672 4 136
substitutions 26 149 3 284
adjonctions 5 014 630

Pour expliquer comment nous arrivons au calcul du nombre de combinai-
sons lexicales sans filtrage, nous devons préciser qu’au départ de la construction
de l’automate, toutes les polarités sont neutralisées. Cette première version de
l’automate est appelée automate source (seed automaton). Le nombre de combi-
naisons sans filtrage correspond au nombre de chemins que contient l’automate
source. Chaque chemin correspond à une combinaison d’items lexicaux. Pour
obtenir le nombre de combinaisons lexicales avec filtrage, nous avons compté
les chemins de notre automate de polarité, une fois que des valeurs ont été
assignées aux polarités.

La comparaison de ces deux nombres fournit une estimation de l’utilité du
filtre de polarité. Dans notre suite de tests, l’automate source a pour chaque
cas entre 1 et 2 436 672 chemins. L’automate final a entre 1 et 4 136 chemins.
Ceci représente une réduction importante de l’espace de recherche (puisque
nous avons éliminé 99,9% des combinaisons).

Là encore, l’effet concret de l’élimination de ces chemins n’est pas clair. En
effet, en pratique, un réalisateur de surface näıf pourrait peut-être rapidement
élaguer les parties de l’espace de recherche qui impliquent des combinaisons que
le filtrage par polarité aurait éliminé; aussi, l’importante réduction du nombre
de combinaisons lexicales pourrait ne pas signifier grand chose. Une présenta-
tion plus convaincante du bénéfice du filtrage par polarité ne mesurerait pas
seulement combien de combinaisons lexicales nous avons éliminées, mais quelles
sont les conséquences de cette élimination pour la réalisation de surface. C’est
à ce moment-là que le comptage des substitutions et des adjonctions entre en
jeu. Chacun de ces comptages sert à estimer la quantité de travail effectivement
produite par le réalisateur de surface. Sans le filtrage, il a effectué 26 149 sub-
stitutions et 5014 adjonctions. Avec le filtrage, il tombe à 3284 substitutions et
630 adjonctions. En bref, le filtrage par polarité a un impact réel à la fois sur
la taille de l’espace de recherche, et sur ce que le réalisateur explore réellement.

Nous savons donc maintenant que le filtrage par polarité peut apporter une
bonne réduction de l’espace de recherche dans la réalisation de surface. Une
question autrement plus compliquée est la suivante : est-ce que le coût de la
construction, de la minimisation et de l’intersection de ces automates compense
les gains que nous faisons? En effet, les temps de réalisation avec et sans filtrage
sont comparables pour la majorité des cas de la suite de tests. Pourtant, si on
observe les résultats du réalisateur pour la phrase la plus complexe de la suite
de tests, on constate que le filtrage par polarité permet de rendre la réalisation
de surface plus rapide à 98,4%, et produit un résultat en 25,21 secondes CPU
au lieu de 1615,7.
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F-6 Sélection de paraphrases

Dans le chapitre précédent, nous avons exploré une technique permettant
de surmonter l’ambigüıté lexicale. Pourtant, on pourrait dire que l’ambigüıté
lexicale ne devrait pas être possible, qu’après tout, elle révèle un défaut fon-
damental dans la conception du générateur, que la grammaire ou le forma-
lisme sémantique d’entrée ne sont pas assez précis. Dans notre cas, pourtant,
l’ambigüıté lexicale est totalement délibérée. C’est bien plus une caractéris-
tique souhaitée qu’un défaut. Elle existe parce que le réalisateur de surface et
la grammaire sont conçus pour traiter les paraphrases syntaxiques qui ont la
même sémantique.

Par exemple, une phrase comme “Jean aime Marie” aura la sémantique
suivante : l1:jean(j) l2:aimer(e,j,m) l3:marie(m), et ses nombreuses paraphrases
seront :

(3) a. Marie est aimée par Jean

b. C’est Jean qui aime Marie

c. C’est Jean de qui est aimée Marie

d. C’est par Jean que Marie est aimée

e. C’est par Jean qu’est aimée Marie

f. C’est Jean dont est aimée Marie

g. C’est Marie que Jean aime

h. ...

Malgré tout, avoir une longue liste de paraphrases possibles pour une séman-
tique donnée n’est pas particulièrement utile pour les applications pratiques de
la génération. Dans ce chapitre, nous présentons une technique pour que le
réalisateur de surface ne donne qu’une seule phrase par sémantique d’entrée.
L’approche que nous utilisons a été construite autour de l’intuition que la sé-
lection de paraphrase est étroitement liée à la sélection lexicale. Elle consiste
essentiellement à enrichir l’entrée avec un ensemble de propriétés linguistiques
(comme par exemple préciser que l2:aimer(e,j,m) doit être réalisée à la forme
active) qui contrôle le choix initial des items lexicaux et par conséquent, les
paraphrases produites.

F-6.1 Paraphrases contextuellement (in)appropriées

Avant d’explorer le mécanisme de sélection en détail, il est important d’exa-
miner plus attentivement nos objectifs. Pour commencer, il y a deux mauvaises
raisons pour vouloir produire une seule paraphrase. La première raison consis-
terait à dire que cela pourrait être utile en soi, ou que les applications de GLN
requièrent seulement une sortie. Si c’était le cas, on pourrait simplement géné-
rer toutes les sorties et en choisir une au hasard. La deuxième mauvaise raison
est une raison d’efficacité. Alors qu’on pourrait penser que l’efficacité est un
but important, une motivation incontestable pour arriver à ne produire qu’une
seule paraphrase, elle ne constitue pas la principale raison à notre façon d’agir.

Notre motif principal peut être illustré par cet exemple, qui vient de [Hal-
liday, 1978] et qu’on retrouve dans la littérature sur kpml [Bateman et al.,
1992] :
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(4) Now comes the President here. It’s the window he’s stepping through
to wave to the crowd. On his victory his opponent congratulates him.
What they are shaking now is hands. A speech is going to be made by
him. “Gentleman and ladies. That you are confident in me honours me.
We shall, hereby pledge I, turn this country into a place, in which what
people do safely will be live, and the ones who grow up happily will be
able to be their children.”

Le passage ci-dessus peut nous sembler être de l’anglais parfaitement rai-
sonnable au premier abord, mais quand on le lit attentivement, on s’aperçoit
que ce texte est vraiment bizarre. On peut identifier les problèmes suivants
[Halliday, 1985] :

– Le circonstant de temps “now” a été marqué thématiquement dans la
première phrase, là où “here” aurait été plus naturel.

– La forme clivée “It’s the window he’s...” est utilisée dans la deuxième
phrase, bien qu’on n’exprime pas de contraste.

– Dans la dernière phrase, “A speech is going to be made by him”, on utilise
la forme passive, alors que l’actif aurait été meilleur ou tout au moins,
plus naturel.

Aucun des problèmes cités n’est, à proprement parler, une erreur de gram-
maire. Le passage ci-dessus est composé de phrases techniquement correctes,
bien que contextuellement inappropriées. Ces phrases ne correspondent tout
simplement pas aux besoins du contexte (qui inclut mais ne se limite pas au
cotexte et aux connaissances de l’utilisateur).

Un réalisateur de surface devrait par conséquent fournir des outils pour
éliminer toute paraphrase contextuellement inappropriée de la sortie qu’il four-
nit. Mieux encore, il devrait avoir pour but de produire la meilleure paraphrase
pour une entrée donnée. La raison pour laquelle nous insistons sur le fait de
produire une seule paraphrase, et non les quatre ou cinq meilleures repose sur
le principe affirmant que « tous les choix linguistiques ont un sens » tel qu’on le
trouve dans la linguistique systémique fonctionnelle (Systemic Functional Lin-
guistic) [Winograd, 1983]. Chaque forme syntaxique est choisie délibérément.
En s’assurant qu’on peut produire au plus une seule paraphrase, on s’assure
que tous les choix qui sont faits sont explicites et accessibles à l’utilisateur.
Notons simplement qu’être capable de se restreindre à une seule paraphrase
ne nous oblige pas à le faire. Idéalement le mécanisme de sélection des pa-
raphrases devrait autoriser l’utilisateur à faire des choix explicites parmi des
propositions ou à laisser certaines décisions au réalisateur (surge, notamment,
possède cette flexibilité [Elhadad and Robin, 1999]). Dans tous les cas, cette
option de rendre les choix explicites devrait toujours être disponible.

F-6.2 Mécanisme de sélection

La sélection de paraphrase peut largement être réalisée en contraignant la
sélection lexicale. Nous allons étendre le processus de sélection lexicale et la
sémantique d’entrée pour exprimer de telles contraintes, mais avant d’entrer
dans les détails, esquissons un scénario. Considérons la sémantique d’entrée
ci-dessous, et imaginons une grammaire hypothétique qui l’associe aux trois
paraphrases données :
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(5) l1:give(e,j,b,m), l2:john(j), l3:mary(m)
John gave the book to Mary.
Mary was given the book by John.
The book was given to Mary by John.

Pour restreindre la sélection, on pourrait demander que le littéral l1:give(e,j,b,m)
soit réalisé par un verbe à la forme passive. On ré-écrit alors la sémantique d’en-
trée de la manière suivante avec les conséquences attendues.

(6) l1:give(e,j,b,m)[PassiveForm], l2:john(j), l3:mary(m)
John gave the book to Mary.
Mary was given the book by John.
The book was given to Mary by John.

Ajouter des propriétés supplémentaires à la sémantique d’entrée limite sim-
plement un peu plus la sortie résultante. Nous restreignons encore le littéral et
nous obtenons :

(7) l1:give(e,j,b,m)[PassiveForm, CanonicalToObject], l2:john(j), l3:mary(m)
John gave the book to Mary.
Mary was given the book by John.
The book was given to Mary by John.

Les étiquettes avec lesquelles nous avons enrichi la sémantique d’entrée sont
appelées les propriétés d’arbre. Nous allons voir maintenant comment elles sont
utilisées exactement, et d’où elles viennent en pratique. A partir de ces idées,
nous allons aussi voir comment les propriétés d’arbre peuvent être utilisées
pour restreindre la sémantique de façon à ce que nous produisions au plus une
sortie.

F-6.3 Items lexicaux enrichis et sémantique d’entrée

Ces extensions par propriété d’arbre requièrent qu’on introduise des versions
enrichies du lexique et de la sémantique d’entrée, les deux tenant compte des
propriétés d’arbre. L’idée de base repose sur le fait que les linguistes utilisent
les propriétés d’arbre pour décrire les items lexicaux et que le réalisateur de
surface les utilise pour filtrer la sélection lexicale.

Définition 3 (Propriété d’arbre). Une propriété d’arbre est un identifiant.
Des propriétés d’arbre peuvent être par exemple PassiveForm (on demande à
ce que la phrase soit réalisée au passif) et CanonicalToObject (on demande à
ce que la phrase soit réalisée avec l’objet canonique introduit par «to»).

Définition 4 (Item lexical enrichi). Un item lexical enrichi est un triplet
〈T, S, LTP 〉. T et S sont respectivement l’arbre élémentaire et la sémantique
lexicale telle qu’elle est décrite dans la définition 2 (page xvi). LTP est un
ensemble de propriétés d’arbre.

Définition 5 (Sémantique d’entrée enrichie). Une sémantique d’entrée enrichie
est un ensemble de littéraux enrichis de la forme L[tp1, . . . , tpn] où L est un
littéral LU saturé et tp1, . . . , tpn un ensemble de propriétés (qui peut être vide).
Pour simplifier la notation, nous n’écrivons pas les crochets quand l’ensemble
de propriétés d’arbre est vide.
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Définition 6 (Sémantique d’entrée simple). La sémantique d’entrée simple
est ce qu’il reste quand on a enlevé toutes les propriétés d’arbre de la séman-
tique enrichie. Etant donné une sémantique d’entrée enrichie, ES, on dira que
la sémantique d’entrée simple est l’ensemble des littéraux de la forme Li où
Li[tp1, . . . , tpn] ∈ ES

F-6.4 Sélection lexicale enrichie

Prendre en compte les propriétés d’arbre consiste à filtrer les items lexicaux
de manière à ce que seuls ceux qui présentent les propriétés d’arbre souhaitées
soient retenus. Etant donné une sémantique enrichie ES, on instancie le lexique
comme on a l’habitude de le faire (section F-4.1) et on retourne l’ensemble des
items lexicaux enrichis tel que pour chaque item 〈T, S, LTP 〉 :

– sa sémantique instanciée S est non vide et subsume la sémantique d’entrée
simple ;

– pour chaque littéral enrichi L[tp1, . . . , tpn] de la sémantique d’entrée en-
richie ES, si L ∈ S alors {tp1, . . . , tpn} ⊆ LTP .

F-6.5 D’où viennent les propriétés d’arbres
(métagrammaires)

Le mécanisme de sélection d’arbre requiert que chaque item lexical dans la
grammaire soit associé avec un ensemble de propriétés d’arbre. Il y a plusieurs
moyens de parvenir à ce but intermédiaire. Une solution possible pourrait être
l’annotation manuelle, mais ce n’est ni souhaitable ni nécessaire. Ce n’est pas
souhaitable parce que les grammaires TAG réalistes sont assez grosses pour
rendre le processus sujet aux erreurs et encombrant. Ce n’est par ailleurs pas
nécessaire dans le cadre de SemFRaG parce que les annotations sont déjà
codées dans une autre ressource, la métagrammaire à partir de laquelle Sem-

FRaG a été compilée.
Les métagrammaires sont des représentations hautement factorisées de la

grammaire qui peuvent alors être compilées dans des formes plus explicites
et familières. L’utilisation des métagrammaires est motivée par la quantité de
redondances qui peuvent être trouvées dans une grammaire TAG typique. Le
système qu’on utilise ici est le compilateur de métagrammaire XMG décrit dans
[Crabbé and Duchier, 2004]. Nous allons maintenant entrer dans les détails
concernant ce qui forme une telle métagrammaire. Au départ, une métagram-
maire XMG consiste en des fragments d’arbres nommés (un fragment d’arbre
est un ensemble de contraintes de dominance et de précédence linéaire) qui
sont combinés par des disjonctions et des conjonctions. Pour avoir une idée de
ce à quoi peut ressembler une métagrammaire, voici un exemple de fragments
combinés pour générer des arbres de la famille des verbes transitifs. Ils sont
combinés dans la figure 9.

Subject ∧
((ActiveForm ∧Object) ∨ (PassiveForm ∧ CAgent))

En termes XMG, un arbre élémentaire peut être vu comme une conjonc-
tion de fragments. Comme nous pouvons le voir dans l’exemple ci-dessus, les
fragments d’arbres ont des noms qui ressemblent énormément aux propriétés
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S

N↓ V ∧
S

V� ∧
S

V N↓ =

S

N↓ V� N↓

Subject ActiveForm Object

S

N↓ V ∧

S

V V�
être

∧

S

V PP

P N↓
par

=

S

N↓ V V� PP

est P N↓
par

Subject PassiveForm CAgent

Fig. 9: Fragments d’arbres XMG (simplifiés de SemFRaG)

d’arbres qu’on a utilisées dans nos exemples. Ceci est lié au fait que dans
la grammaire SemFRaG, on se sert des identifiants XMG pour trouver les
propriétés d’arbre. L’ensemble des propriétés d’arbres possédé par un arbre
élémentaire est l’ensemble des noms de fragments d’arbres à partir duquel cet
arbre élémentaire a été construit par la métagrammaire.

F-6.6 Produire au plus une sortie

Plus il y a de propriétés d’arbre utilisées pour enrichir la sémantique d’en-
trée, moins on sélectionne d’items lexicaux. En allant jusqu’au bout de cette
logique, on pourrait tout à fait ajouter assez de propriétés d’arbre pour que
chaque littéral soit réalisé par au plus un item lexical (On précise « au plus » à
cause des items dont la sémantique est composée de plusieurs littéraux). La plu-
part du temps, avoir une sélection lexicale débarrassée de toute ambigüıté est
une condition suffisante pour garantir que le réalisateur de surface retourne une
paraphrase unique, les exceptions étant les entrées où l’absence de contrainte
sur l’ordre des mots entre en jeu (se reporter au cas des modifieurs intersectifs).
Les propriétés d’arbres associées avec chaque item lexical doivent permettre de
l’identifier de façon unique. En d’autres termes, chaque item lexical enrichi doit
être associé avec ce qu’on appelle un identifiant d’arbre.

Définition 7 (Identifiant d’arbre). Dans une grammaire FB-LTAG, un iden-
tifiant d’arbre est un ensemble de propriétés d’arbre I. Si dans un ensemble
d’entrées lexicales il y a seulement un item lexical 〈T, S, LTP 〉 tel que LTP ⊆ I,
on dit que l’identifiant d’arbre est unique dans cet ensemble.

Ce qui est important ici n’est pas seulement le fait que les identifiants
d’arbre soient uniques. Après tout, les arbres élémentaires produits par XMG
on déjà des noms uniques (comme par exemple Tn0Vn1-387) qui pourraient
techniquement nous permettre de parvenir au même résultat. Mais ceux-ci ne
sont pas aussi pratiques que les identifiants d’arbre, étant donné qu’ils sont to-
talement arbitraires, et qu’ils ne sont pas dotés de la signification linguistique
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des propriétés d’arbre. La raison pour laquelle la signification linguistique a de
l’importance est qu’elle nous amène plus près de l’objectif consistant à choi-
sir des paraphrases contextuellement appropriées. Sommairement, nous avons
besoin de moyens de représenter l’ensemble des alternatives linguistiques et de
faire un choix pour chacune d’elles. Nous pensons que les disjonctions dans la
métagrammaire servent de mécanisme pour représenter ces alternatives et que
les propriétés d’arbres nous fournissent le mécanisme pour faire notre choix.

Les exemples 8a–8c illustrent l’utilisation des propriétés d’arbre pour la
sélection de paraphrase dans SemFRaG. On se reportera à l’annexe B pour la
liste complète des propriétés d’arbre de la grammaire.

(8) a. l1:jean(j)[ProperName]
l2:aimer(e,j,m)[CanonicalNominalSubject,
ActiveVerbForm, CanonicalNominalObject]
l3:marie(m)[ProperName]

Jean aime Marie
Marie est aimé de Jean

b. l1:le(c)[Det]
l1:chien(c)[Noun]
l2:dormir(e1,c)[RelativeSubject]
l3:ronfle(e2,c)[CanonicalSubject]

Le chien qui dort ronfle
Le chien qui ronfle dort

c. l1:jean(j)[ProperName]
l2:promettre(e1,j,m,e2)[CanonicalNominalSubject,
ActiveVerbForm, CompletiveObject]
l3:marie(m)[ProperName]
l4:partir(e2,j)[InfinitivalVerb]

Jean promet à Marie de partir
Jean promet à Marie qu’il partira

F-6.7 Evaluation

Afin d’évaluer d’une part, la capacité paraphrastique du réalisateur et d’autre
part, l’impact des annotations de contrôle sur le non-déterminisme, nous avons
utilisé une suite de tests graduée. Cette suite a été construite en (i) analysant un
ensemble de phrases et (ii) sélectionnant pour chaque phrase la représentation
sémantique correcte1. Le résultat est une suite de 80 représentations séman-
tiques choisies pour illustrer les différents types de paraphrases grammaticales
décrites par la grammaire utilisée c’est à dire :

– les variations grammaticales dans la réalisation des arguments (clivés,
cliticisation, extraction, inversion du sujet, etc.) et la forme du verbe
(passive/active, impersonnelle, etc.)

– les variations dans la réalisation des modificateurs (anté- vs. post-posés,
adjectif vs. subordonnée relative, épithète vs. attribut, etc.)

– les variations permises par une équivalence morpho-dérivationnelle (ex :
arrivée/arriver)

1L’analyseur peut donner plusieurs analyses et donc souvent plusieurs représentations
sémantiques dont certaines représentent correctement le sens de la phrase analysée , d’autres
non.
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Fig. 10: Distribution de la complexité paraphrastique

Les 80 cas sélectionnés donnent lieu à la génération par GenI de 1 528
phrases distinctes soit un taux de paraphrases moyen par entrée de 18 avec une
variation allant de 1 à plus de 50 paraphrases par représentation sémantique.
La figure 10 donne une description plus détaillée de la distribution du taux de
variation paraphrastique. Plus généralement, 42% des phrases avec un verbe fini
ont une à 3 paraphrases (cas des verbes intransitifs), 44% 4 à 28 paraphrases
(verbes prenant deux arguments) et 13% acceptent plus de 30 paraphrases
(verbes à trois arguments). Pour les phrases contenant deux verbes finis, le
ratio est de 5% des cas ayant 1 à 3 paraphrases, 36% des cas ayant entre 4 et
14 paraphrases et 59% plus de 14 paraphrases. Enfin les phrases contenant plus
de 3 verbes finis acceptent toutes plus de 20 paraphrases.

Afin de vérifier que l’utilisation des profils suffit à assurer le déterminisme,
nous avons calculé le nombre de cas où deux paraphrases d’un même contenu
partagent le même profil. Pour ce faire, nous avons étiqueté de façon automa-
tique les 1 528 paraphrases produites par GenI à partir de la suite de test, avec
leur profils (le profil d’une paraphrase est l’ensemble des profils associés aux
arbres élémentaires utilisés pour construire l’arbre dérivé de cette paraphrase).
Nous avons ensuite comparé, pour chaque entrée de la suite de tests, les profils
de toutes les paires de paraphrases correspondantes et compté le nombre de
fois où une paire de paraphrases partage le même profil.

Cette manipulation montre que pour les 1 528 paraphrases considérées, le
profil échoue à refléter la différence entre deux paraphrases dans moins de 2%
des cas. L’analyse des données fautives révèle que les cas posant problème sont
les paires paraphrastiques impliquant uniquement (i) une variation d’ordre des
arguments (Ex. “ Jean donne une pomme à Marie / Jean donne à Marie une
pomme ”) ou (ii) une variation de position pour un modificateur (Ex. “Jean
donne ce soir une pomme à Marie /Jean donne une pomme ce soir à Marie
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/ Jean donne une pomme à Marie ce soir”). Le premier cas peut être résolu
en modifiant la grammaire de façon à expliciter la différence dans le profil des
arbres élémentaires correspondant, le second en imposant un ordre canonique
sur l’adjonction des modificateurs.
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F-7 Réduction de la surgénération

Une grammaire générative devrait produire toutes les phrases de la langue
qu’elle décrit et seulement ces phrases. En pratique cependant, les grammaires
surgénèrent et sous-génèrent en même temps. La sous-génération a lieu quand
une grammaire ne reconnâıt pas toutes les châınes dans la langue cible. Cela
signifie qu’on peut échouer dans l’analyse de phrases grammaticales ou dans la
production de paraphrases valides pour une sémantique d’entrée. La surgénéra-
tion, d’un autre côté, a lieu quand la grammaire autorise trop de châınes. Cela
signifie que les réalisateurs de surface comme GenI ne vont pas seulement
produire des paraphrases valides, mais aussi des phrases assez peu naturelles,
des châınes qui n’appartiennent pas à la langue ou des châınes qui ne peuvent
pas être associées à la sémantique d’entrée. La surgénération peut aussi amener
à ce que les analyseurs acceptent de telles châınes ou choisissent la mauvaise
analyse pour une phrase licite. En bref, les problèmes de sous-génération ou de
surgénération peuvent arriver en analyse comme en génération. Ici, nous nous
concentrons sur la surgénération.

On peut identifier plusieurs causes à la surgénération. Le fait est aujour-
d’hui bien connu : la création de grammaire est une tâche très complexe. En
particulier, il est facile d’oublier ou de mal formuler une contrainte et ainsi
d’autoriser une combinaison illicite (donc indirectement une châıne illicite).
De plus, une grammaire computationnelle est un objet gigantesque et prévoir
les interactions décrites même par une grammaire de taille moyenne est très
difficile pour ne pas dire impossible.

Dans notre cas, la grammaire est compilée à partir d’une spécification plus
abstraite, une métagrammaire. Ceci nous aide à parvenir rapidement à une
bonne couverture (on évite la sous-génération) ; cependant, avec un haut niveau
d’abstraction, on court le risque d’autoriser plus de structures élémentaires
que ce qu’on souhaitait. Les arbres élémentaires dans XMG sont construits en
combinant des classes. Parfois, les classes se combinent de façon inattendue ou
non-souhaitée, produisant ainsi des arbres qui ne devraient vraiment pas être
dans la grammaire, des arbres qui vont aussi amener à la surgénération.

C’est pourquoi un réalisateur de surface qui produit toutes les châınes asso-
ciées à une sémantique donnée est un outil précieux : il permet de vérifier ces
prédictions sur des exemples concrets. Un analyseur est un excellent outil pour
détecter la sous-génération – il suffit de lui donner une phrase et d’observer ce
qui se produit – mais comme le montre [Boguraev et al., 1988] , il est beaucoup
moins pratique pour détecter la surgénération, parce qu’on se retrouve alors à
devoir inventer des phrases agrammaticales pour le tester. Avoir un générateur
évite de devoir imaginer de telles phrases.

F-7.1 Débuggage de grammaire

La grammaire que nous avons à débugger est SemFRaG, la grammaire
française de type FB-LTAG décrite dans le chapitre 4. Nous avons observé
avec SemFRaG que les phrases fausses pour une sémantique d’entrée pré-
sentent toutes le même type d’erreur. Ceci nous a amené à penser que c’est un
petit nombre de failles qui provoque un grand nombre d’erreurs et qu’observer
systématiquement ce que les phrases fausses avaient en commun nous révéle-
rait ces failles. L’idée qui sous-tend notre correction est la suivante : nous allons
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Fig. 11: Infrastructure de test

d’abord annoter (manuellement) la sortie du réalisateur de surface comme étant
fausse ou non, et ensuite nous allons utiliser les données annotées pour faire res-
sortir automatiquement les items (e.g., les arbres élémentaires ou les propriétés
d’arbre) qui apparaissent systématiquement dans les cas de surgénération. Plus
précisément, la procédure qu’on définit pour réduire la surgénération peut être
schématisée de la façon suivante :

1. La réalisation de surface est appliquée à une suite de tests graduelle de
sémantique d’entrée et produit un historique détaillé des dérivations as-
sociées à chaque entrée de la suite de tests.

2. Les sorties obtenues par l’historique sont classées (à la main) dans deux
catégories de phrases qu’on appelle : pass (les phrases qu’on accepte)
et overgeneration (celles qui ne devraient pas être générées, parce
qu’elles n’appartiennent pas à la langue ou ne peuvent pas être associées
à la sémantique d’entrée).

3. La sortie annotée est utilisée pour produire automatiquement un résumé
appelé liste de suspects ; ce résumé contient la liste des arbres TAG ou
des étapes de la dérivation qui semblent causer la surgénération ; on les
reconnâıt parce qu’ils apparaissent seulement dans des cas de surgénéra-
tion.

4. La grammaire est corrigée et on la ré-exécute sur les données.
5. Les résultats de la dérivation sont comparés avec les précédents et toutes

les formes de divergence entre eux (phrases générées en plus ou en moins)
sont signalées.

D’une certaine manière, cette approche consistant à produire une sortie
et à corriger la grammaire à l’aide d’un historique des dérivations doit être
déjà largement répandue en génération. Notre apport porte sur les trois points
suivants :

– Le caractère systématique et incrémentale de notre approche ;
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– Le haut niveau d’automatisation qui augmente notre rendement en focali-
sant l’attention des utilisateurs humains sur la correction de la grammaire
plus que sur les détails inutiles ;

– La production du résumé des opérations permettant d’identifier facile-
ment la source de l’erreur.

Nous détaillons maintenant ces trois points :

F-7.2 Une approche incrémentale

Les premières expériences avec SemFRaG ont montré que la grammaire
surgénère énormément à la fois parce qu’elle a été développée au départ pour
l’analyse, et aussi parce qu’elle est compilée à partir d’une spécification abs-
traite. En effet, pour certaines entrées, le réalisateur produit plus de 4 000 para-
phrases, dont une grande proportion relève de la surgénération. Plus générale-
ment, le nombre de sorties pour une entrée donnée varie de 0 à 4 908 avec une
moyenne de 201 sorties par entrée (la médiane est de 25).

Pour éviter d’avoir à annoter manuellement un grand nombre de données,
nous nous sommes fondé sur une suite de tests graduelle (que nous décrivons
au chapitre 6) et nous avons traité les données en commençant par les plus
simples pour terminer par les plus complexes. Ceci signifie que nous avons
réduit la surgénération de façon incrémentale pour chaque cas, diminuant ainsi
le nombre de sorties à annoter dans le test suivant.

Nous nous sommes contraint à travailler selon une méthode incrémentale
très stricte avec l’aide d’une infrastructure de tests alternant les annotations
manuelles et la production de sorties générées automatiquement.

Trois points méritent d’être soulignés. Tout d’abord, la liste de suspects est
produite automatiquement grâce à l’annotation de l’historique des dérivations.
Ainsi, en dehors de l’annotation de l’historique des dérivations qui est manuelle,
l’identification des suspects est totalement automatisée. Ensuite, un test de
régression est utilisé pour vérifier que les corrections faites à la grammaire
n’affectent pas sa couverture (autrement dit, on vérifie que toutes les phrases
appartenant à la catégorie pass sont toujours produites). Enfin, l’infrastructure
de test procure un environnement confortable pour le linguiste permettant de
visualiser, de modifier et d’exécuter la grammaire sur les entrées qu’il a étudiées.

L’historique des dérivations (étapes 1 et 3)

L’historique des dérivation produit par GenI contient des informations dé-
taillées sur chacune des dérivations associées à une entrée donnée. Plus préci-
sément, pour chaque châıne générée, l’historique des dérivations montre l’arbre
de dérivation associé et la famille d’arbre, l’identifiant d’arbre et les propriétés
d’arbre associées à chaque arbre élémentaire composant cet arbre de dérivation.

L’historique des dérivations (figure 12) nous montre d’où proviennent les
phrases, certes, mais ce qui nous manque cruellement est de savoir si ces phrases
sont correctes ou non. Pour en extraire l’information nous montrant plus direc-
tement les causes probables de la surgénéraion, nous annotons manuellement
cet historique, remplaçant pour chaque phrase l’étiquette output par l’étiquette
pass si la phrase et correcte ou par l’étiquette overgeneration si elle ne l’est
pas (nous avons été relativement tolérant dans nos annotations, en ce sens que
nous avons marqué des phrases comme étant correctes lorsqu’elles étaient en
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output: c’est paul demander jean qu’il vient
venir:Tn0V:n5 <-(a)- demander:Tn0Vs1int
venir:Tn0V:n4 <-(s)- paul:Tpropername
demander:Tn0Vs1int:n3 <-(s)- jean:Tpropername

output: c’est paul que demander jean il vient
venir:Tn0V:n8 <-(a)- demander:Tn0Vs1int
venir:Tn0V:n4 <-(s)- paul:Tpropername
demander:Tn0Vs1int:n3 <-(s)- jean:Tpropername

demander Tn0Vs1int-6199
CanonicalSententialObjectInterrogativeFiniteWithoutComplementizer
InvertedNominalSubject SententialInterrogative

venir Tn0V-6686
CleftObject ImpersonalSubject NonInvertedNominalSubject
activeVerbMorphology

jean Tpropername-2472
paul Tpropername-2472
=====================================================================
output: c’est jean qui demande il vient paul
demander:Tn0Vs1int:n10 <-(s)- venir:Tn0V
demander:Tn0Vs1int:n4 <-(s)- jean:Tpropername
venir:Tn0V:n4 <-(s)- paul:Tpropername

demander Tn0Vs1int-6182
CanonicalSententialObjectInterrogativeFiniteWithoutComplementizer
CleftSubject NonInvertedNominalSubject SententialInterrogative

venir Tn0V-6678
CanonicalObject ImpersonalSubject NonInvertedNominalSubject

jean Tpropername-2472
paul Tpropername-2472

Fig. 12: Un historique de dérivation

fait douteuses). Ce travail peut sembler fastidieux, mais il est en réalité plus to-
lérable qu’on pourrait le penser. En effet, le processus d’annotation est morcelé
grâce à la nature incrémentale de notre approche, ce qui le rend bien plus gé-
rable. Chaque test ne demande qu’un petit nombre de phrases soit annoté, et de
plus, à chaque itération de notre infrastructure de test, le réel effort intellectuel
réside dans le fait de devoir trouver comment corriger la grammaire. Compa-
rées à cela, les quelques minutes passées à annoter une centaine de phrases sont
négligeables.

Ceci dit, ce n’est pas en se plongeant dans ces historiques que nous allons
découvrir les bugs de notre grammaire. En effet, ces historiques sont aussi longs
que redondants. L’exemple ci-dessus montre trois phrases et fait une demi page !
La plus grande utilité de ces historiques, selon nous, réside dans le fait qu’ils
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<suspects-report> ::= <test-case>*
<test-case> ::= (<lemma-item> <EOL>)*

(<derivation-item> <EOL>)*

<lemma-item> ::= <lemma> <EOL>
<family-item> <EOL>
(<tree-item> <EOL>)*

<lemma> ::= <string>
<family-item> ::= <tree-family> "(all)"? <tree-property>*
<tree-item> ::= " [" <tree-number> "]" <tree-property>*

<derivation-item> ::= <tree-1> <arrow> <tree-2>
<tree-1> ::= <tree-id> ":" <node-number>
<tree-2> ::= <tree-id>
<arrow> ::= "<-(" <op> ")-"
<op> ::= "s" | "a"

<tree-id> ::= <lemma> ’:’ <tree-family> ’-’ <tree-number>
<tree-family> ::= <identifier>
<tree-number> ::= <number>
<tree-property> ::= <identifier>
<node-number> ::= <number>

Fig. 13: EBNF pour les listes de suspects

servent à produire les listes de suspects.

Les listes de suspects (étape 4)

Pour faire un usage complet de l’historique des dérivations, nous devons
résumer et synthétiser l’information qu’il contient. Nous le faisons automati-
quement en utilisant un script qui lit le fichier de dérivation annoté et produit
une liste de suspects bien plus courte. Cette liste identifie des « suspects », c’est-
à-dire les causes probables de la surgénération. Il ne se contente pas de résumer
l’historique des dérivations, mais il en extrait l’information importante. Pour
chaque sémantique d’entrée, la liste présente les arbres, les ensembles d’arbres
ou les items de dérivation qui apparaissent seulement dans les cas de surgénéra-
tion, c’est-à-dire, les châınes associées avec cette entrée et qui ont été marquées
avec l’étiquette overgeneration.

La figure 13 montre l’allure d’une liste de suspects sous forme de grammaire
EBNF. Comme nous pouvons le voir, la liste nous montre les sources de la
surgénération pour chaque cas de la suite de tests. Les tests sont indépendants
les uns des autres. Pour plus de simplicité, nous dirons que quand une chose (par
exemple, une propriété d’arbre), apparâıt systématiquement dans les phrases
de surgénération, elle est «mauvaise». La liste donne donc pour chaque cas :
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– les mauvaises propriétés d’arbres,
– les mauvaises dérivations,
– les mauvais arbres élémentaires,
– les mauvaises familles.
Les éléments cités se retrouvent dans la liste des suspects groupés sous

deux items différents que nous décrivons maintenant : l’item lemme et l’item
dérivation.

Item lemme Chaque item lemme (lemma item) consiste en une lemme et un
ensemble d’arbres élémentaires qui possèdent des mauvaises propriétés d’arbres.
Pour simplifier la présentation, nous supposons qu’un lemme est associé à seule-
ment une famille d’arbres. (Les réelles listes de suspects acceptent et traitent
plus d’une famille par lemme ; chaque famille distincte pour le lemme produit
un item lemme distinct). L’item lemme se divise en deux parties : l’information
sur la famille complète, et l’information individuelle sur les arbres à l’intérieur
de la famille. Si tous les arbres élémentaires associés à cette famille (i.e. ceux
qui sont utilisés dans le processus de génération pour le cas considéré et associés
à cette famille) sont mauvais, nous le signalons en affichant (all). Ceci sug-
gère à l’utilisateur que tous les problèmes concernant cette famille pourraient
venir d’une même source. De plus, nous faisons la liste de toutes les mauvaises
propriétés d’arbres qui apparaissent dans tous les mauvais arbres élémentaires
de la famille. Cela n’est pas strictement nécessaire, mais évite des redondances
dans les listes de suspects.

Les mauvaises propriétés d’arbres restantes sont listées à côté de l’arbre
élémentaire dans lequel elles apparaissent. Par exemple une ligne de la forme :

[649] CanonicalGenitive dePassive

indique que les propriétés d’arbre CanonicalGenitive et dePassive sont mau-
vaises et apparaissent dans l’arbre élémentaire numéro 649.

Nous affichons seulement le numéro de l’arbre parce que nous référons à
des arbres de la même famille (par convention, les arbres produits par XMG

sont associés à un numéro d’arbre). Notons que nous pouvons parfois afficher
un numéro d’arbre sans propriétés d’arbre. Ceci arrive quand les mauvaises
propriétés d’arbres associées à cet arbre sont communes à toute la famille et
ont déjà été affichées.

Item dérivation Un item dérivation (tn1
Op←− t2) consiste en un arc dans

un arbre de dérivation TAG. Il indique que l’arbre t2 a été inséré dans l’arbre
élémentaire t1 au nœud n grâce à l’opération TAG Op (qui sera soit une substi-
tution soit une adjonction). Seulement les mauvais items dérivation sont donnés
dans les listes de suspects. Ce qui ressort généralement de l’item dérivation c’est
que l’un des deux arbres n’est pas assez contraint et qu’il est responsable d’une
adjonction interdite.

Exemple: “Jean dit accepter/*C’est par Jean qui accepte qu’être
dit”. Nous montrons ici un exemple de fonctionnement de la liste de suspects.
L’exemple ci-dessous indique que toutes les dérivations impliquant un arbre de
type n0vn1 ancré par dire amènent à une surgénération et qu’il existe 6 arbres
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de ce genre (les arbres 699 . . . 750). De plus, les propriétés d’arbre indiquent
que tous ces arbres partagent les propriétés d’arbre InfinitiveSubject et
Passive. L’examen des données montre que ces arbres se combinent avec une
forme finie de “accepter” pour nous amener à une châıne totalement agramma-
ticale comme “c’est par Jean qui accepte qu’être dire” au lieu de, par exemple,
“Jean dit accepter”.

Pour résumer, cet exemple indique que la grammaire n’est pas suffisamment
contrainte pour bloquer la combinaison de la forme passive de l’infinitif des
arbres n0Vn1 ancrés par “dire” avec des arbres associés par la grammaire à
“accepter”.

input t90
Lemma: dire
Tn0Vn1 (all) - InfinitiveSubject Passive
[699] CanonicalCAgent Passive
[746] CanonicalGenitive dePassive
[702] CleftCAgentOne Passive
[752] CleftDont dePassive
[751] CleftGenitiveOne dePassive
[750] RelativeGenitive dePassive

F-7.3 Le rapport de progression (étapes 5 et 2)

Utiliser les listes de suspects aide le linguiste à localiser les erreurs dans
la grammaire qui conduisent à la surgénération. Pourtant, encore maintenant,
toutes nos corrections de la grammaire n’ont pas le résultat attendu. Parfois,
elles n’ont pas d’effet sur les erreurs et parfois elles en introduisent de nouvelles.
Une partie de notre protocole consiste alors à exécuter l’infrastructure de test
sur le même cas jusqu’à ce que toutes les phrases soient marquées pass. Chaque
fois que nous exécutons le réalisateur de surface, GenI produit un nouvel his-
torique de dérivation non annoté. On utilise un petit script pour importer les
annotations du précédent historique dans le nouveau. Le script produit aussi
un rapport de progression qui permet à l’utilisateur de savoir au premier coup
d’œil si ses modifications ont eu l’effet attendu.

New output?
jean dit c’est l’homme volontaire qui part

Oops! We lost these passes:
jean dit l’homme volontaire part

Hooray! no longer overgenerates:
dit part l’homme volontaire jean
dit jean part l’homme volontaire

F-7.4 Evaluation et resultats

Nous avons utilisé l’infrastructure de test pendant une période d’une se-
maine, approximativement pendant 12 heures d’affilée. Pendant cette période,
nous avons effectué dix itérations de l’infrastructure de test et fait 13 modi-
fications (30 lignes) dans la grammaire. Dans ce processus de révision de la
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Fig. 14: Surgénération avant et après

Fig. 15: Reductions de la surgénération

grammaire, nous avons étudié 40 cas (moins d’un tiers de la suite de tests) et
annoté manuellement 1389 sorties de jugements de type « pass » ou « over-
generation ». Sur la totalité des 140 cas de la suite de tests, la grammaire a
produit 28 167 sorties (4 908 pour le cas le pire, et 201 en moyenne, et 25 de
médiane). La grammaire révisée progresse de 70%. Elle produit 8434 phrases
(201 pour le cas le pire, 60 de moyenne, et 12 de médiane). Ces nombres sont
présentés dans le tableau ci-dessous pour plus de clarté :

total max moyenne médiane
avant 28167 4908 201 25
après 8434 710 60 12

Les réductions varient de 42% dans notre cas le plus faible à 74% dans le
cas le plus important. On peut voir ces réductions dans la figure 15, où nous
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nous concentrons seulement sur le nombre de sorties qui sont produites par
chaque cas du test (sans regarder leur distribution dans la suite). Ces cas sont
triés et groupés en fonction du nombre de sorties qu’ils produisent dans la
nouvelle grammaire. Nous voyons dans le graphique combien de phrases sont
produites en moyenne pour chaque groupe de tests, avant et après la correction,
et plus particulièrement nous voyons que la différence entre les sorties est plus
importante dans les cas les plus gros. L’idée centrale ici est que les sources de la
surgénération vont se combiner et qu’éliminer ces sources peut avoir un impact
important.

Par ailleurs, il est très bien de limiter la surgénération, mais seulement tant
qu’on ne supprime pas des phrases linguistiquement valides au passage. La
suite de tests a été produite semi-automatiquement, en analysant des phrases
et en choisissant à la main les représentations sémantiques valides proposées
en sortie. Pour plus de sécurité nous avons ré-analysé les phrases d’origine avec
la nouvelle grammaire et avons réussi pour 136 des 140 phrases, soit pour 4 de
moins qu’avec la grammaire d’origine. La différence était due à une contrainte
trop restrictive et a été corrigée facilement.

La collecte des erreurs

Regardons maintenant les types d’erreur produisant la surgénération que
nous avons trouvés.

Contraintes manquantes Ce n’est pas vraiment surprenant, mais la source
principale de la surgénération était le manque de contraintes suffisantes pour
bloquer les combinaisons d’arbres illicites. Par exemple, la grammaire générait
la châıne “devoir c’est Jean qui part” (au lieu de “c’est Jean qui doit partir”)
parce que l’arbre pour “devoir”n’était pas suffisamment contraint pour bloquer
l’adjonction du nœud VP des phrases clivées. Dans de tels cas, nous avons
éliminé la surgénération en ajoutant les contraintes nécessaires. Ces contraintes
étaient les suivantes : cest = − sur le nœud pied de l’arbre “devoir” et cest

= + sur le nœud VP de l’arbre de la forme clivée pour “partir”.

Contraintes incomplètes et percolation de traits incorrecte Dans cer-
tains cas, nous avons trouvé que les contraintes étaient partiellement codées
dans la grammaire, en ce qu’elles étaient données dans l’un des arbres de la
combinaison, mais mal données voire pas données du tout dans tous les autres.
Ainsi, par exemple, l’arbre des adjectifs était correctement contraint pour ad-
joindre à det = − les arbres N, mais la contrainte correspondante det = +
sur le nœud racine du déterminant était manquante. Dans les autres cas, le
trait était présent mais incorrectement percolé. Dans les deux cas, l’implémen-
tation partielle de la contrainte empêchait un conflit dans l’unification, et donc
provoquait une combinaison d’arbre qui n’aurait pas dû avoir lieu.

Arbres élémentaires illicites Un troisième type d’erreur était lié au fait
que la grammaire a été produite semi-automatiquement à partir d’une descrip-
tion de grammaire abstraite. Dans certains cas, le linguiste n’a pas réussi à
prévoir correctement les implications de sa description et à voir que l’arbre élé-
mentaire ainsi produit par le compilateur était incorrect. Par exemple, on a dû
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introduire une contrainte additionnelle dans la métagrammaire pour éliminer
la formation d’arbres décrivant un verbe transitif avec un sujet impersonnel
(en français, les verbes transitifs ne peuvent pas prendre de sujet impersonnel :
en effet, la phrase « Des hommes aiment Marie » ne peut pas être paraphrasée
par « Il aime Marie des hommes »).

Sémantique incorrecte Un type d’erreur plus complexe à traiter rassemble
les cas où la sémantique n’est pas assez contrainte et autorise par conséquent
des combinaisons illicites. Par exemple, dans la forme impérative, la grammaire
échoue à contraindre que le premier argument soit you i.e., ait pour dénotation
« l’auditeur ». Du coup, l’entrée permettant de produire des phrases comme
“Jean demande si Paul part” génère aussi des sorties fausses comme “demande
à Jean si Paul part”. Clairement, dans de tels cas, c’est la sémantique associée
par la métagrammaire à l’arbre élémentaire qui doit être modifiée.

Exceptions lexicales On sait que les généralisations grammaticales sont
souvent sujettes à des exceptions lexicales. Par exemple, les verbes transitifs
sont supposés pouvoir se passiver, mais pas les verbes de mesure comme “to
weigh” (peser) qui sont pourtant transitifs. Comme on le fait habituellement
en TAG, dans GenI, de telles exceptions sont notées dans le lexique de façon
à bloquer la sélection de certains arbres (dans ce cas précis, tous les arbres
passifs) pour les items lexicaux faisant partie des exceptions (ici, les verbes de
mesure). Il arrive donc que la surgénération provienne parfois simplement de
l’insuffisance des informations lexicales.
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F-8 Conclusion

Le point de mire de cette thèse est la construction d’un réalisateur de sur-
face réutilisable, réversible, efficace, et adapté au contexte. La réutilisabilité
vient de l’utilisation d’une ressource et d’un langage d’entrée indépendants du
domaine. La réversibilité vient du type de grammaire utilisé, dans notre cas,
une FB-LTAG augmentée par LU , qui a déjà prouvé son efficacité en analyse.
L’efficacité et l’adaptation au contexte sont les caractéristiques sur lesquelles
notre travail apporte des éléments nouveaux. Chacune de nos contributions
constitue une extension du réalisateur de surface GenI. Alors que les exten-
sions sont mutuellement dépendantes, et très différentes l’une de l’autre, elles
sont liées par les thèmes communs de l’ambigüıté et du déterminisme.

Filtrage par polarité La première extension concerne le problème de l’am-
bigüıté lexicale, autrement dit le problème posé par le fait d’avoir plus d’un
item lexical correspondant à chaque littéral de la sémantique. Cette ambigüıté
doit rester une caractéristique de la grammaire parce qu’elle lui permet d’ex-
primer la même chose de plusieurs façons différentes. Pour conserver et gérer
cette caractéristique, on doit s’assurer que le réalisateur de surface n’est pas
enlisé dans des interactions entre des ensembles d’items lexicaux qui ne sont
finalement pas faits pour aller ensemble. La solution consiste à polariser la
grammaire pour que les items lexicaux « sachent » quelles ressources ils four-
nissent, et quels besoins ils ont. On ajoute ensuite une étape de filtrage pour
éliminer tous les ensembles d’items avec des polarités non-neutres, c’est-à-dire
avec des besoins et des ressources qui ne se correspondent pas. Ajouter ces filtres
rend l’utilisation d’une grammaire ambiguë plus pratique pour la réalisation de
surface.

Sélection des paraphrases Comme nous avons un réalisateur qui peut ef-
fectivement utiliser l’ambigüıté lexicale nous pouvons générer toutes les para-
phrases pour une entrée donnée. Alors que les paraphrases sont (en théorie)
toutes grammaticalement correctes, elles ne sont pas toutes adaptées à tous
les contextes. Notre objectif suivant a donc été de rendre notre réalisateur
plus proche de ceux qu’on dit orientés-génération, comme kpml ou surge, en
augmentant sa capacité à s’adapter au contexte. Idéalement, on devrait être
capable de générer à partir du même type de traits fonctionnels que ceux qui
sont acceptés par de tels réalisateurs. Ce n’est pas encore possible avec GenI,
mais nous avons fait un pas dans cette direction, en ajoutant la possibilité
de présélectionner nos sorties à partir d’un ensemble de critères linguistiques
appelés propriétés d’arbre. Ces propriétés sont utilisées pour restreindre la sé-
lection lexicale. Elles apparaissent comme des annotations dans la sémantique
d’entrée et dans la grammaire. Ajouter des propriétés d’arbre à une grammaire
est une conséquence directe de la compilation de la grammaire à partir d’un
formalisme métagrammatical plus abstrait. Ajouter ces annotation dans la sé-
mantique d’entrée est une question que nous réservons pour des recherches
futures.

Réduire la surgénération Penser que toute les sorties du générateur pour-
raient être grammaticales serait être optimiste. Les grammaires réelles surgé-
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nèrent, et celles qui sont générées à partir de représentations abstraites sur-
génèrent même beaucoup. Ceci peut être problématique pour deux raisons (i)
parce que l’ambigüıté non souhaitée rend la réalisation moins efficace, et (ii)
parce que le problème de choisir une sortie appropriée au contexte est mé-
langé avec celui de choisir une sortie grammaticalement correcte. Cependant,
la caractéristique qui rend nos grammaires sujettes à la surgénération (com-
pilation à partir d’une représentation factorisée ⇒ structures syntaxiques non
souhaitées), peut aussi être utilisée pour réduire la surgénération. L’idée est
de ré-utiliser les propriétés d’arbres qu’on a employées pour la sélection des
paraphrases. On génère toutes les châınes qui sont associées avec la sémantique
d’entrée, on isole les cas de surgénération, on récupère leurs propriétés d’arbre,
et on identifie l’origine des propriétés d’arbre erronées dans la métagrammaire.

F-8.1 Perspectives

Dans les chapitres 5–7, nous suggérons des améliorations pour les techniques
de filtrage, de sélection et de débuggage de la grammaire. En plus de ces amé-
liorations, voici des perspectives à explorer en utilisant le réalisateur dans sa
totalité.

Génération morphologique

Le manque de formes fléchies est un obstacle à l’utilisation du réalisateur
dans de réelles applications, et particulièrement pour une langue comme le
français. Ajouter de la génération morphologique nous permettrait de générer
des phrases comme “Elle est aimée du garçon timide” au lieu de “Il être aimer
de le garçon timide”.

Planification de phrase

Il serait peut être utile d’intégrer une tâche de planification de phrase dans
l’esprit de spud et InDiGen.

Passage à l’échelle

Il reste encore du travail à faire pour rendre le processus de réalisation plus
efficace. Deux éléments qui valent la peine d’être explorés sont l’amélioration
du générateur tabulaire et du filtre de polarité.

Devenir plus orienté-génération

L’introduction de propriétés d’arbre peut nous aider à combler le fossé entre
les réalisateurs réversibles comme GenI et ceux qui sont orientés-génération
comme kpml et fuf. La prochaine question à se poser sera de savoir d’où les
propriétés d’arbres doivent provenir. Une idée pourrait être de les collecter à
partir d’un réseau de systèmes comme on le fait en linguistique systémique
fonctionnelle.
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Mettre GenI au travail

GenI sera mis en œuvre comme un module de génération effectif. Alexandre
Denis l’utilise à l’intérieur d’un système de dialogue en français pour obtenir
des retours sur la compréhension par le système des énoncés des utilisateurs.
Par ailleurs, Luciana Benotti l’utilise dans un système de dialogue multilingue
français/anglais pour des recherches sur l’accomodation de la présupposition
[Beaver and Zeevat, 2007]. La génération n’est pas la problématique centrale
de ces projets de recherches, mais nous espérons que le réalisateur va simple-
ment. . .« travailler pour eux ».

Evaluation comparative

Il serait utile de voir le réalisateur de surface intégré dans un processus
d’évaluation, et pourquoi pas en comparaison avec d’autres réalisateurs de sur-
face. Cependant, avant de mettre tout cela en œuvre, nous aurions à définir
exactement ce que nous souhaitons comparer et pourquoi.
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Introduction

The fundamental goal of natural language generation (NLG) is to translate a
communicative goal into natural language. A surface realiser is a small part of
a natural language generator. Given a grammar and a meaning representation
(often a logical form), the job of a surface realiser is produce the strings which
are associated by the grammar with the semantics. Surface realisation is one
of the most concrete and therefore one of the more straightforward tasks in
generation. Indeed, much of generation research in the past has been about
surface realisation and has borne a series of high-quality, reusable surface re-
alisers like RealPro, fuf and kpml, which have all been used to build real
world NLG systems.

But while the basics of the task are well understood, much remains to be
done. One interesting issue is how a surface realiser should deal with natural
language paraphrasing. Paraphrasing is possible because of the simple fact
that there is often more than one way to say the same thing. This brings
great variety to language, and it allows us to communicate subtle nuances in
meaning. It is also a combinatorial nightmare. In this thesis, we are interested
in the question of how a surface realiser should deal with paraphrasing.

Roadmap of the thesis

We follow a standard two part format: first some background information, and
second our contributions. The background begins in Chapter 1 with a survey
of the common surface realisation technologies: basically, head-driven traversal
and chart generation. The next two chapters focus on our core assumptions:
a flat semantics (namely the language LU ) and a Feature Based Lexicalised
Tree Adjoining Grammar (FB-LTAG). Chapter 2 presents the key issues that
led to widespread adoption of flat semantics, and provides some details on
the language LU . In Chapter 3, we turn to the question of syntax, what the
FB-LTAG formalism is and how exactly we combine it with LU for semantic
construction. These three chapters provide the three major pieces of a surface
realiser: an algorithm, an input semantics and a grammar. Chapter 4 assembles
all of these pieces into the realiser, GenI.

One defining characteristic of GenI is that it was designed to make the most
of a paraphrasing grammar. A paraphrasing grammar is one which offers more
than one way to say the same thing, for example, “Ernest loves Charmaine”
and “Charmaine is loved by Ernest”, and moreover, associates all of them to
the same meaning representation. The usual assumption in surface realisation
work is that we need only return one result; after all, that is all we will need
for a generation task. GenI turns this assumption on its head. It starts from
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4 INTRODUCTION

the perspective that one might actually want to return all of the results that
the grammar has to offer. We explore this idea from three different angles,
basically (i) doing it (ii) doing the opposite and (iii) making it useful. The first
angle is that if we are going to return all results, we had better be efficient
about it. Chapter 5 shows how we can use “polarity filtering” to cut down
the search space of the realiser. The second angle is about making GenI

behave more like the one-result realisers whilst staying true to its paraphrasing
spirit. Chapter 6 thus provides a way of enriching the input with a description
of additional linguistic requirements, allowing the user to preselect the one
best result. This feeds right into our third angle. The language of describing
linguistic requirements can be flipped around by asking the realiser to annotate
every paraphrase with the linguistic requirements it fulfils. In Chapter 7, we
see how to use these annotations to pinpoint the various flaws in our grammar.



Part I

Background
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Chapter 1

Realisation algorithms

Natural language generation is usually seen as consisting of a basic pipeline of
tasks, shown in the figure below. These tasks can roughly be divided into two
parts, a strategic part which determines “what to say”with domain knowledge,
and a tactical one which determines “how to say it” with linguistic knowledge.
Finer-grained distinctions can also be made. By the late 1990s, for example, it
has become clearer that some tasks require both domain and linguistic knowl-
edge and a new midway component was born, the microplanner. In this thesis,
we assume that the surface realiser sits at the end of this pipeline (as it usually
does) and receives its input from a microplanner.1

document 
planner

strategic generation
[domain knowledge]

tactical generation
[linguistic knowledge]

microplanner
surface
realiser

communicative
goal

document
plan

text
specification

sentence

syntactic
realiser

morphological 
generator

uninflected
string

What we are particularly interested in are the syntactic aspects of realisa-
tion, basically, making sure that the words come out in the right order. We
use the approach that reversible, phrase-structure based realisers have in com-
mon: build a syntactic tree which is associated by the grammar to the input
semantics, and read the tree leaves to get an output string. Where the surface
realisers vary is how they go about building this tree. There are three facets to
the problem, which we now visit: traversal of the syntactic tree (Section 1.1),
exploration of the search space (Section 1.2) and storing of intermediate results
(Section 1.3).

1It is not a foregone conclusion that NLG requires a pipeline architecture; it is just that
pipelines are simple and convenient, and they work well enough for the moment.
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S
t(j)

NP VP
j λj.t(j)

John V
λj.t(j)

talks

Figure 1.1: Top-down realisation of “John talks”.

1.1 Syntactic tree traversal

We can see surface realisation as the process of “discovering” a syntactic tree
that corresponds to an input semantics [Shieber et al., 1990]. This can be
approached using a top-down, bottom-up or even a mixed strategy. Each of
these strategies has specific problems in practice: top-down algorithms are
vulnerable to left-recursion, bottom-up ones require too many restrictions of
the grammar formalism to be complete and are too non-deterministic to be
useful in practice. The situation is considerably better for mixed strategies
such as semantic head-driven generation [Shieber et al., 1990], but as pointed
out in [Gerdemann and Hinrichs, 1995] there also exist linguistically motivated
grammars for which these algorithms fail to terminate. We now explore the
three strategies.

About the notation In this chapter and in Chapter 2, we assume a uni-
fication grammar with a context free backbone. Unification variables will be
written starting with a capital letter, as in Foo. The symbols λ and . should be
treated as meaningless punctuation; they are introduced for mnemonic reasons.

1.1.1 Top-down realisation

We will start with a small example. As we can see, the grammar below asso-
ciates the sentence “John talks” with the semantics talks(john).

t1. S(S) → NP(X) VP(λX.S)
t2. VP(λX.S) → V(λX.S)
t3. V(λX.talk(X)) → talks
t4. NP(john) → John

Suppose now that we give this semantics to a surface realiser. If it was
using a top-down strategy, it would start from the root and work its way down
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S
s(t(j))

NP VP
j λj.s(t(j))

John VP
λj.X

VP
λj.X

∞

Figure 1.2: Unsuccessful top-down realisation of “John talks-slowly”.

to the leaves. We can see this strategy at work in Figure 1.1. The semantic
representations in this diagram are abbreviated (e.g. t(j) for talk(john)), and
the arrows indicate the rough order of derivation.

The problem with top-down realisation is that left-recursive rules can send
the algorithm into an infinite loop. For example, suppose we inserted the
following rules into our grammar to account for adverbs:

t5. VP(λX.S) → VP(λX.V ) Adv(λV.S)
t6. Adv(λV.slowly(V )) → slowly

Trying to realise slowly(talk(john)) in a purely top-down fashion would be
a bad idea because of the left-recursion inherent in rule t5. As we see in Figure
1.2, the realiser may attempt to process the left child of this rule by again
selecting t5. It does so continuously because the X variable is unconstrained.
If the realiser somehow“knew”to process the right child, that VP variable would
have been constrained by t6. Or if the realiser had instead selected rule t2 as
the left child of t5, it would also have halted and yielded the sentence “John
talks slowly”.

Left-recursion is a well-known problem for NLP researchers. Some promis-
ing solutions had been found, solutions which consist either in automatically
rewriting the left-recursion out of the grammar [Dymetman and Isabelle, 1988]
or in changing the order in which nodes are expanded, starting with the nodes
whose semantics is instantiated [Wedekind, 1988]. Indeed, these techniques
would help for the case of “John talks slowly”; however, in the general case,
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they are not adequate. As [Shieber et al., 1990] points out, one could always
find a linguistically plausible rule that is prone to “left”-recursion, for instance,
this use of subcategorisation lists:2

t1b. VP(λX.S) → VP(λX.S, [])
t2b. VP(λX.S,L) → V(λX.S, L)
t3b. VP(λS,L) → VP(λX.Sem, X:L) NP(X)

The VP rule above, t3b, generalises over verbs which accept a different
number of complements. This rule accepts n complements if it accepts n + 1
complements, or if there is a lexical item which also accepts n complements.
Enforcing the number of complements is thus left to the lexical rules. For
example, “teaches” takes a direct object, whereas “gives” takes both a direct
object and an indirect object.

t4b. V(λS.talks(S), []) → talks
t5b. V(λDλS.teach(S,D), [D]) → teaches
t6b. V(λDλIλS.give(S,D, I), [I,D]) → gives

Suppose we wanted to realise the semantics slowly(teach(john,mary)). With
an improved top-down algorithm, where the first child to be selected is the one
with an instantiated semantics, we would indeed avoid the left recursion on
rule t2. On the other hand, we would still fall into infinite recursion whilst
attempting to construct the subcategorisation list. We would just go on and
on, adding uninstantiated variables into a never-ending list (Figure 1.3).

The subcategorisation example provides a useful insight into why the top-
down approach is flawed. This infinite loop could easily have been avoided
because information needed to constrain the realiser (the size of the subcate-
gorisation list) is readily available in the lexicon. If for instance the realiser
“knew” it was trying to realise “gives”, it would have been forced to build a
subcategorisation list of exactly size two and the whole issue of left recursion
would not have crept up. What would considerably improve top-down realisa-
tion is some means of exploiting lexical information. Figure 1.4 shows how this
semantics may be realised in an ideal world.

1.1.2 Bottom-up realisation

Bottom-up algorithms make much better use of lexical information; they build
the syntactic tree up from the leaves to the root. Figure 1.5 shows what the
bottom-up realisation of slowly(talk(john)) might look like, using the same toy
grammar from the previous section (repeated below for convenience).

b1. S(S) → NP(X) VP(λX.S)
b2. VP(λX.S) → V(λX.S)
b3. VP(λX.S) → VP(λX.V ) Adv(λV.S)
b4. V(λX.talk(X)) → talks
b5. NP(john) → John
b6. Adv(λV.slowly(V )) → slowly

The problem of infinite looping is gracefully avoided on b3 because the VP
semantics (V ) is already instantiated by the time we try to use it.

2We can assume the standard notation for lists: [] is the empty list. If L is a list, then
X : L is a list. [a, b, .., z] is shorthand for a : b : . . . : z : [].
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Figure 1.3: Infinite recursion on subcategorisation lists

S
s(t(j,m))

NP VP
j λj.s(t(j,m))

John VP Adv
λj.t(j,m) λt(j,m).s(t(j,m))

VP slowly
λj.t(j,m), []

VP NP
λmλj.t(j,m),m:[] m

V Mary
λmλj.t(j,m),m:[]

teaches

Figure 1.4: Subcategorisation on its best behaviour
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S
s(t(j))

NP VP
j λX.s(t(X))

John VP Adv
λX.t(X) λV.s(V )

V slowly
λX.t(X)

talks

Figure 1.5: Bottom-up realisation of “John talks-slowly”.

Semantic monotonicity

A commonly cited example of bottom-up realisation is [Shieber, 1988], which
proposes a uniform architecture for parsing and generation. The uniform ar-
chitecture uses an Earley-like algorithm, which is bottom-up in the sense that
it is initialised with a list of lexical items rather than from the start symbol
(see the clarification on Page 13). For parsing, the algorithm is constrained
by string positions, but not for generation because string positions are mean-
ingless when we do not yet know what the string is. Shieber claims that not
using string positions causes the algorithm to no longer be goal-directed, that
is, “many phrases are built that could not contribute in any way to a sentence
with the appropriate meaning.”

Consequently, he introduces an additional semantic filter for efficiency pur-
poses. The filter retains only items whose semantics subsumes some part of the
input semantics. For instance, given an input semantics passionately(love(sonny,
kait)), an item with semantics passionately(X) would be admitted by the filter
and so would sonny, but not love(kait, sonny).

Completeness

Using this filter adds a requirement that the grammar be semantically mono-
tonic, that is, the semantics of every child node of every rule must subsume
the semantics of its parent node. The semantic monotonicity requirement is
needed to guarantee completeness of the generation algorithm despite the se-
mantic filter. Completeness here3 is the property that any sentence the gram-

3Not to be confused with completeness as the sense of completeness/coherence from
[Wedekind, 1988].
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mar associates with the input semantics will be found by the generator.

Problem: idioms

As Shieber points out, the semantic monotonicity requirement is overly restric-
tive. For instance, it would not allow for grammar rules such as those in the
fragment below:

b7. VP(λXλY.callup(X, Y )) → V(λXλY.callup(X,Y )) NP(Y ) PP(up)
b8. V(λXλY, callup(X, Y )) → call
b9. PP(up) → up

This fragment associates the sentence “The girl calls up the boy” with the
semantics callup(girl, boy). It cannot be used with Shieber’s semantic filter
because the semantics up does not subsume any part of the input semantics.
More generally, semantic monotonicity is at odds with a natural treatment of
idioms or multi-word expressions.

Non-termination

Note that completeness is not a guarantee of termination. For instance, b10 is
a perfectly (semantically) monotonic rule from that would provoke an infinite
loop in a bottom-up algorithm [van Noord, 1989]:

b10. VP(λX.S) → to VP(λX.S)

As van Noord points out, a reasonable grammar would also have syntactic
information elsewhere to prevent a semantics like like(kiss(john, mary)) from
being associated with “John likes to to. . . to kiss Mary”. A complete generator
would find all sentences admitted by the grammar, whilst still falling into an
infinite loop on some (ultimately ungrammatical) fragment.

An Earley remark

S
t(j)

NP VP
j λj.t(j)

John V
λj.t(j)

talks

[Gerdemann, 1991] disputes the original observation by Shieber that the lack
of string positions is responsible for the loss of goal-directedness. To see why,
we should take a closer look at why we consider Shieber’s uniform architecture
to be bottom-up in the first place. The algorithm uses Earley-style traversal,
which consists of two essential moves: top-down prediction and bottom-up com-
pletion. Prediction is the tentative instantiation of a child node in a grammar
rule, and completion is the confirmation that it was successfully recognised.
Earley traversal is a series of predictions, followed by a series of completions, a
series of predictions and so forth until the full syntactic tree is built. This has
an uncanny resemblance to top-down realisation, which makes it seem rather
odd to say that Shieber is bottom-up.

The reason we can say this is precisely because the traversal includes both
top-down and bottom-up elements. For context-free grammars, the top-down
part is the most pertinent, whereas for unification grammars, it is mostly the
bottom-up part that counts. And since [Shieber, 1988] is based on unification
grammar, we say it is bottom-up. One can think of prediction as a sort of
filter; no completion is possible unless a corresponding prediction was made to
start the process. For context free grammars, this is a hard filter, which makes
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Earley’s algorithm equivalent to top-down traversal. Prediction in unification
grammar is a soft filter; as we saw in Section 1.1.1, we do not always have all
the information we need to fully instantiate a feature structure when we predict
it, so we scrape by with a partly instantiated one. Only the “completed”feature
structure is fully instantiated. To check if the completion was authorised by
a prior prediction, we must verify that the predicted feature subsumes the
completed one. The point here is that the more general the predicted features
are (the less fully instantiated), the less useful the prediction filter is and the
more bottom-up the algorithm becomes. There are two implications of this.

First, we must nuance our initial presentation, where we said that Shieber’s
algorithm is bottom-up because it is initialised from the set of lexical items.
This is only half-true. Starting from lexical items does not have any effect by
itself since completions have to be “authorised” by a prior prediction. Other-
wise, they remain inert, waiting to be catalysed by the right predictions. With
Earley-style traversal, starting from the lexical items is equivalent to starting
from the single start symbol. Where the bottom-up nature of the algorithm
really comes from is a set of overly lax prediction rules.

Second — this is the more important point — Shieber’s semantic filter may
not be necessary after all. To see this, it helps to consider why predictions may
be overly lax in the first place. The killer feature behind Earley’s algorithm
is the use of tabulation to avoid non-termination (see Section 1.3.3.4). This
only works for context free grammars, however. Tabulation or no, it is still
possible for the prediction rule to fail to terminate with a unification grammar
(for example, with a subcategorisation list). To get around this, [Shieber,
1985] proposed a notion of restrictors which eliminate the pathological non-
terminating parts from feature structures before using them for prediction. In
other words, we relax prediction in order to help it terminate. This is where
[Gerdemann, 1991] comes in. The lack of string positions, he argues, is not the
culprit behind this loss of goal-directedness. Rather, the problem at hand is
the use of overly aggressive restrictors. “The algorithm, in fact, becomes more
or less goal directed depending only on how much information is eliminated
by the restrictor in the prediction step” taken from [Gerdemann and Hinrichs,
1995]. Gerdemann and Hinrichs go on to suggest that the semantic filter is not
actually needed and can be replaced by a more careful choice of restrictors.
This might make the question of semantic monotonicity moot. That said, the
use of restrictors implies a better use of top-down information; the overall point
stands that purely bottom-up traversal is not goal-directed enough.

1.1.3 Head-corner realisation

Top-down algorithms may fail to terminate if based on a left-recursive grammar.
On the other hand, bottom-up algorithms may be too inefficient. The head-
corner algorithms proposed in [van Noord, 1989] and [Shieber et al., 1990]
improve on this situation considerably. They eliminate the need for a semantic
filter, and as an added bonus, avoid the non-determinism that comes from left-
to-right evaluation. The algorithms can be seen as adaptations of left-corner
parsing, except that instead of seeking the left corner of a phrase, they seek its
semantic head. The semantic head of a rule is the daughter node that has the
same semantics as its mother. Not all rules have a semantic head. Conversely,
some rules even have multiple heads, but we will ignore them for the moment.
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S
s(t(j))

NP VP
j λj.s(t(j))

John VP Adv
λj.t(j) λt(j).s(t(j))

V slowly
λj.t(j)

talks

Figure 1.6: Semantic-head-driven generation of “John talks-slowly”.

In the [Shieber et al., 1990] variant of the algorithm, semantic-head-driven
generation (shdga), the grammar is preprocessed and divided into chain rules
(those that have a semantic head) and non-chain rules (those that do not).
The processing begins at the start symbol of the grammar. Next, it finds a
pivot node and recursively process its daughters. The pivot is a non-chain rule
whose left hand side matches the current goal. Selecting a pivot serves a similar
role as the scanning step in a left-corner parser; it establishes a location from
which we begin climbing up the analysis tree. This climbing (or connecting)
process is also recursive: we select a chain rule, unify its semantic head with
the current node, process its other daughters and then climb up to yet another
chain rule until the current node matches the goal. Figure 1.6 illustrates this
process on the realisation of slowly(talk(john)) using the same toy grammar
from the previous two sections:

c1. S(S) → NP(X) VP(λX.S)
c2. VP(λX.S) → V(λX.S)
c3. VP(λX.S) → VP(λX.V ) Adv(λV.S)
c4. V(λX.talk(X)) → talks
c5. NP(john) → John
c6. Adv(λV.slowly(V )) → slowly

This algorithm does not require the kind of rule selection filter that Shieber’s
uniform architecture did. Therefore, it can be used on semantic non-monotonic
grammars, which is clearly an improvement. This algorithm looks very much
like top-down realisation with head-first traversal instead of left-to-right. But
as we saw in Section 1.1.1, head-first selection cannot by itself guarantee ter-
mination on linguistically plausible grammars. This is where the bottom-up
processing of shdga becomes useful; it avoids the non-termination problem by
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exploiting lexical information. And since the bottom-up processing is only initi-
ated from the top-down, the algorithm remains goal-directed. What makes this
traversal strategy useful is the marriage of top-down and bottom-up traversal,
and what makes this marriage possible is the use of head-first selection.

Non-termination

Unfortunately, shdga is also vulnerable to non-termination from plausible
grammar rules. The problem here is that the top-down chain-rule processing
phase may run into an infinite loop. A minimal example might be: [Shieber et
al., 1990]

c7. NBar(N) → NBar(N) SBar(N)

[Gerdemann, 1991] proposes an alternative head-driven algorithm to shdga.
Instead of corner-based processing, he combines the Earley algorithm with
head-first selection. This avoids some non-termination, through tabulation
and careful management of restrictors, but as [Gerdemann and Hinrichs, 1995]
show, the resulting algorithm has its own share of non-termination problems.
Anyway, the point remains that head-first selection is inherently useful.

1.2 Search

Our presentation of tree traversal strategies has been largely focused on non-
termination and goal-directness. When we say that an algorithm is goal-
directed, we can think of it as saying that it avoids non-deterministic situations.
For example, shdga avoids the non-determinism from uninstantiated seman-
tics by using head-first selection. Natural language is inherently ambiguous, so
it is clear that no matter what tree traversal we adopt, there is always going
to be a certain amount of non-determinism to deal with. In this section, we
touch on the strategies handling the non-deterministic choices we are forced to
make.

1.2.1 Number of solutions

The first thing we must ask ourselves is how many solutions we want to return:
just one? n solutions? all of them? If we want to return all solutions, the
other aspects of the search problem become less crucial. They could still be
worth exploring if we are also interested in ranking the solutions. Search also
becomes relevant if we want to limit the number of results returned by the
surface realiser, since we might as well return the best results we can.

1.2.2 Priority of choices

The search problem consists in choosing the best way to build a syntactic tree.
Confusingly enough, the search space can also be viewed as a tree. The search
tree represents the choices we make given an ambiguity in the grammar. Each
node in the search tree corresponds to an expansion point in the syntactic tree;
and each child node of the search tree represents an option that the grammar
provides for performing this expansion. The more ambiguous the grammar, the
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more ways we can perform this expansion and the more child nodes we have.
This is where general search strategies come into play.

We could have a breadth-first search, which explores all the choices for a
given expansion point before moving on their consequences. This involves keep-
ing track of all possible syntactic structures at the same time. More commonly,
we could have a depth-first search, which fully explores each choice (and its
subchoices) and backtracks upon the first dead-end. Search strategies need not
be blind either. For optimisation problems (where all solutions are not created
equal), the search strategy can be crafted to favour choices that end up leading
to “good” results. A simple example of this would be a greedy strategy, which
always picks the locally best choice at each point. More sophisticated strategies
are also possible.

1.2.3 Commitment and pruning

Another factor to consider is the degree of commitment we make to our choices.
On one extreme, we make no commitment whatsoever, allowing for the entire
search space to be explored (e.g. we allow for full backtracking of depth-first
algorithms). On the other extreme, we could commit fully to our choices (e.g.
no backtracking), which avoids a great deal of non-determinism, but also in-
duces the risk of dead ends or suboptimal results. The two extremes represent
different degrees of pruning, for which a wide range of strategies may also ex-
ist. For instance, [White, 2004] uses an “anytime searching” strategy, where
highly improbable states are pruned away. This also induces some risk of dead
ends or suboptimal states but is highly unlikely to do so. Another option still
would be to use “safe”pruning methods which only cut away paths that we can
guarantee will lead to a dead end. In this thesis, we only use “safe” pruning.

1.3 Sharing intermediate results

So far we have dealt with avoiding non-determinism (tree traversal) and making
the best choices when it inevitably arises (search). But what happens if we
make the wrong choices? A good search strategy is no guarantee the choices
we make are always correct, so we need also a mechanism for recovering from
error. One such mechanism would be backtracking. If our search strategy
encounters a dead-end, we might simply go back to the most recent choice and
try an alternative. But backtracking can be extremely wasteful: whenever the
search algorithm reaches a dead end, it simply discards intermediate results
only to the recompute them on a slightly different search path.

A popular alternative to backtracking is the dynamic programming method
known as chart parsing. Chart parsers store intermediate results in some data
structure and use them to build other intermediate results, which are in turn
stored and used to build ever more complete results. If we ever make the wrong
non-deterministic choice, we simply retrieve the intermediate results and use
those to explore a different search path. The importance of this decision is not
simply about dealing with “incorrect” non-deterministic choices. Some parsing
and generation tasks might call for not just one result, but all the possible
results (parses or sentences) that a grammar would associate with an input.
The parsing algorithm is forced to explore the entire search space, which makes
it all the more desirable not to waste intermediate results.
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NP

NP V Det N P Det N

0 Lucy 1 saw 2 a 3 boy 4 with 5 a 6 tscope 7

Figure 1.7: Part of a CKY chart

If tabular methods are useful for parsing, it is likely that they would also
be useful for generation. In this section, we build our way up from chart
parsing to chart generation. We begin by establishing a standard framework
and notation for talking about chart-based algorithms (Section 1.3.1). To get a
feel for the notation, we present the well-known CKY algorithm (Section 1.3.2)
and proceed to dissect it and other algorithms, building up an anatomical guide
to chart parsing techniques (Section 1.3.3). Then we attack chart generation
proper (Section 1.3.4). As we will see, most of the chart parsing techniques can
be transferred in a straightforward manner, the sole exception being indexing.
The solution we (and many others) adopt is the use of a flat semantics as
introduced by [Kay, 1996]. Kay’s algorithm is important enough to go into
detail about, so it is what we will wrap this discussion up with (Section 1.3.5).

1.3.1 Chart parsing as deduction

First the terminology and notation. The intermediate storage used by chart
parsers is called a chart. It does not matter for our purposes how the chart is
implemented. We can simply see it as a set of chart items. We can think of
the chart items as corresponding to the edges of a labelled graph (Figure 1.7),
so for convenience we may sometimes call the chart items edges.4 The vertices
of this graph are labelled by string positions and its edges by information that
we can later use to build a parse tree. What exactly this information is varies
from one algorithm to the next. For example, the CKY algorithm uses syntactic
categories as labels, but as we will see below, other algorithms will use different
kinds of edge label.

Another useful tool for talking about chart parsing is the framework of Pars-
ing as Deduction, or more conveniently, deductive parsing [Shieber et al., 1995].
This framework provides us (i) with a declarative way to talk about parsing
algorithms which (ii) eschews needless implementation detail and (iii) makes
it easier to see the similarities and differences between various algorithms. A
deductive parsing algorithm consists of a set of axioms, goals and inference
rules. These rules and axioms are used by some universal parsing engine whose
job is to generate the set of possible “facts” that they allow. The axioms tell
us facts which are always true, the goals give us facts that have to be true for
parsing to succeed, and the inference rules help us get from the axioms to the
goals. Inference rules have a premise (a set of facts) and a conclusion (a set of

4They are technically not the same thing — some algorithms may produce more than
one chart item for the same edge — but the added fluency is worth it.
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mystery deductive parser

Axioms [A → •β, l, l] A → β

Goals [S•, 0, n]

Inference
rules

[A → β • wδ, l, r]

[A → βw • δ, l, r + 1]
w = wr+1

(Scan)

[A → β • Cδ, l, x] [C → η•, x, r]

[A → βC • δ, l, r]
(Comp)

Table 1.1: Deductive parsing notation

facts we may derive if the premise is true). So with inference rules, we start
from an initial set of facts and produce new facts. If we apply the inference
rules repeatedly, i.e. on facts which may themselves be derived from inference
rules, then we can hopefully work our way towards the goal. This is precisely
what the parsing engine does. It starts from the axiomatic facts and repeatedly
applies the inference rules until no more facts can be generated.5 Then it tells
us if any facts correspond to the goal (if there is a parse) and how (what the
parses are).

Deductive parsing fits chart parsing very naturally, which is why we are
introducing the two notions simultaneously. For one thing, the universal engine
that a deductive parser requires could be implemented as a chart parser such
that every edge in the chart corresponds to some deductive parsing “fact” (and
vice versa). So if chart parsing gives us an implementation of deductive parsing,
what does deduction do for charts? The basic answer is that it simplifies the
discussion of tree traversal strategies. Tree traversal may well be orthogonal to
chart parsing, but looking at chart parsing from an intuitive standpoint, the
first thing that comes to mind is a bottom-up strategy. As we saw in Section 1.1,
it is more useful to have a mixed traversal strategy which combines top-down
and bottom-up information. It is certainly possible to encode these strategies
in a chart parser using“active”chart parsing techniques. In a deductive parsing
framework, these techniques are quite simple to present; they are just another
set of rules and axioms.

That said, let’s have a closer look at the notation for deductive (chart)
parsing. In Table 1.1, we have an example of a deductive parser. We call this
simply “mystery deductive parser”, because what is important here is not the
algorithm but the notation. Some things to notice about this are that:

1. Every algorithm is presented as its axioms, goals and a set of inference
rules.

5There is no inherent guarantee that this would terminate. This would have to be proved
separately for each algorithm.
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2. The axioms and goals manipulate facts (chart items), which we write
in square brackets. An example of a fact that is compatible with this
particular algorithm would be [0, 3,NP •V PP]. What goes inside the
square brackets depends on the actual algorithm used, although it is a
common practice at least to keep track of string position indices.

3. Inference rules are written in two dimensions, with the premises in the
top half and the conclusions in the bottom half. So in the (Comp) rule,
the premises [A→ β •Cδ, l, x] and [C → η•, x, r] have to be met in order
for the conclusion [A→ βC • δ, l, r] to be true.

4. Both axioms and inference rules may be accompanied by preconditions,
written on the side. For example, the axiom [A→ •β, l, l] A→ β has a
precondition that there be a grammar rule A→ β. Likewise, the (Scan)
rule has a precondition that the symbol w (in A → β • wδ, l, r) matches
the rth word in the input string.

5. Greek and Roman letters are used for different purposes. Roman letters
correspond to single nodes, whereas Greek letters stand for a sequence
of them. So B literally means the node B, whereas β stands for “some
sequence of nodes which we will call β”

6. Rules sometimes include a dot • which serves as a sort of progress marker.
The dot is never strictly necessary (although the rules would have to be
written a bit differently) but is a useful visual aid. Section 1.3.3.5 will
show how dotted rules are used.

A

l B x C r

CKY (Comp)

And since we will implement the facts as chart edges, we will occasionally
accompany the deductive parsing notation with its chart visualisation. In the
margin, for example, we see a visualisation of the CKY (Comp) rule in chart
form. Solid lines indicate pre-existing chart edges (premises) and dashed lines
indicate chart edges to be added (conclusions). Notice that the edges are
labelled the same way as in deductive system, except that we have omitted
the indices, as these can be inferred by looking at the vertices that the edges
connect.

1.3.2 The CKY algorithm

CKY is the ancestor to all chart parsers [Kasami, 1965; Younger, 1967]. It
makes for a good example of chart parsing because it is simple and yet covers
a broad range of techniques. The algorithm works for context free grammars
in Chomsky normal form, to which any CFG can be converted.6

Definition 1 (Chomsky normal form). A grammar is in Chomsky normal form
if and only if all its productions are of the form:
A→ α
A→ BC
That is, it consists of unary rules with only a terminal symbol on its RHS, or
a binary rule with only non-terminal symbols.

6It is also possible to create a variant of CKY that works with arbitrary CFGs, but the
standard one is slightly simpler to present and has an O(n3) upper bound.
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standard CKY

Axioms [A, l, l + 1] A → W, W = wl+1

Goals [S, 0, n]

Inference
rules

[B, l, x] [C, x, r]

[A, l, r]
A → BC

(Comp)

Table 1.2: The CKY algorithm

CKY (Table 1.2) uses a strictly bottom-up traversal of the syntactic tree.
The axioms start us off with an edge for every word in the input sentence.
The word must correspond to the terminal node of some unary production in
the grammar, and the resulting edge connects the two neighbouring vertices
l and l + 1, the left and right positions of the word in the input string. As
for the binary productions, these are walked up by the inference rules: we can
infer a new edge for every pair of adjacent edges whose categories match the
right hand side of some binary production. The new edge spans the two edges
from which it was built (its indices are l, the left vertex of the first edge, and
r the right vertex of the second edge), and its category is the left hand side of
the production. Since the rules are continuously applied, the edges that result
from a binary production can themselves lead to other edges being produced
by inference rule. If at the end of processing, we have found an edge whose
category is S and which connects the vertices 0 and n, we have successfully
parsed the input string.

Figure 1.8 illustrates a CKY parse for the sentence “Lucy saw a boy with
a telescope”, using the grammar below. This sentence has two parses (Figure
1.9), which will both be found.

S → NP VP
VP → V NP | VP PP
NP → Det N | NP PP | Lucy
PP → P NP
V → saw
Det → a
P → with
N → boy | telescope

What makes CKY interesting is that it does not just tabulate intermediate
results (this would be the core requirements for a chart parser) but also com-
putes them in a compact manner. It does this with a combination of techniques,
subtree sharing and local ambiguity packing. Subtree sharing consists in repre-
senting the intermediate results with a compact parse forest instead of a set of
parse trees. We see this in the way that the PP edge “with a telescope” is used
in both the NP “(a boy) (with a telescope)” and the VP “(saw a boy) (with a
telescope)”. Local ambiguity packing, a related technique, consists in merging



22 CHAPTER 1. REALISATION ALGORITHMS

NP V Det N P Det N

0 Lucy 1 saw 2 a 3 boy 4 with 5 a 6 tscope 7

initialisation from axioms

⇓
NP

NP V Det N P Det N

0 Lucy 1 saw 2 a 3 boy 4 with 5 a 6 tscope 7

an inference rule is applied

⇓
VP

NP

NP V Det N P Det N

0 Lucy 1 saw 2 a 3 boy 4 with 5 a 6 tscope 7

another inference rule is applied

⇓
. . .
⇓

S

VP

NP

VP PP

NP NP

NP V Det N P Det N

0 Lucy 1 saw 2 a 3 boy 4 with 5 a 6 tscope 7

end of derivation (many rules later)

Figure 1.8: The CKY parser in action
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S

NP VP

N VP PP

Lucy V NP w a tscope

saw a boy

S

NP VP

N V NP

Lucy saw NP PP

a boy w a tscope

Figure 1.9: Two parses for one telescope

any chart items that can be considered equivalent. For example, the VP node
“(saw a boy with a telescope)” has two possible derivations but is represented
with a single chart item. Neither of these techniques require any add-ons to
the chart parsing engine; they are a simple consequence of the deductive rules
defined in Table 1.2.

1.3.3 An anatomy of chart parsing

If we dissect the CKY algorithm we can find some common chart parsing tech-
niques: basic tabulation, indexing, sharing, packing and redundancy checking.
In this section we will go over these techniques in greater detail and present
two other techniques not implemented in CKY (dotted edges and tabulated
prediction). The full catalogue is as follows:

tabulation storing and not recomputing chart items

indexing associating chart items with an index for filtering

sharing pointing to chart items instead of copying them

packing grouping chart items into equivalence classes

partial recognition tracking partial parses of n-ary rules

tabulated prediction storing top-down predictions in the chart

agenda control accompanying the chart by a “to do” list

1.3.3.1 Tabulation

As a bare minimum, chart parsers must tabulate intermediate results, which
allows us to avoid the expensive recomputation that comes from backtracking.
Tabulation does not necessarily imply sharing. A rudimentary chart parser
could still inefficiently copy information from one chart edge to another when
building new edges, but the fact that it tabulates these edges in the first place
is already better than nothing.



24 CHAPTER 1. REALISATION ALGORITHMS

1.3.3.2 Indexing

A standard practice in chart parsing is for chart items to contain a pair of
starting and ending string positions. These positions are needed for correctness
(two items should only combine if they really are adjacent), but they also help
to keep parsing efficient. The indices serve as a quick filter on chart items,
allowing us to rapidly determine if two chart items are potentially compatible.

This is an instance of the larger strategy of indexing. Combining edges,
or even determining if they can combine, is a potentially costly operation and
a very frequently used one since we may have to attempt all combinations of
chart items to determine if new ones can be built. Some chart parsers may
use additional indices (for example, the CKY-style parser for TAG has an
additional pair of indices to keep track of adjunctions) or include “redundant”
indices which only help to improve efficiency.

The notion of indexing could also be taken a step further by grouping the
chart items into equivalence classes and associating each of these classes with
an index. Doing this allows us to filter out entire sets of edges with a single
index comparison without having to individually consider each of its members.

1.3.3.3 Subtree sharing

Another common feature of chart parsers is that chart items can be shared.
This is not quite the same thing as basic tabulation. Tabulation just tells us
that we should store chart items and use them to build new ones, but it does
not say how to go about constructing the new edge. A possible default might
just be to copy the relevant information wholesale. Subtree sharing improves
on this situation by using a pointer to previous items instead of copying them
around. This reduces the payload of each chart item to a bare minimum, but
adds in a post-processing step if we want to recover parse trees. The trees
have to be reconstructed by following the trail of pointers from the chart items
to their origins. Subtree sharing does not change the number of chart items
produced with respect to just tabulation; however, it makes each individual
item cheaper to store (a chart item now has a constant 1 cost instead of the
linear 2n− 1 cost to build a binary tree). This savings is considerable because
there can be an exponential number of chart items with respect to the input
string.

Figure 1.10 shows the difference between tabulation with copying and tab-
ulation with sharing. In this picture, we have stripped away the chart items
which are not relevant to sharing. The item being shared here is NP(a boy),
which is used in both NP(NP(a boy), with a telescope) and VP(saw,NP(a
boy)).

For many algorithms, indexing is used as a natural springboard for subtree
sharing. For example, in CKY, we can reconstruct the parse trees out of chart
items by following the trail of string position indices. But this does not mean
that an indexing mechanism is necessary for sharing to work. For example,
the “core” version of the parsing algorithm in [Neumann, 1994] uses a chart
item counter assigning a unique identifier to each edge. This is not quite the
same thing as an index because it is not useful for filtering chart items, but is
perfectly adequate for subtree sharing.
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NP(NP(Det(a),N(boy),. . . ))

VP(NP(Det(a),N(boy)),. . . )

NP(Det(a),N(boy))

NP V Det N P Det N

0 Lucy 1 saw 2 a 3 boy 4 with 5 a 6 tscope 7

tabulation but no sharing

NP

VP

NP

NP V Det N P Det N

0 Lucy 1 saw 2 a 3 boy 4 with 5 a 6 tscope 7

tabulation and sharing

Figure 1.10: With and without subtree sharing

1.3.3.4 Local ambiguity packing

The notion of local ambiguity packing was introduced in [Tomita, 1987]. Pack-
ing is subtly different from sharing. In sharing we reuse a chart item in several
places, whereas in packing, we merge two different chart items together. Fig-
ure 1.11 shows the difference between subtree sharing and packing. Sharing is
the recycling of NP(a boy) in two different chart items. Packing, on the other
hand, consists in treating the two different derivations of VP(saw a boy with
a telescope) as a single chart item. As opposed to subtree sharing, this can
significantly reduce the number of chart items being built. Packing allows for
an exponential number of trees to be encoded in polynomial space.

Packing is implemented by the generic chart parsing engine (see Section
1.3.1), but it requires that the individual algorithm supply an equivalence cri-
terion between items — only equivalent items should be packed. The criterion
could be the same used for building equivalence classes in an indexing scheme,
but neither one necessarily implies the other.

For context free grammars, two items can be considered equivalent if they
are equal. For unification grammars, on the other hand, a subsumption check
is more appropriate: specific items should be packed into general ones. This re-
quires that the parsing engine support some destructive operations: if a more
general item is produced when a more specific one already exists, the more
specific one should be replaced with the general one (and any bookkeeping in-
formation be merged). Subsumption-based packing can also be inexact because
not all of the derivations for a specific chart item may extend to the general
one, so a chart parser with subsumption-based packing must also include an
unpacking phase at the end of parsing to filter out the invalid unpackings.
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VP (2 derivations)
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packing of VP

Figure 1.11: Subtree sharing vs. packing

One interesting side-effect of packing is that it can help to avoid the kind
of infinite loops that the top-down and head-corner algorithms suffer from.
Because we do not visit the same intermediate results twice, we avoid one po-
tential source of infinite loops. This is what allows for context free chart parsing
algorithms to use a top-down traversal (for example, Earley’s algorithm) with-
out running into the left-recursion problem. As usual, the same guarantees do
not extend to unification grammar. For example, we might have chart items
with lists in them (e.g. subcategorisation lists). Starting from the top down,
we may build a new list out of a pre-existing list by consing a new element
onto it. As a minimal example, given the list [], we might produce a new list
X:[]. This new list is not subsumed by the previous list and so it will not be
detected by the packing scheme.7

1.3.3.5 Partial recognition

One problem with standard CKY is that the grammars have to be converted
to Chomsky normal form (see Definition 1). CKY could be modified straight-
forwardly to work with n-ary rules, but doing so causes us to lose the O(n3)
upper bound on the parsing algorithm. How can we make use of n-ary rules
without sacrificing efficiency?

The solution consists in introducing a notion of active chart items, in ad-
dition to the inactive items that standard CKY uses. The idea is that active

7This may be more obvious with an alternative notation. For instance, cons(X,[]) is
not subsumed by [].
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standard CKY dotted CKY

Axioms [A, l, l + 1] A → W,W = wl+1 [A → •β, l, l] A → β

Goals [S, 0, n] [S•, 0, n]

Inference
rules

[A → β • wδ, l, r]

[A → βw • δ, l, r + 1]
w = wr+1

(Scan)

[B, l, x] [C, x, r]

[A, l, r]
A → BC

[A → β • Cδ, l, x] [C → η•, x, r]

[A → βC • δ, l, r]
(Comp) (Comp)

Table 1.3: Dotted CKY

chart items correspond to partial recognition of a rule, on the way to building
an eventual inactive item. We distinguish between active and inactive items
with the dot notation. Here is a dotted production: A→ β•γ. It indicates that
the portion β of the production has already been recognised (as mentioned on
Page 5, Greek letters stand for some arbitrary sequence of nodes). The chart
items and parsing algorithm are thus modified to keep track of these dotted
productions. Table 1.3 presents the rules of this augmented CKY, with the
standard CKY alongside for comparison.

What sets standard and dotted CKY apart is their completion rules. Stan-
dard CKY completion really does “complete” the traversal of a rule in the sense
that given a CKY rule A→ BC, if both B and C have both been parsed, then
A has also been parsed. Dotted CKY completes only one “step” of the traver-
sal: if for some A→ βCδ, we have •C and if we successfully parsed some rule
C → η, then we note this by moving the dot to the right, yielding C•. The big
difference here is that we now actually store the partial recognition, which we
did not do when we were working solely with inactive chart items.

1.3.3.6 Tabulated prediction

So far we have been using the (dotted) CKY algorithm to illustrate the chart
parsing techniques. Here, we introduce a technique which is not used in that
algorithm. Tabulated prediction is an application of the dotted chart items
(active chart items) introduced above. It allows us to transform a purely
bottom-up tree traversal strategy into a top-down one (with left-recursive dis-
aster averted by packing).

[A→ β • Cδ, l, r]
[C → •η, r, r] C → η

The algorithm is almost identical to dotted CKY (see Table 1.4 for a com-
parison using the deductive parsing notation and Figure 1.12 using a visual
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dotted CKY Earley

Axioms [A → •β, l, l] A → β [S → •β, 0, 0] S → β

Goals [S•, 0, n]

Inference
rules

[A → β • Cδ, l, r]

[C → •η, r, r]
C → η

(Pred)

[A → β • wδ, l, r]

[A → βw • δ, l, r + 1]
w = wr+1

(Scan)

[A → β • Cδ, l, x] [C → η•, x, r]

[A → βC • δ, l, r]
(Comp)

Table 1.4: Dotted CKY vs. Earley deduction

chart parsing notation), save the initialisation axiom and an extra inference
rule. The initialisation axioms are tightened up. Whereas dotted CKY will
initialise on every rule in the grammar, Earley will only do so for rules with
the start symbol on the left hand side. To make up for this, we introduce a
new (Pred) rule. This new prediction rule makes all the difference. It does not
have the exuberance of dotted CKY, predicting everything in sight. Instead,
it only performs predictions on confirmed active chart items. This effectively
transforms bottom-up traversal into top-down traversal, because (bottom-up)
scans and completions will only be initiated when they have been successfully
predicted. The difference is that they will only be predicted if there is a good
reason to do so. Note that the theoretical complexity of both algorithms is the
same, O(n3) in time and O(n2) in space, but in practice, the Earley algorithm
presents a sizeable reduction of the search space because it prevents the kind
of false starts to which a purely bottom-up approach is prone.

1.3.3.7 Agenda based control

Some chart parsing algorithms use a secondary data structure known as an
agenda. The agenda acts as a sort of “todo” list of edges. Using it usually
involves some variant of the following algorithm schema [Kay, 1996]:

1. Move an item from the agenda to the chart.

2. If it may combine with other items in the chart, add any resulting new
edges to the agenda

3. If there are no more chart items to consider, stop, otherwise start over.



1.3. SHARING INTERMEDIATE RESULTS 29

dotted CKY Earley

prediction
A→ •β

l

C → •η

l A→ β • Cδ r
axiom inference rule

completion
A→ βC • δ

l A→ β • Cδ x C → η• r
inference rule

Figure 1.12: CKY/Earley visualisation

We have so far presented chart parsing in terms of a generic deduction-
based engine where the tree traversal and search strategy can be supplied as a
parameter. Having an agenda lets us parameterise the search strategy as well.
For example, using a stack would give us depth-first disambiguation, (using
whatever tree traversal and control strategy the rules provide for), or imple-
ment it as a queue and get breadth-first search. More sophisticated strate-
gies could be implemented still. [Shieber, 1988]’s uniform architecture, for
instance, uses a priority queue for the agenda and can be parameterised for
different search strategies by changing the function that assigns priorities to
edges. This can model the usual depth-first and breadth-first strategies, but
also richer strategies that model psycholinguistic phenomena such as minimal
attachment. Clearly, this kind of parameterisability is an improvement over the
alternative of hard-coding a strategy into the parser. Agendas and deduction
systems do not necessarily imply one another but they fit together in a natural
fashion.

On the other hand, note that for a given tree traversal strategy, the same
set of chart items will ultimately be generated no matter how we organise the
agenda. The only thing that changes is the order in which we produce the
chart items. The choice of an agenda is largely irrelevant for chart parsers that
exhaustively explore the search space; but it becomes useful when pruning
strategies come into play.

1.3.4 Chart generation and indexing

The common ingredients that make a chart parser can also be transferred to
surface realisation. Chart generation has largely the same objectives as chart
parsing: to construct syntactic trees for a given input. In Table 1.5, we can
see the techniques implemented by three early chart generators: the uniform
architecture of [Shieber, 1988], the uniform computational model of [Neumann,
1994] and [Kay, 1996]’s chart generation. Some features are standard: core
tabulation obviously, structure sharing, partial recognition with active chart
items and agenda-based control. [Kay, 1996] does not appear to implement a
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Shieber 1988 Neumann 1994 Kay 1996
core tabulation yes yes yes
structure sharing yes yes yes
packing yes yes no
indexing no yes yes
partial recognition yes yes yes
tabulated prediction yes yes no
agenda based control yes yes yes

Table 1.5: Some chart generation algorithms

packing scheme or use tabulated prediction (his algorithm appears to be akin
to dotted CKY), but this is because his main point is to introduce a novel
mechanism for indexing.

Indexing was the main issue in chart generation until Kay’s proposal. The
problem is that the input to generation systems is inherently more complicated8

than that of parsing. Whereas parsers deal with linear sequences of words (or
at worst, automata), generators have to work with semantic trees or graphs as
input. If we are only dealing with strings, we can say that chart edges are only
allowed to combine with edges that are adjacent to each other in the sequence.
This does not work for generation because it is the strings that we are trying to
output; we do not know what the sequence is yet, so we cannot tell what items
are adjacent to each other. What would be more appropriate for generation
would be something based on the input semantics, but what?

Shieber’s uniform architecture

The earliest answer to this question was“nothing”. The uniform architecture of
[Shieber, 1988] essentially does not use an indexing mechanism for generation.
Shieber uses a single set of inference rules for parsing and generation (under
the deductive parsing framework). For generation, he systematically sets the
string positions to 0 so that all substrings are considered to be adjacent to each
other, and potentially worth combining. In other words, he deactivates the
indexing mechanism when doing generation.

Indexing with essential features

[Neumann, 1994] builds on [Shieber, 1988] by using a single framework for pars-
ing and generation, using an Earley-style algorithm and a unification grammar
with a context free backbone. One of the innovations he introduces is an in-
dexing mechanism which can be parameterised to work for either parsing or

8We really mean complicated here, and not complex in the sense of computational com-
plexity. On the other hand, it is also true that surface realisation is NP-complete with a
Context-Free Grammar, and for that matter, with a Tree Adjoining Grammar [Brew, 1992;
Koller and Striegnitz, 2002]
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generation. The basic idea is that for parsing, the index of a chart item con-
sists of the string it covers, whereas for generation the index is the semantics.
Comparing indices is linear with respect to the size of the input, because it
involves at least a string comparison. Neumann reduces the number of index
comparisons that need to be made by grouping the chart items into equivalence
classes (see Section 1.3.3.2). The general scheme is as follows:

1. Chart items consist of a tuple [h ← b0..bn, x, in, from]. h ← b0..bn is
an active production. x points to the currently selected node in b0..bn
(i.e. bx). It serves the same purpose as the • in active chart parsing,
but Neumann uses head-first traversal (as opposed to left-to-right), so
the • notation may be a bit misleading. in and from are pointers to
equivalence classes; see [Neumann, 1994] for details.

2. Item sets are tuples of the form 〈AL,PL, Idx〉, where AL is the set of
active chart items in the set, PL the set of inactive edges and, Idx the
thing they have in common. Only active edges and passive edges in the
same class may combine.

3. Idx matches an essential feature of a certain node in each chart item.

4. The essential feature is taken from different parts of the chart item, de-
pending on whether it is an active item or an inactive one.

a) For inactive items, it is taken from the root node h.

b) For active items, it is instead taken from the currently selected node
bx (again chosen using head-first, then left-to-right selection).

5. Parameterising the indexing mechanism consists in changing what feature
we consider to be essential.

a) For parsing, the essential feature is phon, the portion of the input
string that the node represents.

b) For generation, it is sem, the semantics of the node.

This scheme looks a little surprising at first glance because it seems to imply
that two chart items combine if (for example), they share the same string. But
this really is equivalent to what traditional chart parsing algorithms like CKY
do. In traditional chart parsing, we say that the right index of the active chart
item must match the left index of the passive item. In Neumann’s algorithm,
we say that the essential feature of the xth node in the active edge must match
the index of the root node of the passive edge. The equivalence classes are
really two-in-one, an equivalence class for active items, and a class for inactive
items, the idea being that all the items in the active class are equivalent to the
others (in the active class), all the items in the inactive class are equivalent to
the others (in the inactive class), and finally that all the items in the active
class may combine with all the items in inactive class.

In any case, the point is that [Neumann, 1994] algorithm shows one possible
way to get indexing in a chart generator — just use the whole (semantic) feature
structure — as an index. There is a shortcoming to this approach, however,
which is that it only works in a head-first and top-down tree traversal (e.g.
using the Earley algorithm). In order to check if two semantic features are the
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same, they must first be instantiated, which is what happens when we use a
head-first, top-down traversal. This excludes more lexically-driven, bottom-up
approaches (on the other hand, see the remark on Page 13 about the top-down
or bottom-up nature of Earley traversal).

Indexing with a flat semantics

A more flexible approach to indexing was introduced by [Kay, 1996], and
has been incorporated into many chart generators since [Carroll et al., 1999;
Striegnitz, 2000; White, 2004]. The basic approach relies on the use of a flat
semantics. We will present flat semantics in greater detail in Chapter 2, but
for now it suffices to say that a flat semantic formula is a set of literals where
each literal consists of a predicate and some indices. There exist several flat se-
mantic formalisms, but they have at least this much in common. The following
formula is an example of a flat semantics:

run(r), past(r), fast(r), arg1(r,j), name(j, john)

The key idea here is that semantic indices, like r or j can also serve as chart
indexes in the sense that active and inactive edges should only combine if they
articulate around a common semantic index.9 This is the approach we use in
this thesis, so we now delve into a more detailed presentation of the algorithm
proposed by Kay.

1.3.5 Kay1996 in detail

The idea of using a flat semantics for generation was first introduced with
the Shake-and-Bake generator [Whitelock, 1992]. Shake-and-Bake intro-
duces the idea of a generation problem (Shake-and-Bake generation) which
starts from a multiset of richly structured lexical signs instead of a conventional
logical form. A rudimentary algorithm for Shake-and-Bake generation was
introduced by [Whitelock, 1992], shift-reduce parsing with an unordered stack,
and later improved by [Brew, 1992] with constraint propagation.

Of course, what we now call a flat semantics is no more than a multiset of
richly structured lexical signs. Kay’s algorithm can thus be seen as a new ap-
proach to Shake-and-Bake generation, using chart parsing techniques. The
algorithm works by analogy with chart parsing of free-word-order languages,
treating the input semantics as a free-order string and each literal as a word
in that string. Following [Kay, 1996], we present the algorithm in two stages,
using a core version to show chart generation from a flat semantics, and an
extended version to show how the indexing mechanism works.10

Semantics, grammar and lexicon

The input consists of a list of literals, as below

run(r), past(r), fast(r), arg1(r,j), name(j,john)

9Depending on your point of view, it is (un)fortunate that we use the same word “index”
for both semantic and chart indices.

10Regarding the “a bit” in Table 1.6, we can think of the semantic-overlap check called for
by the basic version as a sort of indexing mechanism. Kay does not refer to it as such.
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basic extended
core tabulation yes yes
structure sharing no no
packing no no
indexing a bit yes
partial recognition no yes
tabulated prediction no no
agenda based control yes yes

Table 1.6: Chart generation in [Kay 1996]

Grammar:

S(X) → NP(Y ) VP(X, Y )
VP(X, Y ) → VP(X), Adv(X)

Lexicon:

words cat semantics
John np(X) name(X,john)
ran vp(X,Y) run(X), arg1(X,Y), past(X)
fast adv(X) fast(X)
quickly adv(X) fast(X)

Figure 1.13: A small grammar and lexicon

The grammar is assumed to contain only binary rules. The lexicon asso-
ciates a sequence of words with a category and a semantics. The category and
semantics are linked by unification variables. Figure 1.13 shows an example of
a grammar and lexicon used.

Basic version

Kay’s algorithm uses a bottom-up tree traversal. Since deductive parsing is
a useful way to talk about parsing and generation algorithms, we attempt to
recast [Kay, 1996] in deductive parsing terms in Table 1.7. Note that this table
does not mention unification, which it should by rights, but we have simplified
it away because it obscures the basic mechanics we are trying to get at. (See
Appendix C for a version with unification taken into account). Also, we have
omitted the indices which are associated with each grammar rule when they
are not relevant, for example writing A → BC where we really mean to say
A(a1, .., an)→ B(b1, .., bn)C(c1, .., cn).

Axioms Chart items have the form [words, cat, sem]. The initial chart items
are instantiated from the lexicon by selecting the items whose semantics sub-
sumes the input semantics and performing the appropriate variable substitu-
tions.
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Given an input semantics sem and lexicon L:

Axioms
[w; A; lexsem(w)] A → w,

w ∈ L,
lexsem(w) ⊆ sem

Goals [w1..wn; S; sem]

Inference
rules

[w1..wi; B; semb] [wi..wj ; C; semc]

[w1..wj ; A; semb ∪ semc]
A → BC,

semb ∩ semc = ∅
(Comp)

Table 1.7: The basic Kay 1996, modulo unification

agenda

words cat semantics
John np(j) name(j,john)
ran vp(r,j) run(r), arg1(r,j), past(r)
fast adv(r) fast(r)
quickly adv(r) fast(r)

chart

words cat semantics

Figure 1.14: Agenda/chart in the beginning of realisation

Goal The realiser has a simple goal, to produce a chart item whose category
corresponds to the start symbol of the grammar and whose semantics matches
the input semantics. Checking if the semantics matches can be done rapidly
by means of a bit vector.

Inference rule The algorithm uses a single (Comp) rule in the standard
CKY style. The (Comp) rule has a rudimentary form of indexing (treating the
semantics as an index), which says that no two chart items should combine if
their semantics overlap. This prevents the realiser from exploring useless and
incorrect combinations like “run fast” with “quickly”. In any case, if two chart
items can be combined, the semantics of the resulting item is the set-union of
the semantics of the original chart items. As usual, we can implement these
operations efficiently by using a bit vector.

Basic version: an example

Let us work through a small example of the basic algorithm. We use the
semantics run(r), past(r), fast(r), arg1(r,j), name(j,john) as input and the
small grammar and lexicon from Figure 1.13.

Figure 1.14 shows the chart items which are produced from the axioms.
We are using agenda-based control, moving items off the agenda one at a time
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agenda (iteration 2)

words cat semantics
fast adv(r) fast(r)
quickly adv(r) fast(r)
John ran s(r) run(r), arg1(r,j), past(r), name(j,john)

chart (iteration 2)

words cat semantics
John np(j) name(j,john)
ran vp(r,j) run(r), arg1(r,j), past(r)

agenda (iteration 4)

words cat semantics
John ran s(r) run(r), arg1(r,j), past(r), name(j,john)
ran quickly vp(r,j) run(r), arg1(r,j), past(r), fast(r)
ran fast vp(r,j) run(r), arg1(r,j), past(r), fast(r)

chart (iteration 4)

words cat semantics
John np(j) name(j,john)
ran vp(r,j) run(r), arg1(r,j), past(r)
fast adv(r) fast(r)
quickly adv(r) fast(r)

Figure 1.15: Agenda/chart after 2 and 4 iterations

and combining them with elements in the chart. In the first iteration, we
move the item “John” off the agenda and onto the chart. In the next iteration,
we do the same with item “ran”, only now, there is something on the chart
that can combine with it by the (Comp) rule. We thus create a new chart
item “John ran” with the semantics being the union of the previous two items’
semantics. Kay seems to use a queue for an agenda (which simulates a breadth-
first search), so we add the new item onto the end of the agenda. In the next
two iterations, the chart items for “ran” and “fast” combine to form “ran fast”
and “ran quickly”. Figure 1.15 shows the agenda and chart after these second
and fourth iterations. Finally (over the next three iterations) “John ran” does
not combine with anything, but “ran fast” combines with “John”, as does “ran
quickly”, yielding two results. This run can be summarised below using the
first letter of every word as an abbreviation.

Combinations Agenda Chart Results
j,r,f,q
r,f,q j

(j,r) via t1 f,q,jr j,r
(r,f) via t2 q,jr,rf j,r,f
(r,q) via t2 jr,rf,rq j,r,f,q

rf,rq j,r,f,q
(j,rf) via t1 rq j,r,f,q jrf
(j,rq) via t1 j,r,f,q jrf, jrq
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Given an input semantics sem and lexicon L:

Axioms
[w;A•; lexsem(w)] A → w,

w ∈ L,
lexsem(w) ⊆ sem

Goals [w1..wn; S•; sem]

Inference
rules

[w1..wi; B•; semb]

[w1..wi; A → B • C(c . . .); semb]
A → BC(c . . .),

(Comp1)

[w1..wi; A → B • C(x . . .); semb] [wi..wj ; C(x . . .)•; semc]

[w1..wj ; A•; semb ∪ semc]
A → BC(x . . .),

semb ∩ semc = ∅
(Comp2)

Table 1.8: Kay 1996 deluxe (with indices)

Extended version (with indexing)

Now that we have the basic algorithm in place, we can improve it with a more
aggressive notion of indexing. There are two modifications needed to support
this notion.

1. (Comp1) We introduce a notion of dotted edges. For simplicity, we still
assume that the grammar has only binary rules; the point of introducing
dotted edges is just to have the distinction between active and inactive
edges. The introduction of dotted edges results in a new inference rule
which promotes inactive edges into active ones.11

2. (Comp2) When an active edge with label A→ B •C(xa . . .) and is to be
combined with an inactive edge with label C(xi . . .), we ensure that the
indices xa and xi are the same. This check is actually superfluous. We get
it for free just by checking if the active edge and inactive chart items may
interact (in fact, the only key modification needed is the introduction of
dotted edges). But here we make it explicit to show how semantic indices
are put to use as chart indices.

Table 1.8 shows the modified version of the algorithm. As usual, we have
omitted indices where they are not relevant, so for example, A → BC(x . . .)
should really be read as A(a1, .., ai)→ B(b1, ..bj)C(x, c2, ..ck).

Extended version: an example

Now, for an example. We will be realising from the input semantics below and
the grammar and lexicon in Figure 1.16.

11Kay does not seem to specify what should happen when there is not enough information
to ground all the variables in the resulting active edge. We have constructed his approach
with the assumption that they pass through unmodified. Non-ground indices do not appear
to be fatal since they will simply be compatible with any other index (by unification). The
idea of filtering by semantic indices is nevertheless useful, at least for the cases they do
ground.
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grammar

S(X) → NP(Y ) VP(X, Y )
VP(X,Y ) → V(X,Y, Z) NP(Z)
NP(X) → Det(X) N(X)

lexicon

words cat semantics
cat n(X) cat(X)
dog np(X) dog(X)
saw v(X,Y,Z) see(X,Y,Z), past(X)
the det(X) def(X)
a det(X) indef(X)

Figure 1.16: “The dog saw a cat” grammar and lexicon

dog(d), def(d), see(s,d,c), past(s), cat(c), indef(c)

The derivation of “The dog saw a cat” can be narrated as follows:

0. (Figure 1.17) The initial agenda contains the lexically selected items, all
inactive edges with nothing to combine with.

1. (Figure 1.18) In these next five iterations, the initial items are all moved
off the agenda. Some of them get promoted into active edges via (Comp1).
. . .

7. (Figure 1.18) An active edge with the string “the” combines with the
inactive edge for “dog” to yield an inactive edge “the dog”.

8. (Figure 1.19) “saw”has nothing to combine with yet and is moved off the
agenda without incident.

9. (Figure 1.19) The “a” active edge combines with “cat” to produce “a cat”.

10. The passive edge “the dog” is promoted into an active edge via (Comp1).

11. Both (Comp1) and (Comp2) apply to “a cat”, yielding both an active
version “a cat”, and the combined “saw a cat”

12. The active versions of “the dog” and a cat have nothing to combine with,
and are moved off the agenda with no incident.. . .

14. (Figure 1.20) The inactive edge “saw a cat” combines with the active “the
dog” via (Comp2), yielding the final result “the dog saw a cat”

Here is the full derivation in compact table form (active edges are marked with
an exclamation mark)
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Combinations Agenda Chart Results
t,d,s,a,c

Comp1(t) via t3 d,s,a,c,t! t
s,a,c,t! t,d

Comp1(s) via t2 a,c,t!,s! t,d,s
Comp1(a) via t3 c,t!,s!,a! t,d,s,a

t!,s!,a! t,d,s,a,c
Comp2(t!,d) via t3 s!,a!,td t,t!,d,s,a,c

a!,td t,t!,d,s,a,c
Comp2(a!,c) via t3 td,ac t,t!,d,s,a,a!,c
Comp1(td) via t1 ac,td! t,t!,d,td,s,a,a!,c
Comp1(ac) via t1 td!,ac!,sac t,t!,d,td,s,a,a!,c,ac
Comp2(s!,ac) via t2
Comp1(ac) via t1 sac t,t!,d,td,td!,s,a,a!,c,ac,ac!
Comp2(td!,sac) via t1 t,t!,d,td,td!,s,sac,a,a!,c,ac,ac! tdsac

1.4 Summary of the main issues

There are three major considerations in building a surface realisation algorithm.

1. Tree traversal is a question of how we uncover the syntactic tree we are
trying to build. It can be decomposed into the questions of ascendancy
(i.e. top-down vs. bottom-up vs. corner based) and of child selection (i.e.
left-to-right vs. head-driven).

2. Search deals with the question of which choices we make when we en-
counter an ambiguity in the grammar. A large variety of search strate-
gies are available (depth-first, best-first, etc), as are pruning strategies
(anywhere from the full pruning to no pruning).

3. Chart parsing consists of a variety of techniques which most algorithms
have in common. The techniques can be applied to generation in a rel-
atively straightforward manner and the question of indexing can be ad-
dressed with the use of a flat semantics.

These factors tie into the fundamental choices we will see in the next two
chapters. The main reason for using a flat semantics is that it helps us cope with
the logical-form equivalence problem; but it is also useful for chart generation.
Likewise, the main reason for using Tree Adjoining Grammar (TAG) is that it
is useful from a linguistic point of view, but it is also nice because, in a sense
TAG gives us head-corner traversal for free (the base linguistic units in TAG
are trees of arbitrary depth; so we can think a TAG tree as directly encoding
the chain-rule processing step of head-corner traversal).
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agenda

words cat semantics
the det(d) • def(d)
dog n(d) • n(d)
saw v(s,d,c) • see(s,d,c), past(s)
a det(c) • indef(c)
cat n(c) • n(c)

chart

words cat semantics

Figure 1.17: “The dog saw a cat” after lexical selection

agenda (iteration 5)

words cat semantics
the np(d) → det(d) • n(d) def(d)
saw vp(s,d) → v(s,d,c) • np(c) see(s,d,c), past(s)
a np(c) → det(c) • n(c) indef(c)

chart (iteration 5)

words cat semantics
the det(d) • def(d)
dog n(d) • n(d)
saw v(s,d,c) • see(s,d,c), past(s)
the det(c) • indef(c)
cat n(c) • n(c)

agenda (iteration 6)

words cat semantics
saw vp(s,d) → v(s,d,c) • np(c) see(s,d,c), past(s)
a np(x) → det(c) • n(c) indef(c)
the dog np(d) • def(d)

chart (iteration 6)

words cat semantics
the det(d) • def(d)
dog n(d) • n(d)
the np(d) → det(d) • n(d) def(d)
saw v(s,d,c) • see(s,d,c), past(s)
a det(c) • indef(c)
cat n(c) • n(c)

Figure 1.18: Early iterations of “The dog saw a cat”
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agenda (iteration 7)

words cat semantics
a np(x) → det(c) • n(c) indef(c)
the dog np(d) • def(d), dog(d)

chart (iteration 7)

words cat semantics
the det(d) • def(d)
dog n(d) • n(d)
the np(d) → det(d) • n(d) def(d)
saw v(s,d,c) • see(s,d,c), past(s)
saw vp(s,d) → v(s,d,c) • np(c) see(s,d,c), past(s)
a det(c) • indef(c)
cat n(c) • n(c)

agenda (iteration 8)

words cat semantics
the dog np(d) • def(d), dog(d)
a cat np(c) • indef(c), cat(c)

chart (iteration 8)

words cat semantics
the det(d) • def(d)
the np(d) → det(d) • n(d) def(d)
dog n(d) • n(d)
saw v(s,d,c) • see(s,d,c), past(s)
saw vp(s,d) → v(s,d,c) • np(c) see(s,d,c), past(s)
the det(c) • indef(c)
a np(x) → det(c) • n(c) indef(c)
cat n(c) • n(c)

Figure 1.19: More iterations of “The dog saw a cat”

agenda (iteration 14)

words cat semantics
the dog saw s(s) • def(d), dog(d), see(s,d,c), past(s),
↪→ a cat ↪→ indef(c), cat(c)

chart (iteration 14)

words cat semantics
the det(d) • def(d)
the np(d) → det(d) • n(d) def(d)
dog n(d) • n(d)
the dog np(d) • def(d), dog(d)
the dog s(X) → np(d) • vp(X,d) def(d), dog(d)
saw v(s,d,c) • see(s,d,c), past(s)
saw vp(s,d) → v(s,d,c) • np(c) see(s,d,c), past(s)
saw a cat vp(s,d) • see(s,d,c), past(s), indef(c), cat(c)
the det(c) • indef(c)
a np(c) → det(c) • n(c) indef(c)
cat n(c) • n(c)
a cat np(c) • indef(c), cat(c)
a cat s(X) → np(c) • vp(X,c) def(c), cat(c)

Figure 1.20: Final iteration of “The dog saw a cat”



Chapter 2

Flat semantics with holes

Surface realisation algorithms can differ in their tree traversal, disambiguation
and control strategies. But what about the more fundamental choices? In
these next two chapters we will explore two of the core assumptions made by
the surface realiser GenI : that our input semantics comes in the form of a
flat semantics and that the grammar used is a Feature-Based Tree Adjoining
Grammar (FB-LTAG). This chapter deals with the flat semantic assumption.
We have briefly introduced flat semantics in the discussion of chart generation.
Here, we expand on what exactly a flat semantics is (Section 2.1). We cover
the main motivation behind a flat semantics (it is a partial workaround to the
logical-form equivalence problem, Sections 2.2 and 2.3). Finally, we shall go
over an issue which arises in the context of generation with a flat semantics
(intersective modifiers, Section 2.4).

2.1 Flat semantics

Flat semantic representations were not initially used to tackle the logical-form
equivalence problem per se. The idea of flattening logical formulas was first
introduced for theorem-proving [Gabbay, 1996] and later adopted into NLP to
enable compact representations of scope ambiguities.

2.1.1 How to iron a formula

Semantic representation languages must handle recursion in one way or an-
other. Natural language expressions can have an arbitrary length; an expres-
sion can be built out of another expression. More importantly, their meanings
can be built out of the meanings of other expressions, and to an arbitrary depth.
For example, consider the sentence“A dog barks.” In first-order logic, we might
represent this as ∃d(dog(d) ∧ bark(d)); but as we see below, this sentence and
its semantics can be nested indefinitely:

1. A dog barks.
∃d(dog(d)∧ bark(d))

2. A man complains that a dog barks.
∃m(man(m)∧ complain(m,∃d(dog(d)∧ bark(d))))

41
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3. A neighbour says that a man complains that a dog barks.
∃n(neighbour(n)∧ say(n,∃m(man(m)∧ complain(m,∃d(dog(d)∧ bark(d))))))

4. . . .

Flat semantic representations are also recursive, although they express this
recursion in a less direct manner. Rather than include other semantic formulas,
flat semantics refer to them. Any semantic representation language can be
flattened. For example, one possible flattening would be (i) identify every non-
recursive subformula with a label (ii) replace every embedded labelled formula
with its label (iii) recurse. Below is how such a scheme might be applied to the
semantics of “Ernest considers buying a dog” in first-order logic:

1. ∃d(dog(d)∧ consider(ern, buy(ern, d)))

2. ∃d(l1 ∧ consider(ern, l2))

l1:dog(d), l2:buy(ern,d)

3. ∃d(l1 ∧ l3)

l1:dog(d), l2:buy(ern,d), l3:consider(ern,l2)

4. ∃d(l4)

l1:dog(d), l2:buy(ern,d), l3:consider(ern,l2), l4:and(l2, l3)

5. l1:dog(d), l2:buy(ern,d), l3:consider(ern,l2), l4:and(l2, l3), l5:exists(d,l4)

2.1.2 LU : an application of hole semantics

The flat semantic language used in this thesis is LU [Gardent and Kallmeyer,
2003]. It is a reformulation of Predicate Logic Unplugged (PLU) where lambda
variables are replaced by unification variables. PLU is an application of hole se-
mantics [Bos, 1995], a general framework for flattening and introducing scope
underspecification into semantic representation languages (for example, Bos
shows how Discourse Representation Theory can be unplugged). The LU lan-
guage somewhat simplifies PLU and adds unification variables for purposes of
semantic construction.

There are basically two kinds of LU formulas, saturated and unsaturated.
The difference is that saturated formulas are devoid of unification variables.
Surface realisers, parsers and grammars all traffic in unsaturated formulas, but
ultimately their goal is to produce a saturated formula.

Definition 2 (LU formula syntax). Let

• Ivar be a set individual unification variables and Icon be set of individual
constants;

• Lvar be a set of label unification variables and Lcon be a set of label
constants;

• H be a set of “hole” constants and

• R be a set of n-ary relations over Ivar ∪ Icon.
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Given l ∈ Lvar ∪ Lcon, h ∈ H , i1, . . . , in ∈ Ivar ∪ Icon ∪H and Rn ∈ R. Then
the unifying formulas (UF) of LU are defined as follows:

1. l : Rn(i1, . . . , in) is a UF of LU

2. h ≥ l is a UF of LU

3. If φ is a UF of LU and ψ is a UF of LU , then φ, ψ is a UF of LU

4. Nothing else is a UF of LU

Unification and semantic formula construction are not particularly relevant
to the question of what makes LU and flat semantic languages attractive. We
will thus ignore unsaturated formulas for now (see Section 3.3).

LU also supports a notion of underspecification. In LU , there is a process
called plugging, which converts a saturated LU formula into a set of plugged
saturated formulas (or plugged formulas for short). For a full definition of
plugged formulas, see [Gardent and Kallmeyer, 2003]. Here, it suffices to say
that plugged formulas are saturated formulas which are devoid of hole con-
stants. We will largely ignore the question of underspecification in this thesis,
and focus mainly on the plugged formulas.1

The set of LU plugged formulas is equivalent to the set of first-order logic
formulas. Converting to first-order logic (FOL) consists of translating some
distinguished relations (like exists and forall) to the FOL equivalents and
replacing all labels with the formula that is being labelled.2 Converting back
requires undoing this process. In other words, plugged LU formulas can be
recursively unflattened into FOL ones, and FOL ones can be flattened back
([Copestake et al., 2005] shows the flattening from first-order logic formulas into
MRS sans specification of links, which is equivalent to plugged LU formulas).

2.2 Logical-form equivalence

The problem of logical-form equivalence was first mentioned in [Appelt, 1987]
and [Shieber, 1988]. Since then, other researchers have claimed to have solved
the problem [Calder et al., 1989; Levine, 1990], prompting Shieber to clarify
the issue and to reassert its intractability. There is no solution to the problem,
short of solving the AI knowledge-representation problem and addressing the
thorny philosophical question of what it means to “mean the same” [Shieber,
1993].

The problem starts off innocently enough. We can see a grammar as ex-
pressing a relation between strings and one or more logical form. Ideally, we
would simply associate the string with a faithful representation of its meaning,
but since it is far from clear exactly what “meanings”are, we use a logical form
as an approximation. There are thus three players to deal with: strings, logical
forms and meanings. The relationship between the three can be summarised
as follows (see also Figure 2.1):

• A string may have more than one meaning

1On the other hand, Section 3.3 shows an example of unplugged formulas being used.
2[Gardent and Kallmeyer, 2003] do not mention this, but we also adopt the convention

from MRS that relations with the same label are considered to be under conjunction.
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S1 S2

Ma Mb

S3

Li Lii Liii Liv Lv

Figure 2.1: Strings, meanings and logical forms

S1 S2 S3

Li Lii Liii Liv Lv

Ma MbMa Mb

Figure 2.2: Strings, meanings and canonical logical forms

• A meaning may be realised by more than one string

• A meaning may be represented by more than one logical form

• On the other hand, a logical form stands for only one meaning.

The crux of the problem is that a single meaning may be associated with
more than one logical form. In practice, one usually expects a grammar to
associate a string with only one of the logical forms. Following Shieber, we will
call this the canonical logical form for that string (under the given interpreta-
tion; that is, each distinct meaning gives rise to a distinct logical form). Figure
2.2 shows a possible mapping from strings to their canonical logical form in
the grammar. The two things to notice in this figure are that (i) a string is
only associated to one logical form for each of its meanings and (ii) two strings
with the same meaning can be associated with different logical forms each (for
example, “John threw the ball” and “The ball was thrown by John”) might get
assigned a different logical form).
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The job of a parser is then to compute the meaning of each string, which
it accomplishes by building its canonical logical form(s). Generation systems
have a converse job, deriving a string from a meaning representation. But this
is trickier. If the input does not correspond to any of the canonical logical
forms recognised by the grammar, it means that we simply get no output.
For example, in Figure 2.2, say that the grammar does not associate Lii to
any strings. If the generator was given Lii as input, it would not be able to
generate anything from it. Let’s try this on a more concrete example. Suppose
we had the following grammar:

t1 S(S) → NP(X) VP(λX.S)
t2 VP(λX.S) → V(λY λX.V ) NP(λY λV.S)
t3 NP(λXλC.S) → Det(λXλRλC.S) N(λX.R)
t4 N(λX.A ∧ N) → Adj(λX.A) N(λX.N)
t5 NP(john) → John
t6 N(λX.cat(X)) → cat
t7 Det(λXλRλC.∃X.(R ∧ C)) → a
t8 Adj(λX.white(X)) → white
t9 V(λY λX.has(X, Y )) → has

The logical form generated by this grammar for the sentence “John has a
white cat” would be (∃x.(white(x) ∧ cat(x)) ∧ has(john, x)). This input could
be fed into the grammar and the expected sentence would be realised. But
what if we had instead inverted the arguments? If we feed a slightly different
input to the grammar, say ∃x.has(john, x)∧ (white(x)∧ cat(x)), we would not
get any output from the grammar. These two logical forms are semantically
equivalent, so by rights we should be able to generate from either one (and get
the same result); however, because they are not syntactically equivalent, we
can only generate from one of them.

The problem of logical form equivalence (LFE) is to be able to do just this,
to generate from all the logical forms that have the same meaning (Figure 2.2).
The key point is that deciding logical equivalence is undecidable in first-order
logic. Plausible sounding algorithms (such as converting to a normal form)
do not bypass this fundamental problem. In this section, we visit a series of
potential solutions and show why none of them actually solve the problem.

2.2.1 Eliminate canonical logical forms?

The first solution might be to do away with the notion of canonical logical
forms. We could simply force the grammar to associate a string’s meaning with
all the equivalent logical forms. In the first place, this is impossible (consider:
φ is equivalent to φ∨T , φ∨T ∨T , . . . ). Of course, we could impose some sort of
upper bound on the length of the logical form, but this makes grammars much
less useful for parsing, because now, if the parser returns more than one logical
form (as it inevitably would), we would not actually know if the string was
ambiguous or not. We would have to go through the process of canonicalising
all the logical forms and then checking how many canonical forms we have left,
so back to square one.
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2.2.2 Demand canonical logical forms as input?

Another possibility is to simply refuse to solve the problem. To see why this
would not work, it helps to see where these logical forms come from in the fist
place. Basically, they are a product of the division of labour between strategic
generation (deciding what to say) and tactical generation (deciding how to say
it). The idea is as follows: a strategic component does higher level reasoning
tasks — Shieber calls this a reasoner — and the language-dependent tactical
component deals with lower level linguistic tasks like surface realisation. The
logical forms are thus to be produced by the reasoner and fed to the tactical
generator. So at first glance it seems plausible to simply declare that the
tactical generator requires a canonical logical form, pushing the burden over
to the reasoner; however, as [Shieber, 1993] points out, “[w]hich of the many
logical forms representing a meaning is canonical is a grammatical issue, not a
semantic one, and reasoners should not have to truck with grammatical issues.”
Insisting upon a canonical logical form as input would break down that division
of labour.

2.2.3 Abolish the division of labour?

If this division of labour is so problematic, one would think that we could
simply get rid of it and wash our hands free of the problem. Moreover, some
researchers reject the distinction between a strategic and tactical generator
(for reasons unrelated to logical-form equivalence) anyway. [Danlos, 1984], for
example, shows that conceptual decisions cannot be made independently of
linguistic ones. It seems then that to get rid of the strategic/tactical barrier
would solve two problems at once.

There are three reasons to reject this proposal. First, from an engineering
standpoint, it is easier to develop large systems out of small components with
well-defined interfaces, than it is to develop a single monolithic system. Second,
even though the tools may be distinct from each other, there is no major reason
that they could not be used in an integrated or incremental fashion. Therefore,
even if one does not believe in the strategic versus tactical distinction, there is
scant advantage to be had in merging the two tools. Finally, a more theoretical
objection is that even if the tools were merged, the problem would not really
disappear. Shieber argues that the resulting uni-component would still have
to do the same reasoning and linguistic tasks anyway, and would thus be as
complex as the two components combined, if not more so. So if we are going to
be stuck with something as difficult as the original problem anyway, we might
as well try to solve the original problem and keep the engineering benefits of
separating the two components.

2.2.4 Compute the equivalences?

So what happens if we resign ourselves to solving the logical-form equivalence
problem? We can begin by looking more closely at its two practical conse-
quences. The first, as mentioned earlier, is if a reasoner feeds a non-canonical
form to the tactical generator, the generator might not produce any output.
Say we are using a first-order logic and a grammar which associates each of the
following strings with a canonical logical form:
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(9) a. John threw a large red ball.
∃x.(throw(j, x) ∧ (large(x) ∧ (red(x) ∧ ball(x))))

b. John threw a red ball that is large.
∃x.(throw(j, x) ∧ (red(x) ∧ (ball(x) ∧ large(x))))

c. John threw a large ball that is red.
∃x.(throw(j, x) ∧ (large(x) ∧ (ball(x) ∧ red(x))))

These sentences have arguably the same meaning, but which sentence is pro-
duced ultimately depends on which logical form we put in. This is fine until we
come up with a logical form that happens not to be supported by the grammar,
say ∃x.(throw(j, x) ∧ (ball(x) ∧ (large(x) ∧ red(x)))). To produce any output
at all, the generator must be able to convert arbitrary logical forms into a
canonical one.

The second consequence is more subtle. The tactical generator must also
be able to recognise the equivalence between different canonical logical forms
already supported by the grammar. In other words, the tactical generator
should “know” the sentences above all have the same meaning. It should not
just produce the one string that verbalises its input semantics, but all the
strings with an equivalent meaning. Why? Because although the sentences
may have the same core meaning, they express finer distinctions (like what is
being emphasised). If the reasoner has some pragmatic constraint to express,
it must be able to do so without having to arrange the logical form to suit
the tactical generator. It has to remain language-independent. So to support
this possibility, the tactical generator must be able to produce all paraphrases,
perhaps being guided by some external constraints expressed outside of the
logical form.

These two equivalence tasks are one and the same; solve one and you solve
the other. At the very least, one should be able to compare two logical forms
and determine if they are equivalent. But even for “relatively inexpressive”
logics like first-order logic, the problem of deciding logical equivalence is un-
decidable. So, gamely computing logical form equivalences is not a solution
either.

2.2.5 Use a weaker notion of equivalence?

If logical equivalence is undecidable for FOL, the obvious solution seems then to
be that we should switch to a more restricted logic (for example, any formula in
propositional logic can be converted to disjunctive normal form in exponential
time). This led to the original claims of solving the LFE, to which [Shieber,
1993] is a response. The response is basically that such solutions treat logical
equivalence “as an end to itself, rather than a means to an end”.

The reason we care about logical form equivalence in the first place is that
it is supposed to be an approximation to meaning identity. If two sentences
supported by the grammar have the same meaning, their logical forms should
be considered equivalent. But is logical equivalence really a good approximation
of meaning identity? It depends on the notion of equivalence. For example, the
notion of equivalence supported by first-order logic can already be considered
too weak. It considers too few logical forms as being equivalent.
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The problem of fine-grainedness is illustrated in [Shieber, 1993] with an ex-
ample using a first-order language augmented with some generalised quantifiers
and equality:

(10) a. Clapton was the leader of Derek and the Dominos.
the(x, leader-of(d, x), c = x)

b. The leader of Derek and the Dominos was Clapton.
the(x, leader-of(d, x), x = c)

c. Clapton led Derek and the Dominos.
led(c, d)

The sentences above are synonymous, Shieber asserts, and it would be rea-
sonable to expect a grammar to associate them with canonical logical forms
as above. The problem is that even if we could compute FOL equivalence, it
would not tell us if 10b and 10c have the same meaning. We would have to
extend equivalence to include some sort of world knowledge, along the lines of

∀x, y.led(x, y) ≡ leader-of(y, x)

There is nothing inherently wrong with doing so, but it only underscores the
point that the notion of equivalence supported by FOL is already too weak as
it is.

2.2.6 Remark: too weak and too strong

It is worth pointing out the problem of finding a good notion of logical equiva-
lence is not simply a problem of finding a notion of equivalence that is powerful
enough. We saw above that the equivalences supported by FOL are too few,
but as we see here, they are also too many. For example, conjoining a tautology
with a logical form gets us something which is equivalent to the initial form:

led(x, y) ≡ led(x, y) ∧ (rain ∨ ¬rain)

The problem here is that if our generator were really to take logical equivalence
to heart, it might treat “Clapton led Derek and the Dominos” and “Clapton
led Derek and the Dominos and either it is raining or not raining” as being
interchangeable. This is clearly not desirable because the two sentences do not
mean the same thing.

2.2.7 There is no way out

Any claims to solving the logical form equivalence problem should be treated
with great scepticism. The LFE problem is deep. As users, we expect the
grammar to associate strings with meanings. But as far as the grammar is
concerned, “meanings” do not actually exist; it manipulates strings and logical
forms. We only pretend that the logical forms are meanings and run into trou-
ble when they are not so. Solving this problem requires that we find a notion
of logical equivalence which faithfully reflects the deeper notion of meaning
identity, which as Shieber argues, is a manifestation of the AI knowledge rep-
resentation problem. Since we cannot solve this problem, we opt for a more
modest approach: capturing some of the more common equivalences with a flat
semantic representation.
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2.3 The case for a flat semantics

Computing logical form equivalence is necessary for surface realisation, but
undecidable for even first-order logic. As we saw in Section 2.2, there is no
feasible way to solve this (AI-hard) problem. Flat semantics can be used as
a sort of workaround to the problem. They provide a variant of the non-
solution which consists in using a weaker notion of equivalence. Languages
like LU and MRS may have equal expressive power to first-order logic (we
can translate formulas from one representation to the other); however, they
naturally support a much weaker notion of equivalence which is convenient for
generation. Basically, two formulas are considered equivalent if and only if they
contain the same exact literals. Let’s see how this is useful for dealing with
logical-form equivalence.

2.3.1 Equivalence is cheap

The first advantage is that this type of equivalence is extremely cheap to verify.
We merely sort the literals and check for syntactic identity.

2.3.2 Equivalence is not too strong

The use of flat semantic representations should only be considered a workaround
for some of the more practical instances of the logical-form equivalence problem.
With this weakened notion of equivalence, there are many formulas which a flat-
semantic-driven tactical generator may fail to recognise as being equivalent.
For example, De Morgan’s laws (¬(p ∧ q) ⇐⇒ (¬p) ∨ (¬q)) are not handled
using the LU notion of equivalence. But perhaps this is more a feature than
a bug. As we saw in Section 2.2.6, it is not clear that it is even desirable
to compute all the equivalences permitted by the logical formalism. For that
matter, flat semantic representations clearly avoid the problem of recognising
too many formulas as being equivalent. For example, the formula l0:led(x,y)
is not equivalent to l0:led(x,y), l1:or(l2,l3), l2:rain, l3:not(l2). Of course, the
main worry behind the LFE is the inverse: that too few formulas are treated as
equivalent. Nevertheless, it is beneficial to weaken some aspects of equivalence
even further.

2.3.3 Conjunction is commutative and associative

Although this notion of equivalence is weak, it allows us to handle some of the
more common equivalences. The main equivalence that can be captured is the
commutativity and associativity of conjunction. To see why this is useful, it
helps to borrow some examples from [Copestake et al., 2005], which motivate
flat semantics for machine translation. The problem in machine translation is
to find appropriate transfer rules that can rewrite semantic expressions in one
language to expressions in another language.

This can be seen as a variant of the logical-form equivalence problem. For
example, the German word “Schimmel” is equivalent to the English “white
horse”, so we could map directly from one to the other (11a). But then what
happens when we try to translate “white English horse” into German?

(11) a. (white(x) ∧ horse(x))↔ Schimmel(x)



50 CHAPTER 2. FLAT SEMANTICS WITH HOLES

b. white English horse
white(x) ∧ (English(x) ∧ horse(x))

The problem in (11b) is the bracketing of the semantic expression. Without
the associativity and commutativity of conjunction, we would not be able to
regroup the white(x) ∧ horse(x) and produce the desired Schimmel(x).

Again from [Copestake et al., 2005], consider the English string“fierce black
cat” and its natural Spanish equivalent “gato negro y feroz”. We can see some
plausible logical forms for them in (12a) and (12b) respectively. Now say we
wanted to translate from Spanish to English. A naive transfer component
would produce the logical form (12c), and this form might not be accepted by
the English grammar.

(12) a. fierce(x) ∧ (black(x) ∧ cat(x)) (natural English)

b. gato(x) ∧ (negro(x) ∧ feroz(x)) (natural Spanish)

c. cat(x) ∧ (black(x) ∧ fierce(x)) (Spanglish)

As with the previous example, the only problem lies in the bracketing.
Really, the two logical forms (12a) and (12c) should be considered equivalent.
The approach proposed in [Copestake et al., 2005] (and adopted for LU ) is
to introduce a form of n-ary, commutative, associative conjunction. This is
encoded by associating every conjoined literal with the same label. So in MRS
and LU , the above black cat could be rendered as any of the permutations of

(13) a. l1:fierce(x), l1:black(x), l1:cat(x)

Revisiting the red ball example from Section 2.2.4 (this time, a purely
generation-oriented example), the LU representations of the following three
sentences would be considered equivalent:

(14) a. John throws a large red ball.
l0:∃(x,l1), l1:throw(j,x), l2:large(x), l2:red(x), l2:ball(x)

b. John throws a red ball that is large.
l0:∃(x,l1), l1:throw(j,x), l2:red(x), l2:ball(x), l2:large(x)

c. John throws a large ball that is red.
l0:∃(x,l1), l1:throw(j,x), l2:large(x), l2:ball(x), l2:red(x)

2.3.4 Scope can be compactly represented

It is worth noting that it is possible for a flat semantic representation to be
too flat in the sense that scopal distinctions are lost. For example, in (15),
overzealous flattening has caused us to lose an important distinction between
two sentences:

(15) a. every(x) ∧ horse(x) ∧ old(x) ∧ white(x)
b. Every old horse is white

c. Every white horse is old
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This is avoided by semantic representations where each literal is associated
with a label. In LU , the semantics above would be rendered as either one of
the following:

(16) a. l0:every(x,l1,l2), l1:horse(x), l1:old(x), l2:white(x)
Every old horse is white

b. l0:every(x,l2,l1), l1:horse(x), l2:old(x), l1:white(x)
Every white horse is old

As an added bonus, LU and other such formalisms also provide facilities
for underspecifying the scope if need be. This results in a single compact
representation of semantics with possible scope ambiguities. See [Copestake et
al., 2005] and [Gardent and Kallmeyer, 2003] for details.

2.3.5 Indexing is cheap

We had mentioned one of the practical advantages of flat semantic represen-
tations in Chapter 1, that indexing in chart generation is straightforward to
implement. There are two kinds of indexing that flat semantic representations
easily support. The first kind is checking that the semantics of two chart items
do not overlap. This consists in taking the intersection of their two semantics
and can be implemented by some very cheap bit vector operations. The second
kind (Section 1.3.5) consists in making sure that the outgoing semantic index
of an active chart item matches the incoming semantic index of the passive
chart item it is being combined with. This too is a very cheap operation.

On the other hand, nothing in chart generation really hinges on the use
of a flat semantics. For example, [Neumann, 1994] implements indexing with
recursive feature structures. The only apparent difference is that indexing is
O(1) with a flat semantics 3 and O(n) with a recursive one (with respect to the
string length of the semantic input).4 That said, indexing check is performed
for each pair of chart items being potentially combined, so it is worthwhile for
the check to be as efficient as possible.

2.4 Intersective modifiers

As we saw above, flat semantics can treat conjunction as commutative and
associative at little cost. Unfortunately, the commutativity and associativity
comes at a price: we have now introduced a source of word order ambiguity.
That ambiguity is not specific to flat semantic representations. It occurs any-
where that conjunction is commutative and associative. Confusing the issue,
on the other hand, is that viewing a flat semantics as just a free-word-order
string, chart generation is O(2n). But as we saw in Section 2.1, flat semantics
are not really free-word-order strings. Order is imposed by the indices which
semantic literals share amongst themselves. . . except for the case of intersective

3Checking if two semantics overlap is O(n), where n is the number of literals in the input
semantics. But it is a very cheap O(n) (bit vectors). The second kind of indexing is O(1)

4It appears to be O(n) anyway if we assume that the semantic features of the chart items
being compared are ground. The comparison in Neumann’s case is to check if the semantics
match, so this is akin to a string comparison.
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modifiers. With intersective modifiers, the commutativity and associativity of
conjunction become problematic. If a string has a word with k modifiers, the
realiser will produce 2k versions of that string, one for each subset of modifiers.
For example, here are the 23 = 8 possible subsets of modifiers in “fierce little
black cat”:

(17) cat,
fierce cat,
little cat,
black cat,
fierce little cat,
fierce black cat,
little black cat,
fierce little black cat

The 2k possible subsets is already bad in itself, but it is also compounded by a
number of factors:

1. We have to realise not just the word, but also a full sentence using that
word and anything in between. If the sentence being realised is “the fierce
little black cat runs”, we might produce the strings “cat”, “the cat” and
“the cat runs”... with the 8 variants for each string.

2. More than one word in the string may have intersective modifiers. Con-
sider “the fierce little black cat jumps over the lazy brown dog”.

This problem is also unrelated to the issue of word order or lexical ambiguity,
but these can only make matters worse:

3. Allowing the modifiers to combine in any order (for example, “fierce little
cat” and “little fierce cat”) means that each one of the 2k subsets of
modifiers can be permuted in a factorial number of ways.

4. Lexical ambiguity (meaning that a literal may be realised by more than
one lexical entry, e.g. “quickly” vs. “fast”) means that there are

∏
i a

n
i

choices of one lexical item per literal, where ai is the ambiguity of the
literal i.

To date, four solutions have been proposed for dealing with the intersective
modifiers problem.

2.4.1 Sealed indices

The first proposal was made in [Kay, 1996]. The idea is that we can distinguish
between internal and external indices. External indices are those which appear
on the left hand side of the rule. For example, in the grammar fragment
VP(X,Y ) → V(X,Y, Z) NP(Z), the variables X and Y would both correspond
to external indices. The variable Z, on the other hand, corresponds to an
internal index; in a sense, it is hidden by the grammar rule.

To see how this distinction would be used, consider the semantics

def(a), young(a), tall(a), polish(a), athlete(a), run(e), arg1(e,a)
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Using the grammar fragment below, we should be able to generate the sentence
“The tall young Polish athlete runs.”

S(E) → NP(S) VP(E, S)
NP(X) → Det(X) N(X)
N(X) → Adj(X) N(X)
Det(X) → the
Adj(X) → tall
Adj(X) → young
Adj(X) → polish
N(X) → athlete
VP(E,S) → runs

Assuming that the grammar only allows for one word order, we now have
23 = 8 possible subsets of modifiers to build, when all but one are ultimately
useless. The solution that Kay proposes is basically to enforce that all modifiers
are inserted into a word before trying to do anything else with it. Specifically:

[A]s a matter of principle, no edge should be constructed if the
result of doing so would be to make internal an index occurring in
part of the input semantics that the new phrases does not subsume.
[Kay, 1996]

For example, we would not be allowed to build up the sentence “the athlete
runs”, because doing so would require that (i) we invoke the grammar rule
S(r) → NP(a) VP(r, a)5 which (ii) makes the index a internal, although (iii)
the literals tall(a), polish(a), young(a) are yet to be subsumed. On the other
hand, this mechanism would allow for “the tall polish athlete runs” to be built
because every literal which uses the index a is now subsumed, so we do not
care if the index is made internal or not. In other words, the key behind this
mechanism is that we do not allow for an edge to “seal off” semantic indices
that we may still need.

This does not solve the exponential nature of the problem (we still build
the 2k subsets of modifiers), but it does mitigate the two compounding factors.
First, when a word is part of a larger string, the surrounding string no longer
uses all of the 2k subsets. We still build them, but only use the fully instantiated
one. So whilst we would still get “tall athlete”, “tall young athlete”, etc.; we at
least avoid building “the tall athlete”, “the tall Polish athlete”, “the tall Polish
athlete runs”. The strings would require the full “tall young Polish athlete” lest
they seal off its semantic index prematurely.

Similarly, having more than one modified word is less of an issue because
partial subsets of modifiers no longer interact. For example, in “the nosy neigh-
bour says the tall young Polish athlete runs”, we only combine the full “nosy
neighbour” with the full “tall young Polish athlete”, and not with anything in
between. If we have a word with n modifiers and another one with m modi-
fiers, we now only have to deal with 2n + 2m combinations, and not the whole
2(n+m).

2.4.2 Delayed modifier insertion

The sealed index mechanism has some limitations in practice. As observed in
[Carroll et al., 1999], the problem is that we have to make indices external in

5We have instantiated the unification variables for expository reasons.
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sealed indices delayed modifier

Polish athlete,
young athlete,
tall athlete,
young Polish athlete,
tall Polish athlete,
tall young athlete,
tall young Polish athlete,

the tall young Polish athlete,
the tall young Polish athlete runs

the athlete,
the athlete runs,

the Polish athlete runs,
the young athlete runs,
the tall athlete runs,
the young Polish athlete runs,
the tall Polish athlete runs,
the tall young athlete runs,
the tall young Polish athlete runs

Table 2.1: Sealed indices vs. delayed modification

order to propagate them correctly throughout the grammar. Doing so means
that we do not seal any indices or prevent the spurious combinations that
result. Extending Carroll et al.’s example, consider the sentence “How did the
newspapers say John ran to the store yesterday in the heat?” The problem
here is that the index for the running event has to be propagated all the way
up the tree, so that it can be modified by “How”and “quickly”. But this means
that we never seal off the index. Consequently, we do not prevent such useless
combinations as:

(18) How did the newspapers say John ran?
How did the newspapers say John ran to the store?
How did the newspapers say John ran yesterday?
How did the newspapers say John ran to the store yesterday?
. . .

[Carroll et al., 1999] propose an “inverse” solution to the problem. Instead
of building up all the modifiers in a word and then inserting it into a larger
structure, Carroll et al. build the surrounding structure first and inserts the
modifiers later. We can compare the two approaches by the edges they end up
building on an example, “the tall young Polish athlete runs” (Table 2.1). As
we can see in the table, each strategy ends up building a different subset of
possible intermediate results.

The delayed modifier approach is less sensitive to the particularities of the
grammar rules than the sealed index approach. Furthermore, it has the ad-
vantage of delaying the proliferation of edges. In other words, we begin by
generating a relatively small number of intermediary structures to get a syn-
tactically complete sentence which we can then modify at our leisure. Explicitly
separating “syntactically necessary” operations from “semantically necessary”
ones (insertion of intersective modifiers) might be useful, because it lends itself
more straightforwardly to alternate strategies for inserting these modifiers. For
example, as Carroll et al. suggests, if the order of modifiers is fixed, we can
avoid building the 2k subsets and just apply them in sequence. Or more ex-
otically, we could also use modifier insertion to satisfy pragmatic constraints,
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that is, building a complete sentence and then adding in enough modifiers to
uniquely refer to some object in a discourse context [Striegnitz, 2001].

On the other hand, the delayed modifiers approach requires some rather
fundamental changes to the surface realiser. First, realisation now occurs in
two distinct phases, one which builds up the core syntactic structures and one
which inserts the modifiers. Second, we need to change the tree traversal strat-
egy to support a notion of adjoining structures into an already built tree. As we
will see in the next chapter, the TAG formalism already supports adjunction
natively (which makes TAG potentially attractive for surface realisation). De-
layed modifier insertion is the approach which is used in this thesis (Chapter
4) for dealing with intersective modifiers. For completeness, we now discuss
two other approaches to the same problem.

2.4.3 Logical form chunking

[White, 2004] proposes a more flexible variant of the sealed index technique.
It requires that the grammar write a small set of rules to chunk the input
semantics into sub-problems that are solved independently and then combined.
For example, the input

def(a), young(a), tall(a), polish(a), athlete(a),
slow(e), eat(e), arg1(e, j), arg2(e, d),
indef(d), tasty(d), steamed(d), dumpling(d)

might be chunked into three distinct problems, allowing us to separately build
up “the tall Polish athlete”, “a tasty steamed dumpling” and “...slowly eats...”.
(This is following the default rule, which chunks sub-trees of the input logical
form).

As White points out, this approach is less automatic than Kay’s original
proposal. It “require[s] the insight of the grammar author” to write chunking
rules. On the other hand, it is a lot more flexible and can, depending on the
chunking rules, account for more cases than the original proposal.

White has also considered the delayed modifier approach, but reports that it
is not entirely clear how such an approach would fit into surface realisers with
an anytime search strategy (such as OpenCCG). The idea behind anytime
search is to combine a best-first disambiguation strategy6 with the possibility
of timing out. If the timeout is reached before the realiser finishes, it returns the
best result it has. Presumably, the problem with delayed modification is that
the realiser is forced to compute all the syntactically complete structures before
starting to add modifiers, which might cause it not to return a semantically
complete result before the timeout.

2.4.4 Index accessibility filtering

Index accessibility filtering is another variant of the sealed index approach
[Carroll and Oepen, 2005]. It is more flexible than the original approach, fully
automated (cf. logical form chunking) and more efficient than delayed modifier
insertion in practice.

6“Best” being defined by an n-gram language model
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1: function combine(i1, i2)
2: x.fs ← combine-fs(i1, i2)
3: x.sem ← i1.sem ∪ i2.sem
4: x.accessible ← i1.accessible ∪ i2.accessible
5: if is-active(x) then
6: add-to-agenda(x)
7: else
8: old-accessible ← x.accessible
9: new-accessible ← collect-semantic-vars(x.fs)

10: inaccessible ← old-accessible \ new-accessible
11: missing-sem ← input-semantics \ x.sem
12: missing-indices ← get-indices(missing-sem)
13: if missing-indices ∩ inaccessible = ∅ then
14: x.accessible ← new-accessible
15: add-to-agenda(x)
16: else
17: discard(x)
18: end if
19: end if
20: end function

Figure 2.3: Index accessibility filtering

The approach is a slight generalisation of the original sealed indices. It
assumes that there is an operation collect-semantic-vars which traverses a
feature structure and returns all the available semantic variables.7 Each chart
item stores a set of “accessible” indices, which are manipulated as follows (see
Figure 2.3) for more details:8

1. When two chart items are combined, the accessible indices of the resulting
item is the union of that of the original items.

2. When the resulting chart item is inactive:

a) The accessible sets are recalculated via collect-semantic-vars.
This purges the accessible set of any indices which became unavail-
able (see footnote 7) as a result of the chart item becoming inactive.
We say that the purged indices are “newly inaccessible”.

b) If there are any literals in the input semantics which are not yet cov-
ered by the chart item, and whose semantics are newly inaccessible,
the chart item is discarded.

Index accessibility filtering can be seen an incremental improvement to the
three other methods that have been proposed so far as a means of dealing

7 In HPSG, according to John Carroll (personal communication), this can be defined as
any variable that is not in the dtrs feature.

8Our presentation incorporates some simplifications made by Carroll and Oepen after
the publication of [Carroll and Oepen, 2005].
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with intersective modifiers. Unfortunately, the more general problem origi-
nally pointed out in [Carroll et al., 1999] remains unsolved, i.e. that semantic
indices need to be available and thus accessible at all times. The useless combi-
nations shown in Section 2.4.2 would still be produced under index accessibility
filtering. But at the very least, intersective modifiers and a few more general
cases are taken into account (for example, negation [Carroll and Oepen, 2005]).

The main advantage of this technique is that it requires no manual inter-
vention on the part of the grammar writer. Delayed modifier insertion requires
that intersective modifiers are explicitly defined in the grammar. Logical form
chunking requires the use of manually written chunking rules. Index accessi-
bility filtering needs no such thing.

2.5 Summary of flat semantics

Flat semantics implement recursion through indirection, by pointing to other
semantic expressions instead of including them. Using a flat semantics allow
us to live albeit uneasily with the logical-form equivalence problem. We can
use them to cheaply compute the logical equivalences which are problematic
in practice, and otherwise leave the problem unsolved. Allowing the commuta-
tivity and associativity of conjunction introduces a new problem, intersective
modifiers, for which several solutions have been proposed. This thesis adopts
the delayed modifier insertion approach. The semantic representation language
used in this thesis is LU . As we shall see in the next chapter, this formalism
can be used in conjunction with a Feature-Based Tree Adjoining Grammar.





Chapter 3

Tree Adjoining Grammar

It is now widely accepted that natural languages cannot be described by con-
text free grammar, and that something more powerful is needed instead. How
powerful exactly is not as clear, although from a computational standpoint, it
would be attractive for a grammar formalism to only be as powerful as needed.
For example, an unrestricted formalism that can model a Turing machine, could
certainly characterise natural languages, but then parsing with such formalisms
may be undecidable.

Tree-Adjoining Grammar (TAG) is a formalism that generates the “mildly
context sensitive” class of languages. Briefly, it means that it can generate cer-
tain languages that context free grammars cannot, although it cannot generate
every context-sensitive language. This means, for example, that TAG can de-
scribe the language anbncn (the set of strings consisting of some as followed
by the same number of bs and then of cs), but it cannot describe the language
anbncndnee. TAG, in other words, is more powerful than CFG, but it is not
too powerful (it can still be parsed in polynomial time, O(n6), to be precise).1

We will be using FB-LTAG, a variant which retains the formal properties
of TAG. In this chapter, we present the formalism as it is used by our surface
realiser. We will start in the next section with the core formalism and add
in the two extensions which give us FB-LTAG. In Section 3.2, we present the
notion of TAG derivation, which is central to the formalism and which will
be useful for discussing generation systems that use TAG. Another pertinent
aspect (Section 3.3) is how we link TAG, a syntactic formalism, with LU , the
semantic formalism we presented in the previous chapter. Finally, at the end
of this chapter, we will wrap up by highlighting the key properties of TAG that
make it particularly relevant to generation, especially in light of the issues we
saw in Chapters 1 and 2.

3.1 From TAG to FB-LTAG

The purpose of this chapter is not to cover the exact formal properties of TAG,
as these are described elsewhere (for example, [Joshi and Schabes, 1997]) and
not especially relevant to this thesis. What we hope to achieve is instead a

1On the other hand, whether it is powerful enough is another question. There are cases
where TAG can provide unsatisfactory analyses, and extensions like MC-TAG have been
developed to address these, but these are outside the scope of this thesis.

59
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description of the formalism which is minimal yet adequate for understanding
the surface realiser on which my research is built. We begin with TAG and work
our way up through FB-TAG and LTAG. FB-LTAG is simply a straightforward
combination of the latter two extensions.

3.1.1 TAG - The core formalism

As defined in [Joshi and Schabes, 1997], a tree-adjoining grammar consists of
a quintuple 〈Σ, NT, I, A, S〉 where

1. Σ is a finite set of terminal symbols.

2. NT is a finite set of non-terminal symbols: Σ ∩NT = ∅.
3. S is a distinguished non-terminal symbol: S ∈ NT
4. I is a finite set of finite trees, called initial trees where

• interior nodes are labelled by non-terminal symbols;

• frontier nodes are labelled by terminals or non-terminals; non-terminal
symbols on the frontier are called substitution sites and are marked
for substitution, by convention, annotated with a down arrow (↓);

5. A is a finite set of finite trees, called auxiliary trees where

• interior nodes are labelled by non-terminal symbols;

• frontier nodes are labelled by terminal or non-terminal symbols; non-
terminal symbols on the frontier are marked for substitution except
for one node, called the foot node, by convention, annotated with
an asterisk (*); the symbol labelling the foot node must be identical
to that labelling the root node.

NP

Kelvin

S

NP↓ VP

V

runs

=⇒

S

NP VP

Kelvin V

runs

Figure 3.1: TAG substitution

The trees in I ∪ A are called elementary trees and describe the syntactic
structure of the basic components of a language, namely words or collocations.
These trees can be composed pairwise to build more complex structures, called
derived trees, through the operations of substitution and adjunction.

The substitution operation (Figure 3.1) replaces one substitution site of one
tree by the tree to be substituted. The tree to be substituted must be derived
from an initial tree. When a tree does not have substitution sites, we say that
it is syntactically complete.

The adjunction operation (Figure 3.2) can be understood as splicing an
auxiliary tree into another tree (which can be of any type, initial, auxiliary or
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S

NP VP

Kelvin V

runs

VP

VP* Adv

often

=⇒

S

NP VP

Kelvin VP Adv

V often

runs

Figure 3.2: TAG adjunction

derived.) Let α be a tree containing a non-substitution node n labelled by X ,
and β be an auxiliary tree whose root node is also labelled by X . Adjoining
β into α is built by (1) excising the sub-tree of α dominated by n (call it t)
(2) replacing the foot node of β with t to produce an intermediary structure β′

and (3) replacing the excised tree in α with the augmented auxiliary tree β′.
Nodes on which adjunction may be performed are called adjunction sites.

3.1.2 Adjunction constraints

As we saw above, the adjunction operation has certain restrictions: we cannot
adjoin onto substitution nodes, nor can we adjoin into a node whose category
does not match (the category of the root/foot node of) the auxiliary tree being
adjoined. Sometimes, it is convenient for linguistic description to refine these
restrictions with a set of constraints on adjunction. Each tree node in a TAG
〈Σ, NT, I, A, S〉 may be associated with one of these three constraints:

Obligatory Adjunction OA(T ) Adjunction on the node is mandatory and
the auxiliary tree being adjoined must be a member of the set T ⊂ A.

Selective Adjunction SA(T ) Adjunction on the node is optional, but the
auxiliary tree being adjoined must be a member of the set T ⊂ A.

Null Adjunction NA Adjunction on the node is forbidden. This is a very
commonly used shorthand for SA(∅).

These constraints are an extension to the core formalism, and for that mat-
ter, so is substitution. Strip away adjunction constraints and substitution nodes
and we will have the original TAG defined in [Joshi et al., 1975]. The version of
TAG we use, FB-LTAG has two additional extensions, (non-recursive) feature
structures and lexicalisation.

3.1.3 FB-TAG - Feature Based TAG

Feature structures are useful for expressing constraints such as person and
number agreement. We use an extension to TAG which adds feature structures
and unification to the formalism [Vijay-Shanker and Joshi, 1988].
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t1

b1

t

t t1
b1

Figure 3.3: Substitution with features
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Figure 3.4: Adjunction with features

Each node is associated with two feature structures, top and bottom2. The
substitution and adjunction operations are modified to unify feature structures
if possible, and to fail otherwise:

substitution The top feature structure of the substitution site is unified with
the top feature structure of the root node of the tree being substituted.

adjunction The top feature structure of the adjunction site is unified with
the top feature structure of the auxiliary tree’s root node. The bottom
feature structure of the adjunction site is unified with the bottom feature
structure of the auxiliary tree foot node.

The intuition is that the top feature can be used to relate a node with its
parent. Likewise, the bottom feature can relate a node with its children. This
can be used to create a sort of chain, percolating features up from bottom to top
of a node to bottom of the node above and so forth. When we adjoin something
into this chain, we peel apart the bottom and top features of a node, and insert
the auxiliary tree in between.

Three details about unification

It is worth noting that the feature structures used in FB-TAG are non-recursive,
that is none of the feature values may themselves be feature structures. This
means that the feature structures are bounded by some constant size and we
do not exceed the generative capacity of standard TAG.

Also, the scope of the unification variables is over the entire elementary
tree, so if the value X appears in different nodes of the same tree, it refers to
the same variable (by convention, any value that begins with ? is a variable)

2Except for terminal nodes or substitution nodes, which only get a top feature
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Finally, the construction of a FB-TAG derived tree now occurs in two
phases. The first phase is the construction proper of the derived tree, that
is the substitution and adjunction of elementary trees into a single structure.
The second phase consists of a validation step, where the top and bottom fea-
tures of each node are unified. If unification fails, the derived tree is invalid.

Feature structures and adjunction constraints

Note that feature structures can also be used in place of adjunction constraints.
We can enforce obligatory adjunction by deliberately inserting conflicting top
and bottom features into a node. If an auxiliary tree is adjoined into that
node, the conflicting features are pulled apart and thus rendered inert. But if
we neglect to adjoin something we will have the expected unification failure.
Enforcing selective adjunction is somewhat simpler: we insert features that
will only unify with the desired auxiliary tree(s). For null adjunction, we could
insert features that no auxiliary trees possess, although in practice we prefer
just to use a null adjunction constraint instead.

3.1.4 LTAG - Lexicalised TAG

Lexicalised grammars are those for which each elementary structure is associ-
ated with a lexical anchor. Following [Schabes et al., 1988], a grammar formal-
ism is lexicalised if it consists of (i) a finite set of structures to be associated
with lexical items, usually the heads of those structures (ii) one or more oper-
ations for composing these structures.

Such grammars are known to have two major advantages with respect to
non-lexicalised ones. The first is linguistic: syntactic preferences sometimes
depend on the lexical items. For example, some verbs take one argument
(“sleeps”), and others take more. Associating these lexical items with syntactic
structure allows us to express these preferences in a natural manner. The
second is computational: lexicalised grammars simplify parsing. They make it
possible to break the task down into two distinct phases

1. where we select all the elementary structures (i.e. lexical items) that
correspond to the input and

2. where we combine the selected items together.

Every structure corresponds to a piece of the input, and so it can only be
used once. In other words, parsing with a lexicalised grammar is decidable;
there are no problems with recursion and non-termination, because once we
“consume”a piece of the input, we consume the elementary structure that goes
with it. This can also be true for surface realisation. As we saw in the previous
chapter, recursion and non-termination are perennial problems, but if we can
somehow “lexicalise” our grammars from a semantic point of view, such that
each elementary structure is associated with a “piece” of the semantics we can
have the same guarantees of decidability.

It turns out that TAG lends itself rather well to lexicalisation. A Lexi-
calised Tree Adjoining Grammar (LTAG) is a TAG for which at least one node
in an elementary tree is a terminal node. For example, in Figure 3.5, the ele-
mentary trees on the left are LTAG trees (they have an anchor or more each),



64 CHAPTER 3. TREE ADJOINING GRAMMAR

some LTAG trees non-LTAG
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runs
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S
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V

Figure 3.5: LTAG and non-LTAG trees

whereas the ones on the right are not. (L)TAG3 is a particularly attractive
choice because (i) it has what is known as an extended domain of locality
and (ii) it allows one to cleanly separate recursion from the core structures of
the grammar. This has useful consequences from a linguistic point of view,
which include a straightforward treatment of long distance dependencies, semi-
frozen expressions, compound words and exceptions [Kroch and Joshi, 1985;
Abeillé, 1990]. These linguistic applications of TAG are outside the scope of
this thesis. Setting aside these applications, the same basic properties which
make TAG attractive from a linguistic standpoint also make it particularly
relevant for generation. We will discuss them in greater detail in Section 3.4.

In this thesis, we will be using FB-LTAG, a straightforward combination of
FB-TAG feature structures with LTAG lexicalisation.

3.2 TAG Derivations

A derived tree is the result of combining a set of elementary trees together by
substitution or adjunction. Sometimes, a derived tree by itself does not give
us enough information. For example, in Figures 3.6 and 3.7, we see a small
grammar and the derived tree for the sentence “Yesterday, John kicked the
bucket”. This sentence could have either been built from the tree αkicked, or
from the idiomatic αkickedbucket. For a given derived tree, it would be useful
to know (i) what elementary trees it is made of (ii) and how they were put
together. This is represented with a TAG derivation tree, a sort of blueprint
for derived trees. Paraphrasing [Joshi and Schabes, 1997]:

1. The root of a derivation tree is labelled by an S-type initial tree (i.e. a
tree with root S, for sentences)

2. Every other node is labelled either by an auxiliary tree or an initial tree.
It is also associated with a tree address.

Each node label represents an elementary tree used to construct our de-
rived tree. The relationship between these elementary trees is described by

3We will henceforth using TAG to refer to TAG-based formalisms like LTAG or FB-TAG
in general
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the relationship between the corresponding nodes in the derivation tree. That
is, if a node Dtr is a daughter of a node Par in the derivation tree, this tells
us that the elementary tree corresponding to Dtr was either substituted or
adjoined into the one for Par. Also, the tree address on node Dtr tells us at
which location of Par the substitution/adjunction took place. One derivation
tree corresponds to exactly one derived tree, but as we can see in Figure 3.8, a
single derived tree may have more than one derivation possible.

3.2.1 Multiple vs. embedded adjunction

Now that we have a notion of TAG derivation, it is worth pointing out that
multiple adjunctions on to a single node are not allowed. Borrowing an example
from [Scheffler, 2003], the grammar in Figure 3.9 has two modifiers, “spicy”and
“red”, which could potentially adjoin onto a noun, “pepper”. In TAG, there is
technically no way to adjoin both of these modifiers on to the noun. We could
embed the adjunctions so that “spicy” is adjoined on to “red”, and the resulting
derived tree onto “pepper”.

If we had allowed for multiple adjunctions (Figure 3.10), we could have
adjoined them both on directly onto the noun. The results look very similar;
they both yield the derived tree NP(N(spicy,N(red,pepper))). But their
derivations are fundamentally different. Allowing multiple adjunctions onto
the same node seems to make more sense from an intuitive standpoint — it is
not the redness that is spicy, but the pepper — and perhaps it is useful to be
able to distinguish between a“spicy red”pepper and a spicy“red pepper”. After
all, that is exactly what we do for the literal “John kicks the bucket” and its
idiomatic counterpart. Even if we do not care about funny-looking derivation
trees (for example, SemFRaG does not use the derivation tree for semantic
construction, so why worry?), perhaps it is worth considering the syntactic
ramifications behind these semantic distinctions (for example, “John kicks the
blue bucket” makes no sense as far as the idiomatic flavour of bucket-kicking
goes).

We could easily allow for multiple adjunctions,4 but we choose not to do so
because (i) it would not help us to produce any new derived trees and (ii) it
could induce a combinatorial explosion when intersective modifiers come into
play.5 Multiple adjunctions remain forbidden for now, but should be looked
into as part of future work.

3.3 FB-LTAG augmented with LU flat semantics

One of our goals is to use an FB-LTAG grammar in a reversible grammar, for
both parsing and generation; however, this would not be possible without first
introducing a compositional semantics into the formalism. In this section, we

4It is not in the standard definition of derivation because it would introduce an ambiguity
in the interpretation of derivation trees. But as [Schabes and Shieber, 1994] show, as long as
the derivation trees contain a partial order — if there are two adjunctions to the same node,
one is specified to occur before the other — allowing for multiple adjunctions is equivalent
to the standard TAG.

5The problem is that we cannot forbid embedded adjunctions, so for each intersective
modifier, we would have a choice of either multiple or embedded adjunction as a means of
inserting that modifier.
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Figure 3.6: Pieces of “Yesterday, John kicked the bucket”
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Figure 3.7: “Yesterday, John kicked the bucket”
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Figure 3.8: Two derivations for one bucket
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(βspicy) (βred) (αpepper)

N

Adj N*

spicy

N

Adj N*

red

NP

N

pepper

αpepper

βred
(0)

βspicy
(0)

Figure 3.9: “spicy red pepper” with embedded adjunctions
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spicy

NP

N

pepper

N

Adj N*

red

αpepper

βred
(1.1) βspicy

(1.1)

Figure 3.10: “spicy red pepper” with multiple adjunctions

will see that the FB-LTAG can be augmented [Gardent and Kallmeyer, 2003]
with an LU flat semantics (LU stands for underspecified logic, see Chapter
2). The modification incurs a slight increase in the generative capacity of the
formalism and also requires the introduction of set union into the derivational
machinery of FB-LTAG. The basic idea is that

1. Every elementary tree is associated with an LU formula, i.e., its semantics.
To recap, an LU formula is a set of literals, where each literal R(i1, . . . , in)
consists of a relation R over some number of unification variables (or
constants) i1 to in.6

2. Some nodes of every elementary tree are decorated with unification vari-
ables from its LU formula. These are typically the root node, foot node,
any substitution nodes, and any nodes that can be adjoined to. As for
the decorations, these consist of an index feature (abbreviated idx) with
a unification variable or a constant for its value. Some nodes are also
associated with a similar label feature, the purposes of which will be
illustrated below.

3. The semantics of a derived tree is understood to be the union of the
semantics of all the elementary trees combined modulo the unification
performed during derivation. The union operation does not affect FB-
LTAG derivation in any way, and can be seen as a trivial post-processing
step.

Below, we will see that the semantics of each tree can be encoded as a non-
recursive feature structure; however, for purposes of presentation, we will write
the semantics of each elementary tree separately, as with the example grammar
in Figure 3.11.

6The first variable is the label, so we write R(i1, i2 . . . , in) as i1 : R(i2, . . . , in)
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NPidx=j

John

l1:name(j,john)

S

NP↓idx=X VPidx=c

V NP↓idx=Y

calls
l0:calls(c,X,Y)

NPidx=m

Mary

l2:name(m,mary)

Figure 3.11: Pieces of “John calls Mary”

In other words, the construction of a semantic formula consists in identifying
LU variables with constants (via standard FB-LTAG unification, #2 above),
and taking the union of the elementary tree semantics (#3). For example,
when we substitute (the trees for) “John” into “calls”, the corresponding NP
node has the feature-value pair idx = X in its top feature and idx = j in its
bottom feature. In FB-LTAG, the top and bottom features of every node must
be unified at the end of derivation, so in the end, the unification variable X
will be replaced by the constant j, and likewise Y with m. Taking the union of
the unified semantic formula gives us the semantics of the derived tree (Figure
3.12), l1:name(j,john), l0:calls(c,j,m), l2:name(m,mary).

S

NPidx=j VPidx=c

John V NPidx=m

calls Mary
l1:name(j,john), l0:calls(c,j,m), l2:name(m,mary)

Figure 3.12: Completed “John calls Mary”

It is worth noting that the decoration of nodes with unification variables
from the LU formula, is vital to the correct propagation of semantic indices.
For example, if the unification variables in the NP substitution nodes had
been swapped, the semantics would instead be l1:name(j,john), l0:calls(c,m,j),
l2:name(m,mary), i.e., that of the converse sentence, “Mary calls John”. So, for
parsing, the unification variables associated with nodes ensure that the correct
semantic formula is built; syntax controls the semantics.

For generation, unification variables are used in reverse; semantics controls
syntax. The difference is that in generation, the elementary trees are associated
with a known semantics, so the LU unification variables have all been pre-
instantiated with constants. Figure 3.13 shows a set of elementary trees that
might be used for generation. It looks almost identical to Figure 3.11, the
only difference being that the variables X and Y are replaced by j and m,
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respectively. We would never be able to substitute “Mary” into the left the
substitution node, because a unification failure would ensue. In other words,
we would never produce “Mary loves John” when we really mean to say “John
loves Mary”.

NPidx=j

John

l1:name(j,john)

S

NP↓idx=j VPidx=c

V NP↓idx=m

calls
l0:calls(c,j,m)

NPidx=m

Mary

l2:name(m,mary)

Figure 3.13: Pieces of “John calls Mary” in generation

3.3.1 Derived trees and underspecification

The syntax/semantics interface relies on unification variables shared between
the elementary trees and the semantic formulas. Now let us see this interface at
work with a more complicated example, this time using LU underspecification.
In Chapter 2, we had briefly alluded to the fact that an LU formula can leave
quantifier scope underspecified if need be. For example, the sentence “Every
dog chases a cat” could be associated with the semantics

l0:chases(d,c),
l1:dog(d), l3:cat(c),
l5:∀(d,h1,h2), l6:∃(c,h3,h4),
h1 ≥ l1, h3 ≥ l3,
h2 ≥ l0, h4 ≥ l0

The idea here behind these formulas is that the literals h1 ≥ l1 represent
scope constraints. The formulas can be “plugged”, replacing the hole constants
h1 and h2 by labels. The two different pluggings for the above formula and
their readings are (19a) and (19b).

(19) a. Every dog chases a cat (each)
l0:chases(d,c), l1:dog(d), l3:cat(c), l5:∀(d,l1,l6), l6:∃(c,l3,l0)

b. Every dog chases a cat (a specific cat)
l0:chases(d,c), l1:dog(d), l3:cat(c), l5:∀(d,l1,l0), l6:∃(c,l3,l5)

Here, we are not interested in the plugging mechanism (see [Gardent and
Kallmeyer, 2003] for details). We are more interested in the syntax/semantics
interface, building up the underspecified formula itself with an FB-LTAG gram-
mar. As far as the grammar is concerned, there is nothing exceptional about
scope constraint literals like h1 ≥ l1. Here, we write them using infix notation,
but this is just a convenience. Otherwise, they are just normal, run of the mill
literals.
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The mechanism here has been developed for TAG grammars that treat
quantifiers as adjuncts. In the French grammar of [Abeillé, 2002], particularly,
a noun is added to a verb by substitution, and a quantifying determiner is
added to the noun by adjunction, as in Figure 3.14.

quantifier quantifier restriction quantifier scope

N

Det N*

every

N

dog

S

N↓ VP

V

barks

Figure 3.14: “Every dog barks”

Here we would associate the quantifying determiner “every” with the for-
mula

l0:∀(X,h1,h2), h1≥R, h2≥S

which captures the relation expressed between the denotation of its nominal
argument (R, the quantifier restriction) and that of some external verbal ar-
gument (S, the quantifier scope). Our intention here is to ensure that the
quantifier scope and restriction are associated with the correct labels. The two
ideas here are that

1. We keep track of a label feature in our TAG elementary trees in addition
to the index. We will abbreviate this by omitting the feature names, that
is writing simply x, l to stand for index = x, label = l.

2. The label variables are divided between the top feature of the root node
(scope) and the bottom feature of the foot node (restriction). We see this
for “every” in Figure 3.15, with the S label in the root and the R label in
the foot. Likewise, we place the noun label (l1 ) in the bottom of its root
node, and the verb label (l2 ) in the top of the relevant substitution node.
This strategic separation of the labels ensures that the quantifier scope
argument is unified with the verb label (S with l2 ), and the quantifier
restriction with the noun label (R with l1 ).

NX,S

Det N*X,R

every

l0:∀(X,h1,h2)

h1≥R, h2≥S

Nd,l1

dog

l1:dog(d)

S

N↓Y,l2 VP

V

barks

l2:bark(Y)

Figure 3.15: “Every dog barks” with semantics

By using a label feature and by carefully dividing them into top and bottom
features, we can model the “has-scope-over”(≥) relations that make quantifiers
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S

Nd,l2 VP

Det Nd,l1 V

every dog barks

l0:∀(d,h1,h2), h1≥l1, h2≥l2, l1:dog(d), l2:bark(d)

Figure 3.16: “Every dog barks” assembled

work in an LU semantics. Now what about scope ambiguities? These are a
straightforward consequence of this mechanism. In a sentence like “Every dog
chases a cat”, each determiner is independently adjoined into its respective
noun, “every” into “dog” and “a” into “cat”. The quantifier scope arguments
of both determiners will both have scope over the labels of their nouns, and
their quantifier restriction arguments will have scope over the label of “chases”,
yielding the underspecified formula we saw at the beginning of this section
(l1:dog(d), l3:cat(c), l5:∀(d,h1,h2), l6:∃(c,h3,h4), h1 ≥ l1, h3 ≥ l3, h2 ≥ l0, h4
≥ l0 ).

Note that in this example, the approach has a side-effect of enforcing an
obligatory adjunction into “dog”; otherwise, there would be a mismatch on the
label feature during top and bottom unification. In this particular situation,
the constraint is acceptable, because we would want to forbid the lack of a
determiner (“dog barks”).

3.3.2 Semantics as feature structures

There are two ways that one could associate an LU semantics with TAG ele-
mentary trees.

• We could treat the elementary tree and semantics as separate structures,
i.e. manipulating tree/formula pairs instead of just trees.

• Alternately, we could encode the semantics into FB-LTAG feature struc-
tures.

The second way is conceptually more elegant; it avoids the extra require-
ments of the first way, either (a) extending TAG substitution and adjunction to
ensure that the appropriate variable substitutions take place in the semantics
during unification or of (b) adding a post-processing step to a parser, which
“replays” the appropriate unifications during semantic construction.

The feature structure encoding is a variant of the one proposed in [Parmen-
tier, 2007].7 Basically, we add a set of features to the parent node of the LTAG
anchor. The purpose behind this placement is to ensure that the features are
never unified with anything else. The features added would be from a set of

7Slightly modified to emphasise that we do not need to introduce recursive feature struc-
tures to perform the encoding.
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distinguished semantic features, that is, for each literal, pred for the relation
and a feature label for its label, and argn for each of its other arguments. So
as we can see in Figure 3.17, the semantics l0:calls(c,j,m) would be encoded as
the feature structure:

[label = l0 , pred = calls, arg1 = c, arg2 = j, arg3 = m]

This scheme can also be made to work with elementary trees that have
more than one literal in its semantic formula. We would simply use the features
predx, argx

0 and argx
n for each of its literals. For example, one could imagine a

variant of the semantics l0:calls(c,j,m), where we unbundled the thematic roles
into l0:calls(c), l0:agent(c,j), l0:patient(c,m). This longer semantic formula
could be expressed as the feature structure:


 label1 = l0 , pred1 = calls, arg1

1 = c,
label2 = l0 , pred2 = agent, arg2

1 = c, arg2
2 = j,

label3 = l0 , pred3 = patient, arg3
1 = c, arg3

2 = m




For parsing, exploiting this semantics would require a post-processing step
that trivially reinterprets the pred and arg features as LU semantic formulas,
and takes the union of all semantic formulas found in the derived tree. For
generation, it would require a pre-processing step that performs the encoding.
Neither of these steps affects the actual derivation.

NP label = l1
idx = j
pred = name
arg1 = j
arg2 = john

John

l1:name(j,john)

S

NP↓idx=j VPidx=c

V label = l0
pred = calls
arg1 = c
arg2 = j
arg3 = m

NP↓idx=m

calls
l0:calls(c,j,m)

NP label = l2
idx = m
pred = name
arg1 = m
arg2 = mary

Mary

l2:name(m,mary)

Figure 3.17: Encoding semantics as feature structures

LU and generative capacity [Kallmeyer and Romero, 2004] has remarked
that the LU approach to TAG semantics changes the generative capacity of
the formalism (on the grounds that feature structures are no longer finite as
a result). The culprit is the use of semantic labels and variables as possible
feature values. The consequences of this increased generative capacity seem to
be limited for parsers and surface realisers. Consider how the grammar is to be
used by an FB-LTAG parser (or surface realiser): we select an elementary tree
for each part of the input string, instantiating its semantics as we go along,
and then we combine the trees we have selected. At this point in the process,
the number of feature structures we can have is now finite, because here there
are only a limited number of semantic variables to go around! Each word
is going to be associated with some maximum n semantic variables, and so
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the number of feature structures is related to n × w, w being the size of the
input. (Note however, that the size of feature structures is now proportional
to the size of the input, and no longer constant). Given these considerations,
we do not know how the increased generative capacity actually plays out for
putting LU -augmented FB-LTAG grammars to use. Alas, such considerations
do not change the fact that the set of languages that could be recognised by
LU -augmented FB-LTAG is not the same as for its unaugmented cousin.

3.4 Generation with TAG

An (LU -augmented) TAG grammar is a reversible resource, a pool of linguistic
knowledge that can be used for either parsing or generation. Though the lion’s
share of TAG research has gone into parsing, researchers have long observed
that the formalism is particularly suitable for generation in a way that CFG-
based formalisms are not [Joshi, 1987; McDonald and Pustejovsky, 1985]. In
this section, we will see why this is the case. Also, in the subsequent chapters of
this thesis, we will discuss some TAG (and other) generation systems, especially
comparing them with GenI, the surface realiser that we use. In the meantime,
let us have a closer look at the theoretical relevance of TAG to generation.

3.4.1 Extended domain of locality

Informally speaking, a domain of locality in a grammar is where things in the
grammar “go together”; it is where one can specify constituency, constraints,
word-order and unifications [Joshi, 1987]. All grammar formalisms have a
domain of locality. Context free grammar (and CFG-derived formalisms like
HPSG and LFG) have a limited domain of locality because their trees8 only
have a depth of 1. In contrast, TAG elementary trees can have a depth greater
than 1, and so the formalism can be said to have an extended domain of locality.

This has benefits both practical and theoretical. From a practical stand-
point, it means that we can avoid littering grammar rules with features that
serve only to propagate constraints or to simulate locality in other ways. For
example, consider this small context free grammar augmented with feature
structures. To handle subject-verb agreement, we are forced to thread the
pers feature from one rule to the next:

S

NPpers=X VPpers=X

VPpers=Y

Vpers=Y NP

Vpers=3

eats

Enforcing these constraints is more straightforward with a TAG. We define
just a single elementary tree that expresses exactly the desired constraints:

8We can think of context-free grammar rules as trees, the left hand side being the root
and the right hand side being the leaves. So the rule S → NP VP can be seen as a tree S(NP

VP)
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S

NPpers=X VP

Vpers=3
pers=X NP

eats

For generation in particular, the extended domain of locality can be helpful
in dealing with words that have an empty semantics, for example, the comple-
mentiser “that” or infinitival “to”. These words are to surface realisation what
gaps (or empty categories) are to parsing. In a naive approach, they require
that all trees with an empty semantics be considered as potential constituent
candidate at each combining step. In terms of efficiency, this roughly means
increasing the size of the input by n (just like postulating gaps at all position in
an input string increases the size of that string). To avoid this shortcoming, a
common practice [Carroll et al., 1999] consists in specifying a set of rules which
select empty semantic items on the basis of the input literals. However these
rules fail to reflect the fact that empty semantic items are usually functional
words and hence governed by syntactic rather than semantic constraints. With
TAG, we simply invoke the extended domain of locality, treating the empty
semantic words as co-anchors.

3.4.2 Factoring recursion from domain of dependencies

An extended domain of locality can make for more convenient feature percola-
tion and more efficient handling of empty semantic items. So then, what are
the theoretical benefits? To begin with, it permits us to adopt the linguis-
tic convention that each TAG elementary tree corresponds to a predicate and
its arguments. On the previous page, we saw an example of an LTAG tree,
S(NP↓,VP(V(ring), NP↓,P(up))). This tree acts as a single, self-contained
linguistic unit, the verb “to ring up” as well as its arguments, a subject and
direct object. It is not possible to express it in the same way with a CFG
because those trees cannot be made deep enough. This is not just a matter
of practical grammar engineering; it is important because it means that TAG
trees can be linguistically meaningful units.

Then again, tidy linguistic units are of little use if we could not modify them
in any way. A context free equivalent to the“ring up”tree would presumably be
a set of trees/rules. It may not be as elegant or linguistically motivated, but at
least it allows for adjuncts. For example, we could imagine a hypothetical CFG
rule like VP → VP frequently which lets us build sentences like “John rings
Mary up frequently”. In order for the tight linguistic packages to be useful,
TAG needs to provide a mechanism for inserting modifiers into strings. This
is where adjunction comes in. In TAG, modifiers are represented as auxiliary
trees, and these auxiliary trees can be spliced into other trees. Adjunction
means that we truly exploit the extended domain of locality (to have self-
contained linguistically motivated units), whilst still accounting for modifiers.
Furthermore, when using adjunction, we still preserve the constraints and the
predicate-argument structure originally expressed by the trees we adjoin into.
Put another way, TAG adjunction allows us to factor out recursion “from the
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domain over which dependencies are initially stated” [Joshi and Schabes, 1997].
So it is not just that it allows for modifiers, but does so in a way that preserves
the original advantages of the extended domain of locality.

Coming back to generation, the factoring out of recursion has the conse-
quence that when we have closed all the substitution nodes of an elementary
tree, the resulting derived tree is syntactically complete and can stand alone.
This has two benefits for TAG surface realisers. First, it means that we can
flexibly interleave planning with realisation. Since auxiliary trees are syntacti-
cally optional, the sentence planner could flexibly decide either to include an
auxiliary tree in one sentence, or perhaps save it for the next [Joshi, 1987].
Indeed, as we will see in the next chapter, some generation systems, g-tag,
spud and InDiGen exploit this capability in one way or another [Danlos, 1998;
Stone and Doran, 1997; Striegnitz, 2004]. Second, it allows us to treat substi-
tution and adjunction as separate phases of derivation. This helps us to deal
with the intersective modifiers problem (Section 2.4) as we will see in the next
chapter.





Chapter 4

GenI and SemFraG

GenI is a surface realiser, originally developed by Carlos Areces and Claire
Gardent [Areces, 2003]. It uses an FB-LTAG grammar with an LU semantics
and a bottom-up chart generation algorithm. In this particular chapter, we
present the basic algorithm, developed with the INRIA ARC GENI.1 Sem-

FRaG is an FB-LTAG for French with an LU semantics [Gardent, 2006]. It
has been used for both parsing with semantic construction [Parmentier, 2007]
and for surface realisation with GenI. Most of the research into the realiser
has revolved around the development of this grammar.

Here we discuss the original version2. This chapter has three basic sections;
we present the surface realiser in Section 4.1, the grammar in Section 4.2 and
some related TAG generation work in Section 4.3. This chapter also concludes
the first part of this thesis. In the following chapters, we shall present a series
of extensions to the realiser. Here, we focus on the basic algorithm.

4.1 GenI

GenI uses a lexicalised grammar. To take advantage of this, it uses two broad
phases: lexical selection, which returns a set of elementary trees, and tree
assembly, which combines the selected trees in reasonable ways. We will discuss
these two phases in greater detail here, but first here is an overview of the
algorithm according to the three facets of realisation algorithms presented in
Chapter 1.

Traversal In its traversal of the derived tree, GenI is head-driven, but this is
merely a consequence of using TAG. The TAG formalism separates the notion
of a derived tree from a derivation tree. One actually can think of tree traversal
strategies in terms of the derivation tree. This is perhaps a more useful way to
look at the algorithm. In its traversal of the derivation tree, GenI is bottom-up;
it starts out with a set of lexically selected items and finds out how to combine
them into successively larger structures. Figure 4.1 shows in what sense tree

1GENI is an Action de Recherche Concertée (ARC), a joint research project bringing
together several laboratories together on a single topic, in this case, Generation and Inference.
See http://www.loria.fr/projets/geni

2More or less the original version; the 2003 version has a design bug, namely the lack of
an auxiliary agenda.
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Adj

Adj

Subst Subst

αruns αKelvin βin αColorado βoften

Figure 4.1: GenI does bottom-up traversal of the derivation tree

αruns

αKelvin βin βoften

αColorado

Figure 4.2: Traditional representation of the derivation tree in 4.1

traversal is bottom-up for GenI (Figure 4.2 shows the same derivation tree
using the traditional notation). The key here is that we start from the lexical
items and build up.

Search GenI performs an exhaustive search. In other words, it attempts to
return all results and does not prune away any part of the search space that
would cause a dead end (no commitment, in the terminology of Section 1.2.3).
Incidentally, it uses a depth-first search because our agenda works as a stack.
This choice should be considered an implementation detail — consing onto
the agenda is cheaper than concatenating — and does not make a difference
anyway because our search is exhaustive.

Tabulation GenI implements a rudimentary form of chart generation with
neither subtree sharing3 nor packing (this is not for any theoretical reason, just
the lack of time). Table 4.1 has the complete list of chart generation features
so far.

3 One might conceivably argue that GenI does effectively have sharing, because it“copies”
subtrees by just pointing to them, but the validity of this argument will need to be checked
more carefully.
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core tabulation yes
structure sharing no
packing no
indexing maybe
partial recognition yes
tabulated prediction no
agenda based control yes

Table 4.1: Chart generation in GenI is rudimentary

We can say that it does some form of indexing, in that it verifies that the
semantics of two chart items do not overlap before attempting to combine them.

It has some notion of partial recognition (dotted edges), in that it performs
its TAG operations in an (arbitrarily) fixed order. In other words, it visits the
substitution nodes of a tree in a strict left-to-right order, not attempting to plug
anything into a node unless the ones on its left are already closed. Imposing an
order on these nodes is sensible because it eliminates spurious permutations of
filling one node before the other. On the other hand, we cannot really say that
it performs tabulated prediction à la Earley. Say for example, that we have the
following lexically selected items to combine:

• τsays - Se(NPs ↓, says, Se1 ↓)
• τruns - Se1(NPk ↓, runs)

• τSerena - NPs(Serena)

• τKelvin - NPk(Kelvin)

The sentence that results from their combination would be “Serena says that
Kelvin runs”. We can say that GenI uses partial recognition in the sense
that it would not attempt to substitute τruns into τsays until its NPs node is
also plugged with τSerena. This results in fewer chart items. Nevertheless, we
cannot say that it does tabulated prediction because it attempts to combine
τKelvin into τruns without knowing if it would be useful to do so. That said, it
is not entirely clear if tabulated prediction is all that useful in the context of
exhaustive search.

4.1.1 Lexical selection

Now, on to the two phases of GenI. For a parser, lexical selection might consist
of collecting the elementary trees that correspond to the words of the input
sentence. This is similar for realisation except that we collect the elementary
trees that correspond to literals of the input semantics, more precisely those
trees whose semantics subsumes part of the input semantics.

The input to lexical selection is thus (i) a flat input semantics and (ii) an
FB-LTAG grammar. The grammar consists of a set of lexical items consisting
of an elementary tree and a lexical semantics. More precisely:
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Given an input semantics sem and lexicon L:

Axioms
[τ ; s; rn; (n1, . . . , nx)] 〈τ, s〉 ∈ lexselection(sem, L),

rn is the root node of τ ,
(n1, . . . , nx) are the subst nodes of τ

Goals [τ ; s; rn; ()]

Inference
rules

[τp; sp; rnp; (np1, . . . , npx)] [τc; sc; rnc; (nc1, . . . , ncy)]

[τpc; sp ∪ sc; rnp; (np2, . . . , npx, nc1, . . . , ncy)]
rnc = np1,

sb ∩ sc = ∅
τpc = subst(τc, τp)

(Sub)

Table 4.2: GenI substitution phase (modulo unification)

Definition 3 (lexical item). A lexical item consists of a pair 〈T, S〉, where T is
an LTAG elementary tree (Section 3.1.4) and S is an LU formula (Section 2.1).
Unification variables in the lexical item are understood to have scope over the
whole item, that is T and S.

Lexical selection is described in greater detail in Appendix D. We basically
retrieve any lexical item whose semantics is non-empty and can be unified with
some part of the input semantics. As we saw in Section 3.3, the unification
variables in the lexical semantics are shared with the associated elementary tree.
Via the unification of the (subsumed part of the) input and lexical semantics,
semantic indices from the input are propagated into the feature structures of
the elementary tree. Because the input semantics is saturated, the instantiated
lexical item also has a saturated semantics.

4.1.2 Tree assembly (chart generation)

After the lexical selection phase, we move into tree assembly. The input to
this phase is the semantic formula we wish to realise, and the set of lexically
selected elementary trees. Our objective is to find every derived tree that can
be built from these parts and which is (i) syntactically complete, meaning it
has no empty substitution sites and (ii) semantically complete, meaning that
its semantics exactly matches the input semantics. Ultimately, the goal of real-
isation is to produce a set of strings, but this basically consists of concatenating
the leaves of each derived tree.

To cope with the problem of intersective modifiers (Section 2.4), the algo-
rithm uses the delayed modification strategy of [Carroll et al., 1999]. Realisa-
tion occurs in two chart generation phases, a substitution phase (where only
TAG substitutions are performed), and an adjunction phase (likewise, TAG
adjunctions only). Separating forces the realiser to only insert modifiers into
syntactically complete structures. It also happens to be a very natural strategy
to use with TAG because adjunction and auxiliary trees are part and parcel
of the formalism. This could be seen as a potential advantage for TAG as a
generation formalism [Gardent and Kow, 2005].
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Given an input semantics sem, and goal edge items GS from the previous phase

Axioms
[τ ; s; fn; (n1, . . . , nx)] 〈τ, s〉 ∈ GS,

(n1, . . . , nx) are adjoinable nodes of τ
fn is the foot node of τ (or − if initial)

Goals [τ ; sem;−; (n1, . . . , nx)]

Inference
rules

[τp; sp;−; (np1, . . . , npx)] [τc; sc; fnc; (nc1, . . . , ncy)]

[τpc; sp ∪ sc; rnp; (np2, . . . , npx, nc1, . . . , ncy)]
fnc = np1,

sb ∩ sc = ∅
τpc = adj(τc, τp)

(Adj)

Table 4.3: GenI adjunction phase (modulo unification)

We can think of the two phases as two successive chart generation problems
fed to a generic deductive parser (see Tables 4.2 and 4.3, as well as Appendix C
for the version with unification taken into account, and Appendix D for pseu-
docode). For clarity, here is a more procedural description of the algorithm. We
are using the usual agenda based control (Section 1.3.3.7), where the agenda is
a data structure for storing unprocessed intermediate results. For convenience,
we introduce a new data structure, called an auxiliary agenda. The auxiliary
agenda is used to set aside any syntactically complete auxiliary trees found
during the first phase of realisation. It is not strictly necessary, but it saves
the trouble of filtering the chart afterwards. Here are the two phases in detail:

Substitution phase

1. Store the lexically selected trees in the agenda, except for auxiliary trees
which are devoid of substitution nodes (put these in the auxiliary agenda).

2. Loop: Retrieve a tree from the agenda, add it to the chart and try to
combine it by substitution with trees present in the chart. Add any
resulting derived tree to the agenda. Stop when the agenda is empty.

Adjunction phase

3. Move the chart trees to the agenda and the auxiliary agenda trees on to
the chart. Discard all trees which are not syntactically complete (i.e. that
still have open substitution nodes), as they will never become complete
in this phase.

4. Loop: Retrieve a tree from the agenda, add it to the chart and try to com-
bine it by adjunction with trees present in the chart. Add any resulting
derived tree to the agenda. Stop when the agenda is empty.

The inner workings of this algorithm might be better illustrated by an example
or two:
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Kelvin runs often

NPk

Kelvin

l1:name(k,Kelvin)

SE2

NP↓k VPE2
E1

VE1
r

runs

l0:runs(r), l0:agent(r,k)

VPr

VPr* Adv

often

l0:often(r)

Figure 4.3: Kelvin runs often

Let us start with a simple one. Suppose that the input semantics is l0:run(r),
l0:agent(r,k), l0:often(r), l1:name(k,Kelvin). Lexical selection gives us a set of
elementary trees lexicalised with the words “Kelvin”, “often”, “runs” (Figure
4.3). The trees for “Kelvin” and “runs” are placed on the agenda, the one for
“often” is placed on the auxiliary agenda.

We begin with the substitution phase, which consists of systematically ex-
ploring the possibility of combining two trees by substitution. Note that in
the table below, the letters ‘k’, ‘r’ and ‘o’ stand for the elementary trees that
correspond to “Kelvin”, “runs” and “often”, respectively. When the trees com-
bine, we write, for example, ‘kr’ to mean a derived tree for “Kelvin runs”. We
see that here, the tree for “Kelvin” is substituted into the one for “runs”, and
the resulting derived tree for “Kelvin runs” is placed on the agenda. Trees on
the agenda are processed one by one in this fashion, although in this simple
example, there is only one substitution to be done. When the agenda is empty,
indicating that all combinations have been tried, we prepare for the next phase.

Combination Agenda Chart AgendaA
k,r o
r, k o

↓(r,k) kr r,k o
r,k,kr o

All items containing an open substitution node are erased from the chart
(here, the tree anchored by “runs”) as there is no hope that they will be made
complete in this phase. The agenda is then reinitialised to the content of the
chart and the chart to the content of the auxiliary agenda (here “often”). The
adjunction phase proceeds much like the previous phase, except that now all
possible adjunctions are performed. When the agenda is empty once more, the
items in the chart whose semantics matches the input semantics are selected,
and their strings printed out, yielding in this case the sentence “Kelvin runs
often”.
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Combination Agenda Chart Results
k,kr o
kr o

�(kr,o) kro o
o kro

Note that the chart never changes during the adjunction phase. This is
because we do not store new items onto the chart. As each tree is removed
from the agenda, either we notice that it is semantically complete and save it
as a result, or we perform all adjunction operations involving (i) the tree and
(ii) a tree from the chart, and put any resulting derived trees back onto the
agenda. The tree itself is no longer of any use and may be discarded. We will
see more implications of this below, when we have more than one auxiliary tree
that can adjoin into the same node.

Kelvin runs often in Colorado

Now, a slightly more complicated example. Here, we shall see auxiliary tree
with substitution nodes, as well as a lexical selection which leads to more
than one result. Our new input semantics is l1:name(k,Kelvin), l0:often(r),
l0:run(r,k), l0:in(r,i), l0:place(i,Colorado), basically the same as before with
two new literals. The lexically selected trees (Figure 4.4) are the same as before
plus trees for “in” and “Colorado”. The trees for “in”, “Colorado”, “Kelvin” and
“runs” are placed on the agenda, whereas the tree for “often” is placed on the
auxiliary agenda.

NPk

Kelvin

l1:name(k,Kelvin)

SE2

NP↓k VPE2
E1

VE1
r

runs

l0:runs(r), l0:agent(r,k)

VPr

VPr* Adv

often

l0:often(r)

VPr

VPr* PP

P NP↓i

in

l0:in(r,i)

NPi

Colorado

l3:place(i,Colorado)

Figure 4.4: Kelvin runs often in Colorado
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Again, the substitution phase explores all possible substitutions, of which
there are two: “Kelvin”into“runs”to get“Kelvin runs”, and“Colorado”into“in”
to get “in Colorado”. The case of “in Colorado” is particularly interesting be-
cause it is a syntactically complete auxiliary tree V(V*,PP(P(in),NP(Colorado))),
in the sense that it has no open substitution sites. When we produce such trees,
we transfer them to the auxiliary agenda, so that they can be used during the
adjunction phase.

Combination Agenda Chart AgendaA
i,c,k,r o
c,k,r i o

↓(i,c) ic,k,r i,c o
k,r i,c o,ic
r i,c,k o,ic

↓(r,k) kr i,c,k,r o,ic
i,c,k,r,kr o,ic

As before, all items containing an empty substitution node are erased from
the chart (here, the trees anchored by “runs” and by “in”). The agenda is then
reinitialised to the content of the chart and the chart to the content of the
auxiliary agenda (here “often” and “in Colorado”). The adjunction phase
proceeds, performing all possible adjunctions. When the agenda is empty once
more, the items in the chart whose semantics matches the input semantics
are selected, and their strings printed out, yielding in this case the sentences
“Kelvin runs often in Colorado” and “Kelvin runs in Colorado often”.

Combination Agenda Chart Results
c,k,kr o, ic
k,kr o, ic
kr o, ic

�(kr,o), �(kr,ic) kro,kric o, ic
�(kro,ic) kroic,kric o, ic

kric o, ic kroic
�(kric,o) krico o, ic kroic

o, ic kroic, krico

Here, we get more than one result because trees can combine in different
ways (we could also get more than one result if we had an ambiguous lexical
selection, but this is not the case here). Note, by the way, that the combinations
here are a result of embedded adjunctions and not multiple adjunctions. The
fact that GenI supports the former but not the latter is a technical detail, and
affects the number of outputs it produces (allowing for multiple adjunctions
introduces more output since we cannot forbid embedded adjunctions), as well
as the derivation trees for the output.

4.2 SemFraG

SemFRaG is a core grammar for French. It combines an FB-LTAG syntax
with an LU semantics. The aim of SemFRaG is to serve as a paraphrastic
grammar, one that associates distinct grammatical realisations with the same
essential meaning to a single logical form. For example, the sentences “Jean
aime Marie” and “Marie est aimée par Jean” (“John loves Mary” and “Mary
is loved by John”) would have the same semantic representation (l1:aimer(e),
l1:agent(e,j), l1:patient(e,m)). To get an idea of the paraphrastic power, we
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built a test suite with over 80 cases. It produced a total of 1582 sentences with
an average (mean) of 18 paraphrases per case.

4.2.1 Factorised representation

Note that in theory, we did not distinguish between a lexicon and a grammar;
the FB-LTAG grammar and lexicon are one and the same. In practice, we do
make such a distinction, which helps us to avoid the redundancy that would
ensue otherwise. For example, the current SemFRaG lexicon has 150 verbs,
typically with 5 conjugations each (median and mean; 41 maximum). To sim-
plify, we say that they can be used in 170 different syntactic contexts.4 This
multiplies out 150 × 5 × 170 = 127 500 possible verb trees. We use the three
standard factorisations from the XTAG system [XTAG Research Group, 2001].

Morphological lexicon First, we separate the morphological information
from the rest of the grammar. The morphological lexicon associates the in-
flected form of a word with its lemma and morphological features, whereas the
syntactic lexicon associates a lemma with its elementary trees. In the example
above, this factorisation alone would leave us with 150× 170 = 25 500 trees.

Tree schemata The syntactic lexicon can be further separated into a lexicon
proper and a set of tree schemata. Thus an entry in the lexicon consists of a
lexical semantics, a lemma, and the name of a tree schema (or as we will see
in the next paragraph, a set of tree schemata). A tree schema is almost an
LTAG elementary tree, the sole difference being that (one of) its terminal node
has been chopped off. The parent of the erstwhile terminal node is called the
anchor and tells us where the terminal node was meant to be. To reassemble
an FB-LTAG lexical item, we take an entry from the syntactic lexicon and its
tree schema, and plug the lemma into the anchor node. This first factorisation
saves us from repeatedly describing the elementary trees. This does not change
the number of our entries in the lexicon (we would still have 25 500), but makes
each entry considerably smaller.

Tree families This is where the third factorisation comes in. We group the
schemata into a set of tree families, typically on the basis of predicate argument
structure (see Appendix A for the full list of families). This way, entries in the
syntactic lexicon need only point to the tree family and be associated to all the
tree macros within. Revisiting our example yet again, we find ourselves with
just 150 entries in the syntactic lexicon.

4.2.2 Metagrammar

Continuing the idea of factorisation further, it is worth noting that the tree
schemata are themselves built from a factorised representation, called a meta-
grammar. This avoids redundancy in building and maintaining the grammar,
as there can be many tree schemata (6000 in the current grammar5) with a

4
SemFRaG has 172 trees in the n0Vn1 family; clearly, not all verbs are in that family,

but it is fairly typical.
5Earlier we said that each lemma is associated with 170 schemata, but we didn’t say that

it was the same 170 schemata each time!
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fair amount of redundancy between them. This aspect of the (meta)grammar
becomes relevant in Chapters 6 and 7, so we will discuss it in greater detail
over there.

4.3 Related NLG systems for TAG

There is a large number of generation systems that use TAG. Some of these we
will discuss in the second part of this thesis, when the context is appropriate.
Here, we will provide a brief overview of generation systems which use TAG.

4.3.1 Surface realisers

Generation as dependency parsing

[Koller and Striegnitz, 2002] also perform TAG surface realisation from a flat se-
mantics. Their approach consists in translating the surface realisation problem
into a constraint satisfaction one (actually, as a dependency parsing problem,
which can be solved using constraint based approaches). We will discuss their
approach further in Section 5.6.3 as it is related to our contributions there.

SmartKom realiser

The SmartKom realiser (henceforth SKGen) [Scheffler, 2003] also uses FB-
LTAG and a flat semantics (MRS). Like [Koller and Striegnitz, 2002], SKGen

translates surface realisation into a constraint satisfaction problem. The slight
difference is that Scheffler provides a direct translation (doing away with the
indirection of TDG parsing). Curiously, the realiser itself was not implemented
with a generic constraint solver, but by hand. The implementation uses top-
down traversal (of the derivation tree), depth-first search (plus backtracking)
and no tabulation.6

FERGUS: statistical supertagging

Fergus is a TAG surface realiser of the “overgenerate-and-select”variety [Ban-
galore and Rambow, 2000b]. It uses statistical methods to perform two tasks,
supertagging and the ordering of adjuncts. Unlike GenI, it uses full commit-
ment, taking the one best lexical selection and the one best ordering (respec-
tively) for each stage. The use of statistical methods in the second phase is
relevant to GenI because it could supplement our current tactic for dealing
with intersective modifiers. We postpone the insertion of modifiers until the
last minute, but we still have to insert them anyway at some point. If we could
impose an order on the modifiers, there would not be an intersective mod-
ifiers problem. Ideally, the ordering would come from linguistic knowledge,
but identifying this order might be difficult (linguistically subtle) and outside
the scope of a core grammar like SemFRaG. It seems that for this particular
case, statistical methods could be used without causing any meaningful loss in
paraphrastic power.

6Scheffler writes that SKGen traverses the semantic graph depth-first, which sounds like
a top-down traversal of the derivation tree, but we could be mistaken.
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ISOFT: Backing Systemic Grammar with a TAG

isoft is one of two TAG realisers which combines a Systemic Functional Gram-
mar (SFG) with TAG [Yang, 1992]. SFG is not so much a grammar formalism
as an approach to linguistics (Systemic Functional Linguistics), one which fo-
cuses not on phrase structure, but on the function (the purpose) of linguistic
choices [Halliday, 1978]. SFG are well-suited for generation because they pro-
vide a mapping from higher level abstract input (the generator’s goals) to
linguistic realisation; however, the implementation of the linguistic back-end
has traditionally left much to be desired. For example, in kpml (a popular
surface realiser and SFG implementation), the linguistic back end consists of
simple string concatenation and ordering rules, without any notion of splicing
one string into another. isoft attempts to make up for this by using a TAG
as the linguistic back-end of the SFG. This system is relevant to our work on
paraphrase selection and will be discussed in greater detail there (Section 6.5,
Page 142).

4.3.2 Beyond surface realisation

TAG is also used in generation systems that perform surface realisation along
with other tasks. The key difference between GenI and these systems is that
the former focuses exclusively on the realisation task.

MUMBLE

mumble is one of the earlier, if not the earliest generation systems for TAG
[McDonald and Pustejovsky, 1985]. Like isoft, it incorporates a Systemic
Functional Grammar. Unlike isoft, it treats generation as involving “three
temporally intermingled activities”: determining the goals of the utterance,
text planning and realisation.

G-TAG: Text planning and multi-sentence generation

g-tag is an extension to LTAG developed primarily as a generation formalism
[Danlos, 1998]. One key feature of g-tag is that it accounts for multi-sentential
texts, which it achieves by (i) explicitly allowing for elementary trees that
combine sentences into “texts” and (ii) introducing a semantic-conceptual layer
which sits atop the syntax-semantic layer that is TAG.

The main job of g-tag is text and sentence planning, tasks which are
typically performed “before” surface realisation. g-tag also includes a surface
realisation module, but it is not the main focus of the system. The realiser
converts a g-derivation tree produced by the system into a g-derived tree. It
then linearises the g-derived tree and performs morphological generation. The
g-derived tree can stand for a set of surface variants, in the sense that the
linearisation module can optionally use a set of rewriting rules to convert from
one variant to another. Alternatively, the linearisation module could choose
to leave the tree intact, and just read the leaves, in which case, the canonical
surface form is produced.
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SPUD: Sentence Planning Using Description

spud is a sentence planner with a surface realisation component [Stone et al.,
2003]. The input to spud is a set of (modal first-order logic) formulas, called
updates. The output is a communicative intent, basically a TAG derivation
tree accompanied by semantic and pragmatic information. This communicative
intent can be fed into an external “surface realiser,” which converts the TAG
tree into a string and performs morphological generation.

What makes spud particularly interesting is that various sentence planning
tasks and surface realisation are performed together. Starting from a commu-
nicative goal, spud simultaneously discovers the semantics of the expression it
is trying to build whilst building up the actual syntactic structure. This ap-
proach addresses an issue with generation pipelines, where decisions near the
beginning of the pipeline fail to take into account information near the end of
the line. Bad decisions early on in the pipeline could result in a lot of needless
backtracking. Systems like g-tag and spud may be more efficient in the grand
scheme of things, because they allow constraints on several levels to be taken
into account at the same time.

InDiGen: SPUD with charts

InDiGen can be thought of as an improvement to spud. In terms of search
strategy, spud uses a greedy search with full commitment. Greedy search
means that spud always makes the locally optimal choice, which may or may
not lead to the globally optimal result. Full commitment means that once
it makes its local decisions, it discards all alternatives, which eliminates any
possibility of backtracking. InDiGen replaces the full-commitment strategy
with a no-commitment one. To avoid the backtracking that would ensue, it
uses chart-generation to cache the intermediate results [Striegnitz, 2004].

InDiGen is the most direct ancestor to GenI. The ideas that GenI bor-
rows are (i) returning all possible paraphrases, taking advantage of the chart
and (ii) the two-phase strategy described in Section 4.1.2. That said, InDi-

Gen does have a different take on realisation than GenI. The input consists of
a discourse context (world knowledge and conversational record), and a com-
municative goal of the form describe X (communicating I). The X is semantic
entity, an index like e1, and the I is akin to the GenI input semantics. The key
difference is that InDiGen does not try to match the input semantics exactly,
but to produce a sentence whose semantics may be a superset of the input.
More precisely, the adjunction phase has the job of adding in modifiers, until
pragmatic constraints associated with the output are satisfied by the discourse
context.
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Chapter 5

Polarity filtering

There are two sources of complexity in the surface realisation task, lexical
ambiguity and the lack of word-order constraints. In the first part of this thesis,
we discussed some techniques for dealing with this complexity in general, as
well as techniques specifically for managing the lack of word-order constraints
(e.g. delayed modification). In this chapter, we focus on lexical ambiguity, the
other source of complexity. This chapter proposes a way to constrain the effects
of lexical ambiguity. The idea is inspired from “electrostatic tagging” [Perrier,
2003; Bonfante et al., 2003], which consists essentially of pruning the initial
search space by applying a global filter on the initial possible combination of
lexical items.

In this chapter, we adapt the technique to surface realisation. We begin by
discussing the intuitions behind this filter (Section 5.1). Next, we build up the
actual algorithm from a barebones version to one which addresses some major
shortcomings in the approach (Section 5.2). We follow up on this with a brief
aside showing how polarity filtering can be integrated with chart generation
(Section 5.3), and with a presentation of some extensions to the algorithm (Sec-
tion 5.4), most of which have already been implemented. Finally, we present
an evaluation of this technique (Section 5.5) and wrap up with a discussion of
related work (Section 5.6).

5.1 Polarised intuitions

Polarity filtering is a straightforward adaptation of electrostatic tagging, a sym-
bolic approach to the supertagging task in parsing. Parsing and surface realisa-
tion both have versions of the supertagging problem. For parsing, the problem
consists in associating each word of the input string with an elementary tree;
for realisation, it is literals that have to be associated, not words. Both variants
of the task are about dealing with lexical ambiguity. So to begin with, we will
now discuss lexical ambiguity and its impact in surface realisation, and having
done so, introduce the basic intuition behind polarity filtering.

5.1.1 Lexical ambiguity

In surface realisation, lexical ambiguity comes into play after the lexical se-
lection step. Here, we have retrieved the set of lexical items whose semantics
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subsumes (part of) the input semantics. For example, given the semantics:

l0:picture(p), l1:cost(c,p,h), l2:high(h).

A surface realiser and a hypothetical grammar/lexicon might select the follow-
ing items (see Figure 5.1 on Page 94):

• τpainting or τpicture for l0:picture(p);

• τcost (the noun) or τcosts for l1:cost(c,p,h);

• τhigh or τa lot for l2:high(h).

This selection here is ambiguous in the sense that there is more than one lexical
item chosen for any given part of the input semantics. For example, each of
the literals1 in this input semantics are represented by two lexical items each.

Of course, we cannot use all of these items to produce a single sentence. To
form a sentence, we must first identify some combination of exactly one lexical
item for each literal in the input semantics.2 On the one hand, there is an a
priori exponential number of such combinations; it is product of the ambiguity
for each literal. Given an input semantics with n literals,3 where each literal
is identified by an index i and where there are ai lexical items for that literal,
the number of possible lexical combinations is the product

∏
1≤i≤n

ai

The reason that lexical ambiguity is a problem is not just that the search
space is large, but that in practice, many of the lexical combinations within
are useless. They contain some syntactic incompatibility between the items so
that there is no possible way of assembling them into a valid result. In the
example above, τcost may be combined with τhigh to get “the cost of X is high”.
It might also be combined with τa lot, but then the resulting “the cost of the
a lot” is useless. Likewise, τcosts can combine with τa lot (“costs a lot”), but
not with τhigh. Note that the problem of compatible lexical combinations is
not necessarily tied to synonymy in the lexicon. In TAG, a lexical item may
be anchored to a variety of elementary trees, each tree representing a syntactic
variation for that item.

This is the usual cause of ambiguity in the current version of SemFRaG

(See Appendix A for a list of families and their ambiguities). To get an idea of
the effects of this ambiguity, consider the French sentence “Jean avertit Paul
que l’ingénieur a une idée intelligente” (Jean warns Paul that the engineer has
an intelligent idea), which is produced by one of our test cases. The semantics
for this sentence is shown in Table 5.1, along with the ambiguity (that is, the
number of lexical items selected) associated to each literal.4 The ambiguities
here come from syntactic variation alone and would be worse if we allowed for
synonyms in our lexicon. Multiplying them out gives us 8 × 10 × 89 × 229 =

1For now, let us assume that by “part of the input semantics” refers to a single literal,
e.g., l1:cost(c,p,h). We will generalise out of this assumption in Section 5.2.4.

2For now, we ignore the issue of lexical items with a multi-literal or empty semantics.
3This is only valid if the semantics of each lexical item has only one literal, otherwise,

computing the ambiguity is more complicated.
4Again, it is slightly simplified to get rid of multi-literal semantics. See Section 5.2.4.
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literal word ambiguity
l1:jean(j) Jean 1
l2:paul(p) Paul 1
l4:le(x) le 1
l3:ingénieur(x) ingénieur 8
l7:un(i) un 1
l5:idée(i) idée 1
l6:intelligent(i) intelligent 10
l7:avoir(e1, x, i) i avoir 89
l8:avertir(e2, j, p, e1) avertir 229

Table 5.1: An ambiguous lexical selection

1630480 possible lexical combinations, the large majority of which (99.9%) are
syntactically incompatible. The task at hand is thus to find the remaining 1728
syntactically plausible combinations.

5.1.2 Approximating validity with polarities

Electrostatic parsing is based on the principle of associating each lexical item
with a set of polarities. The polarities act as constraints on how the lexical
items may combine. For example, a lexical item with two -np polarities can
be seen as requiring two NP nodes; whatever it combines with must ultimately
counterbalance that negative polarity (for example, two items with a +np po-
larity might work). The polarities can then be used to guide the parser: if a
combination of lexical items has a non-neutral polarity, it is necessarily invalid
(the inverse is not true; a combination could have a neutral polarity and still
be invalid). Crucially, counting the polarities of lexical combinations can be
done quickly and cheaply.

In surface realisation, polarity filtering is an intermediary step that sits
between lexical selection and surface realisation proper. First we choose the
lexical items whose semantics subsumes the input (lexical selection), filter out
the lexical combinations with non-neutral polarities, and perform realisation
on the remaining items. Making the filter work for surface realisation mostly
consists of using flat semantic literals where Perrier et al. would use words
from the input string. The only caveats are that we have to deal specially with
lexical items that have an empty semantics or one with more than one literal
in it, which we will ignore until Sections 5.2.4 and 5.2.5.

The filter has two parts. First, we need to assign polarities to lexical items.
We can do this offline by augmenting the grammar with polarity annotations
(this is following [Bonfante et al., 2004], who adapt electrostatic parsing to
LTAG from Interaction Grammar). Basically, for every category cat, we award
every elementary tree with a −cat polarity for every substitution node of that
category and a +cat polarity if its root node is of that category (except for
auxiliary trees, for which the root node is ignored). For instance, a tree like
S(NP↓,VP(V(hates),NP↓)) would have the polarities -np -np +s. Since we



94 CHAPTER 5. POLARITY FILTERING

+np
NP

Det N

the picture

+np -np
NP

Det N PP

the cost P NP↓
of

-np
S

NP↓ VP

V Adj

is high

+np
NP

Det N

the painting

-np -np
S

NP↓ VP

V NP↓
costs

+np

NP

a lot

Figure 5.1: Computing the polarity of lexically selected trees

are only developing the intuitions for now, we can simplify matters by focusing
on one category only, say np. This leaves us with a polarity of -np -np for
that tree, which we will abbreviate as -2np (similarly, -np +np can be written
0np).

Let us see now how polarities would be assigned to a set of lexically selected
items. Figure 5.1 shows the selection for the “cost of the painting” example in
Section 5.1.1. Their polarities are summed up in the table below. Each column
of the table contains a single literal from the input semantics, the lexical items
that realise this literal, and their associated polarities.

l0:picture(p) l1:cost(c,p,h) l2:high(h)
τpicture +np τcost 0np τhigh -np
τpainting +np τcosts -2np τa lot +np

The problem at hand is to detect the lexical combinations (i) which cover
the entire semantics, (ii) which associate each literal with exactly one lexical
item, momentarily ignoring the problem of empty and multi-literal semantics,
and (iii) whose aggregate polarity (charge) is zero. The lexical combinations
we find in the process may not necessarily be valid, but this is for the surface
realiser proper to find out. What polarity filtering helps us to do is to quickly
rule out the combinations which are sure to fail. If a lexical combination has
a negative charge, it is invalid because there are not enough trees to close off
all its substitution nodes. Likewise, if the combination has a positive charge,
it has initial trees which remain unused (since each tree corresponds to a piece
of the input semantics, we have to use all trees, so the combination is invalid).
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Figure 5.2: A polarity automaton

In Section 5.1.1, we saw that the lexical items τcost and τa lot are not a useful
combination — we would get “the cost of a lot” which is then syntactically
incompatible with “the painting”. We can test this using the polarities. If we
sum up the polarities of τpainting , τcost and τa lot, we have a +2np charge and
reject the combination. In contrast, the combination τpainting , τcosts, τa lot has
a charge of 0np, which means it would be worthwhile to try using it for surface
realisation. This is summed up in the table below, which shows what polarities
would get assigned with each combination of lexical items.

0np the cost of the painting/picture is high
τpainting , τcost of , τis high

τpicture, τcost of , τis high

0np the painting/picture costs a lot
τpainting , τcosts, τa lot

τpicture, τcosts, τa lot

+2np (*) the cost of the painting/picture a lot
τpainting , τcost of , τa lot

τpicture, τcost of , τa lot

-2np (*) the painting/picture costs is high
τpainting , τcosts, τis high

τpicture, τcosts, τis high

5.1.3 Polarity automaton

A naive approach to computing these polarities would be to do so individually
for each lexical combination. Clearly, this is a bad idea because there are expo-
nential number of possible combinations. Since many lexical combinations have
lexical items in common we can avoid a great deal of redundant computation.
[Perrier, 2003; Bonfante et al., 2003] achieve this by building an automaton
that compactly encodes the polarities of all lexical combinations. We can build
a polarity automaton for realisation in much the same way.

First let’s have a look at the structure of a polarity automaton (Figure 5.2).
The automaton is organised in columns which are labelled by some literal. Each
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column represents not one literal, but the set of literals by which it and the
preceding columns are labelled. Every state in this automaton sits on the
right border of some column, except for the initial state which is on the left
of the first column. Each state corresponds to a possible net charge for some
set of literals; more precisely (i) the literals on the left of the state, i.e., the
literals represented by the columns to its left) and (ii) the charge of lexical
combinations whose semantics matches that of the columns. Note that there
can be more than one state on the right of a column because each combination
of literals may result in a different net charge; however, some combinations
may converge to the same charge, in which case they are represented with the
same state.

Building this automaton is a simple, incremental process, which we have
illustrated in Figure 5.3 on the next page. We start out by putting an initial
state (charge 0np) on the left of the first column. We build the automaton
left-to-right, column-by-column (literal-by-literal). At each iteration, we look
at the states on the left border of the current column and build new transitions
to new states on the right border. Each transition that we add corresponds to
the lexical choice in the current column. For example, transitioning from the
second column, l1:cost(c,p,h), to the third, l2:high(h), we have a choice between
the noun “cost” and the verb “costs”. The noun has a charge of zero and so it
represents a transition from the +1np charge in the previous column to another
+1np in the current one. On the other hand, the verb has -2np charge and
it causes us to transition from +1np to 0np. If we continue this process until
we cover all the literals we will have a compact representation of all lexical
combinations and their associated net charges. We declare the final state to
be that which covers all literals of the input semantics (i.e. a state in the last
column) with a 0np charge. To get the combination of lexical items without
any known syntactic impossibilities, we return the set of paths that go from
the starting state to the final one.

5.2 Building polarity automata

We now have a rough sketch of the algorithm for building polarity automata. In
the following sections, we provide a more detailed presentation of the algorithm
and the various complications we will encounter. First, we provide some more
details on how exactly we associate every elementary tree with a set of polarities
(Section 5.2.1). We then revisit the simplest version of the algorithm (Section
5.2.2), essentially filling in the details of that we saw in the overview. In the
next few sections, we do away with the simplifications we have assumed up
to now, adding in multiple polarity keys (Section 5.2.3); lexical items with a
multi-literal semantics (Section 5.2.4); and lexical items with a null semantics
(Section 5.2.5).

5.2.1 Computing the polarity of each lexical item

The construction of polarity automata requires that each lexical item be as-
sociated with a charge. As we mentioned in Section 5.1, it is possible to use
more than one label for filtering, for example, s, vp and np instead of just the
latter. It is also possible to extend this scheme to attributes other than the
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Figure 5.3: Building a polarity automaton
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node category. We can thus write the labels as a :k, where a is some attribute
(e.g. cat) and k a possible value for that attribute. For convenience, we call
these labels polarity keys.

Computing the polarities of a lexical selection happens in two phases; first
we compute the set of possible polarity keys and second we compute the charges
which are associated with them.

Possible polarities keys

Given a set of lexically selected elementary trees, the first thing we do is to
calculate the set of possible polarity keys. This is the set of keys a:k where for
the top feature of every substitution nodes of every tree, and of the root node
of every initial tree, the attribute a is associated with a constant value and k is
one of those values.5 Note that in the SemFRaG grammar, we are currently
limited to polarity keys of the form cat:C. We had attempted to use semantic
indices as well, but we have determined that it is not always linguistically valid
for the semantic indices of an elementary tree’s root node to be instantiated.
Extending the set of polarity keys actually used is a topic for future research,
the infrastructure for which is provided by this chapter.

The charge of an elementary tree

Ignoring syntactic structure, we can think of an elementary tree as a set of
nodes N . Given a tree N and a polarity key a : k, the charge of that tree
pol(N, a:k) is the sum of charges for each of its nodes.

pol(N, a:k) =
∑
n∈N

pol′(n, a:k)

The rough idea is to assign negative charges to substitution nodes (and foot
nodes) and positive charges to root nodes. We only assign such a charge if the
node matches the given polarity key. A node matches a polarity key if its top6

feature structure contains an attribute value pair (an, kn) that matches the key,
in other words, if an = a and kn = k.

pol′(n, a:k) =




1 if n matches a:k and is the root node of an initial tree
−1 if n matches a:k and is a substitution node
0 otherwise

Note that we ignore any attributes with a non-constant value. This would
be incorrect were it not for the fact that we only consider as a possible polarity
key any a:k where the value associated with a is constant in every substitution
or root node of every tree7. This certainly limits the number of polarity keys
we can use (for example, we cannot use the idx attribute in the current state of
the SemFRaG grammar), but non-constant values do not have a meaningful

5We consider that TAG trees have a cat:C feature in both the top and bottom features
of every node, where C is the category of that node.

6Actually, some attributes tend to be present in the bottom feature of a node; so for the
sake of robustness, we have elected to use the bottom feature for root nodes (substitution
nodes only have a top feature).

7Every root node of every initial tree
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“polarity”, which means that the restriction is a necessary evil. We will present
a way to work around this restriction in Section 5.4.2 (due to [Bonfante et al.,
2004]), but the part which would be relevant to using indices as polarity keys
has not yet been implemented.

5.2.2 Polarity automaton for one key

Now that we have a more precise definition of polarity keys, we can start to
build polarity automata. In this section, we provide a definition of a single-
key polarity automaton, which lets us make use of a single polarity key a :k.
Each path in this automaton (that leads to a final state) represents a lexical
combination with a neutral polarity for that key. To make use of multiple keys,
we can build a separate automaton for each key. Each automaton represents a
set of syntactically plausible lexical combinations according to a given polarity
key. To find the lexical combinations which are syntactically plausible for all the
keys, we can take the intersection of the automata using a standard algorithm
for the intersection of finite state automata (FSA) [Hopcroft and Ullman, 1979].

Definition 4 (Single-key polarity automaton). A single-key polarity automa-
ton is an acyclic deterministic finite state automaton. It is a tuple 〈Σ, S, s0, δ, F 〉
where

• Σ is the input alphabet, the set of FB-LTAG elementary trees (with flat
semantics).

• S is the set of states, where each state is of the form 〈l, c〉, with l ∈ N and
c ∈ Z. The intended interpretation is that l a literal counter pointing to
the lth literal of the input semantics, c is the charge of that state.

• s0 is the initial state, an element of S

• δ is the state transition function (δ : S×Σ→ S), is the set of transitions
from one literal to its immediate neighbour on the right.

• F is the set of final states.

Given an input semantics L and a polarity key a : k, a single-key polarity
automaton can be built in the following manner:

1. Σ is the set of lexically selected items. For convenience, we also define the
function σ : N → Σ, which given an index l, returns the set of lexically
selected items whose semantics consists of the l-th literal in L.

2. S is built in the following way

a) {s0} is an element of S (see below)

b) If a state 〈l, c〉 is an element of S and if l < |L|,
then for every elementary tree t ∈ σ(l),
the state 〈l + 1, c′〉, with c′ = c+ pol(t, a:k), is also in S

3. s0 is the tuple 〈0, z〉, where z is 0, a :k is required to appear in the root
node (e.g., a:k is cat:s), in which case z is −1.
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4. δ is defined for all l < |L| and t ∈ σ(l) as:
δ(〈l, c〉, t) = 〈l + 1, c′〉 with c′ = c+ pol(t, a:k).

5. F is the singleton set {〈|L|, 0〉}. If this set is not reachable, the automaton
is empty.

Note: since we are only interested in the paths that lead to a final state,
polarity automata are always minimised in practice, that is, with any states
and transitions which are not on a path to the final state removed. This can
be done either with a standard FSA minimisation algorithm [Hopcroft and
Ullman, 1979], or with a customised version that works specifically on polarity
automata.8 From now on, we assume that all polarity automata are minimised.

5.2.3 Polarity automaton for n keys

Using multiple polarity keys can be an expensive affair because of the potential
cost of computing their intersection. In theory, the intersection of a automata
with n states each requires O(na) time/space, because we have to compute
the Cartesian product of their states. For polarity automata in particular,
computing the intersection is somewhat cheaper, because we need only compute
the Cartesian products of all the states 〈l, c〉 that have a literal index l in
common [Le Roux, 2007b]. Nevertheless, the cost is exponential with respect
to the number of automata.

To improve efficiency of this in practice, we perform the intersection incre-
mentally, building each successive automaton off the previous one as a sort of
“skeleton”. It is hoped that, in practice, the intermediary automata are smaller
as a result of this incremental process, with each successive automaton encod-
ing fewer and fewer lexical combinations.9The approach is as follows: we define
an n-key polarity automaton, which effectively encodes the intersection of n
polarity automaton. Given a set of x polarity keys, we attempt to build an
x-key polarity automaton. We start from a 0-key automaton which represents
the lexical selection. Then we iterate through the polarity keys; given a polar-
ity key a :k and an n-key automaton, we construct an (n+ 1)-key automaton.
In other words, from the 0-key automaton, we build a 1-key automaton, and
from that, we build a 2-key automaton and so forth until we have built up an
N -key automaton covering all the polarity keys. This is equivalent to building
N separate polarity automata and taking their intersection.

Definition 5 (n-key polarity automaton). An n-key polarity automaton is an
acyclic deterministic finite state automaton 〈Σ, S, s0, δ, F 〉, where

• Σ, s0, δ, and F all have the expected meaning (see Definition 4)

• S is the set of states. Each state is of the form 〈l, c, s〉, with l ∈ N and
c ∈ Z, and s ∈ N. The intended interpretation is that l is the index of

8The minimisation algorithm works “backwards” and recursively: any states 〈|L|, c〉 /∈ F
are removed; any state 〈l, c′〉 which transitions exclusively to removed states (i.e., of the form
〈l + 1, c′′〉) is also removed.

9In a personal communication, Le Roux points out that taking the intersection of n
automata all at once is more time-efficient than taking the intersection of successive pairs of
automata, but that it imposes a very large cost in space, as we would have to consider the
Cartesian product of n sets of states.
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some literal in the input semantics and c is the charge of that state. s is
a state counter pointing to a state in an (n− 1)-key polarity automaton.
For convenience, we will treat states and state counters interchangeably.

n-key polarity automata can be built inductively. We start out by building a
seed automaton, that is, a 0-key automaton:

1. Σ is the set of lexically selected items.

2. S is built in the following way

a) {s0} is an element of S (see below)

b) If a state 〈l, 0, 0〉 is an element of S and if l < |L|, then 〈l + 1, 0, 0〉
is also in S

3. s0 is the tuple 〈0, 0, 0〉
4. δ is defined for all l < |L| and t ∈ Σ as δ(〈l, 0, 0〉, t) = 〈l + 1, 0, 0〉
5. F is the singleton set {〈|L|, 0, 0〉}.

painting,
picture

cost of,
costs

is high,
a lot

l0:picture(p) l1:cost(c,p,h) l2:high(h)

Figure 5.4: A seed automaton

Given an n-key polarity automaton, and a polarity key a′ :k′, we can build
an n′-key automaton 〈Σ, S′, s′0, δ

′, F ′〉 with n′ = n+ 1.
We first define a helper function, next : S′×Σ→ S′, to handle the essential

bureaucracy of building up states in the new automaton: next(〈l, c, s〉, t) =
〈l + 1, c2, s2〉 where c2 = c+ pol(t, a′ :k′) and s2 is the state δ(s, t). With this
helper out of the way, we can continue our induction step:

6. Σ is the same as before.

7. S′ is built in the following way

a) {s′0} is an element of S (see below)

b) If a state s′ = 〈l, c′, s〉 is in S′, and if l < |L|: for every t such that
δ(s, t) is defined, next(s′, t) is in S′.

8. s′0 is the tuple 〈0, z, s0〉, where z′ is 0, unless a′ :k′ is required to appear
in the root node (e.g., a′ :k′ is cat:s), in which case z′ is −1.

9. δ′ is defined for all l < |L|. Given a state s′ = 〈l, c′, s〉; for every t such
that δ(s, t) is defined, δ′(s′, t) = next(s′, t).
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10. F ′ is the set of states such that for every f ∈ F (i.e. every final state in
the previous automaton), 〈l, 0, f〉 is in F ′.

See Figures 5.4 and 5.5 for an example of a seed automaton, an 1-key automaton
built off it with cat:np as a polarity key.
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Figure 5.5: A 1-key automaton

5.2.4 Multi-literals semantics

Up to now we have assumed that every lexical item selected corresponds to
exactly one literal in the semantics. But not all lexicons are designed in this
fashion. To begin with, one might choose to make the thematic roles into
separate literals in the semantic representation, thus using a representation
more like l0:love(l), l0:agent(l,j), l0:patient(l,m) for the word “loves” instead of
l0:love(l,j,m).10 Furthermore, some lexicons may have entries whose semantics
contain more than one literal.

We could, for instance, extend the running example (“The cost of the paint-
ing is high”) by introducing a single lexical entry τis expensive with the semantics
l1:cost(c,p,h) high(h). The lexical selection and its polarities (for a single key
cat:np) would thus be

l0:picture(p) l1:cost(c,p,h) l2:high(h)
τpicture +cat:np τcost +cat:np -cat:np τhigh -cat:np
τpainting +cat:np τcosts -cat:np -cat:np τa lot +cat:np

τis expensive -cat:np

Intuitively, we would expect polarity filtering to detect the following polar-
ities for the various possible lexical combinations, which is the same as in our
running example, except with “is expensive” being taken into account:

Expected polarities

0 cat:np the cost of the painting/picture is high
+2 cat:np (*) the cost of the painting/picture a lot
0 cat:np the painting/picture costs a lot
-2 cat:np (*) the painting/picture costs is high
0 cat:np the painting/picture is expensive

10Incidentally, this is how the semantics of SemFRaG entries are encoded.
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However, if we fed such a lexical selection to a single-key or an n-key polarity
automaton, it would not give the right results. The first problem is that it
would treat “expensive” as two separate lexical entries (one for each literal).
As a result, it would find the lexical combinations in the table below, with the
wrong polarities:

Miscounted polarities

0 cat:np the cost of the painting/picture is high
+2 cat:np (*) the cost of the painting/picture a lot
0 cat:np (*) the cost of the painting/picture is expensive

-2 cat:np (*) the painting/picture costs is high
0 cat:np the painting/picture costs a lot

-2 cat:np (*) the painting/picture costs is expensive
-1 cat:np (*) the painting/picture is expensive is high
+1 cat:np (*) the painting/picture is expensive a lot
-1 cat:np (*) the painting/picture is expensive is expensive

Let’s begin by making it clear what is and is not wrong about this miscount.
First, τis expensive appears twice in the combination“the painting/picture is ex-
pensive is expensive”, whereas we only need one. But this is also a non-issue
because we could always treat the lexical combinations as sets, ignoring any
duplicates. Second, incorrect paths like “the cost of the painting/picture is
expensive” are being needlessly visited because their polarity is 0. But these
are also a relative non-issue because the surface realiser can always detect
non-sensical combinations for itself. It is always acceptable (if somewhat un-
fortunate) for us to underfilter. What is not acceptable, on the other hand, is
to overfilter. For example, the combination “the painting/picture is expensive”
is filtered out (this appears in the table as “the painting/picture is expensive
is expensive”) because its polarity was incorrectly found to be −1.

To prevent this sort of overfiltering from happening (and the underfiltering
while we’re at it), we need to prevent the polarity filter from double-counting
a lexical item. To do so, we need a mechanism for determining if we have
already seen the lexical item (at a given state) or not. If we have already seen
the lexical item, we do not include it a second time nor do we count its polarity
again. This requires an extension to our polarity automata, which consists of
adding an extra element E to the definition of the automaton state. As we
shall see below, this extra element will be used to determine if we have already
seen a certain semantic literal (and consequently infer which lexical items we
are allowed to explore). We focus here on the n-key automata.

Definition 6 (multi-literal n-key polarity automaton). An multi-literal n-key
polarity automaton is an acyclic non-deterministic finite state automaton (the
non-determinism is limited to allowing the empty transition). It is a tuple
〈Σ, S, s0, δ, F 〉, where

• Σ, s0, δ, and F all have the expected meaning (see Definition 4, Page 99)

• S is the set of states. Each state is of the form 〈l, c, s, E〉, with l ∈ N,
c ∈ Z and E is a set of natural numbers (E ∈ {e|e ⊆ N}). The intended
interpretation is that l is the index of some literal in the input semantics,
c is the charge of that state, s is a state counter referring to a state in the
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an (n− 1)-key automaton and that E is the set of “extra” literal indices
that we have already seen.

The main modification to automaton construction happens in the multi-
literal seed automaton, where we must introduce a mechanism for ignoring
already-seen literals and their lexical entries.

1. Σ is the set of lexically selected items.

2. S is built in the following way

a) {s0} is an element of S (see below)

b) If a state 〈l, 0, 0, E〉 is an element of S and if l < |L|, then 〈l +
1, 0, 0, E′〉 is also in S, with

E′ =
{
E \ {l} l ∈ E
E otherwise

3. s0 is the tuple 〈0, 0, 0, ∅〉
4. δ is defined for all l < |L| and t ∈ Σ as follows

a) Given l ∈ N, a literal index and E a set of literal indices,

b) LetX be the set of literal indices x such that x > l and the semantics
of t includes the x-th literal of L. These are the “extra” literals.

c) As before, let

E′ =
{
E \ {l} l ∈ E
E otherwise

d) δ(〈l, 0, 0, E〉, t) = 〈l + 1, 0, 0, E′ ∪X〉
5. F is the singleton set {〈|L|, 0, 0, ∅〉}.
Figure 5.6 shows what the seed automaton would look like in the running

example. Notice that a state is introduced to keep track of the semantics
l2:high(h), which τis expensive has in addition to its first literal l1:cost(c,p,h).11

expensive
ε

painting,
picture

costs,
cost of

a lot,
is high

high(h)

l0:picture(p) l1:cost(c,p,h) l2:high(h)

Figure 5.6: A multi-literal seed automaton

The inductive step of building a multi-literal (n+1)-key polarity automaton
from an n-key one is a straightforward adaptation of the inductive step for

11It is worth bearing in mind that these literals are just sorted in some arbitrary order.
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regular n-key automata (Section 5.2.3). All the work of dealing with the “seen”
literals has already been done by the seed automaton, so the only thing we have
to do with them is to copy them from one automaton to the next. Otherwise,
there are no differences. Given a multi-literal n-key polarity automaton, and
a polarity key a′ :k′, we can build an n′-key automaton 〈Σ, S′, s′0, δ

′, F ′〉 with
n′ = n+ 1.

First, we define a helper function, next : S′ × Σ→ S′, as follows:
next(〈l, c, s, E〉, t) = 〈l + 1, c2, s2, E2〉, where c2 = c + pol(t, a′ : k′) and s2 =
〈l + 1, x, y, E2〉 = δ(s, t). And now the inductive step:

6. Σ is the same as before.

7. S′ is built in the following way

a) {s′0} is an element of S (see below)

b) If a state s′ = 〈l, c′, s, E〉 is in S′, and if l < |L|: for every t such
that δ(s, t) is defined, next(s′, t) is in S′.

8. s′0 is defined as follows:

a) Let 〈0, z, x, E〉 be the state s0 from the previous automaton.

b) Let z′ be 0, unless a′ :k′ is required to appear in the root node (e.g.,
a′ :k′ is cat:s), in which case z′ is −1.

c) s′0 is 〈0, z′, s0, E〉
9. δ′ is defined for all l < |L|. Given a state s′ = 〈l, c′, s, E〉, for every t such

that δ(s, t) is defined, δ′(s′, t) = next(s′, t).

10. F ′ is the set of states such that for every f = 〈l, 0, x, E〉 ∈ F (i.e. every
final state in the previous automaton), 〈l, 0, f, E〉 is in F ′.

Figure 5.7 shows the multi-literal 1-key polarity automaton that would be build
for the key cat:np.
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Figure 5.7: A multi-literal 1-key automaton
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An inadvisable simplification

One final remark about multi-literal semantics. The mechanism for tracking the
“extra”semantic literals appears to be much too complicated. Instead of all this
adding and removing of literals to states, why not just make a direct transition
across the span of multiple literals? For example, in Figure 5.7, would it not
work just as well for “expensive” to transition directly from the +1 state to the
final 0 state and bypass the empty transition? Here, yes but in general, No.
The problem is that we must visit all semantic literals and do so in a fixed
order; however, the semantics of multi-literal lexical items will necessarily be
adjacent to each other in the order we sort them. Furthermore, no amount
of sorting can make them adjacent in the general case because we encounter
situations where making one set of literals contiguous comes at the price of
breaking up another group. Borrowing an example from [Shemtov, 1996], the
idea of “quickly moved into” can also be expressed as “rushed into” or “quickly
entered”. Given the ordering below, if we build a direct transition for τentered

over l0:move(m,x), l2:into(x,y), we would do so by erroneously skipping over
the literal ll:quick(x).12

lexical item semantics
“moved” l0:move(m,x)
“rushed” l0:move(m,x) l1:quick(m)
“entered” l0:move(m,x) l2:into(x,y)

Multi-literal n-key polarity automata in GenI

To give an idea how these automata are used in practice, we have included in
Figure 5.8 an actual run of GenI, building up a multi-literal 3-key automaton
for the semantics l1:jean(j), l2:aimer(a), l2:agent(a, j), l2:patient(a, f), l2:le(f),
l3:femme(f), l4:partir(p),l4:agent(p, f). Using the SemFRaG grammar we got
36 outputs from this, the simplest of which was “Jean aime la femme qui part”
(John loves the woman who leaves).

5.2.5 Null semantic lexical items

Just as we need to account for lexical items whose semantics has more than one
literal, we also need to consider the possibility that a lexical item may have an
empty semantics. Lexical items with a null semantics typically correspond to
function words: complementisers (“John likes to read”), subcategorised preposi-
tions (“Mary accuses John of cheating”). Such items will be completely ignored
by the polarity automata, because the algorithm for building them only triggers
the insertion of items when encountering a semantic literal to which they are
associated. In theory, null semantic items are a problem not just for polarity
filtering but surface realisation proper. The surface realisation algorithm uses
the semantics to control how often a lexical item is used (i.e. once), but since
these items do not have a semantics, they could cause non-termination of the
realiser. Null semantic items are an open invitation to infinite recursion. To

12In this example, we could still work around the semantics by sorting the semantics so
that l0:move(m) is in the centre. But this does not generalise well. Consider the semantics
foo,bar,baz,quux and a set of lexical items with the semantics foo, bar ; foo, baz and foo, quux.
We cannot sort ourselves out of that one.
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seed [E:patient(F C)]
EMPTY

[E:aimer(F) E:patient(F C)]
EMPTY

aimer:4776
aimer:4775
aimer:4773
aimer:4772
aimer:4771
aimer:4768

...and 81 more
[A:partir(B)]

EMPTY

partir:5815
partir:5814
partir:5811
partir:5810
partir:5809
partir:5808

...and 8 morele:5629jean:1739femme:1737

cat:cl

0

-3

-2

-1

[E:patient(F C)]
-3

EMPTY

[E:patient(F C)]
-2

EMPTY

[E:patient(F C)]
-1

EMPTY

[E:patient(F C)]
0

EMPTY

[E:aimer(F) E:patient(F C)]
-3

EMPTY

[E:aimer(F) E:patient(F C)]
-2

EMPTY

[E:aimer(F) E:patient(F C)]
-1

EMPTY

[E:aimer(F) E:patient(F C)]
0

EMPTY

-1

aimer:4703
aimer:4609
aimer:4608
aimer:4607
aimer:4606

aimer:4775
aimer:4768
aimer:4763
aimer:4756
aimer:4736
aimer:4735

...and 35 more

aimer:4776
aimer:4773
aimer:4772
aimer:4771
aimer:4767
aimer:4764

...and 35 more

0
aimer:4703
aimer:4609
aimer:4608
aimer:4607
aimer:4606

aimer:4775
aimer:4768
aimer:4763
aimer:4756
aimer:4736
aimer:4735

...and 35 more

aimer:4776
aimer:4773
aimer:4772
aimer:4771
aimer:4767
aimer:4764

...and 35 more

[A:partir(B)]
-1

EMPTY

[A:partir(B)]
0

EMPTY

0
partir:5811
partir:5810
partir:5809
partir:5808
partir:5804
partir:5797

partir:5815
partir:5814
partir:5807
partir:5805
partir:5802
partir:5801

...and 2 more

0
le:5629

0
jean:1739

0
femme:1737

minimised 0
[E:patient(F C)]

0
EMPTY[E:aimer(F) E:patient(F C)]

0
EMPTY

0

aimer:4776
aimer:4773
aimer:4772
aimer:4771
aimer:4767
aimer:4764

...and 35 more[A:partir(B)]
0

EMPTY
0

partir:5815
partir:5814
partir:5807
partir:5805
partir:5802
partir:5801

...and 2 more
0

le:5629
0

jean:1739
0

femme:1737

cat:n

0,0

-1,0

+1,0

+2,0

[E:patient(F C)]
-1,0

EMPTY

[E:patient(F C)]
0,0

EMPTY

[E:patient(F C)]
+1,0

EMPTY

[E:patient(F C)]
+2,0

EMPTY

[E:aimer(F) E:patient(F C)]
-1,0

EMPTY

[E:aimer(F) E:patient(F C)]
0,0

EMPTY

[E:aimer(F) E:patient(F C)]
+1,0

EMPTY

[E:aimer(F) E:patient(F C)]
+2,0

EMPTY

+1,0

aimer:4740
aimer:4739
aimer:4720
aimer:4701
aimer:4700
aimer:4695

...and 10 more

aimer:4776
aimer:4772
aimer:4767
aimer:4764
aimer:4760
aimer:4755

...and 14 more

aimer:4773
aimer:4771
aimer:4761
aimer:4759
aimer:4727

+2,0
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aimer:4739
aimer:4720
aimer:4701
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aimer:4760
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...and 14 more
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aimer:4771
aimer:4761
aimer:4759
aimer:4727
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+1,0
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[A:partir(B)]
+2,0 EMPTY
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partir:5807
partir:5805
partir:5801
partir:5796

partir:5814
partir:5802
partir:5800

+2,0
le:5629

+1,0
jean:1739

0,0
femme:1737

minimised

0,0
[E:patient(F C)]

0,0
EMPTY[E:aimer(F) E:patient(F C)]

0,0
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aimer:4772
aimer:4767
aimer:4764
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+2,0
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EMPTY

[A:partir(B)]
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EMPTY

+2,0
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partir:5807
partir:5805
partir:5801
partir:5796

partir:5814
partir:5802
partir:5800

+2,0
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+1,0
jean:1739

0,0
femme:1737

cat:s

0,0,0

-1,0,0

+1,0,0

[E:patient(F C)]
-1,0,0

EMPTY

[E:patient(F C)]
0,0,0

EMPTY

[E:patient(F C)]
+1,0,0

EMPTY

[E:aimer(F) E:patient(F C)]
-1,0,0
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0,0,0
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+1,0,0
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-1,+2,0
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aimer:4740
aimer:4739
aimer:4720
aimer:4701
aimer:4700
aimer:4695

...and 8 more

0,+1,0

aimer:4738
aimer:4717
aimer:4699
aimer:4678
aimer:4674
aimer:4652

...and 2 more

aimer:4776
aimer:4772
aimer:4767
aimer:4764
aimer:4760
aimer:4755

...and 6 more

0,+2,0

aimer:4685
aimer:4664

aimer:4740
aimer:4739
aimer:4720
aimer:4701
aimer:4700
aimer:4695

...and 8 more

[A:partir(B)]
-1,+2,0

EMPTY

[A:partir(B)]
0,+1,0

EMPTY

[A:partir(B)]
0,+2,0

EMPTY
-1,+2,0

partir:5814
partir:5800

partir:5815
partir:5807
partir:5805
partir:5801
partir:5796

partir:5802
-1,+2,0
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-1,+1,0
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-1,0,0

femme:1737

minimised

0,0,0
[E:patient(F C)]

0,0,0
EMPTY[E:aimer(F) E:patient(F C)]

0,0,0
EMPTY

-1,+2,0

aimer:4740
aimer:4739
aimer:4720
aimer:4701
aimer:4700
aimer:4695

...and 8 more

0,+1,0

aimer:4738
aimer:4717
aimer:4699
aimer:4678
aimer:4674
aimer:4652

...and 2 more

0,+2,0

aimer:4685
aimer:4664

[A:partir(B)]
-1,+2,0

EMPTY

[A:partir(B)]
0,+1,0

EMPTY

[A:partir(B)]
0,+2,0

EMPTY

-1,+2,0

partir:5814
partir:5800

partir:5815
partir:5807
partir:5805
partir:5801
partir:5796

partir:5802
-1,+2,0

le:5629
-1,+1,0

jean:1739
-1,0,0

femme:1737

Figure 5.8: Building a multi-literal 3-key polarity automaton in GenI
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deal with such lexical items, we could either take precautions to prevent any
mishaps (for example, by restricting their use or their syntactic properties) or
outright forbid them in the lexicon.

We chose to forgo the use of null semantic items. The reason we can afford
to do this is that TAG’s extended domain of locality makes it practical to
treat these items as part of the elementary tree, that is, as co-anchors to some
primary lexical item. The English infinitival “to”, for example, can appear in
the tree τto take as S(Comp(to),V(take),NP↓). For the moment, there appear
to be no plausible lexical items aside from such co-anchors that would have a
genuinely null semantics.

On the other hand, it is conceivable that certain lexical items, namely pro-
nouns, have a hidden semantics. For example, it may be reasonable to expect
a grammar to associate the semantics l1:bill(b), l2:kick(b,b) with “Bill kicks
himself”. In this example the lexical item for “himself” is not ostensibly asso-
ciated with any literal. That looks deceptively like a null semantics, but we
would argue that “himself” does indeed have a semantics, namely a variable X
that can be instantiated to an index like b. Using such lexical items requires
that we discover the semantics hidden behind such inputs, something which we
will attempt in Section 5.4.1. In the meantime, we can work around the prob-
lem by eschewing the use of hidden semantic items. We will handle pronouns,
for example, by using an explicit literal so that in order to realise “Bill kicks
himself”, we might input something like l1:bill(b), l2:kick(b,b), l3:himself(b).

5.3 Chart generation with polarity automata

Polarity filtering sits between lexical selection and surface realisation proper.
It gives us a compact representation of those combinations of lexical items that
potentially lead to a successful realisation. The question that remains is how
exactly we can go about using this information.

The simplest approach is to collect a set of paths by walking the automaton,
and to perform chart generation separately for each path, using the lexical items
along that path as a basis for generation. This at least prevents us from trying
to combine lexical items that do not belong together. However, this simple
approach is inefficient because it does not account for the fact that different
paths may often have lexical items in common.

The second, more sophisticated approach does not perform a separate chart
generation step for each path. Instead we generate using all the paths at once,
but annotate each tree with the set of paths on which it appears. During
generation, we only compare trees if they have some paths in common, that
is if the intersection of their paths is non-empty. Any resulting derived tree is
annotated with this intersection of paths. Since the number of paths is known,
we can express these sets as bit vectors, using the bitwise-and operation to
calculate the intersection. Notice that this approach can be thought of as an
extension to whatever chart indexing scheme (Section 1.3.4) that is in use.

5.4 Extensions

Adapting the polarity filtering technique to surface realisation has required
that we (i) build polarity automata on the basis of literals instead of lemmas
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hidden semantics

extra columns in automata yes
virtual literals yes
auto-detection of semantic “polarities” no

intervals

atomic disjunction yes
variables no

adjunction

adjunction polarities no
with intervals no

smaller automata

sorting the keys no
sorting the literals yes
bundling transitions yes

Table 5.2: Status of extensions in GenI

(ii) extend the algorithm for multi-literal semantics and (iii) account for items
with a null semantics. That was just the bare minimum for getting polarity
filtering to work in generation. There isn’t any reason to stop there. In this
section, we present a grab bag of techniques for making better use of polarity
automata, or more specifically

1. using lexical items that have a hidden semantics,

2. dealing with variables and atomic disjunction whilst computing the po-
larity of lexical items [Bonfante et al., 2004],

3. filtering for TAG adjunction,

4. building smaller automata

Not all of these extensions have been implemented in GenI yet; see Table 5.2
for details.13

5.4.1 Hidden semantics revisited

We have so far avoided the issue of hidden semantics by simply legislating
them out of existence. What if we did actually want to use such items? The
use we have in mind is for pronouns, whose semantics may arguably be a
variable index.14 For example, the pronoun “her” in (20b) has semantics L:X,
instantiated to l1:s, and in (21), “he” has the semantics L:Y, instantiated to
l4:j.

13Variables should be fairly easy to add in, but one will need to test it and determine if it
is better if in practice it would be more useful to accept variable values, or to limit ourselves
to constants and warn the user when there are any variables.

14We retain the practice of associating each literal with a label so that we can distinguish
between multiple uses of the same index.
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(20a)
l3:lend(j,b,s)

0 +1
Joe

l0:joe(j)

lends
-2 -1 0

l2:book(b)

bookSue

l1:sue(s)

(20b)
l3:lend(j,b,s)

0 +1
Joe

l0:joe(j)

lends
-2

book
-1

l2:book(b)

Figure 5.9: Difficulty with hidden semantics.

(20) a. l0:joe(j), l1:sue(s), l2:book(b), l3:lend(j,b,s), l4:boring(b)
“Joe lends Sue a boring book.”

b. l0:joe(j), l1:sue(s), l2:book(b), l3:lend(j,b,s), l4:boring(b)
“Joe lends her a boring book.”

(21) a. l0:joe(j), l1:sue(s), l2:leave(j), l3:promise(p,j,s,l2)
“Joe promises Sue to leave.”
or “Joe promises Sue that he would leave.”

In Figure 5.9, we can see how polarity automata for (20a) and (20b) differ.
Building an automaton for (20b) fails because τsue is not available to cancel
the negative polarities for τlends; instead, a pronoun must be used to take its
place. The problem is that the selection of a lexical item is only triggered when
the construction algorithm visits one of its semantic literals. Since pronoun
semantics have zero literals, they are never selected. Making pronouns visible
to the construction algorithm would require us to count the indices from the
input semantics. Each index refers to an entity. This entity must be“consumed”
by a syntactic functor (e.g. a verb) and “provided” by a syntactic argument
(e.g. a noun).

We make this explicit by annotating the semantics of the lexical input (that
is, the set of lexical items selected on the basis of the input semantics) with
a form of polarities. Roughly, nouns provide indices15 (+), modifiers leave
them unaffected, and verbs consume them (−). Predicting pronouns is then a
matter of counting the indices. If the positive and negative indices cancel each
other out, no pronouns are required. If there are more negative indices than
positive ones, then as many pronouns are required as there are negative excess
indices. In the table below, we show how the example semantics above may be
annotated and how many negative excess indices result:

semantics b j s

l0:joe(+j) l1:sue(+s) l2:book(+b) l3:lend(-j,-b,-s) l4:boring(b) 0 0 0
l0:joe(+j) l1:sue(+s) l2:book(+b) l3:lend(-j,-b,-s) l4:boring(b) 0 0 1
l0:joe(+j) l1:sue(+s) l2:leave(-j,-s) l3:promise(p,-j,-s,l2) 0 0 0
l0:joe(+j) l1:sue(+s) l2:leave(-j,-s) l3:promise(p,-j,-s,l2) 0 1 0

15except for predicative nouns, which like verbs, are semantic functors
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Counting surplus indices allows us to establish the number of pronouns
used and thus gives us the information needed to build polarity automata. We
implement this by introducing a virtual literal for negative excess index, and
having that literal be realised by pronouns. Building the polarity automaton
as normal yields lexical combinations with the required number of pronouns,
as in Figure 5.10.

l3:lend(j,b,s)

0 +1
Joe

l0:joe(j)

lends
-2 -1 0

l2:book(b)

book

l1:s

her 

Figure 5.10: Constructing a polarity automaton with hidden semantics.

This becomes more complicated when the lexical input contains lexical
items with different annotations for the same semantics. For instance, the
control verb “promise” has two forms: one which solicits an infinitive as in
“promise to leave”, and one which solicits a declarative clause as in “promise
that he would leave”. This means two different counts of subject index l4:j
in (21): zero for the form that subcategorises for the infinitive, or one for the
declarative. But to build a single automaton, these counts must be reconciled,
i.e., how many virtual literals do we introduce for l4:j, zero or one?

The answer is to introduce enough virtual literals to support the largest
count (in this case one), and to balance them by adding the virtual literals
to the lexical semantics of the smaller counts. To handle example (21), we
introduce one virtual literal for l4:j in order to select the pronoun “he” in
“promise that he would leave”. This extra pronoun is not selected for the
infinitive form “promises to leave”, because it is accounted for in the semantics
of lexical item τpromise to, which now consists of l3:promise(p,j,s,l2) and the
virtual literal l4:j.

l2:leave(j)

0

l3:prom(p,j,s,l2)

0 +1
Joe

l0:joe(j)

+2

l1:sue(s)

Sue

l4:j

+1
ε

0
hepromise 

that

promise
to

0

0
l4:j

leave

would
leave

Figure 5.11: Hidden and virtual semantics

Note that this technique will still need to be further explored before it can be
put to practical use. An open question that remains is how we would go about
annotating each and every lexical item’s semantics with the requisite polarities.
Our prototypes have manual annotations, but this is clearly not a scalable
solution. In the meantime, we have simply resigned ourselves to semantics
by decree, using explicit literals like l0:himself(x) for pronouns instead of the
hidden semantic mechanism.

5.4.2 Variables and atomic disjunction

To simplify the presentation of polarity automata, we have so far required that
any attribute-value pair used to compute the charge of a tree may only contain
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a constant value. In fact, this restriction is not necessary, because the polarity
filtering mechanism proposed by [Perrier, 2003] already includes a means of
dealing with cases where “unification does not reduce to identification.” Before
delving into those details, there are two reasons why it would be useful to
handle this more general case.

The first is that we would like to support the use of atomic disjunction in
the values. For example, we might imagine that a tree has a substitution node
with the value cat:{np,cl}; it accepts a node with either an NP or a CL
category. Conceptually, this is no different than using a variable value. If in a
given feature structure, we define a pair cat:X, we are declaring that the value
of the cat attribute is (i) associated with variable X and (ii) an element of Tcat,
the set of possible attributes that may be associated with cat. A variable is a
placeholder for a set of values; a constant is an element in that set; an atomic
disjunction is halfway between the two, i.e. a subset of values.

The second reason is that it would allow for the polarity filtering mechanism
to be more robust. Otherwise, we are forced to detect if any attributes used
for polarity filtering are not associated with constants, emit an error message
and refuse to do filtering altogether. Supporting the general case would allow
us to do filtering even if not all the appropriate constraints are available in
the grammar. Furthermore, as we will see in Section 5.4.3, we wish to extend
the filtering mechanism to account for adjunction. One implication is that we
would need to inspect most of the nodes in a tree, not just the occasional root,
foot or substitution node, but all the possible adjunction sites as well. Since
there are many more of these nodes than the root/foot/substitution ones, the
chances are higher that one of these nodes is underconstrained, by either bug
or design.

The generalised mechanism for dealing with these cases comes directly from
the electrostatic tagging literature [Bonfante et al., 2004]. The rough idea is to
treat polarity charges not as single values like −2, but as intervals, for example
[[−2, 1]]. Each variable or atomic disjunction is an ambiguity — either the
attribute value pair does not match the key and gets the charge 0, or it does
match it and gets the charge 1 (or −1 for substitution nodes). This range of
possibilities is encoded as the interval [[0, 1]] (or [[−1, 0]] for substitution nodes).
Here we can introduce a addition over intervals:

[[x1, y1]] + [[x2, y2]] = [[x1 + x2, y1 + y2]]

With this in mind, we can calculate polarities in the same way, except doing
addition over intervals instead of integers. Given a tree N and a polarity key
a :k, the charge pol(N, a :k) of that tree is the sum of charges for each of its
nodes:

pol(N, a:k) =
∑
n∈N

pol′(n, a:k)

What is different here is how we assign the polarity of a node. First of all, we
say that n matches a : k if there is some (an, kn) ∈ n.bot such that an = a.
Below, in the cases where we refer to kn we are assuming that n matches the
key. Here also, we assume that values are implemented as sets and that variable
values are just the set of all possible values. Note here that k is assumed to be
a singleton set.
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pol′(n, a:k) =




[[1, 1]] if n is the root node of an initial tree and k = kn

[[0, 1]] if n is the root node of an initial tree and k ⊂ kn

[[−1,−1]] if n is a substitution node and k = kn

[[−1, 0]] if n is a substitution node and k ⊂ kn

[[0, 0]] if k ∩ kn = ∅ or n does not match a:k

Notice that the first, third and fifth case are the same as in the original
definition, but expressed as trivial interval. These account for constants and
non-matches, which we already knew how to deal with. The second and fourth
cases account for variables and atomic disjunction. Making this work for po-
larity automata requires only a modification to the notion of charge (intervals)
and consequently to the initial and final state. We show here how to rede-
fine single-key polarity automata (Definition 4, Page 99); extending this to
multi-literal n-key automaton is a straightforward affair.

Definition 7 (Single-key interval polarity automaton). A single-key interval
polarity automaton is an acyclic, deterministic finite state automaton. It is a
tuple 〈Σ, S, s0, δ, F 〉 where

• Σ, s0, δ, and F all have the expected meaning.

• S is the set of states, where in each state 〈l, c〉, with l ∈ N and c ∈ [[Z,Z]]16.
The intended interpretation is that l is the index of some literal in the
input semantics and c is the charge of that state.

Given an input semantics L and a polarity key a:k, a single-key interval po-
larity automaton can be built in the same way as single-key polarity automata,
with the following modifications to the start and final states (a state is final if
its charge includes 0):

1. s0 is the tuple 〈0, z〉, where z is [[0, 0]], unless a:k is required to appear in
the root node (for example, a:k is cat:s), in which case z is [[−1,−1]].

2. F is the set of edges {〈|L|, [[x, y]]〉 where x ≤ 0 and y ≥ 0}.
Note that allowing for such ambiguities may somewhat degrade filtering.

For example, if we have an automaton whose only final state has the interval
[[−1, 3]] we are allowing for lexical combinations whose net polarities may range
from −1 to 3. This is less alarming than it may sound, as intervals overlap
and still be considered distinct, so although [[1, 2]] is a sub-interval of [[−1, 3]] it
is treated as a distinct state, and all paths which lead to it are pruned away.
Nevertheless, it means that a lexical item with a non-constant value will allow
for any combination that uses it and which leads to an unbalanced value. If
there are lexical items with non-constant values for more than one literal, the
intervals may get larger and allow more combinations to pass through the filter.
Polarity filtering thus becomes more permissive about what it accepts, which
is unfortunate, but outweighed by the benefit of extra robustness.

16That is, the set of intervals over integers
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5.4.3 Adjunction

Polarity filtering has so far been focused on matching substitution sites (re-
quirements) to root nodes (resources). If an auxiliary tree does not have any
substitution nodes, it becomes entirely invisible to the polarity filter, as it
neither requires nor provides resources for substitution.

Adjunction intuitions

To make more use of the auxiliary trees during filtering, we need some means
of accounting for adjunction. The essential requirement is that any auxiliary
tree in the lexical selection must be adjoined somewhere. In other words, if
there is an auxiliary tree, there must also be an adjunction site to go with it.
This sounds like it might fit into our basic framework if we treated adjunction
sites as “positive” and auxiliary trees as “negative”. Alas, adjunction is not a
simple matter of balancing resources with their requirements, as substitution
is. The subtleties are that (i) not all adjunction sites are necessarily to be ad-
joined to, i.e. resources need not necessarily be used (ii) we can have embedded
adjunctions because auxiliary trees can have their own adjunction sites.17 We
cannot model adjunction by adding polarities.

We can do so, however, by multiplying them together. The accumulation of
charges works much the same way, except that multiplication takes the place
of addition, and that the initial state of the automata has the charge 1 and
its final state a charge of either 0 or 1 (0 to account for cases where there is
at least one adjunction site, and 1 otherwise). Adjunction polarities can be
interpreted in the following way:

0 - resource If a resource (adjunction site) is available, it does not matter how
many times it is used or if it used at all. Its mere availability is enough
to make things balanced; likewise, multiplying anything by 0 gives us a
“balanced” state 0.

1 - innocent bystander Items which are neither resources nor requirements
should not come into play at all. Multiplying anything by 1 gives us the
same result. If only innocent bystanders are involved, we get a“balanced”
state 1.

2 - requirement It does not matter how many requirements (foot nodes)
there are. Once there is at least one requirement of a given type, there
must be at least one resource. Multiplying by 2 takes us past the balanced
state ≤ 1, and the only way to get back is to multiply by 0. Also, treating
any accumulated polarities > 2 as simply 2 can give us the same effect,
with potentially smaller automata.

Adjunction automata

To simplify matters, let us ignore variables and atomic disjunction for the
moment. We can now introduce a notion of adjunction charge. Given a tree N
and a polarity key a:k, the adjunction charge pol∗(N, a:k) is defined as follows

17Furthermore, some variants of TAG allow for multiple adjunction, which would be nice
to support



5.4. EXTENSIONS 115

• if N is an initial tree,

pol∗(N, a:k) =
{

1 if no adjunction sites match a:k
0 otherwise

• if N is an auxiliary tree,

pol∗(N, a:k) =




2 if the foot node matches a:k
1 if neither the foot node

nor any adjunction sites match a:k
0 otherwise

Definition 8 (Single-key adjunction automaton). A single-key adjunction au-
tomaton is an acyclic, deterministic finite state automaton. It is a tuple
〈Σ, S, s0, δ, F 〉 where

• Σ, s0, δ, and F all have the expected meaning.

• S is the set of states, where in each state 〈l, c〉, with l ∈ N and c ∈ N.
The intended interpretation is that l is the index of some literal in the
input semantics and c is the adjunction charge of that state. Note that
in contrast with single-key polarity automata, we do not need negative
numbers (so natural numbers are fine).

Given an input semantics L and a polarity key a:k, a single-key adjunction
automaton can be built in the same way as single-key polarity automata, with
the following modifications:

1. Σ is the set of lexically selected items. For convenience, we also define the
function σ : N → Σ, which given an index l, returns the set of lexically
selected items whose semantics consists of the l-th literal in L.

2. S is built in the following way

a) {s0} is an element of S (see below)

b) If a state 〈l, c〉 is an element of S and if l < |L|,
then for every elementary tree t ∈ σ(l),
the state 〈l + 1, c′〉, with c′ = c ∗ pol(t, a:k), is also in S

3. s0 is the tuple 〈0, 1〉.
4. δ is defined for all l < |L| and t ∈ σ(l) as:
δ(〈l, c〉, t) = 〈l + 1, c′〉 with c′ = c ∗ pol(t, a:k).

5. F is the set {〈|L|, 0〉, 〈|L|, 1〉}.

Combining polarity and adjunction automata

We can combine adjunction automata with each other by using an automaton
intersection algorithm. For that matter, we could even combine adjunction
automata with polarity automata by the same means. We can even perform
these intersections incrementally mixing adjunction automata with polarity
automata. The trick would be to generalise the notion of n-key automaton so
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that it covers both polarity and adjunction automata. To do this, we need to
distinguish between the cases where we are using polarity keys for substitution
or adjunction. We can do this by extending the polarity keys with a little
marker: a:k↓ means the key is being used for substitution (polarity automata)
and a : k∗ means that it is being used for adjunction (adjunction automata).
To keep our notation intuitive, we should also rename the pol function to pol↓
so that it is clear that the former is for substitution and pol∗ is for adjunction.

Definition 9 (n-key combined automaton). An n-key combined automaton
has exactly the same form as an n-key combined automaton, which we repeat
below for convenience. It is an acyclic, deterministic finite state automaton
〈Σ, S, s0, δ, F 〉, where

• Σ, s0, δ, and F all have the expected meaning (see Definition 4)

• S is the set of states. Each state is of the form 〈l, C〉, with l ∈ N and C
is an n-tuple of integers (Z). The intended interpretation is that l is the
index of some literal in the input semantics and C is the (n-dimensional)
charge of that state.

painting,
picture

cost of,
costs

is high,
a lot

l0:picture(p) l1:cost(c,p,h) l2:high(h)

Figure 5.12: A seed automaton

n-key combined automata can be built inductively. Building the seed au-
tomaton works exactly as before (see Figure 5.12 for a quick refresher or Page
101 for the full details). As for the induction step, it is not really all that
different from before. The only modification we need to make is that we must
distinguish between a : k↓ and a : k∗. For polarity keys of the form a : k↓, we
combine charges with addition; for the latter, we combine them with multipli-
cation.

Given an n-key polarity automaton, and a polarity key a′ : k′op, we can
build an n′-key automaton 〈Σ, S′, s′0, δ

′, F ′〉 with n′ = n+ 1. First, the helper
function, next : S′×Σ→ S′ is defined as next(〈l, c, s〉, t) = 〈l+1, c2, s2〉, where
s2 = δ(s, t) and

c2 =
{
c+ pol↓(t, a′ :k′) if op =↓
c ∗ pol∗(t, a′ :k′) if op = ∗

And now the induction step:

1. Σ is as usual.

2. S′ is built the same way as before:
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a) {s′0} is an element of S (see below)

b) If a state s′ = 〈l, c′, s〉 is in S′, and if l < |L|: for every t such that
δ(s, t) is defined, next(s′, t) is in S′.

3. s′0 is defined as follows:

a) Let z′ = 1 if op = ∗; otherwise let it be 0, unless a′ :k′ is required
to appear in the root node (e.g., a′ :k′ is cat:s), in which case z′ is
−1.

b) s′0 is 〈0, z, s0〉
4. δ′ is defined the same way as before, for all l < |L|. Given s′ = 〈l, c, s〉,

for every t such that δ(s, t) is defined, δ′(s′, t) = next(s′, t).

5. F ′ is the set of states such that for every f ∈ F (i.e. every final state in
the previous automaton):

a) 〈l, 0, f〉 is in F ′

b) if op = ∗, 〈l, 1, f〉 is also in F ′.

Adjunction and intervals

Adjunction charges can also be extended to non-constant values. If an auxiliary
tree has a foot node may with an non-constant one of its possible values is a
key a′ :k′, we assign the interval [[1, 2]]. The same reasoning can be applied to
adjunction sites; trees with such sites get assigned the interval [[0, 1]] (or simply
[[0, 0]] if there is a site which unambiguously matches key k). Multiplication on
two intervals is straightforward [[x1, y1]]× [[x2, y2]] = [[x1 × x2, y1 × y2]], and as
usual, any value > 2 can also just be treated as 2.

5.4.4 Building small automata

Constructing polarity automata can introduce some overhead (see Section 5.5.1
for the theoretical cost). To reduce this overhead, we use a combination of
techniques for keeping the polarity automata small.

The first technique consists of sorting the polarity keys by decreasing ef-
fectiveness, using the keys which eliminate the most lexical combinations first.
Every time we construct a polarity automaton for a given key, we are exploring
the space of possible lexical combinations, so it is desirable to shrink this space
as early possible, allowing each subsequent automaton to be smaller. Unfor-
tunately, as [Le Roux, 2007a] shows, the general problem of ordering polarity
keys to get the smallest possible polarity automata is NP-complete. Discover-
ing a good ordering for polarity keys in practice can be done experimentally,
likely with a different order for every grammar.

The second technique is to sort the literals of the input semantics in a similar
strategic manner. Since we can impose any arbitrary ordering on the literals,
we might as well choose one which produces the smallest automata. The sorting
scheme we use is sort the literals in order of increasing ambiguity. The idea is to
delay branching of the automata as much as possible to avoid the proliferation
of states. To see why we believe this works, consider the two automata in the
Figure 5.13. We compare a hypothetical “worst case” automaton with three
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Figure 5.13: Sorting literals by their ambiguity

literals, with an ambiguity of 1, 2 and 3, respectively. Both automata end up
with 6 final states, but what happens in the middle differs. The automaton
on the left corresponds to an ordering of 3, 2, 1; we branch off 3 states, then
2 states each, then 1 state each (total: 1 + 3 + 4 + 6 = 16). The automaton
on the right corresponds to an ordering of 1, 2, 3; we branch off 1 state, then
2 states each, then three states each (total: 1 + 1 + 2 + 6 = 10) yielding a
somewhat smaller automaton. This may not necessarily be the best way to
sort the literals, but it seems fairly reasonable as far as uneducated guesses
go.18 A more linguistically motivated approach would be worth looking into,
on the other hand.

The third technique is the easiest to justify. In large grammars, we often
have many lexical items for a given literal that have the same charge; this leads
to there sometimes being many transitions between the same two states. We
can with little effort hasten the construction and intersection of such automata
by“bundling”together transitions between the same states. Any two states may
only have one transition between them, but that transition stands for a set of
lexical items. At the very end, we shall have to “unbundle” these transitions by
trying every combination of lexical items along the same automaton path; we
will still have the same number of combinations to contend with, but we will
just be working with smaller automata in the process.

5.5 Evaluation

5.5.1 Theoretical cost of filtering

Construction It is possible to demonstrate that the construction of an indi-
vidual polarity automaton is quadratic with respect to the number of literals
in the target semantics. [Tapanainen, 1997] shows a more general result which
is applicable here: if a finite-state automaton is acyclic, deterministic and has
a column-based structure (i.e. as polarity automata do), they can be shown to
have a diamond-like shape, with the size of the diamond being constrained. We

18Le Roux (personal communication) points out that this technique can be justified by
the reasoning in [Tapanainen, 1997]. We have not yet verified this.
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show here the rough intuitions for how this would apply to polarity automata,
using a more pessimistic, but simpler triangle shape.

Consider any state in the automaton. If we assume that all trees can affect
polarity by at most some constant c (around 2 or 3 for realistic grammars)
then any state can transition to at most 2c possible states each representing a
distinct change of polarity ranging from −c to +c. An important observation
now is that neighbouring polarities will converge on the same states. This can
be illustrated with an example:

• if at a given literal, a state has a charge +5, a +2 transition from that
state would lead to a +7 charge;

• if at the same literal another state has a +6 charge, a +1 transition from
that state would lead converge to the same +7 charge.

Given x states (s1..sx) at literal i, the number of states for literal i + 1 will
thus be x+2c, that is x because of convergence between nearby polarities, and
c at both extremities. If we unfold this induction, we find that the number of
states that represent literal i during the construction process is equal to 2ci.
Summing these up leads to a total for the number of states in the worst case
polarity automaton:

∑
1≤i≤n

2ci = 2c
∑

1≤i≤n

i = c(n2 + n)

Finally we note that the number of transitions and possible automata are
also limited. The number of transitions out of each state is equal to the lexical
ambiguity a, so there are a2c(n2 + n) transitions in the entire automaton.
Likewise, if we make the real-world assumption that number of polarity keys
is bounded by some p (usually also 2 or 3), we can conclude that the number
of transitions that get considered for all the automata is pa2c(n2 + n). Once
again, p, c and a are constants, so the construction of polarity automata can
be done in O(n2) space. Polarity automata are upper-bounded to polynomial
size (though they encode an exponential number of paths). We can reason that
the time to construct these automata has the same upper bound. The idea is
that each transition of the automaton corresponds to some constant number
of operations, and so building the automata does requires no more time than
space.

Minimisation We can minimise an automaton in O(q) time (with respect to
q the number of states in the automaton) [Revuz, 1992]. As long as we use only
one polarity key for filtering, a polarity automaton only induces polynomial
overhead. On the other hand, working with multiple polarity automata makes
things trickier. Constructing and minimising multiple polarity automata is just
a matter doing the computations k times, with k the number of polarity keys.

Intersection The main concern in the complexity of polarity filtering is that
of automaton intersection. The problem is that the intersection of polarity
automata balloons into an O(qk) affair, again q being the number of states in
a given automaton and k the number of polarity keys. When computing the
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intersection of two automaton, we essentially consider the Cartesian product
of their states, giving us q × q · · · × q states to deal with.19

This presents an interesting trade-off. On the one hand, intuition tells us
that the more polarity keys we use, the better our filtering is. On the other
hand, theory tells us that every polarity key we add increases the complexity
of filtering by another ×q. So what happens in practice? Do the automata
get so small and simple as a result of filtering that in practice calculating their
intersection becomes very cheap? For that matter, is the overhead of building
these automata, minimising them and even taking their intersection less than
the equivalent cost of realisation on the unfiltered lexical combinations? These
questions depend on the actual grammars being used, and the semantic inputs.
We turn therefore to an empirical evaluation.

5.5.2 Practical benefits of filtering

To begin with, it is clear that polarity filtering reduces the effect of lexical
ambiguity. There are two ways to measure this, first by seeing the direct
effect on the number of lexical combinations and second by measuring indirect
artefacts like the number of derived trees built by the surface realiser. Below
are the numbers for our worst (largest) test case (with 8 literals excluding
thematic roles, and 231 paraphrases):

no filtering filtering
lexical combinations 2 436 672 4 136
substitutions 26 149 3 284
adjunctions 5 014 630

To obtain the number of lexical combinations, we counted the paths of our
polarity automata. Each path corresponds to one combination of lexical items.
To get the number of combinations without filtering, we counted specifically
the paths on the seed automaton. As for the number of combinations with
filtering, we counted the paths on the final automaton, i.e. with all polarity
keys taken into account. (Note that the formula we saw in Section 5.1.1 would
not do for counting the ambiguity, if multi-literal semantics comes into play;
using the seed automata is a more robust way to count.) Comparing these two
numbers provides an estimate on the usefulness of the polarity filter. In our
suite, the initial automata for each case have 1 to 2 436 672 paths. The final
automata have 1 to 4136 paths. This can represent quite a large reduction in
search space (we have eliminated 99.9% of the combinations).

Then again, it is not clear what the concrete effect of eliminating these
paths is. For example, maybe in practice, a naive surface realiser would quickly
“prunes” away parts of the search space that involve lexical combinations that
polarity filtering would have thrown out, so perhaps this huge reduction in the
lexical combinations does not actually mean very much. A more convincing
presentation of the benefits of polarity filtering would measure not just how

19The approach of building n-key polarity automaton slightly improves on this by exploit-
ing the literal-by-literal nature of polarity automata. This means that we do not contend
with the Cartesian product of every state in the automata, only the states that correspond to
the same literals. Since we know that the number of states that correspond to a given literal
is 2ci, the complexity of intersecting polarity automata is O(n(2ci)k), still exponential, but
with a smaller base. See [Le Roux, 2007b] for details.
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many lexical combinations we throw out, but what their actual consequences
are for surface realisation. This is where the substitution and adjunction counts
come in. Each of these serves as an estimate of how much work the realiser
actually does. Without filtering, the surface realiser performed 26 149 substi-
tutions and 5014 adjunctions without polarity filtering. With filtering, it only
performed 3284 substitutions and 630 adjunctions. In short, polarity filtering
has a measurable impact both on the size of the search space and on what the
surface realiser actually explores.

5.5.3 Cost versus benefit: is it worth the overhead?

We know that polarity filtering can provide a good reduction in surface reali-
sation search space. A somewhat more complicated question to answer is if the
overhead of building, minimising and intersecting these automata offsets the
gains we make. Indeed, realisation times with and without filtering are com-
parable for most of the test suite, but for the most complicated sentence in the
core suite, polarity filtering makes surface realisation 98.4% faster, producing
a result in 25.21 CPU seconds instead of 1615.7.

It would be useful to also look into how the polarity automata grow as
we add polarity keys (because of exponential cost of automaton intersection,
Section 5.5.1). We have not yet done this, partly for lack of time and partly
because the number of polarity keys we use is rather small (4 maximum). To
get an idea of how this behaves in practice, here is the growth of our worst-case
automaton in number of transitions.

Number of transitions

unpruned pruned
0-key 155 155
1-key 637 85
2-key 412 135
3-key 321 121
4-key 132 30

As we can see, the number of transitions never exceeds that of the first
polarity key (before we have done any automaton intersection). So far this
gives the impression that in practice, polarity filtering simplifies the automata
enough for intersection not to be a problem. But it will be worth looking into
deeper into this as our input lengths grow and as we increase the number of
polarity keys at our disposal.

5.6 Related work in lexical disambiguation

5.6.1 LEOPAR: Electrostatic tagging

Polarity filtering is an application of electrostatic tagging to surface realisation
[Perrier, 2003].20 Normally, in supertagging, one thinks of returning one ele-
mentary tree per word (or in surface realisation, literal). The original literature
on supertagging [Joshi and Srinivas, 1994], or more recently, [Bangalore and
Joshi, 1999], uses a trigram-based approach to choose the most appropriate

20See also [Bonfante et al., 2004], which is in English
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supertag for a word. [Perrier, 2003] prefers to avoid the risk of supertagging
errors, which would in turn lead to unrecoverable parsing errors. Instead, he
prefers to use an “exact method” which returns all of the valid combinations of
supertags instead of just the most probable ones. This is ideal for applications
that require parsers to return all parses for a string. Likewise, we want to
return all paraphrases for a given input semantics and so an exact method is
equally appealing for realisation.

Note that much work has been done in electrostatic tagging since the orig-
inal proposal by [Perrier, 2003] et al. This is summed up in [Le Roux, 2007b],
which proposes an Interaction Grammar account of coordination. Allowing for
coordination means allowing for very long sentences, so Le Roux proposes some
additional techniques for reducing the overhead in building polarity automata,
particularly in taming the exponential cost of automaton intersection:

1. Polarity keys are chosen carefully to reduce the number of intersections
needed whilst keeping the filter effective.

2. In a polarity key a:k, the set k is allowed to have more than one element.
Such polarity keys reduce the effectiveness of the filter, but also the over-
head in building automata. Le Roux uses them to minimise the presence
intervals in the polarity automata, which greatly reduces their size.

3. Whenever coordination comes into play, the automata are “chunked”. An
additional check is inserted to verify that the chunks on both sides the
conjunction have the same charge. For example, in a sentence like “John
loves Mary and Pierre’s wife”, the portions of the automata for “Mary”
and for “Pierre’s wife” must both have a +cat:np charge.

It is worth noting that the Interaction Grammar used by Le Roux makes much
heavier use of polarities than SemFRaG does. Atomic disjunction comes into
play more frequently, and many more polarity keys are used in practice. In any
case, future extensions to polarity filtering should take this work into account.

5.6.2 FERGUS: supertagging from trees

Just as polarity filtering is an adaptation of electrostatic tagging to generation,
statistical supertagging has its own analogue in generation. Fergus [Banga-
lore and Rambow, 2000a] is a surface realiser for TAG. As we had mentioned
in Section 4.3.1, Fergus has two components, a “Tree Chooser” and a “Linear
Precedence” module. We had briefly mentioned the Linear Precedence compo-
nent and will revisit it again in the next chapter. Here, we are more interested
in the “Tree Chooser” component.

The input to Fergus consists in a dependency tree with a lexeme on each
node; this is essentially a TAG derivation tree (the difference being that deriva-
tion trees associate each node with both a lexeme and an elementary tree). The
job of the Fergus “Tree Chooser” is to assign elementary trees to each of these
lexemes. This is done using a stochastic tree model trained on the xtag deriva-
tion trees that correspond to 1 000 000 words of sentences from the Wall Street
Journal.

We have the same reticence to use probabilistic methods for disambiguation
as [Perrier, 2003], because we are interested in returning all paraphrases and
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parsing generation

statistical supertagging in a sequence supertagging in a tree
[Bangalore and Joshi, 1999] [Bangalore and Rambow, 2000a]

Fergus

symbolic electrostatic tagging polarity filtering
[Perrier, 2003] [Kow, 2005]

Leopar GenI

Table 5.3: Electrostatic tagging and polarity filtering

consequently need to preserve all valid sets of supertags. Nevertheless, it would
be interesting to see how one might apply such an approach to GenI. A key
difference is that the input to GenI ambiguously corresponds to what might
be several distinct inputs in Fergus. [Bangalore and Rambow, 2000a] give
the example of fear(Indians(many), repeat(a, of(experience(that))))
as the dependency tree that corresponds to “many Indians feared a repeat
of that experience”. The equivalent GenI input would correspond to a set
of dependency trees including the one above and perhaps fear(repeat(a,
of(experience(that))), by(Indians(many))),“a repeat of that experience
was feared by many Indians” and others still. Some possibilities might include
unfolding the GenI flat semantic input into a set of dependency trees and
perform supertagging on those, or perhaps developing a stochastic model on
the kind of graph that our flat semantic inputs represent.

5.6.3 Generation as dependency parsing

[Koller and Striegnitz, 2002] also perform TAG surface realisation from a flat
semantics. They observe that the formalism Topological Dependency Gram-
mar (TDG, [Duchier and Debusmann, 2001]) was specifically developed for
efficiently parsing free word order languages. As [Kay, 1996] points out, this
task is remarkably similar to surface realisation. Their approach thus consists
of translating TAG realisation into TDG parsing.

A TDG parser produces a dependency tree with a node for every word (and
a word for every node, a one-to-one correspondence) and a label for every edge.
In addition to being associated with a node, each word in the sentence is also
assigned a set of lexical entries. In other words, there is lexical ambiguity. The
job of the TDG parser is to pick one lexical entry for every word/node and
to connect the nodes together to form a tree. Since the lexical ambiguities
can multiply out, and since the nodes can be connected in any order (because
of free word order), there can be theoretically very many trees. Fortunately,
there is a mechanism to limit the number of trees actually produced. Each node
has some number of outgoing edges and some number of incoming ones. If we
connect two nodes together, the outgoing edge of one node is the incoming edge
of the other. Each lexical entry can be associated with constraints on both the
outgoing and incoming edges. Below is how a TDG lexicon might look:
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word allow incoming require outgoing
likes ∅ {subj, obj, adv∗}
Peter {subj, obj} ∅
Mary {subj, obj} ∅

Peter likes Mary

sub
j obj

Here, the hypothetical lexical item “likes”might not have restrictions on its
incoming nodes, but might require precisely one outgoing subj edge and one
outgoing obj edge and arbitrarily many (or no) outgoing adv edges. We can see
in the margin what we would get for the sentence “Peter likes Mary”.

Now the question turns to how we might transform a TAG generation prob-
lem to a TDG parsing one. The first trick is to treat each literal of the input
semantics as a TDG word, along with a special start word. As before, each
“word” is associated with a set of lexical entries, namely TAG elementary trees.
The second trick is to encode TAG substitution and adjunction nodes as TDG
label constraints:

• Each substitution node corresponds to a (required) outgoing subst label,
and each root node of an initial tree to an (allowed) incoming subst

• Each auxiliary tree corresponds to an allowed (incoming) adj label and
each node that accepts adjunction to zero-to-many adj labels

Furthermore, these constraints specify not just the TAG operation that must
be on each label, but the node category and semantic index as well.21,22 A
lexicon for TDG-based TAG realisation would be as follows:

atom allow incoming require outgoing
start ∅ {substS,e,1}
buy {substS,e,1} {substNP,c,1, substNP,m,1,

adjV P,e∗, adjV,e∗}
mary {substNP,m,1, substNP,m,2} {adjNP,1∗, adjPN,m∗}
indef {substNP,c,1, substNP,c,2} {adjNP,c∗, substN,c,1}
red {substN,c,1} {adjN,c∗}
car {adjN,c} ∅

All that remains is to feed the input semantics to the TDG parser and
retrieve the corresponding dependency tree(s). The constraints ensure that
exactly once: each substitution node is filled, each root node of an initial tree is
plugged in, and each auxiliary tree is adjoined to some node23 The dependency
tree corresponds exactly to a TAG derivation tree, and building the derived
tree from that is trivial.

21Technically, we also have to associate each substitution node with a counter, in case
there is more than one node with the same label/index. We believe that if TDG allowed for
label/valency requirements to be expressed as a multiset instead of a set, we would not need
to do this.

22In [Koller and Striegnitz, 2002], indef is missing an outgoing substN,c,1 constraint. We
believe that this was a typo.

23If it seems odd that this be enforced for auxiliary trees — after all the lexicon only
stipulates that auxiliary trees allow incoming adj labels — it helps to remember that all
TDG nodes have to be connected to something, and that is what ensures that the auxiliary
trees will be used. This is similar to our chart generator’s requirement that the output
semantics must match the input semantics. The incoming label constraint merely ensures
that they are connected by adjunction and not substitution.
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Koller and Striegnitz’s approach is quite similar in spirit to ours. We both
address the issue of lexical ambiguity by using a set of global, mutually in-
terlocking constraints where each substitution node must be plugged and each
auxiliary tree adjoined. One interesting aspect of their approach is that they
do lexical selection and construction of the derivation trees in one go. In an
XTAG style grammar (like we both), getting from a derivation tree to a derived
tree is a short step, at least much shorter than our use of chart generation.

Their approach does have some minor warts. The first is that they do not
have a treatment of multi-literal semantics. On the other hand, they do have
a workaround which consists of building the set of partitions of the semantic
input, such that each lexical item is associated with one partition, essentially
find all the possible ways to convert into a generation problem without multi-
literal semantics. In theory, there are an exponential number of partitions, but
they report good results in practice.

Like us, Koller and Striegnitz avoid the issue of null semantic items by
appealing to TAG co-anchors. It might also be possible to transpose our tech-
nique for dealing with items that have a hidden semantics, since all we are
doing ultimately is “discovering” their semantics. Presumably, we could have a
pre-processing step of identifying the hidden semantics of any applicable lexical
items and then performing TDG parsing as usual.

Another technical problem is that the approach does not support atomic
disjunction in values. Then again, this should not be difficult to add. For exam-
ple, atomic disjunction on a substitution node might translate to an outgoing
label constraint that requires zero or one of each legal value.

The authors also note that they do not handle general feature structures,
only indices and categories. But they also point out that wrong realisations,
from feature mismatches undetected could always be filtered out in a post-
processing step. This is really no worse than what we do in GenI, where we
perform polarity filtering with only categories and indices and “post-process”
the resulting lexical combinations with a chart generator.

Finally, Koller and Striegnitz report good results, converting the XTAG
grammar into their TDG formalism and using it for realisation. To get an idea
on the performance of their system, they revisited an example sentence from
[Carroll et al., 1999] (“Our manager organised an unusual additional weekly
departmental conference”), generating it in 470 ms on a 700 MHz Pentium-III
(Carroll et al.’s reported result was 4.3 seconds; but according to Koller and
Striegnitz, a newer version gets this in 420 ms).





Chapter 6

Paraphrase selection

Chapter 5 was dedicated to coping with the lexical ambiguity problem. A ques-
tion which arises is why lexical ambiguity even exists in the first place. After
all, one might argue that lexical ambiguity reveals a fundamental design flaw,
that either the grammar or the input semantic formalism are not sufficiently
precise. In our the case, however, lexical ambiguity is entirely deliberate; it is
far more feature than bug. It exists because the surface realiser and grammar
are designed to treat syntactic paraphrases as having essentially the same se-
mantics. For example, a French sentence “Jean aime Marie” (John loves Mary)
would have the semantics l1:jean(j) l2:aimer(e,j,m) l3:marie(m), and so would
its many paraphrases:

(22) a. Marie est aimée par Jean

b. C’est Jean qui aime Marie

c. C’est Jean de qui est aimée Marie

d. C’est par Jean que Marie est aimée

e. C’est par Jean qu’est aimée Marie

f. C’est Jean dont est aimée Marie

g. C’est Marie que Jean aime

h. ...

On the other hand, having a long list of paraphrases for a given semantic
input is not particularly useful for practical NLG applications. In this chapter,
we discuss a technique for making the surface realiser output at most one
sentence per input semantics. The approach we use is built around the intuition
that paraphrase selection is tightly linked to lexical selection. The approach
consists essentially of enriching the input with a set of linguistic properties
(e.g. l2:aimer(e,j,m) must be realised in the active voice) that control the
initial choice of lexical items, and consequently, the paraphrases produced.

127
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6.1 Contextual appropriateness

Before exploring the selection mechanism in greater detail, it is worth scrutin-
ising our objectives more carefully. To begin with, there are two non-reasons
for aiming to produce a single paraphrase. The first is that it might be useful
for its own sake, or because NLG applications only require one output. If that
were case, we would simply generate all the outputs and choose one at ran-
dom. The second non-reason is efficiency. Efficiency may be a very compelling
motivator, a highly desirable bonus, but it is not the main driver behind this
push for a single paraphrase.

Our main motivation can be found in this example, which comes from [Hal-
liday, 1978] and is repeated in the kpml literature [Bateman et al., 1992]:

(23) Now comes the President here. It’s the window he’s stepping through
to wave to the crowd. On his victory his opponent congratulates him.
What they are shaking now is hands. A speech is going to be made by
him. “Gentleman and ladies. That you are confident in me honours me.
We shall, hereby pledge I, turn this country into a place, in which what
people do safely will be live, and the ones who grow up happily will be
able to be their children.”

The passage above may seem to be perfectly reasonable English at first
glance, but when read slowly and out loud, it becomes clearer that there is
something subtly off about it. Some specific problems might be that the time
circumstance “now” has been thematically marked in the first sentence, where
“here”would be more natural; a clefted form“It’s the window he’s...” is used in
the second sentence, although no contrasts are being made; and in the sentence
“A speech is going to be made by him” the passive voice is used, where the ac-
tive voice would be better [Halliday, 1985]. None of these are, strictly speaking,
grammatical errors. The passage above is full of technically correct, yet con-
textually inappropriate sentences, sentences which do not fit into the context,
including and not limited to the surrounding discourse and user knowledge.

A surface realiser should thus provide facilities for eliminating any contex-
tually inappropriate paraphrases from the output. Better yet, it should aim to
produce the one best paraphrase for a given input. The reason that we insist
on one paraphrase, and not for example, the best four or five, is an assumption
or perhaps a principle that “all linguistic choices are meaningful” as is claimed
in the field of Systemic Functional Linguistics [Winograd, 1983]. Every syntac-
tic alternative, for example, between the active and passive voice, represents a
deliberate choice. By ensuring that we can produce at most one paraphrase,
we ensure that all such choices are made explicit and available to the user.
Note that simply being able to restrict ourselves to a single paraphrase does
not oblige us to do so. Ideally, the paraphrase selection mechanism should
allow the user both to make explicit choices on all alternatives or to cede some
of these decisions to the realiser (surge, notably, provides this flexibility [El-
hadad and Robin, 1999]). In any case, the option to make the explicit choices
should always be available.
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6.2 Selection mechanism

Paraphrase selection can largely be performed by constraining the lexical se-
lection. We will extend the lexical selection process and the input semantics
to express such constraints, but before going into the details, let us mock up a
small usage scenario. Consider the input semantics below. We will imagine a
hypothetical grammar which associates it with three paraphrases:

(24) l1:give(e,j,b,m), l2:john(j), l3:mary(m)
John gave the book to Mary.
Mary was given the book by John.
The book was given to Mary by John.

To restrict the selection, we might specify that the literal l1:give(e,j,b,m) be
realised by a verb in the passive voice. We rewrite the input semantics as
follows with the expected effects:

(25) l1:give(e,j,b,m)[PassiveForm], l2:john(j), l3:mary(m)
John gave the book to Mary.
Mary was given the book by John.
The book was given to Mary by John.

Adding more properties to the input semantics simply narrows down the re-
sulting output even more. We restrict the literal further still:

(26) l1:give(e,j,b,m)[PassiveForm, CanonicalToObject], l2:john(j), l3:mary(m)
John gave the book to Mary.
Mary was given the book by John.
The book was given to Mary by John.

These tokens with which we enrich the input semantics are called tree prop-
erties. We will now see exactly how they are used (Section 6.2.1 and 6.2.2) and
where they come from in practice (Section 6.2.3). Building on these ideas, we
will also see how the properties can be used to narrow down the semantics so
that we produce at most one output (Section 6.2.4).

6.2.1 Enriched lexical items and input semantics

The extensions require that we introduce enriched versions of the lexicon and
the input semantics, both taking tree properties into account. The basic idea
is that linguists use tree properties to describe lexical items and the surface
realiser uses them to filter the lexical selection.

Definition 10 (Tree property). A tree property is an identifier. Some exam-
ples of tree property are PassiveForm and CanonicalToObject.

Definition 11 (Enriched lexical item). An enriched lexical item is a triple
〈T, S, LTP 〉. T and S are the elementary tree and lexical semantics as described
in Definition 3 (Page 80). LTP is a set of tree properties.

Definition 12 (Enriched input semantics). An enriched input semantics is a
set of enriched literals of the form L[tp1, . . . , tpn], where L is a saturated LU

literal and tp1, . . . , tpn is a possibly empty set of tree properties. As a notational
convenience, we omit the square brackets when the set of tree properties is
empty.
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Definition 13 (Plain input semantics). The plain input semantics is the result
of stripping away all the tree properties from an enriched semantics. Given an
enriched input semantics ES we say that the plain input semantics is the set
of literals of the form Li where Li[tp1, . . . , tpn] ∈ ES

6.2.2 Enriched lexical selection

Taking tree properties into account consists of filtering the lexical items so that
only those with the desired tree properties are retained. Given an enriched
semantics ES, we instantiate the lexicon as usual (Section 4.1.1) and return
the set of enriched lexical items such that for each item 〈T, S, LTP 〉:
• (as usual) its instantiated semantics S is non-empty and subsumes the

plain input semantics;

• for every enriched literal L[tp1, . . . , tpn] in the enriched input semantics
ES, if L ∈ S then {tp1, . . . , tpn} ⊆ LTP .

6.2.3 Where tree properties come from (metagrammars)

The tree selection mechanism requires that every lexical item in the grammar
“possess”, i.e. be associated with, a set of tree properties. There are many ways
of achieving this intermediate goal. One possible solution might be manual
annotation, but this is neither desirable nor necessary. It is undesirable because
realistic TAG grammars are large enough to make such a process error-prone
and cumbersome. It is unnecessary in the case of SemFRaG because the
annotations are already encoded in another resource, the metagrammar from
which it was compiled.

Metagrammars are essentially highly factorised representations of the gram-
mar which can then be compiled into the more explicit, familiar form. The use
of metagrammars is motivated by the amount of redundancy that can be found
in a typical TAG grammar. The system we use in particular is the XMG meta-
grammar compiler developed in [Crabbé and Duchier, 2004]. We will not go
into the precise details on what makes up such a metagrammar. Basically an
XMG metagrammar consists of named tree fragments (dominance and linear
precedence constraints) which are combined via conjunction and disjunction.
To get an idea what the metagrammar looks like, below is a sample of frag-
ments being combined to generate trees in the family of transitive verbs. They
are combined in Figure 6.1.

Subject ∧
((ActiveForm ∧Object) ∨ (PassiveForm ∧ CAgent))

In XMG terms, an individual elementary tree can be seen as a conjunction of
fragments. Their names look very much like the tree properties we have been
using in our examples. Indeed, these names are exactly what SemFRaG uses
as tree properties. Every elementary tree with the (names of) the fragments
from which the tree is built. These names make up the set of tree properties
that the elementary tree possesses.
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Figure 6.1: XMG Tree fragments (simplified from SemFRaG)

6.2.4 Producing at most one output

The more tree properties used to enrich the input semantics, the fewer lexical
items are selected. Pushing this to its logical conclusion, one could conceivably
add enough tree properties for each literal to be realised by at most one lexical
item each.1 For the most part having an ambiguity-free lexical selection is
enough to guarantee that the surface realiser returns a single paraphrase, the
exceptions being inputs where the lack of word order constraints (e.g., inter-
sective modifiers) comes into play. The tree properties associated with each
lexical item must uniquely identify that item. In other words, each enriched
lexical item must be associated with a so-called tree identifier:

Definition 14 (tree identifier). In an FB-LTAG grammar, a tree identifier is
a set of tree properties I. If in a set of lexical entries, there is only one enriched
lexical item 〈T, S, LTP 〉 such that LTP ⊆ I, we say that the tree identifier is
unique to the set.

What is important here is not just the fact that tree identifiers are unique.
After all, the elementary trees produced by XMG already have unique names
like Tn0Vn1-387 which would technically allow one to achieve the same result.
But these do not have the same practical use as proper tree identifiers, the
main reason being that they are completely arbitrary, and are not imbued with
the same linguistic significance as tree properties. The reason linguistic signif-
icance matters is that it gets us closer to the objective of choosing contextually
appropriate paraphrases. Basically, we need some means of representing lin-
guistic alternatives and selecting from them. We believe that disjunctions in
the metagrammar serves as a mechanism for representing the alternatives, and
that tree properties provide the mechanism for selecting among them.

1We say at most because of lexical items with a multi-literal semantics
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6.3 Evaluation

We performed three tests on the possible application of tree identifiers in Sem-

FRaG.

1. As a sanity check, we ran the realiser on a test suite and verified that the
grammar can indeed produce paraphrases, i.e. more than one output for
an unenriched semantics (Section 6.3.1).

2. Next, we surveyed the grammar to determine how unique its tree identi-
fiers are (Section 6.3.2).

3. Finally, we combined these two results to determine how effective the tree
identifiers are for selecting paraphrases in practice (Section 6.3.3).

The test suite has 87 cases. We (i) parsed a set of sentences, building
semantic representations for each (ii) hand-selected one semantic representation
each2 (iii) ran GenI on the selected semantic representations and scrutinised
the outputs. The cases were selected specifically to highlight the different kinds
of paraphrases that the grammar is capable of producing:

• Grammatical variations in the realisations of the arguments (cleft, cliti-
cisation, question, relativisation, subject-inversion, etc.) or of the verb
(active/passive, impersonal)

• Variations in the realisation of modifiers (e.g., relative clause vs. adjec-
tive, predicative vs. non predicative adjective)

• Variations in the position of modifiers (e.g., pre- vs. post-nominal adjec-
tive)

• Variations licensed by a morpho-derivational link (e.g., to arrive/arrival)

6.3.1 Paraphrastic power of the grammar
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 paraphrases The test suite yields a total of 1 528 sentences, an average of 18 confirmed

paraphrases3 per case (ranging from 1 to over 50 confirmed paraphrases). The
figure in the margin gives a more detailed description of the distribution of
the paraphrastic variation. We also grouped the test cases by their complexity,
partitioning the input into cases with one, two and three finite verbs. We found
that 42% of the sentences with one finite verb accept 1 to 3 paraphrases (cases
of intransitive verbs), 44% accept 4 to 28 paraphrases (verbs of arity 2) and 13%
yield more than 29 paraphrases (ditransitives). For sentences containing two
finite verbs, the ratio is 5% for 1 to 3 paraphrases, 36% for 4 to 14 paraphrases
and 59% for more than 14 paraphrases. Finally, sentences containing 3 finite
verbs all accept more than 29 paraphrases.

2A sentence may sometimes include wrong parses, or just be ambiguous
3Paraphrases were validated by hand, so this figure excludes the overgeneration in the

grammar.
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6.3.2 Uniqueness of tree identifiers

We first determined to what extent the tree identifiers in SemFRaG are unique,
essentially by counting tree schemata and tree identifiers. Our findings are that

1. Out of 6414 tree schemata, 2258 (35%) have the same tree identifier as
another schema in the same tree family (see Section 4.2.1, Page 85 for a
description of tree schemata and tree families).

2. Out of 4156 distinct tree identifiers, 1216 (29%) have duplicates in the
same family.

3. Out of 95 tree families, 50 (53%) have non-unique tree identifiers. This
makes 85% of the families with more than one member than have non-
unique identifiers.

This spells rather bad news for using SemFRaG’s tree identifiers for para-
phrase selection; however, we found that the mechanism gives better results
than these initial numbers would lead one to hope for. The test suite (de-
scribed below) does not use the whole grammar, but the tree schemata counts
for the subset of the grammar used are quite similar:

4. Out of 4730 tree schemata, 1556 (33%) have the same tree identifier as
another schema in the same tree family.

5. Out of 3174 distinct tree identifiers, 878 (28%) have duplicates in the
same family.

6. Out of 55 tree families, 39 (71%) have non-unique tree identifiers. This
makes 89% of the families with more than one member than have non-
unique identifiers.

6.3.3 Effectiveness of tree identifiers

In Section 6.3.2, we saw that a large number of tree identifiers in SemFRaG

(29%) are not unique. To evaluate the impact of this, we revisited the para-
phrased produced from the test suite. Along with each paraphrase, we had the
surface realiser produce a full log including the lexically selected items used to
produce that paraphrase and the tree identifier of each lexically selected item.
These were then used to answer there questions (summed up in Table 6.1).

Do tree identifiers produce unambiguous lexical selections?

For each test case, we grouped the paraphrases into blocks, where each block
were produced from the same enriched input semantics (as mentioned above,
the enriched input semantics were inferred from the verbose surface realiser
output). Out of 743 possible enriched semantic inputs, 603 of them (81%)
produced an unambiguous lexical selection. Grouping these results by test case,
we found that 64 out of 87 unenriched inputs (74%) produced unambiguous
lexical selections using the tree identifiers.
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tree identifier ⇒ unambiguous lex sel
identifiers 603 743 81%
test cases 64 87 74%
unambiguous lex sel ⇒ 1 paraphrase
identifiers 587 603 97%
test cases 58 64 91%
tree identifier ⇒ 1 paraphrase
identifiers 587 743 79%
test cases 58 87 68%
pairs 18824 19212 98%

Table 6.1: Paraphrase selection results

Do unambiguous lexical selections produce unique paraphrases?

Focusing now on the enriched inputs which gave us an unambiguous lexical
selection, we found that out of 603 such inputs, 587 of them (97%) produced
only one paraphrase. Again regrouping these into their unenriched inputs (test
cases), having an unambiguous lexical selection led to a unique paraphrase in
58 out of 64 (91%) cases. Note that due to spurious ambiguities, we treated
multiple instances of the same string as being one paraphrase.

So do tree identifiers produce unique paraphrases?

Putting these results together, we found that out of 743 enriched inputs, 587
produce only one paraphrase (79%)4 This makes for 58 out of the 87 test cases
(68%).

In [Gardent and Kow, 2007] we reported stronger-looking results. The
results we had reported still appear to be correct, but they are weighted towards
longer inputs. For each test case, we produced the set of all possible pairs of its
paraphrases, of which there are 19212 (

∑n
i=1

pi∗(pi−1)
2 , where n is the number

of test cases and pi is the number of paraphrases of test case i). We found
that in 18824 out of these pairs (98%) represented cases where the same tree
identifier produces different paraphrases.

6.3.4 Some unique paraphrases

Examples (27a–27c) show some tree identifiers from SemFRaG and their po-
tential uses for paraphrase selection. See Appendix B for a full list of tree
properties in the grammar.

(27) a. l1:jean(j)[ProperName]
l2:aimer(e,j,m)[CanonicalNominalSubject,

4This number need not necessarily match the number of cases where an unambiguous
lexical selection leads to one paraphrase; it could always be possible that an ambiguous lexical
selection converges on the same the paraphrase, so depending on the grammar, the number
could be higher.
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ActiveVerbForm, CanonicalNominalObject]
l3:marie(m)[ProperName]

Jean aime Marie
Marie est aimé de Jean

b. l1:le(c)[Det]
l1:chien(c)[Noun]
l2:dormir(e1,c)[RelativeSubject]
l3:ronfle(e2,c)[CanonicalSubject]

Le chien qui dort ronfle
Le chien qui ronfle dort

c. l1:jean(j)[ProperName]
l2:promettre(e1,j,m,e2)[CanonicalNominalSubject,
ActiveVerbForm, CompletiveObject]
l3:marie(m)[ProperName]
l4:partir(e2,j)[InfinitivalVerb]

Jean promet à Marie de partir
Jean promet à Marie qu’il partira

6.4 Possible extensions

6.4.1 Checking for satisfiability of the enriched input

Tree properties and polarity filtering have one thing in common: they reduce
the effects of lexical ambiguity by filtering the lexical selection. Unlike polarity
filtering, the use of tree properties is “unsafe” in that it is possible to supply
a set of tree properties that overfilter the lexical selection, causing the surface
realiser to return no results.

It would be useful if there was some way to check if the tree properties used
for enrichment are mutually compatible. Basically, this consists in performing
surface realisation with both the enriched input and the unenriched one, that is
with and without tree properties. If surface realisation fails with enriched input
(and succeeds with unenriched one) we know that some of the tree properties
are mutually incompatible. In order for this to be efficient, we would need to
use polarity filtering because of lexical ambiguity in the unenriched input. In
fact, it would be useful to use polarity filtering for even the enriched input,
as the user may have opted for partial use of tree properties (leaving some
ambiguity behind) and because the lack of word order could still come into
play even if the input were unambiguous.

If we know that the enriched input is unsatisfiable it would be useful further
still to know why. Localising the faulty tree properties is a potentially difficult
task. We would have to find which subsets of tree properties for each literal are
mutually incompatible. Trial and error (removing tree properties and checking
for satisfiability) does not appear to be the correct approach, because even if
the satisfiability check had a low cost, there would be an exponential number
of subsets (for each literal!) of tree properties to search through. This is still
an open question.

A possible answer might be to use an SFG network in the hope that some
of the knowledge encoded in the network is about the compatibility of tree
properties. It is not yet clear to us how to go about using such a network
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in the first place. For example, at what level of granularity do SFG network
traversals correspond to the input semantics? Presumably, we would need to
have multiple (or recursive) traversals, (although perhaps not to the point of
making one traversal per literal) and it remains to be seen how independent
each individual traversal is of the other. In a sense, the less independent they
are, the better, because the more constraints are encoded within.

6.4.2 Global constraints

The selection mechanism relies on “local” constraints, in the sense that each
literal of the input semantics has a set of tree properties which filter the lexical
selection for that specific literal. One possible shortcoming to this approach is
that it does not allow us to express constraints for an entire lexical selection,
as opposed to the selection for a single given literal. Some global constraints
might be stylistic, for example requiring that a sentence use no more than two
passive verbs.

In GenI, we have implemented an alternative“global”constraint mechanism
which makes use of polarity filtering to restrict the lexical selection as a whole.
The rough idea is to extend the input specification language to accept a set
of global tree properties. Any global property which is specified on the input
semantics will be assigned a negative polarity. GenI will then associate every
selected lexical item that possesses the property with the equivalent positive
polarity. As a result, the only lexical combinations that pass polarity filtering
will be those where exactly one of the lexical items may possesses the desired
property.

Another variant of this idea is to extend the input semantics with a set of
global tree features. Tree features might be attractive for use by strategic gen-
eration components, because they provide a potentially language-independent
mechanism for paraphrase selection. As opposed to tree properties, tree fea-
tures are instantiated with content from the input semantics. An example of
a tree feature is focus:d, indicating that the focus of the elementary tree is
on the semantic index d. The essential difference between tree properties and
tree features is that the latter allow for paraphrases to be selected on semantic
criteria. For example, the input semantics l0:chase(c,d,c), l1:dog(d), l2:def(d),
l3:cat(c), l4:def(c) could be realised in at least two ways:

(28) a. The dog chases the cat.

b. It is the cat that the dog chases.

The first one puts the focus on d, whereas the second puts it on c. By specifying
focus:d or focus:c in the lexical selection, we could preselect one or the other.
We could also have done it using tree properties (for example, by specifying
that l0:chase(c,d,c) be realised by a CleftObject), but this requires knowing
about the syntax of the language in question.

To implement global tree features, we would also need to extend the lexical
items. Each lexical item would be augmented with an interface, in addition
to its elementary tree and semantics. The interface holds features which can
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be thought to be “global” to the tree.5 The use of global tree features and
interfaces would also involve polarity filtering. Given the set of global tree
features G, and a lexical item with interface I, for each pair a : k such that
a : k ∈ (I ∩ G), the lexical item is assigned a polarity of +1 a : k in addition
to its other polarities (see Chapter 5). Similarly, the polarity automaton is
initialised with a polarity of -1 a:k for each a:k ∈ G.

Yet another variant still might be to use product polarities for global tree
properties/features, that is, to use the same “soft” polarities we use for control-
ling adjunction instead of the more demanding sum polarities.

6.4.3 Default tree properties

Most surface realisers have some mechanism for choosing a paraphrase by de-
fault, when no information is specified to do so explicitly. RealPro does this
by marking some feature values as default. SFG-based realisers follow the sys-
temic theory, which also that in some systems a feature might be unmarked
and chosen by default, whereas its alternatives might be marked and chosen for
some explicit reason. Finally, the statistical realisers do this by simple virtue
of ranking; one paraphrase naturally bubbles up to the top and can thus be
considered the default. GenI has no such mechanism. If the input semantics is
not enriched or not sufficiently enriched, all possible paraphrases are returned
without any means of saying if one should be preferred to another. A simple
workaround would be to add a statistical ranker to GenI (see Section 6.5.3).

Then again, it might also be possible to accomplish the same task by using
linguistic information encoded in the grammar. We could go about this by
simply marking one tree in every TAG family as default. If no tree proper-
ties are provided to constrain the choice for that lexical item, the default is
selected. But this solution has three shortcomings. First, it does not account
for partially constrained lexical selection, i.e. where some tree properties are
assigned to filter the selection for a given literal, but not down to only one lex-
ical item. Second, the defaults chosen for two different literals may somehow
conflict in that they select for lexical items that are mutually incompatible.
Finally, it is not clear how we would go about encoding this information into
the metagrammar (the metagrammar tells us about classes, not about trees).

A gentler approach might be to group the tree properties into mutually
exclusive sets, making it so that an elementary tree may contain no more than
one property from a given set. An example of a mutually exclusive set would
be { ActiveForm, PassiveForm } — a tree may not be both active or passive.
We could then mark one member of each tree property set as a default (here,
ActiveForm). This allows us to effectively encode “defaultness” into the meta-
grammar, in that we can automatically calculate a defaultness score for every
lexical item, for example, by counting the number of default tree properties it
possesses. And since we are working directly from the metagrammar classes
and not trying to refer directly to the trees, it is much simpler to encode.

Ranking the lexical items by defaultness means that we can also select from
a partially constrained lexical selection by simply picking the most default

5In practice, the interface is used for anchoring a syntactic lexicon entry to its tree schema.
Both tree schemata and the lexicon entry have an interface, and when the lexicon entry is
selected, its interface is unified with that of its tree schema. The proposed modification is
thus to retain the interface (instead of discarding it, as we normally do).
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item from the ones available. The notion of ranking could be used to solve the
problem of mutually incompatible defaults. The problem is that we can not
determine if two default lexical items will be compatible without using them for
surface realisation (the polarity filtering mechanism only detects some incom-
patibilities). So, rather than using defaultness to restrict the lexical selection,
we could use it as a basis for ranking the outputs. That is, we perform lexical
selection and realisation as usual (with or without the tree properties mecha-
nism from this chapter) and return the paraphrase that has the most default
lexical items.

In this version of the proposal, we naively assume that defaultness of tree
properties are mutually independent. But it is not clear that this is the case in
practice. Defaults are harmless because they only act as soft constraints (they
change the ranking of items), but even soft constraints would be nicer if they
were more fine-grained. This notion could perhaps be improved upon, again
by referring to an SFG network, the idea being that different branches of the
network invoke different sets of defaults.

6.5 Related work in paraphrase selection

6.5.1 RealPro: Meaning Text Theory in practice

The Meaning Text Theory (MTT), on which RealPro is based, divides gener-
ation into seven layers: a semantic representation is translated into a deep syn-
tactic structure, which is then converted to a shallow one which is in turn trans-
lated into a (deep/shallow) morphological structure and then a (deep/shallow)
graphical one. Each one of these could in theory be handled by a individual
component. RealPro in particular starts from a Deep Syntactic Structure
(DSyntS), i.e. a dependency tree with content words and features as nodes and
labelled dependencies as arcs [Lavoie and Rambow, 1997].

SEE []
( I boy [ number:pl ]

( ATTR THIS1 )
II Mary [ class:proper_noun ] )

For example, the DSyntS above uses the words “see, boy, this, Mary”,
putting “boy” in the subject argument (I) of “see” and “Mary” in its object
argument (II). The resulting sentence is “These boys see Mary”.

RealPro supports a high amount of syntactic variation. Many of the gram-
matical variations can be controlled by specifying different features. Setting
the question feature to - in the DSyntS above, for example, would produce
the sentence “Do these boys see Mary?”. Similarly, the sentences below can
be generated from more or less the same DSyntS, except that in (29a), the
word “often” is associated with starting-point:+, and in (29b), it is associ-
ated with rheme:+. The features are not obligatory either; if the user does not
specify any, they will be insert by a system of defaults, for example, inserting
a pre-verbal:+ feature to produce (29c).

(29) a. Often, John eats beans

b. John eats beans often
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c. John often eats beans

RealPro does not have any non-determinism, so a DSyntS could not be
used to underspecify for a set of paraphrases. Moreover, the range of sentences
that it would associate with the same DSyntS (modulo features) is smaller
than what GenI would consider as paraphrases. For example, to produce
the sentence “Mary is seen by these boys”, we would have to swap the roles
(I) and (II) in the DSyntS above, so that “Mary” is the subject and “boy”
is the object. Of course, this should not be interpreted as a shortcoming in
RealPro, but a sign of modularity. It merely reflects a different division of
labour with an extra emphasis on surface realisation, and a sentence planner
which does more of the paraphrase selection work. In highly approximative
MTT terms, GenI is more concerned with converting semantic representations
into deep morphological structures — the morphological system in GenI has
been somewhat neglected, with lemmas being produced instead of inflected
forms. On the other hand RealPro starts “later” in the pipeline, but reaches
all the way to the end of processing; it can inflect sentences, add punctuation
and even produce formatted output, for example, via HTML.

That being said, the linguistic resources used by RealPro consist of rules
that pattern-match on fragments of DSyntS to produce fragments of SSyntS
(Surface Syntactic Structure) in its place, and similar rules for matching on
SSyntS and so on [Reiter and Dale, 2000]. While this is highly suited to the
task at hand, it does not seem to lend itself to reversibility. In general, parsing
in MTT does not yet appear to be very well understood, so it would be worth
revisiting the question in the future.

6.5.2 SFG based realisers

A lot of work in generation is based on Systemic Functional Grammar (SFG).
SFG and the larger tradition of Systemic Functional Linguistics are framed
around the use of language to achieve goals, be they social, linguistic or other-
wise. Here we focus on linguistic goals. As an example of a linguistic goal, the
function of a noun group might be to serve as the subject of a clause. What
makes systemic grammar different is that they map from function to linguistic
structure (whereas traditional grammars can be seen as doing the opposite).
SFGs are often seen as highly suitable for generation, because the inputs used
for generation are closer to linguistic goals than they are to linguistic structures.

At the heart of every SFG is a collection of systems. Each system repre-
sents a minimal grammatical alternative, a mutually exclusive choice between
one use of language or another. In the margin, we an example of a system
named TENSE. It presents a choice between three features, ‘past’, ‘present’
and ‘future’. Systems can be connected together to form a network. Figure
6.2 a network in which the TENSE system participates. The interconnection
between systems makes it such that one choice leads to another. For example,
choosing the ‘interrogative’ feature in the INDICATIVE-TYPE system leads to
the choices within the INTERROG-TYPE system. The connections between
systems can be quite rich. Sometimes a single choice will fork into multiple,
parallel systems. For example, choosing the ‘indicative’ feature in the MOOD
system opens up the INDICATIVE-TYPE and TENSE systems which have to
be traversed in parallel.
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Every feature in an SFG can be associated with operations for putting out-
put fragments together. What these fragments consist of and how they combine
varies from implementation to implementation. It might entail a simple string
concatenation or more sophisticated operations like feature unification or tree
adjunction. To use an SFG for surface realisation, one supplies an input speci-
fication, telling how to traverse the network (which choices to make) and what
initial output fragments (lexical items) to use. The input specification can
be recursive, containing other input specifications, each of which corresponds
to a separate traversal of the network. SFG-based realisation thus consists of
performing these traversals, collecting the realisation instructions it encounters
along the way and using them to stitch all the output fragments together.

In this section, we compare GenI with three SFG-based surface realisers,
kpml, surge and isoft.

KPML/Nigel

The Komet-Penman Multilingual system (kpml) is an SFG realiser and gram-
mar-development tool.6 The system is often used with Nigel, a large systemic
grammar of English under development since the late 70s.

kpml supports on the one hand a more abstract level of input than GenI.
The following two sentences in a kpml-based grammar would have the same
core semantics (whereas in GenI, they would probably be distinct):

(30) a. Lions are almost extinct [species consisting of individuals]

b. The lion is almost extinct [species as class]

Selecting between the two paraphrases in kpml would consist of specifying if
species of lions is being “denoted with respect to some relation or relations
among its features, sub-species, or any other aggregation as a multiplicity of
structural aspects.”

Whilst much work in kpml has been done in dealing with such high-level
concepts, less attention has been paid to the lower level syntactic aspects of

6
Penman and Komet were respectively an early SFG surface realiser and some systemic

grammars for various languages

clause MOOD

indicative

INDICATIVE-
TYPE

declarative

interrogative INTERROG-
TYPE

yes-no
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TENSE

past

present

future

imperative

Figure 6.2: An SFG network for mood
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grammar [Bateman et al., 1992]. A key problem lies in the representation of
linguistic structure. In the kpml version of SFG, output fragments are strings,
and the instructions for combining them together are realisation statements
which impose an order on them. This does not allow for complex linguistic
structures to be built in a natural way. In an example from [Yang, 1992], one
might expect that the sentence “Who did John believe the tall man saw?” be
built from the fragments “John believed X” and “Who did the tall man see?”.
But realisation statements can only order fragments and not nest them. As
Yang argues strings are not appropriate for use as base linguistic structures.
Something richer, like TAG would be a better choice. TAG also has the ad-
vantage of being syntax-oriented, which means that it can easily be used for
parsing, which SFG cannot.

Finally, a third difference between kpml and GenI is that the former does
not return all of the paraphrases for a given input. kpml uses a system of de-
faults so that if an input is underspecified the default choice is always selected.
This is mainly a question of efficiency; one could always simulate returning all
the results by generating the space of possible kpml inputs, but the size of
the search space would be exponential with respect to the number of possible
choices. Something like chart generation would be needed to make this more
efficient.

FUF/SURGE: Systemic grammar in a unification framework

fuf (Functional Unification Formalism) can be seen as a grammar formalism,
a programming language or as a natural language generator. [Elhadad, 1991].
fuf grammars are essentially feature structures with disjunctions.

Using fuf as a generator consists of unifying an input specification with
the grammar to get a syntactic structure and linearising that structure to get a
sentence. fuf unification is a recursive process. When we unify the input with
the grammar, the resulting feature structure may have sub-constituents (either
from the original input or added in by the grammar); these sub-constituents
are then recursively unified with the grammar until there are no more sub-
constituents left.

The most notable grammar for fuf is surge (Systemic Unification Realisa-
tion Grammar of English) [Elhadad and Robin, 1999]. The grammar is based
mainly on Systemic Functional Grammar, although it also has some influences
from HPSG and other sources. No special mechanisms are introduced to im-
plement the system network. Choice points are encoded as fuf alternatives,
subsystems as subfeatures, and system traversal as standard fuf unification.

fuf/surge supports the interspersing of output fragments in a way that
kpml does not. Whereas kpml manipulates strings as output fragments, fuf

manipulates patterns. A FUF pattern is a special feature used to constrain the
order of constituents. An example FUF pattern might be prot verb goal
which says that the prot constituent must come directly before the verb
one, which must itself come before goal. What makes fuf patterns inter-
esting is that they can also contain “dots”, so that for example, the pattern
prot ... verb now says that prot must come anywhere before verb. The
pattern features are treated with special unification rules described in [Elhadad,
1991].
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fuf grammars can be seen as being much more declarative than kpml

realisation statements (the order that realisation statements are invoked in
becomes important in kpml), but they cannot yet be considered bidirectional.
In other words, it is not yet clear how to use surge and other fuf-based
grammars for parsing. The problem seems to be how one would map the surface
string on to fuf’s output patterns. On the other hand, the LU -augmented FB-
LTAG accepted by GenI can be used for both parsing and generation.

ISOFT: Combining SFG with TAG

isoft (Integrated System of Functional-systemics and TAGs) can be seen as
using SFG pre-processing in a TAG generator. Alternatively, it could be seen
as using TAG as a syntactic back-end to an SFG generator. isoft retains the
core algorithm from other SFG-based systems: it breaks the input specification
into fragments, performs an independent network traversal and realisation for
each fragment, and reassembles the resulting pieces of output.

In the place of strings as output fragments, isoft uses TAG elementary
trees. isoft can use the backbone of systemic network and some core realisa-
tion statements, such as kpml’s conflate and preselect. Other structure-
building operations are stripped away and replaced with instructions that select
and instantiate elementary trees. Once selected, the elementary trees are com-
bined using TAG substitution and adjunction. The processing strategy can be
summed up into two steps; a “descent”phase which amounts to building a TAG
derivation tree from the top-down (using the systemic networks to select the
elementary tree for each node), and a bottom-up phase which assembles the
derived tree according to specification.

isoft distinguishes itself by making a clear separation of concerns between
the functional aspects of the grammar and the syntactic ones. This is partly
achieved by splitting the network itself into two pieces; the first one focuses on
purely functional choices, and the second (the TAG network) on syntactically
oriented ones like verb transitivity. The functional network is navigated on the
basis of the input specification, and the syntactic network on the choices made
in the functional traversal. The TAG network is a mechanism for associating
a set of functional choices with a TAG elementary tree, c.f. GenI’s lexical
selection mechanism. As Yang argues, separating the networks in this way
increases their modularity, which makes them easier to design, maintain and
verify.

isoft is less mature than kpml and surge, but its approach is promising.
The key lesson from isoft that it is possible to use the systemic network to
guide the selection of elementary trees. GenI only has tree properties for now,
which is a first step, but lower level than what a systemic network could offer.

On the other hand, there are two details which could stand to be fleshed
out: adjunction and non-determinism. isoft does adjunction in two different
ways. When the auxiliary tree is a modifier, the adjunction site is selected
by walking up the path from the anchor to the root and picking the first
available site. When the auxiliary tree is a functor, the site is selected by
the tree being adjoined to, according to the functional features assigned to
that tree. The overall scheme appears to be somewhat complicated and ad
hoc7 and should perhaps be replaced by a more principled approach. As for

7The adjunction of functors is handled as follows: In the lexicon, each candidate adjunc-
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non-determinism, the isoft lexical selection never allows for ambiguity. If the
input is underspecified, the choice of an elementary tree is forced by a systemic
network default. On the other hand, it may be useful not to rely on defaults,
but to actually deal with the non-determinism (for example, returning the set
of possible paraphrases) and do so in an efficient manner. GenI has something
to offer for both issues: a clearly defined syntax/semantics interface with LU -
augmented FB-LTAG, and a chart generation algorithm with polarity filtering.
Future research should attempt to combine the advantages of the two systems.

6.5.3 Statistical surface realisation

Statistical methods for generation are relatively recent introductions, both with
respect to generation and to statistical NLP. The most common approaches
seem to be variants of the two-stage architecture by [Knight and Hatzivas-
siloglou, 1995]: first, a symbolic generator produces a packed representation of
the possible paraphrases, and then a statistical ranker chooses the most prob-
able one. The packed representations have become increasingly compact and
sophisticated — from the original word lattices to packed forests [Langkilde,
2000] and perhaps better — but the basic approach remains the same.

The observation that gave rise to these first statistical realisers (Nitrogen

and its successor HALogen) was that symbolic realisers, e.g. kpml, require
a “daunting amount of linguistic detail” in their input [Langkilde, 2000]. Such
detail is often not available to client applications, so their developers often
resort to simpler template based generators, which are less demanding, but also
less flexible. The key insight is that corpus based linguistic knowledge often
can make up for gaps in linguistic knowledge, both in the forms of (i) imperfect
“grammar, ontology, lexical, collocations and mappings between them” [Knight
and Hatzivassiloglou, 1995] and (ii) underspecified input. Statistical realisers
show us that it is possible to do surface realisation without a lot of linguistic
knowledge (HALogen uses 255 “mapping rules”, which is considerably lighter
weight than SemFRaG’s 6000 tree schemata).

The experimental results are encouraging too: [Langkilde-Geary, 2002] con-
verted section 23 of the Penn Treebank into a set of inputs, of which HALogen

was able to produce an output for 80% of the inputs, with a 94% accuracy for
fully specified inputs ( measured with the NIST simple string accuracy metric
and BLEU scores) and 51% accuracy for minimally specified ones (with no
determiners, adjunct markers, properties such as tense and voice).

The main thing that HALogen and GenI have in common is that they
both embrace the idea of providing a variable degree of control over the input.
The user can specify a lot of linguistic detail to get exactly the sentence desired,
or specify less detail to let the realiser choose. In a sense, this choice represents
two distinct tasks, ensuring grammatical output and picking a good default.
HALogen essentially uses its statistical component for both tasks. GenI does

tion site of every elementary tree is annotated with a condition (e.g., wh-q). The conditions
are fulfilled if the elementary tree is associated with the corresponding functional feature
during lexical selection. If the condition is fulfilled, the annotated site is where adjunction
takes place. For example, the conditions that annotate candidate adjunction sites can mi-
grate to account for multiple adjunction. But if this is the case, what happens when, as the
result of migration, there is more than one node annotated by the same conditions? Pointers
would be appreciated if this actually is answered in [Yang, 1992] or elsewhere.
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estimate α2

there α1 was γ3 no γ1 costγ2 for γ4

phase α1

the γ1 second γ5

Figure 6.3: Fergus annotated dependency tree

not do the latter task; it returns all paraphrases with no preferences, which is
as good as making an arbitrary choice. As for ensuring grammaticality, it uses
a relatively rich and constrained grammar.

Two things are worth pointing out about these differences. First, a rich
grammar is inherently interesting to have from a linguistic point of view. This
is not so much a theoretical argument — we are in the surface realisation
business and not that of building linguistically interesting objects — but a
practical one in the sense that the grammars have to be built anyway so the
time spent putting them to use is not really wasted. Second, as [Langkilde-
Geary, 2002] points out, language models richer than n-grams over words can
provide for greater accuracy.

Statistical realisation with rich syntax

Nitrogen and HALogen have since inspired a new breed of statistical re-
aliser that combines grammars from parsing-oriented formalisms like HPSG,
CCG and TAG with a statistical ranker. The lkb generator, includes a “se-
lective unpacking” step where the only the best paths through the generation
forest are expanded [Carroll and Oepen, 2005]. OpenCCG incorporates an
optional “anytime search” feature that prunes from the chart the worst-ranked
intermediate structures according to n-gram based scoring [White, 2004].

A system which perhaps deserves special attention is Fergus, a TAG based
statistical surface realiser [Bangalore and Rambow, 2000b]. Fergus accepts
as input a dependency tree. It works in three phases:

1. Perform statistical lexical selection, using a process akin to supertagging,
to associate each lexical item with an elementary tree. The result is an
annotated dependency tree where each node (i.e. word) is associated with
an elementary tree.

2. “Unravel” the derivation tree into a word lattice.

3. Statistically rank the paths in the output lattice.

The annotated dependency tree that Fergus produces in its first step al-
lows for a large amount of variation in the word lattice. To begin with, they do
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Figure 6.4: Gamma trees can be thought of as underspecified auxiliary trees

not specify what are the substitution and adjunction sites used in each opera-
tion. In Figure 6.3, we know that γ2 (“for”) was adjoined into α2 (“estimate”),
but we do not know where. Furthermore, Fergus uses so-called gamma trees
instead of the standard TAG auxiliary trees. Gamma trees are like auxiliary
trees, except that they do not fully specify what kind of node they may adjoin
to, nor on what side. Instead they provide a list of possible nodes/sides in
which adjunction may take place. So not only would we not know where γ2

adjoins to, we do not know exactly what kind of node (S? NP? VP?), nor on
what side. Such decisions are made by the statistical ranker.

GenI is basically one corpus and ranking module away from being a full-
fledged statistical realiser. It would be useful to follow the example of the
Fergus and the lkb generator by adding a corpus-based post processing step.
This would be one possible solution to the intersective modifiers problem, for
example. Having a unique lexical selection does not always guarantee a single
paraphrase because adjuncts can be included in any order. A statistical ranker
would be useful for choosing the most natural one when other linguistic knowl-
edge is not available. Similarly, it could also be used in conjunction with the
tree constraint mechanism we propose in this chapter; if there is not sufficient
information to fully constrain the lexical selection, we could fall back on to
statistical ranking as worst case default.





Chapter 7

Reducing overgeneration

As we saw in the previous chapter, the SemFRaG grammar is produced using
a metagrammar compiler. XMG, the compiler, assembles a grammar out of a
more abstract specification. For debugging purposes, it associates each elemen-
tary tree produced with a set of tree properties, allowing the grammar writer
to trace a tree back to its metagrammatical origins. We saw in the previous
chapter that tree properties also provide linguistic information about elemen-
tary trees. Indeed, they can be pressed into service as a set of paraphrase
pre-selection filters. In this chapter, we will see how to use the tree properties
for their original purpose: debugging (meta)grammars. Specifically, we will use
the surface realiser as a tool for identifying overgeneration in the grammar and
localising its causes within the metagrammar.

7.1 Overgeneration

A generative grammar should describe all and only the sentences of the lan-
guage it describes. In practice however, most grammars both under and over-
generate. Undergeneration occurs when a grammar does not recognise all of
the strings in the target language. It means that we can fail to parse legitimate
sentences or to produce all the valid paraphrases for a semantic input. Over-
generation, on the other hand, occurs when the grammar licenses too many
strings. It means that surface realisers like GenI will produce not just valid
paraphrases, but unnatural looking sentences as well, strings which either do
not belong in the target language or which should not be associated with the
semantic input. Overgeneration can also cause parsers to accept such strings or
pick the wrong parse for a valid sentence. In short, both undergeneration and
overgeneration bugs can cause problems with parsing and generation. Here, we
focus on overgeneration.

There are several reasons why grammars overgenerate. As is now well-
known, grammar engineering is a highly complex task. It is in particular, easy
to omit or mistype a constraint thereby allowing for an illicit combination and
indirectly, an illicit string. Moreover, a computational grammar is a large object
and predicting all the interactions described by even a medium size grammar
is difficult, if not impossible.

In our particular case, the grammar is compiled from a more abstract spec-
ification, a metagrammar. This helps us to achieve coverage relatively quickly

147
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(it helps us to avoid undergeneration); however, with a higher level of abstrac-
tion, we also run the risk of licensing more elementary structures than we had
bargained for. Elementary trees in XMG are built by combining “classes” to-
gether, and sometimes classes combine in unexpected ways, producing trees
that should not be in the grammar, trees that may also induce overgeneration.

This is why a surface realiser that produces all the strings associated with
a given semantics is a valuable tool: it permits checking these predictions on
concrete examples. A parser is an excellent tool for detecting undergeneration
— just give it a sentence and see what happens — but as [Boguraev et al., 1988]
points out, it is less suitable for detecting overgeneration, because one would
have to invent wrong sentences and try them out. Having a proper generator
takes the guesswork out of this process.

7.2 Grammar debugging

The (meta)grammar being debugged is SemFRaG, the French FB-LTAG pre-
sented in Chapter 4. We have observed with SemFRaG that the wrong sen-
tences for a given input semantics tend to be wrong in a similar way. This
led us to believe that it is typically a small number of flaws which lead to a
great number of errors, and that systematically identifying what the wrong
sentences have in common will reveal these flaws to us. The idea is to first,
(manually) annotate the realiser output as being wrong or not, and then to
use the annotated data to automatically spot the items (e.g. elementary trees,
tree properties) which systematically occur only in overgeneration cases. More
specifically, the procedure we defined to reduce overgeneration can be sketched
as follows:

1. Surface realisation is applied to a graduated test suite of input semantics
thus producing a detailed derivation log of all the derivations associated
with each input in the test suite

2. The outputs given by the derivation log are (manually) classified into
pass or overgeneration sentences, the overgeneration mark indicating
strings that either do not actually belong in the target language, or should
not be associated to the input semantics.

3. The annotated output is used to automatically produce a suspects report
which identifies a list of suspects i.e., a list of TAG trees or derivation
steps which are likely to cause the overgeneration because they only occur
in overgeneration cases.

4. The grammar is debugged and re-executed on the data

5. The derivations results are compared with the previous ones and any
discrepancy (less or more sentences generated) signalled.

In a sense, this is an approach that might already be widespread in gener-
ation: produce some output, and correct the grammar possibly with the aid
of a derivation log. Our contributions are a systematic, incremental approach;
a high level of automation, which increases our throughput by focusing hu-
man attention on correcting the grammar rather than the unrelated details;
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Figure 7.1: Test harness

and summarisation of the derivations log, which makes it easier to identify the
source of error.

7.3 An incremental approach

First experiments with SemFRaG showed that the grammar strongly over-
generates both because it was initially developed for parsing and because it is
automatically compiled from an abstract specification. Indeed for some inputs,
the realiser produced over 4000 paraphrases, a large portion of them being
overgeneration. More generally, the number of outputs for a given input varies
between 0 and 4908 with an average of 201 outputs per input and median of
25.

To avoid having to manually annotate large amounts of data, we relied
on a graduated test suite (the one from Chapter 6) and proceeded through
the data from simplest to more complex. We focused on one test case at a
time, eliminating its overgeneration before moving on to more complex ones.
This means we incrementally reduced the overgeneration at each case, thereby
diminishing the number of output to be annotated in the next.

We enforced this incremental discipline with the help of a test harness in-
terleaving manual annotations with machine-generated output. Three points
are worth stressing. First, the suspects report is produced automatically from
the annotated derivation log. That is, except for the derivation log manual
annotation, the identification of the suspects information is fully automated.
Second, regression testing is used to verify that corrections made to the gram-
mar do not affect its coverage (all pass are still produced). Third, the harness
provides a linguist friendly environment for visualising, modifying and running
the grammar on the inputs being examined.
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output: c’est paul demander jean qu’il vient

venir:Tn0V:n5 <-(a)- demander:Tn0Vs1int

venir:Tn0V:n4 <-(s)- paul:Tpropername

demander:Tn0Vs1int:n3 <-(s)- jean:Tpropername

output: c’est paul que demander jean il vient

venir:Tn0V:n8 <-(a)- demander:Tn0Vs1int

venir:Tn0V:n4 <-(s)- paul:Tpropername

demander:Tn0Vs1int:n3 <-(s)- jean:Tpropername

demander Tn0Vs1int-6199

CanonicalSententialObjectInterrogativeFiniteWithoutComplementizer

InvertedNominalSubject SententialInterrogative

venir Tn0V-6686

CleftObject ImpersonalSubject NonInvertedNominalSubject

activeVerbMorphology

jean Tpropername-2472

paul Tpropername-2472

======================================================================

output: c’est jean qui demande il vient paul

demander:Tn0Vs1int:n10 <-(s)- venir:Tn0V

demander:Tn0Vs1int:n4 <-(s)- jean:Tpropername

venir:Tn0V:n4 <-(s)- paul:Tpropername

demander Tn0Vs1int-6182

CanonicalSententialObjectInterrogativeFiniteWithoutComplementizer

CleftSubject NonInvertedNominalSubject SententialInterrogative

venir Tn0V-6678

CanonicalObject ImpersonalSubject NonInvertedNominalSubject

jean Tpropername-2472

paul Tpropername-2472

Figure 7.2: A derivation log

7.3.1 The derivation log (steps 1 and 3)

The derivation log produced by GenI contains detailed information about each
of the derivations associated with a given input. More specifically, for each
generated string, the derivation log will show the associated derivation tree
together with the tree family, tree identifier and tree properties associated
with each elementary tree composing that derivation tree.

The derivation log (Figure 7.2) tells us where sentences come from, but
what it is missing, crucially, is whether these sentences are correct or not. To
extract from it information that points more directly to the likely causes of
overgeneration, we manually annotate the log, replacing for each sentence, the
token output with pass if we believe the sentence incorrect or overgeneration
otherwise.1 This sounds tedious, but is more tolerable than one may think

1We were fairly liberal with our annotations in that we erred on marking things as pass
if there was any uncertainty.
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<suspects-report> ::= <sr-item>*

<sr-item> ::= (<lemma-item> <EOL>)*

(<derivation-item> <EOL>)*

<lemma-item> ::= <lemma> <EOL>

<family-item> <EOL>

(<tree-item> <EOL>)*

<lemma> ::= <string>

<family-item> ::= <tree-family> "(all)"? <tree-property>*

<tree-item> ::= " [" <tree-number> "]" <tree-property>*

<derivation-item> ::= <tree-1> <arrow> <tree-2>

<tree-1> ::= <tree-id> ":" <node-number>

<tree-2> ::= <tree-id>

<arrow> ::= "<-(" <op> ")-"

<op> ::= "s" | "a"

<tree-id> ::= <lemma> ’:’ <tree-family> ’-’ <tree-number>

<tree-family> ::= <identifier>

<tree-number> ::= <number>

<tree-property> ::= <identifier>

<node-number> ::= <number>

Figure 7.3: EBNF for the suspects report

because the annotation process is broken up into manageable chunks by the
incrementality of our approach. Each test case only demands that a small
number of sentences be annotated; additionally, the real mental effort in each
“iteration”of our test harness is spent determining how to correct the grammar.
Compared to this, the few minutes it takes to annotate a hundred sentences is
barely noticeable.

That said, it is not by poring over these logs that we will uncover the bugs in
our grammar. The problem is that these logs can be both long and repetitive.
The above example only shows three sentences and it already spans half a page!
We have found that the best use of the log is in producing the suspects report.

7.3.2 The suspects report (step 4)

To make full use of the derivation log, we must summarise and synthesise
the information within. We do this automatically, using a script that reads
the annotated derivation log and outputs a much shorter suspects report. This
report identifies “suspects”, that is, likely causes for overgeneration. It does not
so much summarise the derivations log as extracts the most useful information
from it. For each semantic input, the report lists the trees, sets of trees or
derivation items that only occur in overgeneration, i.e., the strings associated
with that input which have been marked as overgeneration.
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Figure 7.3 shows the layout of a suspects report as an EBNF grammar.
As we can see, the report shows us the sources of overgeneration for each test
case in the suite. The test cases are independent from each other. Each test
case in the report is represented by a suspects report item, or a sr-item for
short. The report gives basically two kinds of information about each sr-item

: information about individual elementary trees that occur in overgeneration
(and their associated tree properties), i.e. lemma items, and information about
interactions between these trees, i.e. derivation items. For convenience, we
will say that when something (e.g. a tree property) consistently occurs in
overgeneration, it is “bad”.

Lemma items Each lemma item consists of a lemma and a set of elementary
trees that possess bad tree properties. To simplify the presentation, we assume
that a lemma is only associated with one TAG family.2 The lemma item has
basically two parts: information about the whole family, and information about
the individual trees within that family.

If all the elementary trees associated with that family are bad (i.e. the
ones which are used in the generation process for the case considered and are
associated with that family), we signal the fact by printing out (all). This
suggests to the user that any problems with this family may come from a single
source. Also, we list all of the bad tree properties that occur in all of the bad
elementary trees of that family. This is not strictly necessary, but it avoids
some redundancy in the suspects report.

The remaining bad tree properties are listed next to the particular elemen-
tary tree in which they appear. For example, a line of the form

[649] CanonicalGenitive dePassive

indicates that the tree properties CanonicalGenitive and dePassive are bad
and they occur in elementary tree number 649. We only print out the tree
number, because we are referring to trees in the same family (by convention,
XMG-produced elementary trees are associated with a tree number). Note
that we sometimes print out a tree number without any tree properties. This
occurs when the bad tree properties associated with this tree are common to
the whole family and have already been printed out.

Derivation item A derivation item (tn1
Op←− t2) refers to an edge in some

TAG derivation tree. It indicates that the tree t2 has been inserted into t1 at
node n using the TAG operation Op (either substitution or adjunction). Only
bad derivation items are listed in the suspects report. We can usually learn
from derivation items that either t1 or t2 are under-constrained, leading to a
forbidden adjunction.

Suspect report examples

Displaying the commonalities between suspects makes it easier for the linguist
to understand the likely cause of overgeneration. For instance, if all the trees of
a given family lead to overgeneration, then it is likely that the grammar is not

2The actual suspects report supports more than one family per lemma; each distinct
family for the lemma produces a separate lemma item.
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sufficiently constrained to block the use of this family in the particular context
considered. To better illustrate the type of information contained in a suspects
report, let us now go through a few examples.

Example 1: “il faut partir/? devoir partir” Given the input semantics
for “il faut partir (we must go)”, the suspects report tells us that the presence
in a derivation of any trees of the family SemiAux leads to overgeneration, and,
moreover, that these trees have the tree property SemiAux.

consistent overgeneration for devoir

TSemiAux (all) - SemiAux

[506]

In this context (i.e., given the input semantics considered), the use of a
SemiAux tree results in the production of such strings as “devoir partir (to have
to go)” which are grammatical but do not yield a finite sentence as output.
If desired, this particular overgeneration bug can be fixed by constraining the
generator output to be a finite sentence.

Example 2: “Jean dit accepter/*C’est par Jean qui accepte qu’être
dit”. In the previous example, the sr-item indicates that all trees of a given
family lead to overgeneration but there is only one tree in that family. A more
interesting case is when there are several such trees. For instance, the sr-item

below indicates that all derivations involving an n0Vn1 tree anchored with
dire lead to overgeneration and that there are 6 such trees (trees 699 . . . 750).
Moreover the tree properties information indicates that all these trees share the
InfinitiveSubject Passive tree properties. Inspection of the data shows that
these trees combine with a finite form of “accepter”to yield highly ungrammat-
ical strings such as “c’est par Jean qui accepte qu’être dire” (instead of e.g.,
“Jean dit accepter (Jean says to accept)”). In short, the sr-item indicates that
the grammar is not sufficiently constrained to block the combination of the
infinitive passive form of the n0Vn1 trees anchored with “dire” with some of
the trees associated by the grammar with “accepter”.

input t90

Lemma: dire

Tn0Vn1 (all) - InfinitiveSubject Passive

[699] CanonicalCAgent Passive

[746] CanonicalGenitive dePassive

[702] CleftCAgentOne Passive

[752] CleftDont dePassive

[751] CleftGenitiveOne dePassive

[750] RelativeGenitive dePassive

Example 3: “Jean doit partir/*C’est Jean il faut que qui part” Some-
times overgeneration will only occur with some of a family’s trees. In this case
the third line of the sr-item indicates which are those trees and their distin-
guishing properties (i.e. the properties that always result in overgeneration).
For instance, the suspects report for the input semantics of “Jean doit partir
(Jean must leave)”, contains the following single sr-item :
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Input t30

consistent overgeneration for partir

Tn0V - CleftSubject

[604]

This indicates that all derivations including tree 604 of the n0V family
anchored with “partir” lead to overgeneration. Indeed such derivations license
highly ungrammatical sentences such as “C’est Jean il faut que qui part”where
a cleft subject tree for “partir” combines with the canonical tree for “il faut”.
This overgeneration bug can be fixed by constraining n0V cleft subject trees
to block such illicit combinations.

Example 4: “L’homme riche part/* riche l’homme part” Finally, over-
generation may sometimes be traced back to a specific derivation item, i.e., to
a specific tree combination. This will then be indicated in the last line of the
trace item. For instance, the following sr-item indicates that adjoining the
adjective auxiliary tree Tn0vA-90 to the root of a determiner tree always leads
to overgeneration. Indeed such an adjunction results in sentences where the
adjective precedes the determiner, which in French is ungrammatical.

Input t70

consistently overgenerating derivation

item

le:Tdet-17:n0 <-(a)- riche:Tn0vA-90

7.3.3 The progress report (steps 5 and 2)

Using the suspects report helps the linguist to localise the grammar bugs that
lead to overgeneration. Even so, not all of our “corrections” to the grammar
have the intended result; sometimes they have no effect on the error or some-
times they introduce errors of their own. Part of our protocol is thus to run the
test harness on the same test case until all sentences are marked pass. Each
time we run the surface realiser, GenI produces a new unannotated derivation
log. We use a small script to import the annotations from the previous log into
the new one. The script also produces a progress report which lets the user
know at a glance if her modifications had the intended effect.

New output?

jean dit c’est l’homme volontaire qui part

Oops! We lost these passes:

jean dit l’homme volontaire part

Hooray! no longer overgenerates:

dit part l’homme volontaire jean

dit jean part l’homme volontaire

In this (contrived) example, we report three things to the user:

• If there are any new sentences are produced by the grammar. These are
sentences for which we do not have annotations. This is a fairly rare
occurrence, and it is not necessarily an error. However, we signal these
so that we can ensure that the user will add the appropriate pass or
overgeneration annotations.
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• If any previous pass sentences are now missing from the output. This
might indicate an overzealous correction to the grammar. It might also
mean that we were wrong to annotate the sentence as pass the first time,
but in any case, it is worth knowing.

• If any previous overgeneration sentences are now missing from the
output. This helps the user to verify that her modifications have had the
desired effect.

7.4 Evaluation and results
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We used the test harness over a period of one week, roughly 12 consecutive
man hours. Over that period we ran over ten iterations of the test harness,
making 13 modifications (30 lines) to the grammar. In the process of revising
this grammar, we studied 40 cases (under one third of the whole suite) and
manually annotated 1389 outputs with pass/overgeneration judgements. On
the whole 140 cases of the test suite, the original grammar produced 28 167
outputs (4908 for the worst case, 201 mean, 25 median). The revised grammar
produces 70% fewer outputs, leaving behind 8434 sentences (201 worst case, 60
mean, 12 median). These numbers are repeated below for convenience:

total max mean median
before 28167 4908 201 25
after 8434 710 60 12

The reductions ranged from 42% in our smallest inputs to 74% in our largest
ones. We can see these reductions in the figure in the margins, where we focus
purely on the number of outputs that are produced by each test case (without
looking at their distribution in the suite). The cases are sorted and grouped
together by the number of outputs they produce in the new grammar. We see
in the graph how many sentences each group of test cases produced on average
before and after, notably that the difference in outputs is greatest in the larger
test cases. The key idea is that sources of overgeneration will combine together
and that eliminating these sources can have a great impact.

Also, it is very well to be cutting out overgeneration, but only so long as we
are not cutting out linguistically valid sentences along the way. The test suite
had been built semi-automatically by parsing some sentences and hand-picking
the valid semantic representations among the proposed outputs. As a sanity
check, we reparsed the original sentences with the new grammar and found
that 136 out of 140 sentences were parsed successfully, 4 less than with the
original grammar. The difference was due to an over-restrictive constraint and
was easily corrected.

7.4.2 The bug collection

Let us now look at the types of errors which, we found, induce overgeneration.
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Missing constraints Unsurprisingly, the main source of overgeneration was
the lack of sufficient constraints to block illicit tree combinations. For instance,
the grammar overgenerated the string “devoir c’est Jean qui part” (instead of
“c’est Jean qui doit partir”) because the tree for “devoir” was not sufficiently
constrained to block adjunction on the VP node of cleft trees. In such cases,
adding the relevant constraints (e.g., cest = − on the foot node of the“devoir”-
tree and cest = + on the VP node of the cleft-tree for partir) eliminates the
overgeneration.

Incomplete constraints and incorrect feature percolation In some
cases, we found that the constraint was only partially encoded by the grammar
in that it was correctly stated in one of the combining trees but incorrectly
or not at all in the other. Thus for instance, the adjective tree was correctly
constrained to adjoin to det = − N-trees but the corresponding det = +
constraint on the root node of determiner trees was missing. In other cases,
the feature was present but incorrectly percolated. In both cases, the partial
implementation of the constraint lead to a lack of unification clash and thereby
to an overgenerating combination of trees.

Illicit elementary trees A third type of errors was linked to the fact that the
grammar was produced semi-automatically from an abstract grammar descrip-
tion. In some cases, the linguist had failed to correctly foresee the implications
of her description so that an incorrect elementary tree was produced by the
compiler. For instance, we had to introduce an additional constraint in the
metagrammar to rule out the formation of trees describing a transitive verb
with impersonal subject (in French, transitive verbs cannot take an impersonal
subject).

Incorrect semantics A more complex type of error to deal with corner cases
where the semantics is insufficiently constrained, thereby allowing for illicit
combinations. For instance, in the imperative form, the grammar failed to
constrain the first semantic argument to be you i.e., the hearer denotation. As
a result, the input for sentences such as“Jean demande si Paul part” incorrectly
generated strings such as “demande à Jean si Paul part”. In such cases thus, it
is the semantics associated by the metagrammar with the elementary tree that
needs to be modified.

Lexical exceptions As is well known, grammatical generalisations often are
subject to lexical exceptions. For instance, transitive verbs are generally as-
sumed to passivise but verbs of measure such as “to weigh” are transitive and
do not. In GenI, as is usual in TAG, such exceptions are stated in the lexi-
con, thereby blocking the selection of certain trees (in this case, all the passive
trees) for the lexical items creating the exception (here the measure type verbs).
Relatedly, some of the overgeneration cases stem from insufficient lexical infor-
mation.
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7.4.3 Small changes and great effects

Debugging grammars for overgeneration need not be slow and tedious. We have
found that with a certain dose of automation — a test harness to mechanise
the regression-testing parts of the process, and computer-generated summaries
to identify trouble spots — we can obtain major reductions in overgeneration
with little effort. It is worth stressing that this reduction, 70% in 12 man-hours
and 31 lines of code, is no accident. It comes from our use of a metagrammar
system, from GenI’s ability to output all the strings for a semantic input and
from our incremental testing discipline.

The metagrammar provides a very compact description of the grammar. In
particular, shared tree fragments are factored out and used in the production
of several trees. As a result, one change to the metagrammar usually induces
a change in not one but several (sometimes hundreds of) TAG trees. For
instance, a modification stated in the fragment describing the verb spine of the
active verb form will affect all trees in the grammar that realise an active verb
form i.e., several hundreds of trees. This is not just a matter of factorisation
either. The real advantage of a metagrammar architecture is that it allows
us to generalise. Suppose, for instance, that a given sr-item indicates that
the grammar incorrectly allows the adjunction of a given type of auxiliary
tree β to a subject cleft tree. It might be the case that in fact, the grammar
should be modified to block the combination of β with all cleft trees (not just
the subject ones). Then the metagrammar architecture makes it possible to
state the required modification at the level of the cleft description so that,
in effect, all cleft trees will be modified. In this way, the identification of an
overgeneration cause linked to a specific example can be generalised to a larger
class of examples.

Making changes quickly is one thing; identifying what are the changes to
be made is another. This is where GenI and the test methodology come into
play. Basically, the suspects report allows for a quick identification of the
overgeneration sources. But ultimately, it is because we produce all strings for
the input that we know what the wrong ones are. It is the completeness of the
output that makes the suspects report really meaningful. Another factor that
was beneficial to us was that the input data was organised in a graduated test
suite where simple sentences were considered first, then sentences of complexity
2 (cases whose canonical verbalisation involve two finite verbs), then sentences
of complexity 3 (three finite verbs). By proceeding incrementally through the
test suite, we ensured that early modifications propagate to more complex
cases.

7.5 Possible extensions

Overgeneration bugs have not by far been eradicated from our grammar. En-
couraging as our initial results may be, it would be worthwhile to look into
more efficient approaches to tracking down such errors.

7.5.1 Finding bugs in pairs

One shortcoming of our current approach is that we focus mostly on isolated
sources of overgeneration: a single elementary tree, tree property or derivation
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operation that consistently occurs in overgenerated strings. However, grammar
flaws also consist of unexpected interactions between more than one item (here,
“item” could refer to anything, an elementary tree, a derivation operation; it is
not particularly relevant to this discussion).

What might therefore be useful is to look for pairs of sources that con-
sistently overgenerate. This is subtly different from what the suspects report
currently offers. It is true that if two items consistently overgenerate, the sus-
pects report would flag them both. But we do not detect cases where the items
do not consistently overgenerate, except in the presence of another item.

Suppose we have three items X, Y and Z. X consistently overgenerates in
the presence of Y, but not in the presence of Z. The current generation of
suspects report would simply report that Y consistently overgenerates, but it
would not mention X at all. An improved suspects report might give us more
information, telling us that it is actually the pair (X,Y) that is at fault.

This would not necessarily be a subset of the current suspects report ei-
ther. Again, suppose we have three items A, B and C. A and B consistently
overgenerate, but only when they are together. Left to their own devices, A
produces some good sentences, as does B. In the current suspects report, we
would report neither A nor B, but in the improved version, we would detect
that the pair (A,B) should indeed be flagged.

As usual, this sort of flagging would return some false positives. A and B
may consistently overgenerate in each others presence, but it does not neces-
sarily mean that it is because they interact.

7.5.2 Automatic pass/overgeneration annotations

Another shortcoming of our approach is that it requires us to be disciplined
in our pass/overgeneration annotations. If we mismark a sentence as pass,
the derivation summariser will neglect every tree property or derivation item
that occurs in that sentence, as it is only looking for items that consistently
overgenerate. Perhaps a more robust approach would instead return items
that tend to occur with overgeneration. This would make it more tolerant to
imperfect annotations and as we saw in Section 7.6.3, more amenable to large
scale error mining.

Producing these annotations is time-consuming. It would be worthwhile to
explore some automatic means of making pass/overgeneration judgements on a
large number of sentences, for example, using an n-gram based language model,
like one that would be employed by a speech recogniser. We could then take
the best N% of the sentences as passes or establish a threshold of improbability,
below which sentences will be considered as overgeneration. We could also use
more sophisticated tools, e.g., a statistical parser or a symbolic one with a wide
coverage grammar in an alternate formalism. Even a relatively liberal parser
which itself overgenerates might be useful in that (i) it may overgenerate in
different areas than our grammar (ii) anything that it marks as a failure would
be highly suspicious indeed.

The annotations do not need to be produced by a full-fledged parser either.
Indeed, for each sentence that it produces, the surface realiser outputs its parse
tree. So another way to classify the generated strings might be through assess-
ing not the quality of the strings themselves but of their parses. For example,
we could determine if the elementary trees that were used to build a sentence
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are likely to occur together in the same sentence. This kind of information
can be extracted from a systemic functional grammar. If we associated each
linguistic choice in the SFG network with a set of tree properties from our TAG
grammar, we would have an encoding of what tree properties go together. If
the sentence contains a set of tree properties for which there is no equivalent
system network traversal, it would be flagged as suspicious.

7.6 Related work

Our test cycle is essentially a combination of four ideas:

1. debugging with a generator,

2. rapid development with a metagrammar,

3. localising mistakes with error mining and

4. systematic testing with an organised test suite.

These ideas all have roots in previous work. We can trace the discussion of
generation and metagrammars back to work by [Karttunen and Kay, 1985] and
[Briscoe et al., 1987] respectively. Error mining may be relatively recent, [van
Noord, 2004] and is presumably inspired by the rise of statistical methods in
natural language processing. What makes our approach distinct is that we
combine the three elements — error mining, generation and metagrammars —
and furthermore integrate them through our use of XMG tree properties. Now
let us turn to each of these approaches individually.

7.6.1 Finnish Generation

[Karttunen and Kay, 1985] primarily discuss the linguistic issues behind build-
ing a (Functional Unification) grammar for Finnish, as well as the compu-
tational aspects of parsing such free word order languages. Karttunen and
Kay make an offhand remark which is particularly relevant to our work here:
they test the correctness of the grammar by taking an incomplete functional de-
scription and“produc[ing] from it all the realizations that the grammar allows,”
which effectively sums up what we have been working on in this chapter.

While an incomplete FD is much like an input semantics (see Section 6.5,
Page 141), it is also not entirely the same thing, because it can underspecify
for anything in the grammar (unification permitting). For instance, one of
Karttunen and Kay’s example FDs can realise both “The small child sleeps”
and “The small child doesn’t sleep”, among other things. Underspecification
can be useful, but for debugging overgeneration, it would be useful to know
that strings being produced really are meant to have the same propositional
meaning, in other words that the problem is more likely the grammar being
too loose than the input itself.

Finally, Karttunen and Kay do not seem to exploit any links from the
generator outputs back to the grammar. Such links may well exist. They
perform generation in two stages, first passing through a syntactic generator
and then a morphological generator (essential for Finnish). The output of the
first generator is a fully specified FD, so perhaps it would be possible to work
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backwards from this FD. For example, one could highlight the grammar rules
(or disjunction branches) that correspond to a feature value. Doing so might
result in something akin to the derivation log and may be the basis of something
like a suspects report.

7.6.2 GDE: Metagrammar and generation

[Briscoe et al., 1987] propose a Grammar Development Environment (gde)
which compiles a“source”metagrammar into an“object”grammar, particularly
in the Generalised Phrase-Structure Grammar formalism. Their metagrammar
has some remarkable similarities to ours; they both allow for an abstract rep-
resentation of grammar rules, separating feature structures, linear precedence,
and immediate dominance. Another striking similarity between our approaches
lies in the integration of the metagrammar with the grammar debugging pro-
cess. Namely, Briscoe et al. also use the names of their metagrammar rules to
track errors in parsing, much the same way that we trace our way back from
generation errors to metagrammar errors, through the tree properties.

One interesting aspect of the gde approach is that they also include a
natural language generator in their grammar debugging process [Boguraev et
al., 1988]. gde emphasises interactive debugging, whereas we focus more on
discovery of overgeneration and its causes. Indeed, the gde generator has more
sophisticated debugging tools than does GenI. For one thing, gde allows the
user to disable a set of grammar rules for generation, for example suppressing
the rules for coordination, so that the more interesting rules can be tested with
little interference. It also has an interactive mode, which provides fine-grained
control over the generator. Specifically, the user can select grammar rules
from a menu to expand the current node in the generation algorithm, building
the syntax tree interactively. Borrowing these features for GenI should be
straightforward and worthwhile. GenI also supports interactive debugging,
but it only allows the user to step through the surface realisation process,
allowing little more than to go back and forth in time. Adding a more hands-
on debugger should just be a matter of implementation. We should also be
able to get much the same effect as selectively disabling grammar rules, if we
took advantage of the paraphrase selection mechanism from Chapter 6. This
allows us to restrict which elementary trees are used for generation.

Overall, we have gotten by with a relatively impoverished debugger because
our error mining techniques greatly reduces the guesswork out of grammar
development. For example, having an incremental approach and a graduated
test suite means that we largely avoid the need for isolating grammar rules
from one another. The elementary trees we use are debugged in the context of
simple inputs, and will tend to be well behaved in the more complex examples.
Likewise, our suspects report tends to point us directly to faulty tree properties
of our the grammar, and this reduces our need for interactive debugging of the
grammar. In a sense, our approach takes [Boguraev et al., 1988] a step further.
They use the generator to help identify flaws in the grammar. We add error
mining techniques for doing this systematically and on a larger scale.
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7.6.3 Alpino: Error mining

One can think of our work in this chapter as scaling up the detection of errors
in a grammar. But if we look at similar work in parsing, it is clear that we have
done so far is only the very beginning. We take error mining to a larger scale;
[van Noord, 2004] takes it to an industrial one. He detects undergeneration in
a Dutch grammar with the help of the Alpino parser, just as we would use a
realiser for overgeneration. His techniques essentially consist (i) parsing a large
number of sentences — compare his 3 000 000 sentences to our 140 test cases
— and (ii) ranking all word sequences in the corpus by parsability. Parsability
is a simple metric; it counts, among the sentences that contain a word sequence
wi...wj , the ratio of those sentences that have a successful parse:

R(wi...wj) =
C(wi...wj |OK)
C(wi...wj)

van Noord appears to literally consider all substrings in the corpus, although
he retains only those which occur frequently enough (e.g. 5 times) and whose
parsability is lower than that of all its sub-substrings (e.g. a length 4 substring
is only worth looking at if it has a lower parsability than all the length 2 and
length 3 substrings it contains). He uses parsability to great effect, detecting
with it tokenisation errors, mistakes in the lexicon, archaic expressions or idioms
unknown to the parser, and incomplete grammatical descriptions. (He also
catches spelling errors in the corpus, typos, foreign expressions, etc.)

These two approaches to error mining, van Noord’s and ours, seem rather
different on the surface. He uses parsing, we use surface realisation; he studies
undergeneration, we do overgeneration; he looks for frequent failures, we look
for consistent failures; he parses a massive batch of sentences, we go forth incre-
mentally. But the underlying philosophy is the same. We both try to make the
detection of grammar flaws more efficient by automatically discovering frag-
ments (n-grams in his case and tree properties in ours) that go wrong. On the
other hand, it is also worth paying attention to the difference between n-grams
and tree properties. Tree properties present a direct link to the (meta)grammar;
if there is a problem with a specific tree property, e.g. ExtractedSubject, we go
directly to the corresponding ExtractedSubject class of the metagrammar. In
other words n-grams tell us the symptoms of the disease, whereas tree proper-
ties tell us its cause. This suggests a possible avenue to explore. It may perhaps
be useful as a post-processing step, to extract a list of something akin to tree
properties that tend to be associated with low parsability word sequences.

So what can we learn from [van Noord, 2004]? Scale matters. It may
however be more difficult to perform a large scale test of overgeneration as we do
not have an automatic means of determining if a sentence is overgeneration or
not. Parsability works well for undergeneration, because one only needs to say
if the parser returned a result or not. The question then is what the equivalent
for parsability would be for generation. A possible answer is to use exactly the
same metric as one would use for parsing, that is to apply van Noord’s metric to
the sentences produced by the generator. Clearly, we cannot use the grammar
itself to judge the parsability of sentences; all sentences produced would have a
parsability of 1. But perhaps we could substitute something else for a grammar,
maybe a team of annotators. The idea would be to treat a sentence as parseable
if it is associated with a pass judgement. The idea is that we can do the same
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exact thing as van Noord: hunt for n-grams with a low “parsability”. It is not
clear how useful this would be for generation. Parsability could certainly help
for finding things like tokenisation errors and missing lexical entries, whereas
our overgeneration errors tend to play on syntax and misplaced clauses. It
would be interesting to see if such errors can be detected over small n-grams,
like the trigrams (or shorter) employed by van Noord, because that would
make the parsability metric genuinely useful. If somebody were to solve the
automatic annotations problem, this would be something worth trying out.

7.6.4 TSNLP: Test suite construction

No discussion on error mining would be complete without at least a brief look
at the test data being used. [van Noord, 2004] uses a collection of articles from
four Dutch newspapers. This represents quite a large amount of text, slightly
under three million sentences and is particularly interesting because it is the
kind of text that one finds in the real world.3 The downside is that there is
not any particular structure or design behind the text. Sometimes, it may also
useful to evaluate parsers, generators and grammars under the controlled set-
tings of a systematically designed, structured test suite. A test suite can be an
entirely different creature from a corpus because whatever items are in the suite
go in by conscious decision. This means that the suite can offer (i) control over
test data, with linguistic phenomena being illustrated alone or in “controlled
combination”(ii) systematic coverage of phenomena (iii) negative examples, ex-
plicitly ungrammatical examples. The tsnlp is just such a test suite [Balkan
et al., 1994]. It covers three languages, English, German and French, and
provides 4500 items for each. It is important to keep in mind, especially when
comparing this to the 3 million sentences we saw above, that this small number
contains only sentences that are distinct from each other in some minimal but
linguistically relevant manner, that isolate linguistic phenomena that they can
be properly dissected, that cover a broad range of linguistic phenomena, sen-
tences that are “interesting” to study. Another important characteristic of the
tsnlp is that is highly structured; sentences are divided into a set of core phe-
nomena (for example complementation, tense-aspect-modality, coordination)
and further sub-classified into syntactic domains, specifically: sentences (S),
clauses (C), noun phrases (NP), adjectival phrases (AP), prepositional phrases
(PP) and adverbial phrases (AdvP).

The test suite we used is largely inspired from the tsnlp. It is far smaller
(140 test cases to the tsnlp 4500) and focuses on the phenomena that our
grammar, SemFRaG, covers, namely syntactic variation on verbs (this would
correspond to the clause and sentence classifications of tsnlp). The tsnlp was
scrupulously designed to avoid redundancy; however, from the standpoint of a
surface realiser, many of its test cases were essentially identical. For example,
the tsnlp C Agreement and C Complementation suites contained items which
differ only by inflected form. For our current needs, “Elle les accepte (She
accepts them)” and “Nous vous acceptons (We accept you)” are virtually the
same sentences. The test suite was also inadequate in that it did not provide
for the sort of controlled complexity we wanted, namely sentences with more

3It is also relatively tame and well-behaved text, compared to say Usenet postings or
weblog entries, but at the current stage of SemFRaG’s development, newspaper articles well
ambitious enough.
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than one finite verb such as “Jean dit que l’homme part (Jean says that the
man leaves)”.





Chapter 8

Conclusion

8.1 Summary

The driving vision behind this thesis was to build a surface realiser which is
reusable, reversible, efficient and contextually aware. Reusability comes from
using a domain independent linguistic resource and input language. Reversibil-
ity comes from the type of grammar used, in our case, an LU augmented FB-
LTAG which has already proved its usefulness in parsing. Efficiency and con-
textual awareness are where our contributions come into play. Each of these
contributions takes the form an extension to the surface realiser GenI. While
the extensions are mutually independent and otherwise very different from each
other, they are tied to a common theme of ambiguity and determinism.

Polarity filtering The first of these extensions deals with the problem of
lexical ambiguity, having more than one lexical item correspond to each lit-
eral of the input semantics. This ambiguity is definitely a feature because it
allows the grammar to do the same things in different ways. But to support
this feature, we must ensure that the surface realiser is not bogged down by
interactions between sets of lexical items that ultimately are not made for each
other. The solution is to polarise the grammar so the lexical items know about
the resources they provide and the requirements they hold. We then add a
filtering step to eliminate all sets of items with non-neutral polarities, that is,
with resources and requirements mismatched. Adding this filter makes it much
more practical to use an ambiguous grammar for realisation.

Paraphrase selection Having a realiser that could actually use lexical am-
biguity, we set out to generate all the paraphrases of a given input. While the
paraphrases are all grammatically correct (in theory), not every one fits into
every context. Our next objective was then to make the realiser a little bit
more like the generation-oriented ones (e.g. kpml and surge) by increasing
its contextual awareness. Ideally, we would be able to generate from the same
kind of functional features that such realisers accept. This is not yet possible
with GenI, but we have a step in that direction, by adding the ability to pre-
select our outputs from a set of linguistic criteria, called tree properties. Tree
properties are used to restrict our lexical selection. They appear as annota-
tions in the input semantics and in the grammar. Adding tree properties to a
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grammar is a straightforward consequence of compiling that grammar from a
more abstract metagrammatical formalism. Adding these annotations to the
input semantics is a question for future research.

Reducing overgeneration Assuming that all output be grammatical is op-
timistic, to say the least. Real grammars overgenerate and real grammars built
from highly abstract representations overgenerate a lot. This can be problem-
atic for two reasons, (i) that the undeserved ambiguity makes realisation less
efficient and (ii) that the issue of choosing a contextually appropriate output
is confused with that of choosing a grammatical correct one. However, it turns
out that the thing which makes our grammars prone to overgeneration (compi-
lation from an abstract representation to unexpected syntactic structures), can
also be used to reduce overgeneration. The idea is to reuse the tree properties
we had employed for paraphrase selection. We generate all the strings that are
associated with an input semantics, isolate the cases of overgeneration, print
out their tree properties and work our way back to the metagrammar.

8.2 Future work

In the previous three chapters, we suggested some possible improvements to
the techniques of filtering, selection and grammar debugging. In addition to
these individual enhancements, here are some future directions to explore using
the surface realiser as a whole.

8.2.1 Morphological generation

The first improvement we should probably make is to add morphological gen-
eration to the process. The lack of inflected forms is a hindrance to using
the realiser for applications, especially for a language like French with more
prominent use of morphology than English. It also complicates experiments
we would like to play with the grammar, for example, having a parse-generate
loop where we would parse a sentence, do surface realisation from the resulting
semantics and then reparse the output. GenI does perform some rudimentary
morphological generation based on unification with a morphological lexicon,
but (i) the grammar contains too much ambiguity in its leaf nodes for this
to work well (ii) the approach does not capture regularities in the language
and (iii) orthographic conventions like the transformation of “que il aime” into
“qu’il aime” are not accounted for. It would be worthwhile to spend some
time reducing the (morphological) ambiguity in the grammar, perhaps using
the debugging techniques we saw in this thesis, and to integrate GenI with
a proper morphological generator, say Functional Morphology [Forsberg and
Ranta, 2004].

8.2.2 Sentence planning

As we look towards the back end of the “pipeline” (morphological generation),
we should also consider looking towards the front end (sentence planning).
It would be worth considering what relationship GenI has with the sentence
planner. For example, is it reasonable to accept bags of literals with tree prop-
erty annotations, or would it be more appropriate to read in a more abstract
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specification? Should the realiser embrace feature-creep and integrate sentence
planning tasks à la SPUD, or would we be better off with a strict separation
of components? For that matter are there off the shelf microplanners that we
could use with the realiser?

8.2.3 Scalability

Continuing along the practical front, there is still work to be done in making
the realisation process as efficient as possible. It is possible that paraphrase
selection might make the issue of efficient generation moot, but there is always
the issue of intersective modifiers to worry about (especially if we start to pro-
duce very long outputs). Besides, we saw in Chapter 7, there are applications
for which we will not be able to use the preselection method, applications for
which we really want the realiser to output everything it can. Two areas worth
exploring are improvements to the chart generator and the polarity filter.

The chart generator could stand to have a proper implementation of sub-
tree sharing.1 Perhaps a useful form of packing would be to deal with multi-
ple/embedded adjunctions by, instead of directly adjoining onto a node, keeping
track of pending sets of adjunctions on that node. This would contain the com-
binatorial explosion from intersective modifiers, at least until we moved on to
the unpacking phase.

8.2.4 Becoming more generation-oriented

The introduction of tree properties may help us to bridge the gap between
reversible realisers like GenI and generation-oriented ones, like kpml and fuf.

The next question to ask is where tree properties are supposed to come from.
One possibility would be take a cue from [McDonald and Pustejovsky, 1985] and
[Yang, 1992] by using a systemic grammar. The idea might to be some higher
level realisation module that takes something more abstract representation and
to traverses a system network to collect the appropriate tree properties.

Generation-oriented resources (i.e. SFG grammars) map functional features
to linguistic structures. Reversible resources (e.g. TAG grammars) tend not
to contain this information, because the question has never come up in pars-
ing. On the other hand, generation-oriented resources also contain “hidden”
information about syntax and constituency which is duplicated by reversible
resources. The failure of reversible realisers to produce contextually appropri-
ate output comes from the fact that there is not enough functional linguistics
encoded in their grammars. The idea that we might traverse a system network
to collect tree properties is really a way of saying that we should jettison the
redundant syntactic information from the generation grammars, and use both
purified resources in conjunction with each other.

8.3 Putting GenI to work

As the surface realiser matures, it may become worthwhile to steer its devel-
opment by actually trying to use it for actual applications. There are three

1As mentioned in the footnote on Page 78, we ought to work out if we actually have
sharing for free or not, due to the Haskell implementation.
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basic ways we could put the realiser to work. We could have it participate in
comparative evaluations with other realisers, we could apply it to what we call
“NLP metatasks”, or we could fit it into a text generation or a dialogue system.

8.3.1 NLP metatasks

Metatasks are NLG applications which mainly serve to advance NLP research.
We saw an example of an NLP metatask in Chapter 7, where we used the
surface realiser as a grammar debugging tool. It would be useful to see what
other applications there might be for the realiser, especially for its paraphrasing
capabilities. For example, one of the problems that comes up in evaluating
NLG systems is to have large number of reference texts [Stent et al., 2005;
Belz and Reiter, 2006]. Perhaps an exhaustively paraphrasing realiser can be
put to use to bootstrap such a collection of texts. We start from an input
sentence, parse it, realise all of its variants and use manual verification to get
high quality texts out of the pool of results.

8.3.2 NLG tasks

GenI is going to be put to use as a practical generation component. Alexandre
Denis is using it as part of a French dialogue system to provide feedback about
the system’s understanding of the users utterances. Also, Luciana Benotti is
using it as part of a multi-lingual French/English dialogue system for research
into presupposition accommodation [Beaver and Zeevat, 2007]. Generation is
not the main topic of these research projects, so we hope that the realiser will
“just work” for them.

8.3.3 Comparative evaluation

It would be useful to see the surface realiser being put through some kind
of evaluation process, maybe in comparison with other surface realisers. One
possible handicap is that we only have an FB-LTAG grammar for French,
whereas most generation work seems to be done with English in mind. There
is always XTAG, which provides an English grammar, but it does not have a
suitable semantic dimension. Aside from these technical details, there remain
the question of what to evaluate for and how to evaluate it.

For example, [Callaway, 2003] tests the linguistic coverage of fuf/surge,
comparing it with that of HALogen. Starting from the Penn Treebank (news-
paper texts with human-verified parse trees), he converts the syntactic trees
into functional descriptions (fuf/surge inputs), generates strings and com-
pares the resulting strings with their original Penn Treebank entries. Callaway
uses the standard train and test methodology, spending several months run-
ning iterations over Sections 0-22 and 24 of the Penn Treebank and improving
the surge grammar rules (and the tree-to-fd translator) by hand.2 He then
unleashes the grammar on the test corpus, Section 23 of the Penn Treebank
and compares the results using a number of automatic evaluation methods (for
example, the NIST Simple String Accuracy measure). Here, the ingredients for
the comparison are (i) a set of reference texts paired with input representations

2Perhaps a test harness with automatic pinpointing of errors like in Chapter 7 could
reduce that training time.
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and (ii) automatic scoring. The key insight behind [Callaway, 2003] seems to
be that improving a grammar by hand (with the corpus as a guide) is akin to
the training process that statistical realisers undergo. In other words, there is
no real reason for symbolic surface realisers not to participate in comparative
evaluations against statistical ones. Then again, as Callaway cautions, this is
also partly an evaluation of the process which “converts the Penn Treebank
notation into the specifications [the realiser] expects.”

If a comparative evaluation is going to be made to work, we should probably
narrow the window down to tools that have at least comparable objectives.
RealPro and kpml are probably out because they expect really different
levels of abstraction in the inputs. Maybe LinGo and OpenCCG are more
likely candidates, both being realisers that accept a flat semantic language. The
only questions that remain would be what exactly we are trying to compare
and why.
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Appendix A

SemFraG families

family name # trees
AvoirAux 1
CliticT 1
Copule 1
CopuleVide 1
DetAdj 1
EpithAnte 1
EpithPost 1
EtreAux 1
InvertedSubjClitic 1
Nden1 1
SemiAux 1
SemiAuxDe 1
TempNounSAnte 1
TempNounSPost 1
TempNounVPost 1
advAdjAnte 1
advLoc 1
advSAnte 1
advSPost 1
advVPost 1
complementiser 1
complexAdvDeDeterminer 1
detNegQuantifier 1
detQuantifier 1
dummyAdjective 1
estceque 1
expletive 1
negLeft 1
negativeQuantifier 1
noun 1
pronoun 1
propername 1
s0Cs1Fronted 1
sententialAdv 1
stddeterminer 1
whdeterminer 1
advAdvAnte 2
ilV 2
ilVcs1 2
negPas 2
s0Pcs1 2
s0Ps1 2
s0Pn1 3
complexNDeDeterminer 4
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family name # trees
ilVn1 9
n0ClV 11
n0seV 11
n0vNCopula 11
Coordination 12
n0vN 12
n0Vnbar1 13
n0vA 14
s0vA 16
n0V 20
n0vpN 22
n0ClVs1int 26
n0Vas1 26
n0Vcs1 26
n0Vs1int 26
n0vAdes1 27
n0vNas1 28
n0vNdes1 28
s0Vcs1 30
n0ClVpn1 39
n0Vpn1 39
n0vApn1 42
n0ClVden1 44
n0Vden1 44
n0seVden1 44
n0vNden1 45
n0vAden1 47
n0ClVn1 48
n0Vloc1 48
n0seVn1 48
n0Vdes1 56
s0Vn1 57
n0Vcs1den2 62
n0vAdes1pn2 69
n0vPred 69
s0Van1 69
n0vNan1 78
n0vAan1 80
n0Van1 88
n0Vn1 172
n0Vcs1an2 220
n0Vs1intan2 220
n0Vn1Adj2 240
n0Van1decs2 350
n0Van1decs2ControleObjet 350
n0Vn1decs2ControleObjet 350
n0Vn1pn2 470
n0Vn1cs2 480
n0Vn1cs2ControleObjet 480
n0Vn1den2 491
n0Vn1an2 1052





Appendix B

Tree properties from SemFRaG

EpithAnte

EpithPost

dummyAdjective

n0vA

s0vA

n0vAden1

n0vAan1

n0vApn1

n0vAdes1

n0vAan1pn2

n0vAan1den2

n0vAdes1pn2

advVPost

TempNounVPost

advSPost

TempNounSPost

advSAnte

TempNounSAnte

advAdjAnte

advAdvAnte

advNAnte

GenericPPModifierPost

GenericPPModifierAnte

ppSModifierPost

ppSModifierAnte

ppVModifier

ppNModifier

s0Pn1post

s0Pn1ante

s0Pv1post

s0PLoc1

n0Pn1

s0Pdes1

s0Pques1

s0Ps1

s0Pcs1

s0Pn1

advLoc

prepLoc
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abstractCleftPPMod

cleftPPModOne

cleftPPModTwo

ExtractedPPMod

whPPMod

RelPPMod

TenseAux

AvoirAux

EtreAux

Copule

CopuleVide

SemiAux

SemiAuxNPde

SemiAuxDe

complexAdvDeDeterminer

complexNDeDeterminersg

complexNDeDeterminerpl

complexNDeDeterminer

pureDeterminer

DetAdj

stddeterminer

whdeterminer

detQuantifier

detNegQuantifier

n0Nmod

PrepositionalPhrase

s0Cs1middle

s0Cs1Fronted

s0Cs1

negLeft

negPasFinitePost

negPasInfAnte

negPas

ExclamativeQue

GenericCoord

ConstituentCoord

NominalCoord

SententialCoord

PrepCoord

FakePrepCoord

PrepCoordA

PrepCoordDe

PrepCoordAvec

PrepCoordDans

PrepCoordSans

PrepCoordEn

PrepCoordEntre

PrepCoordsHacked

AdjCoord

AdvCoord

Coordination

sententialAdv

nounWithCompl

npWithCompl
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n0vN

n0vpN

n0vNden1

n0vNden1des2

n0vNdes1

n0vNas1

Nden1

n0vNan1

n0vNan1den2

propername

pronoun

complementiser

CliticT

expletive

negativeQuantifier

noun

InvertedSubjClitic

estceque

estcequeVP

EmptySubject

InvertedNominalSubject

InvertedIlSubject

NonInvertedNominalSubject

InfinitiveSubject

ImperativeSubject

InterrogInvSubject

CanonicalSubject

CliticSubject

ImpersonalSubject

CanonicalSententialSubjectFinite

CanonicalSententialSubjectInFinitive

CanonicalObject

CanonicalNBar

CanonicalCAgent

CanonicalGenitive

CanonicalIobject

CanonicalOblique

CanonicalLocative

Infinitive

Subject-Control

CanonicalSententialObjectFinite

CanonicalSententialObjectInFinitive

CanonicalSententialObjectInFinitiveDe

CanonicalSententialObjectInFinitiveA

CanonicalSententialObjectInterrogativeFiniteWithoutComplementizer

CanonicalSententialObjectInterrogativeFiniteWithComplementizer

CanonicalSententialObjectInterrogativeInFinitive

CliticObjectII

CliticIobjectII

CliticObject3

CliticIobject3

CliticGenitive

CliticLocative

reflexiveClitic
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reflexiveAccusative

reflexiveDative

whObject

whLocative

whGenitive

whCAgent

whOblique

RelativeObject

whIobject

RelativeGenitive

RelativeLocative

RelativeIobject

RelativeCAgent

RelativeOblique

CleftObject

CleftDont

CleftIobjectOne

CleftGenitiveOne

CleftCAgentOne

CleftObliqueOne

CleftLocativeOne

CleftLocativeTwo

CleftIobjectTwo

CleftGenitiveTwo

CleftCAgentTwo

CleftObliqueTwo

whSubject

RelativeSubject

CleftSubject

ObjAttributeCan

SententialSubject

SententialCObject

SententialDeObject

SententialAObject

SententialInterrogative

ObjAttribute

AdjectivalPredicativeform

NominalPredicativeform

PrepositionalPredicativeformWithNP

PrepositionalPredicativeformWithAdj

PrepositionalPredicativeform

n0vPred

PredicativeCopula

PredicativeNoun

PredicativeAdjective

PredicativePP

PredicativePrepN

PredicativePrepAdj

activeVerbMorphology

passiveVerbMorphology

middleVerbMorphology

AccReflexiveMorphology

DatReflexiveMorphology

n0vNCopula
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n0vACopula

ilV

ilVn1

ilVcs1

n0V

n0ClV

n0seV

n0ClVn1

n0seVn1

n0ClVpn1

n0ClVden1

n0seVden1

s0V

n0Vn1

dian0Vn1Active

dian0Vn1Passive

dian0Vn1dePassive

dian0Vn1ShortPassive

dian0Vn1ImpersonalPassive

dian0Vn1middle

dian0Vn1Reflexive

n0Van1

dian0Van1Active

dian0Van1Reflexive

n0Vden1

dian0Vden1

n0Vpn1

n0Vloc1

s0Vn1acs2

n0Van1den2

n0Vden1pn2

n0Vn1pn2

n0Vn1loc2

n0Vn1an2

n0Vn1den2

n0Vcs1

n0Vas1

n0Vs1int

n0ClVs1int

n0Vdes1

n0Vdes1ControleObjet

dian0Vcs1Passive

dian0Vcs1shortPassive

dian0Vdes1ImpersonalPassive

dian0Vdes1Active

n0Vn1sint2

n0Vs1intan2

n0Vn1acs2

n0Vn1cs2ControleObjet

n0Vn1cs2

n0Vcs1decs2

n0Vcs1den2

n0Van1decs2

n0Van1decs2ControleObjet
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n0Vn1decs2ControleObjet

n0Vdes1pn2

n0Vcs1an2

s0Vn1

s0Van1

s0Vcs1

n0Vnbar1

n0Vn1Adj2



Appendix C

Deductive realisation and
unification

Beware of bugs below.

C.1 Kay1996 with unification

Given an input semantics sem and lexicon L:

Axioms
[w;A(a1, . . . , af )•; lexsem(w)] A → w,

w ∈ L,
lexsem(w) ⊆ sem

Goals [w1..wn; S•; sem]

Inference
rules

[w1..wi; B(b1, . . . , bg)•; semb]

[w1..wi; A((a′
1, . . . , a′

f )θb) → B(b1, . . . , bg) • C((c′1, . . . , c′h)θb); semb]
see below

A(a′
1, . . . , a′

f ) → B(b′1, . . . , b′g)C(c′1, . . . , c′h),

θb = mgu((b′1, . . . , b′g), (b1, . . . , bg))

(Comp1)

[w1..wi; A(a1, . . . , af ) → B(b1, . . . , bg) • C(x, c2, . . . , ch); semb]
[wi..wj ; C(x, c2, . . . , ch)•; semc]

[w1..wj ; A((a′
1, . . . , a′

f )θbθcθa)•; semb ∪ semc]
see below

semb ∩ semc = ∅
A(a′

1, . . . , a′
f ) → B(b′1, . . . , b′g)C(c′1, c′2, . . . , c′h),

θb = mgu((b′1, . . . , b′g), (b1, . . . , bg))
θc = mgu((c′1, . . . , c′h)θb, (x, c2, . . . , ch)θb)
θa = mgu((a′

1, . . . , a′
f )θbθc, (a1, . . . , af )θbθc)

(Comp2)
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C.2 GenI with unification

Substitution phase

Given an input semantics sem and lexicon L:

Axioms
[τ ; s; rn; (n1, . . . , nx)] 〈τ, s〉 ∈ lexselection(sem, L),

rn is the root node of τ ,
(n1, . . . , nx) are the subst nodes of τ

Goals [τ ; s; rn; ()]

Inference
rules

[τp; sp; rnp; (np1, . . . , npx)] [τc; sc; rnc; (nc1, . . . , ncy)]

[τpc; sp ∪ sc; rnpθ; (np2θ, . . . , npxθ, nc1θ, . . . , ncyθ)]
θ = mgu(top(rnc), top(np1)),

sb ∩ sc = ∅
τpc = subst(τc, τp, θ)

(Sub)

Adjunction phase

Given an input semantics sem, and goal edge items GS from the previous phase

Axioms

[τ ; s; rn; fn; (n1, . . . , nx)] 〈τ, s〉 ∈ GS,
(n1, . . . , nx) are adjoinable nodes of τ
rn is the root node of τ ,
fn is the foot node of τ (or − if initial)

Goals [τ ; sem; s;−; (n1, . . . , nx)]

Inference
rules

[τp; sp; rnp;−; (np1, . . . , npx)] [τc; sc; rnc; fnc; (nc1, . . . , ncy)]

[τpc; sp ∪ sc; rnpθtθb;−; (np2θtθb, . . . , npxθtθb, nc1θtθb, . . . , ncyθtθb)]
see below

θt = mgu(top(rnc), top(np1))
θb = mgu(bot(fncθt), bot(np1θt))
sb ∩ sc = ∅
τpc = adj(τc , τp, θt, θb)

(Adj)
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GenI pseudocode

1: function Realise(Grammar, InputSem)
2: ElementaryT rees← LexSelection(Grammar,InputSem)
3: DerivedT rees← CombineTrees(ElementaryT rees,InputSem)
4: return {sentence : sentence is the leaves of dtree, dtree ∈ DerivedT rees}
5: end function

D.1 Lexical selection

1: function LexSelection(Grammar, InputSem)
2: selected← ∅
3: for all 〈Tree, LexSem〉 ∈ Grammar do
4: aligned← AlignSem(InputSem,LexSem)
5: if aligned �= FAIL then
6: 〈Tree2, LexSem2〉 ← unify aligned and LexSem, performing

variable substitution on Tree as needed
7: if 〈Tree2, LexSem2〉 �= FAIL then
8: selected← selected∪ {〈Tree2, LexSem2〉}
9: end if

10: end if
11: end for
12: return selected
13: end function

14: function AlignSem(InputSem,LexSem)
15: � is LexSem ⊆ InputSem modulo unification?
16: i← 0
17: aligned← ∅
18: for all L ∈ LexSem do
19: if i ≥ the length of InputSem then
20: return FAIL
21: end if
22: I ← literal i of InputSem
23: if I has the same predicate and arity as L then
24: aligned← aligned ∪ {I}
25: � aligned is a multiset, as are InputSem and LexSem
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26: end if
27: i← i+ 1
28: end for
29: return aligned
30: end function

D.2 Realisation proper

1: function CombineTrees(LexSelection,InputSem)
2: Agenda← {t : t ∈ LexSelection, t is an initial tree or has a ↓ node}
3: AuxAgenda← LexSelection \Agenda
4: Chart← ∅
5: output← ∅
6:

7: � Substitution phase:
8: while Agenda �= ∅ do
9: aTree← any tree ∈ Agenda

10: Agenda← Agenda \ {aTree}
11: if IsResult(aTree) then
12: output← output ∪ aTree
13: else if t has no ↓ nodes and is auxiliary then
14: AgendaA← AgendaA ∪ aTree
15: else
16: Chart← ChartInsertion(Chart,aTree)
17: for all cT ree ∈ ChartRetrieval(Chart,aTree) do
18: derived1 ← Substitution(cT ree, aT ree)
19: derived2 ← Substitution(aTree, cT ree)
20: Agenda← Agenda ∪ derived1 ∪ derived2

21: end for
22: end if
23: end while
24:

25: � Chart rotation:
26: Agenda← {t : t ∈ Chart, t has no ↓ nodes}
27: Chart← AuxAgenda
28: AuxAgenda← ∅
29:

30: � Adjunction phase:
31: while Agenda �= ∅ do
32: aTree← any tree ∈ Agenda
33: Agenda← Agenda \ {aTree}
34: if IsResult(aTree) then
35: output← output ∪ aTree
36: else
37: for all cT ree ∈ ChartRetrieval(Chart,aTree) do
38: derived← Adjunction(cT ree, aT ree)
39: Agenda← Agenda ∪ derived
40: end for
41: end if
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42: end while
43: return output
44: end function

D.3 Helper functions

1: function IsResult(tree,InputSem)
2: return t has no ↓ nodes and t.sem = InputSem
3: end function

4: function ChartRetrieval(Chart,tree)
5: � fancier charts require fancier retrieval, see Section 5.3
6: return Chart
7: end function

8: function ChartInsertion(Chart,tree)
9: return Chart ∪ {tree}

10: end function
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[Crabbé and Duchier, 2004] B. Crabbé and D. Duchier. Metagrammar redux.
In International Workshop on Constraint Solving and Language Processing
- CSLP 2004, Copenhagen, 2004.

[Danlos, 1984] L. Danlos. Conceptual and linguistic decisions in generation.
Proceedings of the 10th international conference on Computational linguis-
tics, pages 501–504, 1984.

[Danlos, 1998] L. Danlos. G-TAG : un formalisme lexicalisé pour la génération
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Résumé

La réalisation de surface est une partie du processus global de génération de langue
naturelle. Elle peut être vue comme l’inverse de l’analyse en ce sens où, étant donné
une grammaire et une représentation du sens, le réalisateur de surface produit une
châıne en langue naturelle que la grammaire associe à un sens donné en entrée. Cette
thèse présente trois extension de GenI, un algorithme de réalisation pour une gram-
maire de type FB-LTAG. La première extension augmente l’efficacité du réalisateur
pour le traitement de l’ambigüıté lexicale. C’est une adaptation de l’optimisation par
« étiquetage électrostatique » qui existe déjà pour l’analyse, qui consiste à associer
les items lexicaux à des ensembles de polarités, et à éliminer les combinaisons dont les
polarités ne sont pas neutres. La deuxième extension concerne le nombre de sorties
retournées par le réalisateur. En temps normal, l’algorithme GenI retourne toutes
les phrases associées à une même forme logique. Alors qu’on peut considérer que ces
entrées ont le même sens, elles présentent souvent de subtiles nuances. Il est impor-
tant que les systèmes de génération contrôlent ces facteurs supplémentaires. Ici, nous
montrons comment la spécification de l’entrée peut être augmentée d’annotations qui
permettent un tel contrôle des sorties. L’extension est permise par le fait que la
grammaire FB-LTAG utilisée par le générateur a été construite à partir d’une « mé-
tagrammaire », mettant explicitement en œuvre les généralisations qu’elle code. La
dernière extension donne la possibilité au réalisateur de servir d’environnement de
débuggage de la métagrammaire. Les erreurs dans la métagrammaire peuvent avoir
des conséquences importantes pour la grammaire. Comme le réalisateur donne en
sortie toutes les châınes associées à une sémantique d’entrée, il peut être utilisé pour
trouver ces erreurs et les localiser dans la métagrammaire.

Mots clés Réalisation de surface, grammaires d’arbres adjoints, metagrammaires, généra-

tion

Abstract

Surface realisation is a subtask of natural language generation. It may be viewed
as the inverse of parsing, that is, given a grammar and a representation of mean-
ing, the surface realiser produces a natural language string that is associated by the
grammar to the input meaning. This thesis presents three extensions to GenI, a
realisation algorithm for Feature-Based Tree Adjoining Grammar (FB-LTAG). The
first extension improves the efficiency of the realiser with respect to lexical ambiguity.
It is an adaptation from parsing of the “electrostatic tagging” optimisation, in which
lexical items are associated with a set of polarities, and combinations of those items
with non-neutral polarities are filtered out. The second extension deals with the
number of outputs returned by the realiser. Normally, the GenI algorithm returns
all of the sentences associated with the input logical form. Whilst these inputs can
be seen as having the same core meaning, they often convey subtle distinctions in
emphasis or style. It is important for generation systems to be able to control these
extra factors. Here, we show how the input specification can be augmented with
annotations that provide for the fine-grained control that is required. The extension
builds off the fact that the FB-LTAG grammar used by the generator was constructed
from a “metagrammar”, explicitly putting to use the linguistic generalisations that
are encoded within. The final extension provides a means for the realiser to act
as a metagrammar-debugging environment. Mistakes in the metagrammar can have
widespread consequences for the grammar. Since the realiser can output all strings
associated with a semantic input, it can be used to find out what these mistakes are,
and crucially, their precise location in the metagrammar.

Keywords Surface realisation, Tree Adjoining Grammar, metagrammars, generation


