Evolution of deformation of the Himalayan prism: from imaging to modelling - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2007

Evolution of deformation of the Himalayan prism: from imaging to modelling

Évolution de la déformation du prisme Himalayen: de l'imagerie à la modélisation

György Hetényi
  • Fonction : Auteur
  • PersonId : 845108

Résumé

Abstract

The Himalayas and the Tibetan Plateau are considered as the classical case of continental collision. In the meantime, some fundamental questions concerning the structure, rheology and physical processes influencing the evolution of the region's lithosphere are still pending.

The Hi-CLIMB seismology experiment deployed a large number (255) of broadband stations during three years on an 800 km profile along 85°E, across the Himalayas and the southern half of the Tibetan Plateau. The close station spacing (~4-9 km), the large amount of data (1.5 terabyte), the high-frequency receiver functions and the use of multiply converted waves result in a detailed image of lithospheric structures at all scales. These images allow to follow: (1) faults at shallow (~3-4 km) depth; (2) the Main Himalayan Thrust from its shallow part to its deep and ductile continuation; (3) shallow and localized low-velocity layers (previously referred to as "bright spots") in Tibet in correlation with grabens; and (4) underplating of the Indian lower crust beneath Lhasa block. Furthermore, our results show (5) that the Indian lower lithosphere advances northward to about the centre of the Tibetan Plateau, where it is opposed to the Eurasian lithospheric mantle; (6) that the main sutures at the surface have no pronounced signature at depth; and (7) that the upper mantle discontinuities at 410 and 670 km do not seem to be affected by the ongoing orogeny. The obtained information on geometries are then used in two applications.

Based on the improved knowledge on flexural geometry beneath the foreland basin, the rheology of the India plate is re-assessed. Thermomechanical modelling results reveal that the effective elastic thickness decreases from south to north due to decoupling, caused by flexural and thermal weakening. To explain the support of the Tibetan Plateau's topography as well as regional isostasy in the Himalayas, a strong upper mantle is required.

Combining the geometry of underplating with Bouguer anomaly data, localized densification of the Indian lower crust is shown to occur where it reaches its maximal depth. This effect is associated to eclogitization. Investigations of the thermal field and pressure--temperature--density relations assuming different hydration levels are performed using thermo-kinematic and petrological models, respectively. The results suggest that the Indian lower crust is partially hydrated, and that eclogitization is kinetically hindered compared to phase equilibria. Overstepping is explained by the absence of free water in the system, and subsists until dehydration reactions occur at higher P-T conditions.

In conclusion, constraints on geometry and internal properties, as well as evaluation of the importance of physical processes are necessary in order to better understand the build-up of the observed lithospheric structures and the evolution of their deformation.
Résumé

L'Himalaya et le Plateau Tibétain sont considérés comme l'exemple classique de collision continentale. Cependant, de nombreuses questions fondamentales sur la structure, la rhéologie et les processus physiques liés à l'évolution de la lithosphère de cette région restent ouvertes.

Dans le cadre de l'expérience sismologique Hi-CLIMB, un grand nombre de stations large-bande (255) a été déployé pendant trois ans sur un profil de 800 km, à travers l'Himalaya et la moitié sud du Plateau Tibétain. L'espacement serré des stations (~4-9 km), la quantité importante des données (1.5 téraoctets), et l'utilisation de méthodes comme les fonctions récepteurs haute-fréquence ainsi que les conversions multiples ont permis d'obtenir une image détaillée des structures lithosphériques à toute échelle. Ces images permettent un suivi: (1) des failles à faible profondeur (~3-4 km); (2) du chevauchement majeur (MHT) de sa partie superficielle jusqu'à sa continuité profonde et ductile; (3) des zones à vitesses lentes localisées et peu profondes ("bright spots") sous le Tibet en corrélation avec des grabens; (4) de la croûte inférieure indienne sous-plaquée au bloc Lhasa. De plus, nos résultats suggèrent que (5) la lithosphère inférieure indienne avance vers le nord jusqu'au centre du Plateau Tibétain, où elle est opposée au manteau lithosphérique de l'Eurasie; que (6) les sutures en surface n'ont pas de signature marquée en profondeur; et que (7) les discontinuités du manteau supérieur à 410 et 670 km ne sont pas affectées par l'orogenèse. Les informations obtenues sur les géométries sont ensuite utilisées dans deux applications.

La rhéologie de la plaque Inde est réévaluée en utilisant l'image améliorée de sa flexure sous le bassin avant-arc. Les résultats des modélisations thermomécaniques montrent que l'épaisseur élastique équivalente diminue du sud au nord dû au découplage lié à l'affaiblissement flexural et thermique. Le support de la topographie du Plateau Tibétain ainsi que l'isostasie régionale en Himalaya nécessitent un manteau résistant.

En combinant la géométrie du sous-plaquage avec des anomalies de Bouguer, une densification localisée de la croûte inférieure indienne est mise en évidence à l'endroit où elle atteint sa profondeur maximale. Cette densification est associée à l'éclogitisation. Des analyses du champ thermique et les relations pression--température--densité en supposant différents niveaux d'hydratation sont effectuées par des modélisations thermo-cinématiques et pétrologiques. Les résultats suggèrent que la croûte inférieure indienne est partiellement hydratée, et que l'éclogitisation subit un retard. Ce dernier effet est expliqué par l'absence d'eau libre dans le système, l'éclogitisation n'ayant pas lieu jusqu'à l'occurrence des réactions de déshydratation à des P-T plus élevées que les conditions d'équilibre.

En conclusion, cette thèse apporte de nouvelles contraintes sur la géométrie et les propriétés internes de la lithosphère, éléments clés pour mieux évaluer l'importance des différents processus physiques impliqués dans la mise en place des structures et l'évolution de la déformation en Himalaya-Tibet.
Fichier principal
Vignette du fichier
Hetenyi_these.pdf (25.5 Mo) Télécharger le fichier

Dates et versions

tel-00194619 , version 1 (06-12-2007)

Identifiants

  • HAL Id : tel-00194619 , version 1

Citer

György Hetényi. Evolution of deformation of the Himalayan prism: from imaging to modelling. Applied geology. Université Paris Sud - Paris XI, 2007. English. ⟨NNT : ⟩. ⟨tel-00194619⟩
573 Consultations
239 Téléchargements

Partager

Gmail Facebook X LinkedIn More