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des questions administratives.

Je remercie Frédéric Pascal pour son tutorat pédagogique. Ses conseils m’ont beau-

coup servis lors de trois ans d’enseignement du calcul scientifique aux agrégatifs de l’ENS

Cachan. J’en profite aussi pour remercier tous mes élèves de leur assiduité et intelligence.
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Résumé

Cette thèse est consacrée à la modélisation des tsunamis. La vie de ces vagues peut

être conditionnellement divisée en trois parties: génération, propagation et inondation.

Dans un premier temps, nous nous intéressons à la génération de ces vagues extrêmes.

Dans cette partie du mémoire, nous examinons les différentes approches existantes pour

la modélisation, puis nous en proposons d’autres. La conclusion principale à laquelle nous

sommes arrivés est que le couplage entre la sismologie et l’hydrodynamique est actuellement

assez mal compris.

Le deuxième chapitre est dédié essentiellement aux équations de Boussinesq qui sont

souvent utilisées pour modéliser la propagation d’un tsunami. Certains auteurs les utilisent

même pour modéliser le processus d’inondation (le run-up). Plus précisement, nous discu-

tons de l’importance, de la nature et de l’inclusion des effets dissipatifs dans les modèles

d’ondes longues.

Dans le troisième chapitre, nous changeons de sujet et nous nous tournons vers les

écoulements diphasiques. Le but de ce chapitre est de proposer un modèle simple et

opérationnel pour la modélisation de l’impact d’une vague sur les structures côtières. En-

suite, nous discutons de la discrétisation numérique de ces équations avec un schéma de

type volumes finis sur des maillages non structurés.

Finalement, le mémoire se termine par un sujet qui devrait être présent dans tous les

manuels classiques d’hydrodynamique mais qui ne l’est pas. Nous parlons des écoulements

viscopotentiels. Nous proposons une nouvelle approche simplifiée pour les écoulements

faiblement visqueux. Nous conservons la simplicité des écoulements potentiels tout en

ajoutant la dissipation. Dans le cas de la profondeur finie nous incluons un terme correcteur

dû à la présence de la couche limite au fond. Cette correction s’avère être non locale en

temps. Donc, la couche limite au fond apporte un certain effet de mémoire à l’écoulement.

Mots clés: Ondes de surface, génération des tsunamis, équations de Boussi-

nesq, écoulements diphasiques, écoulements viscopotentiels, volumes finis





Abstract

This thesis is devoted to tsunami wave modelling. The life of tsunami waves can be

conditionally divided into three parts: generation, propagation and inundation (or run-

up). In the first part of the manuscript we consider the generation process of such extreme

waves. We examine various existing approaches to its modelling. Then we propose a few

alternatives. The main conclusion is that the seismology/hydrodynamics coupling is poorly

understood at the present time.

The second chapter essentially deals with Boussinesq equations which are often used

to model tsunami propagation and sometimes even run-up. More precisely, we discuss the

importance, nature and inclusion of dissipative effects in long wave models.

In the third chapter we slightly change the subject and turn to two-phase flows. The

main purpose of this chapter is to propose an operational and simple set of equations in

order to model wave impacts on coastal structures. Another important application includes

wave sloshing in liquified natural gas carriers. Then, we discuss the numerical discretization

of governing equations in the finite volume framework on unstructured meshes.

Finally, this thesis deals with a topic which should be present in any textbook on hydro-

dynamics but it is not. We mean visco-potential flows. We propose a novel and sufficiently

simple approach for weakly viscous flow modelling. We succeeded in keeping the simplicity

of the classical potential flow formulation with the addition of viscous effects. In the case of

finite depth we derive a correction term due to the presence of the bottom boundary layer.

This term is nonlocal in time. Hence, the bottom boundary layer introduces a memory

effect to the governing equations.

Keywords: Water waves, tsunami generation, Boussinesq equations, two-

phase flows, visco-potential flows, finite volumes
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Introduction

An expert is a man who has made all the mistakes,

which can be made, in a very narrow field.

Niels Henrik David Bohr (1885 – 1962)
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Given the broadness of the topic of tsunamis [DD06], our purpose here is to recall

some of the basics of tsunami modeling and to emphasize some general aspects, which

are sometimes overlooked. The life of a tsunami is usually divided into three phases:

the generation (tsunami source), the propagation and the inundation. The third and most

difficult phase of the dynamics of tsunami waves deals with their breaking as they approach

the shore. This phase depends greatly on the bottom bathymetry and on the coastline

type. The breaking can be progressive. Then the inundation process is relatively slow and

can last for several minutes. Structural damages are mainly caused by inundation. The

breaking can also be explosive and lead to the formation of a plunging jet. The impact on

the coast is then very rapid. In very shallow water, the amplitude of tsunami waves grows

to such an extent that typically an undulation appears on the long wave, which develops

into a progressive bore [Cha05]. This turbulent front, similar to the wave that occurs when

a dam breaks, can be quite high and travel onto the beach at great speed. Then the front

and the turbulent current behind it move onto the shore, past buildings and vegetation

xvii
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until they are finally stopped by rising ground. The water level can rise rapidly, typically

from 0 to 3 meters in 90 seconds.

The trajectory of these currents and their velocity are quite unpredictable, especially

in the final stages because they are sensitive to small changes in the topography, and

to the stochastic patterns of the collapse of buildings, and to the accumulation of debris

such as trees, cars, logs, furniture. The dynamics of this final stage of tsunami waves is

somewhat similar to the dynamics of flood waves caused by dam breaking, dyke breaking or

overtopping of dykes (cf. the recent tragedy of hurricane Katrina in August 2005). Hence

research on flooding events and measures to deal with them may be able to contribute to

improved warning and damage reduction systems for tsunami waves in the areas of the

world where these waves are likely to occur as shallow surge waves (cf. the recent tragedy

of the Indian Ocean tsunami in December 2004).

Civil engineers who visited the damage area following the Boxing day tsunami came

up with several basic conclusions. Buildings that had been constructed to satisfy mod-

ern safety standards offered a satisfactory resistance, in particular those with reinforced

concrete beams properly integrated in the frame structure. These were able to withstand

pressure associated with the leading front of the order of 1 atmosphere (recall that an equiv-

alent pressure p is obtained with a windspeed U of about 450 m/s, since p = ρairU
2/2).

By contrast brick buildings collapsed and were washed away. Highly porous or open struc-

tures survived. Buildings further away from the beach survived the front in some cases,

but they were then destroyed by the erosion of the ground around the buildings by the

water currents [HB05].

Propagation of tsunamis

The problem of tsunami propagation is a special case of the general water-wave problem.

The study of water waves relies on several common assumptions. Some are obvious while

some others are questionable under certain circumstances. The water is assumed to be

incompressible. Dissipation is not often included. However there are three main sources of

dissipation for water waves: bottom friction, surface dissipation and body dissipation. For

tsunamis, bottom friction is the most important one, especially in the later stages, and is

sometimes included in the computations in an ad-hoc way. In most theoretical analyses,

it is not included. The question of dissipation in potential flows and long waves equations

is thoroughly investigated in Chapter 4.

A brief description of the common mathematical model used to study water waves

follows. The horizontal coordinates are denoted by x and y, and the vertical coordinate
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by z. The horizontal gradient is denoted by

∇ :=

(
∂

∂x
,
∂

∂y

)
.

The horizontal velocity is denoted by

u(x, y, z, t) = (u, v)

and the vertical velocity by w(x, y, z, t). The three-dimensional flow of an inviscid and

incompressible fluid is governed by the conservation of mass

∇ · u +
∂w

∂z
= 0 (1)

and by the conservation of momentum

ρ
Du

Dt
= −∇p, ρ

Dw

Dt
= −ρg − ∂p

∂z
, (2)

where Df
Dt

is the material derivative defined as Df
Dt

:= ∂f
∂t

+ ~u · ∇f , ~u = (u, w) = (u, v, w).

In (2), ρ is the density of water (assumed to be constant throughout the fluid domain), g

is the acceleration due to gravity and p(x, y, z, t) the pressure field.

The assumption that the flow is irrotational is commonly made to analyze surface

waves. Then there exists a scalar function φ(x, y, z, t) (the velocity potential) such that

u = ∇φ, w =
∂φ

∂z
.

The continuity equation (1) becomes

∇2φ+
∂2φ

∂z2
= 0 . (3)

The equation of momentum conservation (2) can be integrated into Bernoulli’s equation

∂φ

∂t
+

1

2
|∇φ|2 +

1

2

(
∂φ

∂z

)2

+ gz +
p− p0

ρ
= 0 , (4)

which is valid everywhere in the fluid. The constant p0 is a pressure of reference, for

example the atmospheric pressure. The effects of surface tension are not important for

tsunami propagation.
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Classical formulation

The surface wave problem consists in solving Laplace’s equation (3) in a domain Ω(t)

bounded above by a moving free surface (the interface between air and water) and below

by a fixed solid boundary (the bottom).1 The free surface is represented by F (x, y, z, t) :=

η(x, y, t) − z = 0. The shape of the bottom is given by z = −h(x, y). The main driving

force is gravity.

The free surface must be found as part of the solution. Two boundary conditions are

required. The first one is the kinematic condition. It can be stated as DF/Dt = 0 (the

material derivative of F vanishes), which leads to

ηt +∇φ · ∇η − φz = 0 at z = η(x, y, t) . (5)

The second boundary condition is the dynamic condition which states that the normal

stresses must be in balance at the free surface. The normal stress at the free surface is

given by the difference in pressure. Bernoulli’s equation (4) evaluated on the free surface

z = η gives

φt +
1
2
|∇φ|2 + 1

2
φ2
z + gη = 0 at z = η(x, y, t) . (6)

Finally, the boundary condition at the bottom is

∇φ · ∇h+ φz = 0 at z = −h(x, y) . (7)

To summarize, the goal is to solve the set of equations (3), (5), (6) and (7) for η(x, y, t)

and φ(x, y, z, t). When the initial value problem is integrated, the fields η(x, y, 0) and

φ(x, y, z, 0) must be specified at t = 0. The conservation of momentum equation (2) is not

required in the solution procedure; it is used a posteriori to find the pressure p once η and

φ have been found.

In the following subsections, we will consider various approximations of the full water-

wave equations. One is the system of Boussinesq equations, that retains nonlinearity and

dispersion up to a certain order. Another one is the system of nonlinear shallow-water

equations that retains nonlinearity but no dispersion. The simplest one is the system of

linear shallow-water equations. The concept of shallow water is based on the smallness

of the ratio between water depth and wavelength. In the case of tsunamis propagating

on the surface of deep oceans, one can consider that shallow-water theory is appropriate

because the water depth (typically several kilometers) is much smaller than the wavelength

(typically several hundred kilometers).

1The surface wave problem can be easily extended to the case of a moving bottom. This extension may

be needed to model tsunami generation if the bottom deformation is relatively slow.
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Dimensionless equations

The derivation of shallow-water type equations is a classical topic. Two dimensionless

numbers, which are supposed to be small, are introduced:

α =
a

d
≪ 1, β =

d2

ℓ2
≪ 1, (8)

where d is a typical water depth, a a typical wave amplitude and ℓ a typical wavelength.

The assumptions on the smallness of these two numbers are satisfied for the Indian Ocean

tsunami. Indeed the satellite altimetry observations of the tsunami waves obtained by two

satellites that passed over the Indian Ocean a couple of hours after the rupture occurred

give an amplitude a of roughly 60 cm in the open ocean. The typical wavelength estimated

from the width of the segments that experienced slip is between 160 and 240 km [LKA+05].

The water depth ranges from 4 km towards the west of the rupture to 1 km towards the

east. These values give the following ranges for the two dimensionless numbers:

1.5× 10−4 < α < 6× 10−4, 1.7× 10−5 < β < 6.25× 10−4. (9)

The equations are more transparent when written in dimensionless variables. The new

independent variables are

x = ℓx̃, y = ℓỹ, z = dz̃, t = ℓt̃/c0, (10)

where c0 =
√
gd, the famous speed of propagation of tsunamis in the open ocean ranging

from 356 km/h for a 1 km water depth to 712 km/h for a 4 km water depth. The new

dependent variables are

η = aη̃, h = dh̃, φ = gaℓφ̃/c0. (11)

In dimensionless form, and after dropping the tildes, the equations become

β∇2φ+ φzz = 0, (12)

β∇φ · ∇h+ φz = 0 at z = −h(x, y), (13)

βηt + αβ∇φ · ∇η = φz at z = αη(x, y, t), (14)

βφt +
1
2
αβ|∇φ|2 + 1

2
αφ2

z + βη = 0 at z = αη(x, y, t). (15)

So far, no approximation has been made. In particular, we have not used the fact that the

numbers α and β are small.

Shallow-water equations

When β is small, the water is considered to be shallow. The linearized theory of water

waves is recovered by letting α go to zero. For the shallow water-wave theory, one assumes
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that β is small and expand φ in terms of β:

φ = φ0 + βφ1 + β2φ2 + · · · .

This expansion is substituted into the governing equation and the boundary conditions.

The lowest-order term in Laplace’s equation is

φ0zz = 0. (16)

The boundary conditions imply that φ0 = φ0(x, y, t). Thus the vertical velocity component

is zero and the horizontal velocity components are independent of the vertical coordinate

z at lowest order. Let φ0x = u(x, y, t) and φ0y = v(x, y, t). Assume now for simplicity that

the water depth is constant (h = 1). Solving Laplace’s equation and taking into account

the bottom kinematic condition yields the following expressions for φ1 and φ2:

φ1(x, y, z, t) = −1
2
(1 + z)2(ux + vy), (17)

φ2(x, y, z, t) = 1
24

(1 + z)4[(∇2u)x + (∇2v)y]. (18)

The next step consists in retaining terms of requested order in the free-surface boundary

conditions. Powers of α will appear when expanding in Taylor series the free-surface

conditions around z = 0. For example, if one keeps terms of order αβ and β2 in the dynamic

boundary condition (15) and in the kinematic boundary condition (14), one obtains

βφ0t − 1
2
β2(utx + vty) + βη + 1

2
αβ(u2 + v2) = 0, (19)

β[ηt + α(uηx + vηy) + (1 + αη)(ux + vy)] = 1
6
β2[(∇2u)x + (∇2v)y]. (20)

Differentiating (19) first with respect to x and then to respect to y gives a set of two

equations:

ut + α(uux + vvx) + ηx − 1
2
β(utxx + vtxy) = 0, (21)

vt + α(uuy + vvy) + ηy − 1
2
β(utxy + vtyy) = 0. (22)

The kinematic condition (20) can be rewritten as

ηt + [u(1 + αη)]x + [v(1 + αη)]y = 1
6
β[(∇2u)x + (∇2v)y]. (23)

Equations (21)–(23) contain in fact various shallow-water models. The so-called funda-

mental shallow-water equations are obtained by neglecting the terms of order β:

ut + α(uux + vuy) + ηx = 0, (24)

vt + α(uvx + vvy) + ηy = 0, (25)

ηt + [u(1 + αη)]x + [v(1 + αη)]y = 0. (26)
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Recall that we assumed h to be constant for the derivation. Going back to an arbitrary

water depth and to dimensional variables, the system of nonlinear shallow water equations

reads

ut + uux + vuy + gηx = 0, (27)

vt + uvx + vvy + gηy = 0, (28)

ηt + [u(h+ η)]x + [v(h+ η)]y = 0. (29)

This system of equations has been used for example by Titov and Synolakis for the nu-

merical computation of tidal wave run-up [TS98]. Note that this model does not include

any bottom friction terms. To solve the problem of tsunami generation caused by bottom

displacement, the motion of the seafloor obtained from seismological models [Oka85] can

be prescribed during a time t0. Usually t0 is assumed to be small, so that the bottom

displacement is considered as an instantaneous vertical displacement. This assumption

may not be appropriate for slow events.

The satellite altimetry observations of the Indian Ocean tsunami clearly show dispersive

effects. The question of dispersive effects in tsunamis is open. Most propagation codes

ignore dispersion. A few propagation codes that include dispersion have been developed

[DGK06]. A well-known code is FUNWAVE, developed at the University of Delaware over

the past ten years [KWC+98]. Dispersive shallow water-wave models are presented next.

Boussinesq equations

An additional dimensionless number, sometimes called the Stokes number (in other

references it is called Ursell number as well), is introduced:

S =
α

β
. (30)

For the Indian Ocean tsunami, one finds

0.24 < S < 46. (31)

Therefore the additional assumption that S ≈ 1 may be realistic.

In this subsection, we provide the guidelines to derive Boussinesq-type systems of equa-

tions [BCS02]. Of course, the variation of bathymetry is essential for the propagation of

tsunamis, but for the derivation the water depth will be assumed to be constant. Some

notation is introduced. The potential evaluated along the free surface is denoted by

Φ(x, y, t) := φ(x, y, η, t). The derivatives of the velocity potential evaluated on the free

surface are denoted by Φ(∗)(x, y, t) := φ∗(x, y, η, t), where the star stands for x, y, z or t.
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Consequently, Φ∗ (defined for ∗ 6= z) and Φ(∗) have different meanings. They are however

related since

Φ∗ = Φ(∗) + Φ(z)η∗ .

The vertical velocity at the free surface is denoted by W (x, y, t) := φz(x, y, η, t).

The boundary conditions on the free surface (5) and (6) become

ηt +∇Φ · ∇η −W (1 +∇η · ∇η) = 0, (32)

Φt + gη + 1
2
|∇Φ|2 − 1

2
W 2(1 +∇η · ∇η) = 0. (33)

These two nonlinear equations provide time-stepping for η and Φ. In addition, Laplace’s

equation as well as the kinematic condition on the bottom must be satisfied. In order

to relate the free-surface variables with the bottom variables, one must solve Laplace’s

equation in the whole water column. In Boussinesq-type models, the velocity potential is

represented as a formal expansion,

φ(x, y, z, t) =
∞∑

n=0

φ(n)(x, y, t) zn. (34)

Here the expansion is about z = 0, which is the location of the free surface at rest.

Demanding that φ formally satisfy Laplace’s equation leads to a recurrence relation between

φ(n) and φ(n+2). Let φo denote the velocity potential at z = 0, uo the horizontal velocity

at z = 0, and wo the vertical velocity at z = 0. Note that φo and wo are nothing else than

φ(0) and φ(1). The potential φ can be expressed in terms of φo and wo only. Finally, one

obtains the velocity field in the whole water column (−h ≤ z ≤ η) [MBS03]:

u(x, y, z, t) = cos(z∇)uo + sin(z∇)wo, (35)

w(x, y, z, t) = cos(z∇)wo − sin(z∇)uo. (36)

Here the cosine and sine operators are infinite Taylor series operators defined by

cos(z∇) =
∞∑

n=0

(−1)n
z2n

(2n)!
∇2n, sin(z∇) =

∞∑

n=0

(−1)n
z2n+1

(2n+ 1)!
∇2n+1.

Then one can substitute the representation (35)-(36) into the kinematic bottom condi-

tion and use successive approximations to obtain an explicit recursive expression for wo in

terms of uo to infinite order in h∇.

A wide variety of Boussinesq systems can been derived [MBS03]. One can generalize

the expansions to an arbitrary z−level, instead of the z = 0 level. The Taylor series for the

cosine and sine operators can be truncated, Padé approximants can be used in operators

at z = −h and/or at z = 0.
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The classical Boussinesq equations are more transparent when written in the dimen-

sionless variables used in the previous subsection. We further assume that h is constant,

drop the tildes, and write the equations for one spatial dimension (x). Performing the

expansion about z = 0 leads to the vanishing of the odd terms in the velocity potential.

Substituting the expression for φ into the free-surface boundary conditions evaluated at

z = 1 + αη(x, t) leads to two equations in η and φo with terms of various order in α and

β. The small parameters α and β are of the same order, while η and φo as well as their

partial derivatives are of order one.

Classical Boussinesq equations

The classical Boussinesq equations are obtained by keeping all terms that are at most

linear in α or β. In the derivation of the fundamental nonlinear shallow-water equations

(24)–(26), the terms in β were neglected. It is therefore implicitly assumed that the Stokes

number is large. Since the cube of the water depth appears in the denominator of the

Stokes number (S = α/β = aℓ2/d3), it means that the Stokes number is 64 times larger

in a 1 km depth than in a 4 km depth! Based on these arguments, dispersion is more

important to the west of the rupture. Considering the Stokes number to be of order one

leads to the following system in dimensional form2:

ut + uux + gηx − 1
2
h2utxx = 0, (37)

ηt + [u(h+ η)]x − 1
6
h3uxxx = 0. (38)

The classical Boussinesq equations are in fact slightly different. They are obtained by

replacing u with the depth averaged velocity

1

h

∫ η

−h

u dz.

They read

ut + uux + gηx − 1
3
h2utxx = 0, (39)

ηt + [u(h+ η)]x = 0. (40)

A number of variants of the classical Boussinesq system were studied by Bona et al.

[BCS02], who in particular showed that depending on the modeling of dispersion the lin-

earization about the rest state may or may not be well-posed.

2Equations (37) and (38) could have been obtained from equations (21) and (23).
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Korteweg–de Vries equation

The previous system allows the propagation of waves in both the positive and negative

x−directions. Seeking solutions travelling in only one direction, for example the positive

x−direction, leads to a single equation for η, the Korteweg–de Vries equation:

ηt + c0

(
1 +

3η

2d

)
ηx +

1

6
c0d

2ηxxx = 0, (41)

where d is the water depth. It admits solitary wave solutions travelling at speed V in the

form

η(x, t) = a sech 2

(√
3a

4d3
(x− V t)

)
, with V = c0

(
1 +

a

2d

)
.

The solitary wave solutions of the Korteweg–de Vries equation are of elevation (a > 0) and

travel faster than c0. Their speed increases with amplitude. Note that a natural length

scale appears:

ℓ =

√
4d3

3a
.

For the Indian Ocean tsunami, it gives roughly ℓ = 377 km. It is of the order of magnitude

of the wavelength estimated from the width of the segments that experienced slip.

Solitary waves exist for more general nonlinear dispersive equations such as KdV-KdV,

and Bona-Smith systems. Their existence was recently studied in [FDG05, DM04]. Nu-

merical methods (based on Galerkin discretization) for the approximation of solutions to

KdV-KdV systems are discussed in [BDM07].

Energy of a tsunami

The energy of the earthquake is measured via the strain energy released by the faulting.

The part of the energy transmitted to the tsunami wave is less than one percent Lay et al.

[LKA+05]. They estimate the tsunami energy to be 4.2× 1015 J. They do not give details

on how they obtained this estimate. However, a simple calculation based on considering

the tsunami as a soliton

η(x) = a sech 2
(x
ℓ

)
, u(x) = αc0 sech 2

(x
ℓ

)
,

gives for the energy

E =
1√
3
α3/2ρd2(c20 + gd)

∫ ∞

−∞

sech 4x dx+O(α2).
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The value for the integral is 4/3. The numerical estimate for E is close to that of Lay

et al. (2005) [LKA+05]. Incidently, at this level of approximation, there is equipartition

between kinetic and potential energy. It is also important to point out that a tsunami

being a shallow water wave, the whole water column is moving as the wave propagates.

For the parameter values used so far, the maximum horizontal current is 3 cm/s. However,

as the water depth decreases, the current increases and becomes important when the depth

becomes less than 500 m. Additional properties of solitary waves can be found for example

in [LH74].

Tsunami run-up

The last phase of a tsunami is its run-up and inundation. Although in some cases it may

be important to consider the coupling between fluid and structures, we restrict ourselves

to the description of the fluid flow. The problem of waves climbing a beach is a classical

one [CG58]. The transformations used by Carrier and Greenspan are still used nowadays.

The basis of their analysis is the one-dimensional counterpart of the system (27)–(29). In

addition, they assume the depth to be of uniform slope: h = −x tan θ. Introduce the

following dimensionless quantities, where ℓ is a characteristic length3:

x = ℓx̃, η = ℓη̃, u =
√
gℓ ũ, t =

√
ℓ/g t̃, c2 = (h+ η)/ℓ.

After dropping the tildes, the dimensionless system of equations (27)-(29) becomes

ut + uux + ηx = 0,

ηt + [u(−x tan θ + η)]x = 0.

In terms of the variable c, these equations become

ut + uux + 2ccx + tan θ = 0,

2ct + cux + 2ucx = 0.

The equations written in characteristic form are

[
∂

∂t
+ (u+ c)

∂

∂x

]
(u+ 2c+ t tan θ) = 0,

[
∂

∂t
+ (u− c) ∂

∂x

]
(u− 2c+ t tan θ) = 0.

3In fact there is no obvious characteristic length in this idealized problem. Some authors simply say at

this point that ℓ is specific to the problem under consideration.
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The characteristic curves C+ and C− as well as the Riemann invariants are

C+ :
dx

dt
= u+ c, u+ 2c+ t tan θ = r,

C− :
dx

dt
= u− c, u− 2c+ t tan θ = s.

Next one can rewrite the hyperbolic equations in terms of the new variables λ and σ defined

as follows:

λ

2
=

1

2
(r + s) = u+ t tan θ,

σ

4
=

1

4
(r − s) = c.

One obtains

xs −
[
1

4
(3r + s)− t tan θ

]
ts = 0,

xr −
[
1

4
(r + 3s)− t tan θ

]
tr = 0.

The elimination of x results in the linear second-order equation for t

σ(tλλ − tσσ)− 3tσ = 0. (42)

Since u + t tan θ = λ/2, u must also satisfy (42). Introducing the potential φ(σ, λ) such

that

u =
φσ
σ
,

one obtains the equation

(σφσ)σ − σφλλ = 0

after integrating once. Two major simplifications have been obtained. The nonlinear set of

equations have been reduced to a linear equation for u or φ and the free boundary is now

the fixed line σ = 0 in the (σ, λ)-plane. The free boundary is the instantaneous shoreline

c = 0, which moves as a wave climbs a beach.

The above formulation has been used by several authors to study the run-up of vari-

ous types of waves on sloping beaches [Syn87, TS94, CWY03, TT05]. Synolakis [Syn87]

validated analytical results by comparing them with experiments on the run-up of a soli-

tary wave on a plane beach. He used Carrier-Greenspan transformation and linear theory

solutions to draw several important conclusions:

• A law predicting the maximum run-up of non-breaking waves was given;
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• The author found different run-up variations for breaking and non-breaking solitary

waves;

• Nonlinear theory models adequately describe surface profiles of non-breaking waves;

• Different criteria were considered whether a solitary wave with given height/depth

ratio will break or not as it climbs up a sloping beach.

Later, it was shown that leading depression N -waves run-up higher than leading eleva-

tion N -waves, suggesting that perhaps the solitary wave model may not be adequate for

predicting an upper limit for the run-up of near-shore generated tsunamis. In [KS06] it

was shown that there is a difference in the maximum run-up by a factor 2 in shoreline

motions with and without initial velocity. This difference suggests strong implications for

the run-up predictions and tsunami warning system [GBM+05] if the appropriate initial

velocity is not specified.

There is a rule of thumb that says that the run-up does not usually exceed twice the

fault slip. Since run-ups of 30 meters were observed in Sumatra during the Boxing Day

tsunami, the slip might have been of 15 meters or even more.

Analytical models are useful, especially to perform parametric studies. However, the

breaking of tsunami waves as well as the subsequent floodings must be studied numerically.

The most natural methods that can be used are the free surface capturing methods based

on a finite volume discretisation, such as the Volume Of Fluid (VOF) or the Level Set

methods, and the family of Smoothed Particle Hydrodynamics methods (SPH), applied to

free-surface flow problems [Mon94, GGD04, GGCCD05]. Such methods allow a study of

flood wave dynamics, of wave breaking on the land behind beaches, and of the flow over

rising ground with and without the presence of obstacles. This task is an essential part

of tsunami modelling, since it allows the determination of the level of risk due to major

flooding, the prediction of the resulting water levels in the flooded areas, the determination

of security zones. It also provides some help in the conception and validation of protection

systems in the most exposed areas.

The present manuscript is organized as follows. In Chapter 1 we extensively investi-

gate the tsunami generation process (see Sections 1.1 and 1.3) and the first minutes of

propagation (Section 1.2) using different mathematical models. Several important conclu-

sions about the physics of tsunami waves were drew out. Chapter 2 discusses different

possibilities of introducing dissipative effects into Boussinesq equations. Pros and cons of

two models under consideration are revealed. In Chapter 3 our attention is attracted by

two-phase flows and wave impact problem. An efficient numerical method based on a finite

volume scheme is described and a few numerical results are presented. In the last Chapter

4 we return to the investigation of dissipative effects onto water waves. Novel bottom
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boundary layer correction is derived and the new set of governing equations is thoroughly

analysed.



Chapter 1

Tsunami generation modelling

From a drop of water a logician could predict an Atlantic or a Niagara.

Sir Arthur Conan Doyle
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1.1 Waves generated by a moving bottom

Waves at the surface of a liquid can be generated by various mechanisms: wind blowing

on the free surface, wavemaker, moving disturbance on the bottom or the surface, or even

inside the liquid, fall of an object into the liquid, liquid inside a moving container, etc. In

this chapter, we concentrate on the case where the waves are created by a given motion of

the bottom. One example is the generation of tsunamis by a sudden seafloor deformation.

There are different natural phenomena that can lead to a tsunami. For example, one

can mention submarine slumps, slides, volcanic explosions, etc. In this chapter we use a

submarine faulting generation mechanism as tsunami source. The resulting waves have

some well-known features. For example, characteristic wavelengths are large and wave

amplitudes are small compared with water depth.

Two factors are usually necessary for an accurate modelling of tsunamis: information

on the magnitude and distribution of the displacements caused by the earthquake, and

a model of surface gravity waves generation resulting from this motion of the seafloor.

Most studies of tsunami generation assume that the initial free-surface deformation is

equal to the vertical displacement of the ocean bottom. The details of wave motion are

neglected during the time that the source operates. While this is often justified because the

earthquake rupture occurs very rapidly, there are some specific cases where the time scale

of the bottom deformation may become an important factor. This was emphasized for

example by Trifunac and Todorovska [TT01], who considered the generation of tsunamis

by a slowly spreading uplift of the seafloor and were able to explain some observations.

During the 26 December 2004 Sumatra-Andaman event, there was in the northern extent

of the source a relatively slow faulting motion that led to significant vertical bottom motion

but left little record in the seismic data. It is interesting to point out that it is the inversion
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of tide-gauge data from Paradip, the northernmost of the Indian east-coast stations, that

led Neetu et al. [NSS+05] to conclude that the source length was greater by roughly 30%

than the initial estimate of Lay et al. [LKA+05]. Incidentally, the generation time is also

longer for landslide tsunamis.

Our study is restricted to the water region where the incompressible Euler equations

for potential flow can be linearized. The wave propagation away from the source can be

investigated by shallow water models which may or may not take into account nonlinear

effects and frequency dispersion. Such models include the Korteweg-de Vries equation

[KdV95] for unidirectional propagation, nonlinear shallow-water equations and Boussinesq-

type models [Bou71b, Per66, BBM72].

Several authors have modeled the incompressible fluid layer as a special case of an

elastic medium [Pod68, Kaj63, Gus72, AG73, Gus76]. In our opinion it may be convenient

to model the liquid by an elastic material from a mathematical point of view, but it is

questionable from a physical point of view. The crust was modeled as an elastic isotropic

half-space. This assumption will also be adopted in the present study.

The problem of tsunami generation has been considered by a number of authors: see for

example [Car71, vdD72, BvdDP73]. The models discussed in these papers lack flexibility

in terms of modelling the source due to the earthquake. The present study provides some

extensions. A good review on the subject is [Sab86].

Here we essentially follow the framework proposed by Hammack [Ham73] and others.

The tsunami generation problem is reduced to a Cauchy-Poisson boundary value problem

in a region of constant depth. The main extensions given in the present work consist in

three-dimensional modelling and more realistic source models. This approach was followed

recently in [TT01, THT02], where the mathematical model was the same as in [Ham73]

but the source was different.

Most analytical studies of linearized wave motion use integral transform methods. The

complexity of the integral solutions forced many authors [Kaj63, Kel63] to use asymptotic

methods such as the method of stationary phase to estimate the far-field behaviour of the

solutions. In the present study we have also obtained asymptotic formulas for integral

solutions. They are useful from a qualitative point of view, but in practice it is better

to use numerical integration formulas [Fil28] that take into account the oscillatory nature

of the integrals. All the numerical results presented in this section were obtained in this

manner.

One should use asymptotic solutions with caution since they approximate exact solu-

tions of the linearized problem. The relative importance of linear and nonlinear effects can
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be measured by the Stokes (or Ursell) number [Urs53]:

U :=
a/h

(kh)2
=

a

k2h3
,

where k is a wave number, a a typical wave amplitude and h the water depth. For U ≫ 1,

the nonlinear effects control wave propagation and only nonlinear models are applicable.

Ursell [Urs53] proved that near the wave front U behaves like

U ∼ t
1
3 .

Hence, regardless of how small nonlinear effects are initially, they will become important.

Recently, the methodology used in this thesis for tsunami generation was applied in the

framework of the Boussinesq equations [Mit07] over uneven bottom. These equations have

the advantage of being two-dimensional while the physical problem and, consequently, the

potential flow formulation are 3D. On the other hand, Boussinesq equations represent a

long wave approximation to the complete water-wave problem.

1.1.1 Source model

The inversion of seismic wave data allows the reconstruction of permanent deformations

of the sea bottom following earthquakes. In spite of the complexity of the seismic source

and of the internal structure of the earth, scientists have been relatively successful in using

simple models for the source. One of these models is Okada’s model [Oka85]. Its description

follows.

The fracture zones, along which the foci of earthquakes are to be found, have been

described in various papers. For example, it has been suggested that Volterra’s theory of

dislocations might be the proper tool for a quantitative description of these fracture zones

[Ste58]. This suggestion was made for the following reason. If the mechanism involved

in earthquakes and the fracture zones is indeed one of fracture, discontinuities in the

displacement components across the fractured surface will exist. As dislocation theory

may be described as that part of the theory of elasticity dealing with surfaces across which

the displacement field is discontinuous, the suggestion makes sense.

As is often done in mathematical physics, it is necessary for simplicity’s sake to make

some assumptions. Here we neglect the curvature of the earth, its gravity, temperature,

magnetism, non-homogeneity, and consider a semi-infinite medium, which is homogeneous

and isotropic. We further assume that the laws of classical linear elasticity theory hold.

Several studies showed that the effect of earth curvature is negligible for shallow events

at distances of less than 20◦ [BMSS69, BMSS70, SM71]. The sensitivity to earth topogra-

phy, homogeneity, isotropy and half-space assumptions was studied and discussed recently
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[Mas03]. A commercially available code, ABACUS, which is based on a finite element

model (FEM), was used. Six FEMs were constructed to test the sensitivity of deformation

predictions to each assumption. The author came to the conclusion that the vertical layer-

ing of lateral inhomogeneity can sometimes cause considerable effects on the deformation

fields.

The usual boundary conditions for dealing with earth problems require that the surface

of the elastic medium (the earth) shall be free from forces. The resulting mixed boundary-

value problem was solved a century ago [Vol07]. Later, Steketee proposed an alternative

method to solve this problem using Green’s functions [Ste58].

1.1.2 Volterra’s theory of dislocations

In order to introduce the concept of dislocation and for simplicity’s sake, this section is

devoted to the case of an entire elastic space, as was done in the original paper by Volterra

[Vol07].

Let O be the origin of a Cartesian coordinate system in an infinite elastic medium, xi
the Cartesian coordinates (i = 1, 2, 3), and ei a unit vector in the positive xi−direction. A

force F = Fek at O generates a displacement field uki (P,O) at point P , which is determined

by the well-known Somigliana tensor

uki (P,O) =
F

8πµ
(δikr, nn − αr, ik), with α =

λ+ µ

λ+ 2µ
. (1.1)

In this relation δik is the Kronecker delta, λ and µ are Lamé’s constants, and r is the

distance from P to O. The coefficient α can be rewritten as α = 1/2(1 − ν), where ν is

Poisson’s ratio. Later we will also use Young’s modulus E, which is defined as

E =
µ (3λ+ 2µ)

λ+ µ
.

The notation r, i means ∂r/∂xi and the summation convention applies.

The stresses due to the displacement field (1.1) are easily computed from Hooke’s law:

σij = λδijuk,k + µ(ui,j + uj,i). (1.2)

One finds

σkij(P,O) = −αF
4π

(
3xixjxk
r5

+
µ

λ+ µ

δkixj + δkjxi − δijxk
r3

)
.

The components of the force per unit area on a surface element are denoted as follows:

T ki = σkijνj,
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where the νj’s are the components of the normal to the surface element. A Volterra dislo-

cation is defined as a surface Σ in the elastic medium across which there is a discontinuity

∆ui in the displacement fields of the type

∆ui = u+
i − u−i = Ui + Ωijxj, (1.3)

Ωij = −Ωji. (1.4)

Equation (1.3) in which Ui and Ωij are constants is the well-known Weingarten relation

which states that the discontinuity ∆ui should be of the type of a rigid body displacement,

thereby maintaining continuity of the components of stress and strain across Σ.

The displacement field in an infinite elastic medium due to the dislocation is then

determined by Volterra’s formula [Vol07]

uk(Q) =
1

F

∫∫

Σ

∆uiT
k
i dS. (1.5)

Once the surface Σ is given, the dislocation is essentially determined by the six constants

Ui and Ωij. Therefore we also write

uk(Q) =
Ui
F

∫∫

Σ

σkij(P,Q)νjdS +
Ωij

F

∫∫

Σ

{xjσkil(P,Q)− xiσkjl(P,Q)}νldS, (1.6)

where Ωij takes only the values Ω12, Ω23, Ω31. Following Volterra [Vol07] and Love [Lov44]

we call each of the six integrals in (1.6) an elementary dislocation.

It is clear from (1.5) and (1.6) that the computation of the displacement field uk(Q)

is performed as follows. A force Fek is applied at Q, and the stresses σkij(P,Q) that this

force generates are computed at the points P (xi) on Σ. In particular the components of

the force on Σ are computed. After multiplication with prescribed weights of magnitude

∆ui these forces are integrated over Σ to give the displacement component in Q due to the

dislocation on Σ.

1.1.3 Dislocations in elastic half-space

When the case of an elastic half-space is considered, equation (1.5) remains valid, but

we have to replace σkij in T ki by another tensor ωkij. This can be explained by the fact that

the elementary solutions for a half-space are different from Somigliana solution (1.1).

The ωkij can be obtained from the displacements corresponding to nuclei of strain in a

half-space through relation (1.2). Steketee showed a method of obtaining the six ωkij fields

by using a Green’s function and derived ωk12, which is relevant to a vertical strike-slip fault

(see below). Maruyama derived the remaining five functions [Mar64].
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It is interesting to mention here that historically these solutions were first derived in

a straightforward manner by Mindlin [Min36, MC50], who gave explicit expressions of the

displacement and stress fields for half-space nuclei of strain consisting of single forces with

and without moment. It is only necessary to write the single force results since the other

forms can be obtained by taking appropriate derivatives. The method consists in finding

the displacement field in Westergaard’s form of the Galerkin vector [Wes35]. This vector is

then determined by taking a linear combination of some biharmonic elementary solutions.

The coefficients are chosen to satisfy boundary and equilibrium conditions. These solutions

were also derived by Press in a slightly different manner [Pre65].

x

y

z

W

L

D

δ

U1

U2U3

Figure 1.1: Coordinate system adopted in this study and geometry of the source model.

Here, we take the Cartesian coordinate system shown in Figure 1.1. The elastic medium

occupies the region x3 ≤ 0 and the x1−axis is taken to be parallel to the strike direction

of the fault. In this coordinate system, uji (x1, x2, x3; ξ1, ξ2, ξ3) is the ith component of

the displacement at (x1, x2, x3) due to the jth direction point force of magnitude F at

(ξ1, ξ2, ξ3). It can be expressed as follows [Oka85, Min36, Pre65, Oka92]:

uji (x1, x2, x3) = ujiA(x1, x2,−x3)− ujiA(x1, x2, x3) (1.7)

+ujiB(x1, x2, x3) + x3u
j
iC(x1, x2, x3),
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x

y

φ

Figure 1.2: Illustration for strike angle definition.

where

ujiA =
F

8πµ

(
(2− α)

δij
R

+ α
RiRj

R3

)
,

ujiB =
F

4πµ

(
δij
R

+
RiRj

R3
+

1− α
α

[ δij
R +R3

+

+
Riδj3 −Rjδi3(1− δj3)

R(R +R3)
− RiRj

R(R +R3)2
(1− δi3)(1− δj3)

])
,

ujiC =
F

4πµ
(1− 2δi3)

(
(2− α)

Riδj3 −Rjδi3
R3

+ αξ3

[
δij
R3
− 3

RiRj

R5

])
.

In these expressions R1 = x1 − ξ1, R2 = x2 − ξ2, R3 = −x3 − ξ3 and R2 = R2
1 +R2

2 +R2
3.

The first term in equation (1.7), ujiA(x1, x2,−x3), is the well-known Somigliana tensor,

which represents the displacement field due to a single force placed at (ξ1, ξ2, ξ3) in an

infinite medium [Lov44]. The second term also looks like a Somigliana tensor. This term

corresponds to a contribution from an image source of the given point force placed at

(ξ1, ξ2,−ξ3) in the infinite medium. The third term, ujiB(x1, x2, x3), and ujiC(x1, x2, x3) in

the fourth term are naturally depth dependent. When x3 is set equal to zero in equation

(1.7), the first and the second terms cancel each other, and the fourth term vanishes. The

remaining term, ujiB(x1, x2, 0), reduces to the formula for the surface displacement field
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due to a point force in a half-space [Oka85]:





u1
1 = F

4πµ

(
1
R

+ (x1−ξ1)2

R3 + µ
λ+µ

[
1

R−ξ3
− (x1−ξ1)2

R(R−ξ3)2

])
,

u1
2 = F

4πµ
(x1 − ξ1)(x2 − ξ2)

(
1
R3 − µ

λ+µ
1

R(R−ξ3)2

)
,

u1
3 = F

4πµ
(x1 − ξ1)

(
− ξ3
R3 − µ

λ+µ
1

R(R−ξ3)

)
,





u2
1 = F

4πµ
(x1 − ξ1)(x2 − ξ2)

(
1
R3 − µ

λ+µ
1

R(R−ξ3)2

)
,

u2
2 = F

4πµ

(
1
R

+ (x2−ξ2)2

R3 + µ
λ+µ

[
1

R−ξ3
− (x2−ξ2)2

R(R−ξ3)2

])
,

u2
3 = F

4πµ
(x2 − ξ2)

(
− ξ3
R3 − µ

λ+µ
1

R(R−ξ3)

)
,





u3
1 = F

4πµ
(x1 − ξ1)

(
− ξ3
R3 + µ

λ+µ
1

R(R−ξ3)

)
,

u3
2 = F

4πµ
(x2 − ξ2)

(
− ξ3
R3 + µ

λ+µ
1

R(R−ξ3)

)
,

u3
3 = F

4πµ

(
1
R

+
ξ23
R3 + µ

λ+µ
1
R

)
.

In these formulas R2 = (x1 − ξ1)2 + (x2 − ξ2)2 + ξ2
3 .

In order to obtain the displacements due to the dislocation we need to calculate the

corresponding ξk-derivatives of the point force solution (1.7) and to insert them in Volterra’s

formula (1.5)

ui =
1

F

∫∫

Σ

∆uj

[
λδjk

∂uni
∂ξn

+ µ

(
∂uji
∂ξk

+
∂uki
∂ξj

)]
νk dS.

The ξk-derivatives are expressed as follows:

∂uji
∂ξk

(x1, x2, x3) =
∂ujiA
∂ξk

(x1, x2,−x3)−
∂ujiA
∂ξk

(x1, x2, x3) +

+
∂ujiB
∂ξk

(x1, x2, x3) + x3
∂ujiC
∂ξk

(x1, x2, x3),
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with

∂ujiA
∂ξk

=
F

8πµ

(
(2− α)

Rk

R3
δij − α

Riδjk +Rjδik
R3

+ 3α
RiRjRk

R5

)
,

∂ujiB
∂ξk

=
F

4πµ

(
−Riδjk +Rjδik −Rkδij

R3
+ 3

RiRjRk

R5
+

+
1− α
α

[ δ3kR +Rk

R(R +R3)2
δij −

δikδj3 − δjkδi3(1− δj3)
R(R +R3)

+

+
(
Riδj3 −Rjδi3(1− δj3)

)δ3kR2 +Rk(2R +R3)

R3(R +R3)2
+

+(1− δi3)(1− δj3)
(Riδjk +Rjδik
R(R +R3)2

−RiRj
2δ3kR

2 +Rk(3R +R3)

R3(R +R3)3

)])
,

∂ujiC
∂ξk

=
F

4πµ
(1− 2δi3)

(
(2− α)

[δjkδi3 − δikδj3
R3

+
3Rk(Riδj3 −Rjδi3)

R5

]
+

+αδ3k

[ δij
R3
− 3RiRj

R5

]
+ 3αξ3

[Riδjk +Rjδik +Rkδij
R5

− 5RiRjRk

R7

])
.

1.1.3.1 Finite rectangular source

Let us now consider a more practical problem. We define the elementary dislocations

U1, U2 and U3, corresponding to the strike-slip, dip-slip and tensile components of an

arbitrary dislocation. In Figure 1.1 each vector represents the direction of the elementary

faults. The vector D is the so-called Burger’s vector, which shows how both sides of the

fault are spread out: D = u+ − u−.

A general dislocation can be determined by three angles: the dip angle δ of the fault

(0 ≤ δ ≤ π), the slip or rake angle θ (0 ≤ θ ≤ π), and the angle φ between the fault plane

and Burger’s vector D. When dealing with a geophysical application, an additional angle,

the azimuth or strike (see Figure 1.2 for strike angle definition), is introduced in order

to provide an orientation of the fault. The general situation is schematically described in

Figure 1.3.

For a finite rectangular fault with length L and width W occurring at depth d (Fig-

ure 1.3), the deformation field can be evaluated analytically by a change of variables and

by integrating over the rectangle. This was done by several authors [Oka85, Oka92, Chi63,

SM74, IS79]. Here we give the results of their computations. The final results are repre-

sented below in compact form, using Chinnery’s notation ‖ to represent the substitution

f(ξ, η)‖ = f(x, p)− f(x, p−W )− f(x− L, p) + f(x− L, p−W ),

where p = y cos δ + d sin δ. Next we introduce the notation

q = y sin δ − d cos δ, ỹ = η cos δ + q sin δ, d̃ = η sin δ − q cos δ
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x

y
z

O

D W

δ
φ

θ

L

x′

Figure 1.3: Geometry of the source model (dip angle δ, depth df , length L, width W ) and

orientation of Burger’s vector D (rake angle θ, angle φ between the fault plane and Burger’s

vector).

and

R2 = ξ2 + η2 + q2 = ξ2 + ỹ2 + d̃2, X2 = ξ2 + q2.

The quantities U1, U2 and U3 are linked to Burger’s vector through the identities

U1 = |D| cosφ cos θ, U2 = |D| cosφ sin θ, U3 = |D| sinφ.

For a strike-slip dislocation, one has

u1 = −U1

2π

(
ξq

R(R + η)
+ arctan

ξη

qR
+ I1 sin δ

)∥∥∥∥ ,

u2 = −U1

2π

(
ỹq

R(R + η)
+
q cos δ

R + η
+ I2 sin δ

)∥∥∥∥ ,

u3 = −U1

2π

(
d̃q

R(R + η)
+
q sin δ

R + η
+ I4 sin δ

)∥∥∥∥∥ .

For a dip-slip dislocation, one has

u1 = −U2

2π

( q
R
− I3 sin δ cos δ

)∥∥∥ ,

u2 = −U2

2π

(
ỹq

R(R + ξ)
+ cos δ arctan

ξη

qR
− I1 sin δ cos δ

)∥∥∥∥ ,

u3 = −U2

2π

(
d̃q

R(R + ξ)
+ sin δ arctan

ξη

qR
− I5 sin δ cos δ

)∥∥∥∥∥ .
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For a tensile fault dislocation, one has

u1 =
U3

2π

(
q2

R(R + η)
− I3 sin2 δ

)∥∥∥∥ ,

u2 =
U3

2π

(
−d̃q

R(R + ξ)
− sin δ

[
ξq

R(R + η)
− arctan

ξη

qR

]
− I1 sin2 δ

)∥∥∥∥∥ ,

u3 =
U3

2π

(
ỹq

R(R + ξ)
+ cos δ

[
ξq

R(R + η)
− arctan

ξη

qR

]
− I5 sin2 δ

)∥∥∥∥ .

The terms I1, . . . , I5 are given by

I1 = − µ

λ+ µ

ξ

(R + d̃) cos δ
− tan δI5,

I2 = − µ

λ+ µ
log(R + η)− I3,

I3 =
µ

λ+ µ

[
1

cos δ

ỹ

R + d̃
− log(R + η)

]
+ tan δI4,

I4 =
µ

µ+ λ

1

cos δ

(
log(R + d̃)− sin δ log(R + η)

)
,

I5 =
µ

λ+ µ

2

cos δ
arctan

η(X + q cos δ) +X(R +X) sin δ

ξ(R +X) cos δ
,

and if cos δ = 0,

I1 = − µ

2(λ+ µ)

ξq

(R + d̃)2
,

I3 =
µ

2(λ+ µ)

[
η

R + d̃
+

ỹq

(R + d̃)2
− log(R + η)

]
,

I4 = − µ

λ+ µ

q

R + d̃
,

I5 = − µ

λ+ µ

ξ sin δ

R + d̃
.

Figures 1.4, 1.5, and 1.6 show the free-surface deformation due to the three elementary

dislocations. The values of the parameters are given in Table 1.1.

1.1.3.2 Curvilinear fault

In the previous subsection analytical formulas for the free-surface deformation in the

special case of a rectangular fault were given. In fact, Volterra’s formula (1.5) allows to

evaluate the displacement field that accompanies fault events with much more general

geometry. The shape of the fault and Burger’s vector are suggested by seismologists and
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parameter value

Dip angle δ 13◦

Fault depth d, km 25

Fault length L, km 220

Fault width W , km 90

Ui, m 15

Young modulus E, GPa 9.5

Poisson’s ratio ν 0.23

Table 1.1: Parameter set used in Figures 1.4, 1.5, and 1.6.

Figure 1.4: Dimensionless free-surface deformation z/a due to dip-slip faulting: φ = 0, θ = π/2,

D = (0, U2, 0). Here a is |D| (15 m in the present application). The horizontal distances x and y

are expressed in kilometers.



14 Tsunami generation

Figure 1.5: Dimensionless free-surface deformation z/a due to strike-slip faulting: φ = 0, θ = 0,

D = (U1, 0, 0). Here a is |D| (15 m in the present application). The horizontal distances x and y

are expressed in kilometers.

Figure 1.6: Dimensionless free-surface deformation z/a due to tensile faulting: φ = π/2, D =

(0, 0, U3). Here a is |D|. The horizontal distances x and y are expressed in kilometers.



1.1 Waves generated by a moving bottom 15

after numerical integration one can obtain the deformation of the seafloor for more general

types of events as well.

Here we will consider the case of a fault whose geometry is described by an elliptical

arc (see Figure 1.7).

x

y
z

O

D n
d

b

a

Figure 1.7: Geometry of a fault with elliptical shape

The parametric equations of this surface are given by

x(ξ, η) = ξ, 0 ≤ ξ ≤ a, y(ξ, η) = η, − c
2
≤ η ≤ c

2
,

z(ξ, η) = −(b+ d) +
b

a

√
a2 − ξ2.

Then the unit normal to this surface can be easily calculated:

n =

(
bξ√

a4 + (b2 − a2)ξ2
, 0,

a
√
a2 − ξ2

√
a4 + (b2 − a2)ξ2

)
.

We also need to compute the coefficients of the first fundamental form in order to reduce

the surface integral in (1.5) to a double Riemann integral. These coefficients are

E =
a4 + ξ2(b2 − a2)

a2(a2 − ξ2)
, F = 0, G = 1
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parameter value

Depth event d, km 20

Ellipse semiminor axis a, km 17

Ellipse semimajor axis b, km 6

Fault width c, km 15

Young modulus E, GPa 9.5

Poisson’s ratio ν 0.23

Table 1.2: Parameter set used in Figure 1.8.

and the surface element dS is

dS =
√
EG− F 2 dξdη =

1

a

√
a4 + ξ2(b2 − a2)√

a2 − ξ2
dξdη.

Since in the crust the hydrostatic pressure is very large, it is natural to impose the

condition that D · n = 0. The physical meaning of this condition is that both sides of

the fault slide and do not detach. This condition is obviously satisfied if we take Burger’s

vector as

D = D

(
a
√
a2 − ξ2

√
a4 + ξ2(b2 − a2)

, 0,− bξ√
a4 + ξ2(b2 − a2)

)
.

It is evident that D = |D|.
The numerical integration was performed using a 9-point two-dimensional Gauss-type

integration formula. The result is presented on Figure 1.8. The parameter values are given

in Table 1.2.

The example considered in this subsection may not be physically relevant. However

it shows how Okada’s solution can be extended. For a more precise modeling of the

faulting event we need to have more information about the earthquake source and its

related parameters.

After having reviewed the description of the source, we now switch to the deformation

of the ocean surface following a submarine earthquake. The traditional approach for hy-

drodynamic modelers is to use elastic models similar to the model we just described with

the seismic parameters as input in order to evaluate the details of the seafloor deformation.

Then this deformation is translated to the free surface of the ocean and serves as initial

condition of the evolution problem described in the next section.

1.1.4 Solution in fluid domain

The fluid domain is supposed to represent the ocean above the fault area. Let us

consider the fluid domain Ω shown in Figure 1.9. It is bounded above by the free surface of
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Figure 1.8: Free-surface deformation due to curvilinear faulting. The horizontal distances x

and y are expressed in kilometers.

x

y
z

O

hΩ

η(x, y, t)

ζ(x, y, t)

Figure 1.9: Definition of the fluid domain and coordinate system
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the ocean and below by the rigid ocean floor. The domain Ω is unbounded in the horizontal

directions x and y, and can be written as

Ω = R2 × [−h+ ζ(x, y, t), η(x, y, t)] .

Initially the fluid is assumed to be at rest and the sea bottom to be horizontal. Thus,

at time t = 0, the free surface and the sea bottom are defined by z = 0 and z = −h,
respectively. For time t > 0 the bottom boundary moves in a prescribed manner which is

given by

z = −h+ ζ(x, y, t).

The displacement of the sea bottom is assumed to have all the properties required to com-

pute its Fourier transform in x, y and its Laplace transform in t. The resulting deformation

of the free surface z = η(x, y, t) must be found. It is also assumed that the fluid is in-

compressible and the flow is irrotational. The latter implies the existence of a velocity

potential φ(x, y, z, t) which completely describes this flow. By definition of φ, the fluid

velocity vector can be expressed as q = ∇φ. Thus, the continuity equation becomes

∇ · q = ∆φ = 0, (x, y, z) ∈ Ω. (1.8)

The potential φ(x, y, z, t) must also satisfy the following kinematic boundary conditions on

the free-surface and the solid boundary, respectively:

∂φ

∂z
=

∂η

∂t
+
∂φ

∂x

∂η

∂x
+
∂φ

∂y

∂η

∂y
, z = η(x, y, t), (1.9)

∂φ

∂z
=

∂ζ

∂t
+
∂φ

∂x

∂ζ

∂x
+
∂φ

∂y

∂ζ

∂y
, z = −h+ ζ(x, y, t). (1.10)

Assuming that viscous effects as well as capillary effects can be neglected, the dynamic

condition to be satisfied on the free surface reads

∂φ

∂t
+

1

2
|∇φ|2 + gη = 0, z = η(x, y, t). (1.11)

As described above, the initial conditions are given by

η(x, y, 0) = 0 and ζ(x, y, 0) = 0. (1.12)

The significance of the various terms in the equations is more transparent when the

equations are written in dimensionless variables. The new independent variables are

x̃ = κx, ỹ = κy, z̃ = κz, t̃ = σt,

where κ is a wavenumber and σ is a typical frequency. Note that here the same unit length

is used in the horizontal and vertical directions, as opposed to shallow-water theory.
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The new dependent variables are

η̃ =
η

a
, ζ̃ =

ζ

a
, φ̃ =

κ

aσ
φ,

where a is a characteristic wave amplitude. A dimensionless water depth is also introduced:

h̃ = κh.

In dimensionless form, and after dropping the tildes, equations (1.8–1.11) become

∆φ = 0, (x, y, z) ∈ Ω,

∂φ

∂z
=

∂η

∂t
+ κa

(
∂φ

∂x

∂η

∂x
+
∂φ

∂y

∂η

∂y

)
, z = κa η(x, y, t),

∂φ

∂z
=

∂ζ

∂t
+ κa

(
∂φ

∂x

∂ζ

∂x
+
∂φ

∂y

∂ζ

∂y

)
, z = −h+ κa ζ(x, y, t),

∂φ

∂t
+

1

2
κa|∇φ|2 +

gκ

σ2
η = 0, z = κa η(x, y, t).

Finding the solution to this problem is quite a difficult task due to the nonlinearities

and the a priori unknown free surface. In this study we linearize the equations and the

boundary conditions by taking the limit as κa→ 0. In fact, the linearized problem can be

found by expanding the unknown functions as power series of a small parameter ε := κa.

Collecting the lowest order terms in ε yields the linear approximation. For the sake of

convenience, we now switch back to the physical variables. The linearized problem in

dimensional variables reads

∆φ = 0, (x, y, z) ∈ R2 × [−h, 0], (1.13)

∂φ

∂z
=
∂η

∂t
, z = 0, (1.14)

∂φ

∂z
=
∂ζ

∂t
, z = −h, (1.15)

∂φ

∂t
+ gη = 0, z = 0. (1.16)

Combining equations (1.14) and (1.16) yields the single free-surface condition

∂2φ

∂t2
+ g

∂φ

∂z
= 0, z = 0. (1.17)
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This problem will be solved by using the method of integral transforms. We apply the

Fourier transform in (x, y):

F[f ] = f̂(k, ℓ) =

∫

R2

f(x, y)e−i(kx+ℓy) dxdy,

F−1[f̂ ] = f(x, y) =
1

(2π)2

∫

R2

f̂(k, ℓ)ei(kx+ℓy) dkdℓ,

and the Laplace transform in time t:

L[g] = g(s) =

+∞∫

0

g(t)e−st dt.

For the combined Fourier and Laplace transforms, the following notation is introduced:

FL[F (x, y, t)] = F (k, ℓ, s) =

∫

R2

e−i(kx+ℓy) dxdy

+∞∫

0

F (x, y, t)e−st dt.

After applying the transforms, equations (1.13), (1.15) and (1.17) become

d2φ

dz2
− (k2 + ℓ2)φ = 0, (1.18)

dφ

dz
(k, ℓ,−h, s) = sζ(k, ℓ, s), (1.19)

s2φ(k, ℓ, 0, s) + g
dφ

dz
(k, ℓ, 0, s) = 0. (1.20)

The transformed free-surface elevation can be obtained from (1.16):

η(k, ℓ, s) = −s
g
φ(k, ℓ, 0, s). (1.21)

A general solution of equation (1.18) is given by

φ(k, ℓ, z, s) = A(k, ℓ, s) cosh(mz) +B(k, ℓ, s) sinh(mz), (1.22)

where m =
√
k2 + ℓ2. The functions A(k, ℓ, s) and B(k, ℓ, s) can be easily found from the

boundary conditions (1.19) and (1.20):

A(k, ℓ, s) = − gsζ(k, ℓ, s)

cosh(mh)[s2 + gm tanh(mh)]
,

B(k, ℓ, s) =
s3ζ(k, ℓ, s)

m cosh(mh)[s2 + gm tanh(mh)]
.
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Figure 1.10: Plot of the frequency ω(m) =
√

gm tanh(mh) and its derivatives dω/dm, d2ω/dm2.

The acceleration due to gravity g and the water depth h have been set equal to 1.

From now on, the notation

ω =
√
gm tanh(mh) (1.23)

will be used. The graphs of ω(m), ω′(m) and ω′′(m) are shown in Figure 1.10.

Substituting the expressions for the functions A, B in (1.22) yields

φ(k, ℓ, z, s) = − gsζ(k, ℓ, s)

cosh(mh)(s2 + ω2)

(
cosh(mz)− s2

gm
sinh(mz)

)
. (1.24)

1.1.5 Free-surface elevation

From (1.21), the free-surface elevation becomes

η(k, ℓ, s) =
s2ζ(k, ℓ, s)

cosh(mh)(s2 + ω2)
.

Inverting the Laplace and Fourier transforms provides the general integral solution

η(x, y, t) =
1

(2π)2

∫∫

R2

ei(kx+ℓy)

cosh(mh)

1

2πi

µ+i∞∫

µ−i∞

s2ζ(k, ℓ, s)

s2 + ω2
estds dkdℓ. (1.25)
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One can evaluate the Laplace integral in (1.25) using the convolution theorem:

L[f1(t) ∗ f2(t)] = f1(s)f2(s).

It yields

η(x, y, t) =
1

(2π)2

∫∫

R2

ei(kx+ℓy)

cosh(mh)

t∫

0

(1− ω sinωτ)ζ(k, ℓ, t− τ)dτ dkdℓ.

This general solution contains as a special case the solution for an axisymmetric prob-

lem, which we now describe in detail. Assume that the initial solid boundary deformation

is axisymmetric:

ζ(x, y) = ζ(r), r =
√
x2 + y2.

The Fourier transform F[ζ(x, y)] = ζ̂(k, ℓ) of an axisymmetric function is also axisymmetric

with respect to transformation parameters, i.e.

ζ̂(k, ℓ) = ζ̂(m), m :=
√
k2 + ℓ2.

In the following calculation, we use the notation ψ = arctan(ℓ/k). One has

ζ̂(k, ℓ) =

∫∫

R2

ζ(r)e−i(kx+ℓy) dxdy =

2π∫

0

dφ

∞∫

0

ζ(r)e−ir(k cosφ+ℓ sinφ)rdr =

=

2π∫

0

dφ

∞∫

0

rζ(r)e−irm cos(φ−ψ)dr =

∞∫

0

rζ(r)dr

π∫

0

(e−irm cosφ + eirm cosφ)dφ.

Using an integral representation of Bessel functions [GR00] finally yields

ζ̂(k, ℓ) = 2π

∞∫

0

rζ(r)J0(mr)dr ≡ ζ̂(m).

It follows that

η(r, t) =
1

(2π)2

2π∫

0

dψ

+∞∫

0

meimr cos(φ−ψ)

cosh(mh)
dm

t∫

0

(1− ω sinωτ)ζ(m, t− τ) dτ

=
1

2π

+∞∫

0

m
J0(mr)

cosh(mh)
dm

t∫

0

(1− ω sinωτ)ζ(m, t− τ)dτ.
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The last equation gives the general integral solution of the problem in the case of an

axisymmetric seabed deformation. Below we no longer make this assumption since Okada’s

solution does not have this property.

In the present study we consider seabed deformations with the following structure:

ζ(x, y, t) := ζ(x, y)T (t). (1.26)

Mathematically we separate the time dependence from the spatial coordinates. There are

two main reasons for doing this. First of all we want to be able to invert analytically

the Laplace transform. The second reason is more fundamental. In fact, dynamic source

models are not easily available. Okada’s solution, which was described in the previous

section, provides the static sea-bed deformation ζ0(x, y) and we will consider different

time dependencies T (t) to model the time evolution of the source. Four scenarios will be

considered:

1. Instantaneous: Ti(t) = H(t), where H(t) denotes the Heaviside step function,

2. Exponential:

Te(t) =

{
0, t < 0,

1− e−αt, t ≥ 0,
with α > 0,

3. Trigonometric: Tc(t) = H(t− t0) + 1
2
[1− cos(πt/t0)]H(t0 − t),

4. Linear:

Tl(t) =





0, t < 0,

t/t0, 0 ≤ t ≤ t0,

1, t > t0.

The typical graphs of Tc(t) and Te(t) are shown in Figure 1.11. Inserting (1.26) into (1.25)

yields

η(x, y, t) =
1

(2π)2

∫∫

R2

ζ̂(k, ℓ)ei(kx+ℓy)

cosh(mh)

1

2πi

µ+i∞∫

µ−i∞

s2T(s)

s2 + ω2
estds dkdℓ. (1.27)

Clearly, η(x, y, t) depends continuously on the source ζ(x, y). Physically it means that

small variations of ζ (in a reasonable space of functions such as L2) yield small variations

of η. Mathematically this problem is said to be well-posed, and this property is essential

for modelling the physical processes, since it means that small modifications of the ground

motion (for example, the error in measurements) do not induce huge modifications of the

wave patterns.

Using the special representation (1.26) of seabed deformation and prescribed time-

dependencies, one can compute analytically the Laplace integral in (1.27). To perform this
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Figure 1.11: Typical graphs of Te(t) and Tc(t). Here we have set α = 6.2, t0 = 0.7.

integration, we first have to compute the Laplace transform of Ti,e,c,l(t). The results of

these computaions are given in Table 1.3.

scenario Laplace transform

Instantaneous L[Ti] = 1
s

Exponential L[Te] = α
s(α+s)

Trigonometric L[Tc] = γ2

2s(s2+γ2)
(1 + e−st0)

with γ = π
t0

Linear L[Tl] = 1−e−st0

t0s2

Table 1.3: Laplace transforms of different time-depencies for prescribed bottom motion.
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Inserting these formulas into the inverse Laplace integral yields

1

2πi

µ+i∞∫

µ−i∞

ests2Ti(s)

s2 + ω2
ds = cosωt,

1

2πi

µ+i∞∫

µ−i∞

ests2Te(s)

s2 + ω2
ds = − α2

α2 + ω2

(
e−αt − cosωt− ω

α
sinωt

)
,

1

2πi

µ+i∞∫

µ−i∞

ests2Tc(s)

s2 + ω2
ds =

γ2

2(γ2 − ω2)

(cosωt− cos γt+H(t− t0)[cosω(t− t0) + cos γt]) ,

1

2πi

µ+i∞∫

µ−i∞

ests2Tl(s)

s2 + ω2
ds =

sinωt−H(t− t0) sinω(t− t0)
ωt0

.

The final integral formulas for the free-surface elevations with different time dependen-

cies are as follows:

ηi(x, y, t) =
1

(2π)2

∫∫

R2

ζ̂(k, ℓ)ei(kx+ℓy)

cosh(mh)
cosωt dkdℓ,

ηe(x, y, t) =
−α2

(2π)2

∫∫

R2

ζ̂(k, ℓ)ei(kx+ℓy)

cosh(mh)

(
e−αt − cosωt− ω

α
sinωt

α2 + ω2

)
dkdℓ,

ηc(x, y, t) =
γ2

(2π)2

∫∫

R2

ζ̂(k, ℓ)ei(kx+ℓy)

2(γ2 − ω2) cosh(mh)

(cosωt− cos γt+H(t− t0)[cosω(t− t0) + cos γt]) dkdℓ,

ηl(x, y, t) =
1

(2π)2

∫∫

R2

ζ̂(k, ℓ)ei(kx+ℓy)

cosh(mh)

(
sinωt−H(t− t0) sinω(t− t0)

ωt0

)
dkdℓ.

1.1.6 Velocity field

In some applications it is important to know not only the free-surface elevation but also

the velocity field in the fluid domain. One of the goals of this work is to provide an initial

condition for tsunami propagation codes. For the time being, tsunami modelers take initial

seabed deformations and translate them directly to the free surface in order to obtain the

initial condition η(x, y, 0). Since a priori there is no information on the flow velocities,
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they take a zero velocity field as initial condition for the velocity: ∇φ(x, y, z, 0) = 0. The

present computations show that it is indeed a very good approximation if the generation

time is short.

In equation (1.24), we obtained the Fourier transform of the velocity potential φ(x, y, z, t):

φ(k, ℓ, z, s) = − gsζ̂(k, ℓ)T(s)

cosh(mh)(s2 + ω2)

(
cosh(mz)− s2

gm
sinh(mz)

)
. (1.28)

Let us evaluate the velocity field at an arbitrary level z = βh with −1 ≤ β ≤ 0. In

the linear approximation the value β = 0 corresponds to the free surface while β = −1

corresponds to the bottom. Next we introduce some notation. The horizontal velocities

are denoted by u. The horizontal gradient (∂/∂x, ∂/∂y) is denoted by ∇h. The vertical

velocity component is simply w. The Fourier transform parameters are denoted k = (k, ℓ).

Taking the Fourier and Laplace transforms of

u(x, y, t) = ∇hφ(x, y, z, t)|z=βh
yields

u(k, ℓ, s) = −iφ(k, ℓ, βh, s)k

= i
gsζ̂(k, ℓ)T(s)

cosh(mh)(s2 + ω2)

(
cosh(βmh)− s2

gm
sinh(βmh)

)
k.

Inverting the Fourier and Laplace transforms gives the general formula for the horizontal

velocities:

u(x, y, t) =
ig

4π2

∫∫

R2

kζ̂(k, ℓ) cosh(mβh)ei(kx+ℓy)

cosh(mh)

1

2πi

µ+i∞∫

µ−i∞

sT(s)est

s2 + ω2
ds dk

− i

4π2

∫∫

R2

kζ̂(k, ℓ) sinh(mβh)ei(kx+ℓy)

m cosh(mh)

1

2πi

µ+i∞∫

µ−i∞

s3T(s)est

s2 + ω2
ds dk.

After a few computations, one finds the formulas for the time dependencies Ti, Te and

Tl. For simplicity we only give the velocities along the free surface (β = 0):

ui(x, y, t) =
ig

4π2

∫∫

R2

kζ̂(k, ℓ)ei(kx+ℓy)

cosh(mh)

sinωt

ω
dk,

ue(x, y, t) =
igα

4π2

∫∫

R2

kζ̂(k, ℓ)ei(kx+ℓy)

(α2 + ω2) cosh(mh)

(
e−αt − cosωt+

α

ω
sinωt

)
dk,

ul(x, y, t) =
ig

4t0π2

∫∫

R2

kζ̂(k, ℓ)ei(kx+ℓy)

ω2 cosh(mh)

(1− cosωt−H(t− t0)[1− cosω(t− t0)]) dk.
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Next we determine the vertical component of the velocity w(x, y, z, t). It is easy to

obtain the Fourier–Laplace transform w(k, ℓ, z, s) by differentiating (1.28):

w(k, ℓ, z, s) =
∂φ

∂z
=

sgζ̂(k, ℓ)T(s)

cosh(mh)(s2 + ω2)

(
s2

g
cosh(mz)−m sinh(mz)

)
.

Inverting this transform yields

w(x, y, z, t) =
1

4π2

∫∫

R2

cosh(mz)ζ̂(k, ℓ)

cosh(mh)
ei(kx+ℓy)

1

2πi

µ+i∞∫

µ−i∞

s3T(s)est

s2 + ω2
ds dk

− g

4π2

∫∫

R2

m sinh(mz)ζ̂(k, ℓ)

cosh(mh)
ei(kx+ℓy)

1

2πi

µ+i∞∫

µ−i∞

sT(s)est

s2 + ω2
ds dk,

for −h < z ≤ 0. One can easily obtain the expression of the vertical velocity at a given

vertical level by substituting z = βh in the expression for w.

The easiest way to compute the vertical velocity w along the free surface is to use

the boundary condition (1.14). Indeed, the expression for w can be simply derived by

differentiating the known formula for ηi,e,c,l(x, y, t). Note that formally the derivative gives

the distributions δ(t) and δ(t − t0) under the integral sign. It is a consequence of the

idealized time behaviour (such as the instantaneous scenario) and it is a disadvantage of

the Laplace transform method. In order to avoid these distributions we can consider the

solutions only for t > 0 and t 6= t0. From a practical point of view there is no restriction

since for any ε > 0 we can set t = ε or t = t0 + ε. For small values of ε this will give a very

good approximation of the solution behaviour at these “critical” instants of time. Under

this assumption we give the distribution-free expressions for the vertical velocity along the

free surface:

wi(x, y, t) = − 1

4π2

∫∫

R2

ζ̂(k, ℓ)ei(kx+ℓy)

cosh(mh)
ω sinωt dk,

we(x, y, t) =
α3

4π2

∫∫

R2

ζ̂(k, ℓ)ei(kx+ℓy)

(α2 + ω2) cosh(mh)

(
e−αt +

ω2

α2
cosωt− ω

α
sinωt

)
dk,

wc(x, y, t) = − γ2

4π2

∫∫

R2

ζ̂(k, ℓ)ei(kx+ℓy)

2(γ2 − ω2) cosh(mh)

(
ω sinωt− γ sin γt

+H(t− t0)[ω sinω(t− t0) + γ sin γt]
)
dk,

wl(x, y, t) =
1

4t0π2

∫∫

R2

ζ̂(k, ℓ)ei(kx+ℓy)

cosh(mh)
[cosωt−H(t− t0) cosω(t− t0)] dk.
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1.1.6.1 Pressure on the bottom

Since tsunameters have one component that measures the pressure at the bottom (bot-

tom pressure recorder or simply BPR [GBM+05]), it is interesting to provide as well the

expression pb(x, y, t) for the pressure at the bottom. The pressure p(x, y, z, t) can be

obtained from Bernoulli’s equation, which was written explicitly for the free surface in

equation (1.11), but is valid everywhere in the fluid:

∂φ

∂t
+

1

2
|∇φ|2 + gz +

p

ρ
= 0. (1.29)

After linearization, equation (1.29) becomes

∂φ

∂t
+ gz +

p

ρ
= 0. (1.30)

Along the bottom, it reduces to

∂φ

∂t
+ g(−h+ ζ) +

pb
ρ

= 0, z = −h. (1.31)

The time-derivative of the velocity potential is readily available in Fourier space. Inverting

the Fourier and Laplace transforms and evaluating the resulting expression at z = −h
gives for the four time scenarios, respectively,

∂φi
∂t

= − g

(2π)2

∫∫

R2

ζ̂(k, ℓ)ei(kx+ℓy)

cosh2(mh)
cosωt dk,

∂φe
∂t

=
gα2

(2π)2

∫∫

R2

ζ̂(k, ℓ)ei(kx+ℓy)

α2 + ω2

(
e−αt − cosωt− ω

α
sinωt

)
dk +

α4

(2π)2

∫∫

R2

ζ̂(k, ℓ) tanh(mh)ei(kx+ℓy)

m(α2 + ω2)

(
e−αt +

(ω
α

)2

cosωt+
(ω
α

)3

sinωt

)
dk,

∂φl
∂t

= − g

t0(2π)2

∫∫

R2

ζ̂(k, ℓ)ei(kx+ℓy)

ω cosh2(mh)
[sinωt−H(t− t0) sinω(t− t0)] dk.

The bottom pressure deviation from the hydrostatic pressure is then given by

pb(x, y, t) = − ρ∂φ
∂t

∣∣∣∣
z=−h

− ρgζ.

Plots of the bottom pressure will be given in Section 1.1.8.
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1.1.7 Asymptotic analysis of integral solutions

In this subsection, we apply the method of stationary phase in order to estimate the far-

field behaviour of the solutions. There is a lot of literature on this topic (see for example

[Erd56, Mur92, PL71, BH86, ES94]). This method is a classical method in asymptotic

analysis. To our knowledge, the stationary phase method was first used by Kelvin [Kel87]

in the context of linear water-wave theory.

The motivation to obtain asymptotic formulas for integral solutions was mainly due to

numerical difficulties to calculate the solutions for large values of x and y. From equation

(1.25), it is clear that the integrand is highly oscillatory. In order to be able to resolve these

oscillations, several discretization points are needed per period. This becomes extremely

expensive as r =
√
x2 + y2 → ∞. The numerical method used in the present study is

based on a Filon-type quadrature formula [Fil28] and has been adapted to double integrals

with exp[i(kx + ℓy)] oscillations. The idea of this method consists in interpolating only

the amplitude of the integrand at discretization points by some kind of polynomial or

spline and then performing exact integration for the oscillating part of the integrand. This

method seems to be quite efficient.

Let us first obtain an asymptotic representation for integral solutions of the general

form

η(x, y, t) =
1

4π2

∫∫

R2

ζ̂(k, ℓ)ei(kx+ℓy)

cosh(mh)
T (m, t) dkdℓ, m =

√
k2 + ℓ2. (1.32)

Comparing with equation (1.27) shows that T (m, t) is in fact

T (m, t) =
1

2πi

µ+i∞∫

µ−i∞

s2T(s)

s2 + ω2
est ds.

For example, we showed above that for an instantaneous seabed deformation T (m, t) =

cosωt, where ω2 = gm tanhmh. For the time being, we do not specify the time behaviour

T(s).

In equation (1.32), we switch to polar coordinates m and ψ = arctan(ℓ/k):

η(x, y, t) =
1

4π2

∞∫

0

2π∫

0

ζ̂(m,ψ)eimr cos(ϕ−ψ)

cosh(mh)
T (m, t)m dψdm

=
1

4π2

∞∫

0

mT (m, t)

cosh(mh)
dm

2π∫

0

ζ̂(m,ψ)eimr cos(ϕ−ψ) dψ,

where (r, ϕ) are the polar coordinates of (x, y). In the last expression, the phase function

is Φ = mr cos(ϕ − ψ). Stationary phase points satisfy the condition ∂Φ/∂ψ = 0, which
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yields two phases: ψ1 = ϕ and ψ2 = ϕ + π. An approximation to equation (1.32) is then

obtained by applying the method of stationary phase to the integral over ψ:

η(r, φ, t) ≃ 1√
8π3r

∞∫

0

√
mT (m, t)

cosh(mh)

(
ζ̂(m,ϕ)ei(

π
4
−mr) + ζ̂(m,ϕ+ π)ei(mr−

π
4
)
)
dm.

This expression cannot be simplified if we do not make any further hypotheses on the

function T (m, t).

Since we are looking for the far field solution behaviour, the details of wave formation are

not important. Thus we will assume that the initial seabed deformation is instantaneous:

T (m, t) = cosωt =
eiωt + e−iωt

2
.

Inserting this particular function T (m, t) in equation (1.32) yields

η(r, ϕ, t) =
1

8π2

(
I1 + I2

)
,

where

I1 =

∞∫

0

mζ̂(m,ψ)

cosh(mh)

2π∫

0

ei(ωt+mr cos(ϕ−ψ)) dψdm,

I2 =

∞∫

0

mζ̂(m,ψ)

cosh(mh)

2π∫

0

ei(−ωt+mr cos(ϕ−ψ)) dψdm.

The stationary phase function in these integrals is

Φ(m,ψ) = mr cos(ϕ− ψ)± ωt, ω2(m) = gm tanhmh.

The points of stationary phase are then obtained from the conditions

∂Φ

∂ψ
= 0,

∂Φ

∂m
= 0.

The first equation gives two points, ψ1 = ϕ and ψ2 = ϕ+π, as before. The second condition

yields
r

t
cos(ϕ− ψ1,2) = ∓ dω

dm
. (1.33)

Since dω/dm decreases from
√
gh to 0 as m goes from 0 to ∞ (see Figure 1.10), this

equation has a unique solution for m if |r/t| ≤ √gh. This unique solution will be denoted

by m∗.
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For |r| > t
√
gh, there is no stationary phase. It means physically that the wave has

not yet reached this region. So we can approximately set I1 ≈ 0 and I2 ≈ 0. From the

positivity of the function dω/dm one can deduce that ψ1 = ϕ is a stationary phase point

only for the integral I2. Similarly, ψ2 = ϕ+π is a stationary point only for the integral I1.

Let us obtain an asymptotic formula for the first integral:

I1 ≈
∞∫

0

m

cosh(mh)

(√
2π

mr
ζ̂(m,ϕ+ π)ei(ωt−mr)ei

π
4

)
dm

=

√
2π

r
ei

π
4

∞∫

0

ζ̂(m,ϕ+ π)

cosh(mh)

√
mei(ωt−mr) dm

≈
√

2π

r
ei

π
4

(√
2πm∗

|ω′′(m∗)| t
ζ̂(m∗, ϕ+ π)

cosh(m∗h)
ei(ω(m∗)t−m∗r)e−i

π
4

)

=
2π

t

√
m∗

−ω′′ω′

ζ̂(m∗, ϕ+ π)

cosh(m∗h)
ei(ω(m∗)t−m∗r).

In this estimate we have used equation (1.33) evaluated at the stationary phase point

(m∗, ψ2):

r = t
dω

dm

∣∣∣∣
m=m∗

. (1.34)

Similarly one can obtain an estimate for the integral I2:

I2 ≈
2π

t

√
m∗

−ω′′ω′

ζ̂(m∗, ϕ)

cosh(m∗h)
e−i(ω(m∗)t−m∗r).

Asymptotic values have been obtained for the integrals. As is easily observed from the

expressions for I1 and I2, the wave train decays as 1/t, or 1/r, which is equivalent since r

and t are connected by relation (1.34).

1.1.8 Numerical results

A lot of numerical computations based on the analytical formulas obtained in the

previous sections have been performed. Because of the lack of information about the

real dynamical characteristics of tsunami sources, we cannot really conclude which time

dependence gives the best description of tsunami generation. At this stage it is still very

difficult or even impossible.

Numerical experiments showed that the largest wave amplitudes with the time depen-

dence Tc(t) were obtained for relatively small values of the characteristic time t0. The

exponential dependence has shown higher amplitudes for relatively longer characteristic
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Parameter Value

Young modulus, E, GPa 9.5

Poisson ratio, ν 0.27

Fault depth, d, km 20

Dip angle, δ, ◦ 13

Strike angle, θ, ◦ 90

Normal angle, φ, ◦ 0

Fault length, L, km 60

Fault width, W , km 40

Burger’s vector length, |D|, m 15

Water depth, h, km 4

Acceleration due to gravity, g, m/s2 9.8

Wave number, k, 1/m 10−4

Angular frequency, ω, Hz 10−2

Table 1.4: Physical parameters used in the numerical computations

times. The instantaneous scenario Ti gives at the free surface the initial seabed defor-

mation with a slightly lower amplitude (the factor that we obtained was typically about

0.8 ∼ 0.94). The water has a high-pass filter effect on the initial solid boundary deforma-

tion. The linear time dependence Tl(t) showed a linear growth of wave amplitude from 0

to also ≈ 0.9ζ0, where ζ0 = max
(x,y)∈R2

|ζ(x, y)|.

In this section we provide several plots (Figure 1.12) of the free-surface deformation.

For illustration purposes, we have chosen the instantaneous seabed deformation since it is

the most widely used. The values of the parameters used in the computations are given in

Table 1.4. We also give plots of the velocity components on the free surface a few seconds

(physical) after the instantaneous deformation (Figure 1.13). Finally, plots of the bottom

dynamic pressure are given in Figure 1.14.

From Figure 1.13 it is clear that the velocity field is really negligible in the beginning

of wave formation. Numerical computations showed that this situation does not change if

one takes other time-dependences.

The main focus of the present section is the generation of waves by a moving bottom.

The asymptotic behaviour of various sets of initial data propagating in a fluid of uniform

depth has been studied in detail by Hammack and Segur [HS74, HS78]. In particular, they

showed that the behaviours for an initial elevation wave and for an initial depression wave

are different.
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Figure 1.12: Free-surface elevation at t = 0.01, 0.6, 3, 5 in dimensionless time. In physical time

it corresponds to one second, one minute, five minutes and eight minutes and a half after the

initial seabed deformation.
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Figure 1.13: Components u, v and w of the velocity field computed along the free surface at

t = 0.01, that is one second after the initial seabed deformation.
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Figure 1.14: Bottom pressure at t = 0.01, 0.6, 3, 5 in dimensionless time. In physical time it

corresponds to one second, one minute, five minutes and eight minutes and a half after the initial

seabed deformation.
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1.2 Comparison between three-dimensional linear and non-

linear tsunami generation models

Tsunami wave modeling is a challenging task. In particular, it is essential to understand

the first minutes of a tsunami, its propagation and finally the resulting inundation and

impact on structures. The focus of the present work is on the generation process. There

are different natural phenomena that can lead to a tsunami. For example, one can mention

submarine mass failures, slides, volcanic eruptions, falls of asteroids, etc. We refer to the

recent review on tsunami science [SB06] for a complete bibliography on the topic. The

present work focuses on tsunami generation by earthquakes.

Two steps in modeling are necessary for an accurate description of tsunami genera-

tion: a model for the earthquake fed by the various seismic parameters, and a model for

the formation of surface gravity waves resulting from the deformation of the seafloor. In

the absence of sophisticated source models, one often uses analytical solutions based on

dislocation theory in an elastic half-space for the seafloor displacement [Oka85]. For the

resulting water motion, the standard practice is to transfer the inferred seafloor displace-

ment to the free surface of the ocean. In this study, we will call this approach the passive

generation approach.1 This approach leads to a well-posed initial value problem with zero

velocity. An open question for tsunami forecasting modelers is the validity of neglecting

the initial velocity. In a recent note, Dutykh et al. [DDK06] used linear theory to show

that indeed differences may exist between the standard passive generation and the active

generation that takes into account the dynamics of seafloor displacement. The transient

wave generation due to the coupling between the seafloor motion and the free surface has

been considered by a few authors only. One of the reasons is that it is commonly as-

sumed that the source details are not important.2 Ben-Menahem and Rosenman [BMR72]

calculated the two-dimensional radiation pattern from a moving source (linear theory).

Tuck and Hwang [Tuc74] solved the linear long-wave equation in the presence of a moving

bottom and a uniformly sloping beach. Hammack [Ham73] generated waves experimen-

tally by raising or lowering a box at one end of a channel. According to Synolakis and

Bernard [SB06], Houston and Garcia [HG74] were the first to use more geophysically real-

1In the pioneering paper [Kaj63], Kajiura analyzed the applicability of the passive approach using

Green’s functions. In the tsunami literature, this approach is sometimes called the piston model of tsunami

generation.
2As pointed out by Geist et al. [GTS06], the 2004 Indian Ocean tsunami shed some doubts about

this belief. The measurements from land based stations that use the Global Positioning System to track

ground movements revealed that the fault continued to slip after it stopped releasing seismic energy. Even

though this slip was relatively slow, it contributed to the tsunami and may explain the surprising tsunami

heights.
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istic initial conditions. For obvious reasons, the quantitative differences in the distribution

of seafloor displacement due to underwater earthquakes compared with more conventional

earthquakes are still poorly known. Villeneuve and Savage [VS93] derived model equa-

tions which combine the linear effect of frequency dispersion and the nonlinear effect of

amplitude dispersion, and included the effects of a moving bed. Todorovska and Trifunac

[TT01] considered the generation of tsunamis by a slowly spreading uplift of the seafloor.

In this work, we mostly follow the standard passive generation approach. Several

tsunami generation models and numerical methods suited for these models are presented

and compared. The focus of our work is on modelling the fluid motion. It is assumed that

the seabed deformation satisfies all the necessary hypotheses required to apply Okada’s

solution. The main objective is to confirm or infirm the lack of importance of nonlinear

effects and/or frequency dispersion in tsunami generation. This result may have impli-

cations in terms of computational cost. The goal is to optimize the ratio between the

complexity of the model and the accuracy of the results. Government agencies need to

compute accurately tsunami propagation in real time in order to know where to evacuate

people. Therefore any saving in computational time is crucial (see for example the code

MOST used by the National Oceanic and Atmospheric Administration in the US [TS98] or

the code TUNAMI developed by the Disaster Control Research Center in Japan). Liu and

Liggett [LL83] already performed comparisons between linear and nonlinear water waves

but their study was restricted to simple bottom deformations, namely the generation of

transient waves by an upthrust of a rectangular block, and the nonlinear computations

were restricted to two-dimensional flows. Bona et al. [BPS81] assessed how well a model

equation with weak nonlinearity and dispersion describes the propagation of surface wa-

ter waves generated at one end of a long channel. In their experiments, they found that

the inclusion of a dissipative term was more important than the inclusion of nonlinear-

ity, although the inclusion of nonlinearity was undoubtedly beneficial in describing the

observations. The importance of dispersive effects in tsunami propagation is not directly

addressed in the present study. Indeed these effects cannot be measured without taking

into account the duration (or distance) of tsunami propagation [Tuc79].

1.2.1 Physical problem description

In the whole chapter, the vertical coordinate is denoted by z, while the two horizontal

coordinates are denoted by x and y, respectively. The sea bottom deformation follow-

ing an underwater earthquake is a complex phenomenon. This is why, for theoretical or

experimental studies, researchers have often used simplified bottom motions such as the

vertical motion of a box. In order to determine the deformations of the sea bottom due

to an earthquake, we use the analytical solution obtained for a dislocation in an elastic
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parameter value

Dip angle δ 13◦

Fault depth df , km 3

Fault length L, km 6

Fault width W , km 4

Magnitude of Burger’s vector |D|, m 1

Young’s modulus E, GPa 9.5

Poisson ratio ν 0.23

Table 1.5: Typical parameter set for the source used to model the seafloor deformation due to an

earthquake in the present study. The dip angle, Young’s modulus and Poisson ratio correspond

roughly to those of the 2004 Sumatra event. The fault depth, length and width, as well as the

magnitude of Burger’s vector, have been reduced for computation purposes.

half-space [Oka85]. This solution, which at present time is used by the majority of tsunami

wave modelers to produce an initial condition for tsunami propagation simulations, pro-

vides an explicit expression of the bottom surface deformation that depends on a dozen

of source parameters such as the dip angle δ, fault depth df , fault dimensions (length and

width), Burger’s vector D, Young’s modulus, Poisson ratio, etc. Some of these parameters

are shown in Figure 1.3. More details can be found in [DD07c] for example.

A value of 90◦ for the dip angle corresponds to a vertical fault. Varying the fault slip

|D| does not change the co-seismic deformation pattern, only its magnitude. The values of

the parameters used in the present study are given in Table 1.5. A typical dip-slip solution

is shown in Figure 1.15 (the angle φ is equal to 0, while the rake angle θ is equal to π/2).

Let z = ζ(x, y, t) denote the deformation of the sea bottom. Hammack and Segur [HS74]

suggested that there are two main kinds of behaviour for the generated waves depending

on whether the net volume V of the initial bottom surface deformation

V =

∫

R2

ζ(x, y, 0) dxdy

is positive or not.3 A positive V is achieved for example for a “reverse fault”, i.e. when

the dip angle δ satisfies 0 ≤ δ ≤ π/2 or −π ≤ δ ≤ −π/2, as shown in Figure 1.16. A

negative V is achieved for a “normal fault”, i.e. when the dip angle δ satisfies π/2 ≤ δ ≤ π

or −π/2 ≤ δ ≤ 0.

The conclusions of [HS74] are based on the Korteweg–de Vries (KdV) equation and were

3However it should be noted that the analysis of [HS74] is restricted to one-dimensional uni-directional

waves. We assume here that their conclusions can be extended to two-dimensional bi-directional waves.



1.2 Comparison of tsunami generation models 39

Figure 1.15: Typical seafloor deformation due to dip-slip faulting. The parameters are those of

Table 1.5. The distances along the horizontal axes x and y are expressed in kilometers.
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Figure 1.16: Initial net volume V (in km3) of the seafloor displacement as a function of the dip

angle δ (in ◦). All the other parameters, which are given in Table 1.5, are kept constant.
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in part confirmed by their experiments. If V is positive, waves of stable form (solitons)

evolve and are followed by a dispersive train of oscillatory waves, regardless of the exact

structure of ζ(x, y, 0). If V is negative, and if the initial data is non-positive everywhere,

no solitons evolve. But, if V is negative and there is a region of elevation in the initial data

(which corresponds to a typical Okada solution for a normal fault), solitons can evolve

and we have checked this last result using the FNPF equations (see Figure 1.17). In this

study, we focus on the case where V is positive with a dip angle δ equal to 13◦, according

to the seismic data of the 26 December 2004 Sumatra-Andaman event (see for example

[LKA+05]). However, the sea bottom deformation often has an N−shape, with subsidence

on one side of the fault and uplift on the other side as shown in Figure 1.15. In that case,

one may expect the positive V behaviour on one side and the negative V behaviour on the

other side. Recall that the experiments of Hammack and Segur [HS74] were performed in

the presence of a vertical wall next to the moving bottom and their analysis was based on

the uni-directional KdV wave equation.

We now consider the fluid domain. A sketch is shown in Figure 1.9. The fluid domain

Ω is bounded above by the free surface and below by the rigid ocean floor. It is unbounded

in the horizontal x− and y− directions. So, one can write

Ω = R2 × [−h(x, y) + ζ(x, y, t), η(x, y, t)].

Before the earthquake the fluid is assumed to be at rest, thus the free surface and the

solid boundary are defined by z = 0 and z = −h(x, y), respectively. For simplicity h(x, y)

is assumed to be a constant. Of course, in real situations, this is never the case but for

our purpose the bottom bathymetry is not important. Starting at time t = 0, the solid

boundary moves in a prescribed manner which is given by

z = −h+ ζ(x, y, t), t ≥ 0.

The deformation of the sea bottom is assumed to have all the necessary properties

needed to compute its Fourier transform in x, y and its Laplace transform in t. The resulting

deformation of the free surface z = η(x, y, t) is to be found as part of the solution. It is

also assumed that the fluid is incompressible and the flow irrotational. The latter implies

the existence of a velocity potential φ(x, y, z, t) which completely describes the flow. By

definition of φ the fluid velocity vector can be expressed as q = ∇φ. Thus, the continuity

equation becomes

∇ · q = ∆φ = 0, (x, y, z) ∈ Ω. (1.35)

The potential φ(x, y, z, t) must satisfy the following kinematic boundary conditions on the
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Figure 1.17: Wave profiles at different times for the case of a normal fault (δ = 167◦). The

seafloor deformation occurs instantaneously at t = 0. The water depth h(x, y) is assumed to be

constant.
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free surface and the solid boundary, respectively:

∂φ

∂z
=

∂η

∂t
+
∂φ

∂x

∂η

∂x
+
∂φ

∂y

∂η

∂y
, z = η(x, y, t),

∂φ

∂z
=

∂ζ

∂t
+
∂φ

∂x

∂ζ

∂x
+
∂φ

∂y

∂ζ

∂y
, z = −h+ ζ(x, y, t).

Further assuming the flow to be inviscid and neglecting surface tension effects, one can

write the dynamic condition to be satisfied on the free surface as

∂φ

∂t
+

1

2
|∇φ|2 + gη = 0, z = η(x, y, t), (1.36)

where g is the acceleration due to gravity. The atmospheric pressure has been chosen as

reference pressure.

The equations are more transparent when written in dimensionless variables. However

the choice of the reference lengths and speeds is subtle. Different choices lead to different

models. Let the new independent variables be

x̃ = x/λ, ỹ = y/λ, z̃ = z/d, t̃ = c0t/λ,

where λ is the horizontal scale of the motion and d a typical water depth. The speed c0 is

the long wave speed based on the depth d (c0 =
√
gd). Let the new dependent variables

be

η̃ =
η

a
, ζ̃ =

ζ

a
, φ̃ =

c0
agλ

φ,

where a is a characteristic wave amplitude.

In dimensionless form, and after dropping the tildes, the equations become

∂2φ

∂z2
+ µ2

(
∂2φ

∂x2
+
∂2φ

∂y2

)
= 0, (x, y, z) ∈ Ω, (1.37)

∂φ

∂z
= µ2∂η

∂t
+ εµ2

(
∂φ

∂x

∂η

∂x
+
∂φ

∂y

∂η

∂y

)
, z = εη(x, y, t), (1.38)

∂φ

∂z
= µ2∂ζ

∂t
+ εµ2

(
∂φ

∂x

∂ζ

∂x
+
∂φ

∂y

∂ζ

∂y

)
, z = −h

d
+ εζ(x, y, t), (1.39)

µ2∂φ

∂t
+

1

2
ε

(
µ2

(
∂φ

∂x

)2

+ µ2

(
∂φ

∂y

)2

+

(
∂φ

∂z

)2
)

+ µ2η = 0, z = εη(x, y, t), (1.40)

where two dimensionless numbers have been introduced:

ε = a/d, µ = d/λ. (1.41)
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For the propagation of tsunamis, both numbers ε and µ are small. Indeed the satellite

altimetry observations of the 2004 Boxing Day tsunami waves obtained by two satellites

that passed over the Indian Ocean a couple of hours after the rupture process occurred gave

an amplitude a of roughly 60 cm in the open ocean. The typical wavelength estimated from

the width of the segments that experienced slip is between 160 and 240 km [LKA+05]. The

water depth ranges from 4 km towards the west of the rupture to 1 km towards the east.

Therefore average values for ε and µ in the open ocean are ε ≈ 2× 10−4 and µ ≈ 2× 10−2.

A more precise range for these two dimensionless numbers is

1.5× 10−4 < ε < 6× 10−4, 4× 10−3 < µ < 2.5× 10−2. (1.42)

The water-wave problem, either in the form of an initial value problem (IVP) or in the

form of a boundary value problem (BVP), is difficult to solve because of the nonlinearities

in the boundary conditions and the unknown computational domain.

1.2.2 Linear theory

First we perform the linearization of the above equations and boundary conditions. It

is equivalent to taking the limit of (1.37)–(1.40) as ε→ 0. The linearized problem can also

be obtained by expanding the unknown functions as power series of the small parameter

ε. Collecting terms of the lowest order in ε yields the linear approximation. For the sake

of convenience, we now switch back to the physical variables. The linearized problem in

dimensional variables reads

∆φ = 0, (x, y, z) ∈ R2 × [−h, 0], (1.43)

∂φ

∂z
=
∂η

∂t
, z = 0, (1.44)

∂φ

∂z
=
∂ζ

∂t
, z = −h, (1.45)

∂φ

∂t
+ gη = 0, z = 0. (1.46)

The bottom motion appears in equation (1.45). Combining equations (1.44) and (1.46)

yields the single free-surface condition

∂2φ

∂t2
+ g

∂φ

∂z
= 0, z = 0. (1.47)

Most studies of tsunami generation assume that the initial free-surface deformation is

equal to the vertical displacement of the ocean bottom and take a zero velocity field as

initial condition. The details of wave motion are completely neglected during the time
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that the source operates. While tsunami modelers often justify this assumption by the

fact that the earthquake rupture occurs very rapidly, there are some specific cases where

the time scale and/or the horizontal extent of the bottom deformation may become an im-

portant factor. This was emphasized for example by Todorovska and Trifunac [TT01] and

Todorovska et al. [THT02], who considered the generation of tsunamis by a slowly spread-

ing uplift of the seafloor in order to explain some observations related to past tsunamis.

However they did not use realistic source models.

Our claim is that it is important to make a distinction between two mechanisms of

generation: an active mechanism in which the bottom moves according to a given time law

and a passive mechanism in which the seafloor deformation is simply translated to the free

surface. Recently Dutykh et al. [DDK06] showed that even in the case of an instantaneous

seafloor deformation, there may be differences between these two generation processes.

1.2.3 Active generation

This case was extensively studied in Section 1.1. So, we do not repeat the computations

here and give only final expressions (on the free surface and for t > 0) which correspond

to instantaneous bottom motion:

η(x, y, t) =
1

(2π)2

∫∫

R2

ζ̂0(k, ℓ)e
i(kx+ℓy)

cosh(mh)
cosωt dkdℓ, (1.48)

u(x, y, t; 0) =
ig

4π2

∫∫

R2

kζ̂0(k, ℓ)e
i(kx+ℓy)

cosh(mh)

sinωt

ω
dk, (1.49)

w(x, y, t; 0) = − 1

4π2

∫∫

R2

ζ̂0(k, ℓ)e
i(kx+ℓy)

cosh(mh)
ω sinωt dk. (1.50)

1.2.4 Passive generation

In this case equation (1.45) becomes

∂φ

∂z
= 0, z = −h, (1.51)

and the initial condition for η now reads

η(x, y, 0) = ζ0(x, y),

where ζ0(x, y) is the seafloor deformation. Initial velocities are assumed to be zero.
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Again we apply the Fourier transform in the horizontal coordinates (x, y). The Laplace

transform is not applied since there is no substantial dynamics in the problem. Equations

(1.43), (1.51) and (1.47) become

d2φ̂

dz2
− (k2 + ℓ2)φ̂ = 0, (1.52)

dφ̂

dz
(k, ℓ,−h, t) = 0, (1.53)

∂2φ̂

∂t2
(k, ℓ, 0, t) + g

∂φ̂

∂z
(k, ℓ, 0, t) = 0. (1.54)

A general solution to Laplace’s equation (1.52) is again given by

φ̂(k, ℓ, z, t) = A(k, ℓ, t) cosh(mz) +B(k, ℓ, t) sinh(mz), (1.55)

where m =
√
k2 + ℓ2. The relationship between the functions A(k, ℓ, t) and B(k, ℓ, t) can

be easily found from the boundary condition (1.53):

B(k, ℓ, t) = A(k, ℓ, t) tanh(mh). (1.56)

From equation (1.54) and the initial conditions one finds

A(k, ℓ, t) = − g
ω
ζ̂0(k, ℓ) sinωt. (1.57)

Substituting the expressions for the functions A and B in (1.55) yields

φ̂(k, ℓ, z, t) = − g
ω
ζ̂0(k, ℓ) sinωt

(
cosh(mz) + tanh(mh) sinh(mz)

)
. (1.58)

From (1.46), the free-surface elevation becomes

η̂(k, ℓ, t) = ζ̂0(k, ℓ) cosωt.

Inverting the Fourier transform provides the general integral solution

η(x, y, t) =
1

(2π)2

∫∫

R2

ζ̂0(k, ℓ) cosωt ei(kx+ℓy)dkdℓ. (1.59)

Let us now evaluate the velocity field in the fluid domain. Equation (1.58) gives the

Fourier transform of the velocity potential φ(x, y, z, t). Taking the Fourier transform of

u(x, y, t; β) = ∇hφ(x, y, z, t)|z=βh
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yields

û(k, ℓ, t; β) = −iφ̂(k, ℓ, βh, t)k

= i
g

ω
ζ̂0(k, ℓ) sinωt

(
cosh(βmh) + tanh(mh) sinh(βmh)

)
k.

Inverting the Fourier transform gives the general formula for the horizontal velocities

u(x, y, t; β) =
ig

4π2

∫∫

R2

kζ̂0(k, ℓ)
sinωt

ω

(
cosh(βmh) + tanh(mh) sinh(βmh)

)
ei(kx+ℓy)dk.

Along the free surface β = 0, the horizontal velocity vector becomes

u(x, y, t; 0) =
ig

4π2

∫∫

R2

kζ̂0(k, ℓ)
sinωt

ω
ei(kx+ℓy)dk. (1.60)

Next we determine the vertical component of the velocity w(x, y, t; β) at a given vertical

level z = βh. It is easy to obtain the Fourier transform ŵ(k, ℓ, t; β) by differentiating (1.58):

ŵ(k, ℓ, t; β) =
∂φ̂

∂z

∣∣∣∣∣
z=βh

= −mg sinωt

ω
ζ̂0(k, ℓ)

(
sinh(βmh) + tanh(mh) cosh(βmh)

)
.

Inverting this transform yields

w(x, y, t; β) = − g

4π2

∫∫

R2

m sinωt

ω
ζ̂0(k, ℓ)

(
sinh(βmh)+

tanh(mh) cosh(βmh)
)
ei(kx+ℓy)dk

for −1 ≤ β ≤ 0. Using the dispersion relation, one can write the vertical component of

the velocity along the free surface (β = 0) as

w(x, y, t; 0) = − 1

4π2

∫∫

R2

ω sinωt ζ̂0(k, ℓ)e
i(kx+ℓy)dk. (1.61)

All the formulas obtained in this section are valid only if the integrals converge.

Again, one can compute the bottom pressure. At z = −h, one has

∂φ

∂t

∣∣∣∣
z=−h

= − g

(2π)2

∫∫

R2

ζ̂0(k, ℓ)e
i(kx+ℓy)

cosh(mh)
cosωt dk.

The bottom pressure deviation from the hydrostatic pressure is then given by

pb(x, y, t) = − ρ∂φ
∂t

∣∣∣∣
z=−h

− ρgζ.
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Again, away from the deformed seabed, pb reduces to − ρφt|z=−h. The only difference

between pb and ρgη is the presence of an additional cosh(mh) term in the denominator of

pb.

The main differences between passive and active generation processes are that (i) the

wave amplitudes and velocities obtained with the instantly moving bottom are lower than

those generated by initial translation of the bottom motion and that (ii) the water column

plays the role of a low-pass filter (compare equations (1.48)–(1.50) with equations (1.59)–

(1.61)). High frequencies are attenuated in the moving bottom solution. Ward [War01],

who studied landslide tsunamis, also commented on the 1/ cosh(mh) term, which low-pass

filters the source spectrum. So the filter favors long waves. In the discussion section, we

will come back to the differences between passive generation and active generation.

1.2.4.1 Numerical method for the linear problem

All the expressions derived from linear theory are explicit but they must be computed

numerically. It is not a trivial task because of the oscillatory behaviour of the integrand

functions. All integrals were computed with Filon type numerical integration formulas

[Fil28], which explicitly take into account this oscillatory behaviour. Numerical results

will be shown in Section 1.2.9.

1.2.5 Nonlinear shallow water equations

Synolakis and Bernard [SB06] introduced a clear distinction between the various shallow-

water models. At the lowest order of approximation, one obtains the linear shallow water

wave equation. The next level of approximation provides the nondispersive nonlinear shal-

low water equations (NSW). In the next level, dispersive terms are added and the resulting

equations constitute the Boussinesq equations. Since there are many different ways to go

to this level of approximation, there are a lot of different types of Boussinesq equations.

The NSW equations are the most commonly used equations for tsunami propagation (see

in particular the code MOST developed by the National Oceanic and Atmospheric Ad-

ministration in the US [TS98] or the code TUNAMI developed by the Disaster Control

Research Center in Japan). They are also used for generation and runup/inundation. For

wave runup, the effects of bottom friction become important and must be included in the

codes. Our analysis will focus on the NSW equations. For simplicity, we assume below

that h is constant. Therefore one can take h as reference depth, so that the seafloor is

given by z = −1 + εζ.
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1.2.6 Mathematical model

In this subsection, partial derivatives are denoted by subscripts. When µ2 is a small

parameter, the water is considered to be shallow. For the shallow water theory, one formally

expands the potential φ in powers of µ2:

φ = φ0 + µ2φ1 + µ4φ2 + · · · .

This expansion is substituted into the governing equation and the boundary conditions.

The lowest-order term in Laplace’s equation is

φ0zz = 0.

The boundary conditions imply that φ0 = φ0(x, y, t). Thus the vertical velocity component

is zero and the horizontal velocity components are independent of the vertical coordinate

z at lowest order. Let us introduce the notation u := φ0x(x, y, t) and v := φ0y(x, y, t).

Solving Laplace’s equation and taking into account the bottom kinematic condition yield

the following expressions for φ1 and φ2:

φ1(x, y, z, t) = −1

2
Z2(ux + vy) + z [ζt + ε(uζx + vζy)] ,

φ2(x, y, z, t) =
1

24
Z4(∆ux + ∆vy) + ε

(
ε
z2

2
|∇ζ|2 − 1

6
Z3∆ζ

)
(ux + vy)

−ε
3
Z3∇ζ · ∇(ux + vy)−

z3

6

(
∆ζt + ε∆(uζx + vζy)

)
+

z(−1 + εζ)
[
ε∇ζ · ∇

(
ζt + ε(uζx + vζy)

)
− ε2|∇ζ|2(ux + vy)−

1

2
(−1 + εζ)

(
∆ζt + ε∆(uζx + vζy)

)]
,

where

Z = 1 + z − εζ.
The next step consists in retaining terms of requested order in the free-surface bound-

ary conditions. Powers of ε will appear when expanding in Taylor series the free-surface

conditions around z = 0. For example, if one keeps terms of order εµ2 and µ4 in the

dynamic boundary condition (1.40) and in the kinematic boundary condition (1.38), one

obtains

µ2φ0t −
1

2
µ4(utx + vty) + µ2η +

1

2
εµ2(u2 + v2) = 0, (1.62)

µ2[ηt + ε(uηx + vηy) +
(
1 + ε(η − ζ)

)
(ux + vy)− ζt − ε(uζx + vζy)] =

1

6
µ4(∆ux + ∆vy). (1.63)
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Differentiating (1.62) first with respect to x and then with respect to y gives a set of two

equations:

ut + ε(uux + vvx) + ηx −
1

2
µ2(utxx + vtxy) = 0, (1.64)

vt + ε(uuy + vvy) + ηy −
1

2
µ2(utxy + vtyy) = 0. (1.65)

The kinematic condition (1.63) becomes

(η − ζ)t + [u(1 + ε(η − ζ))]x + [v(1 + ε(η − ζ))]y =
1

6
µ2(∆ux + ∆vy). (1.66)

Equations (1.64),(1.65) and (1.66) contain in fact various shallow-water models. The so-

called fundamental NSW equations which contain no dispersive effects are obtained by

neglecting the terms of order µ2:

ut + ε(uux + vuy) + ηx = 0, (1.67)

vt + ε(uvx + vvy) + ηy = 0, (1.68)

ηt + [u(1 + ε(η − ζ))]x + [v(1 + ε(η − ζ))]y = ζt. (1.69)

Going back to a bathymetry h∗(x, y, t) equal to 1−εζ(x, y, t) and using the fact that (u, v)

is the horizontal gradient of φ0, one can rewrite the system of NSW equations as

ut +
ε

2
(u2 + v2)x + ηx = 0, (1.70)

vt +
ε

2
(u2 + v2)y + ηy = 0, (1.71)

ηt + [u(h∗ + εη)]x + [v(h∗ + εη)]y = −1

ε
h∗t . (1.72)

The system of equations (1.70)–(1.72) has been used for example by Titov and Synolakis

[TS98] for the numerical computation of tidal wave run-up. Note that this model does not

include any bottom friction terms.

The NSW equations with dispersion (1.64)–(1.66), also known as the Boussinesq equa-

tions, can be written in the following form:

ut +
ε

2
(u2 + v2)x + ηx −

1

2
µ2∆ut = 0, (1.73)

vt +
ε

2
(u2 + v2)y + ηy −

1

2
µ2∆vt = 0, (1.74)

ηt + [u(h∗ + εη)]x + [v(h∗ + εη)]y −
1

6
µ2(∆ux + ∆vy) = −1

ε
h∗t . (1.75)

Kulikov et al. [KML05] have argued that the satellite altimetry observations of the Indian

Ocean tsunami show some dispersive effects. However the steepness is so small that the
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origin of these effects is questionable. Guesmia et al. [GHM98] compared Boussinesq and

shallow-water models and came to the conclusion that the effects of frequency dispersion

are minor. As pointed out in [KS06], dispersive effects are necessary only when examining

steep gravity waves, which are not encountered in the context of tsunami hydrodynamics

in deep water. However they can be encountered in experiments such as those of Hammack

[Ham73] because the parameter µ is much bigger.

1.2.7 Numerical method

In order to solve the NSW equations, a finite-volume approach is used. For example

LeVeque [LeV98] used a high-order finite volume scheme to solve a system of NSW equa-

tions. Here the flux scheme we use is the characteristic flux scheme, which was introduced

by Ghidaglia et al. [GKC96]. This numerical method satisfies the conservative properties

at the discrete level. The detailed description of this scheme is given in Appendix A.

1.2.8 Numerical method for the full equations

The fully nonlinear potential flow (FNPF) equations (1.37)–(1.40) are solved by using

a numerical model based on the Boundary Element Method (BEM). An accurate code

was developed by Grilli et al. [GGD01]. It uses a high-order three-dimensional bound-

ary element method combined with mixed Eulerian–Lagrangian time updating, based on

second-order explicit Taylor expansions with adaptive time steps. The efficiency of the

code was recently greatly improved by introducing a more efficient spatial solver, based

on the fast multipole algorithm [FD06]. By replacing every matrix–vector product of the

iterative solver and avoiding the building of the influence matrix, this algorithm reduces

the computing complexity from O(N2) to nearly O(N) up to logarithms, where N is the

number of nodes on the boundary.

By using Green’s second identity, Laplace’s equation (1.35) is transformed into the

boundary integral equation

α(xl)φ(xl) =

∫

Γ

(
∂φ

∂n
(x)G(x,xl)− φ(x)

∂G

∂n
(x,xl)

)
dΓ, (1.76)

where G is the three-dimensional free space Green’s function. The notation ∂G/∂n means

the normal derivative, that is ∂G/∂n = ∇G · n, with n the unit outward normal vec-

tor. The vectors x = (x, y, z) and xl = (xl, yl, zl) are position vectors for points on the

boundary, and α(xl) = θl/(4π) is a geometric coefficient, with θl the exterior solid angle

made by the boundary at point xl. The boundary Γ is divided into various parts with

different boundary conditions. On the free surface, one rewrites the nonlinear kinematic
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and dynamic boundary conditions in a mixed Eulerian-Lagrangian form,

DR

Dt
= ∇φ, (1.77)

Dφ

Dt
= −gz +

1

2
∇φ · ∇φ, (1.78)

with R the position vector of a free-surface fluid particle. The material derivative is defined

as
D

Dt
=

∂

∂t
+ q · ∇. (1.79)

For time integration, second-order explicit Taylor series expansions are used to find

the new position and the potential on the free surface at time t+ ∆t. This time stepping

scheme presents the advantage of being explicit, and the use of spatial derivatives along

the free surface provides a better stability of the computed solution.

The integral equations are solved by BEM. The boundary is discretized into N col-

location nodes and M high-order elements are used to interpolate between these nodes.

Within each element, the boundary geometry and the field variables are discretized using

polynomial shape functions. The integrals on the boundary are converted into a sum on

the elements, each one being calculated on the reference element. The matrices are built

with the numerical computation of the integrals on the reference element. The linear sys-

tems resulting from the two boundary integral equations (one for the pair (φ, ∂φ/∂n) and

one for the pair (∂φ/∂t, ∂2φ/∂t∂n)) are full and non symmetric. Assembling the matrix as

well as performing the integrations accurately are time consuming tasks. They are done

only once at each time step, since the same matrix is used for both systems. Solving the

linear system is another time consuming task. Even with the GMRES algorithm with pre-

conditioning, the computational complexity is O(N2), which is the same as the complexity

of the assembling phase. The introduction of the fast multipole algorithm reduces consid-

erably the complexity of the problem. The matrix is no longer built. Far away nodes are

placed in groups, so less time is spent in numerical integrations and memory requirements

are reduced. The hierarchical structure involved in the algorithm gives automatically the

distance criteria for adaptive integrations.

Grilli et al. [GVW02] used the earlier version of the code to study tsunami generation

by underwater landslides. They included the bottom motion due to the landslide. For

the comparisons shown below, we only used the passive approach: we did not include the

dynamics of the bottom motion.

1.2.9 Comparisons and discussion

The passive generation approach is followed for the numerical comparisons between the

three models: (i) linear equations, (ii) NSW equations and (iii) fully nonlinear equations.
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As shown in Section 1.2.2 (one can have a look at [DDK06]), this generation process gives

the largest transient-wave amplitudes for a given permanent deformation of the seafloor.

Therefore it is in some sense a worst case scenario.

The small dimensionless numbers ε and µ2 introduced in (1.41) represent the magnitude

of the nonlinear terms and dispersive terms in the governing equations, respectively. Hence,

the relative importance of the nonlinear and the dispersive effects is given by the parameter

S =
nonlinear terms

dispersive terms
=

ε

µ2
=
aλ2

d3
, (1.80)

which is called the Stokes (or Ursell) number [Urs53].4 An important assumption in the

derivation of the Boussinesq system (1.73)–(1.75) is that the Ursell number is O(1). Here,

the symbol O(·) is used informally in the way that is common in the construction and

formal analysis of model equations for physical phenomena. We are concerned with the

limits ε→ 0 and µ→ 0. Thus, S = O(1) means that, as ε→ 0 and µ→ 0, S takes values

that are neither very large nor very small. We emphasize here that the Ursell number

does not convey any information by itself about the separate negligibility of nonlinear and

frequency dispersion effects. Another important aspect of models is the time scale of their

validity. In the NSW equations, terms of order O(ε2) and O(µ2) have been neglected.

Therefore one expects these terms to make an order-one relative contribution on a time

scale of order min(ε−2, µ−2).

All the figures shown below are two-dimensional plots for convenience but we recall that

all computations for the three models are three-dimensional. Figure 1.18 shows profiles

of the free-surface elevation along the main direction of propagation (y−axis) of transient

waves generated by a permanent seafloor deformation corresponding to the parameters

given in Table 1.5. This deformation, which has been plotted in Figure 1.15, has been

translated to the free surface. The water depth is 100 m. The small dimensionless numbers

are roughly ε = 5 × 10−4 and µ = 10−2, with a corresponding Ursell number equal to 5.

One can see that the front system splits in two and propagates in both directions, with

a leading wave of depression to the left and a leading wave of elevation to the right, in

qualitative agreement with the satellite and tide gauge measurements of the 2004 Sumatra

event. When tsunamis are generated along subduction zones, they usually split in two; one

moves quickly inland while the second heads toward the open ocean. The three models are

4One finds sometimes in the literature a subtle difference between the Stokes and Ursell numbers. Both

involve a wave amplitude multiplied by the square of a wavelength divided by the cube of a water depth.

The Stokes number is defined specifically for the excitation of a closed basin while the Ursell number

is used in a more general context to describe the evolution of a long wave system. Therefore only the

characteristic length is different. For the Stokes number the length is the usual wavelength λ related to the

frequency ω by λ ≈ 2π
√

gd/ω. In the Ursell number, the length refers to the local wave shape independent

of the exciting conditions.
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Figure 1.18: Comparisons of the free-surface elevation at x = 0 resulting from the integration

of the linear equations (· · · ), NSW equations (−−) and nonlinear equations (−) at different times

of the propagation of transient waves generated by an earthquake (t = 0 s, t = 95 s, t = 143 s,

t = 191 s). The parameters for the earthquake are those given in Table 1.5. The water depth is

h = 100 m. One has the following estimates: ε = 5× 10−4, µ2 = 10−4 and consequently S = 5.
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Figure 1.19: Comparisons of the free-surface elevation at x = 0 resulting from the integration

of the linear equations (· · · ), NSW equations (−−) and nonlinear equations (−) at different times

of the propagation of transient waves generated by an earthquake (t = 52 s, t = 104 s, t = 157

s). The parameters for the earthquake are those given in Table 1.5. The water depth is h = 500

m. One has the following estimates: ε = 10−4, µ2 = 2.5× 10−3 and consequently S = 0.04.

almost undistinguishable at all times: the waves propagate with the same speed and the

same profile. Nonlinear effects and dispersive effects are clearly negligible during the first

moments of transient waves generated by a moving bottom, at least for these particular

choices of ε and µ.

Let us now decrease the Ursell number by increasing the water depth. Figure 1.19

illustrates the evolution of transient water waves computed with the three models for the

same parameters as those of Figure 1.18, except for the water depth now equal to 500

m. The small dimensionless numbers are roughly ε = 10−4 and µ = 5 × 10−2, with a

corresponding Ursell number equal to 0.04. The linear and nonlinear profiles cannot be

distinguished within graphical accuracy. Only the NSW profile is slightly different.

Let us introduce several sensors (tide gauges) at selected locations which are represen-

tative of the initial deformation of the free surface (see Figure 1.20). One can study the

evolution of the surface elevation during the generation time at each gauge. Figure 1.21
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Figure 1.20: Top view of the initial free surface deformation showing the location of six selected

gauges, with the following coordinates (in km): (1) 0,0 ; (2) 0,3 ; (3) 0,−3 ; (4) 10,5; (5) −2,5 ; (6)

1,10. The lower oval area represents the initial subsidence while the upper oval area represents

the initial uplift.
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Figure 1.21: Transient waves generated by an underwater earthquake. Comparisons of the

free-surface elevation as a function of time at the selected gauges shown in Figure 1.20: −, linear

model ; −− nonlinear shallow water model. The time t is expressed in seconds. The physical

parameters are those of Figure 1.19. Since the fully nonlinear results cannot be distinguished

from the linear ones, they are not shown.

shows free-surface elevations corresponding to the linear and nonlinear shallow water mod-

els. They are plotted on the same graph for comparison purposes. Again there is a slight

difference between the linear and the NSW models, but dispersion effects are still small.

Let us decrease the Ursell number even further by increasing the water depth. Figures

1.22 and 1.23 illustrate the evolution of transient water waves computed with the three

models for the same parameters as those of Figure 1.18, except for the water depth now

equal to 1 km. The small dimensionless numbers are roughly ε = 5 × 10−5 and µ =

0.1, with a corresponding Ursell number equal to 0.005. On one hand, linear and fully

nonlinear models are essentially undistinguishable at all times: the waves propagate with

the same speed and the same profile. Nonlinear effects are clearly negligible during the first

moments of transient waves generated by a moving bottom, at least in this context. On the
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other hand, the numerical solution obtained with the NSW model gives slightly different

results. Waves computed with this model do not propagate with the same speed and have

different amplitudes compared to those obtained with the linear and fully nonlinear models.

Dispersive effects come into the picture essentially because the waves are shorter compared

to the water depth. As shown in the previous examples, dispersive effects do not play a

role for long enough waves.

Figure 1.24 shows the transient waves at the gauges selected in Figure 1.20. One can

see that the elevations obtained with the linear and fully nonlinear models are very close

within graphical accuracy. On the contrary, the nonlinear shallow water model leads to a

higher speed and the difference is obvious for the points away from the generation zone.

These results show that one cannot neglect the dispersive effects any longer. The NSW

equations, which contain no dispersive effects, lead to different speed and amplitudes.

Moreover, the oscillatory behaviour just behind the two front waves is no longer present.

This oscillatory behaviour has been observed for the water waves computed with the linear

and fully nonlinear models and is due to the presence of frequency dispersion. So, one

should replace the NSW equations with Boussinesq models which combine the two funda-

mentals effects of nonlinearity and dispersion. Wei et al. [WKGS95] provided comparisons

for two-dimensional waves resulting from the integration of a Boussinesq model and the

two-dimensional version of the FNPF model described above. In fact they used a fully

nonlinear variant of the Boussinesq model, which predicts wave heights, phase speeds and

particle kinematics more accurately than the standard weakly nonlinear approximation

first derived by Peregrine [Per67] and improved by Nwogu’s modified Boussinesq model

[Nwo93]. We refer to the review [Kir03] on Boussinesq models and their applications for a

complete description of modern Boussinesq theory.

From a physical point of view, we emphasize that the wavelength of the tsunami waves

is directly related to the mechanism of generation and to the dimensions of the source

event. And so is the dimensionless number µ which determines the importance of the

dispersive effects. In general it will remain small.

Adapting the discussion by Bona et al. [BCL05], one can expect the solutions to

the long wave models to be good approximations of the solutions to the full water-wave

equations on a time scale of the order min(ε−1, µ−2) and also the neglected effects to make

an order-one relative contribution on a time scale of order min(ε−2, µ−4, ε−1µ−2). Even

though we have not computed precisely the constant in front of these estimates, the results

shown in this study are in agreement with these estimates. Considering the 2004 Boxing

Day tsunami, it is clear that dispersive and nonlinear effects did not have sufficient time to

develop during the first hours due to the extreme smallness of ε and µ2, except of course

when the tsunami waves approached the coast.
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Figure 1.22: Comparisons of the free-surface elevation at x = 0 resulting from the integration

of the linear equations (− ·−), NSW equations (−−) and FNPF equations (−) at different times

of the propagation of transient waves generated by an earthquake (t = 50 s, t = 100 s). The

parameters for the earthquake are those given in Table 1.5. The water depth is 1 km. One has

the following estimates: ε = 5× 10−5, µ2 = 10−2 and consequently S = 0.005.
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Figure 1.23: Same as Figure 1.22 for later times (t = 150 s, t = 200 s).
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Figure 1.24: Transient waves generated by an underwater earthquake. The physical parameters

are those of Figures 1.22 and 1.23. Comparisons of the free-surface elevation as a function of time

at the selected gauges shown in Figure 1.20: −, linear model ; −− nonlinear shallow water model.

The time t is expressed in seconds. The FNPF results cannot be distinguished from the linear

results.
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Figure 1.25: Transient waves generated by an underwater earthquake. The computations are

based on linear wave theory. Comparisons of the free-surface elevation as a function of time at

selected gauges for active and passive generation processes. The time t is expressed in seconds.

The physical parameters are those of Figure 1.19. In particular, the water depth is h = 500 m.

Let us conclude this section with a discussion on the generation methods, which extends

the results given in [DDK06]5. We show the major differences between the classical passive

approach and the active approach of wave generation by a moving bottom. Recall that the

classical approach consists in translating the sea bed deformation to the free surface and

letting it propagate. Results are presented for waves computed with the linear model.

Figure 1.25 shows the waves measured at several artificial gauges. The parameters

are those of Table 1.5, and the water depth is h = 500 m. The solid line represents the

solution with an instantaneous bottom deformation while the dashed line represents the

passive wave generation scenario. Both scenarios give roughly the same wave profiles. Let

us now consider a slightly different set of parameters: the only difference is the water depth

which is now h = 1 km. As shown in Figure 1.26, the two generation models differ. The

passive mechanism gives higher wave amplitudes.

Let us quantify this difference by considering the relative difference between the two

5In Figures 1 and 2 of [DDK06], a mistake was introduced in the time scale. All times must be multiplied

by a factor
√

1000.
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Figure 1.26: Same as Figure 1.25, except for the water depth, which is equal to 1 km.

mechanisms defined by

r(x, y, t) =
|ηactive(x, y, t)− ηpassive(x, y, t)|

||ηactive||∞
.

Intuitively this quantity represents the deviation of the passive solution from the active

one with a moving bottom in units of the maximum amplitude of ηactive(x, y, t).

Results are presented on Figures (1.27) and (1.28). The differences can be easily ex-

plained by looking at the analytical formulas (1.48) and (1.59) of Section 1.2.2. These

differences, which can be crucial for accurate tsunami modelling, are twofold.

First of all, the wave amplitudes obtained with the instantly moving bottom are lower

than those generated by the passive approach (this statement follows from the inequality

coshmh ≥ 1). The numerical experiments show that this difference is about 6% in the

first case and 20% in the second case.

The second feature is more subtle. The water column has an effect of a low-pass filter.

In other words, if the initial deformation contains high frequencies, they will be attenuated

in the moving bottom solution because of the presence of the hyperbolic cosine cosh(mh)

in the denominator which grows exponentially with m. Incidently, in the framework of the

NSW equations, there is no difference between the passive and the active approach for an

instantaneous seabed deformation [Tuc79, Tuc74].
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Figure 1.27: Relative difference between the two solutions shown in Figure 1.25. The time t is

expressed in seconds.
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Figure 1.28: Relative difference between the two solutions shown in Figure 1.26.
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If we prescribe a more realistic bottom motion as in [DD07c] for example, the results

will depend on the characteristic time of the seabed deformation. When the characteristic

time of the bottom motion decreases, the linearized solution tends to the instantaneous

wave generation scenario. So, in the framework of linear water wave equations, one cannot

exceed the passive generation amplitude with an active process. However, during slow

events, Todorovska and Trifunac [TT01] have shown that amplification of one order of

magnitude may occur when the sea floor uplift spreads with velocity similar to the long

wave tsunami velocity.

1.2.10 Conclusions

Comparisons between linear and nonlinear models for tsunami generation by an under-

water earthquake have been presented. There are two main conclusions that are of great

importance for modelling the first instants of a tsunami and for providing an efficient initial

condition to propagation models. To begin with, a very good agreement is observed from

the superposition of plots of wave profiles computed with the linear and fully nonlinear

models. Secondly, the nonlinear shallow water model was not sufficient to model some of

the waves generated by a moving bottom because of the presence of frequency dispersion.

However classical tsunami waves are much longer, compared to the water depth, than the

waves considered in the present work, so that the NSW model is also sufficient to describe

tsunami generation by a moving bottom. Comparisons between the NSW equations and

the FNPF equations for modeling tsunami run-up are left for future work. Another as-

pect which deserves attention is the consideration of Earth rotation and the derivation of

Boussinesq models in spherical coordinates.

1.3 Tsunami generation by dynamic displacement of sea

bed due to dip-slip faulting

1.3.1 Introduction

The accuracy of the computation of the whole life of a tsunami, from generation to

inundation, obviously depends on the construction of the initial condition. Moreover, the

error made on the initial condition cannot be corrected by the numerical method used to

propagate the tsunami. This is why the process of tsunami generation must be modelled as

accurately as possible. Even though the constraint of being able to predict tsunami arrival

time, height and location as fast as possible must definitely be taken into account (in other

words, a trade-off must be found between the precision and the speed of computation of
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the initial condition), we believe that so far the scientific community has not payed enough

attention to the crucial subject of tsunami generation.

After the pioneer work of Kajiura [Kaj70] it has become a common practice in the

tsunami community to translate the static sea bed deformation generated by an underwater

earthquake onto the free surface and let it propagate. We will refer to this method as passive

approach. The validity of this technique was already discussed in [OTM01, DDK06]. Three-

dimensional analytical expressions derived from Volterra’s formula applied to the general

study of dislocations [MS71, Oka85] are used to construct the static initial deformation.

Similar analytical expressions for two-dimensional problems were also derived by Freund &

Barnett [FB76], who used the theory of analytic functions of a complex variable. Obviously,

the popularity of these analytic solutions can be explained by their relatively simple explicit

form. Thus, their computation is easy and inexpensive. A nice feature of the solution

of Freund & Barnett is that nonuniform slip distributions can be easily considered. In

particular, slip distributions which remove the singular behavior of the internal stresses

at the ends of the slip zone can be dealt with, simply by imposing the so-called smooth

closure condition on the slip: the slip is zero at the ends.

When simplifying hypotheses such as homogeneity or isotropy are removed, analytical

solutions are no longer available and the governing equations must be solved numerically.

Static deformations caused by slip along a fault have been extensively simulated by Mas-

terlark [Mas03], who used several dislocation models based on the finite-element method

(FEM) to estimate the importance of different physical hypotheses. Anisotropy and hetero-

geneity turned out to be the most important factors in this type of modelling. Megna et al.

[MBS05] also used the FEM to compare numerical results with analytical solutions. How-

ever neither in [Mas03] nor in [MBS05] were the dynamical aspects and the coupling with

hydrodynamics considered. Moreover the consequences for the resulting tsunami waves

were not pointed out.

When one uses as initial condition a static seismic source together with the translation

of the sea bed deformation onto the free surface, one neglects the rupture velocity and

the rise time. Several studies have already been performed to understand wave formation

due to different prescribed bottom motions, either by introducing some type of rise time,

or by introducing some type of rupture velocity. For example, Todorovska & Trifunac

[TT01] studied the generation of waves by a slowly spreading uplift of the bottom. The

studies of Hammack [Ham73] and Dutykh & Dias [DD07c] take into account the rise

time. Hammack [Ham73] generated waves experimentally by raising or lowering a box at

one end of a channel, and considered various laws for the rise or the fall of the box. In

their review paper, Dutykh & Dias [DD07c] generated waves theoretically by multiplying

the static deformations caused by slip along a fault by various time laws: instantaneous,
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exponential, trigonometric, linear. Haskell [Has69] was one of the first to take into account

the rupture velocity. In fact he considered both rise time and rupture velocity. Let us

consider the source shown in Figure 1.29. The two horizontal coordinates x and y, and the

vertical coordinate z are denoted by ~x = (x, y, z).

x

y

z

O

W

−d−L
2

L
2

δ

Figure 1.29: Geometry of the source model. The fault has width W , length L, depth d and dip

angle δ.

Let ~b(~x, t) denote the fault displacement function and ~b0(~x) the final displacement. The

following form for ~b(~x, t) was considered by Haskell:

~b(~x, t) =





0 t− ζ/V < 0

(~b0/T )(t− ζ/V ) 0 < t− ζ/V < T
~b0 t− ζ/V > T

(1.81)

where T is the rise time and V the rupture velocity. The coordinate ζ is a coordinate

along the fault. Equation (1.81) implies that at t = 0 a fracture front is established

instantaneously over a widthW of the y−axis at depth d. The front propagates unilaterally

at constant velocity V over a length L cos δ of the x−axis. At any fixed point on the fault

plane the relative displacement increases at constant velocity from 0 at t = ζ/V to a

constant final value ~b0 at t = T + ζ/V . More recently, Okumura & Kawata [OK07] used

Haskell’s approach to investigate the effects of rise time and rupture velocity on tsunami

generation. They considered two cases of sea bottom motion: (i) with only rise time and (ii)

with both rise time and rupture velocity. They found that the effects of rupture velocity are

much smaller than those of rise time when the rise time is assumed to be long (over 10 min).

Ohmachi et al. [OTM01] also considered rise time and rupture velocity but unfortunately
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the dynamics is not clearly explained in their paper. Apparently they did not solve the

elastodynamic equations with the second-order time derivative (see next section). Another

interesting attempt to understand dynamical effects is that of Madariaga [Mad03]. He

considers a dip-slip dislocation propagating in a half-space. He solves the elastodynamic

equations by using the double Laplace transform. The solution is elegant but it is relatively

complex. Unfortunately Madariaga does not provide any plots of the deformation of the

free surface and does not consider the coupling with the water layer. The present study

can be considered as an attempt to understand the coupling between seismic faulting and

hydrodynamics by integrating numerically the time-dependent elasticity equations as well

as the time-dependent fluid equations. The authors have already adressed the problem of

tsunami generation in [DDK06, DD07c]. The main feature of the present study is the use

of a more realistic earthquake source model.

The work is organised as follows. In Section 1.3.2 we briefly describe the mathematical

models, both for solid and fluid motions, which are used in the present study. Section 1.3.3

contains details on the numerical methods used to solve the governing equations. The

numerical method for the solid motion is validated in Section 1.3.4. The last Section 1.3.5,

provides a comparison between the traditional approach to tsunami generation (in which

the static sea bed deformation is translated onto the free surface) and the more realistic

approach of dynamic generation (in which the wavetrain is generated by the motion of the

bottom). We reveal numerically that the dynamical aspects of tsunami generation can for

example lead to a leading depression wave when one expects a leading elevation wave.

1.3.2 Mathematical models

Even though the numerical results shown in this study are for two-dimensional con-

figurations, the modeling is performed for three-dimensional problems. The horizontal

coordinates are denoted by x and y, while the vertical coordinate is denoted by z. The

displacements are denoted by ux, uy and uz. We use different origins along the vertical axis

for the solid and fluid motions. In the earth domain, z = 0 denotes the sea bed at rest

(assumed to be flat). In the fluid domain, z = 0 denotes the sea surface at rest.

1.3.2.1 Dynamic fault model

We assume that the fault is inside a geological viscous medium. Earth’s crust is assumed

to be a viscoelastic material of density ρ. We choose the Kelvin-Voigt viscosity model

[Qui97] which consists in using complex elastic coefficients (with negative imaginary parts

in order to dissipate wave energy). For isotropic media it means that the Lamé coefficients
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have a nonpositive imaginary part:

λ∗ = λr − iλi, µ∗ = µr − iµi,

where λr, µr > 0 and λi, µi ≥ 0. The classical elasticity equations are obtained by choosing

λi ≡ 0 and µi ≡ 0. Notice that on the time-scales relevant to our problem, elasticity is

sufficient and the assumption of a Kelvin-Voigt viscous material is unnecessary. But we

keep it for the sake of completeness.

Let cP and cS be the classical velocities for the propagation of P and S waves in a

medium of density ρ:

cP =

√
λr + 2µr

ρ
, cS =

√
µr
ρ
.

Complex Lamé coefficients yield complex velocities for wave propagation,

c∗P = cP

√
1 +

i

QP

, c∗S = cS

√
1 +

i

QS

,

where the coefficients QP and QS are defined as follows:

QP = −λr + 2µr
λi + 2µi

, QS = −µr
µi
.

The factors QP and QS measure the viscosity of the geological medium. In this study we

restrict our attention to the weakly viscous case. Mathematically it means that 1/QP ≪ 1

and 1/QS ≪ 1.

Let ~σ represent the stress tensor. The displacement field ~u(x, y, z, t) = (ux, uy, uz)

satisfies the classical elastodynamic equations from continuum mechanics:

∇ · ~σ = ρ
∂2~u

∂t2
. (1.82)

It is common in seismology to assume that the stress tensor ~σ is determined by Hooke’s

law through the strain tensor ε = 1
2

(
∇~u+∇t~u

)
. Therefore

~σ = λ∗(∇ · ~u)I + 2µ∗ε. (1.83)

Thus, we come to the following linear viscoelastodynamic problem6:

∇ ·
(
λ∗(∇ · ~u)I + µ∗(∇~u+∇t~u)

)
= ρ

∂2~u

∂t2
. (1.84)

6We use the prefix “visco-” due to the presence of the imaginary part in the Lamé coefficients, which

is responsible for small wave damping.
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Recall that the mechanical characteristics ρ, λ∗ and µ∗ can possibly depend on the spa-

tial coordinates (x, y, z). However we will assume that they are constant in the numerical

applications.

The fault is modeled as a dislocation inside a viscoelastic material. This type of model is

widely used for the interpretation of seismic motion. A dislocation is considered as a surface

(in three-dimensional problems) or a line (in two-dimensional problems) in a continuous

medium where the displacement field is discontinuous. The displacement vector is increased

by the amount of the Burgers vector~b along any contour C enclosing the dislocation surface

(or line), i.e. ∮

C

d~u = ~b. (1.85)

We let a dislocation run at speed V along a fault inclined at an angle δ with respect to the

horizontal. Rupture starts at position x = 0 and z = −d (it is supposed to be infinitely

long in the transverse y−direction) and propagates with constant rupture speed V for a

finite time L/V in the direction δ stopping at a distance L. Let ζ be a coordinate along

the dislocation line. On the fault located in the interval 0 < ζ < L slip is assumed to be

constant. The rise time is assumed to be 0.

1.3.2.2 Fluid layer model

Since the main purpose is to model tsunami generation processes and since tsunamis

are long waves, it is natural to choose the nonlinear shallow water equations (NSWE) as

hydrodynamic model. These equations are widely used in tsunami modelling, especially in

codes for operational use [TS98, SB06]. The validity of the NSWE model and the question

of the importance of dispersive effects have already been addressed by the authors in the

previous Section (one can have a look at our publication [KDD07]).

Let η denote the free-surface elevation with respect to the still water level z = 0, ~v =

(vx, vy) the horizontal velocity vector, g the acceleration due to gravity and z = −h(x, y, t)
the bathymetry. The NSWE in dimensional form read

∂η

∂t
+∇ · ((h+ η)~v) = −∂h

∂t
,

∂~v

∂t
+

1

2
∇|~v|2 + g∇η = 0.

The effect of the moving bottom appears in the source term −∂h/∂t in the first equation.

The unknowns η and ~v are functions of time and of the horizontal coordinates x and

y. Since the NSWE are essentially obtained from depth-averaging the Euler equations, the

dependence on the vertical coordinate z disappears from the equations.
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The coupling between the earth and fluid models is made through the function h(x, y, t)

which describes the moving sea bottom bathymetry.

1.3.3 Numerical methods

In the present study we made two natural choices. The solid mechanics equations

of the model are solved using the FEM with fully implicit time integration, while for

the hydrodynamic part we take advantage of the hyperbolic structure of the governing

equations and use a solver based on the finite-volume (FV) scheme (see for example [BQ06,

KDD07]).

1.3.3.1 Discretization of the viscoelastodynamic equations

In order to apply the FEM one first rewrites the governing equation (1.84) in variational

form. The time-derivative operator is discretized through a classical second-order finite-

difference scheme. The method we use is fully implicit and has the advantage of being

free of any Courant-Friedrichs-Lewy-type condition. In such problems implicit schemes

become advantageous since the velocity of propagation of seismic waves is of the order of

3 to 4 km/s. We apply the P2 finite-element discretization procedure. For the numerical

computations, the freely available code FreeFem++ [HPHO] is used.

Let us say a few words about the boundary conditions and the treatment of the dislo-

cation in the program. Concerning the boundary conditions, we assume that the sea bed

is a free surface, that is ~σ · ~n = ~0 at z = 0. The other boundaries are assumed to be fixed

or, in other words, Dirichlet type boundary conditions ~u = ~0 are applied. The authors are

aware of the reflective properties of this type of boundary conditions. In order to avoid

the reflection of seismic waves along the boundaries during the simulation time, we take

a computational domain which is sufficiently large. This approach is not computationally

expensive since we use adaptive mesh algorithms [HPHO] and in the regions far away from

the fault, element sizes are considerably bigger than in the fault vicinity.

Next we discuss the implementation of the dislocation surface. Across the fault, the

displacement field is discontinuous and satisfies the following relation:

~u+(~x, t)− ~u−(~x, t) = ~b(~x, t), (1.86)

where the signs ± denote the upper and lower boundary of the dislocation surface, respec-

tively. The propagation of Burger’s vector along the fault is given by

~b(~x, t) = ~b0H(t− ζ/V ), (1.87)

where V is the rupture velocity, H the Heaviside unit step function and ζ a coordinate

along the dislocation line.
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Remark 1 Due to the presence of huge hydrostatic pressures in the crust, the two sides

of the fault cannot detach physically. In any case this situation does not occur in nature.

Mathematically it means that the vector ~b is tangent to the dislocation surface at each point.

1.3.3.2 Finite-volume scheme

In this study we adopt the characteristic flux (CF) approach proposed in [GKC96,

GKC01] and described in details in Appendix A. This approach is a particular scheme of

FV methods. There are other schemes that have been proposed for the NSWE (see [BQ06]

for example).

We chose this method for the following reasons. First of all, the CF scheme is easy to

implement. Then it is not based on the solution to the Riemann problem and consequently

we do not impose a one-dimensional wave structure which is no longer relevant in two

dimensions. It is a multidimensional scheme and we do not need to split operators in order

to treat separately each dimension. And finally, the characteristic flux is more versatile

than Roe’s scheme in the sense that it does not rely on an algebraic property of the flux.

In this section we consider an application of the characteristic fluxes scheme to NSWE.

In this case one can explicitly find eigenvalues, as well as left and right eigenvectors.

This property together with the use of an approximate Riemann solver makes all the

computations very efficient.

Let ~v = (vx, vy). The flux of the NSWE system is given by

F(V) =




(h+ η)vx (h+ η)vy
1
2
|~v|2 + gη 0

0 1
2
|~v|2 + gη


 , (1.88)

where V = (η, u, v) is the vector of conservative variables7. The flux F(V) projected on

the normal n becomes

F · n =

(
(h+ η)(~v · n)(

1
2
|~v|2 + gη

)
n

)
.

It follows that the Jacobian matrix is given by

An :=
∂
(
F(V) · n

)

∂V
=

(
~v · n (h+ η)n

gn ~v ⊗ n

)
. (1.89)

It has three distinct eigenvalues

λ1,3 = ~v · n± cs, λ2 = 0,

7In the present study the physical variables coincide with the conservative ones.
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where cs =
√
g(h+ η) is the velocity of long gravity waves.

The right eigenvectors constitute the columns of the matrix R:

R =



−cs (c2s/g)~v · t cs
gnx nyc

2
s − vy(~v · n) gnx

gny −nxc2s + vx(~v · n) gny


 , (1.90)

where t is the tangent vector. The matrix of left eigenvectors can also be computed

analytically through R−1.

Using these expressions it is straightforward to compute the sign matrix defined as

sign(An) := R sign(Λ)R−1,

and the numerical scheme is thus completely defined.

1.3.4 Validation of the numerical method

In this section we consider an analytic solution to the line dislocation problem in the

static case. Use is made of the well-known result described for example by Freund &

Barnett [FB76] or Okada [Oka85]. In order to simplify the expressions, we only consider

the two-dimensional case (in other words, the fault is infinite in the y−direction). In fact

the most appropriate expression is that given by equation (24) in [Mad03]. We checked

that it is in full agreement with the limit of Okada’s solution as the width becomes infinite.

The sketch of the domain is given in Figure 1.29. The fault has infinite width (W →∞).

Its length is L, its depth d and its dip angle δ.

In the present work we only give the vertical displacement component uz along the free

surface, since it plays the most important role in tsunami formation. It can be expressed

as the difference between two contributions, that from a first dislocation located at the

beginning of the fault and that from a second dislocation located at the end of the fault.

Let dL = d− L sin δ. One has

uz = |~b0|
[
Uz

(x
d
, δ
)
− Uz

(
x− L cos δ

dL
, δ

)]
, (1.91)

where

Uz

(x
d
, δ
)

=
1

π

[
sin δ arctan

x

d
− d(d cos δ − x sin δ)

x2 + d2

]
. (1.92)

For the validation of our numerical method we chose the most violent fault which

corresponds to the dip angle δ = π/2. The values of the other parameters are given in

Table 1.6. This problem was solved by FEM after neglecting the dynamic terms. The

results of the comparison with solution (1.92) are given in Figure 1.30. Good qualitative
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Figure 1.30: Comparison between analytical and numerical solutions for a static two-

dimensional fault with a dip angle equal to π/2.

and quantitative agreement can be seen. Megna et al. [MBS05], who also considered static

displacement due to uniform slip across a normal fault, compared the two-dimensional FEM

results with the analytical solution in the case of a normal fault. In their conclusion, they

state that it is for the vertical component of the surface displacement that the discrepancies

are the largest.

1.3.5 Results of the simulation

In this section, we use the set of physical parameters given in Table 1.6. The static

sea bed deformation obtained with the analytical solution is depicted in Figure 1.31. Note

that the only difference between Figures 1.30 and 1.31 is the value of the dip angle.

In order to illustrate the numerical computations we chose several test cases of ac-

tive/passive tsunami generation. The passive generation approach was introduced in

[Kaj70]. It consists in translating the static sea bed deformation onto the free surface

and letting it propagate under gravity. On the other hand, the active approach uses the

bottom motion for wave generation. We proceed by computing the first eight or fifteen

seconds of the earthquake dynamics. Then the bottom configuration is assumed to remain

frozen during the rest of the simulation. Concerning the dynamical aspects of rupture

propagation, we consider the Heaviside-type approach (1.87) where the dislocation prop-

agates along the fault with rupture velocity V . One could use instead a dislocation for

which Burger’s vector ~b0 is also space-dependent. But the main goal of the present study
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Figure 1.31: Static deformation due to the dislocation corresponding to the parameters given

in Table 1.6.

Parameter Value

Young modulus, E, GPa 9.5

Poisson ratio, ν 0.27

Damping coefficient, λi 500

Damping coefficient, µi 200

Fault depth, d, km 4

Fault length, L, km 2

Dip angle, δ, ◦ 13

Burger’s vector length, |~b0|, m 10

Water depth (uniform), h0, m 400

Acceleration due to gravity, g, m/s2 9.8

Table 1.6: Typical physical parameters used in the numerical computations. The water depth

as well as the spatial extent in the main direction of propagation were chosen so that dispersive

effects can be neglected.
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is to make an attempt to include the dynamic displacement of the sea bed. In the dynam-

ical approach, we consider three cases: the limiting case where the rupture velocity V is

infinite, a fast event with V = 2.5 km/s and a slower event with V = 1 km/s.

We show below the differences between the passive and the dynamic approaches. This

question has already been addressed by the authors [DDK06] in the framework of the

linearized potential flow equations and of a simplified model for bottom deformation.

In the first comparison we use a strong coupling between the dynamic displacement of

the sea bed and the fluid layer equations and compare it with the passive approach, in

which the static solution shown in Figure 1.31 is translated onto the free surface as initial

condition. The rupture velocity V is assumed to be infinite. Moreover the earthquake

dynamics is computed during the first eight seconds. The free surface at the beginning of

the tsunami generation process is shown on Figure 1.32. Further steps of this process are

given in Figures 1.33-1.34. The reader may have the impression that the passive solution

does not evolve. In fact, the explanation lies in the presence of two different time scales

in this problem. The fast time scale is provided by the earthquake (P− and S−waves)

and the slow one by water gravity waves. Since the active generation solution is directly

coupled to the bottom dynamics, it evolves with the fast time scale. It is interesting to

compare Figures 1.33 and 1.34. One can see that the active approach gives at the beginning

an amplitude which is almost twice larger but the amplitudes become comparable a few

seconds later.

The free-surface elevations are computed until the wave enters the purely propagation

stage. This corresponds to Figure 1.35. One notices that the resulting wave amplitude

and velocity are almost the same. Of course the waveform is different. One can see as well

that the location of the elevation wave is the same, while the depression wave is slightly

shifted. It can be explained by the larger extent of the dynamic solution. Thus, we can

conclude from this first comparison that if one is only interested in tsunami travel time or

even in rough inundation zone estimation, the passive approach can be used.

The second comparison focuses on the influence of the rupture velocity at two separate

times (Figures 1.36 and 1.37). The differences between the fast and the relatively slow

rupture velocities are small.

The most interesting comparison is the third one, which focuses on the duration of

the earthquake. Recall that our somewhat artificial definition of earthquake duration is

the time at which we stop the bottom motion. After that time, the sea bottom remains

frozen. Figure 1.38 shows the effect of a longer earthquake. One sees that the shapes of the

wave train obtained with the dynamic analysis look more complicated than that obtained

by the passive analysis. In particular, the distinction between leading elevation wave and

leading depression wave is not as clear when using the dynamical analysis. It could be an



76 Tsunami generation

Figure 1.32: Water free surface at the beginning of the earthquake (t = 2s) according to two

approaches of tsunami generation: passive versus active (with infinite rupture velocity).

Figure 1.33: Same as Figure 1.32 for times t = 4s and t = 6s.
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Figure 1.34: Same as Figure 1.32 for times t = 7s and t = 10s.

Figure 1.35: Same as Figure 1.32 for times t = 150s and t = 250s. The wave is leaving the

generation zone (left plot) and starting to propagate (right plot).

Figure 1.36: Same as Figure 1.35 (left plot) for two rupture velocities: V = 1 km/s (left) and

V = 2.5 km/s (right).
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Figure 1.37: Same as Figure 1.36 at time t = 250s.

Figure 1.38: Water free surface at t = 150s for a longer earthquake. The rupture motion stops

after 15s. The left plot compares the infinite rupture velocity solution with the passive approach.

The right plot compares the case of a slow rupture (V = 1 km/s) with the passive case.

explanation for the discrepancies between modeled and recorded time series of water levels

at various locations along the California coast for the 1960 Chilean tsunami [BUST06].

1.3.6 Conclusions

An approach to model the dynamical character of sea bed deformations during an

underwater earthquake was presented. The governing elastodynamic equations were solved

by a finite-element method. The principal novelty of the present study is the coupling of

the resulting displacement field with the hydrodynamic model.

Two methods for tsunami generation have been compared: static versus dynamic. The

computational results speak by themselves. One can say that the dynamic approach leads

to higher water levels in the near-fault area. These significant differences only occur during
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the first instants of the surface deformation and level off later on. However it was also

observed that the shape of the wave train can be altered by dynamical effects. Consequently

the distinction between leading elevation wave and leading depression wave may not be as

clear as anticipated. Of course the present method is computationally more expensive but

there is an overall gain in accuracy. Not surprisingly more accurate tsunami computations

require finer initial conditions such as those obtained by the active generation methodology

used in the present study.

In future work we intend to extend this modeling to three space dimensions since it is

evident that the two-dimensional computations presented here have little interest beyond

academics.
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Chapter 2

Dissipative Boussinesq equations

We are usually convinced more easily by reasons we have found ourselves

than by those which have occurred to others.

Blaise Pascal (1623 – 1662)
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2.1 Introduction

Boussinesq equations are widely used in coastal and ocean engineering. One example

among others is tsunami wave modelling. These equations can also be used to model tidal

oscillations. Of course, these types of wave motion are perfectly described by the Navier-

Stokes equations, but currently it is impossible to solve fully three-dimensional (3D) models

in any significant domain. Thus, approximate models such as the Boussinesq equations

must be used.

The years 1871 and 1872 were particularly important in the development of the Boussi-

nesq equations. It is in 1871 that Valentin Joseph Boussinesq received the Poncelet prize

from the Academy of Sciences for his work. In the Volumes 72 and 73 of the “Comptes

Rendus Hebdomadaires des Séances de l’Académie des Sciences”, which cover respectively

the six-month periods January–June 1871 and July–December 1871, there are several con-

tributions of Boussinesq. On June 19, 1871, Boussinesq presents the now famous note on

the solitary wave entitled “Théorie de l’intumescence liquide appelée onde solitaire ou de

translation, se propageant dans un canal rectangulaire” (72, pp. 755–759), which will be

extended later in the note entitled “Théorie générale des mouvements qui sont propagés

dans un canal rectangulaire horizontal” (73, pp. 256–260). Saint-Venant presents a couple

of notes of Boussinesq entitled “Sur le mouvement permanent varié de l’eau dans les tuyaux

de conduite et dans les canaux découverts” (73, pp. 34–38 and pp. 101–105). Saint-Venant

himself publishes a couple of notes entitled “Théorie du mouvement non permanent des

eaux, avec application aux crues des rivières et à l’introduction des marées dans leur lit”

(73, pp. 147–154 and pp. 237–240). All these notes deal with shallow-water theory. On

November 13, 1871, Boussinesq submits a paper entitled “Théorie des ondes et des remous

qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide

contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond”, which

will be published in 1872 in the Journal de Mathématiques Pures et Appliquées (17, pp.

55–108).

Articles [Bou71a, Bou72] included dispersive effects for the first time in the Saint-Venant

equations [dSV71]. One should mention that Boussinesq’s derivation was restricted to 1+1

dimensions (x and t) and a horizontal bottom. Boussinesq equations contain more physics

than the Saint-Venant equations but at the same time they are more complicated from

the mathematical and numerical points of views. These equations possess a hyperbolic

structure (the same as in the nonlinear shallow-water equations) combined with high-order

derivatives to model wave dispersion. There have been a lot of further developments of
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these equations like in [Per67, Nwo93, WKGS95, MS98].

Let us outline the physical assumptions. The Boussinesq equations are intended to

describe the irrotational motion of an incompressible homogeneous inviscid fluid in the

long wave limit. The goal of this type of modelling is to reduce 3D problems to two-

dimensional (2D) ones. This is done by assuming a polynomial (usually linear) vertical

distribution of the flow field, while taking into account non-hydrostatic effects. This is the

principal physical difference with the nonlinear shallow-water (NSW) equations.

There are a lot of forms of the Boussinesq equations. This diversity is due to different

possibilities in the choice of the velocity variable. In most cases one chooses the velocity

at an arbitrary water level or the depth-averaged velocity vector. The resulting model

performance is highly sensitive to linear dispersion properties. The right choice of the

velocity variable can significantly improve the propagation of moderately long waves. A

good review is given by [Kir03]. There is another technique used by [BCS02]. Formally, one

can transform higher-order terms by invoking lower-order asymptotic relations. It provides

an elegant way to improve the properties of the linear dispersion relation and it gives a

quite general mathematical framework to study these systems.

The main purpose of this work is to include dissipative effects in the Boussinesq equa-

tions. It is well-known that the effect of viscosity on free oscillatory waves on deep water

was studied by [Lam32]. What is less known is that Boussinesq himself studied this effect

as well. Boussinesq wrote three related papers in 1895 in the “Comptes Rendus Hebdo-

madaires des Séances de l’Académie des Sciences”: (i) “Sur l’extinction graduelle de la

houle de mer aux grandes distances de son lieu de production : formation des équations du

problème” (120, pp. 1381-1386), (ii) “Lois de l’extinction de la houle en haute mer” (121,

pp. 15-20), (iii) “Sur la manière dont se régularise au loin, en s’y réduisant à une houle

simple, toute agitation confuse mais périodique des flots” (121, pp. 85-88). It should be

pointed out that the famous treatise on hydrodynamics by Lamb has six editions. The

paragraphs on wave damping are not present in the first edition (1879) while they are

present in the third edition (1906). The authors did not have access to the second edition

(1895), so it is possible that Boussinesq and Lamb published similar results at the same

time. Indeed Lamb derived the decay rate of the linear wave amplitude in two different

ways: in paragraph 348 of the sixth edition by a dissipation calculation (this is also what

[Bou95] did) and in paragraph 349 by a direct calculation based on the linearized Navier-

Stokes equations. Let α denote the wave amplitude, ν the kinematic viscosity of the fluid

and k the wavenumber of the decaying wave. Boussinesq (see Eq. (12) in [Bou95]) and

Lamb both showed that
dα

dt
= −2νk2α(t). (2.1)

Equation (2.1) leads to the classical law for viscous decay of waves of amplitude α, namely
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α ∼ exp(−2νk2t) (see Eq. (13) in [Bou95] after a few calculations).

In the present study, we use two different models for dissipation and derive correspond-

ing systems of long-wave equations. There are several methods to derive the Boussinesq

equations but the resulting equations are not the same. So one expects the solutions to be

different. We will investigate numerically whether corresponding solutions remain close or

not.

One may ask why dissipation is needed in Boussinesq equations. First of all, real world

liquids are viscous. This physical effect is “translated” in the language of partial differential

equations by dissipative terms (e.g. the Laplacian in the Navier-Stokes equations). So, it

is natural to have analogous terms in the long wave limit. In other words, a non-dissipative

model means that there is no energy loss, which is not pertinent from a physical point of

view, since any flow is accompanied by energy dissipation.

Let us mention an earlier numerical and experimental study by [BPS81]. They pointed

out the importance of dissipative effects for accurate long wave modelling. In the “Résumé”

section one can read

[...] it was found that the inclusion of a dissipative term was much more im-

portant than the inclusion of the nonlinear term, although the inclusion of the

nonlinear term was undoubtedly beneficial in describing the observations [...].

The complexity of the mathematical equations due to the inclusion of this term is negligible

compared to the benefit of a better physical description.

Let us consider the incompressible Navier-Stokes (N-S) equations for a Newtonian fluid:

∇ · ~u∗ = 0,

∂~u∗

∂t∗
+ ~u∗ · ∇~u∗ = −∇p

∗

ρ
+ ν∆~u∗ +

F∗

ρ
,

where ~u∗(x, y, z, t) = (u∗, v∗, w∗)(x∗, y∗, z∗, t∗) is the fluid velocity vector, p∗ the pressure,

F∗ the body force vector, ρ the constant fluid density and ν the kinematic viscosity.

Switching to dimensionless variables by introducing a characteristic velocity U , a char-

acteristic length L and a characteristic pressure ρU2, neglecting body forces1 in this dis-

cussion, the N-S equations become

∇ · ~u = 0,

∂~u

∂t
+ ~u · ∇~u = −∇p+

1

Re
∆~u,

1The presence or absence of body forces is not important for discussing viscous effects.
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where Re is the well-known dimensionless parameter known as the Reynolds number and

defined as

Re =
Finertia
Fviscous

=
UL

ν
.

From a physical point of view the Reynolds number is a measure of the relative im-

portance of inertial forces compared to viscous effects. For typical tsunami propagation

applications the characteristic particle velocity U is about 5 cm/s and the characteristic

wave amplitude, which we use here as characteristic length scale, is about 1 m. The kine-

matic viscosity ν depends on the temperature but its order of magnitude for water is 10−6

m2/s. Considering that as the tsunami approaches the coast both the particle velocity and

the wave amplitude increase, one can write that the corresponding Reynolds number is of

the order of 105 or 106. This simple estimate clearly shows that the flow is turbulent (as

many other flows in nature).

It is a common practice in fluid dynamics (addition of an “eddy viscosity” into the

governing equations for Large Eddy Simulations) to ignore the small-scale vortices when

one is only interested in large-scale motion. It can significantly simplify computational and

modelling aspects. So the inclusion of dissipation can be viewed as the simplest way to

take into account the turbulence.

There are several authors [Tuc74, LH92, SVBM02, SKP96, DDZ07, RFF91] who in-

cluded dissipation due to viscosity in potential flow solutions and there are also authors

[KCKD00, Zel91, HH70] who already included in Boussinesq models ad-hoc dissipative

terms into momentum conservation equations in order to model wave breaking. Modelling

this effect is not the primary goal of the present work, since the flow is no longer irrota-

tional after wave breaking. Strictly speaking the Boussinesq equations can no longer be

valid at this stage. Nevertheless scientists and engineers continue to use these equations

even to model the run-up on the beach. In our approach a suitable choice of the eddy

viscosity, which is a function of both space and time, can model wave breaking at least as

well as in the articles cited above.

2.2 Derivation of the Boussinesq equations

In order to derive the Boussinesq equations, we begin with the full water-wave problem.

A Cartesian coordinate system (x′, y′, z′) is used, with the x′− and y′−axis along the still

water level and the z′− axis pointing vertically upwards. Let Ωt be the fluid domain in R3

which is occupied by an inviscid and incompressible fluid. The subscript t underlines the

fact that the domain varies with time and is not known a priori. The domain Ωt is bounded

below by the seabed z′ = −h′(x′, y′, t′) and above by the free surface z′ = η′(x′, y′, t′). In

this section we choose the domain Ωt to be unbounded in the horizontal directions in order
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to avoid the discussion on lateral boundary conditions. The reason is twofold. First of

all, the choice of the boundary value problem (BVP) (e.g. generating and/or absorbing

boundary, wall, run-up on a beach) depends on the application under consideration and

secondly, the question of the well-posedness of the BVP for the Boussinesq equations is

essentially open. Primes stand for dimensional variables. A typical sketch of the domain

Ωt is given in Figure 2.1. If the flow is assumed to be irrotational one can introduce the

velocity potential φ′ defined by

~u′ = ∇′φ′, ∇′ :=

(
∂

∂x′
,
∂

∂y′
,
∂

∂z′

)T
,

where ~u′ denotes the velocity field. Then we write down the following system of equations

for potential flow theory in the presence of a free surface:

∆′φ′ = 0, (x′, y′, z′) ∈ Ωt = R2 × [−h′, η′],
φ′
z′ = η′t′ +∇′φ′ · ∇′η′, z′ = η′,

φ′
t′ +

1

2
|∇′φ′|2 + gη′ = 0, z′ = η′, (2.2)

φ′
z′ + h′t′ +∇′φ′ · ∇′h′ = 0, z′ = −h′,

where g denotes the acceleration due to gravity (surface tension effects are usually neglected

for long-wave applications). It has been assumed implicitly that the free surface is a graph

and that the pressure is constant on the free surface (no forcing). Moreover we assume

that the total water depth remains positive, i.e. η′ + h′ > 0 (there is no dry zone).

As written, this system of equations does not contain any dissipation. Thus, we com-

plete the free-surface dynamic boundary condition (2.2) by adding a dissipative term to

account for the viscous effects2:

φ′
t′ +

1

2
|∇′φ′|2 + gη′ +D′

φ′ = 0, z′ = η′.

In this work we investigate two models for the dissipative term D′
φ′ . For simplicity,one

can choose a constant dissipation model (referred hereafter as Model I) which is often used

(e.g. [JTPS96]):

Model I: D′
φ′ := δ1φ

′. (2.3)

There is a more physically realistic dissipation model which is obtained upon balancing of

normal stress on the free surface (e.g. [RFF91, ZV97, DDZ07]):

Model II: D′
φ′ := δ2φ

′
z′z′ . (2.4)

2[DDZ07] pointed out that a viscous correction should also be added to the kinematic boundary con-

dition if one takes into account the vortical component of the velocity. This correction will be added in

future work.
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The derivation of Boussinesq equations is more transparent when one works with scaled

variables. Let us introduce the following independent and dependent non-dimensional

variables:

x =
x′

ℓ
, y =

y′

ℓ
, z =

z′

h0

, t =

√
gh0

ℓ
t′,

h =
h′

h0

, η =
η′

a0

, φ =

√
gh0

ga0ℓ
φ′,

where h0, ℓ and a0 denote a characteristic water depth, wavelength and wave amplitude,

respectively.

After this change of variables, the set of equations becomes

µ2(φxx + φyy) + φzz = 0, (x, y, z) ∈ Ωt, (2.5)

φz = µ2ηt + εµ2∇φ · ∇η, z = εη, (2.6)

µ2φt +
1

2
εµ2 |∇φ|2 +

1

2
εφ2

z + µ2η + εDφ = 0, z = εη (2.7)

φz +
µ2

ε
ht + εµ2∇φ · ∇h = 0, z = −h, (2.8)

where ε and µ are the classical nonlinearity and frequency dispersion parameters defined

by

ε :=
a0

h0

, µ :=
h0

ℓ
. (2.9)

In these equations and hereafter the symbol ∇ denotes the horizontal gradient:

∇ :=

(
∂

∂x
,
∂

∂y

)T
.

The dissipative term Dφ is given by the chosen model (2.3) or (2.4):

Model I: Dφ =
1

R1

φ, Model II: Dφ =
1

R2

φzz,

where the following dimensionless numbers have been introduced:

R1 :=
1

δ1

(
ga0ℓ

h2
0

√
gh0

)
, R2 :=

1

δ2

(
ga0ℓ√
gh0

)
.

From this dimensional analysis, one can conclude that the dimension of the coefficient δ1
is [s−1] and that of δ2 is [m2s−1]. Thus, it is natural to call the first coefficient viscous fre-

quency (since it has the dimensions of a frequency) and the second one kinematic viscosity

(by analogy with the N-S equations).
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parameter value

Acceleration due to gravity g, m/s2 10

Amplitude a0, m 1

Wave length ℓ, km 100

Water depth h0, km 4

Kinematic viscosity δ, m2/s 10−6

Table 2.1: Typical values of characteristic parameters in tsunami applications

It is interesting to estimate R2, since we know how to relate the value of δ2 to the

kinematic viscosity of water. Typical parameters which are used in tsunami wave modelling

are given in Table 2.1. For these parameters R2 = 5× 109 and µ2 = 1.6× 10−3. The ratio

between inertial forces and viscous forces is 1
2
εµ2|∇φ|2/ε|Dφ|. Its order of magnitude is

µ2R2, that is 8 × 106. It clearly shows that the flow is turbulent and eddy-viscosity type

approaches should be used. It means that, at zeroth-order approximation, the main effect

of turbulence is energy dissipation. Thus, one needs to increase the importance of viscous

terms in the governing equations in order to account for turbulent dissipation.

As an example, we refer one more time to the work by [BPS81]. They modeled long

wave propagation by using a modified dissipative Korteweg–de Vries equation:

ηt + ηx +
3

2
ηηx − µηxx −

1

6
ηxxt = 0. (2.10)

In numerical computations the authors took the coefficient µ = 0.014. This value gave

good agreement with laboratory data.

From now on, we will use the notation νi := 1/Ri. This will allow us to unify the

physical origin of the numbers Ri with the eddy-viscosity approach. In other words, for

the sake of convenience, we will “forget” about the origin of these coefficients, because

their values can be given by other physical considerations.

2.2.1 Asymptotic expansion

Consider a formal asymptotic expansion of the velocity potential φ in powers of the

small parameter µ2:

φ = φ0 + µ2φ1 + µ4φ2 + . . . . (2.11)

Then substitute this expansion into the continuity equation (2.5) and the boundary

conditions. After substitution, the Laplace equation becomes

µ2(∇2φ0 + µ2∇2φ1 + µ4∇2φ2 + . . .) + φ0zz + µ2φ1zz + µ4φ2zz + . . . = 0.
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Collecting the same order terms yields the following equations in the domain Ωt:

µ0 : φ0zz = 0, (2.12)

µ2 : φ1zz +∇2φ0 = 0, (2.13)

µ4 : φ2zz +∇2φ1 = 0. (2.14)

Performing the same computation for the bottom boundary condition yields the following

relations at z = −h:

µ0 : φ0z = 0, (2.15)

µ2 : φ1z + 1
ε
ht +∇φ0 · ∇h = 0, (2.16)

µ4 : φ2z +∇φ1 · ∇h = 0. (2.17)

From equation (2.12) and the boundary condition (2.15) one immediately concludes that

φ0 = φ0(x, y, t).

Let us define the horizontal velocity vector

~u(x, y, t) := ∇φ0, ~u = (u, v)T .

The expansion of Laplace equation in powers of µ2 gives recurrence relations between

φ0, φ1, φ2, etc. Using (2.13) one can express φ1 in terms of the derivatives of φ0:

φ1zz = −∇ · ~u.

Integrating once with respect to z yields

φ1z = −z∇ · ~u+ C1(x, y, t).

The unknown function C1(x, y, t) can be found by using condition (2.16):

φ1z = −(z + h)∇ · ~u− 1

ε
ht − ~u · ∇h,

and integrating one more time with respect to z gives the expression for φ1:

φ1 = −1

2
(z + h)2∇ · ~u− z

(
1

ε
ht + ~u · ∇h

)
. (2.18)

Now we will determine φ2. For this purpose we use equation (2.14):

φ2zz =
1

2
(z + h)2∇2(∇ · ~u) +

(
(h+ z)∇2h+ |∇h|2

)
∇ · ~u+

+ 2(h+ z)∇h · ∇(∇ · ~u) + z

(
1

ε
∇2ht +∇2(~u · ∇h)

)
. (2.19)
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Integrating twice with respect to z and using the bottom boundary condition (2.17)

yields the following expression for φ2:

φ2 =
1

24
(h+ z)4∇2(∇ · ~u) +

(1

6
(z + h)3∇2h+

1

2
z2 |∇h|2

)
∇ · ~u

+
1

3
(z + h)3∇h · ∇(∇ · ~u) +

z3

6

(1
ε
∇2ht +∇2(~u · ∇h)

)

− zh
(h

2
∇2
(1
ε
ht + ~u · ∇h

)
+∇h · ∇

(1
ε
ht + ~u · ∇h

)
− |∇h|2∇ · ~u

)
. (2.20)

Remark 2 In these equations one finds the term (1/ε)ht due to the moving bathymetry.

We would like to emphasize that this term is O(1), since in problems of wave generation by

a moving bottom the bathymetry h(x, y, t) has the following special form in dimensionless

variables:

h(x, y, t) := h0(x, y)− εζ(x, y, t), (2.21)

where h0(x, y) is the static seabed and ζ(x, y, t) is the dynamic component due to a seis-

mic event or a landslide (see for example [DD07c] for a practical algorithm constructing

ζ(x, y, t) in the absence of a dynamic source model). The amplitude of the bottom motion

has to be of the same order of magnitude as the resulting waves, since we assume the fluid

to be inviscid and incompressible. Thus (1/ε)ht = −ζt = O(1).

In the present study we restrict our attention to dispersion terms up to order O(µ2).

We will also assume that the Ursell-Stokes number [Urs53] is O(1):

S :=
ε

µ2
= O(1).

This assumption implies that terms of order O(ε2) and O(εµ2) must be neglected, since

ε2 = S2µ4 = O(µ4), εµ2 = Sµ4 = O(µ4).

Of course, it is possible to obtain high-order Boussinesq equations. We decided not to

take this research direction. For high-order asymptotic expansions we refer to [WKGS95,

MS98]. Recently, [Ben06] performed a comparative study between fully-nonlinear equa-

tions [WKGS95] and Boussinesq equations with optimized dispersion relation [Nwo93]. No

substantial difference was revealed.

Now, we are ready to derive dissipative Boussinesq equations in their simplest form.

First of all, we substitute the asymptotic expansion (2.11) into the kinematic free-surface

boundary condition (2.6):

φ0z + µ2φ1z + µ4φ2z = µ2ηt + εµ2∇φ0 · ∇η +O(ε2 + εµ4 + µ6), z = εη. (2.22)
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The first term on the left hand side is equal to zero because of Eq. (2.15).

Using expressions (2.18) and (2.20) one can evaluate φ1z and φ2z on the free surface:

φ1z|z=εη = −(h+ εη)∇ · ~u− 1

ε
ht − ~u · ∇h,

φ2z|z=εη =
h3

6
∇2(∇ · ~u) + h2∇h · ∇(∇ · ~u) + h

(
h

2
∇2h+ |∇h|2

)
∇ · ~u

− h2

2

1

ε
∇2ht − h

1

ε
∇ht · ∇h+O(ε).

Substituting these expressions into (2.22) and retaining only terms of order O(ε+µ2) yields

the free-surface elevation equation:

ηt +∇ ·
(
(h+ εη)~u

)
= −

(
1 +

µ2

2
h2∇2 + µ2h∇h · ∇

)
1

ε
ht + µ2h

3

6
∇2(∇ · ~u)

+ µ2h

(
h∇h · ∇(∇ · ~u) +

(
h

2
∇2h+ |∇h|2

)
∇ · ~u

)
.

The equation for the evolution of the velocity field is derived similarly from the dynamic

boundary condition (2.7). This derivation will depend on the selected dissipation model.

For both models one has to evaluate φ1, φ1t and φ1zz along the free surface z = εη and

then substitute the expressions into the asymptotic form of (2.7):

µ2φ0t + µ4φ1t +
1

2
εµ2 |∇φ0|2 + µ2η + εν2µ

2φ1zz = O(ε2 + εµ4 + µ6),

where, as an example, dissipative terms are given according to the second model. After

performing all these operations one can write down the following equations:

Model I: φ0t +
ε
2
~u2 + η + ν1

ε
µ2φ0 − ν1ε

2
h2∇ · ~u− µ2

2
h2∇ · ~ut = 0,

Model II: φ0t +
ε
2
~u2 + η − ν2ε∇ · ~u− µ2

2
h2∇ · ~ut = 0.

The last step consists in differentiating the above equations with respect to the horizontal

coordinates in order to obtain equations for the evolution of the velocity. We also perform

some minor transformations using the fact that the vector ~u is a gradient by definition, so

we have the obvious relation
∂u

∂y
=
∂v

∂x
.

The resulting Boussinesq equations for the first and second dissipation models, respec-

tively, are given below:

ηt +∇ ·
(
(h+ εη)~u

)
= −

(
1 +

µ2

2
h2∇2 + µ2h∇h · ∇

)
1

ε
ht + µ2h

3

6
∇2(∇ · ~u)
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+ µ2h

(
h∇h · ∇(∇ · ~u) +

(
h

2
∇2h+ |∇h|2

)
∇ · ~u

)
, (2.23)

Model I: ~ut +
1
2
ε∇~u2 +∇η + ν1S~u = 1

2
εν1∇(h2∇ · ~u) + 1

2
µ2∇(h2∇ · ~ut), (2.24)

Model II: ~ut +
1
2
ε∇~u2 +∇η = εν2∇2~u+ 1

2
µ2∇(h2∇ · ~ut). (2.25)

2.3 Analysis of the linear dispersion relations

For simplicity, we will consider in this section only 2D problems. The generalization to

3D problems is straightforward and does not change the analysis.

2.3.1 Linearization of the full potential flow equations with dissipation

First we write down the linearization of the full potential flow equations in dimensional

form, after dropping the primes:

∆φ = 0, (x, z) ∈ R× [−h, 0], (2.26)

φz = ηt, z = 0, (2.27)

φt + gη +Dφ = 0, z = 0, (2.28)

φz = 0, z = −h. (2.29)

Remark 3 In this section the water layer is assumed to be of uniform depth, so h = const.

As above the term Dφ depends on the selected dissipation model and is equal to δ1φ or

δ2φzz. The next step consists in choosing a special form of solutions:

φ(x, z, t) = ϕ0e
i(kx−ωt)ϕ(z), η(x, t) = η0e

i(kx−ωt), (2.30)

where ϕ0 and η0 are constants. Substituting this form of solutions into equations (2.26),

(2.27) and (2.29) yields the following boundary value problem for an ordinary differential

equation:

ϕ′′(z)− k2ϕ(z) = 0, z ∈ [−h, 0],

ϕ′(0) =
η0

ϕ0

(−iω), ϕ′(−h) = 0.

Straightforward computations give the solution to this problem:

ϕ(z) = −i η0

ϕ0

(
ek(2h+z) + e−kz

e2kh − 1

)
ω

k
.
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The dispersion relation can be thought as a necessary condition for solutions of the

form (2.30) to exist. The problem is that ω and k cannot be arbitrary. We obtain the

required relation ω = ω(k), which is called the dispersion relation, after substituting this

solution into (2.28).

When the dissipative term is chosen according to model I (2.3), Dφ = δ1φ and the

dispersion relation is given implicitly by

ω2 + iδ1ω − gk tanh(kh) = 0,

or in explicit form by

ω = ±
√
gk tanh(kh)− δ2

1

4
− iδ1

2
. (2.31)

For the second dissipation model (2.4) one obtains the following relation:

ω2 + iδ2ωk
2 − gk tanh(kh) = 0.

One can easily solve this quadratic equation for ω as a function of k:

ω = ±
√

gk tanh(kh)−
(
δ2k2

2

)2

− iδ2
2
k2. (2.32)

If δ1,2 ≡ 0 one easily recognizes the dispersion relation of the classical water-wave

problem:

ω = ±
√
gk tanh(kh). (2.33)

Remark 4 It is important to have the property Imω(k) ≤ 0,∀k in order to avoid the

exponential growth of certain wavelengths, since

ei(kx−ω(k)t) = eImω(k)t · ei(kx−Reω(k)t).

For our analysis it is more interesting to look at the phase speed which is defined as

cp(k) :=
ω(k)

k
.

The phase velocity is directly connected to the speed of wave propagation and is extremely

important for accurate tsunami modelling since tsunami arrival time obviously depends

on the propagation speed. The expressions for the phase velocity are obtained from the

corresponding dispersion relations (2.31) and (2.32):

c(1)p (k) = ±
√
gh

tanh(kh)

kh
−
( δ1

2k

)2

− iδ1
2k
, (2.34)

c(2)p (k) = ±
√
gh

tanh(kh)

kh
−
(δ2k

2

)2

− iδ2
2
k. (2.35)

It can be shown that in order to keep the phase velocity unchanged by the addition of

dissipation, similar dissipative terms must be included in both the kinematic and the

dynamic boundary conditions [DDZ07].
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2.3.2 Dissipative Boussinesq equations

The analysis of the dispersion relation is even more straightforward for Boussinesq

equations. In order to be coherent with the previous subsection, we switch to dimensional

variables. As usual we begin with the (1 + 1)D linearized equations:

ηt + hux =
h3

6
uxxx,

Model I: ut + gηx + δ1u = 1
2
δ1h

2uxx + 1
2
h2uxxt,

Model II: ut + gηx = δ2uxx + 1
2
h2uxxt.

Now we substitute a special ansatz in these equations:

η = η0e
i(kx−ωt), u = u0e

i(kx−ωt),

where η0 and u0 are constants. In the case of the first model, one obtains the following

homogeneous system of linear equations:

(−iω)η0 + ikh

(
1 +

1

6
(kh)2

)
u0 = 0,

gikη0 +

(
−iω + δ1 +

δ1
2

(kh)2 − iω

2
(kh)2

)
u0 = 0.

This system admits nontrivial solutions if its determinant is equal to zero. It gives the

required dispersion relation:

ω2 + iωδ1 − ghk2

(
1 + 1

6
(kh)2

1 + 1
2
(kh)2

)
= 0.

A similar relation is found for the second model:

ω2 +
iωδ2

1 + 1
2
(kh)2

k2 − ghk2

(
1 + 1

6
(kh)2

1 + 1
2
(kh)2

)
= 0.

The corresponding phase velocities are given by

c
(1)
pb =

√

gh

(
1 + 1

6
(kh)2

1 + 1
2
(kh)2

)
−
(
δ1
2k

)2

− iδ1
2k
, (2.36)

c
(2)
pb =

√

gh

(
1 + 1

6
(kh)2

1 + 1
2
(kh)2

)
−
(

δ2k

2 + (kh)2

)2

− iδ2k

2 + (kh)2
. (2.37)
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Figure 2.2: Dissipation model I. Real part of the phase velocity.
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Figure 2.3: Dissipation model I. Same as Figure 2.2 with a zoom on long waves.
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Figure 2.4: Dissipation model I. Imaginary part of the frequency.
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Figure 2.5: Dissipation model II. Real part of the phase velocity.



98 Dissipative Boussinesq equations

0 2 4 6 8 10 12 14
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

kh

Im
 ω

(k
)

Dispersion relations. Imaginary part

Full equations with dissipation−2. Branch −
Full equations with dissipation−2. Branch +
Dissipative Boussinesq−2

Figure 2.6: Dissipation model II. Imaginary part of the frequency.

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

kh

Im
 ω

(k
)

Dispersion relations. Imaginary part

Full equations with dissipation−2. Branch +
Dissipative Boussinesq−2

Figure 2.7: Dissipation model II. Same as Figure 2.6 with a zoom on long waves.
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2.3.3 Discussion

Let us now provide a discussion on the dispersion relations. The real and imaginary

parts of the phase velocities (2.34) – (2.37) for the full and long wave linearized equations

are shown graphically on Figures 2.2 – 2.7. In this example the parameters are given by

δ1 = 0.14, δ2 = 0.14. Together with the dissipative models we also plotted for comparison

the well-known phase velocity corresponding to the full conservative (linearized) water-

wave problem:

cp(k) =

√
gh

tanh(kh)

kh
.

First of all, one can see that dissipation is very selective, as is often the case in physics.

Clearly, the first dissipation model prefers very long waves, while the second model dis-

sipates essentially short waves. Moreover one can see from the expressions (2.34), (2.36)

that the phase velocity has a 1/k singular behaviour in the vicinity of kh = 0 (in the long

wave limit). Furthermore, it can be clearly seen in Figure 2.3 that very long linear waves

are not advected in the first dissipation model, since the real part of their phase velocity

is identically equal to zero.

That is why we suggest to make use of the second model in applications involving very

long waves such as tsunamis.

On the other hand we would like to point out that the second model admits a critical

wavenumber kc such that the phase velocity (2.35) becomes purely imaginary with negative

imaginary part. From a physical point of view it means that the waves shorter than kc are

not advected, but only dissipated. When one switches to the Boussinesq approximation,

this property disappears for physically realistic values of the parameters g, h and δ2 (see

Table 2.1).

Let us clarify this situation. The qualitative behaviour of the phase velocity c
(2)
pb (see

equation (2.37)) depends on the roots of the following polynomial equation:

(kh)4 +

(
8− 3δ2

2

gh3

)
(kh)2 + 12 = 0.

This equation does not have real roots since
3δ22
gh3 ≪ 1.

2.4 Alternative version of the Boussinesq equations

In this section we give an alternative derivation of Boussinesq equations. We use another

classical method for deriving Boussinesq-type equations [Whi99, Ben74, Per72], which

provides slightly different governing equations. Namely, the hyperbolic structure is the
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same, but the dispersive terms differ. In numerical simulations we suggest to use this

system of equations.

The derivation follows closely the paper by [MS98]. The main differences are that we

neglect the terms of order O(µ4), take into account a moving bathymetry and, of course,

dissipative effects which are modelled this time according to model II (2.4) because, in our

opinion, this model is more appropriate for long wave applications. Anyhow, the derivation

process can be performed in a similar fashion for model I (2.3).

2.4.1 Derivation of the equations

The starting point is the same: equations (2.5), (2.6), (2.7) and (2.8). This time the

procedure begins with representing the velocity potential φ(x, y, z, t) as a formal expansion

in powers of z rather than of µ2:

φ(x, y, z, t) =
∞∑

n=0

znφn(x, y, t). (2.38)

We would like to emphasize that this expansion is only formal and no convergence result is

needed. In other words, it is just convenient to use this notation in asymptotic expansions

but in practice, seldom more than four terms are used. It is not necessary to justify the

convergence of the sum with three or four terms.

When we substitute the expansion (2.38) into Laplace equation (2.5), we have an infinite

polynomial in z. Requiring that φ formally satisfies Laplace equation implies that the

coefficients of each power of z vanish (since the right-hand side is identically zero). This

leads to the classical recurrence relation

φn+2(x, y, t) = − µ2

(n+ 1)(n+ 2)
∇2φn(x, y, t), n = 0, 1, 2, . . .

Using this relation one can eliminate all but two unknown functions in (2.38):

φ(x, y, z, t) =
∞∑

n=0

(−1)nµ2n

(
z2n

(2n)!
∇2nφ0 +

z2n+1

(2n+ 1)!
∇2nφ1

)
.

The following notation is introduced:

~u0 := ~u(x, y, 0, t), w0 :=
1

µ2
w(x, y, 0, t).

It is straightforward to find the relations between ~u0, w0 and φ0, φ1 if one remembers that

(~u, w) = (∇, ∂
∂z

)φ:

~u0 = ∇φ0, w0 =
1

µ2
φ1.
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Using the definition of the velocity potential φ one can express the velocity field in terms

of ~u0, w0:

~u =
∞∑

n=0

(−1)n
(
z2n

(2n)!
µ2n∇

(
∇2n−2(∇ · ~u0)

)
+

z2n+1

(2n+ 1)!
µ2n+2∇

(
∇2nw0

))
,

w =
∞∑

n=0

(−1)n
(
− z2n+1

(2n+ 1)!
µ2n+2∇2n(∇ · ~u0) +

z2n

(2n)!
µ2n+2∇2nw0

)
.

These formulas are exact but not practical. In the present work we neglect the terms of

order O(µ4) and higher. In this asymptotic framework the above formulas become much

simpler:

φ = φ0 + zφ1 −
µ2z2

2

(
∇2φ0 +

z

3
∇2φ1

)
+O(µ4), (2.39)

~u = ~u0 + zµ2∇w0 −
µ2z2

2
∇(∇ · ~u0) +O(µ4), (2.40)

w = µ2w0 − zµ2∇ · ~u0 +O(µ4). (2.41)

In order to establish the relation between w0 and ~u0 one uses the bottom kinematic

boundary condition (2.8), which has the following form after substituting the asymptotic

expansions (2.39), (2.40), (2.41) in it:

ht + ε∇h ·
(
~u0 − hµ2∇w0 −

µ2h2

2
∇(∇ · ~u0)

)

+ ε
(
w0 −

h3

6
µ2∇2(∇ · ~u0)−

µ2h2

2
∇2w0

)
+O(µ4) = 0. (2.42)

In order to obtain the expression of w0 in terms of ~u0 one introduces one more expansion:

w0(x, y, t) = w
(0)
0 (x, y, t) + µ2w

(1)
0 (x, y, t) + . . . . (2.43)

We insert this expansion into the asymptotic bottom boundary condition (2.42). This

leads to the following explicit expressions for w
(0)
0 and w

(1)
0 :

w
(0)
0 = −1

ε
ht −∇ · (h~u0),

w
(1)
0 =

h2

2

(
∇h · ∇(∇ · ~u0) +

h

3
∇2(∇ · ~u0)

)

− h
(
∇h · 1

ε
∇ht +∇h · ∇

(
∇ · (h~u0)

)
+
h

2

(1
ε
∇2ht +∇2(∇ · (h~u0))

))
.
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Substituting these expansions into (2.43) and performing some simplifications yields the

required relation between ~u0 and w0:

w0 = −1

ε
ht −∇ · (h~u0)

− µ2∇ ·
(h2

2ε
∇ht +

h2

2
∇
(
∇ · (h~u0)

)
− h3

6
∇(∇ · ~u0)

)
+O(µ4). (2.44)

Now one can eliminate the vertical velocity w0 since one has its expression (2.44) in terms

of ~u0. Equations (2.40)-(2.41) become

~u = ~u0 − z
µ2

ε
∇ht − µ2

(
z∇
(
∇ · (h~u0)

)
+
z2

2
∇(∇ · ~u0)

)
+O(µ4), (2.45)

w = −µ
2

ε
ht − µ2

(
∇ · (h~u0) + z∇ · ~u0

)
+O(µ4). (2.46)

In this work we apply a trick due to [Nwo93]. Namely, we introduce a new velocity

variable uα defined at an arbitrary water level zα = −αh. Technically this change of

variables is done as follows. First we evaluate (2.45) at z = zα, which gives the connection

between ~u0 and uα:

uα = ~u0 − zα
µ2

ε
∇ht − µ2

(
zα∇

(
∇ · (h~u0)

)
+
z2
α

2
∇(∇ · ~u0)

)
+O(µ4).

Using the standard techniques of inversion one can rewrite the last expression as an asymp-

totic formula for ~u0 in terms of uα:

~u0 = uα + zα
µ2

ε
ht + µ2

(
zα∇

(
∇ · (huα)

)
+
z2
α

2
∇(∇ · uα)

)
+O(µ4). (2.47)

Remark 5 Behind this change of variables there is one subtlety which is generally hushed

up in the literature. In fact, the wave motion is assumed to be irrotational since we use

the potential flow formulation (2.5), (2.6), (2.7), (2.8) of the water-wave problem. By

construction rot(~u, w) = O when ~u and w are computed according to (2.45), (2.46) or,

in other words, in terms of the variable ~u0. When one turns to the velocity variable uα
defined at an arbitrary level, one can improve the linear dispersion relation and this is

important for wave modelling. But on the other hand, one loses the property that the flow

is irrotational. That is to say, a direct computation shows that rot(~u, w) 6= O when ~u and

w are expressed in terms of the variable uα. The purpose of this remark is simply to inform

the reader about the price to be paid while improving the dispersion relation properties. It

seems that this point is not clearly mentioned in the literature on this topic.
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Let us now derive the Boussinesq equations. There are two different methods to obtain

the free-surface elevation equation. The first method consists in integrating the continuity

equation (2.5) over the depth and then use the kinematic free-surface and bottom boundary

conditions. The second way is more straightforward. It consists in using directly the

kinematic free-surface boundary condition (2.6):

ηt + ε∇φ · ∇η − 1

µ2
φz = 0.

Then one can substitute (2.39) into (2.6) and perform several simplifications. Neglecting

all terms of order O(ε2 + εµ2 + µ4) yields the following equation3:

ηt +∇ ·
(
(h+ εη)~u0

)
+
µ2

2
∇ ·
(
h2∇

(
∇ · (h~u0)

)
− h3

3
∇(∇ · ~u0)

)
=

= ζt +
µ2

2
∇ · (h2∇ζt).

Recall that ζ(x, y, t) is defined according to (2.21). When the bathymetry is static, ζ ≡ 0.

We prefer to introduce this function in order to eliminate the division by ε in the source

terms since this division can give the impression that stiff source terms are present in our

problem, which is not the case.

In order to be able to optimize the dispersion relation properties, we switch to the

variable uα. Technically it is done by using the relation (2.47) between ~u0 and uα. The

result is given below:

ηt +∇ ·
(
(h+ εη)uα

)
+ µ2∇ ·

(
h
(
zα +

h

2

)
∇
(
∇ · (huα)

)
+
h

2

(
z2
α −

h2

3

)
∇(∇ · uα)

)
=

= ζt + µ2∇ ·
(
h
(
zα +

h

2

)
∇ζt
)
. (2.48)

As above, the equation for the horizontal velocity field is derived from the dynamic

free-surface boundary condition (2.7). It is done exactly as in section 2.2 and we do not

insist on this point:

~u0t +
ε

2
∇|~u0|2 +∇η − εδ∇2~u0 = O.

Switching to the variable uα yields the following governing equation:

uαt +
ε

2
∇|uα|2 +∇η + µ2

(
zα∇

(
∇ · (huα)

)
+
z2
α

2
∇(∇ · uα)

)
t
=

= εδ∆uα + µ2(zα∇ζt)t. (2.49)

3We already discussed this point on page 91. In this section we also assume that the Stokes-Ursell

number S is of order O(1).
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In several numerical methods it can be advantageous to rewrite the system (2.48), (2.49)

in vector form:

Ut + µ2L(U)t +∇ · F(U) + µ2∇ ·P(U) = S(x, y, t) + εδ∇ · (D∇U)),

where

U :=



η

uα
vα


 , ∇ · F :=

∂F

∂x
+
∂G

∂y
,

F :=




(h+ εη)uα
ε
2
|uα|2 + η

0


 , G :=




(h+ εη)vα
0

ε
2
|uα|2 + η


 ,

L :=

(
0

zα∇
(
∇ · (huα)

)
+ z2α

2
∇(∇ · uα)

)
,

P :=

(
h
(
zα + h

2

)
∇
(
∇ · (huα)

)
+ h

2

(
z2
α − h2

3

)
∇(∇ · uα)

O

)
,

S :=

(
ζt + µ2∇ ·

(
h
(
zα + h

2

)
∇ζt
)

µ2(zα∇ζt)t

)
,

D :=




0 0 0

0 1 0

0 0 1


 .

2.5 Improvement of the linear dispersion relations

As said above, the idea of using one free parameter α ∈ [0, 1] to optimize the linear

dispersion relation properties appears to have been proposed first by [Nwo93].

The idea of manipulating the dispersion relation was well-known before 1993. See for

example [Mur89, MMS91]. But these authors started with a desired dispersion relation and

artificially added extra terms to the momentum equation in order to produce the desired

characteristics. We prefer to follow the ideas of [Nwo93].

Remark 6 When one plays with the dispersion relation it is important to remember that

the resulting problem must be well-posed, at least linearly. We refer to [BCS02] as a general

reference on this topic. Usually Boussinesq-type models with good dispersion characteristics

are linearly well-posed as well.
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In order to look for an optimal value of α we will drop dissipative terms. Indeed we

want to concentrate our attention on the propagation properties which are more important.

The choice for the parameter α depends on the optimization criterion. In the present

work we choose α by comparing the coefficients in the Taylor expansions of the phase

velocity in the vicinity of kh = 0, which corresponds to the long-wave limit. Another

possibility is to match the dispersion relation of the full linearized equations (2.33) in the

least square sense. One can also use Padé approximants [Wit84] since rational functions

have better approximation properties than polynomials.

We briefly describe the procedure. First of all one has to obtain the phase velocity of

the linearized, non-viscous, Boussinesq equations (2.48)-(2.49). The result is

c2b(k)

gh
=

1−
(
α2

2
− α+ 1

3

)
(kh)2

1− α
(
α
2
− 1
)
(kh)2

= 1− 1

3
(kh)2 +

α(2− α)

6
(kh)4 +O

(
(kh)6

)
. (2.50)

On the other hand one can write down the phase velocity of the full linearized equations

(2.33):
c2(k)

gh
=

tanh(kh)

kh
= 1− 1

3
(kh)2 +

2

15
(kh)4 +O

(
(kh)6

)
. (2.51)

If one insists on the dispersion relation (2.50) to be exact up to order O ((kh)4) one imme-

diately obtains an equation for αopt:

αopt(2− αopt)
6

=
2

15
⇒ αopt = 1−

√
5

5
≈ 0.55.

We suggest using this value of α in numerical computations.

2.6 Regularization of Boussinesq equations

In this section we are going to modify further just obtained Boussinesq equations (2.48),

(2.49). For simplicity we assume the bottom to be static h = h(x, y) and we drop out

viscous terms. This operation will allow us to obtain very 〈〈 gentle 〉〉system of equations

from the numerical point of view. The influence of this modification on dispersion relation

properties will be discussed below.

The main idea behind is very simple. It was already extensively exploited in [BCS02]

and other publications. We are going to use lower order asymptotic relations in order to
〈〈 play 〉〉with dispersive terms. Namely, from (2.48), (2.49) one can deduce two following

relations:

ηt = −∇ · (h~u) +O(ε+ µ2), (2.52)

~ut = −∇η +O(ε+ µ2).
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In the present work we will only use the relation (2.52). With its help we can modify the

first dispersive term in the equation (2.48):

µ2∇ ·
(
h
(
zα +

h

2

)
∇
(
∇ · (huα)

))
= −µ2∇ ·

(
h
(
zα +

h

2

)
∇η
)
t
+O(εµ2 + µ4).

Thus, the regularized system of equations reads:

ηt+∇·
(
(h+ εη)uα

)
−µ2∇·

(
h
(
zα+

h

2

)
∇η
)
t
+µ2∇·

(h
2

(
z2
α−

h2

3

)
∇(∇·uα)

)
= 0, (2.53)

uαt +
ε

2
∇|uα|2 +∇η + µ2

(
zα∇

(
∇ · (huα)

)
+
z2
α

2
∇(∇ · uα)

)
t
= ~0. (2.54)

Just obtained system of equations has the same relation with classical Boussinesq equa-

tions [Per67] as KdV equation ut + ux + uux + uxxx = 0 is related to BBM model [BBM72]

ut + ux + uux − uxxt = 0. The main purpose of this little modification is to decrease the

order of dispersive operator which can be stiff from the numerical point of view:

(1− ∂xx)ut + ux + uux = 0→ ut + (1− ∂xx)−1(ux + uux) = 0.

In practice, it can drastically change the CFL condition from ∆t = O(∆x2) for KdV (see

[Tre00] for example) to ∆t = O(∆x) for BBM equation (or even unconditionally stable

schemes if one considers an equivalent integral representation of solutions [BPS81, BPS85]).

We have to say that this operation does not change the formal order of approximation.

Moreover, the experiments show that the regularized equations (such as BBM) completed

by dissipative terms seem to be excellent in description of long water waves [BPS81].

The dispersion relation of just obtained equations (2.53), (2.54) is the following:

c2r(k)

gh
:=

1 + 1
2

(
1
3
− α2

)
(
1 +

(
1
2
− α

)
(kh)2

)(
1 + α

(
1− α

2

)
(kh)2

) =

= 1− 1

3
(kh)2 −

(1
2
α3 − 13

12
α2 +

1

2
α− 1

6

)
(kh)4 +O

(
(kh)6

)
(2.55)

Here again we can choose the parameter α so that the dispersion relation (2.55) be exact

up to terms of order O
(
(kh)4

)
. In this way we get the following equation for α:

1

2
α3 − 13

12
α2 +

1

2
α− 1

30
= 0.

This equation has only one root which has physical sense and lead to linearly well-posed

problem αopt := 0.0800 (let us recall that α = 0 corresponds to the free surface and α = 1

to the bottom level). We suggest to use this value in numerical simulations. In Figure 2.8

we plot dispersion relations (2.50), (2.51) and (2.55) with optimal values of α.
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Figure 2.8: Dispersion relations of complete water wave problem, Nwogu version of Boussinesq

equations and its regularized version

2.7 Bottom friction

In this section, one switches back to dimensional variables. It is a common practice in

hydraulics engineering to take into account the effect of bottom friction or bottom rugosity.

In the Boussinesq and nonlinear shallow water equations there is also a possibility to include

some kind of empirical terms to model these physical effects. From the mathematical and

especially numerical viewpoints these terms do not add any complexity, since they have the

form of source terms that do not involve differential operators. So it is highly recommended

to introduce these source terms in numerical models.

There is no unique bottom friction law. Most frequently, Chézy and Darcy-Weisbach

laws are used. Both laws have similar structures. We give here these models in dimensional

form. The following terms have to be added to the source terms of Boussinesq equations

when one wants to include bottom friction modelling.

• Chézy law:

Sf = −Cfg
~u |~u|
h+ η

,

where Cf is the Chézy coefficient.
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• Darcy-Weisbach law:

Sf = − λ~u |~u|
8(h+ η)

,

where λ is the so-called resistance value. This parameter is determined according to

the simplified form of the Colebrook-White relation:

1√
λ

= −2.03 log

(
ks

14.84(h+ η)

)
.

Here ks denotes the friction parameter, which depends on the composition of the

bottom. Typically ks can vary from 1mm for concrete to 300mm for bottom with

dense vegetation.

• Manning-Strickler law:

Sf = −k2g
~u |~u|

(h+ η)
4
3

,

where k is the Manning roughness coefficient.

Remark 7 In chapter 4 we develop an alternative approach to bottom friction modelling.

Our analysis is based on formal asymptotic expansion of Navier-Stokes equations in fluid

and in the bottom boundary layer. The resulting viscous-potential formulation contains

local and nonlocal dissipative terms. Then we derive corresponding long wave equations

which take the following form in the absence of dispersive terms:

ηt +∇ · ((h+ η)~u) = 2ν∆η +

√
ν

π

t∫

0

∇ · ~u√
t− τ dτ,

~ut +
1

2
∇|~u|2 + g∇η = 2ν∆~u.

The principal difference with just presented 〈〈 engineer’s 〉〉approach consists in at least

formal justification of the governing equations.

2.8 Spectral Fourier method

In this study we adopted a well-known and widely used spectral Fourier method. The

main idea consists in discretizing the spatial derivatives using Fourier transforms. The

effectiveness of this method is explained by two main reasons. First, the differentiation

operation in Fourier transform space is extremely simple due to the following property of

Fourier transforms: f ′ = ikf . Secondly, there are very powerful tools for the fast and

accurate computation of discrete Fourier transforms (DFT). So, spatial derivatives are

computed with the following algorithm:
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1: f ← fft (f)

2: v ← ikf

3: f ′ ← ifft (v)

where k is the wavenumber.

This approach, which is extremely efficient, has the drawbacks of almost all spectral

methods. The first drawback consists in imposing periodic boundary conditions since we

use DFT. The second drawback is that we can only handle simple geometries, namely,

Cartesian products of 1D intervals. For the purpose of academic research, this type of

method is appropriate.

Let us now consider the discretization of the dissipative Boussinesq equations. We

show in detail how the discretization is performed on equations (2.23), (2.25). The other

systems are discretized in the same way. We chose equations (2.23), (2.25) in order to

avoid cumbersome expressions and make the description as clear as possible.

Let us apply the Fourier transform to both sides of equations (2.23), (2.25):

ηt = −ik · (h+ εη)~u− 1

ε
ht −

µ2

2ε
h2∇2ht −

µ2

ε
h∇h · ∇ht +

µ2

6
h3∇2∇ · ~u

+
µ2

2
h2∇2h∇ · ~u+ µ2h |∇h|2∇ · ~u+ µ2h2∇h · ∇(∇ · ~u), (2.56)

~ut +
1

2
εik|~u|2 + ikη + εν2 |k|2 ~u−

1

2
µ2ikh2∇ · ~ut = 0, (2.57)

where k = (kx, ky) denotes the Fourier transform parameters.

Equations (2.56) and (2.57) constitute a system of ordinary differential equations to

be integrated numerically. In the present study we use the classical explicit fourth-order

Runge-Kutta method.

k1 = ∆tf(tn, yn),

k2 = ∆tf

(
tn +

∆t

2
, yn +

1

2
k1

)
,

k3 = ∆tf

(
tn +

∆t

2
, yn +

1

2
k2

)
,

k4 = ∆tf (tn + ∆t, yn + k3) ,

yn+1 = yn +
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4 +O(∆t6).

Remark 8 A lot of researchers who integrated numerically the KdV equation noticed that

the stability criterion has the form

∆t =
λ

N2
,
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where λ is the Courant-Friedrichs-Lewy (CFL) number and N the number of points of

discretization. In order to increase the time integration step ∆t they solved exactly the

linear part of the partial differential equation since the linear term is the one involving

high frequencies and constraining the stability. This method, which is usually called the

integrating factor method, allows an increase of the CFL number up to a factor ten, but it

cannot fix the dependence on 1/N2.

We do not have this difficulty because we use regularized dispersive terms. The regular-

ization effect can be seen from equation (2.57). The same idea was exploited by [BPS81],

who used the modified KdV equation (2.10).

Let us briefly explain how we treat the non-linear terms. Since the time integration

scheme is explicit, one can easily handle nonlinearities. For example the term (h+ εη)~u is

computed as follows:

(h+ εη)~u = fft
(
(h+ εRe ifft (η)) · Re ifft (~u)

)
.

The other nonlinear terms are computed in the same way.

2.8.1 Validation of the numerical method

One way to validate a numerical scheme is to compare the numerical results with

analytical solutions. Unfortunately, the authors did not succeed in deriving analytical

solutions to the (1 + 1)D dissipative Boussinesq equations over a flat bottom. But for

validation purposes, one can neglect the viscous term. With this simplification several

solitary wave solutions can be obtained. We follow closely the work of [Che98]. In (1+1)D

in the presence of a flat bottom, the Boussinesq system without dissipation becomes

ηt + ux + ε(uη)x −
µ2

6
uxxx = 0, (2.58)

ut + ηx + εuux −
µ2

2
uxxt = 0. (2.59)

We look for solitary-wave solutions travelling to the left in the form

η(x, t) = η(ξ) = η(x0 + x+ ct), u(x, t) = Bη(ξ),

where we introduced the new variable ξ = x0 +x+ ct and B, c, x0 are constants. From the

physical point of view this change of variables is nothing else than Galilean transformation.

In other words we choose a new frame of reference which moves with the same celerity as

the solitary wave. Since c is constant (there is no acceleration), the observer moving with

the wave will see a steady picture.
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In the following primes denote derivation with respect to ξ. Substituting this special

form into the governing equations (2.58)-(2.59) gives

cη′ + u′ + ε(uη)′ − µ2

6
u′′′ = 0,

cu′ + η′ + εuu′ − cµ
2

2
u′′′ = 0.

One can decrease the order of derivatives by integrating once:

cη + u+ εuη − µ2

6
u′′ = 0,

cu+ η +
ε

2
u2 − cµ

2

2
u′′ = 0.

The solution is integrable on R and there are no integration constants, since a priori the

solution behaviour at infinity is known: the solitary wave is exponentially small at large

distances from the crest. Mathematically it can be expressed as

lim
ξ→±∞

η(x, t) = lim
ξ→±∞

u(x, t) = 0.

Now we use the relation u(ξ) = Bη(ξ) to eliminate the variable u from the system:

(c+B)η −Bµ
2

6
η′′ = −εBη2, (2.60)

(1 + cB)η − cBµ
2

2
η′′ = −ε

2
B2η2. (2.61)

In order to have non-trivial solutions both equations must be compatible. Compatibility

conditions are obtained by comparing the coefficients of corresponding terms in equations

(2.60)-(2.61):

1

2
B2 − 1

2
Bc = 1,

1

6
B2 −Bc = 0.

These relations can be thought as a system of linear equations with respect to B2 and Bc.

The unique solution of those equations is

B2 =
12

5
, c =

B

6
.

Choosing B > 0 so that c > 0 leads to

B =
6√
15
, c =

1√
15
.
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These constants determine the amplitude and the propagation speed of the solitary wave.

In order to find the shape of the wave, one differentiates once equation (2.61):

7η′ − µ2η′′′ = −12εηη′. (2.62)

The solution to this equation is well-known (see for example [New77, Che98]):

Lemma 1 Let α, β be real constants; the equation

αη′(ξ)− βη′′′(ξ) = η(ξ)η′(ξ)

has a solitary-wave solution if αβ > 0. Moreover, the solitary-wave solution is

η(ξ) = 3α sech 2

(
1

2

√
α

β
(ξ + ξ0)

)

where ξ0 is an arbitrary constant.

Applying this lemma to equation (2.62) yields the following solution:

η(x, t) = − 7

4ε
sech 2

(√
7

2µ
(x+ ct+ x0)

)
, (2.63)

u(x, t) = −7
√

15

10ε
sech 2

(√
7

2µ
(x+ ct+ x0)

)
.

Note that this exact solitary wave solution is not physical. Indeed the velocity is

negative whereas one expects it to be positive for a depression wave propagating to the

left. In any case, the goal here is to validate the numerical computations by comparing

with an exact solution. The methodology is simple. We choose a solitary wave as initial

condition and let it propagate during a certain time T with the spectral method. At the end

of the computations one computes the L∞ norm of the difference between the analytical

solution (2.63) and the numerical one η̃(x, T ):

ǫN := max
1≤i≤N

|η(xi, T )− η̃(xi, T )| ,

where {xi}1≤i≤N are the discretization points.

Figure 2.9 shows the graph of ǫN as a function of N . This result shows an excellent

performance of this spectral method with an exponential convergence rate. In general, the

error ǫN is bounded below by the maximum between the error due to the time integration

algorithm and floating point arithmetic precision.

The exponential convergence rate to the exact solution is one of the features of spectral

methods. It explains the success of these methods in several domains such as direct nu-

merical simulation (DNS) of turbulence. One of the main drawbacks of spectral methods

consists in the difficulties in handling complex geometries and various types of boundary

conditions.
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Figure 2.9: Error on the numerical computation of a solitary wave solution. Here T = 1.

2.9 Numerical results

In this section we perform comparisons between the two dissipation models (2.24) and

(2.25). Even though the computations we show deal with a 1D wave propagating in the

negative x−direction, they have been performed with the 2D version of the code. The

bathymetry z = −h(x, y) is chosen to be a regularized step function which is translated in

the y−direction. A typical function h(x, y) is given by

h(x) =





hl, x ≤ x0,

hl +
1
2
(hr − hl)

(
1 + sin

(
π

∆x
(x− x0 − 1

2
∆x)

))
, x0 < x < x0 + ∆x,

hr, x ≥ x0 + ∆x.

(2.64)

This test case is interesting from a practical point of view since it clearly illustrates the

phenomena of long wave reflection by bottom topography. The parameters used in this

computation are given in Table 2.2. All values are given in nondimensional form.

2.9.1 Construction of the initial condition

We propagate on the free surface a so-called approximate soliton. Its classical con-

struction is as follows. We begin with the non-dissipative Boussinesq equations on a flat
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parameter hl hr x0 ∆x ε µ ν1, ν2

value 0.5 1.0 −0.5 0.3 0.005 0.06 0.14

Table 2.2: Typical values of the parameters used in the numerical computations

bottom:

ηt +
(
(1 + εη)u

)
x
− µ2

6
uxxx = 0,

ut + ηx +
ε

2
(u2)x −

µ2

2
uxxt = 0, (2.65)

and look for u in the following form:

u = −η + εP + µ2Q+O(ε2 + εµ2 + µ4). (2.66)

It is precisely at this step that one makes an approximation. One substitutes this asymp-

totic expansion into the governing equations and retains only the terms of order O(ε+µ2):

ηt − ηx + εPx + µ2Qx − 2εηηx +
µ2

6
ηxxx = O(ε2 + εµ2 + µ4), (2.67)

−ηt + ηx + εPt + µ2Qt + εηηx +
µ2

2
ηxxt = O(ε2 + εµ2 + µ4).

Add these two equations and set the coefficients of ε and µ2 equal to 0:

ε : Px + Pt − ηηx = 0, (2.68)

µ2 : Qx +Qt +
1
6
ηxxx + 1

2
ηxxt = 0. (2.69)

Since the water depth is h = 1 + εη = 1 +O(ε), the approximate solitary wave should

travel to the left with a celerity c = 1+O(ε) and depend on the variable x+ct = x+t+O(ε).

Consequently one has the following relations:

∂f

∂t
=
∂f

∂x
+O(ε+ µ2), f ∈ {η, P,Q}.

Replacing time derivatives by spatial ones in (2.68)-(2.69) yields

Px =
1

2
ηηx, Qx = −1

3
ηxxx.

By integration (using the fact that solitary waves tend to zero at infinity), one obtains

P =
1

4
η2, Q = −1

3
ηxx (2.70)
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and the relation (2.66) connecting η and u becomes

u = −η +
ε

4
η2 − µ2

3
ηxx + . . . . (2.71)

Substituting this expression for u into (2.67) yields a classical KdV equation for η:

ηt −
(

1 +
3

2
εη

)
ηx −

µ2

6
ηxxx = 0, (2.72)

which admits solitary wave solutions of the form η = η(x+ ct):

η(x, t) =
2(c− 1)

ε
sech 2

(
1

2µ

√
6(c− 1)(x+ ct)

)
,

where c > 1. The velocity u is obtained from (2.71) by simple substitution. This approxi-

mate soliton is used in the numerical computations.

2.9.2 Comparison between the dissipative models

The snapshot of the function η(x, y, t0) (divided by 10 for clarity’s sake) during and

just after reflection by the step is given on Figure 2.10.

Then we compare the two sets of equations (2.23), (2.24) and (2.23), (2.25). To do so

we look at the section of the free surface at y = 0 along the propagation direction.

Figure 2.11 shows that even at the beginning of the computations the two models give

slightly different results. The amplitude of the pulse obtained with model I is smaller.

It can be explained by the presence of the term ν1S~u which is bigger in magnitude than

εν2∇2~u. Within graphical accuracy, there is almost no difference between the conservative

case and model II.

In Figure 2.12 one can see that differences between the two solitons continue to grow. In

particular we see an important drawback of the dissipation model I: just after the wave crest

the free surface has some kind of residual deformation which is clearly non-physical. Our

numerical experiments show that the amplitude of this residue depends almost linearly on

the parameter ν1. We could hardly predict this effect directly from the equations without

numerical experiments.

We would like to point out several soliton transformations in Figure 2.13 due to the

interaction with bathymetry. First of all, since the depth decreases, the wave amplitude

grows. Quantitatively speaking, the wave amplitude before the interaction is equal exactly

to 8 (without including dissipation) and over the step it becomes roughly 9.4. On the

other hand the soliton becomes less symmetric which is also expected. Because of periodic

numerical boundary conditions we also observe the residue of the free-surface deformation

coming through the left boundary.
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(a) t = 2.1s (b) t = 2.5s

Figure 2.10: Interaction between a left-running solitary wave and a step.
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Figure 2.11: Free-surface snapshot before the interaction with the step: (left) the curves corre-

sponding to the three models are almost superimposed; (right) difference between model II and

model I.
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Figure 2.12: Free surface just before the interaction with the step
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Figure 2.13: Beginning of the solitary wave deformation under the change in bathymetry
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Figure 2.14: Initiation of the reflected wave separation
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Figure 2.15: Separation of the reflected wave
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Figure 2.16: Two separate waves moving in opposite directions

Figures 2.14, 2.15 and 2.16 show the process of wave reflection from the step at the

bottom. The reflected wave clearly moves in the opposite direction.

2.10 Conclusions

Comparisons have been made between two dissipation models. Model II, in which the

decay is proportional to the second derivative of the velocity, appears to be better. At this

stage we cannot show comparisons with laboratory experiments in order to demonstrate

the performance of model II. Nevertheless, there is an indirect evidence. We refer one

more time to the theoretical as well as experimental work of [BPS81]. In order to model

wave trains, they added to the Korteweg–de Vries equation an ad-hoc dissipative term

in the form of the Laplacian (but in 1D). This term coincides with the results of our

derivation if we model dissipation in the equations according to the second model. Their

work shows excellent agreement between experiments and numerical solutions to dissipative

KdV equation. Moreover our dissipative Boussinesq equations are in the same relationship

with the classical Boussinesq equations [Per67] as Euler and Navier-Stokes equations. This

is a second argument towards the physical pertinency of the results obtained with model
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II.



Chapter 3

Two phase approach to free surface

compressible flows

I think that there is a moral to this story, namely that it is more important to have beauty in

one’s equations that to have them fit experiment. [...] It seems that if one is working from the

point of view of getting beauty in one’s equations, and if one has really a sound insight, one is

on a sure line of progress. If there is not complete agreement between the results of one’s work

and experiment, one should not allow oneself to be too discouraged, because the discrepancy

may well be due to minor features that are not properly taken into account and that will get

cleared up with further development of the theory.

Paul Adrien Maurice Dirac (1902 – 1984)
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3.1 Introduction

Two-phase or even multiphase flows are very common in nature. They occur in a

system containing gas and liquid1 with a meniscus separating the two phases. Probably,

the most important applications of two-phase flow are in large-scale power systems. The

design of power stations requires a detailed understanding of two-phase flow heat-transfer

and pressure drop behaviour, which is significantly different from the single-phase case.

Even more critically, nuclear reactors use water to remove heat from the reactor core using

two-phase flow. Another important application of two-phase flows is pump cavitation.

Two-phase flows in nature include many interesting examples such as clouds, groundwater

flow, bubbles, rain, waves on the sea, foam, fountains and gas/oil slicks.

Several features make two-phase flow an interesting and challenging branch of fluid

mechanics. First of all, surface tension complicates considerably all dynamical problems.

In the present study we do not take into account this effect since in our applications it is

unimportant. Then, in the case of air and water at standard temperature and pressure, the

density of the two phases differs by a factor of about 1000. Similar differences are typical

of water liquid/water vapor densities and can make the computation very stiff. The sound

speed changes dramatically for materials undergoing phase change, and can be orders of

magnitude different (see Figure 3.2). This introduces strong compressible effects into the

problem. Finally, the phase changes are not instantaneous, and the liquid vapor system

will not necessarily be in phase equilibrium.

In the present chapter we are going to present a mathematical model which is issued

from two-phase flows fluid mechanics. Namely, we are going to use the homogeneous model

(with equal velocity, pressure and temperature for both phases). Basically, our contribution

consists in suggesting to use this model for the numerical simulation of free-surface aerated

flows in various containers. The most important applications are issued from petroleum

1They can occur even in a system containing two different liquids as well.
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Figure 3.1: Example of homogeneous water/air mixture just after the wave breaking. This

image is taken from [BOPB07].

industry and simulation of wave impacts onto a wall or breakwater. Figure 3.1 shows an

image of a broken wave. It gives an example of homogeneous water/air mixture and shows

the physical situation which we aim to model.

Accurate predictions of wave loading are crucial to the design of coastal structures.

When a wave breaks directly onto a vertical or inclined wall, impact pressures can be

extremely large in comparison to the pressures exerted by nonbreaking waves. Despite all

this, many engineers disregard wave impact loading in the belief that the duration of the

impulse is too short for the structure to respond. Presently, the loading due to breaking

waves is difficult to predict and is poorly understood in general. We refer to [Per03] as

general excellent review of water-wave impact problem.

Interesting experimental results are obtained in [BOPB07]. The authors report that

even for series of supposedly regular waves, there is great variability in the violence of

the impacts. The greatest impact pressures are highly localized in space and time. They

are produced when the front of the breaker is almost parallel to the wall at the instant

of impact. If the wave overturns as it hits the wall, it can trap an air pocket. The

compressibility of the trapped or entrained air will affect the dynamics and is often thought

to reduce the maximum pressure due to a cushioning effect. However, an air pocket will
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Figure 3.2: Sound speed cs in the water/air mixture at normal conditions. It is plotted as a

function of gas void fraction α.

also tend to distribute the impact pressures more widely so that the overall force on the

wall may not be reduced.

Wave impacts are classified as low-aeration when the measurements indicate that the

water adjacent to the wall contains relatively little air (typically a voids ratio < 5%). On

the other hand, an impact is called a high-aeration impact if it contains a higher level

of entrained air, sometimes accompanied by clear evidence of entrapment. Bullock et

al. [BOPB07] showed that low-aeration impacts have temporally and spatially localised

pressure spike of short rise time and duration (≈ 80 to 200 ms) while in high-aeration

situation the rise time, fall time and duration are longer (≈ 100 to 400 ms) and the

pressure spike is less localised.

Even when the pressures during a high-aeration impact are lower, the fact that the

impact is generally less spatially localised than a low-aeration impact reduces the chance

of the resultant force being lower. When this is combined with the longer duration, the

impulse associated with the impact may well be higher. It suggests that the greater per-

sistence of air in seawater waves may not help to protect structures from impact damage

as is often assumed.
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3.2 Mathematical model

We would like to begin this section by explaining our choice of a compressible model

for the liquid phase. If the liquid is pure (water, for example), the importance of its

compressibility is questionable2. In the present work we aim to model the mixtures of

gas and liquid which typically occur in oil containers and broken waves (see Figure 3.1).

In order to show the importance of compressibility effects, we depict on Figure 3.2 the

dependence of sound velocity in the mixture of water and air as a function of gas volume

fraction at normal conditions. The reader can see that the sound velocity drops down very

quickly (to about 50m
s
) when we add a small quantity of air and the Mach number is not

so small anymore. Recall that according to [BOPB07] low-aerated impacts contain about

5% of air, thus dropping down significantly the sound speed.

In this section we present the equations which govern the motion of two phase mixtures

in a computational domain Ω. First of all, we need to introduce the notation which will

be used throughout this chapter. We use superscripts ± to denote any quantity which is

related to liquid and gas respectively. For example, α+ and α− denote the volume fraction

of liquid and gas and obviously satisfy the condition α+ + α− = 1. Then, we have the

following classical quantities: ρ±, ~u, p, e, E, ~g which denote the density of each phase, the

velocity field vector, the pressure, the internal and total energy and the acceleration due

to gravity correspondingly.

Conservation of mass (one equation for each phase), momentum and energy lead to the

four following equations:

(α±ρ±)t +∇ · (α±ρ±~u) = 0, (3.1)

(ρ~u)t +∇ ·
(
ρ~u⊗ ~u+ pI

)
= ρ~g, (3.2)

(
ρE
)
t
+∇ ·

(
ρH~u

)
= ρ~g · ~u, (3.3)

where ρ := α+ρ+ + α−ρ− (the total density), H := E + p
ρ

(the specific enthalpy), E =

e+ 1
2
|~u|2 (the total energy). This system can be seen as the single energy and infinite drag

limit of the more conventional six equations model [Ish75].

The above system contains five unknowns α±ρ±, ~u, p and E and only four governing

equations (3.1) - (3.3). In order to close the system, we need to provide the so-called

equation of state (EOS) p = p±(ρ±, e). The construction of the EOS will be discussed

below (see Section 3.2.2).

It is possible to rewrite these equations as a system of balance laws

∂w

∂t
+∇ · F(w) = S(w),

2More precisely, if the problem under consideration does not require explicitly the compressibility (like

in acoustics, for example), this effect can usually be neglected since it complicates considerably the study.
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where the conservative variables in the 2D case are defined as follows:

w = (wi)
5
i=1 := (α+ρ+, α−ρ−, ρu, ρv, ρE). (3.4)

The flux projection on the normal direction ~n = (n1, n2) can be expressed in physical and

conservative variables

F · ~n = (α+ρ+un, α
−ρ−un, ρuun + pn1, ρvun + pn2, ρHun) =

(
w1
w3n1 + w4n2

w1 + w2

, w2
w3n1 + w4n2

w1 + w2

, w3
w3n1 + w4n2

w1 + w2

+ pn1,

w4
w3n1 + w4n2

w1 + w2

+ pn2, (w5 + p)
w3n1 + w4n2

w1 + w2

)
(3.5)

where un := ~u · ~n = un1 + vn2 is the velocity projection on the normal direction ~n. The

jacobian matrix An(w) := ∂(F·~n)(w)
∂w

can be easily computed. Its expression in the physical

variables is

An =




unc
− −unc+ c+n1 c+n2 0

−unc− unc
+ c−n1 c−n2 0

−uun + ∂p
∂w1

n1 −uun + ∂p
∂w2

n1 un + un1 + ∂p
∂w3

n1 un2 + ∂p
∂w4

n1
∂p
∂w5

n1

−vun + ∂p
∂w1

n2 −vun + ∂p
∂w2

n2 vn1 + ∂p
∂w3

n2 un + vn2 + ∂p
∂w4

n2
∂p
∂w5

n2

un
(
∂p
∂w1
−H

)
un
(
∂p
∂w2
−H

)
un

∂p
∂w3

+Hn1 un
∂p
∂w4

+Hn2 un
(
1 + ∂p

∂w5

)




This matrix has three distinct eigenvalues:

λ1 = un − cs, λ2,3,4 = un, λ5 = un + cs,

where cs is defined in the next section. One can conclude that the system (3.1) – (3.3)

is hyperbolic. This hyperbolicity represents the major advantage of this model. The

computation of the eigenvectors is trickier but can still be performed analytically. We do

not give here the final expressions since they are cumbersome.

3.2.1 Sound speed in the mixture

In [Ghi08] it is shown by direct computation of the eigenvalues of the Jacobian An(w)

that the square of the sound speed in the mixture is given by

c2s :=
ρ+ρ−(c+s )2(c−s )2

ρ(α+ρ−(c−s )2 + α−ρ+(c+s )2)
,

where c±s are the sound velocities in each phase. In the present setting they are defined by

formulas (3.8).
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3.2.2 Equation of state

In the present work we assume that the light fluid is described by an ideal gas type law

p− = (γ − 1)ρ−e−, e− = c−v T
−, (3.6)

while the heavy fluid is modeled by Tate’s law3 [GZI+79, HA71]

p+ + π0 = (N − 1)ρ+e+, e+ = c+v T
+ +

π0

Nρ+
, (3.7)

where the quantities γ, c±v , N , π0 are constants. For example, pure water is well described

when we take N = 7 and π0 = 2.1× 109Pa.

Remark 9 In practice, the constants c±v can be calculated after simple algebraic manipula-

tions of equations (3.6), (3.7) and matching with experimental values at normal conditions:

c−v ≡
p0

(γ − 1)ρ−0 T0

,

c+v ≡
N p0 + π0

(N − 1)Nρ+
0 T0

.

For example, for an air/water mixture under normal conditions we have the values given

in Table 3.1.

The sound velocities in each phase are given by the following formulas:

(c−s )2 =
γp−

ρ−
, (c+s )2 =

N p+ + π0

ρ+
. (3.8)

In order to construct an equation of state for the mixture, we make the additional

assumption that the two phases are in thermodynamic equilibrium:

p+ = p−, T+ = T−. (3.9)

Below values of the common pressure and common temperature will be denoted by p and

T respectively.

Now, let us construct a system of nonlinear equations which will help us obtain the

pressure in the mixture. To do this, we first introduce the following notation for the mass

fractions of each phase in the mixture

c± :=
α±ρ±

ρ
.

3In the literature Tate’s law is sometimes called the stiffened gas law.
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parameter value

p0 105 Pa

ρ+
0 103 kg/m3

ρ−0 1.29 kg/m3

T0 300 K

γ 1.4

N 7

π0 2.1× 109 Pa

c+v 166.72 J
kg·K

c−v 646.0 J
kg·K

g 100 m/s2

Table 3.1: Values of the parameters for an air/water mixture under normal conditions. We

would like to comment on the rather high value of the acceleration due to gravity. Obviously,

it does not correspond to any physical situation. Nevertheless, we choose this value in order to

accelerate all dynamic processes in our test cases.

We would like to reduce the number of unknowns. To do this, we express the internal

energies e± of each phase as a function of the other thermodynamic variables and constants.

Let us write the two following relations:

c+e+ + c−e− = e, T+(ρ+, e+) = T−(ρ−, e−) .

After substituting the expressions (3.6), (3.7) for T±, our system becomes

c+e+ + c−e− = e,

e+

c+v
− e−

c−v
=

π0

N c+v ρ+
.

This linear system can be easily solved to give us the expressions for e±

e+ =
1

D
( e
c−v

+
π0c

−

N c+v ρ+

)
, (3.10)

e− =
1

Dc+v

(
e− π0c

+

Nρ+

)
, (3.11)

where D := c+

c−v
+ c−

c+v
.

Let us analyse the obtained results. From (3.9) we have an additional relation

p ≡ p+(ρ+, e+) = p−(ρ−, e−).
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It means that the pressure p is completely determined if we know (ρ+, e+) or (ρ−, e−). Since

internal energies e± are expressed in terms of (α±, ρ±) by expressions (3.10), (3.11), it is

sufficient to determine these four quantities (α±, ρ±). It is done by solving the following

system of nonlinear equations:

(N − 1)ρ+
( e
c−v

+
π0c

−

N c+v ρ+

)
− (γ − 1)

ρ−

c+v

(
e− π0c

+

Nρ+

)
= Dπ0,

α+ + α− = 1,

α+ρ+ = w1,

α−ρ− = w2.

The last two equations can be easily eliminated to reduce the system to two equations

(N − 1)ρ+
( e
c−v

+
π0c

−

N c+v ρ+

)
− (γ − 1)

ρ−

c+v

(
e− π0c

+

Nρ+

)
= Dπ0,

w1

ρ+
+
w2

ρ−
= 1.

Finally, using the second equation, one can express ρ− in terms of ρ+ and the conservative

variables w1,2 as

ρ− =
ρ+w2

ρ+ − w1

.

This expression is then substituted in the pressure equality condition to give the following

single equation with respect to ρ+:

(N − 1)
e

c−v
ρ+(ρ+ − w1) +

(N − 1)π0c
−

N c+v
(ρ+ − w1)

− (γ − 1)
e

c+v
ρ+w2 + (γ − 1)

π0c
+

N c+v
w2 = Dπ0(ρ

+ − w1).

This equation can be solved analytically (we do not give here the solution’s expression

since it is cumbersome) or by a Newton-type numerical method. Once ρ+ is determined,

we can find e+ from (3.10) and, finally, the pressure

p = (N − 1)ρ+e+ − π0.

3.3 Formal limit in barotropic case

The propagation of waves at the interface between a heavy compressible fluid of density

ρ+ and a light compressible fluid of density ρ− is investigated. The superscript + is used to
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denote the heavy fluid while the superscript − is used to denote the light fluid. A typical

geometry is shown in Figure 3.3.

x, y

z

z = η(~x, t)

0

−: light fluid

+: heavy fluid

Figure 3.3: Sketch of the flow.

The governing equations are

(α±ρ±)t +∇ · (α±ρ±~u) = 0 , (3.12)

(ρ~u)t +∇ · (ρ~u⊗ ~u) +∇p = ρ~g , (3.13)

where ~u = (u, v, w) is the common velocity, α± are the volume fractions of each fluid, ρ±

the densities of each fluid, with the relations α+ + α− = 1, ρ := α+ρ+ + α−ρ− and the

equation of state reads:

p ≡ p+(ρ+) = p−(ρ−) . (3.14)

The speeds of sound are given by

(c±s )2 =
∂p

∂ρ±
.

Let

γ± =
ρ±(c±s )2

p
, γ = α+γ− + α−γ+ .

Let also

δ±γ = γ± − γ∓ .

Then one can show that

α±
t + (~u · ∇)α± + α+α− δ

±γ

γ
∇ · ~u = 0 , (3.15)
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pt + (~u · ∇)p+ p
γ+γ−

γ
∇ · ~u = 0 . (3.16)

Consider the case where α− is either 0 or 1. More precisely let

α− := H(z − η(~x, t)) , (3.17)

whereH is the Heaviside step function. Physically this substitution means that we consider

two pure phases separated by an interface. It follows that

α+α− = 0 .

Substituting the expression (3.17) into the equation (3.15) for α− gives

ηt + (u, v) · ∇xη = w .

Equations (3.12) and (3.13) become

ρt + (~u · ∇)ρ+ ρ∇ · ~u = 0 ,

~ut + (~u · ∇)~u+
∇p
ρ

= ~g .

This system of equations is nothing else than the system of a discontinuous two-fluid system

with an interface at z = η(~x, t).

This simple computation shows an interesting property of our model. For the important

special case of barotropic equations, we can show that our model automatically degenerates

into a discontinuous two-fluid system where two pure phases are separated by an interface.

3.4 Finite volume scheme on unstructured meshes

Finite volume methods are a class of discretization schemes that have proven highly

successful in solving numerically of a wide class of conservation law systems. These systems

often come from compressible fluid dynamics. In electromagnetism, for example, Discontin-

uous Galerkin methods have proven to be more efficient [CLS04]. When compared to other

discretization methods such as finite elements or finite differences, the primary interests of

finite volume methods are robustness, applicability on very general unstructured meshes,

and the intrinsic local conservation properties. Hence, with this type of discretization, we

conserve “exactly” the mass, momentum and total energy4.

In order to solve numerically the system of balance laws (3.1) – (3.3) we rewrite the

governing equations in the following form

∂w

∂t
+∇ · F(w) = ∇ · (D∇w) + S(w), (3.18)

4This statement is true in the absence of source terms and appropriate boundary conditions.
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where w(x, t) : Rd × R+ 7→ Rm is the vector of conservative variables (in the present

study d = 2 or 3 and m = 5), F(w) is the advective flux function, D the diffusion

matrix and S(w) the source term. We must say that the governing equations (3.1) – (3.3)

considered in this chapter do not possess viscous terms. However, we prefer to include

in the discussion their discretization since it can be useful for Navier-Stokes or viscous

Saint-Venant and Boussinesq equations [DD07a]. The system (3.18) should be provided

with initial condition

w(x, 0) = w0(x) (3.19)

and appropriate boundary conditions.

O

K
∂K

~nKL

L

Figure 3.4: An example of control volume K with barycenter O. The normal pointing from K

to L is denoted by ~nKL.

The computational domain Ω ⊂ Rd is triangulated into a set of non overlapping control

volumes that completely cover the domain. Let T denote a tesselation of the domain Ω

with control volume K such that

∪K∈T K̄ = Ω̄, K̄ := K ∪ ∂K.

For two distinct control volumes K and L in T , the intersection is either an edge (2D) or

face (3D) with oriented normal ~nKL or else a set of measure at most d− 2 (in 2D it is just

a vertex, in 3D it can also be a segment, for example). We need to introduce the following

notation for the neighbourhood of K

N (K) := {L ∈ T : area(K ∩ L) 6= 0} ,
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a set of all control volumes L which share a face (or an edge in 2D) with the given volume

K. In this chapter, we denote by vol(·) and area(·) the d and d− 1 dimensional measures5

respectively.

The choice of control volume tesselation is flexible in the finite volume method. In the

present study we retained a so-called cell-centered approach (see Figure 3.5), which means

that degrees of freedom are associated to cell barycenters. There exists an alternative

vertex-centered method [BJ89, BO04] (see Figure 3.6) which necessitates the construction

of dual mesh even for first-order schemes. In the cell-centered finite volume scheme, the

triangles themselves serve as control volumes with solution unknowns attributed to trian-

gles barycenters. In the vertex-centered finite volume scheme, control volumes are formed

as a geometric dual to the triangle complex and solution unknowns stored on vertex basis.

Remark 10 Except for the construction of dual mesh in vertex-centered approach, these

two methods are almost equivalent in the interior of the computational domain Ω. However,

the boundary conditions treatment is different and it is harder (or less natural in author’s

opinion) when data is stored at vertices. This is one more reason why we retained the cell

centers to store the solution’s information.

Storage location

Control volume

Figure 3.5: Illustration for cell-centered finite volume method

The first steps in Finite Volume (FV) methods are classical. We start by integrating

equation (3.18) on the control volume K (see Figure 3.4 for illustration) and we apply

Gauss-Ostrogradsky theorem for advective and diffusive fluxes. Then, in each control

5In other words, in 3D the notation area(·) and vol(·) are very natural and mean area and volume

respectively, while in 2D they refer to the area and the length.
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Storage location

Control volume

Figure 3.6: Illustration for vertex-centered finite volume method

volume, an integral conservation law statement is imposed:

d

dt

∫

K

w dΩ +

∫

∂K

F(w) · ~nKL dσ =

∫

∂K

(D∇w) · ~nKL dσ +

∫

K

S(w) dΩ . (3.20)

Physically an integral conservation law asserts that the rate of change of the total amount

of a substance (for example: mass, momentum, total energy, etc) with density w in a fixed

control volume K is balanced by the flux F , diffusion D of the substance through the

boundary ∂K and the production of this quantity S inside the control volume.

The next step consists in introducing the so-called control volume cell average for each

K ∈ T
wK(t) :=

1

vol(K)

∫

K

w(~x, t) dΩ .

After the averaging step, the finite volume method can be interpreted as producing a

system of evolution equations for cell averages, since

∂

∂t

∫

K

w(~x, t) dΩ = vol(K)
dwK

dt
.

Godunov was the first [God59] who pursued and applied these ideas to the discretization

of the gas dynamics equations.

However, the averaging process implies piecewise constant solution representation in

each control volume with value equal to the cell average. The use of such representation

renders the numerical solution multivalued at control volume interfaces. Thereby the calcu-

lation of the fluxes
∫
∂K

(F(w) ·~nKL) dσ at these interfaces is ambiguous. Next fundamental

aspect of finite volume methods is the idea of substituting the true flux at interfaces by a
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numerical flux function

(
F(w) · ~n

)∣∣
∂K∩∂L

←− Φ(wK ,wL;~nKL) : Rm × Rm 7→ Rm ,

a Lipschitz continuous function of the two interface states wK and wL. The heart of the

matter in finite volume method consists in the choice of the numerical flux function Φ. In

general this function is calculated as an exact or even better approximate local solution

of the Riemann problem posed at these interfaces. In the present study we decided to

choose the numerical flux function according to VFFC scheme extensively described in

Appendix A.

The numerical flux is assumed to satisfy the properties:

Conservation. This property ensures that fluxes from adjacent control volumes sharing

an interface exactly cancel when summed. This is achieved if the numerical flux

function satisfies the identity

Φ(wK ,wL;~nKL) = −Φ(wL,wK ;~nLK).

Consistency. The consistency is obtained when the numerical flux with identical state

arguments (in other words it means that the solution is continuous through an inter-

face) reduces to the true flux of the same state, i.e.

Φ(w,w;~n) = (F · ~n)(w).

After introducing the cell averages wK and numerical fluxes into (3.20), the integral

conservation law statement becomes

dwK

dt
+

∑

L∈N (K)

area(L ∩K)

vol(K)
Φ(wK ,wL;~nKL) =

=
1

vol(K)

∑

L∈N (K)

∫

K∩L

(D∇w) · ~nKL dσ +
1

vol(K)

∫

K

S(w) dΩ .

The discretization of diffusive fluxes will be discussed in Section 3.4.4. We denote by SK
the approximation of the following quantity 1

vol(K)

∫
K
S(w) dΩ. In practice, the source

term discretization is discussed in Section A.1.3. Thus, the following system of ordinary

differential equations (ODE) is called a semi-discrete finite volume method:

dwK

dt
+

∑

L∈N (K)

area(L ∩K)

vol(K)

(
Φ(wK ,wL;~nKL)− (D∇w) · ~nKL

)
= SK , ∀K ∈ T . (3.21)
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The initial condition for this system is given by projecting (3.19) onto the space of piecewise

constant functions

wK(0) =
1

volK

∫

K

w0(x) dΩ .

This system of ODE should also be discretized. There is a variety of explicit and implicit

time integration methods. Let wn
K denote a numerical approximation of the cell average

solution in the control volume K at time tn = n∆t. The simplest time integration method

is the forward Euler scheme

dwK

dt
∼= wn+1

K −wn
K

∆t
.

When applied to (3.21) it produces the fully-discrete finite volume scheme. The time

integration approach used in this study is detailed in Section 3.4.6.

3.4.1 Sign matrix computation

In the context of the VFFC scheme (see Appendix A for more details), we need to

compute the so-called sign matrix which is defined in the following way

Un := sign(An) = R sign(Λ)L,

where R, L are matrices composed of right and left eigenvectors correspondingly, and

Λ = diag(λ1, . . . , λm) is the diagonal matrix of eigenvalues of the Jacobian.

This definition gives the first “direct” method of sign matrix computation. Since the

advection operator is relatively simple, after a few tricks, we can succeed in computing

analytically the matrices R and L. For more complicated two-phase models it is almost

impossible to perform this computation in closed analytical form. In this case, one has

to apply numerical techniques for eigensystem computation. It turns out to be costly and

quite approximative. In the present work we use physical information about the model in

numerical computations.

There is another way which is less expensive. The main idea is to construct a kind of

interpolation polynomial which takes the following values

P (un ± cs) = sign(un ± cs), P (un) = sign(un).

These three conditions allow us to construct a second degree interpolation polynomial.

Obviously, when P (λ) is evaluated with λ = An we obtain the sign matrix Un as a result.

The construction of Lagrange interpolation polynomial P (λ) is simple and we give only its
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expression

P (λ) =
(sign(un + cs)− 2 sign(un) + sign(un − cs)

2c2s
(λ− un)+

sign(un)− sign(un − cs)
cs

)
(λ− un + cs) + sign(un − cs).

In our research code we have implemented both methods. Our experience shows that

the interpolation method is quicker and gives correct results in most test cases. However,

when we approach pure phase states, it shows a rather bad numerical behaviour. It can

lead to instabilities and diminish overall code robustness. Thus, whenever possible we

suggest to use the computation of the Jacobian eigenstructure.

3.4.2 Second order scheme

If we analyze the above scheme, we understand that in fact, we have only one degree

of freedom per data storage location. Hence, it seems that we can expect to be first

order accurate at most. In the numerical community first order schemes are generally

considered to be too inaccurate for most quantitative calculations. Of course, we can

always make the mesh spacing extremely small but it cannot be a solution since it makes

the scheme inefficient. From the theoretical point of view the situation is even worse since

an O(h
1
2 ) L1-norm error bound for the monotone and E-flux schemes [Osh84] is known

to be sharp [Pet91], although an O(h) solution error is routinely observed in numerical

experiments. On the other hand, Godunov has shown [God59] that all linear schemes that

preserve solution monotonicity are at most first order accurate. This rather negative result

suggests that a higher order accurate scheme has to be essentially nonlinear in order to

attain simultaneously a monotone resolution of discontinuities and high order accuracy in

continuous regions.

A significant breakthrough in the generalization of finite volume methods to higher

order accuracy is due to N.E. Kolgan [Kol72, Kol75] and van Leer [vL79]. They proposed

a kind of post-treatment procedure currently known as solution reconstruction or MUSCL6

scheme. In the above papers the authors used linear reconstruction (it will be retained in

this study as well) but we must say that this method was already extended to quadratic

approximations in each cell [BF90].

3.4.2.1 Historical remark

In general, when we read numerical articles which use the MUSCL scheme, the authors

often cite the paper by van Leer [vL79]. It is commonly believed in the scientific commu-

6MUSCL stands for monotone upstream-centered scheme for conservation laws.
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nity that B. van Leer was first to propose the gradient reconstruction and slope limiting

ideas. Unfortunately, because of political reasons, the works of N.E. Kolgan [Kol72, Kol75]

remained unknown for a long time. We would like to underline the fact that the first

publication of Kolgan came out seven years before van Leer’s paper. Van Leer seems to be

aware of this situation since in his recent review paper [vL06] one can find “A historical

injustice” section:

“It has been pointed out to me by Dr. Vladimir Sabelnikov, formerly of TsAGI,

the Central Aerodynamical National Laboratory near Moscow, that a scheme

closely resembling MUSCL (including limiting) was developed in this laboratory

by V. P. Kolgan (1972). Kolgan died young; his work apparently received little

notice outside TsAGI.”

Thus, it is desirable to correctly attribute this result in future publications.

3.4.3 TVD and MUSCL schemes

There is a property of scalar nonlinear conservation laws, which was probably observed

for the first time by Peter Lax [Lax73]:

The total increasing and decreasing variations of a differentiable solution be-

tween any pair of characteristics are conserved.

In the presence of shock waves, information is lost and the total variation decreases. For

compactly supported or periodic solutions, one can establish the following inequality

+∞∫

−∞

|du(x, t2)| ≤
+∞∫

−∞

|du(x, t1)| , t2 ≥ t1. (3.22)

This motivated Harten [Har83] to introduce the notion of discrete total variation of nu-

merical solution uh := {uj}

TV (uh) :=
∑

j

|uj+1 − uj| ,

and the discrete counterpart to (3.22)

TV (un+1
h ) ≤ TV (unh).

If this property is fulfilled we say that a finite volume scheme is total variation diminishing

(TVD). The following theorem was proved in [Har83]:
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Theorem 1 (i): Monotone schemes are TVD

(ii): TVD schemes are monotonicity preserving, i.e. the number of solution extrema is

preserved in time.

Remark 11 From the mathematical point of view it would be more correct to say “the

total variation non-increasing (TVNI) scheme” but the “wrong” term TVD is generally

accepted in the scientific literature.

In one space dimension the construction of TVD schemes is not a problem anymore.

Let us recall that in this study we are rather interested in two space dimensions (or even

three in future work). In these cases the situation is considerably more complicated. Even

if we consider the simplest case of structured cartesian meshes and apply a 1D TVD scheme

on a dimension-by-dimension basis, a result of Goodman and Leveque shows [GV85] that

TVD schemes in two or more space dimensions are only first order accurate. Motivated by

this negative result, weaker conditions yielding solution monotonicity preservation should

be developed.

In this chapter we will describe the construction and practical implementation of a

second-order nonlinear scheme on unstructured (possibly highly distorted) meshes. The

main idea is to find our solution as a piecewise affine function on each cell. This kind of

linear reconstruction operators on simplicial control volumes often exploit the fact that the

cell average is also a pointwise value of any valid (conservative) linear reconstruction eval-

uated at the gravity center of a simplex. This reduces the reconstruction problem to that

of gradient estimation given cell averaged data. In this case, we express the reconstruction

in the form

wK(~x) = w̄K + (∇w)K · (~x− ~x0), K ∈ T , (3.23)

where w̄K is the cell averaged value given by finite volume method, (∇w)K is the solution

gradient estimation (to be determined) on the cell K, ~x ∈ K and the point ~x0 is chosen to

be the gravity center for the simplex K.

It is very important to note that with this type of representation (3.23) we remain

absolutely conservative, i.e. ∫

K

wK(~x) dΩ ≡ w̄K

due to the choice of the point ~x0. This point is crucial for finite volumes because of intrinsic

conservative properties of this method.

In next sections we describe briefly two common techniques: Green-Gauss integration

and least squares methods for solution gradient estimation on each cell. There are other
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available techniques. We can mention here an implicit gradient reconstruction method pro-

posed in [MG96] and reused later in [AMS04], for example. We decided not to implement

this approach in our research code since this procedure is computationally expensive7.

3.4.3.1 Green-Gauss gradient reconstruction

O

K

∂K
~n

e

N1

N2

Figure 3.7: Illustration for Green-Gauss gradient reconstruction. Control volume K with

barycenter O and exterior normal ~n.

This gradient reconstruction technique can be easily implemented on simplicial meshes.

It is based on two very simple ideas: the mean value approximation and Green-Gauss-

Ostrogradsky formula.

Consider a control volumeK with barycenter O. The exterior normal to an edge e ∈ ∂K
is denoted by ~ne. This configuration is depicted on Figure 3.7. In order to estimate the

solution gradient on K (or in other words, to estimate its value at gravity center O) we

make the following mean value approximation

(∇w)K = (∇w)|O ∼=
1

vol(K)

∫

K

∇w dΩ,

and if we apply Green-Gauss-Ostrogradsky formula

(∇w)K ∼=
1

vol(K)

∫

∂K

w ⊗ ~n dσ =
1

vol(K)

∑

e∈∂K

∫

e

w ⊗ ~ne dσ ∼=
∑

e∈∂K

area(e)

vol(K)
w|e/2 ⊗ ~ne,

7In order to reconstruct the solution gradient we have to solve a linear system of equations. Recall that

the gradient is estimated at each time step on each control volume. This factor slows down considerably

explicit time discretizations.



3.4 Finite volume scheme on unstructured meshes 141

where w|e/2 denote the solution value at the face (or edge in 2D) centroid. The face value

needed to compute the reconstruction gradient can be obtained from a weighted average

of the values at the vertices on the face [HC89]. In 2D it simply becomes

w|e/2 =
wN1 + wN2

2
.

This approximation yields the following formula for gradient estimation:

(∇w)K ∼=
∑

e∈∂K

area(e)

vol(K)

(wN1 + wN2)

2
⊗ ~ne.

The gradient calculation is exact whenever the numerical solution varies linearly over the

support of the reconstruction.

This procedure requires the knowledge of the solution values at the mesh nodes {Ni}.
Recall that a cell centered finite volume scheme provides us with data located at cell gravity

centers. Thus, an interpolation technique is needed. We have to say that the quality of

Green-Gauss gradient reconstruction greatly depends on the chosen interpolation method.

The method retained in this study is explained in Section 3.4.5.

3.4.3.2 Least-squares gradient reconstruction method

K
T1

T2

T3

O
O1

O2

O3

Figure 3.8: Illustration for least-squares gradient reconstruction. We depict a triangle control

volume with three adjacent neighbors.

In this section we consider a triangle8 control volume K with three adjacent neigh-

bors T1, T2 and T3. Their barycenters are denoted by O(~x0), O1(~x1), O2(~x2) and O3(~x3)

8Generalization to other simplicial control volumes is straightforward.
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respectively. In the following we denote by wi the solution value at gravity centers Oi:

wi := w(~xi), w0 := w(~x0).

Our purpose here is to estimate ∇w = (∂xw, ∂yw) on the cell K. Using Taylor formula,

we can write down the three following relations:

w1 −w0 = (∇w)K · (~x1 − ~x0) +O(h2), (3.24)

w2 −w0 = (∇w)K · (~x2 − ~x0) +O(h2), (3.25)

w3 −w0 = (∇w)K · (~x3 − ~x0) +O(h2). (3.26)

If we drop higher order terms O(h2), these relations can be viewed as a linear system of

three equations for two unknowns9 (∂xw, ∂yw). This situation is due to the fact that the

number of edges incident to a simplex mesh in Rd is greater or equal (in this case see

Remark 12) to d thereby producing linear constraint equations (3.24) – (3.26) which will

be solved analytically here in a least squares sense.

First of all, each constraint (3.24) – (3.26) is multiplied by a weight ωi ∈ (0, 1) which

will be chosen below to account for distorted meshes. In matrix form our non-square

system becomes 

ω1∆x1 ω1∆y1

ω2∆x2 ω2∆y2

ω3∆x3 ω1∆y3


 (∇w)K =



ω1(w1 −w0)

ω2(w2 −w0)

ω3(w3 −w0)


 ,

where ∆xi = xi − x0, ∆yi = yi − y0. For further developments it is convenient to rewrite

our constraints in abstract form

[ ~L1, ~L2] · (∇w)K = ~f. (3.27)

We use a normal equation technique in order to solve symbolically this abstract form in a

least squares sense. Multiplying on the left both sides of (3.27) by [ ~L1
~L2]

t yields

G(∇w)K = ~b, G = (lij)1≤i,j≤2 =

(
( ~L1 · ~L1) ( ~L1 · ~L2)

( ~L2 · ~L1) ( ~L2 · ~L2)

)
(3.28)

where G is the Gram matrix of vectors
{
~L1, ~L2

}
and~b =

(
( ~L1 · ~f)

( ~L2 · ~f)

)
. The so-called normal

equation (3.28) is easily solved by Cramer’s rule to give the following result

(∇w)K =
1

l11l22 − l212

(
l22( ~L1 · ~f)− l12( ~L2 · ~f)

l11( ~L2 · ~f)− l12( ~L1 · ~f)

)
.

9This simple estimation is done for scalar case only w = (w). For more general vector problems the

numbers of equations and unknowns have to be changed depending on the dimension of vector w.



3.4 Finite volume scheme on unstructured meshes 143

The form of this solution suggests that the least squares linear reconstruction can be

efficiently computed without the need for storing a non-square matrix.

Now we have to discuss the choice of weight coefficients {ωi}3i=1. The basic idea is

to attribute bigger weights to cells barycenters closer to the node N under consideration.

One of the possible choices consists in taking a harmonic mean of respective distances

ri = ||~xi − ~xN ||. This purely metric argument takes the following mathematical form:

ωi =
||~xi − ~xN ||−k∑3
j=1 ||~xj − ~xN ||−k

,

where k in practice is taken to be one or two (in our numerical code we choose k = 1).

Remark 12 When we have a triangle sharing an edge with boundary ∂Ω (see Figure 3.13

for illustration), the gradient reconstruction procedure becomes even simpler, since the num-

ber of constraints is equal to d and linear system (3.24) – (3.26) becomes completely deter-

mined:

w1 −w0 = (∇w)K · (~x1 − ~x0) +O(h2),

w2 −w0 = (∇w)K · (~x2 − ~x0) +O(h2),

or in componentwise form it reads
(
x1 − x0 y1 − y0

x2 − x0 y2 − y0

)
(∇w)K =

(
w1 −w0

w2 −w0

)
.

The unique solution to this linear system is given again by Cramer’s rule

(∇w)K =

(
(y2 − y0)(w1 −w0)− (y1 − y0)(w2 −w0)

(x1 − x0)(w2 −w0)− (x2 − x0)(w1 −w0)

)

(x1 − x0)(y2 − y0)− (x2 − x0)(y1 − y0)
.

3.4.3.3 Slope limiter

The idea of incorporating limiter functions to obtain non-oscillatory resolution of dis-

continuities and steep gradients dates back to Boris and Book [BB73]. When the limiter

is identically equal to 1, we have the unlimited form of the linear interpolation. In the

1D case one can easily find in the literature about 15 different limiter functions such as

CHARM, minmod, superbee, van Albada and many others. On unstructured meshes the

situation is quite different. In the present study we decided to retain the Barth-Jespersen

limiter proposed in [BJ89]. Here we do not discuss its construction and properties but just

give the final formula. We need to introduce the following notation

wmin
K := min

L∈N (K)
wL, wmax

K := max
L∈N (K)

wL .
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The limited version of (3.23) is given by the following modified reconstruction operator

wK(~x) = w̄K + αK(∇w)K · (~x− ~x0), K ∈ T ,

where it is assumed that αK ∈ [0, 1]. Obviously, the choice αK = 0 corresponds to the first

order scheme while αK = 1 is the unlimited form. Barth and Jespersen [BJ89] propose the

following choice of αK :

αBJK := min
∀f∈∂K





w
max
K −w̄K

wK(~xf )−w̄K
if wK(~xf ) > wmax

K ,
w

min
K −w̄K

wK(~xf )−w̄K
if wK(~xf ) < wmin

K ,

1 otherwise.

where ~xf denotes the face f centroid.

Although this limiter function does not fulfill all the requirements of finite volume

maximum principle on unstructured meshes [BO04], it can be shown that it yields finite

volume schemes possessing a global extremum diminishing property. Also this limiter

produces the least amount of slope reduction which can be advantageous for accuracy.

Note that in practical implementation little modifications are required to prevent near

zero division for almost constant solution data.

3.4.4 Diffusive fluxes computation

O1

O2

K

L

f

N1

N2

Figure 3.9: Diamond cell constructed around face f .

In this section we briefly describe a method for diffusive fluxes discretization. It was

proposed for non-conforming cartesian meshes in [Coi94] and rigorous justification was

given later in [CVV99].
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When we look at the integral conservation law (3.20) for control volume K, the diffusion

term has the following form:

1

vol(K)

∑

f∈∂K

∫

f

(D∇w) · ~nf dσ,

where the integration is performed along all the faces of the cell K. The quantity (D∇w)

is called the diffusion flux and should be properly discretized in this section. The diffusion

matrix D is given by physical properties, while ~nKL is determined by mesh geometry. The

last integral can be further simplified by applying a second order Gauss quadrature10:

∑

f∈∂K

area(f)

vol(K)
D (∇w|f/2) · ~nf .

Thus, in order to compute the diffusive flux, we have just to estimate the solution gradient

∇w but this time on the face centroid denoted by f/2. In order to express it in terms of

cell averages {wL}L∈T we apply once again Green-Gauss technique.

We have to start by constructing a dual mesh T ∗. It is composed of diamond cells

created around each interior face (diffusive flux computation through a boundary face is

another topic which is briefly discussed in Remark 13). Consider two simplicial control

volumes K and L with barycenters O1 and O2 respectively. These volumes share a common

face (or an edge in 2D) f with nodesN1, N2, . . .We denote by f ⋄ the diamond cell associated

to the face f . This situation is schematically depicted on Figure 3.9. For the sake of clarity

we construct the diamond cell in the 2D case. In the present study we choose f ⋄ as the

closed polygon formed by nodes N1O1N2O2N1 (see Figure 3.9). Once the diamond cell is

defined, we can apply to its boundary the Green-Gauss method (see Section 3.4.3.1):

(∇w|f/2) ∼=
1

vol(f ⋄)

∫

f⋄
∇w dΩ =

1

vol(f ⋄)

∑

ℓ∈∂f⋄

∫

f⋄
w ⊗ ~nℓ dσ ∼=

∑

ℓ∈∂f⋄

area(ℓ)

vol(f ⋄)
(∇w|f/2)⊗ ~nℓ ∼=

∑

ℓ∈∂f⋄

area(ℓ)

vol(f ⋄)

(wP1 + wP2)

2
⊗ ~nℓ,

where ℓ ∈ {N1O1, O1N2, N2O2, O2N1} and P1,2 ∈ {N1, O1, N2, O2}.

Remark 13 There is a little question omitted in this section. We have not discussed

the implementation of boundary conditions for diffusive fluxes. Actually it is rather a

complicated topic. We assume that in our physical problems viscosity plays a secondary

role. Consider a control volume L having a face ℓ on the boundary ∂Ω. For the time being

10In 1D it simply degenerates to a very well known middle point rule
1∫

−1

g(x) dx ∼= 2g(0).
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we impose a Neumann type condition on diffusive fluxes. After discretization this condition

takes the following form:

(D∇wℓ) · ~n := (D∇wL) · ~n.

In other words it means that the gradient on the boundary is replaced by its value on the

cell L.

3.4.5 Solution interpolation to mesh nodes

We have seen above that several gradient reconstruction procedures (in particular gra-

dient estimation on the faces) require the knowledge of the solution at mesh nodes (or

vertices). This information is not directly given by the finite volume method since we

retained the cell-centered approach.

Oi+1

Oi

Oi−1

N

Figure 3.10: Triangles with their barycenters Oi sharing the same vertex N .

Let us consider a node N(xn, yn) of the tesselation T and a control volume Ki with

barycenter Oi(xi, yi) having this node as a vertex (see Figure 3.10 for illustration). The

MUSCL procedure provides us solution gradient on each cell. Thus, using the Taylor

formula or, equivalently, representation (3.23) we can estimate the solution value at the

node N

wN = w̄Ki
+ (∇w)Ki

· (~xN − ~xi). (3.29)

The problem is that we will have d(N) different values of the solution in the same point

depending on the control volume under consideration. Here d(N) is the degree of vertex

N in the sense of graph theory. One of the possible ways to overcome this contradiction is

the averaging. One interesting technique was proposed in [HC89] and further improved in
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[KMC03]. In our turn, we slightly modified this method. The algorithm implemented in

our code is briefly described here.

First of all, let us look for the vertex value w̄N as a weighted sum of the values wNi

computed by formula (3.29) from each surrounding cell

w̄N =

∑d(N)
i=1 ωiwNi∑d(N)
i=1 ωi

.

The weighting factors {ωi}d(N)
i=1 are made to satisfy the condition of zero pseudo-Laplacian

L(xn) ≡
d(N)∑

i=1

ωi(xi − xn), L(yn) ≡
d(N)∑

i=1

ωi(yi − yn) . (3.30)

These conditions have a very simple interpretation. They are imposed so that the method

be exact for affine data over the stencil.

As in the original formulation by Holmes and Connell [HC89], the weighting factor ωi
is written as

ωi = 1 + ∆ωi .

The weights {ωi} are determined by solving an optimization problem in which the

cost-function to be minimized is defined as

1

2

d(N)∑

i=1

(
ri∆ωi

)2 → min (3.31)

with two constraints given by (3.30). It should be noted that the cost function is slightly

different from the original formulation. The difference lies in the factor of

r2
i ≡ || ~ON − ~OOi||2

which was introduced in [KMC03]. This modification effectively allows larger values of

weight ∆ωi for those cells closer to the node in question.

Employing the method of Lagrange multipliers, the original optimization problem,

which was to minimize the cost function given by (3.31) with the constraints (3.30) is

equivalent to minimizing the function L defined by

L =
1

2

d(N)∑

i=1

(
ri∆ωi

)2 − λ
d(N)∑

i=1

ωi(xi − xn)− µ
d(N)∑

i=1

ωi(yi − yn)→ min

which leads to

∆ωi =
λ(xi − xn) + µ(yi − yn)

r2
i

.
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The two Lagrangian multipliers, λ and µ, are obtained from

λ =
ryIxy − rxIyy
IxxIyy − I2

xy

, µ =
rxIxy − ryIxx
IxxIyy − I2

xy

,

where

rx =

d(N)∑

i=1

(xi − xn), ry =

d(N)∑

i=1

(yi − yn).

Ixx =

d(N)∑

i=1

(xi − xn)2

r2
i

, Iyy =

d(N)∑

i=1

(yi − yn)2

r2
i

, Ixy =

d(N)∑

i=1

(xi − xn)(yi − yn)
r2
i

.

The last step consists in renormalizing the weights {ωi}d(N)
i=1 to the range [0, 1].

Remark 14 The above algorithm is not computationally expensive since the weights {ωi}d(N)
i=1

depend only on the tesselation T geometry. It means that they can be computed and stored

before the main loop in time and reused during the computations later.

Remark 15 Even if we suggest to use the above method (since it gives slightly better

results), we would like to give another idea (based on a purely metrics argument) of how

to construct the weights {ωi}d(N)
i=1 . This approach is considerably simpler than optimization

problem solving and it was already used in the least squares gradient reconstruction method

(see Section 3.4.3.2). In fact, in order to calculate ωi one can simply take the harmonic

mean of distances between the node N under the question and respective cell barycenter Oi

(see Figure 3.10):

ωi :=
||~xN − ~xi||−k∑d(N)
j=1 ||~xN − ~xi||−k

,

where k in practice is taken 1 or 2.

We have to say that this choice does not guarantee exact interpolation of globally linear

functions.

3.4.6 Time stepping methods

In previous sections we considered the spatial discretization procedure with a finite-

volume scheme. It is a common practice in solving time-dependent PDEs to first discretize

the spatial variables. This approach is called a method of lines:

ut + ∂xf(u) = S(u)
FV
=⇒ ut = L(u) (3.32)

In order to obtain a fully discrete scheme, we have to discretize the time evolution operator.

In the present work we decided to retain the so-called Strong Stability-Preserving (SSP)



3.4 Finite volume scheme on unstructured meshes 149

time discretization methods described in [Shu88, GST01, SR02]. Historically these methods

were initially called Total Variation Diminishing (TVD) time discretizations.

The main idea behind SSP methods is to assume that the first order forward Euler

method is strongly stable (see the definition below) under a certain norm for our method

of lines ODE (3.32). Then, we try to find a higher order scheme. Usually the relevant

norm is the total variation11 norm:

TV(un) :=
∑

j

∣∣unj − unj−1

∣∣

and TVD discretizations have the property TV(un+1) ≤ TV(un).

Remark 16 Special approaches are needed for hyperbolic PDEs since they contain dis-

continuous solutions and the usual linear stability analysis is inadequate. Thus a stronger

measure of stability is usually required:

Definition 1 A sequence {un} is said to be strongly stable in a given norm ||·|| provided
that ||un+1|| ≤ ||un|| for all n ≥ 0.

A general m-stage Runge-Kutta method for (3.32) can be written in the form

u(0) = un, (3.33)

u(i) =
i−1∑

k=0

(
αi,ku

(k) + ∆tβi,kL(u(k))
)
, αi,k ≥ 0, i = 1, . . . ,m, (3.34)

un+1 = u(m). (3.35)

In [SO88] the following result is proved

Theorem 2 If the forward Euler method is strongly stable under the CFL restriction ∆t ≤
∆tFE

||un + ∆tL(un)|| ≤ ||un|| ,

then the Runge-Kutta method (3.33) – (3.35) with βi,k ≥ 0 is SSP, ||un+1|| ≤ ||un||,
provided the following CFL restriction is fulfilled:

∆t ≤ c∆tFE, c = min
i,k

αi,k
βi,k

.

Here we give a few examples of SSP schemes which are commonly used in applications:

11We have to say that the notion of total variation is used essentially for one-dimensional discrete

solutions.
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Absolute stability regions
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Figure 3.11: Linear absolute stability regions for different time stepping methods

Figure 3.12: Nonlinear absolute stability regions
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• Optimal12 second order two-stage SSP-RK(2,2) scheme with CFL = 1:

u(1) = u(n) + ∆tL(u(n)),

u(n+1) =
1

2
u(n) +

1

2
u(1) +

1

2
∆tL(u(1));

• Optimal third order three-stage SSP-RK(3,3) scheme with CFL = 1:

u(1) = u(n) + ∆tL(u(n)),

u(2) =
3

4
u(n) +

1

4
u(1) +

1

4
∆tL(u(1)),

u(n+1) =
1

3
u(n) +

2

3
u(2) +

2

3
∆tL(u(2));

• Third order four-stage SSP-RK(3,4) scheme with CFL = 2:

u(1) = u(n) +
1

2
∆tL(u(n)),

u(2) = u(1) +
1

2
∆tL(u(1)),

u(3) =
2

3
u(n) +

1

3
u(2) +

1

6
∆tL(u(n)),

u(n+1) = u(3) +
1

2
∆tL(u(3)).

We depicted on Figures 3.11 and 3.12 the linear and nonlinear absolute stability regions of

these schemes, and compared them with the classical Runge-Kutta methods respectively.

Note that the linear absolute stability region for corresponding RK and SSP-RK schemes

is the same. It is a consequence of linearization since these schemes are clearly different

for nonlinear problems. That is why we decided to look also at nonlinear absolute stability

[CP92].

We tested these different schemes in our numerical code and we decided to adopt SSP-

RK(3,4) due to its accuracy and wide stability region. In our opinion this scheme represents

a very good trade-off between precision and robustness.

3.4.7 Boundary conditions treatment

In this section we show how to implement the wall boundary condition in the finite

volumes framework. The flavor of boundary conditions treatment for hyperbolic systems

is given in Section A.2 and we refer to [GP05] for a general discussion.

12Optimality in the sense of CFL condition.
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From the numerical point of view, we need to employ the boundary conditions when

we have a control volume sharing a face (or an edge in 2D) with the computational domain

boundary (see Figure 3.13 for illustration). In this situation, the numerical method must

be provided by an additional information (such as the value of normal advective or diffusive

fluxes on ∂K). Physical conditions completed if necessary by numerical ones allow us to

reconstruct the normal flux F · ~n through the boundary face. Consider the case of a rigid

wall boundary

~u(~x, t) · ~n = 0, ~x ∈ ∂Ω, (3.36)

and the hyperbolic system (3.1) – (3.3).

K

∂Ω

Figure 3.13: Control volume sharing a face with boundary ∂Ω.

The advective flux13 through an oriented boundary face with exterior normal ~n is given

by (3.5)

F · ~n = (α+ρ+un, α
−ρ−un, ρuun + pn1, ρvun + pn2, ρHun), un ≡ ~u · ~n,

and if we take into account physical condition (3.36) it becomes

(F · ~n)|~x∈∂Ω = (0, 0, pbn1, pbn2, 0), pb := p|~x∈∂Ω

The last identity means that we need only to know the pressure value on the wall in order

to reconstruct the advective flux (F · ~n)|~x∈∂Ω.

13A few words about numerical boundary conditions for diffusive fluxes are given in Section 3.4.4
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Figure 3.14: Shock tube of Sod. This plot represents the density.

After some straightforward computations (for more details see [GP05]) one establishes

the following formula for the boundary pressure

pb = p+ ρuncs,

where the right-hand side is evaluated in the boundary cell center.

Remark 17 The last formula has a very interesting physical interpretation. Actually,

the boundary pressure pb measures the force “exerted” by the wall in order to annihilate

completely the normal velocity un.

3.5 Numerical results

In this section we present a few test cases which show our research code perfomance.

In order to reduce the document size, we decided not to put here classical test cases such

as the shock tube of Sod [Sod78] etc. . The reader can believe us that our numerical code

passed successfully these classical tests (see Figure 3.14).
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3.5.1 Convergence test

We begin the presentation of numerical tests by the simplest one – convergence test.

We would like to show the accuracy of the MUSCL scheme implementation. To do it, we

solve numerically the following scalar linear advection equation

∂v

∂t
+ ~u0 · ∇v = 0, ~u0 ∈ R2

with smooth14 initial conditions. Moreover, it has almost compact support in order to

reduce the influence of boundary conditions. It is obvious that this equation will just

translate the initial form in the direction ~u0. So, we have an analytical solution which

can be used to quantify the numerical method error. On the other hand, to measure the

convergence rate, we constructed a sequence of refined meshes.

On Figure 3.15 we depict the error of numerical method in L∞ norm as a function of

the mesh characteristic size. The slope of these curves represents an approximation to the

theoretical convergence rate. On this plot, the blue curve corresponds to the first order

upwind scheme while the other two (red and black) correspond to the MUSCL scheme

with least-squares (see Section 3.4.3.2) and Green-Gauss (see Section 3.4.3.1) gradient

reconstruction procedures respectively. One can see that the blue curve slope is equal

approximatively to 0.97 which means first order convergence. The other two curves have

almost the same slope equal to 1.90 indicating a second order convergence rate for the

MUSCL scheme. We remark that in our implementation of the second-order scheme the

least-squares reconstruction seems to give slightly more accurate results than the Green-

Gauss procedure.

The next figure represents the measured CPU time in seconds again as a function of

the mesh size. Obviously, this kind of data is extremely computer dependent but the

qualitative behaviour is the same on all systems. On Figure 3.16 one can see that the

“fastest” curve is the blue one (first order upwind scheme). Then we have two almost

superimposed (black and red) curves referring to the second-order gradient reconstruction

on variables. Here again one can notice that the least-squares method is slightly faster than

the Green-Gauss procedure. On this figure we represented one more curve (the highest

one) which corresponds to Green-Gauss gradient reconstruction on fluxes (it seems to be

very natural in the context of VFFC scheme). Our numerical tests show that this method

is quite expensive from the computational point of view and we decided not to retain it.

14We intentionally choose a smooth initial condition since the discontinuities can decrease the overall

accuracy of the scheme.
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Figure 3.15: Numerical method error in L∞ norm.
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3.5.2 Falling water column

The geometry and initial condition for this test case are depicted on Figure 3.17. Ini-

tially the velocity field is taken to be zero. The values of the other parameters are given

in Table 3.1. The mesh used in this computation contained about 108000 control volumes

(in this case it was triangles). The results of this simulation are presented on Figures 3.18

– 3.23.

On the other hand, we depicted on Figure 3.24 the maximal pressure on the right wall

as a function of time:

t 7−→ max
(x,y)∈1×[0,1]

p(x, y, t).

We performed another computation when gas was modelled as α+ = 0.05, α− = 0.95

mixture. The pressure is recorded as well and this result is ploted on Figure 3.25. One can

see that the peak value is higher and the impact is more localised in time.

α+ = 0.9
α− = 0.1

α+ = 0.1
α− = 0.9

0 0.3 0.65 0.7

0.05

1

1

0.9

~g

Figure 3.17: Falling water column test case. Geometry and initial condition.

3.5.3 Water drop test case

The geometry and initial condition for this test case are depicted on Figure 3.26. Ini-

tially the velocity field is taken to be zero. The values of the other parameters are given
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(a) t = 0.005 (b) t = 0.06

Figure 3.18: Falling water column test case. Initial condition and the beginning of column

dropping process.

(a) t = 0.1 (b) t = 0.125

Figure 3.19: Falling water column test case. Splash creation due to the interaction with step.
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(a) t = 0.15 (b) t = 0.175

Figure 3.20: Falling water column test case. Water strikes the wall - I.

(a) t = 0.2 (b) t = 0.225

Figure 3.21: Falling water column test case. Water strikes the wall - II.
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(a) t = 0.3 (b) t = 0.4

Figure 3.22: Falling water column test case. Splash is climbing the wall.

(a) t = 0.5 (b) t = 0.675

Figure 3.23: Falling water column test case. Turbulent mixing process.
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Figure 3.24: Maximal pressure on the right wall. Heavy gas case.

in Table 3.1. The mesh used in this computation contained about 92000 control volumes

(in this case it was triangles). The results of this simulation with our code are presented

on Figures 3.27 – 3.33. On Figure 3.34 we plot the maximal pressure on the bottom as a

function of time:

t 7−→ max
(x,y)∈[0,1]×0

p(x, y, t).

From this figure, it is clear to see that the pressure exerted on the bottom reaches 2.5p0

due to the drop impact at t ≈ 0.16.

Remark 18 Beginning with Figure 3.32 one can see some asymmetry in the solution.

It is not expected since the initial condition, computational domain and forcing term are

fully symmetric with respect to the line x = 0.5. This discrepancy is explained by the use

of unstructured meshes in the computation. The arbitrariness of the orientation of the

triangles introduces small perturbations which are sufficient to break the symmetry at the

discrete level. At the present time, symmetry preserving schemes on unstructured meshes

represent a big challenge in numerical analysis. The author is not aware of any work in

this direction.
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Figure 3.25: Maximal pressure on the right wall as a function of time. Light gas.

3.6 Conclusions

In this chapter we presented a simple mathematical model for simulating water waves

impacts. The validation of this approach is the subject of future publications. Namely, we

are going to perform qualitative and quantitative comparison with the more general six

equations model [Ish75].

On the other hand, we presented a numerical approach for discretizing the govern-

ing equations. It is a second order finite volume scheme on unstructured meshes. This

method was implemented in our research code. By construction, our code has excellent

mass, momentum and total energy conservation properties. Different numerical tests from

Section 3.5 validate the numerical method.

In the future we would like to carry out a parametric study with our solver. The

influence of aeration, gas properties and other factors on the impact pressures is very

important for industrial applications.
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Figure 3.26: Geometry and initial condition for water drop test case.

(a) t = 0.005 (b) t = 0.075

Figure 3.27: Water drop test case. Initial configuration and the beginning of the fall.
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(a) t = 0.1 (b) t = 0.125

Figure 3.28: Water drop test case. Drop approaching container bottom.

(a) t = 0.135 (b) t = 0.15

Figure 3.29: Water drop test case. Drop/bottom compressible interaction.
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(a) t = 0.175 (b) t = 0.2

Figure 3.30: Water drop test case. Vertical jets formation.

(a) t = 0.225 (b) t = 0.275

Figure 3.31: Water drop test case. Side jets crossing.
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(a) t = 0.325 (b) t = 0.35

Figure 3.32: Water drop test case. Side jets interflow at the center.

(a) t = 0.4 (b) t = 0.45

Figure 3.33: Water drop test case. Central jet reflection from the bottom.
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Figure 3.34: Water drop test case. Maximal bottom pressure as a function of time.
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Chapter 4

Weakly damped free surface flows

Everything should be made as simple as possible, but not simpler.

Albert Einstein (1879 – 1955)
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4.1 Introduction

Even though the irrotational theory of free-surface flows can predict successfully many

observed wave phenomena, viscous effects cannot be neglected under certain circumstances.

Indeed the question of dissipation in potential flows of fluid with a free surface is a very im-

portant one. As stated by [LH92], it would be convenient to have equations and boundary

169
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conditions of comparable simplicity as for undamped free-surface flows. The peculiarity

here lies in the fact that the viscous term in the Navier–Stokes (NS) equations is identically

equal to zero for a velocity deriving from a potential.

The effects of viscosity on gravity waves have been addressed since the end of the

nineteenth century in the context of the linearized Navier–Stokes (NS) equations. It is

well-known that Lamb [Lam32] studied this question in the case of oscillatory waves on

deep water. What is less known is that Boussinesq studied this effect as well [Bou95]. In

this particular case they both showed that

dα

dt
= −2νk2α, (4.1)

where α denotes the wave amplitude, ν the kinematic viscosity of the fluid and k the

wavenumber of the decaying wave. This equation leads to the classical law for viscous

decay, namely

α(t) = α0e
−2νk2t. (4.2)

The importance of viscous effects for water waves has been realized by numerous ex-

perimental studies for at least thirty years. Here we are going to quote a few of them. For

example, in [ZG71] one can find

[...] However, the amplitude disagrees somewhat, and we suppose that this

might be due to the viscous dissipation [...]

Another author [Wu81] points out this defect of the classical water waves theory:

[...] the peak amplitudes observed in the experiments are slightly smaller than

those predicted by the theory. This discrepancy can be ascribed to the neglect

of the viscous effects in the theory [...]

And finally in the classical article [BPS81] one finds the following important conclusion:

[...] it was found that the inclusion of a dissipative term was much more im-

portant than the inclusion of the nonlinear term, although the inclusion of the

nonlinear term was undoubtedly beneficial in describing the observations [...]

Water wave energy can be dissipated by different physical mechanisms. The research

community agrees at least on one point: the molecular viscosity is unimportant. Now let

us discuss more debatable statements. For example if we take a tsunami wave and estimate

its Reynolds number, we find Re ≈ 106. So, the flow is clearly turbulent and in practice it

can be modelled by various eddy viscosity models. On the other hand, in laboratory ex-

periments the Reynolds number is much more moderate and sometimes we can neglect this
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effect. Then one can think about boundary layers. In this chapter we will deal essentially

with the bottom boundary layer. We briefly discuss the free surface boundary layer and

explain why we do not take it into account in this study. We have to say that the bound-

ary layer mechanism is especially important for long waves since they “feel” the bottom.

Finally, the most important (and the most challenging) mechanism of energy dissipation

is wave breaking. This process is extremely difficult from the mathematical but also the

physical and numerical points of view since we have to deal with multivalued functions,

topological changes in the flow and complex turbulent mixing processes. Nowadays the

practitioners can only be happy to model roughly this process by adding ad-hoc diffusive

terms when the wave becomes steep enough.

In this work we keep the features of undamped free-surface flows while adding dissipative

effects. The classical theory of viscous potential flows [JW04] is based on pressure and

boundary conditions corrections due to the presence of viscous stresses. We present here

a novel approach.

Currently, potential flows with ad-hoc dissipative terms are used for example in direct

numerical simulations of weak turbulence of gravity waves [DKZ03, DKZ04, ZKPD05].

There have also been several attempts to introduce dissipative effects into long wave mod-

elling [Mei94, DD07a, CG07].

The present chapter is a direct continuation of the recent study [DD07b, DDZ07]. In

that work the authors considered two-dimensional (2D) periodic waves in infinite depth,

while in the present study we remove these two hypotheses and all the computations are

done in 3D. This point is important since the vorticity structure is more complicated in

3D. In other words we consider a general wavetrain on the free surface of a fluid layer of

finite depth. As a result we obtain a qualitatively different formulation which contains a

nonlocal term in the bottom kinematic condition. The inclusion of this term is natural

since it represents the correction to potential flow due to the presence of a boundary layer.

Moreover, this term is predominant since its magnitude scales with O(
√
ν), while other

terms in the free-surface boundary conditions are of order O(ν). Other researchers have

obtained nonlocal corrections but they differ from ours [KM75]. The differences will be

explained below.

Recently we discovered that the nonlocal term in exactly the same form was already

derived in [LO04]. Unfortunately we made this discovery after publishing our first paper

[DD07b] on the subject and, consequently, we could not cite the original work of P. Liu.

Even though we try to read the literature on a regular basis, it is impossible to be aware

of all papers. Consequently, we sometimes rederive what others did before. It happened

to us and we ensure that it was done completely independently.
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4.2 Anatomy of dissipation

In this section we are going to discuss the contribution of different flow regions into

water wave energy dissipation. We conventionally [Mei94] divide the flow into three regions

illustrated on Figure 4.1. On this figure Sf and Sb stand for free surface and bottom

respectively. Then, Ri, Rf and Rb denote the interior region, free surface and bottom

boundary layers.

O ~x

z

Sf

Sb

Rf

Rb

Ri

Figure 4.1: Conventional partition of the flow region into interior region and free surface, bottom

boundary layers.

In order to make some estimates we introduce the notation which will be used in

this section: µ is the dynamic viscosity, δ = O(
√
µ) is the boundary layer thickness

characterization, t0 is the characteristic time, a0 is the characteristic wave amplitude and

ℓ is the wavelength or basin length (in laboratory experiments, for example).

We assume that the flow is governed by the incompressible Navier-Stokes equations:

∇ · ~u = 0,
∂~u

∂t
+ ~u · ∇~u+

1

ρ
∇p = ~g +

1

ρ
∇ · τ ,

where τ is the viscous stress tensor

τij = 2µεij, εij =
1

2

(∂ui
∂xj

+
∂uj
∂xi

)
.

We multiply the second equation by ~u and integrate over the domain Ω to get the
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following energy balance equation:

1

2

∫

Ω

∂

∂t

(
ρ|~u|2

)
dΩ +

1

2

∫

∂Ω

ρ|~u|2~u · ~n dσ =

=

∫

∂Ω

(
−pI + τ

)
~n · ~u dσ +

∫

Ω

ρ~g · ~u dΩ− 1

2µ

∫

Ω

τ : τ dΩ

︸ ︷︷ ︸
T

.

In this identity each term has a precise physical meaning. The left-hand side is the total

rate of energy change in Ω. The second term is the flux of energy across the boundary.

On the right-hand side, the first integral represents the rate of work by surface stresses

acting on the boundary. The second integral is the rate of work done by the gravity force

throughout the volume, and the third integral T is the rate of viscous dissipation. We will

focus our attention on the last one T . We estimate the order of magnitude of the rate of

dissipation in various regions of the fluid.

We start by the interior region Ri. Outside the boundary layers, it is reasonable to

expect that the rate of strain is dominated by the irrotational part whose scale is a0

t0
and

the length scale is the wavelength ℓ. The energy dissipation rate is then

O
(
TRi

)
∼ 1

µ

(
µ
a

t0ℓ

)2

· ℓ3 = µ
( a
t0

)2

ℓ ∼ O(µ) .

Inside the bottom boundary layer the normal gradient of the solenoidal part of ~u dom-

inates the strain rate, so that

O
(
TRb

)
∼ 1

µ

(
µ
a

t0δ

)2

· δℓ2 =
µ

δ

(aℓ
t0

)2

∼ O(µ
1
2 ) .

A free surface boundary layer also exists. Its importance depends on the free surface

conditions. Consider first the classical case of a clean surface. The stress is mainly con-

trolled by the potential velocity field which is of the same order as in the main body of

the fluid. Because of the small volume O(δℓ2) the rate of dissipation in the free surface

boundary layer is only

O
(
TRf

)
∼ 1

µ

(
µ
a

t0ℓ

)2

· δℓ2 = µδ
( a
t0

)2

∼ O(µ
3
2 ) .

From the physical point of view it is weaker, since only the zero shear stress condition on

the free surface is required.

Another extreme case is when the free surface is heavily contaminated, for example,

by oil slicks. The stress in the free surface boundary layer can then be as great as in
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the boundary layer near a solid wall. In the present study we do not treat such extreme

situations and the surface contamination is assumed to be absent.

The previous scalings suggest the following diagram which represents the hierarchy of

dissipative terms:

O
(
µ

1
2

)
︸ ︷︷ ︸

Rb

→֒ O(µ)︸ ︷︷ ︸
Ri

→֒ O
(
µ

3
2

)
︸ ︷︷ ︸

Rf

→֒ . . .

It is clear that the largest energy dissipation takes place inside the wall boundary layer.

We take into account only the two first phenomena from this diagram. Consequently, all

dissipative terms of order O(µ
3
2 ) and higher will be neglected.

4.3 Derivation

Consider the linearized 3D incompressible NS equations describing free-surface flows in

a fluid layer of uniform depth h:

∂~v

∂t
= −1

ρ
∇p+ ν∆~v + ~g, ∇ · ~v = 0, (4.3)

with ~v the velocity vector, p the pressure, ρ the fluid density and ~g the acceleration due to

gravity. We represent ~v = (u, v, w) in the form of the Helmholtz–Leray decomposition:

~v = ∇φ+∇× ~ψ, ~ψ = (ψ1, ψ2, ψ3). (4.4)

After substitution of the decomposition (4.4) into (4.3), one notices that the equations are

verified provided that the functions φ and ~ψ satisfy the following equations:

∆φ = 0, φt +
p− p0

ρ
+ gz = 0,

∂ ~ψ

∂t
= ν∆~ψ.

Next we discuss the boundary conditions. We assume that the velocity field satisfies

the conventional no-slip condition at the bottom ~v|z=−h = ~0, while at the free surface we

have the usual kinematic condition, which can be stated as

ηt + ~v · ∇η = w.

After linearization it becomes simply ηt = w.

Dynamic condition states that the forces must be equal on both sides of the free surface:

[~σ · ~n] ≡ −(p− p0)~n+ τ · ~n = 0 at z = η(x, t) ,



4.3 Derivation 175

where ~σ is the stress tensor, [f ] denotes the jump of a function f across the free surface, ~n

is the normal to the free surface and τ the viscous part of the stress tensor ~σ. The explicit

expressions (in two dimensions for simplicity) of τ and ~n are

τ = ρν

(
2∂u
∂x

∂u
∂z

+ ∂w
∂x

∂u
∂z

+ ∂w
∂x

2∂w
∂z

)
, ~n =

1√
1 + (∂η

∂x
)2

(
−∂η
∂x

1

)
,

After linearization the normal vector ~n equals to (0, 0, 1).

Using Fourier–Laplace transforms, which we denote by LF ≡ L ◦ F ,

f(~x, t)
LF−→ f̂(k, s), k = (kx, ky)

we can determine the structure of the unknown functions φ, ~ψ in the transform space. We

assume that all the functions involved in the present computation satisfy the necessary

regularity requirements and have sufficient decay at infinity so that the integral transforms

can be applied. The solution for φ is obtained from the transformed continuity equation

∆φ = 0
LF−→ φ̂zz − |k|2 φ̂ = 0

and ~ψ from the corresponding transformed equation

~ψt = ν∆~ψ
LF−→ s ~̂ψ = ν

(
~̂ψzz − |k|2 ~̂ψ

)

φ̂ = ϕ̂+
0 (k, s)e|k|z + ϕ̂−

0 (k, s)e−|k|z, ψ̂i = ψ̂i0(k, s)
(
e|m|z + Ci(k, s)e

−|m|z
)
,

where m2 := |k|2 + s
ν

and ϕ̂+
0 , ϕ̂−

0 , ~̂ψ0, ~C := (C1, C2, C3) are unknown functions of the

transform parameters (k, s), determined by the initial and appropriate boundary condi-

tions.

There are three dynamic conditions on the free surface. Let us use first those related

to the tangential stresses (the third one will be used later), where µ = ρν:

σxz = µ
(∂w
∂x

+
∂u

∂z

)
= 0, σyz = µ

(∂w
∂y

+
∂v

∂z

)
= 0, at z = 0.

Substituting decomposition (4.4) into these two identities yields

2
∂2φ

∂x∂z
+
∂2ψ2

∂x2
− ∂2ψ1

∂x∂y
+
∂2ψ3

∂y∂z
− ∂2ψ2

∂z2
= 0, z = 0, (4.5)

2
∂2φ

∂y∂z
+
∂2ψ2

∂x∂y
− ∂2ψ1

∂y2
+
∂2ψ1

∂z2
− ∂2ψ3

∂x∂z
= 0, z = 0. (4.6)
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The next step consists in taking the Fourier–Laplace transform to these relations. We

do not give here the explicit expressions since this operation is straightforward. The

combination (−ikx)(̂4.5) + (−iky)(̂4.6) gives the important relation

ikyψ̂10(1 + C1)− ikxψ̂20(1 + C2) = − 2 |k|3

m2 + |k|2
(ϕ̂+

0 − ϕ̂−
0 ). (4.7)

Let us turn to the free-surface kinematic condition

∂η

∂t
= w ≡ ∂φ

∂z
+
∂ψ2

∂x
− ∂ψ1

∂y
, z = 0.

In transform space it becomes

sη̂ = |k| (ϕ̂+
0 − ϕ̂−

0 ) + ikyψ̂10(1 + C1)− ikxψ̂20(1 + C2). (4.8)

Equations (4.7) and (4.8) can be rewritten as

|k| (ϕ̂+
0 − ϕ̂−

0 )

ν(m2 + |k|2)
= η̂, (4.9)

ikyψ̂10(1 + C1)− ikxψ̂20(1 + C2) = −2ν |k|2 η̂. (4.10)

Using (4.10) one can replace the rotational part in the kinematic free-surface condition:

ηt = φz + L−1
F

[
−2ν |k|2 η̂

]
= φz + 2ν∆η. (4.11)

In order to account for the presence of viscous stresses, we have to modify the dynamic

free-surface condition as well. This is done using the balance of normal stresses at the free

surface:

σzz = 0 at z = 0⇒ p− p0 = 2ρν
∂w

∂z
≡ 2ρν

(∂2φ

∂z2
+
∂2ψ2

∂x∂z
− ∂2ψ1

∂y∂z

)
.

Using (4.10) one can show that ∂2ψ2

∂x∂z
− ∂2ψ1

∂y∂z
= O(ν

1
2 ), so Bernoulli’s equation becomes

φt + gη + 2νφzz +O(ν
3
2 ) = 0. (4.12)

Since we only consider weak dissipation (ν ∼ 10−6− 10−3 m2/s), we neglect terms of order

o(ν).

The second step in our derivation consists in introducing a boundary layer correction

at the bottom. Obviously, this was not done in the previous study [DDZ07], since the

derivation dealt with the infinite depth case. In order to include this modification, we

consider a semi-infinite fluid layer as it is usually done in boundary layer theory. The fluid

occupies the domain z > −h. In this derivation we use the pure Leray decomposition
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of the velocity field ~v = ∇φ + ~u together with the divergence-free constraint ∇ · ~u = 0.

Expecting that the rotational part ~u varies rapidly in a distance δ =
√
ν, 1 we introduce

the boundary-layer coordinate ζ ≡ (z + h)/δ, so that ~u = ~u(~x, ζ) =
(
~u~x, uz

)
(~x, ζ). The

solid boundary is given by ζ = 0, and the potential part of the flow is not subject to this

change of variables. With the new scaling, the divergence-free condition becomes

∂uz
∂ζ

+ δ∇~x · ~u~x = 0. (4.13)

As done in [Mei94], we expand the unknown functions in powers of the small parameter δ:

φ = φ0(~x, z, t) + δφ1(~x, z, t) + . . . , ~u = ~q0(~x, ζ, t) + δ~q1(~x, ζ, t) + . . . .

Substituting the expansion for ~u into (4.13) gives the following relations:

δ0 :
∂q0z

∂ζ
= 0, δ1 :

∂q1z

∂ζ
= −∇~x · ~q0~x

, (4.14)

where ~q0~x
denotes the first two components of the vector ~q0 corresponding to the horizon-

tal coordinates ~x. Recall that we would like to determine the correction to the bottom

boundary condition

φz = − uz|ζ=0 = − (q0z + δq1z)|ζ=0 + o(δ). (4.15)

So we only need to compute q0z and q1z at the bottom ζ = 0.

Using the same asymptotic considerations as above, we can write down the following

sequence of problems:

∆φ0 = 0,
∂φ0

∂z

∣∣∣∣
z=−h

= 0,
∂~q0
∂t

=
∂2~q0
∂ζ2

, ~q0 = −∇φ0|ζ=0 ,

∆φ1 = 0,
∂φ1

∂z

∣∣∣∣
z=−h

= −q1z ,
∂~q1
∂t

=
∂2~q1
∂ζ2

, ~q1 = −∇φ1|ζ=0 ,

together with the radiation condition ~q → ~0 as ζ →∞.

This sequence of linear problems can be solved using Fourier transforms. In Fourier

space one finds immediately that φ̂0(t, z,k) = ϕ̂0(t,k)
(
e|k|z + e−|k|z

)
. Since we know φ̂0,

we can determine the rotational component ~̂q0.

Analytical solutions to the equation

∂~̂q0~x

∂t
=
∂2~̂q0~x

∂ζ2
(4.16)

1Of course we should nondimensionalize all quantities in order to define small numbers. One would

find that δ is in fact equivalent to
√

Re−1 × L, where Re is the Reynolds number and L a typical length.
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are well-known. If we assume that initially the flow is potential and the boundary condition

is ~̂q0~x
= ikφ̂0(z = −h;k), the solution is

~̂q0~x
=

1

2
√
π

t∫

0

ζ

(t− τ) 3
2

e−
ζ2

4(t−τ) ikφ̂0(τ, z = −h,k) dτ.

Let us now integrate the second equation in (4.14) from 0 to ∞, using the appropriate

decay at infinity:

q̂1z |ζ=0 = −
∞∫

0

ik · ~̂q0~x
dζ =

1

2
√
π

∞∫

0

t∫

0

ζ

(t− τ) 3
2

e−
ζ2

4(t−τ) |k|2 φ̂0(τ, z = −h,k) dτ dζ.

One can interchange integral signs and evaluate the inner integral on ζ to obtain:

q̂1z |ζ=0 =
1√
π

t∫

0

|k|2 φ̂0(τ, z = −h,k)√
t− τ dτ.

Hence, the bottom boundary condition becomes, at order δ,

∂φ

∂z

∣∣∣∣
z=−h

= −
√
ν

π

t∫

0

F−1
(
|k|2 φ̂0(−h,k)

)
√
t− τ dτ =

=

√
ν

π

t∫

0

∇2
~xφ0|z=−h√
t− τ dτ = −

√
ν

π

t∫

0

φ0zz|z=−h√
t− τ dτ. (4.17)

One recognizes on the right-hand side a half-order integral operator. Summarizing the

developments made above and generalizing our equations by including nonlinear terms, we

obtain a new set of viscous potential free-surface flow equations:

∆φ = 0, (~x, z) ∈ Ω = R2 × [−h, η] (4.18)

ηt +∇η · ∇φ = φz + 2ν∆η, z = η (4.19)

φt +
1

2
|∇φ|2 + gη = −2νφzz, z = η (4.20)

φz = −
√
ν

π

t∫

0

φzz√
t− τ dτ, z = −h. (4.21)

At the present stage, the addition of nonlinear terms is rather a conjecture. However, a

recent study by Liu et al. [LPC07] suggests that this conjecture is rather true. The authors

investigated the importance of nonlinearity in boundary layer equation (4.16) in the case
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of a solitary wave solution. They came to the conclusion that “the nonlinear effects are

not very significant”.

Using this weakly damped potential flow formulation and the procedure of Boussinesq

equations derivation described in previous chapters (see Chapter 2, for example), one can

derive the following system of equations with horizontal velocity ~uθ defined at the depth

zθ = −θh, 0 ≤ θ ≤ 1:

ηt +∇ · ((h+ η)~uθ) + h3

(
θ2

2
− θ +

1

3

)
∇2(∇ · ~uθ) = 2ν∆η +

√
ν

π

t∫

0

∇ · ~uθ√
t− τ dτ, (4.22)

~uθt +
1

2
∇|~uθ|2 + g∇η − h2θ

(
1− θ

2

)
∇(∇ · ~uθt) = 2ν∆~uθ. (4.23)

4.3.1 Dissipative KdV equation

In this section we derive a viscous Korteweg-de Vries (KdV) equation from just obtained

Boussinesq equations (4.22), (4.23). Since KdV-type equations model only unidirectional

wave propagation, our attention is naturally restricted to 1D case. In order to perform

asymptotic computations, all the equations have to be switched to nondimensional variables

as it is explained in Section 2.2. We find the velocity variable u in this form:

uθ = η + εP + µ2Q+ . . .

where ε and µ are defined in (2.9), P and Q are unknown at the present moment. Using

the methods similar to those used in Section 2.9.1, one can easily show that

P = −1

4
η2, Q =

(
θ − 1

6
− θ2

2

)
ηxx.

This result immediately yields the following asymptotic representation of the velocity field

uθ = η − 1

4
εη2 + µ2

(
θ − 1

6
− θ2

2

)
ηxx + . . . (4.24)

Substituting the last formula (4.24) into equation (4.22) and switching again to dimensional

variables, one obtains this viscous KdV-type equation:

ηt +

√
g

h

(
(h+

3

2
η)ηx +

1

6
h3ηxxx −

√
ν

π

t∫

0

ηx√
t− τ dτ

)
= 2νηxx. (4.25)

This equation will be used in Section 4.5 to study the damping of linear progressive waves.
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4.4 Dispersion relation

Interesting information about the governing equations can be obtained from the linear

dispersion relation analysis. In this section we are going to analyse the new set of equations

(4.18)–(4.21) for the complete water wave problem and the corresponding long wave limit

(Boussinesq equations) (4.22)–(4.23).

To simplify the computations, we consider the two-dimensional problem. The general-

ization to higher dimensions is straightforward. Traditionally the governing equations are

linearized and the bottom is assumed to be flat. After all these simplifications the new set

of equations becomes

φxx + φzz = 0, (x, z) ∈ R× [−h, 0], (4.26)

ηt = φz + 2νηxx, z = 0, (4.27)

φt + gη + 2νφzz = 0, z = 0, (4.28)

φz +

√
ν

π

t∫

0

φzz√
t− τ dτ = 0, z = −h. (4.29)

The next classical step consists in finding solutions of the special form

φ(x, z, t) = ϕ(z)ei(kx−ωt), η(x, t) = η0e
i(kx−ωt). (4.30)

From continuity equation (4.26) we can determine the structure of the function ϕ(z):

ϕ(z) = C1e
kz + C2e

−kz.

Altogether we have three unknown constants ~C = (C1, C2, η0) and three boundary condi-

tions (4.27)–(4.29) which can be viewed as a linear system with respect to ~C:

M~C = ~0. (4.31)

The matrix M has the following elements

M =




k −k iω − 2νk2

iω − 2νk2 iω − 2νk2 −g
e−kh

(
1 + kF (t, ω)

)
ekh
(
−1 + kF (t, ω)

)
0




where the function F (t, ω) can be expressed in terms of the error function of complex

argument:

F (t, ω) :=

√
ν

π

t∫

0

eiω(t−τ)

√
t− τ dτ =

√
ν

−iω Erf(
√
−iωt).
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In order to have nontrivial solutions2 of (4.26)–(4.29), the determinant of the system (4.31)

has to be equal to zero detM = 0. It gives us a relation between ω and wavenumber k.

This relation is called the linear dispersion relation:

D(ω, k) := (iω−2νk2)2 + gk tanh(kh)−
√
iν

ω
Erf(
√
−iωt)

(
(iω−2νk2) tanh(kh)+ gk

)
≡ 0.

A similar procedure can be followed for Boussinesq equations (4.22), (4.23). We do not

give here the details of the computations but only the final result:

Db(ω, k) := (iω−2νk2)2+b(kh)2iω(iω−2νk2)+ghk2(1−a(kh)2)−gk2

√
iν

ω
Erf(
√
−iωt) ≡ 0,

where we introduced the following notation: a := θ2

2
− θ + 1

3
, b := θ

(
1− θ

2

)
.

Remark 19 Contrary to the classical water wave problem and, by consequence, standard

Boussinesq equations3 where the dispersion relation does not depend on time

ω2 − gk tanh(kh) ≡ 0, (4.32)

here we have additionally the dependence of ωt(k) on time t as a parameter. It is a con-

sequence of the presence of the nonlocal term in time in the bottom boundary condition

(4.21). Physically it means that the boundary layer “remembers” the flow history.

Unfortunately, the relations D(ω, k) ≡ 0 and Db(ω, k) ≡ 0 cannot be solved analytically

to give an explicit dependence of ω on k. That is why we applied Newton-type method

to solve numerically these equations with respect to ω. Iterations were initialized with the

classical dispersion relation (4.32). The Jacobians can be computed exactly:

dD(ω)

dω
= 2i(iω − 2νk2)− k

ω

√
iν

ω

(
(iω − 2νk2)2 tanh(kh) + gk

)( 1√
π
eiωt
√
−iωt

− 1

2
Erf(
√
−iωt)

)
− 2i

√
iν

ω
k tanh(kh)(iω − 2νk2) Erf(

√
−iωt),

dDb(ω)

dω
= 2i(iω − 2νk2) + ib(kh)2 +

gk2

2ω

√
iν

ω
Erf(
√
−iωt)− gk2

ω

√
νt

π
eiωt.

2Obviously of the special form given by equation (4.30).
3Their dispersion relation is given by (2.50)



182 Viscous potential flows

4.4.1 Discussion

Numerical snapshots of the nonclassical dispersion relation4 at different times for com-

plete and Boussinesq equations are given on Figures (4.2)–(4.6). We will try to make

several comments on the results we obtained.

Just at the beginning (when t = 0), there is no effect of the nonlocal term. This is

why on Figure 4.2 new and classical curves are superimposed. With no surprise, the phase

velocity of Boussinesq equations represents well only long waves limit (let us say up to

kh ≈ 2). When time evolves, we can see that the main effect of nonlocal term consists

in slowing down long waves (see Figures 4.3–4.5). Namely, in the vicinity of kh = 0 the

real part of the phase velocity is slightly smaller with respect to the classical formulation.

From physical point of view this situation is comprehensible since only long waves “feel” the

bottom and, by consequence, are affected by bottom boundary layer. On the other hand,

the imaginary part of the phase velocity is responsible for the wave amplitude attenuation.

The minimum of Im cp(k) in the region of long waves indicates that there is a “preferred”

wavelength which is attenuated the most. In the range of short waves the imaginary

part is monotonically decreasing. In practice it means that high-frequency components

are damped by the model. This property can be advantageous in numerics, for example.

On Figure 4.6 we depicted the real part of cp(k) with zoom made on long and moderate

waves. The reader can see that nonlocal complete and Boussinesq equations have similar

behaviour in the vicinity of kh = 0.

4.5 Attenuation of linear progressive waves

In this Section we investigate the damping rate of linear progressive waves. Thus, the

first step consists in linearizing dissipative KdV equation (4.25):

ηt +

√
g

h

(
hηx +

1

6
h3ηxxx −

√
ν

π

t∫

0

ηx√
t− τ dτ

)
= 2νηxx (4.33)

In other words, we can say that we restrict our attention only to small amplitude waves.

Equation (4.33) can be called nonlocal dissipative Airy equation.

Now we make the next assumption. We look for a particular form of the solutions:

η(x, t) = A(t)eikξ, ξ = x−
√
ght. (4.34)

where k is the wavenumber and A(t) is called the complex amplitude, since |η(x, t)| =

|A(t)|. Integro-differential equation governing the temporal evolution of A(t) can be easily

4To be precise, we plot the phase velocity which is defined as cp(k) := ω(k)
k

.
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Figure 4.2: Real and imaginary part of dispersion curve at t = 0. At the beginning, the

nonlocal term has no effect. Thus, the real parts of the classical and new set of equations are

exactly superimposed on this figure. The imaginary part represents only local dissipation at this

stage.
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Figure 4.3: Phase velocity at t = 1. Boundary layer effects start to be visible: the real part

of the velocity slightly drops down and the straight lines of the imaginary part are deformed by

the nonlocal term. Within graphical accuracy, the classical and their nonlocal counterparts are

superimposed.
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Figure 4.4: Phase velocity at t = 2. Nonlocal term slows down long waves since the real part

of the phase velocity decreases.
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Figure 4.5: Phase velocity at t = 4. On Figure 4.6 we plot a zoom on long and moderate waves.
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in this region.
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Figure 4.6: Real part of the phase velocity at t = 4.
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derived by substituting the special representation (4.34) into linearized KdV equation

(4.33):

dA
dt
− i

6

√
g

h
(kh)3A(t) + 2νk2A(t)− ik

√
gν

πh

t∫

0

A(τ)√
t− τ dτ = 0. (4.35)

In our applications we are rather interested in temporal evolution of the absolute value

|A(t)|. It is straightforward to derive the equation for |A(t)|2 if we recall that

|A(t)|2 = A(t)Ā(t) =⇒ d|A(t)|2
dt

=
dA(t)

dt
Ā(t) +

dĀ(t)

dt
A(t), (4.36)

where Ā(t) means the complex conjugate of A(t). The last missing ingredient is the time

derivative dĀ
dt

. This term is easily computed by taking the complex conjugate of (4.35):

dĀ
dt

+
i

6

√
g

h
(kh)3Ā(t) + 2νk2Ā(t) + ik

√
gν

πh

t∫

0

Ā(τ)√
t− τ dτ = 0.

By combining just obtained equations according to (4.36), we get required evolution equa-

tion for |A|2:

d|A|2
dt

+ 4νk2|A(t)|2 − ik
√
gν

πh

t∫

0

Ā(t)A(τ)−A(t)Ā(τ)√
t− τ dτ = 0.

If we denote by Ar(t) and Ai(t) real and imaginary parts of A(t) respectively, the last

equation can be further simplified:

d|A|2
dt

+ 4νk2|A(t)|2 + 2k

√
gν

πh

t∫

0

Ar(t)Ai(τ)−Ai(t)Ar(τ)√
t− τ dτ = 0. (4.37)

Just derived integro-differential equation represents a generalisation to the classical equa-

tion (4.1) by Boussinesq [Bou95] and Lamb [Lam32] for the wave amplitude evolution in

a viscous fluid. We recall that novel integral term is a direct consequence of the bottom

boundary layer modelling.

Unfortunately, equation (4.37) cannot be used directly for numerical computations

since we need to know the following combination of real and imaginary parts Ar(t)Ai(τ)−
Ai(t)Ar(τ) for τ ∈ [0, t]. It represents a new and non-classical aspect of the present theory.

In numerical computations it is advantageous to integrate exactly local terms in equa-

tion (4.35). It is done by making the following change of variables:

A(t) = e−2νk2te
i
6

√
g
h
(kh)3tÃ(t).
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parameter definition value

ν eddy viscosity 10−3 m2

s

g gravity acceleration 9.8 m
s2

h water depth 3600 m

ℓ wavelength 50 km

k wavenumber = 2π
ℓ
m−1

Table 4.1: Values of the parameters used in the numerical computations of the linear progressive

waves amplitude. These values correspond to a typical Indian Ocean tsunami.

One can easily show that new function Ã(t) satisfies the following equation:

dÃ
dt

= ik

√
gν

πh

t∫

0

e2νk
2(t−τ)e−

i
6

√
g
h
(kh)3(t−τ)

√
t− τ Ã(τ) dτ

On Figure 4.7 we plot a solution of integro-differential equation (4.35). All parameters

related to this case are given in Table 4.1. These values were chosen to simulate a typical

tsunami in Indian Ocean [DD06]. We have to say that the wave amplitude damping is

entirely due to the dissipation in boundary layer since local terms are unimportant for

sufficiently long waves.

4.6 Numerical results

In this section we would like to show the effect of nonlocal term on the solitary wave

attenuation. For simplicity, we will consider wave propagation in a 1D channel.

For numerical computations we use the same Fourier-type spectral method that was

described in Section 2.8. Obviously this method has to be slightly adapted because of the

presence of nonlocal in time term. We have to say that this term necessitates the storage

of ∇ · ~u(n) at previous time steps. Hence, long computations can be memory consuming.

The values of all parameters are given in Table 4.2.

4.6.1 Approximate solitary wave solution

In order to provide an initial condition for equations (4.22), (4.23), we are going to ob-

tain an approximate solitary wave solution for nondissipative 1D version of these equations
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Figure 4.7: Amplitude of linear progressive waves as a function of time. Values of all parameters

are given in Table 4.1.

parameter definition value

ε nonlinearity 0.02

µ dispersion 0.06

ν eddy viscosity 0.001

c soliton velocity 1.02

θ zθ = −θh 1−
√

5/5

x0 soliton center at t = 0 −1.5

Table 4.2: Values of the parameters used in the numerical computations
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over the flat bottom:

ηt +
(
(1 + εη)u

)
x

+ µ2
(θ2

2
− θ +

1

3

)
uxxx = 0,

ut + ηx +
ε

2
(u2)x − µ2θ

(
1− θ

2

)
uxxt = 0.

Then, we apply the same approach that in Section 2.9.1. We do not provide the

computations here since they are simple and can be done without any difficulties. The

final result is the following:

η(x, t) =
2(c− 1)

ε
sech 2

(√6(c− 1)

2µ
(x+ x0 − ct)

)

and the velocity is given by this formula:

u = η − 1

4
εη2 + µ2

(
θ − θ2

2
− 1

6

)
ηxx +O(ε2 + εµ2 + µ4).

In the numerical results presented here, we use η(x, 0) and u(x, 0) as initial conditions.

4.6.2 Discussion

On Figures 4.8–4.10 we present three curves. They depict the free surface elevation

according to three different formulations. The first corresponds to classical Boussinesq

equations without dissipation. The second one to dissipative system with differential terms

(for example ν∆~u in momentum conservation equation) and the third curve corresponds

to equations (4.22), (4.23). On Figure 4.11 we made a zoom on the soliton crest.

It can be seen that Boussinesq equations with nonlocal term provide stronger atten-

uation of the amplitude. In the same time, as it was shown in the previous section, this

nonlocal term slightly slows down the solitary wave.

In order to show explicitly the rate of amplitude attenuation, we plot on Figure 4.12 the

graph of the following application t → sup−π<x<π |η(x, t)|. One can see on this plot little

oscillations which are of numerical nature. Our numerical experiments show that their

amplitude decreases when N →∞. This result shows one more time that nonlocal model

provides stronger damping properties. One can have the impression that the amplitude

decays linearly but it is only an impression because of (4.2). This behaviour for moderate

t can be explained by simple Taylor expansion which is valid when νk2t≪ 1:

α(t) = α0e
−2νk2t = α0(1− 2νk2t) +O

(
ν2k4t2

)
.
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Figure 4.8: Comparison among two dissipative and nondissipative Boussinesq equations. Snap-

shots of the free surface at t = 0.5
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Figure 4.9: Comparison among two dissipative and nondissipative Boussinesq equations. Snap-

shots of the free surface at t = 1.0
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Figure 4.10: Comparison among two dissipative and nondissipative Boussinesq equations. Snap-

shots of the free surface at t = 2.0

0 0.2 0.4 0.6 0.8 1 1.2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t = 2.000

x

η

No dissipation
Local
Nonlocal

Figure 4.11: Comparison among two dissipative and nondissipative Boussinesq equations. Zoom

on the soliton crest at t = 2.0
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4.7 Conclusion

In the present chapter we have shown how to express the rotational component of

the velocity field in terms of the potential part of Helmholtz–Leray decomposition. This

expression contains differential and integral operators. Obviously, this analysis is only

linear but we give nonlinear equations. In future work we will try to extend the present

derivation to the nonlinear case. A long wave approximation was derived from this new

potential flow formulation.

Our results are different from [KM75]. This discrepancy can be explained by a differ-

ent scaling chosen by Kakutani & Matsuuchi in the boundary layer. Consequently, their

governing equations contain a nonlocal term in space. The performance of the present non-

local term (4.17) was studied in [LSVO06]. The authors carried out in a wave tank a set

of experiments, analyzing the damping and shoaling of solitary waves. It is shown that the

viscous damping due to the bottom boundary layer is well represented. Their numerical

results fit very well with the experiments. The numerical model not only properly predicts

the wave height at a given point but also provides a good representation of the changes on

the shape and celerity of the soliton. We can conclude that the experimental study by P.

Liu [LSVO06] completely validates our theory.

It is interesting to note that local dissipative terms of this form have been used to verify
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the theory of weak turbulence of surface gravity waves in deep water5 [DKZ03, DKZ04,

ZKPD05]. They were added without justification to model dissipation at small scales.

Note that a good qualitative agreement was obtained between the Kolmogorov spectrum

predicted by weak turbulence theory and the results of DNS. Hence, the present work can

be considered as an attempt to justify the inclusion of these terms.

Our final remark concerns the nonlocal term in the kinematic bottom boundary condi-

tion. This term can be also considered as a boundary layer correction at the bottom. In

modelling viscous effects this term plays the main role, since its magnitude is O(
√
ν). Of

course, the numerical implementation of this term is another matter. It is interesting to

note that the boundary layer effect is not instantaneous but rather cumulative. The flow

history is weighted by (t− τ)− 1
2 in favour of the current time t. As pointed out in [LO04],

this nonlocal term is essential to have an accurate estimation of the bottom shear stress

based on the calculated wave field above the bed. Then, this information can be used for

calculating sediment-bedload transport fluxes and, in turn, morphological changes.

We would like to mention here a paper of N. Sugimoto [Sug91]. He considered initial-

value problems for the Burgers equation with the inclusion of a hereditary integral known

as the fractional derivative of order 1/2. The form of this term was not justified in that

work. Note, that from fractional calculus point of view our nonlocal term is a half-order

integral.

The dispersion relation associated with a new nonlocal formulation was described. Due

to the presence of special functions, we cannot obtain a simple analytical dependence of

the frequency ω on the wavenumber k as in classical equations. Consequently the disper-

sion curve was obtained numerically by a Newton-type method. We made a comparison

between the phase velocity of the complete visco-potential problem and the corresponding

Boussinesq equations. The effect of the nonlocal term on the solitary wave attenuation

was investigated numerically with a Fourier-type spectral method.

What is the value of ν to be taken in numerical simulations? There is surprisingly little

published information of this subject. What is clear is that the molecular diffusion is too

small to model true viscous damping and one should rather consider the eddy viscosity

parameter.

5Since the water is considered to be of infinite depth, they do not have the bottom boundary layer

phenomenon. Hence, the local viscous terms are very natural choice to model dissipation at Kolmogorov

scale.
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Direction for future research

Progress imposes not only new possibilities

for the future but new restrictions.

Norbert Wiener (1894 – 1964)

A useful direction for future research in the dynamics of tsunami waves is the three-

dimensional (3D) simulation of tsunami breaking along a coast. For this purpose, different

validation steps are necessary. First more simulations of a two-dimensional (2D) tsunami

interacting with a sloping beach ought to be performed. Then these simulations should be

extended to the case of a 2D tsunami interacting with a sloping beach in the presence of

obstacles. An important output of these computations will be the hydrodynamic loading

on obstacles. The nonlinear inelastic behaviour of the obstacles may be accounted for using

damage or plasticity models. The development of Boussinesq type models coupled with

structure interactions is also a promising task. Finally there is a need for 3D numerical

simulations of a tsunami interacting with a beach of complex bathymetry, with or without

obstacles. These simulations will hopefully demonstrate the usefulness of numerical simu-

lations for the definition of protecting devices or security zones. An important challenge

in that respect is to make the numerical methods capable of handling interaction problems

involving different scales: the fine scale needed for representing the damage of a flexible

obstacle and a coarse scale needed to quantify the tsunami propagation.
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Appendix A

Finite Volumes: Characteristic flux

approach

Most of the fundamental ideas of science are essentially simple, and may, as a rule, be expressed

in a language comprehensible to everyone.

Albert Einstein (1879 – 1955)
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The VFFC1 approach is based on a discretization of the continuous models throught

a cell-centered finite volume method. More precisely, we discretize space derivatives using

finite volumes and time derivatives by classical finite differences. So at a fixed time step,

the solution is represented by a collection of numbers which intend to approximate the

mean values of the physical solution on the control volumes. As it is well known, the heart

of the matter consists in computing from these degrees of freedom the values of the physical

fluxes on the boundaries of the control volumes.

These fluxes are of two different nature: convective fluxes and viscous (or diffusive)

fluxes. We know from many instances steaming from single phase fluid flows that the

discretization of these fluxes must be adapted to their physical origin. More precisely on

1Volumes Finis à Flux Caractéristiques
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the one hand, discretization of convective fluxes must take into account the wave phenom-

ena associated with convection, that is upwind based methods. On the other hand the

discretization of viscous fluxes can rely on centered methods.

In this chapter we are going only to deal with convective fluxes. Moreover we keep

the time-variable continuous in order to clearly separate the features of space and time

discretizations.

A.1 Discretization in the finite volume framework

In this section we present a method [GKC96, GKC01] for the discretization of hyper-

bolic systems in the one dimensional case. The extension to the multidimensional case is

discussed in Section A.1.2.

A.1.1 The one dimensional case

Let us consider general systems that can be written as follows:

∂v

∂t
+
∂f(v)

∂x
= 0 , (A.1)

where v ∈ Rm and f : Rm 7→ Rm. We denote by A(v) the jacobian matrix ∂f(v)
∂v

and we

deal first with the case where (A.1) is smoothly hyperbolic that is to say: for every v there

exists a smooth basis (r1(v), . . . , rm(v)) of Rm consisting of eigenvectors of A(v) : ∃λk(v) ∈
R such that A(v)rk(v) = λk(v)rk(v). It is then possible to construct (l1(v), . . . , lm(v)) such

that tA(v)lk(v) = λk(v)lk(v) and lk(v) · rp(v) = δk,p.

Let R = ∪j∈Z[xj−1/2, xj+1/2] be a one dimensional mesh. Our goal is to discretize (A.1)

by a finite volume method. We set ∆xj ≡ xj+1/2 − xj−1/2, ∆tn ≡ tn+1 − tn (we also have

R+ = ∪n∈N[tn, tn+1]) and

ṽnj ≡
1

∆xj

∫ xj+1/2

xj−1/2

v(x, tn) dx , f̃
n
j+1/2 ≡

1

∆tn

∫ tn+1

tn

f(v(xj+1/2, t)) dt .

With these notations, we deduce from (A.1) the exact relation:

ṽn+1
j = ṽnj −

∆tn
∆xj

(
f̃nj+1/2 − f̃nj−1/2

)
. (A.2)

Since the (f̃nj+1/2)j∈Z cannot be expressed in terms of the (ṽnj )j∈Z, one has to make an

approximation. In order to keep a compact stencil, it is more efficient to use a three points

scheme: the physical flux f̃nj+1/2 is approximated by a numerical flux gnj (v
n
j , v

n
j+1). Let us
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show how we construct this flux here. We observe that since A(v)∂v
∂t

= ∂f(v)
∂t

then according

to (A.1),
∂f(v)

∂t
+ A(v)

∂f(v)

∂x
= 0 . (A.3)

This shows that the flux f(v) is advected byA(v) (like v since we also have ∂v
∂t

+A(v) ∂v
∂x

=

0). The numerical flux gnj (v
n
j , v

n
j+1) represents the flux at an interface. Using a mean value

µnj+1/2 of v at this interface, we replace (A.3) by the linearization:

∂f(v)

∂t
+ A(µnj+1/2)

∂f(v)

∂x
= 0 . (A.4)

It follows that, defining the k-th characteristic flux component to be fk(v) ≡ lk(µ
n
j+1/2) ·

f(v), we have
∂fk(v)

∂t
+ λk(µ

n
j+1/2)

∂fk(v)

∂x
= 0 . (A.5)

This linear equation can be solved explicitly now and we have:

fk(v)(x, t) = fk(v)(x− λk(µnj+1/2)(t− tn), tn) . (A.6)

From this equation it is then natural to introduce the following definition.

Definition 2 For the conservative system (A.1), at the interface between the two cells

[xj−1/2, xj+1/2] and [xj+1/2, xj+3/2], the characteristic flux gCF is defined by the following

formula
(
we take µnj+1/2 ≡

(
∆xjv

n
j + ∆xj+1v

n
j+1

)
/
(
∆xj + ∆xj+1

))
: for k ∈ {1, . . . ,m},

lk(µ
n
j+1/2) · gCF,nj (vnj , v

n
j+1) = lk(µ

n
j+1/2) · f(vnj ) , when λk(µ

n
j+1/2) > 0 ,

lk(µ
n
j+1/2) · gCF,nj (vnj , v

n
j+1) = lk(µ

n
j+1/2) · f(vnj+1) , when λk(µ

n
j+1/2) < 0 , (A.7)

lk(µ
n
j+1/2) · gCF,nj (vnj , v

n
j+1) = lk(µ

n
j+1/2) ·

(
f(vnj+1) + f(vnj )

2

)
,

when λk(µ
n
j+1/2) = 0.

Remark 20 At first glance, the derivation of (A.3) from (A.1), is only valid for continuous

solutions since A(v)∂f(v)
∂x

is a non conservative product. In fact equation (A.3) can be

justified even in the case of shocks as is proved in [Ghi98]. Let us briefly recall here the

key point. Assuming that the solution undergoes a discontinuity along a family of disjoint

curves, we can focus on one of these curves that we parameterize by the time variable t.

Hence, locally, on each side of this curve, v(x, t) is smooth and jumps across the curve

x = Σ(t). The Rankine-Hugoniot condition implies that f(v(x, t)) − σ(t)v(x, t), where

σ(t) ≡ dΣ(t)
dt

, is smooth across the discontinuity curve and therefore A(v)∂f(v)
∂x

can be defined

as A(v)∂f(v)
∂x
≡ A(v)∂(f(v)−σv)

∂x
+ σ ∂f(v)

∂x
.
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Proposition 1 Formula (A.7) can be written as follows: gCF,nj (vnj , v
n
j+1) = gCF (µnj ; v

n
j , v

n
j+1)

where

gCF (µ; v, w) ≡
∑

λk(µ)<0

(lk(µ) · f(w))rk(µ) +
∑

λk(µ)=0

(
lk(µ) · f(v) + f(w)

2

)
rk(µ)+

+
∑

λk(µ)>0

(lk(µ) · f(v))rk(µ) . (A.8)

Proof. This comes from the useful identity valid for all vectors Φ and µ in Rm:

Φ =
k=m∑

k=1

(lk(µ) · Φ)rk(µ). We also observe that (A.8) can be written under the following

condensed form:

gCF (µ; v, w) =
f(v) + f(w)

2
− U(µ; v, w)

f(w)− f(v)

2
, (A.9)

where U(µ; v, w) is the sign of the matrix A(µ) which is defined by

sign(A(µ))Φ =
m∑

k=1

sign(λk)(lk(µ) · Φ)rk(µ).

The form (A.9) refers to what we have called a numerical flux leading to a flux scheme

([Ghi98]).

Remark 21 Let us discuss the relation, in the conservative case, between the characteristic

numerical flux gCF and the numerical flux leading to Roe’s scheme [Roe81]. This later

scheme relies on an algebraic property of the continuous flux f(v) which is as follows. It

is assumed that for all admissible states v and w, there exists a m×m matrix AROE(v, w)

such that f(v) − f(w) = AROE(v, w)(v − w) (Roe’s identity). Then the numerical flux

leading to Roe’s scheme is given by:

gROE(v, w) =
f(v) + f(w)

2
− |AROE(v, w)|w − v

2
. (A.10)

But using Roe’s identity, we obtain that

gROE(v, w) =
f(v) + f(w)

2
− sign(AROE(v, w))

f(w)− f(v)

2
, (A.11)

which is of the form (A.9): Roe’s scheme is also a flux scheme. The characteristic flux

proposed in this paper is more versatile than Roe’s scheme in the sense that it does not rely

on an algebraic property of the flux. Hence for complex systems (like those encountered

in the context of two phase flows) this scheme appears like an efficient generalization of
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Roe’s scheme. Moreover, as we shall see below, this scheme has a natural generalization

to arbitrary non conservative systems. Finally, the fact that the numerical flux is a linear

combination of the two fluxes induces a quite weak dependance on the state µ which appears

in formula (A.8), see [CG00].

Combining (A.2) and (A.7), we arrive to the explicit scheme:

vn+1
j = vnj −

∆tn
∆xj

(
gCF,nj (vnj , v

n
j+1)− gCF,nj (vnj−1, v

n
j )
)
. (A.12)

A.1.2 Extension to the multidimensional case

Let us consider a system of m balance equations: (v = (v1, . . . , vm) ∈ Rm))

∂v

∂t
+∇ · F (v) = 0, (A.13)

here ∇ · F (v) =
∑nd

j=1
∂F j(v)
∂xj

, where F j maps G into Rm, where G is an open subset of

Rm corresponding to the physically admissible states. This equation is posed in a nd-

dimensional domain Ω (nd = 1, 2 or 3 in practice).

We assume that the computational domain Ω is decomposed in smaller volumes (the

so-called control volumes) K : Ω = ∪K∈TK and consider first the case where Ω = ∪K∈TK

is “conformal” i.e. that it is a finite element triangulation of Ω. In practice one can use

triangles for nd = 2 and tetrahedrons for nd = 3. The cell-centered finite volume approach

for solving (A.13) consists in approximating the means

vK(t) ≡ 1

vol(K)

∫

K

v(x, t) dx , (A.14)

where vol(K) denotes the nd-dimensional volume of K and area(A) stands for the (nd−1)-

dimensional volume of an hypersurface A. Integrating (A.13) on K makes the normal

fluxes, F ν
∂K , appear

F ν
∂K(t) =

∫

∂K

F (v(σ, t)).ν(σ) dσ,

where ∂K is the boundary of K, ν(σ) the unit external normal on ∂K and dσ denotes the

(nd-1)-volume element on this hypersurface.

The heart of the matter in finite volume methods consists in providing a formula for the

normal fluxes F ν
∂K in terms of the {vL}L∈T . Assuming that the control volumes K are poly-

hedra, as is most often the case, the boundary ∂K is the union of hypersurfacesK∩L where

L belongs to the set N (K), the set of L ∈ T , L 6= K, such that K∩L has positive (nd−1)-

measure. We can therefore decompose the normal flux as a sum: F ν
∂K =

∑

L∈N (K)

FK,L , where
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(νK,L points into L): FK,L =

∫

K∩L

F (v(σ, t)).νK,L dσ . Inspired by the 1D-case, we take an

approximation of FK,L in terms of vK and vL: FK,L ≈ area(K ∩L) Φ(vK , vL;K,L) , where

Φ is the numerical flux that we construct by the following formula.

Definition 3 The numerical flux of the Finite Volume method with characteristic flux is

obtained by the formula

Φ(v, w;K,L) =
F (v) + F (w)

2
· νK,L − U(v, w;K,L)

F (w)− F (v)

2
· νK,L , (A.15)

when we take:

U(v, w;K,L) = sign(AνK,L
(µ(v, w;K,L))) , (A.16)

where µ(v, w;K,L) is a mean between vK and vL which only depends on the geometry of

K and L:

µ(v, w;K,L) =
vol(K)v + vol(L)w

vol(K) + vol(L)
, (A.17)

and Aν(v) ≡ ∂F (v)·ν
∂v

.

This allows us to generalize the explicit scheme (A.12) to the multidimensional case as

follows.

Definition 4 The explicit multidimensional characteristic flux for the approximation of

equation (A.13) reads as follows:

vn+1
K = vnK −

∆tn
vol(K)

∑

L∈N (K)

area(K ∩ L)Φ(vnK , v
n
L;K,L). (A.18)

A.1.3 On the discretization of source terms

Let us return to the 1D setting. Instead of (A.1), we want to solve

∂v

∂t
+
∂f(v)

∂x
= S, (A.19)

by the numerical scheme:

vn+1
j = vnj −

∆tn
∆xj

(
fnj+1/2 − fnj−1/2

)
+ ∆tn Σn

j . (A.20)

Equation (A.20) can be obtained by integration of (A.19) on the rectangle [tn, tn+1] ×[
xj−1/2, xj+1/2

]
and this leads to the following form for Σn

j :

Σn
j = Σj =

1

∆xj

∫ xj+1/2

xj−1/2

S(x)dx. (A.21)
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Actually, this formula is not suitable when the source term is large and one must modify

(A.21) according to the expression of the numerical flux gj where fnj+1/2 = gj(v
n
j+1, v

n
j ) and

g(v, w) =
f(v) + f(w)

2
− U(v, w)

f(w)− f(v)

2
, (A.22)

where U(·, ·) is a matrix to be specified.

Due to the fact that the numerical flux is not centered (upwind bias) one can observe

large errors on the permanent solution under investigation. Let us introduce the notion of

enhanced consistency as follows. Denoting by

φ = φconv.(x) ≡
∫ x

0

S(y)dy , (A.23)

we say that Σn
j satisfies, with respect to the numerical flux g, the enhanced consistency

property when we have: if at some time-step, vnj is such that

f(vnj ) =
1

∆xj

∫ xj+1/2

xj−1/2

φconv.(x)dx , ∀j ∈ Z , (A.24)

then vn+1
j given by (A.20) must be equal to vnj . This condition can be equivalently formu-

lated as

Σn
j =

fnj+1/2 − fnj−1/2

∆xj
, (A.25)

if vnj satisfies (A.24).

In [AGT99], the following results are shown.

Theorem 3 Let g be given in the form (A.22) and denote by Un
j = U(vnj , v

n
j+1). The

enhanced consistency will be satisfied if we discretize the forcing term S according to the

following formula

Σn
j =

1

2∆xj

{∫ xj+1

xj−1

S(y)dy − Un
j

∫ xj+1

xj

S(y)dy + Un
j−1

∫ xj

xj−1

S(y)dy

}
. (A.26)

Corollary 1 Assuming that S is given by a piecewise constant function: S(x) = Sj for

x ∈
]
xj−1/2, xj+1/2

[
, the formula (A.26) reads

Σn
j =

I + Un
j−1

4

∆xj−1

∆xj
Sj−1 +

I − Un
j + Un

j−1

2
Sj +

I − Un
j

4

∆xj+1

∆xj
Sj+1 . (A.27)

In order to illustrate this formula, let us show what it means in the case of a single

linear equation vt + c vx = S where e.g. c > 0 and v ∈ R. Here the usual upwind scheme

amounts to take Un
j = 1, i.e. g(v, w) = c v and (A.27) reads as:

Σn
j =

1

2

∆xj−1

∆xj
Sj−1 +

1

2
Sj . (A.28)

These results were one of the key points in the solution to the simulation of a boiling

tube (see [TF98]).
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A.2 On the discretization of boundary conditions

So far we have not discussed the implementation of boundary conditions. This is a

very important topic since they actually determine the solution. Let us consider the space

discretization of the system (A.1) by our cell centered finite volume method. For instance

for the time explicit discretization we have the scheme (A.18). Of course this formula

is not valid when K meets the boundary of Ω. When this occurs, we have to find the

numerical flux Φ(vnK , K, ∂Ω). In practice, this flux is not given by the physical boundary

conditions and moreover, in general, (A.1) is an ill-posed problem if we try to impose

either v or F (v) · ν on ∂Ω. This can be understood in a simple way by using the following

linearization of this system:
∂v

∂t
+ Aν

∂v

∂ν
= 0 , (A.29)

where ν represents the direction of the external normal on K ∩ ∂Ω, Aν is the advection

matrix:

Aν ≡
∂F (v) · ν

∂v
|v=v, (A.30)

and v is the state around which the linearization is performed. When (A.1) is hyperbolic,

the matrix Aν is diagonalizable on R and by a change of coordinates, this system becomes

an uncoupled set of m advection equations:

∂ξk
∂t

+ ck
∂ξk
∂ν

, k = 1, . . . ,m . (A.31)

Here the ck are the eigenvalues of Aν and according to the sign of these numbers, waves

are going either into the domain Ω (ck < 0) or out of the domain Ω (ck > 0). Hence

we expect that it is only possible to impose p conditions on K ∩ ∂Ω where p ≡ ♯{k ∈
{1, . . . ,m} such that ck < 0}.

Let us consider now a control volume K which meets the boundary ∂Ω. We take v = vnK
and write the previous linearization. We denote by x the coordinate along the outer normal

so that (A.29) reads:

∂v

∂t
+ Aν

∂v

∂x
= 0 , (A.32)

which happens to be the linearization of the 1D (i.e. when nd = 1) system. First we label

the eigenvalues ck(v) of Aν by increasing order:

c1(v) ≤ c2(v) ≤ . . . ≤ cp(v) < 0 ≤ cp+1(v) . . . ≤ cm(v) . (A.33)
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(i) The case p = 0. In this case information comes from inside Ω and therefore we take:

Φ(vnK , K, ∂Ω) = F (vnK) · νK . (A.34)

In the Computational Fluid Dynamics literature this is known as the “supersonic

outflow” case.

(ii) The case p = m. In this case information come from outside Ω and therefore we take:

Φ(vnK , K, ∂Ω) = Φgiven , (A.35)

where Φgiven are the given physical boundary conditions. In the Computational Fluid

Dynamics literature this is known as the “supersonic inflow” case.

(iii) The case 1 ≤ p ≤ m− 1. As already discussed, we need p scalar information coming

from outside of Ω. Hence we assume that we have on physical ground p relations on

the boundary:

gl(v) = 0 , l = 1, . . . , p. (A.36)

Remark 22 The notation gl(v) = 0 means that we have a relation between the components

of v. However, in general, the function gl is not given explicitly in terms of v. For example

gl(v) could be the pressure which is not, in general, one of the components of v.

Since we have to determine the m components of Φ(vnK , K, ∂Ω), we need m − p

supplementary scalar conditions. Let us write them as

hl(v) = 0 , l = p+ 1, . . . ,m. (A.37)

In general (A.36) are named as “physical boundary conditions” while (A.37) are

named as “numerical boundary conditions”.

Then we take:

Φ(vnK , K, ∂Ω) = F (v) · νK , (A.38)

where v is solution to (A.36)-(A.37) (see however Remark 25 and (A.44)).

Remark 23 The system (A.36)-(A.37) for the m unknownsv ∈ G is a m ×m nonlinear

system of equations. We are going to study its solvability, see Theorem 4.

Let us first discuss the numerical boundary conditions (A.37). By analogy with what

we did on an interface between two control volumes K and L, we take (recall that v = vnK):

l̃k(v) · (F (v) · νK) = l̃k(v) · (F (vnK) · νK) , k = p+ 1, . . . ,m. (A.39)
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In other words, we set hk(v) ≡ l̃k(v
n
K) · (F (v) · νK) − l̃k(v

n
K) · (F (vnK) · νK). We have

denoted by (l̃1(v), . . . , l̃m(v)) a set of left eigenvectors of Ãν :
tÃνlk(v) = cklk(v) and by

(r1(v), . . . , rm(v)) a set of right eigenvectors of Ãν : Ãνrk(v) = ckrk(v). Moreover the

following normalization is taken: l̃k(v) · r̃p(v) = δk,p.

According to [GP05] we have the following result on the solvability of (A.36)-(A.37).

Theorem 4 In the case 1 ≤ p ≤ m− 1, assume that cp+1(v) > 0, and

det
1≤k,l≤p

(
m∑

i=1

rik(v)
∂gl
∂vi

(v)

)
6= 0 . (A.40)

With the choice (A.39) the nonlinear system (A.36)-(A.37) has one and only one solution

v, for v − v and gl(v) sufficiently small.

Remark 24 In this result we exclude the case where the boundary is characteristic i.e. the

case where one of the ck is equal to 0. This case cannot be dealt at this level of generality.

On the other hand, wall boundary conditions belong to this category. They can be discussed

and handled directly on the physical system under consideration, see [GP05].

Remark 25 In practice, (A.36)-(A.37) are written in a parametric way. We have a set of

m physical variables w (e.g. pressure, densities, velocities,. . . ) and we look for w satisfying:

gl(w) = 0 , l = 1, . . . , p , (A.41)

l̃k(v) · Φ = l̃k(v) · (F (vnK) · νK) , (A.42)

Φ = F (w) · νK , (A.43)

and then we take:

Φ(vnK , K, ∂Ω) = Φ . (A.44)

The system (A.41)-(A.42)-(A.43) is then solved by Newton’s method.
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report, Centre de Mathématiques et Leurs Applications, 1999. 203

[AMS04] F. Archambeau, N. Mehitoua, and M. Sakiz. Code Saturne: A finite volume

code for turbulent flows. International Journal On Finite Volumes, 1, 2004.

140

[BB73] J.P. Boris and D.L. Book. Flux corrected transport: Shasta, a fluid transport

algorithm that works. J. Comp. Phys., 11:38–69, 1973. 143

[BBM72] T.B. Benjamin, J.L. Bona, and J.J. Mahony. Model equations for long waves

in nonlinear dispersive systems. Philos. Trans. Royal Soc. London Ser. A,

272:47–78, 1972. 3, 106

[BCL05] J.L. Bona, T. Colin, and D. Lannes. Long wave approximations for water

waves. Arch. Rational Mech. Anal., 178:373–410, 2005. 57

[BCS02] J.L. Bona, M. Chen, and J.-C. Saut. Boussinesq equations and other systems

for small-amplitude long waves in nonlinear dispersive media. i: Derivation

and linear theory. Journal of Nonlinear Science, 12:283–318, 2002. xxiii, xxv,

83, 104, 105

[BDM07] J.L. Bona, V.A. Dougalis, and D.E. Mitsotakis. Numerical solution of KdV-

KdV systems of Boussinesq equations: I. The numerical scheme and general-

ized solitary waves. Mat. Comp. Simul., 74:214–228, 2007. xxvi

207



208 BIBLIOGRAPHY

[Ben74] T. B. Benjamin. Lectures in Appl. Math., volume 15, chapter Lectures on

nonlinear wave motion, pages 3–47. Amer. Math. Soc., Providence, RI, 1974.

99
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