Analyse et optimisation de problèmes sous contraintes d'autocorrélation

Soutenance de Thèse présentée par Marc FUENTES

sous la direction de Jean-Baptiste Hiriart-Urruty

29 Octobre 2007

Plan de l'exposé

- Contraintes d'autocorrélation
- Exemples en Traitement du Signal
- Propriétés du cône \mathcal{C}_{n+1}
- Algorithmes pour les problèmes sous contraintes d'autocorrélation
- Extension au cas de signaux bidimensionnels

Contraintes d'autocorrélation I

• Q : soit $x \in \mathbb{R}^{n+1}$, en posant $H(z) = \sum_{k=0}^n h_k z^k$ peut-t-on trouver $h_0, \dots, h_n \in \mathbb{R}$ tels que

$$X(z) = \sum_{k=-n}^{n} x_{|k|} z^{k} = |H(z)|^{2}, \tag{1}$$

pour tout $z \in \mathbb{T} = \{z \in \mathbb{C} \mid |z| = 1\}$?

- H(z) s'appelle une factorisation spectrale de X(z)
- A priori, une telle écriture, n'existe pas pour tout x. En effet avec $z=e^{i\omega}$ l'équation (1) équivaut à

$$\sum_{l=-n}^{n} x_l e^{il\omega} = \left(\sum_{p=0}^{n} h_p e^{ip\omega}\right) \left(\sum_{q=0}^{n} h_q e^{-iq\omega}\right),\,$$

Contraintes d'autocorrélation II

ce qui donne après identification des coefficients

$$x_l = \sum_{p=0}^{n-|l|} h_p h_{p+|l|} \text{ pour } l = 0, \dots, n.$$
 (2)

que l'on désignera comme des contraintes d'autocorrélation sur x.

- On en déduit que x doit appartenir à un certain sous-ensemble $\mathcal{C}_{n+1} \subset \mathbb{R}^{n+1}$.
- ullet Certains auteurs ont étudié \mathcal{C}_{n+1} :
 - Krein et Nudelman (1977)
 - Dumitrescu et. al (2001)
 - Alkire et Vanderberghe (2002)

Synthèse de Filtre

$$\begin{array}{c|c}
x \\
\hline
\\
l=0
\end{array}$$

$$\begin{array}{c|c}
 x \\
\hline
\\
l=0
\end{array}$$

$$\begin{array}{c|c}
 y = h \star x \\
\hline
\\
\end{array}$$

• But : imposer des contraintes sur la réponse fréquentielle

$$|H(\omega)| = \left| \sum_{k=0}^{n} h_k e^{ik\omega} \right|,$$

par exemple du type

$$|H(\omega)| \leqslant \varepsilon$$
, pour tout $\omega \in [\alpha, \beta]$.

• Solution : on peut réécrire ce type de contraintes sous la forme

$$\varepsilon^2 \mathbf{e_0} - \mathcal{L}_{\alpha,\beta} x \in \mathcal{C}_{n+1}$$

Estimation de Densité Spectrale

• Problème : estimation des coefficients d'autocorrélation \hat{r}_k d'un processus stochastique stationnaire au sens large :

$$\hat{R}(\omega) = \hat{r}_0 + 2\sum_{k=0}^n \hat{r}_k \cos(k\omega) \geqslant 0 \ \forall \omega \in [0, \pi],$$

permet d'assurer la positivité de la densité spectrale d'énergie.

• Solution : on cherche donc la solution du problème de projection

$$(Est) \begin{cases} \min_{x \in \mathbb{R}^{n+1}} & ||x - \hat{r}||_2^2 \\ & x \in \mathcal{C}_{n+1}, \end{cases}$$

\mathcal{C}_{n+1} : définition par générateurs

• Soit $corr_a: \mathbb{R}^{n+1} \times \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ l'application bilinéaire de composantes

$$\operatorname{corr}_a(x,y)_k = \sum_{i=0}^{n-k} x_i y_{i+k} \qquad \text{pour } k = 0, \dots, n.$$

Alors on définit C_{n+1} comme

$$C_{n+1} = \{ \operatorname{corr}_a(y, y) \mid y \in \mathbb{R}^{n+1} \}$$
 (3)

• Soit E^k le $k^{\mbox{\'e}me}$ décalage à droite de terme général

$$(E^k)_{ij} = [i = k + j] = \begin{cases} 1 & \text{si } i = k + j \\ 0 & \text{sinon,} \end{cases}$$

pour $i, j \in \{0, \cdots, n\}$ et [p(x)] représente le symbole d'Iverson pour le prédicat p

• Soit $A^{(k)} = \frac{1}{2}(E^k + (E^k)^\top)$ la "symétrisée" de E^k

alors en posant

$$\mathcal{A}: \mathcal{M}_{n+1}(\mathbb{R}) \to \mathbb{R}^{n+1}$$

$$Q \mapsto \begin{pmatrix} \langle \langle A^{(0)}, Q \rangle \rangle \\ \vdots \\ \langle \langle A^{(n)}, Q \rangle \rangle \end{pmatrix},$$

avec $\langle \langle A, B \rangle \rangle = \operatorname{Tr}(A^{\top}B)$, on en déduit que

$$\mathcal{C}_{n+1} = \mathcal{A}(\{yy^\top \mid y \in \mathbb{R}^{n+1}\}) = \mathcal{A}(P_1).$$

\mathcal{C}_{n+1} : définition par contraintes

Si on impose la positivité de la densité spectrale d'énergie,

$$C_{n+1} = \{ x \in \mathbb{R}^{n+1} \mid \forall \omega \in [0, \pi] \ x_0 + 2 \sum_{k=1}^n x_k \cos k\omega \geqslant 0 \}.$$
 (4)

• Les deux définitions (3) et (4) sont équivalentes en vertu du **Théorème 1 (Riesz-Féjer)** Un polynôme trigonométrique pair $R(\omega)$ de degré $\leqslant n$ peut s'écrire

$$\left| \sum_{l=0}^{n} h_l e^{il\omega} \right|^2$$

avec h_0, \dots, h_n réels si et seulement si $R(\omega) \geqslant 0$ pour tout $\omega \in [0, \pi]$.

Quelques Propriétés de \mathcal{C}_{n+1}

• En posant $v(\omega) = (1, 2\cos\omega, \cdots, 2\cos n\omega) \in \mathbb{R}^{n+1}$ et $H_{\omega}^{+} = \{x \in \mathbb{R}^{n+1} \mid \langle v(\omega), x \rangle \geqslant 0\}$, alors

$$\mathcal{C}_{n+1} = \bigcap_{\omega \in [0,\pi]} H_{\omega}^{+}$$

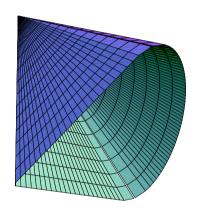
- On voit directement que C_{n+1} est un cône convexe, fermé,
- On peut démontrer très facilement qu'il est d'intérieur non-vide, et saillant
- ullet \mathcal{C}_{n+1} est un cône \mathbf{aigu} :

$$\langle x,y\rangle\geqslant 0$$
 pour tout $(x,y)\in\mathcal{C}_{n+1}^2.$

Preuve : utiliser Fourier en complétant avec des zéros, puis l'identité de Parseval-Plancherel.

Faces de \mathcal{C}_{n+1}

• $\partial \mathcal{C}_{n+1}$ lisse/non-lisse (considerer des points particuliers)



• Conjecture : si F(s) est une face de dimension k de \mathcal{C}_{n+1} exposée par s alors

$$\operatorname{rang}(\mathcal{A}^{\star}(s)) \leqslant n + 1 - k$$

• Facettes: C_{n+1} a (au moins) deux facettes exposées respectivement par par $s_1=(1,2,\cdots,2)$ et $s_2=(1,-2,\cdots,2(-1)^n)$.

Base compacte de C_{n+1}

ullet \mathcal{C}_{n+1} est saillant, il est donc engendré par une base compacte

$$\mathcal{U}_n = \mathcal{A}(\{yy^\top \mid y \in \mathbb{S}_n\})$$

- Comme $\max_{x \in \mathcal{U}_n} x_i = \max_{x \in \mathbb{S}_n} \langle A^{(i)}x, x \rangle = \lambda_1(A^{(i)})$, on peut trouver le parallépipède minimal englobant \mathcal{C}_{n+1} .
- Nous avons trouvé une diagonalisation des $A^{(i)}$: $i \in \{1, \dots, n\}$ et p, m_1 ainsi que m_2 définis par

$$p = \left| \frac{n+1}{i} \right|, m_1 = i - n - 1 + ip, m_2 = n + 1 - ip = i - m_1.$$

$$\operatorname{spec}(A^{(i)}) = \begin{cases} \cos\left(\frac{l\pi}{p+1}\right)l = 1, \cdots, p \text{ de multiplicité } m_1 \\ \cos\left(\frac{l\pi}{p+2}\right)l = 1, \cdots, p+1 \text{ de multiplicité } m_2 \end{cases}$$

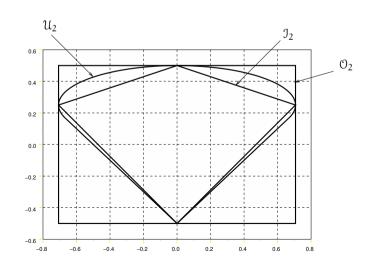
Diagonalisation des $A^{(i)}$

ullet Quand n+1=ip alors en posant $c\in\mathbb{R}^p$ et $V\in\mathcal{S}_p(\mathbb{R})$ tels que

$$c_k = \cos\left(\frac{k\pi}{p+1}\right) \text{ et } V_{kl} = \sin\left(\frac{kl\pi}{p+1}\right) \text{ pour } k, l \in \{1, \cdots, p\},$$

alors

$$A^{(i)} = \frac{2}{p+1} (V \otimes I_i) (\operatorname{diag}(c) \otimes I_i) (V \otimes I_i)^{\top}$$



Re-parametrisation de \mathcal{C}_{n+1}

• Comme $C_{n+1} = A(P_1)$ remarquons que

$$P_1 = \{ yy^\top \mid y \in \mathbb{R}^{n+1} \} = \{ M \in \mathcal{S}_{n+1}^+(\mathbb{R}) \mid \text{rg}(M) \leqslant 1 \}$$

et relachons alors la contrainte de rang, alors

$$C_{n+1} = \mathcal{A}(S_{n+1}^+(\mathbb{R})) \tag{5}$$

- (5) est une Inégalité Linéaire Matricielle (LMI) :
 - Avantage: codes existants (SeDuMi,SDPT3)
 - Inconvénient : n(n+1)/2 variables! au lieu de n.

Dualité

ullet Soit l'adjoint de ${\cal A}$:

$$\mathcal{A}^{\star}(x) = \frac{1}{2} \begin{pmatrix} 2x_0 & x_1 & \cdots & x_n \\ x_1 & 2x_0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & x_1 \\ x_n & \cdots & x_1 & 2x_0 \end{pmatrix} = \sum_{i=0}^n x_i A^{(i)}.$$

ullet Le cône polaire \mathcal{C}_{n+1}° défini par

$$\mathcal{C}_{n+1}^{\circ} = \{ x \in E \mid \forall y \in \mathcal{C}_{n+1} \ \langle x, y \rangle_E \leqslant 0 \}$$

est caractérisé par

$$\mathcal{C}_{n+1}^{\circ} = \{ x \in \mathbb{R}^{n+1} \mid \mathcal{A}^{\star}(x) \leq 0 \}$$

et donc le cône normal à \mathcal{C}_{n+1} en \bar{x} est simplement

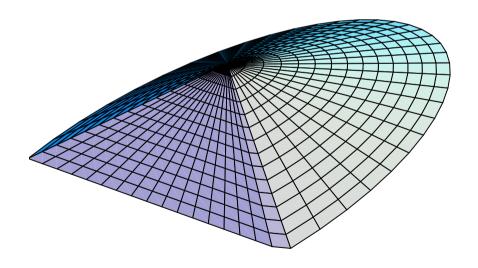
$$\mathcal{N}(\mathcal{C}_{n+1}, \bar{x}) = \{ x \in \mathbb{R}^{n+1} \mid \mathcal{A}^{\star}(x) \leq 0, \langle \bar{x}, x \rangle = 0 \}$$

Cône polaire de \mathcal{C}_{n+1}

• Formulation par générateurs du cône polaire

$$\mathcal{C}_{n+1}^{\circ} = \operatorname{cone}(\{(-1, -2\cos\omega, \cdots, -2\cos n\omega) : \omega \in [0, \pi]\}),$$

où cone(A) est l'enveloppe convexe conique de A.



Algorithmes numériques \mathcal{C}_{n+1}

- Optimisation Semi-Infinie : discrétisation de $\omega \in [0,\pi]$ puis Optimisation sous contraintes affines.
- Algorithme de suivi de chemin dual : $\phi(x) = -\ln \det \mathcal{A}^*(-x)$ est une n+1 BALC pour $\mathcal{C}_{n+1}^{\circ}$ (Alkire,2002)
- Projections alternées : on projette successivement sur $\mathcal{A}(\mathbb{R}^{n+1})$ (matrices Toeplitz symétriques) et sur le convexe $\mathcal{S}_{n+1}^-(\mathbb{R})$.
- Relaxation Non-Convexe : en utilisant la paramétrisation $C_{n+1} = \mathcal{A}(\{xx^{\top}|x \in \mathbb{R}^{n+1}\})$, et une méthode Quasi-Newton sur la fonction norme au carré.

Suivi de Chemin

• Soit à résoudre

$$(Est) \begin{cases} \min_{x \in \mathbb{R}^{n+1}} & ||x - \widehat{\gamma}||_2^2 \\ & x \in \mathcal{C}_{n+1}, \end{cases}$$

 En calculant la projection sur le cône polaire (Théorème de Moreau)

à l'aide de la barrière $\psi(u) = -\log \det \mathcal{A}^*(-u)$.

ullet coût d'évaluation naïf de $abla^2\psi$: $\mathcal{O}(n^4)$ pour tout $h,k\in\mathbb{R}^{n+1}$

$$\nabla^2 \psi(x)[h,k] = \langle \langle \mathcal{A}^*(x)^{-1} \mathcal{A}^*(h) \mathcal{A}^*(x)^{-1}, \mathcal{A}^*(k) \rangle \rangle$$

Suivi de Chemin II

• Astuce : on utilise la FFT pour ramener le coût à $\Rightarrow \mathcal{O}(n^3)$

$$\nabla^2 \psi(x) = \frac{2}{N^2} W^* \left(\sum_{k=0}^n r_k r_k^{\top} \right) \circ \left(\sum_{l=0}^n r_l r_l^{\top} \right) \overline{W}$$
$$+ \frac{2}{N^2} W^* \left(\sum_{k=0}^n r_k r_k^* \right) \circ \left(\sum_{l=0}^n r_l r_l^* \right)^{\top} \overline{W}$$

Tests numériques : code C++/BLAS/FFTW (Biprocesseur à 3.06Ghz)

n	tps CPU/It	tps CPU
10	8e-4s	0.01s
100	8.8e-2s	1.4s
400	2.87s	57.4s
1000	133s	46m51s
2000	_	>1,5 J

avec $\mu=2, \varepsilon=1e-3$ paramètres de l'algorithme.

Projections Alternées

On constate que

$$\mathcal{C}_{n+1}^{\circ} = (\mathcal{A}^{\star})^{-1} \left(\mathcal{S}_{n+1}^{-}(\mathbb{R}) \cap \mathcal{A}(\mathbb{R}^{n+1}) \right)$$

et on peut "identifier" \mathcal{C}_{n+1}° comme l'intersection de deux convexes

- Projection sur $\mathcal{A}(\mathbb{R}^{n+1})$: les $A^{(i)}$ forment une famille orthogonale pour $\langle \langle \cdot, \cdot \rangle \rangle$.
- Projection sur $S_{n+1}^-(\mathbb{R})$: diagonalisation, puis élimination des valeurs propres positives.
- **Problème**: $(A^*)^{-1}$ n'est pas une **isométrie** produit scalaire de $(A(\mathbb{R}^{n+1}), \langle \langle \cdot, \cdot \rangle \rangle)$ sur $(\mathbb{R}^{n+1}, \langle \cdot, \cdot \rangle)$.
- Cet algorithme n'est efficace que pour minimiser par rapport à la norme

$$||x||_w = \sqrt{\sum_{i=0}^n \left(\frac{x_i}{n+1-i}\right)^2}.$$

Relaxation non-convexe

ullet Si on considère le problème non-convexe équivalent à (Est)

$$(NC)$$
 $\left\{ \begin{array}{ll} \min_{y \in \mathbb{R}^{n+1}} & ||\mathcal{A}(yy^{\top}) - c||_2^2, \end{array} \right.$

on peut en chercher des bons minima locaux.

• Avantages : calcul rapide la fonction-objectif f_c et de son gradient (coût $\in \mathcal{O}(n \log n)$)

$$\nabla f_c(y) = \mathcal{A}^*(\mathcal{A}(yy^\top) - c)y,$$

peut être interprété comme deux corrélations imbriquées.

• On relaxe alors la condition d'optimalité

$$\underbrace{\mathcal{A}^{\star}(\bar{x}-c)\succeq 0}_{\text{cond. d'optimalit\'e}} \quad \text{devient} \quad \underbrace{\mathcal{V}(\bar{y})\mathcal{V}(\bar{y})^{\top}}_{\text{op\'erateur positif}} + \mathcal{A}^{\star}(\mathcal{A}(\bar{y}\bar{y}^{\top})-c)\succeq 0$$

Relaxation non-convexe II

- Utilisation d'un code Quasi-Newton code à Mémoire Limitée (M1QN3)
- avantages : minimisation sans contraintes pour des grandes tailles ($n\approx 10^4$, tps CPU 1mn.), la solution est toujours primal réalisable
- inconvénient : aucune garantie sur la convergence vers le minimum global

n	err_{ipm}	err_{qn}	$\lambda_{max}(\mathcal{A}^{\star}(c-x_{qn}))$	$T_{ipm}(s)$	$T_{qn}(s)$
10	2.14e-10	4.07e-09	-1.88e-07	0.23	0.01
50	7.6e-11	5.33e-09	-1.13e-06	1.88	0.05
100	5.99e-11	5.77e-06	-0.001	9.95	0.06
200	6.37e-11	2.31e-07	2.90e-05	65.55	0.07
300	5.55e-11	0.0042	-2.21	440.32	0.12

Signaux Bidimensionnels

Pas de Théorème de Riesz-Féjér en plusieurs variables! ⇒ Trois cônes différents

• matrices autocorrélées

$$\mathcal{C}_{m,n} = \{ \operatorname{corr}_a(Y,Y) \mid Y \in \mathcal{M}_{m,n}(\mathbb{R}) \}.$$

sommes de carrés de degré borné (SOSBD)

$$\mathcal{A}(\mathcal{S}^+_{mn}(\mathbb{R}))$$

• polynômes trigonométriques positifs

$$\mathcal{P}_{m,n}^{+}(\mathbb{T}) = \left\{ x \in \mathbb{R}^{mn} \mid \sum_{k=(-m+1,-n+1)}^{(m-1,n-1)} x_{|k|} z^{k} \geqslant 0, \ \forall z \in \mathbb{T}^{2} \right\}$$

Matrices autocorrélées

La corrélation de deux matrices est

$$\operatorname{corr}_a(X,Y)_{ij} = \sum_{k=0}^{m-1-i} \sum_{l=0}^{n-1-j} X_{kl} Y_{(k+i)(l+j)} \text{ for } \begin{cases} i=0,\cdots,m-1\\ j=0,\cdots,n-1 \end{cases}$$

que l'on peut réécrire en

$$\mathtt{corr}_a(X,Y)_{ij} = \langle \langle \left(E^{n,j} \otimes E^{m,i} \right)^\top, \mathtt{vec}(X) \mathtt{vec}(Y)^\top \rangle \rangle$$

Posons

$$A^{ij} = \frac{1}{2} ((E^{n,j} \otimes E^{m,i})^{\top} + E^{n,j} \otimes E^{m,i}),$$

et $\mathcal{A}: \mathcal{S}_{mn}(\mathbb{R}) \to \mathcal{M}_{m,n}(\mathbb{R})$ tel que $\mathcal{A}(M)_{ij} = \langle \langle A^{ij}, M \rangle \rangle$ donc,

$$C_{m,n} = \mathcal{A}(\{xx^{\top} \mid x \in \mathbb{R}^{mn}\}). \tag{6}$$

• $C_{m,n}$ est fermé, d'intérieur non vide, saillant, et a priori non-convexe

Sommes de carrés de degré borné

- Si on remplace xx^{\top} par $M \succeq 0$ dans (6) on obtient le cône $\mathcal{A}(\mathcal{S}^+_{mn}(\mathbb{R})).$
- Appelé SOSBD du fait que $x \in \mathcal{A}(\mathcal{S}^+_{mn}(\mathbb{R}))$ est équivalent à pouvoir réécrire

$$P_x(z) := \sum_{k=(-m+1,-n+1)}^{m-1,n-1} x_{|k|} z^k$$

en une somme de carrés

$$P_x(z) = \sum_{k=1}^r |F_k(z)|^2 \text{ où } F_k(z) = \sum_{p=0}^{m-1, n-1} f_p^k z^p, \text{ pour } k = 1, \cdots, r.$$

• $\mathcal{A}(\mathcal{S}_{mn}^+(\mathbb{R}))$ est un cône fermé, d'intérieur non vide, saillant et évidemment convexe.

Polynômes Trigonométriques Positifs

ullet En posant $z=\exp(i\omega)$ avec $\omega\in[0,2\pi]^2$,

$$\mathcal{P}_{m,n}^{+}(\mathbb{T}) = \left\{ x \in \mathbb{R}^{mn} \mid \sum_{k=(-m+1,-n+1)}^{m-1,n-1} x_{|k|} e^{i\langle k,\omega \rangle} \geqslant 0 , \ \forall \omega \in [0,\pi]^2 \right\}$$

Si dans cette expression, on regroupe les exponentielles complexes conjuguées, alors

$$\mathcal{P}_{m,n}^{+}(\mathbb{T}) = \left\{ x \in \mathbb{R}^{mn} \mid \langle x, v(\omega) \rangle \geqslant 0 , \forall \omega \in [0, \pi]^{2} \right\}$$

οù

$$v(\omega) = (1, 2\cos\omega_1, \cdots, 2\cos(m-1)\omega_1, 2\cos\omega_2, \cdots, 2\cos((m-1)\omega_1 + (n-1)\omega_2)).$$

• $\mathcal{P}_{m,n}^+(\mathbb{T})$ est donc un cône **convexe** fermé, saillant et d'intérieur non vide.

Relations entre ces cônes

ullet (SOSBD) est l'enveloppe convexe de $\mathcal{C}_{m,n}$

$$\mathtt{cone}(\mathcal{C}_{m,n}) = \mathcal{A}(\mathcal{S}^+_{mn}(\mathbb{R})).$$

- (Dritschel,2004) a prouvé que :
 "Un polynôme strictement positif est toujours une somme de carrés, mais le degré maximum dans la décomposition peut être arbitrairement grand."
- Donc il vient que

$$\mathcal{C}_{m,n} \subset \mathcal{A}(\mathcal{S}_{mn}^+(\mathbb{R})) \subsetneq \mathcal{P}_{m,n}^+(\mathbb{T})$$

Adjoint de ${\cal A}$

Pour
$$x = [x^0, \cdots, x^{n-1}] \in \mathcal{M}_{m,n}(\mathbb{R})$$
,

$$\mathcal{A}^{\star}(x) = \frac{1}{2} \begin{pmatrix} \mathcal{B}(x^0) & \mathcal{T}(x^1) & \cdots & \mathcal{T}(x^{n-1}) \\ \mathcal{T}(x^1)^{\top} & \mathcal{B}(x^0) & & & \\ & & & & \mathcal{T}(x^1) \\ \mathcal{T}(x^{n-1})^{\top} & \cdots & \mathcal{T}(x^1)^{\top} & \mathcal{B}(x^0) \end{pmatrix}$$

où $\mathcal{T}:\mathbb{R}^m o \mathcal{M}_m(\mathbb{R})$ construit une matrice Toeplitz à partir du vecteurs y

$$\mathcal{T}(y) = egin{pmatrix} y_0 & y_1 & \cdots & y_{m-1} \ 0 & y_0 & \cdots & dots \ dots & \ddots & dots \ 0 & \cdots & 0 & y_0 \end{pmatrix} ext{ et } \mathcal{B} = \mathcal{T} + \mathcal{T}^ op$$

 $\Rightarrow \mathcal{A}^{\star}(x)$ est donc une matrice Toeplitz par blocs eux-mêmes Toeplitz.

Cône polaire de $\mathcal{C}_{m,n}$

Grâce à l'adjoint,

$$\mathcal{C}_{m,n}^{\circ} = [\mathcal{A}(\mathcal{S}_{mn}^{+}(\mathbb{R}))]^{\circ} = \{X \in \mathcal{M}_{m,n}(\mathbb{R}) \mid \mathcal{A}^{\star}(X) \leq 0\}.$$

• \mathcal{A}^* est bien structurée, $\mathcal{A}^*(X) \leq 0$ est donc une LMI pour laquelle nous pouvons concevoir un algorithme sur-mesure afin de projeter sur $\mathcal{C}^{\circ}_{m,n}$ (et donc aussi sur $\mathcal{A}(\mathcal{S}^+_{mn}(\mathbb{R}))$) grâce à la barrière

$$\psi(x) = -\log \det \mathcal{A}^{\star}(-x);$$

• Avec une FFT 2D, on peut calculer $\nabla^2 \psi$ en $\mathcal{O}((mn)^3)$ au lieu $\mathcal{O}((mn)^4)$.

Polaire de $\mathcal{P}_{m,n}^+(\mathbb{T})$

Expression par générateurs

$$\mathcal{P}_{m,n}^+(\mathbb{T})^\circ = \operatorname{cone}(\{-v(\omega) \mid \omega \in [0,2\pi]^2\}).$$

 Avec le théorème de Bochner (cf. Megretski, 2003), on peut obtenir une expression sous forme d'inégalités

$$\mathcal{P}_{m,n}^+(\mathbb{T})^\circ = \{ x \in \mathbb{R}^{m,n} \mid T_r(x) \leq 0, \forall r \in \mathbb{N} \}.$$

οù

$$[T_r(x)]_{ij} = y_{\varphi(i) - \varphi(j)}$$

est une matrice doublement Toeplitz et $\varphi: \mathbb{N} \mapsto \mathbb{Z}^2$ une énumeration de \mathbb{Z}^2 et y dépend linéairement de x

Projection sur $\mathcal{C}_{m,n}$

- Problème : $C_{m,n}$ est a priori non-convexe \Rightarrow Unicité ? Problème NP-difficile ?
- Heuristique
 - Résoudre par Quasi-Newton (e.g. M1QN3) avec une évaluation rapide (i.e. $\mathcal{O}(mn\log(mn))$) du gradient

$$(\mathcal{NC}) \left\{ \begin{array}{l} \bar{y} \in \arg\min_{y \in \mathbb{R}^{mn}} & ||\mathcal{A}(yy^{\top}) - c||_2^2 \end{array} \right.$$

et résoudre par suivi de chemin le problème dual

$$(\mathcal{D}) \left\{ \begin{array}{l} \overline{X} \in \arg \min_{X \in \mathcal{M}_{m,n}(\mathbb{R})} & ||X - C||_2^2 \\ X \in \mathcal{C}_{m,n}^{\circ} & \end{array} \right.$$

Alors on peut encadrer la solution par

$$||\overline{X}||^2 \le ||C - p_{\mathcal{C}_{m,n}}(C)||^2 \le ||\mathcal{A}(\bar{y}\bar{y}^\top) - C||^2.$$

Tests Numériques

• Des tests en petite dimension :

m	n	$val(\mathcal{NC}, x_0)$	$val(\mathcal{R})$	$T_{qn}(s)$	$T_{IPM}(s)$
5	2	0.839551	0.839644	0.01	0
5	5	0.910695	0.910783	0.02	2
10	5	3.281424	3.281727	0.03	14
10	10	5.350762	5.349270	0.05	118
15	7	5.442012	5.433882	0.05	39
15	15	14.236943	14.180545	0.13	352
20	10	11.984636	11.981227	0.11	1163
20	20	23.515661	23.311975	0.39	12297

avec $\varepsilon=10^{-3}$ et $\mu=2$ pour le suivi de chemin.

• La résolution par suivi de chemin est très limitée ; avec m=n=20, on commence à manipuler des matrices d'ordre 4096.

Conclusions et Perspectives

Conclusions

- Géométrie de \mathcal{C}_{n+1} (Faces, acuité, Encadrement)
- Développement d'Algorithmes pour le problème de projection
- Généralisation au cas bidimensionnel.

Pistes de Recherches

- Prouver ou infirmer la conjecture à propos des faces
- Trouver les éléments propres des A^{ij}
- Etudier le cas infini $x_t = \int_{\mathbb{R}} y(u+t)y(u) \ du$
- Trouver une alternative intéressante aux points intérieurs en grande dimension pour résoudre le problème dual (pour $\mathcal{C}_{m,n}^{\circ}$ et $\mathcal{C}_{n+1}^{\circ}$).

Merci de votre Attention!

