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1. INTRODUCTION

The aim of this work is to demonstrate experimentally the quantization of the charge on

a metallic electrode connected to an electron reservoir by a tunnel junction and to show that

this phenomenon can be used to transfer electrons one by one from one electrode to another

with metrological accuracy.

From the famous Millikan's experiment performed in 1911 [1], we know that the

electrical charge on an isolated body is quantized. To demonstrate charge quantization,

Millikan used small charged oil droplets. The principle of the experiment was to measure the

speed of a single droplet in a gravitational field combined with a variable vertical electrical

field. These measurements give access to the mass and the charge of the oil droplet. Millikan

showed that this charge is an integer multiple of an elementary electrical charge,

e == 1. 6 10-19 C. In his experiment, the charge carried by the oil droplets resulted from the

irradiation with a particles produced by a Radium source. Although the charge deposited on

the droplet was quantized, it was not controlled. Is it possible to transpose such an experiment

in a solid state device and, moreover, to control the stored charge with an externally applied

voltage?

Surprisingly, the discreteness of the charge carriers does not appear in the usual

behavior of electronic circuits. One may think the reason is that any electronic signal involves

too large a number of electrons but there is in fact a more profond reason: the conduction

electrons are delocalized and form a quantum fluid. To illustrate this effect, let us consider the

simple circuit consisted of a capacitor Cs to which we apply a voltage U by perfect leads (see

Fig. 1.1a). The charge Q stored on the capacitor is equal to CsU and can be precisely adjusted

to any arbitrarily small value by varying the applied voltage. Although a charge is transferred

from the source to the surface of the capacitor plate, this quantity is a continuous variable. It

corresponds to the collective displacement of the charge carriers in the metal with respect to

the ionic background. Hence, the charge on the capacitor is not constrained to be an integer

number of electrons. The charge quantization can only appear if the circuit includes an isolated

piece of metal. This can be done by opening a switch placed between the voltage source and
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the capacitor (see Fig. 1.1b). One of the capacitor plates is then disconnected from the circuit

and forms an isolated electrode. Like the oil droplet of the Millikan's experiment, this electrode

contains a well defined number of electrons and its total charge q is equal to an integer multiple

of the electron charge -e. As soon as one wants to change this charge, a difficulty arises. Since

there is no possibility to transfer electrons from the source to the isolated electrode, the charge

q remains constant and cannot be tuned subsequently with the applied voltage U. Obviously,

we can connect the switch again to modify q, but simultaneously, we will suppress the

quantization of the electrode charge.

+Q

-Q
a)

.-----,
I~ql
I -L I
l... - - - - - ~ b)

Cs

Fig. 1.1 a) Capacitor connected to a voltage source. The charge Q = CsU on the capacitor

plate is not quantized. b) If one opens a switch between the voltage source and the capacitor,

the portion of the circuit inside the dashed line box contains a charge q which is quantized

butfixed.

How can we combine charge quantization and charge transfer? We certainly need a

more elaborate device than a usual switch. A highly resistive tunnel junctions provides a way to

maintain both the quantization of the electrode charge and the possibility to vary it.

A tunnel junction consists of two metallic electrodes separated by a thin insulating layer

(see Fig. 1.2). In such a device, the mechanism of conduction is the tunnel effect of electrons
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through the insulating barrier. A tunnel junction is characterised by two parameters, its

capacitance C and its tunnel resistance Rt • This latter quantity is determined experimentally by

the current I =V/ Rt which flows through the device when a voltage V is imposed to the

junction. The tunnel resistance is a phenomenological macroscopic parameter which depends

on the area and the thickness of the insulating layer. Although it has the dimension of a

resistance, Rt does not correspond to any dissipative process like the resistance value in a

usual resistor. The tunnel resistance can be expressed through the relation Rt-
1 = (2e2Ih)NJ,

where N is the number of conduction channels and J is the transmission coefficient of the

barrier for each channel, assumed to be independent of the channel index.

Elaborate theoretical considerations [2,3] show that if the junction tunnel resistance Rt

is much larger than the resistance quantum RK =hie2 == 25.8 kQ, electrons are localised on

either side of the insulating barrier and electron tunneling through the barrier is a stochastic

Poisson process with a rate given, at zero temperature, by filllRte
2

, where fill is the energy

difference before and after the tunnel event. Thus, provided Rt » RK , the charge of an

isolated electrode connected to an external electron reservoir by such a tunnel junction will

remain quantized. Apart from its tunneling properties, the junction behaves like a capacitor

with a capacitance C.

Let us replace, in the simple circuit of Fig. 1.1b, the switch by a tunnel junction with a

tunnel resistance such that Rt »RK • Therefore, we maintain the quantization of the charge of

the isolated electrode but the transfer of electrons from the voltage source is now allowed by

tunnel events across the junction. We have called "electron box" [4] this basic circuit consisting

of a tunnel junction and a capacitor placed in series with a voltage source (see Fig. 1.3). Since

the electrons can enter and leave the electrode formed between the junction and the capacitor,

this electrode is isolated in the sense that it is surrounded everywhere by insulating material.

We call "island" this particular kind of electrode for which the instantaneous charge only varies

by tunnel events and remains quantized in units of e.

Although the instantaneous number n of excess electrons on the island is quantized, the

average number (n) may vary smoothly with the gate voltage U. The really observable quantity

is the macroscopic charge of the island (-ne). If we want (n) itself to be quantized, we must
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metal
J-------- - - - - - - -

=-------- - - - - -

insulator

/
;,.-.-+----- - - - - -

"'------- - - - - -

-- - - - --------

metal
------------

- --- - --------

---- - --------

a)

>---<
1 nm

b) • OJ •

Rt,C

Fig 1.2 a) A tunnel junction consists of two metallic electrodes separated by a thin insulating

layer. b) In circuit schematics, a tunnel junction is represented by a double box symbol and

characterized by its tunnel resistance Rt and its capacitance C.

------,
C I -ne I

I
I

______ 1

Fig. 1.3 Circuit diagram of the electron box which consists of a tunnel junction and a

capacitor placed in series with a voltage source. The metallic electrode between the junction

and the capacitor forms an "island" which contains a well defined number ofexcess electrons.
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suppress the thermal fluctuations of the island charge. The characteristic energy of the charge

quantization phenomenon is the charging energy Ec = e2/2(C +Cs ) equal to the energy cost of

putting one excess electron in the island when there is no voltage applied. Charge quantization

requires that the charging energy Ec is much larger than the characteristic energy kBT of the

thermal fluctuations where kB is the Boltzmann constant. The condition Ec » kBT ensures

that the thermal fluctuations of the island charge are negligible. A circuit temperature of about

T "'" 30 mK is attainable with a dilution refrigerator. This implies that the island capacitance

Cisland = C +Cs must be lower than 1 fF to satisfy the latter inequality. Such low capacitance is

achieved by using tunnel junctions with a typical area of 100 nm x 100 nm. We have fabricated

this type of nanoscale junctions using a combination of electron beam lithography and shadow

evaporation through a suspended mask [5]. The junctions are located at the overlap between

two metallic thin films. A scanning electron microscope photograph of such a junction is

shown on Fig. 1.4. The bottom metallic electrode is made of aluminum, the insulating layer is

obtained by oxidizing the surface of the aluminum layer, and the top electrode is made either of

aluminum or copper alloyed with 3 % of aluminum in weight. We have thus fabricated two

different types of nanostructures: Al/AIOx/AI or Al/AIOx/Cu. To measure the charge

increment of the island, we have used a single-electron transistor [6] as an electrometer. This

device is fabricated together with the box and is capacitively coupled to the island of the box.

The coupling capacitance Cc is sufficiently small not to affect the behavior of the single­

electron box and we assume that the temporal average charge Ii measured by the electrometer

is equal to the thermal ensemble average (n).

When plotted versus the gate voltage U, the average number (n) of excess electrons in

the island takes the form of a staircase: the "Coulomb staircase" depicted on Fig. 1.5. The

number of electrons adjusts itself to minimize the total energy of the circuit given by

E = Ec(n-CsUje)2. At T = 0, the staircase steps are perfectly flat and each one corresponds

to a fixed number of electrons inside the island. At high temperature (kBT» Ec )' one finds

(n) = CsU, the island macroscopic charge quantization is suppressed and the junction acts as a

short circuit. Note that the instantaneous charge of the island is still quantized; only the

average charge takes non integer values. At lower temperature (Ec «kBT), the staircase is
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Fig. 1.4 Scanning electron microscope photograph of an aluminum/aluminum-oxide/copper

tunnel junction.
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just slightly rounded (see Fig. 1.5) and the central part of the steps corresponds to a well

defined number of electrons inside the island. The voltage required to inject one electron in the

island is equal to the period of the staircase given by e/Cs ' This latter quantity is in the mV

range for the gate capacitance Cs of the order of 100 aF. Hence, provided Ec «kBT, one can

precisely control the number of electrons inside the island with a macroscopic voltage. We

have called this effect "macroscopic charge quantization" because the island charge is

distributed over a macroscopic number of atoms. It is important to note that unlike the usual

charge quantization of an isolated piece of matter, the macroscopic charge quantization defined

above is only exact in the limit T ~ 0, Rt / RK ~ 00. While the former limit corresponds to the

suppression of thermal fluctuations, the latter limit corresponds to the suppression of the

quantum fluctuations due to the tunnel process itself [3].

If we consider now a single-electron box with an island made of superconducting

material, the previous analysis must be modified since electrons are paired in a superconductor.

If we assume that the island is a perfect superconductor following the BCS theory [7], all the

electrons are paired and the energy cost of an unpaired electron is at least equal to the

superconducting energy gap ~ [8]. For ~ > Ec and at low temperature, electrons should be

transferred two by two from the electron reservoir into the superconducting island by creating

or suppressing Cooper pairs in the island. As we have shown, the superconducting electron

box indeed exhibits a 2e-quantization of the island charge [9]. In this regime, the height and the

length of the staircase steps are twice as large as in the non-superconducting case, as shown in

Fig. 1.6. However, if the charging energy Ec is sufficiently large with respect to ~, Cooper

pairs can be broken and electrons enter the island one by one [10]. In that case, we observe

that the staircase is asymmetric with long steps corresponding to the states with an even

number of electrons inside the island and short steps corresponding to an odd number of

electrons (see Fig. 1.6). This odd-even asymmetry [10,11,12] will persist when the temperature

is increased until the odd-even free energy difference D(T) vanishes. This quantity D(T)

depends strongly on the temperature through the relation D(T)'" ~-kBTlnNeff+O(T2)[11]

where Neff is the effective number of states available for excitations in the island. From the

staircase asymmetry we can measure the odd-even free energy difference [10]. In this regime,
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Fig. 1.5 b) Solid lines: experimental variations of the average number Ii of excess electrons in

in the island of an electron box. Dashed lines: theoretical calculations for an island

capacitance C};, =0.8 fF. The experimental parameters of the circuit are Cs =74 aF and

Ce = 21 aF. The quantity Qo denotes the random offset charge in the island.
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the island charge quantization provides an energy scale Ec with which D(T) can be directly

compared. A similar effect arises if one depresses the superconducting gap ~ by applying a

magnetic field to the sample.

Fmally, the electron box, which consists of one island, can be seen as the basic element

of more complex circuits which include several islands. In the charge transferring devices

[13,14] such as the "turnstile" [15] or the "electron pump" [16], gate voltages are used to

transfer electrons from an island to another in order to build a current electron by electron

which circulates in an external current-measuring apparatus. The electron pump circuit, for

example, can be described as two electron "boxes" connnected through a third junction. For

this device, there is a two-dimensional stability diagram analogous to the Coulomb staircase of

the single-electron box [16]. As a current source, the electron pump is a potential candidate for

a current standard. However, higher order tunneling processes [17-22] can directly transfer a

single charge across two or more tunnel junctions although single electron tunneling across

each junction is forbidden. These processes, usually referred to as cotunneling processes,

reduce the accuracy of the electron pump and must be take into account to evaluate the

metrological applications of such a device [23-25].

In this work, we present experiments based on nanoscale tunnel junctions, which both

demonstrate that the macroscopic charge, i.e. the mean value of the total charge, of a metallic

electrode is quantized and that we are able to control this charge at the single-electron level. In

chapter 2, we review the theoretical foundations and the limits of the macroscopic charge

quantization. We present in chapter 3 experimental results on the electron box, both in the non­

superconducting and the superconducting state. Chapter 4 is devoted to the accuracy of the

charge transferring devices. We report experimental results performed on a four junctions

device and calculations of the transfer accuracy of the pump. Appendix 1 presents the

calculation of the total electrostatic energy of a general circuit consisting of junctions,

capacitances and voltage sources. The fabrication techniques of the superconducting/normal

tunnel junctions used in the superconducting electron box are described in appendix 2 and the

measurement device, the SET electrometer, is presented in appendix 3.
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2. Review of Theoretical Predictions on Macroscopic

Charge Quantization in the Single-Electron Box

In this chapter we review the theoretical predictions concerning macroscopic charge

quantization of a metallic island. We fIrst treat the case of an electron box consisting only of

normal metal elements. We will afterwards treat the case of a box with a superconducting

island and a normal metal reservoir. Finally, we will treat the case where both the island and

the reservoir are superconducting.

2.1 The normal electron box.

2.1.1 The Coulomb staircase and the Coulomb sawtooth at T=O.

The electron box circuit consists of a small tunnel junction of capacitance C and a

capacitor Cs placed in series with a voltage source U (Fig. 2.1). The "island", which is the

metallic electrode common to the junction and the capacitor, is free to exchange electrons with

the charge reservoir consisting of the "lead", i.e. the electrode common to the junction and the

voltage source. Since the lead wave impedance Zt is much less than the resistance quantum

RK = hie2 == 25.8 kQ, the charge q of the island is the sole degree of freedom of the system

whose states can be indexed by the number n of excess electrons on the island [1]. For the

moment, we assume that the junction tunnel resistance Rt is much larger than the resistance

quantum RK • Under this condition, as we will see in Sec. 2.1.3, n is a good quantum number

[2,3].

At T = 0, the charge q = -ne is fIxed and determined by the integer number n for

which the total energy of the circuit is minimal. The total energy of the electron box including

the work done by the voltage source is (see appendix 1):

(1)

Since we want to compare the energy of the different n-states for a given value of the voltage

U, we can retain only the first term of the right hand side of Eq. (1) and defme:
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(2)

Here, we have introduced the charging energy Ec =e2/2Cr., Cr. =C +Cs being the total

capacitance of the island. The quantity Ec is the cost of putting one excess electron on the

island when U = O. Expression (2) clearly shows that the minimum of En corresponds to a

number n of excess electrons equal to the integer closest to CsUIe. Consequently, at T = 0,

the equilibrium value of n as a function of CsUIe takes the fonn of a staircase function (Fig.

2.2b) which we have called the Coulomb staircase. We must mention that the expression

"Coulomb staircase" is also used [4,5] to denote the steplike structure in the current-voltage

characteristic of a double junction circuit. However, there is no conflict since both staircases

originate from the same basic effect.

We have plotted in Fig. 2.2a the energies En versus CsUIe for different values of n.

They are represented by a set of parabolas, each parabola being shifted from its neighbors by 1

along the x axis. The system has in general a non-degenerate ground state, which fixes the

equilibrium value of n at T = 0, except when the two lowest n-states have the same energy En'

This latter situation corresponds to the crossings of parabolas and occurs for the half integer

values of the reduced variable CsUIe. At these threshold points, the ground state is degenerate

and transitions between the n-state and the (n + I)-state of the box can occur. Such a transition

corresponds to a single tunnel event across the junction, transferring one electron in or out the

island.

The charge Q on the junction capacitance, the charge Qs on the capacitor Cs and the

number n of electrons stored in the island are related as follows:

C
Q=-(-ne+CsU)

Cr.

Q Cs C C=-ne+- U
s Cr. Cr. s

(3)

Let us examine the evolution of these three quantities as we sweep the voltage U (Fig. 2.3). At

U =0, the n =0 state is the ground state and the energy cost of one excess electron is exactly

equal to the charging energy Ec ' Then, the energy difference between the n = 0 state and the

n =1 state decreases with increasing U. At the same time, the charge Q on the junction

14
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+Qs I -Qs +Q -Q

r-------t\t---------t

I q=-ne
Cs C
I I

Fig. 2.1 Schematic of the single-electron box circuit consisting of a capacitor and a tunnel

junction placed in series with a voltage source. The symbol inform ofa double box represents

the tunnel junction. The part of circuit inside the dashed line is the "island" which contains a

number n of excess electrons.

a)

<n> CsU/e

4
3 b)
2
1

1 2 3 4 CsU/e
Fig. 2.2 a) Energy of the circuit versus CsUIe for several values of the number n of excess

electrons in the island. The charging energy Ee is the electrostatic energy of one extra

electron in the island when CsUIe = O. The solid dots correspond to level crossings between

parabolas where one electron can tunnel into and out the island. b) The Coulomb staircase

which displays the equilibrium value of n as a function of CsUIe.
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Fig. 2.3 Average value at T = 0 of the number n of excess electrons in the island (top), of the

charge Q on the junction (middle) and of the charge Qs on the capacitor (bottom) versus

CsUIe. The bottom curve is plottedfor CsICr.. = 0.4.
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capacitance grows linearly with U. When CsU j e = 1/2, the two states n = 0 and the n = 1 have

the same energy and the transition n = 0~ n = 1 can occur. The charge of the electron

entering the island is distributed over the two capacitances C and Cs ' Thus, the charge Q on

the junction exhibits a negative jump equal to -e(CjCrJ while the capacitor charge Qs exhibits

a positive jump equal to e(CsICrJ After the transition, the n = 1 state becomes the new

ground state and Q grows again from a negative value. The variations of the charge Q on the

junction as a function of the reduced variable CsUIe are periodic sawtooth oscillations: we call

them the Coulomb sawtooth.

The three discontinuous curves depicted in Fig. 2.3 are actually three different

manifestations of the same effect: the steplike variations of the equilibrium number of excess

electrons on the island. The charge increment is fixed by the charge quantum e and the

periodicity of the phenomenon is set by ejCs .

2.1.2 Macroscopic charge quantization at finite temperature.

According to the previous electrostatic calculation, the charge q on the island of the

electron box at T = 0 is fixed when CsUIe ¢ 1/2 mod 1 and the steps of the resulting Coulomb

staircase are thus perfectly flat. The question now arises of the robustness of the steps to

thermal fluctuations of the island charge. At finite temperature, the system can be found in

excited states corresponding to the various n-states of the box. The quantity of interest is the

thermal average (q) = -(n)e, hereafter referred to as the "macroscopic" charge of the island.

Using expressions (2) and (3), the charge Qon the junction can be expressed as:

(4)

At finite temperature, this relation is transposed to average values. The average junction

charge (Q) and the free energy F are related by:

C aF
(Q)=cau'

s

(5)

where F = -kBT In Z. Here T is the temperature of the system, kB is the Boltzmann constant

and Z is the partition function of the system given by:
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n=+""

Z = "Lexp(-EnlkBT).
n=-oo

(6)

Combining Eq. (3) and Eq. (5), we can express the thermal average number (n) of excess

electrons in the island as:

(7)

This expression is particularly useful at high temperatures. For large values of the reduced

parameter e= kBTlEe' the series (6) does not converge numerically and one computes the

partition function Z using the following identity [6]:

When e» 1, we can keep only the fIrst term of the sum in the right hand side of Eq. (8). In

this limit, using Eq. (7) the average (n) is thus approximately given by:

(9)

At low temperature, we have to go back to the defInition of (n). We calculate directly the

Boltzmann average of the number n of excess electrons. Each n state is weighted by its

Boltzmann factor exp(- EnlkBT) and the average (n) is given by:

n=+""

"Lnexp(- EnlkBT)
(n) = .;.;;.n;_;:_;"" _

"L exp(- EnlkBT)
n=-oo

(to)

When e« 1, a useful approximation is obtained by keeping in Eq. (10) only the two terms

corresponding to the lowest energies. Within this approximation, if we consider CsUIe in the

neighborhood of m+1/2, one readily shows that (n) takes the form:

(n) =m+.!.{1+ tanh[-(m +1/2-CsUle)/e]) .
2

18
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The two quantities (n) and (Q) are plotted versus CsUje in Fig. 2.4 for three different values

of the reduced parameter 8. A quantitative measurement of the effect of temperature on the

Coulomb staircase is its slope at the half integer values of CsUje:

for 8« 1a(n) (C Uje=m+l/2) =_1
a(csUje) s 28

= 1+4n28e-81t2 for 8» 1.

(12)

These two expressions give the same value of the slope for 8 "" 0.34216. Finally, in the limit

T ~ 0, we recover the perfect Coulomb staircase since Eq. (7) reduces to:

(13)

where EG refers to the ground state energy.

At high temperature, Eq. (9) shows that the quantization of the macroscopic charge

(q) = -(n)e is completely suppressed. Although the instantaneous charge q remains always

quantized, the mean value (q) becomes equal to -CsU in the limit kBT» Ec ' In that case, the

tunnel junction behaves as a short circuit and its average charge (Q) is zero. The macroscopic

charge quantization occurs in the opposite limit:

(14)

This condition ensures that the Coulomb staircase is just slightly rounded by thermal

fluctuations and that in the central part of the steps the mean value (n) remains equal to an

integer number (Fig. 2.4a).

Like the Coulomb staircase, the Coulomb sawtooth is also rounded at T:I: 0 and the

amplitude of the oscillations is less than (CjCrJe (Fig 2.4b). The Coulomb sawtooth is similar

but not identical to the single electron tunneling (SET) oscillations which are expected to occur

for a small tunnel junction biased with a perfect current source [7]. In that latter effect, the

voltage across the junction oscillates between +elC and -ejC at frequency f = lie, where I is

the current applied to the junction. However, the Coulomb sawtooth arises from the

macroscopic charge quantization and is an equilibrium effect while the SET oscillations involve

a dynamic blockade of tunneling.
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Fig. 2.4 a) Average value (n) of the number of excess electrons in the island and b) average

charge (Q) on the junction versus CsUIe for three different values of the reduced parameter

8 = kBTlEe' Note that when 8 = 0.5 (dashed lines) the Coulomb staircase has been reduced

to an almost linear ramp while the modulation of the average junction charge (Q) is still

visible.
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Experimentally, a sample can be reliably cooled down to about 30 mK. It means that

the island capacitance C:E must be in the tF range to satisfy condition (14). This is achieved

using ultrasmall tunnel junctions with typical area of 100 nm x 100 nm fabricated by

nanofabrication techniques. Since the capacitance Cs can be made smaller than 1 tF, the period

e/Cs of the Coulomb sawtooth will be a voltage (> 1 mY) sufficiently large to be easily

controlled. The experimental observation of the Coulomb sawtooth and its temperature

dependence are described in the next chapter (see section 3.1.1).

In summary, provided an adequate tunnel junction is used, the number of electrons

stored in the island does not fluctuate at low temperature and is entirely determined by the

externally applied voltage. The Coulomb staircase reveals the macroscopic charge quantization

arising from the electrostatic energy gap between the different n states of the island. At finite

temperature the aspect of the staircase depends on two external parameters: the capacitance Cs

and the charging energy Ec ' The former one determines the length of the steps of the staircase,

the latter one determines the sharpness of the charge jumps.

2.1.3 Quantum fluctuations of the island charge.

We now discuss the case where the transmission coefficient of the insulating barrier of

the junction is finite. The finite tunnel conductance of the junction, which has been neglected

so far, makes the island charge subject to quantum fluctuations. Even at T = 0, the ground

state is not a pure n state and we expect the charge of the island not to be strictly quantized.

We shall now discuss the correction to the staircase dependence of the island charge on U and

treat the tunnel hamiltonian as a perturbation.

Quantum mechanically, the single electron box is described by the following

hamiltonian:

H = Ho+Ht , (15)

where Ho describes the system in the absence of tunneling and Ht is the perturbing tunnel

hamiltonian. The unperturbed hamiltonian Ho is given by

Ho =Ec(ri - CgUler +LEkL atL akL +LEkRatRakR '
kL kR

21
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where Ii is the operator associated with n the number of excess electrons stored in the island,

ak
L

and ak
R

are the quasiparticle annihilation operator in the island and in the lead respectively,

Ek
L

and Ek
R

being the kinetic energies of the quasiparticles measured from the Fermi energy.

Note that in Eq. (16) the ak's are purely kinetic degrees of freedom while Ii is the sole

electrical degree of freedom. In the limit of large electrodes, Ii and the ak's are independent. In

the one-dimensional model of the tunnel junction, the tunnel hamiltonian [8] H t is written:

(17)

where t is the matrix element which characterises the tunneling across the junction and

[8, Ii] = i. In Eq. (17) we have assumed that the tunnel matrix element t is independent of the

energy of the ingoing and outgoing quasiparticle. One can show that the tunnel resistance Rt of

the junction and the tunnel matrix element t are related by

(18)

where PLand PR are the density of states at the Fermi level on each side of the junction. Since

the pattern of the Coulomb staircase is periodic in CsUIe, we will restrict our calculation to

the range -1/2 < CsUIe < 1/2, inside which the unperturbed ground state is given by n= O.

At the lowest order in Hp the n = 0 state is coupled to the states n = 1 and n = -1. The

corresponding corrections CEil to the ground state energy take the form

(19)

where E±1 refers to the total electrostatic energy of the n = ±1 state defined by Eq. (2). Using

(18) and making a change of variable E=EL + ER' we get:

(20)

Inserting this result in Eq. (13), we obtain the average number of excess electrons [9] in the

island:
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(21)

where g =RK / 4rc2Rt • This expression diverges at CsUIe =±1f2.

Grabert [2] has calculated the correction to (n) up to second order in g and has

obtained:

(22)

where

(23)

Here S.t. (-x) refers to the same sum of terms with x replaced -x, and Li 2 = Jo dz In (l- z)/z.

For Rt = O.5RK , Grabert shows that the second order calculation is sufficient to describe the

variations of (n) in 98% of the interval -1f2 < CsUIe < +1f2 (see Fig. 2.5b). At the threshold

values CsUIe =±1f2, the second order expression (22) diverges logarithmically like (21). In

order to remove the divergence, Matveev [3] has used an analogy with the Kondo problem and

has re-summed the most diverging logarithmic terms. Grabert has done a systematic

diagrammatic expansion and has obtained after re-summation for CsUIe~ 1/2:

-g* In 8*
(n) = * * + O(8) ,

1-2g In8
(24)

where the renormalized parameters g* and 8* are given by g* =g[1+6g+0(g2)],

8* =8[1-ag +O(g2 )], 8 =1f2 - CsUIe, and a =-9.7726....

This calculation predicts that the island charge is not strictly quantized and varies

approximately linearly with the voltage U in the center of the flat part of the staircase. Fig. 2.5

shows the two effects of a finite tunneling conductance on the Coulomb staircase: a [mite slope

in the middle of the steps and a weak rounding as CsUIe ~ ±1f2. However, the slope at

CsUIe = ± 1f2 remains infinite like in the Rt IRK ~ 00 limit. We must mention that, using a
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Fig. 2.5 a) Average value (n) of the number of excess electrons in the island versus CsUJe

calculated using Eq. (22) and Eq. (24) for three different values of the ratio RtlRK' b)

Enlargement of the preceeding curve in the vicinity of CsUJe = 0.5 for Rt JRK = 0.5. The

solid line is the non divergent result, the dashed line is the first order calculation given by Eq.

(21) and the dotted line is the second order result given by Eq. (22).
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Fig. 2.6 Renormalized average number (n) * of excess electrons in the island as a function of

CsU/ e calculated using Eq. (24) and Eq. (25) for three different values of the ratio Rt / RK .
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different approach, Zwerger [10] has predicted a finite slope of the staircase at CsUIe = ±lj2,

in contradiction with the preceeding analysis.

A word of caution is necessary at this point. Because we cannot perform an absolute

measurement of the island charge, the curves plotted in Fig. 2.5 cannot be directly compared

with experimental results. The experiments are only sensitive to the relative variations of (n).

In Fig. 2.6, we have plotted the staircase calculated with (22) and (24) in a "canonical form",

i.e. with flat steps and normalized charge increment. This can be done by substracting the steps

slope and rescaling of the curve. We obtain for the renormalized average charge (n)*:

(n)* = (n)-4g(CsUje) .
1-4g

(25)

The curves plotted in Fig. 2.6 show that, even for tunneling resistances of the order of RK , the

charge quantization is experimentally a good approximation and that the charge jumps are

always well defined. Nevertheless, the effective incremental charge is always smaller than the

charge quantum. The reduction factor equal to (l- 4g) can reach 10 % for Rt "'" RK . If we

assume that quantum and thermal fluctuations can be treated separately, the charging energy

which can be extracted from the staircase at finite temperature is only a renormalized quantity

E; given by:

(26)

Finally, we must mention that Biittiker et al. [11] have considered the quantum

corrections to the capacitance of a mesoscopic capacitor. They emphasize the fact that one

cannot describe a mesoscopic capacitor simply with its geometrical capacitance but that the

experimentally relevant capacitance is an electrochemical capacitance. This distinction is valid

only if the density of states of the capacitor plates are small compared to cele2
, where Ce

denotes the geometrical capacitance. However, for the typical dimensions of the metallic

islands used in electron box experiments, this condition is not satisfied and we can neglect the

corrections to the geometrical capacitances.
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2.1.4 Tunneling rate in the electron box.

In this section, we will calculate the tunneling rate across the junction of the electron

box, taking into account the effect of the electromagnetic environment [8,12].

In this approach, we include in the description of the circuit the impedance Z(0)) which

models the electromagnetic environment of the electron box and which is placed in series with

the junction (see Fig. 2.7a). The impedance Z(0)) takes into account the fmite resistance of the

bias circuitry as well as radiation losses in the lead. The junction itself is represented by a pure

tunnel element in parallel with a capacitance C. The equivalent circuit seen by the pure tunnel

element is an effective voltage source Veff in series with an impedance Zt (0)) (Fig 2.7b). The

effect of the environment on the tunneling rate is contained in the real part of the total

impedance Zt (0)).

The total impedance Zt (0)) can be described as a capacitance C~ = C+Cs in series

with an impedance K2Zc(0)) [13], where K=Cs/C~ and Zc(O)) =Z(0))[1 + jKCroZ(0))r1
(Fig

2.7c). If the low frequency behavior of the impedance Z(0)) corresponds to that of a resistance

R, then lim ro.-.+O Zc (0)) = lim ro.-.+O Z(0)) = R. Denoting the junction temperature by T, the rate r

of a tunneling event across the junction is [8,12]

r=_1_[00 E P(!1E-E)dE,
Rte

2 -00 l-exp[-E/kBT]
(27)

where Rt is the tunnel resistance of the junction, M is the difference between the total energy

of the circuit before and after the tunneling event, and the function P(E) is the probability that

the tunneling electron creates an excitation of the electromagnetic environment with energy E.

The function p(E) is a functional of the real part of Zt (0)).

If p electrons have already passed through the junction and if lim ro.-.+O Z(0)) = R, the

energy difference M associated with a tunneling event which increases p is

e2

M=KeU-(p+l/2)- .
C~

The function P(E) is given [8] by

1 1+00

P(E)=- exp[J(t)+iEt/1i]dt,
21th -00

27
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a)

b)

c)

Fig. 2.7 a) Schematic of the single-electron box circuit coupled to its electromagnetic

environment. The junction is represented by a pure capacitor of capacitance C in parallel

with a pure tunnel element of resistance Rt symbolized by a double T. The electromagnetic

environment of the circuit is modeled by an impedance Z(ro) in series with the voltage

source. b) The circuit seen by the pure tunnel element is the total impedance Zt (ro) in series

with an effective voltage source Vet!. c) The total impedance Zt(ro) can be described as a

capacitance C +Cs in series with an impedance 1(2Zc(ro), where 1( = Cs /(C +Cs )'
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where i
OO

dro Re[Zt (ro)] ( (1) .)J(t)=2 - coth 2~hro (cosrot-1)-isffirot .
o ro RK

(30)

In this expression ~ = 1/kBTe , where Te is the temperature of the environment which

can be different from the temperature of the junction T involved in Eq. (27). Under common

experimental conditions, the real part of the environmental impedance Re[Zt (ro)] is small

compared with the resistance quantum RK , particularly in the electron box. This can be seen

from Re[Z/(ro)] = 1(2 Re[Zc(ro)]. Typically 1( < 0.1, hence we can evaluate the function P(E)

by making a linear expansion of exp[J(t)] in Eq. (29). At zero-th order in Re[Zt(ro)]/RK ,

P(E) reduces to a delta function 3(E) and the rate r is simply given by

r- 1 !::£
- R/e2 1-exp[-!::£/kBT] .

(31)

Eq. (31) constitutes the so-called "global" rule formula of the tunneling rate [14]. The limit

P(E) = 3(E) corresponds to an electron box completely decoupled from its electromagnetic

environment.

We now develop exp[J(t)] to fIrst order in Re[Zt(ro)]/RK . The function P(E) can be

expanded as

1 f.+ooP(E) ~ - (1 +J(t))exp[iE t/n]dt .
21th -00

Rewriting Eq. (30) as

J(t) = 2f.+00 dro Re[Zt(ro)] e-
irot

-1 ,
ro R 1-e-131iro

-00 K

we obtain

P(E)=3(E)[1-2f.+OOdror(ro) 1 ]+2r(E/n) 1 ,
-00 ro 1- e-13hro E 1- e-13E

(32)

(33)

(34)

where r(ro) = Re[Zt(ro)]/RK . The fIrst order expansion made in Eq. (32) is equivalent to

considering that a tunnel event can create or annihilate only one energy quantum in one of the

oscillators modelling the environment [12].
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If E> 0 (E < 0), the function pee) given by Eq. (34) can thus be interpreted as the

probability for the environment to emit (absorb) one quantum of energy E (-E). Introducing

the Bose factor n(0) = 1/[exp(~nro) -1] and the coupling coefficient c(0) = 2r(0))/nO), one

can relate the function pee) to the probabilities of emission or absorption of an energy

quantum bro. The probability P(nro) to emit one quantum of energy bro by a single tunneling

event is given by P(nro) = c(ro)(n(ro)+l). On the other hand, the probability PC-nO)) to

absorb one quantum is given by P(-nro) = c(ro)n(ro).

We consider finally a general type of environment where the impedance Z(ro) is a 1­

port network consisting of several impedances ZI(ro), Z2(0)'"'' Zm(O) at different

temperatures Ii, T2 , ... , Tm (Fig 2.8a). We denote by aj(ro) the attenuation coefficient of a

voltage source placed in the branch of the circuit which contains the iinpedance Z; (0) and

measured at the port of the network. From circuit theory, a; (ro) is also the attenuation

coefficient of a current source placed at the port of the network and measured in series with

the impedance Z; (ro). The theory of networks only consisting of impedances yields the three

following relations:

2 az
a· =­

I az.
1

m

Z(ro) =laf(ro)Z;(O)
;=1

m .,

Re[Z(ro)] = lla;(ro)l- Re[Z;(O)]
;=1

(35)

(36)

The impedance Zc(ro) = Z(ro)/[l + jKCroZ(O)] and the impedances Zci(O) given by

Zc;(ro) = Z;(ro)/[l + jKCroZ(ro)] (Fig. 2.8b) obey the same set of relations as Zero) and the

impedances Z; (ro). Assuming that each impedance Zci (ro) is at thermodynamic equilibrium at

1';, we can generalize Eq. (34) to

pee) = C(E)[l- 1+00

K2~la'(0)122r;(ro) dro ]
~ I 0) 1- -13;hro

-00 1=1 e

+K2 Ila;(E/fl)122r;(E/fl) 1_
13

,£

;=1 E 1-e I
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Fig 2.8 a) Schematic of a single-electron box circuit connected to an environmental

impedance Z(oo) consisting of a i-port network of impedances at different temperatures. b)

The impedance Zc(oo) (see Fig. 2.7c) can be represented by m impedances at different

temperatures placed in series. The coefficient aj(OO) is the attenuation of a current source

placed at the port of the network and measured in series with the impedance Zj (00) .

----------- --------,I , ,

'T ' 'T
, 11 ' , 12
,---------_. --------

Fig. 2.9 Example of an environmental impedance Z(oo) consisted of two parts at temperature

11 and T2 ·
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At high positive energy (E> 0) the spontaneous emission is the dominant decay

process and the effect of the temperatures T1, T2 , ••• , Tp of the environment on the tunneling

rate is negligible. In that case, P(E) is well approximated by P(E)::::: l(22Re(Zc(E/Ii)]/ERK •

The situation is very different in the case of absorption processes (E < 0) for which the

function P(E) and consequently the tunneling rate are strongly affected by the environmental

temperatures. In that case, one can regard each impedance Zci (00) as a voltage noise source

[15] at temperature T;. The effect of the impedance Zci(oo) is characterized by a spectrum

density of voltage noise Syi(OO) such that P(E) can be expressed as:

where

E
Syi(E/Ii) = 2/1t Re[Zci (E/Ii)] ( ~ ).

l-exp - iE
(38)

When E = -lim < 0, the spectrum density of voltage noise SYi (E/Ii) is given by

Syi(-(0) = 2/1t Re[Zci(m)]ni(m)lioo. Here nj(m) corresponds to the distribution of photons in

the impedance Zj (00) at temperature T;.

More generally, we can define a spectral density Sy(m) for the whole environment

given by Sy(oo) =I;!ai(oo)1
2

Syi(m). Since the spectral density Sy(oo) is a sum involving

different temperatures it cannot be described by a constant equivalent noise temperature.

Finally combining Eq. (27) and Eq. (37) we obtain

1 M, [ i+oo

2 1tSy(E/Ii)(I1E-E l_e-AElkBT )]
r = --2 -AElk T 1+ J( 2 -(AE-E)/k T -1 de . (39)

Rte 1- e B -00 E I1E 1- e B

As an example, we consider the circuit depicted in Fig. 2.9. The environmental

impedance Z(m) is separated in two parts at temperatures Ii and T2 and is given by

Z(oo)=alR1+a~R2+a~R3 with a1=1, a2=R3/(R2+R3) and a3=R2/(R2+R3). In the

center of a step at CsUIe = 0, the ground state of the box corresponds to n= 0 and the energy

difference with the first excited states n =1 and n =-1 is equal to -Ec ' A log-log plot of the
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Fig 2.10 Spectral density of the voltage noise as a function of the frequency calculated for the

circuit of Fig. 2.9, in the case where R1 =49 Q, R2 =100 Q, R3 =1 Q and

Cr. = C +Cs = 1fF .
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function Sv (-(0) is shown schematically in Fig. 2.10 when RI =49 .Q, R2 =100 .Q, R3 =1 .Q,

and C:r =1 if for two cases Ii =T2 =40 mK and TI =40 mK« T2 =4 K. When Ii «T2 ,

the dominant noise at frequency me =Ee/n comes from the resistor R2 at T2 • This off­

equilibrium tunneling rate calculation shows how crucial low temperature filtering is to prevent

the activation of tunnel events from parts of the measuring circuit at higher temperatures.

2. 2 The normal/superconducting electron box.

In this section, we consider the case of a superconducting electron box where the island

is made of a superconducting metal and connected to a non-superconducting lead through a

superconducting/normal tunnel junction. We can regard the island as a small piece of

superconductor free to exchange charges with an electron reservoir. According to the BCS

theory of superconductivity, electrons are paired in the ground state of a superconductor [16].

The pairing of electrons clearly breaks the invariance of the ground state with respect to the

parity of the total number N of conduction electrons. Since, in the island of the electron box,

this number N is fIxed, we must distinguish two cases depending on the parity of N. If N is

even, all the electrons can be paired in the island and there is a unique superconducting ground

state. If N is odd, one electron should remain unpaired as a quasiparticule excitation with an

energy at least equal to the BCS energy gap .1 and the superconducting ground state is

degenerate. As pointed out by Averin and Nazarov [17], this odd-even asymmetry should

result in a parity dependence of the ground state energy of the box. We will discuss in this

section how the electron box experiment can reveal this odd-even asymmetry. We will also

show under which conditions the macroscopic charge on a superconductor is quantized in units

of2e.
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2. 2. 1 Odd-even symmetry breaking and 2e-quantization in the

normal/superconducting electron box at T=0.

For the sake of simplicity, we fIrst assume that the total number N of conduction

electrons in the island and the number n of excess electrons have the same parity. At T = 0 and

in absence of magnetic fIeld, the total energy E of the superconducting box is given by

(40)

where Do is the energy difference at T = 0 between the odd-n and the even-n ground states of

the system, and Pn = n mod 2. The first term in the right-hand side of Eq. (40) is the usual total

electrostatic energy En of the circuit of the non-superconducting case, hereafter referred to as

the normal case. The second term is a parity dependent energy which corresponds to the fact

that an unpaired electron must remain when the number of electrons stored in the island is odd.

IfNand n have opposite parities, Pn is given by Pn = (n+ l)mod2.

The BCS theory predicts that in zero fIeld the excitation energy Do is equal to /1, the

superconducting energy gap of the island. Nevertheless, a fInite magnetic fIeld or the presence

of paramagnetic impurities inside the sample can induce pair-breaking effects [18]. As we shall

see in section 2.2.4, these effects modify the quasiparticles energy spectrum of a

superconductor. Thus the excitation energy Do involved in the ground state energy of the box

is not necessarily equal to the pair potential /1 in the superconducting island.

In Fig. 2.11, we plot the energy E versus CsUIe and we get a set of parabolas indexed

by n. The odd-n parabolas are shifted up with respect to the even-n parabolas by an amount

equal to Do. Therefore, at T =0, the energy cost of adding one extra electron in the island will

depend crucially on the relative magnitude of the charging energy Ec and the excitation energy

gap Do. Two cases must be distinguished:

i) When Do < Ec (Fig. 2.11b), the incremental charge of the Coulomb staircase is still

equal to e but the even-n steps are longer than the odd-n steps. The experimental observation

of such an asymmetric staircase is reported in Sec. 3.2.1. In comparison with the normal case,

when U increases, it is now more "diffIcult" for the system to attain an odd-n state but "easier"

to leave it. If n is even, the energy cost of the addition of one electron in the island is the sum

35



a)

GsU/e

<n>

5
4
3 b)2
1

1 2 3 4
GsU/e

E

Do
c)Ec

GsU/e

<n>

4

2 d)

GsU/e
1 2 3 4

Fig 2.11 Energy of the norma/lsuperconducting electron box as a function of CsUIe for

several values of the number n of excess electrons in the island when Ec > Do (a) and when

Ec < Do (c). The black dots (a) correspond to level crossings where one electron tunnels into

and out of the island (b). The open dots (c) correspond to level crossings where two electrons

tunnel into the island to form a Cooper pair (d).
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of the electrostatic energy cost of one extra charge and the superconducting energy gap

required for creating one quasiparticle excitation. If n is odd, however, the energy cost of the

addition of one electron is the difference between the electrostatic energy cost of one extra

charge and the superconducting energy gap. From Eq. (40), the ratio between the excitation

energy Do and the charging energy Ec can be expressed in terms of the length 5 of the odd-n

steps and the length L of the even-n steps of the staircase through the relation:

DolEc = (L-5)/(L+5). (41)

ii) When Do > Ec (Fig. 2.11c), the ground state of the island is always an even-n state,

the island can only contain an even number number of electrons. Consequently, the staircase is

symmetric with an incremental charge equal to 2e and the step length is twice as large as in the

normal case. The superconducting electron box is in the 2e-quantization regime. The direct

observation of the 2e-quantization of the incremental charge of a superconducting island is

described in Sec. 3.2.2.

When Do> Ec ' the transition which occurs between two even-n states of the island

involves the simultaneous tunneling of two electrons into the island which form a Cooper pair.

This mechanism, identical to the so-called Andreev reflection [19] of an electron into a hole, is

a second order process in the tunnel hamiltonian. The two-electron tunneling conductance GNS

associated with this process has been calculated by Eiles et al. [20]. At CsUIe = 1, the

conductance GNS of the norma1!superconducting junction of the box is given by

(42)

where Meff is the number of effective conduction channels through the barrier of the junction,

Rt IS the normal state tunnel resistance of the junction and where

f(EcIDo)=(2/1t)arccos(-EcIDo)/~1-(EcIDof is a factor equal to f=l in the limit

Ec «Do. Since RtfRK »1, the junction conductance is reduced in comparison with the

normal case but the time GNslC is still sufficiently short to ensure that the

norma1!superconducting electron box stays in thermodynamic equilibrium under common

sweep rate conditions.
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2.2.2 Effect of finite temperature.

In practice, the Coulomb staircase is modified by the thermal fluctuations. As in the

normal case, thermal fluctuations can change the number of electrons in the island, but they can

also break Cooper pairs and create quasiparticle excitations in the island without changing the

total number of electrons. The different states of the island are now characterized not only by

the number n of excess electrons but also by the filling factors of the various quasiparticles

states of the island.

We will calculate the average number (n) using Eq. (7). When the island is

superconducting, the partition function Z of the system takes the following form:

Z = 'LZne-En/kBT , (43)
n

where Zn is the partition function for quasiparticle excitations above the ground state in the

superconducting island with n excess electrons. For a given value of n, the conservation of the

number of electrons in the island requires that excitations must be always created two at a time

by substracting a Cooper pair from the condensate. We thus set the parity of the number of

quasiparticles equal to the parity of n and we assume otherwise that the quasiparticle

excitations can be simply described as independent fermions. This last assumption neglects

corrections of order lfN on the thermodynamic quantities [21] which is acceptable here since

N - 109
• Following Ref [22], we first introduce:

(44)

where ~ = l/kBT and where the subscript q denotes a generic quasiparticle with an energy Eq .

Then we obtain

(45)

This quantity can only take two different values Zeven or Zodd depending on the parity of n.

Combining Eq. (7) and Eq. (43) we can express the average number of electrons in the

superconducting island as:
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n=+oo

Inexp[-p(En +Fn )]

(n) =.:.:.n;"-:-;oo-----­

Iexp[-p(En +Fn )]

n=-oo

(46)

where Fn = -kBTIn Zn is defmed as the free energy of the superconducting island with n

excess electrons. Multiplying the numerator and the denominator of the right hand side of Eq.

(46) by exp(pFeven ), we get:

n=+oo

Inexp[-p(En+ PnD(T,H))]

(n) = .:.:;;n=~-~oo _
n=+oo

Lexp[-p(En+ PnD(T, H))]
n=-oo

(47)

where D(T,H) =Fodd - Feven is the odd-even free energy difference of the island, fIrst

introduced by Tuominen et al. [22]. Expression (47) shows that, at fInite temperature,

D(T, H) is the relevant quantity for the energy shift between the even-n and the odd-n

parabolas.

If we consider an asymmetric Coulomb staircase at fInite temperature, the length of the

steps can be defIned by the values of U where (n) is a half integer. From Eq. (46), one readily

shows that a half integer values of (n) means that the sum En +Fn is equal for two

neighbouring n states of the island. The lengths S of the odd-n steps and L of the even-n steps

are thus given by S=I-D(T,H)/Ec and L=I+D(T,H)/Ec ' Compared to an asymmetric

staircase at T = 0, the relative length of the odd-n and the even-n steps is now determined by

D(T,H). Consequently, when the normal/superconducting box is not in the 2e-quantization

regime (Do < EJ, the staircase asymmetry is a direct measurement of the ratio D(T,H)/Ec

through the relation:

D(T,H) L-S
=--

Ec L+S
(48)

By measuring the asymmetry of the Coulomb staircase at various temperatures, we have

determined experimentally the odd-even free energy difference of a small aluminum island (see

section 3.2.1).
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As in the normal case, the incremental charge staircase is rounded at finite temperature

because the system can reach various n-states by thermal excitations. Nevertheless, in the limit

kBT« Ec ' the most important effect of the temperature is a reduction of the odd-even

asymmetry. This effect originates in the entropy contributions to the free energy Fn as we will

see in next section.

2.2.3 Calculation of the odd-even free energy difference D(T, H).

We will now derive a general expression of the odd-even free energy difference

D(T, H) in terms of the temperature T and the density p(e) of quasiparticle states in the island.

The dependence of D(T,H) on the magnetic field H enters only through the density of

quasiparticle states p(e). Using Eq. (45), D(T,H) is written:

(49)

If we know p(e), we can express 2± in the integral form:

(50)

We express the ratio 2+/2_ as:

Then introducing the integral transform p(T,H) given by

p(T,H) =1;(e)ln[coth(~e/2)]de/2,

we obtain:

D(T,H) = -kBTln[ tanhp(T)].

(51)

(52)

(53)

Formula (52) and (53) show that the odd-even free energy difference is a functional of the

density of quasiparticle states p(e) .

40



At H = 0, we can assume for the superconducting island a continuous BCS density of

quasiparticle states given by p(e)=O for e<L\ and p(e)=2PANAe/Je2_L\2 for e>L\.

Here PA is the density of states at the Fermi level per atom when the metal is in the normal

state, N A is the number of atoms in the island and the factor of 2 is inserted to count both

quasielectrons and quasiholes excitations. Over the temperature range we will consider

(T < 300mK), L\ can be taken as constant and we assume also that e-Pd «1. With these

approximations, the integral transform p(T, 0) can be evaluated analytically. We rewrite Eq.

(52) as

(54)

Then one obtains

(55)

where

(56)

is the effective number of quasiparticle states available for excitations and where

No =PANAL\. Finally, at temperatures such that NejJe-Pd «1, D(T,O) is approximately

given by

D(T,O) ""L\-kBTInNo . (57)

This expression defines a cross-over temperature To =L\/(kBIn No) above which the

odd-even free energy difference rapidly vanishes. At T ~ To, the island of the box is still in the

superconducting state but the Coulomb staircase has the same aspect as in the normal state.

The cross-over temperature To corresponds roughly to the temperature at which the number of

thermally induced quasiparticles in the island is equal to 1. The expression of To is

approximately equal to the temperature T* defined in Ref [22]. The threshold temperature T*

has been introduced to separate the regions where the current-voltage characteristic of a
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superconducting double junction circuit is a 2e-periodic or an e-periodic function of the gate-

induced charge.

More generally, if discrete quasiparticles states are present inside the gap of the energy

spectrum at energies Eqj with degeneracies gqj' they each contribute to p(T,H) by gqje-~eqj.

Therefore the odd-even free energy difference in the limit T -7 0 is given by

(58)

where qo denotes the discrete quasiparticle state of lowest energy.

2.2.4 Influence of the magnetic field.

For a "small" superconductor in a magnetic field, we can use the density of states

calculated by Skalski et ai [23]. Here "small" means that the superconductor has dimensions

normal to the field less than the London length AL so that screening currents can be neglected.

It has been shown [24] that this calculation of the density of states is valid only in the "dirty"

limit, i.e., when e« ~o, where e is the electronic mean free path and ~o is the coherence

length. This latter quantity is given by ~o = fzv F / 1t~, where vF is the Fermi velocity and ~ is

the BCS energy gap at T =0 and H =O. In aluminum ~o =1. 6Jlm and in our sample, under

the assumption of surface scattering, e is expected to be less than 100 nm (see section 3.2.1).

We can thus assume that the condition e« ~o is satisfied.

In Ref [23], the effect of the magnetic field or magnetic impurities is completely

included in a single parameter, the pair breaking energy f which has to be calculated

separately from the geometry of the problem (see below). Using the Abrikosov-Gor'kov theory

[25], Skalski et ai. associate to a quasiparticle of energy E in the normal state a reduced

complex energy u given by:

E . r u
u - +1----:--:---===

- ~(T,r) ~(T,r) ~U2 -1 '

where ~(T, f) is the pair potential satisfying the following self-consistent equation:

iOOD

' [1]~(T,r)=N(O)V dmRe~ tanh(.!.~ro).
o u2 -1 2
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Here N(O) is the density of states at the Fenni energy per unit volume in the normal state, V is

the volume of the sample, (j) D' is a cut-off energy and p= 1/kBT. The quantity I1(T, r) must

now be distinguished from the minimum energy for excitations, or spectral gap, which we

denote by nG(T,r). These two quantities are related by

(61)

The second term of the right hand side of Eq. (59) corresponds to a complex energy shift of

the energy of a quasiparticle state. This shift is proportional to a complex density of states

N(u) defined as

N(u) = u/~U
2

- 1 , (62)

the pair breaking energy r being the proportionality coefficient. The quasiparticle density of

states pee) which enters in Eq. (52) is expressed as

(63)

where PN (e) = 2pA NA refers to the quasiparticle density of states in the normal state. In the

limit r ~ 0, one recovers the BCS formulas since Eq. (63) reduces to

p(e)=PN(E)e/~e2-112 and Eq. (60) reduces to the BCS self-consistent equation for the

energy gap. For a finite value of the ratio r/.1(T,r), Eq. (59) and Eq. (63) must be solved

simultaneously to determine pee).

In Fig. 2.12, we have plotted the density p(e) versus e/.1(T, 1) for several values of

the ratio r/I1(T,r). From Eq. (61), one can show that the superconductor is gapless, i.e. the

spectral gap is zero, when r = I1(T, r). If r < I1(T, 1), calculations made in Ref [23] show

also that the pair potential .1(T, r) can be taken as a constant at low temperature. At T = 0,

one has r/11 = r/l1(o,r)exp[-(n/4)r/.1(O,r)].

The odd-even free energy difference D(T, H) of an aluminum island is plotted versus

the temperature in Fig. 2.13 for several values of r/.1(T,r), assuming a realistic value of the

island volume. At T=O, D(O,H)=Do is equal to the spectral gap nG(O,H) given by Eq.

(61), a quantity which is smaller than the pair potential 11(0, H).
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Fig 2.12 Density of quasiparticle states in a superconductor versus reduced energy as

computed by Skalski et al. for several values of the ratio r / /i(T, r), where r is the pair

breaking energy and where /i(T,r) is the pair potential. Here PN(C:) denotes the density of

quasiparticle states in the non-superconducting state.
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Fig 2.13 Odd-evenfree energy difference D(T,H) ofan aluminum island as afunction of the

temperature T for four values of the ratio r /~(O, r). The quantity ~ is the BCS energy gap at

T = 0 and H = O. All the curves are calculated for an aluminum island of volume

V = 10-20 m3, with a normal density of state p = 2.15 1047 rim-3 and a BCS energy gap

~=180 10-6 eV.
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Finally, the relation between the pair breaking energy r and the applied magnetic field

H can be calculated using a theory by De Gennes and Tinkham [26,27]. They have shown that

the calculation of the critical field of small superconducting particles or thin films as a function

of the magnetic field is reduced to the study of the flux <1> enclosed by all classical one electron

trajectories in the normal state. Thus the magnetic behavior of such a sample is essentially

governed by the geometric properties of the trajectories. These authors have classified the

magnetic properties of thin films as a function of the value of the bulk mean free path I!. • They

essentially distinguish two types of magnetic behavior: ergodic and non-ergodic depending on

the electron scattering properties of the sample. In the island of the box, the elastic mean free

path I!. is expected to be smaller than the width d of the metallic strip and thus the magnetic

behavior of the superconducting island is "ergodic".

In the calculation of de Gennes and Tinkham, the quantity of interest is the limit of the

average (ej~{t») at large times, where the phase <l> is given <l> = 21t <1>/<1>0' <1>0 being the flux

quantum. If the system is "ergodic", the phase <l> has a gaussian distribution and

limt-+oo(ej~(t») = e-t/'tK. In a dirty superconductor, the effect of a magnetic field is equivalent

to the effect of paramagnetic impurities [27,28]. The equality 1/'tK = 2r/fz [29,18], where r is

the pair breaking energy, gives the connection between de Gennes and Tinkham's analysis and

the calculation of Skalski et al.. We can reasonably assume that in our sample d2/~o < I!. (Maki

case) and following Ref [26] we write:

(64)

(65)

where 't =vFI!., D =~ v~'t =~ vFI!. is the diffusion constant and A is the vector potential. For

the particular case of a strip of width d in a perpendicular magnetic field H, the gauge

invariant average (A2
) is given by:

(A2
) =H::2

•

The coherence length ~o and the gap 11 =I1(T =o,r =0) are related by ~o =fzvF/1tI1. Using

this latter relation, the pair breaking energy r is finally given by:
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(66)

Our experimental measurement of the odd-even free energy difference as a function of

the temperature and the magnetic field is reported in Sec. 3.2.2. The data are well fitted by the

theoretical D(T,H)/Ec calculated using the general expression (53) of the odd-even free

energy difference, the density of states calculated by Skalski et at [23] and the magnetic field

dependence of the pair breaking energy given by Eq. (66).

2.2.5 Observability of the 2e-quantization of the macroscopic charge.

The above calculation shows that in the T ® H plane there are three concentric

domains corresponding to three different behaviors of the superconducting electron box: i)

when D(T,H) = 0, the staircase is symmetric with an incremental charge equal to e, ii) when

0< D(T, H) < Ec ' the staircase is asymmetric with an incremental charge equal to e, iii) finally,

when D(T,H) > Ec ' the staircase displays the 2e-quantization of the island charge.

The 2e-periodicity of the symmetric or asymmetric staircase originates in the pairing of

electrons in the island but an e-periodicity of the staircase does not mean that the island is in

the non-superconducting state. The cross-over temperature To, which determines the boundary

of the asymmetric staircase domain at H = 0, depends only logarithmically on the island

volume. For an aluminum island fabricated by nanolithographic techniques, To will be always

of the order 200-300 mK. Provided Ec »kBT, the observation of an assymetric staircase is

actually not constrained by the size of the sample or the junctions.

This is not the case for the 2e-symmetric staircase. From Eq. (57), one can show that

the boundary of the 2e-quantization domain intersects indeed the T-axis at a threshold

temperature T2e given by

(67)

We already know that To weakly depends on the sample parameters, and thus T2e is fixed

essentially by the charging energy Ec and hence by the island capacitance C~. Eq. (12) and Eq.

(67) show that the sharpness of the staircase and the area of the 2e-quantization domain have

opposite variations with the charging energy Ec ' In contrast with the usual charging effects,

47



the smaller the junction size, the lower is the temperature required to observe the 2e­

quantization of the island charge. This is due to the fact that this phenomenon is subject to the

double inequality kBT« Ec < D(T,H).

In order to observe the 2e-quantization of the macroscopic charge one must therefore

find a compromise between these two opposite effects. Note that the thermal rounding of the

staircase is not as important as in the normal case because a carrier with charge equal to 2e

yields a staircase four times sharper than in the normal case at the same temperature. Finally

Eq. (58) predicts that only one quasiparticle state inside the energy gap can strongly diminish

the odd-even free energy difference. It can go below the charging energy and completely

suppres the 2e-quantization even at very low temperature. In that sense, the 2e-quantization of

the island charge constitutes a sensitive test of the ideality of the superconductivity of an

isolated superconductor.

2.3. The Superconducting Electron Box

2.3.1 Josephson coupling between the charge states of the box

We now consider an electron box in which both sides of the junction are

superconducting (Fig. 2.14). The tunnel junction establishes a Josephson coupling between the

island and the lead. We assume that T =0 and 1:1 > Ec' We also assume that there is no out of

equilibrium quasiparticle in the island and in the lead attached to the junction. Under these

conditions, the island only contains an even number of electrons and the states of the system

are characterized by the number of excess Cooper pairs in the island.

We restrict our analysis to the interval 0 < CsUIe < 2. Since T =0, we can consider

only the Hilbert space spanned by the two states 10) and 11), which correspond respectively to

the ground state of the superconducting island with zero and one excess Cooper pair. It is

convenient to measure the energy of these states relatively to a reference set at

Ec(l- CsUle)2. The energies of the states 10) and 11) are then respectively equal to -E/2 and
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+E/2, where E=4EAI-CsUle). These two energies are represented on Fig. 2.15 by two

straight lines which cross at the threshold value CsUIe = l.

Because of Josephson tunneling, the states 10) and 11) are not eigenstates of the system.

In the bidimensional Hilbert space flO),ll)}, the Josephson tunnel hamiltonian Hr can be

written as [12]:

Hr = - EJ (10)(11+/1)(01) ,
2

(68)

where EJ is the Josephson energy of the junction. Since there are no quasipartic1es in the

island or in the lead, the total hamiltonian H is simply the sum of the total electrostatic energy

and the Josephson tunnel hamiltonian. Consequently, the system can be seen as an effective

spin ~ with the following hamiltonian:

E EJH=--cr --cr2 z 2 x
(69)

where crz and crx are the Pauli matrices. This hamiltonian corresponds to a magnetic field

making an angle "I = arctan(EJ IE) with the z axis. The eigenstates of H are linear

superpositions of I0) and 11) given by:

l\fIs)=cos 'YIO)+sin "III)
2 2

l\fIa ) = sin 'YIO)-cos "Ill)
2 2

The energies Es and Ea of the two eigenstates I\fIs ) and I\fIa ) are given by

1~ 2 2Ea/s =±- E +EJ2

(70)

(71)

As shown in Fig 2.15, the Josephson coupling results in an anticrossing of the levels. At

CsUIe =1, the energy splitting Ea - Es is equal to the Josephson energy EJ • Since the ground

state I\fIs ) is a superposition of two states with a well defined number of Cooper pairs in the

island, the mean value (n) of the number of excess electrons is no longer an integer. Assuming

that the system stays in its ground state when we sweep the voltage U, (n) is simply given by

(n) = 2 sin 2 ("112) and we obtain:
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Fig 2.14 Schematic of a superconducting electron box where the tunnel junction is a

Josephson junction characterized by its capacitance C and its Josephson energy EJ .

E

o 1 2

Fig 2.15 Energies of the two eigenstates I'¥s) and I'¥a) of the system versus CsUIe. Dashed

lines are the energies of the unperturbed states 10) and \1). At CsUIe = 1, the energy splitting

between the two eigenstates is equal to EJ .
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Fig 2.16 Average number (n) of excess electrons in the island of the superconducting electron

box as afunction ofCsU/e calculatedfrom Eq. (72)for three values of the ratio EJ/Ec .
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(72)

The charge jump of the staircase exhibits a finite slope (see Fig. 2.16) given by

(73)

which is equal to the ratio between the charging energy associated with a Cooper pair and the

Josephson energy. This quantity has to be compared to the slope 2Ec /kBT arising from the

thermal rounding of a 2e staircase.

2.3.2 Effect of the Electromagnetic Environment

The question now arises as to whether the coherent quantum superposition of charge

states leading to (72) and (73) will survive in the presence of dissipation in the leads which has

been neglected so far. We will thus evaluate the effect of the electromagnetic environment of

the junction on the box considered as an effective two-state system. We model the

electromagnetic environment as an impedance Z(oo) in series with the superconducting

electron box (Fig. 2.17a). As in the nonnal case, the circuit is equivalent to a pure tunnel

element in series with an effective impedance Zt (00) and an effective voltage source. Zt (00) is

the total impedance seen by the pure tunnel element of the junction and its the real part is given

by

(74)

where 1C = C/Cr.. The impedance Zt(OO) is equivalent to a set of L-C oscillators of frequency

0) j = 1/~LjCj (see Fig. 2.17c) such that:

Re[Z/(oo)]= L1t/Cj O(oo-ooJ.
j

(75)

The hamiltonian Henv of the electromagnetic environment is thus the hamiltonian of the set of

harmonic oscillators:
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Z(oo)

a)

b)

L1 L·
C+Cs

J

~---I
EJ C1 C.

J

Fig. 2.17 a) Schematic of the superconducting electron box circuit coupled to its

electromagnetic environment. The junction is represented by a pure capacitor of capacitance

C in parallel with a Josephson tunnel element characterized by EJ . The electromagnetic

environment of the circuit is modeled by an impedance Z(00) in series with the voltage

source. b) Equivalent circuit seen by the Josephson element. c) The total impedance ZI(OO)

can be described as a capacitance C +Cs in series with a set ofL-C oscillators.
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(
<1>~ Q~ JH = _J_+_J_

env 72L
j

2C
j

•

The unperturbed hamiltonian Ho is now:

(76)

(77)

(78)

Finally, the coupling between the environment and the two-state system is contained in the

tunneling hamiltonian [12] which is now written in tenns of projectors:

_ EJ [ il/l ]Ht - -2 e 0"+ +h.c. ,

where 0"+ = (0"x -iO"y)/2 = (8 6) and where CfJ = 2ejtz~j <1> j' The translation operator eil/l

acts only the environmental degrees of freedom. It shifts the charge of each L-C oscillator of

the environment by an amount equal to -2e:

The total hamiltonian H = Ho+ Ht is:

(
2 2 JE EJ i -i <1> j Qj

H=--O" --(0" el/l+O"_e l/l)+ "" -+-
2 z 2 + 7 2Lj 2Cj ,

(79)

(80)

In order to diagonalize the interaction between the set of the oscillators and the two­

state system, we proceed a canonical transfonnation if = UHU-1, where

Thus, we obtain

U =exp[-iO"z CfJj2]. (81)

(82)

The problem of the superconducting box coupled to an arbitrary impedance is now reduced to

the study of a well known dissipative two-state system [30,31]. The hamiltonian if has indeed
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the same fonn as the so-called "spin-boson" hamiltonian HSB' This hamiltonian HSB is usually

written in the following fonn:

(
2 )1 1 1 Pj 2 2 1

HSB=-necr --nl1cr +"- -+m·w·x· +-qocr "c·x·.
2 z 2 x ~2 mJ' J J J 2 z~ J J

J J

(83)

Here 11 refers to the tunneling matrix element which corresponds to EJ In, mj is the mass of

the j-th hannonic oscillator and corresponds to L j . The quantity Cj is the strength of coupling

of the system to the j-th oscillator. Identifying Xj as Qj' we obtain Cj = l/Cj , where Cj is the

capacitance of the j-th L-C oscillators, and qo = -2e. All the effects of the environment are

contained in the spectral density function J(W)=rt/2'L/cj/mjwJo(w-roJ which is given

by J(w) = ro Re[Z( (ro)]/2 for the electron box circuit.

We consider now the simple case where the impedance Z(w) is a pure resistance R. In

this case, Re[Zt (w)] = 1(2R Re[1/(1 + jKRCw)]. This situation corresponds to the ohmic case

[32] defmed by J(ro) = 11ro, for w« we' We being the cut-off frequency we = (KRct1
• In

order to characterize the dissipation, Chakravarty et al. [32] have introduced a dimensionless

dissipation coefficient a = 11q'J/2rtn and a renonnalized tunneling frequency I1/roe. For the

electron box circuit, these two quantities are given by:

a=21(2~
RK

11 EJ R
-=I(rt--

we Ee RK

At T = 0, when 11 « we' and 0 < a < 1/2, the effective tunneling frequency l1eff [32] is

(84)

(85)

Typically I( < 0.1 and the resistance R of the lead is of order 50 n « RK • The dissipation

coefficient a and the renonnalized tunneling frequency I1/roe are thus both much smaller than

1. For a « 1, l1eff is of order 11. Hence, we can conclude that the staircase rounding arising

from the Josephson coupling between two charge states of the island will be affected by the

electromagnetic environment only if we design a box with a high impedance lead as in the

experiment by Kuzmin et al. [33] and with a large Cs capacitor to make I( ::,; 1.
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3. Experimental results on the electron box

3.1.1 Paper 1:

Direct Observation of Macroscopic Charge Quantization

Originally published as:

P. Lafarge, H. Pothier, E. R. Williams, D. Esteve, C. Urbina, and M. H. Devoret, Direct

observation of macroscopic charge quantization, Z. Phys. B 85,327 (1991).

This paper presents the experimental observation of the macroscopic charge

quantization in a normal electron box circuit theoretically described in Sec. 2.1.2. We report

also the temperature dependence of the Coulomb sawtooth. We would like to thank Prof.

Hipolito for showing us an error in the caption of Fig. 5 in the original paper which is

corrected in this version. In this first experiment, below 100 mK there is a discrepancy between

the measured temperature and the temperature that would fit the data. Further experiments

performed with an improved filtering of the electron box gate line have shown a good

agreement between theory and experiment from 200 mK to 35 mK (see Fig. 1.5b).
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DIRECT OBSERVATION OF

MACROSCOPIC CHARGE QUANTIZATION

P. Lafarge, H. Pothier, E.R. Williams+, D. Esteve, C. Urbina and M.H. Devoret

Service de Physique de l'Etat Condense, Centre d'Etudes de Saclay

91191 Gif-sur-Yvette Cedex, France

ABSTRACT: The circuit formed by a nanoscale tunnel junction in series with a capaci­

tance and a voltage source is the building block of most multi-junction circuits of single

electronics. The state of this "single electron box" is entirely determined by the number

n of extra electrons on the intermediate "island" electrode between the junction and the

capacitance. We have fabricated such a system and measured the charge on the junction

capacitance, which is directly related to the average value of n, as a function of the bias

voltage using a Fulton-Dolan electrometer. At low temperature, the junction charge fol­

lowed the e-periodic sawtooth function expected from the theory of macroscopic charge

quantization. Strikingly, e-periodic variations were also observed when the box was super­

conducting. The thermal rounding of the sawtooth function is well explained by a simple

model, except at the lowest temperatures.

PACS: 73.40.G, 06.20.H, 73.40.R.

+Permanent address: Electricity Division, National Institute of Standards and Technology,

Gaithersburg, MD 20899, USA.
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One way to observe Coulomb blockade, i.e. the suppression of the tunneling of elec­

trons due to their discrete charge, is to place a small capacitance tunnel junction in se­

ries with a large resistor R, as was originally proposed by Averin and Likharev [1]. For

R ~ RK, where RK is the resistance quantum hie2 ~ 25.8 kS1, the fluctuations of the

charge Q on the junction capacitance C due to its electromagnetic environment are much

less than the charge quantum e and tunneling takes place only if I Q I> e/2. This ap­

proach, which is very difficult experimentally because the resistor must provide a large

resistance up to the Coulomb gap frequency e2 /2CTi [2], has been realized only recently

[3]. Another way to observe Coulomb blockade has been clearly demonstrated by Fulton

and Dolan [4]. These authors fabricated two small junctions in series, thereby forming a

metallic "island" which could only exchange electrons with the rest of the circuit by tun­

nel events through the junctions. Although, in this type of experiment, the two junctions

are connected to a voltage bias V which induces the charges on the junction capacitances

to fluctuate by an amount much larger than e [5], the total number of electrons on the

island is a good quantum number. The increase in Coulomb energy due to the presence

of one extra electron on the island acts as an effective energy barrier for the tunneling of

electrons through this" SET transistor" [1] as long as V is smaller than the Coulomb gap

e2 /Ci where Ci is the total capacitance of the island. The Fulton-Dolan experiment was

the basis for more elaborate experiments involving larger numbers of junctions [6] as well

as microwave irradiation which revealed correlations between tunnel events [7]. These ex­

periments ultimately led to the controlled transfer of single electrons level with a precision

better than one percent [8,9]. In multi-junction circuits, of which the SET transistor is

the basic example, the relevant degrees of freedom are the discrete island charges rather

than the continuous junction capacitance charges. The simplest such circuit is a tunnel

junction connected to a voltage source via a capacitance. In this circuit, which we have

nicknamed the"single electron box", the island is the intermediate electrode between the

junction tunnel barrier and the dielectric of the capacitance, and the island charge is the

sole degree of freedom of the system.

In order to understand the roles of the capacitor and the tunnel junction, let us first

consider a metal electrode with self-capacitance Cs connected via a wire with negligible

capacitance to an electron reservoir. We call Qs the charge on the electrode. This charge

is the integral of the surface charge density over the electrode surface. The variable Qs

is continuous since it just represents a displacement of the electron density with respect
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to the background ion density. Simple statistical mechanics show that the equilibrium

fluctuations of Qs have mean square amplitude .6.Q; =< Q; > - < Qs >2 at temperature

T given by .6.Q; = GskBT, where kB is the Boltzmann constant. For example, if G = 0.5 fF

and T = 20 mK, then (.6.Q;)1/2 = 0.07e. The typical fluctuations can thus be less than

the charge of the electron for sufficiently small capacitances Gs ; nevertheless the amplitude

decreases only as the square root of the temperature. However, if the electrode is connected

to a charge reservoir via a tunnel junction and thus becomes the island of an electron box,

the fluctuations of the total charge q of the island can be radically different from the

fluctuations of either the capacitor charge Qs or the junction charge Q = q - Qs. A

necessary condition though, is that the tunnel barrier be sufficiently opaque, i.e. there are

no quantum fluctuations of the number n = q/( -e) of excess electrons on the island due to

tunneling. It is generally accepted that this condition is fulfilled if Rr ~ RK [10]. Under

these circumstances, the thermal fluctuations of q can be greatly reduced from their value

for Qs in the case of the wire. This reduction is due to the energy gap associated with the

the island charge having discrete values.

To see this, consider a box consisting of a junction with capacitance G placed in series

with a capacitor Gs and a voltage source U (see Fig. 1). If n electrons from the source

have tunneled through the junction onto the island, the equilibrium electrostatic energy

of the whole circuit including the work performed by the voltage source is

(1)

where Q = GsU and where -e denotes the electron charge. The average number < n > of

extra electrons in the island at thermal equilibrium is given by

~n=+oo (-En(Q))
wn=-oo n exp kBT

< n >= ------....,.....:.---..,...;-
~n=+oo (-En(Q))
wn=-oo exp kBT

(2)

This quantity has already been considered by Glazman and Shekhter [11] in the context

of quantum dots. It is plotted as a function of Q/ e in Fig. 2(a) for three values of the

parameter () = GjkBT/ e, where Gj = G+Gs is the total capacitance of the island. For small
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(}, expression (2) can be evaluated directly, while for large (} one can get rapid convergence

using the identity

We see that at low temperature (small ()), the average number of electron < n > IS a

staircase function of the charge bias O. We call this effect "macroscopic charge quantiza­

tion" since the charge is distributed over a macroscopic number of atoms. [This effect is

reminiscent of the flux quantization through a superconducting ring. In this latter phe­

nomenon, however, the energy gap which anchors the flux on an integer number of flux

quanta involves a macroscopic number of electrons]. In the central part of each of the steps

of < n > versus 0, the fluctuations of n are suppressed. This is shown in Fig. 2(b), where

we plot un lO I / 2 = « n2 > - < n >2)/(}1/2 as a function of Ole. This quantity is related

to the zero-bias conductance of the SET transistor as a function of gate voltage. The

normalizing factor (}1/2 is the root mean square average of the thermal charge fluctuations,

in units of e, on a capacitor Ci connected to a voltage source. Another quantity of interest

is the average charge < Q > on the junction capacitance, which, as we will see, is directly

measurable. It is given by the expression

C -
<Q>= Ci[<n>(-e)+Q). (4)

The variations of < Q > Ie versus Ole are plotted in Fig. 2(c). Note that in the limit

where Cs ~ C, which was considered by Biittiker [12] in the context of Bloch oscillations,

the oscillations shown in Fig. 2(c) are analogous to the SET oscillations [1] of Q versus

It for the junction biased with a current I. It is worth noting that even when Cs ~ C,

the sawtooth variations of < Q > versus Q stay sharp at T = 0; they differ from SET

oscillations in that they have an amplitude less than e.

We have measured the charge variations of Fig. 2(c) using an electrometer based on a

SET transistor [4]. The experimental set-up [shown schematically in Fig. 3(a)) consists of

a dual junction version of the"electron box" circuit of Fig. 1, with the island b connected

by a coupling capacitor Cc to the island m of an electrometer (we explain below why we

have used two junctions in parallel rather than one). The electrometer consists of two

junctions with capacitances C'/2 placed in series. The island between the junctions is
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coupled to a voltage bias Uo through the capacitance Co as well as to the electron box

through Ce. The capacitors have nominal values Cs = Ce = Co = /0 C and C = C'. The

electrometer is voltage biased with V at the Coulomb gap e/C' and charge biased near

e/4 with Uo. Under these conditions, the electrometer current [ varies linearly with the

small excursions of the charge < Qe > on the coupling capacitance Ce, which, to a good

approximation, is given by < Qe >=< Q > Ce/C. By measuring [ as a function of U, one

has thus access to the variations of < Q > with the bias charge Q.

The electron box and the electrometer were fabricated using e-beam nanolithography

and shadow evaporation as in Ref. [8]. The resulting pattern on the chip is shown on

Fig. 3(b), in which the numbers and letters labeling the aluminum electrodes refer to the

corresponding nodes of the circuit shown in Fig. 3(a). The shape of the electrodes and their

guards at larger scale were designed to minimize cross-talk capacitances. Before a run, the

junctions were checked at room temperature by measuring the resistance between pads 1

and 3 and between pads 4 and 6. Since all four junctions have the same nominal area 50 x

50 nm2
, these two resistances should have the same value. The electron box was designed

with a parallel combination of two junctions instead of one in order to be able to perform

this test. Immediately after this test, pads 1 and 3 were connected together using a strip of

silver paint. The chip was then placed in a copper shield thermally anchored to the mixing

chamber of a dilution refrigerator and the filtered leads to the room temperature electronics

were connected. The temperature of the copper shield was monitored by a combination of

a Germanium resistor and a carbon resistor calibrated previously by nuclear orientation

thermometry and superconducting fixed points. The electrometer current was measured

as in Ref. [8]. Experiments were performed in both the 0.5 T field of a superconducting

magnet to drive the sample in the normal state, and in zero magnetic field, in which case

the sample was superconducting. The I-V characteristics of the electrometer, both in the

normal [Fig. 4(a)] and superconducting state [Fig. 4(b)], were similar to those reported

by Fulton et al. [13]. In Fig. 5 we show the electrometer current [ as a function of the

electrometer gate voltage Uo for values of V which are multiples of 25 IlV. Note that the

position of the maxima of the various curves are slightly V-dependent. This feature can be

quantitatively explained by assuming a ratio of 2 between the two junction capacitances

of the electrometer. By measuring the voltage flUo between two adjacent maxima of an

[(Uo) curve at fixed V, we determined the capacitance Co = flUo/e = 73±1 aF. From the

normal I-V curve asymptotes we inferred the value 0.6 ± 0.05 fF for the total electrometer
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island capacitance and hence, assuming a relative junction uniformity, the capacitance

G = 0.6 ± 0.3 fF for the effective junction of the box. The total normal state junction

resistance of the electrometer was 620 kD at 4 K.

The experiment in the normal state was performed by setting the electrometer to

optimum gain (see point 0 in Fig. 5) and recording the variations of 1 with U. The result­

ing 1(U) curve is shown in Fig. 6 where we see a small-amplitude short-period sawtooth

modulation superimposed on a large-amplitude long-period one. This latter modulation

originates from a small cross-talk capacitance between pads 2 and 5 making the electrom­

eter directly sensitive to the voltage U. A small correcting voltage proportional to U was

superimposed on Uo to compensate for the modulation of 1 due to this cross-talk. Further­

more, in order to get rid of low frequency noise, we used a lock-in amplifier with a 1 kHz,

40 flV modulation on the U input and recorded d1IdU as a function of U. The resulting

curve at 20 mK is shown in Fig. 7. After integration, we finally arrived at the genuine

variations of < Q > versus Q (solid curve labeled "N" in Fig. 8). The calibration of the

horizontal axis involves the value of Gs while the calibration of the vertical axis involves

both the ratio GelG and a prior calibration of the electrometer using the voltage Uo and

the capacitance Go. Assuming that the periodicity of the sawtooth variations is e we found

Gs = 85 ± 1 aF and Ge = 74 ± 1 aF which are close to the expected values.

In the superconducting state we followed the same procedure as in the normal state

except that the optimum electrometer gain point is located at the superconducting gap

edge V = 0.8 mV. The results are plotted in Fig. 8 (solid curve labeled "5"); the improved

signal-to-noise ratio in the superconducting case originates from the larger electrometer

gain. The sawtooth variations of < Q > versus Q shown in Fig. 8 correspond in both the

normal and superconducting case to charges of value e tunneling through the junctions.

Since the U scan took 50 s per oscillation, the current through the junctions of the box

was 3 10-21 A. Given the signal to noise ratio of the measured charge variations, the

leakage current from the box island and the drift in its offset charge [14] is at least one

order of magnitude less than this value. On the other hand, in the supercondueting state,

this small value implies that the e-periodicity of the variations of Q could be due to the

presence of only one quasiparticle in the island. Note also that the downward variations

of Q, which should be relatively sharp at 20 mK, look rounded when compared with the

theoretical prediction Eqs. (2) and (4) (dashed line in Fig. 8). In order to investigate this

rounding we performed measurements at various temperatures. The results in the normal
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state are shown in Fig. 9 (solid lines) where we also show for comparison the predictions

of Eqs. (2) and (4) (dashed lines). Since the electrometer gain is temperature dependent,

a calibration was performed at each temperature. The same temperature dependence was

found in the superconducting state (data not shown). Although the experimental results

are in agreement with the theoretical predictions above 100 mK, there is a discrepancy

at lower temperatures between the thermometer temperature and the temperature that

would fit the data. At 20 mK this discrepancy is 40 mK. 25 % of this discrepancy can be

explained by the back action noise induced by electrometer on the electron box, which we

have calculated at finite temperature using numerical simulations. Parasitic rf signals on

the Uo and U lines could induce a broadening of the charge variations, although checks

were performed to ensure that direct influence of the background noise in the laboratory

had no effect. Another source of error could be that the temperature of the box electrons

is higher than the thermometer temperature, although hot electron effects [15] due to

the electrometer current seem negligible. Finally a contribution to the apparent excess

temperature could come from quantum fluctuations of the electron number n, which is

being investigated theoretically [10]. It has been assumed here that n is a classical variable,

since the junction tunnel resistance is much greater than the resistance quantum RK. More

experiments are needed to test these explanations of the apparent excess temperature of

the box at low temperatures. A possible extension of these experiments is to measure the

single tunneling events of electrons or Cooper pairs using two or more junctions in series

in the box instead of one. In that case, the variations of n with U are hysteretic and

experiments along the line of those performed by Schwartz et al. [16] on the switching of

an RF SQUID between two flux states become possible.

In conclusion, we have been able to detect the charge variations associated with the

flow of single electrons through a tunnel junction out of a metallic island, in both the

normal and superconducting state. These results constitute the first direct evidence of

macroscopic charge quantization. They also demonstrate the very low drift of charge

from such an island, and the presence of quasiparticles at 20 mK in a superconducting Al

electrode.

We thank M. Goldman for suggesting the use of Eq. 3 in the numerical evaluation

of < n > in the high temperature limit and A. Cleland for critical reading of the manu­

script. Technical assistance from P.F. Orfila and discussions with H. Grabert are gratefully
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FIGURE CAPTIONS

Fig. 1 (a) "Electron box" circuit consisting of a capacitor, a junction and a voltage source

in series. The intermediate electrode between the junction and the capacitor forms an

"island" with n extra electrons.

Fig. 2 (a) Average island electron number < n >, (b) fluctuations (j 11 = « n 2 > - <
n >2)1/2 , and (c) average charge < Q > on the junction capacitance. These quantities

are all plotted as a function of the bias charge Q= CsU for () = kBT(Cs + C)je2 = 0.01

(solid lines), 0.1 (dashed lines) and 10 (dotted lines).

Fig. 3 (a) Schematic representation of experimental set-up. An electron box with two

junctions in parallel is coupled to a SET transistor used as an electrometer. (b) Electron

beam lithography implementation of circuit shown in (a). Superfluous electrodes resulting

from the use of the suspended bridge technique have been omitted for clarity.

Fig. 4 Electrometer I-V characteristics in the normal state (a) and in the superconducting

state (b) at 20 mK. Solid lines: minimum Coulomb gap; dotted lines: maximum Coulomb

gap.

Fig. 5 Electrometer current I versus electrometer gate voltage Uo for a set of values of

bias voltage V separated by 50 JiV. The temperature is 20 mK. Point 0 is the optimum

gain point.

Fig. 6 Electrometer current I versus electron box voltage U at 20 mK. The curve is clipped

near U = 0 because one attenuator in the U line filtering system becomes superconducting

at the lowest temperature when too little current flows through it.

Fig. 7 Lock-in signal as a function of electron box voltage U in presence of a correcting

linear ramp signal superimposed on the dc value of Uo. The temperature is 20 mK. Each

peak is associated with the charge of the box island increasing by one electron.

Fig. 8 Solid lines: Charge variations in the normal state (N) and in the superconducting

state (S) at 20 mK. Dashed line: theoretical prediction.

Fig. 9 Solid lines: Charge variations in the normal state at different temperatures. Dashed
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lines: theoretical predictions [Eqs. (2) and (4)J.
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3.2.1. Paper 2:

Measurement of the Even-Odd Free-Energy Difference of an Isolated

Superconductor

Originally published as:

P. Lafarge, P. Joyez, D. Esteve, C. Urbina and M. H. Devoret, Measurement of the even-odd

free-energy difference, Phys. Rev. Lett. 70, 994 (1993).

The paper describes the observation of an asymmetric Coulomb staircase in a

normaVsuperconducting electron box experiment where the superconducting gap 11 at zero

temperature and zero magnetic field is smaller than the charging energy Ee (see Sec. 2.2.1). By

measuring the staircase asymmetry at various temperatures, we have determined the odd-even

free energy difference D(T,H) of the superconducting island at zero magnetic field. The

experimental results are in good agreement with the calculation described in Sec. 2.2.3.
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Measurement of the Even-Odd Free Energy Difference

of an Isolated Superconductor

P. Lafarge, P. Joyez, D. Esteve, C. Urbina and M. H. Devoret

Service de Physique de l'Etat Condense, CEA-Saclay, 91191, Gif-sur-Yvette, France

Abstract: We have measured the difference between the free energies of an isolated super­

conducting electrode with odd and even number of electrons using a Coulomb blockade

electrometer. The decrease of this energy difference with increasing temperature is in good

agreement with theoretical predictions assuming a BCS density of quasiparticle states, ex­

cept at the lowest temperatures where the results indicate the presence of an extra energy

level inside the gap.

PACS: 73.40.Gk, 73.40.Rw
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The key concept of the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity

[1] is the pairing of electrons. A surprising feature of the theory appears when one considers

a macroscopic piece of superconducting metal with a fixed number N of electrons. If N is

even, all the electrons can condense in the ground state. If N is odd, however, one electron

should remain as a quasiparticle excitation. In principle, if one would measure the energy

required to add one electron to the superconductor, there should be a difference between

the cases of even and odd N. This fundamental even-odd asymmetry, which might vanish

due to sample imperfections [2], does not manifest itself in conventional experiments on

superconductors because these experiments are only sensitive to a finite fraction of quasi­

particles. In this Letter, we report a new experiment based on single electron tunneling

[3] with which we measured the even-odd free energy difference introduced by Tuominen

et al. [4].

Consider a superconducting-normal (SN) tunnel junction in senes with a voltage

source U and a capacitor Cs (see Fig. 1), a basic Coulomb blockade circuit whose normal­

normal junction version has been nicknamed the electron "box" [5,6]. The supercon­

ducting electrode which is common to both the junction and the capacitor is surrounded

everywhere by insulating material. When the junction tunnel resistance R t is such that

R t ~ RK = h/e2 , the number n of excess electrons on this "island" is a good quantum

number [3,7]. The n-dependent part of the ground state energy of the circuit, including

the work done by the source U, is given by En = Ee(n - CsU/e)2 + £n where Ee = e2/2C,,£

is the electrostatic energy of one excess electron on the island, C"£ the total capacitance

of the island and where £n is the non-electrostatic part of the energy of the island. For a

normal island £n = 0 (Fig. 2a), whereas for a superconducting island, one has £n = DoPn

where Do is the energy difference between the odd-n and even-n island ground states,

and Pn = n mod 2 (Fig. 2c). The BCS theory yields Do = ~ where ~ is the supercon­

ducting gap of the island. In equilibrium at zero temperature, n will be determined by

the lowest En and is therefore given by a staircase function of U (Figs. 2b and 2d). In

the normal case, the steps are of equal size, whereas in the superconducting case even-n

steps are longer that odd-n steps. For Do > E e , the odd-n steps disappear, while for

Do ::; E e , the ratio p between the length of the odd and even-n steps is related to Do

through Do/Ee = (1 - p)/(l + p). Thus, from a measurement of the equilibrium value

of n as a function of U, whieh can be done by weakly coupling the island to a Coulomb

blockade electrometer [8,5,6] as shown in Fig. 1, one can in principle infer the value of Do.
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(1)

In practice, the measurements are performed at finite temperature and the current

in the electrometer is directly related to n, the temporal average of n which we suppose

equal to < n >, the thermal ensemble average of n. The above analysis must be refined

to take into account the thermal population of all the possible states of the circuit. These

states are characterized not only by the number n of excess electrons in the island, but

also by the filling factors of the various quasiparticle states of the island. One finds that

the average value of n is given by

< n >= GsU +~~ln (~ Zne-13Ec(n-C.U/e)2)
e Gs (3e au ~

n

where (3 = l/(kB T) and where Zn is the partition function of the island with n excess

electrons. We now follow reference [4]: we assume Fermi statistics for the quasiparticle

excitations of this isolated system and we set the parity of the number of quasipartic1es

equal to the parity of n. We get Zn = [Z+ + (_l)n Z_]/2, with Z± = TIq [l ± exp( -(3€q)],

where q denotes a generic quasiparticle state with energy €q.

At temperatures such that kBT ~ E e , the < n > vs. U staircase is just slightly

rounded. The length of the steps is now defined from the values of U where < n >

is a half-integer and Do in the expression of the odd-even step length ratio is now re­

placed by D(T) = :F1 - :Fo, the difference between the free energies :Fn = -kBTlnZn of

the island with an odd and an even number of electrons [9]. Introducing the transform

p(T) = Jooo
p(€)ln[coth((3€/2)]d€/2 of p(€), the density of quasiparticle states, one can ex­

press D(T) = -kBTln[thp(T)]. We now suppose that exp( -€min/kBT) ~ 1, where €min

is the lowest energy for which p( €) is non-zero. In this limit, p(T) can be evaluated ana­

lytically for mathematically simple p's. If we assume a continuous BCS density of states,

p(T) = N eff(T)e- 13A where Neff(T) = No(27rk BT / ~)1/2 + O[(T/ ~)3/2] is the effective

number of quasiparticle states available for excitation [10] and where No = PANA~, PA

being the normal density of states at the Fermi energy per atom and NAthe number of

atoms in the island. Because InNef f depends weakly on the sample parameters and on tem­

perature, D(T) is approximately given at temperatures such that Noexp( -~/kBT) ~ 1

by ~(1 - T/To), with To = ~/(kBlnNo) in the range 200-300mK for realistic Al islands.

More generally, if there is inside the gap discrete quasiparticle states with energies €qj and

degeneracies gqj' they each contribute to p(T) by gqjexp( -(3€qJ. Their effect is to reduce

D(T) which is given in the limit T = 0 by D(T) = €qO - kBTlngqO ' where qo is the lowest
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discrete quasiparticle state. Finally, we must point out that the 2e-periodic behavior of

the SN box is similar to the 2e-periodicity which has been observed for the current through

the SSS [11,4] and NSN [12] Coulomb blockade electrometers as a function of the charge

induced on the gate. However, note that when D(T) < E e , the box experiment, in con­

trast with the transport experiments on Coulomb blockade electrometers, gives access to

the ratio D(T)jE e and not simply to the temperature at which it vanishes.

The sample was fabricated using e-beam lithography and double-angle e-beam evap­

oration through a suspended mask [13]. First we deposited a 30nm thick aluminium film

to form the superconducting island of the box, with lateral dimensions 2.2J.Lm x O.lllm, as

well as the leads of the electrometer. This first layer was then oxidized in 300 Pa of oxygen

for fifteen minutes at room temperature. A 50nm thick layer of Cu alloyed with 3% in

weight of Al was then deposited to form the normal lead connected to the box and the

island of the electrometer. The two nominally identical junctions of the electrometer had

an area of '" 8 x 10-3 Ilm2, and were much larger than the box junction. The suspended

mask was designed so that there was no overlap of the Al island of the box with its Cu-AI

copy, which is inherent to the double evaporation technique. The current-voltage curve

(inset of Fig. 3) of a single junction fabricated with the same technique showed a sharp

current rise at f::J.je = 180 ± lOltV, with the square-root voltage dependence characteristic

of NS junctions. Fig. 3 shows a current-voltage characteristic of the electrometer: when

the gate charge is adjusted so as to suppress Coulomb blockade for positive voltage, the

sharp current rise at 2f::J.j e = 360 ± 10pV indicates that the electrometer consists indeed of

two NS junctions in series. Detailed analysis of these J(V) curves yielded the capacitance

parameters of the electrometer. They served as calibrations for numerical electrostatic

calculations of the box parameters which gave Cr:, = 0.2 ± 0.05fF, Cs = 25 ± 5aF and

C e = 11 ± 2aF. The experiments were done with the sample mounted in a shielded copper

box thermally anchored to the mixing chamber of a dilution refrigerator. All voltage and

current lines were carefully filtered [14]. When necessary, the sample was put in its normal

state by a IT magnetic field produced by a superconducting coil.

To perform the measurements of n versus U the bias and gate voltages V and Uo of

the electrometer were first adjusted to maximize oJj oUo (dot on Fig. 3). The electrom­

eter current J was then recorded as a function of U. The resulting sawtooth signal is a

measurement, apart from a gain factor, of the second term of Eq. 1. We obtained n by

adding to this sawtooth signal a linear term whose coefficient was adjusted to null out the
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slope of the teeth. In Fig. 4 we show the measured equilibrium value fi as a function of

the polarization CsU je both for the sample in the normal and the superconducting states,

at 20 mK. The even-odd symmetry of the steps in the normal state is clearly broken in

the superconducting state. Note that the middle of the steps in the superconducting state

coincide with the middle of the steps in the normal state, as predicted from theory (see Fig.

2b and 2d) in the case D(T) < E c . Our previous experiments on a box with an SS junction

never showed any even-odd asymmetry [5]. We believe that this was due to the presence

of a few long-lived, out-of-equilibrium quasiparticles which in the present experiment are

"purged" by the normal metal lead.

Due to the unavoidable electrostatic crosstalk between the U voltage and the electrom­

eter island, which was only partially corrected for in our setup, the gain of the electrometer

depends on the U voltage. This leads to the noticeable step height variations as U departs

from zero. Nevertheless, these vertical scale distortions do not affect the conclusions we

draw from our data, which are based only on the length of the steps along the horizontal

axis. The scaling factor used for this axis corresponds to Cs = 21 ± 0.5aF, in good agree­

ment with our numerical estimates. When the temperature was increased the steps became

gradually rounded (data not shown). From a fit of the temperature dependence of the data

in the normal state using Eq. 1 we obtained a direct measurement of Cl:; = 0.20 ± .05fF,

also in good agreement with our numerical estimates.

We have measured the odd-even step length ratio p as a function of temperature,

thereby obtaining D(T)jE c . The experimental results are shown in Fig. 5 together with

the theoretical predictions in the case of a continuous BeS density of states (dashed line).

Since N A is known from the sample dimensions, the only adjustable parameters are C£it =
0.19fF and t::.fitje = 195/LV. The parameter C£it is in the error range of Cl:; while the

uncertainty range for t::. fit is adjacent to the error range of t::. deduced from the electrometer

I(V). Apart from this minor discrepancy which may be due to the fact that the island,

contrary to the S leads of the electrometer, is not covered by a normal layer , there is good

agreement between theory and experiment for temperatures higher than 50 mK. At lower

temperatures, the data deviates significantly from theory, in a manner which could be

explained by a failure of the box to follow the temperature of the thermometer. However,

we find this explanation unlikely. In a previous run on a NN box with parameters adapted

to calibration purposes, the staircase sharpness precisely followed the temperature down

to 35mK. A more likely explanation is that the density of states of the island may not be
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a strictly smooth BCS one. To illustrate this point, we show in Fig. 5 a complete fit of

the data (full line) using a minimal model: in addition to the continuous BCS density of

states, it includes a single, two-fold degenerate, quasiparticle state at 0.8~. Even though

the number of available states at the gap ~ is of the order of No ""' 104 , the behavior of

the box at the lowest temperatures is completely dominated by this single state. This box

experiment is thus a very sensitive quantitative probe of the deviations of the density of

states from the ideal BCS form, in contrast with transport measurements [11,4,12]. It is

remarkable that the sample imperfections like surface states and impurities do not lead to

a more severe suppression of the even-odd asymmetry. Additional experiments (data not

shown) showed that D(T = 25mK) decreased under the application of a magnetic field

applied perpendicularly to the plane of the substrate and vanished at 0.1 T, a reasonable

critical field value given the dimensions of the island [15].

In conclusion, we have measured the free energy cost of putting a single extra electron

in a superconducting island. We have found that this energy depends on the parity of the

total number of electrons in the island and is in good agreement with theoretical predictions

based on Tuominen et al. [4] assuming a continuous BCS density of quasiparticle states.

At the lowest temperatures, though, the experiment is sensitive to indidual discrete states

and the results are better accounted for if one incorporates in the theory a single energy

level inside the gap.

We acknowledge fruitful discussions with A. Cleland, T. Eiles, J. Martinis, G. Sarma,

G. Schon and J. Schrieffer, as well as the technical help of P.F. Orfila.
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FIGURE CAPTIONS

Fig. 1. Circuit diagram of the experiment. The rectangular symbols represent SN tunnel

junctions. The V-shaped marks denote superconducting electrodes. The symbol n denotes

the number of electrons in the island of the box (marked by a full dot). The variations

of its average n with the voltage U are detected by monitoring the current I through the

SNS electrometer which is coupled to the box through the capacitor Cc. The bias voltage

V and the gate voltage Uo set the working point of the electrometer.

Fig. 2. Ground state energy of the box in the normal (a) and superconducting state

(c) as a function of the polarization CsUje, for several values of the excess number n of

electrons in the island. E c is the electrostatic energy of one excess electron on the island

for U = O. In an ideal superconductor, the minimum energy for odd n is ~ above the

minimum energy for even n. The dots correspond to level crossings where single electron

tunneling is possible. Equilibrium value < n > versus CsUje is shown in the normal (b)

and superconducting (d) state, at T = O.

Fig. 3. I(V) curves for the SNS electrometer at T = 25mK, and zero magnetic field, for

three values of the gate voltage Uo corresponding to maximum, intermediate and minimum

gap. The minimum gap corresponds to the bare superconducting gap 2~ of two NS

junctions in series. The dot indicates the optimal bias point for maximum sensitivity.

Inset: I(V) curve for a single SN junction under same conditions.

Fig. 4. Variations of the average value n of the number of extra electrons in the box as

a function of the polarization CsU je, at T = 25mK. Trace N: normal island. Trace S:

superconducting island. For clarity, trace S has been offset vertically by 4 units.

Fig. 5. Difference D between the free energies of the island with an odd and an even number

of electrons as a function of temperature. Experimental values (dots) are directly measured

in units of E c . Dashed line is theoretical expression of D(T)j~ (scale on the right-hand

side), assuming a continuous BCS density of states, PA = 0.572(eV)-1, NA = 38 107 and

~fit je = 195pV (see text). Full line is modified expression corresponding to a single, two­

fold degenerate state added at 0.8~. The vertical scale factors of theory and experiment

coincide for C~it = 0.19fF.
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3.2.2. Paper 3:

2e-Quantization of the Charge on a Superconductor

Originally published as:

P. Lafarge, P. Joyez, D. Esteve, C. Urbina, and M. H. Devoret, Two-electron quantization of

the charge on a superconductor, Nature 365, 422 (1993).

In this paper, we report the fIrst direct observation of the 2e-quantization of the

macroscopic charge on a superconducting island. We have measured Coulomb staircases in a

normaVsuperconducting electron box with a ratio 11/Ec equal to 1.23. The effects of the

temperature and the magnetic fIeld are well explained by the theoretical calculation of the odd­

even free energy difference developed in Sec. 2.2.3 and 2.2.4.
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Our theoretical understanding of superconductors is based on the notion of

Cooper pair [1]. The first direct experimental evidence for electron pairing

was the observation that the flux threading a superconducting ring is always

a multiple of a flux quantum given by the ratio of Planck's constant and the

Cooper pair charge 2e [2,3]. We report here a direct measurement of the to­

tal charge of a superconducting electrode which is free to exchange electrons

with a metallic reservoir through a tunnel junction. When the potential of

the reservoir is raised with respect to ground, we find that the charge of the

superconducting electrode increases in steps of 2e corresponding to the simul­

taneous tunneling of two electrons. The 2e-steps break into e-steps when the

temperature and magnetic field are increased above threshold values, but in­

dicate nevertheless that Cooper pairs could be manipulated in the same way

as single electrons in turnstile and pump devices [4].

Figure 1 shows a schematic of the experiment. A Cu - AI2 0 3 -AI tunnel junction

of capacitance Cj in series with a capacitor Cg is biased bya voltage source U. The

Al electrode which is common to both the junction and the capacitor, the "island", is

surrounded everywhere by insulating material. Since the junction tunnel resistance R t is

such that R t ~ RK = hle2
, the total charge q of the island is a good quantum number

and is given by q = -ne [5]. As U increases, electrons will tend to move into the island to

minimize the total energy of the circuit, which is the sum of its electrostatic energy and

of the internal energy of the island [6]. The fluctuations of n are determined by the ratio

between the energy of thermal fluctuations and the Coulomb energy E c = e2/2(Cj + Cg ),

which is the electrostatic energy cost of putting one extra electron on the island when

U = o. By nanofabricating the circuit of Fig. 1, E c can be made of the order of 2K.

By lowering the circuit temperature down to 30mK, we can ensure that n has negligible

fluctuations and adopts the minimum energy value. This is well demonstrated by the

following control experiment. We placed the island in the non-superconducting state by

applying a O.2T magnetic field and measured the variations of the time averaged charge

if versus U using a Coulomb blockade electrometer [7] operated in a feedback mode. The

data are shown on trace (a) of Fig. 2. If q was not quantized, the circuit would achieve an

equilibrium charge configuration with no potential difference on the junction capacitance

Cj and hence, if = CgU. Since q is quantized, if can only increase stepwise, with steps

located at half-integer values of the reduced voltage CgU1e.
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We then placed the island in the superconducting state by suppressing the magnetic

field. The results are shown on trace (c) of Fig. 2. There is again a stepwise variation

of ij versus U, but the height and length of the steps have doubled, indicating that only

electron pairs are transferred from the reservoir into the island. However, when we ap­

plied an intermediate magnetic field, so as to substantially reduce the superconducting

gap without suppressing superconductivity, we observed an intermediate staircase pattern

which consisted of a succession of long and short e-steps (see trace (b) of Fig. 2) and which

was similar to the pattern observed in a previous experiment involving a different sample

[8]. The ratio between the length of the short and long steps was observed to decrease as

we lowered the field again. Below a threshold field H = 0.02T, the short steps disappeared

completely and perfect 2e-quantization was recovered.

These results can be understood by considering the total free energy of the circuit:

E = Ec( n - C9 Ule)2 + (n mod 2)l +terms independent of n. The first term is simply the

electrostatic energy of the circuit, i.e. the electrostatic energy of Cj and Cg and the work

of the voltage source U [6]. The second term is the island internal energy which depends on

n only through its parity [9], the parameter l denoting the odd-even free energy difference

[10]. Such an odd-even difference is expected for a superconductor, since for an odd number

of electrons, one of them cannot be paired and must remain as a quasiparticle excitation

whose energy cost is the superconducting energy gap [11]. From this model we can predict

the ensemble average < n > which we suppose equal to the temporal average n measured

in the experiment. In Fig. 3a we show as a function of U the energy of the different n

states, for the non-superconducting case l = o. At temperatures T such that kBT <t: E c ,

n will adopt the value of the integer closest to CgUIe, which corresponds to the lowest

energy state, hence the staircase pattern of Fig. 3b. In Fig. 3e we show the case of a

superconducting island such that, at the lowest temperatures, l > E c in zero magnetic

field. In that case, for every value of U, the ground state of the circuit always correspond

to an even n, which explains the doubling in Fig. 3f of the step height with respect to

Fig. 3b. The energy asymmetry between states with even and odd n has recently been

observed through the 2e-periodicity of the gate charge dependence of the current in SSS [10]

and NSN Coulomb blockade electrometers [11, 12], and of the asymmetric e-staircase of

a superconducting box [8]. It is important to note that although 2e-quantization implies

necessarily 2e-periodicity, the converse is not true, as shown by Fig. 3d. The present

results thus bring a new information: direct transitions between fully paired even states,
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which do not create a quasiparticle excitation, can be the sole charge transfer mechanism,

provided that .6. > E c ~ kBT, conditions which could not be satisfied in previous island

charge measurements. This perfect 2e-quantization necessitates that the system finds, as

U is increased, its lowest energy state by the coherent tunneling of two electrons from

the reservoir into the island to form a Cooper pair. The rate of this process also known

as Andreev reflection [13] is proportional to (RK IR t )2 [14] and is therefore much weaker

than single electron tunneling whose rate is proportional to RKIR t . Nevertheless, since

the 2e-steps of Fig. 2c did not display any measurable out-of-equilibrium behavior, the

time scale of the Andreev process is shorter than our measurement time scale of the order

1O-2s.

At intermediate magnetic fields and temperatures (Fig. 3c), the odd-even free energy

difference, while non-zero, is such that .6. < E c . Odd n states can now exist on a finite

U range (Fig. 3d). In this regime, we can measure .6.1E c from the length ratio SIL of

the short and long steps. This can be done quite accurately because the sharpness of

the steps makes SIL insensitive to the long term drift in the electrometer output due to

offset charges [7]. The measurement of (L - S)/(L + S) = .6.1Ec with temperature and

magnetic field, which was applied perpendicularly to the strip, is shown in Fig. 4. At a

fixed magnetic field, we found we could fit the measured is.(T)1E c using the theory of Refs.

[S,10] with the quasiparticle density of state of Skalski et al [15] in which enters only one

field-dependent parameter, the pair-breaking energy f. The other parameter entering in

this density of states is the zero-temperature zero-field energy gap.6.. Using the De Gennes

and Tinkham prediction f/.6. = (7l"3 /1S)H2 J2.eeolif?6 for a strip of dirty superconductor in

a perpendicular field H [16], we finally arrived at a theoretical expression for .6.(T, H)IE c

which depends only on three adjustable parameters: the gap .6., the Coulomb energy E c

and the elastic mean free path .e (in the expression for f, d = UOnm is the width of the

strip, eo = 1600nm the coherence length, if?o the flux quantum h/2e). The best fit, shown

in Fig. 4, yields .6.le = 210pV, .6.IEc = 1.23, values which are consistent with independent

measurements, and .e = 6nm. This latter value is one order of magnitude smaller than the

mean free path we extracted from a conductivity measurement of a nanofabricated Al

wire with same lateral dimensions as the island. However, this discrepancy may simply

reflect the fact that electron diffusion is not isotropic in the island and the main result

shown in Fig. 4 is that the 2e-quantization domain occupies only a small portion of the
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superconductivity domain.
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FIGURE CAPTIONS

Fig. 1. Schematic of the experiment. The superconducting island is a 30xllOx2260 nm Al

strip containing approximately 109 atoms. Its dimensions are such that the electrostatic

energy of one extra electron is much larger than the energy kBT of thermal fluctuations

at temperature T '" 30mK. The island can exchange electrons with a Cu (3% wt. AI)

thin film electrode acting as an electron reservoir through a tunnel junction [17]. The total

charge q of the island varies under the influence of the externally controlled voltage source

U connected between the electron reservoir and a ground electrode. The variation with U

of the time average if of the island charge is measured by a Coulomb blockade electrometer

(not shown) which is weakly capacitively coupled to the island. The nanofabrication and

low noise measurement techniques involved in this type of experiment have been described

in Refs. [18,8].

Fig. 2. Variations of the average value if, in units of e, with the polarization CgU j e, at

T = 28mK, for 3 values of the magnetic field applied to the sample. Trace (a): non­

superconducting island. Traces (b) and (c): superconducting island. For clarity, traces (b)

and (c) have been offset vertically by 2 and 4 units, respectively. The letters Land S refer

to the long and short steps, respectively.

Fig. 3. Total energy of the circuit of Fig. 1 as a function of the polarization CgU j e, for

several values of the excess number n of electrons in the island, in the non-superconducting

state (a) and superconducting state (c, e). E c is the electrostatic energy of one excess

electron on the island for U = O. The minimum energy for odd n is ~ above the minimum

energy for even n. Panels c and e differ by the relative magnitude of ~ and E c • The

solid dots correspond to level crossings where single electron tunnel into and from the

island. The white dots correspond to level crossings where the only allowed process is the

simultaneous tunneling of two electrons into the island to form a pair (Andreev process).

The equilibrium value < n > versus C9 Uj e is shown in the non-superconducting (b) and

superconducting (d, f) states, at T = O. The Andreev process is shown in f by a vertical

dashed line to distinguish it from the single electron tunneling process shown in band d

by a vertical continuous line.

Fig. 4. Odd-even step length ratio plotted as (L - S)j(L + S), as a function of the
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temperature T and magnetic field H. The fully 2e-quantized steps are shown as white

dots with unit height. The black dots are such that 1 > (L - S)/(L + S) = 1::,./Ec •

The surface corresponding to the grid in full line is the theoretical prediction combining

references [10], [8], [15] and [16]. Note that the 2e-quantization domain is only a small

portion of the odd-even asymmetry domain (ii > 0) which is itself a small part of the

superconductivity domain (Do > 0).

tunnel
junction

superconducting
island

non-superconducting
electron reservoir

ground
electrode

q=-ne

Fig. 1
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4. Charge transfer accuracy
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Passing Electrons One by One: is a 10-8 Accuracy Achievable?
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PASSING ELECTRONS ONE BY ONE:

IS A 10-8 ACCURACY ACHIEVABLE?

H. Pothier, P. Lafarge, D. Esteve, C. Urbina and M.H. Devoret

Service de Physique de l'Etat Condense, CEA-Saclay

91191 Gif-sur-Yvette Cedex, France

ABSTRACT

We analyse the error mechanisms of the single electron pump with an arbitrary number

of junctions. An upper bound for the error probability is computed analytically at zero

temperature. We show that a 10-8 accuracy is achievable for devices with five or more

junctions.

PACS: 73.40.Gk, 73.40.Rw, 06.20.Hq
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1. Introduction

The understanding of single electron effects [1] has led to the design and operation of

devices which make electrons pass one at a time in a controlled way in an external circuit

[2,3]. The control of single electrons in these devices is achieved using the energy barrier

provided by the electrostatic energy of a single excess electron on special electrodes of the

device. These electrodes, hereafter referred to as 'islands', are connected to the rest of

the device through either tunnel junctions with tunnel resistances large compared to the

resistance quantum RK = h/e2 or pure capacitors. The device will function only if each

island has a capacitance Cj such that the Coulomb energy e2 /2Cj is very large compared

with the energy kBT available in thermal fluctuations. In the 'turnstile' and 'pump' devices

built using metal-insulator-metal junctions [2,3] or using semiconductor heterostructures

[4], the controlled passage of single electrons manifests itself in current plateaus at 1 = ne/r

in the current-voltage (1 - V) characteristic, where n is an integer and r the period of the

rf modulation on the 'gate' electrodes. These plateaus are analogous to the Shapiro steps

in the 1 - V characteristic of a superconducting tunnel junction irradiated by microwaves

[5]. As is well known, these steps are manifestations of the ac Josephson effect which links

a voltage to a frequency through the flux quantum <1>0 = h/2e and provide the basis for a

representation of the standard volt. Thus, the question arises as to whether single electron

pumps and turnstiles could be used in metrology to provide a new representation of the

ampere. A representation of the ampere is obtained at present from the volt using the

quantum Hall effect -discovered by von Klitzing- which links current and voltage through

RK [6]. It is important for metrologists to check if a direct definition of the ampere

using the electron charge e is compatible with the 'Josephson + Klitzing' definition which

combines <1>0 and RJ(. Another important metrological issue that would benefit from a

new access to the electron charge provided by single electron effects is the value of the fine

structure constant [7]. This latter application would not necessitate to measure directly

the very low current produced by single electron devices. Although the experiments carried

out so far to test the precision of single electron devices are chiefly limited by the precision

of current measurements, it is necessary to investigate the fundamental limitations of the

devices themselves. In this paper we analyse the source of errors and evaluate analytically

an upper bound for the error probability of a general device of the pump type. Our goal

is to answer the following question: Is it possible to design devices that would achieve

an intrinsic accuracy of 10-8 which is the level at which the precision of the ampere is
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questioned by metrologists?

2. Single electron turnstiles and pumps

The devices that transfer electrons one by one in synchrony with an external rf signal

consist of a linear array of nominally identical tunnel junctions with capacitance C (see

Fig. 1). The array is biased with a dc voltage source V. The metallic islands between

the junctions are connected through gate capacitors to voltages that may vary periodically

with time at rf frequencies. By convention we will refer to the island placed between the

k-th and (k+1)-th junction as the k-th island. We label Cgk and Uk the gate capacitance

and gate voltage corresponding to the k-th island. We denote by N the total number of

junctions. There are two classes of devices: the turnstiles and the pumps.

The turnstiles have an even number of junctions (N = 2P, P integer) and necessitate

only one rf voltage source. It is connected to the central P-th island. The optimal value

of the central gate capacitance is C9 P = 2C/N. The remaining Uk are fixed and are used

only to compensate offset charges on the corresponding islands. Thus, one should have

Cgk ~ C. The action of the central gate voltage is the following: During the first half

of the rf period, an electron is attracted onto the central island through the leftmost P

junctions, while during the second half of the period, the electron is repelled through the

rightmost P junctions. While they were the first devices to be operated successfully, they

suffer from the drawback that the current plateaus do not cross the V = 0 axis. Because

they generate current only at finite voltage, turnstiles dissipate intrinsically more power

than pumps and may be difficult to cool at the low temperatures which are required for

the suppression of thermal errors.

The pumps necessitate as many independent rf sources as islands but they produce

current plateaus that cross the V = 0 axis. Their principle can be described as follows:

during an rf period, the Uk voltages vary in such a way that a triangular voltage pulse

is successively applied to the gate capacitors, in the manner the distributor sends voltage

pulses to the spark plugs of an automobile engine (See Fig. 2). The amplitude of the

pulse is chosen so that it is energetically favourable for one electron and one electron

only to neutralize the pulse. Each traveling pulse is thus accompanied by an electron.

Consequently, the direction of current in the pump is not determined by the bias voltage

V but by the direction of travel of the pulse, which in turn depends only on the relative
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(1)

dephasing among the gate voltage sources. The accurate reversal of the current produced

by the pumps can therefore be performed by purely electronical means.

In the following we will analyze in detail the functioning of the pump and calculate its

error probability, i.e. the probability that the pump does not transfer exactly one electron

per rf period.

3. Detailed analysis of the N junction pump

The analysis of the pump is greatly simplified by performing a transformation anal­

ogous to the circuit transformations of electrical engineers in network theory. The trans­

formation consists in replacing the linear array of Fig. 1(a) by the circular array of Fig.

l(b). In the process, the junctions keep the same parameters but instead of being linked

through external leads to the bias voltage, current meter and common ground, the two

end junctions are directly connected, thereby forming one extra island. This O-th island is

connected to a corresponding gate voltage Uo through a gate capacitance GgO ~ G. The

transport voltage V can now be thought of being applied as a time varying flux through the

ring of junctions, which we represent as voltages sources V/N in series with each junction.

The electrostatic state of the array of Fig. 1(a) is entirely determined by the "electron

configuration" (nl,n2, ...nN-I), i.e. the set of number of extra electrons on each island,

and the set of gate voltages (U1 , U2, ..UN-d. It is easy to show that the junctions in the

circular array will adopt the same electrostatic state than in the linear array, if for the

circular array, the electron configuration is (no, nl , n2, ..nN- I) and the set of gate voltages

is (UO,U1 ,U2, ..UN-I), with no and Uo satisfying

N-l N-l
no + L nk = GoUo+ L GgkUk

k=l k=l

This equivalence is only true in the limit Ggk ~ G which is required anyway from other,

more practical, considerations. Now, for the circular array, the left hand side of (1) stays

constant with time since tunnel events conserve the total number of electrons on the islands.

Consequently, condition (1) implies that the number of independent gate voltages in the

equivalent circular array is indeed the same as the original linear array. The traversal of

the linear array by one electron corresponds to a single electron going around the circular

array from island to island in the manner of an arm of a mechanical clock. Ideal pumping

of electrons, with period T, can therefore be described for the circular array as the following

time evolution of the electron configuration:
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nk(t) = 1 ifk - 1/2 < (Nt/T)modN < k + 1/2

nk(t) = 0 otherwise

(2)

(2')

We can thus index each electron configuration of the pump by an integer n in a natural

manner. The integer nmodN indicates on which island is the electron, while the integer

part of n / N gives the number of times the electron went around the array. The ideal time

evolution corresponding to (2) and (2') can therefore be described in a more compact form

by

n(t) = int(Nt/T + 1/2) (3)

where int(x) denotes the integer part of x.

Although the circular pump is not a practical device, its symmetry clarifies greatly

the discussion of possible errors and the search for optimal parameters. Once the optimum

parameters are established for the circular pump, it is easy to go back to the realistic linear

pump.

Obviously, the minimum electrostatic energy of the pump is reached when all the

gate voltages and extra island electron numbers are zero. Starting from this state, if one

puts one extra electron on island k while raising the k-th gate voltage to e/Cgk, one gets

an equivalent electrostatic state with the same minimum electrostatic energy as far as the

junctions are concerned. The following sequence of gate voltages interpolates between such

gate voltage configurations:

where

Uk(t) = e/Cgk(xk +1) if - 1 < Xk < 0

Uk(t) = e/Cgk( -Xk + 1) if 0 < Xk < 1

Uk(t) = 0 otherwise

Xk = k - (Nt/T mod N)

(4)

(4')

(4")

(5)

This is the sequence which is plotted on Fig. 2 for the case N = 5. Note that it satisfies

Equ. (1) for the case where there is a single electron in the array. The electron is driven

across a junction by the simultaneous decrease and increase of the gate voltages on both

side of the junction. The complete cycle requires N such elementary transfer steps. The
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rotation symmetry of the circular pump shows clearly that the entrance and exit of an

electron in the linear pump at the beginning and at the end of a period do not require

different pulse shapes than when the electron is traveling inside the array, although the

leads seem to playa different role than the islands. However, the absence of these "end

effects" only occurs in the limit Cgk ~ C on which the equivalence between the circular

and linear pump is based.

We will now analyze the error mechanisms of the circular pump containing one elec­

tron. We suppose that the temperature is zero. Let us recall the remaining parameters of

the system: the number of junctions N, the bias voltage V, the junction capacitance C and

the period r. We suppose moreover that all the junctions have the same tunnel resistance

RT. At this point it is useful to introduce the following dimensionless parameters:

RT
(6)7'=-

RK

V
(7)v=--

e/2C

x = Nt/r (8)

f = RKC/r (9)

where RK = h / e2
. In addition to these parameters which we call reduced tunnel resistance,

reduced bias voltage, reduced time and reduced frequency, respectively, the system is

characterized by the energy scale e2 /2C.

The electrostatic energy of the whole array including the work performed by the bias

voltage can be computed for every n, the gate voltages being given by (4). The expression

of this total array energy as a function of the reduced time x and the reduced voltage v is

given, in units of e2 /2C, by

En(x, v) = -jv - [iv + (N - i)(2(xmodl) - i)]/N

where i and j are the integers satisfying

n - int(x) = j N +i

1 ~ i ~ N

(10)

(11)

(11')

In Fig. 3 we plot the set of values En, n running from -7 to +7, in the case where v = 0.2,

the reduced time x taking the values 0,0.25,0.5,0.75 and 1. The plots of the energy at
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other reduced times with the same sampling period are obtained simply by a translation

along n, as equ. (11) indicates. The energy values plotted in Fig. 3 represent a kind of

potential for the discrete configuration variable n. The way this potential evolves with time

reflects the gate voltages time sequence of Fig. 2. The evolution of the potential drives

the variable n to evolve with time by provoking tunnel events. They always tend, at zero

temperature, to lower the total electrostatic energy of the system. If only tunnel events

changing n by one unit (single junction tunneling events) were allowed and if T/N was

sufficiently long that these single junction tunnel events would occur essentially as soon as

the new configuration with a lower energy became available, n would follow one "potential

minimum" (see dot on Fig. 3). The pump would behave ideally, the only difference with

(3) being that the n ~ n +1 transitions would occur slightly earlier in the cycle because of

the bias voltage, and the pump would be error free. To predict the actual error probability

of a realistic device we have to take into account i) missed transfer steps which occur

when one requires that the period T should be as small as possible to produce a current

as large as possible, as well as ii) higher order tunnel processes involving several junctions,

the so-called macroscopic quantum tunneling of the charge, or "co-tunneling" events [8],

which allow n to vary by more than one unit if a state with lower energy is found.

4. Error probability calculations

4.1 Errors caused by missed transfer steps

The general expression for the probability of a single junction tunnel event between con­

figuration n and configuration n + 1 is given using reduced parameters by

(12)

where ~1 = En - E n+1 and where we have used the notation I y 1+= (I y I +y)/2. The

probability that the n ~ n + 1 transition does not occur in the time slot alloted for the

n-th transfer step is given by

( lx=n+l )
Pn = exp - In-n+ldx

x=n
(13)

In writing (13), we neglect the fact that state n+ 1 is not the only decay channel for state n.

This is a very good approximation since, as we will see, the branching ratio for n +1 is very

close to 1 because co-tunneling rates are much smaller than the single junction tunneling
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rate. It may happen that the electron which has missed its time slot gets a second chance

during the time slot of the next transfer step; however the analysis of this recovery is

tedious. By using expressions (10), (12) and (13) a conservative estimate Em = N Pn of

the probability of losing a cycle because of missed transfers can therefore be calculated:

_ (_ (N -l)[I+vj(N _1)]2)
Em - Nexp 8N2 rf (14)

4.2 Errors caused by co-tunneling events

It is clear from Fig. 3 that configuration n can always decay into configuration n +N

whose reduced energy is lower by v (we suppose for the time being that v 2:: 0). Such co­

tunneling process involving N junctions corresponds to an electron going around the pump

in the direction of the bias voltage and returning to its original position. This is why the

energy difference between the initial state and final state is constant. However the energy

barrier in configuration space is modulated during each transfer step as Fig. 3 indicates.

In addition to this N-th order co-tunneling process, we have to consider two (N-1)-th order

co-tunneling processes during the n-th time slot. The first one is the n -t n + 1 - N

transition that has the effect of sending the electron to the island with minimal potential

by going around the array in the direction opposite to the normal direction of transfer.

This process substracts a transfer cycle to the normal sequence. The second one is the

n + 1 -t n + N that has the effect of sending the electron which has tunnelled back to

the island it started by going around the array in the direction of transfer. Like the N-th

order co-tunneling process, this process adds a transfer cycle to the normal sequence. The

three co-tunneling processes are shown schematically in Fig. 4. The thick line with a

varying shade represents the probability weight of a given configuration as a function of

the reduced time x. The thick vertical dashed line marks the onset of the single junction

tunneling process, which is symbolically represented in the figure by a thick arrow. This

onset is located 1/2 - v/2(N - 1) after the beginning of the step. The n -t n + 1 - N

co-tunneling process is represented by a curved arrow in full line pointing in the direction

of decreasing n while the n + 1 -t n +N co-tunneling process is represented by a similar

arrow pointing in the direction of increasing n. A thin vertical dashed line located 1/2+v /2

after the beginning of the step marks the boundary between the domains of existence of

the n -t n + 1 - Nand n + 1 -t n +N processes which are mutually exclusive. Finally

the N-th order co-tunneling process is represented by an upward pointing curved arrow in

dashed line.
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(15)

The general expression for the probability of co-tunneling [8] between a configuration

n and a lower energy configuration n + p is bounded from above by the expression given

here in terms of reduced parameters:

2 2 (1)2 ~ 2p-1_ _ 7f ( 2 )-p p. p dr n..-n+pdt - 'n..-n+pdx - Nf 47f r (2 _ 1)1 rr~-l ~ ,2 X
P 1=1 1

where ~i = En - En+i. Expression (12) can be thought of as the p = 1 case of (15) if the

product rrf~ll 6. i
2 is understood as giving the value 1 when the upper bound is O.

Expression (15) has two drawbacks. First, it is not a piecewise polynomial expression

of x like the rate (12) of single junction tunneling. Second, it diverges at the zeroes of ~i'

The second drawback, however is an artefact of the perturbation theory used to derive

(15). The divergences take place where other transitions with a lower p become possible.

In the general case, by suitable resummation techniques, it is possible to get expressions

yielding a finite value of the transition rate at these singular points [9]. In the particular

case of the co-tunneling processes of order N - 1 we have considered above, we were able,

by going back to the original perturbative integral expression of Averin and Odintsov [8],

to get an analytical expression for the rate that stays finite during the whole transfer step

and its vicinity:

(16)

with

I(x, v) = it:. (2%N~~)! (2(a -~) + (2~' + 6. + a)ln (~',:~)lda (16')

where 6. = ~N-1 and 6.' = ~N-2'

It is then possible to construct a polynomial expression which is everywhere greater than

this complicated expression except at the singular point where the two expressions take

the same value. This polynomial expression reads:

c(N) 2N-3
/n+1..-n+N(X,V) = /n..-n+1-N(-X, -v)::; f1. N - 1 I x - v 1+ (17)

where c(N) is a coefficient that only depends on N. Using expression (17) it is possible

to compute the total error probability due to both co-tunneling processes of order N - 1.
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This probability can be written as

(18)

By continuing analytically the integrand outside the time slot alloted for the transfer

step and by extending the range of integration to infinity one can get a manageable final

expression for the error probability:

N-2 ( V )
€c = deN)! F [SeN -1)rf]1/2

where
2N-IN2N-3(N _1)N-2(N _ 2)2

deN) = 7r2N-4(2N _ 5)!(2N - 5)(2N - 6)(N - 3)!2

and where the function F(y)

approximated by

(19)

(20)

(21)

with a = 1.4, a = 1.1 and b = 0.85. The value of the coefficient deN) is given in table 1

for values of N relevant to the discussion in the following section.

We have supposed so far that the bias voltage was positive and small compared with

e/2C. A straightforward analysis carried out for the case of negative bias voltage shows

that expressions (19) and (21) are valid in the whole voltage range

-(N - 1)/N :S v :S (N - 1)/N (22)

where only co-tunneling processes of order N - 1 and N have to be considered during a

transfer step.

We now have to deal with the co-tunneling process of order N. It could be argued

that this process is negligible in comparison with the process of order N - 1 because it has

a higher rank in the perturbative expansion of the tunnel hamiltonian. However, one has

also to take into account the fact that processes of order N -1 are weighted by occupational

probabilities which are significantly different from zero only during a small fraction of the

time interval alloted for a transfer step, whereas the effect of the process of order N is

felt during this whole time interval. As a matter of fact, extensive numerical studies of
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the relative importance of the two types of processes were needed to show that, indeed,

the process of order N was negligible in the voltage range (22). Expressions (19) and (21)

can therefore be considered as giving an upper bound of the total error probability due to

co-tunneling in the voltage range (22).

5. Optimal parameter space

We can now use expressions (14) and (19) for the error probability due to missed

transfers and co-tunneling, respectively, to find the parameters which allow a total error

probability less than 10-8 . In Fig. 5 we plot the constant error probability curves in the

(j, v) plane for the cases N = 4 and N=5. We treat Em and Ec separately, the constant

value being 10-8 , with a value 5 for the ratio r = RT j RK which is easily accessible by

conventional nanojunction fabrication. The figure shows that below a certain threshold

value of the reduced frequency j, there is a range of reduced voltages for which the error

probability is less than 10-8 • In the case of N = 4, however, the threshold frequency is

determined by co-tunneling errors while in the case of N = 5 this frequency is determined

by missed transfer steps. Consequently, in the N = 4 case, the optimal parameter region is

a small lentil-shaped domain providing almost no parameter error margin whereas in the

N = 5 a substantial fraction of the total voltage range (22) can be used at the threshold

frequency. In Fig. 6 we plot, in the case N = 5, the tongue-shaped domains of the (j,v)

plane where the total error probability is below 10-8 , for three values of the ratio r. The

figure shows that as the tunnel resistance gets smaller, one can reach higher frequencies,

and thus higher currents, but at the expense of a smaller voltage range. We have performed

numerical calculations to see how finite temperatures shrink these domains. We find that

a shrinking by a factor of a half is reached approximately when kBT ~ 0.025e2 j2C. In

conclusion one can summarize our analytical results by stating a rough rule of thumb valid

for N ~ 5: the product of the maximum voltage range ~~nax by the maximum current

I max obeys

(21)

For instance, it should be possible to operate a 5 junction pump, with 0.2fF and 100kn

junction capacitance and resistance respectively, which would deliver at 100mK, over a

100/1V voltage range, a 10 pA current accurate to 10-8 .

112



Acknowledgements

We are grateful to D. Averin and .J. Martinis who, as our own work was completed,

communicated us their results prior to publication [1O,11}. By performing somewhat dif­

ferent calculations than us, they also came up to the conclusion that metrological accuracy

could be reached with the N = 5 pump. We are also indebted to A. Cleland and P.F.

Orfila for their help with the figures.

REFERENCES

[1] "Single Charge Tunneling", H. Grabert and M.H. Devoret eds., Plenum, New York

(1992) and references therein.

[2] L.J. Geerligs, V.F. Anderegg, P.A.M. Holweg, .I.E. Mooij, H. Pothier, D. Esteve, C.

Urbina and M.H. Devoret, Phys. Rev. Lett., 64, 2691 (1990).

[3} H. Pothier, P. Lafarge, D. Esteve, C. Urbina and M.H. Devoret, Europhys. Lett., 17,

249 (1992)

[4] L.P. Kouwenhoven, A.T. Johnson, N.C. van der Vaart, C.J.P.M. Harmans and C.T.

Foxon, Phys. Rev. Lett. 67, 1626 (1991).

[5] A. Barone and G. Paterno, "Physics and applications of the Josephson Effect", Wiley,

New York (1982).

[6} K. von Klitzing, Rev. Mod. Phys. 58, 519 (1986).

[7] E.R. Williams, R.N. Gosh and .J.M. Martinis, J. Res. Natl. Ins. Stand. and Technol.

97 (1992).

[8] D.V. Averin and A.A. Odintsov, Phys. Lett. A 149,251 (1989).

[9] P. Lafarge and D. Esteve, Phys. Rev. B 48, 14 309 (1993).

[10] D.V. Averin, A.A. Oclintsov and S.V. Vyshenskii, J. Appl. Phys. 73,1297 (1993).

[11] H.D. Jensen and J.M. Martinis, Phys. Rev. B 46, 13 407(1992).

113



FIGURE CAPTIONS

Fig. 1 (a) Linear array of N tunnel junctions with the same capacitance C. Each electrode

between junctions, called for short 'island', has a sufficiently low self-capacitance Ci that

e2 /2C i ~ kBT and can be electrostatically acted upon by a gate voltage Uk, 1 ~ k ~ N -1.

The ends of the array are connected to a common ground through voltage sources whose

effect is to bias the array by a transport voltage V. (b) Circular array of tunnel junctions

obtained by connecting the end junctions of (a), thereby forming an additional small

capacitance island electrostatically biased by an additional gate voltage Uo. The transport

voltage V around the circular array can be thought of as being produced by a time­

varying flux through the array. It is represented by voltage sources V / N in series with

each junction.

Fig. 2 Time variations of the gate voltages for the N = 5 linear pump (full lines). In

dashed line, additional gate voltage for the circular pump. In the circular N pump, the N

successive gate signals are shifted in time by T / N, where T is the duration of the pumping

cycle.

Fig. 3 Array total energy for the N = 5 pump biased with V = O.le/C as a function of

the electron configuration n representing the location of the single electron going around

the equivalent circular pump. The energy profile is shown at several instants during a

transfer step. For clarity, the n = 0 energies at successive instants have been shifted by

e2 /2C. The dots sitting at an energy minimum represent a possible state of the array and

its evolution with time.

Fig. 4 Array configuration versus time diagram showing the various processes affecting

the state of the N = 5 array. The thick lines with graded shade show the occupation

probability of a particular configuration as the gate voltages evolve with time. The thick

arrows represent the single junction processes while the curved arrows in full and dashed

lines represent the co-tunneling processes of order N - 1 and N, respectively. The vertical

dashed lines indicate the onset of the tunneling processes (see main text).

Fig. 5 Constant error probability curves in the reduced voltage - reduced frequency plane

for two values of N. Curves intersecting the vertical axis (marked "c") correspond to a 10-8

error probability due to co-tunneling events while the curves intersecting the horizontal axis
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(marked "m") correspond to the error due to missed transfer steps, with same probability.

The symbol r denotes the reduced tunnel junction resistance Rr / RK.

Fig. 6 Parameter domains ensuring a probability error less than 10-8 in the case of the

N = 5 pump for three values of the reduced tunnel resistance r = Rr / RK.

TABLE 1

n d(n)
4 84.10

5 78.01

6 44.60
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Nondivergent calculation of unwanted high-order tunneling rates

in single-electron devices

P. Lafarge and D. Esteve

Service de Physique de l'Etat Condense, CEA Saclay

F-91191, Gif-sur-Yvette Cedex, France

Recently developed single electron devices are based on the control of electron

tunneling across each tunnel junction of the circuit. However, unwanted higher order tunneling

processes, referred to co-tunneling processes, modify this simple picture and reduce the

accuracy of the devices. We calculate the co-tunneling rate in a linear array of tunnel junctions

beyond the lowest order of perturbation theory by partially resumming the infinite perturbation

expansion for the energy of a metastable state. We apply this calculation to the transition

between two different tunneling regimes in various single electron circuits.

PACS numbers: 73.40.Gk, 73.40.Rw, 06.20.Hq.
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I. Introduction.

In recent years the Coulomb blockade of tunneling has opened a new field of

electronics referred as "Single Electronics" [1]. The first realisations are ultra sensitive

electrometers [2] or charge transferring devices like turnstiles and pumps [3,4], the latter being

a potential candidate for a DC current standard. A single electron device consists of small

metallic islands separated by ultra small tunnel junctions with tunnel resistance Rt larger than

the resistance quantum RK = hie2
• Control voltage sources are also applied to the islands

through gate capacitors. Each island has a total capacitance Cisland such that the electrostatic

energy of a single excess electron e2/2Cisiand is larger than the characteristic energy k BT of the

thermal fluctuations. Under these conditions, the number of electrons inside each island is a

good quantum number with negligible thermal fluctuations [5]. Single electron tunneling

through each junction can be forced or blocked by setting the control voltages to suitable

values. However, higher order tunneling processes can directly transfer a single charge across

two or more tunnel junctions and therefore compromise the proper operation of the device.

This phenomenon, discovered by Averin and Odintsov [6] and called here co-tunneling, allows

one electron charge to be transferred through k tunnel junctions although single electron

tunneling across each junction is forbidden. The simplest circuit which exhibits co-tunneling is

the single electron transistor which consists of two tunnel junctions in series. Co-tunneling is

responsible for the leakage current which is observed when this circuit is biased inside the

Coulomb gap [7,8]. For the sake of completeness, let us mention that a single junction biased

by a current source should also exhibit a Coulomb gap [1]. In this case, subgap leakage can

arise from imperfect current biasing [9] or from the transient electronic rearrangement during

the tunneling process [10].

In a linear array of N tunnel junctions biased with a voltage source V, a co-tunneling

event that transfers one electron across the whole array in the direction of increasing potential

is always possible (see Fig. 1). In this paper we will consider the case where another tunneling

transition of lower order becomes energetically allowed. A second tunneling process at the pth

order, with P < N , takes place in the array. Both transitions start from the same initial state

and transfer one electron in the same direction but the final states are different. Because it is a

perturbative approach, the original co-tunneling theory can only give an expression for the rate

of the lowest order decay process which is energetically allowed in the array. In order to

describe the behavior of the array when another tunneling transition can occur, we have

derived a non-divergent expression of the quantum decay rate of the initial state by partially

resumming the perturbation expansion. We will consider here three physical devices where the

cross-over between two tunneling transitions with different orders currently appears : i) the
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single electron transistor consisting of two tunnel junctions in series, the simplest example of a

linear array (p = 1, N = 2). Our calculations are in good agreement with results obtained by

others approaches [11,12,13], ii) the more general case of a linear array of N tunnel junctions,

for which we aim at describing the effect of a finite transport voltage (p = N -1, N > 2), iii)

the charge transferring devices like turnstiles and pumps. In that kind of circuits, every step of

a transfer cycle is exposed to an unwanted co-tunneling event through the array (p = 1, N > 2)

and the accuracy of the transfer is affected by the rate of this leakage process.

II. The perturbative theory of co-tunneling.

Before examining the case of the single electron transistor, it is worthwhile to describe

the general perturbative theory of co-tunneling. Following Averin and Odintsov [6], a co­

tunneling transition that transfers one electron through a linear array of N tunnel junctions can

be described by an arbitrary sequence of N single tunneling events UP"" jk" •. , jN} where jk

denotes the position in the array of the k'h tunneling event. When a tunneling event occurs on

the j~h junction, one electron leaves a filled state at c I below the Fermi level on one side of the

junction and occupies an empty state at Cr above the Fermi level on the other side. It creates

an "electron-hole" excitation of energy c = c, + c/. Note however that the electron and the hole

are not here in the same piece of metal. In the following, such an excitation will be nicknamed

a "tunnelon" of energy c; the tunnelon density of states is p{c) = Ae. Within the tunnel

hamiltonian approach, "A and the tunnel matrix element 1 are related to the junction tunnel

resistance Rt by

"A12 = RK / 4rc2Rt • (1)

Since the final expression of the co-tunneling rates depend on the parameters "A and 1of each

junction only through the combination "A12
, we use, for the sake of clarity, the same "A for all

junctions. The conservation of energy implies that the sum of the energies of all the tunnelons

involved in a co-tunneling process must be equal to the electrostatic energy difference till

between the initial and the final state of the transition. Therefore, at T = 0, only transitions

bringing the system in a state of lower energy than the initial one are allowed. Let us assume

that the energetically allowed transition with lowest order is a co-tunneling transition across M

junctions. For a given sequence UP"" jM} of M single tunneling events there are M-l

intermediate virtual states {Sl" .. ,SM-l}' After k steps in the sequence Ul ,...,jM} the system

is in the state Sk and its energy is given by the sum of the electrostatic energy E(Sk) relative to

the energy of the initial state and the energies of the tunnelons created by previous tunneling

events on junctions jl"'" jk' The M co-tunneling rate r M calculated by the perturbative theory

of co-tunneling [5] is given by
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(2)

(3)

This integral cannot be analytically calculated except for two junctions in series. In the limit

where /1E is much smaller than the intermediate state energies E{sJ, a useful approximation is

obtained by setting the tunnelons energies in the energy denominators to zero. In this

approximation the M co-tunneling rate takes the form:

r
M
' = 21t(nM RK )S,2 /1E2M-l

Ii ;=1 41t 2R
t
, -(2-M---1-)I'
M-l

where S' = L n(E{Sk)f
l

•

{j1 .....jM} k=1

We now consider a linear array of N tunnel junctions biased with a voltage source V. Gate

voltages Vgi are also applied to the N -1 islands of the array through gate capacitors Cgi • In

such a circuit a Nth order co-tunneling transition, hereafter called a N tunneling transition, is

always possible. Even in the Coulomb blockade regime the transition can occur because the

change of electrostatic energy due to the transfer of one electron across the whole array is

-eV. If under the effect of the gate voltages one of the intermediate state energy E{sp) with

P < N vanishes, then a P tunneling transition becomes possible (see Fig. 1). The perturbative

expression (2) can only be used to evaluate the rate of the lowest order transition i.e. a N

tunneling rate if E{sp) > Oor a P tunneling rate if E{sp) < O. But the cross-over between N

and P tunneling is not properly described. Moreover in the particular case P = 1, the N

tunneling rate diverges at the threshold, while the single tunneling rate is zero at the threshold.

ID. Partial resummation of the perturbation expansion in the case of the single-electron

transistor.

The simplest example of linear arrays that exhibits the cross-over between two

tunneling transitions at different orders is the single electron transistor (Fig. 2). This device

consists of two tunnel junctions in series of capacitances C1 and C2 and tunnel resistances R1I

and Rt connected to a transport voltage source V. A gate voltage U is also capacitively
2

coupled to the central electrode by a capacitor Cg • The state of the device is completely

described by the number II of excess electrons on the central island and the number llt of

electrons having passed through the voltage source V. For a given state the energy of the

whole system including the voltage sources IS

E{ll,llt) = (lle-CgUY /2er -(CgUY /2Cr. -llteV, where Cr. = C1 +C2 +Cg. For
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(5)

0< V < e / Cr and 0 < CsU < e /4, we can limit the state space to four states which we denote

: (0), (1), (-1) and (0)*. The initial state (0) corresponds to n =n, =O. The states (1) and (-1)

differ from the initial state (0) by a tunneling event on the fIrst and the second junction

respectively. The state (0)* differs from (0) by one electron having passed through the device.

The energy of (0)* is -eVand the energies of (1) and (-1) are equal to E1 = E(l,O) and

E2 = E(-1,0) respectively. For V <V,h where Vth is a threshold voltage dependent of the

voltage U and the capacitances C1, C2 and Cg , E1 and E2 are positive and the tunneling of

one electron across each junction is suppressed. Nevertheless, there is a fmite current through

the device due to the decay of (0) to (0)*. The co-tunneling transition (0) ~ (0) * can take

place through two channels: (0) ~ (1) ~ (0) * or (0) ~ (-1) ~ (0) * (Fig. 3). At V = Vth , one

of the intermediate energies E1 or E2 vanishes. The co-tunneling rate calculated using Eq. (2)

presents at the threshold a logarithmic divergence which can be regularised [11,12]. Above the

threshold, electrons can be transferred by a sequence of allowed single tunneling transitions.

The limiting single transition rate is proportional to E1 or E2 and therefore starts from zero. In

order to properly obtain the cross-over between the co-tunneling and single tunneling regimes,

we calculate directly the decay rate of the initial state (0) without specifying the final state.

This decay rate is a good approximation of the tunneling rate across the whole array if the

occupancy probability of the intermediate states (1) and (-1) is much smaller than 1. This

condition corresponds to 0 < V :s; 1. 5V;h' At higher voltage, one can use the simplifIed master

equation approach [14] which only considers single tunneling events on each junction and

which becomes suffIciently accurate.

To express the quantum decay rate of the (0) state we use the formalism of the energy

displacement operator R(z) [15]. The decay rate of the initial state Ii) is related to R(z) by

r = - 2 1m( PR(Ei +iTl)P], (4)
Ii

where P =Ii)(i I, Ej is the energy of the initial state and Tl ~ 0+ . The perturbative expansion of

R(z) is

R(z) =Hr +Hr Q Hr +Hr Q Hr Q Hr+... ,
z-Ho z-Ho z-Ho

where Q= 1- P, Hr is the tunnel hamiltonian and H 0 is the sum of the electrostatic

hamiltonian of the whole circuit and of the tunnelon kinetic energy hamiltonian. Each term in

the PRP series corresponds to a path in the state space and can be represented by a diagram

(see Fig. 4). The construction rules of such a diagram are as follows : an upward curved line

represents a "tunnelon" excitation on the first junction and a downward curved line a

"tunnelon" on the second junction. Each vertex corresponds to a transition between two

different states of the system by absorption or emission of a "tunnelon". In the calculation
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(6)

(7)

associated with the diagram, each section i.e. portion of a diagram contained between two

dotted lines contributes by an energy denominator and each vertex by a tunnel matrix element.

Finally there is an integration over all the "tunnelon" energies El, ... ,E j of the diagram with

densities of states A.el , ... , A.e j • Only paths starting from the (0) state and coming back to (0)

solely at the end give non vanishing terms in the series (5). Each diagram containing one

tunnelon (Fig. 5(a» gives, at V >Vth , the single tunneling rate through the corresponding

junction of the single electron transistor. The set of diagrams containing two tunnelons

depicted in Fig. 5(b) give, at V <Vth , the perturbative expression of the co-tunneling rate. An

horizontal segment which is located under or over one tunnelon arc corresponds respectively

to the (1) state or the (-1) state (see Fig. 4). In the upper left diagram of Fig. 5(b), a segment

(1) appears twice under the tunnelon denoted El . The same situation is reproduced in the

upper right diagram of Fig. 5(b) with a segment (-1) over the tunnelon E2 • In these two

diagrams, the horizontal segments corresponding to the (-1) or (1) state are the origin of the

co-tunneling rate divergence because the corresponding sections contribute by the square of

energy denominators which vanish at the threshold. More generally, for a given number of

tunnelons the divergence order of a diagram is proportional to the number of (-1) or (1)

segments located under the same tunnelon arc. In order to remove the divergence we will now

proceed to a partial resumrnation of the perturbation series (5) by taking into account the most

diverging diagrams at each order in Hr. They are obtained when all the diverging segments

belong to the same tunnelon (Fig. 6(a),(b». However, we want to include in our resummation

the four diagrams depicted in Fig. 5(b) in order to recover the perturbative expression of the

co-tunneling rate in the limit of small transport voltages. Hence it is necessary to keep also the

diagrams with two different possible tunnelons for the (-1) and (1) segments (Fig.6(c),(d».

One can classify these diagrams in four different types analogous to the four diagrams of Fig.

5(b). The integral corresponding to the fIrst type of diagrams (Fig. 6(a» is

[ ]

k
+00 '\2 +00 '\2 d

I - I\.t l E l I\.t2 E2 E2 d,-1 z-(E, H,) 1 (z-(E, H,))(z-(-eV H, H,l) ',"

With z = 0 + ill the resummation yields
+00 lev '\ 2 d.II = I\.tl El El

k=O k 0 -(E l +El )+i1tA.ti(eV -El )'

This integral can be calculated explicitly. After taking the imaginary part, we obtain the

following contribution to the decay rate:
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(9)

(8)

(10)

f(E V) _21t'lZZZ[_ V 2E1 +eV I (eV+E1)Z ]
l' e - I\, t1tz e + n ( )Z

Ii 2 E; + 1tAt;eV

- 2 At;E1[1t/2 - arctan ~1 ] +o(AZt;t;).
tz 1tAtzeV

The contribution f(Ez,eV) of the second type of diagrams (Fig. 6(b)) has the same fonn with

E1 replaced by E2, t1 by tz and tz by t1• In the third and fourth types of diagrams there are

two possible tunnelons for the (-1) and (1) segments. The integrals and the resummation are

performed similarly to the previous case. Since the third and the fourth types of diagram (Fig.

6(c),(d)) are symmetric, they give the same contribution to the decay rate:

( ) _21t'lZZZ[ (El+eV)El (E1 +eV)Z
g El'EZ,eV --I\, tl tZ eV- ( )In z

Ii 2 E1+Ez +eV E; + (1tAt;eV)

(Ez +eV)Ez (Ez +eV)Z ] (z z z)-..,---=------::;...,..In z + 0 A tIt1 •

2(E 1+Ez + eV) Ei + (1tAt;eV)

Summing the contributions of the four types of diagrams and using Eq. (1), the final expression

of the decay rate r = f(El'eV) + f(Ez,eV)+2g(E1,Ez,eV) takes the form:

r _ 21t R~ [ev E1Ez ][~) (eV + EJz ]
- Ii (41t zyR'lR'2 2+ E1 +Ez +eV j=l n E; +(<xjeV)Z

21t~ RKEj [1 1 Ej ]--£.oJ z ---arctan-- ,
Ii j=l 41t R'j 2 1t <xjeV

where <X j = RK/4rtR'j , j '# i. This fonnula provides an expression of the I-V characteristic of

the single electron transistor at T = O. In the limit <X j ~ 0, Eq. (10) reproduces the

perturbative expression of the co-tunneling rate across two junctions in series calculated by

Averin and Odintsov [6]. One can also treat second order tunneling in any linear array of

tunnel junctions if one replaces eV in Eq. (10) by the correct expression for the energy

available in the transition. Expression (10) has a fonn similar to the co-tunneling rate

expression of Korotkov et al. [11]. The two fonnulas, although analytically different, give the

same result except in the vicinity of the threshold voltage V'II' Recently, Pasquier et al. [13]

have explained their experimental results on a 2 DEG electrometer by a temperature dependent

co-tunneling rate which agrees with Eq. (10) in the limit T = O.

IV. The general case of a cross-over between N tunneling and (N -1) tunneling in a

general linear array.

More generally, the cross-over between Nand (N -1) tunneling in larger arrays than
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(11)

(12)

the two junctions electrometer can be described by similar non-divergent rate calculation. We

now consider a linear array of N tunnel junctions with negligible gate capacitances biased with

a voltage source V (Fig. 7). In the case of N identical junctions with capacitance C the set of

intermediate energies (EI, ... ,EN_I ) is the same for all the sequences. For V < e/2C, the N

tunneling is the only allowed transition. At V = e/2C, EN_I is equal to zero and a (N -1)

tunneling transition becomes possible. A N tunneling transition is described at the lowest order

in perturbation by N!z different diagrams containing N tunnelons. If V «e/C, the energies of

the N - 2 fIrst intermediate states are always positive and larger than eV. Since the sum of the

energies of the tunnelons involved in a co-tunneling transition is equal to eV , we will neglect

them in the energy denominators related to the configuration states of the array except for the

(N -lrh state and the final one. We can then distinguish only two types of diagrams (Fig. 8).

There are N!(N -1)! diagrams of the fIrst type and N!(N -1)!(N -1) diagrams of the second

type. For the fIrst type (Fig. 8(a)) the resummation and the integral over CNand CN-l is

performed in the same manner as in the fust two cases of the single electron transistor. Then

one gets the contribution Ya:

f 1+00 (N-z 'AlZJ
Ya = ... I1-z t(EN- 1 +cr,eV -cr)CI",CN_zdcI···dcN_Z'

O . I E.1= 1

N-Z
where cr = L c; and where t is the function defIned in expression (8).

;=1

For the second type of diagrams (Fig. 8(b)) which is similar to the third and fourth types of

diagrams in the single electron transistor case, the contribution Yb is

f i+oo(N-Z 'Alz J
Yb= .. , I1-z g(EN_l+cr,EN_I+cr,eV-cr)Cl",CN_zdcl···dcN_Z'

O . 1 E.1= 1

where g is the function defined in expression (9). The decay rate of the initial

rN = Ya +Ybis written:

( )

N-Z N-Z
rN = R: N!(N-l)!I1E;ZF(EN_1,eV),

4n Rt ;=1

where

state

(13)

Eq. (13) allows us to describe any kind of cross-over between two tunneling regimes in a linear

array of N tunnel junctions under the effect of a finite transport voltage. Thus one can estimate

the I-V curve of the array from the N tunneling regime until the single tunneling regime. In the

simplest case N = 3, a quantitatively more accurate calculation can be done if one keeps in the

energy denominators of expressions (11) and (12) the contribution of the fust tunnelon energy

ci' One obtains the following expression of the 3 tunneling rate:
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f 3 =( Rf )12K(E2 ,eV), (14)
4rr Rr

( )_fev /(E2 +E1,eV -E1)+2g(E2 +E1,E2 +E1,eV -E1) d
where K E2 ,eV - ()2 E1 E1·

a E1 +E1

This fonnula f 3 correctly describes the 3 tunneling regime and the 2 tunneling regime until the

vicinity of the single tunneling threshold. Another expression is necessary to describe the cross­

over between 2 tunneling and single tunneling. The 2 tunneling rate f 2 is evaluated using Eq.

(10) with the correct expression of the available energy difference in place of eV. Because

there are three different ways to associate two junctions of the circuit, the tunneling rate across

the whole array of three junctions near the single tunneling threshold CV/ e = 1 is given by 3f 2'

Results are shown in Fig. 9 for a particular value of the tunnel resistance Rr = R.r = lORK • For
I 2

1/2 < CV/e < 1 the matching between f 3 and 3f2 is sufficiently good to obtain a continuous

estimate of the tunneling rate across three junctions over the Coulomb blockade range.

Calculation of the tunneling rate across three junctions are shown in Fig. 10 for several values

of the tunnel resistance. The cross-over between successive tunneling regimes gets smoother

when the tunnel resistance Rr decreases and is hardly noticeable when Rr < 2RK •

v. The cross-over between N tunneling and single tunneling.

The last application of the non-divergent co-tunneling rate calculations we shall

consider deals with the accuracy of single electron pumps [4]. A pump consists of a linear

array of N identical tunnel junctions of capacitance C where each island {k} of the array is

connected through a gate capacitor to a time dependent voltage source V k (Fig. 11). Each

gate capacitance is equal to Cg with Cg « C. The controlled transfer of one electron across

the device is achieved by successively applying to the islands triangular voltage pulses as

shown in Fig. 12. These pulses induce a sequence of single tunneling events on the successive

junctions of the array : one electron charge follows the pulse propagation through the array.

However, an unwanted N tunneling transition is possible at any stage of the transfer cycle. All

steps of a transfer cycle in the N pump are equivalent [16] but, for simplicity, let us assume the

pump is placed at the beginning of a cycle. There is no excess electron on any island of the

array and at small transport voltages (V «ej2C) the N tunneling across the array is the only

tunneling transition allowed. As in the single electron transistor, the perturbative expression of

this N tunneling rate diverges when the energy of the fIrst intennediate state of a co-tunneling

sequence becomes equal to zero. This is exactly what happens when, under the effect of the

fIrst gate voltage VI' the pump reaches the threshold of the fIrst step in the cycle. This step will

be a single tunneling event across the fIrst junction which puts one excess electron on the fIrst
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(15)

island of the array in the sense of the transfer (Fig. 11). The perturbation theory cannot

therefore be used directly to calculate the pump error rate. Using the partial resummation

technique we can remove the divergence of the N tunneling rate. The general form of the

diverging diagrams is represented in Fig. 13. Introducing the same approximation as in the case

of the N linear array of tunnel junctions we neglect the tunnelons energies in the energy

denominators except for the fIrst intermediate state. After the resummation and the integration

over the tunnelons energies £z""'£N' we obtain the following upper bound of the N

tunneling rate Yerr:

Z ( )N(N-l )iev ( )ZN-3 d_ N! 2n RK II -2 £1 eV -£1 £1

Yerr-(2N-3)! tz 4n2R1 ;=zE; 0 (El+£I?+a~(eV-£ltN-6'

( )

N-l N-ln RK ~
where aN = ( _)' 2 IIE; .

2N 3. 4n R1 ;=2

Using this expression, we have calculated in the particular case of the fIve junctions pump an

upper bound of the N tunneling leakage during a transfer cycle. We have found that this

contribution is negligible in the particular parameter range for which metrological accuracy is

achievable [17,18,16].

VI. Conclusion.

In conclusion we have shown that in a linear array of tunnel junctions the problem of

the cross-over between two tunneling regimes at different orders can be solved by a partial

resummation of the perturbation expansion. In the case of the single electron transistor, we

have obtained an analytical expression of the co-tunneling rate that remains finite at the

conduction threshold. More generally, this approach can be used to calculate the I-V

characteristic of an array. Finally, non-divergent calculation of the co-tunneling rate provides a

rigorous upper bound of the N tunneling leakage through charge transferring devices like the

N junctions pump.
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FIGURE CAPTIONS

Fig. 1. (a) Schematic of a linear array of N tunnel junctions. The rectangular symbols represent

ultrasmall tunnel junctions. (b) Energy states of the circuit when the electrostatic energy of the

pth intermediate state of a Nth order co-tunneling transition is equal to the initial state energy.

nt is the number of electrons which have passed through the array. The arrows indicate co­

tunneling events through N or P junctions.

Fig. 2. Circuit diagram of the single-electron transistor which consists of two small tunnel

junctions of capacitances C1 and C2 biased with a voltage source V. A control voltage source

U is capacitively coupled to the island formed between the junctions.

Fig. 3. Energy states of the single-electron transistor when the circuit is in the Coulomb

blockade regime. The arrows indicate co-tunneling transitions. A co-tunneling transition

between the initial (0) and the final state (0)* can take place through two channels (a) and (b).

Fig. 4. General form of a diagram. An upward (downward) arc represents a tunnelon excitation

on the fIrst (second) junction of the single-electron transistor. The solid dots correspond to the

absorption or the emission of a tunnelon. Each section of the diagram contained between two

dashed lines corresponds to a given state of the device.

Fig. 5. (a) Lowest order diagrams in the perturbation expansion (5) with one tunnelon arc. (b)

Two tunnelons diagrams which give the perturbation expression of the co-tunneling rate across

the single-electron transistor.

Fig. 6. Diagrams that are taken into account in the partial resummation of the perturbation

expansion (5).

Fig. 7. Co-tunneling transition in real space (a) and in state space (b) for a linear array of N

identical tunnel junctions with negligible gate capacitances biased by a voltage source V when

the energy of the (N _l)th intermediate state of a N tunneling transition is equal to the initial

state energy.

Fig. 8. Classes of diagrams for a linear array of N junctions which extend the classifIcation

made for the single-electron transistor. (a) Diagrams analogous to diagrams of Fig. 6(a) and
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Fig. 6(b). (b) Diagrams analogous to diagrams of Fig. 6(c) and Fig. 6(d). The arcs starting

from the horizontal line represent the emission of tunnelons labeled E1, ... ,E N- 1. The arcs

ending on the horizontal line represent the absorption of the previous tunnelons E 1 , •.. ,E N- 1 in

an arbitrary order.

Fig. 9. Tunneling rates across a linear array of three junctions as a function of the transport

voltage V. Solid line are 1 3 (Eq. (14)) for 0 < CVje < 1 and 312 calculated using eq. (10) with

the correct expression of the energy difference available instead of eV. Dashed lines are the

divergent tunneling rates across three, two and one junctions obtained by eq. (3) when one

retain only electrostatic energies in the energy denominators. All the curves are calculated for

Rt = lORK •

Fig. 10. Tunneling rates across a linear array of three junctions as a function of the transport

voltage with Rt = 2, 5 and 10 x RK from the upper to the lower curve. The curves are 1 3 for

CVje < 0.8 and 312 for CVje > 0.8 where 1 3 and 12 are calculated in the same way as in Fig.

8.

Fig. 11. (a) Circuit diagram of the N junctions pump. (b) Energy states of the array at the

cross-over between single tunneling across the fIrst junction and N tunneling across the whole

array.

Fig. 12. Evolution of the gate voltages in the N pump during a transfer cycle of one electron

charge. The amplitude of the voltage pulse is adjusted to transfer only one electron across each

junction of the array.

Fig. 13. Diverging diagrams involved in the resummation of the perturbation series in the case

of the cross-over between N tunneling and single tunneling in the N junctions pump.
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4.2.1. Paper 6:

Direct Observation of Macroscopic Charge Quantization: a Millikan Experiment

in a Submicron Solid State Device

Originally published as:

P. Lafarge, P. Joyez, H. Pothier, A. Cleland, T. Holst, D. Esteve, C. Urbina, and M. H.

Devoret, Observation directe de la quantification de la charge macroscopique : une experience

de Millikan dans un dispositif submicronique, C. R. Acad. Sci. Paris 314,883 (1992).

In this paper, we report measurements of the instantaneous charge of an electron box

island connected to ground by four tunnel junctions in series. The transfer of electrons from the

charge reservoir to the island results here from co-tunneling processes whose rate are so low

that individual events can be resolved. This circuit can also be seen as a four junctions electron

pump in the hold mode [1]. However, the measured rate of the co-tunneling processes which

are one of the sources of errors in an electron pump (see paper 4) is several order of magnitude

larger than the theoretical value.

[1] J. M. Martinis, M. Nahum, H. D. Jensen, to be published.
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Observation direete de la quantification de la charge macroscopique: Vne
experience de Millikan dans un dispositif electronique submicronique

Auteurs: Philippe Lafarge, Philippe Joyez, Hugues Pothier, Andrew Cleland, Thors­
ten Holst, Daniel Esteve, Cristian Urbina et Michel H. Devoret

Resume: Nous avons mesure Ie potentiel d'une electrode metallique couplee it un
reservoir de charge par l'intermediaire d'une chaine de jonctions tunnel. On observe it
basse temperature les sauts de potentiel associes au passage des electrons individuels
it travers les jonctions. Le taux de passage des electrons, bien que suffisamment faible
pour que Ie nombre d'electrons sur l'electrode puisse etre connu it tout instant, depasse
la valeur theorique par plusieurs ordres de grandeur.

Direct observation of macroscopic charge quantization: a Millikan experi­
ment in a submicron solid state device

Abstract: We have measured the potential of a metallic electrode which was connected
to a charge reservoir by four tunnel junctions in series. At low temperatures, we
observe switching events associated with single electrons entering and leaving the
electrode. The tunneling rate of electrons through the junctions, although small
enough for the number of electrons 011 the electrode to be known at every instant,
exceeds the theoretical value by several orders of magnitude.

Adresse: Service de Physique de l'Etat Condense
CEA-Saclay, 91191 Gif-sur-Yvette cedex, France

PACS: 73.40G, 06.20H, 73.40R
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ABRIDGED ENGLISH VERSION

In his famous experiment, Millikan showed that the total charge on an oil drop
was always an integer multiple of a charge quantum e [1], which he determined.
Nowadays, the most precise value of e is obtained by a chain of indirect experiments
[2]. A more direct determination based on charging effects in nanoscale junction
[3] circuits has been proposed [4]. It consists of a purely electrostatic version of
Millikan's experiment: an isolated metallic electrode of known capacitance would be
charged with N ~ 108 electrons using an electron pump [5]. One would determine
e with a metrological accuracy by measuring the potential of the electrode with a
SET transistor [6], which is able to resolve an increment of charge equal to e. We
report here the results of an experiment aimed at testing this idea. We measure
the potential variations associated with individual electrons leaving and entering a
metallic electrode, both in the normal and superconducting state. Fulton et al. have
recently reported a similar result, but only in the superconducting state [7].

Fig. 1 shows the principle of our experiment. The node p is the isolated metallic
electrode ("island") whose potential is measured by a SET transistor through the
coupling capacitor Ce . The charge on island p can be varied by means of a voltage
source U connected to the island by a capacitor Cs and a chain of four nanoscale
tunnel junctions. The total capacitance of island p is dominated by capacitance
Cp placed in parallel with the chain of junctions. The tunneling rate of electrons
through the four junctions at low temperatures [8,9] is small enough that the SET
transistor can measure the island potential with a resolution much better than ejCp •

Details concerning the measurement technique of a variable island potential with
a SET transistor have been given in a preceding paper [10]. Figure 2 shows the
nanolithographic mask with which we implemented the schematic of Fig. 1 on a
silicon substrate using the techniques described in reference [9]. Special attention was
given to the filtering of the various lines between the sample and the room temperature
electronics.

We show in Fig. 3 the SET transistor current I, which varies linearly with the
potential of island p, as a function of time when U is kept constant. The sample was
kept in the normal state with a 0.5 T magnetic field. The random switching events
correspond to the tunneling of individual electrons. However, the measured tunneling
rate is 105 times greater than the predicted rates, even assuming that the temperature
of islands a,b,c and p is 30 mK higher than the thermometer temperature which was
20 mK. This temperature difference is the maximum one can obtain by considering
the various possible heat inputs on the islands.

In Fig. 4, we show the variations of the charge qp of island p as a function of
U when U is swept back and forth between +3.5 mV and -3.5 mV in 0.4 s. The
hysteresis reflects the ratio between the sweep and tunneling rates. The results in the
superconducting state only differ from those in the normal state in that the tunneling
rate of electrons is about an order of magnitude higher. No steps corresponding to a
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charge variation of 2e could be detected.
In conclusion, it is possible, using nanoscale tunnel junctions, to both vary the

number of electrons on a metallic electrode and to measure its potential, but the
tunneling processes through a series of junction need to be investigated further before
metrological applications can be developed.

INTRODUCTION
La charge totale d'un corpuscule isole est un multiple entier de la charge de

l'electron, meme quand ce corpuscule est de taille macroscopique. C'est grace it
cette propriete que Millikan a pu mettre en evidence la granularite de l'eIectricite
en mesurant en 1911 la charge de fines gouttelettes d'huile [1]. Quoique tres di­
recte, l'experience de Millikan ne fournit pas une mesure tres precise du quantum de
charge e car elle consiste en une mesure de force exercee sur la gouttelette d'huile
par un champ electrique impose. Actuellement, la valeur de e la plus precise est
obtenue par une chaine d'experiences indirectes ou Ie quantum de charge intervient
avec d'autres grandeurs fondamentales comme la masse de l'electron, la constante de
Planck et la vitesse de la hllniere [2]. Une determination plus directe, entierement
electrostatique, pourrait deceler et corriger d'eventuelles anomalies dans cette chaine.
Une telle experience, qui exploiterait les effets de charge [3] se manifestant dans les
circuits it base de jonctions tunnel de taille submicroniques a ete proposee [4]. Elle
repose sur la mesure du potentiel electrostatique d'une electrode metallique isoIee,
laquelle a ete prealablement chargee par un nombre N ~ 108 d'eIectrons en utilisant
la pompe it electrons recemment mise au point par notre groupe [5]. La charge de
l'eIectron serait determinee it partir de ce nombre N, du potentiel de l'electrode, et
de la capacite de cette derniere qui aurait ete mesuree par nne experience annexe.
II est indispensable que Ie nombre d'electrons reste controle it l'unite pres pendant
toute la duree de la mesure du potentiel. Cette derniere, qui doit evidemment etre
suffisamment precise pour discriminer N et N + 1, s'effectue avec nn transistor SET
[6]. Au cours de l'experience decrite dans cette note, nous avons mesure Ie poten­
tiel d'une electrode dont la charge moyenne etait imposee et nous avons observe les
variations discretes correspondant it l'entree et it la sortie des electrons individuels.
Un resultat preliminaire de ce type concernant une electrode supraconductrice a ete
presente recemment par Fulton et colI. [7] . Dans notre experience, Ie phenomene de
quantification macroscopique de la charge est observe it la fois dans l'etat normal et
dans l'etat supraconclucteur.

MONTAGE EXPERIMENTAL
Le schema electrique de la Fig. 1 donne Ie principe cle notre experience. Le noeucl

marque p represente l'electrocle isolee ("ile") clont on mesure Ie potentiel et dont on
fait varier la charge. Vile pest reliee it nne source cle tension U par l'intermecliaire
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de deux capacites Cs et Cp ~ Cs , lesquelles constituent un diviseur de tension per­
mettant d'utiliser une tension U suffisamment elevee pour que ses fluctuations soient
negigeables. On a place en parallele avec la capacite Cp une chaine de quatre jonc­
tions tunnel de taille submicronique. Le potentie1 des iles intermediaires dans la
chaine peut etre ajuste a l'aide des sources de tension auxiliaires U1 , U2 et Ua. Le
role de cette chaine de jonctions est de laisser passer les electrons que doit acquerir ou
ceder l'ile p pour se mettre en equilibre electrostatique avec la source U. On utilise
ici une premiere propriete-cle: une jonction tunnel de resistance RT ~ RK = hie2

laisse passer la charge de fa<.;on discontinue -electron par electron- a la difference d'un
fil metallique qui pennet de transferer la charge de maniere continue. 11 faut que
les jonctions soient de faibles dimensions pour beneficier d'une seconde propriete-cle:
pour une electrode de capacite totale Or:, suffisamment petite, l'energie electrostatique
e2 IkBT d'un seul electron en exces peut etre plus grande que l'energie caracteristique
kBT des fluctuations thermiques. Enfin, quatre jonctions en serie sont necessaires
pour que Ie passage des electrons, qui s'effectue a travers les jonctions en une seule
etape [8] a basse temperature, se produise avec un taux suffisamment faible. En effet,
Ie rapport entre les taux tunnel a tension nulle a travers N jonctions et 1 jonction
est proportionnel a (RKIRT )N-l(Cr:,kB Tle2?N-2 [9],011 Cr:, est la capacite totale
de chaque ile intermediaire.

Grace aces effets, une mesure du potentiel de 1'ile p avec une resolution nette­
ment meilleure que e dans l'intervalle de temps separant deux evenements tunnel est
realisable. La mesure est effectuee en utilisant un transistor SET [6] qui comporte
deux jonctions tunnel, elles aussi de taille submicronique, et qui definissent une ile,
notee m sur la Fig. 1, couplee a l'ile p par un condensateur de couplage Ce . Les ten­
sions de polarisation V et Uo du transistor sont ajustees de maniere qu'une variation
du potentiel de l'ile p produise une variation proportionnelle du courant I qui traverse
Ie transistor. Nous avons decrit cette technique dans un precedent article [10].

La figure 2 represente Ie motif utilise pour implementer Ie schema de la Fig. 1
par nanolithographie electronique. Aux zones noires correspondent des fenetres dans

un masque de germanium suspendu a 2000 A au dessus du substrat de silicium, a
travers lesquelles on evapore sous vide de l'aluminium. En separant deux etapes
d'evaporations effectuees suivant des angles differents par une etape de croissance
d'oxyde d'aluminium, on forme des jonctions aux zones de recouvrement des pistes
metalliques [9]. La capacite C des jonctions est de 0.5 fF avec une dispersion maximale
de 50% sur un meme echantillon. Les capacites pures du schema de la Fig. 1 sont
realisees par des pistes interdigitees. Elles sont toutes visibles sur la Fig. 2, sauf la
capacite Cp qui, du fait de son plus grand encombrement, sort en grande partie du
cadre de la figure. On obtient par cette technique les valeurs Co = C1 = C2 = Ca =

Cs = Ce /3 = Cp /25 = 80 aF.

Apres les etapes de nanolithographie et Ie test des jonctions a la temperature
ambiante, nous avons ancr'e thermiquement un echantillon dont les jonctions etaient
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telles que Rr ~ 300 kD dans une enceinte de cuivre fixee ala chambre de melange d 'un
refrigerateur a dilution. Les sources de tensions et Ie preamplificateur pour la mesure
du courant I, tous deux places a temperature ambiante, ont ete ensuite raccordes a
l'echantillon par des liaisons electriques filtrees. Enfin, ce demier est refroidi a 20 mK.
On fait transiter l'aluminium des pistes de l'etat supraconducteur a l'etat normal en
appliquant un champ magnetique de 0.5 T a l'aide d'un solenoi'de supraconducteur.

RESULTATS
La figure 3 montre Ie resultat de la mesure du courant I du transistor SET en

fonction du temps, lorsque la source de potentiel U est maintenue constante. Le signal
se presente sous forme de crenaux dont la duree est aleatoire et dont l'amplitude est
fixe. L'amplitude des crenaux, calibree a l'aide de la tension Uo et des valeurs des
capacites du circuit, est conforme a celIe attendue pour une variation d'amplitude
e de la charge qp de l'ile. Les tensions U1 , U2 et U3 ont ete ajustees pour que la
duree moyenne des crenaux soit maximale. L'existence de ces conditions optimales
est en accord avec la theorie du "co-tunneling" [8] regissant Ie passage par effet tun­
nel des electrons a travers les quatre jonetions. Nous attribuons donc les variations
aleatoires du potentiel de l'ile aux variations aleatoires de son nombre cl'eleetrons
dues au passage de ceux-ci a travers la chaine de jonctions. Il est remarquahle que
pour des dun~es allant jusqu'a quelques dixiemes de seconde -durees "macroscopiques"
pour des electrons individuels dans un circuit electronique- la charge de l'ile reste fixe
et donc parfaitement determinee. La figure 4 montre Ie resultat d'une mesure de
la charge qp de l'ile en fonetion de la tension U lorsque cette derniere varie dans
Ie temps de fa<;on triangulaire. On observe les marches successives correspondant a
l'entree des electrons dans l'ile lorsque la tension U croit, puis a leur sortie quand
la tension U decroit. L'ensemble des marches montantes et descendantes forme un
cycle d'hysteresis 01\ se traduit Ie rapport entre la probabilite par unite de temps de
l'effet tunnel et la duree du cycle de variation de la tension U. Cette duree est de
0.4 s dans cette experience. Des experienees de controle ont montre que la largeur du
cycle d'hysteresis decroit quand la duree du cycle de variation de la tension U croit.
Aucun hysteresis ne peut etre deteete lorque la chaine de quatre jonetions est rem­
placee par une jonetion unique [10]. Nous avons repete Ie meme type d'experiences
avec quatre jonctions a plus haute temperature. Elles indiquent alors que Ie taux
tunnel augmente brutalement a partir de 100 mK. Enfin, l'ensemble de ces mesures
a ete recommence apres avoir replace l'echantillon dans l'etat supraconducteur. La
recherche d'increments de tension correspondant a 2e a ete infructueuse. Les resultats
montrent que les variations de charge elu systeme supracondueteur ne font intervenir
que des electrons indivieluelsj les resultats ne different de ceux obtenus dans l't~tat

normal que par un taux ele passage des electrons plus eleve environ d 'un ordre de
grandeur.

DISCUSSION ET CONCLUSION
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Notre experience demontre qu'il est possible de garder Ie nombre d'electrons sur
une electrode metallique fixe al'tmite pres pendant une duree de l'ordre de la fraction
de seconde, tout en se reservant la possibilite de faire varier ce nombre electron par
electron avec une tension de commande. Ces resultats permettent de donner une borne
superieure pour la valeur experimentale du taux de passage des electrons a travers
quatre jonctions, taux dont la faiblesse est cruciale pour la metrologie de e utilisant
les effets de charges dans les circuits abase de jonctions tunnel. Nous trouvons que Ie
taux observe est environ 105 fois superieur acelui que predit la theOl'ie du co-tunneling
[8] en supposant que la temperature des iles est 30 mK au-dessus de la temperature du
thermometre, ce qui est une valeur maximum compte-tenu des differentes sources de
chauffage possibles. 11 est peu probable que ce facteur de 105 puisse etre attribuee au
bruit electromagnetique dans la piece autour de l'experience. En effet, si on injecte une
irradiation radiofrequence de forte puissance dans la partie du circuit a temperature
ambiante, elle ne produit aucun effet. Nos mesures semblent done indiquer l'existence
d'un bruit intrinseque qui limiterait, compte tellU des caracteristiques de la pompe a
electrons [5], la precision de la mesure de la charge de l'electron a 10-5 • Des mesures
effectuees sur des echantillons de caracteristiques differentes, tant en ce qui concerne Ie
nombre de jonctions que leur resistance tunnel, devrait permettre de preciseI' l'origine
de ce bruit. Un autre aspect inexplique de l'experience est Ie taux de passage des
electrons plus eleve dans l'etat supraconducteur que dans l'etat normal. En principe,
la temperature a laquelle se deroule l'experience est telle que tous les electrons des
iles devraient etre condenses en paires. Meme s'il reste au sein des iles une fraction
finie de quasiparticules hoI's d'equilibre, il est difficile d'imaginer par quel mecanisme
elles peuvent traverser les jonctions tunnel avec un taux plus grand que les electrons
dans l'etat normal.
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Legendes des figures

Fig. 1 Schema electrique de l'experience. Les jonctions tunnel sont representees par un
symbole en forme de double boite. Les noeuds marques d'un point noir correspondent
it des electrodes entourees d'isolant. Les noeuds marques d'un point blanc representent
les electrodes auxquelles sont appliquees les tensions principales.

Fig. 1 Circuit 8chematic of the experiment. The tunnel junction8 are repre8ented

by double-box 8ymbols. The node8 marked with a full dot corre8pond to electrode8

8urrounded by in8ulating material. The node8 marked with an open dot corre8pond to

electrode8 to which the principal voltage 80urces are applied.

Fig. 2 Masque nanolithographique realisant l'implementation du circuit de la Fig. 1.
Les zones marquees avec un chiffre ou une lettre correspondent aux llOeuds de la Fig. 1
marques par Ie meme symbole.

Fig. 2 N anolithographic ma8k u8ed for the implementation of the circuit of Fig. 1.

The areas marked with digit8 and letters corre8pond to the node8 in Fig. 1 marked

with the 8ame symbol8.

Fig. 3 Courant I dans Ie transistor SET en fonction du temps pour une tension U
constante. La temperature du porte-echantillon etait de 16 mK. La constante de
temps d'integration etait de de 1 ms. Les tensions Uo et V etaient ajustees pour
maximiser la sensibilite du transistor. Les tensions U1 , U2 et U3 etaient ajustees pour
maximiser Ia duree des crenaux presentes par Ie signal.

Fig. 9 SET transi8tor current I a8 a function of time. The voltage U was held constant.

The 8ample holder temperature was 16 mK. The integration time con8tant wa,~ 1 m8.

The voltages Uo and V were adjusted to maximize the SET transi8tor 8ensitivity. The

voltages U1, U2 and U3 were adju8ted to maximize the time between 8witching events.

Fig. 4 Charge de I'ile p, en unites de e, en fonction de la tension U pour une vitesse
de balayage (; = ±35 mVIs. Les autres conditions sont identiques it celles de la Fig.
3. Les fieches indiquent Ie sens de variation de U.

Fig. 4 L~land p charge, in units of e, as a function of voltage U for a sweep rate

U= ±35 mV/ s. Other conditions were as in Fig. 9. The arrows indicate the direction
in which U was ,~wept.
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5. Conclusion

The initial goal of this thesis work was to observe the quantization of the electric

charge in a solid state device and to detennine if this quantization pennits to transfer electrons

one by one with metrological accuracy.

Summary of results

We have demonstrated experimentally the quantization of the average charge on a

metallic electrode connected to an electron reservoir by a tunnel junction. By using a tunnel

junction of nanoscale dimensions we make the electrostatic energy of one excess electron in

the island, i.e. the metallic electrode, much larger than the characteristic energy of the thermal

fluctuations. We have shown that we can set the average number of excess electrons on the

island by an externally applied voltage. The measured variations of the island average charge

(macroscopic charge) as a function of this voltage show a staircase pattern and are in good

agreement with theoretical predictions taking into account thermal fluctuations. For a

superconducting island, our measurements of the macroscopic charge display an asymmetry

between the steps corresponding to an odd number of electrons on the island and the the steps

corresponding to an even number of electrons. The odd steps are shorter than the even steps.

We interpret this effect as a manifestation of electron pairing in the superconducting island.

From the steps asymmetry we deduced the free energy difference between the odd states and

the even states of the island and we have found a very good agreement between the

experimental results and our theoretical calculations. Finally, below a threshold temperature,

we have observed that odd steps disappear leading to a strict 2e-quantization of the

macroscopic charge.

The island of electron box experiments appears as the basic element of the design of

single electron devices based on macroscopic charge quantization. We have shown that an

electron pump device with four islands can theoretically achieve a metrological accuracy of the

charge transfer. This analysis is based on a nondivergent expression of high order tunneling

(co-tunneling) rates across linear arrays of junctions which we have calculated. Finally, we
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have perfonned a measurement of the instantaneous charge of an electrode connected to an

electron reservoir by four tunnel junctions in series. In this device, the charge transfer results

from co-tunneling processes whose rates are so low that individual tunnel events can be

resolved. However, the measured rates are several orders of magnitude higher than expected.

Problems encountered

The influence of the junction tunnel resistance on the macroscopic charge quantization

has not been investigated. The observation of the quantum fluctuations of the island charge due

to tunneling itself as described in section 2.1.3 would require values of tunnel resistance lower

than achievable with our present technique (- 10 kQ). Thus, at the temperature of our

experiment, we cannot discriminate the effects of thennal fluctuations and the effect of

quantum fluctuations. The temperature dependence of the Coulomb staircase at temperature

lower than 30 mK and the high cotunneling rate which we have observed in the four junctions

box experiment are still unexplained. These problems could be related to the problem of

thermal noise fIltering. As shown in Sec. 2.1.4, thennal noise at high frequencies coming from

part of the circuit at high temperature can indeed activate unwanted tunnel events. Another

explanation of the noise problem is the possibility of an intrisic noise coming from the substrate

which may contain long lived excited states. The anomalous cotunneling rate across a linear

array of junctions (see Sec. 4.2.1) has been observed in several circuits [1,2]. This phenomenon

is of crucial importance because it increases the error rate of the devices that transfer electrons

one by one and it could severely jeopardize the use of such devices in metrological

applications.

Provided the charging energy Ee is smaller than the superconducting gap Ii, the main

drawback which can prevent the observation of 2e-quantization of the macroscopic charge is

the presence of single quasiparticle state inside the energy gap of the superconducting island.

We may have met this type of defect in the fIrst nonnal/superconducting electron box

experiment (see Sec. 3.2.1). In this experiment, the odd-even free energy difference as a

function of the temperature is well fItted below 50 mK if one adds to the continuous BCS

density of states a single, two-fold degenerate, quasiparticle state at O. 81i. In an other
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experiment performed with a completely superconducting electron box, the staircase

asymmetry increased with decreasing temperature only at high temperature. Below 100 mK,

we have observed that the odd-even free energy difference of the island remained constant at a

value corresponding to a single quasiparticle state with energy equal to 0.28,1. The origin of

these quasiparticle states inside the gap is still unknown and their presence is not controlled

experimentally.

One must now mention the problem of offset charges. As described in appendix 1, the

total energy of a circuit made of small tunnel junctions depends on the charge on the islands.

Hence, the presence of random offset charges which could be trapped in the substrate or in the

oxyde barrier of the junctions affects the tunneling rate across each junction of the circuit and

implies the fabrication of a gate electrode for each island. These offset charges prevent to

design circuits which require the precise control of the charge on a large number of islands. In

particular, it makes impossible to parallelise transfer devices like the electron pump. This

problem and the problem of the co-tunneling rate may be connected: the displacement of those

charges responsible for offset charges is perhaps the source of noise explaining anomalous

cotunneling rates [3].

Possible extensions of these experiments

A possible extension of these experiments would be to use for the island a

superconducting material different from aluminum like niobium or high-Tc materials. If the

BCS energy gap is larger than in aluminum then the 2e-quantization domain is extended and

the effect of a single quasiparticle state is less important. Since the normal/superconducting

box provides a precise measurement of the excitation spectrum of the island, one may in

principle investigate the complex form of the density of states of high-Tc superconductors or

other exotic superconductors. This experiment would imply of course the fabrication of

nanoscale tunnel junctions between metal and the high-Tc material and the control of the

spatial orientation of the insulating barrier.

The possibility of controlling the number of Cooper pairs on a superconducting island

open the field for experiments taking advantage of both charge quantization and Josephson
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coupling. One of them is the superconducting single electron transistor [4] consisting of two

small Josephson junctions in series. The maximum value of the supercurrent flowing through

the device is modulated by the charge induced on the central island and that modulation

depends on the parity of the total number of electrons in the island. As we have shown in Sec.

2.3.3, the superconducting electron box with a Josephson junction could constitute an

experiment on macroscopic quantum coherence (MQC) [5]. Here the macroscopic degree of

freedom involved in the MQC would be the charge on the island and the coupling is due to

electron tunneling through the Josephson junction. By using two Josephson junctions in

parallel instead of one, the Josephson coupling between the charge state of the system can even

be modulated by an externally applied magnetic field. By means of this modulation, one could

investigate the effect of dissipation due to the electromagnetic environment.
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APPENDIX 1

TOTAL ENERGY OF A GENERAL TUNNEL JUNCTION CIRCUIT

The most general tunnel junction circuit of practical interest contains only tunnel

junctions with high tunnel resistance and pure capacitors. It is biased by voltage sources

connected between the nodes of the circuit and ground (see Fig. Ala). In the circuit, an

electrode which is connected at least to one tunnel junction while not being directly connected

to a voltage source is an "island" containing a well defmed number n of excess electrons. At a

given instant, the state of the circuit is completely described by its charge configuration given

by the set of the numbers of excess electrons on the islands {nl"'" nM} and by the set

{pM+l"'" Pp} of the numbers of electrons having passed through the voltage sources

connected to the junctions. These two sets which enter in the calculation of the total energy are

not always independent. In fact, the number of degrees of freedom of the circuit is equal to the

difference between the number of junctions and the number of closed loops formed by

junctions only. For instance, in the circuit of Fig. Ala, there are 6 junctions and I loop. The

number of degrees of freedom is thus equal to 5.

The circuit evolves in time by transitions from one charge configuration to another.

These transitions are induced by tunneling events (single or multiple) across the junctions of

the circuit. The single tunneling rate across a nanoscale junction is proportional to the

difference in the total energy of the circuit before and after the tunnel event. The rate of

multiple tunneling events (co-tunneling) involves higher powers of this energy difference [1].

We present here the calculation of the total energy for an arbitrary charge configuration.

In the calculation, electron tunneling is viewed as a purely random process which only

changes instantaneously the charge of the islands and has no dynamics of its own. Furthermore,

because there is no resistive element in the circuit, the charges on the pure capacitors and on

the capacitances of the junctions relax instantaneously after a tunnel event. This is why the

total energy involved in the tunneling rate calculation is only the sum of the electrostatic

energy stored in the circuit and the work done by the voltage sources, with the junctions

described as simple capacitors [2].
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Fig. AI. a) Example of a circuit consisting of tunnel junctions (rectangular boxes) and

capacitances biased by voltage sources. The numbers n1 to n4 denote the numbers of excess

electrons on the islands, the number Ps and P6 denote the number of electrons which have

passed through the voltage sources Vs and v6' b) Network of capacitances with mixed

constraints equivalent to the circuit represented in a). This network has 9 nodes. The nodes

depicted by open dots (1 to 4) correspond to the islands, the nodes depicted by gray dots (5 to

6) are between voltage source nodes and junctions and the nodes depicted by solid dots (7 to

9) are between voltage sources node and pure capacitors.
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It is useful to represent the circuit as a network of capacitances with mixed constraints

(see Fig. Alb). We have to distinguish three sets of nodes in such a network. The fIrst one is

the set of nodes corresponding to the islands of the circuit (open dots) which are labeled from

1 to M. For a given configuration, their charge qa = -nae is known but their potential va

depends on the electrostatic state of the whole circuit. The second set consists of the nodes

between a voltage source and a junction (gray dots). These nodes, which are labeled from

M +1 to P, have a known potential vi and a known number Pi of electrons which have passed

through it but their charge is a priory unknown. We consider that an electron has passed

through voltage source i if it has tunneled through a junction directly connected to the source.

The number Pi increases (decreases), when one electron passes through voltage source i in the

sense of the decreasing (increasing) potentials. Finally the third set consists of the nodes

between a voltage source and a pure capacitors (solid dots). For these nodes, which are labeled

from P +1 to N, only the potential is known. In the following calculation, we will call I the set

of the islands nodes, S the set of all the voltage source nodes and J the subset of S

corresponding to the nodes between a junction and a voltage source.

For a general network of capacitances, there is a matrix relation which links the vector

q whose elements are the charges of the nodes to the vector v whose elements are the

potentials of the nodes:

q =Cv.

The capacitance matrix eof the network is a N x N matrix whose elements are given by

(1)

(2)

where Ck1 is the direct capacitance between node k and node I. When applied to island ex, Eq.

(1) gives the following relation between the charge qa of the island and the potentials of all the

nodes:

qa =Iea~v~ + Iea.jVi .
~EI iES
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We can rewrite this expression as:

where

qa +qa = ICapvp ,
pEl

q- =~c 'V'a .L.JWI
jES

(4)

(5)

is an effective bias charge applied on the island a and where C is the submatrix of e which

involves the set I of the island nodes only. The matrix C is a M x M matrix such that

(6)

The matrix Cof the island network has an inverse C-1 and we can write the inverse of relation

(4):

va = IC;;:~(qy +qy) .
yEI

(7)

The total energy E of the network, which we want to calculate, is obtained by summing the

electrostatic energy Ee1ec stored in the circuit and the work done by the voltage sources Es '

Expressed in terms of the capacitances and the nodes potentials, Eelec takes the following form:

(8)

Since for a given charge configuration, we do not know the island potentials Va but only the

island charges qa' we now need to express the electrostatic energy Eelec as a function of the

charges qa' This can be done using the inverse matrix relation (7). From (7) and (8) we get for

the electrostatic energy stored in the circuit:

Ee1ec =.!. IIcaPIc;;:~(qy+qJIc~(ql1+ql1)+.!. ICijVjVj- Iqava
2 aElpEI yEI TJEI 2 j,jES aEI

=.!. IC~(qy+qy)(qTJ+qTJ)+.!. ICijVjVj- Iqava'
2 y,l1EI 2 j,jES aEI
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The work Es done by the voltage sources is given by

(10)

In this expression, the fIrst term represents the work for charging the capacitances directly

connected to the voltage sources and the second term represents the work for furnishing

electrons which have been injected in the islands through the junctions. The total energy of the

network can then be expressed as

Since we usually want to compare the energies of different charge confIgurations for the same

values of the applied voltages, we are interested in the difference between E and the total

energy of the confIguration with no electrons on the island and no electrons having passed

through the voltage sources. We obtain the following result:

We now apply this calculation to three simple examples:

The Single-Electron Box (Fig. A2)

In the case of the single-electron box there is only one island in the network. This island

is connected to a voltage source U through a capacitance Cs and to the ground through the

junction capacitance C. Therefore the matrix C of the circuit has only one element

ell = C+Cs ' We denote by n the number of excess electrons on the island, there is only one

bias charge given by ij =CsU. The energy of the single-electron box circuit directly follows

from (11):

(13)

We usually consider only the fIrst term of this energy, which is useful for the calculation of the

average charge in the junction:
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(14)

The Single-Electron Transistor (Fig. A3)

Like the electron box, the single-electron transistor [3] has only one island, whose

number of excess electrons is denoted by n. The matrix C is given by ell = C1 +C2 +Cg' The

direct capacitance between the island and the voltage sources V and Uo are C1 and Cg

respectively. The number of electrons which have passed to V is denoted by p and the bias

charge of the island is q=C1V +CgUo. The total energy is:

(15)

The N junction pump (Fig. A4)

The N junction pump consists of a linear array of N identical junctions [4], and has

N -1 islands. Each island is connected to a gate voltage source through a capacitor of

negligible capacitance and the whole circuit is biased with a voltage source V. The charge

configuration is completely described by the number p of electrons having passed through the

voltage source and the set {n1,"" nN-1} of the numbers of excess electrons on the islands. The

transfer of one charge across the whole array is achieved by N successive single tunnel events

across each junction. After i tunnel events in the transfer sequence, the circuit is in an

intermediate state given by {O... O,ni =1,0... 0} and p =O. For simplicity, we will calculate the

energy of such a state with one excess electrons on island i when there is no gate voltages

applied. For this charge configuration, Eq. (12) gives:

({ } ) ( ) 1 --1 2 --1
E O... O,nj =1,0... 0 ,{o} -E {O},{O} = Ej = 2 Cj,j e -Cj ,N_1eCV (16)

- -
If we neglect the gate capacitances, the matrix C is given by C = CJN-I where J N-1 takes the

following form:
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c
n

Fig. A2. The single electron box circuit is the simplest circuit containing one island and

consists ofa tunnel junction and a capacitor placed in series. The voltage source is connected

to the capacitor. The only degree offreedom is the number n ofexcess electrons on the island.

n

Fig. A3. The single-electron transistor (SET) has one island and two degrees offreedom: the

number n ofexcess electrons on the island, as in the electron box, and also the number p of

electrons which have passed through the voltage source V.

N
.-.---------------/"'........._-----------.....~ .......

c c

Fig. A4 Circuit schematic of the N-pump. We assume that the capacitance Cg ofthe gates is

much smaller than the junction capacitance C.
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N-1
A

2 -1 0

-1

I N- 1 = 0

One can show that det J N-1 = N and obtain:

--1 _ 1 detJ j _ 1 detJN_1_j _ i(N - j)
Co· -- ----

I.} C detJ N_1 NC'

We finally deduce the energy Ej of the N junction pump after i tunnel events:

(17)

(18)

(19)

Ideal pumping of electrons would be achieved in the N junction pump by applying successive

triangular voltage pulses to the islands through the gate capacitors [5]. In that case, when the

gate charge of island k is not zero, it evolves in time in such a way that ih + iik+1 = e. Similar

calculations can be done in order to obtain the energy difference Ej in that particular case.
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APPENDIX 2

FABRICATION OF THE SUPERCONDUCTING/NORMAL

TUNNEL JUNCTIONS

Electron box experiments require the use of ultrasmall tunnel junctions with nanometric

dimensions. In our samples, such junctions were fabricated by the overlap of two metallic thin

films evaporated at two different angles through a suspended mask [1,2]. We describe here the

particular technique which we have used to fabricate superconductinglnormal tunnel junctions.

The fIrst samples of electron box circuit were fabricated using a metallic suspended

mask made out of Germanium [3,4]. The fabrication of such a mask involves depositing three

layers on the substrate: an underlying PMMA (polymethyl Methacrylate) resist layer, a thin

germanium film, and a top PMMA layer. The circuit pattern was fIrst defmed on the top

PMMA layer by electron beam lithography. It was then transferred to the Ge layer by a non­

isotropic reactive ion etch. Finally the suspended mask was obtained by an isotropic etch of the

bottom PMMA layer. For the fabrication of the normal/superconducting box circuit we have

used a fabrication technique which only requires two layers of resist. The spinning of the two

resist layers is done following the method of Courtois at CRTBT [5]. The principle of junction

fabrication is the same but the suspended mask is directly obtained with the top layer of

PMMA.

In our "bilayer", the underlying resist layer is made of PMMA/MAA copolymer resist

grade 1660098 solved at 70gll in 2-ethoxyethanol. The top layer is made of PMMA

(polymethyl Methacrylate) Homopolymer WT 950000 solved at 15g1l in chlorobenzene (Fig.

A5a). Just before spinning the resist, we fIlter it in a 5.0 ~m MILLIPORE fIlter. The support

layer is spun at a speed set between 850 rpm and 1000 rpm, yielding a film with measured

thickness between 650 nrn and 330 nm. After exposure (Fig A5b), the sample is irnmediatly

developed in a solution of MIBK(I) Propanol-2(3) for 40 seconds at 20°C. The development

plays a double role: it precisely reproduces the pattern on the top PMMA layer by removing

the exposed areas and simultaneously removes the bottom resist layer around the openings in

the top mask yielding an undercut mask profIle. Therefore, only the narrow lines of the mask

163



1111 1111
PMMA

PMMAIMAA

a) e-beam
exposure

\ \ \ \
o

c) first evaporation
ex: AI

j, j, j, j,
o

e) second
evaporation
ex:Cu

o

b) development

o

d) oxidation

f) lift-off

Fig. AS Successive fabrication steps ofa tunnel junction using a bilayer resist and the shadow

mask evaporation technique.

164



h

- -

--

-8 1+8
'it

\ 0 /

\1/

¥---
/'\

/ I \
/ i \

/ ' \
/ I \,

/ I \
/ \

< >
w =2h tan8

_. MASK

_. SUBSTRATE

Fig. A6 Schematic view of the offset between the two images of the suspended mask obtained

after a double angle evaporation at angle -8 and +8.

COUNTER ELECTRODE

JUNCTION

BOTTOM
ELECTRODE

Fig A7 Fabrication of a junction by the shadow mask evaporation technique. The junction is

obtained at the overlap between the two metallic films produced by two evaporations over a

suspended bridge.
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become completely suspended over the substrate, while the other non-exposed parts of the top

PMMA layer remain supported by the underlying PMMA/MAA layer (see Fig. A5c). The main

benefit of the bilayer process is to suppress the etch step of the Ge layer. It allows a better

resolution of the final mask since there is no longer a transfer of the pattern from the resist to

the Ge layer. It suppresses also the eventual residues which can be deposited on the Si

substrate by etching a metallic film and which can prevent from forming reliable oxyde barriers.

However, one has to take into account two undesirable effects: i) on a bilayer resist, the

electron beam exposure is non local, ii) the PMMA suspended mask is not so stiff as a metallic

mask.

The substrate is an oxidized 2-inch silicon wafer (PURE-SIL, diam 2", thick 275 +/­

25, class prime, dope boron, +5000 A oxyde). After having been covered by the two layers of

resist, the wafer is cut in 9mm x 9mm chips. Electron beam exposure is done with a modified

JEOL 840A scanning electron microscope (SEM). Electrons are accelerated at 35 kV and the

standard charge dose is 2 pC / ~m2. The beam blanker and the deviation of the electron beam

of the microscope are controlled with a Hewlett-Packard HP 1000 computer through digital­

analog converters. The whole pattern, from the submicron junctions until the millimeter size

pads, is written by the electron beam of the SEM in four successive magnification steps. The

pattern of the mask is generated from a source file by a custom computer program already

described by Pothier [3].

In the shadow mask evaporation technique [1], the offset w between two images of the

suspended mask, evaporated respectively at -8 and +8 from the normal incidence, is given by

w = 2h tan 8 where h is the height of the mask over the substrate (Fig. A6). Typically in our

samples, h::= 500 nm, 8::= 15°, and w never exceeds 200 nm. Therefore, for large scale pattern

(> 10 ~m), the offset is irrelevant and the result of the evaporation can be considered as a

metallic picture of the pattern. At smaller scales, however, the offset becomes relevant. After a

double evaporation over a suspended bridge of width d, one obtains under the bridge an

overlap region of width w - d .

We deposit metallic thin fIlms with an electron gun evaporator. The sample orientation

is controlled by the use of a rotating sample holder. We first deposit 30 nm of aluminum
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Fig. A8 Scanning electron microscope photograph of an electron box circuit. Light gray

areas correspond to copper covered swfaces and dark gray areas to aluminum covered

surfaces. The grain is due to the thin film of gold deposited on the sample in order to enhance

the contrast of the photograph. The tunnel junction corresponds to the triangular white dot.

The island of the box consists of the single horizontal metallic strip. Note that there is no

contact between the two images of the island resulting from the two successive evaporations.
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(99.999 % pure) at 1.0 nm/s at an angle -8 relative to nonnal incidence (Fig. A5d). The

evaporation angle is adjusted to take into account the thickness of the underlying resist layer.

Typically, this angle is set between 11° and 19°. During the evaporation, the pressure does not

go above 2.10-6 mb. The superconducting electrode of the junction and hence the

superconducting island of the box is obtained with this aluminum evaporation. Aluminum can

be evaporated at a temperature such that the resist mask is not damaged and can be still used

for a second evaporation. A reliable insulating barrier is produced by oxidizing the surface of

the aluminum. For that purpose, we introduce few mb of oxygen in the vacuum chamber

during 3 rnn (Fig. A5e). Depending on the required tunnel resistance, the oxygen pressure is

set between 0.5 and 5 mb. Then we deposit 50 nm of copper (99.99 % pure) alloyed with 3 %

in weight of aluminum [6] with the same conditions as for the fIrst metallic layer but with an

opposite evaporation angle +8 (Fig. A5f). The superconductinglnonnal tunnel junction is

fonned by the overlap of the oxidized aluminum and the copper (see Fig. A7). By varying the

angle 8 , the width d of the bridge, and the length of the overlap, one can adjust the area of the

junction. Areas smaller than 100 nm x 100 nm and tunnel resistances between 25 kil and 300

kil are commonly obtained. A scanning electron microscope photograph of a

nonnaVsuperconducting electron box circuit is shown on Fig. A8.

Finally, the resist is lifted-off by placing the sample in a bath of acetone at 50°C for 10

minutes. Immediatly after the lift-off, the junctions are tested at room temperature. In order to

measure its tunnel resistance, the circuit is shunted by a high impedance variable resistor and

connected to a multimeter by 1 Mil resistors.
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Superconducting/Normal Tunnel Junctions Bilayer Processing Sequence:

(1) Substrate

2-inch oxidized silicon wafer.

(2) Resist deposition:

First layer: PMMA\MAA, 70gll in 2-ethoxyethanol, filtered.

spin at 850-1200 rpm (depending on the thickness required) for 60 s.

bake on an hot plate for 15 mn at T =160 ° C.

Second layer: PMMA (950 K), 15 gil in chlorobenzene, filtered.

spin at 1000 rpm for 60 s.

bake on an hot plate for 15 mn at T = 160 ° C.

(3) Electron beam exposure

Electrons accelerated by a voltage of 35 kV, standard dose 2 pC / Ilm2.

(4) Chemical development

Develop for 40 s in a solution of 1:3 MIBK:Propanol-2 at T =20°C.

Rinse in Propanol-2.

(5) First evaporation

Deposit 30 nm Al at 1.0 nm/s, P = 10-6 mb, at an angle 10°< 8 < 20° from nonnal

incidence.

(6) Oxidation

Introduce 0.5 to 5 mb of oxygen in the vacuum chamber for 3 mn.

(7) Second evaporation

Deposit 50 nm CuAI (3% in weight) at 1.0 nm/s, P = 10-6 mb, at an angle -8.

(8) Lift off

Immerse substrate in acetone at T = 50° C for 10 mn.
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APPENDIX 3

THE SINGLE ELECTRON TRANSISTOR

The SET electrometer

The single-electron transistor (SET) [1] is a device based on ultrasmall tunnel junctions

which we have used as an electrometer in order to measure the variations of the island charge

of the electron box circuits. The SET consists of two tunnel junctions of capacitances C1 and

C2 placed in series and biased with a voltage source V. The central island delimited by the two

junctions is also connected to a gate voltage Uo through a capacitor Cg (Fig. A3).

We have described the principle of the SET electrometer in Sec. 4.2.1. The state of this

device is described by the number n of excess electrons on the island and by the number p of

electrons having passed through the voltage source V. The total electrostatic energy of the

device is E = (ne-C1V -CgUO)2 /2Cf. - C1V
2/2-CgU6 /2- peV (see appendix 1), where Cf.

is the total capacitance of the island of the SET. At T = 0 and V> 0, the conduction through

each junction of the SET is blocked if the total energy of the two states (n = -1,p = +1) and

(n = 1,p = 0) is greater than the energy of the initial state (n = O,p = 0). The current-voltage

characteristic of the SET exhibits thus a voltage gap depending on the induced gate charge

CgUo. For a given value of the bias voltage V, the current I through the device as a function of

CgUo is an e-periodic modulation. Since a small amount of the induced charge, smaller than

the charge quantum e, results in a variation of the current I, the SET can be used as an

electrometer [2].

The behavior of the SET electrometer has been much investigated both experimentally

[1,3,4,5,6] and theoretically [7,8,9,2,10]. The experimentals values of the capacitances and

tunnel resistances of the junctions can be deduced from the measurements of the current-

voltage characteristics of the device. The voltage gap of the I-V characteristic of the single­

electron transistor can be predicted, at T = 0, by considering the stability diagram of the

charge state (n = O,p = 0) of the system as a function of the bias voltage V and the gate charge

CgUo. When V> 0, the boundary of the stability domain of the state (n =O,p =0) are thus

given by the two equations -(Cf. -C1)V +e/2+CgUo =0 and -C2V +e/2-CgUo =O. These
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two equations are sufficient since the stability diagram is e-periodic in CgUo and symmetric

with the bias voltage V. The stability diagram of the SET is shown on Fig. A9a. One can

distinguish two types of I-V characteristics depending on the gate charge CgUo: maximum

voltage gap characteristic when - eCg/ 2(Cg+C2 ) mod e < CgUO <+eCg/ 2(Cg+C2 ) mod e

and reduced voltage gap characteristic when eCg/ 2(Cg+C2 ) mod e < CgUO < el2 mod e. The

two quantities Ci - C1 and Cz can be inferred from measurements of the voltage gap of the I­

V characteristic at the lowest temperature. The sum R1+ Rz can be inferred from the

measurement of the I-V characteristic at large voltages.

In our norrnaVsuperconducting electron box experiment, the SET electrometer is made

with norrnaVsuperconducting junctions and its island is superconducting. For the states

(n = 1,p = +1) and (n = -l,p = 0) with an odd number of electrons on the island we now must

add the energy f!. of a quasiparticle inside the superconducting island (see Sec. 2.2.1) to the

electrostatic energy of the circuit. Hence, the boundary of the stability domain of the SET are

build with the two following equations: -(Ci-Cl)V+eI2-Cif!./e+CgVg=0 and

-C2V +el2 +Cif!./e - CgVg = 0 (see Fig. A9b). From the measurements of the voltage gap of

the I-V characteristic one can extract the capacitances of the junction but also the value of the

superconducting gap f!. of the island.

Measurement of the island charge

Practically, the SET electrometer is fabricated in situ at the same time as the electron

box and its central island is coupled to the island of the electron box circuit by a capacitor of

capacitance Cc (see Sec 3.1.1,3.2.1 and Fig. A10).

The chip on which the experimental circuit has been fabricated is glued on a copper

sample holder thermally anchored to the mixing chamber of a dilution refrigerator. The

contacts between the measurement wires and the circuit pads are done with silver paint. The

voltage bias of the electrometer is provided by a voltage dividing bridge. The current I through

the electrometer is measured from the voltage drop across a resistor of 12.07 Mil placed in

series with the device. This resistor and the resistor providing the voltage bias are mounted at
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Fig. A9 Stability diagram of the single-electron transistor as a function of the bias voltage V

and the induced gate charge CgUo. Only the cell corresponding to the state n = 0 is

completely represented and we have assumed that Ci - C1 > C2 . The horizontal dotted lines

delimit different regimes of the I-V characteristic of the SET depending on CgUo. a) Single­

electron transistor in the normal state. b) Normallsuperconducting/normal single-electron

transistor. The energy gap of the superconducting island of the SET is denoted by ~.
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Fig. AlO Schematic of the experimental set up. The capacitance eet is the cross-talk parasitic

capacitance coupling the electron box voltage line and the island of the electrometer. The

dashed lines represent the intermediate shielding stages. The values in dB's refer to

commercial microwave attenuators. The symbols F and P indicate respectively resistive film

microwave filters and powder microwave filters described by Pothier [11J. A feed-back loop

ensures that the current through the electrometer remains equal to a constant value set by Uf .

The voltages U and Uo implement the corresponding voltages of Fig. 1 in paper 2 (Sec.

3.2.1) while Uv sets the value of the transport voltage V in the samefigure.
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the lowest temperature stage of the experiment and this circuitry is shielded in a closed copper

box. The sample is placed at the center of a superconducting magnet which can produce a

magnetic field of 1 T perpendicular to the surface of the sample. The experimental set-up is

described in Fig. Al O. The electrometer gate line and the electron box voltage line are coaxial

lines with fIlters depicted in Fig. Al O.

The average charge (Qe) induced on the coupling capacitor Ce is given by

(Qe)=Ce/Ci(-(n)e+CsU)+CetU, where Cel is the cross-talk capacitance which directly

couples the voltage U the to the island of the electrometer. A variation I1(Q) of the box island

charge (Q) = -(n)e yields a variation I1(Qe) = (Ce/Ci)I1(Q) of the gate induced charge of the

electrometer. The coupling coefficient Ce/Cf between the island of the box and the island of

the electrometer is determined from the curve which gives the electrometer current I versus the

electron box voltage U (Fig. 6 of Sec. 3.1.1). This curve presents a short-period sawtooth

modulation superimposed on a large-amplitude one. The former one arises from the discrete

variations of the island charge of the electron box and the latter one originates from the cross­

talk capacitance Cet which directly coupled the electrometer island to the voltage source U.

The period of the large-amplitude "cross-talk" modulation corresponds to a variation of the

charge induced on the electrometer island equal to e. On the other hand, each small-amplitude

events results from a variation of the charge induced on the electrometer equal to -(Ce/Ci)e

and is equivalent to a negative voltage offset of the large-amplitude modulation curve. The

coefficient Ce/Cf is thus given by the ratio of this voltage offset and the period of the "cross­

talk" modulation.

In order to measure the variations of the box island charge (Q) as a function of the

voltage U applied to the box, we have used two differents methods. In the former one which is

described in Sec. 3.1.1, we measured the variations of the current I through the electrometer

which are proportional to the variations of the island box charge.

In the latter method, used for the normaVsuperconducting electron box experiment

(Sec. 3.2.2), a feed-back loop acts on the electrometer gate line and maintains a constant

current through the electrometer. First the feed-back loop is open and by adjusting the

electrometer bias voltage V we maximize the amplitude of the current modulation as a function
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of the electrometer gate voltage Va. Then we switch the feed-back loop on and we set the

target current to the value corresponding to the maximum of aIlavo. Finally, we sweep the

voltage V applied on the electron box island and we record the voltage injected by the feed­

back loop in the electrometer gate line. The variations of this latter quantity are proportional to

the variations of the average charge (Qc ) induced on the coupling capacitance. Before

recording, we substract to the signal a linear term whose coefficient is adjusted in order to give

a signal with a staircase shape defmed by horizontal steps. If we have determined the coupling

coefficient CcICr. ' this measurement method does not require any other calibration and thus

one can directly compare experimental Coulomb staircases obtained at different temperatures

or at different values of the magnetic field.
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