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1. INTRODUCTION

The aim of this work is to demonstrate experimentally the quantization of the charge on
a metallic electrode connected to an electron reservoir by a tunnel junction and to show that
this phenomenon can be used to transfer electrons one by one from one electrode to another
with metrological accuracy.

From the famous Millikan's experiment performed in 1911 [1], we know that the
electrical charge on an isolated body is quantized. To demonstrate charge quantization,
Millikan used small charged oil droplets. The principle of the experiment was to measure the
speed of a single droplet in a gravitational field combined with a variable vertical electrical
field. These measurements give access to the mass and the charge of the oil droplet. Millikan
showed that this charge is an integer multiple of an elementary electrical charge,
e=1.610"° C. In his experiment, the charge carried by the oil dfoplets resulted from the
irradiation with o particles produced by a Radium source. Although the charge deposited on
the droplet was quantized, it was not controlled. Is it possible to transpose such an experiment
in a solid state device and, moreover, to control the stored charge with an externally applied
voltage?

Surprisingly, the discreteness of the charge carriers does not appear in the usual
behavior of electronic circuits. One may think the reason is that any electronic signal involves
too large a number of electrons but there is in fact a more profond reason: the conduction
electrons are delocalized and form a quantum fluid. To illustrate this effect, let us consider the
simple circuit consisted of a capacitor C, to which we apply a voltage U by perfect leads (see
Fig. 1.1a). The charge Q stored on the capacitor is equal to C,U and can be precisely adjusted
to any arbitrarily small value by varying the applied voltage. Although a charge is transferred
from the source to the surface of the capacitor plate, this quantity is a continuous variable. It
corresponds to the collective displacement of the charge carriers in the metal with respect to
the ionic background. Hence, the charge on the capacitor is not constrained to be an integer
number of electrons. The charge quantization can only appear if the circuit includes an isolated

piece of metal. This can be done by opening a switch placed between the voltage source and



the capacitor (see Fig. 1.1b). One of the capacitor plates is then disconnected from the circuit
and forms an isolated electrode. Like the oil droplet of the Millikan's experiment, this electrode
contains a well defined number of electrons and its total charge g is equal to an integer multiple
of the electron charge —e. As soon as one wants to change this charge, a difficulty arises. Since
there is no possibility to transfer electrons from the source to the isolated electrode, the charge
q remains constant and cannot be tuned subsequently with the applied voltage U. Obviously,
we can connect the switch again to modify g, but simultaneously, we will suppress the

quantization of the electrode charge.

+

Fig. 1.1 a) Capacitor connected to a voltage source. The charge Q =C,U on the capacitor
plate is not quantized. b) If one opens a switch between the voltage source and the capacitor,
the portion of the circuit inside the dashed line box contains a charge q which is quantized

but fixed.

How can we combine charge quantization and charge transfer? We certainly need a
more elaborate device than a usual switch. A highly resistive tunnel junctions provides a way to
maintain both the quantization of the electrode charge and the possibility to vary it.

A tunnel junction consists of two metallic electrodes separated by a thin insulating layer

(see Fig. 1.2). In such a device, the mechanism of conduction is the tunnel effect of electrons



through the insulating barrier. A tunnel junction is characterised by two parameters, its
capacitance C and its tunnel resistance R,. This latter quantity is determined experimentally by
the current / =V/R, which flows through the device when a voltage V is imposed to the
junction. The tunnel resistance is a phenomenological macroscopic parameter which depends
on the area and the thickness of the insulating layer. Although it has the dimension of a
resistance, R, does not correspond to any dissipative process like the resistance value in a
usual resistor. The tunnel resistance can be expressed through the relation R, 1= (2e2/h)N3 ,
where N is the number of conduction channels and J is the transmission coefficient of the
barrier for each channel, assumed to be independent of the channel index.

Elaborate theoretical considerations [2,3] show that if the junction tunnel resistance R,
is much larger than the resistance quantum Ry = h/ ¢* =25.8 kQ, electrons are localised on
either side of the insulating barrier and electron tunneling through the barrier is a stochastic
Poisson process with a rate given, at zero temperature, by AE/ R,e2 , where AE is the energy
difference before and after the tunnel event. Thus, provided R, >> Ry, the charge of an
isolated electrode connected to an external electron reservoir by such a tunnel junction will
remain quantized. Apart from its tunneling properties, the junction behaves like a capacitor
with a capacitance C.

Let us replace, in the simple circuit of Fig. 1.1b, the switch by a tunnel junction with a
tunnel resistance such that R, >> Ry . Therefore, we maintain the quantization of the charge of
the isolated electrode but the transfer of electrons from the voltage source is now allowed by
tunnel events across the junction. We have called "electron box" [4] this basic circuit consisting
of a tunnel junction and a capacitor placed in series with a voltage source (see Fig. 1.3). Since
the electrons can enter and leave the electrode formed between the junction and the capacitor,
this electrode is isolated in the sense that it is surrounded everywhere by insulating material.
We call "island" this particular kind of electrode for which the instantaneous charge only varies
by tunnel events and remains quantized in units of e.

Although the instantaneous number n of excess electrons on the island is quantized, the
average number (n) may vary smoothly with the gate voltage U. The really observable quantity

is the macroscopic charge of the island (—ne). If we want (n) itself to be quantized, we must



insulator

b) . .
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Fig 1.2 a) A tunnel junction consists of two metallic electrodes separated by a thin insulating
layer. b) In circuit schematics, a tunnel junction is represented by a double box symbol and

characterized by its tunnel resistance R, and its capacitance C.

Fig. 1.3 Circuit diagram of the electron box which consists of a tunnel junction and a
capacitor placed in series with a voltage source. The metallic electrode between the junction

and the capacitor forms an "island” which contains a well defined number of excess electrons.



suppress the thermal fluctuations of the island charge. The characteristic energy of the charge
quantization phenomenon is the charging energy E_ = e? / 2(C+ Cs) equal to the energy cost of
putting one excess electron in the island when there is no voltage applied. Charge quantization
requires that the charging energy E. is much larger than the characteristic energy kgT of the
thermal fluctuations where kg is the Boltzmann constant. The condition E, >>kgT ensures
that the thermal fluctuations of the island charge are negligible. A circuit temperature of about
T =30 mK is attainable with a dilution refrigerator. This implies that the island capacitance
Cisiana = C + C, must be lower than 1 fF to satisfy the latter inequality. Such low capacitance is
achieved by using tunnel junctions with a typical area of 100 nm X 100 nm. We have fabricated
this type of nanoscale junctions using a combination of electron beam lithography and shadow
evaporation through a suspended mask [5]. The junctions are located at the overlap between
two metallic thin films. A scanning electron microscope photograph of such a junction is
shown on Fig. 1.4. The bottom metallic electrode is made of aluminum, the insulating layer is
obtained by oxidizing the surface of the aluminum layer, and the top electrode is made either of
aluminum or copper alloyed with 3 % of aluminum in weight. We have thus fabricated two
different types of nanostructures: Al/AIOx/Al or Al/AIOx/Cu. To measure the charge
increment of the island, we have used a single-electron transistor [6] as an electrometer. This
device is fabricated together with the box and is capacitively coupled to the island of the box.
The coupling capacitance C, is sufficiently small not to affect the behavior of the single-
electron box and we assume that the temporal average charge #n measured by the electrometer
is equal to the thermal ensemble average ().

When plotted versus the gate voltage U, the average number (n) of excess electrons in
the island takes the form of a staircase: the "Coulomb staircase" depicted on Fig. 1.5. The
number of electrons adjusts itself to minimize the total energy of the circuit given by
E=E(n-CU /e)z. At T =0, the staircase steps are perfectly flat and each one corresponds
to a fixed number of electrons inside the island. At high temperature (kgT >> E_), one finds
(n) = C,U, the island macroscopic charge quantization is suppressed and the junction acts as a
short circuit. Note that the instantaneous charge of the island is still quantized; only the

average charge takes non integer values. At lower temperature (E, << kpgT), the staircase is



Fig. 1.4 Scanning electron microscope photograph of an aluminum/aluminum-oxidelcopper

tunnel junction.



just slightly rounded (see Fig. 1.5) and the central part of the steps corresponds to a well
defined number of electrons inside the island. The voltage required to inject one electron in the
island is equal to the period of the staircase given by ¢/C;. This latter quantity is in the mV
range for the gate capacitance C; of the order of 100 aF. Hence, provided E_ << kgT, one can
precisely control the number of electrons inside the island with a macroscopic voltage. We
have called this effect "macroscopic charge quantization" because the island charge is
distributed over a macroscopic number of atoms. It is important to note that unlike the usual
charge quantization of an isolated piece of matter, the macroscopic charge quantization defined
above is only exact in the limit T — 0, R,/Rg — oo. While the former limit corresponds to the
suppression of thermal fluctuations, the latter limit corresponds to the suppression of the
quantum fluctuations due to the tunnel process itself [3].

If we consider now a single-electron box with an island made of superconducting
material, the previous analysis must be modified since electrons are paired in a superconductor.
If we assume that the island is a perfect superconductor following the BCS theory [7], all the
electrons are paired and the energy cost of an unpaired electron is at least equal to the
superconducting energy gap A [8]. For A> E_ and at low temperature, electrons should be
transferred two by two from the electron reservoir into the superconducting island by creating
or suppressing Cooper pairs in the island. As we have shown, the superconducting electron
box indeed exhibits a 2e-quantization of the island charge [9]. In this regime, the height and the
length of the staircase steps are twice as large as in the non-superconducting case, as shown in
Fig. 1.6. However, if the charging energy E, is sufficiently large with respect to A, Cooper
pairs can be broken and electrons enter the island one by one [10]. In that case, we observe
that the staircase is asymmetric with long steps corresponding to the states with an even
number of electrons inside the island and short steps corresponding to an odd number of
electrons (see Fig. 1.6). This odd-even asymmetry [10,11,12] will persist when the temperature
is increased until the odd-even free energy difference D(T) vanishes. This quantity D(T)
depends strongly on the temperature through the relation D(T) = A—kgTIn N +O(T2) [11]
where N is the effective number of states available for excitations in the island. From the

staircase asymmetry we can measure the odd-even free energy difference [10]. In this regime,
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Fig. 1.5 a) Theoretical variations of the average number (n) of excess electrons in the island
of the electron box as a function of the reduced charge CU[e when T =0 (solid line), when
kpT|E, = 0.1 (thin line), and in the limit kT >> E, (dashed line).
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Fig. 1.5 b) Solid lines: experimental variations of the average number n of excess electrons in

in the island of an electron box. Dashed lines: theoretical calculations for an island

capacitance Cy =0.8 fF. The experimental parameters of the circuit are C; =74 aF and
C. =21 aF.The quantity Qy denotes the random offset charge in the island.
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Fig. 1.6 b) Experimental variations of the average number n of excess electrons in a
superconducting island at T =40 mK when A=0 (top), when AJE_.=0.83 (middle), and
when AJE_ =1.22 (bottom). For the sake of clarity, the two lowest curves have been shifted
vertically. The experiment is described in Sec. 3.2.2.



the island charge quantization provides an energy scale E, with which D(T) can be directly
compared. A similar effect arises if one depresses the superconducting gap A by applying a
magnetic field to the sample.

Finally, the electron box, which consists of one island, can be seen as the basic element
of more complex circuits which include several islands. In the charge transferring devices
[13,14] such as the "turnstile” [15] or the "electron pump" [16], gate voltages are used to
transfer electrons from an island to another in order to build a current electron by electron
which circulates in an external current-measuring apparatus. The electron pump circuit, for
example, can be described as two electron "boxes"” connnected through a third junction. For
this device, there is a two-dimensional stability diagram analogous to the Coulomb staircase of
the single-electron box [16]. As a current source, the electron pump is a potential candidate for
a current standard. However, higher order tunneling processes [17-22] can directly transfer a
single charge across two or more tunnel junctions although single electron tunneling across
each junction is forbidden. These processes, usually referred to as cotunneling processes,
reduce the accuracy of the electron pump and must be take into account to evaluate the

metrological applications of such a device [23-25].

In this work, we present experiments based on nanoscale tunnel junctions, which both
demonstrate that the macroscopic charge, i.e. the mean value of the total charge, of a metallic
electrode is quantized and that we are able to control this charge at the single-electron level. In
chapter 2, we review the theoretical foundations and the limits of the macroscopic charge
quantization. We present in chapter 3 experimental results on the electron box, both in the non-
superconducting and the superconducting state. Chapter 4 is devoted to the accuracy of the
charge transferring devices. We report experimental results performed on a four junctions
device and calculations of the transfer accuracy of the pump. Appendix 1 presents the
calculation of the total electrostatic energy of a general circuit consisting of junctions,
capacitances and voltage sources. The fabrication techniques of the superconducting/normal
tunnel junctions used in the superconducting electron box are described in appendix 2 and the

measurement device, the SET electrometer, is presented in appendix 3.
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2. Review of Theoretical Predictions on Macroscopic
Charge Quantization in the Single-Electron Box

In this chapter we review the theoretical predictions concerning macroscopic charge
quantization of a metallic island. We first treat the case of an electron box consisting only of
normal metal elements. We will afterwards treat the case of a box with a superconducting
island and a normal metal reservoir. Finally, we will treat the case where both the island and

the reservoir are superconducting.
2.1 The normal electron box.

2.1.1 The Coulomb staircase and the Coulomb sawtooth at T=0.

The electron box circuit consists of a small tunnel junction of capacitance C and a
capacitor C placed in series with a voltage source U (Fig. 2.1). The "island", which is the
metallic electrode common to the junction and the capacitor, is free to exchange electrons with
the charge reservoir consisting of the "lead", i.e. the electrode common to the junction and the
voltage source. Since the lead wave impedance Z, is much less than the resistance quantum
Ryg = h/ ¢* =25.8 kQ, the charge g of the island is the sole degree of freedom of the system
whose states can be indexed by the number n of excess electrons on the island [1]. For the
moment, we assume that the junction tunnel resistance R, is much larger than the resistance
quantum Ry . Under this condition, as we will see in Sec. 2.1.3, n is a good quantum number
[2,3].

At T =0, the charge ¢ =—ne is fixed and determined by the integer number n for
which the total energy of the circuit is minimal. The total energy of the electron box including

the work done by the voltage source is (see appendix 1):

1 (ne—CsU)2 c.U?
Etotalz— - .

1
2 C+C, 2 ™)

Since we want to compare the energy of the different n-states for a given value of the voltage

U, we can retain only the first term of the right hand side of Eq. (1) and define:

13



E,=E(n-CUJe)* . @)
Here, we have introduced the charging energy E, =e2/2CE, Cs =C+C; being the total
capacitance of the island. The quantity E, is the cost of putting one excess electron on the
island when U = 0. Expression (2) clearly shows that the minimum of E, corresponds to a
number n of excess electrons equal to the integer closest to C,U/e. Consequently, at T =0,
the equilibrium value of n as a function of C.U/e takes the form of a staircase function (Fig.
2.2b) which we have called the Coulomb staircase. We must mention that the expression
"Coulomb staircase" is also used [4,5] to denote the steplike structure in the current-voltage
characteristic of a double junction circuit. However, there is no conflict since both staircases
originate from the same basic effect.
We have plotted in Fig. 2.2a the energies E, versus C,U/e for different values of n.
They are represented by a set of parabolas, each parabola being shifted from its neighbors by 1
along the X axis. The system has in general a non-degenerate ground state, which fixes the
equilibrium value of n at T = 0, except when the two lowest n-states have the same energy E,,.
This latter situation corresponds to the crossings of parabolas and occurs for the half integer
values of the reduced variable C,U/e. At these threshold points, the ground state is degenerate
and transitions between the n-state and the (n+1)-state of the box can occur. Such a transition
corresponds to a single tunnel event across the junction, transferring one electron in or out the
island.
The charge Q on the junction capacitance, the charge O, on the capacitor C; and the

number #n of electrons stored in the island are related as follows:

0] =—€(—ne+CsU)
Cx

3
e ¢ 3)
Q,=—ne+—CU

G G
Let us examine the evolution of these three quantities as we sweep the voltage U (Fig. 2.3). At
U =0, the n =0 state is the ground state and the energy cost of one excess electron is exactly

equal to the charging energy E,.. Then, the energy difference between the n =0 state and the

n=1 state decreases with increasing U. At the same time, the charge Q on the junction

14



Fig. 2.1 Schematic of the single-electron box circuit consisting of a capacitor and a tunnel
Junction placed in series with a voltage source. The symbol in form of a double box represents
the tunnel junction. The part of circuit inside the dashed line is the "island” which contains a

number n of excess electrons.

¥ T

- —>
1 2 3 4 GUle

Fig. 2.2 a) Energy of the circuit versus C,U[e for several values of the number n of excess
electrons in the island. The charging energy E. is the electrostatic energy of one extra
electron in the island when CU [e = 0. The solid dots correspond to level crossings between
parabolas where one electron can tunnel into and out the island. b) The Coulomb staircase

which displays the equilibrium value of n as a function of CU [e.
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Fig. 2.3 Average value at T =0 of the number n of excess electrons in the island (top), of the
charge Q on the junction (middle) and of the charge Q, on the capacitor (bottom) versus

C,U [e. The bottom curve is plotted for C;[Cs =0.4.
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capacitance grows linearly with U. When CU /e =1/2, the two states n =0 and the n=1 have
the same energy and the transition n=0-—n=1 can occur. The charge of the electron
entering the island is distributed over the two capacitances C and C,. Thus, the charge Q on
the junction exhibits a negative jump equal to —e(C/ CZ) while the capacitor charge Q, exhibits
a positive jump equal to e(Cs /CE). After the transition, the n=1 state becomes the new
ground state and Q grows again from a negative value. The variations of the charge Q on the
junction as a function of the reduced variable C,U /e are periodic sawtooth oscillations: we call
them the Coulomb sawtooth.

The three discontinuous curves depicted in Fig. 2.3 are actually three different
manifestations of the same effect: the steplike variations of the equilibrium number of excess
electrons on the island. The charge increment is fixed by the charge quantum e and the

periodicity of the phenomenon is set by ¢/C; .

2.1.2 Macroscopic charge quantization at finite temperature.

According to the previous electrostatic calculation, the charge g on the island of the
electron box at T =0 is fixed when C,U/e #1/2mod1 and the steps of the resulting Coulomb
staircase are thus perfectly flat. The question now arises of the robustness of the steps to
thermal fluctuations of the island charge. At finite temperature, the system can be found in
excited states corresponding to the various n-states of the box. The quantity of interest is the
thermal average (q) = —(n)e, hereafter referred to as the "macroscopic" charge of the island.

Using expressions (2) and (3), the charge Q on the junction can be expressed as:

_ C 3E,
C, oU

0 4)

At finite temperature, this relation is transposed to average values. The average junction
charge (Q) and the free energy F are related by:

_CF
C,oU "’

(0) )

where F =—kpTInZ. Here T is the temperature of the system, kp is the Boltzmann constant

and Z is the partition function of the system given by:
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n=+oco

Z= Y exp(-E,/kgT). (6)

n=—oo

Combining Eq. (3) and Eq. (5), we can express the thermal average number (n) of excess

electrons in the island as:

kgT 9lnZ
2E, (CU/e)

(ny=CU/e+ )

This expression is particularly useful at high temperatures. For large values of the reduced
parameter 0 =kpT [E_, the series (6) does not converge numerically and one computes the

partition function Z using the following identity [6]:

n=—co p=1

Zzniwexp[ (n-cufe)’ fo]= \/_4: [1+2Zcos (2rpCU/e)exp(-0n2p?) | (®)

When 6 >>1, we can keep only the first term of the sum in the right hand side of Eq. (8). In

this limit, using Eq. (7) the average (n) is thus approximately given by:

(n)=C,U/e-2m0sin(2n CU Je)e®" . ©)

At low temperature, we have to go back to the definition of (n). We calculate directly the
Boltzmann average of the number n of excess electrons. Each n state is weighted by its

Boltzmann factor exp(~ E,, /kpT) and the average (n) is given by:

n=+eo
2 h CXp(— En /kBT)

(n) =225 . (10)
2 exp n /kBT

When 6 << 1, a useful approximation is obtained by keeping in Eq. (10) only the two terms
corresponding to the lowest energies. Within this approximation, if we consider C,U/e in the

neighborhood of m +1/2, one readily shows that {n) takes the form:

(n)= m+-;-{1+tanh[—(m+1/2—CSU/e)/e]} . an
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The two quantities (n) and (Q) are plotted versus CU /e in Fig. 2.4 for three different values
of the reduced parameter 6. A quantitative measurement of the effect of temperature on the
Coulomb staircase is its slope at the half integer values of C,U/e:
——M—(CSU/e=m+l/2)=—l— for 0 <<1
o(C,U/e) 20 (12)
=1+4n%0¢ for 9>>1.
These two expressions give the same value of the slope for 6 = 0.34216. Finally, in the limit
T — 0, we recover the perfect Coulomb staircase since Eq. (7) reduces to:

_CU Gy oE;
e Cee dU

(n) , (13)

where E refers to the ground state energy.

At high temperature, Eq. (9) shows that the quantization of the macroscopic charge
(q)=—-(n)e is completely suppressed. Although the instantaneous charge g remains always
quantized, the mean value (g) becomes equal to —C,U in the limit kgT >> E,. In that case, the
tunnel junction behaves as a short circuit and its average charge (Q) is zero. The macroscopic

charge quantization occurs in the opposite limit:

E.>>kpT . (14)
This condition ensures that the Coulomb staircase is just slightly rounded by thermal
fluctuations and that in the central part of the steps the mean value (n) remains equal to an
integer number (Fig. 2.4a).

Like the Coulomb staircase, the Coulomb sawtooth is also rounded at T # 0 and the
amplitude of the oscillations is less than (C/ Cz)e (Fig 2.4b). The Coulomb sawtooth is similar
but not identical to the single electron tunneling (SET) oscillations which are expected to occur
for a small tunnel junction biased with a perfect current source [7]. In that latter effect, the
voltage across the junction oscillates between +e/C and —¢/C at frequency f =1/e, where I is
the current applied to the junction. However, the Coulomb sawtooth arises from the
macroscopic charge quantization and is an equilibrium effect while the SET oscillations involve

a dynamic blockade of tunneling.
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Fig. 2.4 a) Average value (n) of the number of excess electrons in the island and b) average
charge (Q) on the junction versus CU [e for three different values of the reduced parameter
0 =kgT [E, . Note that when 8 =0.5 (dashed lines) the Coulomb staircase has been reduced
to an almost linear ramp while the modulation of the average junction charge {Q) is still

visible.
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Experimentally, a sample can be reliably cooled down to about 30 mK. It means that
the island capacitance Cy must be in the fF range to satisfy condition (14). This is achieved
using ultrasmall tunnel junctions with typical area of 100 nmx100 nm fabricated by
nanofabrication techniques. Since the capacitance C; can be made smaller than 1 {F, the period
e/C;of the Coulomb sawtooth will be a voltage (> 1 mV) sufficiently large to be easily
controlled. The experimental observation of the Coulomb sawtooth and its temperature
dependence are described in the next chapter (see section 3.1.1).

In summary, provided an adequate tunnel junction is used, the number of electrons
stored in the island does not fluctuate at low temperature and is entirely determined by the
externally applied voltage. The Coulomb staircase reveals the macroscopic charge quantization
arising from the electrostatic energy gap between the different » states of the island. At finite
temperature the aspect of the staircase depends on two external parameters: the capacitance C,
and the charging energy E,.. The former one determines the length of the steps of the staircase,

the latter one determines the sharpness of the charge jumps.

2.1.3 Quantum fluctuations of the island charge.

We now discuss the case where the transmission coefficient of the insulating barrier of
the junction is finite. The finite tunnel conductance of the junction, which has been neglected
so far, makes the island charge subject to quantum fluctuations. Even at T =0, the ground
state is not a pure n state and we expect the charge of the island not to be strictly quantized.
We shall now discuss the correction to the staircase dependence of the island charge on U and
treat the tunnel hamiltonian as a perturbation.

Quantum mechanically, the single electron box is described by the following
hamiltonian:

H=Hy+H,, (15)
where H describes the system in the absence of tunneling and H, is the perturbing tunnel
hamiltonian. The unperturbed hamiltonian H,, is given by

2
Hy = Ec(ﬁ~CgU/€) +ZskLaz.'LakL +ZakRaZRakR , (16)
kL kR
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where n is the operator associated with n the number of excess electrons stored in the island,
a;, and a; are the quasiparticle annihilation operator in the island and in the lead respectively,
€;, and g, being the kinetic energies of the quasiparticles measured from the Fermi energy.
Note that in Eq. (16) the a;'s are purely kinetic degrees of freedom while 5 is the sole
electrical degree of freedom. In the limit of large electrodes, n and the a,'s are independent. In
the one-dimensional model of the tunnel junction, the tunnel hamiltonian [8] H, is written:

H = Yta}a, e®+hec., a7
kL,kR

where ¢ is the matrix element which characterises the tunneling across the junction and
[S,ﬁ] =i. In Eq. (17) we have assumed that the tunnel matrix element ¢ is independent of the

energy of the ingoing and outgoing quasiparticle. One can show that the tunnel resistance R, of

the junction and the tunnel matrix element ¢ are related by

prprt® =Ry [(47°R,) (18)

where p; and pp are the density of states at the Fermi level on each side of the junction. Since
the pattern of the Coulomb staircase is periodic in C,U /e, we will restrict our calculation to
the range —1/2 < C,U /e <1/2, inside which the unperturbed ground state is given by n=0.

At the lowest order in H,, the n =0 state is coupled to the states n=1 and n=-1. The

corresponding corrections OE,, to the ground state energy take the form

= o0 2

I'prPr

SEﬂ =J‘ J dﬁLdER , (19)
0o Jo Eo—Ey —€ —€p

where E,, refers to the total electrostatic energy of the n =+1 state defined by Eq. (2). Using

(18) and making a change of variable € =¢; +£p, we get:

SE,; = —K J- £ e (20)
4T Rt 0 EO—Eil_e

Inserting this result in Eq. (13), we obtain the average number of excess electrons [9] in the

island:
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_ [2+cu/e
)= gln[l/Z—CsU/e] ’ @h

where g =Ry / 4m°R, . This expression diverges at C,U /e =+1/2.
Grabert [2] has calculated the correction to (n) up to second order in g and has
obtained:

12+CU /e

(ny=g [1/2 . ch/e}’ g2c,(CU/e)+0(g?) , 22)

where

- 41t2 2 1-2x _ 16(1+2x—2x2) _
e (x) = x( 3 1+2x) (3—2x)(1+2x)1n(1 2x)
(23)

(1 2 1-2x [ 3-2x 8(1-x) _ _ _
201 x)(ln 4_(l_—x)+2u2(4(1_x)) (1_2x)(3_2x)1n(4(1 x))) s.t.(=x).

Here s.1.(—x) refers to the same sum of terms with x replaced —x, and Li, = [§ dzIn (1-2z)/z.
For R, =0.5Rg, Grabert shows that the second order calculation is sufficient to describe the
variations of (n) in 98% of the interval —=1/2 < C.U/e <+1/2 (see Fig. 2.5b). At the threshold
values C,U /e =%1/2, the second order expression (22) diverges logarithmically like (21). In
order to remove the divergence, Matveev [3] has used an analogy with the Kondo problem and
has re-summed the most diverging logarithmic terms. Grabert has done a systematic

diagrammatic expansion and has obtained after re-summation for C,U fe — 1/2:

* *

_ —g Ind
(n)= IRy S G +0(9) , (24)

where the renormalized parameters g’k and & are given by g* = g[1+6g+0(g2)],
T = 6[1—ag+0(g2)], 0=12-CU/e,and a=-9.7726....

This calculation predicts that the island charge is not strictly quantized and varies
approximately linearly with the voltage U in the center of the flat part of the staircase. Fig. 2.5
shows the two effects of a finite tunneling conductance on the Coulomb staircase: a finite slope
in the middle of the steps and a weak rounding as C,U/e — +1/2. However, the slope at

C,U/e=11/2 remains infinite like in the R;/Rg — oo limit. We must mention that, using a
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Fig. 2.5 a) Average value (n) of the number of excess electrons in the island versus CU /e

calculated using Eq. (22) and Eq. (24) for three different values of the ratio R,[Rg . b)

Enlargement of the preceeding burve in the vicinity of CUJe=0.5 for R,/[Rg =0.5. The

solid line is the non divergent result, the dashed line is the first order calculation given by Eq.

(21) and the dotted line is the second order result given by Eq. (22).
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Fig. 2.6 Renormalized average number (n)* of excess electrons in the island as a function of

C,U/e calculated using Eq. (24) and Eq. (25) for three different values of the ratio R, [Ry .
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different approach, Zwerger [10] has predicted a finite slope of the staircase at C,U /e =*1/2,
in contradiction with the preceeding analysis.

A word of caution is necessary at this point. Because we cannot perform an absolute
measurement of the island charge, the curves plotted in Fig. 2.5 cannot be directly compared
with experimental results. The experiments are only sensitive to the relative variations of (n).
In Fig. 2.6, we have plotted the staircase calculated with (22) and (24) in a "canonical form",
i.e. with flat steps and normalized charge increment. This can be done by substracting the steps

slope and rescaling of the curve. We obtain for the renormalized average charge (n)*:

(n) = (n)—4g(CU/e)

- . (25)

The curves plotted in Fig. 2.6 show that, even for tunneling resistances of the order of Ry, the
charge quantization is experimentally a good approximation and that the charge jumps are
always well defined. Nevertheless, the effective incremental charge is always smaller than the
charge quantum. The reduction factor equal to (1—4g) can reach 10 % for R, = Rg. If we
assume that quantum and thermal fluctuations can be treated separately, the charging energy
which can be extracted from the staircase at finite temperature is only a renormalized quantity

E: given by:
E.=E.[(1-4g). (26)

Finally, we must mention that Biittiker et al. [11] have considered the quantum
corrections to the capacitance of a mesoscopic capacitor. They emphasize the fact that one
cannot describe a mesoscopic capacitor simply with its geometrical capacitance but that the
experimentally relevant capacitance is an electrochemical capacitance. This distinction is valid
only if the density of states of the capacitor plates are small compared to C, / ¢*, where C,
denotes the geometrical capacitance. However, for the typical dimensions of the metallic
islands used in electron box experiments, this condition is not satisfied and we can neglect the

corrections to the geometrical capacitances.
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2.1.4 Tunneling rate in the electron box.

In this section, we will calculate the tunneling rate across the junction of the electron
box, taking into account the effect of the electromagnetic environment [8,12].

In this approach, we include in the description of the circuit the impedance Z(®) which
models the electromagnetic environment of the electron box and which is placed in series with
the junction (see Fig. 2.7a). The impedance Z(w) takes into account the finite resistance of the
bias circuitry as well as radiation losses in the lead. The junction itself is represented by a pure
tunnel element in parallel with a capacitance C. The equivalent circuit seen by the pure tunnel
element is an effective voltage source V, 4 in series with an impedance Z,(w) (Fig 2.7b). The
effect of the environment on the tunneling rate is contained in the real part of the total
impedance Z, (®).

The total impedance Z,(®) can be described as a capacitance Cs =C+C; in series
with an impedance k2Z,() [13], where k = C,/Cy and Z,(0) = Z(@)[1+ jxCoZ(w)]™" (Fig
2.7c). If the low frequency behavior of the impedance Z(w) corresponds to that of a resistance
R, then lim ,_ o Z.(®w) =1im ,_,5 Z(w) = R. Denoting the junction temperature by T, the rate T

of a tunneling event across the junction is [8,12]

1 (" E
= P(AE-E)dE , 27
Re® J:, 1-exp[—E/ksT] ( ) @

where R, is the tunnel resistance of the junction, AE is the difference between the total energy
of the circuit before and after the tunneling event, and the function P(E) is the probability that
the tunneling electron creates an excitation of the electromagnetic environment with energy E.
The function P(E) is a functional of the real part of Z, (®).

If p electrons have already passed through the junction and if lim ,_,q Z(w) =R, the

energy difference AE associated with a tunneling event which increases p is

2
AE = xeU —(p+1/2) > . (28)
Cs
The function P(E) is given [8] by
00
P(E)= —l—jexp[J(t) +i Et/h]dr , (29)
2nh J_..
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Fig. 2.7 a) Schematic of the single-electron box circuit coupled to its electromagnetic
environment. The junction is represented by a pure capacitor of capacitance C in parallel
with a pure tunnel element of resistance R, symbolized by a double T. The electromagnetic
environment of the circuit is modeled by an impedance Z(®w) in series with the voltage
source. b) The circuit seen by the pure tunnel element is the total impedance Z,(w) in series
with an effective voltage source Vegr- © The total impedance Z,(w) can be described as a

capacitance C+Cj in series with an impedance ¥*Z_(w), where k =C, J(c+cy).
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where J() = ZJw@Eﬂ%&)ﬂ(coth(% ma)(cos wt —1)—isin u)t) . (30)

o @ K

In this expression B =1/kgT,, where T, is the temperature of the environment which
can be different from the temperature of the junction T involved in Eq. (27). Under common
experimental conditions, the real part of the environmental impedance Re[Z,(®)] is small
compared with the resistance quantum Ry, particularly in the electron box. This can be seen
from Re[Z,(w)]= x* Re[Z (w)]. Typically k <0.1, hence we can evaluate the function P(E)
by making a linear expansion of exp[J(¢)] in Eq. (29). At zero-th order in Re[Z (@)]/Rg,
P(E) reduces to a delta function 8(E) and the rate I is simply given by

1 AE

r= :
Re* 1—exp[—AE/kgT]

(31

Eq. (31) constitutes the so-called "global" rule formula of the tunneling rate [14]. The limit
P(E)=3(E) corresponds to an electron box completely decoupled from its electromagnetic
environment.

We now develop exp[J(r)] to first order in Re[Z,(®)]/Rg . The function P(E) can be

expanded as
1 (7
P(E) =—— | (1+J(r))exp[iE t/R]dt . (32)
2nh J_..
Rewriting Eq. (30) as
+o0 —iot
_ do Re[Z,(0)] e7 -1

we obtain

P(E) = 8(E)[1—2J (34)

-0

“+o0
do 1 2r(E/R) 1
—r1{® + 5
® ( )l—e'ﬁ"“’:l E 1-¢FF

where r(®) =Re[Z,(0)]/Rg . The first order expansion made in Eq. (32) is equivalent to
considering that a tunnel event can create or annihilate only one energy quantum in one of the

oscillators modelling the environment [12].
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If E>0 (E<0), the function P(E) given by Eq. (34) can thus be interpreted as the
probability for the environment to emit (absorb) one quantum of energy E (—FE). Introducing
the Bose factor n(w)= 1/[exp([3hco)—1] and the coupling coefficient c(w)=2r(w)/hw, one
can relate the function P(E) to the probabilities of emission or absorption of an energy
quantum hw. The probability P(A®) to emit one quantum of energy hw by a single tunneling
event is given by P(hw)=c(w)(n(w)+1). On the other hand, the probability P(~h®) to
absorb one quantum is given by P(-1w) = c(w)n(w).

We consider finally a general type of environment where the impedance Z(w) is a 1-
port network consisting of several impedances Z;(®), Z,(®),..., Z,,(®) at different
temperatures 1y, T,..., T,, (Fig 2.8a). We denote by q;(®) the attenuation coefficient of a
voltage source placed in the branch of the circuit which contains the impedance Z;(®w) and
measured at the port of the network. From circuit theory, a;(w) is also the attenuation
coefficient of a current source placed at the port of the network and measured in series with
the impedance Z;(w). The theory of networks only consisting of impedances yields the three

following relations:

2_0Z
Y%=z
{Z(w) =Y af (0)Z;(w) (35)

i=1

Re[Z(@)] =3 |a (@) Re]Z)(0)]
L i=1

The impedance Z (0)=Z(w)/[1+ jxCwZ(w)] and the impedances Z,(®) given by
Z(w) = Z;(0)/[1+ jxCoZ(w)] (Fig. 2.8b) obey the same set of relations as Z(w) and the
impedances Z;(w). Assuming that each impedance Z;(®) is at thermodynamic equilibrium at

T,-; we can generalize Eq. (34) to

P(E)= SE)[ J 22!0( >l22r(“’) jf?s,.hm}

+K2§| (E/7)|2 2! E/h) l_el-[},.E

(36)

where B; =1/kpT; and r;(w) = Re[Z,;(0)]/R .
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Fig 2.8 a) Schematic of a single-electron box circuit connected to an environmental
impedance Z(®) consisting of a 1-port network of impedances at different temperatures. b)
The impedance Z.(®) (see Fig. 2.7c) can be represented by m impedances at different
temperatures placed in series. The coefficient a;(®) is the attenuation of a current source

placed at the port of the network and measured in series with the impedance Z;().

Fig. 2.9 Example of an environmental impedance Z(®) consisted of two parts at temperature

T, and T,.
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At high positive energy (E>0) the spontaneous emission is the dominant decay
process and the effect of the temperatures 73, T»,..., Tp of the environment on the tunneling
rate is negligible. In that case, P(E) is well approximated by P(E) =~ k22 Re[ZC(E/h)]/ERK.
The situation is very different in the case of absorption processes (E <0) for which the
function P(E) and consequently the tunneling rate are strongly affected by the environmental
temperatures. In that case, one can regard each impedance Z_;(®) as a voltage noise source
[15] at temperature T;. The effect of the impedance Z_(®) is characterized by a spectrum

density of voltage noise S,;(®) such that P(E) can be expressed as:

_ o nja; (o) . 2% "!ai(E/h)lz _
P(E)—S(E)[l J K ; R’ S,i(0)w |+x % R £ Si(E/R), (37

—00

where

E

1-exp(-B;E) 9

Syi(E/h) =2/nRe[Z;(E/n)]

When E=-hw<0, the spectrum density of voltage noise S,;(E/h) is given by
S,i(—0) =2/nRe[Z,;(0)]n;(@)hw. Here n;(w) corresponds to the distribution of photons in
the impedance Z;(®) at temperature 7.

More generally, we can define a spectral density S, () for the whole environment
given by Sv(m)=2i‘a,~(w)|25v,-(m). Since the spectral density S,(w) is a sum involving
different temperatures it cannot be described by a constant equivalent noise temperature.

Finally combining Eq. (27) and Eq. (37) we obtain

v e (BT _ _—AEfkgT
r=—L ffEkTHJ RIS EMIAE-E 1=e " )ip|. @)
R 1-¢ /kp = E AE |- o (AE-E)/kgT

As an example, we consider the circuit depicted in Fig. 2.9. The environmental

impedance Z(w) is separated in two parts at temperatures 7; and 7, and is given by
Z(O.)) = a12R1 +G%R2 +a§R3 with a; =1, ay = R3/(R2 +R3) and a; = Rz/(Rz +R3). In the
center of a step at C,U /e =0, the ground state of the box corresponds to n =0 and the energy

difference with the first excited states n=1 and n=-1 is equal to —E_. A log-log plot of the
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Fig 2.10 Spectral density of the voltage noise as a function of the frequency calculated for the

circuit of Fig. 2.9,
Cs=C+C;=1{1F.

in the case where R =49Q, R,=1009Q, R3;=1Q and
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function S, (-®) is shown schematically in Fig. 2.10 when R, =49 Q, R, =100 Q, Ry =1 Q,
and Cs =1 fF for two cases 7} =T, =40 mK and 7; =40 mK << T, =4 K. When T} <<T,,
the dominant noise at frequency ®, =E,/h comes from the resistor R, at 7,. This off-
equilibrium tunneling rate calculation shows how crucial low temperature filtering is to prevent

the activation of tunnel events from parts of the measuring circuit at higher temperatures.

2. 2 The normal/superconducting electron box.

In this section, we consider the case of a superconducting electron box where the island
is made of a superconducting metal and connected to a non-superconducting lead through a
superconducting/normal tunnel junction. We can regard the island as a small piece of
superconductor free to exchange charges with an electron reservoir. According to the BCS
theory of superconductivity, electrons are paired in the ground state of a superconductor [16].
The pairing of electrons clearly breaks the invariance of the ground state with respect to the
parity of the total number N of conduction electrons. Since, in the island of the electron box,
this number N is fixed, we must distinguish two cases depending on the parity of N. If N is
even, all the electrons can be paired in the island and there is a unique superconducting ground
state. If N is odd, one electron should remain unpaired as a quasiparticule excitation with an
energy at least equal to the BCS energy gap A and the superconducting ground state is
degenerate. As pointed out by Averin and Nazarov [17], this odd-even asymmetry should
result in a parity dependence of the ground state energy of the box. We will discuss in this
section how the electron box experiment can reveal this odd-even asymmetry. We will also

show under which conditions the macroscopic charge on a superconductor is quantized in units

of 2e.
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2. 2. 1 Odd-even symmetry breaking and 2e-quantization in the
normal/superconducting electron box at T=0.

For the sake of simplicity, we first assume that the total number N of conduction
electrons in the island and the number n of excess electrons have the same parity. At T =0 and

in absence of magnetic field, the total energy E of the superconducting box is given by

E=E(n-CU/e)* +Dyp, , (40)

where Dy is the energy difference at T = 0 between the odd-n and the even-n ground states of
the system, and p,, = nmod 2. The first term in the right-hand side of Eq. (40) is the usual total
electrostatic energy E,, of the circuit of the non-superconducting case, hereafter referred to as
the normal case. The second term is a parity dependent energy which corresponds to the fact
that an unpaired electron must remain when the number of electrons stored in the island is odd.
If N and n have opposite parities, p,, is given by p, =(n+1)mod 2.

The BCS theory predicts that in zero field the excitation energy Dy is equal to A, the
superconducting energy gap of the island. Nevertheless, a finite magnetic field or the presence
of paramagnetic impurities inside the sample can induce pair-breaking effects [18]. As we shall
see in section 2.2.4, these effects modify the quasiparticles energy spectrum of a
superconductor. Thus the excitation energy D, involved in the ground state energy of the box
is not necessarily equal to the pair potential A in the superconducting island.

In Fig. 2.11, we plot the energy E versus C,U/e and we get a set of parabolas indexed
by n. The odd-n parabolas are shifted up with respect to the even-n parabolas by an amount
equal to Dy. Therefore, at T = 0, the energy cost of adding one extra electron in the island will
depend crucially on the relative magnitude of the charging energy E, and the excitation energy
gap Dy. Two cases must be distinguished:

i) When Dy < E_ (Fig. 2.11b), the incremental charge of the Coulomb staircase is still
equal to e but the even-n steps are longer than the odd-n steps. The experimental observation
of such an asymmetric staircase is reported in Sec. 3.2.1. In comparison with the normal case,
when U increases, it is now more "difficult” for the system to attain an odd-» state but "easier”

to leave it. If n is even, the energy cost of the addition of one electron in the island is the sum
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Fig 2.11 Energy of the normall/superconducting electron box as a function of CU e for
several values of the number n of excess electrons in the island when E_ > Dy (a) and when
E. <Dy (c). The black dots (a) correspond to level crossings where one electron tunnels into
and out of the island (b). The open dots (c) correspond to level crossings where two electrons

tunnel into the island to form a Cooper pair (d).
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of the electrostatic energy cost of one extra charge and the superconducting energy gap
required for creating one quasiparticle excitation. If n is odd, however, the energy cost of the
addition of one electron is the difference between the electrostatic energy cost of one extra
charge and the superconducting energy gap. From Eq. (40), the ratio between the excitation
energy Dy and the charging energy E_ can be expressed in terms of the length § of the odd-n

steps and the length L of the even-n steps of the staircase through the relation:

Dy/E, = (L=S)/(L+S5). @1)

ii) When Dy > E_ (Fig. 2.11c), the ground state of the island is always an even-n state,
the island can only contain an even number number of electrons. Consequently, the staircase is
symmetric with an incremental charge equal to 2e and the step length is twice as large as in the
normal case. The superconducting electron box is in the 2e-quantization regime. The direct
observation of the 2e-quantization of the incremental charge of a superconducting island is
described in Sec. 3.2.2.

When D, > E,, the transition which occurs between two even-n states of the island
involves the simultaneous tunneling of two electrons into the island which form a Cooper pair.
This mechanism, identical to the so-called Andreev reflection [19] of an electron into a hole, is
a second order process in the tunnel hamiltonian. The two-electron tunneling conductance Gyg
associated with this process has been calculated by Eiles et al. [20]. At CU/e=1, the
conductance Gyg of the normal/superconducting junction of the box is given by

Ry

=—2FK _f2(E ID,), 42
YT (E./Dy) (42)

Gns

where M ¢ is the number of effective conduction channels through the barrier of the junction,
R, is the normal state tunnel resistance of the junction and where
f(Ec/Do)=(2/n)arccos(—EC/D0)/\/1—(EC/DO)Z is a factor equal to f=1 in the limit
E, << Dy. Since R;/Rg >>1, the junction conductance is reduced in comparison with the
normal case but the time Gpg/C is still sufficiently short to ensure that the
normal/superconducting electron box stays in thermodynamic equilibrium under common

sweep rate conditions.
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2.2.2 Effect of finite temperature.

In practice, the Coulomb staircase is modified by the thermal fluctuations. As in the
normal case, thermal fluctuations can change the number of electrons in the island, but they can
also break Cooper pairs and create quasiparticle excitations in the island without changing the
total number of electrons. The different states of the island are now characterized not only by
the number n of excess electrons but also by the filling factors of the various quasiparticles
states of the island.

We will calculate the average number (n) using Eq. (7). When the island is
superconducting, the partition function Z of the system takes the following form:

z2=Y z,e EnlksT (43)

where Z, is the partition function for quasiparticle excitations above the ground state in the
superconducting island with n excess electrons. For a given value of n, the conservation of the
number of electrons in the island requires that excitations must be always created two at a time
by substracting a Cooper pair from the condensate. We thus set the parity of the number of
quasiparticles equal to the parity of n and we assume otherwise that the quasiparticle
excitations can be simply described as independent fermions. This last assumption neglects
corrections of order 1/N on the thermodynamic quantities [21] which is acceptable here since

N ~10°. Following Ref [22], we first introduce:

Z, =TI, [1xexp(-Be, )], (44)

where B =1/kpT and where the subscript g denotes a generic quasiparticle with an energy Eq-

Then we obtain

Z,=[z,+(-1"Z]f2. (45)

This quantity can only take two different values Z,,,, or Z,,, depending on the parity of n.
Combining Eq. (7) and Eq. (43) we can express the average number of electrons in the

superconducting island as:
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n=+oo

2 n exp[—B(E,, + Fn)]
(n)=2== , (46)

n=+co

> exp[~B(E, +F,)]

n=—oo

where F, =—kgTInZ, is defined as the free energy of the superconducting island with n

excess electrons. Multiplying the numerator and the denominator of the right hand side of Eq.

(46) by exp(BF,,, ), we get:

n=+oo

z n exp[—B(E,, + p,,D(T,H))]
() = e , @

N=+<oc0

> exp[-B(E, + p,D(T,H))]

N=—oo

where D(T,H)=F,,;-F,,, is the odd-even free energy difference of the island, first
introduced by Tuominen et al. [22]. Expression (47) shows that, at finite temperature,
D(T,H) is the relevant quantity for the energy shift between the even-n and the odd-n
parabolas.

If we consider an asymmetric Coulomb staircase at finite temperature, the length of the
steps can be defined by the values of U where (n) is a half integer. From Eq. (46), one readily
shows that a half integer values of (n) means that the sum E,+F, is equal for two
neighbouring n states of the island. The lengths S of the odd-n steps and L of the even-n steps
are thus given by S=1-D(T,H)/E. and L=1+D(T,H)/E,. Compared to an asymmetric
staircase at T =0, the relative length of the odd-» and the even-n steps is now determined by
D(T,H). Consequently, when the normal/superconducting box is not in the 2e-quantization
regime (D < E,), the staircase asymmetry is a direct measurement of the ratio D(T,H)/E,
through the relation:

D(T,H) L-S
E L+S

c

(48)

By measuring the asymmetry of the Coulomb staircase at various temperatures, we have
determined experimentally the odd-even free energy difference of a small aluminum island (see

section 3.2.1).
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As in the normal case, the incremental charge staircase is rounded at finite temperature
because the system can reach various n-states by thermal excitations. Nevertheless, in the limit
kpT << E_, the most important effect of the temperature is a reduction of the odd-even
asymmetry. This effect originates in the entropy contributions to the free energy F, as we will

see in next section.

2.2.3 Calculation of the odd-even free energy difference D(T,H).

We will now derive a general expression of the odd-even free energy difference
D(T,H) in terms of the temperature T and the density p(€) of quasiparticle states in the island.
The dependence of D(T,H) on the magnetic field H enters only through the density of
quasiparticle states p(e). Using Eq. (45), D(T,H) is written:

Zoa'd Z+ -Z_

D(T,H)==kpTIn =—kpT In . 49
( ) B Zeven B Z+ + Z— ( )
If we know p(€), we can express Z, in the integral form:

Z, = exp[ [ p(e)In(1+ e‘ﬁe)de] . (50)

We express the ratio Z, /Z_ as:

V4 +oo 1+¢7P¢
Z—i:exp[ jo p(e)ln(l_e_ﬁe)da]. (51)

Then introducing the integral transform p(7', H) given by

p(T,H) = I;(s) In[coth(Be/2)] de/2, (52)
0
we obtain:

D(T,H) =—kpT In[tanh p(T)]. (53)

Formula (52) and (53) show that the odd-even free energy difference is a functional of the

density of quasiparticle states p(€).
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At H =0, we can assume for the superconducting island a continuous BCS density of
quasiparticle states given by p(e)=0 for e<A and p(g)=2p, N, 8/ g2 —A% for e>A.
Here p 4 is the density of states at the Fermi level per atom when the metal is in the normal
state, N4 is the number of atoms in the island and the factor of 2 is inserted to count both
quasielectrons and quasiholes excitations. Over the temperature range we will consider
(T <300mK), A can be taken as constant and we assume also that e P2 <<1. With these

approximations, the integral transform p(7,0) can be evaluated analytically. We rewrite Eq.

(52) as
+oo _i2
B(T,0) = e_BAJ 2p N e(e2 - A2) " e BED) g (54)
A
Then one obtains
B(T,0) = N,z (T)e ™™, (55)
where
N, (T) = No(2mkgT /)" + o[(T/A)3/ 2] (56)

is the effective number of quasiparticle states available for excitations and where
Nog =p4N4A. Finally, at temperatures such that Neﬁpe'BA <<1, D(T,0) is approximately
given by

D(T,0)=~A-kzTI N, . (57)

This expression defines a cross-over temperature T = A/(kB In NO) above which the
odd-even free energy difference rapidly vanishes. At T =Ty, the island of the box is still in the
superconducting state but the Coulomb staircase has the same aspect as in the normal state.
The cross-over temperature T;, corresponds roughly to the temperature at which the number of
thermally induced quasiparticles in the island is equal to 1. The expression of T is
approximately equal to the temperature T" defined in Ref [22]. The threshold temperature T

has been introduced to separate the regions where the current-voltage characteristic of a
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superconducting double junction circuit is a 2e-periodic or an e-periodic function of the gate-

induced charge.
More generally, if discrete quasiparticles states are present inside the gap of the energy
—Bey;

spectrum at energies €, with degeneracies g, , they each contribute to p(T,H) by 84.€

Therefore the odd-even free energy difference in the limit T — 0 is given by
D(T,0)=eq0 —kgTlng, , (58)

where g, denotes the discrete quasiparticle state of lowest energy.

2.2.4 Influence of the magnetic field.

For a "small" superconductor in a magnetic field, we can use the density of states
calculated by Skalski et al [23]. Here "small" means that the superconductor has dimensions
normal to the field less than the London length A, so that screening currents can be neglected.
It has been shown [24] that this calculation of the density of states is valid only in the "dirty”
limit, i.e., when £ <<, where £ is the electronic mean free path and &g is the coherence
length. This latter quantity is given by &, = iiv/TA, where v is the Fermi velocity and A is
the BCS energy gap at T=0 and H =0. In aluminum &, =1.6pm and in our sample, under
the assumption of surface scattering, ¢ is expected to be less than 100 nm (see section 3.2.1).
We can thus assume that the condition £ << &, is satisfied.

In Ref [23], the effect of the magnetic field or magnetic impurities is completely
included in a single parameter, the pair breaking energy I which has to be calculated
separately from the geometry of the problem (see below). Using the Abrikosov-Gor'kov theory
[25], Skalski et al. associate to a quasiparticle of energy € in the normal state a reduced

complex energy u given by:

£ r u

u= +i , 59
D AT T 9
where A(T,T) is the pair potential satisfying the following self-consistent equation:
A(T.T) = N(o)vaD' do Re[ = ]tanh( ) (60)
, 0 Vu? -1 2
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Here N(0) is the density of states at the Fermi energy per unit volume in the normal state, V is
the volume of the sample, wy is a cut-off energy and P =1/kgT. The quantity A(7,I") must
now be distinguished from the minimum energy for excitations, or spectral gap, which we

denote by Q;(T,T). These two quantities are related by

Qu(T,T) = A(T,r)[l—(r/A(T, r))2/3]3/ ?. 61)

The second term of the right hand side of Eq. (§9) corresponds to a complex energy shift of
the energy of a quasiparticle state. This shift is proportional to a complex density of states

N(u) defined as

N(u)=u/u? -1, (62)

the pair breaking energy I' being the proportionality coefficient. The quasiparticle density of

states p(€) which enters in Eq. (52) is expressed as

p(e) =pn(e) Re[N ()] , 63)

where py(€)=2p4N, refers to the quasiparticle density of states in the normal state. In the
limit T'—>0, one recovers the BCS formulas since Eq. (63) reduces to
p(e)=pn (e)e/ Ve —A? and Eq. (60) reduces to the BCS self-consistent equation for the
energy gap. For a finite value of the ratio I/A(T,T), Eq. (59) and Eq. (63) must be solved
simultaneously to determine p(e).

In Fig. 2.12, we have plotted the density p(e) versus €/A(T,T’) for several values of
the ratio I'/A(T,T). From Eq. (61), one can show that the superconductor is gapless, i.e. the
spectral gap is zero, when I' = A(T,T). If I’ < A(T,T), calculations made in Ref [23] show
also that the pair potential A(7,I") can be taken as a constant at low temperature. At T =0,
one has I'/A =T'/A(0,T") exp[—(n/4)T'/A(0,T)].

The odd-even free energy difference D(T,H) of an aluminum island is plotted versus
the temperature in Fig. 2.13 for several values of I'/A(T,T"), assuming a realistic value of the
island volume. At T =0, D(0,H) =D, is equal to the spectral gap Q;(0,H) given by Eq.

(61), a quantity which is smaller than the pair potential A(0, H).
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Fig 2.12 Density of quasiparticle states in a superconductor versus reduced energy as
computed by Skalski et al. for several values of the ratio T/A(T,T), where T is the pair
breaking energy and where A(T,T) is the pair potential. Here py(€) denotes the density of

quasiparticle states in the non-superconducting state.
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Fig 2.13 Odd-even free energy difference D(T,H) of an aluminum island as a function of the
temperature T for four values of the ratio T/A(0,T). The quantity A is the BCS energy gap at
T=0 and H=0. All the curves are calculated for an aluminum island of volume

0%

V=10 m3 , with a normal density of state p=2.1510""1J m™ and a BCS energy gap

A=18010C eV.
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Finally, the relation between the pair breaking energy I" and the applied magnetic field
H can be calculated using a theory by De Gennes and Tinkham [26,27]. They have shown that
the calculation of the critical field of small superconducting particles or thin films as a function
of the magnetic field is reduced to the study of the flux @ enclosed by all classical one electron
trajectories in the normal state. Thus the magnetic behavior of such a sample is essentially
governed by the geometric properties of the trajectories. These authors have classified the
magnetic properties of thin films as a function of the value of the bulk mean free path £. They
essentially distinguish two types of magnetic behavior: ergodic and non-ergodic depending on
the electron scattering properties of the sample. In the island of the box, the elastic mean free
path £ is expected to be smaller than the width d of the metallic strip and thus the magnetic
behavior of the superconducting island is "ergodic”.

In the calculation of de Gennes and Tinkham, the quantity of interest is the limit of the
average <ei¢(')> at large times, where the phase ¢ is given ¢ =2nd/d,, d, being the flux
quantum. If the system is "ergodic”, the phase ¢ has a gaussian distribution and
lim, _,w<ei¢(')> =¢ " In a dirty superconductor, the effect of a magnetic field is equivalent
to the effect of paramagnetic impurities [27,28]. The equality 1/tx =21/ [29,18], where T is
the pair breaking energy, gives the connection between de Gennes and Tinkham's analysis and
the calculation of Skalski et al.. We can reasonably assume that in our sample d? / Eo < £ (Maki
case) and following Ref [26] we write:

2
s O Wof3

Tk
where 1=vpl, D= %v%’t = %vpf is the diffusion constant and A is the vector potential. For
the particular case of a strip of width d in a perpendicular magnetic field H, the gauge
invariant average <A2> is given by:

H?d?
<A2> == (65)

The coherence length &, and the gap A =A(T =0, =0) are related by &, = Aivg /TA. Using
this latter relation, the pair breaking energy I is finally given by:
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/A =(r?/18)H2a%0E, | D . (66)

Our experimental measurement of the odd-even free energy difference as a function of
the temperature and the magnetic field is reported in Sec. 3.2.2. The data are well fitted by the
theoretical D(T,H)/E, calculated using the general expression (53) of the odd-even free
energy difference, the density of states calculated by Skalski et al [23] and the magnetic field
dependence of the pair breaking energy given by Eq. (66).

2.2.5 Observability of the 2e-quantization of the macroscopic charge.

The above calculation shows that in the T® H plane there are three concentric
domains corresponding to three different behaviors of the superconducting electron box: i)
when D(T,H) =0, the staircase is symmetric with an incremental charge equal to e, ii) when
0< D(T,H) < E_, the staircase is asymmetric with an incremental charge equal to e, iii) finally,
when D(T,H)> E_, the staircase displays the 2e-quantization of the island charge.

The 2e-periodicity of the symmetric or asymmetric staircase originates in the pairing of
electrons in the island but an e-periodicity of the staircase does not mean that the island is in
the non-superconducting state. The cross-over temperature T, which determines the boundary
of the asymmetric staircase domain at H =0, depends only logarithmically on the island
volume. For an aluminum island fabricated by nanolithographic techniques, T, will be always
of the order 200-300 mK. Provided E, >> kpT, the observation of an assymetric staircase is
actually not constrained by the size of the sample or the junctions.

This is not the case for the 2e-symmetric staircase. From Eq. (57), one can show that
the boundary of the 2e-quantization domain intersects indeed the T-axis at a threshold

temperature 75, given by

T, =To(1-E./A) . (67)

We already know that T, weakly depends on the sample parameters, and thus 7, is fixed
essentially by the charging energy E, and hence by the island capacitance Cs. Eq. (12) and Egq.
(67) show that the sharpness of the staircase and the area of the 2e-quantization domain have

opposite variations with the charging energy E.. In contrast with the usual charging effects,
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the smaller the junction size, the lower is the temperature required to observe the 2e-
quantization of the island charge. This is due to the fact that this phenomenon is subject to the
double inequality k3T << E, < D(T, H).

In order to observe the 2e-quantization of the macroscopic charge one must therefore
find a compromise between these two opposite effects. Note that the thermal rounding of the
staircase is not as important as in the normal case because a carrier with charge equal to 2e
yields a staircase four times sharper than in the normal case at the same temperature. Finally
Eq. (58) predicts that only one quasiparticle state inside the energy gap can strongly diminish
the odd-even free energy difference. It can go below the charging energy and completely
suppres the 2e-quantization even at very low temperature. In that sense, the 2e-quantization of
the island charge constitutes a sensitive test of the ideality of the superconductivity of an

isolated superconductor.

2.3. The Superconducting Electron Box

2.3.1 Josephson coupling between the charge states of the box

We now consider an electron box in which both sides of the junction are
superconducting (Fig. 2.14). The tunnel junction establishes a Josephson coupling between the
island and the lead. We assume that T =0 and A > E_.. We also assume that there is no out of
equilibrium quasiparticle in the island and in the lead attached to the junction. Under these
conditions, the island only contains an even number of electrons and the states of the system
are characterized by the number of excess Cooper pairs in the island.

We restrict our analysis to the interval 0 <CU/e<2. Since T =0, we can consider
only the Hilbert space spanned by the two states |0) and |1), which correspond respectively to
the ground state of the superconducting island with zero and one excess Cooper pair. It is
convenient to measure the energy of these states relatively to a reference set at

E.(1-C,U/e)’. The energies of the states |0) and |1) are then respectively equal to —E/2 and
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+E/2, where E=4EC(1—CsU/e). These two energies are represented on Fig. 2.15 by two
straight lines which cross at the threshold value C.U /e =1.

Because of Josephson tunneling, the states | 0) and |1) are not eigenstates of the system.
In the bidimensional Hilbert space {|0),]1)}, the Josephson tunnel hamiltonian H, can be

written as [12]:
E
H, ===L(|0)(1[+[10]), (68)

where E; is the Josephson energy of the junction. Since there are no quasiparticles in the
island or in the lead, the total hamiltonian H is simply the sum of the total electrostatic energy
and the Josephson tunnel hamiltonian. Consequently, the system can be seen as an effective

spin % with the following hamiltonian:

=-Zo,-ZLs, (69)

where 6, and o, are the Pauli matrices. This hamiltonian corresponds to a magnetic field
making an angle 'y=arctan(EJ/E) with the z axis. The eigenstates of H are linear
superpositions of |0) and |1) given by:
b Y
W) =cos=|0)+sin —|1
[#,)=cosL{0)+sin L1

70
[P, ) =sin %IO)—cosgll)

The energies E; and E, of the two eigenstates [‘PS> and I‘Pa) are given by

E,q =i%,/E2 +E? (71)

As shown in Fig 2.15, the Josephson coupling results in an anticrossing of the levels. At
C,U/e=1, the energy splitting E, — E, is equal to the Josephson energy E;. Since the ground
state I‘I’s) is a superposition of two states with a well defined number of Cooper pairs in the
island, the mean value (n) of the number of excess electrons is no longer an integer. Assuming
that the system stays in its ground state when we sweep the voltage U, (n) is simply given by

(n) = 2sin*(y/2) and we obtain:
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Fig 2.14 Schematic of a superconducting electron box where the tunnel junction is a

Josephson junction characterized by its capacitance C and its Josephson energy Ej .

>
0 1 2 ClUle

Fig 2.15 Energies of the two eigenstates |‘I’s) and |‘Pa> of the system versus CU [e. Dashed
lines are the energies of the unperturbed states |0) and |1). At CU /e =1, the energy splitting

between the two eigenstates is equal to Ej .
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<n>

CSU/e

Fig 2.16 Average number (n) of excess electrons in the island of the superconducting electron

box as a function of CU [e calculated from Eq. (72) for three values of the ratio E; [E, .
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CU/e~1

(n)=1+ / . (72)
‘J(CsU/e_l) +(EJ/4EC)
The charge jump of the staircase exhibits a finite slope (see Fig. 2.16) given by
a(n) 4E
———+=(CU[e=1)=—F%, 73
Acug eI, "

which is equal to the ratio between the charging energy associated with a Cooper pair and the
Josephson energy. This quantity has to be compared to the slope 2E_/kpT arising from the

thermal rounding of a 2e staircase.

2.3.2 Effect of the Electromagnetic Environment

The question now arises as to whether the coherent quantum superposition of charge
states leading to (72) and (73) will survive in the presence of dissipation in the leads which has
been neglected so far. We will thus evaluate the effect of the electromagnetic environment of
the junction on the box considered as an effective two-state system. We model the
electromagnetic environment as an impedance Z(w) in series with the superconducting
electron box (Fig. 2.17a). As in the normal case, the circuit is equivalent to a pure tunnel
element in series with an effective impedance Z,(®) and an effective voltage source. Z, (w) is
the total impedance seen by the pure tunnel element of the junction and its the real part is given

by

2 1
Re[Z,(w)]=x Reliz_1 (o))+j|<C0):\ , (74)

where x = C/Cs . The impedance Z,(®) is equivalent to a set of L-C oscillators of frequency

o; =1/,JL;C; (see Fig. 2.17c) such that:
Re[Z,(0)]= T1/C; 8(0-w;) . (75)
j

The hamiltonian H,,, of the electromagnetic environment is thus the hamiltonian of the set of

harmonic oscillators:
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Fig. 2.17 a) Schematic of the superconducting electron box circuit coupled to its
electromagnetic environment. The junction is represented by a pure capacitor of capacitance
C in parallel with a Josephson tunnel element characterized by E;. The electromagnetic
environment of the circuit is modeled by an impedance Z(w) in series with the voltage
source. b) Equivalent circuit seen by the Josephson element. c) The total impedance Z,(w)

can be described as a capacitance C+C; in series with a set of L-C oscillators.
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@’ Q}J
. (76)
T

J

The unperturbed hamiltonian Hy is now:
E
H =—302+Hm. an

Finally, the coupling between the environment and the two-state system is contained in the

tunneling hamiltonian [12] which is now written in terms of projectors:

H, = —%—[e“%u +hcl, (78)

where 6, =\0, —io, /2 ( ) and where ¢ = 2e/h2 ® ;. The translation operator e’
acts only the environmental degrees of freedom. It shifts the charge of each L-C oscillator of

the environment by an amount equal to —2e:

Qe =(0; -2¢) (79)
The total hamiltonian H = Hy + H, is:

2 2
E EJ j — D Q

H=-=0,-—tl0,e®+0_¢™)+ Y | —L+—=L1, 80
2 °F 2(+ )zj:[zL 2C; )

where 6, = (8 (l))andc =(1 0).

In order to diagonalize the interaction between the set of the oscillators and the two-

state system, we proceed a canonical transformation H = UHU ! where
U = exp[-ic, ¢/2]. (81)
Thus, we obtain
2 o2

- E E; o 07 1
H=-—0,-—0,+ +— ——0 2e 82
2 ¢ 27 ;[u 2C; Z ,- 2c ®2

The problem of the superconducting box coupled to an arbitrary impedance is now reduced to

the study of a well known dissipative two-state system [30,31]. The hamiltonian H has indeed
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the same form as the so-called "spin-boson" hamiltonian H¢p. This hamiltonian Hgp is usually
written in the following form:
1 1 1( PP ;) 1
HSB=5hecz—-2—hon+2 Lt m 033 +2400; P D€ (83)

j2mj F

Here A refers to the tunneling matrix element which corresponds to E; /#, m; is the mass of
the j~th harmonic oscillator and corresponds to L;. The quantity c; is the strength of coupling
of the system to the j-th oscillator. Identifying x; as Q;, we obtain ¢; =1/C;, where C; is the
capacitance of the j—th L-C oscillators, and g, =—2e. All the effects of the environment are
contained in the spectral density function J(®) JI/ZZ ( cj/m ju) ) (co—a) j) which is given
by J(w) =w Re[Z,(u))]/2 for the electron box circuit.

We consider now the simple case where the impedance Z() is a pure resistance R. In
this case, Re[Z,(OJ)]= k2R Re[l/(l+ jKRCco)]. This situation corresponds to the ohmic case
[32] defined by J(w)=nw, for << ®,, ®, being the cut-off frequency @, =(kRC)™ . In
order to characterize the dissipation, Chakravarty et al. [32] have introduced a dimensionless
dissipation coefficient o =mng; /21th and a renormalized tunneling frequency A/w,. For the
electron box circuit, these two quantities are given by:

oc=2|<2-£

K (84)

A
—_—= K T —— —
OF Ec RK

At T =0, when A<<w,, and 0 < o <1/2, the effective tunneling frequency A e [32] 18

Ay = (T(1-2a)cosma) 4™ (A, )Y A 85)

(4

Typically Kk <0.1 and the resistance R of the lead is of order 50 Q << Ry . The dissipation
coefficient o and the renormalized tunneling frequency A/, are thus both much smaller than
1. For a.<<1, Ay is of order A. Hence, we can conclude that the staircase rounding arising
from the Josephson coupling between two charge states of the island will be affected by the
electromagnetic environment only if we design a box with a high impedance lead as in the

experiment by Kuzmin et al. [33] and with a large C, capacitor to make k = 1.
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3. Experimental results on the electron box

3.1.1 Paper 1:

Direct Observation of Macroscopic Charge Quantization

Originally published as:
P. Lafarge, H. Pothier, E. R. Williams, D. Esteve, C. Urbina, and M. H. Devoret, Direct
observation of macroscopic charge quantization, Z. Phys. B 85, 327 (1991).

This paper presents the experimental observation of the macroscopic charge
quantization in a normal electron box circuit theoretically described in Sec. 2.1.2. We report
also the temperature dependence of the Coulomb sawtooth. We would like to thank Prof.
Hipolito for showing us an error in the caption of Fig. 5 in the original paper which is
corrected in this version. In this first experiment, below 100 mK there is a discrepancy between
the measured temperature and the temperature that would fit the data. Further experiments
performed with an improved filtering of the electron box gate line have shown a good

agreement between theory and experiment from 200 mK to 35 mK (see Fig. 1.5b).
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DIRECT OBSERVATION OF
MACROSCOPIC CHARGE QUANTIZATION

P. Lafarge, H. Pothier, E.R. Williams*, D. Esteve, C. Urbina and M.H. Devoret
Service de Physique de ’Etat Condensé, Centre d’Etudes de Saclay
91191 Gif-sur-Yvette Cedex, France

ABSTRACT: The circuit formed by a nanoscale tunnel junction in series with a capaci-
tance and a voltage source is the building block of most multi-junction circuits of single
electronics. The state of this "single electron box” is entirely determined by the number
n of extra electrons on the intermediate "island” electrode between the junction and the
capacitance. We have fabricated such a system and measured the charge on the junction
capacitance, which is directly related to the average value of n, as a function of the bias
voltage using a Fulton-Dolan electrometer. At low temperature, the junction charge fol-
lowed the e—periodic sawtooth function expected from the theory of macroscopic charge
quantization. Strikingly, e-periodic variations were also observed when the box was super-
conducting. The thermal rounding of the sawtooth function is well explained by a simple

model, except at the lowest temperatures.

PACS: 73.40.G, 06.20.H, 73.40.R.

FPermanent address: Electricity Division, National Institute of Standards and Technology,

Gaithersburg, MD 20899, USA.
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One way to observe Coulomb blockade, 1.e. the suppression of the tunneling of elec-
trons due to their discrete charge, is to place a small capacitance tunnel junction in se-
ries with a large resistor R, as was originally proposed by Averin and Likharev [1]. For
R > Ry, where Ry is the resistance quantum h/e? ~ 25.8 k{2, the fluctuations of the
charge @ on the junction capacitance C due to its electromagnetic environment are much
less than the charge quantum e and tunneling takes place only if | @ |> /2. This ap-
proach, which is very difficult experimentally because the resistor must provide a large
resistance up to the Coulomb gap frequency e?/2CHh [2], has been realized only recently
[3]. Another way to observe Coulomb blockade has been clearly demonstrated by Fulton
and Dolan [4]. These authors fabricated two small junctions in series, thereby forming a
metallic ”island” which could only exchange electrons with the rest of the circuit by tun-
nel events through the junctions. Although, in this type of experiment, the two junctions
are connected to a voltage bias V' which induces the charges on the junction capacitances
to fluctuate by an amount much larger than e [5], the total number of electrons on the
island is a good quantum number. The increase in Coulomb energy due to the presence
of one extra electron on the island acts as an effective energy barrier for the tunneling of
electrons through this ”SET transistor” [1] as long as V' is smaller than the Coulomb gap
e?/C; where C; is the total capacitance of the island. The Fulton-Dolan experiment was
the basis for more elaborate experiments involving larger numbers of junctions [6] as well
as microwave irradiation which revealed correlations between tunnel events [7]. These ex-
periments ultimately led to the controlled transfer of single electrons level with a precision
better than one percent [8,9]. In multi-junction circuits, of which the SET transistor is
the basic example, the relevant degrees of freedom are the discrete island charges rather
than the continuous junction capacitance charges. The simplest such circuit is a tunnel
junction connected to a voltage source via a capacitance. In this circuit, which we have
nicknamed the "single electron box”, the island is the intermediate electrode between the
junction tunnel barrier and the dielectric of the capacitance, and the island charge is the

sole degree of freedom of the system.

In order to understand the roles of the capacitor and the tunnel junction, let us first
consider a metal electrode with self-capacitance C; connected via a wire with negligible
capacitance to an electron reservoir. We call ), the charge on the electrode. This charge
is the integral of the surface charge density over the electrode surface. The variable Q)

is continuous since it just represents a displacement of the electron density with respect
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to the background ion density. Simple statistical mechanics show that the equilibrium
fluctuations of Q, have mean square amplitude AQ? =< Q? > — < @, >? at temperature
T given by AQ? = CkpT, where kp is the Boltzmann constant. For example, if C = 0.5 {F
and T = 20 mK, then (AQ?)!/? = 0.07e. The typical fluctuations can thus be less than
the charge of the electron for sufficiently small capacitances C; nevertheless the amplitude
decreases only as the square root of the temperature. However, if the electrode is connected
to a charge reservoir via a tunnel junction and thus becomes the island of an electron box,
the fluctuations of the total charge g of the island can be radically different from the
fluctuations of either the capacitor charge (s or the junction charge Q@ = q — Q. A
necessary condition though, is that the tunnel barrier be sufficiently opaque, i.e. there are
no quantum fluctuations of the number n = ¢/(—e) of excess electrons on the island due to
tunneling. It is generally accepted that this condition is fulfilled if Ry > Ry [10]. Under
these circumstances, the thermal fluctuations of ¢ can be greatly reduced from their value
for (Js in the case of the wire. This reduction is due to the energy gap associated with the

the island charge having discrete values.

To see this, consider a box consisting of a junction with capacitance C placed in series
with a capacitor C; and a voltage source U (see Fig. 1). If n electrons from the source
have tunneled through the junction onto the island, the equilibrium electrostatic energy

of the whole circuit including the work performed by the voltage source is

o)+ QP @
Ev= w10y 20y )

where Q = C,U and where —e denotes the electron charge. The average number < n > of

extra electrons in the island at thermal equilibrium is given b
q g y
= ~En(Q)
n=+oo n
Yoo oom exp (7;3T—

e @
n=-+4o00 "'En(Q)
T e (_k;?‘)

<n>=

This quantity has already been considered by Glazman and Shekhter [11] in the context
of quantum dots. It is plotted as a function of Q/e in Fig. 2(a) for three values of the

parameter 8 = C;kpT /e, where C; = C+C, is the total capacitance of the island. For small
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6, expression (2) can be evaluated directly, while for large 8 one can get rapid convergence

using the identity

e p=+oo
3 oz =)=y > ol

We see that at low temperature (small #), the average number of electron < n > is a
staircase function of the charge bias Q. We call this effect ”macroscopic charge quantiza-
tion” since the charge is distributed over a macroscopic number of atoms. [This effect is
reminiscent of the flux quantization through a superconducting ring. In this latter phe-
nomenon, however, the energy gap which anchors the flux on an integer number of flux
quanta involves a macroscopic number of electrons]. In the central part of each of the steps
of < n > versus @, the fluctuations of n are suppressed. This is shown in Fig. 2(b), where
we plot 0,/6'/% = (< n2 > — < n >2)/6'/2 as a function of Q/e. This quantity is related
to the zero-bias conductance of the SET transistor as a function of gate voltage. The
normalizing factor §1/2 is the root mean square average of the thermal charge fluctuations,
in units of e, on a capacitor C; connected to a voltage source. Another quantity of interest
is the average charge < () > on the junction capacitance, which, as we will see, is directly

measurable. It is given by the expression

<@>=l<n> (-9 +4l (4)
The variations of < Q > /e versus Q/e are plotted in Fig. 2(c). Note that in the limit
where C; <« C, which was considered by Biittiker [12] in the context of Bloch oscillations,
the oscillations shown in Fig. 2(c) are analogous to the SET oscillations [1] of @ versus
It for the junction biased with a current I. It is worth noting that even when C; ~ C,
the sawtooth variations of < Q > versus () stay sharp at T = 0; they differ from SET

oscillations in that they have an amplitude less than e.

We have measured the charge variations of Fig. 2(c) using an electrometer based on a
SET transistor [4]. The experimental set-up [shown schematically in Fig. 3(a)] consists of
a dual junction version of the "electron box” circuit of Fig. 1, with the island b connected
by a coupling capacitor C. to the island m of an electrometer (we explain below why we
have used two junctions in parallel rather than one). The electrometer consists of two

junctions with capacitances C'/2 placed in series. The island between the junctions is
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coupled to a voltage bias Uy through the capacitance Cy as well as to the electron box
through C.. The capacitors have nominal values C;, = C. = Cy = -I%C and C = C'. The
electrometer is voltage biased with V at the Coulomb gap e/C’ and charge biased near
e/4 with Uy. Under these conditions, the electrometer current I varies linearly with the
small excursions of the charge < (J. > on the coupling capacitance C., which, to a good
approximation, is given by < Q. >=< Q > C./C. By measuring I as a function of U, one

has thus access to the variations of < ) > with the bias charge @J.

The electron box and the electrometer were fabricated using e-beam nanolithography
and shadow evaporation as in Ref. [8]. The resulting pattern on the chip is shown on
Fig. 3(b), in which the numbers and letters labeling the aluminum electrodes refer to the
corresponding nodes of the circuit shown in Fig. 3(a). The shape of the electrodes and their
guards at larger scale were designed to minimize cross-talk capacitances. Before a run, the
junctions were checked at room temperature by measuring the resistance between pads 1
and 3 and between pads 4 and 6. Since all four junctions have the same nominal area 50 x
50 nm?, these two resistances should have the same value. The electron box was designed
with a parallel combination of two junctions instead of one in order to be able to perform
this test. Immediately after this test, pads 1 and 3 were connected together using a strip of
silver paint. The chip was then placed in a copper shield thermally anchored to the mixing
chamber of a dilution refrigerator and the filtered leads to the room temperature electronics
were connected. The temperature of the copper shield was monitored by a combination of
a Germanium resistor and a carbon resistor calibrated previously by nuclear orientation
thermometry and superconducting fixed points. The electrometer current was measured
as in Ref. [8]. Experiments were performed in both the 0.5 T field of a superconducting
magnet to drive the sample in the normal state, and in zero magnetic field, in which case
the sample was superconducting. The I-V characteristics of the electrometer, both in the
normal [Fig. 4(a)] and superconducting state [Fig. 4(b)], were similar to those reported
by Fulton et al. {13]. In Fig. 5 we show the electrometer current I as a function of the
electrometer gate voltage Uy for values of V' which are multiples of 25 V. Note that the
position of the maxima of the various curves are slightly V-dependent. This feature can be
quantitatively explained by assuming a ratio of 2 between the two junction capacitances
of the electrometer. By measuring the voltage AUy between two adjacent maxima of an
I(Uy) curve at fixed V', we determined the capacitance Cy = AUp/e = 73+ 1 aF. From the

normal I-V curve asymptotes we inferred the value 0.6 & 0.05 {F for the total electrometer
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island capacitance and hence, assuming a relative junction uniformity, the capacitance
C = 0.6 £ 0.3 fF for the effective junction of the box. The total normal state junction
resistance of the electrometer was 620 k2 at 4 K.

The experiment in the normal state was performed by setting the electrometer to
optimum gain (see point O in Fig. 5) and recording the variations of I with U. The result-
ing I(U) curve is shown in Fig. 6 where we see a small-amplitude short-period sawtooth
modulation superimposed on a large-amplitude long-period one. This latter modulation
originates from a small cross-talk capacitance between pads 2 and 5 making the electrom-
eter directly sensitive to the voltage U. A small correcting voltage proportional to U was
superimposed on Uj to compensate for the modulation of I due to this cross-talk. Further-
more, in order to get rid of low frequency noise, we used a lock-in amplifier with a 1 kHz,
40 1V modulation on the U input and recorded dI/dU as a function of U. The resulting
curve at 20 mK is shown in Fig. 7. After integration, we finally arrived at the genuine
variations of < @ > versus Q (solid curve labeled ”N” in Fig. 8). The calibration of the
horizontal axis involves the value of C, while the calibration of the vertical axis involves
both the ratio C./C and a prior calibration of the electrometer using the voltage Up and
the capacitance Cy. Assuming that the periodicity of the sawtooth variations is e we found

Cs =85+%1aF and C, = 74 £ 1 aF which are close to the expected values.

In the superconducting state we followed the same procedure as in the normal state
except that the optimum electrometer gain point is located at the superconducting gap
edge V = 0.8 mV. The results are plotted in Fig. 8 (solid curve labeled ”S”); the improved
signal-to-noise ratio in the superconducting case originates from the larger electrometer
gain. The sawtooth variations of < Q > versus Q shown in Fig. 8 correspond in both the
normal and superconducting case to charges of value e tunneling through the junctions.
Since the U scan took 50 s per oscillation, the current through the junctions of the box
was 3 1072'A. Given the signal to noise ratio of the measured charge variations, the
leakage current from the box island and the drift in its offset charge [14] is at least one
order of magnitude less than this value. On the other hand, in the superconducting state,
this small value implies that the e-periodicity of the variations of @} could be due to the
presence of only one quasiparticle in the island. Note also that the downward variations
of @, which should be relatively sharp at 20 mK, look rounded when compared with the
theoretical prediction Eqs. (2) and (4) (dashed line in Fig. 8). In order to investigate this

rounding we performed measurements at various temperatures. The results in the normal
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state are shown in Fig. 9 (solid lines) where we also show for comparison the predictions
of Egs. (2) and (4) (dashed lines). Since the electrometer gain is temperature dependent,
a calibration was performed at each temperature. The same temperature dependence was
found in the superconducting state (data not shown). Although the experimental results
are in agreement with the theoretical predictions above 100 mK, there is a discrepancy
at lower temperatures between the thermometer temperature and the temperature that
would fit the data. At 20 mK this discrepancy is 40 mK. 25 % of this discrepancy can be
explained by the back action noise induced by electrometer on the electron box, which we
have calculated at finite temperature using numerical simulations. Parasitic rf signals on
the Uy and U lines could induce a broadening of the charge variations, although checks
were performed to ensure that direct influence of the background noise in the laboratory
had no effect. Another source of error could be that the temperature of the box electrons
is higher than the thermometer temperature, although hot electron effects [15] due to
the electrometer current seem negligible. Finally a contribution to the apparent excess
temperature could come from quantum fluctuations of the electron number n, which is
being investigated theoretically [10]. It has been assumed here that n is a classical variable,
since the junction tunnel resistance is much greater than the resistance quantum Rg. More
experiments are needed to test these explanations of the apparent excess temperature of
the box at low temperatures. A possible extension of these experiments is to measure the

single tunneling events of electrons or Cooper pairs using two or more junctions in series

in the box instead of one. In that case, the variations of n with U are hysteretic and
experiments along the line of those performed by Schwartz et al. [16] on the switching of

an RF SQUID between two flux states become possible.

In conclusion, we have been able to detect the charge variations associated with the
flow of single electrons through a tunnel junction out of a metallic island, in both the
normal and superconducting state. These results constitute the first direct evidence of
macroscopic charge quantization. They also demonstrate the very low drift of charge
from such an island, and the presence of quasiparticles at 20 mK in a superconducting Al

electrode.

We thank M. Goldman for suggesting the use of Eq. 3 in the numerical evaluation
of < n > in the high temperature limit and A. Cleland for critical reading of the manu-

script. Technical assistance from P.F. Orfila and discussions with H. Grabert are gratefully
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FIGURE CAPTIONS

Fig. 1 (a) ”Electron box” circuit consisting of a capacitor, a junction and a voltage source
in series. The intermediate electrode between the junction and the capacitor forms an

7island” with n extra electrons.

Fig. 2 (a) Average island electron number < n >, (b) fluctuations o, = (< n? > - <
n >)1/2  and (c) average charge < ) > on the junction capacitance. These quantities
are all plotted as a function of the bias charge Q = C,U for 8 = kpT(C, + C)/e? = 0.01
(solid lines), 0.1 (dashed lines) and 10 (dotted lines).

Fig. 3 (a) Schematic representation of experimental set-up. An electron box with two
junctions in parallel is coupled to a SET transistor used as an electrometer. (b) Electron
beam lithography implementation of circuit shown in (a). Superfluous electrodes resulting

from the use of the suspended bridge technique have been omitted for clarity.

Fig. 4 Electrometer -V characteristics in the normal state (a) and in the superconducting

state (b) at 20 mK. Solid lines: minimum Coulomb gap; dotted lines: maximum Coulomb

gap.

Fig. 5 Electrometer current I versus electrometer gate voltage Uy for a set of values of
bias voltage V separated by 50 V. The temperature is 20 mK. Point O is the optimum

gain point.

Fig. 6 Electrometer current I versus electron box voltage U at 20 mK. The curve is clipped
near U = 0 because one attenuator in the U line filtering system becomes superconducting

at the lowest temperature when too little current flows through it.

Fig. 7 Lock-in signal as a function of electron box voltage U in presence of a correcting
linear ramp signal superimposed on the dc value of Uy. The temperature is 20 mK. Each

peak is associated with the charge of the box island increasing by one electron.

Fig. 8 Solid lines: Charge variations in the normal state (N) and in the superconducting

state (S) at 20 mK. Dashed line: theoretical prediction.

Fig. 9 Solid lines: Charge variations in the normal state at different temperatures. Dashed
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lines: theoretical predictions [Eqs. (2) and (4)].

Fig. 1
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3.2.1. Paper 2:
Measurement of the Even-Odd Free-Energy Difference of an Isolated

Superconductor

Originally published as:
P. Lafarge, P. Joyez, D. Esteve, C. Urbina and M. H. Devoret, Measurement of the even-odd
free-energy difference, Phys. Rev. Lett. 70, 994 (1993).

The paper describes the observation of an asymmetric Coulomb staircase in a
normal/superconducting electron box experiment where the superconducting gap A at zero
temperature and zero magnetic field is smaller than the charging energy E, (see Sec. 2.2.1). By
measuring the staircase asymmetry at various temperatures, we have determined the odd-even
free energy difference D(T,H) of the superconducting island at zero magnetic field. The

experimental results are in good agreement with the calculation described in Sec. 2.2.3.
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Measurement of the Even-Odd Free Energy Difference

of an Isolated Superconductor

P. Lafarge, P. Joyez, D. Esteve, C. Urbina and M. H. Devoret

Service de Physique de I’Etat Condensé, CEA-Saclay, 91191, Gif-sur-Yvette, France

Abstract: We have measured the difference between the free energies of an isolated super-
conducting electrode with odd and even number of electrons using a Coulomb blockade
electrometer. The decrease of this energy difference with increasing temperature is in good
agreement with theoretical predictions assuming a BCS density of quasiparticle states, ex-
cept at the lowest temperatures where the results indicate the presence of an extra energy

level inside the gap.

PACS: 73.40.Gk, 73.40.Rw
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The key concept of the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity
[1] is the pairing of electrons. A surprising feature of the theory appears when one considers
a macroscopic piece of superconducting metal with a fixed number N of electrons. If N is
even, all the electrons can condense in the ground state. If N is odd, however, one electron
should remain as a quasiparticle excitation. In principle, if one would measure the energy
required to add one electron to the superconductor, there should be a difference between
the cases of even and odd N. This fundamental even-odd asymmetry, which might vanish
due to sample imperfections [2], does not manifest itself in conventional experiments on
superconductors because these experiments are only sensitive to a finite fraction of quasi-
particles. In this Letter, we report a new experiment based on single electron tunneling

[3] with which we measured the even-odd free energy difference introduced by Tuominen
et al. [4].

Consider a superconducting-normal (SN) tunnel junction in series with a voltage
source U and a capacitor C; (see Fig. 1), a basic Coulomb blockade circuit whose normal-
normal junction version has been nicknamed the electron ”box” [5,6]. The supercon-
ducting electrode which is common to both the junction and the capacitor is surrounded
everywhere by insulating material. When the junction tunnel resistance R; is such that
R; > Ry = h/e?, the number n of excess electrons on this ”island” is a good quantum
number [3,7]. The n-dependent part of the ground state energy of the circuit, including
the work done by the source U, is given by E,, = E.(n— C,U/e)? + £, where E, = €% /2Cx,
is the electrostatic energy of one excess electron on the island, Cx the total capacitance
of the island and where &, is the non-electrostatic part of the energy of the island. For a
normal island &, = 0 (Fig. 2a), whereas for a superconducting island, one has £, = Dgyp,
where Dy is the energy difference between the odd-n and even-n island ground states,
and p, = n mod 2 (Fig. 2c). The BCS theory yields Dy = A where A is the supercon-
ducting gap of the island. In equilibrium at zero temperature, n will be determined by
the lowest E, and is therefore given by a staircase function of U (Figs. 2b and 2d). In
the normal case, the steps are of equal size, whereas in the superconducting case even-n
steps are longer that odd-n steps. For Dy > E,, the odd-n steps disappear, while for
Dy < E., the ratio p between the length of the odd and even-n steps is related to Dy
through Dy/E. = (1 — p)/(1 + p). Thus, from a measurement of the equilibrium value
of n as a function of U, which can be done by weakly coupling the island to a Coulomb

blockade electrometer [8,5,6] as shown in Fig. 1, one can in principle infer the value of Dy.
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In practice, the measurements are performed at finite temperature and the current
in the electrometer is directly related to n, the temporal average of n which we suppose
equal to < n >, the thermal ensemble average of n. The above analysis must be refined
to take into account the thermal population of all the possible states of the circuit. These
states are characterized not only by the number n of excess electrons in the island, but
also by the filling factors of the various quasiparticle states of the island. One finds that

the average value of n is given by

<n>= ¢.U + Cs iln (Z Zne'ﬂEc("‘CeU/e)z) (1)

e C,Be 0U

where f = 1/(kpT) and where Z,, is the partition function of the island with n excess
electrons. We now follow reference [4]: we assume Fermi statistics for the quasiparticle
excitations of this isolated system and we set the parity of the number of quasiparticles
equal to the parity of n. We get Z, = [Z24 + (=1)"2_]/2, with Z4 =[] [1 + exp(—Se,)],
where ¢ denotes a generic quasiparticle state with energy €.

At temperatures such that kT < E., the < n > vs. U staircase is just slightly
rounded. The length of the steps is now defined from the values of U where < n >
is a half-integer and Dy in the expression of the odd-even step length ratio is now re-
placed by D(T) = F; — Fo, the difference between the free energies F,, = —kgTInZ, of
the island with an odd and an even number of electrons [9]. Introducing the transform
A(T) = [ p(€)ln[coth(Be/2)]de/2 of p(e), the density of quasiparticle states, one can ex-
press D(T) = —kpTIn[thp(T)]). We now suppose that exp(—emin/kpT) < 1, where €nin
is the lowest energy for which p(e) is non-zero. In this limit, §(7) can be evaluated ana-
lytically for mathematically simple p’s. If we assume a continuous BCS density of states,
A(T) = Neps(T)e P2 where Nojp(T) = No(2nkpT/A) /2 + O[(T/A)*/?] is the effective
number of quasiparticle states available for excitation [10] and where Ny = psaNaA, p4
being the normal density of states at the Fermi energy per atom and N4 the number of
atoms in the island. BecauselnN.f; depends weakly on the sample parameters and on tem-
perature, D(T) is approximately given at temperatures such that Noexp(—A/kpT) < 1
by A(1 - T/Ty), with Ty = A/(kpInNg) in the range 200-300mI for realistic Al islands.
More generally, if there is inside the gap discrete quasiparticle states with energies €, and
degeneracies gg,, they each contribute to 5(T) by g,,exp(—Peg; ). Their effect is to reduce

D(T) which is given in the limit T = 0 by D(T) = ¢, — kTlng,,, where ¢o is the lowest
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discrete quasiparticle state. Finally, we must point out that the 2e-periodic behavior of
the SN box is similar to the 2e-periodicity which has been observed for the current through
the SSS [11,4] and NSN [12] Coulomb blockade electrometers as a function of the charge
induced on the gate. However, note that when D(T) < E,, the box experiment, in con-
trast with the transport experiments on Coulomb blockade electrometers, gives access to

the ratio D(T')/E. and not simply to the temperature at which it vanishes.

The sample was fabricated using e-beam lithography and double-angle e-beam evap-
oration through a suspended mask [13]. First we deposited a 30nm thick aluminium film
to form the superconducting island of the box, with lateral dimensions 2.2pum x 0.1um, as
well as the leads of the electrometer. This first layer was then oxidized in 300 Pa of oxygen
for fifteen minutes at room temperature. A 50nm thick layer of Cu alloyed with 3% in
weight of Al was then deposited to form the normal lead connected to the box and the
island of the electrometer. The two nominally identical junctions of the electrometer had
an area of ~ 8 x 1073 um?, and were much larger than the box junction. The suspended
mask was designed so that there was no overlap of the Al island of the box with its Cu-Al
copy, which is inherent to the double evaporation technique. The current-voltage curve
(inset of Fig. 3) of a single junction fabricated with the same technique showed a sharp
current rise at A/e = 180 £ 101V, with the square-root voltage dependence characteristic
of NS junctions. Fig. 3 shows a current-voltage characteristic of the electrometer: when
the gate charge is adjusted so as to suppress Coulomb blockade for positive voltage, the
sharp current rise at 2A /e = 360 4 10xV indicates that the electrometer consists indeed of
two NS junctions in series. Detailed analysis of these I(V) curves yielded the capacitance
parameters of the electrometer. They served as calibrations for numerical electrostatic
calculations of the box parameters which gave Cy = 0.2 £ 0.05fF, C;, = 25 + 5aF and
C. = 11x2aF. The experiments were done with the sample mounted in a shielded copper
box thermally anchored to the mixing chamber of a dilution refrigerator. All voltage and
current lines were carefully filtered [14]. When necessary, the sample was put in its normal

state by a 1T magnetic field produced by a superconducting coil.

To perform the measurements of 72 versus U the bias and gate voltages V and Uj of
the electrometer were first adjusted to maximize 0I/0U, (dot on Fig. 3). The electrom-
eter current I was then recorded as a function of U. The resulting sawtooth signal is a
measurement, apart from a gain factor, of the second term of Eq. 1. We obtained 7 by

adding to this sawtooth signal a linear term whose coefficient was adjusted to null out the
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slope of the teeth. In Fig. 4 we show the measured equilibrium value 7 as a function of
the polarization C,U/e both for the sample in the normal and the superconducting states,
at 20 mK. The even-odd symmetry of the steps in the normal state is clearly broken in
the superconducting state. Note that the middle of the steps in the superconducting state
coincide with the middle of the steps in the normal state, as predicted from theory (see Fig.
2b and 2d) in the case D(T') < E.. Our previous experiments on a box with an SS junction
never showed any even-odd asymmetry [5]. We believe that this was due to the presence
of a few long-lived, out-of-equilibrium quasiparticles which in the present experiment are

"purged” by the normal metal lead.

Due to the unavoidable electrostatic crosstalk between the U voltage and the electrom-
eter island, which was only partially corrected for in our setup, the gain of the electrometer
depends on the U voltage. This leads to the noticeable step height variations as U departs
from zero. Nevertheless, these vertical scale distortions do not affect the conclusions we
draw from our data, which are based only on the length of the steps along the horizontal
axis. The scaling factor used for this axis corresponds to Csy = 21 £ 0.5aF, in good agree-
ment with our numerical estimates. When the temperature was increased the steps became
gradually rounded (data not shown). From a fit of the temperature dependence of the data
in the normal state using Eq. 1 we obtained a direct measurement of Cy = 0.20 &+ .05fF,
also in good agreement with our numerical estimates.

We have measured the odd-even step length ratio p as a function of temperature,
thereby obtaining D(T)/E.. The experimental results are shown in Fig. 5 together with
the theoretical predictions in the case of a continuous BCS density of states (dashed line).
Since N4 is known from the sample dimensions, the only adjustable parameters are Céit =
0.19fF and Af*/e = 1954 V. The parameter Cé“ is in the error range of Cy while the
uncertainty range for A% is adjacent to the error range of A deduced from the electrometer
I(V). Apart from this minor discrepancy which may be due to the fact that the island,
contrary to the S leads of the electrometer, is not covered by a normal layer, there is good
agreement between theory and experiment for temperatures higher than 50 mK. At lower
temperatures, the data deviates significantly from theory, in a manner which could be
explained by a failure of the box to follow the temperature of the thermometer. However,
we find this explanation unlikely. In a previous run on a NN box with parameters adapted
to calibration purposes, the staircase sharpness precisely followed the temperature down

to 35mIK. A more likely explanation is that the density of states of the island may not be
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a strictly smooth BCS one. To illustrate this point, we show in Fig. § a complete fit of
the data (full line) using a minimal model: in addition to the continuous BCS density of
states, it includes a single, two-fold degenerate, quasiparticle state at 0.8A. Even though
the number of available states at the gap A is of the order of Ny ~ 10*, the behavior of
the box at the lowest temperatures is completely dominated by this single state. This box
experiment is thus a very sensitive quantitative probe of the deviations of the density of
states from the ideal BCS form, in contrast with transport measurements [11,4,12]. It is
remarkable that the sample imperfections like surface states and impurities do not lead to
a more severe suppression of the even-odd asymmetry. Additional experiments (data not
shown) showed that D(T = 25mK) decreased under the application of a magnetic field
applied perpendicularly to the plane of the substrate and vanished at 0.1 T, a reasonable

critical field value given the dimensions of the island [15].

In conclusion, we have measured the free energy cost of putting a single extra electron
in a superconducting island. We have found that this energy depends on the parity of the
total number of electrons in the island and is in good agreement with theoretical predictions
based on Tuominen et al. [4] assuming a continuous BCS density of quasiparticle states.
At the lowest temperatures, though, the experiment is sensitive to indidual discrete states
and the results are better accounted for if one incorporates in the theory a single energy

level inside the gap.

We acknowledge fruitful discussions with A. Cleland, T. Eiles, J. Martinis, G. Sarma,
G. Schon and J. Schrieffer, as well as the technical help of P.F. Orfila.
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FIGURE CAPTIONS

Fig. 1. Circuit diagram of the experiment. The rectangular symbols represent SN tunnel
junctions. The V-shaped marks denote superconducting electrodes. The symbol n denotes
the number of electrons in the island of the box (marked by a full dot). The variations
of its average n with the voltage U are detected by monitoring the current I through the
SNS electrometer which is coupled to the box through the capacitor C.. The bias voltage

V and the gate voltage Uy set the working point of the electrometer.

Fig. 2. Ground state energy of the box in the normal (a) and superconducting state
(c) as a function of the polarization CsU/e, for several values of the excess number n of
electrons in the island. E. is the electrostatic energy of one excess electron on the island
for U = 0. In an ideal superconductor, the minimum energy for odd n is A above the
minimum energy for even n. The dots correspond to level crossings where single electron
tunneling is possible. Equilibrium value < n > versus C,U/e is shown in the normal (b)

and superconducting (d) state, at T = 0.

Fig. 3. I(V) curves for the SNS electrometer at T' = 25mK, and zero magnetic field, for
three values of the gate voltage Uy corresponding to maximum, intermediate and minimum
gap. The minimum gap corresponds to the bare superconducting gap 2A of two NS
junctions in series. The dot indicates the optimal bias point for maximum sensitivity.

Inset: I(V) curve for a single SN junction under same conditions.

Fig. 4. Variations of the average value n of the number of extra electrons in the box as
a function of the polarization C,U/e, at T = 25mK. Trace N: normal island. Trace S:

superconducting island. For clarity, trace S has been offset vertically by 4 units.

Fig. 5. Difference D between the free energies of the island with an odd and an even number
of electrons as a function of temperature. Experimental values (dots) are directly measured
in units of E.. Dashed line is theoretical expression of D(T)/A (scale on the right-hand
side), assuming a continuous BCS density of states, p4 = 0.572(eV)™!, N4y = 38 107 and
Aft /e = 195uV (see text). Full line is modified expression corresponding to a single, two-
fold degenerate state added at 0.8A. The vertical scale factors of theory and experiment
coincide for C'é“ = 0.19fF.
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3.2.2. Paper 3:

2e-Quantization of the Charge on a Superconductor

Originally published as:
P. Lafarge, P. Joyez, D. Esteve, C. Urbina, and M. H. Devoret, Two-electron quantization of
the charge on a superconductor, Nature 365, 422 (1993).

In this paper, we report the first direct observation of the 2e-quantization of the
macroscopic charge on a superconducting island. We have measured Coulomb staircases in a
normal/superconducting electron box with a ratio A/E, equal to 1.23. The effects of the
temperature and the magnetic field are well explained by the theoretical calculation of the odd-

even free energy difference developed in Sec. 2.2.3 and 2.2.4.
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F-91191 Gif-sur-Yvette, France

PACS 73.40 Gk, 73.40 Rw
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Our theoretical understanding of superconductors is based on the notion of
Cooper pair [1]. The first direct experimental evidence for electron pairing
was the observation that the flux threading a superconducting ring is always
a multiple of a flux quantum given by the ratio of Planck’s constant and the
Cooper pair charge 2e [2,3]. We report here a direct measurement of the to-
tal charge of a superconducting electrode which is free to exchange electrons
with a metallic reservoir through a tunnel junction. When the potential of
the reservoir is raised with respect to ground, we find that the charge of the
superconducting electrode increases in steps of 2e corresponding to the simul-
taneous tunneling of two electrons. The 2e-steps break into e-steps when the
temperature and magnetic field are increased above threshold values, but in-
dicate nevertheless that Cooper pairs could be manipulated in the same way

as single electrons in turnstile and pump devices [4].

Figure 1 shows a schematic of the experiment. A Cu — Al;O3—Al tunnel junction
of capacitance C; in series with a capacitor C, is biased by a voltage source U. The
Al electrode which is common to both the junction and the capacitor, the "island”, is
surrounded everywhere by insulating material. Since the junction tunnel resistance Ry is
such that R > Rk = h/e?, the total charge ¢ of the island is a good quantum number
and is given by ¢ = —ne [5]. As U increases, electrons will tend to move into the island to
minimize the total energy of the circuit, which is the sum of its electrostatic energy and
of the internal energy of the island [6]. The fluctuations of n are determined by the ratio
between the energy of thermal fluctuations and the Coulomb energy E. = €2/2(C; + C,),
which is the electrostatic energy cost of putting one extra electron on the island when
U = 0. By nanofabricating the circuit of Fig. 1, E. can be made of the order of 2K.
By lowering the circuit temperature down to 30mK, we can ensure that n has negligible
fluctuations and adopts the minimum energy value. This is well demonstrated by the
following control experiment. We placed the island in the non-superconducting state by
applying a 0.2T magnetic field and measured the variations of the time averaged charge
g versus U using a Coulomb blockade electrometer [7] operated in a feedback mode. The
data are shown on trace (a) of Fig. 2. If ¢ was not quantized, the circuit would achieve an
equilibrium charge configuration with no potential difference on the junction capacitance
C; and hence, ¢ = C,U. Since ¢ is quantized, § can only increase stepwise, with steps

located at half-integer values of the reduced voltage C,U/e.
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We then placed the island in the superconducting state by suppressing the magnetic
field. The results are shown on trace (c¢) of Fig. 2. There is again a stepwise variation
of ¢ versus U, but the height and length of the steps have doubled, indicating that only
electron pairs are transferred from the reservoir into the island. However, when we ap-
plied an intermediate magnetic field, so as to substantially reduce the superconducting
gap without suppressing superconductivity, we observed an intermediate staircase pattern
which consisted of a succession of long and short e-steps (see trace (b) of Fig. 2) and which
was similar to the pattern observed in a previous experiment involving a different sample
[8]. The ratio between the length of the short and long steps was observed to decrease as
we lowered the field again. Below a threshold field H = 0.027, the short steps disappeared

completely and perfect 2e-quantization was recovered.

These results can be understood by considering the total free energy of the circuit:
E = E.(n—C,U/e)? +(n mod 2)A + terms independent of n. The first term is simply the
electrostatic energy of the circuit, i.e. the electrostatic energy of C; and C, and the work
of the voltage source U [6]. The second term is the island internal energy which depends on
n only through its parity [9], the parameter A denoting the odd-even free energy difference
[10]. Such an odd-even difference is expected for a superconductor, since for an odd number
of electrons, one of them cannot be paired and must remain as a quasiparticle excitation
whose energy cost is the superconducting energy gap [11]. From this model we can predict
the ensemble average < n > which we suppose equal to the temporal average n measured
in the experiment. In Fig. 3a we show as a function of U the energy of the different n
states, for the non-superconducting case A = 0. At temperatures T such that kT < E.,
n will adopt the value of the integer closest to CyU/e, which corresponds to the lowest
energy state, hence the staircase pattern of Fig. 3b. In Fig. 3e we show the case of a
superconducting island such that, at the lowest temperatures, A > E, in zero magnetic
field. In that case, for every value of U, the ground state of the circuit always correspond
to an even n, which explains the doubling in Fig. 3f of the step height with respect to
Fig. 3b. The energy asymmetry between states with even and odd n has recently been
observed through the 2e-periodicity of the gate charge dependence of the current in SSS [10]
and NSN Coulomb blockade electrometers [11, 12], and of the asymmetric e-staircase of
a superconducting box [8]. It is important to note that although 2e-quantization implies
necessarily 2e-periodicity, the converse is not true, as shown by Fig. 3d. The present

results thus bring a new information: direct transitions between fully paired even states,
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which do not create a quasiparticle excitation, can be the sole charge transfer mechanism,
provided that A > E. > kT, conditions which could not be satisfied in previous island
charge measurements. This perfect 2e-quantization necessitates that the system finds, as
U is increased, its lowest energy state by the coherent tunneling of two electrons from
the reservoir into the island to form a Cooper pair. The rate of this process also known
as Andreev reflection [13] is proportional to (Rx/R:)? [14] and is therefore much weaker
than single electron tunneling whose rate is proportional to Rx/R;. Nevertheless, since
the 2e-steps of Fig. 2c¢ did not display any measurable out-of-equilibrium behavior, the

time scale of the Andreev process is shorter than our measurement time scale of the order
10~ 2s.

At intermediate magnetic fields and temperatures (Fig. 3c), the odd-even free energy
difference, while non-zero, is such that A < E,. 0dd n states can now exist on a finite
U range (Fig. 3d). In this regime, we can measure A/E, from the length ratio S/L of
the short and long steps. This can be done quite accurately because the sharpness of
the steps makes S/L insensitive to the long term drift in the electrometer output due to
offset charges [7]. The measurement of (L — S)/(L + S) = A/E. with temperature and
magnetic field, which was applied perpendicularly to the strip, is shown in Fig. 4. At a
fixed magnetic field, we found we could fit the measured A(T)/E. using the theory of Refs.
(8,10] with the quasiparticle density of state of Skalski et al [15] in which enters only one
field-dependent parameter, the pair-breaking energy I'. The other parameter entering in
this density of states is the zero-temperature zero-field energy gap A. Using the De Gennes
and Tinkham prediction I'/A = (73 /18)H2d? (&, / B2 for a strip of dirty superconductor in
a perpendicular field H [16], we finally arrived at a theoretical expression for A(T, H)/E.
which depends only on three adjustable parameters: the gap A, the Coulomb energy E.
and the elastic mean free path ¢ (in the expression for I', d = 110nm is the width of the
strip, £o = 1600nm the coherence length, ®¢ the flux quantum h/2e). The best fit, shown
in Fig. 4, yields A/e = 210uV, A/E, = 1.23, values which are consistent with independent
measurements, and ¢ = 6nm. This latter value is one order of magnitude smaller than the
mean free path we extracted from a conductivity measurement of a nanofabricated Al
wire with same lateral dimensions as the island. However, this discrepancy may simply
reflect the fact that electron diffusion is not isotropic in the island and the main result

shown in Fig. 4 is that the 2e-quantization domain occupies only a small portion of the
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superconductivity domain.
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FIGURE CAPTIONS

Fig. 1. Schematic of the experiment. The superconducting island is a 30x110x2260 nm Al
strip containing approximately 10° atoms. Its dimensions are such that the electrostatic
energy of one extra electron is much larger than the energy kgT of thermal fluctuations
at temperature T ~ 30mK. The island can exchange electrons with a Cu (3% wt. Al)
thin film electrode acting as an electron reservoir through a tunnel junction [17]. The total
charge q of the island varies under the influence of the externally controlled voltage source
U connected between the electron reservoir and a ground electrode. The variation with U
of the time average q of the island charge is measured by a Coulomb blockade electrometer
(not shown) which is weakly capacitively coupled to the island. The nanofabrication and

low noise measurement techniques involved in this type of experiment have been described

in Refs. [18,8].

Fig. 2. Variations of the average value ¢, in units of e, with the polarization CyU/e, at
T = 28mkK, for 3 values of the magnetic field applied to the sample. Trace (a): non-
superconducting island. Traces (b) and (¢): superconducting island. For clarity, traces (b)
and (c) have been offset vertically by 2 and 4 units, respectively. The letters L and S refer

to the long and short steps, respectively.

Fig. 3. Total energy of the circuit of Fig. 1 as a function of the polarization Cy4U/e, for
several values of the excess number n of electrons in the island, in the non-superconducting
state (a) and superconducting state (c, €). E. is the electrostatic energy of one excess
electron on the island for U = 0. The minimum energy for odd n is A above the minimum
energy for even n. Panels ¢ and e differ by the relative magnitude of A and E.. The
solid dots correspond to level crossings where single electron tunnel into and from the
island. The white dots correspond to level crossings where the only allowed process is the
simultaneous tunneling of two electrons into the island to form a pair (Andreev process).
The equilibrium value < n > versus CyU/e is shown in the non-superconducting (b) and
superconducting (d, f) states, at T = 0. The Andreev process is shown in f by a vertical
dashed line to distinguish it from the single electron tunneling process shown in b and d

by a vertical continuous line.

Fig. 4. Odd-even step length ratio plotted as (L — S)/(L + S), as a function of the
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temperature T and magnetic field H. The fully 2e-quantized steps are shown as white
dots with unit height. The black dots are such that 1 > (L — S)/(L + S) = A/E..
The surface corresponding to the grid in full line is the theoretical prediction combining
references [10], [8], {15] and [16]. Note that the 2e-quantization domain is only a small
portion of the odd-even asymmetry domain (A > 0) which is itself a small part of the

superconductivity domain (A > 0).
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4. Charge transfer accuracy

4.1.1. Paper 4:

Passing Electrons One by One: is a 10-8 Accuracy Achievable ?
Originally published as:

H. Pothier, P. Lafarge, D. Esteve, C. Urbina and M. H. Devoret, Passing electrons one by one:
is a 10-8 accuracy achievable?, IEEE Trans. Instrum. Meas. 42, 324 (1993).
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PASSING ELECTRONS ONE BY ONE:
IS A 1078 ACCURACY ACHIEVABLE?

H. Pothier, P. Lafarge, D. Esteve, C. Urbina and M.H. Devoret
Service de Physique de I’Etat Condensé, CEA-Saclay
91191 Gif-sur-Yvette Cédex, France

ABSTRACT

We analyse the error mechanisms of the single electron pump with an arbitrary number
of junctions. An upper bound for the error probability is computed analytically at zero
temperature. We show that a 10~® accuracy is achievable for devices with five or more

junctions.

PACS: 73.40.Gk, 73.40.Rw, 06.20.Hq
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1. Introduction

The understanding of single electron effects [1] has led to the design and operation of
devices which make electrons pass one at a time in a controlled way in an external circuit
[2,3]. The control of single electrons in these devices is achieved using the energy barrier
provided by the electrostatic energy of a single excess electron on special electrodes of the
device. These electrodes, hereafter referred to as ’islands’, are connected to the rest of
the device through either tunnel junctions with tunnel resistances large compared to the
resistance quantum Ry = h/e? or pure capacitors. The device will function only if each
island has a capacitance C; such that the Coulomb energy €2 /2C; is very large compared
with the energy kpT available in thermal fluctuations. In the ’turnstile’ and 'pump’ devices
built using metal-insulator-metal junctions [2,3] or using semiconductor heterostructures
[4], the controlled passage of single electrons manifests itself in current plateaus at I = ne/t
in the current-voltage (I — V') characteristic, where n is an integer and 7 the period of the
rf modulation on the ’gate’ electrodes. These plateaus are analogous to the Shapiro steps
in the I — V characteristic of a superconducting tunnel junction irradiated by microwaves
[5]. As is well known, these steps are manifestations of the ac Josephson effect which links
a voltage to a frequency through the flux quantum ®, = h/2e and provide the basis for a
representation of the standard volt. Thus, the question arises as to whether single electron
pumps and turnstiles could be used in metrology to provide a new representation of the
ampere. A representation of the ampere is obtained at present from the volt using the
quantum Hall effect -discovered by von Klitzing- which links current and voltage through
Ry [6]. It is important for metrologists to check if a direct definition of the ampere
using the electron charge e is compatible with the ’Josephson + Klitzing’ definition which
combines ®; and Rj. Another important metrological issue that would benefit from a
new access to the electron charge provided by single electron effects is the value of the fine
structure constant [7]. This latter application would not necessitate to measure directly
the very low current produced by single electron devices. Although the experiments carried
out so far to test the precision of single electron devices are chiefly limited by the precision
of current measurements, it is necessary to investigate the fundamental limitations of the
devices themselves. In this paper we analyse the source of errors and evaluate analytically
an upper bound for the error probability of a general device of the pump type. Our goal
is to answer the following question: Is it possible to design devices that would achieve

an intrinsic accuracy of 10~ which is the level at which the precision of the ampere is
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questioned by metrologists?

2. Single electron turnstiles and pumps

The devices that transfer electrons one by one in synchrony with an external rf signal
consist of a linear array of nominally identical tunnel junctions with capacitance C (see
Fig. 1). The array is biased with a dc voltage source V. The metallic islands between
the junctions are connected through gate capacitors to voltages that may vary periodically
with time at rf frequencies. By convention we will refer to the island placed between the
k-th and (k+1)-th junction as the k-th island. We label Cyx and Ui the gate capacitance
and gate voltage corresponding to the k-th island. We denote by N the total number of

junctions. There are two classes of devices: the turnstiles and the pumps.

The turnstiles have an even number of junctions (N = 2P, P integer) and necessitate
only one rf voltage source. It is connected to the central P-th island. The optimal value
of the central gate capacitance is Cyp = 2C/N. The remaining Uy are fixed and are used
only to compensate offset charges on the corresponding islands. Thus, one should have
Cgr < C. The action of the central gate voltage is the following: During the first half
of the rf period, an electron is attracted onto the central island through the leftmost P
junctions, while during the second half of the period, the electron is repelled through the
rightmost P junctions. While they were the first devices to be operated successfully, they
suffer from the drawback that the current plateaus do not cross the V' = 0 axis. Because
they generate current only at finite voltage, turnstiles dissipate intrinsically more power
than pumps and may be difficult to cool at the low temperatures which are required for

the suppression of thermal errors.

The pumps necessitate as many independent rf sources as islands but they produce
current plateaus that cross the V' = 0 axis. Their principle can be described as follows:
during an rf period, the Uy voltages vary in such a way that a triangular voltage pulse
is successively applied to the gate capacitors, in the manner the distributor sends voltage
pulses to the spark plugs of an automobile engine (See Fig. 2). The amplitude of the
pulse is chosen so that it is energetically favourable for one electron and one electron
only to neutralize the pulse. Each traveling pulse is thus accompanied by an electron.
Consequently, the direction of current in the pump is not determined by the bias voltage

V but by the direction of travel of the pulse, which in turn depends only on the relative

104



dephasing among the gate voltage sources. The accurate reversal of the current produced
by the pumps can therefore be performed by purely electronical means.
In the following we will analyze in detail the functioning of the pump and calculate its

error probability, i.e. the probability that the pump does not transfer exactly one electron

per rf period.

3. Detailed analysis of the N junction pump

The analysis of the pump is greatly simplified by performing a transformation anal-
ogous to the circuit transformations of electrical engineers in network theory. The trans-
formation consists in replacing the linear array of Fig. 1(a) by the circular array of Fig.
1(b). In the process, the junctions keep the same parameters but instead of being linked
through external leads to the bias voltage, current meter and common ground, the two
end junctions are directly connected, thereby forming one extra island. This 0-th island is
connected to a corresponding gate voltage Uy through a gate capacitance Cyo < C. The
transport voltage V' can now be thought of being applied as a time varying flux through the
ring of junctions, which we represent as voltages sources V/N in series with each junction.
The electrostatic state of the array of Fig. 1(a) is entirely determined by the ”electron
configuration” (n1,n2,..nN—1), i.e. the set of number of extra electrons on each island,
and the set of gate voltages (Uy,Us,..Un—1). It is easy to show that the junctions in the
circular array will adopt the same electrostatic state than in the linear array, if for the
circular array, the electron configuration is (ng, n1,n2,..nn—_1) and the set of gate voltages

1s (Uo, U], Uz, ..UN_.1), with o and Uo satisfying

N-1 N-1
ng + Z nr = Colp + Z Cor Uk (1)
k=1 k=1

This equivalence is only true in the limit Cgx < C which is required anyway from other,
more practical, considerations. Now, for the circular array, the left hand side of (1) stays
constant with time since tunnel events conserve the total number of electrons on the islands.
Consequently, condition (1) implies that the number of independent gate voltages in the
equivalent circular array is indeed the same as the original linear array. The traversal of
the linear array by one electron corresponds to a single electron going around the circular
array from island to island in the manner of an arm of a mechanical clock. Ideal pumping
of electrons, with period 7, can therefore be described for the circular array as the following

time evolution of the electron configuration:
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ng(t) =1 ifk—1/2 < (Nt/7)modN <k +1/2 (2)
ni(t) =0 otherwise (2")

We can thus index each electron configuration of the pump by an integer n in a natural
manner. The integer nmodN indicates on which island is the electron, while the integer
part of n/N gives the number of times the electron went around the array. The ideal time
evolution corresponding to (2) and (2’) can therefore be described in a more compact form
by

n(t) = int(Nt/7 +1/2) (3)

where int(z) denotes the integer part of z.

Although the circular pump is not a practical device, its symmetry clarifies greatly
the discussion of possible errors and the search for optimal parameters. Once the optimum
parameters are established for the circular pump, it is easy to go back to the realistic linear
pump.

Obviously, the minimum electrostatic energy of the pump is reached when all the
gate voltages and extra island electron numbers are zero. Starting from this state, if one
puts one extra electron on island k while raising the k-th gate voltage to e/Cyx, one gets
an equivalent electrostatic state with the same minimum electrostatic energy as far as the
junctions are concerned. The following sequence of gate voltages interpolates between such

gate voltage configurations:

Uk(t)=e/Cgk(mk+1) f —1<zp <0 (4)
Uk(t) = C/Cgk(-—:l?k +1) if O0<zr<1 (4')
Uk(t)=0 otherwise (4")
where
rr =k — (Nt/r mod N) (5)

This is the sequence which is plotted on Fig. 2 for the case N = 5. Note that it satisfies
Equ. (1) for the case where there is a single electron in the array. The electron is driven
across a junction by the simultaneous decrease and increase of the gate voltages on both

side of the junction. The complete cycle requires N such elementary transfer steps. The
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rotation symmetry of the circular pump shows clearly that the entrance and exit of an
electron in the linear pump at the beginning and at the end of a period do not require
different pulse shapes than when the electron is traveling inside the array, although the
leads seem to play a different role than the islands. However, the absence of these "end
effects” only occurs in the limit Cyx < C on which the equivalence between the circular
and linear pump is based.

We will now analyze the error mechanisms of the circular pump containing one elec-
tron. We suppose that the temperature is zero. Let us recall the remaining parameters of
the system: the number of junctions N, the bias voltage V, the junction capacitance C and
the period 7. We suppose moreover that all the junctions have the same tunnel resistance

Rr. At this point it is useful to introduce the following dimensionless parameters:

r=gx (6)
v= e/‘;C 0
z = Nt/r ' (8)

f=RgC/t (9)

where R = h/e?. In addition to these parameters which we call reduced tunnel resistance,
reduced bias voltage, reduced time and reduced frequency, respectively, the system is

characterized by the energy scale e2/2C.

The electrostatic energy of the whole array including the work performed by the bias
voltage can be computed for every n, the gate voltages being given by (4). The expression
of this total array energy as a function of the reduced time z and the reduced voltage v is

given, in units of €2/2C, by
En(z,v) = —jv — [tv + (N —1)(2(zmodl) —3)]/N (10)
where ¢ and j are the integers satisfying
n—int(zx) =jN +i (11)
1<i<N (11')

In Fig. 3 we plot the set of values E,,, n running from -7 to +7, in the case where v = 0.2,

the reduced time z taking the values 0,0.25,0.5,0.75 and 1. The plots of the energy at
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other reduced times with the same sampling period are obtained simply by a translation
along n, as equ. (11) indicates. The energy values plotted in Fig. 3 represent a kind of
potential for the discrete configuration variable n. The way this potential evolves with time
reflects the gate voltages time sequence of Fig. 2. The evolution of the potential drives
the variable n to evolve with time by provoking tunnel events. They always tend, at zero
temperature, to lower the total electrostatic energy of the system. If only tunnel events
changing n by one unit (single junction tunneling events) were allowed and if 7/N was
sufficiently long that these single junction tunnel events would occur essentially as soon as
the new configuration with a lower energy became available, n would follow one ”potential
minimum” (see dot on Fig. 3). The pump would behave ideally, the only difference with
(3) being that the n — n+1 transitions would occur slightly earlier in the cycle because of
the bias voltage, and the pump would be error free. To predict the actual error probability
of a realistic device we have to take into account i) missed transfer steps which occur
when one requires that the period 7 should be as small as possible to produce a current
as large as possible, as well as ii) higher order tunnel processes involving several junctions,
the so-called macroscopic quantum tunneling of the charge, or ”co-tunneling” events [8],

which allow n to vary by more than one unit if a state with lower energy is found.
4. Error probability calculations

4.1 Errors caused by missed transfer steps
The general expression for the probability of a single junction tunnel event between con-

figuration n and configuration n + 1 is given using reduced parameters by
Fn_m.Hdt = ")/n—»n+ld$ = (2]\r’l‘f)_'1 l A] l+ dx (12)

where A; = E,, — E,4+1 and where we have used the notation | y |+= (] y | +v)/2. The
probability that the n — n + 1 transition does not occur in the time slot alloted for the

n-th transfer step is given by
r=n+1
P, =exp (——/ 'yn_.,,+1d:1:> (13)
r=n

In writing (13), we neglect the fact that state n+1 is not the only decay channel for state n.
This is a very good approximation since, as we will see, the branching ratio for n+1 is very

close to 1 because co-tunneling rates are much smaller than the single junction tunneling
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rate. It may happen that the electron which has missed its time slot gets a second chance
during the time slot of the next transfer step; however the analysis of this recovery is
tedious. By using expressions (10), (12) and (13) a conservative estimate €, = NP, of

the probability of losing a cycle because of missed transfers can therefore be calculated:

(14)

8N2rf

(N=D)[14+2/(N-1))?
ém = Nexp | —

4.2 Errors caused by co-tunneling events

It is clear from Fig. 3 that configuration n can always decay into configuration n + N
whose reduced energy is lower by v (we suppose for the time being that v > 0). Such co-
tunneling process involving N junctions corresponds to an electron going around the pump
in the direction of the bias voltage and returning to its original position. This is why the
energy difference between the initial state and final state is constant. However the energy
barrier in configuration space is modulated during each transfer step as Fig. 3 indicates.
In addition to this N-th order co-tunneling process, we have to consider two (N-1)-th order
co-tunneling processes during the n-th time slot. The first one isthe n - n+1—- N
transition that has the effect of sending the electron to the island with minimal potential
by going around the array in the direction opposite to the normal direction of transfer.
This process substracts a transfer cycle to the normal sequence. The second one is the
n+ 1 — n+ N that has the effect of sending the electron which has tunnelled back to
the island it started by going around the array in the direction of transfer. Like the N-th
order co-tunneling process, this process adds a transfer cycle to the normal sequence. The
three co-tunneling processes are shown schematically in Fig. 4. The thick line with a
varying shade represents the probability weight of a given configuration as a function of
the reduced time z. The thick vertical dashed line marks the onset of the single junction
tunneling process, which is symbolically represented in the figure by a thick arrow. This
onset is located 1/2 — v/2(N — 1) after the beginning of the step. Then - n+1—- N
co-tunneling process is represented by a curved arrow in full line pointing in the direction
of decreasing n while the n + 1 — n + N co-tunneling process is represented by a similar
arrow pointing in the direction of increasing n. A thin vertical dashed line located 1/2+v/2
after the beginning of the step marks the boundary between the domains of existence of
then > n+1—N and n+1 — n+ N processes which are mutually exclusive. Finally

the N-th order co-tunneling process is represented by an upward pointing curved arrow in

dashed line.
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The general expression for the probability of co-tunneling [8] between a configuration
n and a lower energy configuration n + p is bounded from above by the expression given

here in terms of reduced parameters:

(p|)2 Ap2p—l
—1
2p - 1>' ?:1 Ai2
where A; = E, — E,4;. Expression (12) can be thought of as the p = 1 case of (15) if the

272
Thentpdt = Ynon = (4x%r)7P d 15
+p ’Y "*‘]’dm Nf(47r 'l") ( T ( )

product Hf;ll A% is understood as giving the value 1 when the upper bound is 0.

Expression (15) has two drawbacks. First, it is not a piecewise polynomial expression
of z like the rate (12) of single junction tunneling. Second, it diverges at the zeroes of A;.
The second drawback, however is an artefact of the perturbation theory used to derive
(15). The divergences take place where other transitions with a lower p become possible.
In the general case, by suitable resummation techniques, it is possible to get expressions
yielding a finite value of the transition rate at these singular points [9]. In the particular
case of the co-tunneling processes of order N — 1 we have considered above, we were able,
by going back to the original perturbative integral expression of Averin and Odintsov [8],
to get an analytical expression for the rate that stays finite during the whole transfer step

and its vicinity:

2r? N1 (N = 1)!)? I

- 2.\
Tn—n+N-1= Nf(47r T) Hﬁ]——;g Af (x,v) (16)

with

8 F2N-T '
I(:c,v):/(; (—27V—:77—)—![2(0—A)+(2A'+A+0)ln (iliﬁ)]do (16')

where A = Any_; and A' = An_,.
It is then possible to construct a polynomial expression which is everywhere greater than
this complicated expression except at the singular point where the two expressions take

the same value. This polynomial expression reads:

. (N -
Yrnt1—n+N(Z;V) = Yn—nt1-N(—T, —v) < f7‘(N_)1 E li-N ? (17)

where ¢(N) is a coefficient that only depends on N. Using expression (17) it is possible

to compute the total error probability due to both co-tunneling processes of order N — 1.
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This probability can be written as

n+1
€c = N/ [Pu(@)yn—sn+1-N(T) + Pug1¥nt1—ntn(z)]de (18)

By continuing analytically the integrand outside the time slot alloted for the transfer
step and by extending the range of integration to infinity one can get a manageable final

expression for the error probability:

= 0 F (=) (49

where
2N—-]N2N—3(N _ l)N—Z(N _ 2)2

d(N) = 72N=4(2N —5)I(2N — 5)(2N — 6)(N — 3)I2

(20)

and where the function F(y) = y*N=2/(2N — 2) + [ dte™"(t — y)*V = can be well
approximated by

py) = Ly a0

with @ = 1.4, a = 1.1 and b = 0.85. The value of the coefficient d(N) is given in table 1

for values of N relevant to the discussion in the following section.

(21)

We have supposed so far that the bias voltage was positive and small compared with
e/2C. A straightforward analysis carried out for the case of negative bias voltage shows

that expressions (19) and (21) are valid in the whole voltage range
~(N=1)/N <v < (N =1)/N (22)

where only co-tunneling processes of order N — 1 and N have to be considered during a
transfer step.

We now have to deal with the co-tunneling process of order N. It could be argued
that this process is negligible in comparison with the process of order N — 1 because it has
a higher rank in the perturbative expansion of the tunnel hamiltonian. However, one has
also to take into account the fact that processes of order N —1 are weighted by occupational
probabilities which are significantly different from zero only during a small fraction of the
time interval alloted for a transfer step, whereas the effect of the process of order N is

felt during this whole time interval. As a matter of fact, extensive numerical studies of
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the relative importance of the two types of processes were needed to show that, indeed,
the process of order N was negligible in the voltage range (22). Expressions (19) and (21)
can therefore be considered as giving an upper bound of the total error probability due to

co-tunneling in the voltage range (22).

5. Optimal parameter space

We can now use expressions (14) and (19) for the error probability due to missed
transfers and co-tunneling, respectively, to find the parameters which allow a total error
probability less than 10~%. In Fig. 5 we plot the constant error probability curves in the
(f,v) plane for the cases N = 4 and N=5. We treat ¢, and €, separately, the constant
value being 1078, with a value 5 for the ratio r = Rr/Rg which is easily accessible by
conventional nanojunction fabrication. The figure shows that below a certain threshold
value of the reduced frequency f, there is a range of reduced voltages for which the error
probability is less than 1078, In the case of N = 4, however, the threshold frequency is
determined by co-tunneling errors while in the case of N = 5 this frequency is determined
by missed transfer steps. Consequently, in the N = 4 case, the optimal parameter region is
a small lentil-shaped domain providing almost no parameter error margin whereas in the
N = 5 a substantial fraction of the total voltage range (22) can be used at the threshold
frequency. In Fig. 6 we plot, in the case N = 5, the tongue-shaped domains of the (f,v)
plane where the total error probability is below 1078, for three values of the ratio r. The
figure shows that as the tunnel resistance gets smaller, one can reach higher frequencies,
and thus higher currents, but at the expense of a smaller voltage range. We have performed
numerical calculations to see how finite temperatures shrink these domains. We find that
a shrinking by a factor of a half is reached approximately when kgT ~ 0.025¢%2/2C. In
conclusion one can summarize our analytical results by stating a rough rule of thumb valid
for N > 5: the product of the maximum voltage range AV,,,, by the maximum current
Ina: Obeys

2 QC 2
AVimazImes < 10'3(1/—,;—2— (21)

For instance, it should be possible to operate a 5 junction pump, with 0.2fF and 100k
junction capacitance and resistance respectively, which would deliver at 100mK, over a

1004V voltage range, a 10 pA current accurate to 1078,
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FIGURE CAPTIONS

Fig. 1 (a) Linear array of N tunnel junctions with the same capacitance C. Each electrode
between junctions, called for short ’island’, has a sufficiently low self-capacitance C; that
e2/2C; < kpT and can be electrostatically acted upon by a gate voltage Uy, 1 < k < N-1.
The ends of the array are connected to a common ground through voltage sources whose
effect is to bias the array by a transport voltage V. (b) Circular array of tunnel junctions
obtained by connecting the end junctions of (a), thereby forming an additional small
capacitance island electrostatically biased by an additional gate voltage Uy. The transport
voltage V around the circular array can be thought of as being produced by a time-
varying flux through the array. It is represented by voltage sources V/N in series with

each junction.

Fig. 2 Time variations of the gate voltages for the N = 5 linear pump (full lines). In
dashed line, additional gate voltage for the circular pump. In the circular N pump, the N
successive gate signals are shifted in time by 7/N, where 7 is the duration of the pumping

cycle.

Fig. 3 Array total energy for the N = 5 pump biased with V = 0.1¢/C as a function of
the electron configuration n representing the location of the single electron going around
the equivalent circular pump. The energy profile is shown at several instants during a
transfer step. For clarity, the n = 0 energies at successive instants have been shifted by
e?/2C. The dots sitting at an energy minimum represent a possible state of the array and

its evolution with time.

Fig. 4 Array configuration versus time diagram showing the various processes affecting
the state of the N = 5 array. The thick lines with graded shade show the occupation
probability of a particular configuration as the gate voltages evolve with time. The thick
arrows represent the single junction processes while the curved arrows in full and dashed
lines represent the co-tunneling processes of order N — 1 and N, respectively. The vertical

dashed lines indicate the onset of the tunneling processes (see main text).

Fig. 5 Constant error probability curves in the reduced voltage - reduced frequency plane
for two values of N. Curves intersecting the vertical axis (marked "c”} correspond to a 1078

error probability due to co-tunneling events while the curves intersecting the horizontal axis
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(marked ”m”) correspond to the error due to missed transfer steps, with same probability.

The symbol r denotes the reduced tunnel junction resistance Rp/R.

Fig. 6 Parameter domains ensuring a probability error less than 10~2 in the case of the

N = 5 pump for three values of the reduced tunnel resistance r = Rr/Rg.

TABLE 1

d(n)
84.10

78.01
44.60

A Ov |3
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Nondivergent calculation of unwanted high-order tunneling rates

in single-electron devices

P. Lafarge and D. Esteve

Service de Physique de I'Etat Condensé, CEA Saclay
F-91191, Gif-sur-Yvette Cedex, France

Recently developed single electron devices are based on the control of electron
tunneling across each tunnel junction of the circuit. However, unwanted higher order tunneling
processes, referred to co-tunneling processes, modify this simple picture and reduce the
accuracy of the devices. We calculate the co-tunneling rate in a linear array of tunnel junctions
beyond the lowest order of perturbation theory by partially resumming the infinite perturbation
expansion for the energy of a metastable state. We apply this calculation to the transition

between two different tunneling regimes in various single electron circuits.

PACS numbers: 73.40.Gk, 73.40.Rw, 06.20.Hq.
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I. Introduction.

In recent years the Coulomb blockade of tunneling has opened a new field of
electronics referred as "Single Electronics” [1]. The first realisations are ultra sensitive
electrometers [2] or charge transferring devices like turnstiles and pumps [3,4], the latter being
a potential candidate for a DC current standard. A single electron device consists of small
metallic islands separated by ultra small tunnel junctions with tunnel resistance R, larger than
the resistance quantum Ry = h/ e? . Control voltage sources are also applied to the islands
through gate capacitors. Each island has a total capacitance C,,, such that the electrostatic
energy of a single excess electron e2/2C,.s,a,,d is larger than the characteristic energy k7T of the
thermal fluctuations. Under these conditions, the number of electrons inside each island is a
good quantum number with negligible thermal fluctuations [5]. Single electron tunneling
through each junction can be forced or blocked by setting the control voltages to suitable
values. However, higher order tunneling processes can directly transfer a single charge across
two or more tunnel junctions and therefore compromise the proper operation of the device.
This phenomenon, discovered by Averin and Odintsov [6] and called here co-tunneling, allows
one electron charge to be transferred through & tunnel junctions although single electron
tunneling across each junction is forbidden. The simplest circuit which exhibits co-tunneling is
the single electron transistor which consists of two tunnel junctions in series. Co-tunneling is
responsible for the leakage current which is observed when this circuit is biased inside the
Coulomb gap [7,8]. For the sake of completeness, let us mention that a single junction biased
by a current source should also exhibit a Coulomb gap [1]. In this case, subgap leakage can
arise from imperfect current biasing [9] or from the transient electronic rearrangement during
the tunneling process [10].

In a linear array of N tunnel junctions biased with a voltage source V, a co-tunneling
event that transfers one electron across the whole array in the direction of increasing potential
is always possible (see Fig. 1). In this paper we will consider the case where another tunneling
transition of lower order becomes energetically allowed. A second tunneling process at the P
order, with P < N, takes place in the array. Both transitions start from the same initial state
and transfer one electron in the same direction but the final states are different. Because it is a
perturbative approach, the original co-tunneling theory can only give an expression for the rate
of the lowest order decay process which is energetically allowed in the array. In order to
describe the behavior of the array when another tunneling transition can occur, we have
derived a non-divergent expression of the quantum decay rate of the initial state by partially
resumming the perturbation expansion. We will consider here three physical devices where the

cross-over between two tunneling transitions with different orders currently appears : i) the
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single electron transistor consisting of two tunnel junctions in series, the simplest example of a
linear array (P =1, N =2). Our calculations are in good agreement with results obtained by
others approaches [11,12,13], ii) the more general case of a linear array of N tunnel junctions,
for which we aim at describing the effect of a finite transport voltage (P = N —1, N > 2), iii)
the charge transferring devices like turnstiles and pumps. In that kind of circuits, every step of
a transfer cycle is exposed to an unwanted co-tunneling event through the array (P =1, N >2)

and the accuracy of the transfer is affected by the rate of this leakage process.

II. The perturbative theory of co-tunneling.

Before examining the case of the single electron transistor, it is worthwhile to describe
the general perturbative theory of co-tunneling. Following Averin and Odintsov [6], a co-
tunneling transition that transfers one electron through a linear array of N tunnel junctions can
be described by an arbitrary sequence of N single tunneling events { JiseeorJioeeenl N} where j,
denotes the position in the array of the k" tunneling event. When a tunneling event occurs on
the jI junction, one electron leaves a filled state at &, below the Fermi level on one side of the
junction and occupies an empty state at €, above the Fermi level on the other side. It creates
an "electron-hole" excitation of energy € =€, +¢,. Note however that the electron and the hole
are not here in the same piece of metal. In the following, such an excitation will be nicknamed
a "tunnelon" of energy €; the tunnelon density of states is p(e)=2Ae. Within the tunnel
hamiltonian approach, A and the tunnel matrix element ¢ are related to the junction tunnel
resistance R, by

A2 = Ry 4R, . (1)
Since the final expression of the co-tunneling rates depend on the parameters A and ¢ of each
junction only through the combination At*, we use, for the sake of clarity, the same A for all
junctions. The conservation of energy implies that the sum of the energies of all the tunnelons
involved in a co-tunneling process must be equal to the electrostatic energy difference AE
between the initial and the final state of the transition. Therefore, at T =0, only transitions
bringing the system in a state of lower energy than the initial one are allowed. Let us assume
that the energetically allowed transition with lowest order is a co-tunneling transition across M
junctions. For a given sequence { Jiseens jM} of M single tunneling events there are M —1
intermediate virtual states {sl,...,s M- }. After k steps in the sequence { Jiseeesd M} the system
is in the state s, and its energy is given by the sum of the electrostatic energy E(sk) relative to
the energy of the initial state and the energies of the tunnelons created by previous tunneling
events on junctions ji,..., j,. The M co-tunneling rate T, calculated by the perturbative theory

of co-tunneling [5] is given by
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where S(g;,...e) = Y, H(E(Sk)+28,~) .
{jl""yju} k=1 i=1

This integral cannot be analytically calculated except for two junctions in series. In the limit

2n| M Ry
Ty =—
M fl[H4TC2R,I_J

where AE is much smaller than the intermediate state energies E(sk), a useful approximation is
obtained by setting the tunnelons energies in the energy denominators to zero. In this

approximation the M co-tunneling rate takes the form:

211t M R AEZM—I
7, === K SIZ , 3
M h [1} 47t2R,') (2M -1)! )
M-1
where §'= Y H(E(sk))_l.
{jp----ju} k=1

We now consider a linear array of N tunnel junctions biased with a voltage source V. Gate
voltages V, are also applied to the N -1 islands of the array through gate capacitors Cy . In
such a circuit a N* order co-tunneling transition, hereafter called a N tunneling transition, is
always possible. Even in the Coulomb blockade regime the transition can occur because the
change of electrostatic energy due to the transfer of one electron across the whole array is
—eV . If under the effect of the gate voltages one of the intermediate state energy E (s,,) with
P < N vanishes, then a P tunneling transition becomes possible (see Fig. 1). The perturbative
expression (2) can only be used to evaluate the rate of the lowest order transition i.e. a N
tunneling rate if E(sP) > Qor a P tunneling rate if E(s,,) < 0. But the cross-over between N
and P tunneling is not properly described. Moreover in the particular case P =1, the N

tunneling rate diverges at the threshold, while the single tunneling rate is zero at the threshold.

III. Partial resummation of the perturbation expansion in the case of the single-electron
transistor.

The simplest example of linear arrays that exhibits the cross-over between two
tunneling transitions at different orders is the single electron transistor (Fig. 2). This device
consists of two tunnel junctions in series of capacitances C; and C, and tunnel resistances R,
and R, connected to a transport voltage source V. A gate voltage U is also capacitively
coupled to the central electrode by a capacitor C,. The state of the device is completely
described by the number n of excess electrons on the central island and the number n, of
electrons having passed through the voltage source V. For a given state the energy of the
whole system including the voltage sources is
E(nn)=(ne-cU) 2y -(CU) [2Cs —nev,  where  Cy=C+C,+C,.  For
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0<V <e/Cy and 0< CsU < e/4, we can limit the state space to four states which we denote
: (0), (1), (-1) and (0)*. The initial state (0) corresponds to n=n, =0. The states (1) and (-1)
differ from the initial state (0) by a tunneling event on the first and the second junction
respectively. The state (0)* differs from (0) by one electron having passed through the device.
The energy of (0)* is —eV and the energies of (1) and (-1) are equal to E, = E(1,0) and
E, = E(-1,0) respectively. For V <V, where V, is a threshold voltage dependent of the
voltage U and the capacitances C;, C, and C,, E, and E, are positive and the tunneling of
one electron across each junction is suppressed. Nevertheless, there is a finite current through
the device due to the decay of (0) to (0)*. The co-tunneling transition (0) — (0)* can take
place through two channels : (0) = (1) = (0)* or (0) — (-1) = (0) * (Fig. 3). AtV =V, one
of the intermediate energies E, or E, vanishes. The co-tunneling rate calculated using Eq. (2)
presents at the threshold a logarithmic divergence which can be regularised {11,12]. Above the
threshold, electrons can be transferred by a sequence of allowed single tunneling transitions.
The limiting single transition rate is proportional to E; or E, and therefore starts from zero. In
order to properly obtain the cross-over between the co-tunneling and single tunneling regimes,
we calculate directly the decay rate of the initial state (0) without specifying the final state.
This decay rate is a good approximation of the tunneling rate across the whole array if the
occupancy probability of the intermediate states (1) and (-1) is much smaller than 1. This
condition corresponds to 0 <V <1.5V,,. At higher voltage, one can use the simplified master
equation approach [14] which only considers single tunneling events on each junction and
which becomes sufficiently accurate.

To express the quantum decay rate of the (0) state we use the formalism of the energy

displacement operator R(z) [15]. The decay rate of the initial state |i) is related to R(z) by
2
I'=——Im| PR(E; +in) Pl, 4
—Im| PR(E; +m) P] “@

where P = |i)(i |, E; is the energy of the initial state and n — 0*. The perturbative expansion of
R(z) is

0 H; 0 Hp+..., (5)

R(Z)=HT+HT _H Z H
0 iy

0 Hr +Hy
z—H, z

where Q=1-P, H; is the tunnel hamiltonian and H, is the sum of the electrostatic
hamiltonian of the whole circuit and of the tunnelon kinetic energy hamiltonian. Each term in
the PRP series corresponds to a path in the state space and can be represented by a diagram
(see Fig. 4). The construction rules of such a diagram are as follows : an upward curved line
represents a "tunnelon” excitation on the first junction and a downward curved line a
“tunnelon” on the second junction. Each vertex corresponds to a transition between two

different states of the system by absorption or emission of a "tunnelon". In the calculation
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associated with the diagram, each section i.e. portion of a diagram contained between two
dotted lines contributes by an energy denominator and each vertex by a tunnel matrix element.
Finally there is an integration over all the "tunnelon" energies €,,...,€; of the diagram with
densities of states Ag,,...,Ag;. Only paths starting from the (0) state and coming back to (0)
solely at the end give non vanishing terms in the series (5). Each diagram containing one
tunnelon (Fig. 5(a)) gives, at V >V,,, the single tunneling rate through the corresponding
junction of the single electron transistor. The set of diagrams containing two tunnelons
depicted in Fig. 5(b) give, at V <V,,, the perturbative expression of the co-tunneling rate. An
horizontal segment which is located under or over one tunnelon arc corresponds respectively
to the (1) state or the (-1) state (see Fig. 4). In the upper left diagram of Fig. 5(b), a segment
(1) appears twice under the tunnelon denoted &,. The same situation is reproduced in the
upper right diagram of Fig. 5(b) with a segment (-1) over the tunnelon €,. In these two
diagrams, the horizontal segments corresponding to the (-1) or (1) state are the origin of the
co-tunneling rate divergence because the corresponding sections contribute by the square of
energy denominators which vanish at the threshold. More generally, for a given number of
tunnelons the divergence order of a diagram is proportional to the number of (-1) or (1)
segments located under the same tunnelon arc. In order to remove the divergence we will now
proceed to a partial resummation of the perturbation series (5) by taking into account the most
diverging diagrams at each order in Hy. They are obtained when all the diverging segments
belong to the same tunnelon (Fig. 6(a),(b)). However, we want to include in our resummation
the four diagrams depicted in Fig. 5(b) in order to recover the perturbative expression of the
co-tunneling rate in the limit of small transport voltages. Hence it is necessary to keep also the
diagrams with two different possible tunnelons for the (-1) and (1) segments (Fig. 6(c),(d)).
One can classify these diagrams in four different types analogous to the four diagrams of Fig.

5(b). The integral corresponding to the first type of diagrams (Fig. 6(a)) is
k

! =J‘+°° AMie, I"“" Mtle,de, i ©)
S A z—(E1+e,)|_.0 (z=(E,+e))(z=(~eV +g,+¢&,)) |
With z = 0+in the resummation yields
*i /- < Atlede, . o
k=0 ¢ Jo —(E,+€1)+i7t7\.t22(eV—81)

This integral can be calculated explicitly. After taking the imaginary part, we obtain the

following contribution to the decay rate:
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The contribution f (Ez,eV) of the second type of diagrams (Fig. 6(b)) has the same form with
E, replaced by E,, t, by t, and ¢, by ¢,. In the third and fourth types of diagrams there are
two possible tunnelons for the (-1) and (1) segments. The integrals and the resummation are
performed similarly to the previous case. Since the third and the fourth types of diagram (Fig.
6(c),(d)) are symmetric, they give the same contribution to the decay rate:

(E, +eV)E, (E, +eV)
2(E\+E, +eV) E} +(1t7»t22eV)2

g(E,,E,,eV) = ghﬂkztftf ev -

)]
E, +eV)E E, +ev)®
B ( , te ) 2 1 ( 2 te ) i +0(7»2t12t12).
2AE+E; +¢V) B2 4 (mhiev)

Summing the contributions of the four types of diagrams and using Eq. (1), the final expression
of the decayrate I = f(El,eV)+f(E2,eV)+2g(E1,E2,eV) takes the form:

2 2 2
I = _2.£_ RK _[_el/__*_ E1E2 ][z In (eV+ El) :|

h (4n2)2anth 2 E+E+eV]ig Ei2+((xieV)2 (10)

2n~~ RyE |1 1 E,
——— 2, 5| ——-—arctan )
hiZ4TR |2 @ eV

where O; = Ry /41rR,j , J#1i. This formula provides an expression of the I-V characteristic of
the single electron transistor at 7 =0. In the limit o; =0, Eq. (10) reproduces the
perturbative expression of the co-tunneling rate across two junctions in series calculated by
Averin and Odintsov [6]. One can also treat second order tunneling in any linear array of
tunnel junctions if one replaces ¢V in Eq. (10) by the correct expression for the energy
available in the transition. Expression (10) has a form similar to the co-tunneling rate
expression of Korotkov et al. [11]. The two formulas, although analytically different, give the
same result except in the vicinity of the threshold voltage V,,. Recently, Pasquier et al. [13]
have explained their experimental results on a 2 DEG electrometer by a temperature dependent

co-tunneling rate which agrees with Eq. (10) in the limit 7 = 0.
IV. The general case of a cross-over between N tunneling and (N —1I) tunneling in a

general linear array.

More generally, the cross-over between N and (N —1) tunneling in larger arrays than
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the two junctions electrometer can be described by similar non-divergent rate calculation. We
now consider a linear array of N tunnel junctions with negligible gate capacitances biased with
a voltage source V (Fig. 7). In the case of N identical junctions with capacitance C the set of
intermediate energies (El,...,EN_l) is the same for all the sequences. For V <¢/2C, the N
tunneling is the only allowed transition. At V =¢/2C, E,_, is equal to zero and a (N-1)
tunneling transition becomes possible. A N tunneling transition is described at the lowest order
in perturbation by N {* different diagrams containing N tunnelons. If V << ¢/C, the energies of
the N -2 first intermediate states are always positive and larger than eV . Since the sum of the
energies of the tunnelons involved in a co-tunneling transition is equal to eV, we will neglect
them in the energy denominators related to the configuration states of the array except for the
(N —1)"state and the final one. We can then distinguish only two types of diagrams (Fig. 8).
There are N!(N —1)! diagrams of the first type and N!(N —1)!/(N —1) diagrams of the second
type. For the first type (Fig. 8(a)) the resummation and the integral over €, and €,_; is
performed in the same manner as in the first two cases of the single electron transistor. Then
one gets the contribution vy ,:
re (V=22

J J ( = ) Ey_,+0G,eV —0),...ex_ode,...dEy s, (11)

where 6 = z €; and where f is the function defined in expression (8).
i=1

For the second type of diagrams (Fig. 8(b)) which is similar to the third and fourth types of

diagrams in the single electron transistor case, the contribution v, is

+oo (N2
J j ( 7") Ey +G,Ey_+G,eV—0)e,...eyode,...dEy_,,  (12)
i=]

where g is the function defined in expression (9). The decay rate of the initial state

I'y =v,+7,is written:

N=-2 N=2
Ty =[ R§ ) NN -] E*F(Ey_.eV), (13)
4n°R, P
where
eV 0.2N—5
F(Ey_,eV)= m[ f(Ey+0,eV—0)+(N-1)g(Ey_, +0,Ey_ +0,eV —0)]do.
0 - .

Eq. (13) allows us to describe any kind of cross-over between two tunneling regimes in a linear
array of N tunnel junctions under the effect of a finite transport voltage. Thus one can estimate
the I-V curve of the array from the N tunneling regime until the single tunneling regime. In the
simplest case N =3, a quantitatively more accurate calculation can be done if one keeps in the

energy denominators of expressions (11) and (12) the contribution of the first tunnelon energy

g,. One obtains the following expression of the 3 tunneling rate:
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v f(E,+e,,eV —¢,)+2g(E, +¢,,E, +¢,,eV —¢,)
0 (E, +e,)’

R
T, = (4R§R J12K(E2,ev), (14)

where K(E,,eV)= g,de,.

This formula I'; correctly describes the 3 tunneling regime and the 2 tunneling regime until the
vicinity of the single tunneling threshold. Another expression is necessary to describe the cross-
over between 2 tunneling and single tunneling. The 2 tunneling rate I7, is evaluated using Eq.
(10) with the correct expression of the available energy difference in place of eV. Because
there are three different ways to associate two junctions of the circuit, the tunneling rate across
the whole array of three junctions near the single tunneling threshold CV/e =1 is given by 3T,.
Results are shown in Fig. 9 for a particular value of the tunnel resistance R, =R, =10R. For
1/2 < CV/e <1 the matching between I'; and 3T, is sufficiently good to obtain a continuous
estimate of the tunneling rate across three junctions over the Coulomb blockade range.
Calculation of the tunneling rate across three junctions are shown in Fig. 10 for several values
of the tunnel resistance. The cross-over between successive tunneling regimes gets smoother

when the tunnel resistance R, decreases and is hardly noticeable when R, <2R.

V. The cross-over between N tunneling and single tunneling.

The last application of the non-divergent co-tunneling rate calculations we shall
consider deals with the accuracy of single electron pumps [4]. A pump consists of a linear
array of N identical tunnel junctions of capacitance C where each island {k} of the array is
connected through a gate capacitor to a time dependent voltage source U, (Fig. 11). Each
gate capacitance is equal to C, with C, <<C. The controlled transfer of one electron across
the device is achieved by successively applying to the islands triangular voltage pulses as
shown in Fig. 12. These pulses induce a sequence of single tunneling events on the successive
junctions of the array : one electron charge follows the pulse propagation through the array.
However, an unwanted N tunneling transition is possible at any stage of the transfer cycle. All
steps of a transfer cycle in the N pump are equivalent [16] but, for simplicity, let us assume the
pump is placed at the beginning of a cycle. There is no excess electron on any island of the
array and at small transport voltages (V << ¢/2C) the N tunneling across the array is the only
tunneling transition allowed. As in the single electron transistor, the perturbative expression of
this N tunneling rate diverges when the energy of the first intermediate state of a co-tunneling
sequence becomes equal to zero. This is exactly what happens when, under the effect of the
first gate voltage U, the pump reaches the threshold of the first step in the cycle. This step will

be a single tunneling event across the first junction which puts one excess electron on the first
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island of the array in the sense of the transfer (Fig. 11). The perturbation theory cannot
therefore be used directly to calculate the pump error rate. Using the partial resummation
technique we can remove the divergence of the N tunneling rate. The general form of the
diverging diagrams is represented in Fig. 13. Introducing the same approximation as in the case
of the N linear array of tunnel junctions we neglect the tunnelons energies in the energy
denominators except for the first intermediate state. After the resummation and the integration
over the tunnelons energies €,,...,€y, we obtain the following upper bound of the N

tunneling rate vy,,,:

Yorr = N'Z 21[_ RK " ﬁE._z
T (2N-3)! h \4n’R, ) (1o

T R, \ N
here ay = K E*.
WIRIE O (2N—3)!(4n2R,) E ‘

J“’V g,(eV —g,)" 7 de, 15)
o (E +e)+a(ev-g)"’

Using this expression, we have calculated in the particular case of the five junctions pump an
upper bound of the N tunneling leakage during a transfer cycle. We have found that this
contribution is negligible in the particular parameter range for which metrological accuracy is
achievable [17,18,16].

V1. Conclusion.

In conclusion we have shown that in a linear array of tunnel junctions the problem of
the cross-over between two tunneling regimes at different orders can be solved by a partial
resummation of the perturbation expansion. In the case of the single electron transistor, we
have obtained an analytical expression of the co-tunneling rate that remains finite at the
conduction threshold. More generally, this approach can be used to calculate the I-V
characteristic of an array. Finally, non-divergent calculation of the co-tunneling rate provides a
rigorous upper bound of the N tunneling leakage through charge transferring devices like the

N junctions pump.
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FIGURE CAPTIONS

Fig. 1. (a) Schematic of a linear array of N tunnel junctions. The rectangular symbols represent
ultrasmall tunnel junctions. (b) Energy states of the circuit when the electrostatic energy of the
P" intermediate state of a N order co-tunneling transition is equal to the initial state energy.
n, is the number of electrons which have passed through the array. The arrows indicate co-

tunneling events through N or P junctions.

Fig. 2. Circuit diagram of the single-electron transistor which consists of two small tunnel
junctions of capacitances C, and C, biased with a voltage source V. A control voltage source

U is capacitively coupled to the island formed between the junctions.

Fig. 3. Energy states of the single-electron transistor when the circuit is in the Coulomb
blockade regime. The arrows indicate co-tunneling transitions. A co-tunneling transition

between the initial (0) and the final state (0)* can take place through two channels (a) and (b).

Fig. 4. General form of a diagram. An upward (downward) arc represents a tunnelon excitation
on the first (second) junction of the single-electron transistor. The solid dots correspond to the
absorption or the emission of a tunnelon. Each section of the diagram contained between two

dashed lines corresponds to a given state of the device.

Fig. 5. (a) Lowest order diagrams in the perturbation expansion (5) with one tunnelon arc. (b)
Two tunnelons diagrams which give the perturbation expression of the co-tunneling rate across

the single-electron transistor.

Fig. 6. Diagrams that are taken into account in the partial resummation of the perturbation

expansion (5).

Fig. 7. Co-tunneling transition in real space (a) and in state space (b) for a linear array of N
identical tunnel junctions with negligible gate capacitances biased by a voltage source V when
the energy of the (N —1)"’ intermediate state of a N tunneling transition is equal to the initial

state energy.

Fig. 8. Classes of diagrams for a linear array of N junctions which extend the classification

made for the single-electron transistor. (a) Diagrams analogous to diagrams of Fig. 6(a) and
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Fig. 6(b). (b) Diagrams analogous to diagrams of Fig. 6(c) and Fig. 6(d). The arcs starting
from the horizontal line represent the emission of tunnelons labeled €,,...,€5_;. The arcs
ending on the horizontal line represent the absorption of the previous tunnelons €,,...,€5_; in

an arbitrary order.

Fig. 9. Tunneling rates across a linear array of three junctions as a function of the transport
voltage V. Solid line are I'; (Eq. (14)) for 0 < CV/e <1 and 3T, calculated using eq. (10) with
the correct expression of the energy difference available instead of eV. Dashed lines are the
divergent tunneling rates across three, two and one junctions obtained by eq. (3) when one
retain only electrostatic energies in the energy denominators. All the curves are calculated for
R, =10R.

Fig. 10. Tunneling rates across a linear array of three junctions as a function of the transport
voltage with R, =2, 5 and 10X R, from the upper to the lower curve. The curves are I'; for

CV/e < 0.8 and 3TI', for CV/e > 0.8 where I'; and T, are calculated in the same way as in Fig.
8.

Fig. 11. (a) Circuit diagram of the N junctions pump. (b) Energy states of the array at the
cross-over between single tunneling across the first junction and N tunneling across the whole

array.
Fig. 12. Evolution of the gate voltages in the N pump during a transfer cycle of one electron
charge. The amplitude of the voltage pulse is adjusted to transfer only one electron across each

junction of the array.

Fig. 13. Diverging diagrams involved in the resummation of the perturbation series in the case

of the cross-over between N tunneling and single tunneling in the N junctions pump.
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4.2.1. Paper 6:
Direct Observation of Macroscopic Charge Quantization: a Millikan Experiment

in a Submicron Solid State Device

Originally published as:

P. Lafarge, P. Joyez, H. Pothier, A. Cleland, T. Holst, D. Esteve, C. Urbina, and M. H.
Devoret, Observation directe de la quantification de la charge macroscopique : une expérience
de Millikan dans un dispositif submicronique, C. R. Acad. Sci. Paris 314, 883 (1992).

In this paper, we report measurements of the instantaneous charge of an electron box
island connected to ground by four tunnel junctions in series. The transfer of electrons from the
charge reservoir to the island results here from co-tunneling processes whose rate are so low
that individual events can be resolved. This circuit can also be seen as a four junctions electron
pump in the hold mode [1]. However, the measured rate of the co-tunneling processes which
are one of the sources of errors in an electron pump (see paper 4) is several order of magnitude

larger than the theoretical value.

[1] J. M. Martinis, M. Nahum, H. D. Jensen, to be published.
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Observation directe de la quantification de la charge macroscopique: Une
expérience de Millikan dans un dispositif électronique submicronique

Auteurs: Philippe Lafarge, Philippe Joyez, Hugues Pothier, Andrew Cleland, Thors-
ten Holst, Daniel Esteve, Cristian Urbina et Michel H. Devoret

Résumé: Nous avons mesuré le potentiel d’une électrode métallique couplée a un
réservoir de charge par l'intermédiaire d’une chaine de jonctions tunnel. On observe a
basse température les sauts de potentiel associés au passage des électrons individuels
a travers les jonctions. Le taux de passage des électrons, bien que suffisamment faible
pour que le nombre d’électrons sur I’électrode puisse étre connu a tout instant, dépasse
la valeur théorique par plusieurs ordres de grandeur.

Direct observation of macroscopic charge quantization: a Millikan experi-
ment in a submicron solid state device

Abstract: We have measured the potential of a metallic electrode which was connected
to a charge reservoir by four tunnel junctions in series. At low temperatures, we
observe switching events associated with single electrons entering and leaving the
electrode. The tunneling rate of electrons through the junctions, although small
enough for the number of electrons on the electrode to be known at every instant,
exceeds the theoretical value by several orders of magnitude.

Adresse: Service de Physique de I’Etat Condensé
CEA-Saclay, 91191 Gif-sur-Yvette cedex, France

PACS: 73.40G, 06.20H, 73.40R
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ABRIDGED ENGLISH VERSION

In his famous experiment, Millikan showed that the total charge on an oil drop
was always an integer multiple of a charge quantum e [1], which he determined.
Nowadays, the most precise value of e is obtained by a chain of indirect experiments
[2). A more direct determination based on charging effects in nanoscale junction
[3] circuits has been proposed [4]. It consists of a purely electrostatic version of
Millikan’s experiment: an isolated metallic electrode of known capacitance would be
charged with N ~ 10® electrons using an electron pump [5]. One would determine
e with a metrological accuracy by measuring the potential of the electrode with a
SET transistor [6], which is able to resolve an increment of charge equal to e. We
report here the results of an experiment aimed at testing this idea. We measure
the potential variations associated with individual electrons leaving and entering a
metallic electrode, both in the normal and superconducting state. Fulton et al. have
recently reported a similar result, but only in the superconducting state [7].

Fig. 1 shows the principle of our experiment. The node p is the isolated metallic
electrode (”island”) whose potential is measured by a SET transistor through the
coupling capacitor C.. The charge on island p can be varied by means of a voltage
source U connected to the island by a capacitor C; and a chain of four nanoscale
tunnel junctions. The total capacitance of island p is dominated by capacitance
C), placed in parallel with the chain of junctions. The tunneling rate of electrons
through the four junctions at low temperatures [8,9] is small enough that the SET
transistor can measure the island potential with a resolution much better than e/C,.
Details concerning the measurement technique of a variable island potential with
a SET transistor have been given in a preceding paper [10]. Figure 2 shows the
nanolithographic mask with which we implemented the schematic of Fig. 1 on a
silicon substrate using the techniques described in reference [9]. Special attention was
given to the filtering of the various lines between the sample and the room temperature
electronics.

We show in Fig. 3 the SET transistor current I, which varies linearly with the
potential of island p, as a function of time when U is kept constant. The sample was
kept in the normal state with a 0.5 T magnetic field. The random switching events
correspond to the tunneling of individual electrons. However, the measured tunneling
rate is 10° times greater than the predicted rates, even assuming that the temperature
of islands a,b,c and p is 30 mK higher than the thermometer temperature which was
20 mK. This temperature difference is the maximum one can obtain by considering
the various possible heat inputs on the islands.

In Fig. 4, we show the variations of the charge g, of island p as a function of
U when U is swept back and forth between +3.5 mV and -3.5 mV in 0.4 s. The
hysteresis reflects the ratio between the sweep and tunneling rates. The results in the
superconducting state only differ from those in the normal state in that the tunneling
rate of electrons is about an order of magnitude higher. No steps corresponding to a
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charge variation of 2e could be detected.

In conclusion, it is possible, using nanoscale tunnel junctions, to both vary the
number of electrons on a metallic electrode and to measure its potential, but the
tunneling processes through a series of junction need to be investigated further before
metrological applications can be developed.

INTRODUCTION

La charge totale d’un corpuscule isolé est un multiple entier de la charge de
I’électron, méme quand ce corpuscule est de taille macroscopique. C’est grace a
cette propriété que Millikan a pu mettre en évidence la granularité de 1’électricité
en mesurant en 1911 la charge de fines gouttelettes d’huile [1]. Quoique tres di-
recte, I’expérience de Millikan ne fournit pas une mesure trés précise du quantum de
charge e car elle consiste en une mesure de force exercée sur la gouttelette d’huile
par un champ électrique imposé. Actuellement, la valeur de e la plus précise est
obtenue par une chaine d’expériences indirectes ou le quantum de charge intervient
avec d’autres grandeurs fondamentales comme la masse de I'électron, la constante de
Planck et la vitesse de la lumiére [2]. Une détermination plus directe, entiérement
électrostatique, pourrait déceler et corriger d’éventuelles anomalies dans cette chaine.
Une telle expérience, qui exploiterait les effets de charge [3] se manifestant dans les
circuits a base de jonctions tunnel de taille submicroniques a été proposée [4]. Elle
repose sur la mesure du potentiel électrostatique d’une électrode métallique isolée,
laquelle a été préalablement chargée par un nombre N ~ 10® d’électrons en utilisant
la pompe & électrons récemment mise au point par notre groupe [5]. La charge de
I’électron serait déterminée a partir de ce nombre N, du potentiel de l’électrode, et
de la capacité de cette derniére qui aurait été mesurée par une expérience annexe.
Il est indispensable que le nombre d’électrons reste controlé a I'unité pres pendant
toute la durée de la mesure du potentiel. Cette derniére, qui doit évidemment étre
suffisamment précise pour discriminer N et N + 1, s’effectue avec un transistor SET
[6]. Au cours de 'expérience décrite dans cette note, nous avons mesuré le poten-
tiel d’'une électrode dont la charge moyenne était imposée et nous avons observé les
variations discrétes correspondant & 'entrée et & la sortie des électrons individuels.
Un résultat préliminaire de ce type concernant une électrode supraconductrice a été
présenté récemment par Fulton et coll. [7] . Dans notre expérience, le phénomene de
quantification macroscopique de la charge est observé a la fois dans ’état normal et
dans ’état supraconducteur.

MONTAGE EXPERIMENTAL

Le schéma électrique de la Fig. 1 donne le principe de notre expérience. Le noeud
marqué p représente ’électrode isolée (”ile”) dont on mesure le potentiel et dont on
fait varier la charge. L’ile p est reliée a une source de tension U par I'intermédiaire
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de deux capacités Cs et C, > C,, lesquelles constituent un diviseur de tension per-
mettant d’utiliser une tension U suffisamment élevée pour que ses fluctuations soient
négigeables. On a placé en paralléle avec la capacité C), une chaine de quatre jonc-
tions tunnel de taille submicronique. Le potentiel des iles intermédiaires dans la
chalne peut étre ajusté a ’aide des sources de tension auxiliaires Uy, U; et Us. Le
role de cette chaine de jonctions est de laisser passer les électrons que doit acquérir ou
céder 'lle p pour se mettre en équilibre électrostatique avec la source U. On utilise
ici une premiére propriété-clé: une jonction tunnel de résistance R > Ry = h/e?
laisse passer la charge de fagon discontinue -électron par électron- a la différence d’un
fil métallique qui permet de transférer la charge de maniére continue. Il faut que
les jonctions soient de faibles dimensions pour bénéficier d’une seconde propriété-clé:
pour une électrode de capacité totale Cy suffisamment petite, I’énergie électrostatique
e? /kpT d’un seul électron en exces peut étre plus grande que I’énergie caractéristique
kT des fluctuations thermiques. Enfin, quatre jonctions en série sont nécessaires
pour que le passage des électrons, qui s’effectue a travers les jonctions en une seule
étape [8] a basse température, se produise avec un taux suffisamment faible. En effet,
le rapport entre les taux tunnel & tension nulle & travers A jonctions et 1 jonction
est proportionnel a (RK/RT)N'I(CE kpT/e?)2N -2 [9], ou Cg est la capacité totale
de chaque ile intermédiaire.

Grace a ces effets, une mesure du potentiel de I’ile p avec une résolution nette-
ment meilleure que e dans l'intervalle de temps séparant deux événements tunnel est
réalisable. La mesure est effectuée en utilisant un transistor SET [6] qui comporte
deux jonctions tunnel, elles aussi de taille submicronique, et qui définissent une ile,
notée m sur la Fig. 1, couplée a l'ile p par un condensateur de couplage C.. Les ten-
sions de polarisation V et Uy du transistor sont ajustées de maniére qu’une variation
du potentiel de I'ile p produise une variation proportionnelle du courant I qui traverse
le transistor. Nous avons décrit cette technique dans un précédent article [10].

La figure 2 représente le motif utilisé pour implémenter le schéma de la Fig. 1
par nanolithographie électronique. Aux zones noires correspondent des fenétres dans
un masque de germanium suspendu & 2000 A au dessus du substrat de silicium, &
travers lesquelles on évapore sous vide de aluminium. En séparant deux étapes
d’évaporations effectuées suivant des angles différents par une étape de croissance
d’oxyde d’aluminium, on forme des jonctions aux zones de recouvrement des pistes
métalliques [9]. La capacité C des jonctions est de 0.5 fF avec une dispersion maximale
de 50% sur un méme échantillon. Les capacités pures du schéma de la Fig. 1 sont
réalisées par des pistes interdigitées. Elles sont toutes visibles sur la Fig. 2, sauf la
capacité Cp qui, du fait de son plus grand encombrement, sort en grande partie du
cadre de la figure. On obtient par cette technique les valeurs Cy = Cy = Cy = C3 =
Cs =C./3=C,/25=280aF.

Apres les étapes de nanolithographie et le test des jonctions a la température
ambiante, nous avons ancré thermiquement un échantillon dont les jonctions étaient
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telles que Ry ~ 300 k{2 dans une enceinte de cuivre fixée a la chambre de mélange d’un
réfrigérateur a dilution. Les sources de tensions et le préamplificateur pour la mesure
du courant I, tous deux placés a température ambiante, ont été ensuite raccordés a
I’échantillon par des liaisons électriques filtrées. Enfin, ce dernier est refroidi a 20 mK.
On fait transiter aluminium des pistes de ’état supraconducteur a ’état normal en
appliquant un champ magnétique de 0.5 T & l’aide d’un solénoide supraconducteur.

RESULTATS

La figure 3 montre le résultat de la mesure du courant I du transistor SET en
fonction du temps, lorsque la source de potentiel U est maintenue constante. Le signal
se présente sous forme de crénaux dont la durée est aléatoire et dont I’amplitude est
fixe. L’amplitude des crénaux, calibrée a ’aide de la tension Up et des valeurs des
capacités du circuit, est conforme a celle attendue pour une variation d’amplitude
e de la charge ¢, de I'lle. Les tensions Uy, U; et Us ont été ajustées pour que la
durée moyenne des crénaux soit maximale. L’existence de ces conditions optimales
est en accord avec la théorie du ”co-tunneling” [8] régissant le passage par effet tun-
nel des électrons a travers les quatre jonctions. Nous attribuons donc les variations
aléatoires du potentiel de l'lle aux variations aléatoires de son nombre d’électrons
dues au passage de ceux-ci a travers la chaine de jonctions. Il est remarquable que
pour des durées allant jusqu’a quelques dixiemes de seconde -durées ”macroscopiques”
pour des électrons individuels dans un circuit électronique- la charge de 'ile reste fixe
et donc parfaitement déterminée. La figure 4 montre le résultat d’une mesure de
la charge g, de l'lle en fonction de la tension U lorsque cette derniére varie dans
le temps de fagon triangulaire. On observe les marches successives correspondant a
I’entrée des électrons dans l'ille lorsque la tension U croit, puis a leur sortie quand
la tension U décroit. L’ensemble des marches montantes et descendantes forme un
cycle d’hystérésis ou se traduit le rapport entre la probabilité par unité de temps de
I’effet tunnel et la durée du cycle de variation de la tension U. Cette durée est de
0.4 s dans cette expérience. Des expériences de contrdle ont montré que la largeur du
cycle d’hystérésis décroit quand la durée du cycle de variation de la tension U croit.
Aucun hystérésis ne peut étre détecté lorque la chaine de quatre jonctions est rem-
placée par une jonction unique [10]. Nous avons répété le méme type d’expériences
avec quatre jonctions a plus haute température. Elles indiquent alors que le taux
tunnel augmente brutalement a partir de 100 mK. Enfin, 'ensemble de ces mesures
a été recommenceé apres avoir replacé I’échantillon dans 1’état supraconducteur. La
recherche d’incréments de tension correspondant a 2e a été infructueuse. Les résultats
montrent que les variations de charge du systéme supraconducteur ne font intervenir
que des électrons individuels; les résultats ne different de ceux obtenus dans 1'état
normal que par un taux de passage des électrons plus élevé environ d'un ordre de
grandeur.

DISCUSSION ET CONCLUSION
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Notre expérience démontre qu’il est possible de garder le nombre d’électrons sur
une électrode métallique fixe a I'unité prés pendant une durée de 'ordre de la fraction
de seconde, tout en se réservant la possibilité de faire varier ce nombre électron par
électron avec une tension de commande. Ces résultats permettent de donner une borne
supérieure pour la valeur expérimentale du taux de passage des électrons a travers
quatre jonctions, taux dont la faiblesse est cruciale pour la métrologie de e utilisant
les effets de charges dans les circuits a base de jonctions tunnel. Nous trouvons que le
taux observé est environ 10° fois supérieur & celui que prédit la théorie du co-tunneling
[8] en supposant que la température des iles est 30 mK au-dessus de la température du
thermometre, ce qui est une valeur maximum compte-tenu des différentes sources de
chauffage possibles. Il est peu probable que ce facteur de 105 puisse étre attribuée au
bruit électromagnétique dans la piéce autour de ’expérience. En effet, si on injecte une
irradiation radiofréquence de forte puissance dans la partie du circuit a température
ambiante, elle ne produit aucun effet. Nos mesures semblent donc indiquer ’existence
d’un bruit intrinséque qui limiterait, compte tenu des caractéristiques de la pompe a
électrons [5], la précision de la mesure de la charge de I’électron & 1075. Des mesures
effectuées sur des échantillons de caractéristiques différentes, tant en ce qui concerne le
nombre de jonctions que leur résistance tunnel, devrait permettre de préciser 'origine
de ce bruit. Un autre aspect inexpliqué de ’expérience est le taux de passage des
électrons plus élevé dans I’état supraconducteur que dans 1’état normal. En principe,
la température a laquelle se déroule 'expérience est telle que tous les électrons des
iles devraient étre condensés en paires. Méme s’il reste au sein des iles une fraction
finie de quasiparticules hors d’équilibre, il est difficile d’imaginer par quel mécanisme
elles peuvent traverser les jonctions tunnel avec un taux plus grand que les électrons
dans 1’état normal.
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Légendes des figures

Fig. 1 Schéma électrique de I'expérience. Les jonctions tunnel sont représentées par un
symbole en forme de double boite. Les noeuds marqués d’un point noir correspondent
a des électrodes entourées d’isolant. Les noeuds marqués d’un point blanc représentent
les électrodes auxquelles sont appliquées les tensions principales.

Fig. 1 Circuit schematic of the experiment. The tunnel junctions are represented
by double-box symbols. The nodes marked with a full dot correspond to electrodes
surrounded by insulating material. The nodes marked with an open dot correspond to
electrodes to which the principal voltage sources are applied.

Fig. 2 Masque nanolithographique réalisant I'implémentation du circuit de la Fig. 1.
Les zones marquées avec un chiffre ou une lettre correspondent aux noeuds de la Fig. 1
marqués par le méme symbole.

Fig. 2 Nanolithographic mask used for the implementation of the circuit of Fig. 1.
The areas marked with digits and letters correspond to the nodes in Fig. 1 marked
with the same symbols.

Fig. 3 Courant I dans le transistor SET en fonction du temps pour une tension U
constante. La température du porte-échantillon était de 16 mK. La constante de
temps d’intégration était de de 1 ms. Les tensions Uy et V étaient ajustées pour
maximiser la sensibilité du transistor. Les tensions Uy, Uz et U; étaient ajustées pour
maximiser la durée des crénaux présentés par le signal.

Fig. § SET transistor currentl as a function of time. The voltage U was held constant.
The sample holder temperature was 16 mK. The integration time constant was 1 ms.
The voltages Uy and V were adjusted to mazimize the SET transistor sensitivity, The
voltages Uy, Uz and Uz were adjusted to mazimize the time between switching events.

Fig. 4 Charge de l'ile p, en unités de e, en fonction de la tension U pour une vitesse
de balayage U = £35 mV/s. Les autres conditions sont identiques a celles de la Fig.
3. Les fleches indiquent le sens de variation de U.

Fug. 4 Island p charge, in units of e, as a function of voltage U for a sweep rate

U= £35 mV/s. Other conditions were as in Fig. 3. The arrows indicate the direction
in which U was swept.
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5. Conclusion

The initial goal of this thesis work was to observe the quantization of the electric
charge in a solid state device and to determine if this quantization permits to transfer electrons

one by one with metrological accuracy.

Summary of results

We have demonstrated experimentally the quantization of the average charge on a
metallic electrode connected to an electron reservoir by a tunnel junction. By using a tunnel
junction of nanoscale dimensions we make the electrostatic energy of one excess electron in
the island, i.e. the metallic electrode, much larger than the characteristic energy of the thermal
fluctuations. We have shown that we can set the average number of excess electrons on the
island by an externally applied voltage. The measured variations of the island average charge
(macroscopic charge) as a function of this voltage show a staircase pattern and are in good
agreement with theoretical predictions taking into account thermal fluctuations. For a
superconducting island, our measurements of the macroscopic charge display an asymmetry
between the steps corresponding to an odd number of electrons on the island and the the steps
corresponding to an even number of electrons. The odd steps are shorter than the even steps.
We interpret this effect as a manifestation of electron pairing in the superconducting island.
From the steps asymmetry we deduced the free energy difference between the odd states and
the even states of the island and we have found a very good agreement between the
experimental results and our theoretical calculations. Finally, below a threshold temperature,
we have observed that odd steps disappear leading to a strict 2e-quantization of the
macroscopic charge.

The island of electron box experiments appears as the basic element of the design of
single electron devices based on macroscopic charge quantization. We have shown that an
electron pump device with four islands can theoretically achieve a metrological accuracy of the
charge transfer. This analysis is based on a nondivergent expression of high order tunneling

(co-tunneling) rates across linear arrays of junctions which we have calculated. Finally, we
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have performed a measurement of the instantaneous charge of an electrode connected to an
electron reservoir by four tunnel junctions in series. In this device, the charge transfer results
from co-tunneling processes whose rates are so low that individual tunnel events can be

resolved. However, the measured rates are several orders of magnitude higher than expected.

Problems encountered

The influence of the junction tunnel resistance on the macroscopic charge quantization
has not been investigated. The observation of the quantum fluctuations of the island charge due
to tunneling itself as described in section 2.1.3 would require values of tunnel resistance lower
than achievable with our present technique (~ 10 k€). Thus, at the temperature of our
experiment, we cannot discriminate the effects of thermal fluctuations and the effect of
quantum fluctuations. The temperature dependence of the Coulomb staircase at temperature
lower than 30 mK and the high cotunneling rate which we have observed in the four junctions
box experiment are still unexplained. These problems could be related to the problem of
thermal noise filtering. As shown in Sec. 2.1.4, thermal noise at high frequencies coming from
part of the circuit at high temperature can indeed activate unwanted tunnel events. Another
explanation of the noise problem is the possibility of an intrisic noise coming from the substrate
which may contain long lived excited states. The anomalous cotunneling rate across a linear
array of junctions (see Sec. 4.2.1) has been observed in several circuits [1,2]. This phenomenon
is of crucial importance because it increases the error rate of the devices that transfer electrons
one by one and it could severely jeopardize the use of such devices in metrological
applications.

Provided the charging energy E, is smaller than the superconducting gap A, the main
drawback which can prevent the observation of 2e-quantization of the macroscopic charge is
the presence of single quasiparticle state inside the energy gap of the superconducting island.
We may have met this type of defect in the first normal/superconducting electron box
experiment (see Sec. 3.2.1). In this experiment, the odd-even free energy difference as a
function of the temperature is well fitted below 50 mK if one adds to the continuous BCS

density of states a single, two-fold degenerate, quasiparticle state at 0.8A. In an other
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experiment performed with a completely superconducting electron box, the staircase
asymmetry increased with decreasing temperature only at high temperature. Below 100 mK,
we have observed that the odd-even free energy difference of the island remained constant at a
value corresponding to a single quasiparticle state with energy equal to 0.28A. The origin of
these quasiparticle states inside the gap is still unknown and their presence is not controlled
experimentally.

One must now mention the problem of offset charges. As described in appendix 1, the
total energy of a circuit made of small tunnel junctions depends on the charge on the islands.
Hence, the presence of random offset charges which could be trapped in the substrate or in the
oxyde barrier of the junctions affects the tunneling rate across each junction of the circuit and
implies the fabrication of a gate electrode for each island. These offset charges prevent to
design circuits which require the precise control of the charge on a large number of islands. In
particular, it makes impossible to parallelise transfer devices like the electron pump. This
problem and the problem of the co-tunneling rate may be connected: the displacement of those
charges responsible for offset charges is perhaps the source of noise explaining anomalous

cotunneling rates [3].

Possible extensions of these experiments

A possible extension of these experiments would be to use for the island a
superconducting material different from aluminum like niobium or high-T; materials. If the
BCS energy gap is larger than in aluminum then the 2e-quantization domain is extended and
the effect of a single quasiparticle state is less important. Since the normal/superconducting
box provides a precise measurement of the excitation spectrum of the island, one may in
principle investigate the complex form of the density of states of high-T. superconductors or
other exotic superconductors. This experiment would imply of course the fabrication of
nanoscale tunnel junctions between metal and the high-T; material and the control of the
spatial orientation of the insulating barrier.

The possibility of controlling the number of Cooper pairs on a superconducting island

open the field for experiments taking advantage of both charge quantization and Josephson
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coupling. One of them is the superconducting single electron transistor [4] consisting of two
small Josephson junctions in series. The maximum value of the supercurrent flowing through
the device is modulated by the charge induced on the central island and that modulation
depends on the parity of the total number of electrons in the island. As we have shown in Sec.
2.3.3, the superconducting electron box with a Josephson junction could constitute an
experiment on macroscopic quantum coherence (MQC) [5]. Here the macroscopic degree of
freedom involved in the MQC would be the charge on the island and the coupling is due to
electron tunneling through the Josephson junction. By using two Josephson junctions in
parallel instead of one, the Josephson coupling between the charge state of the system can even
be modulated by an externally applied magnetic field. By means of this modulation, one could

investigate the effect of dissipation due to the electromagnetic environment.
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APPENDIX 1
TOTAL ENERGY OF A GENERAL TUNNEL JUNCTION CIRCUIT

The most general tunnel junction circuit of practical interest contains only tunnel
junctions with high tunnel resistance and pure capacitors. It is biased by voltage sources
connected between the nodes of the circuit and ground (see Fig. Ala). In the circuit, an
electrode which is connected at least to one tunnel junction while not being directly connected
to a voltage source is an "island" containing a well defined number n of excess electrons. At a
given instant, the state of the circuit is completely described by its charge configuration given
by the set of the numbers of excess electrons on the islands {nl,...,nM} and by the set
{Pps1s----Pp} of the numbers of electrons having passed through the voltage sources
connected to the junctions. These two sets which enter in the calculation of the total energy are
not always independent. In fact, the number of degrees of freedom of the circuit is equal to the
difference between the number of junctions and the number of closed loops formed by
junctions only. For instance, in the circuit of Fig. Ala, there are 6 junctions and 1 loop. The
number of degrees of freedom is thus equal to 5.

The circuit evolves in time by transitions from one charge configuration to another.
These transitions are induced by tunneling events (single or multiple) across the junctions of
the circuit. The single tunneling rate across a nanoscale junction is proportional to the
difference in the total energy of the circuit before and after the tunnel event. The rate of
multiple tunneling events (co-tunneling) involves higher powers of this energy difference [1].
We present here the calculation of the total energy for an arbitrary charge configuration.

In the calculation, electron tunneling is viewed as a purely random process which only
changes instantaneously the charge of the islands and has no dynamics of its own. Furthermore,
because there is no resistive element in the circuit, the charges on the pure capacitors and on
the capacitances of the junctions relax instantaneously after a tunnel event. This is why the
total energy involved in the tunneling rate calculation is only the sum of the electrostatic
energy stored in the circuit and the work done by the voltage sources, with the junctions

described as simple capacitors [2].
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Fig. Al. a) Example of a circuit consisting of tunnel junctions (rectangular boxes) and

capacitances biased by voltage sources. The numbers n; to n4 denote the numbers of excess
electrons on the islands, the number ps and pg denote the number of electrons which have
passed through the voltage sources vs and vg. b) Network of capacitances with mixed
constraints equivalent to the circuit represented in a). This network has 9 nodes. The nodes
depicted by open dots (1 to 4) correspond to the islands, the nodes depicted by gray dots (5 to
6) are between voltage source nodes and junctions and the nodes depicted by solid dots (7 to

9) are between voltage sources node and pure capacitors.
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It is useful to represent the circuit as a network of capacitances with mixed constraints
(see Fig. A1b). We have to distinguish three sets of nodes in such a network. The first one is
the set of nodes corresponding to the islands of the circuit (open dots) which are labeled from
1 to M. For a given configuration, their charge g, = —nye is known but their potential v
depends on the electrostatic state of the whole circuit. The second set consists of the nodes
between a voltage source and a junction (gray dots). These nodes, which are labeled from
M +1 to P, have a known potential v; and a known number p; of electrons which have passed
through it but their charge is a priory unknown. We consider that an electron has passed
through voltage source i if it has tunneled through a junction directly connected to the source.
The number p; increases (decreases), when one electron passes through voltage source i in the
sense of the decreasing (increasing) potentials. Finally the third set consists of the nodes
between a voltage source and a pure capacitors (solid dots). For these nodes, which are labeled
from P+1 to N, only the potential is known. In the following calculation, we will call I the set
of the islands nodes, S the set of all the voltage source nodes and J the subset of S
corresponding to the nodes between a junction and a voltage source.

For a general network of capacitances, there is a matrix relation which links the vector
q whose elements are the charges of the nodes to the vector v whose elements are the

potentials of the nodes:

q=Cv. (1)

The capacitance matrix C of the network is a N x N matrix whose elements are given by

Ckk =ZCU
1=k fork,lelusS, ()

Ckl = _C/d
where Cy, is the direct capacitance between node k£ and node /. When applied to island ., Eq.
(1) gives the following relation between the charge g, of the island and the potentials of all the

nodes:

o = ZCGBVB + zewvi . (3)
Bel ieS
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We can rewrite this expression as:

dot 4o = Z éaBVﬁ s 4)
Bel
where
Go = 2, CoiVi )
ieS

is an effective bias charge applied on the island a and where C is the submatrix of € which

involves the set I of the island nodes only . The matrix Cisa M x M matrix such that
Cop =Cup fora,pel. (6)

The matrix C of the island network has an inverse C1 and we can write the inverse of relation

4:

Vo = 3.CoMg, +d,) - 0

vel

The total energy E of the network, which we want to calculate, is obtained by summing the
electrostatic energy E, . stored in the circuit and the work done by the voltage sources E;.

Expressed in terms of the capacitances and the nodes potentials, E

elec

E,,. =% ZCaﬂ(va—vB)z-i-—zl- 2 C,-j(v,- ) ZC

takes the following form:

o<fel i<jeS ael ieS
()
-1 ZCasV Vpts Zcu ViV~ 2 daVa
a el x/eS ael

Since for a given charge configuration, we do not know the island potentials v, but only the

island charges g, we now need to express the electrostatic energy E

elec

as a function of the
charges q,,. This can be done using the inverse matrix relation (7). From (7) and (8) we get for

the electrostatic energy stored in the circuit:

Epee == ZZCaBZCay( +‘77)26|§nl(qn+‘7n) = 2L5Viv; =2 duVe

aeIBeI el nel z ,JE€S ael
9
-1 _ _ ~
='2‘ Cin (qv+qv)(qn+qn) Zcu Vi~ X daVa
y.nel tjeS ael
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The work E; done by the voltage sources is given by

E; =‘Z[2Cw(vi“’a))vi+2("P13)V1 . (10)

ieS\ ael le]
In this expression, the first term represents the work for charging the capacitances directly
connected to the voltage sources and the second term represents the work for fumnishing
electrons which have been injected in the islands through the junctions. The total energy of the
network can then be expressed as

E({”a},{pl}) 2 ﬁ”ae Qa (”ﬁe qﬁ) zplevl—_zzcouv = zCVVJ (11)

a Bel le] :eS ael 1 ,JES
Since we usually want to compare the energies of different charge configurations for the same
values of the applied voltages, we are interested in the difference between E and the total
energy of the configuration with no electrons on the island and no electrons having passed
through the voltage sources. We obtain the following result:

E({”a}’{pl}) ({0} {O} ZCaB<"anBe anBe—éﬁnae)_zplevl (12)

a Bel led

We now apply this calculation to three simple examples:

The Single-Electron Box (Fig. A2)

In the case of the single-electron box there is only one island in the network. This island
is connected to a voltage source U through a capacitance C, and to the ground through the
junction capacitance C. Therefore the matrix C of the circuit has only one element
Cy; =C+C,. We denote by n the number of excess electrons on the island, there is only one
bias charge given by g = C,U. The energy of the single-electron box circuit directly follows
from (11):

2
-—C,U%. (13)

We usually consider only the first term of this energy, which is useful for the calculation of the

average charge in the junction:
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82

=—< __(n- 2 14
En= e GUe (14)

The Single-Electron Transistor (Fig. A3)

Like the electron box, the single-electron transistor [3] has only one island, whose
number of excess electrons is denoted by n. The matrix C is given by 611 =C+C, +C,. The
direct capacitance between the island and the voltage sources V and U, are C; and C,
respectively. The number of electrons which have passed to V is denoted by p and the bias
charge of the island is g = C;V + C,Uy. The total energy is:

(ne-cv-cu,) 1

1 2 1 2
- — V2 -=C U2 - peV . 15
2T G+G+C, 2V TpreeTh (13)

The N junction pump (Fig. A4)

The N junction pump consists of a linear array of N identical junctions [4], and has
N -1 islands. Each island is connected to a gate voltage source through a capacitor of
negligible capacitance and the whole circuit is biased with a voltage source V. The charge
configuration is completely described by the number p of electrons having passed through the
voltage source and the set {nl,..., ”N—l} of the numbers of excess electrons on the islands. The
transfer of one charge across the whole array is achieved by N successive single tunnel events
across each junction. After i tunnel events in the transfer sequence, the circuit is in an
intermediate state given by {0. ..0,n; =1,0. ..0} and p = 0. For simplicity, we will calculate the
energy of such a state with one excess electrons on island i when there is no gate voltages

applied. For this charge configuration, Eq. (12) gives:

E({0...0,n,=1,0...0},{0}) - E({0},{0}) = E, = lé,j}e2 ~Cip1eCV (16)

[\*]

If we neglect the gate capacitances, the matrix C is given by C = CJ N-1 Where Jy_; takes the

following form:
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1777
Fig. A2. The single electron box circuit is the simplest circuit containing one island and

consists of a tunnel junction and a capacitor placed in series. The voltage source is connected

to the capacitor. The only degree of freedom is the number n of excess electrons on the island.

Fig. A3. The single-electron transistor (SET) has one island and two degrees of freedom: the
number n of excess electrons on the island, as in the electron box, and also the number p of

electrons which have passed through the voltage source V.

Fig. A4 Circuit schematic of the N-pump. We assume that the capacitance Cy of the gates is

much smaller than the junction capacitance C.
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Jyag={ 0 - . am

One can show that detJ_; = N and obtain:

=1 _ 1 det]; jdetJn_;_; _ i(N-))

g = 18
Moo det In_ NC (1%
We finally deduce the energy E; of the N junction pump after i tunnel events:
i N 2
E, =ﬁ((N—z)e f2c-ev). (19)

Ideal pumping of electrons would be achieved in the N junction pump by applying successive
triangular voltage pulses to the islands through the gate capacitors [5]. In that case, when the
gate charge of island k is not zero, it evolves in time in such a way that g +q;,; =e. Similar

calculations can be done in order to obtain the energy difference E; in that particular case.
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APPENDIX 2
FABRICATION OF THE SUPERCONDUCTING/NORMAL
TUNNEL JUNCTIONS

Electron box experiments require the use of ultrasmall tunnel junctions with nanometric
dimensions. In our samples, such junctions were fabricated by the overlap of two metallic thin
films evaporated at two different angles through a suspended mask [1,2]. We describe here the
particular technique which we have used to fabricate superconducting/normal tunnel junctions.

The first samples of electron box circuit were fabricated using a metallic suspended
mask made out of Germanium [3,4]. The fabrication of such a mask involves depositing three
layers on the substrate: an underlying PMMA (Polymethyl Methacrylate) resist layer, a thin
germanium film, and a top PMMA layer. The circuit pattern was first defined on the top
PMMA layer by electron beam lithography. It was then transferred to the Ge layer by a non-
isotropic reactive ion etch. Finally the suspended mask was obtained by an isotropic etch of the
bottom PMMA layer. For the fabrication of the normal/superconducting box circuit we have
used a fabrication technique which only requires two layers of resist. The spinning of the two
resist layers is done following the method of Courtois at CRTBT [5]. The principle of junction
fabrication is the same but the suspended mask is directly obtained with the top layer of
PMMA.

In our "bilayer”, the underlying resist layer is made of PMMA/MAA copolymer resist
grade 1660098 solved at 70g/l in 2-ethoxyethanol. The top layer is made of PMMA
(Polymethyl Methacrylate) Homopolymer WT 950000 solved at 15g/1 in chlorobenzene (Fig.
AS5a). Just before spinning the resist, we filter it in a 5.0 um MILLIPORE filter. The support
layer is spun at a speed set between 850 rpm and 1000 rpm, yielding a film with measured
thickness between 650 nm and 330 nm. After exposure (Fig AS5b), the sample is immediatly
developed in a solution of MIBK(1) Propanol-2(3) for 40 seconds at 20 °C. The development
plays a double role: it precisely reproduces the pattern on the top PMMA layer by removing
the exposed areas and simultaneously remdves the bottom resist layer around the openings in

the top mask yielding an undercut mask profile. Therefore, only the narrow lines of the mask
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Fig. A6 Schematic view of the offset between the two images of the suspended mask obtained

after a double angle evaporation at angle —0 and +96.
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Fig A7 Fabrication of a junction by the shadow mask evaporation technique. The junction is
obtained at the overlap between the two metallic films produced by two evaporations over a

suspended bridge.
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become completely suspended over the substrate, while the other non-exposed parts of the top
PMMA layer remain supported by the underlying PMMA/MAA layer (see Fig. ASc). The main
benefit of the bilayer process is to suppress the etch step of the Ge layer. It allows a better
resolution of the final mask since there is no longer a transfer of the pattern from the resist to
the Ge layer. It suppresses also the eventual residues which can be deposited on the Si
substrate by etching a metallic film and which can prevent from forming reliable oxyde barriers.
However, one has to take into account two undesirable effects: i) on a bilayer resist, the
electron beam exposure is non local, ii) the PMMA suspended mask is not so stiff as a metallic
mask.

The substrate is an oxidized 2-inch silicon wafer (PURE-SIL, diam 2", thick 275 +/-
25, class prime, dope boron, +5000 A oxyde). After having been covered by the two layers of
resist, the wafer is cut in 9mm X 9mm chips. Electron beam exposure is done with a modified
JEOL 840A scanning electron microscope (SEM). Electrons are accelerated at 35 kV and the
standard charge dose is 2 pC/ umz. The beam blanker and the deviation of the electron beam
of the microscope are controlled with a Hewlett-Packard HP 1000 computer through digital-
analog converters. The whole pattern, from the submicron junctions until the millimeter size
pads, is written by the electron beam of the SEM in four successive magnification steps. The
pattern of the mask is generated from a source file by a custom computer program already
described by Pothier [3].

In the shadow mask evaporation technique [1], the offset w between two images of the
suspended mask, evaporated respectively at -0 and +0 from the normal incidence, is given by
w=2htan0 where & is the height of the mask over the substrate (Fig. A6). Typically in our
samples, & =500 nm, 6 =15°, and w never exceeds 200 nm. Therefore, for large scale pattern
(> 10 um), the offset is irrelevant and the result of the evaporation can be considered as a
metallic picture of the pattern. At smaller scales, however, the offset becomes relevant. After a
double evaporation over a suspended bridge of width d, one obtains under the bridge an
overlap region of width w—d.

We deposit metallic thin films with an electron gun evaporator. The sample orientation

is controlled by the use of a rotating sample holder. We first deposit 30 nm of aluminum
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Fig. A8 Scanning electron microscope photograph of an electron box circuit. Light gray
areas correspond to copper covered surfaces and dark gray areas to aluminum covered
surfaces. The grain is due to the thin film of gold deposited on the sample in order to enhance
the contrast of the photograph. The tunnel junction corresponds to the triangular white dot.
The island of the box consists of the single horizontal metallic strip. Note that there is no

contact between the two images of the island resulting from the two successive evaporations.

167



(99.999 % pure) at 1.0 nm/s at an angle —6 relative to normal incidence (Fig. A5d). The
evaporation angle is adjusted to take into account the thickness of the underlying resist layer.
Typically, this angle is set between 11° and 19°. During the evaporation, the pressure does not
go above 2.107° mb. The superconducting electrode of the junction and hence the
superconducting island of the box is obtained with this aluminum evaporation. Aluminum can
be evaporated at a temperature such that the resist mask is not damaged and can be still used
for a second evaporation. A reliable insulating barrier is produced by oxidizing the surface of
the aluminum. For that purpose, we introduce few mb of oxygen in the vacuum chamber
during 3 mn (Fig. ASe). Depending on the required tunnel resistance, the oxygen pressure is
set between 0.5 and 5 mb. Then we deposit 50 nm of copper (99.99 % pure) alloyed with 3 %
in weight of aluminum [6] with the same conditions as for the first metallic layer but with an
opposite evaporation angle +0 (Fig. AS5f). The superconducting/normal tunnel junction is
formed by the overlap of the oxidized aluminum and the copper (see Fig. A7). By varying the
angle 0, the width d of the bridge, and the length of the overlap, one can adjust the area of the
Jjunction. Areas smaller than 100 nm x 100 nm and tunnel resistances between 25 kQ and 300
kQ are commonly obtained. A scanning electron microscope photograph of a
normal/superconducting electron box circuit is shown on Fig. AS8.

Finally, the resist is lifted-off by placing the sample in a bath of acetone at 50 °C for 10
minutes. Immediatly after the lift-off, the junctions are tested at room temperature. In order to
measure its tunnel resistance, the circuit is shunted by a high impedance variable resistor and

connected to a multimeter by 1 M{Q resistors.
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Superconducting/Normal Tunnel Junctions Bilayer Processing Sequence:

(1) Substrate
2-inch oxidized silicon wafer.
(2) Resist deposition:
First layer:  PMMANMAA, 70g/1 in 2-ethoxyethanol, filtered.
spin at §50-1200 rpm (depending on the thickness required) for 60 s.
bake on an hot plate for 15 mn at T =160 °C.
Second layer: PMMA (950 K), 15 g/l in chlorobenzene, filtered.
spin at 1000 rpm for 60 s.
bake on an hot plate for 15 mnat T =160 °C.
(3) Electron beam exposure
Electrons accelerated by a voltage of 35 kV, standard dose 2 pC/ umz .
(4) Chemical development
Develop for 40 s in a solution of 1:3 MIBK:Propanol-2 at T = 20°C.
Rinse in Propanol-2.
(5) First evaporation
Deposit 30 nm Al at 1.0 nm/s, P = 10~ mb, at an angle 10°< 0 <20° from normal
incidence.
(6) Oxidation
Introduce 0.5 to 5 mb of oxygen in the vacuum chamber for 3 mn.
(7) Second evaporation
Deposit 50 nm CuAl (3% in weight) at 1.0 nm/s, P = 1078 mb, at an angle —0.
(8) Lift off

Immerse substrate in acetone at T = 50°C for 10 mn.
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APPENDIX 3
THE SINGLE ELECTRON TRANSISTOR

The SET electrometer

The single-electron transistor (SET) [1] is a device based on ultrasmall tunnel junctions
which we have used as an electrometer in order to measure the variations of the island charge
of the electron box circuits. The SET consists of two tunnel junctions of capacitances C; and
C, placed in series and biased with a voltage source V. The central island delimited by the two
junctions is also connected to a gate voltage Uy through a capacitor C, (Fig. A3).

We have described the principle of the SET electrometer in Sec. 4.2.1. The state of this
device is described by the number n of excess electrons on the island and by the number p of
electrons having passed through the voltage source V. The total electrostatic energy of the
device is E = (ne—CiV = Cyls)” [2C% —CyV2 [2-C,U3 2~ peV (see appendix 1), where C
is the total capacitance of the island of the SET. At T =0 and V >0, the conduction through
each junction of the SET is blocked if the total energy of the two states (n=-1,p=+1) and
(n=1,p =0) is greater than the energy of the initial state (n=0,p =0). The current-voltage
characteristic of the SET exhibits thus a voltage gap depending on the induced gate charge
CgUp. For a given value of the bias voltage V, the current / through the device as a function of
C,Up is an e-periodic modulation. Since a small amount of the induced charge, smaller than
the charge quantum e, results in a variation of the current /, the SET can be used as an
electrometer [2].

The behavior of the SET electrometer has been much investigated both experimentally
[1,3,4,5,6] and theoretically [7,8,9,2,10]. The experimentals values of the capacitances and
tunnel resistances of the junctions can be deduced from the measurements of the current-
voltage characteristics of the device. The voltage gap of the /-V characteristic of the single-
electron transistor can be predicted, at T =0, by considering the stability diagram of the
charge state (n = 0,p = 0) of the system as a function of the bias voltage V and the gate charge
CgUp. When V>0, the boundary of the stability domain of the state (n=0,p=0) are thus
given by the two equations —(C% —CI)V+e/2+CgU0 =0 and -G,V +¢/2-C,Uy =0. These
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two equations are sufficient since the stability diagram is e-periodic in C,U, and symmetric
with the bias voltage V. The stability diagram of the SET is shown on Fig. A9a. One can
distinguish two types of /-V characteristics depending on the gate charge C,Up: maximum
voltage gap characteristic when —ng/Z(Cg + Cz)mod e<CUp < +ng/2(Cg + Cz)mode
and reduced voltage gap characteristic when eC, / 2(C o +C2)mode <CUp< e/2mode. The
two quantities Cy —C; and C, can be inferred from measurements of the voltage gap of the I-
V characteristic at the lowest temperature. The sum R;+R, can be inferred from the
measurement of the /-V characteristic at large voltages.

In our normal/superconducting electron box experiment, the SET electrometer is made
with normal/superconducting junctions and its island is superconducting. For the states
(n=1,p=+1) and (n=-1,p = 0) with an odd number of electrons on the island we now must
add the energy A of a quasiparticle inside the superconducting island (see Sec. 2.2.1) to the
electrostatic energy of the circuit. Hence, the boundary of the stability domain of the SET are
build with the two following equations: —(C§—C;)V +e/2—CsAje+ C,V,=0 and
-C,V+ef2+CzAfle-C ¢Vg =0 (see Fig. A9b). From the measurements of the voltage gap of
the I-V characteristic one can extract the capacitances of the junction but also the value of the

superconducting gap A of the island.

Measurement of the island charge

Practically, the SET electrometer is fabricated in situ at the same time as the electron
box and its central island is coupled to the island of the electron box circuit by a capacitor of
capacitance C, (see Sec 3.1.1,3.2.1 and Fig. A10).

The chip on which the experimental circuit has been fabricated is glued on a copper
sample holder thermally anchored to the mixing chamber of a dilution refrigerator. The
contacts between the measurement wires and the circuit pads are done with silver paint. The
voltage bias of the electrometer is provided by a voliage dividing bridge. The current / through
the electrometer is measured from the voltage drop across a resistor of 12.07 M£Q placed in

series with the device. This resistor and the resistor providing the voltage bias are mounted at
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Fig. A9 Stability diagram of the single-electron transistor as a function of the bias voltage V
and the induced gate charge C,Uy. Only the cell corresponding to the state n=0 is
completely represented and we have assumed that Cy —C; > C,. The horizontal dotted lines
delimit different regimes of the I-V characteristic of the SET depending on C,Uy. a) Single-
electron transistor in the normal state. b) Normall/superconducting/normal single-electron

transistor. The energy gap of the superconducting island of the SET is denoted by A .
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Fig. A10 Schematic of the experimental set up. The capacitance C,, is the cross-talk parasitic
capacitance coupling the electron box voltage line and the island of the electrometer. The
dashed lines represent the intermediate shielding stages. The values in dB's refer to
commercial microwave attenuators. The symbols F and P indicate respectively resistive film
microwave filters and powder microwave filters described by Pothier [11]. A feed-back loop
ensures that the current through the electrometer remains equal to a constant value set by U,.
The voltages U and Uy implement the corresponding voltages of Fig. I in paper 2 (Sec.

3.2.1) while Uy, sets the value of the transport voltage V in the same figure.
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the lowest temperature stage of the experiment and this circuitry is shielded in a closed copper
box. The sample is placed at the center of a superconducting magnet which can produce a
magnetic field of 1 T perpendicular to the surface of the sample. The experimental set-up is
described in Fig. A10. The electrometer gate line and the electron box voltage line are coaxial
lines with filters depicted in Fig. A10.

The average charge <QC> induced on the coupling capacitor C, is given by
(0.)=C,[Cs(~(n)e+CU)+C,U, where C,, is the cross-talk capacitance which directly
couples the voltage U the to the island of the electrometer. A variation A(Q) of the box island
charge (Q) = —(n)e yields a variation A(Q,)=(C,/Cs)A(Q) of the gate induced charge of the
electrometer. The coupling coefficient C,/Cy between the island of the box and the island of
the electrometer is determined from the curve which gives the electrometer current / versus the
electron box voltage U (Fig. 6 of Sec. 3.1.1). This curve presents a short-period sawtooth
modulation superimposed on a large-amplitude one. The former one arises from the discrete
variations of the island charge of the electron box and the latter one originates from the cross-
talk capacitance C,, which directly coupled the electrometer island to the voltage source U.
The period of the large-amplitude "cross-talk" modulation corresponds to a variation of the
charge induced on the electrometer island equal to e. On the other hand, each small-amplitude
events results from a variation of the charge induced on the electrometer equal to —(C, /C$)e
and is equivalent to a negative voltage offset of the large-amplitude modulation curve. The
coefficient C,. /Cg is thus given by the ratio of this voltage offset and the period of the "cross-
talk" modulation.

In order to measure the variations of the box island charge (Q) as a function of the
voltage U applied to the box, we have used two differents methods. In the former one which is
described in Sec. 3.1.1, we measured the variations of the current / through the electrometer
which are proportional to the variations of the island box charge.

In the latter method, used for the normal/superconducting electron box experiment
(Sec. 3.2.2), a feed-back loop acts on the electrometer gate line and maintains a constant
current through the electrometer. First the feed-back loop is open and by adjusting the

electrometer bias voltage V we maximize the amplitude of the current modulation as a function
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of the electrometer gate voltage U,. Then we switch the feed-back loop on and we set the
target current to the value corresponding to the maximum of 0//0U, . Finally, we sweep the
voltage U applied on the electron box island and we record the voltage injected by the feed-
back loop in the electrometer gate line. The variations of this latter quantity are proportional to
the variations of the average charge (Qc) induced on the coupling capacitance. Before
recording, we substract to the signal a linear term whose coefficient is adjusted in order to give
a signal with a staircase shape defined by horizontal steps. If we have determined the coupling
coefficient C./Cy , this measurement method does not require any other calibration and thus
one can directly compare experimental Coulomb staircases obtained at different temperatures

or at different values of the magnetic field.
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