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Avant-propos

Les travaux de these présentés dans ce mémoire ont été effectués au Laboratoire d’Analyse
et d’Architecture des Systémes du Centre National de la Recherche Scientifique (LAAS-
CNRS). Je remercie les directeurs successifs du LAAS-CNRS, Mallik Ghallab et Raja Chatila
pour m’avoiraccueillidans ce laboratoire. Je remercie également Jean Arlat, responsable du
groupe de recherche Tolérance aux fautes et siireté de fonctionnement informatique (TSF)
au sein duquel j’ai effectué mes travaux, pour son accueil et sa bonne humeur.

J exprime ma reconnaissance a mes encadrants : David Powell, directeur de recherche
au LAAS-CNRS, et Marc-Olivier Killijian, chargé de recherche au LAAS-CNRS. Je les remercie
d’avoir supporté mon entétement pendant trois ans, d’avoir toujours été présents quand il
le fallait, d’avoir été si bons relecteurs, et de m’avoir fait confiance. Leurs conseils et leurs
critiques ont sans nul doute beaucoup contribué a ces travaux.

Je remercie les personnes qui m'ont fait 'honneur de participer a mon jury de
these:

¢ M. Hans-Peter Schwefel, maitre de conférence a 1'Université d’Aalborg, Dane-
mark;

¢ M.Pierre Sens, professeur a I'Université Paris 6 et chercheur au LIP6;
+ M. Michel Banitre, directeur de recherche INRIA a I'IRISA, Rennes;

+ M. Claude Castelluccia, directeur de recherche INRIA a I'INRIA Rhone-Alpes,
Grenoble;

*  M.YvesRoudier, maitre de conférences a I'Institut Eurécom, Sophia-Antipolis;

¢ M. Ivan Frain, ingénieur recherche et innovation dans la société Seanodes,
a Toulouse.

Hans-Peter Schwefel et Pierre Sens ont accepté la charge de rapporteur et je leur en
sais gré.

Le sujet de theése dont il est question dans ce mémoire a pour origine le projet MoSAIC!
(Mobile System Availability, Integrity and Confidentiality), partiellement financé par I’Action
Concertée Incitative Sécurité & Informatique (ACI S&I) de 2004. Ce projet regroupait avec
le LAAS-CNRS I'[RISA et Eurécom. Les discussions, voire les débats, qui ont eu lieu au sein
du projet MoSAIC ont été enrichissants. J'exprime ma reconnaissance aux personnes que
j'ai cbtoyées dans ce projet, Michel Banatre et Paul Couderc pour I'IRISA, Yves Roudier pour
Eurécom, Matthieu Roy, David et Marc-Olivier pour le LAAS-CNRS, et en particulier 2 mes

! http://wwwlaas fr/mosaic/
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collégues doctorants du projet MoSAIC, Nouha Oualha (Eurécom) et Damien Martin-Guille-
rez (IRISA).

Cestravaux ont également été partiellement financés par le projet européen Hidenets
(Highly Dependable IP-Based Networks and Services) et le réseau d’excellence européen ReSIST
(Resilience for Survivability in IST). Merci aux responsables de ces deux projets.

Cette thése a m’a parfois amené a explorer des sujets inattendus. Ainsi, suivant les
conseils de David, je me suis lancé dans I'évaluation de la stireté de fonctionnement a base
de chaines de Markov et de réseaux de Petri, ou j'ai bénéficié du soutien de Mohamed
Kaaniche, chargé de recherche au LAAS-CNRS. Je lui suis trés reconnaissant pour son
aide et sa disponibilité. Bien sfir, je n’oublie pas Ossama “Sem Sem” Hamouda, doctorant,
qui m'a également beaucoup aidé a défricher ce terrain, toujours dans la bonne humeur.
J'ai aussi apprécié le soutien de Thomas “Bob” Robert et de Benjamin Lussier, camarades
doctorants, sur ces sujets épineux.

Je salue Minh Duc Nguyen, doctorant au LAAS-CNRS, dont j’ai suivi en 2005 le stage
de mastere de recherche. Au printemps 2007, Frédérick Capovilla et Guillaume Vachon,
deux étudiants venus du Québec, ont développé I'interface graphique MERLIn, évoquée au
chapitre 6, et ce dans une ambiance de travail agréable dont je les remercie. Mon collegue
Christophe Zanon, ingénieur d’étude au LAAS-CNRS, a continué le travail sur MERLIn,
rajoutant des fonctionnalités toujours plus folles. Il s’est montré réactif et efficace alors
que le jour J de la démonstration approchait, et ce tout en restant décontracté. Merci
beaucoup pour cette aide précieuse.

Bien siir, cette thése eut été tout autre sans la présence de mes collégues doctorants au
LAAS-CNRS.Je salue donc mes camarades du Bureau Dix, un ilot de quiétude et de résistance
dans cette grande maison : Ben Lussier, 'auto-proclamé « Empereur du Bureau Dix » et en
tout cas doyen du Bureau, Etienne Baudin, mon voisin d’en-face et la bonne humeur des
lieux, Youssef Laarouchi dit “Youyou”, toujours prompt a taquiner ses camarades, et Caro-
line Lu qui a su apporter un peu de finesse dans cette piece. Ces joyeux drilles m’ont beau-
coup aidé durant ces trois ans, y compris dans les moments difficiles. Je salue également
Manel Sghairi qui a eu I'opportunité de séjourner quelques temps au Bureaux Dix.

On trouve aussi de sympathiques doctorants au-dela du Bureau Dix, notamment Tho-
mas “Bob” Robert, un excellent conseiller scientifique et non moins excellent cuisinier, son
turbulent mais chaleureux voisin Thomas Pareaud, mes brillants « conscrits » Ana Rugina
et Eric Alata, Carlos Aguilar Melchior mon guide favori en cryptographie, Nicolas Salatgé
qui fait maintenant partie de la population vraiment active, et les « jeunes » Géraldine
Vache, Eric Lacombe, Amine Baina et Mohamed Gad El Rab. Avec les autres membres du
groupe TSF, ils ont contribué a faire de ces trois ans un bon moment.

Enfin, je remercie les personnes en dehors du LAAS qui m’ont soutenu, famille et amis,
et en particulier Ségo pour son soutien et sa compréhension, sans oublier celle « qui lui fait
une bosse sous le nombril ».
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Introduction

es systémes mobiles tels que les ordinateurs portables, assistants personnels (PDA) et

téléphones portables sont de plus en plus utilisés et dans des contextes ot ils risquent
d’étre abimés, perdus ou volés. Ces outils sont utilisés pour produire des données. Des
appareils tels que des appareils photo numériques ou caméras peuvent produire des
quantités de données importantes. En méme temps qu’ils deviennent de plus en plus
petits, polyvalents, et puissants, ces dispositifs mobiles sont de plus en plus utilisés dans
des domaines variés de notre vie courante, nous rendant de plus en plus dépendants.

Malgré tout, relativement peu de mécanismes sont disponibles pour améliorer la
disponibilité des données stockées sur ces appareils. En outre, les mécanismes disponibles
tels que les mécanismes de « synchronisation » souffrent de limitations. Il requiérent
notamment une intervention manuelle de l'utilisateur, et leur utilisation est souvent
contraignante (par exemple, I'utilisateur doit étre dans I’environnement physique de son
ordinateur de bureau). Cette situation laisse les utilisateurs de dispositifs mobiles avec, au
mieux, des possibilités de sauvegarde de données intermittentes.

Nous pensons que cette situation appelle de nouveaux mécanismes de sauvegarde
tirant davantage parti des possibilités offertes par les dispositifs mobiles et leurs contextes
d’utilisations. Ces dispositifs deviennent omniprésents et communicants. Avec I'arrivée de
technologies de communication réseau ad hoc, les réseaux spontanés deviennent une
réalité, permettant a des périphériques proches les uns des autres de communiquer entre
eux sans aucune intervention humaine. Ces observations nous ont poussé a explorer les
possibilités permettant de tirer parti des interactions spontanées dans I'objectif de créer
un service de sauvegarde coopérative.

Ce mémoire de thése est divisé en deux parties respectivement en francais en anglais.
Les deux parties suivent la méme structure, la premiére étant un résumé de la deuxieéme.
Le chapitre 1 fournit un apercu des sujets abordés dans cette theése. Les chapitres suivants
abordent des aspects spécifiques de la conception, mise en ceuvre, et évaluation du service
de sauvegarde coopérative. Le chapitre 2 décrit nos motivations et nos objectifs de siireté
de fonctionnement. Le chapitre 3 s’intéresse a I’évaluation analytique de la stireté de fonc-
tionnement du service. Le chapitre suivant se concentre sur la conception de mécanismes
de stockages répartis adaptés a nos objectifs et fournit une évaluation expérimentale de
certains mécanismes. Le chapitre 5 traite des probléemes liés a la coopération entre partici-
pants sans relation de confiance préalable. Enfin, le chapitre 6 décrit comment nous avons
assemblélesdifférentsrésultatset propositionsdes chapitres précédents dansun prototype
du service de sauvegarde coopérative.

F-1
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Chapitre 1. Démarche et contributions

e chapitre décrit le contexte de nos travaux et donne un apercu des théemes abordés
dans cette thése, en faisant référence aux chapitres qui les abordent. A la fin de
chaque chapitre se trouve un résumé des travaux connexes.

1.1. Contexte

Cette section présente les deux principaux domaines abordés dans cette these : la siireté de
fonctionnement et l'informatique ubiquiste.

1.1.1. Siireté de fonctionnement et tolérance aux fautes

Les travaux présentés dans cette these ont pour but d’améliorer la siireté de fonctionnement
des dispositifs mobiles, en proposant des mécanismes de tolérance aux fautes permettant de
limiter le risque des perte des données.

La streté de fonctionnement est un domaine de recherche actif, avec ses propres
concepts et terminologie [Avizienis et al. 2004]. Ainsi, la tolérance aux fautes est définie
comme un moyen permettant d’éviter la défaillance d’'un service en présence de fautes.
On définit la défaillance d’'un service comme 1'événement qui survient lorsque le service
rendu s’éloigne du service correct. Enfin, une faute est la cause supposée ou adjugée d'une
erreur, une erreur étant elle-méme la partie de I'état total du systéme pouvant conduire a
sa défaillance. 1l y a donc une chaine causale, ol une faute peut engendrer une erreur, qui
a son tour peut conduire a la défaillance du service.

1.1.2. Informatique ubiquiste et réseaux mobiles ad hoc

Au cours de la derniere décennie, les dispositifs informatiques mobiles se sont multipliés,
devenant de plus en plus petits et de plus en plus puissants (PDA, téléphones mobiles, appa-
reils photo et vidéo). Dans le méme temps, des moyens de communication sans fil de courte
a moyenne portée se sont répandus. Il est devenu possible de connecter trés facilement
différents dispositifs entre eux ou avec un ordinateur de bureau, en utilisant des protocoles
tels que Bluetooth ou Zigbee. Les réseaux locaux sans fil (WLAN) sont également devenus
courants,

Enfin, des mécanismes permettant la création spontanée de réseaux sans fil ont fait
leur apparition. En particulier, les réseaux mobiles ad hoc sans fils (MANET) permettent a
un ensemble de dispositifs de maintenir de maniére coopérative un réseau d’interconnexion.

F-3
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Des techniques similaires ont été proposées pour créer des réseaux sans fils urbains (MAN)
[Bicket et al. 2005], pour permettre 'accés a Internet dans des zones reculées [Jain & Agra-
wal 2003, One Laptop Per Child Project 2007]. Etant intrinséquement décentralisées, ces
techniques donnent plus de pouvoir aux utilisateurs et promeuvent la coopération. Les
technologies offrant ces possibilités incluent le standard IEEE 802.11 [IEEE-SA Standards
Board 1999] (Wi-Fi) et les algorithmes de routage de paquets tels que AODV [Perkins et al.
2003] et OLSR [Clausen & Jacquet 2003].

Les capacités de stockage des dispositifsinformatiques mobiles ont aussi été considéra-
blement accrues. Souvent, les dispositifs mobiles jouent un rdle de « cache »,leurs données
étant ensuite copiées sur d’autres dispositifs tels qu'un ordinateur de bureau. Dans cette
these, nous nous focalisons sur des méthodes permettant de tirer parti des ces possibilités
afin de réduire le risque de perdre les données créées avec des dispositifs mobiles.

1.2. Objectif de la these

Compte-tenu de ces observations, nous nous proposons de démontrer I'affirmation
suivante:

I est possible d’améliorer la slireté de fonctionnement de dispositifs mobiles en tirant
parti de coopération spontanée entre de tels dispositifs.

Concretement, nous proposons un service de sauvegarde coopérative qui copie de maniere
opportuniste les données critiques de dispositifs mobiles sur les dispositifs mobiles voisins
en utilisant des moyens de communication sans fils spontanés.

1.3. Apercu de la theése

Dans cette thése, nous nous intéressons a des moyens de tolérance aux fautes pour dispositifs
mobiles, et plus précisément a la sauvegarde de données stockées sur ces dispositifs. Les mé-
canismes de synchronisation de données actuellement disponibles pour ces dispositifs mo-
biles sont souvent ad hoc, contraignants, et requiérent une intervention manuelle de I'uti-
lisateur. En particulier, il est souvent nécessaire d’avoir accés a une infrastructure réseau,
voire d’étre a proximité physique du dispositif sur lequel on souhaite sauvegarder ses don-
nées. Cette situation laisse peu d’occasions pour effectuer des sauvegardes. Les données
produites sur les dispositifs mobiles courent donc le risque d’étre perdues avant qu'une
occasion de les sauvegarder se soit présentée. Le chapitre 2 décrit notre approche plus en
détail et le chapitre 3 propose une évaluation analytique de la slireté de fonctionnement du
service proposé.

L'approche de sauvegarde coopérative que nous proposons nous a amenés a aborder
des thémes relatifs au stockage réparti. En effet, les mécanismes de stockage dont nécessite
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1.3. Apercu de la theése F-5

un tel service différent sensiblement de ceux trouvés dans les systemes centralisés. Ils se
rapprochent davantage des méthodes de stockage utilisées par les systemes pair-a-pair
sur Internet, ou encore de ceux que I'on trouve dans les systemes de fichiers répartis pour
réseaux mobiles ad hoc. Dans ce cadre, nous nous intéressons également a la définition
de stratégies de réplication, et considérons I'utilisation de codes d’effacement. Le chapitre 4
aborde ces questions et contribue au domaine en proposant des mécanismes adaptés a
notre contexte.

Notre objectif est de permettre a des dispositifs mobiles appartenant a des personnes
différentes, n’ayant pas de relation de confiance préalable, de coopérer pour fournir le
service de sauvegarde. Par conséquent, un certains nombres de problémes de sécurité se
posent :un participant pourrait accéder sansy étre autorisé aux données d’un autre, il pour-
rait renier sa promesse de stocker des données pour un autre, ou bien encore il pourrait
mener des attaques en déni de service contre le service de sauvegarde. Des mécanismes per-
mettant d'imputer les actes de chacun a leur auteur sont nécessaires. Le chapitre 5 propose
des mécanismes de base permettant aux utilisateurs de mettre en ceuvre une large gamme
de politiques de coopération.

Enfin, nous proposons une mise en ceuvre du service de sauvegarde coopérative
faisant appel aux résultats précédents ainsi qu’a des techniques de gestion de version.
Notre prototype est constitué d’'un programme démon de sauvegarde et d’'un ensemble
doutils clients permettant d’interagir avec lui. Le démon est responsable de la sauvegarde
des données locales et de leur réplication de maniére opportuniste sur d’autres dispositifs.
Le chapitre 6 décrit ce prototype et propose une évaluation préliminaire.

stratégies de
réplication

codes
d’effacement

sécurité

politiques de
coopération
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Chapitre 2. Service de sauvegarde
coopérative pour dispositifs
mobiles

es dispositifs informatiques mobiles sont de plus en plus utilisés mais les mécanismes

de sauvegarde de données existant sont limités. Par conséquent, les données stockées
sur ces dispositifs risquent d’étre perdues. Ce chapitre présente les motivations et
objectifs de slireté de fonctionnement qui nous ont poussé a concevoir un service de
sauvegarde coopérative. Il décrit ensuite le service envisagé.

2.1. Motivations

Nous décrivons d’abord le probléme que nous cherchons a résoudre puis notre approche.

2.1.1. Description du probléme

Les dispositifstels que les ordinateurs portables, assistants personnels (PDA) ou téléphones
mobiles sont de plus en plus utilisés, mais sont sujets a la perte, au vol, ou aux dommages
physiques. Cependant, les mécanismes de tolérance aux fautes, et en particulier de sauve-
garde des données disponibles sur ces dispositifs ont des limitations. Les mécanismes de
« synchronisation » des données, tels que SyncML [Open Mobile Alliance 2001] requiérent
généralement que la machine avec laquelle on synchronise les données soit physiquement
accessible ou au moins accessible par le biais d’'une infrastructure réseau. Une autre solu-
tion consiste a utiliser des serveurs tiers, tels que ceux fournis par box.net. La encore,
I'acces a une infrastructure réseau est un requis.

Malheureusement, dans beaucoup de scénarios, il est difficile de compter sur I'acces
a une infrastructure réseau, celui-ci étant intermittent, rare, ou trop cofiteux pour une
utilisation a des fins de sauvegarde (comme c’est parfois le cas pour les liaisons GSM/GPRS
ou UMTS). Dans certaines situations, comme dans des zones trés reculées [Jain & Agrawal
2003] ou dansles milieux auxquels se consacre le projet One Laptop Per Child [One Laptop Per
Child Project 2007], il peut étre tout simplement tres difficile d’accéder a une infrastructure
réseau.

Par conséquent, les occasions de sauvegarde des données stockées sur des dispositifs
mobiles peuvent étre rares, ce qui engendre un risque de perte.
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2.1.2. Une approche coopérative de la sauvegarde

Le service que nous envisageons et que nous appelons MoSAIC' a pour objectif d’améliorer
la disponibilité des données stockées sur les dispositifs mobiles, en leur fournissant des
moyens pour tolérer aussi bien les fautes permanentes (perte, vol, endommagement) que
les fautes transitoires (effacement accidentel des données ou corruption). Pour tolérer les
fautes permanentes, notre service doit étre capable de stocker les données d'un dispositif
sur d’autres dispositifs.

Les moyens de communication sans fils dorénavant ubiquistes fournissent le support
a un tel service. Le service de sauvegarde envisagé est donc coopératif, décentralisé, et
n’importe quel périphérique peut y participer. On attend d'un périphérique qui utilise le
service qu’il y contribue en retour. Par la suite, nous utilisons le terme contributeur pour
désigner un périphérique jouant le rdle de fournisseur d’espace de stockage; on utilise le
terme de propriétaire des données pour désigner un périphérique dans son réle d’utilisateur
ou de « client » du service. Evidemment, dans un souci d’équité, chaque dispositif doit
jouer les deux rdles.

Cette approche s’inspire des réseaux pair-a-pair coopératifs tels que les réseaux de par-
tage de fichiers largement répandus sur Internet [Kiigler 2003, Clarke et al. 2001, Dabek et al.
2001, Kubiatowicz et al. 2000]. Une approche similaire a déja été appliquée a la sauvegarde
de données sur Internet [Cox et al. 2002, Cox & Noble 2003, Lillibridge et al. 2003, Landers et
al.2004,Goldberg & Yianilos 1998]. Du point de vue de la tolérance aux fautes, ces approches
bénéficient de 'hétérogénéité logicielle et matérielle des ordinateurs participant.

Un mécanisme de sauvegarde coopérative pour dispositifs mobiles permet la sauve-
garde de données méme en I'absence d’acces a une infrastructure réseau. Méme lorsque
qu’une infrastructure est disponible (comme GSM/GPRS, UMTS, WiMAX, etc.), il fournit
une alternative meilleur marché, aussi bien financiérement que, dans une certaine mesure,
en termes de consommation énergétique. En outre, les moyens de communication a faible
portée offrent souvent des débits plus élevés que les moyens de communication a longue
portée. Enfin, comme les périphériques participants sont hétérogenes et appartiennent a
des domaines d’administration différents, aucun périphérique n’est un point singulier de
défaillance ni un point singulier de confiance. En d’autres termes, la défaillance ou compromis-
sion d’un dispositif participant ne saurait mettre en péril le service de sauvegarde.

La consommation énergétique des interfaces réseaux sans fils telles que Wi-Fi reste
une préoccupation. Wi-Fi en mode ad hoc consomme autant d’énergie, que 'on s’en serve
ou non [Feeney & Nilsson 2001]. Toutefois, les technologies sans fils a venir portent la pro-
messe de consommation énergétique réduite. ZigBee, par exemple, consomme peu d’éner-
gie, moyennant des débits plus faibles [Zheng & Lee 2004]. Les ordinateurs du projet OLPC,

! Mobile System Availability, Integrity and Confidentiality, http:;//wwwlaasfr/mosaic/. MoSAIC est un projet partielle-
ment financé par I’Action Concertée Incitative Sécurité & Informatique (ACI S&I). Nos partenaires sont I'TRISA
(Rennes) et Eurécom (Sophia-Antipolis).
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qui utilisent un protocole de réseau ad hoc proche de 802.11s, atteignent des consomma-
tions relativement faibles en ayant intégré le protocole de routage ad hoc au niveau maté-
riel, ce quileur permet de continuer a router des paquets méme lorsque qu’ils sont en veille
[One Laptop Per Child Project 2007]. Par ailleurs, les fournisseurs d’acceés téléphonique
UMTS offrent de plus en plus de services de téléchargement de flux audio ou vidéo, des
applications pourtant tres gourmandes en bande passante, ce qui illustre une réduction
de la consommation énergétique de ce type d’interfaces. Enfin, des propositions ont été
faites pour utiliser de la prédiction de trafic réseau afin de permettre 'arrét des interfaces
réseaux lorsque cela est jugé opportun; des expériences ont montré que cette approche
permettait de réduire significativement la consommation énergétique [Zhang et al. 2005].

Evidemment, I'intérét du service de sauvegarde coopérative dépendra grandement
de la fréquence de rencontre de périphériques participants. Néanmoins, deés lors qu’il y a
rencontre, il y a opportunité de sauvegarde, et donc de diminution du risque de perte de
données. Entre autres choses, notre analyse de la disponibilité des données présentée au
chapitre 3 cherche a identifier les scénarios ol notre approche est profitable, comparé a
une sauvegarde uniquement lorsqu’une infrastructure réseau est disponible.

2.2. Objectifs de siireté de fonctionnement

Notre principal objectif est d’améliorer la siireté de fonctionnement des dispositifs
mobiles. Toutefois, la siireté de fonctionnement d’un service coopératif ouvert tel que
nous 'envisageons est elle aussi sujette a un certain nombre de menaces. Il s’agit donc de
rendre le service lui-méme également siir de fonctionnement. Dans cette section, nous
détaillons les menaces issues de la coopération entre dispositifs ne se faisant pas confiance
et les mécanismes envisagés pour y remédier.

2.2.1. Menaces contre la confidentialité et le respect de la vie privée

S’agissant des stocker des données critiques sur des dispositifs auxquels on ne fait pas
confiance, des menaces évidentes pesent sur le service : un utilisateur malveillant pourrait
essayer d’accéder aux données qu'il stocke pour d’autres participants. Les mécanismes
de stockage utilisés doivent donc permettre le chiffrement des données de bout en bout,
comme nous le verrons dans le chapitre 4.

Le respect de la vie privée des participants peut étre également mis en danger. 1l est
aisé pour un observateur de savoir si un utilisateur donné participe, et de savoir quelles
quantités de données il échange et avec qui. Des protocoles de routage anonymes pour
réseaux mobiles ad hoc ont été proposés [Rahman et al. 2006, Aad et al. 2006]. Toutefois,
nous ne traitons pas en détail de cette problématique dans notre these. Nous espérons
néanmoins garantir un minimum le respect de la vie privée en permettant aux utilisateurs
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d’utiliser des identifiants autogérés (des pseudonymes) plutét que de forcer I'utilisation
d’identifiants délivrés par une autorité centrale.

2.2.2. Menaces contre ’intégrité et ’authenticité

Un contributeur malveillant pourrait bien s@ir chercher a modifier les données qu’il stocke
pour d’autres participants, voire injecter de nouvelles données en faisant croire qu’elles
proviennent d’un autre participant. Ces menaces doivent étre écartées par la couche
de stockage.

Des menaces similaires pésent sur les communications entre participants : un partici-
pant pourrait chercher a se faire passer pour un autre, conduisant ainsi a 'imputation de
ses actes au participant dont il a usurpé I'identité. Enfin, un participant malveillant pour-
rait vouloir modifier le contenu des message échangés entre participants. Les mécanismes
de communication doivent donc traiter ces menaces.

2.2.3. Menaces contre la disponibilité

Les menaces contre la disponibilité peuvent étre classées dans deux catégories: I'indisponi-
bilité des données résultant de la perte accidentelle de données (y compris de la perte des
exemplaires stockés par des contributeurs), et 'indisponibilité des données ou du service
résultant d’attaques en déni de service (DoS) perpétrées par des utilisateurs malveillants.

La premiére catégorie est évidemment celle qui nous intéresse en premier lieu, tandis
que la deuxieme découle du modele de coopération ouverte que nous envisageons. Une at-
taque en déni de service contre un participant est la rétention de données ol un contributeur
malveillant refuse volontairement de rendre les données a leur propriétaire (cela peut étre
simplement parce qu'il ne les a jamais stockées). Des attaques contre le service dans son
ensemble sont I'inondation (I'exploitation volontaire jusqu’al’épuisement des ressources of -
fertes par le service) et "égoisme (I'utilisation du service sans contribution en retour). Nous
reviendrons sur ces aspects au chapitre 5.

2.2.4. Discussion

Le chapitre3décrira et évaluera des stratégies de réplication visant a améliorer la disponibi-
lité des données. Le chapitre 4 montrera comment traiter les problemes de confidentialité
et d’intégrité des données au niveau de la couche de stockage. Enfin, le chapitre 5 proposera
des solutions pour contrer les menaces contre la coopération.
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2.3. Processus de sauvegarde et de recouvrement

Cette section détaille les processus et de recouvrement dans le cadre du service coopératif
de sauvegarde tel que nous I'envisageons.

2.3.1. Processus de sauvegarde

Dans un premier temps, les utilisateurs sont supposés « synchroniser » leurs données avec
leur ordinateur fixe, lorsqu’ils y ont accés. Par la suite, alors qu'ils se déplacent avec leurs
dispositifs mobiles, ceux-ci devront spontanément se connecter aux dispositifs voisins
participant au service dans le but d’échanger des données a sauvegarder, et ce de manieére
transparente a I'utilisateur. Des protocoles de découverte de services seront utilisés a cette fin.
De tels protocoles sont aujourd’hui répandus dans le domaine des ordinateurs de bureau
[Cheshire & Krochmal 2006a, Guttman et al. 1999, Goland et al. 1999]. Des protocoles de
découverte de services adapatés aux réseaux ad hoc ont été proposés [Sailhan & Issarny
2005, The UbiSec Project 2005, Helmy 2004, Kim et al. 2005, Poettering 2007] mais aucunn’a
été largement déployé a I'heure actuelle. Nous ne nous focalisons pas sur la conception de
tels protocoles et considérons plutét I'utilisation d’un protocole existant.

Une fois un contributeur découvert, un propriétaire lui envoie une requéte de sto-
ckage de données. Un propriétaire pourra choisir les contributeurs en fonction de la
confiance qu'il leur accorde. Par exemple, il pourra choisir en répondant a la question
« est-ce que ce contributeur s’est déja comporté correctement par le passé? ». En pratique,
les requétes comprendront des blocs de données de petite taille qui seront plus adaptées
au fait que les rencontres de contributeurs sont imprévisibles et potentiellement de courte
durée.Les donnéesseront généralement chiffrées. Enfin, un contributeur pourra lui-méme
choisir d’accepter ou non une requéte en fonction des criteres de son choix, tel que sa capa-
cité de stockage disponible ou son niveau d’énergie.

Dans la plupart des scénarios, il serait irréaliste de compter sur une rencontre entre
le propriétaire et ses contributeurs pour la restauration de ses données. Par conséquent,
nous supposons que les contributeurs transférent les données que leurs ont fourni les pro-
priétaires vers un support de stockage accessible sur Internet. Les propriétaires contactent
ensuite ce support de stockage pour restaurer leurs données. Un tel support de stockage
pourrait étre mis en ceuvre de différentes facons : un simple serveur FTP commun a tous
les participants, un réseau pair-a-pair, la boite aux lettres électronique du propriétaire, etc.
Nous ne nous focalisons pas ici sur cette mise en ceuvre

Les contributeurs pourraient aussi faire suivre les données qu'ils ont collectées vers
d’autres contributeurs. Cependant, cette approche n’apporte aucun avantage du point
de vue de la disponibilité des données en 'absence d’informations supplémentaires sur
les contributeurs (par exemple, il pourrait étre profitable de transmettre les données a un
contributeur qui a souvent acces a Internet, mais cette information n’est pas forcément
connue des autres). De méme, chaque contributeur pourrait aussi copier les données qu’il

protocoles de
découverte de
services
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a regues vers d’autres contributeurs. Cette approche est attrayante, car elle augmente-
rait bien entendu la disponibilité des données. Cependant, elle pose plusieurs problémes.
D’abord, il est improbable qu'un propriétaire fasse confiance a ses contributeurs pour ef-
fectuer réellement cette copie, I'intérét des contributeurs étant plut6t d’économiser leur

énergie. Ensuite, sans davantage de coordination, cette approche pourrait rapidement

conduire a une inondation du service. Nous aborderons de nouveau ces problémes dans le

chapitre 3.

2.3.2. Processus de restauration

Dans un scénario purement ad hoc, les participants pourraient restaurer leurs données a
partir des contributeurs présents dans leur voisinage. Dans le cas général, ils récupéreront
leur données a partir d'un serveur accessible par Internet, comme nous I’'avons mentionné.
La plupart du temps, les propriétaires demanderont la derniére sauvegarde disponible.
Parfois, il pourra aussi étre utile de demander, par exemple, « la sauvegarde datant du
4 avril ».

Ftant donné que chaque dispositif accéde a Internet a son propre rythme, les
sauvegardes peuvent mettre un certain temps a se propager jusqu’au serveur sur Internet.
Ainsi, il n’est pas impossible que la sauvegarde disponible a un instant donné sur Internet
ne soit pas la derniére effectuée. Parfois, il pourra donc étre possible pour un propriétaire
de restaurer une version plus récente a condition d’attendre plus longtemps, ce qui illustre
un compromis entre la récence et la disponibilité des données.

2.4. Travaux connexes

Dans cette section, nous décrivons les travaux connexes au ndtre, dans le domaine de
la tolérance aux fautes, de la réplication, de la sauvegarde coopérative sur Internet, du
stockage réparti pour dispositifs mobiles, et des réseaux tolérant les retards (delay-tolerant
networks ou DTN en anglais).

2.4.1. Points de reprise

Dans cette thése, nous nous intéressons a la tolérance aux fautes de dispositifs mobiles
individuels vus comme des systémes centralisés fournissant un service (prise de photos,
production de documents, etc.) ne dépendant pas nécessairement d’autres dispositifs, par
opposition aux systémes répartis dont I'activité implique plusieurs nceuds.

La tolérance aux fautes de systeémes centralisés est généralement réalisée en stockant
la liste des opérations changeant son état, ou en stockant des copies de son état, appelées
points de reprise, a intervalles réguliers. Lors du recouvrement, on rejoue les opérations
ou bien on réinstalle le dernier point de reprise. Pour que le point de reprise soit str de
fonctionnement, il doit avoir un certain nombre de propriétés, en particulier atomicité
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et la cohérence, un sous-ensemble des propriétés trouvées dans les systemes de gestion de
bases de données (SGBD) [Gray 1981]. On parle de « sémantique transactionnelle ».

Les systemes d’exploitation persistants [Liedtke 1993, Shapiro & Adams 2002] et les ap-
proches intégrées aux langages de programmation offrent des solutions génériques [Pre-
vayler.Org 2006, Red Hat, Inc. 2007]. Toutefois, les plus souvent, les applications utilisent
des solutions ad hoc, ayant recours au systéme de fichiers pour sauvegarder leurs données.
La création d’exemplairessupplémentairesdes pointsde reprise est généralementreléguée
a des outils tiers qui parcourent le systéme de fichiers [Melski 1999, Rubel 2005, Quinlan &
Dorward 2002].

Les systemes de gestion de version fournissent le plus souvent atomicité et capacité de
retour a un état antérieur [Tichy 1985, Hamano 2006), de méme que les systémes de fichiers
intégrant des mécanismes de gestion de version [Santry et al. 1999, Hitz et al. 1994, Peterson
& Burns 2003, Cornell et al. 2004]. Certains d’entre eux fournissent aux utilisateurs, en plus
del'interface POSIX, une interface leur permettant de demander explicitement le stockage
d’une nouvelle version.

2.4.2. Sauvegarde coopérative pair-a-pair

La plupart des travaux sur la sauvegarde coopérative concernent une mise en ceuvre sur In-
ternet.Les outils de sauvegarde coopérative sur Internet s'inspirent des réseaux de partage
de fichiers, en cherchant a mettre a contribution les ressources de stockage disponibles
pour les partager et s’en servir comme support du service de sauvegarde. Les solutions pro-
posées different principalement dans leur niveau de centralisation, d’une part concernant
la découverte et d’autre part concernant les échanges de données entre participants [Lilli-
bridge et al. 2003, Cox et al. 2002, Cox & Noble 2003, Landers et al. 2004, Batten et al. 2001, Sit
et al. 2003].

Ces systémes ont également différentes maniéres d’aborder les problemes de sécurité
que nous avons mentionnés, notamment les attaques en déni de service. Certains consi-
deérent que les participants se comportent correctement [Cox et al. 2002, Batten et al. 2001],
alors que d’autres fournissent des protocoles permettant de traiter les comportements
malveillants[Cox & Noble 2003, Lillibridge et al. 2003, Aiyer et al. 2005]. Nous aborderons ces
aspects plus en détail au chapitre 4.

A notre connaissance, peu de tentatives ont eu lieu pour transposer le modeéle de
sauvegarde coopérative a I'environnement mobile. On citera toutefois FlashBack, un outil
de sauvegarde coopérative entre dispositifs au sein d’un réseau personnel sans fils (PAN) [Loo
et al. 2003], et OmniStore qui permet la réplication automatique entre dispositifs portables
au sein d’un réseau personnel, avec migration des données vers un ordinateur de bureau
[Karypidis & Lalis 2006]. Ces approches différent de la notre car dans leur contexte, tous les
dispositifs participant appartiennent a la méme personne, et donc se font mutuellement
confiance. En particulier, les attaques contre la confidentialité et I'intégrité, de méme
que les attaques en déni de service sont hautement improbables dans ce cadre. Une autre

réseau personnel
sans fils
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différence est que les dispositifs interagissant au sein d'un PAN sont souvent a portée I'un
de l'autre.

2.4.3. Stockage mobile réparti

Beaucoup de travaux récents ont porté sur la conception de systemes de stockage répartis
pour dispositifs mobiles. Leurs objectifs sont généralement le partage d’informations (ot
les informations sont donc disponibles en lecture seule [S6zer et al. 2004, Z3ls et al. 2005,
Papadopouli & Schulzrinne 2000, Tolia et al. 2004, Flinn et al. 2003]), ou la mise en place d’un
support de stockage réparti réinscriptible pouvant étre accédé par différents dispositifs.
Bien qu'ils ne s’agisse pas de sauvegarde, les solutions proposées sont parfois pertinentes
dans notre cadre.

Les systémes de stockage inscriptibles ont été proposés d’abord comme une extension
des systémes de fichiers utilisés sur les ordinateurs fixes [Demers et al. 1994, Lee et al. 1999],
puis de maniére davantage décentralisée [Karypidis & Lalis 2006, Preguica et al. 2005, Nigh-
tingale & Flinn 2004, Boulkenafed & Issarny 2003, Barreto & Ferreira 2004]. Ces systémes
doivent répondre a des probléme de cohérence des caches maintenus par chacun des partici-
pants. Pour ce faire, ils font souvent appel a des techniques utilisées dans le domaine de la
gestion de version, notamment pour la fusion d’exemplaires divergents d'un méme fichier.
Cette problématique ne se retrouve pas dans le cadre d’'un service de sauvegarde ot les don-
nées ne sont pas modifiées de maniére destructive. En outre, seuls certains prennent en
comptent la coopération entre dispositifs ne se faisant pas mutuellement confiance.

2.4.4. Réseaux tolérant les retards

Lesréseaux tolérant lesretards (DTN) traitent le probléme de variabilité de la connectivité:
manque d’acces a une infrastructure, connectivité intermittente, partitionnement du
réseau di a la mobilité. Notre approche de la sauvegarde coopérative peut étre vue sous
cette approche réseau : les données transmises de propriétaires a contributeurs puis vers
un support de stockage sur Internet peuvent étre vues comme des paquets envoyés des
propriétaires vers le support de stockage sur Internet, les contributeurs servant de simples
relais. Le processus de sauvegarde peut étre vu comme un canal de communication a forte
latence oui transitent les sauvegardes.

Ces réseaux ont été largement étudiés au cours des derniéres années [Zhang 2006].
Leurs applications incluent I'exploration interplanétaire, les situations de crise a la
suite de désastres, ou encore I'observation de la vie sauvage [Fall 2003, Harras et al. 2007,
Juang et al. 2002]. La contribution de ces travaux porte principalement sur deux points :
la définition de protocoles d’échanges de données [Scott & Burleigh 2007, Cerf et al. 2007]
et la conception et I'évaluation d’algorithmes de routage [Zhang 2006, Spyropoulos et al.
2007]. Ce dernier aspect est a rapprocher des stratégies de réplication que nous abordons
notamment au chapitre 3.
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Toutefois, les DTN différent de notre approche de plusieurs facons. D’abord, le plus
souvent, ils considérent que la destination d’un paquet est une nceud physique spécifique,
alors que dans notre cas la destination est un support de stockage sur Internet, donc acces-
sible depuis une multitude de points d’acces. Ensuite, les DTN ne rendent pas compte de la
dimension apportée par la gestion de versions : dans notre cas, une version méme ancienne
des données a une valeur intrinséque, d’'un point de vue tolérance aux fautes, alors que I'ap-
proche purement réseau des DTN ignore cette sémantique. Enfin, d’un point de vue sécuri-
té, peu de travaux ont été menés concernant la coopération entre participantsne se faisant
pas confiance dans le cadre des DTN [Fall 2003, Farrell & Cahill 2006]. Nos travaux sont une
contribution dans ce domaine, comme nous le verrons dans le chapitre 5.

2.5. Résumé
Les contributions de ce chapitre peuvent étre résumées comme suit :
+  Nous avons illustré les besoins pour de nouveaux mécanismes de sauvegarde de
données pour dispositifs mobiles.
+  Nous nous sommes fixé des objectifs de siireté de fonctionnement.
En outre, nous avons exposé une solution basée sur la sauvegarde coopérative pour atteindre
ces objectifs:
+  Cette approche tire parti des interactions spontanées entre dispositifs.
«  Lesdispositifs participant partagent leurs espaces de stockage.

«  Les dispositifs ayant collecté des données d’autres participants les envoient
ensuite a un support de stockage sur Internet.

¢ En case de besoin, les données sont récupérées en contactant ce support de
stockage sur Internet.

Enfin, nous avons présenté les travaux connexes dans différents domaines.
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Chapitre 3. Evaluation analytique du
systeme proposé

C e chapitre propose une évaluation analytique de la siireté de fonctionnement du
service de sauvegarde coopératif proposé. Une partie des résultats présentés ici a été
décrite dans [Hamouda 2006] et dans [Courtés et al. 2007a].

3.1. Introduction

Plusieurs stratégies de réplication peuvent étre envisagées. Les blocs de données peuvent
étre dupliqués simplement, ou bien au moyen de techniques plus sophistiquées utilisant
des codes d’effacement. Les codes d’effacement permettent d’augmenter la fragmentation
puisla dissémination des données a répliquer. 'augmentation du niveau de fragmentation
et dissémination des données est bénéfique a la confidentialité [Deswarte et al. 1991]. En
revanche, son impact sur la disponibilité des données, particulierement dans les scénarios
envisagés, reste a explorer.

Dans ce chapitre, nous évaluons I'apport de MoSAIC sur la disponibilité des données
stockées sur les dispositifs mobiles en fonction (i) de parametres environnementaux, et (ii)
de la stratégie de réplication choisie. Cette approche a pour but de nous aider a identifier
les scénarios dans lesquels MoSAIC procure le plus grand bénéfice et a guider le choix d'une
stratégie de réplication.

3.2. Contexte

Les codes d’effacement ont été beaucoup étudiés [Lin et al. 2004, Mitzenmacher 2004, Xu
et al. 1999, Xu 2005, Weatherspoon & Kubiatowicz 2002]. Nous ne nous concentrons pas sur
les algorithmes eux-mémes mais sur leurs propriétés. Ces algorithmes peuvent étre définis
comme suit :

+  pour une donnée d’entrée de k symboles, un code d’effacement produit n > k
fragments;

« m fragments sont nécessaires et suffisant pour recouvrir la donnée d’ori-
gine, avec k <m < n; quand k = m, le code d’effacement est dit optimal [Xu et
al. 1999].

F-17
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d’effacement
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Figure 1. Codage et recouvrement des données avec un code d’effacement optimal, avec k =4 et
n==6.

La figure 1 illustre le processus de codage et de recouvrement avec un code d’effacement
optimal. Par la suite, nous faisons ’hypothése que nous utilisons des codes optimaux. On
note (n,k) un tel code.

Pour un cofit de stockage égal, l'utilisation d’'un code d’effacement permet de tolérer
davantage de défaillances qu'une approche de « réplication simple », c’est-a-dire une
réplication avec k = 1. A supposer que les n fragments soient stockées sur des dispositifs
différents, on tolere n — k défaillances pour un cofit de stockage de %.

3.3. Méthodologie

On s’intéresse a la sauvegarde d’'une donnée en la copiant sur un certain nombre de
contributeurs différents, en supposant qu'ils la transféreront ultérieurement au support
de stockage sur Internet. On fait 'hypothese que la donnée est « siire » (ne peut plus étre
perdue) une fois qu’elle a été envoyée sur Internet. On suppose également que chaque
rencontre d’un contributeur donne une occasion de copier la donnée ou un fragment de la
donnée siI'on utilise des codes d’effacement.

Afin d’évaluer le risque de perdre la donnée lorsque cette approche est utilisée, nous
utilisons une modélisation sous forme de réseau de Petri stochastique généralisé que nous
transformons ensuite en chaine de Markov. Les processus stochastiques modélisés sont :

«  unprocessusde taux oo modélisant la rencontre du propriétaire avec un contribu-
teur;

+  un processus modélisant I'accés a Internet d'un dispositif, de taux B, pour le
propriétaire et 3 pour les contributeurs;

*  un processus représentant la défaillance d’un dispositif, de taux A, pour le
propriétaire et A pour les contributeurs.
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Figure 2. Réseau de Petri du processus de réplication et dissémination d’une donnée pour un code
d’effacement (n,k).

La figure 2 montre le résultat de cette modélisation. Les places OU et OD dénotent les
situations ou le propriétaire et « vivant » ou « mort » respectivement. Le sous-réseau de
droite décrit : (i) le processus de réplication menant a la copie de fragments (place MF),
et (ii) le processus menant au stockage des fragments sur Internet (taux ) ou a leur perte
(taux A). Le marquage initial de la place FC correspond au nombre de fragments a créer. La
place DS (data safe) correspond a I’état absorbant ot la donnée est siire, tandis que la place
DL (datalost) correspond a I'état absorbant oti 1a donnée est définitivement perdue. Enfin, L
est le « prédicat de vivacité » du réseau qui est vrai si et seulement si m(DS) = m(DL) = 0:
deés que DL ou DL contient un jeton, aucune transition ne peut plus étre tirée.

Nous évaluons la probabilité de perte de donnée, notée PL, sur les chaines de Markov
générées a partir du réseau de Petri pour différents couples (n,k) [Kemeny & Snell 1960].
Pour mesurer 'amélioration apportée par MoSAIC, nous comparons PL avec PL,,,, la
probabilité de perte de donnée dans un scénario sans MoSAIC ot :

+  lepropriétaire ne coopere pas avec d’autres dispositifs;
+  lepropriétaire peut défaillir avec un taux A,;

. le propriétaire peut accéder a Internet et y sauvegarder ses données avec un taux

By

Dans ce scénario de référence, la probabilité de perte de la donnée est : PL,,, = 7\0% On
0

mesure le facteur d’amélioration apportée par MoSAIC, noté LRF (pour loss reduction factor),
et quivaut LRF = PL, ,/PL.

probabilité de
perte de donnée

facteur
d’amélioration



tel-00196822, version 1 - 13 Dec 2007

F-20 Chapitre 3. Evaluation analytique du systéme proposé

La probabilité de perte de la donnée dépend d’un certain nombre de paramétres (n,
k, o, B, A, B, and Ag). Plutdt que de considérer la valeur absolue de chaque parametre, nous
considérons des rapports correspondants aux processus en concurrence. Par exemple,
nous étudions LRF en fonction du taux de connectivité § et en fonction du rapport entre

le taux d’accés a Internet et le taux de défaillance %
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3.4. Résultats

Nous nous contentons ici de résumer les principaux résultats obtenus. Nous invitons le
lecteur a se référer a la deuxiéme partie de cette theése (en anglais) pour davantage de
détails.

Dans un premier temps, nous faisons I’hypothese que contributeurs et propriétaire
se comportent de la méme maniere, c’est-a-dire que 3, = 8 et A, = A. La figure 3 montre
le facteur d’amélioration LRF en fonction de deux rapports pour un code d’effacement
(2,1) (c’est-a-dire réplication simple ot la donnée est envoyée a 2 contributeurs différents).
Trois observations peuvent étre faites :

1. comme on pouvait s’y attendre, MoSAIC n’apporte aucune amélioration en
termes de disponibilité des données lorsque %= 1, C’est-a-dire lorsque la ren-

contre d’un contributeur n’est pas plus fréquente que 'accés a Internet;

2. LRF atteint une asymptote apres un certain seuil de %;

3. l'amélioration est d’abord proportionnelle a % puis, a partir d’'un certain seuil,
atteint une asymptote.

Apres une étude plus approfondie du comportement asymptotique de LRF, nous
concluons que d’un point de vue disponibilité des données, la réplication simple (k = 1) est
toujours préférable aux stratégies de réplication basées sur les codes d’effacement (k > 1)
audela d’un seuil % Pour des valeurs plus faibles de % on observe que les codes d’effacement
ne fournissent un facteur d’amélioration plus élevé que la réplication simple que dans des
scénarios tres restreints.

Nous nous sommes également intéressés a 'effet de l'efficacité des participants sur
LRF. Lefficacité d’'un contributeur est caractérisée par le rapport ;—i alors que celle du

propriétaire est caractérisée par % Nous avons donc tracé LRF en fonction de % d’une
0 0
part, et du taux de connectivité du propriétaire & de l'autre. Nous observons que LRF
0

devient inférieur a 10 lorsque les contributeurs deviennent 100 fois moins efficaces que
le propriétaire.

Enfin, nous avons évalué des stratégies de réplication hybrides. Dans les stratégies
évaluées précédemment, seul un fragment était distribué a chaque contributeur. Avec
ces stratégies hybrides, nous étudions I'effet de la distribution d’'un nombre de fragments
compris entre 1 et k a chaque contributeur. On observe que ces stratégies ont un effet
intermédiaire sur LRF, entre les stratégies a réplication simple et les stratégies a codes
d’effacement étudiées précédemment.
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Figure 3. Facteur d’amélioration LRF pour un code d’effacement (2,1).

3.5. Travaux connexes

Les codes d’effacement ont été largement utilisés dans le domaine du stockage (réparti)

[Lillibridge et al. 2003, Aiyer et al. 2005, Kubiatowicz et al. 2000, Goldberg & Yianilos 1998].
Quelques travaux se sont intéressés a 'analyse de leur impact sur la disponibilité des don-
nées. Par exemple, le temps moyen avant défaillance (MTTF) a été évalué analytiquement

dans le cadre de stockage pair-a-pair sur Internet avec un processus de réparation [Kubia-
towicz et al. 2000, Weatherspoon & Kubiatowicz 2002]. Les auteurs concluent que la réplica-
tion au moyen de codes d’effacement procure une meilleure disponibilité des données, en

supposant toutefois que 90% des contributeurs stockant une donnée sont atteignables en

n’importe quel instant.

Dans [Vernois & Utard 2004], une comparaison similaire entre codes d’effacement
et réplication simple est menée et conclue que les codes d’effacement sont inappropriés
(d’un point de vue disponibilité) dans le cas ot les participants pris individuellement ont
une faible disponibilité. En revanche, ces études supposent I'existence d’'un processus
de réparation des données qui est inexistant dans notre cas. Enfin, une comparaison est
également proposée dans [Lin et al. 2004], montrant que I'espace des scénarios est séparé
entre une partie ou les codes d’effacement procurent de meilleurs résultats et une partie
ol c’est au contraire la réplication simple. Ces résultats sont cohérents avec les nétres.

Les codes d’effacement ont également été considérés dans le cadre des réseaux
tolérant les retards (DTN) [Zhang 2006, Wang et al. 2005, Jain et al. 2005, Liao et al. 2006).
A notre connaissance, aucune évaluation analytique n’a été menée dans ce cadre. Une
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analyse basée sur la simulation de DTN est proposée dans [Jain et al. 2005] et conduit a des
résultats comparables a ceux de [Lin et al. 2004].

3.6. Résumé

Dans ce chapitre, nous avons abordé les points suivants :

« un modele du processus de sauvegarde coopérative a été proposé, utilisant
les réseaux de Petri et les chaines de Markov, ainsi qu'une méthodologie pour
I’évaluer d’un point de vue siireté de fonctionnement;

«  I'évaluation a permis d’identifier des scénarios ou I'approche coopérative est
bénéfique; en particulier, nous avons vu que MoSAIC était bénéfique (d’au moins

un ordre de grandeur par rapport a une sauvegarde sans MoSAIC) quand}% >2et
% > 10;

+  nousavons montré que MoSAIC diminuait la probabilité de perte des données par un
facteur inférieur ou égal au rapport entre le taux de rencontre de contributeurs
et le taux de connexion a Internet;

«  l'approche coopérative n’améliore plus la disponibilité des données lorsque les
contributeurs sont 100 fois moins efficaces que le propriétaire;

«  les stratégies de réplication utilisant des codes d’effacement n’améliorent la
disponibilité des données que dans des scénarios tres restreints.

Ces résultats peuvent guider le choix de stratégies de réplication en fonction du contexte.
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réparti

N ous nous intéressons a présent aux mécanismes de stockage de notre service de
sauvegarde coopérative. Nous identifions d’abord les exigences du service. Nous
présentons ensuite différentes possibilités pour mettre en ceuvre un support de stockage
satisfaisant ces propriétés. Notre mise en ceuvre de la couche de stockage est brievement
décrite, et nous donnons les résultats d'une évaluation expérimentale de différents
mécanismes.

Une partie des résultats présentés dans ce chapitre a été publiée dans [Courteés et
al. 2006].

4.1. Propriétés attendues de la couche de stockage

Au chapitre 2, nous avons défini des objectifs de slireté de fonctionnement ainsi que des
exigences de plus bas niveau requis par le processus de sauvegarde coopérative par réseau
sans fils. Ces objectifs de slireté de fonctionnement étaient de traiter les menaces a la confi-
dentialité, au respect de la vie privée, a I'intégrité et authenticité, et a la disponibilité. Les
exigences de bas niveau étaient de fournir des moyens de gérer la fragmentation des don-
nées et des techniques de sauvegarde efficaces en termes de consommation énergétique et
de bande passante. Nous détaillonsici ces objectifs :

+  Efficacité du stockage. Afin de tirer le meilleur parti des rencontres avec
les contributeurs, il convient d’exploiter le mieux possible I'espace de stockage
qu’ils mettent a disposition. Egalement, afin de maitriser les cofits énergétiques,
il est préférable de réduire la quantité de données a transférer [Stemm et al. 1997].
Dans les deux cas, il s’agira d’utiliser des méthodes de compression des données.

+  Blocs de données de petite taille. Les rencontres avec des contributeurs
étant imprévisibles et potentiellement de courte durée, les transferts de don-
nées devront se limiter a des petites tailles afin de maximiser leurs chances de
réussite.

+ Atomicité de la sauvegarde. Il sera pratiquement impossible de stocker,
par exemple, un fichier ou un ensemble de fichier sur un seul contributeur, ce
qui mene a une fragmentation et dissémination des données. Cependant, il est
important que la sauvegarde reste dans un état cohérent (au sens des propriétés

F-25
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ACID des bases de données [Gray 1981]) : la sauvegarde doit étre soit réalisée et
recouvrable, soit non-recouvrable.

. Détection d’erreurs. Les modifications des données aussi bien accidentelles
que malveillantes doivent pouvoir étre détectées.

«  Chiffrement. La couche de stockage doit avoir recours au chiffrement des
données pour garantir leur confidentialité.

« Redondance. Bien entendu, les sauvegardes devront étre suffisamment re-
dondantes, d’autant plus qu’on ne fait pas nécessairement confiance aux contri-
buteurs.

4.2. Techniques de stockage satisfaisant nos exigences

Pour chacune des exigences que nous avons identifiées, nous passons en revue des
techniques de stockage pouvant étre satisfaisantes.

4.2.1. Efficacité du stockage

Dans les services de stockage coopératifs a grand échelle, on économise souvent I'espace
de stockage en ne stockant qu’une seule fois chaque donnée élémentaire. Cette propriété
est connue sous le nom de stockage a instance unique [Bolosky et al. 2000]. Il a été montré
que cette approche réduit sensiblement la quantité de données a stocker dans le cadre
des systémes d’archivage [Quinlan & Dorward 2002, You et al. 2005], du partage de fichiers
pair-a-pair [Bennett et al. 2002], de la sauvegarde pair-a-pair [Cox et al. 2002, Landers
et al. 2004], des systémes de fichiers réseau [Muthitacharoen et al. 2001] et des outils de
synchronisation des données a distance [Tridgell & Mackerras 1996].

La compression différentielle a été proposée pour des systéemes d’archivage multi-ver-
sions [You & Karamanolis 2004, You et al. 2005, Kulkarni et al. 2004]. Toutefois, cette ap-
proche apparait inadaptée a notre contexte car (i) elle requiére I'acces a tous les fichiers
déja stockés, (ii) elle demande beaucoup de capacité de calcul et d’espace mémoire et (iii)
les chaines de différences résultantes peuvent diminuer la disponibilité des données [You et
al. 2005].

La compression sans pertes classique permet d’éliminer la redondance au sein d’'unités
de stockage (par exemple, de fichiers) individuelles. En tant que tel, cette technique est un
complément au stockage a instance unique.

4.2.2. Blocs de données de petite taille



tel-00196822, version 1 - 13 Dec 2007

4.2. Techniques de stockage satisfaisant nos exigences F-27

Nous nous intéressons aux techniques et algorithmes permettant de (1) « découper » un
flux de données en blocs et (2) de créer des méta-données décrivant comment ces blocs
doivent étre assemblés pour produire le flux d’origine.

Le découpage en blocs de taille fixe est 'approche la plus simple. Combinée au sto-
ckage a instance unique, elle permet d’améliorer [égérement la compression entre fichiers
ou versions de fichiers [Quinlan & Dorward 2002]. Une autre possibilité est le découpage
fonction du contenu [Manber 1994]. Avec cette approche, les bornes des blocs sont définies en
fonction du contenu du flux d’entrée, ce qui permet de détecter des ressemblances entre
différents flux d’entrée. Combiné avec le stockage a instance unique, cette technique amé-
liore donc la compression [Cox et al. 2002, You et al. 2005, Muthitacharoen et al. 2001].

Une fois les blocs créés, il s’agit de créer des méta-données indiquant comment recons-
tituer la donnée d’origine. Pour ce faire, il doit d’abord étre possible de nommer lesblocs'. Le
schéma de désignation des blocs utilisé doit éviter les collisions entre noms de blocs (un nom
de bloc ne doit pas étre ré-attribué, méme apres une perte des données), et il doit étre de
préférence indépendant du contributeur stockant le bloc, ce qui permet de pré-calculer les
noms de bloc. La section 4.2.4 discutera d’'un schéma de désignation répandu.

Une structure de donnée souvent utilisée pour décrire I'assemblage des blocs de
données et un arbre tel que celui de la figure 4 : les feuilles de I'arbre sont les blocs de
données, les nceuds intermédiaires I, contiennent des méta-données et les racines R, et
R, pointent sur le premier niveau de nceuds intermédiaires. On observe sur cette figure
que les données (feuilles) communes aux deux arbres ont pu étre partagées, illustrant la
compression fournie par le stockage a instance unique, par exemple entre deux version
successives d’un fichier [Quinlan & Dorward 2002].

Avec ces éléments, les contributeurs n’ont pas besoin de savoir comment les proprié-
taires découpent leurs données, ni quelle structure de méta-données ils utilisent. Le contri-
buteurs peuvent donc se contenter de fournir deux primitives :

+ put (clef, donnée) quistocke donnée et I'associe a clef, un identifiant de
bloc;

« get (clef) quiretournela donnée associée a clef.

Cette approche a été suivie par différents systémes de stockage [Quinlan & Dorward 2002,
Bennett et al. 2002, Cox et al. 2002].
4.2.3. Atomicité

Une maniére simple de garantir 'atomicité des sauvegardes est de suivre une approche
ajout-seulement des données[Cox et al. 2002, Quinlan & Dorward 2002, Santry et al. 1999, Sha-
piro & Vanderburgh 2002] : les données sont toujours ajoutées a I'espace de stockage et ja-

! Par la suite, on dira aussi bien « nom de bloc », qu'« identifiant » ou « clef ».

découpage
fonction du
contenu

schéma de
désignation des
blocs

ajout-seulement
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Figure 4. Arbre décrivant I’assemblage de blocs.

mais modifiées sur place. Par conséquent, I'insertion de contenu dans I'espace de stockage
est atomique. En outre, il a été montré que le colit de cette approche en termes de stockage
est faible dans beaucoup de scénarios, a condition qu'une forme de stockage a instance
unique soit utilisée [Santry et al. 1999, Gibson & Miller 1998, Quinlan & Dorward 2002].

4.2.4. Détection d’erreurs

Des codes détecteurs d’erreurs doivent étre calculés, soit au niveau du flux d’entrée,
soit au niveau des blocs individuels. Comme 2 la fois des modifications accidentelles et
malveillantes doivent pouvoir étre détectées, il nous faudra utiliser des fonctions de hachage
cryptographiques [NESSIE Consortium 2003a, NESSIE Consortium 2003b]. Outre I'intégrité
des données, leur authenticité doit aussi pouvoir étre vérifiée. A cette fin, une partie des
méta-données pourra étre signée avec une signature électronique.

Les fonctions de hachage cryptographiques ont souvent été proposées comme moyen
de désignation de blocs de données : il s’agit de désigner les blocs par le résultat d’'une
fonction de hachage cryptographique appliquée a leur contenu. En outre, deux blocs dont
le contenu est identique auront le méme nom, ce qui procure un moyen simple et efficace
pour mettre en ceuvre le stockage a instance unique [Quinlan & Dorward 2002, Bennett
et al. 2002, Muthitacharoen et al. 2001, Tridgell & Mackerras 1996]. En effet, les collisions
accidentelles sont statistiquement extrémement improbables, et la création de collisions
(par un participant malveillant, par exemple) demande des temps de calcul la mettant hors
de portée [NESSIE Consortium 2003a, Black 2006].

4.2.5. Chiffrement

Le chiffrement des données peut étre appliqué soit au flux d’entrée, soit aux blocs.
Toutefois, si un chiffrement asymétrique est utilisé, cette approche empéche de mettre en
ceuvre du stockage a instance unique entre les blocs provenant de différents propriétaires.
Le chiffrement convergent [Cox et al. 2002] permet de résoudre ce probléme, en utilisant un
algorithme de chiffrement symétrique avec pour clef le condensé de la donnée en clair
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(condensé fourni par une fonction de hachage cryptographique). Le chapitre 5 reviendra
plus en détails sur ces aspects.

4.2.6. Redondance

Le chapitre 3 a traité des différentes approches (redondance simple, codes d’effacement)
permettant de stocker les blocs de données de maniere redondantes. Il est cependant pos-
sible d’appliquer les codes d’effacement directement au niveau du flux d’entrée au lieu des
blocs résultant du découpage d’un flux. [Jain et al. 2005] montre, dans le cadres des réseaux
tolérant les retards, que cette approche est préférable d'un point de vue disponibilité des
données. Toutefois, dans notre cas, un tel choix nous empécherait d'utiliser d’autres optimi-
sations telles que le stockage a instance unique des blocs issus d'un flux de données.

4.3. Mise en ceuvre

Nous avons développé une bibliothéque C, nommée libchop, qui permet de combiner
une partie des techniques de stockage mentionnées précédemment. Le flux des données
d’entrée jusqu’a leur stockage sous forme de blocs est schématisé par la figure 5 : chaque
boite représente un composant de libchop, et chaque fleche représente le flux de données
entre composants.

Le composant stream représente les flux d’entrée (tels que le contenu d’un fichier)
et le composant block_store représente le support de stockage des blocs, c’est-a-dire
essentiellement les primitives put et get discutées précédemment. Les composants de
type chopper découpent les flux d’entrée en blocs. Les composants block_indexer
mettent en ceuvre la désignation des blocs de données tandis que les stream_indexer
produisent les méta-données décrivant 'assemblage des blocs.

Enfin, les composants de type filter effectuent des traitements supplémentaires
sur les données. En particulier, nous avons mis en ceuvre des « filtres » de compression et
décompression utilisant zlib [Deutsch & Gailly 1996], bzip2 [Seward 2007] et LZO [Oberhu-
mer 2005].LZ0 met en ceuvre un algorithme de compression sans perte utilisant beaucoup
moins de ressources (calcul et mémoire) que les deux autres, mais permettant d’atteindre
des taux de compression plus faibles.

4.4. Evaluation préliminaire

Nous avons utilisé libchop pour comparer (i) le temps de calcul et (ii) le taux de compression
atteint avec différentes combinaisons des techniques de stockage dont nous avons parlé.
Pour ce faire, nous avons choisi des ensembles de fichiers (données d’entrée) pouvant étre
représentatifs du type de données traitées sur un dispositif mobile : différente versions du
code source d'un logiciel, c’est-a-dire ensemble de fichiers textes comportant beaucoup



tel-00196822, version 1 - 13 Dec 2007

F-30 Chapitre 4. Techniques de stockage réparti

block indexer/\

stream /}—»( filterH chopper

Figure 5. Flux des données a stocker au travers des composants de libchop.
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de similarités, fichiers audio, et boite aux lettres électroniques (fichier texte unique de
grande taille).
Cette évaluation nous a permis de tirer plusieurs conclusions :

« la mise en ceuvre du stockage a instance unique au moyen de fonctions de
hachages cryptographiques est peu coliteuse en temps de calcul;

« le stockage a instance unique est surtout profitable dans le cas des versions
successives de fichiers textes;

« lataille des méta-données en utilisant des condensés (SHA-1) de 20 octets pour
désigner les blocs est négligeable, méme avec des tailles de bloc assez faibles;

«  le découpage fonction du contenu [Manber 1994] ne procure une amélioration
du taux de compression que dans le cas du stockage de version successives des
fichiers textes, et ce au colit de temps de calculs élevés;

«  la combinaison de compression sans perte du flux d’entrée et de découpage en
blocs de taille fixe offre le meilleur compromis pour les trois types de données
d’entrée considérés.

Cette évaluation nous donne donc de précieux indices sur le choix des mécanismes de
stockage les plus adaptés a notre contexte.

4.5. Travaux connexes

Des évaluations similaires de mécanismes de stockage ont déja été menées dans le cadre
de systemes d’archivages de données, avec des résultats comparables aux ndtres quant
aux taux de compression [You et al. 2005, You & Karamanolis 2004, Kulkarni et al. 2004].
Cependant, ces études ne considérent pas les temps de calcul nécessaires. Notre évaluation
ajoute, en outre, des combinaisons impliquant davantage d’algorithmes de compression.
En préparant notre évaluation, nous avons supposé que le temps de calcul et la quanti-
té d’énergie consommée par le processeur étaient proportionnels, et que les cofits de trans-
mission de données par réseau sans fils étaient également proportionnels a la quantité de
données transmises. Une étude plus précise de ces cofits a été proposée, se basant sur une
instrumentation du matériel [Barr & Asanovic 2006]. Les auteurs ont conclu que la consom-
mation énergétique du processeur est effectivement proportionnelle au temps de calcul.
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Ils notent également que, bien que les interfaces Wi-Fi soient tres gourmandes en énergie,
I'énergie consommée pour compresser des données dépasse souvent I'énergie pour les
transmettre, zlib avec un faible taux de compression et LZO étant des exceptions notables.

4.6. Résumé

Les contributions de ce chapitre peuvent étre résumées comme suit :

¢ nousavonsidentifié six criteres devant étre remplis par la couche de stockage du
service de sauvegarde coopérative;

«  nousavons passé en revue différentes techniques de stockage;
+  unapercu de notre mise en ceuvre de la couche de stockage a été donné;
«  une évaluation de plusieurs combinaisons des techniques de stockage a été

menée.

Les principales contributions de cette évaluation sont :

+ la mise en ceuvre du stockage a instance unique au moyen de fonctions de
hachages cryptographiques est peu cofiteuse en temps de calcul et profitable en
termes de taux de compression dans certains cas;

« le stockage a instance unique est surtout profitable dans le cas des versions
successives de fichiers textes;

+ la combinaison de compression sans perte du flux d’entrée et de découpage en
blocs de taille fixe offre le meilleur compromis pour les trois types de données
d’entrée considérés.

Ce chapitre nous donne donc les bases de la couche de stockage de notre service de
sauvegarde coopérative.






tel-00196822, version 1 - 13 Dec 2007

Chapitre 5. Coopération sécurisée

e chapitre 2, section 2.2 a décrit des menaces a la confidentialité, I'intégrité et la

disponibilité dans le cadre du service coopérative de sauvegarde. Dans les chapitres
précédents, nous nous sommes concentrés principalement sur les menaces a la
disponibilité des données résultant de défaillances accidentelles. Dans ce chapitre, nous
nous intéressons aux menaces a la disponibilité des données ou du service dues a la
malveillance de participants. Une partie de ces travaux a été publiée dans [Courtes et al.
2007b].

5.1. Introduction

En section 2.2, nous listions les menaces suivantes dans le cadre de la coopération entre
participants ne se faisant pas confiance : menaces contre la confidentialité et au respect de
la vie privée, menaces contre I'intégrité et 'authenticité des données, menaces contre la
disponibilité.Certaines de cesmenaces ont déja été traitéesau chapitre 4.1ci,nousabordons
la protection contre les attaques en déni de service contre le service ou ses utilisateurs:

+  larétention de données, ot un contributeur refuse de donner les données qu'il est
supposé avoir stocker a leur propriétaire;

+  Tinondation, ol un participant cherche volontairement a épuiser les ressources
(I'espace de stockage) offertes par le service;

«  Dégoisme, ou des participants profitent du service sans y contribuer en retour.

Ces attaques sont bien connues dans le domaine du partage de fichiers ou de la sauvegarde
pair-a-pair sur Internet [Bennett et al. 2002, Lillibridge et al. 2003, Cox et al. 2002], et sont
aussi en parti traitées dans le domaine des protocoles de routage pour réseaux ad hoc [Mi-
chiardi & Molva 2002, Buttydn & Hubaux 2003]. 11 s’agit l1a de menaces contre la coopération.

Dans ce chapitre, nous identifions les exigences qui doivent étre remplies pour pou-
voir limiter 'impact de ces attaques. Nous proposons des mécanismes primitifs décentrali-
sés et autogérés, n'imposant aucune politique particuliere de coopération.

F-33
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5.2. Apercu de la couche de stockage

Nous résumons les principaux aspects de la couche de stockage présentée au chapitre 4
sous un angle sécurité.

Tout d’abord, les données d’entrée sont découpées en blocs par le propriétaire qui
crée également les méta-données nécessaires pour pouvoir les assembler. Chaque bloc se
voit attribuer un identifiant par le propriétaire, suivant le schéma de son choix. Lorsqu’un
contributeur est rencontré, des blocs de données lui sont envoyés en utilisant la primitive
put. Le contributeur doit conserver Iassociation entre un bloc de données et son nom; en
outre, comme le choix des noms est spécifique a chaque propriétaire, il doit maintenir les
blocs de chaque propriétaire dans des espaces séparés.

Généralement, les propriétaires vont également chiffrer leurs données et méta-don-
nées. Pour étre capables de vérifier I'authenticité des données qu’ils recoivent lors d'une
restauration, les propriétaires devront également signer, au moyen d’une signature électro-
nique, tout ou partie des méta-données produites.

Dans cette approche, seul le protocole de stockage (les primitives put et get) est
imposé, les autres choix étant laissés a la discrétion de chaque propriétaire.

5.3. Tirer parti de la coopération

Dans cette section, nous décrivons notre approche pour traiter les problémes de sécurité
que nous avons évoqués.

5.3.1. Démarche de conception

Deux approches sont répandues pour traiter ce les attaques en déni de service dans les ré-
seaux mobilesad hoc et réseaux pair-a-pair :au moyen d’un domaine d’autorité singulier ou au
moyen d’auto-organisation, ne dépendant d’aucune autorité unique a aucun moment [Cap-
kun et al. 2003]. Nous considérons que les systémes dépendant d’une autorité responsable
d’appliquer des sanctions externes, comme c’est le cas avec BAR-B [Aiyer et al. 2005], s’ap-
parente a la premiére catégorie. De méme, I'utilisation de « modules de sécurité résistant
aux altérations » (ou tamper-resistant security modules) assurant I'application de régles et
de protocoles au niveau de chaque participant, comme dans [Buttydn & Hubaux 2000] fait
également partie de cette catégorie.

Nous sommes de I'avis que dépendre d’'une autorité centrale peut, selon certaines
politiques de sécurité, étre considéré comme une menace de sécurité : pourquoi un utili-
sateur ferait-il confiance a une entité externe juste parce qu’on lui a dit qu’elle était « de
confiance » ? En outre, une telle autorité constitue un point singulier de confiance : sa dé-
faillance ou compromission peut entrainer I'indisponibilité du service qui en dépend. Pour
ces raisons, nous focalisons sur des solutions auto-organisées. Une telle approche auto-
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organisée correspond également bien aux réseaux mobiles ad hoc qui sont eux-méme auto-
organisés.

Par conséquent, les participants peuvent utiliser une politique de coopération de
leur choix, et il nous parait important de laisser cette possibilité. Une observation clef,
toutefois, est que le point commun de toute politique de coopération est qu’elle requiert
des mécanismes d'imputabilité, c’est-a-dire des moyens permettant d’imputer les actions
qui sont faites a leur auteur [Dingledine et al. 2001].

5.3.2. Identifiants de dispositifs uniques, autogérés et vérifiables

Les dispositifs participant doivent pouvoir se désigner les uns les autres pour pouvoir (i)
mettre en ceuvre les espaces de stockage par propriétaire (section 5.2), et (ii) permettre
I'imputabilité.

Le mécanisme de désignation des dispositifs utilisé a cette fin doit satisfaire plusieurs
critéres. 1l doit étre possible de créer son propre identifiant sans avoir recours a une
autorité externe, de sorte a ce que le service soit auto-organisé. Les noms des dispositifs
doivent également étre (statistiquement) uniques et indépendants du contexte. Enfin, il doit
étre possible d’authentifier le lien entre un nom et un dispositif ou, en d’autres termes, de
vérifier qu'un dispositif est bien propriétaire du nom qu’il prétend avoir. Ce dernier point
est indispensable pour permettre I'imputabilité.

Un certain nombre de schémas de désignation classiques, telles que des adresses IP,
ne répondent pas a tous ces criteres. Les adresses « statistiquement uniques et cryptogra-
phiquement vérifiables » (SUCV) proposées pour Mobile IPv6, cependant, répondent a ces
attentes [Montenegro & Castelluccia 2002]. Nous proposons de nous baser sur la crypto-
graphie asymétrique pour produire un tel mécanisme de désignation, utilisant les clefs
publiques des dispositifs (ou leurs condensés) pour nommer les dispositifs. Les dispositifs
doivent en outre s’authentifier mutuellement avant d’interagir pour vérifier la véracité du
lien entre le nom qu'’ils utilisent et eux-mémes.

5.3.3. Assurer I'intégrité des communications

Puisqu’il s’agit de permettre 'imputabilité des actes de chaque participant, il est primordial
de pouvoir garantir I'intégrité des communications entre participants, de sorte qu’un utili-
sateur malveillant ne puisse pas, par exemple, altérer le contenu des messages échangés
entre deux participants (des requétes put et get) sans que cela soit détecté. Des protocoles
cryptographiques bien connus apportent une solution a ce probleme, comme nous le ver-
rons en section 5.4.

imputabilité
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5.3.4. Limiter I'impact des attaques sybillines

Les identifiants des dispositifs participants étant générés de maniére auto-organisée
par chacun des participants, notre service est sujet aux attaques sybillines [Douceur 2002,
Marti & Garcia-Molina 2003] : les participants peuvent changer d’identifiants comme ils
le veulent, ce qui peut leur permettre de ne pas se faire imputer leurs actions passées, y
compris leurs comportements malveillants.

Le mécanisme de désignation proposé ne peut pas par lui-méme résoudre ce probléme.,
De plus, dans un systeme ot les identifiants sont produits de maniére auto-organisée, il
est impossible d’empécher complétement ce type d’attaques. C’est aux politiques de coopé-
ration des participants de rendre se type d’attaque moins attractif. Heureusement, il a été
montré que certaines politiques étaient assez efficaces contre ces attaques [Marti & Garcia-
Molina 2003, Michiardi & Molva 2002, Buchegger & Boudec 2003]. La plupart des politiques
envisageables auront pour dénominateur commun de dédier peu de ressources aux incon-
nus et d’étre en revanche davantage coopératives avec les dispositifs qui ont déja coopéré
par le passé.

Enfin, le contexte mobile réduit sensiblement la portée de ce type d’attaques puisqu’il
est nécessaire d’étre a proximité physique des participants pour leur « extorquer » de
I'espace de stockage.

5.3.5. Permettre une large gamme de politiques de coopération

Les politiques de coopération des utilisateurs définissent I'ensemble de regles déterminant
sous quelles conditions leur dispositif coopére. On peut imaginer principalement deux
classesde politiquesde coopération : celles basées sur les rapports sociaux sous-jacentsentre
utilisateurs, et celles basées sur les observations comportementales des dispositifs [Grothoff
2003, Lai et al. 2003, Michiardi & Molva 2002, Buchegger & Boudec 2003]. Notre objectif est
de permettre la mise en ceuvre de ces deux types de politiques de coopération.

La premiére catégorie de politiques se base sur les liens sociaux entre individus, par
exemple en ne coopérant qu’avec ses proches, ou bien, de maniére plus sophistiquée, en ti-
rant parti du phénomene de « petit monde » qui caractérise les rapports humains [Milgram
1967, Capkun et al. 2002]. Les politiques de coopération de la deuxiéme catégorie pourront
enregistrer les observations du comportement des dispositifs rencontrés et ensuite s’en
resservir pour guider leurs choix de coopération [Grothoff 2003, Lai et al. 2003]. Ces infor-
mations comportementales pourront aussi étre échangées entre dispositifs pour faciliter
le passage a I’échelle; on parle alors de mécanisme de réputation [Lai et al. 2003, Buchegger
& Boudec 2003, Michiardi & Molva 2002]. Les travaux cités ont montré que ce type de poli-
tique de coopération réduit I'impact des attaques sybillines.
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5.4. Considérations pratiques

Nousavonsétudiéles protocolesréseau permettant de répondre a nos attentes. Notre choix
s’est porté sur le protocole TLS [Dierks et al. 2006] avec I'extension permettant I'authenti-
fication utilisant des certificats OpenPGP [Mavrogiannopoulos 2007]. Cette derniére permet
de directement utiliser une paire de clefs OpenPGP générée pour chaque dispositif pour
'authentification mutuelle.Il est donc ensuite possible d’utiliser par exemple 'empreinte de
la clef publique d’un participant pour le désigner [Callas et al. 1998].

Enfin, I'intégrité et 'authenticité des messages échangés dans le cadre d’une session
TLS est garantie grace a |'utilisation par le protocole de codes d’authentification des
messages HMAC [Dierks et al. 2006].

5.5. Travaux connexes

Les attaques en déni de service contre les services coopératifs ont fait I'objet de nombreux
travaux.Ils ont notamment été étudiés dans le cadre des services de sauvegarde pair-a-pair
[Lillibridge et al. 2003, Cox & Noble 2003, Grothoff 2003, Oualha et al. 2007a]. Un excellent
état de l'art des méthodes existantes pour traiter ce type d’attaques dans les services
pair-a-pair est [Dingledine et al. 2001]. Relativement peu de propositions ont été faites dans
le cadre des réseaux tolérant les retards (DTN) [Farrell & Cahill 2006, Harras et al. 2007]; une
proposition a été faite dans [Fall 2003] mais elle repose sur une approche centralisée.

Beaucoup de politiques d’incitation a la coopération ont été proposées. Une solution
est d'imposer des échanges symétriques (« ceil pour ceil, dent pour dent ») [Lillibridge et
al. 2003] ou l'utilisation de droits de stockage transférables [Cox & Noble 2003]. Ensuite,
il est aussi nécessaire d’évaluer le service rendu par un contributeur. Des solutions ont été
proposées dans le cadre de services de sauvegarde sur Internet mais elles demandent que
les contributeurs soient accessibles par le réseaux, ce qui est inadapté aux réseaux mobiles
[Lillibridge et al. 2003, Cox et al. 2002, Cox & Noble 2003, Aiyer et al. 2005]. Une approche
novatrice a été proposée pour permettre la délégation a d’autres participants de cette capa-
cité d’évaluation, mais la maniere dont les résultats de I’évaluation pourraient étre pris en
compte par les propriétaires n’est pas encore clairement définie [Oualha et al. 2007b].

La note fournie par 'évaluation du service rendu, c’est-a-dire une trace du comporte-
ment d’un contributeur, peut étre ensuite utilisée pour guider les choix de coopération.On
a alors affaire a des politiques se basant sur des niveaux de confiance [Grothoff 2003] ou de
réputation [Lai et al. 2003, Michiardi & Molva 2002, Buchegger & Boudec 2003].

Les problémes de désignation en environnement décentralisé ont été étudiés dans
le cadre de la programmation répartie [Miller 2006] et aussi dans le contexte des infra-
structures a clef publique [Ellison et al. 1999, Ellison 1996]. Au niveau réseau, une des pré-
occupations de Mobile IPv6 a été de donner aux nceuds réseau la possibilité de vérifier la
« propriété » d’'une adresse, c’est-a-dire d’authentifier le lien entre une adresse réseau et
une entité; ces travaux ont mené a la proposition d’identifiants « statistiquement uniques

certificats
OpenPGP

incitation a la
coopération
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et cryptographiquement vérifiables », une solution similaire a la nétre [Montenegro & Cas-
telluccia 2002].

Enfin, les attaques sybillines ont été décrites dans [Douceur 2002]. Dans [Marti &
Garcia-Molina 2003], les auteurs montrent qu’un systéme de réputation permet de réduire
leur impact.

5.6. Résumé

Les contributions de ce chapitre peuvent étre résumées comme suit :

¢ nous avons identifié des menaces a la sécurité d'un service de sauvegarde
coopérative auto-organisé;

*  nous avons proposé des primitives cryptographiques en montrant qu’elles rem-
plissaient nos exigences; ces primitives ne mettent en ceuvre aucune politique de
coopération particuliére;

¢ les systémes utilisant des identifiants autogérés sont sujets aux attaques sy-
billines; nous avons discuté leur impact dans notre contexte et montré que des
politiques de coopération pouvaient étre mises en ceuvre pour le réduire;

«  des aspects pratiques de mise en ceuvre ont été abordés et nous avons proposé
I'utilisation du protocole TLS avec des certificats OpenPGP.

Le chapitre suivant décrit la mise en ceuvre du service et I'utilisation des mécanismes
proposés ici.
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Jusqu’é présent, nous avons abordé différents aspects du service de sauvegarde
coopérative pour dispositifs mobiles. Dans ce chapitre, nous nous attachons a décrire
notre prototype se basant sur les résultats et propositions des chapitres précédents.

6.1. Apercu

Notre prototype est écrit en langage Scheme [Kelsey et al. 1998] et utilise GNU Guile [Jaffer
et al. 1996]. 11 utilise la bibliothéque libchop présentée au chapitre 4. 11 comprend un démon
de sauvegarde et un ensemble d’outils client permettant a 'utilisateur d’interagir avec lui.
Le choix du langage de programmation était motivé, outre la préférence de 'auteur, par
sa clarté lorsqu’un style purement fonctionnel est adopté, et par le besoin de pouvoir
paramétrer les différents algorithmes du démon, ce qui est rendu possible par I'utilisation
de fonctions d’ordre supérieur.

Lutilisateur doit fournir une paire de clefs OpenPGP qui sera ensuite utilisée par le
démon lorsqu’il interagit avec d’autres instances, comme nous I'avons vu au chapitre pré-
cédent.

6.2. Compléments a la couche de stockage

La couche de stockage présentée au chapitre 4 ne se préoccupe pas de certains aspects de
haut niveau liés au stockage. En particulier, elle ne produit pas de méta-données relatives
aux fichiers (noms de fichiers, dates, etc.) ni aux versions. Notre prototype apporte donc
un complément dans ces domaines. D’abord, des répertoires sont stockés. Un répertoire
contient une liste d’associations entre un nom de fichier et 'identifiant permettant de le
restaurer. Ensuite, une chaine de révisions est produite. Chaque élément de la chaine pointe
vers son répertoire courant ainsi que vers la révision précédente; chaque révision contient
aussi une estampille temporelle et de maniere optionnelle d’autres champs fournis par
I'utilisateur.

La figure 6 illustre le lien entre ces structures de donnés. On retrouve, a titre
d’exemple, 'arbre décrivant I'assemblage de blocs qui représentent le contenu d’un fichier.
On voit que deux versions du fichier /src/chbouib. c ont des données en commun, ce qui
est le produit de 'utilisation de stockage a instance unique.

F-39
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root root
) <UAJ#*previous previous (head)
date 1188917920 date 1189430254
/src/chbouib.c /src/chbouib.c
/doc/phd-thesis.skb /doc/phd-thesis.skb
/src/backup.scm —»| /src/backup.scm

/new-file.txt

Figure 6. Révisions, répertoires, et contenus de fichiers.

6.3. Activités de sauvegarde coopérative

Nous décrivons ainsi le déroulement des principales activités du démon de sauvegarde.

6.3.1. Stockage des données et file de blocs

Lorsqu'un fichier de I'utilisateur est modifié, le démon de sauvegarde le découpe son conte-
nu en blocs et crée les méta-données nécessaires a son assemblage, suivant le processus
de stockage de libchop (chapitre 4). 1l crée également une nouvelle version du répertoire et
une nouvelle révision. En outre, le démon rajoute les blocs ainsi créés dans une file de blocs
a répliquer. A chaque bloc de la file est associé la liste des contributeurs qui disposent d’un
exemplaire du bloc. Cette file est ensuite utilisée lorsqu’une occasion de répliquer le don-
nées se présente.

6.3.2. Réplication opportuniste

Avec la file de blocs a répliquer, le démon n’a plus qu’a la parcourir et a sélectionner les
blocs a répliquer lorsqu’une occasion de réplication se présente. Notre prototype permet
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de spécifier une politique de réplication en lui fournissant des prédicats indiquant si un
bloc doit étre répliqué.

Un premier prédicat permet de dire si, d'une maniere générale, le bloc qui lui a été
passé doit encore étre dupliqué. Un exemple de tel prédicat est une fonction qui renvoie
« vrai » lorsque la liste des contributeurs disposant d’'un exemplaire du bloc comporte
moins de deux éléments. Le deuxieme prédicat doit répondre a la question « ce bloc doit-il
étre dupliqué chez ce contributeur particulier? » Un exemple pour ce prédicat serait de ne
répondre par I'affirmative que si le contributeur en question est connu.

Lutilisateur a la possibilité de passer a son démon une liste d’adresses IP de contribu-
teurs connus. Le démon essaiera alors de les contacter périodiquement pour y dupliquer
ses données. Le démon de sauvegarde peut aussi découvrir automatiquement les autres
démons. Nous avons mis en ceuvre cette fonctionnalité au moyen de la bibliothéque Ava-
hi [Poettering 2006] qui met en ceuvre le protocole de découverte de services DNS-SD/mDNS
[Cheshire & Krochmal 2006a, Cheshire & Krochmal 2006b]. Bien que n’ayant pas été congu
explicitement pour les réseaux sans fils ad hoc, ce protocole offre un solution complétement
décentralisée.

Une fois un contributeur découvert, le démon lui envoie (au moyen de requétes put,
cf. section 4.1) les blocs satisfaisant les prédicats de réplication fournis par I'utilisateur et
met a jour la file de blocs. En revanche, nous n’avons pour le moment pas mis en ceuvre
la duplication de blocs en provenance de propriétaires vers d’autres contributeurs, et en
particulier vers un serveur de stockage sur Internet (section 2.3).

6.3.3. Restauration des données

La restauration des données se fait en envoyant des requétes get aux contributeurs acces-
sibles. Plus précisément, un outil client effectue une requéte get au démon de sauvegarde
qui, a son tour, y répond ou la fait suivre vers les contributeurs accessibles. Lorsqu’un des
contributeurs répond avec le bloc demandé, il I'ajoute dans un cache local. Pour améliorer
les performances, le démon de sauvegarde garde également un cache des sessions TLS avec
les contributeurs qui ont correctement servi des requétes get.

6.3.4. Contribution d’espace de stockage

Les démons de stockage attendent également les connexions entrantes, et servent les
requétes put et get. L'utilisateur peut fournir un prédicat indiquant si une connexion
doit étre acceptée ou non, en fonction de I'identifiant du propriétaire demandeur. Cette
possibilité permet de mettre en ceuvre des politiques de coopération telles que discutées
au chapitre 5.

Sila connexion est acceptée, le démon ouvre 'espace de stockage des blocs correspon-
dant a ce propriétaire et s’en sert pour répondre a ses requétes.

protocole de
découverte de
services
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6.4. Mesures expérimentales

Afin d’avoir une premiére évaluation de notre prototype, nous avons conduit deux expé-
riences.La premiére consistea demander a un démon de sauvegarder un certainnombre de
fichiers et d’envoyer lesblocs correspondants a un autre démon situé sur la méme machine.
Nous avons mesuré séparément d’une part le temps nécessaire pour découper les fichiers
et ajouter les blocs a la file, et d’autre part le temps nécessaire pour envoyer les blocs. Nos
mesures ont révélé que cette deuxieme étape était la plus longue.

Au final, nous obtenons un débit un ordre de grandeur plus faible qu'une simple
copie au moyen de SSH. Nous envisageons principalement une raison a cette différence.
Contrairement a SSH, notre démon effectue la copie en deux étapes, les blocs étant d’abord
tous insérés dans une liste de blocs (en pratique, une « base de données » TDB [Tridgell
et al. 1999]), laquelle est ensuite parcourue au moment ou les blocs sont envoyés aux
contributeurs. Cette approche a un cofit qui dépend grandement de la base de données ot
sont stockés les blocs (TDB en ’occurrence).

La deuxiéme expérience consiste a répartir les blocs correspondant a un ensemble de
fichiers sur différents contributeurs. Nous vérifions ensuite si un démon (le propriétaire
supposé des données) est bel et bien capable de restaurer tous les fichiers. Cette opération
nous a permis de vérifier le bon fonctionnement du mécanisme de recouvrement. Les
débits observés sont toutefois faibles (de deux ordres de grandeur inférieurs a une simple
copie avec SSH), ce qui nous a permis d’identifier des goulots d’étranglement probables
dans I'implémentation et le protocole de recouvrement. En particulier, il apparait clair
que faire une requéte get pour chaque bloc a récupérer est trop coliteux car cela entraine
un nombre d’aller-retours trop important entre le démon chargé de la restauration et les
contributeurs. Ce probléme pourrait étre résolu en introduisant une requétemget (multiple
get) permettant de récupérer plusieurs blocs d’'un coup.

6.5. Résumé

Dans ce chapitre, nous avons abordé les points suivants :
«  les résultats et propositions des chapitres précédents ont été intégrés dans un
prototype du service de sauvegarde;

« des structures de données complétant les fonctionnalités de la couche de
stockage du chapitre 4 ont été décrites;

¢ les algorithmes utilisés pour la réplication opportuniste, la restauration de
données, et la contribution d’espace de stockage ont été développés;

¢ nousavons abordé les possibilités de paramétrisation des algorithmes;
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6.5. Résumé F-43

«  desrésultatsexpérimentaux préliminaires donnent un apercu des performances
de notre prototype, et nous ont permis d’identifier les aspects de I'implémenta-
tion ou du protocole a améliorer.

Le résultat de cet effort est un outil de sauvegarde coopérative flexible.
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Chapitre 7. Conclusions et
perspectives

L a slireté de fonctionnement des dispositifs informatiques mobiles devient un sujet de
plus en plus pressant. De nombreux utilisateurs dépendent de ce type d’outil pour
une variété d’applications toujours plus grande, créant des quantités de données
importantes. Malgré tout, peu de mécanismes de tolérance aux fautes sont disponibles
pour garantir la disponibilité de ces données. Les mécanismes existant sont souvent
contraignants, nécessitant au moins un acces régulier a une infrastructure réseau. Une
conséquence est que les données produites sur ces dispositifs risquent d’étre perdues.

Dans cette these, nous nous sommes proposés de résoudre ce probléme en concevant
un service de sauvegarde coopérative pour dispositifs mobiles tirant parti des moyens de
communications sans fils spontanés et des rencontres d’autres dispositifs. Nous avons
cherché a montrer qu’une telle approche pouvait améliorer la disponibilité des données
stockées sur des dispositifs mobiles.

Les contributions de cette these couvrent plusieurs aspects de la conception et mise
en ceuvre d’un tel service. Nos objectifs, motivations et notre approche ont été ébauchés
au chapitre 2. Nous avons ensuite proposé au chapitre 3 une évaluation analytique de 'amé-
lioration de la disponibilité des données apportée par notre service a I'aide d'une modélisa-
tion basée sur les réseaux de Petri et les chaines de Markov. Cette étude nous a permis de
quantifier 'amélioration apportée par le service de sauvegarde coopératif, d’identifier les
scénarios ol il est bénéfique, et de comparer différentes stratégies de réplication.

Le chapitre 4 a ensuite abordé le choix de techniques de stockage adaptées au service.
Nous avons décrit notre mise en ceuvre de la couche de stockage du service de sauvegarde.
Nous avons présenté les résultats d'une expérimentation visant a comparer différentes
combinaisons des techniques étudiées. Le chapitre suivant a considéré les menaces pesant
contre la coopération entre des participants ne se faisant pas confiance. Nous avons rappe-
1é les attaques en déni de service auquel est sujet notre service, et proposé des primitives
permettant 'imputabilité des actes des participants. Nous avons montré que différentes
politiques de coopération pouvaient étre mises en ceuvre au-dessus de ces mécanismes.
Enfin, le chapitre 6 a présenté notre prototype qui se base sur nos résultats et propositions.
Il a montré comment intégrer ces différentes contributions. En outre, il a présenté la mise
en ceuvre des « pieces manquantes » et présenté les algorithmes utilisés pour la réplication
opportuniste des données et leur restauration.

Parmi les perspectives, nous envisageons une évaluation plus approfondie de notre
prototype et de ses composants. Il serait en particulier intéressant de mettre en ceuvre dif-

F-45
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F-46 Chapitre 7. Conclusions et perspectives

férentes stratégies de réplication et différentes politiques de coopération et d’étudier leur
impact sur la disponibilité des données d’une part, et 'utilisation des ressources partagées
de l'autre. Certaines fonctionnalités manquent encore a notre prototype et demandent a
étre ajoutées. Les limites de ses performances ayant été identifiées, nous aimerionsbien stir
y remédier. Enfin, nous pensons qu'un déploiement effectif du logiciel sur des dispositifs
mobiles pourraient nous donner un complément d’information intéressant.
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Introduction

M obile computing devices such as laptops, personal digital assistants (PDAs) and
mobile phones are increasingly relied on but are used in contexts that put them at
risk of physical damage, loss or theft. Their owners use them to actually create new data.
Indeed, digital cameras as well as video and sound recorders may be used to create very
large amounts of data. Moreover, as mobile computing devices become smaller, more
powerful, and more versatile, they are being used in more and more areas of our daily
lives, and are increasingly depended on.

However, few mechanismsare available to improve the dependability of mobile devices
and of data stored on them. Available mechanisms such as data “synchronization” tools
suffer from shortcomings, such as requiring manual intervention from the user, and their
use is often constraining (e.g., users must be in the physical vicinity of their desktop com-
puter). Thisessentially leaves users of mobile deviceswith at best intermittent opportunity
for data backup.

We believe this situation calls for improved data backup mechanisms making the best
use of the capabilities of current mobile devices and their usage patterns. Mobile devices
are becoming ubiquitous and able to communicate with neighboring devices. With the
advent of ad hoc network technologies, opportunistic networking is becoming a reality,
allowing devices in vicinity of each other to spontaneously form networks, without any
human intervention. These observations prompted us to explore the possibilities of
leveraging spontaneous interactions among mobile devices with the aim of providing a
cooperative data backup service.

Cooperative services are not an entirely new idea. “Peer-to-peer” services have been
increasingly deployed on the Internet, showing that large-scale resource sharing can
provide considerable synergy. Services have been deployed that can manage amounts of
resources and handle quantities of requests that would be very difficult to achieve with
a centralized approach. Furthermore, such decentralized cooperative services display
interesting dependability properties: they have no single point of failure and no single
point of trust. Naturally, our proposal of a cooperative backup service for mobile devices
has been influenced by these successes.

This dissertation is organized as follows. Chapter 1 provides background information
and gives a brief overview of the topics covered in the dissertation. Subsequent chapters
address specific aspects of the design, evaluation and implementation of a cooperative
backup service for mobile devices. At the end of each chapter, a section summarizes
related work, followed by a summary of the contributions of the chapter. Key words of
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ideas discussed in their vicinity have been placed in the outer margin and are provided as
an aid to document browsing.

Chapter 2 describes our motivations, describes our dependability goals and provides
a high-level view of the cooperative backup service we propose. Chapter 3 is concerned
with the analytical evaluation of the dependability of the service. The next chapter,
Chapter 4, focuses on the design of suitable distributed data storage mechanisms and
provides an experimental evaluation of some mechanisms. Chapter 5 addresses some
of the security concerns that arise in situations requiring cooperation among distrustful
principals. Finally, Chapter 6 puts all the pieces together, showing how our results were
integrated into a practical cooperative backup implementation. We then conclude on the
contributions of this dissertation and identify future research tracks.
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Chapter 1. Approach and
Contributions

his chapter provides background information about dependability and ubiquitous

computing, along with a preview of topics developed in the rest of the dissertation,
with forward references to chapters where each is explained. At the end of those
chapters are summaries of related work.

1.1. Background

This section provides background about the two main topics addressed in this thesis,
namely dependability and ubiquitous computing.

1.1.1. Dependability and Fault-Tolerance

The work presented in this thesis aims to make mobile computing systems more dependable.
To that end, it proposes the design of specific fault-tolerance mechanisms for mobile devices.
As such, our work falls into the computer fault-tolerance domain, a sub-domain of comput-
er dependability.

Both domains are active research areas, with their own established concepts and
terminology [Avizienis et al. 2004]. Dependability is usually defined as the ability to deliver
a service that can be justifiably trusted. A number of threats to dependability have been
identified and are summarized here:

« A service failure is an event that occurs when the delivered service deviates
from the correct service, i.e., it is a transition from correct service to incorrect
service provision.

«  Anerroristhe partof the total state of the system that may lead to its subsequent
service failure.

+  Finally, a fault is the adjudged or hypothesized cause of an error.

This yields a causal chain where faults may lead to errors, which may in turn lead to
failures. Fault that actually yield an error are active while others are dormant. In composed
systems, the failure of a subsystem can be seen as a fault of the higher-level system that
uses it. In computing systems, faults can be, for instance, hardware faults (e.g., a design
or implementation defect of a processor) or software faults (e.g., a programming error). A
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vulnerability can be thought of as an internal fault that enables an external fault to cause a
system error.

Dependability is characterized by a number of attributes listed below [Avizienis et
al. 2004]:

availability characterizes the readiness for correct service;
reliability characterizes the continuity of correct service;

«  safety characterizesthe absence of catastrophic consequenceson the user(s) and
the environment;

«  integrity characterizes the absence of improper system alterations;
«  maintainability characterizes the ability to undergo modifications and repairs;

«  confidentiality characterizesthe absence of unauthorized information disclosure;
it is referred to specifically when addressing security concerns of dependability.

Security is characterized by a subset of these attributes, namely confidentiality, integrity
and availability.

To make systems dependable, thereby guaranteeing (some of) these attributes, a
number of means have been commonly used. The authors of [Avizienis et al. 2004] list
the following:

«  fault removal aims to reduce the number and severity of faults;
*  fault prevention aims to prevent the occurrence or introduction of faults;
fault tolerance ¢ fault tolerance aims to avoid service failures in the presence of faults;

fault forecasting aims to estimate the present number, the future incidence, and
the likely consequences of faults.

These approaches are complementary: while fault removal and prevention are concerned
with fault avoidance, fault tolerance and forecasting relate to fault acceptance. For instance,
fault removal may not be trusted to remove all faults; therefore, fault tolerance can be used
to complement it by tolerating residual faults. Likewise, fault-tolerance mechanisms may
only tolerate a limited range of faults, hence the need for fault removal.

In this thesis, we focus on improving the availability of the critical data stored on
mobile devices. We achieve this goal by designing and implementing fault-tolerance mech-
anisms for mobile devices that replicate their data opportunistically, thereby leveraging
cooperation with other mobile devices.
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1.1.2. Ubiquitous Computing and Mobile Ad Hoc Networks

Over the last decade, electronic devices have become smaller while still becoming more
powerful. Today’s mobile electronic devices have processing power comparable to that
of not-so-old desktop computers. Most mobiles phones and portable media players, for
instance, are capable of decoding and rendering compressed video streams in real-time;
personal digital assistants (PDAs) and “smart phones” can run the same office production
suite that is commonly used on desktop computers. Both miniaturization and improved
capabilities have allowed for new applications and have slowly led mobile computing
devices to be, indeed, pervasive.

The emergence of short- to medium-range wireless communication means has fur-
ther improved the usability of mobile devices. It is now possible, in a glimpse, to enable
a mobile phone to communicate with a desktop computer (e.g., via a Bluetooth or Zygbee
wireless link—a process also known as device pairing), or to get a laptop computer to use
the available wireless local area network (WLAN), while requiring little or no manual interven-
tion from the user. Various technologies allow for the creation of such wireless networks
among mobile devices in an ad hoc manner, spontaneously, without requiring the installa-
tion of any networking infrastructure. The resulting networks may be maintained cooper-
atively by the set of devices that participate in it. These are usually referred to as mobile ad
hoc networks (MANETS).

While currently not widely deployed, MANETS are envisioned as a means for commu-
nication in contexts where reliance on a network infrastructure or deployment thereof is
not feasible, such as emergency situations and deployment of sensor networks. They also
allow the development of new cooperative services that either replace or bridge the gap
left by infrastructure-based approaches. These include metropolitan area mesh networks
(MANs) as well as inexpensive Internet access provision in rural or poor regions [Jain &
Agrawal 2003]. Examples include the Roofnet urban mesh network [Bicket et al. 2005] and
the “One Laptop Per Child” (OLPC) educational project. OLPC is planning to equip its lap-
tops with mesh networking technologies as a means to improve (Internet) connectivity
in developing regions of the world [One Laptop Per Child Project 2007]. Because they are
inherently decentralized, such technologies empower users and promote cooperation.

Enabling technologies include the IEEE 802.11 standard [IEEE-SA Standards Board
1999], also known as Wi-Fi. Communication in MANETS is limited to devices within radio
range, unless a packet routing protocol is used to allow remote devices to be reached in
several hops, using neighboring devices as relays. Popular routing algorithms for MANETs
include AODV [Perkins et al. 2003] and OLSR [Clausen & Jacquet 2003]; the forthcoming
IEEE 802.11s standard aims to achieve wider acceptance of such technologies. As devices
move, the set of reachable devices changes and the quality of radio links varies. Thus,
MANETS are characterized by intermittent and unpredictable connectivity.

Additionally, the storage capabilities of mobile devices have increased rapidly, again
allowing for new applications. Devices that can fit in your pocket may carry gigabytes of

mobile ad hoc
networks

Wi-Fi

packet routing
protocol
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data. Many mobile devices are also capable of actually producing significant amounts of
data, notably capture devices such as digital cameras, sound recorders, etc. Usually, the
data stored on mobile devices either comes from or is to be stored at a desktop computer:
portable audio/video players usually play the role of cache for data available “at home”,
while data produced on PDAs, digital cameras or sound recorders are usually eventually
stored on a personal desktop computer or the Internet.

This thesis focuses on new fault-tolerance mechanisms called for by mobile devices.
Mobile devices are increasingly relied on but are used in contexts that put them at risk of
physical damage, loss or theft. However, fault-tolerance mechanisms available for these de-
vices often suffer from shortcomings. For instance, data “synchronization” mechanisms,
which allow one to replicate a mobile device’s data on a desktop machine, usually require
that the desktop machine be either physically accessible or reachable via the Internet. Use
of third-party backup servers typically also requires access to some network infrastruc-
ture. Therefore, our goal is to devise fault-tolerance mechanisms for mobile devices that
leverage their characteristics and build upon mobile networks and cooperation among
devices.

1.2. Thesis Statement

In response to our observations, we set out to demonstrate the following thesis state-
ment:

It is feasible to improve the dependability of mobile computing devices by leveraging
opportunistic cooperation among such devices.

Concretely, we propose a cooperative backup service that opportunistically replicates a
mobile device’s critical data at neighboring devices, using ad hoc wireless communica-
tion means.

1.3. Overview

This section briefly presents the various research domains related to the work presented
in this thesis. Namely, we focus on fault-tolerance mechanisms for mobile devices, then
describe related work in distributed data storage, notably in a mobile context, and finally
present related work on secure cooperation among mutually suspicious principals.

1.3.1. Fault-Tolerance Mechanisms for Mobile Devices

Although mobile devices are at risk of loss, theft, or physical damage, little work has been
dedicated to fault-tolerance for mobile devices, and in particular data backup. Allowing
mobile devices to tolerate failures, be they transient (e.g., accidental deletion of a file)
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or permanent (e.g., loss or theft), requires being able to replicate the device’s data. From
the user’s viewpoint, this essentially consists of the data produced or modified using the
device: documents, email archives, pictures, sound recordings, etc.

In practice, data available on mobile devices is usually replicated using data

“synchronization” mechanisms, which allow one to replicate a mobile device’s data on a
desktop machine, using an appropriate synchronization protocol. Such a mechanism usu-
ally requires that the desktop machine be either physically accessible or reachable via the
Internet. Another option, use of third-party backup servers, typically also requires access
to some network infrastructure. While some infrastructure-based networking technolo-
gies (e.g., GSM/GPRS, UMTS) have wide geographical coverage, using them may be costly.
This severely reduces the availability of these mechanisms since a network infrastructure
may not always be reachable as one moves around. Consequently, current approachesonly
moderately reduce the risk of data loss.

Mechanisms have been proposed to improve on this situation while avoiding reliance
on an infrastructure. The basic idea is similar to that of peer-to-peer resource sharing
networks, such as those widely used on the Internet for information sharing (e.g., sharing
music, videos or software) or computational power sharing: mobile devices contribute
storage resources for others to use and in return opportunistically replicate their data at
neighboring devices. This approach hasbeen taken for backup purposes within a personal
area network (PAN) with devices all belonging to the same user [Loo et al. 2003]. It has
also been acknowledged as a way to facilitate data sharing among mobile devices as we
will see later. In this thesis, we take a similar cooperative approach and apply it to backup
among mobile devices. Our goal is to allow anyone to participate in the cooperative backup
service. Device owners do not necessarily have a priori trust relationships, so devices are
mutually distrustful.

From a networking perspective, research on delay tolerant networks (DTNs), which  delay tolerant
primarily aims to cope with very high latency networks and intermittent connectivity, "¢tworks
has led to solutions comparable to the cooperative backup approach [Zhang 2006]: if a
mobile device sends backups to a desktop computer via a DTN, the backups travel through
a number of mobile devices acting as relays before they eventually reach the desktop
computer. Our approach differs from the use of DTNs in that it is specifically designed with
data backup in mind and addresses security issues not addressed by DTNGs.

Our dependability goals will be described in Chapter 2, along with a design overview
of the envisioned cooperative backup service. Chapter 3 will provide an analytical
evaluation of dependability gains provided by the service. Several replication strategies are  replication
considered, including the use of erasure codes. strategies

erasure codes

1.3.2. Distributed Data Storage

The cooperative backup service we propose relies on the storage of data items (backups) on
neighboring mobile devices. Therefore, it shares a number of concerns with distributed
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data stores, and in particular mobile distributed stores. On the Internet, large distributed

data stores are used for file sharing. As nodes participating in a peer-to-peer store come

and go unpredictably, such systems need to support data fragmentation and scattering,
and need to be able to maximize data availability despite node turnover. Since participat-
ing nodes are mutually suspicious, peer-to-peer distributed stores are further concerned

with data integrity: it must be possible to detect data items that have been tampered with

by an attacker. The design of our cooperative backup service shares these requirements.

Not surprisingly, Internet-based peer-to-peer cooperative backup systems are also a
valuable source of inspiration. They provide solutionstailored to the storage and transmis-
sion of backup data, and some of them are also designed to cope with untrusted contrib-
utors.

The mobile context is even more constraining than Internet peer-to-peer systems
since mobile devices may become unreachable for longer periods and as the number of
nodes reachable may vary significantly. A further challenge is that mobile devices are
usually resource-constrained: they have limited bandwidth, storage and processing
power, and more importantly have limited energy. All these have been driving issues in
the design of the storage mechanisms for our cooperative backup service.

The cooperative backup service presented in this thesis builds on techniques used
in both Internet-based and mobile distributed stores. Specifically, Chapter 4 will describe
the requirements placed on the storage layer of our cooperative backup software, as well
as solutions to address them. These include the provision of data integrity and confiden-
tiality guarantees, handling of data fragmentation and scattering through the design of
a suitable meta-data schema, as well as compression methods. Section 4.4 will provide an
experimental evaluation of the storage layer in terms of storage efficiency and processing
power requirements. Our major contribution in the distributed storage area lies in the
choice and adaptation of storage techniques to our target environment.

1.3.3. Secure Cooperation

We aim to leverage the ubiquity of communicating mobile devices to provide opportunistic
data replication. Such an approach works best if any mobile device can participate in the
service, without requiring prior trust relationships among participants. Internet-based
peer-to-peer services paved the way for such open, cooperative services. They showed
that opennessallowed rapid large-scale deployment. Therefore, we opted for such an open
approach.

Openness comes at the cost of the risk of non-cooperative behavior by some partic-
ipants. An attacker could participate in the service with the goal of selfishly draining all
(storage) resources, or could try to exhaust all the resources dedicated to the service in
its vicinity. Likewise, a malicious participant could lie and purposefully fail to provide the
backup service. These and other security threats can severely impede cooperation among
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mobile devices or even lead to denial of service (DoS), unless provisions are made to ad-
dress them.

More generally, since participants have no prior trust relationships, their cooperation
decisions must take into account these risks and make arrangements to reduce them.
While some arrangements made at the storage layer partly address them, in particular
by enforcing data confidentiality and integrity and by providing redundancy, additional
mechanisms need to be introduced at the cooperation level.

In Chapter 5, we propose a decentralized approach to these security issues that allows
a certain level of accounting. We argue that accounting is a building block that enables coop-
eration among distrustful principals. Our solution leaves users with the freedom to choose
from a wide range of cooperation policies. We discuss the impact of Sybil attacks, a kind of
attack that is inherent to systems that do not rely on a centralized naming authority. An
actual implementation of the proposed security primitives is also sketched.

1.3.4. Implementation and Evaluation

Finally, Chapter 6 puts all the pieces together: it outlines the design and implementation
of our cooperative backup software. In particular, it shows how the storage facilities
presented in Chapter 4 are used, and how they are complemented by higher-level storage
facilities that handle file meta-data, collections of files and versioning.

Our implementation of the cooperative backup service consists of a backup daemon
and a set of clients allowing the end-user to interact with it. Most “backup activities”
are implemented by the backup daemon, namely: input data indexing and opportunistic
replication, data retrieval, and storage provision. These activities are mainly triggered by
several well-defined events. The algorithm used by each of them is given in this chapter.

We also describe a series of experimental measurements that allowed us to obtain
preliminary results concerning the performance of our implementation. We conclude on
lessons learnt from the current implementation.
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Chapter 2. Design of a Cooperative
Backup Service for Mobile
Devices

Mobile devices are increasingly relied on but existing data backup mechanisms
suffer from shortcomings that effectively put data stored on mobile devices at risk.
This chapter presents the rationale and dependability goals that led us to design a
cooperative backup service for mobile devices. It then outlines the envisioned
cooperative backup service and discusses related work.

2.1. Rationale

This section describes the problem we are trying to solve and outlines the cooperative
backup approach we took.

2.1.1. Problem Statement

Mobile computing devices such as laptops, personal digital assistants (PDAs) and mobile
phones are increasingly relied on but are used in contexts that put them at risk of physical
damage, loss or theft. As the processing power and storage capacities of these devices
increase, new applications arise that allow them to be used in new ways. Their owners
use them to actually create new data, as they would do with their desktop computers.
Capture devices such as digital cameras as well as video and sound recorders, may be
used to create large amounts of data. As mobile computing devices become smaller, more
powerful, and more versatile, they get used in more and more areas of our daily lives, and
are increasingly depended on.

However, fault-tolerance and in particular data backup mechanisms available for
these devices often suffer from shortcomings. The most common way to create backups of
the data available on a mobile device is through data “synchronization” mechanisms such
as SyncML [Open Mobile Alliance 2001]. Most mobile devices implement such a protocol,
allowing users to synchronize the data on their device with that stored on their desktop
machine. This procedure is usually bi-directional: data created or modified on the mobile
device is sent to the desktop machine and vice-versa. Such synchronization mechanisms
require that the desktop machine be either physically accessible or reachable via the

11
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Internet. Another option consists in using third-party servers such as those provided by
box.net, which also requires access to a network infrastructure.

Unfortunately, in many scenarios where devices are carried along in different places,
access to a network infrastructure (e.g., via a Wi-Fi access point) is at best intermittent.
Often, access to a network infrastructure may be too costly and/or inefficient energy-wise
and performance-wise to be considered viable “just” for backup. In emergency situations
and upon disaster recovery, for instance, infrastructure may well be unavailable for an
unknown amount of time. In such cases, data produced on a mobile device while the
network is unreachable cannot be replicated using the aforementioned synchronization
techniques and could be lost. Similarly, sparsely populated rural regions [Jain & Agrawal
2003] and environments with scarce Internet connectivity, such as those targeted by the

“One Laptop per Child” project (OLPC, http://laptop.org/), can hardly rely on access to an
infrastructure for doing data backup.

As a result of these intermittent connectivity patterns, backup opportunities may
occur infrequently. Consequently, data produced on mobile devices is at risk. Our goal
is to improve the dependability of data stored on mobile devices with only intermittent
connection to an infrastructure.

2.1.2. A Cooperative Backup Approach

The service we envision, which we call MoSAIC!, aims to improve the dependability of the
data stored by mobile devices by providing them with mechanisms to tolerate hardware
or software faults, including permanent faults such as loss, theft, or physical damage. To
tolerate permanent faults, our service must provide mechanisms to store the user’s data
on alternate storage devices using the available communication means.

Mobile devices equipped with wireless communication means are becoming ubiqui-
tous. Their storage capacity keeps growing, as is their processing power. At the same time,
impromptu and ad hoc communication technologies have emerged. Considering this, we
believe that a cooperative backup service could leverage the resources availablein a device’s
neighborhood. Such a service is operated by the users and for the users, in a decentralized
fashion. Devices are free to participate in the service. They can benefit from it by storing
backups of their data on other devices. They are expected to contribute to it in return
by donating storage and energy resources for the service. In the sequel, we use the term
contributor when referring to a device acting in its role of storage provider; we use the term
data owner when referring toa deviceinitsrole of “client”,i.e., one that uses storage provid-
ed by the contributorsto replicateits data. For fairness, participating devices are expected
to act as both data owners and contributors.

! Mobile System Availability, Integrity and Confidentiality, http://wwwlaas.fr/mosaic/. MoSAIC is partly financed by
the French national program for Security and Informatics (ACI S&I). Our partners are IRISA (Rennes) and
Eurécom (Sophia-Antipolis).
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Commonly used Internet-based peer-to-peer services have paved the way for cooper-
ative approaches, particularly for cooperative storage. While relying on the infrastructure
provided by the Internet, they have shown how special-purpose overlay networks could be
built on top of it. The computer nodes participating in such networks cooperate to achieve
a specific task such as the maintenance of a large distributed store [Dabek et al. 2001, Kubi-
atowicz et al. 2000, Goldberg & Yianilos 1998, You et al. 2005] or that of a large anonymous
communication network [Kiigler 2003, Clarke et al. 2001]. For fault-tolerance and data
backup purposes, the cooperative backup approach on the Internet has gained momentum
over the last few years. Cooperative archival and backup systems have been proposed [Lil-
libridge et al. 2003, Cox et al. 2002, Cox & Noble 2003, Landers et al. 2004, Goldberg & Yian-
ilos 1998]. An important fault-tolerance benefit is that cooperative backup services may be
deployed on a wide range of heterogeneous hardware and software platforms, thereby reduc-
ing the probability of a catastrophic failure. The usability of cooperative services is also
very good since launching the software is all it takes to start using them [Cox et al. 2002].
The synergy resulting from such large-scale resource sharing makes Internet-based cooper-
ative services both very valuable and cheap: one just needs to dedicate a small amount of
storage resources to use a very large distributed store.

It is our belief that similar advantages can be offered by a cooperative data backup
service in the mobile context. There are key differences with Internet-based approaches,
though. First, the maintenance of an overlay network atop some network infrastructure
appearsunnecessary in an infrastructure-less context. One of the primary goals of overlay
networks on the Internet is to facilitate node discovery and allow for spontaneous interac-
tionsamong them. Ad hoc networking plays this role in the mobile context: mobile devices
can spontaneously interact as they encounter each other physically. Second, mobile device
connectivity may be much looser than that of Internet peer-to-peer network nodes. In par-
ticular, network partitioning is much more likely among a set of mobile nodes connected
via ad hoc links than among nodes connected through the Internet, notably because com-
municating mobile nodes have to be in the same physical vicinity. Third, due to partner mo-
bility, fixed pair-wise relations among devices cannot be maintained. Instead, devices have
to adapt and cooperate with new devices. Fourth, as a consequence of increased network
partitioning, resource sharing occurs at a much smaller scale in a mobile context. These
specificities raise a number of additional challenges.

A cooperative backup service for mobile devices allows one to benefit from backup
mechanismseven in the absence of an infrastructure. In addition, even when an infrastruc-
ture is technically reachable (e.g., GPRS, UMTS, IEEE 802.16 aka. WiMAX, or even satellite
phones), it provides a cheaper alternative, both financially and, to some extent, in terms
of energy requirements. From a practical viewpoint, using short-range technologies such
as Wi-Fi saves the relatively high cost of GPRS/UMTS transmission fees and subscriptions.
It also provides the benefits of using a wide range of heterogeneous storage devices, that
may belong to different administrative domains: no contributing device is a single point of
failure and none is a single point of trust. In other words, the cooperative backup service will

overlay networks
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Figure 1. Comparison of the downlink bandwidth and typical radio range of several wireless data
transfer technologies.

take advantage of ubiquitous storage devices in such a way that failure or compromise of
any single contributing device cannot result in a failure of the backup service.

Comparing the energy consumption of infrastructure-based and infrastructure-less
technologies appears to be complex, though. The maximum output power of wireless in-
terfaces is roughly proportional to their coverage range: GSM/GPRS and UMTS terminals,
for instance, have a maximum output power of up to 1 W, compared to 100 mW for Wi-
Fi and as little as 1 mW for ZigBee. On the other hand, infrastructure-based technologies
can make use of protocols that significantly reduce the energy requirements of terminals
by transferring part of the burden to base stations, which infrastructure-less communi-
cation techniques cannot do. For instance, both 802.11 [IEEE-SA Standards Board 1999]
and 802.15.4 [Zheng & Lee 2004], when used in infrastructure mode or in indirect data
transmission mode, respectively, provide energy-saving modes where the base station or
coordinator can store messages on behalf of mobile devices until they leave their energy-
saving mode and ask for pending messages. Conversely, when used in ad hoc mode, Wi-Fi
consumesa largeamount of energy, even if the device doesnot actually receive or transmit
data [Feeney & Nilsson 2001].
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Nevertheless, while energy consumption of current ad hoc wireless technologies may
still be an issue, forthcoming technologies hold the promise of reduced power consump-
tion. In the area of personal area networks, ZigBee offers good energy efficiency charac-
teristics, yet at the cost of lower bit rates [Zheng & Lee 2004]. Machines of the OLPC project
aim to be energy-efficient by having the 802.11s-style mesh routing protocol implement-
ed at the hardware level so that OLPC computers can act as routers for the mesh network
even when powered off [One Laptop Per Child Project 2007]. Similarly, GSM and UMTS
cell phones are becoming increasingly energy-efficient. For instance, music streaming
services are being offered for UMTS phones? some mobile phone operators even provide
video streaming services for UTMS phones. The mere existence of such bandwidth-inten-
sive mobile applicationsillustrates a reduction of the energy requirements of wireless net-
working technologies. Research carried out at the application level also appears promis-
ing. For example, proposals have been made to turn radio interfaces off based on predicted
traffic (or rather, predicted lack of traffic); experiments have shown that such a pragmatic
approach can indeed noticeably reduce power consumption [Zhang et al. 2005].

Another advantage of our approach is that short-range wireless communication
means can provide higher bandwidth, particularly uplink bandwidth, than long-range,
infrastructure-based protocols. Figure 1 shows the maximum downlink bandwidth and
typical radio range of several current networking technologies; the uplink bandwidth
is usually slightly lower than the downlink bandwidth. Practically, this allows larger
amounts of data to be backed up when a backup opportunity occurs.

On the other hand, the outcome of our cooperative backup service will be highly de-
pendent on the frequency of participant encounters, a parameter that we can hardly influ-
ence. Nevertheless, as long as some participant encounters occur, there is an opportunity
for dependability improvement. Among other things, the analytical evaluation presented
in Chapter 3 aims to characterize scenarios under which our approach is beneficial com-
pared to making backups only when an infrastructure is available.

2.2. Dependability Goals

As already stated, our primary goal is to improve the dependability of data stored on mo-
bile devices, especially compared to current approaches to data backup for these devices.
In particular, we want to protect devices against permanent data loss resulting from, e.g.,
physical damage, loss or theft. We aim to do so by leveraging cooperation among a set of

devices with no prior trust relationship. From a dependability and security viewpoint,
this approach comes at a cost: since contributing devices are not trusted, no strong guar-
antees can be made about service provision. Thisraisesan important challenge: providing

2 Vodafone and Sony to Launch Music Service, Gizmodo, January 2006, http://gizmodo.com/gadgets/cellphones/vodafone-
and-sony-to-launch-music-service-147402php.
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mechanisms that make the backup service itself dependable despite the lack of trust in con-
tributors. We summarize threats arising from the cooperation with untrusted devices and
depict the mechanisms we envision to tackle them.

2.2.1. Threats to Confidentiality and Privacy

There is an obvious threat to confidentiality when it comes to storing critical data on
untrusted devices: a malicious storage contributor may try to access data stored on behalf
of other devices. Therefore, confidentiality has to be provided at the storage layer and is
achieved through end-to-end data encryption, as will be discussed in Chapter 4. Thanks to
this, an eavesdropper listening to storage requests over the network cannot gain any more
information about the contents of the data being backed up than the contributor itself.
Thus, communication eavesdropping is not a serious additional threat to confidentiality
and the communication layer does not need to provide any additional encryption.

Privacy of the participating users can also be threatened. An eavesdropper may be
able to know whether a device is actively transferring data, and it may be able to estimate
the amount of data being replicated. It may also be able to know the parties involved (the
physical devices or even their owner), especially when in their physical vicinity. Recent
attempts have been made to support anonymity in MANETS, for instance based on anony-
mous multi-hop routing [Rahman et al. 2006] or multicast trees [Aad et al. 2006]. However,
we do not address threats to privacy in detail in this dissertation. Nonetheless, we hope to
provide a minimum level of identity privacy by allowing users to use self-managed iden-
tifying material (which may not establish any binding with their real-world identity, i.e.,
pseudonyms), rather than compelling the use of identifying material provided by a central
authority.

2.2.2. Threats to Integrity and Authenticity

There are also evident threats to data integrity and authenticity: a malicious contributor
could tamper with data stored on behalf of other nodes, or it could inject garbage data
that would pass all the integrity checks performed by data owners but would not be of any
use to the data owner.

Integrity threats also arise at the communication layer: an intruder may try to
tamper with messages exchanged between two devices, thereby damaging the data being
backed up. Thus, the communication layer must also guarantee the integrity of messages
exchanged between participating devices.

2.2.3. Threats to Availability

Unavailability threats against the cooperative backup service fall into two categories: un-
availability resulting from accidental data loss (including accidental failure of contributors
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holding replicas), and data or service unavailability resulting from denial of service (DoS)
attacks committed by malicious nodes.

Obviously, data unavailability due to accidental failures of either the owner or
contributor devices is the primary concern when building a cooperative backup service.

Malicious participating devices may also try to harm individual users or the service
as a whole, denying use of the service by other devices. A straightforward DoS attack is
data retention: a contributor either refuses to send data items back to their owner when
requested or simply claims to store them without actually doing so. DoS attacks targeting
the system as a whole include flooding (i.e., purposefully exhausting storage resources)
and selfishness (i.e., using the service while refusing to contribute). These are well-known
attacks in Internet-based peer-to-peer backup and file sharing systems [Lillibridge et al.
2003, Cox et al. 2002, Bennett et al. 2002] and are also partly addressed in the framework
of ad hoc routing in mobile networks [Michiardi & Molva 2002, Buttydn & Hubaux 2003].
These threats can be seen as threats to cooperation.

2.2.4. Discussion

Security threats related to the data being backed up, in particular threats to data availabil-
ity, confidentiality, and integrity are largely addressed by the storage layer of our cooper-
ative backup service. Chapter 3 describes and evaluates replication strategies aiming to
improve data availability. Chapter 4 details our cooperative backup storage layer and how
it addresses data confidentiality and integrity issues.

Given the risks of non-cooperative behavior, we believe that cooperation can only
be leveraged if the cooperative service supports accountability. In our view, accountability
is a building block upon which users can implement their own higher-level cooperation
policies defining the set of rules that dictate how they will cooperate. Chapter 5 proposes
core mechanisms to provide accountability and discusses cooperation policies that may be
implemented on top of it.

2.3. Backup and Recovery Processes

This section details the backup and recovery processes we envision for our cooperative
backup service. Techniques to achieve our dependability goals and to address the afore-
mentioned threats are outlined.

2.3.1. Backup Process

First, we expect users to synchronize or replicate the data available on their mobile devices
on their desktop machine while in its vicinity. While this is not a strict requirement, we
expectittobea likely use case that needstobe taken intoaccount. The cooperative backup

denial of service

accountability



tel-00196822, version 1 - 13 Dec 2007

service discovery
protocol

18 Chapter 2. Design of a Cooperative Backup Service for Mobile Devices

software can take advantage of this by only replicating newly created or modified data not
already available on the desktop machine.

When moving around with their mobile devices, users should leave them on. As
already mentioned, while current wireless networking technologies are a serious energy
drain [Feeney & Nilsson 2001], we believe that chances are that these will become more
energy-efficient in the not-so-distant future. The cooperative backup software running on
the mobile deviceisautonomous. It should automatically discover network infrastructures
reachable using its wireless networking interface, or, in the lack of an infrastructure (i.e.,
in ad hoc mode), it should discover neighboring devices that contribute to the cooperative
backup service. The former is typically achieved using operating system facilities. On the
other hand, discovery of service providers in the ad hoc domain can be achieved using an
appropriate service discovery protocol (SDP).

Service discovery protocols have been widely deployed on fixed local area networks
(LANs) for some time. They allow the discovery of neighboring printers, workstations, or
other devices, while requiring little or no configuration, making users lives easier. Popu-
lar service discovery protocols for LANs include SMB (Server Message Block, mainly used
by Microsoft operating systems), DNS-SD (Domain Name System Service Discovery, initially
introduced in Apple’s Mac OS X operating system where it is known as Bonjour [Cheshire
& Krochmal 2006a]), SLP (Service Location Protocol, [Guttman et al. 1999]) and SSDP (Simple
Service Discovery Protocol [Goland et al. 1999], part of UPnP). This wealth of protocols specif-
ically targets LANs. Because of their network usage characteristics, they do not adapt well
to MANETS, and in particular to resource constraints (energy and bandwidth). Because of
this, research has gone into the design of SDPs suitable for MANETSs [Sailhan & Issarny 2005,
The UbiSec Project 2005, Helmy 2004, Poettering 2007, Kim et al. 2005]. To our knowledge,
no particular SDP for MANETSs has been widely deployed to date. We do not focus on the
design of such SDPs. Instead, we will use one of these protocols for our purposes.

Once a data owner wishing to replicate its data has discovered contributing devices,
it chooses one of them and sends it a backup request. The choice of a contributing device
can be made based on a number of criteria. Most likely, these criteria will reflect trust and
cooperation concerns: “Is this contributor a friend of mine?” “Have I already interacted
with this contributor before?” “Did this contributor previously provide me with a valuable
backup service?” “Is this contributor selfish?” Similarly, the contributor can then either
accept or reject the request, again depending on a number of criteria such as trust,
cooperation fairness, and local resource availability. For instance, it may choose to reject
requests from strangers, unless it has a large amount of free space and energy.

Storage requests will typically consist of small data blocks rather than, e.g., whole
files. This is needed since connections between two contributors are unpredictable and
may be short-lived. In most cases, since the data owner does not trust the contributor,
the data will be sent encrypted along with meta-data allowing for integrity checks upon
recovery. Data owners may maintain a local database indicating which contributors
have offered them storage resources. This information can then be used as an input to
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cooperation decisions. Similarly, when sending a data block, data owners may wish to embed
the contributor’s identifier within the block, so that the contributor can eventually be
marked as “more trustworthy”, should the block become recoverable.

For most scenarios, it would be unrealistic to rely only on chance encountersbetween
devices for recovery. Thus, eventually, when they gain access to the Internet, contributors
should send the data stored on behalf of data owners to an agreed upon on-line store. This
store needs to be reliable and trusted by data owners. In practice, it could be implemented
in various ways: it could be a large store shared among all participants (e.g., a centralized
FTP server, a distributed peer-to-peer store, etc.), or a per-owner store (e.g., the data
owner’s own email box, etc.) This dissertation does not focus on the implementation of
this on-line store.

Note that contributing mobile devices could as well forward data blocks or further repli-
cate them on behalf of other nodes. However, we chose to not rely on these possibilities
for several reasons. First, if all mobile devices obtain access to the Internet as frequently as
each other, there is nothing to be gained from data forwarding: data blocks will not reach
the on-line store any faster. Without additional information on the frequency of contrib-
utors’ Internet access, data block forwarding is not appealing. Additional issues with data
forwarding stem from the lack of trust in contributors.

A store-and-replicate strategy where contributors replicate (as opposed to merely
forwarding) data blocks by themselves is more appealing. However, this approach is com-
parable to flooding in multi-hop networks [Zhang 2006]. Thus, a potential issue is resource
exhaustion, should this strategy be followed by a large proportion of contributors: since
contributors can hardly coordinate themselves to make reasonable use of the available
resources, they could end up saturating neighboring storage resources. Routing protocols
address this issue by limiting the scope of flooding, for instance by annotating packages
with a time-to-live (TTL) indicating when a packet can be dropped. Nevertheless, we be-
lieve flooding remains too resource-intensive for our purposes. More importantly, it would
make the replication process “uncontrolled”, whereas data owners may prefer to have
tight control over replication of their data rather than blindly entrusting contributors to
operate well. In particular, because a store-and-replicate strategy would be more costly
(energy-wise) to contributors than simple data storage, they can hardly be trusted to imple-
ment it. These issues will be further discussed in Chapter 3.

2.3.2. Recovery Process

In a purely ad hoc scenario where data owners never gain access to the infrastructure,
data owners could query neighboring devices to recover their data. However, as already
mentioned, we consider that most scenarios would rather use a specific on-line store as an
intermediary between contributors and data owners. Upon recovery, data owners query
that on-line store for their data. To that end, they may need to provide the on-line store
with identifying material proving that they are the legitimate owner of the data. Most of
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the time, they will ask for the latest snapshot available, but they could as well ask for, say,
“the snapshot dated April 4th”.

Data owners then recursively fetch, decipher, decode and check the integrity of
all the data blocks that made it to the on-line store. If blocks contain information about
the contributor that stored them, they may update their contributor trust database (or
some cooperation incentive service), increasing the trustworthiness of those devices that
contributed to this backup.

Since all contributors gain Internet access at their own pace, it may be the case that
data owners need to wait before all data blocks reach the on-line store. Furthermore, if a
contributor created and replicated several snapshots while in the ad hoc domain, all the
blocks comprising each of these snapshots may eventually reach the on-line store. Thus,
when recovering data from the on-line store, a data owner might be able to recover a more
recent version, provided they wait long enough. However, without additional information
(e.g., when recovering from a permanent failure), data owners cannot known whether
more recent versions will eventually be available in the on-line store. Thisshowsa tradeoff
between data freshness and data availability.

2.4. Related Work

This section describes related work in the areas of fault-tolerance mechanisms and state
replication, peer-to-peer cooperative backup, mobile and distributed storage, as well as
delay-tolerant networking.

2.4.1. Checkpointing and Rollback

In this thesis, we focus on fault-tolerance for individual mobile devices when viewed as
centralized systems whose service provision (e.g., taking pictures, editing documents, etc.)
does not necessarily depend on other devices, as opposed to distributed systems involving
distributed computationsamong a set of nodes’. We summarize the main system-level and
application-level approaches. These approaches differ regarding whether snapshots are
made upon user requests (i.e., “user-directed”) or upon system request (e.g., periodically),
and regarding the data manipulated (i.e., “user data” such as files, or whole program data).
Figure 2 summarizes the different approaches and their characteristics.

2.4.1.1. System-Level Approaches

Fault-tolerance of centralized systems is often achieved by logging changes to their state,
by taking snapshots of their state at regular intervals (also referred to as checkpointing),

® For the distributed case, a good survey on checkpointing techniques can be found in [Elnozahy 2002].
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Figure 2. Different ways of handling checkpointing.

or by a combination of both. Upon recovery, the last state before the system failed can
be re-installed by either replaying the changes listed in the system’s log, or by reinstating
the last snapshot. To tolerate permanent faults of the system, the log or snapshot must be
stored on one or several different devices.

For the checkpointing operation itself to be dependable, it must honor several
properties. Namely, checkpointing must be atomic: either it occurs or it does not; it must
not leave a mixture of the former and new snapshots of the system. Snapshots must be
consistent: the available snapshot must reflect correct system state, both before and after a
new snapshot has been made. These properties are part of the ACID properties (Atomicity,
Consistency, Isolation, Durability) used to qualify transactions in database management
systems (DBMS) [Gray 1981]. Another way to say this is that checkpointing must have
transactional semantics.

In practice, several approaches have been proposed to provide system checkpointing,
A global approach is that of persistent operating systems. In a persistent OS, all the data struc-
tures used by the OS kernel and the processes running on top of it are regularly written
to disk [Liedtke 1993, Shapiro & Adams 2002]. The OS takes care of taking snapshots and
ensures that this is an atomic operation. This approach is often referred to as orthogonal
persistencebecause both the user and application developer are freed from concernsrelated
to checkpointing. However, persistent OSes described in the literature do not handle state
replication. Thus,they can only tolerate transient faults (e.g., temporary power outage).In
addition, they keep only one checkpoint, which does not allow recovery of previous states.
A similar approach, although limited to single applications, is taken by checkpointing li-
brariessuch as[Plank etal. 1995].0nFigure 2,such libraries are represented as “application
checkpointing”; since applications can also instruct the library to make a checkpoint, this
approach appears in both columns.

Other approaches provide users and/or application programmers with direct control
of when a snapshot should be made. These allow them to tell the system when a transac-
tion begins and when it ends. Snapshots can then only be made in between transactions.

ACID properties

orthogonal
persistence
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DBMSes support such user-directed transactions. Most implementations provide easy-to-
use database replication mechanisms. Likewise, proposals were made to integrate transac-
tional storage with programming languages [Gray 1981, Birrell et al. 1987]. Thisapproach s

being applied to a wide range of programming languages such as Java [Prevayler.Org 2006],
Common Lisp and Ruby, and is now often referred to as object prevalence. This term comes

from the fact that application objects can be checkpointed without requiring the program-
mer to explicitly convert them to some external presentation. So-called object-relational

mapping (ORM) is a similar approach, aiming to fill the gap between objects implemented

by the programming language and a corresponding persistent representation stored in a

DBMS; a widely used ORM implementation is Hibernate, for Java [Red Hat, Inc. 2007].

2.4.1.2. Application-Level Checkpointing

Persistent OSes and run-times are not widely deployed today. Thus, in practice, persistence
and checkpointing are usually implemented at the application level. However, in the ma-
jority of cases, ad hoc mechanisms are used, where only part of the application data are ac-
tually made persistent;in addition, the ACID properties are rarely honored by applications,
unlessthey rely on programming language support or DBMS. Indeed, most applicationsuse
the OS-provided file system for long-term storage.

POSIX file systems, do not support transactional semantics; instead, they provide
applications with an interface that only allows for in-place updates, an approach that was
long acknowledged as detrimental to fault-tolerance [Gray 1981]. Thus, on top of com-
modity OSes such as Unix derivatives and Windows, data that has to be made persistent
is simply written (in a non-atomic way) to the file system. This is rarely referred to as

“checkpointing” given that only part of the application’s state is actually saved, and given
that it is up to the application to implement its own state capture mechanisms. In effect,
commodity OSes force programmers to deal with two distinct memory models: memory is
globally consistentand hasan all-or-nothing durability model, whereasfile systems usually
offer no global consistency model and file content durability depends on various implemen-
tation details [Shapiro & Adams 2002].

Most of the time, additional replicas of user data stored in the file system are created
asynchronously, using a backup application that periodically walks the file system and
sends the file to one or several storage devices or backup servers. This approach is imple-
mented by the traditional Unix tool dump and by similar tools such as Burt [Melski 1999],
Rsnapshot [Rubel 2005], or those found in the Plan 9 operating system [Quinlan & Dorward
2002]. Again, the state that is replicated in this way may be inconsistent, for instance if
applications were writing to a file while the backup was being made.

To provide rollback while guaranteeing checkpoint atomicity, an approach that has
been proposed is the use of immutable objects and versioning: instead of updating existing
objects by mutating them, new objects are created [Gray 1981}". Version control systems,
such as GNU RCS [Tichy 1985], GNU Arch [Lord 2005], and Git [Hamano 2006], as well as
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versioning file systems like WAFL [Hitz et al. 1994], Elephant [Santry et al. 1999], Ext3COW
[Peterson & Burns 2003]and Wayback [Cornell et al. 2004], provide users with transactional
operations in addition to the POSIX interface: users can modify their data and issue a
commit request to record a transaction, i.e., to store a new snapshot. This s illustrated on
Figure 2 where versioning files systems appear in both columns.

This approach is particularly useful for software development and has been used as
a basis for software configuration management (SCM) systems: since transactions are com-
mitted by developers, each transaction can be made to contain a logical, consistent set of
changes. Furthermore, snapshots can be annotated, which allows developers to, e.g., roll-
back to a previous “known-good” state of the project. Finally, dependencies of a software
project can be expressed using time-domain addressing [Gray 1981], for instance by specify-
ing the exact version of each dependency or build tool that is required; since each version
isan immutable snapshot, this makes software builds reproducible. In particular,Compaq’s
SCM system, Vesta [Heydon et al. 2001], and the Nix package management system [Dolstra
& Hemel 2007] are designed around these ideas.

2.4.2. Peer-to-Peer Cooperative Backup

This section summarizes related work on cooperative backup, both in the Internet and
mobile ad hoc domains.

2.4.2.1. Internet-based Cooperative Backup

Data backup has traditionally been implemented using centralized techniques. Typical

backup software [Melski 1999, Rubel 2005] periodically sends data to a single or a small set

of previously specified servers. For the backup servers to not be a single point of failure, the

collected data are then usually copied to fault-tolerant storage devices, such as RAID (Re-
dundant Array of Inexpensive Disks). To tolerate disasters, such as a fire in the server room,
the data are then frequently copied to removable storage devices that are then stored in a

different place. Many companies implement a backup scheme along these lines.

However, such backup schemes require a costly and complex infrastructure, which
individuals or even small companies cannot necessarily afford. Several companiessell stor-
age resources for backup purposes on their Internet-accessible storage servers but again,
these offers may be limited (in terms of bandwidth and available space), still relatively
costly and are centrally managed. To address this issue, Internet-based cooperative backup
systems that build on the peer-to-peer resource sharing paradigm have been proposed
and implemented. While a cooperative approach can potentially leverage large amounts
of unused resources, as was shown with the advent of peer-to-peer file sharing, they also

* Interestingly, functional programming languages usually follow this paradigm by avoiding or completely
impeding object mutation.
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benefit from the inherent diversity of participating machines. Since different and phys-
ically separated machines are unlikely to fail at the same time, diversity can improve fault-
tolerance.

With the Cooperative Internet Backup Scheme [Elnikety et al. 2002, Lillibridge et
al. 2003], interested users subscribe to a central server. They can then query the central
server for a list of candidate partners, i.e., machines that would also like to contribute
resources to participate in the service. Once partners have been selected, a negotiation
occurs and partners agree on some amount of storage resources and machine uptime.
Pair-wise relations are established among partners. Each partner can then periodically
send its backup data to the other partners; each partner must also accept storage requests
from its partners and honor restoration requests.

Another cooperative system, Pastiche, uses a similar approach [Cox et al. 2002]. In
Pastiche, each node also has a set of partners with which it trades storage resources. Stor-
age resource trades in Pastiche are symmetrical: each participant owes its contributors
as much resources as it was given. Partner discovery, however, is completely decentralized:
Pastiche relies on a peer-to-peer overlay network where participants can look for partners
according to various criteria. One such criterion may be the degree of data overlap between
the requester and the candidate peer: this allows partner selection to be biased towards
peers already storing similar data, thereby reducing the amount of data that needs to be
transmitted among partners.

Other cooperative backup systems such as pStore [Batten et al. 2001] and Venti-DHash
[Sitetal. 2003]use a decentralized storage model. Instead of having each participant main-
tain pair-wise relations with a set of peers, the data of all participants is stored in a global
peer-to-peer distributed store. The distributed storeisimplemented on top of Chord, a data
location service based on a distributed hash table (DHT). Briefly stated, a distributed hash
table is a distributed data structure akin to regular hash tables that maps identifiers (e.g.,
data item identifiers) to nodes (e.g., IP addresses of machines storing the designated data
items). Distributed stores built on DHTs account for the intermittent connectivity of peers
by pro-actively replicating data items, so that they can remain available despite the failure
of a small fraction of nodes.

However, maintaining the content stored in a DHT can be quite bandwidth-intensive,
particularly when participating nodes come and go at a high rate. Since the amount of
data stored in such a large-scale backup system can be quite important, this can quickly be-
come an issue. To address this, PeerStore [Landers et al. 2004] uses a hybrid approach. Each
node in PeerStore has a set of “preferred” partners, with which it is directly connected. In
addition, nodes may consult a global-scale DHT before replicating data: thisallowsthemto
detect whether the data are already stored by nodes outside their set of partners,in which
case they can avoid replicating them again.

From a security perspective, all these systems are meant to be used by nodes with noa
prioritrustrelationships. Thus, they all provide protection against data confidentiality and
integrity attacks, as discussed in Section 2.2. However, Pastiche and pStore, for instance,
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Peer Discovery Data Storage Data Versioning

Cooperative . Controlled
Internet Backup Centralized o No

(pair-wise)

Scheme
. . 11

Pastiche Decentralized COl’.ltI'O . ed Yes

(pair-wise)
pStore Decentralized Decentralized Yes
PeerStore Decentralized Decentralized Yes

Figure 3. Comparison of Internet-based cooperative backup systems.

both assume that participants are well-behaved and follow the protocol. Conversely, other
systems such as Samsara and the Cooperative Internet Backup Scheme provide better pro-
tection against DoS attacks such as those presented earlier. Another cooperative backup
system, BAR-B [Aiyer et al. 2005], focuses primarily on a addressing these threats to coop-
eration based on a formal reasoning. These security aspects will be explored in Chapter 4
and Chapter 5, respectively.

Except for the Cooperative Internet Backup Scheme, all these systems use an im-
mutable storage model, where previously stored data can be erased (at best) but not modi-
fied; in addition, they allow several versions of the user’s file system to be backed up. Upon
restoration, the user can choose a specific version. Other Internet-based systems have
been described in the literature or implemented, but they share most of the characteristics
of those mentioned above [Cooley et al. 2004, Peacock 2006, Stefansson & Thodis 2006, Mar-
tinian 2004, Morcos et al. 2006, Allmydata, Inc. 2007]. Figure 3 summarizes the approaches
to peer discovery and data storage taken by these cooperative backup systems.

Although not specifically designed with data backup in mind, large-scale distributed
stores described in the literature are worth mentioning. OceanStore [Kubiatowicz et al.
2000] aims to provide a large-scale persistent store that is maintained cooperatively by a set
of untrusted servers. Multiple versions of each data item may also be kept. Likewise, Inter-
Memory [Goldberg & Yianilos 1998] aims to provide long-term archival storage thanks to a
large distributed store maintained by a large number of untrusted peers on the Internet.
They defer from the aforementioned peer-to-peer backup systems in that the archived
data is expected to be of public interest (e.g., digitalized content from a library, scientific
data repositories) or at least shared by a group of people (e.g., calendar, email) and may
therefore be accessed by a large number of nodes. Consequently, both systems opt for a
large distributed store, rather than for pairwise relations as found in, e.g., Pastiche. Thusa
large part of the work consists in providing efficient data location and routing algorithms,
access control, as well as automated data replication as contributing nodes come and leave
the global store, all of which are not primary concerns of peer-to-peer backup systems.
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Distributed data stores that target file sharing, such as CFS [Dabek et al. 2001], do
not provide data persistence guarantees. File sharing systems whose goal is to provide
anonymous publishing and retrieval, such as GNUnet [Bennett et al. 2003] and Freenet
[Clarke et al. 2001], do not guarantee data persistence either. This makes them unsuitable
for data backup and archival purposes.

2.4.2.2. Cooperative Backup for Mobile Devices

To our knowledge, few attempts have been made to adapt the cooperative backup
paradigm to the mobile environment. Flashback provides cooperative backup for mobile
devices within a personal area network (PAN) [Loo et al. 2003]. Similarly, OmniStore, although
primarily aiming at seamless replication among one’s own portable devices within a PAN,
allows newly created data to eventually be replicated to an on-line “repository” such as a
stationary computer [Karypidis & Lalis 2006]. This approach differs from ours in that the
devices involved in the cooperative backup service all belong to the same person. Thus,
they are all mutually trusted’, so some of the security threats we described in Section 2.2
donot apply. In particular, data confidentiality and integrity attacks, as well as DoS attacks
are unlikely in this context.

Another important difference is that devices within the PAN are expected to be with-
in radio range of each other most of the time. In particular, the recovery process in Flash-
back can only take place when the devices involved in the backup can reach each other, as-
suming that any personal device that has become unreachable will eventually be reachable
again. Tight connectivity among one’s personal devices allows for lazy replication (i.e., repli-
cate when deemed appropriate), as opposed to the opportunistic replication (i.e., replicate
anytime a backup opportunity occurs) that we envision in MoSAIC.

Flashback and OmniStore also introduce interesting ideas as to how to discover de-
vices and select the most “useful” devices by taking into account the power and storage re-
sources of all the personal devices, as well as their pair-wise locality factor (i.e., how often a
device is reachable by another one) [Loo et al. 2003, Karypidis & Lalis 2005]. These pieces of
informationare passed toa device utility function which isused during the device selection
process. The choice of a utility function that accounts for both device power budget and
locality shows that it increases the lifetime of devices by favoring the use of the most capa-
ble devices while avoiding the weakest ones [Loo et al. 2003]. Using co-location information
could be applied to our cooperative backup service. However, using information about a de-
vice’s power budget would not be feasible in our case since devices are mutually suspicious
and consequently could lie about their power budget, or could refuse to disclose it.

> This assumes that devices are not stolen, in which case an attacker may be able to exploit the cooperative backup
mechanism to retrieve information stored by other devices (e.g., by reprogramming the stolen device and
reinserting it into the PAN as a Trojan).
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A master thesis studied scenarios similar to those we are interested in, involving
cooperative backup among distrustful mobile devices [Aspelund 2005]. Its approach differs
from ours in that it focuses on scenarios where data recovery is performed in ad hoc mode
by contacting contributors through a multi-hop routing scheme. The major contribution
of this work lies in the assessment through simulation of the distance of data owners to
their data backup in terms of number of hops in the ad hoc domain. It does not propose
actual storage mechanisms and protocols, and does not address security concerns such as
those described earlier.

Finally, although in a different application context, distributed persistent data stor-
age for wireless sensor networks (WSNs) addresses concerns close to those of cooperative
backup systems for PANs: data collected by the sensors is to be replicated among a set of
trusted devices, typically with good connectivity [Girao et al. 2007].

2.4.3. Mobile and Distributed Storage

Over the last decade, a large body of research has been dedicated to distributed data stor-
age for mobile devices. Most of the proposed storage systems use data replication among

mobile devices to maximize data availability despite intermittent connectivity. Many also

cope with frequent disconnection due to node mobility using cooperative storage schemes.
Thus, although those systems are not concerned with data backup per se, their solutions

are relevant in the context of the design of a cooperative backup service.

Existing literature on the topic can be categorized according to several criteria. First,
essentially two usage patterns are considered: information sharing following a write-once
read-many model (WORM), and read-write data access allowing data items to be modified
in-place by mobile nodes and eventually propagated. The former is an adaptation of
peer-to-peer file sharing systems to the mobile context, while the latter is an extension of
(distributed) file systems to the mobile environment.

2.4.3.1. Mobile Information Sharing

Peer-to-peer file sharing systems for mobile devices are very similar to Internet-based file
sharing systems. A distributed store is maintained by a set of cooperative mobile nodes,
each contributing storageresources. No central serviceisrelied on and participating peers
all play the samerole. Users can share data by inserting it in the cooperative store. Usually,
the inserted data isimmutable: it cannot be updated in-place, and can hardly be complete-
ly removed on demand (it may eventually vanish from the store, though, for instance if it is
not popular enough, or if network partitioning occurs). Immutability usually allows a wide
range of replication and caching techniques to be used by contributing nodes.

Such a system was proposed by Sozer et al. [Sozer et al. 2004]. It adapts techniques
used by wire-line peer-to-peer protocolsby, e.g., taking nodes physical locality intoaccount
to limit communication to nodes within radio range. Similarly, ORION [Klemm et al. 2003]
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and the Hybrid Chord Protocol [Z§ls et al. 2005] focus on adapting existing peer-to-peer
protocols to the mobile context to reduce the traffic load and energy consumption yielded
by the replication and data lookup protocols.

Several read-only cooperative caching strategies have been proposed. 7DS implements
cooperative caching of (read-only) data available on the Internet among mobile devices to
increase the data availability of participants not connected to the Internet [Papadopouli
& Schulzrinne 2000]. Participating devices cache information as they access it through the
Internet and then spread cached information on-demand in the ad hoc domain. Tolia et al.
described the design of a read-only cooperative cache for distant file servers that works
similarly [Tolia et al. 2004]. Wang et al. proposed a cooperative caching framework aiming
to maximize data locality [Wang et al. 2006]. A similar cooperative caching strategy has
been proposed in [Flinn et al. 2003]; however, it differs from the other approaches in that
it was explicitly designed to deal with untrusted contributors.

2.4.3.2. Writable Distributed Storage

Mutable distributed storage for mobile devices has been envisioned as a means to extend
users’stationary file systemsto their mobile devices. Essentially,one’smobile devicesactas
acache of data stored on a stationary device that is viewed as a server. The ability to modify

cache consistency  data creates cache consistency issues not relevant to read-only file sharing systems. Namely,

issues modifications made on a device need to be propagated to other devices. In the case where
different changes are made by several devices not connected to each other, these changes
must eventually be reconciled when they get connected to each other, so that a single new
version of the data is agreed on. Because of mobility and intermittent connectivity, only
weak consistency can be maintained among replicas [Demers et al. 1994].

With OmniStore [Karypidis & Lalis 2006], data from the user’s desktop computer is
transparently replicated to (some of) their mobile devices; mobile devices within the
user’s personal area network (PAN) can then lazily replicate data among them, as they are
accessed by the user. Changes are propagated opportunistically among the user’s devices,
and eventually pushed to the user’s stationary computer (the repository). The repository
keepsall versions of all files, so reconciliation of concurrently-updated copies of filesis left
to higher-level mechanisms, should it be needed. FEW [Preguica et al. 2005] takes a similar
approach to automated file management for portable storage devices, but it provides auto-
mated reconciliation of diverging copies. FEW tracks the “causal history of update events
thathavebeenincorporatedin thereplica state” in order to ease reconciliation, e.g.,usinga
three-way merge algorithm [Mens 2002]. The Blue file system takes a similar approach, with
the aim of reducing the energy costs resulting from data accesses, and improving perfor-
mance [Nightingale & Flinn 2004]. 1t achieves this by selecting nodes to read from and write
tobased on the expected energy costs and performance characteristics, in a way similar to
Flashback [Loo et al. 2003]and OmniStore [Karypidis & Lalis 2005].
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In Bayou [Demers et al. 1994], data replicas are stored on a set of servers (potentially
stationary machines) while mobile nodes are assumed to access data by contacting
neighboring servers, rather than locally replicating data. This architecture stemmed from
the assumption that mobile nodes would not have sufficient storage capacities to store
replicas, an assumption that no longer holds. All servers contributing to the store have an
equivalent role: Bayou uses a read-any/write-any model, whereby mobile nodes can read
from or write to any replica. Reconciliation and detection of update conflicts are handled
by servers, in an application-specific way.

Several distributed file systems, such as Coda [Lee et al. 1999, Mummert et al. 1995],
support disconnected operation, i.e., they allow clients to modify local copies of fileswhen the
server is unreachable. They follow a traditional client/server model: local modifications
must eventually propagate to the server and, in the presence of concurrent updates, the
server must reconcile them [Lee et al. 1999]; automatic reconciliation may fail, in which
case manual intervention is needed. More generally, the file server is viewed as the authori-
tative source of files. Consequently,updatesin such file systems are not atomic: an update
is only “committed” when/if it reaches the server and is kept unmodified.

Likewise, mobile nodes in AdHocFS are assumed to replicate data from a home server,
but they may modify them locally while disconnected [Boulkenafed & Issarny 2003].
Again, mobile nodes are expected to periodically synchronize with the home server, which
may require reconciling divergent replicas or handling update conflicts; changes are only
committed when they reach the server. However, AdHocFS also supports collaborative
applications within ad hoc groups (e.g., among devices in vicinity of each other), such
as collaborative document editing, without requiring access to the home server. It can
provide strong consistency guarantees for such collaborative applications, e.g., through a
simple locking scheme.

Haddock-FS goes one step further by employing a peer-to-peer, server-less approach
[Barreto & Ferreira 2004]. It distinguishes between tentative updates (i.e., local changes that
have not been propagated and reconciled), from stable updates (i.e., updates that have been
propagated, reconciled and “committed” by a primary replica). Secondary replicas should
update to the latest stable values.

The concerns of writable mobile storage are different from those of a backup system.
A lot of complexity is added as a consequence of supporting concurrent updates of the
data, which requires suitable update propagation and conflict resolution. In the end,
work on mobile storage appears to have a lot in common with distributed revision control
systems such as GNU Arch and Git [Lord 2005, Hamano 2006]. Such tools allow people
working in a loosely connected fashion to commit their own changes locally, while still
being able to periodically integrate updates made by others in their local copy. Merging
is facilitated by tracking the set of changes already incorporated in each copy [Hamano
2006], in a way that is similar to the one used by, e.g., FEW [Preguica et al. 2005].

It is also worth noting that none of the aforementioned systems addresses coopera-
tion among mutually suspicious participants in detail.
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2.4.4. Delay-Tolerant Networking

Handling intermittent infrastructure connectivity by relaying data replicas through in-
termediate mobile nodes all the way to an on-line server makes our approach compara-
ble to delay-tolerant networks (DTNs): data blocks that are transmitted by data owners to
contributors can be viewed as packets sent to the Internet-based store and contributors
can be viewed as relays [Zhang 2006]. The whole backup process can be viewed as a high-
latency communication channel used to transfer snapshots from the data owner to the on-
line store.

Recently, a large amount of work has gone into the design and evaluation of proto-
cols for DTNs in general, and intermittently-connected mobile networks (ICMNs) in partic-
ular (sometimes called delay-tolerant mobile networks, or DTMNs). DTNs and ICMNs can
be seen as (mobile) networks with a high probability of network partitioning that makes
end-to-end connections highly unlikely. Such networks are expected to be common in
remote regions, as well as in situations such as disaster relief efforts, interplanetary com-
munication, sensor networks, and wildlife tracking [Fall 2003, Harras et al. 2007, Juang et
al. 2002]—most of which are also relevant to our cooperative backup service. Like MANETS,
DTNs rely on cooperative message routing.

To overcome the intermittent connectivity patterns found in those scenarios, DTNs
aim to provide a protocol layer specifically tailored to cope with these characteristics.
DTNs were first described as an asynchronous message delivery system, akin to email, where
messages are routed across network regions through DTN gateways [Fall 2003]. Each network-
ing region is characterized by a specific set of protocols (e.g., Internet-like, mobile ad hoc,
etc.) and gateways act as bridges among them. Gateways typically provide store-and-for-
ward functionality: they store messages coming from one region and “transport” them to
the destination region. Transport could involve physical transportation, for instance by
carrying a message to the target network.

The ParaNets approach extends this model by allowing different networking tech-
nologies to be used in parallel to improve the DTN performance [Harras et al. 2007]. The
ParaNets design was motivated by the observation that diverse wireless communication
technologies are now available, as was discussed in Section 2.1.Its authors propose to lever-
age this diversity by choosing an appropriate transport layer depending on the message
type (e.g., using satellite communications for acknowledgments and short messages and
using regular DTN message routing for larger messages).

Part of the work on DTNs focused on defining protocols by which mobile nodes can
exchange data [Scott & Burleigh 2007, Cerf et al. 2007], and a large part of the work went
into devising and evaluating routing algorithms [Zhang 2006, Spyropoulos et al. 2007].
Routing algorithm designers are primarily concerned with reducing transmission delays
while keeping the resource requirements low.

Wangetal. summarize existing packet forwarding algorithmsas shown on Figure 4. At
one end of the spectrum, a naive strategy consists in having the source node carry its data
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Algorithm Who When To Whom
flooding allnodes  new contact all new
direct contact sourceonly  destination  destination only

simple replication,r  source only new contact  r first contacts

history, r allnodes  new contact r highest ranked

Figure 4. Summary of various forwarding algorithms for DTNs [Wang et al. 2005a].

until it is in direct contact with the destination node. This approach requires few resources

but may lead to high end-to-end delays. At the other end is epidemic routing or flooding

where each node forwards all message (including messages on behalf of other nodes) to

any other node encountered. This may yield smaller delays at the cost of significant band-
width and storage overhead [Spyropoulos et al. 2007]. In between these two extremes, a

variant of flooding is the popular probabilistic forwarding where nodes forward messages

with a probability less than one (not represented here). Another approach is simple repli-
cation where the message is handed over by the source node to a fixed number r of relays,
each of which can then deliver it only to the destination node. Lastly, in history-based ap-
proaches (sometimes called utility-based, or estimation-based), nodes make “informed”
forwarding decisions based on past encounters [Spyropoulos et al. 2007, Liao et al. 2006,
Juang et al. 2002]and forward packets only to the r highest ranked nodes. A wealth of more

sophisticated forwarding strategies is also described in the literature [Wang et al. 2005a,
Widmer & Boudec 2005].

Interestingly, the “simple replication” approach to message routing is similar to
the basic replication strategy we envision for our cooperative backup service: each data
owner distributes copies of each data item to a limited number of contributors, each of
which may in turn forward it directly to the Internet store (see Section 2.3.1). Similarly, the
utility-based routing approach is comparable to the contributor selection process used by
the Flashback [Loo et al. 2003] and OmniStore [Karypidis & Lalis 2005] cooperative stores
for PAN.

However, delay-tolerant networking also differs from our cooperative backup ap-
proach in various ways. First, routing algorithms for DTNs usually assume that the destina-
tion of a message is a specific physical node. Conversely, the destination of data items in
our approach is an Internet-accessible store reachable from a very wide range of physical
locations (Internet access points), making it possible to hope for reasonable delays in only
two “DTN hops”.More importantly, versioning of the backed-up data makes a significant dif-
ference. In our cooperative backup service, several versions of the user’s data may eventu-
ally reach the on-line store. Should the latest version be unavailable, being able to retrieve
prior versions is valuable, from a fault-tolerance viewpoint, whereas a pure networking
approach with no knowledge of messages semantics treats all messages equally.
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From a security perspective, little work has been done to address issues arising from
cooperation with untrusted principals in DTNs [Fall 2003, Farrell & Cahill 2006]. Our work
contributes to this area, as will be discussed in Chapter 5.

2.5. Summary

The contributions of this chapter can be summarized as follows:

We illustrated the need for improved fault-tolerance mechanisms for mobile
devices, specifically focusing on the availability of data produced and carried by
mobile devices.

We defined dependability goals in terms of data availability,integrity and confiden-
tiality.

In addition, we outlined a cooperative backup approach to tackle this issue:

The proposed approach leverages spontaneous interactions among mobile devices
by means of short-range wireless communications.

Participating devices share storage resources and thereby cooperatively
implement a distributed store that is used for backup purposes.

Mobile devices storing data on behalf of other nodes eventually send them toan
agreed-upon store on the Internet.

Data recovery works by querying this on-line store for data backups.

Finally, we studied related work in the areas of checkpointing and rollback, Internet-
based peer-to-peer cooperative storage, distributed mobile storage, and delay-tolerant
networking.
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Proposed System

his chapter provides an analytical evaluation of the dependability gains to be

expected from our cooperative backup service, as described in Section 2.3. Some of
the results presented here were described in Ossama Hamouda’s Master Thesis
[Hamouda 2006] and in [Courtes et al. 2007a].

3.1. Introduction

Various replication and data scattering algorithms may be used to implement the coop-
erative backup service. Replication may be handled by creating full copies of individual
data items (we refer to this as simple replication) or by more sophisticated erasure coding tech-
niques. Choosing erasure codes allows an increase of data fragmentation and, subsequent-
ly, data dissemination. Increasing fragmentation and dissemination is beneficial from a
confidentiality viewpoint [Deswarte et al. 1991]; however, its impact on data dependability,
particularly in our scenario, is unclear. The analytical evaluation presented in this chapter
aims to clarify this.

Furthermore, the effectiveness of the proposed cooperative backup service, from a
fault-tolerance viewpoint, depends on a number of environmental factors: it should pro-
vide most benefit with a relatively high density of participating devices and intermittent
Internet access for all devices, but also needs to account for occasional device failures and
potentially malicious contributor behavior. In order to gain confidence about the efficien-
cy of our backup service, we need to assess the impact of these issues on data dependabil-
ity.

We analyze the fault-tolerance gain provided by MoSAIC as a function of (i) the
various environmental parameters (frequency of Internet access, contributor encounter
rate, node failure rate) and (ii) different replication strategies. Our approach is based on
model-based evaluation, which is well suited to support design tradeoff studies and to
analyze the impact of several parameters of the design and the environment from the
dependability and performance points of view. We expect such an analysis to provide us
with a better understanding of the dependability gains to be expected from our service.

We identify two main goals. First, the analysis should help us determine under what
circumstances MoSAIC is the most beneficial, compared to solutions that do not replicate
data in the ad hoc domain. Second, it should help us choose among different replication

33
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strategies, depending on a given scenario’s parameters and user preferences (e.g., target
data availability, confidentiality requirements).

The major contribution of the work presented here lies in the assessment of data
replication and scattering strategies using analytical methods, taking into account a
variety of influential parameters. It differs substantially from earlier evaluation work
by other authors due to the entirely novel characteristics of the system and environment
modelled (see Section 3.5).

Section 3.2 provides background information on erasure codes. Section 3.3 describes
our methodology. Section 3.4 summarizes the results obtained and discusses their impact
on the design of the cooperative backup service. Section 3.5 presentsrelated work. Finally,
Section 3.6 summarizes our findings.

3.2. Background

Erasure coding algorithms have been studied extensively [Lin et al. 2004, Mitzenmacher
2004, Xu et al. 1999, Xu 2005, Weatherspoon & Kubiatowicz 2002]. Here we do not focus on
the algorithms themselves but on their properties. A commonly accepted definition of
erasure coding is the following [Xu 2005, Lin et al. 2004]:

¢ Given a k-symbol input datum, an erasure coding algorithm produces n >k
fragments.

«  Any m fragments are necessary and sufficient to recover the original datum,
where k < m < n. When m = k, the erasure code algorithm is said to be optimal
[Xu et al. 1999].

Figure 5 illustrates the coding and recovery processes with an optimal erasure code.
Although not all erasure coding algorithms are optimal (many of them are near-optimal [Xu
et al. 1999]), we will assume in the sequel the use of an optimal erasure code where m = k.
By convention, we note (n,k) such an optimal erasure code [Xu 2005].

When all k fragments are stored on different devices, an optimal erasure code allows
n — k failures (or erasures) to be tolerated (beside that of the primary replica). The storage
cost (or stretch factor) for an optimal erasure code is # (the inverse ratio % is often called
the rate of an erasure code). To tolerate a number of erasuresf, we need n =k +f, so the
storage cost is 1 +f/k. Therefore, erasure coding (with k > 2) is more storage-efficient than
simple replication (k = 1). For instance, (2,1) and (3,2) erasure codes can both allow the
tolerance of one failure, but the former requires twice as much storage as the original data
while the latter only requires 1.5 times as much.

Additionally, when all k fragments are distributed to different devices belonging to
different non-colluding users (or under different administrative domains), erasure codes
can be regarded as a means for improving data confidentiality: to access the data, an
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Figure 5. Coding and recovery with an optimal erasure code, with k =4 and n = 6.

attacker must have control over k contributing devices instead of just one when simple
replication is used [Deswarte et al. 1991]. This effectively raises the bar for confidentiality
attacks and may usefully complement ciphering techniques used at other layers. Similar
concerns are addressed by generalized threshold schemes where, in addition to the
definition above, less than p < k fragments convey no information about the original data,
from an information-theoretic viewpoint [Ganger et al. 2001].

3.3. Methodology

In this section, we present the approach we have taken to model and evaluate our cooper-
ative backup service. In particular, we describe and discuss the characteristics of the sys-
tem modeled. We then present our use of Markov chains and the evaluated dependability
measures.

3.3.1. System Characteristics

The cooperative backup service that we model is characterized by its replication and scat-
tering strategy, and the considered device-to-device and device-to-Internet backup oppor-
tunities.

3.3.1.1. Replication Strategy

Our model considersthe case of a data owner that needsto replicate a single data item (gen-
eralization of the results to more than one data item is straightforward). We consider that
the owner follows a pre-defined replication and dissemination strategy, using (n,k) erasure
coding, where n is decided off-line, a priori, and where the owner distributes one and only
one fragment to each encountered contributor. When k = 1, the strategy corresponds to
simple replication. In practice, the exact choice of n and k could be made as a function of
the currently-perceived backup opportunity rates, and the user’s dependability and confi-
dentiality requirements.



tel-00196822, version 1 - 13 Dec 2007

36 Chapter 3. Analytical Evaluation of the Proposed System

This replication strategy privileges confidentiality over backup reliability: only one
fragment is given to each contributor encountered’, at the risk of being unable to dis-
tribute all the fragments in the end (for instance, because not enough contributors are en-
countered). An alternative strategy that favors backup reliability over confidentiality con-
sists in providing a contributor with as many fragments as possible while it is reachable.

Furthermore, the replication strategy is considered static. In particular, we consider
that owners are not aware of the failures of contributorsstoring data on their behalf. Thus,
owners cannot, for instance, decide to create more replicas when previously encountered
contributors have failed. The fact that owners cannot be made aware of contributor fail-
ures is realistic under most of the scenarios envisaged: contributors are likely to be out
of reach of owners at the time of failure and, in addition, it is impossible to distinguish
between a slow and a failed node [Fischer et al. 1985].

3.3.1.2. Backup Opportunities

We consider that every encounter between devices offers a device-to-device backup op-
portunity. Specifically, every device encountered is considered to be a contributor that
unconditionally accepts storage requests from the data owner. Data owners unconditionally
send one data fragment to each contributor encountered. Later, in Section 3.4.5, we also
consider scenarios where more than one data fragment is sent during a contributor en-
counter. Note that scenarios in which not all encounters offer backup opportunities (e.g.,
with contributors refusing to cooperate) can be simply modeled by introducing an oppor-
tunity/encounter ratio as an additional parameter. In other words, trust and cooperation
among devices are not modeled but these topics are addressed in Chapter 5.

We consider that Internet connection is only exploited when it is cheap and provides
a high bandwidth. Furthermore, we consider that every such device-to-Internet backup
opportunity is exploited to the full, i.e., whenever a node gains Internet access, we assume
that it transfers all the data fragments it currently stores on behalf of other nodes.

3.3.2. Modeling Approach

Two complementary techniques can be used to support model-based evaluation approach-
es: analytical techniques and simulation. Analytical techniques are commonly used to
support dependability evaluation studies. They allow one to obtain mathematical expres-
sions of the relevant measures, which can then be explored to easily identify trends and
to carry out sensitivity analysis. When using analytical techniques, the system must be
described at a high level of abstraction. Simplifying assumptions are generally needed to
obtain tractable models. Although simulation can be used to describe the system at a more

! According to this policy, a contributor encountered more than once will only be given a fragment the first time
it is encountered.
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Figure 6. Petri net of the replication and scattering process for an (n,k) erasure code.

detailed level, it is more costly in terms of the processing time needed to obtain accurate
and statistically significant quantitative results.

Markov chains and generalized stochastic Petri nets (GSPNs) are commonly used to
perform dependability evaluation with sensitivity analyses aimed at identifying parame-
ters having the most significant impact on the measures. The corresponding models are
based on the assumption that all the underlying stochastic processes are described by ex-
ponential distributions. Although such an assumption may not faithfully reflect reality,
the results obtained from the models and sensitivity analysis give preliminary indications
and estimations about the expected behaviors and trends that can be observed. More accu-
rate results can be obtained considering more general distributions, using for example the

“stages method” [Cox & Miller 1965] or non Markovian models. However, in this chapter,
we assume that all stochastic processes are exponentially distributed.

In the following, we present a generic GSPN model and the corresponding Markov
chains. Then, we present the quantitative measures evaluated from the models to assess
data dependability. Finally, we discuss the main parameters that are considered in the
sensitivity analysis studies.

3.3.3. GSPN and Markov Models

GSPNs are widely used to support the construction of performance and dependability
evaluation models based on Markov chains. In particular, they are well suited to represent
synchronization, concurrency and dependencies among processes [Marsan et al. 1995].
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Figure 6 presents the GSPN model of MoSAIC using an (nk) erasure coding al-
gorithm.

The model focuses on the mobile ad hoc part of the cooperative backup service, pur-
posefully ignoring issues related to the implementation of the Internet-side functionali-
ties. Thus, a data fragment is considered “safe” (i.e., it cannot be lost) whenever either its
owner or a contributor storing it is able to access the Internet. In other words, the Internet-
based store of our cooperativebackup serviceisabstracted asa “reliable store”. Conversely,
if a participating device fails before reaching the Internet, then all the fragments it holds
are considered lost.

Thus, with (n,k) erasure coding, a data item is definitely lost if and only if its owner
device fails and less than k contributors hold or have held a fragment of the data item.

Our model consists of three main processes represented by timed transitions with
constant rate exponential distributions:

¢ A process with rate o that models the encounter of a contributor by the data
owner, where the owner sends one data fragment to the contributor.

*  Aprocessthat models the connection of a device to the Internet, with rate 3 for
the owner and P for contributors.

*  Aprocessthat represents the failure of a device (crash fault), with rate A, for the
owner and A for contributors.

The GSPN in Figure 6 is divided into two interacting subnets. The subnet on the left
describes the evolution of a data item at the owner device: either it is lost (with rate 2 ),
or it reaches the on-line reliable store (with rate ). Places OU and OD denote situations
where the owner device is “up” or “down”, respectively. The subnet on the right describes:
(i) the data replication process leading to the creation of “mobile fragments” (place MF)
on contributor devices as they are encountered (with rate o), and (ii) the processesleading
to the storage of the fragments (place SF) in the reliable store (rate B), or their loss caused
by the failure of the contributor device (rate A). At the top of the right-hand side subnet is
place FC whose initial marking denotes the number of fragmentsto create. The transition
rates associated with the loss of a data fragment or its storage on the Internet are weighted
by the marking of place MF (denoted m(MF)), i.e., the number of fragments that can
enable the corresponding transitions.

Two places with associated immediate transitions are used in the GSPN to identify
when the data item is safely stored in the reliable store (place DS), or is definitely lost (place
DL), respectively. The “data safe” stateisreached (i.e., DS is marked) when the original data
item from the owner node or at least k fragments from the contributors reach the Internet.
The “dataloss” stateisreached (i.e., DL is marked) when the data item from the owner node
islost and less than k fragments are available. This condition is represented by a predicate
associated with the immediate transition that leads to DL. Finally, L is the GSPN “liveliness
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predicate”, true if and only if m(DS) = m(DL) = 0: as soon as either DS or DL contains a
token, no transition can be fired.

The GSPN model of Figure 6 is generic and can be used to automatically generate
the Markov chain associated with any (n,k) erasure code. As an example, Figure 7 shows
the Markov chain representing replication and scattering with a (2,1) erasure code (i.e.,
simple replication). The edge labels represent the rate of the corresponding transition; for
instance,an edge labeled “2\” represents the failure of one of the two contributorsholding
a copy of the owner’s data. On this graph, we distinguish four sets of states:

1. The states labeled “alive(X) Y/Z” denote those where the owner device is up,
where X, Y and Z represent, respectively, the number of fragments left to dis-
tribute, the number of fragments held by contributors, and the number of frag-
ments available in the on-line reliable store (i.e., “safe”).Here,k < X+ Y +Z <n
and Z < k (for the (2,1) erasure code presented on Figure 7, Z is always zero since
Z =k = lisequivalent to the “data safe” state).

2. States labeled “dead Y/Z” represent those where the owner device has failed
but where backup can still succeed thanks to contributors. Here, Y +Z > k and
Z <k

3. The state labeled “alive/endangered” aggregates all states where the owner
deviceisavailableand where X + Y + Z < k.In this situation, although fragments
may be available in the reliable store and on contributing devices, failure of the
owner device results in definite data loss.

4, The two absorbing states, labeled “DS” (“data safe”) and “DL” (“data lost”),
represent, respectively, the safe arrival of the data item in the reliable store and
its definite loss.

Similar loop-free Markov chains can be generated for any (nk). The total number of

states in such an (n,k) Markov chain is 0<n2). The models we are considering, with reason-
ably small values of n (i.e., small storage overhead), are tractable using available model-
ing tools.

It should be clear from the above examples that a data forwarding strategy implement-
ed by contributors (see Section 2.3.1) would not bring any dependability benefit. Data
block forwarding would be represented as a transition from each state where the number
of fragments held by contributors is non-zero to itself, which would not change the asymp-
totic probability of reaching DS. A strategy where contributors would not only forward
but also replicate data would certainly improve data dependability. However, for reasons
exposed in Section 2.3.1, we decided not to explore such flooding strategies.
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Figure 7. Markov chain of the replication and scattering process for a (2,1) erasure code.

3.3.4. Generating Markov Chains from Production Rules

During the early stages of this evaluation effort, we implemented a tool able to generate
Markov chainsrepresenting the replication strategiesof interest. Thistoolisimplemented
in Scheme [Kelsey et al. 1998], using GNU Guile [Jaffer et al. 1996]. The Markov chain states
as manipulated by the program are labeled in a way similar to the one presented above. A
set of simple state/transition production rules makes use of this information to create state
objects and transitions among them. Being closely related to the process being modeled,
this programming framework allowed us to quickly gain a better understanding of our
model. Thisapproachalsopermitted incremental experimentation, starting from animple-
mentation of the simple replication strategy (i.e., k = 1) and augmenting it to handle the
more general erasure coding case.

Figure 8 shows the Scheme code modeling simple replication® For a given Markov
chain state, this code produces all the relevant transitions to other states by mutating the
current list of transitions associated with the state’. All states are labeled by a 3-element

? Note that Scheme derives from Lisp and, as such, it uses a prefix notation. For example, the application of

function f to arguments x and y, which mathematicians note f (x,y), is noted (£ x y).Basic mathematical
operators are treated like other functions, so x + yisnoted (+ x y).By convention, functions whose names end
with an exclamation mark denote functions with side-effects, i.e., functions that modify their argument. Also
note that #t and #£ denote “true” and “false”, respectively.

* This approach follows an imperative programming paradigm, relying on side-effects to modify state objects.
Since our Markov chain is loop-free, it would be possible to create all the states and transitions in a purely
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(if (<= avail 1)
(push-to-ko! ’lambda)
(push! (make-label alive? (- avail 1) to-do)
‘(x ,(if alive? (- avail 1) avail) lambda)))

(if (>= avail 1)
(push-to-ok! ‘(* beta ,avail)))

(if alive?
(begin

(if (>= to-do 1)
(push! (make-label #t (+ avail 1) (- to-do 1)) ’alpha))

(if (= avail 1)
(push-to-ko! ’lambda0)
(push! (make-label #f (- avail 1) to-do) ’lambda0))))

Figure 8. Transition production rules for the simple replication strategy.

vector containing (i) a boolean denoting whether the owner device is up, and (ii) the ¥ and
Z integers as presented in Section 3.3.3. Such labels are constructed by invoking the make-
label procedure and passing it these 3 elements. Procedure push! creates a transition
from the current state to the state labeled as specified as the first parameter, and with the
rate specified as the second parameter; similarly, push-to-ok! createsa transition to the
DS state, while push-to-ko! creates a transition to the DL state. Variables to-do and
avail represent the number of replicas that must be made and the number of replicas
already available, respectively; alive? isa boolean indicating whether the current state
denotes a situation where the owner device is available. The generalized production rules
for erasure codes are similar but address more cases.

This tool allowed us to generate graphical representations of our Markov chains,
using Graphviz package for automated graph layout [Gansner et al. 1993], as shown in
Figure 7 and Figure 18. This proved a useful model debugging aid. Our tool is also capable
of computing asymptotic probability of a successful backup on our absorbing Markov
chains (both symbolically and numerically?); it can produce plotting data that can be fed
to GNUplot to produce plots such as those presented in this chapter.

We complemented this approach with the SURF-2 dependability evaluation tool
which can additionally handle Petri nets [Béounes et al. 1993].

functional way, i.e., without modifying objects. Nevertheless, this imperative approach allows more general
cases to be addressed.

* For symbolic computations, the raw, non-simplified expressions are returned. Simplification is left to an
external computer algebra system such as Axiom or Maxima.
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3.3.5. Quantitative Measures

We analyze the dependability of our backup service via the probability of dataloss, i.e., the
asymptotic probability,noted PL, of reaching the “data lost” state. For a given erasure code
(n,k), PL can be easily evaluated from the corresponding Markov chain using well-known
techniques for absorbing Markov chains [Kemeny & Snell 1960]. The results shown in the
next section were obtained using symbolic computations of PL produced by the tool pre-
sented above. The smaller PL is, the more dependable is the data backup service.

To measure the dependability improvement offered by MoSAIC, we compare PL with
the probability of data loss PL,,; of a comparable, non-MoSAIC scenario where:

. data owners do not cooperate with other mobile devices;

. data owner devices fail with rate A ;

«  data owners gain Internet access and send their data items to a reliable store
with rate 3.

This scenario is modeled by a simple Markov chain where the owner’s device can either
fail and lose the data, or reach the Internet and save the data. The probability of lossin this

scenariois: PL,,, = %—}fﬁ()

We note LRF the data loss probability reduction factor offered by MoSAIC compared
to the above non-MoSAIC scenario, where LRF = PL,,/PL. The higher LRF, the more
MoSAIC improves data dependability. For instance, LRF = 100 means that data on a
mobile device is 100 times more unlikely to be lost when using MoSAIC than when not

using it.

3.3.6. Parameters

PL and LRF depend on a number of parameters (n, k, o, B, A, [30, and A,). Rather than
considering absolute values for the rates of stochastic processes, we consider ratios of
rates corresponding to pertinent competing processes.

For example, the usefulness of cooperative backup will depend on the rates at which
contributing devices are met relative to the rate at which connection to the fixed infras-
tructure is possible. Therefore, it makes sense to study LRF as a function of the ad hoc-to-
Internet connectivity ratios § and g rather than for absolute values of these parameters.

Similarly, the effectlveness of the contributors and the data owner towards data back-
up depends on the rate at which they are able to connect to the Internet relative to the rate

at which they fail. We thus define the ratios% and% as the effectiveness of the contributors
0

and the data owner. We will study the evolution of dependability improvement when the
effectiveness of contributors varies relative to that of the data owner. This allows us to



tel-00196822, version 1 - 13 Dec 2007

3.3. Methodology 43

study the impact of contributor ineffectiveness (leading to A > A)). For most measures,
however, we will assume that =  and A = 2.

Finally, one may question the assumption that contributorsaccept all requests, at rate
o, regardless of their amount of available resources. However, simple back-of-the-enve-
lope calculations provide evidence that this is a reasonable assumption. When the repli-
cation strategy described in Section 3.3.1.1 is used, the number of fragments (i.e., storage
requests)that a contributor may receive during the time between two consecutive Internet
connections is, on average, §. Let s be the size of a fragment: a contributor needs, on aver-

age,V = s(%) storage units to serve all these requests. If a contributor’s storage capacity, C,

is greater than V, it can effectively accept all requests; otherwise, the contributor is saturat-
ed and can no longer accept any storage request.

In other words, redefining o as the effective encounter rate (i.e., the rate of encounters
of contributors that accept storage requests), and letting y be the actual encounter rate,

we have: § = min(%, g) A realistic estimate with C = 2° (contributor storage capacity of

1GB)and s = 2"° (fragment size of 1KB) shows that contributors would only start rejecting
requests when % > 220, aratio that is beyond most realistic scenarios.

3.4. Results

This section presents and discusses the results of our analysis.

3.4.1. Overview

We first assume that contributors and owners behave identically, i.e., B, = pand A = A.
Figure 9 shows the absolute probability of data loss without MoSAIC (PL,,, as defined
earlier),and with MoSAIC, using various erasure code parameters. In the MoSAIC case, the

ad hoc-to-Internet connectivity ratio § is fixed at 100. Both with and without MoSAIC, the

probability of loss falls faster. For example, with MoSAIC, the probability of data loss falls
to zeroas % tends to infinity; however, using MoSAIC, the probability of loss falls below 0.01

with ?;6, while it requires %z 100 to reach the same value without MoSAIC.

Figure 10 shows the loss reduction factor (i.e., the data dependability improvement)
yielded by MoSAIC with a (2,1) erasure code using the replication strategy outlined in
Section 3.3.1.1. Three observations can be made from this plot.

First, as expected, the cooperative backup approach is not very relevant compared to
the reference backup approach when § = 1 (i.e., when Internet access is as frequent as ad

hoc encounters).Figure 11 shows the contour lines of LRF extracted from Figure 10: for the
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Figure 10. Loss reduction factor LRF for a (2,1) erasure code.

cooperative backup approach to offer at least an order of magnitude improvement over
the reference backup scheme, the environment must satisfy;—i >2 and% > 10.

Second, for any given %‘, LRF reaches an asymptote after a certain % threshold. Thus,

for any given connectivity ratio #increasing the infrastructure connectivity to failure rate

ratio% is only beneficial up to that threshold.

Third, the dependability improvement factor first increases proportionally to B and
then, at a certain threshold, rounds off towards an asymptote (visible on Figure 10 for
small values of % but hidden for high values due to choice of scale). Other (n,k) plots have a
similar shape.
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Figure 11. Contour map of LRF for Figure 10.

3.4.2. Asymptotic Behavior

Figure 12 shows LRF as a function of % for different values of § and different erasure
codes (again, assuming the data owner’s failure and connection rates are the same as
those of contributors). This again shows that the maximum value of LRF for any erasure
code, as ; tends to infinity, is a function of §. Using the symbolic output generated by our
evaluation tool (see Section 3.3.4), we verified the following formula for a series of codes
withn e { 2,3,4,5 } andk e { 1,2, 3} (with k < n)and postulate that it is true for all positive
values of n and k such thatn > k:

K
1+
lim | LRF, E,E)) -\ B (3.1)
e T e ()6
This equation can be simplified as follows:
( K
1+9°)
lim LRFkg,E): B (3.2)
NS r T T
B/ B 1-|E
142
B

First, it describes an asymptotic behavior, which confirms our initial numerical observa-
tion. Second, it does not depend on n. This observation provides useful insight on how to
choose the most appropriate erasure coding parameters, as we will see in Section 3.4.3.
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Figure 12. Loss reduction factor for different erasure codes.

We also computed the limiting value of LRF(n, k) as B

tends to infinity:

(3.3)

This expression shows that LRF also reaches an asymptote as § grows, and that the value

B

of this asymptote is dependent on 5.

3.4.3. Erasure Coding vs. Simple Replication

Figure 12 allows us to compare the improvement factor yielded by MoSAIC as different
erasure codes are used. The erasure codes shown on the plot all incur the same storage
cost: # = 2.In all cases, the maximum dependability improvement decreases as k increases.

This is confirmed analytically by computing the following ratio, for any p > 1such that pk

and pn are integers:
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Figure 14. Comparing LRF for different erasure codes with { = 2: projection.
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We see that R, <1 for p > 1. Thus, we conclude that, from the dependability viewpoint,
simple replication (i.e., with k = 1) is always preferable to erasure coding (i.e., with k > 1)
above a certain ;—i threshold.

Different trends can be observed for lower values of % As illustrated on Figures 12
and 13, we can numerically compare the dependability yielded by various erasure codes.
Figure 13 compares the dependability improvement yielded by several erasure codes
having the same storage cost; only the top-most erasure code (i.e., the surface with the
highest LRF) is visible from above. The (2,1) plot is above all other plots, except in a small
region where the other erasure codes (thin dashed and dotted lines) yield a higher LRF.

Figure 14, which is a projection of this 3D plot on the % and 5 plane, shows the region
where erasure codes perform better than simple replication. Each point of the plot shows
the erasure coding strategy that yields the highest LRF for the given & and % ratios. For
instance, plus signs denote situations where a (6,3) erasure code provides a higher LRF
than the two other erasure codes. We observe that simple replication (a (2,1) code) yields
better dependability than erasure coding in a large spectrum of scenarios. Erasure codes
yield a higher data dependability than simple replication in the region defined (roughly)
by §>100and 1< % < 100. However, in this region, the dependability yielded by erasure
codes is typically less than an order of magnitude higher than that yielded by simple
replication, even for the (extreme) case where% = 1000 (see Figure 12).

Interestingly, similar plots obtained for larger values of % (e.g., see Figure 15) show

that the region where erasure codes prevail tends to shift towards lower % values as {

increases. In other words, the spectrum of scenarios where erasure codes provide better
dependability than simple replication narrows as the chosen storage overhead (the #

ratio) increases.

Nevertheless, when confidentiality is an important criterion, using erasure coding
instead of simplereplicationisrelevant. Erasure coding can achieve better confidentiality
than simple replication [Deswarte et al. 1991] at the cost of a slightly lower asymptotic
dependability improvement factor. For instance, in the context of Figure 12, if the user
wants to maximize confidentiality while requiring a minimum improvement factor of 100,
a (6,3) erasure code should be chosen rather than simple replication.

3.4.4. Impact of Contributor Effectiveness

We now consider the case where contributors and owners behave differently from a
reliability viewpoint. The fact that contributors may be less reliable than the data owner
can be studied by distinguishing the owner’s Internet access and failure rates (8, and A )
from the contributor’s (B and A). Since the cooperative backup service is open to anyone
willing to participate, participants do not trust each other a priori. It may be the case that
some contributors are malicious or otherwise largely unreliable, thereby proving to be
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Figure 15. Comparing LRF for different erasure codes with § = 4: projection.
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Figure 16. Loss reduction factor as contributors become less effective.

less effective, with respect to accessing the on-line reliable store, than the data owner, as
mentioned in Section 3.3.6. We define the effectiveness of a contributor (respectively, the

data owner) as a backup agent by the ratio }% (respectively ETO). Thus, the effectiveness of a
0

contributor relative to that of the data owner can be expressed by Bﬁ#
0

Figure 16 shows LRF as a function of the contributor-to-owner effectivenessratio on
one hand, and the owner’s ad hoc to Internet connectivity ratio on the other. At theleftend
of the spectrum, where contributors are as effective or even more so than the owner itself,



tel-00196822, version 1 - 13 Dec 2007

50 Chapter 3. Analytical Evaluation of the Proposed System

MOoSAIC is very beneficial in terms of backup dependability. In this scenario, the data loss
reduction improvement is proportional to 5 up to an asymptote, as was already discussed
0

in the previous sections.

Not surprisingly, at the other end of the spectrum, the curve shows that as contrib-
utors become less effective than the data owner, LRF decreases until it becomes equiva-
lent to the non-MoSAIC case (i.e., LRF = 1). More precisely, when contributors become 100
times less effective than the owner, the loss reduction improvement factor yielded by Mo-
SAIC is less than 10. The threshold at which this occurs does not depend on the value of &,

Furthermore, Figure 16 shows that the threshold is the same for all erasure codes.
However, again, there is a small region of the plot where erasure codes are more resilient
against contributor ineffectiveness than simple replication. For this setup, the region
where erasure codes prevail over simple replication is limited to effectiveness ratios
between 0.1and 0.001 and & above 100. Wlth & = 1000, the gain provided by erasure codes

in this region is less than an order of magmtude as shown on Figure 17. Thus, for many
use cases of MoSAIC, using erasure coding instead of simple replication will not provide
appreciable improvement in the face of misbehaving contributors, from the dependability
point of view.

3.4.5. Hybrid Scattering Strategies

We augmented our model to allow the evaluation of scattering strategies where more
than one fragment is transferred during a peer encounter. We refer to them as “hybrid”
scattering strategies since they are a middle-ground between the erasure-code and sim-
ple replication strategies evaluated earlier. Doing so requires small changes to the set of
Markov chain production rules and/or to the Petri net presented in Figure 6. A new param-
eter, t,denotes the number of fragments transferred per contributor encounter. Scenarios
presented earlier correspond to ¢ = 1. When n mod ¢ is non-zero, the last contributor en-
countered is passed only n mod ¢ fragments instead of f; likewise, if this last-encountered
contributor fails (respectively,accessed the Internet), then only n mod ¢ fragments are lost
(respectively, saved). Figure 18 illustrates these situations with a (5,3) code and ¢ = 2: from
the “alive(0) 5/0” state, either the last contributor fails (leading to state “alive(0) 4/0”) or
one of the other two contributors fails (leading to state “alive(0) 3/0”), likewise for Internet
access.

Figure 19 shows the impact of sending more than one fragment per connection on
LRF. Not surprisingly, (6,3) with # = 3 and (2,1) with 7 = 1 yield the same LRF curve: this
is because both yield the exact same Markov chain, the only difference being that all
fragment counts are multiplied by 3 in the former case.

Additionally, (6,3) with7 = 2 that is “in between” (2,1) and (6,3) with 7 = 1. Thisresult is
quite intuitive: (6,3) with z = 2 yields less fragment dissemination than (6,3) with 7 = 1but



tel-00196822, version 1 - 13 Dec 2007

3.4. Results 51

1000

N "EC (6,3), a/By=1000, By/Ag=100 ——
F——x EC (4,2), a/By=1000, B/X =100 —— —
o I~ EC(2,1), a/By=1000, Bo/ko-100 -
g .
g 100 1
[$}
&
o
kel
©
3
19 10 | 1
]
o
-
1 - - =

1 0.1 0.01 0.001
Contributor relative effectiveness ((B/A)/(Bg/Aq))
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Figure 18. Excerpt from a Markov chain model for a (5,3) erasure code with # =2 (two fragments
transferred per contributor encounter). Dashed arrows denote failures.

more than (2,1) with r = 1 and, as seen in Section 3.4.3, more dissemination yields a lower
LRF.

3.5. Related Work

Erasure codes have been widely used in (distributed) storage systems, but fewer works fo-
cus on a dependability assessment of erasure-code-based systems. In the area of Internet-
based peer-to-peer backup and distributed storage, at least the Cooperative Internet Back-
up Scheme [Lillibridge et al. 2003], BAR-B [Aiyer et al. 2005], iDIBS [Morcos et al. 2006],
OceanStore [Kubiatowiczet al. 2000]and InterMemory [Goldberg & Yianilos 1998] resort to
erasure coding. The remainder of thissection focuses on work related to the assessment of
the dependability impact of erasure coding.
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Figure 19. Data availability improvement with hybrid scattering strategies.

3.5.1. Erasure Codes in Distributed Storage Systems

In the context of MANETS, the Master report by Aspelund studies through simulation the

distance-to-backup (in terms of number of hops) in the framework of a purely ad hoc coop-
erative backup service [Aspelund 2005] (see Section 2.4 for additional details). In this con-
text, where absolutely no fixed infrastructure is considered accessible, one of the primary

concerns is to minimize the distance between data owners and contributors. In the frame-
work of the 7DS cooperative caching system for mobile devices, the authors studied how

user mobility patterns affect the spread of information [Papadopouli & Schulzrinne 2000].
Again, we do not share this concern.

Several papers analyze data dependability in distributed and peer-to-peer storage sys-
tems. The authors of OceanStore conducted an analytical evaluation of the MTTF (mean
time to failure) of a distributed, self-repairing storage system [Weatherspoon & Kubiatow-
icz 2002]. They conclude that erasure codes yield MTTF orders of magnitude higher than
simple replication; however, their computations are based on probability distributions of
hard disk failures, which may be quite different from that of individual untrusted peers
on the Internet. Another paper about OceanStore makes a similar analysis: assuming that
10% out of all the nodes contributing to OceanStore are down at a given point in time, the
fragmentation resulting from erasure coding increases reliability [Kubiatowicz et al. 2000].
Again, the assumptions that underlie this analysis are fairly optimistic and significantly
different from ours: it is unlikely, in the scenarios we focus on, that 90% of all contributors
storing data on behalf of a data owner may be reached by this data owner.

A similar comparison for peer-to-peer storage is proposed in [Vernois & Utard 2004],
using a stochastic model. They conclude on the unsuitability of erasure codes in a peer-
to-peer environment where peer availability is low. The major difference between these
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studies and what we present here is that the authors model a data block repair process that
is inexistent in the context of a mostly-disconnected peer-to-peer backup system, notably
because data owners cannot be made aware of contributor failures.

In [Lin et al. 2004], the authors analyze erasure code replication and compare the
resulting data availability as a function of individual host availability (assuming each host
stores exactly one fragment of the original data) and erasure code parameters (n,k). They
identify a “switch point” between scenarios where erasure coding is preferable (from a
data availability viewpoint) and scenarios where simple replication should be used. More
precisely, they conclude that simple replication yields better data availability when host
availability is low.

Our results comparing erasure codes and simple replication in terms of dependability
are in agreement with those obtained on simpler models [Lin et al. 2004, Vernois & Utard
2004, Bhagwan et al. 2004]. We observe a switch point similar to that of [Lin et al. 2004]. For
instance, in our model, whether erasure codes yield better data dependability than simple
replication depends ong and ;% (see, e.g., Figure 13).

Building on a similar analysis, TotalRecall [Bhagwan et al. 2004], a peer-to-peer storage
system, proposes mechanisms to automate availability management, which includes dy-
namic parameterization of erasure coding replication based on predicted host availability.
However, the authors do not consider the use of erasure codes as a means to improve data
confidentiality [Deswarte et al. 1991]. Additionally, the mobile environment we are address-
ing leads to a wider range of scenarios (and connectivity). A dynamic replication strategy
for peer-to-peer cooperative data storage among untrusted nodes is also presented in [Ran-
ganathan et al. 2002], though they do not consider the use of erasure codes.

Our partners within the MoSAIC project at IRISA have taken an approach that is
complementary to ours. They provide formule that may be used for on-line assessment
of the impact of the distribution of a single fragment on the overall data availability
[Martin-Guillerez 2006). Assuming the probability of successfully restoring individual
fragments can be estimated, these formulae may be used as a hint by the backup software
to improve replica scheduling.

3.5.2. Erasure Codes in Delay-Tolerant Networks

Erasure codes have also been considered in the framework of delay-tolerant networks
[Zhang 2006]. While flooding-based routing approaches provide the lowest delay and
highest message delivery success rate at the cost of high bandwidth requirements, other
routing strategies have been proposed that try to optimize bandwidth usage, delivery
delay and successrate. In[Wanget al. 2005a], the authors discuss the use of erasure-coding
based routing in DTNs whereby:

«  the source messages are erasure-encoded;
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«  only the source of a message propagates fragments of the source message;

«  relay nodes are allowed to send only to the destination.

This two-hop routing algorithm is similar to those we studied in this chapter. The authors
compare through simulation this routing approach to a simple-replication approach
according to several metrics: data success rate (probability that the message is delivered
within a given amount of time), data latency, and routing overhead. They identify a
tradeoff in terms of latency where: erasure coding yields lower worst case delay than
simple replication, but provides lower data success rates for short deadlines.

The authors of [Jain et al. 2005] show that designing an optimal routing strategy is
essentially a problem of optimizing data allocation among different possible paths. They
note that optimizing both delay and delivery success rate is an NP-hard problem. Several
allocation strategies with the same storage overhead are compared through simulation in
different scenarios. Fragmentation (e.g., as a consequence of erasure coding) is shown to
have a detrimental effect on message delivery success rate when individual path success
probabilitiesare low (and all paths have the same success probability); conversely, fragmen-
tation increases message delivery success probability when path success probabilities are
higher. Thisis consistent with our results as well as those found in [Lin et al. 2004]. Addition-
ally, simulation setups with heterogeneous path success probabilities allow the evaluation
of routing strategies that use path probabilities as an input.

Similarly,Liaoetal. studied the benefitsof erasure coding in estimation-based routing
for DTNs [Liao et al. 2006]. The idea is to have each source node estimate the average contact
frequency (ACF) of each relay (or “contributor”); then, a source node distributes fragments
of its message proportionally to the node’s ACF (this is similar to one of the strategies eval-
uated in [Jain et al. 2005]). Simulation results show that estimation-based erasure coding
routing (EBEC) performs better than estimation-based routing (EBRS) under the simulated
scenario. However, only a narrow set of simulation parameters are considered, making it
hard to compare the results to related work.

Finally, network coding was proposed as an alternative encoding mechanism for DTN
routing [Widmer & Boudec 2005]. Using network coding, relay nodes may send out packets
that are linear combinations of previously received information [Widmer & Boudec 2005].
Simulations show that network-coding-based probabilistic routing achieves higher mes-
sage delivery rates than simple probabilistic routing for a given packet forwarding factor
(i.e., bandwidth overhead). However, this strategy assumes multi-hop routing, which de-
parts from our two-hop approach.

3.6. Summary

The contributions of this chapter are as follows:
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+ A model of the cooperative backup process based on Petri nets and Markov
chains was proposed, along with a methodology for the dependability evaluation
of the cooperative backup service.

¢ The dependability evaluation allowed the identification of scenarios where the
cooperative backup approach is beneficial. Namely, we showed that the coopera-
tive backup approach is beneficial (i.e., yields data dependability an order of mag-
nitude higher than without MoSAIC) only when g >2 and% > 10.

«  Wedemonstrated that MoSAIC can decrease the probability of dataloss by a factor
up to the ad hoc to Internet connectivity ratio.

+  The cooperative backup approach was shown to not improve data dependability
when contributors are more than 100 times less effective than data owners. This
result will have to be taken into account in the design of cooperation incentive
and trust mechanisms (see Chapters 5 and 6).

¢ A comparison of simple replication and erasure codes and showed that erasure
codes provide an advantage (dependability-wise) over simple replication only in
narrow scenarios. Measurements of actual use cases are needed in order to see
what real-world situations these scenarios map to.

Based on our results, several replication strategies can be envisioned. One possible
strategy would be to maximize data dependability for a given user-specified storage over-
head. Since in most scenarios little can be gained from using erasure codes, and since the
consequence of a wrong decision would be detrimental to data dependability (e.g., choos-
ing erasure coding in a scenario where simple replication would have been more benefi-
cial), the best way to maximize data dependability is to always use simple replication.

Instead of focusingonly on dependability,users may specify additional fragmentation
to increase confidentiality [Deswarte et al. 1991]. Such a strategy could maximize fragmen-
tation (i.e., by choosing a high k value) according to environmental parameters, while hon-
oring a user-specified minimumdependability improvement factor. Environmental param-
eters, such as the data owner’s failure rate, and Internet and ad hoc connectivity rates, as
well as the effectiveness of encountered contributors, could be estimated based on past
observations, perhaps augmented by user input.
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In this chapter, we focus on the mechanisms employed at the storage layer of our
cooperative backup service. We identify fundamental requirements, investigate the
various design options that satisfy them at this layer and discuss potential tradeoffs.

In Section 4.1, we detail the requirements of the cooperative backup service storage
layer. Section 4.2 presents several design options for this layer based on the current
literature and the particular needs that arise from the kind of devices we target. Section
4.3 gives an overview of our prototype storage layer implementation. Section 4.4 presents
an evaluation of various storage layer algorithms using that prototype and discusses the
necessary tradeoffs.

Part of the proposed design and experimental results shown in this chapter were
published in [Courtes et al. 2006].

4.1. Requirements of the Storage Layer

In Chapter 2, we identified a number of high-level dependability goals for the envisioned co-
operative backup service, along with lower-level requirements stemming from the wireless
ad hoc backup process. Dependability goalsincluded tackling threatsto confidentiality and
privacy, to integrity and authenticity, and to availability. Lower-level constraintsincluded
the ability to deal with data fragmentation and to provide energy- and storage-efficient
backuptechniques. Inthissection, we further detailsthe requirementsfor the mechanisms
employed at the storage layer.

Storage efficiency. Backing up data should be as efficient as possible. Data owners
should neither ask contributors to store more data than necessary nor send excessive data
over the wireless interface. Failing to do so will waste energy and result in inefficient uti-
lization of the storage resources available in the node’s vicinity. Inefficient storage may
have a strong impact on energy consumption since (i) storage costs translate into trans-
mission costs and (ii) energy consumption on mobile devices is dominated by wireless com-
munication costs, which in turn increase as more data are transferred [Stemm et al. 1997].
Compression techniques are thus a key aspect of the storage layer on the data owner side.

Small data blocks. Both the occurrence of encounters of a peer within radio
range and the lifetime of the resulting connections are unpredictable. Consequently, the
backup application running on a data owner’s device must be able to conveniently split
the data to be backed up into small pieces to ensure that it can actually be transferred to
contributors. Ideally, data blocks should be able to fit within the underlying link layer’s

57
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maximum transmission unit or MTU (2304 octets for IEEE 802.11); larger payloads get
fragmented into several packets, which introduces overhead at the MAC layer, and possibly
at the transport layer too.

Backup atomicity. Unpredictability and the potentially short lifetime of connec-
tions, compounded with the possible use of differential compression to save storage re-
sources, mean that it is impractical to store a set of files, or even one complete file, on a sin-
gle peer. Indeed, it may even be undesirableto dosoin order to protect data confidentiality
[Deswarte et al. 1991]. Furthermore, it may be the case that files are modified before their
previous version has been completely backed up.

The dissemination of data chunks as well as the coexistence of several versions of
a file must not affect backup consistency as perceived by the end-user: a file should be
either retrievable and correct, or unavailable. Likewise, the distributed store that consists
of various contributors must remain in a “legal” state after new data are backed up onto
it. This corresponds to the atomicity and consistency properties of the ACID properties
commonly referred to in transactional database management systems.

Error detection. Accidental modifications of the data are assumed to be handled
by the various lower-level software and hardware components involved, such as the
communication protocol stack, the storage devices themselves, the operating system’s
file system implementation, etc. However, given that data owners are to hand their data
to untrusted peers, the storage layer must provide mechanisms to ensure that malicious
modifications to their data are detected with a high probability.

Encryption. Due to the lack of trust in contributors, data owners may wish to
encrypt their data to ensure privacy. While there exist scenarios where there is sufficient
trust among the participants such that encryption is not compulsory (e.g., several people
in the same working group), encryption is a requirement in the general case.

Backup redundancy. Redundancy is the raison d’étre of any data backup system,
but when the system is based on cooperation, the backups themselves must be made redun-
dant. First, the cooperative backup software must account for the fact that contributors
may crash accidently. Second, contributor availability is unpredictable in a mobile envi-
ronment without continuous Internet access. Third, contributors are not fully trusted
and may behave maliciously. Indeed, the literature on Internet-based peer-to-peer backup
systems describes a range of attacks against data availability, ranging from data retention
(i.e., a contributor purposefully refuses to allow a data owner to retrieve its data) to self-
ishness (i.e., a participant refuses to spend energy and storage resources storing data on
behalf of other nodes) [Lillibridge et al. 2003, Cox et al. 2002, Cox & Noble 2003]. All these
uncertainties make redundancy even more critical in a cooperative backup service for mo-
bile devices.
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4.2. Design Options for the Storage Layer

In this section, we present design options able to satisfy each of the requirements
identified for above.

4.2.1. Storage Efficiency

Inwired distributed cooperative services, storage efficiency is often addressed by ensuring
that a given content is only stored once. This property is known as single-instance storage
[Bolosky et al. 2000]. It can be thought of as a form of compression among several data
units. In a file system, where the “data unit” is the file, this means that a given content
stored under different file names will be stored only once. On Unix-like systems, revision
control and backup tools implement this property by using hard links [Lord 2005, Rubel
2005].1t may also be provided at a sub-file granularity, instead of at a whole file level, allow-

ing reduction of unnecessary duplication with a finer-grain.

Archival systems [Quinlan & Dorward 2002, You et al. 2005], peer-to-peer file sharing
systems [Bennett et al. 2002], peer-to-peer backup systems [Cox et al. 2002, Landers et
al. 2004], network file systems [Muthitacharoen et al. 2001], and remote synchronization
tools [Tridgell & Mackerras 1996] have been demonstrated to benefit from single-instance
storage, either by improving storage efficiency or reducing bandwidth. Interestingly,
functional programming languages such as Scheme [Kelsey et al. 1998] have used a similar
technique for immutable objects, referring to it as interning or hash-consing [Ershov 1958]:
upon object (e.g., string, pair) construction, an object structurally equivalent to the one
being created is looked up in a hash table and returned instead of being re-created. Again,
this allows for memory savings.

Compression based on resemblance detection, that is, differential compression, or delta
encoding, has been extensively studied [Hunt et al. 1996]. Proposals have been made to
combine it with other compression techniques such as single-instance storage, even in
situations that do not strictly relate to versioning [You & Karamanolis 2004, You et al.
2005, Kulkarni et al. 2004]. For each file to be stored, an exhaustive search over all stored
files is performed to find the most similar file so that only the difference between these
two files is stored. However, this technique is unsuitable for our environment since (i) it
requires access to all the files already stored, (ii) it is CPU- and memory-intensive, and (iii)
the resulting delta chains weaken data availability [You et al. 2005].

Traditional lossless compression (i.e., zip variants), allows the elimination of duplication
within single files. As such, it naturally complements inter-file and inter-version compres-
sion techniques [You et al. 2005]. Section 4.4 contains a discussion of the combination of
both techniques in the framework of our proposed backup service. Lossless compressors
usually yield better compression when operating on large input streams [Kulkarni et al.
2004] so compressing concatenated files rather than individual files improves storage ef-
ficiency [You et al. 2005]. However, we did not consider this approach suitable for mobile

single-instance
storage

differential
compression

lossless
compression
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device backup since it may be more efficient to backup only those files (or part of files) that
have changed.

There exist a number of application-specific compression algorithms, such as the
lossless algorithms used by the Free Lossless Audio Codec (FLAC), the PNG image format, and
the XMill XML compressor [Liefke & Suciu 2000]. More generally, XMill introduced type-
driven compression, where information about the type and structure of the data being com-
pressed is leveraged to improve compression. There is also a plethora of lossy compression
algorithms for audio samples, images, videos, etc. While using such application-specific
algorithms might be beneficial in some cases, we have focused instead on generic lossless
compression.

4.2.2. Small Data Blocks

We now consider the options available to: (1) chop input streams into small blocks, and (2)
create appropriate meta-data describing how those data blocks should be reassembled to
produce the original stream.

4.2.2.1. Chopping Algorithms

As stated in Section 4.1, the size of blocks that are to be sent to contributors of the backup
service has to be bounded, and preferably small, to match the nature of peer interactions
in a mobile environment. There are several ways to cut input streams into blocks. Which
algorithm is chosen has an impact on the improvement yielded by single-instance storage
applied at the block level.

Splitting input streams into fixed-size blocks is a natural solution. When used in con-
junction with a single-instance storage mechanism, it has been shown to improve the com-
pression across files or across file versions [Quinlan & Dorward 2002]. Manber proposed
an alternative content-based stream chopping algorithm [Manber 1994] that yields better du-
plication detection across files, a technique sometimes referred to as content-defined blocks
[Kulkarni et al. 2004]. The algorithm determinesblock boundaries by computing Rabin fin-
gerprints on a sliding window of the input streams. Thus, it only allows the specification
of an average block size (assuming random input). Various applications such as archival
systems [You et al. 2005], network file systems [Muthitacharoen et al. 2001] and backup
systems [Cox et al. 2002] benefit from this algorithm. Section 4.4 providesa comparison of
both algorithms.

4.2.2.2, Stream Meta-Data

Placement of stream meta-data. Stream meta-data is information that describes
which blocks comprise the stream and how they should be reassembled to produce the
original stream. Such meta-data can either be embedded along with each data block
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or stored separately. The main evaluation criteria of a meta-data structure are read
efficiency (e.g., algorithmic complexity of stream retrieval, number of accesses needed)
and size (e.g., how the amount of meta-data grows compared to data).

We suggest a more flexible approach whereby stream meta-data (i.e., which blocks
comprise a stream) is separated both from file meta-data (i.e., file name, permissions,
etc.) and the file content. This has several advantages. First, it allows a data block to be
referenced multiple times and hence allows for single-instance storage at the block level,
as was already evidenced in earlier work on versioning such as CVFS [Soules et al. 2003].
Second, it promotes separation of concerns. For instance, file-level meta-data (e.g., file path,
modification time, permissions) may change without having to modify the underlying data
blocks, which is important in scenarios where propagating such updates would be next to
impossible. Separating meta-data and data also leaves the possibility of applying the same

“filters” (e.g., compression, encryption), or to use similar redundancy techniques for both

data and meta-data blocks. This will beillustrated in Section 4.4. This approach is different
from the one used in Hydra [Xu 2005], which separates meta-data from data and does not
permit, for instance, the application of the same redundancy technique on meta-data ason
data. However, it is comparable to OpenCM’s approach [Shapiro & Vanderburgh 2002].

Indexing individual blocks. The separation of data and meta-data means that
there must be a way for meta-data blocks to refer to data blocks: data blocks must be in-
dexed or named'. The block naming scheme must fulfill several requirements. First, it must
not be based on non-backed-up user state which would be lost during a crash. Most im-
portantly, the block naming scheme must guarantee that name clashes among the blocks
of a data owner cannot occur. In particular, block IDs must remain valid in time so that a
given block ID is not wrongfully re-used when a device restarts the backup software after a
crash. Given that data blocks will be disseminated among several peers and will ultimately
migrate to their owner’s repository, blocks IDs should remain valid in space, that is, they
should be independent of contributor names. This property also allows for pre-computation
of block IDs and meta-data blocks: stream chopping and indexing do not need to be done
upon a contributor encounter, but can be performed a priori, once for all. This saves CPU
time and energy, and allows data owners to immediately take advantage of a backup oppor-
tunity. A practical naming scheme widely used in the literature will be discussed in Section
4.2.4.

Indexing sequences of blocks. Byte streams (file contents) can be thought of
as sequences of blocks. Meta-data describing the list of blocks comprising a byte stream
need to be produced and stored. In their simplest form, such meta-data are a vector of
block IDs, or in other words, a byte stream. This means that this byte stream can in turn
be indexed, recursively, until a meta-data byte stream is produced that fits the block size
constraints, as illustrated in Figure 20. This approach yields the data structure shown
in Figure 21, where leaves D, represent data blocks, while /; blocks are intermediary

” o«

! In the sequel we use the terms “block ID”, “name”, and “key” interchangeably.

block naming
scheme
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[ -~ 9 —! meta-data blocks |
| input stream —( )—»| fragmentation “—--zzzzzziiz: ’

Figure 20. Data flow leading to the production of a series of blocks and meta-data blocks from an
input data stream.

Figure 21. A tree structure for versioned stream meta-data.

meta-data blocks and roots R, are root meta-data blocks. It is comparable to that used by
Venti and GNUnet [Quinlan & Dorward 2002, Bennett et al. 2002].

Contributor interface. With such a design, contributors do not need to know
about the actual implementation of block and stream indexing used by their clients,
nor do they need to be aware of the data/meta-data distinction. All they need to do is to
provide primitives of a keyed block storage:

« put (key, data) storesthedatablock dataand associatesit withkey,ablock
ID chosen by the data owner according to some naming scheme;

« get (key) returnsthe data associated with key.

This simple interface suffices to implement, on the data owner side, byte stream indexing

andretrieval. Also,itissuitable for an environmentin which contributorsand data owners

are mutually suspiciousbecause it places aslittle burden as possible on the contributor side.
The same approach was adopted by Venti [Quinlan & Dorward 2002] and by many peer-to-
peer systems [Bennett et al. 2002, Cox et al. 2002].

4.2.3. Backup Atomicity

Distributed and mobile file systems such as Coda [Lee et al. 1999]which support concurrent
read-write access to data and do not have built-in support for revision control, differ sig-
nificantly from backup systems. Namely, they are concerned about update propagation
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and reconciliation in the presence of concurrent updates. Not surprisingly, a read-write

approach doesnot adapt well to the loosely connected scenarioswe are targeting: data own-
ers are not guaranteed to meet every contributor storing data on their behalf in a timely

fashion when they need to update already backed-up data, which makes update propaga-
tion almost impossible. Additionally, it does not offer the desired atomicity requirement

discussed in Section 4.1.

The write once or append only semantics adopted by archival [Quinlan & Dorward 2002,
Goldberg & Yianilos 1998], backup [Cox et al. 2002, Rubel 2005] and versioning systems
[Santry et al. 1999, Lord 2005, Shapiro & Vanderburgh 2002] solve these problems. Data
is always appended to the storage system, and never modified in place. This approach has
long been acknowledged as preferable over in-place modification, as it is consistent with

“good accounting practices” where entries are always added rather than modified [Gray
1981].In practice, thisis achieved by assigning each piece of data a uniqueidentifier. There-
fore, insertion of content (i.e., data blocks) into the storage space (be it a peer machine, a
local file system or data repository) is atomic. Because data is only added, never modified,
consistency is also guaranteed: insertion of a block cannot result in an inconsistent state
of the storage space.

A potential concern with this approach is its cost in terms of storage resources. It
has been argued, however, that the cost of storing subsequent revisions of whole sets of
files can be very low, provided data that is unchanged across revisions is not duplicated,
as described earlier [Santry et al. 1999, Gibson & Miller 1998, Quinlan & Dorward 2002].
In our case, once a contributor has finally transferred data to their owner’s repository,
it may reclaim the corresponding storage resources, which further limits the cost of
this approach.

From an end-user viewpoint, being able to restore an old copy of a file is more
valuable than being unable torestorethefileat all. Allthese reasons make theappend-only
approach very suitable for the storage layer of our cooperative backup service.

4.2.4. Error Detection

Error-detecting codes can be computed either at the level of whole input streams or at
the level of data blocks. They must then be part of, respectively, the stream meta-data,
or the block meta-data. We argue the case for cryptographic hash functions as a means of
providing the required error detection and as a block-level indexing scheme.
Cryptographic hash functions. The error-detecting code we use must be able
to detect malicious modifications. This makes error-detecting codes designed to tolerate
random, accidental faults inappropriate. We must instead use cryptographic hash functions
, which are explicitly designed to detect tampering [NESSIE Consortium 2003a, NESSIE
Consortium 2003b]. Such hash functions are usually characterized by three properties.
First, cryptographic hash functions are collision-resistant, meaning that it should be hard
to find two random input data that yield the same hash (i.e., there should be no method

write once

cryptographic
hash functions
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significantly more efficient than an exhaustive search). Second, they are preimage-resistant
meaning that, given a hash, it should be computationally very expensive to find input data
that yields it. Third, they are second-preimage-resistant, which means that given an input
data block and its hash, it should be computationally difficult to find a second input data
block yielding the same hash.

Along with integrity, authenticity of the data must also be guaranteed, otherwise a
malicious contributor could deceive a data owner by producing fake data blocks along
with valid cryptographic hashes? Thus, digital signatures should be used to guarantee the
authenticity of the datablocks. Fortunately,not all blocksneed tobe signed: signinga root
meta-data block (as shown in Figure 21) is sufficient. This is similar to the approach taken
by OpenCM [Shapiro & Vanderburgh 2002].

Content-based indexing. Collision-resistant hash functions have been assumed
to meet the requirements of a data block naming scheme as defined in Section 4.2.2.2, and
to be a tool allowing for efficient implementations of single-instance storage [Tridgell
& Mackerras 1996, Cox et al. 2002, Muthitacharoen et al. 2001, You et al. 2005, Quinlan &
Dorward 2002, Tolia et al. 2003, Landers et al. 2004]. In practice, these implementations
assume that whenever two data blocks yield the same cryptographic hash value, their
contents are identical. Given this assumption, implementation of a single-instance store
is straightforward: a block only needs to be stored if its hash value was not found in the
locally maintained block hash table.

In [Henson 2003], Henson argues that accidental collisions, although extremely rare,
do have a slight negative impact on software reliability and yield silent errors. Given an
n-bit hash output produced by a cryptographic hash function, the expected workload to
generate a collision out of two random inputs is of the order of 2"/2 [NESSIE Consortium
2003a]. As an example, SHA-1, which produces 160-bit hashes, would require 2* blocks to
be generated on average before an accidental collision occurs. In our case, if a data owner
is to store, say, 8 GiB of data in the form of 1 KiB blocks, we end up with 2 blocks, which
makes it unlikely that an accidental collision is hit.

We consider this to be reasonable in our application since it does not impede the
tolerance of faults in any significant way. Also, Henson’s fear of malicious collisions does
not hold given the preimage-resistance property provided by the commonly-used hash
functions’. Furthermore, it has been reported that most of Henson'’s examples in support
of the idea that cryptographic hashes cannot be treated as unique identifiers for blocks of
data are based on incorrect assumptions, misunderstandings, and questionable examples
[Black 2006].

? Note, however, that while producing random data blocks and their hashes is easy, producing the corresponding
meta-data blocks is next to impossible without knowing what particular meta-data schema is used by the
data owner.

* The recent attacks found on SHA-1by Wang et al. [Wang et al. 2005b] do not affect the preimage-resistance of
this function.
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Content-addressable storage (CAS) thus seems a viable option for our storage layer as
it fulfills both the error-detection and data block naming requirements. In [Tolia et al
2003], the authors assume a block ID space shared across all CAS users and providers. In
our scenario, CAS providers (contributors) do not trust their clients (data owners) so they
need either to enforce the block naming scheme (i.e., make sure that the ID of each block
is indeed the hash value of its content), or to maintain a per-owner name space.

Combining the tree meta-data structure as shown in 21 with content-addressable
storage through cryptographic hash functions effectively yields a so-called Merkle hash
tree [Merkle 1980]. This data structure has the interesting property that if the tree root has
been authenticated, then intermediate nodes and leaves (data blocks) can be considered
genuine, too, as already mentioned above.

4.2.5. Encryption

Data encryption may be performed either at the level of individual blocks, or at the level
of input streams. Encrypting the input stream before it is split into smaller blocks breaks
the single-instance storage property at the level of individual blocks. This is because
encryption aims to ensure that the encrypted output of two similar input streams will not
be correlated.

Leaving input streams unencrypted and encrypting individual blocks yielded by the
chopping algorithm does not have this disadvantage. More precisely, it preserves single-
instance storage at the level of blocks at least locally, i.e., on the data owner side. If asym-
metric ciphering algorithms are used, the single-instance storage property is no longer
ensured across peers, since each peer encrypts data with its own private key. However, we
donot consider this to be a major drawback for the majority of scenarios considered, since
little or no data are common to several participants. Moreover, solutions to this problem
exist, notably convergent encryption [Cox et al. 2002].

In Chapter 5, we elaborate on practical encryption schemes and discuss their
integration with other security mechanisms.

4.2.6. Backup Redundancy

Replication strategies. Redundancy management in the context of our collaborative
backup service for mobile devices introduces a number of new challenges. Peer-to-peer
file sharing systems are not a good source of inspiration in this respect given that they
rely on redundancy primarily as a means of reducing access time to popular content
[Ranganathan et al. 2002].

In Chapter 3, we considered the use of erasure codes as a means to introduce data
redundancy. Should erasure codes be used, they could be applied either to the input data
stream, or at the block-level, regardless of whether blocks are data or meta-data blocks.
When applied at the block-level, erasure coding could be handled through a slight block

Content-addressable
storage
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convergent
encryption
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naming change: erasure-coding a block yields n coded blocks, which must each have a
different name, but it should be easy to derive their name from the original block name.
The names of the erasure-coded blocks could be derived from that of the original block,
e.g.,by appending a sequence number. In this way, the recovery process could easily query
erasure-coded blocks by just appending a correct prefix to the original block name. For
instance, assuming a block named a yields coded blocks a,, a, and a,, out of which any 2
coded blocks suffice to recover the original block, then the recovery process, when asked
for a,wouldjust try to fetch a;, then a,, etc., until 2 of these coded blocks have been fetched.
However, we concluded in Chapter 3 that few scenarios would benefit from such uses of
erasure coding, since they increase fragmentation, which in turn slightly increases the
probability of data loss in most scenarios (Section 3.4.3).

Nevertheless, erasure coding may be beneficial in terms of data dependability when
applied to the entire input data stream, in lieu of one of the chopping algorithmsdiscussed
earlier, as mentioned in [Jain et al. 2005]. Indeed, several strategies with the same storage
overhead and the same number of blocks (i.e., strategies that do not increase fragmenta-
tion) can be found by changing both the chopping and erasure coding parameters. Figure
22 shows the possible strategies with a storage overhead of 2 and 16 blocks to distribute*;
the first strategy does not chop its input stream but directly applies a (16,8) erasure code,
the second strategy chopsits input stream into 2 blocks and applies an (8,4) erasure code to
each block, and so on.

For each strategy shown in Figure 22, only 8 blocks need to be fetched to recover the
original data. However, with the first strategy, any 8 blocks out of 16 must be recovered,
whereas with the last strategy, exactly one copy of each of the 8 input blocks must be
fetched. This makes a significant difference in the number of possibilities by which the
input data can be recovered, as shown in the third column of Figure 22. This would make
the first strategy the best one from a dependability viewpoint. The key insight here is that
erasure coding provides better dependability when applied at the level of “logical data
units” (e.g., whole files), rather than on a subset thereof (e.g., fraction of a file).

This analysis differs from our comparison of erasure codes and simple replication in
Section 3.4.3 in that (i) the comparison did not consider data chopping (which is equivalent
to saying that the number of input blocks was always 1), and (ii) only the storage overhead,
i.e.,?, was fixed. Here, we further constrain our comparison by fixing the total number of
blocks to distribute, i.e., n times the number of input blocks. Our Petri net model (see Chap-
ter 3) could be extended to handle chopping and allow for a more detailed comparison.

Erasure coding thus appears to be a valid option both as an input stream chopping and
redundancy mechanism. However, doing so would require erasure coding algorithms that
provide the necessary flexibility on the n and k parameters. The meta-data may itself be

* For simplicity, we do not consider meta-data blocks here.
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Number of Input Blocks  Erasure Code Recovery Possibilities
1
1 (16,8) (12) = 12870
2
2 (8,4) (8) = 4900
4
4
4 (4,2) (4) = 1296
2
8
8 (2,1) (%) — 256

Figure 22. Comparison of erasure coding and regular chopping and redundancy mechanisms.

erasure-coded in a similar way, until the size of an individual meta-data fragment is small
enough, as illustrated in Figure 20.

On the other hand, using erasure coding on input data streams precludes a number
of storage optimizations previously discussed, such as sharing of data common to several
revisions of a file. For immutable input streams (e.g., audio/video files), this is not a
problem. It might degrade storage efficiency for, e.g., versioned textual files. Which
chopping and redundancy strategy is the best to each type of file is an open issue.

Replica scheduling and dissemination. As stated in Section 4.1, it is plausible
that a file will be only partly backed up when a newer version of this file enters the backup
creation pipeline. One could argue that the replica scheduler should finish distributing
the data blocks from the old version that it started to distribute before distributing those
of the new version. This policy would guarantee, at least, availability of the old version of
the file. On the other hand, in certain scenarios, users might want to favor freshness over
availability, i.e., they might request that newer blocks are scheduled first for replication
(Section 6.3.1 further discusses such issues).

This clearly illustrates that a wide range of replica scheduling and dissemination policies
and corresponding algorithms can be defended depending on the scenario considered. At
the core of a given replica scheduling and dissemination algorithm is a dispersal function
that decides on a level of dispersal for any given data block. The level of dispersal can
evolve dynamically to account for several changing factors. In FlashBack [Loo et al. 2003],
the authors identify a number of important factors that they use to define a device utility
function. Those factors include locality (i.e., the likelihood of encountering a given device
again later) as well as power and storage resources of the device.

In addition to those factors, our backup software needs to account for the current
level of trust in the contributor at hand. If a data owner fully trusts a contributor, e.g.,
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because it has proven to be well-behaved over a given period of time, the data owner may
choose to store complete replicas (i.e., mirrors) on this contributor.

4.3. Implementation Overview

We have implemented a prototype of the storage layer discussed above. As this layer is
performance-critical, we implemented it in C. The resulting library, libchop, consists of
10 k source lines of code. The library was designed in order to be flexible so that different
techniques could be combined and evaluated. To that end, the library itself consists of a
few well-defined interfaces.

The following section presents the data flow during the storage process through
libchop’s storage pipeline. We then discuss the data retrieval process as well as support for
distributed storage. Note that additional information is available in Appendix .

4.3.1. Storage Pipeline

Figure 23 shows a UML class diagram of the main libchop components, while Figure 24 infor-
mally illustrates the data flow through libchop’s main components during the storage pro-
cess. Each box represents a programming interface of the library. Several implementations
are available for each interface, as shown in Figure 23, which allowed us to conduct the ex-
perimentstobe described in Section 4.4. The library itself is not concerned with the backup
of file system-related meta-data such as file paths, permissions, etc. Implementing this is
left to higher-level layers akin to OpenCM’s schemas [Shapiro & Vanderburgh 2002], which
will be discussed in Chapter 6.

Input data streams such as file contents are represented by the stream interface.
The chopper interface defines a layer over input streams from which entire, successive
blocks can be fetched. Three classes implement this interface: one that yields fixed-size
blocks, one that yields variable-size blocks according to Manber’s algorithm [Manber
1994], and another that returns the whole input stream as a single block (i.e., it does not
chop the input stream). Note that we did not implement erasure coding as suggested in
Section 4.2.6.

The block_indexer interface provides a method that, given a data block, stores
it into some block store and returns an index. An index is an opaque object that can be
serialized either in a compact binary form or in a printable ASCII form. That index objects
are opaque guarantees that users of a block indexer implementation can transparently
adapt to any other implementation. There are currently two implementations of the
block_indexer interfaces that do not guarantee single-instance storage:

the stateless uuid block indexer, which uses globally unique block identifiers
(per RFC 4122 specifications), using 1ibuuid,
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Figure 23. UML class diagram of libchop.
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Figure 24. Data flow in the libchop backup creation pipeline.

+ the integer block indexer, which uses 32-bit integers as block identifiers,
starting from zero and incrementing each a block is indexed.

In addition, two stateless block indexers that guarantee single-storage instance are
available:

«  the hash block indexer, which uses the cryptographic hash of a block as its
identifier, using SHA-1 or other algorithms;

+  the chk block indexer, which implements content-hash keys (CHK) as used in  content-hash
Freenet [Clarke et al. 2001] and GNUnet [Bennett et al. 2002] (see Section 5.2). keys

Unless otherwise stated, the experiments presented in Section 4.4 use either the integer
or thehash block indexer.
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The stream_indexer interface provides a method that iterates over the blocks
yielded by the given chopper, indexes them, produces corresponding meta-data blocks,
and stores them into a block store. There is currently only one implementation of this
interface, namely a “tree indexer” that produces meta-data in a form similar to that
shown in Figure 21. To date, we have not thought of other worthwhile implementations of
this interface.

Finally, The block_store interface mainly consists of the put and get methods
described in Section 4.2.2.2. Available implementations of this interface allow blocks to be
store either in an on-disk database (such as TDB [Tridgell et al. 1999]) or over the network
to a server that implements the corresponding RPC interface (see Section 4.3.3).

libchop also defines a filter interface. Filters may conveniently be reused in dif-
ferent places, for instance between a file-based input stream and a chopper, or between a
stream indexer and a block store. They are used to implement compression and decom-
pression filters using the zlib [Deutsch & Gailly 1996, Deutsch 1996], bzip2 [Seward 2007]
and LZO [Oberhumer 2005] libraries. Bzip2 is very storage-efficient but also very memory-
and CPU-intensive. Conversely, LZO trades storage efficiency for compression and decom-
pression speed. Encryption and decryption filters could also be imagined, although none
is currently implemented.

4.3.2. Data Retrieval Process

Some of the interfaces presented above have a tightly coupled “dual” interface providing
functionality for the backup retrieval pipeline. For instance, the interface corresponding
to block_indexer is block_fetcher. Conversely, the chopper interface does not have
a dual interface. This is because the blocks yielded by the chopper interface are assumed
tobe contiguous, and thus only need to be concatenated upon retrieval. More information
on the actual retrieval process may be found in Appendix

4.3.3. Support for Distributed Storage

In the proposed cooperative backup service, chopping and indexing are performed on
the data owner side, while the block store itself is realized by contributors. Thus, from
an architectural viewpoint, contributors naturally fit as an implementation of the
block_store interface.

Concretely, a sunrpc_block_store class implements the put and get method of
the block_store interface using the Sun/ONC Remote Procedure Call (RPC) mechanisms
[Srinivasan 1995]. This suffices to allow data storage to a remote site. MoSAIC contributors
only need to implement this simple RPC interface.

Chapter 5 will present security extensions to this simple protocol, whereby ONC RPC
are transported on a TLS-authenticated channel. These facilities are also implemented as
part of the sunrpc_block_store class.
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4.4. Experimental Evaluation

This section presents our prototype implementation of the storage layer of the envisaged
backup system, as well as a preliminary evaluation of key aspects.

Our implementation has allowed us to evaluate more precisely some of the tradeoffs
outlined in Section 4.2. After describing the methodology and workloads that were used,
we will comment the results obtained.

4.4.1. Methodology

The purpose of our evaluation is to compare the various compression techniques described
earlier in order to better understand the tradeoffs that must be made. We measured the
storage efficiency and computational cost of each method, both of which are critical cri-
teria for resource-constrained devices. The measures were performed on a 500 MHz G4
Macintosh running GNU/Linux (running them on, say, an ARM-based mobile device would
have resulted in lower throughputs; however, since we are interested in comparing through-
puts, this would not make any significant difference).

We chose several workloads and compared the results obtained using different con-
figurations. These file sets, described in Section 4.4.2, qualify as semi-synthetic workloads
because they are actual workloads, although they were not taken from a real mobile device.
The motivation for this choice was to purposefully target specific file classes. The idea is
that the results should remain valid for any file of these classes.

Configurations. Figure 25 shows the storage configurations we have used in our
experiments. For each configuration, it indicates whether single-instance storage was
provided, which chopping algorithm was used and what the expected block size was, as
well as whether the input stream or output blocks were compressed using a lossless stream
compression algorithm. We instantiated each configuration with each of the threelossless
compressing filters available, namely zlib, bzip2 and LZO (see Section 4.3.1). Our intent is
not to evaluate the outcome of each algorithm independently, but rather that of whole
configurations. Thus, instead of experimenting with every possible combination, we
chose to retain only those that (i) made sense from an algorithmic viewpoint and (ii) were
helpful in understanding the tradeoffs at hand.

For all configurations, the only stream indexer used is a “tree indexer”. We used an
on-disk block store that uses TDB as the underlying database [Tridgell et al. 1999]—in other
words, data blocks were not transferred over the network, only stored locally. For each file
set, we started with a new, empty database. Since the computational cost of the insertion
of a new entry is a function of the number of entries already present in the database,
this will have an impact on the execution time for large file sets. However, this does not
preclude comparing the execution times for a given file set with different configurations.

Configurations A, and A, serve as baselines for the overall compression ratio and com-
putational cost. Comparing them is also helpful in determining the computational cost
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Config. Single Chopping Expectgd I.nput l?locks
Instance? Algo. Block Size Zipped? Zipped?
A no — — yes —
A, yes — — yes —
B, yes Manber’s 1024 B no no
B, yes Manber’s 1024B no yes
B, yes tixed-size 1024B no yes
C yes fixed-size 1024B yes no

Figure 25. Description of the configurations experimented.

due tosingle-instance storage alone.Subsequent configurationsall chop input streamsinto
small blocks whose size fits our requirements (1 KiB, which should yield packets slightly
smaller than IEEE 802.11’s MTU); they all implement single-instance storage of the blocks
produced. However, we also study the impact of varying block sizes in a later experiment,
using variants of configuration B,.

Common octet sequences are unlikely to be found within a zlib-compressed stream,
by definition. Hence, zipping the input precludes advantages to be gained by block-lev-
el single-instance storage afterwards. Thus, we did not include a configuration where
a zipped input stream would then be passed to a chopper implementing Manber’s al-
gorithm.

The B configurations favor sub-file single-instance storage by not compressing the
input before chopping it. B, improves over B, by adding the benefits of compression at
the block-level. Conversely, configuration C favors traditional lossless compression over
sub-file single-instance storage since it applies lossless compression to the input stream.

Our implementation of Manber’s algorithm uses a sliding window of 48 B which was
reported to provide good results [Muthitacharoen et al. 2001]. All configurations but A,
use single-instance storage, realized using the libchop hash block indexer that uses SHA-1
hashes as unique block identifiers. For A,,an integer block indexer, which systematically
provides unique IDs, was used.

Unlike zlib and bzip2, the library that implements LZO does not manage input data
buffering internally. Lossless compressors can usually achieve better compression at the
cost of using more memory at run-time. In the following experiments, the LZO compres-
sion filter always used a 16 KiB input buffer, which is what zlib does by default. For LZO com-
pression, the LZO 1X algorithm was used; for zlib, the default compression level was used;
for bzip2 the default “work factor” was used, along with one 100 KiB block for input®.

> This is the minimum value allowed as the blockSize100k parameter of BZ2_bzCompressInit (). This is
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The chosen configurations and file sets are quite similar to those described in [You et
al. 2005, Kulkarni et al. 2004, You & Karamanolis 2004], except that, as explained in Section
4.2.1, we do not evaluate the storage efficiency of the differential compression technique
proposed therein.

4.4.2. Workloads

In Figure 26, the first file set contains 10 successive versions of the source code of the Lout
document formatting system, i.e., low-density, textual input (C and Lout code), spread
across a number of small files. Of course, this type of data is not typical of mobile devices
like PDAs and cell phones. Nevertheless, the results obtained with this workload should
be similar to those obtained with widely-used textual data format such as XML. The
second file set shown in Figure 26 consists of 17 Ogg Vorbis files, a high-density binary
format®, typical of the kind of data that may be found on devices equipped with sampling
peripherals (e.g., audio recorders, cameras). The third file set consists of a single, large file:
amailbox in the Unix mbox format which is an append-only textual format. Such data are
likely to be found in a similar form on communicating devices.

4.4.3. Results

Figures 27, 28 and 29 show the results obtained for each file set. Each figure contains
three charts presenting the results of all the configurations of Figure 25, instantiated with
each of the three compression filters. Each plot shows the throughput (in octets per time
unit’, where both system and user time are accounted for) versus the corresponding data
compression ratio. The compression ratio is defined as the ratio of the size of the resulting
blocks, including meta-data (sequences of block indices), to the size of the input data. The
throughput is defined as the experiment execution time over the input data size in octets.
When measuring the execution time, each experiment was run 10 times; horizontal lines
on the charts denote the standard deviation computed over the set of execution time
measurements. Note that configuration B, remains at the same position on all three plots
for a given file set since it does not use any lossless compressor.

Impact of the data type. Not suprisingly, the set of Ogg Vorbis files defeats all
the compression techniques. Most configurations incur a slight storage overhead due
to the amount of meta-data generated. This input data is a pathological case for all
lossless compressors, both from a storage-efficiency and data throughput perspective.
Nevertheless, LZO displays much better throughput and comparable storage efficiency in
such pathological cases.

more memory than what the two other compressors use.
© Ogg Vorbis is a lossy audio compression format. See http://xiph.org/ for details.

7 The “time unit” is platform-specific, as returned by the POSIX.1 times () function.
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Name Size  Files Avg. Size
Lout (versions 3.20t03.29) 76 MiB 5853  13KiB
Ogg Vorbis files 69MiB 17 4 MiB
mbox-formatted mailbox 7 MiB 1 7 MiB

Figure 26. File sets.

Configurations
A By (-
Ay —eeHeen By -
= C -0
zlib bzip2 Izo
0.45 0.45 0.45
t
0.4 0.4 0.4
o 035 0.35 0.35
2 ©
[id
c 0.3 0.3 0.3
gl
g +
£ 025 ¥ 0.25 ¥ 0.25 : ]
g
© o2 02| W 0.2
u
0.15 0.15 0.15 [
X0 X0
0.1 0.1 0.1
o o o o o o o o o o o o o o o o o o
o o o o o o o o o o o o o o o o o o
o o o o o o o o o o o o o o o o o o
') o ') o Yol o [Te} o v o Yol o T2 o v o [Te) o
— ~— [s\) o @ — — N N @ — — [aV) o (s}
Throughput (B/tu) Throughput (B/tu) Throughput (B/tu)

Figure 27. Storage efficiency and throughput of several configurations and lossless compressors for
the Lout file set.

Impact of single-instance storage. Comparing the results obtained for A, and
A, shows benefits only in the case of the successive source code distributions (Figure 27),
where it halves the amount of data stored when zlib and bzip2 input compression is used.
This is due to the fact that successive versions of the software have a lot of files in com-
mon. Furthermore, these experiments show that, even when no compression advantage
is obtained, single-instance storage implemented using cryptographic hashes does not sig-
nificantly degrade throughput; in some cases, e.g., on Figure 27, it even slightly improves
throughput because fewer writes to the block store are needed. Consequently, we chose to
use single-instance storage in all configurations.

Surprisingly, this behavior is not observed when LZO is used: this is because builds
of the LZO library, by default, are non-deterministic®;, non-determinism also explains
the relatively high execution time standard deviations observed with LZO input stream
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Figure 28. Storage efficiency and throughput of several configurations and lossless compressors for
the Ogg Vorbis file set.

compression. We did not try compiling the LZO library with the appropriate flag that
makes it deterministic.

As expected, single-instance storage applied at the block-level is mainly beneficial for
the Lout file set where it achieves noticeable inter-version compression, comparable with
that produced with zlib in A . The best compression ratio overall is obtained with B, where
individual blocks are zlib-compressed. It is comparable to the compression obtained with
C, though, and only slightly better in the Lout case (11 % vs. 13 %). The results in [You et
al. 2005] are slightly more optimistic regarding the storage efficiency of a configuration
similar to B, with zlib compression, which may be due to the use a smaller block size (512B)
and a larger file set.

Impact of the block size. In addition to the end-to-end measurements presented
earlier, it seemed worthwhile to focus on the impact of block sizes on storage efficiency.
When Manber’s algorithm is used, using smaller block sizes can help detect more redundan-
cy. Conversely, it also yields more data blocks, hence more meta-data. Therefore, decreas-
ing the expected block size may be beneficial for file sets that expose a lot of redundancy,
but may be counter-productive for other file sets.

# According to commentsby the author in the source code of version 1.08 of the library, having non-deterministic
behavior was motivated by performance reasons. Specifically, the author notes that non-determinism may be
helpful « when the block size is very small (e.g., 8kB) or the dictionary is big, because then the initialization of
the dictionary becomes a relevant magnitude for compression speed. »
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Figure 29. Storage efficiency and throughput of several configurations and lossless compressors for
the mailbox file.

120 . . . : :
110 % ]
100 | x X x X 3

801 Lout
70 1 Ogg Vorbis
60 mailbox

50 1
40 + 1
30 |+ + ]
+
0 ' ' 4
o8 29 510 11 512 513 5
Block Size

Compression Ratio
X X +

Figure 30. Compression level with single-instance storage combined with Manber’s algorithm vs.
block size.

Figure 30 shows the compression ratio obtained for configurations similar to B, but
with different block sizes. The outcome is that the Lout file set benefits from smaller
block sizes, even with blocks as small as 256 octets. These results are comparable to those
obtained by the authors of LBFS for small edits [Muthitacharoen et al. 2001]. Conversely,
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the mailbox file sets reaches an optimum with block sizes around 4 KiB, while the Ogg
Vorbis file set is stored more efficiently using the largest investigated block size.

With smaller block sizes, storage efficiency for the mailbox and Ogg Vorbis files
quickly starts decreasing because meta-data overhead outweighs the efficiency gain; at
some point, the resulting data size is even larger than the input data size. Nevertheless, it
is worth noting that the relative size of meta-data with 1KiB blocks and using a hash block
indexer with 20-octet SHA-1 hashes (as used in Figure 30 and for B,) is negligible (less than
3% of the total output).

Computational cost. If we take into account throughput as well, we see that
bzip2 is almost always prohibitively expensive compared to zlib and LZO. For the Lout and
mailbox file sets, the two best candidate configurations are C with zlib compression, or
B, with LZO compression. The latter is slightly less CPU-intensive and also slightly less
storage-efficient than the former.

Additional conclusions can be drawn with respect to throughput. First, the cost of
zlib-based compression appears to be reasonable, particularly when performed on the
input stream rather than on individual blocks, as evidenced, e.g., by B, and C. Second, the
input data type has a noticeable impact on the throughput. In particular, applying lossless
compression is more CPU-intensive for the Ogg Vorbis files than for low-entropy data. The
results are even more disastrous with configuration B, where lossless compression is ap-
plied at the block level. Therefore, it would be worthwhile to disable lossless compression
for compressed data types.

4.5. Related Work

The authors of the Deep Store archival system and the authors of Redundancy Elimination at
the Block Level (REBL) conducted experiments similar to ours that aim at measuring the
storage efficiency of various storage techniques, using data sets representative or large
archival stores [You et al. 2005, You & Karamanolis 2004, Kulkarni et al. 2004]. As far as
single-instance storage and content-defined file chopping is concerned, both studies re-
port storage-efficiency results comparable to ours. However, only [Kulkarni et al. 2004]
measured execution time. Both studies evaluated differential compression, which we re-
jected for reasons outlined earlier (see Section 4.2.1). Instead, our work focuses on config-
urations and data sets more suitable to the peer-to-peer mobile environment targeted. It
also augments these studies with a comparison of storage configurations involving differ-
ent lossless compression algorithms.

For the experiments we made, we made the rough assumption that CPU energy costs
are proportional to the time spent encoding the data, and that wireless transmission costs
are proportional to the amount of data to be transmitted. The energy costs associated
with the various design options could be assessed more precisely, especially those related
to the wireless transmission of backup data between nodes. In [Barr & Asanovic 2006], the
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authors instrumented a Wi-Fi-capable hardware platform to examine its power consump-
tion. They concluded that CPU energy consumptionis,indeed, roughly proportional to the
execution time. They also note that, although Wi-Fi interfaces are very power-hungry, the
energy spent in compressing a file approaches or outweighs the energy needed to transmit
it for most compressors, LZO and zlib with the lowest compression level being notable ex-
ceptions. Among the reasons invoked is the fact that the most storage-efficient compres-
sors, such as bzip2, generate a lot of memory traffic beside being CPU-intensive, and that
memory traffic is also very energy-consuming.

This complex tradeoff is fundamental for mobile distributed applications. We believe
that one way to better understand it would be by (i) modeling the power consumption of
the main hardware components of a mobile devices (wireless network interface, CPU, mem-
ory) and (ii) using those models to estimate the actual energy consumption of various con-
figurations. Asfar as CPU and memory are concerned, tools such as Valgrind’s Cachegrind
tool [Nethercote & Seward 2007] already allow the emulation of hardware platforms at a
fine-grain level, and can report information such as memory accesses, L1 and L2 cache miss-
es, etc. For instance, it has been successfully used to estimate the energy cost associated
with memory paging policies [Park et al. 2004]. Nevertheless, besides being hard to set up,
such an approach suffers from being very tied to specific hardware and software implemen-
tations.

Compact encoding of structured application data seems like a promising approach.
When operating on arbitrary files or octet streams, our backup software does not have
the opportunity to take advantage of the data structure they represent. XMill [Liefke &
Suciu 2000], an XML compressor,demonstrated that using information about the structure
and type of the data being compressed can yield significant improvements in terms of
storage-efficiency,by applying type-specificencoding and compression algorithms. Many
high-level programming languages provide run-time type information which could be
leveraged to store an arbitrary object graph in a compact or compressed form. In fact,
the run-time systems of those languages have already incorporated ad hoc type-specific
encoding rules for some time [Bobrow & Clark 1979]; the same is true, of course, of widely
used binary serialization formats such as XDR [Eisler 2006].

Future work on the optimization of the storage layer concerns several aspects. First,
beside compression techniques, other parts of the storage layer need to be assessed, in
particular encryption techniques. In particular, the CPU cost of public-key encryption
ought to be compared with that of symmetric encryption (e.g., based on content-hash
keys as in [Clarke et al. 2001, Bennett et al. 2002]). Again, comparisons could be made by
applying these techniques either at the input stream level or at the block level through
libchop “filters”. Fortunately, our storage framework is well-suited to such additions.

Finally, it seems likely that no single configuration of the backup service will be
appropriate for all situations. Thus, dynamic adaptation of the service to suit different
contexts could be investigated. Storage configurations could be chosen either based on
user input, or based on the (alleged) type of the files being encoded. In particular, this
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would allow compressed file types to be handled gracefully, with no performance loss,
while aggressively combining suitable compression techniques for versioned textual data,
for instance.

4.6. Summary

In this chapter, we studied the design and implementation of a suitable storage layer for
the envisioned cooperative backup service. Key points included the following:

We identified six essential requirements for the storage layer of such a service,
namely: (i) storage efficiency; (ii) small data blocks; (iii) backup atomicity; (iv)
error detection; (v) encryption; (vi) backup redundancy.

Various design options meeting these requirements have been reviewed.

Erasure coding was suggested as a way to handle both input stream chopping
and redundancy.

We presented our flexible storage layer implementation, named libchop, has
been presented.

An experimental evaluation of several combinations of storage techniques has
been carried out using our implementation.

The contribution of the experimental evaluation presented in this chapter can be
summarized as follows:

We assessed and compared different storage techniques, both in terms of
storage efficiency and computational cost.

We observed that, using 20-octet hashes to designate 1KiB blocks, meta-data size
is negligible.

We conclude that the most suitable combination for our purposes combines the
use of lossless input compression with fixed-size chopping and single-instance
storage.

Other techniques were rejected for providing little storage efficiency improve-
ment compared to their CPU cost.

We believe that these results could be useful in other storage areas with varying criteria,
ranging from archival storage to revision control systems. In addition, our software frame-
work is flexible enough to allow similar experimentations to be made with little effort.
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A number of threats to data confidentiality, integrity, and availability, arise in our
cooperative backup service, as seen in Section 2.2. Until now, we have focused
primarily on threats to data availability that arise as a consequence of accidental failures.
Here, we consider threats to both data and service availability stemming from malicious
uses of the cooperative backup service. Indeed, since anyone can participate in our
cooperative backup service, users of the service are mutually distrustful and both the
service and its users may be subject to attacks.

Section 5.1 summarizes the dependability goals defined in Section 2.2, highlighting
those that have already been targeted by previous chapters and those still to be addressed.
Section 5.2 provides an overview of the storage layer presented in Chapter 4, identifying
the security concerns that it addresses and those it does not address. Section 5.3 proposes
self-organized, policy-neutral security mechanisms and shows (i) how they fulfill some of
our requirements and (ii) how they can be used as building blocks for various cooperation
policies. Section 5.4 deals with implementation considerations. Section 5.5 summarizesre-
lated work. Finally, Section 5.6 concludes and depicts on-going and future research work.

Part of the discussion and design proposal in this chapter was published in [Courtes
etal. 2007b].

5.1. Introduction

In Chapter 2, we outlined the design of an open, cooperative backup service for mobile
devices. In the general case, anyone is free to participate in the service and, therefore,
the majority of participants have no prior trust relationship. There are also specific
scenarios where owners of a few cooperating devices are personal acquaintances with
full trust relationships as far as the backup service is concerned (e.g., colleagues, friends,
etc.). An open cooperative service must be able both to account for the lack of prior trust
relationshipsamong participantsand to take advantage of prior trust relationshipsamong
device owners when they exist.

Threats in the generic case where participants are mutually distrustful were outlined
in Section 2.2:

+  threatsto confidentiality and privacy;
+  threatsto data integrity and authenticity;
+  threatsto availability.

81
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Some of these threats have been already addressed by the storage layer presented in
Chapter 4, while others can be addressed through data replication as was discussed in
Chapter 3. However, denial of service (DoS) attacks committed by malicious participants
have not been addressed so far.

DoS attacks can lead to data or service unavailability. As such, they are effectively
threats to cooperation. We listed in Section 2.2 the most obvious possible DoS attacks against
our cooperative backup service or its users:

»  data retention, where a contributor either refuses to send data items back to
their owner when requested or simply claims to store them without actually
doing so.

«  flooding, where a participating device purposefully seeks to exhaust the service’s
shared resources.

«  selfishness or free-riding, where users unfairly benefit from the cooperative
service without contributing in return, thereby depriving the community of
resources.

These attacks are well-known in resource sharing systems and cooperative services. They
have been largely studied in the framework of Internet cooperative services such as
peer-to-peer file sharing [Grothoff 2003, Cornelliet al. 2002, Lai et al. 2003]and cooperative
backup [Lillibridge et al. 2003, Cox & Noble 2003, Aiyer et al. 2005]. Research on mobile ad
hoc packet routing protocol also gave rise to similar research [Buttydn & Hubaux 2003,
Buchegger & Boudec 2003, Michiardi & Molva 2002]. Selfishness attacks, in particular, have
been the topic of abundant research since they are likely to occur if participants lacking
incentives to contribute behave “rationally” [Aiyer et al. 2005]. In politics, as well as in the
field of peer-to-peer computing, this phenomenon is often referred to as the tragedy of the
commons, named after Garrett Hardin’s famous essay on the problem of human population
growth [Hardin 1968].

In this chapter, we identify fundamental requirements that must be fulfilled to allow
such threats to cooperation to be tackled. We advocate that accountability is a key require-
ment. We propose self-organized security mechanismsthat may be used to supportbehavior
accountability and a widerange of cooperation policies. We show how cooperation policies
can take advantage of these mechanisms to address some of our security concerns and
discuss their integration with the security mechanisms already provided by the storage
layer. Our approach differs from earlier work in that it focuses on policy-neutral security
primitives that do not restrict the user’s choice of a policy, rather than focusing on a specif-
ic policy.
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5.2. Architectural Overview of the Storage Layer

The storage layer presented in Chapter 4 addresses the efficient storage and indexing of
data owners’ critical data, following an append-only storage model. A simple RPC-based
storage protocol that may be used among participating devices was also outlined in Section
4.3.3. Here, we focus on security aspects related to the storage mechanisms proposed in
Chapter 4.

5.2.1. Core Storage Protocol

The storage framework discussed earlier can be summarized as follows:

1.

The data owner (rather: the cooperative backup software on the owner-side)
chops the data items to be backed up into small blocks and assigns them a block
name (e.g., a cryptographic hash of the block contents). Important requirements
are that (i) the naming scheme must be meaningless to contributors and (ii)
blocksmustbe encrypted. In other words, contributors cannot make any assump-
tions on the block naming scheme used by data owners.

The data owner produces meta-data blocks describing, among other things, how
datablocks are to be re-assembled to produce the original data. Those meta-data
blocks are themselves named in a similar way. Meta-data blocks may also be
encrypted to protect data confidentiality.

The end result of this backup process is an opaque identifier that names an (encrypted)
root meta-data block. We refer to this identifier as the root block name. In addition, data
blocks are transferred as follows:

When a contributor is encountered, the data owner sends it some of its data and
meta-data blocks using remote procedure calls (RPCs), as discussed in Section
4.3.3.Thisisrealized through the invocation put (name, content) whichsends
data content to the contributor and asks it to bind it to name, Since owners
can choose any block naming scheme, contributors must arrange to provide
per-owner block name spaces in order to avoid collisions among blocks belonging
todifferent owners. Obviously,in order to increase data availability,data owners
may choose to replicate each block, as seen in Chapter 3.

When a contributor gains Internet access (rather, when it gets sufficiently
cheap or high-bandwidth Internet access), it transfers data blocks stored on
behalf of other devices to an Internet-based storage server that data owners can
eventually access to restore their data.

root block name
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Data and meta-data blocks must be encrypted. It must be possible for a data owner to
authenticate them upon recovery, to make sure data being restored is genuine. The former
could be achieved through public-key cryptography, using the data owner’s public key to
encrypt every block. However, this approach may be CPU-intensive. An alternative would
be to use convergent encryption [Cox et al. 2002]. With this technique, data is encrypted with
a symmetrical encryption algorithm, using the clear text’s hash as the encryption key, as
illustrated on Figure 31", Since it relies on symmetric encryption, this method is much less
CPU-intensive than public-key encryption [Menascé 2003

Authenticity is achieved by signing part of the meta-data. For instance, if meta-data
blocks are the intermediate nodes of a Merkle hash tree whose leaves are data blocks
[Merkle 1980], then only the root block needs to be signed, which reduces reliance on
CPU-intensive cryptography; verifying the root block’s signature actually allows the
authenticity of the whole tree to be checked (see Section 4.2.4). In Chapter 6, we elaborate
on the actual scheme that we implemented.

The root block name is critical since it allows all the user’s data to be recovered, so it
also needs to be backed up. However, as new versions of the data items (e.g., a single file or
a whole file system hierarchy) are backed up, new data and meta-data blocks are created,
each having a new name, and thus a new root block name is produced (this issue is not
uncommon in the context of peer-to-peer file sharing and archival systems [Bennett et al.
2002, Quinlan & Dorward 2002]). Consequently, data owners should store their latest root
block name on contributors under a fixed block name to allow restoration to be bootstrapped
conveniently. Since it is a critical piece of information, data owners may choose to
encrypt it.

Restoration of backed up data typically occurs when the data owner device has failed
or been lost. In this case, data owners first retrieve the root meta-data block (from the
Internet-based store), decrypt it and decode it (which can only be done by its legitimate
data owner), and then recursively fetch the blocks it refers to. Fetching blocks upon
restoration is achieved through a get (name) RPC that returns the contents of the block
designated by name.

It is worth noting that among the mechanisms presented so far, only the actual
storage protocol (i.e., the put RPCs) isimposed. Thisleavesusers free to choose any security
policy for their data: they may choose any data availability, confidentiality and integrity
mechanism while still conforming to the storage protocol.

! Combining it with content-based indexing yields so-called content-hash keys or CHKs [Bennett et al. 2002, Clarke
etal. 2001].

? Menascé notes that « symmetric key encryption is orders of magnitude fast than public key encryption »
[Menascé 2003].
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clear text —————=|' cipheritext:

H

() cryptographic hash function (e.g., SHA-1)
symmetric encryption (e.g., Blowfish)

Figure 31. Convergent encryption with symmetric ciphers.

5.2.2. Interacting with the Internet-based Store

So far, we focused on the owner-side data and meta-data encoding/decoding, as well as on
the storage protocol used by participating devices. A key assumption of our cooperative
backup service is that participants can rely on a reliable Internet-based store as an interme-
diary between contributorsand data owners for recovery purposes (Section 2.3). We do not
focus on the implementation of such a store. Consequently, we ignored how it isimplement-
ed and remained open to a variety of possible solutions, ranging from per-owner stores to
a single large shared store (e.g., an FTP-like server or peer-to-peer store known a priori to
all participants). Nevertheless, how participants interact with such a store can influence
the storage layer and its security mechanisms and is worth considering.

Suppose a shared store is used to receive data blocks from all contributors. Since it
receives blocks belonging to different data owners that may use conflicting block naming
schemes, such a shared store also needs to maintain per-owner block name spaces. Thus,
when sending data blocks to the Internet store, contributors would need to specify who
their owner is, e.g., by providing the data owner’s “identifier”. Similarly, upon recovery, a
data owner would need to specify its name space by providing its identifier.

Of paramount importance is the inability for arbitrary users to tamper with a data
owner’s name space on the Internet-based store. For instance, it must be impossible for
a malicious user to overwrite a data owner’s block associated with a specific name on
the Internet repository without this being detected. When data and meta-data encoding
is owner-specific and unknown to the Internet-based store, said store cannot check the
authenticity of incoming data blocks. Several approaches can be imagined to allow the
Internet-based store to authenticate incoming data blocks:

+  TheInternet-based store could keep a list of all incoming data blocks associated
with a given name, should different blocks be put under the same name (colli-
sions). Upon recovery, the data owner can then decode and detect invalid data
blocks in cases of collisions. In this case, the Internet store can remain oblivious
to the owners’ meta-data encoding schemes. However, this approach would
make the Internet-based store vulnerable to flooding attacks.
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¢ Requiring data owners to sign each (meta-)datablock with their own private key
does solve the problem, since it allows any third party to authenticate each block.
However, this solution is not acceptable since it would involve a lot of costly
cryptographic operations.

¢ The meta-data scheme could be fixed and used by all data owners or somehow
communicated to the Internet-based store. This would allow the Internet
store to authenticate data on behalf of data owners, at the cost of reducing the
flexibility available to data owners in terms of meta-data structures.

This last solution appears to be the most acceptable for setups with an Internet-based
store shared among data owners. Furthermore, it can be implemented in such a way that
the Internet-based store is able to authenticate data blocks without being able to access
its contents.

5.3. Leveraging Cooperation

In this section, we present our approach to the design of mechanisms that address the
threats to cooperation summarized in Section 5.1. Core mechanisms are proposed to sup-
port accountability while being neutral with respect to cooperation policies. We then dis-
cussissuesthat arise from the self-organized nature of our approach as well as cooperation
policies.

5.3.1. Design Approach

There are essentially two ways to provide security measures against the DoS threats listed
earlier in MANETs and loosely connected peer-to-peer backup systems: via a single-authori-
ty domain, wherea single authority provides certificates or other security material to partici-
pantsand/or imposesa particular policy or mechanism, or through self-organization, where
no single authority is relied on, at any point in time [Capkun et al. 2003].

In our opinion, reliance on a common authority responsible for applying external
sanctions to misbehaving participants as in BAR-B [Aiyer et al. 2005] falls into the first
category. For example, BAR-B contributors must provide a proof that they do not have
sufficient space when rejecting a storage request; similarly, upon auditing, participants
must show the list of all blocks stored on their behalf elsewhere and all blocks they store
on behalf of other nodes. Failing to do so constitutes a “proof of misbehavior” that may
lead to sanctions. This raises fundamental security issues: why would one disclose all this
information to some supposedly trusted entity? Does it still qualify as cooperation among
multiple administrative domains when a single set of rules is enforced through external
sanctions? While this approach achieves strong service provision guarantees, it does so
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at the cost of being authoritarian and seems unsuitable for the kind of open cooperation
network we envision.

Likewise, the use of so-called “tamper-resistant security modules” as in [Buttydn &
Hubaux 2000] can be considered as a single-authority domain approach: security modules
act asalocal representative of an “authority” and enforce part of the protocol (in [Buttydn
& Hubaux 2000], the nuglet mechanism) in order to provide protection against malicious
users. This leaves the user with no choice but to abide by the rules set forth by the security
module and the party that issued it.

We are of the opinion that reliance on a central authority can in itself be considered
as a security threat, to some extent: that authority is in effect a single point of trust and
its compromise would bring the whole service down. Furthermore, depending on their
security policy, users may not be willing to fully trust such an authority just because they
have been told it’s a “trusted” authority. They may also want to have full control over the
actions that can be taken by their device, rather than handing over some authority over
the device to some possibly unknown third party. Also, since we are designing an open
cooperative service where anyone can participate, self-organization is likely to make the
service more readily accessible to everyone; conversely, requiring every user to register
with some central authority would be an undesirable burden likely to limit user adoption.
Therefore, we do not consider solutions based on a single-authority domain but prefer
to focus on totally self-organized solutions. Indeed, such solutions are a good match for
mobile ad hoc networks which are self-organized.

As a consequence, we cannot assume that any single cooperation policy is going to
be used by all devices: each device can, and will, implement its own policy. We believe
that the ability to choose a security and cooperation policy is particularly important when
using our cooperative backup service for two reasons. First, the goal of this service is to
improve the availability of users’ critical data. As such, users are likely to be willing to pay
attention to the contributors they deal with, and hence, they may be concerned with their
cooperation policy. Second, mobile devices being resource-constrained, users are likely to
require tight control over their resource usage, and may want to implement a cooperation
policy that makes the best use of their resources. This is quite different from, for instance,
Internet-based file sharing services where participating devices are typically desktop
machines and where, as a result, it is safe to assume that most users will be satisfied with
the same default cooperation policy.

A key observation is that most cooperation policies rely on accountability [Dingledine
et al. 2001]. To enable cooperation among untrusted principals, it must be possible to
hold participants accountable for their actions, such as their resource consumption,
their contributions, as well as their misbehaviors. Without this, a decentralized system is
obviously vulnerable to all sorts of abuses, which eventually leads to denial of service. We
view accountability as a core mechanism that is a prerequisite to the implementation of
cooperation policies. Therefore, in this chapter we focus on core mechanisms allowing for
accountability rather than on actual cooperation policies.

accountability
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5.3.2. Providing Verifiable and Self-Managed Device Designation

Devices must be able to name each other (i) to achieve accountability and (ii) to allow
contributors to implement per-owner block name spaces, as discussed in Section 5.2.

To these ends, device names must satisfy the following requirements. First, since we
want to build a self-organized service, where no central authority has to be consulted, it
must be possible for every device to create its own name or designator. Second, for the
naming scheme to be reliable, device names must be unique and context-free (i.e., their inter-
pretation should be the same in any context). Third, since device names serve as the basis
of critical operations, it must be possible to authenticate a name-device binding (i.e., assess
the legitimacy or “ownership” of a name). Authentication is needed to preclude unautho-
rized use of a name, as in spoofing attacks. Unauthorized uses of device names would effec-
tively hinder the implementation of per-owner block name spaces and accounting mech-
anisms.

These requirements rule out a number of widespread designation mechanisms. IP
addresses, for instance, would obviously be unsuitable to name devices since they have
none of these properties (they are not context-free, especially IPv4 link-local addresses,
not unique, except for IPv6 addresses, and cannot be authenticated). The designers of
Mobile IPv6 (MIPv6) had similar requirements and had made the same observations.
This led them to devise “statistically unique and cryptographically verifiable” (SUCV)
addresses [Montenegro & Castelluccia 2002].

The building block for the naming scheme we are interested in (and that of MIPv6
SUCV addresses) is asymmetric cryptography. Public keys have all the desired properties
as designators: they are (statistically) unique and context-free, and they provide secure
naming (i.e., the name-device binding can be authenticated, thereby precluding spoofing).
In practice, public keys can be too large to be used directly as designators, which is why
several protocolsuse cryptographichashesor fingerprintsof the publickeysasdesignators
[Callasetal. 1998, Montenegro & Castelluccia2002].In order to achieve accountability,both
contributors and data owners may wish to identify the device they are talking to, that is, to
authenticate the binding between the alleged name of the peer device and the deviceitself.
In other words, mutual authentication is required.

It is worth noting that the entities we want to name are instances of the cooperative
backup software running on participating devices and not people owning the devices, nor
even physical devices. Thus, the principalsinvolved in the cooperative backup service are
logical entities that exist and interact solely through electronic interactions among them.
Therefore, authenticating the binding between one of these entities and its name (public
key) boils down to verifying that this entity holds the private key corresponding to its
name [Ellison 1996]. Doing so is simple and does not require the use of any certification
authority whatsoever.

As far as the data restoration bootstrap is concerned, a practical consequence of
using public key pairs to identify devices is that a user’s key pair is all that is needed to
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bootstrap restoration, assuming its public key is also used to encrypt the root block name.
That means that users must store their key pairsreliably, outside of the cooperative backup
service, by copying them on a storage device under their control (USB stick, computer, or
even a simple piece of paper stored in a safe place). Obviously, the device where the user’s
key pair is stored must not be carried along with the mobile device itself, since it could
easily be lost, stolen, or damaged along with the mobile device, making it impossible to
recover the data. Elliptic curve cryptography (ECC) would be handy for that purpose: it
yields keys much smaller than, e.g., “security-equivalent” RSA keys; thus an ECC key pair
can be as simple as a pass phrase that may be readily memorized by the user.

5.3.3. Ensuring Communications Integrity

Once a participating device has authenticated the binding between a peer device and a
name, a malicious device may try to send messages and pretend they originate from anoth-
er device, thereby using resources on behalf of another device. To address this issue, the
integrity and authenticity of messages (i.e., RPC invocations) that devices exchange must be
guaranteed by the communication layer; in other words, it must be practically impossible
for an attacker to modify the message payload or its meta-data (e.g., information about
the source and recipient) in an undetectable way. In particular, once devices have mutually
authenticated, using their key pairs, the communication protocol must guarantee that mes-
sages received at either end of the communication channel still come from the previously
authenticated device. Many well-known cryptographic protocols address this issue, with
different security properties.

We believe that non-repudiation, i.e., the ability for a third-party to verify the integrity
and authenticity of a message, is not required in our decentralized, self-managed, coop-
erative backup system. Non-repudiation could be used, for instance, to make sure that a
device cannot deny that it sent a series of storage requests to a certain contributor. That
contributor could then prove to a third party that it did receive those requests. However,
such proofs would likely not be sufficient to be used, for instance, as part of the “history
records” maintained by a reputation system (described below): they would concern only
individual requests and would consequently fail to provide a sufficiently high-level view
of a device’s past cooperation. For instance, to prove that a data owner requested 1 GiB of
storage, a contributor would need to provide a third party with 1 GiB worth of put requests
along with the corresponding signatures. Doing so would provide more information than
is necessary and would be very bandwidth-consuming, making it impractical. Thus, non-
repudiation of individual messages is inappropriate in our context.

Therefore, we plan to use regular message authentication codes (such as HMACs)
to provide support for message authenticity checks. HMACs can only be verified by the
receiver, and therefore do not provide non-repudiation.
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5.3.4. Thwarting Sybil Attacks

Since key pairs are to be generated in a self-organized way, our system is subject to the Sybil
attack [Douceur 2002, Marti & Garcia-Molina 2003]: devices can change names (i.e., public
keys) any time they want, which allows them to escape accountability for their past actions,
including misbehavior. Successful Sybil attacks can defeat any resource accounting mech-
anism and resource usage policy. For instance, a data owner can completely circumvent a
per-device quota implemented by a contributor by just switching to a new key pair.

The verifiable designation mechanism proposed above cannot by itself prevent Sybil
attacks. Instead it is up to cooperation policies to make Sybil attacks less attractive by
providing incentives for users to keep using the same name (i.e., the same key pair). In a
system where names are managed in a self-organized way, no cooperation policy can
prevent Sybil attacks: They can only make them less effective. However, evidence shows
that well-designed policies can make them pretty much worthless [Marti & Garcia-Molina
2003, Michiardi & Molva 2002, Buchegger & Boudec 2003].

Naturally, most reasonable cooperation policies have a common denominator: they
tend to be reluctant to provide resources to strangers while being more helpful to devices
that have already cooperated. However, in order to bootstrap cooperation, many policies
may grant at least a small amount of resources to strangers [Grothoff 2003]. This means
that there is usually (i) a medium- to long-term advantage in keeping the same name and
(ii) a short-term advantage in cooperating under a new name. Section 5.3.5will show how
actual cooperation policies can achieve this.

Fortunately, the impact of Sybil attacks is largely a matter of scale. With Internet-
based peer-to-peer cooperative services, any peer can reach thousands of peers in a
glimpse. Thus, even if it can only benefit from a small amount of resources from each peer,
it may be able to quickly gain a large amount of resources. Conversely, in a cooperative
service relying on physical encounters among mobile devices, it may take a long time and
a great deal of traveling around before one is able to gain access to a useful amount of re-
sources, which effectively makes selfishnessless viable economically. Likewise, the impact
of a flooding attack is necessarily limited to physical regions and/or groups of devices.
Furthermore, if there are few resources to be gained through Sybil attacks, then there is
an incentive to keep using the same name, which in turn provides an incentive to honor
promises to store data. Of course, it is up to cooperation policies to make such attacks even
less attractive by providing additional incentives for cooperation.

5.3.5. Allowing for a Wide Range of Cooperation Policies

User cooperation policies define the set of rules that determine how their device will co-
operate. They are usually concerned with the stimulation of cooperation and the estab-
lishment of trust with other devices. To that end, cooperation policies can build on the
accountability provided by the mechanisms presented above. We can imagine two major
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classes of cooperation policies: those based on the underlying social network, and those

based on past behavioral observations, either through private or shared “history records”

[Grothoff 2003, Lai et al. 2003, Michiardi & Molva 2002, Buchegger & Boudec 2003]. It is our
goal to allow users to choose among these cooperation policies.

Cooperation policies based on the relationships already existing in the underlying
social network can be as simple as “white lists”, where the user only grants resources to de-
vicesbelonging to personal acquaintances. There can alsobe more sophisticated policies: a
user could also accept storage requests from “friends of friends”,and it could accept to ded-
icate a small amount of resourcesto strangersaswell. It can be argued that such policiesdo
not scale since (i) the number of personal acquaintances of an individualis limited, and (ii)
when travelling a lot, these acquaintances may be out of reach. On the other hand, social
studies have provided evidence of a “small-world phenomenon” in human relationships
[Milgram 1967, Capkun et al. 2002] and algorithms have been proposed to discover chains
of acquaintances among arbitrary users [Capkun et al. 2003]. These studies can make coop-
eration policies based on a social network more relevant. Such policies, were they to insist
on being able to verify bindings of keys to real-world identities, would trade privacy for im-
proved resilience to Sybil attacks. However, similar policies may be used with pseudonyms
instead of real-world identities.

Cooperation policies based on observations of past device behavior provide an inter-
esting alternative: devicesmaintain “history records” of each other and make cooperation
decisions using them as an input. History records can either be local to a device or they can
be shared among devices—the latter is usually referred to as a reputation system [Lai et al.
2003, Buchegger & Boudec 2003, Michiardi & Molva 2002]. In a reputation system, devices
exchange history records or opinions and may use them as an additional hint to their co-
operation decisions. Simulations have shown that shared history records are usually more
efficient than private history records, especially in large networks or in the presence of a
high device turnover [Lai et al. 2003, Buchegger & Boudec 2003 . Reputation mechanisms
make Sybil attacks unattractive since few resources can be gained by a stranger.

However, many works that evaluate the outcome of such reputation mechanisms
assume that all participating nodes use the same cooperation policy [Michiardi & Molva
2002, Buchegger & Boudec 2003] (e.g., the same node rating algorithm, the same decision-
making algorithm, etc.). There is no reason for this to be true. The result of using a repu-
tation mechanism in a world where different policies are in use is, to our knowledge, an
openissue. For example, when all participants have the same cooperation policy, an adver-
sary could exploit its weaknesses in a systematic way, as illustrated by BitThief[Locher et
al. 2006]. Conversely, it would be harder for an adversary to devise a viable strategy in the
presence of multiple policies, and without additional information about the set of policies.
Analytical evaluationsbased on game theory, e.g.,as used in [Oualha et al. 2007a], appear to

3 See Section 5.5 for additional information.
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be better suited to situations with diverse cooperation policies as they focus on individual
interactions between peers rather than on the algorithms running at each peer.

While leaving users the freedom to choose their cooperation policy increases the
system’s flexibility, it may also reduce its scalability if participantsare unable to help each
other make informed cooperation decisions. One solution would be to allow participants
to exchange trust information about each other. However, to our knowledge, this is
largely an open issue: just like humans, participants may have different trust metrics and
different ways to assess and reason about trustworthiness, which makes it difficult to think
of a formal way to “convert” trust information at peer boundaries.

From a privacy viewpoint, maintaining history records may be a concern when
identities are bound to real-world entities, since it would allow one to know where a given
person was at a given point in time. However, for users’ privacy to be seriously threatened,
attackers would need to physically track them, which the cooperative backup service could
hardly be held accountable for. This is a lesser concern when identities are not bound to
real-world entities.

5.4. Implementation Considerations

This section discusses implementation concerns and in particular the choice of actual
protocols to achieve the goals outlined earlier.

5.4.1. Protocol Choice

While Mobile 1Pv6 [Montenegro & Castelluccia 2002] provides some of the features we
need, we considered it impractical since its mechanisms are implemented at the network
layer, and implementations are not widely available at this time.

Our implementation of the block store (essentially the put and get requests men-
tioned earlier) is based on Sun/ONC RPC [Srinivasan 1995]. ONC RPC defines the so-called

“DES authentication mechanism”, designed for authentication over a wide-area network;

however, the mechanism does not address all our concerns (for example, its naming
scheme for peers doesnot fulfill all the requirements of Section 5.3.2,and in particular does
not allow name-device bindings to be reliably authenticated). The authentication mecha-
nisms for ONC RPC defined in RFC 2695 [Chiu 1999] have similar shortcomings with respect
to our goals. The RPCSec bindings for the Generic Security Services Application Program-
ming Interface (GSS-API) [Eisler et al. 1997] were not considered appropriate either (one
reason is that most available GSS-API implementations only support Kerberos-based mech-
anisms, which assumes the availability of such an infrastructure).

Consequently, we decided to use the well-known Transport Layer Security (TLS), a
protocol currently widely deployed on the Internet [Dierks et al. 2006]. Although it was not
designed with mobile computing and constrained devices in mind, we believe its flexibility
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makes it a suitable choice. In particular, TLS offers a wide range of cipher suites, which
allows us to choose cipher suites that meet our resource saving constraints, such as cipher
suites with no payload data encryption, as discussed in Section 2.2.1. TLS provides message
authentication guarantees using HMACs, where, again, the HMAC algorithm to be used is
negotiated between peers. TLS provides payload compression but this may be disabled
(also subject to negotiation between peers). Again, disabling it allows us to save energy,
especially since the data that is to be exchanged among peers is already compressed (see
Chapter 4).

As far as mutual authentication is concerned, TLS provides it through certificate-based
authentication mechanisms. While the main document [Dierks et al. 2006] refers primarily to
X.509 certificates, an extension adds support for authentication using OpenPGP certificates

[Mavrogiannopoulos 2007]. This extension is very relevant in our context for a number of

reasons. First, OpenPGP certificates can be readily generated using widely available tools
(e.g., GnuPG) and they are already familiar to many computer users. Second, OpenPGP
certificates are already used in the context of secure electronic communicationsamong in-
dividuals. Therefore, the use of OpenPGP certificates also allows users to easily implement
cooperation policies based on the underlying social network, as outlined in Section 5.3.5.

OpenPGP certificatescontainalot more thanjust a publickey. In particular,since they
are primarily used to certify a binding between a public key and a real-world person name,
they contain information such as the real-world name and email address of the person the
public key (allegedly) belongs to (the “user ID packets”), and a list of third-party signatures
(certifications) indicating the level of trust put by other people in this name-key binding
[Callasetal. 1998]. This information is only useful when implementing cooperation policies
based on the social network.

5.4.2. Preliminary Prototype

We have been working on a prototype implementation of our cooperative backup protocol
that uses ONC RPC on top of TLS, namely by extending our libchop remote block store pre-
sented in Section 4.3.3. Since ONC RPC implementations do not natively support the use
of TLS as the underlying protocol, we did our own implementation. This proved to be easy
to do, using raw TCP RPC client/server code from the GNU C Library as a starting point.
We use GnuTLS [Josefsson & Mavrogiannopoulos 2006] as the underlying TLS implementa-
tion since it is the only major implementation supporting the OpenPGP extension [Mavro-
giannopoulos2007]as of thiswriting. GnuTLSis very flexible and has allowed us to actually
make various specific trade-offs, such as disabling compression, choosing an encryption-
less cipher suite, etc.

Initial measurements show that TLS induces little communication overhead. Hand-
shake itself demands 2 KiB per connection in both directions (when using certificates with
no signature packets), most of which stems from the OpenPGP certificate exchange. The
TLS record layer incurs little overhead (e.g., less than 30 octets per message with SHA-

OpenPGP
certificates
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1-based HMACs), provided messages are at most 16 KiB long—otherwise messages are frag-
mented, which incurs additional overhead [Dierks et al. 2006]. Although further measure-
ments are needed, these results seem reasonable in our context.

5.5. Related Work

This section gives an overview of related work that addresses denial-of-service attacks

against cooperative services similar to ours. We then discuss common cooperative incen-
tives described in the literature, and finally related work on designation in distributed and

self-organized systems.

5.5.1. Denial of Service Attacks on Cooperative Services

Alot of work has gone into thwarting availability threats due to DoS attacks similar to those
described in Section 5.1. Most of this work was done in the area of peer-to-peer storageand
cooperative backup [Lillibridge et al. 2003, Cox & Noble 2003, Grothoff 2003]. Dingledine
et al. wrote an excellent classification and summary of existing approaches to tackle DoS
attacks in peer-to-peer systems deployed on the Internet [Dingledine et al. 2001]. They ac-
knowledged accountability as an enabler for cooperation among distrustful principals. Un-
derstandably, the operating system and programming language communities reached the
same conclusion as computers went multi-user and as executing untrusted code became
commonplace.

While our cooperative backup scheme with intermittent connectivity to the infras-
tructure is similar to delay-tolerant networks [Zhang 2006], the security of such networks
is still largely an open issue [Farrell & Cahill 2006, Harras et al. 2007]. This is partly due to
the fact that most applications of DTNs, such as space mission networks, are not expected
to be open for anyone to participate, which reduces the incentive to address these issues.

Fallet al. did propose security mechanisms permitting DTN routers to detect and elim-
inate disallowed traffic, and thereby avoid DoS attacks such as flooding against the DTN
[Fall 2003]. However, the proposed solution relies on centralized identity management and
authorization: all participantsare issued a key pair by an authority, along with a “postage
stamp” signed by that authority indicating the allowed “class of service” for that user.
Such an approach only addresses specific DoS attacks. Forms of non-cooperation such as
refusal to forward a message are not tackled. We also believe that such an approach does
not scale and suffers from shortcomings inherent to single-authority domain approaches,
as discussed in Section 5.3.

5.5.2. Cooperation Incentives

In general, “trust begets cooperation”. In the case of our cooperative backup service, data
owners need to trust contributors to provide them the service, while contributors need to
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Figure 32. Trust levels based on private history records in a small network [Grothoff 2003].

trust data owners not to abuse the service (e.g., by flooding it or by being selfish). While
both issues have to do with trust establishment between owners and contributors, the
literature tends to refer to both aspects using different names, such as cooperation incentives
and trust establishment.

To evaluate the cooperativeness of a peer, one needs to be able to observe both its ser-
vice usage and its service provision. When the cooperative service is packet forwarding or
routing in MANETs, device cooperation can be evaluated almost instantaneously [Michiar-
di & Molva 2002, Buchegger & Boudec 2003, Grothoff 2003]. However, in cooperative back-
up services, service usage and service provision call for different evaluation techniques.
First, service usage can be balanced using simple strategies such as symmetric trades [Lil-
libridge et al. 2003] (i.e., pairwise “tit-for-tat” exchanges), or “storage claims” that may be
exchanged among peers [Cox & Noble 2003]. Both approaches assume high connectivity
among peers and are therefore unsuitable for MANETS. Second, periodic auditing has been
proposed to establish trust in contributor service provision [Lillibridge et al. 2003, Cox et al.
2002, Cox & Noble 2003, Aiyer et al. 2005], but this usually requires peers to be reachable so
that they can be challenged, which is unsuitable to the MANET context.

A novel auditing protocol has been proposed to overcome this limitation, allowing
the auditing responsibility to be delegated [Oualha et al. 2007b]. Data owners can grant a
set of chosen verifiers the ability to audit a specified contributor, and data owners do not
need to disclosed the data to be audited to verifiers. However, it is unclear at this stage
how verification results could be used as an input to cooperation policies. In particular,
it is unclear how verification results could be authenticated by the data owner itself or by
third-parties such as participants in the vicinity of a verifier and its assigned contributor.

Once service provision and usage can be evaluated, self-organized solutions usually
make use of history records of peer behavior as an aid to cooperation decisions, as men-
tioned in Section 5.3.5. Figure 32 illustrates “trust levels” as computed by GNUnet nodes
based on their own observations[Grothoff 2003]: the left-hand side of the figure shows con-
nections between nodes, while each cell of the table on the right-hand side shows the level
of trust of one node in another. From the figures, we see that trust levels based on private
observations are neither transitive, nor symmetrical, nor homogeneous (e.g.,C’s trust in B
is higher than A’s trust in B).

cooperation
incentives

periodic auditing
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Lai et al. showed through simulation that private history records (i.e., based solely
on local information) do not scale well to large populations, unlike shared history records
(i.e., reputation); however, they also note that reputation systems need countermeasures
to address the risk of collusion among peers [Lai et al. 2003]. Similarly, other simulations
showed that use of second-hand or even third-hand opinions allow misbehaving nodes
to be detected faster, even in the presence of liars, and especially with large populations
[Buchegger & Boudec 2003]; the authors also propose a way to merge partially trusted
third-party opinions with one’s own opinion. In MANETS, reputation mechanisms have
been proposed primarily in the context of packet forwarding for multi-hop routing
protocols and route discovery [Michiardi & Molva 2002, Buchegger & Boudec 2003].

5.5.3. Designation

Designation issues in a decentralized environment have been studied notably in the con-
text of distributed programming and capability systems [Miller 2006] as well as in the con-
text of public key infrastructures (PKIs) [Ellison et al. 1999, Ellison 1996]. The provision
of guarantees for “address ownership” (i.e., having address-device bindings that can be
authenticated) has also been a concern in the design of Mobile IPv6 (MIPv6) [Montenegro
& Castelluccia 2002]. This led the authors to opt for “statistically unique and cryptograph-
ically verifiable (SUCV) identifiers”. This is similar to one of the mechanisms we propose
in this chapter, except that we operate at the application level rather than at the network
layer, which provides us with more flexibility.

Douceur et al. described the Sybil attack as a problem that is inherent to distributed
systems using self-managed designators [Douceur 2002]. In [Marti & Garcia-Molina 2003],
the authors showed that a reputation system can efficiently leverage cooperation even
when self-managed designators are used.

5.6. Summary
The contributions of this chapter can be summarized as follows:

¢ Weidentified security threats on a self-organized cooperative backup service for
mobile devices and listed subsequent security requirements.

¢ We have shown that a reduced set of well-known cryptographic primitives
can be used to meet these requirements in a self-organized way. Our approach
differs from earlier work in that it focuses on policy-neutral security mechanisms,
rather than on a specific cooperation policy.

¢ Weproposed the use of public keys as self-managed, verifiable and unique desig-
nators for participating devices and discussed their use as a policy-neutral build-
ing block for a variety of cooperation policies, including a reputation system.
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+  Systems using self-managed designators are subject to the Sybil attack. We
discussed the impact of this attack in our context and showed how cooperation
policies can be implemented that reduce the harm that can be done.

«  We discussed implementation issues and outlined the foundations of an imple-
mentation that uses TLS with OpenPGP certificate-based authentication. This
augmentsthe storage layer implementation presented in Chapter 4 with support
for distributed storage among distrustful principals.

The next chapter describes our implementation of the cooperative backup service and
shows how the elements brought in this chapter fit in.
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S o far, several key aspects of the cooperative backup service have been discussed. This
chapter presents our implementation of the service, which draws from the results
and proposals made in earlier chapters. Our implementation seeks to be a close match to
the design goals stated in Chapter 2. It tries to closely follow the storage evaluation and
proposals given in Chapter 3 and 4 as well as the security approach from Chapter 5.

While previous chapters provided important results and proposals for all of these as-
pectsof the design, pieces are still missing tobuild a comprehensive cooperativebackup ser-
vice. This chapter aimsto fill this gap. We first provide a brief overview of our implementa-
tion. Second, high-level storage facilities that complement those discussed earlier are pre-
sented. Third, the design and implementation of the various activities of our cooperative
backup software are discussed: input data indexing, opportunistic replication, storage pro-
vision and data retrieval. Finally, a preliminary evaluation of the software is conducted.

6.1. Overview

Our cooperative backup software is written in less than 5,000 lines of Scheme code [Kelsey
etal. 1998]for GNU Guile [Jaffer et al. 1996].1t makes use of libchop, the storage layer written
in C and discussed in Chapter 4. The implementation consists of a backup daemon and a set
of clients allowing the end-user to interact with it. The daemon implements most of the
activities of cooperative backup, as they are all intimately related. These will be discussed
in Section 6.3.

The choice of the Scheme programming language [Kelsey et al. 1998] was motivated
by several aspects, beside the author’s preference. First, Scheme’s semantic clarity makes
it easier to reason on the program’s behavior, specifically when it is written in a purely
functional style. Referential transparency, for instance, as well as the use of functional
forms that combine functions to realize higher-level ones, greatly simplify the reasoning
on algorithms such as those presented in Section 6.3 [Backus 1978]. Second, Scheme’s
support for higher-order functions, i.e., functions that take functions as arguments or that
return functions, greatly benefits the flexibility of the system. For instance, most of the
algorithms used by the backup service are parameterized by predicates or functions that
implement some policy (e.g., replication policy, cooperation policy). Our goal is to provide
users with the ability to parameterize the algorithms to fit their needs, which is easily
achieved using higher-order functions.

99
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The backup daemon needs to be provided with an OpenPGP key pair upon startup.
This key pair will be used when interacting with other backup daemons, as discussed in
Chapter 5. Further interaction with the user is done through an ONC RPC client that talks
to the daemon over Unix-domain sockets. Our command-line client, called ars-command,
allows users to schedule new files for backup and to tell the backup daemon about the
IP address and port of other backup daemons. It also allows users to request synchronous
backups, i.e., to force the backup daemon to take a snapshot of their collection of files.
Users can annotate such snapshots, making it easier to look for them. This feature is
similar to the commit operation found in revision control systems, for instance.

A set of command-line tools allow for data retrieval and access to the revision history
of files. Again, these tools communicate with the backup daemon using ONC RPCs over
Unix-domain sockets. They are discussed in further detail in Section 6.3.3.

When experimenting with the software, we felt the need for the ability to visualize in-
teractions among instances of the backup daemon. To that end, we designed a journal RPC
interfacethat allowsbackup daemonstonotify some remote monitor of cooperationevents
that occur. Such events include the discovery of a participating device, the initiation or
acceptance of a connection with another device, the sending or reception of data blocksto
or from another device. Frédérick Capovilla and Guillaume Vachon implemented in Java
a graphical user interface, which we call MERLIn', that listens for such event notifications
coming from an arbitrary number of backup daemons and translates them into a concise
graphical representation. MERLIn can also record a sequence of events, along with time-
stamps, which makes it easier to understand the interactions among backup daemons.

6.2. High-Level Storage Facilities

The storage layer presented in Chapter 4 provides the basis for an atomic append-only
block store. Specifically, it allows arbitrary input data streams to be chopped into smaller
blocks where:

«  each data block is assigned a unique name or index that is used to store it to
(retrieve it from) a keyed block store;

«  suitable meta-data blocks designating the blocks that must be fetched to restore
the original data stream are created; they are stored like regular data blocks;

« finally, a single block name designating the “root” meta-data block of a data
stream suffices to restore said stream.

In addition, our implementation of this storage layer, libchop, provides support for lossless
compression, data integrity checking through cryptographic hashes, and encryption.

1 MoSAIC Event Listener and Recorder Interface
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Three components not present in this storage layer are needed by the cooperative
backup software. First, the cooperative backup software operates on files rather than on
anonymous input data streams. Thus, it needs to store information about file meta-data
.Second, as subsequent revisions or “snapshots” of each file may be created and stored lo-  file meta-data
cally during the cooperative backup process, revision meta-data must be produced. Finally, revision
a mechanism must be devised to allow full recovery to be bootstrapped. The mechanisms — meta-data
we have implemented are described below.

6.2.1. Directories

The input of our cooperative backup service is essentially a list of file names. The storage
pipeline of Chapter 4 is applied to the contents of these files’, which yields one index per
file. Each index can then be used to retrieve the contents of the corresponding file. From
the user’s viewpoint, being able to restore a file from its name, or being able to restore an
entire directory hierarchy (including proper file names) is an obvious requirement. Thus,
amapping between file names and indices must be provided. Of course, this mapping must
also be replicated, just like file contents, so that it can be restored upon recovery.

Our cooperative backup software handles this by storing and replicating the list
of file-name/index pairs. We refer to such a list as a directory. Directories do not have directory
a special status in our implementation: they are simply a textual representation of the
file-name/index pairs and are stored using the same storage pipeline as other input
data streams.

For each snapshot of the user’s data, a single directory is created. It lists all the files
and indices of the user’s files subject to backup, rather than just the files that were added or
modified since the last snapshot. The rationale is that the directory representing the last
snapshot contains all the information needed to retrieve the last version of all user files,
which allows the index of any user file to be retrieved in constant time (i.e., independently
of the number of revisions that have been stored). This approach is similar, for instance,
to the “tree” structure used by the Git revision control system [Hamano 2006].

Therefore, if a new directory is stored every time a file is scheduled for backup or mod-
ified, two subsequent directories may have a lot of entriesin common. Consequently,since
directories are to be stored using the storage layer of Chapter 4, including mechanisms pro-
viding single-instance storage, storing a new directory that is very similar to previous ones
requires little additional storage. We could imagine further optimizing sharing across sim-
ilar directories by using one data block per directory entry. However, this would increase
the amount of meta-data for each directory.

2 The components of the storage pipeline (e.g., chopper, block indexer) can be specified by the user. By default,
the backup daemon uses CHK block indexing, which providesblock encryption without being too CPU-intensive
(see Section 5.2).
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6.2.2. Revision Chains

As stated earlier, users may produce new data before previously created data has been en-
tirely replicated. Thus,the cooperative backup software needs to support some form of ver-
sioning. Namely, a new “snapshot” (or revision) of the user’s files must be created when file
contents have changed or the directory layout has been altered (e.g., new files have been
created). As we have just seen, each snapshot is represented by a new directory structure
that lists pairs of file namesand corresponding indices. In addition to directories, another
data structure allowing available revisions to be browsed appears to be essential.

To that end, we opted for a singly linked list whose head is the latest revision. Each
revision contains the index of the previous revision, the index of the directory correspond-
ing to this revision (noted root), along with meta-data describing the revision (e.g., date
of the revision, optional user-specified log message). Figure 33 illustrates the chain of re-
visions (square boxes) along with the corresponding directories (rounded boxes); for file
/src/chbouib. c, the figure also illustrates how these data structures are linked to the
stream data (i.e., file contents) and meta-data as presented in Chapter 4. Arrows on the
figure represent pointers from one data structure to another. Such pointersare actually im-
plemented as block indices as shown in Chapter 4. Our data structure for revisions is similar
to the “commit” data structure found in the Git revision control system [Hamano 2006]. It
is biased toward optimized accesses to the latest revision (i.e., the head of the list), which
is independent of the number of revisions.

6.2.3. Root Index

In Section 5.2, we already mentioned the “root block name” or “root index”. In this storage
framework, the root index is the index of the latest revision structure, represented by the
rightmost arrow, labeled “(head)”, on Figure 33. The root index is the only data structure
that needs to be modified when a new revision is created: the rest of the storage strictly
follows an append-only model. Our implementation stores the root index under a fixed
name, which allows it to be retrieved without additional knowledge about the available
snapshots. This permits recovery from a catastrophic failure.

We also mentioned in Section 5.2 that the root index is sensitive data (since it allows
all the user files to be retrieved) that needs to be protected from unauthorized access.
This is achieved by signing and encrypting it using the user’s key pair. Thus, the user’s
key pair suffices to restore all the user’s data’. Upon recovery, the root index is deciphered
and authenticated.

? Conversely, a single file inserted into the user’s block name space is accessible without knowing the user’s key
pair. However, the file’s index and encoding parameters need to be known to permit retrieval. Since block
indices such as 160-bit hashes are unguessable, this effectively provides “protection by sparsity” where knowing
a file’s root index suffices to access it [Tanenbaum et al. 1986]. File sharing scenarios could be imagined where
a principal communicates the root index of one of their files to a contributor, thereby allowing the contributor
to retrieve the file.
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root root
) 4_AJAA*previous previous (head)
date 1188917920 date 1189430254
/src/chbouib.c /src/chbouib.c
/doc/phd-thesis.skb /doc/phd-thesis.skb
>
/src/backup.scm —»> /src/backup.scm

/new-file.txt

Figure 33. Revision chains, directories and file contents.

6.3. Cooperative Backup Activities

Our backup daemon implements actual data backup (i.e., input data “chopping” and
indexing using libchop, as well as opportunistic replication), data retrieval, and storage
provision (i.e., contributing storage to participating devices). The following sections
provide an overview of the algorithms used for each of these activities.

6.3.1. Input Data Indexing and Block Queuing

As explained in Chapter 2, input data must be chopped into small blocks before it can
be transferred to contributors. This is done using a storage pipeline similar to the ones
described in Section 4.3 as far as input stream indexing is concerned, and using the data
structures described in Section 6.2 as far as file system meta-data is concerned.

Rather than waiting for a contributor encounter, our cooperative backup daemon
proceeds with input data chopping and indexing as soon as new files are scheduled for
backup or existing files subject to backup are modified. Therefore, data and meta-data
blocks that must be replicated are already available when a contributor is encountered,
allowing the daemon to quickly react to contributor discoveries. This pre-indexing of input

pre-indexing
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data is made possible by the fact that the encoding used by the storage pipeline does not
depend on the contributor that will receive the data blocks. This approach is similar to
that of Pastiche where regular file systems are layered on top of a “chunk store” that
effectively maintains a list of data and meta-data blocks to be replicated as user files are
modified [Cox et al. 2002].

The indexing process is tightly coupled with opportunistic replication. Blocks result-
ing from the indexing of new user data must be marked for eventual replication. Our
implementation achieves this by associating meta-data with each block subject to repli-
cation. This meta-data lists contributors already holding a replica (more precisely, it lists
the 20-byte OpenPGP fingerprint of each such contributor). This information is used as an
input to the opportunistic replication algorithm, as we will see later. In addition, in our
current implementation, the meta-data associated with a block also contains a “reference
counter” indicating how many times the block was referenced; this gives an additional hint
that could drive the replication algorithm (e.g., by creating additional replicas of highly-
referenced blocks). Although we have not yet implemented it, the user-defined priority or
desired level of replication of a given block could be derived from that of the correspond-
ing input file and stored alongside the other block meta-data; this would allow users to
provide hints directly usable by the replication algorithm.

Technically, keeping track of these data blocks is achieved by using an ad hoc imple-
mentation of the block_store interface presented in Section 4.3. Upon a put request,
this block store creates meta-data for the block being stored, initializing its replica list to
the empty list; if the block being stored already exists, existing meta-data is instead re-
used and its reference count isincremented. Figure 34 sketchesthis process: input filesare
chopped and indexed, which yields a set of data blocks that are named and stored, while
meta-data listing replicas for each of these blocks are created or updated.

The storage costs associated with this approach lie (i) in the fact that data blocks are
stored in a block store even though they might still be accessible in the input files and (ii)
per-block meta-data is created. The latter is a secondary concern: typically less than 100
bytes of meta-data are stored for each block, and these can be reclaimed once the block
has been sufficiently replicated (since this information has become useless).

The former effectively consumes as much storage space as the sum of input files. Du-
plicating data locally allows the recovery of data from transient failures (e.g., accidental
deletion of a file) to be carried out locally, which can be a useful feature. From an engineer-
ing viewpoint, storage overhead appears to be less of concern as storage becomes cheaper.
Recent version control systems such as Git [Hamano 2006], for instance, achieve better
bandwidth-efficiency by systematically storing complete repositories (i.e., the complete
revision history of a set of files) locally.

Peer-to-peer file sharing systems such as GNUnet [Bennett et al. 2002] sometimes
allow users to avoid this overhead by simply storing file names and performing file
chopping and indexing on-demand. However, this approach shifts the indexing burden to
contributor-encounter time, which sounds risky in a context where encounters are unpre-
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Local Block Store

1234..
1a3d..
block indexing and storage caf3..
f2e4..

Input Files

chbouib.c chopping . E

phd-thesis.skb @ w—data creation

backup.scm
%

Local Block Information
1234.. — replicas: home, laptop
la3d.. — replicas: (none)
caf3.. — replicas: laptop
f2e4.. — replicas: Bob,home

Figure 34. Queueing data blocks for replication.

dictable and short-lived,; it is also wasteful CPU-wise since indexing has to be done every
time a contributor is encountered.

More importantly, such on-demand indexing is fragile when applied to mutable data:
a file could be modified before all the blocks of its previous version have been replicated,
and the replication algorithm would have no option but to replicate the new blocks, leaving
the previous version partially replicated. Figure 35illustratesthe problem: two versions of
a given file are created and chopped, one of which has root block R, while the next one has
root block R,. The right-hand side of the figure shows two possible replication strategies,
labeled A and B: A is based on on-demand indexing, while B is based on pre-indexing and
replicates each version entirely. At some point in time, represented by the vertical dashed
line, the input file is modified, yielding the version rooted at R,. The pre-indexing strategy
(B) succeeds in replicating the first file version entirely in 7 steps, whereas on-demand
indexing (A) fails to complete the replication of any of the two versions in the same
amount of time. Thus, should the device crash at that time, the user would be unable to
recover any version of the file. Overall, we believe the benefits of pre-indexing and local
duplication of data blocks are worth the additional storage cost.

This analysis prompts another observation: replication strategies also have to makea
tradeoff between data freshness and data availability. Figure 36 compares pre-indexing and
on-demand indexing in a situation where both versions of the file at hand noticeably over-
lap. While one-demand indexing (A) succeeds (by chance) in replicating the latest version,
pre-indexing (B) “only” replicates the old version in the same amount of time. Neverthe-
less, pre-indexing and local duplication of data blocks allow the implementation of both
strategies. A carefully crafted replication algorithm on top of pre-indexing may be able to
choose the best strategy in both situations, e.g., conservatively choosing strategy B when
there is little overlap between versions (as in Figure 35) and privileging data freshness by

data freshness
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Figure 36. Tradeoff between data freshness and availability.

choosing strategy A when there is noticeable overlap (as in Figure 36). We have not yet de-
signed and implemented such an algorithm, though.

6.3.2. Opportunistic Replication

We consider two aspects of opportunistic data replication: replication strategies and related
algorithms, as well as contributor discovery.

6.3.2.1. Replication Strategies

With the block queuing mechanism we just described, opportunistic replication is essen-
tially a matter of traversing the list of block meta-data structures and selecting blocks for
replication upon contributor encounter. Several replication strategies that use the available
per-block information can be devised. First, per-block replication decisions are easily ex-
pressed as a function of a block’s meta-data and the name of the device (OpenPGP finger-
print) whose contribution is being considered. One simple, obvious per-block replication
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strategy is: donot send ablock toa contributor if the contributor is known to already hold
a copy of the block. Such a strategy can be augmented, for example, as follows: store at
least n different replicas of the block at n different contributors.

In addition, per-device strategies can be defined to decide whether to entrust a
particular device with copies of the owner’s data blocks. Such strategies are expressed by
a function of the device name that returns a boolean indicating whether the device should
be accepted as a contributor. This function will usually rely on additional information
associated with the device name, such as records of past interactions with that device, as
suggested in Chapter 5. An obvious strategy would be to reject contributions of devices
that failed to honor their storage commitments in the past. Another strategy is to avoid
significant imbalance between the amount of data sent to a contributor and the amount
of data stored on its behalf, so that the contributor has an incentive to behave correctly. A
smart strategy could adjust the number of replicas needed for a block as a function of the
level of trust in each contributor holding a replica. For instance, if two replicas have been
distributed but the contributors holding them are strangers, it may be worth distributing
at least one additional replica.

Our implementation allows both per-block and per-contributor replication strategies
tobedefined. The chosen functional programming language lends itself well to the flexibil-
ity required by the variety of strategies we want to support: users can supply arbitrary pro-
cedures (actually, closures [Saltzer 1978]) to be used as the per-block or per-device strategy.
Figure 37 shows Scheme functionsimplementing a per-block and a per-contributor replica-
tion predicate: the former ensures that any given block remains candidate for replication
until it hasbeen replicated at least twice, while the latter makes sure that a candidate block
is not sent to a peer that is known to already hold a replica of this block*.

The resulting replication algorithm, parameterized by the two aforementioned
predicates, is shown in Figure 38. We assume a block-sent primitive that sends the given
block to the given remote store, and returns updated block information, i.e., augmenting
its list of replicas if replication succeeds. blocks-replicated-to-server iteratesover
a list of blocks, using the predicates to select blocks candidate for replication and sending
them. It returns an updated list of blocks: the list of replicas of blocks actually replicated
is augmented, while others are left unchanged. Finally, replicated-blocks iterates
the above process over a list of remote stores and returns an updated list of blocks®. This
algorithm is O(nm), where n is the number of blocks and m the number of contributors.

*In Scheme [Kelsey et al. 1998], let introduces local bindings. For instance, (let ((a 2)) body..) binds
variable a to value 2 in the following body. Also,member is a standard procedure that returns true when its first
argument is present in its second argument (a list).

® Note that map is a standard procedure that applies its first argument (a procedure) to each element of its second
argument (a list), and returns the list of results [Kelsey et al. 1998]. Likewise, fold is the fundamental list
iterator, which invokes its first argument (a two-argument procedure) for each element of its third argument
[Shivers 1999].
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(define (candidate-block? block)

(let ((replicas (local-block-info:replicas block)))
(<= (length replicas) 2)))

(define (candidate-block-for-peer? block peer-fpr)

(let ((replicas (local-block-info:replicas block)))
(not (member peer-fpr replicas))))

Figure 37. Example per-block replication strategy.

(define (block-sent remote-store block)

)

(define (blocks-replicated-to-server remote-store blocks)

(map (lambda (block)
(if (and (candidate-block? block)
(let ((fpr (store-fingerprint remote-store)))
(candidate-block-for-peer? block fpr)))
(block-sent block remote-store)
block))
blocks))

(define (replicated-blocks remote-stores blocks)

(fold blocks-replicated-to-server
blocks
remote-stores))

Figure 38. Simplified view of the replication algorithm.

As an optimization, replicated-blocks is passed the list of blocks already satisfying
candidate-block?,and said list of blocks is cached in core memory.

6.3.2.2. Contributor Discovery

storage providers  Our backup daemon treats all storage providers (i.e., contributors or other entities imple-
menting the block-store RPC interface seen in Section 4.3.3) in the same way. It can be
provided with a static list of IP addresses of storage providers, which allows it to connect
to remote storage providers on the network when it is connected to a network infrastruc-
ture. In particular, the Internet-based block store that ultimately receives data blocks from
contributors and data owners can be specified this way. The backup daemon periodically
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attempts to connect to these known storage providers. When the network environment
makes it possible (e.g., when connected to an infrastructure), it replicates data to them.

For storage providers that are fully trusted by the data owner (e.g., the Internet-based
store, the owner’s store at their office or home computer), owners may want to specify
a suitable replication strategy that stops replicating blocks that have been sent to one
such storage provider. This allows the Internet-based store to be handled in an elegant
way, without requiring explicit support: only the replication needs to be tailored to take
advantage of the fact that it is trusted, while the replication mechanisms remain oblivious
to the special-casing of the Internet-based store.

Contributors can also be discovered dynamically, e.g., in the neighborhood of a device
while it is in ad hoc mode. To that end, our implementation uses DNS-SD-over-mDNS as the
service discovery protocol (SDP) [Cheshire & Krochmal 2006a], specifically the Guile/Scheme
programming interface of the Avahi library [Poettering 2006, Courtés 2007]. The protocol
was primarily designed for decentralized service discovery among desktop computers. No
central server is required, making it suitable to ad hoc networking and particularly easy
to deploy. However, DNS-SD was not designed with the constraints of mobile devices and
wireless ad hoc networks in mind and may be less bandwidth- and energy-efficient than
SDPs specifically designed for MANETS [Sailhan & Issarny 2005, The UbiSec Project 2005,
Helmy 2004, Poettering 2007, Kim et al. 2005]. Nevertheless, experimental measurements
suggest that mDNS is relatively accurate and energy-efficient, and small improvements
were identified that would make it even more suitable to the mobile context [Campo &
Garcfa-Rubio 2006]. Given that few MANET-specific SDP implementations are available, we
considered DNS-SD/mDNS a good choice for practical service discovery in MoSAIC.

Concretely, Avahi implements DNS-SD (DNS Service Discovery) over mDNS (Multicast
DNS), a decentralized version of DNS. As the name implies, mDNS is an extension to DNS
(the Domain Name System) that allows DNS queries to be sent over IP multicast, rather than
through unicast communications with a specific server [Cheshire & Krochmal 2006b].
Multicast DNS clients (known as queriers) send DNS queries to a given multicast IP address,
where each query may contain multiple questions. Clients may also perform continuous
monitoring (e.g., to provide users with an accurate list of all currently available printers) by
sending queries at an exponentially-decreasing rate®.

Multicast DNS “servers” (known as responders) answer via multicast’ with records for
which they are authoritative. Answers contain a time to live (TTL) indicating for how long
the answer is valid. Clients are expected to re-issue queries at 80% of the answer’s lifetime
if they still have interest in it. Upon startup and subsequent connectivity changes, respon-
ders may make an initial announcement of records that are responsible for (by sending a

¢ Multicast DNS makes provisions to limit bandwidth consumption. For instance, when a querier sends a query
to which it already knows some answers, it indicates these answers as part of its query, which allows responders
to just send information that suffice to update the querier’s cache.

7 That responders answer via multicast allows passive observers (queriers) to update their cache.

service discovery
protocol
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gratuitous DNS answer), and they must detect and resolve collisions with names for which
they are responsible, using the specified collision resolution protocol. Optionally, respon-
ders may send “goodbye packets” to explicitly inform clients of the unavailability of a re-
source. Finally, mDNS describesa power management framework whereby a Sleep Proxy Ser-
vice answers queries on the behalf of a device that entered a low-power mode, optionally
waking up the device when a client requests an active connection to it.

DNS-SD, on the other hand, can be seen essentially as a “convention for naming
and structuring DNS resource records” [Cheshire & Krochmal 2006a]. It provides a hier-
archical naming scheme for service types, akin to the DNS naming scheme. For example,

_http._tcp designates the “web server” service type, which operates over TCP, while
_workstation._tcp designates the pseudo-service “workstation”, which allows users to

browse neighboring devices.

Avahi contains a system-wide mDNS querier/responder that sends queries and an-
swers on behalf of client applications, which provides a system-wide cache and allows
for query aggregation, thereby improving bandwidth efficiency, as noted in [Cheshire &
Krochmal 2006b]. 1t provides an easy-to-use service browsing and resolution programming
interface, along with a service publication interface, which relieves applications from the
details of the protocol. For instance, applications can create a service browser for a given
service type; during the browser’s lifetime, an application-provided call-back is invoked
any time a new service is discovered or a formerly advertised service has disappeared.

Our backup daemon advertises its presence through Avahi, using the _block-serv-
er._tcp service type. Beside the IP address and port where the service can be used, adver-
tisements may include the daemon’s OpenPGP fingerprint (in additional ‘TXT’ records, in
DNS terminology). When they have pending data blocks to replicate, backup daemonsreact
to advertisements by selecting a subset of the available devices and by replicating data
blocks to them. The ability to advertise the OpenPGP fingerprint of participating devices
allows backup daemons to select contributing devices without having to connect to them,
i.e., without having to go through a TLS handshake with them, which optimizes CPU and
network usage. Again, users can provide the daemon with a predicate indicating whether
a given device should be rejected as a contributor.

Finally, block replication is also systematically triggered when new data blocks are
available for replication, i.e., when a file indexing and block queuing process finishes. In
that case, it tries to replicate data blocks to all available storage providers, both statically
registered and dynamically discovered.

6.3.2.3. Owner Data Replication

One of our design goals, outlined in Section 2.3, is to have contributorsreplicate data blocks

stored on behalf of data ownersto an Internet store. As mentioned earlier, our backup dae-
mon does not differentiate between Internet-based storage providers and contributors.
Thus, as for the statically registered storage providers, our backup daemon needs to period-
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ically probe the Internet-based store and, when it is reachable, send it data blocks stored
on behalf of data owners that have accumulated. Replicating owner data to an Internet
store consists in traversing the list of per-owner stores (which will be discussed in Section
6.3.4), sending each data block they contain and removing them afterwards (since they can
be considered “safe”, as seen in Chapter 3).

However, to date, we have not implemented this functionality. The consequence is
that data can only be recovered directly from the contributors that received data blocks in
the first place. This is a serious shortcoming for many mobile scenarios, which we hope to
fix soon. Nevertheless, the data recovery mechanisms discussed later in Section 6.3.3 are
suitable, no matter whether the above replication scheme is implemented or not.

6.3.2.4. Adapting to the Network Connectivity

Practical mobile peer-to-peer computing raises the question of control over the available
networking devices. While the peer-to-peer service (in our case, the backup daemon) may
seek to achieve certain goals in terms of connectivity, device users, on the other hand, may
have different, conflicting goals. For instance, the backup daemon would naturally try to
maximize contributor encounters, regardless of the connectivity. At the same time, the
user may want to use their device for unrelated purposes, e.g., accessing a web site. When,
e.g., Wi-Fi is being used, situations could arise where the backup daemon gets the most
benefit from using the Wi-Fi interface in ad hoc mode, while the user would rather use it in
infrastructure mode to connect to the wireless local-area network.

Should the backup daemon or should the end-user have precedence over the network-
ing device usage? There is no single answer to this question. Most likely, some form of
resource multiplexing could help both parties share the underlying networking devices.
MultiNet/VirtualWifi offers one possible solution by providing a network card driver that
virtualizes the underlying network card, thereby allowing simultaneous connections to
several Wi-Fi networks [Chandra et al. 2004]. The Penumbra broadcast-based network pro-
poses another approach whereby traffic dedicated to peer-to-peer transactions is broad-
casted in a device’s neighborhood, while still allowing for regular Wi-Fi traffic at the same
time [Green 2007].

To some extent, networking device multiplexing remains an open issue. We did not
address it in the first iteration of our cooperative backup software. Instead, we let users
choose the networking mode of their networking card. The backup daemon remains
oblivious to the networking connectivity, and adapts to the current network conditions
like any other regular IP-based application.

6.3.3. Data Retrieval

Upon recovery, recovery applications request a series of blocks through get RPCs (Section
4.3.3). The first block they request is the one containing the root index and stored under a
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fixed name, as seen in Section 6.2.3. Once it has been retrieved, the revision pointed to by
this block is retrieved (Section 6.2.2). This allows users to know the date of the snapshot
they are about to recover from. Although our recovery application does not currently
permit it, it would be possible to allows users to choose whether or not wait for a more
recent revision.

Data retrieval is implemented using the local block store discussed earlier as a cache.
Of course, upon recovery from a catastrophic failure, the local block store will be empty.
When a data block is requested by a data recovery tool through a get request, it first
queries the local block store to see if a copy is available locally. If it’s not, it then queries
backup daemons at neighboring devices or statically registered storage providers by
forwarding them the request as a get RPC; if the request succeeds, it populates the local
block store for faster access upon future reference. Thus, blocks that are referenced more
than once to restore a file system hierarchy (e.g., due to single-instance storage) are made
available more quickly.

Note that this corresponds to the general case of data recovery from several storage
providers, in ad hoc mode. Our main scenario, where data owners recover their data by
querying a single store reachable on the Internet (Section 2.3), can be thought of as a
special case: provided the Internet-based store uses the same protocol as contributors,
it just needs to be specified explicitly to the backup daemon and will automatically be
queried upon recovery. Also, remember that, to be able to send get requests to storage
providers, the backup daemon must have access to the key pair that was used at backup
time (Section 5.3.2).

Because data retrieval requires access to data structures handled by the backup
daemon (e.g., the local block store and the static storage provider list), this functionality is
implemented in the daemon itself, thereby avoiding concurrent access to these data. The
daemon exposes it to recovery tools by listening to regular block-store RPCs on a named
Unix-domain socket (raw RPCs are used, i.e., without TLS). Therefore, recovery tools can
benefit from the daemon-implemented block caching and contributor discovery without
having to duplicate it.

In addition, the daemon caches on a per-client basis TLS connections to remote
daemons that were opened as a result of a cache miss. The list of cached connections is
ordered by storage provider successrate: storage providersthat successfully answered the
most get requests appear first. This allows series of get requests not satisfied by the local
cache toberapidly forwarded to storage providers that have succeeded in the past, thereby
making full data recovery faster.

We have implemented a small set of client recovery tools. The first one, called ars-
1s, shows the contents of the directory pointed by the last revision. ars-retrieve re-
trieves the latest available version of the given file or the exact specified revision. Finally,
ars-lookup traverses the revision chain, showing the index and modification time of a
given file every time a directory that introduces a new version of the file is encountered®.
These clients all use the daemon-implemented recovery RPC interface.
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6.3.4. Storage Provision

Backup daemons also listen for TLS connections over TCP from other daemons and serve
put and get RPCs. Daemons can thus act as contributors, handling storage and retrieval
requests from their peers. As discussed earlier in Section 5.2, contributors implement
per-owner name spaces, so that the blocks names of different data owners do not collide.
This is achieved by locally maintaining per-owner stores designated by the owner’s
OpenPGP fingerprint. Upon a successful TLS handshake, the backup daemon opens the
peer’s block store, and subsequent put and get RPCs operate on this store.

A contributor can choose to reject storage requests from a data owner, for instance
because it does not have sufficient resources, or because of specific knowledge it has about
the data owner. The latter can only be done after a successful TLS handshake, when the
contributor has the OpenPGP key of the data owner. Again, users can provide the backup
daemon with a predicate telling whether a request coming from a particular device should
be honored. Such predicates can make use of different kinds of information, allowing a
wide range of cooperation policies to be defined.

Among those mentioned in Section 5.3.5, the simplest kind of cooperation policy that
may be implemented would be some form of white list or black list: the cooperation pred-
icate just needs to check whether the device’s OpenPGP key is part of one of these lists.
More sophisticated policies seeking to allow cooperation with personal acquaintances or

“friends of friends”, as in [Hubaux et al. 2001], are also easily implementable in this frame-

work: such an implementation would traverse the certificate graph rooted at the request-
ing peer’s OpenPGP certificate until it finds a signature of its own.

Cooperation predicates may also use information such as the amount of data already
stored on behalf of the requesting device. This allows, for instance, the implementation
of a policy that only dedicates small amounts of storage to strangers. A contributor could
implement a symmetric trading policy by having its cooperation predicate return true
only if the amount of data stored by the requesting peer on its behalf is comparable to
the amount of data already stored on behalf of the requesting peer’. Note that the success
of such a policy would be limited to scenarios where the set of relationships among
participating devices is relatively stable.

Another useful source of information that may drive the cooperation decision
process is data describing the resources available on the device. Excess-based resource
allocation [Grothoff 2003] is implemented by a cooperation predicate that follows the
following rules:

® From a programming viewpoint, revision chains are conveniently exposed as streams, a lazy list-like data
structure.

° Our implementation currently makes it hard to obtain the amount of personal data stored by a given
contributor since the whole list of local block meta-data (Section 6.3.1) needs to be traversed. Future versions
may either explicitly store that information or use a relational database that would allow the list of block
meta-data to be queried according to various criteria.

per-owner name
spaces

cooperation
policies
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1.  if large amounts of storage and energy are available, honor storage requests, up
to a certain threshold;

2. intimes of resource shortage, honor requests based on past behavior, e.g., stor-
ing data only on behalf of nodes known to be well-behaved, good contributors.

In the context of mobile devices, all practical cooperation predicates would need to take
local resources into account in a similar way.

As mentioned in Chapter 5, cooperation policies that make use of past records of
behaviors could be devised. These would require an accurate observation of contributor
behavior. For instance, based on local knowledge, each backup daemon could maintain
a “trust level” for each encountered contributor. In the retrieval process (Section 6.3.3),
successful get RPCs could lead the daemon to increase its trust level in the contributor.
However, we have not implemented such cooperation policies so far.

6.4. Experimental Measurements

This section describes preliminary measurements conducted on our current implementa-
tion of the backup daemon. We first present our experimental setup and methodology and
then discuss the results.

6.4.1. Experimental Setup

The following experiments were run using our current version of the backup daemon and
related tools on a PC equipped with a 1.8 GHz Intel Pentium M processor and 1 GB of RAM.
The backup daemon uses our latest version of libchop. In addition, the following libraries
and tools were used:

+  GNUGuile1.8.2;

+  Avahi0.6.20 and Guile-Avahi 0.2;
. GnuTLS 2.0.0;

. GNU Guile-RPC0.2.

Obviously, some of the performance characteristics measured will be highly dependent on
the performance of third-party toolsthat we use, most notably the Scheme interpreter and
the ONC RPC and TLS implementations. Likewise, there is a lot of room for optimization
in our backup daemon at this stage. Nevertheless, the following measurements should
provide useful preliminary insight into the system’s performance.

It is important to note that the put RPC is implemented as “one-way” RPC in our dae-
mon: the server does not send any reply for this RPC and the client does not have to wait
for areply. This saves the round-trip time that characterizes “regular” RPCs, and allows for
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batching of RPC calls, as noted in Section 7.4.1 [Srinivasan 1995]. In addition, for the exper-
iments described below, our backup daemons use RSA OpenPGP keys, which allows them
to use the TLS_RSA_WITH_NULL_MDS5 cipher suite for communications [Dierks et al. 2006],
i.e., an encryption-less cipher suite, as suggested in Section 5.4.

We use the libchop storage pipeline for file indexing, using a tree stream indexer and a
CHK block indexer (see Section 4.3), using Blowfish as the encryption algorithm and SHA-1
hashesasencryption keysand block IDs. All the experimentsuse a fixed-size chopper;they
do not use any lossless compression filter. We use TDB databases [Tridgell et al. 1999] for
the on-disk storage of the data blocks and block queue.

6.4.2. Indexing and Replication Performance Breakdown

The purpose of this experiment is to provide a breakdown of the time spent by each com-
ponent of the backup daemon in a typical use case. The experiment works as follows:

1. We start two backup daemons on the same machine without any state, with an
empty block store, etc.'°

2. At some point, usually less than a couple of seconds after startup, backup
daemons automatically discover each other (using Avahi).

3. The first backup daemon is instructed to schedule files for backup, using the
ars-command client, while the second backup daemon is left “idle” (it does not
have any file to back up).

4.  Assoon as its done indexing the files and queuing the resulting blocks (Section
6.3.1), the first backup daemon automatically starts replicating the queued
blocks at the second backup daemon (Section 6.3.2).

The file set scheduled for backup is the Ogg Vorbis file set of Section 4.4 (Figure 26), which
contains 17 files of 4 MB on average, totalling 69 MB.

The first backup daemon logs cooperation events (storage provider discovery,
connection to a storage provider, notification of the end of a data exchange) to a separate
Jjournal process, using the journal RPC interface (Section 6.1). As discussed in Section 6.3.2,
replication is normally triggered by three events:

«  Whennew datablocks are available, i.e., after completion of each instance of the
file indexing process.

. When a contributor is discovered.

19 Each backup daemon is provided with an OpenPGP key pair along with ready-to-use TLS Diffie-Hellman (DH)
and RSA parameters. Without this, each backup daemon would generate DH and RSA parameters lazily, which
takes time.
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«  Periodically, if statically registered storage providers are reachable.

Therefore, indexing and replication are likely to occur concurrently, making it hard to
measure the time spent in each on of these two activities.

To allow separate execution time measurement of file indexing on one hand and
replication on the other, we slightly modified our backup daemon such that replication is
only triggered at the end of the indexing process. We use time stamps associated with the
events logged by the backup daemon to measure the time taken to index files as well as the
time taken to replicate blocks'.

Figure 39 shows the performance of the backup daemon with varying block sizes.
Several conclusions can be drawn:

«  The overall throughput is between 188 KB/s and 436 KB/s, depending on the
block size. The replication throughput alone, on the other hand, varies between
264 and 522 KB/s.

«  Indexing is between 5 and 2.5 times faster than replication in this context.

«  The figure clearly shows per-block overhead, both for indexing and replication.
Total execution time grows sub-linearly with respect to the number of blocks'.

For comparison, copying the same files over SSH" takes around 10 seconds, which
corresponds to 7 MB/s. We believe several factors justify the relatively poor throughput:

¢ Our daemon follows a two-stage process, where the results of the first stage
(indexing) are written to disk before being fetched back from disk and used
by the replication process. The performance of the underlying store (a TDB
database in our case) is critical here. Unfortunately, TDB does not maintain an
in-memory cache of recently accessed data items, and it writes changes to the
database content to disk after each put operation*.

«  Although the list of blocks candidate for replication is cached, traversing it
certainly incurs some overhead.

! Time stamps provided by the journal allow us to measure real execution times, as observed by users, as opposed
to the time actually spent in the process and/or OS kernel.

12 The total size of all blocks (not shown here) is almost unchanged as the block size varies, so the overhead is
really a function of the number of blocks, not of the total size.

1 Remember that both the client and server run on the same machine. Note that the SSH protocol provides
end-to-end encryption and uses HMACs for communication integrity checks. We used the client and server
that come with GNU Ish 2.0.2.

1t is possible to instruct TDB not to force writes to disk using the TDB_NOSYNC flag, but doing so relaxes
transactional semantics, which we want to avoid.
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Figure 39. Performance breakdown of the backup daemon with the Ogg Vorbis file set.

+  Wesuspect our ONC RPC implementation to be responsible for a large part of the
poor communication performance (it is written in interpreted Scheme code).

+  Toachieve concurrency of the various activities, our backup daemon uses corou-
tines scheduled cooperatively rather than preemptive multi-threading®. While
the costs associated with this mechanism are low compared to OS-implemented
context switches, repeated switches may affect performance.

Further profiling is needed to confirm these hypotheses.

Figure 40 shows the measurements obtained for the same experiment with the Lout
file set (see Figure 26 for details). We observe the similar characteristics as noted earlier
with a slightly higher throughput, ranging from 313kB/sto572kB/s. Another observation
is that a larger fraction of the total execution time is spent in indexing, which is a direct
consequence of the reduction of the number of blocks yielded by single-instance storage.

6.4.3. Data Recovery Performance

The experiment presented here aims to stress-test our data recovery process described
in Section 6.3.3, illustrating recovery of data scattered around several storage providers,
and to measure its performance. To that end, an experimental environment is set up
as follows:

> The implementation leverages Scheme closures to realize coroutines. The backup daemon runs its own
scheduler that dispatches execution to coroutines and 1/0 event handlers. Essentially, any routine whose
execution may need to be broken up into several pieces (e.g., because its execution would preclude event
handling for too long) is written in continuation-passing style (this strategy avoids the costs usually associated
with call/cc [Kelsey et al. 1998]). This allows the execution of return continuationsto be deferred until some
later time.
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Figure 40. Performance breakdown of the backup daemon with the Lout file set.

1. A fresh environment for the backup daemon that will be used for recovery is
created—this daemon plays the role of the data owner. Its local block store is
empty, as is the case when recovering from a catastrophe.

2. The collection of files we want to recover is chopped and indexed. The resulting
blocks are spread over several backup daemons. More precisely, each backup
daemon’s per-owner database corresponding to the data owner is populated
with all the blocks of one file'®, This simulates a situation where all blocks are
replicated once, and where contributors do not fail and are not malicious.

3. Another process then asks the data owner daemon to recover said files, just like
the ars-retrieve tool does. Since it does not have any of the requested blocks,
the daemon is expected to query storage providers it has discovered.

Of course, this experiment allows us to check whether this key functionality actually
works. That service discovery works well is critical for this experiment, since failure to find
all contributors leads to a recovery failure.

For the following measurements, we used the Ogg Vorbis file set. Since it contains
17 files, the experiment spawns 17 contributor daemons and 1 data owner daemon. We
ran the experiment with varying block sizes to observe, as earlier, the impact of the block
count on performance. In all cases, the data owner was able to recover all 17 files. During
the process, it initiates 17 TLS sessions with contributors, which it caches, as described in
Section 6.3.3.

16 Distributing blocks this way simplifies the experiment. Shuffling blocks among daemons would be possible,
although it would likely not significantly change the outcome of the experiment.
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Figure 41. Time to recover files from the Ogg Vorbis file set.

Figure 41 shows the time taken to recover all 17 files as a function of the block size
(each slice of the bars represents the time taken to recover one file):

¢ Again,weobserve per-block overhead, with execution time increasing sub-linear-
ly with the number of blocks.

«  Throughput varies between 23 KB/s and 127 KB/s, depending on the block size.

Throughput is two orders of magnitude lower than with the SSH client, although the
comparison is a bit unfair since the latter performs one-to-one data transfers. Most of the
explanations given earlier remain valid here.

In addition, it is worth noting that our current prototype does not batch get RPCs.
Consequently, both the recovery client and the owner daemon end up fetching blocks one
by one, waiting for each get RPC to complete; this also magnifies the performance impact
of our ONC RPC implementation. Definitely, some form of batching must be implemented
to improve performance. Doing so would require changes in libchop’s architecture so that
tree indexers can take advantage of an mget (“multiple get”) primitive or similar.

Another possible optimization would be to use IP multicast or similar techniques to
send out get requests, where possible. This would eliminate the probing period where the
daemon sendsa get request successively to each contributor until one replies successfully,
and might even allow for some degree of parallelization. However, TLS sessions would still
need to be established with contributors for accountability purposes (Chapter 5), which
may limit the performance benefit.
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6.5. Summary

The key points brought by this chapter are the following:

We showed how results and proposals from earlier chapters could be put
together in an actual implementation of the cooperative backup service.

Data structures that complement the storage facilities of Chapter 4 were pre-
sented.

Algorithms used for opportunistic replication, data retrieval, and storage
contribution were detailed.

We discussed the parameterization of these algorithms and proposed actual
policies.

Preliminary experimental results were shown, which allowed us to identify
aspects of the implementation and protocol that need to be optimized.

The outcome of this work is a flexible cooperative backup tool that is readily usable in a
number of contexts.
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ependability of mobile devices has become an increasingly important topic. The

times where people worked on a single, fixed machine have gone. It has become
commonplace to produce data using a variety of mobile devices: PDAs, cell phones,
cameras, etc. Ultimately, users expect to be able to “synchronize” data among their
devices: data has become mobile as well. Yet, few fault-tolerance mechanisms are
available to guarantee the availability of data produced on mobile devices, and existing
mechanisms are often restrictive from the end-user viewpoint, for instance because of
their reliance on a network infrastructure.

In this dissertation, we tried to address this problem, stating that it should be feasible
to improve the dependability of mobile computing devices by leveraging opportunistic
cooperation among such devices. To that end, we sketched a cooperative backup service for
mobile devices, which we call MoSAIC. We explored the design space of such a service in
several directions, focusing on issues not addressed by similar services in infrastructure-
based contexts. The following section summarizes our approach and contributions. We
then discuss research perspectives based on lessons learnt during this effort.

7.1. Summary and Contributions

The design of a cooperative data backup service requires the exploration of a variety of
different domains. While we did not explore all the issues that relate to this goal, we tried
to explore several different tracks, namely: the dependability of such a service (Chapter
3), distributed storage techniques suitable for data fragmentation-redundancy-scattering
(Chapter 4), core mechanisms allowing for secure cooperation among mutually distrustful
devices (Chapter 5). We then outlined our implementation of the proposed service that
builds on this work (Chapter 6). For each of these domains, our contributions can be
summarized as follow.

Analytical dependability evaluation. We proposed a model of the cooperative
backup process based on Petri nets and Markov chains, along with a methodology for the
dependability evaluation of the cooperativebackupservice. Weidentified scenarioswhere
our cooperative backup scheme is beneficial, and showed that MoSAIC can decrease the
probability of data loss by a factor up to the ad hoc to Internet connectivity ratio. A compar-
ison of replication techniques based on erasure codes and simple replication techniques,

121
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where each data item is replicated in its entirety, showed that erasure coding improves

data dependability only in very narrow scenarios. To our knowledge, while similar tech-
niques have been used in the Internet-based peer-to-peer context, no such evaluation had

been carried our in a mobile data context.

Distributed storage techniques. We identified key requirements of the storage
layer of our cooperative backup service, namely: storage efficiency, scattering of small
data blocks, backup atomicity, protection against accidental and malicious data modifica-
tions, encryption, and backup redundancy. We analyzed techniques described in the liter-
ature that meet these requirements. We described our flexible storage layer implementa-
tion, named libchop, and used it to carry out an experimental evaluation of combinations of
several storage techniques. The evaluation focuses on the storage- and CPU-efficiency of
each combination. We concluded on the most suitable combination of storage techniques
for our use cases. Our effort differs from earlier work on the evaluation of storage tech-
niques in that it is constrained by the mobile context. In particular, network partitioning
and the unpredictable connectivity that characterize it must be addressed.

Secure cooperation. The service we proposed is one in which anyone is free to par-
ticipate, without having any prior trust relationships with other participants. Threats to
cooperation and security were identified. Accountability was suggested as a key require-
ment to address them. We proposed a set of self-organized, policy neutral security mecha-
nisms, based on the use of self-managed, unique and verifiable designators for devices. We
showed how selected self-organized cooperation policies from the literature, such as rep-
utation systems, could be implemented on top of these mechanisms. Using self-managed
designators makes the service vulnerable to Sybil attacks; consequently, we studied the
impact of such attacks in our contexts and showed how cooperation policies can be imple-
mented to reduce their impact. We outlined an implementation of these core mechanisms
using standard protocols, namely TLS with OpenPGP-based authentication. Our approach
differs from related work on self-organized cooperative systems in that it focuses on low-
level policy-neutral primitives rather than on cooperation policies.

Implementation. Finally, our implementation of the cooperative backup service
was depicted, building upon the results and proposals of earlier chapters. Additional
storage facilities complementing those studied earlier were described. We described the
algorithms and techniques used for opportunistic replication, data retrieval and storage
contribution, and discussed their parameterization. The cooperative backup is readily
usable in a number of contexts, not limited to mobile devices'. Preliminary performance
measurements were shown, which allowed us to identify aspects of the implementation
and protocol requiring optimization. The end result is a practical cooperative backup tool
readily usable in several different contexts, including the mobile context.

! For instance, it may be used on a local area network, as well as over the Internet, with a few limitations, though
(e.g., service discovery is limited to LANs or wireless LANs and networking technicalities such as NAT traversal
are not implemented).
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7.2. Lessons Learnt and Perspectives

Although different aspects of the design of the cooperative backup service have been
considered, one cannot help thinking about other aspects that have been insufficiently
covered, or about further exploring each particular aspect. In the sequel, we try to provide
insight into possible research directions that would complement our work.

Dependability evaluation. Our evaluation work could be augmented in several
ways. First, replication strategies based on so-called rate-less erasure codes could be mod-
eled and evaluated. Rate-less erasure codes allow the production of an unlimited number
of distinct fragments, out of which any k suffice to recover the original data [Mitzenmach-
er 2004, Morcos et al. 2006]. Their use could also be evaluated with little impact on our
model, for instance rate-less codes could be approximated by choosing higher values of
parameter n.

Second, the worst case time to backup (e.g., the 90t percentile of the time-to-backup
probability distribution) could also be evaluated. This would be a useful metric in cases
where the data being backed up can easily be recreated by the user: it allows users to
know whether it is worthwhile waiting for the backup or whether they would be better off
recreating the data. It would also permit the estimation of the global storage usage for a
given data production rate.

Storage techniques. Future work on the optimization of the storage layer may
concern several aspects. First, the energy costs of the various design options need to be as-
sessed, especially those related to the wireless transmission of backup data between nodes.
The hardware-level approach to measurements of the data compression and transmission
energetic costs taken in [Barr & Asanovic 2006] looks promising, although hard to setup
and very device- and implementation-dependent. An alternative, higher-level approach
could devise and use a model of the energy consumption of the CPU/memory and network-
ing interface. Second, we suggested in Section 4.2.6 that erasure coding could be used both
as a chopping algorithm and redundancy technique on input streams themselves rather
than on data blocks, presumably with a positive impact on data dependability. Such an
approach needs to be implemented and evaluated as well. The latter can be achieved by
extending our Petri net model from Chapter 3. Third, it seems likely that no single config-
uration of the backup service will be appropriate for all situations, so dynamic adaptation
of the service to suit different contexts needs to be investigated.

We mainly evaluated compression techniques that operate on arbitrary octet streams.
Compact encoding of structured data, on the other hand, isa promising approach,as demon-
strated by the XMill XML compressor [Liefke & Suciu 2000] and application-specific com-
pact encodings such as [Eisler 2006]. Using knowledge of the data structures they manip-
ulate, such approaches have more opportunities for compression. Furthermore, compact
encodings are often already provided by applications or run-time systems themselves [Bo-
brow & Clark 1979]. Therefore, better cooperation with applications and run-time systems
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would help improve support for data backup. The large body of work on automated data
serialization and on persistent systems provides practical ways to achieve this.

Secure cooperation. Chapter 5 proposed core mechanisms to help achieve ac-
countability in a self-organized fashion. Such mechanisms are a basic requirement and
we showed that higher-level cooperation policies could be built on top of them. Simple
cooperation policies can be readily implemented in the framework of our backup daemon.
More complex strategies such as a reputation system would need additional support, most
notably a protocol to exchange reputation data among participants that use the policy.
However, we did not attempt to implement and evaluate cooperation policies themselves.

There has been a large amount of work on the evaluation of cooperation policies.
Most of them were done through simulation, although some of them were done through
large-scale software deployment, notably in the peer-to-peer area [Locher et al. 2006]. We
chose not to impose any cooperation policy. Thus, an evaluation would need to account of
the coexistence of several, potentially significantly different cooperation policies. To our
knowledge, little work has been done in this direction.

Implementation. We implemented a cooperative backup daemon that provides
the major functionalities we had in mind: opportunistic data replication upon contributor
discovery, and data retrieval from available contributors. One missing piece is replication
(e.g., to an Internet-based store) of data blocks stored on behalf of data owners. The algo-
rithms we implemented can be easily parameterized, e.g., by providing custom replication
predicates. So far, we did not make full use of the flexibility offered. Future work could
consist in implementing and evaluating various replication strategies and cooperation
policies.

Our preliminary performance evaluation allowed us to pinpoint performance bottle-
necks, which we plan to address. Other evaluations would need to be made, e.g., evalua-
tions focusing on data dependability rather than throughput. However, such experiments
appear to be hard to design. Finally, we believe that a good evaluation of the proposals
made in this dissertation would be an actual deployment of the software. This would pro-
vide better insight into its strengths and weaknesses, from a practical viewpoint. Eventual-
ly releasing it as Free Software may help, although it would obviously take more than this
to actually deploy it.

7.3. A Look Forward

Cooperative backup is not a novel idea in itself. However, it had never been applied to
the mobile context, which noticeably constrains its design compared to its peer-to-peer
Internet-based counterpart, as we saw. However, there has been significant work on dis-
tributed file systems, file sharing, and cooperative caching in the context of mobile ad hoc
networks. To some extent, this work shares a common goal with our cooperative backup
service: making data accessible from anywhere, as transparently as possible,and optionally
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allowing for data sharing among users. Ubiquitous data accessibility, e.g., through sponta-
neous caching, is an important goal: often, mobile devices are actually used as a cache, but
users currently often end up synchronizing devices manually, through ad hoc methods, de-
pending on the devices, data types, etc. A unified and possibly transparent way to handle
this is needed.

At first sight, this goal may seem different from that of (cooperative) backup.
However, cooperative backup can also be seen as a generalization of such forms of caching:
replicating among the user’s own devices effectively provides similar caching and allows
for ubiquitous data access—and of course, it also increases data availability by leveraging
third-party devices.

We also noticed that a large body of work on mobile distributed file systems or caches,
targeting scenarios with intermittent connectivity at best, bear some similarity with
version control software, and in particular distributed version control. In effect,some form
of versioning facilities are usually needed to deal with disconnected operation and the
creation of diverging replicas, including the ability to merge changes that were made to
replicas. We believe that this convergence of goals calls for a unification of the distributed
caching, backup and version control approaches. Indeed, as each of these fields matures,
it appears to duplicating efforts made in one of the others.

While targeting cooperative data backup for MANETS, we also found ourselves doing
work similar to approaches in the networking area, namely delay-tolerant networks
(DTNs). Our cooperative backup approach—replicating data items at intermediate nodes so
that they eventually reach some Internet-based store—can also be seen as a communication
and routing problem, as in DTNs. The networking viewpoint offered by the DTN literature
is enlightening in that respect. With intermittent connectivity patterns becoming more
common, DTNs may reflect a growing need. We believe more replication strategies of our
cooperative backup service could be inspired by work on routing in DTNs. Similarly, our
work can probably contribute to the state of the art in routing strategies for DTNs.

In hindsight, there are many different ways to look at our cooperative backup ap-
proach. Future work would benefit from a higher-level, more unified view of the problems
we are trying to solve.
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Layer Implementation

his appendix highlights key aspects of the libchop distributed storage library. We
first present its reflective programming interface and then show how various
features were implemented by taking advantage of it.

A.1. Reflection and Polymorphic Constructors

The representation of indices as shown in Figure 43 illustrated the basic introspection capa-  introspection

bilities built in libchop. Basically, libchop is implemented according to the object-oriented
paradigm where, in addition, classes are reified at run-time. This allows programs to look
up classes by name'. When retrieving data from a serialized index, this greatly facilitates
the construction of the necessary retrieval pipeline, as illustrated earlier.

Besides, reflection also allowed for the implementation of virtual constructors, some-
times referred to as factories or as the prototype pattern [Gamma et al. 1995]. In practice,
virtual constructors allow different but related classes to provide a common constructor,
such that all of them can be instantiated by invoking the same generic constructor.

Figure 42 provides an example of how thisis can be used in practice. Here, all compres-
sor classes (aka. “zip filter” classes) inherit from the chop_zip_filter_class_t class,
which itself inherits from the canonical class type, chop_class_t. This example shows
how to instantiate an arbitrary zip filter from the name of a class: the class is looked up
and, if found and proved to be a zip filter class, it is instantiated.

The construction of a retrieval pipeline from the serialized index, as discussed above,
builds on this feature. It also enables rapid adaptation to different configurations, as is
the case for the set of experiments described in Section 4.4. Unit tests were also easily
extended to support all implementations of a given interface, thereby providing good test
coverage at little or no cost.

! To that end, a perfect hash table that maps class names to class objects is created at compilation-time using
GNU Gperf. This makes class lookup O(l), allowing it to be used in a wide range of contexts.
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const chop_class_t *zip_class;

zip_class = chop_class_lookup ("lzo_zip_filter");
if ((zip_class != NULL) &&
(chop_object_is_a ((chop_object_t *) zip_class,
&chop_zip_filter_class)))

{
chop_filter_t *zip_filter;
zip_filter = chop_class_alloca_instance (zip_class);
err = chop_zip_filter_generic_open ((chop_zip_filter_class_t *) zip_class,
CHOP_ZIP_FILTER_DEFAULT_COMPRESSION,
0, zip_filter);
if (err)
exit (1);
else
{
X
}
else
{
exit (2);

Figure 42. Example use of introspection and polymorphic constructors in libchop.

A.2. Stand-Alone Tools

Our library comes with several stand-alone tools. The main one is chop-archiver. It
provides a command-line interface to the complete storage and retrieval pipelines. The

-archive option instructs it to process an input file with the storage pipeline, eventually
storing it as a set of blocks in a block store. The -restore option instructs it to restore a
data stream by fetching and reassembling its constituting blocks.

In addition, thanks to the aforementioned reflective capabilities of the libraries, the
tool offers command-line options to select the block store, indexer, block indexer and
chopper classes to be used (illustrated in Figure 43, see below). It can also be used to access
both a local block store or a remote block store, as described in Section 4.3.3.

The chop-block-server tool is a server implementing the block store RPC inter-
face. It handles put and get requests by forwarding them to a local, on-disk store. Note
that it is a very simple implementation, as it does not offer all the possibilities of our back-
up daemon (see Section 6).
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A.3. Serialization of Meta-Data Root Indices

As mentioned earlier, the storage process returns an index that may be used to retrieve
the stored data. Figure 43 shows serialized forms of such indices as printed by the chop-
archiver tool: the first invocation uses a hash block indexer, while the second uses an
integer block indexer. Those indices contain all the information necessary toretrieve the
data: it liststhe indexer, block fetcher and corresponding index classes that should be used
for recovery, along with the actual index in serialized form; in the first case, that index isa
160-bit SHA-1 hash whereas in the second case it is a 32-bit integer. Upon retrieval, all the
necessary classes can be looked up and instantiated from the serialized forms in the serial-
ized index. This allows the creation of a complete suitable retrieval pipeline directly from
the serialized index.

When filters are used, e.g., by means of a filtered input stream or filtered block
store, neither the filter name nor the mere fact that a filter was used appears in the re-
sulting index. This is because the use of filters is transparent to the storage (and retrieval)
pipeline. Thus, users must arrange to use the same filters upon retrieval as were used at
storage-time.
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$ chop-archiver -i hash_block_indexer -I shal \
--archive phd-thesis.skb
tree_indexer:hash_block_fetcher:hash_index_handle:64: 3580d046..b797228d16/26

$ chop-archiver -i integer_block_indexer -b 1024 \
--archive britney.mp3
tree_indexer:integer_block_fetcher:integer_index_handle:64::0000001a

(stream_indexer sub-class | | tree_indexer instance/\
J

[sub-classes of block_fetcher and index_handlej [root block indexj

Figure 43. ASClI-serialized index produced by libchop’s storage process.
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Sauvegarde coopérative de données pour dispositifs mobiles

Cooperative Data Backup for Mobile Devices

Theése de Doctorat

Ludovic Courtes

Résumé

Les dispositifs informatiques mobiles tels que les ordinateurs portables, assistants person-
nels et téléphones portables sont de plus en plus utilisés. Cependant, bien qu’ils soient
utilisés dans des contextes ot ils sont sujets a des endommagements, a la perte, voire au
vol, peu de mécanismes permettent d’éviter la perte des données qui y sont stockées.
Dans cette thése, nous proposons un service de sauvegarde de données coopératif pour
répondre a ce probléme. Cette approche tire parti de communications spontanées en-
tre de tels dispositifs, chaque dispositif stockant une partie des données des dispositifs
rencontrés. Une étude analytique des gains de cette approche en termes de stireté de
fonctionnement est proposée. Nous étudions également des mécanismes de stockage
réparti adaptés. Les problémes de coopération entre individus mutuellement suspicieux
sont également abordés. Enfin, nous décrivons notre mise en oeuvre du service de sauveg-
arde coopérative.

Mots-clef :stireté de fonctionnement, informatique ubiquiste, sauvegarde de données,
systemes pair-a-pair

Summary

Mobile devices such aslaptops, PDAs and cell phones are increasingly relied on but are used
in contexts that put them at risk of physical damage, loss or theft. However, few mech-
anisms are available to reduce the risk of losing the data stored on these devices. In this
dissertation, we try to address this concern by designing a cooperative backup service for
mobile devices. The service leverages encounters and spontaneous interactions among
participating devices, such that each device stores data on behalf of other devices. We first
provide an analytical evaluation of the dependability gains of the proposed service. Dis-
tributed storage mechanisms are explored and evaluated. Security concerns arising from
the cooperationamong mutually suspicious principalsare identified,and core mechanisms
are proposed to allow them to be addressed. Finally, we present our prototype implemen-
tation of the cooperative backup service.

Keywords: dependability, ubiquitous computing, data backup, peer-to-peer systems



