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Comprendre le Web caché

Understanding the HiddenWeb

Pierre S

Résumé

Le Web caché (également appelé Web profond ou Web invisible), c’est-à-dire la partie du Web qui n’est pas
directement accessible par des hyperliens, mais à travers des formulaires HTML ou des services Web, est
d’une grande valeur, mais difficile à exploiter. Nous présentons un processus pour la découverte, l’analyse
syntaxique et sémantique, et l’interrogation des services du Web caché, le tout de manière entièrement
automatique. Nous proposons une architecture générale se basant sur un entrepôt semi-structuré de contenu
imprécis (probabiliste). Nous fournissons une analyse détaillée de la complexité du modèle d’arbre probabiliste
sous-jacent. Nous décrivons comment une combinaison d’heuristiques et de sondages du Web peut être
utilisée pour comprendre la structure d’un formulaire HTML. Nous présentons une utilisation originale des
champs aléatoires conditionnels (une méthode d’apprentissage supervisé) de manière non supervisée, sur
une annotation automatique, imparfaite et imprécise, basée sur la connaissance du domaine, afin d’extraire
l’information pertinente de pages de résultat HTML. Afin d’obtenir des relations sémantiques entre entrées
et sorties d’un service du Web caché, nous étudions la complexité de l’obtention d’une correspondance de
schémas à partir d’instances de bases de données, en se basant uniquement sur la présence des constantes
dans ces deux instances. Nous décrivons enfin un modèle de représentation sémantique et d’indexation en
compréhension de sources du Web caché, et débattons de la manière de traiter des requêtes de haut niveau à
l’aide de telles descriptions.

Abstract

�e hidden Web (also known as deep or invisible Web), that is, the part of the Web not directly accessible
through hyperlinks, but through HTML forms or Web services, is of great value, but difficult to exploit.
We discuss a process for the fully automatic discovery, syntactic and semantic analysis, and querying of
hidden-Web services. We propose first a general architecture that relies on a semi-structured warehouse of
imprecise (probabilistic) content. We provide a detailed complexity analysis of the underlying probabilistic
tree model. We describe how we can use a combination of heuristics and probing to understand the structure
of an HTML form. We present an original use of a supervised machine-learning method, namely conditional
random fields, in an unsupervised manner, on an automatic, imperfect, and imprecise, annotation based
on domain knowledge, in order to extract relevant information from HTML result pages. So as to obtain
semantic relations between inputs and outputs of a hidden-Web service, we investigate the complexity of
deriving a schema mapping between database instances, solely relying on the presence of constants in the
two instances. We finally describe a model for the semantic representation and intensional indexing of
hidden-Web sources, and discuss how to process a user’s high-level query using such descriptions.

Mots clefs : Web caché, Web profond, bases de données, extraction d’informations, complexité
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Introduction

Access to Web information today primarily relies on keyword-based search engines. �ese search
engines deal with the surface Web, the set of Web pages directly accessible through hyperlinks,
mostly ignoring the vast amount of information hidden behind forms, that composes the hidden
Web (also known as deep Web or invisible Web). �e topic of this thesis is the automated exploitation
of hidden-Web resources, and more precisely the discovery, analysis, understanding, and querying
of such resources. Clearly, this goes way beyond the scope of a single PhD thesis and we shall
not provide a complete answer. We present a general framework and propose solutions to some
particular issues raised by the exploitation of the hidden Web.
In Chapter , we introduce a general framework for understanding the hidden Web. Our focus is

on fully automatic systems, not requiring any human intervention. As the problem of understanding
hidden-Web resources is without doubt AI-complete, we limit our interest to a specific application
domain relying on available domain-specific knowledge. Our approach is content-centric in the sense
that the core of the system consists of a content warehouse of hidden-Web services, with independent
modules enriching our knowledge of these services so they can be better exploited. For instance, a
module may be responsible for discovering new relevant services (e.g., URLs of forms); another
one of analyzing the structure of forms; etc. �ese different “agents” are then combined into a
workflow∗ that is described in Chapter . Specific aspects of these agents are described in subsequent
chapters. An important functionality, that of discovering relevant services, is only briefly discussed
in Section .. of Chapter . Such services can be obtained, for example, by querying search
engines or by focused crawling.
Most of the ideas presented in this thesis have been implemented in prototype systems. To validate

the approach and test the systems, we used the research publication domain. We use here this same
application to illustrate our work. It should be stressed that the ideas and software can be used in
any application domain, assuming that some domain knowledge is available in a standard form we
shall discuss.
�e data that we handle is typically rather irregular and often tree-structured. It is thus natural

to use a semi-structured data model; we use XML since it is a Web standard. �e different agents
that cooperate to build the content warehouse are inherently imprecise (since they typically involve
either machine-learning techniques or heuristics, both of which prone to imprecision). �us we use
a probabilistic XML content warehouse that is queried and probabilistically updated by the different
agents. �e probabilistic XML model is described in Chapter . We introduce prob-trees as regular

∗Although the workflow is presented as sequential, one can typically improve the quality of the analysis of services by
using more complex workflows. To simplify, this will be ignored here.
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Introduction

trees annotated with conjunctions of independent random variables (and their negation). We show
how to evaluate efficiently queries and updates in this model and describe an implementation
that supports it. We also investigate a number of important theoretical issues about prob-trees
and discuss variants of the model. Note that although development of this prob-tree model was
motivated by our hidden-Web setting, it is actually quite general and can be applied in a different
context.
Consider a service of the hidden Web, say an HTML form, that is relevant to the particular

application domain. To understand its semantics, a first step is the analysis of the form, i.e., the
structure of the service inputs. �is is considered in Chapter . We use some heuristics to associate
domain concepts to form fields, and then probe these fields with domain instances to confirm or
infirm these guesses. �e core of the validation consists in techniques for distinguishing between
result pages and error pages. We show quite satisfactory experimental results on search forms for
research publications.
�e next step is to extract information from the results of the form, HTML pages. We describe

in Chapter  how supervised information-extraction techniques such as conditional random fields
can be used in an unsupervised manner, with the help of domain knowledge. A gazetteer annotates
result pages with domain concepts (based on available domain instances that are recognized). �is
annotation, that is both imprecise and incomplete, is used for bootstrapping the machine learning
process.
As a result of these two steps, we understand the structure of the inputs and that of the outputs of

the form (with some imprecision of course). It is then easy to wrap the form as a standard Web
service described in WSDL.
It is then necessary to understand the semantic relations that exist between the inputs and outputs

of a service. �is issue is considered in Chapter . To simplify, the focus is on a relational setting. We
introduce a theoretical framework for discovering relationships between two database instances over
distinct and unknown schemata. �is framework is grounded in the context of data exchange. We
formalize the problem of understanding the relationship between two instances as that of obtaining
a schema mapping (a set of sentences in some logical language) so that a minimum repair of this
mapping provides a perfect description of the target instance given the source instance. We show
that this definition yields “intuitive” results when applied on database instances derived from each
other by basic operations (selections, projections, joins, and so forth). We study the complexity
of decision problems related to this optimality notion in the context of different logical languages
(e.g., full acyclic tuple-generating dependencies). For this particular problem, our contribution is
strictly theoretical; practical tools based on these ideas are left for future work.
At the end of the analysis phase, we have obtained a number of Web services whose semantics

is explained in terms of a global schema that is application-specific. In Chapter , we discuss the
semantic model and the definition of services using a logical Datalog-like notation that takes into
account the types of inputs and outputs, relations between them and nestedness of outputs of a
service. We show how to answer queries using hidden-Web services. �is leads us to studying the
problem of answering queries using views in a LAV (Local As View) setting, with binding patterns
restrictions of source accesses.
To summarize, we highlight the three main contributions of our thesis:

. A general framework for understanding the hidden Web in a fully automatic, unsupervised,
manner, and in particular ways to discover the structure of a form and of result pages, and to
represent semantically analyzed services of the hidden Web (see Chapters , , , and ).

. A probabilistic tree model with query and update capabilities, with a theoretical study and an





implementation (see Chapter ).

. A theoretical framework for discovering schema mappings from database instances, along
with a detailed complexity analysis (see Chapter ).

Appendix A is a translation into French of the introduction, Chapter  and conclusion of this
thesis. It includes an English-to-French lexicon of technical words and phrases used in this thesis.
Finally, we mention in Appendix B other works we performed during the time of the thesis that
have no direct relation with the hidden Web.
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Chapter 

General Framework

Since its creation in , the World Wide Web has considerably grown, with today a size of several
billions of freely accessible Web pages. But this number only covers the surface Web, i.e., the Web
pages accessible by following hyperlinks. A large part of the information on the Web may also be
found in the hidden Web, also known as deep Web or invisible Web, that provides entry points to
databases accessible via HTML forms or Web services. (In the remaining of the thesis, we use the
term service (of the hidden Web) generically for both.) A  study [Bri00] estimated the data in
the hidden Web to be about  times that of the surface Web. If such measures are debatable, it
is on the other hand unquestionable that with information of the best quality (e.g. Yellow Pages
services, U.S. Census Bureau), the hidden Web is an invaluable source of information.
We shall describe, in this chapter, a general, unsupervised, fully automatic, framework for un-

derstanding the services of the hidden Web. �is approach relies on (i) modules that accomplish
various tasks, from the discovery of relevant sources to the analysis of the semantics of such sources
and their indexing; (ii) a content-centric architecture, where modules interact with a probabilistic
XML content warehouse. We consider here an intensional approach, rather than an extensional one.
By this, we mean that we do not aim at retrieving and storing all the information lying in services
of the hidden Web, but at indexing the services themselves so as to answer a user’s high-level queries
by forwarding the queries to the relevant services, translating them to the expected inputs of each
service and integrating the result of the services.
To illustrate, let us consider a Web user interested in available options for a particular car. A tra-

ditional search engine would typically return a set of HTML Web pages, e.g., from the maker’s
Web site. Our goal is a system that would discover (ahead of time) that a particular form provides
such information and, at query time, would fill in the form and retrieve the precise answer. Such a
semantic interpretation of the hidden Web requires the discovery, analysis and indexing of hidden-
Web resources. It requires combining techniques from a number of fields and in particular, machine
learning, databases and linguistics.
�is is obviously a very broad and difficult problem, especially since we look for an unsupervised

approach. An important assumption is thus that we are interested in services relevant to a given
domain of interest, for which we have some domain knowledge, in a specific form that we describe in
Section .. Clearly, with human providing feedback, supervised techniques can go further toward
a better understanding of the Web. But the kind of unsupervised approach we propose (i) is useful
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at least as a first step, before human intervention; (ii) is often the only one available for applications
when human resources cannot be used; (iii) is essential if we want the system to adapt to the scale
and diversity of the Web, as well as its dynamism.

�is chapter focuses on the general framework, while subsequent chapters will describe in more
detail some of its components. We first discuss relevant work on the hidden Web itself and its
analysis in Section .. Our framework is then presented in Section .. We introduce the kind of
domain knowledge we consider in Section ., before describing the different components of our
architecture in Section ., especially those that will not be presented in a subsequent chapter.

. RelatedWork

.. The HiddenWeb

�e terms hidden Web [RGM01], deep Web [Bri00], invisible Web [RH05] have been used in the
literature to describe more or less the same thing: the part of the World Wide Web which is not
accessible through hyperlinks, and that is typically constructed from databases. Both terms hidden
and invisible insist on the inaccessibility of this information to search engines, while deep insists
on the fact that the information lies in databases behind forms, and requires deeper crawls than
the usual surface crawls of search engines. [Bri00] actually makes the analogy between finding
information on the Web and sea fishing: while one can harvest some fish by remaining at the surface
with shallow fishing, a lot more fish is available in the sea depths. Strictly speaking, it would perhaps
be more appropriate to use the phrase deep Web in this thesis, rather than hidden Web, since we
typically focus on databases accessible through forms, whose content may or may not be available
on the surface Web—most commercial databases of products, for instance, present their content
in a fully browsable form, in order to bring search engine visitors to their Web site. We chose,
however, to use hidden Web to highlight the fact that understanding the hidden Web in such a
way is overcoming the limitation of classical search engines. Besides, hidden Web is a much more
mysterious phrase that is bound to cause interrogations from neophytes, and, for some reason, Web
caché sounds much nicer thanWeb profond in French.

A  study from the company BrightPlanet [Bri00] has had much impact on the development
of research about the hidden Web. �is study uses correlation analysis between search results of
different search engines to estimate the size of the hidden Web; they find that it contains between
, and , Web databases, with around  times more content than the surface Web. In
other words, the largest part by far of the content present on the Web is not exploitable by classical
search engines! Although this kind of estimation is by nature quite imprecise, other more recent
works [CHL+04, HPZC07] confirm this order of magnitude with another estimation approach
(random sampling of IP addresses) and come up with a number of around , databases
(this takes into account the growth of the Web between the times of the two studies). Moreover,
even directories that are specializing in listings databases on the Web—a large list of these is given
in [RH05]∗—have poor coverage of the services of the hidden Web (% at best, cf. [HPZC07]).
�is is a clear motivation for systems that discover, understand and integrate hidden-Web services.

∗Such directories only list databases, they do not provide ways to query them from a common interface or to integrate
their results.
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.. Systems for Exploiting Information of the HiddenWeb

A survey of a number of systems that deal with services of the hidden Web can be found in [RH05].
Two different approaches exist: extensional (retrieving information from the hidden Web and
storing it locally to process it), or intensional (analyzing services to understand their structure, store
this description, and use it to forward users’ queries to the services). �e framework presented in
this thesis is an instance of this second kind. We discuss next both approaches. Only complete
systems for dealing with the hidden Web are presented; more specific works are discussed in further
sections and chapters when relevant.
One of the first practical works on the hidden Web [RGM01] follows the extensional strategy:

HW is a general system for representing forms and mapping their fields to concepts (relying heavily
on human annotation), so as to retrieve result pages that are cached in a local index. It is interesting
to note that this extensional approach is favored by researchers from the leading search engine
Google [Goo] in [MHC+06] (the authors call it a surfacing approach) for domain-independence,
effectiveness and efficiency issues, even though most semantics are lost in the process, and this puts
a heavy load on the source that is entirely siphoned.
Most active research about the intensional indexing of the hidden Web [HC03, HMYW04,

WYDM04, ZHC04, CHZ05, ZHC05, WDYM05, WDY06, CCZ07] comes from a group at
University of Illinois at Urbana-Champaign, with some external collaborations, especially with
Binghamton University. Two systems that have been developed in this context are MQ

and WISE-I. �e aim is, as in our case, to discover and integrate sources of the hidden
Web, to query them in a uniform way. �ere is a strong focus in these works on schema matching
between different sources. MQ [HC03, CHZ05] uses a holistic approach, that is, match-
ing a number of different sources at one, rather than one source with another. In particular, the
global schema is typically not predefined but derived from a clustering of the fields from different
sources. �ese works essentially focus on the analysis of the syntax of the form and the discovery of
concepts in its different fields (some recent works [WDYM05, CCZ07] also deal with the analysis
of the response pages). It is actually quite complicated to understand the relations between all
previously cited papers, but [CHZ05] comes the closest to a high-level view of the entire system.
We shall discuss some of these works further in subsequent chapters.

. Framework

We describe our general framework. A simplified functional architecture is shown in Figure ..
�e components will be detailed in Section .. �e different steps are:

. Services of interest are first acquired from the hidden Web (cf. Section ..).

. �e syntax of these services is analyzed. �is also implies a mapping between inputs and
outputs of services on one hand, and concepts of the domain of interest on the other hand
(cf. Section ..).

. �e semantics of relations between inputs and outputs of hidden-Web services is then investi-
gated (cf. Section ..).

. Once the semantics of a service is fully understood, it is indexed. �is index serves to
answer high-level queries that are asked directly in the language of the domain ontology (cf.
Section ..).
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Figure .: Process for understanding the hidden Web
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We have implemented a system along these lines. Some of the components are still being developed.
We shall briefly discuss how these components work together in the conclusion of this thesis.

�e general process described in Figure . can be seen as the collaboration of independent agents
such as crawlers or information extractors manipulating (inserting, modifying) information about
the hidden Web in a common warehouse. �e information obtained by most of these modules is
imprecise. For instance, the probing module may determine that some field in a form represents a
person’s first name, with some confidence level. Also, the provenance of the information is often
important, for example to explain how a particular piece of data has been obtained. Finally, note
that the process is shown in Figure . as rather sequential for presentation purposes, whereas, in
reality, it is not. For instance, information obtained by natural language processing techniques
during semantic analysis may turn useful to improve the quality of wrappers induced in a previous
step.

Module  Module  Module 

Update interface Query interface

Probabilistic XML warehouse

Update
operation

+ confidence
Query Results

+ confidence

Figure .: Warehouse of imprecise data

One could use a “workflow” approach to manage the collaboration of the various agents. Since their
numbers and their roles are not fixed and their sequencing quite complex, we prefer to use a content-
centric system, as shown on Figure .. So we follow an approach in the style of [ANR05]. More
precisely, the system is built on top of a content (semi-structured) warehouse, with querying and
updating capabilities supporting imprecise information and provenance. Probabilistic information
is stored in the warehouse and confidence tracking is directly provided through the query and
update interfaces. Each query result and update operation comes with confidence information.

�e model supporting this imprecise semi-structured warehouse, prob-trees, is described in Chap-
ter . It is based on the use of probabilistic event variables associated to nodes of the data tree. �e
prob-tree model is complete (all combinations of possible worlds can be represented as a prob-tree),
concise (for instance, the size of the representation grows linearly when imprecise nodes are in-
serted) and supports a powerful query language (tree-pattern queries with join), as well as arbitrary
sequences of insertions and deletions.
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. Domain Knowledge

We present in this section the domain knowledge that we need to describe a specific domain of
interest. We stress that all techniques described in the thesis, although they are illustrated with
the example of the research publication domain, can be applied on any domain, provided that the
necessary knowledge described here is given.
�e needed domain knowledge can be decomposed into two different parts: a domain ontology

and domain instances.

Domain ontology. �e domain ontology is formed of a set of concept names, organized in a directed
acyclic graph (DAG) of IsA relations, and a set of relation names, along with their arity and
type (the type of an n-ary relation R is an n-ary tuple of concept names). More formal
definitions are provided in Chapter . A subset of the set of concept names is distinguished
as the set of concrete concepts (concrete concepts are the ones for which instances exist, cf. the
following).

Thing

Publication

ConfPaper

JournalArticle

OtherPublication

Person*

Author*

Title*

Event

Conference*Journal*

Date*

HasTitle (Paper , Title )

PublishedIn (Paper , Date )

WrittenBy (Paper , Author )

PublishedInJournal(JournalArticle, Journal )

PublishedInConf (ConfPaper , Conference)

Figure .: Simple ontology for the research publication domain

To illustrate, consider our ontology for the research publication domain given in Figure ..





. Domain Knowledge

IsA relations can be read as follows: a ConfPaper is a Publication, that is a Thing. Neither of
these are concrete concepts, contrarily to Title (asterisks denote concrete concepts). Besides,
the relation name HasTitle defines a binary relation between an instance of the Paper concept
(or of one of its subsumed concepts) and an instance of the Title concept.

Such ontologies are simple examples of ontologies that are for instance used in the Semantic
Web. �ey are typically expressed in standard languages such as RDF Schema [W3C04a] or
OWL-Lite [W3C04b]∗.

Domain instances. We deal here with concrete representations (as strings) of concrete concepts.
Observe for instance that the strings June 2007 and 07/06 may both stand for the same
instance of a Date concept. Domain instances are character strings that stand for instances of
the concrete domain concepts. More specifically, for each concrete concept c, we need the
following:

• words used in the concept instances, with an approximate frequency distribution;

• an approximative probabilistic model of instances of the concept, that is, a way to assign
some probability that a given string represents an instance of c.

At the minimum, we need a list of strings that represent concept instances for each concept.
�e most basic way to get these two pieces of knowledge is then to do the following:

• take a representative set of words appearing in these strings, with their corresponding
frequency, as the approximate frequency distribution;

• for each given string s, if s may stand for an instance of concepts c1 . . . cn, assign 1/n as
the probability that s stands for an instance of each concept ci.

Let us insist on the fact that we only need approximations of these frequency distribution
and probabilistic model. For some concepts, we may provide a more elaborate description
(see below for concepts of our example ontology), but it is not expected, in any case, to
provide a perfect description of concept instances. We discuss in Chapter  how to use word
frequencies to understand the structure of an HTML form, and in Chapter  how to use the
probabilistic model to extract information from result pages to a form.

Let us describe the domain instances that we use in the case of the research publication
domain. We downloaded the content of the DBLP [Ley] database, as an XML file, from
http://dblp.uni-trier.de/xml/ and we used it to generate our domain instances:

• For the concepts Title, Journal, Conference, we used the basic technique described
above.

• For the Date concept, we provide a specific entity recognizer (in the form of a set of
regular expressions describing monthly or yearly dates).

• For the Author concept, we extracted first and last names fromDBLP person names with
some heuristics, and use regular expressions describing the ways to recombine first names
and last names (forming this way Abiteboul, Pierre Abiteboul, Abiteboul Pierre,
Abiteboul Pierre Paul or Abiteboul, Pierre with various probabilities, from the
last name Abiteboul and the first names Pierre and Paul).

∗Both RDF Schema and OWL only consider binary relations, whereas we deal with relations of arbitrary arity, though
binary relations are the most commonly occurring ones. Note that n-ary relations can be encoded into binary relations
using reification if need be.
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For the last two cases, probabilities associated with a regular expression are chosen in a quite
ad hoc way. Ideally, they should come from statistical evaluation on large corpora.

�is form of knowledge (domain ontologies, with a concept DAG and typed relations, and domain
instances, with a frequency distribution of words and a probabilistic model for each concrete concept)
is all that is used by the different modules described in this thesis. It is possible, though, that some
steps of the process that we do not provide a system for (especially, service acquisition and semantic
analysis) require additional knowledge (for instance, keywords related to the domain of interest or
linguistic description of relation names).

. Modules of our Framework

We describe here the different modules shown in Figure .. Some of them are the topic of separate
chapters.

.. Service Acquisition

�e first phase of the process is to acquire information. �e acquisition of information comes first
from publication by users. �e system also acquires information using search engines or by crawling
the Web. �e system is primarily interested in:

• HTML forms [W3C99]; these are extremely used and millions may be found on the Web.

• Web services [W3Ca]; one finds them typically in UDDI registry entries. �eir description
is usually given in WSDL [W3C01]. More and more are found on the Web.

�e system is also interested in extensional resources, such as XML and HTML documents
containing useful information. Because the focus is on the hidden Web, extensional information is
not of primary concern here. Still, it should be possible to import such sources into the system.
Furthermore, as we shall see in Chapter , documents are useful for bootstrapping the use of services.
It is important to note that we are interested in services providing information such as the DBLP

Web site and not concerned with services with side effects such as booking services or mailing-list
management interfaces. In particular, the Internet Standard on HTTP . [IET99] states that the
HTTP GETmethod should be side-effect free, and this rule is in general followed. So forms with the
GET method are typically acceptable. On the other hand, HTML forms using the POST method
are often used for side effects. Note, however, that this is not always the case. �erefore, when
we crawl the Web to discover services, we have to detect services with side effects to exclude them
and it is not easy to do so. We shall have to rely on heuristics such as avoiding services requiring
the input of an email-address, a credit-card number, or a password (unless this service has been
explicitly declared by a user of the system).
As already mentioned, we are only interested in services relevant to some domain of interest. If, for

instance, we crawl the Web to discover services, we must “focus” the crawl to the domain of interest;
this kind of focused crawling of the World WideWeb has been studied in [CvdBD99,DCL+00]. An
interesting approach to the specific problem of focused crawling for discovering forms is presented
in [BF05]. �e authors combine classical focused-crawling techniques, with a page classifier for
the domain of interest, with two sources of feedback that help controlling it: a form classifier that
checks whether a form is of interest, and a link classifier that considers features of the history of the
links followed to get to the current page (the assumption is that there are distinguishing features in
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the path followed from, say, a Web site root page, to a database search form). �e authors show that
this allows to discover hidden-Web databases with less crawling resources than either full crawls or
generic focused-crawling techniques. Note, however, that all three classifiers must be trained with
annotated examples of pages, forms, and link paths.
Services of interest may also be obtained by querying general search engines with domain keywords.

For instance, the queries “publication database” or “publications advanced search” already return
services highly relevant to the research publication domain. Directories of online databases may
also be of use, though we already noted that their coverage is quite low.
�e acquisition of sources of information relevant to a domain of interest from the hidden Web is

not one of the step of the process that we specifically worked on. So the topic will not be detailed
in this thesis.

.. Syntax Analysis and Concept Mapping

Once services are identified, their structure have to be understood, in order to be able to effectively
use them. By structure, we mean the kinds of inputs and outputs expected and produced by each
service, the way to provide the service with these inputs, as well as the way to retrieve the outputs of
a service. A related issue is that of mapping inputs and outputs to the concepts of our ontology.
Indeed, as we shall see, we need to perform both steps at the same time in the case of HTML forms.
Let us first consider Web services, where the problem is easier. A WSDL description of a Web

service is a formal description of the kinds of inputs expected by the service, and the outputs
it returns. �e names of inputs and outputs, however, are arbitrary, and may not have direct
relations with the domain concepts. Mapping concepts to these names is an example of a schema
matching problem; we do not bring any direct contribution to this topic, and we refer the reader to
[RB01] for a survey of automatic schema matching techniques. Another source of information is
the concrete (XML Schema) types of the inputs: a “\(\d{3}\) \d{3}-\d{4}” regular expression
probably represents a telephone number, whereas an xs:date simple type represents a date.
Consider next HTML forms. Here, the structure of both the form itself and of result pages

(which have to be generated by probing the form, i.e., submitting it with some filled-in values)
must be understood. Note that it is thus necessary, in order to obtain the result pages, to have
some understanding of what concepts the fields of the form map to. In other words, structural
analysis and concept mapping must be performed at the same time. We present a two-step process
for solving this problem:

. Chapter  shows how to use some heuristics to map concepts of the domain ontology to the
fields of a form, and to confirm these annotations by probing these fields.

. Chapter  presents an approach to the extraction of information from result pages; a gazetteer
annotates the page with instances of the domain concepts, and this imprecise and incomplete
annotation is generalized as the input of a machine-learning–based wrapper-induction system.

.. Semantic Analysis

A service, with its syntactic description, must be semantically analyzed in order to understand the
semantic relations between its inputs and outputs; the aim is here is to express the semantics of the
service in a formal way.
We present in Chapter  a semantic model for describing services. �e way to get this semantic

description from services, however, is quite complex. In some domains, there are few ambiguities:
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for instance, in the domain of research publications, if we have the concepts Title, Person, Journal
and Date, it is most likely that the title Title is that of an article written by the person Person in a
journal Journal published at the date Date. �is is not necessary however: the date could be the
date of last change of the publication, and the person could be the editor of the journal. Other
domains may cause even more elaborate issues. Consider for instance a genealogy database. Here, it
is very important to know if the relation FatherOf is between P and P′ or between P′ and P. Tools
at our disposal to solve these issues are basic natural language processing techniques or keyword
selection in the description of the service, for instance in the form page itself or in pages pointing
to this page.
Our contribution to this problem lies in the theoretical framework described in Chapter . We

present there how the notion of optimal relationship between database instances can be formalized.
�is part of our work did not lead to any direct implementation.

.. Indexing and Query Processing

Assuming that we have a set of services that are semantically described, the final step of our process
is to provide a user with the possibility of using these services to answer high-level queries, in
the language of the domain ontology. �is means indexing the services and translating queries
over the domain ontology to queries over relevant services. �is problem is highly dependent on
the representation of the semantics of a service, and the discussion will be therefore deferred to
Chapter , where we present the semantic model.

Conclusion

In this chapter, we presented a general and fully automatic process for the semantic interpretation
of the hidden Web. �is process is based on independent agents carrying out different tasks such as
information acquisition and enrichment, and participating to the construction of a content-centric
semi-structured probabilistic warehouse. We briefly described the different steps of the process. For
some of them, only prospectives ideas are given, as we do not claim a complete solution to the
problem of exploiting the information of the hidden Web.
�e following chapters will further detail some components, starting with the underlying proba-

bilistic data model of the content warehouse.
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Chapter 

A Probabilistic XML DatabaseModel

�is chapter takes up and expands on two previously published papers, one of which is
system-oriented [5], and the other is a complexity study [4]. �e presentation and proofs are
more detailed here, and some content is new.

A large number of automatic tasks on real-world data generate imprecise results, e.g., information
extraction, natural language processing, data mining. Moreover, in many of these tasks, information
is represented in a semi-structured way, either due to an inherent tree-like structure of the original
data, or because it is natural to represent derived information or knowledge in a hierarchical
manner. �is is in particular the case in our process for understanding the hidden Web, as argued in
Section .. We need to manage imprecise tree information gathered by a system during its entire
lifetime, and in particular evaluate queries and imprecise updates over such data. We present here
an original probabilistic tree model for managing imprecise tree data, the prob-tree model∗. We
discuss in detail expressiveness results, efficient ways to perform queries and updates, and a number
of theoretical and implementation issues.
�e purpose is to design a model for storing imprecise information, that is both expressive and

concise. Prob-trees are unordered trees whose nodes are annotated by conjunctions of (possibly
negated) event variables, in the style of conditions in [IL84]. Each event variable is assigned
a probability value. In particular, every probabilistic update introduces a new event variable
(independent from the previous ones) that captures the belief the system has in this particular
update. �e semantics of such a prob-tree is described in terms of sets of possible worlds. We identify
a large class of queries for which efficient querying and updating algorithms, directly performed over
the prob-tree, compute the correct answer, by using evaluation algorithms developed for precise
data. A large class of queries can be evaluated in PTIME. For updates, deletion may be intractable.
(Observe that in settings we are interested in, based on tools gathering knowledge, deletions are
rare.) We also propose a theoretical foundation for the prob-tree model. In particular, we discuss
the notion of equivalence of prob-trees and its complexity. We also study the issue of removing less
probable possible worlds, and that of validating a prob-tree against a DTD. We show that these

∗In [5], we referred to it as the fuzzy tree model; we changed the terminology in subsequent works, in order to avoid
confusion with works on fuzzy databases.
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two problems are intractable in the most general case. We discuss variants of the prob-tree model,
and how it compares to other models for representing semi-structured probabilistic information.
We finally describe the FXML system, an implementation of the prob-tree model relying on
generic query and update processors.
�is chapter is organized as follows. We first present related work on probabilistic databases in

Section .. Section . introduces the prob-tree model, while Section . discusses the querying
and updating of prob-trees. In Section ., a notion of equivalence between prob-trees is introduced,
and its complexity is investigated. Other complexity issues are considered in Section .. Variants
of the prob-tree model are discussed in Section . and other probabilistic models are compared to
the prob-tree model in Section .. Finally, we describe our implementation in Section ..

. RelatedWork

�e topic of probabilistic databases has been intensively studied, see for instance [dR95, CP87,
BGMP92, FR97], and [DS04,Wid05] for more recent works. A recent tutorial surveying a number
of probabilistic database models can be found in [DS07]. �e idea of associating probabilistic
formulas to data elements comes from the conditional tables of [IL84]. Conditional tables are
used for representing incomplete information, but their use for probabilistic databases is quite
straightforward, as discussed in [GT06]. A work close in spirit to this one, but in the context
of relational databases, is [AKG91]. �e tree structure and multi-set semantics we use have for
consequence that the complexity results on tables of [AKG91] do not apply to our model.
A relatively small number of works have dealt with the representation of probabilistic semi-

structured data. In [DGH01], a semi-structured database is used to store complex probability
distributions of data that is essentially relational. Works closer to ours are [NJ02,HGS03, vKdKA05,
LSC06]. Nierman et al. [NJ02] describe PTDB, a model based on the use of mutually exclusive
and independent probability distributions assigned to virtual nodes in a tree. We present in more
detail this model in Section .., and show how it can be seen as a particular case of the prob-tree
model, following observations from [KS07]; this latter work discusses advanced querying issues
(projection and boolean queries, incomplete answers) in the ProTDB setting. In [HGS03], a
complex model, based on directed acyclic graphs, is developed, along with an algebraic query
language. Keulen et al. [vKdKA05] present an approach to data integration using probabilistic
trees; their model is based on possible-worlds semantics, and allows both extensive descriptions of
the possible worlds and node-based factorization. Querying and the way to present data integration
results on this model are also shown. Finally, Li et al. observe in [LSC06] that query efficiency
can be improved on probabilistic trees when absolute probabilities are stored on nodes of the trees,
instead of conditional probabilities, at the cost of more expensive changes in the probability values.
None of those works touch upon the question of updates, which is of major interest to us in this
chapter, since the prob-tree model is intended to be used in a probabilistic data warehouse that
different modules query and update.

. The Prob-TreeModel

In this section, we present the basics of the prob-tree model. We first introduce a tree data model
and, next, the prob-tree model, along with its possible-worlds semantics.
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.. Data Model

We assume some countably infinite sets of node identifiers N (distinct nodes of a tree have distinct
identifiers), labels L (say, the set of character strings), values V (say, the set of character strings,
with ǫ as the empty string). In the following, nodes will be denoted n, n′, s, s′…; labels A, B, C ,
D…; and a proportional font will be used for values.

Definition .. A data tree t is a -tuple t = (N ,E , r,ϕ, ν) where N ⊂N is a finite set of nodes,
E ⊆N 2 a tree rooted in r ∈N , ϕ : N →L associates a label to each node in N and ν associates a
value in V to each leaf of t.
Let t = (N ,E , r,ϕ, ν) and t ′ = (N ′,E ′, r′,ϕ′, ν ′) be two data trees. We say that t and t ′ are

isomorphic (denoted t ∼ t ′) if there is a bijection ψ : N →N ′ such that:
(i) For s1, s2 ∈N , (s1, s2) ∈ E⇔ (ψ(s1),ψ(s2)) ∈ E ′;
(ii) ψ(r) = r′;
(iii) ∀s ∈N , ϕ′(ψ(s)) = ϕ(s);
(iv) ∀s ∈N , if s is a leaf then ν ′(ψ(s)) = ν(s);

A

B B

foo

C

D

bar

Figure .: Example data tree

An example of data tree is given in Figure .. Observe that ǫ values are omitted in the figure.
Indeed, we shall often consider trees without data values. �e simple data model we use is inspired by
XML but ignores a number of XML features such as the ordering, the distinction between attributes
and elements, or mixed content. Some of them could be considered as “cosmetic” additions to the
model; one is critical, namely the ordering of nodes, as briefly touched upon in Section ... It
should also be observed that this data model adopts a multi-set semantics. To see that, consider for
instance a data tree with a root node and two children with the same label. We see it essentially as
different from a data tree with a root node and a single child with the same label. A model based on
a pure set semantics is briefly considered in Section ...

.. Syntax of Prob-Trees

We next present the prob-tree model for representing probabilistic semi-structured information, that
is based on annotating the nodes of a tree with probabilistic conditions in the style of the conditions
in [IL84].
We assume the existence of a countable setW of event variables. Let W be a finite set of event

variables. A condition overW is a (possibly empty) set of atomic conditions of the form w or ¬w (for
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w inW ). �is condition is interpreted as the conjunction of the atomic conditions. A probability
distribution π forW assigns probabilities, i.e., values in ]0;1], to the different event variables inW .
We choose not to allow zero probabilities so that, in particular, updates with a zero probability will
not be performed at all. But this is only a convention and could be changed without altering the
results presented here. Formally, we have:

Definition .. A prob-tree (short for probabilistic tree) T is a -tuple (t,W ,π,γ ) where t =
(N ,E , r,ϕ, ν) is a data tree, W ⊆ W is finite, π is some probability distribution over W , and γ
assigns conditions overW to nodes in N −{r}.

A

B

w1,¬w2

C

D

w2

Event Proba.
w1 0.8
w2 0.7

Figure .: Example prob-tree

An example of prob-tree is shown in Figure .. �e node labeled by B is annotated with
{w1,¬w2}, the D node with {w2}, and the C node with the empty condition. We now define the
semantics of a prob-tree, introducing to do that the notion of possible-worlds set.

.. Semantics of Prob-Trees

�e real world with some uncertainty is modeled by a set of possible worlds, each with its own
probability. More precisely, a possible-worlds (PW) set S is a finite set of pairs (ti,pi) where (i) the ti
are data trees with the same root label, and (ii) each pi is a positive real number with

∑n
i=1

pi = 1.
An example of a PW set is shown in Figure ..

A

C

D

p2 = 0.70

A

C

p1 = 0.06

A

B C

p3 = 0.24

Figure .: Example of possible-worlds set

As different PW sets may represent the same abstract possible worlds, we need the notion of
isomorphism between possible-worlds sets. Let S = {(t1,p1) . . . (tn,pn)} and S′ =

�
(t ′
1
,p′

1
) . . . (t ′

m
,p′

m
)
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be two possible-worlds sets. We say that S and S′ are isomorphic (denoted S ∼ S′) if, for each data
tree t appearing either in S or in S′:

∑

1¶i¶n
ti∼t

pi =
∑

1¶j¶m

t ′
j
∼t

p′
j
.

�is allows defining the notion of normalization of PW sets: a PW is normalized if it does not
contain two possible worlds with isomorphic data trees. Every PW set can be normalized by
assigning as the probability of each possible world the sum of the probabilities of possible worlds
with isomorphic data trees.
Note that the possible-worlds model could be used itself as a model for representing probabilistic

trees, but this is typically verbose, so unpractical.
We are now ready to define the semantics of prob-trees in terms of possible worlds:

Definition .. Let T = (t,W ,π,γ ) be a prob-tree. For V ⊆W , the value of T in the world V ,
denoted V (T ), is the subtree of t where all nodes conditioned by a ‘¬w’ atom for w ∈ V or by a ‘w’
atom for w /∈ V have been removed (as well as their descendants). �e possible-worlds semantics of
T , denoted ¹Tº, is the PW set defined by:

¹Tº=
⋃

V⊆W

( 
V (T ),

∏

w∈V
π(w)

∏

w∈W−V
(1−π(w))

!)
.

Observe that an underlying assumption of this particular semantics is that the probabilistic events
of a prob-tree are supposed to be independent. As an example, the PW set shown in Figure . is
(up to isomorphism) the semantics of the prob-tree of Figure .. An important result is that the
prob-tree model has the same expressive power as the possible-worlds model:

�eorem .. For each PW set S, there exists a prob-tree T such that S ∼ ¹Tº.

Proof. Let S = {(t1,p1) . . . (tn,pn)} be a PW set. Assume without loss of generality that all ti use
different nodes, except for the root r that is common to all of them. Let w1 . . .wn−1 be n− 1 event
variables. We define the prob-tree T =

�
t,
�
w1 . . .wn−1

	
,π,γ

�
as follows:

• the root of t is the common root r of all ti;

• ∀i, π(wi) =
pi

1−∑1¶j<i pj
;

• for each i, all children of the root of ti are added as children of the root of t, along with their
descendant subtrees, conditioned by:





w1 if i= 1,

¬w1, . . . ,¬wi−1,wi if 2¶ i¶ n− 1,

¬w1, . . . ,¬wn−1 if i= n.
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We have:

¹Tº=
⋃

V⊆{w1...wn−1}

( 
V (T ),

∏

w∈V
π(w)

∏

w∈W−V

�
1−π(w)�

!)

∼







t1,

∑

V⊆{w1...wn−1}
w1∈V

∏

w∈V
π(w)

∏

w∈W−V

�
1−π(w)�








∪







t2,

∑

V⊆{w1...wn−1}
w1 /∈V∧w2∈V

∏

w∈V
π(w)

∏

w∈W−V

�
1−π(w)�








∪ . . .

∪







tn,

∑

V⊆{w1...wn−1}
w1 /∈V∧···∧wn−1 /∈V

∏

w∈V
π(w)

∏

w∈W−V

�
1−π(w)�








= {(t1,π(w1))} ∪
��
t2,
�
1−π(w1)

�
π(w2)

�	∪ · · ·∪��
tn,
�
1−π(w1)

�
. . .
�
1−π(wn−1)

��	

= {(t1,p1)} ∪ {(t2,p2)} ∪ · · · ∪ {(tn,pn)}
= S

since
i∏

j=1

�
1−π(wj)

�
=

i∏

j=1

1−∑1¶k<j+1 pk

1−∑1¶k<j pj
= 1−

∑

1¶k<i

pi.

Note that this construction uses a number of event variables linear in the number of possible
worlds in S. �us, the size of the resulting prob-tree is essentially the size of the original PW set.
One could clearly hope to find more compact representations.
In order to guarantee conciseness of the prob-tree model, we may want to have a polynomial

bound on the size of prob-trees whose semantics only involve data trees of bounded size (and with
probabilities of bounded precision). A model with such a polynomial bound, the so-called simple
probabilistic model, is presented in Section .., but we shall see that it is less expressive than the
PW model. Actually, the following result shows that neither the prob-tree model, nor any other
model as expressive as the PW model, can guarantee such a bound:

Proposition .. Let µ be a one-to-one mapping sending every normalized possible world set (with
probabilities of bounded precision) to some integer (say, a binary representation of an element of a model).
�en, the average size of µ(S) (that is, logµ(S)) for PW sets S in which every possible world has at most
n nodes is at least exponential in n.

Proof. �is results from a simple counting of the number of possible-worlds sets involving only
possible worlds with at most n nodes. Let us call this number σn. If we forget about the values of
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the probabilities and the labels of the nodes, we get that σn must be greater than the number of sets
of unordered, unlabeled, rooted trees with at most n nodes. We have the following equality about
the number an of unordered, unlabeled, rooted trees with exactly n nodes [Ott48, Knu97]:

an =
αn−1

n

Æ
β/2πn+O(n−5/2αn)

where α > 2 and β are two constants. We have therefore:

σn ¾ 2
∑n

i=1 an ¾ 2an =Ω(22
n
).

Since σn is doubly exponential in n, an element of µ(S) cannot be identified on average with less
than Ω(2n) bits.

. Queries and Updates

We next consider how to perform queries and updates directly on prob-trees.

.. Querying Prob-Trees

We first precisely define the queries we consider. �e goal is to be able to evaluate efficiently queries.
Indeed, in practice, one would ideally like to rely on a standard query processor to do most of
the work. We show that we can use this approach for a very large class of queries, namely locally
monotone queries. To define this class, we use the auxiliary notion of sub-datatree. Note that we
only consider subtrees that have the same root as the original trees, obtained by pruning some of its
branches.

Definition .. Let t = (N ,E , r,ϕ, ν), t ′ = (N ′,E ′, r′,ϕ′, ν ′) be two data trees. �en t ′ is a sub-
datatree of t (denoted t ′ ¶ t) if: (i) N ′ ⊆ N ; (ii) if n1 ∈ N ′ and (n2,n1) ∈ E , n2 ∈ N ′; (iii) E ′ =
E ∩N ′2; (iv) r′ = r; (v) ϕ′ = ϕ|N ′ ; (vi) ν

′ = ν|N ′ . �e set of all sub-datatrees of a data tree t is
denoted Sub(t).

�e sub-datatree relation is clearly a partial order, which justifies the notation t ′ ¶ t.
�e queries we consider return subtrees of the data tree. �is greatly simplifies the management

of probabilities. Intuitively, we return pieces of the original tree, but always keep the path from
these pieces to the root. �is notion is defined formally next, together with the large class of queries
for which we are able to obtain an efficient query evaluation algorithm.

Definition .. A query Q is a function over the set of data trees, such that for each data tree t, Q(t)
is a (possibly empty) set of sub-datatrees of t. �e tree t is said to be matched by Q if Q(t) 6=∅.
A query Q is locally monotone if either of the following two equivalent conditions holds:
(i) for any three data trees u¶ t ′ ¶ t, u ∈Q(t) ⇐⇒ u ∈Q(t ′);
(ii) for any two data trees t ′ ¶ t, Q(t ′) =Q(t)∩ Sub(t ′).

Proof of the equivalence.

(i)⇒ (ii). Let t and t ′ be two data trees such that t ′ ¶ t. Let u ∈Q(t ′). By definition of queries,
u ∈ Sub(t ′), which means that u¶ t ′. By (i), u ∈Q(t). �is shows thatQ(t ′)⊆Q(t)∩Sub(t ′).
Let now u ∈ Q(t)∩ Sub(t ′). By (i), u ∈ Q(t ′). �is shows that Q(t ′) ⊇ Q(t)∩ Sub(t ′) and
concludes the proof of the implication.
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(ii)⇒ (i). Let u ¶ t ′ ¶ t three data trees. Suppose first that u ∈ Q(t). As u ∈ Sub(t ′), by (ii),
u ∈Q(t ′).
Suppose now that u ∈Q(t ′). By (ii), u ∈Q(t).

Locally monotone queries is a class of queries for which, given an algorithm to compute the query
on data trees, we can compute easily the answers on a prob-tree. To illustrate, let us consider a
particular class of queries, tree-pattern queries with joins, that we show to be locally monotone.

Definition .. A tree-pattern query with joins (referred to in the following as a TPWJ query) is
defined as a -uple (t,D, J , J ′) where t = (N ,E , r,ϕ, ν) is a data tree, D⊆ E is a set of descendant
edges (the other edges are interpreted as child edges) and J ⊆N 2 (respectively, J ′ ⊆N 2) is a set of
positive (respectively, negative) join conditions, such that, for all (n,n′) in J , n and n′ are two leafs of
t and n 6= n′.
Let Q = (t,D, J ) with t = (N ,E , r,ϕ, ν) be a TPWJ query and t ′ = (N ′,E ′, r′,ϕ′, ν ′) a data tree.

�en a valuation µ (from Q in t ′) is a mapping from N to N ′ verifying:
(i) µ(r) = r′;
(ii) ∀n ∈N , either ϕ(n) is the special symbol ‘∗’, or ϕ(µ(n)) = ϕ(n);
(iii) ∀(n1,n2) ∈ E , if (n1,n2) ∈D, µ(n2) is a descendant of µ(n1), otherwise it is a child of µ(n1);
(iv) for each leaf n of t with ν(n) 6= ǫ, µ(n) is a leaf of t ′ and ν ′(µ(n)) = ν(n);
(v) for each (n1,n2) ∈ J (respectively, (n1,n2) ∈ J ′), both µ(n1) and µ(n2) are leaves of t

′ and
ν ′(µ(n1)) = ν

′(µ(n2)) (respectively, ν
′(µ(n1)) 6= ν ′(µ(n2))).

�e set of all answers to Q(t ′) is the set of minimal sub-datatrees of t ′ containing µ(N ) for every
possible valuation µ.

A

∗

val

B C D

+

Figure .: Example of tree-pattern query with joins

Such a TPWJ query can be represented as a graph as in Figure .. Note the positive join condition
between the nodes labeled B and C , and the negative join condition between the nodes labeled
C and D (these are value joins). Intuitively, this query will be matched by a tree having a child of
its root A with any label (with constant value val), children B and C (with identical values) and a
descendant labeled D, with a different value from that of B and C nodes. A more concrete example
of a TPWJ query is given in Section .. We now show that this class of queries is indeed locally
monotone.

Proposition .. TPWJ queries are locally monotone.

Proof. We shall prove (ii) of Definition .. Let Q = (tQ ,D, J , J ′) be a TPWJ query with tQ =

(NQ ,EQ , rQ ,ϕQ , νQ ). Let t = (N ,E , r,ϕ, ν) and t ′ = (N ′,E ′, r′,ϕ′, ν ′) be two data trees with t ′ ¶ t.
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• Let u ∈ Q(t ′). By definition, u ∈ Sub(t ′). Let us show that u ∈ Q(t). �ere is a valuation
µ : NQ →N ′ such that u is the minimal sub-datatree of t ′ containing µ(NQ ). Just observe
that µ can also be seen as a valuation from Q in t (every condition of what defines a valuation
remains valid), and u is still the minimal sub-datatree of t containing µ(NQ ). �erefore,
u ∈Q(t).

• Let u ∈ Q(t)∩ Sub(t ′). �ere is a valuation µ : NQ → N such that u is the minimal sub-
datatree of t containing µ(NQ ). Since u is a sub-datatree of t

′, µ(NQ )⊆N ′. We conclude by
observing that µ is still a valuation from Q in t (every condition of what defines a valuation
remains valid), and u is the minimal sub-datatree of t ′ containing µ(NQ ).

As we have just seen, TPWJ queries are locally monotone because the answer to a TPWJ query
contains the full context needed to decide whether the query matches or not; in particular, TPWJ
queries are positive queries (despite the negative joints), and do not imply any existential or universal
quantification. It is easy to see that the query “Return the root if all its children are labeled by A” or
even “Return the root if one of its children is labeled by A” are not locally monotone (in the former
case, because the universal quantifier involves some form of negation; in the latter, because the full
context of the match does not appear in the query result).
We now consider how queries are applied to PW sets and prob-trees.

Definition .. Let Q be a query and S = {(ti,pi)} a PW set. �e result of Q on S, denoted Q(S),
is ⋃

(ti ,pi)∈S

⋃

t∈Q(ti)
{(t,pi)} .

Observe that the answer to a query is not strictly speaking a possible-worlds set, since the proba-
bilities do not have to sum to 1.

Definition .. LetQ be a locally monotone query. �e result ofQ on a prob-treeT = (t,W ,π,γ ),
denoted Q(T ), is

⋃

u∈Q(t)






u,eval




⋃

n node of u

γ (n)











where eval(cond ) returns 0 if there is an event w such that both ‘w’ and ‘¬w’ are in cond , and is
otherwise defined as: ∏

w∈cond
π(w)

∏

¬w∈cond
(1−π(w)).

In other words, the result of a locally monotone query on a prob-tree can be computed as described
in Algorithm ., given an algorithm to compute query results on data trees.

�e following result states the consistence between the way queries are performed on prob-trees
and the possible-worlds semantics.

�eorem .. Let T be a prob-tree and Q be a locally monotone query. �en, with a little abuse of
notation since the probabilities in Q(T ) and Q(¹Tº) do not sum to 1, we have Q(T )∼Q(¹Tº).
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Algorithm . Result of a locally monotone query on a prob-tree
I: Locally monotone query Q , prob-tree T = (t,W ,π,γ ).
O: Set of pairs {(ti,pi)} with ti a data tree and pi a probability.
(a) Compute the set R of the results of Q on t.
(b) For each r ∈ R, browse r to gather all conditions cond r of nodes in r.
(c) Return { (r,eval(cond r)) | r ∈ R }, with eval as in Definition ..

Proof. Let T = (t,W ,π,γ ), Q(T ) = {(u1,p1) . . . (un,pn)} and Q(¹Tº) =
�
(u′

1
,p′

1
) . . . (u′

m
,p′

m
)
	
.

Let u be a data tree appearing either in Q(T ) or in Q(¹Tº). We denote:

p=
∑

1¶i¶n
ui∼u

pi; p′ =
∑

1¶j¶m

u′
j
∼u

p′
j
.

We need to show that p= p′.

. Let us first prove that p¶ p′. If p= 0, this is trivial; suppose p> 0. �en there is a data tree
(or more than one) isomorph to u in Q(T ) (with a non-zero probability); let U be the set of
all such data trees. For v ∈U , let cond v be the union of all conditions annotating v in the
prob-tree T . We have:

p=
∑

v∈U
eval (cond v) =

∑

v∈U

∏

w∈cond v
π(w)

∏

¬w∈cond v
(1−π(w)).

For v ∈ U , let Vv be the subset of 2W of all subsets of W that are compatible with cond v,
that is, such that if V ∈ Vv, then all w with w ∈ cond v are in V , and all w with ¬w ∈ cond v
are not in V . �en, for all V ∈ Vv, we have V (T ) ¶ t and v ¶ V (T ). Since Q is locally
monotone, v ∈Q(V (T )). �is yields:

p′ ¾
∑

v∈U

∑

V∈Vv

∏

w∈V
π(w)

∏

w/∈V
(1−π−w)

=
∑

v∈U

∏

w∈cond v
π(w)

∏

¬w∈cond v
(1−π(w))

∑

V∈Vv

∏

w∈V
w/∈cond v

π(w)
∏

w/∈V
¬w/∈cond v

(1−π(w))

︸ ︷︷ ︸
=1

= p.

. Now, let us prove that p′ ¶ p. If p′ = 0, this is trivial; suppose p′ > 0. �en there is a data tree
(or more than one) isomorph to u in Q(¹Tº). Let U be the set of all such data trees. For
v ∈ U , let Vv be the subset of 2W of all subsets V of W such that v ∈ Q(V (T )). Observe
that, since Q is locally monotone, V ∈ Vv if and only if v¶ V (T ). Let cond v be the union
of all conditions annotating nodes of v in T . We have:

p′ =
∑

v∈U

∑

V∈Vv

∏

w∈V
π(w)

∏

w/∈V
(1−π(w))

=
∑

v∈U

∏

w∈cond v
π(w)

∏

¬w∈cond v
(1−π(w))
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using the same identity as above.

For v ∈ U and V ∈ Vv, we know that V (T ) ¶ t and v ∈ Q(V (T )). �anks to the local
monotonicity of Q , v ∈Q(t). �en:

p¾
∑

v∈U
eval (cond v)

=
∑

v∈U

∏

w∈cond v
π(w)

∏

¬w∈cond v
(1−π(w))

= p′.

.. Updating Prob-Trees

In this section, we present the class of updates we consider, their semantics, and show how to apply
updates directly on prob-trees.
We assume that a query Q defines, for each data tree t, and for each t ′ ∈ Q(t), a mapping µQ

t ′

from some finite set NQ to the nodes of t ′ (they can be seen as nodes of t, since t ′ is a sub-datatree
of t). For TPWJ queries, defined in the previous section, for instance, a natural mapping is the
valuation from Definition .: NQ is the set of nodes of the query tree, and µQ

t ′
maps a node of

the query tree to the corresponding node in t ′. From now on, we assume that the query language
defines, for each query, its associated mapping.
We define next update operations, whose basic components are insertions and deletions. Let

t = (N ,E , r,ϕ, ν) and t ′ = (N ′,E ′, r′,ϕ′, ν ′) be two data trees. Assume without loss of generality
that they use different identifiers, i.e., N ∩N ′ =∅. Let Q be a query, with its associated mapping.
An insertion is an expression i(n, t ′) where n ∈NQ stands for the node where the data tree t ′ is to be
inserted. A deletion is an expression d (n) where n ∈NQ . �e mapping of node n is removed as well
as all its descendants. Insertions and deletions are elementary updates that are used to define update
operations. Typically, one wants to perform a number of update operations based on the result of a
query. �is motivates the following definition.

Definition .. An update operation is a pair τ = (Q ,U ) where Q is a locally monotone query
and U is a non-empty set of :

. insertions on NQ , that is, expressions i(n, t ′) where n ∈NQ and t ′ is a tree to insert (as a child
of the node mapped by n);

. deletions on NQ , that is, expressions d (n) where n ∈NQ (indicating the node to delete).

If |U |= 1, τ is called an elementary update operation.

Queries are used to select the nodes of the trees where insertions or deletions are made. Intuitively,
when one applies an update operation (say, a single deletion) on a data tree t, it results in the
deletion of a sub-datatree for each matching of Q . More formally:

Definition .. Let τ = (Q ,U ) be an update operation. Let t be a tree matched by Q . For o ∈U ,
let no be the node of NQ appearing in o. �e result of the operation τ on t, denoted τ(t), is the
result of applying successively, for each o ∈U :

. if o= i(n, t ′), the insertion, in t, of t ′ as a child of all µQ
u
(n) for u ∈Q(t) (possibly inserting

t ′ multiple times at the same place);
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. if o= d (n), the deletion, in t, of µQ
u
(n) for all u ∈Q(t).

Note that although the order of the operations above is not specified, there is no ambiguity here,
if we chose the natural convention that a node inserted (or deleted) as a descendant of a node which
is also deleted will not be present in the result tree.
A probabilistic update operation is a pair (τ, c) where τ is an update operation and c ∈]0;1] is the

confidence we have in the operation. �is confidence, defines, intuitively, the probability the update
operation is carried out. �is leads to the following definition for probabilistic updates on PW sets:

Definition .. Let S = {(ti,pi)} be a PW set, (τ, c) a probabilistic update operation, τ = (Q ,U ).
�e result of (τ, c) on S, denoted (τ, c)(S), is the PW set:

{ (t,p) ∈ T | t is not matched by Q }
∪{ (τ(t),p · c) | t is matched by Q }
∪{ (t,p · (1− c)) | t is matched by Q } .

We can now define the same for prob-trees:

Definition .. �e result of a probabilistic update operation (τ, c) on a prob-tree T , denoted
(τ, c)(T ) is the result of applying Algorithm . to T and (τ, c).

�is algorithm, in particular the deletion part, is quite complex. Note however, that in a number
of common cases, some simplifications occur:

• If there are only insertions to perform, we just insert as many nodes as there are matchings,
with appropriate conditions.

• If a node to be deleted is a leaf, the deep copy amounts to just the copy of the node and its
value.

A

B1 B2 B′

(confidence: .)

Figure .: Example of probabilistic update

For a more elaborate case, let us consider the probabilistic update, described by a simple-tree
pattern query, shown in Figure .. In this graphical representation of an update, deletions appear
as crossed-out nodes of the query tree, and insertions as subtrees added with dotted lines. �is
update can be expressed in natural language as follows: If there are two nodes labeled respectively
by B1 and B2 that appear as children of the root, replace both with a single node labeled by B′

with a confidence of 0.9. �is probabilistic update is applied to an example prob-tree in Figure ..
Observe that, in the resulting tree, the update is not performed, and, hence, the node B1 is not
deleted, if the update hypothesis is not true (w1,¬w3) or if the update hypothesis is true but the
node B2 does not exist (w1,¬w2,w3). A similar condition holds for the node B2. �is simple
example shows that the information contained in a prob-tree can become quite complex, especially
in the presence of deletions.
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Algorithm . Result of a probabilistic update on a prob-tree
I: A prob-tree T = (t,W ,π,γ ), a probabilistic update operation (τ, c) with τ = (Q ,U ).
O: (τ, c)(T ) (by definition).
(a) Compute the set R of the results of Q on T , keeping conditions cond r for each r ∈ R (cf.

Algorithm .).
(b) Let w be a fresh event variable, with π(w) = c.
(c) For each node n in T , gather all elementary operations that should apply to n, along with the

corresponding conditions (i.e., gather, for each r ∈ R and n ∈NQ , the operations that should
apply to all µQ

r
(n) with the corresponding cond r), to build a set On of pairs (o, c) where o is

either an insertion (with the corresponding data tree) or a deletion, and c is a conjunction of
atom literals.

(d) Browse the nodes of T , from bottom up; for each node n such that On 6= ∅, perform the
following (in that order):
(i) For each insertion operation of a data tree t ′ with condition c, insert t ′ below n, the root

of t ′ being conditioned by c ∪{w}. Redundant literals (that are implied by the conditions
on n or its ancestors) are removed. �e same t ′ might be inserted multiple times if it
results from multiple matchings.

(ii) Gather all conditions of deletions into a DNF ψ. Let ψ′ be the formula

ψ′ =
∧
γ (n)∧ (¬w∨¬ψ).

Transform ψ′ into a DNF ψ′′ that is logically equivalent to ψ′, and such that only one
disjunct of ψ′′ may be true at a time (just enumerate all valuations of the variables in ψ′

that make ψ′ true). Let k be the number of disjuncts in ψ′′. Replace n by k deep copies of
n and its children, each one being annotated with one of the disjuncts of ψ′′. Redundant
literals (that are implied by the conditions on the ancestors of n) are removed.

(e) Return the updated prob-tree.

A

B1

w1

B2

w2

Event Proba.
w1 0.8
w2 0.7

A

B1

w1,¬w3

B1

w1,¬w2,w3

B2

w2,¬w3

B2

w2,w3,¬w1

B′

w1,w2,w3

Event Proba.
w1 0.8
w2 0.7
w3 0.9

Figure .: Result of applying the update from Figure . to an example prob-tree
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We now state that our definition of updates on PW sets and prob-trees are consistent with each
other:

�eorem .. Let T be a prob-tree and (τ, c) a probabilistic update operation. �en: ¹(τ, c)(T )º∼
(τ, c)(¹Tº). In other words, the following diagram commutes:

prob-tree

PW set

prob-tree

PW set

(τ, c)(·)

¹·º
(τ, c)(·)

¹·º

Proof. Let T = (t,W ,π,γ ), τ = (Q ,U ).
�e proof is by recursion on the cardinality of U . If U =∅, (τ, c)(T ) = T and (τ, c)(¹Tº) =
¹Tº, so ¹(τ, c)(T )º= (τ, c)(¹Tº).
Suppose now that we know that for all U of cardinality n−1 (n¾ 1), ¹(τ, c)(T )º∼ (τ, c)(¹Tº).

Let o be an arbitrary element ofU , operating on n ∈NQ . Letw be the fresh event variable introduced
in (τ, c)(T ). We consider (τ′, c)(T ) with τ′ = (Q ,U −{o}) and assume, without loss of generality
that the fresh event variable introduced in (τ′, c)(T ) is also w. We now compare (τ′, c)(T ) with
(τ, c)(T ).
Let R be the set of results of the query Q on T , with associated conditions cond r for each r ∈ R.

�en (τ, c)(T ) can be obtained from (τ′, c)(T ) in the following way (some differences may arise this
way, since redundant conditions can appear in one of the trees, but the result of the transformation
is structurally equivalent (cf. Section .) to (τ, c)(T )):

. If o is an insertion of a data tree t ′, by inserting t ′ under all (clones of ) µQ
r
(n) for each r ∈ R,

conditioned by cond r ∪ {w}. We allow for clones, since it is possible than an ancestor of
µQ
r
(n) (or µQ

r
(n) itself ) has been conditionally deleted in (τ′, c)(T ).

. If o is a deletion, by cloning all (clones of ) µQ
r
(n) for each r ∈ R and annotating them by a

condition stating that the node remains in the tree if, first, γ (µQ
r
(n)) is true, and, second, w

is false or cond r is false.

We can now compare (τ, c)¹Tº with (τ′, c)¹Tº. �e former is obtained from the latter by doing
the following:

. If o is an insertion of a data tree t ′, by inserting t ′ under µQ
r
(n) in each possible world

matching Q with probability c for all r ∈ R.

. If o is a deletion, by deleting µQ
r
(n) in each possible world matching Q with probability c for

all r ∈ R.

Just observe that the possible worlds matching Q , for r ∈ R, are exactly those produced in ¹Tº
by subsets V ⊆W that are compatible with cond r . By comparing the two transformations that
are performed here, we see that ¹(τ, c)(T )º is obtained from ¹(τ′, c)(T )º in the same way as
(τ, c)(¹Tº) is obtained from (τ′, c)(¹Tº). We use then the recursion hypothesis, which implies
that (τ′, c)(¹Tº)∼ ¹(τ′, c)(T )º. �is concludes the proof.
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An interesting side benefit of using the prob-tree model is the possibility to keep lineage (or prove-
nance) information about the data. Since every node is conditioned by event variables corresponding
to update operations, we can associate meta-data to these variables to record information about the
origin of the corresponding operation. Note that these variables are preserved throughout the whole
process; a prob-tree system is able to deliver, along with query results and probabilities, information
about the lineage associated with a piece of data (possibly updated more than once) and query
results. �is is especially interesting in the context of a content-centric imprecise process, as the one
discussed in Chapter .

.. Complexity of Queries and Updates

In what follows, we assume given a locally monotone query languageQ and an algorithm to answer
queries over trees that are “lifted” to queries/updates over prob-trees (in the case of updates, we give
complexity results for elementary updates). We next analyze the complexity of the algorithms for
querying and updating prob-trees. Observe that in the following proposition, the complexity of the
operations on prob-trees is stated in terms of the complexity of the corresponding operation on data
trees. So, for instance, since the data complexity of tree-pattern queries with join is PTIME, an
immediate consequence of the proposition is that over prob-trees, it is also PTIME. More precisely,
let | · | denote the size (number of nodes, of literals) of a prob-tree (or of a set of possible worlds),
and time denotes the time it takes to evaluate the query or operation. �en the complexity of
Algorithms . and ., that is, an upper bound on the complexity of querying and updating
prob-trees (based on an algorithm to answerQ queries), is as follows:

Proposition .. Let T be a prob-tree with underlying data tree t. Let Q be a query over T , and iQ
and dQ be respectively an insertion and deletion on T , with Q as defining query. �en:

time(Q(T ))¶ time(Q(t))+O(|Q(t)| · |T |)
time(iQ (T ))¶ time(Q(T ))+O(|Q(t)| · |T |)

|iQ (T )|¶ |T |+O(|Q(t)| · |T |)
time(dQ (T ))¶ time(Q(T ))+O(|Q(t)| · 2|T |)

|dQ (T )|¶ |T |+O(|Q(t)| · 2|T |)

Proof. �ese are straightforward from the definitions of Algorithms . and .. �e combinatorial
explosion of deletions happens when a query has multiple results (essentially because, in this case,
we need to express the negation of a disjunction of conjunctions in terms of a disjunction of
conjunctions), and, as we shall see in �eorem ., this complexity is inherent to the problem of
deletion in prob-trees.

. Equivalence of Prob-Trees

One defines the notion of equivalence between prob-trees directly based on data tree isomorphism.
It essentially states that two prob-trees use the same event variables and that for each assignment of
values to the event variables, they define the same possible world.

Definition .. Let T = (t,W ,π,γ ), T ′ = (t ′,W ,π,γ ′) be two prob-trees (over the same event
variables and distribution). �en T and T ′ are structurally equivalent (denoted T ≡struct T

′) if for
each V ⊆W ,V (T )∼ V (T ′).
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A

B

w1

C

¬w2

≡struct

A

B

w1,¬w2

C

B

w1,w2

Figure .: Example of structurally equivalent prob-trees

Figure . gives an example of two structurally equivalent prob-trees. Note that an alternative
definition of equivalence of prob-trees, based on their possible-worlds semantics, is discussed in
Section .. We have a simple complexity upper bound about structural equivalence:

Proposition .. Determining if two prob-trees (over the same event variables and distribution) are
structurally equivalent is coNP.

Proof. �e complement of this problem can be solved with theNP algorithm shown as Algorithm ..

Algorithm . Structural equivalence of prob-trees (non-deterministic)
I: Two prob-trees T1 and T2 on the same event variable setW and with the same probability
distribution π.
O: true if T1 6≡struct T2.
(a) Guess a subset V of W .
(b) Compute V (T1) and V (T2) in linear time.
(c) If V (T1) 6∼ V (T2), return true. (Isomorphism of labeled unordered data trees can be deter-

mined in linear time, cf. [AHU74].)

We stated in [4] a more precise result, that this problem is coRP [Pap94] (a randomized complexity
class). However, we discovered since then an error in the proof: Lemma  from [4] does not hold.
�is can be seen for example on the prob-trees shown in Figure .. �e proof is still of interest,
though, and we use it to prove a weaker result on flat prob-trees (that is, prob-trees of depth 1).
�e precise characterization of the complexity of the structural equivalence problem is open.
We use some bridge to (i) the number of disjuncts satisfied by valuations of DNF formulas and

(ii) multivariate polynomials.

Definition .. Let ψ and ψ′ be two propositional formulas in disjunctive normal form. We say

that ψ and ψ′ are count-equivalent, denoted ψ
+≡ψ′, if, for any valuation ν of the variables appearing

in ψ and ψ′, the same number of disjuncts is satisfied by ν in ψ and in ψ′.

We note that this is a stronger notion than simple propositional formula equivalence. For instance,
the formulas X ∨ (X ∧Y ) and X are equivalent but not count-equivalent. We indicate next how we
can relate count-equivalence of formulas in DNF with equality of multivariate polynomials.
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Definition .. Let ψ be a propositional formula in disjunctive normal form, over variables
X1 . . .Xn. Let ψ

′ be a formula in DNF obtained from ψ by removing every disjunct containing
incompatible atomic conditions, and by removing duplicate atomic conditions from each disjunct.
�e characteristic polynomial of ψ, denoted Pψ, is the multivariate polynomial in X1 . . .Xn with
integer coefficients, obtained from ψ′ in the following manner:
(i) Positive literals Xi are left as is.
(ii) Negative literals ¬Xi are replaced by (1−Xi).
(iii) Disjunction is replaced by addition.
(iv) Conjunction is replaced by multiplication.

�us, the characteristic polynomial of X ∨ (X ∧Y ) is X +X ·Y . We now state that equality of
characteristic polynomials is the same as count-equivalence.

Lemma .. Let ψ and ψ′ be two propositional formulas in disjunctive normal form. �en, ψ
+≡ψ′

if and only if Pψ = Pψ′ .

Proof. One direction is obvious, i.e., if Pψ = Pψ′ then ψ
+≡ ψ′. For that, just observe that the

number of conjuncts satisfied by some valuation ν in ψ is the value of Pψ for this valuation. Now
to consider the converse, first observe that Pψ and Pψ′ are polynomials with degree at most 1 in
every variable (this comes from the normalization of the formula in DNF used in Definition .).

Suppose that ψ
+≡ψ′. Consider the development of Pψ:

Pψ(X1 . . .Xn) =
∑

V⊆¹1;nº
αV
∏

i∈V
Xi

and similarly for Pψ′ with coefficients α′
V
.

We have, for each tuple (x1 . . .xn) of {0,1}n,
Pψ(x1 . . .xn) = Pψ′(x1 . . .xn),

that is to say, ∑

U⊆{ i|xi=1}
αU =

∑

U⊆{ i|xi=1}
α′
U

.

We can then prove by induction on the cardinality ofV that this implies that∀V ⊆ ¹1;nº,αV = α
′
V
,

which means that Pψ = Pψ′ .

�ere are actually deep aspects in this result, related to recent works by Green and Tannen in
[GKT07]. DNF formulas and multivariate polynomials can be seen as instances of provenance
semirings, that naturally arise in a number of contexts, especially incomplete and probabilistic
databases.
�e following result gives the (straightforward) relation between structural equivalence of flat

prob-trees and count-equivalence.

Lemma .. Let T = (t,W ,π,γ ) and T ′ = (t ′,W ,π,γ ′) be two prob-trees of depth 1 (over the same
event variables and probability distribution).
Let u1 . . .un be representative elements of the n equivalence classes implied by equality of both values

and labels over the leafs (that is, the children of the root) of T and T ′. For 1 ¶ i ¶ n, let ψi be the
disjunction of the conditions attached to the leafs of T with the same value and label as ui, and let ψ

′
i
be

the same for T ′.

�en, T ≡struct T
′ if and only if ϕ(r) = ϕ(r′) and, for each 1¶ i¶ n, ψi

+≡ψ′
i
.
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Proof. Just observe that the number of disjuncts of ψi (respectively, ψ
′
i
) that are made true by some

valuation ν of the event variables is the number of leafs of ν(T ) (respectively, ν(T ′)) that have the
same value and label as ui.

�is leads to a direct complexity result for structural equivalence on flat prob-trees:

Proposition .. �ere is a PTIME algorithm, that, given two prob-trees of depth 1, always returns
true if the prob-trees are structurally equivalent and returns false if the prob-trees are not structurally
equivalent with probability at least ½ (that is, determining if two flat prob-trees are structurally equivalent
is a coRP problem).

Proof. �e algorithm relies on Lemmas . and .. We use the Schwartz-Zippel lemma [Sch80,
Zip79], which states that the probability that a multivariate polynomial of degree d is zero on a
point each coordinate of which is randomly chosen in some finite set S is d/ |S|.

Algorithm . Structural equivalence of flat prob-trees (randomized)

I: Two flat prob-trees T and T ′, a finite set S of integers, a positive integer m.
O: true if T ≡struct T

′; false if T 6≡struct T
′ with probability ½.

(a) Compute equivalence classes for the equality of both values and labels among leafs of T and T ′.
(b) Gather the formulas in DNF ψi and ψ

′
i
corresponding to the conditions on the leafs of T

and T ′ in the equivalence class i.
(c) For each equivalence class i, choose at randomm points of Sp, where p is the number of variables

of Pψi
−Pψ′

i
, and evaluate this polynomial in these points.

(d) If all these evaluations return 0 for each i, return true else return false.

�e algorithm is presented as Algorithm .. We have the following lower bound for the probability

that it is correct when it returns false:
�
1−

� |W |
|S|

�m�n
, where n is the number of nodes. �is

probability is greater than ½ as soon as m and S are chosen such that |S|¾ |W |
m
p

1−(1/2)1/n
.

Note that determining whether a prob-tree is independent of some event variable is actually
computationally as complex as deciding equivalence between prob-trees. Indeed, if T and T ′ are
two prob-trees, determining if T is structurally equivalent to T ′ can be done by determining if the
following tree is independent of w (a fresh variable):

A

T

w

T ′

¬w

. Other Issues about Prob-Trees

In this section, we consider three natural problems about prob-trees that all highlight some inherent
complexity in dealing with imprecise data. First we show that some deletion may cause a combina-
torial explosion. We then prove that similar phenomena arise when we try to restrict the possible
worlds (i) to have at least a threshold probability and (ii) to be valid with respect to some DTD.
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.. Deletions

First we consider deletion. In this part, we assume that our query language is expressive enough
to express the following deletion: d0 = “If the root has a C child, then delete all B children of the
root.” (this is a reasonable assumption, since the update is rather basic).

�eorem .. For all n ∈N, there exists a prob-tree T , of size O(n), such that for each prob-tree T ′

such that T ′ ≡struct d0(T ), the size of T
′ is Ω(2n).

Proof. Consider the following prob-tree T , which has n+ 2 nodes and 2n event variables, each
appearing only once (we take an arbitrary probability distribution π, say π(n) = 1/2 for all n):

A

B C

w
(0)
1 ,w

(1)
1

… C

w(0)
n

,w(1)
n

Let T ′ be a prob-tree such that T ′ ≡struct d0(T ); we assume that T ′ does not contain any
inconsistent condition (corresponding nodes may safely be removed from T ′). We also assume that
the deletion has a confidence of 1 (that is, it does not introduce a new event variable).
T ′ is necessarily some prob-tree of depth 1 with root node A, and with a number of B and C

children. Let Ψ be the set of conditions annotating nodes labeled by B. Observe that for all ψ ∈ Ψ,
and for all 1¶ k¶ n, either ¬w(0)

k
or ¬w(1)

k
appears in ψ (otherwise, there is a possible world for T ′

where both B and C nodes appear, which is a contradiction with the definition of d0).
Let now {b1 . . .bn} be an arbitrary element of {0,1}n. Let ν be the valuation of the event variables

such that ∀1 ¶ k ¶ n, ν(w(bk)
k
) = 0 and ν(w(1−bk)

k
) = 1. �en ν(T ) is the subtree of T with only

two nodes labeled by A and B. �erefore, ν(d0(T )) = d0(ν(T )) = ν(T ). �is means that there exists
ψb1...bn

∈ Ψ such that ν |=ψb1...bn
.

Assume now by contradiction there exists b1 . . .bn, b
′
1 . . .b′

n
and 1¶ k ¶ n, such that ψb1...bn

=

ψb′1...b′
n
=ψ and bk 6= b′

k
. But we have already noted that ψ contains either ¬w(0)

k
or ¬w(1)

k
. In the

former case, we cannot have either bk = 0 or b′
k
= 0; in the latter, we cannot have bk = 1 or b′

k
= 1.

�is leads to a contradiction, which means that to each element of {0,1}n corresponds a different
element of Ψ. T ′ has then at least 2n different literals, which concludes the proof.

.. Threshold Probability

We consider next what happens when some probability threshold is imposed on a prob-tree.
Given a prob-tree, one may want to eliminate the possible worlds that are too unlikely. More

precisely, consider a prob-tree T with ¹Tº= {(t1,p1) . . . (tn,pn)}. Let us further assume that ¹Tº
is normalized, i.e., that there are no i, j distinct with ti ∼ tj. Suppose we fix some p for a minimum
threshold on probability. We want to consider the set of possible worlds with probability greater
than the threshold:

{ (ti,pi) ∈ ¹Tº | pi ¾ p} .
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�is set, however, is not a PW set, since the probabilities may not sum to 1. In order to use our
framework, and especially to perform comparisons with the possible-worlds semantics of a prob-tree,
we cumulate the probabilities that were lost (those of the trees violating the constraint) and assign
them to the tree tr consisting simply of a root (with the same label as the common root label). In
other words, this comes down to interpreting the root-tree as inconsistent. We thus define now:

¹Tº¾p = { (ti,pi) ∈ ¹Tº | pi ¾ p} ∪
¦
(tr ,pmissing)

©

where
pmissing =

∑

1¶i¶n
pi<p

pi.

We now introduce a similar notion of restriction directly for prob-trees, since we want to deal
with structural equivalence of prob-trees. A restriction of a prob-tree T = (t,W ,π,γ ) to possible
worlds with probability greater than some threshold p is some prob-tree T ′ = (t ′,W ,π,γ ′) such
that for all V ⊆W with V (T ) appearing in ¹Tº¾p, V (T ′)∼ V (T ) and for all V ⊆W with V (T )
not appearing in ¹Tº¾p, V (T ′) = tr . In other words, we want to keep the same event variables as
in T , with the same signification for valid possible worlds, and with the assumption that the root
tree denotes an inconsistent state. Obviously, T ′ is not unique; however, it is guaranteed to exist,
since it is always possible to annotate children of the root with conditions describing uniquely each
V ⊆W .
�e question is now, is there a compact prob-tree restriction of a prob-tree to some probability

threshold? �e answer is no:

�eorem .. For all n ∈N, there exists a prob-tree T of size O(n) and a probability threshold p such
that for each prob-tree T ′ that is a restriction of T to the threshold p, the size of T ′ is Ω(2n).

Proof. Consider the following prob-tree T = (t,π,W ,γ ), with 2n+1 nodes and 2n event variables,
each appearing once; we choose a uniform probability distribution π(wi) = 1/4 and a probability
threshold p= (3/16)n:

A

C1

w1

… C2n

w2n

�e probability of a given possible world of ¹Tº is

�1
4

�k�3
4

�2n−k

where k is the number of event variables set to true. �is is greater than p if and only if k ¶ n.
Hence, the trees appearing in ¹Tº¾p are exactly the subtrees of the data tree underlying T with at
most n leafs; besides, distinct valuations of event variables yield distinct data trees since each node
of T has a distinct label. All labels C1, …, C2n appear in ¹Tº¾p since they have a symmetric role
in T .
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Let T ′ = (t ′,W ,π,γ ′) be a restriction of T to p. T ′ is necessarily a flat prob-tree with leafs of the
root labeled by C1, …, C2n (there may be multiple leafs with the same label). For 1¶ i¶ 2n, let Ψi
be the set of conjunctions annotating nodes labeled by Ci.
We shall prove that, for all 1 ¶ i ¶ 2n, for all K ⊆ ¹1;2nº such that i ∈ K and |K | = n, there

exists ψ ∈ Ψi such that {¬wk | 1¶ k¶ 2n,k /∈ K } ⊆ ψ and all other literals of ψ are positive.
Assume by contradiction that this is not the case. �en, there is a 1¶ i¶ 2n, a K ⊆ ¹1;2nº such
that i ∈ K and |K |= n such that no element ψ ∈ Ψi verifies that {¬wk | 1¶ k¶ 2n,k /∈ K } ⊆ ψ
with all other literals ψ positive. {wk | k ∈ K } is a subset of W that leads to a possible world
of ¹Tº¾p, in which the node labeled by Ci appears; therefore, there exists a ψ ∈ Ψi such that
ψ⊆ {wk | k ∈ K } ∩ {¬wk | k /∈ K }. By hypothesis, there must be a k /∈ K such that ¬wk /∈ψ. But
then, {wk | k ∈ K }∪wk |=ψ, whereas as this subset ofW is of cardinality n+1, it should yield the
root tree.
What we just proved gives the fact that there exists at least

�2n−1
n−1
�
distinct elements in each Ψi.

But:
�2n− 1

n− 1

�
=
(2n− 1)!

(n− 1)! · n!
=
(2n)!

2(n!)2
∼
p
4πn

�2n
e

�2n

4πn
�n
e

�2n =
22n−1
p
πn
=Ω(2n)

using Stirling’s formula.

Note that we used here structural equivalence between prob-trees. It is still open whether this
result still holds for a less restrictive notion of equivalence, i.e., when looking for a prob-tree T ′

such that ¹T ′º∼ ¹Tº¾p (i.e., semantic equivalence, as in Section ..).

.. Validation

Finally we consider validity with respect to a DTD.
A Document Type Definition for an XML document defines the constraints applying to the

children of a node using a sequence operator ((A,B)), a disjunction operator ((A|B)) and repetition
operators ((A*), (A+), (A?)). As we consider unordered trees here, we do not consider the sequence
operator as such. To simplify, we use the following definition of DTDs that simply gives a lower
and upper bound for the number of occurrences of nodes with a given label l ′ as children of some
node labeled by l .

Definition .. A Document Type Definition (DTD) D is a function over some finite subset L of
the set of labelsL such that for l ∈ L, D(l) is a finite set of elements ofL ×¹0;+∞¹×¹1;+∞º
and, if (l1,p1,q1) ∈D(l) and (l2,p2,q2) ∈D(l), either l1 6= l2 or (l1,p1,q1) = (l2,p2,q2).
We use the following notation, for l ∈ L: D−(l)(l

′) and D+(l)(l
′) are respectively the unique

p and q such that (l ′,p,q) ∈ D(l) if such p and q exist; otherwise, we denote D−(l)(l
′) = 0 and

D+(l)(l
′) = 0.

Definition .. Let D be a DTD and t = (N ,E , r,ϕ, ν) a data tree. Let L be the domain of D.
We say that t satisfies D (denoted t |=D) if, for each s ∈N such that ϕ(s) ∈ L, and for each l ′ ∈ L:

D−(ϕ(s))(l
′)¶

��� s′ ∈N | ϕ(s′) = l ′ ∧ (s, s′) ∈ E 	
�� ;

D+(ϕ(s))(l
′)¾

��� s′ ∈N | ϕ(s′) = l ′ ∧ (s, s′) ∈ E 	
�� .
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Note that we do not impose any condition on nodes of t whose label is not in the domain of the
DTD.
Given a prob-tree T and a DTD D, two natural questions arise:

. (DTD-S) { (t,p) ∈ ¹Tº | t |=D }
?

6=∅

. (DTD-V) { (t,p) ∈ ¹Tº | t |=D } ?∼ ¹Tº

We have the following complexity result:

�eorem ..

. DTD-S is NP-complete in the number of event variables (and linear in the number
of nodes in the tree).

. DTD-V is coNP-complete in the number of event variables (and linear in the number of
nodes in the tree).

Proof. We use a reduction of SAT. �e beginning of the construction is the same in both cases.
Let θ be a propositional logic formula, in conjunctive normal form (i.e., an input to the SAT

problem). Let ψ1 . . .ψn be the terms of ¬θ in disjunctive normal form (the DNF of ¬θ is computed
in a linear time from θ which is in CNF).
Let T be the following prob-tree:

A

B

ψ1

… B

ψn

. Consider the DTD D: D(A) = {(B, 0, 0)}.

{ (t,p) ∈ ¹Tº | t |=D } 6=∅
⇐⇒ ψ1 ∨ · · · ∨ψn not a tautology

⇐⇒ θ is satisfiable.

Since the construction of the reduction is linear in the size of θ, this proves that the DTD
satisfiability problem is NP-hard.

Moreover, here is an NP algorithm for the DTD satisfiability problem, which concludes the
proof of its NP-completeness: Guess a valuation ν of the event variables of T , and return
true if ν(T ) satisfies the DTD (which can be checked in linear time).

. Consider the DTD D: D(A) = {(B,1,+∞)}.

{ (t,p) ∈ ¹Tº | t |=D } ∼ ¹Tº
⇐⇒ ψ1 ∨ · · · ∨ψn tautology

⇐⇒ θ is not satisfiable.
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Since the construction of the reduction is linear in the size of θ, this proves that the validity
problem is coNP-hard.

Moreover, here is an NP algorithm for the complement of the validity problem, which
concludes the proof of its coNP-completeness: Guess a valuation ν of the event variables of
T and return true if ν(T ) does not satisfy the DTD.

Observe that the DTDs we used in the proof are all of constant size.

We could also consider the DTD-R problem: Given a DTD and a prob-tree, can we
represent concisely as a prob-tree the set of possible worlds valid against the DTD? �is would
require similar definitions as in Section ... Actually, the result is, similarly, negative and the
proof is done in exactly the same way, with a DTD requiring that the node A has at most n children
labeled by C . �e Ci nodes are replaced by C nodes with a Di child in order to give them the same
label while keeping them distinguishable.

. Variants of the Prob-TreeModel

In this section, we briefly consider variants of the prob-tree model presented up to here, and discuss
their complexity. Namely, we consider (i) a tree model with set semantics, instead of our multi-set
semantics; (ii) the notion of semantic equivalence (in place of structural equivalence); (iii) a prob-tree
model where nodes are assigned arbitrary propositional formula (and not simply conjunctions) as
conditions; and (iv) ordered trees.

.. Set Semantics

In this chapter, we introduced a data model with a multi-set (or bag) semantics. One can consider
instead a set semantics. One just has to redefine isomorphism between data trees inductively as follows.
Let t, t ′ be two trees. �ey are isomorphic if their roots have the same label and if each subtree of
the root of t is isomorphic to some subtree of the root of t ′, and symmetrically. Most definitions
of this chapter can then be applied as is, relying on this new version of data tree isomorphism.
�e results about queries and updates remain, including the exponential complexity of deletions
from�eorem . (the proofs are almost unchanged). An important difference, however, is for
structural equivalence, for which there is now a simple way of proving coNP-completeness: Just
observe that we no longer deal with count-equivalence, but with classical equivalence of propositional
formulas.

.. Semantic Equivalence

Structural equivalence is only relevant for prob-trees that share the same event variables. If we
want to compare prob-trees with different sets of events, we can define another kind of equivalence,
through their possible-worlds semantics: T and T ′ are semantically equivalent (denoted T ≡sem T ′)
if ¹Tº∼ ¹T ′º. �e first natural question is that of the relation between structural and semantic
equivalence.

Proposition .. Let T = (t,W ,π,γ ), T ′ = (t ′,W ′,π′,γ ′) be two prob-trees, with W =W ′ and
π=π′. �en
(i) If T ≡struct T

′, then T ≡sem T ′;
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(ii) T ≡struct T
′ if and only if, for each probability distribution π′′ over W , (t,W ,π′′,γ ) ≡sem

(t ′,W ,π′′,γ ′).

Proof. (i) is obvious. Now suppose that for each π′′ over W , (t,W ,π′′,γ ) ≡sem (t
′,W ,π′′,γ ′).

To conclude the proof, it clearly suffices to show that T ≡struct T
′. For each V ⊆W , let πV be

the probability distribution that maps w ∈ V to 1 and w ∈ W − V to 0. �en, if TV and T ′
V

denote respectively the prob-trees obtained from T and T ′ by exchanging the original probability
distributionπ withπV , ¹TVº= {(V (T ),1)} and ¹T ′Vº=

�
(V (T ′),1)

	
and we have thusV (T ) =

V (T ′).
Note that strictly speaking, we disallowed variables with zero probability. So to be precise, we

should use ǫ instead of 0 and 1−ǫ instead of 1. If ǫ is chosen so that (1−ǫ)n > 2nǫ (which is always
possible for a sufficiently low value of ǫ), V (T ) and V (T ′) are the elements of highest probability
of, respectively, ¹Tº and ¹T ′º.

Note that T ≡sem T ′ does not imply T ≡struct T
′. For instance, if w1, w2, w3 verify π(w3) =

π(w1) ·π(w2), we have :

A

B

w1,w2

≡sem
6≡struct

A

B

w3

Clearly, there is an EXPTIME algorithm for determining if two prob-trees are semantically
equivalent (just compute the possible-worlds sets, normalize them, and check if they are isomorphic,
which can be decided in quadratic time in the number of possible worlds). It is open whether the
problem also belongs to a lower complexity class. Similarly, it is open whether �eorem . on the
complexity of deletions still holds for semantic equivalence.

.. Arbitrary Propositional Formula

In prob-trees, the conditions we use are conjunctions of literals. A natural extension is to allow any
propositional formula (including disjunctions) as conditions. A question is how this is affecting the
complexity. First, one can show that the evaluation of boolean queries is NP-complete (assuming
the underlying query language over data tree is in PTIME and includes, say, tree pattern queries).
�e fact that it is NP is obvious, and there is a linear-time reduction of SAT to this problem.
�en, the cost of an update operation is now PTIME (again assuming the underlying language on
data trees is PTIME). Indeed, we can now simply annotate inserted or deleted nodes by complex
formulas. In particular, �eorem . is no longer valid. So this model privileges updates (that are
cheap) against queries (that are expensive). It is not adapted to the applications that motivated our
work.

.. Order Semantics

By considering ordered trees, we would move closer to standard XML.�e situation is more intricate
and would require totally different techniques. �e complexity would typically be higher because of
the inherent combinatorics that is introduced. Some of the algorithms, especially for querying and
updating, may still be valid if we just add an additional label to each node indicating its position
among its sibling.
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. Other Models for Probabilistic Data in XML

We present here two alternatives to prob-trees for representing probabilistic data in trees. �e
first one, simple probabilistic (SP) trees, is a simple and intuitive model, that is shown to be less
expressive than the possible-worlds (and hence the prob-tree) model. �e second one has been
studied in the literature, and can be thought as a combination of possible worlds and SP trees. We
show that it can be seen as a restricted case of the prob-tree model.

.. Simple Probabilistic Model

In the spirit of probabilistic models for the relational model, we can attach a probability to each
node in a data tree. �e intuition is that it captures the probability of that node to be present,
assuming its parent is. A limitation of this model is that the only probability dependency that is
captured is between nodes in a parent/child relationship. We study now this model and highlight
its limitations.

Definition .. A simple probabilistic (SP) tree T is a pair (t,π) where t = (N ,E , r,ϕ, ν) is a data
tree and π : N →]0;1] such that π(r) = 1 assigns probabilities to tree nodes.

A

B

0.8

C

D

0.7

Figure .: Example SP tree

Such an SP tree is represented as in Figure .. Only probabilities not set to 1 are shown.
We can give a possible-worlds semantics to an SP tree as follows. Choose an arbitrary X ⊆ N .

Consider tX the tree obtained by removing from t all nodes not in X (and their descendants). We
assign to this tree, the probability:

pX =
∏

n∈X
π(n)

∏

n∈N−X
(1−π(n)).

�e possible-worlds semantics of T , denoted ¹Tº, is defined as:

{(tX ,pX ) | X ⊆N } .
Note that this definition correctly provides a PW set because:

∑

X⊆N

 ∏

n∈X
π(n)

∏

n∈A−X
(1−π(n))

!
= 1

from classical probability equations.
As an example, the semantics of the SP tree from Figure . is the PW set on Figure .. A natural

question is then whether the SP tree model is as expressive as the PW tree model. �e answer is no.


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Figure .: Possible-worlds semantics for the SP tree from Figure .

Proposition .. �ere exists a PW set which is not the PW semantics of any SP tree.

Figure . is an example of a PW set that has no equivalent SP tree. Intuitively, an equivalent SP
tree would necessarily have nodes A, B, C and D, so the PW set would contain a tree with these
four nodes, which it does not have, a contradiction.
�is negative result is not a sufficient reason for ignoring the SP model, since one might argue

that PW trees not representable in the SP model are of little practical interest. However, we next
show some more fundamental shortcomings of that model. For this, consider queries and updates
in the SP model.

Definition .. Let Q be a locally monotone query and T = (t,π) an SP tree. �e result of Q on
T , denoted Q(T ), is the set:

⋃

u∈Q(t)

( 
u,

∏

n node of u

π(n)

!)
.

Once again, Q(T ) is not in general a PW set. �e way to read (t ′,π′) ∈ Q(T ) is that there is
a probability π′ that t ′ is a result to Q(T ). We have the following result, which shows that the
definition is coherent with the PW semantics of an SP tree:

�eorem .. Let Q be a locally monotone query and T an SP tree. �en Q(T )∼Q(¹Tº) (with
the same abuse of notation as in �eorem .).

Proof. Observe that an SP tree T = (t,π) can be transformed into a prob-tree T ′ = (t,W ,π′,γ ) in
the following way: Each node n of t with π(n) = 1 is annotated by the empty condition, while each
node n of t with π(n)< 1 is annotated by wn, where wn is a fresh event variable with probability
π′(wn) = π(n). It is clear that T and T ′ share the same semantics, and that Q(T ) =Q(T ′) (just
compare Definitions . and .). �e result comes then from �eorem ..

Now consider updates. �e following result demonstrates that the SP tree model does not meet
our requirements in terms of update, even when only using simple tree-pattern queries without any
join.

Proposition .. �ere exists an SP tree T and a probabilistic update operation (τ, c) with a tree-
pattern query as defining query, such that there is no SP tree whose semantics is isomorph to (τ, c)(¹Tº).
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Proof. We choose T as the root tree, and τ the update operation that adds two nodes B and C as
children of the root, with some confidence c < 1. (τ, c)(¹Tº) is a set of two possible worlds: the
root tree, with confidence 1− c, and a tree with three nodes, with confidence c. A candidate SP tree
for this PW set needs to have three nodes; but in this case, its possible-worlds semantics has four
different worlds, including worlds where B is present without C , and vice-versa.

In other words, “SP trees are not closed under update operations.” �is comes from the fact that
dependencies between nodes are not expressible in the SP model. As seen is the proof, if an update
operation adds two nodes under one common node, their presence is completely correlated, whereas
the presence of siblings is independent in the SP model. Indeed, a simple modification that can be
seen as an interdependent succession of an insertion and a deletion, cannot be represented in the
SP model. Actually, the problem is even deeper: As the positions where the updates are performed
are selected by a query, the update to be performed may be conditioned by the assumptions that
were made to realize the query. �ere is no way to specify this kind of dependency in the SP model,
whereas it is easy to do so with prob-trees.

.. PTDB

PTDB (Probabilistic Tree Data Base) is a system to manage probabilistic data by Nierman and
Jagadish, presented in [NJ02]. �e underlying model is also at the basis of [KS07] where Kimelfeld
and Sagiv explore a number of querying issues, including incomplete queries. A remark at the end
of [KS07] indicates that there are translations between the model underlying PTDB (we call it
the p-document model, following [KS07]) and the prob-tree model. We discuss and precise this
issue in this section.
Let us first give a formal definition of p-documents:

Definition .. A p-document is a -uple (t, I ,M ,π) where t = (N ,E , r,ϕ, ν) is a data tree, I ⊆N
is a set of independent distribution nodes, M ⊆N is a set of mutually exclusive distribution nodes
(neither the root nor leafs can be distribution nodes, and I ∩M = ∅), and π : A →]0;1] is a
probability distribution function that is defined for all nodes n that are children of a distribution
node in t, and undefined elsewhere. An additional constraint is that for all mutually exclusive
distribution node d , the following holds:

∑

n child of d

π(n)¶ 1.

An example p-document is shown in Figure .. Distribution nodes are shown as diamonds,
while regular nodes are shown as circles as usual. �e probability distribution values are displayed
along the edge between distribution nodes and their children. Intuitively, independent distribution
nodes behave similarly as nodes in the SP tree model, while mutually exclusive distribution nodes
represent different possible worlds. We now define the semantics of documents in a more precise
way.

Definition .. Let T = (t, I ,M ,π) be a p-document. �e possible-worlds semantics of T is
the set of pairs (tree,probability) obtained as the result from all the possible following choices,
performed from top down (starting from a probability of 1):
(i) For each d ∈ I , we choose an arbitrary (possibly empty) subset of the set of children of d and

attach them to the parent of d , removing thereby d and its other children. �e probability of
this choice is multiplied by the product of the probabilities of the selected children (1 when
no child is selected).


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Figure .: Example p-document

(ii) For each d ∈M , we choose a single child of d , and attach it to the parent of d , removing
thereby d and its other children. �e probability of this choice is multiplied by the probability
of the selected child. We can also choose not to select any child and remove d and all its
children from the tree, the probability is then multiplied by 1− s where s is the sum of the
probabilities of the children of d .

It is easy to check that this is indeed a PW set. As an illustration, the possible-worlds semantics of
the p-document from Figure . is given in Figure ..

A

B D

p4 = 0.144

A

C

p5 = 0.224

A

C D

p6 = 0.336

A

B

p3 = 0.096

A

D

p2 = 0.12

A

p1 = 0.08

Figure .: Possible-worlds semantics of the p-document from Figure .

We now state the relations between the expressiveness and conciseness of p-documents on one
hand, and prob-trees on the other hand: p-documents are fully expressive (as are prob-trees) but
exponentially less concise than prob-trees.

Proposition ..

. For each PW set S, there exists a p-document T such that S ∼ ¹Tº.

. �ere is a linear algorithm for transforming a p-document T into a prob-tree T ′ such that
¹Tº∼ ¹T ′º.

. For all n ∈N, there exists a prob-tree T of size O(n) such that for each p-document T ′ satisfying
¹Tº∼ ¹T ′º, the size of T ′ is Ω(2n).


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Proof.

. Let S = {(ti,pi)}, for 1¶ i ¶ n. Let l be the common label of all roots of S. For each i, we
denote by u(i)

1
, …, u(i)

ki
the ki subtrees just below the root of data tree i. �en, the following

p-document has for possible-worlds semantics S:

l

Ind.

Ind.

p1

u
(1)
1

1

… u
(1)

k1

1
… Ind.

pn

u
(n)
1

1

… u
(n)

kn

1

. Refer to Algorithm ., which is clearly linear. �e fact that T ′ has the same semantics as T
is straightforward. As an example, Figure . is the result of applying Algorithm . to the
p-document from Figure .. Obviously, this linearity in time gives also a linear bound on
the size of the resulting prob-tree.

Algorithm . Transformation of a p-document into a prob-tree with the same semantics
I: A p-document T .
O: A prob-tree T ′ such that ¹Tº∼ ¹T ′º.
(a) Transform every independent distribution node into a node with a special label; introduce a

fresh event variable w for every child of the distribution node, with associated probability the
probability of the child, and add the literal w as a condition to the child.

(b) Transform every mutually exclusive distribution node into a node with a special label; introduce
as many event variables as there are children of the distribution node (one less if the probabilities
of the children sum to 1), with associated probability as in the proof of �eorem ., and add
conditions to the children as in the proof of �eorem ..

(c) Remove every node with a special label, attaching their regular node closest descendants to their
regular node closest ancestor, and merging event conditions on each ancestor→descendant path
with the condition of the descendant.

. Consider the following prob-tree T , with 2n+ 3 nodes, n event variables, and a uniform
probability distribution set to ½:
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w1,w3
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w1,¬w3
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w2

Event Proba.

w1 0.8
w2 0.6
w3 0.3

Figure .: Prob-tree resulting from applying Algorithm . to the p-document from Figure .
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wn

Let T ′ be a p-document such that ¹Tº∼ ¹T ′º. First, let us prove that no (non-trivial, that
is, with multiple choices) distribution node appears in T ′ below a node labeled by B or C (in
other words, that all distribution nodes appear at the top of the tree, just below the root).
Let us suppose by contradiction that this is not the case. �en, there exists a node labeled Bi
for some i (or Ci but these play a symmetric role) that has for ancestor a distribution node
which is below a B node; since the distribution node is supposed non-trivial, there must be a
choice to make, and it is necessarily between the absence or presence of Bi. But then, this
choice cannot be correlated with the absence or presence of Ci which is done, as Ci cannot
be a descendant of Bi, in another branch. �is yields a contradiction, since the absence or
presence of Bi and Ci are mutually dependent.

All distribution nodes ofT ′ appear at the top of the tree. Each subtree without any distribution
node directly below these must then correspond to a possible world, and each possible world
must appear that way. But there are 2n different possible worlds; T ′ has thus more than 2n

nodes.

�us, any p-document can be transformed efficiently into a prob-tree, and the converse is false.

. Implementation

�is section discusses our implementation of a prob-tree system, namely FXML. Both the code
and a demonstration are freely available at http://pierre.senellart.com/software/fuzzyxml/.
FXML supports TPWJ queries, and arbitrary probabilistic update operations. To facilitate

the input of queries, a path language, similar to a subset of XPath, is introduced, along with a
language for expressing joins. We do not present it in detail, but let us consider the example
shown in Figure . �e first two lines are a path expression, the third line is a corresponding join
expression. �e corresponding query is shown in Figure ..


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/books[-book[title$1[.="Foundations of Databases"]]/author$2]

/book[-title$3][-author$4]/author$5

$2 = $4 and $1 != $3 and $4 != $5

Figure .: Example path/join expression

books

book

title

Foundations of Databases

author

book

title author author

Figure .: TPWJ query corresponding to the path/join expression of Figure .

<!ELEMENT books (book*)>

<!ELEMENT book (title, author+)>

<!ELEMENT author (#PCDATA)>

<!ELEMENT title (#PCDATA)>

Figure .: DTD for the query of Figures . and .


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Join expressions are specified using ‘$n’ variables attached to nodes of the path. �e ‘-’ sign
preceding some element names is an indication that these nodes should be filtered out from the final
query results (but they are of course used during the query evaluation). Corresponding subtrees are
shown in gray in Figure ..
�e query is intended to be used in an XML document respecting the DTD of Figure ..
�e query can now be easily translated in natural language: It returns authors who are (strict)

coauthor, with one of the author of Foundations of Databases, of a book different from this one.
�is example illustrates the expressiveness of TPWJ queries, along with the way they can be entered
in FXML.

Path and join
expressions

XML
representation

Graphical
representation

XQuery Prob-tree
as XML

XQuery result

Query results
on prob-tree

JavaCC

XSLT + Graphviz XSLT

XQuery processor

Java

Figure .: Different steps of query processing in FXML, with technologies used

Figure . represents the different steps that are used in FXML to process a query, along with
the technologies involved. Path and join expressions are first parsed into an XML representation with
the help of JavaCC [Jav]; these queries can be displayed to the user in a tree-like representation similar
to that of Figure . by transforming this XML representation with XSLT into a Graphviz [ATT]
graph description. FXML compiles TPWJ queries on prob-trees into XQuery [W3C07]
programs. �is compilation is performed in XSLT. �e XQuery programs are then evaluated by a
standard XQuery processor (currently, the Qizx/open Java engine [AXY]); a post-processing step is
performed on the resulting subtrees to compute the associated probabilities and return the final
results to the user.
Note that the compilation from TPWJ queries into XQuery is not entirely straightforward, mostly
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 xquery version ’1.0’;

 declare namespace fxml="http://pierre.senellart.com/software/fuzzyxml/";



 declare function local:minimal-tree

 ($root as node(),$set as node()*,$ancestors as node()*,$nodrops as node()*)

 as node()

 {

 return element {name($root)} {

 $root/@fxml:id,

 for $nodrop in $nodrops[@fxml:id=$root/@fxml:id]

 where exists($nodrop intersect $set)

 return attribute fxml:nodrop { 1 },

 $root/fxml:*,

 let $children:=$root/* intersect $ancestors

 for $n in $children

 return local:minimal-tree($n,$set,$ancestors,$nodrops)

 }

 }



 return element fxml:result {

 let $books:=doc($document)/books

 return (

 for $book1 in $books/book

 for $book2 in $books/book

 for $title1 in $book1/title[fxml:value="Foundations of Databases"]

 for $author1 in $book1/author

 for $author21 in $book2/author

 for $title2 in $book2/title

 for $author22 in $book2/author

 where $author1/fxml:value=$author21/fxml:value and

 not($title1/fxml:value=$title2/fxml:value) and

 not($author21/fxml:value=$author22/fxml:value)

 return

 let $set:=$books union $book1 union $title1 union $author1 union

 $book2 union $author21 union $title2 union $author22

 return local:minimal-tree(

 $books,

 $set,

 $set/ancestor-or-self::*,

 $books/@fxml:id union $book2/@fxml:id union $author22/@fxml:id)

 )

 }

Figure .: XQuery compilation of the query from Figure .





Chapter : A Probabilistic XML Database Model

since we need to return sub-datatrees of the original tree, something that is not directly supported by
XQuery. To illustrate, we show in Figure . the XQuery program that results from the compilation
of the TPWJ query from Figure .. Some simplifications and reformatting have been made in
order to improve legibility. �e tree-pattern query is expressed in lines – with XPath expressions
for each different node in the tree, while joins are expressed in lines – with a where condition.
�e function local:minimal-tree (lines –) recursively builds the minimal tree rooted at $root
containing the nodes in the $set variable (that is, all nodes matched by the query). A fxml:nodrop

attribute is added to nodes that are not filtered out in the final results (for technical reasons, this is
easier than to mark out nodes to be filtered out).
Similarly, updates are compiled into XUpdate [XML00] programs, evaluated by a standard

XUpdate processor (currently, an ad hoc processor written in XSLT). A limitation of the XUpdate
language (the fact that it does not support cloning of nodes) makes it necessary in some cases
(namely, when nodes which are not leafs have to be conditionally deleted) to perform additional
XQuery queries on the tree. A way around this limitation would be to use a proper language
for expressing updates in XML databases, like the XQuery Update Facility [W3Cb], but such a
language is not yet either finalized or widely implemented.
�e advantage of using standard languages (XQuery, XUpdate) for compiling queries and updates

on prob-trees is the possibility to use any engine supporting these language, which includes XML
native repositories such as eXist [eXi].
Observe that we need to record probabilistic meta-information in the XML documents. �is

is achieved by adding an element containing event conditions on every conditioned node, and
maintaining external tables with the association between event names and probabilities.
To conclude this section, we briefly discuss the limitations of our work when exposed to real-life

XML documents:

• �e trees we consider are unordered, which is absolutely inherent to the approach (see
Section .. for a brief discussion on changes of the semantics to support ordered trees). We
have to assume that the applications we support are only concerned with queries that do not
rely on the order of siblings. �is is a rather standard assumption.

• Mixed content (nodes with both children and textual content) is not yet supported. �is can
be easily fixed by adding virtual text nodes above every text fragment.

• Attribute nodes are not yet supported either. �ey can easily be replaced by standard nodes.

Conclusion

�e prob-tree model is a natural, concise and powerful way to represent probabilistic XML infor-
mation. Queries, and especially updates, are supported in an efficient way, with the exception of
deletions, which arise more rarely in our context of a process that gather imprecise information.
Complexity results have been established, and an implementation exists.
�e present work may be pursued in a number of directions. A first one is prob-tree simplification.

One would often like to approximate a prob-tree to get a more compact representation, perhaps
ignoring less probable worlds and some of the probabilistic events (some of the provenance/history).
Also, probabilities can be used to rank results. It would be useful to have algorithms obtaining the
most probable results first. Finally, it would be interesting to also handle aggregate functions. We
believe the use of multi-sets simplifies this last issue.
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Going back to our original motivation of understanding the hidden Web, we now have a model
that can be used for the probabilistic data warehouse described in Chapter . We now proceed, in
the following chapters, to the issue of gathering (imprecise) information on the hidden Web.







Chapter 

Probing the HiddenWeb

�is work has been carried out in collaboration with Avin Mittal, from the Indian Institute
of Technology in Bombay, during his three-month internship under my supervision. A more
detailed and technical presentation can be found in Avin’s report [Mit07]. �e content of
this chapter and the following one, along with additional experiments, is also presented
in [11].

Although some of the sources of the hidden Web are Web services [W3Ca] that are described by a
WSDL [W3C01] file, these form a very small minority. Most of the services that can be found on
the hidden Web are accessible through an HTML form interface, and their results are shown as
HTML result pages. A first step to the understanding and indexing of these services is to understand
the structure of both these form interfaces and their result pages. �is chapter focuses on the former,
while Chapter  will deal with the latter. As we shall see, the two problems are not completely
independent and we shall mention some interactions between them along the way.
As discussed in Chapter , we rely on some domain knowledge to analyze the structure of HTML

forms; we use here for this domain knowledge a list of domain concepts, and words appearing in
instances of each concept along with their relative frequency. Domain concepts are compared to
words that appear around a field of an HTML form to annotate fields, while domain instances are
used to probe the form, in order both to obtain some feedback about our annotation, and to have a
first hint about the structure of result pages.
Given the URL of an HTML form, the aim of the work presented in this chapter is to annotate

each relevant field of this form with the domain concept this fields maps to, to confirm these
annotations by probing the form with domain instances, and to generate the result pages that will
be analyzed in the next chapter. As in the remaining of this thesis, we take the example of the
publication database domain, but our approach is quite general and can be applied to any other
domain for which we have sufficient domain knowledge.
We make a number of simplifying assumptions on the structure and semantics of the forms:

• We assume that each field that maps to a domain concept must represent this concept as
a whole. �is means that we do not manage compound concepts that are queried by their
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components (a name, with a field for inputting the first name, and another one for the last
name). We do not consider range queries, that are common, e.g., for dates.

• We assume that the result to a form represents the conjunctive query of each filled-in field/value
pair. In particular, we do not consider complex search queries based on boolean operators.

• We assume that concepts whose instances have multiple words can be queried with a single
word occurring in them. In other words, forms support partial match queries, instead of
complete match queries. For instance, a field for inputting the title of an article may be queried
with a single word from the title; we actually never found in our experiments any form where
this assumption failed to hold.

• We assume that there are no specifically required field in the form, and that each field can be
either filled in or omitted. �is is actually quite a strong assumption, and it would be a very
interesting extension to use probes to distinguish between required and optional fields. �is
might be feasible in the following way: If we are sure that some tuple is in the underlying
database (because it has been outputted as the result of a previous query), we can try to probe
the form with all subsets of the attribute of this tuple to check whenever we get a result page.
When we do not get a result page, we know that some required field has not been filled in
(see Section . for techniques to distinguish between result and error pages). An alternative
approach would be to make use of the potential JavaScript code that is executed when the
form is submitted, and to use techniques from programming language semantics or software
testing to check if the form submission is rejected by the script because of a missing value.
�is looks quite promising, but we unfortunately discovered that such JavaScript validation
code was quite rare.

In spite of these assumptions, we shall see in Section . that we still get satisfactory results on
most HTML forms that we found in our experiment. Overcoming each of these limitations is a
challenging and interesting problem that should be addressed in future work.
�e outline of this chapter is the following. We first discuss related work, focusing on understand-

ing form structure and form probing, in Section ., before presenting the general architecture
of our form prober in Section .. We then detail how the first part of the structural analysis is
performed in Section .. In Section ., we present the probing step itself that is used to confirm
annotations discovered in the previous step. Experiments are then discussed in Section .. Finally,
we show how we can use all of this to wrap an HTML form as a Web service, in order to abstract
away the interface of the service, in Section ..

. RelatedWork

We present here related work about the analysis of the structure of forms, and probing of these
forms; see Section . for more general works about the hidden Web.
An early work on crawling the hidden Web is [RGM01], where Raghavan and Garcia-Molina

present a system that focuses on analyzing Web forms, automatically generating queries and extract-
ing information from the response pages thus obtained. �ere are many similarities between the
approach described in Section . and [RGM01], though the authors choose to use a method based
on the visual layout of elements to determine the label of a field, rather than the more structural
method that we use.
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�eMQ system processes multi-attribute forms [ZHC05] and uses predicate mapping
to convert user-given queries to specific form queries, and thus fetch the required response pages
hidden behind the form interface. �e focus of this work is on schema mapping and query rewriting
to translate queries to a given interface. �e paper does not address the analysis of forms themselves,
but the same authors describe in [ZHC04] a fairly elaborate approach, based on the notion of
hidden grammars that describe the relation between structure of a query form and its visual layout.
[IG02] focus on the sampling of a source of the hidden Web, by using domain knowledge to

obtain a representative subset of result documents.
[BF04] is another example of a system which extracts hidden-Web data from keyword based

interfaces by querying the interface with high coverage keywords. �e aim of the authors is to
extract all the data from the database, and index it locally, which is quite a different goal. �ey
exploit the same idea as we do for distinguishing between result and error pages, citing [DEW97]
as their inspiration, that is, probing the form with nonsense keywords that we are sure do not exist
in the database.
Finally, the idea of using clustering for distinguishing between result and error pages comes

from [CLB04], although we do not use the same input for the clustering algorithm. In [CLB04],
the authors construct the feature vector for a page by extracting the tags from HTML code and use
the cosine similarity measure with a tf-idf weighting. In practice (see Section .), we found out
that this tag-signature–based clustering does not work very well in comparison to our scheme of
clustering based on the terminal paths in the DOM tree, that is presented in Section ..
�e work presented here has the following particularities with respect to previous work:

• We present a complete system that integrates form syntactic analysis, probing, and wrapping
the form into a Web service, exploiting and combining various ideas of the literature.

• We propose a novel way of clustering result and error pages, based on terminal paths in the
DOM tree, that performs very well in practice.

• We stress the independence of our hidden-Web prober from the considered domain; the
knowledge domain, as a list of concepts and a list of instances of these concepts with their
frequency, is external to the system and is the only element to change to handle a different
domain.

. Architecture of a Hidden-Web Prober

Figure . depicts the general architecture of our hidden-Web prober. �e different modules of
the system, that will be described in the following sections, are shown as rectangular boxes, while
external data and agents are represented as ellipses. �e input to such a system is the URL of a form
of the considered domain, which might be automatically generated using one of the techniques
presented in Section ... Its output is a Web service, along with its WSDL description, that wraps
the original form and that the user can use to perform queries independently of the interface of
the service (result pages are still raw HTML pages, see Chapter  for extracting information from
these).
External components of our system include domain knowledge (concepts and instances), a general

ontology that is used to broaden the set of concept names (we usedWordNet [Pri] in the experiments,
as we dealt with forms in the English language; obviously, this ontology has to be changed for
handling a different language), and the World Wide Web itself (more precisely, the submission page
for the form, with possibly pages linked from it).
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Figure .: Architecture of a system for probing the hidden Web
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. Structural Analysis of an HTML Form

Four different modules build up the main part of our system, while a fifth one is used to handle
Web-service requests from the user. �e syntactic analyzer processes the HTML code of the form,
extracts the relevant information, and adds initial annotations; it is described in Section .. �e
probing and response page analyzer, detailed in Section ., probe the form with knowledge domain,
so as to confirm or infirm these annotations. Finally, the resulting analyzed form is wrapped as a
Web service as described in Section .. At each step, information acquired from previous modules
is kept as an XML description that is stored at the end of the process to be used when a query is
performed.

. Structural Analysis of an HTML Form

Authors

Title Year Page 

Conference ID 

Journal Volume Number 

Maximum of  matches

Figure .: Example form

�e role of the first module of our prober is to analyze the structure of the form and to find fields
that are relevant to the domain concepts. Consider a form like the one that is shown in Figure ..
We describe in Algorithm . the different steps that are carried out, and detail them below.

Algorithm . Structural analysis of an HTML form
I: URL of a form.
O: Meta-information about the form, list of fields with probabilistic annotations.
(a) Retrieve the Web page at the given URL.
(b) Identify the different forms on the page; store meta-information (submission URL, method,

encoding).
(c) For each form field:

(i) Gather all words of the textual context: name and id attributes, content of a corresponding
label element, words appearing before the field in source code order. Words are annotated
with a confidence value that depends on their origin.

(ii) Remove stop-words.
(iii) Stem all context words with Porter’s stemming algorithm [Por80].
(iv) Check whether any resulting stemmed word matches a stem of words related to the concept

name as given by WordNet [Pri]. �e final confidence depends on the distance of the
concept name to the related word.

(v) Annotate the fields with matching concepts, with associated confidence as the probability
that this field represent this concept.

(d) Return all gathered data.

Note that the proper (semantic) way to give the label of a form field is the use of the label
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HTML element, whose for attribute must correspond to the id attribute of a form field [W3C99].
Unfortunately, this tag is rarely used by Web developers, despite its accessibility virtues, and the
fact that graphical browsers use it to allow the user to click on a field label rather than on the field
itself with the same effects. We have to resort to other contextual information, such as the name
(which identifies a field in the submission process) or id (which identifies a field for CSS styling
or JavaScript processing) attributes, or the text appearing (in the source code) before the field. An
alternative here is to use the graphical layout of the form, as in [RGM01, ZHC04], and rules that
indicate where the label of a field most often lies relatively to the field.
Some standard preprocessing (stop-word removal, stemming) is then applied to words of the

context, before comparing them to words related to concept names. Related words are extracted
from WordNet [Pri] by following hyponymy, hyperonymy and synonymy relations (our domain-
specific ontology can also be used at this point). Matches between words of the context of a field
and words related to a concept name correspond to an annotation of the field with the concept
name, subjected to some confidence that is computed from the origin of concept words and related
words. Unfortunately, the confidence values are chosen in a quite ad hoc way, and the resulting
values that are used as probabilities that the field represents the concept are not really well-founded.
Some statistical analysis of large corpora of forms may be needed to get proper probability values.

. Probing a Form

Once fields have been assigned probabilistic annotations of concepts, these annotations are confirmed
using a probing of the form. Specifically, we compare what happens when we probe a field that has
been annotated as concept c with instances of c, chosen representatively of the frequency distribution
of instances of c. If the result pages that we obtain are significantly different from result pages
obtained by probing the field with nonsense words (e.g., dsqdqkhzezezaui), we may assume that
the annotation is indeed correct.
One of the important aspects of this module is to be able to distinguish between match and

no-match pages (or in other words, result and error pages) resulting from the submission of the
form. No-match pages indicate that some required field was not provided, that the input value is
incorrect for the corresponding field, or that there are no records even though the input was correct.
�e distinction between match and no-match pages can be made using a number of heuristics
(the size of the no-match page is smaller, there are less outgoing links, we can use the presence of
keywords like “Error” or “No match”, absence of keywords like “Next” or “More”). We choose to
use a much more robust approach, by performing a clustering of result and error pages. If a page is
in a different cluster than an error page obtained with the submission of a nonsense word, this page
is probably a result page.
We use a standard clustering approach (namely, an incremental clustering algorithm, that works

well in our context, when we have a small number of documents to cluster, with significant differences
between error and result pages), with a feature vector built as follows. We consider the DOM
tree of an HTML document (an example of which is depicted in Figure .). Terminal paths of
the DOM tree are the set of paths from the root to a leaf of the tree. Each distinct sequence of
node labels (that is, HTML element names) along a terminal path forms a dimension of the vector
space that we use for clustering. Each page is then represented in this vector space, with a tf-idf
(term frequency-inverse document frequency) weighting, depending on which terminal paths are
present in its DOM tree. Finally, the cosine similarity measure is used to compare two vectors
during clustering. �e idea is that two result pages share most of their terminal paths, some of
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Figure .: Example DOM tree of an HTML page

them may just be repeated more than other; on the other hand, a result page and an error page
have significantly different structures (no list of results appears in an error page) that leads to a
completely different representation in the vector space of terminal paths in the DOM tree.

We summarize the algorithm to confirm annotations of the previous module in Algorithm ..
An additional step that is also performed during the analysis of result pages is to look for “Next”
hyperlinks that point to pages with subsequent results. �is is currently done in a purely heuristic
way, by looking for links that contain “Next” or similar keywords. Note also that we may get a
clustering of more than two clusters, if there are significant differences between two result pages.
�is is the case, for instance, in the publication database DBLP, where searching for an ambiguous
author name results in a different page than searching for a name that only appears once in the
database. It is then important to use multiple words for probing, representative of their frequency
distribution, so as (i) to generate all possible kinds of result pages; (ii) to be sure to get a result page,
as long as the service probed has similar content as our domain knowledge.

Algorithm . Confirmation of field annotation with probing
I: A given field of a form, with its probabilistic annotations.
O: A confirmed annotation for this field, or none at all.
(a) First, identify an error page by probing the field with a nonsense word.
(b) Let c be the concept of highest probability a field is annotated with.
(c) Probe the fields with a set of instance words, randomly chosen according to their frequency

distribution, to get a corresponding set of pages.
(d) Cluster the set of pages obtained by probing with the error page, using an incremental clustering

algorithm on terminal paths in the DOM tree of the pages.
(e) If some pages obtained by probing are different from the result page, confirm the annotation;

otherwise, retry with the next best concept annotation.
(f ) Look for “Next” links on result pages, and store the corresponding information.
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. Experimental Results

We describe here experiments that have been carried out, using a Java implementation of our system
for probing the hidden Web. We look at the domain of publication databases and, as mentioned in
Chapter , the knowledge domain comes from DBLP. We consider the following concrete concepts
for annotating form fields:

• Title

• Author

• Journal

• Conference

Note that we are not looking for fields representing the Date concept, since those are mostly present
as range-query fields, that we do not support yet.
We present in Table . some statistics about the performance of the syntactic analyzer and the

probing module on a list of  URLs of complex publication database search forms. �e number
of text fields is shown for each form, with the number of fields that have been annotated with
some concept by the syntactic analyzer, and the number of confirmed annotations by the probing
module. In addition, we processed each of these forms by hand to find all fields that were relevant to
some of our concepts. Precision and recall of the confirmed annotations with respect to the human
annotations are shown in the last two columns of Table .. A precision of % means that all
confirmed annotations are correct, while a recall of % means that all fields relevant to domain
concepts have been correctly annotated. Note that we do not consider here either single-field forms,
which are mostly keyword-based search forms, nor forms that allow complex boolean combinations
of the various fields, such as http://scholar.lib.vt.edu:8765/index.html?ql=a.
�e first observation is that, despite the various assumptions that we made on the fields of a form,

we still get quite good results; in particular, the average precision for our dataset is %, while the
average recall is %. �e other observation that can be made is that the probing and confirmation
step is indeed useful, since it removes a large number of incorrect annotations. Improving the
precision should perhaps be easier than improving recall: An idea is to be more cautious and less
tolerant during the probing step, only probing with words that are unambiguously attached to a
given concept, while requiring that most probes return result pages. �is might, however, reduce
quite a lot the coverage. Improving the recall may be quite hard, in the situation where the textual
context of a field is not descriptive enough to get an annotation. We may try, however, in these
cases, to probe a field with each concept in turn; as the number of fields and concepts are small
enough, this seems feasible. Note finally that the time required for all this processing is essentially
the network access times required for the probes, all other operation taking a negligible time.
As explained in Section ., the feature vector that we use for clustering is the set of terminal paths

in the DOM tree of the document, with tf-idf weighting. �e DOM tree captures the structure
of the document perfectly, and works particularly well for our experiments. For instance, the
cosine similarities between the result pages from Google Scholar (http://scholar.google.com/
advanced_scholar_search) are up at around 0.99, whereas the similarities between result and
error pages are of the order of 0.01. To show that the DOM tree model is an adequate choice,
we also experimented with a feature vector based simply on the occurrence of HTML tags in the
document [CLB04]. We simply consider all tags that occur in the document, compute the tf-idf
score based on the occurrence of tags in the collection and use the cosine similarity between these
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Table .: Experimental results of our probing module

URL Text fields Annotated Confirmed Recall () Precision ()

http://www.informatik.uni-trier.de/~ley/db/indices/query.html     
http://pubs.er.usgs.gov/usgspubs/index.jsp?view=adv     
http://nrelpubs.nrel.gov/Webtop/ws/nich/www/public/SearchForm     
http://eprints.aktors.org/perl/search/advanced     
http://eprints.unifi.it/perl/search/advanced     
http://caltechlib.library.caltech.edu/perl/search/advanced     
http://dlist.sir.arizona.edu/perl/search/advanced     
http://www.diva-portal.se/     
http://eprints.rclis.org/perl/search/advanced     
http://highwire.stanford.edu/cgi/search     
http://www.ingentaconnect.com/search/advanced     
http://eprints.cs.vt.edu/perl/search/advanced     
http://scholar.google.com/advanced_scholar_search     
http://archives.cs.iastate.edu/perl/advsearch     
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vectors for clustering. It was found that this approach assigns a rather high degree of similarity
between result and error pages (for Google Scholar, it was of the order of 0.5 to 0.6, for instance,
which is rather high, and makes the clustering process very dependent of the considered threshold).
�e possible reason for this is that almost all HTML tags appear in all pages and hence the idf
measure is wasted. Also, length normalization leads to the increase in similarity of the vectors
between result and error pages, since the structural details such as paths, ordering of tags, etc., are
lost.

. Wrapping a Form as aWeb Service

Our probing module can be used to provide a user with an abstract Web-service [W3Ca] interface
to a given query form of the hidden Web. From our annotation of the fields of a form, we can
derive a WSDL [W3C01] description of an abstract service, as well as a Web-service interface to
it. �us a user can query such services as Google Scholar or DBLP with the same interface. �e
user also indicates how many result pages he is interested in, in the case when we are able to follow
“Next” links. �is module has also been implemented as a Java Web application. Obviously, such a
module is all the more valuable as it is integrated with the extraction of results from result pages,
which may be presented to the user in an abstract way; we discuss this in the next chapter.

Conclusion

We presented in this chapter a system that is able to analyze the structure of a query form of the
hidden Web, using probes of the form to confirm annotations of form fields with domain concepts.
Result and error pages are distinguished with the use of a clustering according to the set of terminal
paths in the DOM tree of the page. Without much sophistication, the system is able to understand
the structure of forms of publication database services with high precision; this annotation of forms
is leveraged in the presentation to the user of a source-independent interface to services of the
hidden Web.
Many refinements could be applied, in particular in order to remove some of the restrictions

imposed on the query forms. One of the most important improvement would be to detect in an
automatic way optional vs. compulsory fields. Such a system is also to be thought in a more general
context, along with a system for discovering sources (see Section ..) and a system for extracting
information from result pages (see next chapter).
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Extracting Result Page Data

�is work has been carried out in collaboration with researchers from the INRIA Mostrare
group in Lille, and has been in particular at the center of Daniel Muschick’s master’s
thesis [Mus07]. We discuss this work briefly, and refer the reader to [Mus07] for more
details. �e content of this chapter and the preceding one, along with additional experiments,
is also presented in [11].

�e understanding of the structure of a form is not sufficient for being able to use it automatically
in applications. �e structure of the pages that result from the submission of a form has also to
be understood. In other words, wrappers to extract data from result pages have to be built. �ese
pages are typically in HTML and present one or more query results. �ey have been generated
by some software and are organized according to some structure (e.g., list or table) that we have
to discover. We describe in this chapter an original approach that relies on a supervised machine
learning technique that is to build a wrapper starting from an imprecise and imperfect annotation
by domain knowledge. More precisely, we first linearly browse result pages, annotating them with
domain instances. �is annotation is then used to train a Conditional Random Fields (CRF)
wrapper, whose features only consider the structure of the page. �is wrapper can then be used on
other result pages that exhibit the same structure. �e addition of a bootstrap loop to this process,
either in the construction of a wrapper for a single source or across sources, is also considered.
We first discuss related work in Section .. In particular, we introduce the machine learning

framework that we use, Conditional Random Fields for XML (XCRF). We then describe our
method for combining annotation with domain knowledge and supervised machine learning to
induce wrappers from result pages in Section .. Experimental results are presented in Section ..
Finally, we revisit in Section . our discussion of Section . on how to wrap a form as a Web
service, now that we have a way to understand the structure of result pages.

. RelatedWork

�e task that we consider in this chapter is an information extraction task. We aim to extract structured
data from HTML pages. A survey of information extraction methods on the Web is presented
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in [CKGS06]. Most techniques rely on some form of human supervision, with the exceptions of
[CMM01] and [AGM03] that are purely structural information extraction techniques performing
unsupervised machine learning on unannotated documents (in this case, a few result pages). EA
[AGM03] presents in our opinion interesting theoretical advantages over RR [CMM01]
(in particular, for its handling of disjunction), but the latter is freely available and can directly
be tested. �ey both try to discover patterns representing the original skeleton structure. As
such approaches are purely structural, an additional step has to be performed in order to label
extracted data. As a follow-up of RR, Arlotta et al. [ACMM03] propose to exploit
spatial relationship between labels and data in the page to discover these labels. Naturally, this
only works if there are some labels in the result page, which is not always the case, especially with
bibliographical data, often formatted using domain conventions.
Two aspects of our work have some similarities with papers about the MQ system.

In [WDYM05], bootstrapping a knowledge base by extracting information on result pages and
injecting them back on subsequent probing is discussed. Bootstrapping across different sources,
in order to benefit from their different coverage, is the topic of [CCZ07]. Our main idea of using
supervised techniques on the structure of a document to generalize an annotation by a gazetteer has
not been explored in either of these works.
�e part of the result pages containing relevant information can be roughly identified as the part

of the page that changes between two different queries. Note, however, that there may also be
content (advertisements, hints, etc.) that changes between different runs of the same queries; such
content has to be filtered out). [CLB04] proposes an elaborate method to identify these pagelets,
based on the similarity between subtrees of the DOM tree of the page. As we shall see, we use
instead a simpler approach based on the extraction of the least common ancestor of annotated
nodes.
We briefly present now Conditional Random Fields for XML (XCRF), a supervised machine

learning framework for labeling tree data, proposed in the INRIA Mostrare group. We have not
participated in the development of this model, but worked in collaboration with Mostrare to use
it in the context of the hidden Web. Conditional Random Fields (CRF) have been introduced
by Lafferty et al. in [LMP01] as a way to represent conditional probabilities in a graphical model.
�ey have been much used in various labeling tasks; a recent overview of related work is given
in [SM07]. �e XCRF model [JGTT06] applies CRF on XML tree structures, with both ordered
(elements) and unordered (attributes) nodes. �e graphical structure defined by XCRF (recall
that CRF use probability distributions over a graphical model) are the -cliques formed by a node
and two adjacent children of it (for ordered portions of the trees), and parent-child edges (for
unordered portions of the trees). �is takes into account both parent/child and sibling relationships.
Given a set of features (boolean functions defined by an XPath expression) that represent the
observables in a tree, an XCRF wrapper is trained on labeled examples to select the features that
best describe the annotation for each node of the tree, allowing interdependencies between the
annotations inside each aforementioned clique. A Java implementation of XCRF is freely available
at http://treecrf.gforge.inria.fr/.

. Unsupervised Learning with the help of a Gazetteer

We present in this section our method for building a structural wrapper for a set of result pages.
�e main observation is that result pages for a given source of the hidden Web are built from the
same template, and hence, share a common structure (in some occasions, there are several different
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Figure .: Simplified architecture of the information extraction module

Algorithm . Extraction of data from result pages
I: Set of result pages with a common structure.
O: Structural wrapper to extract data from this kind of result pages.
(a) Tokenize the result pages so that each word is in a separate token (see Section ..).
(b) Use the gazetteer to annotate the tokenized result pages (see Section ..).
(c) Remove outliers, and segment the result pages into records (see Section ..).
(d) Train an XCRF wrapper on this segmented annotation (see Section ..).
(e) Optionally, use this XCRF wrapper to extract data from the result pages, use this data to enrich

the gazetteer, and go back to step (b) (see Section ..).
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templates, but we saw in the previous chapter how to distinguish between them). We assume that
we are given a set of (HTML) pages with the same structure, relevant to the domain of interest,
and we aim at building a wrapper that extracts relevant data from pages with this structure. We
present in Figure . a simplified architecture of our method. In this figure, rectangles represent
components, while ellipses represent data. An alternative high-level view of the process is presented
in Algorithm .. We detail in the following the different steps of this algorithm.

.. Tokenization

�e information that we want to extract is in substrings of textual nodes in the DOM tree of a page.
As the XCRF model is used to label nodes in the tree structure of a document, it is thus necessary
to tokenize textual nodes, typically at the word level. �is is done as a preprocessing step, and the
same tokenization is used by the gazetteer as described next.

.. Gazetteer

Following [SO06], we use the term gazetteer for a dictionary of named entities that is used to annotate
documents in information extraction tasks. Recall from Chapter  that one of the components of
our domain knowledge is a probabilistic model for string representations of instances of concrete
concepts. �is probabilistic model can be seen as a gazetteer and used to annotate pages in the
following way. We browse each textual node of the DOM representation of the HTML document,
and whenever we recognize a substring as an instance of some concept with probability p, we add
the corresponding annotation. �is is done in a greedy way: leftmost longest string matches are
preferred. In case multiple concepts match a string, all annotations are added with corresponding
probability values.
Figure . is an example of the result of this annotation on a result page from the ACM Digital

Library (http://portal.acm.org/dl.cfm). Recognized instances are highlighted with various
colors (for instance, in white over black for dates). As can be seen, the annotation is neither perfect
(e.g., Marschner and Lobb, that occur in an abstract, are recognized as author names), nor complete
(Angel del Rio is not recognized as an author name). We assume that the annotation, however,
is good enough so that its generalization will in general correct such errors. Note that this is
highly dependent on the quality of the domain knowledge, and of its adequacy with respect to the
considered source.

.. Segmentation

�ere is a number of issues with the annotation of the gazetteer. First, there may be some outliers,
labels at unlikely positions (Binder, identified as an author name in the header of Figure ., is such
an outlier). Second, some records may not have any annotation at all, and may hinder the training
of the wrapper. A solution to these problems is to perform a segmentation of the pages, to extract
each different record (in Figure ., there are thus three different segments). �en, only segments
that have enough annotations are kept and used in the training phase, and annotations outside
these segments are considered as outliers. A simple approach is used to obtain this segmentation:
just find the most common nodes that are least common ancestors of annotated nodes. Details are
given in [Mus07].


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. Unsupervised Learning with the help of a Gazetteer
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1 Medical applications of volumetric methods: Volumetric high dynamic range windowing for better data
representation

Dirk Bartz, Benjamin Schnaidt, Jirko Cernik, Ludwig Gauckler, Jan Fischer, Angel del Río

January 2006 Proceedings of the 4th international conference on Computer graphics, virtual reality,
visualisation and interaction in Africa Afrigaph '06

Publisher: ACM Press

Additional Information: full citation, abstract, references, index terms

Volume data is usually generated by measuring devices (eg. CT scanners, MRI scanners), mathematical
functions (eg., Marschner/Lobb function), or by simulations. While all these sources typically generate 12 bit
integer or floating point representations, commonly used displays are only capable of handling 8 bit gray or

color levels. In a typical medical scenario, a 3D scanner will generate a 12 bit dataset, from which a subrange
of the active full accuracy data range of 0 up to 4096 voxel values ... 

Keywords: high dynamic range mapping, non"linear data mapping, volume data, windowing 

 

2 The use of cryptography to create data file security: with the Rijndael cipher block
John D. Haney

February 2006 Journal of Computing Sciences in Colleges,  Volume 21 Issue 3

Publisher: Consortium for Computing Sciences in Colleges

Full text available:  pdf(195.83 KB) Additional Information: full citation, abstract, references

The use of cryptography, both the encryption and decryption of data is one response to the concerns of
securing data files. The Rijndael cipher block, which has been adopted by the National Institute of Standards

and technology as the advanced encryption standard, has been used in this study to encrypt and decrypt data.
This has been accomplished by encrypting a plain text file and creating an encrypted file in one program, and

decrypting the encrypted file back to a plain text file in another p ... 
 

3 Combining Sequence and Time Series Expression Data to Learn Transcriptional Modules
Anshul Kundaje, Manuel Middendorf, Feng Gao, Chris Wiggins, Christina Leslie

July 2005  IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB),  Volume 2 Issue 3

Publisher: IEEE Computer Society Press

Full text available:  pdf(581.69 KB) Additional Information: full citation, abstract, index terms

Our goal is to cluster genes into transcriptional modules¿sets of genes where similarity in expression is
explained by common regulatory mechanisms at the transcriptional level. We want to learn modules from both

time series gene expression data and genome"wide motif data that are now readily available for organisms
such as S. cereviseae as a result of prior computational studies or experimental results. We present a

generative probabilistic model for combining regulatory sequence and time serie ... 

Keywords: Index Terms" Gene regulation, clustering, heterogeneous data. 

 

Figure .: Example result page annotated by the gazetteer
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.. XCRF Training

An XCRF wrapper is then trained from these segments. We shall not describe the algorithm used for
inducing the wrapper (see [JGTT06]), but only discuss the features that are used for the training.
�ey are automatically generated from the training data and express notions such as:

• element name of (the ancestors of ) the current node;

• attribute values of (the ancestors of ) the current node;

• Unicode [Uni06] category of the textual content of each token;

• column index of a <td> table cell.

In order to limit the number of such notions that are considered, an additional feature selection
step is carried out, that prunes out features with little support.

.. Enrichment and Bootstrapping Loop

Once an XCRF wrapper has been learned, it can be used to annotate pages with the same structure.
Data can be extracted from this annotated page in the following way: consecutive tokens with the
same annotation form an extracted value, while values are regrouped into tuples with the same
segmentation that was used in Section ...
An optional step is to use these extracted, annotated, values to enrich the gazetteer (we can just

add the corresponding strings to the domain instances). �en, the whole process can be repeated
(gazetteer annotation, XCRF training). �is can lead to better results depending on the quality of
the extracted values. �is bootstrapping technique can also be used across sources: train an XCRF
wrapper on a first source, gather data from this source into the domain knowledge, and use it to
improve the performance of the wrapper induction on an another source, and so on.

. Experimental Results

Table .: F -measure () of the annotation by the gazetteer and by the XCRF

ACM Citeseer DBLP

Gazetteer XCRF Gazetteer XCRF Gazetteer XCRF

Author      
Conference    
Date      
Title      

We show in Table . experimental results on three different sources, to illustrate different behaviors
depending on the source: the ACM digital library, Citeseer (http://citeseer.ist.psu.edu/cs),
and DBLP [Ley]. We did not consider any bootstrapping in this experiment, and we use the
F -measure that is defined as F = 2 · p · r/(p+ r), to summarize precision p and recall r, with respect
to a human annotation. For each source, the first column gives the F -measure of an annotation by
the gazetteer, while the second column gives the F -measure of an annotation by an XCRF wrapper
that has been trained on  to  gazetteer-annotated pages with similar structure.


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. Wrapping a Form as a Web Service

Note first that, with the exception of the concept Date, there is no performance degradation
in the XCRF annotation. �is means that the XCRF wrapper is at least capable of reproducing
the gazetteer annotation (this was not guaranteed, since the wrapper does not have access to the
domain knowledge). �e case of the concept Date is special, since the gazetteer already performs
very well due to the relative non-ambiguity of dates. �e second observation is that, in most cases,
the XCRF wrapper performs better than the gazetteer, in some cases very significantly so (this is
especially noteworthy for the ACM source, where it sometimes reach a perfect precision and recall).
�e DBLP source is special in this respect, since our domain knowledge (and hence, the gazetteer)
comes from DBLP records. �is explains that the gazetteer is already very good at annotating result
pages from DBLP, and that the XCRF wrapper does not significantly improve this annotation.
�e performance of the XCRF wrapper heavily depends on the structure that is present in the

result pages. In the case of the ACM Digital Library, result pages are well-structured, with a number
of tags used to separate the different constituents of each record. In Citeseer result pages, however,
bibliographic records are essentially text-based. Still, the XCRF wrapper is able to increase both
precision and recall of the gazetteer annotation in this source.
We ran various other experiments, especially on the use of bootstrapping to improve the perfor-

mance of the wrapper. Preliminary results suggest that it is indeed possible to do so, but that special
care has to be taken, in order to avoid the process to degrade after a few iterations. Bootstrapping
across multiple sources seems a particularly promising direction.

. Wrapping a Form as aWeb Service

We discussed in Section . how to use our probing module to wrap a form as a Web service, whose
inputs are domain concepts and whose output is a set of Web pages. We can then use the method
for extracting data from result pages that we presented in this chapter to extend this, and wrap a
form as a Web service, with both inputs and outputs described as domain concepts, and then have
a full abstraction of the original hidden-Web source.
We have the following general process for wrapping a form: given its URL, we first use our probing

module to wrap it as a Web service with abstracted inputs. We then use this service and our domain
instances to generate a number of result pages. �e same techniques as in Chapter  can be used to
check that they have the same structure. We finally apply the method presented in this chapter to
build a wrapper for the result pages, and thereby wrap the whole source as a Web service.

Conclusion

We described an original, unsupervised, approach to information extraction on Web pages resulting
from the submission of a form, that uses a supervised structural learning method trained on
automatic annotations by domain knowledge. �is method improves the quality of the annotation,
and can be used in conjunction to the work presented in Chapter  to abstract fully away the
interface of a source of the hidden Web. We mention a possibility for further improvement by
using some single-source or multi-source bootstrapping of domain knowledge.
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Chapter 

Deriving SchemaMappings

fromDatabase Instances

�is work has been carried out while visiting Georg Gottlob at University of Oxford. It is
also presented in [10].

Arguably one of the most complex problems when dealing with services of the hidden Web, once
they have been analyzed using the techniques of the two previous chapters, is to understand the
relations that exist between input and output data. �us, a service taking as input a person and
providing as output another person may be a genealogical service outputting parents of a given
individual, a corporation service giving the supervisor of an employee, or even a matchmaking
service. �is is actually a very general situation: Web services provide relations between objects
of the world, and it is the role of the system to figure out which relations these can be. To solve
this problem, one should once again use domain knowledge. �e problem can then be articulated
as deriving semantical relations between database instances, one being our knowledge domain,
the other one derived from an unknown source. �is particular problem can also be stated in the
context of data exchange.
Data exchange [FKMP03] is a research area that is closely related to the topic of data integra-

tion [Len02]: We are given two schemata of relational databases S and T, along with dependencies Σ
(that is, a finite set of formulas in some logical language, expressed in function of the relation symbols
of S and T), and we are interested, for instance, in the set of instances J of T which satisfy the
dependencies Σ with respect to a given instance I . �e main difference with data integration is that
we actually want to materialize J , and not only to compute the answers of a query on a virtual J .
Schemata and dependencies, in a data exchange context, form metadata that need to be managed

in a systematic and formal way. Bernstein argues in [Ber03] for the definition, in such a setting, of
operators on this metadata. �us, [FKTP04] and [Fag06, FKPT07] respectively propose ways to
define the composition and inverse operators on schema mappings. Another operator of importance
is the match operator: given two schemata and instances of these schemata, how to derive an
appropriate set of dependencies between these schemata. More precisely, given two relational
databases schemata S and T and instances I and J of these schemata, the problem is to find a schema
mapping, that is, a finite set Σ of formulas in a given language L , such that (I , J ) |= Σ (or such
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that (I , J ) is nearly a model of Σ, in case we assume that I is not perfectly mapped to J ). Obviously,
Σ=∅ is always a possible answer; therefore, we want additional constraints on Σ: it must explains
as many facts of J as possible, and it must be concise. We then have a problem of finding the
optimal schema mapping with respect to three different parameters: validity, explanation of the
target instance, conciseness.
�is problem is related to the techniques used for automatic schema matching [RB01], but these

typically use some kind of meta-information about the schemata (names of concepts and relations,
concrete data types, etc.). We consider, in this chapter, an approach that is solely based on the
presence and position of constants that appear in source and target instances, without any additional
meta-information. Obviously, both kinds of approaches could be combined, in the presence of
such meta-information. An example of practical application would be to interact with different
sources of information, with different schemata (tabular data, HTML forms with result pages, Web
services) on the (hidden) Web. All these sources might contain more or less the same information,
and the problem is, by just looking at the data, to find the relations between the different ways
of representing the same information; this lies at the semantic analysis step of our process for
understanding the hidden Web (see Chapter ).
We present here a theoretical framework that formalizes the notion of optimality of a schema map-

ping with respect to a pair of database instances. We present formal definitions and computability
and complexity results, both for the general case (say, withL the language of first-order logic) and
for more specific cases (namely, tuple-generating dependencies, full tgds, acyclic tgds, and acyclic
full tgds). We are not aware of any work with the same focus on a theoretical and systematic analysis,
although, in spirit, the problem that we deal with here is similar to the one that inductive logic
programming [LD94] aims to solve.
We first introduce some preliminaries on schema mappings and tuple-generating dependencies in

Section . before introducing in Section . a notion of cost and optimality of a schema mapping
of tuple-generating dependencies, that we justify in Section . by noting its behavior on instances
that are simply derived from each other. We carry out in Section . a complexity study of the
different decision problems leading to the optimality of a schema mapping. In Section ., we
discuss an extension of the definitions to full relational calculus, and alternative cost functions.

. Preliminaries

We assume some countably infinite sets C of constants (denoted a, b, 0, 1, etc.) and V of variables
(denoted x, y, z, etc.). We use the notation x to represent a vector of variables x1 . . .xn. Constants
appearing in formulas are here identified, as usual, with the domain elements they are interpreted
by.
A (relational) schema is a finite set of pairs (R,n) where R is a relation name and n¾ 1 the arity of

the relation. An instance I of a relational schema S consists, for every (R,n) ∈ S, of a finite relation
over C n. We occasionally denote RI the interpretation of the relation name R in the instance I
(if |S|= 1, we shall make the confusion RI=I ). In the following, we assume that the schemata are
implicitly given whenever we are given an instance.
A language L is a subset of the set of formulas of first-order logic with equality and constants,

and without function symbols (with its usual semantics). Given a languageL , a schema mapping in
L is a finite set of formulas in L . We are particularly interested in the following languages, given
instances I , J with schemata S, T:

Relational calculus. Lrc is the set of first-order formulas without constants, with relations symbols
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in S∪T.

Source-to-target tuple-generating dependencies (tgds). Ltgd ⊂ Lrc is the set of formulas of the
form

∀x ϕ(x)→∃y ψ(x,y)

where:

(i) ϕ(x) is a (possibly empty) conjunction of positive relation atoms, with relation symbols
in S;

(ii) ψ(x,y) is a conjunction of positive relation atoms, with relation symbols in T;
(iii) all variables of x appear in ϕ(x).

Acyclic tgds. Lacyc ⊂ Ltgd is the set of tgds such that the hypergraph of the relations on the
left hand-side is acyclic [AHV95, BFM+81], as well as the hypergraph of the relations on
the right hand-side, considering only existentially quantified variables. More precisely, let
∀x ϕ(x) → ∃y ψ(x,y) be a tgd, and let (N ,E) (respectively, (N ′,E ′)) be the hypergraph
whose vertices are the variables of x (respectively, y) and whose edges are the relation atoms
of ϕ(x) (respectively, the relation atoms of ψ(x,y) where at least one variable of y appears).
�e tgd is said to be acyclic if there are two forests F and F ′ (called the join forests) with
each hyperedge of E (respectively, of E ′) a node of F (respectively, of F ′), such that for all
nodes n ∈N (respectively, n ∈N ′), the subgraph of F (respectively, F ′) induced by the edges
of E (respectively, E ′) that contain n is connected. Other equivalent definitions of acyclic
hypergraphs are given in [BFM+81].

Full tgds. Lfull ⊂Ltgd is the set of tgds without an existential qualifier on the right-hand side, that
is, of the form

∀x ϕ(x)→ψ(x).

Acyclic full tgds. Lfacyc =Lacyc∩Lfull is the set of full tgds such that the hypergraph of the relations
on the left hand-side is acyclic.

We have the following inclusions between these languages:

Lrc.Ltgd

Lacyc

Lfacyc

Lfull

⊂

⊂

⊂

⊂
⊂

We focus here on source-to-target tuple-generating dependencies (either arbitrary or with one of
the restrictions mentioned above). Arbitrary tgds (and, in a lesser way, full tgds) have been at the
basis of most works∗ in the data exchange setting [FKMP03, Kol05]. As we shall see in Section .,
acyclic full tgds have nice complexity results. We show in Section .. how this work can be
extended to arbitrary formulas of the relational calculus.

∗�e other important class of dependencies, namely equality generating dependencies, is less appropriate to this
context.
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. Cost and Optimality of a TGD

We first introduce the two basic notions of validity and explanation that are at the basis of our
framework.

Definition .. A schema mapping Σ is valid with respect to a pair of instances (I , J ) if (I , J ) |=Σ.
Definition .. A (ground) fact in a schema S is a tuple R(c1 . . . cn) where c1 . . . cn ∈C and R is a
relation of S with arity n.
A schema mapping Σ explains a ground fact f in the target schema with respect to a source

instance I if, for all instances K of the target schema such that (I ,K ) |=Σ, f ∈ K .
A schema mapping fully explains a target instance J with respect to a source instance I if it explains

all facts of J with respect to I .

Note that we have quite an asymmetric point of view about the pair of instances here; we do not
require a full explanation of I by the facts of J , for instance. �is asymmetry is quite common in
the context of data exchange.

Example .. Let us consider the following database instances I and J , on schemata {(R,1)} and�
(R′,2)

	
.

R R′

a
b
c
d

a a
b b
c a
d d
g h

We can imagine a number of schema mappings that more or less express the relation between I
and J :

Σ0 =∅

Σ1 =
�∀x R(x)→ R′(x,x)

	

Σ2 =
�∀x R(x)→∃y R′(x, y)

	

Σ3 =
�∀x∀y R(x)∧R(y)→ R′(x, y)

	

Σ4 =
�∃x∃y R′(x, y)

	

Actually, any combination of these schema mappings may also be of interest.
Σ0 and Σ4 seem pretty poor, here, as they fail to explain any facts of J , while there seems to be a

definite relation (albeit with some noise) between I and J . Σ3 explains most of the facts of J , but
is far from being valid, since it also explains a large number of incorrect facts such as R′(a,b) or
R′(b,d ).
Σ1 and Σ2 are more interesting. Σ1 explains 3 facts of J , but also incorrectly predicts R′(c, c). Σ2

fails to explain any facts of J , but explain most of them at least partially, in the sense that they are
explained by a fact with an existentially quantified variable (a skolem); in addition, it is valid with
respect to (I , J ). Neither Σ1 or Σ2 explains the last fact of J .
As there seems to be some noise in the operation that produced J from I , it is hard to say with

certainty which schema mapping is optimal here, in the sense that it reflects most closely the relation
between I and J . At any rate, however, Σ1 and Σ2 seem far better candidates than the other ones.
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To define in a formal way our notion of optimality of a schema mapping, the basic idea is to get
the simultaneous optimal for all three factors of interest (validity, explanation of the target instance,
conciseness) by minimizing the size of: the original formula, plus all the local corrections that have
to be done for the formula to be valid and to fully explain the target instance. �is is close in spirit
to the notion of Kolmogorov complexity and Kolmogorov optimal [LV97] (though we do not
consider a Turing-complete language for expressing either the formula or the corrections, but much
more limited languages).

Definition .. Given a schema mapping of tgds Σ⊂Ltgd and a pair of instances (I , J ), we define
the set of repairs of Σ with respect to (I , J ), denoted repairs(I ,J ) (Σ), as a set of finite sets of formulas,
such that Σ′ ∈ repairs(I ,J ) (Σ) if it can be obtained from Σ by a finite sequence of the following
operations:

• Adding to the left-hand side of a tgd θ of Σ, with θ of the form

∀x ϕ(x)→∃y ψ(x,y),

a conjunction τ(x) of the form:
∧

i xiαici where αi are either = or 6=, xi are variables from x
and ci are constants.

• Adding to the right-hand side of a tgd θ of Σ, with θ as above, a formula τ′(x,y) of the form:

∧

i






∧

j

xij = c′
ij


→ yi = ci




where xij are variables from x, yi variables from y, and c′
ij
and ci constants.

• Adding to Σ a ground fact R(c1 . . . cn) where R is a relation of the target schema of arity n,
and c1 . . . cn are constants.

�e language of repairs L ∗ of a languageL is the language consisting of all formulas which can
be obtained from formulas ofL with these operations (along with all ground facts over the target
schema).

In a repair of a tgd
∀x ϕ(x)∧τ(x)→∃yψ(x,y)∧τ′(x,y),

the term τ(x) is responsible for correcting cases when the tgd is not valid, by adding additional
constraints on the universal quantifier, whereas τ′(x,y) precises the right-hand side of J , by giving
the explicit value of each existentially quantified variable, in terms of the universally quantified
variables.
An interesting property of repairs is that they are reversible: Because all operations add constants

to a language where constants do not exist, it is possible to compute (in linear time) the original
schema mapping from a repair. Indeed, constants are only used for repairing formulas; in other
words, we consider that the relations that we need to find between the source and target instances are
to be expressed with constant-free formulas, in order to abstract them as much as possible. Clearly,
this is a simplifying assumption that could be lifted in future works. Note that this extension is not
straightforward, however: It is not clear how to distinguish between constants which are rightfully
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part of the optimal schema mapping description and constants which are just used to correct some
noise or missing data.
�e notion of size of a schema mapping is easily defined as follows; we could also use a more

classical definition in function of the number of symbols of a formula, without much difference in
the theory.

Definition .. �e size of a first-order formula ϕ ∈L ∗, denoted size(ϕ) is computed as follows:

• �e size of ϕ is the number of occurrences of variables and constants in ϕ (we stress that each
variable and constant is counted as many times as it occurs in ϕ); occurrences of variables as
arguments of quantifiers do not count.

• If ϕ is a ground fact R(c1 . . . cn), then the size of ϕ is computed as if ϕ were the formula

∃x1 . . .∃xn R(x1 . . .xn)∧ x1 = c1 ∧ · · · ∧ xn = cn.

�erefore, size(ϕ) = 3n. �is refinement is performed so that ground facts are not “too
cheap”: they are exactly as expensive as the corresponding repair of ∃x1 . . .∃xn R(x1 . . .xn).

�e size of a schema mapping is the sum of the size of its elements.

We are now ready to define the cost of a schema mapping, in terms of the size of its repairs:

Definition .. �e cost of a schema mapping Σ, with respect to a pair of instances (I , J ), is defined
by:

cost(I ,J ) (Σ) = min
Σ
′∈repairs(I ,J )(Σ)

Σ
′ valid and fully explains J

size(Σ′).

If the minimizing set is empty, we denote cost(I ,J ) (Σ) =∞.
A schema mapping Σ⊂L is optimal in the languageL , with respect to a pair of instances (I , J ),

if:
cost(I ,J ) (Σ) = min

Σ
′⊂L

Σ
′ finite

cost(I ,J )

�
Σ
′� .

It is indeed possible that cost(I ,J ) (Σ) = ∞. �is is for instance the case for T =
�
(R′,1)

	
,

Σ=
�∃x R′(x)	 and J =∅. However, this case is easily recognizable; in other cases we have a linear

bound on the cost of a schema mapping:

Proposition .. �ere is a linear-time algorithm to check whether a schema mapping in Ltgd has an
infinite cost. If it has a finite cost, the cost is bounded by a linear function of the size of the data and the
schema mapping itself.

Proof. Let Σ be a schema mapping, I and J instances of the source and target schema. �en, Σ
has an infinite cost if and only if it contains a tgd θ without a left-hand side (that is, of the form
∃y ψ(y)) and which is not valid in J , which can be tested in linear time in the size of J .
To see this, we shall prove that in all other cases, there is a linear bound on cost(I ,J ) (Σ). Indeed,

every tgd with a left-hand side can be canceled by adding an x = c term on the left-hand side, where
x is a universally quantified variable and c a constant which does not appear in I . Moreover, all
facts of J can be added to the repair of the tgd as ground facts. We then have the following bound
on the cost of Σ:

cost(I ,J ) (Σ)¶ size(Σ)+ 2 |Σ|+ 3r |J |
where r is the maximum arity of a target relation.
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. Justification of this Notion of Optimality

�is linear bound is interesting, since we can imagine to use local search algorithms to find the
tgd with minimum cost, as soon as we are able to compute in an efficient way the cost of a tgd. We
shall see in Section ., unfortunately, that even for a very restricted language, computing the cost
of a tgd is NP-complete.

Example .. Let us go back to the instances and schema mapping of Example ., compute their
respective cost, and see which one is optimal.

cost(I ,J ) (Σ0) = 3 · 2 |J |= 30

cost(I ,J ) (Σ1) = 3+ 2+ 3 · 2 · 2= 17

cost(I ,J ) (Σ2) = 3+ 4 · 4+ 3 · 2= 25

cost(I ,J )

�
Σ3
�
= 4+ 4+ 3 · 2 · 4= 32

cost(I ,J ) (Σ4) = 2+ 4+ 3 · 2 · 4= 30

It appears here that Σ1 is the best of these schema mappings (and it can be shown that it is indeed
optimal). As expected, Σ2 is the second best.
�is is no coincidence here if Σ4 has the same cost as Σ0, this is due to the choice we made for

the cost of a ground fact.
At least on this simple example, our measure of cost seems reasonable. We will further justify it in

Section ..

�e following decision problems arise naturally once given this notion of optimality. Each of
them is defined for a given languageL , and we shall investigate their complexity in Section ..

V. Given instances I , J , and a schema mapping Σ⊂L ∗, is Σ valid with respect to (I , J )?

E. Given instances I , J , and a schema mapping Σ⊂L ∗, does Σ fully explain J with
respect to I ?

Z-R. Given instances I , J , and a schema mapping Σ ⊂ L ∗, is cost(I ,J ) (Σ) equal to
size(Σ)?

C. Given instances I , J , a schema mapping Σ⊂L and an integer K ¾ 0, is cost(I ,J ) (Σ) less
than or equal to K ?

E-C. Given instances I , J and an integer K ¾ 0, does there exist a schema mapping
Σ⊂L such that cost(I ,J ) (Σ) is less than or equal to K ?

O. Given instances I , J , and a schema mapping Σ⊂L , is it true that Σ is optimal with
respect to (I , J )?

. Justification of this Notion of Optimality

In this section, we justify the definitions of the previous section by observing that, when instances I
and J are derived from each other by elementary operators of the relational algebra, the optimal
schema mapping, inLtgd, is the one that “naturally” describes this operator.
Let r, r′ be instances of relations. We consider the following elementary operators of the relational

algebra:





Chapter : Deriving Schema Mappings from Database Instances

Projection. πi(r) denotes the projection of r along its ith attribute.

Selection. σϕ(r), where ϕ is a conjunction of equalities and negated equalities between an attribute
of r and a constant, denotes the selection of r according to ϕ. Note that we allow neither
identities between attributes of r (this is the role of the join operation), nor disjunctions (they
may be expressed using a combination of selection and union).

Union. r ∪ r′ is the union of r and r′.

Intersection. r ∩ r′ is the intersection of r and r′.

Product. r× r′ is the cross product of r and r′.

Join. r\ϕ r
′ is the join of r and r′ according to ϕ, where ϕ is an equality between an attribute of r

and an attribute of r′; ϕ is omitted when the context makes it clear.

�e relationship between a database instance I and the instance J obtained from I using one of
these operators can often be (partially) expressed in a natural way by a tgd or a set of tgds, where I is
the source instance and J the target instance (and similarly when the source instance is expressed as
the result of applying some operator to the target instance). For instance ∀x R1(x)∧R2(x)→ R′(x)
is naturally associated with the intersection operator. �e last two columns of Table . describe
more precisely what schema mappings we associate to what operator of the relational algebra (in
order not to clutter the table, universal quantifiers on the front of tgds are not shown). In some
cases, as tgds are not powerful enough to express the relationship, or as some information is lost, the
correspondence is only partial. �e only missing case in Table . is for the reciprocal of the union
operator: If I = RJ

1∪R
J
2, the natural formula for describing this relation is ∀x R(x)→ R1(x)∨R2(x),

which is not a tgd since we do not allow disjunction.
We now state that, using the notion of optimality of a schema mapping with respect to a pair of

instances described in the previous section, and with some simple restrictions on the considered
instances, the optimal schema mapping for a pair of instances obtained from each other with an
operator of the relational algebra is precisely the schema mapping that is naturally associated with
the operator. �is justifies the choice of this notion of optimality, at least in these elementary
contexts. We shall see in Section .. other choices for the cost function, that might seem more
natural at first, but that fail to satisfy the same property.

�eorem .. �e tgds presented in the last column of Table . are optimal with respect to (I , J ), when
I and J are as described. In other words, for any elementary operator γ of the relational algebra, the tgd
naturally associated with this operator (when it exists) is optimal with respect to (I ,γ (I )) (or (γ (J ), J ),
depending on the considered case), if the basic assumptions shown on Table . (the instances are not of
trivial size, there is no other relation between attributes than the one needed for the operator) are fulfilled.

Proof. First observe that the size of a ground fact of arity n is the same as the size of any maximal
repair of the tgd without a left-hand side ∃x1 . . .∃xn R(x′1 . . .x′

n
). �is means that we do not need to

consider such tgds.

Projection. Suppose J =π1(I ) with I 6=∅. �en:

cost(I ,J )

��∀x∀y R(x, y)→ R′(x)
	�
= 3
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Table .: Optimal tgds for elementary operations of the relational algebra

S T Condition on I I and J Optimal schema mapping

Projection
(R,2) (R′,1) I non-empty J =π1(I ) R(x, y)→ R′(x)
(R,1) (R′,2) π1(J )∩π2(J ) =∅, |π1(J )|¾ 2 I =π1(J ) R(x)→∃y R′(x, y)

Selection
(R,1) (R′,1)

���σϕ(I )
���¾ size(ϕ)+2

3 J = σϕ(I ) R(x)→ R′(x)

(R,1) (R′,1) σϕ(J ) non-empty I = σϕ(J ) R(x)→ R′(x)

Union (R1,1), (R2,2) (R′,1) R1
I ( R1

I ∪R2I , R2I ( R1I ∪R2I J = RI
1 ∪RI

2 R1(x)→ R′(x),R2(x)→ R′(x)

Intersection
(R1,1), (R2,2) (R′,1) RI

1 6⊆ RI
2, R

I
2 6⊆ RI

1, R
I
1 ∩RI

2 6=∅ J = RI
1 ∩RI

2 R1(x)∧R2(x)→ R′(x)

(R,1) (R′1,1), (R′2,1) R′1
J ∩R′2

J non-empty I = R′1
J ∩R′2

J R(x)→ R′1(x)∧R′2(x)

Product
(R1,1), (R2,1) (R′,2) RI

1 and RI
2 non-empty J = RI

1×RI
2 R1(x)∧R2(y)→ R′(x, y)

(R,2) (R′1,1), (R′2,1) R′1
J and R′2

J non-empty I = R′1
J ×R′2

J R(x, y)→ R′1(x)∧R′2(y)

Join
(R1,2), (R2,2) (R′,3) πi(R

I
1\R

I
2) 6=πj(R

I
1\R

I
2) (i 6= j) J = RI

1\R
I
2 R1(x, y)∧R2(y,z)→ R′(x, y,z)

(R,3) (R′1,2), (R′2,2)
πi(R

′
1
J \R′2

J )∩πj(R
′
1
J \R′2

J ) =∅ (i 6= j)

R′1
J \R′2

J non-empty
I = R′1

J \R′2
J R(x, y,z)→ R′1(x, y)∧R′2(y,z)
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since it is valid and fully explains all facts of J . We then only need to consider schema
mappings of size strictly lesser than 3. �e only relevant one is the empty schema mapping
and cost(I ,J ) (∅) = 3 |J |= 3 |I | which is greater or equal to 3 as soon as I 6=∅.
Consider now the case when I =π1(J ) with π1(J )∩π2(J ) =∅, |π1(J )|¾ 2. We have:

cost(I ,J )

��∀x R(x)→∃x R′(x, y)
	�
= 3+ 4 |I |+ 3 · 2(|J | − |I |) = 3− 2 |I |+ 6 |J |

(this is a valid schema mapping, but it fails to explain all facts of J ; |I | facts can be explained
by repairing the existential quantifier, all others must be given as ground facts). As we assume
that attributes of J have disjoint domains, all schema mappings with a R′(w1,w2) where
w2 is not existentially quantified do not explain any facts of J . �e only remaining schema
mapping of interest is then ∅, whose cost is 6 |J |, which is greater than 3− 2 |I |+ 6 |J | as
soon as |I |¾ 2.

Selection. If J = σϕ(I ), with
���σϕ(I )

���¾ size(ϕ)+2
3 (in the common case where ϕ is a single equality

or negated equality, size(ϕ) = 2 and this condition amounts to |J |¾ 2), we have:

cost(I ,J )

��∀x R(x)→ R′(x)
	�
¶ size(∀x R(x)∧ϕ(x)→ R′(x)) = 2+ size(ϕ).

�e only other schema mapping which might have a lesser cost is ∅ and cost(I ,J ) (∅) = 3 |J |=
3
���σϕ(I )

���.

Now, suppose I = σϕ(J ) with σϕ(J ) 6=∅. Observe that

cost(I ,J )

��∀x R(x)→ R′(x)
	�
= 2+ 3(|J | − |I |)

is lesser than cost(I ,J ) (∅) = 3 |J | as soon as |I | 6=∅.

Union. If J = RI
1 ∪RI

2 with both relations strictly included in their union,

cost(I ,J )

��∀x R1(x)→ R′(x),∀x R2(x)→ R′(x)
	�
= 4

while the cost of each of these tgds alone is greater than 5. We also have:

cost(I ,J )

��∀x R1(x)∧R2(x)→ R′(x)
	�
= 3+ 3

����RI
1 ∪R

I
2

���−
���RI

1 ∩R
I
2

���
�
¾ 9.

Finally, the cost of the empty schema mapping is: 3
��RI

1 ∪RI
2

��¾ 6.

Intersection. Suppose J = RI
1 ∩RI

2 with neither of these relations containing the other one;

cost(I ,J )

��∀x R1(x)∧R2(x)→ R′(x)
	�
= 3.

Neither
�∀x R1(x)→ R′(x)

	
nor

�∀x R2(x)→ R′(x)
	
nor the empty schema mapping have a

lesser cost as soon as both RI
1 and RI

2 contain facts not in the other one, and the intersection
is not empty.

Consider now the case where I = R′1
I ∩R′2

I . �en:

cost(I ,J )

��∀x R(x)→ R′1(x)∧R
′
2(x)
	�
= 3+ 3

����R′1
J
���+
���R′2

J
���− 2 |I |

�





. Justification of this Notion of Optimality

while

cost(I ,J )

��∀x R(x)→ R′
1
(x)
	�
= 2+ 3

����R′1
J
���+
���R′2

J
���− |I |

�

cost(I ,J )

��∀x R(x)→ R′2(x)
	�
= 2+ 3

����R′1
J
���+
���R′2

J
���− |I |

�

cost(I ,J ) (∅) = 3
����R′1

J
���+
���R′2

J
���
�
.

�e first schema mapping has a lower cost than the other ones as soon as I 6=∅.

Product. In both cases, the cost of the schema mapping from Table . is 4 (it is valid and explains
all facts of J ) and, unless one of the instance is empty, no other schema mapping of lesser size
is valid and explains all facts of J .

Join. Suppose J = RI
1
\RI

2 with π1(J ) 6=π2(J ), π1(J ) 6=π3(J ), π2(J ) 6=π3(J ). We have:

cost(I ,J )

��∀x∀y∀z R1(x, y)∧R2(y,z)→ R′(x, y,z)
	�
= 7

since this tgd is valid and explains all facts of J . �e cost of the empty schema mapping, 9 |J |,
is greater since J is not empty. �e only remaining relevant schema mappings with lesser size
(of 5) have a single relation symbol R1 or R2 on the left-hand-side. But this means that they
either predict two identical columns in J (this is incorrect, and has to be fixed in a repair of
the schema mapping, whose additional cost is at least 2), or use an existential quantifier on
the right-hand size, which also has to be repaired.

Now consider the last case of the proof, where I = R′1
J \R′2

J , with all three attributes disjoint.

cost(I ,J )

��∀x∀y∀z R(x, y,z)→ R′1(x, y)∧R′2(y,z)
	�

= 7+ 6
���
¦
(x, y) ∈ R′1

J | ∀z (y,z) /∈ R′2
J
©���+ 6

���
¦
(y,z) ∈ R′2

J | ∀x (x, y) /∈ R′1
J
©��� .

cost(I ,J ) (∅) = 6 |J | is greater than that as soon as I is not empty. As we assumed all three
attributes of I disjoint, we can eliminate a number of schema mappings that do not produce
any correct facts. �e only remaining ones only have R′1(w1,w2) or R

′
2(w2,w3) terms on

the right-hand size with those three variables either existentially quantified or appearing,
respectively in the first, second or third position of a R(w1,w2,w3) atom on the left-hand
side. None of these schema mappings can explain the facts that the schema mapping above
does not explain, and existential quantifiers have to be accounted for in repairs.

Note that, in all cases, the optimal tgd is acyclic, and in all but one it is full. �ese results could also
be extended to the cases where we have relations of greater arity, but we would then require strong
constraints, as the one we imposed for reciprocal projection and reciprocal join in Table . (that
all attributes are disjoint), so as not to have any “hidden” relation between the different attributes.
A weaker assumption that could be made is to use a notion of Kolmogorov randomness [LV97]: A
database instance selected at random cannot have a description of length lower than its size, thanks
to a simple counting argument. We can use such random instances to get a contradiction when we
obtain a schema mapping that uses hidden relations between attributes of relations in the instance
to have a lower cost than the schema mapping from Table ..





Chapter : Deriving Schema Mappings from Database Instances

. Complexity Study

We now proceed to a study of the computational complexity of the different problems identified in
Section ., for the different subsets of Ltgd that we presented in Section .. We focus here on
combined complexity (when K and Σ are part of the input to the problem), since we are precisely
reasoning about the schema mappings themselves. We first describe general relationships between
the different problems, before giving complexity results for Ltgd, Lfull, Lfacyc and Lacyc, in that
order (it might seem natural to analyzeLacyc beforeLfacyc but the proofs for the latter are slightly
simpler, and will help to understand the proofs for the former). C and E-C will be
discussed separately. We present at the end of the section data complexity results.

.. General Complexity Results

As the complexity of the different decision problems depends on the particular language considered,
we add to the problem name a subscript identifying the considered language (say, Otgd
for the O problem inLtgd).
We have the following elementary relationships between these problems, that can be used to

derive complexity results for one problem from complexity results for another one.

Proposition .. For any languageL :

. Z-R=V∩E.

. �ere is a polynomial-time reduction of V to Z-R.

. �ere is a polynomial-time reduction of Z-R to C.

. Given an algorithmA for Z-R, and a polynomial-time algorithm for determining if a
formula is in L , there are non-deterministic algorithms for C and E-C that
run by using once the algorithmA , with an additional polynomial time cost.

. Given an algorithmA for C, and a polynomial-time algorithm for determining if a formula
is in L , there is a non-deterministic algorithm for the complement of O that runs by
using a logarithmic number of times the algorithmA , with an additional polynomial time cost.

. IfL ⊆L ′, for any problem among V, E, Z-R and C, there
is a constant-time reduction from the problem inL to the problem inL ′.

Proof.

. By definition, cost(I ,J ) (Σ)¾ size(Σ). Because the size of a repaired formula is always greater
than the original formula, the only case when the equality occurs is when the original formula
is valid and fully explains J .

. Let (I , J ,Σ) be an instance of V. Let Σ′ be the union of Σ and of all ground facts
of J . Obviously, Σ′ fully explains J with respect to I . �at means that cost(I ,J )

�
Σ
′�= size(Σ′)

if and only if Σ′ is valid with respect to (I , J ). As the ground facts of Σ′ do not change its
validity, cost(I ,J )

�
Σ
′�= size(Σ′) if and only if Σ is valid with respect to (I , J ).

. Just take K = size(Σ), which is computable in linear time.
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Algorithm . C (non-deterministic)

I: Instances I , J , schema mapping Σ, K ¾ 0.
O: Answer to C.
(a) Let K ′ be the minimum between K and the upper bound of Proposition ..
(b) Guess a set of formulas Σ′ of total size less than or equal to K ′.
(c) Check that Σ′ is a repair of Σ. Otherwise, give up this guess.
(d) ApplyA on Σ′; if the result is true, return true.

. Consider the non-deterministic algorithm for C shown as Algorithm ..

�e algorithm for E-C is very similar, just replace the bound on K with the
cost of the empty schema mapping, and step (c) by a check that Σ′ is in L ∗ (this can be
done in polynomial time by hypothesis). Note that the bound of cost(I ,J ) (∅) on the guess is
critical, since otherwise the guess would be of size K , and thus exponential in the length of
the representation of K .

. Algorithm . is a non-deterministic algorithm for the complement of O.

Algorithm . O (non-deterministic)
I: Instances I , J , schema mapping Σ.
O: Answer to the complement of O.
(a) UseA a logarithmic number of times to compute K = cost(I ,J ) (Σ) (observe that we have a

linear bound on this value, since we can cancel all formulas of Σ and then add all ground facts
of J with a linear number of repairs).

(b) Guess a set of formulas Σ′ of total size less than K .
(c) Check that Σ′ is inL . Otherwise, give up this guess.
(d) ApplyA on (Σ′,K − 1); if the result is true, return true.

. Directly results from the fact that a formula of L is also a formula of L ′. Note that this
property does not necessarily hold for E-C andO, since both of them
depend on the existence of a formula in the underlying language.

Note that for all languages considered here, there is a linear-time algorithm for determining if
a formula is in this language; this is obvious for all except forLacyc andLfacyc, and an algorithm
from [TY84] gives a linear-time algorithm for the acyclicity of hypergraphs.
In the next sections, we shall investigate in detail the complexity of the different problems in each

of the identified subsets ofLtgd, starting fromLtgd itself. A summary of all combined complexity
results proved in the following, along with their direct consequences, is shown in Table ..

.. Combined Complexity for Tuple-Generating Dependencies

Let us first investigate the combined complexity of V and E inLtgd.

Proposition ..

. Vtgd is Π
P
2 -complete.

. Etgd is in NP.
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s Table .: Combined complexity results

Ltgd Lfull Lacyc Lfacyc

V Π
P
2 -complete coNP-complete coNP-complete PTIME

E NP-complete NP-complete NP-complete PTIME

Z-R Π
P
2 -complete DP, (co)NP-hard DP, (co)NP-hard PTIME

C Σ
P
3 , Π

P
2 -hard Σ

P
2 , (co)NP-hard Σ

P
2 , (co)NP-hard NP-complete

E-C Σ
P
3 , NP-hard Σ

P
2 , NP-hard Σ

P
2 , NP-hard NP-complete

O Π
P
4
, (co)NP-hard Π

P
3
, (co)NP-hard Π

P
3
, (co)NP-hard Π

P
2 , (co)NP-hard
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Proof.

. Vtgd is clearly in ΠP
2 . First check the validity of the ground facts. For the other

formulas of Σ, guess a valuation of the variables of the left-hand side; if the left-hand side is
false (can be decided in polynomial time), give up the guess. Otherwise, use the NP oracle to
decide whether the right-hand side holds; if it does not, return false.

For the hardness part, we use a reduction of ∀∃3SAT: the satisfiability of the formula
∀x∃y ϕ(x,y), where ϕ is a propositional formula in -CNF over x∪ y. �is problem is ΠP

2 -
complete [Wra76, SU02]. Let ∀x∃y

∧n
i=1 ci(zi1,zi2,zi3) be an instance of ∀∃3SAT, where

each ci is a -clause, and each zij is one of the variables of x∪y. We consider then the following
instance of Vtgd:

• S= {(B,1)} and I = {B(0),B(1)};
• T= {(R1,3) . . . (R8,3)} and J is such that the RJ

i
’s are the  distinct subsets of {0,1}3 of

cardinality  (this corresponds to the  possible truth tables of a -clause);

• For each 1¶ i¶ n, let 1¶ ki ¶ 8 be the unique integer such that ci(zi1,zi2,zi3) is true
if and only if (zi1,zi2,zi3) ∈ RJ

ki
(with the usual abuse of notation of identifying values

of boolean variables and values in {0,1}). We now define Σ as follows:

Σ=

(
∀x

m∧

i=1

B(xi)→∃y
n∧

i=1

Rki (zi1,zi2,zi3)

)
.

�is reduction is clearly polynomial. Now we have:

(I , J ) |=Σ ⇐⇒
 
∀x

m∧

i=1

(xi = 0∨ xi = 1)→∃y
n∧

i=1

ci(zi1,zi2,zi3)

!
is true

⇐⇒ ∀x∃y ϕ(x,y) is true

. Let F be the set of facts of J which are not directly in Σ as ground facts. Guess |F | valuations
of the variables on the left- and right-hand sides of the formulas of Σ which are not ground
facts. If, for all 1¶ i¶ |F |, there is some ϕ ∈Σ such that the ith valuation of the left-hand
side of ϕ holds in I (which can be decided in polynomial time) and the ith fact of F appears
in the ith valuation of the right-hand side of ϕ, then return true.

.. Combined Complexity for Full Tuple-Generating Dependencies

We now consider the language of full tgds,Lfull.

Proposition ..

. Vfull is coNP-complete;

. Efull and Z-Rfull are NP-hard.

Proof.
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. Here is a non-deterministic polynomial-time algorithm for this problem. First check the
validity of the ground facts of Σ. For the other formulas of Σ, guess a valuation of the
universally quantified variables. If the left-hand side is true in I and the right-hand side is
false in J (both of which can be decided in polynomial time), return false.

For the hardness part, we use a reduction from the problem of evaluating a boolean conjunctive
query over a database, which is NP-complete [CM77]. Let D be a relational database of
schemaU, andQ = ∃x ϕ(x) a boolean conjunctive query overU. We build an instance (I , J ,Σ)
of Vfull in the following way: S=U∪ {(R,1)}, I =D∪ {R(1)}, T= �(R′,1)	, J =∅
and Σ =

�∀x∀y ϕ(x)∧R(y)→ R′(y)
	
. �is reduction is polynomial, and Σ is valid with

respect to (I , J ) if and only if Q does not match D.

. �ere is a straightforward reduction of the problem of deciding whether a tuple is in the result
of a project-join expression in the relational algebra, which is aNP-complete problem [Yan81],
to Efull. However, we use another reduction, from 3SAT, which works both for
Efull and Z-Rfull. It is similar to the reduction used in the proof of
Proposition ..

Let ϕ =
∧n

i=1
ci(zi1,zi2,zi3) be an instance of 3SAT, where the ci are -clauses over some

set x of variables (and
⋃

i,j zij = x). We consider the following instance of the problems
Efull and Z-Rfull:

• S= {(R,1), (R1,3) . . . (R8,3)} and I such that the RI
i
are the  distinct subsets of {0,1}3

of cardinality , and RI = {a};
• T=

�
(R′,1)

	
and J =

�
R′(a)

	
;

• For each 1¶ i¶ n, let 1¶ ki ¶ 8 be the unique integer such that ci(zi1,zi2,zi3) is true
if and only if (zi1,zi2,zi3) ∈ RI

ki
. We then define Σ:

Σ=

(
∀x

n∧

i=1

Rki (zi1,zi2,zi3)∧R(x)→ R′(x)

)
.

We have (I , J ) |=Σ, which means that (I , J ,Σ) is a solution of Efull if and only if
it is a solution of Z-Rfull. Now, observe that ϕ is satisfiable if and only if R′(a) is
a necessary consequence of I and Σ or, in other words, if Σ fully explains J with respect to
I .

.. Combined Complexity for Full Acyclic Tuple-Generating Dependencies

We now look at the complexity of the same problems forLfacyc. We shall need additional notions
on acyclic joins from [BFM+81, Yan81]. Note first that an acyclic full tgd ∀x ϕ(x)→ ψ(x) that
describes the relation between a pair of instances (I , J ) can be seen, in the relational algebra, as
a project-join expression over the source instance, πψ(\ϕ(I )), ϕ expressing the join (which is,
by hypothesis, acyclic) and ψ expressing the projection. Adding repaired formulas, of the form
∀x (ϕ(x)∧τ(x))→ψ(x), means adding an additional selection: πψ(στ(\ϕ(I ))).
A full reducer of a join expression is a program which removes some tuples to the relations to be

joined (by performing semi-joins) so that each relation can then be retrieved as a projection of the
full join. Such a full reducer always exists in acyclic databases and can be obtained in polynomial
time [BC81]. �e full reducer itself runs in polynomial time. Finally, note that a join tree of an
acyclic join can be obtained in linear time [TY84].
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[Yan81] proposes then Algorithm . for computing the result to a project-join expression on an
acyclic database, that we reuse with slight modifications in our next proposition.

Algorithm . Result to a project-join expression on an acyclic database (after [Yan81])
I: An acyclic join expression ϕ, a project expression ψ, an instance I .
O: πψ(\ϕ(I )).
(a) Compute a full reducer of the relation instances, and apply it.
(b) Compute a join tree T of the acyclic expression. Each node of the tree initially contains the

corresponding reduced relation instance.
(c) For each subtree of T with root r, compute recursively for each child r′ of r the join of r with r′,

and project to the union of the variables appearing in ψ and the common variables of r and r′.
Remove r′ and replace node r with this result.

An important property of this algorithm is that, at all time, the size of the relation stored in
node r of T is bounded by the original (reduced) size of r times the size of the final output. �is
means in particular that this algorithm computes in polynomial time the result to the project-join
expression. Actually, the same algorithm can be applied when repaired formulas are considered,
since the only selection performed is a conjunction of constraints (equality and negated equality)
on a given variable: �ese selections can be pushed inside the join.

Proposition .. Vfacyc and Efacyc are in PTIME.

Proof.

. First check that the ground facts of Σ are valid. �en, we have to apply Algorithm . on
each ϕ of Σ which is not a ground fact to check whether its output is included in J . �is,
however, may not lead to a polynomial time algorithm, since Algorithm . is polynomial in
the size of the join expression, the input, and the output. �e solution is to take care, at each
join step, that the output remains in the bound given above. If it does not, then we know
that (I , J ) 6|= ϕ. If it does, we can let the algorithm terminate and check then if the output is
included in I .

. For each fact f of J , proceed as follows. If f appears as a ground fact in Σ, it is fully explained
in Σ. Otherwise, for each formula of Σ which is not a ground fact, we apply a variant of
the algorithm presented above to decide whether f is in the output of the original algorithm
(once again, by pushing selections inside joins), as described in Corollary . of [Yan81].

Z-R is then tractable inLfacyc. One might hope that this tractability extends to C.
Unfortunately, we now show the NP-hardness of Cfacyc, even for a very simple schema mapping.
For this purpose, we shall first need a quite general result on the minimal size of a vertex cover in a
r-partite r-uniform hypergraph (for r ¾ 3).
A hypergraph is r-partite if the set of vertices can be decomposed into an r-partition, such that no

two vertices of the same partitioning subset are in a same hyperedge. It is r-uniform if all hyperedges
have a cardinality of r. A vertex cover of a hypergraph is a subset X of the set of vertices, such that
for every hyperedge e, at least one of the elements of e is in X . In regular graphs, V-C
(determining whether there is a vertex cover of size ¶ K ) is one of the most known and useful
NP-complete problems [GJ79]. �is obviously implies that V-C is NP-hard in general
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hypergraphs. Note that a 2-partite 2-uniform hypergraph is just a bipartite graph, and V-
C in bipartite graphs is PTIME, thanks to Kőnig’s theorem [Die05, Kőn36] which states that
the maximal number of matchings in a bipartite graph is the mimimum size of a vertex cover.

Lemma .. �e problem of, given an r-partite r-uniform hypergraph H and a constant K , de-
termining whether there exists a vertex cover inH of size less than or equal to K is NP-complete for
r ¾ 3.

Proof. �is problem is clearly in NP: Just guess a set of vertices of size less than or equal to K and
check in polynomial time whether it is a vertex cover. For the hardness part, we prove the case
r = 3; there is an obvious reduction from this case to the same problem for other values of r. We
use a reduction from 3SAT.
Note that this result appears in [ISOY02], but the reduction presented there is not exhaustive (in

particular, nothing is said about interdependencies between clauses, or the fact that the hypergraph
is tripartite) and it is not clear whether the proof was indeed led to completion. We use here a proof
inspired by the proof that 3-D-M is NP-hard in [GJ79].
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ȳ1

y2

ȳ2
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Figure .: Example tripartite hypergraph corresponding to the 3SAT instance ¬z ∨ x ∨ y

Let ϕ =
∧n

i=1 ci be an instance of 3SAT, where the ci are -clauses over some set x of variables.
We build a tripartite -uniform hypergraphH = (V ,E) (with vertex partition V = V1 ∪V2 ∪V3)
in the following way (see Figure . for an illustration when ϕ = ¬z ∨ x ∨ y):

• For each variable x ∈ x, we add  nodes and  hyperedges toH .  out of the  nodes are
anonymous nodes which only appear in one hyperedge; they are denoted by •. �e other
nodes are denoted x1, x2, x3, x̄1, x̄2, x̄3. Intuitively, all xi’s are in a minimum covering if and
only if a valuation satisfying ϕ maps xi to true (similarly with the x̄i’s and false). For each i,
xi and x̄i belong to Vi. �e so-called local hyperedges are the following:
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V1 V2 V3
x1 • x̄3
• x2 x̄3
x̄1 x2 •
x̄1 • x3
• x̄2 x3
x1 x̄2 •

• For each clause ci, we add a single global hyperedge which contains the vertices corresponding
to the variables appearing in ci, while taking into account their position in the clause and
whether they are negated. For instance, if ci = ¬z∨x∨ y, we add a hyperedge (z̄1,x2, y3). �is
ensures that the hypergraph remains tripartite.

�is reduction is polynomial. Let m be the cardinality of x. We now show that ϕ is satisfiable if
and only if there is a vertex cover inH of size less than or equal to 3m (or, equivalently, if there is a
minimum vertex cover of size less than or equal to 3m).
Suppose first that ϕ is satisfiable, and let ν be a valuation of x which satisfies ϕ. Let us consider

the following set S of vertices ofH : For each x ∈ x, we add to S, x1, x2 and x3 if ν(x) is true, x̄1, x̄2
and x̄3 otherwise. S is of cardinality 3m. Observe that S covers all local hyperedges and, since ν
satisfies ϕ, all global hyperedges.
Suppose now that there is a minimum vertex cover S of size less than or equal to 3m. Since

anonymous vertices only appear in a single hyperedge, we can always assume that S does not contain
any anonymous vertex (they can always be replaced by another vertex of the hyperedge). Let Si be,
for each 1¶ i¶m, the subset of Si containing only the vertices corresponding to the ith variable of
x. It is easy to see that |Si|¾ 3 for all i, for all local hyperedges to be covered, which means that
|Si|= 3 since

��⋃Si
��¶ 3m. Si forms a vertex cover of the local sub-hypergraph corresponding to the

ith variable of x (let us call it x) and must cover the hyperedges of this sub-hypergraph. But there
are only two vertex covers of this sub-hypergraph of cardinality 3: Either Si contains all xk’s, or it
contains all x̄k’s. We consider the valuation ν of the variables in x which maps x to true in the first
case, to false in the second. �en, since S is a vertex cover ofH , ν satisfies all the clauses of ϕ.

We now use this lemma to prove the NP-hardness of Cfacyc.

Proposition .. Cfacyc is NP-hard.

Proof. We first consider the case where we only allow negated equalities x 6= c, and no equalities
x = c, on the left-hand side of repairs of tgds, with x a universally quantified variable, as the proof is
clearer. We detail then the changes that have to be made in the general case.
We reduce the vertex cover problem in tripartite -uniform hypergraphs to Cfacyc. LetH be

a tripartite -uniform hypergraph. We consider the following instance of Cfacyc:

• S = {(R,3)} and RI is the representation of H as a three-column table, where each row
corresponds to an edge, and each column to one of the set of the tripartition ofH ;

• T=
�
(R′,1)

	
and J =∅;

• Σ=
�∀x1∀x2∀x3 R(x1,x2,x3)→ R′(x1)

	
(this is obviously an acyclic tgd).
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As J =∅, any schema mapping fully explains J . �is also means that the only repairs of Σ to be
considered are the ones that add a “xi 6= ci” term to the left-hand side of the single element of Σ. A
repair of Σ has to “cancel” somehow with these additions each tuple of RI . In other words, the cost
of Σ is size(Σ)+2r, where r is the minimal number of conjuncts in a formula of the form

∧
xi 6= ci,

such that this formula is false for all tuples of RI . Such a formula expresses a vertex cover inH ,
andH has a vertex cover of size less than or equal to K if and only if cost(I ,J ) (Σ)¶ size(Σ)+ 2K ,
which concludes the proof in this case.
In the general case where we allow arbitrary repairs, including x = c terms on the left-hand side of

a tgd, the same proof does not work, since it suffices to choose an arbitrary constant c which does not
appear in I for the term x1 = c to cancel every tuple of RI . To fix this, we need to make prohibitive
the addition of such a term to Σ in the following way: Let c′, and, for 1¶ i¶ 3, 1¶ j ¶ K , ci,j be
3K + 1 fresh constants. We can always assume that K is linear in the size of the input of Cfacyc
(otherwise, just replace K with the upper bound of Proposition .). We consider the following
slightly modified instance of Cfacyc:

• S = {(R,3)} and RI = A∪B, where A is the representation ofH as a three-column table,
where each row corresponds to an edge, and each column to one of the set of the tripartition
ofH , and B is the set:
¦
R(c1j, c

′, c′) | 1¶ j ¶ K
©
∪
¦
R(c′, c2j, c

′) | 1¶ j ¶ K
©
∪
¦
R(c′, c′, c3j) | 1¶ j ¶ K

©
;

• T=
�
(R′,3)

	
and J is the same as B if R is replaced by R′;

• Σ=
�∀x1∀x2∀x3 R(x1,x2,x3)→ R′(x1,x2,x3)

	
(this is obviously an acyclic tgd).

�is reduction is polynomial if K is linear in the size of the input, as assumed. Σ fully explains J
and the repairs considered in the previous case do not change this.
Let now xi = c be a term with 1 ¶ i ¶ 3 and c some constant. Whatever the choice of c, the

addition of this term to the tgd of Σ cancels at least K tuples of B, and hence, fails to explain at
least K tuples of J (the best case is when c = c′). Just observe that, as the cost of a ground fact,
which is the only way to repair unexplained tuples, is 9, the size of any repair of Σ with such an
xi = c term on the left-hand side is greater than or equal to size(Σ) + 9K . We keep the fact that
cost(I ,J ) (Σ)¶ size(Σ)+ 2K if and only ifH has a vertex cover of size less than or equal to K .

It is an open issue whether C is in PTIME for the very restricted case when the schema
mapping consists of a single full tgd with a single binary relation symbol appearing once in the
left-hand side.

.. Combined Complexity for Acyclic Tuple-Generating Dependencies

�e last subset ofLtgd that we consider here isLacyc.

Proposition ..

. Vacyc is coNP-complete.

. Eacyc and Z-Racyc are NP-hard.

. Eacyc is in PTIME if, for all existentially quantified variables y and for all constants
c, there is at most one term y= c appearing in each formula of the schema mapping. �is is
in particular the case if the schema mapping is a subset ofLacyc instead ofL ∗acyc.





. Complexity Study

Proof.

. • Let us first prove that Vacyc is in coNP. �e validity of ground facts of Σ is trivial
to check. Let θ be a formula of Σ which is not a ground fact. Recall that θ is of the
form

∀x ϕ(x)∧τ(x)→∃y ψ(x,y)∧τ′(x,y)

with τ(x) a conjunction of terms expressing equality or negated equality between a
variable of x and a constant, and τ′(x,y) of the form

τ′(x,y) =
n∧

i=1







mi∧

j=1

xij = c′
ij


→ yi = ci


 .

Guess a valuation ν of the variables of x. If the left-hand side of θ is made false by this
valuation, give up this guess. Otherwise, consider the formula

ξ = ∃y ψ(ν(x),y)∧τ′(ν(x),y)

where τ′(ν(x),y) is equivalent to a conjunction of terms of the form y= c with y ∈ y and
c a constant. We can then check in polynomial time if J satisfies ξ using Algorithm ..

• To prove that Vacyc is coNP-hard, we use a reduction of 3SAT. Let ϕ =∧n
i=1

ci(zi1,zi2,zi3) be an instance of 3SAT, where the ci are -clauses over some set x
of variables (and

⋃
i,j zij = x). We consider now the following instance of Vacyc:

– S= {(B,1)} and I = {B(0),B(1)};
– T= {(R,1)} and J = {R(1)};
– For all 1 ¶ i ¶ n, let τi be the unique conjunction of the form zi1 = b1 ∧ zi2 =
b2 ∧ zi3 = b3 such that each bk is either the constant 0 or 1, and ci(zi1,zi2,zi3) is
false if this conjunction holds. We then define:

Σ=

(
∀x1 . . .∀xm B(x1)∧ · · · ∧B(xm)→ ∃y1 . . .∃yn R(y1)∧ · · · ∧R(yn)

∧
n∧

i=1

(τi→ yi = 0)

)
.

�is transformation is polynomial, Σ⊂L∗acyc, and Σ is valid with respect to (I , J ) if
and only if the original 3SAT instance is not satisfiable.

. We use a reduction from 3SAT very similar to that of item . �is reduction works both for
Eacyc and Z-Racyc.

• S= {(B,1)} and I = {B(0),B(1)};
• T= {(R,n)} and J = {R(1, . . . ,1)};
• For all 1¶ i ¶ n, let τi1 . . .τi8 be the eight conjunctions of the form zi1 = b1 ∧ zi2 =
b2 ∧ zi3 = b3 such that each bk is either the constant 0 or 1, and ci(zi1,zi2,zi3) is true if
this conjunction holds. We then define:
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Σ=



∀x1 . . .∀xm B(x1)∧ · · · ∧B(xm)→ ∃y1 . . .∃yn R(y1 . . . yn)

∧
n∧

i=1

8∧

j=1

�
τij→ yi = 1

�


 .

Observe that Σ is valid with respect to (I , J ). �is transformation is polynomial, and Σ fully
explains J with respect to I if and only if the original 3SAT instance is satisfiable.

. Let f be a fact of J , we describe a polynomial algorithm for deciding whether f is explained
by Σ. First, check if f is in the ground facts of Σ. Otherwise, for each atom R(z1 . . .zk)
in the right-hand side of a formula θ ∈ Σ which is not a ground fact, such that R is the
relation name appearing in f , do the following. We keep the same notations as above for the
sub-formulas of θ.

Observe that f is explained by the R(z1 . . .zk) atom of θ if and only if there is a valuation
ν of the variables of x such that ν (ϕ(x)∧τ(x)) is true in I and, for all extensions ν ′ of ν to
x∪ y, ν ′ �τ′(x,y)

�
is true and ν ′ (R(z1 . . .zk)) = f .

�is means that all variables of y appearing in R(z1 . . .zk) must also appear as the right-hand
side of an implication of τ′(x,y) (otherwise, an extension ν ′ of ν such that ν ′ (R(z1 . . .zk))
is not equal to f is possible). By the hypothesis we made, there is exactly one conjunct of
τ′(x,y) where each variable of y appears. Let ρ(x) be the conjunction of the left-hand sides
of these implications for all variables of y. �en, f is explained by the R(z1 . . .zk) atom of θ
if and only if the boolean query ∃x ϕ(x)∧τ(x)∧ρ(x) matches the instance I . As τ(x)∧ρ(x)
is a simple conjunction, we can first perform the corresponding selection on I , and then use
Algorithm . to decide if the boolean query matches.

Note that we used for both hardness results the repairs themselves to encode the instance of a
NP-hard problem: Although the tgd itself is acyclic, its repairs are not. We could probably get
polynomial algorithms for the same problems if we impose some acyclicity condition to repairs of a
formula; this, however, would weaken our notion of optimality.

.. Combined Complexity of E-C andO

With the help of Lemma ., we show the intractability of E-C and O, in
all considered languages:

Proposition .. E-C (respectively,O) isNP-hard (respectively, bothNP-hard
and coNP-hard) in all the following languages: Ltgd,Lfull,Lacyc,Lfacyc.

Proof. To prove this result, we use, as in the proof of Proposition ., a reduction from the vertex
cover problem in tripartite -uniform hypergraphs. �e core of the reduction is the same for
E-C and O.
Let H = (V ,E) be a tripartite -uniform hypergraph with N vertices and K an integer. We

denote by τ(H ) the minimum size of a vertex cover inH . Let α ¾ 1 an integer, to be defined
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further. Each vertex of V is seen as a constant of C . We also use 3(α+N ) additional constants
cik and c′

jk
with 1 ¶ i ¶ α, 1 ¶ j ¶ N , 1 ¶ k ¶ 3. We now consider the following schemata and

instances:

• S= {(R,3)} and

I =
�
R(ci1, ci2, ci3) | 1¶ i¶ α

	

∪
¦
R(c′

i1, c′
i2, c′

i3) | 1¶ i¶N
©

∪ �R(v,v′,v′′) | e = (v,v′,v′′) ∈ E 	 ;

• T=
�
(R′,1), (S′,3)

	
and

J =
�
R′(ci1) | 1¶ i¶ α

	

∪ �S′(ci1, ci2, ci3) | 1¶ i¶ α
	

∪
¦
S′(c′

i1, c′
i3, c′

i3) | 1¶ i¶N
©
.

Let Σ0 =
�∀x R(x)→ S′(x)

	
. Σ0 is valid, but fails to explain α tuples of J . �us, cost(I ,J ) (Σ0) =

6+ 3α (since the cost of a ground fact of arity 1 is 3, see Definition .).
Let Σ =

�∀x R(x)→ R′(x1)∧ S′(x)
	
(Σ ⊂ Lfacyc). An argument very similar to the one of the

proof of Proposition . shows that

cost(I ,J ) (Σ) = size(Σ)+ 2τ(H )+ZN = 7+ 2τ(H )+ 2N .

since S′J guarantees that the size of any repair of Σ with an x = c term on the left-hand side is at
least:

size(Σ)+ 2+ 9(α+N − 1)> size(Σ)+ 9N > cost(I ,J ) (Σ) .

�e idea now is to choose α such that τ(H )¶ K if and only if cost(I ,J ) (Σ)¶ cost(I ,J ) (Σ0). �is is
the case if:

α=
2(K +N )+ 1

3
.

With this value of α, we have cost(I ,J ) (Σ0) = 2(K +N ) + 7 and cost(I ,J ) (Σ) = 2τ(H ) +N + 7,
which yields the property we were looking for. However, 2(K +N ) + 1 may not be divisible by 3;
in this case, we just transform the initial problem by observing that τ(H ) = K if and only if
τ(H ′) = K whereH ′ is the tripartite -uniform hypergraph obtained fromH by adding n new
edges, each of which span 3 new vertices (this does not change the value of N mod 3). Up to such
a transformation, we may then assume than 2(K +N )+ 1 is divisible by 3.
Let us now show that, for any schema mapping Σ′ ⊂Ltgd,

cost(I ,J )

�
Σ
′�¾min

�
cost(I ,J ) (Σ0) ,cost(I ,J ) (Σ)

�
. (.)

�is will conclude the proof, since we then have the following reductions, obviously polynomial
and valid for any of the considered languages:

NP-hardness of E-C. τ(H )¶ K if and only if there exists a schema mapping whose
cost with respect to (I , J ) is lesser than or equal to cost(I ,J ) (Σ0)− 1.
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NP-hardness ofO. τ(H )¶ K if and only if Σ is optimal with respect to (I , J ).

coNP-hardness ofO. τ(H )¶ K−1 if and only ifΣ0 is not optimal with respect to (I , J ).

Let Σ′ be a non-empty schema mapping ofLtgd. In order to prove (.), first observe that, as the
constants ci1 are completely indistinguishable from each other, Σ′ must either explain all or none of
the facts of R′J . We shall consider each case in turn.

• If Σ′ does not explain any of the facts of R′J , each of these must be accounted for in the
repairs, by one of the following methods:

– adding ground facts (additional cost: 3 each);
– adding an unconditioned “x = c” term to a R′(x) atom where x is existentially quantified
(additional cost: 2 each, but this can only be done once per R′(x) atom, whose size is 1,
or this yields an inconsistent formula);

– adding a conditioned “τ→ x = c” term to a R′(x) atomwhere x is existentially quantified
(minimum additional cost: 4 each, since the size of τ is at least 2).

Moreover, a repair of Σ′ should also account for the facts of S′J , either as explanations
of Σ′ (this cannot be done in a formula with size lesser than 6) or by enumerating all
ground facts of S′ (with a cost of 9(α +N ), which is greater than 6). �is means that
cost(I ,J )

�
Σ
′�¾ 3α+ 6= cost(I ,J ) (Σ0).

• In the case where Σ′ explains all facts of R′J , there is a tgd θ ∈ Σ′ such that θ explains all
facts of R′J , and θ is necessarily of the form:

∀x1∀x2∀x3∀u R(x1,x2,x3)∧ϕ(x1,x2,x3,u)→∃v R′(x1)∧ψ(x1,x2,x3,u,v)

with ∃u ϕ(c11, c12, c13,u) valid in I . �en, for all e = (v,v′,v′′) ∈ E ,

∃u ϕ(v,v′,v′′,u)

is valid in I since ϕ does not contain anything else than relation atoms R(w1,w2,w3) with all
xi’s necessarily in the ith position, and other variables existentially quantified. �at means
that R′(v) is an incorrect fact implied by the tgd. As we saw earlier, adding an x = c term on
the left-hand side of θ has prohibitive cost. �e only way to cancel these facts is then as in
the proof of Proposition .. Finally, a repair of θ must also explain all facts of S′J , either as
facts explained by θ itself (then, size(ϕ)¾ 3), or by enumerating ground facts of S′J , with a
cost of 9(α+N )> 3. We have therefore:

cost(I ,J )

�
Σ
′�¾ cost(I ,J ) (θ)¾ 7+ 2τ(H )+ 2N = cost(I ,J ) (Σ) .

Note that the same proof does not work in the case ofLrc:

{∀x1∀x2∀x3 R(x1,x2,x3)∧
¬
�
∃x′2∃x

′
3 R(x1,x′2,x′3)∧ (x2 6= x′2 ∨ x3 6= x′3)

�
→ R′(x)}

may have a lower cost for some instances than Σ (for instance ifH is a hypergraph where all nodes
have a degree greater than 1).
�e other results from Table . are direct consequences of the former propositions.
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Table .: Data complexity results

Ltgd,Lfull,Lacyc,Lfacyc

V (Σ fixed) PTIME
E (Σ fixed) PTIME
Z-R (Σ fixed) PTIME
C (K fixed) PTIME
C (Σ fixed) NP, NP-hard for some Σ
E-C (K fixed) PTIME

O (Σ fixed) Π
P
2 , (co)NP-hard for some Σ

.. Data Complexity

As far as data complexity is concerned, the situation is simpler, since we do not have any difference
in complexity for all four subsets of Ltgd. �e results are presented in the next proposition, and
they are summarized in Table ..

Proposition ..

. If Σ is fixed, Vrc is in PTIME.

. If Σ is fixed, Etgd is in PTIME.

. If K is fixed, Ctgd and E-Ctgd are in PTIME.

. For some fixed value of Σ, Cfacyc is NP-hard.

. For some fixed value of Σ, Ofacyc and Otgd are both NP-hard and coNP-
hard.

Proof.

. If k is the number of quantified variables in a first-order formula ϕ in prenex normal form, it
is easy to see that checking whether ϕ is valid in a database of size n is O(nk).

. Each formula of Σ is either a ground fact, or of the form ∀x (ϕ(x)∧ τ(x))→∃y (ψ(x,y)∧
τ′(x,y)) with τ and τ′ propositional combinations of terms expressing equalities between
a variable and a constant. For each fact f of J , first check if it appears as a ground fact Σ;
otherwise, for each valuation of x∪ y (there is a constant number of such valuations, since Σ
is fixed), check whether the left-hand side holds, and f is a consequence of the right-hand
side.

. We can just enumerate all schema mappings ofL ∗
tgd

whose size is lower than K , and check

in polynomial time if they are valid and fully explain the target instance.

. �is results from the proof of Proposition ..

. �is results from the proof of Proposition ..
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. Extension and Variants

We study in this section some extensions of our optimality notion to (i) formulas of the full relational
calculus; (ii) other apparently simpler functions of cost.

.. Extension to the Relational Calculus

We can extend the definitions of Section . to the language Lrc of relational calculus, by the
following adaptation of the notion of repair.
A repair of a schema mapping Σ⊂Lrc is a set of formulas obtained from Σ by a finite sequence

of the following operations:

• Replacing in a formula ofΣ a sub-formula∀x ϕ(x,y) (we also assume thatϕ does not start with
a ∀ symbol, and that the sub-formula is not preceded by a ∀ symbol) by ∀x τ(x, z)→ ϕ(x,y)
where z is the set of variables free in ϕ and τ is a boolean formula over terms w = c of the
following form:

∧

i






∧

j

zij = c′
ij


→ xiαici




with zij variables from z, xi variables from x, αi either = or 6=, and c′
ij
and ci constants.

• Replacing in a formula ofΣ a sub-formula ∃x ψ(x,y) (we also assume thatψ does not start with
a ∃ symbol, and that the sub-formula is not preceded by a ∃ symbol) by ∃x ψ(x,y)∧τ′(x,z)
where z is the set of variables free in ψ and τ′ is a boolean formula over terms w= c of the
following form:

∧

i






∧

j

zij = c′
ij


→ xi = ci




with zij variables from z, xi variables from x, and c′
ij
and ci constants.

• Adding to Σ a ground fact R(c1 . . . cn) where R is a relation of the target schema of arity n,
and c1 . . . cn are constants.

We can check that this definition amounts to the same as Definition . if we restrict ourselves to
Ltgd. We can then use the same definitions of the size and cost of a formula, and consider the same
decision problems. We have the following complexity results:

Proposition ..

. Vrc is PSPACE-complete;

. Erc is co-recursively enumerable;

. Erc and Z-Rrc are not recursive.

Proof.
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. • Let us first show that Vrc is in PSPACE. Let ϕ ∈Σ. If ϕ is a ground fact, this is
trivial. Otherwise, we first rewrite ϕ in prenex normal form

α1x1α2x2 . . .αnxn ψ(x1, . . . ,xn)

where each αi is either ∃ or ∀.
Let C be the set of constants appearing in I and J , along with n distinct constant
⊥1 . . .⊥n. It can be shown that we do not need to consider valuations of the x1 . . .xn into
other constants. For each valuation ν of x1 . . .xn intoC , it is decidable in polynomial time
whether (I , J ) |= ψ (ν(x1), ..., ν(nn)). We then enumerate all valuations, enumerating
recursively all valuations of xi+1 while keeping xi fixed, and remembering for each
1¶ i¶ n+ 1 a single value oki which is equal to:
– If i= n+ 1: 1 if (I , J ) |=ψ (ν(x1), ..., ν(nn)) in the current valuation ν , 0 otherwise;
– If αi = ∃: the maximum of oki+1 and the preceding value of oki (and the preceding
value is reset to 0 whenever the valuation of xi−1 is changed).

– If αi = ∀: the preceding value of oki, multiplied par the current value of oki+1
(and the preceding value is reset to 1 whenever the valuation of xi−1 is changed).

�e algorithm returns true if, after enumerating all valuations, all oki are equal to 1.
Otherwise, the algorithm returns false. �is is obviously a PSPACE algorithm, and it
returns true if and only if (I , J ) |= ϕ. We can run the same algorithm in sequence on
all ϕ ∈Σ.

• �e PSPACE-hardness of Vrc comes from a polynomial-time reduction of
QSAT (also known as QBF), which is PSPACE-complete [Pap94, SM73]. Let ϕ =
α1x1 . . .αnxn ψ(x1 . . .xn) be an instance of QSAT (the αi are either ∃ or ∀ symbols, and
ψ(x1 . . .xn) is a propositional formula with variables x1 . . .xn).
Let S= {(R,1)} ,T= �(R′,1)	, I = {R(a)} and J =

�
R′(a)

	
. Let Σ be the singleton:

�∀yα1x1 . . .αnxn ψ (R(x1) . . .R(xn))∧R(y)→¬R′(y)
	
.

�en, (I , J ) |=Σ if and only if ϕ is true.

. To see that Erc is co-recursively enumerable, just enumerate all instances K of
the target schema, and whenever they are such that (I , J ) |=Σ (which is decidable, see just
above), see if they contain K . If this is not the case, we can conclude that Σ does not fully
explain J with respect to I .

. �e uncomputability comes from a reduction of the satisfiability of the relational calcu-
lus, which is not recursive [Tra63, DP69]. �e reduction is the same for both problems
Erc and Z-Rrc. Let ϕ be a formula of the relational calculus over a
schema U. Consider the following instance of Erc (this is also an instance of
Z-Rrc):

• S= {(R,1)} and I = {R(a)};
• T=U∪ �(R′,1)	 and J =

�
R′(a)

	
;

• Σ=
�∀x R(x)→ ϕ ∨R′(x)	

Observe that (I , J ) |=Σ, therefore (I , J ,Σ) is a solution of Erc if and only if it is a
solution of Z-Rrc.

Now, (I , J ,Σ) is a solution of Erc if and only if, for all K such that (I ,K ) |= Σ,
R′(a) is a fact of K . �is is the case if and only if ϕ is not satisfiable.
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Interestingly, the computability ofOrc remains open. It seems to be a “harder” problem
than Z-Rrc, but as there is no simple reduction between them, we cannot even be sure that
Orc is not recursive. We do not even know whether it is recursively enumerable or co-
recursively enumerable (althoughCrc and E-Crc both are co-recursively enumerable
because of the co-recursive enumerability of Z-Rrc).

.. Variants of the Cost Function

�e definition of repairs and cost that we presented in Section . may appear, at first, unnecessarily
complicated. We argued in Section . for a justification of this notion by showing that it has nice
properties with respect to instances that are derived from each other with elementary operations of
the relational algebra. We consider in this section two alternative definitions of cost and optimality
of a schema mapping with respect to database instances, and show that neither, although simpler
and perhaps more intuitive, present the same properties and are thus adapted to our context.
We keep our notions of validity of a schema mapping, of full explanation of a database instance

by a schema mapping, and of size of a schema mapping, and we want to consider alternative ways
to characterize the cost of a given schema mapping. �e first idea is to assign as the cost of a schema
mapping the minimal number of tuples that have to be added or removed to the target instance J
for the schema mapping to become valid and to fully explain J . (Each tuple may also be weighted
by its arity, to get something closer to our original cost definition.) �us, the cost of the empty
schema mapping corresponds to the size of the target instance, as before, while the cost of a schema
mapping that fully explains the target instance but also incorrectly explains some tuples is the
(possibly weighted) number of such tuples. �is sounds like a reasonable definition, but it presents
an important problem: We lose the linear bound on the cost of a schema mapping in the size of the
data and the schema mapping itself. Indeed, consider the following schema mapping, for a given n,
where R is a source relation of arity 1 and R′ a target relation of arity n:

�∀x1 . . .∀xn R(x1)∧ · · · ∧R(xn)→ R′(x1, . . . ,xn)
	
.

If J is empty, the cost of this schema mapping according to the definition given in this paragraph is
|I |n (or n |I |n if we weight with the arity of the relations), which is exponential in the size of the
schema mapping. �is combinatorial explosion discourages all hopes of getting an optimal schema
mapping by local search techniques. Besides, all the problems that we describe for the variant that
we consider next also arise here.
An alternate definition of cost, close to the previous one but for which we still have a linear bound

on the cost of a schema mapping is the following: �e cost of a schema mapping Σ is the minimal
number of tuples to add or remove from the source instance I and of tuples to add or remove to the
target instance J so that Σ becomes valid and fully explains J . As before, we assume that we weight
tuples by their arity; we could also choose to add an arbitrary constant weight to operations on J
with respect to operations on I , or to deletion with respect to addition of tuples, without much
difference in the model. �e linear bound is clear, then, since we can just remove all tuples of I
and of J for Σ to be valid and to fully explain J . However, there is still a fundamental problem
with this definition, which can be seen by looking back at Section .. We showed there that, for
elementary operations of the relational algebra, the definition of optimality of Section . yielded
the same as the intuitive tgds expressing these operations. �is is not true any more here, however,
in particular in the presence of selections and projections. For projections, this is due to the fact
that a schema mapping that predicts existentially quantified tuples has a higher cost than the same
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schema mapping where these existentially quantified relation atoms are removed. We exhibit next a
concrete example of database instances that illustrate the problem with selections.

Example .. Let us consider instances I and J of the following schemata:

S= {(P,2)} T=
�
(P′,1)

	

where:

• I contains a list of titles of publications (as first attribute) along with their kind: article,
book, report, etc.

• J contains a list of book titles.

Let us assume that J and I contain the same book titles. In other words, J = π1(σ2=book(I )).
It is quite natural to expect Σ=

�∀x∀y P(x, y)→ P′(x)
	
as the “optimal” schema mapping in the

language of tgds for these database instances, and indeed,

cost(I ,J ) (Σ) = size(∀x∀y P(x, y)∧ y= book→ P′(x)) = 5

is minimal as soon as J is large enough and there is no hidden relation between the second attribute
of I and J .
Now, observe that with the variant proposed in the preceding paragraph, the cost will be:

3+min (2(|I | − |J |), |J |) ,

which is, in all cases when there are more publications of another kind than book (a common
situation), greater than the cost of the empty schema mapping, which is then the optimal schema
mapping for these instances.

�en, although our definition of optimality is a bit complex, it is much more adapted to what
we consider here than these simpler definitions, since it can capture such things as the worth of
an existentially quantified relation atom, or the possibility of limiting the scope of a tgd with the
addition of a simple selection to which facts of the source instance it applies.

Conclusion

We discussed a theoretical framework that addresses the problem of finding a schema mapping
optimal with respect to a pair of database instances, based solely on the structure and occurrences
of constants in the instances. We showed that this problem is of a high complexity, being both
NP-hard and coNP-hard even for a very restricted language, namely full acyclic tuple-generating
dependencies. �ere are a number of open theoretical issues, especially on the computability and
precise complexity of O for various languages, but the most obvious direction for future
work would be to connect such a theoretical framework with practical heuristics and approximation
algorithm; in particular, the relation to inductive logic programming has to be explored. We
believe that this is an especially important problem, and that discovering and understanding hidden
relations in data is one of the most fundamental task of artificial intelligence. Other theoretical
problems of interest would be to improve our complexity upper bounds by generalizing the notion
of acyclicity to that of bounded hypertree width [GLS99], and to look at the same problems when
some fixed set of preconditions or constraints on source and target instances is given.
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Chapter 

Semantic Model and Query Processing

In this chapter, we present the semantic model we use to represent data, queries and services. �is
model allows describing concepts such as Person, relationships between concepts such as WrittenBy,
and services with input and output types, possibly including nesting as in XML. �e schema of
extensional documents can also be expressed. �e model is complex enough to capture services of
interest found on the Web and simple enough so that we are able to cast information found on
the Web to this model. We also mention (without providing a complete solution) the problem of
indexing services and answering queries with a set of semantically described services.
We first describe the basic components of the semantic model: types and instances in Section .,

atoms and nested terms in Section ., and services, documents and queries in Section .. We next
define the semantics, of types and instances in Section ., and of services in Section .. We finally
discuss indexing and query answering in Section .. We explain why the problem is different from
what has already been done in the literature, and describe directions that we are currently exploring.

. Types and Instances

We first give a formal definition of the domain ontology as introduced in Chapter .

Definition .. A domain ontology is a -uple (C ,⊑,R ,τ) where:
(i) C is a finite set of concept names andR is a finite set of relation names;
(ii) ⊑ is a (strict) partial order over C (IsA relationship);
(iii) τ :R →

⋃
n∈NC n is a typing function.

In the following, we consider fixed a domain ontology (C ,⊑,R ,τ). An example of a very simple
ontology has been given in Figure ., page .
For R ∈R , τ(R) = (c1 . . . cn) is called the type of relation R and n= |τ(R)| the arity of R. Such a

relation is denoted R(c1 . . . cn). By abuse of notation, we assume thatC ⊆R with ∀c ∈C ,τ(c) = c.
We also assume that, for each concept c, there exist countable sets Vc,Dc of variables and constants,

respectively. We assume that these sets, as well as R , are pairwise disjoint. Let V =
⋃
Vc and

D =
⋃
Dc. For each x in Vc ∪Dc, let τ(x) be c. Observe that the typing function is now defined

overD∪V ∪R . Note also that all constants are typed. We may extract the same string, e.g., jaguar
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in different contexts. It will yield two distinct constants, e.g., jaguara (the animal) and jaguarb
(the car brand).
�e semantics of concepts and relationships (this will be extended to services further on) is

provided by an instance I, i.e., a finite function from C ∪R to 2D verifying:
(i) for c ∈C , I(c)⊆

⋃
c′⊑cDc′ ;

(ii) for c, c′ ∈C such that c ⊑ c′, I(c)⊆ I(c′);
(iii) if τ(R) = (c1 . . . cn), I(R)⊆ I(c1)× · · · × I(cn).

. Atoms and Nested Terms

To define services, we use the auxiliary concepts of atoms and nested terms.
An atom is an expression R(X) where R is a relation name and X is a vector of variables and

constants, e.g., R(Ullman,A). An atom R(X) is well-typed if X has the same arity n as R and, for
each i¶ n, the type ci of the i-th component of X is compatible with that of the i-th component c′

i
of τ(R), i.e., ci ⊑ c′

i
.

Some of the documents as well as the output of services present data with some form of nesting.
To capture this, we use the notion of nested terms over some countable set S (in practice, S will
either be a set of variables or a set of concepts), that are defined using the abstract syntax:

T ← 〈S, . . . ,S〉 | 〈S, . . . ,S,T *, . . . ,T *〉.

More formally, they are defined as follows:

Definition .. �e set of nested terms over some countable set S, denoted T (S), is the set of finite
expressions over the alphabet S ∪ {‘〈’ ‘〉’ ‘,’ ‘*’} recursively defined as follows:

• If s1 . . . sn ∈ S, n¾ 1, then 〈s1, . . . , sn〉 ∈ T (S).

• If s1 . . . sn ∈ S, n¾ 1 and t1 . . . tm ∈ T (S), m¾ 1, then 〈s1, . . . , sn, t1*, . . . , tm*〉 ∈ T (S).

�e restrictions of the kind of nesting allowed, in the spirit of nested relations [AB86], are
important to define the semantics of valuations (see Definition .).
For nested terms over a set of variables, we can extend the definition of types:

Definition .. Let t ∈ T (V ). �e type of t, denoted τ(t), is a nested term over C recursively
defined as follows: if t = 〈v1, . . . ,vn, t1*, . . . , tm*〉 (with n ¾ 1, m ¾ 0, v1 . . .vn ∈ V and t1 . . . tm ∈
T (V )),

τ(t) = 〈τ(v1), . . . ,τ(vn),τ(t1)*, . . . ,τ(tn)*〉.

. Services, Documents, and Queries

In this section, we define services, as well as documents, as Datalog-like rules. We also present how
a query can be seen as a service without any input.

Definition .. A service definition is a rule

W : T ← R1(X) . . .Rn(Xn), Input(Y)

where W is a service identifier, each Ri(Xi) is a well-typed atom, Y (called the input) is a tuple of
variables with no repetition, and T ∈ T (V ) is a nested term (called the output), verifying:
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(i) No variable appears twice in T .
(ii) Each variable occurring in T also occurs in some Xi or in Y.

Example .. Consider the definition of a serviceW providing titles of publications from some
date D (the input), grouped by their authors:

W : 〈A,T *〉← WrittenBy(P,A),PublishedIn(P,D),HasTitle(P,T ), Input(D).

Strictly speaking, we should also precise the type of each variable A, D, P, T . For simplicity of
presentation, we assume that each atom is well-typed, types are as general as possible, and that there
is no ambiguity. Here, for instance, we have τ(A) = Author and τ(T ) = Title. �e type of the
result is then 〈Author,Title*〉.
�e call W (2003) may be described as the input-less service:

〈A,T *〉← WrittenBy(P,A),PublishedIn(P,2003),HasTitle(P,T ). (.)

Note that this may also be viewed as the definition of a query: “Give me the titles of publications
from , grouped by their authors.” An input-less service call may also be viewed as a document
schema: an instance document of (.) would be a document with authors and article titles, grouped
by authors, such that the corresponding paper was published in 2003, e.g.:

{(Ed,{a,b}), (Sue,{b})}

We define more formally the semantics of services (and documents) in Section ..

. Semantics of Types and Valuations

In order to define the semantics of services and queries, we need to associate semantics to types and
introduce the standard notion of valuation.

Definition .. �e semantics of types is a function ¹·º that maps every concept and nested term
of concepts as follows:

• for each c ∈C , ¹cº=Dc;

• for t = 〈c1 . . . cn, t1* . . . tm*〉 ∈ T (C ), ¹tº is the maximal subset of 2¹c1º×···×¹tmº that verifies
the key constraint c1 . . . cn.

Example .. Let the semantics of Person, Title be respectively {Ed,Sue} and {a,b}. �en the
semantics of 〈Person,Title*〉 is:

{∅,{(Ed,∅)} , . . . ,{(Ed,{a,b}), (Sue,{a,b})}} .

We use the classic notion of valuation of variables: A valuation ν of a set of variables V ′ is a
function that maps each x in V ′ ∩Vc to some constant in

⋃
c′⊑cDc′ . �e set of valuations of the

variables in V ′ is denoted val(V ′).
Rules are typically used to produce tuples, the tuples of successful valuations. Our rules work

similarly except that the successful valuations are “nested” as prescribed by the head of the rule. �is
nesting is captured by the following definition.
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Definition .. For each V ′ ⊆ V , t = 〈v1, . . . ,vn, t1*, . . . , tm*〉 a nested term over V ′, and K a
finite subset of val(V ′), the t-nesting of K , denoted nestt(K ), is a finite element of ¹τ(t)º defined
recursively as follows:

nestt(K ) =
n
〈ν(v1), . . . , ν(vn),nestt1(J ), . . . ,nesttm(J )〉

���

ν ∈ K ∧ J =
�
ν ′ ∈ K | ∀1¶ i¶ n, ν ′(vi) = ν(vi)

	o

Example .. If ν1 and ν2 are defined by:

ν1 :

¨
P 7→ Sue

T 7→ a
ν2 :

¨
P 7→ Sue

T 7→ b
,

we have:
nest〈P,T *〉({ν1, ν2}) =

��
Sue,{a,b}�	 .

Similarly, we can introduce the notion of unnesting of a nested value:

Definition .. Let t = 〈v1, . . . ,vn, t1*, . . . , tm*〉 be a nested term over V and K ′ ∈ ¹τ(t)º finite.
As K ′ ∈ 2¹τ(v1)º×···×¹τ(tm)º, we can denote:

K ′ =
n
(c1,1 . . . c1,n,k′1,1 . . .k′1,m

), . . . , (cp,1 . . . cp,n,k′
p,1 . . .k′

p,m
)
o
.

We also use the following notation: for c ∈C and v ∈ V , let ν (v)
c

be the valuation of {v} mapping v
to c.
�e unnesting of K ′, denoted unnest(K ′), is the set of valuations of the variables occurring in t

recursively defined by:

⋃

1¶j¶p

⋃

ν ′1∈unnest(k′j,1)...
ν ′
n
∈unnest(k′

j,m
)

§
ν (v1)
cj,1
⊔ · · · ⊔ ν (vn)

cj,n
⊔ ν ′1 ⊔ · · · ⊔ ν

′
n

ª

where ν⊔ ν ′ is the function defined over the union of the domains of ν and ν ′ in a natural way (there
is no ambiguity since t does not contain the same variable twice).

Example .. If K = {(Sue,{a,b})} ∈ ¹〈Person,Title*〉º, the unnesting of K is the set K ′ =
{ν1, ν2} with the definitions of Example .. In other words, unnest(nestt(K

′)) = K ′. �is is an
example of a more general result, stated further.

�e following proposition states that our definitions of nesting and unnesting are consistent with
each other.

Proposition .. Let t be a nested term over V , and Z1 . . .Zn the variables appearing in t. Let K be
a finite subset of val({Z1 . . .Zn}). �en unnest(nestt(K )) = K .
Reciprocally, if t is a nested term over V and K ′ ∈ ¹τ(t)º finite such that K ′ contains no empty set

(however deep), then nestt(unnest(K
′)) = K ′.

Proof. We use a structural induction on t. Suppose that t = 〈v1, . . . ,vn, t1*, . . . , tm*〉 (withm possibly
equal to 0 to include the base case of the induction).
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• LetK be a finite set of valuations of the variables occurring in t. Suppose that, for all 1¶ i¶m,
for each set Ki of valuations of the variables occurring in ti, unnest(nestti )(Ki) = Ki, and let
us show that unnest(nestt(K )) = K . Let K|{v1,...,vn} be the set of valuations of {v1, . . . ,vn} that
are restrictions of elements of K . We have:

unnest(nestt(K )) =
⋃

ν∈K|{v1 ,...,vn}

⋃

ν ′
1
∈K ,∀1¶p¶n,ν ′

1
(vp)=ν(vp)

...
ν ′
m
∈K ,∀1¶p¶n,ν ′

m
(vp)=ν(vp)

¦
ν|{v1} ⊔ · · · ⊔ ν|{vn} ⊔ ν

′
1
⊔ · · · ⊔ ν ′

m

©

= K

with some abuse of notation since each ν ′
i
should only be defined on variables from ti.

• Let K ′ ∈ ¹τ(t)º finite. Suppose that, for all 1 ¶ i ¶ m, for each K ′
i
∈ ¹τ(ti)º finite,

nestt(unnest(K
′
i
)) = K ′

i
, and let us show that nestt(unnest(K

′)) = K ′. We use the same
notations for the elements of K ′ as in Definition .. �en

unnest(K ′) =
⋃

1¶j¶p

⋃

ν ′
1
∈unnest(k′

j,1
)

...
ν ′
n
∈unnest(k′

j,m
)

§
ν (v1)
cj,1
⊔ · · · ⊔ ν (vn)

cj,n
⊔ ν ′

1
⊔ · · · ⊔ ν ′

n

ª

and nestt(unnest(K
′)) is equal to:

⋃

1¶j¶p

n
〈cj,1, . . . , cj,n,nestt1(unnestt1(k

′
j,1
)), . . . ,nesttm(unnesttm(k

′
j,m
))
o
= K ′.

We are now ready to define the semantics of queries and services.

. Semantics of Services

An instance I also provides the semantics of services. More precisely:

Definition .. Given a service definition

W : T ← R1(X) . . .Rn(Xn), Input(Y),

and an instance I, the semantics forW is a function w from ¹τ(Y)º to ¹τ(T )º such that, for all
y ∈ ¹τ(Y)º:

unnest(w(y))⊆
⋃¦

ν|{Z1...Zm} | ν ∈ val(V ′)∧ ν(Y) = y ∧∀1¶ i¶ n, ν(Xi) ∈ I(Ri)
©

(.)

where V ′ is the set of variables occurring in the service definition and Z1 . . .Zm the variables
occurring in T . We often denote this function I(W ), extending in this way instances to service
definition.
IfW has no input (i.e., if it is a document definition), its semantic is then defined as a constant

element of ¹τ(T )º, rather than as a function.
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It is essential to observe the inclusion in (.): the semantics of a service only implies its soundness
relatively to the instance, not its completeness.
Let I be an instance and Q a query (a service with no input). Informally, the answer to Q is

the nesting of some set of valuations for which the body holds. Observe that the services are not
used to obtain that answer. �ey may be viewed as constraints we know on the concepts and the
relationships between them.
Let us now consider the case of the hidden Web. We do not have access to the set of concepts

and relationships, although this is what we want to query. We see the world only through views.
Some views are parameter-less (the documents) and some have parameters (services with input
relation). Now we can think of services as factories to produce more information as illustrated in
the following example.

Example .. Suppose that we have () a no-input service (a document) that returns a list of
authors; () a service in that returns the title of publications from a certain author; and () a service
that, given an article title, returns its authors. We can use () to obtain an author, say a1. �en ()
to obtain a title t1. �en () to obtain an author a2. �en () to obtain t2, and so on. We obtain a
chain of unbounded length of service calls.

A difficulty in the inference mechanism is that the inputs of services typically speak of concrete
concepts (Author, Title) and not of abstract concepts such as Publication. So, using the views,
we derive information with “skolems,” typically playing the role of the existential variables in rule
bodies. To see an example, consider the service definition:

W : 〈X ,Z 〉←H (X ,Y ,Z ).

Suppose we call that service and obtain (Ed,5). �en we know of the relationship H (Ed, f (Ed,5),5)
where f (Ed,5) is a Skolem variable. Of course, we cannot call services with such skolems. �ey can
be of use, however, for answering some queries. Consider for instance the query

Z ←H (X ,Y ,Z ).

We can conclude that 5 is an answer to this query.
For each concept c, let us distinguish an infinite subset Skol c of Dc of otherwise unused constant

names; the elements of Skol c will serve as Skolem variables. Let Skol =
⋃

c∈C Skol c.

Definition .. Let I be an instance and

W : T ← R1(X) . . .Rn(Xn), Input(Y)

a service definition with semantics I(W ). Let Z1 . . .Zm be the variables appearing in T .
Let J be another (partial) instance. �e immediate consequence of J by I(W ), denoted here χI(W )(J)

is the instance J′ defined by:

• ∀c ∈C ,
J′(c) = J(c) ∪

⋃

1¶k¶m
τ(Zk)⊑c

⋃

y∈ J(τ(Y))
∀i, yi /∈Skol

⋃

ν∈unnest(I(W )(y))
{ν(Zk)}
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• ∀R ∈R ,
J′(R) = J(R) ∪

⋃

1¶k¶n
Rk=R

⋃

y∈ J(τ(Y))
∀i, yi /∈Skol

⋃

ν∈unnest(I(W )(y))
{ν̄(Xk)}

where ν̄ is the valuation defined over all variables appearing inW in the following way:

– if X is one of the Zi, ν̄(X ) = ν(Zi);
– otherwise, ν̄(X ) is a fresh Skolem variable (i.e., a fresh element of Skolτ(X )).

As long as the original partial instance is sound, the immediate consequence operator produces
sound results:

Lemma .. Let I be an instance, W a service definition with semantics I(W ), and J a partial instance.
We assume that there exists a mapping ϕ from D to itself that leaves fixed all elements of D which are
not skolems, and such that ϕ(D)∩ Skol =∅ and ϕ(J)⊆ I (in other words, J is a sound instance). �en
there exists a mapping ϕ′ from D to itself that leaves fixed all elements of D which are not skolems, and
such that ϕ′(D)∩ Skol =∅ and ϕ′(χI(W )(J))⊆ I.

Proof. Consider the set S of Skolem variables that appear in χI(W )(J) in addition to these that appear
in J. By definition of the immediate consequence operator, each s ∈ S appears in exactly one tuple
ts of χI(W )(J), and there exist 1 ¶ ks ¶ n, a vector ys ∈ J(τ(Y)) of constants that are not skolems,
and νs ∈ unnest(I(W )(y)) such that ts = ν̄s(Xks

). Besides, s occurs multiple times in ts if and only if
the corresponding variable is repeated. Let Xs be this variable.
Since ϕ(J)⊆ I, ϕ(ys) = ys ∈ I(τ(Y)). And, because of (.), νs(Y) = ys and νs can be extended into

a valuation ν ′
s
of all variables occurring in the service definition, such that, for all i, ν ′

s
(Xi) ∈ I(Ri).

We then fix the following mapping ϕ′ from D to itself:

¨
ϕ′(s) := ν ′

s
(Xs) if s ∈ S;

ϕ′(s) := ϕ(s) otherwise.

�en ϕ′(χI(W )(J)⊆ I.

LetW1 . . .Wr be service definitions with semantics I(W1) . . . I(Wr). Let (Jj)j∈N be the sequence of
instances recursively defined by:

(
J0 =∅

∀j ∈N, Jj+1 = χI(W1)
◦ · · · ◦χI(Wr )

(Jj)
(.)

�e consequence of I(W1) . . . I(Wr), denoted CsqI(W1)...I(Wr )
, is an instance defined as:

CsqI(W1)...I(Wr )
=
⋃

j∈N
Jj.

Observe that, since I is finite, only a finite number of service calls can be performed; therefore
CsqI(W1)...I(Wr )

is finite and can be computed in a finite number of iterations. Still, this number is
unbounded (consider, for instance, a genealogy service taking as input a person, and returning as
output the parents of this person; using this service to find all the ancestors of a given person needs
an unbounded number of service calls).
We can now define the semantics of the answer to a query.
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Definition .. Let Q : T ← R1(X) . . .Rn(Xq) be a query, I an instance andW1 . . .Wr r service
definitions, with semantics I(W1) . . . I(Wr). Let Z1 . . .Zp be the variables appearing in T . Two
different semantics for the answer to a query Q are defined:

• Given an instance I, the answer to Q, denoted I(Q), is defined as:

nestT

�n
ν|{Z1...Zp}

��� ν ∈ val(V ′) ∧ ∀1¶ i¶ q, ν(Xi) ∈ I(Ri)

∧ ∀1¶ j ¶ p, ν(Zj) /∈ Skol
o�

where V ′ is the set of variables occurring in Q .

• �e consequence answer to Q, is CsqI(Wr )...I(Wr )
(Q).

I(Q), CsqI(Wr )...I(Wr )
(Q) are subsets of ¹τ(T )º.

�eorem .. Let I be an instance, Q a query and W1 . . .Wr service definitions with semantics
I(W1) . . . I(Wr). �en unnest(CsqI(W1)...I(Wr )

(Q))⊆ unnest(I(Q)).

Proof. We use the result from Proposition ., which states that unnest◦nestt is the identity
function.
With the notations of Definition ., unnest(CsqI(W1)...I(Wr )

(Q)) is the following:

n
ν|{Z1...Zp}

��� ν ∈ val(V ′) ∧ ∀1¶ i¶ q, ν(Xi) ∈ CsqI(W1)...I(Wr )
(Ri)

∧ ∀1¶ j ¶ p, ν(Zj) /∈ Skol
o
.

Let ν be such a valuation. With the notations of (.),

CsqI(W1)...I(Wr )
=
⋃

j∈N
Jj.

So there necessarily exists a k ∈ N such that, for all 1 ¶ i ¶ q, ν(Xi) ∈
�⋃

0¶j¶k Jj
�
(Ri). But it

directly follows from Definition . that for all j, Jj ⊆ Jj+1. We have thus:

∀1¶ i¶ q, ν(Xi) ∈ Jk(Ri).

Observe now that J0 = ∅ is a sound instance, and Jk is obtained from J0 by a finite sequence
of applications of the immediate consequence operator. It then follows from Lemma . that
there exists a ϕ from D to itself that leaves all skolems fixed and with range disjoint from the
set of skolems, such that ϕ(Jk) ⊆ I. Since ν(Xi) ∈ Jk(Ri) for each i, ϕ ◦ ν(Xi) ∈ I(Ri) for each i.
Besides, ϕ ◦ν(Zi) /∈ Skol for each j. �is means that ν ◦ϕ|{Z1...Zp} = ν|{Z1...Zp} ∈ unnest(I(Q)), which

concludes the proof.

Note that we do not have, however, CsqI(W1)...I(Wr )
⊆ I since CsqI(W1)...I(Wr )

also contains data about
Skolem variables.
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Example .. Let Q be the query A*←, with τ(A) = Author.
Let W1 be the service definition:

A← WrittenBy(P,A),HasTitle(P,T ), Input(T ).

Since an input must be provided to the service to learn new facts, CsqI(W1)
is the function mapping

each concept and relation to the empty set (and CsqI(W )(Q) = ∅). However, If I is such that
I(Person) = {Sue,Paul}, I(Q) = {John,Paul}.
Suppose now that we have another service definitionW2 with no input: T ←, with τ(T ) = Title.
If I(W2) = {a,b} and I(W1) is defined by a 7→ Sue, CsqI(W1),I(W2)

(Q) = {Sue}.
As can be seen in the previous example, the inclusion of �eorem . is not an equality. �e

semantics of a query describe the “ideal” semantics which could be given to an answer by an observer
having access to the actual database instance, whereas this instance is only seen through views on
the data. An important remark is that documents are essential for having a non-empty consequence
answer to a query: they provide what is needed to bootstrap the use of services.

. Indexing and Query Processing

Given a set of service descriptions (that may result from the semantic analysis of services of the
hidden Web), we want to transform a user query into a set of service calls to answer the query. It is
unpractical to directly compute the set of all consequences of services, because this would require
an unbounded number of calls to services. Moreover, this would provide an extensional knowledge
about the semantics of the services, i.e., a materialized view. We are more interested in an intensional
way to store and query knowledge about services, because it is flexible, and because it is much more
adapted to the case of Web databases (in particular, for bandwidth and server load reasons).
�e first issue is to have a way to index service definitions, document definitions, as well as

instance documents, in order to be able to compute efficiently query execution plans (see further).
A long-term plan is to integrate this effort with KP [AMP05], a system for indexing documents,
documents incorporating service calls, and services themselves over a peer-to-peer network. �is
will require to index, for a given service, both information about its input and output parameters
and their types, and information about the relations between these parameters.
�e second issue is in the evaluation of queries itself. �is can be decomposed into two parts:

a static execution plan computation, deriving a sequence of service calls to be carried out from
the query, and a possible dynamic choice of services to be called to extend the static execution
plan in the view of partial results computed so far. �e question of the execution plan is similar to
the problem of “Answering Queries Using Views” which has been the topic of many works in the
literature. �e problem was introduced in [LMSS95], and a survey of the different approaches can
be found in [Hal01]. Let us highlight the specificities of our context before discussing related work.

Access-Pattern Limitations. �e main and essential feature of our model for describing services of
the hidden Web is that we do not have direct access to the data of each source. �ere are
limitations on the patterns of access to the source, which can be seen as a binding patterns.
Some input must be provided to get an output. In other words, some variables have to be
bound in the call.

Composition and Recursion. It may be necessary to call several services to obtain results. In some
contexts, it may also be needed to consider recursive query evaluation plans, that make
successive calls to a single service. An example of such a case has been given in Example ..
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Incompleteness. Each service of the hidden Web is likely to have only a partial view of the world,
that is, is essentially incomplete. �is means that we cannot rely on techniques that find a
single equivalent rewriting of the query but have to consider maximally contained rewritings.
In the terminology of [Hal01], we are considering the problem of answering queries using
views for data integration.

Subsumption. We have an IsA ontology of concepts, and an instance of a specific context is also an
instance of a more general concept. �ese subsumption relations have to be taken into account
in the query evaluation. One way to do this is to model them by adding pseudo-services
A← B for every concept b⊆ a.

Nesting. We consider nested types for the output of services (and the types of documents). �is,
however, is unlikely to be a major issue since it is always possible to nest and unnest data
when needed. It is necessary on the Web, where nesting of data is frequent.

Most works on answering queries using views with binding patterns (e.g., [RSU95]), assume that
each source is complete, and provide a single equivalent rewriting of the query, which is not adapted
to our context, as argued above.
Well-known algorithms for answering queries using views are B [LRO96] and M-

C [PL00, PH01]. B has been developed in the context of the Information Manifold
system [KLSS95], a pioneer system for data integration on the Web. Subsumption issues are consid-
ered in [LRO96]. MC is an improvement over B and is quite similar, while performing
better in practice. �e first step of both algorithms is to identify views that are relevant to the
query. �is is not adapted to our need of both managing access-pattern limitations and allowing
sequential chaining of services. Indeed, this step does not consider sources whose only role is to
provide another service values for one of its bound parameters, even though this might be the only
way to use this second service. Furthermore, recursive query plans are not considered.
Another approach to answering queries using views for data integration purposes is the inverse-

rules algorithm [DG97, DGL00]. It basically consists in rewriting a LAV (Local As View) system
into a GAV (Global As View) system, by inverting each rule, introducing skolems in the process.
Recursive query plans are considered. Besides, access-pattern limitations are discussed in [DGL00],
but in a way that would be very inefficient in our context: it basically requires to compute the set of
all consequences of a service.
Our current direction for solving this problem (work in progress) is to use techniques in the

spiritM sets [AHV95, BR87, BR91]. M is a method for efficient evaluation of Datalog
programs. Its name comes from the fact that, although it is a bottom-up approach, which propagates
base facts with rules, it is “magically” as efficient as top-down approaches, that explore a derivation
tree starting from a fact to prove. One of the main steps of M is to annotate each Datalog rule
with all possible binding patterns, yielding thus several different rules. We are currently considering
using M and just filtering out rewritten rules that present inappropriate binding patterns.

Conclusion

We presented a semantic model for representing services of the hidden Web, with typed inputs and
outputs, semantic relations between them, and nesting. We also considered the semantics of queries
over such a model. �e actual indexing and query answering is still work in progress. Another issue
that has not been discussed and remains for future work is the way to use information about the
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confidence in a service, and its relevance to a particular query, to order query evaluation plans, and,
ultimately, to rank query results.
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Conclusion

Putting it All Together

Let us first see how the various components discussed in this thesis are put together in practice,
to obtain a complete system for understanding the Hidden Web. �e general architecture has
been discussed in Chapter  and, in particular, Figures . and . show how the components
interact with one another. In practice, focusing on the parts of this architecture that we have actually
developed, we have the following process:

. Build the domain knowledge as described in Section ..

. Gather forms that are entry points of services of the hidden Web in some way (e.g., manually)
and enter them into the probabilistic warehouse.

. Wrap each of these forms as a Web service, as described in Sections . and .. Insert the
description of the resulting service, with adequate confidence values, into the probabilistic
warehouse.

. Run an ad hoc program that queries and updates the probabilistic warehouse in order to add
semantic relationships between inputs and outputs (for instance, if the input of a service is
a Title and the output a set of Authors, this program states that the latter are authors of a
paper which has the former as a title, with high probability).

. Present to the user a high-level query interface over the domain ontology.

. Translate the user’s query to a query over the set of known services, as addressed in Section .,
evaluate this query, and return the (probabilistic) results to the user.

We are currently working on implementing this entire process.

Perspectives

To conclude this thesis, we would like to highlight important problems in the context of understand-
ing the hidden Web. We classify these problems into: (i) the ones that we are already addressing,
(ii) those that, we believe, require effort but should be tractable without any intrinsic difficulties,
and (iii) those that involve intense research.
Let us start with work in progress.
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Conclusion

Practical application of Chapter . �e theoretical framework of Chapter  does not have a practical
application yet. We would like to explore two different ways to bridge this gap: (i) direct
implementation of the framework, despite of the negative complexity results, with appropriate
heuristics for efficiently approximating the cost of a schema mapping; (ii) relations with the
field of inductive logic programming.

Answering queries using views. We are currently working on the problem of answering queries
using views, views being here the semantically described services of the hidden Web. We
mentioned in Section . a possible direction of research based on the M techniques for
efficient evaluation of Datalog programs.

System integration and demo. We have discussed at the beginning of this conclusion how the
different modules can be put together to form a complete system for the integration of
services of the hidden Web. We are currently working on this integration, with the purpose
of having a demo of the entire system. We also plan to apply the system to another domain
(possibly weather services or person directories) in order to validate its generality.

�e following problems seem reasonably solvable, possibly with some effort:

Service acquisition. �is was discussed in Section ... We believe that a combination of heuristics
and focused crawling techniques discussed there may be enough to acquire a satisfactory
number of relevant services. �is requires implementing and combining all of this, which is
not completely direct.

More general kinds of forms. We made a number of assumptions on the structure of the forms
we dealt with in Chapter . Although dealing with an arbitrary form with no recognized
structure is a very difficult task, one could remove a number of these assumptions to support,
for instance, forms with some required inputs, or forms that use boolean operators. �is
would be useful because informal experiments show that there is not that much heterogeneity
in the structure of forms on the Web. �is would involve recognizing a general template a
form follows and analyzing the different fields with respect to this template.

Better gazetteer. It is always possible to improve the annotation that is performed by the gazetteer
that we described in Chapter . In particular, existing entity recognizers (cf. for instance [8],
that could also be used for dealing with services in other languages than English), that are
both general and quite effective, for dates, person names, addresses, and so on, may perform
better than the ones we used. Besides, linguistic information could also be used, for instance,
to annotate noun phrases of appropriate length as possible titles.

Finally, let us present some open issues that we believe to be important to the problem of
understanding the hidden Web, and for which we do not know of existing solutions.

Updates of confidence values. Note that in the current prob-tree model described in Chapter ,
the probability that a given node is in the tree can decrease (if this node is conditionally
deleted) but never increase (though a node with the same label and descendants can be
inserted to simulate this). �is reflects the fact that there is no much sense in general in
arbitrary modification a posteriori of probabilities; the increase (or decrease) of the confidence
in a fact is still something that is sometimes needed in an integration system. �is operation
should be formalized in a clean way and the issue of how performing it on a prob-tree should
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be considered. See also further (under Deduplication) for a related issue that might provide
updated confidence values.

Top-k probabilistic results. One of the most obvious limitations of the prob-tree model as described
in Chapter  is that the result to a query is given (and computed) in its entirety. When
this result is large, or when we are just interested in the most probable results, it would be
interesting to get top-k probabilistic results in an efficient way. We do not have a solution to
this, since classical top-k techniques [FLN03] are not directly applicable.

Amore adaptedmachine learning framework. Experimental results presented in Chapter  show
that it is possible to use machine learning techniques to learn the structure underlying an
imprecise and imperfect annotation. Some of the results are good, while some are somewhat
disappointing. We believe that the main reason why this is so is the fact that conditional
random fields (as, to our knowledge, all other supervised machine learning techniques)
are designed to work in a context where the original annotation is supposed to be perfect.
�erefore, there are risks of overfitting. A more adapted machine learning model would also
try to minimize the description length of the obtained wrapper, in a manner similar to what
we described in Chapter . How this should be done is far from obvious.

Tuple extraction. �e method that we described in Chapter  for extracting tuples from individual
annotated data values is quite ad hoc and not very robust. �is cannot take into account pages
where some of the components of a tuple are factored out. We have tried to use a machine
learning technique for simultaneous extraction of tuples [GMTT06], but with less success
than conditional random fields.

Deduplication. Different services may have slightly different information about the same entity
(say, slightly different author or conference names for the same paper). In order not to
present to a user a list of quasi-identical results, it is necessary to perform a deduplication step
that identify and merge duplicates. �is deduplication is also needed in other contexts, for
instance when we identify constants as in . We do not have any solution for this. A related
problem of interest is that of data corroboration: when multiple sources state different facts
(say, when different databases have various information about the same entity), what is the
global probability that the fact is true (and that the source is trustworthy)? A first approach
to this problem is presented in [YHY07].

Semantic analysis. In order to identify the relations between inputs and outputs of a service, in
addition to the methods that we started exploring in Chapter , that are based solely on
the constants that appear, techniques that use the context of a service (especially its natural
language context) could be used to derive such relations, for instance to understand that
the output of a genealogical service is the father of the corresponding input. �is is a hard
problem, that should probably be attacked with a combination of natural language processing
techniques and machine learning.

�is list of open or partially solved problems has no pretention to be exhaustive.
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Appendix A

Résumé en français

�is appendix is a translation, in French, of the content of the introduction, Chapter 
and conclusion; it does not contain any additional content, and may safely be skipped. An
English-to-French lexicon of technical terms is also provided at the end of this chapter.

Introduction

Accéder à des informations duWeb implique principalement, de nos jours, l’utilisation de moteurs
de recherche par mots-clefs. Ces moteurs fournissent des résultats du Web de surface, l’ensemble
des pages Web directement accessibles par des hyperliens, et ne considèrent quasiment pas les
informations, en très grande quantité, qui se trouvent cachées derrière des formulaires et qui
composent leWeb caché (également appeléWeb profond ouWeb invisible). Le sujet de cette thèse est
l’exploitation automatisée des ressources du Web caché et, plus précisément, la découverte, l’analyse,
la compréhension et l’interrogation de telles ressources. Il est évident que ceci va bien au-delà de
la portée d’une simple thèse de doctorat ; nous n’y apporterons pas de réponse complète. Nous
présentons un cadre général et proposons des solutions à certains problèmes particuliers soulevés
par l’exploitation du Web caché.
Dans le chapitre , nous introduisons un cadre général pour la compréhension du Web caché.

L’accent est mis sur des systèmes entièrement automatiques, qui ne nécessitent pas d’intervention
humaine. Étant donné que le problème de la compréhension des ressources du Web caché est
indubitablement IA-complet, nous limitons notre intérêt à un domaine d’application spécifique, en
nous basant sur une base de connaissances du domaine. Notre approche est centrée sur le contenu, c’est-
à-dire que le cœur de notre système consiste en un entrepôt de contenu sur les services duWeb caché,
avec des modules indépendants qui enrichissent notre connaissance de ces services, afin de mieux
les exploiter. Par exemple, un module peut être responsable de la découverte de nouveaux services
pertinents (comme des URL de formulaires), un autre de l’analyse de la structure des formulaires, et
ainsi de suite. Ces différents « agents » sont ensuite combinés∗ d’une manière qui est décrite dans
le chapitre . Des aspects spécifiques de ces agents sont décrits dans les chapitres suivants. Une
fonctionnalité importante, la découverte de services pertinents, est seulement brièvement évoquée
en partie A... De tels services peuvent être obtenus, par exemple, en interrogeant des moteurs de
recherche ou en utilisant une exploration guidée du Web.
La plupart des idées présentées dans cette thèse ont été implémentées dans des prototypes. Pour

valider notre approche et tester ces systèmes, nous avons utilisé le domaine des publications scienti-
fiques. Nous utilisons ici la même application pour illustrer notre travail. Nous insistons sur le fait
que les idées et logiciels peuvent être utilisés dans n’importe quelle domaine d’application, à partir

∗ Bien que nous présentions ici un enchaînement séquentiel, la qualité de l’analyse des services pourra être améliorée
en utilisant des combinaisons plus complexes. Cela ne sera pas considéré ici à fin de simplification.
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du moment où une base de connaissances du domaine est disponible dans un format bien précis
que nous présenterons.
Les données que nous traitons sont généralement assez irrégulières et souvent arborescentes. Il est

ainsi naturel d’utiliser un modèle de données semi-structuré ; nous utilisons XML puisque c’est une
norme du Web. Les différents agents qui coopèrent pour construire un entrepôt de contenu sont
intrinsèquement imprécis (étant donné qu’ils utilisent en général des techniques d’apprentissage
ou des heuristiques, qui sont sujets à imprécision). Nous utilisons ainsi un entrepôt de contenu
XML probabiliste, qui est interrogé et mis à jour (les mises à jour incluant des probabilités) par
les différents agents. Le modèle XML probabiliste est décrit dans le chapitre . Nous introduisons
les arbres probabilistes comme des arbres classiques, annotés avec des conjonctions de variables
aléatoires indépendantes (et leur négation). Nous montrons comment évaluer de manière efficace
des requêtes et des mises à jour dans ce modèle, et en décrivons une implémentation. Il est à noter
que, bien que le développement de ce modèle d’arbres probabilistes ait été motivé par notre contexte
du Web caché, c’est un modèle très général qui peut être appliqué à des contextes différents.
Considérons un service du Web caché, par exemple un formulaire HTML, qui est pertinent pour

le domaine d’application spécifié. Pour comprendre sa sémantique, une première étape est d’analyser
ce formulaire, c’est-à-dire la structure des entrées du service. Ceci est traité dans le chapitre . Nous
utilisons des heuristiques pour associer des concepts du domaine aux champs du formulaire, et
sondons ensuite ces champs avec des instances du domaine pour confirmer ou infirmer ces hypothèses.
Le cœur de la validation consiste en des techniques pour distinguer les pages de résultats des pages
d’erreur. Nous présentons des résultats expérimentaux relativement satisfaisants, sur des formulaires
de recherche dans des bases de données de publications scientifiques.
L’étape suivante est l’extraction d’information à partir des résultats d’un formulaire, qui sont des

pages HTML. Nous décrivons dans le chapitre  comment des techniques d’extraction d’information
supervisées, comme les champs aléatoires conditionnels, peuvent être utilisées de manière non
supervisée, à l’aide des connaissances du domaine. Un programme d’annotation étiquette les pages
de résultats avec des concepts du domaine (grâce aux instances du domaine qui sont reconnues). Cette
annotation, à la fois imprécise et incomplète, est utilisée comme amorce du processus d’apprentissage.
Une compréhension de la structure des entrées et sorties d’un formulaire résulte de ces deux étapes

(avec une certaine imprécision, bien sûr). Il est alors facile de transformer ce formulaire en un service
Web standard décrit en WSDL.
Il est ensuite nécessaire de comprendre les relations sémantiques qui existent entre les entrées

et sorties d’un service. Ce problème est abordé dans le chapitre . Pour simplifier, le cadre est
relationnel. Nous introduisons un modèle théorique pour la découverte de relations entre deux
instances de bases de données ayant des schémas distincts et inconnus. Ce modèle prend sa source
dans le contexte de l’échange de données. Nous formalisons le problème de la compréhension de la
relation entre deux instances comme celui de l’obtention d’une correspondance de schémas (un
ensemble de formules dans un certain langage logique) dont la réparation minimale fournit une
description parfaite de l’instance cible en fonction de l’instance source. Nous montrons que cette
définition donne des résultats « intuitifs » quand on l’applique à des instances de bases de données qui
sont dérivées l’une de l’autre par des opérations élémentaires (sélections, projections, jointures. . .).
Nous étudions la complexité des problèmes de décision liés à cette notion d’optimalité dans le
contexte de différents langages logiques (p. ex. dépendances acycliques génératrices de n-uplets).
Pour ce problème particulier, notre contribution est strictement théorique ; des outils pratiques
basés sur de telles idées sont laissés pour des travaux ultérieurs.
À la fin de la phase d’analyse, nous avons obtenu un certain nombre de services Web dont la

sémantique est expliquée en termes d’un schéma global qui est spécifique à l’application. Dans
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le chapitre , nous abordons le modèle sémantique et la définition de services avec une notation
logique à la Datalog qui prend en compte les types des entrées et sorties, les relations entre celles-ci, et
l’imbrication des sorties des services. Nous montrons comment répondre à des requêtes en utilisant
les services du Web caché. Cela nous conduit à étudier le problème de réponse à des requêtes en
utilisant des vues, dans un contexte où les schémas locaux sont décrits comme des vues, avec des
restrictions sur les motifs de liaison des accès à la source.
En résumé, soulignons les trois principales contributions de notre thèse :

. Un cadre général pour la compréhension duWeb caché demanière complètement automatique
et non supervisée et, en particulier, des façons de découvrir la structure d’un formulaire et de
pages de résultats et de représenter les services du Web caché, une fois leur analyse sémantique
effectuée (voir les chapitres , ,  et ).

. Un modèle arborescent probabiliste, avec capacités de requête et de mise à jour, avec une
étude théorique et une implémentation (voir chapitre ).

. Un modèle théorique pour la découverte de relations entre schémas à partir d’instances de
bases de données, ainsi qu’une analyse détaillée de sa complexité (voir chapitre ).

L’annexe A est une traduction en français de l’introduction, du chapitre  et de la conclusion de
cette thèse. Elle inclut un lexique anglais-français des termes et expressions techniques utilisés dans
cette thèse. Nous mentionnons en appendice B d’autres travaux que nous avons effectués pendant
notre thèse et qui n’ont pas de lien direct avec le Web caché.
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Cadre général

Depuis sa création en , le World Wide Web a considérablement crû, avec aujourd’hui une
taille de plusieurs milliards de pages librement accessibles. Mais ce nombre ne couvre que le Web de
surface, soit les pages Web accessibles en suivant des hyperliens. Une grande partie de l’information
du Web se trouve dans le Web caché, aussi appelé Web profond ou Web invisible, qui fournit des
points d’entrées à des bases de données accessibles grâce à des formulaires HTML ou des services
Web. (Dans le reste de cette thèse, nous utiliserons le terme de service (du Web caché) de manière
générique pour ces deux types de ressources.) Une étude [Bri00] de  a estimé que les données
du Web caché étaient approximativement  fois plus vastes que celles du Web de surface. Si de
telles mesures sont sujettes à caution, le fait est qu’avec de l’information de première qualité (p. ex.
les services de Pages jaunes ou le bureau du recensement des États-Unis), le Web caché est une source
d’information inestimable.
Nous décrirons, dans ce chapitre, un cadre général, non supervisé et entièrement automatique pour

la compréhension des services du Web caché. Cette approche est basée sur (i) des modules qui
accomplissent des tâches variées, de la découverte de sources pertinentes à l’analyse de la sémantique
de telles sources et leur indexation ; (ii) une architecture centrée sur le contenu, où des modules
interagissent avec un entrepôt de contenu XML probabiliste. Nous considérons ici une approche en
compréhension, plutôt qu’en extension, c’est-à-dire que nous n’avons pas pour but de récupérer et
d’entreposer toute l’information des services du Web caché, mais d’indexer les services eux-mêmes
afin de répondre à des requêtes de haut niveau d’un utilisateur en transmettant les requêtes aux
services pertinents, en les traduisant en entrées attendues par chaque service, et en intégrant le
résultat des services.
Pour illustrer, considérons un utilisateur du Web intéressé par les options disponibles pour

une voiture donnée. Un moteur de recherche traditionnel retournerait un ensemble de pages
HTML du Web en provenance, par exemple, du site Web du constructeur. Notre but est un
système qui découvrirait (à l’avance) qu’un formulaire particulier fournit une telle information
et qui, au moment de la requête, remplirait le formulaire et récupérerait la réponse précise. Une
telle interprétation sémantique du Web caché requiert la découverte, l’analyse et l’indexation des
ressources du Web caché. Elle demande de combiner des techniques de disciplines variées et, en
particulier, d’apprentissage, de bases de données et de linguistique.
C’est évidemment un problème très large et difficile, d’autant plus que nous recherchons une

approche non supervisée. Nous faisons donc l’hypothèse importante que nous sommes intéressé
par des services d’un domaine d’intérêt donné, pour lequel nous avons une base de connaissances du
domaine, sous une forme spécifique que nous décrivons dans la partie A.. Il est certain qu’avec
une interaction humaine, les techniques supervisées peuvent aller plus loin vers une meilleure
compréhension du Web. Mais le type d’approche non supervisée que nous proposons (i) est utile au
moins comme première étape, avant une intervention humaine ; (ii) est souvent la seule possible,
dans des applications où des ressources humaines ne peuvent être utilisées ; (iii) est primordiale
si nous voulons que le système puisse s’adapter à l’échelle et à la diversité du Web, ainsi qu’à son
dynamisme.
Ce chapitre se concentre sur le cadre général, dont certains des composants sont décrits de manière

plus détaillée dans les chapitres suivants. Nous nous intéressons d’abord aux travaux traitant du
Web caché lui-même et de son analyse en partie A.. Notre cadre général est ensuite présenté dans
la partie A.. Nous introduisons le type de connaissances du domaine considéré en partie A., avant
de décrire les différents composants de notre architecture dans la partie A., en particulier ceux qui
ne seront pas présentés dans un chapitre ultérieur.
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A. Travaux similaires

A.. LeWeb caché

Les termes Web caché [RGM01], Web profond [Bri00] et Web invisible [RH05] ont été utilisés
dans la littérature pour décrire plus ou moins la même chose : la partie du World Wide Web qui
n’est pas accessible par des hyperliens, et qui est généralement construite à partir de bases de données.
Les termes caché et invisible insistent sur le caractère inaccessible de cette information pour les
moteurs de recherche, tandis que profond insiste sur le fait que cette information se trouve dans
des bases de données derrière des formulaires, et requiert une exploration plus profonde que les
explorations de surface habituellement effectuées par les moteurs de recherche. [Bri00] propose
d’ailleurs l’analogie suivante entre information sur le Web et pêche en mer : bien que l’on puisse
pêcher une certaine quantité de poisson en restant à la surface, une quantité bien plus importante est
à pêcher à plus grande profondeur. À proprement parler, il serait peut-être plus approprié d’utiliser
l’expression Web profond dans cette thèse, plutôt que Web caché, puisque nous mettons en général
l’accent sur des bases de données accessibles à travers des formulaires, dont le contenu est parfois
disponible depuis le Web de surface (le contenu de la plupart des bases de données commerciales de
produits, par exemple, peut être parcouru dans son intégralité en suivant des liens, ceci pour attirer
les utilisateurs de moteur de recherche sur ces sites Web). Nous choisissons cependant d’utiliserWeb
caché pour mettre en valeur le fait qu’une compréhension du Web caché est un moyen de dépasser
les limitations des moteurs de recherche classiques. De plus,Web caché est une expression beaucoup
plus mystérieuse qui suscite à coup sûr des interrogations de la part de néophytes, et, en Français,
Web profond sonne beaucoup moins bien queWeb caché.
Une étude de  de la compagnie BrightPlanet [Bri00] a eu un large impact sur le développement

de la recherche sur le Web caché. Cette étude utilise une analyse de corrélation des résultats de
différents moteurs de recherche afin d’estimer la taille du Web caché ; ils découvrent ainsi qu’il
contient entre   et   bases de données du Web, avec à peu près  fois plus de contenu
que le Web de surface. Autrement dit, la plus grande partie (et de beaucoup) du contenu du Web
n’est pas exploitable par les moteurs de recherche classiques ! Bien que ce type d’estimation soit
intrinsèquement peu précis, d’autres travaux plus récents [CHL+04, HPZC07] confirment cet
ordre de grandeur avec une autre forme d’estimation (échantillonnage aléatoire d’adresses IP), et
parviennent à un nombre d’approximativement   bases de données (ceci prend en compte
la croissance du Web entre le moment des deux études). De plus, même les répertoires qui se
spécialisent dans le recensement de bases de données du Web (un grand nombre d’entre eux sont
cités dans [RH05]∗) ont une couverture assez faible des services du Web caché (% au mieux,
cf. [HPZC07]). Ceci est une motivation claire pour des systèmes qui découvrent, comprennent et
intègrent les services du Web caché.

A.. Systèmes pour l’exploitation de l’information duWeb caché

Une revue d’un certain nombre de systèmes traitant des services du Web caché est disponible
dans [RH05]. Deux approches différentes existent : en extension (récupérer l’information du Web
caché et l’entreposer en local pour l’utiliser) ou en compréhension (analyser les services pour en
comprendre la structure, entreposer cette description, et l’utiliser pour transmettre les requêtes des
utilisateurs à ces services). Le cadre que nous présentons dans cette thèse relève du deuxième type.
Nous présentons plus bas les deux approches. Seuls les systèmes complets traitant du Web caché

∗ De tels répertoires ne font que donner une liste de ces bases de données, il ne fournissent pas de manière de les
interroger par une interface commune ou d’intégrer leurs résultats.
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sont présentés ; les travaux plus spécifiques seront abordés dans la suite de cette thèse, aux chapitres
appropriés.
L’un des premiers travaux pratiques sur le Web caché [RGM01] suit la stratégie en extension :

HW est un système général pour représenter des formulaires et mettre en correspondance les
champs de formulaires avec des concepts (ceci utilise une annotation humaine de manière intensive),
afin de pouvoir récupérer des pages de résultats qui sont ensuite stockées dans un index local. Il
est intéressant de remarquer que cette approche en extension est préférée par des chercheurs du
principal moteur de recherche Google [Goo] dans [MHC+06] (les auteurs parlent d’approche
surfaçante) pour des raisons d’indépendance du domaine, de résultats et d’efficacité, même si la
plupart de la sémantique des services est perdue ce faisant, et qu’une lourde charge est mise sur la
source dont le contenu est entièrement aspiré.
La plupart de la recherche active sur l’indexation en compréhension du Web caché [HC03,

HMYW04, WYDM04, ZHC04, CHZ05, ZHC05, WDYM05, WDY06, CCZ07] vient d’un
groupe de l’université d’Illinois à Urbana–Champaign, avec quelques collaborations externes, en
particulier avec l’université de Binghamton. Deux systèmes qui ont été développés dans ce contexte
sont MQ et WISE-I. Le but est, comme dans notre cas, de découvrir et
d’intégrer des sources du Web caché, afin de les interroger de manière uniforme. L’accent est
fortement mis, dans ces travaux, sur l’appariement de schémas entre des sources différentes.M-

Q [HC03, CHZ05] utilise une approche holistique : apparier le schéma de plusieurs sources
différentes simultanément, plutôt que de les apparier deux à deux. En particulier, le schéma global
n’est en général pas prédéfini mais résulte d’une classification des champs de différentes sources. Ces
travaux se concentrent essentiellement sur l’analyse de la syntaxe des formulaires et la découverte des
concepts liés aux différents champs (des travaux récents [WDYM05, CCZ07] traitent également
de l’analyse des pages de résultats). Il est en fait assez compliqué de comprendre les relations qui
existent entre toutes les publications cités plus haut, mais [CHZ05] est ce qui s’approche le plus
d’une vue de haut niveau sur l’ensemble du système. Nous examinerons certains de ces travaux plus
avant dans les chapitres suivants.

A. Description du cadre

Décrivons notre cadre général. Une architecture fonctionnelle simplifiée est présentée en figure A..
Les composants seront détaillés en partie A.. Les différentes étapes sont les suivantes :

. Les services pertinents sont d’abord acquis depuis le Web caché (voir partie A..).

. La syntaxe de ces services est analysée. Ceci implique également de mettre en correspondance
les entrées et sorties des services d’une part, et les concepts du domaine d’intérêt d’autre part
(voir partie A..).

. La sémantique des relations entre entrées et sorties des services du Web caché est ensuite
recherchée (voir partie A..).

. Une fois la sémantique d’un service pleinement comprise, celui-ci est indexé. Cet index sert
à répondre à des requêtes de haut niveau qui sont posées directement dans le langage de
l’ontologie du domaine (voir partie A..).

Nous avons élaboré un système d’après ces principes. Certains des composants sont encore en
développement. Nous présenterons brièvement la manière dont ces composants s’intègrent les uns
aux autres en conclusion de cette thèse.
Le processus général décrit en figure A. peut être vu comme la collaboration d’agents indépendants

tels que des robots parcourant le Web ou des extracteurs d’information, qui manipulent (insèrent,
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Figure A. – Processus de compréhension du Web caché
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suppriment) de l’information sur le Web caché contenue dans un entrepôt commun. L’information
obtenue par la plupart de ces modules est imprécise. Par exemple, le module de sondage aura
peut-être déterminé qu’un champ de formulaire donné représente le prénom d’une personne avec
un certain niveau de confiance. De plus, la provenance de l’information est souvent importante.
Enfin, remarquons que le processus de la figure A. apparaît plutôt séquentiel, alors qu’en réalité il
ne l’est pas. Par exemple, l’information obtenue par des techniques de traitement du langage naturel
pendant l’analyse sémantique pourrait être utile pour améliorer la qualité des extracteurs obtenus
dans une étape antérieure.

Module  Module  Module 

Interface m.à.j. Interface requête

Entrepôt XML probabiliste

Opération de
mise à jour
+ confiance

Requête Résultats
+ confiance

Figure A. – Entrepôt de données imprécises

On pourrait utiliser une approche purement séquentielle pour gérer la collaboration des différents
agents. Mais comme leurs nombre et rôle ne sont pas fixés, et que leur ordonnancement peut être
assez complexe, nous préférons utiliser un système centré sur le contenu, comme celui représenté
en figure A.. Nous suivons ainsi une approche dans le style de [ANR05]. Plus précisément, le
système est construit sur un entrepôt de contenu semi-structuré, avec des possibilités de requête
et de mise à jour qui gèrent information imprécise et provenance. L’information probabiliste est
placée dans l’entrepôt et le suivi de la confiance est directement fourni par les interfaces de requête
et de mise à jour. Chaque résultat de requête et opération de mise à jour vient avec une information
de confiance.

Le modèle sous-jacent à cet entrepôt semi-structuré imprécis, les arbres probabilistes, est décrit dans
le chapitre . Il se base sur l’utilisation de variables d’événements probabilistes qui sont associées aux
nœuds de l’arbre de données. Le modèle d’arbre probabiliste est complet (toutes les combinaisons
de mondes possibles peuvent être représentées comme un arbre probabiliste), concis (par exemple, la
taille de la représentation croît linéairement quand des nœuds imprécis sont insérés) et dispose d’un
langage de requête puissant (les requêtes à motif d’arbre avec jointures) et permet des séquences
arbitraires d’insertions et de suppressions.
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A. Base de connaissances du domaine

Nous présentons dans cette partie la base de connaissances du domaine dont nous avons besoin
pour décrire un domaine d’intérêt spécifique. Nous insistons sur le fait que toutes les techniques
décrites dans cette thèse, même si elles sont illustrées avec l’exemple du domaine des publications
scientifiques, peuvent être appliquées à n’importe quel domaine, si l’on dispose de la base de
connaissances décrite ici.
La base de connaissances nécessaire peut être décomposée en deux parties différents : une ontologie

du domaine et des instances du domaine.

Ontologie du domaine. L’ontologie du domaine est formée d’un ensemble de noms de concepts,
organisés en un graphe orienté acyclique de relations SorteDe, et d’un ensemble de noms de
relations, venant avec leur arité et leur type (le type d’une relation n-aire R est un n-uplet
de noms de concepts). Un sous-ensemble de l’ensemble des noms de concepts est distingué
comme ensemble des concepts concrets (les concepts concrets sont ceux pour lesquels des
instances existent, voir ci-dessous).

Thing

Publication

ConfPaper

JournalArticle

OtherPublication

Person*

Author*

Title*

Event

Conference*Journal*

Date*

HasTitle (Paper , Title )

PublishedIn (Paper , Date )

WrittenBy (Paper , Author )

PublishedInJournal(JournalArticle, Journal )

PublishedInConf (ConfPaper , Conference)

Figure A. – Ontologie élémentaire pour le domaine des publications de recherche

Donnons pour illustration l’ontologie du domaine des publications scientifiques représentée
en figure A.. Les relations SorteDe peuvent être interprétées comme suit : un ConfPaper
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est une sorte de Publication, qui est une sorte de Thing. Aucun de ceux-ci n’est un concept
concret, contrairement à Title (les astérisques indiquent les concepts concrets). De plus, le
nom de relation HasTitle définit une relation binaire entre une instance du concept Paper
(ou de l’un de ses concepts subsumés) et une instance du concept Title.

De telles ontologies sont des exemples simples d’ontologies qui sont entre autres utilisées dans
le domaine du Web sémantique. Elles sont en général exprimées dans des langages normalisés
tels RDF Schema [W3C04a] ou OWL-Lite [W3C04b]∗.

Instances du domaine. Nous traitons ici de représentations concrètes (c’est-à-dire comme chaînes
de caractères) de concepts concrets. Observons par exemple que les chaînes June 2007 et
07/06 peuvent toutes deux représenter la même instance du concept Date. Les instances du
domaine sont des chaînes de caractères qui représentent des instances de concepts concrets du
domaine. Plus précisément, pour chaque concept concret c, nous avons besoin des éléments
suivants :

– les mots utilisés dans les instances du concept, avec une distribution de fréquence approxi-
mative ;

– un modèle probabiliste approximatif des instances du concept, c’est-à-dire une manière
d’affecter à une chaîne de caractères donnée une probabilité que cette chaîne représente
une instance de c.

Au minimum, nous avons besoin d’une liste de chaînes qui représentent des instances de
concepts pour chaque concept. La manière la plus simple d’obtenir les deux éléments de notre
base de connaissances est alors la suivante :

– prendre l’ensemble des mots apparaissant dans ces chaînes, avec leur fréquence respective,
comme distribution de fréquence approximative ;

– pour chaque chaîne donnée s, si s peut représenter une instance des concepts c1 . . . cn,
affecter à s la probabilité 1/n que s représente une instance de chaque concept ci.

Insistons sur le fait que nous avons uniquement besoin d’approximations de cette distribution
de fréquence et de ce modèle probabiliste. Pour certains concepts, nous pouvons fournir une
description plus élaborée (voir ci-dessous pour les concepts de notre exemple d’ontologie),
mais il n’est en aucun cas nécessaire de fournir une description parfaite des instances de
concepts. Nous aborderons au chapitre  la manière dont les fréquences de mots peuvent être
utilisées pour comprendre la structure d’un formulaire HTML, et au chapitre  la manière
dont le modèle probabiliste nous sert à extraire de l’information des pages de résultats à un
formulaire.

Décrivons les instances du domaine que nous utilisons dans le cas du domaine des publications
scientifiques. Nous avons téléchargé le contenu de la bases de données DBLP [Ley], sous
la forme d’un fichier XML, de http://dblp.uni-trier.de/xml/ et l’avons utilisé pour
engendrer nos instances du domaine :

– Pour les concepts Title, Journal, Conference, nous avons utilisé les techniques élémen-
taires décrites plus haut.

– Pour le concept Date, nous fournissons une fonction de reconnaissance d’entités appropriée
(sous la forme d’un ensemble d’expressions rationnelles qui décrit les dates mensuelles et
annuelles).

∗ RDF Schema et OWL ne considèrent tous deux que des relations binaires, alors que nous traitons de relations d’arité
quelconque, même si les relations binaires sont les plus courantes. Remarquons qu’une relation n-aire peut être encodée
par des relations binaires avec une réification si besoin est.
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– Pour le concept Author, nous avons extrait les prénoms et noms de famille des noms de
personnes de DBLP avec des heuristiques, et utilisons des expressions rationnelles pour
décrire les façons de recombiner prénoms et noms de famille (ce qui donne, par exemple,
les chaînes de caractères Abiteboul, Pierre Abiteboul, Abiteboul Pierre, Abiteboul
Pierre Paul ou Abiteboul, Pierre, avec des probabilités variées, à partir du nom de
famille Abiteboul et des prénoms Pierre et Paul).

Dans les deux derniers cas, les probabilités associées aux expressions rationnelles sont choisies
de manière ad hoc. Idéalement, elles devraient provenir d’une évaluation statistique sur un
grand corpus.

Les différents modules que nous décrivons dans cette thèse utilisent uniquement ces formes de
connaissances (ontologie du domaine, avec un graphe acyclique de concepts et des relations typées,
et instances du domaine, avec une distribution de fréquence des mots et un modèle probabiliste pour
chaque concept concret). Il est possible, cependant, que certaines étapes du processus pour lesquelles
nous ne fournissons pas de systèmes (en particulier, l’acquisition de services et l’analyse sémantique)
requièrent des connaissances supplémentaires (par exemple, des mots-clefs liés au domaine d’intérêt,
ou une description linguistique des noms de relation).

A. Modules

Nous décrivons ici les différents modules qui apparaissent en figure A.. Certains d’entre eux sont
le sujet de chapitres distincts.

A.. Acquisition de services

La première phase du processus est d’acquérir de l’information. Cette acquisition d’information
vient d’abord d’une publication par des utilisateurs. Le système acquiert également de l’information
en utilisant des moteurs de recherche ou en explorant le Web. Le système est principalement intéressé
par :
– des formulaires HTML [W3C99] ; ils sont extrêmement utilisés et des millions peuvent être
trouvés sur le Web.

– des services Web [W3Ca] ; on les trouve en général dans des entrées d’annuaire UDDI. Leur
description est habituellement donnée en WSDL [W3C01]. On en trouve de plus en plus sur
le Web.

Le système est également intéressé par les ressources en extension, tels des documents XML et
HTML contenant de l’information utile. Parce que l’accent est mis sur leWeb caché, les informations
en extension ne sont pas notre principal intérêt ici. Toutefois, il faut qu’elles puissent être importées
dans le système. De plus, comme nous le verrons au chapitre , les documents sont utiles pour
amorcer l’utilisation des services.
Il est important de noter que nous nous intéressons à des services qui fournissent de l’information,

comme le site Web de DBLP, et non à des services avec effets de bord, comme des services de
réservation ou des interfaces de gestion de listes de discussion. En particulier, la norme Internet sur
HTTP . [IET99] spécifie que la méthode HTTP GET devrait être sans effet de bord, et cette règle
est en général suivie. Ainsi, les formulaires utilisant la méthode GET sont en général acceptables.
Par ailleurs, les formulaires HTML qui utilisent la méthode POST sont souvent utilisés avec effets
de bord. Notons cependant que ce n’est pas toujours le cas. Par conséquent, quand nous explorons
le Web à la recherche de services, nous devons détecter les services avec effets de bord afin de les
exclure, et ce n’est pas une tâche facile. Nous devrons utiliser à cet effet des heuristiques, comme le
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fait d’éviter les services nécessitant l’entrée d’une adresse e-mail, d’un numéro de carte bleue ou
d’un mot de passe (sauf si ce service a été explicitement déclaré par un utilisateur du système).
Comme mentionné précédemment, nous ne nous intéressons qu’aux services qui sont pertinents

par rapport à un domaine d’intérêt donné. Si, par exemple, nous explorons le Web à la recherche de
services, nous devons « guider » cette exploration vers le domaine d’intérêt ; ce type d’exploration
guidée du World Wide Web a été étudié dans [CvdBD99, DCL+00]. Une approche intéressante au
problème spécifique de l’exploration guidée pour découvrir des formulaires est présentée dans [BF05].
Les auteurs combinent des techniques classiques d’exploration guidée, avec une catégorisation des
pages en fonction du domaine d’intérêt, avec deux sources de retours qui servent à la contrôler : une
catégorisation des formulaires qui vérifie si un formulaire donné est pertinent, et une catégorisation
des liens qui considère des caractéristiques de l’historique des liens suivis pour arriver à la page
courante (l’hypothèse est qu’il y a des caractéristiques distinguant les liens pertinents des non
pertinents dans le chemin suivi à partir de la racine d’un site Web, par exemple, jusqu’à un formulaire
de recherche dans une base de données). Les auteurs montrent que cela permet de trouver des
bases de données du Web cachées avec des ressources d’exploration moindres que des explorations
complètes ou des techniques génériques d’exploration guidée. Remarquons cependant que ces trois
catégorisations utilisent des exemples annotés de pages, formulaires et chemins de liens.
Les services présentant un intérêt peuvent également être obtenus en interrogeant des moteurs de

recherche généraux avec des mots-clefs du domaine. Par exemple, les requêtes « publication database »
ou « publications advanced search » suffisent déjà à renvoyer des services hautement pertinents
pour le domaine des publications scientifiques. Les annuaires de bases de données du Web peuvent
également être utilisés, même si nous avons déjà constaté la faiblesse de leur couverture.
L’acquisition de sources d’information duWeb caché pertinent pour un domaine d’intérêt n’est pas

l’une des étapes du processus sur lesquelles nous avons spécifiquement travaillé. Nous ne détaillerons
pas davantage ce sujet dans cette thèse.

A.. Analyse syntaxique et correspondance de concepts

Une fois que des services sont identifiés, leur structure doit être comprise si l’on veut pouvoir
réellement les utiliser. Par structure, nous voulons dire le type des entrées et sorties attendues et
produites par chaque service, la manière de fournir ces entrées au service, ainsi que la façon de
récupérer les sorties du service. Un problème voisin est celui de faire correspondre les entrées et
sorties avec les concepts de notre ontologie. En fait, comme nous le verrons, nous avons besoin
d’accomplir ces deux étapes en même temps dans le cas des formulaires HTML.
Considérons dans un premier temps les services Web, pour lesquels le problème est plus simple.

Une descriptionWSDL d’un serviceWeb est une description formelle des types d’entrées qu’il attend
et des sorties qu’il produit. Les noms des entrées et sorties, cependant, sont arbitraires, et peuvent ne
pas avoir de lien direct avec les concepts du domaine. Mettre en correspondance les concepts et ces
noms est un exemple de problème d’appariement de schémas ; nous n’apportons pas de contribution
directe à ce sujet, et nous renvoyons le lecteur à [RB01] pour une revue des techniques d’appariement
automatique de schémas. Les types concrets (en XML Schema) des entrées sont une autre source
d’information : une expression rationnelle « \(\d{3}\) \d{3}-\d{4} » représente probablement
un numéro de téléphone (des États-Unis), tandis qu’un type simple xs:date représente une date.
Considérons maintenant les formulaires HTML. La structure du formulaire lui-même mais

aussi celle des pages de résultats (qui doivent être générées en sondant le formulaire, c’est-à-dire
en le soumettant avec certaines valeurs entrées) doivent être comprises. Il est ainsi nécessaire, afin
d’obtenir des pages de résultats, d’avoir une certaine compréhension des concepts avec lesquels
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les champs du formulaire sont en correspondance. En d’autres termes, l’analyse structurelle et la
mise en correspondance de concepts doivent être accomplies simultanément. Nous présentons un
processus en deux étapes pour résoudre ce problème :

. Le chapitre  montre comment utiliser des heuristiques afin de faire correspondre les concepts
de l’ontologie du domaine avec les champs d’un formulaire, et comment confirmer ces
annotations en sondant ces champs.

. Le chapitre  présente une approche pour extraire de l’information des pages de résultats ;
un programme d’annotation étiquette la page avec des instances de concepts du domaine,
et cette annotation imprécise et incomplète est généralisée comme entrée d’un système de
construction d’extracteur utilisant de l’apprentissage.

A.. Analyse sémantique

La sémantique d’un service dont est fournie la description syntaxique doit être analysée afin
de comprendre les relations sémantiques entre ses entrées et sorties ; le but est ici d’exprimer la
sémantique de ce service de manière formelle.
Nous présentons au chapitre  un modèle sémantique pour décrire des services. La manière

d’obtenir cette description sémantique est toutefois assez complexe. Dans certains domaines, il y
a peu d’ambiguïtés : par exemple, dans le domaine des publications scientifiques, si nous avons
les concepts Title, Person, Journal et Date, il est très probable que le titre Title est celui d’un
article écrit par la personne Person dans un journal Journal publié à la data Date. Ce n’est pas
obligatoire cependant : la date pourrait être la date de dernière modification de la publication, et la
personne pourrait être l’éditeur du journal. Dans d’autres domaines, des problèmes plus compliqués
peuvent également survenir. Considérons par exemple une base de données de généalogie. Il est ici
très important de savoir si la relation FatherOf est entre P et P′ ou entre P′ et P. Les outils qui sont
à notre disposition pour résoudre ces problèmes sont des techniques élémentaires de traitement du
langage naturel, ou de la sélection de mots-clefs dans la description du service, par exemple dans la
page du formulaire ou dans les pages pointant vers cette page.
Notre contribution à la question de l’analyse sémantique réside dans le modèle théorique décrit

dans le chapitre . Nous y présentons une manière de formaliser la notion de relation optimale entre
deux instances de bases de données. Cette partie de notre travail n’a pas donné lieu à implémentation.

A.. Indexation et traitement de requêtes

En supposant que nous avons un ensemble de services dont la sémantique est décrite, la dernière
étape de notre processus est de fournir à l’utilisateur la possibilité d’utiliser ces services pour répondre
à des requêtes de haut niveau, dans la langage de l’ontologie du domaine. Cela signifie indexer les
services et traduire les requêtes sur l’ontologie du domaine en requêtes sur les services pertinents.
Ce problème dépend fortement de la représentation de la sémantique d’un service, et la réflexion
sera donc reportée au chapitre , où nous présentons le modèle sémantique.

Conclusion

Dans ce chapitre, nous avons présenté un processus général et entièrement automatique pour
l’interprétation sémantique du Web caché. Ce processus est basé sur des agents indépendants
qui accomplissent différentes tâches, telles l’acquisition d’information et son enrichissement, et
participent à la construction d’un entrepôt probabiliste semi-structuré centré sur le contenu. Nous
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avons décrit brièvement les différentes étapes du processus. Pour certaines d’entre elles, seules des
idées prospectives sont données, étant donné que nous ne prétendons pas arriver à une solution
complète au problème de l’exploitation d’information sur le Web caché.
Les chapitres qui suivent vont détailler plus avant certains composants, à commencer par le modèle

de données probabiliste qui sous-tend l’entrepôt de contenu.
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Conclusion globale

Synthèse

Examinons dans un premier temps de quelle manière les divers composants dont il a été question
dans cette thèse peuvent être articulés pour obtenir un système complet de compréhension du Web
caché. L’architecture générale a été abordée dans le chapitre  et, en particulier, les figures A. et A.
illustrent l’interaction des composants. En pratique, en nous concentrant sur les parties de cette
architecture que nous avons effectivement développées, nous avons le processus suivant :

. Construire la base de connaissances du domaine comme décrit en partie A..

. Assembler des formulaires qui sont des points d’entrée de services duWeb caché d’une certaine
façon (p. ex. manuellement) et les entrer dans l’entrepôt probabiliste.

. Transformer chacun de ces formulaires en un service Web, comme indiqué en parties .
et .. Insérer la description du service résultant, avec des valeurs de confiance appropriées,
dans l’entrepôt probabiliste.

. Lancer un programme ad hoc qui interroge et met à jour l’entrepôt probabiliste de façon à
ajouter les relations sémantiques entre entrées et sorties (par exemple, si l’entrée d’un service
est un Title et que la sortie est un ensemble d’Author, ce programme déclarera que ces
derniers sont les auteurs d’une publication dont le titre est l’entrée du service, avec une forte
probabilité).

. Présenter à l’utilisateur une interface de requête de haut niveau sur l’ontologie du domaine.

. Traduire la requête de l’utilisateur en une requête sur l’ensemble des services connus, comme
traité en partie ., évaluer cette requête, et retourner les résultats (probabilistes) à l’utilisateur.

Nous travaillons actuellement à l’implémentation de l’intégralité de ce processus.

Perspectives

En conclusion de cette thèse, nous aimerions relever certains problèmes importants dans le contexte
de la compréhension du Web caché. Nous classifions ces problèmes en : (i) ceux que nous traitons
déjà, (ii) ceux qui demandent, à notre avis, un certain effort mais devraient pouvoir être résolus sans
difficulté intrinsèque, et (iii) ceux qui nécessitent des travaux de recherche conséquents.
Commençons par les travaux en cours :

Application pratique du chapitre . Le modèle théorique du chapitre  n’a pas encore d’application
pratique. Nous aimerions explorer deux manières différentes de combler ce manque : (i) une
implémentation directe du modèle, en dépit des résultats de complexité négatifs, avec des
heuristiques appropriées pour approximer efficacement le coût d’une correspondance de
schémas ; (ii) les relations avec le domaine de la programmation logique inductive.

Réponse à des requêtes à partir de vues. Nous sommes en train de travailler sur le problème de
réponse à des requêtes à partir de vues, les vues étant ici les services du Web caché dont la
sémantique est décrite. Nous mentionnons en partie . une direction possible de recherche
basée sur les techniques ditesM d’évaluation efficace de programmes Datalog.

Intégration système et démonstration. Nous avons évoqué au début de cette conclusion la manière
dont les différents modules peuvent être articulés afin de former un système complet pour
l’intégration des services du Web caché. Nous travaillons actuellement à cette intégration,
avec pour but d’obtenir une démonstration du système entier. Nous prévoyons également
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d’appliquer le système à un autre domaine (peut-être celui des services météorologiques ou
des annuaires) afin d’en valider la généralité.

Les problèmes suivants semblent être raisonnablement résolubles, avec éventuellement un certain
effort :

Acquisition de services. Nous avons évoqué cette question en partie A... Nous pensons qu’une
combinaison des heuristiques et des techniques d’exploration guidée du Web qui y ont été
présentées peut être suffisante pour acquérir un nombre satisfaisant de services pertinents.
Ceci requiert l’implémentation et la combinaison du tout, ce qui n’est pas complètement
direct.

Des types de formulaires plus généraux. Nous avons effectué un certain nombre d’hypothèses sur la
structure des formulaires que nous traitions au chapitre . Bien que l’analyse d’un formulaire
arbitraire sans structure préétablie soit une tâche très difficile, un certain nombre de ces
hypothèses pourraient être supprimées afin de gérer, par exemple, des formulaires avec des
entrées obligatoires ou des formulaires qui utilisent des opérateurs booléens. Cela serait utile
car des expériences informelles montrent qu’il n’y a pas tant d’hétérogénéité dans la structure
des formulaires du Web. Cela impliquerait une reconnaissance d’un modèle général qu’un
formulaire respecte et une analyse des différents champs en fonction de ce modèle.

Meilleur programme d’annotation. Il est toujours possible d’améliorer l’annotation que nous avons
décrite au chapitre . En particulier, des systèmes de reconnaissance d’entités (voir par
exemple [8] qui pourrait également être utilisé pour gérer d’autres langues que l’anglais), qui
sont à la fois généralistes et efficaces, pour des dates, des noms de personnes, des adresses, et
ainsi de suite, peuvent donner de meilleurs résultats que ceux que nous avons utilisés. De
plus, de l’information linguistique pourrait également être utilisée pour, par exemple, annoter
des groupes nominaux de longueur appropriée comme titres potentiels.

Enfin, présentons quelques problèmes ouverts dont nous pensons qu’ils sont importants pour la
compréhension du Web caché, et pour lesquels nous ne connaissons pas de solution.

Mise à jour des valeurs de confiance. Remarquons que dans le modèle d’arbres probabilistes décrit
au chapitre , la probabilité qu’un nœud donné est dans l’arbre peut décroître (si ce nœud
est supprimé avec conditions) mais jamais croître (même si on peut le simuler en ajoutant
un nouveau nœud avec la même étiquette et les même descendants). Cela reflète le fait que
des modifications arbitraires et a posteriori des probabilités n’ont en général pas grand sens ;
l’augmentation (ou la diminution) de la confiance dans un fait est pourtant quelque chose
dont on a parfois besoin dans un système d’intégration. Il faudrait formaliser cette opération
de manière propre, et considérer la manière de l’appliquer sur un arbre probabiliste. Nous
verrons également plus loin (sous Déduplication) un problème lié, qui pourrait fournir des
valeurs de confiance mises à jour.

k premiers résultats probabilistes. L’une des limitations les plus apparentes du modèle probabiliste
tel qu’il est décrit au chapitre  est le fait que le résultat d’une requête est donné (et calculé)
dans son intégralité. Quand ce résultat est trop grand, ou quand on est juste intéressé par les
résultats les plus probables, il serait intéressant d’obtenir les k premiers résultats probabilistes
de manière efficace. Nous n’avons pas de solution à cela, car les méthodes classiques de calcul
des k premiers résultats [FLN03] ne sont pas directement applicables.

Un système d’apprentissage plus adapté. Les résultats expérimentaux que nous avons présentés au
chapitre  montrent qu’il est possible d’utiliser des techniques d’apprentissage pour apprendre
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la structure sous-jacente à une annotation imprécise et imparfaite. Certains des résultats sont
bons, tandis que d’autres sont quelque peu décevants. Nous pensons que la raison principale
en est le fait que les champs aléatoires conditionnels (de même que, à notre connaissance,
toutes les autres techniques d’apprentissage) sont conçus pour fonctionner dans un contexte
où l’annotation initiale est censée être parfaite. Par conséquent, il y a des risques de trop
« coller » à celle-ci. Un modèle d’apprentissage plus adapté essaierait de minimiser la longueur
de description de l’extracteur obtenu, de manière similaire à ce qui est décrit au chapitre .
La manière d’accomplir ceci est loin d’être évidente.

Extraction de n-uplets. La méthode que nous avons décrite au chapitre  afin d’extraire des n-
uplets des données annotées individuelles est en quelque sorte ad hoc et peu robuste. Elle
est incapable de tenir compte des pages où certains éléments d’un n-uplet ont été factorisés.
Nous avons tenté d’utiliser une technique d’apprentissage qui extrait simultanément les
n-uplets [GMTT06], mais avec moins de succès que les champs aléatoires conditionnels.

Déduplication. Des services différents peuvent contenir des informations légèrement différentes
à propos de la même entité (par exemple des noms d’auteurs ou de conférences légèrement
différents pour la même publication). Pour éviter de présenter à un utilisateur une liste de
résultats quasi-identiques, il est nécessaire d’appliquer une étape de déduplication qui identi-
fiera et fusionnera les doublons. Cette déduplication est également nécessaire dans d’autres
contextes, par exemple quand nous identifions des constantes comme dans le chapitre . Nous
n’avons pas de solution. Un problème intéressant qui est lié à cela est celui de la corroboration
de données : quand des sources multiples déclarent des faits différents (par exemple, quand
des bases de données différentes ont des informations diverses sur la même entité), quelle
est la probabilité globale que le fait soit vrai (et que la source soit digne de confiance) ? Une
première approche à ce problème est présentée dans [YHY07].

Analyse sémantique. Afin d’identifier les relations entre entrées et sorties d’un service, outre les
méthodes que nous avons commencé à explorer au chapitre , qui sont uniquement basées sur
les constantes qui apparaissent, des techniques utilisant le contexte d’un service (en particulier
son contexte en langage naturel) pourraient être utilisées pour dériver de telles relations, par
exemple pour comprendre que la sortie d’un service de généalogie est le père de l’entrée
correspondante. C’est un problème difficile, qui devrait probablement être attaqué à l’aide
d’une combinaison de techniques de traitement du langage naturel et d’apprentissage.
Cette liste de problèmes ouverts ou partiellement résolus n’est bien sûr pas exhaustive.
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Lexique anglais-français

binding pattern motif de liaison

(to) bootstrap amorcer

classification catégorisation

clustering classification

(to) crawl theWeb explorer le Web

concept mapping correspondance de concepts

conditional random field champ aléatoire condi-
tionnel

content-centric centré sur le contenu

data exchange échange de données

domain instances instances du domaine

domain ontology ontologie du domaine

deepWeb Web profond

domain knowledge base de connaissances du
domaine

extensional en extension

focused crawling exploration guidée

gazetteer programme d’annotation

hiddenWeb Web caché

HTML form formulaire HTML

IsA SorteDe

intensional en compréhension

invisible Web Web invisible

join jointure

probing sondage

prob-tree arbre probabiliste

query requête

(to) query interroger

search engine moteur de recherche

schemamapping correspondance de schémas

schemamatching appariement de schémas

side effect effet de bord

surfaceWeb Web de surface

tree-pattern query requête à motif d’arbre

tuple-generating dependencies dépendances géné-
ratrices de n-uplet

update mise à jour

warehouse entrepôt

Web service service Web

wrapper extracteur
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Appendix B

Other Works

During the three years of my PhD thesis, I also had the chance to work on other research
topics, for some started before those presented in this thesis. I shortly describe next these
projects.

DataWarehousing

XMLWarehousing and Data Integration for Social Scientists [7]

We describe a novel application of XML and Web based technologies: a sociological study of the
W3C standardization process. We introduce a newmethodology and tools, to be used by sociologists
to study standardization processes. We illustrate them by considering the W3C XQuery Working
Group. Information technology has received little attention from sociologists, yet standardization
such as that of the Web is a crucial issue, both economical and political. Our approached is based on
the use of a semi-structured content warehouse. We introduce a modeling and querying approach of
an XML content warehouse, and show it produces high added-value information. �is information
is used to conduct a preliminary sociological analysis of the XQuery standardization process.

Graph andWebMining

Similarity between Nodes in Graphs. Application to Synonym Extraction [2, 1]

�is work is a follow-up of my master’s internship at Université catholique de Louvain in
.

We introduce a concept of similarity between vertices of directed graphs. Let GA and GB be two
directed graphs with, respectively, nA and nB vertices. We define an nB × nA similarity matrix S
whose real entry sij expresses how similar vertex j (in GA) is to vertex i (in GB): we say that sij is
their similarity score. �e similarity matrix can be obtained as the limit of the normalized even
iterates of Sk+1 = BSkA

T +BT SkA, where A and B are adjacency matrices of the graphs and S0 is
a matrix whose entries are all equal to 1. In the special case where GA = GB = G, the matrix S
is square and the score sij is the similarity score between the vertices i and j of G. We point out
that Kleinberg’s “hub and authority” method to identify Web pages relevant to a given query can
be viewed as a special case of our definition in the case where one of the graphs has two vertices
and a unique directed edge between them. In analogy to Kleinberg, we show that our similarity
scores are given by the components of a dominant eigenvector of a nonnegative matrix. �ere are
many potential applications of our similarity concept. As an illustration, we consider the automatic
extraction of synonyms in a monolingual dictionary.
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Identifying Logical Web sites with Flow Simulation [9]

�is work is a follow-up of my master’s thesis work at INRIA Futurs in .

We present a method to discover the set of Web pages contained in a logical Web site, based on
the link structure of the Web graph. Such a method is useful in the context of Web archiving and
Web site importance computation. To identify the boundaries of a Web site, we combine the use
of an online version of the preflow-push algorithm, an algorithm for the maximum flow problem
in traffic networks, and of the Markov CLuster (MCL) algorithm. �e latter is used on a crawled
portion of the Web graph in order to build a seed of initial Web pages, a seed that is then extended
using the former. An experiment on a subsite of the INRIA Web site is described.

Discovering Similar Nodes in a Graph. Application toWikipedia [3]

We introduce a new method for finding nodes semantically related to a given node in a hyperlinked
graph, namely the Green method, based on classical Markov chains. It is generic, adjustment-free
and easy to implement. We test it in the case of the hyperlink structure of the English version of
an on-line encyclopedia, namely Wikipedia. We present an extensive comparative study of the
performance of our method compared to several other classical methods. �e Green method is
found to have both the best average results and the best robustness.

Predicting the Rank of aWeb Page [12]

Predicting the rank of a Web page is a challenging problem that is recently arising as a research
issue both in academia and the industry. We propose a method (PR)2 for predicting the ranking
position of a Web page based on previous generic and query-based rankings. In summary, assuming
a set of successive past top-k rankings, we study the evolution of Web pages in terms of ranking
trend sequences used for Markov Models training, which are in turn used to predict future rankings.
First, we quantify the ranking trends of Web pages through the rank change rate (racer) measure.
�e distinct racer values that appear in the trend sequences are reduced to a manageable size with
regard to model extraction. �e future rank of a Web page is predicted by matching its current racer
sequences to the Markov Models paths. �e prediction quality is quantified as the similarity between
the predicted and the actual rankings and compared as well to alternative baseline predictors. We
introduce a new similarity measure for comparing top-k ranked lists. In order to evaluate the
effectiveness of (PR)2 we performed extensive experiments on real world datasets both for global
and query-based top-k rankings. �e predictions are highly accurate for all experimental setups and
similarity measures. �is framework is thus a meaningful tool for Web page rank predictions.

Machine Translation

�ese works are follow-ups of works performed in a leading machine translation company,
namely SYSTRAN, during a break year in –.

Integration of a LegacyMachine Translation System into an OpenWorkflow [8]

A general, mature, rule-basedMT system is bound to reach a saturation point because of the intrinsic
complexity of the natural language description. For such systems, maintenance is a complex task
and customization is expensive and time-consuming. �erefore, improving the system’s interaction





with the linguistic rules has proven to be more productive than endlessly adding new rules and
exceptions to reach the theoretical accuracy level of %. We describe our strategy to “open up”
such a system and provide practical details on how this was done on SYSTRAN’s classical engines.
�is approach is the foundation of the SYSTRAN version  translation engines. We show the
immediate benefits of the evolution of our architecture and the new extension potentiality.

Using XSLT to drive aMachine Translation Process [6]

XSL Transformation stylesheets are typically used to transform a document described in an XML
formalism into another XML structure, to modify an XML document, or to publish content stored
into an XML document to a publishing format (XSL-FO, (X)HTML…). SYSTRAN Translation
Stylesheets (STSs) use XSLT to drive and control the machine translation of XML documents (native
XML document formats or XML representations—such as XLIFF—of other kinds of document
formats). STSs do not only provide a simple way to indicate which part of the document text is
to be translated, but also enables the fine-tuning of translation, especially by using the structure
of the document to help disambiguate natural language semantics and determine proper context.
For instance, the phrase “Access from front door” is to be analyzed as “�e access from front door”
within a title, and as “Do access (something) from front door” in the text body. In that case, the
STS would pass a title option to the translation engine. �e stylesheet can activate specialized
domain dictionaries for parts of the document and mark some expressions as not to be translated,
in the same manner. Another key application of STS is to consider machine translation as part of
the authoring and publishing process: source documents can be annotated with natural language
markup produced by the author, markup which will be processed by STS to improve the quality of
translation, the gateway to the automatic publishing of a multilingual Web site from a monolingual
(annotated) source. �is composition, inside the publishing process, is a real breakthrough for Web
content translation.
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