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Dij

Dy, Dy,
Dyg, Dygy
D;;(K)
E(K)
Ey(K)
E+
Fuio(K)
FT

Model constants

Relative intensity ratio

Constant of Kolmogorov, Corrsin-Obukhov, Scalar flux spectrum
Turbulent diffusivity tensor

Second, third order velocity correlation

Second, third order scalar and mixed correlation
Inhomogeneous transport

Kinetic energy spectrum, [ E(K)dK = 3U* =k
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Thermalized energy

Three-dimensional scalar flux spectrum
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Introduction

It is hard to give a precise definition of what turbulence is. As a consequence
turbulence is generally described by its properties. One of its most striking
properties is its ability to mix. Turbulence enhances the mixing of pollution
in the atmosphere, salt in the sea, sugar in our coffee, fuel in a combustion
engine, but most importantly, turbulence mixes turbulence, and this may be
seen as the main problem in predicting a turbulent flow: the convection of
momentum by the velocity field itself is a nonlinear mechanism that prevents
a simple description.

The apparent randomness and complexity of a turbulent flow stem from
this nonlinearity and make a statistical description appealing. The most
relevant information of a turbulent flow can often be retained by considering
the averaged properties. A very common way of describing a turbulent flow
is therefore by statistical means. The velocity U;, for example, can be divided
into a mean part U; and a fluctuation u;.

If one wants to predict the mean velocity field U; one should take into
account the effect of the turbulent fluctuations on the mean field which act
as a stress u;u;, called the Reynolds stress. We can interpret this stress as
the mixing of momentum by turbulent movement. The essential problem
of predicting the mean velocity of a turbulent flow could then be solved
by an accurate knowledge of the Reynolds stress as an explicit function of
the mean quantities. However, such a relation is to date not satisfactorily
established.

The subject of this thesis is the mixing of a passive scalar by a turbulent
flow. A passive scalar is a scalar quantity that does not influence the flow
field by which it is advected. Examples are the concentration of non-reacting
chemical species and temperature, as long as the temperature fluctuations
remain small. Also the separation distance of a fluid particle from its initial
position is a non-diffusive passive scalar (see section 7.2). The benefits of
studying passive scalars are therefore twofold. On one hand it is of practical
importance when predicting for example the mixing of pollutants in the
air or the performance of heat exchangers, on the other hand the study is
of theoretical importance: understanding the mixing of the fluid particles
should help to describe a turbulent flow.



The equation governing the transport of a passive scalar is linear. The
advection of the scalar by a turbulent velocity field is however not simple.
Once again, description by statistical means is the most widely used ap-
proach. The scalar T' is then divided into a mean value © and a fluctuating
part 8. The effect of the turbulent fluctuations on the mean scalar field is
now represented by a turbulent scalar flux, u;0. The scalar flux is thus the
key quantity in the prediction of the mean scalar field and its understanding
and modelling is the main issue of this thesis. In order to investigate the
contributions of the different turbulent lengthscales to the scalar flux we
examine the spectral distribution of scalar flux with wavenumber, i.e. the
scalar flux spectrum.

Theoretically the simplest configuration with which to study the turbu-
lent scalar flux is isotropic turbulence with a uniform mean scalar gradient.
The scalar field is in this case anisotropic. At the same time it is the sim-
plest way to study anisotropy in a turbulent flow because the scalar field is
homogeneous and also axisymmetric: in a plane perpendicular to the mean
scalar gradient axis there is no preferential direction. The scalar flux spec-
trum reduces in this case to one single scalar function.

Isotropic turbulence with a mean scalar gradient is the subject of the
first four chapters of the manuscript. In the first chapter the basic quantities
and equations are introduced. In particular the wavenumber spectra of the
kinetic energy, the scalar flux and the scalar variance are discussed because
those quantities will receive our main attention in this thesis.

In the second chapter, experimental results from the literature concern-
ing the scalar flux spectrum are reviewed. Apparent discrepancies between
experimental results and classical scaling laws are examined. Detailed di-
mensional analysis as well as Direct Numerical Simulation and Large Eddy
Simulations (approaches explained in section 1.3) are used to examine the
behaviour of the scalar flux spectrum. As will be seen, these approaches do
not yield conclusive answers about the asymptotic (high Reynolds number)
spectral behaviour of this spectrum.

In the third chapter we use an analytical theory of turbulence, the Eddy-
Damped Quasi-Normal Markovian theory (EDQNM), to study the scalar
flux spectrum. The basic idea of this theory stems from the observation
that turbulent velocity and scalar fluctuations are close to Gaussianity. Us-
ing the assumption of Gaussianity leads to a closed evolution equation for
the scalar flux spectrum. Subsequently, the equation is numerically inte-
grated. EDQNM is very suitable to studying wave-number spectra of tur-
bulent quantities at high Reynolds numbers. This allows us to investigate
the anomalous behaviour of the scalar flux spectrum observed in chapter 2.

We use the EDQNM theory to analyze some parameters that might in-
fluence the Large Eddy Simulations of isotropic turbulence with a mean
scalar gradient in chapter 4. The influence of resolution, forcing and sub-



gridmodel on the velocity and scalar field are examined. EDQNM allows a
better interpretation of the LES results, initially discussed in chapter 2, to
be made.

After the extensive validation of the EDQNM theory in isotropic tur-
bulence, we apply it to homogeneous shear flow. More assumptions and
modelling have to be introduced, but it is shown that the analytical theory
can here again provide insights in to the behaviour of the turbulent scalar
fluxes. In this chapter the velocity field is modelled by an extension of the
EDQNM theory to homogeneous anisotropic turbulence by Touil [1].

These positive results encouraged us to extend the closure to inhomoge-
neous turbulent flows. Therefore in chapter 6 we propose, and subsequently
derive, an extension of the closure for the scalar flux and scalar variance
to inhomogeneous turbulence to show that the extension to complex flows
is feasible. This extension is compatible with the Simplified spectral Clo-
sure for Inhomogeneous Turbulence (SCIT), developed at the Laboratoire
de Mécanique des Fluides de ’Ecole Centrale de Lyon. The SCIT model
constitutes a closure of the Reynolds stresses in inhomogeneous turbulent
flows.

One of the advantages of an analytical approach is that it is straight
forward to study the limiting behaviour of zero viscosity or zero diffusiv-
ity. The first of those cases, inviscid turbulence, is treated in section 7.1
and insights are obtained in to the theoretical issue of relaxation towards a
thermal equilibrium. The second case, the non-diffusive scalar is treated in
section 7.2, where we illustrate the link between passive scalar mixing and
single particle dispersion.

This link allows to formulate a single-time two-point closure for the
energy spectrum, without any model constants. In this new closure, the
characteristic time scale (or damping term) is built on the spectrum of the
velocity-scalar correlation. The model is presented in section 7.3 where it
is shown to yield good estimates of the Kolmogorov and Corrsin-Obukhov
constants.

An extensive french abstract of this thesis can be found in chapter 8.



Chapter 1

Scalar mixing in Isotropic
Turbulence

1.1 Isotropic turbulence

1.1.1 Generalities

The dynamics of an incompressible Newtonian fluid are entirely determined
by the Navier-Stokes equations and the incompressibility condition:

oU; oU; 10P o*U;
. - - 1.1
ot Ui Oz, p Ox; v Bzg (L.1)

ou;

6.’EZ' N
In this equation U; is the velocity vector, p is the density, P is the pressure
and v is the kinematic viscosity. The second term in equation (1.1) is non-
linear. If this term becomes large compared to the last term, the viscous
stress, the regime of the flow changes from laminar to turbulent. The move-
ments of the fluid particles becomes dependent on small variations of the
initial conditions. If the exact initial conditions are unknown the movement
of the fluid particles becomes unpredictable.

Most of the flows encountered in practice are turbulent. The unpre-
dictable nature of the fluid particles makes an exact description of most of
the real-life turbulent flows practically unfeasible. A statistical study of the
flow can provide valuable information. We decompose a turbulent quantity
in its mean and its fluctuation. For the velocity vector we write:

U; zm—i—ui (1.3)

0 (1.2)

The average that we use in theoretical approaches is the ’ensemble’ aver-
age, the average value after an infinity of realizations of the same flow. The
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chaotic nature of the flow ensures that every realization yields a different
result. One could assume that this average is equivalent to the long-time
average in a stationary flow, or the space average in an infinitely large ho-
mogeneous flow. This assumption is called ergodicity .

1.1.2 Statistical description of isotropic turbulence

Homogeneous turbulence is a turbulence that is statistically identical at
every point in space. Observers at different spatial positions in the velocity
field will experience the same statistical behaviour. In other words: the
turbulence is statistically invariant under translations.

If in addition the statistics are invariant under rotation the field is called
isotropic. This means that the different observers experience the same when
looking in different directions. The mean flow U; must be zero or uniform
in such a flow, because a non-uniform mean flow would immediately intro-
duce a preferential direction in the flow. An isotropic turbulence is from a
statistical point of view the most simple configuration of turbulence. Ex-
perimentally, however, creating a proper isotropic turbulent flow is not that
simple because the influence of boundaries and mean flow easily breaks the
isotropy. By carrying out experiments far enough away from boundaries we
can try to eliminate most of the boundary effects. In atmospheric experi-
ments we could hope that this is the case. The meteorological conditions
(stratification, rotation and shear) prevent however the atmosphere from
being isotropic. In laboratories we can eliminate most of those factors and
we might be able to create locally isotropic turbulence at a smaller scale
than in the atmosphere. Now the question is: how can we create turbulence
in an isotropic way? The conventional way of generating nearly isotropic
turbulence in a laboratory is by use of a grid in a wind tunnel. One could
object that the velocity fluctuations generated in this way are convected by
a mean velocity, and that this velocity breaks the isotropy by imposing di-
rectionality on the flow field. For an observer moving with the same velocity
as the mean velocity of the flow, the turbulence can however be considered
isotropic.

Let us assume now that we have generated isotropic turbulence. Per-
haps statistically this is the simplest kind of turbulence but while studying
it, we notice that the flow is not that simple: we see a large variety of ed-
dies convecting each other, interacting by local shearing and straining. Big
scales breaking up in smaller ones, whirls exchanging momentum with other
whirls. The complexity of isotropic turbulence appears to be related to its
variety of lengthscales. We could state that ’turbulence consists of chaotic
whirly structures with a large range of lengthscales’ [2]. This wide variety
in lengthscales is found in all turbulent flows even in the most simple kind,
isotropic turbulence. It might be clever to study first this kind of flow.
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The tools and concepts derived in this framework could be very valuable in
studying more complex flows such as sheared or inhomogeneous turbulence.

To get more insights in those complex dynamics, a fruitful approach is
statistically studying the different turbulent lengthscales. The simplest sta-
tistical feature would be the statistical mean of the velocity of each length-
scale. In isotropic turbulence, the average velocity is however zero at each
lengthscale. As one rather studies a non-zero statistic, one could consider
the kinetic energy k of the velocity field.

1
k@,t) = (u2(m,t) +02(z, 1) +w2(m,t)) (1.4)
Because of isotropy u, v and w are statistically equivalent so that: k(x,t) =

3/2 u?(x,t). In freely decaying isotropic turbulence one can write:

k(1)
ot

= —¢(t), (1.5)

That is: the decrease of the kinetic energy is equal in value to the viscous
dissipation €. The value of k does not tell us much about the different
lengthscales, its value is the sum of the contributions of all different scales.
For instance, a flow field with only one lengthscale could have the same
kinetic energy. To study the multi-scale behaviour it is more convenient
to evaluate the kinetic energy contained by each different lengthscale. By
measuring the mean kinetic energy at one point we will not have access
to information on the different lengthscales. In order to obtain the energy
distribution over the different scales of motion in a homogeneous turbulence
we consider therefore the two point velocity-correlations:

Rij(r,t) = ui(z, t)uj(z + 7, 1) (1.6)

and we vary the separation distance r between the two observation points.
R;j(r,t) is independent of the position « because of homogeneity. It is com-
mon use and rather suitable to consider multi-scale phenomena in Fourier
space:

®i;(K,t) = FTy [Rij(r,1)] (1.7)

in which F'T), indicates a Fourier transform:

FT), [f(r,1)] = ﬁ / Flr e KT gy (1.8)

The quantity ®;;(K,t) is called the spectral tensor. In isotropic turbulence,
this tensor should show the same behaviour in all directions of K. It should
therefore be possible to describe its behaviour by a function that is inde-
pendent of the direction of the wavevector K. We obtain such a function
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by integrating over all directions, that is, over spherical shells with a ra-
dius K = |K||. In other words: isotropy allows to use the wavenumber
(the norm of the wavevector) as the main variable instead of the three di-
mensional wavevector. This yields one scalar function, the energy spectrum
E(K,t). The relation between the two quantities is (using the fact that the
velocity field is incompressible):

(1.9)

K:K;\ E(K,1)
(I)'L_](Kat) = (5’& - -;{2‘7) AT K2

This one scalar function E(K,t) describes the entire statistical distribution
of turbulent kinetic energy k over all different lengthscales in an isotropic
turbulent velocity field. The integral of E(K,t) over all wavenumbers yields
the kinetic energy:

/  B(K, )dK = k() (1.10)
0

In the following we will omit the time dependence of the different quantities.
Let us consider a turbulence with a broad range of lengthscales. Most of
the kinetic energy is contained in the large scales. We define the quantity

U=V, (1.11)

as the typical velocity scale of those energy-containing eddies and we can
define a typical lengthscale £, also called the integral lengthscale, corre-
sponding to the size of those large eddies'. The dissipation of the kinetic
energy takes mainly place in the small scales (or large wavenumbers). In
those smallest scales the velocity gradients are the strongest and it is there-
fore at those scales that the viscous stresses (the last term in equation 1.1)
become non-negligible and that the kinetic energy is converted to heat. We
assume that a tiny little eddy is only convected by a large scale and that
in the reference frame following this little eddy the large scale parameters
L and U will not directly influence its behaviour. The dissipation e takes
however place in such small whirls and is governed by viscous effects so that
the dynamics at the dissipation lengthscale n should be determined by the
quantities ¥ and e. Dimensional analysis allows to define this dissipation
lengthscale:

(1.13)

'This is rather an order of magnitude than a rigorous definition. A frequently used
definition of the integral lengthscale in isotropic turbulence is

_ 3w fooo %dk’
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The ratio of convective to viscous effects at a scale £ is given by the
Reynolds number.
_uc

14

Re (1.14)

The subscript £ indicates that the typical lengthscale used in this defini-
tion of the Reynolds number is the integral lengthscale. Another definition,
generally used in isotropic turbulence, is based on the Taylor microscale .
This definition reads (see for example Pope [3]):

20 k2
=/ —— 1.1
Ry =/ 3 e (1.15)

A large Reynolds number corresponds to a large range of lengthscales. In
between the largest ’integral’ scales and the dissipative scales we find in this
case a range of intermediate sized eddies. If their size is much smaller then £
but much larger then 1 we say that they are in the inertial subrange. Much
larger and much smaller are still to be defined.

Similarly, in spectral space the region of the energy containing scales is
separated from the wavenumber range of dissipative eddies by a zone of in-
termediate length-scales that we can call the inertial range. Inertial because
neither the largest scales nor the dissipation scales are directly influencing
their behaviour. The role of those inertial scales consists of transferring
energy from the former to the latter?. In equilibrium this spectral energy
flux must be equal to the dissipation e. For a given turbulent scale [, the
only relevant parameters are therefore the wavenumber K proportional to
the inverse of the local lengthscale [ and e. The energy spectrum should
thus, by dimensional analysis, obey in this region a scaling first proposed by
Kolmogorov [4]:

E(K) = Cge*PK5/3, (1.16)

with Ck a constant of about 1.5. Even in flows that are not perfectly
isotropic this inertial range is expected to appear if the Reynolds num-
ber is high enough. See for example the turbulent boundary layer data
of Saddoughi and Veeravalli [5], showing a neat K %2 slope of the energy
spectrum. The reason is that during the cascade process the anisotropy is
reduced each time that an eddy breaks up into smaller pieces so that the
dissipation scales in such flows are much more isotropic then the largest
scales. This is a rather simplistic view and for a more profound discussion
of the assumption of local isotropy we refer to the papers of Sreenivasan [6]
and Sreenivasan and Antonia [7].

*Indeed, interactions transferring energy from small to large scales, i.e. backscatter,
are not negligible. For turbulence in equilibrium the net flux of energy in the inertial
range will however be from large to small scales.
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Let us now write the evolution equation of E(K):

OE(K)
ot

This equation can be derived starting from the Navier-Stokes equations in
Fourier space. For details we refer to standard textbooks like Pope [3]. The
molecular dissipation of kinetic energy for each wavenumber is represented
by the last term. This term is an explicit function of the molecular viscosity
v and the energy spectrum. and can therefore be calculated without dif-
ficulty in spectral models. This in contrast to one-point modelling, where
the dissipation equation is generally the weakness of the model. The total
dissipation can be calculated by its integration:

=TNN(K) - wK?E(K) (1.17)

/oo wWK?E(K)dK = ¢ (1.18)
0

The first term on the RHS of (1.17) is the non-linear transfer. This transfer
involves the interaction of scales at different wavenumbers:

. KK,
TNY(K) = —2miK,, <6u — #) K? / 1 (P)um (Q)u; (—K)dPdQ
K=P+Q
(1.19)
If we consider the fact that by definition the dissipation is the time derivative
of the kinetic energy:

% = ¢, (1.20)
and considering equation (1.10) we find that the integral of the nonlinear
transfer must be zero: o

/ TV K)dK =0 (1.21)

0

The nonlinear transfer represents in this scenario the role of the energy
cascade from the kinetic energy reservoir at the small wavenumbers to the
kinetic energy destruction at the large wavenumbers. It is therefore this
terms that contains the dynamics of the interaction of the different length-
scales in the inertial range. In fig. 1.1 we illustrate the foregoing. We show
for a small®> Reynolds on the left and a large on the right a sketch of the
spectral behaviour. The two top figures show the energy spectra in log-log
representation. The bottom figures show the nonlinear transfer terms and
dissipation. Their values are multiplied by K to account for the deforma-
tion of the contributions by the log-linear representation. We observe that

3We call Ry = 30 a small Ry. This choice is rather arbitrary. To give an idea: a
well resolved direct numerical simulation at a 128% wavenumber resolution would attain
such a Rx. Ry = 10* is here called large because this is the typical value in atmospheric
measurements.
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Figure 1.1: Typical spectra (top), nonlinear transfer and viscous dissipation
(bottom) in isotropic turbulence at Ry = 30 (left) and Ry = 10000 (right).

x and y scales are chosen arbitrarily.
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the integral value of the transfer terms is zero in agreement with (1.21).
The transfer is negative at the low wavenumbers and positive at the high
wavenumbers: energy is taken from the large scales and transferred to the
small scales where it is dissipated. For the large Reynolds number we see
that the dissipation range is entirely located at the large wave numbers. In
between the large and the small scales we observe a region that appears to
be unaffected by the dissipation and the transfer. The energy entering this
range is in equilibrium with the energy leaving it so that the net balance
is zero. This is the inertial range, only passing energy from scale to scale.
In this range (1.16) should apply. At low R) the dissipation is acting at all
scales and the K ~5/3 zone is not observed.

1.1.3 Mixing of an isotropic passive scalar

The mixing of temperature or chemical species in a turbulent flow can also
be described from a spectral point of view. We uniquely consider the case of
small temperature fluctuations and species that not influence the flow field:
we study in this work the passive scalar. Temperature fluctuations can be
considered as passive scalar fluctuations as long as they are small enough.
We will throughout this work only consider this case and the terms temper-
ature and passive scalar will both be used to denote the same quantity. The
evolution of a passive scalar T in a fluid is described by:

2

with « the diffusivity of the scalar. We will decompose the passive scalar in
a mean value © and a fluctuation 6:

T=0+0 (1.23)

The mixing of a scalar is a process involving all the lengthscales described in
the previous section. The large velocity scales mix the scalar by advection.
The eventual molecular mixing or diffusion takes place in smaller scales. For
a highly diffusive scalar the molecular mixing takes place in scales larger than
the smallest velocity scales. For a scalar with a small diffusivity «, scalar
structures even smaller than the Kolmogorov scale can be observed. The
ratio of advective to diffusive effects at the large scales is proportional to
the Péclet number:

Pe, = — 1.24
ec=— (1.24)

The relation between the size of the smallest eddies and the smallest scalar
structures is a function of the the ratio of the Péclet and the Reynolds
number. This ratio is called the Prandtl number:
v

Pr = 1.25
r=2 (1.25)



20 Scalar mixing in Isotropic Turbulence

This number for heat in water at 20 ° C is 7.01 and varies strongly with the
temperature, for heat in air it is 0.71, almost independent of the ambient
temperature. Like in the foregoing for the velocity field we can define a
temperature variance spectrum. We start from the two point scalar fluctu-
ations:

1
Ry(r,t) = 50(:6)0(:6 +r) (1.26)
and we can similarly take the Fourier transform:

By(K) = %FT/T [0(@)0@ + )] (1.27)

Again, we take advantage of isotropy to reduce this function of the wavevec-

tor K to a function of the wavenumber K = || K|| by integrating over spher-
ical shells. Hence we define the scalar spectrum:

Eo(K) = /E o Bo(K)dL(K) (1.28)

In which 3(K) is a spherical shell with radius K. By definition the integral
of the scalar spectrum is:

/ " By(K)dK = %EQ (1.29)
0

One can derive the equation for the scalar spectrum in isotropic turbulence.
This equation resembles the equation for the energy spectrum:

0Ey(K)

T TNH(K) — 20K?Ey(K) (1.30)
and the molecular diffusion of scalar variance can be calculated:
o0
/ 20K*Ey(K)dK = € (1.31)
0

The analogies between the turbulent scalar and velocity are striking in some
aspects. We can for example define an inertial range just like we did for the
velocity field. Most of the scalar variance is contained in the largest scales
and destroyed in the smallest scales. This incited Obukhov [8] and Corrsin
[9] to extend Kolmogorov’s idea to the scalar spectrum:

Ey(K) =Cco 671/369K75/3 (1.32)

The experimental value of the Corrsin-Obukhov constant Cco shows con-
siderable scatter but according to the work of Sreenivasan [10] the value of
0.4 is a good estimate.
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The nonlinear transfer and diffusion behave similarly as in fig. 1.1. Using
the analogy between the passive scalar and the velocity to describe the scalar
is tempting but risky. The scalar equation does not contain the pressure and
the scalar fluctuations are therefore governed by a pure advection-diffusion
process.

The K ~5/3 scaling (1.32) is indeed observed in experiments, but seems
to be dependent on the scale of injection (Warhaft and Lumley [11]). The
way of generating the fluctuations is another parameter (Jayesh et al. [12]).
Using the same grid to generate the turbulent velocity fluctuations and the
scalar fluctuations by heating the rods, yields a —5/3 scaling at a relatively
low Reynolds number, a value at which we would not expect it because
proper scale separation is not fulfilled. Also the fluctuations generated by
imposing a mean scalar gradient as discussed in the next section show this
low Reynolds —5/3 scaling. In this case scale separation and local isotropy
are both lacking. When the fluctuations are on the other hand introduced by
use of heated wires, independent of the grid and therefore also independent
of the generation of the velocity fluctuations, a much higher Reynolds is
needed to observe the —5/3 scaling. This situation grows even worse if one
considers scalar spectra in shear flows [6], but this issue will not be addressed
until chapter 5.

We should mention here that the inertial range scaling is also dependent
on the Prandtl number. Recent papers reporting the influence of the Prandtl
number on the scalar spectrum are Yeung, Xu and Sreenivasan [13] and
Brethouwer, Hunt and Nieuwstadt [14]. All through this dissertation the
Prandt]l number is assumed around unity.

1.2 Isotropic turbulence with a mean scalar gra-
dient

A way to generate temperature fluctuations in an isotropic turbulence is by
imposing a mean temperature gradient. This case was first considered by
Corrsin [15] and experimentally by Wiskind [16]. The turbulent movements
in the direction of the gradient will transport hot fluid towards a colder
part and vice versa. This mechanism creates a turbulent heat flux in the
direction opposite to the gradient* . This mechanism is illustrated in fig. 1.2.
The scalar field ceases to be isotropic as the gradient imposes a preferential
direction.

4If this gradient is positive, the scalar flux and the scalar flux spectrum are negative.
In the first 4 chapters of this thesis, the gradient will be chosen negative in which case
the production of scalar flux is positive so that scalar flux and scalar flux spectrum are
positive.
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Figure 1.2: Sketch of the physical mechanism of turbulent scalar flux. The
turbulent eddies transport cold fluid towards the hot part of the fluid and
vice versa. This creates a mean turbulent flux w@ of heat in the opposite
direction of the gradient T'.

1.2.1 The anisotropic scalar spectrum

The equation of the scalar variance contains now an extra term: the pro-
duction by the scalar flux:

016 00 —
— U0 - 1.
5 aa:iuzﬁ €9 (1.33)
or for the spectrum:
Eo(K
OBE) oK) 02 + T (K) — 20K*By(K)  (134)
i

Eddies of all different sizes contribute to this scalar flux: it is also a multi-
scale phenomenon and introduces a new spectral quantity: the scalar flux
spectrum.

1.2.2 The spectrum of the scalar flux

We choose the scalar gradient without loss of generality in the z-direction.The
one-point scalar flux equation reads then:

o 090 1,0p dw 00

To study the scalar flux spectrum we derive its equation starting from the
two-point correlation:

Ry9(r) = (ui(z)(z + 1) (1.36)
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and we can take the Fourier transform:
Fuo(K) = FT), [ui(w)ﬂ(a: T r)] (1.37)

The scalar field is not isotropic. The spectrum is however axisymmetric
around the gradient axis. Homogeneity, linearity of the scalar equation and
incompressibility allow to describe F,,¢(K) by one scalar function F,q(K)
that we will call the scalar flux spectrum. The argument that we show here
is due to Lumley [17].

Consider an isotropic turbulent velocity field on which we impose a
uniform mean temperature gradient in an arbitrary direction 00 /0z;.
If we ignore the molecular diffusion, the equation for the scalar fluctu-
ations is:

9 00
@t =0 (1.38)

This equation can be solved to yield:

00

J

(zj — sj(x, 1)) (1.39)

with s;(z,t) the position of the fluid particle at ¢ = 0 that arrives at
x at time ¢t. We can subsequently write

_ 00
0($,t)Ui(m’,t) = _%(_s](mat)ul(ml7t)) (140)
j
The two-point velocity scalar correlation can thus be written as a linear
function of the scalar gradient and a second order tensor a;;(x,2’):

ui(x)8(x’') = —g—gaij(a:,m') (1.41)

We consider a homogeneous scalar and velocity fluctuation field so that
the two point quantity depends only on its separation vector r = '’ —x:

ui(z)f(x + 1) = —%aﬁ (r) (1.42)

and its equivalent in Fourier space:

)
ij
with the tensor A;;(K) dependent uniquely on the velocity field. In

isotropic turbulence, A;;(K,t) independent on the scalar gradient, is
an isotropic quantity. Lumley states that this tensor must be an even

Fuo(K) = — A;;(K) (1.43)
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function of r and its general form is therefore (in an incompressible
fluid):

FualB) =52 150 (3, - 552) - a)
J

Fu:0(K) can subsequently be written as an isotropic function multi-
plied by the scalar gradient. Choosing without loss of generality the
scalar gradient in the z-direction and defining p as the cosine of the
angle between K and the scalar gradient:

K'63 EK3 ZI,LK, (].45)

we can write:

fw&(K) = wa(K7ﬂ)
00
=——(1-p?)f(K,t 1.4
(- 1)K, ) (1.46)
This expression can be integrated over wavenumber shells to yield after
proper normalization the function Fyg(K) so that:

/ Fog(K)dK = b (1.47)

The effect of diffusivity was ignored in the previous derivation. The
introduction of diffusivity is not expected to reintroduce angular de-
pendence in the expression for Fy4(K), the diffusion term being small,
isotropic and non-negligible only at the largest wavenumbers. A for-
mal proof of (1.46) using tensor-invariant theory for homogeneous ax-
isymmetric tensors can be found in the papers of Batchelor [18] and
Chandrasekhar [19]. This yields a more general expression in which
the spherically averaged spectrum is still a function of p. It is how-
ever shown in Herr et al. [20], that this angular dependence vanishes
if it is absent in the initial conditions and they even claim that if it
is present in the initial conditions it will decay if the production term
in the equation of F,¢(K, ) has no angular dependence, which is the
case in isotropic turbulence.

The evolution equation of the scalar flux spectrum will be derived in
detail in chapter 3. The equation reads schematically:

0
ot
The second term on the left hand side is the molecular destruction term of

scalar flux, with v and «a respectively the kinematic viscosity and molecular
diffusion coefficient. P(K) is the production by the mean gradient:

200

P(K) =~ 3, B(K) (1.49)

Fug(K) + (v + @)K Fup(K) = P(K) + T, (K) + TI(K)  (1.48)
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II(K) is the pressure term, corresponding to the spherically integrated value
of TI(K):

%0(:1:) %p(m + r)) , (1.50)

FT), denoting a Fourier transform with respect to r, p the density, p the fluc-
tuating pressure, z the direction of the mean scalar gradient. The non-linear
triple correlation term (or non-linear transfer), T,l(K) is the spherically
integrated value of TNVI'(K):

(K) = FT), (

TOH(K) = iK; (FT), (0(@)u;(@)u(e + 1)

—b(xz)uj(z +r)w(x + r))) (1.51)

it can easily be seen by taking the value of » = 0 that the integral value
of T)VM(K) is zero. We note that we can divide this transfer into two
contributions:

To (Kl = iK; (FT), (0@)u;@)u(@ +1)) )

[T0F (K)] g = —iKj (FT/T (O(m)u](:c +r)w(z + r))) (1.52)

The first of these contributions stems from the advection term in the scalar
equation, the second term from the nonlinear or convection term in the
Navier-Stokes equations. We will need this distinction in chapter 3.

The molecular destruction of scalar flux can be calculated as:

/ o (v + a)K?Fy(K)dK (1.53)
0

with K, the (Kolmogorov) cut-off frequency.

It is worth noting that, contrary to what happens in the equations for the
energy and scalar spectrum, the pressure intervenes explicitly in the equa-
tion through the term II(K). This pressure term is a destructive term that
acts at all wavenumbers. The spectral flux in the inertial range is therefore
not constant, but decreases. We have a cascade that is leaking its spectral
flux. We sketch the situation situation in figure 1.3.

It is generally believed that the small scale structure of a turbulent quan-
tity is more isotropic than the large scales. The scalar flux is a purely
anisotropic quantity and its spectrum is therefore expected to decrease faster
than the scalar spectrum in the inertial range. A measure of the anisotropy
at each lengthscale is given by the correlation spectrum:

FwG(K)

Ly - (1.54)
E(K)Ey(K)

Pwa(K) =
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E(K) ~ e2/3K—5/3 Fue(K) ~ K~ (Mwp)

\ M¢

‘ .

Figure 1.3: The kolmogorov spectral cascade of kinetic energy placed next
to the 'leaking’ cascade of scalar flux.

The slope of the Fy(K) spectrum is expected to be steeper than K 5/3.
If not the small scales would not be more isotropic than the large scales.
An argument based on local isotropy to determine the slope of the scalar
flux spectrum similar to a Kolmogorov or Obukhov argument does not work
as the spectrum would be zero in an isotropic scalar field. The inertial
range behaviour of the scalar flux spectrum will be investigated in the next
chapter. We will first discuss three different methods of studying the scalar
flux spectrum.

1.3 Simulations and analytical theory of scalar mix-
ing

Three different approaches are used in this thesis to study scalar mixing:
Direct Numerical Simulation, Large Eddy Simulation and two-point closures
or analytical theory. Those methods are now briefly discussed.

1.3.1 Direct Numerical Simulation

In section 1.1 we discussed experimental difficulties in generating isotropic
turbulence. Computers allow us nowadays to simulate perfectly isotropic
turbulence. Direct Numerical Simulations (DNS) resolve the full range of
turbulent lengthscales. The Navier-Stokes equations 1.1 are discretized and
this discretized set of equations is solved. The simulations provide an abun-
dance of information about all the different variables in a turbulent flow.
DNS is often considered as the numerical equivalent of ideal real-life turbu-
lence. However, one should be careful because the creation of the turbulent
flow by forcing or by generating initial conditions may have a non negligible
influence on the turbulent statistics. DNS is severely restricted in Reynolds
number due to limits in computational resources. Results of DNS of isotropic



1.3 Simulations and analytical theory of scalar mixing 27

turbulence with a mean scalar gradient can be found in the next chapter.

1.3.2 Large Eddy Simulation

A second approach to study scalar mixing is Large Eddy Simulation (LES).
In LES the large scales are numerically resolved but the small scales and the
interaction between small and large scales are replaced by a so-called subgrid
model. The concept of LES is based on the universal behaviour of the small
scales in a turbulent flow. There is no Reynolds number limitation to LES
but the computer power limits the range of scales that can be resolved. In
general, we can not afford resolutions that resolve a large part of the inertial
range before introducing the cut-off so that studying the inertial range by
LES becomes a delicate job. LES will be discussed in detail in chapter 4,
but results can already be found in section 2.5.

1.3.3 Analytical theory
Scalar mixing in isotropic turbulence

Next to DNS (limited in Reynolds number) and LES (limited in resolution),
the third approach that is employed in this dissertation to study scalar mix-
ing is a closure approach. We use the Eddy-Damped Quasi-Normal Marko-
vian theory (EDQNM). The approach is based on an assumption of Gaus-
sianity of the fourth order moments of turbulent quantities. The EDQNM
theory is suitable to study wavenumber spectra of turbulent second order
moments such as E(K,t) (as prosed by Orszag [21]), Ey(K,t) (Herring et al.
[22], Vignon and Cambon [23]) and Fy(K,t) (Herr et al. [20]). Informa-
tion is obtained about statistical averages: no information on instantaneous
velocity and scalar fluctuations u;(x,t) and (x,t) can be obtained. The ad-
vantage of the method is that at the same time the approach has virtually no
restriction in Reynolds number (calculations up to Ry = 107 are performed
in this work) and the whole wavenumber spectrum is resolved. The only
limitations are the assumptions within the theory. This closure-theory will
be presented and applied to the case of isotropic turbulence with a mean
scalar gradient in chapter 3.

Fig. 1.4 shows an example of typical spectra of the scalar flux obtained
with the three different methods. The picture shows in particular the at-
tractivity of EDQNM, which gives information on the whole wavenumber
spectrum at large Reynolds numbers.

Scalar mixing in homogeneous shear flow

The EDQNM closure was applied to homogeneously sheared turbulence in
the works of Cambon et al. [24] and Bertoglio [25]. In chapter 5 the EDQNM
closure will be applied to scalar mixing in homogeneous shear flow. In
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Figure 1.4: Typical LES (128%) and DNS (2563, Ry = 50) spectra, compared
to the result of an EDQNM calculation (R) = 10°). The large wavenum-
ber extent of EDQNM calculations explains its attractivity to study high
Reynolds number flows
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the presence of shear F,;¢(K) and ®;;(K) can not be expressed exactly
as a function of the wavenumber only. A full EDQNM approach of the
problem would then require to build and numerically integrate a wavevector
dependent closed set of equations. In order to simplify the numerical task
that would result of this complete approach, we integrate the equation over
spherical shells with radius K to obtain the variable:

Fuo(K,t) = / /Z FuolK.dAK) (1.55)

and for the spectral tensor as proposed by Cambon et al. [24]:

The model for ¢;;(K,t) can be found in Touil [1]. The triple correlations ap-
pearing in the evolution equation for F,, ¢(K,t) are treated with the EDQNM
model as discussed in chapter 3. Even though the closure was derived for
isotropic turbulence we will use it here in the case of an anisotropic velocity
field. The approach is not rigorous and has to be seen as an approximation.

Scalar mixing in inhomogeneous turbulence

The EDQNM equations for inhomogeneous turbulence can be found in the
works of Menoret [26] and Burden [27]. Numerically exploitable equations
were derived by Laporta [28] who derived the extension of the EDQNM
theory to weakly inhomogeneous turbulence. Bertoglio and Jeandel [29]
proposed to use the EDQNM closure in wall-bounded flows, introducing a
infrared cut-off frequency to take into account the scale limitation of tur-
bulent structures by the presence of walls. Parpais [30] implemented the
equations derived by Laporta [28] and the approach of Bertoglio and Jean-
del [29] in a finite element code. This model, the SCIT model for Simplified
spectral Closure for Inhomogeneous Turbulence, is able to calculate complex
flows and take into account the interactions between the different turbulent
length scales by use of the EDQNM closure. The main variable of this SCIT-
0 version is the variable E(x, K,t). The anisotropic extension of this model,
the SCIT-1 version, can be found in the PhD dissertation of Touil [1]. The
variable in this work is ¢;;(x, K,t). We propose in chapter 6 an extension of
the model to inhomogeneous scalar mixing. This model is compatible with
the full inhomogeneous SCIT-1 approach.



Chapter 2

On the behaviour of the
velocity-scalar cross
correlation spectrum in the
inertial range

This chapter appeared as a publication in Physics of fluids. The sections
2.1 and 2.2 are rewritten for a better transition with the rest of the thesis.
The reference of the original paper is: W. BOS, H. TOUIL, L. SHAO, J.-P.
BERTOGLIO “ On the behaviour of the velocity-scalar cross correlation
spectrum in the inertial range”, Phys. Fluids 16 (10), 2004.
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2.1 Introduction

In section 1.2.2 the scalar flux spectrum was introduced. We also mentioned
that the inertial range slope for high Reynolds numbers can not be deter-
mined by using an argument of local isotropy, because the scalar flux is a
purely anisotropic quantity. Lumley [17, 31] suggested the scaling law:

Fog(K) ~TeBKT/3 (2.1)

for the behaviour in the inertial range of the scalar flux spectrum at high
Reynolds number. This analysis is based on an assumption that in the
inertial range all spectral behaviour is governed by the quantities € and K.

We will review experiments that measured the slope of Fp(K) in the
next section. A K~7/3 behaviour is found in two works reporting atmo-
spheric measurements. In most of the high and moderate Reynolds number
experiments the spectra are however more compatible with a —2 inertial
range slope. This chapter is an attempt to clarify those observations and
we will examine the possibility of an asymptotic K2 inertial range.

We start in the following section with a short review of experimental
data on the scalar flux spectrum. The terms in the equation for the scalar
flux spectrum are studied in section 2.3 using direct numerical simulation
(DNS). In section 2.4 we present a model based on the physics observed in
our DNS and dimensional arguments. This model allows for both a —2 and
—7/3 inertial range slope for the scalar flux. The Large Eddy Simulations
in 2.5 support the K2 scaling. We conclude this chapter consequently with
a big question mark: is the scaling (2.1) wrong or should we rather suspect
the Large Eddy Simulations?

2.2 Review of experimental data

In the early seventies the paper of Wyngaard and Coté [32] based on ex-
periments in the atmospheric surface layer of Kaimal et al. [33], reports
a —7/3 inertial slope and similar results are found in Kader and Yaglom
[34]. Atmospheric measurements are however affected by external effects
like shear and measurement filtering methods are subject of discussion (see
for example Massman and Lee [35]). In the works of Feigenwinter et al. [36]
and Korrman et al. [37] no distinction between a K~ 7/3 or a K2 spectral
slope can be made. In the recent atmospheric experiment of Su et al. [38]
a K2 range clearly appears. Finally, we mention that a K2 scaling was
already proposed by Horst [39] to fit atmospheric data.

If we examine laboratory results, this K 2 is confirmed: in the grid-
generated turbulence experiment of Mydlarski and Warhaft [40] (M&W),
the spectrum of the scalar flux is found to be close to a K2 scaling. As
stated by the authors this behaviour can be suspected to be a low Reynolds
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Figure 2.1: Behaviour of the spectral slope in the inertial range as a function
of the Reynolds number. n,,: slope of the E11(K7) spectrum, n,,: Fa(K1),
from Mydlarski and Warhaft 1996; [43] ngg: Eg(K1), nyg: Fpe(K1) from
Mydlarski and Warhaft 1998 [40].

number effect. It is however observed for values of Ry up to 582, that is
to say for Reynolds numbers high enough for the scalar spectrum Fy(K) to
show a K %3 inertial range, and the longitudinal velocity spectrum having a
K8 slope. In a recent paper Mydlarski [41] evaluated the structure func-
tion of the turbulent scalar flux (AuA#)(r). This function should behave
4/3 if the spectrum behaves as K~ 7/3 in the inertial range. Mydlarski
found (AuA)(r) ~ r'%2 which provides support to a K ~2 scaling for the
spectrum, r' corresponding to K—2. In a laboratory boundary layer experi-
ment of Antonia and Smalley [42], the scalar flux spectrum shows a K ~1-80
spectral slope at a Ry of 390.

To illustrate the evolution of the different spectra towards their asymp-
totic limits as observed by M&W, the slopes are plotted in Fig. 2.1 as
functions of the Taylor-scale Reynolds number. The expected slope (e.g.
—5/3 for the scalar spectrum) is substracted from the measured slope so
that all presented quantities should tend to zero at high Reynolds number.
For the scalar flux spectrum two different asymptotic slopes are attempted,
—7/3 and —2. We observe that when —7/3 is used as an asymptote, the be-
haviour of the scalar flux spectrum is clearly different from that of the other
spectra and that, when using —2 as an asymptote, all values are comparable.

as r

2.3 Direct numerical simulation

The code used for the DNS is a classical pseudo-spectral code with a second
order Runge-Kutta time integration scheme. The calculations are performed
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Figure 2.2: Kinetic energy, scalar flux and scalar variance spectra (DNS
results), Ry = 50, Pr = 1.

at a 256% resolution. Details about the method can be found in Zhou et al.
[44]. The velocity field is maintained statistically stationary by forcing the
large scales. A deterministic forcing is used (Deutsch. [45]) A constant mean
scalar gradient I' creates the scalar fluctuations. Results are analyzed once
the energy and scalar spectra have reached their statistically steady states.
The Reynolds number based on the Taylor micro-scale in this DNS is 50
and the Prandtl number is 1.

Figure 2.2 shows the kinetic energy, scalar variance and scalar flux spec-
tra. Fe(K) is clearly steeper than E(K), but the Reynolds number is too
low to observe an inertial range.

We recall equation (1.48) for the scalar flux spectrum in isotropic tur-
bulence with a mean scalar gradient:

0
o Fwo(K) + (v + a)K*F(K) = P(K) + Tog" (K) + TI(K) (2.2)
The production P(K), dissipation (v + a)K2F,(K), non-linear transfer
term T;"(K) and pressure term II(K) are plotted in Fig. 2.3 as a function
of the wave-number. We note that:

e The dissipation is small compared to the production as observed in
previous works, [46, 41] so it is essentially the pressure term that bal-
ances the production.

e The balance between pressure and production is not local in the spec-
trum: the production exceeds the pressure term at small wavenumbers,
whereas the opposite is true at higher wavenumbers.



34 The velocity-scalar cross correlation spectrum

2 ‘
K P(K) ——
15+ KTy (K) oo 1
K M(K) -
1l (v +a)K3F,6(K) |
05 F 1
0 L 4
_05 . 4
1k J
_1.5 Il Il 2
107 10° 10 10
K

Figure 2.3: Spectra of the different contributions in the equation of the
scalar flux (DNS results).

e This imbalance between production and pressure can be explained by
the existence of a transfer term, that can also be observed in Fig. 2.3.

e At higher wavenumbers, the production is small compared to the pres-
sure and a local balance between pressure and transfer is observed

Note that the values in the figures are normalized by the maximum value
(peaks being ignored) of the production term.

2.4 Dimensional arguments and scaling

In this section we consider the case of high Reynolds number and assume the
Kolmogorov [4] and Corrsin-Obukhov [9, 8] spectra for the kinetic energy
and scalar variance:

E(K) = Cge?*K—/3 (2.3a)

Ey(K) = Cooe Y3eg K53 (2.3b)

with eg the dissipation of scalar fluctuations, Cx, Cco being constants. The
analysis could be improved, adding a K* zone at the small wavenumbers
and taking into account the rounding of the spectra in the vicinity of the

wavenumber where the spectra attain their maxima, but this would not
affect the resulting scaling expressions.

2.4.1 Inertial scaling of the scalar flux spectrum

Lumley [31] proposed that the turbulent scalar flux spectrum in isotropic
turbulence with a mean scalar gradient in the inertial range should depend
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on the variables €, the local flux of kinetic energy (equal to the viscous
dissipation in the limit of infinite Reynolds number), I, the mean scalar
gradient and the wavenumber K:

Fw@(K) = f(raea K) (24)
A dimensional analysis then leads to the expression:
Fug(K) ~Te/3KT/3 (2.5)

If, instead of T, a spectral flux of F,(K), e£/(K), is introduced in the
analysis,
Fug(K) ~ f(eug(K), € K) (2:6)

a different scaling is obtained:
Fug(K) = Crel (K)e /3K =5/3 (2.7)

with Cp a constant. It can be noticed that (2.7) is similar to the Corrsin-

Obukhov scaling for Ey(K) (2.3b), in which €X' ,(K) replaces eg. The flux

ega(K ) is a quantity that is associated with the non-linear transfer term

TE(K). 1t is not conserved in the cascade (unlike €y that is conserved
in the inertial range), F,,4(K) being destroyed by the pressure effect. We
suppose that the flux follows a power-law dependence with K:

€uwp(K) = fK ™ (2.8)
with f. independent of K. This yields:
Fuo(K) = Cp fee /3K =6/3+7) (2.9)

To express fe, (2.9) is integrated over K assuming an inertial range extending
from Kj to infinity:

- Cr —1/3 3-—(2/3+7)
6= Fuo(K)dK = ——— f, BK 7

o fe g/

(2.10)

Introducing the correlation coefficient p,4 leads to:
w0 = pueVu2Ve? (2.11)

Evaluating u? and 62 by integration of (2.3a) and (2.3b) and using an as-
sumption of proportionality between production and dissipation to express

€g:

g ~ Two (2.12)
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lead to: L,
wh ~ p2Tu? e (2.13)

Using (2.10) and (2.13) we can express equation (2.9) as:

ng (K) ~ pz}erm(lf?”)//Q) 6771/3K7(5/3+7)
(2.14)

Note that the proportionality between production and destruction of tem-
perature fluctuations (2.12) has been observed experimentally by Sirivat and
Warhaft [47] as well as in LES by Chasnov [48], and that pyp is known to
tend to an asymptotic value of approximately 0.7 (Sirivat and Warhaft [47]
and Budwig et al. [49]).

The value of + is still to be determined, v = 2/3 leading to Lumley’s
original scaling.

2.4.2 The non-linear interaction in the inertial range

To understand the physics behind <y, one has to investigate the balance of
the different terms in equation (1.48). We will neglect the instationary term
in the inertial range. The flux €f,(K) is supposed to be a function of the
parameters governing the non-linear transfer, ¢, K and F,y(K). Classical
reasoning allows to give a crude estimation for the non linear transfer:

0
Ty (K) ~ =229(6, K, Fup (K)) (2.15)
Dimensional analysis gives:
0
Ty (K) = —Ar = [61/ SKSB (K )] (2.16)
or in the inertial range:
Ty (K) = yAre P K*I*Fy(K) (2.17)

Using a Rotta-like hypothesis, we assume the pressure term II(K) to be
proportional to the inverse of a local time-scale 7(K) and to Fyg(K) [50]:

TI(K) ~ —%Fwe(m (2.18)

Taking a time-scale built on the spectral energy flux € and the wave-vector:
T(K) ~ e \B3K2/3 (2.19)

it is found:
TI(K) = —Ap /3 K?3F,4(K) (2.20)
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We can proceed by supposing the molecular dissipation sufficiently small
compared to the pressure destruction at high Reynolds numbers. The non-
linear transfer has a zero integral value, so that:

i = - [ K (2.21)
J. A

The production is equal to:
Ky _
P(K)dK =Tu? (2.22)
Ko
which determines Ay.
If we furthermore assume that in the inertial range there is a local balance
between pressure and non-linear transfer as observed in the DNS, we obtain:

Ap = An’yil (223)

so that there is only one free parameter in the model: . Writing the sum
of transfer and pressure and using (2.23) give:

0
TNHEK) +TI(K) = AT€1/3K—76_K [K5/3+7Fwa(K)] (2.24)

which is the model of the global effect of the triple correlations. We observe
that this term is zero for a K—(/347) inertial range.

The value v = 0 corresponds to the limiting case where the flux e (K)
would be constant in the cascade which is excluded by the presence of the
pressure term. Negative v would even correspond to a flux increasing with
K and are also excluded. The case v = 2/3, corresponding to Lumley’s
scaling appears as the other limit. F,9(K) then reads:

y=2/3 — Fu(K)~ p2elePKT/3 (2.25)

In this case production and pressure terms decay in the inertial range with
the same exponent: —5/3. Larger 7 are excluded because production would
then be compensated nor by transfer neither by pressure!. It is thus plausible
that -y belongs to the interval ]0,2/3]. v = 1/3 is within this interval and in
this case we have:

y=1/3 — Fu(K)~ p2,JUK 2 (2.28)

!This situation is observed at small Pr: in the large wavenumber region of the inertial
range the molecular destruction becomes dominant compared to the nonlinear interaction.
A local balance between the production and the molecular destruction,

2
(v+ a)K’Fue(K) = 3TE(K), (2.26)
and expression (2.3a) yields then a K ~11/3 wavenumber dependence:
Fuo(K) = %(u+a)*chre2/3K*“/3. (2.27)

This behaviour is observed in a recent paper of O’Gorman and Pullin [51].
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Figure 2.4: Compensated Energy and Scalar Variance spectrum, LES re-
sults.

2.5 Large eddy simulation

Laboratory experiments and DNS calculations are restricted to relatively
low Reynolds numbers, whereas atmospheric experiments are subjected to
large measurement and filtering errors and secondary effects. For this rea-
son Large Eddy Simulations (LES) were performed. LES should provide
indications on the value of 7 and thus on the asymptotic slope of the scalar
flux spectrum.

The code used for the LES is the same as described in section 2.3. The
calculations were performed at a 1283 resolution. The subgrid model is the
Chollet and Lesieur eddy viscosity model [52] for the velocity field. To model
the subgrid scalar field, a constant subgrid Prandtl number is assumed:
Prp = 0.6.

We show in Fig. 2.4 the compensated kinetic energy and scalar variance
spectrum. The spectra are compensated according to the Kolmogorov and
Corrsin-Obukhov scaling laws (2.3a) and (2.3b) and good agreement with
the theory is observed. The Kolmogorov constant in our calculation is 1.9,
the Corrsin-Obukhov constant 0.9. This last value is slightly high but in
perfect agreement with previous LES using a constant turbulent Prandtl
number (see Lesieur and Rogallo [53]). In Fig. 2.5 we show the scalar flux
spectrum. In Fig. 2.6 we show the same spectrum in compensated form.
The scalar flux spectrum is compensated according to the scaling relations
(2.25) and (2.28). In both figures the K2 slope of the scalar flux spectrum
is clear.

Figure 2.7 shows the compensated spectrum of the pressure term II(K).
Equation (2.20) predicts that a y = 1/3 corresponds to a K —4/3 slope of the
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Figure 2.6: Compensated Scalar Flux spectrum, LES results.
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Figure 2.7: Spectrum of the pressure term in the equation of the scalar flux
compensated with K*/3 (LES results).
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pressure term. This K~*/° slope for the pressure term is clearly observed.

2.6 Conclusion

DNS shows the existence of a spectral range in which F,9(K) is not produced
by the production by the mean gradient, but by the non linear interaction.
This observation provides support to a cascade type of analysis. When a
spectral flux of scalar flux, €£ (K, is introduced, dimensional analysis yields
an inertial range slope for Fy,9(K) dependent on a parameter  that reflects
the evolution of the spectral flux in the cascade of Fy,9(K). The asymptotic
spectrum obtained allows for a slope between K~5/3 and K~7/3.

Our Large eddy simulations show a clear K 2 scaling for the scalar flux
spectrum, and also confirm the related K ~*/3 scaling of the pressure term.
We stress however that although in our LES the value of v is clearly much
more likely to be 1/3 than 2/3, the present analysis does not exclude the
possibility of a K~7/3 spectrum.

It has to be noticed that the EDQNM equations in the presence of a
mean scalar gradient have been derived by Herr et al. [20, 54] Comparisons
with the present analysis would constitute an interesting direction for future
work?.

We would like to thank Professor G.X. Cui and Professor Z.S. Zhang of
the Department of Engineering Mechanics, Tsinghua University, Beijing, for
providing the DNS results used in this work.

2This will be the subject of the next chapter



Chapter 3

The Eddy-Damped
Quasi-Normal Markovian
Theory

In the previous chapter we showed that LES, DNS and dimensional analysis
give no definite answer to the question: what is the slope of the inertial range
of the scalar flux spectrum? Spectral closures such as the Eddy-Damped
Quasi-Normal Markovianized (EDQNM) theory are adequate tools to ex-
amine triadic interactions between wavevectors and therefore contribute to
the understanding of the behaviour of spectra of turbulent quantities.

The EDQNM theory was formalized by Orszag [21] for the kinetic en-
ergy spectrum and applied to an isotropic scalar by Herring et al. [22] (see
also Vignon and Cambon [23, 55]). We refer to Lesieur [56] for an exten-
sive discussion of the EDQNM theory for the isotropic energy spectrum
E(K) and the isotropic scalar spectrum Ey(K). More recently this closure
was extended to the scalar flux spectrum by Herr [20] (see also the papers
of Nakauchi and Sega [57], Ulitsky et al. [54, 58]). We will discuss this
derivation and rewrite it in detail in section 3.1. For these readers who are
not interested in the details of the derivation, we refer to section 3.1.1 for
an overview of the derivation and section 3.1.7 in which we show the final
equation.

In section 3.3 it will be shown that the two model constants involving the
Eddy Damping can be determined in another way than proposed in previous
works. This choice is not the same as the choice in the papers mentioned
before [20, 54, 58]. In this same section we discuss the influence of the mean
scalar gradient on the non-linear interactions.

In section 3.4 we will analyze the results of EDQNM calculations in a
broad range of Reynolds numbers. We will focus on inertial and dissipation
range statistics because spectral closures are particularly well suited to study
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this part of the spectrum: the dissipation is calculated exactly and the
triadic interaction is present to give meaningful inertial range behaviour.
Those results are unattainable by LES, because they are not or only partly
resolved, and restricted to low Reynolds numbers in DNS.

3.1 Derivation of the EDQNM equations

3.1.1 Overview

In this section the evolution-equation for the scalar-velocity cross-correlation
spectrum is derived and closed by the EDQNM theory. We consider an
isotropic, incompressible, turbulent velocity field. The passive scalar fluctu-
ations are generated by a mean scalar gradient, resulting in an axisymmetric
distribution of scalar fluctuations. Starting from the Fourier representation
of the equations of the scalar and velocity fluctuations, we will derive the
equation of the velocity-scalar cross-correlation. Schematically this equation
reads:

[%Jr(wra)K?]W:f(W)—FW (3.1)

This is the same equation as (1.48). On the left-hand side we see the time
derivative and the viscous dissipation and diffusion. The pressure term and
non-linear transfer term in equation (1.48) are here gathered in the triple
correlation term wu@ and the last term is the production term. The triple
correlations are the unclosed term. To close them, we write in section 3.1.3
the equation for those triple correlations:

9 - -
[a + v+ a)KQ] wub = fo(uuuf) — T'uun (3.2)
This equation introduces quadruple correlations wuuf and triple correlations
uuw. The quadruple correlations will be closed by assuming that the tur-
bulent and scalar field are close to a Gaussian state. Gaussian fourth-order
moments can be expressed as a sum of products of second order moments:

uuuf — ZW uf (3.3)

As a result of the absence of the fourth order cumulants, the triple correla-
tions are only damped by viscous forces. The non linear damping caused by
the interaction amongst turbulent scales that has thus been removed can be
modeled by adding an eddy damping p(K) to the equation.

0 9 — =
pn + v+ a)K*+ u(K)] uuf = Z uu uf — T'uuu (3.4)



3.1 Derivation of the EDQNM equations 43

This differential equation can simply be solved yielding a solution, depending
on the entire history of the triple correlations:

wuf — /0 "G [ wb(r) - vaw(r)] dr (3.5)

with

G(r) = exp [— / (v + K + (K, T)dT]
(3.6)

The process of Markovianization, assuming the characteristic time scale of
G small compared to the time scale of the correlations wu and uf, allows
a substantial simplification. If, in addition, the time variation of the eddy
damping is neglected, the solution reads:

wul = O(t) [Z w ul(t) — rm(t)] (3.7)

with

o) = / G(r)dr. (3.8)

Equation (3.7) still contains triple correlations wuw, that will be treated
in section 3.1.4 in exactly the same manner as the triple correlations uuf.
Those terms, containing the mean gradient, cause difficulties in the Marko-
vianization step and a common practice is to neglect those terms (this is the
EDQNM1 approach). Taking into account the effect of those terms is called
EDQNM2. This subject will be treated in detail in section 3.3.4.

Applying the quasi normal assumption, eddy damping and Markovian-
ization to the velocity correlations gives:

www = O"(t) > wu wu(t) (3.9)

We use this expression in equation (3.7) to obtain a closed expression for
the triple correlations uuf:

wul = O(t) [Zm ub(t) —TO%(t) S wm m(t)] (3.10)

this expression is used to close (3.1) in section 3.1.5. As mentioned before,
the triple correlations uuf contain the contributions of non-linear transfer
and pressure. If one wants to investigate those terms separately, one needs
to identify their individual contributions. This is done in section 3.1.6.
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3.1.2 Two point correlation between the velocity and the
scalar fluctuation

We write the spectral formulation of the Navier-Stokes and scalar fluctua-
tion equation for incompressible isotropic turbulence with a passive scalar
gradient [' in the z-direction:

[Q + VK2:| iy (K, 1) = —i K, Py;(K) /K (P, 1)i,(Q,t)dP  (3.11)

ot =P+Q
and
[Q + aMQ] O(M,t) = —iM, (P, 1)0(Q, t)dP — as(M, t)T
ot M=P+Q

(3.12)
in which we use the projection operator P;;(K) = d;; — KZK]/(KZ) In the
following we will omit the time dependence but one should keep in mind
that every quantity involving a scalar or velocity fluctuation is a function of
time. We multiply the first equation by §(M), the second by @ (K), sum
and average, to obtain:

9 L UK? +aM? ik (K)B(M) = — = Py (K) / i (P)iia (Q)(M)dP
—iM, iia(P)0(Q) ik (K)dP
M=P+Q

—tz(M)i (K)T

(3.13)
in which we used the symmetry property that
—iK,Py;(K) / (P, (Q)dP = —%P,m]-(K) / i;(P)iie (Q)dP
K=P+Q K=P+Q

(3.14)

with Pp(K) = K;Pi(K) + K P;;(K). In homogeneous turbulence the
velocity correlation 4;(M)4(K) can be rewritten as:

ﬁZ(M)ﬁJ (K) = cI)ij (K)(S(K + M) (315)
with ®;;(K) the spectral tensor. If, in addition, the turbulent velocity field

is incompressible and isotropic one can express the spectral tensor as a
function of the kinetic energy spectrum:

E(K)

q%‘j(K) = ij(K)W

(3.16)
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Homogeneity, incompressibility and axisymmetry allow similarly to express

i, (K)A(M) as a function of the scalar flux spectrum. We showed the argu-
ment in section 1.2.2. Similar arguments can be found in [54] or O’Gorman
& Pullin [59].

As in equation (1.43) we can write:

~ 00
(K, t)0(M,t) = —%A‘j(K,t)é(K + M) (3.17)
J
with the tensor A;;(K,t) dependent uniquely on the velocity field. In
isotropic turbulence, A;;(K,t) independent on the scalar gradient, is an
isotropic quantity and its general form is therefore (in an incompressible
fluid):

0o,
Oz,

Normalizing the function f(K,t) and choosing the scalar gradient in the
z-direction:

iy (K, t)é(Ma t) = K, t)]Jij (K)§(K + M) (3.18)

i (K)I(M) = 2 Py () T 5

(K + M)
(3.19)

Substituting identities (3.19) and (3.16) into equation (3.13):

§(K +M)T (3.20)

Multiplying both sides by Pr3(K) and taking M = —K

F(K) _
ArK2

[% +vK? + aKZ] Pi3(K) P (K)

2

~5Phes ORI [ (Pia(QOK)P

+iKaPk3(K)§ [ e 1P Q)is (K) P

E(K)
4T K?

_§Pk3 (K) Pr3(K) r (3.21)

We define i as the cosine of the angle between K and the scalar gradient:
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K:e3=uK (3.22)

We note that Pkg(K)Pkg(K) =1- /1,2 and PZ3(K)PZ]]€(K) = P3]k(K) and
write:

[% o a)KZ] F(K) + %E(K)F -

8irK? |1 " N =
m [§P3aj(—K) /I; P1Q UG(Q)UJ(P)Q(—K)dP
+EPa®) [ B E)LPRQP (3.23)
~K=P+
Rewriting the integral:
/ o™ / / 5(K + P + Q)dPdQ (3.24)

and replacing the variables P by —P and @Q by —Q@Q in the first integral we
obtain:

[gt (v + a)Kz] F(K)+ %E(K)I‘ =

SinK? [1
3(1]

) K) [[ 6K - P - Qi (- Qi (P)(—K)(—P)i(-Q)

+K,Pys(K) / §(K +P + Q)i (K)aa<P>é(Q)deQ]3.25)

noting that up( M) = 4,(M)*, * denoting complex conjugated, and using
the fact that a*b* = (ab)* we write:

[gt v+ a)K2] F(K)+ %E(K)F -

8imK? [ 1
3a]

3(1—p?) / ‘5K+P+Q ua(Q)uJ( )6(K )) dPdQ

+K,P3(K) / S(K+P+ Q)ak(K)ﬁa(P)é(Q)deQ] (3.26)

noting that Pj;;(—K) = —P;;;(K) we obtain after some shuffling of the
indexes

[% + (v + a)Kz] F(K) =

827TK2 / K P (K)S(K + P + Q)i (K) i (P)é(Q)

_§P3aj(K)6(K +P+Q) (aa(Q)ﬁj (P)

D>
~—~~
N—r

N——
*
—_

IS

)

U
Is)

—ZE(K)T (3.27)
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Defining:

~

T.; (K, P, Q) = 5(K + P + Q)i (K)i; (P)A(Q) (3.28)
T3(QP,K) = 6(K + P + Q) (11 (Q)i;(P)I(K)) (3.29)

we obtain the expression:
8imrK?2
3(1—p?)
1

- 5 3jn (K)T;n (Q: P7 K):| deQ

[2 + (v + a)K2] F(K) =

o IS Xy

—%E(K)I‘ (3.30)

This expression is exact, but the triple-correlations are unknown. To pro-
ceed we will write the equation for the triple correlations in the following.

3.1.3 Velocity-scalar triple correlations uuf

Following the same procedure as for the double correlations we write the
equations for 4y (K), 4;(L) and §(M). We find after multiplication, summing
and averaging:

2
3Pa® [ & (P)a (@i (K)IM)P
L=P+Q
~iM, i1 (P)(Q) i (K)dy (L) dP
M=P+Q

— Uk (K)dy (L) dg (M)T (3.31)

The quasi normal assumption consists of assuming Gaussianity of the
quadruple correlations and thus neglecting the fourth-order cumulants. Gaus-
sian fourth-order moments can be written as a sum of products of second
order moments:

4;(P)iu(L) 4a(Q)O(M) + i (P)I(M) 10 (Q)dy (L) (3.32)

The first term on the right hand side can not form triads except for K =0
so it disappears in equation (3.31). Using equations (3.16) and (3.19) and
noting that
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[ Pace) P 5@ + L)ap = Py(-1) D) = b))
[ Pl @ T R5(Q+ M)Q = Pua(-M) L) = PuslM g (333)
defining:
1
f(K,P)= (A KP? (3.34)
we find:

% + (K2 + L%) + aM?| i (K) i (L)A(M) =

2 Pray (K) [P (L) B(L) Pas(M)F (M) + Pos(L)B(L) Py (M)F (M) 5
2 Piaj (L) [Py (K) B(K) Pa(M)F(M) + Py (K) B(K) Py (M) F(M)
~iM, [Pog (K)E(K) Py (L)F(E) + Poy(L)E(L) Pay (K) F(K)] 3 [ (K, T)
— g (K) ity (L)as (M)T
(3.35)

One can use the symmetry of ¢ and j in the first two terms on the RHS to
simplify the equation:

) .
FTi v(K? 4+ L?) + aM?| a3 (K)dy (L)§(M) =

~iPiaj (K) [P (L) E(L) Poy (M)F(M)] 5 F(L, M)
~iPiaj (L) [Py (K) B(K) Pog(M)F(M)] 5 £ (K, M)

2
— g (K)d (L)as (M)T
(3.36)
We add a damping term to the left hand side of the last equation:
% +u(K?+ L% + aMQ] -
0
5 +v(K?+ L?) + aM? +7/(K) +n'(L) +n”(M)] (3.37)

We will discuss the need for this eddy damping and its form in section 3.3.1.
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One can solve equation (3.36) to obtain a solution for the triple correla-
tions. We assume zero triple correlations at ¢ = 0 and find:

ar(K) i (L)I(M) =
% / G55 (Pras (K) Pyt (L) Pas (M) (L, 7)F (M, 7) f(L, M)

+ P (L) Pj (K) Pos (M) E(K, 7) F (M, 7) f (K, M)
+Ma [Pak(K)PlS (L)E(K7 T)F(L7T) + Pal(L)PkS (K)E(L )F(Ka T)] f(K7 L)
(

2
+ o K,T)al(L,T)a3(M,T)r)dT

(3.38)

with

GEbon = exp {— / (W(K? + L?) + aM? +7/(K,7) + 7' (L, 7) + 7" (M, T))dT]

(3.39)

Apart from the triple velocity correlations in (3.38) that we will treat in the
next section, this EDQN approximation represents a closed solution for the
evolution equation of the scalar spectrum (3.30). Markovianization allows
then a substantial simplification of equation (3.38). Assuming the time scale
of ©K IL)gN small compared to the timescale of the energy and flux spectra,
equation (3.38) can be rewritten:

i (K)ay (L)G(M) =
i / O M dr (Pra; (K) Py (L) Pas (M) E(L, ) F (M, 1) (L,

M)
+Pia;j (L) P (K) Pos(M)E(K, t) F (M, t) f (K, M)
+Ma [Pak(K)-PB(L)E(Ka t)F(Lat) + Pa,l( )Pk3 (K E( )F( )] ( )

)
+ 2 (K, D) (T, D (VG )T ) (3.40)

Leith [60] proposed to neglect the time variation of the eddy damping,
yielding

t
QFLM _ /0 OKEM 7 =

1 —exp— [v(K® + L?) + aM? + 1/ (K) + 1/ (L) + 7" (M)] t
v(K? + L?) + aM? + n'(K) +7'(L) + n" (M)

(3.41)

We still need to close the triple velocity correlations in (3.40).



50 The Eddy-Damped Quasi-Normal Markovian Theory

3.1.4 Velocity triple correlations uuu

Following exactly the same approach as in the last section, one can write
the equation for the triple velocity correlations.

|55+ + 22 400 | G TR, (V)

(3.42)

applying the assumption of Gaussianity to the fourth order moments:

ot
j (K) [Pji (L) Parn (M) + Pot (L) Py (M)] f (L, M) E(L) E(M)

[Q + v(K? + L + M?)| 4 (K) @y (L), (M) =

—5Pra; (L) [Pjr (K) Par (M) + Poy (K) Pjry (M) f (K, M) E(K) E(M)

— 5 Prmaj (M) [Pji (K) P (L) + Por(K) Py (L)] f (K, L) E(K) E(L)
(3.43)

and using the symmetry of P;;x = Pj; we have:

O (K 12 4 M) | (Rt (V) =

—1Ppa; (K) Pji (L) Parn (M) f (L, M) E(L) E(M)
—iPiaj(L) Pjk (K) Par (M) f (K, M) E(K) E(M)
i Pynaj (M) P4 (K) Pur(L) £ (K, L) E(K) E(L) (3.44)
After Eddy damping and Markovianization this gives:
4;(K)an (P)i3(Q) = —i0" |
Pjap (K) Py (P) Po3 (Q) £ (P, Q) E(P) E(Q)
+Prab (P) Py; (K) Py (Q) f (K, Q) E(K) E(Q)
+P3a(Q) Py (K) Pon (P) f (K, P)E(K)E(P) | (3.45)

In which we changed the indices and wavenumbers: k — 5, [ — n, m — 3,
j—bL—P M — Q and with a damping term:

v_1—exp— [V(K? + P2 + Q%) +n(K) +n(P) +n(Q)] t

© S(K2+ P2 Q)+ 0(K) + 1(P) + n(Q)

(3.46)
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3.1.5 The EDQNM equation for the scalar flux spectrum

Replacing the expression for the triple velocity correlation wuw (3.45) in the
expression for the mixed correlation uué (3.40) and using equation (3.28),
Tjn(K,P, Q) can be expressed as:

Tyu(K, P, Q) = ~ 2 XA (K + P + Q){ F1us(K) Pin (P)E(P) Pos( QF (Q) (P, Q)
+Paan (P)Poj (K) E(K) Pos (Q)F (Q) £ (K., Q)

+Qa [Paj (K)E(K) Pag(P)F(P) + Pan(P) E(P) Pis (K)F (K)] f (K, P)

~ 210V [P0 () Pin(P) Pas (Q) (P, Q) B(P) B

+Pran(P) Py (K) Pas (Q) £ (K, Q) E (K ) E(

+Psar(Q) Py (K) Pan (P) (K, P)E(K) E(P)

Q)
Q)
(3.47)

It can be seen from equations (3.36) and (3.43) that, at least in the Quasi

~

Normal approximation, (aa(Q)@j (P)G(K)) " isa purely imaginary quantitity
so that we can replace Tj‘n(Q, P,K) by —T;,(Q,P,K). We substitute (3.47)
in equation (3.30) to obtain the closed equation for the scalar flux spectrum:

[38,5 (y+a)K2] F(K)+§E( 47r(1 ;ﬁ //l

K, Py (K) (0 F6(K + P + Q){ Pjas (K) Pon(P) Pus (Q)E' (P)F'(Q

)
+Prab(P) Py (K) Pus (Q) E'(K) F' (Q)
+Qa [Pa; (K) Po3(P)E'(K) F'(P) + Pan(P) Pjs(K) E'(P)F' (K))]

~ 216V [P0y (K) Py (P) Pus(Q)F' (P) (@)
+Pnab(P)PbJ( )Pa3(Q)E( ) ( )

+Psas (Q) Py (K) Pan (P) B () E'(P)] })
45 Pyjn(K) (097 5(K + P + Q) { P (Q) Pon (P)Pus(K) ' (P) ' (K)
+Prab (P) Py (Q) Pz (K) E'(Q) F' (K)

+Ko [Pay(Q)Pra(P)E'(Q)F'(P) + Pun(P) P3(Q) ' (P)F'(Q)]
~ 20OV (@ [P0y (Q) Py (P) Pos (K) ' (P) ' (K)
+Pnab(P)ij (Q)Pa3( (K)

+
o~
S
=
fa
o
7
=
&
S
&
——

(3.48)
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K

Figure 3.1: Wavenumber triad, contributing to the non-linear interaction.

with E'(K) = E(K)/K? and F'(K) = F(K)/K?. In the appendix is shown
how one can express the above integral as a function of the norm K, P and
Q of the wavevectors, the cosines z, y and z (see figure 3.1) of their interior
angles and p, the cosine of the angle between K and the direction of the
mean scalar gradient. All calculations done we find:

(3.49)

with
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H = Q*-2y®—y2® — 2z — 2229°)
H, = P3(y2 —yx + 22%2y)

Hy = K3(—2°-22%% —2yz+1+9%)
Hy = Q- 2 — 2z7)

Hy = P3(—2%—yx — 22? +z)

Hye = K3(-z —22%y% —yzz + 1)
Hr = Q(- Z(ZJZ+$))

Ji = Q(=2(zz+y?)

J, = P3- 2(y:1:+z )

Js = K3(2—4y*2* — 2zy2)

L= P 2<ym+z))

Js = K3(—22 —22%y° —yzzx + 1497
Jo = K3(—y?+ 14 2% —22%% —yz2)
o= Q*(=2(2z +¢°) (3.50)

We note that the a factor (1 — u?) appears in all terms which, together
with the factor (1 — p2)~! in equation (3.48) cancels out the u-dependence
of the equation of the scalar flux spectrum. The equation is now closed and
suitable for numerical exploitation. At this point it has to be noted that
the terms containing the scalar gradient I' have been obtained by a double
Markovianization process and that they contain a double eddy damping.
We could say that they are modeled by an EDM-EDQNM procedure and
that the derivation of those terms is thus more questionable.

3.1.6 Decoupling the contributions of pressure and non-linear
transfer

To investigate independently the different contributions in the scalar flux
equation, one needs to decouple the pressure and non-linear transfer. In the
above derivation, the influence of the pressure is not observable indepen-
dently, because in equation (3.11) the pressure is absorbed in the non-linear
transfer (the non-linear term is multiplied by the projector P;;(K)). We
could rewrite the equation in the form:

[ 4 + uKz] (K, t) = —iK, Uk (P, 1)0,(Q,1)dP — iKpp(K)  (3.51)
ot K=P+Q

with p(K) the kinematic pressure i.e. the pressure divided by the density.
The contribution of the pressure can be written as:

K,K,K R N
~iKH(K) = etk [ o 3 Pin(Q)P (3.52)
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and the convection term can be written as:
Kby [ (P (QP (3.59)
K=P+Q

We could derive the closure starting from the beginning with the two above
contributions decoupled. An alternative way is to identify the contribution
stemming from the convection term only. The pressure term can then be
obtained by substraction.

We derive the equation for the z—component of the spectrum: Fyg(K)
without applying the projector P;j3(K). The starting equations are now:

[ gt + I/K2] a3(K) = —iK, S 3(P) i, (Q)dP — iK3p(K) (3.54)
=P+
[‘9 + onQ] 6(M) = —iM, 6a(P)0(Q)dP — 43(M)I  (3.55)
ot M=P+Q
yielding
[% +vK? + aM2] a3(K)d(M) = —iK, ti3(P)i, (Q)(M)dP
K=P+Q

+ [T (K)], + TI(K) + P(K)  (3.56)

The non linear triple correlation originating from the #-equation, [T/ (K)] 9
corresponding to the H-terms in the previous section are unchanged, the
pressure term II(K) is unknown but can be obtained by substracting the
term [TNL(K)] (the first term on the right hand side of (3.56)) from the

J-terms in the previous section. So in the equation:

[gt (y+a)K2] F(K)(1 - S”TKQ // —K;(K)Tj3(Q, P, K)dPdQ
[Tﬁ,L(K)] , +TI(K) + P(K) (3.57)

one only needs to derive an expression for the first term on the right hand
side, [TV (K )]u To derive the expression for this term we use the same
technique as in the previous sections. The only additional difficulty is that
there is no common term (1—p2) appearing on the right hand side. To obtain
an expression independent of u, we integrate both sides of the equation with
respect to u:

[% + (y+a)K2] /01 F(K)(1 — p2)dp = / im K™ // -K;(K)T}3(Q, P, K)dPdQ

+ [T5" (K )]9 +I(K) + P(K)du
(3.58)
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Eventually we find

[2 4 s )R?] PO + ZB0OT = (TG0, + (TG0, + ) (539)

with the non-linear transfer contributions

(T2 (K)], =

i / /A [%@QPK{ - §F®U [LlE(P)E(K ) + LE(Q)E(K) + L3E(Q)E(P)]

+LE(Q)F(K) + Ls E(P)F(Q) + L E(Q)F(P) + L7E(P)F(K)}] dFP %
(3.60)

and

(T2 (K)], =

% / /A [@KPQ{ _ %I‘G)U[HIE(K)E(P) + HyE(K)E(Q) + Hy E(P) E(Q)}

+HLE(P)F(K) + Hy B(K)F(Q) + HsB(P)F(Q) + HyE(K)F(P)}] d?P %
(3.61)

and the pressure term

T(K) = % / /A [%@QPK{ — %F@U[(Jl — L)E(P)E(K) + (Jo — L2)E(Q)E(K) +

(Js = L) E(Q)E(P)| + (Ji — L) E(Q)F(K) + (J5 — Ls)E(P)F(Q)

in which

Li = 2Q%—zz—y® +ya® —y)

Ly = 2P3y’z —yx +22°%zy)

Ly = 2K3(-22%% + xyz + 2y* + 2?)

Ly = 2P3y’z—yx + 22°xy)

Ly = 2K3(—222+2)

Le = 2K3(yzx +2°)

Ly = 2Q%*—zzx—y® +yz®—v) (3.63)
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3.1.7 Final formulation of the model

In the previous 5 sections we showed the derivation of the EDQNM closure
for the scalar flux spectrum. The final result is equivalent to the equation in
Herr et al. [20]. The two expressions differ only by definition of the angles
between the wavevectors. Also in our form we have separate information
about the non-linear transfer term and the pressure scrambling term, where

those contributions where not separated in the formulation of Herr et al.
We resume here the derived equation:

[% + v+ a)KZ] F(K) + §E(K)F = [TOH ()], + [Tof (K)], + LK) (3.64)

with

[T (K / /A dP dQ (3.65)

[TNF (K / /A dP dQ (3.66)

// i ]dgf{g (3.67)

The contributions #H;, £; and J; can be found in table 3.1. In those
expression we find the relaxation time ©(u):

o) = <= _Of_at (3.68)

with
po (K, P,Q) = A(u(K) + u(P) + u(Q)) + v(K* + P+ Q%)  (3.69)
and

pr(K, P,Q) = N (u(K) + u(P)) + X'u(Q) + v(K* + P?) + aQ®  (3.70)
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DT W N

TrExRLER

N
|
| oolool—l—l— |

= —%FG(MF(K;RQ))@(MU(K; Q) (—2y® —y2? — 2z — 2z2y?) Q*E(P)E(K)

— —Ireur(K. P.Q)OM (K P.Q) (172 - yz + 2:%ay) P3E(Q)E(K)
= _EFG(IU/F(Ka-P:Q))@(MU(Ka 7Q)) ( 22 —22° y —.Z'yZ+1+y ) K3E(Q)E(P)

= 16(ur(K,P,Q)) (~2y — 222) Q*E(P)F(K)

= lo(ur(K P.Q)) (~* - ya = 22 + 2) P*E(K)F(Q)

= to(ur(K. Q) (=22 +4? =222 —yzz +1)  KSE(P)F(Q)

= oK. Q) (—2(yz +)) QE(K)F(P)
= 11T0(ur(Q. P, K)0(u (K, (=2(2z + 1)) Q*E(P)E(K)
Fo= ~£T0(ur(Q PK)Ow(K.P,Q) (- 2 s ) PYE(Q)E(K)
o= —2TO(ur(Q.P.K)O(u (K, P.Q) (2— 42 — 2y2) K3E(Q)E(P)
O(ur(Q. P.K)) - 2<yw+z ) P3E(Q)F(K)
O(ur(Q,P,K)) (—2% — 22%y? —yzw+1+y) K3*E(P)F(Q)
O(ur(Q,P,K)) (—y? + 1+ 22 - 2%y —yzz) KPE(Q)F(P)
O(ur(Q,P,K)) (— 2(zx+y) Q*E(P)F(K)
ITO(ur(Q,P,K))O(uv (K, P,Q)) (—2z—y° +yz® —y) Q*E(P)E(K)
~iTO(r(Q. PE)OM (K. P.Q) (12— ya +2:%y) P*E(Q)E(K)
1S(ur(Q, P, K)) v ~ya + 22%2y) P3E(Q)F(K)

0 (ur(Q, P, K)) (~2:2 +2) K*E(P)F(Q)
Fo(ur(Q. P.K)) (yzo +22) K'E(Q)F(P)
10(ur(Q, P, K)) (—zz — y® + ya® —y) Q*E(P)F(K)

Table 3.1: Geometric coefficients appearing in the closed EDQNM equation
(3.64)
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R\=70 ——
Ry=200 ——-

kle

Figure 3.2: The evolution of the eddy turnover-time at two different R).

3.2 Initial conditions
The energy spectrum is initialized with a von Karmann spectrum [61]:

K4

AT R (3.71)

E(K) =

but the precise form is of minor importance!. The scalar flux and scalar

variance are initially zero. The calculations correspond to freely decaying
turbulence. The scalar field is generated by the interaction of the isotropic
velocity field with the mean scalar gradient. Results are evaluated when the
decay of the velocity field becomes self-similar. As a criterion we require the
eddy turnover-time k/e to increase as a power law. In figure 3.2 we show the
evolution of k/e with time for two different Reynolds numbers. At ¢ = 0.5
the evolution of F(K) is considered self-similar and all results are evaluated
at this time.

3.3 Calibration of the EDQNM model

3.3.1 Origin and formulation of the eddy-damping

The eddy damping is a correction of the relaxation time of the triple correla-
tions. The need for such a correction arises when the quadruple correlations

! Calculations with an initial spectrum as given in equation (7.11) were also performed
and no significantly different results were obtained.
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are replaced by products of double correlations. Integrating and Markovian-
izing this ’quasi normal’ expression yields the QNM approximation for the
triple correlations that can be introduced in the evolution equation of the
double correlations to obtain a closed set of equations. The thus obtained
QNM closure of the kinetic energy spectrum underestimates the energy cas-
cade towards the smaller scales resulting in a K2 inertial range. This
effect has been studied in detail by Frisch et al. [62]. In Nakauchi and Sega
[67], a similar approach is found, which they call the modified zero-fourth-
cumulant expansion (MZFC). They also apply this approach to the scalar
field, but without a mean gradient. The reason for this underestimation of
the spectral flux resulting in the K 2 slope in the inertial range is that the
relaxation time of the QNM (or MZFC) approximation involves only viscous
damping. The relaxation of the triple correlations is however also affected
by the non-linear interaction between Fourier modes or eddies as noted by
Orszag [21]. The Eddy damping is then a heuristic correction to account
for this effect. The desirable relaxation or damping can be introduced by
adding a spectral eddy viscosity to the viscous terms as in equation (3.36).
However, the choice of this eddy viscosity is non-trivial. The original form,
proposed by Orszag [21], was obtained by dimensional analysis and reads:

n(k) ~ e/3K?/3 (3.72)

with A a constant related to the kolmogorov constant. An improvement is an
expression taking into account the local (in wavenumber space) behaviour
of the energy spectrum:

n(K) ~ /K3E(K) (3.73)

Another variant, non-local in wavenumber space and improving the be-
haviour in the dissipation range is the expression as proposed by Pouquet
et al. [63]:

n(K) = A /0 * s2B(8)ds (3.74)

All three forms are compatible with a Kolmogorov inertial range. We will
retain the last form for the eddy damping term of the energy, scalar variance
and scalar flux spectrum, but one should keep in mind that other forms could
be envisaged. The term n'(k) in equation (3.36) introduces the constant A\
and 7n"(k) introduces A”. In the following we will try to determine the
adequate values of these constants.

The determination of the constants in the eddy damping of the kinetic
energy spectrum and the scalar spectrum have been the subject of previous
studies. The main results of those studies will now be resumed.
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3.3.2 Choice of the model-constants for the energy spectrum
and scalar spectrum

The energy spectrum FE(K)

For the energy spectrum, the constant is related to the Kolmogorov constant.
This yields the classical value of A\, = 0.355. This choice is for example
discussed in the book of Lesieur [56].

The scalar spectrum Ey(K)

For the eddy damping of the scalar variance spectrum the constants are
chosen in order to obtain the proper Corrsin-Obukhov constant, combined
with a consideration about the turbulent Prandtl number cf. Lesieur [56].
In Herring et al. [22] they choose the constants:

A, =0
N =13 (3.75)

Other works [64, 20, 23] use the constants Aj, = Aj = 0.36. All values
correspond to a Corrsin-Obukhov constant that is equal to 0.45 in agreement
with the atmospheric measurements of Champagne et al. [65]. Sreenivasan
[10] gives an overview of the different values found for the Corrsin-Obukhov
constant in experiments. In most of the experiments a value between 0.4
and 0.5 is found. We prefer the set (3.75) because the zero value of \j is
consistent with our analysis in the next section. In the following we will focus
on the scalar flux spectrum. The scalar spectrum Fjy(K) will be investigated
in homogeneous shear flow in chapter 5.

3.3.3 The eddy damping of the scalar flux spectrum F,4(K)
The velocity-scalar correlation coefficient

For the scalar flux spectrum, up till now, no inertial range law constant has
been determined. In the absence of such a law the approach followed in
earlier works [20, 54, 58, 66] consisted in choosing the constants so that the
one point velocity-scalar correlation coefficient p,,9 from the closure calcu-
lation corresponds to experimental results. A convenience of this parameter
is that its value is relatively insensitive to Reynolds and Prandtl number.
This comparison yields a set of possible correlations and an arbitrary choice
is made among those combinations. Herr et al. [20] fit their EDQNM results
to a DNS of forced turbulence that gives value of p,,9 = —0.55. The DNS of
Overholt and Pope [46] yields a similar value.

The relation between the sets of the two constants that where in agree-
ment with the DNS value of p,g is close to linear:

N'=1.03 -1.98\ for 0< N <0.52 (3.76)
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Subsequently an arbitrary choice (A, \") = (0,1.03) was made [20, 54, 58,
66], but we will show in the following that this might not be the best choice.

The damping of the three-point triple-correlations

To guide the choice of the constants in the eddy-damping term, we write
the derivation of the triple correlation, but this time in physical space. We
do so because the influence of the pressure on the triple correlations will
be the subject of our discussion and those pressure terms are not explicitly
present in the Fourier representation. For convenience we introduce a short
notation u1; = u;(z1).

00, 00 o — 0%

Uk —— = —U; —_— O1uoiury, ———01u9; 3.77
Unitizk Wil Tin g — = 5 —Oitait usg + K oa7 1ugiuy (3.77)
Oug; 0 — 1 0 —— S
0 = — 01uo; - ——plo 01u9; 3.78
1U3k gD Dy 1U2;U2n U3k ’ Bmgip2 1Ugg +v o2, 1u2;usk ( )
Ousy, g ——— 1 0 — 8
Orug;— = ———0O1uojuspusy — — ———PhO1u9; ———01uy; 3.79
1U2i ot pro 1U2iU3n U3k p 6$3kp3 1Ug; + v 320%” 1u2;u3k )

The sum of these three expressions yields the evolution equation of the three-
point triple correlations. We could apply the quasi normal approximation
to this equation and Markovianize the solution for the triple correlation.
It is at this point important to note that the pressure does not appear in
equation (3.77). We now recall expression (3.37) in our derivation of the
EDQNM closure:

%+V(K2+L2) —I—aMQ] —

g VUK 4 I2) + abt? 4 () + /(D) + ()
The three damping terms that are added to the triple correlation equation,
7' (M), n'(K) and n'(L), are damping the three contributions above, 3.77,
3.78, 3.79.

Kraichnan [67] obtained as a result of his Lagrangian History Direct
Interaction Approximation (LHDIA) that: ’(...) the effective relazation
time for triple correlations of simultaneous amplitudes of wave-vector tri-
ads is determined by memory and decay times associated with the viscous
and pressure forces encountered along the particle paths.’
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We assume that we can identify the triple correlations of simultaneous
amplitudes of wave-vector triads as the triple correlations 0;u9;us; at a cer-
tain time t. The effective relazation time corresponds to the O (K, P, Q,t) in
our closure. The viscous damping is present in this timescale, already with-
out eddy damping. The pressure forces are however absent in this timescale.
I claim that those pressure forces are the missing non-linear damping that
is re-introduced by Eddy Damping.

So the eddy damping is only required for (3.78) and (3.79), containing
the pressure. which leads us the choice:

=0 (3.80)

and ) to be determined. Perhaps this is not a convincing proof for the
choice \" = 0 but at least we have a choice consistent with what can be
infered from LHDIA. A confirmation of this choice will be presented below.

The spectral equilibrium between production, transfer and pres-
sure

To choose among the combinations in Herr et al. [20] we have to investi-
gate the different contributions in the evolution equation of F,p(K). The
non-linear transfer, as already discussed in section 1.2.2, is obtained by
spherically integrating the triple correlation term:

TNU(K) = /E [in (FT/T (H(m)uj(a:)w(m +r)

—0(@)uj(e + rywlz + 7)) ) |dAK)

in which the first triple correlation 6(x)u;(x)w(x + r) stems from the non
linear term u;00/0x; in the scalar equation. This part corresponds to the
H-terms in section 3.1.6 and was denoted [T G“(K )}9. The other term,
O(x)uj(x + r)w(x + r) from the non linear term u;0u;/0z; in the ve-
locity equation, corresponds to the L-terms in section 3.1.6 was denoted

(TN (K)] -

We can write the two contributions to the two-point velocity-scalar
cross correlation separately:

00, 00 0 — o L—
i A WUlnm— = — 7 O1UziUiy 01u2; .81
U2i o + ugiun Bz Bz 1U2U1 +H@x%n 1U2 (3.81)
and
Ouo; o — 1 0 —4 F;
—_— e jUgp = —— —— —_— i .82
01 D + . 01 uzu9 p@xZip201 + V@xgn O1us (3.82)
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In the stationary case we know that:

6‘u2,~91 06, auZi
“E i — + 0 =0 3.83
ot "ot o (383)
The quantity 04/0t is a highly intermittent function, closely related to
the fine scale structure. Its correlation with the velocity field can be
expected to be small for the large scales (this is an assumption that
needs verification):

wi(z) 80(;2;— 7)

in the case that in addition the Reynolds number is high eq. (3.82)
simplifies to the expression:

~ 0 forlarge r (3.84)

00 0 —
0~ —U2%UIn 7~ — —01U2,’U1n (385)

ox, Oz,

or in spectral space:

2
gE(K)F ~ [T (K)], forsmall K (3.86)

[4

so that in the stationary case at small wavenumbers:

P(K) = — [T (K)],
[T (K)], = -TI(K) (3.87)

We verified this result by Large Eddy Simulations. LES is very appro-
priate in this case because we want information about the large scales
at large Reynolds number. The result is shown in the next chapter in
figure 4.9. Very good agreement of the LES and the relations 3.87 is
observed.

We will now investigate the results of our EDQNM model to see if this
equilibrium is observed.

We vary the constants along the line that interpolates the possible pairs
of values according to Herr et al. [20] A" = 1.03—1.98)\' for 0 < X’ < 0.52. In
figure 3.3 we show the results for four different sets of values. It is observed
that best agreement with (3.87) is found for the set of constants,

X =0.52
X'=0, (3.88)

and we note that the set of constants chosen in previous works [20, 58, 66]
with X = 0, actually yields the worst agreement. We will proceed our
calculations, using the set of constants (\;\') = (0.52;0). We point out
that this result confirms our assumption that the eddy damping correction
to the triple correlation relaxation time is exclusively needed to model the
decorrelating effect of the pressure leading to (3.80).
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3.3.4 Influence of the scalar gradient on the non-linear trans-
fer

The non-linear triple correlations in the equation of the scalar flux are closed
by the quasi-normal approximation. In the resulting expression two different
types of terms can be distinguished: the so called ’cross-terms’ that contain
a product of the flux spectrum and the energy spectrum, E(A)F(B), and the
contributions involving the mean scalar gradient, schematically T E(A)E(B).
The contribution of these 'gradient-terms’ or ’linear terms’ (because they
are linearly dependent on the gradient) in the closed equation of the spec-
trum F(K) has been obtained, as we mentioned before, by a double Eddy
Damping and Markovianization procedure. We consequently introduced the
designation EDM-EDQNM for those terms. Hence, we should bare in mind
that the gradient-terms involve a more crude approximation than the other
contributions. Therefore, before proceeding our exploitation of the EDQNM
model we will investigate their behaviour.

We should mention here that for the velocity-field subjected to deforma-
tion the EDQNM approach was derived by Cambon [68], taking into account
the effects of the mean gradients in the equation of the triple correlation.
This was called the EDQNM2 closure. The Markovianization of this equa-
tion was in certain cases shown to be incompatible with the effect of the
gradients in this equation (Bertoglio [25]). It was argued that the improve-
ment of the model by taking into account these gradient terms could be
overshadowed by the problems involving the Markovianization.

In figure 3.4 we show the influence of the gradient terms on the non lin-
ear transfer and pressure terms (we shall study those terms in more detail
in the next section). The Reynolds number is equal to Ry = 100 and 10*
respectively. Their is no contribution to the pressure term. Apparently the
gradient terms represent a pure transfer. Furthermore their influence dimin-
ishes for higher wavenumbers. In figure 3.5 we show the influence of the
gradient terms on the scalar flux spectrum by comparing spectra obtained
with and without these terms. We show results at Reynolds numbers of
Ry = 100 and Ry = 10* as in figure 3.4. As can be seen the major differ-
ence is observed in the large scales, where the ’gradient transfer’ creates an
unexpected irregularity. This behaviour in the large scales encourages us
to neglect the gradient terms as was done for the velocity-field by Cambon,
[69], Cambon et al. [24] (EDQNM1) and Bertoglio [70].

3.4 Results of the Model

3.4.1 The inertial range of the kinetic energy spectrum

Before showing the results for the scalar flux spectrum we report here some
results for the energy spectrum. In figure 3.6 we show E(K) for Reynolds
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Figure 3.6: Kinetic energy spectra for Reynolds numbers from 100 < Ry <
107,

numbers from 85 < Ry < 107. We note here that an illustration of the spec-
tral contributions (non-linear transfer and dissipation) can be found in figure
1.1, which shows results obtained with EDQNM theory. In figure 3.7 the
slope of the inertial range is plotted as a function of the Reynolds number.
Also drawn are the numerical fits to the experimental values of Mydlarski
and Warhaft [43] in grid turbulence. The measurements were performed
for Ry < 731. The n,, exponent corresponds to the measurements of the
slopes of the longitudinal velocity spectrum, n,, to the transversal velocity

spectrum. Good agreement is observed between the EDQNM results and
the experimental values?.

3.4.2 Investigation of the different spectral contributions to
the scalar flux spectrum

In this section an analysis of the contributions to the scalar flux equation is
performed at different R).

2The extrapolation of the fits of Mydlarski and Warhaft to values higher than Ry = 731
are also shown in figure 3.7. It should be noted that the effect of intermittency is not taken
into account by the EDQNM closure, and that the experimental values of the values 7y,
and n,, could be affected by the effect of intermittency, especially at higher Ry, where
the effect of intermittency is generally more noticeable. We name here the (forced) DNS
of Kaneda et al. [71] with a remarkably steep slope around 1.76 at Ry = 1200 and
the atmospheric measurements reported by Tsuji [72] which show two distinct power law
regions in the energy spectrum with slopes of 1.73 and 1.69 at a Ry = 17060.
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Figure 3.7: The slope of the inertial range of the kinetic energy spectra as a
function of Ry. EDQNM results compared to the experiments of Mydlarski
and Warhaft [43]

The production and molecular destruction spectra given by:

P(K) = —%FE(K)
V(K) = (v + a)K%Fuy(K)dK (3.89)

The non-linear transfer as previously noted in chapter 2 is obtained by spher-
ically integrating the triple correlation term:

TNI(K) = /EK [z'Kj (FT/T (G(m)uj(w)w(:c +7)

—0(@)u; (@ + ryw(z + r)))] dA(K) (3.90)

It can easily be seen that this term vanishes in the one-point limit. The
spectrum of this term integrated from wavenumber zero to infinity is thus
zero and the transfer is conservative. The pressure term,

T(K) = / FT), (19(m)3p(w + r)) dA(K) (3.91)

Yk p 0z
on the contrary has an integral which is not zero: it appears to be a destruc-
tion term. TNI(K) and II(K) are both functions of the triple correlation
terms. The closed expressions for these two terms are obtained with the
EDQNM theory. In figure 3.8 we show the balance of the terms in equation
(1.48) for four different Reynolds numbers. In the figure, it can be observed
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Figure 3.8: Spectral balance of the production, non-linear transfer, pressure
and viscous destruction of scalar flux. Top left: Ry = 30 , top right: Ry =
100, bottom left: Ry = 103, bottom right: Ry = 10*

that Fy(K) is mainly produced at large scale by the mean gradient term
and that it is destroyed at smaller scales by both pressure and molecular ef-
fects at small Ry, and by pressure effects only at high R). The conservative
role played by the transfer term TU%L(K ) also appears in the figure.

3.4.3 The spectral slope of the scalar flux in the inertial
range

In chapter 2 we showed how dimensional analysis allows for an inertial range
slope of the scalar flux spectrum varying from —5/3 to —7/3, depending on
the behaviour of the spectral flux. The behaviour of the slope of the spec-
trum in the inertial range will now be investigated by EDQNM calculations.
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Figure 3.9: Scalar flux spectra for Reynolds numbers from 100 < Ry < 107.

In figure 3.9 and 3.10 we show spectra for Reynolds numbers® in the range
30 < Ry < 107,

In figure 3.11 we show the dependence of the slope on the Reynolds
number. The results do not leave any doubt about the asymptotic inertial
range slope. The closure shows a tendency towards a K~7/3 slope*. It
also shows that this value is only approached for very large values of the
Reynolds number (Ry = 10* yields a K~227 slope). It can therefore be
argued that a clear K~ 7/3 will not easily be observed on earth, atmospheric
experiments reaching Ry up to 10%. As in Mydlarski and Warhaft [43] for
the velocity spectra we try to fit a power law to the results. The empirical
relation 7,9 = 7/3(1 — 2.73R; ***) describes the data pretty well.

Furthermore, it is shown that the experimental results of Mydlarski and
Warhaft [40] are in reasonable agreement with the calculations. From those
results it can be concluded that a K ~7/3 slope will not be observed in DNS
of decaying isotropic turbulence with a mean scalar gradient in the near

3The calculations for Ry = 10° and 107 are slightly underresolved. The errors intro-
duced hereby were estimated to be less than 1% for the inertial range slope and less than
10% for the ratio of dissipation to production as examined in section 3.4.4 and of the same
order for the scaling constant Cg

1t is worth noting that an asymptotic K ~2 slope is obtained with this same EDQNM
closure as soon as X is taken equal to zero, independent of the value of A”. With this choice
we omit the influence of the pressure on the triple-correlation relaxation-time stemming
from equation (3.78) and (3.79). Those triple correlations are consequently only damped
by viscous and diffusive effects and therefore this choice gives a significantly different
wavenumber dependence. Possibly this scaling is analogous to the K2 scaling of the
energy spectrum in the absence of Eddy damping in which only viscous damping relaxes
the triple correlations, as discussed in section 3.3.1 and the work of Frisch et al. [62].
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Mydlarski and Warhaft [40]
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Figure 3.12: Compensated scalar flux spectra for Reynolds numbers from
100 < Ry < 107

future or even in wind tunnel experiments, the Reynolds number being too
low in both cases.

In figure 3.12 compensated spectra are plotted for Reynolds numbers in
the range 100 < Ry < 107. The prefactor C,,y in the scaling relation:

Fuo(K) = Cpgle /PK /3, (3.92)

appears to be of order unity. It is found C,g = 1.5.

In figure 3.13 the present EDQNM results are compared with experi-
mental data of Mydlarski and Warhaft [40] and DNS and SDIP results of
O’Gorman and Pullin [51]. The spectra are one-dimensional spectra. An
exact relation between one-dimensional and spherically averaged spectra ex-
ists in the case of isotropic turbulence and scalar fluctuations created by a
uniform mean scalar gradient (see O’Gorman and Pullin [59, 51]). It reads:

00 2 2
F'P(Ky) = 3 MFM(K)dK (3.93)
4 Jig, K3

SDIP stands for sparse direct inter-interaction perturbation and corre-
sponds to a variant of the lagrangian direct interaction approximation of
Kraichnan [67]. The SDIP result is given only in the asymptotically high
Reynolds number limit. It yields an overestimation of the constant Cg
as explained in O’Gorman and Pullin [51]. The spectrum calculated with
EDQNM theory is situated in between the DNS and the experimental re-
sults.
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Figure 3.13: Comparison of one dimensional scalar flux spectra from DNS,
SDIP (O’Gorman and Pullin [51]), and experiments (Mydlarski and Warhaft
[40]) with EDQNM results.

3.4.4 The molecular dissipation of scalar flux

It was already noted in figure 3.8 that, when the Reynolds number increases,
the viscous dissipation becomes small compared to the production term.
We call TU? the integral value of P(K), €, the integral value of V(K).
The dependence of the ratio, €,9/TU? has been studied in the literature.
Mydlarski [41] found a decrease proportional to R, and in the DNS of
Overholt and Pope [46] a R %" scaling is observed. In figure 3.14 their
observations are compared with the results of the EDQNM calculations.
The closure is applied to a range of R) much wider than obtainable in DNS
or wind-tunnel experiments. It can be observed that there is good agreement
between the DNS of Overholt and Pope [46] and the EDQNM calculations
at low R, where the R;*7" scaling is found. At high R), the EDQNM
results scale as R;l. This R;l dependence can be analytically predicted
assuming Lumley’s scaling (equation 3.92) for F,¢(K). Substituting (3.92)
in the expression for the molecular dissipation of scalar flux, one obtains:

K,
€ws = (v + @) / " K2 [ngI‘el/3K_7/3] dK (3.94)

ignoring the lower bound of the integral by assuming a very high Ry. With
the expressions for the Kolmogorov scale and Rj:

2 \%/* /4 u*
K = —_— —_— = 1 _
(36’1() v3/4’ B 51/6
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it is immediately found that:

€wo/TU? ~ R (3.95)

In the intermediate range of R, the R;l'z scaling found in the experiment
of Mydlarski [41] is not found with the EDQNM closure. It has to be pointed
out that Mydlarski only measures one component of the dissipation.

3.5 Conclusions

We discussed in this chapter the derivation of the equations for the EDQNM
closure of the velocity scalar cross correlation, previously derived by Herr et
al. [20]. The constants in the eddy damping term were determined and the
effect of the mean scalar gradient on the non-linear transfer was studied.

At moderate Reynolds numbers the one dimensional spectra are shown
to agree with experimental results and DNS. The low computational cost of
the closure calculations allows to perform calculations at very high Reynolds
numbers where the dimensional analysis of [31] was verified: a K7/ scaling
is found. This scaling is however only found for very high Reynolds num-
bers and at Reynolds numbers corresponding to laboratory experiments,
the spectral exponent is found to be closer to —2 as observed in the ex-
periments of Mydlarski and Warhaft [40]. The empirical relation n,g =
7/3(1 — 2.73R)_\0'54) gives the evolution of the spectral exponent according
to our calculations. The prefactor Cyy in the scaling relation:

Fug(K) = Cpgle /P K7T/3, (3.96)

was found to be Cyy = 1.5. At low R}, the molecular destruction of scalar
flux normalized by the production was shown to obey the R;O‘W power law
proposed by [46]. For higher values this quantity tends towards an asymp-
totic R;l behaviour that can easily be predicted by dimensional analysis.

We have to note that analytical closures are, uptil now, not capable to
reproduce the intermittent character of a turbulent field that is even more
pronounced for the scalar field. The effect of intermittency on second order
quantities such as energy spectra and cospectra is known to be rather small
at low and moderate Reynolds numbers. The good agreement observed in
this chapter between experimental results, DNS and the EDQNM theory
is a good illustration. The influence of intermittency at high R, and for
higher order moments is known to be greater. We will not further address
the subject of intermittency in this work.



Chapter 4

Large Eddy Simulations

4.1 Introduction

In the previous chapter it was clearly shown that EDQNM theory predicts
a —7/3 inertial range slope for the scalar flux spectrum at high Reynolds
numbers. In this chapter we investigate in more detail the LES results
already presented in chapter 2. In particular we analyze the fact that these
LES were found to support the existence of a K2 behaviour of the scalar
flux spectrum.

We use the EDQNM closure derived in the previous chapter as a tool to
analyze several effects that are likely to influence the LES results, namely the
influence of forcing, resolution and subgrid modelling. After this analysis
we perform additional LES in order to check the influence of large scale
forcing and to check assumptions about the spectral balance of the different
contributions to the scalar flux evolution equation.

4.2 Filtering

LES is based on the observation that the small turbulent scales are much
more universal than the large scales. Most of the important properties
of a turbulent flow are governed by the large scales. Those large scales
are calculated exactly in LES, whereas the small scales and the interaction
between large and small scales are represented by a model. In Pope [3] we
find a good illustration of the computational gain obtained by not resolving
the full wavenumber spectrum. It is, for example, shown that for a Reynolds
number of 70, the dissipation range contains 99.98% of the wavemodes and
that this percentage grows with increasing Reynolds number.

To split the turbulent field into large scales and small scales, a filtering
operator is applied to the Navier-Stokes and scalar equations. For homo-
geneous fields a uniform filtering procedure is usually introduced and one
writes (filtered quantities will be denoted by a tilde):
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ai(z,t) = / Gz — z')u; (', t)d*z’ (4.1)
Q
or in Fourier space:
WK, 1) = G(K)is (K, t) (4.2)

and the same procedure can be applied to the scalar field. For homogeneous
fields a spectral low pass, or top hat filter, with a cut-off frequency K.,

Grp(K)=1V K<K,
GLP(K):O V K > K.,

turns out to be convenient

This procedure yields the situation schematically shown for the energy
spectrum in fig. 4.1. The solid line represents the resolved part and the
dashed line the scales with a wavenumber larger than the cut-off wavenumber
K., that are removed by filtering. There is a spectral flux through this cut-
off wavenumber that is the difference between a forward flux e; and a reverse
flux €, usually named backscatter. It is the modeling of those fluxes from
and towards removed scales that constitutes the major challenge in LES.
After filtering we find the following equations for the resolved part of the
turbulent fields:

di; 9 ,—~. 18p 8 [ 9w\ Or)
ot oz, W) = =050t o (”awj) ~ s, (4:3)
dii;
T =0 (4.4)
00 o —~— o [ 00\ 097
4+ —bu;)=— |a— | — d 4.
ot 95,0 = 5, (O‘ax,-> oz, (4:5)
with
T = wu; — G (4.6)
gfge = ’12:9 - ﬂzé (4.7)

For the last two expressions, the subgrid stress and subgrid scalar flux, an
appropriate model is needed to reconstruct properly the interaction of the
large scales with the subgrid-scales. This will be the issue of the next section.
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€

K,

Figure 4.1: Schematic representation of the LES approach. The large scales
are resolved and the small scales as well as the spectral fluxes have to be

modeled.
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4.3 Subgrid modelling

4.3.1 The eddy-viscosity closure assumption for LES

The most common way to represent the effect of turbulent fluctuations on
the mean velocity field is the so-called Boussinesq closure assumption. The
interaction between the fluctuating and mean fields is herein represented
by an eddy viscosity. This concept was extended to LES, leading to the
following model for the subgrid stress:

1 ~
Ti;g — ETIjIZ(SZJ = _QVeSij (4.8)
with
~ 1 (0u; = 0u,
Sij== ; 4.9
S (8.%’ + a.ﬂri) (4.9)

The trace of Tisjg is absorbed into the pressure term in equation (4.3). One
can similarly introduce an eddy diffusivity for the subgrid scalar flux:
00
59
9,7, = =20, — 4.10

u; 6 € 8.'Ez ( )
The eddy viscosity models most widely used are the Smagorinsky model [73]
and more recently its dynamic formulation by Germano et al. [74].

4.3.2 The spectral eddy viscosity

In homogeneous turbulence, where (pseudo-)spectral methods are generally
applied, one can more advantageously use a spectral formulation of the eddy
viscosity, easily compatible with those methods. To understand the idea of
a spectral eddy viscosity, we write the equation for the resolved part of the
isotropic energy spectrum in Fourier space:

OE<(K)
ot

This is the usual Lin equation, except that we splitted the non-linear transfer
into T<(K), a part entirely resolved by the simulation and T~ (K) a part
that involves scales smaller than the filter size and, therefore, interactions
between small and large scales. If we would assume the small scales to
be isotropic it is reasonable to assume that we can model the effect of the
latter by an eddy-viscosity (in the following we omit the superscript < on
the energy spectrum):

=T<(K)+T”(K) + 2vK?E<(K) (4.11)

T>(K) = 2v. K2E(K) (4.12)
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with v, in the ideal case independent of the wavenumber K. The use of
such a subgrid model was partially supported by the study of Chollet and
Lesieur [52] who showed that in isotropic turbulence the quantity:

T~ (K)

) (4.13)

was constant in the inertial range and proportional to /E(K.)/ K., except
near the cut-off where (4.13) rises sharply due to local interactions between
wavemodes across the cut-off, as predicted by Kraichnan [75]. This effect
can be taken into account by adding a cusp to the eddy viscosity as proposed
by Chollet and Lesieur [52, 76]:

3.742
vo(K) = Egc) (ﬁ 4 0.4724 (%) ) (4.14)

with A the eddy damping constant in the EDQNM closure for the energy
spectrum. The eddy viscosity concept has however some fundamental de-
ficiencies (c.f. Bertoglio [25]). First the fact that the effect of backscatter
(energy going from small to large scales) is modeled by a statistically av-
eraged quantity which can not truly represent the instantaneous and local
interaction effects. Instantaneous information initially beyond the cut-off
can not influence the large scales.

Secondly, the analysis of Chollet and Lesieur [52] was performed for
isotropic turbulence. Anisotropy of the small scales can not be correctly
predicted. In anisotropic turbulence the backscatter e, term shows a dif-
ferent degree of anisotropy compared to the drain term €; in the energy
transfer. This difference in anisotropy can not be taken into account by
an eddy viscosity , that models the sum of the effects of backscatter and
drain together [25]. In rotating turbulence the anisotropy of the small scales
is very strong (see for example Liechtenstein et al. [77] and Bellet et al.
[78]), and an eddy-viscosity is bound to give incorrect results in this case.
For sheared turbulence Bertoglio [25] showed, using the EDQNM approach,
that at low resolution significant errors are introduced by this effect. At
higher resolutions these errors are expected to diminish. This is illustrated
by the work of Cui et al. [79] that shows that the eddy viscosity formulation
gives reasonable results in turbulent channel flow. The study of Casciola et
al. [80] shows that shear has a negligible influence on the spectral cascade
in the inertial range.
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4.3.3 The spectral eddy diffusivity

To model the subgrid scalar field, the diffusivity is similarly replaced by an
eddy diffusivity, assumed to be proportional to the eddy viscosity:
ve(K)
Prp

ae(K) = (4.15)
in which Prg is a turbulent Prandtl number that is usually assumed to be
equal to 0.6. The eddy-diffusivity assumption was shown to be less reliable
than its viscous counterpart. In Rogallo and Lesieur [53] a(K) was shown
not to exhibit the nice wavenumber independent plateau as did the eddy
viscosity for the velocity field. The same discussion about the difficulties in
predicting anisotropy as in the previous section could be repeated here. We
can for example mention the work of Kang and Meneveau [81] who study
experimentally the anisotropy of a scalar field and analyze its implications
for subgrid-models.

Especially as we are studying the scalar-velocity cross correlation which
is per definition an anisotropic quantity, we should be careful with drawing
conclusions from the LES results.

4.3.4 Eddy viscosity and diffusivity based on the Kolmogorov
equation

An alternative approach for modeling the subgrid scales was proposed by
Shao et al. [82] (see also Cui et al. [79] and Shao et al. [83]). This work still
uses the eddy viscosity concept, but expresses its form using the Kolmogorov
equation. The model could also be extended towards a tensorial approach.
An expression for the Eddy viscosity and diffusivity was derived, based on
the Kolmogorov [4] and Yaglom [84] relation for the second-order structure
functions Dy(r) and Dgg(r). We will summarize the model here and for
details we refer to Cui et al. [79] and Shao et al. [82, 83].

At high Reynolds numbers, the equation for the resolved part of the
velocity structure function, assuming stationarity of the small scales, is:

4 5
—ger = Dyy(r) — 6Ty,u(r) (4.16)

with e the subgrid dissipation; Dy, (r) is the resolved part of the third order
longitudinal structure function and 7} (),

Ty u(r) = ui(z)m(z + 1) (4.17)

is the energy transfer between resolved and unresolved scales.
Similarly, the equation for the resolved part of the scalar structure func-
tion reads:
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4 3
—g¢or = Dooi(r) — 4Tp (4.18)

with €y the subgrid dissipation of scalar variance; Dgg;(r) is the resolved
part of the third order mixed scalar-velocity longitudinal structure function
and Tg,gl,

Toou(r) = 0(z1)g,5(z1 + 1)) (4.19)

represents the scalar variance transfer between resolved and unresolved scales.
Using the eddy viscosity (and diffusivity) concept the subgrid terms are ex-
pressed:

Tij(z) = _2Ve*§iz'(33) (420)
gi2a(0) = 20, (1.21)

as well as the dissipation and diffusion at high Reynolds number:

€ = 20,5;;Sij (4.22)
90 60
€9g — aea Za—a;z (423)

Using the relation between second order correlation and structure functions:

Dy = 2a2 — 2y (z) iy (z + ) (4.24)

in equation (4.16) Shao finally expresses the eddy viscosity (details in Cui
et al. [79]):

5Dy

Ve = — . (4.25)
8SijSij7" — 30(8D”/37")
and the diffusivity [83]:
D
oy = —— Do (4.26)

45—@5”—& — 6(8Dygg/0r)

An advantage of this eddy diffusivity is that it is not assumed to be
proportional to the eddy viscosity at all wavenumbers. Furthermore there
is no adjustable parameter in the diffusivity. Shao et al. [83] show that the
mean value of the turbulent Prandtl number obtained with this model is
equal to 0.559. We stress that the turbulent Prandtl number is here a result
of the model and not an adjustable parameter.
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4.4 Description of the code

The code used for the LES results in the present chapter, as well as for
the LES and DNS in chapter 2, is a pseudo spectral code developed by
Bertoglio [25] and largely modified by Shao [85]. The time scheme is a
second order Adams-Bashford scheme. The calculations were performed
at a 1283 resolution. The subgrid model used for the results in chapter 2
is the Chollet and Lesieur eddy viscosity model [52] for the velocity field
with a constant subgrid Prandtl number for the scalar field, assumed to be
Prp = 0.6. The results in section 4.6 and 4.7 are obtained with the model
described in the previous section. In the following we will refer to this model
as the Shao Structure Function (SSF) Model. All calculations are performed
at infinite Reynolds number, ignoring all molecular effects.

4.5 Discussion of the results in chapter 2

4.5.1 Investigation of the effect of the resolution and the
subgrid model using the EDQNM closure

In this section we use the EDQNM model to mimic the conditions of the
LES performed in chapter 2 and then we use the model to analyze in detail
the LES results. The advantage of EDQNM is that it is not restricted to
low resolutions. To analyze the LES of the first chapter, the Chollet-Lesieur
subgrid model, equation (4.14), is used in the EDQNM calculations as well
as a constant turbulent Prandtl number of 0.6. The equations that we solve
are:

OE(K)

el T<(K) + 2v.K*E(K) (4.27)

and

0
aFwa(K)< + (Ve + Ve Pr; K2 Fup(K)< =

P<(K) + TNF<(K) + I<(K) (4.28)

For K < K., the non-linear transfer T);*<(K) and pressure term TI<(K)
are defined as in the rest of this manuscript with the difference that all
interactions involving wavenumbers larger than K, are set equal to zero. In
the following we will also omit the superscript < on the scalar flux spectrum.

We force the spectrum by maintaining a constant K* forcing range at
the lowest wavenumbers of the energy spectrum E(K). That is: we fix the
kinetic energy at the first wavenumber E(K7). The second wavenumber is
fixed at a value:

E(K,) = E(K;) (%)4 (4.29)
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Figure 4.2: For three different resolutions we show the scalar flux spectrum
as a result of EDQNM calculations for a velocity field forced at the first
two wavenumbers and a Chollet-Lesieur subgrid model. The little arrow
indicates the forced wavenumber K

and so on up to Ky, where the maximum of the forcing range is attained. In
this range the values of E(K) remain constant during the calculation. The
rest of the spectrum can freely evolve.

We define the resolution R of our calculation,

K
R=° 4.30
= (4:30)
as the ratio of cut-off wavenumber to first wavenumber. This resolution R
will be used as a superscript to the different spectra. In the following:

Fw@(K)R

will mean the F,9(K) spectrum as a result of a calculation with resolution
R.

The resolution is varied and the steady state results are shown in figure
4.2. The little arrow indicates the forced wavenumber K. In this represen-
tation it is not easy to draw conclusions about the spectral slope. The same
data is therefore shown in compensated form in figure 4.3. The spectra are
multiplied by K2 and K7/3 respectively. The following observations can be
made:

e For all three spectra the first wavenumber decade (K < 10) shows a
power law behaviour. In the case of the lowest resolution, R = 10,
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Figure 4.3: Same as in figure 4.2 but compensated by K? (top) and K7/3

(bottom).
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Figure 4.4: Forced turbulence, R) = 2400 compensated kinetic energy spec-

trum

the spectrum compensated by K? shows a neat plateau between the
forcing wavenumber and the cut-off: the slope of this wavenumber
zone is —2 for this resolution. For the two other spectra this zone is
slightly steeper.

The slope of the spectra at R = 100 and R = 1000 increases beyond
this first decade. Even for a resolution of 1000, the slope is not equal
to K~7/3 and we observe a similar slow tendency towards K~7/3 as
for the complete EDQNM calculation between the Reynolds number
and the slope as shown in the previous chapter (figure 3.11).

Comparing the spectra at a resolution of 100 and 1000 in fig. 4.3 we
note that the spectral cut-off and subgrid model affect approximately
the entire last decade of the spectra.

Apparently, in this particular situation, i.e. forced LES using the Chollet-

Lesieur subgrid model and a constant turbulent Prandtl number, the —7/3
slope will probably not appear, unless calculations at very large resolutions
are performed. The K2 behaviour is not observed either, except close to
the forcing frequency where the slope is close to —2.
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Figure 4.5: Forced turbulence Ry = 2400. Top: uncompensated scalar flux
spectrum. Bottom: zoom of the region influenced by forcing compensated
by KQ.OS.
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4.5.2 The influence of forcing on the inertial range in a fully
resolved EDQNM calculation

We just saw the effect of the resolution, together with the effect of forcing
and a subgrid model, we will now investigate the effect of forcing separately.
Again we force the spectrum by maintaining a constant K* forcing range
in the low wavenumbers, up to a wavenumber K. Contrary to the last
section, we perform a full EDQNM calculation (without subgrid model).
The calculation is performed at a (arbitrarily chosen) Ry = 2400. At this
Reynolds number we find an inertial range for over two wavenumber decades
of the energy spectrum and the inertial range of the scalar flux spectrum at
this Reynolds should be significantly steeper than —2 (around —2.24 as can
be concluded from figure 3.11).

We first show the compensated energy spectrum in 4.4. This spectrum
shows a large peak at the forcing frequency, and also a clear K—5/3 range,
starting immediately after the forcing frequency.

For the scalar flux spectrum the situation is quite different as can be
observed in figure 4.5. We also show a zoom of the low-wavenumber zone.
The peak is present, the —2.24 slope as well, but in between we also observe
a significantly large zone with a slope close to —2 (we observe a slope of
—2.05). Tt seems that the peak in the energy spectrum, induced by the
forcing, is responsible for a zone in the scalar flux spectrum with a slope
equal or close to —2.

We can try to explain the observed behaviour of the wavenumber spec-
trum by a dimensional analysis. We first consider the energy spectrum in
figure 4.4. The large peak in the energy spectrum corresponds to one or
more wavemodes that are largely dominant in their spectral vicinity. We
could connect this mode to spatial structures, or eddies, with size ~ K;l.
In the range where these eddies are dominant compared to the 'local’ eddies
of size ~ K1, we will not observe the inertial behaviour, governed by e and
K. The parameters in this range will rather be determined by the typical
velocity scale Uy of the forcing frequency and the local wavenumber K so
that

Fuo(K) =Tf (U, K) = Fug(K) ~ TU; K (4.32)

We note here that also in the paper of Alvelius and Johansson [86] we
observe a K2 inertial range for the pressure spectrum that is expected to
obey a K~7/3 law. Their paper also concerns forced LES results, with the
forcing method, isotropically forcing the large wavenumbers, described in
Alvelius [87].
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4.6 The influence of the forcing on LES

In section 4.5.1, we observed that using the Chollet-Lesieur subgrid model
in our EDQNM calculations, the scalar flux spectrum showed slopes shal-
lower than —7/3 for low and intermediate resolutions. The slope increases
with Reynolds number, but this tendency is slow, as in the full EDQNM
calculations of Chapter 3.

In this section we perform LES. The subgrid model that we use is the
SSF model discussed in section 4.3.4.

We remove the influence of the forced wavenumbers on the scalar field.
To accomplish this we set to zero the scalar flux production by the forced
wavemodes. We also remove the contributions to the non-linear transfer
that contain the forced wavemodes. Physically we remove from the scalar
field all the convective effects due to the forced wavenumbers i.e. the scalar
field acts as if those modes were zero.

The results are shown in figure 4.6 for the energy, scalar flux and scalar
variance spectrum. They all show their expected asymptotic behaviour:

E(K) ~ 62/3K_5/3
Ey(K) ~ e Y3¢gK /3
Fuo(K) ~TeBK7T/3

In figure 4.7 we show the scalar flux spectrum in compensated form. As in
chapter 3, the constant Cy is of order unity.

4.7 The balance of the different terms in the scalar
flux equation

To finish this chapter we analyze the spectra of the different terms that gov-
ern the scalar flux spectrum. The results correspond to the LES, performed
in the previous section in which the influence of the wavenumber-peak in
the energy spectrum on the scalar field is removed and the subgrid-model is
the SSF model.

We recall the equation governing the scalar flux spectrum in LES:

0

aFwa(K) + (Ve + O46)1(21?1110(1{) =

P<(K) + TNF<(K) + T<(K) (4.33)
The different terms are shown in fig. 4.8 introducing the notation:
V3¢ = (Ve + ae) K2 Fypo(K) (4.34)

This eddy-viscous term is small except near the cut-off. The non linear
transfer is negative at small K and positive at large K. The pressure is a
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Figure 4.6: The kinetic energy, scalar flux and scalar variance spectrum
calculated with the SSF model after exclusion of the effect of the first two
wavenumbers of the energy spectrum on the scalar field
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Figure 4.7: The scalar flux as in figure 4.6, but in compensated form.
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Figure 4.8: Spectral balance of the production, non-linear transfer, pressure
and subgrid dissipation of scalar flux.

destructive term and the production is positive. In section 1.2.2, we decom-
posed the transfer term into two contributions. Subsequently, in chapter 3,
we used the assumption that in the stationary case at small wavenumbers
for large Reynolds:

P(K) = — [T (K)],

[0 (K)] = ~TI(K) (4.35)
In figure 4.9 we verify this result and observe excellent agreement for practi-
cally the whole spectrum: LES supports the assumption made when choos-
ing the constants in the eddy damping term in section 3.3.
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Figure 4.9: Spectral balance of the two contributions to the non-linear trans-
fer and the production and pressure term in the scalar flux equation.



Chapter 5

Scalar mixing in uniformly
sheared turbulence

In chapter 3 we found good agreement between the EDQNM theory and
results from DNS and experiments in the case of isotropic turbulence with
a uniform scalar gradient. In the present chapter we will apply the same
theory to describe homogeneous shear flow. We choose to model the spher-
ically averaged spectra of the scalar flux and variance spectra. The mean
velocity gradient then introduces unclosed terms in the spectral evolution
equations. These terms will be modelled by tensor invariant theory. A
detailed comparison is performed with experimental results.

5.1 Introduction

Homogeneous turbulence subjected to uniform shear is one of the classical
problems in turbulence. As shear appears in almost all practical flows in
geophysical studies as well as in industrial applications, its understanding
is a fundamental need in the development of turbulence models. The mix-
ing of a scalar in a turbulent shear flow might even be of more practical
importance. To date, the understanding of both shear flow and a sheared
scalar field is not complete, partially because of the practical difficulties in
generating a homogeneous shear flow in laboratory experiments and par-
tially because of computational limitations in direct numerical simulations.
The understanding and modelling of mixing of pollutant, temperature or
concentration fluctuations in the presence of shear remains a challenging
issue.

The first nearly homogeneous shear flow was generated by Rose [88].
Improvements of this flow by various authors led to the experimental setup
by Karnik and Tavoularis [89]. The different aspects of this flow were studied
in the work of Tavoularis and Karnik [90] and the paper of Tavoularis [91].
A mean temperature gradient was added to this flow and the behaviour



94 Scalar mixing in uniformly sheared turbulence

of the temperature fluctuations was studied in the works of Tavoularis and
Corrsin [92, 93, 94]. The diffusion of heat from a line source in homogeneous
shear flow was investigated by Karnik and Tavoularis [95]. The Taylor scale
Reynolds number R) in these flows was estimated around 150.

Information at higher R) can be obtained by atmospheric measurements.
These flows, although generally subject to shear can not at all be considered
to be subject to a uniform shear. The Reynolds number in these flows is
typically within the range 103 < R, < 10* (see for example the paper of
Bradley et al. [96]). A major problem with atmospheric experiments are
the difficultly predictable and uncontrolable meteorological conditions. The
mean shear can not be kept constant over a time interval and the initial and
boundary conditions are not easily controlable by the experimentalist.

Exactly the opposite is the case with direct numerical simulations (DNS):
the initial conditions as well as the boundary conditions are entirely deter-
mined by the scientist or engineer. The limits of those 'numerical experi-
ments’ are only dependent on the available computer power. Those compu-
tational limits restricted the DNS study of Rogers et al. [97] to a Ry ~ 40.
This Reynolds number limitation can be removed by performing Large Eddy
Simulations (LES) in which only the large scales are resolved. We mention
the work of Kaltenbach et al. [98]. The problem of filtering and subgrid
modelling was discussed in the case of isotropic turbulence in chapter 4. An
additional problem in homogeneous shear flow is that the integral length-
scale increases monotonically' so that sooner or later its size will become
superior to the computational domain.

In this chapter we study scalar mixing in homogeneous shear flow. By
using the EDQNM approach and some additional modelling hypotheses we
intend to fill up, at least partially, the gap between the low Reynolds number
experiments and atmospheric measurements. We also try to provide answers
or at least insights into three particular questions: why show the atmospheric
measurements of Kaimal et al. [33] and Kader and Yaglom [34] of the
horizontal heat flux spectrum an inertial slope of 2.5 instead of the K3
scaling as proposed by Wyngaard and Coté [32]7 Why find Antonia and
Zhu [99] for this same spectrum a K ~5/3 slope? What is the influence of the
mean shear on the scalar variance and its spectral distribution?

In the following we will discuss and derive, where necessary, the models
needed to simulate a scalar field in the presence of mean shear. The basis
ingredient of this model is the EDQNM theory to represent the non-linear
transfer. The formulation of the closure as derived and validated for isotropic
turbulence in chapter 3 will be used. In the case of a fluctuating scalar field
produced by the interaction of an isotropic turbulence with a mean scalar
field, there is an exact relation between the 3D spectrum F, ¢(K) and its

land much faster than in the case of isotropic turbulence
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integral over a sphere with radius K (Herr et al. [20)):
Fuio(K) ~ (1= i) Fuo(K) (5.1)

with p the cosine of the angle between the scalar gradient axis and the
wavevector. In the presence of shear (5.1) does not hold anymore; nor the
spectral tensor ®;; can be expressed exactly as a function of the wavenumber
only. A full EDQNM approach of the problem would then require to build
and numerically integrate a wavevector dependent closed set of equations.
In order to simplify the numerical task that would result of this complete
approach, we integrate the equation over spherical shells with radius K to
obtain the variable:

Fog(K, 1) = / /E FualK.DIZK (5.2)

The main quanities in this chapter are then the spherically averaged spec-
tra: @;;(K,t), Eg(K,t) and F,¢(K,t). For the velocity field, the approach of
considering and modelling only the spherically averaged spectra, was intro-
duced by Cambon et al. [24]. The averaging procedure introduces unclosed
terms in the equations of ¢;;(K,t), Ey(K,t) and Fy,¢(K,t). The unclosed
terms that are related to the interaction with the mean velocity field (linear
transfer and rapid pressure terms) are modelled by tensor invariant the-
ory. The non-linear terms are modeled by EDQNM theory with additional
assumptions about the anisotropy of the spectra.

We will validate the resulting model by comparison with experimental
results and apply it to different situations, ranging from low Reynolds num-
bers, attainable by DNS and laboratory experiments, upto Reynolds num-
bers that represent the highest Reynolds numbers observed in atmospheric
measurements.

5.2 Modelling the velocity field

We recall here the equation for the spectral tensor ®;;(K,t) in homoge-
neously sheared turbulence that can be found in the work of Craya [100] or
Cambon et al. [24]:

[% + 21/K2:| @ij + aa—gliq)lj + %—leq)il =
oU, 0K, ®;; U, (KlKi(I) KK )
or, 0K, ozr, \ K2 ™ K2 "
+Pil(K)KnTlnj + PlJ(K)KnTl;z (5.3)

in which ®;; = ®;;(K, ) is a function of the wavevector. The T;;;, terms ex-
press the non-linear interaction involving triple velocity correlations. These
terms are unclosed.



96 Scalar mixing in uniformly sheared turbulence

As proposed by Cambon et al. [24], we can reduce the computational cost
of resolving this equation by integrating the spectral tensor over spherical
shells with radius K, the wavenumber. The variable then becomes:

polf) = [[ @, 000K (5.4

involving one spatial variable K instead of the three-dimensional wavevector
K. The equation for ¢;;(K,t) reads:

9 ou; U,
i+ 2K+ G+ e =
L L NL
T;;(K) + I (K) + T;; 7 (K) (5.5)

The T;;; terms representing the non-linear interactions are non-closed
terms in equation (5.3). After integration over wavenumber shells the other
terms on the right hand side of equation (5.5), the linear transfer TZ? (K) and
rapid pressure term HZLJ(K ), have to be modeled as well. The modelling of
the ¢;; (K, t) equation is not the subject of the present work and we will use

the model proposed by Touil [1]. The model is briefly resumed in appendix
B.

5.3 Modelling the scalar flux spectrum

In homogeneously sheared turbulence with a mean scalar gradient we can
derive an equation for the scalar flux spectrum.

) U, 00
— K?| Fug+ —Fug+—; =
[m + v+ a) ]]-"u19+ axj}"u]g-l- o, 0

+8E 0K Fy,0 N 2aﬁn KK,

Fus
9z, 0K, or; Kz ~u°
—i Ky (Toin — Tg;y,) + ZiZKTZL L Tyin (5.6)

as for the velocity field, Fy;¢ is a function of the wavevector and time. We
similarly integrate the equation to obtain the variable:

Fuo(K, 1) = / / Fug(K, t)dSK (5.7)
Sk
Integration yields the following equation:

oU; 00
3—.’L‘jFuj0(K) + 8—.’L‘j<PU

Tig(K) + Tj(K) + Ty “(K) + Tig(K)  (5.8)

5+ 0+ K2 Fugl) + (x) =
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The terms on the left hand side of this equation do not require modelling:
the dissipation and the production by shear and the mean scalar gradient
respectively are exact. On the RHS we find similar terms as for the velocity
field?. They are now explicited and modeled.

Rapid Pressure

The rapid pressure is:

U, KK, oU,
AT K =2
oz [y, K2 Fujod

k) =2 H] dvK (5.9)

8.T] Tk

We will model the term an assuming that it can be represented as an
isotropic tensorial function of F,, .y and o; = K;/K. We find the model (as
shown below):

v,
F,. 1

Wi o — (8AY —3)

L _ L

We use the theory of representation by tensorial isotropic functions (as
in Eringen [101] or Schiestel [102]). We propose the form:

H}, = AbinFy,0 + B'6;jF,. 0+ B8, F,y 0
+CajonFyj0 + DlaiajFung + DHajanFu,.g (5.11)
This expression needs to satisfy three conditions:
e Symmetry in a: Hz.jn = Hﬁn This condition yields B! = BT = B
and D! =D =D
e Continuity: HZJ = 0. This gives A+ 4B+ D =0and C+D =0
e The definition of Fyg:

/ H},dLK = %fujadsz = Fu;0dEK = Fy 9
P2)7e Sk

Sk
(5.12)
This last constraint yields the equation: 34 + 2B + C' 4+ 2D = 1. The

integrals of the angular moments can be calculated as in Cambon et
al. [68]:

2The slow pressure II;o(K) is separated from the nonlinear transfer term, like in the
rest of this manuscript. In equation (5.5) for ¢;; the nonlinear term is not explicitly
written. It is part of Tizj\-”‘ (K).
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s K2

ALK = b;y
(5.13)

We can now explicit equation (5.9), calling the constant A = AL.

In Schiestel [102] the same approach is followed for one point modelling
of the turbulent flux. In their work only A and B are non-zero in
equation (5.11) giving for the rapid pressure term:

407, 16T,

my, =-—"F,,
i 5(9(61 uif

———F,, .14

b) 6.’17, usf (5 )
We find the same expression if we substitute in expression (5.10) for
AL the value 2/5. Tt is reasonable to expect that the value of AL in
our model should be close to this value.

Linear Transfer

Cambon et al. [24, 69] derived a model for the linear transfer of kinetic
energy. The constant intervening in this model was related to the constant
in the model for the rapid pressure as discussed in the last section.

The linear transfer is represented by:

i v K (5.15)

i _ 9Un / 0K, Fy
00z Iy, OK;

The linear transfer term has been described in appendix ?? for the
velocity field and could be modelled in a similar way:

OKF,,
T5(K) = A™/Si;Si; 671(9

(5.16)

with A” to be determined by comparison with experiments. We will
however follow another procedure. We rewrite eq. (5.15) (see also
Clark and Zemach [103]):

ou, o [¥ OKnFuso
7L _ %Yn 9 ontuib iy KAK 1
0 9x; OK /0 /EK OK; dxKd (5-17)

noticing that the two integrals together can be rewritten as an integral
over the volume of a sphere with radius K:

K
/ / dSKdK = / v (5.18)
0 YK V(Zx)
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and rewriting;:

0 0
6—Kj = 6—Kl5lja (5.19)
we write (5.17) as
T = OUn 0 0 — 6 KnFu,0dV (5.20)

61'] 6K V(E )aKl

With the divergence theorem of Gauss, we can rewrite this volume in-

tegral of the divergence as a surface integral involving the outer vector
K 7 / K:

oUu
8:17] oK
ou, 0 KK,
S in g 0dSK
dr; 0K [, K? Fuod
_oUu, o
- Oz; OK

TE = / KJK nFu;0d2 K

— K / H: dsK (5.21)

with H_  defined and modeled as in the last section for the rapid
pressure. Our model for the linear transfer reads then:

3 oUu; aU;\ 0
TS = (5 —4AL> (6:1:‘ + &E?) o K Fuso o(K) (5.22)
7 )

Non linear transfer and non linear pressure

In the presence of shear the non linear transfer and pressure term can not
be expressed exactly as a function of the wavenumber only. A full EDQNM
approach of the problem would then require to build and numerically in-
tegrate a wavevector dependent closed set of equations. This approach is
complex and numerically expensive. We will therefore treat the non-linear
transfer and slow pressure term with the EDQNM model as derived in chap-
ter 3. Even though the closure was derived for isotropic turbulence with a
mean scalar gradient we will use it here in the case of an anisotropic veloc-
ity field. Obviously this approach is not rigorous and has to be seen as an
approximation.

5.4 Modelling the scalar variance spectrum

For the scalar (variance) spectrum one can derive:
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P , 50
— 4+ 2aK“| ® —Fu.0 =
[8t+ o’ ] 0+(9J:j]:u70
oU, 0K, ®y . .
8—.1'71 oK, — 1Ky (T09n - TGGn) (523)

with Fy;¢(K,t) the spectrum of the velocity scalar cross-correlations. Once
again we integrate over wavenumber shells:

Ey(K,t) = / /E  Bo(K, )dA(K) (5.24)

and similarly we need to model the right hand side of the resulting equation:

89. Fu0(K) =Ty (K) +T)'"(K)  (5.25)

0 2
[— + 20K ] Ey(K) + o

ot

Linear Transfer

The linear transfer, integrated over spherical shells can be rewritten (see
also section 5.3):

oU,; 0K ®y ou; o K K,
Ty (K)= | ~— dAK) = — =K PpdA(K
o' (K) s 0z, 0K, (K) 0y 0K Jox K2 ° (K)
ou, o
=—-—K H;,dA(K) (5.26
8£Cn 0K SK In ( ) ( )
In the case of homogeneous shear,
ou
—821 = S(Sll(sn& (527)

we can, introducing spherical coordinates

Ky = Ksinf cos¢p, Ko = Ksinf sing, Kz = Kcosf
T 2
dA(K) = / K?sinf dp df,  (5.28)
YK o Jo

rewrite expression 5.26 as:

SiK K1 Ky

e e B(K)dAK) = (5.29)

™ 27
SiK/ / sinf cosf K?sinf ®y(K)cosp do df (5.30)
0K Jy Jo
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As long as ®4(K) is not a function of ¢, thus in the isotropic case and
even in the case that ®y(K) is axisymmetrical around the z-axis, the
integral is zero. It is therefore justified, at least at small St, to neglect
this term. The influence at long time has to be investigated.

We conclude that if we try to model Hy, as a function of the isotropic
scalar spectrum Fy(K,t), it is found that the whole term disappears. We
will neglect this linear transfer. As long as ®y(K,t) is close to isotropy, this
approximation might not introduce a large error.

Non-linear transfer

In the absence of scalar and velocity gradients, the EDQNM expression for
the non-linear transfer reads [22]:

TGNL // @KPQ K y2)E(Q) [KQEG(P) _P2E0(K)]
(5.31)

The details of the closure can be found in for example Lesieur [56]. In the
case of a non-zero scalar gradient, the non-linear transfer contains terms
involving this gradient and an exact EDQNM expression can be found in
Herr et al. [20]. In the case of sheared turbulence the expression gets even
more difficult and the closure has at present not yet been derived for this
case. We will neglect the contributions stemming from the mean scalar
gradients and shear and we also neglect its spectral anisotropy: we use the
isotropic formulation (5.31).

5.5 Final formulation of the model for scalar mix-
ing in homogeneous shear flow
We recall the equations for ¢;;(K,t), Es(K,t) and Fip(K,t) that were dis-

cussed and derived in the last three sections. For the velocity field we have
the equation:

0 oU, oU ;
WEK?| 01 (K) + 2 0 (K) + L () =
[8t+ v ]%g( ) + (9J:l(Pl]( )+ oz, vi(K)
T5(K) + T (K) + T, (K) (5.32)
with the linear transfer TZ’; (K), rapid pressure H{}‘ (K) and nonlinear transfer

TZ]JV L(K) discussed in Touil [1]. The evolution of the scalar flux spectrum is
calculated by:
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oU; 00
—F,9(K —w;i(K) =
0z; u]a( )+ oz, ‘sz( )

Ti(K) + j(K) + Ty “(K) + Mg (K)  (5.33)

[gt (1/+04)K2] Fuo(K)+

with IT})(K) given by equation (5.10), T/5(K) by (5.22) and the nonlinear
transfer (and non-linear pressure) as described in chapter 3, equation (3.64).
The scalar spectrum evolution equation reads:

[% +20‘K2] Ey(K) + %Fuﬂ(K) = T;"M(K) (5.34)
with
TNL(K // GKPQ K ~P)E(Q) [K*Ey(P) — P Ey(K)] .

5.6 Results

5.6.1 Model calibration
The velocity field

For a detailed study of the performance of the model-equation for the ve-
locity field (5.32) we refer to Touil [1]. We just want to recall a few results
of the model when applied to homogeneous sheared turbulence. The results
of the model were compared to the experiments of Tavoularis and Karnik
[90] and were found in satisfactory agreement with the asymptotic analysis
of Tavoularis [91] for the different quantities. The components of b;;, the
dimensionless Reynolds stress-tensor,

Ui

q2

bij = (5.35)
with ¢? = u? 4+ v? 4+ w?, tended to constant values in fairly good agreement
with the experimental values. The uw-cospectrum showed a K~7/3 inertial
range and for large St, ¢2 increased exponentially with time. This last issue,
has been the subject of the work of Rohr et al. [104], who identified St = 4
as a threshold, and noted that for lower values of St the turbulent kinetic
energy decays whereas for larger values it starts to grow. Tavoularis and
Karnik [90] found that for 4 < St < 8, ¢2 remains approximately constant,
and tends to exponential growth for larger St. In figure 5.1 we show the
result of the model of Touil for three different Reynolds numbers. The
calculations are in good agreement with the experimental observations.
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Figure 5.1: Model results for the evolution of the kinetic energy in homo-
geneous turbulent shear flow. We observe a decay upto St = 4, an approx-
imately constant value in between 4 < St < 8, and an increasing value for
larger St. The Reynolds numbers are determined at St = 12.

The scalar variance

The model for the scalar variance spectrum contains no adjustable constants
apart from the EDQNM closure for the non-linear transfer. The two con-
stants are taken equal to their classical ’isotropic’ values so that we recover
the isotropic formulation in the case of vanishing scalar and velocity gradi-
ents.

The scalar flux

The model for the scalar flux spectrum contains three constants. The two
EDQNM constants as determined in chapter 3, and the constant A’ that
appears in the linear transfer and rapid pressure. This last constant is de-
termined in section 5.6.3 by comparison with DNS and experimental results.

5.6.2 The decay of scalar fluctuations in homogeneous shear
flow

In the absence of a mean scalar gradient there is no scalar flux and subse-
quently no production of scalar fluctuations. This case is thus independent
of the choice of the model constant A”. The case of a homogeneously sheared
scalar wihout mean scalar gradient has to our knowledge not been studied
experimentally. This was already noticed by Gonzalez [105]. Gonzalez per-
formed a self preservation analysis on the large time decay of the scalar
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spectrum in homogeneous shear flow in the absence of mean scalar gradi-
ents. His approach consists in looking for self-similar solutions of equation
(5.34).

One of the conclusions of this analysisis is that the scalar variance should
decay exponentially. In isotropic turbulence this decay obeys a power law.
In the absence of experimental data to verify his results he used the data
of Karnik and Tavoularis [95] who report measurements of the scalar field
behind a line-source in uniform shear flow. Gonzalez conjectures that on
the centerline behind the line source the budget of scalar variance reduces
to a convection-dissipation equilibrium. In other words the turbulent dif-
fusion can be neglected, and, invoking the Taylor hypothesis, a locally-
homogeneous scalar field is observed. Obviously this is not exactly true.
Mean scalar gradients might play a role and inhomogeneous effects might
be present. However, the exponential decay that Gonzalez proposed fits
satisfactorily the experimental data. We recall the expression here:

o2 To
0% ~ exp (—QM) (5.36)
with a a constant, equal to 0.037, M the height of one of the 12 shear-
generating channels (which is related to the typical initial lengthscale of the
turbulent velocity field) and zy the downstream distance from the source.
The time dependence is recoverered by invoking the Taylor-hypothesis re-
placing x by U.t, with U, the centerline velocity. One can write:

02 ~ exp (—BSt) (5.37)

The relation between o and f is subsequently:

_aU,
T MS

B (5.38)

Using the values M, zy and U, from Karnik and Tavoularis [95] we find
B = 0.235. In Gonzalez [105] this exponential function is shown to describe
the data for 8.75 < St < 17.5, where St = 17.5 is the limit imposed by the
experimental facility.

To simulate this experiment we use a von Karmann spectrum [61] to
initialize both the energy and scalar spectrum. The shear rate (47s~') and
the Reynolds number (varying from 130 < Ry < 160 in the test section [92])
are taken the same as in the experiment. The result of the calculation is
shown in figure 5.2. The decay exponent of the scalar variance is very close
to the experimental value, but approaches this decay rate at a somewhat
larger St than in the experiment. This difference could perhaps be explained
by the difference in initial conditions. The spectral distribution at St = 0
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Figure 5.2: Model results for the decay of scalar variance with time in
homogeneous turbulent shear flow (solid line). The decay for St > 8.7 in the
Karnik and Tavoularis experiment [95] obeys an exponential exp(—0.235S5t).
This exponential is also drawn.

in the experiment is not known and might be very different from the von
Karmann spectrum used in our calculation.

Taking into account that no model constant was adjusted to obtain this
result, finding the same exponential decay as in the experiment is an encour-
aging result. It shows that the influence of the mean shear on the scalar field
is at least partially present in the model through the evolution of the en-
ergy spectrum that intervenes in the nonlinear transfer of Fy(K). A typical
scalar spectrum at St = 15 is shown in fig. 5.3.

5.6.3 Comparison of one point statistics with experimental
results of homogeneous shear flow with a cross-stream
mean scalar gradient

To validate our model and to determine the constant AL, we compare the
results of our calculations with the results of previous works using various
methods (Experiment, DNS, LES, Rapid Distortion Theory). In all these
works we compare with the situation where the shear and scalar gradient
are given by

Ty . _ 09

5= 0z’ " 0z
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Figure 5.3: Scalar variance spectrum in homogeneous turbulent shear flow
at St =12.

Because the mean shear deforms the scalar field it is found in this case that
the scalar flux has two components: one in the z and one in the z direction.
In the following we will call those fluxes the vertical and horizontal scalar
flux respectively?.

The best overall agreement with the different results is obtained for the
value A = 0.385. Those results are summarized in table 5.1. The difference
between RUN1 and RUN2 is the Reynolds number of the initial energy
spectrum, chosen so that at St = 12 the Ry was equal to respectively 43 and
150. This allows a comparison with the DNS values (R) = 43 at St = 12)
and the experiment of Tavoularis and Corrsin [92] (R) = 150 at St = 12).
All quantities are determined at St = 12 which is chosen as a reference time
because in literature most results are shown at this non-dimensional time.

Details about the DNS can be found in the report of Rogers et al. [97]. To
take the mean shear into account in their pseudo spectral code, the numerical
mesh moved along with the mean velocity field so that the numerical domain
had to be remeshed several times during the calculation. They also report
results about the scalar field with other orientations of the mean scalar
gradients: 00/0z, and 00 /02, but those cases will not be treated in this
manuscript.

We compare also with the Rapid Distortion Theory (RDT) analysis of
Rogers [106]. The idea of RDT is to neglect all non-linear terms in the
equations of the spectral tensor, scalar flux spectrum and scalar spectrum.
RDT is known to yield valuable information, because the non-linear effects

3In this chapter we choose the value of I positive so that the vertical scalar flux becomes
negative
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Table 5.1: Comparison of the EDQNM results with experimental results and
Simulations. All values are determined at St = 12.

Authors | RMR [97] Present  T&C [92] Present R91 [106] KGS [98]
RUN1 RUN2

Approach | DNS EDQNM  Exp EDQNM RDT LES

Re), 43 43 150 150 - -

Pry 0.85 0.94 1.12 1.1 0.9 0.74

Di3/Ds3 | -2.57 -3.01 2.2 (-2.9) -2.9 - 2.1

Puf 0.68 0.87 0.59 0.76 0.9 0.6

Pwo -0.5 -0.73 -0.45 -0.61 -0.65 -0.5

R 1.62 2.26 2.55 2.5 - -

B 1.056 1.39 1.53 1.55 - -

(absent in RDT) do often respond slower to rapid deformations than the
linear terms so that the neglection of the non-linear terms does not intro-
duce large errors at short deformation times. The rapid pressure and linear
transfer are linear terms so that comparison with RDT might be useful. We
can however question if St = 12 corresponds to a short deformation time.

The paper of Kaltenbach et al. [98] reports uniformly sheared stable and
unstable vertically stratified flows. The case Ri = 0 (Ri stands for Richard-
son number) corresponds to a passive scalar field so that a comparison with
our work can be made.

The experimental results of Tavoularis and Corrsin [92] are wind tun-
nel results in which the mean shear is generated by using an array of jets
discharging air at different speeds. The scalar gradient was introduced by
heating cylindrical rods at the exits of the different jets. A detailed com-
parison is performed between this experiment and the results of our model.
This comparison is shown in figure 5.4. We will now define and discuss the
different quantities.

Turbulent prandtl number
The turbulent Prandtl number is defined as:

Prp="L (5.40)
or

In this expression the turbulent viscosity and diffusivity are defined by:

_W
VT—?
b
aT—?
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Figure 5.4: Ry = 150 Top left: Turbulent Prandtl number, top right: dif-
fusivity ratio, bottom left: correlation coefficients, bottom right: time scale
ratio R and relative fluctuation intensity parameter B
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The turbulent Prandtl number is thus the ratio of the Reynolds stress to
the vertical turbulent heatflux, normalized by the mean gradients:

P'I"T = = (541)

In figure 5.4 we show that the agreement with the Tavoularis and Corrsin [92]
experiment is good. A spectral extension of Pry was proposed in Fulachier
and Antonia [107]:

_ ESOuw(K)

P’I‘T(K) == Sng(K)

(5.42)
They analyzed this quantity in various shear flows and observed that it was
a decreasing function in the inertial range. This observation is compatible
with a tendency towards a K~7/3 inertial range behaviour slower for the
vertical scalar flux spectrum than for the Reynolds-stress spectrum. The
Reynolds number dependency of the spectral slope of the scalar flux spectra
in homogeneous shear flow is investigated in section 5.6.5.

The turbulent diffusivity tensor
The turbulent diffusivity tensor D;; is defined as:

00

—uif = Dij%
J

(5.43)
In this chapter the two non-zero components of this tensor are D3 and D33,
corresponding to the horizontal and vertical scalar flux. The ratio of those
two components is equal to the ratio of the two scalar fluxes:

Dlg_w

— = — 5.44
D33 wh (5.44)

It has been studied in several works*. In fig. 5.4 the comparison of the model
with Tavoularis and Corrsin [92] is shown. The value obtained with our
model (—2.9 at St = 12) is lower than the value measured in the Tavoularis
and Corrsin [92] experiment.

In another work by the same authors [94], the experimental results are
analysed using a quasi-lagrangian analysis, invoking several assumptions

“Rubinstein and Barton [108] perform a renormalization group analysis of this ratio
and derive the expression:

uf/wh = —0.6415—6’“ (5.45)
with k the kinetic energy. Substituting in this expression the values for the kinetic energy,

dissipation and shear rate from our calculation at St = 12, we obtain the value D13/Dss =
—2.82.
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relating eulerian and lagrangian statistics. The ratio was then estimated to
be —2.9, in agreement with our calculation but no estimation could be made
of the errors induced by the approximations so that the perfect agreement
of their value with our calculation could be a lucky coincidence.

Heat flux correlation coefficients

The scalar flux correlation coefficients corresponding to the two components
of the scalar flux are defined by:

uf wl
Pub = —— Pwh = — (546)
Vu? 62 w? §2

We observe in fig. 5.4 reasonable agreement with the experimental values.
The absolute value of both coefficients are over-estimated by our model.
pug and pyg calculated by the model are ~ 0.8 and ~ —0.6 respectively
compared to the experimental values ~ 0.6 and —0.5.

Time scale ratio

We define the ratio of the velocity timescale and the passive scalar time scale
as:

R= I
02/eq
We find acceptable agreement with the experiment (fig. 5.4).

(5.47)

Relative intensity ratio

The relative strength of the fluctuating velocity field compared to the scalar
field can be expressed by the parameter B:

k728

021/2/F

Figure 5.4 shows that the agreement is good.

(5.48)

5.6.4 The inertial range of the scalar spectrum

We show in figure 5.5 two scalar spectra at St = 12 for two different Reynolds
numbers: R, = 134 corresponds approximately to the situation in the
Tavoularis and Corrsin experiments [92]. The spectral slope is less steep
than —5/3. At R, = 2384, a typical atmospheric value, a —5/3 inertial
range slope is observed.
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Figure 5.5: Scalar spectra at St = 12 for two different Reynolds numbers.
Top: Ry = 134, bottom: Ry = 2384. Straight lines correspond to K—5/3
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In figure 5.6 we plot the slope of the scalar spectrum at St = 12 for
varying Reynolds number. The results are compared to the compilation of
experimental results by Sreenivasan [6]. The different experiments in this
compilation (the Tavoularis and Corrsin experiments [92], a heated bound-
ary layer, the wake of a heated cylinder and atmosperic measurements) are
compared in one graph because the non-dimensional shear rate is compara-
ble in all different experiments. The slopes deduced from our calculations
show that the same tendencies are observed. At low Ry (~ 150) a value close
to ng = 1.3 is found, both with our model and in the experiments. When
R) increases the slope changes and tends towards —5/3, a value which is
nearly reached at Ry of a few thousands. However the results of our model
tend faster towards their asymptotic value of —5/3 than the experimental
slopes.

The slope determined by Sreenivasan corresponds to the slope of the one-
dimensional scalar spectrum Ejy(K,). Our model provides only the spectra
integrated over wavenumber shells and we do not consider the anisotropy
of the scalar spectrum. This might explain the difference of our results
with the experimental values. Another reason, closely related, might be the
neglection of the direct influence of the shear on the non-linear interactions
and the linear transfer®. Those anisotropic terms which act especially at the

lower wave-numbers might cause the inertial range to be shallower at lower
R).

5.6.5 The scalar flux spectrum

In figure 5.7 we show the spectra of the horizontal and vertical heatflux at
St = 12, normalized by the RMS values of 6, v and w. F,y(K) shows a
steeper inertial range slope than Fi9(K). The two spectra intersect at a
certain wavenumber.

The different contributions to the equation of the scalar flux

The different contributions to the evolution equation of the scalar flux spec-
tra, equation (5.8), are shown in figures 5.8 and 5.9. The two figures
correspond to the two different cases shown in figure 5.7, Ry = 134 and
Ry = 2384.

We define in these figure the production terms:

5Tt would be interesting to consider the results in this chapter in comparison with the
recent work of Celani et al. [109], who also study the effect of shear on the scalar spectrum
and propose a model to explain the shallow scalar spectra in the presence of uniform shear.
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Figure 5.6: Spectral slope of the scalar variance spectrum. Results of Sreeni-
vasan [6] compared to the present EDQNM results. The dotted line corre-
sponds to a —5/3 slope.

PE(K) = 9 s (K)
PS(K) =~ 9 Fy(K) (5.9
J

the dissipative term:
Vi(K) = ~(v + 0) K Fyyp(K)

For simplicity the indices are dropped (all contributions to F,4(K) should
have an index 1, the contributions to Fyp(K) an index 3). All the contri-
butions to Fyg(K) which is a negative spectrum, are multiplied with —1 to
simplify the comparison with F,y(K), which is a positive spectrum.

We observe that for the vertical heatflux spectra F,y(K), the main con-
tributions are the same as in the isotropic case. The new terms (compared
to isotropic turbulence with a mean scalar gradient) are small: the produc-
tion by shear P¥(K) is zero as can directly be seen from eq. (5.6.5). The
linear transfer T7(K) and rapid pressure IT*(K) terms are small, especially
for higher wavenumbers. The behaviour of the old terms (production by
the scalar gradient P (K), pressure II(K), non-linear transfer 7V*(K) and
dissipation V(K)) is roughly the same as in the isotropic case.

The horizontal heatflux spectrum Fy4(K) does not exist in the isotropic
case. We see three production terms: P°(K), P'(K) and the rapid pres-
sure term ITY(K). We see, especially in the high Reynolds number case,
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Figure 5.7: Horizontal and vertical heatflux spectra at St = 12 for two
different Reynolds numbers. Top: Ry = 134, bottom: R) = 2384
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Figure 5.8: Contributions to the equations of the horizontal and vertical
heatflux spectra at St = 12 and Ry = 134.
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Figure 5.9: Contributions to the equations of the horizontal and vertical
heatflux spectra at St = 12 and R, = 2384.
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that in the inertial range, there are only two dominant terms, the pressure
term II(K) and the non-linear transfer TVX(K). Already for the vertical
spectrum those terms where dominant, but for Fg(K) the production terms
fall off as K~7/3, compared to K ~5/3 for the production term of the vertical
heatflux, so that the non-linear interactions are even more dominant in the
inertial range.

The inertial range of the scalar flux spectra

We show in figure 5.10 the slopes of the vertical and horizontal heatflux
spectra as a function of the Reynolds number.

At two different times, St = 0.5 and St = 12 the slopes are determined.
It is observed that the difference between the slopes at different times de-
creases with increasing Reynolds number.

The vertical heat-flux spectrum tends to the n,g = —7/3 asymptote
for large R, like in an isotropic turbulence with a mean scalar gradient.
Apparently the asymptotic value is not changed by the presence of shear. In
fig. 5.11 we show the compensated spectra for different Reynolds numbers.

The exponent of the horizontal spectrum, n,g (fig. 5.10 bottom) is found
to tend to a value larger than 7/3. However, the high Reynolds number
asymptote seems to be smaller than the value n,y = 3 proposed by Wyn-
gaard and Coté [32]: nyp = 23/9 appears a more plausible value. This can
also be observed in figure 5.12, where the spectra compensated by K23/9 are
plotted. It is interesting to point out that measurements in the atmosphere
have found values values close to 2.5 (Wyngaard and Coté [32], Caughey
[110], Kader and Yaglom [34]) and that 23/9 = 2.555.

Dimensional analysis based on the quantities S, € and K provides the
following expression for the spectrum:

Foo(K) ~ g—(jsael‘T"‘K

_ T+2a
3

(5.50)

This expression is linear in the scalar gradient, as it has to be to reflect the
linearity of the scalar equation. Linearity in S is not mandatory since the
Navier-Stokes equations are not linear; if linearity in S is assumed, (5.50)
reduces to the Wyngaard and Coté (1972) formulation:

00
Fu(K)~ ——SK™>. 51
w(K) ~ S-S (5.51)
This formulation can also be found by assuming
Puw (K)

and using (2.5) to express F,p(K) and a classical expression for the ¢, (K)
spectrum:

Puw(K) ~ S BKTT/3, (5.53)
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If instead, one uses a tensorial extension of (2.5):

00
Fyp(K) ~ geij(K)l/?’K_?/?’, (5.54)
J

and expresses €,,,(K) by arguments similar to the ones leading to (5.53):

uw(K) ~ S/PK™2/3 (5.55)
it is found: 56
Fup(K) ~ 551/362/91(—23/9, (5.56)

a scaling in good agreement with the present EDQNM results (see figure
5.12) as well as with the results of atmospherical measurements leading to
Ty ~ 2.5.

5.6.6 The K53 horizontal scalar flux spectrum of Antonia
and Zhu

Antonia and Zhu [99] show two cases in which the horizontal heatflux spec-
trum shows a K °/3 inertial range for over two decades of the spectrum.
Those observations are based on two experimental runs in the work of
Bradley et al. [96]. The horizontal heatflux coefficient and Reynolds num-
ber in those two runs are p,p = 0.04 at Ry = 7190 and p,y = 0.05 at
Ry = 7673. The small values for the correlation coefficient p,y compared
to the typical values summed in table 5.1 for St = 12 let us suspect that
the effective value of St is small in these atmospheric experiments. An ex-
act quantitative comparison with our calculations is impossible because the
atmospheric measurements do not correspond to pure homogeneous shear
flow. We observe however, that in our EDQNM calculations at very small
St we also see this K 5/3 slope. The explanation might be that the produc-
tion terms of both the Reynolds stress spectrum ¢;3(K) and the horizontal
heatflux spectrum at small St are superior to the non-linear terms over most
of the spectrum. Only near the dissipation range, the triadic interactions
are strong enough to react to the sudden introduction of shear. In figure
5.13 we show the spectrum of u# at four different times in the beginning of
the calculation.

The parameters of our calculation (viscosity, shear) are chosen so that
we find a p,g = 0.05 at Ry =~ 7500. At St = 0.001 we observe two decades of
K~5/3 in the inertial range. However, this behaviour vanishes fastly when
the calculation procedes. At St = 0.05, the time at which p,9 = 0.05 and
Ry = 7500, it has practically disappeared. We find no direct agreement
between the observations of Antonia and Zhu [99] and our model, i.e. at
comparable Reynolds number and p,9, we do not observe the K —5/3 glope
for the horizontal heatflux spectrum.
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5/3
K™ Fe(K)

Figure 5.13: The horizontal heatflux spectrum at four different times in the
beginning of the calculation. The spectra are compensated by K5/3.

A more detailed analysis, taking into account the influence of inhomo-
geneity and instationarity of the mean velocity field on the horizontal scalar
flux spectrum, could provide insights in this issue.



Chapter 6

Towards a spectral closure

for inhomogeneous scalar
fields

6.1 Introduction

In the previous chapter we succesfully applied the EDQNM theory to predict
the non-linear transfer of scalar flux and variance in homogeneous shear flow.
In the present chapter the equations to extend the model to scalar mixing
in inhomogeneous and wall bounded flows are derived.

6.1.1 Two-point modelling of inhomogeneous turbulence

The first attempts to derive the EDQNM equations for inhomogeneous tur-
bulence can be found in the works of Menoret [26] and Burden [27]. Numer-
ically exploitable equations were not derived until the work of Laporta [28]
who derived the extension of the EDQNM theory to weakly inhomogeneous
turbulence.

A first approach to take into account the influence of boundaries on
the EDQNM equations was proposed by Bertoglio and Jeandel [29], who
introduced a spectral cut-off to model the scale limitation introduced by
the finite size of a wall-bounded domain. Experimentally this influence was
tested by Skrbek and Stalp [111] and by DNS, LES and closure calculations
by Touil et al. [112]. The first numerical computer code based on the
EDQNM equations that could be applied to complex flows including walls
was created by Parpais [30]. He used the scalar energy spectrum E(K, x,t)
as its main variable. The anisotropy was in this work modelled using a
spectral extension of the Shih and Lumley [113] approach. This result was
extended by Touil [1] refining the anisotropy of the model, the variable now
being ¢;;(K,x,t). The equation in this work reads:
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0 — 0 10

Production
+Linear Transfer
+Rapid Pressure

+Non-linear Transfer & Pressure

+Inhomogeneous Transport
+Wall effects  (6.1)

If we compare this equation to homogeneously sheared turbulence (as con-
sidered in the previous chapter), we observe additional terms. On the LHS
we find the convection by the mean velocity and the inhomogeneous dissipa-
tion. Those terms do not need any modelling. Neither does the production.
The linear transfer, rapid pressure and non-linear transfer can be modeled
as in the previous chapter. Inhomogeneous transport and wall effects are
new terms. They are discussed in the PhD thesis of Touil [1] and will also
be discussed for the scalar field in the following sections.

6.1.2 Two point modelling of an inhomogeneous scalar field

The work of Herring et al. [22] applied the EDQNM theory to isotropic
scalar fields and also in this context the two-point approach helped the
understanding of the turbulent dynamics. A first application of the EDQNM
theory to isotropic turbulence with a mean scalar gradient can be found
in the work of Herr et al. [20]. An application to inhomogeneous scalar
mixing was done by Parpais and Bertoglio [114]. The principle variables
in this work are the energy spectrum E(K,z,t) and the scalar spectrum
Ey(K,xz,t). They modelled the scalar flux spectrum in a way similar to
Shih and Lumley [113]. The extension of Touil [1] for the anisotropy of the
velocity field will be done in this work for the scalar field. We will propose an
extension of the work of Bertoglio and Jeandel [29], Laporta [28], Parpais
[30] and Touil [1] on inhomogeneous turbulence to the scalar field. The
approach follows closely the work of Laporta [28] for the derivation of the
equations and the work of Touil [1] for the modelling assumptions.

6.2 Derivation of the equation for the inhomoge-
neous scalar flux spectrum

We derive the equation for the inhomogeneous two-point correlation between
a passive scalar and a turbulent velocity field.
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Multiplying the transport equation of the scalar fluctuation € in point 1
in a turbulent flow by the velocity fluctuation u in point 2, and adding
this equation to the equation of the velocity fluctuation in point 2
multiplied by the scalar fluctuation in point 1 we obtain after ensemble-
averaging the following equation:

Ouaif 0 = _
% + B [UanbBiuas + Usibuan, + Orusiuan| +
2n
9 o
+a$1 [Ulnelum' + O1U2U1, + O1uziur, | =
10 — & 0?
= B ——p201 + 1/62 Orua; + 662 01 us; (6.2)

The indexes 1 and 2 indicating position 1 = x—1/2r and o = z+1/2r
respectively. This choice leads to the following expressions for the
partial derivatives:

6.Z‘ln

o (6.3)
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10 .
+ (563]1 Z) 1

(6.4)

in this equation:
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(6.5)

We need to derive an expression for the pressure-scalar correlation II.
To do this we take the divergence of equation 6.2 in point z,. We
obtain the following Poisson equation:

o 0 19
Da: D [2U3n01uz; + B1uziuzn] = —;6?17291 (6.6)
i n 27

We will use the following coordinate transformation:

0 0

r =2 r=2xe9 — 21 e —
8.’172j 67']'

6.7)

giving us for the fourier transform of equation 6.6 (Fourier transforms
in those new coordinates are denoted by a hat):

—K;K, |2ex ifi UnFuo+ Toim | = —K211 (6.8)
ifAn D or OK n u; 0 fin | — -

We can return to our original coordinates by a transformation. F,,g,

Tgi" and 11 can be expressed in F,,g, Thin and II by application of the
operator exp (12 2} [28] leading to:

Teepp (20 0 \EEn( (i 0\,
TP\ T20z0K ) K2 P\28z 0K ) " 00n

PR P i
Pk \ 6z T 20z

We develop the pressure correlation (% % - an) IT to the first order

Un'fu,.g> (6.9)

of inhomogeneity:

iV 9 iV 9
exp <_§%8—K> _1_5%6—K+"' (6.10)
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so that
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Neglecting terms of second order in % we find:
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The continuity equation implies:

0 — 190
— ;= = ——Fu.0 = —iK;F,, 1
<8m2i O1u2; O> 2 8z, ;0 K Fu;0 (6.13)

In addition we need the derivative:

0 KK K, Kn KKK, KK, 0Fu,0
9K, K2 LuT (ﬁ‘s’" T g2l T g ) Tt T g,
(6.14)

Eventually this yields the expression:

(1 B _Z_Ki)H:(KnKj 0  KiKn, 0 | KK; 8

2 0z; 2K2 Ox; 2K? Ox; 2K? Oz,
KK, K; _KK,K;K, 0
-2 Tyin
TR Kf oz, ) on T
K;K,, oU
2 ;(2" 5 = Fu,o (6.15)

This expression for the pressure correlation can be substituted in the
equation for F,,s. This equation is then also developped to the first
order so that we obtain the following equation for the vector F,g:
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Inhomogeneous Transport

We will now integrate over all directions of the wavenumbervector to reduce
the computational cost of a treatment of the equations as proposed in Cam-
bon [69]. To do this we have to introduce some modelling to be able to
integrate terms containing F,, ¢(x, K,t) and K.

6.2.1 Production, advection and viscous terms

The left hand side containing the time derivative, advective term and viscous
(and molecular diffusive) terms, can be integrated without introducing a
model. We will neglect the first term on the RHS containing a transport by
molecular effects. This term vanishes in the case of Pr = 1. The production
terms, the second group of the RHS do not need any modelling.

6.2.2 Linear transfer and rapid pressure

The linear transfer and rapid pressure are modelled as in the previous chap-
ter.
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6.2.3 Non linear transfer and non-linear pressure

The non linear transfer and pressure,

Ty " (z, K, 1) + Mg (z, K, t) = /E —ikn (Pyj (K)Tpjn — 0 T4, dA(K)
K

(6.17)

are modelled by EDQNM theory. In the previous chapter the non-linear
transfer derived for isotropic turbulence was shown to yield adequate re-
sults for homogeneously sheared turbulence. We will use it here without
modification for the inhomogenous flowfield. Laporta [28] showed that for
the kinetic energy spectrum this approach corresponds to a first order ap-
proximation with respect to inhomogeneity.

6.2.4 Inhomogeneous Turbulent Transport

The diffusion terms containing the triple correlations are modelled together,
introducing an eddy-viscosity as in Parpais [30]:

1K,K; 0 1KK, 0  1KK; 0
Dyg(x, K, t) = ST A T et 3K Bae
29(33, 3 ) /ZK (2 K2 O; + 92 K2 837]' 2 K2 oxy,

KK,K,K, 0
_gifnty B I .
KL 0z, ) 0T

10 .
Y (Thin + Tpin) dA(K)
= 0z (veOzjFpi(z, K,t)) (6.18)
The eddy viscosity is chosen in a classical isotropic form (cf. Touil [1]):
ve = APk? ey (6.19)

with ey the homogeneous part of the viscous dissipation,
eH:/nK%@JumK (6.20)
and AP a constant to be determined.

6.2.5 The influence of walls on scalar mixing

Spectral cut-off To mimic the effect of scale limitation by walls on the
turbulent structures, Bertoglio and Jeandel [29] proposed to introduce an
infrarouge spectral cut-off in the energy spectrum. This approach is here
extended to the scalar flux spectrum. We impose:

%MJ@ZOﬁKgm:? (6.21)
w

Fuo(z, K,t) £ 0if K> K, (6.22)
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0w is the distance to the nearest wall. The constant u,, was found to yield
2 in order to get results in agreement with the log-law in wall turbulence.

Pressure reflection The influence of the pressure on the equation of the
scalar flux can be subdivided in three different terms.

1. The slow or non-linear pressure term that intervenes through the two-
point triple correlations. This term has been thoroughly discussed in
chapter 2 and 3.

2. The rapid pressure term, that exists in the presence of a mean velocity
gradient as discussed in chapter 5.

3. A wall reflection term. This term disappears in the absence of bound-
aries. We have to propose a model for it.

We adapt an approach from one-point turbulence models (Schiestel p.202-
203 [102]) inspired by the model due to Gibson and Launder [115] and the
modifications by Touil [1]. We propose the model:

" g(x, K, t) = "A (njnilljy(e, K, 1)) f(y") (6.23)

The constant 4 has to be determined by comparison with experiments or
DNS in the case of channel flow or flow over a flat plate. The function f(y™)
is replaced as in Touil [1] by a function of R;,, the Reynolds number based
on §,, the distance to the nearest wall, because Rs, is easier to determine
than y* and its behaviour is roughly the same in the range considered:

1/4
f(Rs,) = (%(tanh(ng + 1) — tanh(Rs, — 40))) (6.24)
with the Reynolds number defined as:
1/2
Ry, = 0 (6.25)

and k the kinetic energy. The function f(R;,) goes rapidly to zero for
y* > 40, so that far from walls the influence becomes negligible.

6.3 Derivation of the equation for the inhomoge-
neous scalar variance spectrum

6.3.1 The equation

For the scalar spectrum we follow an approach identical to the one in the
last section. The equation for the three-dimensional scalar spectrum reads:
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The modelling of Ey(x, K,t), obtained after integration over wavenum-
ber shells does not differ from the previous section.

6.3.2 Inhomogeneous transport and wall effects

The inhomogeneous transport is modeled as in Parpais and Bertoglio [114]:

Dy(x, K, t) = 0z, (aelzr Eg(x, K, 1)) (6.27)

with an eddy diffusivity proportional to expression (6.19).
The same spectral infrared cut-off as for the spectral tensor and scalar
flux is used for the scalar variance spectrum.

6.4 Perspectives

Three constants have to be determined before the described model can be
employed: one for the pressure reflection near boundaries; two for the inho-
mogeneous transport of scalar flux and variance, which can be determined by
comparison with mixing layer experiments and simulations (for example by
comparison with the experiments of Larue, Libby and Seshadri [116, 117]).

Subsequently the model can be implemented in a RANS code, for exam-
ple the finite element code Natur [118] in which the SCIT model is already
implemented. The CFD code solves the Reynolds Averaged Navier-Stokes
equations. The unclosed terms (u;u;, u;0, 62) are obtained by integration
of the spectra ¢;;(x, K,t), Fy¢(x, K,t) and Egp(x, K,t). The so obtained
model of turbulent flows can be considered as a spectral equivalent of the
Reynolds-stress and scalar flux one-point models. The SCIT1 model has
already been implemented in this code by Touil [1] and applied to the cases
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of a backward facing step, diffuser and wing profile.

The advantage of the present approach is that no dissipation equation
is needed and that spectral desequilibrium can be taken into account. The
price we have to pay is that we have to solve equations for the whole wave
number spectrum. The model is therefore more expensive than one-point
models. The approach should therefore be seen as a tool giving information
on turbulent flows and scalar mixing that can not be revealed by one-point
approaches and that are numerically not tractable by direct numerical sim-
ulations. A good test case would for example be the diffusion of heat from
a line source in homogeneous shear flow as discussed in section 5.6.2.



Chapter 7

Inviscid turbulence,
single-particle dispersion and
a self-consistent Markovian
two-point closure

In the first section we apply the EDQNM theory to the limit of zero viscos-
ity: we study the evolution of the spectrally truncated Euler equations to-
wards their equilibrium. Subsequently, in the second part of this chapter the
EDQNM model is applied to a non-diffusive scalar flux to predict lagrangian
single-particle diffusion. Eventually, in section 7.3, a new two-point closure
is proposed based on the displacement of particles in an isotropic turbulence.

7.1 Spectral dynamics of inviscid isotropic turbu-
lence

The evolution of the energy spectrum of the inviscid spectrally trun-
cated Euler equations is studied by closure calculations and the re-
sults are compared to recent DNS results. The time evolution of the
wavenumber that marks the beginning of the equipartition range is de-
termined. The spectral energy flux is shown to be constant in a zone
around this wavenumber.

Recently renewed interest is shown in the evolution of inviscid turbu-
lence. Cichowlas, Bonaititi, Debbasch and Brachet [119] (in the following
abbreviated by CBDB), show results of Direct Numerical Simulations (DNS)
of the spectrally truncated 3-D incompressible Euler equations with resolu-
tions of 2563, 5123 and 1024® wavemodes. The spherically averaged energy
spectrum E(K) shows at intermediate scales a K ~5/3 Kolmogorov scaling.
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At larger scales a thermalized region is observed, showing a K? wavenumber
dependence. This K? energy distribution corresponds to an equipartition of
energy over wavenumbers in a region in which the wavemodes are in absolute
equilibrium.

The Eddy-Damped Quasi-Normal Markovian theory (EDQNM) [21] is
known to be compatible with both the equipartition of kinetic energy (as
shown by Carnevale et al. [120]) and a K—%/3 inertial range. Also, calcula-
tions at higher resolution than DNS can be performed at a much lower com-
putational cost. EDQNM seems therefore an adequate tool to investigate
the high-resolution spectral dynamics of the incompressible Euler equations.

In purpose of the present letter is to obtain information about the mech-
anism of relaxation towards the energy equilibrium state. We define a
wavenumber K~ so that F(K~) < E(K) V K. At wavenumbers larger than
K~ the energy is in absolute equilibrium. The location of K~ is therefore
an important parameter to describe the evolution of E(K).

In the following we will analyze a freely evolving inviscid velocity field,
the term decaying would be misleading because no energy is dissipated.
The non linear interactions will create a K ~%/3 inertial range. This K ~5/3
Kolmogorov scaling range was studied in superfluid turbulence in the works
of Nore et al. [121, 122]. In this range we presume the scaling:

E(K,t) = Cge(t)?/P K53 (7.1)

with €(t) the spectral energy flux. The Kolmogorov range advances with
time towards higher wavenumbers. At a certain time t; the end of the
inertial range will meet the maximum wavenumber of our truncated domain
Ky and an equipartition spectrum,

E(K,t) = A(t)K?, (7.2)

will build up from larger to smaller wavenumbers. A(t) is a function of
time. From the last two equations we can calculate the intersection of the
two zones, yielding an estimate for K~ :

. 2/11

_ 9/11

Ky (t) ~ (E3/2) Ky, (7.3)
th

in which Ejp, the part of the energy contained in the equipartition range.The
subscript PL indicates that a power law inertial range is presumed reaching
the equipartition range at K = K. The DNS results of CBDB show
however that the K—%/3 does not extend up to the K2 zone but that a
"dissipative’ zone separates the two zones. If it is this part of the spectrum
that governs the energy flux towards the equipartition zone and not the
K~5/3 yone, K~ can be estimated in another way. CBDB showed that the
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local timescale 7 around K~ is proportional to:

C
T~ —, 74
KEy, (7.4)

Using this timescale to estimate the local spectral energy flux in the vicinity
of K~ yields the ’dissipative estimate’ of K~:

1/4

— €

Kdiss(t) ~ ( 3/2) K;/4 (75)
Eth

In the work of CBDB no conclusive choice could be made which estimate
is the most appropriate. The relative cheapness of EDQNM calculations
allows for long time, high resolution calculations that can help us to choose
between the two estimates.

The evolution equation for the energy spectrum is the Lin equation with-

out viscosity:
0E(K,1)

ot
The non-linear transfer Ty, is modeled by the EDQNM theory:

Txi(K.t) = [[ © v+ [KPE(PIEQ)
dPdP
PQ
A is a band in P, (Q-space so that the three wave vectors K, P,Q form a
triangle. z,y, z are the cosines of the angles opposite to the sides K, P, () of

the triangle formed from K, P,Q. The characteristic time ©(K, P,Q,t) is
defined as:

~PE(Q)E(K)] (7.7)

1 —exp(prpgy X t)

O(K,P,Q,t) =
KKPQ,

The eddy damping is generally written

prpq = n(K,t) +n(Pt) +n(Q,1)) (7.9)

We use the formulation proposed by Pouquet et al. [63]:

K
(K, 1) = /\\/ /0 S?E(S,1)dS (7.10)

A is chosen equal to 0.36 in order to yield an adequate value for the Kol-
mogorov constant.
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Figure 7.1: Top: evolution of the energy spectrum E(K). The solid lines
indicate the K 5/3 and K2 spectral slopes. Bottom: evolution of the pa-
rameter K . The dotted line corresponds to a ¢ 3/# time dependence.
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First we perform a calculation with a ratio of smallest to largest wavenum-
ber K;/Ky = 341, a resolution equivalent to the 10243 DNS calculation of
CBDB. The initial energy spectrum is given by:

E(K,0) = BKSe 2K /K (t=0)* (7.11)

with Ko = 1, Kr(t = 0) = 1 and Ky = 341 and B determined so that
the total kinetic energy is equal to 1. This spectrum has a maximum at
K = K, the large scales are saturated from the beginning. The results are
shown if figure 7.1. The evolution is shown to be comparable to the DNS
results of CBDB. We observe the power law inertial range, the dissipation
range and the equipartition range. The closure calculations were however
performed for a longer time interval. In the top figure we see that for ¢ = 10,
A approaches its asymptotic value, which means that Ej; approaches the
total kinetic energy. The estimates Kp; and K, . should then become
proportional to €” with n equal to 2/11 and 1/4 respectively according to
equations (7.3) and (7.5). When the size of the large scales is restricted by
the size of the numerical domain the decay of spectral flux obeys:

e(t) ~ 173 (7.12)

as shown experimentally by Skrbek and Stalp [111] and by DNS, LES and
closure calculations of Touil et al. [112]. At ¢ > 10 one finds therefore:

K7 ~t734 (7.13)

diss
In figure 7.1, we plotted K~ as a function of time and it is observed that
the evolution is properly described by ¢=3/4.

EDQNM allows for calculations larger then the K/ Ky = 341 resolution.
We performed a calculation at a Ky/Ky = 10* resolution, with a K* low
wavenumber zone. The results are shown in figure 7.2. This calculation is
not influenced by the large scale saturation. The spectral evolution is shown
in the top figure. The non-linear transfer is also shown. An interesting fea-
ture is the plateau at which no or little transfer is observed around K. It
is thus at this zone that the spectral flux is approximately constant rather
than in the inertial range. In the bottom figure it is again shown that the
dissipative estimate is superior to the power-law estimate of K.
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Figure 7.2: Top: spectral evolution of the high resolution energy spectrum.
Middle: non-linear transfer, corresponding to the time ¢ = 3. Bottom:
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(7.3) and (7.5)).
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7.2 The non-diffusive scalar: applying the EDQNM
theory to single-particle diffusion

Larcheveque and Lesieur [123] considered two-particle dispersion using the
EDQNM approach. We similarly use the EDQNM equations, but our ap-
proach uses the equations derived for the scalar flux spectrum to predict
single-particle dispersion, whereas they derived the equation for relative dis-
persion.

We counsider an isotropic turbulent velocity field on which we impose
a constant uniform mean temperature gradient in the z-direction. A non-
diffusive scalar fluctuation obeys then the equation:

@, 00
dt w(?z B

We define z = 0 as the z-position of the fluid particle at ¢t = 0. The equation
can subsequently be solved to yield:

0 (7.14)

00
O(z,t) = —Ez'(m,t) (7.15)
The scalar fluctuation is directly related to the vertical separation distance
Z' from its initial position. The average of the squared separation distance
is then:

-2
2z, t)? = (3_@) 0(x,t)? (7.16)
0z
The scalar variance in isotropic turbulence with a mean scalar gradient is

thus directly related to one-particle dispersion.

We can write the equation for the scalar variance:

062 00—
5 = 2 o wé (7.17)

To solve equation (7.17), we only need to calculate the scalar flux . We
solve the EDQNM calculations for F(K,t) and F,e(K,t) at a Ry = 92.
The energy spectrum is fixed. At every timestep we integrate the scalar flux
spectrum to obtain w# and solve (7.17). The result is shown in figure 7.3. As
predicted by Taylor [124], the ballistic zone with a ¢?> dependence is followed
by a zone of brownian motion, proportional to . The corresponding spectra
at t = 100 are shown in figure 7.4.

This result is an example how an Eulerian study of passive scalar mixing
can be related to Lagrangian turbulence caracteristics. For an extensive
review on this subject we refer to Sawford [125]. Future investigations will
involve the horizontal and vertical dispersion in homogeneous shearflows,
based on the model in chapter 5.
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7.3 A Markovian two-point closure based on par-
ticle displacements in a scalar field

In the previous section, we illustrated the link between Lagrangian and
Eulerian quantities, using the velocity-scalar cross correlation. In the present
section it will be shown that this link allows us to use the equations derived
in chapter 3 to formulate a closure for the kinetic energy, the scalar lux and
the scalar variance spectra, without having to specify empirically a damping
term or to adjust a numerical constant (as is the case for EDQNM). The
idea is that the damping term in two-point one-time closures is the inverse
of the Lagrangian correlation time of the velocity field and that this time
can be deduced from the scalar-velocity correlation spectrum in the case of
turbulence with a uniform mean scalar gradient. The Kolmogorov constant
will be estimated with this closure. Subsequently the theory is applied to
scalar mixing and an estimation of the Corrsin-Obukhov constant will be
obtained.

The assumptions, leading to the EDQNM equations are the Markovian-
ization, the Quasi-Normal assumption, and the introduction of a correction
of the QNM equations, the eddy damping. The need for this correction was
discussed in chapter 3. The choice of the damping is based either on pure
dimensional analysis or on some crude physical assumptions. The final ex-
pression involves always an adjustable parameter that is chosen so that the
model results correspond to numerical or laboratory experiments.

It is possible to give an interpretation of the damping frequency n(K),
that intervenes in the EDQNM closure if one considers the self consistent
theories of turbulence i.e. theories derived from the Navier-Stokes equations,
that are free from adjustable parameters. We name the two-point two-time
closures such as the Direct Interaction Approximation (DIA) by Kraichnan
[126] or its Lagrangian extension [67] and other variants can be found in the
book of Leslie [127]. All these theories involve a similar timescale n(K,t)~*
as we encounter in the eddy damping term. The following is a brief overview
and details can be found in Leslie [127] or Bertoglio [25].

DIA is based, like EDQNM, on an assumption of Gaussianity. The
influence of the non-linear terms is in this model treated as a perturbation
of a Gaussian field. We define the two-time energy spectrum E(K,t,t') as:

E(K,t,1)
47 K2

The main role in DIA is played by the Green function G(K,t,t"), which
associates the response of a mode K of the velocity field at a time ¢ to
a perturbation of this same mode at a time #. In an isotropic turbulence
we can express G(K,t,t') as a function of the wavenumber. We will call
the resulting expression G(K,t,t'). To proceed it is generally assumed that

% (K, t)a; (M, ) = 6(K + M)P;(K) (7.18)
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G(K,t,t') is an exponentially decaying function of ¢ — #':
G(K,t,t') = exp[—n(K)(t — 1] (7.19)

An additional hypothesis is that one can apply the fluctuation-dissipation
theorem that allows to write:

E(K,t,t) = G(K,t,t')E(K,1) (7.20)
so that: [
W = eap[—n(K)(t — )] (7.21)

The two-point correlation at a wavenumber K decays thus with a charac-
teristic timescale (K ) !, that we can interpret as the correlation time at a
wavenumber K:

n(K,t)~' = T(K,t) (7.22)

It was subsequently shown that the Eulerian formulation of DIA was not
invariant under Galilean transformation and that it is therefore incompatible
with a K ~5/3 Kolmogorov inertial range. Kraichnan [67] reformulated the
theory in a Lagrangian framework thus resolving the problem but yielding a
very complicated set of equations. It appears that the Lagrangian history is
an essential ingredient that somehow should be modeled if one tries to obtain
a single-time closure. Kraichnan proposed a way to do this by considering
the evolution of an auxiliary velocity field, transported by the turbulence
itself, leading to his almost-Markovian closure (Test Field Model) [128]. We
will proceed in a different way.

7.3.1 Presentation of the model

The starting point in deriving the model introduced in this section is the
observation that in isotropic turbulence with a mean scalar gradient the
value of the scalar fluctuation can be found by:

00

9($,t) = —g -

Us(x,t | T)dr (7.23)
with 77 the Lagrangian (single particle) correlation time. In the case of zero
diffusivity this time will tend to infinity when ¢ goes to infinity because the
scalar value will not decorrelate from the fluid particle. In the following the

scalar gradient will be taken equal to —1 to simplify the equations.
The correlation of § with the velocity at point  + 7, w(x+7,t), is then:

Oz, t)w(z + r,t) = ( Us(x,t | T)dT) w(z + r,1) (7.24)

T
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we replace the Eulerian velocity by:

w(x,t) = Us(x,t | t) (7.25)

and we normalize by w(z,t)w(x + r,t), to obtain, in the case of zero diffu-
sivity, the definition of the Lagrangian two point correlation time:

G(m,t)w(m + ’l",t) _ fT’ Z/{3(.'B,t | T)Z/{3(.’B + ’I',t | t)dT — T(’I",t) (726)

w(x, t)w(x + r,t) Us(z,t | tlUs(x + 7,1t | t)
o RwO(”‘) _ r
Ron () T (7). (7.27)

in which we omitted the time dependence. A local (in wavenumber space)
estimate of the Lagrangian correlation time from the velocity, and velocity-
scalar correlation can then be obtained by:

. §Fw6’(K)

(7.28)

which can be identified as the eddy damping time scale (equation (7.22))
. The QNM equations for E(K) and F,g(K), together with the relaxation
frequency:

2 E(K)
K) =

yield a closed system, without any model constants. Using the Lumley scal-
ing for the scalar flux and the Kolmogorov scaling for the energy spectrum,
it can already be anticipated that n(K') will show the expected inertial range
behaviour, proportional to e*/3K2%/3,

(7.29)

7.3.2 Results for the Kolmogorov and Corrsin-Obukhov con-
stants

We use the equations in chapter 3, section 3.1.7 in which the damping 7(K)
is replaced by equation (7.29). The velocity field is initialized by the form
in equation (7.11). It is straight forward to apply the model to an isotropic
scalar. The initial scalar spectrum is identical to the initial velocity spec-
trum. Ry = 1400, the Prandtl number is 0.71.

We show the results in figure 7.5. A K~5/3 inertial range is obtained.
The value of the Kolmogorov constant is estimated to be 1.75. We remind
that in the EDQNM closure this value is dependent on the constant A. The
Corrsin-Obukhov constant is estimated to be 0.32.
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Figure 7.5: Compensated energy and scalar spectra calculated with the
single-time two-point closure at Ry = 1400, Pr=0.71.



Conclusion

The mixing of a passive scalar in a turbulent flow and in particular the scalar
flux were studied in this thesis. In chapter 2 a compilation of experimental
data about the spectrum of the scalar flux showed in numerous cases an
inertial range behaviour different from the generally believed dimensional
analysis, that predicts a K~7/3 inertial range: a K2 behaviour was ob-
served in a number of experiments at moderate and even high Ry. DNS
showed the existence of a spectral range in which F,4(K) is not produced
by the production by the mean gradient, but by the non linear interaction.
This observation provides support to a cascade type of analysis. When
a spectral flux of scalar flux, ega(K ), is introduced, dimensional analysis
yields an inertial range slope for F,4(K) dependent on a parameter + that
reflects the evolution of the spectral flux in the cascade of Fg(K). In the
high Reynolds number limit, the asymptotic spectrum obtained allows for a
slope between K 5/3 and K~7/3. The LES results presented in this chapter
supported a K ~2 expression.

In chapter 3 the EDQNM theory was introduced and used to study the
scalar flux. The choice of the two constants that appear in the closure
is extensively discussed. The influence of the variation of these constants
on the spectral balance between the terms in the evolution equation for
F9(K) was examined. The final choice of the constants is supported by
LES calculations.

At moderate Reynolds numbers the one dimensional spectra obtained
with the EDQNM theory are shown to agree with experimental results
and DNS. The low computational cost of the closure calculations allows
to perform calculations at very high Reynolds numbers. For these very
high Ry, the result of the EDQNM model is clearly that Fyy(K) scales
as K~7/3, in agreement with Lumley’s [31] dimensional analysis. How-
ever at R) corresponding to the experiment of Mydlarski and Warhaft
[40], values of the exponent closer to —2 were found. An empirical rela-
tion nyg = 7/3 (1 —2.73 R;0'54) was shown to describe the evolution of the
spectral exponent. The molecular destruction of scalar flux normalized by
the production was shown to obey the R;O'W power law at low Ry in agree-
ment with DNS. For higher values this quantity tends towards an asymptotic



R;l behaviour that can easily be predicted by dimensional analysis.

These results, in agreement with classical dimensional analysis, raised
the question why a K2 inertial range behaviour was found in the LES pre-
sented in chapter 2. The EDQNM theory was used to analyze this issue.
The influence of the subgrid-model was first investigated by implementing
the Chollet-Lesieur subgrid-model in the EDQNM equations. Subsequently
LES were performed using an alternative subgrid-model derived by Shao.
The subgrid-model was shown not to be responsible for the —2 slope. The
influence of forcing was studied by EDQNM calculations forcing the small-
est two wavenumbers. A K2 zone of about one decade was observed as
a result of the forcing. It was pointed out that this zone is not subject to
inertial behaviour, but that the turbulent lengthscales corresponding to the
forced wavenumbers induce this scaling. LES were performed to check this
assumption: the velocity field was still forced by injecting energy at small
wavenumbers, but in the calculation of the scalar field the influence of the
forced wavemodes was removed. The resulting scalar flux spectrum showed
a K~7/3 inertial range.

The EDQNM closure was then applied to homogeneous shear flow with
a uniform scalar gradient perpendicular to the flow direction. To reduce
the numerical difficulty of solving the equation of the wavevector dependent
scalar flux spectrum, F;(K,t), we integrated the equation over spherical
shells with radius K to obtain the variable F, ¢(K,t). This approach yields
unclosed terms that were modelled by tensor invariant theory. One-point
statistics were compared to experimental results and good agreement was
observed. The spectra associated to the streamwise and cross-stream scalar
fluxes were analyzed. The spectral slope of the cross-stream spectrum tends
towards a —7/3 value. The streamwise scalar flux spectrum is shown to be-
have differently from classical predictions. An asymptotic K —23/9 behaviour
is observed in agreement with experimental observations.

In chapter 6 the equations of the inhomogeneous scalar flux and variance
spectra equations were derived, to extend the applicability of the two-point
closure used in this work to inhomogeneous scalar mixing.

Eventually, in chapter 7 the limit of respectively zero viscosity and zero
diffusivity are investigated by EDQNM theory. Zero viscosity yields the
Euler equations. The evolution of the spectrally truncated Euler equations
towards their equilibrium state was investigated. A good qualitative agree-
ment with DNS results of Cichowlas et al. [119] was observed. Subsequently
calculations were performed at higher resolutions to be able to choose be-
tween two estimates of the local minimum of the energy spectrum, proposed
by Cichowlas et al.



Zero diffusivity yield the equation for the advection of particles by a tur-
bulent flow: the EDQNM theory was shown to yield the correct result for
lagrangian single-particle diffusion. The link between particle displacement
and scalar mixing allows to formulate a single-time two-point closure that
does not involve any model constants.

This thesis illustrates the role that two-point closures can still play in
turbulence research next to direct simulations and experiments. At low
Reynolds number their results agree with DNS. Their low computational
cost allows to perform calculations at very high Reynolds numbers where
dimensional analysis at asymptotic Ry can be tested. At intermediate val-
ues, good agreement is observed with laboratory experiments and the gap
between wind-tunnel measurements and atmospheric measurements can be
filled. In addition, two-point closures can play an important role in the anal-
ysis of forcing and subgrid-effects present in numerical simulations. Eventu-
ally, theoretical studies can be performed in the limit of zero viscosity and
diffusivity.

Interesting directions for future research would be the implementation
of the inhomogeneous model (chapter 6) and its application to combustion.
From a theoretical point of view it would be interesting to exploit the link
between scalar mixing and particle diffusion in more detail. Finally, the
model formulated in section 7.3 deserves more attention.



Chapter 8

Résumé du travail effectué

Les sections 8.1 & 8.7 sont respectivement des résumés des chapitres 1 a 7.

8.1 Meélange d’un scalaire en turbulence isotrope

On appelle scalaire passif une quantité scalaire transportée par un écoulement
et qui n’exerce pas d’influence sur cet écoulement. Un exemple est la con-
centration d’un polluant dans l’atmosphére. Le champ de température
peut également étre considéré comme un champ scalaire passif si les in-
homogénéités de température restent petites. Nous examinons dans ce
manuscrit le mélange d’un scalaire passif dans un écoulement turbulent.

La multiplicité d’échelles d’un écoulement turbulent est fonction du nom-
bre de Reynolds. Ce nombre s’interpréte comme le rapport entre les effets
convectifs (le transport de quantité de mouvement par les particules de flu-
ide) et les effets dissipatifs (le mélange de quantité de mouvement par la
viscosité moléculaire). Un écoulement & grand nombre de Reynolds contient
une large gamme d’échelles de longueur différentes. Le champ de scalaire
reflete ce caractére multi-échelle!. Ainsi I’étude du scalaire passif nous per-
met de visualiser et d’examiner des proprietés intrinseques de 1’écoulement
sous-jacent. Sur la figure 8.1 on visualise, & titre d’exemple, un champ des
fluctuations de scalaire, mélangé par un écoulement turbulent, issu d’une
simulation numérique directe.

La déscription spectrale de la turbulence est une maniére mathématiquement
commode d’étudier son caractere multi-échelle. Simultanément, son car-
actere aléatoire nous ameéne & introduire des moyennes statistiques des quan-

!Le rapport entre la taille des plus petites structures scalaires et des plus petits tour-
billons est une fonction croissante du nombre de Prandtl, Pr. On considerera dans ce
travail le cas de Pr = 1 dans quel cas la taille des plus petits tourbillons est comparable
a celle des plus petites structures du scalaire.
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Figure 8.1: Champ des fluctuations de scalaire, mélangé par un écoulement
turbulent isotrope en présence d’un gradient moyen de scalaire; DNS & Pr =
25, Ry = 46. Résultat de Brethouwer [129].

tités étudiées. Ainsi nous considérons les moyennes statistiques de la distri-
bution spectrale de 1’énergie cinétique, de la variance de scalaire et du flux
de scalaire comme nos variables principales. L’analyse dimensionelle prédit
des comportements asymptotiques pour ces variables, pour des nombres de
Reynolds qui tendent vers I'infini. A des nombres de Reynolds limités, la
simulation numérique directe (DNS) permet d’examiner les mécanismes tur-
bulents sans introduire aucune notion de moyenne statistique.

Une facgon classique d’examiner ces mémes quantités sont les théories an-
alytiques, ou modeles en deux points. La fermeture en deux points nécessite
beaucoup moins de ressources informatiques que la simulation numérique
directe et peut aborder des nombres de Reynolds beaucoup plus élévés. 1l y
a alors complémentarité entre les méthodes de simulation directe et les tech-
niques de fermeture en deux points. En les associant on peut examiner le

comportement des écoulement turbulents dans toute la gamme de nombres
de Reynolds.

8.2 Analyse dimensionelle et simulations numériques

Le spectre Fp(K) du flux d’un scalaire passif dans une turbulence isotrope
en présence d’un gradient moyen de scalaire possede une zone en loi de
puissance lorsque le nombre de Reynolds est assez grand. Le comportement
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dans cette zone a été prédit par Lumley [17]:
Fuo(K) ~ T /3K T3 (8.1)

ou I' représente le gradient moyen, € la dissipation et K le nombre d’onde.
Cependant, dans les expériences de turbulence de grille, Mydlarski et Warhaft
[40] trouvent un spectre qui est plus proche d'une loi d’échelle en K 2.
Dans les mesures atmosphériques récentes de Su et al. [38] le spectre vérifie
également approximativement une loi en K 2. Dans cette section, nous ex-
aminons la possibilité d’une loi d’échelle asymptotique décroissante en K 2.

L’évolution du spectre du flux d’un scalaire passif dans une turbulence
isotrope en présence d’un gradient moyen de scalaire est décrit par I’équation:

0

o
Le deuxiéme terme du membre de gauche représente la dissipation moléculaire
de flux de scalaire, P(K) est la production de flux de scalaire, T,V (K)
représente 'effet des corrélations triples et II(K) I'influence de la pression.
La figure 2.3 montre ces différentes contributions. Les résultats sont issus
d’une simulation numérique directe (DNS) avec une résolution spectrale de
256°.

On observe que la dissipation est faible devant la production. C’est alors
principalement le terme de pression qui équilibre la production. On note
également que cet équilibre entre pression et production n’est pas local dans
le spectre: la production domine la pression a petit nombre d’onde alors que
c’est le contraire pour les nombres d’onde plus grands. Ce déséquilibre peut
étre expliqué par la présence d’un terme non-linéaire, observé également sur
la figure 2.3: le terme de transfert TH%L (K). L’existence de ce terme encour-
age A introduire un flux spectral e£(K) dans 'analyse visant & proposer la
loi d’échelle pour spectre de flux de scalaire. L’analyse dimensionelle donne
alors:

Fuo(K) + (v + a)K2Fuy(K) = P(K) + TNE(K) + TI(K) (8.2)

Fog(K) ~ e&y(K)e 3K =/3 (8.3)

On remarque que (8.3) est équivalent & la loi d’échelle de Corrsin-Obukhov
[9] pour le spectre de la variance de scalaire Fy(K), dans laquelle €f',(K)
remplace €y, la dissipation de fluctuations de scalaire. Le flux ega(K ) est
une quantité associée au terme de transfert non-linéaire TNF(K). Ce flux
n’est pas conservé dans la cascade, F,o(K) étant détruit par l'effet de la
pression. On suppose alors que le flux diminue suivant une loi de puissance
en fonction de K:

efy(K) ~ K™ (8.4)

ol 7y est un exposant inconnu qui reste a fixer.
On utilise le fait que le coefficient de corrélation entre la vitesse et le
scalaire approche une valeur constante pour les temps longs et on admet la
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proportionnalité entre production et dissipation de fluctuations de scalaire
ce qui mene 4 ’expression:

Fog(K) ~ T2t 32 y=1/3 pr—(5/3+7)
(8.5)

En introduisant une hypothése de type Rotta [130], on suppose que le terme
de pression II(K) est inversement proportionnel 4 une échelle de temps locale
7(K), construite & partir du flux spectral d’énergie € et le nombre d’onde,
et & Fo(K) [50]:

(K) ~ /3 K?3F,4(K) (8.6)

de sorte que le terme de pression est proportionel 4 K~ (1) La valeur v=0
correspond au cas limite ot le flux eia(K ) est constant dans la cascade, ce qui
est exclu par la présence de la pression. Une valeur négative pour v traduirait
un flux croissant ce qui est également exclu. Le cas v = 2/3 correspond a
lautre cas limite: la loi d’échelle de Lumley traduite par ’équation (8.1).
Dans ce cas la production et la pression déclinent dans la zone inertielle de
la méme facon, en K ~5/3. Les valeurs de ~y plus grandes sont exclues parce
que la production ne serait alors plus équilibrée ni par la pression, ni par le
transfert. Il ressort que 0 < v < 2/3. Dans le cas particulier y = 1/3 on
trouve:

y=1/3 — Fuy(K)~TUK? (8.7)

Pour déterminer la valeur de v dans I’équation (8.5), on a recours a la
simulation des grandes échelles avec une résolution de 1283. Le modéle de
sous-maille utilisé est le modele de viscosité turbulent de Chollet et Lesieur
pour le champ de vitesse. Pour le champ de sous-maille de scalaire on choisit
un nombre de Prandtl turbulent Prpr = 0.6. Sur la figure 2.6 on montre le
spectre de flux de scalaire sous forme compensée, d’aprés les relations (8.1)
et (8.7). Le comportement en K ~2 est clairement présent.

L’equation (8.6) prédit pour vy = 1/3 une pente de —4/3 pour le terme
de pression. Sur la figure 2.7 on montre la forme compensée du terme de
pressior}. La simulation permet effectivement de constater ce comportement
en K4/3.

8.3 La théorie Quasi-Normale Markovianisée avec
Amortissement Tourbillonnaire

Les simulations numériques directes (DNS) fournissent une information sur
toutes les échelles d’un écoulement turbulent, mais la limitation des ressources
informatiques fait que ces simulations ne peuvent atteindre de grands nom-
bres de Reynolds. La simulation des grandes échelles est applicable aux
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nombres de Reynolds élevés, mais elle peut difficilement renseigner sur les
comportements inertiels en raison de I'utilisation de modéles pour prendre en
compte les effets de sous-maille. Une troisieme méthode, applicable a grand
R) et donnant une information sur tout le spectre, est I'utilisation de fer-
metures en deux points. Dans le chapitre 3, on emploie la fermeture Quasi-
Normale Markovianisée avec Amortissement Tourbillonnaire (EDQNM) pour
étudier le comportement spectral du flux de scalaire. Une illustration de son
avantage comparé aux LES et aux DNS est donnée sur la figure 1.4, ou I'on
voit que en EDQNM une plage spectrale trés large peut étre resolu & trés
grand nombre de Reynolds.

La fermeture EDQNM a été dérivée par Orszag [21] pour le spectre
d’énergie cinétique en turbulence isotrope. Cette théorie conduit & exprimer
le transfert non-linéaire 7V’ qui intervient dans ’équation de Lin (éq. 1.17).
La théorie a été étendue au cas du spectre de la variance d’un scalaire par
Vignon et Cambon [23] et par Herring et al. [22]. Le spectre du flux de
scalaire dans une turbulence isotrope en présence d'un gradient moyen de
scalaire est traité dans Herr et al. [20]. On utilise ’approche de ces auteurs
dans le présent travail. La dérivation des équations EDQNM se trouve en
détail dans le chapitre 3. Le découplage des différentes contributions non-
linéaires dans le bilan spectral de F,4(K) nous permet de déterminer les
deux constantes dans le modele.

Le spectre d’énergie cinétique est initialisé en utilisant 1’expression de
Von Kdrmdan [61]. Le champ scalaire est initialement nul. Les fluctuations
sont ensuite créées par l'interaction du gradient de scalaire avec les fluctua-
tions de vitesse.

Les spectres & des Reynolds variant entre 100 et 107 sont représentés sur
la figure 3.12. La pente de la zone inertielle du spectre & R) = 100 est bien
inférieure & —7/3. Le spectre & R, = 107 posséde en revanche une large zone
avec une pente proche de —7/3. La variation de la pente a été examinée
pour des R variant entre 100 et 107 et les résultats sont donnés sur la figure
3.11. Il apparait que la valeur asymptotique & grand R}, est trouvée —7/3, en
accord avec I’analyse de Lumley [31]. Cependant, cette pente n’est observée
qu’a des nombres de Reynolds trés élevés. Aux nombres de de Reynolds
correspondant aux expériences de laboratoire, une pente proche de —2 est
trouvée. A titre d’illustration on rappelle que dans I’atmosphére les valeurs
typiques de Ry sont de Pordre de 10*.

La dissipation moléculaire du flux de scalaire,
[e.e]
€wh = / (v + @) K%Fuy(K)dK (8.8)
0

a été mesurée par Mydlarski [41] et évaluée par Overholt et Pope [46] par
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simulation numérique directe. La figure 3.14 montre que nos résultats sont
en bon accord avec ces travaux & faible Ry. Une dépendance en R;O'W est
trouvée, comme en DNS. A grand Reynolds en revanche, un comportement
en R;l est trouvée pour le rapport e,9/TU?, o TU? désigne la production
intégrale de flux de scalaire.

Cette étude illustre le role que peuvent jouer, aujourd’hui encore, les fer-
metures en deux points dans I’analyse des écoulements turbulents. A faible
nombre de Reynolds elles reproduisent de maniére satisfaisante les comporte-
ments trouvés en DNS tandis que leur faible coiit de calcul permet de les
appliquer & des Reynolds tres élevé, et par 1a, d’aborder des comportements
réellement asymptotiques. De plus, les comportements expérimentaux sont
bien vérifiés dans la plage intermédiaire de valeurs de R).

8.4 Simulation des Grandes Echelles

Les résultats de la Simulation des Grandes Echelles décrits dans le chapitre
2 font apparaitre une pente asymptotique en —2 pour la zone inertielle du
spectre de flux de scalaire, tandis que les résultats de la fermeture EDQNM
supportent la pente en —7/3 & grand Reynolds. Dans le chapitre 4, les
résultats de chapitre 2 sont remis en question. L’utilisation de fermetures
spectrales pour analyser I'approche LES est une pratique courante en tur-
bulence isotrope [25, 52]. Nous employons la théorie EDQNM, dérivée dans
la chapitre 3, pour analyser I'effet des différents parameétres sur les résultats
issus de la, LES.

Nous appliquons un filtre, avec une coupure spectrale au nombre d’onde
K., aux équations de E(K) et F,y(K) du modele EDQNM comme pour
I'approche LES (section 4.2). Les intéractions de sous-maille sont ensuite
traitées par les mémes modeéles de sous-maille que dans le cadre de la LES:
nous utilisons le modele de Chollet-Lesieur, équation (4.14) et pour la dif-
fusivité de sous-maille nous employons un nombre de Prandtl turbulent de
0.6. Les équations de notre probléme sont maintenant:

OE(K)

o = T(K)+ 20 K?E(K) V 0<K <K, (8.9)
et
%ng(K) + (Ve + vePry ) K2 Fpy(K) =
PK)+TN(K)+TI(K) V 0<K <K, (8.10)

Le spectre de E(K) est forcé en gardant constant les deux premiers nombres
d’onde.

Nous nous intéressons d’abord & l'influence de la résolution spectrale sur
le comportement inertiel de F,g(K). Sur la figure 4.2 on montre les résultats
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pour 3 résolutions différentes. On observe une influence du nombre d’onde
de coupure sur les spectres qui se ressent sur environ une décade. La pente
varie lentement vers sa valeur asymptotique selon la résolution, d’une fagon
comparable aux simulations EDQNM completes (figure 3.11).

Le forgage du spectre E(K) induit une zone dans le spectre de Fyg(K)
qui est proche de K2 (figure 4.5).

Nous reprenons les simulation des grandes échelles mais en changeant
le calcul du champs scalaire: les nombres d’onde correspondant au forcage
sont enlevés dans le calcul du champ scalaire. Le modele de sous-maille
de Chollet-Lesieur est également remplacé par le modele des fonctions de
structure de Shao [79, 83]. Le résultat est donné sur les figures 4.6 et 4.7.
La z;me inertielle de F,9(K) est maintenant effectivement proportionelle &
K~7/3,

8.5 Cisaillement homogene

Jusqu’a ce point on n’a considéré que la turbulence isotrope et son influence
sur le flux d’un scalaire passif. Dans le chapitre 5 le champ turbulent est
soumis a un cisaillement homogene, c’est-a-dire un gradient uniforme de
vitesse. Le champ de vitesse est dans ce cas anisotrope mais est supposé
homogene comme dans le cas précédent. On pose:

aUz
5= 0z

Nous nous concentrons sur le champ d’un scalaire passif advecté par le champ
de vitesse dans le cas avec ou sans gradient moyen de scalaire. Ce gradient,
quand il est non nul, est choisi parallele au gradient de vitesse:

e

=22
0z

Les principales quantités sont le spectre de la variance de scalaire Fy(K)
et, dans le cas ou I' # 0, le flux de scalaire Fy,;4(K). Ce dernier possede
deux composantes non-nulles: Fy(K), F,,0(K), respectivement paralléle &
la direction de I’écoulement et paralléle au gradient de scalaire.

Les équations pour Ey(K) et F,,¢(K) contiennent des termes non-fermés
dans notre approche: tout d’abord le transfert non-linéaire et le terme de
pression comme nous ’avons vu dans le cas d’une turbulence isotrope. En-
suite, la présence du cisaillement introduit d’autres effets: un terme de pres-
sion rapide et un terme de transfert linéaire. Ces termes sont modélisés selon
la théorie des invariants. Une constante est ainsi introduite dans le modeéle.
Cette constante est ensuite déterminée par comparaison avec les résultats
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expérimentaux de Tavoularis et Corrsin [92, 93].

Les équations fermées sont alors résolues numériquement. Dans le cas
' = 0, la variance de scalaire décline selon une loi exponentielle (comme
prédit par Gonzalez [105]) plut6t que selon une loi de puissance. Le casT" # 0
est ensuite examiné pour des nombres de Reynolds de 102 & 10*. Sur la figure
5.10 on observe les pentes des spectres de Fyp(K) et Fg(K). On retrouve la
pente asymptotique de Fy9(K) en —7/3 comme dans le cas isotrope. L’autre
composante, absente en turbulence isotrope, est trouvée presenter une pente
d’environ —2.55. Ce résultat n’est pas en accord avec 1’analyse dimensionelle
de Wyngaard et Coté [32], qui prédit une pente de —3. La valeur —2.55 est
en revanche plus proche des valeurs observées expérimentalement [32, 34].
On propose alors une analyse dimensionelle compatible avec les résultats
de nos simulations et les expériences en introduisant un flux spectral qui
dépend du cisaillement. L’analyse dimensionelle donne dans ce cas:

Fo(K) ~ DSY32/9 g=23/9 (8.13)

8.6 Turbulence inhomogene

La thése de Laporta [28] a montré que la théorie EDQNM s’adapte bien au
calcul des écoulements turbulents faiblement inhomogénes. L’effet des parois
sur les échelles turbulentes & été modélisé par Bertoglio et Jeandel [29] par
I'introduction d’une coupure infrarouge sur le spectre d’énergie cinétique.
On propose une extension de ce modele au mélange d’un scalaire en turbu-
lence inhomogene en présence de parois avec comme principaux ingrédients
la fermeture EDQNM isotrope et la coupure spectrale.

8.7 Turbulence non visqueuse, dispersion d’une par-
ticule et proposition d’une nouvelle fermeture
Markovienne

8.7.1 Dynamique non visqueuse du spectre d’énergie cinétique
dans un domaine spectral tronqué

Le comportement d’une turbulence isotrope pour un fluide incompressible
non visqueux (équation d’Euler) est examiné. On §’intéresse au cas d’un
domaine spectral tronqué. Dans ce cas, une DNS effectuée par Cichowlas,
Bonaiti, Debbasch et Brachet [119] a mis en évidence des phénomeénes intéressants
: le spectre d’énergie cinétique, initialisé aux grandes échelles, développe
une zone de cascade avec une pente proche de —5/3. Quand cette zone est
étendue jusqu’a la troncature spectrale, une zone d’équipartition d’énergie,
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correspondant & un spectre en K2, se développe. Entre la zone de cascade
et la zone d’équipartition un minimum local du spectre existe.

Nous montrons que la fermeture EDQNM peut reproduire le comporte-
ment observé dans la DNS. Ensuite, un calcul sur une large plage spectrale
est effectué (ce calcul correspondrait & une résolution de 30.000% en DNS).
Ce calcul nous permet de trancher entre deux estimateurs, proposés par Ci-
chowlas et al. pour le minimum du spectre. Le premier estimateur est obtenu
en calculant ’intersection de la zone de cascade avec la zone d’équipartition.
Le second prend en compte I’existence d’une zone de type ’dissipative’ a la fin
de la zone inertielle. Les résultats de la fermeture montrent que I’estimateur
dissipatif est le plus approprié.

8.7.2 Dispersion d’une particule et proposition d’une nou-
velle fermeture Markovienne

Si on prend la limite de diffusivité zero, 1’équation de la fluctuation d’un
scalaire passif en présence d’un gradient uniform de scalaire de valeur 90 /0z =
—1 devient équivalent & ’équation du déplacement vertical d’'un traceur pas-
sif:
do
=
Ce lien étroit entre un scalaire et un traceur nous permet d’utiliser la ferme-
ture EDQNM pour prédire la dispersion absolute moyenne d’une particule
de fluide par rapport a son origine.
Ensuite on démontre que le temps Lagrangien de décorrélation peut étre
estimé a partir du flux de scalaire dans le cas diffusivité zero,

w (8.14)

) w(t) = T(t)u(t)?, (8.15)

ce qui nous permet de remplacer la fréquence d’amortissement dans la
fermeture EDQNM par une quantité déterminée dans le modele. Nous
obtenons ainsi une fermeture sans aucune constante ajustable pour les spec-
tres de E(K), Fy(K) et Fug(K). Les constantes de Kolmogorov et Corrsin-
Obukhov sont alors estimées étre 1.75 et 0.32 respectivement, ce qui est un
résultat tout a fait acceptable pour un modele sans parameétre ajusté.
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Appendix A

Trigonometric relations

The definition of z,y,z,u,p', p" is taken from Nakauchi et al.[131] and
Lesieur [56] and not like Ulitsky and Collins [54], who define z, y, z opposite
to our definitions. We define:

P-Q
~F0
o

P-K
~ PK

€r =

(A1)

z =

The angle between the mean gradient and the wave vectors K is defined by:

= (A.2)

W
Introducing an alternative coordinate system, Nakauchi [132] manages to
express the angle between the mean gradient and the wave vectors P and
Q as a function of y, z, u, K and ¢ the angle of the projection on a certain
plane in the new coordinate system. This ¢ dependence will disappear so
will not go into details and refer to Nakauchi [132] or Herr et al. [20] for
details. The expressions are:

p= _Kzikp = —pz — /(1 — p?)(1 = 22)sin(yp)
"_ —ng}(Q — —py+ /(1= 1) (1 = y?)sin()

(A.3)

The integral in (3.48) can then be rewritten as [20]:

/f(K,P..a:..,u)é(K +P + Q)dPdQ = //A F(K, P..x..u)deQP—I?quA)
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The integration domain is hereby reduced to a strip in the P, Q) plane. All
combinations of K, P, that can form triads in this plane are contributing
to the non-linear interaction. To simplify the geometric functions involving
the cosines z,y, z the following relations might be of use:

mm:xy-i-z
ﬂﬂzyz—i—x
mm:xzikg/
2?2+ 2% =1-2zyz
x Y z
K P Q
K? =P?+Q? - 2PQz
P?2=K?4+Q?-2KQy
Q*=P?+ K? - 2PK=z (A.5)



Appendix B

Modelling the evolution
equation for ¢;;(K)

We recall briefly the models used by Touil [1] to describe the evolution of
the spherically averaged spectral tensor.
The linear transfer,

oU; 0K ®;,;
TL(K) = hhail] AN K B.1
Z]( ) /EK (9.'13” 3Kn d ( )

represents the influence of the mean velocity gradient, stretching the tur-
bulent structures. This term is distributive in wavenumber-space, which
means that it does not dissipate energy but redistributes energy over the
different scales. We use the model proposed by Touil [1], inspired by Clark
and Zemach [103].

0K p;;

T(K) = A"\/5;;8; = (B.2)
with
1 /0U; 87]-
= = B.
Szj 2 (8(BJ + 8:132) ( 3)

the constant AL was determined in the work of Touil [1]. A value of —0.03
was found.

The second term on the RHS of equation (5.5) is the rapid pressure term.
This term represents the linear part of the interaction between deformation
and the pressure field.

LU (KiKi o KK
/ / - &En( nj + —og” Bin | dSK (B.4)

The modeled form is taken from Cambon et al. [24] and can also be found in
[1] with one contant C, = 0.77. We note here that in the work of Cambon et
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al. a model was derived for the linear transfer different from (B.2) and that
the constant in this model was related to the constant Cy. Touil preferred
the modelled form (B.2) because of its numerical robustness.

The non-linear transfer has been modeled by an extension of the isotropic
EDQNM expression. We refer to Touil [1] for details.



Mélange d’un scalaire passif dans les écoulements turbulents

Le mélange d’un scalaire passif par un écoulement turbulent est étudié. D’abord,
la simulation numérique directe (DNS), la simulation des grandes échelles (LES)
et des arguments dimensionnels sont employés pour étudier le spectre du flux de
scalaire dans une turbulence isotrope avec un gradient moyen uniforme de scalaire.
Une loi d’échelle est dérivée. Cette loi conduit & des pentes du spectre variant entre
—5/3 et —7/3 en zone inertielle. De premiers résultats de LES plaident en faveur
d’un comportement en K 2.

Ensuite, en utilisant une fermeture en deux points (EDQNM), nous montrons
qu’aux nombres de Reynolds tres élevés, le spectre de flux de scalaire dans la zone
inertielle se comporte en K ~7/3. Ce résultat est en accord avec ’analyse dimension-
nelle classique de Lumley (1967). Aux nombres de Reynolds correspondants aux
expériences de laboratoire, la fermeture conduit & des spectres plus pres de K 2.
Nous montrons ensuite que le comportement en K2 trouvé en LES est induit par
le forcage & grande échelle.

La fermeture est alors appliquée au cas des écoulements homogenes cisaillés et
les spectres du flux de scalaire longitudinal et transverse sont étudiés. Le spectre
du flux longitudinal est trouvé proportionelle 3 K~23/9. Ce résultat est en accord
avec ’expérience mais est en désaccord avec 'analyse dimensionnelle classique.

Finalement, nous montrons que le lien entre la dispersion de particules et le
mélange d’un scalaire permet de formuler une fermeture en deux points et un temps
qui ne nécessite 'introduction d’aucune constante dans le modele.

Passive scalar mixing in turbulent flow

The mixing of a passive scalar in turbulent flow is studied. First, Direct Numerical
Simulation (DNS), Large Eddy Simulation (LES) and dimensional arguments are
used to investigate the scalar flux spectrum in isotropic turbulence with a mean
scalar gradient. A scaling law allowing for inertial range slopes varying from —5/3
to —7/3 is derived. The LES results support a K 2 expression.

Subsequently, using a two-point closure (EDQNM), we show that at very high
Reynolds numbers, the scalar flux spectrum in the inertial range behaves as pre-
dicted by the classical dimensional analysis of Lumley (1967) and scales as K~7/3.
At Reynolds numbers corresponding to laboratory experiments the closure leads to
a spectrum closer to K 2. It is shown that the K 2 scaling in the LES is induced
by large scale forcing.

The closure is then applied to homogeneous shear flow and the spectra of cross-
stream and streamwise scalar fluxes are investigated. The streamwise scalar flux
spectrum is found to scale as K ~23/9. This result is in agreement with experiments
but disagrees with classical dimensional analysis.

Eventually, we show that the link between particle dispersion and scalar mixing
allows to formulate a Markovian two-point closure for the velocity and scalar that
does not involve any model constant.



