
Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Design and implementation of efficient tools for parallel
partitioning and distribution of very large numerical problems

Cédric Chevalier

SCALAPPLIX project
LaBRI and INRIA Futurs

Université Bordeaux I
351, cours de la Libération, 33405 TALENCE, FRANCE

PhD Defense, 28 Sep 2007

C. Chevalier PT-SCOTCH PhD Defense 1 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Outline

1 Introduction
Applications and graph partitioning
Graph Partitioning Problem
Sparse matrix ordering

2 Algorithms for sparse matrix ordering
Nested dissection
The Multi-Level framework
Parallelization steps

3 Parallelization of the coarsening phase
Principle
Synchronisation algorithms

4 Folding and duplication
5 Parallelization of the uncoarsening phase

Pre-constrained banding
Banded Fiduccia-Mattheyses
Banded Genetic Algorithms

6 Experiments
7 Conclusion

C. Chevalier PT-SCOTCH PhD Defense 2 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Applications and graph partitioning

Applications and graph partitioning

Numerical simulations are
essential in various domains
including :

mechanics
fluid dynamics
computational chemistry, . . .

Problems are more and more
elaborate: numerical simulation
cannot be run on a single
workstation
→ Need of parallelized
computations
→ Need to know how to distribute
data across the processors:
domain decomposition

C. Chevalier PT-SCOTCH PhD Defense 3 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Applications and graph partitioning

Applications and graph partitioning

Work load distribution can be modeled as a graph
partitioning problem and is mandatory in :

domain decomposition

sparse linear algebra problems

VLSI circuit design

bio-informatics

computer imaging

scheduling and load balancing

. . .

C. Chevalier PT-SCOTCH PhD Defense 4 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Graph Partitioning Problem

Graph Partitioning

Process which consists in dividing vertices of a graph into a given number of
sets, while enforcing two typical constraints:

1 Boundary constraint: the size of the interface between parts should be
as small as possible

2 Balance constraint: all sets should be evenly weighted

Additional constraints can be considered, such as:

Connectivity of parts, especially in VLSI design

Compactness of parts (aspect ratio), in domain decomposition

. . .

Difficulty

Problem is NP-Complete [Garey, Johnson and Stockmeyer, 1976]
⇒We have only heuristics

C. Chevalier PT-SCOTCH PhD Defense 5 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Graph Partitioning Problem

Our tool SCOTCH ?

SCOTCH is a graph partitioning, sparse matrix ordering and static mapping
tool developed in team SCALAPPLIX
SCOTCH 5.0 software package provides :

1 A sequential library (SCOTCH) which contains :
A static mapper
A graph and mesh (=⇒ hypergraph) partitioner
A sparse matrix ordering tool

2 A parallel library (PT-SCOTCH) which currently only does sparse matrix
ordering : based on MPI and optionally pthread
→ object of my thesis

C. Chevalier PT-SCOTCH PhD Defense 6 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Graph Partitioning Problem

Our tool SCOTCH ?

SCOTCH is a graph partitioning, sparse matrix ordering and static mapping
tool developed in team SCALAPPLIX
SCOTCH 5.0 software package provides :

1 A sequential library (SCOTCH) which contains :
A static mapper
A graph and mesh (=⇒ hypergraph) partitioner
A sparse matrix ordering tool

2 A parallel library (PT-SCOTCH) which currently only does sparse matrix
ordering : based on MPI and optionally pthread
→ object of my thesis

C. Chevalier PT-SCOTCH PhD Defense 6 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Graph Partitioning Problem

Goals of PT-SCOTCH

Develop fully parallel graph partitioning and reordering tools, by
transposing all features of SCOTCH in parallel

Provide the same quality as the best sequential tools

Be scalable in time and memory
=⇒ Efficiency on large architectures
=⇒ Ability to handle graphs of about a billion vertices distributed on a
thousand of processors

C. Chevalier PT-SCOTCH PhD Defense 7 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Graph Partitioning Problem

My Work

Goal

Design and implement an efficient parallel sparse matrix ordering tool

We decided to begin with parallel sparse matrix ordering:

Uses graph bisection, which is simpler than k-way multisection

No dependencies between bisections as in the static mapping problem

The only other available tool, PARMETIS [Karypis and Kumar], provides
very poor quality results

C. Chevalier PT-SCOTCH PhD Defense 8 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Sparse matrix ordering

Sparse matrix ordering

When solving sparse linear systems with direct methods, non-zero terms
are created during the factorization process (A −→ LLt , A −→ LDLt or
A −→ LU)

Fill-in depends on the order of the unknowns
=⇒ Need to provide fill-reducing orderings

We do graph ordering in SCOTCH by means of Nested Dissection using
a Multi-Level technique

Metric of ordering quality: OPC, that is, the OPeration Count of Cholesky
factorization (overall number of additions, subtractions, multiplications
and divisions)
⇒ Indirect measurement of separator quality

C. Chevalier PT-SCOTCH PhD Defense 9 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Sparse matrix ordering

Sparse matrix ordering

When solving sparse linear systems with direct methods, non-zero terms
are created during the factorization process (A −→ LLt , A −→ LDLt or
A −→ LU)

Fill-in depends on the order of the unknowns
=⇒ Need to provide fill-reducing orderings

We do graph ordering in SCOTCH by means of Nested Dissection using
a Multi-Level technique

Metric of ordering quality: OPC, that is, the OPeration Count of Cholesky
factorization (overall number of additions, subtractions, multiplications
and divisions)
⇒ Indirect measurement of separator quality

C. Chevalier PT-SCOTCH PhD Defense 9 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Sparse matrix ordering

Sparse matrix ordering

When solving sparse linear systems with direct methods, non-zero terms
are created during the factorization process (A −→ LLt , A −→ LDLt or
A −→ LU)

Fill-in depends on the order of the unknowns
=⇒ Need to provide fill-reducing orderings

We do graph ordering in SCOTCH by means of Nested Dissection using
a Multi-Level technique

Metric of ordering quality: OPC, that is, the OPeration Count of Cholesky
factorization (overall number of additions, subtractions, multiplications
and divisions)
⇒ Indirect measurement of separator quality

C. Chevalier PT-SCOTCH PhD Defense 9 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Sparse matrix ordering

Sparse matrix ordering

When solving sparse linear systems with direct methods, non-zero terms
are created during the factorization process (A −→ LLt , A −→ LDLt or
A −→ LU)

Fill-in depends on the order of the unknowns
=⇒ Need to provide fill-reducing orderings

We do graph ordering in SCOTCH by means of Nested Dissection using
a Multi-Level technique

Metric of ordering quality: OPC, that is, the OPeration Count of Cholesky
factorization (overall number of additions, subtractions, multiplications
and divisions)
⇒ Indirect measurement of separator quality

C. Chevalier PT-SCOTCH PhD Defense 9 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Outline

1 Introduction
Applications and graph partitioning
Graph Partitioning Problem
Sparse matrix ordering

2 Algorithms for sparse matrix ordering
Nested dissection
The Multi-Level framework
Parallelization steps

3 Parallelization of the coarsening phase
Principle
Synchronisation algorithms

4 Folding and duplication
5 Parallelization of the uncoarsening phase

Pre-constrained banding
Banded Fiduccia-Mattheyses
Banded Genetic Algorithms

6 Experiments
7 Conclusion

C. Chevalier PT-SCOTCH PhD Defense 10 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Nested dissection

Sparse matrix ordering by Nested Dissection

Principle (George 1973)
Find a vertex separator in the adjacency graph
Number separator vertices with the highest available indices
Apply recursively to both separated subgraphs

A
S

B

A

B

S

0

Interests
Induces high quality block decompositions
Increases the concurrency of computations
↪→ Very suitable for parallel factorization (PASTIX solver)

C. Chevalier PT-SCOTCH PhD Defense 11 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

The Multi-Level framework

The Multi-Level framework

A classical approach to improve partition
quality [Bui and Jones, 1993]

Three steps

1 Coarsening phase
2 Initial partitioning
3 Uncoarsening phase

Decrease the number of vertices by
merging pairs of neighbor vertices
=⇒ At every step, obtain a smaller graph
with the same topology

Level

Level

Level

Level

C. Chevalier PT-SCOTCH PhD Defense 12 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

The Multi-Level framework

The Multi-Level framework

A classical approach to improve partition
quality [Bui and Jones, 1993]

Three steps

1 Coarsening phase
2 Initial partitioning
3 Uncoarsening phase

Apply a global heuristic to compute a
partition of the smallest graph

Typically, the size of coarsest
graphs is about 100 vertices.
Therefore, good initial partitions
can be computed at low cost

C. Chevalier PT-SCOTCH PhD Defense 12 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

The Multi-Level framework

The Multi-Level framework

A classical approach to improve partition
quality [Bui and Jones, 1993]

Three steps

1 Coarsening phase
2 Initial partitioning
3 Uncoarsening phase

Project the computed partition from the
coarsest graph to finer graphs
Locally refine projected partitions with
heuristics such as Kernighan-
Lin or Fiduccia-Mattheyses (F.M.)

Level

Level

Level

Level

C. Chevalier PT-SCOTCH PhD Defense 12 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

The Multi-Level framework

The Multi-Level framework

Init a l

partitioni ng

C. Chevalier PT-SCOTCH PhD Defense 13 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

The Multi-Level framework

Sequential SCOTCH

First dissection level:
Original graph

Resulting matrix
pattern:

C. Chevalier PT-SCOTCH PhD Defense 14 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

The Multi-Level framework

Sequential SCOTCH

First dissection level:
Coarsening phase

Resulting matrix
pattern:

C. Chevalier PT-SCOTCH PhD Defense 14 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

The Multi-Level framework

Sequential SCOTCH

First dissection level:
Coarsening phase

Resulting matrix
pattern:

C. Chevalier PT-SCOTCH PhD Defense 14 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

The Multi-Level framework

Sequential SCOTCH

First dissection level:
Coarsening phase

Resulting matrix
pattern:

C. Chevalier PT-SCOTCH PhD Defense 14 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

The Multi-Level framework

Sequential SCOTCH

First dissection level:
Coarsening phase

Resulting matrix
pattern:

C. Chevalier PT-SCOTCH PhD Defense 14 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

The Multi-Level framework

Sequential SCOTCH

First dissection level:
Initial partitioning

Resulting matrix
pattern:

C. Chevalier PT-SCOTCH PhD Defense 14 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

The Multi-Level framework

Sequential SCOTCH

First dissection level:
Uncoarsening phase

Resulting matrix
pattern:

C. Chevalier PT-SCOTCH PhD Defense 14 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

The Multi-Level framework

Sequential SCOTCH

First dissection level:
Uncoarsening phase

Resulting matrix
pattern:

C. Chevalier PT-SCOTCH PhD Defense 14 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

The Multi-Level framework

Sequential SCOTCH

First dissection level:
Uncoarsening phase

Resulting matrix
pattern:

C. Chevalier PT-SCOTCH PhD Defense 14 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

The Multi-Level framework

Sequential SCOTCH

First dissection level:
Uncoarsening phase

Resulting matrix
pattern:

C. Chevalier PT-SCOTCH PhD Defense 14 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

The Multi-Level framework

Sequential SCOTCH

First dissection level:
Uncoarsening phase

Resulting matrix
pattern:

C. Chevalier PT-SCOTCH PhD Defense 14 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

The Multi-Level framework

Sequential SCOTCH

Second dissection
level:
Uncoarsening phase

Resulting matrix
pattern:

C. Chevalier PT-SCOTCH PhD Defense 14 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

The Multi-Level framework

Sequential SCOTCH

Second dissection
level:
Uncoarsening phase

Resulting matrix
pattern:

C. Chevalier PT-SCOTCH PhD Defense 14 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

The Multi-Level framework

Sequential SCOTCH

Second dissection
level:
Uncoarsening phase

Resulting matrix
pattern:

C. Chevalier PT-SCOTCH PhD Defense 14 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

The Multi-Level framework

Sequential SCOTCH

Second dissection
level:
Bisected graph

Resulting matrix
pattern:

C. Chevalier PT-SCOTCH PhD Defense 14 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

The Multi-Level framework

Sequential SCOTCH

Second dissection
level:
Two subgraphs

Resulting matrix
pattern:

C. Chevalier PT-SCOTCH PhD Defense 14 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

The Multi-Level framework

Sequential SCOTCH

Second dissection
level:
Processing first
subgraph

Resulting matrix
pattern:

C. Chevalier PT-SCOTCH PhD Defense 14 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

The Multi-Level framework

Sequential SCOTCH

Second dissection
level:
Processing first
subgraph

Resulting matrix
pattern:

C. Chevalier PT-SCOTCH PhD Defense 14 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

The Multi-Level framework

Sequential SCOTCH

Second dissection
level:
Processing second
subgraph

Resulting matrix
pattern:

C. Chevalier PT-SCOTCH PhD Defense 14 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

The Multi-Level framework

Sequential SCOTCH

Second dissection
level:
Processing second
subgraph

Resulting matrix
pattern:

C. Chevalier PT-SCOTCH PhD Defense 14 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Parallelization steps

Parallelism

3 levels of parallelism:

nested dissection process, all subgraphs of the same level can be
computed in parallel

multi-level, computed on a distributed graph

refinement on distributed graph

Need a distributed data structure that provides:

Scalability

Distribution of vertices

Distribution of adjacency lists

C. Chevalier PT-SCOTCH PhD Defense 15 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Parallelization steps

Distributed graph in PT-SCOTCH

Distributed graph

Each process has:

its own subgraph (local numbering)

halo: neighbor vertices (“ghosts”), for overlapping communications

No adjacency data for ghost vertices
⇒ at least scalable in number of edges

C. Chevalier PT-SCOTCH PhD Defense 16 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Parallelization steps

Parallelization of Nested Dissection

Straightforward, coarse-grain parallelism

All subgraphs at the same dissection level are computed concurrently on
separate groups of processors

After a separator is computed, the two separated subgraphs are folded,
that is, redistributed, on two subsets of the available processors
Can fold on any number of processors (not only powers of two)
=⇒ Better data locality
=⇒ The two subtrees are separated not only logically but also physically,
which helps reducing network congestion

C. Chevalier PT-SCOTCH PhD Defense 17 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Outline

1 Introduction
Applications and graph partitioning
Graph Partitioning Problem
Sparse matrix ordering

2 Algorithms for sparse matrix ordering
Nested dissection
The Multi-Level framework
Parallelization steps

3 Parallelization of the coarsening phase
Principle
Synchronisation algorithms

4 Folding and duplication
5 Parallelization of the uncoarsening phase

Pre-constrained banding
Banded Fiduccia-Mattheyses
Banded Genetic Algorithms

6 Experiments
7 Conclusion

C. Chevalier PT-SCOTCH PhD Defense 18 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Principle

Coarsening phase

Principle:
1 Matching phase: make pairing between neighbor vertices
2 Construction phase: merge mated vertices into a new one and update

the corresponding edges

We have to parallelize these two steps
Difficulties:

Matching choices have to be fair to preserve graph topology when
coarsen
⇒ Randomness in mating is important, even when using Heavy Edge
Matching

Coarsened graph has to be well distributed among processes

C. Chevalier PT-SCOTCH PhD Defense 19 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Principle

Matching algorithm

Matching is performed using a parallel multi-phase synchronous algorithm:

Matching algorithm

Step 1: For each unmatched vertex u
Randomly select an unmatched neighbor vertex v to
match with
If v is local, mark (u, v) as mated
Else, mark (u, v) as selected

Step 2: synchronise the selected vertices between
processes

Step 3: While coarsening ratio is not small enough
and some vertices can be matched, go to step 1

Synchronisation algorithm is fundamental for keeping a
good coarsening quality :

Acceptance rate of algorithm has to be high

Accepting “bias” has to be low

u
v

C. Chevalier PT-SCOTCH PhD Defense 20 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Synchronisation algorithms

Synchronisation algorithm P

1

2

3

4

5

Algorithm

1 Communicate matching wishes to all
processes

2 Analyze wishes for each process
selected randomly

Authorized pairing

The wanted vertex is free

The wanted vertex wishes to be mated
with the requesting vertex

C. Chevalier PT-SCOTCH PhD Defense 21 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Synchronisation algorithms

Synchronisation algorithm P

1

2

3

4

5

Algorithm

1 Communicate matching wishes to all
processes

2 Analyze wishes for each process
selected randomly

Authorized pairing

The wanted vertex is free

The wanted vertex wishes to be mated
with the requesting vertex

C. Chevalier PT-SCOTCH PhD Defense 21 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Synchronisation algorithms

Synchronisation algorithm P

1

2

3

4

5

Algorithm

1 Communicate matching wishes to all
processes

2 Analyze wishes for each process
selected randomly

Authorized pairing

The wanted vertex is free

The wanted vertex wishes to be mated
with the requesting vertex

C. Chevalier PT-SCOTCH PhD Defense 21 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Synchronisation algorithms

Synchronisation algorithm L

1

2

3

4

5

Need a coloring of neighborhood processes
graph: we use Luby coloring

Algorithm

For each color c of processes
If local process is colored by c

Send matching wishes to all neighbors
If local process is not colored by c

Analyze wishes for each neighbor
process colored by c selected randomly

Authorized pairing

The wanted vertex is free

The wanted vertex wishes to be mated
with a vertex owned by the same process
as the requesting vertex

C. Chevalier PT-SCOTCH PhD Defense 22 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Synchronisation algorithms

Synchronisation algorithm L

1

2

3

4

5

Need a coloring of neighborhood processes
graph: we use Luby coloring

Algorithm

For each color c of processes
If local process is colored by c

Send matching wishes to all neighbors
If local process is not colored by c

Analyze wishes for each neighbor
process colored by c selected randomly

Authorized pairing

The wanted vertex is free

The wanted vertex wishes to be mated
with a vertex owned by the same process
as the requesting vertex

C. Chevalier PT-SCOTCH PhD Defense 22 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Synchronisation algorithms

Synchronisation algorithm L

1

2

3

4

5

Need a coloring of neighborhood processes
graph: we use Luby coloring

Algorithm

For each color c of processes
If local process is colored by c

Send matching wishes to all neighbors
If local process is not colored by c

Analyze wishes for each neighbor
process colored by c selected randomly

Authorized pairing

The wanted vertex is free

The wanted vertex wishes to be mated
with a vertex owned by the same process
as the requesting vertex

C. Chevalier PT-SCOTCH PhD Defense 22 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Synchronisation algorithms

Synchronisation algorithm L

1

2

3

4

5

Need a coloring of neighborhood processes
graph: we use Luby coloring

Algorithm

For each color c of processes
If local process is colored by c

Send matching wishes to all neighbors
If local process is not colored by c

Analyze wishes for each neighbor
process colored by c selected randomly

Authorized pairing

The wanted vertex is free

The wanted vertex wishes to be mated
with a vertex owned by the same process
as the requesting vertex

C. Chevalier PT-SCOTCH PhD Defense 22 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Synchronisation algorithms

Comparison between synchronisation algorithms

8 processes

16 processes

Algorithm ρ t OPC

ρ t OPC

Originally numbered audikw1 graph
P 0.55 81.22 7.06e+12

0.56 67.72 6.75e+12

L 0.51 55.48 5.77e+12

0.51 52.29 5.58e+12
Randomly numbered audikw1 graph

P 0.77 97.67 6.11e+12 0.90 74.29 6.71e+12
L 0.53 86.26 5.39e+12 0.53 71.42 5.56e+12

Conclusions:
Contraction ratio higher with L
With algorithm L, quality of matching is insensitive to the initial graph
distribution

But:
Very low acceptance rate with algorithm P when graph is badly
distributed
One iteration of algorithm P is potentially less expensive than one of L
Algorithm L is serialized when process graph is complete

C. Chevalier PT-SCOTCH PhD Defense 23 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Synchronisation algorithms

Comparison between synchronisation algorithms

8 processes 16 processes
Algorithm ρ t OPC ρ t OPC

Originally numbered audikw1 graph
P 0.55 81.22 7.06e+12 0.56 67.72 6.75e+12
L 0.51 55.48 5.77e+12 0.51 52.29 5.58e+12

Randomly numbered audikw1 graph
P 0.77 97.67 6.11e+12 0.90 74.29 6.71e+12
L 0.53 86.26 5.39e+12 0.53 71.42 5.56e+12

Conclusions:
Contraction ratio higher with L
With algorithm L, quality of matching is insensitive to the initial graph
distribution

But:
Very low acceptance rate with algorithm P when graph is badly
distributed
One iteration of algorithm P is potentially less expensive than one of L
Algorithm L is serialized when process graph is complete

C. Chevalier PT-SCOTCH PhD Defense 23 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Synchronisation algorithms

Comparison between synchronisation algorithms

8 processes 16 processes
Algorithm ρ t OPC ρ t OPC

Originally numbered audikw1 graph
P 0.55 81.22 7.06e+12 0.56 67.72 6.75e+12
L 0.51 55.48 5.77e+12 0.51 52.29 5.58e+12

Randomly numbered audikw1 graph
P 0.77 97.67 6.11e+12 0.90 74.29 6.71e+12
L 0.53 86.26 5.39e+12 0.53 71.42 5.56e+12

Conclusions:
Contraction ratio higher with L
With algorithm L, quality of matching is insensitive to the initial graph
distribution

But:
Very low acceptance rate with algorithm P when graph is badly
distributed
One iteration of algorithm P is potentially less expensive than one of L
Algorithm L is serialized when process graph is complete

C. Chevalier PT-SCOTCH PhD Defense 23 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Synchronisation algorithms

Using probabilities to improve synchronisation

u

v

w

P0

P1

P2

Idea

Favor remote requests which have the highest probability to be accepted

In practice, we treat the vertices with a probability proportional to their local
degree
⇒ highly connected boundary vertices are more often free for remote
matching

C. Chevalier PT-SCOTCH PhD Defense 24 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Synchronisation algorithms

Using probabilities to improve synchronisation

u

v

w

P0

P1

P2

P(u) =
1
3

P(v) =
6
7

P(w) =
1
3

u and w have
more chance to be
remotely matched

Idea

Favor remote requests which have the highest probability to be accepted

In practice, we treat the vertices with a probability proportional to their local
degree
⇒ highly connected boundary vertices are more often free for remote
matching

C. Chevalier PT-SCOTCH PhD Defense 24 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Synchronisation algorithms

Matching algorithm with selection

New matching algorithm

Step 1: For each unmatched vertex u
Ignore u with probability 1− P(u) and go to next vertex
Randomly select an unmatched neighbor vertex v to match with
If v is local, mark (u, v) as mated
Else, mark (u, v) as selected

Step 2: synchronise the selected vertices between processes

Step 3: While coarsening ratio is not small enough and some vertices
can be matched, go to step 1

C. Chevalier PT-SCOTCH PhD Defense 25 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Synchronisation algorithms

Impact of selection

8 processes 16 processes
Algorithm ρ t OPC ρ t OPC

Originally numbered audikw1 graph
P 0.55 81.22 7.06e+12 0.56 67.72 6.75e+12

SP 0.52 52.89 5.78e+12 0.52 48.34 7.33e+12

Randomly numbered audikw1 graph
P 0.77 97.67 6.11e+12 0.90 74.29 6.71e+12

SP 0.65 82.18 5.67e+12 0.83 66.79 6.66e+12

Significantly speeds-up algorithm P

Improves matching quality by increasing remote matching rate

C. Chevalier PT-SCOTCH PhD Defense 26 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Synchronisation algorithms

Impact of selection

8 processes 16 processes
Algorithm ρ t OPC ρ t OPC

Originally numbered audikw1 graph
P 0.55 81.22 7.06e+12 0.56 67.72 6.75e+12

SP 0.52 52.89 5.78e+12 0.52 48.34 7.33e+12
Randomly numbered audikw1 graph

P 0.77 97.67 6.11e+12 0.90 74.29 6.71e+12
SP 0.65 82.18 5.67e+12 0.83 66.79 6.66e+12

Significantly speeds-up algorithm P

Improves matching quality by increasing remote matching rate

C. Chevalier PT-SCOTCH PhD Defense 26 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Synchronisation algorithms

Coupling SP and L

8 processes 16 processes
Algorithm ρ t OPC ρ t OPC

Originally numbered audikw1 graph
L 0.51 55.48 5.77e+12 0.51 52.29 5.58e+12

SP+L 0.51 55.32 5.75e+12 0.51 50.29 5.52e+12

Randomly numbered audikw1 graph
L 0.53 86.26 5.39e+12 0.53 71.42 5.56e+12

SP+L 0.53 78.99 5.49e+12 0.53 71.93 5.51e+12

Improves matching quality

Improves matching speed

C. Chevalier PT-SCOTCH PhD Defense 27 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Synchronisation algorithms

Coupling SP and L

8 processes 16 processes
Algorithm ρ t OPC ρ t OPC

Originally numbered audikw1 graph
L 0.51 55.48 5.77e+12 0.51 52.29 5.58e+12

SP+L 0.51 55.32 5.75e+12 0.51 50.29 5.52e+12
Randomly numbered audikw1 graph

L 0.53 86.26 5.39e+12 0.53 71.42 5.56e+12
SP+L 0.53 78.99 5.49e+12 0.53 71.93 5.51e+12

Improves matching quality

Improves matching speed

C. Chevalier PT-SCOTCH PhD Defense 27 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Synchronisation algorithms

Coarsening summary

Randomized tie-breaking at first when many neighbors are available
(SP), then deterministic process (L) to complete the matching

Insensitive, in term of quality, to the initial graph distribution

Designed to balance coarsened vertices evenly across processors: at
the end of the matching phase, all exchanges between each pair of
processes are balanced

Local pairs are numbered before remote ones:
computation/communication overlap during coarser graph construction

P0 P1

C. Chevalier PT-SCOTCH PhD Defense 28 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Synchronisation algorithms

Coarsening summary

Randomized tie-breaking at first when many neighbors are available
(SP), then deterministic process (L) to complete the matching

Insensitive, in term of quality, to the initial graph distribution

Designed to balance coarsened vertices evenly across processors: at
the end of the matching phase, all exchanges between each pair of
processes are balanced

Local pairs are numbered before remote ones:
computation/communication overlap during coarser graph construction

P0 P1 P0 P1

C. Chevalier PT-SCOTCH PhD Defense 28 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Synchronisation algorithms

Coarsening summary

Randomized tie-breaking at first when many neighbors are available
(SP), then deterministic process (L) to complete the matching

Insensitive, in term of quality, to the initial graph distribution

Designed to balance coarsened vertices evenly across processors: at
the end of the matching phase, all exchanges between each pair of
processes are balanced

Local pairs are numbered before remote ones:
computation/communication overlap during coarser graph construction

From local vertices From remote

C. Chevalier PT-SCOTCH PhD Defense 28 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Outline

1 Introduction
Applications and graph partitioning
Graph Partitioning Problem
Sparse matrix ordering

2 Algorithms for sparse matrix ordering
Nested dissection
The Multi-Level framework
Parallelization steps

3 Parallelization of the coarsening phase
Principle
Synchronisation algorithms

4 Folding and duplication
5 Parallelization of the uncoarsening phase

Pre-constrained banding
Banded Fiduccia-Mattheyses
Banded Genetic Algorithms

6 Experiments
7 Conclusion

C. Chevalier PT-SCOTCH PhD Defense 29 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

The fold-dup feature

Coarsened graphs may be folded and duplicated onto two halves of the
processors to reduce communication and increase quality

P3
P2

P1
P0

P1

P2

P0 P3

P0

P1

P2

P3

P1

P2

P0 P3

P1

P2

P0 P3

Coa rs e n ing Uncoa rs e n ing

Init ia l
se p a ra t ion

C. Chevalier PT-SCOTCH PhD Defense 30 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

The fold-dup feature

Experiments show that folding-with-duplication is more efficient when
performed on the coarsest graphs:

Due to memory overcost, it cannot be applied to all levels
Every level requires O(|V |) space when always duplicating
Without duplication, level k requires only 0

“
|V |
2k

”
space

Improves performances in time by increasing data locality

Improves quality by allowing multiple computations of initial partitions

Timing results on a 16-CPU/node SMP cluster for brgm (|V | = 3.7e + 06,
|E | = 1.51e + 08):

Strategy Number of processors
2 4 8 16 32 64

No F-D 260.31 156.65 102.37 71.19 45.33 †
F-D 276.91 167.26 97.69 61.65 42.85 41.00

C. Chevalier PT-SCOTCH PhD Defense 30 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Outline

1 Introduction
Applications and graph partitioning
Graph Partitioning Problem
Sparse matrix ordering

2 Algorithms for sparse matrix ordering
Nested dissection
The Multi-Level framework
Parallelization steps

3 Parallelization of the coarsening phase
Principle
Synchronisation algorithms

4 Folding and duplication
5 Parallelization of the uncoarsening phase

Pre-constrained banding
Banded Fiduccia-Mattheyses
Banded Genetic Algorithms

6 Experiments
7 Conclusion

C. Chevalier PT-SCOTCH PhD Defense 31 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

The uncoarsening phase

Goals

1 Project partition found to coarser graph on the finer graph (global aspect)
2 Improve quality of projection by taking account of the finest definition of

topology (local optimization)
→ separator displacement

Projection step is easy to parallelize: only one change in parallel, we
must select partition to project back when using folding and duplication

Refinement algorithms are much harder to parallelize

C. Chevalier PT-SCOTCH PhD Defense 32 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Pre-constrained banding

Problems with refinement algorithms

Local optimization algorithms, because of their local nature:
Are often trapped in local optima of their cost functions
Are intrinsically sequential and therefore do not parallelize well

Global optimization algorithms are too expensive for large graphs

Need to define a framework within which:

Sequential local optimization algorithms are still usable on large
distributed graphs

Global algorithms can be run inexpensively

C. Chevalier PT-SCOTCH PhD Defense 33 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Pre-constrained banding

Problems with refinement algorithms

Local optimization algorithms, because of their local nature:
Are often trapped in local optima of their cost functions
Are intrinsically sequential and therefore do not parallelize well

Global optimization algorithms are too expensive for large graphs

Need to define a framework within which:

Sequential local optimization algorithms are still usable on large
distributed graphs

Global algorithms can be run inexpensively

C. Chevalier PT-SCOTCH PhD Defense 33 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Pre-constrained banding

Introducing band graphs

Separator does not move very far during refinement

Explanation

Provided that the coarser graph is topologically close to its finer graph, the
projection of the partition computed on the coarser graph is close to the one
of the finer, and only further local improvements have to be carried out

{u,v} {x,y}

u v x y

C. Chevalier PT-SCOTCH PhD Defense 34 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Pre-constrained banding

Introducing band graphs

Experimentally evidenced by looking at the distribution of finer separator
vertices after local F.M. refinement

Distance from coarser separator
0 1 2 3 ≥ 4

80% 17% 1.5% < 0.5% < 0.1%

Idea [Chevalier and Pellegrini, 2006]

Only consider for refinement vertices that are likely to move
=⇒ Extract a priori a band subgraph around the coarser separator and apply
optimization heuristics only to it

=⇒ Dramatic reduction in problem size:
for a 109 vertices 3D graph, separator is about 106 vertices

C. Chevalier PT-SCOTCH PhD Defense 35 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Pre-constrained banding

Using band graphs

Extracting band graphs allows us:

To go on using classical sequential refinement algorithms, on smaller
graphs
=⇒ Guarantees no loss of quality over existing sequential software

To use parallel algorithms which are much too expensive to be run on
large graphs

To use new approaches which exploit the fact that the band constrains
the refinement process

C. Chevalier PT-SCOTCH PhD Defense 36 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Banded Fiduccia-Mattheyses

Banded Fiduccia-Mattheyses

Very little overcost in time: ∼ 3% of increase in time compared to plain
F.M.

While the default bipartitioning strategy of SCOTCH 4.0 uses two runs of
multi-level bisection and keeps the best, we can achieve equivalent
quality with only one run of multi-level banded F.M.
=⇒ Overall gain in execution time
=⇒ No loss of quality but, on the contrary, an improvement

Explanation

Better accounting for the global topology of graphs by limiting the ability to be
trapped in purely local optima whom may be coarsening artefacts

C. Chevalier PT-SCOTCH PhD Defense 37 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Banded Fiduccia-Mattheyses

Multi-centralized banded Fiduccia-Mattheyses

1 Extract band graph in parallel
2 Each process owns his centralized band graph
3 Each process runs F.M. on his centralized band graph
4 The best partition is broadcasted to every process and kept to go to next

level

C. Chevalier PT-SCOTCH PhD Defense 38 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Banded Fiduccia-Mattheyses

Multi-centralized banded Fiduccia-Mattheyses (2)

Consequences:

PT-SCOTCH exploits processors in a multi-sequential way for refinement

Quality of refinement increases when number of processes increases

Definitely not scalable but useful before scalable optimization algorithms
are available

C. Chevalier PT-SCOTCH PhD Defense 39 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Banded Genetic Algorithms

Genetic Algorithms (G.A.) [Holland, 1970s]

Meta-heuristics which can be applied to solve various optimization
problems

Easy to parallelize

Known to be very expensive in time, as problem size increases

An ideal candidate to operate on band graphs

C. Chevalier PT-SCOTCH PhD Defense 40 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Banded Genetic Algorithms

Genetic Algorithms (G.A.) [Holland, 1970s]

Meta-heuristics which can be applied to solve various optimization
problems

Easy to parallelize

Known to be very expensive in time, as problem size increases

An ideal candidate to operate on band graphs

C. Chevalier PT-SCOTCH PhD Defense 40 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Banded Genetic Algorithms

G.A. for graph partitioning

To use G.A.s, we must be able to compare the quality of two partitions
Two criteria:

Separator size (number of separator vertices)

Separator shape (number of edges adjacent to separator vertices)

C. Chevalier PT-SCOTCH PhD Defense 41 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Banded Genetic Algorithms

G.A. for graph partitioning

To use G.A.s, we must be able to compare the quality of two partitions
Two criteria:

Separator size (number of separator vertices)

Separator shape (number of edges adjacent to separator vertices)

C. Chevalier PT-SCOTCH PhD Defense 41 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Banded Genetic Algorithms

Our G.A. implementation

Mono-chromosome individuals :
an uni-dimensional array which
associates a number between 0
and 2 to any subgraph vertex
index

Reproduction operator is a
classical two-points cross-over
operator

Selection operator is a mix
between roulette and elitism

An individual :

1 2 3 4 5 6 7 8 9 10 11

1
2

3

4

5

6 7

8

9
10

11
12

C. Chevalier PT-SCOTCH PhD Defense 42 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Banded Genetic Algorithms

Our G.A. implementation

Mono-chromosome individuals :
an uni-dimensional array which
associates a number between 0
and 2 to any subgraph vertex
index

Reproduction operator is a
classical two-points cross-over
operator

Selection operator is a mix
between roulette and elitism

A Two points crossing over :

+

=

+

C. Chevalier PT-SCOTCH PhD Defense 42 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Banded Genetic Algorithms

Our G.A. implementation

Mono-chromosome individuals :
an uni-dimensional array which
associates a number between 0
and 2 to any subgraph vertex
index

Reproduction operator is a
classical two-points cross-over
operator

Selection operator is a mix
between roulette and elitism

Elitism : Best individuals are kept
in the next generation

Roulette : At each turn, two
individuals are selected to be
parents of the next generation.
The probability to be chosen is
proportional to the quality of the
partition

C. Chevalier PT-SCOTCH PhD Defense 42 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Banded Genetic Algorithms

Genetic Algorithms in parallel

Multi-deme model (Goldberg, 1997) :
Several isolated populations (islands or demes) :
one population per processor in our case
Occasionally, a few champions are allowed to migrate between demes :
Very few inter-processor communications, thus model is easy to parallelize

Increases the opportunity to converge to the global minimum of the
partition cost function

Island 1 Island 2

Island 3
Island 4

P0 P1

P2P3

C. Chevalier PT-SCOTCH PhD Defense 43 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Banded Genetic Algorithms

Genetic Algorithms in parallel

Multi-deme model (Goldberg, 1997) :
Several isolated populations (islands or demes) :
one population per processor in our case
Occasionally, a few champions are allowed to migrate between demes :
Very few inter-processor communications, thus model is easy to parallelize

Increases the opportunity to converge to the global minimum of the
partition cost function

Research space

Cost of individuals

Research space

Cost of individuals

Population1

Population2

Population3

C. Chevalier PT-SCOTCH PhD Defense 43 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Banded Genetic Algorithms

Banded Genetic Algorithms

Tests carried out with a threaded version of SCOTCH and a multi-deme
algorithm without splitting chromosomes on several processors:

Achieve good quality

Are more expensive than banded F.M. but more parallelizable

⇒We can extend this multi-sequential method in parallel without increasing
too much the volume of communications, simply by splitting individual
chromosomes across several processors

C. Chevalier PT-SCOTCH PhD Defense 44 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Outline

1 Introduction
Applications and graph partitioning
Graph Partitioning Problem
Sparse matrix ordering

2 Algorithms for sparse matrix ordering
Nested dissection
The Multi-Level framework
Parallelization steps

3 Parallelization of the coarsening phase
Principle
Synchronisation algorithms

4 Folding and duplication
5 Parallelization of the uncoarsening phase

Pre-constrained banding
Banded Fiduccia-Mattheyses
Banded Genetic Algorithms

6 Experiments
7 Conclusion

C. Chevalier PT-SCOTCH PhD Defense 45 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Experimental results (1)

Our largest test graphs to date:

Graph Size (×103) δ̄ OPC Description
|V | |E |

audikw1 944 38354 81.28 5.48e+12 3D Mechanics mesh
coupole8000 1768 41657 47.12 7.66e+12 CEA/CESTA
brgm 3699 151940 82.14 2.70e+13 3D geophysics mesh
cage15 5154 47022 18.24 4.06e+16 DNA electrophoresis
qimonda07 8613 29143 6.76 8.92e+10 Circuit simulation
23millions 23114 175686 7.6 1.29e+14 CEA/CESTA

C. Chevalier PT-SCOTCH PhD Defense 46 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Results on audikw1 (|V | = 0.94e + 6, |E | = 38e + 6)

2 4 8 16 32 64

0,0E+00

1,0E+12

2,0E+12

3,0E+12

4,0E+12

5,0E+12

6,0E+12

7,0E+12

8,0E+12

9,0E+12

1,0E+13

1,1E+13

OPC for audikw1

Scotch: Band+G.A. PT−Scotch: Band+F.M.

ParMetis Sequential Scotch

C. Chevalier PT-SCOTCH PhD Defense 47 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Results on coupole8000 (|V | = 1.76e + 6, |E | = 41e + 6)

2 4 8 16 32 64

0,0E+00

2,0E+10

4,0E+10

6,0E+10

8,0E+10

1,0E+11

OPC for coupole8000

Scotch: Band+G.A. PT−Scotch: Band+F.M.

ParMetis Sequential Scotch

C. Chevalier PT-SCOTCH PhD Defense 48 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Results with multi-sequential band FM

Test Number of processes
case 2 4 8 16 32 64

qimonda07 (seq : 8.92e+10)
OPC – – 5.80e10 6.38e10 6.94e10 7.70e10
t(s) – – 34.68 22.23 17.30 16.62

brgm (seq : 2.70+13)
OPC 2.70e13 2.55e13 2.65e13 2.88e13 2.86e13 2.87e13
t(s) 276.90 167.26 97.69 61.65 42.85 41.00

23millions (seq : 1.29e+14)
OPC 1.45e14 2.91e14 3.99e14 2.71e14 1.94e14 2.45e14
t(s) 671.60 416.45 295.38 211.68 147.35 103.73

For all of these graphs, PARMETIS crashes
Runs done on a Power5 SMP computer, with 8 dual core CPU per node

C. Chevalier PT-SCOTCH PhD Defense 49 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Outline

1 Introduction
Applications and graph partitioning
Graph Partitioning Problem
Sparse matrix ordering

2 Algorithms for sparse matrix ordering
Nested dissection
The Multi-Level framework
Parallelization steps

3 Parallelization of the coarsening phase
Principle
Synchronisation algorithms

4 Folding and duplication
5 Parallelization of the uncoarsening phase

Pre-constrained banding
Banded Fiduccia-Mattheyses
Banded Genetic Algorithms

6 Experiments
7 Conclusion

C. Chevalier PT-SCOTCH PhD Defense 50 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Conclusion

We have implemented the parallel ordering feature of PT-SCOTCH

We can achieve the same quality than sequential tools and still remain
scalable (save for multi-sequential refinement)

To do this we have developed and implemented several new algorithms
which can be reused in the context of graph partitioning:

Pre-constrained banding, which has also improved the sequential tool

Multi-level parallelization

C. Chevalier PT-SCOTCH PhD Defense 51 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Conclusion (2)

For the sparse matrix reordering tool:

The time taken by our algorithm is about twice the one of PARMETIS, but
seems to be scalable
→ Multi-sequential F.M. not scalable, visible on smaller graphs
Quality is clearly better than the one of PARMETIS

Does not decrease on average when number of processors increases
Can even increase along with the number of processors

C. Chevalier PT-SCOTCH PhD Defense 52 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Conclusion

Work available as part of PT-SCOTCH in SCOTCH 5.0

Distributed on CeCiLL-C licence:
http://gforge.inria.fr/projects/scotch/

C. Chevalier PT-SCOTCH PhD Defense 53 / 57

http://gforge.inria.fr/projects/scotch/

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

That’s all folk

Thank you for your attention

C. Chevalier PT-SCOTCH PhD Defense 54 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Perspectives

Parallelize band refinement algorithms, for cases when band graphs will
no longer fit in memory:

Fully parallel Genetic Algorithm which spreads individual chromosomes
across processors
Parallel diffusion algorithm

Basing on these existing parallel routines, design efficient and scalable
k-way graph partitioning algorithms

C. Chevalier PT-SCOTCH PhD Defense 55 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Comparison between synchronisation algorithms (1)

Remote matching rates during the first loop of synchronisation algorithms:
Algorithm P:

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

P
ro

ba
bi

lit
é

Degré moyen

Probabilité d’appariement distant sur 16 processeurs.

Majoration algorithme P
Minoration algorithme P

Expérimentations algorithme P

Algorithm L:

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

P
ro

ba
bi

lit
é

Degré moyen

Probabilité d’appariement distant sur 16 processeurs.

Algorithme L
Expérimentations algorithme L

→ Very poor performance of algorithm P when average degree increases
Moreover:

for algorithm P, performance decreases when number of processes
increases

for algorithm L, remote match rate increases when number of processes
increases

C. Chevalier PT-SCOTCH PhD Defense 56 / 57

Introduction Algorithms for sparse matrix ordering Coarsening Folding and duplication Uncoarsening Experiments Conclusion

Refinement problem in parallel

3

5

2

v u

w q

g=+2 g=+3

3

5 vu

w q2

C. Chevalier PT-SCOTCH PhD Defense 57 / 57

	Introduction
	Applications and graph partitioning
	Graph Partitioning Problem
	Sparse matrix ordering

	Algorithms for sparse matrix ordering
	Nested dissection
	The Multi-Level framework
	Parallelization steps

	Parallelization of the coarsening phase
	Principle
	Synchronisation algorithms

	Folding and duplication
	Parallelization of the uncoarsening phase
	Pre-constrained banding
	Banded Fiduccia-Mattheyses
	Banded Genetic Algorithms

	Experiments
	Conclusion

