
HAL Id: tel-00207502
https://theses.hal.science/tel-00207502

Submitted on 17 Jan 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modélisation et évaluation de la sûreté de
fonctionnement - De AADL vers les réseaux de Pétri

stochastiques
Ana-Elena Rugina

To cite this version:
Ana-Elena Rugina. Modélisation et évaluation de la sûreté de fonctionnement - De AADL vers les
réseaux de Pétri stochastiques. Networking and Internet Architecture [cs.NI]. Institut National Poly-
technique de Toulouse - INPT, 2007. English. �NNT : �. �tel-00207502�

https://theses.hal.science/tel-00207502
https://hal.archives-ouvertes.fr


 
INSTITUT NATIONAL POLYTECHNIQUE DE TOULOUSE 

LAAS CNRS 
 
 
 

THESE 
 

en vue de l’obtention du 
 

 
DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE, 

délivré par l’Institut National Polytechnique de Toulouse 

 
Discipline : Systèmes Informatiques 

 
présentée et soutenue 

 

 

par 

Ana–Elena Rugina 

 

le 19 novembre 2007 

 
 

Titre : 
 

Modélisation et évaluation de la sûreté de fonctionnement – 

De AADL vers les réseaux de Petri stochastiques 

 

Dependability modeling and evaluation – 

From AADL to stochastic Petri nets 

 

__________ 
 

Directeur de thèse: Mme. K. Kanoun 
 

__________ 
 

 
JURY 

 

 M. P. Feiler , Président 

 Mme. F. di Giandomenico , Rapporteur 

 M. A. van Moorsel , Rapporteur 

 M. M. Kaâniche , Examinateur 

 M. C. Lemercier , Examinateur 





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To all those who supported me. 

 

 





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Every day you may make progress. Every step may 

be fruitful. Yet there will stretch out before you an ever-

lengthening, ever-ascending, ever-improving path. You 

know you will never get to the end of the journey. But 

this, so far from discouraging, only adds to the joy and 

glory of the climb. 

 

Sir Winston Churchill 

 





Acknowledgements 

This work has been carried out at the Laboratory of Analysis and Architecture of Systems 
of the French National Research Center (LAAS-CNRS). I wish to express my gratitude to the 
successive directors of the LAAS-CNRS, Mr. Malik Ghallab and Mr. Raja Chatila, for the 
facilities provided in the laboratory.  

I also thank Mr. Jean Arlat, CNRS Research Director and head of the Dependable 
Computing and Fault Tolerance research group (TSF), for having allowed me to carry out this 
work in this reach research environment.  

This thesis has been financed by a scholarship from the European Social Fund and has been 
partially conducted in the context of (1) the ASSERT European Project (Automated Proof-
Based System and Software Engineering for Real-Time Applications) (2) the ReSIST 
Network of Excellence (Resilience for Survivability in IST).  

I would like to thank all committee members, for having attentively read my dissertation:  

- Peter Feiler, senior researcher at the Carnegie Mellon Software Engineering 
Institute (Pittsburgh, USA), who honored me by chairing this committee.  

- Felicita di Giandomenico, senior researcher at “Istituto di Elaborazione del 
l’Informazione” – CNR (Pisa, Italy). 

- Aad van Moorsel, reader at the University of Newcastle upon Tyne, (UK). 

- Karama Kanoun, senior CNRS researcher. 

- Mohamed Kaâniche, CNRS researcher. 

- Christophe Lemercier, head of departement “Data Processing & On-board 
Software & Dependability” of ASTRIUM Satellites, (Toulouse). 

My special thanks go to Mrs. Felicita di Giandomenico and Mr. Aad van Moorsel, who 
accepted the charge of being “rapporteurs”. I wish to thank them for their relevant comments. 

I am most grateful to my supervisors, Mrs. Karama Kanoun and Mr. Mohamed Kaâniche, 
for their passion, technical and human advice, for having devoted me an important amount of 
their time and for the evenings spent at LAAS before my oral defense.  

I warmly thank all members of the Dependable Computing and Fault Tolerance research 
group: permanent researchers, PhD students and interns. I am very grateful to them for their 
precious advice, support and friendship. I have much appreciated the family-like atmosphere 
and the open discussions on different topics. My experience in this group has been extremely 
enriching. I am very pleased to mention here my officemates (Eric, Géraldine, Ossama, 
Carlos and Magnos) with whom I shared unforgettable moments. I also think of previous PhD 
students (Ali, Taha, Cristina, Eric M., Guillaume, Nicolas), who offered me unconditional 
support during my moments of doubt at the beginning of my experience in LAAS-CNRS. I 
thank Marilena Bruffa, who contributed directly to the achievement of this work, and Eric 
Marsden, whose attentive reading has contributed to the improvement of my dissertation. My 
thanks also go to Gina, for her availability, kindness and precious help in organizing the 
defense. 

I wish to extend my thanks to all members of the service departments of LAAS-CNRS 
(“Informatique et Instrumentation, Documentation, Magasin, Entretien, Direction–Gestion, 



Réception–Standard, Communication”), who always allowed me to work in the best 
conditions. 

I would also like to acknowledge here the Zonta International and the members of the 
Zonta club of Muret (France), for having supported my application for the Amelia Earhart 
fellowship. I am also very grateful to Peter Feiler (Carnegie Mellon Software Engineering 
Institute), Eric Conquet (European Space Agency), Bruce Lewis (US Army) and Jean Arlat 
(LAAS-CNRS), for their support in this context.  

During my PhD, I have spent six weeks at the Carnegie Mellon Software Engineering 
Institute in the “Performace Critical Systems” team. I thank Peter Feiler and all the team for 
welcoming me. I learned many lessons, both technical and human during my stay in 
Pittsburgh. I am grateful to Madelaine Dusseau for the support provided in the many 
administrative tasks associated with this stay. 

I am particularly thankful to Jean-Paul Blanquart and Dave Thomas (from ASTRIUM 
Satellites) for the enriching exchanges that we had along my PhD. Their thoughts helped me 
to mature my ideas. 

In these important moments of my life, I think of my family and friends. I owe them my 
sincerest gratitude for their support and confidence. Finally, my warmest thanks go to Florin, 
who shared everything with me during the last years. I thank him for his understanding, his 
patience and for having supported my moods, sometimes anxious lately. 



Remerciements 

Les travaux présentés dans ce mémoire ont été effectués au Laboratoire d’Analyse et 
d’Architecture des Systèmes du CNRS. Je remercie Messieurs Malik Ghallab et Raja Chatila, 
qui ont assuré la direction du LAAS-CNRS depuis mon entrée, de m’avoir accueilli au sein de 
ce laboratoire. 

Je remercie également Monsieur Jean Arlat, Directeur de Recherche au CNRS, responsable 
du groupe de recherche Tolérance aux fautes et Sûreté de Fonctionnement informatique 
(TSF), de m’avoir permis de réaliser ces travaux dans ce groupe. 

Les travaux développés dans cette thèse ont été financés par une bourse du Fond Social 
Européen et effectués partiellement dans le cadre du projet européen ASSERT (Automated 
Proof-Based System and Software Engineering for Real-Time Applications) et du réseau 
d’excellence ReSIST (Resilience for Survivability in IST).  

Je tiens à remercier tous les membres du jury, pour leur lecture attentive du mémoire : 

- Peter Feiler, chercheur au « Carnegie Mellon Software Engineering Institute » 
(Pittsburgh, Etats-Unis), qui m’a fait l’honneur de présider ce jury. 

- Felicita di Giandomenico, chercheur à « Istituto di Elaborazione del 
l’Informazione » – CNR (Pise, Italie). 

- Aad van Moorsel, professeur à « University of Newcastle upon Tyne » 
(Royaume-Uni). 

- Karama Kanoun, Directrice de Recherche au CNRS. 

- Mohamed Kaâniche, Chargé de Recherche au CNRS. 

- Christophe Lemercier, directeur du département « Data Processing & On-
board Software & Dependability » de ASTRIUM Satellites, (Toulouse). 

Je remercie tout particulièrement Madame Felicita di Giandomenico et Monsieur Aad van 
Moorsel, qui ont accepté la lourde tâche de rapporteur. Je les remercie vivement pour leurs 
commentaires avisés. 

J’exprime ma profonde reconnaissance à Madame Karama Kanoun (Directrice de 
Recherche au CNRS) et Monsieur Mohamed Kaâniche (Chargé de Recherche au CNRS), 
pour avoir dirigé mes travaux de thèse, pour leur passion, leurs conseils tant sur le plan 
technique que humain, pour m’avoir consacré une partie importante de leur temps et 
notamment pour les soirées passées au LAAS avant ma soutenance.  

Je remercie sincèrement tous les membres du groupe TSF, permanents, doctorants et 
stagiaires. Je leur suis très reconnaissante pour leurs conseils, support et amitié. J’ai beaucoup 
apprécié l’ambiance « familiale » et les discussions très ouvertes sur divers thèmes. Mon 
expérience au sein du groupe a été extrêmement enrichissante. Il m’est particulièrement 
agréable de remercier mes collègues de bureau (Eric, Géraldine, Ossama, Carlos et Magnos) 
avec qui j’ai partagé des moments inoubliables. Ma pensée va également vers les doctorants 
plus anciens (Ali, Taha, Cristina, Eric M., Guillaume, Nicolas), qui m’ont offert leur support 
désintéressé dans les moment de doute de mes débuts au LAAS-CNRS. Je tiens à remercier 
Marilena Bruffa, qui a contribué directement à l’aboutissement de ces travaux, et Eric 
Marsden pour sa lecture attentive, qui m’a permis d’améliorer la qualité de ce mémoire. Mes 



remerciements s’adressent également à Gina pour sa disponibilité, sa gentillesse et son aide 
précieux dans les derniers préparatifs pour la soutenance. 

Je remercie également tous les membres des services du LAAS-CNRS (Informatique et 
Instrumentation, Documentation, Magasin, Entretien, Direction–Gestion, Réception–
Standard, Communication) qui m’ont toujours permis de travailler dans d’excellentes 
conditions. 

Je tiens à exprimer ma gratitude envers le Zonta International et tout particulièrement 
envers les membres du club Zonta de Muret, qui ont soutenu ma candidature pour la bourse 
Amelia Earhart. Je suis également très reconnaissante à Peter Feiler (Carnegie Mellon 
Software Engineering Institute), Eric Conquet (Agence Spatiale Européenne), Bruce Lewis 
(US Army) et Jean Arlat (LAAS-CNRS), pour leur support dans cette entreprise.  

Mes remerciements vont également à Peter Feiler et à l’équipe « Performance-Critical 
Systems » du Carnegie Mellon Software Engineering Institute, pour m’avoir accueilli pendant 
six semaines. J’ai tiré de nombreux enseignements, à la fois sur le plan technique et humain, 
de mon séjour à Pittsburgh. Je remercie Madelaine Dusseau pour le support fourni dans les 
nombreuses tâches administratives liées à ce séjour. 

Je remercie sincèrement Jean-Paul Blanquart et Dave Thomas (ASTRIUM Satellites) pour 
les échanges enrichissants que nous avons eus au long de ma thèse. Leurs réflexions m’ont 
aidé à mûrir mes idées et à prendre du recul. 

Dans ces moments très importants de ma vie, je pense très fort à ma famille et mes amis, 
pour leur soutien et encouragement permanent. Enfin, je remercie Florin, qui a tout partagé 
avec moi ces dernières années, pour sa compréhension, sa patience et pour avoir supporté mes 
humeurs, parfois angoissés ces derniers temps. 

 



RESUME 

Introduction 

La complexité croissante des systèmes informatiques entraîne des difficultés d’ingénierie 
système, en particulier liées à la validation et à l’analyse des performances et des exigences 
concernant la sûreté de fonctionnement. Des approches d’ingénierie guidée par des modèles sont de 
plus en plus utilisées dans l’industrie dans l’objectif de maîtriser cette complexité au niveau de la 
conception. Ces approches encouragent la réutilisation et l’automatisation partielle ou totale de 
certaines phases du cycle de développement. Elles doivent être accompagnées de langages et outils 
capables d’assurer la conformité du système implémenté aux spécifications. Les analyses de 
performance et de sûreté de fonctionnement sont essentielles dans ce contexte. La plupart des 
approches guidées par des modèles se basent soit sur le langage UML [OMG 2004], qui est un 
langage de modélisation à usage général, soit sur des ADL (langages de description d’architecture), 
qui sont des langages propres à des domaines particuliers. 

Parmi les ADL, AADL, Architecture Analysis and Design Language [SAE-AS5506 2004], a fait 
l’objet d’un intérêt croissant dans l’industrie des systèmes critiques (comme Honeywell, Rockwell 
Collins, l’Agence Spatiale Européenne, Astrium, Airbus). AADL a été standardisé par la 
« International Society of Automotive Engineers » (SAE) en 2004, pour faciliter la conception et 
l’analyse de systèmes complexes, critiques, temps réel dans des domaines comme l’avionique, 
l’automobile et le spatial. AADL fournit une notation textuelle et graphique standardisée pour 
décrire des architectures matérielles et logicielles et pour effectuer différentes analyses du 
comportement et des performances du système modélisé [Feiler et al. 2004]. Le succès de AADL 
dans l’industrie est justifié par sa sémantique précise, son support avancé à la fois pour la 
modélisation d’architectures reconfigurables et pour la conduite d’analyses. En particulier, le 
langage a été conçu pour être extensible afin de permettre des analyses qui ne sont pas réalisables 
avec le langage de base. 

Dans cette optique, une annexe au standard AADL a été définie (« AADL Error Model Annex » 

[SAE-AS5506/1 2006]) pour compléter les capacités de description du langage de base. Cette 
annexe représente un sous-langage qui sert à décrire les caractéristiques du système modélisé en 
AADL liées à la sûreté de fonctionnement. La sûreté de fonctionnement d’un système est définie 
comme la propriété qui permet à ses utilisateurs de placer une confiance justifiée dans le service 
qu’il leur délivre [Laprie et al. 1996]. Selon le système, l’accent peut être mis sur différents attributs 
de la sûreté de fonctionnement. Par exemple, la continuité de service conduit à la fiabilité et le fait 
d’être prêt à l’utilisation conduit à la disponibilité. Le AADL Error Model Annex offre des 
primitives permettant de décrire le comportement du système en présence de fautes (fautes, modes 
de défaillance, propagations d’erreurs, hypothèses de maintenance si on s’intéresse à la 
disponibilité). En plus de la description du comportement du système en présence de fautes, les 
concepteurs sont intéressés par l’obtention de mesures quantitatives d’attributs de la sûreté de 
fonctionnement pertinents pour leurs systèmes, comme la fiabilité et la disponibilité.  

Les développeurs de systèmes complexes critiques utilisant un processus d’ingénierie basé sur 
AADL sont confrontés à deux questions fondamentales quand il s’agit d’évaluer la sûreté de 
fonctionnement :  

1) Comment prendre en compte dans les modèles AADL les dépendances multiples entre les 
composants dans la description du comportement du système en présence de fautes ? Ces 
dépendances peuvent être engendrées par l’architecture du système ou les stratégies de 
tolérance aux fautes et de maintenance.   

2) Comment obtenir des mesures de sûreté de fonctionnement à partir des modèles AADL ? 



 

 

À l’état actuel, il n’existe pas de méthodologie pour aider les concepteurs utilisant AADL à 
résoudre ces deux questions. L’objectif de nos travaux est de répondre à ces deux besoins.  

Nous répondons au premier besoin en guidant l’élaboration du modèle AADL de sûreté de 
fonctionnement par une méthode itérative, qui prend en compte progressivement les dépendances 
entre les composants. Pour ce faire, nous avons identifié toutes les primitives du langage AADL qui 
servent à la description des dépendances liées à la sûreté de fonctionnement et nous avons défini 
des règles de modélisation pour chaque type de dépendance. Nous définissons un élément de AADL 
comme un ensemble de primitives décrivant une dépendance. Notre méthode permet à la fois de 
maîtriser la complexité des modèles et de les valider progressivement. Afin de faciliter la 
réutilisation, nous définissons également un ensemble de sous-modèles génériques et réutilisables 
décrivant des architectures tolérantes aux fautes. Les informations liées à la sûreté de 
fonctionnement ne sont pas enfouies dans le modèle AADL architectural. Au contraire, elles sont 
décrites séparément et attachées aux composants du modèle architectural, favorisant la réutilisation 
et la clarté du modèle AADL architectural qui peut être une base pour d’autres analyses (comme la 
vérification formelle [Farines et al. 2003], l’ordonnancement et les allocations de mémoire 
[Singhoff et al. 2005], l’allocation de ressources avec l’outil OSATE1 (Open Source AADL Tool 
Environment), la recherche de blocages et variables non initialisées avec l’outil Ocarina2). 

Nous répondons au deuxième besoin en proposant une transformation de modèle de AADL vers 
des réseaux de Petri stochastiques généralisés (RdPSG), qui peuvent être traités par des outils 
existants pour évaluer les mesures de sûreté de fonctionnement. La transformation est basée sur un 
ensemble des règles conçu pour être mis en œuvre dans un outil de transformation de modèle, de 
façon transparente à l’utilisateur. De cette manière, la complexité de la génération du modèle 
RdPSG est masquée aux utilisateurs qui connaissent AADL et qui ont généralement des 
connaissances limitées dans le domaine des RdPSG. Afin de montrer la faisabilité de 
l’automatisation, nous avons implémenté un outil de transformation, ADAPT (from AADL 

Architectural models to stochastic Petri nets through model Transformation), qui s’interface avec 
OSATE, côté AADL, et avec Surf-2, côté RdPSG [Béounes et al. 1993]. Nous avons défini une 
règle pour chacun des éléments AADL. L’ensemble de règles est donc nécessaire et suffisant pour 
l’obtention d’un RdPSG décrivant tous les types de dépendances que nous avons identifiés. Dans ce 
document, nous nous focalisons sur les principes généraux de la transformation et nous montrons 
les règles de transformation les plus représentatives. 

Enfin, nous illustrons à la fois l’approche itérative de modélisation et la transformation de modèle 
sur un cas d’étude issu d’un système réel : le système informatique français de contrôle de trafic 
aérien.  

Il est à noter que nos travaux autour de la modélisation de la sûreté de fonctionnement avec 
AADL nous ont permis de proposer des évolutions du standard AADL. Une partie de ces 
propositions ont déjà été intégrées dans la version actuelle du standard. Les autres seront prises en 
compte dans les discussions du comité de standardisation visant la prochaine version de ce standard.  

Des présentations des principes de notre méthodologie de modélisation ont été effectuées dans 
[Rugina et al. 2006b], [Rugina et al. 2006c] et [Rugina et al. 2007].  

En suivant le plan de la thèse, la suite de ce résumé est organisée en cinq paragraphes. Le 
paragraphe I discute de l’état de l’art. Le paragraphe II présente les éléments qui existent dans la 
version courante du standard AADL et qui constituent la base de notre approche de modélisation. 
Le paragraphe III est une vue d’ensemble de notre approche itérative de modélisation basée sur 
AADL. L’ensemble de sous-modèles réutilisables que nous avons défini pour des architectures 
classiques tolérantes aux fautes n’est pas détaillé ici. Cependant, il fait l’objet de la seconde partie 
du Chapitre 3 de la thèse. Le paragraphe IV est dédié aux règles de transformation de AADL vers 
RdPSG. Nous montrons ici quelques principes et règles de transformation. Le paragraphe V illustre 

                                                
1 http://www.aadl.info/OpenSourceAADLToolEnvironment.html  
2 http://ocarina.enst.fr 



 

notre approche sur un sous-système du Système Français de Contrôle de Trafic Aérien. Nous 
finissons en donnant les conclusions et les perspectives de ces travaux. 

I Quelques travaux connexes 

La plupart des publications visant l’intégration d’analyses de sûreté de fonctionnement et de 
performance dans des langages utilisés pour les approches d’ingénierie guidée par des modèles se 
sont focalisés sur UML, car UML est un langage de modélisation à usage général. Toutefois, des 
efforts significatifs ont ciblé deux ADLs : EastADL [Debruyne et al. 2004] et AADL. Les 
approches utilisées dans ce contexte se basent sur l’enrichissement du langage ciblé et des 
transformations de modèle vers des modèles d’analyse. 

En considérant les travaux portant sur UML, le projet européen HIDE [Bondavalli et al. 2001] 
propose une méthode pour analyser et évaluer automatiquement la sûreté de fonctionnement à partir 
de modèles UML. Une transformation de modèle a été définie à partir de diagrammes UML 
structurels et comportementaux vers des RdPSG, pour l’évaluation de la sûreté de fonctionnement. 
D’autre part, [Pai & Bechta Dugan 2002] et [Fernandez Briones et al. 2006] proposent des 
algorithmes d’obtention d’arbres de fautes à partir de UML. D’autres approches ont été développées 
afin d’obtenir des mesures de performance à partir de UML. Par exemple, [Lòpez-Grao et al. 2004] 
se sont focalisés sur la transformation de diagrammes d’activité en RdPSG. [Bernardi et al. 2002] 
proposent de transformer des diagrammes de séquence et « statecharts » en RdPSG. En revanche, 
[Kloul & Kuster-Filipe 2006] prennent en compte le diagramme global d’interaction de UML2 et le 
diagramme de séquence, qui sont transformés dans le formalisme PEPA.  

En considérant les travaux portant sur EastADL, le consortium du projet européen ATESST 
[Chen et al. 2007] vise à intégrer des analyses de sûreté de fonctionnement et de performance dans 
ce langage conçu pour répondre aux besoins de l’industrie automobile. 

Notre contribution est parallèle aux travaux reportés ci-dessus, car notre objectif est de répondre 
aux besoins des utilisateurs du langage AADL, qui souhaitent obtenir des mesures de sûreté de 
fonctionnement. La plupart des articles publiés autour des analyses basées sur AADL se sont 
concentrés sur l’extension du langage pour faciliter la vérification formelle, comme dans les cas de 
[Hugues et al. 2007] et du projet COTRE [Farines et al. 2003]. D’autre part, [Singhoff et al. 2005] 
et [Sokolsky et al. 2006] proposent des méthodes pour effectuer des analyses d’ordonnancement. La 
contribution la plus proche de la nôtre est celle de [Joshi et al. 2007]. Elle présente un outil interne 
de Honeywell qui permet la génération d’arbres de fautes à partir de modèles AADL enrichis avec 
des éléments de l’annexe des modèles d’erreur (AADL Error Model Annex). L’outil est interfacé 
avec OSATE, similairement à notre outil. D’un point de vue critique, cette contribution ne fournit 
pas de méthodologie de modélisation et ne guide pas l’utilisateur dans la construction du modèle 
AADL de sûreté de fonctionnement. En même temps, la transformation de modèle de AADL vers 
les arbres de faute n’est pas détaillée. De plus, cette approche cible uniquement la fiabilité et ne 
peut pas être utilisée pour évaluer d’autres mesures de sûreté de fonctionnement, telles que la 
disponibilité, si les composants ne sont pas stochastiquement indépendants.  

Les chaînes de Markov constituent un cadre plus adéquat pour la modélisation de la sûreté de 
fonctionnement des systèmes en prenant en compte les dépendances entre les composants. 
Habituellement, elles sont générées à partir de formalismes de plus haut niveau comme les réseaux 
de Petri stochastiques généralisés (RdPSG). Ces derniers permettent de vérifier structurellement le 
modèle avant la génération de la chaîne de Markov. Ces facilités pour la vérification sont très utiles 
quand on traite de grands modèles. La méthode de modélisation que nous proposons s’inspire de 
l’approche [Kanoun & Borrel 2000]. Cette dernière a pour objectif la maîtrise de la construction et 
la validation progressive de modèles de sûreté de fonctionnement sous forme de RdPSG. Nous nous 
intéressons spécifiquement à la modélisation au niveau AADL et à la génération à partir de ces 
modèles AADL de RdPSG permettant d’obtenir des mesures quantitatives de sûreté de 
fonctionnement. 



 

 

II Eléments de AADL 

Ce paragraphe fournit au lecteur les concepts de base et éléments d’utilisation du langage AADL, 
conformément à la version actuelle du standard. La méthodologie que nous présentons par la suite 
se base sur ces éléments. 

En AADL, les systèmes sont modélisés comme des ensembles de composants logiciels 
(processus, fils d’exécution appelés « threads », sous-programmes, données) qui interagissent via 
des ports (de données ou d’événements) et qui s’exécutent sur des composants matériels 
(processeurs, mémoire, bus).  

Afin de dissocier l’interface et l’implémentation, chaque composant AADL a deux niveaux de 
description : le type et l’implémentation. Le type décrit comment l’environnement « voit » ce 
composant (en termes de propriétés et caractéristiques). Une ou plusieurs implémentations peuvent 
être associées au même type, correspondant à différentes structures du composant en termes de sous 
composants, connexions (entre les ports des sous composants), appels de sous-programmes et 
modes opérationnels. 

Un système peut avoir plusieurs modes opérationnels qui correspondent soit à des valeurs 
différentes pour les propriétés, soit à des configurations différentes.  Le basculement de l’une à 
l’autre se fait soit suite à un changement de phase opérationnelle, soit suite à une reconfiguration du 
système après la défaillance d’un de ses éléments. AADL fournit un support pour définir des 
configurations architecturales et le passage entre les modes. La dynamique des modes opérationnels 
influence les mesures de sûreté de fonctionnement comme la disponibilité. Par conséquent, ils 
doivent être pris en compte dans le modèle de sûreté de fonctionnement. En pratique, les transitions 
entre modes opérationnels sont déclenchées par des événements qui arrivent à travers des ports 
d’événements. Le modèle défini par l’ensemble des composants du système et des modes 
opérationnels est appelé par la suite « modèle AADL architectural ». 

Un modèle de sûreté de fonctionnement est un modèle contenant des informations telles que 
modes de défaillance, politiques de réparation et propagations d’erreur. Un modèle AADL de sûreté 

de fonctionnement est un modèle architectural annoté avec des modèles d’erreur qui contenant ces 
informations. La syntaxe et la sémantique des modèles d’erreur est spécifiée par l’annexe 
standardisée des modèles d’erreur (« Error Model Annex »). Les modèles d’erreurs représentent des 
automates stochastiques décrivant des comportements en présence de fautes. Ils sont associés à des 
composants et connexions du modèle AADL architectural. Au moment de l’association, il est 
possible d’adapter un modèle d’erreur générique provenant d’une librairie. La suite du paragraphe 
détaille l’utilisation des modèles d’erreur. 

Comme pour un composant du langage AADL de base, un modèle d’erreur est spécifié sous 
forme d’un type et d’une ou plusieurs implémentations appropriées pour la réalisation de différentes 
analyses de sûreté de fonctionnement. Le type déclare des états (error states), des événements 
internes au composant (error events) et des propagations (error propagations3) qui 
circulent à travers de connexions et liaisons du modèle AADL architectural. Les implémentations 
déclarent des transitions entre les états et des propriétés stochastiques d’Occurrence pour les 
événements et les propagations sortantes. Les transitions sont déclenchées par des événements et 
propagations déclarés dans le type. Les propriétés d’Occurrence spécifient le taux d’arrivée ou la 
probabilité d’occurrence pour les événements et propagations. La Figure 1 montre un modèle 
d’erreur d’un composant logiciel considéré comme indépendant (sans propagations). Par 
conséquent, nous avons choisi le nom independent pour son type et independent.general pour son 
implémentation. Nous considérons deux types de fautes : temporaires et permanentes. Une faute 
temporaire mène le composant dans un état erroné (Erroneous) tandis qu’une faute permanente le 

                                                
3 Dans la suite, nous omettrons dans tout contexte non ambigu le terme « erreur » quand nous ferons référence aux états, 
événements, propagations et transitions. Notons que les états peuvent représenter des états de bon fonctionnement, les événements 
peuvent représenter des réparations et les propagations peuvent représenter toute notification.  



 

mène dans un état défaillant (Failed). Une faute temporaire peut être traitée par des mécanismes de 
recouvrement internes permettant au composant de retrouver son état initial. Une faute permanente 
requiert le redémarrage du composant.  

Error Model Type [independent] 

 
error model independent 
features 
   Error_Free: initial error state; 
   Erroneous: error state; 
   Failed: error state; 
   Temp_Fault: error event {Occurrence => poisson 1};  
   Perm_Fault: error event {Occurrence => poisson 2};  
   Restart: error event {Occurrence => poisson μ1}; 
   Recover: error event {Occurrence => poisson μ2}; 
end independent; 

Error Model Implementation [independent.general] 

 

error model implementation independent.general 
transitions 
   Error_Free-[Perm_Fault]->Failed; 
   Error_Free-[Temp_Fault]->Erroneous; 
   Failed-[Restart]->Error_Free; 
   Erroneous-[Recover]->Error_Free; 
end independent.general; 

Figure 1. Exemple de modèle d’erreur sans propagations.  

Les modèles d’erreur de différents composants ne peuvent communiquer qu’à travers les 
connexions et liaisons du modèle architectural.  

La mécanique d’une propagation est la suivante. Une propagation out est modélisée dans un 
modèle d’erreur source. Elle arrive selon une propriété d’Occurrence spécifiée par l’utilisateur. Le 
modèle d’erreur source envoie la propagation à travers tous les ports et liaisons du composant 
auquel le modèle d’erreur est associé. Par conséquent, une propagation out arrive à un ou plusieurs 
modèles d’erreurs associés à des composants récepteurs. Si un modèle d’erreur récepteur déclare 
une propagation in avec le même nom que la propagation out reçue, la propagation in peut 
influencer son comportement, en déclenchant des transitions entre des états et/ou des modes 
opérationnels. Dans certains cas, il est souhaitable de modéliser comment sont gérées des 
propagations provenant de plusieurs sources. Ceci est modélisé par des propriétés de type 
« Guard » associées aux ports. Ces propriétés permettent de spécifier des filtres et des conditions 
de masquage pour les propagations. 

Les états logiques (tels que défaillant et en bon fonctionnement) d’un composant sont décrits 
indépendamment des modes opérationnels. Le langage permet d’établir une connexion entre les 
états logiques et les modes opérationnels. Par exemple, l’occurrence d’une transition entre modes 
opérationnels est éventuellement contrôlée par la spécification de propriétés Guard_Transition 
associées à des ports, portant sur la configuration d’états de plusieurs composants.  

Dans la suite de ce document, plusieurs exemples illustreront l’usage des propagations (voir par 
exemple § III.2.1) et des propriétés Guard_Transition (voir par exemple § IV.3.1). 

III L’approche de modélisation 

L’évaluation de la sûreté de fonctionnement se décompose en trois étapes : 1) la définition des 
mesures à évaluer, 2) la construction du modèle d’évaluation de la sûreté de fonctionnement qui 
décrit le comportement du système en présence de fautes et 3) le traitement du modèle afin 
d’obtenir les valeurs des mesures recherchées. Plusieurs mesures quantitatives peuvent être 



 

 

considérées pour caractériser la sûreté de fonctionnement du système étudié, en fonction du 
domaine d’application et de la criticité des modes de défaillance. Pour des systèmes complexes, la 
principale difficulté dans la construction du modèle de sûreté de fonctionnement est due aux 
dépendances entre les composants du système. Les dépendances sont de plusieurs types, identifiés 
dans [Kanoun & Borrel 2000] : structurelles, fonctionnelles ou liées à la tolérance aux fautes et à la 
stratégie de maintenance et de restauration. Les échanges de données entre composants entraînent 
des dépendances fonctionnelles. L’exécution d’un processus sur un processeur entraîne une 
dépendance structurelle entre le fil d’exécution et le processeur. Le changement du mode 
opérationnel selon une politique de tolérance aux fautes représente une dépendance de tolérance aux 
fautes. Le partage d’un dispositif de réparation entre plusieurs composants entraîne une dépendance 
de maintenance et de restauration.  

Les dépendances fonctionnelles, structurelles et de tolérance aux fautes constituent des 
dépendances architecturales qui apparaissent généralement sur le modèle AADL architectural. Il 
faut tenir compte également des dépendances dues à la maintenance, qui n’apparaissent pas dans le 
modèle architectural. 

Les utilisateurs ont besoin d’une approche structurée pour modéliser systématiquement les 
dépendances afin d’éviter des erreurs dans le modèle du système. Dans notre approche, le modèle 
AADL de sûreté de fonctionnement est construit de manière itérative, ce qui permet à la fois de 
maîtriser sa complexité et de le valider progressivement. Plus concrètement, dans une première 
itération, nous modélisons les comportements des composants du système en présence de leurs 
propres fautes et événements de réparation uniquement. Par conséquent, les composants sont 
modélisés comme s’ils étaient isolés du reste du système. Dans les itérations suivantes, nous 
complétons le modèle en introduisant progressivement les dépendances entre les composants. Le 
modèle AADL de sûreté de fonctionnement est mis à jour à chaque itération. La prise en compte 
d’une dépendance conduit à ajouter uniquement de nouvelles informations dans le modèle existant 
(en termes de propagations) ou à le modifier avant d’ajouter de nouvelles informations.  

Le modèle d’évaluation de la sûreté de fonctionnement peut être généré en une seule fois à la fin 
des itérations, à partir du modèle AADL global. Il peut être également généré lors de chaque 
itération. Pour les raisons évoquées dans § I, nous nous intéressons à la génération d’un RdPSG à 
partir du modèle AADL. La vérification à chaque étape des propriétés du RdPSG permet de valider 
progressivement le RdPSG et le modèle AADL associé.  

Dans la suite, le paragraphe III.1 donne une vue d’ensemble de notre approche et le paragraphe 
III.2 illustre la modélisation des dépendances.  

III.1 Vue d’ensemble 

Une vue d’ensemble de notre approche de modélisation, composée de quatre étapes, est illustrée 
par la Figure 2. 

La première étape est consacrée à la modélisation de l’architecture du système en AADL4 
(c’est-à-dire, sa structure en termes de composants et les modes opérationnels de ces composants).  

La seconde étape est dédiée à la construction des modèles d’erreur associés aux composants du 
modèle architectural. Le modèle d’erreur du système est une composition de l’ensemble de modèles 
d’erreur associés aux composants, en prenant en compte les dépendances entre ces derniers. La 
construction du modèle d’erreur tient compte des dépendances architecturales et des hypothèses 
liées à la maintenance. 

Le modèle AADL architectural et le modèle d’erreur du système forment le modèle AADL de 

sûreté de fonctionnement.  

                                                
4 Le modèle AADL architectural peut être disponible à ce stade s’il a déjà été construit pour d’autres analyses. 



 

La troisième étape vise à construire un modèle d’évaluation de la sûreté de fonctionnement à 
partir du modèle AADL de sûreté de fonctionnement à l’aide de règles de transformation de 
modèle.  

La quatrième étape est dédiée au traitement du modèle d’évaluation de la sûreté de 
fonctionnement afin d’obtenir des mesures.  

Pour obtenir le modèle AADL de sûreté de fonctionnement, l’utilisateur doit effectuer la 
première et la deuxième étapes décrites ci-dessus. La troisième étape est conçue pour être 
automatisée. Nous nous focalisons sur la génération d’un RdPSG à partir du modèle AADL. La 
quatrième étape est entièrement basée sur des algorithmes classiques de traitement des modèles 
RdPSG. Ne faisant pas l’objet de notre travail, cette étape n’est pas détaillée ici. 

 

Figure 2. Approche proposée 

III.2 Modélisation avec dépendances en AADL 

Les dépendances structurelles et fonctionnelles sont engendrées par le modèle AADL 
architectural. L’utilisateur doit enrichir cet ensemble en ajoutant les dépendances liées à la 
maintenance et à la tolérance aux fautes. Dans le cas d’un système complexe, l’ensemble complet 
des dépendances peut être résumé dans un diagramme bloc de dépendances pour donner une vue 
globale des composants du système et de leurs interactions.  

La suite de ce paragraphe illustre comment modéliser en AADL i) une dépendance architecturale 
et ii) une dépendance de maintenance. La première est déjà prise en compte dans le modèle AADL 
architectural initial, alors que la seconde n’intervient qu’au niveau de l’analyse de sûreté de 
fonctionnement et elle n’apparaît pas dans le modèle AADL architectural. 

III.2.1 Dépendance architecturale 

La dépendance est supportée par le modèle architectural et doit être modélisée dans les modèles 
d’erreur associés aux composants dépendants, en spécifiant respectivement des propagations 
sortantes et entrantes et leurs impacts sur les modèles d’erreur. Un exemple est donné dans la Figure 
3. La Figure 3-a présente le modèle AADL architectural (le Composant 1 envoie des données au 
Composant 2). La Figure 3-b montre le modèle AADL de sûreté de fonctionnement où un modèle 
d’erreur est associé à chacun des deux composants pour décrire la dépendance. 

Le modèle d’erreur de la Figure 4-a (sender.general) est associé au Composant 1. Il prend en 
compte la partie côté émetteur de la dépendance du Composant 1 vers le Composant 2. Ce modèle 
d’erreur est une extension de celui de la Figure 1 qui représente le comportement d’un composant 
comme s’il était isolé (il ne déclare pas des propagations). Le modèle d’erreur sender.general 



 

 

déclare une propagation out Error (voir la ligne d1 de la Figure 4-a) dans le type et une transition 
AADL déclenchée par la propagation out dans l’implémentation (voir la ligne d2 de la Figure 4-a). 
L’occurrence de la propagation out Error est caractérisée par une probabilité fixe p. Le modèle 
d’erreur associé au Composant 2 (receiver.general) est similaire. La seule différence est la direction 
de la propagation Error. Cette propagation in déclenche une transition de Error_Free à Failed. 

 

 

- a - - b - 

Figure 3. Dépendance architecturale.  

Quand le Composant 1 est dans l’état erroné (Erroneous), il envoie une propagation par la 
connexion unidirectionnelle et reste dans le même état. Par conséquent, la propagation entrante 
Error cause la défaillance du composant récepteur Component 2. Les propagations in – out 
Error définies respectivement dans le modèle d’erreur associé au Composant 2 et au Composant 1 
ont des noms identiques. De telles propagations sont appelées propagations avec noms identiques.  

Error Model Type [sender] 

 

 error model sender 
 features 
  Error_Free: initial error  
   state; 
  Erroneous: error state; 
  Failed: error state; 
  Temp_Fault: error event 
    {Occurrence=> poisson 1};  
  Perm_Fault: error event 
    {Occurrence=> poisson 2};  
  Restart: error event 
    {Occurrence=> poisson μ1}; 
  Recover: error event 
    {Occurrence=> poisson μ2}; 
(d1)  Error:out error propagation 
    {Occurrence => fixed p}; 
 end sender; 

 Error Model Type [receiver] 

 

 error model receiver 
 features 
 Error_Free: initial error  
     state; 
 Erroneous: error state; 
 Failed: error state; 
 Temp_Fault: error event 
    {Occurrence => poisson 1};  
 Perm_Fault: error event 
    {Occurrence => poisson 2};  
 Restart: error event 
    {Occurrence => poisson μ1}; 
 Recover: error event 
    {Occurrence => poisson μ2}; 
(d1) Error: in error propagation; 
 end receiver; 

Error Model Implementation 
[sender.general] 

 

 error model implementation 
 sender.general 
 transitions 
  Error_Free-[Perm_Fault] 
   ->Failed; 
  Error_Free-[Temp_Fault] 
   ->Erroneous; 
  Failed-[Restart]->Error_Free; 
  Erroneous-[Recover] 
   ->Error_Free; 
(d2)  Erroneous-[out Error] 
   ->Erroneous; 
 end sender.general; 

 

Error Model Implementation 
[receiver.general] 

 

 error model implementation 
 receiver.general 
 transitions 
  Error_Free-[Perm_Fault] 
   ->Failed; 
  Error_Free-[Temp_Fault] 
   ->Erroneous; 
  Failed-[Restart]->Error_Free; 
  Erroneous-[Recover] 
   ->Error_Free; 
(d2)  Error_Free-[in Error] 
   ->Failed; 
 end receiver.general; 

- a - - b - 

Figure 4. Exemple de modèles d’erreur avec dépendance.  



 

Généralement, un composant du modèle architectural peut recevoir des propagations provenant 
de plusieurs composants émetteurs. Il est parfois nécessaire de ne prendre en compte certaines de 
ces propagations que dans certains contextes. Ces conditions sont spécifiées en utilisant des 
propriétés de Guard dans lesquelles les conséquences d’un ensemble de propagations provenant de 
plusieurs émetteurs sur un récepteur sont spécifiées au travers d’expressions booléennes. 

III.2.2 Dépendance de maintenance 

Des composants qui ne sont pas dépendants au niveau architectural peuvent le devenir à cause de 
la stratégie de maintenance. Dans ce cas, le modèle architectural nécessite des ajustements pour 
supporter la description des dépendances liées à la stratégie de maintenance. Comme les modèles 
d’erreur interagissent seulement par des propagations qui passent par des éléments architecturaux 
(par exemple connexions et liaisons), la dépendance de maintenance doit avoir un support 
architectural. En d’autres termes, à part les composants de l’architecture, nous sommes conduits à 
ajouter un composant dans le modèle architectural pour décrire la stratégie de maintenance. La 
Figure 5-a montre un exemple de modèle AADL de sûreté de fonctionnement. Dans cette 
architecture, le Composant 3 et le Composant 4 n’interagissent pas au niveau de l’architecture 
AADL car il n’y a pas de dépendance architecturale. Cependant, si nous supposons que les deux 
composants partagent un réparateur, la stratégie de maintenance doit être prise en compte dans les 
modèles d’erreur correspondants. Par conséquent, il est nécessaire de représenter le réparateur au 
niveau du modèle architectural, comme montré dans la Figure 5-b, pour modéliser explicitement la 
dépendance de maintenance entre le Composant 3 et le Composant 4.  

  

- a - - b - 

Figure 5. Dépendance de maintenance. 

Les modèles d’erreur des composants dépendants ont également besoin d’être ajustés. Par 
exemple, pour représenter le fait que le Composant 3 ne peut redémarrer que si le Composant 4 est 
en état de bon fonctionnement, il faut décomposer l’état défaillant du Composant 3 pour faire la 
distinction entre un état en attente d’autorisation de redémarrage et un état à partir duquel le 
Composant 3 est autorisé à redémarrer.  

III.2.3 Aspects pratiques 

L’ordre de prise en compte des dépendances n’a pas d’impact sur le modèle AADL de sûreté de 
fonctionnement final. Toutefois, il peut avoir un impact sur la réutilisation des modèles 
intermédiaires. Il est conseillé de guider le choix de l’ordre de prise en compte des dépendances en 
fonction de l’analyse ciblée. En général, les dépendances liées à la tolérance aux fautes et à la 
maintenance sont modélisées à la fin puisque leur description est très liée aux autres dépendances. 
Un objectif majeur de l’évaluation de la sûreté de fonctionnement est de sélectionner les politiques 
de tolérance aux fautes et de maintenance les mieux adaptées pour l’application. 



 

 

Afin de permettre l’évaluation des mesures de sûreté de fonctionnement, l’utilisateur doit définir 
des classes d’états pour le système. Par exemple, si l’utilisateur souhaite évaluer la fiabilité ou la 
disponibilité, il est nécessaire de définir les états considérés défaillants. Si, de plus, l’utilisateur 
souhaite évaluer des mesures liées à la sécurité-innocuité, il est nécessaire de définir également les 
états considérés catastrophiques. En AADL, les classes d’états sont définies au travers d’un modèle 
d’erreur dérivé associé au système et décrivant les états de ce dernier comme une expression 
booléenne faisant référence aux états de ses composants. 

IV Règles de transformation 

Le modèle RdPSG du système est construit par la transformation du modèle AADL de sûreté de 
fonctionnement en suivant une approche modulaire. Le RdPSG du système est composé de sous-
réseaux interconnectés. Un sous-réseau est associé à un composant ou à une dépendance. 

Afin d’aboutir à un RdPSG contenant toutes les informations nécessaires à l’évaluation des 
mesures de sûreté de fonctionnement, nous avons défini des règles de transformation pour tous les 
éléments AADL décrivant les types de dépendances identifiés au § III. Toutes les règles sont 
définies afin d’assurer par construction les propriétés syntaxiques du RdPSG (borné et sans boucle 
infinie formée d’une suite de transitions instantanées). Les règles sont systématiques et 
automatisables. Le RdPSG résultant est indépendant des outils (nous n’utilisons pas des prédicats 
ou des caractéristiques dépendantes des outils). Néanmoins, nos règles sont simplifiables pour 
cibler certains outils évolués de traitement de RdPSG. 

Dans les trois paragraphes suivants, nous présentons quelques dépendances en utilisant des 
éléments AADL (formés de primitives du langage) et nous donnons les règles de transformation 
correspondantes. Les règles de transformation que nous présentons ici sont les plus représentatives. 
Elles s’appliquent aux i) composants isolés, ii) propagations in - out avec noms identiques 
(type de dépendance très fréquent) et iii) des systèmes avec modes opérationnels (indispensables 
pour décrire des stratégies de tolérance aux fautes ou des systèmes multi-phasés). L’ensemble 
complet des règles est présenté dans la thèse (voir le Chapitre 4). Cet ensemble a été mis en oeuvre 
dans un outil, ADAPT (from AADL Architectural models to stochastic Petri nets through model 

Transformation). 

IV.1 Composants isolés 

Dans le cas d’un composant isolé ou dans le cas d’un ensemble de composants indépendants, la 
transformation est plutôt directe, car un modèle d’erreur représente un automate stochastique, 
comme montré dans l’exemple de la Figure 1. La transformation du modèle d’erreur de la Figure 1 
nous conduit au RdPSG de la Figure 6. Le nombre de jetons dans un réseau composant est toujours 
1 (un composant ne peut pas être dans plusieurs états à la fois). Le Tableau 1 montre les règles de 
transformation appliquées. 

 

Figure 6. RdPSG correspondant au modèle d’erreur de la Figure 1. 



 

 

Tableau 1. Règles de transformation pour composants isolés 

Primitive du modèle d’erreur Elément du RdPSG 

Etat Place  
 

Etat initial  Place avec jeton  
 

Evénement 
Transition RdPSG (temporisée ou 
immédiate)  

 

 
Temporisée 

Propriété d’Occurrence5  
Poids de la transition RdPSG (taux 
pour la distribution de Poisson ou 
probabilité fixe) 

 
Immédiate 

Transition AADL 
(Etat_Src-[Evénement] -> Etat_Dest) 

Arcs connectant des places (corresp. 
aux Etat_Src et Etat_Dest en AADL) 
via transition RdPSG (corresp. à 
l’Evénement AADL) 

 

IV.2 Propagations in – out 

Dans le cas le plus général, une propagation out déclarée dans un modèle d’erreur émetteur 
pourrait être déclenchée à partir de n transitions AADL dans ce même modèle d’erreur (par 
exemple une propagation Failed pourrait être propagée à partir d’un état FailStopped et à partir 
d’un état FailRandom). Des propagations in à noms identiques pourraient être déclarées dans r 2 
modèles d’erreur récepteurs et pourraient déclencher mj transitions AADL dans chaque récepteur j 
(j = 1…r). Nous avons identifié et analysé plusieurs règles de transformation pour la même 
spécification AADL pour des propagations in – out avec noms identiques. Nous avons choisi la 
règle la plus adaptée à l’automatisation, car l’objectif est de cacher la génération du RdPSG à 
l’utilisateur en automatisant complètement la transformation. 

Nous présentons d’abord le cas général d’une paire de propagations in – out avec noms 
identiques déclarées dans deux composants connectés. Ensuite nous présentons la règle de 
transformation. 

Dans la Figure 7, le Composant 1 joue le rôle de l’émetteur de propagation et il envoie des 
propagations nommées Prop par la connexion qui arrive au Composant 2. L’occurrence d’une 
propagation out Prop dans le Composant 1 déclenche également un changement d’état dans ce 
même composant qui passe de l’état OutSrc à l’état OutDst. Le Composant 2 joue le rôle du 
récepteur. S’il reçoit une propagation nommée Prop, il passe de l’état InSrc à l’état InDst.  

 

Figure 7. Emetteur et récepteur – propagations avec noms correspondants.  

                                                
5 En AADL, l’occurrence d’un événement est une propriété caractérisée par un couple de formé d’un mot clé désignant une 
probabilité fixe (fixed) ou une distribution (Poisson ou nonstandard) et d’une valeur numérique ou symbolique représentant 
soit la probabilité d’occurrence, soit le paramètre de la distribution. Comme nous utilisons les RdPSG, nous considérons 
uniquement les probabilités fixes et les distributions de Poisson. Il est à noter que, dans le RdPSG, ces poids seront ensuite 
normalisés selon le contexte de franchissement. 



 

 

La règle de transformation consiste à découpler les propagations in et out dans le RdPSG à 
travers une place intermédiaire qui représente le fait qu’une propagation out Prop a eu lieu, comme 
montré dans la Figure 8 (place OutProp).  

Un jeton arrive dans la place OutProp quand une transition RdPSG (tp) correspondant à la 
propagation out (et caractérisée par sa probabilité d’Occurrence p) arrive. L’existence d’un jeton 
dans la place OutProp permet de tirer une transition RdPSG immédiate InProp (si la place InSrc du 
Composant 2 est marquée) qui correspond à la propagation in. Cette place intermédiaire est vidée 
par la transition t

e quand la place correspondant à l’état source de la propagation out dans le 
composant émetteur est vide et quand InProp n’est pas sensibilisée. Nous ne vidons pas cette place 
directement lors du tir de la transition RdPSG correspondant à la propagation in, car nous devons 
mémoriser l’occurrence de la propagation out. Cette mémoire est utilisée par les autres règles de 
transformation. 

La place NoPropag modélise la situation da la non-occurrence de la propagation out Prop quand 
le Composant 1 est dans l’état OutSrc. Si out Prop n’arrive pas, la transition t

np est tirée. Sa 
probabilité tient compte de la somme des probabilités de tous les événements et les propagations 
déclenchant des transitions à partir de l’état OutSrc. La transition tnpe vide la place NoProp quand le 
composant a quitté OutSrc. 

 

Figure 8. Propagation de l’émetteur au récepteur. Règle de transformation 

Il est à noter que, dans le modèle AADL de sûreté de fonctionnement, chaque dépendance est 
modélisée dans les modèles d’erreur impliqués dans la dépendance. Dans le RdPSG, la dépendance 
est modélisée par un sous-réseau, obtenu à partir d’informations qui existe dans (au moins) deux 
modèles d’erreur dépendants. Une propagation in n’a aucun sens si elle ne correspond pas à une 
propagation out déclarée dans le modèle d’erreur d’un autre composant. Par conséquent, 
l’ensemble de propagations in-out ayant des noms identiques forme un élément AADL. 

La formalisation de cette règle de transformation apparaît dans la thèse (voir le Chapitre 4).  

Dans le cas général de n transitions AADL déclenchées par une propagation out, avec des 
propagations in correspondantes dans plusieurs modèles d’erreur récepteurs, une transition RdPSG 
est créée pour chaque transition AADL déclenchée par la propagation out dans le modèle d’erreur 
émetteur et une transition RdPSG est créée pour chaque transition AADL déclenchée par la 
propagation in dans les récepteurs. Le nombre de transitions RdPSG (Ntr) nécessaires pour décrire 
les propagations in Prop dans r composants récepteurs comme effets de n propagations émises par 
un composant émetteur est donné par l’expression [1] ci-après : 

Ntr = n * mj
j=1

r

, r 1      [1] 

où  n =  le nombre de transitions AADL déclenchées par la propagation  out dans le 
modèle d’erreur émetteur; 

 r = le nombre de modèles d’erreur récepteurs; 



 

 mj = le nombre de transitions AADL déclenchées par la propagation in dans le modèle 
d’erreur récepteur j. 

La Figure 9-a montre un modèle AADL avec un émetteur et deux récepteurs. A partir de ce 
dernier, nous obtenons le RdPSG de la Figure 9-b.  

 

 

- a - - b - 

Figure 9. Propagation d’un émetteur vers deux récepteurs. 

IV.3 Systèmes avec modes opérationnels 

AADL offre plusieurs mécanismes pour connecter les états logiques du modèle d’erreur aux 
transitions entre des modes opérationnels. Dans ce paragraphe, nous nous focalisons sur les règles 
de transformation pour des propriétés Guard_Transition. Les autres règles sont détaillées dans 
la thèse (voir le Chapitre 4). Les propriétés Guard_Transition conditionnent l’occurrence d’une 
transition entre modes opérationnels en fonction d’états de plusieurs composants du système 
(connectés ou liés aux composants qui déclarent ces propriétés) afin de modéliser de façon globale 
l’évolution du système. Leur syntaxe est donnée en forme Backus-Naur dans la Figure 10. 

Guard_Transition ::= boolean_expr  applies to EventPort {, EventPort}*; 
EventPort ::= outEventPortOfSubcomp | inEventPortOfComp 
boolean_expr ::= conjunction | boolean_expr OR boolean_expr 
conjunction ::= variable | conjunction AND conjunction 
variable ::= EventPort[ [StateOrPropagation | NOT StateOrPropagation] ] 

Figure 10. Syntaxe des propriétés Guard_Transition.  

Dans la suite, nous présentons successivement la modélisation en AADL d’un exemple de 
système avec modes opérationnels, la règle de transformation et son illustration sur l’exemple.  

IV.3.1 Modélisation AADL de propriétés Guard_Transition 

Nous présentons d’abord un exemple de système avec deux modes opérationnels dans la Figure 11 
et nous montrons dans la Figure 12 l’association d’une propriété Guard_Transition aux ports 
impliqués dans les transitions entre modes opérationnels. La configuration d’états nécessaire pour 
déclencher une transition entre modes opérationnels est exprimée comme une expression booléenne 
construite à partir de variables symbolisant des états et des propagations. 

Dans la Figure 11, le système est représenté en utilisant la notation graphique AADL. Il contient 
deux composants actifs identiques et deux modes opérationnels (Comp1Primary et Comp1Backup). 



 

 

Le système est initialement dans le mode Comp1Primary. La transition du mode Comp1Primary 
vers le mode Comp1Backup est régie par des propagations arrivant par les ports Send2 de Comp1 et 
Send1 de Comp2. Elle peut être déclenchée par exemple si Comp1 défaille quand Comp2 est en état 
de bon fonctionnement. Dans ce cas, Comp2 doit prendre la main.  

 

Figure 11. Modèle AADL d’un système avec modes opérationnels.  

Le même modèle d’erreur est associé à Comp1 et à Comp2. Il est basé sur le modèle d’erreur 
pour des composants isolés (voir la Figure 1). Il déclare, en plus de ce dernier, une propagation out 
FailedVisible qui notifie la défaillance du composant et qui est utilisée dans les propriétés 
Guard_Transition. 

Les propriétés Guard_Transition sont associées aux ports impliqués dans les transitions entre 
modes opérationnels. Une transition entre deux modes opérationnels a lieu si la propriété 
Guard_Transition associée au port nommé dans la transition est vraie. Dans notre exemple, la 
transition du mode Comp1Primary au mode Comp1Backup a lieu si Comp1 envoie une propagation 
out FailedVisible et si, en même temps, Comp2 est dans l’état Error_Free. (voir lignes g1-g3 de la 
Figure 12). La condition complémentaire doit être vraie pour que la transition du mode 
Comp1Backup au mode Comp1Primary ait lieu (voir lignes g4-g6 de la Figure 12). 
 
(g1) 
(g2) 
(g3) 
(g4) 
(g5) 
(g6) 

annex Error_Model {** 
 Guard_Transition =>  
    (Comp1.Send[FailedVisible] and Comp2.Send[Error_Free]) 
       applies to Comp1.Send; 
 Guard_Transition =>  
    (Comp2.Send[FailedVisible] and Comp1.Send[Error_Free]) 
       applies to Comp2.Send;  
**}; 

Figure 12. Associations de propriétés Guard_Transition.  

IV.3.2 Transformation des propriétés Guard_Transition 

Les modes opérationnels sont directement transformés en places du RdPSG.  

L’expression booléenne de la propriété Guard_Transition doit être tout d’abord mise sous 
une forme normale disjonctive (FND). Chaque conjonction est transformée en une transition 
RdPSG immédiate connectée avec : 

 les places correspondant aux états et propagations out qui apparaissent dans la 
conjonction par des arcs bidirectionnels ou arcs inhibiteurs (dépendant de l’existence ou 
non de négations dans l’expression). 



 

 les places correspondant aux modes opérationnels qui apparaissent dans la transition 
déclenchée par le port auquel est associée la propriété Guard_Transition. 

Une place intermédiaire correspondant à une propagation out est vidée quand aucune transition 
reliée à cette place n’est sensibilisée. 

Nous illustrons la règle de transformation sur l’exemple de système avec modes opérationnels 
décrit au §IV.3.1. La Figure 13 montre le RdPSG correspondant à la première propriété 
Guard_Transition (lignes g1-g3) de la Figure 12.  

 

Figure 13. RdPSG modélisant la propriété Guard_Transition.  

Si, dans l’exemple au-dessus, l’expression booléenne FND était formée de plusieurs 
conjonctions, alors plusieurs transitions RdPSG seraient connectées au places Comp1Primary et 
Comp1Backup. 

V Cas d’étude 

Dans ce paragraphe, nous utilisons notre cadre de modélisation pour comparer deux architectures 
candidates pour un sous-système du système français de Contrôle de Trafic Aérien. Ce système est 
plus détaillé dans [Kanoun et al. 1999]6. 

Nous présentons d’abord les modèles AADL architecturaux de ces deux architectures candidates 
dans le paragraphe V.1. L’analyse des dépendances est présentée dans le paragraphe V.2. Le 
paragraphe V.3 détaille les modèles d’erreur décrivant une partie des dépendances. Le paragraphe 
V.4 se focalise sur la transformation de modèle de AADL vers RdPSG et le paragraphe V.5 
présente un exemple de comparaison des deux architectures candidates. 

V.1 Architectures candidates et leurs modèles en AADL 

Le sous-système que nous considérons ici est formé de deux unités logicielles distribuées et 
tolérantes aux fautes qui s’exécutent sur une architecture bi-processeur. Les deux unités logicielles 
sont chargées du traitement respectif des plans de vol (PV) et des données provenant des radars 
(RD). L’unité PV fournit aux contrôleurs les informations relatives aux avions présents dans leur 
secteur de contrôle. L’unité RD élabore, à partir des données des issues des radars, une image de la 
situation aérienne. Les unités PV et RD échangent des données afin de corréler les plans de vol. Le 
sous-système doit avoir une disponibilité élevée. 

Nous considérons deux architectures candidates, que nous nommons Configuration1 et 
Configuration2, pour ce sous-système. Les unités PV et RD ont la même structure (présentée déjà 

                                                
6 L’article cité n’aborde ni la modélisation en AADL du système considéré, ni la transformation du modèle AADL vers RdPSG. 



 

 

dans la Figure 11), c’est-à-dire que chacune de ces deux unités est formée de deux répliques 
(PV_Comp1, PV_Comp2 et RD_Comp1, RD_Comp2) : l’une ayant le rôle primaire (fournisseur de 
service) et l’autre ayant le rôle secondaire (secours pour le primaire). Les deux architectures 
candidates utilisent deux processeurs. Chaque réplique d’une unité logicielle s’exécute sur un 
processeur. Dans la Configuration1, les répliques initialement primaires des unités PV et RD 
(PV_Comp1 et RD_Comp1) s’exécutent sur des processeurs différents. (PV_Comp1 s’exécute sur 
Processor1 et RD_Comp1 s’exécute sur Processor2). Dans la Configuration2, les répliques 
initialement primaires des unités PV et RD s’exécutent sur le même processeur : Processor1. 
L’ensemble du sous-système a deux modes opérationnels : Nominal et Reconfigured. Les 
connexions entre des répliques s’exécutant sur des processeurs différents sont liées à un bus. Par 
conséquent, ces liaisons dépendent du mode opérationnel du sous-système. Une défaillance du bus 
entraîne la défaillance d’une réplique de l’unité RD. La réplique primaire de l’unité PV échange des 
données avec les deux répliques de l’unité RD. 

La Figure 14 présente les modèles des deux architectures candidates en utilisant la notation 
graphique AADL. Pour des raisons de clarté, nous montrons les liaisons entre les répliques des 
unités logicielles (fils d’exécution) et les processeurs dans la Figure 14-a et les liaisons entre les 
connexions et le bus dans la Figure 14-b. 

  

- a - - b - 

Figure 14. Modèle AADL architectural. 

V.2 Analyse des dépendances 

Nous avons pris en compte les dépendances suivantes : 

- Dépendance structurelle entre chaque processeur et les fils d’exécution qui s’exécutent 
au-dessus. Les fautes du matériel peuvent se propager au logiciel qui s’exécute dessus. 



 

Ces dépendances (S1-4 dans la Figure 14) résultent des liaisons des fils d’exécutions aux 
processeurs. 

- Dépendance structurelle entre le bus et les répliques de l’unité RD. Si le bus défaille, la 
connexion rompue liée à ce bus provoque la défaillance de l’unité RD dans le mode 
opérationnel Nominal de la Configuration1 et dans le mode Reconfigured de la 
Configuration2. Cette dépendance (S5 dans la Figure 14) résulte des liaisons des 
connexions au bus. 

- Dépendances fonctionnelles entre l’unité PV et l’unité RD. Le fil d’exécution actif de 
l’unité PV peut propager des erreurs vers les deux répliques de l’unité RD. Ces 
dépendances (F1-2 dans la Figure 14) ont comme support les connexions des répliques de 
l’unité PV vers les répliques de l’unité RD. Nous considérons que les erreurs de l’unité 
RD ne se propagent pas vers l’unité PV même s’il y a une connexion de RD vers PV. 

- Dépendance de maintenance entre deux processeurs qui partagent un réparateur qui n’est 
pas simultanément disponible pour les deux composants. Cette dépendance n’est pas 
visible dans la Figure 14. 

- Dépendance de restauration entre chaque processeur et les fils d’exécution qui 
s’exécutent au-dessus. Si un fil d’exécution défaille, il ne peut pas être redémarré si le 
processeur sur lequel il s’exécute est défaillant. Ces dépendances (R1-4 dans la Figure 
14) résultent des liaisons des fils d’exécution aux processeurs. 

- Dépendance de tolérance aux fautes entre les répliques des unités PV et RD. Si la 
réplique primaire défaille mais l’autre réplique est en état de bon fonctionnement, les 
deux répliques changent de rôle. Ensuite la réplique défaillante est redémarrée. Ces 
dépendances (TF1-2 dans la Figure 14) ont comme support les connexions entre les 
répliques de PV et de RD. 

La Figure 15 résume les dépendances entre les composants de la Configuration1.  

 

Figure 15. Diagramme bloc de dépendances pour la Configuration1. 



 

 

Nous avons construit le modèle AADL de sûreté de fonctionnement de manière itérative, en 
intégrant d’abord les dépendances structurelles et fonctionnelles et ensuite les dépendances de 
maintenance, de restauration et de tolérance aux fautes. Le diagramme bloc des dépendances pour 
la Configuration2 est similaire. Dans la Configuration2, Processor1 est lié au RD_Comp1 par des 
blocs de dépendances structurelle et liée à la maintenance. Processor2 est lié au RD_Comp2 par les 
mêmes types de blocs. 

Nous illustrons l’approche en détaillant les deux blocs grisés de la Figure 14, F1 et TF1, 
représentant respectivement la dépendance fonctionnelle entre une réplique de l’unité PV et les 
deux répliques de l’unité RD et la dépendance de tolérance aux fautes entre les répliques de l’unité 
PV. 

V.3 Modèles d’erreur de F1 et TF1 

Nous décrivons d’abord les deux dépendances. Ensuite, nous présentons les modèles d’erreur 
correspondants.  

- F1 : Dépendance fonctionnelle entre un fil d’exécution de l’unité PV et les fils 
d’exécution de l’unité RD. Une erreur propagée de la réplique primaire de l’unité PV 
(PV_Comp1 ou PV_Comp2) vers les deux répliques de l’unité RD (RD_Comp1 et 
RD_Comp2) entraîne leur défaillance. Notons que les répliques de l’unité RD ne 
propagent pas d’erreurs vers les répliques de l’unité PV. De plus, une erreur propagée 
d’une réplique de l’unité PV n’a pas d’impact sur l’autre réplique de l’unité PV. En 
d’autres termes, nous ne pouvons pas utiliser le même modèle d’erreur pour les 
répliques de l’unité PV et de l’unité RD. Le modèle d’erreur associé aux répliques de 
l’unité RD doit déclarer une propagation in Error qui correspond à la propagation out 
déclarée dans le modèle d’erreur associé aux répliques de l’unité PV.  

- TF1 : Dépendance de tolérance aux fautes entre les fils d’exécution de l’unité PV. 
Le comportement que nous modélisons est basé sur celui spécifié dans le paragraphe 
IV.3 (pour des systèmes avec modes opérationnels). En plus de la prise de relais par la 
réplique secondaire quand la réplique primaire défaille, nous considérons que, si les 
deux répliques défaillent, la première redémarrée fournit le service et l’unité PV sera 
configurée dans le mode opérationnel correspondant. Pour modéliser ce comportement, 
nous associons des modèles d’erreur aux composants PV_Comp1 et PV_Comp2 et nous 
utilisons des propriétés Guard_Transition sur les ports out Send des deux répliques. 
Ces propriétés Guard_Transition sont des extensions de celles présentées dans la 
Figure 12. La description du comportement en cas de double défaillance se fait en 
utilisant une notification de la fin de la procédure de redémarrage avant de passer à l’état 
Error_Free. 

La Figure 16 présente le modèle d’erreur associé aux répliques de l’unité PV.  

Les lignes f1-f2 correspondent à F1, tandis que les lignes t1-t4 correspondent à TF1. Le 
composant peut propager des erreurs (propagation out Error) mais il ne peut pas être influencé par 
des propagations d’erreurs car il ne déclare pas une propagation in Error. La fin de la procédure de 
redémarrage est notifiée (propagation out IAmRestarted) avant de passer à l’état Error_Free. 

La seule différence entre le modèle d’erreur associé aux répliques de l’unité PV est la direction 
de la propagation Error et la transition AADL qu’elle déclenche. Dans le modèle d’erreur associé 
aux répliques de l’unité RD, Error est une propagation in qui déclenche une transition de l’état 
Error_Free vers l’état Failed. 

La Figure 17 présente les propriétés Guard_Transition qui spécifient les conditions qui 
permettent aux transitions entre modes opérationnels d’avoir lieu en tenant compte du 
comportement de tolérance aux fautes décrit précédemment.  



 

Les transitions entre modes opérationnels ont lieu : 1) si un composant envoie la propagation 
FailedVisible et si en même temps l’autre composant est en bon fonctionnement (état Error_Free) 
ou 2) si un des composants envoie la propagation IAmRestarted et en même temps l’autre 
composant n’est pas en bon fonctionnement (signifiant qu’une double défaillance est arrivée et que 
le premier composant a été redémarré avant le second). 

 
 

 
 
 
 
 
 
 
 
 
 
 
(f1) 
(t1) 
(t2) 
 

Error Model Type [pourPV_Comp] 

 

error model pourPV_Comp 
features 
  Error_Free: initial error state; 
  Erroneous: error state; 
  Restarted: error state; 
  Failed: error state; 
  Temp_Fault: error event {Occurrence=> poisson 1};  
  Perm_Fault: error event {Occurrence=> poisson 2};  
  Restart: error event {Occurrence=> poisson μ1}; 
  Recover: error event {Occurrence=> poisson μ2}; 
  Error: out error propagation {Occurrence=> fixed p}; 
  FailedVisible: out error propagation {Occurrence=> fixed 1}; 
  IAmRestarted: out error propagation {Occurrence=> fixed 1}; 
end pourPV_Comp; 

 
 
 
 
 
 
 
(f2) 
(t3) 
(t4) 
 

Error Model Implementation [pourPV_Comp.general] 

 

error model implementation pourPV_Comp.general 
transitions 
  Error_Free-[Perm_Fault]->Failed; 
  Error_Free-[Temp_Fault]->Erroneous; 
  Failed-[Restart]->Restarted; 
  Erroneous-[out Error]->Erroneous; 
  Restarted-[out IAmRestarted]->Error_Free; 
  Failed-[out FailedVisible]->Failed; 
  Erroneous-[Recover]->Error_Free; 
end pourPV_Comp.general; 

Figure 16. Modèle d’erreur pour PV_Comp.  

 
 
 
 
 
 
 
 
 

Guard_Transition =>  
   (Comp1.Send2[FailedVisible] and Comp2.Send1[Error_Free]) 
   or (Comp2.Send1[IAmRestarted] and not Comp1.Send2[Error_Free]) 
      applies to Comp1.Send2, Comp2.Send1; 

Guard_Transition =>  
   (Comp2.Send2[FailedVisible] and Comp1.Send1[Error_Free]) 
   or (Comp1.Send1[IAmRestarted] and not Comp2.Send2[Error_Free]) 
      applies to Comp1.Send1, Comp2.Send2;  

Figure 17. Propriétés Guard_Transition associées aux ports Send des fils d’exécution de 
l’unité PV.  

V.4 Transformation du modèle AADL vers RdPSG 

Pour ces deux dépendances, nous utilisons les règles de transformation présentées dans le 
paragraphe IV. Nous avons d’abord pris en compte la dépendance fonctionnelle F1. Il est à noter 
que le tir de la transition Out_Error est conditionné par l’existence d’un jeton dans la place 
PV_Comp1Primary (car uniquement la réplique primaire de l’unité PV peut propager des erreurs). 
Ensuite nous avons pris en compte la dépendance de tolérance aux fautes TF1. La partie grisée de la 
Figure 18 présente la partie du RdPSG qui correspond aux deux dépendances mentionnées ci-dessus. 
Le reste de la figure représente les sous-réseaux correspondant aux composants RD_Comp1, 



 

 

RD_Comp2, PV_Comp1 et PV_Comp2. Pour des raisons de clarté, nous n’avons pas représenté les 
transitions qui vident les places correspondant aux propagations out. 

 

Figure 18. RdPSG du sous-système du système informatique français de trafic aérien – deux 
dépendances. 

V.5 Evaluation de mesures quantitatives 

A partir de la chaîne de Markov sous-jacente au RdPSG intégrant l’ensemble des dépendances, 
on peut évaluer différentes mesures pour comparer la sûreté de fonctionnement des architectures 
candidates considérées. A titre d’exemple, la Figure 19 donne les indisponibilités des deux 
architectures candidates, évaluées par l’outil Surf-2.  

Dans la Figure 19 le paramètre qui varie est le taux d’occurrence de la défaillance du bus, b. 
b 10-6/h correspond à un bus redondant. Pour la Configuration1, l’impact de ce paramètre est 

important quand b 10-5/h. La Configuration2 est beaucoup moins influencée par b, car en mode 
opérationnel Nominal, la communication entre les deux unités logicielles ne passe pas à travers le 
bus. La Figure 19 montre que, d’un point de vue pratique, si b 10-5/h, la Configuration2 est 
recommandée. Dans le cas contraire ( b<10-5/h), les deux architectures candidates sont équivalentes 
du point de vue de leurs indisponibilités.  



 

0E+00

2E-05

4E-05

6E-05

8E-05

1E-04

1E-04

1E-08 1E-07 1E-06 1E-05 1E-04

b

p
ro
b
a
b
il
it
é Configuration1

Configuration2

 

 

Figure 19. Indisponibilité 

Conclusion et perspectives 

Nous avons présenté une approche itérative pour la modélisation de la sûreté de fonctionnement 
de systèmes informatiques en utilisant le langage AADL comme point de départ et les RdPSG 
comme formalisme intermédiaire. L’objectif de cette approche est de masquer la complexité des 
modèles analytiques traditionnels aux utilisateurs qui sont familiarisés avec AADL et qui n’ont pas 
de connaissances approfondies concernant ces modèles analytiques. Ainsi, nous leur facilitons 
l’obtention des mesures de sûreté de fonctionnement. 

Notre approche vise à assister l’utilisateur dans la construction structurée du modèle AADL de 
sûreté de fonctionnement. Nous proposons également un ensemble de sous-modèles génériques 
réutilisables décrivant des architectures classiques tolérantes aux fautes. Cet ensemble n’a pas été 
détaillé dans ce résumé. Il est décrit dans le Chapitre 3 de la thèse. Le modèle AADL de sûreté de 
fonctionnement est transformé en un RdPSG qui peut être traité par des outils existants. Pour 
faciliter l’évolution du modèle, nous proposons que le modèle AADL de sûreté de fonctionnement 
soit construit de manière itérative, en modélisant progressivement les dépendances entre 
composants. 

La transformation du modèle AADL en RdPSG est conçue pour être transparente pour 
l’utilisateur. Par conséquent, elle est basée sur des règles de description des dépendances dans le 
modèle AADL et sur des règles systématiques de transformation de modèle, destinées à une mise en 
œuvre automatique. Nous avons implémenté un outil, ADAPT (from AADL Architectural models to 

stochastic Petri nets through model Transformation), mettant en œuvre nos règles de 
transformation.  

Nous avons montré les principes de la transformation et une partie des règles. La transformation 
peut être effectuée de manière itérative, à chaque fois que le modèle AADL de sûreté de 
fonctionnement est enrichi. Ainsi, le RdPSG peut être validé progressivement. Par conséquent, le 
modèle AADL correspondant peut être aussi validé progressivement.  

Nous avons illustré l’approche proposée sur un sous-système du système informatique français de 
contrôle de trafic aérien.  

Notre expérience de modèlisation de la sûreté de fonctionnement avec AADL nous a permis de 
proposer des évolutions du standard AADL. Les propositions les plus importantes sont décrites 
dans l’Annexe 1 de la thèse. Il est à mentionner qu’une partie de ces propositions a été déjà intégrée 
dans la version actuelle du standard. 

Plusieurs directions peuvent être explorées afin d’étendre les travaux présentés ici. Dans un 
premier temps, il serait intéressant d’appliquer notre cadre de modélisation à des cas d’étude 
complexes issus de différents domaines d’application, ce qui permettrait d’étudier son adéquation 
dans divers contextes. Une deuxième direction devrait être dédiée à l’étude de la mise à l’échelle de 



 

 

notre transformation de modèle. En effet, nous avons identifié une limitation liée à la croissance 
exponentielle de la taille du RdPSG avec la variation du nombre de composants recevant des 
propagations. Actuellement, il est possible d’appliquer des méthodes de réduction afin de rendre le 
RdPSG compact. Toutefois, la génération d’un RdPSG qui n’est pas compact peut s’avérer difficile 
pour des grands systèmes. Une piste à explorer est la recherche d’un algorithme de transformation 
basé sur un parcours initial du modèle et sur l’identification de composants identiques et de 
comportements équivalents. Enfin, il serait intéressant de définir des approches similaires de 
modélisation, permettant d’obtenir d’autres analyses (par exemple liées à la performance) à partir 
du même modèle, ce qui permettrait d’aboutir plus facilement à des compromis pertinents. 

 



 i 

 

Table of Contents 

 
Introduction ........................................................................................................................1 

Dissertation outline .........................................................................................................3 

I Linking Model-Driven Engineering and Dependability ...............................................5 

I.1 Model-driven engineering ...................................................................................5 

I.1.1 Initiatives towards MDE..................................................................................6 

I.1.2 Languages for MDE........................................................................................7 

I.2 Model-based dependability evaluation.................................................................8 

I.2.1 Choice of measures .........................................................................................9 

I.2.2 Model construction..........................................................................................9 

I.2.3 Model processing ..........................................................................................11 

I.3 Examples of analyses integrated into languages for MDE..................................11 

I.3.1 UML-based analyses .....................................................................................12 

I.3.2 SysML-based analyses ..................................................................................14 

I.3.3 EastADL-based analyses ...............................................................................14 

I.3.4 AADL-based analyses ...................................................................................15 

I.4 Proposed AADL-based dependability modeling framework ..............................16 

I.4.1 Overview of our modeling framework...........................................................17 

I.4.2 The AADL dependability model....................................................................18 

I.4.3 AADL to GSPN model transformation..........................................................19 

I.5 Conclusion ........................................................................................................19 

II Background ..............................................................................................................21 

II.1 AADL...............................................................................................................21 

II.1.1 Core AADL language................................................................................22 

II.1.1.1 Components ..........................................................................................22 

II.1.1.2 Architecture configurations....................................................................24 

II.1.2 AADL Error Model Annex........................................................................25 

II.1.2.1 Error model for independent components ..............................................26 

II.1.2.2 Error model for dependent components .................................................27 

II.1.2.3 Propagation filtering and masking mechanisms......................................29 

II.1.2.3.1 Guard_In.........................................................................................29 

II.1.2.3.2 Guard_Out ......................................................................................31 

II.1.2.3.3 Comparison between Guard_In and Guard_Out...............................32 

II.1.2.3.4 Interacting Guard_In and Guard_Out properties ..............................33 

II.1.2.4 Mechanisms for connecting error states to modes ..................................34 

II.1.2.4.1 Guard_Event ...................................................................................34 



 

ii 

II.1.2.4.2 Guard_Transition ............................................................................36 

II.1.2.4.3 Activate / Deactivate transitions ......................................................38 

II.1.2.5 Error model abstractions........................................................................38 

II.2 Petri nets ...........................................................................................................40 

II.2.1 Place/Transitions Petri nets........................................................................40 

II.2.2 Generalized Stochastic Petri nets ...............................................................42 

II.3 Conclusion ........................................................................................................43 

III AADL Dependability Modeling: Guidelines and Patterns .........................................45 

III.1 Modeling independent components ...................................................................46 

III.2 Modeling dependencies.....................................................................................46 

III.2.1 On the use of out and in propagations........................................................47 

III.2.2 Modeling structural and functional dependencies.......................................48 

III.2.3 Modeling maintenance dependencies.........................................................48 

III.2.3.1 Shared maintenance facility ..................................................................49 

III.2.3.2 Priority to a component’s maintenance..................................................51 

III.2.4 Modeling fault-tolerance dependencies......................................................52 

III.3 Fault-tolerance patterns .....................................................................................54 

III.3.1.1 Hardware fault-tolerance.......................................................................54 

III.3.1.1.1 N-modular redundancy...................................................................55 

III.3.1.1.2 Cold standby sparing......................................................................56 

III.3.1.1.3 Warm standby sparing....................................................................57 

III.3.1.1.4 Hot standby sparing .......................................................................58 

III.3.1.1.5 Active dynamic redundancy ...........................................................61 

III.3.1.2 Software fault-tolerance........................................................................64 

III.3.1.2.1 N-version programming .................................................................65 

III.3.1.2.2 Recovery block ..............................................................................65 

III.3.1.2.3 N self-checking programming ........................................................65 

III.3.1.3 Summary and observations ...................................................................66 

III.4 Conclusion ........................................................................................................68 

IV AADL to GSPN Model Transformation................................................................69 

IV.1 Overview of the transformation.........................................................................69 

IV.2 Transforming error models of independent components ....................................70 

IV.3 Transformation of basic dependency elements...................................................71 

IV.3.1 Out propagations .......................................................................................72 

IV.3.1.1 Rule presentation..................................................................................72 

IV.3.1.2 Rule formalization................................................................................73 

IV.3.2 In propagations..........................................................................................74 

IV.3.2.1 Rule presentation..................................................................................74 

IV.3.2.2 Rule formalization................................................................................75 



 iii 

IV.3.3 Name-matching in – out propagations .......................................................75 

IV.3.3.1 Rule presentation..................................................................................76 

IV.3.3.2 Rule formalization................................................................................76 

IV.3.4 Generalization to multiple receivers...........................................................76 

IV.3.5 On the choice of transformation rules of in – out propagations ..................78 

IV.4 Transforming propagation filtering and masking mechanisms ...........................79 

IV.4.1 Guard_In ...................................................................................................79 

IV.4.1.1 Rule presentation..................................................................................79 

IV.4.1.2 Rule formalization................................................................................81 

IV.4.2 Guard_Out ................................................................................................82 

IV.4.2.1 Rule presentation..................................................................................83 

IV.4.2.2 Rule formalization................................................................................84 

IV.4.3 Interacting Guard_In and Guard_Out properties ........................................85 

IV.4.3.1 Cascading Guard_Out - Guard_In.........................................................85 

IV.4.3.2 Cascading Guard_Out - Guard_Out ......................................................86 

IV.5 Mechanisms for connecting error states to modes..............................................87 

IV.5.1 Guard_Event .............................................................................................88 

IV.5.1.1 Rule presentation..................................................................................88 

IV.5.1.2 Rule formalization................................................................................89 

IV.5.2 Guard_Transition ......................................................................................90 

IV.5.2.1 Rule presentation..................................................................................91 

IV.5.2.2 Rule formalization................................................................................92 

IV.5.3 Activate / deactivate transitions .................................................................93 

IV.5.3.1 Rule presentation..................................................................................93 

IV.5.3.2 Rule formalization................................................................................95 

IV.6 Transforming error model abstractions ..............................................................96 

IV.6.1 Transforming abstract error models ...........................................................96 

IV.6.2 Transforming derived error models............................................................96 

IV.6.2.1 Rule presentation..................................................................................97 

IV.6.2.2 Rule formalization................................................................................98 

IV.7 Taking into account architecture configurations ................................................98 

IV.7.1 Rule presentation.......................................................................................99 

IV.7.2 Rule formalization...................................................................................100 

IV.8 Scalability analysis..........................................................................................101 

IV.9 Conclusion ......................................................................................................102 

V Case Study: Subsystem of the Air Traffic Control System.......................................103 

V.1 System description ..........................................................................................103 

V.1.1 AADL architectural models.....................................................................104 

V.1.2 Dependency analysis ...............................................................................106 



 

iv 

V.2 AADL dependability model and transformation to GSPN ...............................108 

V.2.1 Iteration 1: independent components .......................................................108 

V.2.1.1 Assumptions........................................................................................108 

V.2.1.2 AADL dependability model.................................................................109 

V.2.1.3 AADL to GSPN model transformation ................................................111 

V.2.2 Iteration 2: structural dependency from processor to process ...................112 

V.2.2.1 Assumptions........................................................................................112 

V.2.2.2 AADL dependability model.................................................................112 

V.2.2.3 AADL to GSPN model transformation ................................................113 

V.2.3 Iteration 3: recovery dependency from processor to process.....................114 

V.2.3.1 Assumptions........................................................................................114 

V.2.3.2 AADL dependability model.................................................................114 

V.2.3.3 AADL to GSPN model transformation ................................................115 

V.2.4 Iteration 4: structural dependency from bus to RD processes ...................116 

V.2.4.1 Assumptions........................................................................................116 

V.2.4.2 AADL dependability model.................................................................117 

V.2.4.3 AADL to GSPN model transformation ................................................117 

V.2.5 Iteration 5: functional dependency from FP to RD processes ...................119 

V.2.5.1 Assumptions........................................................................................119 

V.2.5.2 AADL dependability model.................................................................119 

V.2.5.3 AADL to GSPN model transformation ................................................120 

V.2.6 Iteration 6: functional dependency between FP processes ........................121 

V.2.6.1 Assumptions........................................................................................121 

V.2.6.2 AADL dependability model.................................................................121 

V.2.6.3 AADL to GSPN model transformation ................................................122 

V.2.7 Iteration 7: fault-tolerance dependency between FP processes .................122 

V.2.7.1 Assumptions........................................................................................122 

V.2.7.2 AADL dependability model.................................................................122 

V.2.7.3 AADL to GSPN model transformation ................................................123 

V.2.8 Iteration 8: fault-tolerance dependency between RD processes ................124 

V.2.8.1 Assumptions........................................................................................124 

V.2.8.2 AADL dependability model.................................................................124 

V.2.8.3 AADL to GSPN model transformation ................................................125 

V.2.9 Iteration 8: global reconfiguration strategy ..............................................125 

V.2.9.1 Assumptions........................................................................................125 

V.2.9.2 AADL dependability model.................................................................126 

V.2.9.3 AADL to GSPN model transformation ................................................126 

V.2.10 Iteration 10: maintenance dependency between processors ......................127 

V.2.10.1 Assumptions ......................................................................................127 



 v 

V.2.10.2 AADL dependability model ...............................................................127 

V.2.10.3 AADL to GSPN model transformation...............................................127 

V.3 Quantitative dependability evaluation..............................................................128 

V.3.1 Comparison with respect to the failure rate of the bus..............................128 

V.3.2 Comparison with respect to the FT policy................................................129 

V.4 Conclusion ......................................................................................................129 

Conclusion......................................................................................................................131 

Future research directions ...........................................................................................132 

Appendix A: Error Model Annex Evolution Proposals....................................................135 

A.1  Occurrence properties .....................................................................................135 

A.2  Link between modes and the Error Model Annex constructs ...........................135 

A.3 Guard_In property without applies to clause....................................................136 

A.4 Inheritance and refinements.............................................................................137 

Appendix B: General Rule for Emptying GSPN Propagation Places ...............................139 

Appendix C: Model Transformation Tool .......................................................................141 

C.1 A developer’s perspective ...............................................................................141 

C.1.1 gspnModel: Ecore metamodel .................................................................142 

C.1.2 dependency .............................................................................................143 

C.1.3 aadl2gspn ................................................................................................143 

C.2 A user’s perspective ........................................................................................144 

References ......................................................................................................................145 

 





 vii 

List of Figures 
 

 

 

Figure I-1. Modeling framework ...........................................................................................17 

Figure II-1. Component categories - AADL graphical notation.............................................22 

Figure II-2. Port categories - AADL graphical notation........................................................23 

Figure II-3. Different component implementations (b and c) for the same type (a) ................24 

Figure II-4. System with modal architecture configurations ..................................................25 

Figure II-5. Error model example for independent component ..............................................27 

Figure II-6. Error model instance association.......................................................................27 

Figure II-7. Graphical notation for error model instance......................................................27 

Figure II-8. Error model example for component with interactions (sender-side)..................28 

Figure II-9. Error propagation (recipient-side).....................................................................28 

Figure II-10. Guard_In property syntax.............................................................................30 

Figure II-11. Guard_In property example..........................................................................30 

Figure II-12. Architectural view of a Guard_In property ...................................................31 

Figure II-13. Guard_Out property syntax ..........................................................................31 

Figure II-14. Guard_Out property example .......................................................................32 

Figure II-15. Architectural view of a Guard_Out property .................................................32 

Figure II-16. Cascading Guard_Out - Guard_In properties ..........................................33 

Figure II-17. Cascading Guard_Out - Guard_Out properties ........................................34 

Figure II-18. Guard_Event property syntax......................................................................35 

Figure II-19. Guard_Event property example...................................................................35 

Figure II-20. Architectural view of a Guard_Event property ............................................36 

Figure II-21. Guard_Transition property syntax ..........................................................37 

Figure II-22. Guard_Transition property example .......................................................37 

Figure II-23. Architectural view of Guard_Transition property ...................................37 

Figure II-24. Activate/deactivate transitions..........................................................38 

Figure II-25. Derived_State_Mapping expression definition .....................................39 

Figure II-26. Architectural view of error model abstractions ................................................40 

Figure II-27. Examples of PN ...............................................................................................41 

Figure II-28. Examples of GSPN...........................................................................................43 

Figure III-1: Transition and state visible from outside ..........................................................47 

Figure III-2. Structural dependency example ........................................................................48 

Figure III-3. Maintenance dependency example....................................................................49 

Figure III-4. Error model for component with maintenance dependency ...............................50 

Figure III-5. Error model for shared maintenance facility ....................................................51 



 

viii 

Figure III-6. Textual AADL dependability model – shared maintenance facility....................51 

Figure III-7. Refinement of dependent.general ......................................................................52 

Figure III-8. Textual AADL dependability model – maintenance with priority.......................52 

Figure III-9. Fault-tolerance dependency example................................................................53 

Figure III-10. Failure propagation in error model sender.general ........................................54 

Figure III-12. N-modular redundancy pattern.......................................................................55 

Figure III-13. Textual AADL dependability model – N-modular redundancy.........................55 

Figure III-14. Cold standby sparing pattern..........................................................................56 

Figure III-15. Textual AADL dependability model – cold standby sparing ............................57 

Figure III-16. Warm standby sparing pattern........................................................................58 

Figure III-17. Textual AADL dependability model – warm standby sparing ..........................58 

Figure III-18. AADL architectural model of the hot standby sparing pattern (variant 1) .......59 

Figure III-19. Textual AADL dependability model – hot standby sparing (variant 1).............59 

Figure III-20. AADL architectural model of the hot standby sparing pattern (variant 2) .......60 

Figure III-21. Textual AADL dependability model – hot standby sparing (variant 2).............61 

Figure III-22. Active dynamic redundancy pattern with self-checking replicas (variant 1) ....62 

Figure III-23. Textual AADL dependability model – active dynamic redundancy (variant 1).63 

Figure III-24. Active dynamic redundancy pattern with self-checking replicas (variant 2) ....63 

Figure III-25. Textual AADL dependability model - active dynamic redundancy (variant 2) .64 

Figure IV-1. Illustration of the transformation rule for independent components..................71 

Figure IV-2.  AADL transition triggered by an out propagation .........................................72 

Figure IV-3. Transformation rule for AADL transition triggered by an out propagation.....72 

Figure IV-4. Transformation rule for in propagation ..........................................................74 

Figure IV-5. Sender and Receiver – in-out name matching propagations .........................75 

Figure IV-6. GSPN modeling a propagation from a sender to a receiver ..............................76 

Figure IV-7. Propagations from one sender to two receivers ................................................77 

Figure IV-8. Alternative transformation rule for out propagation .......................................79 

Figure IV-9. Guard_In property syntax .............................................................................79 

Figure IV-10. Guard_In property.....................................................................................80 

Figure IV-11. Transformation rule for Guard_In property ............................................81 

Figure IV-12. Guard_Out property syntax .........................................................................82 

Figure IV-13. Guard_Out property ..................................................................................83 

Figure IV-14. Transformation rule for Guard_Out property ..........................................84 

Figure IV-15. Cascading Guard_Out - Guard_In properties.........................................85 

Figure IV-16. GSPN modeling of cascading Guard_Out - Guard_In properties .............86 

Figure IV-17. Cascading Guard_Out - Guard_Out properties ......................................87 

Figure IV-18. GSPN modeling of cascading Guard_Out - Guard_Out properties...........87 

Figure IV-19. Guard_Event property syntax ....................................................................88 



 

 ix 

Figure IV-20. Guard_Event property..............................................................................89 

Figure IV-21. Transformation rule for Guard_Event property .....................................89 

Figure IV-22. Guard_Transition property syntax.........................................................91 

Figure IV-23. Guard_Transition property ..................................................................91 

Figure IV-24. Transformation rule for Guard_Transition property..........................92 

Figure IV-25. Architectural view of activate/deactivate transitions .....................94 

Figure IV-26. Activate/deactivate transitions - Transformation rule .....................94 

Figure IV-27. Derived_State_Mapping definition ......................................................96 

Figure IV-28. Example of derived error model .....................................................................97 

Figure IV-29. GSPN modeling of the derived error model ....................................................97 

Figure IV-30. System with modal architecture configurations .............................................99 

Figure IV-31. Modal configuration - Transformation rule.................................................100 

Figure IV-32. State space analysis......................................................................................102 

Figure V-1. Candidate architectures...................................................................................104 

Figure V-2. AADL architectural model of Configuration1 ..................................................105 

Figure V-3. AADL architectural model of Configuration2 ..................................................105 

Figure V-4. Dependency Block Diagram of Configuration1................................................107 

Figure V-5. Error model for independent processor ...........................................................109 

Figure V-6. Error model for independent bus .....................................................................110 

Figure V-7. Error model for independent process...............................................................110 

Figure V-8. Textual AADL dependability model - processor ...............................................111 

Figure V-9. GSPN modeling an independent processor ......................................................111 

Figure V-10. GSPN modeling an independent bus ..............................................................111 

Figure V-11. GSPN modeling an independent process........................................................111 

Figure V-12. Error model for structural dependency (sender side) .....................................112 

Figure V-13. Error model for structural dependency (recipient side)..................................113 

Figure V-14. GSPN modeling a processor and two processes with structural dependencies113 

Figure V-15. Error model for recovery dependency (sender side) .......................................115 

Figure V-16. Error model for recovery dependency (recipient side) ...................................115 

Figure V-17. GSPN modeling a processor and two processes with recovery dependencies .116 

Figure V-18. Error model for structural dependency bus – RD process (recipient side)......117 

Figure V-19. Error model for structural dependency bus – RD process (sender side) .........117 

Figure V-20. GSPN of the bus and two processes with structural dependency 

(Configuration1).........................................................................................................118 

Figure V-21. GSPN of the bus and two processes with structural dependency 

(Configuration2).........................................................................................................118 

Figure V-22. AADL architectural model of Configuration1 – refined with modal connections

...................................................................................................................................119 

Figure V-23. Error model for functional dependency FP process – RD process (sender side)

...................................................................................................................................120 



 

x 

Figure V-24. Error model for functional dependency FP process – RD process (recipient 

side)............................................................................................................................120 

Figure V-25. GSPN modeling a FP process and the two RD processes with functional 

dependency .................................................................................................................121 

Figure V-26. Error model for functional dependency between FP processes.......................122 

Figure V-27. Error model for FT dependency between FP processes..................................123 

Figure V-28. Textual AADL dependability model for FP_Comp1, with dependency FT1’ ...123 

Figure V-29. GSPN modeling the two FP processes with FT dependency ...........................124 

Figure V-30. GSPN modeling the two RD processes with FT dependency...........................125 

Figure V-31.  Modeling the global reconfiguration strategy ...............................................126 

Figure V-32. GSPN modeling the two RD processes with FT dependency...........................126 

Figure V-33. Refined AADL architectural model of Configuration1....................................127 

Figure V-34. GSPN modeling the two processors with maintenance dependency ................128 

Figure V-35. Unavailability of RD with respect to b ..........................................................129 

Figure A-1.  Conflicting Guard_In properties.....................................................................137 

Figure B-1. General GSPN for out propagation................................................................139 

Figure B-2. Emptying an out propagation place - Example...............................................140 

Figure C-1. Overview of the model transformation tool ......................................................141 

Figure C-2. Ecore metamodel for GSPN .............................................................................143 



 1 

Introduction 

The increasing complexity of new-generation systems raises major concerns in various 
critical application domains, in particular with respect to the validation and analysis of 
performance, timing and dependability-related requirements. During the last decade, 
engineering approaches aimed at mastering this complexity during the development process 
have emerged and are being increasingly used in industry. Component-based engineering and, 
more recently, model-driven engineering address the problem of complexity by promoting 
reuse and partial or total automation of certain phases of the development process. These 
engineering approaches must be supported by languages and tools that provide means to 
ensure that the implemented system complies with its specifications. In particular, it is 
necessary to integrate analyses of quality attributes7 (such as dependability and performance) 
in the development process.  

Currently, the definition of model-driven engineering approaches is the subject of many 
efforts both from industry and academia. One important concern in these approaches is the 
choice of the most appropriate languages and tools to be used. Generally, this choice depends 
on the application domain and on the variety and maturity of the tools that support a particular 
language. Most of the model-driven engineering approaches under development rely either on 
UML (Unified Modeling Language), which is a general-purpose modeling language, or on 
ADLs (architecture description languages) that are usually domain-specific, or on a 
combination of both.  

In order to ensure that the system complies with its functional and quality specifications, 
the languages used in model-driven approaches must support analyses related to system 
behavior, performance and dependability. In traditional development processes, each type of 
analysis is based on a dedicated model, which requires substantial amount of training to be 
used effectively. Performing several analyses of quality attributes will benefit a lot from using 
a single model. This also contributes to the reduction of the development cost by facilitating 
model reuse. 

Considering the derivation of analyses of quality attributes from such modeling languages, 
a significant amount of research has been carried out based on UML. On the other hand, 
AADL (Architecture Analysis and Design Language) has received a growing interest from the 
embedded safety-critical industry (e.g., Honeywell, Rockwell Collins, Lockheed Martin, the 
European Space Agency, Astrium, Airbus) during the last years. AADL has been 
standardized in 2004 under the auspices of the International Society of Automotive Engineers 
(SAE), to support the design and analysis of complex real-time safety-critical systems in 
avionics, automotive, space and other application domains. AADL provides a standardized 
textual and graphical notation for describing software and hardware system architectures and 
their functional interfaces. The serious consideration of AADL by the embedded safety-
critical industry is justified by AADL’s advanced support for modeling reconfigurable 
architectures and for analyzing quality attributes.  

Similarly to UML users, AADL users are interested in analyzing quality attributes based on 
AADL models. To this end, the core AADL language has been designed to be extensible to 

                                                
7 Quality attributes are also referred to as non-functional properties in the literature. 



 

2 

accommodate analyses that the core language does not completely support. In particular, the 
AADL Error Model Annex has been standardized in 2006 to complement the description 
capabilities of the core language by providing features with precise semantics to be used for 
describing dependability-related characteristics in AADL models (e.g., faults, failure modes, 
repair policies, error propagations). Besides describing the systems’ behavior in the presence 
of faults, developers are interested in obtaining quantitative measures of relevant 
dependability properties such as reliability and availability and they are confronted with two 
fundamental questions: 

1) How to take into account the various dependencies between the components of the 
system in the presence of faults. These dependencies are inherent to the architecture or 
they are due to fault-tolerance and maintenance policies. 

2) How to obtain dependability measures from an AADL model.  

Currently, there is no methodology for helping developers to solve these problems. In this 
dissertation, we propose an AADL-based modeling framework aiming at filling these gaps.  

Our framework relies on the core AADL language and on the AADL Error Model Annex. 
The system architecture is described using the core AADL language, while the dependability-
related information is described separately, using Error Model Annex constructs. Then, the 
architectural model is annotated with Error ModelAnnex constructs. The annotations can be 
easily abstracted away. This feature enhances the reusability and the readability of the AADL 
architectural model that can be also used for other analyses. 

Additionally, we take advantage of the existence of mature dependability-oriented 
analytical modeling techniques that are generally based on the use of fault trees, Markov 
chains and GSPNs (Generalized Stochastic Petri Nets). In particular, Markov chains are able 
to capture various functional and stochastic dependencies among components and they allow 
the evaluation of various measures related to dependability (such as reliability, availability 
and maintainability), and dependability and performance (i.e., performability measures). To 
facilitate the generation of large state-space models, high-level specification languages such 
as GSPNs are generally used as they can automatically be converted into Markov chains. 
Also, GSPNs provide efficient means for structural model verification and analysis, before 
the Markov chain generation. Such verification support facilities are very useful when dealing 
with large models. During the last decade, various approaches have been defined to support 
the systematic construction and validation of dependability models based on GSPNs and their 
extensions. They are a source of inspiration for our framework that aims at favoring model 
reuse and evolvability in the context of an AADL-based engineering process.  

Our contributions are the following. 

1) Elaboration of a structured dependability modeling approach for building AADL 
dependability models. Indeed, relying on a methodology is a necessity when dealing 
with complex systems. To support reusability and to master complexity, in our 
approach, the AADL model is built iteratively, progressively taking into account 
dependencies between components. This allows incremental validation of the model.  

2) Guidance on using the AADL language for modeling different types of behaviors of 
system components in the presence of faults. In particular, we show that the 
development of patterns is very useful to facilitate the modeling of fault-tolerance 
behavior and to enhance the reusability of the models.  

3) Definition of model transformation rules allowing the generation of GSPNs from 
AADL models. The set of model transformation rules has been designed to be 
automated. In this way, the model transformation is completely transparent to the user 



 

 3 

and the complexity of analytical models is hidden to end-users who generally have a 
limited knowledge of GSPNs. A tool implementing the model transformation can be 
interfaced with one of the existing GSPN processing tools to evaluate dependability 
measures. We have shown the feasibility of the automation by implementing the tool 
ADAPT (from AADL Architectural models to stochastic Petri nets through model 

Transformation). It generates GSPNs both in a generic XML/XMI format and in the 
input format specific to the dependability evaluation tool Surf-2 [Béounes et al. 1993]. 

4) Proposals for the evolution of the AADL Error Model Annex. Our dependability 
modeling experience with AADL allowed us to identify necessary evolutions of the 
AADL Error Mode Annex. We have submitted these proposals to the AADL 
standardization committee, which decided to integrate some of them in the first 
version of the standard while the others are considered for its second version.  

Dissertation outline 

This dissertation is structured into five chapters. 

Chapter I presents the context and the motivation of our work. It briefly discusses the main 
ideas of model-driven engineering and the classical techniques related to model-based 
dependability evaluation. Concerning model-driven engineering, we report significant 
initiatives towards the definition of such approaches and we briefly present the modeling 
languages that are often considered in their contexts. We give an overview of the steps to be 
followed in model-based dependability evaluation, i.e., the choice of measures, model 
construction and model processing. Related work concerning contributions towards the 
integration of different types of analyses into languages for model-driven engineering are 
reviewed. After having identified the area to be explored in this context, we give an overview 
of our iterative modeling framework based on AADL.  

Chapter II provides the necessary background related to the two modeling languages on 
which we base our work. The first part of this Chapter is dedicated to AADL. The main 
concepts of the AADL core language (i.e., components and architecture configurations) are 
briefly presented before detailing the constructs of the AADL Error Model Annex. They 
allow users to add dependability-related information to an AADL architectural model. The 
second part of the Chapter is dedicated to Petri nets and to the particularities of GSPNs. 

Chapter III gives guidelines for efficiently building AADL dependability models. It focuses 
on modeling independent components and then different types of dependability-related 
dependencies. We have identified all AADL constructs necessary for the description of 
dependencies and we defined modeling rules for each of the dependencies. The Chapter also 
provides a set of patterns, modeling classical fault-tolerance policies for software and 
hardware systems. These patterns aim at enhancing model reusability. We show how they can 
either be instantiated or adapted to comply with more specific assumptions before being 
instantiated. The guidelines and patterns are to be used in the context of our iterative 
modeling framework presented in Chapter I and illustrated in Chapter V. 

Chapter IV is dedicated to model transformation from AADL to GSPNs. The definition of 
the model transformation is based on the dependency modeling rules of Chapter III and on 
systematic transformation rules. We present and formalize the exhaustive set of 
transformation rules for all the AADL Error Model Annex constructs presented in Chapter II. 
This set is necessary and sufficient to obtain a GSPN taking into account all the 
dependability-related behaviors that have been identified as necessary and sufficient for 



 

4 

dependability evaluation. The definition of the rules favors the modularity of the GSPN and 
they can be easily implemented. We also discuss issues related to the scalability of the 
transformation and practical implementation. 

Chapter V aims at illustrating the use of our entire framework on a subsystem of the French 
Air Traffic Control System. We show how the AADL dependability model is built iteratively, 
by taking into account the guidelines of Chapter III. In particular, we make use of fault-
tolerance patterns to model the two fault-tolerance mechanisms of the system. For one of the 
mechanisms, we instantiate the most appropriate pattern after having customized it, while for 
the other one, it is sufficient to instantiate the pattern without modification. Even though the 
AADL to GSPN model transformation is meant to be hidden from the user, we show the 
GSPN obtained for each iteration. We finish by showing two examples of quantitative 
dependability analyses obtained by processing the GSPN. These results allow us to compare 
candidate architectures of the system with respect to their availability. Many other results may 
be obtained from similar analyses. In this dissertation we do not focus on the analysis, but on 
obtaining a dependability evaluation model from an AADL model. 

Three appendices are also included. 

Appendix A enumerates our most important evolution proposals for the AADL Error 
Model Annex. They have been identified during the application of our modeling framework 
to the case study presented in Chapter V. Some of them have already been integrated in the 
current version of the standard. 

Appendix B is dedicated to the generalization of a transformation rule of Chapter IV. It is 
presented in the appendix for didactical reasons. 

Appendix C provides an overview of ADAPT, the model transformation tool that we have 
developed. It is based on the Eclipse Modeling Framework and interfaces the Open Source 
AADL Tool Environment (OSATE)8 and Surf-2 on the GSPN side. 

                                                
8 http://www.aadl.info/OpenSourceAADLToolEnvironment.html  



 

 5 

I Linking Model-Driven Engineering and 
Dependability 

Our goal is to integrate dependability modeling and evaluation in a model-driven 
engineering (MDE) development process based on AADL (Architecture Analysis and Design 
Language) [Feiler et al. 2006]. Classically, dependability evaluation is based on processing 
dependability-oriented analytical models such as Markov chains or fault trees. The objective 
of this Chapter is to give an overview of our AADL-based dependability modeling framework 
in its context. To this end, we first present briefly the concepts related to MDE and to model-
based dependability evaluation. Then, we survey contributions aiming at integrating analyses 
into languages used in MDE and we give an overview of our proposal.  

This Chapter is structured as follows. Section I.1 presents the main initiatives of model-
driven engineering and their associated languages. Section I.2 focuses on the classical model-
based dependability evaluation process. Section I.3 surveys work related to ours. Section I.4 
gives an overview of our proposal regarding the integration of dependability modeling and 
evaluation in a model-driven engineering approach based on AADL. Section I.4 concludes 
this chapter. 

I.1 Model-driven engineering  

Model-driven Engineering (MDE) refers to the systematic use of models as primary 
engineering artifacts throughout the development process [Bézivin 2006]. Models represent 
abstractions of physical systems. They are mainly used for two purposes:  

1) To allow engineers to reason about the system’s properties by focusing only on aspects 
that are relevant at the current stage. 

2) To allow the different stakeholders to communicate on a common basis.  
 

In industry, models and designs assumed to reflect aspects of the real system are usually 
built at early stages in the development process and it is difficult to update them according to 
the system’s evolution, especially in complex large-scale systems. MDE focuses on methods 
and tools for mapping models to implementations and for keeping trace of the evolution of 
models and implementations. In MDE frameworks, the development process is based on 
model transformations. They aim at capturing component-based architectures in a platform-
independent way and then transform them to platform-specific models that are finally 
transformed into actual implementations. MDE takes advantage of the engineering method of 
component-based development [Brown & Wallnau 1996] in which large-scale systems are 
built by assembling their architectures from previously-existing COTS components that may 
come from different sources and may run on different platforms. The principles of MDE are 
as follows: 

- Models are expressed in a well-defined notation or language and are the means for 
understanding systems; 



MDE AND DEPENDABILITY 

6 

- A system is built based on set of models by imposing transformations between models; 

- Metamodels, representing the formal semantics of models, facilitate the automation of 
model transformations by tools; 

- The whole process is based on industry standards. 
 

The following two subsections present successively initiatives for defining and 
implementing MDE approaches, and the languages adopted to support them. All initiatives 
use either UML (Unified Modeling Language), or an ADL (Architecture Description 
Language), or a combination of both. UML is a general-purpose object-oriented language, 
while ADLs are generally domain-specific. In particular, ADLs are well adapted for modeling 
system configurations. Also, the focus on the conceptual architecture and the explicit 
consideration of connectors differentiate ADLs from object-oriented notations. 

I.1.1 Initiatives towards MDE 

The main MDE initiative was taken by the OMG under the name of Model-Driven 
Architecture (MDA) [Brown 2004]. MDA is based on several types of models: computation 
independent model (CIM), platform independent model (PIM), platform specific model 
(PSM) that is further refined in platform model (PM) and implementation specific model 
(ISM). MDA tools should support model transformations between these models going from a 
model that supports analysis to executable code.  

Besides the OMG initiative, the industry expressed its interest for MDE. Many companies 
(such as EADS Astrium, Raytheon, Lockheed Martin) are currently transitioning from a 
paper-based development process to a MDE process [Blanquart et al. 2006, Slaby & Baker 
2006, Waddington & Lardieri 2006]. Several consortiums formed of industrial and academic 
partners focused on putting into practice the MDE concepts and on building tools to support 
them. A non-exhaustive list of such projects is given hereafter. 

- ASSERT9: European project led by the European Space Agency, aiming at improving 
the development process for critical embedded real-time systems by employing a 
proven by design approach. The languages considered in this project are UML (Unified 
Modeling Language) and AADL (Architecture Analysis and Design Language). 

- ATESST10: European project led by Volvo Technology, aiming at delivering an ADL 
able to provide means to handle the complexity and improve safety, reliability, cost and 
development efficiency of automotive electronic systems. The project is based on the 
ADL EastADL resulting from a former project, EAST-EEA11.  

- COTRE12: aiming at defining a modeling method combining formal and semi-formal 
approaches in an industrial process ensuring continuity and traceability from the 
architectural stage to the implementation stage on the hardware target. COTRE selected 
AADL to support this modeling method. 

- ModelWare13: European project led by Thales Research and Technology, aiming at 
building a complete infrastructure for large-scale deployment of model-driven 

                                                
9 http://www.assert-online.net/ 
10 http://www.atesst.org/ 
11 http://www.east-eea.net/ 
12 http://www.laas.fr/COTRE/brindex.html 
13 http://www.modelware-ist.org/ 



CHAPTER I 

 7 

development strategies and at validating the infrastructure in several business domains. 
This project is based on UML. 

- Neptune14: European project led by CS, aiming at developing a method and the 
necessary tools supporting the UML [Canals et al. 2002]. 

- Spices15: European project bringing together industry and academia from France, Spain 
and Belgium, aiming at proposing a MDE approach based on AADL going from PIM 
models to actual implementations [Delanote et al. 2007]. 

- Topcased16: led by Airbus, aiming at optimizing development costs for critical 
embedded systems by building an open source CASE (Computer Aided Software 
Engineering) environment with goals such as minimizing ownership costs, ensuring the 
independence of development platforms and integrating advances made in the academic 
world. The languages supported by the open source CASE environment are AADL, 
UML and SysML. 

 

I.1.2 Languages for MDE 

To be used effectively, MDE must be supported by languages and standards. The projects 
presented in the preceding subsection adopted one or several languages among the following: 
UML (Unified Modeling Language), SysML (System Modeling Language), EastADL and 
AADL (Architecture Analysis and Design Language). These languages are briefly described 
hereafter. 

UML [OMG 2007b] is a general purpose modeling language (tending to be software-
centric). It has been standardized by the OMG (Object Management Group). It allows users to 
describe systems through different types of diagrams, which express the system’s structure 
(e.g., class, component, composite structure diagrams) or behavior (e.g., activity, use case, 
state machine diagrams). Every diagram gives a specific view of the system, which is useful 
during certain phases of the development cycle or for certain types of applications. UML can 
be tailored to a specific domain through profiles. Profiles are collections of stereotypes and 
tagged values applied to elements, attributes, methods and links. Currently, there are two 
profiles supporting the assessment of quality attributes: the Schedulability, Performance and 
Time (SPT) profile, and the QoS and fault-tolerance characteristics and mechanisms 
(QoS&FT) profile. Recently, [Bernardi & Merseguer 2007] proposed a skeleton for a 
Dependability Analysis (DA) profile. Many tools, most of which are commercial, have been 
developed to support UML.  

SysML [OMG 2007a] is a standard UML profile that defines a domain-specific language 
for system engineering. It supports specification, analysis, design, verification and validation 
of systems formed of hardware, software, personnel and facilities. SysML uses seven of the 
UML’s thirteen diagrams and adds two new diagram types: requirement diagrams (used for 
requirements management) and parametric diagrams (used for quantitative analyses – such as 
performance-related – on the system).  

EastADL [Debruyne et al. 2004] is an architecture description language dedicated to 
automotive embedded systems, developed in the context of the EAST-EEA project and 
currently refined in the ATESST project. This language is aligned on the SysML standard and 

                                                
14 http://neptune.irit.fr/ 
15 http://www.spices-itea.org/ 
16 http://www.topcased.org/ 



MDE AND DEPENDABILITY 

8 

also on the automotive standard AUTOSAR17. EastADL supports vehicule feature variability 
of product families, vehicle environment modeling to perform validation, structural and 
behavioral modeling of software and hardware and requirements modeling. The language is 
structured in five abstraction layers from the vehicle level to the operational level. The 
ATESST project aims at integrating safety analysis in EastADL.  

AADL [SAE-AS5506 2004] is a textual and graphical ADL that provides precise execution 
semantics for modeling the architecture of software systems and their target platform. It has 
been approved and published as an international standard by the International Society of 
Automotive Engineers (SAE). A prototype of AADL was previously developed by 
Honeywell under US Government sponsorship (DARPA and others) to prove the concept. 
This prototype, called MetaH, has been used extensively to validate the concepts now in 
AADL. AADL is characterized by all the properties that an ADL should provide 
(composition, abstraction, reusability, configuration, heterogeneity, analysis) [Shaw & Garlan 
1994]. It has substantial support for modeling reconfigurable architectures. From the analysis 
point of view, [Medvidovic & Taylor 2000] showed that, compared to other ADLs (e.g., 
ACME, C2, Darwin, Rapide, Wright), AADL/MetaH provides more advanced support for 
analyzing quality attributes. AADL allows analyzing the impact of different architecture 
choices (such as scheduling policy or redundancy scheme) on a system’s properties [Feiler et 

al. 2004]. These characteristics led to its serious consideration in the embedded safety-critical 
industry (e.g., Honeywell, Rockwell Collins, Lockheed Martin, the European Space Agency, 
Astrium, Airbus) during the last years. Our work related to the integration of dependability 
modeling and evaluation into an MDE approach focuses on AADL. AADL is further detailed 
in Section II.1. 

I.2 Model-based dependability evaluation 

Model-based dependability evaluation is one of the two means for fault forecasting [Laprie 
et al. 1996]. It is useful from the design to the operational phases of a system, as it helps to 
make decisions about the architecture of the system and about the fault-tolerance policies to 
be implemented. Dependability evaluation can be conducted in two ways, depending on the 
target of the analysis: 

1) Ordinal evaluation: aims at identifying and ranking failures or the alternative 
mechanisms considered for avoiding failures; 

2) Probabilistic evaluation: aims at evaluating in terms of probabilities certain 
dependability attributes. 

 

Dependability is classically evaluated based on dedicated analytical models. Some types of 
models are only suitable for one of the two types of analysis (i.e., ordinal or probabilistic). 
For example, FMEA (failure modes and effects analysis) is specific for ordinal evaluation 
while Markov chains are suitable for probabilistic evaluation. On the other hand, reliability 
block diagrams and fault trees are suitable for both types of dependability analysis. 
Dependability models describe the behavior of the system in the presence of faults. For 
probabilistic evaluation, stochastic probabilities or processes must characterize model 
parameters. In this dissertation, we focus on integrating probabilistic dependability evaluation 
into an MDE approach (based on AADL). The probabilistic dependability evaluation process 
requires: 
                                                
17 http://www.autosar.org 



CHAPTER I 

 9 

1) The definition of quantitative measures to be evaluated. Dependability measures of 
interest are generally extracted from the system requirements. 

2) Model construction. This phase consists in selecting the most adapted modeling 
technique allowing the evaluation of the selected measures.  

3) Model processing. This phase corresponds to the computation of measures. 
 

The following sections detail successively the three phases enumerated above. 

I.2.1 Choice of measures 

The users can perceive the life of a system as an alternation between two service states: 

1) Correct service: where the system delivers correctly its service; 

2) Incorrect service: where the system does not deliver correctly its service. 
 

A failure is the transition from correct to incorrect service and a restoration is the transition 
from incorrect to correct service. The alternance between correct and incorrect service is 
quantified by the following dependability measures [Avizienis et al. 2004]: 

1) Reliability: measures the continuous delivery of correct service, or the time to failure; 

2) Availability: measures the delivery of a correct service with respect to the alternation 
between correct and incorrect service; 

3) Maintainability: measures the continuous delivery of incorrect service, or the time to 
restoration after the last failure; 

4) Safety: measures the time to catastrophic failure. This measure is an extension of 
reliability. 

 

The measures to be evaluated depend on the system requirements. For example, web 
services need high availability, satellites need high reliability and transportation systems need 
to be safe. Our dependability modeling framework does not target a particular measure. We 
give general guidance for building models allowing the evaluation of the measures 
enumerated above. 

I.2.2 Model construction 

Depending on the target analysis and on the complexity of the system, one can consider 
using a particular type of analytical model. Analytical models supporting dependability 
evaluation are grouped in two classes: state space models (e.g., Markov chains) and non-state 
space models (e.g., fault trees).  

Non-state space models are concise, rather easy to build and have efficient processing 
methods. For example, fault trees [Barlow et al. 1975] may be used even at a high level of 
abstraction, as soon as scenarios of occurrence of a feared event are identified. A fault tree 
consists of successive levels of events connected by logical gates (AND, OR). It is noteworthy 
that dynamic fault trees [Bechta Dugan et al. 1992] extend standard ones by defining 
additional dynamic gates, able to model more complex behavior. The undesirable event 
analyzed is the root of the tree. The principle for building a fault tree is that each event is 
broken down up to events considered elementary that are independent of others and whose 
probabilities can be estimated. The principle for analyzing a fault tree is to identify the 



MDE AND DEPENDABILITY 

10 

minimal cuts, which are sets of events that can lead to the undesirable event at the root of the 
tree. One may compute the probability of occurrence of the root event based on the 
probabilities of occurrence of the elementary events. This kind of computation allows 
obtaining reliability and safety measures. Non-state space models are not suitable for 
capturing strong dependencies between system components. In addition, they are not well 
adapted for measuring system availability. 

Dependability evaluation of complex systems requires not only modeling the failure but 
also the repair behaviour of hardware and software system components and the numerous 
interactions between them, resulting in complex models. Depending on the dependability 
measures to be evaluated, the modeling level of detail can furthermore increase this 
complexity. State-space models, in particular homogeneous Markov chains, are commonly 
used to model the dependability of systems. The latter are able to capture various functional 
and stochastic dependencies among components and allow evaluation of various measures 
related to dependability and performance (i.e. performability measures) based on the same 
model, when a reward structure is associated to them. The resulting model is referred to as a 
Reward Markov model. 

To facilitate the generation of large state-space models, higher-level specification 
languages such as GSPNs (Generalized Stochastic Petri Nets with timed and immediate 
transitions) are generally used. GSPNs are recognized as a powerful modeling tool for 
performance and dependability evaluation of concurrent and distributed systems. Thus, they 
are supported by numerous tools for dependability evaluation, (e.g., Surf-2 [Béounes et al. 
1993], Möbius [Deavours et al. 2002], Sharpe [Hirel et al. 2000], GreatSPN [Bernardi et al. 
2001], SPNP [Ciardo & Trivedi 1993b]). They can be automatically converted to Markov 
chains. In addition, their advantages are that they allow modular and hierarchical modeling 
for component-based systems and also provide means for structural verification of the model. 
Such verification support facilities are very useful when dealing with large models. However, 
GSPNs have a major drawback related to the difficulty of the model construction for large 
and complex systems. Several research contributions, which may be grouped in two classes, 
have been published to address this problem [ReSIST 2006]: 

– Model construction techniques focusing on mastering the model complexity by defining 
rigorous construction rules. The general idea of these techniques is to build the model 
of a system by composing sub-models corresponding to components or functions of the 
system. Examples are [Bondavalli et al. 1999b, Fota et al. 1999, Kanoun & Borrel 
2000]. [Bondavalli et al. 1999b] addresses phased-mission systems: the upper-level 
models the mission phases and the lower level details the behaviour of the system 
inside each phase. [Fota et al. 1999] and [Kanoun & Borrel 2000] present approaches 
for constructing a GSPN of a complex system from the GSPNs of its components 
taking into account the interactions between the components. These approaches are 
referred to as block modeling approach and incremental approach respectively. 

– Model generation techniques focusing on automating model transformation from a 
higher level description language. Examples of transformations from UML models to 
GSPNs are [Majzik & Bondavalli 1998b, Bondavalli et al. 2001, Bernardi & Donatelli 
2003]. [Majzik & Bondavalli 1998b] and [Bondavalli et al. 2001] (the HIDE project) 
define a three-step transformation: the first step deals with extracting relevant 
dependability information from the UML model. The second step allows definition of a 
general Timed Petri net. The latter is translated to the specific input formats of PN tools 
during the third step. [Bernardi & Donatelli 2003] help the PN construction by 
providing reusable PN models for some UML classes and by suggesting a structure of 
interaction of the model components.  



CHAPTER I 

 11 

Our work fits into the category of model generation techniques, as our AADL-based 
dependability modeling framework includes an automatic AADL to GSPN transformation. 
We take advantage of the ability of GSPNs to express modularity and complex interactions 
and, at the same time, we allow them to be automatically generated to hide the complexity of 
their generation from the end user. GSPNs and presented from a technical viewpoint in 
Section II.2.2. 

I.2.3 Model processing 

There are two main problems related to model processing: 

1) model largeness: due to the inherent complexity of the systems to be modeled and to 
the modeling details taken into account. In addition, Markov chains obtained by 
automatic generation from GSPNs are usually not optimal. 

2) stiffness: due to the different orders of magnitude between the rates of failure-related 
events and the rates of fault-tolerance-related parameters. 

Several techniques have been published to address model largeness. They can be grouped 
into two categories as suggested in [Trivedi et al. 1994]: largeness avoidance and largeness 

tolerance.  

Largeness avoidance addresses model processing in an exact way or using approximate 
solutions [Balbo et al. 1988, Ciardo & Trivedi 1993a, Ciardo & Miner 1999]. These 
techniques are based on processing small sub-models in isolation and then integrating the 
results in a single small overall model. They lead to a gain in memory (by avoiding complete 
storage of the model) and in computation time. From a practical point of view and to the best 
of our knowledge, most of these techniques are efficient when the sub-models are loosely 
coupled and become hard to implement when interactions are too complex.  

Largeness tolerance aims at improving the numerical algorithms for processing large 
GSPNs by defining reduction rules allowing the elimination of immediate transitions and 
vanishing markings [Blakemore 1989, Chiola & Donatelli 1991, Ajmone Marsan et al. 1995]. 
These reduction techniques can be applied to models obtained from model construction and 
generation techniques. 

Similarly to the state-space explosion problem, stiffness has been addressed by stiffness 

avoidance techniques [Bobbio & Trivedi 1986] (that target processing methods that remain 
stable for stiff models) and stiffness tolerance techniques [Bolch et al. 1998] (that remove 
stiffness by processing non-stiff submodels using aggregation and disaggregation techniques).  

Model processing is very important, as it has a great impact on the results of the 
dependability analysis. It is thus necessary to use performant and accurate processing 
techniques. In this dissertation, we rely entirely on existing methods and tools for processing 
the dependability model. Thus, we do not discuss further the related issues. In particular, our 
AADL-based dependability modeling framework focuses on building the AADL 
dependability model in a systematic way, and then on transforming this model into a GSPN 
that can be processed by existing tools.  

I.3 Examples of analyses integrated into languages for MDE 

Software architecture modeling for dependability analysis has received growing interest 
during the last two decades. Early approaches focused on the development of analytical 



MDE AND DEPENDABILITY 

12 

models to analyze the sensitivity of application reliability to the software structure and the 
reliabilities of its components (see e.g., [Bechta Dugan & Lyu 1995, Laprie et al. 1995] and 
the survey presented in [Goseva Popstojanova & Trivedi 2001]). More recently, the 
emergence of component-based and model-driven engineering led to the proliferation of 
research activities on methodologies allowing the analysis of quality attributes (e.g., 
performance- and dependability-related characteristics) based on general-purpose 
architectural models, that allow several analyses to be performed on the same model. Early 
approaches to analyse quality attributes at architectural level include Attribute-Based 
Architectural Styles [Klein et al. 1999]. Besides the classical features of an architectural style 
(i.e., component types and their topology and interactions, and benefits and drawbacks of 
using the style), an Attribute-Based Architectural Style also includes specification of a quality 
attribute described by measures, stimuli, properties and a known analytical model for the 
attribute. The Architecture Tradeoff Analysis Method [Kazman et al. 1999] is based on the 
use of Attribute-Based Architectural Styles. The goal of this method is to discover risks 
related to architectural decisions rather than to provide quantitative analyses. More recently, 
contributions started to focus on integrating verification and quality attribute analyses in 
languages that support model-driven engineering (MDE) approaches. MDE approaches may 
use several models, each of them representing a different view of the system. These models 
may even be specified in different modeling languages. Thus, some contributions aim at 
defining generic methods able to support several available modeling languages and 
technologies. [Radjenovic & Paige 2006] proposes the Architecture Information Modeling 
Language that includes a generic metamodel supporting several modeling languages from the 
same platform. The latter also supports change control mechanisms to keep models 
representing views of a system synchronized. In addition, it provides support for safety cases 
by using the Fault Propagation and Transformation Calculus [Wallace 2005]. 

Most of the published contributions towards integrating verification and quality attributes 
analyses in languages for MDE have been focused on the UML, since UML is a general-
purpose language. However, significant efforts also targeted EastADL (mainly through the 
ATESST – Advancing Traffic Efficiency and Safety through software technology – project) 
and AADL. Usually, the contributions propose to enhance a general-purpose model with 
analysis-specific information and then to derive from the enhanced model a specific analysis 
model. The next subsections briefly report work related to ours, aiming at integrating several 
types of analyses into MDE approaches based on UML, SysML, EastADL and AADL. 

I.3.1 UML-based analyses 

A significant amount of research has been carried out in order to integrate analyses related 
to dependability, performance or property verification into UML.  

Obtaining dependability analyses from UML models preoccupied many researchers. For 
didactical reasons, we group the contributions towards this goal in two categories: 

1) Those proposing model transformations from UML diagrams to GSPNs.  

2) Those focusing on obtaining other types of dependability evaluation models, such as 
fault trees or reliability block diagrams.  

 

Before mentioning the approaches in the second category, we detail the first category, 
which is closer to our approach. Some related work addressing performance evaluation and 
property verification is discussed at the end of this section. 



CHAPTER I 

 13 

The European project HIDE [Majzik & Bondavalli 1998a], [Bondavalli et al. 1999a], 
[Bondavalli et al. 2001 ] proposed a method to automatically analyse dependability based on 
UML models. This approach is based on transforming structural UML diagrams (use case, 
class, object, deployment diagrams) into GSPNs. In addition, behavioral diagrams such as 
statecharts are used to derive how failures of objects and nodes lead to failure of (sub)-
systems. The transformation is defined in three steps: the first step deals with extracting 
relevant dependability information from the UML model. The second step allows definition 
of a general Timed Petri net that is translated in specific Petri Net tools for analysis during the 
third step. Technical details about the transformation technique can be found in [Majzik & 
Bondavalli 1998c], [Majzik et al. 2003]. An intermediate model is constructed before 
generating the dependability model. In order to obtain the intermediate model, UML elements 
are mapped into hardware, software or composite elements while relations between elements 
are mapped into one of the following types of dependencies: uses service of, interacts with, 
and is composed of. The target Petri net consists of three sub-nets: one for the fault activation, 
another for propagation of basic events and a third that models service restoration. 

[Huszerl et al. 2002] focuses on quantitative dependability analyses of UML behavioral 
models for embedded systems. In order to perform dependability analyses, UML models must 
be extended with explicit categorization of failure states and events, and with probabilistic 
information. The standard extension mechanisms of UML allow expressing the additional 
necessary information through tagged values and stereotyped states and events. The proposed 
analysis method is based on an UML to Stochastic Reward Nets transformation algorithm. 
The latter has been chosen as it generalizes classical Petri Nets by rewards (measures) and by 
assigning guards and distributions to transitions. The transformation approach is modular and 
guided by composition rules. It is based on the one used in the HIDE project. Faults such as 
loss, duplication or corruption of events are explicitly modelled.  

Besides the contributions detailed above that propose transformations from UML to Petri 
nets for dependability analysis, there are other initiatives that consider model transformations 
from UML to other analytical models. The purpose of [Fernandez Briones et al. 2006] is to 
help software engineers to find the software architecture that best meets safety and cost 
requirements by integrating safety modeling into UML designs used by the software 
engineering teams. They propose to automatically generate fault trees and FMECA (failure 
modes, effects and criticality analysis) models from UML models using a new safety profile. 
The automation is based on Eclipse and the Eclipse Modeling Framework. [Lu et al. 2005] 
proposes to model fault tree elements (events, gates and edges) in an UML model by using a 
UML profile for safety. This makes possible to build the fault tree and the system’s model 
together. The work presented in [Giese et al. 2004] aims at performing hazard analysis of 
UML models described by restricted component and deployment diagrams. Fault trees are 
generated after a hierarchical failure classification. [Zarras et al. 2004] describes a way to 
analyse dependability of web services specified in UML. First, the UML model is enriched 
with properties characterising the failure behaviour of elements of the web services. Then, it 
is mapped to block diagrams, fault trees and Markov chains. [Pai & Bechta Dugan 2002] 
presents a framework facilitating automatic dependability analysis based on UML class, 
object and deployment diagrams. This framework is based on deriving dynamic fault trees 
from the UML diagrams. [Zarras & Issarny 2000] focuses on assessing software reliability at 
the architectural level. Reliability Block Diagrams are derived from UML collaboration and 
statechart diagrams. 

Besides dependability, modeling approaches aimed at supporting performance-related 
analyses based on UML have also been investigated. They are generally based on 
transforming a subset of UML diagrams into Petri nets. [Lòpez-Grao et al. 2002, Merseguer 



MDE AND DEPENDABILITY 

14 

& Campos 2004] propose a transformation from each UML behavioral diagram into GSPN. 
The use case diagram is a basis for computing the system usage by actors. Statechart and 
activity diagrams are transformed into GSPN that represent a performance model of the whole 
system. The sequence diagram is transformed into a GSPN representing a performance model 
of a particular execution scenario of the system. The performance evaluation process 
comprises three steps: the extension of UML diagrams with performance annotations, the 
transformation to GSPN and the composition of submodels. A tool implements the 
transformation and saves the GSPN in the format of the GreatSPN tool [Bernardi et al. 2001]. 
[Bernardi et al. 2002] focuses on transforming statechart and sequence diagrams into GSPN. 
The transformation is performed separately for each diagram and then composition is used to 
obtain the complete model. [King & Pooley 1999] presents a technique for transforming 
UML statechart and collaboration diagrams into SPN (stochastic Petri nets). Statecharts 
together with collaboration diagrams provide a full description of how the system works. On 
the one hand the statechart diagram is a state diagram for each object and on the other hand 
the collaboration diagram shows how objects interact. The generation of a stochastic Petri Net 
model from the UML model is performed mainly by the association of the states of the 
statechart diagram to places in a Petri Net, and of the state changes to transitions in the Petri 
Net. The Collaboration diagrams guide the combination of individual Petri Nets. [Mitton & 
Holton 2000] proposes a method of mapping UML statecharts onto the Stochastic Process 
Algebra PEPA in order to assess performability. 

Approaches for integrating property verification into UML are based on generating non-
stochastic models aimed for qualitative analysis. For instance, the works presented in 
[Saldhana & Shatz 2000] and [Baresi 2002] are meant to help the validation of UML 
specifications whereas [Elkoutbi & Keller 1998] and [Elkoutbi et al. 2002] propose 
approaches allowing scenario integration for systems including objects described in UML.  

I.3.2 SysML-based analyses 

To the best of our knowledge, there are only few contributions aiming at integrating quality 
attribute analyses to SysML. They mainly focus on performance analysis. In [Jarraya et al. 
2007], the goal is to analyse performance of SysML activity diagrams. The SysML model is 
transformed into discrete-time Markov chains (DTMC), which are analysed using the PRISM 
model checker [Kwiatkovska et al. 2005]. [Viehl et al. 2006] presents an approach for formal 
and simulation-based performance analysis of systems specified with UML/SysML. In this 
approach, sequence diagrams are used for the definition of control flow and timing. An 
architectural model of the system, using SysML assemblies, describes the mapping of 
activities and communication to components. For performance analysis, the SysML model is 
transformed into a communication dependency graph.  

I.3.3 EastADL-based analyses 

EastADL is the result of efforts of the automotive industry towards creating an ADL that 
provides a systematic way of integrating functional design and implementations of 
automotive systems, while taking into account specific analyses, information management 
support and lifecycle organization. Examples of analyses of interest for automotive computer 
control systems are model-checking of behavioral properties, performance (end-to-end 
response time, worst-case execution time, precedence, resource sharing), reliability and safety 
analyses. The ATESST project aims at integrating in EastADL explicit support for these 
analyses. [Chen et al. 2007] provides an initial concept of extending EastADL for safety 



CHAPTER I 

 15 

analysis through HiP-HOPS [Papadopoulos & McDermid 1999]. HiP-HOPS is a method for 
safety analysis through a combination of classical techniques such as hazard analysis, failure 
modes and effects analysis, and fault tree analysis. According to the initial roadmap of the 
project, EastADL should integrate a hierarchical model of errors, described by a metamodel.  

I.3.4 AADL-based analyses 

AADL allows describing separately the analysis-related information that may be plugged 
into the architectural model. Since this information is not embedded in the architectural 
model, the user can easily unplug or replace it. This feature enhances the reusability and the 
readability of the AADL architectural model that can be used unmodified for several analyses 
(formal verification of functional properties [Farines et al. 2003], schedulability [Sokolsky et 

al. 2006] and memory requirements [Singhoff et al. 2005], fault tree analysis [Joshi et al. 
2007], resource allocation with the Open Source AADL Tool Environment (OSATE)18, search 
for deadlocks and un-initialized variables with the Ocarina toolset19).  

Honeywell has been at the origin of significant efforts for integrating dependability 
analyses first to MetaH [Vestal 1998] and then to AADL, with the definition of the AADL 
Error Model Annex [SAE-AS5506/1 2006b], that allows associating error models, 
representing behaviours in the presence of faults, with AADL architectural models. 
Futhermore, [Binns & Vestal 2004] considers the generation of a safety model of a system 
modeled with AADL by composing the models of its subcomponents. An abstract model may 
also be directly associated to the component. The abstract model is intended to be an 
acceptable approximation of the concrete model, generated by composition. The authors 
explore the relationship between abstract and concrete models. Very recently, [Joshi et al. 
2007] presented a proprietary prototype tool for generating fault trees from AADL models. 
The generation is achieved in three steps: extraction of a system instance error model, 
generation of an internal fault tree and formatting the fault tree for a specific analysis tool. 
This tool is built as a set of Eclipse plug-ins and uses the OSATE support for traversing 
AADL models. From a critical viewpoint, these contributions do not tackle issues related to 
model reusability and they do not detail the derivation of the dependability evaluation model 
from the AADL model enriched with error models.  

Other published work on analyses using AADL has focused on the extension of the 
language capabilities to support formal verifications. For example, the COTRE project 
[Farines et al. 2003] provides a design approach bridging the gap between formal verification 
techniques and requirements expressed in ADLs. AADL system specifications can be 
imported in the newly defined COTRE language. A system specification in COTRE language 
can be transformed into timed automata, Time Petri nets or other analytical models. Also, a 
transformation from AADL models to Colored Petri Nets, aiming at formally verifying 
certain properties through model checking, is presented in [Hugues et al. 2007]. [Sokolsky et 

al. 2006] and [Singhoff et al. 2005] aim at analysing schedulability based on AADL models, 
respectively by formal analysis based on state-space exploration and by simulation. 

                                                
18 http://www.aadl.info/OpenSourceAADLToolEnvironment.html  
19 http://ocarina.enst.fr 



MDE AND DEPENDABILITY 

16 

I.4 Proposed AADL-based dependability modeling framework 

The AADL Error Model Annex provides features with precise semantics to be used for 
describing dependability-related characteristics in AADL models (faults, failure modes, repair 
policies, error propagations, etc.). However, at the current stage, no methodology and 
guidelines are available to help the developers in the use of the proposed notations to describe 
complex dependability models reflecting real-life systems with multiple interactions and 
dependencies between components.  

Our goal is to provide means that facilitate the evaluation of various quantitative 
dependability measures (e.g., realibility, availability) based on AADL models. To this end, 
we propose: 

1) a dependability modeling framework based on a structured method for the 
construction of the AADL model and on model transformation from AADL to 
dependability evaluation models.  

2) a set of AADL fault-tolerance patterns that enable model reusability.  
 

For complex systems, the main difficulty for dependability model construction arises from 
dependencies between the system components.  

A structured approach is necessary to model dependencies in a systematic way, to avoid 
errors in the resulting model of the system and to facilitate its validation. In our approach, 
presented in [Rugina et al. 2006c, Rugina et al. 2006b, Rugina et al. 2007], the AADL 
dependability-oriented model is built in an iterative way. More concretely, in the first 
iteration, we build the model of the system’s components, representing their behavior in the 
presence of their own faults and repair events only. They are thus modeled as if they were 
independent. In the following iterations, we introduce dependencies between the component 
models in an incremental manner. This approach is further detailed in subsections I.4.1, I.4.2 
and I.4.3.  

Dependencies are of several types, identified in [Kanoun & Borrel 2000]: structural, 
functional, those related to the fault-tolerance and those related to the recovery and 
maintenance policies. Exchange of data or transfer of intermediate results from one 
component to another is an example of functional dependency. The fact that a thread runs on 
a processor induces a structural dependency between the thread and the processor. Changing 
the operational mode of a component according to a fault-tolerance policy (e.g., 
leader/follower) represents a fault-tolerance dependency. Sharing a maintenance facility 
between several execution platform components leads to a maintenance dependency. Having 
to follow a strict recovery order for application components is an example of recovery 
dependency.  

Functional, structural and fault-tolerance dependencies can be grouped into an architectural 

dependency class, as they are triggered by physical or logical connections between the 
dependent components at architectural level. On the other hand, maintenance and recovery 
dependencies are not always visible at the level of the functional architectural model. This is 
for example the case when maintenance facilities are shared between several components and 
the maintenance facilities are not modeled in the functional architectural model. 

Fault-tolerance dependencies and mechanisms can be modeled in AADL and stored in 
libraries of reusable AADL dependability models. Then they may be used as patterns. To be 
used in a particular system, a pattern must be instantiated and customized if necessary. A 
master-slave redundancy pattern in AADL has been presented in [Feiler et al. 2004]. It aimed 
at easing the understanding of the functional architecture by clearly showing what is 



CHAPTER I 

 17 

replicated in the architectural model and what the active system components are. Our patterns 
additionally include a customizable layer of dependability-related information (error/failure 
and recovery behavior) and of dynamics necessary for evaluating dependability measures. 
Our work complements other existing initiatives that investigated the development of fault-
tolerance patterns based on object-oriented approaches and UML ([Islam & Devarakonda 
1996, Beder et al. 2000, Tichy et al. 2004]) or other languages ([Kehren et al. 2004]). The use 
of patterns and, more generally, dependability modeling at the architectural level favors the 
reduction of recurrent dependability modeling work and enhances the understandability of the 
dependability model (thus reflecting the modularity of the architecture) [Laprie & Kanoun 
1996] and allows the designer to reason about fault-tolerance and to assign exceptional 
behavior responsibilities among components [de Lemos 2006]. At the same time, we can 
evaluate dependability measures (i.e., availability, reliability, safety) based on the AADL 
model. This allows predicting the effects of particular architectural decisions on the 
dependability of the software system [Klein et al. 1999]. Other analyses (e.g., related to 
performance) may be performed on the same AADL model, to highlight for example the 
tradeoff between the benefits of a certain fault-tolerance pattern and its impact on the 
application’s performance [Feiler et al. 2004].  

I.4.1 Overview of our modeling framework 

An overview of our iterative modeling framework, which is decomposed in four main 
steps, is presented in Figure I-1.  

 

 

Figure I-1. Modeling framework 

The first step is devoted to the modeling of the system architecture in AADL (in terms of 
components and operational modes of these components). This AADL architectural model 
may be available if it has been already built for other purposes in the MDE process. 

The second step concerns the building of the AADL error models describing the 
dependability-related information associated with components of the architectural model. The 
error model of the system is a composition of the set of components’ error models, taking into 
account the dependencies between these components.  

The architectural model and the error model of the system form a dependability-oriented 
AADL model, referred to as the AADL dependability model in the rest of the dissertation. 



MDE AND DEPENDABILITY 

18 

Modeling a dependency may either require to add new information into the model or to 
modify the existing model and to add new information (i.e., states and propagations). 

The third step aims at building a dependability evaluation model, such as those presented in 
Section I.2.2 (e.g., a fault tree, a Markov chain or a GSPN), from the AADL dependability 
model, based on model transformation rules. Given the advantages of GSPN over fault trees 
and Markov chains (i.e., the possibilities of performing structural model verification, and of 
building a modular model, reflecting the structure of the architectural model), we focus on 
deriving GSPNs from AADL models. The transformation rules are systematic in order to 
allow the automation of the transformation. Also, the resulting GSPN is tool-independent 
(i.e., we do not use tool-specific features or predicates). We have developed a tool prototype 
to automate our transformation. Its implementation follows a MDE approach based on Eclipse 
and the Eclipse Modeling Framework, similarly to the approaches of [Fernandez Briones et 

al. 2006] and [Joshi et al. 2007] that aim at obtaining fault trees respectively from UML and 
AADL models. Our tool saves the GSPN both under a generic XML/XMI format and under 
the format of the dependability modeling and evaluation tool Surf-2 [Béounes et al. 1993]. 
Our prototype is presented in Appendix C. 

The fourth step is devoted to the dependability evaluation model processing to evaluate 
quantitative measures characterizing dependability attributes. This step is entirely based on 
existing processing algorithms and tools. Therefore, it is not presented in this dissertation. 

To obtain the AADL dependability model, the user must perform the first and second steps 
described above. The third step is automatic in order to hide the complexity of the GSPN 
from the user. Chapter IV provides all the transformation rules that are necessary and 
sufficient to build such an automated transformation tool. 

The iterative approach can be applied to the first two steps only or to the first three steps 
together. In both cases, the AADL dependability model is updated at each iteration. In the 
latter case, the AADL dependability model is validated against its specification, based on the 
analysis and validation of the GSPN model, after each iteration.  

The two following subsections present briefly (1) the AADL dependability model 
construction (first and second steps of our framework) and (2) the model transformation 
process (third step of our framework). These topics are further detailed respectively in 
Chapters III and IV. 

I.4.2 The AADL dependability model 

Architectural dependencies are deduced from the AADL architectural model, based on the 
analysis of the connections and bindings present in this model. To these dependencies one has 
to add recovery and maintenance dependencies that are not represented in the AADL 
architectural model. We recommend to summarize the full set of dependencies in a 
dependency block diagram to provide a global view of the system components and 
interactions. In the dependency block diagram, each component and each dependency are 
represented as distinct blocks. Blocks are connected through arcs. Their directions identify the 
directions of dependencies. This diagram and the AADL architectural model are used to build 
the AADL error model incrementally. Once the AADL error models of components 
considered independently are built, the dependencies are added gradually, based on the 
description of dependencies.  

Considering maintenance and recovery policies may lead to the addition of components in 
the architectural model. Also, modeling fault-tolerance policies (from scratch or by 
instantiating a fault-tolerance pattern) may lead to adjusting the architectural model, since the 



CHAPTER I 

 19 

architectural model depends on the fault-tolerance policy (which determines for example the 
number of replicas and the decision-making components).  

I.4.3 AADL to GSPN model transformation 

The GSPN model of the system is built from the transformation of the AADL dependability 
model following a modular approach. The transformation rules defined in Chapter IV are 
systematic in order to facilitate their automation. In this way, the complexity of the GSPN 
generation is hidden from the user. The resulting GSPN has the same structure as the 
dependency block diagram: it is formed of a set of interacting subnets, where a subnet is 
associated with a component or a dependency block identified in the dependency block 
diagram. Two types of GSPN subnets are distinguished:  

1) A component net is associated with each component and describes the component’s 
behavior in the presence of its own faults and repair events. 

2) A dependency net models the behavior associated with the corresponding dependency.  

The modular structure of the GSPN allows the user to validate the model progressively, as 
the GSPN is enriched with a subnet each time a new dependency is added in AADL model.  

I.5 Conclusion 

Besides allowing communication between different stakeholders, MDE aims at better 
integrating quality attributes analyses into the development cycle. In particular, this allows 
performing tradeoff analyses with respect to architectural decisions.  

Before giving an overview of our modeling framework, we have reported the major 
initiatives towards MDE engineering processes. Each initiative is based on the use of a 
modeling language or of a set of modeling languages and intends to integrate quality 
attributes analyses in the development cycle. We have then focused on the elements to take 
into account for dependability analysis purposes. The dependability modeling and analysis 
process is based on the definition of meaningful dependability measures, and on the 
construction and processing of the dependability model. Our framework has two sources of 
inspiration: our iterative dependency-driven modeling approach is inspired by largeness 
tolerance techniques published in the dependability modeling and evaluation literature, while 
the model transformation from AADL to GSPN is inspired by MDE, since one of the 
principles of MDE is to hide complexity and to achieve a correct-by-construction system by 
using as much as possible automatic model transformations. Finally, we have surveyed 
related work aiming at integrating different analyses to the modeling languages adopted by 
the MDE initiatives. 

In Chapter II, we give further details on AADL and GSPNs, the two languages used in our 
framework. Chapter III details the AADL dependability model construction (first and second 
steps of our modeling framework presented in Figure I-1) while Chapter IV presents the 
AADL to GSPN model transformation rules (third step of our modeling framework presented 
in Figure I-1). These rules have been implemented in an Eclipse-based tool that is the subject 
of Appendix C. In Chapter V, we show an example of application of our framework to a case 
study issued from a real-life system. 





 

 21 

II Background 

This section is devoted to the introduction of the two modeling languages used in our 
framework. Section II.1 gives an overview of AADL (Architecture Analysis and Design 
Language) by describing relevant characteristics for the comprehension of our modeling 
approach and of the AADL to GSPN transformation rules. Section II.2 gives an overview of 
Petri nets with emphasis on Generalized Stochastic Petri Nets, the variant of Petri nets of 
interest in the context of dependability evaluation. 

II.1 AADL 

AADL is an Architecture Description Language (ADL) designed for the specification, 
analysis, and automated integration of performance-critical, embedded, real-time systems. 
The Society of Automotive Engineers standardized it in 2004 [SAE-AS5506 2004]. The 
development and the standardization of AADL is based on MetaH [Vestal 1998], an ADL 
accompanied by a non-commercialized toolset, developed at Honeywell Technology 
Laboratories under the sponsorship of the US Defense Advanced Research Projects Agency 
(DARPA) and US Army Aviation and Missile Command (AMCOM).  

The AADL standard allows describing both software architectures and execution platform 
architectures using one of its three complementary syntaxes:  

- Textual: this is the reference syntax. It is more expressive than the graphical syntax and 
clearer than the XML syntax. It allows a complete description of an AADL model. 

- Graphical: this syntax is complementary to the textual syntax, as it provides a global 
view of a system’s architecture. However, the graphical syntax is not sufficient to 
describe complex and large systems. 

- XML: this syntax is as expressive as the textual one and is designed to be a tool 
interchange format.  

For clarity reasons, we mainly use the graphical syntax throughout this dissertation. We 
only introduce the textual syntax when it is necessary for the reader to have a more detailed 
view of the AADL architectural model.  

An AADL description consists of a set of component declarations. These declarations can 
be instantiated and connected to form a particular system architecture description. System 
descriptions in AADL allow a system designer to analyze system schedulability, sizing, 
dependability, and other quality attributes20 and to evaluate architectural tradeoffs. Most of 
these analyses of quality attributes require that the architectural model be enriched with 
analysis specific information. To this end, the AADL language has been designed to be 
extensible through annexes. The Error Model Annex is a standardized annex [SAE-AS5506/1 
2006b] that complements the description capabilities of the core AADL language by 
providing a textual syntax with precise semantics to be used for describing dependability-

                                                
20 Quality attributes are also referred to as non-functional properties in the literature, in opposition to functional 

properties that directly address the system’s functions. 



BACKGROUND 

22 

related characteristics in AADL architectural models (faults, failure modes, repair policies, 
error propagations, etc.). An AADL architectural model can be annotated with dependability-
related information and the resulting annotated model can be used as an input to dependability 
analysis during different phases of the development cycle. A detailed guide for dependability 
modeling using AADL is available in [Feiler & Rugina 2007]. 

The remainder of this section is structured as follows. Section II.1.1 briefly presents the 
core language while section II.1.2 gives an overview of the Error Model Annex.  

II.1.1 Core AADL language 

In AADL, systems are modeled as hierarchical collections of interacting application 
components and a set of execution platform components. The application components are 
bound to the execution platform.  

AADL allows describing “bounded” architectures, i.e., it does not allow modeling a system 
that may have an unknown or a variable number of components. It allows however the 
definition of reconfigurable architectures through the use of the concept of operational mode. 
The components and connections of an architectural model may be declared as active in some 
of the operational modes of the system and inactive in some other operational modes.  

The remainder of this section first describes components - the AADL building blocks - and 
then introduces architecture configurations. 

II.1.1.1 Components 

AADL defines three component categories: 

- application components: processes, threads, subprograms, data 

- execution platform components: processors, memory, buses and devices 

- composite components: system 

Figure II-1 shows the graphical notation for the different kinds of components. 
 

 

Figure II-1. Component categories - AADL graphical notation 

 

Each AADL system component has two levels of description: the component type and the 
component implementation. The type describes how the environment perceives that 



CHAPTER II 

 23 

component, i.e., its properties and features. Examples of features are in and out ports that 
represent access points to the component. Three categories of ports are distinguished in 
AADL: event ports, data ports and event data ports, modeling respectively control, data, and 
control and data flows. These port categories are represented in Figure II-2 using the AADL 
graphical notation. 

 

 

Figure II-2. Port categories - AADL graphical notation 

 

Interactions between AADL components are described by: 

– Connections: A connection links an out port of a component to an in port of another 
component or to an out port of the enclosing component. The origin and destination of 
a connection must be ports of the same category. Depending on the category of the 
ports, the connection represents a control flow (in the case of event ports), a data flow 
(in the case of data ports) or a control and data flow (in the case of event data ports) 
between components. 

– Bindings of application components to platform components: For example, a data 
component may be bound to a memory component or a thread to a processor. 

 

One or more component implementations may be associated with the same component 
type, corresponding to different implementation structures of the component in terms of 
subcomponents, connections (between subcomponents’ ports) and operational modes.  
Figure II-3-a shows a component type, identified by the name ComputingUnit, having an in 
data port named input and an out data port named output. Figure II-3-b and Figure II-3-c 
show examples of different implementations (ComputingUnit.join and ComputingUnit.Split) 
in terms of subcomponents for the component type ComputingUnit. In Figure II-3, we assume 
that ComputingUnit must compute a result value based on the data received through the port 
input. The result value is made visible outside ComputingUnit through the port output. The 
AADL graphical notation is used to represent ComputingUnit as a process and its 
subcomponents as threads. In ports are represented as arrow-heads pointing towards the 
component and out ports are represented as arrow-heads pointing towards outside. 
Connections are represented as lines connecting ports. 

In the implementation ComputingUnit.join of Figure II-3-b, three threads are assigned the 
three different steps of the computation. The last step is assigned to the thread Compute3 that 
computes the global result based on a partial result from Compute2. It sends the result value 
out through its out data port o, which is connected to the port output of ComputingUnit. In the 
implementation ComputingUnit.split of Figure II-3-c, an additional thread is used to achieve 
in parallel the second step of the computation. We assume that the thread Compute3 first 
computes a mean value of the two results sent respectively by Compute21 and Compute22 
and then computes the global result, based on the mean value. Compute3 sends out the result 
through its out data port o, which is connected to the port output of ComputingUnit. 



BACKGROUND 

24 

 

 

- a - 

  

- b - - c - 

Figure II-3. Different component implementations (b and c) for the same type (a) 

 

II.1.1.2 Architecture configurations 

Dynamic aspects of system architectures are captured with the AADL operational mode21 
concept. Different modes of a system or a system component represent different architecture 
configurations and connection topologies, as well as different sets of property values to 
represent changes in non-functional characteristics such as performance and reliability.  

Modes may represent fault-tolerance modes or different phases, potentially with different 
dependability characteristics, in a phased-mission system. Mode transitions model dynamic 
operational behavior and are triggered by architectural events arriving through named event 
ports. Such an architectural event models either a signal generated as a result of a change 
related to the dependability of the system, or a signal generated at the end of a phase.  

Architectural events that go through a named event port cannot be distinguished one from 
the other, as they do not have names. As a consequence, any architectural event going through 
an event port named in a mode transition triggers that mode transition. A user can specify that 
a mode transition is triggered by several different architectural events by naming multiple 
ports in a mode transition. In that case, any architectural event arriving through any of the 
named ports triggers that mode transition. An event port named in a mode transition can be: 

- an out event port of a subcomponent; 

- an in event port of the component declaring the mode transition; 

- a local event port22 visible only in the component that owns it and representing 
either a call to a pre-declared Raise_Event subprogram in a thread, or an 

                                                
21 Operational modes will be referred to as modes in the rest of the dissertation. 
22 The errata document to the AADL standard provides the ability to declare such local ports. 



CHAPTER II 

 25 

abstraction for a port of a subcomponent that is not declared at the current level of 
detail of the architectural model. A local event port is denoted by 
self.localPortName in mode transitions. 

Figure II-4 presents a system with modes and modal architecture configurations. This 
system has three components: Component1, Component2 and Component3 (represented as 
system components), and two modes: m1 and m2 (represented as hexagons). The initial mode 
is m1 (it is represented in black and is pointed by an arrow coming from a black circle drawn 
on the edge of the system). The mode transitions from m1 to m2 and from m2 to m1 are 
triggered by architectural events arriving respectively through the out event ports outp1 and 
outp2 of Component3. Component3 does not have an in modes statement, i.e., it is active in 
both modes. It receives data from outside the system. We assume that, based on the data 
received, Component3 decides whether to delegate the data processing to Component1 or to 
Component2. To put in practice its decision, Component3 initiates the appropriate mode 
transitions by generating and sending events through its out event ports. Component1 and the 
connections to and from it are active in mode m1. Component2 and the connections to and 
from it are active in mode m2. Thus, the system must be in mode m1 if Component1 should 
process the data and provide the result through the out data port of the system, and it must be 
in mode m2 otherwise. 

 

 

Figure II-4. System with modal architecture configurations 

 

Semantically, a component inactive in a given mode does not communicate with the rest of 
the system in that mode. Similarly, a connection or a binding that is inactive in a given mode 
does not exist in that mode. 

II.1.2 AADL Error Model Annex 

The AADL Error Model Annex supports the definition of reusable error models within 
libraries. Error models represent (stochastic) state machines that describe behavior in terms of 
logic error states in the presence of faults, repair events and error propagations. The user 
associates error models with application components, execution platform components, as well 
as the connections between them. When an error model is associated with a component, it is 
possible to customize it by setting component-specific values for the arrival rate or the 



BACKGROUND 

26 

probability of occurrence for error events and error propagations declared in the error model. 
A user may choose to further customize the error model to a component by declaring 
component-specific logic guards that determine the effect of incoming error propagations on 
the local state machine or the effect of local events (faults, repairs) on other components.  

The remainder of this section is structured as follows. Section II.1.2.1 presents the concept 
of error model and illustrates it for independent components. Section II.1.2.2 extends the error 
model of Section II.1.2.1 to take into account dependencies between components.  
Section II.1.2.3 gives an overview of propagation filtering and masking mechanisms that 
allow customizing the error models to architecture. Section II.1.2.4 focuses on the connection 
between error states and operational modes. Section II.1.2.5 is dedicated to error model 
abstractions for hierarchical systems. 

II.1.2.1 Error model for independent components 

In the same way as for AADL components, error models have two levels of description: the 
error model type and the error model implementation. Unlike AADL components that may be 
declared using a textual or a graphical notation, error models may be only described textually 
according to the current specification of the AADL Error Model Annex (version 1.0).  

The error model type is identified by a name (here independent) and declares a set of 
error states, error events23 (internal to the component) and error propagations. 
Occurrence properties specify the arrival rate or the occurrence probability of events and 
propagations24. The error model implementation is identified by the type name it corresponds 
to (here independent) and by its name (here general). It declares error transitions25 
between states, triggered by events and propagations declared in the error model type. 

Figure II-5 shows an example of error model for an independent component (without 
propagations). We distinguish two types of faults: temporary and permanent. A temporary 
fault leads the component in an erroneous state while a permanent fault leads it in a failed 
state. When a temporary fault is processed, we assume that the component recovers regaining 
its error free state. A permanent fault requires restarting the component. It models a 
component that may fail and that can be restarted to regain its error free state. It is noteworthy 
that several error models may model an independent component. For example, one can 
consider permanent faults only, or the fact that the restart procedure may be unsuccessful. 

The user can choose an error model from a library and associate an instance of it with a 
component’s implementation or with a connection. This association is specified through the 
Model property declared in an Error Model annex subclause, as shown in Figure II-6. Note 
that the association is only possible using the standard textual AADL Error Model Annex 
syntax. 

                                                
23 Error events and error propagations are semantically different from architectural events raised in the 

architecture of the system. Error events and error propagations do not represent event communications 
through ports. By default, they do not manifest themselves as architectural events that may cause mode 
transitions and thread dispatches.  

24 Further on, error events and propagations whose Occurrence properties are Poisson distributions are referred to 
as timed events and propagations. Also, error events and propagations whose Occurrence properties are fixed 
probabilities are referred to as immediate events and propagations. 

25 Note that error states can model error-free states, error events can model repair events and error 
propagations can model all kinds of notifications. Thus, we will refer to error states, error events, 
error propagations and error transitions without the qualifying term error in contexts where the 
meaning is unambiguous. 



CHAPTER II 

 27 

In order to give a global view of an AADL architectural model with associated error 
models, we chose a (non-standardized) convention to represent the association of an error 
model instance with a component represented in the AADL graphical syntax. Our graphical 
convention, that is used throughout this dissertation, is depicted in Figure II-7. 

 

 
 
 
 
 
 
 
 
 
 
 
 

Error Model Type [independent] 
 

error model independent 
features 
  Error_Free: initial error state; 
  Erroneous: error state; 
  Failed: error state; 
  Temp_Fault: error event {Occurrence => poisson 1};  
  Perm_Fault: error event {Occurrence => poisson 2};  
  Restart: error event {Occurrence => poisson μ1}; 
  Recover: error event {Occurrence => poisson μ2}; 
end independent; 

  
 

 
 
 
 
 
 
 

Error Model Implementation [independent.general] 
 

error model implementation independent.general 
transitions 
  Error_Free-[Perm_Fault]->Failed; 
  Error_Free-[Temp_Fault]->Erroneous; 
  Failed-[Restart]->Error_Free; 
  Erroneous-[Recover]->Error_Free; 
end independent.general; 

Figure II-5. Error model example for independent component 

 

 

 
 
 
 
 
 

system implementation Component1.generic 
[…] 
annex Error_Model {** 
  Model => MyLibrary::independent.general; 
**}; 
end Component1.generic; 

Figure II-6. Error model instance association 

 

 

 

Figure II-7. Graphical notation for error model instance 

 

II.1.2.2 Error model for dependent components 

Interacting components at the architectural level may influence each other’s behaviors 
through propagations. In order to describe dependencies between interacting components, the 
user must explicitly declare directional error propagations in the error models associated with 
the components involved in the dependency. An out error propagation occurs spontaneously 
and randomly according to the specified occurrence probability (or distribution of probability) 



BACKGROUND 

28 

when it is named in a transition and the current state of the component is the origin state of 
the transition. It is broadcasted out of a component through all features connecting it to other 
components. By default, an out propagation has an impact on any receiving component that 
declares an in propagation with the same name. Note that declaring an in out propagation 
is equivalent to declaring an in and an out propagation with the same name. 

The error model of Figure II-8 is an extension of the one of Figure II-5 (corresponding to 
an independent component). It takes into account a dependency on the sender-side, i.e., when 
the component with which it is associated is in an erroneous state, it can influence the 
behavior of components that depend on it. The error model of Figure II-8 declares an out 
propagation Error in the type (see line d1) and an AADL transition triggered by the out 
propagation in the implementation (see line d2). The propagation Error occurs with a given 
probability p.  

In order to specify a recipient-side dependency, i.e., to describe the fact that a component 
can be influenced by Error propagations from other components, it is necessary to replace 
lines d1 and d2 of Figure II-8 by lines d1’ and d2’ of Figure II-9. In propagations are the 
consequences of out propagations from other components; therefore they do not need 
Occurrence properties. 

 

 
 

 
 
 
 
 
 
 
 
 
(d1) 
 

Error Model Type [sender] 
 

error model sender 
features 
  Error_Free: initial error state; 
  Erroneous: error state; 
  Failed: error state; 
  Temp_Fault: error event {Occurrence => poisson 1};  
  Perm_Fault: error event {Occurrence => poisson 2};  
  Restart: error event {Occurrence => poisson μ1}; 
  Recover: error event {Occurrence => poisson μ2}; 
  Error: out error propagation {Occurrence => fixed p}; 
end sender; 

 
 

 
 
 
 
 
 
(d2) 
 

Error Model Implementation [sender.general] 
 

error model implementation sender.general 
transitions 
  Error_Free-[Perm_Fault]->Failed; 
  Error_Free-[Temp_Fault]->Erroneous; 
  Failed-[Restart]->Error_Free; 
  Erroneous-[Recover]->Error_Free; 
  Erroneous-[out Error]->Erroneous; 
end sender.general; 

Figure II-8. Error model example for component with interactions (sender-side) 

 

 

(d1’)   Error: in error propagation; 
(d2’)   Error_Free-[in Error]->Failed; 

Figure II-9. Error propagation (recipient-side) 

 

It is possible to describe both a sender and a recipient-side dependency involving a unique 
propagation name in the same error model by declaring an in out propagation Error (by 
merging lines d1 and d1’). In this case, the Occurrence property only applies to the out 



CHAPTER II 

 29 

propagation Error. In the error model implementation, line d2 describes the sender-side 
dependency while line d2’ describes the recipient-side dependency. 

Propagation of errors between error models associated with components and connections 
are determined by the interactions in the architectural model. Besides a few special cases, 
most of the interactions fall into the three following categories:  

1) They may be due to the fact that application components run on top of platform 
components. For example, out propagations declared in an error model associated with 
a processor are visible in all threads bound to that processor.  

2) They may be due to the fact that application components interact through connections, 
accesses to shared data and calls to services provided by other components. For 
example, out propagations declared in an error model associated with a component can 
impact all components reachable through connections.  

3) They may be due to the fact that platform components are connected to each other 
through shared access to buses. For example, out propagations declared in an error 
model associated with a bus arrive to all components accessing the bus. 

The exhaustive list of dependency rules is presented in the AADL Error Model Annex, 
§3.5.2. 

II.1.2.3 Propagation filtering and masking mechanisms 

In some cases, it is desirable to model how error propagations from multiple sources are 
handled. This is modeled by specifying component-specific filters and masking conditions for 
propagations by using Guard_In and Guard_Out properties associated with its features. In 
the remainder of this section, the Guard_In and the Guard_Out properties are successively 
presented in subsections II.1.2.3.1 and II.1.2.3.2. Finally, the two properties are compared in 
subsection II.1.2.3.3. 

II.1.2.3.1 Guard_In 

A Guard_In property allows the user to conditionally map an incoming set of 
propagations and error states from other components into a set of in propagations that may 
affect the receiving component. In other words, a Guard_In property can specify filters for 
error propagations from other components used to determine if and how the state of the 
impacted component should be changed.  

A Guard_In property consists of a set of logic rules for incoming propagations. Each rule 
is defined as a Boolean expression referring to one or more outgoing (out or in out) 
propagations as well as to states from error models of components that can impact the 
component declaring the Guard_In property. When a Boolean expression evaluates to TRUE, 
it is either: 

- Mapped to an incoming (in or in out) propagation that occurs in the component 
declaring the Guard_In property and that may trigger a state change in its error model. 

- Or it is masked (if the rule is labeled with the mask keyword).  

In addition to outgoing propagations and states of components that can impact the given 
component, a Boolean expression can refer, using the keyword self, to states of the 
component that declares the Guard_In.  



BACKGROUND 

30 

The syntax of the Guard_In property in Backus-Naur form (BNF) is given in Figure II-10, 
without developing the Boolean expression. It is noteworthy that this property applies to in 
features of components. 

 

Guard_In ::= mapping_rule {, mapping_rule}* applies to inFeature; 
mapping_rule ::= (InProp_id | mask) when boolean_expr 

Figure II-10. Guard_In property syntax 
 

Figure II-11 shows an example of Guard_In property associated with an in port of a 
system component. The Guard_In property (lines gi1-gi5) specifies that the component 
Component1.generic perceives: 

- an incoming propagation inError1 when an out propagation Error is visible through 
the in port inp1 while the component connected to inp2 is Failed.  

- an incoming propagation inError2 when an out propagation Error is not visible 
through the in port inp1 while the component connected to inp2 is Failed.  

The other error propagation and state configurations are masked. 

The in propagations inError1 and inError2 must be declared in the error model type 
associated with the component (named here receiver). The occurrences of inError1 or 
inError2 may trigger state changes in the associated error model implementation (named here 
receiver.general). 

 

 
 
 
 
 
 
 
 
 
 
gi1 
gi2 
gi3 
gi4 
gi5 
 
 

system Component1 
features 
  inp1: in data port; 
  inp2: in data port; 
end Component1; 
 
system implementation Component1.generic 
[…] 
annex Error_Model {** 
  Model => MyLibrary::receiver.general; 
  Guard_In =>  
 inError1 when (inp1[Error] and inp2[Failed]), 
 inError2 when (not inp1[Error] and inp2[Failed]), 
 mask when others 
    applies to inp1; 
**}; 
end Component1.generic; 

Figure II-11. Guard_In property example 

 

Figure II-12 uses the graphical syntax to show a global view of the application of the 
Guard_In property presented above in an architectural model. The Guard_In property 
allows one to specify how the internal behavior of the Component1 is influenced by the 
propagations and error states of the two components that communicate with it through data 
connections. 



CHAPTER II 

 31 

 

 

Figure II-12. Architectural view of a Guard_In property 

 

II.1.2.3.2 Guard_Out 

A Guard_Out property allows the user to conditionally pass through an incoming set of 
propagations and states as an outgoing propagation of the error model associated with the 
component whose implementation contains the Guard_Out property. 

Similarly to a Guard_In property, a Guard_Out property consists of a set of logic rules. 
Each rule is defined as a Boolean expression having the same structure as in the case of a 
Guard_In property. When a Boolean expression evaluates to TRUE, it is either: 

- Passed through as an outgoing (out or in out) propagation sent out of the component 
through the out feature to which applies the Guard_Out property. 

- Or it is masked (if the rule is labeled with the mask keyword).  

The syntax of the Guard_Out property in Backus-Naur form is given in Figure II-13, 
without developing the Boolean expression. The property applies to out features.  

 

Guard_Out ::= passThrough_rule {, passThrough_rule}* 

 applies to outFeature; 
passThrough_rule ::= (OutProp_id | mask) when Boolean_expr 

Figure II-13. Guard_Out property syntax 

 

Figure II-14 shows an example of Guard_Out property associated with an out port of a 
system component. The Guard_Out property (lines go1-go6) specifies that the component 
Component2.generic propagates out: 

- outError1 when two conditions hold: 1) an out propagation Error is visible through 
the in port inp1 and 2) the component connected to inp2 is Failed. 

- outError2 when only one of the two conditions stated above holds.  

Any other error propagation and state configuration is not passed through as out 
propagation. If a Boolean expression of the Guard_Out pass-through rule evaluates to TRUE, 
the local state machine of the component is not influenced but an out propagation is 
generated. The out propagations outError1 and outError2 must be declared in the error 
model type associated with the component (named here dependent). 

Figure II-15 shows an architectural view of the application of the Guard_Out property 
presented above. The Guard_Out property allows specifying that Component2 sends out 
propagations to a particular recipient component by associating a Guard_Out property to a 
particular out port. This allows modeling Byzantine behavior (i.e., the component fails to 



BACKGROUND 

32 

behave consistently when interacting with multiple other components). This is the case, for 
example, when a component propagates an error through one out port and masks it for 
another out port. 

 

 
 
 
 
 
 
 
 
 
 
 
 
go1 
go2 
go3 
go4 
go5 
go6 

system Component2 
features 
  inp1: in data port; 
  inp2: in data port; 
  outp1: out data port; 
  outp2: out data port; 
end Component2; 
 
system implementation Component2.generic 
[…] 
annex Error_Model {** 
  Model => MyLibrary::dependent.general; 
  Guard_Out =>  
 outError1 when (inp1[Error] and inp2[Failed]), 
 outError2 when (not inp1[Error] and inp2[Failed]) or  
      (inp1[Error] and not inp2[Failed]), 
 mask when others 
    applies to outp1; 
**}; 
end Component2.generic; 

Figure II-14. Guard_Out property example 

 

 

Figure II-15. Architectural view of a Guard_Out property 

 

II.1.2.3.3 Comparison between Guard_In and Guard_Out 

Table II-1 shows the similarities and differences of Guard_In and Guard_Out properties 
both from a functional point of view and from an input/output point of view.  

Table II-1. Symmetry and asymmetry between Guard_In and Guard_Out 

 Guard_In Guard_Out 

Applies to incoming features. Applies to outgoing features. 
Functional 

View 
Its evaluation result has an impact on 
the internal behavior of the 
component that declares it. 

Its evaluation result has an impact on 
components that depend on the 
component that declares it. 

Input/Output 

View 

Input: propagations from the 
component’s environment. 

Output: propagations to the component 
itself. 

Input: propagations from the component’s 
environment. 

Output: propagations to the component’s 
environment. 

 



CHAPTER II 

 33 

One might consider using a Guard_In if the decision-making layer (filtering) is placed at 
the input interface (i.e., on the incoming features) of a component. Instead, a Guard_Out 
may be appropriate if the decision-making functionality exists as a stand-alone component.  

II.1.2.3.4 Interacting Guard_In and Guard_Out properties 

An out propagation, which occurs as a result of a transition in an error model or as a result 
of a pass-through rule of a Guard_Out property, may be named in (1) pass-through rules of 
Guard_Out properties or in (2) mapping rules of Guard_In properties. This leads to two 
kinds of interactions between Guard properties:  

1) from a Guard_Out (whose result is an out propagation) to a Guard_In (whose 
mapping rules refer to that out propagation). 

2) from a Guard_Out (whose result is an out propagation) to a Guard_Out (whose 
pass-through rules refer to that out propagation). 

These two kinds of interactions are illustrated successively hereafter. 

II.1.2.3.4.1 Cascading Guard_Out - Guard_In 

Figure II-16-a presents an architectural model example in which a Guard_In property 
applying to in ports of Component3 refers to an out propagation that occurs as a result of a 
Guard_Out property applying to the out port of Component1. The in propagations 
occurring as a result of the Guard_In property trigger AADL transitions in Component3. The 
Guard_Out property associated with the out port of Component1 is given in  
Figure II-16-b. The Guard_In property associated with the in ports of Component3 is given 
in Figure II-16-c.  

 

 

Guard_Out => 
  Error when  
    inp[Error] and self[Failed], 
  mask when others 
     applies to Component1.outp; 

 

- b – 

 

- a -  

Guard_In => 
 Error1 when inp1[Error] and inp2[Error_Free], 
 Error2 when (not inp1[Error] and inp2[Failed]) 
  or (inp1[Error] and not inp2[Failed]), 
 mask when others 
  applies to Component3.inp1, Component3.inp2; 

- c - 

Figure II-16. Cascading Guard_Out - Guard_In properties 

 



BACKGROUND 

34 

II.1.2.3.4.2 Cascading Guard_Out - Guard_Out 

Figure II-17-a presents an architectural model example in which a Guard_Out property 
applying to an out port of Component2 refers to an out propagation that occurs as a result 
of a Guard_Out property applying to an out port of Component1. The error model 
associated with Component3 is impacted by the propagations resulting from the Guard_Out 
property of Component2. The Guard_Out property associated with the out port of 
Component1 is given in Figure II-17-b while the one associated with the out port of 
Component2 is given in Figure II-17-c. 

 

 

- a - 

Guard_Out => 
  Error when  
   inp[Error] and self[Failed], 
  mask when others 
applies to Component1.outp; 

 

Guard_Out => 
  Error1 when  
   inp[Error] and self[Failed], 
  Error2 when  
   (not inp1[Error] and self [Failed]) 
 or (inp1[Error] and not self[Failed]), 
  mask when others 
applies to Component2.outp; 

- b - - c - 

Figure II-17. Cascading Guard_Out - Guard_Out properties 
 

II.1.2.4 Mechanisms for connecting error states to modes 

AADL allows modeling error states and operational modes of a component separately. It 
also allows establishing connections between the error states and the operational modes. 
There are three mechanisms to specify such connections: 

1) Guard_Event properties model the generation of architectural events depending on the 
behavior described in the error model instances. 

2) Guard_Transition properties constrain mode transitions depending on logic 
expressions referring to occurrences of several architectural events. Used together with 
Guard_Event properties, Guard_Transition properties provide advanced decision 
mechanisms for modeling fault-tolerance reconfiguration strategies. 

3) activate/deactivate transitions that allow the description of different component 
behaviors in the presence of faults depending on whether the component is active or 
inactive in a particular mode. 

These mechanisms are presented successively in the three following subsections. 

II.1.2.4.1 Guard_Event 

Guard_Event properties translate error states and propagations into actions (under the 
form of architectural events) on the running system. They map error state and propagation 
configurations into architectural events that are associated to: 



CHAPTER II 

 35 

1) out event ports. An out event port named in a mode transition of the enclosing 
component causes the occurrence of that mode transition when the event occurs (i.e., 
when the Boolean condition of the Guard_Event property is true). 

2) local event ports. A local event port causes a mode transition in the component that 
owns it, if it is named in that mode transition. 

If an event connection has its source in the out port or local port, then the event is routed 
through that connection and may affect the behavior of a recipient component by triggering a 
mode transition. An architectural event passing through a port named in a mode transition 
unconditionally triggers that mode transition. The Boolean condition of a Guard_Event 
property is similar to Boolean expressions of Guard_In and Guard_Out properties. It names 
outgoing propagations as well as states of the components that impact the given component. 
In addition, it may refer to states of the component that declares the Guard_Event. Thus, the 
generated event can reflect an error state and propagation configuration.  

The syntax of the Guard_Event property in Backus-Naur form is given in Figure II-18.  
 

Guard_Event ::= boolean_expr applies to EventPort; 
EventPort ::= outEventPort | localEvenPort 

Figure II-18. Guard_Event property syntax 

 

Figure II-19 shows an example of Guard_Event property associated with an out event 
port of a system component.  

 

 
 
 
 
 
 
 
 
 
 
 
ge1 
ge2 
ge3 
ge4 
 
 

system Component3 
features 
  inp1: in data port; 
  inp2: in data port; 
  outp: out event port; 
end Component3; 
 
system implementation Component3.generic 
[…] 
annex Error_Model {** 
  Model => MyLibrary::dependent.general; 
  Guard_Event =>  
  (not inp1[Error] and inp2[Failed])   
 or (inp1[Error] and not inp2[Failed]), 
     applies to outp; 
**}; 
end Component3.generic; 

Figure II-19. Guard_Event property example 

 

The Guard_Event property (lines ge1-ge4) of Figure II-19 specifies that the component 
Component3.generic generates an architectural event, which is released through the out 
event port outp, when one of the following two conditions holds: 

1) an out propagation Error is visible through its in port inp1. 

2) the component connected to inp2 is Failed. 

Any other error propagation and state configuration does not result in an architectural event 
generation.  



BACKGROUND 

36 

Figure II-20 shows an architectural view of the application of the Guard_Event property 
presented above. Events sent out through the out event port outp of Component3 are routed 
through a connection to the in event port inp of a Component4 and trigger a mode transition 
from m1 to m2 in Component4.  

 

 

Figure II-20. Architectural view of a Guard_Event property 

 

II.1.2.4.2 Guard_Transition  

AADL mode transition declarations name one or more event ports whose events trigger the 
mode transition. By default, an event through any of the named ports triggers the mode 
transition. When modeling fault-tolerance, it is desirable to constrain a mode transition in a 
system component to reflect specific conditions such as a voting protocol to decide on fault 
handling. This can be achieved through the use of Guard_Transition properties associated 
with mode transitions and specifying mode transition logic expressions overriding the default 
or condition on events arriving through ports named in the mode transition.  

In the AADL standard v1.0, mode transitions do not have names. Thus, the standardized 
AADL Error Model Annex specifies that a Guard_Transition property is associated with 
the event ports named in a mode transition. This raises a problem in the case where several 
mode transitions name the same set of event ports and assuming that each one of the mode 
transitions must be triggered by a different Boolean condition involving those event ports. An 
erratum to the AADL standard allows naming mode transitions. We use this facility to 
identify the mode transition to which applies a Guard_Transition property. 

The Guard_Transition property supports: 

1) The specification of mode transition conditions other than the default or on 
architectural events occurring through ports named in mode transitions. 

2) The specification of conditions for error propagations and states to trigger mode 
transitions without explicitly mapping them into an architectural event via a 
Guard_Event property. 

In [Feiler & Rugina 2007], we strongly recommend that Guard_Transition properties 
be only used for specifying architectural event-based conditions for mode transitions to avoid 
inconsistent or conflicting Guard_Event and Guard_Transition specifications. 
Therefore, we focus on the first usage of Guard_Transition properties in the remainder of 
the dissertation. The syntax of the Guard_Transition property in Backus-Naur form is 
given in Figure II-21.  



CHAPTER II 

 37 

 

Guard_Transition ::= boolean_expr applies to modeTransitionName; 

Figure II-21. Guard_Transition property syntax 
 

Figure II-22 shows an example of Guard_Transition property associated with a mode 
transition, named M1toM2, of a system component (see line gt). The Guard_Transition 
property specifies that the mode transition from m1 to m2 occurs when events arrive both 
through ports inp1 and inp2. Without this property association, the mode transition would 
occur at the occurrence of an event through any of the two ports. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
(gt) 
 
 

system Component4 
features 
  inp1: in event port; 
  inp2: in event port; 
end Component4; 
 
system implementation Component4.generic 
modes 
m1: initial mode; 
m2: mode; 
M1toM2: m1-[inp1, inp2]->m2; 
M2toM1: m2-[inp1, inp2]->m1; 
annex Error_Model {** 
 Guard_Transition => inp1 and inp2 applies to M1toM2; 
**}; 
end Component4.generic; 

Figure II-22. Guard_Transition property example 

 

Figure II-23 shows an architectural view of the application of the Guard_Transition 
property presented above. Events occurring according to Guard_Event properties associated 
with the out event ports outp of Component31 and Component31 are routed through 
connections to the in event ports inp1 and inp2 of a Component4 that trigger a mode 
transition from m1 to m2 in Component4.  

 

 

Figure II-23. Architectural view of Guard_Transition property 

 



BACKGROUND 

38 

II.1.2.4.3 Activate / Deactivate transitions 

AADL allows modeling the fact that a component is active in particular modes and inactive 
in other modes. This is of particular interest when a component behaves differently in the 
presence of faults when it is active or inactive. To describe such behaviors, the AADL Error 
Model Annex allows the user to declare (optionally) an initial inactive state, in 
addition to the initial state, in an error model type. This initial inactive state is the initial state 
of the component if the component is inactive in the initial mode of the system.  

To express that the error model characteristics change when the system configuration 
changes, i.e., when the component is activated or deactivated, one may declare transitions 
labeled activate or deactivate in an error model implementation, in addition to 
transitions triggered by (error) events and propagations. A transition labeled activate 
occurs when the component is activated at a mode switch while a transition labeled 
deactivate occurs when the component is deactivated at a mode switch. If a component is 
activated or deactivated at a mode switch but no transitions from the current state are labeled 
respectively activate and deactivate, its state does not change. 

Figure II-24 shows an example of error model declaring an initial inactive state and 
activate / deactivate transitions (see lines d and a).  

 

 
 
 
 
 
 
 
 
 
 
 

Error Model Type [modal] 
 

error model modal 
features 
  ON_Error_Free: initial error state; 
  OFF_Error_Free: initial inactive error state; 
  ON_Failed: error state; 
  ON_Fail: error event {Occurrence => poisson 1}; 
  ON_Restart: error event {Occurrence => poisson μ}; 
end modal; 

  
 

 
 
(d) 
(a) 
 
 
 

Error Model Implementation [modal.general] 
 

error model implementation modal.general 
transitions 
  ON_Error_Free-[deactivate]->OFF_Error_Free; 
  OFF_Error_Free-[activate]->ON_Error_Free; 
  ON_Error_Free-[ON_Fail]->ON_Failed; 
  ON_Failed-[ON_Restart]->ON_Error_Free; 
end modal.general; 

Figure II-24. Activate/deactivate transitions 
 

The initial inactive state is an error-free state, similarly to the initial (active) state. We make 
the assumption that an inactive component does not fail. A component that is error-free when 
activated at a mode transition moves to an active error-free state and may fail while the 
component is active. An active failed component may be restarted to regain its active error-
free state.  

II.1.2.5 Error model abstractions 

An AADL architectural model is hierarchical when components contain subcomponents. 
The level of detail of the architectural model depends on the stage of the design and 
development process. For example, a system may initially be modeled as a partial model to 



CHAPTER II 

 39 

the level of subsystems and later completed to the level of threads. Both partial and complete 
models can be instantiated to produce system instance models for system analysis. 

The user chooses the level of the component hierarchy to which error models are 
associated. For example, an error model can be associated with the root-level system 
component to represent an abstracted error model of the system instance. An instance of this 
error model represents the system instance error model as a finite state stochastic automaton. 

Similarly, error models can be associated with each of the leaf components in the system 
hierarchy, i.e., individual application threads and individual hardware components. In this 
case, the system instance error model consists of the set of component error model instances 
and connection error model instances, if declared. The system instance error model represents 
a set of concurrent finite state stochastic automata. 

Error models can be associated with several levels of the system hierarchy at the same time. 
For example, an error model may be associated with an application thread, with an enclosing 
application (sub)system, and with the system as a whole. In this case the error model higher in 
the system hierarchy is an abstraction of the contained error models. The AADL Error Model 
Annex offers two approaches for representing error model abstractions: 

1) an abstract error model represents the behavior of a component in the presence of 
faults in terms of states and events inherent to the component, propagations from and to 
components this component interacts with, and transitions that are triggered by intrinsic 
events or incoming propagations and initiate outgoing propagations. The behavior of a 
component in the presence of faults is defined without referring to any subcomponent. 

2) a derived error model represents the behavior of a component in the presence of faults 
in terms of global states as a logic expression (Derived_State_Mapping) of the 
states of its subcomponents. The definition of the Derived_State_Mapping 
expression in Backus-Naur form is given in Figure II-25 without developing the 
Boolean expression. The Boolean expression refers to states of subcomponents and 
connections that are part of the component declaring the derived error model.  

 

Derived_State_Mapping ::= stateMapping_rule {, stateMapping_rule}* 
stateMapping_rule ::= globalState_id when boolean_expr 

Figure II-25. Derived_State_Mapping expression definition 

 

In Figure II-26, we use the same AADL architectural model to illustrate the two error 
model abstractions. The system A contains two components, A1 and A2, which have error 
models.  

In Figure II-26-a1, A has an abstract error model, indicated by the value abstract for the 
Model_Hierarchy property. Figure II-26-a2 describes this system in textual AADL. The 
behavior of the system in the presence of faults is considered to be the one described in the 
error model implementation dependent.general. The error models of subcumponents are 
ignored (thus we did not name them in Figure II-26-a1). 

In Figure II-26-b1, A has a derived error model, indicated by the value derived for the 
Model_Hierarchy property. When the Model_Hierarchy property is defined as 
derived, it is necessary to declare a Derived_State_Mapping expression to specify the 
global states of the component or system (declared in the type indicated by the Model 
property) as a logic expression of the states of its subcomponents. Figure II-26-b2 describes 
the system in textual AADL. The Derived_State_Mapping expression specifies that A is 



BACKGROUND 

40 

Error_Free if both A1 and A2 are Error_Free, and Failed otherwise. Error_Free and Failed 
must be states declared in the error model type dependent. 

To evaluate dependability measures, the user must specify state classes for the overall 
system. For example, if the user wishes to evaluate reliability or availability, it is necessary to 
specify the system states that are to be considered as failed states. If in addition, the user 
wishes to evaluate safety, it is necessary to specify the failed system states that are considered 
as catastrophic. In AADL, such state classes are declared by means of a derived error model 
for the overall system. 

 

  

- a1 - - b1 - 

 

system implementation A.nominal 
subcomponents 
  A1: system sw.nominal; 
  A2: system sw.nominal; 
annex Error_Model {** 
  Model => dependent.general; 
  Model_Hierarchy => abstract; 
**}; 
end A.nominal; 
 

 system implementation A.nominal 
subcomponents 
  A1: system sw.nominal; 
  A2: system sw.nominal; 
annex Error_Model {** 
  Model => dependent; 
  Model_Hierarchy => derived; 
  Derived_State_Mapping => 
   Error_Free when (A1[Error_Free]  
    and A2[Error_Free]), 
   Failed when others; 
**}; 
end A.nominal; 

- a2 - - b2 - 

Figure II-26. Architectural view of error model abstractions 

 

II.2 Petri nets 

This section presents the characteristics and terminology of classical place/transitions Petri 
nets (PN) before showing particularities of Generalized Stochastic Petri nets (GSPNs), which 
are an extension of PNs aimed at supporting performance and dependability analyses.  

II.2.1 Place/Transitions Petri nets 

PNs are directed graphs with two types of nodes: places drawn as circles and transitions 
drawn as boxes [Peterson 1981]. Places model partial states (conditions that may hold at 
given times). Transitions correspond to actions or events that may induce a state change. 



CHAPTER II 

 41 

Places can contain tokens drawn as dots. The state corresponding to a PN is called a marking 
and represents the number of tokens in each place. The initial marking represents the initial 
state.  

The arcs of the graph connect places with transitions. There are two types of arcs: normal 
(arrow-headed) and inhibitor (circle-headed). A place Pl is considered an input place of a 
transition t if there is an arc from Pl to t. A place Pl is considered an output place of a 
transition t if there is an arc from t to Pl. An arc is annotated with a positive number called 
weight (or multiplicity). By default the weight of an arc is 1. A transition is enabled when 
each of its input places has a number of tokens greater or equal to the weight of the 
corresponding input arc if that arc is normal and each of its input places is empty of tokens if 
the corresponding input arc is inhibitor. Several transitions can be enabled in a marking. Any 
enabled transition can fire leading to a new marking. The initial marking together with the 
structure of the PN define its state space. The reachability set contains all markings reachable 
from the initial marking. The reachability graph contains nodes corresponding to all markings 
contained in the reachability set. Nodes are connected through arcs corresponding to the 
firing of transitions leading from one marking to another one. 

Two transitions are considered to be in conflict if they are both enabled and the firing of 
one of them disables the other one.  

A PN is characterized by a set of properties. The most important are as follows. 

1) Bounded = The reachability set is bounded. In other words, all its places are k-bounded. 
A place is said to be k-bounded when the number of tokens in that place never exceeds 
a constant k.  

2) Live = All its transitions are live. A transition is said to be live if a path can be found in 
the reachability graph starting from any marking Mi such that a marking Mj is reached 
in which that transition is enabled.  

3) Reversible = From any marking, a path can be found so that the initial marking Mo is 
reached. 

Figure II-27 shows two examples of PN with their respective reachability graphs. They 
have the same initial marking (P1, P4), which represents the initial state.  

 

  

  

- a - - b - 

Figure II-27. Examples of PN 

 



BACKGROUND 

42 

In the PN of Figure II-27-a, transitions t1 and t3 are in conflict (if t1 fires, then t3 is 
disabled). This PN is bounded (all places are 1-bounded), live (from each marking, there is a 
path allowing to fire any transition) and reversible (the initial marking can be reached from 
the other markings).  

In the PN of Figure II-27-b, the only transition enabled in the initial marking is t3. This PN 
is bounded (all places are 1-bounded). It is not live (for example from marking M1, there is 
no path leading to a marking allowing to fire t3) and it is not reversible (the initial marking 
cannot be reached from the other markings). 

Formally, a PN is defined as a six-tuple: 

PN = {P, T, I, O, H, M0} where   

- P is the set of places, 

- T is the set of transitions, T  P= , 

- I, O, H: T  Bag(P), are the input, output and inhibitor functions, 

- M0 is the initial marking: a function that associates with a place a natural 
number corresponding to the number of tokens initially in that place. 

Given a transition t  T, we denote26 with: 

t = the set of of input places connected by unidirectional input arcs to a transition t, 
t = the set of output places connected by unidirectional output arcs from a transition t, 
°t = the set of input places connected by inhibitor arcs to a transition t. 

A_t = t t °t (the set of arcs connected to t) 

II.2.2 Generalized Stochastic Petri nets  

The definition of GSPNs is based on that of the classical PNs in which some transitions are 
timed while others are immediate [Ajmone Marsan et al. 1995]. Random, exponentially 
distributed firing delays are associated with timed transitions while the firing of immediate 
transitions takes no time. Immediate transitions have priority over timed transitions, i.e., if an 
immediate and a timed transition are both enabled in a marking, the immediate transition is 
fired first. The selection of the next transition to fire among several enabled immediate 
transitions is made through firing probabilities. The selection of the next transition to fire 
among several enabled timed transitions is made according to a race policy, i.e., the transition 
that fires is the one with the minimum firing delay. 

In a GSPN, the sojourn time for markings that enable timed transitions only is non-null and 
exponentially distributed. Conversely, the sojourn time for markings that enable immediate 
transitions is null. Markings of the former type are considered as tangible while markings of 
the latter type are considered to be vanishing.  

GSPNs do not preserve the reachability graph of the underlying PN because of the priority 
of immediate transitions over timed ones and of the mixing of exponentially distributed and 
null firing delays. Figure II-28 shows two examples of GSPN. Their underlying PNs are 
identical. However, their reachability graphs are different based on which transitions are 
timed and which transitions are immediate. In the example of Figure II-28-a, only t1 is 

                                                
26 The notation used here is slightly different of the one used in [Peterson 1981]. 



CHAPTER II 

 43 

timed27. t1 and t3 are both enabled in M0 but only t3 can be fired as t3 is immediate. Thus, this 
GSPN is not live (t1 and t2 never fire): it contains an infinite loop over a set of vanishing 
markings. All reachable markings are vanishing. In the example of Figure II-28-b, t2 and t4 
are timed. From M0, t1 fires with probability p and t3 fires with probability 1-p. M0 is 
vanishing.  

For the analysis of GSPNs, a reduced reachability set is of interest. It is formed of all 
tangible markings and is isomorphic to a Markov chain. The reduced reachability set for the 
example of Figure II-28-a is empty while the reduced reachability set for the example of 
Figure II-28-b contains M1 and M2.  

 

  

  

- a - - b - 

Figure II-28. Examples of GSPN 

 

In order to evaluate performance or dependability measures from a GSPN, the GSPN must 
be bounded and free of infinite loops over sets of vanishing markings. 

Formally, a GSPN is defined as a eight-tuple [Ajmone Marsan et al. 1995]: 

GSPN = {P, T, I, O, H, M0, , } where   

- The first six elements are the same as for PNs (see section II.2.1) 

- : T  {0, 1}, is a function that maps an immediate transition into the number 1 and a 
timed one into the number 0, meaning that immediate transitions have a priority 1 
(higher) than timed transitions (priority 0),  

- : T  +, defines the stochastic properties of transitions (the rate for timed transitions 
and the probability for immediate ones). 

II.3 Conclusion 

In this chapter, we introduced the AADL support for dependability analyses and we gave a 
brief overview of GSPNs, compared to classical PNs.  

                                                
27 The representation for immediate and timed transitions that we use here is different from the one used in 

[Ajmone Marsan et al. 1995]. An immediate transition is represented by an empty box while a timed one is 
represented by a full box. Intuitively, it takes no time to pass through an empty box and it takes time to pass 
through a full box. 



BACKGROUND 

44 

The AADL language support for dependability analyses is formed of two interacting 
languages: the core AADL and the AADL Error Model Annex. The core AADL is aimed at 
being the backbone of a system’s development process. It allows the description of 
component and connection-based architectures (formed of software and hardware) and 
architecture configurations through the use of operational modes. The AADL architectural 
model acts as a support for analysis-specific information, which is modeled through the use of 
annexes and properties. The Error Model Annex represents language support for modeling 
dependability-related information through the use of error models (which are separate of the 
AADL architectural model, favoring reusability) and error model annex subclauses for 
associating the dependability-related information to the architectural model.  

We presented the main concepts related to GSPNs, as well as the properties they must have 
to be analyzable. We illustrated them on examples that are very close in terms of structure, 
but that do not share properties. In particular, it is noteworthy that GSPNs do not necessarily 
preserve the properties of their underlying PNs.  

To obtain a dependability-oriented GSPN reflecting the behavior represented in the AADL 
architectural model enriched with error model annex constructs, we must transform the error 
model annex constructs into GSPN subnets. The connections between the subnets are dictated 
by the architectural model that hosts the error model annex constructs. Our modeling 
approach, and especially the AADL to GSPN transformation, is based on the language 
support presented in this chapter. However, the AADL language is still evolving. We present 
in Appendix A our evolution proposals for the Error Model Annex, that have been submitted 
to the SAE AADL standardization committee.  

The terminology related to GSPNs and their formalization presented in this Chapter is 
further used in Chapter IV, to describe the AADL to GSPN transformation rules. 



 

 45 

III AADL Dependability Modeling: 
Guidelines and Patterns 

Our iterative AADL-based dependability modeling approach introduced in Chapter I, 
Figure I-1, is based on identifying the components and connections of interest for the 
dependability analysis, followed by the identification of dependencies between them. First, 
the components’ behaviors in the presence of faults are modeled as if they were independent. 
Then, dependencies are added progressively. In this Chapter, we focus on the AADL 
dependability model construction. We first give general AADL modeling guidelines for 
independent components and for the different types of dependencies. Then, we show that the 
development of patterns is very useful to facilitate the modeling of fault-tolerant systems and 
to enhance the reusability of the models. Reusability contributes to reducing the cost of 
building the AADL dependability model. For example, to build models for alternative 
architectural solutions, several variants of one dependency may be added to the same 
intermediary AADL dependability model that already includes a set of common 
dependencies. 

Due to the separation of concerns between the architectural model and the dependability-
related information, model reusability is achieved at several levels: 

1) The AADL architectural models of components are reusable: a component 
declaration may be instantiated in several system models. A component model may 
represent a complex configuration of components and connections. This allows the 
definition of architectural patterns that may be the basis for building architectural 
models for candidate architectures. An architectural pattern may be used unmodified 
or may be customized by using the inheritance and refinement mechanisms provided 
by AADL. In particular, these mechanisms allow adding features, or making some of 
the subcomponent declarations modal, i.e., describing the fact that some of the 
subcomponents are active in particular operational modes and inactive in others. 

2) The AADL error models are reusable: instances of an error model may be 
associated with several components and connections. It is possible to customize error 
model instances by defining component-specific Occurrence properties for events and 
out propagations declared in the error model instantiated by the Model property. 

3) The AADL dependability models (AADL architectural model + AADL error 
models) are reusable: a component having an associated error model annex 
subclause may be instantiated in several system instance models, allowing the 
definition of dependability-oriented patterns that reduce the effort necessary for 
building AADL dependability models of candidate architectures for a given system 
specification. Dependability-oriented patterns take advantage of the two levels of 
reusability exposed above. Several dependability-oriented patterns may be based on 
the same architectural pattern (only the dependability-related information differs 
between them). Also, they may be based on customized architectural patterns, i.e., on 
AADL dependability models that extend the patterns through the AADL inheritance 
and refinement mechanisms.  



THE AADL DEPENDABILITY MODEL 

46 

Since our ultimate goal is to obtain dependability measures from AADL models, this 
Chapter focuses on the third level of reusability, related to dependability-oriented patterns. 
For conciseness, we will refer to them simply as patterns. Patterns are useful if they represent 
common behaviors that do not need substantial customization. Otherwise, their reusability is 
questionable.  

This chapter is organized as follows. Section III.1 gives recommendations for modeling 
independent components. Section III.2 is dedicated to modeling dependencies. Section III.3 
presents reusable and customizable patterns for fault-tolerance policies and Section III.4 
concludes this Chapter.  

III.1 Modeling independent components 

The behavior of each component of an architectural model that is considered for the 
dependability analysis is first described as resulting from its own faults and repair events. To 
this end, the user associates with each component a generic error model representing a state 
machine. An error model representing an isolated component is formed of states and events. 
Events are considered inherent to the component. The only effect the occurrence of an event 
may have is a state change in the component itself. In our modeling framework, we require 
that the source and the destination of an AADL transition triggered by an event be different 
states. In this way, an event always has a physical meaning.  

A transition triggered from an origin state by an immediate event i, whose Occurrence 

property is pi, occurs with a probability pi p j

j=1

n

, where n is the number of events that 

trigger transitions out of the same origin state.  

It is noteworthy that qualitative dependability analyses do not require the definition of 
Occurrence properties for events. As we focus on quantitative evaluation of dependability 
based on AADL models, we do require the definition of Occurrence properties for all events. 
When a generic error model is associated with a component, it may be customized by 
specifying component-specific Occurrence properties for its events. Component-specific 
Occurrence properties override the default values defined in the generic error model. 

Generally, if the targeted dependability analysis requires the derivation of a state space 
model (such as a GSPN or a Markov chain), it is recommended to avoid the declaration of 
immediate events, as they may lead to state space explosion that may cause problems in 
processing the model. From a practical point of view, only stable states, i.e., states that are 
sources of transitions triggered by timed events, have a physical meaning. Immediate 
propagations will be used for the synchronization of effects on other components, as 
explained in subsection III.2.1. 

III.2 Modeling dependencies 

The dependencies between different components of the AADL dependability model are 
described using named out and in propagations to model respectively which propagations 
coming from other components are known within the component by the specified name and 
which parts of the behavior of the component are made visible to the interacting components 
(see Section II.1.2.2). By default, the mapping of an out propagation occurring in a 



CHAPTER III 

 47 

component to an in propagation of another component is determined by name matching. The 
user may override this rule by explicitly specifying such mappings as Guard_In and 
Guard_Out properties.  

Subsection III.2.1 gives guidelines on the use of out and in propagations, which are the 
main way to describe a dependency. The subsequent subsections (III.2.2, III.2.3 and III.2.4) 
guide the description of structural and functional dependencies, those related to maintenance 
and those related to fault-tolerance.  

III.2.1 On the use of out and in propagations 

The occurrence of an out propagation may or may not trigger a state change in the 
component that declares it. From a semantic point of view, if it triggers a state change, then 
the transition from the origin state to the destination state is made visible to other 
components. Alternatively, the propagation makes this state visible to other components (i.e., 
when the propagation occurs, other components are notified of the fact that this component is 
in this state). In other words, an out propagation triggering a state change is either consumed 
immediately or it does not have any effect on its recipient component and connections. An 
out propagation that does not trigger a state change is visible while the component is in that 
state. These two cases are shown in Figure III-1. In Figure III-1-a, the out propagation 
IGoFromAtoB triggers an AADL transition from state A to state B. This transition, 
represented by a dotted line, is made visible to other components. In Figure III-1-b, the out 
propagation IAmInA does not trigger a state change, i.e., the AADL transition it triggers has 
the same state as origin and destination. The fact that the component is in state A, represented 
by a dotted line, is made visible to other components. In the first case, the transition is always 
made visible from outside. In the second case, the state may be made visible with a given 
probability or with a delay characterizing the Occurrence of the out propagation.  

We suggest using this second case whenever possible, as it favors model readability: the 
propagation assumption is separate from the internal event, whereas, in the first case, the 
propagation assumption is built in. Removing the dependency requires the transformation of 
the propagation declaration into an event declaration in the first case.  

We require that the source and the destination of an AADL transition triggered by an in 
propagation be different states. This prevents infinite loops over a set of vanishing28 states. 

 

  

  

A-[out IGoFromAtoB]->B;  A-[out IAmInA]->A; 

- a - - b - 

Figure III-1: Transition and state visible from outside 

                                                
28 A state is said to be vanishing if all the AADL transitions having it as a source are triggered by events or propagations 

characterized by Occurrence properties which are fixed probabilities. 



THE AADL DEPENDABILITY MODEL 

48 

Due to the fact that vanishing states are not physical states, we warn the user about the 
following modeling configurations and suggest their avoidance: 

- An in propagation triggering a transition out of a vanishing state never occurs.  

- A timed out propagation triggering a transition out from a vanishing state never occurs. 

Also, if from a stable state S, the only exit is through an AADL transition triggered by an 
immediate out propagation whose probability p is different of 1, the component remains 
blocked in that state S with probability 1-p. 

III.2.2 Modeling structural and functional dependencies 

Structural and functional dependencies are supported by the architectural model and must 
be modeled in the error models associated with dependent components, usually by specifying 
respectively outgoing and incoming propagations and their impact on the corresponding error 
models. An example of structural dependency is shown in Figure III-2. Figure III-2-a presents 
the AADL architectural model: a thread is bound to a processor. Figure III-2-b shows the 
corresponding dependency block diagram (the behavior of the thread depends on the behavior 
of the processor). Figure III-2-c presents the AADL dependability model where error models 
are associated both with the thread and with the processor to describe the dependency. 

The error model associated with the processor takes into account the sender-side 
dependency from the processor to the thread. The error model associated with the thread takes 
into account the recipient-side dependency. When the processor is in the erroneous state, it 
sends a propagation through the binding of the thread to the processor. As a consequence, the 
incoming propagation Error causes the failure of the thread. The Error propagation is visible 
while the processor remains in the erroneous state, since the AADL transition triggered by the 
out propagation Error in the processor has the same state as origin and destination.  

 

   

a: AADL 
architectural model 

b: dependency block 
diagram 

c: AADL dependability model 

Figure III-2. Structural dependency example 

III.2.3 Modeling maintenance dependencies 

Maintenance dependencies need to be described when repair and restoration facilities are 
shared between components or when the maintenance activity of some components has to be 
carried out according to a given order or a specified strategy. 



CHAPTER III 

 49 

Components that are not dependent at the architectural level may become dependent due to 
the fact that they share maintenance facilities or to the synchronization of the maintenance 
activities. Thus, the architectural model might need some adjustments to support the 
description of dependencies related to the maintenance policy. As error models interact only 
via propagations through architectural features (i.e., connections, bindings), the maintenance 
dependency between components’ error models must also be supported by the architectural 
model. This means that besides the system architecture components, we may need to add 
components representing the shared repair facilities (or repairmen) to model the maintenance 
dependencies. These additional components do not have any role at the design level (except 
for being an indication that maintenance is forseen for the system), but they support 
dependability modeling. Figure III-3-a shows an architectural model example where 
Processor1 and Processor2 do not interact (there is no architectural dependency between 
them and they only interact with the threads bound to them). However, if we assume that they 
share one repairman, it is necessary to represent the repairman at the level of the architectural 
model, as shown in Figure III-3-b, which represents the AADL dependability model taking 
into account the maintenance dependency between the two processors. 

 

  

- a - - b - 

Figure III-3. Maintenance dependency example 

 

Also, the error models of dependent components might need some adjustments. For 
example, to represent the fact that Processor1 must be repaired only if Processor2 is not 
failed, it is necessary to decompose the failed state of Processor1 to distinguish between a 
state where Processor1 waits to be repaired and a state where it is being repaired. In the next 
two subsections, we give two concrete examples of maintenance dependencies: the first one 
models a shared maintenance facility. The second one extends the first one to consider the 
priority of one of the components to repair. 

III.2.3.1 Shared maintenance facility 

It is assumed that the maintenance facility (or repairman) is a shared resource between two 
components. Thus, if both components fail one after the other, the second failed component 
must wait until the maintenance facility has been released by the first failed component. It is 
straightforward to generalize the pattern for several components.  

We consider the system of Figure III-3-b, in which Processor1 and Processor2 share a 
repairman. Instances of the same error model, dependent.general, are associated with 
Processor1 and Processor2. The repairman also has an error model. The maintenance and 
recovery policy is described in the error models. Figure III-4 shows the error model 



THE AADL DEPENDABILITY MODEL 

50 

dependent.general. We need to distinguish between the failed state where the component does 
not use the repairman and the state where it uses it. To this end, the error model declares the 
following two states: Failed, InRepair (see lines f1, f2). We also need to declare a state 
meaning that the component has been repaired (see line f3), so that the repairman knows 
when it has been released29. When the component fails, it notifies the repairman (see lines o1, 
o1’). It expects an authorization to be repaired (see lines i1, i1’). When it has been repaired, it 
releases the repairman (see lines o2, o2’). 

 

 
 

 
 
 
 
(f1) 
(f2) 
(f3) 
 
 
 
 
 
(o1) 
(o2) 
(i1) 
 

Error Model Type [dependent] 
 

error model dependent 
features 
  Error_Free: initial error state; 
  Erroneous: error state; 
  Failed: error state; 
  InRepair: error state; 
  Repaired: error state; 
  Temp_Fault: error event {Occurrence => poisson 1};  
  Perm_Fault: error event {Occurrence => poisson 2};  
  Restart: error event {Occurrence => poisson μ1}; 
  Recover: error event {Occurrence => poisson μ2}; 
  Error: out error propagation {Occurrence => fixed p}; 
  FailedVisible: out error propagation {Occurrence => fixed q}; 
  IRepaired: out error propagation {Occurrence => fixed 1}; 
  IRepair: in error propagation; 
end dependent; 

 
 

 
 
 
 
 
 
(o1’) 
(i1’) 
 
(o2’) 
 

Error Model Implementation [dependent.general] 
 

error model implementation dependent.general 
transitions 
  Error_Free-[Perm_Fault]->Failed; 
  Error_Free-[Temp_Fault]->Erroneous; 
  Erroneous-[Recover]->Error_Free; 
  Erroneous-[out Error]->Erroneous; 
  Failed-[out FailedVisible]->Failed; 
  Failed-[in IRepair]->InRepair; 
  InRepair-[Restart]->Repaired; 
  Repaired-[out IRepaired]->Error_Free; 
end dependent.general; 

Figure III-4. Error model for component with maintenance dependency 

Figure III-5 shows the error model associated with the repairman. The error model 
repairman.general declares two states: Free (initial state) and Busy. The transitions between 
them are triggered by in propagations (coming from Processor1 or Processor2). Assuming 
that the repairman is Free, if it receives a FailedVisible propagation from one of the 
components, it goes to state Busy and sends a IRepair propagation to the component that sent 
the FailedVisible propagation, to allow it to go to state InRepair. At the end of the recovery 
procedure, the component sends an IRepaired propagation allowing the repairman to go back 
to state Free. 

The IRepair propagation must be sent only to the component that sent the FailedVisible 
propagation. Otherwise, if both components fail one after the other, both receive the IRepair 

                                                
29 We cannot use the Error_Free state to this end, as the repairman could be released if the other processor is 

Error_Free (the processor receives propagations from both processors and cannot distinguish between 
propagations having the same name and coming from different components).  



CHAPTER III 

 51 

propagation and are repaired simultaneously. The Guard_Out properties of Figure III-6 are 
used in order to send the IRepair propagation only to the concerned component. They are 
associated with the ports toP1 and toP2, which are the origins for connections respectively to 
Processor1 and Processor2.  

 

 
 

 
 
 
 
 
 
 
 

Error Model Type [repairman] 
 

error model repairman 
features 
  Free: initial error state; 
  Busy: error state; 
  FailedVisible: in error propagation; 
  IRepaired: in error propagation; 
  IRepair: out error propagation {Occurrence => fixed 1}; 
end repairman; 

 
 

 
 
 
 
 
 

Error Model Implementation [repairman.general] 
 

error model implementation repairman.general 
transitions 
  Free-[in FailedVisible]->Busy; 
  Busy-[in IRepaired]->Free; 
end repairman.general; 

Figure III-5. Error model for shared maintenance facility 

 

 

 system repairman 
features 
  fromP1: in event data port; 
  fromP2: in event data port; 
  toP1: out event data port; 
  toP2: out event data port; 
end repairman; 

 system implementation repairman.generic 
annex Error_Model {** 
 Model => repairman.general; 
 Guard_Out =>  
   IRepair when fromP1[FailedVisible] and self[Busy]  
    and (not fromP2[InRepair]), 
             applies to toP1; 
 Guard_Out =>  
   IRepair when fromP2[FailedVisible] and self[Busy] 
    and (not fromP1[FailedVisible]) 
             applies to toP2; 
**}; 
end repairman.generic; 

Figure III-6. Textual AADL dependability model – shared maintenance facility 

III.2.3.2 Priority to a component’s maintenance 

As in the previous subsection, it is assumed that the maintenance facility (or repairman) is a 
shared resource between two components. In addition, it is assumed that one of the 
components has a priority to repair. The AADL dependability model of Figure III-3-b applies 
to this policy too. An adjustment is necessary in the error model dependent.general, to bring 
the component back from state InRepair to state Failed, if the other component failed in the 



THE AADL DEPENDABILITY MODEL 

52 

meanwhile and has a priority to repair. Figure III-7 shows what needs to be added (line i2 in 
the error model type and line i2’ in the error model implementation). StopRepair must also be 
declared as an out propagation in the error model associated with the repairman. 

 

(i2)   StopRepair: in error propagation; 

(i2’)   InRepair-[in StopRepair]->Failed; 

Figure III-7. Refinement of dependent.general 

Let us assume that Processor1 has a priority to repair. We model the behavior related to the 
priority to repair by using two different Guard_Out properties associated with the ports toP1 
and toP2, as shown in Figure III-8.  

The Guard_Out property associated with toP1 specifies that the repairman sends the 
IRepair propagation through toP1 as soon as it perceives FailedVisible at the port fromP1 (it 
does not matter if Processor2 failed, as Processor1 has a priority). The Guard_Out property 
associated with toP2 specifies that the repairman sends the IRepair propagation through toP2 
as soon as it perceives FailedVisible at the port fromP2 only if FailedVisible is not perceived 
at the port fromP1 too. Also, a StopRepair propagation is sent through toP2, when Processor1 
fails while Processor2 is being repaired, to make Processor2 return to the Failed state.  

 

 system implementation repairman.generic 
annex Error_Model {** 
 Model => repairman.general; 
 Guard_Out =>  
   IRepair when fromP1[FailedVisible] and self[Busy], 
             applies to toP1; 
 Guard_Out =>  
   IRepair when fromP2[FailedVisible]  
    and (not fromP1[FailedVisible]) and self[Busy], 
   StopRepair when fromP1[FailedVisible]  
    and (not fromP2[InRepair]) and self[Busy] 
             applies to toP2; 
**}; 
end repairman.generic; 

Figure III-8. Textual AADL dependability model – maintenance with priority 

III.2.4 Modeling fault-tolerance dependencies  

Modeling fault-tolerance policies requires the description of architectural reconfigurations. 
Such configurations are modeled by AADL modes. Mode-specific fault tolerant system 
configurations reflect the fault-tolerance policy chosen for the system or for particular parts of 
the system. For example, a fault tolerant system formed of three components may have a 
nominal operational mode corresponding to a triple-redundancy configuration and degraded 
operational modes corresponding to dual-redundant configurations. 

The architectural model may need adjustments to reflect the structure and mode dynamics 
required by the considered fault-tolerance policy. In fact, the architectural model depends 
very much on the fault-tolerance policy, since the fault-tolerance policy determines the 
number of replicas, the decision-making components (e.g., a voter), the connections and fault 
tolerant modes. Once the architectural model reflects the structure of the fault tolerant system, 
the dependency related to the configuration changes due to the fault-tolerance policy must be 
modeled at the error model level. An example is shown in Figure III-9. Figure III-9-a presents 



CHAPTER III 

 53 

the AADL architectural model that already reflects the considered fault-tolerance policy: 
triple redundancy with degraded operational modes corresponding to dual-redundant 
configurations. Figure III-9-b shows the corresponding dependency block diagram, in which 
the behavior of the voter V depends on the data input received from the three replicas: R1, R2 
and R3. The behavior of the replicas depends on the decision of the voter: for example, if it 
decides that R1 is faulty, then it deactivates R1. In other words, the triple modular redundant 
system moves from mode TMR to mode R2R3. Figure III-9-c presents the AADL 
dependability model where error model instances are associated with each replica and with 
the voter, to describe the fault-tolerance dependency between the replicas and the voter.  

Both modes and error states represent states of a system. The difference between them lies 
primarily in their semantics. Error states result from occurrences of error events (faults, repair 
events) while modes represent operational states of the system that may be totally 
independent of the occurrence of error events.  

 

  

a: AADL architectural model b: Dependency block diagram 

 

c: AADL dependability model 

Figure III-9. Fault-tolerance dependency example 

Error states may influence the mode dynamics through the use of Guard_Event and 
Guard_Transition properties. Modes may influence the error state dynamics through the 
use of activate / deactivate transitions. These mechanisms have been presented in 
Section II.1.2.4. Concrete examples of their use for modeling fault tolerant dependencies are 
given in Section III.3 (dedicated to fault-tolerance patterns). 



THE AADL DEPENDABILITY MODEL 

54 

Error states referred to in Guard_Event properties must be stable30, to ensure that the 
generated events always occur if the corresponding Boolean expression evaluates to TRUE. 

For a component having distinct behaviors when it is active and inactive, source states of 
activate and deactivate transitions must be stable. Otherwise, they may never occur, 
as the component would move in zero time to a stable state. 

Modes are also used for modeling modes of operation in phased-mission systems. 
Operational modes in phased-mission systems model configurations representative of 
different phases in a mission. For example, in the case of an aircraft model, one may 
distinguish between the takeoff, cruise and landing phases. During each of the three phases, 
the system would have a particular configuration with active components and connections. 
Also, the behavior in the presence of faults would be different during each phase. Different 
types of faults may affect the system in different phases. 

Usually, phased-mission systems also need modes to represent fault-tolerance mechanisms. 
In AADL, this nesting of modes is captured by phased-mission modes in a component, which 
is a subcomponent of a system component whose modes represent alternative configuration of 
its redundant subcomponents. 

III.3 Fault-tolerance patterns 

The two following subsections present successively patterns for classical hardware and 
software fault-tolerance policies that tolerate a single fault. Preliminary versions of the 
patterns have been presented in [Rugina et al. 2006a]. For hardware, we considered N-
modular redundancy (exemplified on a triple modular redundancy scheme), and several 
duplex schemes: cold, warm, hot standby and active dynamic redundancy with self-checking 
components. For software, we considered N-version programming (exemplified on 3-version 
programming), the recovery block and N self-checking programming (both exemplified on 
duplex architectures). We adopt the terminology of [Laprie et al. 1990]. 

All patterns presented in the rest of this Section instantiate error models presented 
previously in sections II.1.2.2 (sender.general - for dependent components) and II.1.2.4.3 
(modal.general - for activate / deactivate transitions). We add to these error models 
an out propagation FailedVisible that makes visible the failure, as shown in Figure III-10.  

 

(d1’’)   FailedVisible: out error propagation {Occurrence => fixed q}; 

(d2’’)   Failed-[out FailedVisible]->Failed; 

Figure III-10. Failure propagation in error model sender.general 

III.3.1.1 Hardware fault-tolerance 

Each of the subsequent subsections first presents the specifications of a fault-tolerance 
policy and then it shows the corresponding AADL pattern. 

                                                
30 A stable state is a non-vanishing state, i.e., there is at least one AADL transition having it as a source and triggered by a 

timed event or propagation.  



CHAPTER III 

 55 

III.3.1.1.1 N-modular redundancy 

N-modular redundancy assumes that the fault tolerant system is formed of N active replicas 
and a decider which acts as a voter. The outputs of all replicas are compared by the voter, 
which decides which output to be delivered. The result given by the majority is delivered as 
result of the system. If more than (N-2) replica failed, then the system is considered to have 
failed. The voter may also fail. If so, the system is considered to have failed. 

The N-modular redundancy pattern is modeled in AADL in Figure III-11 by considering 
three replicas (i.e., Triple Modular Redundancy). The system A is formed of three replicas 
(R1, R2 and R3) and a decider. The error model sender.general is associated with R1, R2, R3 

and the decider. The three replicas are connected through event data connections to the 
decider. Based on the data received and on its own state, the decider/voter decides which 
result is to be delivered: if at least two replicas outputs are erroneous, an error is propagated.  

 

 

Figure III-11. N-modular redundancy pattern 

 

The AADL dependability models of the replicas are identical: an instance of the error 
model sender.general is associated with each replica. Note that it is possible to customize this 
generic error model to the components by setting component-specific Occurrence properties 
for events and propagations. Figure III-12 shows only the AADL dependability model of the 
decider. A Guard_Out property is associated with the decider’s out port Output. It specifies 
that the system propagates out FailedVisible when the decider failed or when at least two 
replicas failures have been detected by the decider. 

 

 system decider 
features 
  i1: in event data port; 
  i2: in event data port; 
  i3: in event data port; 
  Output: out event data port; 
end decider; 

 system implementation decider.generic 
annex Error_Model {** 
 Model => sender.general; 
 Guard_Out =>  
   FailedVisible when two ormore (i1[FailedVisible],  
        i2[FailedVisible], i3[FailedVisible]) or self[Failed] 
             applies to Output; 
**}; 
end decider.generic; 

Figure III-12. Textual AADL dependability model – N-modular redundancy 



THE AADL DEPENDABILITY MODEL 

56 

III.3.1.1.2 Cold standby sparing 

The cold standby sparing fault tolerant system is formed of two replicas. One replica is 
active while the other one is powered off. A decider (representing a physical switch) monitors 
the active replica. If it detects its failure, it powers off the active replica and powers on the 
spare, which continues to provide the service. If the decider detects the failure of the second 
replica, it powers it off and the system is considered as Failed. It is assumed that an inactive 
replica does not fail. However, the pattern can be extended to include such failures. 

The cold standby sparing pattern is modeled in AADL in Figure III-13. For this pattern, we 
show the textual AADL dependability model of the system in Figure III-14.  

 

 

Figure III-13. Cold standby sparing pattern 

 

According to the specification, the system B1 is formed of two replicas (R1 and R2) and a 
decider (see Figure III-13). The behavior of the replicas is described by the error model 
modal.general (they do not fail when they are inactive). Each replica, together with the 
connections to and from it, is active in one operational mode. In the mode NoResult, none of 
the replicas is active. The behavior of the decider is described by the error model 
sender.general. The decider’s out event port action triggers the mode transitions so that to 
activate / deactivate R1 and R2. 

The replicas have the same component type and implementation with an associated instance 
of the error model modal.general, which is not shown in Figure III-14. The upper part of 
Figure III-14 shows the component type and implementation of the decider while the lower 
part corresponds to the whole system type and implementation. 

A Guard_Event property is associated with the decider’s out event port action, to specify 
the mode switching conditions. The system switches from ResultR1 to ResultR2 when the 
decider detects the failure of R1 (R1 is active and a FailedVisible propagation is perceived at 
the decider’s Input port). It switches from ResultR2 to NoResult when the decider detects the 
failure of R2 (R2 is active and a FailedVisible propagation is detected at the decider’s Input 
port). If the decider fails, it does not order a mode switch. 

 



CHAPTER III 

 57 

 system decider 
features 
  Input: in event data port; 
  Output: out event data port; 
  action: out event port; 
end decider; 

 system implementation decider.generic 
annex Error_Model {** 
 Model => sender.general; 
 Guard_Event => Input[FailedVisible] and self[Error_Free] 
  applies to action; 
**}; 
end decider.generic; 

 system ColdStandBy 
features 
  sysInput: in event data port; 
  sysOutput: out event data port; 
end ColdStandBy; 

 
 
(c1) 
(c2) 
 

system implementation ColdStandBy.generic 
subcomponents 
  R1: system replica.generic in modes ResultR1; 
  R2: system replica.generic in modes ResultR2; 
  decider: system decider.generic; 
connections 
  event data port sysInput->R1.Input in modes ResultR1; 
  event data port sysInput->R2.Input in modes ResultR2; 
  event data port R1.Output->decider.Input in modes ResultR1; 
  event data port R2.Output->decider.Input in modes ResultR2; 
  event data port decider.Output->sysOutput; 
modes 
  ResultR1: initial mode; 
  ResultR2, NoResult: mode; 
  ResultR1-[decider.action]->ResultR2; 
  ResultR2-[decider.action]->NoResult; 
end ColdStandBy.generic; 

Figure III-14. Textual AADL dependability model – cold standby sparing 

 

III.3.1.1.3 Warm standby sparing 

Similarly to the cold standby sparing, the warm standby sparing fault tolerant system is 
formed of two replicas. Unlike the cold standby sparing policy, the warm standby sparing 
policy assumes that both replicas are always powered on and only a single replica’s output is 
active. Based on the input from the replica whose output is active, a decider attempts to detect 
failures, so as to activate the output of the other replica.  

The warm standby sparing pattern is modeled in AADL in Figure III-15. Compared to the 
AADL model of the cold standby sparing of Figure III-13, the only difference is that both R1 
and R2 are active in modes ResultR1 and ResultR2 of B2. Only the connections are modal.  

To obtain the textual AADL model of the warm standby sparing, based on the model of the 
cold standby sparing, we replace lines c1, c2 of Figure III-14 with lines w1, w2 shown in 
Figure III-16. Note that associating the error model sender.general instead of modal.general 
with the replicas does not change anything in the system behavior. 



THE AADL DEPENDABILITY MODEL 

58 

 

 

Figure III-15. Warm standby sparing pattern 

 

 

 
 
(w1) 
(w2) 
 

System implementation WarmStandBy.generic 
subcomponents 
  R1: system replica.generic in modes ResultR1, ResultR2; 
  R2: system replica.generic in modes ResultR1, ResultR2; 
  decider: system decider.generic; 
[…] 
end WarmStandBy.generic; 

Figure III-16. Textual AADL dependability model – warm standby sparing 

 

III.3.1.1.4 Hot standby sparing 

The hot standby sparing fault tolerant system is formed of two active replicas: a primary 
and a backup. A decider monitors the two replicas. If it detects the failure of the primary, it 
orders the backup to take over so as to continue to provide the service. If both replicas fail one 
after the other, the first one recovered becomes the primary. In this Section, we present 
successively two ways of modeling this specification in AADL.  

The AADL dependability model of Figure III-17 represents a first model variant of the hot 
standby sparing pattern. The system C1 is formed of two replicas (R1 and R2) and a decider. 
The error model sender.general is associated with R1, R2, and the decider. Each replica can 
be in one of two modes: primary and backup. When a component is in primary mode, it 
provides the service expected from the redundant system. If the decider detects the failure of 
the replica in primary mode, it initiates a mode switch in each component, so that the one that 
is Error_Free continues to provide the service. In the case of failure of both components, it 
waits until one of them becomes operational and orders it to go to primary mode. 

Figure III-18 shows the textual AADL dependability model of the component initially in 
primary mode (upper part of the figure) and of the decider (lower part of the figure).  



CHAPTER III 

 59 

 

Figure III-17. AADL architectural model of the hot standby sparing pattern (variant 1) 

 

 

 system replica 
features 
  Input: in event data port; 
  Output: out event data port; 
  BePrim, BeBack: in event port; 
  toDecider: out event port; 
end replica; 

 system implementation replica.primary 
modes 
  primary: initial mode; 
  backup: mode; 
  primary-[BeBack]->backup; 
  backup-[BePrim]->primary; 
annex Error_Model {** 
 Model => sender.general; 
**}; 
end replica.primary; 

 system decider 
features 
  fromR1, fromR2: in event port; 
  Prim1, Prim2: out event port; 
end decider; 

 system implementation decider.generic 
annex Error_Model {** 
 Model => sender.general; 
 Guard_Event => fromR1[FailedVisible] and fromR2[Error_Free]  
      and self[Error_Free] applies to Prim2;  
 Guard_Event => fromR2[FailedVisible] and fromR1[Error_Free] and 
      self[Error_Free] applies to Prim1;  
**}; 
end decider.generic; 

Figure III-18. Textual AADL dependability model – hot standby sparing (variant 1) 

 

As shown in Figure III-18, Guard_Event properties are associated with the out ports 
Prim1 and Prim2 of the decider to specify that a mode switch from primary to backup is to be 
performed in one of the components when the decider detects the failure of the other 
component. At the same time, a mode switch from backup to primary is to be performed in 
the other component, i.e., one event triggers two mode transitions, one in each replica. If the 
decider fails, it stops sending switch orders until it is restarted. 



THE AADL DEPENDABILITY MODEL 

60 

The AADL dependability model of Figure III-19 represents a second model variant of the 
hot standby sparing pattern. As the system C1, the system C1’ is formed of two replicas (R1 
and R2) and a decider. The error model sender.general is associated all components.  

The difference between C1 and C1’ is that in C1 each replica has its own operational 
modes while in C1’ the system itself can be in one of two modes: R1_primary and 
R2_primary. The decider initiates a mode switch from R1_primary to R2_primary if it detects 
the failure of R1 while R2 is Error_Free. If both replicas fail, no mode change is ordered. 
Further on, in section III.3.1.3, we give guidance on choosing one of the two alternative 
patterns.  

 

 

Figure III-19. AADL architectural model of the hot standby sparing pattern (variant 2) 

 

Figure III-20 shows the complete textual AADL dependability model for the pattern C1’. 
The replicas have the same component type and implementation, given in the upper part of 
Figure III-20. The middle part shows the component type and implementation of the decider 
while the lower part corresponds to the whole system type and implementation. The 
Guard_Event properties associated with the out event ports Prim1 and Prim2 of the decider 
are the same as those of the first variant of the pattern. 



CHAPTER III 

 61 

 

 system replica 
features 
  Input: in event data port; 
  Output: out event data port; 
  toDecider: out event port; 
end replica; 

 system implementation replica.primary 
annex Error_Model {** 
 Model => sender.general; 
**}; 
end replica.primary; 

 system decider 
features 
  fromR1, fromR2: in event port; 
  Prim1, Prim2: out event port; 
end decider; 

 system implementation decider.generic 
annex Error_Model {** 
 Model => sender.general; 
 Guard_Event => fromR1[FailedVisible] and fromR2[Error_Free]  
      and self[Error_Free] applies to Prim2;  
 Guard_Event => fromR2[FailedVisible] and fromR1[Error_Free] and 
      self[Error_Free] applies to Prim1;  
**}; 
end decider.generic; 

 system HotStandBy_v2 
features 
  sysInput: in event data port; 
  sysOutput: out event data port; 
end HotStandBy_v2; 

 
 
 
 
 

system implementation HotStandBy_v2.generic 
subcomponents 
  R1: system replica.generic; 
  R2: system replica.generic; 
  decider: system decider.generic; 
connections 
  event data port sysInput->R1.Input; 
  event data port sysInput->R2.Input; 
  event data port R1.Output->sysOutput; 
  event data port R2.Output->sysOutput; 
  event data port R1.toDecider->decider.fromR1; 
  event data port R2.toDecider->decider.fromR2; 
modes 
  R1_primary: initial mode; 
  R2_primary: mode; 
  R1_primary-[decider.Prim2]->R2_primary; 
  R2_primary-[decider.Prim1]->R1_primary; 
end HotStandBy_v2.generic; 

Figure III-20. Textual AADL dependability model – hot standby sparing (variant 2) 

 

III.3.1.1.5 Active dynamic redundancy 

We consider active dynamic redundancy with two self-checking replicas. One replica plays 
the primary role while the other one plays the backup role. It is assumed that each replica is 
able to detect its own failure and to notify the other replica about its failure. If the primary 
fails, it notifies the backup, which takes over. If both replicas fail one after the other, the first 
one recovered becomes the primary. In this Section, we present successively two ways of 
modeling this pattern in AADL. 



THE AADL DEPENDABILITY MODEL 

62 

The AADL dependability model of Figure III-21 represents a first model variant of the 
pattern. The system C2 is formed of two replicas (R1 and R2). The error model 
sender.general is associated with R1 and R2. Each replica can be in one of these three modes: 
primary, backup and recovery31. At the beginning, one component is in primary mode while 
the other one is in backup mode. When a replica is in primary mode, it provides the service 
expected from the redundant system. The two replicas are connected through data 
connections. Based on the data received and on its own state, each component decides 
whether it must be the sender of output. When a failure occurs in a component, the 
component goes to recovery mode. If the failed component was in primary mode, the other 
component takes over.  

In the previous patterns, the mode transitions of a component or system are controlled by a 
separate decider component. In this pattern, we use self-managing components that control 
their own mode transitions. This is modeled by local event ports (represented as dotted ovals) 
triggering the mode transitions. 

 

 

Figure III-21. Active dynamic redundancy pattern with self-checking replicas (variant 1) 

 

The two components’ architectural models are identical except for their initial modes, i.e., 
one is initially in primary mode while the other one is in recovery mode. Thus, Figure III-22 
shows only the textual AADL dependability model of the component that is initially in 
primary mode. Guard_Event properties are associated with all internal ports (expressed by 
self.eventname) named in mode transitions. For example, the first declared Guard_Event 
property specifies that the component moves to recovery mode when it fails. 

                                                
31 Here we chose to model explicitly the recovery of each replica through a mode. However, it is possible to 

consider only two modes: primary and backup, as in the previously presented models. 



CHAPTER III 

 63 

 

 system replica 
features 
  Input: in event data port; 
  Output: out event data port; 
  toReplica: out data port; 
  fromReplica: in data port; 
end replica; 

 system implementation replica.primary 
modes 
  primary: initial mode; 
  backup, recovery: mode; 
  primary-[self.IFailed]->recovery; 
  backup-[self.IFailed]->recovery; 
  recovery-[self.IPrim]->primary; 
  recovery-[self.IBackup]->backup; 
  backup-[self.IPrim]->primary; 
annex Error_Model {** 
 Model => sender.general; 
 Guard_Event => self[Failed] applies to self.IFailed; 
 Guard_Event => fromReplica[FailedVisible] and self[Error_Free] 
  applies to self.IPrim; 
 Guard_Event => fromReplica[Error_Free] and self[Error_Free] 
       applies to self.IBackup; 
**}; 
end replica.primary; 

Figure III-22. Textual AADL dependability model – active dynamic redundancy (variant 1) 

 

The AADL dependability model of Figure III-23 represents a second model variant of the 
pattern.  

 

 

Figure III-23. Active dynamic redundancy pattern with self-checking replicas (variant 2) 

 

Similarly to C2, the system C2’ is formed of two replicas (R1 and R2). The error model 
sender.general is associated with R1 and R2. Unlike C2, the system C2’ has operational 
modes at the system level instead of having them at the replicas’ level. The initial mode is 
R1_primary, meaning that R1 plays the role of primary. Based on the data received from the 
other replica and on its own state, the replica acting as backup can decide to take over by 
initiating a mode transition. Thus, the transition from R1_primary to R2_primary is triggered 
by the out event port IAmPrim of R2 and the transition from R2_primary to R1_primary is 



THE AADL DEPENDABILITY MODEL 

64 

triggered by the out event port IAmPrim of R1. Further on, in section III.3.1.3, we give 
guidance on choosing one of the two alternative patterns. 

Figure III-24 shows the complete textual AADL dependability model for the C2’ pattern.  
 

 system replica 
features 
  Input: in event data port; 
  Output: out event data port; 
  toReplica: out data port; 
  fromReplica: in data port; 
  IAmPrim: out event port; 
end replica; 

 system implementation replica.primary 
annex Error_Model {** 
 Model => sender.general; 
 Guard_Event => fromReplica[FailedVisible] and self[Error_Free] 
  applies to IAmPrim; 
**}; 
end replica.primary; 

 system ADR_v2 
features 
  sysInput: in event data port; 
  sysOutput: out event data port; 
end ADR_v2; 

 
 
 
 
 

system implementation ADR_v2.generic 
subcomponents 
  R1: system replica.generic; 
  R2: system replica.generic; 
connections 
  event data port sysInput->R1.Input; 
  event data port sysInput->R2.Input; 
  event data port R1.Output->sysOutput; 
  event data port R2.Output->sysOutput; 
  data port R1.toReplica->R2.fromReplica; 
  data port R2.toReplica->R1.fromReplica; 
modes 
  R1_primary: initial mode; 
  R2_primary: mode; 
  R1_primary-[R2.IAmPrim]->R2_primary; 
  R2_primary-[R1.IAmPrim]->R1_primary; 
end ADR_v2.generic; 

Figure III-24. Textual AADL dependability model - active dynamic redundancy (variant 2) 

 

The replicas have the same component type and implementation, given in the upper part of 
the figure. The lower part of the figure corresponds to the whole system type and 
implementation. The Guard_Event property associated with the out event port IAmPrim 
models the mode switch condition. 

III.3.1.2 Software fault-tolerance 

Each of the subsequent subsections first presents the specifications of a fault-tolerance 
policy and then comments on the suitable AADL pattern to be used.  



CHAPTER III 

 65 

III.3.1.2.1 N-version programming 

In the N-version programming policy [Avizienis 1995], the system is formed of N 
diversified replicas and a voter whose role is to detect disagreements between replicas. If one 
replica fails, the voter detects a disagreement between the failed replicas and the error-free 
replicas. If N=3, one fault is tolerated, as the voter provides the “good” result as output of the 
fault tolerant system. If more than (N-2) replicas fail or if the voter fails, the system is 
considered as failed.  

The AADL dependability model of this policy, tolerating one fault, is formed of three 
replicas that receive the same input and of a voter that receives all replicas’ outputs. Based on 
the results received and on its own state (we assume that the voter is self-checking), the voter 
decides which result to send out or whether the system failed. Notice that the AADL 
dependability model built for the N-modular redundancy policy captures this behavior (see 
Figure III-21). One may associate component-dependent Occurrence properties for events and 
propagations, to model the asymmetric behavior of the versions. 

III.3.1.2.2 Recovery block 

In the recovery block policy [Randell & Xu 1995], the system is formed of several replicas, 
called alternates, and a decider, which is an acceptance test. The acceptance test is applied 
sequentially to the results of the alternates. If the result of one alternate does not satisfy the 
test, the next alternate executes. The system is considered as failed if none of the alternates 
provides an acceptable result or if the acceptance test failed. 

The AADL dependability model of this policy is formed of two replicas. One replica 
executes and sends its result to the decider that applies the acceptance test. If the acceptance 
test fails, i.e., if the decider detected a failure in the active replica, the second replica executes. 
Notice that the AADL dependability model built for the cold standby sparing policy captures 
this behavior (see Figure III-13). It is possible to customize the pattern with software-specific 
Occurrence properties of events and propagations. 

III.3.1.2.3 N self-checking programming 

In the N self-checking programming policy [Laprie et al. 1990], software components are 
able to verify their correct operation [Yau & Cheung 1975]. This is achieved by introducing 
redundancy in the component. After the detection of an error, a recovery procedure can be 
attempted to correct the abnormal behavior. Tolerance of a single fault is achieved by the 
parallel execution of two self-checking software replicas. One replica acts as primary and the 
other one acts as backup. The two replicas communicate one with the other. If the replica that 
acts as primary detects its failure, it notifies the backup, which becomes primary. 

The AADL dependability model of this policy is formed of two self-checking replicas that 
communicate one with the other. Each replica detects its own failure. Based on the internal 
detection mechanisms and on the data received from the other replica, it decides whether to be 
the primary or the backup. The AADL dependability model built for the active dyamic 
redundancy policy with self-checking components captures this behavior (see Figure III-21).  



THE AADL DEPENDABILITY MODEL 

66 

III.3.1.3 Summary and observations 

Patterns are reusable AADL dependability models that may be instantiated directly in a 
system instance model or that may be extended to form other patterns. Table III-1 summarizes 
our patterns for fault-tolerance policies.  

The first two columns of Table III-1 represent fault-tolerance policies for hardware and 
software. The third column shows the corresponding patterns while the last column shows 
higher-level patterns, which are ancestors of groups of patterns. An ancestor is defined as a 
general model that does not model a particular fault-tolerance policy but that can be refined to 
obtain patterns for several strategies. Patterns B1 and B2 extend pattern B (i.e., the three 
components and the corresponding connections). B1 and B2 customize this model by adding 
modes and by making components / connections modal. Patterns C1, C1’ and C2, C2’ extend 
pattern C, which models the two replicas and their connections to the input and output of the 
system. C1 and C2 customize this model by adding modes to replicas, while C1’ and C2’ add 
modes at the system level. Other components and connections are added as well. The 
advantage of modeling operational modes at the system level is that the pattern can be refined 
to consider that connections or components inside the system are active in one of the modes 
and inactive in the other. The advantage of modeling operational modes in the components is 
that the components may be refined during the development cycle, to represent their 
subcomponents that may be active in one mode and inactive in the other. 

Other patterns may be defined on the same basis, to reflect other mechanisms related to 
fault detection and recovery actions. 

An AADL architectural pattern of duplex master-slave redundancy was presented in [Feiler 
et al. 2004]. Its goal is to facilitate the understanding of the functional architecture by clearly 
showing what is replicated in the architectural model and what the active system components 
are. Our patterns additionally include: 

1) Information about the fault detection and decision-making mechanisms (expressed 
mainly through Guard properties). 

2) A customizable layer of dependability-related information (error/failure and recovery 
behavior) and of dynamics necessary for evaluating dependability measures. This 
layer can be easily abstracted away in order not to clutter the higher-level view of the 
architecture. 

 



CHAPTER III 

 67 

 

Table III-1. Pattern summary  

HW FT  SW FT  Pattern Ancestor pattern 

N-Modular 
Redundancy 

(3 replicas) 

N-Version 
Programming 

(3 replicas) 

 

 

 

Cold Standby 
Sparing 

Recovery Block 

 

 

Warm 
Standby 
Sparing 

 

 

 

 

 

 Hot Standby 
Sparing 

 
 

 

 

 

Active 
Dynamic with 
Self-Checking 
Components 

N Self-Checking 
Programming  

 

 



THE AADL DEPENDABILITY MODEL 

68 

III.4 Conclusion 

In this chapter, we first gave general guidance for modeling independent components and 
various types of dependencies (including maintenance strategies) in AADL. Then, we 
presented reusable patterns for common fault toleance schemes. For genericity, we have used 
components of type system to define the patterns. AADL v2.0 will provide enhanced support 
for defining patterns in AADL. A new and generic component category will be introduced to 
define patterns that are then customized to a particular component category. Moreover, the 
user will be able to explicitly specify parameters for the pattern, e.g., whether it is formed of 
identical or different components. 

We showed that reusability is achieved at several modeling levels: the level of error 
models, the level of architectural models and the level of dependability models. Patterns may 
be stored in libraries and instantiatied in order to be used in particular models. The OSATE 
toolset supports the definition of such libraries. 

In our iterative modeling approach, presented in Section I.4, each dependency is modeled 
separately. The order for introducing dependencies does not impact the final AADL 
dependability model. However, it may impact the reusability of parts of the model. Thus, the 
order may be chosen according to the context of the targeted analysis. The AADL 
dependability model may be progressively validated based on its associated GSPN. The 
automated transformation from AADL to GSPN is based on the rules given further on, in the 
following Chapter.  

 



 

 69 

IV AADL to GSPN Model Transformation 

This Chapter presents the complete set of transformation rules corresponding to the AADL 
Error Model Annex constructs presented in Section II.1.2. We exemplify the transformation 
rules on AADL Error Model Annex construct examples already presented in Section II.1.2. 
The only difference lies in the names used for the states and propagations. In the current 
Chapter, we chose to use generic names, such as outProp for out propagations, inProp for in 
propagations and s for states, in order to give a very general view of the model 
transformation. All transformation rules are first presented and then formalized using the 
notations of section II.2, related to Petri nets. All rules are defined to ensure that the obtained 
GSPN is correct by construction (bounded and free of infinite loops over sets of vanishing 
markings) under the assumption that the AADL model has been built following the guidelines 
presented in Chapter III. A small set of the transformation rules presented in this Chapter has 
been published in [Rugina et al. 2007]. 

This Chapter is structured into nine sections. Section IV.1 gives an overview of the whole 
transformation process. Sections IV.2 to IV.7 are devoted to the transformation rules to be 
used to transform an AADL dependability model into a GSPN. Section IV.8 discusses issues 
related to the scalability of the transformation while Section IV.9 concludes the Chapter. 

IV.1 Overview of the transformation 

As presented in Section I.4.3, the GSPN obtained by transforming the AADL dependability 
model is structured as a set of subnets: component subnets that model the behavior of 
components in the presence of their own faults and repair events, and dependency subnets that 
model the behavior associated with dependencies. This subsection gives an overview of the 
transformation rules that are detailed later on in the current Chapter.  

Section IV.2 presents the rules for transforming independent components, to create the 
component subnets. Components’ error models are processed by taking into account their 
states and transitions triggered by events. Propagations are ignored.  

Section IV.3 deals with dependencies described by name-matching in - out propagations. 
First, out propagations are identified. For each out propagation, the AADL architectural 
model is traversed following the dependency rules defined in the AADL Error Model Annex 
(see Section II.1.2.2) in order to find in propagations that occur as effects of the out 
propagation. The name-matching in - out propagations are then transformed, according to 
the given rule, into dependency subnets that are connected to the component subnets. 

Section IV.4 is devoted to the rules for transforming propagation filtering and masking 
mechanisms, i.e., Guard_In and Guard_Out properties. For each such property found in the 
AADL dependability model, we search for the components owning the propagations and 
states named in the Boolean expressions of the property. The resulting dependency subnets 
are connected to the component subnets. 

Section IV.5 presents the rules targeting mechanisms for connecting error states to modes, 
i.e., Guard_Event and Guard_Transition properties, and activate / deactivate 



AADL TO GSPN MODEL TRANSFORMATION 

70 

transitions. Guard_Event and Guard_Transition properties are dealt with in a similar 
way to Guard_In and Guard_Out properties. First, the AADL dependability model is 
traversed to identify the components or connections owning the elements named in the 
Boolean expressions. The transformation rules are then applied in order to obtain a 
dependency subnet to be connected to the component nets. 

Section IV.6 focuses on the rule for transforming hierarchical AADL dependability models. 
In particular, derived error models must be transformed up to the system level.  

Section IV.7 concerns the customization of the existing GSPN subnets, to take into account 
architecture configurations with operational modes (e.g., error propagations are only 
broadcasted out of an active component). 

In the presentation of the transformation rules of AADL Error Model Annex constructs that 
use Boolean expressions, we assume that Boolean expressions are in disjunctive normal form 
(DNF). It is noteworthy that the user is free to use any legal Boolean expression. Thus, before 
performing the transformation rules, the tool must transform the Boolean expressions into 
DNF. A Boolean expression is in DNF if it is a disjunction (sequence of ORs) consisting of 
one or more disjuncts, each of which is a conjunction (AND) of one or more variables and 
negations of variables. A variable is a propagation name or a state name. 

The following six subsebctions present successively the transformation rules, without 
detailing the AADL dependability model traversal to search for dependent components. This 
traversal is implementation-dependent.  

IV.2 Transforming error models of independent components 

In the case of an independent component or in the case of a set of independent components, 
the AADL to GSPN transformation is rather straightforward, as an error model represents a 
stochastic automaton. Table IV-1 shows the basic transformation rules. 

Table IV-1. Basic AADL error model to GSPN transformation rules 

AADL error model construct GSPN element 

State Place  
 

Initial state  Place with token   
 

Event GSPN transition (timed or immediate) 
 

 

 
Timed 

Occurrence property32  
Distribution or probability, as specified by the 
AADL Occurrence property, characterizing the 
occurrence of the associated GSPN transition 

 
Immediate 

AADL transition 

(Src_State-[Event] -> Dest_State) 

Arcs connecting places (corresponding to AADL 
Src_State and Dest_State) via GSPN transition 
(corresponding to AADL Event)  

 

                                                
32 AADL allows specifying a fixed probability, a Poisson distribution or another (non-standard) distribution. 

Since we use GSPNs, AADL Occurrence properties must be either fixed probabilities or Poisson distributions. 



CHAPTER IV 

 71 

An error model of an independent component is transformed into a component subnet. As 
stated before, propagations are not considered in this rule, as they should not be used in 
models for independent components.  

The number of tokens in a component subnet is always one, as a component can only be in 
one state. By applying the transformation rules presented in Table IV-1 to the error model 
example for an independent component, shown in Figure IV-1-a, we obtain the GSPN of 
Figure IV-1-b.  

 

Error Model Type [independent] 
 

error model independent 
features 
  Error_Free: initial error state; 
  Erroneous: error state; 
  Failed: error state; 
  Temp_Fault: error event  
 {Occurrence => poisson 1};  
  Perm_Fault: error event  
 {Occurrence => poisson 2};  
  Restart: error event  
 {Occurrence => poisson μ1}; 
  Recover: error event  
 {Occurrence => poisson μ2}; 
end independent; 

Error Model Implementation 
[independent.general] 

 

error model implementation 
independent.general 
transitions 
  Error_Free-[Perm_Fault]->Failed; 
  Error_Free-[Temp_Fault]->Erroneous; 
  Failed-[Restart]->Error_Free; 
  Erroneous-[Recover]->Error_Free; 
end independent.general;  

 

a: Error model for independent component b: Corresponding GSPN 

Figure IV-1. Illustration of the transformation rule for independent components 

 

IV.3 Transformation of basic dependency elements  

All transformation rules for dependent components are based on the choice of the 
transformation rules for out and in propagations, as out and in propagations are the basic 
mechanisms for representing interactions between AADL components (as stated in 
Section III.2). Consequently, it is important that the rules for out and in propagations be 
generic, to simplify the definition of the other rules and to favor the modularity of the GSPN. 
To this end, we first reason about out propagations and in propagations in a dissociated 
manner despite the fact that they are strongly connected from a semantic point of view (i.e., 
an in propagation in a receiver component or connection only occurs as a consequence of an 
out propagation or of a set of out propagations). Then, we show how to connect the GSPN 



AADL TO GSPN MODEL TRANSFORMATION 

72 

subnets of out and in propagations through the use of name-matching subnets. Finally, we 
discuss our choice of the transformation rule for name-matching in - out propagations. 

IV.3.1 Out propagations 

Figure IV-2 presents a general example of AADL transition triggered by an out 
propagation named Prop. The source Out_src and the destination Out_dst of the propagaton 
may or may not be the same state. We distinguish two cases with respect to the type of 
Occurrence property for the out propagation: 

– Case a: Poisson distribution with parameter  (Figure IV-2-a); 

– Case b: fixed probability p (Figure IV-2-b). It is assumed that the component does not 
change its state with probability 1-p. 

 

Prop: out error propagation  
     {Occurrence => poisson }; 

 
Prop: out error propagation 
      {Occurrence => fixed p}; 

a: timed (Poisson)  b: immediate (fixed probability) 

 

Figure IV-2.  AADL transition triggered by an out propagation  

In Figure IV-2, Case a represents a delayed propagation that will not be perceived 
immediately by its receivers. Case b.represents an immediate propagation. 

IV.3.1.1 Rule presentation 

The transformation rule is slightly different for these two cases. Figure IV-3-a presents the 
GSPN corresponding to the transformation rule for Case a while Figure IV-3-b presents the 
one for Case b.  

 

  

a: timed (Poisson) b: immediate (fixed probability) 

Figure IV-3. Transformation rule for AADL transition triggered by an out propagation 

 



CHAPTER IV 

 73 

In both cases, a GSPN transition t
p links the place Out_src to the place Out_dst 

(corresponding to states Out_src and Out_dst). tp is characterized by the Occurrence property 
of the out propagation. When firing this transition, a token is created in a place named 
OutProp, memorizing the out propagation. The place OutProp is emptied through the 
immediate transition te when the place Out_src is empty, i.e., the out propagation is visible 
while the component is in state Out_src , from which the propagation has been generated.  

In Case b, the place NoProp models the situation where the propagation does not occur 
when the component is in Out_src state. If the propagation does not occur, the immediate 
transition tnp is fired. Its associated probability must take into account the sum of probabilities 
of all events and propagations that trigger transitions from Out_src. In Figure IV-3-b the 
probability associated with t

np is (1-p-q) because it is assumed that there is an event or a 
propagation that occurs with probability q and triggers a transition from the source state 
Out_src. The transition t

npe empties the place NoProp, with probability 1, when the 
propagation sender component has moved from Out_src. 

Also in Case b, the subnet formed of the place NoProp and the transitions tnp and tnpe is not 
necessary if the error model declares an error event or an out propagation having its source in 
Out_src and occurring with a probability 1-p (i.e., q = 1-p in Figure IV-3-b). If the subnet is 
created in this case, tnp would never be fired as its probability would be equal to zero. 

GSPN transitions t
p and tnp are part of the sender component subnet, as an out propagation 

occurs in the sender component independently according to its Occurrence property and has 
an impact on the sender’s state machine. Places OutProp and NoProp are part of one or more 
dependency nets, as they are interfaces between the sender component and receiver 
components of the architectural model. te and tnpe are also part of one or more dependency 
nets, as the emptying of OutProp and NoProp has to be synchronized to occur after the 
occurrence of the effects of the propagation on receiver components. 

In general, a named out propagation could trigger n AADL transitions in an error model 
(e.g., an out propagation Failed could be propagated out both from a FailStopped and a 
FailRandom states, each of these states representing different failure modes). A GSPN subnet 
as one of those presented in Figure IV-3 is created for each one of the n AADL transitions. 
Thus, an out propagation is active when there is a token in one of its corresponding places. 

IV.3.1.2 Rule formalization 

Let P
src, P

pt and P
pi be the sets of places, and T

 t (for a timed propagation), T
 i (for an 

immediate propagation) be the sets of GSPN transitions:  
 

P
src

 = {(Out_src, Out_dst)  sender component net} 
P

pt
 = {OutProp  dependency net} 

P
pi

 = {OutProp, NoProp  dependency net} 
 

T
 t = {t

p
: timed transition  sender component net, te  dependency net} 

T
 i = {t

p, tnp
  sender component net, te,tnpe  dependency net} 

The necessary arcs are as follows. 

t
p
 = {Out_src}     t

e
 = {OutProp} 

t
p
 = {Out_dst, OutProp}    t

e
 =  

°t
p
 = {NoProp (if  NoProp), OutProp}  °t

e
 = {Out_src} 

t
np

 = {Out_src}     t
npe

 = {NoProp} 



AADL TO GSPN MODEL TRANSFORMATION 

74 

t
np

 = {Out_src, NoProp}    t
npe

 =  

°t
np

 = {NoProp, OutProp}    °t
npe

 = {Out_src} 

Let us define the sets of arcs necessary for the subnets describing respectively a timed and 
an immediate out propagation, as follows. 

AoutPropag_timed = A_t
p
  A_ t

e
 

AoutPropag_immediate = A_t
p
  A_ t

e
  A_ t

np
  A_t

npe
 

The GSPN subnet PN1_outPropag describing the AADL transition triggered by the out 
propagation is defined as follows. 

Case a: PN1_outPropag = Psrc
  P

pt 
  T

t  AoutPropag_timed (propagation with Poisson distribution) 

Case b: PN1_outPropag = Psrc
  P

pi
  T

i  AoutPropag_immediate (propagation with fixed probability) 

Let n be the number of AADL transitions triggered by the out propagation Prop in a 
propagation sender component. The GSPN subnet describing all AADL transitions triggered 
by one same out propagation is defined as follows. 

  

PNn_ outPropag = PN1_ outPropag i
i=1

n

U  

IV.3.2 In propagations 

Figure IV-4-a presents an example of AADL transition triggered by an in propagation 
named Prop. Note that In_src and In_dst are different states.  

IV.3.2.1 Rule presentation 

A GSPN transition InProp of probability 1 (it certainly occurs when the cause of the in 
propagation occurs) links the place In_src to the place In_dst as shown in Figure IV-4-b.  

 

  

- a - - b - 

Figure IV-4. Transformation rule for in propagation 

In general, a named in propagation could trigger m AADL transitions in an error model 
(i.e., an error propagation may affect its receiver when the latter is in any one of a set of 
states). An AADL in propagation occurs as a consequence of an out propagation or of a set 
of out propagations, denoted by the term cause further on. m GSPN transitions are created 
for each cause of the in propagation. Thus, the number of GSPN transitions InProp is 
unknown before the complete analysis of dependencies in the architectural model. GSPN 
transitions InProp are part of a dependency net and are authorized to fire only when one of 
their causes occurs.  



CHAPTER IV 

 75 

IV.3.2.2 Rule formalization 

Let Pdst be the set of places and T in be the set of GSPN transitions:  

 

P
dst

 = {( In_srcj, In_dstj)  receiver component net, In_src  In_dst, j = 1..m} 
T

 in = {InPropj: immediate transitions  dependency net, j = 1..m} 

The necessary arcs are as follows. 

InPropj = {In_srcj} 
InPropj = {In_dstj}  

Let us define respectively the set of arcs connected to all GSPN transitions InPropj, j=1..m, 
as follows. 

  

A_ InProp = A_ InProp j
j=1

m

U  

The GSPN subnet PNinPropag describing the AADL transitions triggered by the in 
propagation Prop is defined as follows. 

PNinPropag = Pdst
  T in  A_InProp 

We presented the case where a named in propagation has only one cause. For the general 
case of several causes for the same in propagation, it is sufficient to clone the description 
above for each cause. 

IV.3.3 Name-matching in – out propagations 

For didactical reasons, Sections IV.3.1 and IV.3.2 presented the building blocks 
representing respectively out and in propagations, even though in propagations are 
dependent on out propagations and have no meaning alone. In the current section, we show 
how the two subnets are connected together to model a name-matching in – out propagation 
representing a dependency between two components. 

Figure IV-5 shows an example of a pair of in – out name-matching propagations declared 
in two connected components. Component1 plays the role of the propagation sender and it 
sends propagations named Prop through the connection that arrives at Component2. 
Component2 plays the role of a receiver. If it receives a propagation named Prop, it moves 
from In_src to In_dst state. We illustrate name-matching propagations using an AADL 
architectural model formed of two components connected through data port connections. The 
result is identical if the architectural model involves components interacting differently (e.g., 
through bindings or shared data). 

 

 

Figure IV-5. Sender and Receiver – in-out name matching propagations 



AADL TO GSPN MODEL TRANSFORMATION 

76 

IV.3.3.1 Rule presentation 

The transformation rule consists in linking the intermediary place OutProp to the 
transitions InProp by bidirectional arcs and in adding inhibitor arcs from the place In_src to 
te, as shown in Figure IV-6. The latter allows avoiding a concurrency situation between te and 
InProp. The place OutProp must not be emptied before the enabled transition InProp is fired. 
In order not to encumber the figure, we assume that the Occurrence property of the out 
propagation Prop is a Poisson distribution. This changes nothing in the way the subnets 
corresponding respectively to the out and to the in propagation are connected. 

 

 

Figure IV-6. GSPN modeling a propagation from a sender to a receiver 

 

Note that, if Out_src and Out_dst are two different states, the out propagation is 
propagated out once and has an immediate effect on receiver components. The place OutProp 
is emptied immediately after. If Out_src and Out_dst are one same state, the out propagation 
is propagated out and has an immediate effect on receiver components if their current states 
are In_src states. The token remains in the place OutProp as long as the propagation sender 
remains in the state from which the out propagation was generated. Thus, the effect of the 
out propagation may be delayed in case the receiver component moves in the meantime in 
the place In_src. The in propagation may even occur several times while the out propagation 
is visible. This behavior is compliant with the semantics of AADL propagations. 

IV.3.3.2 Rule formalization 

Let us define the following arcs: 

InProp’ = {OutProp} 
 InProp’ = {OutProp} 

°t
e’

 = {In_src} 

The GSPN subnet PNin_outPropag describing the name-matching AADL transitions is defined 
as follows. 

PNin_outPropag = PNoutPropag  PNinPropag  InPropx’   InPropx’  °te
’
 

IV.3.4 Generalization to multiple receivers 

Generally, an out propagation could trigger n AADL transitions in its sender component. 
Name-matching in propagations could be declared in r  1 propagation receiver components 
and trigger mk AADL transitions in each k (k = 1…r) receiver component. In propagations 



CHAPTER IV 

 77 

are consequences of out propagations. This means that in each receiver component k, each 
AADL transition triggered by the in propagation (among the mk AADL transitions) has n 
causes corresponding to AADL transitions triggered by the out propagation in the sender 
component.  

For each receiver j, mj GSPN transitions are created for each one of the n causes of the in 
propagation. This leads to the creation of InPropij , i = 1..n, j = 1..mk for each receiver 
component (as many GSPN transitions for one AADL transition triggered by the in 
propagation as causes of the in propagation).  

The number of GSPN transitions (Ntr) necessary to describe the in propagations as effects 
of n out propagations of a sender component on r receiver components is given by: 

Ntr = n * mk

k=1

r

              [1] 

Figure IV-7-a shows an example of an AADL dependability model with one sender 
propagating out the propagation Prop from two distinct error states and two receivers, each 
declaring one AADL transition triggered by the in propagation Prop. It is transformed into 
the GSPN of Figure IV-7-b. Note that Ntr = 4 (n = 2, m1 =1, m2 = 1). 

 

 

 

- a - - b - 

Figure IV-7. Propagations from one sender to two receivers 



AADL TO GSPN MODEL TRANSFORMATION 

78 

IV.3.5 On the choice of transformation rules of in – out propagations 

We identified and analyzed several transformation rules for the same AADL specification 
of out propagations and their name-matching in propagations. Some of the rules are 
convenient when an out propagation has only one receiver. On the other hand, these rules do 
not favor subnet reusability and are hard to automate in case of several receivers (e.g., the in 
propagation is declared in several components’ error models) for the same out propagation. 
Also, the choice of a transformation rule for out propagations and their name-matching in 
propagations impacts the transformation rules for propagation filtering and masking 
mechanisms and for mechanisms for connecting error states to modes. The transformation 
rules for out propagations, presented in section IV.3.1 and for in – out name-matching 
propagations, presented in section IV.3.3 are very well adapted for the case where an out 
propagation has several receivers that declare name-matching in propagations or Guard 
properties. They also simplify the definition of the other transformation rules, as the same 
GSPN propagation place is connected to all dependency subnets on the receivers’ side.  

To give an example, we show an alternative to the transformation rule presented in sections 
IV.3.1 and IV.3.3 for out propagations. The alternative rule seemed more natural to us at a 
first glance, as the GSPN obtained is smaller. After further analysis, it turned out that the state 
spaces are equal in size for the two rules, but the alternative rule requires restricting the 
AADL modeling power in order to obtain a GSPN without deadlocks.  

Let us remind here the general case of n AADL transitions triggered by the same out 
propagation in an error model. In sections IV.3.1 and IV.3.3 we presented a transformation 
rule that processes independently the n AADL transitions, creating a GSPN propagation place 
for each one of them. Thus, the named out propagation is considered to be active when there 
is a token in one of these propagation places.  

The alternative rule consists in creating only one propagation place for a named out 
propagation and in connecting it to the n GSPN transitions that model the occurrence of the 
out propagation. A GSPN transition ti

p
, i = 1..n, is created for each one of the n AADL 

transitions. All ti
p are connected to the same place OutProp. Figure IV-8-a shows an example 

with two AADL transitions triggered by the same timed out propagation Prop. This 
alternative rule requires restricting the AADL modeling power by forbidding the declaration 
of transitions triggered by the same out propagation from consecutive states. Otherwise the 
GSPN obtained would not be guaranteed to be free of deadlocks.  

Let us assume that Out_dst1 and Out_src2 are the same place, i.e., the out propagation 
occurs from two consecutive error states. This case is presented in Figure IV-8-b. In this case, 
the GSPN behavior is as follows. The transition t1

p is fired, i.e., the out propagation occurs 
from state Out_src1. A token is created in place OutProp, i.e., the propagation becomes 
active. te cannot fire, as the condition to empty OutProp is not true. t2

p cannot fire either, as 
OutProp is not empty (notice that the inhibitor arc from OutProp to t1

p is necessary in order to 
bound the place OutProp). Consequently, this GSPN may have a deadlock if no other 
transition has Out_src2 as a source state. The same problem is revealed if Out_src1 and 
Out_dst1 are one same place (the source state is the same as the destination state of the out 
propagation) and Out_dst1 and Out_src2 are two consecutive states.  

 



CHAPTER IV 

 79 

 

 

a: General case b: Particular case 

Figure IV-8. Alternative transformation rule for out propagation 
 

IV.4 Transforming propagation filtering and masking mechanisms  

This Section presents the transformation rules for propagation filtering and masking 
mechanisms, in the form of Guard_In and Guard_Out properties. Guard_In subnets 
connect out and in propagation subnets together, while Guard_Out subnets connect out 
propagation subnets together. We also show the transformation of examples of cascading 
Guard_In and Guard_Out properties. 

IV.4.1 Guard_In 

As stated in Section II.1.2.3.1, a Guard_In property allows the user to conditionally map 
an incoming set of propagations and error states from other components into a set of in 
propagations that may affect the receiving component. Figure IV-9 gives the Backus-Naur 
syntax definition of the Guard_In property, already shown in Section II.1.2.3.1, and 
develops the definition of the Boolean expression in DNF. This definition is further used to 
present the general transformation rule before showing a concrete example. 

 

Guard_In ::= mapping_rule {, mapping_rule}* applies to inFeature; 
mapping_rule ::= (InProp_id | mask) when boolean_expr_DNF 
boolean_expr_DNF ::= conjunction | boolean_expr_DNF OR boolean_expr_DNF 
conjunction ::= variable | conjunction AND conjunction 
variable ::= StateOrPropagation | NOT StateOrPropagation 

Figure IV-9. Guard_In property syntax 

 

IV.4.1.1 Rule presentation 

Masked mapping_rules are ignored, as their Boolean conditions do not impact the 
component that declares the Guard_In property.  

Each non-masked mapping_rule specifies that in propagations InProp_id occur as 
consequences of each conjunction of boolean_expr_DNF. Thus, one GSPN transition 



AADL TO GSPN MODEL TRANSFORMATION 

80 

InProp_idkj is created for each pair (conjunctionk, tj) with tj representing an AADL 
transition triggered by the in propagation InProp_id in the component that declares the 
Guard_In property. InProp_idkj links the place In_srcj to the place In_dstj (corresponding to 
a source and a destination state of an AADL transition triggered by the in propagation 
InProp_id). InProp_idkj is connected through: 

- bi-directional arcs to places corresponding to variables of boolean_expr_DNF 
(states or propagations).  

- inhibitor arcs to places corresponding to negated variables of 
boolean_expr_DNF (NOT StateOrPropagation). 

If a InProp_idkj and a transition that empties a place StateOrPropagation are both 
enabled, InProp_idkj is fired before emptying that place. More explicitly, a place 
corresponding to a StateOrPropagation representing a propagation is only emptied 
when all GSPN transitions connected to it (through non-inhibitor arcs) are disabled. 

Figure IV-10-a shows an example of a Guard_In property associated with an in port 
named inp1. This example and the one shown in Figure II-11 are identical except for the 
names of the propagations and states referred to in the Boolean expressions, as stressed in the 
introduction of this chapter.  

The Guard_In property is formed of three mapping_rules, one of them being a mask. 
Figure IV-10-b shows a component (Component1) having the Guard_In property on its port 
inp1. An architectural view of this property is given in Figure II-12. Component1 has an 
associated error model with AADL transitions triggered by the in propagations named in the 
Guard_In mapping rules. InProp1 triggers one while InProp2 triggers two AADL 
transitions.  

 

 

Guard_In => 
 inProp1 when inp1[outProp] and inp2[s], 
 inProp2 when  
   (not inp1[outProp]) and inp2[s], 
 mask when others 
applies to inp1; 

 

 

- a - - b - 

Figure IV-10. Guard_In property 

 

Figure IV-11-a presents the GSPN corresponding to the Guard_In property of 
Figure IV-10. Each conjunction is transformed into a number of immediate GSPN 
transitions equal to the number of AADL transitions triggered by the in propagation named 
in mapping_rule. Thus, one GSPN transition is created for the first mapping_rule while 
two GSPN transitions are created for the second one.  

For the sake of clarity, the GSPN transitions that empty the place OutProp are shown 
separately in Figure IV-11-b. The place OutProp can be emptied when the transition InProp1 
is disabled. Note that the transitions InProp212 and InProp222 are not considered, as the place 
OutProp is connected to them through inhibitor arcs. InProp1 is disabled either when  
(1) place In_src1 is empty, i.e., InProp1 has been fired or the receiver component was in a 



CHAPTER IV 

 81 

different state at the receipt of the in propagation InProp1, or when (2) s is empty, i.e., none 
of the Boolean expressions that refer to OutProp is true.  

 

 

 

- a - - b - 

Figure IV-11. Transformation rule for Guard_In property 
 

IV.4.1.2 Rule formalization 

We assume that states and propagations (StateOrPropagation) referred to in the 
boolean_expr_DNF have already been transformed into Petri net places. We formalize the 
transformation rule for a mapping_rule of the Guard_In property without considering the 
GSPN transitions that empty places StateOrPropagation corresponding to propagations. 
The general rule for emptying propagation places is detailed in Appendix B. We use the 
following notations: 

m = the number of AADL transitions triggered by InProp_id in the component that 
 declares the Guard_In property. 

c = the number of conjunctions in mapping_rule 

Let P
GI

mapping_rule and P
dst

mapping_rule be the sets of places, and InProp_idkj be the set of 
GSPN transitions. 

P
GI

 = {StateOrPropagation  conjunction mapping_rule} 
P

dst
 = {In_srcj, In_dstj  receiver component net, In_srcj  In_dstj, j = 1..m} 

InProp_id = {InProp_idkj: immediate transitions  dependency net, k = 1.. c, j = 1..m} 

We define the following arcs: 

InPropkj = {In_srcj} {StateOrPropagation conjunctionk / 
    variable = StateOrPropagation} 



AADL TO GSPN MODEL TRANSFORMATION 

82 

InPropkj = {In_dstj} {StateOrPropagation conjunctionk / 
    variable = StateOrPropagation} 
°InPropkj = {StateOrPropagation conjunctionk / 

    variable = NOT StateOrPropagation} 

The necessary set of arcs connected to all GSPN transitions Inprop is as follows. 

  

A_ InProp =
k=1

c

U A_ InPropkj
j=1

m

U  

The GSPN subnet PNmapping-rule describing a mapping_rule of the Guard_In property is 
defined as follows.  

PNmapping_rule = PGI
  Pdst   Inprop_id

  A_InProp
  PNInPropag 

All mapping_rules (except the one labeled mask) are transformed according to the 
above rule.  

Let us consider separately the GSPN transitions that empty a place StateOrPropagation 
corresponding to a propagation. We define the subset effectsStateOrPropagation of the union of 
InProp_id corresponding to all mapping_rules containing all InProp that have incoming 
arcs from StateOrPropagation. 

effectsStateOrPropagation = {InProp  ( InProp_id) / StateOrPropagation  InProp} 

The cause of StateOrPropagation is a tp GSPN transition. 

StateOrPropagation can be emptied if all GSPN transitions connected to it are 
disabled. This condition is expressed in the following Boolean expression. 

¬t p ¬effectsStateOrPropagation  

After transforming this expression in DNF, a GSPN transition t
e
 is created for each 

conjunction. 

IV.4.2 Guard_Out 

As stated in Section II.1.2.3.2, a Guard_Out property allows the user to conditionally pass 
through an incoming set of propagations and states as an outgoing propagation of the error 
model associated with the component declaring the Guard_Out property. Figure IV-12 
shows the Backus-Naur syntax definition of the Guard_Out property including the Boolean 
expression in DNF form (which has the same definition as the Guard_In property). We use 
this definition to present the general transformation rule before showing a concrete example. 

 

Guard_Out ::= passThrough_rule {, passThrough_rule}*  

   applies to outFeature; 
passThrough_rule ::= (OutProp_id | mask) when boolean_expr_DNF 
boolean_expr_DNF ::= conjunction | boolean_expr_DNF OR boolean_expr_DNF 
conjunction ::= variable | conjunction AND conjunction 
variable ::= StateOrPropagation | NOT StateOrPropagation 

Figure IV-12. Guard_Out property syntax 

 

 



CHAPTER IV 

 83 

IV.4.2.1 Rule presentation 

As in the case of Guard_In properties, masked mapping_rules are ignored. When their 
Boolean conditions are true, no propagation is generated.  

One place OutProp_id_outFeature corresponding to OutProp_id is created for each non-
masked mapping_rule. This place models the fact that an out propagation OutProp_id 
occurs as a consequence of each conjunction of boolean_expr_DNF and is sent out 
through the outFeature named in the applies to clause. One GSPN transition 
OutProp_idk is created for each conjunctionk of the mapping_rule. OutProp_idk has an 
outgoing arc to the place OutProp_id_outFeature and is also connected through: 

- bi-directional arcs to places corresponding to variables of boolean_expr_DNF 
(states or propagations).  

- inhibitor arcs to places corresponding to negated variables of 
boolean_expr_DNF (NOT StateOrPropagation). 

A place StateOrPropagation corresponding to a propagation can be emptied when all 
GSPN transitions connected to it are disabled. Similarly, OutProp_id_outFeature can be 
emptied when all GSPN transitions connected to it are disabled (its causes are inactive, i.e., 
¬boolean_expr_DNF evaluates to TRUE and all GSPN transitions modeling effects of the 
out propagation are disabled). Appendix B generalizes this rule for emptying places 
corresponding to out propagations resulting from AADL transitions or Guard_Out 
properties.  

Figure IV-13-a shows an example of a Guard_Out property associated with an out port 
named outp1. This example and the one shown in Figure II-14 are identical except for the 
names of the propagations and states referred to in the Boolean expressions. Figure IV-13-b 
shows Component1 having the Guard_Out property on port outp. An architectural view of 
this property is given in Figure II-15. 

 

Guard_Out => 
  outProp1 when inp1[outProp] and inp2[s], 
  outProp2 when (not inp1[outProp] and inp2[s]) 
  or (inp1[outProp] and not inp2[s]), 
  mask when others 
applies to outp1; 

 

- a - - b - 

Figure IV-13. Guard_Out property 

 

The Guard_Out property of Figure IV-13 is formed of two non-masked 
passThrough_rules which are transformed into two places. The boolean_expr_DNF of 
the first passThrough_rule is formed of one conjunction transformed into one GSPN 
transition. The boolean_expr_DNF of the second passThrough_rule is formed of two 
conjunctions, each one transformed into one GSPN transition. Figure IV-14 presents the 
GSPN corresponding to the Guard_Out property of Figure IV-13 without considering the 
GSPN transitions that empty the places corresponding to out propagations. The places 
corresponding to out propagations occurring as a result of a Guard_Out property are to be 
interfaced with name-matching in propagations subnets and with Guard_In subnets on the 
receiver side. 



AADL TO GSPN MODEL TRANSFORMATION 

84 

 

 

Figure IV-14. Transformation rule for Guard_Out property 
 

IV.4.2.2 Rule formalization 

We assume that states and propagations (StateOrPropagation) referred to in the 
boolean_expr_DNF have already been transformed into Petri net places. We formalize the 
transformation rule for a mapping_rule of the Guard_Out property without considering the 
GSPN transitions that empty places StateOrPropagation corresponding to propagations. 
The latter rule is presented in Appendix B.  

We use the following notations: 

c = the number of conjunctions in mapping_rule 

Let PGO
mapping_rule and Pgen

mapping_rule be the sets of places, and OutProp_idk. be the set of 
GSPN transitions. 

P
GO

 = {StateOrPropagation  conjunction mapping_rule} 
P

gen
 = {OutProp_id_outFeature  dependency net} 

OutProp_id = {OutProp_idk: immediate transitions  dependency net, k = 1.. c} 

The necessary arcs are as follows. 

OutPropk = {StateOrPropagation conjunctionk / 
    variable = StateOrPropagation} 

OutPropk = {OutProp_id} {StateOrPropagation conjunctionk / 
    variable = StateOrPropagation} 
°OutPropk = {OutProp_id} {{StateOrPropagation conjunctionk / 

    variable = NOT StateOrPropagation} 

The set of arcs connected to all GSPN transitions OutPropk is defined as follows. 

U
c

k

kopPrOutAopPrOutA
1

__
=

=  

The GSPN subnet PNmapping-rule describing a mapping_rule of the Guard_In property is 
defined as follows.  



CHAPTER IV 

 85 

PNmapping_rule = PGO
  Pgen  OutProp_id

  A_OutProp
  

All mapping_rules (except the one labeled mask) are transformed according to the rule.  

IV.4.3 Interacting Guard_In and Guard_Out properties  

This section illustrates the use of the transformation rules presented in Sections IV.4.1 and 
IV.4.2 in the case of interacting Guard_In and Guard_Out properties. The AADL 
architectural models and the Guard properties used for illustration have already been shown 
in Section II.1.2.3.4.  

IV.4.3.1 Cascading Guard_Out - Guard_In 

Figure IV-15-a presents an architectural model example (the same as in Figure II-16) in 
which a Guard_In property applying to in ports of Component3 refers to an out 
propagation that occurs as a result of a Guard_Out property applying to the out port of 
Component 1. The in propagations occurring as a result of the Guard_In property trigger 
AADL transitions in the error model associated with Component3. The Guard_Out property 
associated with the out port of Component1 is given in Figure IV-15-b. The Guard_In 
property associated with the in ports of Component3 is given in Figure IV-15-c.  

 

 

- a - 

Guard_Out => 
  outProp1 when  
    inp[outProp] and self[s1], 
  mask when others 
applies to Component1.outp; 

 

Guard_In => 
  Prop1 when inp1[outProp1] and inp2[s2], 
  Prop2 when  
 (not inp1[outProp1] and inp2[s2]) 
   or (inp1[outProp1] and not inp2[s2]), 
  mask when others 
applies to Component3.inp1, 
  Component3.inp2; 

- b - - c - 

Figure IV-15. Cascading Guard_Out - Guard_In properties 

 

Figure IV-16 shows the GSPN corresponding to the AADL model of Figure IV-15 without 
taking into account the immediate GSPN transitions that empty propagation places. 



AADL TO GSPN MODEL TRANSFORMATION 

86 

 

 

Figure IV-16. GSPN modeling of cascading Guard_Out - Guard_In properties 

 

Out propagations that result from Guard_Out properties are represented in the GSPN as 
places, in the same way as out propagations generated by AADL transitions. Thus, the 
connection between any of the two types of out propagation and a Guard_In subnet is 
performed similarly. 

IV.4.3.2 Cascading Guard_Out - Guard_Out 

Figure IV-17-a presents an architectural model example (the same as in Figure II-17) in 
which a Guard_Out property applying to an out port of Component2 refers to an out 
propagation that occurs as a result of a Guard_Out property applying to an out port of 
Component1. The error model associated with Component3 declares AADL transitions 
triggered by in propagations name-matching those resulting from the Guard_Out property 
of Component2. The Guard_Out property associated with the out port of Component1 is 
given in Figure IV-17-b while the one associated with the out port of Component2 is given in 
Figure IV-17-c.  

Places corresponding to out propagations that result from Guard_Out properties are 
connected to other Guard_Out properties in the same way as out propagations generated by 
AADL transitions. Figure IV-18 shows the GSPN corresponding to the AADL model of 
Figure IV-17 without taking into account the immediate GSPN transitions that empty 
propagation places.  



CHAPTER IV 

 87 

 

- a - 

Guard_Out => 
  outProp1 when  
 inp[outProp] and self[s1], 
  mask when others 
applies to Component1.outp; 

 

Guard_Out => 
  Prop1 when  
 inp1[outProp1] and self[s2], 
  Prop2 when  
   ((not inp1[outProp1]) and self [s2]) 
or (inp1[outProp1] and (not self[s2])), 
  mask when others 
applies to Component2.outp; 

- b - - c - 

Figure IV-17. Cascading Guard_Out - Guard_Out properties 

 

 

 

Figure IV-18. GSPN modeling of cascading Guard_Out - Guard_Out properties 

 

IV.5 Mechanisms for connecting error states to modes 

Modes that are of interest in the dependability analysis (i.e, which are involved in mode 
transitions triggered according to Guard_Event and Guard_Transition properties) are 
transformed into Petri net places. 



AADL TO GSPN MODEL TRANSFORMATION 

88 

In the next subsections we present successively AADL to GSPN transformation rules for  
(1) Guard_Event properties, (2) Guard_Transition properties and (3) activate / 
deactivate transitions.  

IV.5.1 Guard_Event 

Figure IV-19 shows the Backus-Naur syntax definition of the Guard_Event property 
including the Boolean expression in DNF. 

 

Guard_Event ::= boolean_expr_DNF applies to outEventPort; 
boolean_expr_DNF ::= conjunction | boolean_expr_DNF OR boolean_expr_DNF 
conjunction ::= variable | conjunction AND conjunction 
variable ::= StateOrPropagation | NOT StateOrPropagation 

Figure IV-19. Guard_Event property syntax 

 

IV.5.1.1 Rule presentation 

The main difference between a Guard_Out and a Guard_Event property is that the 
Guard_Out property has several path-through rules while the Guard_Event property only 
has one rule that maps a Boolean expression to an architectural event. Thus, the 
transformation rule for a Guard_Event property is similar to the one applied to a path-
through rule of a Guard_Out property.  

One place e_outEventPort is created for a Guard_Event property associated with 
outEventPort. This place models the fact that an architectural event occurs as a 
consequence of each conjunction of boolean_expr_DNF and is sent out through the 
outEventPort named in the applies to clause. One GSPN transition evi is created for 
each conjunctioni of boolean_expr_DNF. evi has an outgoing arc to the place 
e_outEventPort and is also connected through: 

- bi-directional arcs to places corresponding to variables of boolean_expr_DNF 
(states or propagations).  

- inhibitor arcs to places corresponding to negated variables of 
boolean_expr_DNF (NOT StateOrPropagation). 

It is noteworthy that a place corresponding to a propagation may have been created when 
transforming an AADL transition triggered by the out propagation or when transforming a 
Guard_Out property. 

An immediate GSPN transition ev_mjmk is created for each mode transition that may be 
triggered by the event occurring as a result of the Guard_Event property. It is connected 
through: 

- an incoming arc from the place corresponding to the source mode. 

- an outgoing arc to the place corresponding to the destination mode.  

- a bi-directional arc to the place e_outEventPort. 

The place e_outEventPort can be emptied when all GSPN transitions connected to it are 
disabled (its causes are inactive, i.e., ¬boolean_expr_DNF evaluates to TRUE and all GSPN 
transitions modeling effects of the architectural event are disabled). The general rule 
presented in Appendix B also applies to places that model architectural events.  



CHAPTER IV 

 89 

Figure IV-20-a shows the same example of Guard_Event property as Figure II-19. It is 
associated with an out port named outp. Figure IV-20-b shows Component3 having the 
Guard_Event property on its out event port outp. Events sent out through the port outp are 
routed to the in port inp of Component4 and trigger mode transitions from mode m1 to m2.  

 

 

Guard_Event => 
 (not inp1[outProp] and inp2[s]) or  
 (inp1[outProp] and not inp2[s]), 
applies to outp; 

 

 

 

- a - - b - 

Figure IV-20. Guard_Event property 

 

The Guard_Event property of Figure IV-20 is transformed into a place ev_outp. Its 
boolean_expr_DNF is formed of two conjunctions, each one transformed into one 
GSPN transition. Figure IV-21 presents the GSPN corresponding to the Guard_Event 
property of Figure IV-20 without considering the two immediate GSPN transitions that empty 
ev_outp. The existence of a token in the place ev_outp leads to transferring the token from 
place m1 to place m2.  

 

 

Figure IV-21. Transformation rule for Guard_Event property 
 

IV.5.1.2 Rule formalization 

We assume that states and propagations (StateOrPropagation) referred to in the 
boolean_expr_DNF have already been transformed into Petri net places. We formalize the 
transformation rule for a Guard_Event property without considering the GSPN transitions 
that empty places StateOrPropagation corresponding to propagations. We use the 
following notation: 

c = the number of conjunctions in boolean_expr_DNF 



AADL TO GSPN MODEL TRANSFORMATION 

90 

The place e_outEventPort corresponds to the event resulting from the Guard_Event 
property. We define the sets of places PGE (places corresponding to states and propagations 
referred to in boolean_expr_DNF) and P

modes (places corresponding to modes that are 
sources or destinations of mode transitions triggered by the event resulting from the 
Guard_Event property) and the sets of GSPN transitions ev (corresponding to 
conjunctions of boolean_expr_DNF) and ev_m (corresponding to mode transitions 
triggered by the event). 

P
GE

 = {StateOrPropagation  conjunction boolean_expr_DNF} 
P

modes
 = {mode  dependency net} 

ev = {evi: immediate transitions  dependency net, i = 1.. c} 

ev_m = {ev_mj mk: immediate transitions  dependency net, j  k / mj, mk  Pmodes} 

The necessary arcs are as follows. 

evi = {StateOrPropagation conjunctioni / 
    variable = StateOrPropagation} 

evi = {e_outEventPort } {StateOrPropagation conjunctioni / 
    variable = StateOrPropagation} 
°evi = {e_outEventPort } {{StateOrPropagation conjunctioni / 

    variable = NOT StateOrPropagation} 

ev_mj mk = {e_outEventPort }  {modej} 
ev_mj mk = {e_outEventPort }  {modek} 
°ev_mj mk =  

Let us define the sets of arcs connected respectively to all GSPN transitions of the set ev 
and to all GSPN transitions of the set ev_m as follows. 

  

A_ev = A_evi
i=1

c

U  

  

A_ev _m jmk = A_ev _m jmkU  

The GSPN subnet PNGuard_Event describing the Guard_Event property is defined as 
follows.  

PNGuard_Event = PGE
  Pmodes  ev 

  ev_m  A_ev  A_ev_mjmk  { e_outEventPort} 

IV.5.2 Guard_Transition 

Guard_Transition properties associated with mode transitions specify mode transition 
logic expressions overriding the default or condition on events arriving through ports named 
in the mode transition. Figure IV-22 shows the Backus-Naur syntax definition of the 
Guard_Transition property, already shown in section II.1.2.4.2, and develops the 
definition of the Boolean expression in DNF. This definition is further used to present the 
general transformation rule before showing a concrete example. 



CHAPTER IV 

 91 

 

Guard_Transition ::= boolean_expr_DNF applies to modeTransitionName; 
boolean_expr_DNF ::= conjunction | boolean_expr_DNF OR boolean_expr_DNF 
conjunction ::= variable | conjunction AND conjunction 
variable ::= EventPort | NOT EventPort 
EventPort ::= outEventPortOfSubcomp | inEventPortOfComp 

Figure IV-22. Guard_Transition property syntax 

 

IV.5.2.1 Rule presentation 

The main difference between a Guard_In and a Guard_Transition property is that the 
Guard_In property has several propagation mapping rules while the Guard_Transition 
property only has one event mapping rule. Thus, the transformation rule for a 
Guard_Transition property is similar to the one applied to a mapping rule of a Guard_In 
property. A Guard_Transition subnet is connected on the one hand to places 
corresponding to events that result from Guard_Event properties and on the other hand to 
places corresponding to modes involved in the mode transition with which the 
Guard_Transition property is associated.  

The unique event-mapping rule of the Guard_Transition property specifies that the 
mode transition occurs when one of the conjunctions of boolean_expr_DNF evaluates to 
TRUE. Thus, one GSPN transition guard_tri is created for each conjunctioni. guard_tri 
links the place mj that corresponds to the source mode of the transition to the place mk that 
corresponds to its destination mode. guard_tri is connected through: 

- bi-directional arcs to places corresponding to variables of conjunctioni (events).  

- inhibitor arcs to places corresponding to negated variables of conjunctioni (NOT 
EventPort). 

Figure IV-23-a reminds the example of Figure II-22: a Guard_Transition property 
associated with a mode transition named M1toM2, from mode m1 to m2. This property 
specifies that the mode transition must occur only when two events arrive simultaneously 
through ports inp1 and inp2. Figure IV-23-b shows the architectural view of the property.  

 

 

Guard_Transition => 
  inp1 and inp2 
applies to M1toM2; 

 

 

 

- a - - b - 

Figure IV-23. Guard_Transition property 

 



AADL TO GSPN MODEL TRANSFORMATION 

92 

For the sake of clarity, Figure IV-24 presents the GSPN corresponding to the 
Guard_Transition property of Figure IV-23 without considering the GSPN transitions that 
empty the places corresponding to events.  

 

 

Figure IV-24. Transformation rule for Guard_Transition property  
 

The boolean_expr_DNF is formed of one conjunction that is transformed into an 
immediate GSPN transition. The condition necessary to empty these places is the same as that 
for emptying places corresponding to propagations (see Appendix B).  

IV.5.2.2 Rule formalization 

We assume that events occurring as a result of a Guard_Event property and referred to in 
the boolean_expr_DNF of the Guard_Transition property have already been 
transformed into Petri net places (i.e., the Guard_Event properties must be transformed into 
GSPN before the Guard_Transition properties). We formalize the transformation rule for 
the Guard_Transition property without considering the GSPN transitions that empty 
places corresponding to events. We use the following notation: 

c = the number of conjunctions in mapping_rule 

Let us define the sets of places PGT
 (corresponding to events occurring through the event 

ports named in the applies to clause of the Guard_Transition property) and P
modes 

(places corresponding to modes that are sources or destinations of the mode transition 
triggered by the event ports of the applies to clause of the Guard_Transition property) 
and the set of GSPN transitions guard_tr (corresponding to conjunctions of 
boolean_expr_DNF). 

P
GT

 = {EventPort  conjunction} 
P

modes
 = {modej, modek  dependency net / j  k} 

guard_tr = {guard_tri: immediate transitions  dependency net, i = 1.. c} 

 
The necessary arcs are as follows. 

guard_tri = {modej} {EventPort conjunctioni / variable = EventPort} 
guard_tri = {modek} { EventPort conjunctioni / variable = EventPort} 
°guard_tri = {EventPort conjunctioni / variable = NOT EventPort} 



CHAPTER IV 

 93 

Let us define the set of arcs connected to all GSPN transitions of set guard_tr as follows. 

  

A_ guard _ tr = A_ guard _ tri
i=1

c

U  

The GSPN subnet PNGuard_Transition describing a Guard_Transition property is defined as 
follows.  

PNGuard_Transition = PGT
  Pmodes   guard_tr 

  A_guard_tr 

IV.5.3 Activate / deactivate transitions 

Error models declaring activate / deactivate transitions must also declare an 
initial inactive error state, in addition to the initial error state. As any 
error state, the initial inactive error state is transformed into a GSPN place.  

If the component or connection with which the error model is associated is active in the 
initial operational mode of the system, then a token is placed in the initial error state. 
Otherwise a token is placed in the initial inactive error state. 

IV.5.3.1 Rule presentation 

Let us denote by mcurrent the current operational mode of a system. mcurrent is a set of 
operational modes of the system’s components that are of interest for the dependability 
analysis, i.e., they have been transformed into GSPN places when processing Guard_Event 
and Guard_Transition properties. A component or a connection is active in mcurrent if it is 
active in one of the modes of mcurrent and if all its enclosing components are also active.  

We create places CompOrConnactive to model the fact that CompOrConn is active in mcurrent 
and connect them to places corresponding to modes as follows.  

- A Boolean expression representing the condition for CompOrConn to be active is built. 
It refers to modes of CompOrConn (in which CompOrConn is active) and to modes in 
which its enclosing components are active. This Boolean expression is brought to DNF. 

- An immediate GSPN transition is created for each conjunction of the Boolean 
expression. It is connected through  

 bi-directional arcs to places corresponding to modes referred to in the 
conjunction.  

 an output arc to the place CompOrConnactive. The place is 1-bounded by using 
inhibitor arcs to all immediate GSPN transitions that represent conjunctions of 
the Boolean expression. 

Activate and deactivate transitions are transformed into immediate GSPN transitions 
that link the place corresponding to the source state of the AADL transition to the place 
corresponding to the destination state of the AADL transition.  

Each GSPN transition corresponding to an activate AADL transition is connected 
through a bi-directional arc to CurrentCompOrConnactive, i.e., it is enabled immediately after 
the activation of the component or connection with which it is associated. 

Each GSPN transition corresponding to a deactivate AADL transition has an inhibitor 
arc from the place CurrentCompOrConnactive. 

Places CompOrConnactive must be emptied, similarly to propagation places: all GSPN 
transitions connected to the place must be disabled. 



AADL TO GSPN MODEL TRANSFORMATION 

94 

Figure IV-25 shows an example of AADL dependability model in which Component11 
(which is a subcomponent of Component1) has an error model declaring activate / 

deactivate transitions. The whole system modelled here has already been presented in 
Figure II-4. It is formed of three components: Component1, Component2 and Component3. 
Here, we refine Component1. It has two subcomponents: Component11 and Component12, 
and two operational modes. Component11 is only active in mode m11.  

The operational modes of the system and of Component1 have been transformed into places 
when transforming the Guard_Event properties associated with the ports triggering them. 
Component11 is active when the places corresponding to m1 and m11 contain tokens.  

 

 

Figure IV-25. Architectural view of activate/deactivate transitions 

 

Figure IV-26 presents the GSPN corresponding to the activate / deactivate 
transitions.  

 

 

 

Figure IV-26. Activate/deactivate transitions - Transformation rule 
 

The activate transition has a bi-directional arc from the place Component11_active. The 
deactivate transition has an inhibitor arc from the place Component11_active. The place 



CHAPTER IV 

 95 

contains a token if places m1 and m11 contain tokens, i.e., both Component1 and 
Component11 are active. 

IV.5.3.2 Rule formalization 

A Boolean expression denoted by CompOrConnactivate, representing the condition for 
CompOrConn to be active is built. It refers to modes in which CompOrConn is active and to 
modes in which its enclosing components are active. We consider the DNF form of 
CompOrConnactivate. We use the following notation: 

c = the number of conjunctions in CompOrConnactivate 

Let us define the sets of places PCompOrConn_active (places corresponding to components and 
connections being active) and the sets of transitions Tactivate (corresponding to conditions of 
activation of CompOrConn) and T

incoming (corresponding to in propagations into 
CompOrConn or to Guard_transition properties defined in CompOrConn). 

Let us define the sets of places PAD
 (corresponding to places corresponding to source and 

destination states of activate and deactivate transitions), Pconfig (places corresponding to 
modes of CompOrConn and of its enclosing components), and P

CompOrConn_active (places 
corresponding to components and connections being active) and the sets of GSPN transitions 
T

AD (corresponding to activate and deactivate transitions) and Tactivate (corresponding to 
conditions of activation of CompOrConn). 

P
AD

 = {(srci, dsti)  component net}  

P
config

 = {mode  dependency net} 
P

CompOrConn_active = {CompOrConnactive  dependency net33} 
CurrentCompOrConnactive  P

CompOrConn_active
 

T
 AD = {ti

activate, ti
deactivate  component net} 

T
 activate_comp

 = {ti
activate_comp  dependency net / i = 1..c} 

 

The necessary arcs are as follows. 

ti
activate

 = {srci}  {CurrentCompOrConnactive  P
CompOrConn_active} 

ti
activate

 = {dsti}  {CurrentCompOrConnactive  P
CompOrConn_active} 

°ti
activate

 =  

ti
deactivate

 = {srci} 
ti

deactivate
 = {dsti} 

°ti
deactivate

 = {CurrentCompOrConnactive  P
CompOrConn_active} 

ti
activate_comp

 = {mode (conjunctioni CompOrConnactivate)} 
ti

activate_comp
 = {mode (conjunctioni CompOrConnactivate)}  

{CurrentCompOrConnactive  P
CompOrConn_active} 

°ti
activate_comp

 = {CurrentCompOrConnactive  P
CompOrConn_active} 

 

                                                
33 These places are part of dependency nets, as they are only necessary if the components and connections represented as 

active are not independent. 



AADL TO GSPN MODEL TRANSFORMATION 

96 

Let us define the set of arcs connected respectively to all GSPN transitions of set TAD and  
T

 activate_comp
 as follows. 

( )U U
i

deactivate

i

activate

i

AD
tAtATA ___ =  

U
c

i

compactivate

i

compactivate
tATA

1

__
__

=

=  

The GSPN subnet PNAD describing activate and deactivate transitions is defined as 
follows.  

PNAD = PAD  Pconfig  PCompOrConn_active  T AD
   T activate_comp

  A_ T
 AD  A_ T

 activate_comp 

IV.6 Transforming error model abstractions 

The AADL Error Model Annex specifies two error model abstractions: abstract error 

models representing the behavior of a component in the presence of faults in terms of states 
and events inherent to the component and propagations from and to components this 
component interacts with, and derived error models representing the behavior of a component 
in terms of global states as a logic expression of the states of its subcomponents. These two 
mechanisms are considered for transformation in the two following subsections. 

IV.6.1 Transforming abstract error models 

Abstract error models are transformed according to the rules presented in the preceding 
sections. The subcomponents of a component having an abstract error model are not 
transformed. From a practical point of view, the architectural model hierarchy is traversed 
from top to down to search the components and connections whose error models and Guard 
properties are to be transformed. When a component having an abstract error model is found, 
the traversal stops and that error model is considered as part of the set of error models to be 
transformed.  

IV.6.2 Transforming derived error models 

Derived error models use Boolean expressions only referring to states (and not to 
propagations). These expressions determine the state of the derived error model (i.e., the 
global states). Figure IV-27 reminds the Backus-Naur syntax definition for the 
Derived_State_Mapping expression.  

 

Derived_State_Mapping ::= stateMapping_rule {, stateMapping_rule}* 
stateMapping_rule ::= globalState_id when boolean_expr_DNF  

Figure IV-27. Derived_State_Mapping definition 

 



CHAPTER IV 

 97 

IV.6.2.1 Rule presentation 

Global states (globalState_id) of the system correspond to places in the GSPN. Each 
boolean_expr_DNF is transformed into a set of immediate GSPN transitions. These 
transitions are connected through arcs (or inhibitor arcs in case of negations) to places that 
correspond to states of the subcomponents. Only one place corresponding to a 
globalState_id can be marked at a given time. Thus, the number of GSPN transitions 
corresponding to a conjunction is equal to n-1 (n being the number of places 
corresponding to global states). Each GSPN transition has an input arc coming from a place 
corresponding to a global state (which is emptied when the transition is fired) and an exit arc 
going to the place corresponding to the globalState_id named in the current 
stateMapping_rule. Initially, a token is placed in the place that corresponds to the global 
initial state of the system. This global initial state is determined from the initial states of the 
system’s subcomponents. 

An example is given in Figure IV-28, which shows the implementation of an AADL system 
A with two components named A1 and A2 (this example has been already shown in  
Figure II-26-b2 with other names for the global states and the states of subcomponents). The 
Derived_State_Mapping expression specifies that the system is in state globalS1 if both 
its subcomponents are in state s, and in state globalS2 otherwise.  

 

system implementation A.nominal 
subcomponents 
 A1: system sw.nominal; 
 A2: system sw.nominal; 
annex Error_Model {** 
 Model => forA; 
 Derived_State_Mapping => 
  globalS1 when (A1[s] and A2[s]), 
  globalS2 when others; 
**}; 
end A.nominal; 

Figure IV-28. Example of derived error model 

 

Figure IV-29 shows the GSPN obtained after transformation of this derived error model.  
 

 

Figure IV-29. GSPN modeling of the derived error model 

 



AADL TO GSPN MODEL TRANSFORMATION 

98 

The place globalS1 is marked as we consider s states for A1 and A2 initial states. If at least 
one of the two places that correspond to s states for A1 and A2 is not marked, the place 
globalS2 of the derived error model is marked. Note that, A cannot be simultaneously in states 
globalS1 and globalS2. One GSPN transition corresponds to each conjunction of each 
stateMapping_rule (in our example the expression when others is formed of three 
conjunctions). 

IV.6.2.2 Rule formalization 

We assume that the subcomponents’ error states have already been transformed in Petri net 
places. We use the following notations: 

n = the number of global states 

ci = the number of conjunctions in mapping_rulei, i = 1..n 

Let us define the sets of places P
global (corresponding to global states) and P

subcomp 
(corresponding to states of subcomponents) and the sets of GSPN transitions Ti

derived 
(corresponding to stateMapping_rulei) and T

derived (corresponding to all 
stateMapping_rules). 

P
global

 = {globalSi  derived dependency net, i =1..n} 
P

subcomp
 = {subcompS  subcomponent net / 

 subcompState  conjunction stateMapping_rule} 
Ti

derived  = {tjk: immediate transitions  derived dependency net, j =1..(n-1), k=1..ci} 

T
 derived  = 

  

Ti
derived

i=1

n

U  

The necessary arcs are as follows. 

tjk = {globalSj} { subcompS / subcompState  conjunction stateMapping_rule and 

    variable = subcompState } 

tjk = {globalSi} {subcompS / subcompState  conjunction stateMapping_rule and 

    variable = subcompState } 

°tjk = {subcompS / subcompState  conjunction stateMapping_rule and 

    variable = NOT subcompState } 

Let us define the set of arcs connected all GSPN transitions of set Tderived as follows. 

  

A_ t =
k=1

ci

U
j=1

n 1

U A_ t jk
i=1

n

U  

The GSPN subnet PNderived describing a Derived_State_Mapping expression is defined 
as follows.  

PNderived = Pglobal
  Psubcomp  Tderived

  A_t
  

IV.7 Taking into account architecture configurations 

This Section provides the rule for taking into account architecture configurations with 
operational modes in the transformation. Components and connections may be defined as 



CHAPTER IV 

 99 

inactive in particular operation modes, according to Section II.1.1.2. Since inactive 
components and connections do not communicate with the rest of the system, incoming or 
outgoing propagations are not possible. Similarly, an inactive component cannot send or 
receive architectural events if it is inactive. Also, an inactive connection or binding cannot 
represent a propagation path.  

IV.7.1 Rule presentation 

The transformation rule we present hereafter assumes that all the transformation rules 
presented earlier in this chapter (for name-matching propagations and Guard properties) have 
already been performed. For each component or connection CompOrConn having an error 
model, the rule consists in two steps: 

1) Creating places CompOrConnactive, if they have not been created earlier. These places 
model the fact that CompOrConn is active. 

2) Adding bi-directional test arcs from each CompOrConnactive place to each GSPN 
transition modeling an in propagation or a Guard_Transition property. These arcs 
allow enabling the GSPN transitions when all the following conditions are fulfilled: 

- CompOrConn is active in mcurrent; 

- Possible senders of propagation or architectural event are active in mcurrent; 

- The propagation path(s) from sender(s) to CompOrConn is active in mcurrent (a place 
pathactive is created in step 1 to represent the fact that a propagation path is active). 

Figure IV-30 presents the same example of AADL dependability model with modal 
architecture configurations used in Figure IV-25 to illustrate the transformation of activate 
and deactivate transitions. Component11 and Component12 declare name-matching in - 
out propagations. 

 

 

Figure IV-30. System with modal architecture configurations 
 

Figure IV-31 presents the GSPN corresponding to the name-matching dependency enriched 
to take into account the architecture configurations. We apply the rule for architecture 
configurations to the name-matching dependency, whose transformation to GSPN has been 
presented in Figure IV-6. The operational modes of the system and of Component1 have 



AADL TO GSPN MODEL TRANSFORMATION 

100 

already been transformed into places. Component11 is active when the places corresponding 
to modes m1 and m11 contain tokens. Component12 and the connection from Component11 
to Component12 are active when there is a token in place m1. Thus, places representing the 
fact that they are active are not necessary, as they are always active when Component11 is 
active.  

The rule for emptying the places CompOrConnactive is the same as the one presented in 
Appendix B for emptying GSPN propagation places. We do not represent here the two 
immediate GSPN transitions that empty the place Component11_active. They have inhibitor 
arcs respectively from places In_src and m11 and from In_src and m1. 

 

 

Figure IV-31. Modal configuration - Transformation rule 
 

IV.7.2 Rule formalization 

The modes of interest for the dependability analysis have already been transformed into 
Petri net places. We formalize the transformation rule for a component or connection 
CurrentCompOrConn active in a specified architecture configuration without considering the 
GSPN transitions that empty places corresponding to the fact that a component or a 
connection is active.  

Let us define the set of places P
CompOrConn_active (places corresponding to components and 

connections being active) and the set of transitions T incoming (corresponding to in propagations 
into CompOrConn or to Guard_Transition properties defined in CompOrConn). 

P
CompOrConn_active = {CompOrConnactive  dependency net34} 

T
 incoming

 = {tj
incoming  InProp_id  tj

incoming  Tin  tj
incoming  guard_tr} 

 
The necessary arcs are as follows. 

tj
incoming = {CurrentCompOrConnactive  P

CompOrConn_active}  {pathactive  P
CompOrConn_active}  

 {senderactive  P
CompOrConn_active} 

                                                
34 These places are part of dependency nets, as they are only necessary if the components and connections represented as 

active are not isolated. 



CHAPTER IV 

 101 

tj
incoming

 = {CurrentCompOrConnactive  P
CompOrConn_active}  {pathactive  P

CompOrConn_active}  
 {senderactive  P

CompOrConn_active} 
°tj

incoming
 =  

Let us define the sets of arcs connected to all GSPN transitions of the set T 

incoming as 
follows. 

U
ginco

j

ginco
tATA

minmin __ =  

The GSPN subnet PNconfig describing the architecture configuration under which the 
component CurrentCompOrConn is active is defined as follows.  

PNconfig = PCompOrConn_active   T incoming  A_T
 incoming 

IV.8 Scalability analysis 

Naturally, when transforming large architectural models formed of many components, the 
size of the corresponding GSPN increases. This may lead to problems related to the 
processing of the GSPN and its underlying Markov chain. The state space size depends on the 
number of components and on the dependencies between them. In most of the cases, the more 
loosely coupled components are, the larger the state space gets. Intuitively, for independent 
components, the reachability set includes all combinations of states of all components (i.e., 
their Cartesian product). In general, the existence of strong dependencies in the AADL 
dependability model causes the removal of some of these combinations from the reachability 
set.  

We have analyzed the evolution of the state space (both the reachability set and the Markov 
chain) for the case of components declaring name-matching propagations. Figure IV-32-a 
represents the variation of the state space size as a function of the number n of AADL 
transitions triggered by the same out propagation considering one receiver component (r=1) 
that declares one AADL transition triggered by the name-matching in propagation (m=1). 
Figure IV-32-b represents the variation of the state space size as a function of the number m 
of AADL transitions triggered by an in propagation name-matching an out propagation 
declared in one sender component (r=1). The out propagation triggers one AADL transition 
in the sender component. 

We observe that the state space increases linearly with the growth of the number of AADL 
transitions triggered by the out propagation in the sender component. On the other hand, it 
decreases linearly (but more slowly) with the growth of the number of AADL transitions 
triggered by the in propagation in the receiver component. The reason for this is that 
increasing the number of AADL transitions triggered by the in propagation in the receiver 
component means enforcing the coupling between the state machine of the sender component 
and the one of the receiver component.  



AADL TO GSPN MODEL TRANSFORMATION 

102 

 

  

- a - - b - 

Figure IV-32. State space analysis 

 

In the case of several identical receiver components (r is variable) for one sender 
component, the state space grows exponentially. This is the main limitation of this model 
transformation approach and represents a future research direction. This identified limitation 
is directly related to the fact that, in AADL, all components are represented separately (even 
if they have identical error models and are in identical topologies) and thus, the GSPN 
obtained by direct model transformation is not compact. Currently, to address these problems, 
GSPN reduction methods categorized as largeness tolerance techniques, such as those 
mentioned in section I.2.3, may be efficiently used before computing the marking graph. 

IV.9 Conclusion 

In this Chapter, we have defined transformation rules for all AADL Error Model Annex 
constructs presented in Section II.1.2. This set of transformation rules is necessary and 
sufficient for obtaining GSPNs modeling complex systems formed of many components with 
several types of dependencies between them, as discussed in Section I.4.  

The transformation rules have been defined to facilitate their implementation and thus to 
favor the transformation automation. In order to show the feasibility of the automation, we 
have implemented the model transformation tool ADAPT (from AADL Architectural models 

to stochastic Petri nets through model Transformation). It is built as a set of plug-ins, 
developed in the Java programming language, on top of the open-source Eclipse platform and 
on top of the OSATE plug-ins supporting the AADL and AADL Error Model Annex. The 
output of the tool is a GSPN represented in two forms: XML and tool-specific complying 
with the input format of the dependability evaluation tool Surf-2, developed at LAAS-CNRS. 
The model transformation tool is further detailed in Appendix C. 

At the end of this Chapter, we have analyzed the evolution of the size of the state space 
underlying the GSPN when a varying number of dependencies are modeled. We have 
identified the limitations of our approach, which represent future research directions. 



 

 103 

V Case Study: Subsystem of the Air 
Traffic Control System 

In this Chapter, we show how our modeling approach is used to compare the availability of 
candidate architectures of a subsystem of the French Air Traffic Control System (CAUTRA). 
The subsystem is local to the French Area Control Centers and has been previously studied in 
[Kanoun et al. 1999] using only GSPNs. Here we focus on modeling this system in AADL 
and on transforming the AADL dependability model into GSPN. The AADL dependability 
model of the system is built by the user according to the iterative approach described in 
Section I.4. The dependency block diagram is built based on the high level AADL 
architectural model and on the assumptions related to maintenance and fault-tolerance 
policies. The components are first modeled as if they were independent, following the 
guidelines of Section III.1. Dependencies are integrated iteratively in the AADL 
dependability model, following the guidelines of Section III.2. The fault-tolerance patterns 
presented in Section III.3 are instantiated and customized to describe a particular fault-
tolerance policy for the system. The AADL dependability model is transformed into GSPN at 
the end of each iteration. The model transformation is transparent to the user, as it is entirely 
performed by a tool implementing the rules of Chapter IV. The final GSPN has been analyzed 
with the dependability evaluation tool Surf-2 [Béounes et al. 1993] in order to compare the 
dependability (e.g., availability, reliability) of candidate architectures that differ through the 
mapping of software on hardware, or through their maintenance and fault-tolerance policies.  

This Chapter is structured as follows. Section V.1 gives an overview of the subsystem of 
CAUTRA to be analyzed. Section V.2 is dedicated to the AADL modeling and to the AADL 
to GSPN transformation iterations. In particular, we show how the GSPN of the system is 
enriched by the automated transformation at the end of each iteration. Section V.3 gives two 
examples of analyses based on the evaluation of the unavailability of candidate architectures. 
Section V.4 concludes this Chapter. 

V.1 System description 

We consider a subsystem formed of two pairs of software components and two hardware 
platforms. Each of the two pairs of software components forms a fault-tolerant software unit. 
One of them is in charge of processing flight plans (FP) and the other one is in charge of 
processing radar data (RD). FP and RD exchange information and are connected through 
dedicated local networks. They run on a bi-processor hardware architecture. 

RD is a real-time software system that processes radar data enriched with information 
concerning flight plans, received from FP. Its goal is to provide a map of the airspace to the 
air traffic controllers. FP is a real-time software system that processes flight plans and 
provides all the necessary information regarding flights to air traffic controllers. In particular, 
it updates flight plans according to input given by air traffic controllers. RD also provides FP 
with information related to aircrafts’ position, speed and altitude. Based on this information, 
FP updates aircrafts’ flight plans while they fly in the controlled airspace. Also, the map 



APPLICATION TO CAUTRA 

104 

provided by RD to air traffic controllers contains information regarding the aircrafts detected 
by radar. RD receives this information from FP. A broken connection from FP to RD causes 
the failure of RD. 

RD and FP are two fault tolerant distributed software units. Each of them is formed of two 
replicas: one replica provides the service while the other one acts as a backup.  

For FP, we investigate two fault-tolerance policies: 

1) When the backup replica detects the failure of the primary replica, it becomes the 
primary. The two replicas keep their roles after the restoration of the failed replica. 

2) When the backup replica detects the failure of the primary replica, it becomes the 
primary. The two replicas switch roles after the restoration of the failed replica. 

For RD, we consider the first policy that we considered for FP. The error detection 
mechanisms (e.g., self-checking replicas or separate monitor) are not set at this stage. 

The two replicas of one software unit are bound to separate hardware units (so as not to 
loose both replicas if one processor fails) and they are implemented differently, thus common 
mode failures are assumed very unlikely, and thus ignored. The primary FP replica sends data 
to the backup FP replica while the RD replicas do not communicate one with the other.  

In this Chapter, we consider two candidate architectures of the CAUTRA subsystem, 
referred to as Configuration1 and Configuration2. They are based on the same software and 
hardware components, but differ by the mapping between the software and the hardware 
components. In Configuration1, the initially primary replicas of FP and RD run on separate 
hardware units, as shown in Figure V-1-a, while in Configuration2 they run on the same 
hardware unit, as shown in Figure V-1-b.  

 

  

 

a: Configuration1 b: Configuration2  

Figure V-1. Candidate architectures 

 

Subsection V.1.1 presents the high level AADL architectural models obtained from the 
above specifications. Subsection V.1.2 is dedicated to the dependency analysis based on the 
high level AADL architectural models. 

V.1.1 AADL architectural models 

The high level AADL architectural models of Configuration1 and Configuration2 are 
presented respectively in Figure V-2 and Figure V-3. In both configurations, each of the two 
software units (FP and RD) is formed of two replicas modeled as processes: FP_Comp1, 
FP_Comp2 and RD_Comp1, RD_Comp2. FP_Comp1 and FP_Comp2 are connected through 
data connections used for sending data from the primary process to the backup process. FP 
and RD communicate through event data connections. Both candidate architectures use two 
hardware units modeled as processors: Processor1 and Processor2.  



CHAPTER V 

 105 

 
 

Figure V-2. AADL architectural model of Configuration1 

 

 

 

Figure V-3. AADL architectural model of Configuration2 

 



APPLICATION TO CAUTRA 

106 

The main difference between the two models lies in the processes’ bindings to processors. 
In Configuration1, FP_Comp1 and RD_Comp1 (the initially primary replicas of FP and RD) 
are bound to separate processors: FP_Comp1 is bound to Processor1 and RD_Comp1 to 

Processor2. In Configuration2, FP_Comp1 and RD_Comp1 are both bound to Processor1. In 
both configurations, the subsystem has two operational modes, Nominal and Reconfig, with 
different meanings according to the configuration. In Configuration1, the Nominal mode is 
the one in which the primary replicas of FP and RD are bound to separate processors while 
they are bound to the same processor in Configuration2. When the primary replicas are bound 
to separate processors, the connections between FP and RD are bound to a bus. Thus, the 
connection bindings to the bus depend on the operational mode of the subsystem. They are 
active in mode Nominal for Configuration1 and in mode Reconfig for Configuration2. 

The high level AADL architectural models presented in this Section will be further refined 
when detailing fault-tolerance and maintenance policies. 

V.1.2 Dependency analysis 

The various interactions between this subsystem’s components induce architectural 
dependencies between them: 

 Structural dependency between each processor and the processes that run on top of it. 
We assume that hardware faults can propagate and influence the software running on 
top of it. These dependencies (S1, S2, S3 and S4 in Figure V-2 and Figure V-3) result 
from the architectural bindings of processes to processors. 

 Recovery dependency between each processor and the processes that run on top of it. If 
a process fails, it cannot be restarted if the processor on top of which it runs is in a 
failed state. These dependencies (R1, R2, R3 and R4 in Figure V-2 and Figure V-3) are 
supported by the architectural bindings of processes to processors. 

 Structural dependency between the bus and the processes of RD. If the bus fails, the 
broken connections bound to it make RD fail in mode Nominal of Configuration1 and 
in mode Reconfig of Configuration2. This dependency (S5 in Figure V-2 and  
Figure V-3) is supported by the binding of the connection from FP to RD to the bus. 

 Functional dependencies between FP and RD. The primary FP process may propagate 
errors to both RD processes. These dependencies (F1 and F2 in Figure V-2 and  
Figure V-3) are supported by the connections of the FP replicas to the RD replicas. 
Note that we consider that RD errors do not propagate to FP even though there is a 
connection from RD to FP. 

 Functional dependency between the primary FP process and the backup FP process. 
This dependency (F3 in Figure V-2 and Figure V-3) results from the connections 
between the FP replicas. We consider that only the primary process can propagate 
errors to the backup. Thus, the architectural models of Figure V-2 and Figure V-3 must 
be refined when integrating this dependency, to disable the connection from the backup 
to the primary replica. 

 Fault-tolerance dependency between the two FP processes and the two RD processes. If 
the replica that delivers the service fails but the other one is error free, the two software 
replicas switch roles. Then, the failed replica is restarted. We investigate two policies:  

- FT1, which assumes that the two replicas keep their roles after the restoration of 
the failed replica,  

- FT1’, which assumes that they switch roles after the restoration of the failed 
replica.  



CHAPTER V 

 107 

The fault-tolerance dependency between the FP replicas (FT1/FT1’ in Figure V-2 and 
Figure V-3) is partially supported by the connections between FP_Comp1 and 
FP_Comp2. We assume there is a fault-tolerance dependency between the RD 
replicas, named FT2 further on. This dependency is not completely supported by the 
initial architectural models of Figure V-2 and Figure V-3. Thus, FT2 requires a 
refinement of these models.  

 

In addition to the architectural dependencies, we take into account: 

 Maintenance dependency between the two processors that share a repairman that is not 
simultaneously available for the two components. This maintenance dependency is not 
visible on the architectural models of Figure V-2 and Figure V-3.  

 

Based on the above analysis, we build the dependency block diagrams of the two candidate 
architectures. They provide a global view of the system components and interactions that are 
taken into account for the dependability analysis, as stated in Section I.4.2. 

Figure V-4 shows the dependency block diagram describing the dependencies between the 
components in Configuration1. The block Repairman does not correspond to a component of 
the AADL architectural models of Figure V-2 and Figure V-3. It represents a component to 
be added during the refinement of these models, in order to take into account the maintenance 
dependency between the processors. This diagram is formed of eight component blocks (one 
for each of the four software components, one for each of the two hardware components, one 
for the bus and one for the repairman) and sixteen dependency blocks. Among the 
dependency blocks, some correspond to identical AADL and GSPN models. For example,  
S1-4 are identical, since they represent the same dependency specification between identical 
components. In the following Sections, we point out the dependencies modeled 
simultaneously because of this reason. 

The dependency block diagram for Configuration2 is similar, except for the links between 
the processor blocks and the blocks of structural and recovery dependencies. Concretely, in 
Configuration2, Processor1 is linked to RD_Comp1 via blocks S4 and R4 and Processor2 is 
linked to RD_Comp2 via blocks S3 and R3.  

 

 

Figure V-4. Dependency Block Diagram of Configuration1 

 



APPLICATION TO CAUTRA 

108 

In this Chapter, the purpose is to compare, with respect to their availability, four 
alternatives resulting from the two architecture candidates Configuration1 and Configuration2 
and from the two fault-tolerance policies FT1 and FT1’.  

V.2 AADL dependability model and transformation to GSPN 

This section presents the AADL dependability model construction iterations together with 
the corresponding transformation iterations. Based on the system description and on the 
dependency block diagrams, we decide to associate error models with hardware (processors 
and bus) and software components (processes). We integrate successively in these error 
models the dependencies, in the order of their presentation in Section V.1.2: first those that do 
not require architectural refinements, in the end, those requiring architectural refinements: F3, 
FT1, FT2, M1 and M2 of Figure V-4. For the fault-tolerance dependencies, we use the 
patterns presented in Section III.3. We do not take into account faults in the connections. We 
declare one error model implementation for each iteration. 

V.2.1 Iteration 1: independent components 

We start the construction of AADL error models as if the components with which they are 
associated were independent. No AADL propagations are defined at this stage: we model the 
behaviour of the processors and the bus, then the behaviour of the processes in the presence of 
their own faults and repair events. 

V.2.1.1 Assumptions 

We consider the following behavior for the processors: 

 Initially the component is in Error_Free state. 

 Temporary faults are activated with rate h1. 

 Permanent faults are activated with rate h2. 

 Errors caused by temporary faults disappear with a rate μh1. 

 Errors caused by permanent faults are either detected (detection rate h1), or non-
detected (non detection rate h2). In both cases the component moves to a Failed state. 
If the error has been detected, the hardware component is repaired. If not, the failure is 
perceived with a rate h. Then the component is repaired with a repair rate μh2. 

 

We consider the following behavior for the bus: 

 Initially the component is in Error_Free state. 

 Faults are activated with a rate b. 

 The bus is repaired after a failure with a repair rate μb. 
 

We consider the following behavior for the processes: 

 Initially the component is in Error_Free state. 

 Faults are activated with a rate s. 

 An error is either detected (detection rate s1), or not detected (non detection rate s2).  



CHAPTER V 

 109 

 The effects of a detected error caused by the activation of a temporary fault are 
eliminated by the error detection mechanisms with a rate s1. As a consequence, the 
component moves to the Error_Free state. A detected error caused by a permanent fault 
causes the failure of the process with a rate s2. As a consequence, the process needs to 
be restarted to eliminate the effects of the error. The restart rate is s. 

 Effects of a non-detected error may disappear (rate s) or may be perceived (rate s). 

Note that the difference between the processors’ and processes’ behaviours is that for the 
processors, temporary and permanent faults are distinguished by their respective 
consequences, following their activation, whereas for the processes they are distinguished 
after specific processing.  

V.2.1.2 AADL dependability model 

Figure V-5, Figure V-7 and Figure V-6 show respectively the error models hw.indep, 

bus.indep and sw.indep describing the behaviors of an independent processor, bus and process 
as resulting from their own failures and repairs.  

 

 
 
 
 
 
 
 
 
 
 
 
 

Error Model Type [hw] 
 

error model hw 
features 
  Error_Free: initial error state; 
  TempErr: error state; 
  PermErr: error state; 
  ErrND: error state; 
  Failed: error state; 
  Temp_Fault: error event {Occurrence => poisson h1};  
  Perm_Fault: error event {Occurrence => poisson h2};  
  Recover: error event {Occurrence => poisson μh1}; 
  Repair: error event {Occurrence => poisson μh2}; 
  Detect: error event {Occurrence => poisson h1}; 
  NonDetect: error event {Occurrence => poisson h2}; 
  PerceiveFail: error event {Occurrence => poisson h}; 
end hw; 

  
 

 
 
 
 
 
 
 

Error Model Implementation [hw.indep] 
 

error model implementation hw.indep 
transitions 
  Error_Free-[Perm_Fault]->PermErr; 
  Error_Free-[Temp_Fault]->TempErr; 
  TempErr-[Recover]->Error_Free; 
  PermErr-[Detect]->Failed; 
  PermErr-[NonDetect]->ErrND; 
  ErrND-[PerceiveFail]->Failed; 
  Failed-[Repair]->Error_Free; 
end hw.indep; 

Figure V-5. Error model for independent processor 

 



APPLICATION TO CAUTRA 

110 

 
 
 
 
 
 
 
 
 
 

Error Model Type [bus] 
 

error model bus 
features 
  Error_Free: initial error state; 
  Failed: error state; 
  Fail: error event {Occurrence => poisson b}; 
  Repair: error event {Occurrence => poisson μb}; 
end bus; 

  
 

 
 
 
 
 

Error Model Implementation [bus.indep] 
 

error model implementation bus.indep 
transitions 
  Error_Free-[Fail]->Failed; 
  Failed-[Repair]->Error_Free; 
end bus.indep; 

Figure V-6. Error model for independent bus 

 
 
 
 
 
 
 
 
 
 
 
 

Error Model Type [sw] 
 

error model sw 
features 
  Error_Free: initial error state; 
  Activation: error state; 
  PermErr: error state; 
  ErrND: error state; 
  ErrD: error state; 
  Failed: error state; 
  Fault: error event {Occurrence => poisson s};  
  Detect: error event {Occurrence => poisson s1};  
  NonDetect: error event {Occurrence => poisson s2};  
  Eliminate: error event {Occurrence => poisson s1}; 
  Fail: error event {Occurrence => poisson s2}; 
  Recover: error event {Occurrence => poisson s}; 
  Restart: error event {Occurrence => poisson s}; 
  PerceiveFail: error event {Occurrence => poisson s}; 
end sw; 

  
 

 
 
 
 
 
 
 

Error Model Implementation [sw.indep] 
 

error model implementation sw.indep 
transitions 
  Error_Free-[Fault]->Activation; 
  Activation-[NonDetect]->ErrND; 
  ErrND-[Recover]->Error_Free; 
  ErrND-[PerceiveFail]->Failed; 
  Activation-[Detect]->ErrD; 
  ErrD-[Eliminate]->Error_Free; 
  ErrD-[Fail]->Failed; 
  Failed-[Restart]->Error_Free; 
end sw.indep; 

Figure V-7. Error model for independent process 

 

The above error models are associated respectively with the AADL processor 
implementation processor.cautra, process process.cautra and bus bus.cautra. As an example, 
we show in Figure V-8 the association of the error model hw.indep with processor.cautra. 
Processor1 and Processor2 are two instances of processor.cautra. 



CHAPTER V 

 111 

 

 system implementation processor.cautra 
[…] 
annex Error_Model {** 
 Model => hw.indep; 
**}; 
end processor.cautra; 

Figure V-8. Textual AADL dependability model - processor 

V.2.1.3 AADL to GSPN model transformation 

Figure V-9, Figure V-11 and Figure V-10 show respectively the GSPNs obtained for an 
independent processor, bus and process, by applying the model transformation rule for 
independent components (see Section IV.2). 

 

 

Figure V-9. GSPN modeling an independent processor 
 

 

Figure V-10. GSPN modeling an independent bus 
 

 

Figure V-11. GSPN modeling an independent process 

 



APPLICATION TO CAUTRA 

112 

V.2.2 Iteration 2: structural dependency from processor to process 

V.2.2.1 Assumptions 

Because of the fact that processes run on processors, errors in a processor may impact the 
processes running on top of it, as follows: 

 A temporary fault in the hardware may cause error transmissions to the processes. 

 A non detected permanent fault may cause error transmissions to the processes. 

The error propagation from the processor to the processes occurs with a probability, phe. 

If the processes are Error_Free, the error transmission from the processor leads them in the 
state where a fault has been activated. Then, the error is processed in the same way as internal 
ones. We consider that internal software errors followed by hardware error transmissions are 
very unlikely to happen, thus we neglect them.  

V.2.2.2 AADL dependability model 

Figure V-12 only shows what is added to the error model for an independent processor 
(Figure V-5) in order to describe the structural dependency. The error model type for 
processors, hw, is completed with line so in order to include an out error propagation 
declaration H_Err. The error model implementation hw.S takes into account the sender side of 
the structural dependency: it declares two transitions triggered by the newly introduced out 
propagation (see lines so

1 and so
2 of Figure V-12). Note that the destination state is the same 

as the source state for the two transitions. Thus, if the out propagation occurs, it remains 
visible until the processor leaves this state.  

 

 
 
 
 
 
 
+(so) 
 

Error Model Type [hw] 
 

error model hw 
features 
  […] 
  H_Err: out error propagation {Occurrence => fixed phe}; 
end hw; 

  
 

 
 
 
+(so

1) 
+(so

2) 
 

Error Model Implementation [hw.S] 
 

error model implementation hw.S 
transitions 
  […] 
  TempErr-[out H_Err]->TempErr; 
  ErrND-[out H_Err]->ErrND; 
end hw.S; 

Figure V-12. Error model for structural dependency (sender side) 

 

Figure V-13 only shows what is added to the error model for an independent process  
(Figure V-7) in order to describe the structural dependency. The error model type sw is 
completed with line si in order to include an in propagation declaration H_Err. Its name 
matches the name of the out propagation declared in the error model type hw. The error 
model implementation sw.S takes into account the recipient side of the structural dependency 
by declaring a transition triggered by the in propagation H_Err (see line si

1 of Figure V-13) 
and leading the process from state Error_Free to Activation.  



CHAPTER V 

 113 

 

 
 

 
 
 
+(si) 
 

Error Model Type [sw] 
 

error model sw 
features 
[…] 
  H_Err: in error propagation; 
end sw; 

  
 

 
 
+(si

1) 
 

Error Model Implementation [sw.S] 
 

error model implementation sw.S 
transitions 
  Error_Free-[in H_Err]->Activation; 
end sw.S; 

Figure V-13. Error model for structural dependency (recipient side) 

 

In both our candidate architectures, each processor hosts two processes. Thus, associating 
the error model sw.S with all four processes and the error model hw.S with both processors, 
we model the four structural dependencies denoted S1-4 in Figure V-4. 

V.2.2.3 AADL to GSPN model transformation 

Figure V-14 shows the GSPN obtained when transforming the AADL dependability model 
corresponding to two processes bound to one processor, and taking into account the structural 
dependency from the processor to the processes.  

 

 

Figure V-14. GSPN modeling a processor and two processes with structural dependencies 

 



APPLICATION TO CAUTRA 

114 

To obtain the GSPN of Figure V-14, we apply the model transformation rules presented 
respectively in Section IV.2 (for independent components) and in Section IV.3.3 (for name-
matching in – out propagations). The transformation is applied to Configuration1, in which 
FP_Comp1 and RD_Comp2 are bound to Processor1. In this same configuration, we obtain a 
similar GSPN for Processor2, FP_Comp2 and RD_Comp1. Note that the component net 
named Processor1 in Figure V-14 has already been shown in Figure V-9, while the two 
component nets FP_Comp1 and RD_Comp2 are identical to the one shown in Figure V-11. 

V.2.3 Iteration 3: recovery dependency from processor to process 

V.2.3.1 Assumptions 

Because of the fact that processes run on processors, we assume that errors in a processor 
may impact the processes running on top of it, as follows: 

 Detected permanent faults in a processor cause failures that require repairing the 
processor. During repair, the processes running on top of it are stopped.  

 The recovery of the processes must be synchronized with the repair of the processor, 
i.e., a process may not be restarted before the processor has been repaired. 

V.2.3.2 AADL dependability model 

Figure V-15 only shows what is added to the error model associated with the processor in 
order to describe the recovery dependency. The error model type for processors, hw, is 
completed with lines ro1 and ro2 in order to include out error propagation declarations 
H_FailedVisible and H_OK. Their Occurrence properties are fixed probabilities of 1, i.e., the 
propagations occur certainly and immediately. H_FailedVisible causes the processes’ failures 
while H_OK is used to synchronize the repair of the processor with the restart of the process. 
The error model implementation hw.SR takes into account the sender side of the recovery 
dependency: it declares one transition triggered by each of the two newly introduced out 
propagations (see lines ro

1 and ro
2 of Figure V-15). When one of the out propagations occurs, 

the processor remains in the same state (i.e., Failed or Error_Free) and the propagation 
remains visible until the processor leaves this state.  

Figure V-16 shows what is added to the error model associated with a process in order to 
describe the recovery dependency. The error model type sw is completed with lines ri1, ri2, ri3: 

 line ri1 declares an additional state in which the process is allowed to restart. This 
state is used in the synchronization between the repair of the processor and the restart 
of the process.  

 line ri2 declares an in propagation H_FailedVisible. Its name matches the name of 
the out propagation declared in the error model type hw (see Figure V-15).  

 line ri3 declares an in propagation H_OK. Its name matches the name of the out 
propagation declared in the error model type hw (see Figure V-15).  

The error model implementation sw.SR takes into account the recipient side of the recovery 
dependency by declaring four transitions triggered by the in propagation H_FailedVisible 
(see lines ri

1, ri
2
, ri

3, ri
4 of Figure V-13) and leading the process from each state (other than 

Failed) to the Failed state. Also, the process is authorized to move from the Failed state to 
InRestart only when it receives the HW_OK propagation (see line ri

5 of Figure V-13). Line ri
6 



CHAPTER V 

 115 

replaces line ri
7, as the restart procedure is now engaged from state InRestart, after 

authorization from the processor. 

In both our candidate architectures, each processor hosts two processes. Thus, associating 
the error model sw.SR to all four processes and the error model hw.SR to both processors, we 
model the four recovery dependencies denoted R1-4 in Figure V-4.  

 

 
 

 
 
 
 
+(ro1) 
+(ro2) 
 

Error Model Type [hw] 
 

error model hw 
features 
  […] 
  H_FailedVisible: out error propagation {Occurrence => fixed 1}; 
  H_OK: out error propagation {Occurrence => fixed 1}; 
end hw; 

  
 

 
 
 
+(ro

1) 
+(ro

2) 
 

Error Model Implementation [hw.SR] 
 

error model implementation hw.SR 
transitions 
  […] 
  Failed-[out H_FailedVisible]->Failed; 
  Error_Free-[out H_OK]->Error_Free; 
end hw.SR; 

Figure V-15. Error model for recovery dependency (sender side) 

 

 

 
 
 
 
 
 
+(ri1) 
+(ri2) 
+(ri3) 
 

Error Model Type [sw] 
 

error model sw 
features 
[…] 
  InRestart: error state; 
  H_FailedVisible: in error propagation; 
  H_OK: in error propagation; 
end sw; 

  
 

 
 
+(ri

1) 
+(ri

2) 
+(ri

3) 
+(ri

4) 
+(ri

5) 
+(ri

6) 
-(ri

7) 
 

Error Model Implementation [sw.SR] 
 

error model implementation sw.SR 
transitions 
  Error_Free-[in H_FailedVisible]->Failed; 
  Activation-[in H_FailedVisible]->Failed; 
  ErrND-[in H_FailedVisible]->Failed; 
  ErrD-[in H_FailedVisible]->Failed; 
  Failed-[in H_OK]->InRestart; 
  InRestart-[Restart]->Error_Free; 
  Failed-[Restart]->Error_Free; 
end sw.SR; 

Figure V-16. Error model for recovery dependency (recipient side) 

 

V.2.3.3 AADL to GSPN model transformation 

Figure V-17 shows the GSPN obtained when transforming the AADL model corresponding 
to two processes bound to one processor, taking into account the recovery dependencies 



APPLICATION TO CAUTRA 

116 

between the processor and the processes. We apply the model transformation rules presented 
respectively in Section IV.2 (for independent components) and in Section IV.3.3 (for name-
matching in – out propagations). As in the case of the structural dependency, we assume 
here that the transformation is applied to Configuration1, in which FP_Comp1 and 
RD_Comp2 are bound to Processor1. Note that the component net named Processor1 in 
Figure V-17 has already been shown in Figure V-9. The two component nets FP_Comp1 and 
RD_Comp2 differ of the one of Figure V-11, as we have added the state InRestart in the error 
model associated with processes.  

 

 

Figure V-17. GSPN modeling a processor and two processes with recovery dependencies 

 

V.2.4 Iteration 4: structural dependency from bus to RD processes 

V.2.4.1 Assumptions 

According to the system description, broken connections from FP to RD cause the failure 
of the RD processes. We assume that this connection may be broken only if it is bound to a 
bus which fails: 

 In Configuration1, the failure of the bus makes the RD processes fail in mode 
Nominal (as the connection is bound to the bus in mode Nominal). 

 In Configuration2, the failure of the bus makes the RD processes fail in mode 
Reconfig (as the connection is bound to the bus in mode Reconfig). 



CHAPTER V 

 117 

V.2.4.2 AADL dependability model 

When taking into account the previous dependencies, we considered that the four processes 
of our candidate architectures have the same behavior. Now, we consider that the RD and the 
FP processes behave differently when the bus fails, i.e., the RD processes fail, whereas the FP 
processes are not affected. Thus, we customize only the error models associated with RD 
processes. This is achieved by adding an in propagation declaration in the error model type 
(see line si of Figure V-18) and a transition triggered by it in the error model implementation 
(see line si

1 of Figure V-18). We assume that it is very unlikely for a bus failure to occur 
immediately after fault activation in a process, thus we consider that the process is affected by 
a bus failure only when it is Error_Free. Figure V-19 shows the lines added in the error 
model associated with the bus, to describe the sender side of the dependency. The out 
propagation Bus_KO occurs immediately when the component arrives in state Failed. 

 

 
 

 
 
 
+(si) 
 

Error Model Type [sw_RD] 
 

error model sw_RD 
features 
[…] 
Bus_KO: in error propagation; 
end sw_RD; 

  
 

 
 
+(si

1) 
 

Error Model Implementation [sw_RD.SRS] 
 

error model implementation sw_RD.SRS 
transitions 
  Error_Free-[in Bus_KO]->Failed; 
end sw_RD.SRS; 

Figure V-18. Error model for structural dependency bus – RD process (recipient side) 

 

 

 
 

 
 
+(so) 
 

Error Model Type [bus] 
 

error model bus 
features 
Bus_KO: out error propagation {Occurrence => fixed 1}; 
end bus; 

  
 

 
 
+(so

1) 
 

Error Model Implementation [bus.S] 
 

error model implementation bus.S 
transitions 
  Failed-[out Bus_KO]->Failed; 
end bus.S; 

Figure V-19. Error model for structural dependency bus – RD process (sender side) 

 

V.2.4.3 AADL to GSPN model transformation 

Figure V-20 and Figure V-21 show respectively the GSPNs obtained for Configuration1 
and Configuration2 when transforming the AADL model corresponding to the two RD 
processes and to the bus, taking into account the structural dependency from the bus to the 
processes.  



APPLICATION TO CAUTRA 

118 

 

Figure V-20. GSPN of the bus and two processes with structural dependency (Configuration1) 

 

 

Figure V-21. GSPN of the bus and two processes with structural dependency (Configuration2) 



CHAPTER V 

 119 

To obtain the GSPNs of Figure V-20 and Figure V-21, we apply the transformation rules 
presented in Section IV.2 (for independent components), Section IV.3.3 (for name-matching 
in – out propagations) and Section IV.7 (for architecture configurations). The GSPNs 
obtained for Configuration1 and Configuration2 are identical, except for the place that 
models the operational mode in which the in propagation Bus_KO is authorized. The place 

Bus_active has a token when the bus is active, i.e., when there is a token in the place 
corresponding to the mode Nominal for Configuration1 (Reconfig for Configuration2). This 
place results from applying the rule for architecture configurations (see Section IV.7).  

The component nets RD_Comp1 and RD_Comp2 in Figure V-20 and Figure V-21 are the 
same as those of Figure V-17. The component net Bus is same as the one of Figure V-10. 

V.2.5 Iteration 5: functional dependency from FP to RD processes 

V.2.5.1 Assumptions 

According to the system description, the primary FP process may propagate errors to both 
RD processes. We assume that only non-detected errors propagate with a given probability 
ptnd. Even though there is a connection from RD to FP, we assume that RD replicas do not 
propagate errors to FP.  

V.2.5.2 AADL dependability model 

Only the primary FP process propagates errors to RD processes and each of the two FP 
processes may be primary or backup. Thus, the AADL architectural model needs to be refined 
in order to describe the fact that the connection from one of the FP processes to the port 
sysOutput of FP is active only if that process is the primary. Figure V-22 shows the refined 
AADL architectural model of Configuration1 (the refinement is identical for Configuration2).  

 

 

Figure V-22. AADL architectural model of Configuration1 – refined with modal connections 



APPLICATION TO CAUTRA 

120 

The refinement of Figure V-22 consists in declaring two modes in the FP subsystem 
(Prim1, in which FP_Comp1 is the primary and Prim2 in which FP_Comp2 is the primary) 
and in making the connections from the port Output of each process to the port sysOutput of 
FP active in the mode in which the process is active. The connection from the port Output of 
FP_Comp1 is active in mode Prim1. Thus, when FP is in mode Prim2, FP_Comp1 cannot 
propagate errors outside FP. The conditions for switching modes are dictated by the chosen 
fault-tolerance policy. Thus, the mode dynamics is not modeled at this stage. 

Since RD processes do not propagate errors to FP processes, we customize separately the 
error models associated respectively with RD and FP replicas. This is done by adding an out 
propagation declaration in the error model type associated with FP processes (see line fo of 
Figure V-23) and a transition triggered by it in the corresponding error model implementation 
(see line fo

1 of Figure V-23). Also, a name-matching in propagation is declared in the error 
model type associated with RD processes (see line fi of Figure V-24) and a transition triggered 
by it in the corresponding error model implementation (see line fi

1 of Figure V-24). 
 

 
 

 
 
 
+(fo) 
 

Error Model Type [sw_FP] 
 

error model sw_FP 
features 
[…] 
FP_Err: out error propagation {Occurrence => fixed ptnd}; 
end sw_FP; 

  
 

 
 
+(fo

1) 
 

Error Model Implementation [sw_FP.SRF1] 
 

error model implementation sw_FP.SRF1 
transitions 
  ErrND-[out FP_Err]->ErrND; 
end sw_FP.SRF1; 

Figure V-23. Error model for functional dependency FP process – RD process (sender side) 

 

 

 
 

 
 
 
+(fi) 
 

Error Model Type [sw_RD] 
 

error model sw_RD 
features 
[…] 
FP_Err: in error propagation; 
end sw_RD; 

  
 

 
 
+(fi

1) 
 

Error Model Implementation [sw_RD.SRSF1] 
 

error model implementation sw_RD.SRSF1 
transitions 
  Error_Free-[in FP_Err]->Activation; 
end sw_RD.SRSF1; 

Figure V-24. Error model for functional dependency FP process – RD process (recipient side) 

 

V.2.5.3 AADL to GSPN model transformation 

Figure V-25 shows the GSPN obtained when transforming the AADL model of one FP 
process and the two RD processes, taking into account the functional dependency from the FP 
process to the RD processes. The GSPN is the same for Configuration1 and Configuration2. 



CHAPTER V 

 121 

We apply the model transformation rules presented in Section IV.2 (for independent 
components), Section IV.3.3 (for name-matching in – out propagations) and Section IV.7 
(for architecture configurations). The component nets FP_Comp1, RD_Comp1 and 
RD_Comp2 in Figure V-25 are the same as those of Figure V-17.  

 

 

Figure V-25. GSPN modeling a FP process and the two RD processes with functional dependency 

 

V.2.6 Iteration 6: functional dependency between FP processes 

V.2.6.1 Assumptions 

According to the system description, the primary FP process may propagate errors to the 
backup FP process. We assume that only non-detected errors propagate with a given 
probability ptnd. Even though there is a connection from RD to FP, we assume that RD 
replicas do not propagate errors to FP.  

V.2.6.2 AADL dependability model 

Since the backup FP process does not propagate errors to the primary FP process, the data 
connection from the backup to the primary process must be deactivated. The AADL 
architectural model is refined by making the connection from FP_Comp1 to FP_Comp2 
active in mode Prim1 and the connection from FP_Comp2 to FP_Comp1 active in mode 
Prim2.  

The error model associated with the two FP processes is customized to receive the FP_Err 
propagation introduced in the previous iteration. This is achieved by adding the identifier in 
to the propagation FP_Err, which was already declared (see line fo of Figure V-26) and a 
transition triggered by this in propagation in the corresponding error model implementation 
(see line fi

2 of Figure V-26). 



APPLICATION TO CAUTRA 

122 

 

 
 

 
 
 
*(fo) 
 

Error Model Type [sw_FP] 
 

error model sw_FP 
features 
[…] 
FP_Err: in out error propagation {Occurrence => fixed ptnd}; 
end sw_FP; 

  
 

 
 
+(fo

2) 
 

Error Model Implementation [sw_FP.SRF1F3] 
 

error model implementation sw_FP.SRF1F3 
transitions 
  Error_Free-[in FP_Err]->Activation; 
end sw_FP.SRF1F3; 

Figure V-26. Error model for functional dependency between FP processes 

 

V.2.6.3 AADL to GSPN model transformation 

The result of the transformation for this dependency is similar to the one of Figure V-25, 
thus we do not show it here. We apply the model transformation rules presented in  
Section IV.2 (for independent components), Section IV.3.3 (for name-matching in – out 
propagations) and Section IV.7 (for architecture configurations).  

V.2.7 Iteration 7: fault-tolerance dependency between FP processes 

V.2.7.1 Assumptions 

The system description sets the number of replicas to two. We consider two fault-tolerance 
policy variants, FT1 and FT1’, which have been presented in Section V.1. 

FP is formed of two replicas that communicate through data connections and both replicas 
are connected to FP’s ports sysInput and sysOutput. FP has two modes: in each mode, one 
replica is the primary. The closest fault-tolerance pattern to this AADL architectural model is 
C2’ (see Section III.3.1.1.5). In this pattern, the two replicas keep their respective roles after a 
reconfiguration due to the failure of the primary. To model FT1, it is sufficient to instantiate 
the pattern C2’. To model FT1’, we customize an instance of this pattern. 

V.2.7.2 AADL dependability model 

We add to the AADL architectural model of FP the elements that are part of the pattern 
C2’, including the error model annex subclause with the Guard_Event property declarations. 
Both for FT1 and FT1’, we customize the error model associated with the FP processes by 
declaring an out propagation that notifies the failure of the component (see lines fto and fto

1 
of Figure V-27). For FT1’ only, we need to customize the Guard_Event property declared in 
FP_Comp1 by adding a new mode switch condition so that FP_Comp1 becomes the primary 
again after its failure and restoration (see line ft1’ of Figure V-28). 

The refined AADL architectural model will be shown at the end of this Chapter (after 
having taken into account the fault-tolerance dependency in the RD subsystem and the 
maintenance dependency between the two processors). 



CHAPTER V 

 123 

 

 
 

 
 
 
+(fto) 
 

Error Model Type [sw_FP] 
 

error model sw_FP 
features 
[…] 
FP_FailedVisible: out error propagation {Occurrence => fixed pf}; 
end sw_FP; 

  
 

 
 
+(fto

1) 
 

Error Model Implementation [sw_FP.SRF1F3FT] 
 

error model implementation sw_FP.SRF1F3FT 
transitions 
  Failed-[out FP_FailedVisible]->Failed; 
end sw_FP.SRF1F3FT; 

Figure V-27. Error model for FT dependency between FP processes 

 

 

 
 
 
 
 
 
+(ft1’) 
 

process implementation replica.primary 
[…] 
annex Error_Model {** 
 Model => sw_FP.SRF1F3FT; 
 Guard_Event =>  
  fromReplica[FailedVisible] and self[Error_Free] 
  or fromReplica[FailedVisible] and self[Error_Free] 
   applies to IAmPrim; 
**}; 
end replica.primary; 

Figure V-28. Textual AADL dependability model for FP_Comp1, with dependency FT1’ 

 

V.2.7.3 AADL to GSPN model transformation 

Figure V-29 shows the GSPN obtained when transforming the AADL model of the two FP 
processes linked by the considered fault-tolerance dependencies. The subnet FT1’ is added in 
the case of the dependency FT1’ to model the supplementary Guard_Event condition. The 
rest of the GSPN is the same for both FT1 and FT1’. We apply the model transformation rules 
presented in Section IV.2 (for independent components) and Section IV.5.1 (for 
Guard_Event properties). 



APPLICATION TO CAUTRA 

124 

 

 

Figure V-29. GSPN modeling the two FP processes with FT dependency  

 

V.2.8 Iteration 8: fault-tolerance dependency between RD processes 

V.2.8.1 Assumptions 

The system description sets the number of replicas to two. The two replicas do not 
communicate directly one with the other. The closest fault-tolerance patterns to this AADL 
architectural model are C1 and C1’ (see Section III.3.1.1.4). Here, we chose to instantiate C1. 

V.2.8.2 AADL dependability model 

We add to the AADL architectural model of RD the elements that are part of the pattern 
C1, including the error model annex subclauses with the Guard_Event property 
declarations. We customize the error model associated with RD processes by declaring an 
out propagation RD_FailedVisible that notifies its failure, as in the case of the FP processes 
(see Figure V-27). The refined architectural model is shown at the end of this Chapter.  



CHAPTER V 

 125 

V.2.8.3 AADL to GSPN model transformation 

Figure V-30 shows the GSPN obtained when transforming the AADL model of the two RD 
processes with the considered fault-tolerance dependency. We apply the model transformation 
rules presented in Section IV.2 (for independent components) and Section IV.5.1 (for 
Guard_Event properties). The decider component net is not entirely detailed here.  

 

 

Figure V-30. GSPN modeling the two RD processes with FT dependency  

 

V.2.9 Iteration 8: global reconfiguration strategy  

V.2.9.1 Assumptions 

The subsystem is in Nominal mode when both FP_Comp1 and RD_Comp1 have the 
primary role or the backup role. Otherwise, it is Reconfig mode.  



APPLICATION TO CAUTRA 

126 

V.2.9.2 AADL dependability model 

The reconfiguration strategy is modeled by associating Guard_Transition properties 
with the two mode transitions, as shown in Figure V-31. The conditions defined by these 
properties override the default or conditions. Also, the two out event ports triggering the two 
mode transitions (FP_Comp1_Primary of component FP and RD_Comp1_Primary of 
component RD) must be connected to out event ports of subcomponents that generate events, 
through Guard_Event properties. Concretely, FP_Comp1_Primary is connected to port 
IAmPrim of FP_Comp1 and RD_Comp1_Primary is connected to port Prim1 of the Decider 
in RD. The refined architectural model is shown at the end of this Chapter. 

 

 
 
 
 
 
 

system implementation areaCC.cautra 
[…] 
annex Error_Model {** 
 Guard_Transition =>  
  FP.FP_Comp1_Primary and RD.RD_Comp1_Primary  
  or (not FP.FP_Comp1_Primary) and (not RD.RD_Comp1_Primary) 
 applies to ReconfigToNominal; 
 

 Guard_Transition =>  
  (not FP.FP_Comp1_Primary) and RD.RD_Comp1_Primary 
  or FP.FP_Comp1_Primary and (not RD.RD_Comp1_Primary) 
 applies to NominalToReconfig; 
**}; 
end areaCC.cautra; 

Figure V-31.  Modeling the global reconfiguration strategy 

 

V.2.9.3 AADL to GSPN model transformation 

Figure V-34 shows the GSPN obtained when transforming the two Guard_Transition 
properties. We apply the model transformation rule presented in Section IV.5.2 (for 
Guard_Transition properties). The place ev_FP_Comp1 has already been created when 
transforming the dependency FT1 (see Figure V-29). The place ev_Prim1 has already been 
created when transforming the dependency FT2 (see Figure V-30). They represent the 
occurrence of events through ports FP_Comp1_Primary and RD_Comp1_Primary. 

 

 

Figure V-32. GSPN modeling the two RD processes with FT dependency  

 



CHAPTER V 

 127 

V.2.10 Iteration 10: maintenance dependency between processors 

V.2.10.1 Assumptions 

We assume that the two processors share one repairman. If the repairman is busy repairing 
a processor while the second processor fails, this second processor must wait until the 
repairman finishes repairing the first processor.  

V.2.10.2 AADL dependability model 

We have already shown how these assumptions are modeled in AADL in Section III.2.3.1. 
The AADL architectural model must be enriched to represent the repairman as a component 
connected with the two processors. Figure V-33 shows the refined AADL architectural model 
that takes into account the fault-tolerance and maintenance dependencies. The repairman’s 
error model is the one for a shared maintenance facility, already presented in Section III.2.3.1. 
We do not revisit it here. The error model associated with the two processors is enriched with 
lines f1-3, o1-2, i1, o1’-2’, i1’ of Figure III-4, to describe the maintenance dependency. 

 

 

Figure V-33. Refined AADL architectural model of Configuration1  

 

V.2.10.3 AADL to GSPN model transformation 

Figure V-34 shows the GSPN obtained when transforming the AADL model of the two 
processors linked by the considered maintenance dependency.  



APPLICATION TO CAUTRA 

128 

 

 

Figure V-34. GSPN modeling the two processors with maintenance dependency  

 

V.3 Quantitative dependability evaluation 

In the previous sections, we have built iteratively the AADL dependability models for two 
candidate architectures, by considering each time two fault-tolerance policies for the FP 
subsystem. Thus, we have built AADL and GSPN models allowing the analysis of four 
alternatives.  

The purpose of the current Section is to illustrate the kind of quantitative results that can be 
obtained from the models built in the previous sections. In particular, we show a comparison 
of the four alternatives of the subsystem of CAUTRA, with respect to their availability. 
Subsection V.3.1 compares the four alternatives by setting all model parameters except for the 
failure rate of the bus, b. Subsection V.3.2 compares them with respect to the fault-tolerance 
policy for the FP subsystem. 

V.3.1 Comparison with respect to the failure rate of the bus 

The unavailability of the FP subsystem is not influenced by b, the failure rate of the bus, 
since a broken connection from RD to FP does not cause the failure of FP. The unavailability 
of FP is of 2h42mn/year. On the other hand, the unavailability of the RD subsystem is 



CHAPTER V 

 129 

influenced by b, as shown in Figure V-35, as a broken connection from FP to RD causes the 
failure of RD. b 10-6/h corresponds to a redundant bus. The impact of b has little influence 
on the unavailability for Configuration2 and FT1, because in these cases, the communication 
from FP to RD is not bound to the bus most of the time. For Configuration1 and FT1’, the 
impact is important when b 10-5/h. From a practical point of view, if b 10-5/h, it is 
recommended to use Configuration2 or FT1. 

 

 
b Configuration1 

FT1’ 
Configuration2 

FT1’ 

 

Configuration1, 

Configuration2 

FT1 

1E-8 21mn17s 20 mn 49s 21mn01s 

1E-7 21mn17s 20 mn49s 21mn01s 

1E-6 21mn36s 20mn49s 21mn11s 

1E-5 24mn39s 20mn49s 22mn11s 

1E-4 54mn40s 20mn49s 24mn14s 
 

a: probability b: time/year 

Figure V-35. Unavailability of RD with respect to b  

 

V.3.2 Comparison with respect to the FT policy 

Both for FP and RD, with the fault-tolerance policy FT1, the unavailability is not 
influenced by the use of Configuration1 or Configuration2 (see Table V-1, line FT1). 
Actually, if the system is not reconfigured to find its nominal configuration after the failure 
and restoration of a FP replica, it will spend as much time in Configuration1 as in 
Configuration2.  

For RD in Configuration1, the unavailability is higher for FT1’ than for FT1 while in 
Configuration2, the unavailability is higher for FT1 than for FT1’ (see Table V-1-b). Thus, 
we may conclude that for Configuration1 the best fault-tolerance policy is FT1 while for 
Configuration2 the best is FT1’. 

 

Table V-1. Unavailability with respect to the fault-tolerance policy (time/year) 

 a: FP b: RD 

 Configuration1 Configuration2  Configuration1 Configuration2 

FT1 2h42mn 2h42mn 21mn11s 21mn11s 

FT1’ 2h42mn 2h41mn 21mn36s 20mn49s 

 

V.4 Conclusion 

In this Chapter, we have illustrated the feasibility of the proposed modeling approach by 
applying it to the comparison of four alternatives, resulting from two candidate architectures 



APPLICATION TO CAUTRA 

130 

and two fault-tolerance policies, for a subsystem of the French Air Traffic Control System. 
This subsystem is formed of four software components that form two fault tolerant units and 
three hardware components: two processors and a bus.  

We have started from high level AADL architectural models built according to the system 
description. We have refined these models during the AADL dependability model 
construction and we have associated error models with components. The error models reflect 
the dependencies taken into account and have been built iteratively. For the considered 
subsystem, we have built the AADL dependability model in 10 iterations. The GSPNs 
obtained by applying our model transformation rules have been shown at each iteration. The 
global GSPNs are formed of 24 subnets. Among them, eight are component subnets and 
sixteen are dependency nets. The two component subnets modeling the replicas of each 
software unit are identical. Also, the two component subnets representing the two processors 
are identical. Among the dependency subnets, those modeling identical dependencies between 
identical components are identical. We have used two fault tolerance patterns: one of them 
has been adapted while the other one has been used unmodified. The subsystem that we have 
used for the illustration of our modeling approach is part of a real-life system formed of 
seventeen components, described in [Borrel 1996] and analyzed using GSPN built by hand. 
Since we provide a structured method for building the AADL dependability model and 
automatic means for obtaining the GSPNs from AADL dependability models, the effort 
necessary to analyze the whole system based on its AADL models is minimized. 

In order to better support the iterative error model construction, we have proposed to 
introduce inheritance mechanisms in the Error Model Annex, which do not exist in the current 
version of the standard. Our proposal is further detailed in Appendix A. Such mechanisms 
would allow both enriching the models without copying and pasting from the previous 
modeling phases and clearly showing the evolution phases.  

 



 

 131 

Conclusion 

This dissertation presented a modeling framework allowing the evaluation of quantitative 
dependability measures, such as reliability and availability, from AADL models. The ultimate 
objective of this framework is to ease the task of evaluating dependability measures in the 
context of modern model-driven engineering processes based on AADL. AADL is a mature 
industry-standard well suited to address quality attributes. In particular, it provides precise 
execution semantics for modeling the architecture of software systems and their target 
platform and has been seriously considered in the embedded safety-critical industry. 

We have achieved the above-stated objective by proposing a framework formed of: 

1) A structured method for expressing in AADL the information related to failure, 
recovery, maintenance and fault-tolerance, which is necessary for dependability 
analysis. Such a method is necessary when dealing with large systems having many 
interdependencies between components. It favors model reuse and evolution. 

2) A set of patterns modeling common fault-tolerance mechanisms. The patterns are 
instantiated and inserted in the AADL model of a system, with or without 
customization. Model reusability is an essential issue in the context of complex, critical 
and evolvable systems. We also believe that the use of patterns enhances the 
understandability and the readability of the model.  

3) A model transformation from AADL to a classical dependability evaluation model in 
the form of a GSPN. The transformation can be completely automated, thus hiding the 
complexity of traditional analytical models from AADL users. From a user’s 
perspective, this allows the evaluation of dependability measures directly from the 
AADL model. We have implemented the model transformation tool ADAPT, to show 
the feasibility of the automation. 

4) A set of evolution proposals for the AADL Error Model Annex, based on our extensive 
experience with AADL and dependability modeling requirements. We have submitted 
these proposals to the AADL standardization committee, which decided to integrate 
some of them in the current version of the standard. The remaining ones are considered 
for integration in the next version of the standard. 

Our framework is iterative and is based on system dependability modeling using AADL 
and on a model transformation from AADL to GSPNs. We have chosen to use GSPNs 
because they provide means for structural verification of the model and can be automatically 
converted to Markov chains. In addition, they allow modular modeling, which is very 
convenient in the context of component-based systems, and they are able to capture various 
functional and stochastic dependencies among components. 

The AADL modeling guidelines provided in this dissertation aim to assist the user in the 
structured construction of the AADL dependability model. To support and trace model 
evolution, this approach proposes that the user builds the AADL dependability model 
iteratively. Components’ behaviors in the presence of their own faults are modeled in the first 
iteration as if they were independent. Then, dependencies between system components are 
introduced iteratively in the AADL dependability model. The proposed fault-tolerance 
modeling patterns may also be used in the context of this iterative modeling approach. 



 

132 

The AADL dependability model is transformed into a GSPN to be processed by existing 
tools. The model transformation can be performed iteratively, each time the AADL 
dependability model is enriched. In this way, the GSPN model can be progressively validated 
(hence the corresponding AADL dependability model can be progressively validated too, and 
corrected accordingly, if required). The GSPN of the global system is structured as a set of 
interacting subnets, where a subnet is associated with a component or a dependency.  

To be automated, the transformation is based on rigorous and systematic rules. All rules are 
defined to ensure that the obtained GSPN is correct by construction (bounded and free of 
infinite loops over sets of vanishing markings). Also, the resulting GSPN is tool-independent 
(i.e., we do not use tool-specific features or predicates). 

We have implemented ADAPT, a model transformation tool that interfaces the Open 
Source AADL Environment (OSATE) on the AADL side and the dependability evaluation 
tool Surf-2 on the GSPN side. Besides the GSPN complying with the input format of Surf-2, 
our tool also generates a generic GSPN under XML/XMI form. This XML/XMI file 
represents a gateway to other dependability evaluation tools, as the processing techniques for 
XML files allow it to be easily processed in order to obtain a tool-specific GSPN.  

We have illustrated the proposed framework by applying it to a subsystem of the French 
Air Traffic Control System. Based on the informal description of the system, we have 
identified the dependencies between components and we have considered maintenance and 
fault-tolerance policies. Then, we have shown the iterations related to the AADL 
dependability model construction and to the AADL to GSPN transformation. We have also 
provided examples of analyses based on the models that we have built. They are related in 
particular to the comparison of four alternatives (resulting from two candidate architectures 
and two fault-tolerance policies considered for the subsystem) with respect to their 
unavailability. The subsystem that we have used to illustrate our modeling framework is part 
of a larger, real-life system formed of seventeen components. The GSPN modeling the whole 
system has been built previously by hand and analyzed using the dependability evaluation 
tool Surf-2. In this dissertation, we focused on obtaining analyzable GSPNs from AADL 
dependability models. Since we provide a structured method for building the AADL 
dependability model and automatic means for obtaining a GSPN from it, the effort necessary 
to analyze the whole system based on its AADL model is minimized. 

Our most important AADL evolution proposals are briefly presented in Appendix A and 
they refer to (1) parametric Occurrence properties, (2) the enforcement of the link between 
operational modes and Error Model annex constructs, (3) removing the applies to clause 
from the Guard_In property syntax and (4) the definition of inheritance and refinement 
mechanisms. Proposal 1 is part of the current version of the standard. Proposal 1 is integrated 
in the first standardized version of the AADL Error Model Annex. Proposal 3 has been 
accepted by the standardization committee in April 2007. Proposals 2 and 4 have been put in 
standby, as it would be interesting to have these mechanisms applied to several AADL 
annexes.  

Future research directions 

Several directions can be explored to extend the contributions presented in this dissertation.  

A first research direction concerns the scalability of the AADL to GSPN model 
transformation. The study that we have carried out showed that in the case of several identical 
propagation receiver components for one sender component, the state space grows 



 

 133 

exponentially. This identified limitation is directly related to the fact that, in AADL, all 
identical components are represented separately and thus, the GSPN obtained by direct model 
transformation is not compact. Currently, it is possible to apply GSPN reduction methods in 
order to process a compact GSPN. However, for large models, it may be difficult to generate 
the non-compact GSPN. Thus, future research should aim at finding an efficient way for 
obtaining directly a compact GSPN from the AADL model. An idea to be explored in this 
context would be to find an algorithm based on a first traversal of the entire AADL model and 
on the identification of identical components.  

Also, it is desirable to improve the model transformation prototype tool that we have 
implemented, so that the generic GSPN obtained as an output complies with the Petri Net 
Markup Language (PNML), as PNML is intended to become an extensible interchange 
standard for Petri nets. 

More generally, it would be worth considering the elaboration of model transformations 
from AADL to other formalisms, allowing the evaluation of similar or complementary 
analyses to ours, based on the same model. For dependability, performance and 
performability analyses, it would be particularly interesting to define a model transformation 
from AADL to stochastic activity networks (SAN), which are an extension of stochastic Petri 
nets. SANs are supported by Möbius, a widely-used tool in the performance and 
dependability evaluation community [Deavours et al. 2002]. Also, investigating other 
formalisms allowing the use of general distributions would enable the use of any type of 
distribution for the firing delays characterizing events and propagations. The drawback of 
using GSPNs is that they only allow us to use fixed probabilities or exponentially distributed 
firing delays, while in AADL there is no constraint at this level.  

Finally, it would be interesting to apply our modeling framework to other complex case 
studies from different application domains (e.g., aerospace, automotive), in order to study the 
suitability of our framework in other contexts. Such studies could also help identifying 
potential evolution directions for the AADL standard. 

 





 

 135 

Appendix A: Error Model Annex Evolution 
Proposals 

Our experience in dependability modeling using AADL and the AADL Error Model Annex 
allowed us to propose evolutions of the standard documents. The proposals that we consider 
as the most important are presented in this appendix. The identified issues, classified in the 
order of their importance are enumerated hereafter. 

1) Parametric Occurrence properties; 

2) Enforcement of the link between the modes and Error Model Annex constructs; 

3) Guard_In properties without applies to clause; 

4) Inheritance and refinements. 

Proposals 1 and 3 are strictly specific to the Error Model Annex, as they apply to specific 
constructs of this annex. The others may be generalized to some extent to apply to other 
annexes. As stated in the conclusion of this dissertation, proposal 1 has been integrated to the 
standard document of the AADL Error Model Annex v1. Proposal 3 has been accepted by the 
AADL standardization committee in April 2007 and will be integrated with the AADL Error 
Model Annex Errata. Proposals 2 and 4 have been put in standby, as it would be interesting to 
have these mechanisms applied to several AADL annexes in a general manner. 

We briefly present the proposals in the following subsections. Proposal 1, part of proposal 
2 and proposal 4 have been detailed in [Arlat et al. 2006].  

A.1  Occurrence properties 

In previous AADL Error Model Annex drafts, Occurrence properties had only numeric 
values. Our proposal consisted in allowing the specification of symbolic values for 
Occurrence properties. Such parametric Occurrence properties are of interest for performing 
sensitivity analyses that aim for example at identifying acceptable limit values for the 
Occurrences of error and repair events for agiven system. In addition, symbolic values for 
Occurrence properties allow the definition of generic error models that can be customized 
with component-specific Occurrence values when they are instantiated.  

A.2  Link between modes and the Error Model Annex constructs 

Mode transitions are influenced by the error model behavior through the use of 
Guard_Event and Guard_Transition properties. By using these properties, a user is able 
to express that a mode change occurs as a result of a particular error state configurations or at 
the arrival of particular error propagations.  

The error model behavior is influenced by the system’s modes through the use of 
activate / deactivate transitions. They allow modeling different behaviors of a 



 

136 

component in the presence of faults depending on whether it is active or inactive. An example 
of such behavior is that a software component may not fail if it is inactive. However, if a 
component is active in all modes, it is not possible to describe different behaviors of the 
component in the different modes. For example, there is no mechanism for modeling a mode-
specific error propagation, which occurs only if the component is in a particular mode. Such a 
mechanism is necessary to model e.g., the fact that a component would propagate errors only 
if it is in Primary mode. Also, such a mechanism would allow modeling a priority to repair for 
a hardware component hosting the most critical application of the system.  

We consider two mechanisms to address this issue: 

1) Allowing in modes statements inside Error Model Annex subclauses, to declare 
mode-specific constructs (e.g., Model, Derived_State_Mapping, Guard, 
Occurrence properties). 

2) Allowing in modes statements inside Error Model Annex libraries, i.e., inside 
error model definitions, to declare mode-specific error states, events, propagations 
and transitions.  

We believe that the first mechanism is better adapted if the component has the same error 
model in different modes and the only mode-specific changes concern Occurrence and 
Guard properties. This means that the error model is only customized for the different modes. 
For derived error models, it is interesting to have the possibility of declaring different 
Derived_State_Mapping expressions for different modes of the system. For example, this 
would allow expressing that the system is Error_Free if it is in mode Comp1Primary and if 
Comp1 is Error_Free. On the other hand, if Comp1 is Error_Free but the system is another 
mode, it means that the system fails to deliver the service expected from it. 

The second mechanism is useful to declare mode-specific behavior that consists in the 
occurrence or non-occurrence of particular events or propagations depending on the mode of 
the component.  

A.3 Guard_In property without applies to clause 

A Guard_In property maps an incoming set of error propagations and error states from 
other components into a set of in propagations that may affect the receiving component. The 
current Error Model Annex specifies that a Guard_In property is associated with an in 
feature. One can apply the same Guard_In property to one feature or to several features, by 
naming them in the applies to clause of the Guard_In property. This permission raises 
two issues: 

 Applying different Guard_In properties that refer to the same features to each one of 
the features may lead to conflicts between the Guard_In properties, and thus to non-
determinism. An example is shown in Figure A-1, in which the first Guard_In 
property specifies that KO1 is perceived by the component when outKO propagations 
are received through both ports inp1 and inp2, while the second Guard_In property 
specifies that KO2 is perceived when this same condition is true.  

 Applying the same Guard_In property to several features or to one feature only has 
the same impact on the component declaring the Guard_In. This means there are 
several ways to express the same behavior and there are no guidelines with regards to 
when to apply a Guard_In property to one feature only or to all features referred to 
in the Guard_In Boolean expressions. 



 

 137 

 

 
 
 
 
 
 

 Guard_In =>  
  KO1 when (inp1[outKO] and inp2[outKO])  
  mask when others 
 applies to inp1; 
 

 Guard_In =>  
  KO2 when (inp1[outKO] and inp2[outKO])  
  mask when others 
 applies to inp2; 

Figure A-1.  Conflicting Guard_In properties 

 

On the other hand, a transition that names an in propagation occurs regardless of the 
feature through which that propagation arrives.  

To address these issues, we propose to remove the applies to clause from the Guard_In 
declaration, thus allowing the definition of a unique Guard_In for all incoming features of a 
component. 

A.4 Inheritance and refinements 

Inheritance and refinement mechanisms are useful when dealing with an incremental 
modeling approach, such as the one proposed in this dissertation. This kind of mechanism 
would ease the modeler’s task during the model evolution phases by allowing the models to 
be enriched without copying and pasting from the previous modeling phases. In addition, the 
model evolution would be clearly visible for external readers.  

Our proposal is to integrate inheritance and refinements in the AADL Error Model Annex 
in a way similar to the one specified in the AADL core standard. These mechanisms would 
apply to error model types and implementations.  

 A child error model type may extend only one parent error model type. The child error 
model type may add error states, events and propagations to the inherited ones.  It may 
not suppress any feature declared in the parent error model type. An inherited feature 
may be refined into a set of features. If the initial error state is refined, only one of the 
replacing error states in the child error model type is declared as being initial. Error 
model types may form an hierarchy with a child error model type inheriting from its 
parent, which inherits from an ancestor error model type. 

 A child error model implementation may extend only one parent error model 
implementation. By default, the child error model implementation inherits the error 
model type of the parent error model implementation. The modeler can also associate it 
explicitly with an error model type that inherits the one of its parent error model 
implementation. The child error model implementation inherits the set of transitions 
declared in its parent and adds new transitions to this set. It may also refine a transition, 
i.e., replace it with a sequence of transitions starting from the source state of the refined 
transition and ending to the destination state of the refined transition. 

 





 

 139 

Appendix B: General Rule for Emptying 
GSPN Propagation Places 

The rule we present hereafter ensures that the behavior modeled by the GSPN is 
semantically identical to the behavior modeled through propagations in the AADL model. In 
addition, this rule ensures the boundedness of the GSPN: any token created in a dependency 
net and representing a propagation must be absorbed when leaving the dependency net. 

There are two types of GSPN propagation places: those generated from AADL transitions 
triggered by out propagations and those generated from Guard_Out pass-through rules. The 
rule presented hereafter applies to both of these types.  

Generally, a token is created in a place OutProp by firing a GSPN transition corresponding 
to a cause of the corresponding out propagation. For an out propagation occurring as a 
result of an AADL transition triggered by the out propagation, the cause is unique. For an 
out propagation occurring as a result of a Guard_Out pass-through rule, there are as many 
causes as conjunctions in the Boolean expression of the pass-through rule. The occurrence of 
an out propagation (i.e., the existence of a token in the place OutProp) has one or more 
effects represented as GSPN transitions to which the place OutProp is linked through bi-
directional arcs. Figure B-1 presents a GSPN representing an out propagation with its causes 
and effects.  

 

 

Figure B-1. General GSPN for out propagation 

 

The place outProp_outp models the out propagation. This place can be emptied when none 
of the GSPN transitions connected to it (corresponding to causes and effects) is enabled. The 
Boolean condition to empty OutProp is as follows. 

[ i=1
n (¬ti

cause )] [ j=1
m (¬t j

effect )], where ¬t represents the Boolean condition necessary for t to be 

disabled (OR Boolean condition on the marking of places connected to t).  



 

140 

According to Figure B-1: 

¬ti
cause 

= pl1  (¬pl2)   and  ¬tj
effect 

= (¬pl4)  pl5  (¬outProp1_outp) 

If the place OutProp is linked through inhibitor arcs to other transitions, (e.g., t1
noeffect in the 

figure), they do not have any impact on emptying the place OutProp. 

The Boolean condition to empty OutProp is transformed in DNF and minimized so that the 
number of GSPN transitions created to empty the place OutProp is minimized. An immediate 
GSPN transition is created for each conjunction of the Boolean condition. It has a uni-
directional arc from the place OutProp that needs to be emptied. It has inhibitor arcs coming 
from places negated in the conjunction and bi-directional arcs connecting it to places that are 
not negated. An example is shown in Figure B-2. The place OutProp_outp has two GSPN 
cause transitions and one GSPN effect transition. To empty the place OutProp_outp, the 
following Boolean condition must be true. 

(¬t1
cause

)  (¬t2
cause

)  (¬t
effect

) = [(¬pl1) (¬pl2)]  [(¬pl1) (pl2)]  [(¬pl3) OutProp1_outp] 

This expression in DNF form and minimized is as follows. 

[(¬pl1) (¬pl3)]  [(¬pl1) OutProp1_outp] 

This leads to creating two immediate transitions that empty OutProp_outp. 
 

 

Figure B-2. Emptying an out propagation place - Example 



 

 141 

Appendix C: Model Transformation Tool 

The model transformation rules presented in Chapter IV have been implemented in a tool 
prototype, ADAPT (from AADL Architectural models to stochastic Petri nets through model 

Transformation), that interfaces the Open Source AADL Tool Environment (OSATE35) on the 
AADL side and Surf-2 [Béounes et al. 1993] on the GSPN side. OSATE is the most used 
AADL modeling tool. From a developer’s point of view, OSATE provides useful methods for 
traversing and processing the AADL architectural model. In addition to OSATE, we also base 
our tool on the set of prototype plug-ins developed at the Carnegie Mellon Software 
Engineering Institute to support the Error Model Annex.  

Section C1 presents the model transformation tool from a developer’s perspective while 
Section C2 presents it from a user’s perspective. 

C.1 A developer’s perspective 

Figure C-1 presents the general overview of our tool: its structure and interfaces with 
AADL and GSPN tools respectively.  

 

 

Figure C-1. Overview of the model transformation tool 

                                                
35  http://www.aadl.info/OpenSourceAADLToolEnvironment.html 



 

142 

 

Our model transformation tool, depicted in dark gray together with its outputs, is built in 
the Java programming language on top of the Eclipse IDE36 (integrated development 
environment). This implementation choice is due to the fact that we interfaced our tool with 
OSATE. 

Our tool consists of 10 kilo lines of code, half of which are automatically generated from an 
Ecore37 metamodel using the Eclipse Modeling Framework [Budinsky et al. 2004]. It is 
structured as a set of three Eclipse plug-ins: gspnModel (containing methods for the creation 
and customization of GSPN elements), dependency (implementing the dependency rules 
defined in the AADL Error Model Annex) and aadl2gspn (implementing our transformation 
rules). The AADL and GSPN tools it interfaces are shown in light gray. The generated GSPN 
is saved in two forms: a generic XML/XMI file and a tool-specific file complying with the 
file format of the dependability evaluation Surf-2. Both files are obtained from the same 
GSPN object model, internal to our tool. The tool-specific file may also be obtained directly 
from the XML/XMI file. Possible interfaces with other GSPN-based dependability evaluation 
tools are represented with dotted lines.  

The three plug-ins forming our model transformation tool are described successively in 
subsections C.1.1, C.1.2 and C.1.3.  

C.1.1 gspnModel: Ecore metamodel 

This plug-in offers all the methods necessary for creating and customizing GSPN elements 
(places, transitions and arcs) and for traversing a GSPN model. The code of this plug-in has 
been automatically generated from an Ecore metamodel of GSPN using the Eclipse Modeling 
Framework (EMF). An XML/XMI schema is also generated from the Ecore metamodel. The 
GSPN saved under XML/XMI format is compliant with this schema.  

Figure C-2 shows the Ecore metamodel that we defined and that served as a basis for the 
generation of code.  

A PetriNet object contains several Arcs and several PlaceOrTransition elements. Arcs are 
described by a weight while PlaceOrTransition elements are identified by names. Arcs and 
PlaceOrTransition elements cannot be instantiated directly (they are abstract). Concrete arcs 
of types PlaceToTransition and TransitionToPlace can be instantiated and inherit from the 
Arc elements. Place and Transition elements inherit from the PlaceorTransition elements. A 
Place is characterized by an initial marking. A Transition is characterized by an Occurrence 
type and a parameter. Associations are established between the TransitionToPlace / 
PlaceToTransition arcs and Place and Transition elements.  

One of the perspectives of this work is to use the Petri Net Markup Language (PNML) 
[ISO/IEC 2005] instead of the rather simple meta model for GSPN illustrated in  
Figure C-2. PNML is intended to become an extensible interchange standard for Petri nets.  

                                                
36  http://www.eclipse.org/ 
37  Ecore is a small and simplified subset of UML, used in the Eclipse Modeling Framework. 



 

 143 

 

 

Figure C-2. Ecore metamodel for GSPN 

 

C.1.2 dependency 

This plug-in is a library of methods implementing the dependency rules specified by the 
AADL Error Model Annex. These dependency rules determine the propagations between 
error models associated with components and connections. They allow finding receiver and 
sender components or connections for a given error propagation declared in an error model 
associated with a component or connection of the system instance. The details of this library 
are presented in [Bruffa & Rugina 2007].  

C.1.3 aadl2gspn 

This is the main plug-in of our tool. It performs the transformation of error model elements 
into GSPN elements. It uses the gspnModel plug-in for the creation of GSPN objects and the 
dependency plug-in to determine the interactions at architectural level allowing the derivation 
of dependencies at error model level. The plug-in implements a metamodel-based 
transformation. It uses the standard metamodels of the AADL and of the AADL Error Model 
Annex [SAE-AS5506/1 2006a] as a source and of the GSPN as a target. We have chosen to 
implement the tool in Java in order to take advantage of the support offered by OSATE. Other 
implementation alternatives are recent metamodel-based transformation languages such as 
ATL [Jouault & Kurtev 2005], MOLA [Kalnins et al. 2005], MTL38 or GReAT [Agrawal et 

al. 2003]. Model transformation techniques are compared in [Czarnecki & Helsen 2003]. 

In the current prototype, all transformation rules presented in Chapter IV are implemented, 
except for the rules for activate / deactivate transitions and derived error models. 
Architetcure configurations are not taken into account. 

                                                
38  http://modelware.inria.fr/article66.html 



 

144 

C.2 A user’s perspective 

A OSATE user installs our tool as an Eclipse feature and a set of plug-ins. Our tool requires 
that the Error Model Annex support plug-ins, provided by the Carnegie Mellon Software 
Engineering Institute, be installed too. In order to run the AADL to GSPN transformation 
tool, the user must instantiate an AADL system model and select the resulting system 
instance. The system instance must have an associated Derived_State_Mapping 
expression that we use to derive the state partitions necessary to the dependability evaluation 
tool, to evaluate measures. The Derived_State_Mapping expression must explicitly 
define the Failed global state of the system instance as a Boolean expression of states of its 
components. If safety is among the targeted measures, a Catastrophic global state must also 
be defined. As stated in Chapter III, the aim of our framework is the evaluation of quantitative 
dependability measures. Thus, it requires that all events and propagations have Occurrence 
properties. If an event or a propagation does not have an Occurrence property, our tool 
assumes it is immediate of probability 1. 

The GSPN obtained after transformation is saved in two files with different formats:  

 a generic XML/XMI file complying with a schema automatically generated from 
the metamodel that we defined for GSPN. The XML/XMI format of the GSPN does 
not comply with the input file format of a particular tool. However, it is useful for 
potential users intending to obtain a tool-specific GSPN, as XML/XMI files are 
easy to process. This file represents a gateway for interfacing other dependability 
evaluation tools with a minimum amount of effort. It is placed by default in the aaxl 
folder of the AADL project containing the instance model that has been 
transformed. It has the same name as the system instance file, followed by the pn 
extension.  

 a tool-specific file complying with the input file format of the dependability 
evaluation tool Surf-2. The user chooses its name and location. This file can be 
imported in Surf-2. Surf-2 allows the user to customize the model, i.e., by giving 
particular values or value ranges to model parameters corresponding to symbolic 
Occurrence properties coming from the AADL model. The user also chooses the 
measures of interest. 



 

 145 

References 

[Agrawal et al. 2003]  A. Agrawal, G. Karsai and F. Shi, Graph Transformations on Domain-Specific 
Models, Institute for Software Integrated Systems, Vanderbilt University, Technical Report, 
2003. 

[Ajmone Marsan et al. 1995]  M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli and G. 
Franceschinis, Modelling With Generalized Stochastic Petri Nets, Wiley Series in Parallel 
Computing, 301p., John Wiley & Sons, 1995. 

[Arlat et al. 2006]  J. Arlat, M. R. Barone, Y. Crouzet, J.-C. Fabre, J. Favaro, M. Kaâniche, K. 
Kanoun, S. Puri, T. Robert, M. Roy, A. E. Rugina, N. Salatge and H. Waeselynck, Dependability 
Framework: Evaluation, Testing and Wrapping, Integrated Project IST - 004033 ASSERT 
Deliverable, N°D-32(345)-1 N°LAAS-CNRS Research Report n°06132, February 2006. 

[Avizienis 1995]  A. Avizienis, “The Methodology of N-Version Programming”, in Software Fault-
tolerance (M. R. Lyu, Ed.), pp.23-46, John Wiley &Sons Ltd., 1995. 

[Avizienis et al. 2004]  A. Avizienis, J.-C. Laprie and B. Randell, “Dependability and its Threats: A 
Taxonomy”, in 18th IFIP World Computer Congress, pp.91-120, 2004. 

[Balbo et al. 1988]  G. Balbo, S. C. Bruell and S. Ghanta, “Combining Queuing Networks and GSPNs 
for the Solution of Complex Models of System Behaviour”, IEEE Transactions on Computers, 
37, pp.1251-1268, 1988. 

[Baresi 2002]  L. Baresi, “Some preliminary hints on formalizing UML with Object Petri Nets”, in 
Integrated Design Process Technology (IDPT'02), 2002. 

[Barlow et al. 1975]  R. E. Barlow, J. B. Fussel and N. D. Singpurwalla, Reliability and Fault Tree 
Analysis, Society for Industrial and Applied Mathematics, 1975. 

[Bechta Dugan et al. 1992]  J. Bechta Dugan, S. J. Bavuso and M. A. Boyd, “Dynamic Fault-Tree 
Models for Fault-Tolerant Computer Systems”, IEEE Trans. on Reliability, 41 (3), pp.363-377, 
September 1992. 

[Bechta Dugan & Lyu 1995]  J. Bechta Dugan and M. R. Lyu, “Dependability Modeling for Fault-
Tolerant Software and Systems”, in Software Fault-tolerance (M. R. Lyu, Ed.), pp.47-80, John 
Wiley & Sons Ltd., 1995. 

[Beder et al. 2000]  D. M. Beder, A. Romanovsky, B. Randell, C. R. Snow and R. J. Stroud, “An 
Application of Fault-tolerance Patterns and Coordinated Atomic Actions to a Problem in Railway 
Scheduling”, ACM SIGOPS Operating Systems Review, 34 (4), pp.21-31, 2000. 

[Béounes et al. 1993]  C. Béounes, M. Aguéra, J. Arlat, S. Bachmann, C. Bourdeau, J.-E. Doucet, K. 
Kanoun, J.-C. Laprie, S. Metge, J. M. d. Souza, D. Powell and P. Speisser, “Surf-2: a program for 
dependability evaluation of complex hardware and software systems”, in 23rd IEEE Int. 
Symposium on Fault Tolerant Computing, (Toulouse, France), pp.668-673, 1993. 

[Bernardi et al. 2001]  S. Bernardi, C. Bertoncello, S. Donatelli, G. Franceschinis, R. Gaeta, M. 
Gribaudo and A. Horvath, “GreatSPN in the new millenium”, in Tool Session of 9th Int. 
Workshop on Petri Nets and Performance Models, (Aachen, Germany), 2001. 

[Bernardi & Donatelli 2003]  S. Bernardi and S. Donatelli, “Building Petri Net Scenarios for 
Dependable Automation Systems”, in 10th Int. Workshop on Petri Nets and Performance Models, 
(Urbana, IL, USA), pp.72-83, IEEE CS-Press, 2003. 



 

 146 

[Bernardi et al. 2002]  S. Bernardi, S. Donatelli and J. Merseguer, “From UML Sequence Diagrams 
and Statecharts to Analysable Petri Net Models”, in 3rd Int. Workshop on Software and 
Performance, (Rome, Italy), pp.35-45, ACM Press, 2002. 

[Bernardi & Merseguer 2007]  S. Bernardi and J. Merseguer, “A UML Profile for Dependability 
analysis of Real-Time Embedded Systems”, in Workshop on Software and Performance, (Buenos 
Aires, Argentina), pp.115-124, 2007. 

[Bézivin 2006]  J. Bézivin, “Model-driven Engineering: An Emerging Technical Space”, in 
Generative and Transformational Techniques in Software Engineering (R. Lammel, J. Saraiva 
and J. Visser, Eds.), 4143/2006, LNCS, pp.36-64, Springer-Verlag Berlin / Heidelberg, 2006. 

[Binns & Vestal 2004]  P. Binns and S. Vestal, “Hierarchical composition and abstraction in 
architecture models”, in 18th IFIP World Computer Congress, ADL Workshop, (Toulouse, 
France), pp.43-52, 2004. 

[Blakemore 1989]  A. Blakemore, “The Cost of Eliminating Vanishing Markings from Generalized 
Stochastic Petri Nets.” in 3rd Int. Workshop on Petri Nets and Performance Models, (Kyoto, 
Japan), IEEE-CS Press, 1989. 

[Blanquart et al. 2006]  J.-P. Blanquart, A. Rossignol and D. Thomas, “Toward Model-Based 
Engineering for Space Embedded Systems and Software”, in 3rd European Congress on 
Embedded Real Time Software, (Toulouse, France), 2006. 

[Bobbio & Trivedi 1986]  A. Bobbio and K. S. Trivedi, “An Aggregation Technique for the Transient 
Analysis of Stiff Markov Chains”, IEEE Trans. on Computers, C-35 (9), pp.803-814, 1986. 

[Bolch et al. 1998]  G. Bolch, G. Greiner, H. de Meer and K. Trivedi, Queueing Networks and Markov 
Chains, John Willey and Sons, 1998. 

[Bondavalli et al. 2001]  A. Bondavalli, M. D. Cin, D. Latella, I. Majzik, A. Pataricza and G. Savoia, 
“Dependability Analysis in the Early Phases of UML Based System Design”, Int. Journal of 
Computer Systems - Science & Engineering, 16 (5), pp.265-275, 2001. 

[Bondavalli et al. 1999a]  A. Bondavalli, M. D. Cin, D. Latella and A. Pataricza, “High-level 
Integrated Design Environment for Dependability (HIDE)”, in 5th International Workshop on 
Object-oriented Real-time Dependable Systems, pp.87-92, 1999a. 

[Bondavalli et al. 1999b]  A. Bondavalli, I. Mura and K. S. Trivedi, “Dependability Modelling and 
Sensitivity Analysis of Scheduled Maintenance Systems”, in 3rd European Dependable 
Computing Conference (EDCC-3), (A. Pataricza, J. Hlavicka and E. Maehle, Eds.), (Prague, 
Czech Republic), pp.7-23, Springer, 1999b. 

[Borrel 1996]  M. Borrel, Interactions entre composants matériel et logiciel de systèmes tolérant aux 
fautes - Caractérisation - Formalisation - Modélisation - Application à la sûreté de 
fonctionnement du CAUTRA, LAAS-CNRS, Thèse de doctorat, N°96001, 1996. 

[Brown 2004]  A. Brown, An Introduction to Model-driven Architecture, 
http://www.ibm.com/developerworks/rational/library/3100.html, IBM, February 2004. 

[Brown & Wallnau 1996]  A. Brown and K. Wallnau, “Engineering of Component-Based Systems”, 
in 2nd IEEE Int. Conf. on Engineering of Complex Computer Systems, (Montreal, Canada), 
pp.414-422, 1996. 

[Bruffa & Rugina 2007]  M. Bruffa and A. E. Rugina, A Library Implementing Propagation Rules 
defined in the AADL Error Model Annex LAAS-CNRS, N°07001, February 2007. 

[Budinsky et al. 2004]  F. Budinsky, D. Steinberg, E. Merks, R. Ellersick and T. Grose, Eclipse 
Modeling Framework, Eclipse Series, 680p., Addison-Wesley, 2004. 

[Canals et al. 2002]  A. Canals, Y. Cassaing, J. A., L. Pomies and E. Roblet, “How to Use the 
NEPTUNE Technology in the Modelling Process?” in Conference on Ata System In Aerospace, 
(Dublin, Ireland), 2002. 



 

 147 

[Chen et al. 2007]  D. Chen, M. Törngren and L. H., Advancing Traffic Efficiency and Safety through 
Software Technology (ATESST) Deliverable D.2.2.1 - Elicitation of Representative and Relevant 
Analysis and V&V Techniques ATESST Contract Number 2004-026976, 2007. 

[Chiola & Donatelli 1991]  G. Chiola and S. Donatelli, “GSPNs versus SPNs: What is the Actual Role 
of Immediate Transitions? ” in 4th Int. Workshop on Petri Nets and Performance Models, (Los 
Alamitos, CA, USA), pp.20-30, IEEE-CS Press, 1991. 

[Ciardo & Miner 1999]  G. Ciardo and A. Miner, “A Data Structure for the Efficient Kroneker 
Solution of GSPNs”, in 8th Int. Workshop on Petri Nets and Performance Models, (Zaragoza, 
Spain), pp.22-31, IEEE Computer Society Press, 1999. 

[Ciardo & Trivedi 1993a]  G. Ciardo and K. S. Trivedi, “Decomposition Approach to Stochastic 
Reward Net Models”, Performance Evaluation, 18 (1), pp.37-59, 1993a. 

[Ciardo & Trivedi 1993b]  G. Ciardo and K. S. Trivedi, “SPNP: The Stochastic Petri Net Package 
(Version 3.1)”, in 1st Int. Workshop on Modeling, Analysis and Simulation of Computer and 
Telecommunication Systems (MASCOTS'93), (San Diego, CA, USA), pp.390-391, 1993b. 

[Czarnecki & Helsen 2003]  K. Czarnecki and S. Helsen, “Classification of Model Transformation 
Approaches”, in Workshop on Generative Techniques in the Context of Model-Driven 
Architecture of ACM Conference on Object-Oriented Programming, Systems, Languages, and 
Applications, (Anaheim, CA, USA), 2003. 

[de Lemos 2006]  R. de Lemos, “Idealised Fault Tolerant Architectural Element”, in Int. Conf. on 
Dependable Systems and Networks, Workshop on Architecting Dependable Systems, 
(Philadelphia, PA, USA), pp.76-81, 2006. 

[Deavours et al. 2002]  D. D. Deavours, G. Clark, T. Courtney, D. Daly, S. Derisavi, J. M. Doyle, W. 
H. Sanders and P. G. Webster, “The Mobius Framework and its Implementation”, IEEE 
Transactions on Software Engineering, 28 (10), pp.956-969, October 2002 2002. 

[Debruyne et al. 2004]  V. Debruyne, F. Simonot-Lion and Y. Trinquet, “EAST-ADL - An 
Architecture Description Language”, in 18th IFIP World Computer Congress, ADL Workshop, 
(Toulouse, France), pp.53-62, 2004. 

[Delanote et al. 2007]  D. Delanote, S. Van Baelen, W. Joosen and Y. Berbers, “Using AADL in 
Model-driven Development”, in IEEE-SEE Int. Workshop on UML and AADL, Int. Conf. on 
Engineering Complex Computer Systems, (Auckland, New Zealand), 2007. 

[Elkoutbi et al. 2002]  M. Elkoutbi, M. Bennani, R. K. Keller and M. Boulmalef, “Real-time system 
specifications based on UML Scenarios and Timed Petri Nets”, in the 2nd IEEE International 
Symposium on Signal Processing and Information Technology (ISSPIT'02), (Morocco), pp.362-
366, 2002. 

[Elkoutbi & Keller 1998]  M. Elkoutbi and R. K. Keller, “Modeling Interactive Systems with 
Hierarchical Colored Petri Nets”, in Conference on High Performance Computing, (Boston, 
USA), 1998. 

[Farines et al. 2003]  J.-M. Farines, B. Berthomieu, J.-B. Bodeveix, P. Dissaux, P. Farail, M. Filali, P. 
Gaufillet, H. Hafidi, J.-L. Lambert, P. Michel and F. Vernadat, “The Cotre project: rigorous 
software development for real time systems in avionics”, in 27th IFAC/IFIP/IEEE Workshop on 
Real Time Programming, (Zielona Gora, Poland), 2003. 

[Feiler et al. 2004]  P. H. Feiler, D. P. Gluch, J. J. Hudak and B. A. Lewis, “Pattern-Based Analysis of 
an Embedded Real-time System Architecture”, in 18th IFIP World Computer Congress, ADL 
Workshop, (Toulouse, France), pp.83-91, 2004. 

[Feiler et al. 2006]  P. H. Feiler, B. A. Lewis and S. Vestal, “The SAE Architecture Analysis & Design 
Language (AADL), A Standard for Engineering Performance Critical Systems”, in IEEE Conf. 
on Computer Aided Control System Design, (Munich, Germany), pp.1206-1211, 2006. 



 

 148 

[Feiler & Rugina 2007]  P. H. Feiler and A. E. Rugina, Dependability Modeling with the Architecture 
Analysis and Design Language (AADL), Carnegie Mellon Software Engineering Institute, 
N°CMU/SEI-2007-TN-043, 2007. 

[Fernandez Briones et al. 2006]  J. Fernandez Briones, M. de Miguel, J. P. Silva and A. Alonso, 
“Integration of Safety Analysis and Software Development Methods ”, in 1st Int. Conf. on 
System Safety Engineering pp.275-284, 2006. 

[Fota et al. 1999]  N. Fota, M. Kâaniche and K. Kanoun, “Incremental Approach for Building 
Stochastic Petri Nets for Dependability Modeling”, in Statistical and Probabilistic Models in 
Reliability (D. C. Ionescu and N. Limnios, Eds.), pp.321-335, Birkhäuser, 1999. 

[Giese et al. 2004]  H. Giese, M. Tichy and D. Schilling, “Compositional Hazard Analysis of UML 
Component and Deployment Models”, in SAFECOMP, pp.166-179, 2004. 

[Goseva Popstojanova & Trivedi 2001]  K. Goseva Popstojanova and K. Trivedi, “Architecture-based 
Approach to Reliability Assessment of Software Systems”, Performance Evaluation, 45 (2-3), 
pp.179-204, 2001. 

[Hirel et al. 2000]  C. Hirel, R. Sahner, X. Zang and K. Trivedi, “Reliability and performability 
modeling using SHARPE 2000”, in 11th Int. Conf. on Computer Performance Evaluation: 
Modelling Techniques and Tools, (Schaumburg, IL, USA), pp.345-349, Springer-Verlag, 2000. 

[Hugues et al. 2007]  J. Hugues, F. Kordon, L. Pautet and T. Vergnaud, “A Factory To Design and 
Build Tailorable and Verifiable Middleware”, in Workshop on Neworked Systems: Realization 
of Reliable Systems on Top of Unreliable Networked Platforms (Monterey Workshop Series, 
12th edition, 2005) 4322, LNCS, pp.123-144, Springer-Verlag, 2007. 

[Huszerl et al. 2002]  G. Huszerl, I. Majzik, A. Pataricza, K. Kosmidis and M. D. Cin, “Quantitative 
Analysis of UML Statechart Models of Dependable Systems”, The Computer Journal, 45 (3), 
pp.260-277, 2002. 

[Islam & Devarakonda 1996]  N. Islam and M. Devarakonda, “An Essential Design Pattern for Fault-
Tolerant Distributed State Sharing”, Communications of the ACM, 39 (10), pp.65-74, 1996. 

[ISO/IEC 2005]  ISO/IEC, Software and Systems Engineering - High-level Petri Nets, Part 2: Transfer 
Format, International Standard 15909-2 WD Version 0.9.0, June 2005. 

[Jarraya et al. 2007]  Y. Jarraya, A. Soeanu and M. Debbabi, “Automatic Verification and 
Performance Analysis of Time-Constrained SysML Activity Diagrams ”, in 14th IEEE Conf. and 
Workshops on the Engineering of Computer-Based Systems, (Tucson, AZ, U.S.A.), pp.515-522, 
2007. 

[Joshi et al. 2007]  A. Joshi, S. Vestal and P. Binns, “Automatic Generation of Static Fault Trees”, in 
Workshop on Architecting Dependable Systems of The 37th Annual IEEE/IFIP Int. Conference 
on Dependable Systems and Networks, (Edinburgh, UK), 2007. 

[Jouault & Kurtev 2005]  F. Jouault and I. Kurtev, “Transforming Models with ATL”, in Model 
Transformaion in Practice Workshop at ACM/IEEE International Conference on Model-driven 
Engineering Languages and Systems (Montego Bay, Jamaica), 2005. 

[Kalnins et al. 2005]  A. Kalnins, J. Barzdins and E. Celms, “Model Transformation Language 
MOLA”, in Model Diven Architecture (U. Asmann, M. Aksit and A. Rensink, Eds.), 3599/2005, 
LNCS, pp.62-76, Springer, 2005. 

[Kanoun & Borrel 2000]  K. Kanoun and M. Borrel, “Fault-tolerant systems dependability. Explicit 
modeling of hardware and software component-interactions”, IEEE Transactions on Reliability, 
49 (4), pp.363-376, 2000. 

[Kanoun et al. 1999]  K. Kanoun, M. Borrel, T. Morteveille and A. Peytavin, “Availability of 
CAUTRA, a Subset of the French Air Traffic Control System”, IEEE Transactions on 
Computers, 48 (5), pp.528-535, 1999. 



 

 149 

[Kazman et al. 1999]  R. Kazman, M. Barbacci, M. Klein, J. Carriere and S. G. Woods, “Experience 
with Performing Architecture Tradeoff Analysis”, in 21st Int. Conf. on Software Engineering 
(Los Angeles, CA, USA), pp.54-63, 1999. 

[Kehren et al. 2004]  C. Kehren, C. Seguin, P. Bieber, C. Castel, C. Bougnol, J.-P. Heckmann and S. 
Metge, “Architecture Patterns for Safe Design”, in Int. Complex and Safe Systems Engineering, 
(Arcachon, France), 2004. 

[King & Pooley 1999]  P. King and R. Pooley, “Using UML to Derive Stochastic Petri Net Models”, 
in 15th annual UK Performance Engineering Workshop, pp.45-56, 1999. 

[Klein et al. 1999]  M. H. Klein, R. Kazman, R. Bass, J. Carriere, M. Barbacci and H. Lipson, 
“Attribute-Based Architecture Styles”, in 1st Working IFIP Conf. on Software Architecture, (San 
Antonio, TX, USA), (P. Donohe, Ed.), pp.225-244, 1999. 

[Kwiatkovska et al. 2005]  M. Kwiatkovska, G. Norman and D. Parker, “Quantitative Analysis with 
the Probabilistic Model Checker PRISM”, Electronic Notes in Theretical Computer Science, 153 
(2), pp.5-31, 2005. 

[Laprie et al. 1990]  J.-C. Laprie, J. Arlat, C. Béounes and K. Kanoun, “Definition and Analysis of 
Hardware-and-Software Fault-Tolerant Architectures”, IEEE Computer, 23 (7), pp.39-51, 1990. 

[Laprie et al. 1995]  J.-C. Laprie, J. Arlat, C. Béounes and K. Kanoun, “Architectural Issues in 
Software Fault-tolerance”, in Software Fault-tolerance (M. R. Lyu, Ed.), pp.47-80, John Wiley 
&Sons Ltd., 1995. 

[Laprie et al. 1996]  J.-C. Laprie, J. Arlat, J.-P. Blanquart, A. Costes, Y. Crouzet, Y. Deswarte, J.-C. 
Fabre, H. Guillermain, M. Kaâniche, K. Kanoun, C. Mazet, D. Powell, C. Rabéjac and P. 
Thévenod, Guide de la Sûreté de Fonctionnement, Cépaduès Editions, Toulouse, 1996. 

[Laprie & Kanoun 1996]  J.-C. Laprie and K. Kanoun, “Handbook of Software Reliability and System 
Reliability”, in Software Reliability Engineering (M. R. Lyu, Ed.), pp.27-69, Computing 
McGraw-Hill, 1996. 

[Lòpez-Grao et al. 2002]  J. P. Lòpez-Grao, J. Merseguer and J. Campos, “Performance Engineering 
based on UML & SPN's: A software performance tool”, in 17th Int. Symposium on Computer 
and Information Sciences, (Orlando, Florida, USA), 2002. 

[Lu et al. 2005]  S. Lu, W. A. Halang, H. W. Schmidt and R. Gumzej, “A Component-Based 
Approach to Specify Hazards in the Design of Safety-Critical Systems”, in 3rd IEEE Int. Conf. 
on Industrial Informatics, (Perth, Australia), pp.680-685, 2005. 

[Majzik & Bondavalli 1998a]  I. Majzik and A. Bondavalli, “Automatic Dependability Modeling of 
Systems Described in UML”, in International Symposium on Software Reliability Engineering 
(ISSRE), 1998a. 

[Majzik & Bondavalli 1998b]  I. Majzik and A. Bondavalli, “Automatic Dependability Modeling of 
Systems Described in UML”, in Int. Symposium on Software Reliability Engineering (ISSRE), 
pp.29-30, 1998b. 

[Majzik & Bondavalli 1998c]  I. Majzik and A. Bondavalli, On high-level dependability modeling in 
HIDE, N°HIDE/T1.2/PDCC/4/v1, 1998c. 

[Majzik et al. 2003]  I. Majzik, A. Pataricza and A. Bondavalli, “Stochastic dependability analysis of 
system architecture based on uml  models”, in Architecting Dependable Systems, LNCS 2677, 
Lecture Notes in Computer  Science (C. G. R. De Lemos, and A. Romanovsky, Ed.), pp.219-244, 
Springer-Verlag, Berlin, Heidelberg, New York, 2003. 

[Medvidovic & Taylor 2000]  N. Medvidovic and R. N. Taylor, “A classification and comparison 
framework for Software Architecture Description Languages”, IEEE Transactions on Software 
Engineering, 26 (1), pp.70-93, 2000. 



 

 150 

[Merseguer & Campos 2004]  J. Merseguer and J. Campos, “Software Performance Modeling using 
UML and Petri Nets”, in Lecture Notes in Computer Science 2965, pp.265-289, 2004. 

[Mitton & Holton 2000]  P. Mitton and R. Holton, “PEPA Performability Modelling using UML 
statecharts”, in 16th UK Performance Engineering Workshop, (N. T. J. Bradley, Ed.), pp.19-33, 
2000. 

[OMG 2007a]  OMG, SysML Specification, http://www.omg.org, April 2007a. 

[OMG 2007b]  OMG, Unified Modelling Language Specification: version 2.1.1, http://www.omg.org, 
February 2007b. 

[Pai & Bechta Dugan 2002]  G. J. Pai and J. Bechta Dugan, “Automatic Synthesis of Dynamic Fault 
Trees from UML System Models”, in 13th Int. Symposium on Software Reliability Engineering, 
(Annapolis, USA), pp.243-254, 2002. 

[Papadopoulos & McDermid 1999]  Y. Papadopoulos and J. A. McDermid, “Hierarchically Performed 
Hazard Origin and Propagation Studies”, in SAFECOMP, pp.139-152, 1999. 

[Peterson 1981]  J. Peterson, Petri Net Theory and the Modeling of Systems, Prentice-Hall, 
Englewood Cliffs, Upper Saddle River, NJ, 1981. 

[Radjenovic & Paige 2006]  A. Radjenovic and R. Paige, “Architecture Description Languages for 
High-Integrity Real-Time Systems”, IEEE Software, 23 (2), pp.71-79, March/April 2006. 

[Randell & Xu 1995]  B. Randell and J. Xu, “The Evolution of the Recovery Block Concept”, in 
Software Fault-tolerance (M. R. Lyu, Ed.), pp.1-21, John Wiley &Sons Ltd., 1995. 

[ReSIST 2006]  ReSIST, D12: Resilience-building Technologies: State of Knowledge, ReSIST: 
Resilience for Survivability in IST, A European Network of Excellence, Contract number 
026764, 2006. 

[Rugina et al. 2006a]  A. E. Rugina, P. H. Feiler, K. Kanoun and M. Kaâniche, Software 
Dependability Modeling Using An Industry-Standard Architecture Description Language, LAAS-
CNRS Research Report, N°06558, 2006a. 

[Rugina et al. 2006b]  A. E. Rugina, K. Kanoun and M. Kaâniche, “An Architecture-based 
Dependability Modeling Framework using AADL”, in 10th IASTED Int. Conf. on Software 
Engineering and Applications, (Dallas, U.S.A.), pp.222-227, 2006b. 

[Rugina et al. 2006c]  A. E. Rugina, K. Kanoun and M. Kaâniche, “Modélisation de la sûreté de 
fonctionnement à partir du langage AADL”, in 15ème Congrès de Maîtrise des Risques et de 
Sûreté de Fonctionnement, (Lille, France), 2006c. This article was awarded the best research 
paper award and was also published in the Special Issue Publication of the French Institute for 
Risk Management and Dependability, 2006. 

[Rugina et al. 2007]  A. E. Rugina, K. Kanoun and M. Kaâniche, “A System Dependabiliy Modeling 
Framework using AADL and GSPNs”, in Architecting Dependable Systems IV (R. de Lemos, C. 
Gacek and A. Romanovsky, Eds.), 4615, LNCS, pp.14-38, Springer-Verlag, 2007. 

[SAE-AS5506 2004]  SAE-AS5506, SAE Architecture Analysis and Design Language (AADL), 
International Society of Automotive Engineers, November 2004. 

[SAE-AS5506/1 2006a]  SAE-AS5506/1, SAE Architecture Analysis and Design Language (AADL) 
Annex Volume 1, Annex C: AADL Meta-Model and Interchange Formats, International Society 
of Automotive Engineers, June 2006a. 

[SAE-AS5506/1 2006b]  SAE-AS5506/1, SAE Architecture Analysis and Design Language (AADL) 
Annex Volume 1, Annex E: Error Model Annex, International Society of Automotive Engineers, 
June 2006b. 

[Saldhana & Shatz 2000]  J. A. Saldhana and S. M. Shatz, “UML Diagrams to Object Petri Net 
Models: An Approach for Modeling and Analysis”, in International Conference on Software 
Engineering and Knowledge Engineering (SEKE), (Chicago), pp.103-110, 2000. 



 

 151 

[Shaw & Garlan 1994]  M. Shaw and D. Garlan, Characteristics of Higher-Level Languages for 
Software Architecture, Carnegie Mellon University, N° Technical Report CMU-CS-94-210, 
1994. 

[Singhoff et al. 2005]  F. Singhoff, J. Legrand, L. Nana and L. Marcé, “Scheduling and Memory 
Requirements Analysis with AADL”, in SIGAda Int. Conf. on Ada, (Atlanta, GE, USA), pp.1-10, 
2005. 

[Slaby & Baker 2006]  J. Slaby and S. Baker, “Domain-Specific Languages for Enterprise DRE 
System QoS”, IEEE Computer February 2006. 

[Sokolsky et al. 2006]  O. Sokolsky, I. Lee and D. Clarke, “Scedulability Analysis of AADL Models”, 
in 20th Parallel and Distributed Processing Symposium, (Rhodes Island, Greece), 2006. 

[Tichy et al. 2004]  M. Tichy, D. Schilling and H. Giese, “Design of Self-Managing Dependable 
Systems with UML and Fault-tolerance Patterns”, in Workshop on Self-healing Systems, 1st 
SIGSOFT Workshop on Self-managed Systems, (Newport Beach, CA, USA), pp.105-109, 2004. 

[Trivedi et al. 1994]  K. S. Trivedi, B. R. Haverkort, A. Rindos and V. Mainkar, “Techniques and 
Tools for Reliability and Performance Evaluation: Problems and Perspectives”, in 7th 
International Conference on Modeling Techniques and Tools for Computer Performance 
Evaluation, (L. N. i. C. Sciences, Ed.), pp.1-24, Springer, 1994. 

[Vestal 1998]  S. Vestal, MetaH User's Manual, Honeywell Technology Center, 1998. 

[Viehl et al. 2006]  A. Viehl, T. Schönwald, O. Bringmann and W. Rosenstiel, “Formal Performance 
Analysis and Simulation of UML/SysML Models for ESL Design”, in Conf. on Design, 
Automation and Test in Europe, (Munich, Germany), pp.1-6, 2006. 

[Waddington & Lardieri 2006]  D. Waddington and P. Lardieri, “Model-Centric Software 
Development”, IEEE Computer February 2006. 

[Wallace 2005]  M. Wallace, “Modular Architectural Representation and Analysis of Fault 
Propagation and Transformation”, in Formal foundations of Embedded Systems and Component-
Based Software Architectures Workshop, (Edinburgh), 2005. 

[Yau & Cheung 1975]  S. S. Yau and R. C. Cheung, “Design of Self-Checking Software”, in Int. 
Conf. Reliable Software, (Los Angeles, U.S.A.), pp.450-457, 1975. 

[Zarras & Issarny 2000]  A. Zarras and V. Issarny, “Assessing Software Reliability at the 
Architectural Level”, in 4th International Software Architecture Workshop, 2000. 

[Zarras et al. 2004]  A. Zarras, P. Vassiliadis and V. Issarny, “Model-Driven Dependability Analysis 
of Web Services”, in 6th International Symposium on Distributed Objects and Applications 
(DOA 2004), 2004. 

 





 

 

Dependability modeling and evaluation – 

From AADL to stochastic Petri nets 

 

 

 

 

ABSTRACT 
 

Performing dependability evaluation along with other analyses at architectural level allows 
both predicting the effects of architectural decisions on the dependability of a system and 
making tradeoffs. Thus, both industry and academia focus on defining model driven 
engineering (MDE) approaches and on integrating several analyses in the development 
process. AADL (Architecture Analysis and Design Language) has proved to be efficient for 
architectural modeling and is considered by industry in the context presented above. Our 
contribution is a modeling framework allowing the generation of dependability-oriented 
analytical models from AADL models, to facilitate the evaluation of dependability measures, 
such as reliability or availability. We propose an iterative approach for system dependability 
modeling using AADL. In this context, we also provide a set of reusable modeling patterns 
for fault tolerant architectures. The AADL dependability model is transformed into a GSPN 
(Generalized Stochastic Petri Net) by applying model transformation rules. We have 
implemented an automatic model transformation tool. The resulting GSPN can be processed 
by existing tools to obtain dependability measures. The modeling approach is illustrated on a 
subsystem of the French Air Traffic Control System.  

 

 

 

Keywords: dependability modeling, evaluation, AADL, GSPN, model transformation. 

 





 

 

AUTEUR :  Ana-Elena RUGINA 

TITRE :  Modélisation et évaluation de la sûreté de fonctionnement –  
     De AADL vers les réseaux de Petri stochastiques 

DIRECTEUR DE THESE : Mme. Karama KANOUN 

LIEU ET DATE DE SOUTENANCE : Toulouse, le 19 novembre 2007 

 

 

 

___________________________________________________________________________ 

RÉSUMÉ 
 

Conduire des analyses de sûreté de fonctionnement conjointement avec d’autres analyses au niveau 
architectural permet à la fois de prédire les effets des décisions architecturales sur la sûreté de 
fonctionnement du système et de faire des compromis. Par conséquent, les industriels et les 
universitaires se concentrent sur la définition d’approches d’ingénierie guidées par des modèles 
(MDE) et sur l’intégration de diverses analyses dans le processus de développement. AADL 
(Architecture Analysis and Design Language) a prouvé son aptitude pour la modélisation 
d’architectures et ce langage est actuellement jugé efficace par les industriels dans de telles approches. 
Notre contribution est un cadre de modélisation permettant la génération de modèles analytiques de 
sûreté de fonctionnement à partir de modèles AADL dans l‘objectif de faciliter l’évaluation de 
mesures de sûreté de fonctionnement comme la fiabilité et la disponibilité. Nous proposons une 
approche itérative de modélisation. Dans ce contexte, nous fournissons un ensemble de sous-modèles 
génériques réutilisables pour des architectures tolérantes aux fautes. Le modèle AADL de sûreté de 
fonctionnement est transformé en un RdPSG (Réseau de Petri Stochastique Généralisé) en appliquant 
des règles de transformation de modèle. Nous avons implémenté un outil de transformation 
automatique. Le RdPSG résultant peut être traité par des outils existants pour obtenir des mesures de 
sûreté de fonctionnement. L’approche est illustrée sur un ensemble du Système Informatique Français 
de Contrôle de Trafic Aérien. 

___________________________________________________________________________ 

 

 

MOTS-CLES : modélisation de la sûreté de fonctionnement, évaluation, AADL, RdPSG, 
   transformation de modèle. 

 

___________________________________________________________________________ 

DISCIPLINE ADMINISTRATIVE : Systèmes informatiques 

___________________________________________________________________________ 

 

 

 

 

LAAS CNRS - 7 avenue du Colonel Roche - 31077 Toulouse Cedex 4 


