

Institut de Recherche en Electrotechnique et Electronique de Nantes-Atlantique

Mise en œuvre et étude des techniques d'intégration de matériaux organiques en vue de la réalisation d'un modulateur électro-optique

	Sylvain LE TACON	
	30 novembre 2007	
Membres du jury :	André MOLITON, Université de limoges	
	Didier DECOSTER, Université de Lille 1	
	Christian BERGAUD, Université de Toulouse 3	
	Dominique BOSC, Université de Rennes 1	
	Fabrice ODOBEL, Université de Nantes	
	Hartmut GUNDEL, Université de Nantes	

Réseaux Télécoms Hybrides Fibre Radio

Contrat Etat Région «Photonique et Micro-ondes»

Objectif:

Développer des matériaux organiques aux propriétés électro-optiques stables visant des applications de conversion d'un signal hyperfréquence en signal optique guidé

Modulateur électro-optique d'amplitude

Effet Pockels

Déphasage

 $\Delta \phi = \frac{2\pi L}{\lambda_0} \Delta n = \frac{\pi}{V_-} V(t)$

Tension demi-onde

$$V_{\pi} = \frac{\lambda_0 d}{n^3 r_{33} L \Gamma}$$

Caractéristiques à 1,3 µm [2]	Niobate de Lithium	Polymères électro- optiques
Coefficient électro-optique r ₃₃ (pm/V)	30	> 100
Bande passante (GHz)	40	> 100
Tension demi-onde Vπ (V/cm)	5 – 6	1 – 2

Avantages des polymères :

Coefficients électro-optiques élevés, large bande passante, faible température de mise en œuvre.

Inconvénients des polymères :

Mauvaise stabilité dans le temps des propriétés électro-optiques, intégration délicate à maîtriser.

[2] L.R. Dalton. J. Phys. : Condens. Matter, 15 : R897-R934, 2003

- I. Mise en forme et caractérisations du polymère
- II. Intégration par photolithogravure
- III. Intégration par lithographie d'impression
- **IV.** Conclusion & Perspectives

I. Mise en forme et caractérisations du polymère

- I.1 Description du matériau
- I.2 Dépôt en couches minces
- I.3 Orientation et réticulation du matériau
- I.4 Génération de seconde harmonique
- II. Intégration par photolithogravure
- III. Intégration par lithographie d'impression
- **IV.** Conclusion & Perspectives

Chromophore : Molécule à transfert de charge intramoléculaire

Polymères pour ONL

$$\mu_{i} = \varepsilon_{0} \left(\alpha E_{j} + \beta E_{j} \cdot E_{k} + \gamma E_{j} \cdot E_{k} \cdot E_{l} + ... \right)$$
Moment dipolaire induit d'une molécule
sous un champ électrique E de **FORTE**
intensité
Modification de l'indice de réfraction (Pockels, Kerr)
Génération d'harmoniques (SHG, THG)

$$P_{i} = \varepsilon_{0} \left(\chi^{(1)} E_{j} + \chi^{(2)} E_{j} \cdot E_{k} + \chi^{(3)} E_{j} \cdot E_{k} \cdot E_{l} + ... \right)$$
Polarisation induite d'un matériau
actif en ONL

Activité ONL quadratique

Chromophores greffés à une matrice amorphe

Stabilisation de l'orientation :

- Matrice à haute température de transition vitreuse
- Matrice et chromophores avec des fonctions de réticulations

I.1 Description du matériau

PGMA-DR1*

Polymère (PIII) à chromophores greffés et réticulables [3][4] :

Matrice : méthacrylate de glycidyle (GMA) Chromophores : *disperse red one* (DR1)

Température de transition vitreuse (Tg) : Tg ~ 80°

Température de réticulation (Tr) : Tr ~ 140℃

Coefficient électro-optique : r₃₃ ~ 12 pm/V à 1320 nm [3]

[3] D. Bosc, Optical Materials, 13(2), 205-209, 1999 [4] C. Monnereau, thèse de doctorat, Université de Nantes 2005

* Synthétisé au LSO

10

Le principe

Procédé sans réticulation

Monocouche d'épaisseur uniforme maximale de l'ordre de 1,3 µm

Multicouches d'épaisseur non uniforme

Procédé avec réticulation

Tricouche PIII/Verre

L'épaisseur des films est le multiple de celle d'un dépôt monocouche

Pas d'interface visible entre les couches de PIII

Effet couronne

I.3 Orientation et réticulation du matériau

Effet couronne

I.4 Génération de seconde harmonique*

Le principe

$$I_{2\omega} \alpha \frac{2}{c\varepsilon_0} \frac{AT}{n_2^2 \cos^2(\theta_2)} \left(\frac{2\pi d}{\lambda}\right)^2 I_{\omega} \chi_{33}^{(2)}$$

* Equipe Photonique et Communications

Stabilité [5]

[5] G. Tellier, thèse de doctorat, Université de Nantes 2006

I. Mise en forme et caractérisations du polymère

II. Intégration par photolithogravure

- II.1 Design d'une structure monomode
- II.2 Structuration par gravure sèche
- II.3 Caractérisations optiques
- III. Intégration par lithographie d'impression
- **IV.** Conclusion & Perspectives

Le principe

Indices du PIII*

λ (nm)	n _{TE}	n _{TM}	Biréfringence
1300	1,603	1,639	0,04
1550	1,599	1,627	0,03

* Collaboration avec J. Cardin (KTH)

Critères de choix :

- > Ecart d'indice avec le PIII (Δn de quelques 10⁻²)
- Transparent dans l'infrarouge
- Epaisseur de l'ordre de 3 µm pour éviter les fuites du mode
- Compatibilité avec le procédé de mise en forme et d'intégration du PIII

Résine SU-8

n=1,575 à 1550 nm, réticulable sous UV, stabilité thermique > 200°C

Résine S1818

n=1,61 à 1550 nm, thermodurcissable, stabilité thermique > 180° C

Simulations numériques avec h fixe et w variable

PIII $n_{TE} = 1,60$ $n_{TM} = 1,63$

W = 4 µm

Guidage monomode à 1550 nm

SU-8			
Mode	∆n (10 ⁻²)	W _{MAX} (µm)	
TE	2,5	5	
ТМ	5,5	2	

II.2 Structuration par gravure sèche

Principe*

* Collaboration avec le CCLO

II.2 Structuration par gravure sèche

Résultats

Gravure à une étape

Gravure anisotrope Vitesse de gravure ~ 0,3 µm/min Rugosité importante sur les flancs des guides

Résultats (suite)

Gravure en plusieurs étapes de 2 min

Gravure anisotrope Vitesse de gravure ~ 0,2 µm/min Profils rectilignes des guides Faible rugosité sur les flancs de guides

II.2 Structuration par gravure sèche

Recouvrement

 S1818

 PII

 S1818

 S1818

 S1818

 S1

 S1</

Motifs rectilignes de guides d'onde de 50 mm de longueur présentant une largeur de 2, 4, 6, 8 et 10 µm

Défaut de clivage

Modalité

- > Guidage monomode à 1550 nm : SU-8, section de 2,5 x 4 μm
- Pertes optiques en propagation ~ 10 dB/cm à 1550 nm
- Pertes optiques par diffusion ~ 8 dB/cm à 1550 nm
- Pertes optiques en propagation sur guide plan ~ 3 dB/cm à 1550 nm

- ≻ Guidage monomode à 1550 nm : SU-8, section de 2,5 x 4 µm
- Pertes optiques en propagation ~ 10 dB/cm à 1550 nm
- Pertes optiques par diffusion ~ 8 dB/cm à 1550 nm
- Pertes optiques en propagation sur guide plan ~ 3 dB/cm à 1550 nm

II.3 Caractérisations optiques*

- > Guidage monomode à 1550 nm : SU-8, section de 2,5 x 4 µm
- Pertes optiques en propagation ~ 10 dB/cm à 1550 nm
- Pertes optiques par diffusion ~ 8 dB/cm à 1550 nm
- Pertes optiques en propagation sur guide plan ~ 3 dB/cm à 1550 nm

II.3 Caractérisations optiques*

- ≻ Guidage monomode à 1550 nm : SU-8, section de 2,5 x 4 µm
- Pertes optiques en propagation ~ 10 dB/cm à 1550 nm
- > Pertes optiques par diffusion ~ 8 dB/cm à 1550 nm
- Pertes optiques en propagation sur guide plan ~ 3 dB/cm à 1550 nm

- I. Mise en forme et caractérisations du polymère
- II. Intégration par photolithogravure

III. Intégration par lithographie d'impression

- III.1 Emboutissage à chaud (*Hot Embossing*)
- III.2 Réplique par moulage (Replica Molding)
- III.3 Orientation des chromophores in situ
- **IV.** Conclusion & Perspectives

Le principe

Paramètres du procédé :

Température, force, temps

Propriétés du moule :

Qualité des motifs, propriétés d'adhésion

1^{er} dispositif

Pression : 10 Bars Surface utile: 10 cm² Température : 140℃

Vérin motorisé Charge: 120 N Résolution : 50 nm

Céramique d'isolation thermique

Moule

Echantillon

Porte substrat chauffant

Moule en Silicium*

Écartement (E) de 5 à 20 µm

Hauteur des motifs du moule ~ 1,3 μ m

Surface d'un moule à rubans de Silice

Surface d'un film de PIII après une impression

* Collaboration avec le CCLO

Résultats

140℃ – 120 N – 30 min

- Reproduction des motifs possible
- Faible profondeur d'impression
- Transfert incomplet

Force pas assez élevée

2nd dispositif

Résultats (2)

Profondeur d'impression de l'ordre de 1 µm

Faible uniformité de l'impression sur de grandes surfaces

Arrachement de matériau lors du retrait du moule

Le principe

Paramètre du procédé :

Concentration du polymère

Propriétés du moule :

Qualité des motifs, propriétés d'adhésion

1^{er} moule en PDMS

Motif en résine photosensible de 20 x 3 µm à section trapézoïdale

1^{er} Résultats

70 g/L – 80 N (~0,8 Bars) – 70℃

40

Influence de la concentration

2nd moule en PDMS

46 g/L – 50 N (~0,5 Bars) – 60℃

Caractéristiques du 2nd moule :

- Motifs de guides monomodes
- Résine aux pentes à 75°

- > Guides monomodes en PIII
- > Profils à 75°
- > Rugosité de surface

Simplicité (une seule étape)

Rapidité (15 min)

Moule réutilisable (x10)

Le principe

III.3 Orientation des chromophores in situ

Démonstration

* Réalisée au LAMP

III.3 Orientation des chromophores in situ

Mesure de SHG*

Activité ONL seulement dans la zone initialement couverte par le moule

Matériau non réticulé et analysé 30 jours après l'orientation

- I. Mise en forme et caractérisations du polymère
- II. Intégration par photolithogravure
- III. Intégration par lithographie d'impression

IV. Conclusion & perspectives

IV.1 Caractérisations optiquesIV.2 Guides d'onde par filière classiqueIV.3 Guides d'onde par lithographie d'impression

IV.1 Caractérisations optiques

Coeff. EO du PIII*

Courbes de SHG expérimentale et calculée d'un film de PIII orienté et réticulé par effet couronne (désaccord : 5,8%)

 $\chi_{33}^{(2)} = 60 \text{ pm/V}$ à 1064 nm

$$V_{\pi} = \frac{\lambda_0 d}{n^3 r_{33} \Gamma} = 15 \text{ V. cm}$$

	r ₃₃ à 1320 nm	Source
PIII	12 pm/V	D. Bosc, Optical Materials, 13(2), 205-209, 1999
LiNbO ₃	30 pm/V	L. Arizmendi, Phys. Stas. Soli(a), 201(2) :253–283, 2004

- ✓ Détermination du coefficient électro-optique r₃₃
- Stabilité des propriétés ONL quadratiques du polymère
- ✓ Mesure des indices de réfraction du polymère
- ✓ Pertes optiques comprises entre 3 et 10 dB/cm à 1550 nm

□ Minimiser les pertes optiques :

- Mise en forme : couplage, propagation
- Formulation : Polymère de type fluoré à faible absorption

- Procédé de dépôt multicouche
- Orientation des chromophores avec étape de réticulation
- ✓ Design d'une structure monomode
- ✓ Structuration et intégration du guide

Définir les formes d'une structure Mach-Zehnder
 (rayon de courbure des jonctions)

Design des électrodes de commande

- Développement de dispositifs d'impression
- ✓ Obtention de structures monomodes
- ✓ Démonstration de l'orientation des chromophores in situ

- □ Amélioration des moules (profil, énergie de surface)
- □ Etude systématique du *poling* in situ

Remerciements

- Région des Pays de la Loire
- Acteurs du projet CER « Photonique et Micro-ondes » :
 - D. Averty, E. Blart, C. Boisrobert, J. Cardin, X. Chapeleau, P. Derval,
 M. El Gibari, L. Fontaine, A. Gardelein, H. Gundel, V. Gaillard, F. Huet,
 B. Illien, D. Leduc, S. Legoupy, H. Li, C. Lupi, C. Monnereau,
 V. Montembault, F. Odobel, T. Razban, A. Scarpaci, R. Seveno,
 M. Severac, E. Tanguy, G. Tellier, S. Toutain
- CCLO: D. Bosc, F. Henrio, A. Maalouf, K. Messaad
- LAMP : N. Barreau
- ISM : V. Rodriguez
- Membres du jury