Caractérisations biochimiques et structurales de la γE cristalline de rat, hydrogénée et perdeutériée en vue d'une étude de diffraction des neutrons. - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2005

Biochemical and Structural characterisations of hydrogenated and fully deuterated rat γE crystalline for diffraction studies.

Caractérisations biochimiques et structurales de la γE cristalline de rat, hydrogénée et perdeutériée en vue d'une étude de diffraction des neutrons.

Jean-Baptiste Artero
  • Fonction : Auteur
  • PersonId : 846172

Résumé

All vertebrate eye lenses are transparent and have a refractive power depending on a smooth refractive index gradient for visible light. This is achieved by the regular arrangement of the fibre cell and by the differential expression of lens specific proteins, the crystallins. The increasing refractive index from the cortex to the nuclear region is associated with increasing concentration of crystallins relative to water. The nuclear region, where the refractive index is the highest, is enriched with γ crystallins, a family of monomeric polypeptides synthesised mainly during the early development, that play a major role in forming the closely packed medium. However, the high concentration is near a critical point whereby very soluble proteins undergo a low energy phase separation driven by the competing forces of protein-water, water-water and protein-protein interactions. This phase separation is crucial in the opacification of lens fibre cells found in certain forms of mammalian cataract. A high resolution neutron diffraction study can supplement the existing X-ray data and allows us to make detailed and thorough analysis of the solvent organisation around the crystalline molecule. This will provide a structural base for studying the effect on protein-water, water-water and protein-protein interactions. This study will be greatly facilitated by the use of fully deuterated protein. Substituting deuterium for hydrogen will reduce the incoherent scattering background, strengthen the high resolution diffraction data and provide an order of magnitude gain in signal to noise. The exchange of the hydrogen by deuterium can be achieved by soaking protein crystals in deuterated liquor but these exchangeable hydrogens represent only 25% of total hydrogens of the protein. The exchange of all hydrogen atoms can only be achieved by an in vivo biosynthesis using a bacterial culture in a deuterated medium (deuterated glycerol and D2O). γE crystalline from rat has been chosen as a model protein system to locate hydrogen atoms of water molecules surrounding the protein and hydrogens involved in different stabilising interactions. Large quantities of the hydrogenated and perdeuterated protein were expressed in Escherichia coli grown in minimal medium and then purified. The level of the isotope substitution on non-exchangeable sites of the protein was found to be 98% by electrospray ionisation mass spectrometry. In the absence of known biochemical activity, the hydrogenated and deuterated γE crystallins were characterised by non denaturing gel electrophoresis, isoelectric point determination and limited proteolysis. There are no major biochemical differences between these two forms of protein. Further characterisations by Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopies did not show any significant differences. The hydrogenated and deuterated proteins were crystallised in H2O and D2O buffers. Crystallisation conditions, space groups and cell parameters were found to be the same for all forms of the protein. Comparison of these four forms of γE crystallin revealed no significant structural difference between them at the atomic resolution around 1.4Å. However, the temperature factor variation of the structures at identical resolution (HγEh2o HγEd2o and DγEh2o) depends on the isotope labelling. The structures of the deuterated protein in H2O or the hydrogenated one with D2O solvent have a lower temperature factor. The molecular model of γE crystalline has been obtained at 1.36Å and some new relevant details on the structure and water network surrounding the protein are described in this report. Neutron diffraction data collection cannot be carried out before crystal size improvement, but most importantly, we have shown that perdeuteration itself does not alter the structural features of the protein.
Tous les cristallins des vertébrés sont transparents et ont un pouvoir de réfraction. Ceci est dû à l'arrangement régulier de cellules et à l'expression différentielle de protéines spécifiques, les cristallines. L'indice de réfraction croissant du cortex vers la région nucléaire est associé à l'augmentation de la concentration en cristallines. La région nucléaire, où l'indice de réfraction est le plus haut, est enrichie en γ-cristallines, une famille de polypeptides monomériques synthétisés principalement pendant le développement précoce, qui jouent un rôle important en formant un ensemble de protéines très dense. Cependant, cette concentration élevée est près d'un point critique où les protéines très solubles subissent une séparation de phase, conduite par une concurrence de forces d'interactions protéine-eau, eau-eau et protéine-protéine. Cette séparation de phase est cruciale dans l'opacification des cellules du cristallin trouvée dans certaines formes de cataracte mammifère. Une étude de diffraction de neutrons à haute résolution peut compléter les données existantes aux rayons X et peut nous permettre de faire une analyse détaillée et complète de l'organisation du solvant autour de la γcristalline. Ceci fournira une base structurale pour étudier les interactions protéine-solvant, solvant-solvant et protéine-protéine. Cette étude peut être considérablement facilitée par l'utilisation de la protéine entièrement deutériée. La substitution du deutérium à l'hydrogène réduit le bruit de fond incohérent causé par les hydrogènes, renforçant alors le rapport signal sur bruit. L'échange de l'hydrogène par le deutérium peut être fait en trempant le cristal de protéine dans une solution deutériée mais seulement 25% de hydrogènes totaux de la protéine sont alors échangés. Un échange total peut être uniquement effectué par une biosynthèse protéique in vivo, en utilisant une culture bactérienne dans un milieu deuterié. La γE cristalline de rat a été choisie comme un système modèle pour localiser les atomes d'hydrogène des molécules d'eau entourant la protéine et ceux impliqués dans des intéractions stabilisantes. De grandes quantités de protéines hydrogénées et perdeutériées ont été exprimées dans Escherichia coli, qui a poussé dans un milieu minimal, et elles ont ensuite été purifiées. Par spectrométrie de masse, le niveau de substitution isotopique des hydrogènes non échangeables dans la protéine s'est avéré être de 98%. En l'absence d'activité biochimique connue, les γE cristallines hydrogénées et deutériées ont été caractérisées par gel natif, par détermination du point isoélectrique et par des protéolyses limitées. Il n'y a aucune différence biochimique évidente entre ces formes de la protéine. D'autres caractérisations, par spectroscopie infrarouge et en dichroïsme circulaire, ont été employées pour étudier des différences significatives, mais aucune n'a été décelée. Les protéines hydrogénées et deutériées ont été cristallisées dans des tampons hydrogénés et deutériés. Les conditions de cristallisation, les groupes de l'espace et les paramètres de maille se sont avérés être les mêmes pour toutes les formes de la protéine. La comparaison de ces quatre formes de γE cristalline n'a indiqué aucune différence structurale évidente entre elles à une résolution atomique aux alentours de 1,4Å. Cependant, la variation de facteur d'agitation thermique des structures à une résolution identique (HγEh2o, HγEd2o et DγEh2o) dépend du marquage d'isotopique. Les structures de la protéine deutériée en H2O ou celle hydrogénée avec un tampon D2O ont un facteur d'agitation thermique plus bas. Par la suite, le modèle moléculaire de la γE cristalline a été obtenu à 1,36Å et quelques nouveaux détails étonnants de la protéine et du réseau de molécule d'eau entourant la protéine sont décrits dans ce rapport. Jusqu'à l'amélioration de la taille des cristaux, toute collecte de données par diffraction de neutrons ne peut pas être envisagée, mais d'une manière globale, nous avons prouvé que la perdeutériation n'induisait pas de changement structural de la protéine.
Fichier principal
Vignette du fichier
These_JB.pdf (7.79 Mo) Télécharger le fichier
Loading...

Dates et versions

tel-00207936 , version 1 (18-01-2008)

Identifiants

  • HAL Id : tel-00207936 , version 1

Citer

Jean-Baptiste Artero. Caractérisations biochimiques et structurales de la γE cristalline de rat, hydrogénée et perdeutériée en vue d'une étude de diffraction des neutrons.. Sciences du Vivant [q-bio]. Université Joseph-Fourier - Grenoble I, 2005. Français. ⟨NNT : ⟩. ⟨tel-00207936⟩

Collections

UGA UJF
168 Consultations
1020 Téléchargements

Partager

Gmail Facebook X LinkedIn More