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Chapter 1

Introduction

1.1 Problem statement

Nowadays, the high performance of image/video coding techniques makes possi-
ble several new applications that were impossible before due to the high bit rates
involved. Moreover, today’s networks achieve high transmission speeds and sup-
port data rates sufficient for video applications even in mobile communications.
These two facts together promise a whole new world of communications.

In fact, in the last decade the use of mobile communication and multimedia
communication has seen an enormous increase, with the wireless channels con-
sidered as a transport medium for various types of multimedia information. Due
to the high bit rates involved with multimedia, the scarcity of wireless band-
width, the time-varying characteristics of the channel, and the power limitations
of wireless devices, multimedia communications, specially the wireless ones, are
a tremendous challenge.

The transmission delay is an important problem, specially for real time ap-
plications, since information that arrives too late at the decoder is considered
as lost. High volumes of data greatly slows down transmission and, involves the
use of lossy compression at low bit rates. For instance, video transmission is
specially difficult due to the huge volume of data required to describe a video.
Bandwidth limitations is another problem requiring compression for image and
video transmission over wireless channels.

Despite the high performance of todays coding techniques we cannot ignore
efficiency. Efficient codecs (encoder and decoder) are very important because
the encoder/decoder operations cannot be overly complex, especially for real
time applications.

The use of unreliable channels, such as wireless networks or the current In-
ternet, implies that error-free delivery of data packets can only be achieved by
allowing retransmission of lost or damaged packets, through error control mech-
anisms such as Automatic Repeat reQuest (ARQ) to ensure error-free delivery
[76]. These techniques have been shown to be very effective and successfully
when applied to wireless video transmission [96]. Retransmission of corrupted
data frames, however, introduces additional delay, which might be unacceptable
for real time transmissions that are delay sensitive. Such applications cannot
easily make use of retransmission.

For applications involving transmission using unreliable channels the high
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performance and efficiency of coder is not enough. Robust compression schemes
are very useful especially for transmission at low bit rates. Therefore, it is
important to devise encoding/decoding schemes that can make the compressed
bitstream resilient to transmission errors. It is also necessary to design proper
interfacing mechanisms between the codec and the network, so that the codec
can adjust its operations based on the network conditions.

1.2 Error control: standard approaches

The goal of error control is to make the compressed bitstream resilient to trans-
mission errors. The channel noise can occur in the form of random bit errors,
burst bit errors or packet losses. Moreover, in the case of Internet or in the case
of wireless communications, the network conditions are typically time varying.
The codec must, in this case, be synchronized with the channel state. Video
streams produced by standard codecs are specially sensitive to transmission
errors. When using standard codecs, that use predictive coding and variable-
length coding (VLC) in the source coder, a single erroneously recovered sample
can lead to errors in the following samples in the same or following frames.
Likewise, because of the use of VLCs, a single bit error can cause the decoder
to lose synchronization, so that even successive correctly received bits become
useless.

To make the compressed bitstream resilient to transmission errors one must
add redundancy to the stream, so that it is possible to detect and correct errors.
Typically, this is done at the channel by using Forward Error Correction codes
(FEC) [166, 144, 24, 23, 159, 53, 160]. FEC involves the addition of redundant
data to the compressed signal, which allows the decoder to correct errors up to a
certain level. The classical Shannon information theory [156] states that one can
separately design the source and channel coders, to achieve error-free delivery
of a compressed bitstream, so long as the source is represented by a rate below
the channel capacity. Therefore, the source coder should compress a source as
much as possible (below the channel capacity) for a specified distortion, and
then the channel coder can add redundancy through FEC to the compressed
stream to enable the correction of transmission errors. Since, FEC implies the
addition of redundant data it increases the total number of bits required reducing
compression. The standard FEC presents high performances when developed
for constant channels and channels that do not present burst errors. Nowadays
different artifacts are added to FEC to be adapted to such kind of channels, as
we present in the following.

FEC code must be designed with a worst case channel scenario in mind.
For channels that have a highly variable quality, this worst case may imply
the need for a very powerful coder, and hence a highly or even prohibitive
amount of redundancy, which will severally reduce the compression performance.
Furthermore, such a system will fail catastrophically whenever the FEC design
limit is exceeded. To deal with this problem new systems use variable FEC
codes instead of standard fix FEC codes. The first algorithm using variable
FEC codes was proposed in [109]. This algorithm assigns unequal amount of
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FEC depending on the importance of the data.

When dealing with channels with burst error characteristics the error cor-
rection capabilities of FEC are often exceeded or the block is error-free in which
case additional redundancy is wasted. To overcome this limitation, FEC is often
enhanced by a technique known as interleaving. For burst errors, this effectively
reduces concentration of errors in single codewords, i.e., a burst of b consecu-
tive symbol errors causes a maximum of b/M symbol errors in each codeword.
Though interleaving can be implemented with low complexity it also suffers from
increased delay, depending on the number of interleaved blocks M. Therefore
interleaving is a frequently used technique for burst channels if additional delay
is acceptable.

The typical error control techniques, ARQ, FEC or even both together [98,
76, 21|, cannot be easily adapted to real time transmissions. Therefore, joint
source and channel coding is often preferred. Such kind of scheme allocates a
total amount of redundancy between source and channel coding. The error-
resilient encoding methods working under this premise use this redundancy to
recover from erroneous or missing bits. Thus, erroneous or missing bits will not
have a disastrous effect in the reconstructed video quality.

For example, in error concealment, when an image or a block of samples
are missing due to transmission errors, the decoder can estimate them based
on surrounding received samples, by making use of inherent correlation among
spatially and temporally adjacent samples [81, 86, 195|. Error concealment has,
in contrast to error-resilient coding, the advantage of not employing (normally)
any additional bit rate, but adds computational complexity at the decoder. This
is a problem in real time communications.

Real time communications should combine optimization of source coding
and channel coding, should present greater robustness and adaptability to ad-
verse transmission condition and should make efficient use of limited network
resources. The robustness and adaptability to adverse transmission is even more
important in wireless communications since in this type of communications there
are no guarantees that the packets arriving to the decoder are uncorrupted.

1.3 Multiple description approach

A particular joint source and channel coding method, known as Multiple De-
scription Coding (MDC), has proven to be an effective way to provide error
resilience with a relatively small reduction in compression ratio. The idea in
MDC is to generate multiple independent descriptions of the source such that
each description independently describes the source with a certain desired fi-
delity. When more than one description is available, they can be combined to
enhance the quality. Note that while multiresolution (MR) approaches are sen-
sitive to the position of losses in the bitstream, the multiple descriptions (MD)
stream is insensitive to them and thus has the desired feature that delivered
quality is only dependent on the fraction of descriptions delivered.

In the MDC problem (reduced to the simplest case of two descriptions),
a source is described by two descriptions with side rates R; and Ry. These
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two descriptions individually lead to reconstructions with side distortions D;
and Do, respectively; the two descriptions together yield a reconstruction with
central distortion Dy < D7 and Dy < Ds.

MDC is robust due to the redundancy of the MD of the same source and
it may be scalable as each correctly received description improves the decoder
performance. Also, MDC does not require prioritized transmission, as each
description is independently decodable.

The MDC were created to solve a problem related with packet losses. More-
over, almost all multiple description codes to date assume the existence of mul-
tiple independent on-off channels between the transmitter and the receiver (e.g.:
Internet). When a link is broken, all of the symbols or packets passing through
that channel are lost and when it is functioning properly, the symbols are trans-
mitted error free. Such standard MDC presents normally a large overhead im-
plying that when channel loss rate is small, the reconstruction performance in
the error free case dominates and a single description coding (SDC), without
channel coding, perform best. Thus, a different MDC approach is needed when
designing MDC schemes for new applications and todays communications. This
explain the reduced amount of work dedicated to MDC for wireless channels
that appears in the literature. So, as cited in [195] “A challenging task is how
to design the MDC coder that can automatically adapt the amount of added
redundancy according to underlying channel error characteristics”. It is this
challenge we will consider in the present work.

In this thesis we propose a joint source and channel coding method that
presents robustness and adaptability to channel characteristics and state. Given
its compression and synchronization capabilities it is suitable for real time trans-
mission. In the MDC approach presented in this work the imposed redun-
dancy between descriptions is highly dependent on channel model and state.
The advantage of such MDC schemes is that they are well adapted for ap-
plications involving different channel models and time varying states, such as
tele-conferencing, video telephony, virtual classrooms, video streaming, video
downloading, etc. Nowadays MDC is not a method for Internet (or other on-off
channels) communications but it becomes a method suitable for all kinds of
communications involving unreliable channels. The present work will addresse
some of the above applications.

1.4 Thesis overview

We start with a Multiple Description history in chapter 2. The state of the
art of MDC for specific applications is presented in the chapters dedicated to
these applications.

Our contributions begin in chapter 3 where we present our MDC approach.
Our goal is to find an optimal trade-off between efficient compression and robust-
ness from losses due to communications using unreliable channels. The proposed
method uses a MD scheme based on the Discrete Wavelet Transform (DWT)
and an efficient bit allocation technique. The different MD are defined when
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setting the bit allocation of each subband. We name it Multiple Description
Bit Allocation (MDBA). The bit allocation for the successive sets of coefficients
can be performed with respect to either rate or quality constraints. In both
cases, the goal is to find a set of quantizers to apply in each subband, such
that its performance lies on the convex hull of the global rate-distortion curve
[161, 142, 54, 114]. To model the rate and distortion we use a non-asymptotic
theoretical model for both rate and distortion [127]. The rate and distortion
depends on the quantization step but also on the probability density function
(PDF) of the wavelet coefficients. Assuming that the probability density model
is accurate, this method provides optimal rate-distortion performances. Favor-
ing the use of DWT is the fact that 2D DWT can be easily extended to 3D and
thus applied to video coding. A 3D Scan-Based DWT video coder is presented
in [120]. The use of a 3D Scan-Based DWT transform allows us to develop
a stripe-based MDC and to use different redundancies to take into account
changes in channel state while coding. This chapter ends with a comparison of
the central PSNR versus side PSNR obtained with the proposed MDC and the
most efficient MDC known to date. The work on this chapter resulted in several
publications. In [127] we present the MDBA for image coding. In [128, 129] we
present an extension for video coding. In [129] a low complexity scheme of the
method in [128] is presented. We propose the automatic control of the amount
of redundancy dispatched on the different descriptions by taking into account
the channel model and state.

In chapter 4 we explain how to use channel information to inject redun-
dancy in the different descriptions. We take into account the Shannon theorem
(Theorem 10) [156], and propose to define the redundancy using the equivo-
cation Hy(x). Indeed, in this theorem, Shannon states that the equivocation
Hy(x) is the amount of redundancy that the decoder needs to correct the re-
ceived message. In this chapter we present some results for different kinds of
channels for fixed or animated images. This work result in the following pub-
lications [131, 133, 134]. These papers present the adaptation of the proposed
MDBA for wired [131] or wireless [133] communications. The papers [131] and
[133] together yielded the journal publication [134].

In chapter 5 we present the proposed MDC and a new one developed for
coding quincunx images. We present an application of such MDC schemes for
satellite transmission.

The quincunx arrangement is a way to improve image resolution by com-
bining a pair of CCD linear arrays. Because each CCD array yields a classical
image according to a square grid the systems using such acquisition model are
tempted to treat each image isolated, disregarding the high redundancy between
them.

We propose in this chapter a method of joint source-channel coding that
takes into account the redundancy between the two images in source and/or
channel coding. The proposed method uses the satellite channel characteristics
when performing the source-channel coding. To compare with the proposed
method we use the MDBA proposed in previous chapters. More specifically,
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we process the quincunx sampled image with a well-suited transform to reduce
the redundancies. After this step, we use the MDBA method proposed in chap-
ters 3 and 4 and we adapt it for the case of satellite models. In the proposed
method the redundancy between the two images is used to find a robust scheme.
More precisely the different dyadic images are used to generate the two different
descriptions in a MDC scheme and the difference between these two images is
joined to both descriptions. This results in a highly robust scheme. As we ex-
pected, the standard method (using the MDBA) is better suited for lower levels
of noise, while the proposed method perform best for higher levels of noise. We
present this work in [135].

Finally, in part IIT we present general conclusions and perspectives.

We conclude that the proposed MDBA automatically adapted to the channel
model and state, is efficient for transmission independently of the characteristics
of the channel used. In this perspective, the proposed method is an alternative
to methods that use error control schemes, such as FEC or ARQ, when limited
delays are imposed or when time varying characteristics of the channels make
difficult the use of such techniques.

MDC schemes designed to automatically adapt the amount of added redun-
dancy according to underlying channel error characteristics, open new horizons
for the MDC future. MDC can now be used for all kinds of applications de-
manding limit delays and error resilience. MDC becomes an option for new
world communications.
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Chapter 2

Multiple description history

2.1 Problem statement

The MD problem was posed by Gersho, Witsenhausen, Wolf, Wyner, Ziv and
Ozarow at the September 1979 IEEE Information Theory Workshop [69, 52] as
a generalization of Shannon’s problem of source coding with fidelity criterion
[157]. More precisely, the posed problem was the follow. “Suppose we wish to
send a description of a stochastic process to a destination through a communi-
cation network. Assume that there is a chance that the description will be lost.
Therefore we send two descriptions and hope that one of them will get through.
FEach description should be individually good. However, if both get through, then
we wish the combined descriptive information to be as large as possible.”

This problem is summarized in figure 2.1. The difficulty in such a problem
is that good individual descriptions must be close to the process, by virtue
of their goodness, and necessarily must be highly dependent. Thus, after the
reception of the first description, the second description will contribute little
extra information. On the other hand, two independent descriptions must be
far apart and thus cannot in general be individually good.

_)| Decoder 1 | X,
X f1(X)
—::| Joint Decoder I—*XO
£2(X)
_>| Decoder 2 | Xy

Figure 2.1: The channel splitting problem

2.2 Theoretical results

The first theoretical results appear in 1980 and try to characterize the set of
achievable quintuples (Rj, Rg, D1, Dy, Dg). They were proposed by Witsen-

9
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hausen [187], Ozarow [115], El Gamal and Cover [52] and Wolf, Wyner and Ziv
[189]. We will briefly describe them.

In [187] Witsenhausen present a lower bound for side distortion when con-
sidered a memoryless binary symmetric source and used Hamming distance (i.e.,
probability of error) as distortion in Theorem 1.

Definition 1 Suppose a block of N = N1 + No bits from a memoryless binary
symmetric source is encoded into two signals U and V with respective alphabet
sizes 21 and 22, A receiver of the pair (U, V) is able to reconstruct the source
block XV without error. There are two other receivers, one receiving U only
and producing a binary block Y{¥ = F(U), and the other receiving V only and
producing the binary block ZY = G(V).

For each bit position k(1 < k < N), the source bit Xy, is compared with the
decoded bits Yy, and Zy. Define the error probabilities

ph = Pr{Xy. # Vi.},pk = Pr{Xy. # 71}

Theorem 1 Consider pﬁ and pff as defined in Definition 1. For all k, the point
(pF, pF) lies in the region of the (py,py) plane defined by 0 < p, <1,0<p, <1

and
AN ARy
“ o v 92) =9

In particular, if p, = py, then p, > ‘/5271

Also in [187] the following problem is posed: “ A memoryless source is
encoded over n channels at rates R;(i = 1,...,n). There are 2" — 1 decoders,
one for each non void subset of channels. For a given distortion measure, the
problem is to find the feasible combination of distortion rates.” The author
concluded that for a certain value of k,0 < k < n, if any k (or fewer) channel
breaks down, R = ﬁ is the rate required to obtain error-free operation.

In [189], Wolf, Wyner and Ziv, also considered the binary symmetric mem-
oryless source and the Hamming distance as distortion. They proved that, if
(Rl, Ry, Dg, D1, DQ) is achievable, then Ry + Ry > 2 — h(DO) — h(dl + 2d2) and
Ri+Ry>2— h(DQ) — h(2d; + dz), where

0, A=0
h(A) =< —AogaA — (1 — AN)loga(1 —X), 0<A<1/2 (2.1)
1, A>1/2.

From this theorem it follows that (with Ry = Re = 1/2,Dy = 0),D; = Dy >
1/6.

From theorem 1, when R; = Ry = 1/2, Dy = 0 and Dy = Dy, the rate
distortion bound implies that 1 — h(D;) < Ry = 1/2, or D; > 0.11. However,
the theorem of Wolf, Wyner and Ziv, yields A(3D;) > 1, or, D; > 1/6. The
authors conclude that the bound under the Shannon assumptions is defined by
the tangents to the hyperbola at the two points where it cuts the coordinate
axis.
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Work by El Gamal and Cover [52] has shown that, under the Shannon as-
sumptions, all points above the hyperbola are achievable. The hyperbola is
known as the achievable rate region of (R;, R2) pairs as a function of the dis-
tortion vector D = (D1, Dy, Dy) (see figure 2.2), for a memoryless source and a
single-letter fidelity criterion as proved in Theorem 2.

j?ate Region for agiven

Figure 2.2: Achievable rate region of (R1, Ry) pairs as a function of the distortion
vector D = (Dq, Dy, Dy).

V2-1

The theorem 2 can be used to show that we can make Dy = Dy = *5— ~

0.207.

Theorem 2 Let X1, Xo, ... be a sequence of i.i.d. finite alphabet random vari-
ables drawn according to a probability mass function p(x). Let d;(.,.) be bounded.

An achievable rate region for distortion D = (D1, D2, Dy) is given by the convex
hull of all (R1, Ry) such that

Ry > I(X; X)),

Ry > I(X; X),
Ri+ Ry > I(X;Xl,X27XO) —I—I(Xl;XQ),

for some probability mass function p(Z,Zo,Z1,%2) = p(x)p(Zo, 21, T2|z) such
that
DO Z Edo(X;Xo),

Dy > Edi(X; X1),
D2 Z EdQ(X,XQ)

Ozarow in [115] considered the case where the sources are Gaussian and
the distortion is the squared-error criterion. The achievable rate region (the
hyperbola) derived in [52]|, was proved to be, in fact, the rate distortion re-
gion for the source. This is done by obtaining the converse theorem. This
theorem states that the achievable set of quintuples (Ri, Rg, D1, D2, Dy) is

given by the set of points satisfying Dy > e 21, Dy > e 2R2 and Dy >
e~ 2(R1+Rs) 1

1—(v/(1=D1)(1—D3)—\/D1 Dy—e—2(R1+R2))2
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Witsenhausen and Wyner [188] have obtained an outer bound for the case of
a binary symmetric source with the Hamming distortion and have compared it in
one case to the achievable region of [52], but the bounds exceeds the achievable
point.

Berger and Zhang in [14] defined d = inf{D : (3, 3, D, D,0) is achievable}
for memoryless binary sources. They prove that d = (v/2 — 1)/2.

Ahlswede in [3] proved the tightness of the hyperbola bound in [52] on a case
of no excess rate at Dy (R1+Rs = R(Dy)), for the binary symmetric memoryless
source with an error frequency distortion criterion. Zhang and Berger in [199]
disprove the conjecture that the achievable rate region given in [52] coincided
with the rate distortion region (is tight) in case of binary symmetric source with
Hamming distortion measure.

There have been no results to date for precisely determining the rate distor-
tion region for non-Gaussian sources and for sources with memory. The latest
results for non-Gaussian sources are from Zamir [196, 197]. Zamir develop an
outer bound and an inner bound for the MD region for a general memoryless real
source with squared-error distortion. These results are an extension of Shan-
non bounds on rate distortion function of a real source by the rate distortion
function of the Gaussian source with the same variance / entropy.

Venkataramani, Kramer and Goyal have found bounds on the achievable
performance region for MD coding with more than two descriptions [179].

An important special case of the MD problem was presented in [43] and is
known as the problem of successive refinement of information or multiresolution
(MR). The successive refinement problem is a special case of the MD problem
in which there is no constraint on Ed(X, X)) and in which Ry = R(D3) and
R1+ Ry = R(Dy) is required. In this article, a necessary and sufficient condition
is derived, such that, the rate distortion problem is successively refinable. The
result follows from the tightness of the achievable region establish by El Gamal
and Cover [52] for the no excess rate sum case [3].

At this moment there is a potential for applications of MD source codes
in speech and video coding over packet-switched networks where packet losses
can result in a degradation in signal quality. Another possible application is
communication over fading multipath channels where diversity techniques are
commonly used [139].

2.3 Practical coder designs for multiple descriptions

One of the first practical coder designs for multiple descriptions appears in the
context of speech coding. In 1981 Jayant and Christensen, [80, 81|, consider MD
coding of DPCM speech for combating speech coding degradation due to packet
losses. Information bits corresponding to even and odd samples are placed in
separate packets. If only even (odd) sample packets are lost, data contained in
the odd (even) packet is used to estimate the missing samples using the nearest
neighbor interpolation.

Nowadays we can find different approaches of Multiple Description Coders.
We will present each one of them in the order that they appear in the literature:
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e Multiple Description Scalar Quantization.
e Multiple Description Transform Coding.

— Square-Transform Based.
— Frame Based.

e The new approaches of Multiple Description Coding.

There is also MD coding using forward error correcting (FEC) codes. Unlike
others MDC approaches this one achieves MD property without modifying the
source coding algorithm. Rather, correlation is reintroduced into the transmit-
ted bitstream by applying different amounts of error protection to the sections of
the bit stream produced by the source coder, and then combining these sections
into equally important descriptions. Mohr at al. propose the use of error cor-
recting codes of different strengths applied to different portions of a progressive
bitstream such as that generated by SPIHT coder [109]. Also [140] considers the
use of FEC in MDC. In these MDFEC systems, the reduction of distortion as-
sociated with any description actually depends on how many other descriptions
are received. Thus we will not consider these methods in the MDC approaches
we will present in the following.

2.4 Multiple description scalar quantization

The first approach, named Multiple Description Scalar Quantization (MDSQ),
was pioneered by Vaishampayan in [173]. The MDSQ in [173] proposes that the
rate of the descriptions can be traded of against the side distortions. This quan-
tizer is obtained by a standard scalar quantizer followed by an index assignment
that splits the signal into two descriptions. In this way, it sends information
from each sample over both channels of the diversity system. Below we explain
the MDSQ as presented in [173]. This design problem is posed as an optimiza-
tion problem and necessary conditions for optimality are derived in [173]. Also,
a design algorithm for quantizer design, is developed. Unlike a single channel
scalar quantizer, the performance of a MD scalar quantizer is dependent on
the index assignment. The author addresses the problem of index assignment
and describes two families of index assignment matrices in which the maximal
distortion between two indices sharing a description is minimized. Performance
results and sample quantizer designs are presented for a memoryless Gaussian
source.

MDSQ An (M, Ms)-level Multiple Description Scalar Quantizer maps the
source sample x to the reconstruction levels 0, #!, 22 that take values in
the codebooks, X° = {0}, (i,5) € C}, X' = {#],i € Th} and X* = {27,i €
75}, respectively, where Z7; = {1,2,...,M1},Z5 = {1,2,..., M2} and C is
a subset of 71 x Zo. An MDSQ can be broken into two side encoders,
fi: R — 77 and f5 : R — Z5 which select the indexes ¢ and j, respec-
tively, and three decoders, go : C — R (central decoder), g1 : 73 — R and

g2 : To — R (side decoders), whose outputs are the reconstruction levels
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with indexes ij,7 and j from the codebooks X", x!, and %2, respectively.
The rate of the encoder f,, is given by R,, = logoM,, bpss,m = 1,2.
The two encoders impose a partition A = {4, ,(i,7) € C} on R, where
Aij ={x: fi(z) =14, fa(x) = j}. The MDSQ is completely described by
A, X0, ¢, and {°. The encoder is refereed as U = (f1, f2), the decoder as
0 = (90,91, f2), A as the central partition, and the elements of A as the
central cells. The determination of the central partition is crucial. Several
methods by which this can be done are presented in [45].

If both indexes are received, the central decoder gg is used to reconstruct
the source sample. On the other hand, if only i(j) is received, then side
decoder g;(g2) is used to reconstruct the sample.

The central and side MSE’s that can be achieved are determined by the
index assignment. Figure 2.3 presents a simple example to illustrate the
index assignment. Tables 2.1 and 2.2 present the reconstruction code-
book and the central and side MSE for the central partition and index
assignments of figure 2.3.

11 12 21 22

VB A 0 VAP /3

11 12 22 21

B Ve 0 VEp 3

11 12 22

3 W 1V V3

Figure 2.3: Three central partitions and index assignments for a uniformly
distributed source

~0 ~1
L11 L12 La1 Log L ) Ly )

—3v3/4 —/3/4 V3/4 3V3/4 —V3/2 V3/2 —V/3/4 /3/4
—3V3/4 —V3/4 V3/4 3V3/4 —V3/2 V3/2 0.0 0.0
—2//3 0.0 - 2/V/3  —1/V3 2/V/3 —2/V3 1//3

Table 2.1: Reconstruction codebooks for figure 2.3
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E(dy) E(d1) E(dp)

(a) | 1/16 1/4 13/16
(b) | 1/16 1/4 1

© | 1/9 1/3 1/3

Table 2.2: Central and side MSE’s for the central partition of figure 2.3 and the
codebooks of table 2.1

Assuming that X is uniformly distributed over the interval (—v/3,/3)
and that Ry = Ro = 1 bps. Consider the MDSQ designs illustrated in
figure 2.3 and Tables 2.1 and 2.2. In cases (a) and (b), each of the four
codewords (1,1),(1,2),(2,1),(2,2) is transmitted. Note from Table 2.2
that case (a) is clearly superior to case (b), but that in both cases the
descriptions are unbalanced and one of them is poor, i.e., it has an MSE
close to 1. In the third case (c), the codeword (2,1) is not transmitted.
Here, the descriptions are balanced. The distortion achieved by the joint
description is larger than in case (a) and (b), however, both descriptions
individually achieve a small MSE.

Vaishampayan and Domaszewicz in [175] extended the work in [173] to en-
tropy constrained quantizers. They also used variable length codes (VLCs)
instead of fixed length codes. With VLCs better performances are achieved,
however, VLCs are very sensitive to errors (due to synchronization problems).
In [70] the authors analyse the dependencies between the variables involved in
the MDSQ coding chain and design an estimation strategy making use of part of
the global model of dependencies each time. By analyzing the MDC system they
evidence the most appropriate form of redundancy one should introduce in the
context of VLC compressed streams in order to fight against de-synchronization
when impaired by channel noise.

In [174] Vaishampayan and Batllo present an asymptotic analysis of MDSQ
presented in [173]. Specifically, expressions are derived for the average side and
central distortions and for entropy when the number of quantization levels is
large. In this work they compare the distortion product DoD; of the optimum
level-constrained quantizer for a unit-variance Gaussian source with the one on
the converse theorem. From the converse theorem, it can be shown that the
multiple description rate distortion bound at large rates is given approximately
by DoD; ~ %2*4}%. The performance of the optimum level-constrained quantizer

is given by Dy D ~ %2—4}2 and of the optimum entropy-constrained quantizer

by DD ~ %2—4]%. These are important results because they show that for
MDSQ both, the side and the central, distortion attain the optimal exponential
rate of decay (Dg =~ 2728, Dy ~ 272%). The only sub-optimality of MDSQ at
high rates is due to the use of a scalar quantizer which partitions the space into

cubic regions instead of an ideal vector quantizer that would optimally partition
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the space into spheres.

In [71] the authors consider the usage of Multiple Description Uniform Scalar
Quantization (MDUSQ) for robust and progressive transmission of images over
unreliable channels. They develop an index assignment which allows to improve
the rate-distortion performance against previous proposed index assignments
in the context of progressive and embedded bit streams. Thus, the MDUSQ
proposed is well adapted for non stationary (varying bandwidth) communication
environments.

Berger-Wolf and Reingold in [15] found an index assignment and a per-
formance bound for MD scalar quantization for more than two descriptions.
The index problem is formulated as a combinatorial optimization problem of
arranging numbers in a matrix to minimize the maximum difference between
the largest and the smallest number in any row or column. In the case of two
descriptions transmitted at equal rates, the bounds (lower and upper bound)
coincide, thus giving an optimal algorithm for the index assignment problem. In
the case of three or more equal channels, the bounds are within a multiplicative
constant.

Jafarkhani and Tarokh in [79] constructed MD trellis coded quantizers.

Vaishampayan in [172] describes an iterative algorithm similar to the gener-
alized Lloyd algorithm that minimizes the Lagrangian of the rates and expected
distortions Ry, R, D1, Dy, Dy and applied it to the optimization of multiple de-
scription vector quantizers. Non-balanced MD vector quantization was studied
by Fleming and Effros [48] including more than two descriptions. This paper
presents a new practical algorithm, based on a ternary tree structure, for the
design of both fixed and variable rate multiple description vector quantizers for
an arbitrary number of channels.

Some works proposing the design of MD lattice vector quantizers (MDLVQ)
are [155, 178, 38| (we present a brief description of the MDLVQ below). The
work in [38] has the particularity of considering asymmetric MD contrary to the
former where the MD considered are always symmetric. In [61, 62] a method is
introduced for a two channel MD coding that generalizes the MDLVQ developed
in [155]. This last one uses a fine lattice A and a coarse sublattice A’. The
former uses the index assignment of [155] and a coarse lattice A. With the
slight increase in complexity, the convex hull of the operating points is improved.
This extension of the algorithm in [155] provides a technique for more than two
descriptions.

MDLVQ A Multiple Description Lattice Vector Quantizer is a triplet Q =
(A, A1) where:

e A is a lattice.

e A’ is a sublattice that is geometrically similar to A (Two lattices A
and A’ are said to be similar iff there is a ¢ € R,c¢ > 0 and an
orthogonal matrix A € R™™ " such that A’ = cAA, i.e., if A and A’

differ only by a rotation and a change of scale [35]).

e Each lattice point A € A gets mapped by [ to a pair of sublattice
points (N I een) that uniquely identifies \; i.e., [ must be an

red’ 7*green
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injection:

AEL (M) c N x AL

[ is referred to as the index assignment, and the pair of points in the
image by [ of a point \ are referred to as red and green descriptions.

The amount of redundancy in a lattice quantizer is controlled by N =
|A/A’|, the index of A’ in A. Given any sublattice point A € A’, we
require that [ is such that the total number of distinct lattice points A € A
for which A’ is used to describe \ is exactly N i.e.,

A rea(I(A) = A} = [{A : Tgreen(I(N)) = X'} = N,

where, Tyed(Treds Tgreen) = Tred, and similarly for mg,een. Lattice points
are labeled with pairs of sublattice points (it is these sublattice points
that actually get transmitted over each channel), and that each sublattice
point is used exactly N times; the larger is IV, the higher the uncertainty
about the original lattice point when one of the channels fail.

A key property of good index assignments [ is that the set of central cells
that share a given label must be as localized in space as possible, in order
to achieve low distortion in the case of channel failure. This is analogous
to the idea that for a scalar quantizer the spread of a side cell must be
minimized [173].

For real world sources such as speech and video, it is important to exploit
the correlation in order to build efficient coders. MD quantizers can be used
efficiently for sources with memory by using standard decorrelating transforms.
Batllo and Vaishampayan name multiple description transform coding in [13] to
an orthogonal transform followed by MDSQ to apply the quantizers to sources
with memory. In [152, 153] Servetto, Ramchandran, Vaishampayan and Nahrst-
edt use the MDC in [13] to design a wavelet based image coder. Wavelet coding
has been shown to achieve better compression than Discrete Cosine Transform
(DCT) coding and moreover allows scalability. Some of the most successful
wavelet coders [29, 83, 99, 150, 151, 154, 158, 190] derive their high coding per-
formance from their ability to identify sets of coefficients with different statistics
within image subbands, and then coding each of these sets with respect to an
appropriate statistical model. Since these sets typically are image dependent,
this information is not known a priori, and therefore must be somehow conveyed
to the decoder. This can be done either explicitly, [83, 150, 154, 158, 190] or
implicitly [29, 99, 151]. In the explicit case, side bits describing these sets are
included in the bitstream; these are bits that do not convey information about
the value of subband coefficients, but instead configure the decoder appropri-
ately to decode such values. In the implicit case, the information regarding sets
of coefficients is deduced only from data always available at the decoder, so that
no explicit side bits are required.

As usually in the literature we use the name multiple description transform
coding (MDTC) for the second and third approaches.
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2.5 Multiple description transform coding

In the multiple description transform coding (MDTC) approach linear trans-
forms are used to introduce a controlled amount of correlation among the trans-
formed coefficients.

We can find two different MDTC methodologies. The first one, called square-
transform based uses non-overlapping linear transforms while the second MDTC
methodology, called frame based, uses overlapping transforms.

These two different methodologies are specified below.

MDTC Multiple Description Transform Coding of a source vector x is done in
the following steps:

1. Use a decorrelate transform 73 (e.g. KLT, DCT, ...);
2. Quantize the transformed coefficients;

3. Transform the quantized vector with an invertible, discrete transform
Ty : C" — C™ (m = n in the square-transform MDTC methodology
and m > n in the frame based MDTC methodology);

4. Entropy code the resultant components;

5. If the number of vector m is greater than the number of descriptions
k, group them to be sent over the k channels.

When all components are received, the reconstruction process is to ex-
actly invert the transform. The distortion is precisely the quantization
error. If some components are lost, they are estimated from the received
components using the statistical correlation introduced by the correlating
transform. The estimation is then generated by inverting the transform
as before.

It is very important to note that we can first quantize and then use a
discrete transform. If a continuous transform is applied first and then
quantized, the use of nonorthogonal transform lead to non cubic parti-
tion cells, which are inherently suboptimal among the class of partition
cells obtainable with scalar quantization [54|. The configuration in [112]
allows the use of discrete transforms derived from non-orthogonal linear
transforms, and thus obtain better performance.

The MDTC systems focuses on the search for optimal redundancy rate-
distortion points by designing the correlating transform 75.

2.5.1 MDTC: square-transform based

The square-transform based MDTC was pioneered by Wang, Orchard, and Reib-
man in [183, 184]. MD quantizers are constructed by separately describing (i.e.,
quantizing and coding) the N coefficients of an N x N block linear transform,
which has been designed to introduce a controlled amount of correlation be-
tween the transform coefficients. In this way, if one of the descriptions is lost,
the other one can be statistically estimated using the introduced dependencies.
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To circumvent the difficulty with designing a transform for N > 2 variable, the
authors proposed to transform two variables at a time. They further considered
how to form pairs given a set of N variables and how to allocate the redun-
dancy among different pairs so that the reconstruction distortion is minimized
for a given total redundancy rate. These articles also addresses several issues
related to the optimality of the transforms used for encoding, and it is shown
that nonorthogonal transforms perform better than orthogonal transforms in
terms of redundancy rate-distortion gain.

In [112] Orchard et al. discuss MD coding of two dimensional Gaussian
vectors using transform techniques. This work introduces a performance metric
called redundancy rate distortion function, where the redundancy rate is defined
as the number of extra bits required to match a given coding distortion, com-
pared to a single description coding (SDC) system, and the distortion refers to
the reconstruction distortion. More precisely, note that the performance of a
MDC system can be measured with three parameters: the bit rate, the coding
distortion, and the reconstruction distortion. The coding distortion refers to
the error between the original signal and the decoded one from all descriptions,
while the reconstruction distortion is defined as the error under a given channel
loss profile. With conventional SDC, the goal is to maximize the coding effi-
ciency which is equivalent to minimize the bit rate for a given coding distortion,
or vice versa. With MDC, in order to reduce the reconstruction distortion, the
coder must introduce a certain amount of correlation among separate descrip-
tions, which will reduce the coding efficiency compared to that achievable by
SDC.

In [63, 65, 64] the authors generalize the construction proposed in [112]
by dealing with arbitrary N-dimensional vectors, and by expanding the set of
transforms which are considered.

In [33] the authors developed a MDC encoder that generates multiple de-
scriptions by splitting the coefficient blocks of a conventional LOT-based en-
coder. A maximally smooth image-recovery method is developed as part of the
MDC decoder, which can recover the original signal from an incomplete set of
coefficient blocks. The algorithm makes use of the constraints among the LOT
coefficient blocks and the smoothness property of typical images and converts
these constraints into an energy minimization problem, similar to the techniques
previously developed for DCT based coders [185] and for the MDC coder using
spatial subsampling [182].

In [82] the authors propose a two stage transform design technique for
MDTGC, i.e., structure design and magnitude design. The motivation is that
protection properties of a MDTC system can be characterized by the output
correlation matrix, i.e., which descriptions are correlated (structure) and to
what extent they are correlated (magnitude). While the magnitude informa-
tion can not, in general, be quantified for specific redundancy and distortion
constraints, the structural information can be inferred from specific channel
conditions or protection requirements. Consequently, the structure design will
find admissible transforms (eigenmatrices of the output correlation matrix) us-
ing a Scaling-Rotation factorization and the magnitude design will search for
the optimal transform from these admissible transforms. Such a design enables
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the possibility of finding a structured transform solution using available channel
information thus reducing both the design and implementation complexities.

2.5.2 MDTC: frame based

The frame based MDTC was pioneered by Goyal, Kovacevic, and Vetterli, MD
quantizers are constructed by separately describing the N coefficients of an over-
complete N x K tight frame expansion [66]. Here, a linear transform from R*
to R™, followed by scalar quantization, is used to generate n descriptions of
a k-dimensional source. The n descriptions are such that a good reconstruc-
tion can be computed from any k descriptions, but also descriptions beyond
the kth are useful and reconstructions from less than k descriptions are easy to
compute. In [65] preliminary image communication experiments are presented
using the methods [63, 66]. In [27] a POCS-based (Projection Onto Convex
Sets) algorithm for consistent reconstruction from MD of overcomplete expan-
sions is developed. The POCS algorithm produces consistent reconstructions.
Consistent reconstructions have smaller expected squared error distortion than
inconsistent reconstructions [68]. The authors construct the frame from two
complete transform bases. In this way, all projections can be expressed in terms
of forward or inverse transforms. Since such transforms are usually efficient to
compute, they can perform the reconstruction much faster than with previous
methods.

Some authors dedicated their work to the construction and analysis of fil-
ter banks for MDTC or more generally for image coding and transmission over
erasure channels. For example, in [12] a windowed Fourier method is used
for a MDC based on overcomplete expansions, in [194] and [40] they designed
biorthogonal filter banks for MD coding of Gaussian sources, with the difference
that in [194] they use the correlating transform before quantization, and in [38]
the quantization step is performed before the transform and approximated the
continuous transform with a discrete one. In [137] a study of the performance of
systems that use unitary filter banks [171] for the introduction of correlation is
presented. In [101] oversampled block transform like the Discrete Fourier Trans-
form (DFT) codes have been considered for MDC. It is shown in [143] that DFT
codes are actually a special case of frames. Filter bank frame expansions have
also been studied to achieve resilience to erasure [90, 39, 67, 102]. In [110] two
channel oversampled filter banks (OFBs) and tree-structured oversampled filter
banks which implement frame decomposition are considered . Tree-structured
OFBs provide a natural framework for unequal loss protection. As seen above,
frame expansions introduce redundancy in signal representation.

Several of the approaches mentioned above involve the design of specific
transforms or quantizers that have to be matched to the desired level of protec-
tion. In these schemes, adapting to changing network conditions would entail
having encoder and decoder both change the transform and/or quantizers they
use. These approaches are thus limited in their ability to adapt to changing
transmission conditions. The last approach of MDC tries to overcome this lim-
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itation.

2.5.3 Multiple description coding using explicit redundancy

The new MDC approach, exploits the natural correlation between symbols for
reconstruction. This approach is similar to the square-transform based MDTC
approach above, except that the transform is not actively designed. An ex-
ample is the Multiple Description via Polyphase Transform (MDPT) developed
by Jiang and Ortega [82]. Their MDPT is an extension to SPIHT coder by
separating Zerotrees into polyphase components. The SPIHT coder was first
presented in [150]. This SPIHT algorithm uses the principles of partial order-
ing by magnitude, set partitioning by significance of magnitudes with respect
to a sequence of octavely decreasing thresholds, ordered bit plane transmission
and self-similarity across scale in an image wavelet transform. These are the
principles of embedded zerotree wavelet (EZW) coding introduced by Shapiro
in [158]. In [150] the realization of these principles in matched coding and de-
coding algorithms is presented. It is shown that the SPTHT algorithm is more
effective than the previous implementation of the EZW coding. Rogers et al. in
[147] propose to rearrange bits at the output of one configuration of the SPTHT
coder, in such a way that the loss of one packet results in an error that does not
propagate beyond the image region contained in that packet.

Miguel, Mohr and Riskin proposed a scheme using SPIHT in a generalized
multiple description framework [106], called MD-SPIHT. This work is a gen-
eralization of the work in [82]. In [107] the authors extend the unequal loss
protection framework of MD-SPIHT [106] by adding more redundancy to the
ROI than to other parts of the image. In this way they present an efficient
scheme for protecting a region of interest (ROI).

The approaches [82, 106] are related to earlier work on audio coding [73].
In these techniques, explicit redundancy is introduced, so that each sample in
the input (for example each wavelet coefficient) is transmitted more than once
and coded with different accuracy each time. This strategy has the drawback
of leading to transmission of more samples than initially present in the source,
and thus inefficiency in the case of error-free transmission.

In [148], Sagetong and Ortega demonstrate how these explicit redundancy
techniques have the additional advantage of providing very simple mechanisms
for adaptation to changing network conditions. The key observation is that the
level of redundancy can be selected by determining the number of times a given
sample (or wavelet coefficient) is transmitted, and how many bits should be used
for each of the redundant representations. In this paper the authors show how
a bit allocation problem can be defined, where the goal is to choose the best
distribution of redundancy for a given packet loss rate. They provide techniques
to solve this problem and show how indeed different loss rates require different
levels of redundancy. Note that by using bit allocation to determine the level
of redundancy, not only the encoder can adjust itself in a simple manner, but
in addition the decoder can handle packets with different levels of redundancy
without requiring any significant changes to its structure (e.g. the same trans-
form, entropy coding, etc will be used). More specifically, the MDC technique



22 Chapter 2. Multiple description history

used in this paper generates the various descriptions through a polyphase trans-
form. Consider for example the case of a scalar source. This polyphase-based
MDC will divide this source into even and odd samples (or more sets if more
than two descriptions are transmitted), and will compress each sample using two
different quantization scales (coarse and fine). Then this approach will transmit
groups of samples where a set of coarsely quantized odd samples is combined
with a set of finely quantized even samples (and vice versa, i.e. fine odd with
coarse even). The decoder operates by gathering the available information for
each sample and then selecting for each polyphase component its highest quality
copy to be used in the decoding; the remaining copies are discarded. In [149]
the authors improve the system by using a priority scaling factor to introduce
redundancy in each description.

The coders proposed above are designed for ideal MDC channel environ-
ments. In an ideal MDC channel environment, the channels are independent
and data on each channel is either completely lost or received intact. In a packet
network environment these ideal conditions may not hold true; packet losses can
be correlated and only partial data (of either description) may be received at
the decoder.

There has been limited work, on MD video coders for packet networks.
Vaishampayan used MDC scalar quantizers [172] to develop robust image and
video coders for packet loss environments. Recently, Reibman [145] has pro-
posed a MD video coder for packet networks based on a rate allocation princi-
ple similar to the one presented in [34]. In [34] they proposed an unbalanced
MDC (UMDC) system for transmission of video data over best effort packet
networks. The system is unbalanced because the rate distribution among the
various descriptions is not even; hence one description has high rate (high res-
olution/quality) and the other, low rate (low resolution). Most work in MDC
has been on balanced systems, i.e., where each description is equally important,
but for low packet loss rate conditions a UMDC system would be more useful.
This is because the overhead in making descriptions balanced, which is particu-
larly significant if the descriptions are to be coded in a standard syntax, would
adversely affect the performance of balanced systems for low packet loss rates.

We finish this MD history remarking that the last MD coders are joint source
channel coders that use redundancy adaptability to be adapted to changing
network conditions. The existing methods using this approach are dedicated
mostly to ideal MDC channel environment, and the last ones to packet lossy
channels.

The MDC proposed in this manuscript belongs to the new MDC approach.
As in the works of Jiang, Sagetong and Ortega, the proposed MDC adapts the
explicit redundancy to changing networks transmission. Also, in the proposed
MDC this is done by bit allocation allowing the automatic adjustment of the
encoder and not needing any changes to the decoder.

The advantage of the proposed method over the former MDC of the new
approach is that in the proposed MDC the explicit redundancy is dependent
of the channel model and state. In this way, it is possible to develop a MDC
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that performs well in different channels environments and that can be used
even with time varying channels. Thus the proposed MDC is not only for ideal
MDC channel environment neither only for packet lossy channels as the other
methods into this approach. Our goal was to design a MDC method that can
automatically adapt to any channel and state. Thus, the proposed MDC can be
used for any application involving transmissions over unreliable channels. It is
specially suited for real time application, where typical error control techniques,
ARQ, FEC or even both together [98, 76, 21|, cannot be easily adapted.

The proposed MDC is an option for the new world communications.
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Chapter 3

Proposed multiple description bit
allocation

This chapter presents the design of the proposed MDC coder. It bellows to the
new approach of MDC. In this approach of MDC the redundancy is explicit.
The novelty is that the proposed MDC can automatically adapt the amount
of added redundancy dispatched on the different descriptions according to the
error characteristics of the underlying channel . Thus, the proposed MDC is
well suited for transmissions using unreliable channels.

We start this chapter presenting the proposed MDC in section 3.2. An
important part of such MDC is the bit allocation procedure. It will be presented
in section 3.3. In this section we verify that the proposed MDC is by nature
unbalanced. However, we can make it balanced by introducing an additional
constraint as will be presented in this section. The proposed algorithm for
this bit allocation is presented in section 3.4. The bit allocation procedure is
based on the non-asymptotic rate distortion models presented in section 3.5. We
compare our application with the best Multiple Description Coding techniques
reported to date in section 3.6. The proposed MDBA overcomes the referenced
MDC.

3.1 Introduction

The proposed MDC is a joint source and channel coding method that presents
error resilience using redundancy adaptability to be adapted to channel charac-
teristics.

The proposed method uses a MD scheme based on the Discrete Wavelet
Transform (DWT) and an efficient bit allocation technique. The different MD
are defined when setting the bit allocation of each subband. We name it Multiple
Description Bit Allocation (MDBA). The bit allocation for the successive sets of
coefficients can be performed with respect to either rate or quality constraints.
In both cases, the goal is to find a set of quantizers to apply in each subband
whose performance lies on the convex hull of the global rate-distortion curve
[161, 142, 54, 114]. To model the rate and distortion we use a non-asymptotic
theoretical model for both rate and distortion [127]. The rate and distortion
depends on the quantization step but also on the probability density function
(pdf) of the wavelet coefficients. Assuming that the probability density model

27
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is accurate, this method provides optimal rate-distortion performances.

3.2 Problem statement

The proposed MDC scheme focus on the special case in which there are two
channels of equal capacity between a transmitter and a receiver. Thus, the
proposed MDC scheme is a balanced MDC (BMDC). A BMDC framework gen-
erates descriptions of equal rate and importance. This property is well matched
to communications systems with no priority mechanisms for data delivery, as
for example Internet.

In such a scheme, a sequence of source symbols is given to an encoder to
produce two independent bitstreams of equal rate and importance. These bit-
streams are transmitted to three decoders over two noisy channels. One decoder
(the central decoder) receives information sent over both channels while the re-
maining two decoders (the side decoders) receive information only from their
respective channel (see figure 3.1).

(Rr, Dy)

(r,, D
&
(R DJ
bitstream
Wavelet l:: ali Rat :@} >: (Ry, D
L MDC Quality or € noisy channel 0 0)
coefficients Control bitsream

BER

R,, D

Figure 3.1: General Scheme

In the proposed method, as in the other MDC methods in the new approach,
explicit redundancy is introduced, so that each sample in the input (each wavelet
coefficient, in our case) is transmitted more than once and coded with different
accuracy each time. In the proposed method the DWT is performed and then,
the wavelet coefficients are repeated in both the descriptions. When a subband
is finely coded in one description it will be coarsely coded in the other. In the
following we will call primary subbands the finely coded subbands and redundant
subbands the coarsely coded subbands.

We can see in figure 3.2 an example of division of the subbands in the
descriptions.
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Description 1

Resolution
L m=3 Resolution .
HL m=2 Resolution m=1
Resolution | Resolution HL HH
™S ms Resolution m=1
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m=2 m=2
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Description 2
Resolution m=1 Resolution m=1
LH HH Resolution m=1
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Resolution m=1

B Finely coded subband L

D Coarsely coded subband

Figure 3.2: Example of division of the wavelet subbands between primary sub-
bands (finely coded) and redundant subbands (coarsely coded) in the two de-
scription.

Since the division of the subbands into primary and redundant subbands will
affect the methods performance it will be part of the problem. Other part of
the problem is the decision of the amount of redundancy we pretend to dispatch
on the different descriptions. This decision will be done by taking into account
the channel model and state (or Bit Error Rate - BER). The general scheme we
consider is presented in figure 3.1.

Given a total bit rate Ry and a maximal side distortion D), the generation
of the two descriptions is constrained to three conditions that we detail in the
following.

Condition 1 The central decoder has to reconstruct the original sequence from
the two descriptions with minimal central distortion Dy;

Condition 2 A balanced MDC coder must generate two descriptions each with
a side rate Ry = Ry = Rp/2;

Condition 3 When the channel is noiseless, the side decoders must reconstruct
the original sequence from a single description with a side distortion D; <
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DM and D2 g DM

The problem is then to minimize the central distortion Dy (condition 1) when
condition 2 and 3 are verified. That is, for N, the number of spatio-temporal
subbands, we have to find the sets of bit rates {R; 1}, {Ri 2} that minimizes the
central distortion Dy, where R; ; is the bit rate of subband i € {1,..,N} for
description j € {1,2}. More precisely, we have to find the set of quantization
steps {qi 1}, {qi 2} that produces the sets of bit rates {R; 1}, {R; 2}. This problem
is known as the bit allocation problem and we propose a solution in section 3.3.

3.3 Proposed bit allocation for MDC

3.3.1 Introduction of Lagrange operators

The problem is to find, for a given redundancy between the descriptions, the
combination of scalar quantizers across the various wavelet coefficients subbands
that will produce the minimum total central distortion while satisfying the side
bit rates and side distortions constraints.

For a system considering /N subbands of a wavelets decomposition, we intend
to minimize the central distortion Dy (condition 1) for a total bit rate Ry (con-
dition 2). Thus, the purpose of our bit allocation for MD scheme is to determine
the optimal sets of quantization steps {g;1},7 =1,...,N, {gi2},i =1,...,N for
descriptions 1 and 2. This goal should be met while the side distortion is kept
below a given distortion Djs (condition 3). The parameters Ry and Djs are
given for the bit allocation (Fig. 3.1).

Some definitions and considerations are needed to formulate our bit alloca-
tion problem. They are presented in the following.

Definition 2 Let define the functions f : R+— R and g: R— R as

fa)=a— L. (31)
g(x) =x — Dyy. (3.2)

The Rr parameter denotes the target output bit rate and Dj; refers to the
maximal side distortion imposed.

From Proposition 1 in [122] for a generalized Gaussian distribution with
standard deviation o and shape parameter o the bit rate R and quantization
distortion D can be written depending only on « and the ratio 4 as presented

in equations (3.3) and (3.4).

R=R (a, g (3.3)

D =0%D <a, g) . (3.4)
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In order to simplify the notation, we exclude from the formulas the shape pa-
rameter and we consider ¢; = Z. Proposition 1 of [122] is described below, for

proof or details about this propzosition see [118].

Proposition 1 (from [122]) When pa is a generalized Gaussian distribution
with standard deviation o and shape parameter «, there is a family of functions
that verifies:

q/2
n . n g
A/Z x pa,a(x)dx =0 fn,O (Ck, 0_> s (35)
(m+1/2)q q
/ xnpma(x)dx = g—”fmm <o¢7 —> VYm >0 (3.6)
(m—1/2)q o
with
f < q) /+(1/2)(Q/U) n ( )d (3 7)
n0 & — | = T pa,lT)azx, .
g —(1/2)(q/o)
+(m+1/2)(g/0)
fam <oz, 2) = / Z"pa,1(x)dz (3.8)
g m—(1/2)(q/0)

Therefore, the bit rate R and the quantization distortion D depend only on the
shape parameter o and the ratio Z.

R=R (a, %) (3.9)
D =0%D <a, g) (3.10)
with,
(o2) = ~sos () 0o (0 2) =2 3% fo (o 2) oo (o 2).
" 2 (3.11)
oo q
D(a,%) :1—2;% (3.12)

Using the definition 2 and proposition 1 our bit allocation problem can be
resumed as:

min Dy ({¢i,1,4i2})
(P)<{ Constraints f(R;) <0 and f(R2) <0 (3.13)

Penalty g(D1) < 0 and g(D3) <0

where, R;,j = 1,2, is defined in equation (3.14) and Dj;,j = 1,2, is defined in
equation (3.15).

N
R] = ZGJZRZJ (QZ,]), fOI‘ all j S {1,2} (314)
i=1
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The parameter a; in equation (3.14) is the size of the subband (i) divided by
the size of the sequence, and R; j(§; ;), is the output bit rate in bits per sample
for the ith subband.

N
Dj =Y Awo} Dy (G), forall j € {1,2} (3.15)
i=1

In equation (3.15), A; is an optional weight for frequency selection and w;
the weights used to take into account the nonorthogonality of filter bank [17].

The UijDi,j((jm) for j = 1,2 is the Mean Square Error (MSE) for the ith
subband of description j, in the case of a Generalized Gaussian distribution.

The allocation problem (3.13) is a constrained problem which can be solved
by introducing the Lagrange operators. The Lagrangian functional for the con-
strained optimization problem is given by equation (3.16).

2 2
J({airsai2}) = Do+ D A f(Ry) + D i g(Dy). (3.16)
j=1 g=1

In equation (3.16) A; is the Lagrangian parameter and p; is the penalty
parameter.

This Lagrangian functional 3.16, uses equations (3.1) and (3.2) defined in
definition 2. For a source with generalized Gaussian distribution [6], the central
distortion, Dy in equation (3.16) can be written as presented in equation (3.17).

N
Do =" ANiwio}oDip (Gi1, di2) - (3.17)
i=1
The azoDi70(§i71, Gi2) is the central Mean Square Error (MSE) for the ith
subband in the case of a Generalized Gaussian distribution. The expected cen-
tral distortion is estimated based on the channels states and the a priori channels
models as we will see in the next section.

3.3.2 Central distortion modeling

Recall that the central distortion is the distortion of the decoded image when
using both descriptions at decoding. When the decoder receives both descrip-
tions, each subband appears twice, with different bit rates (different associated
quantization steps). In this case, if the subbands are noiseless, the central de-
coder for each couple of subbands chooses the one with the smaller quantization
step and the other, the redundant subband, is only considered for side decoder.
Hence, we can calculate the central distortion of the decoded image as

N

Dio(Gin,Gi2) = Y min(07; Dy 1(di), 070 Dia(di2)), (3.18)
i=1

where D; 1, D; > are the distortions of subband ¢ for descriptions 1 and 2, re-
spectively. In the general case we have to take into account channel noise. So,
we cannot ignore the redundant subbands as in the noiseless case. Actually, the
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level of redundancy should increase when the BER increases, such as in the case

of very noisy channels where the redundant subbands are as important as the
others. In this last case the central distortion can simply be written as

N

Dio(Gin, Gi2) = Z

i=1

+max(0z21Dz‘ 1(Gi,1): 079 Di 2(Gi2)))

(min(o7 1 D;1(Gi1), 079 D5 2(Gin))

N |

= Z lell ql 1)+012D22(%2)) (319)
i=1

For the general case, we introduce a weighting parameter ry to the redun-
dant subbands, we call it redundancy parameter, and we propose to write the
central distortion for a subband as presented in equation (3.20).

. 1 1 . ~ _
Dio(Gi1,Gi2) = | [min (071D (Gi,1) 079 Di2 (Gi2))
0

+ry X max (Ji2,1Di,1 (Qi,l) ,O'i2,2Di,2 (@72))] (320)
Equation (3.20) can be simplified as presented below.

Q
N

—

2 - . - -
—=Din(Gi1) + =2 r;ﬁl Dia(Gi2), if 07 1Di1(Gin) < 079Di2(Gi2)

q
S|

0

SHIR!
39

2
%i ﬁDi,z(fj@',z) + Z:Q(l) 27 Dia(gin), otherwise.
(3.21)
Taking in consideration what we said above, it is easy to conclude that the
redundancy parameter domain is [0,1]. For ry = 0 equation (3.20) simplifies
equation (3.18), and is used when the channel is noiseless. For ry = 1 equation
(3.20) simplifies in equation (3.19), and is used when a very noisy channel is
expected. The problem is how to choose intermediate redundancies, and implic-
itly intermediate values of ry parameter. We want the amount of redundancy,
i.e., the importance of the redundant subbands, to depend on the channel model
and state (BER). In the next chapter we propose a method to compute the ry
parameter using channel characteristics.

3.3.3 Bit rate constraint

Finding the best bit allocation can be stated as a constrained optimization
problem, where the R; have to minimize the central distortion subject to a total
bit rate constraint. The total bit rate constraint is posed in condition 2. This
condition (R; < Rr/2, j = 1,2) has to be defined for each description. Using
equation (3.14), we write condition 2 as a constraint F; given in equation (3.22),
for the different descriptions j = 1, 2.

N
= (Z aiRij (Gij) — RT/Q) Jfor allj € {1,2} (3.22)
=1
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3.3.4 Side distortion penalty

We have stated earlier that the subbands are divided into primary and redundant
subbands. If a subband is primary in one description it is redundant in the other
and vice versa. The distinction between redundant and primary subbands is
based on the redundancy parameter. The decision of which will be the redundant
subbands in each description will be done by minimizing the central distortion.
Thus, it is natural that in some cases the resultant descriptions are not of
equal importance. For some applications this is not a drawback (as for example
transmissions with low loss rates). When balanced descriptions are imposed
by the application the MDC is attended, we have to join a penalty to our bit
allocation problem. Is that the reason of condition 3.

Condition 3 (D; < Dy, j = 1,2) is forced using a penalty which has to be
defined for each description. The side distortions Dy, D5 are defined in equation
(3.15) for a generalized Gaussian distribution.

The penalty method is simple and efficient. Consider a constraint « > 0.
The penalty is written as

- (52 -

If the constraint is verified then z > 0 and P(x) = 0. Otherwise, z < 0 and
P(z) = x?. Considering the side distortions D, Dy defined by (3.15), the
constraint is

(Dj — Dy) <0. (3.24)

The penalty is then written as P; in equation (3.25).

D;— D D; — Dy)1?
pj:[U M';(ﬂ ) , for all j € {1,2} (3.25)

The penalty function (3.25) allows us to find a solution with D; < Dy, or
more precisely, using equation (3.15),

N
Z Aiwiaszivj ((j@j) < Dy. (326)
=1

When equation (3.26) is verified we say that the penalty is verified.

In case of unbalanced MDC (UMDC) we can ignore this penalty. In such
case the Dy should be fixed with a value higher or equal to o2 in such a way
the penalty is always verified and the optimization problem is only performed
in terms of central distortion and total bit rate. With UMDC we avoid the
overhead in making descriptions balanced as presented in [34].

3.3.5 Solution of the problem

Considering the central distortion given by (3.20) the constraint (3.22) and the
penalty (3.25), the Lagrangian functional (3.16) can be rewritten as in equation
(3.27).
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N
J({ain,a2})) = Y Awio}Dio (G Gi2)
=1

+ Z )\j (Z aiRm ((ji,j) — RT/2> (327)
2 Dj — Dy Dj — Dy 2
| |, )

= g 2 2

The solution of (3.27) is obtained when

oJ ({Qi,laQi,Q}) _ a
T =0 @
0J {ai1,q2)) 0
———— =01, (b)
0q;
qi,2 (3.28)
0J ({¢i1,¢2})
9N v (C)
0J ({qi1,qi2})
L o b “

The derivative of Lagrangian functional (3.27) with respect to A;, j = 1,2
(equation (3.28 ¢) and equation (3.28 d) ) is presented in equation (3.29).

0J ({¢i,1, qi2})

N
OA; =0+ a;Ri;(Gi;) — Rr/2=0 (3.29)

i=1

In the following the derivative of Lagrangian functional (3.27) with respect
to ¢i1 (equation (3.28 a)) is given. The derivative of Lagrangian functional
(3.27) with respect to g;2 (equation (3.28 (b)) is similar.

0J ({gi1,qi2})
04qi 1

2

= Awofg——
,0
04qi1

D; o (Gin, i2)
+ )\a'iR' (Gi1)
1 ZaQi,l 1,1 \{i,1
d T[|Dy — Dyl N (D1 — D) 12

+ Baix 5 5

=0 (3.30)

According to equation (3.21), %Di,o (Gi1,Gi2) in equation (3.30) can be
simplified as presented in equation (3.31).
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o7 1 0

)

070N + 101

Di1(Gin), if 071 D31(Gi1) < 072Di2) (i)

(3.31)
ol oty O
070N +19gi1

D;1(Gin), otherwise.

In this way, the derivation of the Lagrangian functional (3.30) results in
equation (3.32).

9J ({4¢i1, i 2}) Ci1 , 0 i
) ) —_— ) Ai i 4 —Di i
94,1 T+ry V%90, (i)
0
Maig — Hill 3.32
+ 1Q 8qi,1 ,1((] 71) ( )
& [|D1—Dy| (Di—Duy)]?
=0
+ M18qi71 5 + 5 ’

The C; ; parameter in equation (3.32) comes from system (3.31) and is com-
puted as presented in equation (3.33).

1, if min(o71Di1(Gin), 079 Di2(Gin1)) = 07 Di j(Gig)
Cij= (3.33)
TN, otherwise.

Furthermore, using equation (3.15) %Pl can be written as in equation
(3.34).

0, if D1 < Dy
9 (3.34)
2 x (D1 — DM) Aiin'?la—DLl((ji’l), otherwise.
" 04gi,1
Considering an E; parameter computed from system (3.34),
QX(D]‘—DM), lfD]>DM
E; = (3.35)

0 otherwise

Then equation (3.32) becomes:

aJ ({Qi,lan‘,2}) _ Civl Aw02 i
8%,1 1+7ry e 1’18%,1

D;1(Gin)

0 N
+ Alai%Ri,l(Qi,l)

)

0 -
+ M1E1A¢wz0§1%17i,1(%,1) =0, (3.36)
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Then, the derivative of equation (3.27) with respect to ¢;1 (equation (3.28
a)) yields:

Cia 0 N 0 .
<1 s - H1E1> Ajwio; S D; 1(Gi,1) + )\laia—Ri,l(qi,l) =0. (3.37)

i1
Equation (3.37) can be simplified to

aDz 1
aRZ 1

—)\1ai

— e (3.38)
W05 (1+rN +/“E1)

(Ql 1)

As we said above, the derivative of equation (3.27) with respect to ¢; » (equa-
tion (3.28 b)) is similar. It yields:

D; 2 —Xa2a;

5 (Gi2) = (3.39)
ORi» Ajwio}, (1+TN + H2E2)

In resume, the solution of (3.27), is the system (3.40) that represents a two
channel scheme.

Equation (3.40 a) comes from (3.38) that is the derivative of equation (3.27)
with respect to ¢;1 (equation (3.28 a)).

Equation (3.40 b) comes from (3.39) that is the derivative of equation (3.27)
with respect to ¢; 2 (equation (3.28 b)).

Finally, equations (3.40 b) and (3.40 c) are derived from (3.29) that is the
derivative of equation (3.27) with respect to A\; for j = 1 (equation (3.28 c))
and j =2 (3.28 d)).

( BDZ 1 —)\1(12‘

(qz 1) (a)

OR;, Ci1
' Ajwio? <1+ +M1E1>

aDz ,2 —>\2ai

o (di2) = (b)
ORi Ciy 3.40

Aiwiazg <1 Tra + ,UQE2> ( )

SN aiRi1(Gi1) — Rr/2=0 (c)
SN aiRi2(din) — Rr/2=0 (d)

Resolution of the system (3.40) which has 2x (N+1) equations and 2x (N+1)
unknowns gives us the optimal sets of quantization steps {g; 1}, {¢i 2}, for a given
TN-

The proposed algorithm is based on modeling of R and D functions as we
will show in section 3.4.
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3.3.6 (;; parameter

The C;; parameter will define which subbands are primary or redundant sub-
bands for a specific description. C;; = 1 defines that subband i is a primary
subband in description j, thus it will be a redundant subband in the other
description. Cj;; = rn defines that subband 7 is a redundant subband in de-
scription 7, thus it will be a primary subband in the other description.

The division of the primary and redundant subbands between the descrip-
tions can be done randomly. We present in the results a example where the
division was the one presented in figure 3.2. However we intend to find for
which division we have the minimum central distortion Dy. For that we have
to compute the C; ; parameter as defined in equation (3.33).

In equation (3.33) the C; ; parameter depends on 0227 1D; 1 and 01-272D,~72. One
problem, is that the distortions involved are unknown before system (3.40) is
solved due to their dependence on the quantization steps {¢; 1}, {¢i2}. A solu-
tion is to perform the algorithm for all possible combinations of C; ; values, and
then choose the combination that gives better results.

3.3.6.1 C parameter - optimal solution

e Compute the MDBA for all possible combinations;
e Choose the combination that results in the minimal central distortion.

— N = 10: ND jserations = 1024;
_ N = 40: Nb syorations = 1099511627776.

However this solution is not efficient (it is time consuming and depending
of the number of subbands it can become prohibitive). Thus we propose an
algorithm that, for the tested images gives similar results to the algorithm per-
forming all possible combinations.

3.3.6.2 Proposed algorithm

The proposed algorithm initializes the Cj; parameters to 1, for ¢ = 1.N
and j = 1,2, and iteratively modifies their values according to the current
UleiJ and O-Z'272Di,2-

More precisely, if we define S as the set of all possible subbands of description
1 and 2 we perform the following steps:

1. we initialize C; ; = 1, for ¢ = 1..N and j = 1, 2;

2. we compute g; j, for i =1..N and j = 1,2;

3. we compute D; ;(G; ;), for i =1..N and j =1,2;

4. we search the subband & in § with the highest distortion.

5. we set the correspondent Cj, ; value to ry.
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6. we redefine the set S, excluding the subbands & of description j = 1 and
j=2.

7. if S is not empty we go to step 2.

It is easily verified that NV iterations are always performed to compute all

C; ; values (N is the total number of subbands of a wavelets decomposition).
This algorithm is detailed in Fig. 3.3.

Begin

First iteration

Input
| Ciy |i=1]..]i=k—-1]i=k|i=k+1]|..]i=N|
j=1 1 1 1 1 1
j=2 1 1 1 1 1

Search

k1,11, such that Dkl,ll > DZ‘J‘,Z‘ € {1, ...,N},j =1,2
Set
Ciyjy =7N

Second iteration

Input

\ Cij [i=1]..Ji=k—-1]i=k|i=k+1[..][i=N]
ji=10 1. 1 N 1 1
i={L23\n || 1 |.. 1 1 1 ] 1
Search

kQ,lQ, such that Dk2712 > DZ‘J‘,Z' € {1, ,N} \ {k1}7j = 172
Set
Chaoly =TN

Continue...

N iteration

Search

kn, N, such that DkN,lN > DZ‘J‘,Z' € {1, ...,N}\{kl,kg, ...,kN_l},j =1,2
Set

Cinin =TN

End

Figure 3.3: Algorithm for the computation of C; ; parameter.
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3.3.6.3 Comparison: Optimal solution vs. Proposed algorithm
e Optimal solution

— N =10: ND jterations = 1024;
x* PSNR = 40.39 dB, for Lena Image at 1 bpp;
— N = 40: Nb jerations = 1099511627776.

e Proposed algorithm

— N =10: NDb jterations = 10;
x* PSNR = 40.38 dB, for Lena Image at 1 bpp;
— N = 40: ND jterations = 40.

The proposed algorithm presents similar results to the optimal algorithm.
Several other tests were performed with similar results. In the suite we use the
proposed algorithm for the computation of C; ; parameter.

3.4 Proposed algorithm

The proposed algorithm is presented in figure 3.4. As can be seen in this figure
we compute R; ; using the given parameters C; j, Aj, ij, v, equation (3.40 a)
and g—g function. If the debit constraint (3.40 b) is not verified we recompute
the R;; using a new A;. If it is verified we compute: ¢;; from R;; and R
function; D; j(qi;); D; using D; j(qi;); and finally C; ; using D; j(qi ;)-

The above steps are performed N times. After IV iterations all Cj; are
computed and the algorithm can proceed.

The last step of bit allocation is the verification of the penalty (3.15). If
this is not verified we restart the algorithm from the beginning with a new u
parameter computed using equation 3.41.

P = ' 4 myd; (3.41)

where d; = D; — Dyy. This is a sub-gradient method, for details see [108].

If the penalty is verified the algorithm stops and the output of bit allocation
gives the optimal quantization steps g; ;.

To compute ‘g—g, R and D functions we use a model based implementation.
This approach is very simple. We only need the statistic parameters for each
subband. Contrary to other implementation, as for instance the signal based
implementation used by JPEG2000 [167, 77], the model based implementation
is adapted to the parallelization of the quantization and coding step of all sub-
bands. The model based implementation is specified in section 3.5.

3.4.1 Bit allocation complexity

The complexity of our algorithm is the complexity of the EBWIC bit allocation
presented in [127, 122]. The complexity of this coder is presented in [122| and
detailed in [118]. In this work the authors conclude that the highest cost of
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model based allocation method corresponds to the computation of generalized
Gaussian distribution parameters for each subband. They need four operations
(two additions and two multiplications) for wavelet coefficient to compute the o
and o parameters. Assuming that the complexity of the remaining part of the
algorithm is lower than 1 operation for each image pixel. The authors conclude
that the complexity of such allocation method is less than five simple arithmetic
operations for each image pixel.

We can then conclude that the complexity of our bit allocation is less than
five operations for each image pixel.
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Input
[ ] {CZ7],Z:1N,]:1,2}
o AL
®  H1,H2,70
e Ty
Compute 1
e R;; using (3.40 a) and 2B
function J
Compute
e A%, by dichotomy
Is F(R;) <0 !
C_/ No
Yes
Compute
e ¢;; from R;; and R function
e D;;(Gi;)

° Dj and Cm’ from Di,j(qi,j)

No

Yes Compute
® dj = Dj — DM
o =yt +id;

Yes

No

Output
(] {szZ == 1N,j = 1,2}

Figure 3.4: Global Bit Allocation Procedure



3.5. Model based implementation 43

3.5 Model based implementation

To model the rate and distortion we use a non-asymptotic theoretical model
[120]. The rate and distortion depends on the quantization step but also on
the probability density function (pdf) of the wavelet coefficients. Assuming
that the probability density model is accurate, this method provides optimal
rate-distortion. In each subband the probability density function of the wavelet
coefficients can be approximated with generalized Gaussian [6]. Therefore, for
a shape a and a variance o, the pdf is given by equation 3.42.

poz,a(x) = ae—|ba:|°‘ (342)
with
1 T(3/a) _ ba
= o\ T/ ™= 5/

For a given subband, the coder output bit rate R produced by the quanti-
zation step ¢, can be approximated by the entropy such that

+oo
R=- Z Pr(m)loga Pr(m), (3.43)

m=—0oQ

where

mq+4
Pr(m) = / Pa,o(x)dz

q
mg—g

is the probability of the quantization level m.
According to [164], the best decoding value, when using the Mean Square
Error (MSE) as the distortion measure, for the quantization level m, is

+E
f;;q_ %2 xpap(ac)dx

Pr(m)

i’ pu—
Then, the MSE can be expressed as:

+o0 maq+4
D= Z / (2 — 2)?pao(2)de (3.44)

_4g
m=—oco M43

- OD:
Setting ¢ = qw, it has been shown in [131, 122] that ——~ (§) can be
04, OR;
calculated as:
oo 225 (0,0) f1m (@) Fo,m (0@ = i m (0,0 220 (0,)
ODis () = = form(eD)” n2
ORi; " 2etflB (Info (e, ) + 1] + 3% 25 (@, @) [Info.m(e, ) + 1]

(3.45)
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Ofnm, o
8—q(a’Q) =

+ 1" ~+q ™ - 0|
= o =) = - = a1 | mg— = .
m 2 p 1 mq 2 m 2 p ,1 q 2 q

(3.46)

The g—g, R and D functions are not easily invertible. However, for the
generalized Gaussian model it has been shown in [119] that g—g, R and D func-
tions can be tabulated in order to simplify the inversion. The tables for these
functions can be found in [119, 122] for different generalized Gaussian shape
parameters « sampled in |0, 2]. The tabulated ‘g—g and R functions are used in
the proposed algorithm that is presented in the previous section 3.4.

3.6 Results

3.6.1 Central PSNR vs. side PSNR for still image

For 1 bpp central bit rate and 512 x 512 Lena image, central PSNR vs. side
PSNR is plotted in Fig. 3.5 and Fig. 3.6 for various values of rn between 0 and
1.

As said above, ry = 0 represents no redundancy, that implies the higher
central PSNR and the lowest side PSNR. Inversely, r = 1 represents the highest
redundancy (there is no difference between primary and redundant subbands),
that implies the lowest central PSNR and the highest side PSNR.

We compare our application with the best Multiple Description Coding tech-
niques we know to date that are presented in [106, 82]. We present two different
results. In the first one, without C; ; optimization, the bit allocation procedure
was performed with Cy = {1,rn,1,rn,...} and Cy = {rn,1,7N,...}, resulting
in a very simple MDC scheme. In the second one, with C;; optimization, we
found the best set of C; using the algorithm of section 3.4.

The proposed method with C; ; optimization provides the best results.

For high ry values (near 1) the performances of the different methods are
similar. We note that ry ~ 1 means the highest redundancy. This meaning that
the MDC performance for this values approximates the performance obtained
when using an SDC and double the resultant bitstream. We can then conclude
that the codec performance of the different methods used for comparisons are
similar.
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Figure 3.5: Side PSNR vs Central PSNR. Comparison of the proposed method
with the method in[82]
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3.7 Conclusions

In this chapter a joint source and channel MDC is presented. We will show
next chapter that it can automatically adapt the amount of added redundancy
according to underlying channel error characteristics.

The proposed method uses a MD scheme based on the Discrete Wavelet
Transform (DWT) and an efficient bit allocation technique. The different MD
are defined when setting the bit allocation of each subband. We name it Multiple
Description Bit Allocation (MDBA).

The results presented show that the proposed MDC overcomes previous
MDC schemes in the relation side PSNR vs. central PSNR.

The work on this chapter resulted in several publications. In [127] we pre-
sented the MDBA for image coding. In [128, 129] we presented an extension
for video coding. In [129] we present a low complexity scheme of the method
proposed in [128] that includes the C; ; computation presented in section 3.3.6.



Chapter 4

Channel adapted multiple description
coding

In this chapter we made the MDBA presented in previous chapter automatically
adapted to channel model and state. For this we use channel information to
inject redundancy in the different descriptions. More precisely, we use channel
information when computing the ry parameter presented in previous chapter 3.

We take into account the Shannon theorem (Theorem 10) [156], and propose
to define the redundancy parameter using the equivocation Hy(z). Indeed, in
this theorem, Shannon states that the equivocation Hy(x) is the amount of
redundancy that the decoder needs to correct the received message.

The chapter is organized as follow. Section 4.2 presents some of the existing
MDC schemes that are adapted to channel models which are not on-off channels.
In section 4.3 we expose how the redundancy parameter is computed. It is this
parameter that allows the MDBA presented in previous chapter to be adapted
to different channel models and states. This section is followed by section 4.4
that presents concisely the channel models used in this work and presents the
specific redundancy computation for each of the presented channel models.

Section 4.5 presents the general MDC and explains how it can be used for
image or for video coding. Simulation results for still image and for video, for
different channel models are presented in section 4.6 and 4.7. We conclude in
section 4.8.

4.1 Introduction

“A challenging task is how to design a MDC that can automatically adapt the
amount of added redundancy according to underlying channel error character-
istics” [195].

We consider that challenge in the present chapter. We present a method
to control automatically the amount of redundancy dispatched on the different
descriptions of the balanced MDBA presented in the previous chapter. The
proposed method takes into account the channel model and state and can deal
with time varying state channels (see figure 4.1).
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To be automatically adapted to channels model and state the proposed
method uses the channel capacity and the entropy of the input channel symbols
to compute the redundancy parameter introduced in section 3.3.2 of chapter
3. These channel parameters (channel capacity and entropy of the input) are
known for several channel models. In the present chapter we present some ap-
plications of image transmission over BSC, Gaussian channels. The method
can be efficiently extended to other channels when the model that matches the
channel behavior is known.

Favoring the use of DWT is the fact that 2D DW'T can be easily extended
to 3D and thus applied to video coding. A 3D Scan-Based DWT video coder
is presented in [120]. In this chapter we present an extension of the proposed
MDBA with automatic adaptation to channel model and state, for video. The
3D Scan-Based DWT transform allows us to develop a stripe-based MDC and
to use different redundancies to take into account changes in channels state
while coding. Some applications of video transmission over Gaussian, UMTS
and Internet channels are presented.

4.2 Existing MDC for channel models different from
on-off channels

Almost all multiple description codes to date assume the existence of multiple
independent on-off channels between the transmitter and the receiver (ex: Inter-
net). When a link is broken, all of the symbols or packets passing through that
channel are lost; when it is functioning properly, the symbols are transmitted
error free. Some exceptions are presented in the following.

In [85] the authors replace the on-off channel model with wireless channel,
where they assume that the system will employ multiple transmit and multiple
receive antennas. In this paper they observe that it is possible to improve
average transmission error probability by a proper choice of the correlating
transform. In [11] they introduce fading models, such as Rayleigh, Rician, or
Nakagami channel, within the context of MDC. Their simulations show the
efficiency of MDC for fading channels with multiple antennas.

Vaishampayan in [193] showed that for transmitting information from mem-
oryless Gaussian source over a Rayleigh fading channel, the multiple description
approach results in good performances at low interleaving delays as compared to
standard channel coding approaches. This conclusion was extended to sources
with memory in [89] where, on an equal interleaving delay basis, significant per-
formance improvements are obtained over channel codes for speech transmission
on Rayleigh fading channels.

The great amount of research dedicated to MDC for on-off channels vs. the
very reduced amount of research dedicated to MDC for other kind of channels
is explained by the relatively large overhead associated with existing MDC that
implies that when channel loss rate is small, the reconstruction performance in
the error free case dominates and a single description coding (SDC) without
channel coding performs best.

We could see in the previous chapter that the proposed MDBA is comparable
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with the SDC without channel coding when channel loss rate is small. Thus, it
is suitable for transmissions even for different channels from the on-off channels
usually used in MDC applications. We will show next, how we use channel
information to dispatch redundancy between the descriptions. In this way we
can adapt the coder to any channel since the model that matches the channel
behavior is known.

4.3 Channel adaptation through redundancy param-
eter

4.3.1 MDBA recall

Remark that in figure 4.1 there are two main parts: the MD Bit Allocation bloc
that was detailed in previous chapter 3; and the ry Estimation bloc that will
be detailed in this section.

We have shown in chapter 3 that the rxy parameter affects the central dis-
tortion. This central distortion was defined in previous chapter 3 as

. . 1 1 ) '
Dig (%1 | 2) _ L [mn (021 Dir (m) D (ql,g ))
0i1 02 Oi0TN +1 i1 12
2 qi,1 9 qi2
+ry X max <0i 1Dia ( > 059D 2 < >>] (4.1)
' 03,1 ’ 05,2

where ry is the redundancy parameter and 0i2 ij(ijj_) is the Mean Square
) 1,

Error for the ith subband, in the case of a generalized Gaussian distribution.
Actually, the level of redundancy should increase when the BER increases,
such as in the case of very noisy channels where the redundant subbands are as
important as the others.
The amount of redundancy, i.e., the importance of the redundant subbands,
depends on the channel model and BER (as can be seen in figure 4.1) and we
propose in the following some strategies for the choice of ry.

4.3.2 Redundancy computation

Taking in consideration what is said above, it is easy to conclude that the
redundancy parameter domain is [0, 1]. Parameter ry = 0 when the channel is
noiseless and parameter rny = 1 when a very noisy channel is expected. The
problem is how to choose intermediate redundancies, and implicitly intermediate
values of ry. Taking into account the Shannon theorem (Theorem 10) [156],
we propose to solve this problem using the equivocation Hy(z). Indeed, in
this theorem, Shannon states that the equivocation Hy(z) is the amount of
redundancy that the decoder needs to correct the received message.
We propose to use equation (4.2) to compute the redundancy parameter.

Hy(x)
mas () 4.2)

N =
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In equation (4.2), p(z) stands for the distribution of the input channel sym-
bols and H(x) for the entropy of the input.

H,(x) is unknown at encoding, however we can find some bounds for equiv-
ocation by stating the following proposition 2.

Proposition 2

min(H,(x)) < maz(H(x)) ~ C < maz(H, () (4.3)

where C' 1is the channel capacity defined by equation (4.4).

C= Tg(g)ﬂ:(H () — Hy(x)). (4.4)

Proof :

Being

C= %)ﬂf(fl(w) — Hy(z))

we can infer that
C < max(H(x)) — min(Hy(z)).
p(x) p(z)

Thus,

%?(Hy(x)) < %3];(11 (z)) - C.

For the right bound, we start also from the channel capacity definition,

C= %)ﬂf(fl(w) — Hy(z))

and we infer that

C > max(H(x) — max(Hy(z))) = max(H(x)) — max(Hy(z)).
p(z) p(z) p(z) p(z)
Thus, we can conclude that

T&gg(ﬂy(w)) > T%C(H (z)) - C.

Therefore, by proposition 2, instead of (4.2), we use (4.5) to compute the

redundancy parameter.
max(H(x)) — C

p(z)
= 4.
T mazx(H (z)) (45)
p(z)
We know that 0 < Hy(z) < H(x). Thus, 0 < C < max(H(x)). Using (4.5) we

p(z)
can conclude that 0 < ry < 1 as pretended.

We will show in section 4.4 that the channel capacity is known for several in-
teresting channel models. Thus, more details about the calculi of r parameters
for different channel models will be done in that section.
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4.4 Channel models and associated redundancies

Typical channel models used in the analysis of wireless transmission include
memoryless channel, symmetric channel, additive white Gaussian noise (AWGN)
channel and burst channel. Here we give a more detailed description of each of
these models.

Memoryless channel is also known as a random bit error channel and is char-
acterized by errors that are independent from one symbol to the next;

Symmetric channel for all values of ¢ and j, the probability of receive a j
when transmitted the symbol ¢ is the same of receive a ¢ when transmitted
the symbol j. A commonly encountered example is the Binary Symmetric
Channel (BSC) with a probability p of bit error;

Additive White Gaussian Noise (AWGN) channel is a memoryless chan-
nel in which the transmitted signal suffers from the addition of wide-band
noise whose amplitude is a normally distributed random variable. AWGN
is the most common form of a memoryless channel;

Burst channel is the channel where errors are characterized by periods of
relatively high symbol error rate separated by periods of relatively low,
or zero, error rate. A burst error means that the probability of error is
dependent from one symbol to the next.

The two main elements which describe a channel are the transmission rate
and the channel capacity. The transmission rate was defined by Shannon as
presented in equation 4.6 for discrete or continuous channels.

R=H(z)— Hy(x) (4.6)

Where H(x) is the entropy of the input and H,(z) the conditional entropy
or the equivocation. The channel capacity C is defined as the maximum of R
when the input varies over all possible collection (equation (4.4)). This channel
capacity was defined by Shannon for the BSC and the Gaussian cases. However,
in most mobile radio systems, the channel exhibits Rayleigh fading, aggravated
by typically log-normally distributed shadowing or slow fading, resulting in a
time variant channel capacity. Lee [93]| derived an estimate of the channel
capacity in Rayleigh fading environments.

In this manuscript we focus on Binary Symmetric (BSC), Gaussian and
Rayleigh channel models. We present below the computation of the ry param-
eter for these channel models.

4.4.1 Binary symmetric channel

For the BSC case we have two possible symbols each with a probability p of
coming through undisturbed, and (1 — p) of being changed into the other of the
pair. The capacity (measured in bits/symbol) can be written as presented in
equation (4.7) [156].
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C =1+ plogap + (1 — p)loga(1 — p)  bits/symbol (4.7)

For this channel model maz(H(z)) = 1. Thus the redundancy parameter
we present in section 4.3 can be estimated by equation (4.8).

%gc(H () - C
7;1(%1:(1{ (2))

= =1—C = plogap + (1 — p)loga(1 — p) (4.8)

4.4.2 Additive white Gaussian noise channel

For a band limited Additive White Gaussian Noise (AWGN) the channel capac-
ity, in bits/symbol, can be expressed as in equation (4.9) [156].

% =loga(1+~) bits/symbol (4.9)

In equation (4.9) B is the channel bandwidth in symbol/s and ~ is the signal
to noise ratio (SNR). The SNR ~ is defined as v = %, where S is the received
signal power and N is the AWGN power within the channel bandwidth. For
this channel model max(H (z)) depends on the modulation. For instance, if we
consider a QPSK modulation max(H (z)) = 2 and in this case the redundancy
parameter in section 4.3 is estimated by equation (4.10).

max(H(x)) — C

p(z) 2 — Bloga(1 + %) Blogs(1+ %)
= = =1- —=&7 4.1
' m(agc(H(:L“)) 2 2 (4.10)
p(z

4.4.3 Rayleigh channel

In the case of Rayleigh models, an upper bound approximation for the nor-
malized channel capacity was introduced by Lee’s [93] as presented in equation
(4.11).

-1

C =1 1
B~ logee.e v (—e + Iny + ;) bits/symbol (4.11)

For this channel model max(H (x)) depends also on modulation. For in-
stance, if we consider a QPSK, max(H (z)) = 2 and the redundancy parameter
can be written as equation (4.12).

max(H(z)) — C _N
() (H (@) L Blogse.e™5 (—e + In% + ) (412)
N m(agc(H(:L“)) 2 ’
p(z
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4.5 General coder

Standard transform based image coding algorithms consist of three stages: a lin-
ear decorrelating transform, followed by a quantization stage, and final entropy
coding of the quantized data.

Figure 4.2 shows the coding scheme we use. We start with a DWT. Then
the MDBA presented in chapters 3 and 4 is processed. This one is followed by
a simple scalar quantization and the encoding of each subband uses a context

based arithmetic coder [119, 167].
Entropy
Coder

(R;. Dy

Scalar
Quantization

(R| ’ D|)
Wavelet
coefficient \ ___| \
subband / Allocation

Scalar
Quantization

Entropy ( R,, Dz)
Coder

Figure 4.2: Transform based image coding scheme.

4.5.1 Entropy coding

Entropy coding is a reversible process, thus there is no approximation problem
as in quantization. After quantization the variables take values drawn from a
finite set {a;}. The idea is to find a reversible mapping M to a new set {b;}
such that the average number of bits/symbols is minimized. The parameters in
searching for the mapping M are the probabilities of occurrence of the symbols
a;,p(a;).

Arithmetic coding converts a variable number of samples into a variable
length codeword. In this way it can approach the entropy bound more closely
than Huffman coding for common signals. In Huffman coding each sample (or
group of samples) uses at least one bit. Therefore, for a very small alphabet,
the bit rate cannot be lower than 1 bit/sample, in the case of scalar coding.

Our coder uses arithmetic coding. We explore this coding through what we
call a Smart Arithmetic Coding to provide synchronization and minimize the
error propagation in the case of channel errors. In the following we present the
basis of arithmetic coding needed to understand the proposed Smart Arithmetic
Coding presented in section 4.5.1.3.

4.5.1.1 Arithmetic coding

The idea in arithmetic coding is to represent a sequence of symbols by an in-
terval in the line segment from 0 to 1, with length equal to the probability of
the sequence. Because the probabilities of all possible sequences sum to 1, the
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intervals corresponding to all possible sequences will fill up the entire line seg-
ment. The code bits for a sequence are essentially the binary representation of
any point in the interval corresponding to the sequence.

We give in the following a simple example of arithmetic coding detailing
the parameters needed for the algorithm. This example will contribute to the

understanding of the proposed smart arithmetic coding presented in section
4.5.1.3.

4.5.1.2 Example

Consider the parameters and the table presented below. This table presents the
probability and associated interval of each symbol.

Parameters :
I Coding interval,

Int Interval associated to each symbol

Icod Interval representing the coding of a specific sequence of symbols

‘ Symbol ‘ Probabilities ‘ Int ‘

A 0.2 [0;0.2]

B 0.4 [0.2;0.6]
C 0.2 [0.6;0.8]
D 0.1 0.8;0.9]
/ 0.1 0.9;1.0]

Table 4.1: Probability and associated interval of each symbol.

The coding of the sequence CDCB/ is done as presented bellow:

1]

Starting point

= [0;
Coding symbol C = [0.2;0.6]
Coding symbol D = [0.44;0.52]
Coding symbol C = [0.456; 0.488]
Coding symbol B = [0.456; 0.4624]
= |

Coding symbol/ 0.46176;0.4624]

Thus, in the end of the arithmetic coding process we have
Icod = [0.46176;0.4624]

In practice our algorithm thus not use the interval I = [Iin; Linae] but uses
only I,,;, and the size of the interval that we call in the following the A register.
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For decoding we start from the same starting point of the coding procedure
and from Icod. We search {I|Icod C I}. We finish when Icod = I:

I=10;1
Icod C I=10.2;0.6

] Starting point

]
Icod C I =10.44;0.52] Decoding symbol D

]

]

]

Decoding symbol C

Icod C I =[0.456;0.488
Icod C I =[0.456;0.4624
Icod =T =1[0.46176;0.4624

Decoding symbol C
Decoding symbol B
Decoding symbol/

Note that:

e the termination condition could be Icod,q = I, since the coding of the
terminal symbol does not change I,,44;

e the decoding procedure only needs the Icod,,q; to execute;

e and finally, the interval size in the end of the arithmetic coding and de-
coding process is the same.

In fact, the arithmetic coding works essentially with two registers, one rep-
resenting the Icod,,;, and the other, called A register representing the interval
I size. The arithmetic decoding works also with two registers. One representing
the Icody,q: and the other, is also the A register.

4.5.1.3 Proposed smart arithmetic coding

In order to provide synchronization and minimize the error propagation in the
case of channel errors, each spatio-temporal subband is divided into blocks.
Then, arithmetic coding is performed on each block independently. Because the
block division requires side information, the block-size must be related to the
channel BER such that high BER implies small block-sizes. For error detection,
when the number of coded coefficients is known, it is possible to verify if the
arithmetic coder stops correctly. In case of error and if the arithmetic coder is
misplaced in the bitstream we synchronize the decoder to start at the beginning
of next block.

It is well known that this usual method of error detection is largely insuffi-
cient. It is not rare to have the correct number of coefficients decoded and the
arithmetic coder well placed, but wrong coefficients decoded. This problem is
more difficult to solve. Some methods try to use the information of the neigh-
bor blocks but their effectiveness is not optimal. Here, we propose to use some
internal information included in the arithmetic code.

As explained above the arithmetic coder works with two main registers: the
code string that represents the base of the interval (I,,;,) and the interval (A
register). With each binary decision the current probability interval is subdi-
vided into two sub-intervals, and the registers are modified in accordance. The
states of registers depend only on the probability of the individual events. In
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our scheme, we include the n last bits of the interval (A register) inside the final
bitstream (in our experiments n = 8). We could see in the example above that
this interval has the same value in coding and in decoding procedure. The de-
coder simply verifies if its final interval register corresponds to the one included
by the coder inside the header of the bitstream. If this is not the case, it means
an error occurred in the block and it is discarded.

4.5.2 Effect of noise in the headers

The proposed smart arithmetic coder avoids synchronization problems and min-
imize error propagation. With this method an error in normal data can be de-
tected, in which case the block will be decoded using zeros or the average of the
block (if decoding the LL subband).

Errors in the headers specifying crucial information can have small effect or
be catastrophic. In the following we detail the headers information used and
the error tolerance of such headers.

Image information (color space, image size, wavelet decomposition, block
partition, etc). This header is introduced in both descriptions. If it is
lost in both descriptions the image/video reconstruction is impossible,
otherwise the image/video reconstruction is normal.

Size (in bits) of a block This header is used when some error occurs in a
block. In such case the decoding process starts decoding the next block.
If some error occurs in this header, in the data of the block and at same
time the arithmetic decoding finishes in the wrong position, we have a
synchronization problem.

Register A This header is used to verify that arithmetic decoding succeeded.
In case of errors in this header the most probable is that the arithmetic
decoding terminates with “not succeeded”; even if it succeeds. Much im-
probable is that the arithmetic decoding terminates with “succeeded” when
it not succeeded. In this last case we have a synchronization problem.

For each block, 24 bits for statistical information (in the case of a LL
subband, 40 bits for statistical information). This header is introduced in
both descriptions. If it is lost in both descriptions the block it corresponds
is decoded erroneously in both descriptions.

For each block, 16 bits for the quantization step If this header islost the
block it corresponds is decoded erroneously.

We note that the most sensitive headers are repeated in both descriptions.
The other headers are less sensitive since reconstruction is still possible and
errors do not propagate to other blocks.

In the performed simulations the headers were protected (they are not af-
flicted by noise). In future work we intend to protect the most sensitive headers
with FEC’s.
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4.6 Still image simulations

For spatial decomposition our coder uses a 9-7 biorthogonal filter [6] and a three
level decomposition.

For simulations we use the 512 x 512 pixels Lena image. Lena image total bit
rate was set to 1 bpp (i.e. Ry = Ry ~ 0.5 bpp) or 0.5 bpp (i.e. Ry ~ Ry ~ 0.25

bpp).

4.6.1 BSC and Gaussian channels

Figures 4.3, 4.4, 4.5, 4.6, 4.7 and 4.8 show some visual results of transmission
of Lena image at 1 bpp and 0.5 bpp over BSC and Gaussian channels with
BER = 0.001 and BER= 0.01. The mean PSNR we obtained for BSC channels
and using Lena image at 0.5 bpp are tabulated in table 4.2.

As already mentioned, we can find a great amount of research dedicated to
MDC for on-off channels but very reduced amount of research dedicated to MDC
for channels as BSC or Gaussian. In [162] the authors constructed an MDC for
networks with packet lost and/or bit errors. They provide a mechanism for bit
allocation between the redundancy in terms of FEC and redundancy that is
meant to correct for packet loss. In this work they present some results with
Lena image compressed at 0.5 bpp. For BSC transmission with BER= 0.001
the PSNR is 27.5 dB and for a BER= 0.01 the PSNR obtained is 20.2 dB. This
means that our MDC outperforms this one (see table 4.2). Moreover, the results
of [162] where obtained with seven levels of decomposition and assuming the LL
band uncorrupted.

BSC channels
BER 0.01 0.001

Proposed method | 24.79 dB  28.62 dB

Method in [162] | 20.2dB  27.5dB

Table 4.2: PSNR values for Lena image compressed to 0.5 bpp, when considering
BSC channels.
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Figure 4.3: Lena image coded at 0.5 bpp. BSC channel at 0.001 ber.
PSNR=29.41;

Figure 4.4: Lena image coded at 1.0 bpp. BSC channel at 0.001 ber.
PSNR-33.89 dB.
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Figure 4.5: Lena image coded at 1.0 bpp. BSC channel at 0.01 ber.
PSNR=24.99 dB.

Figure 4.6: Lena image coded at 1.0 bpp. Gaussian channel at 0.01 ber.
PSNR=25.49 dB.
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Figure 4.7: Lena image coded at 0.5 bpp. Gaussian channel at 0.001 ber.
PSNR=31.27 dB.

Figure 4.8: Lena image coded at 1.0 bpp. Gaussian channel at 0.001 ber.
PSNR=34.90 dB.
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4.7 Extension of the multiple description coder to
video

The MDC presented for images can be extended to video adding a 1D DWT in
the time direction to the 2D DWT. This is named a 3D DWT. The 3D subband
coding of video [87, 136, 47, 181, 192] provides encouraging results compared
with MPEG |26, 169, 88, 111]. Furthermore there exist efficient 3D scan-based
DWT and 3D scan-based motion compensated lifting DWT for video coding
[120, 121, 122, 192, 168, 103, 5, 18] that are well suited for real time applications.

In the present work we use the 3D scan-based DWT presented in [120],
without motion compensation. The 3D scan-based DWT transform allows us
to develop a stripe-based MDC. More specifically, when using a 3D scan-based
DWT, the bit allocation for the successive sets of temporally coherent coeffi-
cients can be performed with respect to either rate or quality constraints (see
[122] for details). Thus, we can change the redundancy parameter each time a
bit allocation starts for a new set of temporally coherent coefficients. In this
way we can adapt the redundancy parameter to the channel state while cod-
ing. Thus, the proposed method automatically adapts the coding process to
time varying states. The proposed MDBA is then suitable for transmission over
time-varying channels.

4.7.1 Scan-based wavelet transform

Scan-based wavelet transform algorithms are meant to progressively compute
the DWT to get low memory implementations of wavelet transforms. This
problem was first addressed in [180] which only considered 1D transforms. In
[30] the authors present a line based wavelet image compression. In this scheme
the lines are read line by line and only the minimum required number of lines is
kept on memory. This kind of algorithms only needs to store a small number of
coefficients at the same time and allow a significant memory saving. Historically,
first unpublished proposal for 2D images can be found in [22]. Other proposals
are [124, 120, 122, 113|. An easy way to implement a scan based wavelet trans-
form algorithm can be derived from the lifting scheme. Some algorithms using
the lifting scheme are [31, 191, 192, 121].

4.7.2 The lifting scheme

The lifting scheme has been introduced by Sweldens [165, 37| as a light-weight
computation method for performing any wavelet transform based on a biorthog-
onal filter bank. The usual low-pass/high-pass filter pair is replaced by a ladder
structure as shown in figure 4.9.
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Figure 4.9: 1D DWT structure using the lifting scheme.

The lifting scheme starts by a “lazy” wavelet transform consisting of split-
ting the input vector x[k] into two subsampled versions Zeyen[k] = x[2k] and
Zoddlk] = x[2K + 1]. Several elementary transformation steps are applied to
these two vectors:

lifting steps consist of subtracting from x,44[k] an estimated (or predicted)
signal based on Zeyen[k]. Estimations are computed by applying the P;
filters to Teyen[k]-

dual lifting steps consist of updating xcyen k] by adding the result of U; filters
when applied to x,q4q[k].

After several lifting/dual lifting steps the detail and approximation coeffi-
cients of the 1D DWT of x[k] is obtained. The low-pass coefficients are obtained
after the last dual lifting step, while the high-pass coefficients are obtained after
the last lifting step.

We use (L1, La, ..., Ly) to denote a lifting scheme with N steps, where L,
is the coeflicient number of the n prediction operator, and Lo, is the coefficient
number of the n update operator. The biorthogonal 5-3 filter can then be
implemented using a (2,2) lifting scheme, while the biorthogonal filter 9-7 needs
a lifting scheme with four steps (2,2,2,2).

4.7.3 Previous MD coding dedicated to video

A MD coding dedicated to video was proposed by Vaishampayan in [176], where
a predictive MD system was applied along with transform coding to construct an
inter-frame balanced MD video coder based on the H.263 standard. In [9] Apos-
tolopoulos and Wee show that MD coding and path diversity provide improved
reliability in systems with multiple paths with equal or unequal bandwidths. In
[146] Reibman et al. proposed MD video coders which use motion compensated
predictions. In [120] we propose an extension of [127] for video that uses the 3D
scan-based DWT.

4.7.4 Video simulations

For spatial decomposition our coder uses 9-7 biorthogonal filter [6] and three
levels of decomposition. For temporal decomposition it uses the (2,2) filter and
performs two levels of decomposition. The frames of the video sequence are
acquired and processed on the fly to generate the 3D wavelet coefficients and
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the data are stored in memory only until these coefficients have been encoded
[131]. No motion compensation is performed.

4.7.4.1 Gaussian channel simulations

For Gaussian channel simulations we use 3 seconds of QCIF silent color video
and 3s of QCIF akyio video. The silent video was compressed to 200 kbits/s (30
frames/s) and the akyio video was compressed to 300 kbits/s (30 frames/s). All
channel simulations were performed ten times. Note that mean PSNR values
are computed by averaging decoded MSE values and then converting the mean
MSE to the corresponding PSNR values. Visual results of video present always
the frames 1, 11, 21, 31, 41, 51, 61, 71, 81 and 91 of the video.

For comparison, we present results obtained with the proposed MDC with
and without noise. We present also some results obtained with transmission of a
singular description coder (SDC) using a similar codec without channel coding
and an SDC with a Turbo Coder (SDC+TC) with a bit rate of 200kbits/s
including the channel rate.

In table 4.3 the mean PSNR for BER= 0.001 for the proposed MDC is
presented. We compare it with the case without noise. We can see that the
performance of the proposed MDC in the presence of noise are similar to the
performance without noise, especially for the U and V components. We can
conclude from this table that the proposed MDC provides a gain of 3 dB over
a standard method using SDC+TC.

Proposed
Method 33.17 | 31.50 | 40.72 | 40.00 | 41.51 | 41.15

SDC + TC - 28.66 - 36.50 - 38.12

Table 4.3: Mean PSNR results for QCIF silent color video compressed to 200
kbits/s (30 frames/s), when channel transmission at 0.001 ber.

Figures 4.10, 4.11 and 4.12 present the mean PSNR of different frames for
Y, U, and V, respectively, when transmission over Gaussian channel with a
BER= 0.001. We can conclude that the proposed MDC is able to recover from
channel losses. In these figures we can also see that the Y component is the
most sensitive to noise.

Finally we show some visual results in figures 4.13, 4.14, for QCIF silent
video and 4.15 and 4.16 for CIF akyio video. All these results consider Gaus-
sian transmission for BER= 0.001. These images allow the comparison of the
proposed MDC with the SDC+TC.
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Figure 4.10: Mean PSNR’s of each frame for Y component of QCIF silent color
video compressed to 200 kbits/s (30 frames/s). Transmission over Gaussian
channel at 0.001 ber; PINK (a): no noise; DARK BLUE (b): Proposed MDC;
YELLOW (c): SDC.

PSNR

Frame

Figure 4.11: Mean PSNR’s of each frame for U component of QCIF silent color
video compressed to 200 kbits/s (30 frames/s). Transmission over Gaussian
channel at 0.001 ber; PINK: no noise; DARK BLUE: Proposed MDC; YEL-
LOW: SDC.
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PSNR

Frame

Figure 4.12: Mean PSNR’s of each frame for U component of QCIF silent color
video compressed to 200 kbits/s (30 frames/s). Transmission over Gaussian
channel at 0.001 ber; PINK: no noise; DARK BLUE: Proposed MDC; YEL-
LOW: SDC.
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Figure 4.13: QCIF silent color video compressed to 200 kbits/s (30 frames/s).
Transmission over Gaussian channel at 0.001 ber. Using the SDC+TC.
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Figure 4.14: QCIF silent color video compressed to 200 kbits/s (30 frames/s).
Transmission over Gaussian channel at 0.001 ber. Using the proposed MDC.
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Figure 4.15: CIF akyio video compressed to 300 kbits/s (30 frames/s). Trans-
mission over Gaussian channel at 0.001 ber. Using the SDC+TC.
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Figure 4.16: CIF akyio video compressed to 300 kbits/s (30 frames/s). Trans-
mission over Gaussian channel at 0.001 ber. Using the proposed MDC.
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4.7.4.2 TUMTS channel simulations

UMTS has born thanks to the ITU (International Telecommunication Union)
organization. This organization made an effort to look for the recommendations
and the standards allowing to future generations of mobile communication to
answer to the new demands of system capacity and performance. This effort is
summarize with the name “ mobile communications of third generation (3G)”.

UMTS channel® presents three different models: indoor, pedestrian, and
vehicular. They are defined in [44], and we briefly expose them in Appendix A.

For simulations we use 3seconds of QCIF silent color video compressed to
200 kbits/s (30 frames/s). All channel simulations were performed ten times.
Note that mean PSNR values are computed by averaging decoded MSE values
and then converting the mean MSE to the corresponding PSNR values. Visual
results of video present always the frames 1, 11, 21, 31, 41, 51, 61, 71, 81 and
91 of the video.

For comparison, we present results obtained with the proposed MDC with
and without noise. The redundancy parameter was computed in this case using
equation 4.12. Thus mean we consider the Rayleigh model to approximate the
UMTS channel behavior.

We present also some results obtained for the transmission of a singular
description coder (SDC) with a similar codec. We also use a SDC with a Turbo
Coder (SDC+TC and SDC+TC+P) with a bit rate of 200kbits/s including the
channel rate. The difference between the SDC+TC and the SDC+TC+P is
that in the last one we adapt the redundancy of the TC based system by using
a puncturing mechanism.

Table 4.4 and table 4.5 present the mean PSNR for BER= 0.01 and BER=
0.001, respectively, for the proposed MDC. We compare it with the case without
noise and with the SDC+TC and the SDC+TC+P.

The proposed MDC presents better results. The differences in case of BER=
0.01 are smaller, however the BER in real UMTS transmissions is higher than
0.01.

Figures 4.17, 4.18 and 4.19 present the mean PSNR of different frames for Y,
U, and V component respectively. In these simulations we consider transmission
over pedestrian UMTS channel and BER=0.01.

Finally we show some visual results for SDC, SDC+TC and the proposed
MDC in figures 4.20, 4.21, 4.22 and in figures 4.20, 4.21, 4.22 for a BER=0.01.
In the first group of figures we consider transmission over an UMTS Indoor
channel and in the second group of figures we consider transmission over an
UMTS Pedestrian channel. As could be seen in table 4.4 and table 4.5 the
Indoor channels are the one that implies the worst PSNR values and the Pedes-
trian channel the better PSNR values (in both cases MDC, SDC or SDC+TC
simulations).

In figures 4.26, 4.27, 4.28 we consider a BER=0.001 and Indoor UMTS
channel. As mentioned in chapter 1 the FEC code must be designed with a
worst case channel scenario in mind. This reflects the bad performance of the
SDC+TC in case of low BER.

!The authors wish to thank France Telecom for providing an UMTS simulator



Mean
BER BER BER BER
Channel Method 0 1072 0 1072 0 1072 0 1072
SDC+TC 28.66 | 27.96 || 36.50 | 36.48 || 38.12 | 38.11 || 34.43 | 34.18
SDC+TC+P 30.40 | 21.8 || 38.10 | 37.46 || 39.44 | 38.72 || 35.98 | 32.66
Indoor UMTS
Proposed MDC ||| 31.47 | 25.57 || 39.06 | 38.56 | 40.06 | 39.76 || 36.86 | 34.63
SDC+TC 28.66 | 28.18 || 36.50 | 36.44 || 38.12 | 38.11 || 34.43 | 34.24
SDC+TC+P 30.40 | 21.56 || 38.10 | 37.02 || 39.44 | 38.20 || 35.98 | 32.26
Pedestrian UMTS
Proposed MDC ||| 31.47 | 28.02 || 39.06 | 38.67 | 40.06 | 39.89 || 39.76 | 35.53
SDC+TC 28.66 | 28.56 || 36.50 | 36.48 || 38.12 | 38.11 || 34.43 | 34.38
SDC+TC+P 30.4 | 22.45 || 38.10 | 37.10 || 39.44 | 38.68 || 35.98 | 32.74
Vehicular UMTS
Proposed MDC ||| 31.47 | 26.26 || 39.06 | 38.58 || 40.06 | 39.68 || 39.76 | 34.84

Table 4.4: Mean PSNR (dB) results for QCIF silent color video compressed to 200 kbits/s (30 frames/s).
UMTS channel transmission at 0.01 ber.
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Y U Vv Mean

BER BER BER BER
Channel Method 0 1073 0 1073 0 1073 0 1073
SDC+TC 28.66 | 28.66 || 36.50 | 36.50 || 38.12 | 38.12 || 34.43 | 34.43

SDC+TC+P 30.40 | 25.39 || 38.10 | 37.77 || 39.44 | 39.36 || 35.98 | 34.17
Indoor UMTS
Proposed MDC ||| 31.54 | 30.08 || 39.11 | 39.07 || 40.09 | 40.09 || 36.91 | 36.41

SDC+TC 28.66 | 28.66 || 36.50 | 36.50 || 38.12 | 38.12 || 34.43 | 34.43

SDC+TC+P 30.40 | 27.22 || 38.10 | 37.80 || 39.44 | 39.32 || 35.98 | 34.78
Pedestrian UMTS
Proposed MDC ||| 31.54 | 31.45 || 39.11 | 38.99 | 40.09 | 40.04 || 36.91 | 36.83

SDC+TC 28.66 | 28.66 || 36.50 | 36.50 | 38.12 | 38.12 || 34.43 | 34.43

SDC+TC+HP 30.4 | 27.86 || 38.10 | 37.90 || 39.44 | 39.40 || 35.98 | 35.05
Vehicular UMTS
Proposed MDC || 31.54 | 31.45 || 39.11 | 39.04 || 40.09 | 40.06 || 36.91 | 36.85

Table 4.5: Mean PSNR (dB) results for QCIF silent color video compressed to 200 kbits/s (30 frames/s).
UMTS channel transmission at 0.001 ber.
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Figure 4.17: Mean PSNR’s of each frame for Y component for QCIF silent
color video compressed to 200 kbits/s (30 frames/s). Transmission over UMTS
Pedestrian channel at 0.01 ber; PINK (a): no noise; DARK BLUE (c): Pro-
posed MDC; YELLOW (d): SDC without channel coding; LIGHT BLUE (b):
SDC+TC.
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Figure 4.18: Mean PSNR’s of each frame for U component for QCIF silent
color video compressed to 200 kbits/s (30 frames/s). Transmission over UMTS

Pedestrian channel at 0.01 ber; PINK: no noise; DARK BLUE: Proposed MDC;
YELLOW: SDC without channel coding; LIGHT BLUE: SDC+TC.
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PSNR

Frame

Figure 4.19: Mean PSNR’s of each frame for V component for QCIF silent
color video compressed to 200 kbits/s (30 frames/s). Transmission over UMTS
Pedestrian channel at 0.01 ber; PINK: no noise; DARK BLUE: Proposed MDC;
YELLOW: SDC without channel coding; LIGHT BLUE: SDC+TC.



76 Chapter 4. Channel adapted multiple description coding

Figure 4.20: QCIF silent color video compressed at 200 kbits/s (30 frames/s).
Transmission over UMTS Indoor channel at 0.01 ber. Using the SDC without
channel coding.
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Figure 4.21: QCIF silent color video compressed at 200 kbits/s (30 frames/s).
Transmission over UMTS Indoor channel at 0.01 ber. Using the SDC+TC.
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Figure 4.22: QCIF silent color video compressed at 200 kbits/s (30 frames/s).
Transmission over UMTS Indoor channel at 0.01 ber. Using the proposed MDC.
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Figure 4.23: QCIF silent color video compressed at 200 kbits/s (30 frames/s).
Transmission over UMTS Pedestrian channel at 0.01 ber. Using the SDC with-
out channel coding.
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Figure 4.24: QCIF silent color video compressed at 200 kbits/s (30 frames/s).
Transmission over UMTS Pedestrian channel at 0.01 ber. Using the SDC+TC.



4.7. Extension of the multiple description coder to video 81

Figure 4.25: QCIF silent color video compressed at 200 kbits/s (30 frames/s).
Transmission over UMTS Pedestrian channel at 0.01 ber. Using the proposed
MDC.
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Figure 4.26: QCIF silent color video compressed at 200 kbits/s (30 frames/s).
Transmission over UMTS Pedestrian channel at 0.001 ber. Using SDC without
channel coding.
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Figure 4.27: QCIF silent color video compressed at 200 kbits/s (30 frames/s).
Transmission over UMTS Pedestrian channel at 0.001 ber. Using SDC+TC.
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Figure 4.28: QCIF silent color video compressed at 200 kbits/s (30 frames/s).
Transmission over UMTS Pedestrian channel at 0.001 ber. Using the proposed
MDC.
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4.7.4.3 Internet channel simulations

Previous studies [198] show that a first-order Markov chain, such as the two state
Markov model by Gilbert [55] and Elliot [42], can provide a good approximation
in modeling the error process at the packet level.

Based in these studies we use the Internet simulator presented below. We
also use this studies to compute the redundancy parameter of the MDBA for
Internet channels. The redundancy parameter is in this case computed using
the channel capacity presented in equation (4.14).

The simulations were performed for 10 seconds of QCIF foreman color video.
This video was compressed to 200 kbits/s (30 frames/s).

To make comparisons, we present the results obtained with the proposed
MDC whith and without being subject to noise. We present also some results
obtained for the transmission of a singular description coder (SDC) with a sim-
ilar codec. We also use an SDC with a Turbo Coder (SDC+TC) with a bit rate
of 200kbits/s including the channel rate.

All channel simulations were performed 5 times. Visual results of video
presents always the frames 10, 20, 30, 40, 50, ... of the video. The Y component
is the most sensitive to noise. We only present results for this component.

Internet simulator

We use a K = 2 state Markov model to simulate the Internet
channel, as suggested by [16]. The K = 2 state Markov model
is represented in figure 4.29. The two states are represented by:
“G” for “Good”, where all packets are perfectly received, and
“B” for “Bad”, where all of them are lost. With this model, the
global rate loss is given by

pgb
PB)= ———— 4.1
(B) pgb — pbb + 1 (4.13)

where pgb = P(B|@G) is the probability to move from “G” to “B”
state, and pbb the probability to stay in the “B” state.

pgb

SCEERC)

P99
pbg

Figure 4.29: Model of the Internet channel. G stands for “Good”
state and B for “Bad” state.

In order to produce realistic losses, we choose pgb = 0.11 and
pbb = 0.18 for the first group of simulations and pgb = 0.05 and
pbb = 0.05 for the second group of simulations [16].
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Channel capacity

To compute the channel capacity we use [75]. In this article the
authors compute E[C(k)] (expected channel rate at time k) as
presented in equation 4.14.

E[C(k)] = C x mo(k). (4.14)

Consider sy and s; the two states. sy represents the “Good”
state and s; represents “Bad” state. mo(k) is the probability for
the channel to stay in state sp at time k. m(k) is computed
using the equation presented in 4.15. C is the packet size in
bits.

w(k) = [mo(k), w1 (k)] = [mo(t), w1 (t)]. P*L. (4.15)

Assume that the observed channel state at time ¢ is S(¢), then
the initial state probability at time ¢ can be written as

1, when S(t) = sp;
= ’ ’ 1}. .
n(t) { 0, otherwise. v € 40,1} (4.16)
P is the transition probability matrix. Using [16] for the first
group of simulations the transition probability matrix P1 pre-
sented in 4.17 is used. For the second group of simulations the
transition probability matrix P2 presented 4.18 is used.

0.89 0.11

P1= [ 0.82 0.18 } (4.17)
0.771 0.05

b2 = [ 0.771 0.05 ] (4.18)

Figures 4.30 and 4.31 present the mean PSNR of different frames for Y
for the transmission over Internet. The packet loss is 10% unconditional loss
probability for the probe packet and 18% of conditional probe loss probability
in the first case and 5% for both in the second. We can see that when comparing
with the SDC case we have a gain of 4 dB for the first case and more than 5 dB
for the second one.

We perform some simulations with an SDC+TC. However the results were
worst than the SDC without channel coding since the SDC+TC could not re-
cover from packet losses.

We show some visual results in figures 4.32, 4.33. Figure 4.32 for the SDC
case and figure 4.33 for the proposed MDC. We can conclude that with the
proposed system we have a good quality since the average increase in gain is
about 5 dB for the studied sequences.



4.7. Extension of the multiple description coder to video 87

e Rl B R R RS R YRS RE R S B
Lo R o TR o o B

oS O

Figure 4.30: Mean PSNR’s of each frame for Y component of QCIF Foreman
color video compressed at 200 Kbps (30 frames/s). Transmission over Internet
channel suffering from 10.89% packet loss. GREEN (a): Without retransmission
(0% packet loss); Average Y-PSNR : 30.16 dB. BLUE (b): Proposed MDC;
Average Y-PSNR: 21.78 dB. RED (c): Using SDC; Average Y-PSNR: 17.62 dB.

PSHR dB

i R == S

TeER BT 2LEBREREEEPRAELEYREBREE258E 88
2 o NN

Figure 4.31: Mean PSNR’s of each frame for Y component of QCIF Foreman
color video compressed at 200 Kbps (30 frames/s). Transmission over Internet
channel suffering from 5% packet loss. GREEN (a): Without retransmission
(0% packet loss); Average Y-PSNR : 30.40 dB. BLUE (b): Proposed MDC;
Average Y-PSNR: 26.74 dB. RED (c): Using SDC; Average Y-PSNR: 21.35 dB.
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Figure 4.32: QCIF Foreman color video compressed at 200 Kbps (30 frames/s).
Transmission over an Internet simulator suffering from 5 % packet loss. Using
SDC. Y-PSNR: 20.50 dB; U-PSNR: 38.94 dB; V-PSNR: 40.62 dB.
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4.8 Conclusion

In this chapter we proposed a method to estimate the amount of source redun-
dancy dispatched between the different channels based on the channel state and
the a priori channel model.

The proposed MDC uses the MDBA presented in chapter 3. The MDBA is
based on DWT. One advantage of using the DW'T is that we can extend the pre-
sented coder to video by adding to the 2D DWT a 1D DWT in the time direction.
Furthermore there exist efficient 3D scan-based DWT and 3D scan-based motion
compensated lifting DWT for video coding [120, 121, 122, 192, 168, 103, 5, 18, 4]
that are well suited for real time applications and provide encouraging results
compared with MPEG. Scan-based wavelet transform algorithms are meant to
progressively compute the DWT to get low memory implementations of wavelet
transforms.

The 3D scan-based DWT transform allows us to develop a stripe-based
MDC. In this way we can adapt the redundancy parameter, presented in section
4.3, to the channel state while coding. Thus, the proposed method automati-
cally adapts the coding process to time varying states. The proposed MDBA is
then suitable for video transmission over time-varying channels as can be seen
by presented simulations.

We conclude that the proposed MDC is a simple alternative for real time
transmissions where methods that use error control schemes such as FEC or
ARQ are not suitable for delay reasons.

With MDC, a long burst error or even the loss of an entire description does
not have a catastrophic effect. Thus, one could even use fewer error control bits
for each substream.

The work in this chapter resulted in the following publications [131, 133,
134]. These papers present the adaptation of the proposed MDBA for wired
[131] or wireless [133] communications. These results together yield the journal
publication [134].



Chapter 5

Multiple description coding for
quincunx images. Application to
satellite transmission

In this chapter we propose a method of joint source-channel coding for quincunx
images. The quincunx arrangement is a way to improve image resolution by
combining a pair of CCD linear arrays. The proposed MDC method uses the
satellite channel characteristics when performing the source-channel coding. To
compare with the proposed method we use the MDBA proposed in previous
chapters and adapted to satellite models. We name it in the following as the
standard MDC method.

The chapter is organized as follow. Section 5.2 presents the idea beyond
quincunx images. Section 5.3 introduces the general MDC scheme. Method I
and IT are presented in sections 5.4 and 5.5, respectively. Results are presented
in section 5.6 and we conclude in section 5.7.

5.1 Introduction

A way to improve image resolution is to combine a pair of CCD linear arrays
in a quincunx arrangement. Because each CCD array yields a classical image
according to a square grid the systems using such acquisition model are tempted
to treat each image isolated, disregarding the high redundancy between them.

We propose a method of joint source-channel coding that take into account
the redundancy between the two images in source channel coding. The proposed
method uses the satellite channel characteristics when performing the source-
channel coding.

The different dyadic images are used to generate the two different descrip-
tions in a MDC scheme and the difference between these two images is joined
to both descriptions. This results in a highly robust scheme.

We also present how to use the MDBA presented in previous chapters
adapted for quincunx images. This method (we will call in the suite standard
MDC method) processes the quincunx sampled image with a well-suited trans-
form to reduce the redundancies. After this step, we use the MDBA method
proposed in chapters 3 and 4 adapted here for the case of satellite models.

91
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We present comparisons between the proposed method and the standard
MDC method using the MDBA.

Using channel information and source redundancy when designing joint
source channel coders results in a robust and efficient compression scheme as we
will see in the experimental section.

5.2 Quincunx images

The increasing demand of satellite images (for regional planning, plane car-
tography and restitution of the relief, ecological monitoring, follow-up of the
vegetation, etc...) justify the continuous efforts in order to improve the image
quality provided. A way to improve image resolution is to combine a pair of
CCD linear arrays in a quincunx arrangement. For instance, the earth obser-
vation satellite of CNES, SPOT5([91], provides a quincunx sampling image by
using two different CCD linear arrays, shifted each other by 0.5 pixel in the
direction of linear arrays, and n + 0.5 pixels (n € N) in the satellite motion
direction (see figures 5.1 and 5.2). The emergence of such sampling techniques
is due to the Modulation Transfer Function (MTF) of satellites equipped with
CCD instruments. This MTF corresponds roughly to a low pass filter and has
a frequency support close to the quincunx one [92]. The double linear arrays
make a denser sampling grid with an optimal frequency support for this kind of
acquisition scheme.

CCD direction: 0.5 pixel

Velocity direction: n+0.5 pixel

Figure 5.1: Representation of the two CCD linear arrays of a SPOT5 type
acquisition system.

Each CCD linear array generates an image sampled on a square grid. This
is the principal reason why models using such acquisition system process in-
dependently each of the two images. Traditionally, this kind of scheme per-
forms Forward Error Correction (FEC) for each image independently to combat
channel failures. For instance, SPOT5 uses Reed-Solomon channel codes more
precisely RS(239,255) with interleaving. The drawback in this kind of model
is that the dependencies between the pixels of two images are not taken into
account neither in source nor in channel coding [92].
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CCD1

Quincunx image

Figure 5.2: Combination of a pair of CCD linear arrays in a quincunx arrange-
ment

We propose to perform joint source-channel coding to get the best image
quality after transmission over satellite channel. Taking into account the re-
dundancy between the two CCD arrays when performing joint source-channel
coding results in a good trade off rate-quality-robustness.
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5.3 General MDC scheme

The proposed method and the standard MDC uses MD schemes based on the
Discrete Wavelet Transform (DWT) and an efficient bit allocation technique.
Our goal is to find an optimal trade-off between efficient compression and ro-
bustness to errors due to communications using unreliable channels. For that,
we propose to control automatically the amount of redundancy dispatched on
the different descriptions by taking into account the satellite channel model and
state (see figure 3.1 in chapter 3). The use of the Scan-Based DWT transform
presented in [122, 123] allows the development of a stripe-based MDC and so, to
use different redundancies to take into account changes in channels state while
coding (see section 4.7 in chapter 4).

The two methods take into account the dependencies between the pixels of
the two CCD arrays and use the noise characteristics, to be adapted to the
satellite channel model, when performing the source-channel coding.

In Standard MDC approach, to the quincunx sampled image is applied a
suited transform to reduce the redundancies. After this step we use the MDBA
presented in chapters 3 and 4.

In the proposed model we use the redundancy of the two CCD arrays to
find a robust scheme. More precisely, the different dyadic images are used to
generate the two different descriptions in a MDC scheme. The difference of
these two images is joined to both descriptions in order to find a highly robust
scheme.

The objective of both methods is to find, for a given redundancy between the
descriptions, which combination of scalar quantizers across the various wavelet
coefficients subbands will produce the minimum total central distortion while
satisfying the side bit rate constraint Ry = Ry = Rp/2. This allocation prob-
lem is a constrained problem which can be solved by introducing the Lagrange
operators. For the standard method it was presented in previous chapter 3.
The different initial point of the two methods (see figures 5.4 and 5.5) results in
different expressions of the Lagrangian functional. Therefore, we expose each
method in a dedicated section. For the standard method we only present the
general scheme in section 5.4 since the MDBA was detailed in previous chapter
3. The new method will be detailed in section 5.5.
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5.4 MDC for transmission of quincunx images - Stan-
dard MDC method

In this MDC approach, to the quincunx sampled image is applied a suited trans-
form to reduce the redundancies. After this step we use the MDBA presented
in chapters 3 and 4. We adapt in this case the ry parameter to the satellite
channel as will be specified in section 5.6.2. Here we only detail how the trans-
form is performed in the quincunx sampled image.

The optimal way to reduce the redundancies is to process the quincunx
sampled image with a well-suited transform. In the case of quincunx sampled
images, we start from a semi-level of resolution and we must have a quincunx
compressor, in order to avoid processing the two images separately. The used
transform is a quincunx lifting scheme [57, 58, 59, 60] and the quincunx mul-
tiresolution is defined by adding an intermediate half resolution (see figure 5.3).
The difference in resolution between two successive image approximations is
equal to a factor v/2 for the quincunx case [46] and a factor 2 for the common
separable case.
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Figure 5.3: Quincunx multiresolution analysis.

Meyer showed that only one wavelet is necessary for multiresolution analysis
and not three like in the separable case [104]. Thus, wavelet transform decom-
poses the signal into two subbands and not four. The factor of resolution differs
from the bidimensional separable case. For a Mallat decomposition this factor
is equal to 2, and for the quincunx case it is identified by the function L, which
is a linear transform checking L(z,y) = (z + y,x — y). One can observe that
LolL =2Id.
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Taking the previous considerations, in this method we perform the quincunx
sampled image with the transform presented in [58, 59, 60]. The resulting
wavelet coefficients are used in the MDBA presented in chapter 3. Figure 5.4
presents the scheme of the standard MDC for quincunx images.

MD Bit
Allocation

Coder Coder
Channel 1 Channel 2

CHANNEL

Description 1 Central description Description 2

(1, D1) (Ro, Do) (R2, D2)

Figure 5.4: MDC for quincunx images. Standard MDC method.
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5.5 MDC for transmission of quincunx images. Pro-
posed method

In this model we use the redundancy of the two CCD arrays to reach robustness.
More precisely, the different dyadic images are used to generate the two different
descriptions in a MDC scheme and the difference of these two images is joined
to both descriptions. Let us call P1 and P2 the two different CCD arrays, and
€ their difference. As can be seen in figure 5.5, one description contains P1 and
¢, while the other contains P2 and e.

CCD1 CCD2

MD Bit
Allocation + T -
P1 N P2
8 @ 60 ®
— ? ?
Coder Coder Coder
Channel 1 Residual Channel 2
Multiplexing Multiplexing
— | —
v
CHANNEL
\i\—//
De-multiplexing De-multiplexing
Pl €1 pg €9
Decoder

|

Description 1 Central description Description 2

(R1, Dy) (Ro, Do) (R2, D2)

Figure 5.5: MDC for quincunx images. Proposed MDC method.
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In this model we have always two different ways to recover an information:
€ is coded twice; P1 can be recovered from description 1 or from P2 + ¢, and
finally, P2 can be recovered from description 2 or from P1 — e. This results in
a highly robust scheme.

In this model, the redundancy parameter is associated to the residual image
€. This parameter is computed in the same way as in the standard method, i.e.,
using ry equation as proposed in chapter 4. In this approach we propose to
apply the redundancy parameter to the residual image, because the use of the
residual image by the decoder is dependent of the transmission losses.

5.5.1 Proposed bit allocation for MDC
5.5.1.1 Introduction of Lagrange operators

The problem is to find, for a given redundancy between the descriptions, which
combination of scalar quantizers across the various wavelet coefficients subbands
will produce the minimum total central distortion while satisfying the side bit
rate constraint.

For a system considering N subbands of a wavelet decomposition, we intend
to minimize the central distortion Dy for a total bit rate Rp. Thus, the purpose
of our bit allocation for MD scheme is to determine the optimal sets of quanti-
zation steps {g; 1,4 = 1,..,N}, {gi2,i =1,..,N} and {gi¢,? = 1,...,N}. The
parameter R is given for the bit allocation.

Using definition 2 and proposition 1 presented in chapter 3 section 3.3, the
bit allocation problem can be resumed as:

min Do ({Gi,1, 72 Gie})
(P) (5.1)
Constraints f(R;) < 0and f(R2) <0

where, R;,j = 1,2 is defined in equation (5.2).

N
Rj = "a; (Rij (i) + Rie (i), j=1,2. (5.2)
=1

The parameter a; in equation (5.2) is the size of the subband (i) divided by the
size of the sequence and R; 1(¢i ),k = 1,2,¢, is the output bit rate in bits per
sample for the ith subband.

The allocation problem (5.1) is a constrained problem which can be solved
by introducing the Lagrange operators. The Lagrangian functional for the con-
strained optimization problem is given by equation (5.3).

2
T ({ai1, @2, 6i.c}) = Do+ Y Aj (F(R)) (5.3)
i=1

For a source with GG distribution, Dy in equation (5.3) can be written as

N
Do = Aiwio} oDy (Gi, Gi2s Gic) (5.4)
i=1
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The azODi70(§i71, Gi2) is the central Mean Square Error (MSE) for the ith
subband in the case of a Generalized Gaussian distribution. The parameter A;
is an optional weight for frequency selection and w; the weights used to take
into account the nonorthogonality of the filter bank [17]. The expected central
distortion is estimated based on the channel states and the a priori channel
models as we will see in the next section.

5.5.1.2 Central distortion modeling

Recall that the central distortion is the distortion of the decoded image when
using both descriptions at decoding. One description contains P1 and ¢, while
the other contains P2 and e.

When the decoder receives both descriptions, if the subbands are noiseless,
the central decoder uses P1 and P2. Since the redundancy parameter is asso-
ciated to € it can be set to 0.

In the general case we have to take into account channel noise. In case of
noise in a subband of P1 the decoder uses the same subband of P2 and of e
to estimate it. Inversely, in case of noise in a subband of P2 the decoder uses
the same subband of P1 and of € to estimate it. Thus, the importance of
grows with the level of noise. In consequence, the redundancy parameter should
increase when the BER increases.

Hence, we propose to calculate the central distortion of the decoded image
as

1 1

D;0(Gi1,Gi2:Gie) = 21ty (071 Di1 (Gi1)

+rn (0’3,2172‘,2 (Gi2) + 0"2 Dic(Gie))

+025D;0 (Gio) + v (021 D51 (i) + 02Dy ()]

1 ~ ~
=~ [(001Di1 (@) + 072Di2 (d:2)
1,0

27“]\7 -
UiemDi,e (Gie) (5.5)

where angm, O’Z~22Di72 and O’?EDZ'7€ are the MSE of subband i of P1, P2 and e,
respecti\/’ely. 7 7

We have Dy < Dj, j = 1,2 for description j = 1 and j = 2, with D; defined
in equation (5.6).

N
D] Z 7]+ U DZ]+U Dzs)]7 j:1,2~ (56)

=1
where 0227 ;Dij is the MSE of subband ¢ of P;. The o2 D; . is the MSE of subband
i of €, thus (JW»D” + a DZ ) is the MSE assocnated with the estimation of P
by description 1, when j = 1 or the estimation of P, by description 2, when

j=2.

As we said above, the redundancy parameter is computed in the same way
as in the standard method, i.e., using ry equation (4.5) as proposed in chapter
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4. Since this parameter depends on the channel model and state (BER), in this
chapter it will be adapted to satellite models that are presented in section 5.6.2.

5.5.1.3 Bit rate constraint

Finding the best bit allocation can be stated as a constrained optimization
problem, where the R; have to minimize the central distortion subject to a
total bit rate constraint. The total bit rate constraint (f(R;) < 0,j = 1,2
in equation (5.1)) has to be defined for each description. For the different
descriptions j = 1,2, we write condition 2 as a constraint (); given in equation
(5.7).

N
Qj = (Z a; (Rij (Gij) + Rie(Gie)) — RT/2> , j=1L2 (5.7)
i=1

In equation (5.7) R;x(qik),k = 1,2,¢, is the bit rate in bits per sample for
the ith subband.
5.5.1.4 Solution of the problem

Considering (5.4), (5.5) and the constraint (5.7) the Lagrangian functional (5.3)
can be rewritten as presented in equation 5.8.

N 2
T ({1,612, 0k }) = Y Aewio?oDio (Gi, Gios Gie) + Y AQ; (5.8)
i=1 =1

Solution of (5.8) is obtained when

r 3J({q,~g&z?z,qi,e}) —0, (a)
3J({qig;}zZQaQi,e}) —0, (b)
3J({qi7ézzzi€,2,Qi,e}) —0, (0) (5.9)
oJ ({qig)?f’% Qi,e}) =0, (d)
oJ ({q@g;];g, Qie}) =0. (e)

The derivative of Lagrangian functional (5.8) with respect to \;, j = 1,2 (equa-
tion (5.9 d) and equation (5.9 e) ) is presented in equation (5.10).
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0J ({qi1, 9,2, Gie}
X,

N
) 0= S 0 (Rej (@) + Ric @) — Re/2=0 (5.10)
=1

In the following we detail the derivative of Lagrangian functional (5.8) with
respect to g; ;. k = 1,2, € ( equations (5.9 a), (5.9 b) and (5.9 c)).

0J ({41, 4,2, Gie })
0q; k

0 .
= AiwiUiQEDi,O (@i Gi2> Gie)
23

0 - -
+ )\16%3— (Rin (Gi1) + Rie (i)
qi.k

)

0 - -
+ )\Zaia— (Ri2 (Gi2) + Rie(Gie)) =0 (5.11)
qi.k

)

According to equation (5.5), AiwiaﬁO%Di,o (Gi1,Gi 2, Gi,e) can be simplified

as
AzWUﬁ%%&,k(d@k) (5.12)
qik
with,
1, if k=1,2
Cyp = (5.13)
ﬂﬁjif k=ce

In this way, the derivation of the Lagrangian functional (5.11) results in
equation (5.14).

0 -
= AiwiaikaEDi,k(Qi,k)
1

)

0J ({41, 4,2, Gie})
0q; k.

0 ~ -
+ Maiz— (Ri1(Gi1) + Rie (Gie))

)

. (Ri2(Gi2) + Ric(¢ic) =0 (5.14)
qi.k

The derivative Alai% (Ri1(Gin) + Rie(Gie)) in (5.14) can be simplified as
0 _ .
Mai=— (R;i1(Gin)) if k=1

0 it k=2 (5.15)
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and similarly, the derivative AQG@'WCZ,C (Ri2(Gi2) + Ric(gic)) in (5.14) can be
simplified as ’

0 if k=1

0 . .
)\2%@ (Riz2(Gi2)) if E=2

)

(5.16)

0
i (Rie (Gie if k=
Nz (R (@) :

)

Thus, the derivation of the Lagrangian functional (5.14) results in equation
(5.17).

0J ({41592 Gi.e 0 -
{ain, a2, i) _ Ajw;o} . Cri=—D; (G k)

0¢; 0q;
0
+ Akai—RM ((jl,k) =0 (5.17)
0q;
with
A if k=12
A = (5.18)

)\1+)\2, if k=c¢

Finally, we can write the derivative (5.17) of the Lagrangian functional as

0 N 0 _
AiwiUika@Di,k (Gire) + Akai@Ri,k (Gik) =0 (5.19)
that can be simplified in
aD, k- —Akai
E (Gig) = —EH 5.20
8Ri7k (q 7k) Azwlakak ( )

In resume, solution of (5.8), is given by the following system (5.21).

Equations (5.21 a), (5.21 b) and (5.21 ¢) come from equation (5.20). This
equation (5.20) is the derivative of Lagrangian functional (5.8) with respect to
Gk k =1,2,¢ (equation (5.9 a), equation (5.9 b) and equation (5.9 c) ).

Equations (5.21 d) and (5.21 e) come from (5.10) that is the derivative of
Lagrangian functional (5.8) with respect to \;, j = 1,2 (equation (5.9 d) and
equation (5.9 e) ).

The system (5.21) is a two channel scheme.
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(5.21)

Resolution of system (5.21) which has 3 x N + 2 equations and 3 x N + 2
unknowns gives us the optimal sets of quantization steps {g; 1}, {¢i2} and {gi .},

for a given ry.

The proposed algorithm is based on modeling of R and D functions as we
will show in section 5.5.2.

5.5.2 Algorithm

As can be seen in Fig. 3.4 we compute R; ., k = 1,2, € using the given parameters
Aj, TN, equation (5.21 a, b, c¢) and ‘g—g function. If the rate constraint (3.40 d,
e) is not verified we recompute the R;; using a new \;. If it is verified we
compute: ¢; ; from R;; and R function. The algorithm stops and the output of

bit allocation gives the optimal quantization steps g; .

To compute ‘g—g, R and D functions we use, as in the MDBA presented in
chapter 3, the model based implementation specified in chapter 3 section 3.5.
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Input
e i,
e Ty
Compute 1
e R;; using (3.40 a) and g—g
function J
Compute
e A%, by dichotomy
Is F(R;) <0 !
s 0>
Yes
Compute ]
e ¢;; from R;; and R function

Output )
[ ] {Qi,j7i = 1N,j = 1,2}

J

Figure 5.6: Global Bit Allocation Procedure

5.6 Results

5.6.1 Specifications

For spatial decomposition, in the first method, the coder uses (6,2) nonseparable
lifting scheme and performs seven levels of decomposition [58, 60]. In the second
method, the coder uses 9-7 biorthogonal filter [6] and performs three levels
of decomposition. Quincunx transform adds an intermediate resolution level
between two successive levels in the separable case, and then allows a twice as
accurate multiresolution analysis as the separable one. Thus, the difference of
resolution between two successive levels has the value 2 in the bidimensional
separable case, and a value v/2 in the nonseparable case. One can observe
that the resolution of the quincunx sampling images is v/2 times higher than
the resolution of CCD1 and CCD2. To obtain the same resolution for all low
frequency images, a n level separable decomposition has to correspond to an
2n + 1 level nonseparable decompositions.
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The images are acquired and processed on the fly to generate the wavelet
coefficients and the data are stored in memory only until these coefficients have
been encoded [122]. The bit allocation procedure is followed by a simple scalar
quantization and the encoding of each subband uses context-based arithmetic
bit-plane coder [119]. In order to provide synchronization and minimize the
error propagation in the case of errors due to satellite communication, each
spatio-temporal subband is divided into blocks. Then, arithmetic coding is syn-
chronized on each block. For error detection, we use the Smart Arithmetic
Coding method presented in section 4.5 of chapter 4. As satellite channel simu-
lator we use the model proposed by Chee and Sweeney for LEO satellite channels
[32], that we present in the following.

5.6.2 Satellite channel model

We compute the LEO satellite communication channel proposed in [32]. They
show that for elevation angles of 23° and 52°, the burst statistics can be de-
scribed by a two good state single error state Frichman model while a three-good
state, single error state Frichman model can accurately describe the measured
statistics for the rest of the elevation angles. Fritchman’s partitioned Markov
chain model is a generalization of Gilbert’s model partitioned into k error free
states and N — k error states [51]. In this model, the interval length distribution
between the errors is described by the sum of k exponentials, while the error
burst distribution is described by the sum of NV — k exponentials. The derived
transition probabilities for the three good state Fritchman model can be found
in [32]. We show in figure 5.7 the Three-good state, single error state Fritchman
model for 40° pass.

0.0005

0.2499

Figure 5.7: Three-good state, single error state Fritchman model for 40° pass.
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5.6.2.1 Redundancy parameter for Satellite channel model

We use the studies presented in [76] to compute the redundancy parameter of
equation (4.5) for Satellite channels. In these studies the authors present the
channel rate estimation for a N-state Markov chain model with one “Good”
state and all the others states representing “Bad” states. We present below an
adaptation of this study to our case, of three “Good” states and one “Bad” state.
The redundancy parameter is in this case computed using the channel capacity
resulting from this adaptation.

Channel rate estimation

Assuming that at time ¢ the channel state at time ¢t —b, S(t—b),
is known.

In a 4-state Markov channel model. The transition probability
matrix P considered will be the one presented in (5.22) when
considering a transmission angle of 40° pass, and with transition
probability matrix P presented in (5.23) when considering a
transmission angle of 30° pass. We define the state probability
7 (k]S(t — b)) as the probability that the channel is in state s,
at time k given the channel state observation S(t —b).

0995 O 0 0.0005
e[ L | o
0.2499 0.2999 0.4196 0.0305
0.9989 0 0 0.0011
T

0.5294 0.2299 0.2102 0.0304
A vector of state probabilities can be written as
m(k|St—1b)) = [m(k[S(t D)), m2 (K|S - b)),
m3(k|S(t — b)), ma(k[S(t — D))].

The initial state probability 7(t — b|S(t — b)) at time ¢t — b can
be set up as

1, when S(t —b) = sp;

Tn (t—b|S(t—b)) :{ N Wn e {1,2,3,4).

(5.24)
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In the Markov model, the state probabilities 7(k|S(t—b)) at time
k can be derived from the state probabilities 7(k — 1|S(t — b))
at the previous time slot and the transition probability matrix
P as

w(k|S(t — b)) = 7(k — 1|S(t — b)).P. (5.25)

By recursively using equation (5.25), channel state probabilities
at time k, where k > ¢ — b, can then be calculated from (¢ —
b|S(t — b)) and P as

m(k|S(t — b)) = m(t — b|S(t — b)).PFHP, (5.26)

In our channel model, packets are transmitted correctly (C
bits are transmitted) when channel is in state s;,sy or ss,
while error occurs (0 bits are transmitted) when channel is in
state sq. Therefore, 7 (k) + ma(k) + m3(k) is the probability
of correct transmission at time k. The expected channel rate
E[C(k)|S(t — b)] given the observation of channel state S(t — b)
can be calculated as

E[C(k)|S(t —b)] = C x (w1 (k) + ma(k) + m3(k)) .  (5.27)

5.6.3 Simulations

We use a 352 x 704 quincunx, that is generated using two dyadic 352 x 352 Nimes
images, for the proposed method and two 352 x 352 dyadic Nimes images for
the standard method. Each test was performed 10 times. Table 4.4 presents the
average PSNR obtained by the side decoders and the central decoder, for method
I and IT at different bit rates and for different transmission angles (different ber).
We can conclude from this table that the proposed method is better suited for
lower ber, while the standard method is better suited for higher ber. Figures 6
and 7 present one of the simulations, at 2 bpp when transmission at an elevation
angle of 40° (0.0005 ber).

Side PSNR | Central PSNR
2 bpp
Method I 32.71 40.26
Method II 31.29 38.74
3 bpp
Method 1 33.04 42.27
Method 11 31.62 38.82

Table 5.1: PSNR values for Nimes image when considering transmission at an
elevation angle of 40° (0.0005 ber).
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Side PSNR | Central PSNR
2 bpp
Method I 33.92 37.76
Method 11 31.88 39.48
3 bpp
Method 1 32.77 39.60
Method 11 31.84 40.12

Table 5.2: PSNR values for Nimes image when considering transmission at an
elevation angle of 30° (0.001 ber).

5.7 Conclusions

We propose a method of joint source-channel coding for quincunx images. The
presented method is designed to get the best image quality after transmission
over satellite channel.

Systems using a pair of CCD linear arrays in a quincunx arrangement to im-
prove resolution treat each image independently, disregarding the highly redun-
dancy between them. In the present work we take into account the redundancy
between the two CCD arrays when performing joint source-channel coding. Fur-
thermore, taking into account the satellite model characteristics presents a good
trade off quality-robustness comparing with standard methods using FEC codes.

To make comparisons we also adapt the MDBA presented in previous chap-
ters 3 and 4 for quincunx images. The proposed MDC for quincunx images only
over-performs the MDBA when a very noisy channel is attended. This can be
explained by the fact that the two CCD arrays that are used in the new MDC
are highly redundant while the MDBA starts reducing this redundancy and only
then join some controlled redundancy depending of the present channel state.

The method presented here and the MDBA adapted to quincunx images was
presented in [135].
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Figure 5.8: Nimes image compressed to 2 bpp when considering transmission at
an elevation angle of 30° (0.001 ber). Standard MDC method. Side decoder 1.

Figure 5.9: Nimes image compressed to 2 bpp when considering transmission at
an elevation angle of 30° (0.001 ber). Standard MDC method. Side decoder 2.
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Figure 5.10: Nimes image compressed to 2 bpp when considering transmission
at an elevation angle of 30° (0.001 ber). Proposed MDC method. Side decoder
1.

Figure 5.11: Nimes image compressed to 2 bpp when considering transmission
at an elevation angle of 30° (0.001 ber). Proposed MDC method. Side decoder
2.



5.7. Conclusions 111

Figure 5.12: Nimesimage compressed to 2 bpp when considering transmission at
an elevation angle of 30° (0.001 ber). Standard MDC method. Central channel.

Figure 5.13: Nimesimage compressed to 2 bpp when considering transmission at
an elevation angle of 30° (0.001 ber). Proposed MDC method. Central channel.
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Conclusions

The Multiple Description Coding (MDC) is a particular joint source and channel
coding method whose main idea is to generate multiple independent descriptions
of the source such that each description independently describes the source with
a certain desired fidelity. When more than one description is available at the
decoder side, they can be combined to enhance the quality. The MDC appears
in the 80’s to solve a problem related with packet losses. Moreover, almost all
multiple description codes to date assume the existence of multiple independent
on-off channels between the transmitter and the receiver (ex: Internet).

Several approaches of Multiple Description Coders were created since the ap-
pearance of the first practical coder in 1981 by Jayant and Christensen, [80, 81].
Standard MDC approaches (MDSQ, MDTC) involve the design of specific trans-
forms or quantizers that have to be matched to the desired level of protection.
In these schemes, adapting to changing network conditions would entail having
encoder and decoder both change the transform and/or quantizers they use.
These approaches are thus limited in their ability to adapt to changing trans-
mission conditions. The last MDC approach (using explicit redundancy) tries
to overcome this limitation. This MDC exploit the natural correlation between
symbols for reconstruction. Explicit redundancy techniques have the additional
advantage of providing very simple mechanisms for adaptation to changing net-
work conditions.

In this dissertation a Multiple Description Coder is proposed (MDBA) that
belongs to the new MDC approach. The proposed MDBA automatically adapts
the explicit redundancy to changing networks transmission. This is done by bit
allocation allowing the automatic adjustment of the encoder and not needing
any changes to the decoder.

The advantage of the proposed MDBA over the former MDC, in the new
approach, is the dependency of the explicit redundancy of the channel model
and state. This propriety made possible the development of a MDC perform-
ing well in different channels environments and adapted even for time varying
channels. The proposed MDC can be used for ideal MDC channel environment
and for packet lossy channels, as the other methods into this approach, but
can also be automatically adapted to any other channel model. The proposed
MDC can then be used for any application involving transmissions over unreli-
able channels. It is specially suited for real time application, where typical error
control techniques as ARQ, FEC or even both together cannot be easily adapted.
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We start this dissertation presenting several applications of the new world
of communications and the methods usually used to improve reliability of com-
munications. We explain why for some of these applications it could be ad-
vantageous to use an MDC method instead of the standard methods usually
used. This is presented in part I chapter (chapter 1) that pretend to explain
our interest in the MDC methods. In part I chapter 2 we present the MDC
history. The MDC evolutes since the 80" s. We present the history of MDC
since is appearance to the new MDC approach. We expose how this evolution
matches nowadays communications.

In the second part of the manuscript, chapter 3 and chapter 4 we present the
proposed MDC approach. We call it MDBA since the redundancy is dispatched
while performing the bit allocation procedure.

The chapter 3 present the general proposed MDC and compare it with the
existent ones to prove the effectiveness of the proposed method. It is based
on the Discrete Wavelet Transform (DWT) and on an efficient bit allocation
technique. The different MD are defined when setting the bit allocation of each
subband. We name it Multiple Description Bit Allocation (MDBA). The bit
allocation for the successive sets of coefficients can be performed with respect
to either rate or quality constraints. In both cases, the goal is to find a set of
quantizers to apply in each subband whose performance lies on the convex hull
of the global rate-distortion curve [161, 142, 54, 114]. To model the rate and
distortion we use a non-asymptotic theoretical model for both rate and distortion
[127]. The rate and distortion depends on the quantization step but also on the
probability density function (pdf) of the wavelet coefficients. Assuming that
the probability density model is accurate, this method provides optimal rate-
distortion performances.

Chapter 4 shows how to automatically adapt the proposed MDBA to channel
characteristics using channel information to inject redundancy in the different
descriptions. For that, we take into account the Shannon theorem (Theorem 10)
[156], and propose to dispatch the redundancy using the equivocation H,(z).
Indeed, in this theorem, Shannon states that the equivocation H,(z) is the
amount of redundancy that the decoder needs to correct the received message.
We present in chapter 4 several application of the proposed MDBA for different
channel transmissions. This serves to prove the channel adaptability of the pro-
posed MDBA. The presented applications involve image or video transmission.
Since the MDBA is based on DWT we can extend the presented coder to video
by adding to the 2D DWT a 1D DWT in the time direction. This 3D subband
coding of video provides encouraging results compared with MPEG. Further-
more there exist efficient 3D scan-based DWT and 3D scan-based motion com-
pensated lifting DWT for video coding [120, 121, 122, 192, 168, 103, 5, 18, 4]
that are well suited for real time applications. Scan-based wavelet transform
algorithms are meant to progressively compute the DWT to get low memory
implementations of wavelet transforms.

The 3D scan-based DWT transform allows us to develop a stripe-based
MDC. In this way we can adapt the redundancy parameter, presented in section
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4.3, to the channel state while coding. Thus, the proposed method automati-
cally adapts the coding process to time varying states. The proposed MDBA is
then suitable for video transmission over time-varying channels as can be seen
by presented simulations.

The performed simulations are compared with an SDC with Turbo Codes.
The Turbo Codes are very powerful codes used in channel coding. We could see
in the results the high ability of the proposed method in adapting to different
channel models.

Also in chapter 4 was proposed a method that explores arithmetic coding
through what we call a Smart Arithmetic Coding to provide synchronization and
minimize the error propagation in the case of channel errors.

In chapter 5 we present the proposed MDBA when used for quincunx images.

A way to improve image resolution is to combine a pair of CCD linear arrays
in a quincunx arrangement. Because each CCD array yields a classical image
according to a square grid the systems using such acquisition model are tempted
to treat each image isolated, disregarding the high redundancy between them.

We proposed a joint source-channel MDC developed specifically for the quin-
cunx images. We compare its performance with the above MDBA. It reach the
best results for high levels of noise.

I finish this manuscript with the feeling that there is much more to be done.
The proposed MDBA could and should evolute. Several applications can use
advantageously the proposed MDBA. In the following we present some of the
perspectives for the MDC future.

Perspectives

The generalization of the proposed method to n channels is an important point
for the evolution of the MDBA. This generalization should consider transmis-
sion using similar channel models, but with different characteristics (different
error probabilities). This problem really involves different points. The first one
is the decision of the optimal number of descriptions to be used when a specific
probability of error is expected. Other point is how to dispatch the redundancy
between the different descriptions. For the first point we could use the work of
Sagetong and Ortega in [148]. For the second we are making progresses.

Another important point for the MDBA evolution is related with the redun-
dancy parameter. Alternatives to be used when the channel has memory and
where the channel capacity reflects long term behavior are very important for
future applications of the MDBA.
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Other study to be done is the usage of motion compensation in video appli-
cations.

In the simulations presented we did not consider motion compensation. We
could easily join motion compensation, using motion compensated temporal
wavelet decomposition [5, 18], if we do not consider the transmission of vector
motion in the MDC process (considering for instance that the vectors are trans-
mitted using dedicated transmissions, that means without losses). Nevertheless,
this process does not change the MDC itself. This is the reason why we were
not interested to do it in the present work.

Consider the vector transmission with the rest of the data, implies differen-
tiated protections. It is natural to think that motion information should have
special redundancy when compared with other data. We intend to introduce
vector transmission in future MDBA video applications.

These are some of points that will provide an evolution of the proposed
MDBA. But as we said before some perspectives are simply the use and even-
tually adaptation of the proposed MDBA to new applications. Several new
applications of the new mobile communication and multimedia communication
appear in the last decade. The applications using data transmission over net-
works or diversity systems can take advantages in MDC usage.

For instance, in chapter B we present an application of the proposed MDBA
for video streaming for wired or wireless networks.

The presented MDBA is effective for applications demanding a feedback-
based encoder, as peer-to-peer video conferencing, wireless video, etc. However
it does not fit in a real video streaming system where a server may be serving
thousands of clients simultaneously. Nevertheless, the MDC in general and the
MDBA in particular are well suited for streaming application due to their error
resilience capabilities in packet loss transmissions and since the MDBA, for a
given bit rate, dispatches the amount of redundancy on the different descriptions
by tuning a redundancy parameter.

We explain the reasons that made the proposed MDBA suitable as base coder
for video streaming. The proposed video streaming for wired or wireless net-
works present rate scalability by using multiple redundant representations and
provide adaptability to time varying channel conditions. The main advantages
of the proposed scheme when compared with the commercial SDC schemes are
that the proposed video streaming scheme is error adaptable, it avoids retrans-
mission and does not suffer from synchronization or error propagation problems.
These last characteristics are due to the independence of the descriptions, and
also due to the usage of the Smart Arithmetic Coding.

The presented result serves to prove the capability of the proposed scheme
in adapting to varying networks.

We present the video streaming method proposed here in [130, 132] for wired
and wireless communications, respectively.
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Appendix A

UMTS channels

The UMTS standard (Universal Mobile Telecommunications System) was cre-
ated by the ITU organism (International Telecommunication Union). This or-
ganism pretends to find the standards and recommendations for future genera-
tion of mobile communications. They intend to respond to the new exigencies of
systems capacity and performances. This effort results in the third generation
mobile communication. The UMTS standardization in Europe starts in the 90’
s in the European Telecommunication Standard Institute (ETSI). Nowadays,
the UMTS technology is developed by the 3GGP (3"? Generation Partnership
Project).

3G is characterized by high-speed, high-bandwidth services that support a
variety of applications, including high quality voice, high data rate, multimedia
and video. The higher channel capacity (these systems allow bit rates that
goes to 10Mbits/s in UMTS, compared with the 9.6 Kbits/s in GSM) is due to
the introduction of spectrum spread technology (WCDMA). These systems are
modulated accordingly the user needs or the new application needs as mobile
video conference, the files transfer, the mobile Internet etc. These multimedia
services need great flexibility systems: it is important to take care of services
needing different bit rates and different reception quality. These services should
be efficiently multiplexed to optimize the system resources.

France Telecom developed UMTS propagation models. These models repro-
duce the pertinent channel characteristics; time varying multipath channels are
simulated. The emphases were given to the impact of different parameters such
as the binary data rate, the mobile velocity, the imperfection of the channel es-
timation, etc. The numeric part of the baseband reception chain of a downlink
communication (from the station to the mobile) was entirely simulated.

The test channels [44] were defined in the UMTS norm. There were devel-
oped two channel models:

e The static Gaussian channel (or AWGN) as reference channel,

e The multipath channel for different fading profiles.

Three terrestrial models with multipath propagation are defined by ETSI
[44]. These test channels present six significant separable paths, Rayleigh fading

amplitudes, uniform phases (between 0 and 2 7), and quasi-static paths.
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Indoor channel A & B Corresponding to small cells (pico cells) with weak
transmission power, particularly office interiors, base stations, pedestrians
with reduced mobility, etc. The variable fading parameters depends on
dispersion and attenuation dues to walls, floor, and metallic structures,
etc. The indoor channel is almost similar to a fading situation with a
single path, because the delay of propagation are confined to the chip
duration (approximately).

Outdoor to Indoor and Pedestrian channel A & B (It is named simply
by Pedestrian A & B in the follows). Corresponds to building exteriors and
pedestrians with greater displacement velocity than in Indoor case. The
fading variations level depends of displacement velocity and of reflection
from moving vehicular. The Pedestrian B channel fade over approximately
one symbol (flat fading situation).

Vehicular channel A & B Corresponding to large cells with most important
transmission power. The fading nature depends on environment type:
urban, rural, mountain, etc. and also on the vehicle velocity. Different
of Indoor and Pedestrian channels, the Vehicular channel B extent’s over
four symbols (selective frequency fading situation).

The tables A.1, A.2 and A.3 resume, for the six significant path, the temporal
delay relative to the first path and the mean power relative to the higher powered
path. We recall that the temporal duration of one chip (7.) is approximately
260 nsec.

Indoor A channel Indoor B channel
Path
Relative delay | Mean power | Relative delay | Mean power

[nsec| [dB] [nsec| [dB|

1 0 0 0 0
2 50 -3.0 100 -3.6
3 110 -10.0 200 -7.2
4 170 -18.0 300 -10.8
5 290 -26.0 500 -18.0
6 310 -32.0 700 -25.2

Table A.1: Indoor A & B multipath channel parameters.



Pedestrian A channel Pedestrian B channel
Path
Relative delay | Mean power | Relative delay | Mean power
[nsec] [dB] [nsec] [dB]
1 0 0 0 0
2 110 -9.7 200 -0.9
3 190 -19.2 800 -4.9
4 410 -22.8 1200 -8.0
5 - - 2300 -7.8
6 - - 3700 -23.9

Table A.2: Pedestrian A & B multipath channel parameter.

Vehicular A channel Vehicular B channel
Path
Relative delay | Mean power || Relative delay | Mean power
[nsec] [dB] [nsec] [dB]
1 0 0.0 0 -2.5
2 310 -1.0 300 0
3 710 -9.0 8900 -12.8
4 1090 -10.0 12900 -10.0
5 1730 -15.0 17100 -25.2
6 2510 -20.0 20000 -16.0

Table A.3: Vehicular A & B multipath channel parameters.

The profiles of Doppler spectra (the Doppler effect is due to transmitter or
receptor movements) affecting each path are defined as in [44]:

e Classic Doppler for the six paths for the Pedestrian A & B and Vehicular
A & B channels.

e Flat Doppler, defined by S(f) = ﬁ, |f| < fp, for the six paths of Indoor

A & B channels.

The A.4 table resume the maximum values for binary bit rates and displace-
ment velocity for each one of the test environments.
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Test environment Maximum bit rate | Maximal velocity
(channel models)

Vehicular A & B channel 144 Kbits/s 500 Km/h

Pedestrian A & B channel 384 Kbits/s 120 Km/h
Vehicular A channel

Indoor A & B channel 2048 Kbits/s 10 Km/h

Pedestrian A channel

Table A.4: Bit rate and velocity characteristics for each type of UMTS environ-
ment.

The transmitted signals are submitted to different fading forms.

e Multiple Access Interference (MAI): the interference of other users in the
propagation channel (in the multiple access case by codes multiplexing).

e The thermal noise due the antenna or other components from the reception
chain (amplifiers, filters, etc.).

e Sources of exterior radiation: industrial and urban parasitic emissions,
atmospheric noise, etc.

e Interference sources extern to the system (as pirate emissions in tight
band; this ones are not much harmful for spread spectra systems. They
are note taken into account in the present simulator)

The different intern and extern noise contributions will be taken into account
as an unique noise source located upstream the receptor. This noise is supposed
to have a spectral density with uniform power (additive white noise). This can
be model by a Gaussian random process, with zero mean, independent from
the emitted signal, and will be called AWGN. This one will be quantified by
his spectral density with mono-lateral power Ny [Watt/Hz| centered to 2GHz
frequency and 3.84MHz band width. Thus, the reception quality is expressed in
function of the Ej /Ny relation (relation between the mean of the received signal
by the spectral mono-lateral noise density bit information).

As diversity technique, for better quality reception with UMTS, is used path
diversity. The table A.5 resumes the number of maximal separable paths for
each channel type, between the test models of 3GPP. The frequency diversity
is intrinsic to signals transmitted by a wide band.
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Model channel Number of | Coherence | Maximum number
3GPP paths band of separable paths
in the model for a bit rate of
4.0 Mchip/s

Indoor A channel 6 4.3 MHz 1
Indoor B channel 6 1.6 MHz 3
Pedestrian A channel 4 3.5 MHz 2
Pedestrian B channel 6 250 kHz 17
Vehicular A channel 6 430kHz 10
Vehicular B channel 6 53 kHz 78

Table A.5: Coherence band and maximal number of separable paths for the
3GPP test models UMTS environment.

When received the different de-correlated versions from the signal, they are
combined into an only optimal signal. The optimization criterion of this com-
bination is the received signal SNR, or simply the reception power. The used
technique is the MRC (Maximal Ratio Combining). This technique combines,
by ponderation, the different received versions. Thus, the combined signal is
the sum of the different diversity branch, each one ponderated with a value
depending of his SNR or his amplitude. This is the most complex technique.
An phase and amplitude estimation is needed for each version of the signal.
However, this technique present the better quality reception. This technique is
adopted as adapted filter.

For more detailed information about the simulator or the UMTS models see
[50, 1, 2, 36, 74, 138, 44].
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Appendix B

Streaming video using multiple
description bit allocation

In this chapter we present a TCP-Friendly streaming system based on the
MDBA presented in chapters 3 and 4 of part 2.

Feedback-based encoders, as the MDBA, are effective in peer-to-peer video
conferencing, wireless video, etc, but they don’t fit in a real video streaming
system. Considering the server may be serving thousands of clients simultane-
ously, it is unrealistic to expect the server to encode and output thousands of
bitstreams that are adapted to each client.

This chapter presents the proposed MDC for video streaming that is rate
scalable and quality adaptable. It uses multiple redundant representations to
allow rate scalability and adaptability to varying networks. This is done without
requiring computation at the media server. Furthermore, the proposed system
avoids some problems related with layered approaches.

We start this chapter presenting video streaming related problems in section
B.1. Also in this section, we present an overview of the proposed method and
the main advantages of this method when compared with the existent state of
the art.

The rest of the chapter is organized as follows. Section B.2 presents some of
the most important existing streaming approaches. In section B.3 we propose
a streaming scheme using the MDBA presented in chapter 3 of part 2. In this
section we explain how we use the MDBA to design a streaming scheme and we
present the advantages of using the MDBA. A general streaming scheme and
some server specifications are also presented. Results are presented in section
B.4 and conclusions are given in section B.5.

B.1 Introduction

The use of video streaming over Internet knew an enormous increase in the past
few years being the design of Internet video streaming a challenging task due to
the unpredictable and varying nature of network conditions. Furthermore, the
increasingly access of Internet from wireless, often mobile terminal, comes up
with additional problems. If in the former problem is considered that packets
arriving to client are uncorrupted, in the case of wireless communications this
is not guaranteed. Thus, to the problems related to Internet communications
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(bandwidth, delay jitter and loss rates) we have an additional problem that
demands effectiveness in presence of channel failures when performing wireless
streaming.

Video streaming, when the network is afflicted by unpredictable and time-
varying losses and available bandwidth, involves several problems as presented
above. They can be resumed as rate adaptation and error control and recovery
[100]. Conventional approaches for dealing with losses for static data, such
as retransmission may not be possible in streaming context due to the real
time nature of the content. Thus, additional mechanism are needed to provide
streaming media delivery over Internet or wireless channels.

Commonly RTP protocols are used for streaming. RTP uses UDP as un-
derlying transport protocol and has, unlike TCP, no built-in congestion control.
This behavior has a potential congestion collapse problem. However, TCP trans-
port protocols are not suitable for real time transmission due to the low latency
objectives of such applications. One way to ensure fair competition with TCP
for bandwidth is performing TCP friendly rate control at the server. The server
ensures that the RTP packets are sent at a rate no higher than what is regarded
as a TCP friendly share of the available bandwidth. TCP-friendly rate adapta-
tion is provided in this case by the recently proposed TCP-friendly rate control
(TFRC) protocol [49, 72].

In streaming video the client performs a demand to a server that transmits
media packets over a network that serves fairly several clients. The server can
implement intelligent transport mechanisms, by sending out the right packets
at the right time, but the amount of computation that it can perform for each
media stream is very limited due to the large number of streams to be served
simultaneously. It is unrealistic to expect the server to encode and output
thousands of bitstreams that are adapted to each client. Even the automatic
conversion of the bit rate of a pre-encoded video bitstream, known as transcoding
[125, 78, 56] is too complex.

Therefore, the task to compress video signal is left to the encoder. This task
has to be done without the a priori knowledge of the channel conditions (band-
width and loss rates). This is why representations that allow rate scalability
must be adapted to varying network throughput without requiring computation
at the media server. Multiple redundant representations are an easy way to
achieve this task and will be used in the proposed scheme. Similar approaches for
switching among different streams for conventional single description streaming
are the actual industrial applications. RealSystem G2 was the first to support
dynamic stream switching under the name of SureStream [97, 117]. The idea
is that the server can switch among multiple streams to serve a client with one
that best matches the client’s available bandwidth.

At a panel on the “Future of Video Compression” at the Picture Coding
Symposium held in April 1999, it was agreed that rate scalability was important
for media streaming applications. It also appears that one may want to design
a compression scheme that is tuned to the channel over which the video is
transmitted [170]. MDC were considered as an option for this last task.

The MDBA, presented in previous chapters 3 and 4 of part 2, for a given
bit rate dispatches the amount of redundancy on the different descriptions by
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tuning a redundancy parameter. The proposed scheme is composed of multi-
ple descriptions, generated by the MDBA, and is rate and quality adaptable.
Switching among the multiple pre-encoded descriptions provide adaptability to
changing bandwidth, such as in the industrial applications. But in the proposed
video streaming scheme, switching among the multiple pre-encoded descriptions
also provides adaptability to time varying channel conditions.

The multiple pre-encoded descriptions generated by the MDBA are indepen-
dent and error resilient. Moreover, retransmission is avoided decreasing network
congestion, and suppressing additional delays (the server will not have to wait
for packet delivery information). These are two problems of standard single
description streaming schemes that use layered representations. The standard
single description streaming schemes, based on DCT and using predictive coding
in temporal domain have additional problems when transmitting over wireless
channels. These problems are synchronization and error propagation. When an
error occurs it propagates to other frames due to predictive coding. For exam-
ple, the emerging MPEG-4 video standard (see [41, 126] for details) supports
mechanisms such as resynchronization markers, data partition, and reversible
VLC for intraframe error control. When these features are implemented in a
compressed bitstream, the decoder can regain synchronization in case of bit er-
rors, and continue to decode a video frame even if a portion of the frame is
damaged or lost. However, any intraframe error control technique would be-
come useless if a whole video frame is lost completely what is often the case
in low bit rate video streaming. The standard H263+ also has several error
resilience modes at source coding level, including Slice-Structured Mode, Inde-
pendent Segment Decoding Mode and Reference Picture Selection Mode. The
first two techniques are designed for intraframe error control, thus, they are not
very effective in controlling errors that result from a packet loss in video stream-
ing. The last technique involves a feedback-based encoder that, as mentioned
before, is inadequate for video streaming.

Our MDBA coder uses wavelets in temporal domain and uses the smart
arithmetic coding presented in previous chapter 4 to avoid problems related
with synchronization and error propagation.

Experimental results shows that our system adapts well to time varying
bandwidth and to time varying channels.

B.2 Existing streaming approaches

Almost all current approaches use Forward Error Correction (FEC) and/or Au-
tomatic Repeat reQuest (ARQ). For instance, in [163] a two-layer scalable video
coder combined with unequal error protection is used. In [141] a generalized MD
(N > 2 descriptions) coding through the usage of FEC codes for streaming video
was proposed. In [19] they use a hybrid FEC/ARQ approach known as incre-
mental redundancy. In this paper they compute the rate distortion optimized
transmission policy using the Iterative Sensitivity Adjustment (ISA) algorithm
introduced in [28]. The ISA algorithm involves estimation of the probability
that a single packet will be communicated with an error function of the expected



130 Appendix B. Streaming video using multiple description bit allocation

redundancy, or cost, used to communicate the packet. The [20] work is an exten-
sion of the work in [28]. It incorporates models for packet path diversity. Also in
[95] the authors exploits path diversity. In [105] a media layer representation for
transmission over current heterogeneous networks is used. The authors propose
a framework for scalable streaming media delivery, that involves a scheduling
algorithm called expected runtime Distortion Based Scheduling (EDBS) which
decides the order in which packets should be transmitted in order to improve
client playback quality in the presence of channel losses. In [84] they use adap-
tive media playout to reduce the delay introduced by the client buffer. They
consider retransmission of lost media packets. To minimize retransmission in
[94] the authors use pre-stored representations of certain frames at the server
such that the chosen representation only uses previous frames, as reference,
received with very high probability.

The approaches above use standard video coders (MPEG-2/4, H.263). In
such schemes retransmission of lost media packets is essential for a video stream-
ing application over error-prone channels. Continuous video playout at the re-
ceiver can only be guaranteed if all packets are available due to the interdepen-
dency of successive video packets introduced by motion compensated prediction.
In [25] the three-dimensional (3-D) SPIHT with a new method of partitioning
the wavelet coefficients into spatio-temporal tree blocks is used to achieve er-
ror resilience. However, they had to sacrifice the progressiveness of the first
block of the bitstream to get error resilience. The method also has the problem
that if a portion at the beginning of the bitstream is lost they can not recon-
struct anything from the bitstream. This is also a problem of the above layered
approaches. Such approaches essentially prioritize data and thereby support in-
telligent discarding of the data (the enhancement data can be lost or discarded
while maintaining usable video). However the base layer bitstream is critically
important - if it is lost, then the other bitstream(s) are useless. Layered ap-
proaches do not seem to be adequate for Internet where all packets are equally
likely to be lost, so video can be completely lost if there is an error in the base
layer.

An alternative to layered methods are joint source and channel coding meth-
ods as multiple description coding. In MDC each description or MD stream is
independent of each other and is typically of roughly equal importance such
that, if either description is received it can be used to decode baseline quality
video, and both descriptions can be used to decode improved quality video.
This is in contrast to conventional video coders (e.g. MPEG-1/2/4, H.261/3/4,
which produce a single stream that does not have these MD properties; we refer
to these methods as single description coding (SDC).

A number of MD video coding algorithms have recently been developed,
which provide different tradeoffs in terms of compression performance and error
resilience [186, 177, 146, 7|.

Some MDC schemes dedicated to streaming video coding and using path
diversity have recently been developed. In [10] MD coding is used to code a
media stream into multiple complementary descriptions, which are distributed
across the edge servers in a Content Delivery Network (CDN). They exploit
path diversity provided by the different network paths that exists between a
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client and its nearby edge servers. Also in [8] a MDC is proposed, when path
diversity is considered. This coding scheme assumes that there are several par-
allel channels between the source and destination, and that each channel may
be temporarily down or suffering from long burst errors. Furthermore, the er-
ror events of different channels are independent so that the probability that
all channels simultaneously experience losses is small. These channels could be
physically distinct paths between the source and destination in, for example,
a wireless multipath network or a packet switched network. Even when only
a single physical path exists between the source and destination, the path can
be divided into several virtual channels by using time interleaving frequency
division, etc.

The proposed method uses MDC schemes, and it can easily be adapted to
take advantage of path diversity. Here, we introduce the method for the case
when only one path is considered.

B.3 Proposed MDC for video streaming

B.3.1 General proposed scheme

As we said above the proposed video streaming scheme uses multiple redundant
representations of the original signal. These multiple representations allow rate
scalability and adaptability to varying network throughput without requiring
computation at the media server.

Similar approaches for switching among different streams for conventional
single description streaming are the actual industrial applications. The problem
of such approaches are that they use standard coders, thus they present some
problems related with such coders.

We use the MDBA proposed in previous chapters 3 and 4 to generate the
multiple pre-encoded files. These different descriptions are independent and
error resilient. Moreover, retransmission is avoided decreasing network conges-
tion, and suppressing additional delays (the server will not have to wait for
packet delivery information). These are two problems of standard single de-
scription streaming schemes that use layered representations. The standard sin-
gle description streaming schemes, based on DCT and using predictive coding
in temporal domain have additional problems when transmitting over wireless
channels. These problems are synchronization and error propagation. When an
error occurs it propagates to other frames due to predictive coding. Our MDBA
coder uses wavelets in temporal domain and uses the smart arithmetic coding
presented in previous chapter 4 to avoid these problems.

In the following we will detail the proposed video streaming scheme based
on MDBA.

B.3.2 Generation of the multiple redundant representations

We divide our signal into sub-signals or Group Of Pictures (GOP) representing
the video at different time (for instance see figure B.1).
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Figure B.1: Signal division into sub-signals or Group Of Pictures (GOP)

For each GOP, the MDBA coder presented in previous part 2, chapters 3 and
chapter 4 is performed for different bit rate and redundancy parameters. Each
MDBA execution results in two descriptions (we call them in the following base
descriptions) adapted for a specific bit rate and channel state. The different
descriptions generated are downloaded into the server. The server possesses
several descriptions with the format presented in figure B.2 and organized as
presented in table B.1.

Each column in table B.1 presents descriptions adapted to a specific bit rate.
This means that each base description into the same column have been coded
with the bit rate parameter specified in the top of the column.

Each line in table B.1 presents base descriptions adapted to a specific channel
state. Thus, base descriptions into the same line has been coded with the
redundancy parameter specified in the left of the line.

Since each GOP is coded independently, it is possible to switch of descrip-
tion between GOP’s. Switching among these multiple pre-encoded descriptions
results in a rate scalable and time varying channel adapted scheme.

In the following we present the advantages of using the MDBA when gener-
ating the multiple redundant representations of the signal.
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GoP GOP 2 GOP 3 GOP N Redundancy: r1;
Bit Rate: b1 kbps.
GOP GOP 2 GOP 3 GOP N
Gop GOP 2 GOP 3 GOP N Redundancy: 12;
Bit Rate: b2 kbps.
GOP GOP 2 GOP 3 GOP N
— I - .
Gop GOP 2 GOP 3 GOP N Redundancy: r3;
Bit Rate: b3 kbs.
— I -
GOP GOP 2 GOP 3 GOP N
[ ]
[ ]
[ ]
GOP GOP 2 GOP 3 GOP N Redundancy: r...;
Bit Rate: b... kbps.
GOP GOP 2 GOP 3 GOP N
Figure B.2: Descriptions resultant from MDBA
Bit Rate
Redundancy 100Kbps 200Kbps e X Mbps
1 Description; 1,7 | Descriptiony q 2 Descriptiony 1,
Descriptions 1,1 | Descriptions 12 Descriptions 1.4,
0.5 Description; 31 | Description; 32 Descriptiony 3,
Descriptions 31 | Descriptions 32 Descriptions 3.,
0.1 Description; 51 | Descriptiony s 2 Descriptiony 5 ,,
Descriptiong 51 | Descriptions 5 2 Descriptions 5 5,
0 Descriptiony ,,,1 | Descriptiony ,, 2 Descriptiony .,
Descriptiony ,, 1 | Descriptiony y, 2 Descriptiony p, p

Table B.1: Different pre-stored descriptions for an interval time of video (for a

GOP).
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B.3.3 Advantages of using the MDBA

Video streaming systems have to deal with different problems:
e delivery constraints;
e time variable available bandwidth;
e time variable channel conditions.

Due to delivery constraints, retransmission should be avoided. Thus MDC
schemes are preferred to layered or multi resolution schemes since in the former
the descriptions are independent what is not true in other methods. The layered
or multi resolutions schemes need retransmission to work properly.

In the following we present some of the advantages of MDC in general and
of the MDBA in particular:

e In MDC methods, streams are independent. Thus, as soon as a stream
reach the decoder it can be decoded. The decoder does not need to verify
if other streams with higher priority had been already decoded as in lay-
ered approaches. Also due to the stream independence, retransmission is
avoided. The server does not need streams deliver information, since each
packet are independent from the others.

e It was shown in chapter 3 that high compression efficiency is achieved with
the MDBA coder. MDBA give similar results than SDC (without channel
coding) in the noiseless case. It was shown in chapter 4 that with the
MDBA coder, a long burst error or even the loss of an entire description
does not have a catastrophic effect. Since streams are error resilient, the
decoder can always use the received bitstream, unless it is completely lost.
In this last case the other streams will be entirely used.

e Time variable available bandwidth implies adaptability of compression pa-
rameters to vary the rate of the bitstream to available network bandwidth.
As presented in previous section, each MDBA execution is performed for
specific bit rate and redundancy parameters. Moreover, switching among
the multiple pre-encoded descriptions provide bit rate scalability, thus is
adapted to time varying available bandwidth.

e Time variable channel conditions implies adaptability of compression pa-
rameters to vary the redundancy in the bitstream to network conditions.
Since each MDBA execution is performed for specific redundancy parame-
ters switching among the multiple pre-encoded descriptions provide adapt-
ability of redundancy parameter to time varying channel conditions.

e Furthermore, our MDBA coder uses wavelets in temporal domain to avoid
error propagation problems. Bitstream synchronization is also very impor-
tant, since in wireless transmission we have no guarantee that the stream
reach the decoder without errors. We have presented in part 2, chapter 4
a smart arithmetic coding to provide synchronization and minimize error
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propagation in case of errors in the bitstreams. We use this smart arith-
metic coding in the present streaming system. Standard SDC streaming
schemes are based on DCT and use predictive coding in temporal domain.
When an error occurs it propagates to other frames due to predictive
coding.

In resume, the main advantages of using the MDBA as base coder in a
streaming system are streams independence that results in a retransmission
free system, streams resilience, automatic scalability to time variable available
bandwidth and automatic adaptability to time variable channel conditions.

We can conclude that the MDBA coder is well suited for applications attend-
ing high error rates or burst errors as is the Internet or the wireless streaming.

We present next some considerations of the base description generation.

B.3.4 Base descriptions

The base MDBA coder for a given bit rate dispatches the amount of redundancy
on the different descriptions by tuning a redundancy parameter.

We show in chapters 3 and chapter 4 that the MDBA coder with automatic
redundancy control is error resilient. This resilience is due to an automatic adap-
tation of the amount of added redundancy (through the redundancy parameter)
to the underlying channel error characteristics.

To automatically compute the redundancy parameter we proposed to use
equation (4.5) in chapter 4. Remark that using equation (4.5) redundancy 1
gives maximal robustness and redundancy 0 gives maximal quality. Interme-
diate values of redundancies give a trade-off between quality and robustness.
This equation uses channel model and state information to compute the best
redundancy to apply. Specific equations for BSC, Gaussian and 3G channels
are presented in chapter 4.

In this chapter since we use UMTS channels and/or Internet channels, the
computation of the channel capacity is performed using the Rayleigh model
(equation 4.11 in chapter 4 part 2) or using the two state Markov model by
Gilbert [55] and Elliot [42]. Moreover, as the UMTS channel simulator we
use considers QPSK modulation, we use equation (4.12) and equation (4.11)
to compute the redundancy parameter, when considering UMTS transmission.
For the internet simulator it was shown in chapter 4, section 4.7.4.3 that the
Markov model provides a good approximation in modeling the error process
at the packet level. We show that the redundancy parameter is in this case
computed using the channel capacity presented in equation (4.14).

Both equations (4.12) and (4.14) exploit channel state information. Us-
ing channel information when computing the redundancy to dispatch between
descriptions results in an MDC automatically adapted to channel models and
states.

We propose to use this MDBA coder to code the video signal at different bit
rates to get rate scalability.



136 Appendix B. Streaming video using multiple description bit allocation

B.3.5 Principle of the proposed scheme

We propose to download the different base descriptions generated for different
bit rates (adapted to variable bandwidth) and different redundancies (adapted
to loss rate) in the server. The descriptions will be organized as presented in
table B.1.

Each column in table B.1 presents base descriptions adapted to a specific
bit rate. This mean that all base descriptions into the same column has been
coded with the same bit rate. This bit rate is the one specified in the top of
the column. Moreover, each base descriptions into the same column have been
coded with different redundancy parameters.

We can see in figure B.3 the relation between distortion and bit rate. In
this example, redundancy parameter was calculated for internet channel with
10 % packet loss (transmission was not considered). This figure represents the
distortions associated with one line of the table B.1. As expected, for the same
redundancy parameter, higher bit rates imply smaller distortions.
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Figure B.3: Y component of QCIF Foreman video for bit rates from 100 to 500
Kbps. 10 % probability of packet loss.

Each line in table B.1 presents base descriptions adapted to a specific channel
state. Thus, base descriptions into the same line has been coded with the same
redundancy parameter. This redundancy parameter is the one specified in the
left of the line. Moreover, each base descriptions into the same line has been
coded with different bit rate parameters.

Figure B.4 shows the relation between distortion and packet loss. In this
example, bit rate was fixed at 200Kbps (transmission is not considered). This
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represents the distortions associated with one column of the table B.1. In this
figure, for the same bit rate, higher redundancy implies higher side distortion.
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Figure B.4: Y component of QCIF Foreman video compressed at 500 Kbps for
different probabilities of packet loss (i.e. different ry values). rny = 1 means
high packet losses.

The server has the only task to switch between lines and columns.

Switch between lines to adapt to the network conditions. To choose the
optimal line, the server computes the redundancy parameter based in equations
(4.12) and (4.14) as explained in section B.3.4.

Switch between columns to adapt to the bandwidth (when a TCP-friendly
application is pretended the server estimates the current TCP’s throughput and
sends the data bounded by this value). More details are presented in next
section, that give some server specifications.

Switching among the multiple pre-encoded descriptions provide adaptability
to time varying available bandwidth and to time varying channel conditions.

Since descriptions are independent all descriptions that reach the decoder
can be used to enhance the video quality. For its compression and synchroniza-
tion capabilities, the proposed streaming system based in the MDBA is suitable
for real time transmission.

B.3.6 Server specification

These multiple descriptions generated by the coder are downloaded to the server.
The server only has to choose sending out the right description at the right time
depending of channel conditions (bandwidth and loss rate).
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The server can choose the description with the bit rate that is more suitable
for each client and which redundancy is most adapted to the present loss rate.
Furthermore, the server can continue to send descriptions corresponding to the
same GOP of video but with less redundancy (better quality) when there is time
for it. With this scheme we avoid the added delay of methods using retransmis-
sion that have to wait for the packet delivery state. Then, the server will repeat
the above process for the next GOP of the video. The server will always start a
GOP with the most suitable redundancy for the present channel condition and
continues sending descriptions that will enhance the video quality.

The computation of the number of bits the server can send for each GOP
can be done based on the last packet delays as proposed in proposition 3.

Proposition 3 Let us define § as the interval of emission between two succes-
sive packets, rtt the average of the last packets delays and pbr the packet size
(in bits). Considering t the time we have to send the GOP, the number n of bits
to send in order to meet real time decoding is computed by:

< (t+0)(pbr) ‘

B.1
rtt + 90 (B-1)

Proof We call n to the number of bits we have time to send (based on previous

time delays). Considering we are sending packets with pbr bits, 1% will
be the number of packets we have to use to send the n bits. Considering
rtt the average of the last packets delays and ¢ the interval of emission
between two successive packets, equation (B.2) defines the time we need

to send these n bits.

n n
— X rtt + ——

— B.2
pbr pbrX5 0 (B.2)

If we consider the needed decoding time as initial buffering, we have ¢
seconds to send the n bits. Moreover, from equation (B.2) we can write
the inequality (B.3).

n

n
— X rtt +

0—0 <t B.
pbr pbr % < (B.3)

This inequality is easily simplified in the proposed equation to compute
the number of bits to send for a GOP, equation (B.1).

The server can use n in equation (B.1) to decide if it is possible to send
more descriptions with less redundancy or if it starts sending descriptions for
the next GOP in order to meet real-time decoding.

B.3.6.1 TCP throughput

To achieve fairness between TCP and non-TCP flows, and improve overall net-
work utilization, we use TCP throughput equation. The server estimates the
current TCP’s throughput and sends the data bounded by this value. The TCP
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throughput equation is given in B.4 as a function of packet loss rate (p) and
round trip time (rtt) as presented in [116].

1.22pbr

W blt/SeCOHd (B 4.)

TCPthroughput <

More precisely, if the client bandwidth is smaller than the TCP throughput,
the server uses this bandwidth to chose the right column in table B.1. Otherwise
it uses the TCP’s throughput.

The estimation of rtt and p parameters used above is done using feedback
information.

Thus, the rate control is done by the server that adapts the video rate to
the available bandwidth. This bandwidth is variable, but since we download
descriptions with different bit rates for each GOP, and these descriptions are
independent, server can adapt the video rate to variable bandwidth.

B.4 Results

For spatial decomposition our coder uses 9-7 biorthogonal filter [6] and a three
level decomposition. For temporal decomposition it uses the (2,2) filter and
performs a two level decomposition. For more coder specifications see chapter
4, section 4.5.

We present results obtained with the proposed MDC with and without re-
dundancy adaptability, in Figure B.5. We considered transmission over a Pedes-
trian UMTS channel.



140 Appendix B. Streaming video using multiple description bit allocation

BER(x 10-3

| "
) '
P 1,

AR

0€

(s) swn

Figure B.5: Silent video compressed at 200 Kbps and transmitted over a UMTS
simulator. Left column: without redundancy adaptability; Right column: with

redundancy adaptability.
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B.5 Conclusions

We proposed a streaming system that downloads multiple descriptions in the
server. The server switches among the multiple pre-encoded descriptions to
provide adaptability to time varying available bandwidth and to time varying
channel conditions. The proposed MDC video streaming system avoids problems
related with standard approaches.

Experimental results shows that our system presents rate scalability and
channel noise adaptability.

This is a work in progress. It already yielded the publications [130, 132] for
wired and wireless communications, respectively.
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Original images and videos

C.1 TImages

Figure C.1: 512 x 512 pixels Lena image.
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Figure C.2: 352 x 360 pixels CDD1 Nimes image.

Figure C.3: 352 x 360 pixels CDD2 Nimes image.
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Figure C.4: Quincunx Nimes image.
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C.2 Videos

Figure C.5: QCIF silent color video. Frames: 1, 11, 21, 31,...
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Figure C.6: CIF akiyo video. Frames: 1, 11, 21, 31, ...
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Codage a Description Multiple d’Images et de

Vidéos pour des canaux bruités

Résumé

Les travaux développés dans cette thése apportent un nouveau regard
sur les techniques de codage par descriptions multiples (MDC).

Nous proposons une méthode (MDBA) de codage MDC source/canal
conjoint robuste adaptée a la transmission d’images et de vidéos sur des
canaux non stationnaires. Le principal avantage de cette méthode est
qu’elle est bien adaptée pour des applications de transmission sur des
canaux peu fiables et variables dans le temps. De plus, grace a ses ca-
pacités de compression et de synchronisation, elle permet de faire de la
transmission en temps réel.

Nous montrons que la méthode proposée présente les meilleurs résul-
tats en terme de rapport signal a bruit et de qualité visuelle lorsqu’on la
compare avec d’autres méthodes de descriptions multiples issues de I'état
de ’art. De plus, elle s’avére bien adaptée pour des applications ou les
méthodes standard de controle d’erreur ne sont pas capables de s’adapter
facilement aux caractéristiques du canal.

La méthode est validée sur différents modeéles de canal (BSC, AWGN,
Internet, UMTS, satellite) dans le cadre de la transmission d’images et de
vidéos.

La méthode MDBA proposée est bien adaptée pour des applications
qui ont besoin d’un codeur qui utilise 'information venant d’un canal de
“feedback” comme par exemple “peer-to-peer video conferencing”, vidéo
sans fil, etc, mais s’avére insuffisante quand on veut faire du “streaming”
vidéo. C’est pour cette raison que nous avons développé un systéme dédié
au “streaming” de vidéo. Ainsi ce manuscrit termine avec une extension de
la méthode pour faire du "streaming" vidéo robuste aux erreurs du canal.
La méthode proposée permet a la fois de s’adapter & bande passante du
canal (débit variable) et de s’adapter aux erreurs de transmission liés au
niveau de bruit présent sur le canal.

Mots-clefs: MDC, adaptabilité, scalabilité, codage robuste, transmis-
sions variables, ondelettes, analyse multirésolution, allocation de débits.






Multiple Description Image and Video Coding
for Noisy Channels

Abstract

This PhD thesis provides a new ways of looking multiple description
methods (MDC).

We propose a robust joint source channel MDC method that is adapted
to the transmission of images and videos on non stationary channels. The
main advantage of this method is that it is well adapted for applications
implying transmissions using unreliable and variable channels. Moreover,
for its compression and synchronization capabilities it is appropriate for
real time transmissions.

We show that the proposed method present the best results, in terms
of signal to noise ratio and of visual quality, when compared with other
multiple description methods existing in the state of the art. Moreover,
it is well adapted for applications where the standard methods of error
control cannot easily adapt to the characteristics of the channel.

The method is validated on various channel models (BSC, AWGN, In-
ternet, UMTS, satellite) when considering image and video transmissions.

The proposed MDBA is well adapted for application demanding a
feedback-based encoder, as peer-to-peer video conferencing, wireless video,
etc, but it is insufficient in a real video streaming system where the server
may be serving thousands of clients simultaneously. It is that the rea-
son why we develop a system based in the MDBA but dedicated to video
streaming. The last chapter of this dissertation presents an extension of
the MDBA method to make streaming video robust to channel errors.
The proposed method is rate adaptable, as the actual commercial meth-
ods, and it is also quality adaptable that is presented in the literature as

an important characteristic of video streaming systems.

Keywords: MDC, adaptability scalability, robust coding, non sta-
tionary channels, wavelets, multiresolution analysis, bit allocation.



