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INTRODUCTION

Parmi les méthodes communément utilisées pour approcher numériquement des proble-
mes apparaissant en ingénierie, comme, par exemple, I’équation de Laplace, le systeme de
Maxwell ( [13-15,17,39]), la méthode des éléments finis est I'une des plus populaires. Dans
nombre de ces applications, les techniques adaptatives utilisant les estimateurs d’erreur a
posteriori sont devenues un outil indispensable. Ces estimateurs permettent de mesurer la
qualité de la solution calculée et fournissent une information pour controler I'algorithme
d’adaptation de maillage.

Estimateurs d’erreur a posteriori

Dans la méthode des éléments finis, on s’intéresse a l’erreur commise entre la solution
exacte et la solution approchée. En effet, on se donne une forme bilinéaire coercive B sur
un espace de Hilbert V' et on s’intéresse a un probléeme variationnel du type : étant donné
f, trouver u dans V' solution de

B(u,v) = (f,v),Yv e V.

On peut alors construire une solution discrete w, € Vj,, espace d’approximation de V,
satisfaisant
B(uh,vh) = (f, vh),Vvh € Vh,

et établir des estimations d’erreur a priori qui se présentent sous la forme
[u = unl| < F(h, u),

ou la fonction F' dépend de la solution exacte u et du pas h de la triangulation. Pour que la
méthode converge, il faut alors que la solution u soit suffisamment réguliere, et, en général,
cette solution exacte u n’est pas connue.

Les estimations d’erreur a posteriori, introduites en 1978 par Babuska et Rheinboldt,
permettent, elles aussi, de controler I'erreur exacte en en donnant une approximation, mais,
contrairement aux estimations a priori, sans nécessairement connaitre la solution exacte ni
sa régularité. Elles se présentent sous la forme

HU - Uh” S F(h,Uh,f)

ou la fonction F' peut se calculer explicitement et ne dépend que de la triangulation, de
I’approximation éléments finis u;, et de la donnée du probleme f. On note 7 le second
membre F'(h,uy, f), appelé estimateur d’erreur a posteriori. Il peut alors s’exprimer en
fonction de quantités locales, relatives aux éléments T de la triangulation 7, que I'on se
donne, en s’écrivant sous la forme :



En pratique, chaque indicateur local nr est calculé a partir de la solution discrete et des
données du probleme. Ces indicateurs peuvent alors donner un bon apercu de la répartition
locale de I'erreur et sont donc un outil intéressant pour I'adaptation de maillage.

On attribue a un estimateur certaines propriétés qui attestent de sa qualité. Ainsi, il
doit satisfaire trois conditions :

o fiabilité : ||u —up|| S Cn+&,C >0,
e cfficacité : n S Cllu —up| +£,C >0,

e localité : I'estimateur doit donner des informations sur la distribution locale de ’erreur,

ou £ est une quantité ne dépendant que du second membre f et des conditions de bord du
probleme et qui est négligeable devant ’estimateur. Ces propriétés indiquent que I'erreur
est globalement équivalente a l'estimateur d’erreur. L’efficacité représente 'optimalité de
I'estimateur c¢’est-a-dire la garantie que I’erreur obtenue est petite sans que le cott de calcul
ne soit trop élevé.

La qualité d’un estimateur a posteriori est mesurée par son indice d’efficacité corres-

pondant a . Si cet indice et son inverse restent bornés, quel que soit le maillage

|lu — up,
considéré, l'estimateur est dit efficace. L’optimalité d'un estimateur est d’avoir un indice
d’efficacité égal a 1 et si cet indice tend vers 1 quand la taille du maillage h tend vers 0,

I’estimateur est dit asymptotiquement exact.

En général, les bornes supérieures (fiabilité) et inférieures (efficacité) font intervenir
des constantes qui dépendent de la régularité des élements et/ou du saut des coefficients
intervenant dans les équations, et donc dans la forme bilinéaire, mais cette dépendance
est rarement donnée. Le produit de ces constantes mesure la qualité de 'estimateur et
si ’équation contient des parametres critiques, comme par exemple, si elle est perturbée
singulierement, cette quantité doit rester bornée méme si le parametre prend des valeurs
extremes. L’estimateur est alors dit robuste si les constantes apparaissant dans les bornes
inférieures et supérieures sont uniformes par rapport aux coefficients intervenant dans les
équations.

Il existe différents types d’estimateurs d’erreur a posteriori et on peut notamment ci-
ter les estimateurs de type résiduel [9,19,39,45,49], les estimateurs d’erreur hiérarchiques
[3,6-8] ou encore les estimateurs basés sur la résolution de problemes locaux [3,29]. Les
estimateurs résiduels se calculent a partir des sauts du flux discret a travers les interfaces
de la triangulation tandis que les estimateurs basés sur des flux équilibrés font intervenir
la résolution sur des patches d’éléments de problemes de type Neumann qui s’expriment
en fonction de la solution approchée et la minimisation d’une fonctionnelle.



L’intérét pour de telles estimations est principalement du a la volonté des ingénieurs
d’obtenir des résultats numériques précis sans que le cout de calcul soit trop élevé. Afin
d’optimiser les calculs, les estimations a posteriori permettent de raffiner certaines parties
de la triangulation en fonction de la solution approchée. L’adaptation de maillage est donc
devenu une outil important dans I'analyse numérique des équations aux dérivés partielles
car la performance d’'une méthode de résolution numérique est étroitement liée a la qualité
du maillage.

Maillages adaptatifs

Lorsqu’on calcule numériquement la solution d’une équation, on est amené a construire
successivement des maillages et a résoudre les systemes linéaires associés. On se heurte
ainsi au colit des calculs issus de ces résolutions car les matrices des systemes contiennent
de plus en plus de degrés de liberté. On cherche alors a réduire ce nombre de degrés de
liberté en imposant un raffinement uniquement en certaines régions du maillage. En ef-
fet, grace aux estimateurs d’erreur a posteriori et notamment aux indicateurs locaux, on
connait la répartition de l'erreur et 'on sait atteindre uniquement les éléments ou elle est
la plus élévée.

On introduit alors une procédure de raffinement, basée sur ces indicateurs, pour raffiner
localement le maillage et la procédure itérative fonctionne comme suit : on parcourt tous
les éléments du maillage et lorsqu’un indicateur local iy est jugé trop grand sur un élément
de la triangulation, cet élément est marqué pour étre raffiné. On peut alors imposer un
angle minimal, interdisant aux triangles de s’aplatir, c’est-a-dire que les éléments de la
triangulation doivent toujours avoir des angles plus grands que cet angle minimal, et on
raffine, dans le cas bidimensionnel, un élément suivant trois possibilités :

e soit cet élément sera coupé en deux, si 'angle minimal a respecter le permet,

e soit il sera coupé en trois, si I’angle minimal a respecter le permet,

e soit il sera coupé en quatre triangles.

Pour chaque triangle divisé, il faut alors marquer ses voisins afin qu’ils soient eux-mémes
coupés, suivant les mémes criteres, afin que le maillage reste conforme.

Méthode de type Galerkin discontinue

Dans la méthode des éléments finis, on parle de méthode de Galerkin, et on la dit
conforme, lorsque que 'on choisit de calculer la solution élément fini u;, dans un sous-
espace Vj,, de I'espace V', contenant la solution exacte u. La solution uy, construite éléments
par éléments, vérifie alors des propriétés de continuité aux interfaces entre les éléments.



Lorsqu’on décide de prendre la solution u; dans un espace V}, qui n’est plus inclus dans I’es-
pace V', on parle alors d’approximation non conforme. On ne s’assure plus une continuité
complete entre les éléments mais la solution approchée peut garder une certaine continuité
en quelques points des interfaces.

Introduite en 1973 par Reed et Hill, la méthode de type Galerkin discontinue correspond
a une approximation non conforme et repose sur le choix d’'une base de fonctions disconti-
nues d’'un élément a l'autre. La convergence de la méthode est assurée par des contraintes
imposées aux interfaces entre les éléments. La solution approchée n’est alors plus continue
et 'ordre d’approximation peut étre choisi arbitrairement dans chaque élement.
La discontinuité de la représentation permet de n’'imposer aucune contrainte sur le maillage.
En particulier les maillages non-conformes sont autorisés.

Plan de la these

Dans le cas de I'équation de Maxwell en régime harmonique, relativement peu de
résultats existent sur les estimations d’erreur a posteriori; quelques approches ayant cepen-
dant été récemment développées pour ce cas ( [9,40,45,49]). Ainsi, on peut citer Monk qui
soulignait dans son livre [40] que, pour I’équation de Maxwell, les constantes intervenant
dans les estimations d’erreur a posteriori et leur dépendance en fonction des coefficients
n’avaient jamais été explicitées. C’est notamment a ce probleme que nous nous sommes
attaqués.

Dans le chapitre 1, nous parlerons d’estimateurs de type résiduel dont nous étudierons
la dépendance en fonction des coefficients de 1'équation. Nous présenterons d’abord les
équations de Maxwell, le probleme continu et le probleme approché par des sous-espaces
conformes, puis nous traiterons séparément, dans un premier temps, le cas de coefficients
constants puis, dans un second temps, le cas de coefficients constants par morceaux. Le but
est d’y exprimer les bornes supérieures et inférieures en fonction de normes appropriées.
Nous serons alors amenés a prouver des estimations d’erreur d’interpolation et pour cela a
introduire un nouvel opérateur d’interpolation du type Clément/Nédélec. Nous préciserons
la dépendance des constantes intervenant dans les bornes en fonction de la variation des
coefficients.

Dans le chapitre 2, notre approche consiste a utiliser celle des flux équilibrés présentée
dans [3,13] et nous y proposerons des estimateurs pour des équations de réaction-diffusion
et pour le systeme de Maxwell. Ainsi, pour ’équation de Laplace, I'idée principale est de
construire un champ de vecteur j,, approximation du champ des contraintes,et d’utiliser
le terme 7, — Vuy, comme estimateur, u;, étant 'approximation élément fini de la solution
exacte. Les termes d’ordre zéro, importants en pratique, présentent alors une difficulté
supplémentaire, surtout dans le cas de Maxwell, et qui est ici traitée. En effet, dans ce



cas, il faudra introduire une seconde approximation ¢, qui prend en compte le fait que
I'approximation élément fini (basée sur les éléments finis de Nédélec de plus bas degré) ne
respecte pas la contrainte relative a la divergence; cette deuxieme approximation n’ayant
pas besoin d’étre introduite s’il n’y a pas de terme d’ordre zéro.

Dans le chapitre 3, nous présenterons un bilan des chapitres précédents en établissant
une comparaison, au travers de tests numériques sur des solutions particulieres présentant
des singularités typiques (couche limite, singularité de coin), des estimateurs construits
pour I’équation de Maxwell. Nous établirons notamment, sur des algorithmes d’adaptation
de maillages, les différences entre les maillages obtenus successivement pour les différents
estimateurs lors d’'une méme procédure de raffinement.

Dans le chapitre 4, nous proposerons ’extension, pour I’équation de diffusion, des es-
timateurs équilibrés, pour des méthodes éléments finis de type Galerkin discontinues, la
difficulté majeure restant actuellement, pour cette méthode, la gestion du terme d’ordre
z€ro.

Pour tous nos estimateurs et dans chaque chapitre, nous présenterons des tests numériques
qui valident les résultats théoriques.

Notons que les chapitres 1, 2 et 4 correspondent a quatre articles acceptés ou soumis.
Nous avons donc gardé la structure générale de ces articles; seules les références ont été
regroupées dans une bibliographie commune.






Chapitre 1

Residual based a posteriori error
estimators for the heterogeneous
Maxwell equations

1.1 Setting of the problem

Let O = Q x I C R? x R be a bounded domain of R* with a polygonal boundary 90.
The classical Maxwell equations are given by

OB+ curlé =0 in O,
divD=p inO, (1.1)
0D —curlH=—-7J in O, '
divB=0 inO,

where £, D, B, H and J are vector functions of position z in R® and time ¢ in R.

&€ and H are the electric and magnetic field intensities, D and B, are respectively the
electric displacement and the magnetic induction. J(-,¢) is the source current density
which is supposed to satisfy

div J(-,¢) =0 in Q,V¢ > 0. (1.2)

By setting D = €€ and B = uH where € and p are positive, bounded, scalar functions,
respectively called the electric permittivity and the magnetic permeability, we can find
relationships between £ and H and obtain second-order Maxwell’s equations depending
either on the magnetic field H or on the electric field £. In this paper, we arbitrary choose
to eliminate H rather than &£.

1.1.1 Quasistatic electromagnetic fields in conductors

The computation of quasistatic electromagnetic fields in conductors usually employs
the eddy current model [9]. In this case, J is given by o€ + J, where o is the conductivity

9



of the body occupying O and J,(-,t) is the source current density which is supposed to
satisfy
div 7,(-,t) = 0 in Q,Vt > 0.

This identity allows to transform (1.1) into

OB +curl€ =0
02D — curlOH = —00,€ — 0, T,

woH 4+ curl € =0
€0?E — curlOH = —00,& — 0, T,

o OH = p~tcurl€
€O?E + 00,€ + curl(p teurl ) = —0,7,.

For good conductors, we can assume that €9?€ = 0 and obtain the parabolic initial boun-
dary value problem [9,12]

O(c€) +curl(ycurl) = —0,J, inO,
Exn= 0 on 00,
5(',t:0): 50 in O,

where & is the unknown electric field, x denotes the inverse of the magnetic permeability,
and n denotes the unit outward normal vector along 00.

Using a time discretization of the above problem we have to solve at each time step
Maxwell’s equations

{ curl(ycurlu) + fu=f in O,

uxn=>0 on 00, (1.3)

where u is the time approximation of the electric field £, the coefficient 3 is equal to o /At
(where At is the time step discretization) and f depends on 7, and the approximation of
£ in the previous step. Therefore we may assume that f satisfies

divf=01in O. (1.4)

10



1.1.2 Electromagnetic fields in dielectrics

We now return to the time-dependent problem (1.1) and reduce it to the time-harmonic
Maxwell system setting

E(x,t) = R(exp(—iwt) E(x))
D(z,t) = R(exp(—iwt)D(x))
H(z,t) = R(exp(—iwt) H(z))
B(z,t) = R(exp(—iwt) B(z))
I (1) = R(exp(—iwt)J(z))

p(z,t) = R(exp(—iwt)p(z))

where E (and similarly other hat variables) are now complex-valued functions depending
on the space variables but not on the time variable ( [40]). We introduce the linear, inho-
mogeneous constitutive equations

ﬁzeﬁandﬁzuﬁ.

As dielectric materials are characterized by a small conductivity, we take o = 0 and the
constitutive relation for the currents reduces to J = Ja7 where the vector function J
describes the applied current density. As iwp = div J, we arrive at the following time-
harmonic system :

—iwfI—i—curlE’ =0

- 1 -
div(eE) = —divd,
—wE+ocE—curlH = —-J,
div(uH) = 0

Defining F as ¢; E and H as pug H where €, and p respectively represents the electric
permittivity and the magnetic permeability in vacuum, we obtain the second-order Maxwell
system for the electric field E € R? [40] :

curl ' curl E — k*¢, E = fin O, (1.5)

E xn=0on00,
where f depends on /ja, Kk = wy/eojlp = wec ! is called the wavenumber, w > 0 is the
frequency of the electromagnetic wave and c is the speed of light in vacuum. Moreover, .

and e, are the relative permeability and permittivity of the medium occupying O defined
by :

erziand,urzﬁ.

€0 Mo

11



We assume that €, and p, are uniformly bounded from below and above. To get the same
system than before, we now set 3 = w?c %¢, and y = u!. With these notations, our
equations become

{ curl(xcurlu) — fu=f in O, (1.7)

uxn=>0 on 00,

where u corresponds to F, the datum fis once more a multiple of J and so is divergence
free.

1.1.3 A common variational formulation

From now on, we reduce the problem (1.3) (or (1.7)) to a problem in the two-dimensional
domain €2, namely assuming that v depends only on the x;, x5 variables, then the equations
are reduced to :

curl(y curlw) + sfu=f in Q, (1.8)
u-t=0 on I '
where t is the unit tangential vector along I', s = 1 in the quasistatic case and s = —1 in

the dielectric case. For the sake of simplicity, we assume that €2 is simply connected and
that its boundary I' is connected.

We suppose that x and (3 are piecewise constant, namely we assume that there exists a
partition P of €2 into a finite set of Lipschitz polygonal domains €2y, --- ,§2; such that, on
each €;, x = x; and § = 3;, where x; and [3; are positive constants (see Fig. 1.1).

Qy QO

Fi1G. 1.1 — Partition of the domain §2.

Q
1 O

Q3

The variational formulation of (1.8) is well known and involves the space
Hy(curl, Q) = {u € [L*(Q))? : curlu € L*(Q); u-t=0o0nT}
and the bilinear form

a(u, v) = /(X curl wcurl v + sfu - v)dz.
Q

For f € [L*(Q)]* satisfying (1.4), the weak formulation of (1.8) consists in finding w €
Hy(curl, Q) such that
a(u, v) = (f,v),Yv € Hy(curl, Q), (1.9)

12



where (-, -) is the [L*(Q)]*-inner product.
In the sequel, we assume that a is coercive on Hy(curl, 2), namely we assume that there
exists a > 0 such that

a(u, uw) > o)}, Vu € Hy(curl, Q) : div(fu) =0, (1.10)

1/2
where ||ul|g, = ( / x| curlul® + Blu|* ) . This coerciveness assumption guarantees that
Q

problem (1.8) has a unique solution by the Lax-Milgram lemma.

In the quasistatic case, thanks to the positivity of 3 and y, a clearly satisfies coerciveness
with @ = 1.

In the dielectric case, the variational formulation is given by

{ Find u € Hy(curl, Q) such that (1.11)

(p ! curl w, curl v) — w?c%(e,u, v) = (f,v), Yv € Hy(curl, Q),

with w satisfying the divergence constraint div(e,uw) = 0. If w = 0, (1.11) has a unique
solution. Otherwise, problem (1.11) enters within the framework of the Fredholm alter-
native and has a unique solution provided w? does not belong to the spectrum of the
involved operator. In this paper, we assume that w is small enough in order to guarantee
the coerciveness of a, given here by :

a(u, u) = /(,url\ curl ul® — w?c e, |ul?)dx.
0

It means that, if we denote by A3, the smallest positive eigenvalue of the Maxwell system
[40], we assume that wc™' < Ap;. Under this condition, we can estimate the optimal
constant of coerciveness and find that :

A2, — w2

a=5———-
2 2,—2
Ay +we

Let us finish this introduction with some notation used in the whole paper : For short-
ness the L*(D)-norm will be denoted by || - ||p. In the case D = €, we will drop the index
2. The weighted norm || - ||p 5 is defined by

J
luls = Billulbg,-

Jj=1

Obviously this norm is equivalent to the L?(D)-norm. As previously if D is equal to €,
we will drop the index €. The standard H(curl, D)-norm is denoted by || - ||z (cut,p) =
| - |lp + || curl || p. The usual norm and seminorm of H'(D) are denoted by | - |l1,p and
|- |1,p- For later uses we further need to introduce the space of functions which are piecewise
H* for k € N, with respect to the partition of 2, namely

PH*(Q) = {v e L*(Q) 1 vq, € H*(Q;),Vj=1,---,J},

13



equipped with the norm and semi-norm

J 1/2
PHE,3 = 311019, zn )
o] (Zﬂ v, | )
j=1
J 1/2
| prk,5 = <Z 5;‘\”&;-\2,9]-) ;
j=1

and define Vpv by
Vpu, = V(U|Qj), Vi=1,...,J

The notation w means that the quantity u is a vector and Vu means the matrix (0;u;)1<; j<d
(7 being the index of row and j the index of column). Finally, the notation a < band a ~ b
means the existence of positive constants C'; and Cy, which are independent of 7 , of the
quantities a and b under consideration and of the coefficients 8 and y such that a < Cyb
and C1b < a < Oyd, respectively.

1.2 The heterogeneous Maxwell equations

Problem (1.9) is approximated in a conforming finite element space V}, of Hy(curl, §2)
based on a triangulation 7 of the domain made of isotropic triangles, the space V} is
assumed to contain the lowest order Nédélec edge element space (cf. [41]). If wy, is the
solution of the discretization of (1.9) we consider an efficient and reliable robust residual a
posteriori error estimator for the error e = w — w;, in the Hy(curl, 2)-norm.

A posteriori error estimators for standard elliptic boundary value problems are in our
days well understood [52]. The analysis of isotropic a posteriori error estimators for the
edge elements were successfully initiated in [9,39] in the context of a “smooth” Helm-
holtz decomposition. The methods from [9] and [31] were combined in [45] to the case of
anisotropic meshes and for a “nonsmooth” Helmholtz decomposition. Alternatively, using
a local H(curl) decomposition of the interpolation error (of Clément type) and its local
Helmholtz decomposition from [47], J. Schoberl proves in [49] an a posteriori estimate in
the case y and 3 constant and €2 not necessarily convex. In these papers, the dependence of
the constants in the lower and upper bounds with respect to the variation of the constants
is not explicitely given. Therefore, the goal of this chapter is to give this dependence in
the case of piecewise constant coefficients # and y, extending to Maxwell’s equations what
have already been shown for second order elliptic operators with piecewise constant coef-
ficients [11]. Note that the question of the dependence of these constants with respect to
the coefficients was raised in [40] page 362.

In this chapter, we will first consider the case when x and (3 are constant in the whole
(2, introducing an interpolant of Clément/Nédélec type, and analyze an a posteriori error
estimator. Then we extend some ideas to the case of piecewise constant coefficients, but
contrary to the previous section, we introduce two different estimators. For the sake of
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simplicity, we have restricted ourselves to 2D problems, the extension to the 3D setting is
mainly direct (see section 1.4.4).

The schedule of this chapter is the following one : Section 1.2.1 recalls the discretization
of our problem. In section 1.2.2, we recall some basic tools for the error estimation analysis.
We further study the case of constant coefficients. In this part, we state the adapted
Helmholtz decomposition of the error. In section 1.4.2 we give some interpolation error
estimates for Clément and Nédélec interpolants, build a new interpolation operator based
on the first two ones and prove appropriate interpolation error estimates. The efficiency
and reliability of the estimator are established in section 1.4.3. The extension of our results
to three-dimensional problems is shortly described in section 1.4.4. Section 1.4.5 is devoted
to numerical tests which confirm our theoretical analysis.

1.2.1 The discrete problem

We consider a triangulation 7;, made of triangles denoted by T, T; or T whose edges
are denoted by e and nodes by x.
We assume that this triangulation is regular i.e. for any element 7', the ratio h—; is bounded
by a constant o > 0 independent of T" and of h = mazxrecr, hr, where hy is the diameter of
T and pr the diameter of its largest inscribed ball.
We will denote by h,. the length of an edge e. The set of edges will be denoted by &,. Let
Nq be the set of internal nodes of the triangulation and & the set of its internal edges.
For an edge e of an element 7', we introduce the outer normal vector by n,.. We define the
jump of a function v across an edge as :

[v@)], = lim v(y+an)—v(y—an), y €e.
Note that the sign of [[vﬂe depends on the orientation of n..However, terms such as a
gradient jump [[Vfu . neﬂe are independent of this orientation.
At least, one uses so called patches :
e wr is the union of all elements having a common edge with T,
e w, the union of both elements having e as edge,
e w, the union of all elements having x as node.

Problem (1.9) is approximated in a curl-conforming finite element subspace V}, of
Hy(curl, Q) containing the lowest order Nédélec finite element space :

Vi ={v, € Ho(curl, Q) : vpr € ND1, VT € Tp,},

where N'D; is given by :

ND, = {pepl(T)ZElaERQ,bER,VxET,p(a:):a—l—b( ;x2 )}

1

For instance, we may take for V}, the subspace of Hy(curl, 2) consisting of functions which
are piecewise in N'Djy, with k > 1, as considered in [9,41] (see [45]).
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The discretized problem of problem (1.8) is to find u; € V}, such that
a(uh, ’Uh) == (f, ’Uh), V’Uh € Vh. (112)

We define the error by :
e=u— u,

and from (1.9), we obtain the defect equation
a(e, v) = r(v), Yv € Hy(curl, Q2), (1.13)
where the residual is given by
r(v) = (f,v) — a(up, v), Vv € Hy(curl, Q), (1.14)
Then, we deduce from (1.12) the “Galerkin orthogonality” relation

a(e,vp) = r(vy) =0, Yo, € V. (1.15)

1.2.2 Basic tools

In this section, we introduce some notations and important tools. Some basic relations
and lemmas are given as well.

Let us first introduce auxiliary subdomains also called patches : For any triangle T' of
7, and any edge e of &, we denote by
e wr : the union of all elements having a common edge with T,

e w, : the union of both elements having e as edge.

If the parameter x is small, our Maxwell equations are singularly perturbed. Therefore
as in [53], for a real number § € (0, 1] we employ a squeezed element 7, s C T associated
with 7" and an edge e of T (see Fig. 1.2) introduced in [31,33,34,53]; the main properties
of T, 5 is to be included into T, to have e as edge and to be of height ~ dh.. More precisely,
if T is the triangle OQ1Q)2 and the edge e = Q1(Q)2, denote by S. the midpoint of the
edge e, then T, 5 is the triangle P()1(Q)2, where the point P lies on the line S.O such that
|SeP| = 0|S.0| (see Fig. 1.2 and [33]).

Now, recall that for any T" of 7, we can define a continuous affine linear mapping trans-
forming the reference triangle T, whose vertices are given by {(0,0)”, (1,0)", (0,1)"},
onto T'.

Then, in order to use efficiently T 5, we require an affine linear transformation Fr. s that
maps the reference triangle onto 7 ;. This affine linear mapping is unique.

In the same way, we can now introduce the following transformation [31] :

from a patch wy, T' € 73, to a reference patch :

Denote by Wy the reference patch corresponding to wr (see Figure 1.3 for the case when
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Q1

Q2

Fic. 1.2 - Triangles T" = O@Q1Q2 and 1.5 = PQ1Qs.

T NT is empty or reduced to a vertex). Then there exists a continuous, piecewise linear
mapping Fr that satisfies :

FT ZJT —  Wwr
FT\Ti:FTi ﬂ - E7 vj:la"wlT
/.T\ — BTij%'\—i-bTi

where I = 2,3 or 4, By, € R*? and by, € R®. On each T; C wr, we set
u(?) = Br,(uo Fr,(Z)). (1.16)

from a patch w,, * € Ny, to a reference patch :
Assume that w, consists of N triangles arbitrary numbered, and denote by &, the regular
N-polygon with the midpoint in the coordinate origin. Then there exists a continuous,
piecewise linear mapping F) that satisfies :

Fr Wy — Wy
where B; € R**? and b; € R®. Oneach T; Cw,, i =1,---, N, we set
u(7) = B;i(u o Fy(T)). (1.17)

Remark 1.2.1. |j\}\ = |fj\, Vi,j=1,---,N.

At least, the lemma below has been proved in [53]. It will play an important role in
interpolation estimates.

Lemma 1.2.2. Let T be an arbitrary triangle and e an edge of it. For v € HY(T)?, the
trace inequality holds :
lolle < llvllz - (At vllr + IV ollr) - (1.18)
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T 13 15
~ N T
T3 771 1
Fi1G. 1.3 — Transformation Fr that associate the patches r = U;—; ﬂA’i and wr =

-----

.....

1.2.3 Bubble functions

For the analysis, we need to introduce bubble functions satisfying some properties. We
first define the element bubble function by € C(T') given by b=(Z,7) = 3°7y(1 — 7 — 7)),
where T is the reference element, and then an edge bubble function b; 7 € C (T\ ) for the edge
e C 0T N {7 = 0} defined by b; 7 = 2°2(1 — 2 — y). Furthermore, we require an extension
operator F,; : C(€) — C(T), Fort(ve)(Z, ) = ve(T).

For a given element T of the triangulation, we obtain the bubble function by by the
affine linear transformation [ and the edge bubble function b, r is similarly defined. We
also introduce an edge bubble function b. on the domain w, = T} UT, with an elementwise
definition : ber, := ber,, 7 = 1,2. Analoguously the extension operator is defined for
functions v, € C'(e) and a same elementwise definition implies that Fi,;(ve) € C(we).

We recall that by = 0 on 9T, b. = 0 on Ow, and ||br||cor = ||bellcow. = 1.
Now, we can state inverse inequalities (proved in [52] for instance) :

Lemma 1.2.3. Let vp € P*(T) and v, € P¥'(e). Then the following equivalences and
inequalities hold. The implicit constants depend on the polynomial degree ko and ki but not
onT,e or vr,ve.

lorbillz ~ lorllr (1.19)
IV@rbd)lle S hgllorlr (1.20)
locbélle ~ ol (1.21)

|0 )bl S hallvll. (1.22)
IV(Faswe)be) | S hp?llvell. (1.23)

These bubble functions do not suffice to analyse our residual error estimators. We
further need to introduce modified edge bubble functions, cf. also [33]. For some triangle
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T and an edge e thereof consider the subtriangle T, 5 (cf. Figure 1.2). Define the squeezed
edge bubble function be s by

_ beo Fe’Tl5 on T, 5
be,rs = { 0 on T\T, , (1.24)

where bz is the standard edge bubble function for the edge e = F;lﬁ(e) of the triangle
T = FE_T1 s(Tts). In other words, b.rs is the usual bubble function for the edge e in the
triangle T, 5, and it is extended by zero in T\T. ;.

Standard scaling arguments using the transformation F,rs : T — T. s yield the next

inverse inequalities for the squeezed edge bubble function, see [33,34,53].

Lemma 1.2.4. Let e be an arbitrary edge of T and assume that v, € Pkl(e). Then the fol-
lowing equivalences and inequalities hold. The implicit constants depend on the polynomial
degree ki but not on T, e or v,.

11
HFext(Ue)be,TﬁHT S 55}“}”“6”6’ (1.25)
HV(Fewt(Ue)be,Tﬁ)HT S 5%h;§ min{5, 1}_1HU6H6‘ (1'26)

1.3 Robust a posteriori error estimation

To our knowledge, a robust estimation was not yet considered for the Maxwell system.
Our method relies on the introduction of an interpolant of Clément/Nédélec type satisfying
appropriate interpolation error estimates.

We consider a robust a posteriori error estimator of residual type for the Maxwell
equations in a bounded two (and three) dimensional domain. The continuous problem is
approximated using conforming approximated spaces. The main goal is to express the lower
and upper bounds with respect to appropriate norms. For that purpose, a new interpolant
of Clément/Nédélec type is introduced and some interpolation error estimates are proved.
Numerical tests are presented which confirm our theoretical results.

We consider first that the coefficients 3 and y are positive constants and we take s = 1
in the bilinear form.

1.3.1 Helmholtz Decomposition

Here we mainly recall the standard Helmholtz decomposition of the space Hy(curl, €2).
Recall that Hy(curl, 2) was equipped with the inner product

(v, w)s, = (Bv, w) + (x curl v, curl w),

its associated norm ||v| g, being equivalent to the usual norm (| v||? + || curl v||?)¥/2.
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Lemma 1.3.1. If Q is simply connected and its boundary I is connected then

L
Hy(curl, ) = Hy(curl, Q) & W, (1.27)
where HY(curl, Q) and W are closed subspaces of Hy(curl, Q) defined by
Hi(curl, Q) = {v€ Hy(curl,Q) : curl v =0 in Q}, (1.28)
W = {ve Hy(curl,Q) : divo =0 in Q}, (1.29)

1
and the symbol & means that the decomposition is direct and orthogonal with respect to the
inner product (-,-)11. Furthermore one has

Hg(curl, Q) = VH!(Q). (1.30)
Then the error e admits the splitting
e=¢e + e, (1.31)
with ey = V¢ where ¢ € H(Q) and e, € W. Moreover e, admits the splitting
e, =Viy+w, (1.32)
where ¢ € H(Q) and w € H}(Q)* and satisfies

IVwlls S 8% llerlln (1.33)
Iwlls < llecllsx (1.34)

~

Proof: All the results have been proved in Lemma 3.10 and Corollary 3.11 of [45], except
the decomposition (1.32) and the estimates (1.33) and (1.34). The decomposition (1.32) of
e, was proved in Lemma 2.2 of [47] (for three-dimensional polyhedral domains, but their
proof is also valid for two-dimensional polygonal domains) with the estimate

Wil + Vel < llevll,
IVw|[ < [[curle |-

These estimates directly lead to (1.33) and (1.34), because [ and x are constant. n

1.3.2 Interpolation error estimates
Clément interpolation

We first recall that the Clément interpolation operator [33,45] of some function ¢ €
Hi () is defined by :

I,: H(Q) — SQTh)

T - 3 M (/¢>) pe= 3 1. ()¢

z eNg x €ENg
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where S(2,7;,) is the space of continuous piecewise linear functions on the triangulation
which are zero on the boundary and ¢, is the nodal basis function associated with the
node z, uniquely determined by the condition :

(pw(y) = 695,3/7 Vy S NQ

We now can state the following interpolation error estimates (see [18]) :

Lemma 1.3.2. For every function ¢ € H_(Q), we have

D R ) P v (1.35)
TeT,

Z IV (o —1,0) 17 S IVel* (1.36)
TeT,

Since our problem also involves functions in W, we need a Nédélec-type interpolant
in order to approximate such functions by an H (curl)-conforming interpolant. We start
by recalling the definition of the Nédélec operator given in [37] and then, as we need a
L?-stability of our operator, we introduce a new interpolant based on the definitions of the
previous ones.

Nédélec interpolation

Let T' € 7, be a triangle and &7 the set of its edges. For e € &, we fix a unit tangential
vector t. along the edge e. We define (see [37]) the set of linear forms {l.,e € Er} by

le:L'(e) — R

U — u-t.ds,
€

and consider the (basis) functions A\, € N'D; satisfying the condition
Ve € (C:T,/ Ae -ty = 66,6"

We further introduce the local interpolation operator I d‘T(u) € N'D; defined for u satis-

fying u). € (L'(e))* by the conditions

le <INed‘T(u)> = l.(u),Ve € &r.

This means that

IS (/u 1, ds) Ae.

e€Ep
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The global interpolation operator I, is then given by (L. u)ir = L., r(ur) € ND1, VT €
7, as
Loyt Ho(curl, Q) — V,

u — Z(/u-teds))\e.

e€€q

A Clément-Nédélec interpolant
Let us define a Clément-Nédélec interpolant by :

ICN . LQ(Q)Q — Vh
u — Z ae(w) A,
e€€hq

where a.(u) = w-t, and Ao = \e].

|€‘ We

This new interpolant is well-defined and stable relatively to the L?-norm and the H!-
semi-norm and satisfies standard interpolant error estimates, i.e. we have the following
estimates :

Theorem 1.3.3. For every function w € Hy(curl, Q) N H'(Q)?, we have

Mexullr < llullor (1.37)
lu—Iezulr < hellVule, (1.38)
IV(u=Iu)le < IVl (1.39)

Proof: We first define
Ro(wr) = {c € H(curl,wr) @ ¢y € R* VT C wr and ¢+t =0 on dwp N F}

and prove that I ¢ =con T if c € Ro(wr). Indeed, for e C T', we have

1
ae(c) /ct e:—/c-te.
el lel Je

Then, the definition of I,
Let us now show (1.37) : By Cauchy-Schwarz’s inequality, we may write

implies that 1. ¢ =1y, rc=c.

I

|ae(u)] <

We te We

|we
Since

1
[tellwe < IItelloo]wel?

and [|t.]|o = 1, we get

e ()| <

‘We|1
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By the definition of I ., we obtain

CN?

1 -
Moyl < > —lluflu. Al

eCoT’ ‘we| 2
Moreover, if A denote a basis function on the reference element, we have

ellz = lellAcllzr = lel|BzAllz S lelhg! Ml zha < el

where By is the matrix refering to the affine transformation Fp that maps T wr onto
T’ C wr.

As |e| = h and |w.| ~ h?, we conclude that

ewullz S ) llu

eCoT’

We

which implies (1.37).
Now, for any p € Ro(wr), u— I u= (I—1.)(u—p) on T and therefore by (1.37) :

1T = To ) (w = p)llz

||’U, - ICNUHT -
S Hu - prT'

Now we define
PH'(wr) = {v € L*(wr) : v € H(T'WT' C wr}.

From the above estimate, we see that (1.38) holds if we can bound from below the ratio

Wy IVl

T Cwr

> lu—pli

T'Cwr

for u € H(curl,wr) N PH(wr)? such that -t =0 on dwr NT and p € Ry(wr), which
is equivalent, by applying the affine transformation Fr mapping the patch W to wr (see
section 1.2.2), to bound the ratio

> Va3,

T\/CGT

> la—5l3

?’CGT

(1.40)

for & € H(curl,@7) N PHY(@r)? such that %- £ =0 on I'y and p € Ro(@r), where Ty is
made of some edges of the boundary of &r. This last ratio will be estimated from below
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using the min-max principle.

Indeed, let us set V = {% € H(curl, 57)NPH @7)2 : 9t = 0on I'r} and H = L2(@y)2.
Define the bilinear form

l(u,v) = Z R Vu: Vo, Y(u,v) €V xV

and the inner product (u,v) = Z /A u- v, for wand vin H.
T\/CGT /
The corresponding spectral problem consists in finding A € R and u € V', u # 0 solution

of
l(u,v) = A(u,v), YVoe V. (1.41)

We now define the self-adjoint operator A associated with this problem (1.88) by

A: DACH — H
u — Au

such that
Vue D(A), If € H : l(u,v) = (f,v), Vve V and Au=f.

Since V' is compactly embedded into H, A has a compact inverse. Therefore this operator
admits a discrete spectrum and, by the min-max principle, its first positive eigenvalue
satisfies : l
v,V
A1 = min (v, v)

Midom Ll

Since ker A = Ry(&r), we deduce that

> IVl

. T’C@T
A1 = min 5
alseeze > la—pli3
T/C@T

This gives, by choosing in (1.87) p as the projection of u on Ry(Wr) with respect to the
inner product (-,-), the following estimate :

1/2

—~ ~ —1/2 =~
la—plle, < A2 IVal,

?’C@T

This implies (1.38) by a scaling argument.
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We now prove the third estimate. First as I u € [P'(T)]?, a standard inverse inequa-
lity [17] and the estimate (1.37) yield

IVIexwllr <

~

h' [Texullr S hy' [l ullr-
By the triangular inequality we get

IV (u—=Texu)llr IVallr + [[V(Iexu)llz

S
S IVullr + byt ulle,.

Moreover, as for any p € Ro(wr), u — I yu= (I—1.)(u—p) on T, we find

S IVIA=Te)(u=p)llr
S IV(w—=p)lr +he'llw—pll,
S IVullr + byt flu—pll,-

IV (u—=Toxu)lr

Since we have shown by the min-max principle that
v —Pllur S hrl Vo,

the conclusion follows. n

Remark 1.3.4. Another interpolation operator of Clément-Nédélec type satisfying the
commuting diagram property and satisfying the estimates (1.37) to (1.84) was introduced
in [48]. Our construction is simpler than in [48], since we do not require the commuting
diagram property.

1.3.3 Error estimates
Residual error estimators

On a element T', we define by Ry := f— (curl(x curl u,) + fuy,) the exact residual and
denote by rr its approximated residual.
Introduce the jump of u;, in the normal direction and the jump of curl w;, in the tangential
direction by

3 { [[ﬁuh . neﬂ . for interior edges
on 0 for boundary edges,

] { [xcurlw,]]  for interior edges
&t 0 for boundary edges.

In this section, we build a local error estimator of the solenoidal part of the error
inspired from [33], where convection-reaction-diffusion problems are considered.
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Definition 1.3.5. The local and global residual error estimators are defined by

mo= ) Mo

TeTy,
7]3_ = ZU%,L7
TeT,
o= on i,
o= > 4,
TeTy,
Mo = BEBIdivas|F+ D keS| Tenll?,
eC(?T
nh = afllrrlld 4 Y X rarlJell,
eCOT
G = Y aplre — Rell,
T'Cwr

where ap = min{372, x " 2hr}.

Proof of the lower error bound : the irrotational part

Theorem 1.3.6. For all elements T, we have the following local error bound :

o S llellpwr

Proof:
o Divergence
By the inverse inequality (1.19) and Green’s formula,

| div(Bu)[Z ~ / br(div(Bun))?

~ —/TV(deiV(ﬁuh))ﬁuh
~ r(V(brdiv(fu))) by (1.14) and (1.4)

~ a(e, V(bpdiv(fuy))) by (1.13)
N /T 3V (b div(Fw,))
BY2(|V (by div(Bw))||7]| 642 €|

AN

< BY2het| div(Bun)2]18"%ellz by (1.20)

This shows that
| div(Bun)llr < B hy |l ellsr
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o Normal jump
Let e be an interior edge ; we recall that J.,, € P¥(e) with k& € N depending on the chosen

finite element space. Set
We = e$t(Je,n)be € [Hol(we)]Q‘

An elementwise partial integration gives

[ = = [ [3tw=w) -],
. [ /T BeVa, — /T div(ﬂe)we]

TCWE

= 4 Z {/ ﬂveejL/div(ﬁuh)we}
TCWE T T
S D (18"2elloB Vel + || div(Bun) 1]l 17)
TCwe
S > (lellarB2h 21 3calle + | div(Bw)lrhi*|Teall.) by (122) and (1.23).
TCwe

Since (1.21) yields /Je,nwe ~ || Tenl|?, we obtain

e

1 ealle S 3 (87207 ellsr + hif?l| div(Bun)l1r)

TCUJe

This estimate coupled with (1.91) implies :

3ealle £ 57 (8207 el )

TCwe
As 7, is regular, hr ~ h,, we obtain :

Iealle S BY2h12 €l (1.44)
The estimates (1.91) and (1.92) lead to the conclusion. n

Proof of the lower error bound : the solenoidal part
Theorem 1.3.7. For all elements T, the following local lower error bound holds :
e S llellgwr + Cr (1.45)

Proof:
o Blement residual
Let 7' be an element of the triangulation. Set wy := rrbr € [H(T)].
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By the inverse inequality (1.19), Green’s formula and the fact that br is zero on the
boundary of T', we write

IrrlF ~ rTwT
Rrwr + T'T - RT)wT
— curl( Xcurl uy,) — Bup)wr + /(’l"T — Rp)wr

T

— Bup)wr — / x curl uy, curl wp +/(’PT — Ry)wr
T T

~ /T(TT — Rr)wr

The relation (1.13) implies

2

Iz ~ a«zwﬂ+1/<mﬁ—RTm@

T
~ x curl ecurlwr + [ Bewr + /(’I“T — Ry)wr

T T T
< X2 cwrl ellrx | curlwr ||z + (|8 el v wrllr + |lrr — Rellr|lwr .
The inverse inequalities (1.19) and (1.20) give

lrrll < XY curlellex'2htrrlir + 154 2€l 82| rrllz + [lrr — Rellzllrr|r

~Y

1/2 _
S (72 curlellr + 182 ellz) " (x/2hz + BY2) + |Irr = Rrllz] lIrrlr-

By the definition of o, we obtain

Irrllr < oztllellgr + 7 — Re|lr- (1.46)

o Tangential jump
Set we = Fegt(Jet)beny, € [H, (we)]® with v, € (0,1]. For we = T1 U Ty, b, is defined as

follow
b . beriyn on T
GV beqny, on Ty

and

N i1 on Ty
Te = Y2 on Ty

where we choose (see [33])

1 1
Vi = §X1/2hi104Ti =3 min {1,ﬂ*1/2xl/2hil} . (1.47)
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Note that, b.n, = b37T27'Y2|e = be|e. It comes from an elementwise partial integration that

771‘6
ez~ [,
~ —/[[Xcurl uhﬂewe-te
~ 4+ Z {/ Xcurluhcurlwe—/ Curl(Xcurluh)we]
T;

T; Cwe
S or(we) + Z / Ry w,
T;Cwe T;
< ale,we) + Z / I, W,e + Z /(TTl—RTZ)we
T;Cw. T; T;Cw. T;

< Z {/ Xcurlecurlwe+/ ﬂewe+/ rTiwejL/ (rTi—RTi)we]

Ticwe W1 T; T; T;
S D (I curl eflzx

T; Cwe
+ ]
N Z [ e”ﬁ,x,E( 1/2 Gl Tz‘)

T; Cwe
+ ( Ti) Ti] :

By the discrete Cauchy-Schwarz inequality and the inverse estimates (1.25),(1.26), we find
lewellgr, < 7 *ht” (B2 4+ X207 ) [ el (1.48)
and (1.94) and (1.100) lead to

1/2 —1 2 1/2 1/2 —1,1/2 1/2
Dol & 3 | (VPR 4 00 4 o f0) el

T; Cwe

+ e -

Then, by (1.99), we obtain

Fedlle S X737 g Pllellsr, + i’ r) (1.49)
Ti; Cwe
Using (1.94), (1.101) and the definition of nr |, we get :
o S lellpyr +ar|rr — Rellr
+ D x Magl® Y X )
eCOT T; Cwe
1/2 —1 2
S lellosr+ 32 > ar®agllellsan
eCBTTCwe
+ ar|lrr — Rr|lr + Z Z ole/2oz;
eCOT T;Cwe
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As the triangulation is regular, hy ~ hr,, we get aT@i_l ~ 1. That leads to the conclusion.
[ |

Corollary 1.3.8. For all elements T, the following local lower error bound holds :
nro + 011 S llellsywr +Cr (1.50)

Proof of the upper error bound : the irrotational part

Theorem 1.3.9. The 3-norm of the irrotational part of the error is globally bounded from
above by :

leolls < mo- (1.51)

Proof:

Let ¢ € H!(Q) be the function introduced in the Helmholtz decomposition such that the
irrotational part of the error ey = V¢. We are interested in ||eol|g = ||eolls = [|Vl/s- By
(1.13), we know that

a(e, V) = (B¢, V) = r(Vy), ¥ € H(Q).

Let ¢, € S(,73). Then, Vi, € V1 C V, and the Galerkin orthogonality relation
(1.15) gives

(B¢, Vo) =r(V(¥ =), Y € Hi(Q),¢n € S(QT).

As fis divergence free and 1) — 1, belongs to H OI(Q), we obtain, by Green’s formula and
an elementwise integration by parts : Vip € H)(Q),¢n, € S(Q,Ty),

BV, V) = (/T div(Bun) (¥ — ¢n) — Y /Je,nw - ¢h)> :

TeT, eCOT

Setting ¢ = 1 and using Cauchy-Schwarz’s inequality give
(Beo, &) = (BVe,V9)

< Z (/TdiV(ﬂUh)@—iﬂh) - Z Je,n(¢—¢h)>

TeT), eCcoT V€

< > [||diV(5Uh)||TH¢—@/)h||T+ > ||Je,n’|e“¢—¢h“e] :

TeT, eCOT

We now introduce the notations pur = hpB~? and . = h.37".
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By the discrete Cauchy-Schwarz inequality we obtain :

1/2
leolld < {Z (u?rH div(Bus) |7+ ) ueHJe,nH?)}

TET]—L 6C6T
1/2
: {Z (mw — 7+ > e —whHE)}
TGTh 6C6T
1/2
S M { > (u;QHd) — gl + > utle— %H?) } :
TET]—L GCBT

To achieve our estimate (1.103), we choose ¥, = 1,0 € S(£,7;) and apply (1.35),(1.36)

to obtain 12
{ >y <M%2H¢ — 7+ > ute - %II?) } S IVlls, (1.52)

TGTh eCOT

noting that, by the trace inequality (1.18), we have

SN e —wnl2 0 hitlle — dnlir (hrtlle — ullr + V(6 — vn) i)

TeT, eCOT TeT,

1/2
S (Z hT2||¢—¢hr|%>
TET,
1/2
- (Z (hz2l16 — nl2 + ||v<¢—wh>r|%)) |
TET,

Proof of the upper error bound : the solenoidal part

Theorem 1.3.10. The 8 — x-norm of the solenoidal part of the error is globally bounded
from above by

lecllsx < n+¢

Proof: As e, € W C Hy(curl, Q),
levlfy < aler,er) = r(er) = r(w) + r(V), (1.53)

according to the decomposition (1.32) of e;. Using the Galerkin orthogonality relation
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(1.15) for any v, € V} and an elementwise integration by parts, we get

r('w) = 'r('w — ’Uh)
= (ffw— ) — a(up, w—vy)
= (f— Bup, w—vp)
_ Z (/ curl(x curl w, ) (w — v,) — Z x curl uy, (w — vy,) - t€>
TeTy, T ecoT V€
= Z(RT’w_vh)_Z/Je,t(w_vh)'te-
TeT), ec&, vV €

Cauchy-Schwarz’s inequality leads to

r(w) S [aTHRTIITozFHw— willr + > x M ar 1 Tellox M oz lw - vhlle]

TGTh eCOT /
1/2
S {3 bt abior - =l + 3 orta| |
TeTy, eCOT
1/2
: { > [@TQHw— w7+ Y xMap!w— vhH?] } -
TeTy, eCOT
Then, by taking v, = I w € V}, we can prove that :
>, [@TQHw — i+ Y X! w- vhH?] S w3 +x87 Vw3 (1.54)
TeTy, eCOT

Indeed, the definition of az implies a;' = max{3'/2, x'/2h;'}. It follows, by the estimates
(1.37)-(1.38) and the triangular inequality, that

Yoofllw—wmlz = Y Blw-wlz+ Y xhllw—wlF
TeT, ﬁl/ggi?%h;l ﬂl/Qii?%h;l
S 2 (llir+slulz)+ > xIVwll,
TETy, TeT,
ﬂl/QZXI/th_wI ﬂl/QSXI/Qh;l
S Y Uwlr+lwlie) + Y x87Vulli.,
TeTy, TEeT),
51/22X1/2hq_~1 ﬁl/QSXI/th_wI
< lwllf + X8~ Vall3. (1.55)

On the other hand, by the trace inequality (1.18) and by the estimates (1.113) and (1.84),
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we find

oD xPartlw—wlZ £ XY [artw—wlr

TET]—L eCOT TGTh
(bt llw = wnllr + [V (w— w)lI7)]

1/2
o (z T vhu%)

TeT,

| (Z (72w = w3+ |V (w vh>||%)>

TeT,

AN

AN

1/2
_ 1/2
X2 (1wl + x5 IV wll?) <Z HV'wHZT>

TeT,
— 1/2
X2 (lwll + X8 VallF) |Vl
lwll3 + X8~ Vawll3. (1.56)

The estimates (1.113) and (1.114) show (1.112). Therefore, from the definitions of nr ; and
(r and the estimate (1.112), we deduce

r(w) < (e +¢) (lwll +x87 [ Vwl3)
Using the bounds (1.33) and (1.34) from the Helmholtz decomposition, we get
r(w) S (ne+ Qllevllsx (1.58)
On the other hand the arguments of Theorem 1.3.9 yield
r(Ve) < mollVels.
Using the decomposition (1.32) and the estimate (1.34), we deduce that

r(Ve) < mollevllsx- (1.59)
The conclusion follows from the estimates (1.53), (1.58) and (1.59). n

ANRIA

1/2

(1.57)

Corollary 1.3.11. The error is globally bounded from above by

lellgx < n+¢. (1.60)

1.3.4 Extension to three-dimensional polyhedral domains

All the results of this paper extend to a three-dimensional polyhedral domain €2 which is
bounded and simply connected with a connected boundary I'. In that domain we consider
the Maxwell system

{ curl(ycurlu) + fu=f inQ, (1.61)

uxn=>0 on I,
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where fsatisfies (1.4) and [ and x are as before.

This problem is then approximated using regular meshes made of tetrahedra and the
finite element space V}, is simply assumed to contain lowest order Nédélec elements.

In this setting all the results from section 1.2.2 remain valid, especially Lemma 2.4.1 (the
Helmholtz decomposition) due to the results from [45,47]. Moreover in 3D the Clément-
Nédélec interpolant is defined by

I ZLZ(Q)3 — Vh

u — Z ae(u)]e\)\e

BEShQ

CN

where, as usual &£, is the set of interior edges of the mesh, )\, is the standard basis function

of lowest order Nédélec elements and we here set a.(w) u - t,, when w, is made

We| S,
of all tetrahedra having e as edge. The regularity of the r‘nes|h allows then to show that
Theorem 1.4.9 holds.

As the basic tools of section 1.2.2, the interpolation error estimates from section 1.4.2
and some integrations by parts are the only ingredients that we used for the proof of the
lower and upper error bounds, we can conclude that the estimates (1.102) and (1.110)
hold in 3D, with the same definition for the local estimators, except that J., and J.; are
defined for the faces F' of the mesh and for the tangential jump where curl w;, is replaced
by curl u;, x ng, see section 4.1 of [45].

1.3.5 Numerical experiments

The following experiments underline and confirm our theoretical predictions. Our examples
consist in solving the Maxwell equation (1.8) on the unit square Q = (0,1)? with different
values of y and 3 and different solutions. In all examples uniform meshes and the lowest
order Nédélec finite elements are used.

As first example we consider the exact solution :

" ( e vVoy(1—y) )

e "/Vex (1 — x)

fix 6 =1 and take y = ¢, for different values of €. Note that for small ¢, the gradient of
this solution presents exponential boundary layers of width O(y/¢) along the lines z = 0
and y = 0.

To begin, we check that the numerical solution u;, converges toward the exact solution
for differents values of €. To this end, we plot the curve ||u — ul/g,, as a function of DoF
in Figure 1.4. There a double logarithmic scale is used such that the slope of the curves
corresponds to the approximation order. As we can see the convergence rate is of order 1
as theoretically expected.
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Now we analyze the upper and lower error bounds. In order to present them in an
appropriate manner, we consider the ratios

i Y
n+&

a = max o + 1.

ow TeT, Hu_ uh”ﬁ,x,wT + CT7

Qup )

as a function of DoF. The first ratio g,,, the so-called effectivity index, is related to the
global upper error bound and measures the reliability of the estimator. The second ratio
is related to the local lower error bound and measures the efficiency of the estimator.
These ratios are presented in Figure 1.5 and 1.6 for different values of €. There we see
that ¢, decreases in function of € and is bounded by 0.12. Similarly we remark that gey,
increases in function of € and is bounded by 6.73.
As second example we take the exact solution

u=V (e‘x/ﬁx(l —z)y(l — y))

fix once more # = 1 and take y = ¢ for different values of €. Here the solution presents an
exponential boundary layer of width O(,/¢) along the line x = 0.

As before we see from Figure 1.7 that the numerical solution wu;, converges toward u
with a convergence rate of order 1. For this example, we see in Figure 1.8 that the effectivity
index is bounded by 0.22, while Figure 1.9 indicates that the ratio ¢, is bounded by 4 as
soon as a reasonable resolution of the layer is achieved.

For the last test, we consider the exact solution :

v = (i)

where we fix Y = 1, ¢ = 0.001 and take different values of 3. In this case, we see in Figures
1.10 to 1.12 that the convergence rate is 1, that the effectivity index remains bounded by
0.16, and that g, is bounded by 5.8.

Note finally that other examples are tested and give rise to ratios ¢, and g, that are
uniformly bounded with respect to different parameters 3 and y.

1.3.6 Conclusion

We have proposed and rigorously analysed a robust a posteriori error estimator of re-
sidual type for the Maxwell equations in a bounded two (and three) dimensional domain
using conforming finite element spaces of Nédélec type. A new interpolant of Clément /Nédélec
type has been introduced and some interpolation error estimates have been proved. We have
shown that this estimator is reliable and efficient. Some numerical experiments confirm our
theoretical predictions.
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F1G. 1.4 — The error norm ||u — uy|g,, as a function of DoF for example 1
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1.4 Uniform a posteriori error estimation for the Max-
well equations with discontinuous coefficients

We consider residual based a posteriori error estimators for the heterogeneous Maxwell
equations with discontinuous coefficients in bounded two and three dimensional domains
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F1G. 1.7 — The error norm ||u — w|,, as a function of DoF for example 2

The continuous problem is approximated using conforming approximated spaces. The main
goal is to express the dependence of the constants in the lower and upper bounds with res-
pect to a chosen norm and to the variation of the coefficients. For that purpose, some new
interpolation operators of Clément/Nédélec type are introduced and some interpolation er-
ror estimates are proved. Some numerical tests are presented which confirm our theoretical
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The schedule of the section is the following one : Section 1.2.1 recalls the discretization
of our problem. In section 1.4.1, we state the adapted Helmholtz decomposition of the error.
Some basic tools for the error estimation analysis are recalled in section 1.2.2. In section
1.4.2 we give some interpolation error estimates for Clément and Nédélec interpolants,
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introduce a new interpolation operator of Clément-Nédélec type and prove suitable error
estimates. The efficiency and reliability of two different estimators are established in section
1.4.3. The extension of our results to three-dimensional problems is shortly described in
section 1.4.4. Finally section 1.4.5 is devoted to some numerical tests which confirm our
theoretical analysis.
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1.4.1 Helmholtz Decomposition

We first recall a decomposition of the space Hy(curl,2) of Helmholtz type related
to the weight § (namely for f = 1 the next result is simply the standard Helmholtz
decomposition).

Recall that Hy(curl, 2) was equipped with the inner product

(v, w)s, = (Bv, w) + (x curl v, curl w),

its associated norm ||v| g, being equivalent to the usual norm (| v||? + || curl v||?)/2.

Lemma 1.4.1. If Q is simply connected and its boundary I is connected then

L
Ho(curl, Q) = HY(curl, Q) & Wp, (1.62)
where H)(curl, Q) and W5 are closed subspaces of Ho(curl, Q) defined by
Hi(curl, Q) = {ve Hy(curl,Q) : curlv = 0 in Q}, (1.63)
Wz = {ve Hy(curl,Q) : div(Bv) =0 in Q}, (1.64)

i
and the symbol & means that the decomposition is direct and orthogonal with respect to the
inner product (-, -)g. Furthermore one has

Hy(curl, Q) = VH!(Q). (1.65)
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Proof: Lemma 1.2.1 of [26] yield (1.65). It then remains to prove the Helmholtz decompo-
sition (2.23). With the inner product (-,-)g,, the decomposition (2.23) holds with

W5 = {v € Hy(curl,Q) : (Bv, w) + (x curl v, curl w) = 0, Vw € HY(curl, Q)}.
According to (1.65) this is equivalent to
W = {v e Hy(curl, Q) : (Bv, Vo)) =0,V € H}(Q)}.

By Green’s formula we deduce (2.24). u

For our next purposes, we need to decompose any element v from Wj into a singular
part vg and a regular part vg in the space Hy (€2, 3) defined by

Hy(Q,8) = {w € Hy(curl, Q) N [PH'(Q))? : div(Bw) € L*(Q)},

and equipped with the norm || - ||p1,. This decomposition is now well known [5,21,22],
and is obtained by looking at W3 as a (closed) subspace of

Xn(9Q, 8) = {w € Hy(curl, Q) : div(fw) € L*(Q)},

equipped with the norm || - || x, s, defined by

[olFysn = [ (cleurlof? + 37 div(30)F + Blof).
By functional analysis arguments, there exists a positive constant C' such that

vrllpr1s + Vsl xy60 < Cllvllxy .o

But for our next purposes, we would need to specify the dependence of C' with respect
to the coefficients # and y. Unfortunately this dependence is difficult to establish. We
therefore use a Helmholtz decomposition from [47] obtained for § =1 :

Lemma 1.4.2. Any v € Ws admits the splitting
v=w+ V, (1.66)

with w € (Hj())?, ¢o € H)(Q) with the estimate

|wllg + [[Vollprs S Ci(B,x)vlls., (1.67)
\wpmg S Ca(B, )|Vl 8- (1.68)
where
Ci(f,x) = max 5 max 57
. 1/2 ~1/2
Co(B,x) = max ;" max x; .
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Proof: According to [47], the splitting (1.66) holds with w € (H{(Q))?, ¢o € H}(Q2) with
the estimate

|wl| + Vool < v,
lwhio < | curlw.

~Y

The requested estimates follow directly from the definition of the norm || - ||4,,- u

Note that the decomposition (1.66) (and therefore the estimates (1.67) and (1.68)) is
not unique in general, and, in some particular cases, the estimates could be improved. The
two advantages of the presented results are that they do not depend on the singularities
of v € Ws and that the involved constants are explicit. We further see that if 8 and x are
constant on the whole ), then the constants reduce to C; = 1 and Cy = Bx~!, which are
the optimal ones.

Corollary 1.4.3. The error e admits the splitting
e=e¢e + ey,
with ey = V¢ where ¢ € H! () and e, € W which admits the decomposition
e, = w+ Voo, (1.69)
with w € (H)())?, ¢o € H)(Q) with the estimate

lwlls + leollpms < Ci(B,x)llevLllsx (1.70)
[wlpmps S CaB,x)lleclpx- (1.71)

with C;(B,x),i = 1,2 as in Lemma 1.4.2. Furthermore the defect equation is equivalent to
the two above equations :

BV, V) = (Vi) Vo € Hy (), (1.72)
ale;, w) = r(w),YVw € Wp. (1.73)

Proof: Direct consequence of the above Lemma recalling that the decomposition (2.23) is
orthogonal with respect to the inner product (-,-)gs,y- |

1.4.2 Interpolation error estimates
Clément interpolation

Let us first modify the standard Clément interpolant as in [11]. With each vertex x, we
associate a number [(z) in {1,...,J} such that :
* x is contained in (),
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* By = max{0;,1 <j < J:x €}
Then we define the Clément type interpolant as follow :

I,: HY(Q) — ST

o2 [we N Q)| ﬂQl ([ummu) ¢> p= 2 Tl

z €N z €Ng

where S(Q,7;,) is the space of continuous piecewise linear functions on the triangulation
which are zero on the boundary and ¢, is the nodal basis function associated with the
node x, uniquely determined by the condition :

(pw(y) = 695,;/7 Vy S NQ

Under the geometric assumptions that at most 3 subdomains Qj share a common point, it
has been shown in [11] the following estimates :
For every function ¢ € H] (), every element 7" and every edge e of T,

_1

I = Taa@llrzry S hrBr* IV Ellpar,
1 1

16 =1 @llr2e) S héPe 2 IVEllp.a.,

where 3, = max Br. Here, A (resp. A.) denotes the union of all elements sharing at least
Cwe

one vertex with T' (resp. e).
In order to remove the above geometric assumptions, we introduce another interpolant
based on a weighted average and defined by :

I = Y~ (Myd) o, ¥V 6 € HI(Q), (1.74)

IENQ

TCUJz

> Br

TCUJz

where M,¢ =

We start with the following lemma :

Lemma 1.4.4. For every function ¢ € Hol(Q), every node © € Ng, one has

¢ = Madllgw, S ConeulB)hal VO, (1.75)

where h, = max hy, Cy neu() is the Poincaré constant corresponding to the converse of
TCUJz ’

the squareroot of the first positive eigenvalue of the following Neumann problem :

—div(BVe) = A3 in Wy,
{ % =0 on 0wy.
on
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Proof: Let = be an arbitrary node of the triangulation 7, and ¢ a function in H}(£2). We
want to estimate the constant ¢; in

H¢ - MwﬁbHﬁ,wz < Clthvd)Hﬁ,wz‘

This will be done by the min-max principle. This problem is equivalent to bound from
below the ratio

> Brid||Vell:
TCwy
3" Brlle — Mooll2
TCwg

We denote by A; the first eigenvalue of the operator Az with Neumann boundary conditions
in @,. Then, by the min-max principle, one has
BIval®

1 = #mlg / s
u#£0,ul gl
’ / slal?

where 4 L3 1 means that Z /AﬂTﬁ = 0.
Fea, T
If we set ¢ = ¢ o I, where F), is the transformation that maps &, onto w, we have

> 69615 = 3 B [ IBEVOIBITI do

TCa TCuwa

S D Bl BIPITITHIVG-

TCUJ’E

As Tj, is regular, |T'| ~ h% and ||BL||? < k%, so :

> BrlVolE S Y Brivels.

TCH, TCwa

Moreover, we remark that the weighted average is preserved by these transformations :
~ T\
or [ 6 =
20 |, Z br i /.0
_ TCw _
S BT Z Br|T|
Tco

TC(.L)z

M. (1.76)

In a similar manner, we have :

S Brlle - Meolz ZﬂT/w M2

TCuJa: TCUJ::

< Y Behdlle — Mok

TC(—U(E
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> BrlVelz

TC(—U(E

This means that we are reduced to bound min >
Ger @) Y Brllé — Mg||%

TCw.z
Now, setting © = ¢ — Mg, the condition u Lz 1 means :

o[ (9-Md)-1=0 & Yoo [ o= ZﬂT/Meb

TCUJT TCUJ’E

= ZﬁT/T$: ZﬁT‘T\‘ M\a

TCh, TC
> Br[ ¢
T Tcw T
&S M= ——=——.
> BT
TCoa
Therefore,
> 6rlIVel: > BVl
TCh — min TCog
ermi(o Z Brllé— Mol ot > prllal

By the inverse change of variables, we find :

> Bril|Vellr

< TCwe

N Brlle— Mol

TCwg

Lemma 1.4.5. For every function ¢ € Hol(Q), any triangle T € T, and any edge e € Epq,

one has
6 =T0llpr < Cneu(B)hr||VOllgar,
G0 - Tl < (1+ Cren(B)) 12 [Vollpa..
where Cey(B) = max Coo New(5).

Proof: Let T' be a triangle of 7. By the definition of I'*" and the estimate (1.75), we have

o —Tllpr < > o — Madllsr

CCENT

< Y ConalBhal Vo

CCENT
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where Np denotes the set of vertices of T. The regularity of the triangulation leads to
(1.77).

Now, let e € &,q. We set w, = T3 UTs and can assume that S, = max {08, On,} = Br,.- We
apply in 7 the standard trace theorem ( [54], Lemma 3.2) :
lelle < he ol + hélelm, (1.79)

and obtain

B2llo—T gl = B2 3 llé— Mgl

zeNqNe

S b (h? > H¢>—Mx¢HT1+h3HV¢HTI)-

zeNqgNe

The estimate (1.75) then gives

Bello —T"dlle S Bihe D o — Madll, + hZ |Vl p,

$€NT1

_1 1
he® 3 heConen(B)| V6. + hE V6] 50

:DGNTl

< hE(1L+ COxnen(3) [Vl

Lemma 1.4.6. The interpolants IS and 1., are equivalent, in the sense that

||¢ - ICl,x¢||,87Wz ~ ||¢ - M(E¢’|ﬂ,w;z7 Vz € NQ

Proof: On one hand, for every z in Ng, we may write

d) - 101,x¢ - ¢ - 101,X¢ + M$¢ - IcLXM:BQb
- (I - ICl,x)(I - M:B)¢v

and therefore

¢ =1, 9lsw. = [IT=1 . )(¢— Med)|s0,
ST, e llé — Medllpw,
S (IMswe + Mo llw.) |6 — Medllga, -
with
I =1=
Mo = 1= [l
and
Molpwr = max ot =  max dostoe
P T er2(wa) Jullpwe =1 T wer2woM0}  ||ull g,
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By the definition of I, we have :

||101,X¢Hﬁ,wz = (Z 6T||101X¢H%“> = ‘101,x¢| (Z BT‘T|> .

As, by Cauchy-Schwarz’s inequality,

1 |w$ N Ql |
Io 0l = |l T——=5— / o) = T =0 T loll2w.ne
’ cl, ‘ ‘w$ N Ql(ac)‘ ( e ) ' ‘w$ N Q ‘ H HL (WaNQy(z))

we obtain that

1
e llw. < \wxﬂﬁzm\_;(z ﬂT\T!> > BeBrlIolE

TCwy T CwazNQ(x)

S h (Z ﬁTh> 51@ Z Brlloll7

TCwsz Tszle(m)
S 19llse.

Hence HIchHﬁ,UJz SJ 1 that leads to H¢ - 101,X¢Hﬁ,wm S H¢ - M:Bd)Hﬁ,wz‘
On the other hand, for z in N,

d) - M:B¢ - ¢ - Ma:¢ + 101,X¢ - Ma:IcLXQb
- (I - MCB)(I - 101,x)¢7

D=

and then
¢ = Madllpw., S [IT— Mallge. ¢ — L ll5.0.-
Since X
TCwy L
= M.l <Z mm) ,
T Cwe
and
> e 1ol (Z bk ) > mwu)
|M$¢| S TCwy < TCwy TCwy
> Or > Br
TCwy ) TCwg

IN

191l
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we obtain )

(Z ) (

> Br

TCwg

HMﬂcd)Hﬁwz SJ

> ﬂT\T|> 1113 0.

TCUJ’E

This implies that
[IMatllpws S lIllpwss

hence

[Mallpw. S1
Therefore we conclude that |[¢ — M.9|lgw, S |¢ — Lo @l 5w, n
Remark 1.4.7. Lemma 1.4.6 and Lemma 2.8 from [11] imply that under the above men-

tioned geometric assumptions, the constant Ce,(3) < 1. Note further that Lemma 1.4.6
shows that the use of I, or I'** is equivalent.

Nédélec interpolation

Let T € 7, be a triangle and &,1 the set of its edges. For e € &,q, we fix t, one of
the unit tangential vectors along the edge e. For T' € 7},, we define the set of linear forms

{le7 ec ghT} by
le: L' (e) — R

u—>/utds

and consider the (basis) functions A\, € N'D; satisfying the condition (see [37])

Ve € ghTa/ Ae -ty = 5676/.

We further introduce the local interpolation operator I d|T(u) € N'D; defined, for u satis-
fying u, € (L'(e))*, by the conditions

le (Tyapr(w) = lelw), ¥e € Enr.

This means that
INed|T(u) = Z (/u - t, ds) e
e€€nr e

The global interpolation operator L, is then given by (L. u)ir = Ly, r(ur) € ND1, VT €
T, as
I...: [PHY(Q)]*N Ho(cur, Q) — Vj

u — Z(/u-teds)Ae.

eEEhQ

48



Lemma 1.4.8. Let T be an element and e an edge of the triangulation. For every function
w e [PHY(O))? (N Ho(curl, ), we have :

_1
lw =Ty wlr S hobp2[Vewlsr (1.80)
<

lw =Ty wle hé Be * IV pwl| 5., (1.81)

Proof: We consider an element T € 7;,. As I depends only on the triangle T,

Ned |T'

lw =Ty wlr

Ned Hw_ INed\Tw|THT

S dzam(T)||Vw|T||T,

by a Bramble-Hilbert argument. The estimate (1.80) directly follows as diam(T") ~ hr.
For an edge e, we apply the trace estimate (1.79) with T" adjacent to e such that gy = [,
and find

_1 1
||w_INedw||6 S heQHw_INedw’|T+he2Hv(w_INedw)HT'

~Y

By (1.80) applied to T', the regularity of the triangulation, the triangular inequality and
the trivial inequality
Vw7 < 87 Vw3,

we deduce that :

11 1
S hé Be * IV pwl| g, + he[IV (I, w)llr.

~Y

Hw - INedee

Moreover as Iy, ,w € N'Dy, we know (see [37]) that

V2

IVIyqw)llz = ==l curl(l,w)llr
2

|| curl w||r

IVwllr

that leads to the conclusion. ]

A Clément-Nédélec interpolant
Let us define a Clément-Nédélec interpolant by :
IgN . LQ(Q) — Vh

where O, (u) u - t, for T, € 7T;, such that Gy, = . and A, = Aelel.

~ T,

This new interpolant is well-defined, is stable relatively to the 3-norm and the 3-H!-
seminorm and satisfies standard interpolant error estimates, i.e. we have the following
estimates :
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Theorem 1.4.9. For every function u € [PHl(Q)]2 N H(curl, ), any T € T;, and any
e € Enq, we have

Iy ullsr < Nullswr, (1.82)

lu = Tyullsr S Cen(®hrllVullswr, (1.83)
IV(u =T w)llar < [IVullpwr, (1.84)
B2 lu = ule S he'*(Cxeu(B) + DI Vullg,a. (1.85)

where CX,.(0) is the converse of the squareroot of the first positive eigenvalue of the follo-
wing Neumann-type problem :

—Au = Au in T\, VT C o,
[[UTH =0 oneC intwr,
-y o an on € C Or, (1.86)
ngT €C6T
UN g on e C Wr,
\ on

where ur and uy denote respectively the tangential and normal components of u.

Proof: We first define
Ro(wr) = {c € H(cwl,wr) : ¢ € R®ZVI Cwr}

and prove that I’ u = u on T if u € Ro(wr). Indeed, for u € Ro(wr) and e C T', we have

1
e(u) |Te| Te & e e 6‘ /C
Then, the definition of I , implies that IC wrt = I, ATl =

Let us now show (1.82) : By Cauchy-Schwarz’s 1nequahty, we may write

Ned

1
‘@e(u)‘ S ’T ‘ ||u Te t Te
Since
HteHTe < HteHOO‘Te‘l/Z
and [|t.]|cc = 1, we get
0. ()] < —
Oc(u)] < W
By the definition of IgN, we obtain
1/2 1/2 5
el < 3 ,1/2 2l | el

eCoT”’
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Moreover, if A denotes a basis function on the reference element, we have

IAellzr = lell[Acllzr = lell Bz Allz S lelhg | Ml < el
where B is the 2 x 2 matrix corresponding to the affine transformation F7- that maps
T" C W onto T".

As |e| = he, |T.| ~ h? and B < 3. , we conclude that

1/2
P e S lulls,

eCoT’
which implies (1.82).
Now, for any p € Ro(wr), u—1° u= (I—1° )(u—p) and therefore by (1.82) :

1/2
= BT ) (u—p)|r
< Jlu = pllger-

B Ju =12 ullr

For this estimate, we see that (1.83) holds if we can bound from below the ratio

WS BVl

T'Cwr

> Brollu—pl3

T'Cwr

for u € H(curl,wr) N [PH 1(wT)]2 and p € Ro(wr), which is equivalent, by applying the
affine transformation Fr mapping the patch &y to wy (see section 1.2.2) and making the
change of unknown U = BT/ wyp, VI" C wy, to bound the ratio

S BVl

T\/C@T

S Brlla -l

?’C@T

(1.87)

for 4 € H(curl,&7) N [PHY(&7))* and p € Ro(@r). This last ratio will be estimated from
below using the min-max principle.

Indeed, we set V = H(curl,&7) N [PHY(@7)])?, H = L2(&r), define the bilinear form

l(u,v) = Z By | Vu: Vo, V(u,v) eV xV

and introduce the inner product (u,v)z = Z ﬁT//A u - v, for v and v in H.

T'Cco B
T
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The corresponding spectral problem consists in finding A € R and v € V', u # 0 solution
of
lu,v) = Nu,v)s, Yv e V. (1.88)

Taking first v in D(T\ ") for T' C &r and applying Green’s formula give that u satifies, in
the distribution sense, R
—Au=AuonT.

Moreover, as u € H(curl, o),

[[uTﬂe = O,V€C ZDT.

Now, for any v € V, if we use Green’s formula on each T , we obtain that

> B KL Zm/ A g ) =0, Yo € V. (1.89)
K T o On K T Jom on I on T
T'Cor T'Cor

This implies the third and fourth conditions of (1.86). Indeed, let € be an arbitrary edge
of the patch Wy and fix the unit normal and tangential vectors ng and tz along this edge.
We consider a function ¢ € D(w;s) and first prove the third condition :

Set v = ¢ tz on Op. Then, vy = 0 on every edge € C Wy and as v € H(curl,&r), vy is
continuous on the interfaces. That’s why (1.89) becomes :

0
> S n [ o=

TcorecT e
3uT
TCor : ecT

That leads to the conclusion.
0 on Tl C wg

¢ onTy Cws

Ouy
& — =0
<A on’ (’0>
eCToNwe

8u N
on
Exchanging the roles of the triangles T} and 75 and applying the same proof to all edges

€ C Wy give the fourth condition.
We now define the self-adjoint operator A associated with the problem (1.88) by

Now, we set v = 1 ng on Wy where ¢ = { . This time, vy = 0 and (1.89) :

=0one =T,Nws

A: DACH — H
u — Au,
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where u € D(A) iff 3f € H : l(u,v) = (f,v), Vv € V and then set Au = f.
Since V' is compactly embedded into H, A has a compact inverse. Therefore this operator
admits a discrete spectrum and, by the min-max principle, its first eigenvalue satisfies :

l
A1 = min (v, v)
A ol

Since ker A = Ry(wr), we deduce that

> srlVils,

T\’C@T
Al = min
uev, ulgRo(@r) Z By || — pHT/
T’CwT

This gives, by choosing in (1.87) p as the projection of u on Ry(lwy) with respect to the
inner product (-, -)s, the following estimate :

Ia = Blsor S A V2IVlsgr-

~

This implies (1.83) by the above mentioned scaling argument.

We now prove the third estimate. First as I u € [Py(T)]?, a standard inverse inequa-
lity [17] and the estimate (1.82) yield

1/2 1/2 _
GV e S b B ullr S hlfull g
By the triangular inequality we get

B2V (=18 )|y LIVl + 82V ) |

<
< IVullgr + hy'lullgwr-

Moreover, as for any p € Ro(wr), u — 12 u= (I—-15 )(u —p), we find

IV (u =12 )| IV [ =12 ) (w—p)] |l

<
1/2 _
< BNV = p)llr + bt = pllgwr
S IVullgr + hitlu — pllper-

Since we have shown by the min-max principle that
[u = pllpwr S hrllVullsw,

the conclusion follows.
The last estimate (1.85) is a direct consequence of the trace estimate (1.79) (applied in T,)
and the estimates (1.83) and (1.84). u
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1.4.3 Error estimates
Residual error estimators

On an element 7', let Ry := f— (curl(x curl w,)+ fuy,) be the exact residual, and denote
by rr its approximated residual.
Introduce the jump of u;, in the normal direction and the jump of curl w;, in the tangential
direction by

J ._ { [[5’% . neﬂ . for interior edges
o 0 for boundary edges,

I, o= { [[X curl 'U'hﬂ . for interior edges
o 0 for boundary edges.

In the following study, we will build two different local error estimators of the solenoidal
part of the error. The first one is inspired from [11] and the second one has been adapted
from [33, 53], where convection-reaction-diffusion problems are considered. Note that the
second estimator reduces to the one analyzed in [19] in the case y and [ constant.

Definition 1.4.10. The local and global residual error estimators are defined by

7]3 = Z 7]%,07

TeT,
77% = Z 77%,J_7
TeTy,
o= o+,
¢ o= > 4,
TeT,

nho = WO AV(Bw) 3+ D kel Tenll?,

eCOT
o1 method : | = 3B el 4+ D heB M | TeullZ,
) eCoT

(¢t = hiBr |lrr — Rrllz,

2" method : ny. | = of|lre|F+ Z o 2| Tedll?,
eCoT
G = > abllrr — Ryl
T'Cwr
where 6@ = 8T1|'£I(91%2X:{e}{ﬁTuﬂT2}) Xe = 8T1r£g%2X:{e}{XT“XT2} G/ﬂd, fOT’ any S € 77L U 5}“

g = min{ﬁglp, X;l/QhS}.

Proof of the lower error bound : the irrotational part

Theorem 1.4.11. For all elements T, we have the following local error bound :

o S llellser- (1.90)
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Proof:
o Divergence
By the inverse inequality (1.19) and Green’s formula,

| div(Bu)[ ~ / br(div(Bu))?

~ _/V(deiv(ﬂuh))ﬁuh

~ T(VT(bT div(Buy,))) by (1.14) and (1.4)
~ a(e, V(brdiv(Bu)))
N / BeV (br div(5u,))

i )
S BrlIV(br div(Bun))llr 52 el r

1
< BRhpt|| div(Buy))|r]| 67 el by (1.20).
This shows that .
| div(Bw,))|lr S B2hs' ||ellsr (1.91)

o Normal jump
Let e be an interior edge ; we recall that J,,, € P*(e) with & € N depending on the chosen
finite element space. Set

We = Fopt(Jen)be € [HO1 (we)]?.

An elementwise partial integration gives

/e Josw, = — / [8(u— w) - n]) e
= + ) {/Tﬁvee—/Tdiv(ﬂe)we]

TCUJe

= + ) {/Tﬁvee%—/Tdiv(ﬁuh)we}

TCUJe

™ (8% ellr B3V we o + || div(Fun) el

TCWE

11 ) 1
> (lellpaBzhe? 13eale + I div(Bun)lrhF |Teall.)

TCWE

N

N

by (1.22) and (1.23). Since (1.21) yields /Je,nwe ~ [|Tenl|?, we obtain

e

11 1
ealle S D7 (82077 ellor + A1 div(Buwn) )

TCL«Je
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This estimate coupled with (1.91) implies :

1 _1
ealle 53 (87877 llellar) -

T Cwe

As 7y, is regular, hy ~ h,, and 3, = max{fp|e C IT"} > Br for T C w,, we obtain :

11
[Jenlle S B¢ he * | €| (1.92)
The estimates (1.91) and (1.92) lead to the conclusion. u

Proof of the lower error bound : the solenoidal part - first method

Theorem 1.4.12. For all elements T, the following local lower error bound holds :
o S Y (BB +he) lelloar + Y Gon (1.93)
T'Cwr T'Cwr

Proof:

o Element residual

Let T' be an element of the triangulation. Set wy := rrby € [H)(T)]*.

By the inverse inequality (1.19), Green’s formula and the fact that br is zero on the
boundary of T', we write

Irrll7 ~ TTwT
Rrwr + T'T - RT)wT
— curl( Xcurl uy,) — Bup)wr + /(rT — Ry)wr

T
— Bup)wr — / x curl uy, curl wp +/(’PT — Ry)wr
T T

~ /T(’PT — Rr)wr

The relation (1.13) implies

2

Ircl2 ~ a(e,wr) + / (r — Re)wr

~ /Xcurlecurle+/ﬁewT+/(rT—RT)wT
T T T

< xz cwrl ef| px 2| curlwr || + (|87 €]l 282 [wr || + |rr — Rellz|lwr] 7.

The inverse inequalities (1.19) and (1.20) give

1 1
|rr]|7 Ix7 curl e]|px2hzt || rr|r + 137 el rB2|rrlr + |7 — Rellzllrrllr

N
1 1
N <||X% curl e + || 82 e||T) *(xrhz? + Br)? el + |lrr — Rellzl ez
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Then,

Irrllr S (xrhy” + Br)* ||ellgr + llrr — Re|lr- (1.94)

o Tangential jump
Set we = Fepy(Jey)be € [H] (we)]?. It comes from the inverse inequality (1.21) and an
elementwise partial integration that

el

~ /Je,twe -t
e

" / T ourl w]] w, - £,

e

~ =+ {/ x curl u;, curl w, — / curl(x curl uh)we}
TCWE T T

< r(we) + Z/RTUJ@
TCL«Je T
< ale,we) + Z/rTwe+ Z /(TT—RT)we
TCwe T TCwe T
< Z {/Xcurlecurlwe—l—/ﬂewe%—/TTwe—i-/(rT—RT)we}
Tow, LT T T T
1 1 1 1
< > [||><2Curl ellrxz | curlwe |7 + [| 52 el|l7 57 ||we|
TCUJe

+ Nrrllrlwellr + lrr — Rellz]lwell7]-

By the discrete Cauchy-Schwarz inequality and the inverse estimates (1.22),(1.23), we find

1 1
Tedlle S D7 13 [(vrhiz? + Br)* llelloner + lmr = Rallr] (1.95)

TCL«Je

Using (1.94), (1.101) and the definition of nr |, we get :

nr,L N

AN N

A

1 1 _1
(xi02* + hr ) lellor + hafy* e — Rellr

11 1 T 1 1

AR [h%, (x;;,hT, + ﬂ%,) el g1 + B2 |7 — RT,HT/}
L o1 ! 1. 1 1

AR [h%, <x%,hT, +ﬂ%,) lellsrr + B2 | e — RT,HT/}

eCOT T’Clwe . )

S5 [(d 8+ b ) lellsar + b8 llrr — Rl

eC@TT’Cwe1 ) )

> [ (63877 + ) lellar + hroB72 | me = Rl

T'Cwr

Corollary 1.4.13. For all elements T, the following local lower error bound holds :

1o
nrot+ . S Y (X]Q“/ﬂT’Q +1) lellsr + Y G (1.96)

T/C(.L)T T’CwT
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Proof of the lower error bound : the solenoidal part - second method

Theorem 1.4.14. For all elements T, the following local lower error bound holds :
nra Sllellpyr + D Crv (1.97)
T'Cwr

Remark 1.4.15. This new estimator has been built in order to have a coefficient in front
of ||el|g,, equivalent to 1.

Proof:

o Element residual

Let 7' be an element of the triangulation and set wr := rpby € [H!(T)]?.
By the definition of ar, it immediately follows from (1.94)

Irrllr < oztllellgr + |7 — Re|lr- (1.98)

o Tangential jump
Set we := Fopp(Jey)bey. € [H)(we)]? with . € (0,1]. For we = Ty U Ty, bey, is defined as

follow
b . bele,’Yl on Tl
eYe
7 be,T2ﬁ2 on Ty

and

o 7 on T
Te = vo on Ty

where we choose (see [33])
1 Y2y 1 1. 1 goy2 12y 1 1.99
Yi = iXTi T, AT, = 5 min 751; X, Ny (- ( . )

Note that, be,que = be,TmQ‘e = be|e- Then, using the argument of section 1.4.3, we have

el S [lelloxa (i curlweliz, + B e iz,
i=1,2
+ (HrTi T, + prn - RTi Ti) |w€ Ti] :

By the discrete Cauchy-Schwarz inequality and the inverse estimates (1.25),(1.26), we find
y
1 1/2 1/2 1, -
lwellars S 9203 (812 + xi 97 ) ealle (1.100)
and (1.94) and (1.100) lead to
1/2;, —1/2_—1/2 1/2;1/2_1/2 112 172\ 2
Bl 5 3 | (afth 2 + S 4 ol ) el

1
i=1,2
1/2_1/2
T -

+ hTi Yi prz - RTi
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Then, by (1.99), we obtain

ealle $ 3" o lells +ai*lmr, — Rallz,| (1.101)
i=1,2
Using (1.94), (1.101) and the definition of nr |, we get :
o S llellgyr +arlrr — Rellr
+ Z Xe_l/4ai/2 X%Zlailp (HeH/BvaTi + ar || T, — RTi Ti)
eCoT i=1,2
—1/4 1/2 1/4 —1/2
S lellowr+ Y > xn ar®xit o el
eCOT i=1,2
+ agrlrr— Rrllr+ > > xg og*xi '’ llrr, — Rl
eCOT i=1,2
as Xe > x7; and a. < ag,. That leads to the conclusion. [ |

Corollary 1.4.16. For all elements T, the following local lower error bound holds :
nro+nre S llellgwr + Cr- (1.102)

Proof of the upper error bound : the irrotational part

Theorem 1.4.17. The (3-norm of the irrotational part of the error is globally bounded
from above by ng, i.e.,
leolls < (1 + Cneu(B))10- (1.103)

Proof:

Let ¢ € H!(Q) be the function introduced in the Helmholtz decomposition of the error e
such that the irrotational part of the error ey = V¢ (cf. Corollary 1.4.3). We are interested
in |leol|s = lleollsx = IV@||s- By (1.72), we know that

a(eo, Vi) = (B¢, V) = r(VY), ¥ € H (Q).

Let ¢, € S(,7). Then, Vi, € V1 C Vj, and the Galerkin orthogonality relation
(1.15) gives

BV, VY) = r(V(¥ — ), V¢ € H(Q),¢n € S(QT).

As fis divergence free and ¢ — v, belongs to H_(f2), we obtain, by Green’s formula and
an elementwise integration by parts : Voo € H)(Q), v, € S(Q,7y),

BV, V) = (/T div(Buwn) (@ —vn) = Y [ Tem(th — ¢h)> :

TeT,, eCoT v €
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Setting ¢ = 1 and using Cauchy-Schwarz’s inequality give

(Bey, &) = (BV, Vo)

< ) (/ div(Bu) (¢ — tn) = > [ Jenle — ¢h)>
TeT, \T . ecor "¢

< 7 bl div(Bun) bz 82116 — e
TeT,

Y bl h 2| whHe] .
eCOT

1
We now introduce the notations pr = hy(3;% and p. = hef, .

By the discrete Cauchy-Schwarz inequality we obtain :

leoll3 < {Z (/fﬂl div(Bun)[I7 + ) ueHJe,nH?)}

TeT) eCOT )
: {Z (u;2||¢ — i+ > e —whrﬁ)}
TeT) eCOT )
< M { > (mw —nll7+ D e - mui) } :
TeT), eCOT

To achieve our estimate (1.103), we choose ¢, = Ii"¢ € S(Q,7,) and apply (1.75),
(1.78) to obtain

{ > (uT2||¢ — 3+ D ptle - wu?) } S+ Crea@)IVOlls.  (1.104)

TeT, eCOT

Proof of the upper error bound : the solenoidal part - first method
Theorem 1.4.18. The solenoidal part of the error satisfies

lewllsx S ot (e +OC2(B8, x) + (1 + Crneu(B))m0Ci(B, X)] -

Proof: As e, € Wj,
aHelH%,X S a(eL7eL)

I
=
&
+
=
<
s



where ¢ € H)!(Q) and w is the function introduced in the Helmholtz decomposition
of the solenoidal part of the error e; (cf. Corollary 1.4.3). Inspired by the proof of the
irrotational part, we obtain that

(Vo) S (14 Cneu(B))m0]| Vo | - (1.105)

Now, using the Galerkin orthogonality relation (1.15) for any v, € V}, and an elementwise
integration by parts, we get

r(w) =

r(w— vy)

(f, w—v,) — a(up, w— vy)

(f—ﬁuh,w— vh)

Z (/ curl(y curl wp)(w — vp,) — Z x curl uw, (w — vy) - tf>

TeT, \"7T ecor Ve

Z (Rp, w— vp,) — Z /Jeyt(w — ) - te. (1.106)
TeTy ec&, V€

Cauchy-Schwarz’s inequality leads to

r(w)

1 _1
Y [MTHRTHT:UTle_ villr + Yl [ Jetllepse | w — vhHe]

TeT, 6C8T1
2
S {Z [M:QrHRTHQT +) ,UeHJe,tHg] }
TeT), eCOT )
2
' { > [M%QHW— ollF+ Y gt lw— ”hHE] }
TeT, eCoT )
2
S { > [M%HTTH% + pipllrr — Rell5+ > Me||Je,t||3] }
TGTh GCBT L
2
-{z [u;2||w—vhn%+ zuglnw—vhng]} |
TeT, eCoT

Then, by taking v, =, w € V} and using the estimates (1.80)-(1.81), we obtain :

NI

> [MTQHw_ il + Y ot lw— 'Uth] } S IVewlls. (1.107)

{TGTh

eCOT

Therefore, from the definitions of 1y and (r, we find

r(w) S <Z (7, + C%)) IV pw]s. (1.108)

TeT,

61



By (1.105) and (1.115), we conclude that

1
allerlfy < 1+ ¢)2lIVewlls + (1 + Crea(8)m0ll Veols- (1.109)
Using the bounds (1.70) and (1.71) from corollary 1.4.3, we get

alleclly S [+ OC2(8, x) + (1 + Cneu(B)moCi(B, )] llevllp-

This leads to the conclusion. ]

Corollary 1.4.19. The error is globally bounded from above by
el S (1 +a ") (n+¢) max{(1+ Crneu(B))C1(8, x), Co(B, X)} - (1.110)

Proof of the upper error bound : the solenoidal part - second method

Theorem 1.4.20. The following upper bound holds :

lelsy S a1+ Cneu(B)CL(B X)M0
+ [C1(8,) + (1+ Crea(9)Co(B,x) max (G267 (e + O3 (1110

.....

Proof: This time, from (1.106), we obtain :

w) S [aTHRTHTaTle—vhr|T+ > x a3 llext o 1/2||w—vh||e]

TET]—L eCOT

1/2
N { > [O‘%HTTH% +ozlrr = Rl + ) Xel/QQeHJe,tHg] }
TGTh eCOT /
1/2
' {Z [@TQHw— w7+ ) xe ol lw - 'Uth] } :
TeT), eCOT

Then, by taking v, = IgN'w € Vj, we can prove that :

Yol lw—wli + Y e w— wil]

TET]—L eCOT

1/2
<l + (142 Cyu(8) ( max {8, 1}) IV w3 (1.112)

.....

Indeed, the definition of ap implies o' = max{ﬁl/ 2, XlT/ 2 hz'}. Tt follows, by the esti-
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mates (1.82)-(1.83) and the triangular inequality, that

> ap’lw— w7 = Yo Brllw—wli+ > xrhllw—wlF
T
TeTy /8;,/2;?(172}1;1 ,8;1/2;?(;72}1;1
S S (ol +Belwl2) + Y B b w—w3r
TET), TET),
ﬁ1/2 1/2h 1 ﬁ1/2 1/2h 1
S N (wldr+ wlBe,) + 3 B Crea B2V w3,
/P2 SRty
S ol (max, (08} ) Cha0PIV ol (1113)

On the other hand, with the trace inequality (1.18) applied on T, such that §. = fr, and
the estimates (1.113), (1.84) and (1.85), we find

> 2 xallw—wl = Y D AT Bl w— il

TeT, eCOT TeT, eCOT
ﬂ1/2_ 1/2,

—1 -1 2

+ ) Z X167 Bl w — w2
TeT), eCOT

B2 <Xt

< (o, 0, 1}) S 52w

..... Te€Ty,

(61£2h;j w— vy|7, +51£2 V(w— v,) Te)
b (o, 00571 X (Cha(8) + DA el
I=5 Te€Ty
12 1/2
S (x {85 1}) (Z Br.|w — vh||%e) :
I= 0 Te€Ty
1/2
(Z (Br.hz2|w — va|%, + Br. ||V (w — 'vh)H?re))
Te€Ty
—1 * 2 2
b (o, 00571 X (Chal®) + DA vl
..... TeeTy,
1/2
S (o, 0o5™}) Tl + Gl
b (mx, 008} ) (i) + 1PV ol
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S K fw— w2 Sl + (jgaxj{xjﬂjl}) (1+ Chrea () V pwl3(1.114)

TeTy ecoT N

The estimates (1.113) and (1.114) show (1.112). Therefore, from the definitions of nr |
and (7 and the estimate (1.112), we deduce

.....

1/2
rw) S (e +Q) {nwnﬂ FITls(1+ Chn(3)  max, (5 ) } (1115)
Using the bound (1.68) from the Helmholtz decomposition, we get the conclusion. =

Corollary 1.4.21. The error is globally bounded from above by

lellsx S (1+a™) max{(1+ Cyeu(B)C1(5, ).
CL(B,3) + (14 Chea() max {xj”0;*}Co(8, 20} (14 0)- (1.116)

-----

1.4.4 Extension to three-dimensional polyhedral domains

All the results of this paper extend to a three-dimensional polyhedral domain O which
is bounded and simply connected with a connected boundary. In that domain we consider
the Maxwell system (1.3), where fsatisfies (1.4) and ( and x are as before.

This problem is then approximated using regular meshes made of tetrahedra and the
finite element space V}, is simply assumed to contain lowest order Nédélec elements.

In this setting all the results from section 1.2.2 remain valid, especially Lemma 2.4.1 (the
Helmholtz decomposition) due to the results from [45,47]. Moreover in 3D the Clément-
Nédélec interpolant is defined by

ICNZLQ(O)3 — Vh
u — Z e (w)]e| A

e€€nq

where, as usual &, is the set of interior edges of the mesh, A, is the standard basis

function of lowest order Nédélec elements and we here set a.(w) u - t,, when T,

1

’Te‘ Te
is a tetrahedron having e as edge such that 35, = max.cr fr. The regularity of the mesh
allows then to show that Theorem 1.4.9 holds.

As the basic tools of section 1.2.2, the interpolation error estimates from section 1.4.2
and some integrations by parts are the only ingredients that we used for the proof of the
lower and upper error bounds, we can conclude that the estimates (1.97), (1.102), (1.110)
and (1.116) hold in 3D, with the same definition for the local estimators, except that J. .,
and J., are defined for the faces I of the mesh and for the tangential jump where curl wy,
is replaced by curl w, X ng, see section 4.1 of [45].
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1.4.5 Numerical experiments

The following experiments underline and confirm our theoretical predictions. Our examples
consist in solving the Maxwell equation (1.8) on the unit square Q = (0,1)? with different
values of y and . In all examples uniform meshes of size h = %, n = 32,64, 128 and the
lowest order Nédélec finite elements are used. Both estimators are tested and compared.
For that purpose, when an exact solution is known we analyze the upper and lower error
bounds for each estimator. In order to present them in an appropriate manner, we consider

the ratios

L e
up n _"_5 y
Nro + N1, L
Qlow = Max

TeT, ||u— un|gywr + (1

as a function of the parameters 3 and . The first ratio g,,, the so-called effectivity index,
is related to the global upper error bound and measures the reliability of the estimator.
The second ratio is related to the local lower error bound and measures the efficiency of the
estimator. The theoretical bounds for g, and g, of the previous sections are summarized
in Table 1.1.

18tmethod 2"method
1/2 H—1/2
Qlow 1+ ¥1€a’izh( {XT ﬂT } 1

Qup | max{(1 + Cneu(B))C1(B, x), C2(B, x)} | see (1.116)

TAB. 1.1 — Bounds for gjo, and g, for both methods

QQaﬂQaXZ QbﬂlaXl

O, B, x| Q2, B2, X2

Q37 637 X3 Q47 547 X4

F1G. 1.13 — The decomposition of the domain {2 on 2 subdomains, on the left, and on 4
subdomains, on the right.
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In the first example, we suppose that €2 admits a decomposition in two subdomains
0y =1(0,1/2)%x(0,1),95 = (1/2,1) x (0, 1) (see Figure 1.13 left) and take as exact solution :

u = curl ¢, where ¢ = [y(1 —y)z(1l — z)(2z — 1)]%.

In that case, one can show that Cye,(8) S 1, Cxeu(3) < 1 and that Wi € HY(Q2)?, so that
we can take C1(8, x) = 1 and Cy(3, x) as before. Therefore the bounds of ¢, and ¢, are
simpler and Table 1 is reduced to the next Table 2 :

1%tmethod 2" method
1/2 H—1/2
low 1+ rTneaT}: {XT/ T / } 1

Qup | Max {1, {riaxJ (ﬁjxj_l)} max {1, -fnaXJ (ﬂjxj_l) jg,&}.}i} (Xjﬂj_l)}

=1l,..q =1l,..

TAB. 1.2 — Bounds for g, and g, for example 1

In a first case, we fix x1 = x2 = B2 = 1 and take different values of 3;. The ratios g,, and
Qiow are presented in Figure 1.14 for the first estimator and in Figure 1.15 for the second
estimator for different values of (1. To see more easily the dependence on the involved
parameters, all figures are plotted in a double logarithmic scale. For the first estimator, we
see that ¢, behaves like v/ for 3; < 1 and is mainly constant for 3; > 1, while g0, has
a slow variation. For the second estimator, we can say that g,, and g, remain constant
for any ;. In both cases, our numerical bounds are better than the theoretical ones (see
Table 3).

Now, we fix 3 = 4, B2 = 1 and take different values of x; = x2 = x. The ratios gy,
and g0, are presented for the first (resp. second) estimator in Figure 1.16 (resp. 1.17) for
different values of y. For the first estimator, we see that q,, behaves like y~1/2 for y > 1,
while is slightly decreasing as xy < 1 decreases. As before we also remark that ¢,,, presents
slow variations. For the second estimator, again we can say that g,, and g, remain quasi
constant for any y. As before, our numerical bounds are better than the theoretical ones
(see Table 4).

As second example, we suppose that €2 admits a decomposition into four subdomains
Q;,i=1,2,3,4 as shown in Figure 1.13 (right) and introduce the exact solution

u = curl ¢ where ¢ = [y(1 — )2y — Da(1 — 2)(2z — 1)]*

We fix x; =1, foralli =1,....4, o = 84 = 1 and take 5, = 3 = ¢ for different values of
e. For this example, the corner point S = (1/2,1/2) induces a singularity for any element
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Example 1.1 1¥method 2"dmethod

o 1+max{ﬂ;1/2,1} 1

Qup max {1, 5} max {\/E \/@}

TAB. 1.3 — Bounds for ge, and g, for example 1.1

Example 1.2 | 1%method | 2"*method
Qiow 1+ \/% 1
Qup max {1,y '} 1

TAB. 1.4 — Bounds for gje, and g, for example 1.2

in Wy (see [22]). The constants involved in the bounds of ¢,, can be estimated, namely,
Cneu(B) ~ Chou(B) ~ max{y/e, ﬁ} Therefore the theoretical bounds are easily estimated.
The computed ratios g, and ¢, are presented in Figure 1.18 (resp. in Figure 1.19) for
the first estimator (resp. for the second estimator). For the first estimator, we see that gy,
behaves like /e for ¢ < 1 and is mainly constant for € > 1, while g, varies slowly. For
the second estimator, we can say that g, and g, remain constant for any €. In all cases,
the numerical bounds are quite better than the theoretical ones.

As a third example, we consider the problem from examples 1.1 and 1.2 with datum
f = (1,0)" and for which no exact solution is known. To compare our two estimators we
then have computed the ratio nyeq/ncn, where clearly nyeq (resp. non) is the estimator of
the first (resp. second) method. From Tables 3 and 4, we can obtain theoretical bounds for
this ratio that are presented in Table 1.5. The numerical values of this ratio are plotted
in Figure 1.20. There we can see that the ratio tends to 1 for (3; large or x small, while
for (31 small, the ratio behaves like (3, 1/2 (better than the upper bound), while for x large,
the ratio behaves like /X as the theoretical upper bound. Let us further remark that these
results are in accordance with the results presented in Figures 5 to 8.

Note that for the second example with the right-hand side f = (1,0)", the ratio
Nned/Non behaves like 1 for e large and like ¢ '/2 for € small. Again these results are
in accordance with the ones from Figures 9 and 10.

From these numerical experiments, we can conclude that our second estimator is stron-
gly robust with respect to the variation of the parameters, while the first one is less stable.
Surprisingly in all our tests, the first estimator is also stable in the singular perturbation
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case (i. e. the case [ large or y small for examples 1 and 3 and the case ¢ for example
2). This can be justified by the fact that in these cases the contribution of the jumps of

x curl u, in the estimators is too small.
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Qup and @ as a function of B; for example 1 and for the first estimator.
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FI1G. 1.15 — qup and g, as a function of 3, for example 1 and for the second estimator.
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F1G. 1.16 — qup and g, as a function of x for example 1 and for the first estimator.
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FiG. 1.17 — g, and g, as a function of y for example 1 and for the second estimator.
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Gup and o as a function of € for example 2 and for the first estimator.
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F1G. 1.19 - gy, and g, as a function of € for example 2 and for the second estimator.

1.4.6 Conclusion

We have proposed and rigorously analysed a posteriori error estimators of residual
type for the Maxwell equations in a bounded two (and three) dimensional domain using
conforming finite element spaces of Nédélec type. A new interpolant of Clément/Nédélec
type has been introduced and some interpolation error estimates have been proved. We
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NNed/NCN Lower Bound | Upper Bound
pr<1 1 e
X=1= 0
fr=>1 e VB
x=1=/
x<1 X L+ VX
=40 =
x=>1 1 VX
fr=4 0=

TAB. 1.5 — Bounds for nyeq/ncn for examples 1.1 and 1.2

eta_Ned /eta_CN eta_Ned /eta_CN

10 10
10 9 —n=32 10 9 —n=32

10&— ~Tn=64 1037 ~Tn=64

10, | - n=128 10, | —- n=128

10, 10, |

10, 10

10, | 10, |

10,] 10, |

10, 10,

10, 10, |

10, ] 10,

10| 10,|
10_) 10_|
10 | 10 | .
10_,| betal 10 | chi
10 10

ST T T T T T T T T T T i S S S S S S N S S R
10 5 -4 -3 2 -1 0 1 2 3 4 5 6 7 8 9 10 10-10-9 -8 -7 6 -5 -4 -3 -2 -1 0 1 2 3 4

10 10 10 10 10 10 10 10 10 10 10 10 10 10 1010 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

F1G. 1.20 — The ratio nyeq/nen for 2 subdomains, for different values of 31 on the left, and
for different values of x, on the right.

have shown that our estimators are reliable and efficient and have explicitly given the
dependence of the bounds with respect to the parameters. We further have shown that the
second estimator is robust. Some numerical experiments confirm our theoretical predictions.
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Chapitre 2

A posteriori error estimators based
on equilibrated fluxes

We consider conforming finite element approximations of reaction-diffusion problems
and time-harmonic Maxwell equations. We propose new a posteriori error estimators based
on H(div) and H (curl) conforming finite elements and equilibrated fluxes. It is shown that
these estimators give rise to an upper bound where the constant is one up to higher order
terms. Lower bounds can also be established with constants depending on the shape regu-
larity of the mesh and the local variation of the coefficients. The reliability and efficiency
of the proposed estimator are confirmed by various numerical tests.

2.1 Introduction

Among other methods, the finite element method is widely used for the numerical ap-
proximation of partial differential equations, see, e.g., [13-15,17,39]. In many engineering
applications, adaptive techniques based on a posteriori error estimators have become an
indispensable tool to obtain reliable results. Nowadays there exists a vast amount of lite-
rature on locally defined a posteriori error estimators for problems in structural mechanics
or electromagnetism. We refer to the monographs [3,6,40,52] for a good overview on this
topic. In general, local upper and lower bounds are established in order to guarantee the
reliability and the efficiency of the proposed estimator. Most of the existing approaches
involve constants depending on the shape regularity of the elements and/or of the jumps
in the coefficients ; but these dependencies are often not given. Only a few number of ap-
proaches gives rise to estimates with explicit constants, see, e.g., [3,13,35,38,42,46]. For
Maxwell’s system, only relatively few results exist. Different well established approaches,
for the Laplace operator, have been generalized and adapted to this special situation. Resi-
dual type error estimators which measure the jump of the discrete flux have been considered
in [9,19,39,45,49]; hierarchical error estimators e.g. in [8], and estimators based on the
solution of local problems have been introduced in [29]. Here we use an approach based
on equilibrated fluxes and H(div )- or H (curl)-conforming elements. Similar ideas can be
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found, e.g., in [13,38,46]. For an overview on equilibration techniques, we refer to [3,35]. For
reaction-diffusion problems, in contrast to [13], we first define on the edges an equilibrated
flux and then a H(div )-conforming element being locally conservative by construction.
In [13], the authors directly compute suitable conforming elements by solving local Neu-
mann problems. On the contrary for Maxwell’s system the construction of equilibrated
fluxes seems to be impossible and therefore we use the construction from [13]. In both
cases, the error estimator is locally defined and yields, up to higher order terms, an upper
bound with constant one for the discretization error. We note that our error estimators
are made for partial differential equations with zero order terms, and the upper bound
one is still valid in this more general situation. Special care is required by the lower order
terms. In the case of Maxwell’s equations, we have to introduce a second approximation
that takes into account the non-fulfilment of the divergence constraint of the finite element
approximation. This second approximation has not to be introduced if the zero order term
is not present. Finally lower bounds are proved, moreover for reaction-diffusion problems,
we trace the dependency of the constants with respect to the variation of the coefficients
for all proposed estimators. For Maxwell’s system this dependency is partially given.

The outline of the chapter is as follows : We recall, in Section 2, the scalar reaction-
diffusion problem and its numerical approximation. Section 3 is devoted to the introduction
of the locally defined error estimators based on Raviart—Thomas or Brezzi-Douglas-Marini
(BDM) elements and the proofs of the upper and lower bounds. The upper bound directly
follows from the construction of the estimators, while the proof of the lower bound relies on
suitable norm equivalences and some properties of the equilibrated fluxes. Finally in Section
4, we treat the time-harmonic Maxwell equations. For both problem classes, some numerical
tests are presented that confirm the reliability and efficiency of our error estimators.

2.2 The two-dimensional reaction-diffusion equation

Let Q be a bounded domain of R? and I' its polygonal boundary. We consider the
following elliptic second order boundary value problem with homogeneous mixed boundary
conditions :

—div(a Vu)+u = f inQ,
u = 0 onlp, (2.1)
aVu-n = 0 only,

where I' = fD UFN and FD ﬂFN = @

In the sequel, we suppose that a is piecewise constant, namely we assume that there
exists a partition P of 2 into a finite set of Lipschitz polygonal domains €2, --- ,§2; such
that, on each §2;, a = a; where a; is a positive constant. For simplicity of notation, we
assume that I'p has a non-vanishing measure. The variational formulation of (4.1) involves
the bilinear form

B(u,v):/ﬂ(aVu-ijLuv).
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Given f € L?(), the weak formulation consists in finding u € H5(Q) := {u € H(Q) :
u=0on 'p} such that

Bu,v) = (f,v) = /va, Vo € HL(Q). (2.2)

We consider a triangulation 7, made of triangles T" whose edges are denoted by e and
assume that this triangulation is shape-regular, i.e., for any element 7', the ratio hr/pr is
bounded by a constant ¢ > 0 independent of 7' € 7}, and of the mesh-size h = maxre7, hr,
where hr is the diameter of T" and pr the diameter of its largest inscribed ball. We further
assume that 7, is conforming with the partition P of €2, i.e., any T € 7, is included in
one and only one €2;. With each edge e of the triangulation, we associate a fixed unit
normal vector n., and ny stands for the outer unit normal vector of T'. For boundary edges
e C O0NIT, we set n, = ny. &, represents the set of edges of the triangulation, and we
assume that the Dirichlet boundary can be written as union of edges. In the sequel, ar
denotes the value of the piecewise constant coefficient a restricted to the element T

In the following, the L?>-norm on a subdomain D will be denoted by || - ||p; the index
will be dropped if D = Q. We use || - ||s,p and | - |sp to denote the standard norm and
semi-norm on H*(D) (s > 0), respectively. The energy norm is defined by |[||v]||* = B(v,v),
for any v € H'(2). Finally, the notation r < s and r ~ s means the existence of positive
constants (7 and (5, which are independent of the mesh size, of the coefficients of the
partial differential equation and of the quantities r and s such that r < Css and Cis <
r < Cys, respectively.

Problem (4.2) is approximated by a conforming finite element subspace of H, () :

X, = {’Uh € H]l)(Q)’UMT € Pl(T),T € 7;1}
and the finite element solution u;, € X, satisfies the discretized problem
B(uh,vh) = (f, ’Uh), Yo, € X, (23)

For further purposes we introduce a set of fluxes {g. € Pi(e)|e € &,} that satisfy the
local variational problem

BT(uh,vh) = / fUh +/ grUp, Vvh c Pl(T), T e 771, (24)
T oT

where Br(-,-) represents the local contribution of the bilinear form B(-,-) on the element
T and grje = ge ne - np. The existence of such fluxes is guaranteed and g. can be locally
constructed in terms of its moments and the solution of a local vertex based system, see,
e.g., [3,38]. We note that g. approximates the flux of the exact solution and thus we set
ge =0, if e C I'y.
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2.3 Upper and lower bounds for the error estimator

Error estimators can be constructed in many different ways as, for example, using resi-
dual type error estimators which measure locally the jump of the discrete flux. A different
method, based on equilibrated fluxes, consists in solving local Neumann boundary value
problems [3]. Here, introducing the flux as auxiliary variable, we locally define an error es-
timator based on a H(div )-conforming approximation of this variable. This method avoids
solving the supplementary above-mentioned local subproblems. Indeed in many applica-
tions, the flux 7 = aVu is an important quantity, and introducing this auxiliary variable,
we transform the original problem (4.2) into a first order system. Its weak formulation
gives rise to the following saddle point problem : Find (j,u) € Hy(div,Q) x L*() such
that

/a1j7+/div7'u = 0, V7 € Hy(div,Q), (2.5)
Q Q

/Qdivjw—/ﬂuw = —/wa, Yw € L*(Q), (2.6)

the natural space for the flux being
Hy(div,Q) = {q € [L*(Q)]*|divg € L*(?) and ¢-n=0o0n [y} .

Therefore the discrete flux approximation jj, will be searched in a H (div )-conforming space
based on standard mixed finite elements. Hence different error estimators can be defined in
terms of different mixed finite element spaces such as, e.g., Raviart—Thomas finite elements
or BDM elements. Here, for simplicity we only consider low order finite elements but all
ideas can be easily generalized to higher order finite elements. We consider three different
cases and introduce the inf-sup stable pairs (V, W}), i = 1,2,3 by

Vi = {uv € Hy(div, Q)| vpr € VIT), T € Tp,}

Wy = {w, € LX(Q)|wpr € WHT), T €T, },
where VY(T) = RTy(T), V*(T) = BDM(T), V3(T) = RT\(T) and WH(T) = W*(T) =
Po(T), W3(T) = Py(T). Here, we use the definition of the local Raviart-Thomas and
BDM elements RT)(T) = (Pi(T))*> + P(T)x, | = 0,1 and BDM; = (Py(T))* We note
that VY(T) c V*(T) C V3(T). Then it is well known, see, e.g., [15] that div Vi = Wi. We
denote by IT} the L%*-projection onto W;. Now we introduce a locally defined flux j! € V.
It is uniquely defined in terms of its degrees of freedom and can be determined with the

help of g. and wy, :
/j}lL'ne:/gea
— ¢ =2 : for all edges e € &,

— 1 =1:for all edges e € &,
/ji%eq = /geq, Vg € Pi(e),
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— ¢ =3 for all edges e € &, and all elements T € 7},

/ji Mg = /geq, Vq € Pi(e), /jfin = / aVu,Vw, Yw € Py(T).
e e T T

The global error estimator 7} is now given in terms of its elementwise contributions, i.e.,
()% = > rer, (07)?, where 17 is given by means of jj and ITj, :

i i i i -1 - i i
Nr = Nra + N0, N = la™2(aVuy — ji)llr, Nro = ar|lup — I up|r, (2.7)

where ar = min{1, hTa;l/ 2}. We note that if hp tends to zero, the minimum will be given

by hTa;l/Q. Observing that Iju, = us, 13, = 0. To get suitable bounds, we have to
consider additionally the data oscillation given by

(osci(f))* = D aF |l f — I fII3.

TeTy,

Remark 2.3.1. If f is smooth, osc;(f) is asymptotically a higher order term and thus can
be neglected asymptotically. We note that for ar < 1 and coarse meshes the case i = 3
might be more attractive than the cases 1 =1, 2.

2.3.1 Upper bound for the discretization error

The proof of the upper bound is basically based on the observation that all our fluxes
Ji are H(div )-conforming elements and on the following projection lemma.

Lemma 2.3.2. divj} — T u, = —1II, f.

Proof: We start with the observation that divV}' = W}. Using the definition (2.4) of g.

and of j}, we find for w € W}
(/ jh'nTw—/j};Vw—/uhw)
or T T

/Q(diVjZ—HZUh)w = >
= gh (/8TgTw—/TaVuth—/Tuhw) = —(f,w).

TeT,

Theorem 2.3.3. The energy norm of the discretization error is bounded by the estimator
ni, 1 =1,2,3, and the data oscillation, namely

llw = wnlll < s, + osci(f). (2.8)
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Proof: Using the definition of the energy norm, inserting the H(div )-conforming flux,
applying Green’s formula and Lemma 2.3.2, we find

o= w2 = /QaV(u—uh)V(u—uh)+/Q(u—uh)(u—uh)
:/Q (]ﬁ—avuh)v(u—uh)+/

Q

(Iyup — wn)(w — up) + / (f — I f) (o — ).

Cauchy—-Schwarz’s inequality yields
9 —L i
/(Jh —aVup)V(u—u) < Y a2 (i, = aVun)llrllu = wnlle = Y s lllw = wnllr,
Q TeT,, TeT),

where ||| - ||| stands for the contribution of the energy norm restricted to the element 7'
We note that ||w — Iw|7 < ||lw —jw|lr < hy||Vw|r, w € HY(T), see, e.g., Lemma 3.5
of [44]. Then it is easy to see that the second and the third term can be bounded by

/Q(Hiwz —un)(u—u) < Y arllun—Mullrllle —wnlle = Y npollu —wnlliz,

TeTy, TeT,
/(f ) w—u) < Y ar|f = fllzllu—unlle < osci(f)]llu— unll,
Q TeT,

respectively. Taking into account the definition of 7}, we find

= unll® <Y (g +no) llw = wnlllr + osei(f) lu — unll
TeT,

= D ipllu—wunllz +osci(f) llu—unll < (1 + ose;()) 1w — un .-
TeTy,

Remark 2.3.4. Note that our upper bound is independent of the shape reqularity of the
mesh. More precisely it also holds for so-called anisotropic meshes, i.e., meshes for which
o tends to zero as the mesh size h goes to zero.

Local upper bound for the discretization error

To show that the error estimator is locally bounded by the discretization error and
higher order terms, we apply a suitable norm equivalence for mixed finite elements. Define
for each element T' € 7, the quantities myr(-) and my(-) by

mar(v) = [[v-nrllor — mr(v) = H/Tva (2.9)

where || - ||2 denotes the Euclidean norm for vectors or matrices. We note that the two
quantities are well defined if, e.g., the components of v are polynomials.
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Lemma 2.3.5. Let v, € VY(T), T € Ty, then
3 Bi
lonllz ~ (hgmor(vn) + L =mr(vn)), (2.10)
T
where 1 = B =0 and B3 = 1.

Proof: For convenience of the reader, we sketch the basic steps of the proof. Using the
reference element 7' with vertices (0,0), (1,0) and (0, 1), we find for ¢, € V*(T) that

[0l ~ (myz(0n) + Bimp(0n)).

This simply follows from the fact that all norms on finite dimensional spaces are equivalent.
Now we can use the Piola transformation to define for v, € V(T) a corresponding o, €

-~

VA(T) by
@h(/{I\I) = det BTBI_«IU}L({E),

where T is mapped onto T by the affine mapping & = By + by and By € R**? and
by € R We recall that ||Br|ls ~ |det By| |By'|la ~ hr and |det By| ~ h2. Then it
is easy to see that ||v||z ~ ||0n]|7. Using the relation ||By ngzllany = By 'ng, we find
det Br|| By "nzllavn - np = Oy - ng and thus vy, - npl|2p ~ hpt||[On - nz|? . For the volume
integral we find [, v, = Br [70, and thus || [ vonl2 ~ hrl| [70nll2- ]

We consider the two terms of the error estimators separately, and recall that 77%;0 =0
and 7711“;0 = 77’%;0'

Lemma 2.3.6. For each T € T}, and for 1= 1,2, we have

7 7 7 \% h
Nro = ar|[u, —upl|lr S arllf =10, fllr + Y Lgr — arVauy - nrlor. (2.11)

Jar

Proof: Observing uj, — ITiuy € Pi(T) and ardiv Vu, = 0 on T, then (2.4) and Green’s
formula yield

M =l = [ wnn ~ ) = [~ )
T
+ ] gr(up, — T uy) — / aVupV (up — I up)
T T
= (f — H;Lf)(uh — quh) + / (QT — aTVuh . nT)(uh — quh)

T . . oT .
If =0, fllrllun — T unllr + lgr — arVuy - nrlar||un — 0 unllar

<
S (I = il + 7= llgr — arVun - nrlor ) fun — Wunllr.

From the definition of ar it follows directly that agp/v/hr < /hy/\/ar. [

We recall that the constant only depends on the shape regularity of the element, and
can be easily explicitly computed if required. In the following lemma, we provide an upper
bound for 7.
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Lemma 2.3.7. For each element T € T, and i = 1,2,3 we have

ﬂ

) hr
77"211;1 S

larVuy, - ne = grllor- (2.12)

5

Proof: The proof is based on the discrete norm equivalence given in Lemma 2.3.5 and the
observation that arVu, € V(T) for i = 1,2, 3. Using the definition of the flux j; and of
Bi, we find Bimz(ji — arVuy) = 0. Then, the norm equivalence (2.10) yields

7 \4 h 7 Vv h .
N1 S —\/&—;maT(aVUh —Jn) = —THGTVUh “nr = jp, - nrllor

var

Next, we observe that (azVuy, —ji)-n. € S'(e), where St(e) = S%(e) = Py(e) and S*(e) =
Pi(e). Let 1T, be the L?-projection onto [, yr S*(€) = S*(OT'), then Iy, (arVuy, - ny) =
arVuy -ny and ji -ny = Wy (ji, - nr) = rgr. Here we have used the definition of j; and
the fact that ji -ny € S*(9T'). These preliminary considerations give now the upper bound

0 \/_
le\/—

h
Ty (arVuy, - ny — gr)|lor < aT larVuyp - ne — gr||or.
T

Theorem 2.3.8. For each element T' € T}, the following estimate holds

i < max{1, hya; /%) (max{\/\/i}H]u o + os%(f)) @213

T'Cw
where wr denotes the patch consisting of all the triangles of T, sharing an edge with T'.

Proof: Lemmas 2.3.6 and 2.3.7 and the definition (2.7) of the error estimator give

/r]’L v
T

\/_
The first term on the right side is bounded by the edge contributions v/h./\/ar| arVuy, -

ne — ge||? which is a part of the equilibrated error estimator that can be bounded in terms
of the discretization error. Theorem 6.2 of [3] yields

Z hellarVuy - ne — ge\ Z hT’HRT’HT’ + Z he HJenH

eCOT T'Cwr eCwr

HaTvuh nr — grllor + ar|lf — 10, f| 7.

where Ry = f+div (aVuy,) —uy, is the exact residual on the element 7" and J, ,, stands for
the jump of the flux over edges :

[[aVuh . neﬂ . for interior edges,
Jem =14 0 for Dirichlet boundary edges,
Vup - ne for Neumann boundary edges.

78



Introducing, for an edge e, a, = max{ar,,ar,}, e = 911 N1y we get

2

nr S apt max{ar} (Y apthp || Relq + ) ag bl | Jell?
T'cwr T'Cwr eCwr

+ agllf — I fII7 (2.14)

The residual and the jump are terms appearing in the residual based error estimator.
It is well known, see, e.g., [52], that these terms can be locally bounded by the error.
Introducing element and edge bubble, we can bound, by inverse inequalities, those terms
by local contributions of the discretization error. [ ]

2.3.2 Numerical results

Our first example consists in solving the equation (4.1) on the unit square Q = (0,1)?
with I'y = I'. The coefficient «a is fixed to be constant and equal to 1. We take isotropic
meshes composed of triangles, and we compute j;, i = 1,2,3. The test is performed with
different types of solutions. In the first case, we consider the exact solution

u(z,y) = %cos(wx)cos(ﬂy). (2.15)

To begin, we check that the numerical solution u; converges toward the exact solution.
To this end, we plot the curve |||u — uy|| (and the estimators) as a function of DoF (see
Fig. 2.1). We see that the approximated solution converges toward the exact one with a
convergence rate of one and that the estimators are very close to the error (see Fig. 2.1 and
2.2). In all our test settings, we find that the so-called effectivity indices, i.e., the ratios
||w—wnl||/7;, are smaller than one. Indeed we remark in Figure 2.2 that they vary between
0.67 and 0.87, in other words they remain smaller than one.

10

Error —+—
RTO ---x-- 14 BDM1 ---x-- 4

1.2

|

0.8 |-
01 fF

0.6 -

001 F E 04 -

0.2 |-

o

0.001 L L L L L L L L L L L L L
1 10 100 1000 10000 100000 1le+06 0 2000 4000 6000 8000 10000 12000 14000 16000

Fic. 2.1 — ||ju —u|| and 5}, i = 1,2,3 FiG. 2.2 — The ratios |||[u—uy|||/n}, i =
wrt DoF for the first solu- 1,2,3 wrt DoF for the first
tion. solution.
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Now we take for the exact solution :
w(z,y) = B 237 =27 (2.16)

As before Figure 2.3 shows the error and the estimators wrt the DoF, while Figure 2.4
gives the effectivity indices. Here we can make the same conclusion as before, except that
the effectivity indices are even smaller.

10

Error —+—
RTO ---x-- 14 BDM1 ---x-- 4
12

15

LT T E—s———
01 F

o

001 F E 04 -

0.2 |-

0.001
1

o

L L L L L L L L L L L L L
10 100 1000 10000 100000 1le+06 0 2000 4000 6000 8000 10000 12000 14000 16000

F1G. 2.3 — ||[|lu —up||| and 0}, i = 1,2,3 F1G. 2.4 — The ratios ||[u—uy]||/7}, i =
wrt DoF for the second so- 1,2,3 wrt DoF for the se-
lution. cond solution.

As third example, we consider a solution of problem (4.1) on the unit square = (0, 1)?
with I'p = I' that exhibits an exponential layer along the y-axis. Namely we take

w(z,y) =4dy(1—y)(1 — e — (1 —e %)) (2.17)

with different values of the parameter «, the coefficient in (4.1) being taken as a = —5.
Here in order to resolve appropriately the boundary layer of the solution we use anisotropic
meshes of Shishkin type as described in [32,45] for instance (see Remark 2.3.4). First, we
compute the estimator 77 and compare it with the exact error. According to Fig. 2.5 we see
a good convergence of the approximated solution to the exact one, moreover the estimator
remains close to the error as far as the mesh size is small enough, this is confirmed by Fig.
2.6, where the effectivity index is presented for the four values of a with respect to DoF.
Secondly, we have computed the global estimator 7 (based on RTp) and compare it with
the exact error and the two contributions 7} and nj, these comparisons are presented in
Fig. 2.7 and 2.8 for a« = 1 and 10. In Fig. 2.7, we may see that as far as the mesh size
is small enough with respect to the size of «, the term n} is much smaller than 7, as
theoretically expected. On the contrary if the mesh size is relatively rough with respect
to the size of a, the term 7} is comparable with 1] (see Fig. 2.7 right). Note further that
the use of 1} is more time consuming than 7} since we were unable to achieve the value of
h =1/128 for a = 100 and 1000 in a reasonable time.

Now in order to illustrate the performance of our estimator 7}, for three examples taken

from [38] we show the meshes obtained after some iterations using an iterative algorithm
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F1G. 2.5 — |||u — uy||| and n} wrt DoF for different values of « : top-left : o = 1, top-right
a = 10; bottom-left o = 100, bottom-right o = 1000.

: ‘ ‘ ‘ ' Ratio_alpha=1 —+—
L4y Ratio_alpha=10 -
Ratio_alpha=100 ------
; Ratio_alpha=1000 &
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5 =
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Y e — |
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o 20000 40000 60000 80000 100000 120000 140000

F1G. 2.6 — The ratio |||u — u|||/n} wrt DoF for different values of a.

based on the marking procedure

nr > 0.5 max ny+ or Ny > 0.75 maxny,

and a standard refinement procedure with a limitation on the minimal angle.
For the first example we take Q = (0,1)?, a = 1, Tp = T" and as exact solution :

u(z,y) = a(x — Vy(y — 1)6(*100@*1/2)2*100(y7117/1000)2)‘

This solution has a large gradient around the point (%, %). Therefore a refinement of the

mesh near this point can be expected. This is confirmed by Figure 2.9.
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0.001 - 0.001 |

L L L L L 0.0001 L L L L L
10 100 1000 10000 100000 1 10 100 1000 10000 100000

0.0001
1

FiG. 2.7 — |[|lu — un|||, i, ng and ni wrt DoF for different values of a : on the left o = 1,
on the right a = 10.
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F1G. 2.8 — The ratio n}/n wrt DoF for different values of « : on the left a = 1, on the
right a = 10.

08

0.6

0.4

0.2

Fia. 2.9 — Adaptive mesh after 10 iterations for the first example and criterion ny >
0.5 maxys 1.

For the second example we take 2 = (—1,1)? and I'p = I but a discontinuous coefficient
a. Namely we decompose €2 into 4 sub-domains €;, i = 1,...,4 with Q; = (0,1) x (0,1),
Q= (—1,0) x (0,1), Q3 = (—1,0) x (—1,0) and €4 = (0,1) x (—1,0) and take a = a; on
Q;, with a; = a3 and ay = a4 = 1. Using polar coordinates centered at (0,0), we take as
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exact solution,
S(x,y) =r"(0), (2.18)

where a € (0,1) and ¢ are chosen such that S is harmonic on each sub-domain €;, i =
1,...,4 and satisfies the jump conditions :

[[Sﬂ =0 and [[aVS-nﬂ =0

on the interfaces (i.e. the segments Q;NQ;; (mod 4),i = 1,...,4). We fix non-homogeneous
Dirichlet boundary conditions on I' accordingly.
It is easy to see (see for instance [22]) that « is the root of the transcendental equation

T

tanj = \/a

This solution has a singular behavior around the point (0, 0) (because o < 1). Therefore
a refinement of the mesh near this point can be expected. This can be checked in Figures
2.10 and 2.11 on the meshes obtained for a; = 5 and a; = 100 respectively and for which
a = 0.53544094560 and a ~ 0.1269020697.

1 1

0.5 0.5

0.5 -0.5

-1 -1

-1 -05 0 0.5 1 -1 -0.5 o 05

Fi1Gc. 2.10 — Adaptive mesh after 20 Fi1Gg. 2.11 — Adaptive mesh after 20
iterations for the second iterations for the second
example (a3 = 5 and crite- example (a; = 100 and cri-
rion ny > 0.75 maxy ny). terion ny > 0.75 maxg ny).

Finally as last example, we take the L-shape domain = (—1,1)%\ (—1,0) x (0, 1),
a=1,T'p =T and as exact solution

S = r?/3sin(26/3). (2.19)

This solution has a singular behavior at (0,0) and the meshes has to be refined near this
point. This can be seen in Figure 2.12.

From all these tests we can confirm the reliability and efficiency of our proposed error
estimators. Nevertheless for ¢ < 1 and coarse meshes the estimator 7} based on RT} is
more attractive and less expensive than the estimators n} and 7;.
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Fi1G. 2.12 — Adaptive mesh after 10 iterations for the third example and criterion ny >
0.5 maXxyr M.

2.4 The time-Harmonic Maxwell equations in 3D

Now, Q represents a bounded domain of R® with a polyhedral boundary I'. For the
sake of simplicity, we further assume that €) is simply connected and that its boundary is
connected. We are interested in the following problem :

curl(y curlu) + fu = fin Q,

uxn = 0onl. (2.20)

In the rest of the chapter, we suppose that y and (3 are piecewise positive constants.
For any f € [L?(Q)]? satisfying div f = 0 in Q, the weak formulation of (2.20) is given by :
Find u € Hy(curl, Q) = {v € [L*(Q)]*| curlv € [L*(Q)]* and v x n = 0 on '} such that

B(u,v) = /Q (xcurlu - curlv + pu - v) = /Qf v, Yv € Hy(curl, Q). (2.21)

As x and [ are uniformly positive, B is coercive on Hy(curl, Q) with respect to the norm
lulls = (B(u,u))/? and, by the Lax-Milgram lemma, problem (2.20) admits a unique
solution.

2.4.1 The approximated problem

The triangulation 7, is now made of tetrahedra T'. Its faces are denoted by F' and npg
stands for one of the unit normal vectors of this face. We use the notation F for the set
of faces and V), for the set of vertices of the triangulation. All notation introduced before
remain valid, except that the elements T" are now tetrahedra. In the sequel, xr (resp. Or)
denotes the value of the piecewise constant x (resp. () restricted to an element 7.

Problem (2.21) is approximated in a curl-conforming finite element subspace X} of
Hy(curl, Q) build using the lowest order Nédélec finite elements :

Xh = {Uh € Ho(curl, Q)"l}h‘T € NDl(T),T € ,];L}
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where N'D1(T) = [Po(T)]? + [Po(T)]? x & with & = (21, 29, 23)". The discretized problem
consists in finding u;, € X}, such that

B(uh,vh) = (f, Uh), Yo, € Xp,. (222)

We now recall a decomposition of the space Hy(curl, Q) of Helmholtz type related to
the weight (.

Lemma 2.4.1. If Q is simply connected and its boundary I is connected then

L
Hy(curl, Q) = VH!(Q) & Wp, (2.23)
where W is a closed subspace of Hy(curl, Q) defined by

W3 = {v € Hy(curl, Q)|div (Bv) = 0 in Q}, (2.24)

1
and the symbol & means that the decomposition is direct and orthogonal with respect to the
inner product B(-,-). Then the error u — uy, admits the splitting

u—u,=Vo+ey, (2.25)
with ¢ € H'(Q), e, € W3 and
lu —unllgy = IVSIIE + lesll - (2.26)

Moreover, there exists € € (0, 1] (depending on 3 and on the geometry of 2) and a constant
C() such that ey € (H(Q))* with the estimate

—-1/2
levllea < C(8) max {1, }llu = unlls: (2:27)

Proof: As VH!(Q) is a closed subspace of Hp(curl,Q) (see Lemma 1.2.1 of [26]), the
decomposition (2.23) holds with

W5 = {v € Hy(curl, Q) : (Bv, Vop) =0,V € H ()}

By Green’s formula we deduce (2.24).
For the requested regularity of e, , we apply Theorem 3.5 of [22], which further yields

leclleq <€) (I curleL || + [[div (BeL)]) -

As e, € Wy, div (Bey) = 0. Moreover from the splitting of the error, we see that curl(u —
up) = curl e, therefore

leLlleo < CB)|lu— unllga-
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2.4.2 Conforming approximated problems

Again our idea is based on a saddle point approach. Namely introducing as auxiliary
variable j = x curlu, then (2.21) becomes : Find (j,u) € H(curl, Q) x [L*(Q2)]? solution of

/X_IJ'U—/curlv-u = 0, Vv € H(curl,Q),
Q Q

/chrlj-w%—/ﬂﬁu-w = /Qf-w, Vw € [L*(Q)]°.

The lowest order approximated mixed finite element pair for this problem is the pair
(Vi, Wp) where

(2.28)

Vi, = {Uh € H(Curl, Q)"l}h‘T € NDl(T),T € 7;1} ,
W, = {wh € H(le,Q)"LUmT € RTO(T),VT € 7, and divwy, = 0 in Q}

Therefore a natural choice for our approximated flux is j, € V},. But here, contrary to the
reaction-diffusion case, fu;, no more belongs to W), essentially because [fuy is no more
divergence free. Hence we first construct a correction ¢, that fulfils this constraint. For
that purpose we introduce equilibrated fluxes for the divergence part. Namely let [z be in
Py (F) and satisfying the divergence flux equations :

/ ﬂuh -V, = / ZT’LUh,V’LUh € Pl(T), T e ,];L, (229)
T orT

where, as usual, I = [pnr-ng. The existence of such fluxes is proved as for the equilibrated
flux equation (2.4) (see [3]) because the discrete problem (2.22) guarantees that (because
f is supposed to be divergence free)

/ ﬁuh-V/\xZ/ [-VA; =0,

for all nodes x (when ), is the standard hat function). We now fix the discrete divergence
flux as the unique g, € V}? satisfying

/qh~nFq:/qu,qupl(F),FCT,TG'E, (2.30)
F F

/Qh Z/ﬁuh,VT € T, (2.31)
T T

and prove the following projection lemma :
Lemma 2.4.2. If ¢, € V}3 satisfies (2.30) and (2.31), then div q;, = 0.
Proof: By Green’s formula and (2.30), (2.31), for any w;, € W7, it follows that

/diV qpWp, = Z (— / ﬁuh . th +/ lTwh) = 0,
Q T oT

TeT,
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due to (2.29). n
As f and ¢, do not belong to W), we shall consider their projection on this space. Na-
mely denoting by II;, the projection onto W), with respect to the inner product (wy, v)s-1 =
Jo B wy, - vp, we set
Jo =1l f — Ixgp.
Now we consider the alternative problem : Find @ € X = {v € Hy(curl, Q)|div (fv) =
0 in Q} solution of

/Xcurlﬂ-curlv:/fhm, Yo e X. (2.32)
Q Q

In order to make an adequate approximation of this problem we use the discrete Helm-
holtz decomposition of X, (see [37]) into a subspace of X} made of discrete §-divergence
free functions and curl-free functions, namely we use the splitting

~ 1
X,=X,® VS,

where X), = {w, € Xp|(Bwn, Vor) = 0,V € Sy} and S, = {pn € Hy ()] on, €
P(T),VT € T,}. The decomposition being orthogonal with respect to the inner product
(ﬁ" ) N

Hence the approximated problem of (2.32) is : Find @), € X, satisfying

/Xcurlﬂh curl v, = / fhﬁh, Yo, € Xh. (233)
Q Q

This problem is well posed since its left-hand side is coercive on X, due to the discrete
Friedrichs inequality.

At this stage we are able to apply Theorem 15 of [13] to the problem (2.32) and its
approximation (2.33) that prove the next results :

Lemma 2.4.3. There exists (an explicitly computable) j,, € V}, satisfying curl j, = I, f —
[1,q, with the following estimates

G = eurl )| S I curl(@— )| < 2 Gn — vewrl )]l (2:34)

Proof: Following what is done in [13], we first remark that
diV fh = le (th) — le (thh) = ]RTo(diV f) — ]RTo(diV qh) = 0,

where Iprg is the Raviart-Thomas interpolation operator mapping Hy(div, ) onto V;!.
The discrete Helmholtz decomposition of X}, implies that, for any basis function A of
X, there exist Ao € X), and ¢ € Sy, such that A\, = A\ — Vi and, by its definition, the
approximation uy satisfies

(x curl iy, curl(Ae — Vo)) = (fa, Ae — V), Ve € &y
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We obtain the orthogonality relation

(frn — curl x curlay, Ae) = 0,Ve € &,

with

div (f, — curl x curlay,) = 0,
and from Lemma 14 of [13], the following local decomposition holds :
fin — curl y curl @y, = Z fw with div fwv =0, VV €V},
Vevy,

wy denoting the patch consisting of all the elements of 7, containing the vertex V.

We conclude by Lemma 15 of [13] that there exists j2 = > vey, Juv, With supp(ju,) C wy,
satistying curl j,,, = fwv.

If we introduce j, = 2+ curl @y, this discrete flux clearly verifies curl j, = f = II, f— I
and the following estimate can be proved

O8] < N2 curl(@ — an)|| < x""252]|, with C' > 0. (2.35)

2.4.3 The a posteriori error estimator

We now introduce local indicators of the error u—uy, on an element T of the triangulation
as follows

= IV Ocewrluy —ja) 17, 080 = 11872(Bun — an) 13-

The associated global estimator is then given by n = (3 ez (10 + niT))l/ ?_ The oscil-
lation of a function f is here defined by

osc(f)* = Y B0 IS — af

TeTy,

where € € (0,1] is the one from Lemma 2.4.1.

Upper bound

Theorem 2.4.4. There exists C(3,x) > 0 depending on B and x such that the following
estimate holds

lu = unllpx <0+ C(B,x) (0sc(f) + osclqn))- (2.36)
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Proof: From the definition of the norm, introducing the variable j;, and applying Green’s
formula, we get

Ju —un = / x curl(u — up,) curl(u — uy) + /Qﬁ(u — up)(u — up)
0

= /(jh — x curluy) curl(u — up) + /(f — Bup — Wp f + Hpgn) (u — up).
) Q

Cauchy-Schwarz’s inequality gives

lu—unl?, < /Q (f = Tuf + Mg — Bun) (e — un)

+ Z X Y2(jn — x curlug) || 7||x"? curl (v — up)|| 7. (2.37)
TeT,

Introducing the Helmholtz decomposition of the error (2.25) and the divergence free flux
qn we get :

/(f — I f + Ilhgn — Bup) - (uw—up) = /(f —curlj, —qn) - Vo
Q 0
+/(f —1Inf + Hngn — qn) - €1 +/(qh — Buy) - (u—wup).  (2.38)
0 Q

We now estimate each term of this right-hand side. For the first term, applying Green’s
formula, we get

~curljy — )V = div (f — curlji — qn)é = .
/Q(f curl j, — qn)Vo Z/T iv (f —curl j, — qn)ep =0, (2.39)

TeTy,

as div f = div curl j, = divg, = 0.
For the second term, we notice that (I1,q, — qn, Irro(Ber))s-1 = 0, as Irro(Ber) (the
RTy interpolant of fe ) belongs to W),. Hence we may write

/Q(Hth —qn) €L = /Qﬂl(HhCJh —qn)(Ber — Irro(fBer)).

Since e; belongs to (H¢(2))3, a scaling argument yields ||[Be; — Irro(Bel)|| S hfl|Be]|.
(see Theorem 3.4 of [1]) and therefore

1/2
/Q(Hth —qn)er S (Z B2 hllan — Hth||2T> 1BeL]]e.

TeTy,

By the estimate (2.27), we arrive at

/Q (Tagn — ) -1 < Coselgn)l|u— unllrs (2.40)
/Q(f—th) cep < Cosc(f)|lu—unlgys (2.41)
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for some C' > 0 depending on [ and Y.
Finally for the third term, Cauchy-Schwarz’s inequality directly yields

/Q (@ — Bun) - (u— w) < (3 )28 (u — wn)||. (2.42)

TeT,

The estimate (2.36) directly follows from the estimate (2.37), the identities (2.38) and
(2.39) and the bounds (2.40), (2.41) and (2.42). u

Before going on let us point out that the terms osc(f) and osc(gy) are higher order
terms. First we remark that even for smooth f, the solution u of problem (2.20) will only
have the regularity u € (H¢(2)). Therefore the expected order of convergence for the
error will be €, namely ||u — upl/g, < C(8, x)h, for some C(5,x) > 0 depending on
and x. For the term osc(f), if f belongs to H'(Q)3, then by scaling arguments we have
osc(f) < || f|l1.0, and therefore osc(f) tends to zero faster than the error (this will be
achieved if  and y are fixed and if & is small enough).

For the second term osc(qy), no global regularity results on u are necessary, namely using
a scaling argument on each element 7', we have ||gn — Irroqnl|lr < hr||Van||r. Therefore we
may write (here we do not trace the dependence on 5 and y and write for shortness C' for
a constant depending on these two functions)

osc(qn)? < Ch* min Z Brllgn — willz < Ch* Z 87 lan — Trrognl7

wpEWp TeT, TET,
< OP* Y b Va7
TeT,
< Cr* Y hi(|V(gn = Bun) |7 + [V (Bun)|I7)-
TeT,

As |V(Bup)||r S Brll curlup||r (see e.g. Lemma 4.1 of [43]) and using a standard inverse
inequality we obtain

osc(qn)? < Ch* (th — Bup||* + h?|| curl uhHQ) )

Since it will be proved below that ||g, — fus|| < C|lu—us|s, (see the estimate (2.43)) and
since the variational formulation (2.22) leads to ||x'/? curluy|| < ||37"/2f||, we obtain

osc(qn)® < OR*(|lu — unllf + H*| 872 F|).

This last estimate finally shows that osc(gy) tends to zero faster than the error.

Lower bound

As for the reaction-diffusion problems our lower bound is based on a suitable norm
equivalence :
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Theorem 2.4.5. There exists a positive constant C([3,x) (depending on [ and x) such
that the following local and global lower bounds hold

mor S Or max B2 — upll pors (2.43)
Ot ) < CB ) (lu— unllpy + osc(f) + ose(an)). (2.44)
TeTy,

Proof: On one hand, as u, € NDy(T) C RTy(T'), Lemma 2.3.5 and the construction of gy,
yield
lan = Bunllr < > hilll(an — Bun) nplle S b2 [Bun - ne) e (2.45)
Fcor FCoT

This right-hand side is a part of the estimator presented in [45]. By standard inverse
inequality we can prove that

1/2,-1/2
1[[Bun - nell ol S Y7 Bk P llu— wnllpr.

T'Cwp
These two estimates directly prove the local bound (2.43).
Now, using Lemma 2.4.3 we have

X2 G = xcurlun) | < [Ix™2(n — x curldg)|| + [|x"2 curl(@, — ua)|
< 2 cwrl(@ — an)| + [Ix"? curl(ay, — )|

< |2 curl(@ — @y + ||xM? curl(@ — w)|| + || x¥? curl(u — ug)|]. (2.46)
The first term of this right-hand side can be bounded using the second Strang lemma :

|(x curl @, curl wy,) — (f,wy)]
/2 curlwy,|]

1/2

curl(@ — @)|| < inf ||xY?curl(@ — vy)|| + sup
v €Xp wheXh

<[Ix? ewl(@ — up + V)| < [|Ix*? curl(@ — u) || + [|x*? curl(u — up )],

x

noting that there exists ¢ € Sj, such that u, — Vi € X, and that (y curl @, curlwy,) —
(fn,wp) = 0. This estimate and (2.46) yield

1/2 1/2

™2 = xceurlun)| S 2 eurl(@ = )|+ 7 curl(u = )|

It now remains to bound ||x'/? curl(@ — u)||. Applying Green’s formula we get
Y2 curl(@ — u)|| :/ curl(y curla — y curlu) - (@ — u) :/ (Inf = pgn — f + Bu) - (@ — u).
0 Q
By the definition of the projection II;, we get
I et = )” = 5705 = 1) (900 = )T 3 = )5 = ) - 57 -
/5 (gn — Uagn) - (B(@ — u)=Irro(B(0 — U)))‘%ﬁm(ﬁuh —qn) - B2 (@
(8)(ose(f) + osclgn))18(a@ — w)lle + (18" (u — un) || +m0)l|5%(@ — ) -
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By the discrete Cauchy-Schwarz inequality and (2.43), we obtain
Ix!2 curl(@ — w)||* < C(B)(ose(f) + ose(an) + [lu = unllg)|u = @llc,

and by the estimate ||u — @ < C||x*/?curl(@ — u)||, for some C' > 0 depending on 3 and
X, we conclude that

1/2

/% curl(@ — w) || < OB, x)(|lu = unllsx + 0se(f) + 0sc(gn))-

2.4.4 Numerical tests

We first check the reliability of our estimator. For that purpose, we solve the two-
dimensional Maxwell equations on the unit square Q = (0,1)%. We take isotropic meshes
composed of triangles and use the lowest order Nédélec, the P;-conforming and the first
order Raviart-Thomas finite elements to compute the finite element solution u;, and the
fluxes j, and g, respectively.

3.500

111111111111111111111111111111

beta=0.001

F1a. 2.13 — The ratio |||u — upl||/n wrt to DoF for the first example

As first example, we suppose that 2 admits a decomposition into four sub-domains
Q= (0,0.5)2, Qy = (0.5,1) x (0,0.5), 23 = (0.5,1)* and 4 = (0,0.5) x (0.5,1) and
introduce the exact solution

u = curl ¢ where ¢ = [y(1 —y)(2y — D (1 — 2)(2x — 1)]*

We fix x; = 1, foralli =1,...,4, By = B, = 1 and take different values of §; = (3. In Figure
2.14, we have plotted the error and the estimator for two values of 3 (the other values of (3
give rise to similar results), there we see that the approximated solution converges toward
the exact one with a convergence rate of 1 and that the estimator has a similar behavior.
This is confirmed in Figure 2.13, where we present, for some values of 3, the effectivity
index, i.e., the ratio |||u —uyl||/n. From this figure we can say that our estimator is reliable
since the effectivity index is bounded by approximatively 0.75.
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estimator

,,,,, estimator error

Fia. 2.14 — |||lu — uy||| and n wrt DoF for example 1 with §; = 1 (left) and 5, = 0.0001
(right).

As second example we take the exact solution
u=V <e’x/\/gx(1 —x)y(l — y))

on the domain  and fix § = 1 and y = ¢ for different values of €. This solution presents
an exponential boundary layer of width O(y/¢) along the line 2 = 0.

chi=
chi=10

F1a. 2.15 — The ratio |||u — uyl||/n wrt to DoF for example 2.
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Fi1a. 2.16 — |||lu — us||| and 1 wrt to DoF for example 2 with y = 1 (left) and y = 0.01
(right).

As before we show in Figure 2.16 the error and the estimator for two values of € and we
see a convergence rate of 1 for the error and the estimator. In Figure 2.15, we present the
effectivity index, for some values of €. Again we can assert that our estimator is reliable
since the effectivity index is bounded by approximatively 0.38.

As for second order scalar problems, to illustrate the performance of our estimator,
we present on two typical examples the meshes obtained after some iterations using an
iterative algorithm based on the same marking and refinement procedures.

For the first example we take Q = (—1,1)%, with y = 1 and a discontinuous coefficient
08 = a, corresponding to the decomposition of €2 into 4 sub-domains §2;, « = 1,...,4 from
the second example of section 2.3.2. As exact solution, we take u = V.S, where S is given
by (4.25). Such a solution is a typical singularity of the Maxwell system at (0,0) [22] (it
belongs to H(curl) N H(div) but not to (H')?). Therefore a refinement of the mesh near
this point can be expected. This is confirmed by Figures 2.17 on the meshes obtained for
a; = 5 and a; = 100 respectively.

Remark 2.4.6. Unlike the domain, that is symetrical with respect to the straight line of
equation y = —x, the exact solution, i.e. u = V.5, 1s not symetrical with respect to this
strawght line. This implies that the adpative meshes obtained are not necessarily symetrical.

Finally as second example, we take the L-shape domain Q = (—1,1)?\ (=1,0) x (0, 1),
X = =1, and as exact solution u = V.S, where S is given by (2.19). Again this solution
is a typical singularity of the Maxwell system at (0,0) [22]. A refinement of the mesh near
this point is once more confirmed numerically in Figure 2.18.

As for the reaction-diffusion problems, all these tests allow to conclude that our propo-
sed estimator is reliable and efficient. Note further that the effectivity index always remains
under the value of 1, as theoretically predicted.
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Fic. 2.17 — Adaptive mesh after 15 iterations on the left and 10 iterations on the right for
the first example and criterion ny > 0.75 maxyr 17, with respectively a; = 5 and a; = 100.

0.5

0.5

-1

L
-1 -05 [ 0.5 1

Fic. 2.18 — Adaptive mesh after 10 iterations for the second example and criterion ny >
0.75 maxqs ny.
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Chapitre 3

Comparison of the three a posteriori
error estimators

In this chapter, we compare all the estimators we have constructed for the Maxwell
equations and that we will denote as follows

nro = WO Il div(Bun) 3+ D heB 1 TeallZ,

eCOT

B = 3 (n reTR heﬂelllJe,tlli) |
TeT, eCOT

i = 3 (ot a3 x:ﬂaerwe,tng) |
TeT, eCOT

N = Z (1872 (Bun, — )17 + [ (x curlup — i) [17) -
TeT,

They are tested with the iterative algorithm using the marking procedure presented in the
second chapter :
nr > 0.75 max Ny

For that purpose, we solve the two-dimensional Maxwell equations and take meshes com-
posed of triangles. We use the lowest order Nédélec, the P;-conforming and the first order
Raviart-Thomas finite elements to compute the finite element solution u;, and the fluxes jj
and gy, respectively. We present here, for three kind of exact solutions, the meshes obtained
for the different estimators, with the same number of iterations, where the triangles of the
meshes are colored with respect to the value of their local error (See Fig. 3.1)

3.1 A solution with a boundary layer

As first example, we consider, on the unit square Q = (0, 1)?, the exact solution :
u=V <e_$/\/gx(1 —x)y(l — y))
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Fi1G. 3.1 — value of the local error.

presenting a boundary layer along the axis x = 0, for two different values of . In a first
time, we impose a limitation on the minimal angle to refine our mesh and compare our es-
timators for different steps of the refinement procedure, in Figures 3.2 and 3.3 for e = 10~}
and Figures 3.4 and 3.5 for e = 1073,

As expected, the meshes obtained, in all the tests, are refined on the boundary layer.
In Figure 3.2, non and nyeq seems to have a similar behaviour and this is confirmed by the
test for e = 1073 (see Fig. 3.4) where the meshes obtained after 15 iterations are exactly
the same for the two estimators.

Now comparing ¢ with the flux estimator 74;,,, we notice, in Figures 3.3 and 3.5, that
this last one needs fewer iterations than non to get a fine mesh and the local errors decrease
fastlier. This is pointed up with the zooms we make on a part of the layer (see Fig. 3.6 - 3.7)

In a second time, we no more impose this minimal angle on the refinement procedure
and have a look on the meshes obtained after 15 iterations (see Fig. 3.8 - 3.9) for the
different value of e. We do not represent the mesh obtained for the Nédélec estimator as
it is the same as for the Clément-Nédélec estimator. In this case, we know that the mesh
in the boundary layer should be composed of thin triangles with large edges parallel to
the boundary axis x = 0. This phenomenon is quite presented in the case that we use the
equilibrated estimator 7, but it is no more the case for ncn. This can be explained by the
fact that, for 74,,, the theory for the upper bound, presented for isotropic meshes, remains
valid for anisotropic meshes, with the constant appearing in the upper bound still equal to
1. On the contrary, for noy, this constant depends on the mesh and we can conclude that
the theory has to be adapted for an anisotropic mesh.
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F1G. 3.2 — Iterative meshes obtained for the solution with boundary layer for e = 0.1 : on
the left for nen, on the right for nyeq, from the top to the bottom, the initial mesh, after
5, 10 and 15 iterations.

99



FiG. 3.3 — Iterative meshes obtained for the solution with boundary layer for e = 0.1 : on
the left for non, on the right for 74,,, from the top to the bottom, the initial mesh, after
5, 10 and 15 iterations.
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Fic. 3.4 — Tterative meshes obtained for the solution with boundary layer for ¢ = 0.001 :
on the left for noy, on the right for nyeq, from the top to the bottom, the initial mesh,

after 5, 10 and 15 iterations.
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F1c. 3.5 — Iterative meshes obtaineded for the solution with boundary layer for ¢ = 0.001 :
on the left for ncn, on the right for 7., from the top to the bottom, the initial mesh,
after 5, 10 and 15 iterations.
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Fia. 3.6 — Iterative meshes obtained for the solution with boundary layer ¢ = 0.1, zoom
on the intervall (0,0.1) x (0.3,0.6) in the layer : on the left for non, on the right for 1y,
after 15 iterations.

F1G. 3.7 — Iterative meshes obtained for the solution with boundary layer € = 0.001, zoom
on the intervall (0,0.3) x (0.3,0.6) in the layer : on the left for non, on the right for 7y,
after 15 iterations.
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Fic. 3.8 — Iterative meshes obtained for the solution with boundary layer € = 0.1 without
minimal angle : on the left for non, on the right for 74,,. On the top, the meshes obtained
after 15 iterations, on the bottom, we zoom on the intervall (0,0.06) x (0.2,0.4) in the
layer.

F1c. 3.9 — Iterative meshes obtained for the solution with boundary layer € = 0.001 without
minimal angle : on the left for non, on the right for 74,,. On the top, the meshes obtained
after 15 iterations, on the bottom, we zoom on the intervall (0,0.06) x (0.2,0.4) in the
layer.
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3.2 The checkerboard : a test with discontinuous co-
efficients

As second example, we take 2 = (—1,1)%, with y = 1 and a discontinuous coefficient
[, corresponding to the decomposition of {2 into 4 sub-domains €2;, 2 = 1,...,4 from the
second example of section 2.3.2. As exact solution, we take u = VS, where S is given by
(4.25). We know that a refinement of the mesh near this point is expected. Figures 3.10
- 3.11 and 3.12 - 3.13 represent the meshes obtained for 4 subdomains with 3; = 5 and
(1 = 100 respectively.

The estimators non and nyeq have, one more time, quite the same behaviour. In such
tests, we use large values of § and we remark that those two estimators have a common

part, corresponding to Z 7]%70, which involves the jump of the component [uy - n over

TeT,
edges in the term denoted J. ,,. This part of the estimator is the dominant one, that explain

such a similar behaviour.

Comparing now ncy with 74,,, we still first remark that 7, is more efficient because it
refines fastlier than ney in few iterations. If we look at Figure 3.11 we notice that, in the
beginning, when the mesh is coarse, the residual estimator better localises the singularity
and the area to refine. But finer becomes the mesh, better the equilibrated estimator loca-
lises and refines efficiently the singularity. This is confirmed by the zooms we make on the
singularity, where we notice that the local error near the point (0,0) is smaller for 7,
after 15 iterations.

3.3 A singular solution on the L-shape domain

Finally, we take the L-shape domain Q = (—1,1)?\ (=1,0) x (0,1), x = 8 = 1, and
as exact solution v = V.S, where S is given by (2.19). A refinement of the mesh near this
point is once more obtained numerically in Figures 3.17 and 3.18.

As already mentioned before, we find the same meshes for the residual estimators. We
have to remark that, this time, they are better than the ones obtained for 7,,. Indeed,

they better localise the refinement of the singularity and the local error better decreases.
They are less diffusive.

3.4 Conclusion

Unlike in chapter 1, the two kind of residual estimators nox and 7nyeq are very similar in
all tests we presented. Indeed, in chapter 1, it was proved that, when the coefficients take
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F1G. 3.10 — Iterative meshes obtained for the second solution with 4 subdomains for 5; = 5:
on the left for ncy, on the right for nyeq, from the top to the bottom, the initial mesh,
after 5, 10 and 15 iterations.
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F1G. 3.11 — Iterative meshes obtained for the second solution with 4 subdomains for 5; = 5:
on the left for ny.q, on the right for nys,,, from the top to the bottom, the initial mesh,

after 5, 10 and 15 iterations.
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F1G. 3.12 — Iterative meshes obtained for the second solution with 4 subdomains for 3; =
100 : on the left for ney, on the right for nyeq, from the top to the bottom, the initial
mesh, after 3, 5 and 7 iterations.
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F1G. 3.13 — Iterative meshes obtained for the second solution with 4 subdomains for 3; =
100 : on the left for ncy, on the right for 74,,, from the top to the bottom, the initial
mesh, after 3, 5 and 7 iterations.
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F1G. 3.14 — Iterative meshes obtained for the second solution with 4 subdomains for 3; =
100 : on the left for non, on the right for 1y, after 9 iterations.
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Fi1G. 3.15 — Iterative meshes obtained for the second solution with 4 subdomains for 3; = 5,
zoom on the singularity on (—0.1,0.1)? : on the left for oy, on the right for 7y, after 15

iterations.
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FiG. 3.16 — Iterative meshes obtained for the second solution with 4 subdomains for 3; =
100, zoom on the singularity : on the left for noy on (—0.025,0.0.025)2, on the right for
N on (—0.1,0.1)% after 9 iterations.
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F1G. 3.17 — Iterative meshes obtained for the third example : on the left for oy, on the
right for nyeq, from the top to the bottom, the initial mesh, after 2, 4 and 6 iterations.
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Fi1G. 3.18 — Iterative meshes obtained for the third example :

on the left for ney,

on the

right for 7., from the top to the bottom, the initial mesh, after 2, 4 and 6 iterations.
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a large type of values, 1oy remains more robust than ny.4. This can may be explained by
the fact that the values of the coefficients are constant in two of the three tests and that
in the last one, for a solution in the chekerboard, the coefficient (3 is to large to notice the
difference between the two estimators. To be sure, we program this test for small values of
the coefficient like 107! or 1072 and we see one more time that they are equivalent. Indeed,
altough the second part of the estimator get a different value, depending on whether it is
NNed O Non, the irrotational part 1y remain much more dominant.

All the tests presented before prove that the estimator built with fluxes, 1, is more
performant than the two others. Indeed, unless we can see, in particular on the L-shape
domain, that it is more diffusive, it builds, fastlier than the other, an adapted mesh. We
need less iterations, compared to the residual estimators, to obtain a mesh well refined
near the singularities as expected. this might be explained by the fact that the constant
in the upper bound (2.36) is equal to 1 whereas for the others the constant in the bound
not only depend on the coefficients but also on the triangulation. These constants may
underestimate the error and, altough the value of the local indicators decreases, the error
remains large locally.
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Chapitre 4

Equilibrated error estimators for
discontinuous (alerkin methods

We consider some diffusion problems in domains of RY, d = 2 or 3 approximated by
a discontinuous Galerkin method with polynomials of any degree. We propose a new a
posteriori error estimator based on H(div )- conforming elements. It is shown that this
estimator gives rise to an upper bound where the constant is one up to higher order terms.
The lower bound is also established with a constant depending on the aspect ratio of the
mesh, the dependence with respect to the coefficients being also traced. The reliability and
efficiency of the proposed estimator is confirmed by some numerical tests.

4.1 Introduction

Among other methods, the finite element method is one of the more popular that is
commonly used in the numerical realization of different problems appearing in engineering
applications, like the Laplace equation, the Lamé system, the Stokes system, the Max-
well system, etc.... (see [14,17,39]). More recently discontinuous Galerkin finite element
methods become very attractive since they present some advantages, like flexibility, adap-
tivity, etc... In our days a quite large literature exists on the subject, we refer to [4,20]
and the references cited there. Adaptive techniques based on a posteriori error estimators
have become indispensable tools for such methods. For continuous Galerkin finite element
methods, there now exists a vast amount of literature on a posteriori error estimation for
problems in mechanics or electromagnetism and obtaining locally defined a posteriori er-
ror estimates. We refer to the monographs [3,6,40,52] for a good overview on this topic.
On the other hand a similar theory for discontinuous methods is less developed, let us
quote [10,16,24,27,28,30,51].

Usually upper and lower bounds are proved in order to guarantee the reliability and
the efficiency of the proposed estimator. Most of the existing approaches involve constants
depending on the shape regularity of the elements and/or of the jumps in the coefficients
but these dependences are oftenly not given. Only a few number of approaches gives rise to
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estimates with explicit constants, let us quote [3,13,35,38,42,46] for continuous methods.
For discontinuous methods, we may cite the recent preprints [2,36] : in the first one, the
author considers second order elliptic operators in two-dimensional domains and a discon-
tinuous method with polynomials of degree 1, while in the second preprint the authors
present essentially numerical experiments.

Our goal is therefore to consider second order elliptic operators in two- or three-
dimensional domains with mixed boundary conditions and a discontinuous method with
polynomials of any degree and further to derive an a posteriori estimator with an explicit
constant in the upper bound (more precisely 1) up to oscillating terms. Our approach,
called the equilibrated approach [2,13,36,46], is based on the following idea : it consists
to build a vector field jj, which is a H(div )-conforming approximation of the stress, i.e.,
it solves

div Jn = _Hf>

where IIf is the L? projection of the right-hand side f on the set of piecewise polynomial
functions on the triangulation. Then we use j, — aVuy, as estimator for the conforming
part of the error, when wuy, is the finite element approximation of the exact solution. The
difference with [2] relies on the determination of j, that we obtain here by using Raviart-
Thomas finite elements instead of P; elements. The use of Raviart-Thomas finite elements
seems to be more natural, allows to use polynomials of any degree and to consider any
space dimension.

Note that the non conforming part of the error is managed using a Helmholtz decom-
position of the error and a standard Oswald interpolation operator [2,30]. Furthermore
using standard inverse inequalities, we show that our estimator is locally efficient but in
the lower bound, we trace the dependence of the constant with respect to the variation of
the coefficients of the differential operator.

The schedule of the chapter is as follows : We recall in section 2 the diffusion problem,
its numerical approximation and an appropriate Helmholtz decomposition of the error.
Section 3 is devoted to the introduction of the estimator based on Raviart-Thomas ele-
ments and the proofs of the upper and lower bounds. The upper bound directly follows
from the construction of the estimator, while the lower bound requires the use of some in-
verse inequalities and some properties of the equilibrated fluxes. Finally in section 4 some
numerical tests are presented that confirm the reliability and efficiency of our estimator.

Let us finish this introduction with some notation used in the remainder of the chapter :
On D, the L?*(D)-norm will be denoted by || - ||p. In the case D = Q, we will drop the
index €. The usual norm and semi-norm of H*(D) (s > 0) are denoted by | - ||s,p and
| - |s.p, respectively. Finally, the notation a < b and a ~ b means the existence of positive
constants C7 and C5, which are independent of the mesh size, of the quantities a and b under
consideration and of the coefficients of the operators such that a < Cyb and C1b < a < Csb,
respectively. In other words, the constants may depend on the aspect ratio of the mesh as
well as the polynomial degree [ (see below).
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4.2 The boundary value problem and its discretiza-
tion

Let Q be a bounded domain of R? d = 2 or 3 with a Lipschitz boundary T' that we

suppose to be polygonal (d = 2) or polyhedral (d = 3). We further assume that € is

simply connected and that I' is connected. We consider the following elliptic second order
boundary value problem with non homogeneous mixed boundary conditions :

—div (e Vu) = fin Q,
aVu-n = gy onlIy,

where ' =Tp ULy and Tp Ny = 0. If T'p = ) we further impose that fﬂf—i-fFN gy =0
and an unique solution exists if we require fQ u=0.

In the sequel, we suppose that a is piecewise constant, namely we assume that there
exists a partition P of 2 into a finite set of Lipschitz polygonal/polyhedral domains
Qy,---,Q; such that, on each €;, a = a; where a; is a real positive constant. The va-
riational formulation of (4.1) involves the bilinear form

B(u,v) = / aVu - Vv
Q

and the Hilbert space

HL(Q) ={uec HY(Q) :u=0o0nTp and /u:OifFD:Q)}.
Q

Given f € L*(Q), gp € H2(T'p) and gy € L*(Ty) (satisfying [, f + Jr,gv = 0 if
I'p = (), the weak formulation consists in finding v € w + H7,(€) such that

B(u,v) = /va—i-/F gnv, Yv € HH (), (4.2)

where w € HY(Q) is a lifting for gp, i.e., w = gp on I'p. Invoking the positiveness of a,

1/2
the bilinear form B is coercive on H} () with respect to the norm (/ a\Vu|2) and
Q

this coerciveness guarantees that problem (4.2) has a unique solution by the Lax-Milgram
lemma.

4.2.1 Discontinuous Galerkin approximated problem

Following [4,30], we consider the following discontinuous Galerkin approximation of our
continuous problem : We consider a triangulation 7;, made of triangles T if d = 2 and of
tetrahedra if d = 3 whose edges/faces are denoted by e. We assume that this triangulation is
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h
regular, i.e., for any element 7', the ratio ~L is bounded by a constant o > 0 independent

PT

of T" and of the mesh size h = maxyeg, hy, where hp is the diameter of 7" and pr the
diameter of its largest inscribed ball. We further assume that 7, is conforming with the
partition P of €, i.e., the function a is constant on each T" € 7}, we then denote by ar the
value of a restricted to an element 7. With each edge/face e of an element T', we associate
a unit normal vector n., and ny stands for the outer unit normal vector of T'. £ represents
the set of edges/faces of the triangulation. In the sequel, we need to distinguish between
edges/faces included into 2, I'p or I'y, in other words, we set

gint = {GEE:Z@CQ},

Ep = {eES:eCFD},

Ev = {ee&:eCTy}.

For shortness, we also write E;p = &, U Ep.
Problem (4.2) is approximated by the (discontinuous) finite element space :

X, = {Uh S LQ(Q)|U}L|T c P[(T),T € 7T, and / v,=0if I'p = @} ,
Q

where [ is a fixed positive integer. The space X}, is equipped with the norm
1/2

lallpe.n = | la"*Vaglla +~ Y hlall 2]

e€Ehp

where 7 is a positive parameter fixed below.

For our further analysis we need to define some jumps and means through any e € £ of
the triangulation. For e € £ such that e C Q, we denote by 7" and T~ the two elements of
T, containing e. Let ¢ € X},, we denote by ¢, the traces of ¢ taken from T, respectively.
Then we define the mean of ¢ on e by

4t
o - L0
For v € [X},]¢, we denote similarly
v+
1) g
The jump of ¢ on e is now defined as follows :

lal], = a"nr+ + ¢ nr-.

Remark that the jump [[qﬂ . of q is vector-valued.

118



For a boundary edge/face e, i. e., e C 052, there exists a unique element T € 7,
such that e € 9TF. Therefore the mean and jump of ¢ are defined by {{q}} = ¢* and

[a]], = a*nr-.
For g € X}, we define its broken gradient V;q in €2 by :
(Voq)ir = Vqr, VT € T,,.

With these notations, we define the bilinear form By(.,.) as follows :

Bwn) = 3 [ ou Vo 3 [({aVind} - [, + Lo - [0,

TeT, ec€nrp
o Y n / L[]l Vunon € Xa,
e€&nip

where the positive parameter 7 is chosen large enough to ensure coerciveness of the bilinear
form By, on X, (see, e.g., Lemma 2.1 of [30]), namely according to the results from [50],

the choice (4 1)1+ d) o7
+ 1)+
> Tm x (ar Z he ) (43)

yields the coerciveness of Bj.
The discontinuous Galerkin approximation of problem (4.2) reads now : Find u;, € X},
such that
Bh(uh, Uh) = F(Uh), (44)

where

F(vy) /fvh + Z /gD vh, tvp — aVoy, - np) + / gnUh, Yo € X,

e€ED I'n

As our approximated scheme is a non conforming one (i.e. the solution does not belong
to H5(9)), as usual we need to use an appropriate Helmholtz decomposition of the error
(see Lemma 3.2 of [25] or Theorem 1 of [2] in 2D and Lemma 6.5 of [23] in 3D) :

Lemma 4.2.1 (Helmholtz decomposition of the error). We have the following error de-
composition
aVi(u—up) = aVe + curl x, (4.5)

with x € HY(Q) if d =2 and x € H'(Q)? if d = 3 is such that
curl x - n =0 on Iy, (4.6)
and ¢ € HL(Q). Moreover the next identity holds :

a2V = )P = [la2Vsipl + a1 curl (4.7

119



Proof: We consider the following problem : find ¢ € H}(Q) solution of

diva(Vp(u —up) = V) =0 in Q,
=0 on I'p, (4.8)
a(Vip(u—up) — Vo) -n=0 inTy.

The weak formulation of that problem (4.8) is :
/ aVy - Vv = / aVi(u—up) - Vv, Vv e Hp(Q). (4.9)
Q Q

As the vector field a(Vy(u — up) — V) is divergence free in €2, i.e.,
diva(Vp(u —up) — V) =01in Q,
by Theorem 1.3.1 of [26] if d = 2 or Theorem 1.3.4 of [26] if d = 3, there exists x € H'(Q)
if d=2and x € H'(Q)? if d = 3 such that

curl y = a(Vy(u —up) — Vo).

This proves the identity (4.5). The boundary condition (4.6) satisfied by x follows from
the boundary condition satisfied by a(Vy(u — up) — Vi) on I'y.

The identity (4.7) directly follows by using Green’s formula and the boundary condition
(4.6). Indeed using (4.5) we may write

1aY2V 1 (u — up)||? = ||aY* Vo> + ||a= % curl ¥||* + 2/ Vo - curl y.
Q
In the last term, using Green’s formula we have

/ch~curlx=—/cpdiv curlx—l—/c,ocurlx-nds:O,
Q Q r

since the boundary term is zero by using the boundary condition ¢ = 0 on I'p and by
using (4.6) on I'y. n

4.3 The a posteriori error analysis based on Raviart-
Thomas finite elements

Error estimators can be constructed in many different ways as, for example, using
residual type error estimators which measure locally the jump of the discrete flux [30]. A
different method, based on equilibrated fluxes, consists in solving local Neumann boundary
value problems [3]. Here, introducing the flux as auxiliary variable, we locally define an
error estimator based on a H (div )-conforming approximation of this variable. This method
avoids solving the supplementary above-mentioned local subproblems. Indeed in many
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applications, the flux j = aVu is an important quantity, introducing this auxiliary variable,
we transform the original problem (4.1) into a first order system. If gy = 0, its weak
formulation gives rise to the following saddle point problem : Find (j,u) € Hy(div, ) x
L*(2) such that

/ale—i-/diVTu = / gpT - n, Y17 € Hy(div,Q), (4.10)
Q Q I'p

/divj w o= —/ fw, Yw € L*(Q), (4.11)
Q Q
the natural space for the flux being

Hy(div, Q) = {q € [L*()]*|divg € L*(Q) and ¢-n=0o0onT'y}.

Therefore the discrete flux approximation jj, will be searched in a H (div )-conforming space
V3, based on the Raviart-Thomas finite elements. This means that our error estimate of the
conforming part of the error is based on the error between aV,u;, and an approximating
flux j, of 7 that we search in the Raviart-Thomas finite element space

Vi, = {vn € H(div, Q)|vyr € RT,1(T),T € T},

X1

where RT}(T) = [Py(T))¢ + Pu(T) | : and P;(T) stands for the space of homogeneous
Tq

polynomials of degree [.

On a triangle/tetrahedron T, an element p of RT;_1(7T') is characterized by the degrees
of freedom given by

° /p -nq, Vg€ P_(e), Ve C IT,
. L p-g, Vg€ [Pl
Therefore we fix the discrete flux j, by setting
/ejh “npq = /egﬂ6 q, Vg € Pi_1(e), Ye C OT, (4.12)
/Tjh q= /TaVuh -q — arlar(q), Vq € [Po(T)]Y, (4.13)

where for all e C 9T, gr. is defined by

gre = ({eVaunjy = [w]],) e if e € Ein,
gr.e = aVpup - np — Vhe_l(uh — gD) if e € &p,
gr.e = gN if e € &y,
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and the linear form lyr is given by

lor(q Z / up]] g+ Z /Uh_qunT

eC@T\F eCOTNI'p

Denote by II,_; the L?-projection on W), = {wy € L*(Q)|wpr € Pii(T), T € T}
Then, we have the following projection lemma.

Lemma 4.3.1. Assume that j, € V}, satisfies (4.12)-(4.13) on each element T of Ty,. Then,
we obtain
dith = —Hlflf. (414)

Proof: Let T be an element of the triangulation. As j, € V},, div j, € W}, and by Green’s
formula, it follows that, for all w € P,_1(T),

/le]hw:—/thw+/ jh~nTw.
T T or

Now, from (4.12), (4.13), we get

/dithw = —Bh(uh,w)‘i‘/ gNw
T aTAT N

+ / gD(vhe_lw —aVw - nr),
oTNI'p

where @w mean the extension of w by zero outside T'. By the discontinous Galerkin formu-

lation (4.4), we conclude that
/divjhw:—/fw.
T T

Remark 4.3.2. If [ = 1 and d = 2, alternative constructions of j, are given in Lemma
6 of [2], our proposed construction has the advantage to hold for any space dimension as
well as any degree [.

Remark 4.3.3. The terms gr. in (4.12) actually play the role of flux functions (in the
terminology of [3]). They further fulfil the so-called equilibrated equations (compare with

Lemma 5 of [2])
Z/gTe— /Tfa

eCOT

due to the above proof with w = 1.
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We introduce the conforming part of the estimator nor that only involves the difference
between the discrete flux approximation j, and aVuy :

U%F = Z U%F,Ta (4.15)
TeT,

where the indicator ncpr is defined by

nerr = |la”? (aVuy — ji) ||z

For the nonconforming part of the error, we associate with wuy,, its Oswald interpolation
operator, namely the unique element w;, € X, N H'(Q) defined in the following natural way
(see Theorem 2.2 of [30]) : to each node n of the mesh corresponding to Lagrangian-type

degree of freedom of X; N H (), the value of wy, is the average of the values of uy at this
> omer | Tlupr(n)
_ ZneT |T‘ -~

node if it belongs to I'p (here we assume that gp € C(I'p)). Then the non conforming

indicator nyc r is simply

node n if it belongs to Q U 'y (i.e., wy(n) = ) and the value of gp at this

nver = ||a'?V (w, — w)| 7.

The non conforming part of the estimator is then

7712vc = Z 7712vc,T- (4.16)
TeT,
Similarly we introduce the estimator corresponding to jumps of uy, :
m= > M.

e€&nip

with

L[ Il e b
e illun —gpllz ife € Ep.

The higher order terms depending on the data f and gy are defined as

ose(f)? = Y hiag!|lf — Mo fl7,

TeT,
2 _ -1 2
osc(gn)” = ZhTaT Z lgn — m-1gn|lZ,
TeT, ecEN:eCOT

where m_1¢g means the L*-projection of g on {w € L*(T'y) : w). € P_1(e), Ve € En}.
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4.3.1 Upper bound

Theorem 4.3.4. Assume that there exists v, € X,NH"(Q) such that gp = vyrp,. Then the
energy norm of the error between the exact solution and its finite element approximation
15 bounded from above by the estimator and the higher order oscillation terms, this means
that there exists C' > 0 such that

03930 = un)| < (e + 1ke)" 7+ C (osclf) +oselgw),  (417)
and consequently
lu = unllpan < (M + 0 +n3)"2 + C (ose(f) + osc(gn))- (4.18)
Proof: From the Helmholtz decomposition of the error we have
a2 n (= un)|F = a2V egl|? + a2 curl 2. (4.19)

We are then reduced to estimate each term of this right-hand side.
For the non conforming part, we proceed as in [2], namely by Green’s formula we have

e~ curl x||? = / Vi(u —wup) - curl x
Q
= —/ thh-curlx—l—/ gpeurl y - n
Q I'p
= / Vi(wy — up) - curl x,
Q
since [, Vwy,-curl x = [ gp curl x -n. By Cauchy-Schwarz’s inequality we directly obtain
|la=% curl x||* < nnella™? curl x| (4.20)
For the conforming part, we write
|a?Vp|? = / aVip(u—up) -V
Q
= [@Vu=5)- e+ [ (n— ) Ve
Q

Q

Applying Green’s formula in the first term of this right-hand side, we obtain
|aY?Vp|? = /(—div (aVu) + div jp)p
Q

>

TeTy, T

= [ -maner X [ 66— aVu) e+ [ (o -mg) e

TeT), N

ap " (n — aVup)ay >V + / (gn = m-1g9n) ¢

I'n
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As f =111 f L wy, Ywy, € P_1(T), it follows

la' Vel < > If—Thaflole —Taele+ D> > oy —magnllelle — morelle

TeT, TeT;, eeEn:eCOT

+ > 10 2Vellrlla™ (G — aVuy) |
TeT,

< S (@CIf - fllzhrllVelr +C > gy — moagnllehi I Vel
TeTy e€EN:eCOT

+ a2Vollrla™2(jn — aVun)|r).
This last estimate follows from standard interpolation error estimates. This finally yields
a2V ¢||* < (nor + Cosc(f) + Cosc(gn))[la'* V. (4.21)

Coming back to the identity (4.19), and using the estimates (4.20) and (4.21) we conclude
by discrete Cauchy-Schwarz’s inequality and again using (4.19) :

a2V (u — up) || nvella? curl x| + (ner + Closc(f) + osc(gn)))||a /2 V||
(e +ner) 2 (la™? curl x|* + [|la'/2Vep||*) /2
C(osc(f) + osc(gn))||a/* V||

(e + 1Ep) ' + Close(f) + ose(gn))llla*Va(u — up)].

IN 4+ IN A

4.3.2 Lower bound

Our lower bound is based on the equivalence of the L?-norm of any element in V}, with
a discrete mesh dependent norm invoking the degrees of freedom of R7; ;.

Lemma 4.3.5. Let v, € RT)(T) with T € Ty, then the following equivalence holds
lonll ~ B sup

/Uh “nrq
ecor 1€R(T):Nalle=11Je

/th.q'.

Proof: The proof is standard and simply uses scaling arguments and the so-called Piola
transformation. m

(4.22)

+ sup
q€[P_1(T)]%:[|gllr=1

Using the above lemma, we are now able to provide a local lower bound for our esti-
mator ncp .
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Theorem 4.3.6. For each element T' € T, the following estimate holds
nerr S a / max{1,ar} nax {alT//Q}Hu — Up|| DG wrs (4.23)
wr

where wr denotes the patch consisting of all the triangles/tetrahedra of T, having a no-
nempty intersection with T and

1oy = lla*Violl, +7 > B[]

ecErpeCwr

Proof: By its definition (4.15), we deduce, from Lemma 4.3.5, that

Nerr = @;1/2"@VUh—jh"T

a;l/Q [h1T/2 Z sup

S5 ae P (D)illglle=1

/T(jh —aVuy) - Q‘]

/(jh —aVuy) - nrq

+ sup
g€[P—2(T)]%:||gl|r=1

By (4.12) and (4.13), we see that

Nerr S aq_“l/Q [h;ﬂ Z sup /[[a%ﬂe.q'
ecor\r 1€P—1(T):llglle=1
ou
+ h1/2 Sup / a_h —g ’
' ecarnr y 9€P-1(T):llalle=1 onr N
+ h;l/z Z sup /[[uhﬂeq'

ecor\r 1€P—1(T):llglle=1

+ h;l/Q sup /(uh — gD) . q’
ecornrp 4€P-1(T):llglle=1 1/ e

[ 1], -4
/e(uh—gD)'QM

Using Cauchy-Schwarz’s inequality and the inverse estimate ||q|le < h;l/ 2

at the estimate

-+ ar sup
q€[P—2(T)]%:|qllr=1 eCOT\I'

+ ar sup
q€[P—2(])]%:||qllr=1 eCOTNTp

lgq||T, we arrive

_ _ ou
nerr < a 1/2 1/2 Z H auh T1/2h1T/2 Z H Oup —gxlle
eCT\I' eCTNI' N
+ apPhy P max{1,ar} Y H[[uhﬂeue+a;”2h;”2max{1,aT} ST Jlun — golle-
eCT\I' eCTNI'p
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The two first terms of this right hand side are parts of the standard residual error estimator
and it is by now standard that (using appropriate bubble functions and Green’s formula)

ou
2 3 a2 ]] Jle+ by > llag— — gnlle S llaVa(u — un) .-

8nT
eCT\I eCTNI' N

The two other terms are parts of the DG-norm and are here left in the right-hand side. =

For the non conforming part of the estimator, we make use of Theorem 2.2 of [30] to
directly obtain the

Theorem 4.3.7. Let the assumption of Theorem 4.3.4 be satisfied. For each element T €
Ty, the following estimate holds

nver S afllu = unl s (4.24)

Remark 4.3.8. From Theorems 4.3.4, 4.3.6 and 4.3.7, we see that the estimator (nZ, +
n%c + n2)Y? is reliable for the DG-norm with an effectivity index (up to higher order
terms) equal to 1 and is further locally efficient. Nevertheless the arguments of Theorem 3
of [2] (that are readily extended to the case d = 3) show that if 7 is large enough, then

ns < CON(la"Va(u = up)| + ose(f) + osc(gn)),

where C'(7) is a positive constant depending on 7 and the aspect ratio of the mesh. This
means that the estimator (n2, + n%)"/? is reliable for the semi-norm ||a*/2V,(u — uy,)||
with an effectivity index (up to higher order terms) equal to 1, but it is no more locally
efficient. The numerical tests of the next section confirm these facts.

4.4 Numerical tests

Our two examples consist in solving the equation (4.1) on the square Q = (—1,1)? with
I'p =TI and a discontinuous coefficient a. Namely we decompose 2 into 4 sub-domains (2;,
i=1,...,4 with Q; = (0,1) x (0,1), Qs = (—1,0) x (0,1), Q3 = (—1,0) x (—1,0) and
Q4 =(0,1) x (—1,0) and take a = a; on §;, with a; = a3 and as = a4 = 1.

For the first test, for different values of a1, we take as exact solution the smooth function
uw(z,y) = (1+2z)*(1—xz)?y*(1—y)?, which clearly satisfies (4.1) with gp = 0, the right-hand
side f being fixed accordingly. The numerical tests are performed with [ = 1 and 2 and
the penalization parameter v = 10 and v = 20, respectively. To begin, we check that the
numerical solution u; converges toward the exact solution. To this end, we plot the curves
||u—un||pa.n and [|at/?V, (u—uyp)|| as well as the estimators 1, = (02, +n%c +n2)Y? and
Nhs = (M2p+n%c)"? as a function of DoF (see Fig. 4.1 and 4.2). A double logarithmic scale
was used so that the slope of the curves yields the order of convergence and that parallel
curves correspond to quantities having a constant ratio. For the different values of a;, we see
that the approximated solution converges toward the exact one with a convergence rate of [,
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that the estimator 7;, (resp. y,.5) is close to the error ||u —us||pan (resp. ||V, (u—wup)|))
and that the contribution of n; is very small. In all cases, we find that the effectivity indices,
i.e., the ratios ||u — up||pg.n/mn are smaller than one, as theoretically expected. Indeed if
we compute these effectivity indices, we remark in Figures 4.1 and 4.2 bottom-right that
they are around 0.6 for [ = 1 and 0.05 for [ = 2, in other words they remain smaller than
one.

As second test, in order to illustrate the performance of our estimator 7y, we show the
meshes obtained after some iterations using an iterative algorithm based on the marking
procedure

ny > 0.75 maxmr,

and a standard refinement procedure with a limitation on the minimal angle. Using polar
coordinates centered at (0,0), we take as exact solution (see Example 3 from [38])

S(z,y) =r*o(0), (4.25)

where a € (0,1) and ¢ are chosen such that S is harmonic on each sub-domain €;, i =
1,...,4 and satisfies the jump conditions :

[[Sﬂ =0 and [[aVS-nﬂ =0

on the interfaces (i.e. the segments Q;NQ;; (mod 4),i = 1,...,4). We fix non-homogeneous
Dirichlet boundary conditions on I' accordingly.
It is easy to see (see for instance [22]) that « is the root of the transcendental equation

tano‘f = Jar.

This solution has a singular behavior around the point (0, 0) (because o < 1). Therefore
a refinement of the mesh near this point can be expected. This can be checked in Figures
4.3 and 4.4 on the meshes obtained after 20 iterations for a; = 5 and a; = 100 respectively
and for which « ~ 0.53544094560 and « ~ 0.1269020697 (compare with the meshes from
Example 3 of [38]). Note that the tests are performed with { = 1, v = 25 and v = 500
respectively and with [ = 2, v = 75 and v = 750 respectively. As expected, we may notice
a better final mesh for [ = 2 than for [ = 1.

Let us remark that the choice of the parameter v has an influence on the performance
of our algorithm. Indeed, for example 2, we compare and report in Tables 4.1 to 4.4 for
a; =5, a; =100 and for [ = 1 and [ = 2, the CPU times needed by our algorithm to obtain
the same mesh after 20 iterations. These tables show that for [ = 1 the optimal choice of
7 is around 25 (resp. 500) for a; = 5 (resp. a; = 100), while for [ = 2, the optimal value is
around 75 (resp. 750) for a; = 5 (resp. a; = 100). From these tables, we may notice that if
we go away from the "optimal” value of «, then the CPU time increases drastically. Note
further that the obtained optimal values are mainly in accordance with (4.3).

Finally, we check that adaptive refinements are superior to uniform ones by displaying
in Figure 4.5 the decrease of the DG-norm of the error as a function of the total degrees of
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freedom for uniform and adaptive strategies for example 2 with a; = 5 and a; = 100 and
for[=1and [ = 2.

From these examples, we can conclude the efficiency and reliability of our proposed
estimator.

10 T T T T T T 10 T T T T T - T
Error semi-norm H1 —— Error semi-norm H1 ——
Estimator (NC+CF) ---x-— Estimator (NC+CF) ---x---
Error ------ Error ------
al Estimator (NC+CF+J) -2 | L Estimator (NC+CF+J) -8
01t El 01 El
0.01 | 4 0.01 |- 4
0.001 = 0.001 |- =
0.0001 |- = 0.0001 =
le-05 = 1e-05 =
1e-06 . . . . . . 1e-06 . . . . . .
1 10 100 1000 10000 100000 le+06 le+07 1 10 100 1000 10000 100000 1le+06 le+07
10 T T T T T T 10 T T T T T - T
Error semi-norm H1 —— Error semi-norm H1 ——
Estimator (NC+CF) ---x— Estimator (NC+CF) ---x---
Error ------ Error ------
al Estimator (NC+CF+J) @ | L Estimator (NC+CF+J) -8
01t El 01 El
,’m\
0.01 | 4 0.01 |- . 4
0.001 = 0.001 |- =
0.0001 |- = 0.0001 =
le-05 = 1e-05 =
1e-06 . . . . . . 1e-06 . . . . . .
1 10 100 1000 10000 100000 le+06 le+07 1 10 100 1000 10000 100000 1le+06 le+07
10 T T 1 T
Error semi-norm H1 —+— al=1 ——
Estimator (NC+CF) ---x-- al1=10-1 —--x--
Error ---¥--- al=10-2 %
Estimator (NC+CF+J) & a1=10-3 &
ir E al=10-4 —-m-—-
08 - 4
01 =
A
// N, .
0.6 a8 H
0.01 | El il
~ =]
i
0.001 | El o
0.4 4
. -
0.0001 F El
02} 4
1e-05 | El
16-06 . . . . . . 0 . . . .
1 10 100 1000 10000 100000 1e+06 1e+07 0 20000 40000 60000 80000 100000

Fi1G. 4.1 — First example with [ = 1 : : top-left : a; = a3 = 1, top-right a; = a3 = 0.1;
middle-left a; = a3 = 0.01, middle-right a; = a3 = 0.001; bottom-left a; = a3 = 0.0001 ;
bottom-right ratios ||u — us || pa.n/m:-
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~ 10 10.5 11 13 15 20

CPU Time (x103) | bad refinement | 305 985 | 268 656 | 199 938 | 60 485 | 65 453
~ 25 40 50 100

CPU Time (x103) | 54 609 | 61 781 | 65 469 | 76 125

TAB. 4.1 — Influence of the parameter v on the CPU time for the coefficient a; = 5 and
[ =1 with 20 refinements.

2

10

100

250

500

750

1000

10 000

15 000

CPU Time (x103)

146 190

129 510

99 220

27 130

33 040

34 410

57 070

60 960

TAB. 4.2 — Influence of the parameter v on the CPU time for the coefficient a; = 100 and
[ =1 with 20 refinements.

2

20

20

75

100

200

CPU Time (x103)

272 860

96 520

41 860

51 940

69 990

TAB. 4.3 — Influence of the parameter v on the CPU time for the coefficient a; = 5 and
[ = 2 with 20 refinements.

8l

200

750

1000

1500

2000

CPU Time (x10%)

317 350

79 080

88 540

118 840

124 830

TAB. 4.4 — Influence of the parameter v on the CPU time for the coefficient a; = 100 and
[ = 2 with 20 refinements.
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0.1

T
Error semi H1

—_
Estimator (NC+CF) ---x--

Error DG -

*

Estimator (NC+CF+J) &

0.01 B
0.001 B
1le-04 4
1e-05 B
1e-06 B
16-07 . . . . .

1 10 100 1000 10000 100000 1e+06
01 T
Error semi H1 ——
Estimator (NC+CF) ---x--
Error DG -
Estimator (NC+CF+J) &

0.01 B
0.001 B
1le-04 4
1e-05 B
1e-06 B
16-07 . . . . .

1 10 100 1000 10000 100000 1e+06

Fi1Gc. 4.2 — First example with [ = 2 : top-left

0.5

-0.5

-0.5

0.5

-0.5

01
Erfor semi HL —+—
Estimator (NC+CF) ---x---
Error DG -~
Estimator (NC+CF+J) -8
0.01 | 1
0.001 | 1
le-04 | 1
1e-05 | 1
1e-06 | 1
1e-07 . ) ) ‘ ‘
1 10 100 1000 10000 100000 16+06
1
al=1 ——
1=0.1 ---x---
21=0.001 -+
08 |
0.6 f |

50000 100000

ta; = az = 1, top-right
bottom-left a; = a3 = 0.001 ; bottom-right ratios ||u — us||pa.n/n:-

150000 200000

a; — az = 01,

0.5

-0.5 0

0.5 1

Fi1G. 4.3 — Adaptive mesh after 20 iterations for the second example with [ = 1 : left
a; =az =095, ay = ay = 1; right a1 = a3 = 100, as = a4 = 1.
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3 3 3 = B

Fi1G. 4.4 — Adaptive mesh after 20 iterations for the second example with [ = 2 : left
a1 =az =095, ay = ay = 1; right ay = a3z =100, ay = a4 = 1.

100 T T T T T 100 T T T T —
DG Error (adaptive) —+— DG Error (adaptive) —+—
DG Error (uniform) ---x-- DG Error (uniform) ---x-—-
10 | 4 10 |- 4
1p 4 1p 4
.
Hemmmm o B SO SO S
01 4 01 * - ™ SO x |
0.01 | 4 0.01 |- 4
0.001 4 0.001 | 4
1e-04 . . . . . 1e-04 . . . . .
1 10 100 1000 10000 100000 1e+06 1 10 100 1000 10000 100000 1e+06
100 T T T T 100 T T T T T
DG Error (uniform) —— DG Error (uniform) —+—
DG Error (adaptive) ---x-- DG Error (adaptive) ---x-—-
10 | 4 10 | 4
1p 4 1p 4
01 4 01 4
0.01 | 4 0.01 |- 4
0.001 4 0.001 | 4
1e-04 . . . . . 1e-04 . . . . .
1 10 100 1000 10000 100000 1e+06 1 10 100 1000 10000 100000 1e+06

F1G. 4.5 — Comparison between uniform and adaptive refinement procedures for [ = 1, 2.
On the top-left : a1 = a3 = 5,1 = 1, on the top-right : a; = a3 = 100,l = 1; on the
bottom-left : a; = a3 = 5,1 = 2, on the bottom-right : a; = a3 = 100,[ = 2.
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Conclusion

Dans ce travail, nous sommes partis du systeme de Maxwell, et nous avons construit
différents types d’estimateurs, a savoir de type résiduel et basés sur des flux équilibrés
issus de la résolution de problemes locaux. Nous avons calculés explicitement, en fonction
des coefficients intervenant dans les équations, les constantes apparaissant dans les bornes
inférieures et supérieures. Nous avons ainsi montré que ces estimateurs étaient robustes
et l'avons validé numériquement. Nous les avons ensuite comparés, au travers de tests
numériques présentant des solutions singulieres, en confrontant les maillages successive-
ment obtenus par une procédure itérative de raffinement.

Face a l'efficacité notable et la rapidité de calculs des estimateurs basés sur des flux
équilibrés, nous avons souhaité étendre cette théorie aux méthodes de type Galerkin dis-
continues. Ainsi, dans le chapitre 4, nous avons regardé I’équation de diffusion ; la gestion
d’un terme d’ordre zéro, comme dans le cas de ’équation de réaction-diffusion, présente
encore actuellement quelques difficultés pour cette méthode. En effet, pour démontrer la
borne supérieure, nous sommes amenés a exprimer le gradient de 'erreur a l'aide d’une
décomposition de type Helmholtz. Il apparait alors, lorsqu’on majore supérieurement 1’er-
reur par 'estimateur, des termes d’ordre zéro faisant intervenir u — u;, contre des termes
issus de la décomposition du gradient de 'erreur et on ne sait pas gérer ces termes. Une
difficulté supplémentaire intervient lorsque 1'on passe aux équations de Maxwell, puisqu’il
faut étendre la théorie de Braess et Schoberl pour construire les flux dans le cas discontinu.

La méthode des volumes finis est proche d’'une méthode de type Galerkin discontinue,
puisque la solution approchée est construite en tant que constante par morceaux sur les
éléments. Elle représente alors un bon moyen d’appréhender la construction des flux dans
le cas discontinu. Actuellement en cours de développement, pour ’équation de diffusion,
la construction, a partir des volumes finis, d'un estimateur basé sur des flux équilibrés est
aussi une perspective de suite a ce travail, dans le cadre des équations de Maxwell.
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Méthodes d’éléments finis et estimations d’erreur a posteriori

Dans cette these, on développe des estimateurs d’erreur a posteriori, pour ’approximation
par éléments finis des équations de Maxwell en régime harmonique et des équations de
réaction-diffusion. Introduisant d’abord, pour le systeme de Maxwell, des estimateurs de
type résiduel, on étudie la dépendance des constantes intervenant dans les bornes inférieures
et supérieures en fonction de la variation des coefficients de I’équation, en les considérant
d’abord constants puis constants par morceaux. On construit ensuite un autre type d’es-
timateur, basé sur des flux équilibrés et la résolution de problemes locaux, que 1'on étudie
dans le cadre des équations de réaction-diffusion et du systeme de Maxwell. Ayant introduit
plusieurs estimateurs pour ’équation de Maxwell, on en propose une étude comparative,
au travers de tests numériques présentant le comportement de ces estimateurs pour des
solutions particulieres sur des maillages uniformes ainsi que les maillages obtenus par des
procédures de raffinement de maillages adaptatifs. Enfin, dans le cadre des équations de
diffusion, on étend la construction des estimateurs équilibrés aux méthodes éléments finis
de type Galerkin discontinues.

Mots clefs : Eléments finis, équations de Maxwell, estimations d’erreur, estimations a
posteriori, résidu, flux équilibrés, équations de réaction-diffusion, méthodes de Galerkin
discontinues.

Finite element methods and a posteriori error estimations

In this thesis, we develop a posteriori error estimators, for the finite element approxima-
tion of the time-harmonic Maxwell and reaction-diffusion equations. Introducing first, for
Maxwell’s system, residual type estimators, we study the dependence of the constants ap-
pearing in the lower and upper bounds with respect to the variation of the coefficients of
the equation we consider. Then, we construct another type of estimator, based on equili-
brated fluxes and the resolution of local problems, that we study for the reaction-diffusion
equations and Maxwell’s system. With all the estimators built for the Maxwell equation,
we propose a comparison through numerical tests involving particular solutions on uniform
meshes and refinement procedures with adaptive meshes. Finally, we propose an extension,
for diffusion equations, of the equilibrated estimators to the discontinuous Galerkin finite
element methods.

Key words : Finite elements, Maxwell’s equations, error estimations, a posteriori esti-
mations, residual, equilibrated fluxes, reaction-diffusion equations, discontinuous Galerkin
methods.
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