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INTRODUCTION

Parmi les méthodes communément utilisées pour approcher numériquement des problè-
mes apparaissant en ingénierie, comme, par exemple, l’équation de Laplace, le système de
Maxwell ( [13–15,17,39]), la méthode des éléments finis est l’une des plus populaires. Dans
nombre de ces applications, les techniques adaptatives utilisant les estimateurs d’erreur a
posteriori sont devenues un outil indispensable. Ces estimateurs permettent de mesurer la
qualité de la solution calculée et fournissent une information pour contrôler l’algorithme
d’adaptation de maillage.

Estimateurs d’erreur a posteriori

Dans la méthode des éléments finis, on s’intéresse à l’erreur commise entre la solution
exacte et la solution approchée. En effet, on se donne une forme bilinéaire coercive B sur
un espace de Hilbert V et on s’intéresse à un problème variationnel du type : étant donné
f , trouver u dans V solution de

B(u, v) = (f, v), ∀v ∈ V.

On peut alors construire une solution discrète uh ∈ Vh, espace d’approximation de V ,
satisfaisant

B(uh, vh) = (f, vh), ∀vh ∈ Vh,

et établir des estimations d’erreur a priori qui se présentent sous la forme

‖u− uh‖ ≤ F (h, u),

où la fonction F dépend de la solution exacte u et du pas h de la triangulation. Pour que la
méthode converge, il faut alors que la solution u soit suffisamment régulière, et, en général,
cette solution exacte u n’est pas connue.

Les estimations d’erreur a posteriori, introduites en 1978 par Babuška et Rheinboldt,
permettent, elles aussi, de contrôler l’erreur exacte en en donnant une approximation, mais,
contrairement aux estimations a priori, sans nécessairement connâıtre la solution exacte ni
sa régularité. Elles se présentent sous la forme

‖u− uh‖ ≤ F (h, uh, f)

où la fonction F peut se calculer explicitement et ne dépend que de la triangulation, de
l’approximation éléments finis uh et de la donnée du problème f . On note η le second
membre F (h, uh, f), appelé estimateur d’erreur a posteriori. Il peut alors s’exprimer en
fonction de quantités locales, relatives aux éléments T de la triangulation Th que l’on se
donne, en s’écrivant sous la forme :

η =

(
∑

T∈Th

η2
T

)1/2

.
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En pratique, chaque indicateur local ηT est calculé à partir de la solution discrète et des
données du problème. Ces indicateurs peuvent alors donner un bon aperçu de la répartition
locale de l’erreur et sont donc un outil intéressant pour l’adaptation de maillage.

On attribue à un estimateur certaines propriétés qui attestent de sa qualité. Ainsi, il
doit satisfaire trois conditions :

• fiabilité : ‖u− uh‖ . Cη + ξ, C > 0,

• efficacité : η . C‖u− uh‖ + ξ, C > 0,

• localité : l’estimateur doit donner des informations sur la distribution locale de l’erreur,

où ξ est une quantité ne dépendant que du second membre f et des conditions de bord du
problème et qui est négligeable devant l’estimateur. Ces propriétés indiquent que l’erreur
est globalement équivalente à l’estimateur d’erreur. L’efficacité représente l’optimalité de
l’estimateur c’est-à-dire la garantie que l’erreur obtenue est petite sans que le coût de calcul
ne soit trop élevé.

La qualité d’un estimateur a posteriori est mesurée par son indice d’efficacité corres-

pondant à
η

‖u− uh‖
. Si cet indice et son inverse restent bornés, quel que soit le maillage

considéré, l’estimateur est dit efficace. L’optimalité d’un estimateur est d’avoir un indice
d’efficacité égal à 1 et si cet indice tend vers 1 quand la taille du maillage h tend vers 0,
l’estimateur est dit asymptotiquement exact.

En général, les bornes supérieures (fiabilité) et inférieures (efficacité) font intervenir
des constantes qui dépendent de la régularité des élements et/ou du saut des coefficients
intervenant dans les équations, et donc dans la forme bilinéaire, mais cette dépendance
est rarement donnée. Le produit de ces constantes mesure la qualité de l’estimateur et
si l’équation contient des paramètres critiques, comme par exemple, si elle est perturbée
singulièrement, cette quantité doit rester bornée même si le paramètre prend des valeurs
extrêmes. L’estimateur est alors dit robuste si les constantes apparaissant dans les bornes
inférieures et supérieures sont uniformes par rapport aux coefficients intervenant dans les
équations.

Il existe différents types d’estimateurs d’erreur a posteriori et on peut notamment ci-
ter les estimateurs de type résiduel [9, 19, 39, 45, 49], les estimateurs d’erreur hiérarchiques
[3, 6–8] ou encore les estimateurs basés sur la résolution de problèmes locaux [3, 29]. Les
estimateurs résiduels se calculent à partir des sauts du flux discret à travers les interfaces
de la triangulation tandis que les estimateurs basés sur des flux équilibrés font intervenir
la résolution sur des patches d’éléments de problèmes de type Neumann qui s’expriment
en fonction de la solution approchée et la minimisation d’une fonctionnelle.
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L’intérêt pour de telles estimations est principalement dû à la volonté des ingénieurs
d’obtenir des résultats numériques précis sans que le coût de calcul soit trop élevé. Afin
d’optimiser les calculs, les estimations a posteriori permettent de raffiner certaines parties
de la triangulation en fonction de la solution approchée. L’adaptation de maillage est donc
devenu une outil important dans l’analyse numérique des équations aux dérivés partielles
car la performance d’une méthode de résolution numérique est étroitement liée à la qualité
du maillage.

Maillages adaptatifs

Lorsqu’on calcule numériquement la solution d’une équation, on est amené à construire
successivement des maillages et à résoudre les systèmes linéaires associés. On se heurte
ainsi au coût des calculs issus de ces résolutions car les matrices des systèmes contiennent
de plus en plus de degrés de liberté. On cherche alors à réduire ce nombre de degrés de
liberté en imposant un raffinement uniquement en certaines régions du maillage. En ef-
fet, grâce aux estimateurs d’erreur a posteriori et notamment aux indicateurs locaux, on
connâıt la répartition de l’erreur et l’on sait atteindre uniquement les éléments où elle est
la plus élévée.

On introduit alors une procédure de raffinement, basée sur ces indicateurs, pour raffiner
localement le maillage et la procédure itérative fonctionne comme suit : on parcourt tous
les éléments du maillage et lorsqu’un indicateur local ηT est jugé trop grand sur un élément
de la triangulation, cet élément est marqué pour être raffiné. On peut alors imposer un
angle minimal, interdisant aux triangles de s’aplatir, c’est-à-dire que les éléments de la
triangulation doivent toujours avoir des angles plus grands que cet angle minimal, et on
raffine, dans le cas bidimensionnel, un élément suivant trois possibilités :
• soit cet élément sera coupé en deux, si l’angle minimal à respecter le permet,

• soit il sera coupé en trois, si l’angle minimal à respecter le permet,

• soit il sera coupé en quatre triangles.

Pour chaque triangle divisé, il faut alors marquer ses voisins afin qu’ils soient eux-mêmes
coupés, suivant les mêmes critères, afin que le maillage reste conforme.

Méthode de type Galerkin discontinue

Dans la méthode des éléments finis, on parle de méthode de Galerkin, et on la dit
conforme, lorsque que l’on choisit de calculer la solution élément fini uh dans un sous-
espace Vh, de l’espace V , contenant la solution exacte u. La solution uh, construite éléments
par éléments, vérifie alors des propriétés de continuité aux interfaces entre les éléments.
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Lorsqu’on décide de prendre la solution uh dans un espace Vh qui n’est plus inclus dans l’es-
pace V , on parle alors d’approximation non conforme. On ne s’assure plus une continuité
complète entre les éléments mais la solution approchée peut garder une certaine continuité
en quelques points des interfaces.

Introduite en 1973 par Reed et Hill, la méthode de type Galerkin discontinue correspond
à une approximation non conforme et repose sur le choix d’une base de fonctions disconti-
nues d’un élément à l’autre. La convergence de la méthode est assurée par des contraintes
imposées aux interfaces entre les éléments. La solution approchée n’est alors plus continue
et l’ordre d’approximation peut être choisi arbitrairement dans chaque élement.
La discontinuité de la représentation permet de n’imposer aucune contrainte sur le maillage.
En particulier les maillages non-conformes sont autorisés.

Plan de la thèse

Dans le cas de l’équation de Maxwell en régime harmonique, relativement peu de
résultats existent sur les estimations d’erreur a posteriori ; quelques approches ayant cepen-
dant été récemment développées pour ce cas ( [9,40,45,49]). Ainsi, on peut citer Monk qui
soulignait dans son livre [40] que, pour l’équation de Maxwell, les constantes intervenant
dans les estimations d’erreur a posteriori et leur dépendance en fonction des coefficients
n’avaient jamais été explicitées. C’est notamment à ce problème que nous nous sommes
attaqués.

Dans le chapitre 1, nous parlerons d’estimateurs de type résiduel dont nous étudierons
la dépendance en fonction des coefficients de l’équation. Nous présenterons d’abord les
équations de Maxwell, le problème continu et le problème approché par des sous-espaces
conformes, puis nous traiterons séparément, dans un premier temps, le cas de coefficients
constants puis, dans un second temps, le cas de coefficients constants par morceaux. Le but
est d’y exprimer les bornes supérieures et inférieures en fonction de normes appropriées.
Nous serons alors amenés à prouver des estimations d’erreur d’interpolation et pour cela à
introduire un nouvel opérateur d’interpolation du type Clément/Nédélec. Nous préciserons
la dépendance des constantes intervenant dans les bornes en fonction de la variation des
coefficients.

Dans le chapitre 2, notre approche consiste à utiliser celle des flux équilibrés présentée
dans [3,13] et nous y proposerons des estimateurs pour des équations de réaction-diffusion
et pour le système de Maxwell. Ainsi, pour l’équation de Laplace, l’idée principale est de
construire un champ de vecteur jh, approximation du champ des contraintes,et d’utiliser
le terme jh −∇uh comme estimateur, uh étant l’approximation élément fini de la solution
exacte. Les termes d’ordre zéro, importants en pratique, présentent alors une difficulté
supplémentaire, surtout dans le cas de Maxwell, et qui est ici traitée. En effet, dans ce
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cas, il faudra introduire une seconde approximation qh qui prend en compte le fait que
l’approximation élément fini (basée sur les éléments finis de Nédélec de plus bas degré) ne
respecte pas la contrainte relative à la divergence ; cette deuxième approximation n’ayant
pas besoin d’être introduite s’il n’y a pas de terme d’ordre zéro.

Dans le chapitre 3, nous présenterons un bilan des chapitres précédents en établissant
une comparaison, au travers de tests numériques sur des solutions particulières présentant
des singularités typiques (couche limite, singularité de coin), des estimateurs construits
pour l’équation de Maxwell. Nous établirons notamment, sur des algorithmes d’adaptation
de maillages, les différences entre les maillages obtenus successivement pour les différents
estimateurs lors d’une même procédure de raffinement.

Dans le chapitre 4, nous proposerons l’extension, pour l’équation de diffusion, des es-
timateurs équilibrés, pour des méthodes éléments finis de type Galerkin discontinues, la
difficulté majeure restant actuellement, pour cette méthode, la gestion du terme d’ordre
zéro.

Pour tous nos estimateurs et dans chaque chapitre, nous présenterons des tests numériques
qui valident les résultats théoriques.

Notons que les chapitres 1, 2 et 4 correspondent à quatre articles acceptés ou soumis.
Nous avons donc gardé la structure générale de ces articles ; seules les références ont été
regroupées dans une bibliographie commune.
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Chapitre 1

Residual based a posteriori error

estimators for the heterogeneous

Maxwell equations

1.1 Setting of the problem

Let O = Ω × I ⊂ R
2 × R be a bounded domain of R

3 with a polygonal boundary ∂O.
The classical Maxwell equations are given by






∂tB + curl E = 0 in O,
divD = ρ in O,

∂tD − curlH = −J in O,
divB = 0 in O,

(1.1)

where E , D, B, H and J are vector functions of position x in R
3 and time t in R.

E and H are the electric and magnetic field intensities, D and B, are respectively the
electric displacement and the magnetic induction. J (·, t) is the source current density
which is supposed to satisfy

divJ (·, t) = 0 in Ω, ∀t ≥ 0. (1.2)

By setting D = ǫE and B = µH where ǫ and µ are positive, bounded, scalar functions,
respectively called the electric permittivity and the magnetic permeability, we can find
relationships between E and H and obtain second-order Maxwell’s equations depending
either on the magnetic field H or on the electric field E . In this paper, we arbitrary choose
to eliminate H rather than E .

1.1.1 Quasistatic electromagnetic fields in conductors

The computation of quasistatic electromagnetic fields in conductors usually employs
the eddy current model [9]. In this case, J is given by σE +Ja where σ is the conductivity
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of the body occupying O and Ja(·, t) is the source current density which is supposed to
satisfy

divJa(·, t) = 0 in Ω, ∀t ≥ 0.

This identity allows to transform (1.1) into

{
∂tB + curl E = 0
∂2

t D − curl ∂tH = −σ∂tE − ∂tJa

⇔
{
µ∂tH + curl E = 0
ǫ∂2

t E − curl ∂tH = −σ∂tE − ∂tJa

⇔
{
∂tH = µ−1 curl E
ǫ∂2

t E + σ∂tE + curl(µ−1 curl E) = −∂tJa.

For good conductors, we can assume that ǫ∂2
t E = 0 and obtain the parabolic initial boun-

dary value problem [9, 12]

∂t(σE) + curl(χ curl E) = −∂tJa in O,

E × n = 0 on ∂O,

E(·, t = 0) = E0 in O,

where E is the unknown electric field, χ denotes the inverse of the magnetic permeability,
and n denotes the unit outward normal vector along ∂O.

Using a time discretization of the above problem we have to solve at each time step
Maxwell’s equations

{
curl(χ curlu) + βu = f in O,
u× n = 0 on ∂O,

(1.3)

where u is the time approximation of the electric field E , the coefficient β is equal to σ/∆t
(where ∆t is the time step discretization) and f depends on Ja and the approximation of
E in the previous step. Therefore we may assume that f satisfies

div f = 0 in O. (1.4)
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1.1.2 Electromagnetic fields in dielectrics

We now return to the time-dependent problem (1.1) and reduce it to the time-harmonic
Maxwell system setting

E(x, t) = ℜ(exp(−iωt)Ê(x))

D(x, t) = ℜ(exp(−iωt)D̂(x))

H(x, t) = ℜ(exp(−iωt)Ĥ(x))

B(x, t) = ℜ(exp(−iωt)B̂(x))

J (x, t) = ℜ(exp(−iωt)Ĵ(x))

ρ(x, t) = ℜ(exp(−iωt)ρ̂(x))

where Ê (and similarly other hat variables) are now complex-valued functions depending
on the space variables but not on the time variable ( [40]). We introduce the linear, inho-
mogeneous constitutive equations

D̂ = ǫÊ and B̂ = µĤ.

As dielectric materials are characterized by a small conductivity, we take σ = 0 and the
constitutive relation for the currents reduces to Ĵ = Ĵa, where the vector function Ĵa

describes the applied current density. As iωρ̂ = div Ĵ, we arrive at the following time-
harmonic system :






−iωĤ + curl Ê = 0

div(ǫÊ) =
1

iω
div Ĵa

−iωÊ + σÊ− curl Ĥ = −Ĵa

div(µĤ) = 0

Defining E as ǫ
1
2
0 Ê and H as µ

1
2
0 Ĥ where ǫ0 and µ0 respectively represents the electric

permittivity and the magnetic permeability in vacuum, we obtain the second-order Maxwell
system for the electric field E ∈ R

3 [40] :

curlµ−1
r curlE− κ2ǫrE = f in O, (1.5)

E× n = 0 on ∂O, (1.6)

where f depends on Ĵa, κ = ω
√
ǫ0µ0 = ωc−1 is called the wavenumber, ω ≥ 0 is the

frequency of the electromagnetic wave and c is the speed of light in vacuum. Moreover, µr

and ǫr are the relative permeability and permittivity of the medium occupying O defined
by :

ǫr =
ǫ

ǫ0
and µr =

µ

µ0

.
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We assume that ǫr and µr are uniformly bounded from below and above. To get the same
system than before, we now set β = ω2c−2ǫr and χ = µ−1

r . With these notations, our
equations become

{
curl(χ curlu) − βu = f in O,
u× n = 0 on ∂O,

(1.7)

where u corresponds to E, the datum f is once more a multiple of J and so is divergence
free.

1.1.3 A common variational formulation

From now on, we reduce the problem (1.3) (or (1.7)) to a problem in the two-dimensional
domain Ω, namely assuming that u depends only on the x1, x2 variables, then the equations
are reduced to :

{
curl(χ curlu) + sβu = f in Ω,
u · t = 0 on Γ,

(1.8)

where t is the unit tangential vector along Γ, s = 1 in the quasistatic case and s = −1 in
the dielectric case. For the sake of simplicity, we assume that Ω is simply connected and
that its boundary Γ is connected.
We suppose that χ and β are piecewise constant, namely we assume that there exists a
partition P of Ω into a finite set of Lipschitz polygonal domains Ω1, · · · ,ΩJ such that, on
each Ωj , χ = χj and β = βj , where χj and βj are positive constants (see Fig. 1.1).
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Fig. 1.1 – Partition of the domain Ω.

The variational formulation of (1.8) is well known and involves the space

H0(curl,Ω) = {u ∈ [L2(Ω)]2 : curlu ∈ L2(Ω); u · t = 0 on Γ}
and the bilinear form

a(u, v) =

∫

Ω

(χ curlu curl v + sβu · v)dx .

For f ∈ [L2(Ω)]2 satisfying (1.4), the weak formulation of (1.8) consists in finding u ∈
H0(curl,Ω) such that

a(u, v) = (f, v), ∀v ∈ H0(curl,Ω), (1.9)
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where (·, ·) is the [L2(Ω)]2-inner product.
In the sequel, we assume that a is coercive on H0(curl,Ω), namely we assume that there

exists α > 0 such that

a(u,u) ≥ α‖u‖2
β,χ, ∀u ∈ H0(curl,Ω) : div(βu) = 0, (1.10)

where ‖u‖β,χ =

(∫

Ω

χ| curlu|2 + β|u|2
)1/2

. This coerciveness assumption guarantees that

problem (1.8) has a unique solution by the Lax-Milgram lemma.
In the quasistatic case, thanks to the positivity of β and χ, a clearly satisfies coerciveness

with α = 1.
In the dielectric case, the variational formulation is given by

{
Find u ∈ H0(curl,Ω) such that
(µ−1

r curlu, curl v) − ω2c−2(ǫru, v) = (f, v), ∀v ∈ H0(curl,Ω),
(1.11)

with u satisfying the divergence constraint div(ǫru) = 0. If ω = 0, (1.11) has a unique
solution. Otherwise, problem (1.11) enters within the framework of the Fredholm alter-
native and has a unique solution provided ω2 does not belong to the spectrum of the
involved operator. In this paper, we assume that ω is small enough in order to guarantee
the coerciveness of a, given here by :

a(u,u) =

∫

Ω

(µ−1
r | curlu|2 − ω2c−2ǫr|u|2)dx .

It means that, if we denote by λ2
M the smallest positive eigenvalue of the Maxwell system

[40], we assume that ωc−1 < λM . Under this condition, we can estimate the optimal
constant of coerciveness and find that :

α =
λ2

M − ω2c−2

λ2
M + ω2c−2

.

Let us finish this introduction with some notation used in the whole paper : For short-
ness the L2(D)-norm will be denoted by ‖ · ‖D. In the case D = Ω, we will drop the index
Ω. The weighted norm ‖ · ‖D,β is defined by

‖u‖2
D,β :=

J∑

j=1

βj‖u‖2
D∩Ωj

.

Obviously this norm is equivalent to the L2(D)-norm. As previously if D is equal to Ω,
we will drop the index Ω. The standard H(curl, D)-norm is denoted by ‖ · ‖H(curl,D) =
‖ · ‖D + ‖ curl ‖D. The usual norm and seminorm of H1(D) are denoted by ‖ · ‖1,D and
| · |1,D. For later uses we further need to introduce the space of functions which are piecewise
Hk, for k ∈ N, with respect to the partition of Ω, namely

PHk(Ω) = {v ∈ L2(Ω) : v|Ωj
∈ Hk(Ωj), ∀j = 1, · · · , J},

13



equipped with the norm and semi-norm

‖v‖PHk,β :=

(
J∑

j=1

βj‖v|Ωj
‖2

k,Ωj

)1/2

,

|v|PHk,β :=

(
J∑

j=1

βj|v|Ωj
|2k,Ωj

)1/2

,

and define ∇P v by
∇P v|Ωj

= ∇(v|Ωj
), ∀j = 1, . . . , J.

The notation u means that the quantity u is a vector and ∇u means the matrix (∂jui)1≤i,j≤d

(i being the index of row and j the index of column). Finally, the notation a . b and a ∼ b
means the existence of positive constants C1 and C2, which are independent of T , of the
quantities a and b under consideration and of the coefficients β and χ such that a . C2b
and C1b . a . C2b, respectively.

1.2 The heterogeneous Maxwell equations

Problem (1.9) is approximated in a conforming finite element space Vh of H0(curl,Ω)
based on a triangulation T of the domain made of isotropic triangles, the space Vh is
assumed to contain the lowest order Nédélec edge element space (cf. [41]). If uh is the
solution of the discretization of (1.9) we consider an efficient and reliable robust residual a
posteriori error estimator for the error e = u− uh in the H0(curl,Ω)-norm.

A posteriori error estimators for standard elliptic boundary value problems are in our
days well understood [52]. The analysis of isotropic a posteriori error estimators for the
edge elements were successfully initiated in [9, 39] in the context of a “smooth” Helm-
holtz decomposition. The methods from [9] and [31] were combined in [45] to the case of
anisotropic meshes and for a “nonsmooth” Helmholtz decomposition. Alternatively, using
a local H(curl) decomposition of the interpolation error (of Clément type) and its local
Helmholtz decomposition from [47], J. Schöberl proves in [49] an a posteriori estimate in
the case χ and β constant and Ω not necessarily convex. In these papers, the dependence of
the constants in the lower and upper bounds with respect to the variation of the constants
is not explicitely given. Therefore, the goal of this chapter is to give this dependence in
the case of piecewise constant coefficients β and χ, extending to Maxwell’s equations what
have already been shown for second order elliptic operators with piecewise constant coef-
ficients [11]. Note that the question of the dependence of these constants with respect to
the coefficients was raised in [40] page 362.

In this chapter, we will first consider the case when χ and β are constant in the whole
Ω, introducing an interpolant of Clément/Nédélec type, and analyze an a posteriori error
estimator. Then we extend some ideas to the case of piecewise constant coefficients, but
contrary to the previous section, we introduce two different estimators. For the sake of
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simplicity, we have restricted ourselves to 2D problems, the extension to the 3D setting is
mainly direct (see section 1.4.4).

The schedule of this chapter is the following one : Section 1.2.1 recalls the discretization
of our problem. In section 1.2.2, we recall some basic tools for the error estimation analysis.
We further study the case of constant coefficients. In this part, we state the adapted
Helmholtz decomposition of the error. In section 1.4.2 we give some interpolation error
estimates for Clément and Nédélec interpolants, build a new interpolation operator based
on the first two ones and prove appropriate interpolation error estimates. The efficiency
and reliability of the estimator are established in section 1.4.3. The extension of our results
to three-dimensional problems is shortly described in section 1.4.4. Section 1.4.5 is devoted
to numerical tests which confirm our theoretical analysis.

1.2.1 The discrete problem

We consider a triangulation Th made of triangles denoted by T, Ti or T ′ whose edges
are denoted by e and nodes by x.
We assume that this triangulation is regular i.e. for any element T , the ratio hT

ρT
is bounded

by a constant σ > 0 independent of T and of h = maxT∈Th
hT , where hT is the diameter of

T and ρT the diameter of its largest inscribed ball.
We will denote by he the length of an edge e. The set of edges will be denoted by Eh. Let
NΩ be the set of internal nodes of the triangulation and EhΩ the set of its internal edges.
For an edge e of an element T , we introduce the outer normal vector by ne. We define the
jump of a function v across an edge as :

[[
v(y)

]]
e

= lim
α→+0

v(y + αne) − v(y− αne), y ∈ e.

Note that the sign of
[[
v
]]

e
depends on the orientation of ne.However, terms such as a

gradient jump
[[
∇v · ne

]]
e

are independent of this orientation.
At least, one uses so called patches :
• ωT is the union of all elements having a common edge with T ,
• ωe the union of both elements having e as edge,
• ωx the union of all elements having x as node.

Problem (1.9) is approximated in a curl-conforming finite element subspace Vh of
H0(curl,Ω) containing the lowest order Nédélec finite element space :

Vh,1 = {vh ∈ H0(curl,Ω) : vh|T ∈ ND1, ∀T ∈ Th},

where ND1 is given by :

ND1 =

{
p ∈ P1(T )2|∃a ∈ R

2, b ∈ R, ∀x ∈ T, p(x) = a+ b

(
−x2

x1

)}
.

For instance, we may take for Vh the subspace of H0(curl,Ω) consisting of functions which
are piecewise in NDk with k ≥ 1, as considered in [9, 41] (see [45]).
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The discretized problem of problem (1.8) is to find uh ∈ Vh such that

a(uh, vh) = (f, vh), ∀vh ∈ Vh. (1.12)

We define the error by :
e = u− uh,

and from (1.9), we obtain the defect equation

a(e, v) = r(v), ∀v ∈ H0(curl,Ω), (1.13)

where the residual is given by

r(v) = (f, v) − a(uh, v), ∀v ∈ H0(curl,Ω), (1.14)

Then, we deduce from (1.12) the “Galerkin orthogonality” relation

a(e, vh) = r(vh) = 0, ∀vh ∈ Vh. (1.15)

1.2.2 Basic tools

In this section, we introduce some notations and important tools. Some basic relations
and lemmas are given as well.

Let us first introduce auxiliary subdomains also called patches : For any triangle T of
Th and any edge e of Eh, we denote by
• ωT : the union of all elements having a common edge with T ,
• ωe : the union of both elements having e as edge.

If the parameter χ is small, our Maxwell equations are singularly perturbed. Therefore
as in [53], for a real number δ ∈ (0, 1] we employ a squeezed element Te,δ ⊂ T associated
with T and an edge e of T (see Fig. 1.2) introduced in [31,33,34,53] ; the main properties
of Te,δ is to be included into T , to have e as edge and to be of height ∼ δhe. More precisely,
if T is the triangle OQ1Q2 and the edge e = Q1Q2, denote by Se the midpoint of the
edge e, then Te,δ is the triangle PQ1Q2, where the point P lies on the line SeO such that
|SeP | = δ|SeO| (see Fig. 1.2 and [33]).

Now, recall that for any T of Th, we can define a continuous affine linear mapping trans-
forming the reference triangle T̂ , whose vertices are given by

{
(0, 0)T , (1, 0)T , (0, 1)T

}
,

onto T .
Then, in order to use efficiently Te,δ, we require an affine linear transformation FT,e,δ that
maps the reference triangle onto Te,δ. This affine linear mapping is unique.
In the same way, we can now introduce the following transformation [31] :
from a patch ωT , T ∈ Th, to a reference patch :
Denote by ω̂T the reference patch corresponding to ωT (see Figure 1.3 for the case when
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Fig. 1.2 – Triangles T = OQ1Q2 and Te,δ = PQ1Q2.

T ∩ Γ is empty or reduced to a vertex). Then there exists a continuous, piecewise linear
mapping FT that satisfies :

FT : ω̂T → ωT

FT |Ti
= FTi

: T̂i → Ti, ∀i = 1, . . . , lT
x̂ → BTi

x̂+ bTi

where lT = 2, 3 or 4, BTi
∈ R

2×2 and bTi
∈ R

2. On each Ti ⊂ ωT , we set

û(x̂) = BTi
(u ◦ FTi

(x̂)). (1.16)

from a patch ωx, x ∈ NΩ, to a reference patch :
Assume that ωx consists of N triangles arbitrary numbered, and denote by ω̂x the regular
N -polygon with the midpoint in the coordinate origin. Then there exists a continuous,
piecewise linear mapping Fx that satisfies :

FT : ω̂x → ωx

Fx| bTi
= Fi : T̂i → Ti, i = 1, · · · , N

x̂ → Bix̂+ bi

where Bi ∈ R
2×2 and bi ∈ R

2. On each Ti ⊂ ωx, i = 1, · · · , N , we set

û(x̂) = Bi(u ◦ Fi(x̂)). (1.17)

Remark 1.2.1. |T̂i| = |T̂j|, ∀i, j = 1, · · · , N .

At least, the lemma below has been proved in [53]. It will play an important role in
interpolation estimates.

Lemma 1.2.2. Let T be an arbitrary triangle and e an edge of it. For v ∈ H1(T )2, the
trace inequality holds :

‖v‖2
e . ‖v‖T ·

(
h−1

T ‖v‖T + ‖∇v‖T

)
. (1.18)
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Fig. 1.3 – Transformation FT that associate the patches ω̂T = ∪i=1,...,4T̂i and ωT =
∪i=1,...,4Ti.

1.2.3 Bubble functions

For the analysis, we need to introduce bubble functions satisfying some properties. We
first define the element bubble function b bT ∈ C(T̂ ) given by b bT (x̂, ŷ) = 33x̂ŷ(1 − x̂ − ŷ),

where T̂ is the reference element, and then an edge bubble function bbe, bT ∈ C(T̂ ) for the edge

ê ⊂ ∂T̂ ∩ {ŷ = 0} defined by bbe, bT = 22x̂(1 − x̂− ŷ). Furthermore, we require an extension

operator Fext : C(ê) → C(T̂ ), Fext(vbe)(x̂, ŷ) := vbe(x̂).
For a given element T of the triangulation, we obtain the bubble function bT by the

affine linear transformation FT and the edge bubble function be,T is similarly defined. We
also introduce an edge bubble function be on the domain ωe = T1 ∪T2 with an elementwise
definition : be|Ti

:= be,Ti
, i = 1, 2. Analoguously the extension operator is defined for

functions ve ∈ C(e) and a same elementwise definition implies that Fext(ve) ∈ C(ωe).
We recall that bT = 0 on ∂T , be = 0 on ∂ωe and ‖bT‖∞,T = ‖be‖∞,ωe = 1.
Now, we can state inverse inequalities (proved in [52] for instance) :

Lemma 1.2.3. Let vT ∈ P
k0(T ) and ve ∈ P

k1(e). Then the following equivalences and
inequalities hold. The implicit constants depend on the polynomial degree k0 and k1 but not
on T, e or vT , ve.

‖vT b
1
2
T ‖T ∼ ‖vT‖T (1.19)

‖∇(vT bT )‖T . h−1
T ‖vT‖T (1.20)

‖veb
1
2
e ‖e ∼ ‖ve‖e (1.21)

‖Fext(ve)be‖T . h
1
2
T‖ve‖e (1.22)

‖∇(Fext(ve)be)‖T . h
− 1

2
T ‖ve‖e (1.23)

These bubble functions do not suffice to analyse our residual error estimators. We
further need to introduce modified edge bubble functions, cf. also [33]. For some triangle

18



T and an edge e thereof consider the subtriangle Te,δ (cf. Figure 1.2). Define the squeezed
edge bubble function be,T,δ by

be,T,δ :=

{
bbe ◦ F−1

e,T,δ on Te,δ

0 on T\Te,δ
(1.24)

where bbe is the standard edge bubble function for the edge ê = F−1
e,T,δ(e) of the triangle

T̂ = F−1
e,T,δ(Te,δ). In other words, be,T,δ is the usual bubble function for the edge e in the

triangle Te,δ, and it is extended by zero in T\Te,δ.

Standard scaling arguments using the transformation Fe,T,δ : T̂ → Te,δ yield the next
inverse inequalities for the squeezed edge bubble function, see [33, 34, 53].

Lemma 1.2.4. Let e be an arbitrary edge of T and assume that ve ∈ P
k1(e). Then the fol-

lowing equivalences and inequalities hold. The implicit constants depend on the polynomial
degree k1 but not on T, e or ve.

‖Fext(ve)be,T,δ‖T . δ
1
2h

1
2
T‖ve‖e, (1.25)

‖∇(Fext(ve)be,T,δ)‖T . δ
1
2h

− 1
2

T min{δ, 1}−1‖ve‖e. (1.26)

1.3 Robust a posteriori error estimation

To our knowledge, a robust estimation was not yet considered for the Maxwell system.
Our method relies on the introduction of an interpolant of Clément/Nédélec type satisfying
appropriate interpolation error estimates.

We consider a robust a posteriori error estimator of residual type for the Maxwell
equations in a bounded two (and three) dimensional domain. The continuous problem is
approximated using conforming approximated spaces. The main goal is to express the lower
and upper bounds with respect to appropriate norms. For that purpose, a new interpolant
of Clément/Nédélec type is introduced and some interpolation error estimates are proved.
Numerical tests are presented which confirm our theoretical results.

We consider first that the coefficients β and χ are positive constants and we take s = 1
in the bilinear form.

1.3.1 Helmholtz Decomposition

Here we mainly recall the standard Helmholtz decomposition of the space H0(curl,Ω).
Recall that H0(curl,Ω) was equipped with the inner product

(v,w)β,χ = (βv,w) + (χ curl v, curlw),

its associated norm ‖v‖β,χ being equivalent to the usual norm (‖v‖2 + ‖ curlv‖2)1/2.
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Lemma 1.3.1. If Ω is simply connected and its boundary Γ is connected then

H0(curl,Ω) = H0
0 (curl,Ω)

⊥
⊕ W, (1.27)

where H0
0 (curl,Ω) and W are closed subspaces of H0(curl,Ω) defined by

H0
0 (curl,Ω) = {v ∈ H0(curl,Ω) : curl v = 0 in Ω}, (1.28)

W = {v ∈ H0(curl,Ω) : div v = 0 in Ω}, (1.29)

and the symbol
⊥
⊕ means that the decomposition is direct and orthogonal with respect to the

inner product (·, ·)1,1. Furthermore one has

H0
0 (curl,Ω) = ∇H1

0
(Ω). (1.30)

Then the error e admits the splitting

e = e0 + e⊥, (1.31)

with e0 = ∇φ where φ ∈ H1
0
(Ω) and e⊥ ∈ W. Moreover e⊥ admits the splitting

e⊥ = ∇ψ + w, (1.32)

where ψ ∈ H1
0
(Ω) and w ∈ H1

0
(Ω)2 and satisfies

‖∇w‖β . β1/2χ−1/2‖e⊥‖β,χ, (1.33)

‖w‖β . ‖e⊥‖β,χ. (1.34)

Proof: All the results have been proved in Lemma 3.10 and Corollary 3.11 of [45], except
the decomposition (1.32) and the estimates (1.33) and (1.34). The decomposition (1.32) of
e⊥ was proved in Lemma 2.2 of [47] (for three-dimensional polyhedral domains, but their
proof is also valid for two-dimensional polygonal domains) with the estimate

‖w‖ + ‖∇ψ‖ . ‖e⊥‖,
‖∇w‖ . ‖ curl e⊥‖.

These estimates directly lead to (1.33) and (1.34), because β and χ are constant.

1.3.2 Interpolation error estimates

Clément interpolation

We first recall that the Clément interpolation operator [33, 45] of some function φ ∈
H1

0 (Ω) is defined by :

I
Cl

: H1
0
(Ω) → S(Ω, Th)

φ →
∑

x ∈NΩ

1

|ωx|

(∫

ωx

φ

)
ϕx =

∑

x ∈NΩ

I
Cl,x

(φ)ϕx
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where S(Ω, Th) is the space of continuous piecewise linear functions on the triangulation
which are zero on the boundary and ϕx is the nodal basis function associated with the
node x, uniquely determined by the condition :

ϕx(y) = δx,y, ∀y ∈ NΩ.

We now can state the following interpolation error estimates (see [18]) :

Lemma 1.3.2. For every function φ ∈ H1
0
(Ω), we have

∑

T∈Th

h−2
T ‖φ− I

Cl
φ‖2

T . ‖∇φ‖2, (1.35)

∑

T∈Th

‖∇ (φ− I
Cl
φ) ‖2

T . ‖∇φ‖2. (1.36)

Since our problem also involves functions in W, we need a Nédélec-type interpolant
in order to approximate such functions by an H(curl)-conforming interpolant. We start
by recalling the definition of the Nédélec operator given in [37] and then, as we need a
L2-stability of our operator, we introduce a new interpolant based on the definitions of the
previous ones.

Nédélec interpolation

Let T ∈ Th be a triangle and ET the set of its edges. For e ∈ ET , we fix a unit tangential
vector te along the edge e. We define (see [37]) the set of linear forms {le, e ∈ ET} by

le : L1(e) → R

u →
∫

e

u · te ds,

and consider the (basis) functions λe ∈ ND1 satisfying the condition

∀e ∈ ET ,

∫

e′
λe · te′ = δe,e′.

We further introduce the local interpolation operator I
Ned |T (u) ∈ ND1 defined for u satis-

fying u|e ∈ (L1(e))
2

by the conditions

le

(
I
Ned |T (u)

)
= le(u), ∀e ∈ ET .

This means that

I
Ned |T (u) =

∑

e∈ET

(∫

e

u · te ds

)
λe.
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The global interpolation operator I
Ned

is then given by (I
Ned
u)|T = I

Ned |T (u|T ) ∈ ND1, ∀T ∈
Th as

I
Ned

: H0(curl,Ω) → Vh

u →
∑

e∈EΩ

(∫

e

u · te ds

)
λe.

A Clément-Nédélec interpolant

Let us define a Clément-Nédélec interpolant by :

I
CN

: L2(Ω)2 → Vh

u →
∑

e∈EhΩ

αe(u)λ̃e

where αe(u) =
1

|ωe|

∫

ωe

u · te and λ̃e = λe|e|.
This new interpolant is well-defined and stable relatively to the L2-norm and the H1-

semi-norm and satisfies standard interpolant error estimates, i.e. we have the following
estimates :

Theorem 1.3.3. For every function u ∈ H0(curl,Ω) ∩H1(Ω)2, we have

‖I
CN

u‖T . ‖u‖ωT
(1.37)

‖u− I
CN

u‖T . hT‖∇u‖ωT
(1.38)

‖∇(u− I
CN

u)‖T . ‖∇u‖ωT
. (1.39)

Proof: We first define

R0(ωT ) =
{
c ∈ H(curl, ωT ) : c|T ′ ∈ R

2, ∀T ′ ⊂ ωT and c · t = 0 on ∂ωT ∩ Γ
}

and prove that I
CN

c = c on T if c ∈ R0(ωT ). Indeed, for e ⊂ T , we have

αe(c) =
1

|ωe|

∫

ωe

c · te = c · te =
1

|e|

∫

e

c · te.

Then, the definition of I
Ned

implies that I
CN |Tc = I

Ned |Tc = c.

Let us now show (1.37) : By Cauchy-Schwarz’s inequality, we may write

|αe(u)| ≤ 1

|ωe|
‖u‖ωe‖te‖ωe

Since
‖te‖ωe ≤ ‖te‖∞|ωe|

1
2

and ‖te‖∞ = 1, we get

|αe(u)| ≤ 1

|ωe|
1
2

‖u‖ωe .
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By the definition of I
CN

, we obtain

‖I
CN

u‖T ′ ≤
∑

e⊂∂T ′

1

|ωe|
1
2

‖u‖ωe‖λ̃e‖T ′.

Moreover, if λ̂ denote a basis function on the reference element, we have

‖λ̃e‖T ′ = |e|‖λe‖T ′ = |e|‖B−t
T ′ λ̂‖T ′ . |e|h−1

T ′ ‖λ̂‖cT ′hT ′ . |e|
where BT ′ is the matrix refering to the affine transformation FT ′ that maps T̂ ′ ⊂ ω̂T onto
T ′ ⊂ ωT .

As |e| = he and |ωe| ∼ h2
e, we conclude that

‖I
CN

u‖T ′ .
∑

e⊂∂T ′

‖u‖ωe

which implies (1.37).
Now, for any p ∈ R0(ωT ), u− I

CN
u = (I − I

CN
)(u− p) on T and therefore by (1.37) :

‖u− I
CN

u‖T = ‖(I − I
CN

)(u− p)‖T

. ‖u− p‖ωT
.

Now we define
PH1(ωT ) = {v ∈ L2(ωT ) : v|T ′ ∈ H1(T ′)∀T ′ ⊂ ωT}.

From the above estimate, we see that (1.38) holds if we can bound from below the ratio

h2
T

∑

T ′⊂ωT

‖∇u‖2
T ′

∑

T ′⊂ωT

‖u− p‖2
T ′

for u ∈ H(curl, ωT ) ∩ PH1(ωT )2 such that u · t = 0 on ∂ωT ∩ Γ and p ∈ R0(ωT ), which
is equivalent, by applying the affine transformation FT mapping the patch ω̂T to ωT (see
section 1.2.2), to bound the ratio

∑

bT ′⊂bωT

‖∇̂û‖2
bT ′

∑

bT ′⊂bωT

‖û− p̂‖2
bT ′

(1.40)

for û ∈ H(curl, ω̂T ) ∩ PH1(ω̂T )2 such that û · t̂ = 0 on Γ̂T and p̂ ∈ R0(ω̂T ), where Γ̂T is
made of some edges of the boundary of ω̂T . This last ratio will be estimated from below
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using the min-max principle.

Indeed, let us set V = {v̂ ∈ H(curl, ω̂T )∩PH1(ω̂T )2 : v̂· t̂ = 0 on Γ̂T} and H = L2(ω̂T )2.
Define the bilinear form

l(u, v) =
∑

bT ′⊂bωT

∫

bT ′

∇̂u : ∇̂v, ∀(u, v) ∈ V × V

and the inner product (u, v) =
∑

bT ′⊂bωT

∫

bT ′

u · v, for u and v in H .

The corresponding spectral problem consists in finding λ ∈ R and u ∈ V , u 6= 0 solution
of

l(u, v) = λ(u, v), ∀v ∈ V. (1.41)

We now define the self-adjoint operator A associated with this problem (1.88) by

A : D(A) ⊂ H → H
u → Au

such that
∀u ∈ D(A), ∃f ∈ H : l(u, v) = (f , v), ∀v ∈ V and Au = f.

Since V is compactly embedded into H , A has a compact inverse. Therefore this operator
admits a discrete spectrum and, by the min-max principle, its first positive eigenvalue
satisfies :

λ1 = min
v∈V,v6=0

v⊥ker A

l(v, v)

‖v‖2
H

.

Since kerA = R0(ω̂T ), we deduce that

λ1 = min
bu∈V,u6=0

bu⊥R0(bωT )

∑

bT ′⊂bωT

‖∇̂û‖2
bT ′

∑

bT ′⊂bωT

‖û− p̂‖2
bT ′

.

This gives, by choosing in (1.87) p̂ as the projection of û on R0(ω̂T ) with respect to the
inner product (·, ·), the following estimate :

‖û− p̂‖bωT
. λ

−1/2
1




∑

bT ′⊂bωT

‖∇̂û‖2
bT ′




1/2

.

This implies (1.38) by a scaling argument.
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We now prove the third estimate. First as I
CN

u ∈ [P1(T )]2, a standard inverse inequa-
lity [17] and the estimate (1.37) yield

‖∇(I
CN

u)‖T . h−1
T ‖I

CN
u‖T . h−1

T ‖u‖ωT
.

By the triangular inequality we get

‖∇(u− I
CN

u)‖T . ‖∇u‖T + ‖∇(I
CN

u)‖T

. ‖∇u‖T + h−1
T ‖u‖ωT

.

Moreover, as for any p ∈ R0(ωT ), u− I
CN

u = (I − I
CN

)(u− p) on T , we find

‖∇(u− I
CN

u)‖T . ‖∇ [(I − I
CN

)(u− p)] ‖T

. ‖∇(u− p)‖T + h−1
T ‖u− p‖ωT

. ‖∇u‖T + h−1
T ‖u− p‖ωT

.

Since we have shown by the min-max principle that

‖u− p‖ωT
. hT‖∇u‖ωT

the conclusion follows.

Remark 1.3.4. Another interpolation operator of Clément-Nédélec type satisfying the
commuting diagram property and satisfying the estimates (1.37) to (1.84) was introduced
in [48]. Our construction is simpler than in [48], since we do not require the commuting
diagram property.

1.3.3 Error estimates

Residual error estimators

On a element T , we define by RT := f− (curl(χ curluh) + βuh) the exact residual and
denote by rT its approximated residual.
Introduce the jump of uh in the normal direction and the jump of curluh in the tangential
direction by

Je,n :=

{ [[
βuh · ne

]]
e

for interior edges
0 for boundary edges,

Je,t :=

{ [[
χ curluh

]]
e

for interior edges
0 for boundary edges.

In this section, we build a local error estimator of the solenoidal part of the error
inspired from [33], where convection-reaction-diffusion problems are considered.
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Definition 1.3.5. The local and global residual error estimators are defined by

η2
0 :=

∑

T∈Th

η2
T,0,

η2
⊥ :=

∑

T∈Th

η2
T,⊥,

η2 := η2
0 + η2

⊥,

ζ2 :=
∑

T∈Th

ζ2
T ,

η2
T,0 := h2

Tβ‖ divuh‖2
T +

∑

e⊂∂T

heβ
−1‖Je,n‖2

e,

η2
T,⊥ := α2

T‖rT‖2
T +

∑

e⊂∂T

χ− 1
2αT‖Je,t‖2

e,

ζ2
T :=

∑

T ′⊂ωT

α2
T ′‖rT ′ −RT ′‖2

T ′,

where αT := min{β− 1
2 , χ− 1

2hT}.

Proof of the lower error bound : the irrotational part

Theorem 1.3.6. For all elements T, we have the following local error bound :

ηT,0 . ‖e‖β,ωT
. (1.42)

Proof:

⋄ Divergence
By the inverse inequality (1.19) and Green’s formula,

‖ div(βuh)‖2
T ∼

∫

T

bT (div(βuh))
2

∼ −
∫

T

∇(bT div(βuh))βuh

∼ r(∇(bT div(βuh))) by (1.14) and (1.4)

∼ a(e,∇(bT div(βuh))) by (1.13)

∼
∫

T

βe∇(bT div(βuh))

. β1/2‖∇(bT div(βuh))‖T‖β1/2e‖T

. β1/2h−1
T ‖ div(βuh))‖T‖β1/2e‖T by (1.20)

This shows that
‖ div(βuh))‖T . β1/2h−1

T ‖e‖β,T (1.43)
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⋄ Normal jump
Let e be an interior edge ; we recall that Je,n ∈ P

k(e) with k ∈ N depending on the chosen
finite element space. Set

we := Fext(Je,n)be ∈ [H1
0
(ωe)]

2.

An elementwise partial integration gives
∫

e

Je,nwe = −
∫

e

[[
β(u− uh) · ne

]]
e
we

= ±
∑

T⊂ωe

[∫

T

βe∇we −
∫

T

div(βe)we

]

= ±
∑

T⊂ωe

[∫

T

βe∇we +

∫

T

div(βuh)we

]

.
∑

T⊂ωe

(
‖β1/2e‖Tβ

1/2‖∇we‖T + ‖ div(βuh)‖T‖we‖T

)

.
∑

T⊂ωe

(
‖e‖β,Tβ

1/2h
−1/2
T ‖Je,n‖e + ‖ div(βuh)‖Th

1/2
T ‖Je,n‖e

)
by (1.22) and (1.23).

Since (1.21) yields

∫

e

Je,nwe ∼ ‖Je,n‖2
e, we obtain

‖Je,n‖e .
∑

T⊂ωe

(
β1/2h

−1/2
T ‖e‖β,T + h

1/2
T ‖ div(βuh)‖T

)
.

This estimate coupled with (1.91) implies :

‖Je,n‖e .
∑

T⊂ωe

(
β1/2h

−1/2
T ‖e‖β,T

)

As Th is regular, hT ∼ he, we obtain :

‖Je,n‖e . β1/2h−1/2
e ‖e‖β,ωe. (1.44)

The estimates (1.91) and (1.92) lead to the conclusion.

Proof of the lower error bound : the solenoidal part

Theorem 1.3.7. For all elements T, the following local lower error bound holds :

ηT,⊥ . ‖e‖β,χ,ωT
+ ζT (1.45)

Proof:

⋄ Element residual
Let T be an element of the triangulation. Set wT := rT bT ∈ [H1

0
(T )]2.
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By the inverse inequality (1.19), Green’s formula and the fact that bT is zero on the
boundary of T , we write

‖rT‖2
T ∼

∫

T

rTwT

∼
∫

T

RTwT +

∫

T

(rT −RT )wT

∼
∫

T

(f− curl(χ curluh) − βuh)wT +

∫

T

(rT −RT )wT

∼
∫

T

(f− βuh)wT −
∫

T

χ curluh curlwT +

∫

T

(rT −RT )wT

∼ r(wT ) +

∫

T

(rT −RT )wT .

The relation (1.13) implies

‖rT‖2
T ∼ a(e, wT ) +

∫

T

(rT −RT )wT

∼
∫

T

χ curl e curlwT +

∫

T

βewT +

∫

T

(rT −RT )wT

. ‖χ1/2 curl e‖Tχ
1/2‖ curlwT‖T + ‖β1/2e‖Tβ

1/2‖wT‖T + ‖rT −RT‖T‖wT‖T .

The inverse inequalities (1.19) and (1.20) give

‖rT‖2
T . ‖χ1/2 curl e‖Tχ

1/2h−1
T ‖rT‖T + ‖β1/2e‖Tβ

1/2‖rT‖T + ‖rT −RT‖T‖rT‖T

.
[(
‖χ1/2 curl e‖T + ‖β1/2e‖T

)1/2 (
χ1/2h−1

T + β1/2
)

+ ‖rT −RT‖T

]
‖rT‖T .

By the definition of αT , we obtain

‖rT‖T . α−1
T ‖e‖β,χ,T + ‖rT −RT‖T . (1.46)

⋄ Tangential jump
Set we := Fext(Je,t)be,γe ∈ [H1

0
(ωe)]

2 with γe ∈ (0, 1]. For ωe = T1 ∪ T2, be,γe is defined as
follow

be,γe :=

{
be,T1,γ1 on T1

be,T2,γ2 on T2

and

γe :=

{
γ1 on T1

γ2 on T2

where we choose (see [33])

γi :=
1

2
χ1/2h−1

Ti
αTi

=
1

2
min

{
1, β−1/2χ1/2h−1

Ti

}
. (1.47)
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Note that, be,T1,γ1 |e = be,T2,γ2 |e = be|e. It comes from an elementwise partial integration that

‖Je,t‖2
e ∼

∫

e

Je,twe · te

∼ −
∫

e

[[
χ curluh

]]
e
we · te

∼ ±
∑

Ti⊂ωe

[∫

Ti

χ curluh curlwe −
∫

Ti

curl(χ curluh)we

]

. r(we) +
∑

Ti⊂ωe

∫

Ti

RTi
we

. a(e, we) +
∑

Ti⊂ωe

∫

Ti

rTi
we +

∑

Ti⊂ωe

∫

Ti

(rTi
−RTi

)we

.
∑

Ti⊂ωe

[∫

Ti

χ curle curlwe +

∫

Ti

βewe +

∫

Ti

rTi
we +

∫

Ti

(rTi
−RTi

)we

]

.
∑

Ti⊂ωe

[
‖χ1/2 curl e‖Ti

χ1/2‖ curlwe‖Ti
+ ‖β1/2e‖Ti

β1/2‖we‖Ti

+ ‖rTi
‖Ti

‖we‖Ti
+ ‖rTi

−RTi
‖Ti

‖we‖Ti
] .

.
∑

Ti⊂ωe

[
‖e‖β,χ,Ti

(
χ1/2‖ curlwe‖Ti

+ β1/2‖we‖Ti

)

+ (‖rTi
‖Ti

+ ‖rTi
−RTi

‖Ti
) ‖we‖Ti

] .

By the discrete Cauchy-Schwarz inequality and the inverse estimates (1.25),(1.26), we find

‖we‖β,χ,Ti
. γ

1/2
i h

1/2
Ti

(
β1/2 + χ1/2γ−1

i h−1
Ti

)
‖Je,t‖e, (1.48)

and (1.94) and (1.100) lead to

‖Je,t‖e .
∑

Ti⊂ωe

[(
χ1/2h

−1/2
Ti

γ
−1/2
i + β1/2h

1/2
Ti
γ

1/2
i + α−1

Ti
h

1/2
Ti
γ

1/2
i

)1/2

‖e‖β,χ,Ti

+ h
1/2
Ti
γ

1/2
i ‖rTi

−RTi
‖Ti

]
.

Then, by (1.99), we obtain

‖Je,t‖e . χ1/4
∑

Ti⊂ωe

[
α
−1/2
Ti

‖e‖β,χ,Ti
+ α

1/2
Ti

‖rTi
−RTi

‖Ti

]
. (1.49)

Using (1.94), (1.101) and the definition of ηT,⊥, we get :

ηT,⊥ . ‖e‖β,χ,T + αT‖rT −RT‖T

+
∑

e⊂∂T

χ−1/4α
1/2
T

∑

Ti⊂ωe

χ1/4α
−1/2
Ti

(‖e‖β,χ,Ti
+ αTi

‖rTi
−RTi

‖Ti
)

. ‖e‖β,χ,T +
∑

e⊂∂T

∑

Ti⊂ωe

α
1/2
T α

−1/2
Ti

‖e‖β,χ,Ti

+ αT‖rT −RT‖T +
∑

e⊂∂T

∑

Ti⊂ωe

α
1/2
T α

−1/2
Ti

αTi
‖rTi

−RTi
‖Ti
.
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As the triangulation is regular, hT ∼ hTi
, we get αTα

−1
Ti

∼ 1. That leads to the conclusion.

Corollary 1.3.8. For all elements T, the following local lower error bound holds :

ηT,0 + ηT,⊥ . ‖e‖β,χ,ωT
+ ζT (1.50)

Proof of the upper error bound : the irrotational part

Theorem 1.3.9. The β-norm of the irrotational part of the error is globally bounded from
above by :

‖e0‖β . η0. (1.51)

Proof:

Let φ ∈ H1
0
(Ω) be the function introduced in the Helmholtz decomposition such that the

irrotational part of the error e0 = ∇φ. We are interested in ‖e0‖β = ‖e0‖β,χ = ‖∇φ‖β. By
(1.13), we know that

a(e0,∇ψ) = (β∇φ,∇ψ) = r(∇ψ), ∀ψ ∈ H1
0
(Ω).

Let ψh ∈ S(Ω, Th). Then, ∇ψh ∈ Vh,1 ⊂ Vh and the Galerkin orthogonality relation
(1.15) gives

(β∇φ,∇ψ) = r(∇(ψ − ψh)), ∀ψ ∈ H1
0
(Ω), ψh ∈ S(Ω, Th).

As f is divergence free and ψ − ψh belongs to H1
0
(Ω), we obtain, by Green’s formula and

an elementwise integration by parts : ∀ψ ∈ H1
0
(Ω), ψh ∈ S(Ω, Th),

(β∇φ,∇ψ) =
∑

T∈Th

(∫

T

div(βuh)(ψ − ψh) −
∑

e⊂∂T

∫

e

Je,n(ψ − ψh)

)
.

Setting φ = ψ and using Cauchy-Schwarz’s inequality give

(βe0, e0) = (β∇φ,∇φ)

≤
∑

T∈Th

(∫

T

div(βuh)(φ− ψh) −
∑

e⊂∂T

∫

e

Je,n(φ− ψh)

)

≤
∑

T∈Th

[
‖ div(βuh)‖T‖φ− ψh‖T +

∑

e⊂∂T

‖Je,n‖e‖φ− ψh‖e

]
.

We now introduce the notations µT = hTβ
−1/2 and µe = heβ

−1.
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By the discrete Cauchy-Schwarz inequality we obtain :

‖e0‖2
β .

{
∑

T∈Th

(
µ2

T‖ div(βuh)‖2
T +

∑

e⊂∂T

µe‖Je,n‖2
e

)}1/2

·
{
∑

T∈Th

(
µ−2

T ‖φ− ψh‖2
T +

∑

e⊂∂T

µ−1
e ‖φ− ψh‖2

e

)}1/2

. η0

{
∑

T∈Th

(
µ−2

T ‖φ− ψh‖2
T +

∑

e⊂∂T

µ−1
e ‖φ− ψh‖2

e

)}1/2

.

To achieve our estimate (1.103), we choose ψh = I
Cl
φ ∈ S(Ω, Th) and apply (1.35),(1.36)

to obtain {
∑

T∈Th

(
µ−2

T ‖φ− ψh‖2
T +

∑

e⊂∂T

µ−1
e ‖φ− ψh‖2

e

)}1/2

. ‖∇φ‖β, (1.52)

noting that, by the trace inequality (1.18), we have

∑

T∈Th

∑

e⊂∂T

h−1
e ‖φ− ψh‖2

e .
∑

T∈Th

h−1
T ‖φ− ψh‖T

(
h−1

T ‖φ− ψh‖T + ‖∇(φ− ψh)‖T

)

.

(
∑

T∈Th

h−2
T ‖φ− ψh‖2

T

)1/2

·
(
∑

T∈Th

(
h−2

T ‖φ− ψh‖2
T + ‖∇(φ− ψh)‖2

T

)
)1/2

.

Proof of the upper error bound : the solenoidal part

Theorem 1.3.10. The β − χ-norm of the solenoidal part of the error is globally bounded
from above by

‖e⊥‖β,χ . η + ζ.

Proof: As e⊥ ∈ W ⊂ H0(curl,Ω),

‖e⊥‖2
β,χ ≤ a(e⊥, e⊥) = r(e⊥) = r(w) + r(∇ψ), (1.53)

according to the decomposition (1.32) of e⊥. Using the Galerkin orthogonality relation
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(1.15) for any vh ∈ Vh and an elementwise integration by parts, we get

r(w) = r(w− vh)
= (f,w− vh) − a(uh,w− vh)
= (f− βuh,w− vh)

−
∑

T∈Th

(∫

T

curl(χ curluh)(w− vh) −
∑

e⊂∂T

∫

e

χ curluh(w− vh) · te

)

=
∑

T∈Th

(RT ,w− vh) −
∑

e∈Eh

∫

e

Je,t(w− vh) · te.

Cauchy-Schwarz’s inequality leads to

r(w) .
∑

T∈Th

[
αT‖RT‖Tα

−1
T ‖w− vh‖T +

∑

e⊂∂T

χ−1/4α
1/2
T ‖Je,t‖eχ

1/4α
−1/2
T ‖w− vh‖e

]

.

{
∑

T∈Th

[
α2

T‖rT‖2
T + α2

T‖rT −RT‖2
T +

∑

e⊂∂T

χ−1/2αT‖Je,t‖2
e

]}1/2

·
{
∑

T∈Th

[
α−2

T ‖w− vh‖2
T +

∑

e⊂∂T

χ1/2α−1
T ‖w− vh‖2

e

]}1/2

.

Then, by taking vh = I
CN

w ∈ Vh, we can prove that :

∑

T∈Th

[
α−2

T ‖w− vh‖2
T +

∑

e⊂∂T

χ1/2α−1
T ‖w− vh‖2

e

]
. ‖w‖2

β + χβ−1‖∇w‖2
β. (1.54)

Indeed, the definition of αT implies α−1
T = max{β1/2, χ1/2h−1

T }. It follows, by the estimates
(1.37)-(1.38) and the triangular inequality, that

∑

T∈Th

α−2
T ‖w− vh‖2

T =
∑

T∈Th

β1/2≥χ1/2h−1
T

β‖w− vh‖2
T +

∑

T∈Th

β1/2≤χ1/2h−1
T

χh−2
T ‖w− vh‖2

T

.
∑

T∈Th

β1/2≥χ1/2h−1
T

(
‖w‖2

β,T + β‖vh‖2
T

)
+

∑

T∈Th

β1/2≤χ1/2h−1
T

χ‖∇w‖2
ωT

.
∑

T∈Th

β1/2≥χ1/2h−1
T

(
‖w‖2

β,T + ‖w‖2
β,ωT

)
+

∑

T∈Th

β1/2≤χ1/2h−1
T

χβ−1‖∇w‖2
β,ωT

. ‖w‖2
β + χβ−1‖∇w‖2

β. (1.55)

On the other hand, by the trace inequality (1.18) and by the estimates (1.113) and (1.84),
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we find
∑

T∈Th

∑

e⊂∂T

χ1/2α−1
T ‖w− vh‖2

e . χ1/2
∑

T∈Th

[
α−1

T ‖w− vh‖T

·
(
h−1

T ‖w− vh‖T + ‖∇(w− vh)‖T

)]

. χ1/2

(
∑

T∈Th

α−2
T ‖w− vh‖2

T

)1/2

·
(
∑

T∈Th

(
h−2

T ‖w− vh‖2
T + ‖∇(w− vh)‖2

T

)
)

. χ1/2
(
‖w‖2

β + χβ−1‖∇w‖2
β

)1/2

(
∑

T∈Th

‖∇w‖2
ωT

)1/2

. χ1/2
(
‖w‖2

β + χβ−1‖∇w‖2
β

)1/2 ‖∇w‖
. ‖w‖2

β + χβ−1‖∇w‖2
β. (1.56)

The estimates (1.113) and (1.114) show (1.112). Therefore, from the definitions of ηT,⊥ and
ζT and the estimate (1.112), we deduce

r(w) . (η⊥ + ζ)
(
‖w‖2

β + χβ−1‖∇w‖2
β

)1/2
. (1.57)

Using the bounds (1.33) and (1.34) from the Helmholtz decomposition, we get

r(w) . (η⊥ + ζ)‖e⊥‖β,χ. (1.58)

On the other hand the arguments of Theorem 1.3.9 yield

r(∇ψ) . η0‖∇ψ‖β.

Using the decomposition (1.32) and the estimate (1.34), we deduce that

r(∇ψ) . η0‖e⊥‖β,χ. (1.59)

The conclusion follows from the estimates (1.53), (1.58) and (1.59).

Corollary 1.3.11. The error is globally bounded from above by

‖e‖β,χ . η + ζ. (1.60)

1.3.4 Extension to three-dimensional polyhedral domains

All the results of this paper extend to a three-dimensional polyhedral domain Ω which is
bounded and simply connected with a connected boundary Γ. In that domain we consider
the Maxwell system

{
curl(χ curlu) + βu = f in Ω,
u× n = 0 on Γ,

(1.61)
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where f satisfies (1.4) and β and χ are as before.
This problem is then approximated using regular meshes made of tetrahedra and the

finite element space Vh is simply assumed to contain lowest order Nédélec elements.
In this setting all the results from section 1.2.2 remain valid, especially Lemma 2.4.1 (the

Helmholtz decomposition) due to the results from [45, 47]. Moreover in 3D the Clément-
Nédélec interpolant is defined by

I
CN

: L2(Ω)3 → Vh

u →
∑

e∈EhΩ

αe(u)|e|λe

where, as usual EhΩ is the set of interior edges of the mesh, λe is the standard basis function

of lowest order Nédélec elements and we here set αe(u) =
1

|ωe|

∫

ωe

u · te, when ωe is made

of all tetrahedra having e as edge. The regularity of the mesh allows then to show that
Theorem 1.4.9 holds.

As the basic tools of section 1.2.2, the interpolation error estimates from section 1.4.2
and some integrations by parts are the only ingredients that we used for the proof of the
lower and upper error bounds, we can conclude that the estimates (1.102) and (1.110)
hold in 3D, with the same definition for the local estimators, except that Je,n and Je,t are
defined for the faces F of the mesh and for the tangential jump where curluh is replaced
by curluh × nF , see section 4.1 of [45].

1.3.5 Numerical experiments

The following experiments underline and confirm our theoretical predictions. Our examples
consist in solving the Maxwell equation (1.8) on the unit square Ω = (0, 1)2 with different
values of χ and β and different solutions. In all examples uniform meshes and the lowest
order Nédélec finite elements are used.

As first example we consider the exact solution :

u =

(
e−y/

√
εy(1 − y)

e−x/
√

εx(1 − x)

)
,

fix β = 1 and take χ = ε, for different values of ε. Note that for small ε, the gradient of
this solution presents exponential boundary layers of width O(

√
ε) along the lines x = 0

and y = 0.
To begin, we check that the numerical solution uh converges toward the exact solution

for differents values of ε. To this end, we plot the curve ‖u− uh‖β,χ as a function of DoF
in Figure 1.4. There a double logarithmic scale is used such that the slope of the curves
corresponds to the approximation order. As we can see the convergence rate is of order 1
as theoretically expected.
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Now we analyze the upper and lower error bounds. In order to present them in an
appropriate manner, we consider the ratios

qup =
‖u− uh‖β,χ

η + ξ
,

qlow = max
T∈Th

ηT,0 + ηT,⊥
‖u− uh‖β,χ,ωT

+ ζT
,

as a function of DoF. The first ratio qup, the so-called effectivity index, is related to the
global upper error bound and measures the reliability of the estimator. The second ratio
is related to the local lower error bound and measures the efficiency of the estimator.

These ratios are presented in Figure 1.5 and 1.6 for different values of ε. There we see
that qup decreases in function of ε and is bounded by 0.12. Similarly we remark that qlow

increases in function of ε and is bounded by 6.73.
As second example we take the exact solution

u = ∇
(
e−x/

√
εx(1 − x)y(1 − y)

)

fix once more β = 1 and take χ = ε for different values of ε. Here the solution presents an
exponential boundary layer of width O(

√
ε) along the line x = 0.

As before we see from Figure 1.7 that the numerical solution uh converges toward u

with a convergence rate of order 1. For this example, we see in Figure 1.8 that the effectivity
index is bounded by 0.22, while Figure 1.9 indicates that the ratio qlow is bounded by 4 as
soon as a reasonable resolution of the layer is achieved.

For the last test, we consider the exact solution :

u =

(
y(1 − y)

e−x/
√

εx(1 − x)

)

where we fix χ = 1, ε = 0.001 and take different values of β. In this case, we see in Figures
1.10 to 1.12 that the convergence rate is 1, that the effectivity index remains bounded by
0.16, and that qlow is bounded by 5.8.

Note finally that other examples are tested and give rise to ratios qup and qlow that are
uniformly bounded with respect to different parameters β and χ.

1.3.6 Conclusion

We have proposed and rigorously analysed a robust a posteriori error estimator of re-
sidual type for the Maxwell equations in a bounded two (and three) dimensional domain
using conforming finite element spaces of Nédélec type. A new interpolant of Clément/Nédélec
type has been introduced and some interpolation error estimates have been proved. We have
shown that this estimator is reliable and efficient. Some numerical experiments confirm our
theoretical predictions.
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Fig. 1.4 – The error norm ‖u− uh‖β,χ as a function of DoF for example 1

208 197020 393832 590644 787456
0.0922

0.0997

0.1072

0.1147

0.1222

eps=1
eps=0.1
eps=0.01

eps=0.001

DoF

q up

Fig. 1.5 – qup wrt DoF for example 1

1.4 Uniform a posteriori error estimation for the Max-

well equations with discontinuous coefficients

We consider residual based a posteriori error estimators for the heterogeneous Maxwell
equations with discontinuous coefficients in bounded two and three dimensional domains.
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2
10

3
10

4
10

5
10

6
10

−4
10

−3
10

−2
10

−1
10

eps=1
eps=0.1
0eps=.01

eps=0.001

DoF

Error

Fig. 1.7 – The error norm ‖u− uh‖β,χ as a function of DoF for example 2

The continuous problem is approximated using conforming approximated spaces. The main
goal is to express the dependence of the constants in the lower and upper bounds with res-
pect to a chosen norm and to the variation of the coefficients. For that purpose, some new
interpolation operators of Clément/Nédélec type are introduced and some interpolation er-
ror estimates are proved. Some numerical tests are presented which confirm our theoretical
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Fig. 1.9 – qlow wrt DoF for example 2

results.
The schedule of the section is the following one : Section 1.2.1 recalls the discretization

of our problem. In section 1.4.1, we state the adapted Helmholtz decomposition of the error.
Some basic tools for the error estimation analysis are recalled in section 1.2.2. In section
1.4.2 we give some interpolation error estimates for Clément and Nédélec interpolants,
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Fig. 1.10 – The error norm ‖u− uh‖β,χ as a function of DoF for example 3
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introduce a new interpolation operator of Clément-Nédélec type and prove suitable error
estimates. The efficiency and reliability of two different estimators are established in section
1.4.3. The extension of our results to three-dimensional problems is shortly described in
section 1.4.4. Finally section 1.4.5 is devoted to some numerical tests which confirm our
theoretical analysis.
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1.4.1 Helmholtz Decomposition

We first recall a decomposition of the space H0(curl,Ω) of Helmholtz type related
to the weight β (namely for β = 1 the next result is simply the standard Helmholtz
decomposition).

Recall that H0(curl,Ω) was equipped with the inner product

(v,w)β,χ = (βv,w) + (χ curl v, curlw),

its associated norm ‖v‖β,χ being equivalent to the usual norm (‖v‖2 + ‖ curlv‖2)1/2.

Lemma 1.4.1. If Ω is simply connected and its boundary Γ is connected then

H0(curl,Ω) = H0
0 (curl,Ω)

⊥
⊕Wβ, (1.62)

where H0
0 (curl,Ω) and Wβ are closed subspaces of H0(curl,Ω) defined by

H0
0 (curl,Ω) = {v ∈ H0(curl,Ω) : curl v = 0 in Ω}, (1.63)

Wβ = {v ∈ H0(curl,Ω) : div (βv) = 0 in Ω}, (1.64)

and the symbol
⊥
⊕ means that the decomposition is direct and orthogonal with respect to the

inner product (·, ·)β,χ. Furthermore one has

H0
0 (curl,Ω) = ∇H1

0
(Ω). (1.65)
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Proof: Lemma I.2.1 of [26] yield (1.65). It then remains to prove the Helmholtz decompo-
sition (2.23). With the inner product (·, ·)β,χ, the decomposition (2.23) holds with

Wβ = {v ∈ H0(curl,Ω) : (βv,w) + (χ curlv, curlw) = 0, ∀w ∈ H0
0 (curl,Ω)}.

According to (1.65) this is equivalent to

Wβ = {v ∈ H0(curl,Ω) : (βv,∇ψ) = 0, ∀ψ ∈ H1
0
(Ω)}.

By Green’s formula we deduce (2.24).

For our next purposes, we need to decompose any element v from Wβ into a singular
part vS and a regular part vR in the space HN(Ω, β) defined by

HN(Ω, β) = {w ∈ H0(curl,Ω) ∩ [PH1(Ω)]2 : div(βw) ∈ L2(Ω)},

and equipped with the norm ‖ · ‖PH1,β. This decomposition is now well known [5, 21, 22],
and is obtained by looking at Wβ as a (closed) subspace of

XN(Ω, β) = {w ∈ H0(curl,Ω) : div(βw) ∈ L2(Ω)},

equipped with the norm ‖ · ‖XN ,β,χ defined by

‖v‖2
XN ,β,χ =

∫

Ω

(χ| curl v|2 + β−1| div(βv)|2 + β|v|2).

By functional analysis arguments, there exists a positive constant C such that

‖vR‖PH1,β + ‖vS‖XN ,β,χ ≤ C‖v‖XN ,β,χ.

But for our next purposes, we would need to specify the dependence of C with respect
to the coefficients β and χ. Unfortunately this dependence is difficult to establish. We
therefore use a Helmholtz decomposition from [47] obtained for β = 1 :

Lemma 1.4.2. Any v ∈Wβ admits the splitting

v = w + ∇φ0, (1.66)

with w ∈ (H1
0 (Ω))2, φ0 ∈ H1

0
(Ω) with the estimate

‖w‖β + ‖∇φ0‖PH1,β . C1(β, χ)‖v‖β,χ, (1.67)

|w|PH1,β . C2(β, χ)‖v‖β,χ. (1.68)

where

C1(β, χ) = max
i=1,··· ,J

β
1/2
i max

j=1,··· ,J
β
−1/2
j ,

C2(β, χ) = max
i=1,··· ,J

β
1/2
i max

j=1,··· ,J
χ
−1/2
j .
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Proof: According to [47], the splitting (1.66) holds with w ∈ (H1
0 (Ω))2, φ0 ∈ H1

0
(Ω) with

the estimate

‖w‖ + ‖∇φ0‖ . ‖v‖,
|w|1,Ω . ‖ curlv‖.

The requested estimates follow directly from the definition of the norm ‖ · ‖β,χ.

Note that the decomposition (1.66) (and therefore the estimates (1.67) and (1.68)) is
not unique in general, and, in some particular cases, the estimates could be improved. The
two advantages of the presented results are that they do not depend on the singularities
of v ∈Wβ and that the involved constants are explicit. We further see that if β and χ are
constant on the whole Ω, then the constants reduce to C1 = 1 and C2 = βχ−1, which are
the optimal ones.

Corollary 1.4.3. The error e admits the splitting

e = e0 + e⊥,

with e0 = ∇φ where φ ∈ H1
0
(Ω) and e⊥ ∈Wβ which admits the decomposition

e⊥ = w + ∇φ0, (1.69)

with w ∈ (H1
0 (Ω))2, φ0 ∈ H1

0
(Ω) with the estimate

‖w‖β + ‖φ0‖PH1,β . C1(β, χ)‖e⊥‖β,χ, (1.70)

|w|PH1,β . C2(β, χ)‖e⊥‖β,χ. (1.71)

with Ci(β, χ), i = 1, 2 as in Lemma 1.4.2. Furthermore the defect equation is equivalent to
the two above equations :

(β∇φ,∇ψ) = r(∇ψ), ∀ψ ∈ H1
0
(Ω), (1.72)

a(e⊥,w) = r(w), ∀w ∈Wβ . (1.73)

Proof: Direct consequence of the above Lemma recalling that the decomposition (2.23) is
orthogonal with respect to the inner product (·, ·)β,χ.

1.4.2 Interpolation error estimates

Clément interpolation

Let us first modify the standard Clément interpolant as in [11]. With each vertex x, we
associate a number l(x ) in {1, . . . , J} such that :
⋆ x is contained in Ω̄l(x),
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⋆ βl(x) = max{βj, 1 ≤ j ≤ J : x ∈ Ω̄j}.
Then we define the Clément type interpolant as follow :

I
Cl

: H1
0
(Ω) → S(Ω, Th)

φ →
∑

x ∈NΩ

1

|ωx ∩ Ωl(x)|

(∫

ωx∩Ωl(x)

φ

)
ϕx =

∑

x ∈NΩ

I
Cl,x

(φ)ϕx

where S(Ω, Th) is the space of continuous piecewise linear functions on the triangulation
which are zero on the boundary and ϕx is the nodal basis function associated with the
node x, uniquely determined by the condition :

ϕx(y) = δx,y, ∀y ∈ NΩ.

Under the geometric assumptions that at most 3 subdomains Ω̄j share a common point, it
has been shown in [11] the following estimates :
For every function φ ∈ H1

0
(Ω), every element T and every edge e of T ,

‖φ− I
Cl
φ‖L2(T ) . hTβ

− 1
2

T ‖∇φ‖β,∆T
,

‖φ− I
Cl
φ‖L2(e) . h

1
2
e β

− 1
2

e ‖∇φ‖β,∆e,

where βe = max
T⊂ωe

βT . Here, ∆T (resp. ∆e) denotes the union of all elements sharing at least

one vertex with T (resp. e).
In order to remove the above geometric assumptions, we introduce another interpolant

based on a weighted average and defined by :

Inew
Cl

φ =
∑

x∈NΩ

(Mxφ)ϕx, ∀ φ ∈ H1
0
(Ω), (1.74)

where Mxφ =

∑

T⊂ωx

βT
1

|T |

∫

T

φ

∑

T⊂ωx

βT

.

We start with the following lemma :

Lemma 1.4.4. For every function φ ∈ H1
0
(Ω), every node x ∈ NΩ, one has

‖φ−Mxφ‖β,ωx . Cx,Neu(β)hx‖∇φ‖β,ωx (1.75)

where hx = max
T⊂ωx

hT , Cx,Neu(β) is the Poincaré constant corresponding to the converse of

the squareroot of the first positive eigenvalue of the following Neumann problem :

{ − div(β∇φ) = λβφ in ω̂x,
∂φ

∂n
= 0 on ∂ω̂x.
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Proof: Let x be an arbitrary node of the triangulation Th and φ a function in H1
0
(Ω). We

want to estimate the constant c1 in

‖φ−Mxφ‖β,ωx ≤ c1hx‖∇φ‖β,ωx.

This will be done by the min-max principle. This problem is equivalent to bound from
below the ratio ∑

T⊂ωx

βTh
2
T‖∇φ‖2

T

∑

T⊂ωx

βT‖φ−Mxφ‖2
T

.

We denote by λ1 the first eigenvalue of the operator ∆β with Neumann boundary conditions
in ω̂x. Then, by the min-max principle, one has

λ1 = min
bu 6=0,bu⊥β1

∫

bωx

β|∇û|2
∫

bωx

β|û|2
,

where û ⊥β 1 means that
∑

bT⊂bωx

∫

bT
βT û = 0.

If we set φ = φ̂ ◦ Fx, where Fx is the transformation that maps ω̂x onto ωx we have

∑

bT⊂bωx

βT‖∇̂φ̂‖2
bT =

∑

T⊂ωx

βT

∫

T

‖Bt
T∇φ‖2

T |T |−1 dx

.
∑

T⊂ωx

βT‖Bt
T‖2|T |−1‖∇φ‖2

T .

As Th is regular, |T | ∼ h2
T and ‖Bt

T‖2 . h2
T , so :

∑

bT⊂bωx

βT‖∇̂φ̂‖2
bT .

∑

T⊂ωx

βT‖∇φ‖2
T .

Moreover, we remark that the weighted average is preserved by these transformations :

M̂φ̂ =

∑

bT⊂bω

βT

∫

bT
φ̂

∑

bT⊂bω

βT |T̂ |
=

∑

T⊂ωx

βT
|T̂ |
|T |

∫

T

φ

∑

T⊂ωx

βT |T̂ |
= Mxφ. (1.76)

In a similar manner, we have :

∑

T⊂ωx

βT‖φ−Mxφ‖2
T =

∑

bT⊂bωx

βT

∫

bT
|φ̂− M̂φ̂|2bT |T |

.
∑

bT⊂bωx

βTh
2
T‖φ̂− M̂φ̂‖2

bT .
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This means that we are reduced to bound min
bφ∈H1(bωx)

∑

bT⊂bωx

βT‖∇̂φ̂‖2
bT

∑

bT⊂bωx

βT‖φ̂− M̂φ̂‖2
bT

.

Now, setting û = φ̂− M̂φ̂, the condition û ⊥β 1 means :

∑

bT⊂bωx

βT

∫

bT

(
φ̂− M̂φ̂

)
· 1 = 0 ⇔

∑

bT⊂bωx

βT

∫

bT
φ̂ =

∑

bT⊂bωx

βT

∫

bT
M̂φ̂

⇔
∑

bT⊂bωx

βT

∫

bT
φ̂ =




∑

bT⊂bωx

βT |T̂ |



M̂φ̂

⇔ M̂φ̂ =

∑

bT⊂bωx

βT

∫

bT
φ̂

∑

bT⊂bωx

βT |T̂ |
.

Therefore,

min
bφ∈H1(bωx)

∑

bT⊂bωx

βT‖∇̂φ̂‖2
bT

∑

bT⊂bωx

βT‖φ̂− M̂φ̂‖2
bT

= min
bu⊥β1

∑

bT⊂bωx

βT‖∇̂û‖2
bT

∑

bT⊂bωx

βT‖û‖2
bT

.

By the inverse change of variables, we find :

λ1 .

∑

T⊂ωx

βTh
2
T‖∇φ‖2

T

∑

T⊂ωx

βT‖φ−Mφ‖2
T

.

Lemma 1.4.5. For every function φ ∈ H1
0
(Ω), any triangle T ∈ Th and any edge e ∈ EhΩ,

one has

‖φ− Inew
Cl

φ‖β,T . CNeu(β)hT‖∇φ‖β,∆T
, (1.77)

β
1
2
e ‖φ− Inew

Cl
φ‖e . (1 + CNeu(β))h

1
2
e ‖∇φ‖β,∆e, (1.78)

where CNeu(β) = max
x∈NΩ

Cx,Neu(β).

Proof: Let T be a triangle of Th. By the definition of Inew
Cl

and the estimate (1.75), we have

‖φ− Inew
Cl

φ‖β,T .
∑

x∈NT

‖φ−Mxφ‖β,T

.
∑

x∈NT

Cx,Neu(β)hx‖∇φ‖β,ωx

45



where NT denotes the set of vertices of T . The regularity of the triangulation leads to
(1.77).
Now, let e ∈ EhΩ. We set ωe = T1 ∪T2 and can assume that βe = max {βT1 , βT2} = βT1 . We
apply in T1 the standard trace theorem ( [54], Lemma 3.2) :

‖ϕ‖e . h
− 1

2
e ‖ϕ‖T1 + h

1
2
e |ϕ|1,T1, (1.79)

and obtain

β
1
2
e ‖φ− Inew

Cl
φ‖e = β

1
2
T1

∑

x∈NΩ ∩ ē

‖φ−Mxφ‖e

. β
1
2
T1

(
h
− 1

2
e

∑

x∈NΩ ∩ ē

‖φ−Mxφ‖T1 + h
1
2
e ‖∇φ‖T1

)
.

The estimate (1.75) then gives

β
1
2
e ‖φ− Inew

Cl
φ‖e . β

1
2
T1
h
− 1

2
e

∑

x∈NT1

‖φ−Mxφ‖T1 + h
1
2
e ‖∇φ‖β,ωe

. h
− 1

2
e

∑

x∈NT1

hxCx,Neu(β)‖∇φ‖β,ωx + h
1
2
e ‖∇φ‖β,ωe

. h
1
2
e (1 + CNeu(β))‖∇φ‖β,∆e.

Lemma 1.4.6. The interpolants Inew
Cl

and I
Cl

are equivalent, in the sense that

‖φ− I
Cl,x
φ‖β,ωx ∼ ‖φ−Mxφ‖β,ωx, ∀x ∈ NΩ.

Proof: On one hand, for every x in NΩ, we may write

φ− I
Cl,x
φ = φ− I

Cl,x
φ+ Mxφ− I

Cl,x
Mxφ

= (I − I
Cl,x

)(I −Mx)φ,

and therefore

‖φ− I
Cl,x
φ‖β,ωx = ‖(I − I

Cl,x
)(φ−Mxφ)‖β,ωx

. ‖I − I
Cl,x

‖β,ωx‖φ−Mxφ‖β,ωx

.
(
‖I‖β,ωx + ‖I

Cl,x
‖β,ωx

)
‖φ−Mxφ‖β,ωx.

with
‖I‖β,ωx = 1 = max

u∈L2(ωx),‖u‖β,ωx=1
‖u‖β,ωx

and

‖I
Cl
‖β,ωx = max

u∈L2(ωx),‖u‖β,ωx=1
‖I

Cl,x
u‖β,ωx = max

u∈L2(ωx)\{0}

‖I
Cl,x
u‖β,ωx

‖u‖β,ωx

.
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By the definition of I
Cl

, we have :

‖I
Cl,x
φ‖β,ωx =

(
∑

T⊂ωx

βT‖ICl,x
φ‖2

T

) 1
2

= |I
Cl,x
φ|
(
∑

T⊂ωx

βT |T |
)1

2

.

As, by Cauchy-Schwarz’s inequality,

|I
Cl,x
φ| =

∣∣∣∣∣
1

|ωx ∩ Ωl(x)|

(∫

ωx∩Ωl(x)

φ

)∣∣∣∣∣ ≤
|ωx ∩ Ωl(x)|

1
2

|ωx ∩ Ωl(x)|
‖φ‖L2(ωx∩Ωl(x))

we obtain that

‖I
Cl,x
φ‖β,ωx ≤ |ωx ∩ Ωl(x)|−

1
2

(
∑

T⊂ωx

βT |T |
)1

2




∑

T⊂ωx∩Ωl(x)

βTβ
−1
T ‖φ‖2

T





1
2

. h−1
x

(
∑

T⊂ωx

βTh
2
x

) 1
2

β
− 1

2

l(x)




∑

T⊂ωx∩Ωl(x)

βT‖φ‖2
T





1
2

. ‖φ‖β,ωx.

Hence ‖I
Cl,x

‖β,ωx . 1 that leads to ‖φ− I
Cl,x
φ‖β,ωx . ‖φ−Mxφ‖β,ωx.

On the other hand, for x in NΩ,

φ−Mxφ = φ−Mxφ+ I
Cl,x
φ−MxICl,x

φ
= (I −Mx)(I − I

Cl,x
)φ,

and then
‖φ−Mxφ‖β,ωx . ‖I −Mx‖β,ωx‖φ− I

Cl,x
φ‖β,ωx.

Since

‖Mxφ‖β,ωx =

(
∑

T⊂ωx

βT‖Mxφ‖2
T

) 1
2

= |Mxφ|
(
∑

T⊂ωx

βT |T |
)1

2

,

and

|Mxφ| ≤

∑

T⊂ωx

βT
1

|T | |T |
1
2‖φ‖T

∑

T⊂ωx

βT

≤

0
B@
∑

T⊂ωx

βT
1

|T |

1
CA

1
2

0
B@
∑

T⊂ωx

βT‖φ‖2
T

1
CA

1
2

∑

T⊂ωx

βT

≤

0
B@
∑

T⊂ωx

βT
1

|T |

1
CA

1
2

∑

T⊂ωx

βT

‖φ‖β,ωx,
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we obtain

‖Mxφ‖β,ωx .

(
∑

T⊂ωx

βT
1

|T |

) 1
2

∑

T⊂ωx

βT

(
∑

T⊂ωx

βT |T |
)1

2

‖φ‖β,ωx.

This implies that
‖Mxφ‖β,ωx . ‖φ‖β,ωx,

hence
‖Mx‖β,ωx . 1.

Therefore we conclude that ‖φ−Mxφ‖β,ωx . ‖φ− I
Cl,x
φ‖β,ωx.

Remark 1.4.7. Lemma 1.4.6 and Lemma 2.8 from [11] imply that under the above men-
tioned geometric assumptions, the constant CNeu(β) . 1. Note further that Lemma 1.4.6
shows that the use of I

Cl
or Inew

Cl
is equivalent.

Nédélec interpolation

Let T ∈ Th be a triangle and EhT the set of its edges. For e ∈ EhΩ, we fix te one of
the unit tangential vectors along the edge e. For T ∈ Th, we define the set of linear forms
{le, e ∈ EhT} by

le : L1(e) → R

u →
∫

e

u · te ds,

and consider the (basis) functions λe ∈ ND1 satisfying the condition (see [37])

∀e ∈ EhT ,

∫

e′
λe · te′ = δe,e′.

We further introduce the local interpolation operator I
Ned |T (u) ∈ ND1 defined, for u satis-

fying u|e ∈ (L1(e))
2
, by the conditions

le

(
I
Ned |T (u)

)
= le(u), ∀e ∈ EhT .

This means that

I
Ned |T (u) =

∑

e∈EhT

(∫

e

u · te ds

)
λe.

The global interpolation operator I
Ned

is then given by (I
Ned
u)|T = I

Ned |T (u|T ) ∈ ND1, ∀T ∈
Th as

I
Ned

: [PH1(Ω)]2
⋂
H0(curl,Ω) → Vh

u →
∑

e∈EhΩ

(∫

e

u · te ds

)
λe.
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Lemma 1.4.8. Let T be an element and e an edge of the triangulation. For every function
w ∈ [PH1(Ω)]2

⋂
H0(curl,Ω), we have :

‖w− I
Ned

w‖T . hTβ
− 1

2
T ‖∇Pw‖β,T (1.80)

‖w− I
Ned

w‖e . h
1
2
e β

− 1
2

e ‖∇Pw‖β,ωe (1.81)

Proof: We consider an element T ∈ Th. As I
Ned |T depends only on the triangle T ,

‖w− I
Ned

w‖T = ‖w− I
Ned |Tw|T‖T

. diam(T )‖∇w|T‖T ,

by a Bramble-Hilbert argument. The estimate (1.80) directly follows as diam(T ) ∼ hT .
For an edge e, we apply the trace estimate (1.79) with T adjacent to e such that βT = βe

and find

‖w− I
Ned

w‖e . h
− 1

2
e ‖w− I

Ned
w‖T + h

1
2
e ‖∇(w− I

Ned
w)‖T .

By (1.80) applied to T , the regularity of the triangulation, the triangular inequality and
the trivial inequality

‖∇w‖2
T ≤ β−1

T ‖∇Pw‖2
β,ωe

,

we deduce that :

‖w− I
Ned

w‖e . h
1
2
e β

− 1
2

e ‖∇Pw‖β,ωe + h
1
2
e ‖∇(I

Ned
w)‖T .

Moreover as I
Ned |Tw ∈ ND1, we know (see [37]) that

‖∇(I
Ned

w)‖T =

√
2

2
‖ curl(I

Ned
w)‖T

. ‖ curlw‖T

. ‖∇w‖T

that leads to the conclusion.

A Clément-Nédélec interpolant

Let us define a Clément-Nédélec interpolant by :

Iβ
CN

: L2(Ω) → Vh

u →
∑

e∈EhΩ

Θe(u)λ̃e

where Θe(u) =
1

|Te|

∫

Te

u · te, for Te ∈ Th such that βTe = βe and λ̃e = λe|e|.
This new interpolant is well-defined, is stable relatively to the β-norm and the β-H1-

seminorm and satisfies standard interpolant error estimates, i.e. we have the following
estimates :
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Theorem 1.4.9. For every function u ∈ [PH1(Ω)]
2 ∩ H(curl,Ω), any T ∈ Th and any

e ∈ EhΩ, we have

‖Iβ
CN
u‖β,T . ‖u‖β,ωT

, (1.82)

‖u− Iβ
CN
u‖β,T . C⋆

Neu(β)hT‖∇u‖β,ωT
, (1.83)

‖∇(u− Iβ
CN
u)‖β,T . ‖∇u‖β,ωT

, (1.84)

β1/2
e ‖u− Iβ

CN
u‖e . h1/2

e (C⋆
Neu(β) + 1)‖∇u‖β,∆e, (1.85)

where C⋆
Neu(β) is the converse of the squareroot of the first positive eigenvalue of the follo-

wing Neumann-type problem :






−∆u = λu in T̂ , ∀T̂ ⊂ ω̂T ,[[
uT

]]
e

= 0 on ê ⊂ int ω̂T ,∑

bT⊂bωT :be⊂∂ bT

β bT
∂uT

∂n
= 0 on ê ⊂ ω̂T ,

∂uN

∂n
= 0 on ê ⊂ ω̂T ,

(1.86)

where uT and uN denote respectively the tangential and normal components of u.

Proof: We first define

R0(ωT ) =
{
c ∈ H(curl, ωT ) : c|T ′ ∈ R

2, ∀T ′ ⊂ ωT

}

and prove that Iβ
CN
u = u on T if u ∈ R0(ωT ). Indeed, for u ∈ R0(ωT ) and e ⊂ T , we have

Θe(u) =
1

|Te|

∫

Te

c · te = c · te =
1

|e|

∫

e

c · te.

Then, the definition of I
Ned

implies that Iβ
CN |Tu = I

Ned |Tu = u.

Let us now show (1.82) : By Cauchy-Schwarz’s inequality, we may write

|Θe(u)| ≤ 1

|Te|
‖u‖Te‖te‖Te

Since
‖te‖Te ≤ ‖te‖∞|Te|1/2

and ‖te‖∞ = 1, we get

|Θe(u)| ≤
1

|Te|1/2
‖u‖Te.

By the definition of Iβ
CN

, we obtain

β
1/2
T ′ ‖Iβ

CN
u‖T ′ ≤

∑

e⊂∂T ′

1

|Te|1/2
β

1/2
T ′ ‖u‖Te‖λ̃e‖T ′.
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Moreover, if λ̂ denotes a basis function on the reference element, we have

‖λ̃e‖T ′ = |e|‖λe‖T ′ = |e|‖B−t
T ′ λ̂‖T ′ . |e|h−1

T ′ ‖λ̂‖cT ′hT ′ . |e|

where BT ′ is the 2 × 2 matrix corresponding to the affine transformation FT ′ that maps
T̂ ′ ⊂ ω̂T onto T ′.

As |e| = he, |Te| ∼ h2
e and βT ′ ≤ βe , we conclude that

β
1/2
T ′ ‖Iβ

CN
u‖β,T ′ .

∑

e⊂∂T ′

‖u‖β,Te

which implies (1.82).
Now, for any p ∈ R0(ωT ), u− Iβ

CN
u = (I − Iβ

CN
)(u− p) and therefore by (1.82) :

β
1/2
T ‖u− Iβ

CN
u‖T = β

1/2
T ‖(I − Iβ

CN
)(u− p)‖T

. ‖u− p‖β,ωT
.

For this estimate, we see that (1.83) holds if we can bound from below the ratio

h2
T

∑

T ′⊂ωT

βT ′‖∇u‖2
T ′

∑

T ′⊂ωT

βT ′‖u− p‖2
T ′

for u ∈ H(curl, ωT ) ∩ [PH1(ωT )]
2

and p ∈ R0(ωT ), which is equivalent, by applying the
affine transformation FT mapping the patch ω̂T to ωT (see section 1.2.2) and making the
change of unknown û|bT ′ = Bt

T ′ u|T ′, ∀T ′ ⊂ ωT , to bound the ratio

∑

bT ′⊂bωT

βT ′‖∇̂û‖2
bT ′

∑

bT ′⊂bωT

βT ′‖û− p̂‖2
bT ′

(1.87)

for û ∈ H(curl, ω̂T ) ∩ [PH1(ω̂T )]
2

and p̂ ∈ R0(ω̂T ). This last ratio will be estimated from
below using the min-max principle.

Indeed, we set V = H(curl, ω̂T ) ∩ [PH1(ω̂T )]
2
, H = L2(ω̂T ), define the bilinear form

l(u, v) =
∑

bT ′⊂bωT

βT ′

∫

bT ′

∇̂u : ∇̂v, ∀(u, v) ∈ V × V

and introduce the inner product (u, v)β =
∑

bT ′⊂bωT

βT ′

∫

bT ′

u · v, for u and v in H .
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The corresponding spectral problem consists in finding λ ∈ R and u ∈ V , u 6= 0 solution
of

l(u, v) = λ(u, v)β, ∀v ∈ V. (1.88)

Taking first v in D(T̂ ′) for T̂ ′ ⊂ ω̂T and applying Green’s formula give that u satifies, in
the distribution sense,

−∆u = λu on T̂ ′.

Moreover, as u ∈ H(curl, ω̂T ), [[
uT

]]
e
= 0, ∀ê ⊂ ω̂T .

Now, for any v ∈ V , if we use Green’s formula on each T̂ ′, we obtain that

∑

bT ′⊂bωT

β bT ′

∫

∂ bT ′

∂u

∂n
· v =

∑

bT ′⊂bωT

β bT ′

∫

∂ bT ′

(
∂uN |bT ′

∂n
vN |bT ′ +

∂uT |bT ′

∂n
vT | bT ′

)
= 0, ∀v ∈ V. (1.89)

This implies the third and fourth conditions of (1.86). Indeed, let ê be an arbitrary edge
of the patch ω̂T and fix the unit normal and tangential vectors nbe and tbe along this edge.
We consider a function ϕ ∈ D(ωbe) and first prove the third condition :
Set v = ϕ tbe on ω̂T . Then, vN = 0 on every edge ê′ ⊂ ω̂T and as v ∈ H(curl, ω̂T ), vT is
continuous on the interfaces. That’s why (1.89) becomes :

∑

bT⊂bωT

∑

be⊂ bT

β bT

∫

be

∂uT

∂n
ϕ = 0

⇔
〈

∑

bT⊂bωT : be⊂bT

β bT
∂uT

∂n
, ϕ

〉
= 0.

That leads to the conclusion.

Now, we set v = ψ nbe on ω̂T where ψ =

{
0 on T1 ⊂ ωbe
ϕ on T2 ⊂ ωbe

. This time, vT = 0 and (1.89) :

∑

be⊂bωT

∫

be

∂uN

∂n
ψ = 0

⇔
〈
∑

be⊂T2∩ωbe

∂uN

∂n
, ϕ

〉
= 0

⇔ ∂uN

∂n
= 0 on e′ = T2 ∩ ωbe.

Exchanging the roles of the triangles T1 and T2 and applying the same proof to all edges
ê ⊂ ω̂T give the fourth condition.

We now define the self-adjoint operator A associated with the problem (1.88) by

A : D(A) ⊂ H → H
u → Au,
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where u ∈ D(A) iff ∃f ∈ H : l(u, v) = (f, v), ∀v ∈ V and then set Au = f.
Since V is compactly embedded into H , A has a compact inverse. Therefore this operator
admits a discrete spectrum and, by the min-max principle, its first eigenvalue satisfies :

λ1 = min
v∈V,v 6=0

v⊥βkerA

l(v, v)

‖v‖2
H

.

Since kerA = R0(ω̂T ), we deduce that

λ1 = min
bu∈V, bu⊥βR0(bωT )

∑

bT ′⊂bωT

βT ′‖∇̂û‖2
bT ′

∑

bT ′⊂bωT

βT ′‖û− p̂‖2
bT ′

.

This gives, by choosing in (1.87) p̂ as the projection of û on R0(ω̂T ) with respect to the
inner product (·, ·)β, the following estimate :

‖û− p̂‖β,bωT
. λ−1/2‖∇̂û‖β,bωT

.

This implies (1.83) by the above mentioned scaling argument.

We now prove the third estimate. First as Iβ
CN
u ∈ [P1(T )]2, a standard inverse inequa-

lity [17] and the estimate (1.82) yield

β
1/2
T ‖∇(Iβ

CN
u)‖T . h−1

T β
1/2
T ‖Iβ

CN
u‖T . h−1

T ‖u‖β,ωT
.

By the triangular inequality we get

β
1/2
T ‖∇(u− Iβ

CN
u)‖T . β

1/2
T ‖∇u‖T + β

1/2
T ‖∇(Iβ

CN
u)‖T

. ‖∇u‖β,T + h−1
T ‖u‖β,ωT

.

Moreover, as for any p ∈ R0(ωT ), u− Iβ
CN
u = (I − Iβ

CN
)(u− p), we find

β
1/2
T ‖∇(u− Iβ

CN
u)‖T . β

1/2
T ‖∇

[
(I − Iβ

CN
)(u− p)

]
‖T

. β
1/2
T ‖∇(u− p)‖T + h−1

T ‖u− p‖β,ωT

. ‖∇u‖β,T + h−1
T ‖u− p‖β,ωT

.

Since we have shown by the min-max principle that

‖u− p‖β,ωT
. hT‖∇u‖β,ωT

the conclusion follows.
The last estimate (1.85) is a direct consequence of the trace estimate (1.79) (applied in Te)
and the estimates (1.83) and (1.84).
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1.4.3 Error estimates

Residual error estimators

On an element T , let RT := f−(curl(χ curluh)+βuh) be the exact residual, and denote
by rT its approximated residual.
Introduce the jump of uh in the normal direction and the jump of curluh in the tangential
direction by

Je,n :=

{ [[
βuh · ne

]]
e

for interior edges
0 for boundary edges,

Je,t :=

{ [[
χ curluh

]]
e

for interior edges
0 for boundary edges.

In the following study, we will build two different local error estimators of the solenoidal
part of the error. The first one is inspired from [11] and the second one has been adapted
from [33, 53], where convection-reaction-diffusion problems are considered. Note that the
second estimator reduces to the one analyzed in [19] in the case χ and β constant.

Definition 1.4.10. The local and global residual error estimators are defined by

η2
0 :=

∑

T∈Th

η2
T,0,

η2
⊥ :=

∑

T∈Th

η2
T,⊥,

η2 := η2
0 + η2

⊥,

ζ2 :=
∑

T∈Th

ζ2
T ,

η2
T,0 := h2

Tβ
−1
T ‖ div(βuh)‖2

T +
∑

e⊂∂T

heβ
−1
e ‖Je,n‖2

e,

•1rst method : η2
T,⊥ := h2

Tβ
−1
T ‖rT‖2

T +
∑

e⊂∂T

heβ
−1
e ‖Je,t‖2

e,

ζ2
T := h2

Tβ
−1
T ‖rT −RT‖2

T ,

•2nd method : η2
T,⊥ := α2

T‖rT‖2
T +

∑

e⊂∂T

χ−1/2
e αe‖Je,t‖2

e,

ζ2
T :=

∑

T ′⊂ωT

α2
T ′‖rT ′ −RT ′‖2

T ′,

where βe := max
∂T1∩∂T2={e}

{βT1 , βT2}, χe := max
∂T1∩∂T2={e}

{χT1 , χT2} and, for any S ∈ Th ∪ Eh,

αS := min{β−1/2
S , χ

−1/2
S hS}.

Proof of the lower error bound : the irrotational part

Theorem 1.4.11. For all elements T, we have the following local error bound :

ηT,0 . ‖e‖β,ωT
. (1.90)
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Proof:

⋄ Divergence
By the inverse inequality (1.19) and Green’s formula,

‖ div(βuh)‖2
T ∼

∫

T

bT (div(βuh))
2

∼ −
∫

T

∇(bT div(βuh))βuh

∼ r(∇(bT div(βuh))) by (1.14) and (1.4)

∼ a(e,∇(bT div(βuh)))

∼
∫

T

βe∇(bT div(βuh))

. β
1
2
T ‖∇(bT div(βuh))‖T‖β

1
2e‖T

. β
1
2
T h

−1
T ‖ div(βuh))‖T‖β

1
2e‖T by (1.20).

This shows that
‖ div(βuh))‖T . β

1
2
T h

−1
T ‖e‖β,T . (1.91)

⋄ Normal jump
Let e be an interior edge ; we recall that Je,n ∈ P

k(e) with k ∈ N depending on the chosen
finite element space. Set

we := Fext(Je,n)be ∈ [H1
0
(ωe)]

2.

An elementwise partial integration gives

∫

e

Je,nwe = −
∫

e

[[
β(u− uh) · ne

]]
e
we

= ±
∑

T⊂ωe

[∫

T

βe∇we −
∫

T

div(βe)we

]

= ±
∑

T⊂ωe

[∫

T

βe∇we +

∫

T

div(βuh)we

]

.
∑

T⊂ωe

(
‖β 1

2e‖Tβ
1
2
T ‖∇we‖T + ‖ div(βuh)‖T‖we‖T

)

.
∑

T⊂ωe

(
‖e‖β,Tβ

1
2
T h

− 1
2

T ‖Je,n‖e + ‖ div(βuh)‖Th
1
2
T‖Je,n‖e

)

by (1.22) and (1.23). Since (1.21) yields

∫

e

Je,nwe ∼ ‖Je,n‖2
e, we obtain

‖Je,n‖e .
∑

T⊂ωe

(
β

1
2
T h

− 1
2

T ‖e‖β,T + h
1
2
T‖ div(βuh)‖T

)
.
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This estimate coupled with (1.91) implies :

‖Je,n‖e .
∑

T⊂ωe

(
β

1
2
T h

− 1
2

T ‖e‖β,T

)
.

As Th is regular, hT ∼ he, and βe = max{βT ′|e ⊂ ∂T ′} ≥ βT for T ⊂ ωe, we obtain :

‖Je,n‖e . β
1
2
e h

− 1
2

e ‖e‖β,ωe. (1.92)

The estimates (1.91) and (1.92) lead to the conclusion.

Proof of the lower error bound : the solenoidal part - first method

Theorem 1.4.12. For all elements T, the following local lower error bound holds :

ηT,⊥ .
∑

T ′⊂ωT

(
χ

1
2

T ′β
− 1

2

T ′ + hT ′

)
‖e‖β,χ,T ′ +

∑

T ′⊂ωT

ζT ′µ. (1.93)

Proof:

⋄ Element residual
Let T be an element of the triangulation. Set wT := rT bT ∈ [H1

0
(T )]2.

By the inverse inequality (1.19), Green’s formula and the fact that bT is zero on the
boundary of T , we write

‖rT‖2
T ∼

∫

T

rTwT

∼
∫

T

RTwT +

∫

T

(rT −RT )wT

∼
∫

T

(f− curl(χ curluh) − βuh)wT +

∫

T

(rT −RT )wT

∼
∫

T

(f− βuh)wT −
∫

T

χ curluh curlwT +

∫

T

(rT −RT )wT

∼ r(wT ) +

∫

T

(rT −RT )wT .

The relation (1.13) implies

‖rT‖2
T ∼ a(e, wT ) +

∫

T

(rT −RT )wT

∼
∫

T

χ curl e curlwT +

∫

T

βewT +

∫

T

(rT −RT )wT

. ‖χ 1
2 curl e‖Tχ

1
2
T‖ curlwT‖T + ‖β 1

2e‖Tβ
1
2
T ‖wT‖T + ‖rT −RT‖T‖wT‖T .

The inverse inequalities (1.19) and (1.20) give

‖rT‖2
T . ‖χ 1

2 curl e‖Tχ
1
2
Th

−1
T ‖rT‖T + ‖β 1

2e‖Tβ
1
2
T ‖rT‖T + ‖rT −RT‖T‖rT‖T

.
(
‖χ 1

2 curl e‖T + ‖β 1
2e‖T

) 1
2 (
χTh

−2
T + βT

) 1
2 ‖rT‖T + ‖rT −RT‖T‖rT‖T .
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Then,

‖rT‖T .
(
χTh

−2
T + βT

) 1
2 ‖e‖β,χ,T + ‖rT −RT‖T . (1.94)

⋄ Tangential jump
Set we := Fext(Je,t)be ∈ [H1

0
(ωe)]

2. It comes from the inverse inequality (1.21) and an
elementwise partial integration that

‖Je,t‖2
e ∼

∫

e

Je,twe · te

∼ −
∫

e

[[
χ curluh

]]
e
we · te

∼ ±
∑

T⊂ωe

[∫

T

χ curluh curlwe −
∫

T

curl(χ curluh)we

]

. r(we) +
∑

T⊂ωe

∫

T

RTwe

. a(e, we) +
∑

T⊂ωe

∫

T

rTwe +
∑

T⊂ωe

∫

T

(rT −RT )we

.
∑

T⊂ωe

[∫

T

χ curl e curlwe +

∫

T

βewe +

∫

T

rTwe +

∫

T

(rT −RT )we

]

.
∑

T⊂ωe

[
‖χ 1

2 curl e‖Tχ
1
2
T‖ curlwe‖T + ‖β 1

2e‖Tβ
1
2
T ‖we‖T

+ ‖rT‖T‖we‖T + ‖rT −RT‖T‖we‖T ] .

By the discrete Cauchy-Schwarz inequality and the inverse estimates (1.22),(1.23), we find

‖Je,t‖e .
∑

T⊂ωe

h
1
2
T

[(
χTh

−2
T + βT

) 1
2 ‖e‖β,χ,T + ‖rT −RT‖T

]
. (1.95)

Using (1.94), (1.101) and the definition of ηT,⊥, we get :

ηT,⊥ .
(
χ

1
2
Tβ

− 1
2

T + hT

)
‖e‖β,χ,T + hTβ

− 1
2

T ‖rT −RT‖T

+
∑

e⊂∂T

h
1
2
e β

− 1
2

e

∑

T ′⊂ωe

[
h

1
2

T ′

(
χ

1
2

T ′h
−1
T ′ + β

1
2

T ′

)
‖e‖β,χ,T ′ + h

1
2

T ′‖rT ′ −RT ′‖T ′

]

.
∑

e⊂∂T

h
1
2
e β

− 1
2

e

∑

T ′⊂ωe

[
h

1
2
T ′

(
χ

1
2
T ′h

−1
T ′ + β

1
2
T ′

)
‖e‖β,χ,T ′ + h

1
2
T ′‖rT ′ −RT ′‖T ′

]

.
∑

e⊂∂T

∑

T ′⊂ωe

[(
χ

1
2
T ′β

− 1
2

T ′ + hT ′

)
‖e‖β,χ,T ′ + hT ′β

− 1
2

T ′ ‖rT ′ −RT ′‖T ′

]

.
∑

T ′⊂ωT

[(
χ

1
2
T ′β

− 1
2

T ′ + hT ′

)
‖e‖β,χ,T ′ + hT ′β

− 1
2

T ′ ‖rT ′ −RT ′‖T ′

]
.

Corollary 1.4.13. For all elements T, the following local lower error bound holds :

ηT,0 + ηT,⊥ .
∑

T ′⊂ωT

(
χ

1
2

T ′β
− 1

2

T ′ + 1
)
‖e‖β,χ,T ′ +

∑

T ′⊂ωT

ζT ′. (1.96)
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Proof of the lower error bound : the solenoidal part - second method

Theorem 1.4.14. For all elements T, the following local lower error bound holds :

ηT,⊥ . ‖e‖β,χ,T +
∑

T ′⊂ωT

ζT ′. (1.97)

Remark 1.4.15. This new estimator has been built in order to have a coefficient in front
of ‖e‖β,χ equivalent to 1.

Proof:

⋄ Element residual
Let T be an element of the triangulation and set wT := rT bT ∈ [H1

0
(T )]2.

By the definition of αT , it immediately follows from (1.94)

‖rT‖T . α−1
T ‖e‖β,χ,T + ‖rT −RT‖T . (1.98)

⋄ Tangential jump
Set we := Fext(Je,t)be,γe ∈ [H1

0
(ωe)]

2 with γe ∈ (0, 1]. For ωe = T1 ∪ T2, be,γe is defined as
follow

be,γe :=

{
be,T1,γ1 on T1

be,T2,γ2 on T2

and

γe :=

{
γ1 on T1

γ2 on T2

where we choose (see [33])

γi :=
1

2
χ

1/2
Ti
h−1

Ti
αTi

=
1

2
min

{
1, β

−1/2
Ti

χ
1/2
Ti
h−1

Ti

}
. (1.99)

Note that, be,T1,γ1 |e = be,T2,γ2 |e = be|e. Then, using the argument of section 1.4.3, we have

‖Je,t‖2
e .

∑

i=1,2

[
‖e‖β,χ,Ti

(
χ

1/2
Ti

‖ curlwe‖Ti
+ β

1/2
Ti

‖we‖Ti

)

+ (‖rTi
‖Ti

+ ‖rTi
−RTi

‖Ti
) ‖we‖Ti

] .

By the discrete Cauchy-Schwarz inequality and the inverse estimates (1.25),(1.26), we find

‖we‖β,χ,Ti
. γ

1/2
i h

1/2
Ti

(
β

1/2
Ti

+ χ
1/2
Ti
γ−1

i h−1
Ti

)
‖Je,t‖e, (1.100)

and (1.94) and (1.100) lead to

‖Je,t‖e .
∑

i=1,2

[(
χ

1/2
Ti
h
−1/2
Ti

γ
−1/2
i + β

1/2
Ti
h

1/2
Ti
γ

1/2
i + α−1

Ti
h

1/2
Ti
γ

1/2
i

)1/2

‖e‖β,χ,Ti

+ h
1/2
Ti
γ

1/2
i ‖rTi

−RTi
‖Ti

]
.
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Then, by (1.99), we obtain

‖Je,t‖e .
∑

i=1,2

χ
1/4
Ti

[
α
−1/2
Ti

‖e‖β,χ,Ti
+ α

1/2
Ti

‖rTi
−RTi

‖Ti

]
. (1.101)

Using (1.94), (1.101) and the definition of ηT,⊥, we get :

ηT,⊥ . ‖e‖β,χ,T + αT‖rT −RT‖T

+
∑

e⊂∂T

χ−1/4
e α1/2

e

∑

i=1,2

χ
1/4
Ti
α
−1/2
Ti

(‖e‖β,χ,Ti
+ αTi

‖rTi
−RTi

‖Ti
)

. ‖e‖β,χ,T +
∑

e⊂∂T

∑

i=1,2

χ
−1/4
Ti

α
1/2
Ti
χ

1/4
Ti
α
−1/2
Ti

‖e‖β,χ,Ti

+ αT‖rT −RT‖T +
∑

e⊂∂T

∑

i=1,2

χ
−1/4
Ti

α
1/2
Ti
χ

1/4
Ti
α

1/2
Ti

‖rTi
−RTi

‖Ti
.

as χe ≥ χTi
and αe ≤ αTi

. That leads to the conclusion.

Corollary 1.4.16. For all elements T, the following local lower error bound holds :

ηT,0 + ηT,⊥ . ‖e‖β,χ,ωT
+ ζT . (1.102)

Proof of the upper error bound : the irrotational part

Theorem 1.4.17. The β-norm of the irrotational part of the error is globally bounded
from above by η0, i.e.,

‖e0‖β . (1 + CNeu(β))η0. (1.103)

Proof:

Let φ ∈ H1
0
(Ω) be the function introduced in the Helmholtz decomposition of the error e

such that the irrotational part of the error e0 = ∇φ (cf. Corollary 1.4.3). We are interested
in ‖e0‖β = ‖e0‖β,χ = ‖∇φ‖β. By (1.72), we know that

a(e0,∇ψ) = (β∇φ,∇ψ) = r(∇ψ), ∀ψ ∈ H1
0
(Ω).

Let ψh ∈ S(Ω, Th). Then, ∇ψh ∈ Vh,1 ⊂ Vh and the Galerkin orthogonality relation
(1.15) gives

(β∇φ,∇ψ) = r(∇(ψ − ψh)), ∀ψ ∈ H1
0
(Ω), ψh ∈ S(Ω, Th).

As f is divergence free and ψ − ψh belongs to H1
0
(Ω), we obtain, by Green’s formula and

an elementwise integration by parts : ∀ψ ∈ H1
0
(Ω), ψh ∈ S(Ω, Th),

(β∇φ,∇ψ) =
∑

T∈Th

(∫

T

div(βuh)(ψ − ψh) −
∑

e⊂∂T

∫

e

Je,n(ψ − ψh)

)
.
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Setting φ = ψ and using Cauchy-Schwarz’s inequality give

(βe0, e0) = (β∇φ,∇φ)

≤
∑

T∈Th

(∫

T

div(βuh)(φ− ψh) −
∑

e⊂∂T

∫

e

Je,n(φ− ψh)

)

≤
∑

T∈Th

[
hTβ

− 1
2

T ‖ div(βuh)‖Th
−1
T β

1
2
T ‖φ− ψh‖T

+
∑

e⊂∂T

hTh
− 1

2
e β

− 1
2

e ‖Je,n‖eh
−1
T h

1
2
e β

1
2
e ‖φ− ψh‖e

]
.

We now introduce the notations µT = hTβ
− 1

2
T and µe = heβ

−1
e .

By the discrete Cauchy-Schwarz inequality we obtain :

‖e0‖2
β .

{
∑

T∈Th

(
µ2

T‖ div(βuh)‖2
T +

∑

e⊂∂T

µe‖Je,n‖2
e

)} 1
2

·
{
∑

T∈Th

(
µ−2

T ‖φ− ψh‖2
T +

∑

e⊂∂T

µ−1
e ‖φ− ψh‖2

e

)} 1
2

. η0

{
∑

T∈Th

(
µ−2

T ‖φ− ψh‖2
T +

∑

e⊂∂T

µ−1
e ‖φ− ψh‖2

e

)} 1
2

.

To achieve our estimate (1.103), we choose ψh = Inew
Cl

φ ∈ S(Ω, Th) and apply (1.75),
(1.78) to obtain

{
∑

T∈Th

(
µ−2

T ‖φ− ψh‖2
T +

∑

e⊂∂T

µ−1
e ‖φ− ψh‖2

e

)} 1
2

. (1 + CNeu(β))‖∇φ‖β. (1.104)

Proof of the upper error bound : the solenoidal part - first method

Theorem 1.4.18. The solenoidal part of the error satisfies

‖e⊥‖β,χ . α−1 [(η⊥ + ζ)C2(β, χ) + (1 + CNeu(β))η0C1(β, χ)] .

Proof: As e⊥ ∈ Wβ ,
α‖e⊥‖2

β,χ ≤ a(e⊥, e⊥)
= r(e⊥)
= r(w) + r(∇φ0)

60



where φ0 ∈ H1
0
(Ω) and w is the function introduced in the Helmholtz decomposition

of the solenoidal part of the error e⊥ (cf. Corollary 1.4.3). Inspired by the proof of the
irrotational part, we obtain that

r(∇φ0) . (1 + CNeu(β))η0‖∇φ0‖β. (1.105)

Now, using the Galerkin orthogonality relation (1.15) for any vh ∈ Vh and an elementwise
integration by parts, we get

r(w) = r(w− vh)

= (f,w− vh) − a(uh,w− vh)

= (f− βuh,w− vh)

−
∑

T∈Th

(∫

T

curl(χ curluh)(w− vh) −
∑

e⊂∂T

∫

e

χ curluh(w− vh) · tT

)

=
∑

T∈Th

(RT ,w− vh) −
∑

e∈Eh

∫

e

Je,t(w− vh) · te. (1.106)

Cauchy-Schwarz’s inequality leads to

r(w) .
∑

T∈Th

[
µT‖RT‖Tµ

−1
T ‖w− vh‖T +

∑

e⊂∂T

µ
1
2
e ‖Je,t‖eµ

− 1
2

e ‖w− vh‖e

]

.

{
∑

T∈Th

[
µ2

T‖RT‖2
T +

∑

e⊂∂T

µe‖Je,t‖2
e

]} 1
2

·
{
∑

T∈Th

[
µ−2

T ‖w− vh‖2
T +

∑

e⊂∂T

µ−1
e ‖w− vh‖2

e

]} 1
2

.

{
∑

T∈Th

[
µ2

T‖rT‖2
T + µ2

T‖rT −RT‖2
T +

∑

e⊂∂T

µe‖Je,t‖2
e

]} 1
2

·
{
∑

T∈Th

[
µ−2

T ‖w− vh‖2
T +

∑

e⊂∂T

µ−1
e ‖w− vh‖2

e

]} 1
2

.

Then, by taking vh = I
Ned

w ∈ Vh and using the estimates (1.80)-(1.81), we obtain :

{
∑

T∈Th

[
µ−2

T ‖w− vh‖2
T +

∑

e⊂∂T

µ−1
e ‖w− vh‖2

e

]} 1
2

. ‖∇Pw‖β. (1.107)

Therefore, from the definitions of ηT,⊥ and ζT , we find

r(w) .

(
∑

T∈Th

(η2
T,⊥ + ζ2

T )

) 1
2

‖∇Pw‖β. (1.108)
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By (1.105) and (1.115), we conclude that

α‖e⊥‖2
β,χ . (η2

⊥ + ζ2)
1
2‖∇Pw‖β + (1 + CNeu(β))η0‖∇φ0‖β. (1.109)

Using the bounds (1.70) and (1.71) from corollary 1.4.3, we get

α‖e⊥‖2
β,χ . [(η⊥ + ζ)C2(β, χ) + (1 + CNeu(β))η0C1(β, χ)] ‖e⊥‖β,χ.

This leads to the conclusion.

Corollary 1.4.19. The error is globally bounded from above by

‖e‖β,χ . (1 + α−1)(η + ζ) max {(1 + CNeu(β))C1(β, χ), C2(β, χ)} . (1.110)

Proof of the upper error bound : the solenoidal part - second method

Theorem 1.4.20. The following upper bound holds :

‖e⊥‖β,χ . α−1{(1 + CNeu(β))C1(β, χ)η0

+ [C1(β, χ) + (1 + C⋆
Neu(β))C2(β, χ) max

j=1,...,J
{χ1/2

j β
−1/2
j }] (η⊥ + ζ)}.(1.111)

Proof: This time, from (1.106), we obtain :

r(w) .
∑

T∈Th

[
αT‖RT‖Tα

−1
T ‖w− vh‖T +

∑

e⊂∂T

χ−1/4
e α1/2

e ‖Je,t‖eχ
1/4
e α−1/2

e ‖w− vh‖e

]

.

{
∑

T∈Th

[
α2

T‖rT‖2
T + α2

T‖rT −RT‖2
T +

∑

e⊂∂T

χ−1/2
e αe‖Je,t‖2

e

]}1/2

·
{
∑

T∈Th

[
α−2

T ‖w− vh‖2
T +

∑

e⊂∂T

χ1/2
e α−1

e ‖w− vh‖2
e

]}1/2

.

Then, by taking vh = Iβ
CN

w ∈ Vh, we can prove that :

∑

T∈Th

[α−2
T ‖w− vh‖2

T +
∑

e⊂∂T

χ1/2
e α−1

e ‖w− vh‖2
e]

. ‖w‖2
β + (1 + 2 C⋆

Neu(β))2

(
max

j=1,...,J
{χjβ

−1
j }
)1/2

‖∇Pw‖2
β. (1.112)

Indeed, the definition of αT implies α−1
T = max{β1/2

T , χ
1/2
T h−1

T }. It follows, by the esti-
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mates (1.82)-(1.83) and the triangular inequality, that

∑

T∈Th

α−2
T ‖w− vh‖2

T =
∑

T∈Th

β
1/2
T ≥χ

1/2
T h−1

T

βT‖w− vh‖2
T +

∑

T∈Th

β
1/2
T ≤χ

1/2
T h−1

T

χTh
−2
T ‖w− vh‖2

T

.
∑

T∈Th

β
1/2
T ≥χ

1/2
T h−1

T

(
‖w‖2

β,T + βT‖vh‖2
T

)
+
∑

T∈Th

β
1/2
T ≤χ

1/2
T h−1

T

χTβ
−1
T h−2

T ‖w− vh‖2
β,T

.
∑

T∈Th

β
1/2
T ≥χ

1/2
T h−1

T

(
‖w‖2

β,T + ‖w‖2
β,ωT

)
+
∑

T∈Th

β
1/2
T ≤χ

1/2
T h−1

T

χTβ
−1
T C⋆

Neu(β)2‖∇Pw‖2
β,ωT

. ‖w‖2
β +

(
max

j=1,...,J
{χjβ

−1
j }
)
C⋆

Neu(β)2‖∇Pw‖2
β. (1.113)

On the other hand, with the trace inequality (1.18) applied on Te such that βe = βTe and
the estimates (1.113), (1.84) and (1.85), we find

∑

T∈Th

∑

e⊂∂T

χ1/2
e α−1

e ‖w− vh‖2
e =

∑

T∈Th

∑

e⊂∂T

β
1/2
e ≥χ

1/2
e h−1

e

χ1/2
e β−1/2

e βe‖w− vh‖2
e

+
∑

T∈Th

∑

e⊂∂T

β
1/2
e ≤χ

1/2
e h−1

e

χeh
−1
e β−1

e βe‖w− vh‖2
e

.

(
max

j=1,...,J
{χjβ

−1
j }
)1/2 ∑

Te∈Th

β
1/2
Te

‖w− vh‖Te ·
(
β

1/2
Te
h−1

Te
‖w− vh‖Te + β

1/2
Te

‖∇(w− vh)‖Te

)

+

(
max

j=1,...,J
{χjβ

−1
j }
) ∑

Te∈Th

(C⋆
Neu(β) + 1)2‖∇Pw‖2

β,ωT

.

(
max

j=1,...,J
{χjβ

−1
j }
)1/2

(
∑

Te∈Th

βTe‖w− vh‖2
Te

)1/2

·

(
∑

Te∈Th

(
βTeh

−2
Te
‖w− vh‖2

Te
+ βTe‖∇(w− vh)‖2

Te

)
)1/2

+

(
max

j=1,...,J
{χjβ

−1
j }
) ∑

Te∈Th

(C⋆
Neu(β) + 1)2‖∇Pw‖2

β,ωT

.

(
max

j=1,...,J
{χjβ

−1
j }
)1/2

‖w‖β(1 + C⋆
Neu(β))‖∇Pw‖β

+

(
max

j=1,...,J
{χjβ

−1
j }
)

(C⋆
Neu(β) + 1)2‖∇Pw‖2

β
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∑

T∈Th

∑

e⊂∂T

χ1/2
e α−1

e ‖w− vh‖2
e . ‖w‖2

β +

(
max

j=1,...,J
{χjβ

−1
j }
)

(1 + C⋆
Neu(β))2‖∇Pw‖2

β.(1.114)

The estimates (1.113) and (1.114) show (1.112). Therefore, from the definitions of ηT,⊥
and ζT and the estimate (1.112), we deduce

r(w) . (η⊥ + ζ)

{
‖w‖β + ‖∇w‖β(1 + C⋆

Neu(β))

(
max

j=1,...,J
{χjβ

−1
j }
)1/2

}
. (1.115)

Using the bound (1.68) from the Helmholtz decomposition, we get the conclusion.

Corollary 1.4.21. The error is globally bounded from above by

‖e‖β,χ . (1 + α−1) max{(1 + CNeu(β))C1(β, χ),

C1(β, χ) + (1 + C⋆
Neu(β)) max

j=1,...,J
{χ1/2

j β
−1/2
j }C2(β, χ)} (η + ζ). (1.116)

1.4.4 Extension to three-dimensional polyhedral domains

All the results of this paper extend to a three-dimensional polyhedral domain O which
is bounded and simply connected with a connected boundary. In that domain we consider
the Maxwell system (1.3), where f satisfies (1.4) and β and χ are as before.

This problem is then approximated using regular meshes made of tetrahedra and the
finite element space Vh is simply assumed to contain lowest order Nédélec elements.

In this setting all the results from section 1.2.2 remain valid, especially Lemma 2.4.1 (the
Helmholtz decomposition) due to the results from [45, 47]. Moreover in 3D the Clément-
Nédélec interpolant is defined by

I
CN

: L2(O)3 → Vh

u →
∑

e∈EhΩ

αe(u)|e|λe

where, as usual EhΩ is the set of interior edges of the mesh, λe is the standard basis

function of lowest order Nédélec elements and we here set αe(u) =
1

|Te|

∫

Te

u · te, when Te

is a tetrahedron having e as edge such that βTe = maxe⊂T βT . The regularity of the mesh
allows then to show that Theorem 1.4.9 holds.

As the basic tools of section 1.2.2, the interpolation error estimates from section 1.4.2
and some integrations by parts are the only ingredients that we used for the proof of the
lower and upper error bounds, we can conclude that the estimates (1.97), (1.102), (1.110)
and (1.116) hold in 3D, with the same definition for the local estimators, except that Je,n

and Je,t are defined for the faces F of the mesh and for the tangential jump where curluh

is replaced by curluh × nF , see section 4.1 of [45].
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1.4.5 Numerical experiments

The following experiments underline and confirm our theoretical predictions. Our examples
consist in solving the Maxwell equation (1.8) on the unit square Ω = (0, 1)2 with different
values of χ and β. In all examples uniform meshes of size h = 1

n
, n = 32, 64, 128 and the

lowest order Nédélec finite elements are used. Both estimators are tested and compared.
For that purpose, when an exact solution is known we analyze the upper and lower error
bounds for each estimator. In order to present them in an appropriate manner, we consider
the ratios

qup =
‖u− uh‖β,χ

η + ξ
,

qlow = max
T∈Th

ηT,0 + ηT,⊥
‖u− uh‖β,χ,ωT

+ ζT
,

as a function of the parameters β and χ. The first ratio qup, the so-called effectivity index,
is related to the global upper error bound and measures the reliability of the estimator.
The second ratio is related to the local lower error bound and measures the efficiency of the
estimator. The theoretical bounds for qup and qlow of the previous sections are summarized
in Table 1.1.

1stmethod 2ndmethod

qlow 1 + max
T∈Th

{
χ

1/2
T β

−1/2
T

}
1

qup max {(1 + CNeu(β))C1(β, χ), C2(β, χ)} see (1.116)

Tab. 1.1 – Bounds for qlow and qup for both methods

Ω1, β1, χ1 Ω2, β2, χ2

Ω2, β2, χ2 Ω1, β1, χ1

Ω4, β4, χ4Ω3, β3, χ3

Fig. 1.13 – The decomposition of the domain Ω on 2 subdomains, on the left, and on 4
subdomains, on the right.
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In the first example, we suppose that Ω admits a decomposition in two subdomains
Ω1 = (0, 1/2)×(0, 1),Ω2 = (1/2, 1)×(0, 1) (see Figure 1.13 left) and take as exact solution :

u = curlϕ, where ϕ = [y(1 − y)x(1 − x)(2x− 1)]2.

In that case, one can show that CNeu(β) . 1, C⋆
Neu(β) . 1 and that Wβ ⊂ H1(Ω)2, so that

we can take C1(β, χ) = 1 and C2(β, χ) as before. Therefore the bounds of qup and qlow are
simpler and Table 1 is reduced to the next Table 2 :

1stmethod 2ndmethod

qlow 1 + max
T∈Th

{
χ

1/2
T β

−1/2
T

}
1

qup max

{
1, max

j=1,...,J

(
βjχ

−1
j

)}
max

{
1,
√

max
j=1,...,J

(
βjχ

−1
j

)
max

j=1,...,J

(
χjβ

−1
j

)}

Tab. 1.2 – Bounds for qlow and qup for example 1

In a first case, we fix χ1 = χ2 = β2 = 1 and take different values of β1. The ratios qup and
qlow are presented in Figure 1.14 for the first estimator and in Figure 1.15 for the second
estimator for different values of β1. To see more easily the dependence on the involved
parameters, all figures are plotted in a double logarithmic scale. For the first estimator, we
see that qup behaves like

√
β1 for β1 ≤ 1 and is mainly constant for β1 ≥ 1, while qlow has

a slow variation. For the second estimator, we can say that qup and qlow remain constant
for any β1. In both cases, our numerical bounds are better than the theoretical ones (see
Table 3).

Now, we fix β1 = 4, β2 = 1 and take different values of χ1 = χ2 = χ. The ratios qup

and qlow are presented for the first (resp. second) estimator in Figure 1.16 (resp. 1.17) for
different values of χ. For the first estimator, we see that qup behaves like χ−1/2 for χ ≥ 1,
while is slightly decreasing as χ ≤ 1 decreases. As before we also remark that qlow presents
slow variations. For the second estimator, again we can say that qup and qlow remain quasi
constant for any χ. As before, our numerical bounds are better than the theoretical ones
(see Table 4).

As second example, we suppose that Ω admits a decomposition into four subdomains
Ωi, i = 1, 2, 3, 4 as shown in Figure 1.13 (right) and introduce the exact solution

u = curlϕ where ϕ = [y(1 − y)(2y − 1)x(1 − x)(2x− 1)]2.

We fix χi = 1, for all i = 1, . . . , 4, β2 = β4 = 1 and take β1 = β3 = ε for different values of
ε. For this example, the corner point S = (1/2, 1/2) induces a singularity for any element
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Example 1.1 1stmethod 2ndmethod

qlow 1 + max
{
β
−1/2
1 , 1

}
1

qup max {1, β1} max
{√

β1,
√
β−1

1

}

Tab. 1.3 – Bounds for qlow and qup for example 1.1

Example 1.2 1stmethod 2ndmethod

qlow 1 +
√
χ 1

qup max {1, χ−1} 1

Tab. 1.4 – Bounds for qlow and qup for example 1.2

in Wβ (see [22]). The constants involved in the bounds of qup can be estimated, namely,
CNeu(β) ∼ C⋆

Neu(β) ∼ max{√ǫ, 1√
ǫ
}. Therefore the theoretical bounds are easily estimated.

The computed ratios qup and qlow are presented in Figure 1.18 (resp. in Figure 1.19) for
the first estimator (resp. for the second estimator). For the first estimator, we see that qup

behaves like
√
ε for ε ≤ 1 and is mainly constant for ε ≥ 1, while qlow varies slowly. For

the second estimator, we can say that qup and qlow remain constant for any ε. In all cases,
the numerical bounds are quite better than the theoretical ones.

As a third example, we consider the problem from examples 1.1 and 1.2 with datum
f = (1, 0)⊤ and for which no exact solution is known. To compare our two estimators we
then have computed the ratio ηNed/ηCN , where clearly ηNed (resp. ηCN ) is the estimator of
the first (resp. second) method. From Tables 3 and 4, we can obtain theoretical bounds for
this ratio that are presented in Table 1.5. The numerical values of this ratio are plotted
in Figure 1.20. There we can see that the ratio tends to 1 for β1 large or χ small, while
for β1 small, the ratio behaves like β

−1/2
1 (better than the upper bound), while for χ large,

the ratio behaves like
√
χ as the theoretical upper bound. Let us further remark that these

results are in accordance with the results presented in Figures 5 to 8.
Note that for the second example with the right-hand side f = (1, 0)⊤, the ratio

ηNed/ηCN behaves like 1 for ǫ large and like ǫ−1/2 for ǫ small. Again these results are
in accordance with the ones from Figures 9 and 10.

From these numerical experiments, we can conclude that our second estimator is stron-
gly robust with respect to the variation of the parameters, while the first one is less stable.
Surprisingly in all our tests, the first estimator is also stable in the singular perturbation
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case (i. e. the case β1 large or χ small for examples 1 and 3 and the case ε for example
2). This can be justified by the fact that in these cases the contribution of the jumps of
χ curluh in the estimators is too small.
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Fig. 1.14 – qup and qlow as a function of β1 for example 1 and for the first estimator.
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Fig. 1.15 – qup and qlow as a function of β1 for example 1 and for the second estimator.
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Fig. 1.16 – qup and qlow as a function of χ for example 1 and for the first estimator.
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Fig. 1.17 – qup and qlow as a function of χ for example 1 and for the second estimator.
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Fig. 1.18 – qup and qlow as a function of ε for example 2 and for the first estimator.
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Fig. 1.19 – qup and qlow as a function of ε for example 2 and for the second estimator.

1.4.6 Conclusion

We have proposed and rigorously analysed a posteriori error estimators of residual
type for the Maxwell equations in a bounded two (and three) dimensional domain using
conforming finite element spaces of Nédélec type. A new interpolant of Clément/Nédélec
type has been introduced and some interpolation error estimates have been proved. We
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ηNed/ηCN Lower Bound Upper Bound

β1 ≤ 1 1 β−1
1

χ = 1 = β2

β1 ≥ 1 β−1
1

√
β1

χ = 1 = β2

χ ≤ 1 χ 1 +
√
χ

β1 = 4 β2 = 1

χ ≥ 1 1
√
χ

β1 = 4 β2 = 1

Tab. 1.5 – Bounds for ηNed/ηCN for examples 1.1 and 1.2
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Fig. 1.20 – The ratio ηNed/ηCN for 2 subdomains, for different values of β1 on the left, and
for different values of χ, on the right.

have shown that our estimators are reliable and efficient and have explicitly given the
dependence of the bounds with respect to the parameters. We further have shown that the
second estimator is robust. Some numerical experiments confirm our theoretical predictions.
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Chapitre 2

A posteriori error estimators based

on equilibrated fluxes

We consider conforming finite element approximations of reaction-diffusion problems
and time-harmonic Maxwell equations. We propose new a posteriori error estimators based
on H(div ) and H(curl) conforming finite elements and equilibrated fluxes. It is shown that
these estimators give rise to an upper bound where the constant is one up to higher order
terms. Lower bounds can also be established with constants depending on the shape regu-
larity of the mesh and the local variation of the coefficients. The reliability and efficiency
of the proposed estimator are confirmed by various numerical tests.

2.1 Introduction

Among other methods, the finite element method is widely used for the numerical ap-
proximation of partial differential equations, see, e.g., [13–15,17, 39]. In many engineering
applications, adaptive techniques based on a posteriori error estimators have become an
indispensable tool to obtain reliable results. Nowadays there exists a vast amount of lite-
rature on locally defined a posteriori error estimators for problems in structural mechanics
or electromagnetism. We refer to the monographs [3, 6, 40, 52] for a good overview on this
topic. In general, local upper and lower bounds are established in order to guarantee the
reliability and the efficiency of the proposed estimator. Most of the existing approaches
involve constants depending on the shape regularity of the elements and/or of the jumps
in the coefficients ; but these dependencies are often not given. Only a few number of ap-
proaches gives rise to estimates with explicit constants, see, e.g., [3, 13, 35, 38, 42, 46]. For
Maxwell’s system, only relatively few results exist. Different well established approaches,
for the Laplace operator, have been generalized and adapted to this special situation. Resi-
dual type error estimators which measure the jump of the discrete flux have been considered
in [9, 19, 39, 45, 49] ; hierarchical error estimators e.g. in [8], and estimators based on the
solution of local problems have been introduced in [29]. Here we use an approach based
on equilibrated fluxes and H(div )- or H(curl)-conforming elements. Similar ideas can be
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found, e.g., in [13,38,46]. For an overview on equilibration techniques, we refer to [3,35]. For
reaction-diffusion problems, in contrast to [13], we first define on the edges an equilibrated
flux and then a H(div )-conforming element being locally conservative by construction.
In [13], the authors directly compute suitable conforming elements by solving local Neu-
mann problems. On the contrary for Maxwell’s system the construction of equilibrated
fluxes seems to be impossible and therefore we use the construction from [13]. In both
cases, the error estimator is locally defined and yields, up to higher order terms, an upper
bound with constant one for the discretization error. We note that our error estimators
are made for partial differential equations with zero order terms, and the upper bound
one is still valid in this more general situation. Special care is required by the lower order
terms. In the case of Maxwell’s equations, we have to introduce a second approximation
that takes into account the non-fulfilment of the divergence constraint of the finite element
approximation. This second approximation has not to be introduced if the zero order term
is not present. Finally lower bounds are proved, moreover for reaction-diffusion problems,
we trace the dependency of the constants with respect to the variation of the coefficients
for all proposed estimators. For Maxwell’s system this dependency is partially given.

The outline of the chapter is as follows : We recall, in Section 2, the scalar reaction-
diffusion problem and its numerical approximation. Section 3 is devoted to the introduction
of the locally defined error estimators based on Raviart–Thomas or Brezzi–Douglas–Marini
(BDM) elements and the proofs of the upper and lower bounds. The upper bound directly
follows from the construction of the estimators, while the proof of the lower bound relies on
suitable norm equivalences and some properties of the equilibrated fluxes. Finally in Section
4, we treat the time-harmonic Maxwell equations. For both problem classes, some numerical
tests are presented that confirm the reliability and efficiency of our error estimators.

2.2 The two-dimensional reaction-diffusion equation

Let Ω be a bounded domain of R
2 and Γ its polygonal boundary. We consider the

following elliptic second order boundary value problem with homogeneous mixed boundary
conditions :

−div (a ∇u) + u = f in Ω,
u = 0 on ΓD,

a∇u · n = 0 on ΓN ,
(2.1)

where Γ = Γ̄D ∪ Γ̄N and ΓD ∩ ΓN = ∅.
In the sequel, we suppose that a is piecewise constant, namely we assume that there

exists a partition P of Ω into a finite set of Lipschitz polygonal domains Ω1, · · · ,ΩJ such
that, on each Ωj , a = aj where aj is a positive constant. For simplicity of notation, we
assume that ΓD has a non-vanishing measure. The variational formulation of (4.1) involves
the bilinear form

B(u, v) =

∫

Ω

(a∇u · ∇v + uv) .
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Given f ∈ L2(Ω), the weak formulation consists in finding u ∈ H1
D(Ω) := {u ∈ H1(Ω) :

u = 0 on ΓD} such that

B(u, v) = (f, v) =

∫

Ω

fv, ∀v ∈ H1
D(Ω). (2.2)

We consider a triangulation Th made of triangles T whose edges are denoted by e and
assume that this triangulation is shape-regular, i.e., for any element T , the ratio hT/ρT is
bounded by a constant σ > 0 independent of T ∈ Th and of the mesh-size h = maxT∈Th

hT ,
where hT is the diameter of T and ρT the diameter of its largest inscribed ball. We further
assume that Th is conforming with the partition P of Ω, i.e., any T ∈ Th is included in
one and only one Ωi. With each edge e of the triangulation, we associate a fixed unit
normal vector ne, and nT stands for the outer unit normal vector of T . For boundary edges
e ⊂ ∂Ω ∩ ∂T , we set ne = nT . Eh represents the set of edges of the triangulation, and we
assume that the Dirichlet boundary can be written as union of edges. In the sequel, aT

denotes the value of the piecewise constant coefficient a restricted to the element T .
In the following, the L2-norm on a subdomain D will be denoted by ‖ · ‖D ; the index

will be dropped if D = Ω. We use ‖ · ‖s,D and | · |s,D to denote the standard norm and
semi-norm on Hs(D) (s ≥ 0), respectively. The energy norm is defined by ||| v ||| 2 = B(v, v),
for any v ∈ H1(Ω). Finally, the notation r . s and r ∼ s means the existence of positive
constants C1 and C2, which are independent of the mesh size, of the coefficients of the
partial differential equation and of the quantities r and s such that r . C2s and C1s .

r . C2s, respectively.
Problem (4.2) is approximated by a conforming finite element subspace of H1

D(Ω) :

Xh =
{
vh ∈ H1

D(Ω)|vh|T ∈ P1(T ), T ∈ Th

}

and the finite element solution uh ∈ Xh satisfies the discretized problem

B(uh, vh) = (f, vh), ∀vh ∈ Xh. (2.3)

For further purposes we introduce a set of fluxes {ge ∈ P1(e)|e ∈ Eh} that satisfy the
local variational problem

BT (uh, vh) =

∫

T

f vh +

∫

∂T

gTvh, ∀vh ∈ P1(T ), T ∈ Th, (2.4)

where BT (·, ·) represents the local contribution of the bilinear form B(·, ·) on the element
T and gT |e = ge ne · nT . The existence of such fluxes is guaranteed and ge can be locally
constructed in terms of its moments and the solution of a local vertex based system, see,
e.g., [3, 38]. We note that ge approximates the flux of the exact solution and thus we set
ge = 0, if e ⊂ ΓN .
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2.3 Upper and lower bounds for the error estimator

Error estimators can be constructed in many different ways as, for example, using resi-
dual type error estimators which measure locally the jump of the discrete flux. A different
method, based on equilibrated fluxes, consists in solving local Neumann boundary value
problems [3]. Here, introducing the flux as auxiliary variable, we locally define an error es-
timator based on a H(div )-conforming approximation of this variable. This method avoids
solving the supplementary above-mentioned local subproblems. Indeed in many applica-
tions, the flux j = a∇u is an important quantity, and introducing this auxiliary variable,
we transform the original problem (4.2) into a first order system. Its weak formulation
gives rise to the following saddle point problem : Find (j, u) ∈ HN(div ,Ω) × L2(Ω) such
that

∫

Ω

a−1j τ +

∫

Ω

div τ u = 0, ∀τ ∈ HN(div ,Ω), (2.5)
∫

Ω

div j w −
∫

Ω

u w = −
∫

Ω

f w, ∀w ∈ L2(Ω), (2.6)

the natural space for the flux being

HN(div ,Ω) =
{
q ∈ [L2(Ω)]2|div q ∈ L2(Ω) and q · n = 0 on ΓN

}
.

Therefore the discrete flux approximation jh will be searched in a H(div )-conforming space
based on standard mixed finite elements. Hence different error estimators can be defined in
terms of different mixed finite element spaces such as, e.g., Raviart–Thomas finite elements
or BDM elements. Here, for simplicity we only consider low order finite elements but all
ideas can be easily generalized to higher order finite elements. We consider three different
cases and introduce the inf-sup stable pairs (V i

h ,W
i
h), i = 1, 2, 3 by

V i
h =

{
vh ∈ HN(div ,Ω)| vh|T ∈ V i(T ), T ∈ Th

}
,

W i
h =

{
wh ∈ L2(Ω)|wh|T ∈ W i(T ), T ∈ Th

}
,

where V 1(T ) = RT0(T ), V 2(T ) = BDM1(T ), V 3(T ) = RT1(T ) and W 1(T ) = W 2(T ) =
P0(T ), W 3(T ) = P1(T ). Here, we use the definition of the local Raviart–Thomas and
BDM elements RTl(T ) = (Pl(T ))2 + Pl(T )x, l = 0, 1 and BDM1 = (P1(T ))2. We note
that V 1(T ) ⊂ V 2(T ) ⊂ V 3(T ). Then it is well known, see, e.g., [15] that div V i

h = W i
h. We

denote by Πi
h the L2-projection onto W i

h. Now we introduce a locally defined flux ji
h ∈ V i

h .
It is uniquely defined in terms of its degrees of freedom and can be determined with the
help of ge and uh :

– i = 1 : for all edges e ∈ Eh ∫

e

j1
h · ne =

∫

e

ge,

– i = 2 : for all edges e ∈ Eh
∫

e

j2
h · neq =

∫

e

geq, ∀q ∈ P1(e),
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– i = 3 for all edges e ∈ Eh and all elements T ∈ Th

∫

e

j3
h · neq =

∫

e

geq, ∀q ∈ P1(e),

∫

T

j3
h∇w =

∫

T

a∇uh∇w, ∀w ∈ P1(T ).

The global error estimator ηi
h is now given in terms of its elementwise contributions, i.e.,

(ηi
h)

2 =
∑

T∈Th
(ηi

T )2, where ηi
T is given by means of ji

h and Πi
h :

ηi
T = ηi

T ;1 + ηi
T ;0, ηi

T ;1 = ‖a− 1
2 (a∇uh − ji

h)‖T , ηi
T ;0 = αT‖uh − Πi

huh‖T , (2.7)

where αT = min{1, hTa
−1/2
T }. We note that if hT tends to zero, the minimum will be given

by hTa
−1/2
T . Observing that Π3

huh = uh, η
3
T,0 = 0. To get suitable bounds, we have to

consider additionally the data oscillation given by

(osci(f))2 =
∑

T∈Th

α2
T‖f − Πi

hf‖2
T .

Remark 2.3.1. If f is smooth, osci(f) is asymptotically a higher order term and thus can
be neglected asymptotically. We note that for aT ≪ 1 and coarse meshes the case i = 3
might be more attractive than the cases i = 1, 2.

2.3.1 Upper bound for the discretization error

The proof of the upper bound is basically based on the observation that all our fluxes
ji
h are H(div )-conforming elements and on the following projection lemma.

Lemma 2.3.2. div ji
h − Πi

huh = −Πi
hf .

Proof: We start with the observation that div V i
h = W i

h. Using the definition (2.4) of ge

and of ji
h, we find for w ∈W i

h

∫

Ω

(div ji
h − Πi

huh)w =
∑

T∈Th

(∫

∂T

jh · nTw −
∫

T

ji
h∇w −

∫

T

uhw

)

=
∑

T∈Th

(∫

∂T

gTw −
∫

T

a∇uh∇w −
∫

T

uhw

)
= −(f, w).

Theorem 2.3.3. The energy norm of the discretization error is bounded by the estimator
ηi

h, i = 1, 2, 3, and the data oscillation, namely

||| u− uh ||| ≤ ηi
h + osci(f). (2.8)
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Proof: Using the definition of the energy norm, inserting the H(div )-conforming flux,
applying Green’s formula and Lemma 2.3.2, we find

||| u− uh ||| 2 =

∫

Ω

a∇(u− uh)∇(u− uh) +

∫

Ω

(u− uh)(u− uh)

=

∫

Ω

(ji
h − a∇uh)∇(u− uh) +

∫

Ω

(Πi
huh − uh)(u− uh) +

∫

Ω

(f − Πi
hf)(u− uh).

Cauchy–Schwarz’s inequality yields
∫

Ω

(ji
h − a∇uh)∇(u− uh) ≤

∑

T∈Th

‖a− 1
2 (ji

h − a∇uh)‖T ||| u− uh ||| T =
∑

T∈Th

ηi
T,1 ||| u− uh ||| T ,

where ||| · ||| T stands for the contribution of the energy norm restricted to the element T .
We note that ‖w − Πi

hw‖T ≤ ‖w − Π1
hw‖T ≤ hT‖∇w‖T , w ∈ H1(T ), see, e.g., Lemma 3.5

of [44]. Then it is easy to see that the second and the third term can be bounded by
∫

Ω

(Πi
huh − uh)(u− uh) ≤

∑

T∈Th

αT‖uh − Πi
huh‖T ||| u− uh ||| T =

∑

T∈Th

ηi
T ;0 ||| u− uh ||| T ,

∫

Ω

(f − Πi
hf)(u− uh) ≤

∑

T∈Th

αT‖f − Πi
hf‖T ||| u− uh ||| T ≤ osci(f) ||| u− uh ||| ,

respectively. Taking into account the definition of ηi
h, we find

||| u− uh ||| 2 ≤
∑

T∈Th

(ηi
T ;1 + ηi

T ;0) ||| u− uh ||| T + osci(f) ||| u− uh |||

=
∑

T∈Th

ηi
T ||| u− uh ||| T + osci(f) ||| u− uh ||| ≤ (ηi

h + osci(f)) ||| u− uh ||| .

Remark 2.3.4. Note that our upper bound is independent of the shape regularity of the
mesh. More precisely it also holds for so-called anisotropic meshes, i.e., meshes for which
σ tends to zero as the mesh size h goes to zero.

Local upper bound for the discretization error

To show that the error estimator is locally bounded by the discretization error and
higher order terms, we apply a suitable norm equivalence for mixed finite elements. Define
for each element T ∈ Th the quantities m∂T (·) and mT (·) by

m∂T (v) = ‖v · nT‖∂T mT (v) = ‖
∫

T

v‖2, (2.9)

where ‖ · ‖2 denotes the Euclidean norm for vectors or matrices. We note that the two
quantities are well defined if, e.g., the components of v are polynomials.
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Lemma 2.3.5. Let vh ∈ V i(T ), T ∈ Th, then

‖vh‖T ∼ (h
1
2
Tm∂T (vh) +

βi

hT

mT (vh)), (2.10)

where β1 = β2 = 0 and β3 = 1.

Proof: For convenience of the reader, we sketch the basic steps of the proof. Using the
reference element T̂ with vertices (0, 0), (1, 0) and (0, 1), we find for v̂h ∈ V i(T̂ ) that

‖v̂h‖ bT ∼ (m∂ bT (v̂h) + βimbT (v̂h)).

This simply follows from the fact that all norms on finite dimensional spaces are equivalent.
Now we can use the Piola transformation to define for vh ∈ V i(T ) a corresponding v̂h ∈
V i(T̂ ) by

v̂h(x̂) = detBTB
−1
T vh(x),

where T̂ is mapped onto T by the affine mapping x = BT x̂ + bT and BT ∈ R
2×2 and

bT ∈ R
2. We recall that ‖BT‖2 ∼ | detBT | ‖B−1

T ‖2 ∼ hT and | detBT | ∼ h2
T . Then it

is easy to see that ‖vh‖T ∼ ‖v̂h‖ bT . Using the relation ‖B−⊤
T n bT‖2nT = B−⊤

T n bT , we find
detBT‖B−⊤

T n bT‖2vh · nT = v̂h · n bT and thus ‖vh · nT‖2
∂T ∼ h−1

T ‖v̂h · n bT‖2
∂ bT . For the volume

integral we find
∫

T
vh = BT

∫
bT v̂h and thus ‖

∫
T
vh‖2 ∼ hT‖

∫
bT v̂h‖2.

We consider the two terms of the error estimators separately, and recall that η3
T ;0 = 0

and η1
T ;0 = η2

T ;0.

Lemma 2.3.6. For each T ∈ Th and for i = 1, 2, we have

ηi
T ;0 = αT‖Πi

huh − uh‖T . αT‖f − Πi
hf‖T +

√
hT√
aT

‖gT − aT∇uh · nT‖∂T . (2.11)

Proof: Observing uh − Πi
huh ∈ P1(T ) and aT div∇uh = 0 on T , then (2.4) and Green’s

formula yield

‖Πi
huh − uh‖2

T =

∫

T

uh(uh − Πi
huh) =

∫

T

f(uh − Πi
huh)

+

∫

∂T

gT (uh − Πi
huh) −

∫

T

a∇uh∇(uh − Πi
huh)

=

∫

T

(f − Πi
hf)(uh − Πi

huh) +

∫

∂T

(gT − aT∇uh · nT )(uh − Πi
huh)

≤ ‖f − Πi
hf‖T‖uh − Πi

huh‖T + ‖gT − aT∇uh · nT‖∂T‖uh − Πi
huh‖∂T

.
(
‖f − Πi

hf‖T + 1√
hT

‖gT − aT∇uh · nT‖∂T

)
‖uh − Πi

huh‖T .

From the definition of αT it follows directly that αT /
√
hT ≤

√
hT /

√
aT .

We recall that the constant only depends on the shape regularity of the element, and
can be easily explicitly computed if required. In the following lemma, we provide an upper
bound for ηi

T ;1.
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Lemma 2.3.7. For each element T ∈ Th and i = 1, 2, 3 we have

ηi
T ;1 .

√
hT√
aT

‖aT∇uh · nT − gT‖∂T . (2.12)

Proof: The proof is based on the discrete norm equivalence given in Lemma 2.3.5 and the
observation that aT∇uh ∈ V i(T ) for i = 1, 2, 3. Using the definition of the flux ji

h and of
βi, we find βimT (ji

h − aT∇uh) = 0. Then, the norm equivalence (2.10) yields

ηi
T ;1 .

√
hT√
aT

m∂T (a∇uh − ji
h) =

√
hT√
aT

‖aT∇uh · nT − ji
h · nT‖∂T .

Next, we observe that (aT∇uh − ji
h) ·ne ∈ Si(e), where S1(e) = S2(e) = P0(e) and S3(e) =

P1(e). Let Πi
∂T be the L2-projection onto

∏
e⊂∂T S

i(e) = Si(∂T ), then Πi
∂T (aT∇uh · nT ) =

aT∇uh ·nT and ji
h ·nT = Πi

∂T (ji
h ·nT ) = Πi

∂TgT . Here we have used the definition of ji
h and

the fact that ji
h ·nT ∈ Si(∂T ). These preliminary considerations give now the upper bound

ηi
T ;1 .

√
hT√
aT

‖Πi
∂T (aT∇uh · nT − gT )‖∂T ≤

√
hT√
aT

‖aT∇uh · nT − gT‖∂T .

Theorem 2.3.8. For each element T ∈ Th the following estimate holds

ηi
T . max{1, hTa

−1/2
T }

(
max
T ′⊂ωT

{
√
aT ′

√
aT

}‖|u− uh‖|ωT
+ osc|ωT

(f)

)
, (2.13)

where ωT denotes the patch consisting of all the triangles of Th sharing an edge with T .

Proof: Lemmas 2.3.6 and 2.3.7 and the definition (2.7) of the error estimator give

ηi
T .

√
hT√
aT

‖aT∇uh · nT − gT‖∂T + αT‖f − Πi
hf‖T .

The first term on the right side is bounded by the edge contributions
√
he/

√
aT‖aT∇uh ·

ne − ge‖2
e which is a part of the equilibrated error estimator that can be bounded in terms

of the discretization error. Theorem 6.2 of [3] yields

∑

e⊂∂T

he‖aT∇uh · ne − ge‖2
e .

∑

T ′⊂ωT

h2
T ′‖RT ′‖2

T ′ +
∑

e⊂ωT

he‖Je,n‖2
e,

where RT = f +div (a∇uh)−uh is the exact residual on the element T and Je,n stands for
the jump of the flux over edges :

Je,n =






[[
a∇uh · ne

]]
e

for interior edges,
0 for Dirichlet boundary edges,
∇uh · ne for Neumann boundary edges.
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Introducing, for an edge e, ae = max{aT1 , aT2}, e = ∂T1 ∩ ∂T2 we get

ηi
T

2
. a−1

T max
T ′⊂ωT

{aT ′}
(
∑

T ′⊂ωT

a−1
T ′ h

2
T ′‖RT ′‖2

T ′ +
∑

e⊂ωT

a−1
e he‖Je,n‖2

e

)

+ α2
T‖f − Πi

hf‖2
T . (2.14)

The residual and the jump are terms appearing in the residual based error estimator.
It is well known, see, e.g., [52], that these terms can be locally bounded by the error.
Introducing element and edge bubble, we can bound, by inverse inequalities, those terms
by local contributions of the discretization error.

2.3.2 Numerical results

Our first example consists in solving the equation (4.1) on the unit square Ω = (0, 1)2

with ΓN = Γ. The coefficient a is fixed to be constant and equal to 1. We take isotropic
meshes composed of triangles, and we compute ji

h, i = 1, 2, 3. The test is performed with
different types of solutions. In the first case, we consider the exact solution

u(x, y) =
1

2
cos(πx)cos(πy). (2.15)

To begin, we check that the numerical solution uh converges toward the exact solution.
To this end, we plot the curve ‖|u − uh‖| (and the estimators) as a function of DoF (see
Fig. 2.1). We see that the approximated solution converges toward the exact one with a
convergence rate of one and that the estimators are very close to the error (see Fig. 2.1 and
2.2). In all our test settings, we find that the so-called effectivity indices, i.e., the ratios
‖|u−uh‖|/ηi

h, are smaller than one. Indeed we remark in Figure 2.2 that they vary between
0.67 and 0.87, in other words they remain smaller than one.

 0.001

 0.01

 0.1

 1
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 1  10  100  1000  10000  100000  1e+06

Error
RT0

BDM1
RT1

Fig. 2.1 – ‖|u−uh‖| and ηi
h, i = 1, 2, 3

wrt DoF for the first solu-
tion.
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 RT0
 BDM1

 RT1

Fig. 2.2 – The ratios ‖|u−uh‖|/ηi
h, i =

1, 2, 3 wrt DoF for the first
solution.
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Now we take for the exact solution :

u(x, y) = e(3x2−2x3+3y2−2y3). (2.16)

As before Figure 2.3 shows the error and the estimators wrt the DoF, while Figure 2.4
gives the effectivity indices. Here we can make the same conclusion as before, except that
the effectivity indices are even smaller.
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Fig. 2.3 – ‖|u−uh‖| and ηi
h, i = 1, 2, 3

wrt DoF for the second so-
lution.
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Fig. 2.4 – The ratios ‖|u−uh‖|/ηi
h, i =

1, 2, 3 wrt DoF for the se-
cond solution.

As third example, we consider a solution of problem (4.1) on the unit square Ω = (0, 1)2

with ΓD = Γ that exhibits an exponential layer along the y-axis. Namely we take

u(x, y) = 4y(1 − y)(1 − e−αx − (1 − e−α)x) (2.17)

with different values of the parameter α, the coefficient in (4.1) being taken as a = 1
α2 .

Here in order to resolve appropriately the boundary layer of the solution we use anisotropic
meshes of Shishkin type as described in [32, 45] for instance (see Remark 2.3.4). First, we
compute the estimator η3

h and compare it with the exact error. According to Fig. 2.5 we see
a good convergence of the approximated solution to the exact one, moreover the estimator
remains close to the error as far as the mesh size is small enough, this is confirmed by Fig.
2.6, where the effectivity index is presented for the four values of α with respect to DoF.
Secondly, we have computed the global estimator η1

h (based on RT0) and compare it with
the exact error and the two contributions η1

0 and η1
1 , these comparisons are presented in

Fig. 2.7 and 2.8 for α = 1 and 10. In Fig. 2.7, we may see that as far as the mesh size
is small enough with respect to the size of α, the term η1

0 is much smaller than η1
1 , as

theoretically expected. On the contrary if the mesh size is relatively rough with respect
to the size of α, the term η1

1 is comparable with η1
1 (see Fig. 2.7 right). Note further that

the use of η1
h is more time consuming than η3

h since we were unable to achieve the value of
h = 1/128 for α = 100 and 1000 in a reasonable time.

Now in order to illustrate the performance of our estimator η3
h, for three examples taken

from [38] we show the meshes obtained after some iterations using an iterative algorithm
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Fig. 2.5 – ‖|u− uh‖| and η3
h wrt DoF for different values of α : top-left : α = 1, top-right

α = 10 ; bottom-left α = 100, bottom-right α = 1000.
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Fig. 2.6 – The ratio ‖|u− uh‖|/η3
h wrt DoF for different values of α.

based on the marking procedure

ηT > 0.5 max
T ′

ηT ′ or ηT > 0.75 max
T ′

ηT ′ ,

and a standard refinement procedure with a limitation on the minimal angle.
For the first example we take Ω = (0, 1)2, a = 1, ΓD = Γ and as exact solution :

u(x, y) = x(x− 1)y(y − 1)e(−100(x−1/2)2−100(y−117/1000)2 ).

This solution has a large gradient around the point (1
2
, 117

100
). Therefore a refinement of the

mesh near this point can be expected. This is confirmed by Figure 2.9.
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Fig. 2.7 – ‖|u − uh‖|, η1
h, η

1
0 and η1

1 wrt DoF for different values of α : on the left α = 1,
on the right α = 10.
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Fig. 2.8 – The ratio η1
0/η

1
1 wrt DoF for different values of α : on the left α = 1, on the

right α = 10.
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Fig. 2.9 – Adaptive mesh after 10 iterations for the first example and criterion ηT >
0.5 maxT ′ ηT ′.

For the second example we take Ω = (−1, 1)2 and ΓD = Γ but a discontinuous coefficient
a. Namely we decompose Ω into 4 sub-domains Ωi, i = 1, . . . , 4 with Ω1 = (0, 1) × (0, 1),
Ω2 = (−1, 0) × (0, 1), Ω3 = (−1, 0) × (−1, 0) and Ω4 = (0, 1) × (−1, 0) and take a = ai on
Ωi, with a1 = a3 and a2 = a4 = 1. Using polar coordinates centered at (0, 0), we take as
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exact solution,
S(x, y) = rαφ(θ), (2.18)

where α ∈ (0, 1) and φ are chosen such that S is harmonic on each sub-domain Ωi, i =
1, . . . , 4 and satisfies the jump conditions :

[[
S
]]

= 0 and
[[
a∇S·n

]]
= 0

on the interfaces (i.e. the segments Ω̄i∩Ω̄i+1 (mod 4), i = 1, . . . , 4). We fix non-homogeneous
Dirichlet boundary conditions on Γ accordingly.

It is easy to see (see for instance [22]) that α is the root of the transcendental equation

tan
απ

4
=

√
a1.

This solution has a singular behavior around the point (0, 0) (because α < 1). Therefore
a refinement of the mesh near this point can be expected. This can be checked in Figures
2.10 and 2.11 on the meshes obtained for a1 = 5 and a1 = 100 respectively and for which
α ≈ 0.53544094560 and α ≈ 0.1269020697.
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 0.5

 1

-1 -0.5  0  0.5  1

Fig. 2.10 – Adaptive mesh after 20
iterations for the second
example (a1 = 5 and crite-
rion ηT > 0.75 maxT ′ ηT ′).

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

Fig. 2.11 – Adaptive mesh after 20
iterations for the second
example (a1 = 100 and cri-
terion ηT > 0.75 maxT ′ ηT ′).

Finally as last example, we take the L-shape domain Ω = (−1, 1)2 \ (−1, 0) × (0, 1),
a = 1, ΓD = Γ and as exact solution

S = r2/3 sin(2θ/3). (2.19)

This solution has a singular behavior at (0, 0) and the meshes has to be refined near this
point. This can be seen in Figure 2.12.

From all these tests we can confirm the reliability and efficiency of our proposed error
estimators. Nevertheless for a ≪ 1 and coarse meshes the estimator η3

h based on RT1 is
more attractive and less expensive than the estimators η1

h and η2
h.
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-1 -0.5  0  0.5  1

Fig. 2.12 – Adaptive mesh after 10 iterations for the third example and criterion ηT >
0.5 maxT ′ ηT ′.

2.4 The time-Harmonic Maxwell equations in 3D

Now, Ω represents a bounded domain of R
3 with a polyhedral boundary Γ. For the

sake of simplicity, we further assume that Ω is simply connected and that its boundary is
connected. We are interested in the following problem :

curl(χ curl u) + βu = f in Ω,
u× n = 0 on Γ.

(2.20)

In the rest of the chapter, we suppose that χ and β are piecewise positive constants.
For any f ∈ [L2(Ω)]3 satisfying div f = 0 in Ω, the weak formulation of (2.20) is given by :
Find u ∈ H0(curl,Ω) = {v ∈ [L2(Ω)]3| curl v ∈ [L2(Ω)]3 and v × n = 0 on Γ} such that

B(u, v) =

∫

Ω

(χ curl u · curl v + βu · v) =

∫

Ω

f · v, ∀v ∈ H0(curl,Ω). (2.21)

As χ and β are uniformly positive, B is coercive on H0(curl,Ω) with respect to the norm
‖u‖β,χ = (B(u, u))1/2 and, by the Lax-Milgram lemma, problem (2.20) admits a unique
solution.

2.4.1 The approximated problem

The triangulation Th is now made of tetrahedra T . Its faces are denoted by F and nF

stands for one of the unit normal vectors of this face. We use the notation F for the set
of faces and Vh for the set of vertices of the triangulation. All notation introduced before
remain valid, except that the elements T are now tetrahedra. In the sequel, χT (resp. βT )
denotes the value of the piecewise constant χ (resp. β) restricted to an element T .

Problem (2.21) is approximated in a curl-conforming finite element subspace Xh of
H0(curl,Ω) build using the lowest order Nédélec finite elements :

Xh =
{
vh ∈ H0(curl,Ω)|vh|T ∈ ND1(T ), T ∈ Th

}
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where ND1(T ) = [P0(T )]3 + [P0(T )]3 × x with x = (x1, x2, x3)
⊤. The discretized problem

consists in finding uh ∈ Xh such that

B(uh, vh) = (f, vh), ∀vh ∈ Xh. (2.22)

We now recall a decomposition of the space H0(curl,Ω) of Helmholtz type related to
the weight β.

Lemma 2.4.1. If Ω is simply connected and its boundary Γ is connected then

H0(curl,Ω) = ∇H1
0
(Ω)

⊥
⊕Wβ , (2.23)

where Wβ is a closed subspace of H0(curl,Ω) defined by

Wβ = {v ∈ H0(curl,Ω)|div (βv) = 0 in Ω}, (2.24)

and the symbol
⊥
⊕ means that the decomposition is direct and orthogonal with respect to the

inner product B(·, ·). Then the error u− uh admits the splitting

u− uh = ∇φ+ e⊥, (2.25)

with φ ∈ H1
0
(Ω), e⊥ ∈Wβ and

‖u− uh‖2
β,χ = ‖∇φ‖2

β,χ + ‖e⊥‖2
β,χ. (2.26)

Moreover, there exists ǫ ∈ (0, 1] (depending on β and on the geometry of Ω) and a constant
C(β) such that e⊥ ∈ (Hǫ(Ω))3 with the estimate

‖e⊥‖ǫ,Ω ≤ C(β) max
j=1,··· ,J

{
1, χ

−1/2
j

}
‖u− uh‖β,χ. (2.27)

Proof: As ∇H1
0
(Ω) is a closed subspace of H0(curl,Ω) (see Lemma I.2.1 of [26]), the

decomposition (2.23) holds with

Wβ = {v ∈ H0(curl,Ω) : (βv,∇ψ) = 0, ∀ψ ∈ H1
0
(Ω)}.

By Green’s formula we deduce (2.24).
For the requested regularity of e⊥, we apply Theorem 3.5 of [22], which further yields

‖e⊥‖ǫ,Ω ≤ C(β) (‖ curl e⊥‖ + ‖div (βe⊥)‖) .

As e⊥ ∈Wβ, div (βe⊥) = 0. Moreover from the splitting of the error, we see that curl(u−
uh) = curl e⊥, therefore

‖e⊥‖ǫ,Ω ≤ C(β)‖u− uh‖β,1.
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2.4.2 Conforming approximated problems

Again our idea is based on a saddle point approach. Namely introducing as auxiliary
variable j = χ curl u, then (2.21) becomes : Find (j, u) ∈ H(curl,Ω) × [L2(Ω)]3 solution of

∫

Ω

χ−1j · v −
∫

Ω

curl v · u = 0, ∀v ∈ H(curl,Ω),
∫

Ω

curl j · w +

∫

Ω

βu · w =

∫

Ω

f · w, ∀w ∈ [L2(Ω)]3.
(2.28)

The lowest order approximated mixed finite element pair for this problem is the pair
(Vh,Wh) where

Vh =
{
vh ∈ H(curl,Ω)|vh|T ∈ ND1(T ), T ∈ Th

}
,

Wh = {wh ∈ H(div ,Ω)|wh|T ∈ RT0(T ), ∀T ∈ Th and divwh = 0 in Ω}.

Therefore a natural choice for our approximated flux is jh ∈ Vh. But here, contrary to the
reaction-diffusion case, βuh no more belongs to Wh, essentially because βuh is no more
divergence free. Hence we first construct a correction qh that fulfils this constraint. For
that purpose we introduce equilibrated fluxes for the divergence part. Namely let lF be in
P1(F ) and satisfying the divergence flux equations :

∫

T

βuh · ∇wh =

∫

∂T

lTwh, ∀wh ∈ P1(T ), T ∈ Th, (2.29)

where, as usual, lT = lFnT ·nF . The existence of such fluxes is proved as for the equilibrated
flux equation (2.4) (see [3]) because the discrete problem (2.22) guarantees that (because
f is supposed to be divergence free)

∫

ωx

βuh · ∇λx =

∫

ωx

f · ∇λx = 0,

for all nodes x (when λx is the standard hat function). We now fix the discrete divergence
flux as the unique qh ∈ V 3

h satisfying
∫

F

qh · nF q =

∫

F

lF q, ∀q ∈ P1(F ), F ⊂ T, T ∈ Th, (2.30)
∫

T

qh =

∫

T

βuh, ∀T ∈ Th, (2.31)

and prove the following projection lemma :

Lemma 2.4.2. If qh ∈ V 3
h satisfies (2.30) and (2.31), then div qh = 0.

Proof: By Green’s formula and (2.30), (2.31), for any wh ∈W 3
h , it follows that

∫

Ω

div qhwh =
∑

T∈Th

(−
∫

T

βuh · ∇wh +

∫

∂T

lTwh) = 0,
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due to (2.29).

As f and qh do not belong to Wh, we shall consider their projection on this space. Na-
mely denoting by Πh the projection ontoWh with respect to the inner product (wh, vh)β−1 =∫
Ω
β−1wh · vh, we set

f̃h = Πhf − Πhqh.

Now we consider the alternative problem : Find ũ ∈ X = {v ∈ H0(curl,Ω)|div (βv) =
0 in Ω} solution of ∫

Ω

χ curl ũ · curl v =

∫

Ω

f̃h · v, ∀v ∈ X. (2.32)

In order to make an adequate approximation of this problem we use the discrete Helm-
holtz decomposition of Xh (see [37]) into a subspace of Xh made of discrete β-divergence
free functions and curl-free functions, namely we use the splitting

Xh = X̃h

⊥
⊕ ∇Sh

where X̃h = {wh ∈ Xh|(βwh,∇ϕh) = 0, ∀ϕh ∈ Sh} and Sh = {ϕh ∈ H1
0 (Ω)|ϕh|T

∈
P1(T ), ∀T ∈ Th}. The decomposition being orthogonal with respect to the inner product
(β·, ·).

Hence the approximated problem of (2.32) is : Find ũh ∈ X̃h satisfying

∫

Ω

χ curl ũh curl ṽh =

∫

Ω

f̃h ṽh, ∀ṽh ∈ X̃h. (2.33)

This problem is well posed since its left-hand side is coercive on X̃h, due to the discrete
Friedrichs inequality.

At this stage we are able to apply Theorem 15 of [13] to the problem (2.32) and its
approximation (2.33) that prove the next results :

Lemma 2.4.3. There exists (an explicitly computable) jh ∈ Vh satisfying curl jh = Πhf −
Πhqh with the following estimates

‖χ−1/2(jh − χ curl ũh)‖ . ‖χ1/2 curl(ũ− ũh)‖ ≤ ‖χ−1/2(jh − χ curl ũh)‖. (2.34)

Proof: Following what is done in [13], we first remark that

div f̃h = div (Πhf) − div (Πhqh) = IRT0(div f) − IRT0(div qh) = 0,

where IRT0 is the Raviart-Thomas interpolation operator mapping HN(div ,Ω) onto V 1
h .

The discrete Helmholtz decomposition of Xh implies that, for any basis function λe of
Xh, there exist λ̃e ∈ X̃h and ϕ ∈ Sh such that λ̃e = λe − ∇ϕ and, by its definition, the
approximation ũh satisfies

(χ curl ũh, curl(λe −∇ϕ)) = (f̃h, λe −∇ϕ), ∀e ∈ Eh.
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We obtain the orthogonality relation

〈f̃h − curlχ curl ũh, λe〉 = 0, ∀e ∈ Eh,

with
div (f̃h − curlχ curl ũh) = 0,

and from Lemma 14 of [13], the following local decomposition holds :

f̃h − curlχ curl ũh =
∑

V ∈Vh

f̃ωV
with div f̃ωV

= 0, ∀V ∈ Vh,

ωV denoting the patch consisting of all the elements of Th containing the vertex V .
We conclude by Lemma 15 of [13] that there exists j∆ =

∑
V ∈Vh

jωV
, with supp(jωV

) ⊂ ωV ,

satisfying curl jωV
= f̃ωV

.
If we introduce jh = j∆+χ curl ũh, this discrete flux clearly verifies curl jh = f̃ = Πhf−Πhqh
and the following estimate can be proved

C‖χ−1/2j∆‖ ≤ ‖χ1/2 curl(ũ− ũh)‖ ≤ ‖χ−1/2j∆‖, with C > 0. (2.35)

2.4.3 The a posteriori error estimator

We now introduce local indicators of the error u−uh on an element T of the triangulation
as follows

η2
⊥,T = ‖χ−1/2 (χ curl uh − jh) ‖2

T , η2
0,T = ‖β−1/2(βuh − qh)‖2

T .

The associated global estimator is then given by η =
(∑

T∈Th
(η2

0,T + η2
⊥,T )

)1/2
. The oscil-

lation of a function f is here defined by

osc(f)2 =
∑

T∈Th

h2ǫ
T β

−2
T ‖f − Πhf‖2

T ,

where ǫ ∈ (0, 1] is the one from Lemma 2.4.1.

Upper bound

Theorem 2.4.4. There exists C(β, χ) > 0 depending on β and χ such that the following
estimate holds

‖u− uh‖β,χ ≤ η + C(β, χ) (osc(f) + osc(qh)). (2.36)
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Proof: From the definition of the norm, introducing the variable jh and applying Green’s
formula, we get

‖u− uh‖2
β,χ=

∫

Ω

χ curl(u− uh) curl(u− uh) +

∫

Ω

β(u− uh)(u− uh)

=

∫

Ω

(jh − χ curl uh) curl(u− uh) +

∫

Ω

(f − βuh − Πhf + Πhqh)(u− uh).

Cauchy-Schwarz’s inequality gives

‖u− uh‖2
β,χ ≤

∫

Ω

(f − Πhf + Πhqh − βuh)(u− uh)

+
∑

T∈Th

‖χ−1/2(jh − χ curl uh)‖T‖χ1/2 curl(u− uh)‖T . (2.37)

Introducing the Helmholtz decomposition of the error (2.25) and the divergence free flux
qh we get :

∫

Ω

(f − Πhf + Πhqh − βuh) · (u− uh) =

∫

Ω

(f − curl jh − qh) · ∇φ

+

∫

Ω

(f − Πhf + Πhqh − qh) · e⊥ +

∫

Ω

(qh − βuh) · (u− uh). (2.38)

We now estimate each term of this right-hand side. For the first term, applying Green’s
formula, we get

∫

Ω

(f − curl jh − qh)∇φ =
∑

T∈Th

∫

T

div (f − curl jh − qh)φ = 0, (2.39)

as div f = div curl jh = div qh = 0.
For the second term, we notice that (Πhqh − qh, IRT0(βe⊥))β−1 = 0, as IRT0(βe⊥) (the

RT0 interpolant of βe⊥) belongs to Wh. Hence we may write
∫

Ω

(Πhqh − qh) · e⊥ =

∫

Ω

β−1(Πhqh − qh)(βe⊥ − IRT0(βe⊥)).

Since e⊥ belongs to (Hǫ(Ω))3, a scaling argument yields ‖βe⊥ − IRT0(βe⊥)‖ . hǫ‖βe⊥‖ǫ

(see Theorem 3.4 of [1]) and therefore

∫

Ω

(Πhqh − qh) · e⊥ .

(
∑

T∈Th

β−2
T h2ǫ

T ‖qh − Πhqh‖2
T

)1/2

‖βe⊥‖ǫ.

By the estimate (2.27), we arrive at
∫

Ω

(Πhqh − qh) · e⊥ ≤ Cosc(qh)‖u− uh‖β,χ, (2.40)
∫

Ω

(f − Πhf) · e⊥ ≤ Cosc(f)‖u− uh‖β,χ, (2.41)
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for some C > 0 depending on β and χ.
Finally for the third term, Cauchy-Schwarz’s inequality directly yields

∫

Ω

(qh − βuh) · (u− uh) ≤ (
∑

T∈Th

η2
0,T )1/2‖β1/2(u− uh)‖. (2.42)

The estimate (2.36) directly follows from the estimate (2.37), the identities (2.38) and
(2.39) and the bounds (2.40), (2.41) and (2.42).

Before going on let us point out that the terms osc(f) and osc(qh) are higher order
terms. First we remark that even for smooth f , the solution u of problem (2.20) will only
have the regularity u ∈ (Hǫ(Ω))3. Therefore the expected order of convergence for the
error will be ǫ, namely ‖u − uh‖β,χ ≤ C(β, χ)hǫ, for some C(β, χ) > 0 depending on β
and χ. For the term osc(f), if f belongs to H1(Ω)3, then by scaling arguments we have
osc(f) . h1+ǫ‖f‖1,Ω, and therefore osc(f) tends to zero faster than the error (this will be
achieved if β and χ are fixed and if h is small enough).

For the second term osc(qh), no global regularity results on u are necessary, namely using
a scaling argument on each element T , we have ‖qh − IRT0qh‖T . hT‖∇qh‖T . Therefore we
may write (here we do not trace the dependence on β and χ and write for shortness C for
a constant depending on these two functions)

osc(qh)
2 ≤ Ch2ǫ min

wh∈Wh

∑

T∈Th

β−1
T ‖qh − wh‖2

T ≤ Ch2ǫ
∑

T∈Th

β−1
T ‖qh − IRT0qh‖2

T

≤ Ch2ǫ
∑

T∈Th

h2
T‖∇qh‖2

T

≤ Ch2ǫ
∑

T∈Th

h2
T (‖∇(qh − βuh)‖2

T + ‖∇(βuh)‖2
T ).

As ‖∇(βuh)‖T . βT‖ curl uh‖T (see e.g. Lemma 4.1 of [43]) and using a standard inverse
inequality we obtain

osc(qh)
2 ≤ Ch2ǫ

(
‖qh − βuh‖2 + h2‖ curl uh‖2

)
.

Since it will be proved below that ‖qh −βuh‖ ≤ C‖u−uh‖β,χ (see the estimate (2.43)) and
since the variational formulation (2.22) leads to ‖χ1/2 curl uh‖ . ‖β−1/2f‖, we obtain

osc(qh)
2 ≤ Ch2ǫ(‖u− uh‖2

β,χ + h2‖β−1/2f‖2).

This last estimate finally shows that osc(qh) tends to zero faster than the error.

Lower bound

As for the reaction-diffusion problems our lower bound is based on a suitable norm
equivalence :
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Theorem 2.4.5. There exists a positive constant C(β, χ) (depending on β and χ) such
that the following local and global lower bounds hold

η0,T . β
−1/2
T max

T ′⊂ωT

β
1/2
T ′ ‖u− uh‖β,χ,ωT

, (2.43)

(
∑

T∈Th

η2
⊥,T )1/2 ≤ C(β, χ)(‖u− uh‖β,χ + osc(f) + osc(qh)). (2.44)

Proof: On one hand, as uh ∈ ND1(T ) ⊂ RT1(T ), Lemma 2.3.5 and the construction of qh
yield

‖qh − βuh‖T .
∑

F⊂∂T

h
1/2
F ‖(qh − βuh) · nF‖F .

∑

F⊂∂T

h
1/2
F ‖

[[
βuh · nF

]]
F
‖F . (2.45)

This right-hand side is a part of the estimator presented in [45]. By standard inverse
inequality we can prove that

‖
[[
βuh · nF

]]
F
‖F .

∑

T ′⊂ωF

β
1/2
T ′ h

−1/2
T ′ ‖u− uh‖β,χ,T ′.

These two estimates directly prove the local bound (2.43).
Now, using Lemma 2.4.3 we have

‖χ−1/2(jh − χ curl uh)‖ ≤ ‖χ−1/2(jh − χ curl ũh)‖ + ‖χ1/2 curl(ũh − uh)‖
. ‖χ1/2 curl(ũ− ũh)‖ + ‖χ1/2 curl(ũh − uh)‖
. ‖χ1/2 curl(ũ− ũh)‖ + ‖χ1/2 curl(ũ− u)‖ + ‖χ1/2 curl(u− uh)‖. (2.46)

The first term of this right-hand side can be bounded using the second Strang lemma :

‖χ1/2 curl(ũ− ũh)‖≤ inf
vh∈X̃h

‖χ1/2 curl(ũ− vh)‖ + sup
wh∈X̃h

|(χ curl ũ, curlwh) − (f̃ , wh)|
‖χ1/2 curlwh‖

≤‖χ1/2 curl(ũ− uh + ∇ϕ)‖ ≤ ‖χ1/2 curl(ũ− u)‖ + ‖χ1/2 curl(u− uh)‖,
noting that there exists ϕ ∈ Sh such that uh − ∇ϕ ∈ X̃h and that (χ curl ũ, curlwh) −
(f̃h, wh) = 0. This estimate and (2.46) yield

‖χ−1/2(jh − χ curl uh)‖ . ‖χ1/2 curl(ũ− u)‖ + ‖χ1/2 curl(u− uh)‖.
It now remains to bound ‖χ1/2 curl(ũ− u)‖. Applying Green’s formula we get

‖χ1/2 curl(ũ− u)‖2 =

∫

Ω

curl(χ curl ũ− χ curl u) · (ũ− u) =

∫

Ω

(Πhf − Πhqh − f + βu) · (ũ− u).

By the definition of the projection Πh, we get

‖χ1/2 curl(ũ− u)‖2 =

∫

Ω

β−1(Πhf − f) · (β(ũ− u)−IRT0(β(ũ− u)))+

∫

Ω

β1/2(u− uh) · β1/2(ũ− u)

+

∫

Ω

β−1(qh − Πhqh) · (β(ũ− u)−IRT0(β(ũ− u)))+

∫

Ω

β−1/2(βuh − qh) · β1/2(ũ− u)

≤ C(β)(osc(f) + osc(qh))‖β(ũ− u)‖ǫ + (‖β1/2(u− uh)‖ + η0)‖β1/2(ũ− u)‖ǫ.
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By the discrete Cauchy-Schwarz inequality and (2.43), we obtain

‖χ1/2 curl(ũ− u)‖2 ≤ C(β)(osc(f) + osc(qh) + ‖u− uh‖β,χ)‖u− ũ‖ǫ,

and by the estimate ‖u− ũ‖ǫ ≤ C‖χ1/2 curl(ũ− u)‖, for some C > 0 depending on β and
χ, we conclude that

‖χ1/2 curl(ũ− u)‖ ≤ C(β, χ)(‖u− uh‖β,χ + osc(f) + osc(qh)).

2.4.4 Numerical tests

We first check the reliability of our estimator. For that purpose, we solve the two-
dimensional Maxwell equations on the unit square Ω = (0, 1)2. We take isotropic meshes
composed of triangles and use the lowest order Nédélec, the P1-conforming and the first
order Raviart-Thomas finite elements to compute the finite element solution uh and the
fluxes jh and qh, respectively.
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Fig. 2.13 – The ratio ‖|u− uh‖|/η wrt to DoF for the first example

As first example, we suppose that Ω admits a decomposition into four sub-domains
Ω1 = (0, 0.5)2, Ω2 = (0.5, 1) × (0, 0.5), Ω3 = (0.5, 1)2 and Ω4 = (0, 0.5) × (0.5, 1) and
introduce the exact solution

u = curlϕ where ϕ = [y(1 − y)(2y − 1)x(1 − x)(2x− 1)]2.

We fix χi = 1, for all i = 1, . . . , 4, β2 = β4 = 1 and take different values of β1 = β3. In Figure
2.14, we have plotted the error and the estimator for two values of β (the other values of β
give rise to similar results), there we see that the approximated solution converges toward
the exact one with a convergence rate of 1 and that the estimator has a similar behavior.
This is confirmed in Figure 2.13, where we present, for some values of β, the effectivity
index, i.e., the ratio ‖|u−uh‖|/η. From this figure we can say that our estimator is reliable
since the effectivity index is bounded by approximatively 0.75.
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Fig. 2.14 – ‖|u − uh‖| and η wrt DoF for example 1 with β1 = 1 (left) and β1 = 0.0001
(right).

As second example we take the exact solution

u = ∇
(
e−x/

√
εx(1 − x)y(1 − y)

)

on the domain Ω and fix β = 1 and χ = ε for different values of ε. This solution presents
an exponential boundary layer of width O(

√
ε) along the line x = 0.
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Fig. 2.15 – The ratio ‖|u− uh‖|/η wrt to DoF for example 2.
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Fig. 2.16 – ‖|u − uh‖| and η wrt to DoF for example 2 with χ = 1 (left) and χ = 0.01
(right).

As before we show in Figure 2.16 the error and the estimator for two values of ǫ and we
see a convergence rate of 1 for the error and the estimator. In Figure 2.15, we present the
effectivity index, for some values of ǫ. Again we can assert that our estimator is reliable
since the effectivity index is bounded by approximatively 0.38.

As for second order scalar problems, to illustrate the performance of our estimator,
we present on two typical examples the meshes obtained after some iterations using an
iterative algorithm based on the same marking and refinement procedures.

For the first example we take Ω = (−1, 1)2, with χ = 1 and a discontinuous coefficient
β = a, corresponding to the decomposition of Ω into 4 sub-domains Ωi, i = 1, . . . , 4 from
the second example of section 2.3.2. As exact solution, we take u = ∇S, where S is given
by (4.25). Such a solution is a typical singularity of the Maxwell system at (0, 0) [22] (it
belongs to H(curl) ∩ H(div ) but not to (H1)2). Therefore a refinement of the mesh near
this point can be expected. This is confirmed by Figures 2.17 on the meshes obtained for
a1 = 5 and a1 = 100 respectively.

Remark 2.4.6. Unlike the domain, that is symetrical with respect to the straight line of
equation y = −x, the exact solution, i.e. u = ∇S, is not symetrical with respect to this
straight line. This implies that the adpative meshes obtained are not necessarily symetrical.

Finally as second example, we take the L-shape domain Ω = (−1, 1)2 \ (−1, 0)× (0, 1),
χ = β = 1, and as exact solution u = ∇S, where S is given by (2.19). Again this solution
is a typical singularity of the Maxwell system at (0, 0) [22]. A refinement of the mesh near
this point is once more confirmed numerically in Figure 2.18.

As for the reaction-diffusion problems, all these tests allow to conclude that our propo-
sed estimator is reliable and efficient. Note further that the effectivity index always remains
under the value of 1, as theoretically predicted.
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Fig. 2.17 – Adaptive mesh after 15 iterations on the left and 10 iterations on the right for
the first example and criterion ηT > 0.75 maxT ′ ηT ′ , with respectively a1 = 5 and a1 = 100.
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Fig. 2.18 – Adaptive mesh after 10 iterations for the second example and criterion ηT >
0.75 maxT ′ ηT ′.
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Chapitre 3

Comparison of the three a posteriori

error estimators

In this chapter, we compare all the estimators we have constructed for the Maxwell
equations and that we will denote as follows

η2
T,0 = h2

Tβ
−1
T ‖ div(βuh)‖2

T +
∑

e⊂∂T

heβ
−1
e ‖Je,n‖2

e,

η2
Ned =

∑

T∈Th

(
η2

T,0 + h2
Tβ

−1
T ‖rT‖2

T +
∑

e⊂∂T

heβ
−1
e ‖Je,t‖2

e

)
,

η2
CN =

∑

T∈Th

(
η2

T,0 + α2
T‖rT‖2

T +
∑

e⊂∂T

χ−1/2
e αe‖Je,t‖2

e

)
,

η2
flux =

∑

T∈Th

(
‖β−1/2(βuh − qh)‖2

T + ‖χ−1/2 (χ curl uh − jh) ‖2
T

)
.

They are tested with the iterative algorithm using the marking procedure presented in the
second chapter :

ηT > 0.75 max
T ′

η′T .

For that purpose, we solve the two-dimensional Maxwell equations and take meshes com-
posed of triangles. We use the lowest order Nédélec, the P1-conforming and the first order
Raviart-Thomas finite elements to compute the finite element solution uh and the fluxes jh
and qh, respectively. We present here, for three kind of exact solutions, the meshes obtained
for the different estimators, with the same number of iterations, where the triangles of the
meshes are colored with respect to the value of their local error (See Fig. 3.1)

3.1 A solution with a boundary layer

As first example, we consider, on the unit square Ω = (0, 1)2, the exact solution :

u = ∇
(
e−x/

√
εx(1 − x)y(1 − y)

)
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Fig. 3.1 – value of the local error.

presenting a boundary layer along the axis x = 0, for two different values of ε. In a first
time, we impose a limitation on the minimal angle to refine our mesh and compare our es-
timators for different steps of the refinement procedure, in Figures 3.2 and 3.3 for ε = 10−1

and Figures 3.4 and 3.5 for ε = 10−3.

As expected, the meshes obtained, in all the tests, are refined on the boundary layer.
In Figure 3.2, ηCN and ηNed seems to have a similar behaviour and this is confirmed by the
test for ε = 10−3 (see Fig. 3.4) where the meshes obtained after 15 iterations are exactly
the same for the two estimators.

Now comparing ηCN with the flux estimator ηflux, we notice, in Figures 3.3 and 3.5, that
this last one needs fewer iterations than ηCN to get a fine mesh and the local errors decrease
fastlier. This is pointed up with the zooms we make on a part of the layer (see Fig. 3.6 - 3.7)

In a second time, we no more impose this minimal angle on the refinement procedure
and have a look on the meshes obtained after 15 iterations (see Fig. 3.8 - 3.9) for the
different value of ε. We do not represent the mesh obtained for the Nédélec estimator as
it is the same as for the Clément-Nédélec estimator. In this case, we know that the mesh
in the boundary layer should be composed of thin triangles with large edges parallel to
the boundary axis x = 0. This phenomenon is quite presented in the case that we use the
equilibrated estimator ηflux but it is no more the case for ηCN . This can be explained by the
fact that, for ηflux, the theory for the upper bound, presented for isotropic meshes, remains
valid for anisotropic meshes, with the constant appearing in the upper bound still equal to
1. On the contrary, for ηCN , this constant depends on the mesh and we can conclude that
the theory has to be adapted for an anisotropic mesh.
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Fig. 3.2 – Iterative meshes obtained for the solution with boundary layer for ε = 0.1 : on
the left for ηCN , on the right for ηNed, from the top to the bottom, the initial mesh, after
5, 10 and 15 iterations.
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Fig. 3.3 – Iterative meshes obtained for the solution with boundary layer for ε = 0.1 : on
the left for ηCN , on the right for ηflux, from the top to the bottom, the initial mesh, after
5, 10 and 15 iterations.
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Fig. 3.4 – Iterative meshes obtained for the solution with boundary layer for ε = 0.001 :
on the left for ηCN , on the right for ηNed, from the top to the bottom, the initial mesh,
after 5, 10 and 15 iterations.
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Fig. 3.5 – Iterative meshes obtaineded for the solution with boundary layer for ε = 0.001 :
on the left for ηCN , on the right for ηflux, from the top to the bottom, the initial mesh,
after 5, 10 and 15 iterations.
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Fig. 3.6 – Iterative meshes obtained for the solution with boundary layer ε = 0.1, zoom
on the intervall (0, 0.1)× (0.3, 0.6) in the layer : on the left for ηCN , on the right for ηflux,
after 15 iterations.

Fig. 3.7 – Iterative meshes obtained for the solution with boundary layer ε = 0.001, zoom
on the intervall (0, 0.3)× (0.3, 0.6) in the layer : on the left for ηCN , on the right for ηflux,
after 15 iterations.
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Fig. 3.8 – Iterative meshes obtained for the solution with boundary layer ε = 0.1 without
minimal angle : on the left for ηCN , on the right for ηflux. On the top, the meshes obtained
after 15 iterations, on the bottom, we zoom on the intervall (0, 0.06) × (0.2, 0.4) in the
layer.

Fig. 3.9 – Iterative meshes obtained for the solution with boundary layer ε = 0.001 without
minimal angle : on the left for ηCN , on the right for ηflux. On the top, the meshes obtained
after 15 iterations, on the bottom, we zoom on the intervall (0, 0.06) × (0.2, 0.4) in the
layer.
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3.2 The checkerboard : a test with discontinuous co-

efficients

As second example, we take Ω = (−1, 1)2, with χ = 1 and a discontinuous coefficient
β, corresponding to the decomposition of Ω into 4 sub-domains Ωi, i = 1, . . . , 4 from the
second example of section 2.3.2. As exact solution, we take u = ∇S, where S is given by
(4.25). We know that a refinement of the mesh near this point is expected. Figures 3.10
- 3.11 and 3.12 - 3.13 represent the meshes obtained for 4 subdomains with β1 = 5 and
β1 = 100 respectively.

The estimators ηCN and ηNed have, one more time, quite the same behaviour. In such
tests, we use large values of β and we remark that those two estimators have a common

part, corresponding to
∑

T∈Th

η2
T,0, which involves the jump of the component βuh · n over

edges in the term denoted Je,n. This part of the estimator is the dominant one, that explain
such a similar behaviour.
Comparing now ηCN with ηflux, we still first remark that ηflux is more efficient because it
refines fastlier than ηCN in few iterations. If we look at Figure 3.11 we notice that, in the
beginning, when the mesh is coarse, the residual estimator better localises the singularity
and the area to refine. But finer becomes the mesh, better the equilibrated estimator loca-
lises and refines efficiently the singularity. This is confirmed by the zooms we make on the
singularity, where we notice that the local error near the point (0, 0) is smaller for ηflux

after 15 iterations.

3.3 A singular solution on the L-shape domain

Finally, we take the L-shape domain Ω = (−1, 1)2 \ (−1, 0) × (0, 1), χ = β = 1, and
as exact solution u = ∇S, where S is given by (2.19). A refinement of the mesh near this
point is once more obtained numerically in Figures 3.17 and 3.18.

As already mentioned before, we find the same meshes for the residual estimators. We
have to remark that, this time, they are better than the ones obtained for ηflux. Indeed,
they better localise the refinement of the singularity and the local error better decreases.
They are less diffusive.

3.4 Conclusion

Unlike in chapter 1, the two kind of residual estimators ηCN and ηNed are very similar in
all tests we presented. Indeed, in chapter 1, it was proved that, when the coefficients take

105



Fig. 3.10 – Iterative meshes obtained for the second solution with 4 subdomains for β1 = 5 :
on the left for ηCN , on the right for ηNed, from the top to the bottom, the initial mesh,
after 5, 10 and 15 iterations.
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Fig. 3.11 – Iterative meshes obtained for the second solution with 4 subdomains for β1 = 5 :
on the left for ηNed, on the right for ηflux, from the top to the bottom, the initial mesh,
after 5, 10 and 15 iterations.
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Fig. 3.12 – Iterative meshes obtained for the second solution with 4 subdomains for β1 =
100 : on the left for ηCN , on the right for ηNed, from the top to the bottom, the initial
mesh, after 3, 5 and 7 iterations.
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Fig. 3.13 – Iterative meshes obtained for the second solution with 4 subdomains for β1 =
100 : on the left for ηCN , on the right for ηflux, from the top to the bottom, the initial
mesh, after 3, 5 and 7 iterations.
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Fig. 3.14 – Iterative meshes obtained for the second solution with 4 subdomains for β1 =
100 : on the left for ηCN , on the right for ηflux, after 9 iterations.

Fig. 3.15 – Iterative meshes obtained for the second solution with 4 subdomains for β1 = 5,
zoom on the singularity on (−0.1, 0.1)2 : on the left for ηCN , on the right for ηflux, after 15
iterations.

Fig. 3.16 – Iterative meshes obtained for the second solution with 4 subdomains for β1 =
100, zoom on the singularity : on the left for ηCN on (−0.025, 0.0.025)2, on the right for
ηflux on (−0.1, 0.1)2, after 9 iterations.
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Fig. 3.17 – Iterative meshes obtained for the third example : on the left for ηCN , on the
right for ηNed, from the top to the bottom, the initial mesh, after 2, 4 and 6 iterations.
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Fig. 3.18 – Iterative meshes obtained for the third example : on the left for ηCN , on the
right for ηflux, from the top to the bottom, the initial mesh, after 2, 4 and 6 iterations.
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a large type of values, ηCN remains more robust than ηNed. This can may be explained by
the fact that the values of the coefficients are constant in two of the three tests and that
in the last one, for a solution in the chekerboard, the coefficient β is to large to notice the
difference between the two estimators. To be sure, we program this test for small values of
the coefficient like 10−1 or 10−3 and we see one more time that they are equivalent. Indeed,
altough the second part of the estimator get a different value, depending on whether it is
ηNed or ηCN , the irrotational part η0 remain much more dominant.

All the tests presented before prove that the estimator built with fluxes, ηflux, is more
performant than the two others. Indeed, unless we can see, in particular on the L-shape
domain, that it is more diffusive, it builds, fastlier than the other, an adapted mesh. We
need less iterations, compared to the residual estimators, to obtain a mesh well refined
near the singularities as expected. this might be explained by the fact that the constant
in the upper bound (2.36) is equal to 1 whereas for the others the constant in the bound
not only depend on the coefficients but also on the triangulation. These constants may
underestimate the error and, altough the value of the local indicators decreases, the error
remains large locally.
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Chapitre 4

Equilibrated error estimators for

discontinuous Galerkin methods

We consider some diffusion problems in domains of R
d, d = 2 or 3 approximated by

a discontinuous Galerkin method with polynomials of any degree. We propose a new a
posteriori error estimator based on H(div )- conforming elements. It is shown that this
estimator gives rise to an upper bound where the constant is one up to higher order terms.
The lower bound is also established with a constant depending on the aspect ratio of the
mesh, the dependence with respect to the coefficients being also traced. The reliability and
efficiency of the proposed estimator is confirmed by some numerical tests.

4.1 Introduction

Among other methods, the finite element method is one of the more popular that is
commonly used in the numerical realization of different problems appearing in engineering
applications, like the Laplace equation, the Lamé system, the Stokes system, the Max-
well system, etc.... (see [14, 17, 39]). More recently discontinuous Galerkin finite element
methods become very attractive since they present some advantages, like flexibility, adap-
tivity, etc... In our days a quite large literature exists on the subject, we refer to [4, 20]
and the references cited there. Adaptive techniques based on a posteriori error estimators
have become indispensable tools for such methods. For continuous Galerkin finite element
methods, there now exists a vast amount of literature on a posteriori error estimation for
problems in mechanics or electromagnetism and obtaining locally defined a posteriori er-
ror estimates. We refer to the monographs [3, 6, 40, 52] for a good overview on this topic.
On the other hand a similar theory for discontinuous methods is less developed, let us
quote [10, 16, 24, 27, 28, 30, 51].

Usually upper and lower bounds are proved in order to guarantee the reliability and
the efficiency of the proposed estimator. Most of the existing approaches involve constants
depending on the shape regularity of the elements and/or of the jumps in the coefficients ;
but these dependences are oftenly not given. Only a few number of approaches gives rise to
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estimates with explicit constants, let us quote [3,13,35,38,42,46] for continuous methods.
For discontinuous methods, we may cite the recent preprints [2, 36] : in the first one, the
author considers second order elliptic operators in two-dimensional domains and a discon-
tinuous method with polynomials of degree 1, while in the second preprint the authors
present essentially numerical experiments.

Our goal is therefore to consider second order elliptic operators in two- or three-
dimensional domains with mixed boundary conditions and a discontinuous method with
polynomials of any degree and further to derive an a posteriori estimator with an explicit
constant in the upper bound (more precisely 1) up to oscillating terms. Our approach,
called the equilibrated approach [2, 13, 36, 46], is based on the following idea : it consists
to build a vector field jh, which is a H(div )-conforming approximation of the stress, i.e.,
it solves

div jh = −Πf,

where Πf is the L2 projection of the right-hand side f on the set of piecewise polynomial
functions on the triangulation. Then we use jh − a∇uh as estimator for the conforming
part of the error, when uh is the finite element approximation of the exact solution. The
difference with [2] relies on the determination of jh that we obtain here by using Raviart-
Thomas finite elements instead of P1 elements. The use of Raviart-Thomas finite elements
seems to be more natural, allows to use polynomials of any degree and to consider any
space dimension.

Note that the non conforming part of the error is managed using a Helmholtz decom-
position of the error and a standard Oswald interpolation operator [2, 30]. Furthermore
using standard inverse inequalities, we show that our estimator is locally efficient but in
the lower bound, we trace the dependence of the constant with respect to the variation of
the coefficients of the differential operator.

The schedule of the chapter is as follows : We recall in section 2 the diffusion problem,
its numerical approximation and an appropriate Helmholtz decomposition of the error.
Section 3 is devoted to the introduction of the estimator based on Raviart-Thomas ele-
ments and the proofs of the upper and lower bounds. The upper bound directly follows
from the construction of the estimator, while the lower bound requires the use of some in-
verse inequalities and some properties of the equilibrated fluxes. Finally in section 4 some
numerical tests are presented that confirm the reliability and efficiency of our estimator.

Let us finish this introduction with some notation used in the remainder of the chapter :
On D, the L2(D)-norm will be denoted by ‖ · ‖D. In the case D = Ω, we will drop the
index Ω. The usual norm and semi-norm of Hs(D) (s ≥ 0) are denoted by ‖ · ‖s,D and
| · |s,D, respectively. Finally, the notation a . b and a ∼ b means the existence of positive
constants C1 and C2, which are independent of the mesh size, of the quantities a and b under
consideration and of the coefficients of the operators such that a . C2b and C1b . a . C2b,
respectively. In other words, the constants may depend on the aspect ratio of the mesh as
well as the polynomial degree l (see below).

116



4.2 The boundary value problem and its discretiza-

tion

Let Ω be a bounded domain of R
d, d = 2 or 3 with a Lipschitz boundary Γ that we

suppose to be polygonal (d = 2) or polyhedral (d = 3). We further assume that Ω is
simply connected and that Γ is connected. We consider the following elliptic second order
boundary value problem with non homogeneous mixed boundary conditions :






−div (a ∇u) = f in Ω,
u = gD on ΓD,

a∇u · n = gN on ΓN ,
(4.1)

where Γ = Γ̄D ∪ Γ̄N and ΓD ∩ ΓN = ∅. If ΓD = ∅ we further impose that
∫
Ω
f +

∫
ΓN
gN = 0

and an unique solution exists if we require
∫
Ω
u = 0.

In the sequel, we suppose that a is piecewise constant, namely we assume that there
exists a partition P of Ω into a finite set of Lipschitz polygonal/polyhedral domains
Ω1, · · · ,ΩJ such that, on each Ωj , a = aj where aj is a real positive constant. The va-
riational formulation of (4.1) involves the bilinear form

B(u, v) =

∫

Ω

a∇u · ∇v

and the Hilbert space

H1
D(Ω) = {u ∈ H1(Ω) : u = 0 on ΓD and

∫

Ω

u = 0 if ΓD = ∅}.

Given f ∈ L2(Ω), gD ∈ H
1
2 (ΓD) and gN ∈ L2(ΓN) (satisfying

∫
Ω
f +

∫
ΓN
gN = 0 if

ΓD = ∅), the weak formulation consists in finding u ∈ w +H1
D(Ω) such that

B(u, v) =

∫

Ω

fv +

∫

ΓN

gNv, ∀v ∈ H1
D(Ω), (4.2)

where w ∈ H1(Ω) is a lifting for gD, i.e., w = gD on ΓD. Invoking the positiveness of a,

the bilinear form B is coercive on H1
D(Ω) with respect to the norm

(∫

Ω

a|∇u|2
)1/2

and

this coerciveness guarantees that problem (4.2) has a unique solution by the Lax-Milgram
lemma.

4.2.1 Discontinuous Galerkin approximated problem

Following [4,30], we consider the following discontinuous Galerkin approximation of our
continuous problem : We consider a triangulation Th made of triangles T if d = 2 and of
tetrahedra if d = 3 whose edges/faces are denoted by e. We assume that this triangulation is
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regular, i.e., for any element T , the ratio
hT

ρT
is bounded by a constant σ > 0 independent

of T and of the mesh size h = maxT∈Th
hT , where hT is the diameter of T and ρT the

diameter of its largest inscribed ball. We further assume that Th is conforming with the
partition P of Ω, i.e., the function a is constant on each T ∈ Th, we then denote by aT the
value of a restricted to an element T . With each edge/face e of an element T , we associate
a unit normal vector ne, and nT stands for the outer unit normal vector of T . E represents
the set of edges/faces of the triangulation. In the sequel, we need to distinguish between
edges/faces included into Ω, ΓD or ΓN , in other words, we set

Eint = {e ∈ E : e ⊂ Ω},
ED = {e ∈ E : e ⊂ ΓD},
EN = {e ∈ E : e ⊂ ΓN}.

For shortness, we also write EID = Eint ∪ ED.
Problem (4.2) is approximated by the (discontinuous) finite element space :

Xh =

{
vh ∈ L2(Ω)|vh|T ∈ Pl(T ), T ∈ Th and

∫

Ω

vh = 0 if ΓD = ∅
}
,

where l is a fixed positive integer. The space Xh is equipped with the norm

‖q‖DG,h :=



‖a1/2∇hq‖2
Ω + γ

∑

e∈EhID

h−1
e ‖
[[
q
]]

e
‖2

e




1/2

,

where γ is a positive parameter fixed below.
For our further analysis we need to define some jumps and means through any e ∈ E of

the triangulation. For e ∈ E such that e ⊂ Ω, we denote by T+ and T− the two elements of
Th containing e. Let q ∈ Xh, we denote by q±, the traces of q taken from T±, respectively.
Then we define the mean of q on e by

{{
q
}}

=
q+ + q−

2
.

For v ∈ [Xh]
d, we denote similarly

{{
v
}}

=
v+ + v−

2
.

The jump of q on e is now defined as follows :

[[
q
]]

e
= q+nT+ + q−nT− .

Remark that the jump
[[
q
]]

e
of q is vector-valued.
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For a boundary edge/face e, i. e., e ⊂ ∂Ω, there exists a unique element T+ ∈ Th

such that e ⊂ ∂T+. Therefore the mean and jump of q are defined by
{{
q
}}

= q+ and[[
q
]]

e
= q+nT+ .

For q ∈ Xh, we define its broken gradient ∇hq in Ω by :

(∇hq)|T = ∇q|T , ∀T ∈ Th.

With these notations, we define the bilinear form Bh(., .) as follows :

Bh(uh, vh) :=
∑

T∈Th

∫

T

a∇uh · ∇vh −
∑

e∈EhID

∫

e

(
{{
a∇hvh

}}
·
[[
uh

]]
e
+
{{
a∇huh

}}
·
[[
vh

]]
e
)

+ γ
∑

e∈EhID

h−1
e

∫

e

[[
uh

]]
e
·
[[
vh

]]
e
, ∀uh, vh ∈ Xh,

where the positive parameter γ is chosen large enough to ensure coerciveness of the bilinear
form Bh on Xh (see, e.g., Lemma 2.1 of [30]), namely according to the results from [50],
the choice

γ >
(l + 1)(l + d)

d
max
T∈Th

(
aT

∑

e⊂∂T

he
|∂T |
|T |

)
(4.3)

yields the coerciveness of Bh.
The discontinuous Galerkin approximation of problem (4.2) reads now : Find uh ∈ Xh,

such that
Bh(uh, vh) = F (vh), (4.4)

where

F (vh) =

∫

Ω

fvh +
∑

e∈ED

∫

e

gD(γh−1
e vh − a∇vh · nT ) +

∫

ΓN

gNvh, ∀vh ∈ Xh.

As our approximated scheme is a non conforming one (i.e. the solution does not belong
to H1

D(Ω)), as usual we need to use an appropriate Helmholtz decomposition of the error
(see Lemma 3.2 of [25] or Theorem 1 of [2] in 2D and Lemma 6.5 of [23] in 3D) :

Lemma 4.2.1 (Helmholtz decomposition of the error). We have the following error de-
composition

a∇h(u− uh) = a∇ϕ+ curlχ, (4.5)

with χ ∈ H1(Ω) if d = 2 and χ ∈ H1(Ω)3 if d = 3 is such that

curlχ · n = 0 on ΓN , (4.6)

and ϕ ∈ H1
D(Ω). Moreover the next identity holds :

‖a1/2∇h(u− uh)‖2 = ‖a1/2∇hϕ‖2 + ‖a−1/2 curlχ‖2. (4.7)
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Proof: We consider the following problem : find ϕ ∈ H1
D(Ω) solution of






div a(∇h(u− uh) −∇ϕ) = 0 in Ω,
ϕ = 0 on ΓD,
a(∇h(u− uh) −∇ϕ) · n = 0 in ΓN .

(4.8)

The weak formulation of that problem (4.8) is :

∫

Ω

a∇ϕ · ∇v =

∫

Ω

a∇h(u− uh) · ∇v, ∀v ∈ H1
D(Ω). (4.9)

As the vector field a(∇h(u− uh) −∇ϕ) is divergence free in Ω, i.e.,

div a(∇h(u− uh) −∇ϕ) = 0 in Ω,

by Theorem I.3.1 of [26] if d = 2 or Theorem I.3.4 of [26] if d = 3, there exists χ ∈ H1(Ω)
if d = 2 and χ ∈ H1(Ω)3 if d = 3 such that

curlχ = a(∇h(u− uh) −∇ϕ).

This proves the identity (4.5). The boundary condition (4.6) satisfied by χ follows from
the boundary condition satisfied by a(∇h(u− uh) −∇ϕ) on ΓN .

The identity (4.7) directly follows by using Green’s formula and the boundary condition
(4.6). Indeed using (4.5) we may write

‖a1/2∇h(u− uh)‖2 = ‖a1/2∇hϕ‖2 + ‖a−1/2 curlχ‖2 + 2

∫

Ω

∇ϕ · curlχ.

In the last term, using Green’s formula we have
∫

Ω

∇ϕ · curlχ = −
∫

Ω

ϕdiv curlχ+

∫

Γ

ϕ curlχ · n ds = 0,

since the boundary term is zero by using the boundary condition ϕ = 0 on ΓD and by
using (4.6) on ΓN .

4.3 The a posteriori error analysis based on Raviart-

Thomas finite elements

Error estimators can be constructed in many different ways as, for example, using
residual type error estimators which measure locally the jump of the discrete flux [30]. A
different method, based on equilibrated fluxes, consists in solving local Neumann boundary
value problems [3]. Here, introducing the flux as auxiliary variable, we locally define an
error estimator based on a H(div )-conforming approximation of this variable. This method
avoids solving the supplementary above-mentioned local subproblems. Indeed in many
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applications, the flux j = a∇u is an important quantity, introducing this auxiliary variable,
we transform the original problem (4.1) into a first order system. If gN = 0, its weak
formulation gives rise to the following saddle point problem : Find (j, u) ∈ HN(div ,Ω) ×
L2(Ω) such that

∫

Ω

a−1j τ +

∫

Ω

div τ u =

∫

ΓD

gDτ · n, ∀τ ∈ HN(div ,Ω), (4.10)

∫

Ω

div j w = −
∫

Ω

f w, ∀w ∈ L2(Ω), (4.11)

the natural space for the flux being

HN(div ,Ω) =
{
q ∈ [L2(Ω)]2|div q ∈ L2(Ω) and q · n = 0 on ΓN

}
.

Therefore the discrete flux approximation jh will be searched in a H(div )-conforming space
Vh based on the Raviart-Thomas finite elements. This means that our error estimate of the
conforming part of the error is based on the error between a∇huh and an approximating
flux jh of j that we search in the Raviart-Thomas finite element space

Vh =
{
vh ∈ H(div ,Ω)|vh|T ∈ RTl−1(T ), T ∈ Th

}
,

where RTl(T ) = [Pl(T )]d + P̃l(T )




x1
...
xd


 and P̃l(T ) stands for the space of homogeneous

polynomials of degree l.
On a triangle/tetrahedron T , an element p of RTl−1(T ) is characterized by the degrees

of freedom given by

•
∫

e

p · n q, ∀q ∈ Pl−1(e), ∀e ⊂ ∂T,

•
∫

T

p · q, ∀q ∈ [Pl−2(T )]d.

Therefore we fix the discrete flux jh by setting
∫

e

jh · nT q =

∫

e

gT,e q, ∀q ∈ Pl−1(e), ∀e ⊂ ∂T, (4.12)
∫

T

jh · q =

∫

T

a∇uh · q − aT l∂T (q), ∀q ∈ [Pl−2(T )]d, (4.13)

where for all e ⊂ ∂T , gT,e is defined by

gT,e =
({{

a∇huh

}}
− γh−1

e

[[
uh

]]
e

)
· nT if e ∈ Eint,

gT,e = a∇huh · nT − γh−1
e (uh − gD) if e ∈ ED,

gT,e = gN if e ∈ EN ,
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and the linear form l∂T is given by

l∂T (q) =
1

2

∑

e⊂∂T\Γ

∫

e

[[
uh

]]
e
· q +

∑

e⊂∂T∩ΓD

∫

e

(uh − gD) q · nT .

Denote by Πl−1 the L2-projection on Wh =
{
wh ∈ L2(Ω)|wh|T ∈ Pl−1(T ), T ∈ Th

}
.

Then, we have the following projection lemma.

Lemma 4.3.1. Assume that jh ∈ Vh satisfies (4.12)-(4.13) on each element T of Th. Then,
we obtain

div jh = −Πl−1f. (4.14)

Proof: Let T be an element of the triangulation. As jh ∈ Vh, div jh ∈ Wh and by Green’s
formula, it follows that, for all w ∈ Pl−1(T ),

∫

T

div jh w = −
∫

T

jh ∇w +

∫

∂T

jh · nT w.

Now, from (4.12), (4.13), we get

∫

T

div jh w = −Bh(uh, w̃) +

∫

∂T∩ΓN

gN w

+

∫

∂T∩ΓD

gD(γh−1
e w − a∇w · nT ),

where w̃ mean the extension of w by zero outside T . By the discontinous Galerkin formu-
lation (4.4), we conclude that

∫

T

div jh w = −
∫

T

fw.

Remark 4.3.2. If l = 1 and d = 2, alternative constructions of jh are given in Lemma
6 of [2], our proposed construction has the advantage to hold for any space dimension as
well as any degree l.

Remark 4.3.3. The terms gT,e in (4.12) actually play the role of flux functions (in the
terminology of [3]). They further fulfil the so-called equilibrated equations (compare with
Lemma 5 of [2])

∑

e⊂∂T

∫

e

gT,e = −
∫

T

f,

due to the above proof with w = 1.
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We introduce the conforming part of the estimator ηCF that only involves the difference
between the discrete flux approximation jh and a∇uh :

η2
CF =

∑

T∈Th

η2
CF,T , (4.15)

where the indicator ηCF,T is defined by

ηCF,T = ‖a−1/2 (a∇uh − jh) ‖T .

For the nonconforming part of the error, we associate with uh, its Oswald interpolation
operator, namely the unique element wh ∈ Xh∩H1(Ω) defined in the following natural way
(see Theorem 2.2 of [30]) : to each node n of the mesh corresponding to Lagrangian-type
degree of freedom of Xh ∩H1(Ω), the value of wh is the average of the values of uh at this

node n if it belongs to Ω ∪ ΓN (i.e., wh(n) =
P

n∈T |T |uh|T (n)P
n∈T |T | ) and the value of gD at this

node if it belongs to Γ̄D (here we assume that gD ∈ C(Γ̄D)). Then the non conforming
indicator ηNC,T is simply

ηNC,T = ‖a1/2∇(wh − uh)‖T .

The non conforming part of the estimator is then

η2
NC =

∑

T∈Th

η2
NC,T . (4.16)

Similarly we introduce the estimator corresponding to jumps of uh :

η2
J =

∑

e∈EhID

η2
J,e,

with

η2
J,e =

{
γ
he
‖
[[
uh

]]
e
‖2

e if e ∈ Eint,

γ
he
‖uh − gD‖2

e if e ∈ ED.

The higher order terms depending on the data f and gN are defined as

osc(f)2 =
∑

T∈Th

h2
Ta

−1
T ‖f − Πl−1f‖2

T ,

osc(gN)2 =
∑

T∈Th

hTa
−1
T

∑

e∈EN :e⊂∂T

‖gN − πl−1gN‖2
e,

where πl−1g means the L2-projection of g on {w ∈ L2(ΓN) : w|e ∈ Pl−1(e), ∀e ∈ EN}.
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4.3.1 Upper bound

Theorem 4.3.4. Assume that there exists vh ∈ Xh∩H1(Ω) such that gD = vh|ΓD
. Then the

energy norm of the error between the exact solution and its finite element approximation
is bounded from above by the estimator and the higher order oscillation terms, this means
that there exists C > 0 such that

‖a1/2∇h(u− uh)‖ ≤ (η2
CF + η2

NC)1/2 + C (osc(f) + osc(gN)), (4.17)

and consequently

‖u− uh‖DG,h ≤ (η2
CF + η2

NC + η2
J)1/2 + C (osc(f) + osc(gN)). (4.18)

Proof: From the Helmholtz decomposition of the error we have

‖a1/2∇h(u− uh)‖2 = ‖a1/2∇ϕ‖2 + ‖a−1/2 curlχ‖2. (4.19)

We are then reduced to estimate each term of this right-hand side.
For the non conforming part, we proceed as in [2], namely by Green’s formula we have

‖a−1/2 curlχ‖2 =

∫

Ω

∇h(u− uh) · curlχ

= −
∫

Ω

∇huh · curlχ +

∫

ΓD

gD curlχ · n

=

∫

Ω

∇h(wh − uh) · curlχ,

since
∫
Ω
∇wh · curlχ =

∫
ΓD
gD curlχ ·n. By Cauchy-Schwarz’s inequality we directly obtain

‖a−1/2 curlχ‖2 ≤ ηNC‖a−1/2 curlχ‖. (4.20)

For the conforming part, we write

‖a1/2∇ϕ‖2 =

∫

Ω

a∇h(u− uh) · ∇ϕ

=

∫

Ω

(a∇u− jh) · ∇ϕ+

∫

Ω

(jh − a∇huh) · ∇ϕ.

Applying Green’s formula in the first term of this right-hand side, we obtain

‖a1/2∇ϕ‖2 =

∫

Ω

(−div (a∇u) + div jh)ϕ

+
∑

T∈Th

∫

T

a
−1/2
T (jh − a∇uh)a

1/2
T ∇ϕ+

∫

ΓN

(gN − πl−1gN)ϕ

=

∫

Ω

(f − Πl−1f)ϕ+
∑

T∈Th

∫

T

a
−1/2
T (jh − a∇uh) · a1/2

T ∇ϕ+

∫

ΓN

(gN − πl−1gN)ϕ.
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As f − Πl−1f ⊥ wh, ∀wh ∈ Pl−1(T ), it follows

‖a1/2∇ϕ‖2 ≤
∑

T∈Th

‖f − Πl−1f‖T‖ϕ− Πl−1ϕ‖T +
∑

T∈Th

∑

e∈EN :e⊂∂T

‖gN − πl−1gN‖e‖ϕ− πl−1ϕ‖e

+
∑

T∈Th

‖a1/2∇ϕ‖T‖a−1/2(jh − a∇uh)‖T

≤
∑

T∈Th

(
C‖f − Πl−1f‖ThT‖∇ϕ‖T + C

∑

e∈EN :e⊂∂T

‖gN − πl−1gN‖eh
1/2
T ‖∇ϕ‖T

+ ‖a1/2∇ϕ‖T‖a−1/2(jh − a∇uh)‖T

)
.

This last estimate follows from standard interpolation error estimates. This finally yields

‖a1/2∇ϕ‖2 ≤ (ηCF + Cosc(f) + Cosc(gN))‖a1/2∇ϕ‖. (4.21)

Coming back to the identity (4.19), and using the estimates (4.20) and (4.21) we conclude
by discrete Cauchy-Schwarz’s inequality and again using (4.19) :

‖a1/2∇h(u− uh)‖2 ≤ ηNC‖a−1/2 curlχ‖ + (ηCF + C(osc(f) + osc(gN)))‖a1/2∇ϕ‖
≤ (η2

NC + η2
CF )1/2(‖a−1/2 curlχ‖2 + ‖a1/2∇ϕ‖2)1/2

+ C(osc(f) + osc(gN))‖a1/2∇ϕ‖
≤ [(η2

NC + η2
CF )1/2 + C(osc(f) + osc(gN))]‖a1/2∇h(u− uh)‖.

4.3.2 Lower bound

Our lower bound is based on the equivalence of the L2-norm of any element in Vh with
a discrete mesh dependent norm invoking the degrees of freedom of RTl−1.

Lemma 4.3.5. Let vh ∈ RTl(T ) with T ∈ Th, then the following equivalence holds

‖vh‖2
T ∼ h

1/2
T

∑

e⊂∂T

sup
q∈Pl(T ):‖q‖e=1

∣∣∣∣
∫

e

vh · nT q

∣∣∣∣ (4.22)

+ sup
q∈[Pl−1(T )]d:‖q‖T =1

∣∣∣∣
∫

T

vh · q
∣∣∣∣ .

Proof: The proof is standard and simply uses scaling arguments and the so-called Piola
transformation.

Using the above lemma, we are now able to provide a local lower bound for our esti-
mator ηCF,T .
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Theorem 4.3.6. For each element T ∈ Th the following estimate holds

ηCF,T . a
−1/2
T max{1, aT} max

T ′⊂ωT

{a1/2
T ′ }‖u− uh‖DG,ωT

, (4.23)

where ωT denotes the patch consisting of all the triangles/tetrahedra of Th having a no-
nempty intersection with T and

‖v‖2
DG,ωT

= ‖a1/2∇hv‖2
ωT

+ γ
∑

e∈EID:e⊂ωT

h−1
e ‖
[[
v
]]

e
‖2

e.

Proof: By its definition (4.15), we deduce, from Lemma 4.3.5, that

ηCF,T = a
−1/2
T ‖a∇uh − jh‖T

∼ a
−1/2
T

[
h

1/2
T

∑

e⊂∂T

sup
q∈Pl−1(T ):‖q‖e=1

∣∣∣∣
∫

e

(jh − a∇uh) · nT q

∣∣∣∣

+ sup
q∈[Pl−2(T )]d:‖q‖T =1

∣∣∣∣
∫

T

(jh − a∇uh) · q
∣∣∣∣
]

By (4.12) and (4.13), we see that

ηCF,T . a
−1/2
T

[
h

1/2
T

∑

e⊂∂T\Γ
sup

q∈Pl−1(T ):‖q‖e=1

∣∣∣∣
∫

e

[[
a ∂uh

∂nT

]]
e
· q
∣∣∣∣

+ h
1/2
T

∑

e⊂∂T∩ΓN

sup
q∈Pl−1(T ):‖q‖e=1

∣∣∣∣
∫

e

(a
∂uh

∂nT
− gN) · q

∣∣∣∣

+ h
−1/2
T

∑

e⊂∂T\Γ
sup

q∈Pl−1(T ):‖q‖e=1

∣∣∣∣
∫

e

[[
uh

]]
e
· q
∣∣∣∣

+ h
−1/2
T

∑

e⊂∂T∩ΓD

sup
q∈Pl−1(T ):‖q‖e=1

∣∣∣∣
∫

e

(uh − gD) · q
∣∣∣∣

+ aT sup
q∈[Pl−2(T )]d:‖q‖T =1

∑

e⊂∂T\Γ

∣∣∣∣
∫

e

[[
uh

]]
e
· q
∣∣∣∣

+ aT sup
q∈[Pl−2(T )]d:‖q‖T =1

∑

e⊂∂T∩ΓD

∣∣∣∣
∫

e

(uh − gD) · q
∣∣∣∣
]
.

Using Cauchy-Schwarz’s inequality and the inverse estimate ‖q‖e . h
−1/2
T ‖q‖T , we arrive

at the estimate

ηCF,T . a
−1/2
T h

1/2
T

∑

e⊂T\Γ
‖
[[
a ∂uh

∂nT

]]
e
‖e + a

−1/2
T h

1/2
T

∑

e⊂T∩ΓN

‖a ∂uh

∂nT

− gN‖e

+ a
−1/2
T h

−1/2
T max{1, aT}

∑

e⊂T\Γ
‖
[[
uh

]]
e
‖e + a

−1/2
T h

−1/2
T max{1, aT}

∑

e⊂T∩ΓD

‖uh − gD‖e.
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The two first terms of this right hand side are parts of the standard residual error estimator
and it is by now standard that (using appropriate bubble functions and Green’s formula)

h
1/2
T

∑

e⊂T\Γ
‖
[[
a ∂uh

∂nT

]]
e
‖e + h

1/2
T

∑

e⊂T∩ΓN

‖a ∂uh

∂nT
− gN‖e . ‖a∇h(u− uh)‖ωe.

The two other terms are parts of the DG-norm and are here left in the right-hand side.

For the non conforming part of the estimator, we make use of Theorem 2.2 of [30] to
directly obtain the

Theorem 4.3.7. Let the assumption of Theorem 4.3.4 be satisfied. For each element T ∈
Th the following estimate holds

ηNC,T . a
1/2
T ‖u− uh‖DG,ωT

. (4.24)

Remark 4.3.8. From Theorems 4.3.4, 4.3.6 and 4.3.7, we see that the estimator (η2
CF +

η2
NC + η2

J)1/2 is reliable for the DG-norm with an effectivity index (up to higher order
terms) equal to 1 and is further locally efficient. Nevertheless the arguments of Theorem 3
of [2] (that are readily extended to the case d = 3) show that if γ is large enough, then

ηJ ≤ C(γ)(‖a1/2∇h(u− uh)‖ + osc(f) + osc(gN)),

where C(γ) is a positive constant depending on γ and the aspect ratio of the mesh. This
means that the estimator (η2

CF + η2
NC)1/2 is reliable for the semi-norm ‖a1/2∇h(u − uh)‖

with an effectivity index (up to higher order terms) equal to 1, but it is no more locally
efficient. The numerical tests of the next section confirm these facts.

4.4 Numerical tests

Our two examples consist in solving the equation (4.1) on the square Ω = (−1, 1)2 with
ΓD = Γ and a discontinuous coefficient a. Namely we decompose Ω into 4 sub-domains Ωi,
i = 1, . . . , 4 with Ω1 = (0, 1) × (0, 1), Ω2 = (−1, 0) × (0, 1), Ω3 = (−1, 0) × (−1, 0) and
Ω4 = (0, 1) × (−1, 0) and take a = ai on Ωi, with a1 = a3 and a2 = a4 = 1.

For the first test, for different values of a1, we take as exact solution the smooth function
u(x, y) = (1+x)2(1−x)2y2(1−y)2, which clearly satisfies (4.1) with gD = 0, the right-hand
side f being fixed accordingly. The numerical tests are performed with l = 1 and 2 and
the penalization parameter γ = 10 and γ = 20, respectively. To begin, we check that the
numerical solution uh converges toward the exact solution. To this end, we plot the curves
||u−uh||DG,h and ‖a1/2∇h(u−uh)‖ as well as the estimators ηh = (η2

CF + η2
NC + η2

J)1/2 and
ηh,s = (η2

CF +η2
NC)1/2 as a function of DoF (see Fig. 4.1 and 4.2). A double logarithmic scale

was used so that the slope of the curves yields the order of convergence and that parallel
curves correspond to quantities having a constant ratio. For the different values of a1, we see
that the approximated solution converges toward the exact one with a convergence rate of l,
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that the estimator ηh (resp. ηh,s) is close to the error ||u−uh||DG,h (resp. ‖a1/2∇h(u−uh)‖)
and that the contribution of ηJ is very small. In all cases, we find that the effectivity indices,
i.e., the ratios ||u − uh||DG,h/ηh are smaller than one, as theoretically expected. Indeed if
we compute these effectivity indices, we remark in Figures 4.1 and 4.2 bottom-right that
they are around 0.6 for l = 1 and 0.05 for l = 2, in other words they remain smaller than
one.

As second test, in order to illustrate the performance of our estimator ηh, we show the
meshes obtained after some iterations using an iterative algorithm based on the marking
procedure

ηT > 0.75 max
T ′

ηT ′ ,

and a standard refinement procedure with a limitation on the minimal angle. Using polar
coordinates centered at (0, 0), we take as exact solution (see Example 3 from [38])

S(x, y) = rαφ(θ), (4.25)

where α ∈ (0, 1) and φ are chosen such that S is harmonic on each sub-domain Ωi, i =
1, . . . , 4 and satisfies the jump conditions :

[[
S
]]

= 0 and
[[
a∇S·n

]]
= 0

on the interfaces (i.e. the segments Ω̄i∩Ω̄i+1 (mod 4), i = 1, . . . , 4). We fix non-homogeneous
Dirichlet boundary conditions on Γ accordingly.

It is easy to see (see for instance [22]) that α is the root of the transcendental equation

tan
απ

4
=

√
a1.

This solution has a singular behavior around the point (0, 0) (because α < 1). Therefore
a refinement of the mesh near this point can be expected. This can be checked in Figures
4.3 and 4.4 on the meshes obtained after 20 iterations for a1 = 5 and a1 = 100 respectively
and for which α ≈ 0.53544094560 and α ≈ 0.1269020697 (compare with the meshes from
Example 3 of [38]). Note that the tests are performed with l = 1, γ = 25 and γ = 500
respectively and with l = 2, γ = 75 and γ = 750 respectively. As expected, we may notice
a better final mesh for l = 2 than for l = 1.

Let us remark that the choice of the parameter γ has an influence on the performance
of our algorithm. Indeed, for example 2, we compare and report in Tables 4.1 to 4.4 for
a1 = 5, a1 = 100 and for l = 1 and l = 2, the CPU times needed by our algorithm to obtain
the same mesh after 20 iterations. These tables show that for l = 1 the optimal choice of
γ is around 25 (resp. 500) for a1 = 5 (resp. a1 = 100), while for l = 2, the optimal value is
around 75 (resp. 750) for a1 = 5 (resp. a1 = 100). From these tables, we may notice that if
we go away from the ”optimal” value of γ, then the CPU time increases drastically. Note
further that the obtained optimal values are mainly in accordance with (4.3).

Finally, we check that adaptive refinements are superior to uniform ones by displaying
in Figure 4.5 the decrease of the DG-norm of the error as a function of the total degrees of
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freedom for uniform and adaptive strategies for example 2 with a1 = 5 and a1 = 100 and
for l = 1 and l = 2.

From these examples, we can conclude the efficiency and reliability of our proposed
estimator.
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Fig. 4.1 – First example with l = 1 : : top-left : a1 = a3 = 1, top-right a1 = a3 = 0.1 ;
middle-left a1 = a3 = 0.01, middle-right a1 = a3 = 0.001 ; bottom-left a1 = a3 = 0.0001 ;
bottom-right ratios ‖u− uh‖DG,h/η
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γ 10 10.5 11 13 15 20

CPU Time (×103) bad refinement 305 985 268 656 199 938 60 485 65 453

γ 25 40 50 100

CPU Time (×103) 54 609 61 781 65 469 76 125

Tab. 4.1 – Influence of the parameter γ on the CPU time for the coefficient a1 = 5 and
l = 1 with 20 refinements.

γ 10 100 250 500 750 1000 10 000 15 000

CPU Time (×103) 146 190 129 510 99 220 27 130 33 040 34 410 57 070 60 960

Tab. 4.2 – Influence of the parameter γ on the CPU time for the coefficient a1 = 100 and
l = 1 with 20 refinements.

γ 20 50 75 100 200

CPU Time (×103) 272 860 56 520 41 860 51 940 69 990

Tab. 4.3 – Influence of the parameter γ on the CPU time for the coefficient a1 = 5 and
l = 2 with 20 refinements.

γ 500 750 1000 1500 2000

CPU Time (×103) 317 350 79 080 88 540 118 840 124 830

Tab. 4.4 – Influence of the parameter γ on the CPU time for the coefficient a1 = 100 and
l = 2 with 20 refinements.
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Fig. 4.3 – Adaptive mesh after 20 iterations for the second example with l = 1 : left
a1 = a3 = 5, a2 = a4 = 1 ; right a1 = a3 = 100, a2 = a4 = 1.
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Fig. 4.4 – Adaptive mesh after 20 iterations for the second example with l = 2 : left
a1 = a3 = 5, a2 = a4 = 1 ; right a1 = a3 = 100, a2 = a4 = 1.
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Fig. 4.5 – Comparison between uniform and adaptive refinement procedures for l = 1, 2.
On the top-left : a1 = a3 = 5, l = 1, on the top-right : a1 = a3 = 100, l = 1 ; on the
bottom-left : a1 = a3 = 5, l = 2, on the bottom-right : a1 = a3 = 100, l = 2.
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Conclusion

Dans ce travail, nous sommes partis du système de Maxwell, et nous avons construit
différents types d’estimateurs, à savoir de type résiduel et basés sur des flux équilibrés
issus de la résolution de problèmes locaux. Nous avons calculés explicitement, en fonction
des coefficients intervenant dans les équations, les constantes apparaissant dans les bornes
inférieures et supérieures. Nous avons ainsi montré que ces estimateurs étaient robustes
et l’avons validé numériquement. Nous les avons ensuite comparés, au travers de tests
numériques présentant des solutions singulières, en confrontant les maillages successive-
ment obtenus par une procédure itérative de raffinement.

Face à l’efficacité notable et la rapidité de calculs des estimateurs basés sur des flux
équilibrés, nous avons souhaité étendre cette théorie aux méthodes de type Galerkin dis-
continues. Ainsi, dans le chapitre 4, nous avons regardé l’équation de diffusion ; la gestion
d’un terme d’ordre zéro, comme dans le cas de l’équation de réaction-diffusion, présente
encore actuellement quelques difficultés pour cette méthode. En effet, pour démontrer la
borne supérieure, nous sommes amenés à exprimer le gradient de l’erreur à l’aide d’une
décomposition de type Helmholtz. Il apparâıt alors, lorsqu’on majore supérieurement l’er-
reur par l’estimateur, des termes d’ordre zéro faisant intervenir u − uh contre des termes
issus de la décomposition du gradient de l’erreur et on ne sait pas gérer ces termes. Une
difficulté supplémentaire intervient lorsque l’on passe aux équations de Maxwell, puisqu’il
faut étendre la théorie de Braess et Schöberl pour construire les flux dans le cas discontinu.

La méthode des volumes finis est proche d’une méthode de type Galerkin discontinue,
puisque la solution approchée est construite en tant que constante par morceaux sur les
éléments. Elle représente alors un bon moyen d’appréhender la construction des flux dans
le cas discontinu. Actuellement en cours de développement, pour l’équation de diffusion,
la construction, à partir des volumes finis, d’un estimateur basé sur des flux équilibrés est
aussi une perspective de suite à ce travail, dans le cadre des équations de Maxwell.
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[27] P. Houston, I. Perugia, and D. Schötzau. Energy norm a posteriori error estimation
for mixed discontinuous Galerkin approximations of the Maxwell operator. Comput.
Meth. Applied Mechanics Eng., 194 :499–510, 2005.

[28] P. Houston, I. Perugia, and D. Schötzau. A posteriori error estimation for disconti-
nuous Galerkin discretization of the H(curl)-elliptic partial differential operator. IMA
J. Numer. Analysis, 27 :122–150, 2007.

[29] F. Izsák, D. Harutyunyan, and J. van der Vegt. A posteriori implicit error estimation
for the Maxwell equations. Preprint, University Twente, 2005. submitted to Math.
Comp.

136



[30] O. A. Karakashian and F. Pascal. A posteriori error estimates for a discontinuous
Galerkin approximation of second-order problems. SIAM J. Numer. Anal., 41 :2374–
2399, 2003.

[31] G. Kunert. A posteriori error estimation for anisotropic tetrahedral and triangular
finite element meshes. Logos Verlag, Berlin,, 1999. Also PhD thesis, TU Chem-
nitz,http ://archiv.tu-chemnitz.de/pub/1999/0012/index.html.

[32] G. Kunert. An a posteriori residual error estimator for the finite element me-
thod on anisotropic tetrahedral meshes. Numer. Math., 86(3) :471–490, 2000. DOI
10.1007/s002110000170.

[33] G. Kunert. Robust a posteriori error estimation for a singularly perturbed reaction–
diffusion equation on anisotropic tetrahedral meshes. Adv. Comp. Math., 15(1–4) :237–
259, 2001.

[34] G. Kunert. A posteriori error estimation for convection dominated problems on ani-
sotropic meshes. Math. Methods Appl. Sci., 26 :589–617, 2003.
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[45] S. Nicaise and E. Creusé. A posteriori error estimation for the heterogeneous Maxwell
equations on isotropic and anisotropic meshes. Calcolo, 40 :249–271, 2003.

137



[46] S. Nicaise, K. Witowski, and B. Wohlmuth. An a posteriori error estimator for the
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Méthodes d’éléments finis et estimations d’erreur a posteriori

Dans cette thèse, on développe des estimateurs d’erreur a posteriori, pour l’approximation
par éléments finis des équations de Maxwell en régime harmonique et des équations de
réaction-diffusion. Introduisant d’abord, pour le système de Maxwell, des estimateurs de
type résiduel, on étudie la dépendance des constantes intervenant dans les bornes inférieures
et supérieures en fonction de la variation des coefficients de l’équation, en les considérant
d’abord constants puis constants par morceaux. On construit ensuite un autre type d’es-
timateur, basé sur des flux équilibrés et la résolution de problèmes locaux, que l’on étudie
dans le cadre des équations de réaction-diffusion et du système de Maxwell. Ayant introduit
plusieurs estimateurs pour l’équation de Maxwell, on en propose une étude comparative,
au travers de tests numériques présentant le comportement de ces estimateurs pour des
solutions particulières sur des maillages uniformes ainsi que les maillages obtenus par des
procédures de raffinement de maillages adaptatifs. Enfin, dans le cadre des équations de
diffusion, on étend la construction des estimateurs équilibrés aux méthodes éléments finis
de type Galerkin discontinues.

Mots clefs : Eléments finis, équations de Maxwell, estimations d’erreur, estimations a
posteriori, résidu, flux équilibrés, équations de réaction-diffusion, méthodes de Galerkin
discontinues.

Finite element methods and a posteriori error estimations

In this thesis, we develop a posteriori error estimators, for the finite element approxima-
tion of the time-harmonic Maxwell and reaction-diffusion equations. Introducing first, for
Maxwell’s system, residual type estimators, we study the dependence of the constants ap-
pearing in the lower and upper bounds with respect to the variation of the coefficients of
the equation we consider. Then, we construct another type of estimator, based on equili-
brated fluxes and the resolution of local problems, that we study for the reaction-diffusion
equations and Maxwell’s system. With all the estimators built for the Maxwell equation,
we propose a comparison through numerical tests involving particular solutions on uniform
meshes and refinement procedures with adaptive meshes. Finally, we propose an extension,
for diffusion equations, of the equilibrated estimators to the discontinuous Galerkin finite
element methods.

Key words : Finite elements, Maxwell’s equations, error estimations, a posteriori esti-
mations, residual, equilibrated fluxes, reaction-diffusion equations, discontinuous Galerkin
methods.
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