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THÈSE

présentée par

Maarten Arnst

pour l’obtention du

GRADE DE DOCTEUR
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M. Marc Bonnet (École Polytechnique)
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Résumé

L’objectif de cette thèse est de développer une méthodologie d’identification expérimentale de modèles
probabilistes prédisant le comportement dynamique de structures.

Dans l’introduction générale, nous définissons les différents types de problèmes inverses stochastiques
que nous souhaitons étudier, et présentons l’intérêt en ingénierie d’être capable de les résoudre. Nous
rappelons sommairement les différentes approches existantes pour construire des modèles probabilistes
pour le comportement dynamique de structures, et passons brièvement en revue les méthodes d’inversion
déjà connues pour leur identification expérimentale. À partir des caractéristiques et des principales limi-
tations de ces dernières méthodes, nous introduisons les objectifs de cette thèse.

Dans un premier chapitre, nous décrivons les modèles probabilistes et les données expérimentales util-
isés. Ces modèles probabilistes, à paramétrage minimal [Soize, 2000, 2001, 2006], ont deux avantages.
Le premier est qu’ils possèdent, par construction, les propriétés mathématiques et physiques essen-
tielles de modèles probabilistes de structures. Le deuxième est que leur identification expérimentale peut
généralement être formulée comme un problème inverse bien posé, dont la résolution numérique entraîne
un coût de calcul raisonnable. Les données utilisées sont des fonctions de transfert expérimentales. Elles
sont exprimées dans le domaine fréquentiel, ce qui permet de limiter l’analyse à une bande de fréquences
d’intérêt et de caractériser facilement le bruit expérimental.

Ensuite, nous nous focalisons sur l’inversion de modèles probabilistes à paramétrage minimal à partir
de fonctions de transfert expérimentales. Nous commençons par montrer que les méthodes classiques
d’estimation de la théorie des statistiques mathématiques, telle que la méthode du maximum de vrais-
semblance, ne sont pas bien adaptées pour aborder ce problème. Nous montrons en particulier que des
difficultés numériques, ainsi que des problèmes conceptuels dus au risque d’une mauvaise spécification
des modèles, peuvent entraver l’application des méthodes classiques. Ces difficultés nous conduisent à
proposer une formulation alternative de l’inversion de modèles probabilistes en minimisant une fonction
objectif, mesurant la distance entre les données expérimentales et le modèle probabiliste, par rapport aux
paramètres recherchés. Pour la définition de telles distances, nous proposons deux principes de construc-
tion: soit la fonction de log-vraissemblance, soit l’entropie relative. Nous montrons comment la restric-
tion de ces distances aux lois marginales d’ordre faible permet de surmonter les difficultés mentionnées
plus haut.

Nous distinguons deux types de situations pour l’application des méthodes inverses proposées. Nous con-
sidérons d’une part le comportement dynamique d’une seule structure. Le problème inverse stochastique
a alors pour but d’identifier le modèle probabiliste quantifiant au mieux l’incertitude sur les prédictions
du comportement dynamique de cette structure, résultant d’incertitudes sur les données et d’erreurs de
modélisation. Se concentrant sur le cas où l’utilisation prévue du modèle probabiliste consiste à es-
timer des régions de confiance, nous développons une méthodologie inverse, basée sur la minimisation
d’une distance limitée aux lois marginales d’ordre un. Dans les troisième et quatrième chapitres, cette
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Résumé

méthodologie est appliquée à un exemple avec des données simulées, et à un problème en ingénierie
civile et environnementale avec des mesures réelles.

Ensuite, nous considérons le comportement dynamique d’une collection de structures similaires. Le
problème inverse stochastique a alors pour but d’identifier le modèle probabiliste quantifiant au mieux
la variabilité dans le comportement dynamique de ces structures. En particulier, l’identification de
longueurs de corrélation spatiale et de niveaux de dispersion caractérisant la variabilité dans des champs
de propriétés mécaniques de structures nous amène à proposer une méthodologie inverse, basée sur les
propriétés dispersives d’ondes mécaniques se propageant dans les structures testées. Dans un cinquième
chapitre, cette méthodologie est appliquée à un exemple avec des données simulées.

Les annexes concernent d’abord l’extension aux opérateurs de type parabolique du modèle stochastique
à paramétrage minimal pour des champs stochastiques définissant des opérateurs aux dérivées partielles
stochastiques de type elliptique [Soize, 2006]. Ensuite, nous nous focalisons sur le problème aux valeurs
propres généralisées, défini par les matrices aléatoires introduites dans le cadre de l’approche proba-
biliste non-paramétrique à paramétrage minimal. Dans les troisième et quatrième annexes, de nature
bibliographique, nous rappelons quelques méthodes de traitement de mesures vibratoires, puis la méth-
ode inverse d’analyse spectrale des ondes de surface. Enfin, nous présentons des mesures vibratoires
réelles, qui seront utilisées dans de futures recherches se focalisant sur le développement de méthodes
inverses pour l’identification de champs de propriétés mécaniques de milieux élastiques non-bornés.
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List of Notations

The following list of notations gathers the acronyms and symbols that are often used in this dissertation.

Acronyms

a.e. almost everywhere
a.s. almost surely
BE Boundary Element
CLT Central Limit Theorem
DFT Discrete Fourier Transform
DOF Degree Of Freedom
FE Finite Element
FFT Fast Fourier Transform
iid independent and identically-distributed
MCS Monte Carlo Simulation
ML Maximum Likelihood
MM Method of Moments
P Primary, longitudinal wave
PDF Probability Density Function
S Secondary, shear wave
SASW Spectral Analysis of Surface Waves
SLLN Strong Law of Large Numbers
TF Transfer Function
WLLN Weak Law of Large Numbers

Miscellaneous notations

∃ there exists
∀ for all
∅ the empty set
✶A(x) the indicator function such that ✶A(x) = 1 if x ∈ A and ✶A(x) = 0 otherwise
Γ(x) the gamma function defined for x>0 by Γ(x) =

∫ +∞
0 tx−1 exp(−t)dt
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List of Notations

Euclidean space R
m and Hermitian space C

m

Let i denote the imaginary unit. Let N, Z, R and C respectively denote the set of integers, signed integers,
real scalars and complex scalars:
[a, b] {x ∈ R | a ≤ x ≤ b}
]a, b[ {x ∈ R | a < x < b}
]a, b] {x ∈ R | a < x ≤ b}
[a, b[ {x ∈ R | a ≤ x < b}
R

+, R
−

R
+ = [0,+∞[ and R

− =] −∞, 0]
R

+
0 , R

−
0 R

+ =]0,+∞[ and R
− =] −∞, 0[

R
n, C

n The n-th power of R and C.
Any vector x = (x1, . . . , xn) is identified with the (n× 1) column matrix of its components.

Let α = (α1, . . . , αn) ∈ N
n be a vector of integers:

|α| the modulus of α such that |α| = α1 + . . .+ αn

Let z ∈ C be a complex scalar:
ℜ(z) the real part of z
ℑ(z) the imaginary part of z
|z| the modulus of z
z the complex conjugate of z

Let x,y ∈ R
n be two real vectors:

(x,y) the Euclidean inner product such that (x,y) =
∑n

k=1 xkyk

||x|| the Euclidean norm such that ||x|| =
√

(x,x)

Let x,y ∈ C
n be two complex vectors:

(x,y) the Hermitian inner product such that (x,y) =
∑n

k=1 xkyk

||x|| the Hermitian norm such that ||x|| =
√

(x,x)

Let the vectors {ik ∈ R
n | 1 ≤ k ≤ n} constitute the orthonormal basis for R

n and C
n such that ik is

the vector equal to zero, except for the k-th entry, which takes the value 1.

Real and complex matrices

Let ❑ be R or C. Let Mm×n(❑) be the space of (m × n) matrices X whose entries Xkℓ are in ❑.
If m = n, Mn×n(❑) is denoted simply by Mn(❑). Let MS

n(R), M+0
n (R), M+

n (R) and M+
n (C) be the

subspaces of real symmetric, of real symmetric positive semi-definite, of real symmetric positive definite
and of complex Hermitian positive definite square (n× n) matrices, respectively.

Let X ∈ Mn(❑) be a real or complex square (n× n) matrix:
det(X) the determinant of X

tr(X) the trace of X such that tr(X) =
∑n

k=1Xkk

Let X ∈ Mm×n(❑) be a real or complex rectangular (m× n) matrix:
XT the transpose of X

X∗ the adjoint of X such that X∗ = X
T

||X|| the matrix norm of X such that ||X|| = sup||x||≤1 ||Xx|| , x ∈ ❑n

||X||F the Frobenius norm of X such that ||X||F =
√

tr (XX∗)

The tensor product of x,y ∈ ❑n is the matrix x ⊗ y ∈ Mn(❑) such that x ⊗ y = xyT.
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Differential calculus

Let f be a function of x ∈ R or x ∈ R
m with values in a Banach space V :

f ′ = df
dx the derivative of f : R → V

f ′′ = d2f
dx2 the second derivative of f : R → V

∂f
∂xk

the partial derivative of f : R
m → V with respect to the variable xk

∇xf the gradient of f : R
m → R or C such that ∇xf =

∑m
k=1

∂f
∂xk

ik

Dxf the gradient of f : R
m → R

n or C
n such that Dxf =

∑m
k=1

∂f
∂xk

⊗ ik

divxf the divergence of f : R
m → R

n or C
n such that:

divxf = tr (Dxf) =
∑m

k=1

(
∂f
∂xk

, ik

)

DivxF the divergence of F : R
m → Mn(R) or Mn(C) such that:

DivxF =
∑m

k=1

∑n
ℓ=1

∂Fkℓ
∂xk

iℓ

Functional spaces1

Let K be a compact subset of R
m and V a Banach space:

C0(K,V ) the space of continuous functions defined on K with values in V

Let Ω be an open subset of R
m, V a Banach space with norm ||·||V and 1 ≤ p ≤ +∞:

Lp(Ω, V ) the space of almost everywhere (a.e.) equivalence classes of measurable functions
f : Ω → V such that

∫
Ω ||f ||pV dx < +∞

L∞(Ω, V ) the space of a.e. equivalence classes of measurable functions
f : Ω → V such that ∃c ∈ R : ||f(x)||V ≤ c a.e. in Ω

Let Ω be an open subset of R
m, ❑ be R or C and 1 ≤ p ≤ +∞:

Hp(Ω,❑) the Sobolev space of functions f ∈ L2(Ω,❑) such that:

∀α ∈ N
m with |α| ≤ p :

(
∂

∂x1

)α1

. . .
(

∂
∂xm

)αm

f ∈ L2(Ω,❑)

Operators and forms on Hilbert spaces1

Let V and W be real Hilbert spaces with norms ||·||V and ||·||W :
L (V,W ) the space of linear continuous (bounded) functions f : V →W such that:

∀v ∈ V, λ ∈ R : f(λv) = λf(v) and ∃c ∈ R : ∀v ∈ V : ||f(v)||W ≤ c ||v||V
V ′ the dual space of V , i.e. the space L (V,R) of linear continuous forms on V
〈·, ·〉V ′,V the duality product between V ′ and V such that:

∀f ∈ L (V,R) : ∃f ∈ V ′ : ∀v ∈ V : f(v) = 〈f ,v〉V ′,V

(denoted simply by 〈·, ·〉 when there is no possible confusion)
B(V,W ) the space of bilinear continuous (bounded) forms f : V ×W → R such that:

∀v ∈ V,w ∈W,λ ∈ R : f(λv,w) = f(v, λw) = λf(v,w)
and ∃c ∈ R : ∀v ∈ V,w ∈W : |f(v,w)| ≤ c ||v||V ||w||W
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Let V and W be complex Hilbert spaces with norms ||·||V and ||·||W :
L (V,W ) the space of antilinear continuous (bounded) functions f : V →W such that:

∀v ∈ V, λ ∈ C : f(λv) = λf(v) and ∃c ∈ R : ∀v ∈ V : ||f(v)||W ≤ c ||v||V
V ′ the antidual space of V , i.e. the space L (V,C) of antilinear continuous forms on V
〈·, ·〉V ′,V the antiduality product between V ′ and V such that:

∀f ∈ L (V,C) : ∃f ∈ V ′ : ∀v ∈ V : f(v) = 〈f ,v〉V ′,V

(denoted simply by 〈·, ·〉 if there is no possible confusion)
B(V,W ) the space of sesquilinear continuous (bounded) forms f : V ×W → C such that:

∀v ∈ V,w ∈W,λ ∈ C : f(λv,w) = f(v, λw) = λf(v,w)
and ∃c ∈ R : ∀v ∈ V,w ∈W : |f(v,w)| ≤ c ||v||V ||w||W

Random variables2

Throughout the dissertation, (A,F , P ) is a probability measure space, where A is the sample space
of outcomes, F the σ-algebra of events and P : F → [0, 1] a probability measure. Let (V,BV ) be
a measurable space, where V is a finite- or infinite dimensional space and BV is a σ-algebra over V .
A random variable ❳ defined on (A,F , P ) with values in V is a measurable mapping from (A,F)
into (V,BV ) such that (definition of a measurable mapping):

∀B ∈ BV : ❳−1(B) ∈ F , (1)

where ❳−1(B) denotes the set {a ∈ A | ❳(a) ∈ B}. The random variable ❳ induces a probability
measure P❳ on (V,BV ) such that:

∀B ∈ BV : P❳(B) = P
(
❳−1(B)

)
. (2)

Two random variables ❳,❨ : A → V are said to be almost surely (a.s.) equal if:

P ({a ∈ A | ❳(a) 6= ❨(a)}) = 0. (3)

In the dissertation, we make no distinction between a random variable and its a.s. equivalence class
wherever this is not required for the clarity of the text.

Let V be, moreover, a Banach space endowed with the norm ||·||V and let B(V ) be the Borel σ-
algebra generated by the open sets. The space L0(A, V ) denotes the space of a.s. equivalence classes
of random variables defined on (A,F , P ) with values in V , i.e. of measurable mappings from (A,F)
into (V,B(V )). The space L2(A, V ) denotes the subspace of L0(A, V ) of second-order random vari-
ables:

L2(A, V ) =
{
❳ ∈ L0(A, V ) : E

{
||❳||2V

}
< +∞

}
, (4)

where the symbol E denotes the integral with respect to the probability measure (the mathematical
expectation). For instance, for ϕ : V → R a measurable mapping:

E {ϕ(❳)} =

∫

V
ϕ(x)P❳(dx). (5)

where P❳ is the probability measure induced by ❳ on (V,B(V )).

1For more details concerning this section, the reader is referred to Brezis [1999], Dautray and Lions [1987], Reed and Simon
[1980], Royden [1988].

2For more details concerning this section, the reader is referred to Billingsley [1995], Da Prato and Zabczyk [1992], Dudley
[2002], Krée and Soize [1986], Ledoux and Talagrand [1991], Lin and Cai [1995], Soize [1993].
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General introduction

The present chapter serves as a general introduction to the entire dissertation. First, we introduce the
problem of the inversion of probabilistic models for the dynamical behaviour of structures (Sec. 1).
Subsequently, we describe the state of the art and identify further needs of research (Sec. 2). Finally, we
define the objectives of this work and outline the organization of the text (Sec. 3).

1 Problem outline and motivation

Following Keller [1976], two problems are called inverses of one another if the formulation of each of
them requires full or partial knowledge of the solution of the other. According to this definition, it is
clearly arbitrary which of the two problems is called direct and which one is called the inverse problem.
In cases where one of the two problems has been studied earlier, and perhaps more extensively, it is
generally agreed to call this one the direct problem, whereas the other is the inverse problem. In this
dissertation, we distinguish, moreover, between inverse problems associated either to deterministic, or to
probabilistic direct problems. The former are referred to as classical inverse problems, whereas the latter
are called stochastic inverse problems.

In the following, we first recall the main classes of classical inverse problems frequently encountered in
computational mechanics and describe their general mathematical formulation (Sec. 1.1). Subsequently,
two kinds of stochastic inverse problems are introduced (Sec. 1.2).

1.1 Classical inverse problems in computational mechanics

Let us first introduce the context in which the main types of classical inverse problems are defined (Fig. 1).

Designed structure

Manufacturing
process

xxqqqqqqqqqqqqqqqqqqqqqqq

Modelling
process

%%LLLLLLLLLLLLLLLLLLLL

fobs // Real structure // yobs f // Deterministic
structural model

// y(s)

Parameters s

OO

Figure 1: Classical inverse problems: designed structure, real structure and deterministic model.
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General introduction

In computational mechanics, the structure conceived by the designers and analysts is often referred to as
the designed structure. The design specifies the geometry, the material types and many other features. It
may concern a simple structure such as an elastic bar, or a complex structure such as a building.

The structure manufactured according to the design specifications is called here the real structure. Usu-
ally, the real structure differs from the designed structure in that, for instance, its geometrical parameters
and material properties may not coincide with the prescribed design values.

When a deterministic structural model is used to predict the dynamical response of the real structure
due to a prescribed applied loading f , a deterministic value y(s) is obtained. The model predictions
usually depend on a set s of parameters, which typically comprises geometrical parameters, fields of
material properties and boundary conditions. A deterministic structural model is most often an imper-
fect representation of the dynamical behaviour of the real structure for two reasons. First, there may be
parameter uncertainty in that there may be a lack of knowledge of the geometrical parameters, material
properties and boundary conditions of the real structure. In this case, the model parameters are usually
referenced from the designed structure and may therefore imperfectly characterize the real structure. Sec-
ond, modelling errors may have been introduced by simplifying approximations made in the modelling
process, either stemming from a poor understanding of the dynamical behaviour of the real structure, or
being deliberately introduced to reduce the model complexity. Examples of potential modelling errors
are linearization, the use of simple constitutive laws, or the use of simplified models for joints.

Three kinds of classical inverse problems are frequently encountered in computational mechanics. The
first kind concerns model identification and updating methods [see Bobillot, 2002, Deraemaeker, 2001,
Friswell and Mottershead, 1995, Teughels, 2003, and references therein], which aim at improving an
initial deterministic structural model, which might be a poor representation of the real structure due to
the aforementioned reasons, by tuning its parameters so as to bring the model predictions into agreement
with experimental observations. The second class of classical inverse problems gathers model parameter
estimation methods [see Andrieux, 2005, Bonnet, 2006, Colton and Kress, 1992, Kirsch, 1996, Tarantola,
2005, and references therein]. Examples are vibration-based structural-health monitoring, gravimetry,
acoustic imagery or seismic tomography, where internal heterogeneous characteristics are reconstructed
from external measurements. The third kind of classical inverse problems concerns force identification
methods [see Bonnet, 2006, and references therein], where, given (perhaps imperfect) knowledge of the
experimental dynamical response and the model parameters, the applied forces are sought.

Many classical inverse problems are formulated as the minimization, with respect to the unknown param-
eters to be identified, of a suitable objective function that quantifies the distance (misfit) between exper-
imental data and corresponding model predictions. For instance, in the aforementioned model updating
and model parameter estimation problems, a vibration test is often considered, in which a controlled,
or known, force fobs is applied on the real structure and the induced response yobs is measured. Upon
using the deterministic structural model to forecast the outcome of the vibration test, obtaining for the
force f modelling fobs a predicted response y(s), the optimal value of the unknown parameters s is
then identified by:

ŝ = arg min
s∈S

∣∣∣
∣∣∣yobs − y(s)

∣∣∣
∣∣∣ , (6)

where the parameter space S collects the admissible values of s. The least-squares distance method is
frequently used to set up such objective functions, although other metrics have also been considered (see
the aforementioned references for examples).

Classical inverse problems are often ill-posed in the sense of Hadamard [1923]. A problem is called
well-posed if:
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1. There exists a solution to the problem (existence).

2. The problem admits at most one solution (uniqueness).

3. The solution depends continuously on the data (stability).

If one of these properties fails to hold, the problem is called ill-posed. From the mathematical point of
view, the existence or uniqueness of a solution can be enforced by enlarging or shrinking the parameter
space. The stability property is the one of primary concern, which is motivated by the fact that, when
the inverse problem lacks the stability property, small inevitable measurement errors in the experimental
data may be amplified to unacceptable large errors in the solution. Several methods have been proposed
in the literature for restoring the uniqueness and the stability:

1. A first class of methods attempts to enforce the stability property by changing the topologies of
the parameter and experimental data space.

2. A second class of methods consists in augmenting the objective function with Tikhonov regular-
ization terms [Tikhonov and Arsenin, 1977]. These methods include additional information, often
referred to as a priori information, in the inverse problem so as to obtain an alternative stable
problem whose regularized solution lies in the vicinity of the exact solution of the original prob-
lem (provided its existence).

3. A third class of methods uses the Bayesian paradigm [Bayes, 1763] to include a priori information
into the inverse problem so as to obtain an alternative stable problem. First, a Bayesian prior
Probability Density Function (PDF) is defined representing whatever information on the unknown
model parameters is available in advance of making any observations in the current experiment.
Then, the information gathered from this experiment using the mathematical-mechanical model
is also represented by a PDF. Subsequently, the Bayesian posterior PDF, which represents all
the information after making the observations, is obtained as the conjunction of these two states
of information, or, equivalently, as the intersection of these two PDFs [Tarantola, 2005, 2008].
Finally, as a solution to the inverse problem, one can take, for instance, the model parameters at
which the posterior PDF attains its maximum.

1.2 Stochastic inverse problems in computational mechanics

This subsection first describes the contrasting concepts of epistemic and aleatory uncertainty. Subse-
quently, two kinds of stochastic inverse problems are introduced.

Epistemic and aleatory uncertainty

Two kinds of uncertainties have been debated by scientific philosophers, who have called them epis-
temic and aleatory uncertainty [see, for instance, O’Hagan, 2004]. Epistemic uncertainty refers to a
lack of knowledge of some characteristics of a physical system under study. This kind of uncertainty
is reducible in that it can be diminished by an increase in knowledge or information. For example, an
imperfect knowledge of the field of material properties of a complex structure or a poor understanding
of its constitutive behaviour are categorized as epistemic uncertainty.

In contrast, aleatory uncertainty refers to an inherent variability in a physical system under study. A key
feature is that this kind of uncertainty cannot be reduced by increasing knowledge or information. For
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a simple example, consider a steel factory, where, every day, a sample is taken from the daily produc-
tion and its tensile strength is measured. The variability in the outcome of this experiment due to the
variability in the production process can then be viewed as aleatory uncertainty.

The distinction between these two kinds of uncertainty is closely related to the dichotomy between
the two principal theories of statistics, namely the frequentist and the Bayesian theories [Jaynes, 2003,
O’Hagan, 2004]. One characterization of the difference between them is that frequentists do not ac-
cept that epistemic uncertainty can be described or measured by probabilities, whereas Bayesians use
probabilities to quantify any kind of uncertainty. For frequentists, a probability represents the long-run
frequency with which an event occurs if some experiment is repeated an indefinite number of times. For
Bayesians, a probability may also represent a state of information or, equivalently, a degree-of-belief in
the truth of a proposition.

Epistemic uncertainty quantification

We now introduce a first class of stochastic inverse problems, which we gather under the heading “epis-
temic uncertainty quantification”.

Designed structure

Manufacturing
process

xxqqqqqqqqqqqqqqqqqqqqqqq

Modelling
process

%%LLLLLLLLLLLLLLLLLLLL

fobs // Real structure // yobs f // Probabilistic
structural model

// ❨(p)

Parameters p

OO

Figure 2: Epistemic uncertainty quantification: designed structure, real structure and probabilistic model.

Similarly to the classical inverse problems, this first kind of stochastic inverse problems is posed in a con-
text in which a single real structure is studied (Fig. 2). Since, as discussed above, parameter uncertainty
and modelling errors usually arise in the mathematical-mechanical modelling process, any structural
model is generally an imperfect representation of the real structure. In other words, given any structural
model for the dynamical behaviour of the real structure, one generally remains uncertain about its actual
dynamical behaviour. This uncertainty is epistemic in nature in that it represents a lack of knowledge. In
order for designers or analysts to be able to use a particular model in a predictive manner, it is clearly of
key importance to attempt to quantify the epistemic uncertainty in the predictions. This task is closely
related to validation, which can be defined [AIAA, 1998, Hemez, 2004] as the process of determining
the degree to which the model is an accurate representation of the real structure from the perspective of
its intended predictive use.

Probabilistic approaches provide a way to account for the uncertainty arising in the modelling process
and to quantify its impact on the predictions. When a probabilistic structural model is used to predict the
dynamical response of the real structure due to a prescribed applied loading f , a random variable ❨(p) is
obtained, rather than a deterministic value, which generally depends on a set p of parameters. The best-
known approach for constructing such a probabilistic model is the parametric probabilistic approach [see,
for instance, Ghanem and Spanos, 1991, Ibrahim, 1987, Lin and Cai, 1995, Soize, 2006] and involves
representing the geometrical parameters, the fields of material properties and the boundary conditions

4



of a structural model by random quantities (variables, fields, operators). The parameters p then typically
control the probability distribution of these random quantities.

The objective of the first kind of stochastic inverse problems is the quantification of the epistemic un-
certainty arising in the modelling process. More precisely, a stochastic inverse problem of the first kind
is defined as the experimental identification of a probabilistic structural model such that the probabil-
ity distribution of its random predictions “as adequately as possible” represents the uncertainty in these
predictions, which results from parameter uncertainty and modelling errors. This probability distribution
should be interpreted from a Bayesian point of view in that it is meant to represent an imperfect knowl-
edge, or, equivalently, a degree-of-belief in the truth of the predictions (since only a single real structure
is considered, it can clearly not be interpreted from a frequentist point of view as if it were representing
long-run frequencies of occurrence).

Within the general framework of this first class of stochastic inverse problems, we concentrate in this
dissertation on the particular case where the intended use of the probabilistic structural model to be iden-
tified consists in predicting confidence regions. Specifically, we focus on the inversion of probabilistic
structural models such that, upon using the identified model to forecast the dynamical response of the
real structure due to a prescribed applied loading, a confidence region (associated to a high probability
level) for the predicted random response can be viewed as a region within which the actual dynamical
response of the real structure lies. Confidence regions of this kind provide designers and analysts with a
characterization of the predictive accuracy: if the width of the confidence interval is large, the predictive
accuracy is small and vice versa.

Finally, it should be noted that the use of experimental data to quantify epistemic uncertainty, and to
validate models, is a controversial subject. To non-Bayesians, the quantification of epistemic uncertainty
may seem a contradictio in terminis. Furthermore, several authors have argued that experimental data
should only be used to falsify models and not to validate them [Popper, 1959, Tarantola, 2006].

Box 0.1. Illustrative example: epistemic uncertainty quantification

This box gives an example of a stochastic inverse problem aimed at quantifying epistemic uncertainty.

Figure 3: (left, middle) Real structure and (right) structural model.

In the frame of the European CONVURT project (the CONtrol of Vibrations from Underground Rail-
way Traffic), a deterministic model was built for the transmission of vibrations from the underground-
railway tunnel of the RER B line of RATP to the Maison du Mexique building at the Cité Universitaire
site in Paris in France (Fig.3) [Arnst, 2003, Chebli et al., 2007, Clouteau et al., 2005, Degrande et al.,
2006]. Clearly, parameter uncertainty unavoidably arises, and significant modelling errors may be
introduced, when modelling a highly complex coupled dynamical problem of this kind.
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Figure 4: Measured response (blue solid line) and confidence region for the corre-
sponding predicted random response (red patch).

To assess the impact of the parameter uncertainty and modelling errors on the model predictions,
in situ measurements were performed of the dynamical response in the Maison du Mexique due
to excitations applied on the rails in the tunnel [Chatterjee et al., 2003]. Furthermore, a probabilistic
model was built associated to the deterministic model [Arnst et al., 2006]. An example of a stochastic
inverse problem of the first kind is the experimental identification of this probabilistic model to
quantify “as adequately as possible” the uncertainty in the predictions, such that the identified model
can be used to predict confidence regions whose size characterizes the predictive accuracy (Fig. 4).
This example will be elaborated in detail in Chapter 4.

Aleatory uncertainty quantification

We now introduce a second class of stochastic inverse problems, which we gather under the heading
“aleatory uncertainty quantification”.

Designed structure

Manufacturing
process

wwoooooooooooooooooooooooo

Modelling
process

%%LLLLLLLLLLLLLLLLLLLL

fobs // Real structure S(a1) // yobs
1 f // Probabilistic

structural model
// ❨(p)

fobs // Real structure S(a2) // yobs
2 Parameters p

OO

...

Figure 5: Aleatory uncertainty quantification: designed structure, collection of real structures and proba-
bilistic model.

As opposed to the above-considered classical and stochastic inverse problems, this second kind of
stochastic inverse problems is posed in a context in which a collection of real structures manufactured
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according to the design specifications is studied (Fig. 5).

All manufacturing is subjected to variability, or, equivalently, to aleatory uncertainty. Examples of sources
of variability are the manpower, the materials, wear of tools and machines and changes in ambient con-
ditions such as temperature or humidity. Due to the inherent variability in the manufacturing process,
the real structures are expected to be similar, but not perfectly identical. Consequently, their dynamical
behaviour is expected to exhibit variability.

The objective of the second kind of stochastic inverse problems is the quantification of the aleatory uncer-
tainty arising in the manufacturing process. More precisely, a stochastic inverse problem of the second
kind is defined as the experimental identification of a probabilistic structural model which represents “as
adequately as possible” the variability in the dynamical behaviour of the real structures. The probability
distribution of the random predictions should, this time, be interpreted from a frequentist point of view
in that it is meant to represent frequencies of occurrence.

The parameters p may sometimes not only have a mere mathematical meaning as parameters of the
probabilistic model to be identified, but may themselves also bear a physical meaning and be of engi-
neering interest. For an example, consider a collection of similar real structures whose fields of material
properties are heterogeneous and exhibit variability. Let a probabilistic structural model be built by rep-
resenting these fields of material properties by random fields parameterized by spatial correlation lengths
and dispersion levels. It may then be of engineering interest to recover adequate estimates of these pa-
rameters, rather than to obtain an adequate comprehensive probabilistic dynamical model. Within the
general framework of the second class of stochastic inverse problems, we concentrate in this dissertation
on this particular case, namely on the identification of spatial correlation lengths and dispersion levels
that “as adequately as possible” characterize the variability in fields of material properties of structures.

Box 0.2. Illustrative example: aleatory uncertainty quantification (1)

This box gives a first example of a stochastic inverse problem aimed at quantifying aleatory uncer-
tainty. Let us consider a production line manufacturing aircraft engines of a fixed design. The vibra-
tory characteristics of aircraft engines, in particular of bladed-disk assemblies, are well-known to be
very sensitive to manufacturing variability [see, for instance, Capiez-Lernout, 2004]. An example of
a stochastic inverse problem of the second kind is the experimental identification of a probabilistic
model for the dynamical behaviour of the manufactured engines which represents “as adequately as
possible” the variability in their vibratory characteristics. The identified model may then be used, for
instance, to compare this variability to prescribed performance specifications. When the variability
level is too high, the production line may be required to meet more stringent tolerances.

Box 0.3. Illustrative example: aleatory uncertainty quantification (2)

This box gives a second example of a stochastic inverse problem aimed at quantifying aleatory un-
certainty. In the frame of our collaboration with the Department of Civil Engineering of KULeuven
in Belgium, in situ wave propagation measurements were performed along the free surface of the
soil at a site in Lincent in Belgium (Fig. 6). In the frame of the French Seismulator ANR-project, a
probabilistic model for the dynamical behaviour of this soil was built by representing the fields of
mechanical properties by random fields parameterized by spatial correlation lengths and dispersion
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levels (Fig. 6). An example of a stochastic inverse problem of the second kind is the identification
of the spatial correlation lengths and dispersion levels that “as adequately as possible” characterize
the variability in the fields of mechanical soil properties using the experimental data gathered in situ.
This example will be further elaborated in Chapter 5 and Appendices A and E.

x
3

x
1ox

2

Figure 6: (left) Soil at the site of Lincent and (right) dynamical soil model.

It should be noted that an inverse problem of this kind embeds an implicit ergodicity type hypothesis.
Upon viewing the particular soil under study as one realization of a random soil, this hypothesis con-
sists in assuming that the spatial correlation lengths and dispersion levels characterizing the random
soil can be recovered from the single available realization.

2 State of the art and further needs

The previous section has demonstrated that the inversion of probabilistic structural models has interest-
ing engineering applications. This has lead to a large amount of research in computational mechanics
dedicated to the construction of probabilistic structural models and to current and emerging research
devoted to their inversion. In the following, we first briefly describe the state of the art in probabilistic
mechanics (Sec. 2.1) and in solving stochastic inverse problems (Sec. 2.2). Subsequently, we indicate
where further research is required (Sec. 2.3).

2.1 State of the art in probabilistic mechanics

Probabilistic mechanics is nowadays a rich and well-developed area of research, in which a wide vari-
ety of methods for constructing probabilistic structural models has been proposed [see Ibrahim, 1987,
Manohar and Ibrahim, 1999, Schueller, 2001, Schueller et al., 1997, for reviews]. A possible way to dis-
tinguish between them consists in separating the parametric and the non-parametric methods. Parametric
probabilistic models accommodate uncertainty by modelling the local physical features of a structural
model (i.e. its geometrical parameters, fields of material properties and boundary conditions) by random
variables or fields [see, for instance, Ghanem and Spanos, 1991, Ibrahim, 1987, Lin and Cai, 1995].
Non-parametric probabilistic models incorporate uncertainty by modelling global features of a struc-
tural model by random variables. An example is the non-parametric approach proposed by Soize [2000,
2001], where reduced matrix models of structures are defined in terms of random matrices.
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A central problem in the practical construction of a probabilistic structural model is the choice of the
stochastic model, that is to say the probability distribution, of the random variables, fields or matri-
ces modelling either the local, or the global features. It is today recognized that this stochastic model
should be chosen on the basis of only the available information, which typically consists of experimen-
tal data (such as measurements of the dynamical response of the real structure(s) under study) and of
the essential mathematical or physical properties that the probabilistic model should possess (such as
positiveness, symmetry or invertibility, depending on the quantity that is being modelled).

A general approach to the construction of the stochastic model consists in representing the probability
distribution of the random variables, fields or matrices in a versatile manner as a function of a large
number of parameters. For example, this probability distribution can be represented by a truncated poly-
nomial chaos expansion [see, for instance, Desceliers et al., 2006, Ghanem and Spanos, 1991, Soize
and Ghanem, 2004, Wiener, 1938], whereby the coefficients of this expansion make up the large set of
parameters of the stochastic model. In this setting, the parameters of the stochastic model, ergo of the
probabilistic structural model, should be identified from the available information. An inherent difficulty
associated to this approach is that the identification of such a large set of parameters may be difficult in
practice (ill-posedness, computational cost).

Soize [2000, 2001, 2006] presented an alternative approach whereby the essential mathematical proper-
ties are explicitly used to build the probability distribution of the random variables, fields or matrices.
That probability distribution is chosen, which maximizes entropy [Jaynes, 1957, 2003, Shannon, 1948]
under the constraint that the mathematical properties should be fulfilled. This principle of construction
allows obtaining stochastic models parameterized by the mean value of the random variables, fields or
matrices, and by a minimal set of essential parameters (such as spatial correlation lengths and disper-
sion levels). A key advantage is that their experimental identification can generally be formulated as a
well-posed inverse problem that is numerically solvable with a reasonable computational effort.

Finally, it should be noted that, even though the above-described probabilistic methods are being de-
veloped in collaboration with industrial partners and have already been applied to real engineering case
histories, their integration in industrial design and decision processes, insofar as we can judge it, still
lacks a lot of maturity and experience and remains a largely open challenge.

2.2 State of the art in stochastic inverse methods

Stochastic inverse problems arise in many scientific disciplines including, apart from computational me-
chanics, biometry, econometry and sociometry. The theory of mathematical statistics is an interdisci-
plinary research field within which methods for solving stochastic inverse problems are studied and
developed. Its historical development can be traced back to the work of Bernoulli [1778], Gauss [1809]
and Bayes [1763] about 2 centuries ago. Today, it is a rich and well-developed research area [see Casella
and Berger, 2001, Cramér, 1946, Kullback, 1968, Lehmann and Casella, 1998, O’Hagan and Forster,
2004, Stuart et al., 1999, for standard texts].

The theory of mathematical statistics focuses almost exclusively on stochastic inverse problems aimed
at quantifying aleatory uncertainty. The basic model problem that this theory tries to solve has the fol-
lowing setup. Generally, a random experiment is considered, i.e. an experiment which can be repeated a
large number of times under similar circumstances and whose outcome exhibits variability. For a simple
example, consider again a steel factory, where, every day, a sample is taken from the daily production
and its tensile strength is measured. A stochastic model for the random experiment is typically assumed
to be given, that is to say a probability distribution defined on the possible outcomes depending on a set
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of unknown parameters. For example, the steel tensile strength may be modelled by a lognormal ran-
dom variable with unknown mean value and standard deviation. The problem of interest to the theory of
mathematical statistics is then the estimation of these parameters from a data set of observed samples.

The theory of mathematical statistics distinguishes between correctly specified and misspecified stochas-
tic models. A stochastic model is correctly specified when it can fit the random experiment perfectly. In
this case, the parameters for which the stochastic model perfectly reproduces the data-generating prob-
ability distribution are called the “true” parameters. Conversely, a stochastic model that imperfectly
represents the random experiment no matter the value of its parameters is called misspecified.

Three stochastic inverse methods, often called the classical methods of estimation, are well-established
and frequently used, namely the Method of Moments (MM) [Pearson, 1894], the method of Maximum
Likelihood (ML) [Fisher, 1912] and the Bayes estimation method [Bayes, 1763]. They were devised
specifically for the inversion of correctly specified stochastic models: it can be shown [Cramér, 1946,
Strasser, 1981, Wald, 1949] that the parameter estimates obtained using these methods generally con-
verge to the “true” value of the sought parameters when more and more experimental data are acquired.

It is nowadays well-known in the theory of mathematical statistics that considerable difficulties may arise
in the practical application of the classical methods of estimation. First, the associated computational cost
may be prohibitive. Second, when the stochastic model is misspecified, the estimation method may lead
to unsatisfactory parameter estimates or may even simply reject the stochastic model. To overcome these
difficulties, alternative methods of estimation were introduced, including the generalized method of mo-
ments [Hansen, 1982], M-estimation [Huber, 1967, 1981] and divergence minimization estimation [Basu
and Lindsay, 1994, Beran, 1977, Keziou, 2003]. Similarly to the classical inverse problems (Sec. 1.1),
these methods formulate stochastic inverse problems as the minimization, with respect to the unknown
parameters to be identified, of an objective function that quantifies the distance (misfit) between the ex-
perimental data and the stochastic model. These methods identify the stochastic model which represents
the random experiment “as adequately as possible” in the sense of the chosen objective function.

In computational mechanics, several authors have applied the classical methods of estimation from the
theory of mathematical statistics to the inversion of probabilistic structural models aimed at quantifying
aleatory uncertainty [see, for instance, Capiez-Lernout, 2004, Chen et al., 2006, Desceliers et al., 2006,
Ghanem and Doostan, 2006, Soize, 2005a, 2006]. In geophysics, Chernov [1968], Iooss [1998], Kravtsov
et al. [2005] have applied the MM to the identification of stochastic models for fields of material proper-
ties of soils. Desceliers et al. [2006] have reported difficulties related to the computational effort required
by the classical methods of estimation. To our best knowledge, difficulties created by misspecification in
probabilistic structural models have not yet been described.

The theory of mathematical statistics has directed much less attention towards stochastic inverse prob-
lems aimed at quantifying epistemic uncertainty. In computational mechanics, several authors have pro-
posed to apply the classical methods of estimation also to this kind of stochastic inverse problems [see,
for instance, Beck and Katafygiotis, 1998, Goodwin et al., 1992, Ljung, 1987, 1993, Reinelt et al., 2002,
Soize, 2005b, Yuen and Katafygiotis, 2002]. Measurements performed on the single real structure under
study are hereby considered as a single realization of a random experiment.

2.3 Further needs

The previous discussion has shown that considerable effort has already been expended to develop meth-
ods for the construction of probabilistic structural models and to elaborate methodologies for their inver-
sion. Based on the aforementioned deficiencies and limitations in the current state of the art, there are
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three areas where we believe that further research is desirable:

1. The possibility of, and the potential inversion difficulties created by, misspecification in proba-
bilistic structural models should be addressed. Conjunctionally, the adequacy of the classical esti-
mation methods from the theory of mathematical statistics to formulate and solve the inversion of
probabilistic structural models should be further evaluated.

2. Alternative inverse methods should be devised, which require a lower computational effort than
the classical methods, and allow to circumvent difficulties created by model misspecification.

3. Practical experience in using and inverting probabilistic structural models in real engineering case
histories should be collated. The ways probabilistic methods can be integrated in industrial design
and decision processes should be further debated.

3 Objectives and outline of this dissertation

This work aims at contributing in the aforementioned research areas requiring further exploration. We
will begin this research with evaluating the adequacy of the classical theory of mathematical statistics to
formulate and solve the inversion of probabilistic structural models. It will be shown that computational
difficulties, and conceptual problems due to model misspecification, are likely to arise upon applying the
classical methods of estimation to the stochastic inverse problems typically encountered in computational
mechanics. To overcome these difficulties, we propose, similarly to the more recent methods of estima-
tion (Sec. 2.2), to state the inversion of probabilistic structural models as the minimization, with respect
to the unknown parameters to be identified, of an objective function that measures the distance (misfit)
between the experimental data and the probabilistic model under study. The main objective of this work
is to investigate how the distance between experimental data and corresponding random predictions of
probabilistic structural models can be defined and computed in a suitable manner.

It should be noted that, similarly to the classical inverse problems (Sec. 1.1), stochastic inverse problems
can be mathematically ill-posed. Clearly, the existence property does not pose any problem, upon agree-
ing that the distance between the experimental data and the probabilistic model should only be minimized
and need not vanish. However, the uniqueness and the stability property can be problematic, especially
when the probabilistic model under consideration exhibits a large number of parameters to be identified.
A large subspace of the parameter space may then solve the optimization problem.

As a framework, we shall work throughout the dissertation with probabilistic structural models with min-
imal parameterization, and use measured frequency-domain Transfer Functions (TFs) as experimental
data. Probabilistic models with minimal parameterization have the advantage that their inversion can
generally be expected to result in an optimization problem that admits a unique solution and can be
solved numerically with a reasonable computational effort. Measured frequency-domain TFs are often
used as experimental data in classical inverse problems. Among their advantages over time-domain TFs
are the possibility to select data in a specific frequency range of interest and the relatively easy character-
ization of the distortion of the data due to experimental noise [Pintelon and Schoukens, 2001]. Compared
to modal data, they have the advantage that they can also be used in medium-frequency range problems.
It seems to us possible to extend the results obtained in the dissertation to other types of probabilistic
structural models and to different kinds of experimental data, but such generalizations are not considered.

The dissertation is organized as follows. The thesis comprises two parts: a theoretical part and a practical
one, in which the proposed inverse methods are demonstrated on examples. Part I consists of 2 chapters.
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General introduction

Chapter 1, which is mainly bibliographical, describes the construction of probabilistic structural models
with minimal parameterization and defines a generic experimental data set. Chapter 2, which gathers the
main contributions of this work, treats the inversion of probabilistic structural models.

Part II consists of 3 chapters. Chapters 3 and 4 demonstrate the inversion of probabilistic models aimed
at quantifying epistemic uncertainty on examples featuring respectively simulated and real experimental
data. Chapter 5 applies the concepts of Part I to develop a methodology for the experimental identification
of spatial correlation lengths and dispersion levels characterizing the variability in heterogeneous fields
of material properties of structures using the dispersive characteristics of mechanical waves travelling
through specimens. An example featuring simulated data is given.

The dissertation finally includes five appendices. First, Appendix A extends Soize’s stochastic model
with minimal parameterization for non-Gaussian positive-definite matrix-valued random fields for el-
liptic stochastic partial differential operators to parabolic stochastic partial differential operators, and
demonstrates several mathematical results. Then, Appendix B is devoted to the random matrix eigenvalue
problem defined by random reduced matrices of non-parametric probabilistic models. Subsequently, Ap-
pendices C and D, which summarize known material, are respectively dedicated to signal processing
methods for vibration measurements and to the Spectral Analysis of Surface Waves (SASW) inverse
method. Finally, Appendix E presents real experimental data that will be used in future work to further
develop inverse methods aimed at identifying spatial correlation lengths and dispersion levels.
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Part I

Theory
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1

The probabilistic structural models and

the experimental data

The main objective of this chapter is to describe the probabilistic structural models and the experimental
data that will be used in the next chapter to set up inverse methods. As already announced in the general
introduction, we shall work with probabilistic structural models with minimal parameterization, intro-
duced by Soize [2000, 2001, 2006], and use measured frequency-domain Transfer Functions (TFs) as
experimental data.

The chapter is organized as follows. First, we recall the construction of probabilistic structural models
with minimal parameterization (Sec. 1.1). The main results of the theory are described in a functional
framework. Then, we describe the discretization of these probabilistic structural models to obtain al-
ternative problems that can be solved by computers (Sec. 1.2). Basic algorithms are provided allowing
practical computations to be performed. Subsequently, we define a generic vibration test and a corre-
sponding experimental data set of measured TFs (Sec. 1.3). Finally, we elaborate on the probabilistic
modelling of this vibration test (Sec. 1.4).

The reader unfamiliar with the construction of (probabilistic) mechanical models in a functional frame-
work may want to skip ahead from Section 1.1 to Section 1.2 from time to time to see how the theoretical
developments are actually used in practice. On the other hand, the reader already familiar with Soize’s
construction of probabilistic structural models may want to move quickly through the developments of
the first two sections of this chapter, which are mainly bibliographical. We recommend to read either Sec-
tion 1.1.3 concerning the non-parametric approach, or Section 1.1.4 concerning the parametric approach
to get used to our notations.

1.1 Probabilistic structural models

This first section describes the construction of probabilistic structural models with minimal parameteri-
zation. Only the main results of the theory will be presented, without giving proofs. The reader interested
in the mathematical details and proofs is referred to [Soize, 2000, 2001] for time- and frequency-domain
non-parametric models, to [Soize, 2006] for elastostatic parametric models and to appendix A for time-
domain parametric models.

In the following, we first outline a basic model problem (Sec. 1.1.1). Subsequently, we give the deter-
ministic equations governing the dynamical behaviour of structures (Sec. 1.1.2). Finally, we describe the
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Chapter 1. The probabilistic structural models and the experimental data

construction of non-parametric and parametric probabilistic structural models with minimal parameteri-
zation (Secs. 1.1.3 and 1.1.4).

1.1.1 Model problem

x
3

x
2

x
1

W

G
u

G
s

f
sf

v

Figure 1.1: The model problem on Ω: notations.

We shall confine ourselves to a classical basic model problem to present the main ideas. The linear vi-
bration of a structure around a reference configuration (without prestress) is considered. Let Ω be the
three-dimensional open bounded domain of R

3, occupied by the structure at static equilibrium (Fig. 1.1).
Let x = (x1, x2, x3) denote the Cartesian coordinates of any point in Ω. Let Ω have a smooth bound-
ary ∂Ω = Γu ∪Γσ such that Γu ∩Γσ = ∅ and let n denote the outward unit normal vector. On the part Γu

of the boundary, the structure is fixed.

The dynamical behaviour of the structure is considered in the frequency band of analysis

B = [ωmin, ωmax] , 0 ≤ ωmin < ωmax. (1.1)

With respect to the frequency band B, it is assumed that the constitutive behaviour of the structure can
be described accurately by a Kelvin-Voigt material formulation (i.e. a viscoelastic solid material without
memory). The structure is subjected (in the frequency band B) to an external body force field in Ω and
an external surface force field on Γσ.

Structural model for the low- and medium-frequency range

In computational mechanics, the low-, medium- and high-frequency ranges are distinguished [see, for
instance, Balmès, 1993, Gibert, 1982, Ohayon and Soize, 1998, Savin, 2002]. At so-called low frequen-
cies, the dynamical response of the structure is primarily constituted of only a few global dynamical
eigenmodes (the modal density is low). At intermediate frequencies, the vibration of the structure is
characterized by the superposition of some global eigenmodes and clusters of local eigenmodes. Finally,
at high frequencies, there is a uniform high modal density.

In the following, it is assumed that B belongs to the low- or medium-frequency range, for which models
based on the variational formulation of the dynamical equilibrium of the structure are suitable (specific
approaches, such as Statistical Energy Analysis [Lyon, 1975], have been developed for the high frequen-
cies).
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1.1. Probabilistic structural models

1.1.2 Deterministic structural model

This section first gives the deterministic equations governing the frequency-domain dynamical behaviour
of the structure. Subsequently, the variational formulation of these equations is presented. Finally, a
deterministic reduced matrix model is set up.

Deterministic strong formulation

Let the mass density of the structure be modelled by the deterministic field3 x 7→ ρ(x). Let us intro-
duce the space T+

4 (Ω) of fourth-rank tensor-valued fields x 7→ C(x) that verify the usual properties
of symmetry and positiveness4. Let the elasticity and viscosity tensor fields be modelled by the deter-
ministic fields x 7→ Ce(x) and x 7→ Cv(x) in T+

4 (Ω). For a fixed ω ∈ B, let the applied external
body and surface force fields be modelled by the respective position-dependent functions x 7→ f v(x;ω)
and x 7→ f s(x;ω).

For a fixed ω ∈ B, the deterministic strong formulation of the studied Boundary Value Problem (BVP)
consists in finding the position-dependent response field x 7→ u(x;ω) such that:

Divxσ(u) + f v = −ω2ρu in Ω , (1.6)

ǫ(u) =
1

2

(
Dxu + DxuT

)
in Ω , (1.7)

σ(u) = Ce (ǫ(u)) + iωCv (ǫ(u)) in Ω , (1.8)

with the boundary conditions:

u = 0 on Γu , (1.9)

σ(u)(n) = f s on Γσ , (1.10)

in which ǫ(u) and σ(u) denote the linearized strain and stress tensor.

Second-rank tensor representation for fourth-rank tensors

For later use, a second-rank tensor representation for fourth-rank tensors is now introduced. Let C be a
real (3×3×3×3) fourth-rank tensor that verifies the properties (1.4)-(1.5) of symmetry and positiveness.
The tensor C is represented by the symmetric, positive definite real (6× 6) second-rank tensor (i.e. ma-

3From the mathematical point of view, ρ is a strictly positive and essentially bounded function [Dautray and Lions, 1987,
ch. 18 sec. 6]:

∀x ∈ Ω : ρ(x) > 0 , ρ ∈ L∞(Ω, R). (1.2)

4The space T+
4 (Ω) collects the fourth-rank tensor fields x 7→ C(x) fulfilling the following properties of essential bound-

edness, symmetry and positiveness [Dautray and Lions, 1987, ch. 18 sec. 6]:

Ckℓmn ∈ L∞(Ω, R) for k, ℓ, m, n ∈ {1, 2, 3} , (1.3)

Ckℓmn = Cℓkmn = Ckℓnm = Cmnkℓ for k, ℓ, m, n ∈ {1, 2, 3} , (1.4)

∃c ∈ R
+
0 : ∀x ∈ Ω : ∀X ∈ MS

3(R) : tr (C(x)(X)X) ≥ c ||X ||2F . (1.5)

17



Chapter 1. The probabilistic structural models and the experimental data

trix) Ĉ ∈ M+
6 (R) such that:

Ĉ =




C1111 C1122 C1133

√
2C1112

√
2C1123

√
2C1113

C1122 C2222 C2233

√
2C2212

√
2C2223

√
2C2213

C1133 C2233 C3333

√
2C3312

√
2C3323

√
2C3313√

2C1112

√
2C2212

√
2C3312 2C1212 2C1223 2C1213√

2C1123

√
2C2223

√
2C3323 2C1223 2C2323 2C2313√

2C1113

√
2C2213

√
2C3313 2C1213 2C2313 2C1313




. (1.11)

A corresponding first-rank tensor representation for second-rank tensors is introduced. Let X be a sym-
metric real (3×3) second-rank tensor. This matrix is represented by the real first-order tensor (i.e.vector)
X̂ ∈ R

6 such that:

X̂ =
[
X11 X22 X33

√
2X12

√
2X23

√
2X31

]T
. (1.12)

These representations are such that:

tr (C(X)X) =
(
ĈX̂, X̂

)
. (1.13)

Deterministic variational formulation

We proceed to elaborate the weak formulation of the BVP. First, let V0 denote the space of admissible
displacements for the problem, which comprises the sufficiently regular5 deterministic response fields of
the structure. For a fixed ω ∈ B, the deterministic variational formulation of the BVP consists in finding
the position-dependent response field u(ω) ∈ V0 such that ∀v ∈ V0:

k(u(ω),v) + iωd(u(ω),v) − ω2m(u(ω),v) = f(v;ω). (1.16)

The stiffness, damping and mass forms are positive-definite sesquilinear forms6 defined by:

k (v1,v2) =

∫

Ω
tr
(
Ce (ǫ(v1)) ǫ(v2)

)
dΩ , (1.19)

d (v1,v2) =

∫

Ω
tr
(
Cv (ǫ(v1)) ǫ(v2)

)
dΩ , (1.20)

m (v1,v2) =

∫

Ω
ρ (v1,v2) dΩ. (1.21)

5The admissible function space is chosen equal to the space

V0 =
n

v ∈
`
H1(Ω, C)

´3 | v = 0 on Γu

o
. (1.14)

The space V0 is a Hilbert space for the norm

||v||2V =

Z

Ω

(v, v) dΩ +

Z

Ω

tr (DxvDxv) dΩ. (1.15)

6The stiffness and damping forms are Hermitian, positive definite and continuous on V0 × V0. In particular, in view of the
Korn inequality [see Duvaut and Lions, 1972, ch. 3], and due to the Dirichlet boundary conditions, there exists a strictly positive
constant α ∈ R

+
0 such that:

k(v, v) =

Z

Ω

“
bC ebǫ(v),bǫ(v)

”
dΩ ≥

„
ess. inf

x∈Ω

˛̨
˛
˛̨
˛ bC

e
(x)
˛̨
˛
˛̨
˛
«

α ||v||2V , (1.17)

d(v, v) =

Z

Ω

“
bCvbǫ(v),bǫ(v)

”
dΩ ≥

„
ess. inf

x∈Ω

˛̨
˛
˛̨
˛ bC

v
(x)
˛̨
˛
˛̨
˛
«

α ||v||2V . (1.18)

The mass form is Hermitian, positive definite and continuous on H × H , where H =
`
L2(Ω, C)

´3
.
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1.1. Probabilistic structural models

The form representing the external loading is an antilinear form, defined by:

f(v;ω) =

∫

Ω
(f v(x;ω),v(x)) dΩ +

∫

Γσ

(f s(x;ω),v(x)) dS. (1.22)

For sufficiently regular7 functions fv(ω) and f s(ω), it can be shown8 that the variational formula-
tion (1.16) is well-posed in that the weak solution u(ω) exists, is unique and depends continuously
on the data {fv(ω),f s(ω)}.

For later reference, let γP denote the mapping that, for fixed ω ∈ B and given data {Cv, ρ,fv,f s}, maps
the tensor field x 7→ Ce(x) onto the unique corresponding weak solution u(ω) of (1.16):

γP(ω) : T+
4 (Ω) → V0 : Ce 7→ γP (Ce;ω) = u(ω). (1.29)

Deterministic reduced matrix model

A deterministic reduced matrix model is now set up. When the frequency band B belongs to the low-
frequency range, a reduced model can be built by projecting the variational formulation onto a reduction
basis made up of dynamical eigenmodes [see, for instance, Balmès and Leclère, 2006, Le Tallec, 2000,
Ohayon and Soize, 1998]. When B belongs to the medium-frequency range, specific reduction bases
have to be used. Soize [1998a] has proposed an Energy Operator Approach where an energy operator
adapted to B is defined and its dominant eigensubspace is used to build the reduced model. Sarkar and
Ghanem [2002] have proposed the Proper Orthogonal Decomposition Method, where spatially dominant
coherent structures of the vibration wave field in B are extracted from either numerical or experimental
data.

7For a fixed ω ∈ B, the position-dependent applied force fields x 7→ f v(x; ω) and x 7→ f s(x; ω) are taken in the following
functional spaces:

f v(ω) ∈
`
L2(Ω, C)

´3
, f s(ω) ∈

`
L2(Γσ, C)

´3
. (1.23)

The antilinear form f(·; ω) representing the external loading is then continuous (bounded) on V0:

f(v; ω) ≤ ||f (ω)||V ′ ||v||V , (1.24)

where the force vector f (ω) is such that 〈f (ω), v〉 = f(v; ω) and ||·||V ′ is the norm on V ′ defined by:

||g||V ′ = sup
v∈V0,v 6=0

|〈g, v〉|
||v||V

. (1.25)

8For a fixed ω ∈ B, let the dynamic stiffness form be defined by:

s (v1, v2; ω) = k (v1, v2) + iωd (v1, v2) − ω2m (v1, v2) . (1.26)

It is Hermitian and continuous on V0 × V0 (footnote 6). In the static case (when ω = 0), and in the dynamic case (when ω 6=
0), the positive definiteness of the stiffness form k, respectively of the damping form d, ensures the coercivity of s(·; ω).
Since V0 is a Hilbert space, since s(·; ω) is Hermitian, coercive and continuous on V0 × V0 and since f(·; ω) is antilinear
and continuous on V0 (footnote 7), the Lax-Milgram theorem [Dautray and Lions, 1987] ensures the well-posedness of the
variational formulation (1.16). In particular, the stability property reads in the static case:

||u(0)||V ≤ ||f (0)||V ′

α
“

ess. infx∈Ω

˛̨
˛
˛̨
˛ bC

e
(x)
˛̨
˛
˛̨
˛
” , (1.27)

and in the dynamic case:

||u(ω)||V ≤ ||f (ω)||V ′

ω2α
“

ess. infx∈Ω

˛̨
˛
˛̨
˛ bC

v
(x)
˛̨
˛
˛̨
˛
” . (1.28)
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Chapter 1. The probabilistic structural models and the experimental data

It is assumed that an appropriate real reduction basis {ϕα | 1 ≤ α ≤ nT} ⊂ V0 of dimension nT ≥ 1
is given. It is noted that complex reduction bases have also been proposed [see, for instance, Balmès and
Leclère, 2006], but are not considered here.

For a fixed ω ∈ B, the Galerkin projection of the variational formulation onto the reduction basis consists
in finding the position-dependent response field

unT(ω) =

nT∑

α=1

qα(ω)ϕα ∈ V0 , (1.30)

such that for 1 ≤ β ≤ nT:

k
(
unT(ω),ϕβ

)
+ iωd

(
unT(ω),ϕβ

)
− ω2m

(
unT(ω),ϕβ

)
= f(ϕβ;ω). (1.31)

This expression is equivalent to the following algebraic equation:

[K + iωD − ω2M ]q(ω) = g(ω). (1.32)

Matrices K, D and M are the projection of the stiffness, damping and mass forms onto the reduction
basis such that:

Kαβ = k(ϕα,ϕβ) , Dαβ = d(ϕα,ϕβ) , Mαβ = m(ϕα,ϕβ) , (1.33)

and are symmetric, positive definite real matrices:

K ∈ M+
nT

(R) , D ∈ M+
nT

(R) , M ∈ M+
nT

(R). (1.34)

The vector g(ω) ∈ C
nT of the generalized forces is the projection of the form f onto the reduction basis

such that:
gα(ω) = f(ϕα;ω). (1.35)

It can easily be shown that the algebraic equation (1.32) is mathematically well-posed.

For later reference, let γNP denote the mapping that, for a fixed ω ∈ B and given reduction basis {ϕα | 1 ≤
α ≤ nT} and generalized forces g, maps the reduced matrices onto the unique corresponding solu-
tion unT(ω) of (1.30)-(1.32):

γNP(ω) :
(
M+

nT
(R)
)3 → V0 : (K,D,M) 7→ γNP(K,D,M ;ω) = unT(ω). (1.36)

1.1.3 Non-parametric probabilistic approach

Following Soize [2000, 2001], non-parametric probabilistic structural models are built by defining re-
duced matrix models in terms of random matrices. As discussed in the general introduction, a general
approach to the construction of the stochastic model of these random matrices consists in representing
their probability distribution in a versatile manner as a function of a large number of parameters, for in-
stance by a truncated polynomial chaos expansion [see, for instance, Desceliers et al., 2006, Ghanem and
Spanos, 1991, Soize and Ghanem, 2004, Wiener, 1938]. Soize [2000, 2001] has proposed an alternative
approach, whereby the stochastic model for the random matrices is deduced using the maximum en-
tropy principle (Box 1.1) from the essential mathematical properties that the probabilistic model should
possess. This principle of construction allows obtaining a stochastic model parameterized by a minimal
set of essential parameters. In the sequel, we describe the construction of non-parametric probabilistic
structural models with minimal parameterization.
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1.1. Probabilistic structural models

Principle of construction

A non-parametric probabilistic model is built by modelling the reduced stiffness, damping and mass
matrices in (1.30)-(1.32) by random matrices. The essential mathematical properties required are:

(P1) The random reduced matrices should a.s. be symmetric positive definite matrices.

(P2) The predicted random structural response should be of the second order.

Property (P1) ensures that each realization of the probabilistic model is physically acceptable. Prop-
erty (P2) ensures that the well-known theoretical properties and computational tools for second-order
random variables are applicable. For example, the mean value of the predicted random response field
can be computed numerically by Monte Carlo integration whereby the convergence is controlled by the
Central Limit Theorem (CLT) [see, for instance, Robert and Casella, 2005, Rubinstein, 1981]. Another
example is the use of (P2) by Soize [2001] to demonstrate convergence properties of non-parametric
probabilistic models with respect to the dimension of the reduced model.

The construction of the non-parametric probabilistic structural model with minimal parameterization
features three steps:

1. First, the maximum entropy principle is applied to construct a class of normalized (i.e. whose mean
is the identity matrix) symmetric positive definite real random matrices satisfying a fundamental
invertibility property in that the second-order moment of their inverse is bounded (this property
will appear in eq. (1.47)).

2. Subsequently, each random reduced matrix is modelled as the product of a normalized random
matrix of this kind with the Cholesky factors of a user-defined positive definite matrix. Using
the positive-definiteness of the normalized random matrices, the fulfilment of (P1) is shown (this
property will appear in eq. (1.54)).

3. Finally, a non-parametric probabilistic model is set up, which propagates the uncertainty intro-
duced in the reduced matrices to the predicted dynamical response of the structure. Using the
fundamental invertibility property of the normalized random matrices, the fulfilment of (P2) is
shown (this property will be reflected by eq. (1.56)).

Box 1.1. The maximum entropy principle

This box briefly recalls the maximum entropy principle, introduced by Jaynes [1957, 2003].

Entropy as a measure of uncertainty

Let us first recall the definition of the entropy. Let ❳ be a random variable with values in R a.s., which
has a PDF f❳(x). The Shannon entropy of ❳ is defined [Shannon, 1948] by:

S (f❳) = −
∫

Rn

f❳(x) log f❳(x)dx. (1.37)

The entropy is often interpreted as a measure of uncertainty. For discrete random variables, this
interpretation holds in the sense of a set of axioms given by Shannon [1948]. However, as remarked
by Shannon [1948], not all axioms hold for continuous random variables, since their entropy depends

21
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on the coordinate system. For a simple example of the interpretation of entropy as a measure of
uncertainty, consider a Gaussian random variable ● with values in R a.s. with mean value m and
standard deviation σ. The entropy of ● equals log(σ

√
2πe). Intuitively, the uncertainty related to ●

is determined by the level of dispersion of the values of ● around the mean value, that is to say by
the standard deviation. The entropy is found to increase with the standard deviation, i.e. with the
uncertainty.

Maximum entropy principle

The maximum entropy principle was introduced by Jaynes [1957, 2003]. It consists in choosing, out
of all probability distributions consistent with a given set of constraints, the one that has maximum
entropy.

Illustrative example

As a (classical) illustration, let us apply the maximum entropy principle to determine a probability
distribution for a random variable ❳ under the constraints that (i) ❳ ∈ R a.s., (ii) the mean value of ❳
equals E {❳} = m❳ and (iii) the variance of ❳ equals E

{
(❳−m❳)2

}
= σ2

❳
. The PDF f̂❳ of ❳ is

then the solution of the following functional optimization problem:

f̂❳ = arg max
f❳

S (f❳) , (1.38)

where x 7→ f❳(x) is a function from R into R
+, subjected to the equality constraints:
∫

R

f❳(x)dx = 1 , (1.39)
∫

R

xf❳(x)dx = m❳ , (1.40)
∫

R

(x−m❳)2f❳(x)dx = σ2
❳. (1.41)

The constrained functional optimization problem (1.38) with (1.39)-(1.39)-(1.40) can easily be
solved by the method of the Lagrange multipliers [see, for instance, Ciarlet, 2000, Laporte and Le
Tallec, 2002, Udwadia, 1989] to obtain:

p̂❳(x|m❳, σ
2
❳) =

1√
2πσ❳

exp(−(x−m❳)2

2σ2
❳

). (1.42)

The PDF maximizing entropy under the constraints (i), (ii) and (iii) is the Gaussian PDF.

Stochastic model for normalized, symmetric, positive definite real random matrices

The set SG+ is defined as the set of all normalized, symmetric, positive definite real random matri-
ces◆(δ), defined on the probability measure space (A,F , P ), parameterized by a dispersion parameter δ
(to be defined shortly), whose probability distribution maximizes entropy under the following constraints:

• ◆(δ) ∈ M+
n (R) a.s.

• ◆(δ) is of the second order and its mean value is the identity matrix I:

E {◆(δ)} = I. (1.43)
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• ◆(δ) is such that (Box 1.2):
∣∣∣E
{

log
(
det
(
◆(δ)

))}∣∣∣ < +∞. (1.44)

The parameter δ controlling the dispersion of ◆(δ) is defined by:

δ2 =
E
{
||◆(δ) − I||2F

}

E
{
||I||2F

} =
E
{
||◆(δ) − I||2F

}

n
. (1.45)

If δ satisfies:

0 < δ <

√
n+ 1

n+ 5
< 1 , (1.46)

the random matrix ◆(δ) possesses the following invertibility property [Soize, 2000, 2001]:

E
{∣∣∣∣◆(δ)−1

∣∣∣∣2
F

}
< +∞. (1.47)

Upon applying (Box 1.1) the method of Lagrange multipliers to solve the constrained optimization prob-
lem, the following expression is obtained for the PDF f◆(·|δ) of a generic random matrix ◆(δ) ∈ SG+

as a function of the dimension n and the dispersion level δ:

f◆(N |δ) = ✶M+
n (R)(N) × c× det(N)(n+ 1)((1 − δ2)/2δ2) exp

(
−(n+ 1)

2δ2
tr(N)

)
, (1.48)

in which the normalization constant c is given by:

c =

(2π)−n(n−1)/4

(
n+ 1

2δ2

)n(n+1)(2δ2)−1

∏n
k=1 Γ

(
n+ 1

2δ2
+

1 − j

2

) . (1.49)

This PDF is defined with respect to the measure (volume element)

d̃N = 2n(n−1)/4
∏

1≤k≤ℓ≤n

dNkℓ , (1.50)

where each dNkℓ is the Lebesgue measure on R.

Stochastic model for the random reduced stiffness, damping and mass matrices

The stochastic model for the random reduced matrices is now defined. The mean value of these random
matrices must be chosen by the user. Let K(p0),D(p0),M(p0) ∈ M+

nT
(R) respectively denote the

user-defined mean reduced stiffness, damping and mass matrices. They are parameterized by so-called
mean-model parameters p0, that may consist of local features of the model, such as material properties
or geometrical parameters, or of global characteristics, such as eigenfrequencies (an example of such
mean-model parameters is given in Chapter 3 in part II).

The random reduced stiffness, damping and mass matrices are respectively constructed as:

❑(p) = LK(p0)
T◆K(δK)LK(p0) a.s. with K(p0) = LK(p0)

TLK(p0) , (1.51)

❉(p) = LD(p0)
T◆D(δD)LD(p0) a.s. with D(p0) = LD(p0)

TLD(p0) , (1.52)

▼(p) = LM(p0)
T◆M(δM)LM(p0) a.s. with M(p0) = LM(p0)

TLM(p0) , (1.53)
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Chapter 1. The probabilistic structural models and the experimental data

where the random matrices ◆K(δK), ◆D(δD) and ◆M(δM) are independent random matrices of dimen-
sion nT in the above-defined set SG+. The matrices LK(p0), LD(p0) and LM(p0) are the Cholesky
factors of the corresponding matrices K(p0), D(p0) and M(p0). The set of dispersion parameters pδ is
defined by pδ = {δK, δD, δM}. The parameter set p = {p0,pδ} gathers the mean-model and dispersion
parameters.

The random matrices ❑(p), ❉(p) and ▼(p) are, by construction, a.s. positive definite matrices:

❑(p) ∈ M+
nT

(R) a.s. , ❉(p) ∈ M+
nT

(R) a.s. , ▼(p) ∈ M+
nT

(R) a.s. , (1.54)

ensuring that the above-mentioned property (P1) holds.

Non-parametric probabilistic model

We now proceed to define the non-parametric probabilistic model. Let us first introduce the admissi-
ble function space V0 of the problem comprising the second-order random sufficiently regular9response
fields of the structure. The non-parametric probabilistic model is obtained by modelling the reduced
matrices of the reduced matrix model (1.32) by the random matrices ❑(p), ❉(p) and ▼(p). For a
fixed ω ∈ B, it consists in finding the random response field

❯(ω;p) =

nT∑

α=1

◗α(ω;p)ϕα ∈ V0 , (1.56)

such that:
[❑(p) + iω❉(p) − ω2▼(p)]◗(ω;p) = g(ω) a.s. (1.57)

When the dispersion parameters δK , δD, δM fulfil inequality (1.46), it can be shown (see also appendix A)
that there exists a unique random variable ❯(ω;p) ∈ V0 solving (1.57). Since the random response fields
in V0 are of the second order, property (P2) holds. Finally, for later use, the random variables obtained
by this procedure at all frequencies in B are collected in the stochastic process

{❯(ω;p) | ω ∈ B}. (1.58)

In view of the inversion of the probabilistic model in the next chapter, it should be noted that equa-
tions (1.56)-(1.57) propagate the uncertainty introduced in the reduced matrices through the determinis-
tic model to the dynamical response field. Using the mapping γNP defined in (1.36), this consideration is
highlighted by writing these equations in the following, equivalent, form:

❯(ω;p) = γNP
(
❑(p),❉(p),▼(p);ω

)
a.s. (1.59)

9The theory of the random variables with values in functional spaces (Box 1.3) is applied to define the admissible function
space V0. It is chosen equal to the stochastic Hilbert space

V0 = L2 (A, V0) =
˘
❱ ∈ L0 (A, V0)

˛̨
E
˘
||❱||2V

¯
< +∞

¯
. (1.55)
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1.1. Probabilistic structural models

Box 1.2. Illustrative example: random spring

This box gives a simple example of the construction of a probabilistic model with minimal parame-
terization. In particular, the purpose of the constraint (1.44) is highlighted. We consider a single-DOF
linear static spring, which is fixed at one end point and loaded by a prescribed force at the other. The
stiffness of the spring is assumed to be uncertain.

k

u

f

Figure 1.2: Random spring: notations.

The following probabilistic model is considered:

❑❯ = f a.s. , (1.60)

in which ❑ is the random spring stiffness, f is the deterministic applied force and ❯ is the random
induced displacement. The essential mathematical properties read here:

(P1) ❑ ∈ R
+
0 a.s.

(P2) E
{
||❯||2

}
< +∞.

Let us investigate how the entropy maximization principle (Box 1.1) can be applied to obtain a
stochastic model for ❑ which possesses the properties (P1) and (P2).

Application with given support R
+
0 and mean value E {❑}

Let us apply the maximum entropy principle using the constraints (Box 1.1) that (i) ❑ > 0 a.s.
and (ii) the mean value of ❑ equals E {❑} = k ∈ R

+
0 . The PDF f̂❑ of ❑ is then the solution of the

following functional optimization problem:

f̂❑ = arg max
f❑

S (f❑) , (1.61)

where k 7→ f❑(k) is a function from R
+
0 into R

+, subjected to the equality constraints:
∫

R
+
0

f❑(k)dk = 1 ,

∫

R
+
0

kf❑(k)dk = k. (1.62)

The constrained functional optimization problem (1.61)-(1.62) is solved by the method of Lagrange
multipliers, to obtain:

f̂❑(k|k) = ✶
R

+
0
(k)

1

k
exp(−k

k
). (1.63)
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Chapter 1. The probabilistic structural models and the experimental data

The PDF maximizing entropy under the constraints (i) and (ii) is the well-known exponential PDF.
Upon modelling the spring stiffness by an exponential random variable ❑ with PDF (1.63), expres-
sion (1.60) sets up a probabilistic model for the mechanical behaviour of the spring, which, clearly,
possesses the property (P1). However, since

∫

R
+
0

1

k2

1

k
exp

(
−k
k

)
dk = +∞ , (1.64)

the property (P2) does not hold and the stochastic model is therefore inadequate.

Application with given support R
+
0 , mean value E {❑} and E {log❑}

To overcome the incompatibility of the previous probabilistic model with the property (P2), a third
constraint is introduced. If the set of constraints consists, moreover, of the knowledge that (iii) the
mean value of log❑ equalsE {log❑} = ν ∈ R, then the PDF f̂❑ of ❑ is the solution of the functional
optimization problem (1.61), where the function f❑ is still subjected to (1.62), but, this time, also to
the following third equality constraint:

∫

R
+
0

log kf❑(k)dk = ν. (1.65)

The problem (1.61) with (1.62)-(1.65) is then solved by applying the method of Lagrange multipliers
to obtain an analytical expression of f̂❑ as a function of k and ν. Since the parameter ν does not have
a simple physical or mathematical meaning, it is replaced by the dispersion parameter δ defined by:

δ =

√
E {(❑− k)2}

k
. (1.66)

It is the coefficient of variation and controls the level of dispersion of ❑ around the mean value k.
The expression of f̂❑ as a function of k and δ reads:

f̂❑(k|k, δ) = ✶
R

+
0
(k)

1

k

(
1

δ2

) 1
δ2 1

Γ(1/δ2)

(
k

k

) 1
δ2

−1

exp

(
− k

δ2k

)
. (1.67)

The PDF maximizing entropy under the constraints (i), (ii) and (iii) is the well-known gamma
PDF. Upon modelling the spring stiffness by a gamma random variable ❑ with PDF (1.67), ex-
pression (1.60) defines a probabilistic model for the mechanical behaviour of the spring. Clearly, it
possesses the property (P1). Moreover, it can easily be verified that, for δ ∈ [0, 1/

√
2[, the prop-

erty (P2) also holds.

Discussion
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Figure 1.3: Random spring: exponential PDF for k = 1 N/m and gamma PDF for k =
1 N/m and δ = 0.5.

26



1.1. Probabilistic structural models

Figure 1.3 compares the exponential PDF for k = 1 N/m with the gamma PDF for k = 1 N/m
and δ = 0.5. The value taken by the exponential PDF is large in the vicinity of the origin. Since
small values of the spring stiffness result in large values of the spring displacement, modelling the
spring stiffness by an exponential random variable therefore results in a random spring displacement
that is not of the second order. The introduction of the constraintE {log❑} = ν has suitably modified
the shape of the PDF near the origin, that is to say, the probability associated by the gamma PDF to
small spring stiffness is sufficiently low.

1.1.4 Parametric probabilistic approach

Parametric probabilistic models are built by modelling the local physical features of structural models,
i.e. their geometrical parameters, fields of material properties and boundary conditions, by random vari-
ables or fields. A general approach to the construction of the stochastic model of these random variables
or fields consists in representing their probability distribution in a versatile manner as a function of a
large number of parameters, for instance by a truncated Karhunen-Loève and/or polynomial chaos ex-
pansion [see, for instance, Desceliers et al., 2006, Ghanem and Spanos, 1991, Mercer, 1909, Soize and
Ghanem, 2004, Wiener, 1938]. Recently, Soize [2006] has proposed an alternative approach, whereby
the stochastic model is defined such that the resulting probabilistic structural model fulfils certain essen-
tial mathematical properties and exhibits only a minimal set of parameters. In the following, we describe
the construction of parametric probabilistic structural models of the latter kind.

Principle of construction

In the frame of the present model problem, a parametric probabilistic model can be built by modelling
the elasticity tensor, the viscosity tensor and the mass density field in the variational formulation (1.16)
by random fields. The essential mathematical properties required are:

(P1) The sample paths of the random elasticity and viscosity tensor fields should a.s. fulfil the mathe-
matical properties (1.3)-(1.5) of essential boundedness, symmetry and positiveness, i.e. they should
a.s. belong to the space T+

4 (Ω) defined in footnote 4. Similarly, the sample paths of the random
mass density field should a.s. fulfil the mathematical properties (1.2) of essential boundedness and
positiveness.

(P2) The predicted random structural response should be of the second order.

These properties, analogous to those imposed on the stochastic model for the random reduced matrices
in Section 1.1.3, respectively ensure that each realization of the probabilistic model is physically accept-
able and that the theoretical properties and computational tools for second-order random variables are
applicable.

In Section 1.1.2, it was noted that the norm of the weak solution of the deterministic variational formu-
lation (1.16) can be bounded from above using the coercivity constants of the positive definite stiffness
and damping forms, which depend themselves on the essential extremum norms of the elasticity and
the viscosity tensor field (footnote 8). This result suggests the possibility to control the second-order
moment of the random response predicted by the parametric probabilistic model through the stochastic
properties of the extrema of the sample paths of the random elasticity and viscosity tensor fields. In order
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Chapter 1. The probabilistic structural models and the experimental data

to obtain probabilistic models fulfilling (P2), an important aspect of Soize’s approach to the construction
of random field models is therefore the control of the stochastic properties of the extrema of the sample
paths.

Unfortunately, the theory of the classical stochastic processes and random fields, which is commonly
used in engineering research, is not well-suited to controlling the stochastic properties of extrema of
sample paths of random fields. For this reason, Soize has applied the more general, and more powerful,
theory of random variables with values in functional spaces, which provides the required tools. Box 1.3
gives a brief summary of these two theories.

As a generic example, we shall detail in the following the construction of a parametric probabilistic model
with minimal parameterization by modelling only the elasticity tensor field by a random field. Although
they can be modelled by random fields in a similar way, the viscosity tensor and the mass density field
will be kept deterministic for the sake of brevity. The construction of this parametric probabilistic model
features four steps:

1. First, the theory of the classical stochastic processes is applied to define a class of normalized (i.e.
with zero mean and unit variance) Gaussian random fields defined on the probability measure
space (A,F , P ), indexed by the closure Ω = Ω ∪ ∂Ω of the open domain Ω occupied by the
structure and with values in R a.s. Their autocorrelation function is chosen such that the Dudley
lemma [Dudley, 1967] ensures the existence of random fields with continuous sample paths in this
class. These sample-continuous random fields are called stochastic germs. Each stochastic germ
defines (Box 1.3) through its sample paths a random variable defined on (A,F , P ) with values in
the functional space C0(Ω,R) a.s., which is recalled to gather all continuous real-valued functions
on Ω. The measurability properties of random variables of this kind allow studying the stochastic
properties of the extrema of the sample paths of the stochastic germs (this property will appear in
footnote 12).

2. Then, subsets of stochastic germs are transformed through a continuous non-linear mapping to
construct a class of sample-continuous normalized (i.e. whose mean is the identity matrix) sym-
metric positive definite real matrix-valued random fields. The stochastic properties of the extrema
of the sample paths of the stochastic germs and the asymptotic properties of the non-linear trans-
formation mapping are used to demonstrate a fundamental invertibility property (this property will
appear in eq. (1.85)).

3. Subsequently, the random elasticity tensor field (in its second-rank tensor representation) is mod-
elled as the product of a normalized random field of this kind with the Cholesky factors of a user-
defined positive definite real matrix-valued field. Using the sample continuity and the positive-
definiteness of the normalized random fields, the fulfilment of (P1) is shown (this property will
appear in footnote 13).

4. Finally, a parametric probabilistic model is set up, which propagates the uncertainty introduced in
the elasticity tensor field to the predicted dynamical response of the structure. Using the funda-
mental invertibility property of the normalized random fields, the fulfilment of (P2) is shown (this
property will appear in eq. (1.87)).

Box 1.3. “Random functions”

This box contains a brief summary of two closely related approaches to work with “random func-
tions”. The first approach consists in working with random variables with values in functional, hence
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infinite dimensional, spaces. The second is the theory of the classical stochastic processes. The reader
is referred to [Da Prato and Zabczyk, 1992, Krée and Soize, 1986, Ledoux and Talagrand, 1991] for
more complete accounts.

We will use a basic example to give the main ideas. LetK be a compact subset of R. It will be studied
how the notion of a “random function” from K into R can be formalized.

First approach: random variables with values in functional spaces

In this setting, first, a space X of functions of interest from K into R is defined (usually, X is
of infinite dimension). Examples are the space X = R

K of all functions from K into R, or the
smaller space C0(K,R) of continuous functions from K into R. Then, the space X is endowed with
a σ-algebra BX such that (X,BX) is a measurable space. An example of such a σ-algebra is the
Borel σ-algebra generated by the open sets induced by, for instance, the uniform-convergence norm
on C0(K,R). A random variable defined on (A,F , P ) with values in the functional space X is
then a measurable mapping from (A,F) into (X,BX). The probability distribution of the random
variable ❳ is the probability measure P❳ induced by ❳ on (X,BX).

Second approach: classical stochastic processes

In this setting, the set K is viewed as a so-called set of indices. This time, the space R (instead, a
priori, of a space of functions fromK into R) is endowed with a σ-algebra. For the sake of simplicity,
let us work here with the Borel σ-algebra B(R). A classical stochastic process defined on (A,F , P ),
indexed by K and with values in R a.s. is then a collection {❨(k) | k ∈ K} of random variables
indexed by K, or, equivalently, a mapping ❨(k) from K into the space of random variables defined
on (A,F , P ) with values in R a.s.

The probability distribution of a stochastic process is its so-called system of cylindrical distributions.
Let J denote the set of finite nonempty and nonordered subsets of distinct elements ofK. For every n-
subset j = {k1, . . . , kn} ⊂ K, a measurable space (Rn, (B(R))n) is set up, where R

n and (B(R))n

are the Cartesian product and the product σ-algebra of n copies of R and B(R), respectively. The
cylindrical distribution of the process {❨(k) | k ∈ K} for the index subset j is the probability
distribution of the random variable (❨(k1), . . . ,❨(kn)), i.e. of the measurable mapping

(
❨(k1), . . . ,❨(kn)

)
: A → V n : a 7→

(
❨(k1; a), . . . ,❨(kn; a)

)
(1.68)

from (A,F) into (Rn, (B(R))n). The system of cylindrical distributions is obtained when j runs
through J .

For a given stochastic process {❨(k) | k ∈ K}, the mapping

❨ : A → R
K : a 7→ (k 7→ ❨(k, a)) (1.69)

assigns to each a ∈ A a sample path, or a trajectory, of {❨(k) | k ∈ K}. By the means of the sample
paths, the stochastic process {❨(k) | k ∈ K} defines a random variable on (A,F , P ) with values in
the functional space R

K . Indeed, the mapping (1.69) can be made measurable by endowing R
K with

the so-called cylindrical σ-algebra. The probability measure P❨ induced by ❨ on R
K , endowed with

this σ-algebra, is determined entirely by the system of cylindrical distributions and vice versa [see,
for instance, Krée and Soize, 1986, ch. 3 sec. 1 and ch. 10]).

Discussion

The two approaches are closely related. In both approaches, the probability distribution of the “ran-
dom function” is a probability measure on a functional space. In the first approach, this functional
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space can be chosen freely and can be equipped with the most appropriate σ-algebra. In contrast, in
the second approach, it is necessarily a product space, such as R

K in the example, endowed with its
cylindrical σ-algebra. The disadvantage of the cylindrical σ-algebra is that it may not be sufficiently
fine. For example, the cylindrical σ-algebra on R

K does not contain the set of “all continuous func-
tions from K into R” [see Billingsley, 1995, ch. 7]. Hence, even the knowledge of the entire system
of cylindrical distributions of the stochastic process does not suffice to determine whether or not the
sample paths are a.s. continuous. More generally, the countable system of cylindrical distributions of
a stochastic process does not always suffice to determine regularity properties of the sample paths.
The first approach is therefore more suitable to work with random functions whose realizations verify
certain regularity properties.

The main advantage of working with stochastic processes is that certain probabilistic properties of
the “random function” can easily be studied by the means of the system of cylindrical distributions.
Examples are the mean value of the random function or the correlation between the values taken by
the random function at different indices. To facilitate the analysis of random variables with values
in functional spaces, so-called projective systems have been introduced, allowing to project such
random variables on stochastic processes [see, for instance, Krée and Soize, 1986, ch. 10].

Stochastic model for stochastic germs

This paragraph defines the set E● of stochastic germs. Let {●(x;pL) | x ∈ R
3} denote a generic

Gaussian random field defined on (A,F , P ), indexed by R
3, with values in R a.s. and parameterized

by the parameter set pL (to be defined shortly). Since {●(x;pL) | x ∈ R
3} is Gaussian, the complete

definition of its probability distribution only requires the choice of its mean field and autocorrelation
function. For the sake of simplicity, Soize [2006] has taken {●(x;pL) | x ∈ R

3} stationary, such that
the mean field m●(x;pL) = E {●(x;pL)} does not depend on the position and the autocorrelation
functionR●(η;pL) = E {●(x;pL)●(x + η;pL)} only depends on the lag distances η1, η2 and η3 along
the three spatial directions i1, i2 and i3. Soize [2006] has chosen m● and R● such that:

m●(x;pL) = 0 , (1.70)

R●(η;pL) = ρ(η1;L1)ρ(η2;L2)ρ(η3;L3) , (1.71)

in which:

ρ(η;L) =






1 if η = 0 ,

4L2

π2η2
sin2

(πη
2L

)
otherwise.

(1.72)

The power spectral density function10 S● corresponding to the choice (1.71)-(1.72) reads:

S●(k;pL) = s(k1;L1)s(k2;L2)s(k3;L3) , (1.75)

10The power spectral density function

S●(·; pL) : R
3 → R : k = (k1, k2, k3) 7→ S●(k; pL) (1.73)

and the autocorrelation function R● form a Fourier pair such that:

∀η ∈ R
3 : R●(η; pL) =

Z

R3

exp(i (η, k))S●(k; pL)dk. (1.74)
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in which:

s(k;L) =
L

π
∆

(
kL

π

)
, (1.76)

where ∆ : R → R
+ is the triangle function with compact support [−1, 1] such that:

∆(0) = 1 , ∆(−τ) = ∆(τ) , ∆(τ) = 1 − τ for τ ∈ [0, 1]. (1.77)

The parameter set pL = {L1, L2, L3} gathers the three so-called spatial correlation lengths. In view
of (1.75)-(1.76), they can be interpreted as parameters controlling the wavenumber content of the stochas-
tic germs [see, for instance, Lin and Cai, 1995, Soize, 1993, for details on the spectral analysis of stochas-
tic processes].

The asymptotic behaviour of the autocorrelation function defined by (1.71)-(1.72) for ||η|| → 0 ensures
that there exists a version11 of {●(x;pL) | x ∈ R

3} that a.s. has continuous sample paths (this can be
shown by the Dudley lemma [see, for instance, Soize, 1993, ch. 7 sec. 1]).

Let the set Ω = Ω∪∂Ω be the closure of Ω. The set E● of stochastic germs is defined as the set comprising
all random fields of the generic form

{●(x;pL) | x ∈ Ω} , (1.78)

which are defined on (A,F , P ), are indexed by Ω, have values in R a.s. and are the restrictions to
the bounded domain Ω of the sample-continuous versions of the stationary, Gaussian random fields
on (A,F , P ), indexed by R

3 with values in R a.s., whose mean field and autocorrelation function are
given by (1.70)-(1.72). The measurability properties of the stochastic germs defined in this way allow
controlling the stochastic properties of the extrema of their sample paths12.

Stochastic model for normalized, symmetric, positive definite real matrix-valued random fields

This paragraph defines the set SFG+ of normalized random fields with values in M+
6 (R) a.s. It follows

from the symmetry and positiveness properties of the matrices in M+
6 (R) that the matrix-valued random

fields in SFG+ are constituted of 21 mutually dependent real scalar-valued random fields. In the follow-
ing, the random fields in SFG+ are constructed as non-linear transformations of subsets of 21 stochastic
germs in E●.

In [Soize, 2000, 2001, 2006], a deterministic, non-linear continuous mapping

N(·; δ) : R
21 → M+

6 (R) : g 7→ N(g; δ) , (1.80)

11A system of cylindrical distributions generally does not uniquely define a stochastic process (in the sense of the collection
of mappings from the probability space into the space of values). Distinct stochastic processes admitting the same system of
cylindrical distributions are called “versions” of each other.

12In view of the sample continuity, each stochastic germ defines a random variable on (A,F , P ) with values in the function
space C0(Ω, R) a.s. (Box 1.3). It can be shown [see Krée and Soize, 1986, ch. 10 sec. 4]) that this random variable is measurable
from (A,F) into ((C0(Ω, R), B(C0(Ω, R))), where B(C0(Ω, R)) is the Borel σ-algebra generated by the open sets induced
by the uniform convergence norm on C0(Ω, R). Since sets of the form

{g(x) ∈ C0(Ω, R) | sup
x∈Ω

g(x) > u} , (1.79)

where u ∈ R is a real scalar, are open metric sets for this norm, they belong to B(C0(Ω, R)). The probability measure induced
by the stochastic germs on (C0(Ω, R), B(C0(Ω, R))) therefore allows measuring the probability of the sets of the form (1.79),
i.e. of the extrema of the stochastic germs [see, for instance, Ledoux and Talagrand, 1991, Piterbarg, 1996].
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was defined, which maps any (21 × 1) real random vector with mutually independent Gaussian com-
ponents with zero mean and unit variance onto a (6 × 6) normalized, symmetric, positive definite real
random matrix with dispersion level δ in the set SG+, defined in Section 1.1.3.

The set SFG+ gathers all random fields of the form

{◆(x;pL; δ) | x ∈ Ω} , (1.81)

which are defined on (A,F , P ), indexed by Ω, valued in M+
6 (R) a.s., of the second order, stationary and

are the transformation of a subset
{
{●k(x;pL) | x ∈ Ω}

∣∣1 ≤ k ≤ 21
}

(1.82)

of 21 independent stochastic germs in E● through the mapping N(·; δ) such that:
(
∀x ∈ Ω : ◆(x;pL; δ) = N

((
●1(x;pL), . . . ,●21(x;pL)

)
; δ
))

a.s. (1.83)

The parameter δ will allow controlling the dispersion level of the fluctuations of the random elasticity
tensor field (to be constructed).

It follows from the sample-continuity of the stochastic germs and the continuity of the mapping N(·; δ)
that the random fields in SFG+ are sample-continuous, such that:

0 < sup
x∈Ω

∣∣∣∣◆(x;pL; δ)−1
∣∣∣∣ < +∞ a.s. (1.84)

Moreover, if the dispersion parameter δ satisfies inequality (1.46), it can be shown that the following
fundamental invertibility property is fulfilled:

E






(
sup
x∈Ω

∣∣∣∣◆(x;pL; δ)−1
∣∣∣∣
)2



 < +∞. (1.85)

The proof [see Soize, 2006] is based on the stochastic properties of the extrema of the sample paths of
the stochastic germs and the asymptotic properties of the non-linear transformation N(·; δ) [Abramowitz
and Stegun, 1964, Piterbarg, 1996].

Stochastic model for the random elasticity-tensor field

The stochastic model for the random elasticity tensor field is now defined. The mean field must be chosen
by the user. Let (x 7→ Ce(x;p0)) ∈ T+

4 (Ω) denote the user-defined mean field, where p0 collects the
parameters of the mean model. The random field {❈e(x;p) | x ∈ Ω} defined on (A,F , P ), indexed
by Ω with values in the space of fourth-rank tensors is constructed as:

(
∀x ∈ Ω : ❈̂e(x;p) = LC(x;p0)

T◆(x;pL; δ)LC(x;p0)
)

a.s. , (1.86)

in which {◆(x;pL; δ) | x ∈ Ω} is a random field in SFG+. The matrix LC(x;p0) is the Cholesky
factor of the matrix Ĉ

e
(x;p0). The parameter set p = {p0,pL, δ} gathers the mean-model parameters,

the spatial correlation lengths and the dispersion parameter.

It can be verified13 that the sample paths of the random field {❈e(x;p) | x ∈ Ω} a.s. fulfil the usual
properties of essential boundedness, symmetry and positiveness, ensuring that property (P1) holds.

13It follows from the sample-continuity of the random fields in SFG+ that the sample paths of {❈e(x; p) | x ∈ Ω} a.s.
verify the property (1.3) of essential boundedness. By construction, the property (1.4) of symmetry is fulfilled. Finally, it can
readily be deduced from (1.84) that the sample paths of {❈e(x; p) | x ∈ Ω} a.s. fulfil the property (1.5) of positiveness.
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1.2. Discretization of the probabilistic structural models

Parametric probabilistic model

We now proceed to the definition of the parametric probabilistic model with minimal parameteriza-
tion. We will still work with the admissible function space V0, defined in footnote 9, of the second-
order random sufficiently regular response fields of the structure. The parametric probabilistic model
is obtained by modelling the elasticity tensor field of the variational formulation (1.16) by the random
field {❈e(x;p) | x ∈ Ω}. For a fixed ω ∈ B, it consists in finding the random response field

❯(ω;p) ∈ V0 , (1.87)

such that:
(
∀v ∈ V0 : ❑

(
❯(ω;p),v

)
+ iωd

(
❯(ω;p),v

)
− ω2m

(
❯(ω;p),v

)
= f(ω;v)

)
a.s. (1.88)

The random stiffness form is defined by:

❑ (v1,v2;p) =

∫

Ω
tr
(
❈e(p) (ǫ(v1)) ǫ(v2)

)
dΩ a.s. (1.89)

If the dispersion parameter δ fulfils the inequality (1.46), it can be shown (see also appendix A) that there
exists a unique random variable ❯(ω;p) ∈ V0 solving (1.88). Since the random response fields in V0

are of the second order, property (P2) holds. Finally, for later use, the random variables obtained by this
procedure at all frequencies in B are collected in the stochastic process

{❯(ω;p) | ω ∈ B}. (1.90)

In view of the inversion of the probabilistic model in the next chapter, it should be noted that equa-
tion (1.88) propagates the uncertainty introduced in the elasticity tensor field through the deterministic
model to the dynamical response field. This consideration is highlighted by writing the equation (1.88)
in the following equivalent form14:

❯(ω;p) = γP
(
❈e(p);ω

)
a.s. , (1.91)

where the mapping γP was defined in (1.29).

1.1.5 Time-domain probabilistic structural models

This section presented the construction of non-parametric and parametric probabilistic models for the
frequency-domain dynamical behaviour of structures. A similar methodology can be followed to build
time-domain probabilistic structural models. The reader is referred to [Soize, 2001] for time-domain
non-parametric models and to appendix A for time-domain parametric models.

1.2 Discretization of the probabilistic structural models

In the previous section, the construction of probabilistic structural models with minimal parameteriza-
tion was presented in a functional framework. Our objective in this section is to describe the discretiza-
tion of these probabilistic models to obtain alternative problems that can be solved by computers. We

14The random variable ❈e(p) is the random variable defined on (A,F , P ) with values in T+
4 (Ω) a.s. defined by the sample

paths of the random field {❈e(x; p) | x ∈ Ω} (see also Box 1.3).
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Chapter 1. The probabilistic structural models and the experimental data

shall provide basic algorithms for performing computations with non-parametric (Sec. 1.2.1) or para-
metric (Sec. 1.2.2) probabilistic models.

The Finite Element (FE) method will be used for the discretization of the space [see, for instance, Bon-
net and Frangi, 2006, Ciarlet, 1978, Hughes, 1987, Oden and Reddy, 1976, Zienkiewicz and Taylor,
2000a,b]. The random dimension will be discretized by MCS, which is the appropriate method consid-
ering that the probabilistic models have been built by writing the equilibrium equations of the structure
in the almost sure sense with respect to the random coordinate15

1.2.1 Non-parametric probabilistic approach

A typical computation with the non-parametric probabilistic model, set up in Section 1.1.3, encompasses
two main steps. First, a deterministic reduced matrix model is built for the studied structure. Subse-
quently, the MCS method is applied to perform calculations with the associated non-parametric proba-
bilistic model. Algorithm 1 details this procedure for the basic case where the reduced model is obtained
by projecting a FE model onto a reduction basis of dynamical eigenmodes.

Algorithm 1: computation with the non-parametric probabilistic model

• Step 1: construction of the deterministic reduced matrix model:

Step 1a: initialization:

Choose the level of refinement of the FE model.
Choose the dimension nT of the reduction basis.

Step 1b: construction of the FE model:

Build a FE model for the studied structure with the chosen level of refinement to obtain a matrix
model of the following form:

[Kh + iωDh − ω2M h]uh(ω) = fh(ω) , ω ∈ B , (1.92)

where Kh,Dh,M h ∈ M+
nh

(R) (where nh is the number of FE DOFs) are the FE stiffness, damp-
ing and mass matrices. For a fixed ω ∈ B, the vectors uh(ω) and f h(ω) in C

nh collect the FE DOFs
and nodal forces. We note that, formally, Kh, Dh, M h and f h(ω) are obtained by projecting the
forms k, d, m and f(·;ω), defined in the previous section, onto the chosen FE basis.

Step 1c: calculation of the reduction basis:

Solve the generalized eigenvalue problem

Khϕh = λhM hϕh (1.93)

to obtain the nT eigenvectors {ϕh,α ∈ R
nh | 1 ≤ α ≤ nT} associated to the nT lowest eigenfre-

quencies. Gather these eigenvectors in the columns of the rectangular transformation matrix T nT ∈
Mnh×nT(R).

15If the equilibrium equations had been written in the weak sense with respect to the random coordinate, the natural method-
ology for the discretization of the random dimension would have consisted in the Galerkin projection of the variational for-
mulation onto a suitable approximating stochastic functional space. Ghanem and Spanos [1991] have proposed building this
approximating stochastic functional space using the polynomial chaos expansion. Babuška et al. [2005], Deb et al. [2001] have
proposed using FE spaces.
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1.2. Discretization of the probabilistic structural models

Step 1d: construction of the deterministic reduced model:

Project the FE model (1.92) onto the reduction basis to obtain the following reduced matrix model:

[K + iωD − ω2M ]qnT
(ω) = T T

nT
fh(ω) , ω ∈ B , (1.94)

uh(ω) = T nTqnT
(ω). (1.95)

The matrices K,D,M ∈ M+
nT

(R) are the reduced stiffness, damping and mass matrices, respec-
tively, obtained by the projection of the corresponding matrices of the FE model onto the reduction
basis. For a fixed ω ∈ B, qnT

(ω) is the vector of the generalized coordinates and uh(ω) gathers
the FE DOFs for the reduced model.

• Step 2: computation with the non-parametric probabilistic model:

Step 2a: initialization:

Choose a number nS of Monte Carlo samples.
Choose the mean matrices {K(p0),D(p0),M(p0)} and the dispersion levels {δK, δD, δM}.
Choose a set {ωℓ | 1 ≤ ℓ ≤ nF} ⊂ B of discrete frequencies.

Step 2b: simulation of the samples of the random reduced matrices:

Simulate (see Algorithm 2 of Box 1.4) a set
{(
❑(as;p),❉(as;p),▼(as;p)

)
| 1 ≤ s ≤ nS

}
of nS

independent and identically-distributed (iid) samples of the triple (❑(p),❉(p),▼(p)) gathering
the random reduced stiffness, damping and mass matrix.

Step 2c: calculation of the samples of the random response:

For each s ∈ {1 ≤ s ≤ nS}, solve the deterministic problem for (❑(as;p),❉(as;p),▼(as;p)).

For the s-th iteration, solve, for each ℓ ∈ {1 ≤ ℓ ≤ nF}, the following matrix equation:

[❑(as;p) + iωℓ❉(as;p) − ω2
ℓ▼(as;p)]◗nT(ωℓ; as;p) = T T

nT
fh(ωℓ) , (1.96)

❯h(ωℓ; as;p) = T nT◗nT(ωℓ; as;p). (1.97)

Gather the iid samples of the random response obtained by this procedure in the set

{❯h(ωℓ; as;p) | 1 ≤ ℓ ≤ nF , 1 ≤ s ≤ nS}. (1.98)

Step 2d: statistical estimation of quantities of interest:

Apply the theory of mathematical statistics to study the probabilistic properties of the random
response field. For instance, the expectation value of the random displacement field at the fre-
quency ωℓ can be estimated by the statistical average of the nS iid samples {❯h(ωℓ; as;p) | 1 ≤
s ≤ nS} as follows:

m̂h,nS(ωℓ;p) =
1

nS

nS∑

s=1

❯h(ωℓ; as;p). (1.99)

In this algorithm, the discretization of the space and the random dimension introduces a discretization
error in that the computed result is usually only an approximation of the exact result. However, the
non-parametric probabilistic model has been built, and the numerical discretization methods have been
chosen, in such a way that this error can be controlled. The error induced by the discretization of the space
can be reduced by refining the FE model of the structure [see, for instance, Babuška and Strouboulis,
2001, Demkowicz et al., 2002, Schwab, 1999]. The statistical error, corresponding to the computation
of the estimate (1.99) on the basis of only a finite number of samples, can be reduced by increasing
this number of samples. The statistical error is controlled by the CLT since, by construction, the random
variable ❯h(ωℓ;p) is of the second order.
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Chapter 1. The probabilistic structural models and the experimental data

Box 1.4. Simulation of the random matrices

This box describes the numerical simulation of the random reduced matrices featured in non-
parametric probabilistic models with minimal parameterization.

In [Soize, 2000, 2001, 2006], a deterministic mapping

N(·; δ) : R
n(n+1)/2 → M+

n (R) : g 7→ N(g; δ) (1.100)

was introduced, which maps any (n(n + 1)/2 × 1) real random vector with mutually independent
Gaussian components with zero mean and unit variance onto a (n× n) normalized, symmetric, pos-
itive definite real random matrix with dispersion level δ in the set SG+, defined in Section 1.1.3.
Soize [2000, 2001, 2006] has given a generic expression for this mapping as a function of the dimen-
sion n and the dispersion level δ, which allows the numerical approximation of N(·; δ). Therefore,
the matrix N(g; δ) was written as:

N(g; δ) = L(g; δ)TL(g; δ) , (1.101)

where L(g; δ) ∈ M+
n (R) is an upper triangular matrix such that:

Lkk′(g; δ) = δ
√
n+ 1g(k−1)n+k′ for k < k′ , (1.102)

Lkk(g; δ) = δ
√
n+ 1

√

h

(
g(k−1)n+k′ ;

n+ 1

2δ2
+

1 − k

2

)
. (1.103)

The mapping h(·;α) : R → R
+
0 : g 7→ h(g;α) is such that:

h(g;α) = F−1
γ (FN(g);α) , (1.104)

where FN : R →]0, 1[ is the cumulative distribution function of a normalized Gaussian random
variable:

FN(g) =

∫ g

−∞

1√
2π

exp

(
−x

2

2

)
dx , (1.105)

and Fγ(·;α) : R
+
0 →]0, 1[ is the cumulative distribution function of a gamma random variable:

Fγ(g;α) =

∫ g

0

1

Γ(α)
xα−1 exp(−x)dx. (1.106)

The integrals (1.105) and (1.106) cannot be solved analytically and must therefore be approximated
numerically [see, for instance, Abramowitz and Stegun, 1964]. Algorithm 2 details the procedure for
the numerical simulation of a random reduced matrix using the mapping N(·; δ).

Algorithm 2: simulation of a random reduced matrix ❆(p)

• Step 1: initialization:

Choose a number nS of Monte Carlo samples.
Choose the mean matrix A(p0) ∈ M+

n (R) and the dispersion level δA.
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1.2. Discretization of the probabilistic structural models

• Step 2: simulation of the samples of a Gaussian random vector:

Simulate a set {●(as) | 1 ≤ s ≤ nS} of nS iid samples of a random vector ● with values
in R

n(n+1)/2 with mutually independent Gaussian components with zero mean and unit vari-
ance. The Box-Muller transformation can, for instance, be used to perform this task [see, for
instance, Robert and Casella, 2005].

• Step 3: calculation of the samples of the random reduced matrix:

For each s ∈ {1 ≤ s ≤ nS}, compute the matrix

❆(as;p) = LT
A(p0)N

(
●(as); δA

)
LA(p0) , (1.107)

where LA(p0) is the Cholesky factor of A(p0). Gather the iid samples of the random reduced
matrices obtained by this procedure in the set

{❆(as;p) | 1 ≤ s ≤ nS}. (1.108)

1.2.2 Parametric probabilistic approach

Algorithm 3 details the main steps in a computation with the parametric probabilistic model, set up in
Section 1.1.4.

Algorithm 3: computation with the parametric probabilistic model

• Step 1: initialization:

Choose a number nS of Monte Carlo samples.
Choose the mean field x 7→ Ce(x;p0), the correlation lengths pL and the dispersion level δ.
Choose the level of refinement of the FE model.
Choose a set {ωℓ | 1 ≤ ℓ ≤ nF} ⊂ B of discrete frequencies.

• Step 2: simulation of the samples of the random elasticity tensor field:

Simulate (see Algorithm 4 of Box 1.5) a set {x 7→ ❈e(x; as;p) | 1 ≤ s ≤ nS} of nS iid sample
paths of the random elasticity tensor field {❈e(x;p) | x ∈ Ω}.

• Step 3: calculation of the samples of the random response:

For each s ∈ {1 ≤ s ≤ nS}, solve the deterministic problem associated to the sample path x 7→
❈e(x; as;p).

Step 3a: construction of a FE model:

For the s-th iteration, build a FE model with the chosen level of refinement to obtain a matrix
model of the following form:

[❑h(as;p) + iωDh − ω2M h]❯h(ω; as;p) = fh(ω) , ω ∈ B , (1.109)

where ❑h(as;p) ∈ M+
nh

(R) (where nh is the number of FE DOFs) is the FE stiffness matrix cor-
responding to the elasticity tensor field x 7→ ❈e(x; as;p). The matrices Dh,M h ∈ M+

nh
(R) are

the FE damping and mass matrices. For a fixed ω ∈ B, the vectors ❯h(ω; as;p) and f h(ω) in C
nh
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Chapter 1. The probabilistic structural models and the experimental data

collect the FE DOFs and nodal forces. We note that, formally, ❑h(as;p), Dh, M h and f h(ω) are
obtained by projecting the forms ❑(·; as;p), d,m and f(·;ω), defined in the previous section, onto
the chosen FE basis.

Step 3b: calculation of the samples of the random response:

For the s-th iteration, solve, for each ℓ ∈ {1 ≤ ℓ ≤ nF}, the following matrix equation:

[❑h(as;p) + iωℓDh − ω2
ℓ M h]❯h(ωℓ; as;p) = fh(ωℓ). (1.110)

Gather the iid samples of the random response obtained by this procedure in the set

{❯h(ωℓ; as;p) | 1 ≤ ℓ ≤ nF , 1 ≤ s ≤ nS}. (1.111)

• Step 4: statistical estimation of quantities of interest: (see Algorithm 1).

In this algorithm, the discretization of the space and the random dimension introduces a discretization
error. As it was also the case for the non-parametric probabilistic model, this error can be reduced by
refining the FE model and by increasing the number of Monte Carlo samples.

Box 1.5. Simulation of the random elasticity tensor field

This box describes the numerical simulation of the random elasticity tensor field of parametric prob-
abilistic models with minimal parameterization. A practical methodology is given based on the sim-
ulation of the underlying Gaussian stochastic germs by the spectral representation method [see, for
instance, Poirion and Soize, 1989, Puig, 2003, Shinozuka and Jan, 1972]. We refer the reader to [Puig,
2003] for a review of the various other approaches that were proposed in the literature for the simu-
lation of random fields.

Let us first detail the simulation of a stochastic germ {●(x;pL) | x ∈ Ω} in the set E●. The spectral
representation method is based on the approximation of the continuous power spectral density func-
tion S●(·;pL), defined in (1.75)-(1.76), by a discrete power spectrum. More specifically, the stochas-
tic germ {●(x;pL) | x ∈ Ω} is approximated by an alternative random field {●(n)(x;pL) | x ∈ Ω}
defined as the superposition of n3 cosine functions, each with a random amplitude and a random
phase shift:
{
●(n)(x;pL) =

√
2
π

L1

π

L2

π

L3

∑

α∈An

√
S●(kα;pL)❳α cos

(
(kα,x) + ❨α

)∣∣∣x ∈ Ω

}
, (1.112)

where:

An = {α = (α1, α2, α3) | 1 ≤ αℓ ≤ n for ℓ ∈ {1, 2, 3}} , (1.113)

kα = (kα1 , kα2 , kα3) such that kαℓ =

(
−1 +

2αℓ − 2

2n

)
π

Lℓ
for ℓ ∈ {1, 2, 3}. (1.114)

The expressions (1.113)-(1.114) discretize the support [−π
L1
, π

L1
] × [−π

L2
, π

L2
] × [−π

L3
, π

L3
] of S●(·;pL)

using n3 points. The random amplitudes are such that, for all α ∈ An, ❳α =
√− log❩α, where
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the set {❩α | α ∈ An} collects n3 independent uniform random variables with values in [0, 1]. The
set {❨α | α ∈ An} of random phases gathers n3 independent uniform random variables with values
in [0, 2π], which are independent of the random amplitudes {❳α | α ∈ An}. It can be shown [Poirion
and Soize, 1989] that {●(n)(x;pL) | x ∈ Ω} converges in distribution to {●(x;pL) | x ∈ Ω} as n
tends to infinity.

Algorithm 4 details the procedure for the numerical simulation of the random elasticity tensor field
using the spectral representation method and the mapping N(·; δ), defined in Section 1.2.1.

Algorithm 4: simulation of the random elasticity tensor field

• Step 1: initialization:

Choose a number nS of Monte Carlo samples.
Choose the mean field Ce(p0), the correlation lengths pL and the dispersion level δ.
Choose the parameter n governing the discretization of the support of S●(·;pL).

• Step 2: simulation of the samples of the random amplitudes and phases:

First, simulate a set

{❳α,k(as) | α ∈ An , 1 ≤ k ≤ 21 , 1 ≤ s ≤ nS} (1.115)

of nS × 21 × n3 iid samples of a real random variable ❳ =
√− log❩, where ❩ is a uniform

random variable with values in [0, 1]. Then, simulate a set

{❨α,k(as) | α ∈ An , 1 ≤ k ≤ 21 , 1 ≤ s ≤ nS} (1.116)

of nS × 21 × n3 iid samples of a uniform random variable ❨ with values in [0, 2π], which is
independent of ❳.

• Step 3: construction of the samples of the 21-subsets of stochastic germs:
For each s ∈ {1 ≤ s ≤ nS} and k ∈ {1 ≤ k ≤ 21}, build the sample path

x 7→ ●
(n)
k (x; as;pL) =

√
2
π

L1

π

L2

π

L3

∑

α∈An

√
S●(kα;pL)❳α,k(as) cos

(
(kα,x) + ❨α,k(as)

)
.

(1.117)

• Step 4: construction of the samples of the random elasticity tensor field:
For each s ∈ {1 ≤ s ≤ nS}, build the sample path

x 7→ ❈̂
e(n)(x; as;p) = LC(x;p0)

TN
(
●

(n)
1 (x; as;pL), . . . ,●

(n)
21 (x; as;pL); δ

)
LC(x;p0) ,

(1.118)
where the matrix LC(x;p0) is the Cholesky factor of Ĉ

e
(x;p0). Gather the iid samples ob-

tained by this procedure in the set

{x 7→ ❈e(n)(x; as;p) | 1 ≤ s ≤ nS}. (1.119)
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1.3 Vibration test and experimental data

In the previous two sections, the probabilistic mathematical-mechanical modelling of structures was
presented. This section now turns to the experimental characterization of the dynamical behaviour of
structures. In the following, we define a generic vibration test, along with a corresponding experimental
data set of observed TFs, which will be used in the next chapter to set up inverse methods. We do not
elaborate on the practical aspects of vibration tests, but refer the reader to [Heylen et al., 1997, Inman,
1994, McConnell, 1995, Pintelon and Schoukens, 2001] for details concerning this topic.

x3

x2

x1

x1

e1

em

xm

Wk

...

loading

Figure 1.4: The generic instrumentation of the k-th tested structure: notations.

It is noted that we will define the generic vibration test from the point of view of a stochastic inverse
problem aimed at quantifying aleatory uncertainty (see the general introduction), in that the testing of
a collection of similar structures is considered. Nevertheless, upon simply setting the number of tested
structures to one, a vibration test is obtained that is well-adapted to a stochastic inverse problem aimed
at quantifying epistemic uncertainty.

In our generic vibration test, it is assumed that a collection of realizations of a so-called random struc-
ture, i.e. a collection of similar, but not perfectly identical, structures is considered. Furthermore, the
vibration test is assumed to be performed on a subset of nK realizations of this random structure (i.e. on a
subset of nK samples out of the entire collection under study). Finally, the nK tested samples are assumed
to be instrumented in the same way (Fig. 1.4) by means of nM transducers to measure the mechanical
motion at the positions {xm | 1 ≤ m ≤ nM} (located on the boundary of the structure) along the direc-
tions {em | 1 ≤ m ≤ nM}. For example, if the collection of all similar aircraft engines manufactured by
a production line during its operational life were under study, the vibration test could concern the aircraft
engines manufactured by this production line during say one month.

The dynamical behaviour of each tested sample structure is studied by applying a broadband time-limited
pressure field on a small portion of its boundary and by measuring the induced mechanical motion in
the nM experimental Degrees Of Freedom (DOFs). Various devices can be used to apply the excitation,
e.g. impact hammers, falling-weight devices and electromechanical or electrohydraulic devices. In our
generic vibration test, this experiment is repeated nR times for each tested sample structure. The excita-
tion is hereby assumed to be applied on the same portion of the boundary for each tested structure and
each consecutive repetition. In other words, only the time history, and not the spatial distribution, of the
applied loading is allowed to change from one tested structure or repetition to the next. For instance, for
an excitation generated by an impact hammer, the strike area is assumed to remain unchanged, whereas
the time duration and the magnitude of the impact are allowed to vary.

The repetition of the experiment (nR > 1) is particularly useful in view of the experimental noise which
may disturb the measurement of the applied force and the induced mechanical response. The noise may
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1.3. Vibration test and experimental data

concern the mechanical motion of the structure due to parasite excitations, electrical noise in the trans-
ducers and the wires and discretization errors. Under some assumptions, the repetition of the experiment
allows recovering, from the noisy measurement data, those data which would be obtained if the vibra-
tion test were not disturbed by noise (App. C). Moreover, it allows estimating the coherence function to
quantify the level of distortion of the experimental data due to noise (App. C).

Experimental data

The raw measurement data consist of a time-dependent applied force and of time-dependent responses
measured in nM experimental DOFs for nR repetitions of the experiment for nK structures. Accordingly,
let fobs

kr (t) and yobs
krm(t) denote the measured applied force and response at the m-th sensor, respectively,

for the r-th repetition and the k-th tested structure. These data are sampled in the time domain and,
subsequently, transformed into the frequency domain by means of the Discrete Fourier Transform (DFT)
to obtain:

{fobs
kr (ωℓ) | 1 ≤ ℓ ≤ nF , 1 ≤ k ≤ nK , 1 ≤ r ≤ nR} , (1.120)

{yobs
krm(ωℓ) | 1 ≤ ℓ ≤ nF , 1 ≤ k ≤ nK , 1 ≤ r ≤ nR , 1 ≤ m ≤ nM} , (1.121)

where {ωℓ | 1 ≤ ℓ ≤ nF} is the set of nF discrete frequencies. The value taken by the observed Transfer
Function (TF) for them-th sensor, the r-th repetition and the k-th structure at the frequency ωℓ is defined
as the frequency-domain ratio of the measured response and applied force:

gobs
krm(ωℓ) =

yobs
krm(ωℓ)

fobs
kr (ωℓ)

. (1.122)

For the k-th structure, these values are gathered in the data set

Dk = {gobs
k1 (ωℓ), . . . , g

obs
knR

(ωℓ) | 1 ≤ ℓ ≤ nF} , (1.123)

where the values taken by the nM observed TFs for the r-th repetition and the k-th structure at the
frequency ωℓ are gathered in the vector gobs

kr (ωℓ) ∈ C
nM . Finally, all experimental results thus obtained

are gathered in the data set
D = {Dk | 1 ≤ k ≤ nK}. (1.124)

Experimental data: the noise-free idealization

When the vibration test is not disturbed by noise, the experiment is carried out only once for each tested
structure (nR = 1). For the k-th tested structure, a data set

D0
k = {h0

k(ωℓ) | 1 ≤ ℓ ≤ nF} (1.125)

is then obtained collecting the values taken by the noise-free TFs of this structure at the nF discrete
frequencies. The m-th component h0

km(ωℓ) is the frequency-domain ratio of the undisturbed response in
the m-th transducer and the applied force at the discrete frequency ωℓ. All experimental results are then
gathered in the data set

D0 = {D0
k | 1 ≤ k ≤ nK}. (1.126)
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1.4 Stochastic modelling of the vibration test

After having presented the probabilistic modelling of the dynamical behaviour of structures and defined
a generic vibration test, our main goal is now to describe the probabilistic modelling of this vibration
test. Before addressing this issue, a representation of the observed TF values as realizations of random
variables will be introduced, which will be useful in Chapter 2, for instance to analyze the asymptotic
behaviour of inverse methods as more and more data are acquired.

1.4.1 The vibration test as a random experiment

A representation of the observed TF values as realizations of random variables is now introduced. We first
expound on the case where the vibration test is not disturbed by experimental noise, and subsequently
deal with the case where it is distorted by noise.

Undisturbed vibration test

Let us consider a general problem where the generic vibration test (Sec. 1.3) is carried out under noise-
free conditions on a collection of similar, but not perfectly identical, samples of a random structure. The
observed TFs obtained for these sample structures are expected to be similar, but not perfectly identical.
We make the fundamental modelling assumption that the differences or fluctuations in the observed TFs
can be described in a stochastic framework. More precisely, it is assumed that these fluctuations show a
statistical regularity in the particular sense that the observed TF values can adequately be regarded as iid
realizations of a certain (possibly unknown) data-generating stochastic process.

More specifically, let the observed TF values be collected in a generic data set D0 of the form (1.125)-
(1.126). We then introduce a random data set

❉0 = {❉0
k | 1 ≤ k ≤ nK} , (1.127)

which gathers nK independent copies, of the generic form ❉0
k = {❍0

k(ωℓ) | 1 ≤ ℓ ≤ nF}, of a data-
generating stochastic process

❉̃0 =
{
❍̃0(ωℓ) | 1 ≤ ℓ ≤ nF

}
, (1.128)

which is assumed to perfectly represent the fluctuations in the observed TFs (and whose existence is
postulated). The actually observed data set D0 is then viewed as a particular realization of ❉0, or, equiv-
alently, as a collection of nK iid realizations of ❉̃0.

The stochastic process (1.128) is assumed to admit a system of cylindrical PDFs (Box 1.3). The n-th
order cylindrical PDF is denoted by

ξ(n)
(
·
∣∣ωℓ1 , . . . , ωℓn

)
: C

nM×n → R
+ (1.129)

and is defined as the joint PDF of the n random variables {❍̃0(ωℓ1), . . . , ❍̃
0(ωℓn)}. Under the afore-

mentioned modelling assumption, the nF-th order cylindrical PDF ξ(nF) is the data-generating PDF: it
perfectly represents the joint probability distribution of the values taken by the observed TFs of the
random structure at all discrete frequencies.
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1.4. Stochastic modelling of the vibration test

Disturbed vibration test

Let us now consider a similar general problem where the generic vibration test is carried out on a col-
lection of sample structures, this time, under noisy conditions. As outlined in Section 1.3, the vibration
measurement is then repeated several times for each tested structure. For a fixed sample structure, the
observed TFs thus obtained are expected to show fluctuations due to experimental noise. We make the
fundamental modelling assumption that these fluctuations can be described in a stochastic framework,
and, in particular, that the observed TF values can adequately be viewed as iid realizations of a certain
(possibly unknown) data-generating stochastic process. Moreover, the experimental noise is assumed to
be independent among, and allowed to have different characteristics for, distinct tested structures.

More specifically, let the observed TF values be gathered in a generic data set D of the form (1.123)-
(1.124). We then introduce a random data set

❉ = {❉k | 1 ≤ k ≤ nK} , (1.130)

which gathers nK independent, but not necessarily identically-distributed (reflecting the fact that the
noise may have different characteristics for distinct tested structures), random subsets of data of the form

❉k = {●k1(ωℓ), . . . ,●knR(ωℓ) | 1 ≤ ℓ ≤ nF}. (1.131)

For each tested structure (indexed by k), the stochastic process ❉k is assumed to gather nR independent
copies, having the generic form {●kr(ωℓ) | 1 ≤ ℓ ≤ nF}, of a data-generating stochastic process

❉̃k = {●̃k(ωℓ) | 1 ≤ ℓ ≤ nF} , (1.132)

which is assumed to perfectly represent the variability in the observed TFs for the k-th tested structure
due to the experimental noise (and whose existence is postulated). The actually observed data set D

is viewed as a particular realization of ❉. For each tested structure, the data subset Dk is viewed as a
particular realization of ❉k, or, equivalently, as a collection of nR iid realizations of ❉̃k.

For each tested structure, the stochastic process (1.132) is assumed to admit a system of cylindrical PDFs.
The n-th order cylindrical PDF is denoted by

ψ
(n)
k (·|ωℓ1 , . . . , ωℓn) : C

nM×n → R
+ (1.133)

and is defined as the joint PDF of the n random variables {●̃k(ωℓ1), . . . , ●̃k(ωℓn)}. Under the above-

made modelling assumptions, the nF-th order cylindrical PDF ψ(nF)
k is the data-generating PDF for the k-

th tested structure: it perfectly represents the joint probability distribution of the values taken by the
observed TFs for this structure at all discrete frequencies. The n-th order cylindrical PDF of the stochastic
process (1.131) is denoted by

ψ
(n,nR)
k (·|ωℓ1 , . . . , ωℓn) : C

nM×nR×n → R
+ (1.134)

and is defined as the joint PDF of the n random variables

{●k1(ωℓ1), . . . ,●knR(ωℓ1), . . . ,●k1(ωℓn), . . . ,●knR(ωℓn)}. (1.135)

Clearly, the first-order cylindrical PDF ψ(1,nR)
k is such that:

ψ
(1,nR)
k

(
g1, . . . , gnR

∣∣ωℓ

)
=

nR∏

r=1

ψ
(1)
k

(
gr

∣∣ωℓ

)
. (1.136)

More generally, the n-order cylindrical PDF ψ(n,nR)
k is such that:

ψ
(n,nR)
k

(
g11, . . . , g1nR

, . . . , gn1, . . . , gnnR

∣∣ωℓ1 , . . . , ωℓn

)
=

nR∏

r=1

ψ
(n)
k

(
g1r, . . . , g1r

∣∣ωℓ1 , . . . , ωℓn

)
. (1.137)
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1.4.2 Probabilistic mathematical-mechanical modelling

We now describe the probabilistic mathematical-mechanical modelling of the generic vibration test.
Again, we first expound on the case where the vibration test is not disturbed by experimental noise,
and then address the case where it is distorted by noise.

Undisturbed vibration test

The outcome of a vibration test carried out under noise-free conditions is modelled as follows. First, the
experimental excitation is modelled by a position- and frequency-dependent surface force field (x;ω) 7→
f s(x;ω). Subsequently, either a non-parametric or a parametric probabilistic structural model is set up
and used to forecast the induced dynamical response field to obtain a stochastic process {❯(ω;p) | ω ∈
B}, parameterized by p (corresponding to either equation (1.58), or (1.90)). Finally, a stochastic process

{❍(ωℓ;p) | 1 ≤ ℓ ≤ nF} (1.138)

is defined, where, for each frequency ωℓ, the random variable ❍(ωℓ;p) with values in C
nM a.s. is the

ratio at that frequency of the predicted random response in the nM transducers and the magnitude of the
applied force16:

❍m(ωℓ;p) =
(❯(xm;ωℓ;p), em)∫
Γσ

(f s(x;ωℓ),n) dS
a.s. for 1 ≤ m ≤ nM. (1.139)

The stochastic process (1.138) is assumed to admit a system of cylindrical PDFs. The n-th order cylin-
drical PDF, conditioned on p, is denoted by

θ(n)
(
·
∣∣ωℓ1 , . . . , ωℓn ;p

)
: C

nM×n → R
+ (1.140)

and is defined as the joint PDF of the n random variables {❍(ωℓ1 ;p), . . . ,❍(ωℓn ;p)}.

Disturbed vibration test

The outcome of a noisy vibration test is modelled as follows. First, similarly to the previous subsec-
tion, a probabilistic structural model is used to model the vibration test to obtain a stochastic pro-
cess {❍(ωℓ;p) | 1 ≤ ℓ ≤ nF} with n-th order cylindrical PDF θ(n)(·|·;p).

Subsequently, a probabilistic model for the experimental noise is built. For each tested sample struc-
ture (indexed by k) and for each discrete frequency ωℓ, the random variable ●̃k(ωℓ), introduced in (1.132)
and representing the variability of the observed TFs for the k-th structure at the frequency ωℓ due to the
noise, is written in the following form:

●̃k(ωℓ) = h0
k(ωℓ) + ❊̃k(ωℓ) a.s. , (1.141)

where the random variable ❊̃k(ωℓ), with values in C
nM a.s., represents the fluctuations of the observed

TF values around the noise-free TF value h0
k(ωℓ) due to the noise. To obtain a simple probabilistic model

16It should be noted that the equation (1.139) is ill-defined from the mathematical point of view. Indeed, for a fixed ω, the
random displacement field ❯(ω; p) has values in a functional space of the form {v ∈

`
H1(Ω, C)

´3 |v = 0 on Γu} and is
therefore only “almost everywhere" defined. This difficulty can easily be circumvented by applying the trace theorem [see, for
instance, Duvaut and Lions, 1972, ch. 1 sec. 4] to map the displacement field ❯(ω; p) defined in Ω to a corresponding field
defined on the boundary ∂Ω, and, subsequently, by averaging over a small portion of this boundary around the considered
position.
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1.4. Stochastic modelling of the vibration test

that can easily be identified from the experimental data, we model the random variables {❊̃k(ωℓ) | 1 ≤
ℓ ≤ nF} as circular complex Gaussian random variables (Box 1.6) that are independent among the
frequencies. The mean value of ❊̃k(ωℓ) is set to zero and its covariance matrix is identified from the
experimental data set as:

Ĉk(ωℓ) =
1

nR

nR∑

r=1

(
yobs

kr (ωℓ) − ĥk(ωℓ)f
obs
kr (ωℓ)

)
⊗
(
yobs

kr (ωℓ) − ĥk(ωℓ)f
obs
kr (ωℓ)

)
, (1.142)

where ĥk(ωℓ) is the so-called H1-estimate of the TF value, defined by (App. C):

ĥk(ωℓ) =
1

nR

∑nR
r=1 yobs

kr (ωℓ)f
obs
kr (ωℓ)

1
nR

∑nR
r=1

∣∣fobs
kr (ωℓ)

∣∣2 . (1.143)

The random variable ❊̃k(ωℓ) admits the following PDF (Box 1.6):

N c
(
· |0, Ĉk(ωℓ)

)
: C

nM → R
+. (1.144)

Finally, for each tested structure, a stochastic process

{
❍(ωℓ;p) + ❊k1(ωℓ), . . . ,❍(ωℓ;p) + ❊knR(ωℓ)

∣∣ 1 ≤ ℓ ≤ nF
}

, (1.145)

is defined, where, for each frequency ωℓ, the random variables {❊kr(ωℓ) | 1 ≤ r ≤ nR} are nR indepen-
dent copies of ❊̃k(ωℓ). The stochastic process (1.145) is assumed to admit a system of cylindrical PDFs.
The n-th order cylindrical PDF, conditioned on p, is denoted by

ϕ
(n,nR)
k (·|ωℓ1 , . . . , ωℓn ;p) : C

nM×nR×n → R
+ (1.146)

and is defined as the joint PDF of the n× nR random variables

{❍(ωℓ1 ;p) + ❊k1(ωℓ1), . . . ,❍(ωℓ1 ;p) + ❊knR(ωℓ1), . . . ,❍(ωℓn
;p) + ❊k1(ωℓn

), . . . ,❍(ωℓn
;p) + ❊knR(ωℓn

)}.
(1.147)

Clearly, the first-order cylindrical PDF has the following convolution expression:

ϕ
(1,nR)
k

(
g1, . . . , gnR

∣∣ωℓ;p
)

=

∫

C
nM

θ(1)
(
h
∣∣ωℓ;p

) nR∏

r=1

ρ
(1)
k

(
gr

∣∣ωℓ;h
)
dh , (1.148)

where the PDF ρ(1)
k : C

nM → R
+ is defined by:

ρ
(1)
k

(
g|ωℓ;h

)
= N c

(
g − h|0, Ĉk(ωℓ)

)
. (1.149)

More generally, the n-th order cylindrical PDF reads:

ϕ
(n,nR)
k

(
g11, . . . , g1nR

, . . . , gn1, . . . , gnnR

∣∣ωℓ1 , . . . , ωℓn
;p
)

(1.150)

=

∫

CnM×n

θ(n)
(
h1, . . . ,hn

∣∣ωℓ1 , . . . , ωℓn
;p
) nR∏

r=1

(
ρ
(1)
k

(
g1r

∣∣ωℓ1 ;h1

)
. . . ρ

(1)
k

(
gnr

∣∣ωℓn
;hn

))
dh1 . . . dhn.
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Box 1.6. Circular complex Gaussian random variables

This box recalls the notion of circularity for complex Gaussian random variables. We refer the reader
to [Picinbono, 1993, Pintelon and Schoukens, 2001] for more details concerning this topic.

Let us first recall that a real random variable ❳ with values in R
n a.s. is Gaussian if it admits a PDF

of the following form:

N(x|µ,C) =
1√

(2π)ndet(C)
exp

(
− 1

2

(
C−1(x − µ),x − µ

) )
, (1.151)

where µ ∈ R
n and C ∈ M+

n (R) denote the mean value and the covariance matrix defined by:

µ = E {❳} , (1.152)

C = E {(❳− µ) ⊗ (❳− µ)} . (1.153)

A complex random variable ❳ with values in C
n a.s. is said to be Gaussian if its real and imaginary

part are jointly real Gaussian random variables, that is to say if the real random variable [ℜ(❳);ℑ(❳)]
with values in R

2n a.s. is Gaussian.

Let µR = ℜ(µ) and µI = ℑ(µ) denote the real and the imaginary part of the mean value µ = E {❳}.
Furthermore, let the four covariance matrices CRR, CRI, CIR and CII be given by:

CRR = E {(❳R − µR) ⊗ (❳R − µR)} , CRI = E {(❳R − µR) ⊗ (❳I − µI)} , (1.154)

CIR = E {(❳I − µI) ⊗ (❳R − µR)} , CII = E {(❳I − µI) ⊗ (❳I − µI)} , (1.155)

where ❳R = ℜ(❳) and ❳I = ℑ(❳). These four real covariance matrices are entirely defined if the
following two complex covariance matrices C0,C1 ∈ M+

n (C) are known:

C0 = E
{
(❳− µ) ⊗

(
❳− µ

)}
= (CRR + CII) + i(CIR − CRI) , (1.156)

C1 = E {(❳− µ) ⊗ (❳− µ)} = (CRR − CII) + i(CIR + CRI). (1.157)

Indeed:

CRR =
1

2
ℜ (C0 + C1) , CII =

1

2
ℜ (C0 − C1) , (1.158)

CIR =
1

2
ℑ (C0 + C1) , CRI =

1

2
ℑ (−C0 + C1) . (1.159)

The complex Gaussian random variable ❳ is said to be circular if the covariance matrix C1 vanishes.
Clearly, C1 = 0 if and only if the real and the imaginary part of ❳ have the same covariance matrix,
i.e. CRR = CII, and their cross-covariance matrix is skew-symmetric, i.e. CIR = CT

RI = −CRI.
The latter condition implies that the diagonal of CRI vanishes: the real and imaginary part of each
component ❳k of ❳ are necessarily uncorrelated (hence, independent), but the real part of ❳k and the
imaginary part of ❳ℓ with k 6= ℓ may be correlated. If the complex Gaussian random variable ❳ is
circular, then it admits the following PDF [Pintelon and Schoukens, 2001, ch. 14 sec. 1]:

N c(x|µ,C0) =
1

πndet(C0)
exp

(
−
(
C−1

0 (x − µ❳), (x) − µ❳

))
. (1.160)
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1.4.3 Numerical simulation

The numerical simulation of the stochastic process {❍(ωℓ;p) | 1 ≤ ℓ ≤ nF}, defined by (1.139), can be
performed on the basis of the following algorithm.

Algorithm 5: simulation of the stochastic process {❍(ωℓ;p) | 1 ≤ ℓ ≤ nF}

• Step 1: initialization:

Get information on the experimental setup (loading, sensors, discrete frequencies).
Get the probabilistic structural model, built as outlined in Section 1.1.

• Step 2: computation with the probabilistic model:

Apply the FE and MCS methods to discretize the probabilistic model (see Algorithms 1 and 3 of
Section 1.2). Use the discretized model to forecast the outcome of the vibration test as follows:

Step 2a: calculation of samples of the predicted random response:

Model and, subsequently, discretize the experimental loading to obtain the frequency-dependent
nodal-forces vector fh(ω). For these nodal forces, calculate the set

{❯h(ωℓ; as;p) | 1 ≤ ℓ ≤ nF , 1 ≤ s ≤ nS} (1.161)

of iid samples of the predicted random FE DOFs.

Step 2b: calculation of samples of the predicted random TFs:

Decompose the nodal-forces vector into a product fh(ω) = bhf(ω) where the input shape vec-
tor bh is frequency-independent and characterizes the spatial distribution of the experimental load-
ing and the scalar f(ω) is the frequency-dependent magnitude of this loading.

Similarly, build the sensor output shape matrix Ch relating the predicted response yh(ω) in the
sensors to the FE DOFs uh(ω) such that yh(ω) = Chuh(ω).

For each s ∈ {1 ≤ s ≤ nS} and ℓ ∈ {1 ≤ ℓ ≤ nF}, calculate

❍h(ωℓ; as;p) =
Ch❯h(ωℓ; as;p)

f(ωℓ)
. (1.162)

Gather the iid samples of the predicted random TFs obtained by this procedure in the set

{❍h(ωℓ; as;p) | 1 ≤ ℓ ≤ nF , 1 ≤ s ≤ nS}. (1.163)

1.5 Summary and conclusion

In the first two sections of this chapter, the construction of probabilistic models with minimal parame-
terization for the frequency-domain dynamical behaviour of structures was presented. While verifying
the essential mathematical properties of probabilistic structural models, their main advantage is that they
are parameterized only by a small set of essential parameters. In the parametric approach, they comprise
mean-model parameters, dispersion parameters and correlation lengths, while, in the non-parametric ap-
proach, there are only mean-model and dispersion parameters. In the last two sections of this chapter, a
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Chapter 1. The probabilistic structural models and the experimental data

generic vibration test was defined, along with a corresponding experimental data set of observed TFs,
and its probabilistic modelling was described. The development of inverse methods for the identification
of probabilistic structural models with minimal parameterization from experimental data sets of observed
TFs is the subject of the next chapter.
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2

The stochastic inverse problem

In the previous chapter, the construction of probabilistic structural models with minimal parameterization
was described and a generic experimental data set of observed Transfer Functions (TFs) was defined. The
inversion of these probabilistic models using experimental data of this kind is the subject of this chapter.

As announced in the general introduction, we will begin this chapter with pointing out the difficulties in
the application of the classical theory of mathematical statistics to the inversion of probabilistic structural
models. To circumvent these difficulties, we will propose to formulate this inversion alternatively as the
minimization, with respect to the unknown parameters to be identified, of an objective function that
measures the distance between the experimental data and the probabilistic structural model. Our main
objective in this chapter is to study how this distance can be defined and computed suitably.

The chapter is organized as follows. First, we review the main concepts and important results of the
theory of mathematical statistics, which are relevant to this dissertation (Sec. 2.1). Subsequently, we
examine the difficulties that may arise in the application of the classical methods of estimation (Sec. 2.2),
and propose two versatile methods for defining and computing the distance between an experimental
data set of observed TF values and corresponding random TFs predicted by a probabilistic structural
model (Sec. 2.3). The asymptotic properties of the proposed distances are discussed (Sec. 2.4), and
basic algorithms for their practical computation are proposed (Sec. 2.5). Finally, we define a practical
methodology for the inversion of probabilistic structural models (Secs. 2.6 and 2.7).

The reader already familiar with the theory of mathematical statistics may want to move quickly through
the first section of this chapter, which is entirely bibliographical. We recommend to read either Sec-
tion 2.1.3, which contains a theoretical account of the problem of the misspecification of stochastic
models, or Box 2.2 that provides a simple illustration of this issue.

2.1 Mathematical statistics

This section reviews existing concepts and results of the theory of mathematical statistics, namely the
classical methods of estimation (Sec. 2.1.1), the relative entropy (Sec. 2.1.2) and the evaluation of the
adequacy of estimation rules (Sec. 2.1.3). For a more complete account of the theory of mathematical
statistics, we refer the reader, for instance, to [Casella and Berger, 2001, Cramér, 1946, Dudley, 2005,
Lehmann and Casella, 1998, O’Hagan and Forster, 2004, Stuart et al., 1999] for general texts, to [Kapur
and Kesavan, 1992, Kullback, 1968] for the theory of information and its relationship with mathematical
statistics, to [Ferguson, 1996, Le Cam, 1986] for large-sample theory, to [Dudley, 2002, Williams, 1991]
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for the theory of conditional expectation and conditional probability and to [Mosegaard and Tarantola,
2002, Tarantola, 2005, 2008] for the notion of the intersection of probabilities.

2.1.1 Classical methods of estimation

The classical methods of estimation, namely the Method of Moments (MM), the method of Maximum
Likelihood (ML) and the Bayesian method, are summarized in this section.

General considerations

The basic model problem that the theory of mathematical statistics tries to solve has the following setup.
Usually, a random experiment is considered, i.e. an experiment which can be repeated a large number
of times under similar circumstances and whose outcome exhibits variability. Furthermore, a stochastic
model for this random experiment is typically assumed to be given, i.e. a probability distribution defined
on the possible outcomes depending on a set of unknown parameters. The problem of interest to the
theory of mathematical statistics is then the estimation of these parameters from a data set of observed
samples.

Let us work in the following with a random experiment whose possible outcomes are real numbers. Let
the random variable ❳̃ with values in R a.s. perfectly represent the outcome. Let ❳̃ admit a (possibly
unknown) Probability Density Function (PDF) g(x) defined on R, which is called the data-generating
PDF. Let the set {f(x|p) | p ∈ P} be a collection of candidate PDFs with common support S ⊂ R,
parameterized by p ∈ P , where P is an open subset of R

m. Let x = (x1, . . . , xn) denote a data set
of n outcomes of the random experiment, that is to say of n independent and identically-distributed (iid)
realizations of ❳̃. In this setting, we call an estimation rule any mapping

p̂n : R
n → P : x 7→ p̂n(x) (2.1)

giving an estimate p̂n(x) of the unknown parameters as a function of the data set x of samples. In the
following, we recall several classical methods for the construction of such estimation rules. We note
that all methods can be readily extended to vector-valued observations and also to observations taking
values in functional spaces [see, for instance, Basawa and Prakasa Rao, 1980, for a survey of estimation
methods for stochastic processes].

Method of Moments

The MM, first introduced by Pearson [1894], consists in equating a convenient number of the sample
moments to the corresponding moments of the distribution, which are functions of the unknown param-
eters. Usually, as many moments as there are parameters to be estimated are considered, such that the
system of moment equations to be solved reads:

1

n

n∑

k=1

xk =

∫

S
xf(x|p)dx , (2.2)

. . .

1

n

n∑

k=1

xm
k =

∫

S
xmf(x|p)dx. (2.3)
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2.1. Mathematical statistics

The MM consists in identifying, as an estimate of the unknown parameters, a parameter point p̂MM
n (x) ∈

P which solves the system (2.2)-(2.3).

Maximum Likelihood estimation

The ML method was first introduced by Fisher [1912]. The likelihood of the parameters p given the
samples x is defined by:

Ln(p;x) =

n∏

k=1

f(xk|p). (2.4)

The ML method consists in choosing a parameter point so as to maximize Ln(p;x):

p̂ML
n (x) = arg max

p∈P
Ln(p;x). (2.5)

In other words, a parameter point such that the observed samples are most likely is chosen.

Bayes estimation

In the Bayesian approach, first introduced by Bayes [1763], PDFs are used to represent the available
information on the unknown parameters. First, a prior PDF π(p) is chosen representing whatever infor-
mation on the unknown p is available in advance of making any observations in the current experiment.
Then, the posterior PDF πx,n(p), representing all information available after observing x, is built as
follows:

πx,n(p) =
π(p)Ln(p;x)∫

P π(p)Ln(p;x)dp
, (2.6)

where Ln(p;x) still denotes the likelihood of p, defined in (2.4). Finally, the Bayes estimate with respect
to the square-error loss function of the unknown parameters is defined as the posterior mean value:

p̂Bayes
n (x) =

∫

P
pπx,n(p)dp. (2.7)

2.1.2 Relative entropy

The concept of relative entropy is now recalled. For the sake of simplicity, we restrict ourselves to
complex-valued, finite-dimensional, random variables. We refer the reader to [Kullback, 1968] for the
generalization to random variables with values in more general spaces.

Definition. Let f1 and f2 be two PDFs with supports T ⊂ C
n and S ⊂ C

n, respectively, where T ⊂ S.
The relative entropy from f1 to f2 is then defined by:

I(f1||f2) =

∫

T
f1(x) log

f1(x)

f2(x)
dx. (2.8)

The relative entropy can be interpreted as a distance-like measure of the separation between the PDFs f1

and f2. However, since it does not in general satisfy the symmetry property and the triangle inequality,
it is not a true metric distance. It should be noted that there exist many other functionals which allow
measuring the separation between PDFs. The relative entropy belongs to the more general class of so-
called f -divergences, which was introduced by Csiszár [1967] and also includes the χ2-divergence, the
Hellinger divergence and the L1-distance.
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Box 2.1. Properties of the relative entropy

This box lists the main properties of the relative entropy. We refer the reader to [Kullback, 1968] for
the proofs corresponding to these properties.

Theorem (convexity). Let f1 and f2 be two PDFs with common support S ⊂ C
n. Then:

I (f1||f2) ≥ 0 , (2.9)

I (f1||f2) = 0 if and only if f1(x) = f2(x) a.e. (2.10)

Theorem (invariance). Let the real scalar random variables ❳1 and ❳2 admit the PDFs f1 and f2

with common support S ⊂ C
n. Let g1 and g2 be the PDFs of the images ❨1 = ϕ(❳1) a.s. and ❨2 =

ϕ(❳2) a.s. of these random variables through a measurable mapping ϕ : C
n → C

m. We then have:

I (f1||f2) ≥ I (g1||g2) , (2.11)

I (f1||f2) = I (g1||g2) if and only if
f1(x)

f2(x)
=
g1(ϕ(x))

g2(ϕ(x))
a.e. (2.12)

Definition (Fisher information). Let {f(x|p) | p ∈ P} be a collection of PDFs with common
support S ⊂ C

n and parameterized by p ∈ P , where P is an open subset of R
m. If the gradi-

ent ∇p log f(x|p) exists a.e. for all p ∈ P , then the Fisher information matrix I(p) is defined
by:

I(p) =

∫

S
f(x|p)∇p log f(x|p) ⊗ ∇p log f(x|p)dx. (2.13)

Theorem. Let {f(x|p) | p ∈ P} be a collection of PDFs with common support S ⊂ C
n and

parameterized by p ∈ P , where P is an open subset of R
m. Under regularity conditions [Kullback,

1968, ch. 2 sec. 6], the Fisher information matrix is then the Hessian of the relative entropy, and is
such that:

I
(
f(·|p)

∣∣∣∣f(·|p + δp)
)

=
1

2
(I(p)δp, δp) +O

(
||δp||3

)
if ||δp|| → 0. (2.14)

The Fisher information I(p) is a measure of the sensitivity of the PDF f(x|p) with respect to pertur-
bations of p. Expression (2.14) means that the PDF f(x|p) changes more rapidly (in the sense of the
relative entropy) as a function of a small perturbation δp of the parameters p when I(p) is larger, that
is to say when its eigenvalues are larger. Conversely, when the problem of the identification of p from
a data set of iid samples with PDF f(x|p) is considered, this inverse problem is better-conditioned
when I(p) is larger.

2.1.3 Evaluation of the performance of estimation rules

In estimation problems, the application of distinct estimation rules on the same data set of observed
samples usually leads to distinct estimates of the unknown parameters to be identified. In practice, a
fundamental problem is therefore the choice of the “most adequate” estimation rule leading to the “most
adequate” estimate of the unknown parameters. Our goal in this section is to describe how the adequacy
of estimation rules can be evaluated.
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General considerations

Let us consider again the generic estimation problem outlined in Section 2.1.1. A first difficulty to the
evaluation of the adequacy of an estimation rule p̂n, giving an estimate p̂n(x) of the unknown parameters
as a function of a data set x = (x1, . . . , xn), is that every estimate is a function of the data set of
outcomes of the random experiment. If a new data set of n samples were collected, it is likely that
different values would be obtained such that a different estimate of the unknown parameters would
be proposed. Consequently, it may not be legitimate to judge the adequacy of an estimation rule by
evaluating the adequacy of an individual estimate for a specific data set. This difficulty is remedied in
the theory of mathematical statistics by introducing a random data set, chosen here equal to the random
variable ❳ = (❳1, . . . ,❳n) gathering n independent copies of the random variable ❳̃ that is assumed to
perfectly represent the outcome of the random experiment. The performance of the estimation rule p̂n is
then evaluated based upon the stochastic properties of the estimator p̂n(❳), obtained upon applying p̂n

to ❳. Many approaches have been proposed in the literature for the study of these properties. A possible
way to distinguish between them consists in separating, on the one hand, the approaches dealing with the
finite-sample properties (typically bias/variance) when the size n of the data set is a fixed number, and, on
the other hand, the approaches concerning the asymptotic properties (typically consistency/asymptotic
variance) as the size n of the data set tends to infinity.

A more fundamental difficulty to the evaluation of the adequacy of estimation rules is the potential prob-
lem of misspecification. A stochastic model is correctly specified when it can fit the random experiment
perfectly, i.e. when there exist “true” parameters ptrue such that the candidate PDF f(x|ptrue) perfectly
reproduces the data-generating PDF g(x). Conversely, a stochastic model that imperfectly represents
the random experiment for any choice of its parameters is called misspecified. In that case, the data-
generating PDF g(x) does not belong to the collection {f(x|p) | p ∈ P} of candidate PDFs.

The asymptotic properties of the estimators obtained by applying the MM, the ML method and the
Baysian estimation method to the estimation problem under study are now examined with emphasis on
the fundamentally different factors determining the adequacy of estimation rules according to whether
the stochastic model is correctly specified, or misspecified.

Estimation under the correct models assumption

Let us first consider the case where the stochastic model is correctly specified. Let us assume, moreover,
that the model is identifiable in that the “true” value ptrue is unique. It then turns out [Cramér, 1946,
Strasser, 1981, Wald, 1949] that, under regularity conditions, any sequence of estimators obtained by
applying any classical method of estimation is consistent in that it converges a.s. to the “true” value as
the size n of the data set tends to infinity:

lim
n→+∞

p̂MM
n (❳) = ptrue a.s. , lim

n→+∞
p̂ML

n (❳) = ptrue a.s. , lim
n→+∞

p̂Bayes
n (❳) = ptrue a.s. (2.15)

In other words, the “true” value ptrue can be recovered from experimental data by applying any of these
estimation rules on a sufficiently large data set. However, the size of the data set required to achieve es-
timates of a given accuracy depends on the method. When seeking the most adequate estimation method
for a correctly specified model, the key issue is efficiency, i.e. to find the consistent estimation rule achiev-
ing estimates of a given accuracy with the least possible observations. It can be shown [Bahadur, 1964,
Cramér, 1946, Fisher, 1922] that, for a correctly specified model, the ML method is generally the best
possible estimation method from the efficiency point of view.
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Estimation under misspecified models with compatible support

Let us now consider the case where the stochastic model is misspecified. Let us assume, here, moreover,
that the support T of the data-generating PDF g(x) is included in the support S of the candidate PDFs
in {f(x|p) | p ∈ P}. It then turns out that, under some regularity conditions, any sequence of estimators
obtained by applying any classical method of estimation still converges a.s. to a deterministic parameter
point. In the literature, this asymptotic value is sometimes called the “pseudo-true” value. It is very
important to note that this “pseudo-true” value generally depends on the estimation method: distinct
estimation rules lead to distinct sequences of estimators that converge to distinct asymptotic estimates of
the sought parameters when applied on the same sequence of data sets. Hence, when seeking the most
adequate estimation method for a misspecified model, the key issue is not efficiency, but rather to find the
estimation rule leading to a sequence of estimators that converges to the “most adequate” “pseudo-true”
value. Since the adequacy of the “pseudo-true” value cannot be judged based upon its distance to some
“true” value, the adequacy of an estimation method for a misspecified model can only be measured when
what is meant by the “most adequate” “pseudo-true” value was explicitly defined beforehand.

Let us now focus on characterizing the “pseudo-true” value for sequences of MM, ML and Bayes es-
timators. As the size n of the data set tends to infinity, it follows from the Strong Law of Large Num-
bers (SLLN) that the system of moment equations (2.2)-(2.3) converges to the system:

E
{
❳̃
}

=

∫

S
xf(x|p)dx , (2.16)

. . .

E
{
❳̃m
}

=

∫

S
xmf(x|p)dx. (2.17)

A parameter point pMM
∞ solving this system of equations is a “pseudo-true” value of the sought parameters

for the MM.

The maximization of the likelihood function in (2.5) is replaced by the maximization of the loglikelihood
function, rescaled by the factor 1/n:

p̂ML
n (x) = arg max

p∈P

1

n
logLn(p;x) = arg max

p∈P

1

n

n∑

k=1

log f(xk|p). (2.18)

Clearly, (1/n) logLn(p;x) attains its maximum at the same parameter value as Ln(p;x). As the size n
of the data set tends to infinity, it follows from the SLLN that:

lim
n→+∞

1

n

n∑

k=1

log f(❳k|p) = E
{

log f(❳̃|p)
}

= −S(g) − I
(
g
∣∣∣∣f(·|p)

)
a.s. , (2.19)

where S (·) is the Shannon entropy (1.37). If the asymptotic deterministic function attains a global max-
imum at

pML
∞ = arg max

p∈P
E
{

log f(❳̃|p)
}

= arg min
p∈P

I
(
g
∣∣∣∣f(·|p)

)
, (2.20)

then pML
∞ is a “pseudo-true” value for the ML method, which minimizes the distance (in the sense of the

relative entropy) between the data-generating PDF and the modelled PDF. Under regularity conditions,
it can be shown [Huber, 1967] that, if the “pseudo-true” value exists and is unique, any sequence of ML
estimators converges a.s. to pML

∞ .
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It can be shown that the distribution of Bayes estimators tends to become independent of the prior dis-
tribution as the size n of the data set tends to infinity (hence, it tends to become entirely dependent on
the likelihood function). Under regularity conditions, it can be demonstrated [Berk, 1966, 1970, Bunke
and Milhaud, 1998] that, if the “pseudo-true” value pML

∞ exists and is unique, any sequence of Bayes
estimators also converges a.s. to pML

∞ .

Estimation under misspecified models with incompatible support

In this paragraph, we keep on studying the case where the stochastic model is misspecified. However, it
is assumed, this time, that the support T of the data-generating PDF g(x) is not (entirely) included in
the support S of the candidate PDFs in {f(x|p) | p ∈ P}. Under the stated assumptions, an observed
data set may then sometimes contain samples belonging to the set T\S. According to the mathematical
model, such observations shouldn’t occur except with a vanishing probability, no matter the parameter
value p. When the data set contains such samples, it may lead to a non-solvable system of moment
equations (2.2)-(2.3). Moreover, it follows from (2.4) that the ML estimate then does not exist since the
likelihood function vanishes at all parameter values. Similarly, it follows from (2.6) that the Bayesian
posterior PDF cannot be defined since it would be equal to the fraction 0/0 at all parameter values. By
definition, the stochastic model is rejected in such a situation.

Box 2.2. Illustrative example: lognormal stochastic model

This box provides an illustration of the misspecification of models in estimation problems.
Let us consider a random experiment whose outcomes are real numbers. Let a collec-
tion {fLN(x|µ, σ) | µ, σ ∈ R

+
0 } of lognormal candidate PDFs be available such that:

fLN(x|µ, σ) =
✶

R
+
0
(x)

xb
√

2π
exp

(
−(log x− a)2

2b2

)
, (2.21)

where a and b are related to the mean value µ and the standard deviation σ as follows:

a = log

(
µ2

√
σ2 + µ2

)
, b =

√√√√log

((
σ

µ

)2

+ 1

)
. (2.22)

For the definition of the Bayes estimators in the following, let the prior PDF be equal to the improper
(i.e. non-normalizable) uniform PDF π(µ, σ) = ✶

R
+
0
(µ)✶

R
+
0
(σ).

Estimation under the correct models assumption

For an example of an estimation problem where the correct models assumption is fulfilled, let the
observations be iid samples of a lognormal PDF fLN(x|µtrue, σtrue), where the “true” value of the
parameters is chosen equal to (µtrue, σtrue) = (1, 0.5). Let the following synthetically generated
data set be given:

x = {0.72 , 0.40 , 0.94 , 1.02 , 0.52 , 1.56 , 1.56 , 0.87 , 1.04 , 0.97}. (2.23)

Figure 2.1 shows the likelihood function and the posterior PDF for these observations. The MM, the
ML and the Bayes estimate are:

(µ̂, σ̂)MM
10 (x) = (0.96, 0.36) , (µ̂, σ̂)ML

10 (x) = (0.97, 0.41) , (µ̂, σ̂)
Bayes
10 (x) = (1.13, 0.72).
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Chapter 2. The stochastic inverse problem

The asymptotic results given in Section 2.1.3 state that these estimates all converge to the “true” value
(µtrue, σtrue) = (1, 0.5) when the size n of the data set tends to infinity. The quickest convergence is
achieved with the ML method.
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Figure 2.1: Lognormal stochastic model: (left) contours of the likelihood func-
tion L10(µ, σ;x) and (right) posterior PDF πx,10(µ, σ).

Estimation under misspecified models with compatible support

For an example of an estimation problem under misspecified models with compatible support, let the
observations be iid samples of a gamma PDF with mean value m and standard deviation s:

fγ(x|m, s) = ✶
R

+
0
(x)

(m
s2

)(m2/s2)

Γ (m2/s2)
exp

(
−m
s2
x
)
. (2.24)

The parameters m and s are chosen equal to m = 1 and s = 0.5. Clearly, the support R
+
0 of this

gamma PDF is included in, and therefore compatible with, the support R
+
0 of the lognormal candidate

PDFs. Let the following synthetically generated data set be given:

x = {0.32 , 0.49 , 0.93 , 0.72 , 1.80 , 1.26 , 0.67 , 1.42 , 1.45 , 0.65}. (2.25)

Figure 2.2 shows the likelihood function and the posterior PDF for these observations. The MM, the
ML and the Bayes estimate are:

(µ̂, σ̂)MM
10 (x) = (0.97, 0.46) , (µ̂, σ̂)ML

10 (x) = (0.98, 0.54) , (µ̂, σ̂)
Bayes
10 (x) = (1.21, 1.01).

The asymptotic results given in Section 2.1.3 state that the MM estimate converges to the population
mean and standard deviation (µ, σ)MM

∞ = (1, 0.5) when the size n of the data set tends to infinity.
In contrast, the ML estimate and the Bayes estimate converge to the parameter point (µ, σ)ML

∞ where
the relative entropy from the chosen gamma PDF to the lognormal PDF fLN(x|µ, σ) attains a global
minimum as a function of µ and σ. Figure 2.3 illustrates that (µ, σ)ML

∞ = (1.01, 0.58).
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Figure 2.2: Lognormal stochastic model: (left) contours of the likelihood func-
tion L10(µ, σ;x) and (right) posterior PDF πx,10(µ, σ).
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with the lognormal PDF fLN
(
· |(µ, σ)ML

∞

)
with (µ, σ)ML

∞ = (1.01, 0.58).

Estimation under misspecified models with incompatible support

For an example of an estimation problem under misspecified models with incompatible support, let
the observations be iid samples of a Gaussian PDF with zero mean and unit standard deviation.
Clearly, the support R of this Gaussian PDF is not entirely included in, and therefore incompatible
with, the support R

+
0 of the lognormal candidate PDFs. Let the following synthetically generated

data set be given:

x = {0.19 , −0.73 , 0.59 , −2.18 , 0.14 , −0.11 , −1.07 , −0.06 , 0.10 , 0.83}. (2.26)

The MM estimate does not exist for these observations since their statistical average is negatively
valued. Moreover, neither the ML estimate, neither the Bayes estimate exist since the likelihood
function vanishes at all parameter values. By definition, the stochastic model is rejected.

2.2 Difficulties in applying the classical estimation methods

In the previous section, the classical methods of estimation were introduced and the evaluation of the
adequacy of estimation methods was discussed. This section now narrows the focus from the inversion
of general stochastic models within the framework of the theory of mathematical statistics to the inver-
sion of probabilistic structural models. Our main objective in this section is to evaluate the adequacy
of the classical methods of estimation to tackle the inversion of probabilistic structural models from
experimental data sets of observed TF values.

Problem setting

Let us consider the following general situation. Let the generic vibration test (Sec. 1.3) be carried out
under noise-free conditions on a collection of samples of a random structure to obtain an experimental
data set D0 of observed TF values of the form (1.125)-(1.126). Moreover, let a probabilistic model
for the dynamical behaviour of the studied random structure (Sec. 1.1) be given, which exhibits a set
of parameters p. Let this model be used (Sec. 1.4) to model the vibration test to obtain a stochastic
process {❍(ωℓ;p) | 1 ≤ ℓ ≤ nF}, modelling the noise-free TFs of the considered random structure,
with n-th order cylindrical PDF θ(n)(·|·;p).
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Considering that θ(nF)(·|·;p) is a parameterized candidate PDF for the observed TFs, the experimental
identification of p is a problem that pertains to the classical framework of the theory of mathematical
statistics reviewed in Section 2.1. It is therefore appealing to apply one of the classical methods of
estimation. The ML method is particularly attractive, especially in view of its consistency and asymptotic
efficiency properties under the correct models assumption (Sec. 2.1.3). The ML estimate reads:

p̂ML
nK

(D0) = arg max
p

LnK

(
p;D0

)
= arg max

p

nK∏

k=1

θ(nF)(D0
k|ω1, . . . , ωnF ;p). (2.27)

Unfortunately, considerable difficulties may arise in this application of the ML method, as explained next.
The results described in the following can readily be extrapolated to the MM and the Bayes estimation
method.

Potentially prohibitive computational cost

The first difficulty comes from a numerical issue. In Section 1.2, the Monte Carlo simulation method was
suggested to perform computations with the probabilistic structural models. Accordingly, the following
two-step procedure could be proposed for the numerical approximation of the likelihood LnK

(
p;D0

)
of

a fixed value p of the parameters:

• Step 1: Generate a set of iid samples of the stochastic process {❍(ωℓ;p) | 1 ≤ ℓ ≤ nF}.

• Step 2: Compute LnK

(
p;D0

)
by estimating the value taken by the PDF θ(nF)(·|·;p) at each data

subset D0
k from these samples using a numerical density estimation method.

However, it is well known that the computational effort required to numerically approximate a PDF
grows rapidly with the dimension of the sample space. Since this dimension is here equal to 2×nM×nF,
the numerical solution of (2.27) is impractical when either nM, or nF is large. This, unfortunately, occurs
frequently in vibration tests.

Potential misspecification of the probabilistic model

The second difficulty stems from the fact that the probabilistic structural model may be misspecified. To
analyze the potential problem of misspecification, we use the representation of the observed TF values as
realizations of random variables, which was introduced in Section 1.4. The experimental data set is thus
considered as a collection of nK iid realizations of a data-generating stochastic process ❉̃0 with nF-th or-
der cylindrical PDF ξ(nF). When working with probabilistic models with minimal parameterization, only
few parameters are usually available to adjust the shape of the modelled PDF θ(nF)(·|·;p). Considering
that the data-generating PDF ξ(nF) is, a priori, a completely arbitrary PDF, we must therefore conclude
that, for a probabilistic model with minimal parameterization, there will usually not exist any “true”
value ptrue such that ξ(nF) = θ(nF)(·|·;ptrue), or, equivalently, such that the probabilistic model perfectly
reproduces the data-generating PDF. When the probabilistic model is misspecified, the consistency and
asymptotic efficiency properties of the ML method are no longer defined.

Potential incompatibility of the probabilistic model with the experimental data

The third difficulty stems from the fact that the probabilistic structural model may be not only misspeci-
fied, but also incompatible with the experimental data: observed TFs that do not belong to the support of
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the PDF θ(nF)(·|·;p), irrespective of the parameter value p, may occur.

Let us investigate the nature of the support of the PDF θ(nF)(·|·;p) in more detail. The discussion is par-
ticularized to non-parametric probabilistic models (the reasoning can readily be extended to parametric
ones). Let a deterministic reduced matrix model be built for the structure under study and used to forecast
the outcome of the vibration test to obtain, rather abstractly considered, a mapping

γ :
(
M+

nT
(R)
)3 → C

nM×nF (2.28)

: (K,D,M) 7→ γ(K,D,M) = {h(ωℓ;K,D,M) | 1 ≤ ℓ ≤ nF} ,

which relates any set (K,D,M) of reduced matrices to a corresponding set of forecasted TF values,
such that, for each frequency ωℓ, the TF value h(ωℓ;K,D,M) is the ratio at that frequency of the
response in the nM transducers predicted for the reduced matrices (K,D,M) and the magnitude of the
applied force.

As outlined in Section 1.1, a non-parametric probabilistic model is obtained on the basis of this deter-
ministic model by modelling the reduced matrices by random matrices ❑(p), ❉(p) and ▼(p) and then
transporting the uncertainty introduced in the reduced matrices to the predictions. The stochastic pro-
cess {❍(ωℓ;p) | 1 ≤ ℓ ≤ nF}, modelling the noise-free TFs of the considered random structure, is thus
obtained as:

{❍(ωℓ;p) | 1 ≤ ℓ ≤ nF} = γ
(
❑(p),❉(p),▼(p)

)
a.s. (2.29)

Equation (2.29) means that each realization of the stochastic process {❍(ωℓ;p) | 1 ≤ ℓ ≤ nF} is the im-
age through the mapping γ of a corresponding realization of the triple of random reduced matrices. For a
non-parametric probabilistic model with minimal parameterization, the support of the probability distri-
bution of the triple of random matrices is the entire space (M+

nT
(R))3 of admissible triples of reduced ma-

trices. For a probabilistic model of this kind, realizations of {❍(ωℓ;p) | 1 ≤ ℓ ≤ nF} which are not rep-
resentable in terms of a triple of admissible reduced matrices do not occur except with probability zero,
and the support of the probability distribution of {❍(ωℓ;p) | 1 ≤ ℓ ≤ nF}, i.e. of the PDF θ(nF)(·|·;p), is
consequently the image through the deterministic model of the space of admissible values of the reduced
matrices:

supp θ(nF)(·|·;p) = γ
((

M+
nT

(R)
)3)

. (2.30)

For this reason, the support of θ(nF)(·|·;p) is usually only a subset of C
nM×nF . Considering that the ob-

served TFs are a priori, arbitrary elements of C
nM×nF , we must conclude that the situation sketched in

figure 2.4 may arise in that there may be observed TFs which are not compatible with the probabilistic
model, i.e. which do not belong to the support of θ(nF)(·|·;p). In such a situation, the likelihood func-
tion defined in (2.27) vanishes at all parameter values p and, by definition, the ML method rejects the
probabilistic model.

We refer the reader to Box 2.4 for a simple example of a probabilistic structural model that is incompat-
ible with experimental data.

Potential difficulties due to experimental noise

The previous discussion concerned a vibration test carried out under noise-free conditions. Additional
difficulties caused by distortions of the observed TFs due to experimental noise were not considered, but
are to be expected. These will be addressed in Sections 2.3.2 and 2.4.2.
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...

Figure 2.4: Representation of a case where a non-parametric probabilistic model is incompatible with
experimental data.
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2.3 Proposed distances

The difficulties that may arise in the application of the classical methods of estimation (and in particular
of the ML method) to the inversion of probabilistic structural models strongly motivate the development
of alternative inverse methods. As discussed in the general introduction, we propose to formulate the in-
version as the minimization, with respect to the sought parameters, of an objective function that measures
the distance between the experimental data and the considered probabilistic model. Our main objective
in this section is to present two versatile methods for measuring the distance between observed TFs and
corresponding predicted random TFs. The core idea of our methodology (which will be motivated in the
sequel) is to account only for the low-order cylindrical PDFs of the predicted random TFs when mea-
suring their distance to the observed TFs. Vibration tests conducted under idealized noise-free, and then
noisy, conditions are successively considered in Sections 2.3.1 and 2.3.2.

2.3.1 Undisturbed vibration test

Let us consider again the general situation, where the generic vibration test (Sec. 1.3) is carried out
under noise-free conditions to obtain an experimental data set D0 of the form (1.125)-(1.126), and a
probabilistic structural model is used (Sec. 1.4) to model the vibration test to obtain a stochastic pro-
cess {❍(ωℓ;p) | 1 ≤ ℓ ≤ nF} with n-th order cylindrical PDF θ(n)(·|·;p). Two methods for measuring
the distance between the observed TFs and the predicted random TFs, based upon either the loglikelihood
function or the relative entropy are now presented.

Distance based upon the loglikelihood function

The distance L(1), accounting only for the first-order cylindrical PDF, is defined as the average over the
frequencies of the sign-reversed loglikelihood function:

L(1)
nF,nK

(
p;D0

)
= − 1

nF

nF∑

ℓ=1

1

nK

nK∑

k=1

log θ(1)
(
h0

k(ωℓ)
∣∣ωℓ;p

)
. (2.31)

The distance L(1) is generalized as follows in order to account for higher-order cylindrical PDFs. LetBn
nF

denote the set of all distinct unordered subsets {ωℓ1 , . . . , ωℓn} of n distinct elements of {ωℓ | 1 ≤ ℓ ≤
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nF}. These subsets are the so-called combinations of size n from {ωℓ | 1 ≤ ℓ ≤ nF}. The number of
elements of Bn

nF
is the binomial coefficient

Cn
nF

=
nF!

n!(nF − n)!
, (2.32)

where n! is the factorial of n. The distance L(n), accounting for the n-th order cylindrical PDF, is defined
as the average of the sign-reversed loglikelihood function over the n-subsets of discrete frequencies
in Bn

nF
:

L(n)
nF,nK

(
p;D0

)
= − 1

Cn
nF

∑

{ωℓ1
,...,ωℓn

}∈Bn
nF

1

nK

nK∑

k=1

log θ(n)
(
h0

k(ωℓ1), . . . ,h
0
k(ωℓn

)
∣∣ωℓ1 , . . . , ωℓn

;p
)
. (2.33)

The factors 1/Cn
nF

and 1/nK allow L(n) to remain bounded for arbitrary large nF and nK. The unknown
parameters can be estimated from the data on the basis of L(n) by

p̂L,n
nF,nK

(D0) = arg min
p

L(n)
nF,nK

(
p;D0

)
. (2.34)

Finally, it should be noted that, upon choosing n equal to nF, the expression (2.33) reads

L(nF)
nF,nK

(
p;D0

)
= −

nK∑

k=1

log θ(nF)(D0
k|ω1, . . . , ωnF ;p) , (2.35)

highlighting that the inverse method (2.34) coincides for n = nF with the ML method (2.27).

Distance based upon the relative entropy

To introduce the distance based upon the relative entropy, we use the representation of the observed TF
values as realizations of random variables (Sec. 1.4). The experimental data set D0 is thus considered as
a collection of nK iid realizations of a data-generating stochastic process ❉̃0 with n-th order cylindrical
PDF ξ(n). Let a numerical density estimation method be used to obtain an estimate ξ̂(n)

nK (·|·;D0) of the
data-generating PDF ξ(n) from D0. The distance D(1) is then defined as the average over the frequencies
of the relative entropy between the approximated data-generating first-order cylindrical PDF ξ̂(1)nK (·|·;D0)
and the modelled PDF θ(1)(·|·;p):

D(1)
nF,nK

(
p;D0

)
=

1

nF

nF∑

ℓ=1

I
(
ξ̂(1)nK

(·|ωℓ;D
0)
∣∣∣∣θ(1)(·|ωℓ;p)

)
. (2.36)

More generally, the distance D(n) is defined as the average over the n-subsets of frequencies in Bn
nF

of

the relative entropy between the n-th order cylindrical PDFs ξ̂(n)
nK (·|·;D0) and θ(n)(·|·;p):

D(n)
nF,nK

(
p;D0

)
=

1

Cn
nF

∑

{ωℓ1
,...,ωℓn

}∈Bn
nF

I
(
ξ̂(n)
nK

(·|ωℓ1 , . . . , ωℓn
;D0)

∣∣∣∣θ(n)(·|ωℓ1 , . . . , ωℓn
;p)
)
. (2.37)

The factor 1/Cn
nF

allows D(n) to remain bounded for arbitrary large nF. The unknown parameters are
estimated from the experimental data on the basis of D(n) by

p̂D,n
nF,nK

(D0) = arg min
p

D(n)
nF,nK

(
p;D0

)
. (2.38)
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2.3.2 Disturbed vibration test

Let us now consider the general situation, where the generic vibration test (Sec. 1.3) is carried out, this
time, under noisy conditions to obtain an experimental data set D of the form (1.124)-(1.123). The pos-
sible distortions of the observed TFs caused by experimental noise present specific difficulties to the
inversion of the probabilistic structural model. In particular, it may not be appropriate to simply apply
the inverse methods introduced in Section 2.3.1 to the noisy observed TFs (1.124)-(1.123) since the
probabilistic model may then be fitted to the experimental noise, rather than to the dynamical character-
istics of the tested structures. Two approaches to circumvent these difficulties are now proposed. Insight
on the similarities and differences between these two approaches will be gained from the discussion of
Sections 2.4.2 and 2.6.3.

(Approach 1) Noise modelling

This approach consists in modelling not only the dynamical behaviour of the considered structure, but
also the experimental noise when forecasting the outcome of the vibration test. Let a probabilistic struc-
tural model (Sec. 1.1) be given and let a probabilistic model for the experimental noise be built as outlined
in Section 1.4. Let these models be jointly used (Sec. 1.4) to forecast the outcome of the noisy vibration
test to obtain, for each tested sample structure (indexed by k), a stochastic process

{
❍(ωℓ;p) + ❊k1(ωℓ), . . . ,❍(ωℓ;p) + ❊knR(ωℓ)

∣∣ 1 ≤ ℓ ≤ nF
}

, (2.39)

with n-th order cylindrical PDF ϕ
(n,nR)
k (·|·;p). The first approach to deal with the experimental noise

then consists in formulating the inversion of the probabilistic structural model as the minimization of an
objective function that measures the distance between the observed TFs (1.124)-(1.123) and the corre-
sponding predicted random TFs (2.39). As in Section 2.3.1, two methods for measuring this distance,
based upon either the loglikelihood function or the relative entropy are now presented.

Distance based upon the loglikelihood function

The distance L(1), accounting only for the first-order cylindrical PDF, is defined as the average over
the frequencies of the sign-reversed loglikelihood function (using equation (1.148)):

L(1)
nF,nK,nR

(p;D) = − 1

nF

nF∑

ℓ=1

1

nK

nK∑

k=1

logϕ
(1,nR)
k

(
gobs

k1 (ωℓ), . . . , g
obs
knR

(ωℓ)
∣∣ωℓ;p

)
(2.40)

= − 1

nF

nF∑

ℓ=1

1

nK

nK∑

k=1

log

∫

C
nM

θ(1)
(
h
∣∣ωℓ;p

) nR∏

r=1

ρ
(1)
k

(
gobs

kr (ωℓ)
∣∣ωℓ;h

)
dh.

More generally, the distance L(n), accounting for the n-th order cylindrical PDF, is defined by:

L(n)
nF,nK,nR

(p;D) = − 1

Cn
nF

∑

{ωℓ1
,...,ωℓn

}∈Bn
nF

1

nK

nK∑

k=1

logϕ
(n,nR)
k

(
Dk(ωℓ1 , . . . , ωℓn

)
∣∣ωℓ1 , . . . , ωℓn

;p
)
, (2.41)

where Dk(ωℓ1 , . . . , ωℓn) =
{
gobs

k1 (ωℓ1), . . . , g
obs
knR

(ωℓ1), . . . , g
obs
k1 (ωℓn), . . . , gobs

knR
(ωℓn)

}
and with Bn

nF

and Cn
nF

defined as in Section 2.3.1.

On the basis of L(n), the unknown parameters are estimated from the data by

p̂L,n
nF,nK,nR

(D) = arg min
p

L(n)
nF,nK,nR

(p;D) . (2.42)
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Distance based upon the relative entropy

To introduce the distance based upon the relative entropy, we use the representation of the observed
TF values as realizations of random variables, which was defined in Section 1.4. For each tested struc-
ture (indexed by k), the data subset Dk is thus considered as a particular realization of a stochastic
process ❉k with n-th order cylindrical PDF ψ

(n,nR)
k , or, equivalently, as a collection of nR iid realiza-

tions of a stochastic process ❉̃k with n-th order cylindrical PDF ψ(n)
k . Let a numerical density estimation

method be used to generically obtain an estimate ψ̂(n)
k,nR

(·|·;Dk) of the PDF ψ(n)
k from the data subset Dk.

A generic estimate ψ̂(n,nR)
k,nR

(·|·;Dk) of the PDF ψ(n,nR)
k is then defined by:

ψ̂
(n,nR)
k,nR

(
g11, . . . , g1nR

, . . . , gn1, . . . , gnnR

∣∣ωℓ1 , . . . , ωℓn
;Dk

)
=

nR∏

r=1

ψ̂
(n)
k,nR

(
g1r, . . . , gnr

∣∣ωℓ1 , . . . , ωℓn
;Dk

)
.

(2.43)
The distance J (1) is then defined as the average over the frequencies of the relative entropy between the
approximated data-generating first-order cylindrical PDF ψ(1,nR)

k and the modelled PDF ϕ(1,nR)
k (·|·;p):

J (1)
nF,nK,nR

(p;D) =
1

nF

nF∑

ℓ=1

1

nK

nK∑

k=1

I
(
ψ̂

(1,nR)
k,nR

(·|ωℓ;Dk)
∣∣∣∣ϕ(1,nR)

k (·|ωℓ;p)
)
. (2.44)

More generally, the distance J (n) is defined as the average over the n-subsets of frequencies in Bn
nF

of

the relative entropy between the n-th order cylindrical PDFs ψ(1,nR)
k and ϕ(1,nR)

k (·|·;p):

J (n)
nF,nK,nR

(p;D) =
1

Cn
nF

∑

{ωℓ1
,...,ωℓn

}∈Bn
nF

1

nK

nK∑

k=1

I
(
ψ̂

(n,nR)
k,nR

(·|ωℓ1 , . . . , ωℓn
;Dk)

∣∣∣∣ϕ(n,nR)
k (·|ωℓ1 , . . . , ωℓn

;p)
)
,

(2.45)
On the basis of J (n), the unknown parameters are estimated from the data by

p̂J ,n
nF,nK,nR

(D) = arg min
p

J (n)
nF,nK,nR

(p;D) . (2.46)

(Approach 2) Noise filtering

An alternative strategy consists in estimating, from the noisy observed TFs, the noise-free observed
TFs which would have been obtained under undisturbed measurement conditions, and then applying the
methods developed in Section 2.3.1 for the case of noise-free data. The noise-free TFs can, for instance,
be estimated using the H1-estimation method (see Appendix C).

2.3.3 Bibliographical comments

It should be noted that the concept of building estimation rules using only low-order cylindrical distri-
butions is not new. Within the framework of the theory of mathematical statistics, considerable research
effort has already been devoted to developing estimation methods of this kind [see, for instance, Besag,
1974, 1975, Cox and Reid, 2004, Lindsay, 1998, Nott and Ryden, 1999]. In the literature, such restric-
tions to low-order cylindrical distributions are mostly defended on the grounds of computational tractabil-
ity. Moreover, we point out that the inverse methods (2.34), (2.42) and (2.46) fit into the very general
frameworks of M-estimation [Huber, 1967, 1981] and of the generalized method of moments [Hansen,
1982], which were mentioned in the general introduction.
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2.4 Asymptotic properties

We now proceed to study the asymptotic (as nF → +∞, nR → +∞ and nK → +∞) properties of the
distances proposed in Section 2.3. The asymptotic behaviour will be analyzed under idealized conditions,
that is to say under regularity conditions imposed jointly on the experimental data and the probabilistic
models. Since the properties of real experimental data are usually unknown beforehand, it is in practice
mostly impossible to prove the fulfilment of the regularity conditions. Nevertheless, the study of the
asymptotic properties is interesting since it may be helpful, for instance, to formulate guidelines for the
choice of nF, nR and nK in practice, to understand the source of divergence problems, and to devise
methodologies for filtering the data (e.g. outlier removal) to enforce convergence properties.

In the following, we confine ourselves, for the sake of the simplicity of the notations, to studying the
asymptotic behaviour of the distances accounting only for first-order cylindrical PDFs. The results can
readily be generalized to the distances accounting for higher-order cylindrical PDFs. We first elaborate
on the case where the vibration test is not disturbed by experimental noise (Sec. 2.4.1), and then deal
with the case where it is distorted by noise (Sec. 2.4.2).

2.4.1 Undisturbed vibration test

The asymptotic (as nF → +∞ and nK → +∞) properties of the distances introduced in Section 2.3.1
for vibration tests carried out under noise-free conditions are here investigated.

Limit as the number nF of frequencies tends to infinity

Let us assume that the discrete frequencies {ωℓ | 1 ≤ ℓ ≤ nF} uniformly sample the frequency band B
as nF → +∞. Under the regularity condition that the integrand is a continuous function of the frequency,
the distances L(1) and D(1) then tend towards the following integrals over B:

lim
nF→+∞

L(1)
nF,nK

(
p;D0

)
= − 1

nK

nK∑

k=1

1

|B|

∫

B
log θ(1)

(
h0

k(ω)
∣∣ω;p

)
dω , (2.47)

lim
nF→+∞

D(1)
nF,nK

(
p;D0

)
=

1

|B|

∫

B
I
(
ξ̂(1)nK

(·|ω;D0)
∣∣∣∣θ(1)(·|ω;p)

)
dω , (2.48)

where |B| is the length of the frequency interval B.

Limit as the number nK of realizations of the random structure tends to infinity

To analyze the large-sample (nK → +∞) properties, we use the representation of the observed TF
values as realizations of random variables, defined in Section 1.4. The experimental data set D0 is thus
considered as a particular realization of a random data set ❉0, or, equivalently, as a collection of nK iid
realizations of a data-generating stochastic process ❉̃0 with first-order cylindrical PDF ξ(1). The analysis
of the asymptotic (nK → +∞) properties of the distances L(1) and D(1) then amounts to the study of the
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following stochastic limits:

lim
nK→+∞

L(1)
nF,nK

(
p;❉0

)
= lim

nK→+∞
− 1

nF

nF∑

ℓ=1

1

nK

nK∑

k=1

log θ(1)
(
❍0

k(ωℓ)
∣∣ωℓ;p

)
, (2.49)

lim
nK→+∞

D(1)
nF,nK

(
p;❉0

)
= lim

nK→+∞

1

nF

nF∑

ℓ=1

I
(
ξ̂(1)nK

(·|ωℓ;❉
0)
∣∣∣∣θ(1)(·|ωℓ;p)

)
. (2.50)

Let us first analyze the large-sample properties of the distance L(1). Under the regularity condition that
the right-hand side in the following equation is well-defined and remains bounded, it follows from the
SLLN that (see also Section 2.1.3):

lim
nK→+∞

L(1)
nF,nK

(
p;❉0

)
=

1

nF

nF∑

ℓ=1

S
(
ξ(1)(·|ωℓ)

)
+

1

nF

nF∑

ℓ=1

I
(
ξ(1)(·|ωℓ)

∣∣∣∣θ(1) (·|ωℓ;p)
)

a.s. , (2.51)

where S (·) denotes the Shannon entropy (1.37).

Let us now consider the large-sample properties of the inverse method based on distance L(1). If the
average over the frequencies of the distance (in the sense of the relative entropy) between the data-
generating PDF ξ(1) and the modelled PDF θ(1)(·|·;p) has a global minimum at

pL,1
nF,∞ = arg min

p∈P

1

nF

nF∑

ℓ=1

I
(
ξ(1)(·|ωℓ)

∣∣∣∣θ(1) (·|ωℓ;p)
)

, (2.52)

then p
L,1
nF,∞ is a “pseudo-true” value (Sec. 2.1.3) for this inverse method. Under regularity conditions,

it can be shown [Huber, 1967] that, if this “pseudo-true” value exists and is unique, any sequence
{p̂L,1

nF,nK
(❉0) | nK ∈ N} of estimators a.s. converges (as nK → +∞) to p

L,1
nF,∞.

It should be noted that, when the probabilistic structural model is correctly specified and, moreover,
identifiable (Sec. 2.1.3), that is to say when there exists a unique “true” value ptrue, it follows from the
convexity of the relative entropy (Box 2.1) that, provided its existence, the “pseudo-true” value p

L,1
nF,∞

coincides with this “true” value ptrue. Under the aforementioned list of regularity properties, the inverse
method based on L(1) is then consistent (Sec. 2.1.3) in that any sequence {p̂L,1

nFnK
(❉0) | nK ∈ N} of

estimators a.s. converges (as nK → +∞) to ptrue.

It seems difficult to establish comparable properties for the distance D(1). Indeed, even when the em-
ployed numerical density estimation method has desirable asymptotic properties ensuring that the esti-
mator ξ̂(1)nK (·|·;❉0) converges in some sense to ξ(1), it seems difficult to exploit such properties since the
limit and the integral may not simply be interchanged in the right-hand side of the following expression:

lim
nK→+∞

D(1)
nF,nK

(
p;❉0

)
=

1

nF

nF∑

ℓ=1

lim
nK→+∞

∫

C
nM

ξ̂(1)nK
(h|ωℓ;❉

0) log
ξ̂
(1)
nK (h|ωℓ;❉

0)

θ(1)(h|ωℓ;p)
dh. (2.53)

In the literature, interchanges of limits and integrals are often justified by the Lebesgue dominated con-
vergence theorem [see, for instance, Dudley, 2002, ch. 4 sec. 3]. However, the application of this theorem
requires the uniform boundedness of the sequence of integrals. Due to the logarithm in expression (2.53),
this requirement is expected to be generally unfulfilled. The asymptotic (as nK → +∞) properties
of D(1) remain to us an open problem.

2.4.2 Disturbed vibration test

The asymptotic properties (as nF → +∞, nR → +∞ and nK → +∞) of the distances introduced in
Section 2.3.2 for vibration tests carried out under noisy conditions are now considered. To analyze these
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asymptotic properties, we use the representation of the observed TF values as realizations of random
variables, which was defined in Section 1.4. The experimental data set D is thus viewed as a particular
realization of a random data set ❉. For each tested structure (indexed by k), the data subset Dk is
viewed as a particular realization of a stochastic process ❉k with first-order cylindrical PDF ψ(1,nR)

k , or,
equivalently, as a collection of nR iid realizations of a stochastic process ❉̃k with first-order cylindrical
PDF ψ(1)

k .

Limit as the number nF of frequencies tends to infinity

The analysis of the asymptotic (as nF → +∞) properties of the distances L(1) and J (1) amounts to the
study of the following stochastic limits:

lim
nF→+∞

L(1)
nF,nK,nR

(p;❉) = lim
nF→+∞

− 1

nF

nF∑

ℓ=1

1

nK

nK∑

k=1

logϕ
(1,nR)
k

(
●k1(ωℓ), . . . ,●knR(ωℓ)

∣∣ωℓ;p
)

, (2.54)

lim
nF→+∞

J (1)
nF,nK,nR

(p;❉) = lim
nF→+∞

1

nF

nF∑

ℓ=1

1

nK

nK∑

k=1

I
(
ψ̂

(1,nR)
k,nR

(·|ωℓ;❉k)
∣∣∣∣ϕ(1,nR)

k (·|ωℓ;p)
)
. (2.55)

It seems difficult to establish convergence properties since, even though they have the form of limits
of random partial sums, these stochastic limits cannot be analyzed based upon the classical laws of
large numbers (for random partial sums made up of independent, or of iid terms) due to the potential
dependence of the constituting terms among the frequencies. The asymptotic (as nF → +∞) properties
of L(1) and J (1) remain to us an open problem.

Limit as the number nR of repetitions tends to infinity

The analysis of the large-sample (nR → +∞) properties of the distance L(1) amounts to the study of the
following stochastic limit (with reference to equation (1.148)):

lim
nR→+∞

L(1)
nF,nK,nR

(p;❉) = lim
nR→+∞

− 1

nF

nF∑

ℓ=1

1

nK

nK∑

k=1

log

∫

CnM

θ(1)
(
h
∣∣ωℓ;p

) nR∏

r=1

ρ
(1)
k

(
●kr(ωℓ)

∣∣ωℓ;h
)
dh.

(2.56)
For each tested structure (indexed by k) and frequency ωℓ, the Bayesian posterior PDF π(1)

k,nR
(·|ωℓ;❉k) :

C
nM → R

+ (Sec. 2.1.1) is defined by:

π
(1)
k,nR

(h|ωℓ;❉k) = ck,nR(ωℓ)π
(1)(h)

nR∏

r=1

ρ
(1)
k

(
●kr(ωℓ)

∣∣ωℓ;h
)

, (2.57)

where ck,nR(ωℓ) is the normalization constant and π(1) : C
nM → R

+ is a Bayesian prior PDF, chosen
equal to the improper (i.e. non-normalizable) uniform PDF π(1)(h) = ✶C

nM (h). If the distance (in the

sense of the relative entropy) at the frequency ωℓ between the data-generating PDF ψ(1)
k and the modelled

PDF ρ(1)
k (·|·;h) attains a unique global minimum at

hML
k,∞(ωℓ) = arg min

h∈C
nM

I
(
ψ

(1)
k (·|ωℓ)

∣∣∣∣ρ(1)
k (·|ωℓ;h)

)
, (2.58)

it can be shown [see, for instance, Bunke and Milhaud, 1998] that, under a list of regularity conditions,
the Bayesian posterior PDF concentrates (as nR → +∞) on this mimimum, i.e.:

lim
nR→+∞

π
(1)
k,nR

(h|ωℓ;❉k) = δ
(
h − hML

k,∞(ωℓ)
)

(weakly) a.s. , (2.59)
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2.5. Numerical approximation

where δ is the Dirac distribution. Hence, under the regularity condition that the PDF θ(1) is continuous
and remains bounded, it follows from (2.57) and (2.59) that:

lim
nR→+∞

L(1)
nF,nK,nR

(p;❉) = L(1)
nF,nK,∞ − 1

nF

nF∑

ℓ=1

1

nK

nK∑

k=1

log θ(1)
(
hML

k,∞(ωℓ)
∣∣ωℓ;p

)
a.s. , (2.60)

where L(1)
nF,nK,∞ is a parameter-independent (possibly infinite) constant. This result means that the dis-

tance, in the sense of the objective function L(1) defined in (2.40), between the noisy experimental
data set and the probabilistic model converges (as nR → +∞) to the distance, in the sense of the ob-
jective function L(1) defined in (2.31), between the estimate of the corresponding noise-free data set
defined by (2.58) and the probabilistic model (up to a constant). This result constitutes a point of sim-
ilarity between the two approaches for dealing with the experimental noise, which were introduced in
Section 2.3.2. In particular, the inverse method involving the minimization of the distance L(1) defined
in (2.40), which was categorized under the heading “noise modelling”, is asymptotically also an inverse
method of “noise filtering” type. Finally, it should be noted that, when the probabilistic model for the ex-
perimental noise correctly represents the fluctuations of the observed TFs around the noise-free TFs due
to the noise, it follows from the convexity of the relative entropy (Box 2.1) that, provided its existence,
the value hML

k,∞(ωℓ) coincides with the noise-free TF value h0
k(ωℓ). However, this property is most often

false when the probabilistic model for the experimental noise is incorrect.

As in Section 2.4, it seems difficult to establish comparable properties for the distance J (1), since the
limit and the integrals related to the relative entropies may not be interchangeable. The large-sample (nR →
+∞) properties of J (1) therefore remain to us an open problem.

Limit as the number nK of realizations of the random structure tends to infinity

The analysis of the large-sample (nK → +∞) properties of the distances L(1) and J (1) amounts to the
study of the following stochastic limits:

lim
nK→+∞

L(1)
nF,nK,nR

(p;❉) = lim
nK→+∞

− 1

nF

nF∑

ℓ=1

1

nK

nK∑

k=1

logϕ
(1,nR)
k

(
●k1(ωℓ), . . . ,●knR(ωℓ)

∣∣ωℓ;p
)

, (2.61)

lim
nK→+∞

J (1)
nF,nK,nR

(p;❉) = lim
nK→+∞

1

nF

nF∑

ℓ=1

1

nK

nK∑

k=1

I
(
ψ̂

(1,nR)
k,nR

(·|ωℓ;❉k)
∣∣∣∣ϕ(1,nR)

k (·|ωℓ;p)
)
. (2.62)

Unlike the limits (2.54)-(2.55), these limits can be analyzed based upon the classical laws of large num-
bers in view of the hypothesis (Sec. 1.4) of mutual independence among the observed TFs for distinct
tested structures. Under the regularity condition that the constituting terms of the random partial sums
in (2.61)-(2.62) are of the second order and, moreover, that the expectation values in the following ex-
pressions exist, it follows from the SLLN that:

lim
nK→+∞

(
L(1)

nF,nK,nR
(p;❉) − E

{
L(1)

nF,nK,nR
(p;❉)

})
= 0 a.s. , (2.63)

lim
nK→+∞

(
J (1)

nF,nK,nR
(p;❉) − E

{
J (1)

nF,nK,nR
(p;❉)

})
= 0 a.s. (2.64)

2.5 Numerical approximation

Basic algorithms for the practical computation of the distances defined in Section 2.3 are now proposed.
For the sake of notational simplicity, only the distances accounting for first-order cylindrical PDFs are
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considered. The algorithms can readily be generalized to the distances accounting for higher-order cylin-
drical PDFs. We first elaborate on the case where the vibration test is not disturbed by experimental
noise (Sec. 2.5.1), and then deal with the case where it is distorted by noise (Sec. 2.5.2).

2.5.1 Undisturbed vibration test

Algorithms 6 and 7 detail the computation of the distances introduced in Section 2.3.1.

Algorithm 6: computation of the distance L(1)

• Step 1: initialization:

Get the experimental data set D0, having the form (1.125)-(1.126).
Get the probabilistic structural model, built as outlined in Section 1.1.

• Step 2: computation with the probabilistic model:

Follow algorithm 5 (Sec. 1.4) to obtain the following set of iid samples of the random TFs predicted
by the probabilistic model:

{❍h(ωℓ; as;p) | 1 ≤ ℓ ≤ nF , 1 ≤ s ≤ nS}. (2.65)

• Step 3: numerical approximation of the distance:

For each k ∈ {1 ≤ k ≤ nK} and ℓ ∈ {1 ≤ ℓ ≤ nF}, apply a density estimation method (Sec. 2.5.3)
to obtain, from the samples {❍h(ωℓ; as;p) | 1 ≤ s ≤ nS}, an estimate

θ̂(1)
(
h0

k(ωℓ)
∣∣ωℓ;p

)
(2.66)

of the value taken by the PDF θ(1)(·|ωℓ;p) at the observed TF value h0
k(ωℓ).

Calculate the distance as follows:

L(1)
nF,nK

(
p;D0

)
≃ − 1

nF

nF∑

ℓ=1

1

nK

nK∑

k=1

log θ̂(1)
(
h0

k(ωℓ)
∣∣ωℓ;p

)
. (2.67)

Algorithm 7: computation of the distance D(1)

• Step 1: initialization:

Choose a number nJ of Monte Carlo samples.
Get the experimental data set D0, having the form (1.125)-(1.126).
Get the probabilistic structural model, built as outlined in Section 1.1.

• Step 2: computation with the probabilistic model:

Follow algorithm 5 (Sec. 1.4) to obtain the following set of iid samples of the random TFs predicted
by the probabilistic model:

{❍h(ωℓ; as;p) | 1 ≤ ℓ ≤ nF , 1 ≤ s ≤ nS}. (2.68)

• Step 3: numerical approximation of the distance:

Step 3a: simulation of samples from ξ̂(1):
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For each ℓ ∈ {1 ≤ ℓ ≤ nF}, apply a density estimation method (Sec. 2.5.3) to obtain, from the
samples {h0

k(ωℓ) | 1 ≤ k ≤ nK}, an estimate ξ̂(1)(·|ωℓ) of the PDF of the noise-free TF values
at the frequency ωℓ. Subsequently, simulate (Sec. 2.5.3) a set {❍̂0(ωℓ; aj) | 1 ≤ j ≤ nJ} of nJ iid
samples of a random variable ❍̂0(ωℓ) admitting this PDF ξ̂(1)(·|ωℓ).

Gather the iid samples obtained by this procedure in the set

{❍̂0(ωℓ; aj) | 1 ≤ ℓ ≤ nF , 1 ≤ j ≤ nJ}. (2.69)

Step 3b: calculation of the distance:

For each j ∈ {1 ≤ j ≤ nJ} and ℓ ∈ {1 ≤ ℓ ≤ nF}, apply a density estimation method to obtain,
from the samples {❍h(ωℓ; as;p) | 1 ≤ s ≤ nS}, an estimate

θ̂(1)
(
❍̂0(ωℓ; aj)

∣∣ωℓ;p
)

(2.70)

of the value taken by the PDF θ(1)(·|ωℓ;p) at ❍̂0(ωℓ; aj).

Calculate the distance by Monte Carlo integration as follows:

D(1)
nF,nK

(
p;D0

)
≃ 1

nF

nF∑

ℓ=1

1

nJ

nJ∑

j=1

log
ξ̂(1)

(
❍̂0(ωℓ; aj)

∣∣ωℓ

)

θ̂(1)
(
❍̂0(ωℓ; aj)

∣∣ωℓ;p
) . (2.71)

2.5.2 Disturbed vibration test

Algorithms 8 and 9 detail the computation of the distances introduced in Section 2.3.2.

Algorithm 8: computation of the distance L(1)

• Step 1: initialization:

Get the experimental data set D, having the form (1.124)-(1.123).
Get the probabilistic structural model, built as outlined in Section 1.1.

• Step 2: construction of the probabilistic model for the experimental noise:

Build the probabilistic model for the experimental noise as outlined in Section 1.4:

Step 2a: identification of the probabilistic model for the experimental noise:

For each ℓ ∈ {1 ≤ ℓ ≤ nF} and k ∈ {1 ≤ k ≤ nK}, use expressions (1.142)-(1.143) to estimate
the covariance matrix Ĉk(ωℓ).

Gather the covariance matrices obtained by this procedure in the set

{Ĉk(ωℓ) | 1 ≤ ℓ ≤ nF , 1 ≤ k ≤ nK}. (2.72)

Step 2b: construction of the first-order cylindrical PDFs:

For each ℓ ∈ {1 ≤ ℓ ≤ nF} and k ∈ {1 ≤ k ≤ nK}, use equations (1.149) and (1.160) to obtain

the following analytical expression for the PDF ρ(1)
k (·|ωℓ; ·):

ρ
(1)
k

(
g|ωℓ;h

)
=

1

πndet
(
Ĉk(ωℓ)

) exp
(
−
(
Ĉk(ωℓ)

−1(g − h), (g − h)
))

. (2.73)
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• Step 3: computation with the probabilistic structural model:

Follow algorithm 5 (Sec. 1.4) to obtain the following set of iid samples of the random TFs predicted
by the probabilistic structural model:

{❍h(ωℓ; as;p) | 1 ≤ ℓ ≤ nF , 1 ≤ s ≤ nS}. (2.74)

• Step 4: numerical approximation of the distance:

Using (2.73), calculate the distance by Monte Carlo integration as follows:

L(1)
nF,nK,nR

(p;D) ≃ − 1

nF

nF∑

ℓ=1

1

nK

nK∑

k=1

log
1

nS

nS∑

s=1

nR∏

r=1

ρ
(1)
k

(
gobs

kr (ωℓ)
∣∣ωℓ;❍h(ωℓ; as;p)

)
. (2.75)

Algorithm 9: computation of the distance J (1)

• Step 1: initialization:

Choose a number nJ of Monte Carlo samples.
Get the experimental data set D, having the form (1.124)-(1.123).
Get the probabilistic structural model, built as outlined in Section 1.1.

• Step 2: construction of the probabilistic model for the experimental noise:

Follow step 2 of algorithm 8 to obtain the following set of covariance matrices:

{Ĉk(ωℓ) | 1 ≤ ℓ ≤ nF , 1 ≤ k ≤ nK}. (2.76)

• Step 3: computation with the probabilistic structural model:

Follow algorithm 5 (Sec. 1.4) to obtain the following set of iid samples of the random TFs predicted
by the probabilistic structural model:

{❍h(ωℓ; as;p) | 1 ≤ ℓ ≤ nF , 1 ≤ s ≤ nS}. (2.77)

• Step 4: numerical approximation of the distance:

Step 4a: simulation of samples from ψ̂
(1)
k :

For each ℓ ∈ {1 ≤ ℓ ≤ nF} and k ∈ {1 ≤ k ≤ nK}, apply a density estimation method (Sec. 2.5.3)

to obtain, from the samples {gobs
k1 (ωℓ), . . . , g

obs
knR

(ωℓ)}, an estimate ψ̂(1)
k (·|ωℓ) of the PDF of the

noisy TF values for the k-th structure at the frequency ωℓ. Subsequently, simulate (Sec. 2.5.3) a
set {●̂k(ωℓ; arj) | 1 ≤ r ≤ nR , 1 ≤ j ≤ nJ} of nR × nJ iid samples of a random variable ●̂k(ωℓ)

admitting this PDF ψ̂(1)
k .

Gather the iid samples obtained by this procedure in the set

{●̂k(ωℓ; arj) | 1 ≤ ℓ ≤ nF , 1 ≤ r ≤ nR , 1 ≤ j ≤ nJ}. (2.78)

Step 4b: calculation of the distance:
Using (2.73), calculate the distance by Monte Carlo integration as follows:

J (1)
nF,nK,nR

(p;D) ≃ 1

nF

nF∑

ℓ=1

1

nK

nK∑

k=1

1

nJ

nJ∑

j=1

log

∏nR

r=1 ψ̂
(1)
k

(
●̂k(ωℓ; arj)

∣∣ωℓ

)

1
nS

∑nS

s=1

∏nR

r=1 ρ
(1)
k

(
●̂k(ωℓ; arj)

∣∣ωℓ;❍h(ωℓ; as;p)
) .

(2.79)
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2.5.3 Bibliography on the numerical methods used in algorithms 6 to 9

For completeness, references in the literature for more details on density estimation methods, random
variable simulation methods and global-search optimization methods are provided below.

Density estimation methods

Algorithms 6, 7 and 9 require the estimation of PDFs from sets of samples. We refer the reader to [Scott,
1992] for an overview of the methods that were proposed in the literature for the estimation of densities.
We suggest applying the kernel density estimation method [see, for instance, Parzen, 1962, Rosenblatt,
1956, Scott, 1992].

Methods for the simulation of non-uniform random variables

Algorithms 7 and 9 necessitate in the respective step 3a and 4a to simulate samples of a random variable
with a given PDF. We refer the reader to [Robert and Casella, 2005] for an overview of the methods
that were proposed in the literature for the simulation of non-uniform random variables. In some cases,
it may be possible to determine analytically an appropriate transformation, which maps a multivariate
random variable with mutually-independent uniform components onto the random variable to be sim-
ulated. Samples of the non-uniform random variable can then be obtained by transforming samples of
the uniform random variable. When it is difficult to find such a transformation, we suggest applying the
Monte Carlo Markov Chain method to obtain the required samples [see, for instance, Gamerman, 1997,
Hastings, 1970, Metropolis et al., 1953, Robert and Casella, 2005].

Global-search optimization methods

Let us now consider the optimization problems (2.34), (2.38), (2.42) and (2.46). When only few parame-
ters must be identified (i.e. the dimension of the parameter space is three or less), we suggest solving the
optimization problem by an exhaustive grid-search. When the set of parameters is larger, it may be more
efficient to apply a numerical optimization algorithm. Considering that the distances to be minimized
may have multiple local minima and that it may be difficult to accurately calculate gradients with respect
to the parameters, we suggest applying a global-search gradient-free optimization method, such as sim-
ulated annealing method based upon the Metropolis-Hastings algorithm [see, for instance, Kirkpatrick
et al., 1983, Metropolis et al., 1953, Robert and Casella, 2005], or the genetic optimization method [see,
for instance, Fogel, 1995, Goldberg, 1989].

2.6 Epistemic uncertainty quantification

In sections 2.1 and 2.2, the general difficulties that may arise in the application of the classical theory
of mathematical statistics to the experimental identification of probabilistic structural models were de-
scribed. Having in mind the goal of formulating this identification alternatively as the minimization of an
objective function that measures the distance between the experimental data and the probabilistic model,
we considered in sections 2.3-2.5 the general definition and computation of this distance. With these
results available, we are now in a position to address the central concern of this dissertation, namely
to propose a practical methodology for the inversion of probabilistic structural models, which allows
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circumventing the aforementioned difficulties. This section is devoted to stochastic inverse problems
aimed at quantifying epistemic uncertainty, stochastic inverse problems aimed at quantifying aleatory
uncertainty being deferred to Section 2.7.

2.6.1 Problem setting

Let us consider a general situation where a single real structure is under study. As discussed in the general
introduction, parameter uncertainty may arise, and modelling errors may be introduced, when modelling
the dynamical behaviour of this real structure.

Let the generic vibration test (Sec. 1.3) be carried out on the structure under study, either under noise-free
conditions to obtain an experimental data set of the form (1.125)-(1.126), or under noisy conditions to
obtain a data set of the form (1.124)-(1.123). Furthermore, let either a non-parametric, or a parametric
probabilistic model for the dynamical behaviour of the structure (Sec. 1.1) be built. Let this model be
used (Sec. 1.4) to model the vibration test to obtain a stochastic process {❍(ωℓ;p) | 1 ≤ ℓ ≤ nF},
with n-th order cylindrical PDF θ(n)(·|·;p). This section then concerns the experimental identification
of the parameters p so as to quantify the (epistemic) uncertainty in the predictions, which results from
parameter uncertainty and modelling errors.

With reference to sections 2.1 and 2.2, let us summarize the main difficulties that should be considered
when developing methods for solving this stochastic inverse problem:

1. When the solution method necessitates the numerical approximation of high-dimensional PDFs,
the associated computational cost may be prohibitive.

2. Since only a single structure is under study, there is no data-generating PDF such that the diffi-
culty of the potential misspecification of the probabilistic model does not apply. Nevertheless, the
probabilistic model can be incompatible with the experimental data.

3. Upon formulating the inverse problem as the minimization of an objective function measuring the
distance between the probabilistic model and the experimental data, that model will be identified
which fits the experimental data best in the sense of the chosen objective function. The applica-
tion of distinct objective functions is generally expected to lead to the identification of distinct
probabilistic models. For this reason, there is a need for a criterion to choose the “most adequate”
objective function leading to the identification of the “most adequate” probabilistic model.

2.6.2 Proposed solution methodology

In this subsection, we propose to formulate the stochastic inverse problem as the minimization of a
distance (Sec. 2.3-2.5) taking only first-order cylindrical PDFs into account. In the following, we show
how this formulation allows us to overcome the aforementioned difficulties.

Computational cost

As described in Section 2.5, the computation of the proposed distances requires the numerical approxi-
mation of PDFs and/or integrals, whose dimension is proportional to the order of the cylindrical PDFs
that are taken into account. For this reason, the computational cost of the solution method can generally
be lowered by formulating the stochastic inverse problem as the minimization of a distance taking only
low-order cylindrical PDFs into account.
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(In)compatibility of the probabilistic model and the experimental data

In Section 2.2, the potential incompatibility of the probabilistic structural model with the experimental
data was studied in the particular case where the non-parametric approach is adopted to build the proba-
bilistic model and the vibration test is undisturbed by experimental noise. Let us now proceed further in
this case study.

The probabilistic model was defined to be compatible with the experimental data if the observed TFs
belong to the support of the nF-th order cylindrical PDF θ(nF)(·|·;p). Furthermore, this condition was
found to be equivalent to requiring that the observed TFs are representable in terms of a triple of reduced
matrices, that is to say to requiring the existence of a triple of reduced matrices for which the deterministic
reduced matrix model reproduces the observed TF values concurrently at all discrete frequencies, i.e.:

∃K,D,M ∈ M+
nT

(R) : ∀ωℓ : h0(ωℓ) = h(ωℓ;K,D,M). (2.80)

Let us now examine the compatibility of the lower-order cylindrical PDFs with the experimental data in
the same way. We define the first-order cylindrical PDFs to be compatible with the experimental data if,
for each discrete frequency ωℓ, the observed TF value h0(ωℓ) belongs to the support of the first-order
cylindrical PDF θ(1)(·|ωℓ;p) at that frequency. In the line of Section 2.2, this condition is equivalent
to requiring that, at each discrete frequency ωℓ separately, there exists a triple of reduced matrices for
which the deterministic reduced matrix model reproduces the observed TF value at that frequency, i.e.:

∀ωℓ : ∃K,D,M ∈ M+
nT

(R) : h0(ωℓ) = h(ωℓ;K,D,M). (2.81)

More generally, we define the n-th order cylindrical PDFs to be compatible with the experimental data
if, for each n-subset (ωℓ1 , . . . , ωℓn) of discrete frequencies in Bn

nF
(Sec. 2.3.1), the observed TF val-

ues (h0(ωℓ1), . . . ,h
0(ωℓn)) belong to the support of the n-th order cylindrical PDF θ(n)(·|ωℓ1 , . . . , ωℓn ;p)

at those frequencies. This condition is equivalent to requiring that:

∀(ωℓ1 , . . . , ωℓn) ∈ Bn
nF

: ∃K,D,M ∈ M+
nT

(R) : (2.82)

h0(ωℓ1) = h(ωℓ1 ;K,D,M), . . . , h0(ωℓn) = h(ωℓn ;K,D,M).

The expression (2.82) represents for n < nF a weaker condition imposed jointly on the probabilistic
model and the experimental data than (2.80). In other words, the low-order cylindrical PDFs can be
compatible with the experimental data, even when the nF-th order cylindrical PDF is incompatible with
the experimental data. This consideration suggests that the risk of encountering incompatibility problems
can be reduced by formulating the stochastic inverse problem as the minimization of a distance taking
only low-order cylindrical PDFs into account.

Adequacy of the objective function

As discussed in the general introduction, the ways in which a probabilistic structural model can represent
epistemic uncertainty are a controversial topic. Nevertheless, in our opinion, it is absolutely necessary to
define the intended use of the probabilistic model before embarking on its experimental identification.
Among different viable inverse methods, the one which is expected to lead to the identification of a
model that is adequate for the intended use can then be selected.

Let this discussion concentrate on the case where the intended use consists in predicting frequency-
dependent confidence regions (see Box 2.3). More precisely, we define the aim of the inverse method
as identifying the probabilistic model such that, upon using the identified model to forecast a TF of
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the real structure, a frequency-dependent confidence region associated with a high probability level for
the predicted random TF can adequately be viewed as a region within which the actual TF of the real
structure lies.

Let us first consider the case where the vibration test is carried out under noise-free conditions. In view
of the above-defined intended predictive use, it seems reasonable to attempt to identify the probabilistic
model such that, upon using the identified model to forecast the observed TFs, the observed TF values
lie within the confidence bounds for the predicted random TF values. With that goal in mind, we propose
to identify the parameters p by minimization of the distance L(1) defined in (2.31), which only accounts
for first-order cylindrical PDFs, i.e.:

p̂L,1
nF

(D0) = arg min
p

−1

nF

nF∑

ℓ=1

log θ(1)
(
h0(ωℓ)

∣∣ωℓ;p
)
. (2.83)

When at a fixed frequency ωℓ the PDF θ(1)(·|ωℓ;p) has a large value at h0(ωℓ), it can reasonably be
expected that these observed TF values lie within the confidence bounds for the corresponding predicted
random TF values at that frequency. Hence, since the logarithm in expression (2.83) strongly penalizes
probabilistic models for which there are frequencies at which θ(1)(h0(ωℓ)|ωℓ;p) is small, the inverse
method (2.83) can reasonably be expected to lead to the identification of a probabilistic model for which
the observed TF values lie within the predicted confidence bounds. When the vibration test is carried out
under noisy conditions, we propose, correspondingly, to identify the parameters that minimize either the
distance L(1), defined in (2.40), or the distance J (1), defined in (2.44).

It should be stressed that the identification of a probabilistic model by the minimization of a distance that
only accounts for first-order cylindrical PDFs limits, in our judgement, the predictive capability of the
identified model to predictions at separate frequencies. When the intended use of the identified model is
to make predictions that rely on a suitably modelled frequency dependence, the use of a distance of this
kind is inadequate and higher-order cylindrical PDFs must be accounted for. For example, time-domain
predictions are sensitive to the separation between, and the width of, resonance peaks. Such cases are not
addressed further in this dissertation.

Box 2.3. Frequency-dependent confidence regions

This box presents a methodology, also used in [Soize and Bjauoui, 2000], for constructing confidence
regions for random TFs using the Chebychev inequality.

Let the stochastic process {❳(ω) | ω ∈ B} defined on (A,F , P ), indexed by a frequency bandB and
with values in C a.s. be a random TF predicted by a probabilistic model. A confidence region asso-
ciated with a given probability level Pc for the value taken by this random TF at a fixed frequency ω
on a logarithmic scale is then defined as a pair of bounds (dB−(ω), dB+(ω)) such that:

P
(
dB−(ω) < d❇(ω) < dB+(ω)

)
≥ Pc , (2.84)

where:

d❇(ω) =
20

log 10
log

( |❳(ω)|
Xref

)
a.s. , (2.85)

in which Xref is a reference value, equal to 1m/N, 1mHz/N or 1mHz2/N depending on
whether ❳(ω) is a compliance (i.e. a displacement over a force), a mobility (i.e. a velocity over a
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force) or an inertance (i.e. an acceleration over a force), respectively. These confidence bounds can
be built using the Chebychev equation as follows:

dB+(ω) =
20

log 10
log

( |E{❳(ω)}| + a(ω)

Xref

)
, (2.86)

dB0(ω) =
20

log 10
log

( |E{❳(ω)}|
Xref

)
, (2.87)

dB−(ω) = 2dB0(ω) − dB+(ω) , (2.88)

where:

a(ω)2 =
E{|❳(ω) − E{❳(ω)}|2}

(1 − Pc)
. (2.89)

2.6.3 Second-order interpretation of the distances

We employ here Gaussian approximations to examine in more detail the distances accounting only for
first-order cylindrical PDFs. With reference to Section 1.4, let the PDFs θ(1)(·|·;p), ρ(1) and ψ̂(1)

nR (·|·;D)
be such that:

θ(1)(h
∣∣ω;p) = N c

(
h|µmod(ω;p),Cmod(ω;p)

)
, (2.90)

ρ(1)(g
∣∣ωℓ;h) = N c

(
g|h,Cobs(ωℓ)

)
, (2.91)

ψ̂(1)
nR

(g
∣∣ωℓ;D) = N c

(
g|µobs(ωℓ),C

obs(ωℓ)
)
, with µobs(ωℓ) =

1

nR

nR∑

r=1

gobs
r (ωℓ). (2.92)

For a vibration test carried out under noise-free conditions, the expression of the distance L(1) corre-
sponding to the choice (2.90) reads:

L(1)
nF

(
p;D0

)
= L(1)

0 + L(1)
1

(
p;D0

)
+ L(1)

2

(
p;D0

)
, (2.93)

L(1)
1

(
p;D0

)
=

1

nF

nF∑

ℓ=1

(
Cmod(ωℓ;p)−1

(
µmod(ωℓ;p) − h0(ωℓ)

)
,
(
µmod(ωℓ;p) − h0(ωℓ)

))
,

L(1)
2

(
p;D0

)
=

1

nF

nF∑

ℓ=1

log det Cmod(ωℓ;p) ,

where L(1)
0 is a constant. The term L(1)

1 is the weighted least-squares distance between the mean of the
predicted random TFs and the noise-free observed TFs. The weighting factor is the inverse of the covari-
ance matrix of the predicted random TF values. Hence, it attributes a smaller weight to the predictions
that are more sensitive to the uncertainty introduced in the model. The mean and the covariance matrix of
the predicted random TF values are primarily influenced respectively by the mean-model parameters p0

and by the dispersion parameters pδ (both included in p; see Section 1.1). Furthermore, the term L(1)
1 is

expected to decrease as the dispersion parameters increase, whereas the term L(1)
2 is expected to increase.

Hence, upon minimizing L(1), the identification of the mean-model parameters essentially consists of a
partial minimization of the least-squares distance L(1)

1 , while the identified dispersion parameters achieve

a balance between the reduction of L(1)
1 and the increment of L(1)

2 .
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For a vibration test carried out under noisy conditions, it can be verified that the expression of the dis-
tance L(1) corresponding to the choices (2.90) and (2.91) reads:

L(1)
nF,nR

(p; D) = L(1)
0 + L(1)

1 (p; D) + L(1)
2 (p; D) , (2.94)

L(1)
1 (p; D) =

1

nF

nFX

ℓ=1

„“
C

mod(ωℓ; p) + C
obs(ωℓ)/nR

”−1 “
µ

mod(ωℓ; p) − µ
obs(ωℓ)

”
, (µmod(ωℓ; p) − µobs(ωℓ))

«
,

L(1)
2 (p; D) =

1

nF

nFX

ℓ=1

log det
“
C

mod(ωℓ; p) + C
obs(ωℓ)/nR

”
,

where L(1)
0 is a constant. The term L(1)

1 is the weighted least-squares distance between the mean of the
predicted random TFs and the mean of the noisy observed TFs. The weighting factor features, this time,
the covariance matrices of the predicted random TF values and of the noisy observed TF values. Hence,
it is expected to attribute a smaller weight to the predictions that are more sensitive to the uncertainty
introduced in the model, as well as to the measurement results that are more disturbed by noise. Similarly
to the previous paragraph, the identified mean-model parameters essentially minimize the least-squares
distance, while the identified dispersion parameters achieve a balance between the reduction of L(1)

1 and

the increment of L(1)
2 . Finally, it should be noted that the expression of the weighting factor in the least-

squares distance constitutes a a point of distinction between the two approaches for dealing with the
experimental noise, which were introduced in Section 2.3.2. In particular, the inverse methods belonging
under the heading “noise filtering” do not have the desirable feature of attributing less weight to data that
are more disturbed by noise.

The expression of the distance J (1) corresponding to the choices (2.90)-(2.92) reads:

J (1)
nF,nR

(p;D) = L(1)
1 (p;D) + J (1)

2 (p;D) + J (1)
3 (p;D) , (2.95)

J (1)
2 (p;D) =

1

nF

nF∑

ℓ=1

log
det

(
Cmod(ωℓ;p) + Cobs(ωℓ)/nR

)

det
(
Cobs(ωℓ)/nR

) ,

J (1)
3 (p;D) =

1

nF

nF∑

ℓ=1

tr

((
Cmod(ωℓ;p) + Cobs(ωℓ)/nR

)−1
Cobs(ωℓ)/nR − I

)
, (2.96)

where the term L(1)
1 is still defined by (2.94). The expression (2.95) is similar to (2.94) and can therefore

be interpreted in the same way. The main difference with (2.94) is the presence of the term J (1)
3 . This

term is expected to have a significant influence only when the magnitude of the fluctuations of the noisy
observed TFs is comparable with, or larger than, the magnitude of the fluctuations of the predicted
random TFs17. It then favours larger dispersion parameters.

17For a fixed ωℓ, let the matrix Z(ωℓ; p) be defined by:

Z(ωℓ; p) = C
mod(ωℓ; p)1/2(Cobs(ωℓ)/nR)−1

C
mod(ωℓ; p)∗/2. (2.97)

Let the nM strictly positive real eigenvalues of Z(ωℓ; p) be denoted by {λm(ωℓ; p) | 1 ≤ m ≤ nM}. It can be verified that the
terms J (1)

2 and J (1)
3 in (2.95) take the following form as a function of these eigenvalues:

J (2)
2 (p; D) =

1

nF

nFX

ℓ=1

nMX

m=1

log (1 + λm(ωℓ; p)) , (2.98)

J (2)
3 (p; D) = − 1

nF

nFX

ℓ=1

nMX

m=1

λm(ωℓ; p)

λm(ωℓ; p) + 1
. (2.99)

The eigenvalues of Z(ωℓ; p) are expected to increase with the dispersion parameters. Furthermore, the calculation of the
first-derivatives of (2.98)-(2.99) shows that the sum J (1)

2 + J (1)
3 is positive and increases monotonically with the eigenval-

ues {λm(ωℓ; p) | 1 ≤ m ≤ nM}. Hence, the sum J (1)
2 + J (1)

3 is expected to increase with the dispersion parameters.
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2.6.4 A posteriori error estimation

After the stochastic inverse problem is solved, two methods can be used to evaluate, a posteriori, the
identified probabilistic structural model. The first method consists in plotting either the sign-reversed
loglikelihood or the relative entropy as a function of the frequency as an a posteriori error estimate. A
plot of this kind indicates the frequencies at which the separation between the experimental data and
the identified model is large. The second method consists in using the identified model to forecast the
observed TFs of the real structure. Confidence regions associated with a high probability level for the
predicted random TFs can then be plot and compared with either the noise-free observed TFs for an
undisturbed vibration test, or with estimates of the noise-free TFs obtained from the noisy observed TFs
for a disturbed vibration test (App. C). The identified model is then considered invalid at the frequen-
cies for which the (estimates of the) noise-free observed TFs do not lie within the predicted confidence
bounds. These two methods are expected to be equivalent, in that the frequencies at which the distance
between the experimental data and the identified model is large are expected to coincide with the frequen-
cies for which the (estimates of the) noise-free observed TFs do not lie within the predicted confidence
bounds.

On the basis of a posteriori error indications of this kind, it can be decided to adapt the probabilistic
model (for instance, by using a more extensive parameterization). Subsequently, the identification pro-
cedure can be repeated and it can be evaluated whether the modifications mitigated the discrepancies
between the experimental data and the identified model.

2.6.5 Predictive use of the identified probabilistic model

The identified probabilistic structural model can be used to predict the dynamical behaviour of the com-
plete real structure (i.e. not only at points where experimental data are available). For instance, confidence
regions associated to a high probability level can be built for predicted random TFs. Upon viewing the
latter as confidence bounds within which the actual TFs of the real structure are expected to lie, a char-
acterization of the predictive accuracy is obtained: if the width of the confidence interval is large, the
predictive accuracy is small and vice versa.

It should be borne in mind that the predicted confidence regions are not hard bounds in that the actual
TFs of the real structure are not guaranteed to lie within the predicted confidence bounds. Whereas it is a
simple matter to check to validity of the confidence bounds for the observed TFs, this is not the case for
unobserved TFs. An important precondition to obtaining an identified model capable of providing valid
confidence bounds for unobserved TFs is, in our impression, the extrapolability of the experimental data.
For a simple example, consider the probabilistic modelling of the propagation of ground-borne vibrations
in a building. Upon identifying the probabilistic model from experimental data gathered in the basement,
the adequacy of the identified model in representing the dynamical behaviour at the ground floor may
be questionable. Similarly, when only low-frequency experimental data are used, the adequacy of the
identified model in representing the medium-frequency dynamical behaviour may be disputable.

From (2.98)-(2.99), it follows that the influence of the term J (1)
3 is significant only for small eigenvalues of Z(ωℓ; p), which

are expected to occur when the magnitude of the fluctuations of the observed TFs is comparable with, or is larger than, the
magnitude of the fluctuations of the predicted random TFs.
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Box 2.4. Illustrative example: random oscillator

This box gives an example of an inverse problem aimed at quantifying epistemic uncertainty.

m1

m2

k1 d1

d2k2

u(t)

f(t)

m

k d

u(t)

f(t)

Figure 2.5: Random oscillator: (left) real structure and (right) model.

Simulated data

Let the real structure be a 2-DOF oscillator (Fig. 2.5), characterized by the eigenfrequencies 30
and 50 Hz. Let a data set D0 = {h0(ωℓ) | 1 ≤ ℓ ≤ nF} be synthetically generated, which comprises
the values taken by the TF from a force applied on the second mass to the displacement of this mass
at the discrete frequencies covering the range between 5 and 200 Hz with a step of 5 Hz (hence,
nM = 1 and nF = 40).

Construction of the probabilistic model

Let the probabilistic model for the structure be taken as a 1-DOF oscillator with a random stiffness,
damping coefficient and mass (Fig. 2.5), modelled by independent gamma random variables ❑(p),
❉(p) and ▼(p) with respective mean values k, d and m and dispersion parameters δk, δd and δm.
The mean values are chosen equal to k = (2π × 40)2 N/m, d = 2 × 0.02 × (2π × 40) Ns/m
andm = 1 kg (hence, there are no mean-model parameters, i.e. p0 = ∅). For the sake of simplicity, it
is assumed that δk = δd = δm = δ. Hence, the dispersion level p = {δ} is the only active parameter
of the stochastic model.

Stochastic modelling of the vibration test
Let the mapping

γSDOF :
(
R

+
0

)3 → C
nF : (k, d,m) 7→ γSDOF(k, d,m) = {h(ωℓ; k, d,m) | 1 ≤ ℓ ≤ nF} , (2.100)

project any set (k, d,m) collecting a deterministic stiffness, damping coefficient and mass onto a
corresponding set of deterministic TF values such that, for each discrete frequency ωℓ:

h(ωℓ; k, d,m) =
(
k + iωℓd− ω2

ℓm
)−1

. (2.101)

The predicted random TF values are then obtained by:

{❍(ωℓ; δ) | 1 ≤ ℓ ≤ nF} = γSDOF
(
❑(δ),❉(δ),▼(δ)

)
a.s. , (2.102)

such that, for each discrete frequency ωℓ:

❍(ωℓ; δ) =
(
❑(δ) + iωℓ❉(δ) − ω2

ℓ▼(δ)
)−1

a.s. (2.103)

Let θ(n)(·|·; δ) denote the n-th order cylindrical PDF of {❍(ωℓ; δ) | 1 ≤ ℓ ≤ nF}.
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(In)compatibility of the probabilistic model and the data
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Figure 2.6: Random oscillator: observed TF (blue solid line) and 3 realizations of the
random TF for δ = 0.5 (red dashed lines).

Figure 2.6 compares the observed TF with several realizations of the predicted random TF for δ =
0.5. The observed TF and the predicted random TF do not depend on the frequency in the same way.
The observed TF belongs to a 2-DOF oscillator and its amplitude attains 2 maxima as a function of
the frequency. In contrast, the realizations of the random TF belong to 1-DOF oscillators and their
amplitude only has a single maximum. Realizations of the random TF whose amplitude attains 2
maxima do not occur. Consequently, the observed TF does not belong to the support of the prob-
ability distribution of {❍(ωℓ; δ) | 1 ≤ ℓ ≤ nF}, i.e. of the PDF θ(nF)(·|·; δ). As a conclusion, the
probabilistic model is incompatible with the data.

Let us now examine the compatibility of the lower-order cylindrical PDFs with the data. The first-
order cylindrical PDF is compatible with the data since the constraint (2.81) is fulfilled in that, for
each discrete frequency, the parameters of the 1-DOF oscillator can be adjusted so as to reproduce
the observed TF value at that frequency. However, all higher-order cylindrical PDFs are incompatible
with the data. Indeed, for n > 1, the three positive real scalar parameters of the 1-DOF oscillator
cannot generally be adjusted so as to solve the systems of n complex equations in constraint (2.82).

Frequency-dependent confidence regions
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Figure 2.7: Random oscillator: (left) amplitude of the TF predicted by the mean
model and 99%-confidence bounds for the random TF for δ = 0.1 and δ = 0.4
and (right) contours of PDF θ(1)(·|ωℓ; δ) at ωℓ = 50 Hz for δ = 0.1.

Figure 2.7 shows the frequency-dependent confidence region associated with the probability
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level Pc = 99% for the predicted random TF for the dispersion levels δ = 0.1 and δ = 0.4. The width
of the confidence intervals is observed to generally increase with δ. Furthermore, figure 2.7 shows
the first-order cylindrical PDF θ(1)(·|ωℓ; δ) at the frequency ωℓ = 50 Hz for δ = 0.1. At least 99%
of the volume under this PDF is located between the confidence bounds for the predicted random
TF value at that frequency (hence, the observed TF value h0(ωℓ) can be expected to lie within the
confidence bounds when the PDF θ(1)(·|ωℓ;p) has a large value at h0(ωℓ)).

The stochastic inverse problem
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Figure 2.8: Random oscillator: (left) sign-reversed loglikelihood of δ = 0.1 as a func-
tion of the frequency and (right) amplitude of the observed TF (blue solid line) and
99%-confidence bounds for the random TF for δ = 0.1 (red patch).

Figure 2.8 shows the sign-reversed loglikelihood of the dispersion level δ = 0.1 as a function of the
frequency. Furthermore, figure 2.8 compares the 99%-confidence region for the predicted random TF
for δ = 0.1 to the observed TF. The sign-reversed loglikelihood is large at frequencies at which the
observed TF value does not lie within the confidence bounds.
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Figure 2.9: Random oscillator: (left) distance L(1)
nF (δ;D0) as a function of the dis-

persion level and (right) amplitude of the observed TF (blue solid line) and 99%-
confidence bounds for the random TF for δ̂ = 0.5 (red patch).

Figure 2.9 shows the distance L(1)
nF (δ;D0) as a function of the dispersion level δ. The probabilistic

model with dispersion level δ̂ = 0.5 is identified. Figure 2.9 compares the 99%-confidence region
for the predicted random TF for δ̂ = 0.5 to the observed TF. The observed TF is seen to lie within
the confidence bounds at all frequencies.
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2.7 Aleatory uncertainty quantification

This section complements the previous one by proposing a practical methodology for solving stochastic
inverse problems aimed at quantifying aleatory uncertainty.

2.7.1 Problem setting

We consider, this time, a collection of real structures manufactured according to a fixed design. As
discussed in the general introduction, since all manufacturing is subjected to variability, these real struc-
tures are expected to be similar but not perfectly identical. Consequently, their dynamical behaviour is
expected to exhibit variability.

Let the generic vibration test (Sec. 1.3) be carried out on a subset of real structures out of the entire
collection under study, either under noise-free conditions to obtain a data set of the form (1.125)-
(1.126), or under noisy conditions to obtain a data set of the form (1.124)-(1.123). Furthermore, let
either a non-parametric, or a parametric probabilistic model for the dynamical behaviour of the struc-
ture (Sec. 1.1) be built. Let this model be used (Sec. 1.4) to model the vibration test to obtain a stochastic
process {❍(ωℓ;p) | 1 ≤ ℓ ≤ nF}. This section then concerns the experimental identification of the
parameters p so as to quantify the variability in the dynamical behaviour of the real structures.

With reference to sections 2.1 and 2.2, let us summarize the main difficulties that should be considered
when developing methods for solving this stochastic inverse problem:

1. The numerical approximation of high-dimensional PDFs may entail prohibitive computational
costs.

2. The probabilistic model may be misspecified and, moreover, incompatible with the data.

2.7.2 Proposed solution methodology

We now examine how the distances introduced in sections 2.3-2.5 can be used to solve the above-stated
inverse problem. We first elaborate on the case where the probabilistic structural model is correctly
specified and subsequently deal with the case where it is misspecified.

Correctly specified probabilistic model

When the probabilistic model is correctly specified, it is clear that the ultimate aim of the inverse method
should be to obtain a “true” value ptrue of the parameters, for which the variability in the dynamical
behaviour of the real structures is reproduced perfectly. For a vibration test carried out under noise-free
conditions, we propose to apply the inverse method (2.34) based on the minimization of the distance L(n).
Upon generalizing the asymptotic results of Section 2.4.1 to distances accounting for cylindrical PDFs
of arbitrary order n, this inverse method is seen to be consistent. A “true” value of the parameters can
therefore be recovered from the experimental data by increasing the number nK of tested structures to
infinity. From the point of view of its large-samples properties, the inverse method (2.38) based on the
minimization of the distance D(n) is less appealing since we were not able to assess its consistency.

The following considerations apply to the choice of the order n. Upon lowering the order n of the
cylindrical PDFs that are taken into account, the computational cost is expected to be reduced. However,
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an efficiency loss may then occur, in that a larger number nK of tested structures may be required to
achieve estimates of a given accuracy [see, for instance, Lindsay, 1998]. Indeed, upon lowering the
order n, less information on the relation between the sought parameters and the stochastic properties of
the experimental data is incorporated in the inverse method, which may lead to a consequent loss in the
statistical precision of the estimates. As a conclusion, the order n should be chosen so as to achieve a
suitable balance between the efficiency and the computational cost.

For a vibration test carried out under noisy conditions, we propose, correspondingly, to apply either the
inverse method (2.42), or the inverse method (2.46). These inverse methods may not be consistent. In-
deed, as discussed in Section 2.4.2, unless the probabilistic model for the experimental noise (Sec. 1.4)
correctly represents the fluctuations of the noisy observed TFs around their noise-free counterparts, the
experimental noise may affect the identified parameters, even asymptotically as the number nR of repe-
titions of the experiment increases to infinity.

Misspecified probabilistic model

As discussed in Sections 2.1 and 2.2, when the probabilistic model is misspecified, the application of
distinct inverse methods is expected to lead to the identification of different models, even asymptoti-
cally as the number nK of tested structures is increased to infinity. Moreover, the adequacy of any inverse
method then cannot be judged by evaluating whether it allows to recover a “true” value of the parameters,
since such a “true” value does not exist. As in Section 2.6, it is therefore necessary, in our impression, to
explicitly define the intended use of the probabilistic model before embarking on its experimental identi-
fication. Among different viable inverse methods, the one which is expected to lead to the identification
of a model that is adequate for the intended use can then be chosen. The general study and definition of
predictive uses of misspecified probabilistic models, which are useful in mechanical engineering, as well
as the conception of corresponding inverse methods, is left as an open problem. This section will now
focus on discussing particular cases where the distances introduced in the sections 2.3-2.5 can be useful.

In some cases (specifically, when the probabilistic model is misspecified, but, nevertheless, compatible
with the dynamical behaviour of the real structures), it may be possible to adapt the stochastic model
of the uncertain features (variables, matrices, fields) of the probabilistic model so as to obtain an al-
ternative correctly specified probabilistic model. For instance, instead of using a stochastic model with
minimal parameterization, the probability distribution of the uncertain features may be represented by
a versatile Karhunen-Loève and/or polynomial chaos expansion (Sec. 1.1). The above-proposed inverse
methodology can then be applied to the correctly specified probabilistic model thus obtained.

Besides, in some cases, the parameters p may not only have a mere mathematical meaning as parame-
ters of the probabilistic model, but may themselves also bear a clear physical meaning. For an example,
consider a collection of similar real structures whose fields of material properties are heterogeneous and
exhibit variability. Let a probabilistic structural model be built by representing these fields of material
properties by random fields parameterized by spatial correlation lengths and dispersion levels. It may
then be of engineering interest to identify adequate estimates of these parameters, rather than to obtain
an adequate comprehensive probabilistic dynamical model. The distances introduced in sections 2.3-2.5
may sometimes be useful in such cases, in particular when the low-order cylindrical PDFs are approx-
imately correctly specified, but the high-order cylindrical PDFs are potentially largely misspecified, or
possibly even incompatible with the data. The proposed inverse methods accounting only for low-order
cylindrical PDFs are then expected to lead to adequate parameter estimates, even when inverse methods
accounting for high-order cylindrical PDFs may lead to unsatisfactory estimates, or may not even be
applicable due to incompatibility issues.
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2.8 Summary and conclusion

In this chapter, we discussed the numerical difficulties and conceptual problems due to misspecification,
which may arise in the inversion of probabilistic structural models. To surmount these difficulties, two
versatile methods were proposed for defining and computing the distance between measured TFs and
corresponding predicted random TFs, based either on the loglikelihood function, or on the relative en-
tropy. A practical methodology, based on the minimization of a distance of this type, was given for the
inversion of probabilistic models aimed at quantifying epistemic uncertainty. The development of a com-
parable practical methodology for the inversion of probabilistic models aimed at quantifying aleatory
uncertainty was initiated.

The following chapters will demonstrate the proposed methodology on examples featuring simulated
and real experimental data. First, Chapter 3 presents an example of the identification from simulated
data of a non-parametric probabilistic model aimed at quantifying epistemic uncertainty. Then, Chap-
ter 4 describes a civil and environmental engineering case history concerning the identification from
real experimental data of a non-parametric probabilistic model aimed at quantifying epistemic uncer-
tainty. Subsequently, Chapter 5 gives an example of the identification from simulated data of a correctly
specified parametric probabilistic model aimed at quantifying aleatory uncertainty. Finally, Appendix E
presents real experimental data that will be used in future work to further study the identification of
dispersion levels and spatial correlation lengths using misspecified parametric probabilistic models.
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3

Inversion of a probabilistic model of a

slender beam

This chapter presents an example of the inversion of a non-parametric probabilistic model aimed at
quantifying epistemic uncertainty using simulated data.

3.1 Problem setting

x1

x2

x3

t2 t3

p( )w

t1

o

Figure 3.1: Slender beam: schematic representation.

The example concerns the dynamical behaviour of the slender beam shown in Figure 3.1 (hence, a single
structure is considered). A right-handed Cartesian reference frame (x1, x2, x3) with origin o is defined.
The undeformed beam occupies the box-shaped region

Ω =
{
−0.5 m < x1 < 0.5 m, 0 < x2 < 10 m, 0 < x3 < 1.5 m

}
. (3.1)

It is simply supported at x2 = 0 and x2 = 10 m. It is constituted of a homogeneous, isotropic, lin-
ear elastic material with Young’s modulus E = 33 GPa, Poisson ratio ν = 0.3 and mass density ρ =
2500 kg/m3. Its dynamical behaviour is analyzed in the frequency band B = [0, ωmax], where ωmax =
2πfmax and fmax = 1000 Hz. Finally, for later use, let t1, t2 and t3 denote the points with coordi-
nates (0, 2.5 m, 0.75 m), (0, 5 m, 0.75 m) and (0, 6.4 m, 0.75 m), respectively.

3.2 Simulated data

A data set is synthetically generated with a three-dimensional (3D) Finite Element (FE) model constituted
of 10 × 100 × 15 isoparametric 8-noded brick elements of equal size. Modal damping is assumed with
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modal damping ratio ξ = 0.02. The beam is loaded by a frequency-dependent pressure p(ω) uniformly
applied on the square portion Γp of the top surface centred at (0.5 m, 4.2 m, 0.75 m) and of area ǫ2

with ǫ ≪ 1 m. The vertical response is observed at the points t1, t2 and t3. In the following, we will
identify the probabilistic model (to be built) using the response at t2 and t3. More specifically, we let the
data set D0 = {h0(ωℓ) | 1 ≤ ℓ ≤ nF} gather the Transfer Functions (TFs) from the applied pressure
field to the vertical response at t2 and t3 predicted by the 3D FE model at the discrete frequencies
covering the range between 5 and 1000 Hz with a step of 5 Hz (hence, nM = 2 and nF = 200). We will
afterwards use the response at t1 to “validate” the predictive capability of the identified model.

3.3 Probabilistic structural model

In this section, a non-parametric probabilistic model for the dynamical behaviour of the slender beam is
built (Algorithm 1 in Section 1.2) and studied.

3.3.1 Deterministic modelling

A one-dimensional (1D) FE model made of 100 2-noded Timoshenko beam elements of equal length is
built. At the two edges, the translational Degrees Of Freedom (DOFs) are set to zero, while the rotational
DOFs are unconstrained. A reduced matrix model is then created using a reduction basis made of nT

bending eigenmodes, which has the following form (Algorithm 1):

[K + iωD − ω2M ]qnT
(ω) = T T

nT
fh(ω) , ω ∈ B , (3.2)

uh(ω) = T nTqnT
(ω) , (3.3)

where K,D,M ∈ M+
nT

(R), the reduced stiffness, damping and mass matrices are diagonal. Their j-
th diagonal entries are given by Kjj = (w1D

j )2, Djj = 2ξ(w1D
j ) and Mjj = 1, respectively, where w1D

j

is the j-th angular eigenfrequency of the 1D FE model.
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(a) TF at t2.

0 200 400 600 800 1000
−200

−180

−160

−140

−120

−100

Frequency [Hz]

M
ob

ili
ty

 [d
B

]

FEM (3D)
FEM (1D)

(b) TF at t3.

Figure 3.2: Slender beam: amplitude of the TFs predicted by the 3D FE model and the 1D FE model
at (a) t2 and (b) t3.

Figure 3.2 shows that the TFs at t2 and t3 predicted by the 3D FE model and the 1D FE model are
in reasonable agreement at frequencies lower than about 100 Hz, and exhibit significant differences at
higher frequencies.
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3.3.2 Probabilistic modelling

A non-parametric probabilistic model is built of the form (1.96)-(1.97), i.e.:

[❑(p) + iω❉(p) − ω2▼(p)]◗nT(ω;p) = T T
nT

fh(ω) a.s., ω ∈ B , (3.4)

❯h(ω;p) = T nT◗nT(ω;p) a.s. (3.5)

with ❑(p), ❉(p) and ▼(p) denoting the random reduced stiffness, damping and mass matrix, respec-
tively, parameterized by p.

The mean values of the random reduced matrices are chosen equal to their deterministic counterparts in
model (3.2)-(3.3), i.e.:

E {❑(p)} = K , E {❉(p)} = D , E {▼(p)} = M . (3.6)

Hence, there are no mean-model parameters, i.e. p0 = ∅, and the random matrices ❑(p), ❉(p) and ▼(p)
are parameterized solely by their respective dispersion parameters δK, δD and δM. For the sake of sim-
plicity, it is assumed that δK = δD = δM = δ, so that p = {δ} is the only active parameter of the
probabilistic model.

3.3.3 Computations with the probabilistic model

As already mentioned, the FE method is used for the discretization of the space. The Monte Carlo Simu-
lation (MCS) method is applied to discretize the random dimension. The computations are performed in
Matlab using the Structural Dynamics Toolbox [Balmès and Leclère, 2006].

3.3.4 Random matrix eigenvalue problem
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Figure 3.3: Slender beam: (a) PDFs of the random eigenfrequencies between 0 and 1000 Hz for δ = 0.2
and δ = 0.8 and (b) 50 lowest deterministic eigenfrequencies of the mean model, and mean of the
random eigenfrequencies for δ=0.8 and nT = 20, nT = 30, nT = 40 and nT = 50.

Before studying in the next subsection the stochastic properties of the random TFs predicted by the
probabilistic model (3.4)-(3.5), this subsection analyzes the random matrix eigenvalue problem (app. B)
defined by the random reduced stiffness and mass matrices ❑(p) and▼(p). Since the stochastic properties
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Chapter 3. Inversion of a probabilistic model of a slender beam

of the predicted random TFs are strongly related to the properties of the random eigenfrequencies and
eigenmodes associated to these random matrices, the analysis of the latter provides useful insight on the
former. The random eigenfrequencies are now studied for frequencies lower than 1.5×fmax = 1500 Hz.

First, the stochastic properties of the eigenfrequencies as a function of the reduction basis dimension nT

are studied. Figure 3.3(a) shows the 50 lowest deterministic eigenfrequencies of the mean model, and
the mean value (computed using nS = 10000 Monte Carlo simulations) of the random eigenfrequencies
for δ=0.8 and nT = 20, 30, 40 and 50. Since the eigenfrequencies are non-linear functions of the stiff-
ness and mass matrices, their mean value differs from the deterministic eigenfrequencies. For a fixed nT,
the mean values of the low eigenfrequencies (approximately the lowest nT/2) are observed to be smaller
than the deterministic values, while the mean values of the high eigenfrequencies are observed to be
larger. For the eigenfrequencies lower than 1000 Hz, reasonable convergence is obtained for nT = 50. In
the remainder of this chapter, all computations are performed with nT = 50 eigenmodes.

Figure 3.3(b) shows the Probability Density Functions (PDFs) (computed using nS = 10000 Monte
Carlo simulations) of the random eigenfrequencies for δ = 0.2 and δ = 0.8 in the frequency range
up to 1000 Hz. For δ = 0.2, the dispersion of the random eigenfrequencies is small compared to the
eigenfrequency separation and the PDFs do not overlap. For δ = 0.8, the dispersion of the random
eigenfrequencies is large compared to the eigenfrequency separation and the PDFs do overlap except for
the 3 lowest eigenfrequencies. Furthermore, these random eigenfrequencies are observed to decrease as δ
increases.

3.3.5 Predicted random TFs
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Figure 3.4: Slender beam: statistical mean of the realizations of the predicted random TF at t2 for δ = 0.2
and δ = 0.8 at frequencies (a) 200 Hz and (b) 800 Hz.

Figure 3.4 shows, as a function of the number nS of Monte Carlo simulations, the statistical mean of
the realizations of the predicted random TF at t2 for the dispersion levels δ = 0.2 and δ = 0.8 at
the frequencies 200 Hz and 800 Hz. The larger δ and the higher the frequency, the larger the required
number nS becomes. Fully converged results are clearly obtained for nS = 10000. All results to follow
have been obtained using nS = 10000 Monte Carlo simulations.

Figure 3.5 shows the 99%-confidence regions (Box 2.3 of Section 2.6) for the predicted random TF at t2

and t3 for δ = 0.2 and δ = 0.8. Their width is observed to increase with δ and also with the frequency,
which stresses that the predictions become more sensitive to uncertainties as the frequency increases.
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(a) TF at t2.
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Figure 3.5: Slender beam: amplitude of the TF predicted by the mean model, and 99%-confidence regions
for the random TF for δ = 0.2 and δ = 0.8 at (a) t2 and (b) t3.

At low frequencies below approximately 200 Hz, the frequencies of the resonance peaks are observed
to decrease when δ increases. On the other hand, at frequencies above 200 Hz, the confidence bounds
for δ = 0.2 show resonance peaks while the confidence bounds for δ = 0.8 do not. Indeed, for δ =
0.2, the dispersion of the random eigenfrequencies is small compared to the eigenfrequency separation
resulting in resonances randomly occurring in distinct frequency ranges. In contrast, for δ = 0.8, the
dispersion is large compared to the separation, so that resonances randomly occur at all frequencies.

3.4 Stochastic inverse problem

The methodology proposed in Section 2.6 is now applied to invert the probabilistic model.

3.4.1 Identification of the probabilistic model
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Figure 3.6: Slender beam: distance L(1)
nF (δ;D0) as a function of δ.

The suitable dispersion level is identified by minimizing the distance L(1), defined in (2.31). Figure 3.6
shows that the probabilistic model with the largest admissible dispersion level δ̂ = 0.96 (with reference
to inequality (1.46)) is optimal in the sense of the distance L(1)

nF (δ;D0).

91



Chapter 3. Inversion of a probabilistic model of a slender beam

3.4.2 A posteriori error estimation

Figure 3.7 shows the sign-reversed loglikelihood of δ̂ = 0.96 as a function of the frequency. Figures 3.8
and 3.9 compare the 99%-confidence regions for the identified predicted random TFs to the observed TFs
at t2 and t3. The sign-reversed loglikelihood is seen to be large at frequencies for which the observed
TFs do not lie within, or nearly lie within, the confidence bounds. At low frequencies below 200 Hz,
the agreement of the identified model with the data is unsatisfactory. Due to the decrease of the low
random eigenfrequencies with δ, the low-frequency resonances of the random TFs are located at lower
frequencies than those of the observed TFs.

3.4.3 Adaptation of the probabilistic model

To mitigate the discrepancy at the low frequencies, the probabilistic model is adapted. The non-parametric
probabilistic model used in the following has the same form (3.4)-(3.5), but, this time, the mean values
of the random reduced stiffness and damping matrices are defined by:

E {❑(p)} = K(w1, w2, w3) , E {❉(p)} = D(w1, w2, w3) , (3.7)

with:
Kjj(w1, w2, w3) = w2

j , Djj(w1, w2, w3) = 2ξwj (j = 1, 2, 3) ,

Kjj(w1, w2, w3) = (w1D
j )2 , Djj(w1, w2, w3) = 2ξw1D

j (4 ≤ j ≤ nT).

The three lowest angular eigenfrequencies w1, w2 and w3 are now used as mean-model parameters. The
mean value of the random reduced mass matrix is still defined by (3.6). The three dispersion parameters
are again chosen equal: pδ = {δ}, such that now p = {w1, w2, w3, δ}.

3.4.4 Identification of the adapted probabilitic model

The distance L(1)
nF (p;D0) is minimized by the parameters ŵ1/2π = 46.67 Hz, ŵ2/2π = 172.63 Hz,

ŵ3/2π = 230.00 Hz and δ̂ = 0.67 (obtained using the simulated annealing algorithm).

3.4.5 A posteriori error estimation

Figure 3.10 shows the sign-reversed loglikelihood of ŵ1/2π = 46.67 Hz, ŵ2/2π = 172.63 Hz, ŵ3/2π =
230.00 Hz and δ̂ = 0.67 as a function of the frequency. Figures 3.11 and 3.12 compare the 99%-
confidence regions for the identified predicted random TFs to the observed TFs at t2 and t3. Compared
to Figure 3.7, the sign-reversed loglikelihood has been reduced at the low frequencies. The observed
TFs are seen to lie within the confidence bounds at all frequencies. The introduction of the mean-model
parameters has allowed to compensate for the decrease of the lowest random eigenfrequencies.

3.4.6 Predictive use of the identified probabilistic model

To “validate” the predictive capability of the identified probabilistic model, Figure 3.13 compares the 99%-
confidence region for the random TF predicted by the identified probabilistic model at the point t1 to the
corresponding TF predicted by the 3D FE model. The latter TF is seen to lie within the confidence bounds
at all frequencies. This result suggests that the identified model can be used to predict the dynamical be-
haviour of the complete slender beam, and not only at points where data are available.
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Figure 3.7: Slender beam: sign-reversed loglikelihood of δ̂ = 0.96 as a function of the frequency.
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Figure 3.8: Slender beam: amplitude of the observed TF (solid line) and 99%-confidence bounds for the
random TF identified in Section 3.4.1 (grey patch) at t2.
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Figure 3.9: Slender beam: amplitude of the observed TF (solid line) and 99%-confidence bounds for the
random TF identified in Section 3.4.1 (grey patch) at t3.
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Figure 3.10: Slender beam: sign-reversed loglikelihood of ŵ1/2π = 46.67 Hz, ŵ2/2π = 172.63 Hz,
ŵ3/2π = 230.00 Hz and δ̂ = 0.67 as a function of the frequency.
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Figure 3.11: Slender beam: amplitude of the observed TF (solid line) and 99%-confidence bounds for
the random TF identified in Section 3.4.4 (grey patch) at t2.
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Figure 3.12: Slender beam: amplitude of the observed TF (solid line) and 99%-confidence bounds for
the random TF identified in Section 3.4.4 (grey patch) at t3.
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Figure 3.13: Slender beam: amplitude of the TF predicted by the 3D FE model (solid line) and 99%-
confidence bounds for the random TF identified in Section 3.4.4 (grey patch) at t1.

3.5 Summary and conclusion

In this chapter, an illustrative example was presented of the inversion of a non-parametric probabilistic
model using simulated data. The inverse method based on the minimization of the distance L(1) was suc-
cessfully applied to identify a model that is adequate to predict frequency-dependent confidence regions.

The example highlighted that it may sometimes be useful to include mean-model parameters in non-
parametric probabilistic models with minimal parameterization. Indeed, the low-frequency random eigen-
frequencies of probabilistic models of this kind were found to decrease as the dispersion level increases.
If a large dispersion level is required, the introduction of mean-model parameters allows to compensate
for this decrease. The mean-model parameters must clearly be identified together with the dispersion
parameters.

In the example, the simplifying assumption was made that the dispersion levels of the stiffness, damping
and mass matrix are identical. A natural direction for future work consists in relaxing this assumption.
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4

Inversion of a probabilistic model for

ground-borne vibrations in buildings

This chapter presents a civil and environmental engineering case history involving the inversion of a
non-parametric probabilistic model aimed at quantifying epistemic uncertainty from real experimental
data.

4.1 Problem setting

(a) (b) (c)

Figure 4.1: Ground-borne vibrations in the Maison du Mexique: (a) train at the station Gentilly, (b) tunnel
at the station Gentilly and (c) side view of the Maison du Mexique.

The case history concerns the transmission of vibrations from the underground-railway tunnel of the
RER B line of RATP to the Maison du Mexique building at the Cité Universitaire site in Paris in
France (Fig. 4.1) (hence, a single structure is considered). The tunnel is a masonry cut-and-cover tunnel
at a shallow depth of about 9.3 m below the free surface of the soil embedded in sand layers. Two classic
ballast tracks are running in the tunnel. The rails are supported by grooved rubber pads and are rest-
ing on mono-block concrete sleepers. A Spectral Analysis of Surface Waves (SASW) test (app. D) was
performed to determine the thickness and the dynamical characteristics of the shallow soil layers [Pyl
and Degrande, 2002]. This test demonstrated the presence of a thin layer with a thickness of approxi-
mately 1.4 m and a shear wave velocity of 115 m/s, a stiffer layer with a thickness of 3.0 m and a shear
wave velocity of 220 m/s on top of a halfspace with a shear wave velocity of 315 m/s. The Maison du
Mexique is a six-storey reinforced-concrete frame structure. It has two sets of eight columns such that
the floor spans are approximately 6.2 m. The floor-to-ceiling height is approximately 2.85 m.
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Figure 4.2: Ground-borne vibrations in the Maison du Mexique: schematic overview.

For the tunnel, a right-handed Cartesian frame of reference (i′1, i
′
2, i

′
3) is defined with the origin o′ at the

free surface of the soil (Fig. 4.2). For the building, a right-handed Cartesian frame of reference (i1, i2, i3)
is defined with the origin o in the left corner at the ground floor (Fig. 4.2). The origin of the reference
frame of the building has coordinates (x′1 = −23.5 m, x2 = −24.3 m, x3 = 0) in the reference frame
of the tunnel. The angle between i2 and i′2 is 25◦.

4.2 Real experimental data

(a)

C0C1C2C3C4C5C6

BA01/BA03BA02

F0PL

F2PL

F5PL

F201

F501F502

F202

F2WA

F5WA

x
2

x
3

o

(b) (c)

Figure 4.3: Ground-borne vibrations in the Maison du Mexique: (a) impact hammer, (b) measurement
locations and (c) accelerometers at the position F501.

In the frame of the European CONVURT project (the CONtrol of Vibrations from Underground Rail-
way Traffic), in situ measurements were performed of the dynamical response in the Maison du Mex-
ique due to excitations applied on the rails in the tunnel. Vibrations were generated by an impact of
an instrumented hammer with a mass of 5.3 kg and a soft tip on the rail head at the point with coor-
dinates (x′1 = −2.5 m, x′2 = 0, x′3 = −8.2 m), and recorded by accelerometers placed at different
locations in the Maison du Mexique (Fig. 4.3). We will consider here the vertical response at the loca-
tions BA01, BA03, F0PL and F201 (Fig. 4.3(b) and Table 4.1).
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(b) BA01.
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(c) BA01.
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(d) BA03.
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(e) BA03.
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(f) BA03.
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(g) F0PL.
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(h) F0PL.
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(i) F0PL.
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(j) F201.
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(k) F201.
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(l) F201.

Figure 4.4: Ground-borne vibrations in the Maison du Mexique: (a, d, g, j) time history of the measured
acceleration during the sixth event, (b, e, h, k) amplitude of the estimated noise-free TF and (c, f, i, l) co-
herence function between the applied force and the measured response at BA01, BA03, F0PL and F201.
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Label Location Coordinates (x1, x2, x3)

BA01 in the basement next to column C1 (−0.5 m, 26.5 m, −3.6 m)
BA03 in the basement at 1 m from column C1 (−1.5 m, 26.5 m, −3.6 m)
F0PL at the ground floor between columns C2 and C3 (−2.9 m, 18.2 m, 0)
F201 at the second floor right next to column C1 (−0.5 m, 26.5 m, 6.8 m)

Table 4.1: Ground-borne vibrations in the Maison du Mexique: measurement locations.

A total of nR = 25 events was recorded. The A/D conversion was performed at a rate of 1000 Hz. A total
of 4096 data points was recorded for each event (hence, the frequency-domain resolution is 0.2441 Hz).
Estimates of the noise-free Transfer Functions (TFs) from the force applied on the rail head to the vertical
velocity in the building have been deduced from the noisy experimental data using the H1-estimation
method (App. C). The coherence function between the measured applied force and the measured re-
sponses has also been estimated (App. C). Figure 4.4 shows the time history of the response measured
during the sixth event, the estimated noise-free TF and the coherence function at BA01, BA03, F0PL
and F201. Due to experimental noise, low coherence values, indicating low data quality, are observed at
frequencies below 20 Hz and at frequencies above 100 Hz. The coherence decreases with the distance to
the impact point.

In the following, we will identify the probabilistic model (to be built) using the TFs at BA01 and F0PL.
More specifically, we let the data set D = {gobs

1 (ωℓ), . . . , g
obs
nR

(ωℓ) | 1 ≤ ℓ ≤ nF} gather the observed
TFs from the applied force to the response at BA01 and F0PL at the discrete frequencies covering the
range between 20 and 100 Hz with a step of 0.2441 Hz (hence, nM = 2 and nF = 327). We will after-
wards use the vertical response at the measurement locations BA03 and F201 to “validate” the predictive
capability of the identified model.

4.3 Probabilistic structural model

In this section, a non-parametric probabilistic model for the groundborne vibrations in the Maison du
Mexique is built (Algorithm 1 of Section 1.2) and studied.

4.3.1 Deterministic modelling

In the frame of the CONVURT project, a deterministic model was built for the transmission of vibrations
from the underground-railway tunnel of the RER B line to the Maison du Mexique at the Cité Univer-
sitaire site [Arnst, 2003, Chebli et al., 2007, Clouteau et al., 2005, Degrande et al., 2006]. Assuming
that the dynamic interaction of the track, the tunnel and the soil is only weakly coupled to the dynamic
interaction of the soil and the building, the transmission of the vibrations is modelled in two steps.

First, a model for the dynamical interaction of the track, the tunnel and the soil is used to compute the
wave field radiated into the soil due to forces applied on the rails in the tunnel. The dynamic track-
tunnel-soil interaction model is based on the periodic coupled Finite Element-Boundary Element (FE-
BE) formulation proposed by Clouteau et al. [2005], Degrande et al. [2006].

Subsequently, a model for the dynamic interaction of the soil and the building is used to compute the
structural vibration induced by this incident wave field. The dynamic soil-building interaction model
uses a classical coupled FE-BE formulation [see, for instance, Aubry and Clouteau, 1992, Clouteau
and Aubry, 2003] in conjunction with the Craig-Bampton substructuring method [Craig and Bampton,
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Figure 4.5: Ground-borne vibrations in the Maison du Mexique: lowest 2000 eigenfrequencies of the
building model.

1968], and is set up as follows. The FE model of the Maison du Mexique is limited to the main structural
parts. Only the columns, beams and floors of the reinforced-concrete frame structure are included in the
model. Two-noded beam elements are used for the columns and the beams. Four-noded quadrilateral
plate elements are used for the floor slabs. The FE model has 64308 Degrees Of Freedom (DOFs).
The foundation is modelled by 16 rigid foundation plates (one for each column), which constitute the
interface between the soil and the building. The displacements of the foundation are decomposed on a
basis of interface modes chosen equal to the 96 rigid-body modes of the 16 plates. The basis of static
transmissions into the building of the interface modes is extended with fixed-interface eigenmodes of the
building. Figure 4.5 shows the 2000 lowest eigenfrequencies. Figure 4.6 shows the 2nd, 35th and 535th
eigenmodes. In the frequency range between 0 and 12 Hz, global eigenmodes of longitudinal bending (1-
4th), transverse bending (1-3th) and torsion (1-3th) are found. From 12 Hz to approximately 17 Hz, a
high density of local first-order plate bending modes is obtained, as well as some higher-order global
modes. From approximately 28 Hz, a high density of local higher-order plate bending modes is found
with some high-order global modes. The 2000th eigenfrequency is 230.13 Hz.

A reduced matrix model for the groundborne vibrations in the Maison du Mexique is built using a re-
duction basis made of the 96 constraint modes and of nT fixed-interface eigenmodes, which has the
following form [Arnst, 2003, Arnst et al., 2006]:

[K + iωD − ω2M + KS(ω)]qnT
(ω) = fS(ω) , ω ∈ B , (4.1)

uh(ω) = T nTqnT
(ω). (4.2)

The matrices K and D are the positive semi-definite reduced stiffness and damping matrices and M

is the positive definite reduced mass matrix of the building. For a fixed circular frequency ω, the ma-
trix KS(ω) is the dynamic soil impedance matrix, fS(ω) is the vector of the generalized forces (the
virtual work on the interface modes generated by the tractions induced by the incident wave field on a
fixed foundation), qnT

(ω) is the vector of the generalized coordinates and uh(ω) collects the FE DOFs
of the building. The rectangular matrix T nT is the transformation matrix of the reduction basis.

Predicted deterministic TFs

The predicted deterministic TFs are obtained in two steps. First, the dynamic track-tunnel-soil interac-
tion model is used to compute the wave field radiated by the tunnel into the soil due to the application

101



Chapter 4. Inversion of a probabilistic model for ground-borne vibrations in buildings

(a) Mode 2 at 1.64 Hz. (b) Mode 35 at 14.85 Hz. (c) Mode 535 at 83.25 Hz.

Figure 4.6: Ground-borne vibrations in the Maison du Mexique: (a) first-order global torsion and
transverse-bending mode, (b) first-order local plate bending mode and (c) higher-order local plate bend-
ing mode.

of a unitary vertical excitation on the rail head at the point with coordinates (x′1 = −2.5 m, x′2 =
0, x′3 = −8.2 m). Subsequently, the model (4.4)-(4.5) is used to compute the building response due to
this incident wave field.

Figure 4.7(a) shows the amplitude of the vertical component of the incident wave field at the point
with coordinates (x1 = −0.5 m, x2 = 26.5 m, x3 = −4 m) located in the soil directly under the
foundation plate under the column C1 (that is located right next to the position BA01). Figure 4.7(b)
shows the 9th entry of the vector fS(ω) of the generalized forces in (4.4)-(4.5), which is the virtual
work on the pumping mode of the foundation plate under the column C1 generated by the tractions
induced by the incident wave field on a fixed foundation. At frequencies between about 20 and 30 Hz, an
energy loss of the incident wave field is observed, which results in a consequent drop in the virtual work.
Figure 4.8 compares the estimated noise-free TFs to the predicted TFs (computed using nT = 1500
eigenmodes) at BA01 and F0PL. At the frequencies for which the coherence function is large (Fig. 4.4),
i.e. for which the experimental data are not too distorted by noise, the predicted TFs are generally in
reasonable agreement with the estimated noise-free TFs. At BA01, the model is not in good agreement
with the data at frequencies between about 20 and 30 Hz. The energy loss in the computed incident wave
field results in a drop of the amplitude of the predicted building response, which does not occur in the
measured response.

Harmonic response of the tunnel, the soil and the building

Figure 4.9 shows the harmonic response of the tunnel, the soil and the building at the frequencies 15 Hz
and 60 Hz due to a vertical excitation on the rail head at the point with coordinates (x′1 = −2.5 m, x′2 =
0, x′3 = −8.2 m). At low-frequencies, the building response is mainly governed by global low-order
bending and torsion and by first-order local plate bending of the slabs. At higher frequencies, the building
response is mainly governed by local plate bending of the slabs and also by global higher-order bending
and torsion.
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Figure 4.7: Ground-borne vibrations in the Maison du Mexique: (a) amplitude of the incident wave
field at point (x1 = −0.5 m, x2 = 26.5 m, x3 = −4 m) and (b) amplitude of the 9th entry of the
vector fS(ω).
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(a) BA01.
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(b) F0PL.

Figure 4.8: Ground-borne vibrations in the Maison du Mexique: amplitude of the TF predicted by the
deterministic model (dashed line) and the estimated noise-free TF (solid line) at (a) BA01 and (b) F0PL.

Transient response of the tunnel, the soil and the building

Figures 4.10 and 4.11 show the transient response of the tunnel, the soil and the building due to a hammer
impact on the rail head in the point with coordinates (x′1 = −2.5 m, x′2 = 0, x′3 = −8.2 m). The impact
force is modelled in the time domain by means of a very narrow Gaussian-shaped function

f(t) = − exp

(
−(t− t0)

2

T 2

)
, (4.3)

where the parameters are chosen equal to t0=0.1 s and T=0.0025 s. Figure 4.10 shows three snapshots
of the displacements of the tunnel and the soil. After the impact, a fast wavefront of vertical upward
displacements is seen to propagate away from the tunnel, immediately followed by a strong wavefront of
vertical downward displacements. The fast wavefront is made up of body waves that are generated by the
bottom plate of the tunnel and propagate essentially in the fast soil halfspace. The strong wavefront is the
fundamental surface wave (the generalized Rayleigh wave) of the soil layering. Figure 4.11 shows six
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Chapter 4. Inversion of a probabilistic model for ground-borne vibrations in buildings

(a) 15 Hz. (b) 60 Hz.

Figure 4.9: Ground-borne vibrations in the Maison du Mexique: harmonic response at (a) 15 Hz
and (b) 60 Hz (the colour is proportional to the vertical displacement; the colour scale is 10 times more
sensitive for the soil).

snapshots of the displacements of the soil and the building. Both global bending and torsion eigenmodes
of the whole building and local plate bending eigenmodes are observed to be excited by the incident
wave field.

4.3.2 Probabilistic modelling

A non-parametric probabilistic model, associated to the deterministic model (4.4)-(4.5), is built:

[❑(p) + iω❉(p) − ω2▼(p) + KS(ω)]◗nT(ω;p) = fS(ω) a.s., ω ∈ B , (4.4)

❯h(ω;p) = T nT◗nT(ω;p) a.s. (4.5)

The reduced stiffness, damping and mass matrices of the building are modelled by the random matri-
ces ❑(p), ❉(p) and ▼(p), respectively, parameterized by p. The dynamic soil impedance matrix and the
vector of the generalized forces are kept deterministic.

The mean values of the random reduced matrices are chosen equal to their deterministic counterparts in
model (4.4)-(4.5), i.e.:

E {❑(p)} = K , E {❉(p)} = D , E {▼(p)} = M . (4.6)

Hence, there are no mean-model parameters, i.e. p0 = ∅, and the random matrices ❑(p), ❉(p) and ▼(p)
are parameterized solely by their respective dispersion parameters δK, δD and δM. For the sake of sim-
plicity, it is assumed that δK = δD = δM = δ, such that p = {δ} is the only active parameter of the
probabilistic model.

4.3.3 Computations with the probabilistic model

As already mentioned, a coupled FE-BE formulation is used for the spatial discretization. The FE com-
putations are performed in Matlab using the Structural Dynamics Toolbox [Balmès and Leclère, 2006].
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4.3. Probabilistic structural model

(a) t=0.1 s. (b) t=0.116 s. (c) t=0.136 s.

Figure 4.10: Ground-borne vibrations in the Maison du Mexique: transient response at
times (a) t=0.1 s (moment of impact), (b) t=0.116 s and (c) t=0.136 s (the colour is proportional to the
vertical displacement; the colour scale is 10 times more sensitive for the soil).

(a) t=0.116 s. (b) t=0.136 s. (c) t=0.156 s.

(d) t=0.176 s. (e) t=0.216 s. (f) t=0.256 s.

Figure 4.11: Ground-borne vibrations in the Maison du Mexique: transient response at
times (a) t=0.116 s, (b) t=0.116 s, (c) t=0.136 s, (d) t=0.156 s, (e) t=0.216 s and (f) t=0.256 s (the colour
is proportional to the vertical displacement).

105



Chapter 4. Inversion of a probabilistic model for ground-borne vibrations in buildings

The BE computations are performed using the program MISS3D [Clouteau, 2005]. The Monte Carlo
Simulation (MCS) method is applied to discretize the random dimension.

4.3.4 Random matrix eigenvalue problem

Let the reduced stiffness and mass matrices of the deterministic model (4.1)-(4.2) be block-decomposed,
separating the generalized coordinates related to the fixed-interface eigenmodes from those associated to
the static-transmission modes:

K =

[
K0 0
0 KΣ

]
, M =

[
M0 M c

MT
c MΣ

]
. (4.7)

In this block-decomposition, the square matrices K0,M0 ∈ M+
nT

(R) are the projection of the FE stiff-
ness and mass matrices of the building onto the nT fixed-interface eigenmodes, while the square matri-
ces KΣ ∈ M+0

96 (R) and MΣ ∈ M+
96(R) are their projection onto the 96 static-transmission modes. The

rectangular mass coupling matrix M c is in MnT×96(R). Let ❑0(δ) and ▼0(δ) then be random reduced
stiffness and mass matrices such that:

❑0(δ) = LT
K◆K(δ)LK a.s. , ▼0(δ) = LT

M◆M(δ)LM a.s. , (4.8)

where ◆K(δ) and ◆M(δ) are normalized random matrices in the set SG+, defined in Section 1.1, and LK

and LM are the Cholesky factors of K0 and M0, respectively.
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Figure 4.12: Ground-borne vibrations in the Maison du Mexique: 2000 lowest deterministic eigenfre-
quencies of the mean model, and mean of the random eigenfrequencies for (a) δ=0.4 and (b) δ=0.8
for nT = 1000, nT = 1500 and nT = 2000.

The random matrix eigenvalue problem (App. B) defined by ❑0(δ) and ▼0(δ) is now analyzed. First, the
stochastic properties of the eigenfrequencies as a function of the dispersion level δ and the number nT

of eigenmodes are studied. Figure 4.12 shows the mean value (computed using nS = 400 Monte Carlo
simulations) of the random eigenfrequencies for δ = 0.4 and δ = 0.8 for nT=1000, 1500 and 2000. Like
in Section 3.3, for fixed δ and nT, the mean values of the low random eigenfrequencies (approximately
the lowest nT/2) are observed to be smaller than the deterministic values, while the mean values of the
high random eigenfrequencies (approximately the highest nT/2) are observed to be larger. The difference
between the mean of the random eigenfrequencies and the deterministic eigenfrequencies is seen to

106



4.3. Probabilistic structural model

0 10 20 30 40 50
−1.5

−1

−0.5

0

0.5

1

1.5

Index [−]

C
oo

rd
in

at
e 

[−
]

(a) Eigenmode 4.
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(b) Eigenmode 4.

0 10 20 30 40 50
−1.5

−1

−0.5

0

0.5

1

1.5

Index [−]

C
oo

rd
in

at
e 

[−
]

(c) Eigenmode 28.
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(d) Eigenmode 28.

Figure 4.13: Ground-borne vibrations in the Maison du Mexique: entries 1 to 50 of two realizations of
the (a, b) 4th and the (c, d) 28th random eigenvector for δ = 0.8.

increase with δ. For the eigenfrequencies lower than 100 Hz, reasonable convergence is obtained for nT =
1500. In the following, all computations are performed with nT = 1500 eigenmodes.

Figure 4.13 shows the entries 1 to 50 of two realizations of the 4th (global second-order bending of the
whole building) and the 28th (local first-order plate bending) random eigenvector for δ = 0.8. With refer-
ence to equation (B.4), it is seen that, at low frequencies, where global bending and torsion modes of the
whole building are found and the eigenfrequency separation is relatively large, the global eigenmodes are
only slightly modified by perturbations of the mass and stiffness. At higher frequencies, where densely
packed clusters of local plate bending eigenmodes are found, perturbations of the mass and stiffness
significantly modify the local eigenmodes.

4.3.5 Predicted random TFs
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Figure 4.14: Ground-borne vibrations in the Maison du Mexique: statistical mean of the realizations of
the predicted random TF at F0PL for δ = 0.2 and δ = 0.8 at frequencies (a) 50 Hz and (b) 100 Hz.
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Chapter 4. Inversion of a probabilistic model for ground-borne vibrations in buildings

The predicted random TFs are obtained in two steps. First, the (still deterministic) dynamic track-tunnel-
soil interaction model is used to compute the wave field radiated by the tunnel into the soil due to
the application of a unitary vertical excitation on the rail head at the point with coordinates (x′1 =
−2.5 m, x′2 = 0, x′3 = −8.2 m). Subsequently, the model (4.4)-(4.5) is used to compute the random
building response due to this incident wave field.

Figure 4.14 shows, as a function of the number nS of Monte Carlo simulations, the statistical mean of
the realizations of the predicted random TF at F0PL for the dispersion levels δ = 0.2 and δ = 0.8 at the
frequencies 50 Hz and 100 Hz. Reasonably converged results are obtained for nS = 400, and this value
is used for all subsequent computations.
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(a) TF at BA01.
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Figure 4.15: Ground-borne vibrations in the Maison du Mexique: amplitude of the TF predicted by the
mean model, and 99%-confidence regions for the random TF for δ = 0.2 and δ = 0.8 at (a) BA01
and (b) F0PL.

Figure 4.15 shows the 99%-confidence regions (Box 2.3 in Section 2.6) for the predicted random TFs
at BA01 and F0PL for δ = 0.2 and δ = 0.8. Their width is observed to increase with δ and also with
the frequency, highlighting that the predictions become more sensitive to uncertainties as the frequency
increases. At the floor slabs of the building, where the response is governed by local plate bending modes,
the confidence regions are very wide, even for small values of δ. The sensitivity of the local eigenmodes
to uncertainties in the mass and stiffness results in a large sensitivity of the medium-frequency response
to uncertainties.

4.4 Stochastic inverse problem

The methodology proposed in Section 2.6 is now applied to invert the probabilistic model.

4.4.1 Identification of the probabilistic model

Figure 4.16 shows the distances L(1)
nF,nR(δ;D) and J (1)

nF,nR(δ;D), defined in (2.40) and (2.44), as a func-
tion of the dispersion level δ (these distances have been computed using a probabilistic for the exper-
imental noise, built as proposed in Section 1.4). The probabilistic structural model with the dispersion
level δ̂ = 0.8 is seen to be optimal for both distances.
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Figure 4.16: Ground-borne vibrations in the Maison du Mexique: distances L(1)
nF,nR(δ;D)

and J (1)
nF,nR(δ;D) as a function of δ.

4.4.2 A posteriori error estimation

Figure 4.17 shows the sign-reversed loglikelihood of, and the relative entropy for, δ̂ = 0.8 as a function
of the frequency. Figures 4.18 and 4.19 compare the 99%-confidence region for the identified predicted
random TF to the estimate of the noise-free TF at BA01 and F0PL. At the frequencies for which the
coherence function is large (Fig. 4.4), the sign-reversed loglikelihood and the relative entropy are large
whenever the estimates of the noise-free TFs do not lie within, or nearly lie within, the confidence
bounds. At frequencies between about 20 and 30 Hz, the agreement of the identified model with the
data is unsatisfactory at BA01. This discrepancy is clearly due to the aforementioned energy loss in the
computed incident wave field (Sec. 4.3.1). For this reason, it does not seem appropriate to attempt to
mitigate this discrepancy by endowing the probabilistic model with mean-model parameters. Instead, a
first possible step that could be taken is to modify the dynamic track-tunnel-soil interaction model so as
to bring the computed incident wave field into agreement with the experimental data. Another possibility
is to introduce uncertainty in the incident wave field, or, equivalently, in the vector of the generalized
forces in (4.4)-(4.5). Such adaptations are not addressed in this thesis and are left as a direction for future
work.

4.4.3 Predictive use of the identified probabilistic model

Even though the identification of the probabilistic model was not fully successful, the predictive capa-
bility of the identified model is now examined. Figure 4.20 compares the 99%-confidence region for the
random TF predicted by the identified probabilistic model to the estimate of the noise-free TF at BA03
and F201. At the frequencies for which the coherence function is large (Fig. 4.4), the estimate of the
noise-free TF is seen to lie within the confidence bounds, excepting a very small discrepancy at BA03
at about 90 Hz. It should be noted that the results for F201 are not very conclusive since the measured
response at F201 is very noisy.
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Figure 4.17: Ground-borne vibrations in the Maison du Mexique: sign-reversed loglikelihood (solid line)
and relative entropy (dashed line) of δ̂ = 0.8 as a function of the frequency.
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Figure 4.18: Ground-borne vibrations in the Maison du Mexique: amplitude of the estimated noise-free
TF (solid line) and 99%-confidence bounds for the identified random TF (grey patch) at BA01.
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Figure 4.19: Ground-borne vibrations in the Maison du Mexique: amplitude of the estimated noise-free
TF (solid line) and 99%-confidence bounds for the identified random TF (grey patch) at BA01.

110



4.5. Summary and conclusion

0 20 40 60 80 100
−240

−220

−200

−180

−160

−140

Frequency [Hz]

M
ob

ili
ty

 [d
B

]

(a) TF at BA03.
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(b) TF at F201.

Figure 4.20: Ground-borne vibrations in the Maison du Mexique: amplitude of the estimated noise-
free TF (solid line) and 99%-confidence bounds for the identified random TF (grey patch) at (a) BA03
and (b) F201.

4.5 Summary and conclusion

In this chapter, a civil and environmental engineering case history was presented, which involved the
inversion of a non-parametric probabilistic model using real experimental data. The inverse methods
based on the minimization of the distances L(1) and J (1) were found to lead to similar results in that,
in this particular example, the same dispersion level was found to be optimal in the sense of the two
distances. The application of the inversion procedure was not fully successful. In the basement, where
the magnitude of the predicted dynamical response depends strongly on the computed incident wave
field, the fit of the identified model to the experimental data was found to be unsatisfactory at certain
frequencies. On the slabs, where the dynamical response is made up of densely packed clusters of local
plate bending eigenmodes and is therefore very sensitive to uncertainties, the identified model leads
to very wide confidence regions, within which the actual TFs of the coupled track-tunnel-soil-building
system can be expected to lie.

In the case history, the soil impedance matrix was kept deterministic. The probabilistic modelling of the
impedance matrix [Cottereau, 2007] is a natural direction for future work. Furthermore, in the frame of
the CONVURT project, the dynamic track-tunnel-soil interaction model has recently been coupled to
a source model, which allows to compute the moving loads applied on the rail heads in the tunnel due
to passing trains. Moreover, the dynamic soil-building interaction model has been coupled to a vibroa-
coustic model, which allows to compute the reradiated noise in the building induced by the structural
vibration [Gupta et al., 2006]. A second direction for future work is to quantify the uncertainty in the
predictions of this model.
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5

Inversion of a probabilistic model of

heterogeneous bars

This chapter presents an example of the inversion of a parametric probabilistic model aimed at quantify-
ing aleatory uncertainty using simulated data.

5.1 Problem setting

f (t)
extxo t2t1

L= 50 m

12 m12 m

Figure 5.1: Heterogeneous bars: schematic representation.

Let us consider a collection of similar, but not perfectly identical, bars of equal length L = 50 m and
of equal and position-invariant cross-sectional area A = 1 m2 (fig. 5.1). Let all bars be constituted
of a heterogeneous, locally isotropic, linear, visco-elastic material with equal and homogeneous mass
density ρ = 2500 kg/m3 and viscosity modulus ζ = 2 × 108 Pa s. Let the field giving the Young’s
modulus as a function of the position be heterogeneous and exhibit statistical variability. Finally, let the
mean Young’s modulus field be homogeneous and equal to E = 27 × 109 Pa. The example concerns
the experimental identification of a spatial correlation length and a dispersion level characterizing the
variability in the Young’s modulus field.

In the following, we will propose a methodology that uses the dispersive characteristics of mechan-
ical waves travelling through heterogeneous specimens to infer the spatial correlation length and the
dispersion level. More specifically, to obtain an experimental data set, a subset of bars out of the en-
tire collection will be loaded by a broadband time-limited concentrated axial load t 7→ f ext(t) at the
right end point (x = 50 m), while being supported by a damper with impedance µ = ρ

√
E/ρ at

the left end point (x = 0), so as to absorb outgoing waves. The axial response will be measured at
two points t1(x = xt1 = 26 m) and t2(x = xt2 = 38 m) (fig. 5.1). For each tested specimen, the
time-dependent observed responses will be transformed to a frequency-dependent phase velocity using
Nazarian’s method (App. D). Upon building a parametric probabilistic structural model to predict the
frequency-dependent phase velocities as a function of the spatial correlation length and the dispersion
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Chapter 5. Inversion of a probabilistic model of heterogeneous bars

level to be identified, the inverse problem will be formulated as an optimization problem following the
methodology proposed in Section 2.7.

It should be noted that the present problem is elaborated with future extensions in mind. In particular, the
application of the methodology to the identification of random field models for elastic material properties
of heterogeneous soils is envisaged. Considering that it is presently difficult to adequately model the
amplitude decay with the propagation distance due to the material damping of the soil (insofar as we
can judge it, the construction of adequate models for the material damping of soils is still a largely open
problem), it seems useful to base the identification only on the dispersive characteristics of the observed
waves and not on the amplitude characteristics. Furthermore, a time-domain algorithm will be used in
the following to numerically simulate the wave propagation, which counts among its advantages the
applicability to very large computational domains, including large soil deposits (App. E).

5.2 Probabilistic structural model

A time-domain parametric probabilistic model (App. A) for the dynamical behaviour of the heteroge-
neous bars is now built and studied.

5.2.1 Deterministic modelling

This subsection first gives the deterministic equations governing the time-domain dynamical behaviour.
Subsequently, the variational formulation of these equations is presented.

Deterministic strong formulation

Let [0, T ] be the time interval of analysis, where T ∈ R
+
0 . Let the Young’s modulus field be modelled by

the strictly positive and essentially bounded function x 7→ E(x). The deterministic strong formulation of
the Boundary Value Problem (BVP) then consists in finding the position- and time-dependent response
field (x; t) 7→ u(x; t) such that:

∂

∂x

(
E
∂u

∂x

)
+ ζ

∂3u

∂x2∂t
= ρ

∂2u

∂t2
in ]0, L[×]0, T [ , (5.1)

with the boundary conditions:

E
∂u

∂x
= µ

∂u

∂t
at x = 0 for t ∈]0, T [ , (5.2)

AE
∂u

∂x
= f ext at x = L for t ∈]0, T [ , (5.3)

and the initial conditions:

u(x; 0) = 0 in ]0, L[ , (5.4)

∂u

∂t
(x; 0) = 0 in ]0, L[. (5.5)
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5.2. Probabilistic structural model

Deterministic variational formulation

Let V = {v ∈ H1(]0, L[,R)}. The deterministic variational formulation of the BVP consists in finding
the sufficiently regular (App. A) position- and time-dependent response field t 7→ u(x; t) with values
in V such that ∀v ∈ V :

k (u(t), v) + d
(
u′(t), v

)
+m

(
du′

dt
(t), v

)
= f(t; v) , a.e. t ∈ [0, T ] , (5.6)

fulfilling the initial conditions (5.4)-(5.5). The stiffness, damping and mass forms are bilinear forms
defined by:

k(v1, v2) =

∫ L

0
E
∂v1
∂x

∂v2
∂x

dx , (5.7)

d(v1, v2) =

∫ L

0
ζ
∂w1

∂x

∂w2

∂x
dx+ µv1(0)v2(0) , (5.8)

m(v1, v2) =

∫ L

0
ρv1v2dx. (5.9)

The linear form representing the external force is defined by:

f(v; t) = f ext(t)v(L). (5.10)

When t 7→ f ext(t) is square-integrable, it can be shown [Dautray and Lions, 1987, ch. 18 sec. 5] that the
variational formulation (5.4)-(5.5)-(5.6) is mathematically well-posed.

5.2.2 Probabilistic modelling

A time-domain parametric probabilistic model is now built by modelling the Young’s modulus field in
the variational formulation (5.4)-(5.5)-(5.6) by a random field.

Stochastic model for the random Young’s modulus field

We follow Soize’s principle of construction, which was outlined in Section 1.1, and model the Young’s
modulus field by the random field {❊(x;L●; δ) | x ∈]0, L[} indexed by ]0, L[ and with values in R

+
0 a.s.

such that: (
∀x ∈]0, L[ : ❊(x;L●; δ) = EN

(
●(x;L●); δ

))
a.s. , (5.11)

whereL● is the spatial correlation length of the stochastic germ and δ is the dispersion level. The stochas-
tic germ {●(x;L●) | x ∈ [0, L]} is the restriction to [0, L] of a sample-continuous, Gaussian, zero mean,
unit variance, stationary random field {●(x;L●) | x ∈ R} with values in R a.s. and with power spectral
density function k 7→ S●(k;L●) such that:

S●(k;L●) =
L●
π

∆

(
kL●
π

)
, (5.12)

where ∆(·) is the triangle function, defined in (1.77). The function N(·; δ) : R → R
+
0 is the transforma-

tion function defined in Box 1.4 of Section 1.2 and is such that, for each x ∈ [0, L], N(●(x;L●); δ) is a
gamma random variable with unit mean and standard deviation δ.
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Chapter 5. Inversion of a probabilistic model of heterogeneous bars

Parametric probabilistic model

The parametric probabilistic model then consists in finding the sufficiently regular (App. A) second-order
stochastic process {❯(t;L●, δ) | t ∈ [0, T ]} indexed by [0, T ] and with values in V such that:
(
❑
(
❯(t;L●, δ), v;L●, δ

)
+ d
(
❯

′(t;L●, δ), v
)

+m

(
d❯′

dt
(t;L●, δ), v

)
= f(t; v), a.e. t ∈ [0, T ],∀v ∈ V

)
a.s.,

(5.13)
fulfilling the initial conditions, i.e.:

❯(0;L●, δ) = 0 a.s. , ❯′(0;L●, δ) = 0 a.s. (5.14)

The random stiffness form is defined by:

❑ (v1, v2;L●, δ) =

∫ L

0
❊(x;L●, δ)

∂v1
∂x

(x)
∂v2
∂x

(x)dx a.s. (5.15)

When t 7→ f ext(t) is square-integrable and the dispersion level δ fulfils the inequality (1.46), it can be
shown (App. A) that the stochastic variational formulation (5.13)-(5.14) is mathematically well-posed.

5.2.3 Predicted random dispersion curves

The transformation of the predicted random time-dependent bar response into a random frequency-
dependent phase velocity is now presented. Let the concentrated load t 7→ f ext(t) be a Gaussian-shaped
function

f ext(t) = − exp

(
−(t− t0)

2

α2

)
. (5.16)

Let the stochastic process {❱(t;L●, δ) = ❯′(t;L●, δ) | t ∈ [0, T ]} be the induced random time-
dependent axial velocity predicted by the probabilistic model (5.13)-(5.14) (we work with the axial
velocity, rather than with the axial displacement, to avoid leakage errors of the Discrete Fourier Trans-
form (DFT) in the following). The random axial velocity at the aforedefined points t1 and t2 is sampled
in the time domain to obtain the stochastic processes

{❱(xt1 ; j∆t;L●, δ) | 1 ≤ j ≤ nT} , {❱(xt2 ; j∆t;L●, δ) | 1 ≤ j ≤ nT} , (5.17)

where {j∆t | 1 ≤ j ≤ nT} is the set of nT discrete time instants, such that 1/∆t = T/nT is the sampling
frequency. The random time-sampled axial velocities thus obtained are subsequently transformed into the
frequency domain by means of the DFT to obtain the stochastic processes

{❱(xt1 ;ωℓ;L●, δ) | 1 ≤ ℓ ≤ nF} , {❱(xt2 ;ωℓ;L●, δ) | 1 ≤ ℓ ≤ nF} , (5.18)

where {ωℓ | 1 ≤ ℓ ≤ nF} is the set of nF = nT/2 discrete circular frequencies, such that ωℓ =
2π(ℓ− 1)/T . Nazarian’s method (App. D) is then followed to obtain a stochastic process

{❈(ωℓ;L●, δ) | 1 ≤ ℓ ≤ nF} , (5.19)

which gathers, for each discrete frequency ωℓ, a random phase velocity ❈(ωℓ;L●, δ) defined by:

❈(ωℓ;L●, δ) =
ωℓ∆L

✣(ωℓ;L●, δ)
a.s. , (5.20)
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5.2. Probabilistic structural model

where ∆L = xt2 − xt1 is the receiver spacing and ✣(ωℓ;L●, δ) is the random unwrapped phase shift
between the two receivers:

✣(ωℓ;L●, δ) = tan−1

(
ℜ
(
❱(xt2 ;ωℓ;L●, δ)/❱(xt1 ;ωℓ;L●, δ)

)

ℑ
(
❱(xt2 ;ωℓ;L●, δ)/❱(xt1 ;ωℓ;L●, δ)

)
)

a.s. (5.21)

It should be noted that the wave field propagating in a heterogeneous bar can generally be expected
to be constituted of multiple forward and backward propagating waves reflected upon, and transmitted
through, the heterogeneities. Hence, the velocity obtained in (5.20) does not correspond to a single time-
harmonic wave and must therefore be considered as an apparent phase velocity reflecting contributions
of several waves.

Finally, the n-th order cylindrical PDF of the stochastic process (5.19) is denoted by:

θ(n)(·|ωℓ1 , . . . , ωℓn ;L●, δ) : R
n → R

+ , (5.22)

and is defined as the joint PDF of the n random variables {❈(ωℓ1 ;L●, δ), . . . ,❈(ωℓn ;L●, δ)}.

5.2.4 Computations with the probabilistic model

The hp-version of the Finite Element (FE) method, more specifically the spectral element method [see,
for instance, Komatitsch, 1997, Maday and Patera, 1989, Schwab, 1999], is used to discretize the space.
The Newmark time integration algorithm in its central difference version [see, for instance, Géradin and
Rixen, 1992, Hughes, 1987] is used to discretize time. The Monte Carlo Simulation (MCS) method is
applied to discretize the random dimension. The Young’s modulus random field is simulated using the
spectral representation method (Box 1.5 of Section 1.2). The computations are performed in Matlab. The
computer code was created from scratch by Ta [2006] in the frame of a master’s thesis project.

The spectral element method involves meshing the bar using 2-noded elements of equal length h. On
each element, the displacement field is approximated on a basis of (Gauss-Lobatto-based) polynomial
shape functions of degree p. Convergence is achieved by diminishing h and increasing p. We apply the
spectral element method in order to avoid numerical dispersion, which is the effect whereby the dis-
cretized model fails to propagate the mechanical waves at the correct speed, resulting in phase leads or
lags in the FE approximation. The numerical dispersion is closely related to the so-called pollution of
FE solutions, which refers to the effect whereby, upon keeping the number of elements per wavelength
constant, the space discretization error increases rapidly with the wavenumber. Several studies in the lit-
erature [Ainsworth, 2004, Ihlenburg and Babuška, 1995, 1997, Oden et al., 2005, Thompson and Pinsky,
1994] showed that, by increasing p, higher-order elements control the pollution and dispersion error well.

5.2.5 Numerical illustration

The probabilistic model (5.13)-(5.14) is now used to investigate the dependence of the stochastic prop-
erties of the random phase velocities on the parameters L● and δ of the random Young’s modulus field.
The parameters of the force (5.16) are chosen equal to t0 = 0.05 s and α = 6 × 10−4 s. The parameters
of the time-domain sampling in (5.17) are chosen equal to ∆t = 1/4096 s and nT = 2048. Hence, the
frequency-domain resolution is 2.001 Hz and the Nyquist frequency is 2048 Hz. The parameters of the
FE discretization are set to h = 0.5 m and p = 10.

Figure 5.2 shows the time history and the frequency content of the force. The signal energy is seen to be
negligible at frequencies above the Nyquist frequency. Most of the signal energy is distributed over the
frequency band between 0 and 1500 Hz.
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Figure 5.2: Heterogeneous bars: (a) time history and (b) frequency content of the external loading.
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(a) Axial velocity.
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(b) Phase velocity.

Figure 5.3: Heterogeneous bars: (a) axial velocity at the time instant t = 0.061 s and (b) phase velocity
for a homogeneous bar with Young’s modulus E.

Let us first consider a homogeneous bar with Young’s modulus E. Figure 5.3(a) shows the axial velocity
then obtained as a function of the position at the time instant t = 0.061 s. The wave field is seen to
comprise a single pulse, which propagates from the left end point to the right end point. Figure 5.3(b)
shows the phase velocity as a function of the frequency, obtained by transforming the axial velocities
at the locations t1 and t2 following the methodology outlined in Section 5.2.3. The phase velocity is
observed to be independent of the frequency. As expected, it is equal to the compression wave veloc-
ity cP =

√
E/ρ = 3286 m/s.

Let us subsequently consider random heterogeneous bars. Figure 5.4 shows the power spectral density
function k 7→ S●(k;L●) of the random field {●(x;L●) | x ∈ R} for L● = 1 m and L● = 5 m.
ForL● = 1 m, the power of {●(x;L●) | x ∈ R} is seen to be distributed over harmonics with wavelength
larger than 2 m (with wavenumber smaller than π/L●). In contrast, for L● = 5 m, the power is observed
to be distributed over a narrower range of harmonics with wavelength, this time, larger than 10 m.

Figure 5.5 shows several sample paths of the random Young’s modulus field {❊(x;L●; δ) | x ∈]0, L[}
for L● = 1 m and δ = 0.1, L● = 1 m and δ = 0.2 and L● = 5 m and δ = 0.2. The magnitude of the
fluctuations is seen to increase with δ. Furthermore, the sample paths for L● = 1 m are observed to have
a higher wavenumber content than those for L● = 5 m in that they oscillate more rapidly as a function
of the position.
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(a) L● = 1 m.
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(b) L● = 5 m.

Figure 5.4: Heterogeneous bars: power spectral density function k 7→ S●(k;L●) for (a) L● = 1 m
and (b) L● = 5 m.
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(a) L● = 1 m and δ = 0.1.
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(b) L● = 1 m and δ = 0.2.
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(c) L● = 5 m and δ = 0.2.

Figure 5.5: Heterogeneous bars: five sample paths of the random Young’s modulus
field {❊(x;L●; δ) | x ∈]0, L[} (thick solid line and thin grey lines) for (a) L● = 1 m and δ = 0.1,
(b) L● = 1 m and δ = 0.2 and (c) L● = 5 m and δ = 0.2.
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(a) L● = 1 m and δ = 0.1.
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(b) L● = 1 m and δ = 0.2.
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(c) L● = 5 m and δ = 0.2.

Figure 5.6: Heterogeneous bars: five realizations of the random axial velocity at the time instant t =
0.061 s (thick solid line and thin grey lines) for (a) L● = 1 m and δ = 0.1, (b) L● = 1 m and δ = 0.2
and (c) L● = 5 m and δ = 0.2.
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(a) L● = 1 m and δ = 0.1.
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(b) L● = 1 m and δ = 0.2.
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(c) L● = 5 m and δ = 0.2.

Figure 5.7: Heterogeneous bars: five sample paths of the random phase velocity {❈(ωℓ;L●, δ) | 1 ≤ ℓ ≤
nF} (thick solid line and thin grey lines) for (a) L● = 1 m and δ = 0.1, (b) L● = 1 m and δ = 0.2
and (c) L● = 5 m and δ = 0.2.
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Chapter 5. Inversion of a probabilistic model of heterogeneous bars

Figure 5.6 shows several realizations of the random axial velocity as a function of the position at t =
0.061 s for L● = 1 m and δ = 0.1, L● = 1 m and δ = 0.2 and L● = 5 m and δ = 0.2. As opposed
to the result shown in figure 5.3 for a homogeneous bar, the main pulse is, this time, accompanied by
several minor waves reflected upon, and transmitted through, the heterogeneities. The magnitude of the
minor waves is seen to increase with δ. Furthermore, the minor waves are observed to have a higher
wavenumber content for L● = 1 m than for L● = 5 m.

Figure 5.7 shows several sample paths of the random phase velocity {❈(ωℓ;L●, δ) | 1 ≤ ℓ ≤ nF}
for L● = 1 m and δ = 0.1, L● = 1 m and δ = 0.2 and L● = 5 m and δ = 0.2. As opposed to
the frequency-independent phase velocity obtained for the homogeneous bar, the material heterogeneity
is seen to induce dispersion phenomena. At a fixed frequency, the magnitude of the fluctuations of the
random phase velocity is observed to increase with δ. As a function of the frequency, the behaviour of
the sample paths of the random phase velocity is observed to be governed essentially by L●. For L● =
1 m, the phase velocity oscillates heavily as a function of the frequency in the frequency range below
about 750 Hz and is quite straight at higher frequencies. In contrast, for L● = 5 m, the oscillations only
occur in the frequency range below about below about 200 Hz. These results highlight that the behaviour
of the phase velocity depends on the relative scale of, on the one hand, the wavelengths of the harmonics
that make up the propagating wave field and, on the other hand, the wavelengths of the harmonics that
make up the Young’s modulus field. When the former are of the order of the latter, the propagating
waves interact strongly with the heterogeneities (back- and forward scattering) and the consequent phase
velocity oscillates heavily as a function of the frequency. In contrast, when the former are smaller than
the latter, the propagating waves behave, locally, as if they were propagating through a homogeneous
medium (forward scattering). The phase velocity is then approximately equal to the average of the local
compression wave velocity between the two receivers.

5.3 Simulated data

A data set is synthetically generated using the probabilistic model (5.13)-(5.14). The methodology of
Section 5.2.3 is followed, using the computational parameters of Section 5.2.5, to generate nK sample
paths of the random phase velocity {❈(ωℓ;L●, δ) | 1 ≤ ℓ ≤ nF} for the spatial correlation lengthLtrue

●
=

2 m and the dispersion level δtrue = 0.2. These sample paths are gathered in the generic data set

D0 = {c0k(ωℓ) | 1 ≤ ℓ ≤ nF , 1 ≤ k ≤ nK} , (5.23)

where c0k(ωℓ) is the phase velocity for the k-th sample path at the discrete frequency ωℓ.

5.4 Stochastic inverse problem

Having set up a probabilistic model and a data set, our objective in this section is to invert the probabilistic
model so as to identify a spatial correlation length and a dispersion level characterizing the variability in
the data-generating random Young’s modulus field.
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5.4. Stochastic inverse problem

5.4.1 Proposed inverse methods

Following Section 2.3, we define two distances L(1) and L(2), which respectively account for the first-
and the second-order cylindrical PDF of the predicted random phase velocity:

L(1)
nF,nK

(
L●, δ;D

0
)

= − 1

nF

nF∑

ℓ=1

1

nK

nK∑

k=1

log θ(1)
(
c0k(ωℓ)

∣∣ωℓ;L●, δ
)

, (5.24)

L(2)
nF,nK

(
L●, δ;D

0
)

= − 2

nF(nF − 1)

∑

(ωℓ1
,ωℓ2

)
ωℓ1

6=ωℓ2

1

nK

nK∑

k=1

log θ(2)
(
c0k(ωℓ1), c

0
k(ωℓ2)

∣∣ωℓ1 , ωℓ2 ;L●, δ
)
. (5.25)

With the help of L(1) and L(2), the unknown parameters can be estimated from the data by:
(
L̂

(1)
●
, δ̂(1)

)
= arg min

L●,δ
L(1)

nF,nK

(
L●, δ;D

0
)

, (5.26)
(
L̂

(2)
●
, δ̂(2)

)
= arg min

L●,δ
L(2)

nF,nK

(
L●, δ;D

0
)
. (5.27)

With reference to Section 2.1, it is clear that the probabilistic model under study is correctly specified.
Indeed, upon setting its parameters equal to the “true” spatial correlation length Ltrue

●
and dispersion

level δtrue, the data-generating probability distribution is perfectly reproduced. With reference to sec-
tions 2.4 and 2.7, both inverse methods (5.26) and (5.27) are expected to be consistent, such that the
parameter estimates are expected to converge to Ltrue

●
and δtrue as the number nK of tested specimens is

increased. Finally, with reference to Section 2.7, the inverse method (5.26) is expected to be less efficient
than (5.27), such that a larger number nK of tested specimens is expected to be required by the former to
achieve estimates of a given accuracy. Indeed, as opposed to the distance L(1), the distance L(2) is sensi-
tive to the frequency-dependence of the phase velocity, which was shown in Section 5.2.5 to bear much
information on the spatial correlation length, and the inverse method (5.27) is consequently expected to
have a higher statistical precision.

5.4.2 Numerical illustration

Figure 5.8 shows the distances L(1)
nF,nK

(
L●, δ;D

0
)

and L(2)
nF,nK

(
L●, δ;D

0
)

as a function of L● and δ
for data sets comprising nK = 5, nK = 20 and nK = 40 samples (computed using the computational
parameters of Section 5.2.5 and using nS = 250 Monte Carlo simulations for the numerical estimation
of the cylindrical PDFs of the random phase velocity). For nK = 40, the “true” parameters Ltrue

●
= 2 m

and δtrue = 0.2 are seen to be optimal in the sense of both distances, highlighting that both inverse
methods allow recovering the “true” values from the data by increasing the number nK of tested speci-
mens (consistency). For nK = 5 and nK = 20, the distance L(1)

nF,nK

(
L●, δ;D

0
)

has multiple local minima

that do not coincide with Ltrue
●

and δtrue, whereas the distance L(2)
nF,nK

(
L●, δ;D

0
)

shows a global mini-
mum at Ltrue

●
and δtrue, highlighting that the inverse method (5.27) requires less samples than (5.26) to

recover the “true” values from the data (greater efficiency of (5.27) compared to (5.26)).

5.4.3 Spatial correlation length of the random Young’s modulus field

Considering that our aim is to identify a spatial correlation length and a dispersion level characterizing
the variability in the data-generating random Young’s modulus field, the estimates (5.26) and (5.27) are
not entirely satisfactory results of the identifcation procedure since L● is the spatial correlation length
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Figure 5.8: Heterogeneous bars: contours of the distances (a, c, e) L(1)
nF,nK

(
L●, δ;D

0
)

and (b, d,

f) L(2)
nF,nK

(
L●, δ;D

0
)

as a function of L● and δ for data sets comprising nK = 5, nK = 20 and nK = 40
samples.
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of the stochastic germ and not of the random Young’s modulus field. To circumvent this difficulty, we
introduce an alternative stationary random Young’s modulus field {❊(x;L●, δ) | x ∈ R}, indexed, this
time, by R, such that:

(
∀x ∈ R : ❊(x;L●; δ) = EN

(
●(x;L●); δ

))
a.s. , (5.28)

where the random field {●(x;L●) | x ∈ R} and the transformation function N(·; δ) : R → R
+
0 were

defined in Section 5.2.2. The spatial correlation length L❊(L●, δ) characterizing the random Young’s
modulus field is then defined by:

L❊(L●, δ) =

∫
R

+
0
|R❊(η;L●, δ)| dη
R❊(0;L●, δ)

, (5.29)

where the autocorrelation function η 7→ R❊(η;L●, δ) is such that:

R❊(η;L●, δ) = E
{(
EN

(
●(x;L●)

)
− E

)(
EN

(
●(x+ η;L●); δ

)
− E

)}
, (5.30)

in which E {·} denotes the mathematical expectation. For n = 1 or n = 2, the values L❊(L̂
(n)
●
, δ̂(n)) and

δ̂(n) are taken as the result of the identification procedure. For the above-given numerical illustration,
a Monte Carlo simulation with nS = 10000 samples yields L❊(L̂

(n)
●
, δ̂(n)) = 2.18 m for L̂(n)

●
= 2 m

and δ̂(n) = 0.2.

5.5 Summary and conclusion

In this chapter, a methodology was proposed for the experimental identification of spatial correlation
lengths and dispersion levels characterizing the variability in heterogeneous fields of material properties
of structures using the dispersive characteristics of mechanical waves travelling through specimens. It
was successfully applied on an example featuring a correctly specified probabilistic structural model and
simulated data.

The main direction for future work is to apply the proposed methodology to examples featuring mis-
specified probabilistic structural models. A data set can, for instance, be synthetically generated by the
means of the probabilistic model (5.13)-(5.14) using, however, a different power spectral density function
than the one proposed in (5.12), or, a different transformation function than the one defined in Box 1.4.
It seems interesting to investigate under which conditions accurate estimates of the spatial correlation
length and the dispersion level of the data-generating random field are obtained in the presence of model
misspecification. Once the effect of model misspecification is understood well, it can be envisaged to
apply the methodology to real experimental data (for which, as discussed in Section 2.2, a probabilistic
structural model with minimal parameterization is likely to be misspecified).

A second direction for future work is to further investigate the dependence of the dispersive charac-
teristics of the propagating wave field on the features of the material heterogeneity. A way to improve
understanding of their dependence on the wavenumber content of the field of elastic moduli may be to
apply Floquet theory to compute the dispersion curves for periodic heterogeneous bars [as in Ainsworth,
2004, Ihlenburg and Babuška, 1995, 1997, Thompson and Pinsky, 1994].

A third direction for future work is to study the efficiency of the proposed inverse method from the
theoretical point of view (for correctly specified probabilistic models). It seems interesting to derive ex-
pressions for the asymptotic covariances of the estimators associated to the proposed estimation rules [as
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in Lindsay, 1998]. Such expressions are expected to involve the Fisher information matrix, defined in
Box 2.1 of Section 2.1, of the cylindrical PDFs that are taken into account.

In the example, a one-dimensional structure was considered and the heterogeneous material was assumed
to be locally isotropic. A natural direction for future work consists in relaxing these assumptions to extend
the methodology to three-dimensional structures and heterogeneous anisotropic materials.
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future research

This chapter presents general conclusions (Sec. 1) and directions for future research (Sec. 2).

1 General conclusions

This section summarizes the presented work and evaluates the main interests and drawbacks of the items
that were introduced or used in this dissertation.

Probabilistic structural models with minimal parameterization

Throughout the dissertation, we worked with probabilistic structural models with minimal parameter-
ization. Their first interest is that, by construction, they fulfil the essential mathematical and physical
properties of probabilistic structural models. Their second advantage is that, since they usually exhibit
only a small set of parameters, their experimental identification can generally be formulated as a mathe-
matically well-posed inverse problem that is numerically solvable with a reasonable computational effort.
Their main drawback is that they are expected to be misspecified in practice (Secs. 2.2 and 2.7).

Measured frequency-domain TFs as experimental data

We used measured frequency-domain Transfer Functions (TFs) as experimental data. The main advan-
tages are the possibility to select data in a specific frequency range of interest and the relatively easy
characterization of the distortion of the data due to experimental noise (Sec. 1.4 and App. C). How-
ever, the use of experimental data of this kind may be problematic when the dynamical behaviour of the
structure(s) under study is non-linear.

Formulation of stochastic inverse problems as minimization problems

We showed that the classical methods of estimation from the theory of mathematical statistics are not
well-adapted to the identification of probabilistic structural models with minimal parameterization from
measured frequency-domain TFs (Sec. 2.2). In particular, we showed that computational difficulties, and
conceptual problems due to model misspecification, may hinder the application of the classical methods.
These difficulties motivated us to formulate the inversion of probabilistic models alternatively as the
minimization, with respect to the unknown parameters to be identified, of an objective function that
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measures the distance between the experimental data and the probabilistic model. Two principles of
construction for the definition of such distances were proposed, based either upon the loglikelihood
function, or the relative entropy (Sec. 2.3). We discussed how the use of distances accounting only for
low-order cylindrical Probability Density Functions (PDFs) allows to circumvent the aforementioned
computational difficulties and conceptual problems due to model misspecification (Secs. 2.6 and 2.7).

As already mentioned in Section 2.3.3, the proposed inverse methods are not new, but apply existing
concepts from the general theory of mathematical statistics. Their originality lies in the application of
these general concepts to particular problems in computational mechanics.

Quantification of either epistemic, or aleatory uncertainty

We distinguished between stochastic inverse problems aimed at quantifying either epistemic, or aleatory
uncertainty. First, the identification of probabilistic structural models aimed at quantifying the epistemic
uncertainty in the predicted dynamical behaviour of a single structure under study was focused upon:

1. Concentrating on the case where the intended use of the probabilistic model is to predict frequency-
dependent confidence regions, a fairly comprehensive inverse methodology was proposed, involv-
ing the minimization of a distance taking only first-order cylindrical PDFs into account (Sec. 2.6).

2. This inverse methodology was demonstrated on the inversion of non-parametric probabilistic mod-
els using simulated and real experimental data (Chs. 3 and 4).

Subsequently, the identification of probabilistic structural models aimed at quantifying the variability in
the dynamical behaviour of a collection of structures was considered. We focused in particular on the
identification of spatial correlation lengths and dispersion levels characterizing the variability in hetero-
geneous fields of elastic material properties of structures:

1. Parametric probabilistic models with minimal parameterization for the time- and frequency-domain
dynamical behaviour of structures were set up (Sec. 1.1 and App. A), and their main mathematical
properties were demonstrated (App. A).

2. An inverse methodology was proposed for the inversion of probabilistic models of this kind us-
ing the dispersive characteristics of mechanical waves travelling through sample structures, i.e.
using only the phases of the measured frequency-domain TFs, and not the amplitudes (Sec. 2.7
and Ch. 5). The main benefit of taking only the phases into account is that the material damping of
the structures need not necessarily be modelled.

3. The inverse methodology was demonstrated on an example featuring a correctly specified para-
metric probabilistic model and simulated data (Ch. 5).

4. Real experimental data were gathered (App. E).
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2 Recommendations for future research

Several directions for future research are now suggested.

Acquisition of practical engineering experience

The inverse methodology proposed for the identification of probabilistic models aimed at quantifying
the epistemic uncertainty in the predicted dynamical behaviour of structures was developed to a fairly
complete set of theoretical and numerical tools. In our judgement, its further refinement would benefit
mostly from the acquisition of practical experience in its application to real engineering case histories.
Once a large amount of practical experience is collated, it seems especially challenging to define how
stochastic inverse methods of this kind can be incorporated in industrial design and decision processes.

Inversion of the spatial correlation and dispersion of fields of elastic soil properties

The inverse methodology proposed for the identification of spatial correlation lengths and dispersion
levels using the dispersive characteristics of mechanical waves seems to us very promising. Within the
framework of the PhD. thesis of Quang Anh Ta (2006-...) at Ecole Centrale Paris in France, this methodol-
ogy is currently being researched and further developed, particularized to the identification of the spatial
correlation and dispersion of fields of elastic soil properties. As mentioned in Chapter 5 and Appendix E,
a very important aspect to be further studied is the effect of model misspecification. The application of
the methodology to the real experimental data presented in Appendix E is envisaged.

Formulation of alternative objective functions

We mention here the possibility to define alternative objective functions by replacing the logarithm in the
distances based upon the loglikelihood function by an alernative function, or, analogously, by substituting
a different functional aimed at measuring the separation between PDFs [see, for instance, Csiszár, 1967]
for the relative entropy.

Future work may also consider the definition of objective functions using, instead of frequency-domain
experimental data, time-domain data, thus opening the way to consider structures whose dynamical be-
haviour is non-linear.

Model selection in stochastic inverse problems

An active topic of discussion in the computational mechanics community is the choice between either
the non-parametric, or the parametric approach to build probabilistic models of structures. An interesting
trail to follow may be to cast this choice as a model selection problem [see, for instance, Burnham
and Anderson, 2003]. In practice, both a non-parametric and a parametric probabilistic model for the
structure(s) under study can be set up, and that probabilistic model can subsequently be chosen, which
allows to minimize the distance (in the sense of a suitable objective function) to the experimental data. In
the line of the numerical methods proposed in Section 2.5, it may be worth noting that model selection
problems of this kind can be solved numerically using the Metropolis-Hastings algorithm in its reversible
jump version [see, for instance, Green, 1995].
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Regularization of stochastic inverse problems

The inverse methods proposed in this dissertation are not limited in application to the identification of
probabilistic models with minimal parameterization. Indeed, they can equally be applied to cases in
which the probabilistic model depends on a large number of parameters, for instance the coefficients
of a polynomial chaos expansion [as in Desceliers et al., 2006]. However, an important aspect to be
further studied is that the stochastic inverse problems then obtained may be mathematically ill-posed.
The uniqueness property may in particular be problematic, in that a large subspace of the parameter
space may solve the optimization problem. An interesting direction for future research is therefore the
regularization of stochastic inverse problems. A first possibility is to augment the objective function to
be minimized with Tikhonov regularization terms [Tikhonov and Arsenin, 1977]. A second possibility is
to include a priori information on the sought parameters using the Bayesian paradigm [Tarantola, 2005].

Further development of efficient parallel numerical solvers

Although this aspect has perhaps not yet been stressed sufficiently, it is clear that the inverse methods
proposed in this dissertation require substantial computational efforts. Considering the rapidly increasing
availability of (massively-)parallel computing platforms, an important direction for future work is there-
fore the further development of efficient procedures for solving probabilistic direct problems, as well as
optimization problems, on multiprocessor machines.
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A

Construction of time-domain parametric

probabilistic models

In Chapter 1, the construction of non-parametric and parametric probabilistic models with minimal pa-
rameterization for the frequency-domain dynamical behaviour of structures was described. Our goal in
this appendix is to present the construction of parametric probabilistic models with minimal parameteri-
zation for the time-domain dynamical behaviour of structures.

In the following, we first give the deterministic equations governing the time-domain dynamical be-
haviour of structures (Sec. A.1). Subsequently, we describe the construction of time-domain parametric
probabilistic structural models with minimal parameterization (Sec. A.2). Finally, the main mathematical
properties of the probabilistic model thus obtained are demonstrated (Secs. A.3-A.7).

A.1 Deterministic structural model

This section first gives the deterministic equations governing the time-domain dynamical behaviour of
structures. Subsequently, the variational formulation of these equations is presented.

Deterministic strong formulation

Let us consider the model problem outlined in Section 1.1. Let [0, T ] be the time interval of analysis,
where T ∈ R

+
0 . Let the mass density be modelled by the deterministic field x 7→ ρ(x) (see foot-

note 3). Let the elasticity tensor and the viscosity tensor of the structure be modelled by the deterministic
fields x 7→ Ce(x) and x 7→ Cv(x) belonging to the function space T+

4 (Ω) (see footnote 4).

Let the applied external body and surface force fields be modelled by the respective position- and time-
dependent functions (x; t) 7→ f v(x; t) and (x; t) 7→ f s(x; t). Let x 7→ u0(x) and x 7→ u1(x) denote
the prescribed initial displacement and velocity field.

The deterministic strong formulation of the BVP then consists in finding the position- and time-dependent
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response field (x; t) 7→ u(x; t) such that:

Divxσ(u) + f v = ρ
∂2u

∂t2
in Ω×]0, T [ , (A.1)

ǫ(u) =
1

2

(
Dxu + DxuT

)
in Ω×]0, T [ , (A.2)

σ(u) = Ce (ǫ(u)) + Cv
(
∂ǫ(u)

∂t

)
in Ω×]0, T [ , (A.3)

with the boundary conditions:

u = 0 on Γu×]0, T [ , (A.4)

σ(u)(n) = f s on Γσ×]0, T [ , (A.5)

and the initial conditions:

u(x; 0) = u0(x) in Ω , (A.6)

∂u

∂t
(x; 0) = u1(x) in Ω , (A.7)

in which ǫ(u) and σ(u) denote the linearized strain and stress tensor.

Deterministic functional spaces

Let us introduce the following function spaces of position-dependent response fields:

H0 =
{

v ∈
(
L2(Ω,R)

)3 |v = 0 on Γu

}
, (A.8)

V0 =
{

v ∈
(
H1(Ω,R)

)3 |v = 0 on Γu

}
. (A.9)

They are Hilbert spaces for the following respective norms:

||v||2H =

∫

Ω
(v,v) dΩ , ||v||2V =

∫

Ω
(v,v) dΩ +

∫

Ω
tr (DxvDxv) dΩ. (A.10)

Deterministic variational formulation

We proceed to elaborate the weak formulation of the BVP. First, we introduce the admissible function
spaceW (]0, T [, V0) of the problem comprising the sufficiently regular18 deterministic position- and time-
dependent response fields of the structure. The deterministic variational formulation of the BVP consists
in finding the position- and time-dependent response field

u ∈W (]0, T [, V0) , (A.12)

18The admissible function space is chosen [Dautray and Lions, 1987, ch. 18 sec. 5] equal to the space

W (]0, T [, V0) =


t 7→ v(t)

˛̨
˛ v ∈ L2(]0, T [, V0) , v′ =

dv

dt
∈ L2(]0, T [, V0) ,

dv′

dt
∈ L2(]0, T [, V ′

0 )

ff
. (A.11)
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such that ∀v ∈ V0:

k (u(t),v) + d
(
u′(t),v

)
+m

(
du′

dt
(t),v

)
= f(t;v) , a.e. t ∈ [0, T ] , (A.13)

and the initial conditions (A.6)-(A.7) are fulfilled. The stiffness, damping and mass forms19 are bilinear
forms defined by:

k (v1,v2) =

∫

Ω
tr
(
Ce (ǫ(v1)) ǫ(v2)

)
dΩ , (A.14)

d (v1,v2) =

∫

Ω
tr
(
Cv (ǫ(v1)) ǫ(v2)

)
dΩ , (A.15)

m (v1,v2) =

∫

Ω
ρ (v1,v2) dΩ. (A.16)

The form representing the external loading is a linear form defined by:

f(t;v) =

∫

Ω
(f v(x; t),v(x)) dΩ +

∫

Γσ

(f s(x; t),v(x)) dS. (A.17)

For sufficiently regular20 functions f v, f s, u0 and u1, it can be shown [Dautray and Lions, 1987, ch. 18
sec. 5] that the variational formulation (A.6)-(A.7)-(A.13) is mathematically well-posed and, furhermore,
that the displacement field u and the velocity field u′ are continuous functions of the time:

u ∈ C0([0, T ], V0) , u′ ∈ C0([0, T ],H0). (A.19)

For later reference, let γP denote the mapping that, for given data {Cv, ρ,fv,f s,u
0,u1}, maps the

tensor field x 7→ Ce(x) onto the unique corresponding weak solution u of (A.6)-(A.7)-(A.13):

γP : T+
4 (Ω) →W (]0, T [, V0) : Ce 7→ γP (Ce) = u. (A.20)

A.2 Parametric probabilistic model

We now present the construction of a time-domain parametric probabilistic model with minimal param-
eterization by modelling the elasticity tensor field in the variational formulation (A.6)-(A.7)-(A.13) by
the random tensor field {❈e(x;p) | x ∈ Ω} defined on the probability measure space (A,F , P ), which
was introduced in Section 1.1.

The parametric probabilistic model then consists in finding the random response field ❯(p) defined
on (A,F , P ) with values in W (]0, T [, V0) a.s. such that21:
(
❑
(
❯(t;p),v;p

)
+ d
(
❯

′(t;p),v
)

+m

(
d❯′

dt
(t;p),v

)
= f(t;v) , a.e. t ∈ [0, T ] , ∀v ∈ V0

)
a.s., (A.21)

19The stiffness and damping forms are symmetric, positive definite and continuous on V0 × V0, whereas the mass form is
symmetric, positive definite and continuous on H0 × H0.

20The position- and time-dependent force fields f v and f s and the position-dependent initial displacement and velocity
fields u0 and u1 are taken [Dautray and Lions, 1987, ch. 18 sec. 5] in the following functional spaces:

f v ∈ L2
“
]0, T [,

`
L2(Ω, R)

´3”
, f s ∈ L2

“
]0, T [,

`
L2(Γσ, R)

´3”
, u

0 ∈ V0 , u
1 ∈ H0. (A.18)
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and the initial conditions are fulfilled:

❯(0;p) = u0 a.s. , ❯′(0;p) = u1 a.s. (A.22)

The random stiffness form is defined by:

❑ (v1,v2;p) =

∫

Ω
tr
(
❈e(p) (ǫ(v1)) ǫ(v2)

)
dΩ a.s. (A.23)

It can be shown (see Section A.4) that there exists a unique random response field ❯(p) with values in
W (]0, T [, V0) a.s., which solves (A.21)-(A.22).

In view of the property (A.19), the realizations of ❯(p) and ❯′(p) are a.s. continuous functions of the
time, which allows [see, for instance, Krée and Soize, 1986, ch. 10] to collect the position-dependent
random displacement and velocity fields obtained at all the time instants in [0, T ] in the stochastic pro-
cesses

{❯(t;p) | t ∈ [0, T ]} , {❯′(t;p) | t ∈ [0, T ]} , (A.24)

defined on (A,F , P ), indexed by [0, T ] and with values in V0 and H0 a.s. If the dispersion parame-
ter δ (included in the parameter set p) of the random tensor field fulfils the inequality (1.46), it can be
shown (Sec. A.7) that:

∀t ∈ [0, T ] : E
{
||❯(t;p)||2V

}
< +∞ , E

{∣∣∣∣❯′(t;p)
∣∣∣∣2

H

}
< +∞. (A.25)

The stochastic processes (A.24) then are of the second order. This mathematical property ensures that
the theoretical properties and computational tools for second-order random variables are applicable.

For later reference, we note that the equations (A.21)-(A.22) propagate the uncertainty introduced in the
elasticity tensor field through the deterministic model to the dynamical response field. This consider-
ation is highlighted by writing the equations (A.21)-(A.22) in the following equivalent form (see also
footnote 14):

❯(p) = γP
(
❈e(p)

)
a.s. , (A.26)

where the mapping γP was defined in (A.20).

A.3 Definitions and notations for the proofs

The remaining sections of this appendix demonstrate the existence, uniqueness and square-integrability
of the random solution of the time-domain parametric probabilistic model (A.21)-(A.22). Our objective
in the present section is to introduce some definitions and notations for later use. We note that, in the
remainder of this appendix, we make use of the theory of functional analysis and of the theory of mea-
sure and integration. For comprehensive accounts of these theories, we refer the reader, for instance,
to [Billingsley, 1995, Brezis, 1999, Da Prato and Zabczyk, 1992, Dautray and Lions, 1987, Dudley,
2002, Krée and Soize, 1986, Ledoux and Talagrand, 1991, Reed and Simon, 1980, Royden, 1988].

21Since the equations (A.21)-(A.22) are written in the almost sure sense with respect to the random coordinate, the solu-
tion ❯(p) is such that, for almost all a ∈ A, the realization ❯(a; p) solves the deterministic variational formulation (A.6)-
(A.7)-(A.13) wherein the elasticity tensor field is chosen equal to the sample path ❈e(a; p) of the random elasticity tensor field.
In order to ensure the well-posedness of that deterministic variational formulation, we apply the theory of the random variables
in functional spaces (see box 3.1) and require the random response field ❯(p) to have values in W (]0, T [, V0) a.s.

132



A.4. Proof: existence and uniqueness of the random solution

Let us now introduce several functional spaces, norms and distances. First, the space C0(Ω,R) of contin-
uous functions from Ω into R is introduced (we recall from Section 1.1 that Ω = Ω ∪ ∂Ω is the closure
of the open domain Ω occupied by the structure at static equilibrium), endowed with the norm

||v||C0(R) = sup
x∈Ω

||v(x)|| . (A.27)

Then, the space T+
4 (Ω) of admissible fourth-rank tensor fields is equipped with the following dis-

tance (since this space is not a vector space, we cannot introduce a norm):

dT (C1,C2) = sup
k,ℓ

(
ess. sup

x∈Ω

∣∣∣[Ĉ1(x) − Ĉ2(x)]kℓ

∣∣∣
)

, (A.28)

where the notation ·̂ refers to the second-rank tensor representation for fourth-rank tensors, which was
defined in Section 1.1.

Subsequently, the spaces C0([0, T ],H0) and C0([0, T ], V0) of continuous functions from [0, T ] into H0

and V0 are endowed, respectively, with the following norms:

||v||C0(H0) = sup
t∈[0,T ]

||v(t)||H , ||v||C0(V0) = sup
t∈[0,T ]

||v(t)||V . (A.29)

Finally, the Hilbert space L2(]0, T [, V0) of square-integrable functions from ]0, T [ into V0 is introduced
and endowed with the norm

||v||2L2(V0) =

∫ T

0
||v(t)||2V dt. (A.30)

Let S = {C0(Ω,R), T+
4 (Ω), C0([0, T ],H0), C0([0, T ], V0), L

2(]0, T [, V0),H0, V0}. For any pair
X,Y ∈ S of function spaces, any mapping from X into Y will simply be called continuous if it is
continuous with respect to the topologies induced by the above-chosen norms. Moreover, each function
space X ∈ S is equipped with a Borel σ-algebra B(X) generated by the open sets induced by the
above-chosen norm on X . Any random variable defined on (A,F , P ) with values in X a.s. will simply
be called Borel measurable if it is measurable from (A,F) into (X,B(X)).

A.4 Proof: existence and uniqueness of the random solution

This section demonstrates the existence and the uniqueness of the solution ❯(p) of the time-domain
parametric probabilistic model (A.21)-(A.22). In this section, unlike elsewhere in this appendix, the
distinction is made between random variables and their a.s. equivalence class.

Let us first show the existence of a solution. In particular, let us show that, for a given random elasticity
tensor field {❈e(x;p) | x ∈ Ω}, at least one random variable ❯0(p) defined on (A,F , P ) with values
in W (]0, T [, V0) a.s. can be constructed, which solves the equations (A.21)-(A.22).

Let ❈e(p) denote the random variable defined on (A,F , P ) with values in the function space T+
4 (Ω) a.s.

defined by the sample paths of {❈e(x;p) | x ∈ Ω} (see also box 1.3). Let ❈e
0(p) be a random variable

defined on (A,F , P ) which is a.s. equal to ❈e(p) and whose image is entirely included in T+
4 (Ω) (and

not only “almost surely”). Upon composing the mapping

❈e
0(p) : A → T+

4 (Ω) : a 7→ ❈e
0(a;p) (A.31)
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with the mapping γP, which was defined in (A.20), we construct a random response field

❯0(p) : A →W (]0, T [, V0) : a 7→ ❯0(a;p) = γP
(
❈e

0(a;p)
)
. (A.32)

Since ❈e
0(p) is a.s. equal to ❈e(p), we have:

P
({
a ∈ A : ❈e

0(a;p) = ❈e(a;p)
})

= 1. (A.33)

Since the deterministic variational formulation is mathematically well-posed, the mapping γP is many-
to-one such that:

P
({
a ∈ A : ❯e

0(a;p) = γP
(
❈e(a;p)

)})
= 1. (A.34)

As a conclusion, the constructed random response field ❯e
0(a;p) solves equation (A.26), or, equivalently,

equations (A.21)-(A.22) (existence).

Since the equations (A.21)-(A.22) are written in the “almost sure” sense, they are not solved by a unique
random variable. Let us now show that, for a given random elasticity tensor field {❈e(x;p) | x ∈ Ω},
the equations (A.21)-(A.22) are solved by a unique a.s. equivalence class ❯(p) of random variables.

Let ❯1(p) and ❯2(p) be two random variables defined on (A,F , P ) with values in W (]0, T [, V0) a.s.,
which solve (A.21)-(A.22) and let F1, F2 ∈ F be the following events:

F1 =
{
a ∈ A : ❯1(a;p) 6= γP

(
❈e(a;p)

)}
, F2 =

{
a ∈ A : ❯2(a;p) 6= γP

(
❈e(a;p)

)}
. (A.35)

Since ❯1(p) and ❯2(p) solve (A.21)-(A.22), P (F1) = P (F2) = 0. Since the mapping γP is many-to-
one, we have:

0 ≤ P
({
a ∈ A , ❯1(p) 6= ❯2(p)

})
≤ P (F1) + P (F2) = 0 (A.36)

such that ❯1(p) = ❯2(p) a.s. (uniqueness).

A.5 Proof: continuity of the deterministic variational formulation

As a first step towards proving the square-integrability of the random solution of the time-domain para-
metric probabilistic model (A.21)-(A.22), this section presents and proves continuity properties veri-
fied by the weak solution of the deterministic variational formulation (A.6)-(A.7)-(A.13) with respect to
perturbations of the elasticity tensor field. The proof is based upon a comparable demonstration given
in [Dautray and Lions, 1987, ch. 18 sec. 4] concerning, however, initial-boundary value problems of the
first order in time.

Theorem. Let u1 be the solution of (A.6)-(A.7)-(A.13) for the data {Ce
1,C

v, ρ,f s,f v,u
0,u1} and let u2

be the solution corresponding to {Ce
2,C

v, ρ,f s,f v,u
0,u1}. Then, there exists a monotonically increas-

ing function ϕ : R
+ → R

+ such that:

||u1 − u2||C0(V0) ≤ ϕ
(
dT (Ce

1,C
e
2)
)
||u1||2L2(V0) , (A.37)

∣∣∣∣u′
1 − u′

2

∣∣∣∣
C0(H0)

≤ ϕ
(
dT (Ce

1,C
e
2)
)
||u1||2L2(V0) , (A.38)

provided that dT (Ce
1,C

e
2) is sufficiently small (the exact constraint is defined in the following).

Corollary. The variational formulation (A.6)-(A.7)-(A.13) is continuous at all elasticity tensor fields Ce
1,

that is to say, u2 and u′
2 converge to u1 and u′

1 whenever Ce
2 converges to Ce

1:

lim
dT (Ce

1,Ce
2)→0

||u1 − u2||C0(V0) = 0 , lim
dT (Ce

1,Ce
2)→0

∣∣∣∣u′
1 − u′

2

∣∣∣∣
C0(H0)

= 0. (A.39)
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A.5. Proof: continuity of the deterministic variational formulation

Proof. In this proof, we make use of the second-rank tensor representation for fourth-rank tensors, which was introduced in
Section 1.1.4. Let k1 and k2 be the stiffness forms corresponding to the elasticity tensor fields x → Ce

1(x) and x → Ce
2(x):

k1(v1, v2) =

Z

Ω

tr
`
C

e
1 (ǫ(v1)) ǫ(v2)

´
dΩ =

Z

Ω

“
bC e

1bǫ(v1),bǫ(v2)
”

dΩ , (A.40)

k2(v1, v2) =

Z

Ω

tr
`
C

e
2 (ǫ(v1)) ǫ(v2)

´
dΩ =

Z

Ω

“
bC e

2bǫ(v1),bǫ(v2)
”

dΩ. (A.41)

The stiffness form k1, the damping form d and the mass form m are positive definite. Let ck1, cd, cm ∈ R
+
0 be positive

constants such that:
k1(v, v) ≥ ck1 ||v||2V , d(v, v) ≥ cd ||v||2V , m(v, v) ≥ cm ||v||2H . (A.42)

The stiffness forms k1 and k2 verify:

|k1(v1, v2) − k2(v1, v2)| =

˛̨
˛̨
Z

Ω

““
bC e

1 − bC e
2

”
bǫ(v1),bǫ(v2)

”
dΩ

˛̨
˛̨ (A.43)

≤
X

k,ℓ

Z

Ω

˛̨
˛
“
bC e

1(x) − bC e
2(x)]kℓ

”
[bǫ(v1)]ℓ[bǫ(v2)]k

˛̨
˛ dΩ

≤ sup
k,ℓ

„
ess. sup

x∈Ω

˛̨
˛[bC

e
1(x) − bC e

2(x)]kℓ

˛̨
˛
«X

k,ℓ

Z

Ω

˛̨
[bǫ(v1)]ℓ[bǫ(v2)]k

˛̨
dΩ

= dT (C e
1, C

e
2)
X

k,ℓ

Z

Ω

˛̨
[bǫ(v1)]ℓ[bǫ(v2)]k

˛̨
dΩ.

The Hölder inequality is applied on (A.43):

|k1(v1, v2) − k2(v1, v2)| ≤ dT (C e
1, C

e
2)
X

k,ℓ

sZ

Ω

([bǫ(v1)]ℓ)
2 dΩ

sZ

Ω

([bǫ(v2)]k)2 dΩ. (A.44)

Hence, there exists a positive constant α ∈ R
+
0 such that:

|k1(v1, v2) − k2(v1, v2)| ≤ α dT (C e
1, C

e
2) ||v1||V ||v2||V . (A.45)

The stiffness form k2 verifies:

k2(v, v) =

Z

Ω

“
bC e

2bǫ(v),bǫ(v)
”

dΩ (A.46)

= k1(v, v) +

Z

Ω

““
bC e

2 − bC e
1

”
bǫ(v),bǫ(v)

”
dΩ

≥ ck1 ||v||2V − αdT (C e
1, C

e
2) ||v||2V

=
`
ck1 − α dT (C e

1, C
e
2)
´
||v||2V .

In the following, the distance dT (C e
1, C

e
2) is required to be sufficiently small such that:

ck1 − α dT (C e
1, C

e
2) > 0. (A.47)

The solution u1 fulfils the weak equilibrium

k1 (u1(t), v) + d
`
u

′
1(t), v

´
+ m

„
du′

1

dt
(t), v

«
= f(t; v) , a.e. t ∈ [0, T ] , ∀v ∈ V0 , (A.48)

and the initial conditions u1(0) = u0 and u′
1(0) = u1. The solution u2 solves, in contrast, the weak equilibrium

k2 (u2(t), v) + d
`
u

′
2(t), v

´
+ m

„
du′

2

dt
(t), v

«
= f(t; v) , a.e. t ∈ [0, T ] , ∀v ∈ V0 , (A.49)

and fulfils the same initial conditions u2(0) = u0 and u′
2(0) = u1. Let w = u2 − u1. From (A.48)-(A.49), it follows that w

verifies:

k2 (w(t), v) + d
`
w

′(t), v
´

+ m

„
dw′

dt
(t), v

«
= k1 (u1(t), v) − k2 (u1(t), v) , a.e. t ∈ [0, T ] , ∀v ∈ V0 , (A.50)
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with
w(0) = 0 , w

′(0) = 0. (A.51)

Upon choosing v = w′(t) and using the symmetry properties of the forms k2 and m, (A.50) is rewritten as:

1

2

d

dt

˘
k2(w(t), w(t)) + m(w′(t), w′(t))

¯
+ d(w′(t), w′(t)) = k1(u1(t), w

′(t)) − k2(u1(t), w
′(t)) , a.e. t ∈ [0, T ].

(A.52)
Integrating the two members of (A.52) with respect to the time over ]0, t[ with 0 < t < T and taking into account (A.51), the
following “energy equation” is obtained:

1

2

˘
k2(w(t), w(t)) + m(w′(t), w′(t))

¯
+

Z t

0

d(w′(τ), w′(τ))dτ (A.53)

=

Z t

0

`
k1(u1(τ), w′(τ)) − k2(u1(τ), w′(τ))

´
dτ.

Since the forms k2, m and d are positive definite, it is deduced from (A.53) that:

k2(w(t), w(t)) ≤ 2

Z t

0

˛̨
k1(u1(τ), w′(τ)) − k2(u1(τ), w′(τ))

˛̨
dτ , (A.54)

m(w′(t), w′(t)) ≤ 2

Z t

0

˛̨
k1(u1(τ), w′(τ)) − k2(u1(τ), w′(τ))

˛̨
dτ , (A.55)

Z t

0

d(w′(τ), w′(τ))dτ ≤
Z t

0

˛̨
k1(u1(τ), w′(τ)) − k2(u1(τ), w′(τ))

˛̨
dτ. (A.56)

Upon using the inequalities (A.42), (A.45) and (A.46), (A.54)-(A.55)-(A.56) yield:

(ck1 − α dT (C e
1, C

e
2)) ||w(t)||2V ≤ 2α dT (C e

1, C
e
2)

Z t

0

||u1(τ)||V
˛̨˛̨

w
′(τ)

˛̨˛̨
V

dτ , (A.57)

cm

˛̨˛̨
w

′(t)
˛̨˛̨2

H
≤ 2α dT (C e

1, C
e
2)

Z t

0

||u1(τ)||V
˛̨˛̨

w
′(τ)

˛̨˛̨
V

dτ , (A.58)

cd

Z t

0

˛̨˛̨
w

′(τ)
˛̨˛̨2

V
dτ ≤ α dT (C e

1, C
e
2)

Z t

0

||u1(τ)||V
˛̨˛̨

w
′(τ)

˛̨˛̨
V

dτ. (A.59)

For two functions a, b ∈ L2(]0, t[, R), we have:

Z t

0

a(τ)b(τ)dτ ≤ 1

2

Z t

0

`
a(τ)

´2
dτ +

1

2

Z t

0

`
b(τ)

´2
dτ. (A.60)

Inequality (A.60) is applied on (A.59) with

a(τ) =
α dT (C e

1, C
e
2)√

cd
||u1(τ)||V , b(τ) =

√
cd

˛̨˛̨
w

′(τ)
˛̨˛̨

V
, (A.61)

to obtain: Z t

0

˛̨˛̨
w

′(τ)
˛̨˛̨2

V
dτ ≤ (α dT (C e

1, C
e
2))

2

c2
d

Z T

0

||u1(τ)||2V dτ. (A.62)

Finally, inequality (A.60) is applied on (A.57) and (A.58) with

a(τ) = α dT (C e
1, C

e
2) ||u1(τ)||V , b(τ) =

˛̨˛̨
w

′(τ)
˛̨˛̨

V
, (A.63)

to obtain, using (A.62):

||w(t)||2V ≤ (α dT (C e
1, C

e
2))

2

(ck1 − α dT (C e
1, C

e
2))

„
1 +

1

c2
d

«Z T

0

||u1(τ)||2V dτ , (A.64)

˛̨˛̨
w

′(t)
˛̨˛̨2

H
≤ (α dT (C e

1, C
e
2))

2

cm

„
1 +

1

c2
d

«Z T

0

||u1(τ)||2V dτ. (A.65)

The theorem follows from inequalities (A.64) and (A.65).
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A.6 Proof: measurability of the random solution

As a second step towards proving the square-integrability of the random solution of the time-domain
parametric probabilistic model (A.21)-(A.22), this section studies the measurability properties of this
random solution. From the point of view of the measurability, the construction of the time-domain para-
metric probabilistic model involves the following steps:

• First, 21 mutually independent stochastic germs of the form (1.78) are chosen in the set E●, defined
in Section 1.1. In view of the sample-continuity of the random fields in E●, each stochastic germ
defines a random variable on (A,F , P ) with values in the function space C0(Ω,R) a.s. It can be
shown [see Krée and Soize, 1986, ch. 10 sec. 4]) that this random variable is Borel measurable.

• Then, these 21 stochastic germs are gathered in a set of the form (1.82) and transformed through the
continuous mappings defined by (1.80) and (1.86) to obtain the random elasticity tensor field❈e(p)
defined on (A,F , P ) with values in T+

4 (Ω) a.s.

• Subsequently, ❈e(p) is transformed through the continuous (Sec. A.5) mapping γP to define the
random position- and time-dependent displacement and velocity fields❯(p) and❯′(p) on (A,F , P )
with values in C0([0, T ], V0) and C0([0, T ],H0) a.s., respectively.

• Finally, ❯(p) and ❯′(p) can be transformed through a continuous mapping of the form δt : v 7→
v(t) to obtain the random variables❯(t;p) and❯′(t;p) on (A,F , P ) with values in V0 andH0 a.s.,
which are the random position-dependent displacement and velocity fields at a time instant t ∈
[0, T ] of interest. It is noted that the sample-continuity of the response field with respect to the
time is essential to ensure the continuity of δt.

Since the composition of a measurable mapping with a continuous (hence, measurable) mapping is also
a measurable mapping, all aforementioned random variables are Borel measurable. The Borel measura-
bility is an important mathematical property in view of the later study of the integrability properties of
the response field. As an example, let P❯(t)(·;p) denote the probability measure induced by ❯(t;p) on
the measurable space (V0,B(V0)). Then, the norm

E
{∣∣∣∣(❯(t;p)

)∣∣∣∣2
V

}
=

∫

V0

∣∣∣∣(v
)∣∣∣∣2

V
P❯(t)

(
dv;p

)
(A.66)

is well-defined as the Lebesgue integral of the measurable mapping ||·||2V from the measured space
(V0,B(V0), P❯(t)(·;p)) into (R,B(R)), where B(R) denotes the Borel σ-algebra on R.

A.7 Proof: square-integrability of the random solution

Having established in the previous section the Borel measurability of the random solution of the time-
domain parametric probabilistic model (A.21)-(A.22), this section demonstrates the square-integrabililty
of this solution. In particular, it is proved that, if the dispersion parameter δ in p fulfils the inequal-
ity (1.46), then the inequalities (A.25) are fulfilled. The proof is based upon comparable demonstrations
given in [Soize, 2000, 2001] for time- and frequency-domain non-parametric probabilistic models and
in [Soize, 2006] for elastostatic parametric probabilistic models.
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Proof. In this proof, we make use of the second-rank tensor representation for fourth-rank tensors, which was introduced in
Section 1.1. For the sake of the simplicity of the notations, the dependence on p is suppressed everywhere and, moreover, the
initial displacement and velocity fields are assumed vanishing (the generalization poses no theoretical difficulty):

❯(0) = 0 a.s. , ❯
′(0) = 0 a.s. (A.67)

Let k be the stiffness form corresponding to the mean elasticity tensor field x → Ce(x):

k(v1, v2) =

Z

Ω

tr
`
C

e (ǫ(v1)) ǫ(v2)
´
dΩ =

Z

Ω

“
bC ebǫ(v1),bǫ(v2)

”
dΩ. (A.68)

The stiffness form k, the damping form d and the mass form m are positive definite. Let ck, cd, cm ∈ R
+
0 be positive constants

such that:
k(v, v) ≥ ck ||v||2V , d(v, v) ≥ cd ||v||2V , m(v, v) ≥ cm ||v||2H . (A.69)

In view of (A.18), the form f representing the external loading fulfils:

f(t; v) ≤ ||f (t)||V ′ ||v||V , a.e. t ∈ [0, T ] , (A.70)

where the force vector f (t) is such that 〈f (t), v〉 = f(t; v) and ||·||V ′ is the norm on V ′
0 defined by:

||g||V ′ = sup
v∈V0,v 6=0

|〈g, v〉|
||v||V

. (A.71)

In view of (A.18), we have:
f ∈ L2(]0, T [, V ′

0 ). (A.72)

With reference to (1.86), the stiffness form k verifies:

k(v, v) =

Z

Ω

(L
C
bǫ(v), L

C
bǫ(v)) dΩ (A.73)

=

Z

Ω
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◆

−1
√
◆L

C
bǫ(v),

√
◆L

C
bǫ(v)

”
dΩ

≤
Z

Ω

˛̨˛̨
◆

−1
˛̨˛̨ ˛̨
˛
˛̨
˛
√
◆L

C
bǫ(v)

˛̨
˛
˛̨
˛
2

dΩ

≤ sup
x∈Ω

`˛̨˛̨
◆(x)−1

˛̨˛̨´ Z

Ω

“√
◆L

C
bǫ(v),

√
◆L

C
bǫ(v)

”
dΩ

= sup
x∈Ω

`˛̨˛̨
◆(x)−1

˛̨˛̨´ Z

Ω

“
L

T
C
◆L

C
bǫ(v),bǫ(v)

”
dΩ

= sup
x∈Ω

`˛̨˛̨
◆(x)−1

˛̨˛̨´
❑(v, v).

Upon choosing v = ❯
′(t), (A.21) reads:

„
❑
`
❯(t),❯′(t)

´
+ d
`
❯

′(t),❯′(t)
´

+ m

„
d❯′

dt
(t),❯′(t)

«
= f

`
t;❯′(t)

´
, a.e. t ∈ [0, T ]

«
a.s. (A.74)

Upon using the symmetry properties of the forms ❑ and m, (A.74) is rewritten as:
„

1

2

d

dt

˘
❑
`
❯(t),❯(t)

´
+ m

`
❯

′(t),❯′(t)
´¯

+ d
`
❯

′(t),❯′(t)
´

= f
`
t;❯′(t)

´
, a.e. t ∈ [0, T ]

«
a.s. (A.75)

Integrating the two members of (A.75) with respect to the time over ]0, t[ with 0 < t < T and taking into account (A.67), the
following “energy equation” is obtained:

1

2

˘
❑
`
❯(t),❯(t)

´
+ m

`
❯

′(t),❯′(t)
´¯

+

Z t

0

d
`
❯

′(τ),❯′(τ)
´
dτ =

Z t

0

f
`
τ ;❯′(τ)

´
dτ a.s. (A.76)

Since the forms ❑, m and d are a.s. positive definite, it is deduced from (A.76) that:

❑
`
❯(t),❯(t)

´
≤ 2

Z t

0

˛̨
f
`
τ ;❯′(τ)

´˛̨
dτ a.s. , (A.77)

m
`
❯

′(t),❯′(t)
´
≤ 2

Z t

0

˛̨
f
`
τ ;❯′(τ)

´˛̨
dτ a.s. , (A.78)

Z t

0

d
`
❯

′(τ),❯′(τ)
´
dτ ≤

Z t

0

˛̨
f
`
τ ;❯′(τ)

´˛̨
dτ a.s. (A.79)
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Upon using the inequalities (A.69), (A.70) and (A.73), it follows that:

ck ||❯(t)||2V ≤ 2

Z t

0

||f (τ)||V ′ sup
x∈Ω

`˛̨˛̨
◆(x)−1
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❯
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V
dτ a.s. , (A.80)
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H
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❯

′(τ)
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V
dτ a.s. , (A.81)
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V
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0

||f (τ)||V ′

˛̨˛̨
❯

′(τ)
˛̨˛̨

V
dτ a.s. (A.82)

Upon taking the mathematical expectation, inequalities (A.80)-(A.81)-(A.82) yield:

ckE
˘
||❯(t)||2V

¯
≤ 2

Z t

0

||f (τ)||V ′ E

(
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❯
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V
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dτ , (A.83)

cmE
n˛̨˛̨
❯

′(t)
˛̨˛̨2

H

o
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V

¯
dτ , (A.84)
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E
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V

¯
dτ. (A.85)

Upon applying the Hölder inequality, (A.83)-(A.84)-(A.85) yield:

ckE
˘
||❯(t)||2V

¯
≤ 2

Z t

0

||f (τ)||V ′

vuutE

( 
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¯
dτ , (A.86)

cmE
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H

o
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0

||f (τ)||V ′

q
E
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¯
dτ , (A.87)

cd
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0
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E
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||❯′(τ)||2V

¯
dτ. (A.88)

Inequality (A.60) is applied on (A.88) with:

a(τ) =
1√
cd

||f (τ)||V ′ , b(τ) =
√

cd

q
E
˘
||❯′(τ)||2V

¯
, (A.89)

to obtain: Z t

0

E
n˛̨˛̨
❯
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˛̨˛̨2

V

o
dτ ≤ 1

c2
d

Z T

0

||f (τ)||2V ′ dτ. (A.90)

Finally, inequality (A.60) is applied on (A.86)-(A.87) respectively with:

a(τ) =

r
E
n`

sup
x∈Ω ||◆(x)−1||

´2o

√
ck

||f (τ)||V ′ , b(τ) =
√

ck
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E
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||❯′(τ)||2V

¯
, (A.91)

a(τ) =
1√
cm

||f (τ)||V ′ , b(τ) =
√

cm

q
E
˘
||❯′(τ)||2V

¯
, (A.92)

to obtain, using (A.90):

E
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¯
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+
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||f (τ)||2V ′ dτ , (A.93)

E
n˛̨˛̨
❯

′(t)
˛̨˛̨2

H

o
≤
„

1

c2
m

+
1

c2
d

«Z T

0

||f (τ)||2V ′ dτ. (A.94)

The inequalities (A.25) follow from the inequalities (A.93)-(A.94) using (A.72) and the property (1.85).
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B

Random matrix eigenvalue problem

In the frame of the non-parametric probabilistic modelling of the dynamical behaviour of structures in
Chapter 1, a stochastic model with minimal parameterization for random reduced structural matrices was
presented. In this appendix, a random matrix eigenvalue problem is formulated using random structural
matrices of this kind. We note that considerable effort has already been expended in the literature to the
study of random matrix eigenvalue problems [see, for instance, Adhikari, 2007, Collins and Thomson,
1969, Ghosh et al., 2005, Rahman, 2006].

Let us consider the model problem outlined in Section 1.1. Let K and M be the reduced stiffness and
mass matrices obtained by the projection of corresponding stiffness and mass forms onto a reduction
basis {ϕk | 1 ≤ k ≤ nT}. Let ❑ and ▼ be corresponding random reduced stiffness and mass matrices
such that:

❑ = LT
K◆KLK a.s., ▼ = LT

M◆MLM a.s. , (B.1)

where ◆K and ◆M are normalized random matrices in the set SG+, which was defined in Section 1.1,
and LK and LM are the Cholesky factors of K and M , respectively. Since ◆K and ◆M are normalized
matrices, we have:

E {❑} = K , E {▼} = M . (B.2)

The random matrices ❑ and ▼ define the following random matrix eigenvalue problem:

❑◗k = ❲2
k▼◗k a.s. , (B.3)

where the collection {◗k | 1 ≤ k ≤ nT} gathers the random eigenvectors and {❲k | 1 ≤ k ≤ nT}
collects the random circular eigenfrequencies. Each random eigenvector ◗k defines a corresponding
random vector ✣k with values in the space spanned by the reduction basis such that:

✣k =

nT∑

α=1

[◗k]αϕα a.s. (B.4)

Since the eigenfrequencies are non-linear functions of the reduced matrices, the mean values of the ran-
dom eigenfrequencies generally differ from the eigenfrequencies of the mean matrices K and M . The
lowest, and the highest, random eigenfrequencies are generally smaller, and larger, than the correspond-
ing eigenfrequencies of the mean matrices. This can be understood from the Rayleigh quotient. For a
fixed a ∈ A, the realizations {❲k(a) | 1 ≤ k ≤ nT} associated to the realizations ❑(a) and ▼(a) can be
obtained by the sequential minimization of the Rayleigh quotient [see, for instance, Géradin and Rixen,
1992]:

❲2
k(a) = arg min

x∈Wk(a)

(❑(a)x,x)

(▼(a)x,x)
, (B.5)
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where Wk(a) is the subspace of R
nT orthogonal to the eigenvectors with lower eigenfrequencies. The

sequential minimization first finds the vectors x combining a smaller elastic energy (❑(a)x,x) <
(Kx,x) with a larger kinetic energy (▼(a)x,x) > (Mx,x) such that the lowest random eigenfre-
quencies (and their mean values) are generally smaller than the corresponding eigenfrequencies of K

and M . In contrast, at the end of the sequential minimization process, the space Wk(a) spans vectors x

with (❑(a)x,x) > (Kx,x) and (▼(a)x,x) < (Mx,x) such that the highest random eigenfrequencies
(and their mean values) are generally larger the corresponding eigenfrequencies of K and M .
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C

Signal processing methods for transfer

function measurements

This appendix, which presents known material, describes the signal processing methods for the measure-
ment of Transfer Functions (TFs), which are applied in this dissertation. We refer the reader to [Bendat
and Piersol, 1986, Pintelon and Schoukens, 2001] for a more complete account of the theory of signal
processing.

C.1 Problem setting

Let us consider a general problem where a vibration test is carried out on a single structure under noisy
conditions. Let a broadband time-limited excitation (for instance, a hammer impact) be applied on the
structure under study at a fixed point and let the induced mechanical motion be measured at another fixed
point (located at a sufficiently large distance from the applied loading) along a fixed direction. Let this
experiment be repeated nR times. The time-sampled data thus obtained are subsequently transformed
into the frequency domain by means of the Discrete Fourier Transform (DFT) to obtain:

{fr(ωℓ) ∈ C | 1 ≤ ℓ ≤ nF , 1 ≤ r ≤ nR} , (C.1)

{yr(ωℓ) ∈ C | 1 ≤ ℓ ≤ nF , 1 ≤ r ≤ nR} , (C.2)

where {ωℓ | 1 ≤ ℓ ≤ nF} is the set of nF discrete frequencies.

C.2 Random signal processing

The observed data (C.1)-(C.2) obtained for the nR repetitions of the experiment are expected to exhibit
variability due to the experimental noise. In the framework of random signal processing, the fundamental
modelling assumption is made that the fluctuations can be described in a stochastic framework, and,
in particular, that the observed data values can adequately be viewed as independent and identically-
distributed (iid) realizations of a data-generating stochastic process. Let the measured applied forces
and responses (C.1)-(C.2) be nR iid realizations of two stochastic processes {❋̃(ωℓ) | 1 ≤ ℓ ≤ nF}
and {❨̃(ωℓ) | 1 ≤ ℓ ≤ nF} indexed by the discrete frequencies {ωℓ | 1 ≤ ℓ ≤ nF} and with values
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in C a.s. These random signals are processed as follows. For a fixed frequency ωℓ, the energy cross-
spectral density Syf(ωℓ) ∈ C is defined by:

Syf(ωℓ) = E
{
❨̃(ωℓ)❋̃(ωℓ)

}
. (C.3)

The energy autospectral densities Sff(ωℓ) ∈ R
+ and Syy(ωℓ) ∈ R

+ are defined by:

Sff(ωℓ) = E
{
❋̃(ωℓ)❋̃(ωℓ)

}
, Syy(ωℓ) = E

{
❨̃(ωℓ)❨̃(ωℓ)

}
. (C.4)

If ❨̃(ωℓ) can be predicted by a linear relation from ❋̃(ωℓ), i.e. if ❨̃(ωℓ) = h(ωℓ)❋̃(ωℓ) a.s., then:

Syy(ωℓ) = |h(ωℓ)|2 Sff(ωℓ) , Syf(ωℓ) = h(ωℓ)Sff(ωℓ). (C.5)

Finally, the coherence γ2(ωℓ) of ❋̃(ωℓ) and ❨̃(ωℓ) is defined by:

γ2(ωℓ) =
|Syf(ωℓ)|2

Sff(ωℓ)Syy(ωℓ)
. (C.6)

Due to the Hölder inequality, we have:

∣∣∣E
{
❨̃(ωℓ)❋̃(ωℓ)

}∣∣∣ ≤ E
{∣∣∣❨̃(ωℓ)❋̃(ωℓ)

∣∣∣
}
≤
√

E

{∣∣∣❨̃(ωℓ)
∣∣∣
2
}√

E

{∣∣∣❋̃(ωℓ)
∣∣∣
2
}
. (C.7)

Hence, for each ωℓ, γ2(ωℓ) satisfies 0 ≤ γ2(ωℓ) ≤ 1. If ❨̃(ωℓ) can be predicted by a linear relationship
from ❋̃(ωℓ), then γ2(ωℓ) = 1.

C.3 Discrete signal processing and estimation

Since the stochastic processes {❋̃(ωℓ) | 1 ≤ ℓ ≤ nF} and {❨̃(ωℓ) | 1 ≤ ℓ ≤ nF} are usually unknown
in practice, the signal processing methods described in the previous subsection are not of direct practical
use. However, it will now be shown that very useful estimation methods can be defined on the basis of
the above-introduced concepts.

For a fixed frequency ωℓ, let the vectors f(ωℓ) and y(ωℓ) collect the nR measured forces and responses
such that:

f(ωℓ) =
(
f1(ωℓ), . . . , fnR(ωℓ)

)
, y(ωℓ) =

(
y1(ωℓ), . . . , ynR(ωℓ)

)
. (C.8)

With reference to (C.5) and (C.6), we define the following estimates of the TF from the applied force to
the induced response (sometimes called the H1-estimate) and of the coherence:

ĥnR

(
f(ωℓ),y(ωℓ)

)
=

1
nR

∑nR
r=1 yr(ωℓ)f r(ωℓ)

1
nR

∑nR
r=1 |fr(ωℓ)|2

, (C.9)

γ̂2
nR

(
f(ωℓ),y(ωℓ)

)
=

∣∣∣ 1
nR

∑nR
r=1 yr(ωℓ)f r(ωℓ)

∣∣∣
2

(
1

nR

∑nR
r=1 |fr(ωℓ)|2

)(
1

nR

∑nR
r=1 |yr(ωℓ)|2

) . (C.10)
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C.4 Asymptotic properties of the estimators

In order to establish the usefulness of the estimates (C.9)-(C.10), we place ourselves again in the frame-
work of random signal analysis and postulate that, for each ωℓ, the random variables ❋̃(ωℓ) and ❨̃(ωℓ)
have the following generic form:

❋̃(ωℓ) = ❋̃0(ωℓ) + ❊̃f(ωℓ) a.s. , (C.11)

❨̃(ωℓ) = ❨̃0(ωℓ) + ❊̃y(ωℓ) a.s. with ❨̃0(ωℓ) = h0(ωℓ)❋̃
0(ωℓ) a.s. (C.12)

To improve the readability, the equations (C.11)-(C.12) are represented by a block diagram:

❋̃0(ωℓ) // • //

��

structure
h0(ωℓ)

// • //

��

❨̃0(ωℓ)

❊̃f(ωℓ) // /.-,()*++

��

❊̃y(ωℓ) // /.-,()*++

��

❋̃(ωℓ) ❨̃(ωℓ)

The random variable ❋̃0(ωℓ) represents the inherent variability of the loading (for instance, the excitation
generated by a hand held hammer is inherently different for each repetition). The random variable ❨̃0(ωℓ)
represents the consequent variability of the induced structural response. The function h0 : R → C :
ω 7→ h0(ω) is the noise-free TF of the structure. The random variables ❊̃f(ωℓ) and ❊̃y(ωℓ) represent
the experimental noise disturbing the measurement of the force and the response, respectively. They are
assumed to satisfy:

E
{
❊̃f(ωℓ)

}
= 0 , E

{
❊̃y(ωℓ)

}
= 0 , (C.13)

E

{∣∣∣❊̃f(ωℓ)
∣∣∣
2
}

= σ2
f (ωℓ) , E

{∣∣∣❊̃y(ωℓ)
∣∣∣
2
}

= σ2
y(ωℓ) , (C.14)

E
{
❊̃f(ωℓ)❊̃y(ωℓ)

}
= 0 , E

{
❊̃f(ωℓ)❊̃y(ωℓ)

}
= 0. (C.15)

Finally, ❊̃f(ωℓ) and ❊̃y(ωℓ) are assumed to be independent of ❋̃0(ωℓ) and ❨̃0(ωℓ). Let the vectors

❋(ωℓ) =
(
❋1(ωℓ), . . . ,❋nR(ωℓ)

)
, ❨(ωℓ) =

(
❨1(ωℓ), . . . ,❨nR(ωℓ)

)
(C.16)

collect nR independent copies of ❋̃(ωℓ) and ❨̃(ωℓ). The estimators related to the estimates (C.9)-(C.10)
then read as:

ĥnR

(
❋(ωℓ),❨(ωℓ)

)
=

1
nR

∑nR
r=1 ❨r(ωℓ)❋r(ωℓ)

1
nR

∑nR
r=1 |❋r(ωℓ)|2

a.s. , (C.17)

γ̂2
nR

(
❋(ωℓ),❨(ωℓ)

)
=

∣∣∣ 1
nR

∑nR
r=1 ❨r(ωℓ)❋r(ωℓ)

∣∣∣
2

(
1

nR

∑nR
r=1 |❋r(ωℓ)|2

)(
1

nR

∑nR
r=1 |❨r(ωℓ)|2

) a.s. (C.18)

The usefulness of the estimates (C.9)-(C.10) is found in the asymptotic properties of the estimators (C.17)-
(C.18). Upon applying the Strong Law of Large Numbers (SLLN) and, subsequently, accounting for the
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aforementioned hypotheses, we have:

lim
nR→+∞

ĥnR

(
❋(ωℓ),❨(ωℓ)

)
=
E
{
❨(ωℓ)❋(ωℓ)

}

E
{
|❋(ωℓ)|2

} =
h0(ωℓ)

1 +
σ2
f (ωℓ)

E{|❋0(ωℓ)|
2}

a.s. , (C.19)

lim
nR→+∞

γ̂2
nR

(
❋(ωℓ),❨(ωℓ)

)
=

∣∣E
{
❨(ωℓ)❋(ωℓ)

}∣∣2

E
{
|❋(ωℓ)|2

}
E
{
|❨(ωℓ)|2

} a.s. (C.20)

=
1(

1 +
σ2
f (ωℓ)

E{|❋0(ωℓ)|
2}

)(
1 +

σ2
y(ωℓ)

E{|❨0(ωℓ)|
2}

) .

Expression (C.19) means that the estimator (C.17) converges a.s. to the value h0(ωℓ) taken by the noise-
free TF of the structure at the frequency ωℓ if there is no input measurement noise, i.e. ❊̃f(ωℓ) = 0 a.s.
As a conclusion, under all aforementioned hypotheses, the H1-estimation method allows recovering the
noise-free TF of the structure from noisy experimental data provided that the input noise is negligible.

Expression (C.20) means that the (converged estimate of the) coherence is an indication of the distur-
bance of the measured applied forces and responses due to noise: small coherence values indicate a
significant contamination of the data due to noise. We note that, in practice, small coherence values may
also arise due to leakage errors of the DFT or non-linearities in the dynamical behaviour of the tested
structure [see Pintelon and Schoukens, 2001, ch. 2 sec. 6].
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D

SASW inverse method

This appendix, which presents known material, describes the Spectral Analysis of Surface Waves (SASW)
inverse method, which was introduced by Al-Hunaidi [1993], Heisey et al. [1982], Nazarian and Stokoe
II [1986], Sanchez-Salinero et al. [1987]. This method uses the dispersive characteristics of surface waves
to infer a profile of the shear modulus of a soil as a function of the depth from (nondestructive and nonin-
trusive) in situ wave propagation measurements. We note that, in the remainder of this appendix, we use
elements of the theory of the wave propagation in elastic media. For a detailed account of this theory, we
refer the reader, for instance, to [Achenbach, 1984, Aki and Richards, 1980, Bedford and Drumheller,
1994, Ewing et al., 1957, Pilant, 1979, Viktorov, 1967].

D.1 In situ testing

Source Transducer 1 Transducer 2

DL DL

Figure D.1: SASW inverse method: setup of a typical in situ test.

In a typical in situ SASW test, a time-limited broadband excitation is applied on the free soil surface to
generate transient mechanical waves, including surface waves, which are recorded by two transducers
placed in line with the loading at fixed separations ∆L (Fig. D.1). The excitation is most commonly
generated using an impact hammer, a falling-weight device or a hydraulic shaker. The most often used
transducers are accelerometers and geophones. The experiment is usually repeated several times.

D.2 Discrete signal processing and estimation

The data set obtained from a typical SASW test consists of a time-dependent applied force and of time-
dependent responses measured at 2 locations for nR repetitions of the experiment. Accordingly, let fr(t),
yr1(t) and yr2(t) denote the measured applied force and the response at the 2 sensors, respectively, for

147



Appendix D. SASW inverse method

the r-th repetition. The time-sampled data are transformed into the frequency domain by means of the
Discrete Fourier Transform (DFT) to obtain:

{f1(ωℓ), . . . , fnR(ωℓ) | 1 ≤ ℓ ≤ nF} , (D.1)

{y1m(ωℓ), . . . , ynRm(ωℓ) | 1 ≤ ℓ ≤ nF , 1 ≤ m ≤ 2} , (D.2)

where {ωℓ | 1 ≤ ℓ ≤ nF} is the set of nF discrete frequencies. These experimental data are processed fol-
lowing a three-step procedure. First, the Transfer Function (TF) from the response in the first transducer
to the response in the second transducer is estimated (App. C) by:

ĥ(ωℓ) =
1

nR

∑nR
r=1 yr2(ωℓ)yr1(ωℓ)

1
nR

∑nR
r=1 |yr1(ωℓ)|2

. (D.3)

The coherence function between the responses in the two tranducers is estimated (App. C) by:

γ̂2(ωℓ) =

∣∣∣ 1
nR

∑nR
r=1 yr2(ωℓ)yr1(ωℓ)

∣∣∣
2

(
1

nR

∑nR
r=1 |yr1(ωℓ)|2

)(
1

nR

∑nR
r=1 |yr2(ωℓ)|2

) . (D.4)

Then, it is assumed, a priori, that (i) the soil response at the receivers is dominated by the fundamental
surface wave (the generalized Rayleigh wave) of the soil layering and (ii) the wavefront curvature is large
compared to the wavelength permitting a plane wave approximation. Under these assumptions, the phase
velocity of the fundamental surface wave at the frequency ωℓ is estimated by:

ĉ(ωℓ) =
ωℓ∆L

θ̂(ωℓ)
, (D.5)

where θ̂(ωℓ) is the unwrapped phase of ĥ(ωℓ), that is to say the phase shift between the two receivers at
the frequency ωℓ without artificial 2π-phase jumps [Poggiagliolmi et al., 1982]:

θ̂(ωℓ) = tan−1




ℜ
(
ĥ(ωℓ)

)

ℑ
(
ĥ(ωℓ)

)



 . (D.6)

Finally, several filter criteria are applied to ensure, a posteriori, that the aforementioned assumptions are
valid. More specifically, the phase velocity ĉ(ωℓ) at the frequency ωℓ is withdrawn only if:

γ̂2(ωℓ) ≥ γmin , (D.7)

∆L

λ̂(ωℓ)
≥ xmin , (D.8)

∆L

λ̂(ωℓ)
≤ xmax , (D.9)

ωmin ≤ ωℓ ≤ ωmax , (D.10)

where λ̂(ωℓ) = 2πĉ(ωℓ)/ωℓ is the estimated frequency-dependent wavelength. The criterion (D.7) im-
poses a threshold value on the coherence function to limit the influence of (incoherent) noise (app C). We
note that a frequently used parameter value is γmin = 0.95 [see, for instance, Pyl and Degrande, 2002,
Schevenels et al., 2006].
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D.3. Experimental dispersion curve inversion

Following Chen et al. [2004], Gucunski and Woods [1992], Tokimatsu et al. [1992], let us interpret the
expressions (D.8)-(D.9) as criteria imposed on ∆L. The aim of (D.8)-(D.9) is to isolate a wavelength-
dependent subregion of the free soil surface where the wavefield is dominated by the fundamental surface
wave and the curvature of the wavefront is sufficiently large. In the complementary part of the free
surface, body waves and higher order surface wave modes contribute to the response, or the curvature
of the wavefront is too small. We note that frequently used parameter values are xmin = 1 and xmax =
3 [see, for instance, Pyl and Degrande, 2002, Schevenels et al., 2006].

In view of the criteria (D.8)-(D.9), short receiver spacings commonly lead to high-frequency results,
whereas long receiver spacings are required to obtain low-frequency results. From this point of view,
it can be useful to repeat the test for different values of ∆L so as to obtain results covering the entire
frequency band of interest.

Surface waves with shorter wavelengths are attenuated more rapidly with the distance from the applied
loading by the material damping (see, for instance, [Aki and Richards, 1980, Pilant, 1979] for attenuation
models, or, [Lai et al., 2002, Rix et al., 2000] for the experimental identification of attenuation curves). In
view of the energy loss of the source-generated surface waves with distance, a second purpose of (D.9)
is to ensure a sufficiently high signal-to-noise ratio at both receivers (in this sense, the results rejected
by (D.9) may coincide with those already eliminated by (D.7)).

The surface waves may sometimes be scattered by lateral variations of the mechanical soil properties,
underground obstacles or cavities and artificial variations such as foundations [see, for instance, Gucunski
et al., 1996, Keilis-Borok et al., 1989]. These scattered waves are source-dependent and are therefore not
eliminated by (D.7). A third purpose of the criterion (D.9) is to limit the influence of wave scattering on
the experimental phase velocities.

Finally, the criterion (D.10) allows eliminating the spurious results that persist after the application of
criteria (D.7)-(D.9) (engineering judgement).

D.3 Experimental dispersion curve inversion

The SASW inverse method is based upon the consideration that generalized Rayleigh waves with longer
wavelengths (usually at lower frequencies) penetrate deeper into the soil such that their phase velocity
is affected by the soil properties over a greater depth. For this reason, the frequency-dependent phase
velocity of the fundamental surface wave is an image of the variation of the soil properties with the depth
and, inversely, can be used to infer the soil properties.

The SASW inverse method follows a three-step procedure. First, the soil is modelled as a stack of hori-
zontal layers overlying a halfspace, constituted of homogeneous, linear elastic, isotropic materials. The
parameters necessary to define this model are the layer thicknesses and the shear wave velocities, Poisson
ratios and mass densities of the layers and the halfspace. To simplify the inversion process, reasonable
values are usually assigned to the Poisson ratios and mass densities such that the layer thicknesses and
shear wave velocities are the only active parameters that must be determined. Subsequently, the soil
model thus obtained is used to compute the theoretical dispersion curve of the plane fundamental surface
wave travelling through the layered soil medium, that is to say its phase velocity as a function of the
frequency. Finally, the suitable layer thicknesses and shear wave velocities are obtained by minimizing
the distance between the experimental and the theoretical phase velocities. This least-squares distance is
most commonly used.
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E

In situ measurements at a site in Lincent

This appendix presents the results of an experimental study of the spatial variability in the dynamical
behaviour of the soil at a site in Lincent (Belgium). In the following, we first describe the experimental
setup (Sec. E.1). Subsequently, we present and study the experimental results (Sec. E.2). Finally, a first
glance at the probabilistic modelling of the dynamical soil behaviour at this site is given (Sec. E.3).

E.1 Experimental setup

Figure E.1: Site of Lincent: overview of the measurement site (picture taken on November 3, 2005).

The measurement site is located in Lincent (Belgium) next to the high-speed railway track Brussels-
Liège (Fig. E.1). Several measurement campaigns had already been performed at this site. In preparation
of the construction of the railway track, borings and Cone Penetration Tests (CPT) had been carried
out [Karl, 2005]. In the frame of the STWW-project “Traffic-induced vibrations in buildings”, Seismic
Cone Penetration Tests (SCPT) and Spectral Analysis of Surface Waves tests (SASW) (App. D) had
been performed by K.U.Leuven and R.U.Gent [Karl, 2005, Pyl and Degrande, 2001, Schevenels et al.,
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2006]. The borings [Karl, 2005] revealed the presence of a silt top layer with a thickness of about 1.2 m,
followed by a fine sand layer reaching to a depth of 3.2 m. Below the shallow layers, a sequence of very
stiff layers of arenite and clay was found. The SASW tests [Pyl and Degrande, 2001, Schevenels et al.,
2006] indicated the presence of a shallow layer with a thickness of about 3 m and a shear wave velocity
of 150 m/s over a halfspace with a shear wave velocity of about 260 m/s.

Figure E.2: Site of Lincent: experimental setup.

The present measurements were carried out on February 14, 2006 by Mattias Schevenels and Geert Lom-
baert (K.U.Leuven) and Reza Taherzadeh, Quang Anh Ta, Régis Cottereau and Maarten Arnst (Ecole
Centrale Paris). Vibrations were generated by the impact of an instrumented hammer with a mass of 5.3 kg
and a soft tip on a small concrete foundation (Figs. E.2 and E.3), which had been cast in situ on Jan-
uary 23, 2006. The side length, height and mass of the square concrete foundation are 0.5 m, 0.2 m
and 125 kg, respectively. The vibrations were measured by 12 accelerometers placed in the free field
and by 3 accelerometers mounted on the top surface of the foundation (Figs. E.2 and E.3). Uniaxial
accelerometers were used and only the vertical component of the acceleration was measured.

Measurements were performed for a total of 6 different setups of the free-field accelerometers. To define
those setups, a right-handed Cartesian frame of reference (i1, i2, i3) is defined with the origin o located
at the centre of the concrete foundation (Fig. E.4). Six straight lines A, B, C, D, E and F are defined,
which cross o and form angles 0◦, 18◦, 36◦, 54◦, 72◦ and 90◦, respectively, with the x1-axis (hence,
line F coincides with the x2-axis). Furthermore, 8 concentric circles are introduced with centre o and
radii 3, 4, 6, 8, 12, 16, 24 and 32 m. The 6 setups are labelled 3-6, 4-8, 6-12, 8-16, 12-24 and 16-32 and
accommodate the 12 free-field accelerometers at the first-quadrant (i.e. x1 > 0 and x2 > 0) crossings
of the lines with the circles with radii 3 and 6 m, 4 and 8 m, 6 and 12 m, 8 and 16 m, 12 and 24 m and
16 and 32 m, respectively. Hence, for each setup, two accelerometers are located on each measurement
line in such a way that the distance between the foundation centre and the nearest receiver is equal to
the distance between the two receivers. In the remaining of the appendix, only the free-field response is
considered.

For each setup, a total of 40 events was recorded. The A/D conversion was performed at a rate of 1000 Hz.
A total of 2048 data points was recorded for each event (hence, the frequency-domain resolution equals
0.4882 Hz).
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E.1. Experimental setup

(a) (b)

(c) (d) (e)

Figure E.3: Site of Lincent: (a) concrete foundation, (b) instrumented hammer, (c) accelerometer
mounted on the foundation and (d, e) accelerometers in the free field.
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Figure E.4: Site of Lincent: schematic representation of the measurement site.
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E.2 Experimental data

The experimental results are now presented. For the sake of brevity, only a small selection of the results
is shown here, sufficient to deduce the main conclusions of the experimental study. We refer the reader
to [Arnst et al., 2006] for a more complete overview of the measurement results.

E.2.1 Excitation
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(a) Time history.
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(b) Frequency content.

Figure E.5: Site of Lincent: (a) time history and (b) frequency content of the applied force, measured
during the first event of setup 3 − 6.

Figure E.5 shows the time history and frequency content of the applied force, measured during the first
event of setup 3 − 6. The impulsive force has a peak value of about 6 kN. The signal energy is seen to be
distributed over the frequency band between 0 and about 300 Hz.

E.2.2 Free-field accelerations
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(a) At 4 m.
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Figure E.6: Site of Lincent: (a, c, e, g) time history and (b, d, f, h) frequency content of the free-field
accelerations on line A at 4, 8, 16 and 32 m, measured during the first event of the setups.
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(c) At 8 m (setup 4-8).
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(d) At 8 m (setup 4-8).
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(e) At 16 m (setup 16-32).
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(f) At 16 m (setup 16-32).
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(g) At 32 m.
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(h) At 32 m.

Figure E.6: Site of Lincent: (a, c, e, g) time history and (b, d, f, h) frequency content of the free-field
accelerations on line A at 4, 8, 16 and 32 m, measured during the first event of the setups (cont.).

Figure E.6 shows the time history and frequency content of the free-field accelerations on line A at 4, 8,
16 and 32 m, measured during the first event of the setups. The amplitude of the measured accelerations
is observed to decrease with the distance from the applied force, due to the geometrical spreading and the
material damping. In the vicinity of the concrete foundation, the signal energy is distributed over a broad
range of frequencies up to 120 Hz. In contrast, at great distance from the applied loading (at 24 or 32 m),
the high frequencies have been attenuated by the material damping and the signal energy is distributed
over a narrower range of frequencies up to approximately 60 Hz.
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E.2.3 Coherence functions
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(b) At 8 m (setup 4-8).
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(c) At 16 m (setup 8-16).
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(d) At 32 m.

Figure E.7: Site of Lincent: coherence functions between the measured applied forces and the free-field
accelerations at (a) 4 m, (b) 8 m, (c) 16 m and (d) 32 m on line A (blue), B (red), C (green), D (black),
E (cyan) and F (magenta).

Figure E.7 shows the coherence functions (App. C) between the measured applied forces and free-field
accelerations at 4, 8, 16 and 32 m. At low frequencies below 20 Hz, the impact hammer does not allow
transferring sufficient energy into the soil, such that the source-generated wave field does not surpass
the ambient noise and low coherence values are observed. In the vicinity of the foundation, the mea-
sured forces and responses are generally coherent between about 20 and 100 Hz. At great distance from
the applied loading, the high-frequency source-generated wave field has been attenuated by the mate-
rial damping and the measured forces and responses are reasonably coherent only between about 20
and 50 Hz.

E.2.4 Free-field transfer functions

Figure E.8 shows the estimates of the noise-free Transfer Functions (TFs) from the force applied on
the foundation to the vertical velocity in the free field at 4, 8, 16 and 32 m, deduced from the noisy
experimental data using the H1-estimation method (App. C). The results show a considerable spatial
variability between the measurement lines (up to a factor of about 3).
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(a) At 4 m.
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(b) At 8 m (setup 4-8).
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(c) At 16 m (setup 16-32).
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(d) At 32 m.

Figure E.8: Site of Lincent: amplitude of the estimated noise-free TFs at (a) 4 m, (b) 8 m, (c) 16 m
and (d) 32 m on line A (blue), B (red), C (green), D (black), E (cyan) and F (magenta).

E.2.5 Experimental dispersion curves

Nazarian’s method (App. D) has been applied to deduce experimental dispersion curves from the exper-
imental data. The parameters of the filter criteria (D.7)-(D.9) have been chosen equal to γmin = 0.98,
xmin = 1 and xmax = 3. Figure E.9 shows the thus obtained experimental dispersion curves for the
pairs of receivers located at 4 and 8 m and at 16 and 32 m. Due to the filter criteria (D.8)-(D.9), the long
receiver spacing 16 m is observed to lead to estimated phase velocities at low frequencies, whereas the
short receiver spacing 4 m yields estimated phase velocities at higher frequencies.

At 20 Hz, a phase velocity in the order of 150 m/s is obtained, while, at 80 Hz, a phase velocity of
about 100 m/s is revealed. Upon attributing these phase velocities to the fundamental surface wave (the
generalized Rayleigh wave) of the soil layering, whose penetration depth is approximately one wave-
length, the obtained experimental phase velocities correspond to penetration depths between about 7.5
and 1.25 m. Hence, according to the aforementioned boring and SASW results, they belong to waves
travelling essentially in the shallow silt/sand layers. Only at the lowest frequencies, they penetrate (but
not profoundly) into the deep stiff arenite/clay layers.

The low-frequency phase velocities obtained for the receiver spacing 16 m show only very small differ-
ences between the measurement lines. The higher-frequency phase velocities obtained for the receiver
spacing 4 m show more considerable fluctuations (up to about 20%).
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Figure E.9: Site of Lincent: experimental dispersion curve for the pair of receivers located (a) at 4 and
8 m and (b) at 16 and 32 m on line A (blue), B (red), C (green), D (black), E (cyan) and F (magenta).

E.3 Probabilistic modelling of the dynamical soil behaviour

This section presents first results of ongoing research on building and inverting a probabilistic model for
the dynamical soil behaviour at the site of Lincent.

E.3.1 Parametric probabilistic model

A time-domain parametric probabilistic model (App. A) has been set up for the dynamical soil behaviour.
The undeformed soil is represented as a halfspace occupying the domain {x ∈ R

3 | x3 < 0}. It is mod-
elled as a linear, locally isotropic, elastic solid material, whose fields of elastic moduli are represented
by random fields.

E.3.2 Computations with the probabilistic model

The hp-version of the Finite Element (FE) method, more specifically the spectral element method [see,
for instance, Komatitsch, 1997, Maday and Patera, 1989, Schwab, 1999], is used to discretize the space.
A box-shaped region

Ω =

{
−L1

3
< x1 <

2L1

3
, −L2

3
< x2 <

2L2

3
, −L3 < x3 < 0

}
(E.1)

is meshed using 8-noded elements of equal size h × h × h. On each element, the displacement field
is approximated on a basis of three-dimensional shape functions, constructed by taking tensor products
of one-dimensional (Gauss-Lobatto-based) polynomial shape functions of degree p. The computational
domain Ω is surrounded by Perfectly Matched Layers (PMLs) [Bérenger, 1994, Festa and Vilotte, 2005]
on all sides, except for the free soil surface, to absorb outgoing waves. The Newmark time integration
algorithm in its central difference version [see, for instance, Géradin and Rixen, 1992, Hughes, 1987] is
used to discretize time. Let {j∆t | 1 ≤ j ≤ nT} be the set of nT discrete time instants, such that ∆t is
the time step. The Monte Carlo Simulation (MCS) method is applied to discretize the random dimension.
The random fields of elastic moduli are simulated using the spectral representation method (Box 1.5 of
Section 1.2).
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E.3. Probabilistic modelling of the dynamical soil behaviour

The pre- and post-processing are performed in Matlab using the Structural Dynamics Toolbox [Balmès
and Leclère, 2006]. For each Monte Carlo trial, the FE computations and the time integration are per-
formed using the program SPEC [Festa and Vilotte, 2005], developed by the team of prof. Vilotte at the
Institut de Physique du Globe de Paris in France. This program was implemented in Fortran and uses the
Message Passing Interface (MPI) to allow execution on parallel platforms.

E.3.3 Numerical illustration

Let the computational domain Ω have here the dimensions L1 = L2 = 24 m and L3 = 12 m, and be
subdivided in two domains

Ω1 = {−8 m < x1 < 16 m , −8 m < x2 < 16 m , −3 m < x3 < 0} , (E.2)

Ω2 = {−8 m < x1 < 16 m , −8 m < x2 < 16 m , −12 m < x3 < −3 m} , (E.3)

which represent the shallow silt/sand layers and the deep stiff arenite/clay layers at the site of Lincent.
Results are presented for two different computations. In both computations, the soil occupying the do-
main Ω2 is modelled as a homogeneous material with a shear wave velocity of 260 m/s, a compression
wave velocity of 1000 m/s and a mass density of 1800 kg/m3. In the first computation (Fig. E.10), the soil
occupying the domain Ω1 is modelled as a homogeneous material with a shear wave velocity of 110 m/s,
a compression wave velocity of 280 m/s and a mass density of 1800 kg/m3. In the second computa-
tion (Fig. E.12), it is modelled as a heterogeneous material with a homogeneous Lamé coefficient λ =
121.680 MPa and a homogeneous mass density of 1800 kg/m3, but with a heterogeneous shear modulus
field, equal to one sample path of the random shear modulus field {✖(x;L●1, L●2, L●3; δ) | x ∈ Ω1},
defined by:

(
∀x ∈ Ω1 : ✖(x;L●1, L●2, L●3; δ) = µN

(
●(x;L●1, L●2, L●3); δ

))
a.s. , (E.4)

where µ = 21.780 MPa is the mean shear modulus (such that the mean shear and compression wave
velocities are 110 m/s and 280 m/s), the random field {●(x;L●1, L●2, L●3) | x ∈ Ω1} is a stochastic
germ in the set E● defined in Section 1.1, and the function N(·; δ) : R → R

+
0 is the transformation

function defined in Box 1.4 of Section 1.2. The spatial correlation lengths of the stochastic germ and the
dispersion level are chosen equal to L●1 = L●2 = L●3 = 2 m and δ = 0.6.

The soil is loaded by a time-dependent pressure pext(t) uniformly applied on the square portion Γ of the
free soil surface centred at o and of area ǫ2 with ǫ ≪ 1 m. The pressure is modelled in the time domain
by means of a very narrow Gaussian-shaped function

pext(t) = − exp

(
−(t− t0)

2

T 2

)
, (E.5)

where the parameters are chosen equal to t0 = 0.05 s and T = 0.0064 s, such that most of the signal
energy is distributed over the frequency band between 0 and 150 Hz.

The parameters of the FE discretization are set to h = 0.5 m and p = 6, such that the heterogeneous
shear modulus field and the propagating mechanical wave field are represented accurately. The FE model
has about 11 × 106 FE Degrees Of Freedom (DOFs). The parameters of the time-domain sampling are
chosen equal to ∆t = 1.5×10−5 s and nT = 30000, such that the Courant stability condition is fulfilled.
The computation with the program SPEC of a discretized problem of this kind on 15 Itanium 2 type
processors using about 50 Gb RAM takes about 50 hours.
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Figure E.10: Site of Lincent: FE mesh for the homogeneous-layer-over-halfspace model (the colour is
proportional to the soil shear modulus)

(a) t=0.10 s. (b) t=0.15 s.

(c) t=0.20 s. (d) t=0.25 s.

Figure E.11: Site of Lincent: transient response at the free soil surface of the homogeneous-layer-over-
halfspace model at times (a) t=0.10 s, (b) t=0.15 s, (c) t=0.20 s and (d) t=0.25 s (the colour is proportional
to the vertical acceleration).
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Figure E.12: Site of Lincent: FE mesh for the heterogeneous-layer-over-halfspace model (the colour is
proportional to the soil shear modulus).

(a) t=0.10 s. (b) t=0.15 s.

(c) t=0.20 s. (d) t=0.25 s.

Figure E.13: Site of Lincent: transient response at the free soil surface of the heterogeneous-layer-over-
halfspace model at times (a) t=0.10 s, (b) t=0.15 s, (c) t=0.20 s and (d) t=0.25 s (the colour is proportional
to the vertical acceleration).
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Figure E.11 shows four snapshots of the transient first-quadrant free-field response for the homogeneous-
layer-over-halfspace model. The mechanical wave field is observed to be axisymmetric. A strong wave,
being the fundamental surface wave (the generalized Rayleigh wave) of the soil layering, is seen to prop-
agate away from the loading point. It is followed by several slightly faster waves of smaller magnitude,
being higher-order surface-wave modes that are propagating in the layer, but evanescent in the halfspace.

Figure E.13 shows four snapshots of the transient first-quadrant free-field response for the heterogeneous-
layer-over-halfspace model. The mechanical wave field is observed to be very complex, and no longer
axisymmetric. It is made up of multiple waves transmitted through, and reflected upon, the shallow
heterogeneities.

E.4 Summary and conclusion

In this appendix, an experimental study was presented of the spatial variability in the dynamic soil be-
haviour at a site in Lincent. A considerable spatial variability was found in the free-field response. In
the frequency band of analysis between 20 and 100 Hz, the amplitude of the free-field mobilities shows
variations up to a factor of about 3 between the measurement lines. At the lowest frequencies, the ex-
perimental dispersion curves are subjected to little variability, whereas, at higher frequencies, they show
considerable fluctuations. These results indicate the need to incorporate spatial variability into the fields
of material properties of predictive mathematical-mechanical models for the dynamical behaviour of
soils.

Future work may focus on the stochastic inverse problem involving the identification of spatial correla-
tion lengths and dispersion levels characterizing the variability in the fields of mechanical properties of
the soil. The methodology proposed in Chapter 5 can, for instance, be applied to invert the probabilis-
tic model of Section E.3 from the experimental dispersion curves of Section E.2.5. Two main difficulties
should be addressed in future work. First, as already mentioned in Chapter 5, the effect of model misspec-
ification should be investigated. Second, to lower the required computational effort, it seems interesting
to investigate under which conditions approximations from statistical physics can be applied to solve the
probabilistic direct problem, such as the First-Order Smoothing Approximation (FOSA) of the Dyson
equation or the ladder approximation of the Bethe-Salpeter equation [as in Lombaert and Clouteau,
2006, Turner and Anugonda, 2001].
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Résumé

L’objectif de la thèse est de développer une méthodologie d’identification expérimentale de modèles
probabilistes qui prédisent le comportement dynamique de structures. Nous focalisons en particulier
sur l’inversion de modèles probabilistes à paramétrage minimal, introduits par Soize, à partir de fonc-
tions de transfert expérimentales. Nous montrons d’abord que les méthodes classiques d’estimation de la
théorie des statistiques mathématiques, telle que la méthode du maximum de vraisemblance, ne sont pas
bien adaptées pour aborder ce problème. En particulier, nous montrons que des difficultés numériques,
ainsi que des problèmes conceptuels dus au risque d’une mauvaise spécification des modèles, peuvent
entraver l’application des méthodes classiques. Ces difficultés nous motivent à formuler l’inversion de
modèles probabilistes alternativement comme la minimisation, par rapport aux paramètres recherchés,
d’une fonction objectif, mesurant une distance entre les données expérimentales et le modèle proba-
biliste. Nous proposons deux principes de construction pour la définition de telles distances, basé soit sur
la fonction de logvraisemblance, soit l’entropie relative. Nous montrons comment la limitation de ces
distances aux lois marginales d’ordre bas permet de surmonter les difficultés mentionnées plus haut. La
méthodologie est appliquée à des exemples avec des données simulées et à un problème en ingénierie
civile et environnementale avec des mesures réelles.

Mots-clés: modélisation probabiliste, inversion, identification, quantification d’incertitudes, champ stochas-
tique

Abstract

The aim of this thesis is to develop a methodology for the experimental identification of probabilistic
models for the dynamical behaviour of structures. The inversion of probabilistic structural models with
minimal parameterization, introduced by Soize, from measured transfer functions is in particular consid-
ered. It is first shown that the classical methods of estimation from the theory of mathematical statistics,
such as the method of maximum likelihood, are not well-adapted to formulate and solve this inverse
problem. In particular, numerical difficulties and conceptual problems due to model misspecification are
shown to prohibit the application of the classical methods. The inversion of probabilistic structural mod-
els is then formulated alternatively as the minimization, with respect to the parameters to be identified,
of an objective function measuring a distance between the experimental data and the probabilistic model.
Two principles of construction for the definition of this distance are proposed, based on either the log-
likelihood function, or the relative entropy. The limitation of the distance to low-order marginal laws
is demonstrated to allow to circumvent the aforementioned difficulties. The methodology is applied to
examples featuring simulated data and to a civil and environmental engineering case history featuring
real experimental data.

Keywords: probabilistic modelling, inversion, identification, uncertainty quantification, random field
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