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Introduction

Cette thèse se divise en quatre chapitres correspondant à quatre publications ou
projets de publication. Les trois premiers sont consacrés à des questions d’existence,
de stabilité ou d’instabilité d’ondes stationnaires pour des équations de Schrödinger
non linéaires, tandis que le quatrième traite d’instabilité pour des équations de
Klein-Gordon non linéaires. Le premier chapitre correspond à une version plus
détaillée d’un article co-signé avec Louis Jeanjean [18]. Le deuxième chapitre est
une prépublication [24] dans laquelle les questions analytiques ont été traitées en
collaboration avec Reika Fukuizumi ; quant aux résultats numériques, ils sont dus à
Gadi Fibich et ses élèves Barush Ksherim et Yonatan Sivan. Je suis seul auteur du
troisième chapitre [23] et le quatrième chapitre est le fruit d’un travail commun avec
Louis Jeanjean [19].

Une équation de Schrödinger non linéaire est une équation de la forme

iut + ∆u+ f(x, u) = 0 (1)

où u : R×R
N → C et f : R

N ×R
+ → R est une non-linéarité étendue à R

N ×C en
posant quel que soit x ∈ R

N f(x, z) := f(x, |z|)z/|z| pour z ∈ C\{0} et f(x, 0) = 0.

Sous certaines conditions sur f , le problème de Cauchy pour (1) est localement
bien posé dans H1(RN) (voir par exemple [6, chapitre 4]) et soit la solution du
problème de Cauchy existe globalement, soit elle explose en temps fini (ce qu’on
désigne sous le nom de blow-up alternative). De plus, si on définit l’énergie E et la
charge Q pour v ∈ H1(RN) par

E(v) :=
1

2
‖∇v‖2

2 −
∫

RN

F (x, v)dx,

Q(v) := ‖v‖2
2,

où F (x, s) =
∫ |s|

0
f(x, σ)dσ, alors ces deux quantités sont conservées au cours du

temps.

Pour de nombreuses équations non linéaires dispersives, on observe dans certaines
situations une compensation entre l’effet dispersif du laplacien et les effets non
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Introduction

linéaires qui donne lieu à la génération d’ondes solitaires. Il s’agit de solutions
de ces équations qui peuvent subir des modifications de phase ou des translations
en espace mais dont le profil reste intact au cours du temps. Concrètement, la
première observation d’une onde solitaire remonte à 1834 : John Scott Russell
parcourt à cheval plusieurs kilomètres le long d’un canal pour observer la propagation
à l’identique de l’onde créée par l’arrêt brusque d’une barge. Cependant, il faut
attendre les travaux de Korteweg et de Vries en 1895 pour que le phénomène
trouve une première justification théorique et ce n’est qu’après les années 1950 que
l’étude des ondes solitaires prendra véritablement son essor. Depuis, les équations
admettant des ondes solitaires ont connu un fort engouement aussi bien de la part
des mathématiciens que des physiciens (voir par exemple [6, 9, 28, 33] pour une
revue de questions physiques et mathématiques autour des ondes solitaires et pour
une bibliographie détaillée).

Pour l’équation de Schrödinger, les ondes solitaires auxquelles nous nous intéres-
sons sont les ondes stationnaires. Ce sont des solutions de (1) de la forme eiωtϕω(x)
avec ω ∈ R et ϕω ∈ H1(RN) qui vérifie

− ∆ϕω + ωϕω − f(x, ϕω) = 0. (2)

La première étude mathématique de l’existence de solutions de (2) en dimension
supérieure à 3 remonte à un article de Strauss [32] en 1977. Lorsque la non-linéarité
f est autonome (i.e. f(x, s) ≡ f(s)), Berestycki et Lions [4] ont donné en 1983
des conditions quasi-optimales garantissant l’existence de solutions dans H1(RN)
pour (2) lorsque N > 3 et N = 1. Le cas N = 2 fut traité peu de temps après
par Berestycki, Gallouet et Kavian [3]. En particulier, si on définit la fonctionnelle
naturellement associée à (2) par

S(v) :=
1

2
‖∇v‖2

2 +
ω

2
‖v‖2

2 −
∫

RN

F (v)dx

alors sous les hypothèses de [3, 4] il existe des solutions ϕ vérifiant

S(ϕ) = m := inf{S(v)
∣∣v ∈ H1(RN) \ {0} est une solution de (2)}.

Ces solutions sont dites de plus petite énergie, ou états fondamentaux, et m est le
niveau de plus petite énergie.

Lorsque f est non-autonome, seuls des résultats partiels sont connus. Dans le
premier chapitre de cette thèse, on prouve un résultat d’existence pour (2) lorsque
la non-linéarité f est de la forme f(x, s) = V (x)g(s). Ici, V désigne un potentiel réel
et g une non-linéarité vérifiant

(H1) V se comporte comme |x|−b à l’infini avec 0 < b < 2,
(H2) g se comporte comme sp en 0 avec 1 < p < 1 + (4 − 2b)/(N − 2).
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Introduction

(voir le chapitre 1 pour un énoncé précis des hypothèses)

Théorème 1. Pour une non-linéarité de la forme V (x)g(s) vérifiant (H1)-(H2), il
existe ω0 > 0 tel que (2) admet une solution non-triviale ϕω pour tout ω ∈ (0, ω0).

Lors de la recherche de solutions pour des problèmes non-autonomes du type (2),
une des difficultés majeures auxquelles on est confronté est l’absence d’estimations
a priori sur les suites de Palais-Smale. De fait, la majorité des travaux sur le sujet
se restreignent à des situations où la non-linéarité g satisfait des hypothèses fortes
du type condition de superquadraticité d’Ambrosetti et Rabinowitz. Dans notre cas,
nous surmontons cette difficulté en nous inspirant d’une méthode introduite par
Berti et Bolle [5] en 2003 dans le contexte de l’équation des ondes. On cherche
à obtenir les solutions de (2) comme points critiques, au niveau du col, de la
fonctionnelle associée à (2)

S(v) :=
1

2
‖∇v‖2

2 +
ω

2
‖v‖2

2 −
∫

RN

V (x)G(v)dx,

où G(s) :=
∫ |s|

0
g(σ)dσ. Cependant, s’il est vraisemblable que la fonctionnelle S

admet une géométrie de col, montrer directement que les suites de Palais-Smale
sont bornées semble hors de portée sous nos faibles hypothèses sur g. Pour surmonter
cette difficulté, notre méthode consiste à tronquer convenablement la fonctionnelle S
à l’extérieur d’une boule de H1(RN). On montre alors que la fonctionnelle tronquée
a une géométrie de col et que ses suites de Palais-Smale au niveau du col sont
à l’intérieur de la boule où la fonctionnelle d’origine et la fonctionnelle tronquée
cöıncident. Montrer la convergence des suites de Palais-Smale permet alors d’obtenir
un point critique de S, donc une solution de (2).

Une fois leur existence établie, l’une des questions majeures dans l’étude des
ondes solitaires est leur stabilité ou leur instabilité. Déjà dans son mémoire de 1844
[29], Russell mentionnait les remarquables propriétés de stabilité des ondes solitaires
qu’il avait pu observer. Néanmoins, le développement d’une théorie mathématique
rigoureuse de la stabilité ne commence qu’en 1972 avec les travaux de Benjamin
[1] sur l’équation de Korteweg-de Vries. La stabilité étudiée par Benjamin est dite
orbitale, c’est également ce type de stabilité que nous considérons dans le cadre de
cette thèse.

L’orbite d’une onde stationnaire est déterminée par les propriétés de symétrie de
l’équation. Par exemple, dans le cas où la non-linéarité est de type puissance

iut + ∆u+ |u|p−1u = 0 (3)

et si ϕ est une solution de

− ∆ϕ+ ωϕ− |ϕ|p−1ϕ = 0, (4)
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alors eiθϕ(x−y) est également une solution de (4) quelque soit θ ∈ R et y ∈ R
N . Dans

cette situation, l’orbite d’une onde stationnaire u(t, x) = eiωtϕω(x) est l’ensemble

O(ϕω) = {eiθϕω( · − y), θ ∈ R, y ∈ R
N}.

Pour H un espace de fonctions (en pratique H1(RN) ou son sous-espace des fonctions
radiales H1

rad(R
N)), on définit la stabilité orbitale dans H de l’onde eiωtϕω(x) de la

façon suivante. Pour tout ε > 0 il existe δ > 0 tel que pour tout u0 ∈ H vérifiant
||ϕω − u0||H < δ on a

sup
t∈[0,+∞)

inf
v∈O(ϕω)

||v − u(t)||H < ε,

où u(t) est la solution de (3) associée à u0.

Pour l’équation (3), Cazenave et Lions [7] ont montré en 1982 que les ondes
stationnaires associées aux états fondamentaux de (4) sont stables dans H1(RN)
si 1 < p < 1 + 4

N
. Leur approche repose sur le fait que les états fondamentaux

peuvent, dans ce cas, être caractérisés comme des minimiseurs de S sur une sphère
de L2(RN). Leur résultat est optimal, dans la mesure où l’onde stationnaire est
instable si 1 + 4

N
6 p < 1 + 4

N−2
(avec 4

N−2
= +∞ si N = 1, 2), voir [2, 34].

Cette approche s’est avérée efficace dans de nombreuses situations. Cependant, elle
présente deux inconvénients. D’une part, la stabilité obtenue par cette approche
correspond à une notion de stabilité potentiellement plus faible que celle de stabilité
orbitale. En effet, ce qu’on montre par cette méthode est la stabilité de l’ensemble des
états fondamentaux ; or cet ensemble ne cöıncide avec l’orbite de l’onde stationnaire
que s’il y a unicité de l’état fondamental aux symétries de l’équation près. D’autre
part, cette approche est intimement liée aux états fondamentaux et ne permet pas
de traiter d’autres états. En particulier, les solutions obtenues dans le Théorème 1
ne sont ni forcément uniques, ni caractérisées comme des minimiseurs de S, et on
ne peut pas recourir à l’approche de Cazenave et Lions pour étudier leur stabilité.

À la même période, en 1985, Shatah et Strauss [31] ont introduit une méthode
permettant d’étudier la stabilité et l’instabilité des équations non linéaires de Schrö-
dinger et Klein-Gordon. Ils ont ensuite développé cette méthode en collaboration
avec Grillakis [14, 15] pour traiter de systèmes hamiltoniens très généraux. Dans le
cas de (1), cette théorie permet de déterminer si l’onde stationnaire eiωtϕω(x) est
stable ou instable en fonction de deux critères :

(critère spectral) nombre de valeurs propres négatives de S ′′(ϕω),
(critère de pente) signe de ∂

∂ω
‖ϕω‖2

2.

Cette théorie de Grillakis, Shatah et Strauss se révèle être très efficace dans
des situations où on connâıt explicitement la dépendance de la famille (ϕω) dans le
paramètre ω. C’est notamment le cas lorsque la non-linéarité est de type puissance,
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éventuellement avec une dépendance en espace ✓ simple ✔, par exemple, lorsque
f(x, s) = |x|−b|s|p−1s.

Cependant, dès que la dépendance de la famille (ϕω) dans le paramètre ω n’est
plus explicite, cette théorie devient très difficile à mettre en œuvre. De ce point
de vue, la situation du Théorème 1 est très défavorable, car la dépendance dans le
paramètre ω n’est même pas nécessairement continue. Malgré tout, il est possible
de dériver des travaux de Grillakis, Shatah et Strauss un critère de stabilité basé
sur une forme de coercitivité pour S ′′(ϕω). Ce critère sera plus difficile à vérifier en
pratique, mais vaudra dans des situations où on ne peut pas obtenir le critère de
pente. Plus précisément, si pour v ∈ H1(RN) telle que (v, ϕω)2 = (v, iϕω)2 = 0 on a

(critère de coercivité) 〈S ′′(ϕω)v, v〉 > C‖v‖2
H1(RN ),

avec C > 0 indépendant de v, alors l’onde stationnaire eiωtϕω(x) est stable dans
H1(RN). Dans le chapitre 1, on exploite ce critère pour prouver la stabilité des
solutions du Théorème 1.

Théorème 2. On suppose que la non-linéarité est de la forme V (x)g(s) et vérifie
(H1)-(H2) avec 1 < p < 4−2b

N
. Alors il existe 0 < ω1 6 ω0 tel que pour ω ∈ (0, ω1)

les ondes stationnaires eiωtϕω(x) obtenues dans le Théorème 1 sont stables dans
H1(RN).

Notre point de départ pour prouver le Théorème 2 est le travail de de Bouard
et Fukuizumi [8] en 2005. Dans cet article, les auteurs étudient le même type
d’équations en se restreignant à des non-linéarités de type puissance et sous des
hypothèses plus fortes sur le potentiel V . Le plan d’étude de la stabilité est le suivant.
Tout d’abord, on montre un résultat de convergence des solutions obtenues dans le
Théorème 1 vers l’unique solution positive ψ du problème limite

−∆ψ + ψ − 1

|x|b |ψ|
p−1ψ = 0.

Puis, à l’aide d’une étude spectrale, on montre le critère de coercivité pour le
problème limite. La partie difficile de cette étude spectrale consiste à prouver un
résultat de non-dégénérescence de l’opérateur S ′′(ψ). Bien que ce résultat soit déjà
énoncé dans [8], la preuve qui y est donnée comporte plusieurs lacunes. On donne
dans le chapitre 1 une preuve complète de ce résultat de non-dégénérescence. On
conclut en montrant que le critère de coercivité est vérifié pour ω petit.

Les méthodes développées dans le chapitre 1 de cette thèse ont été employées
avec succès par Kikuchi [22] dans le contexte de l’équation de Schrödinger-Poisson-
Slater pour prouver un résultat d’existence et de stabilité d’ondes stationnaires.
D’autre part, Genoud et Stuart [12] ont également abordé des questions d’existence
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et de stabilité pour des problèmes du type (1) avec une non-linéarité de la forme
V (x)|s|p−1s. Sous des hypothèses plus fortes sur V , ils obtiennent l’existence de
solutions par une méthode de bifurcation et étudient leur stabilité ou instabilité.

Le deuxième chapitre de cette thèse traite de la stabilité et de l’instabilité des
ondes stationnaires de l’équation

i∂tu+ ∂xxu+ γuδ + |u|p−1u = 0, (5)

où x ∈ R, δ désigne la distribution de Dirac à l’origine et γ un paramètre réel. Ce type
d’équation intervient notamment en optique non linéaire ou dans la modélisation de
brins d’ADN comportant certains défauts. Si cette équation est utilisée des physiciens
depuis les années 1990, la première étude mathématique rigoureuse semble due
à Goodman, Holmes et Weinstein [13] et date de 2004. Même si la question des
ondes stationnaires et de leur stabilité est évoquée dans cette étude, les auteurs se
concentrent surtout sur l’impact de la masse de Dirac sur l’évolution de la solution
de l’équation lorsque la donnée initiale est un état fondamental de l’équation non
perturbée localisé loin de 0. Plusieurs autres études ont été réalisées dans le même
esprit, notamment par Holmer, Marzuola et Zworski [16, 17].

L’équation stationnaire correspondant à (5) est

−∂xxu+ ωu− γuδ − |u|p−1u = 0.

Pour ω > γ2/4, cette équation admet une solution positive, explicite, unique, donnée
par (voir [10, 11, 13])

ϕω(x) =

[
(p+ 1)ω

2
sech2

(
(p− 1)

√
ω

2
|x| + tanh−1

(
γ

2
√
ω

))] 1
p−1

.

Puisque ϕω est connue explicitement, le calcul de la dérivée du carré de la norme
L2(RN) de ϕω en fonction de ω est possible et la méthode de Grillakis, Shatah
et Strauss s’avère naturellement la plus adaptée pour l’étude de la stabilité ou de
l’instabilité des ondes stationnaires de (5). Néanmoins, dans la résolution de ce
problème, un obstacle majeur demeure : déterminer le critère spectral, c’est à dire
de déterminer le nombre de valeurs propres négatives de S ′′(ϕω), où

S(v) =
1

2
‖∂xv‖2

2 +
ω

2
‖v‖2

2 −
γ

2
|v(0)|2 − 1

p+ 1
‖v‖p+1

p+1.

Le travail présenté dans le chapitre 2 est motivé par les questions laissées ouvertes
dans l’étude récente de Fukuizumi et Jeanjean [10]. En particulier, dans [10], les
auteurs établissent une caractérisation variationnelle de ϕω comme minimiseur de
S(v) sur une certaine contrainte et s’en servent pour déterminer le critère spectral.
Dans le cas γ > 0, leur méthode permet de retrouver de manière simple les résultats
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déjà obtenus par Fukuizumi, Ohta et Ozawa [11]. Il n’en va pas de même dans
le cas γ < 0 où ils sont contraints de considérer la stabilité uniquement pour des
perturbations radiales.

Dans le chapitre 2, nous abordons l’étude du critère spectral sous un autre angle.
En s’appuyant sur le fait que le spectre de S ′′(ϕω) est connu depuis les travaux
de Weinstein [35] quand γ = 0, on analyse son comportement lorsqu’on perturbe
légèrement γ en positif ou en négatif. Une partie centrale du travail consiste à prouver
que le spectre de l’opérateur S ′′(ϕω) varie en fonction de γ de façon suffisamment
régulière pour pouvoir faire cette analyse. Ensuite, on étend ce résultat à tous les
paramètres γ en utilisant le fait que le noyau de l’opérateur S ′′(ϕω) est réduit à {0}
lorsque γ 6= 0 et agit comme une barrière pour les valeurs propres. Combinée avec
le calcul de la dérivée du carré de la norme L2(RN) de ϕω, cette analyse spectrale
permet de retrouver les résultats de [10, 11] et d’obtenir un tableau complet de la
stabilité ou de l’instabilité de l’onde stationnaire en fonction des différentes valeurs
des paramètres ω et γ. En particulier, dans les cas qui étaient restés ouverts jusqu’à
présent, on obtient

Théorème 3. Soit γ < 0. Il existe ω2 > γ2/4 tel que l’onde stationnaire eiωtϕω(x)
est instable dans H1(R) pour tout ω > γ2/4 si 1 < p 6 3 et pour tout ω > ω2 si
3 < p < 5.

Il est naturel de vouloir en savoir plus sur la nature de l’instabilité mise en évi-
dence dans le Théorème 3 et les travaux [10, 11]. Néanmoins, l’un des inconvénients
de la théorie de Grillakis, Shatah et Strauss est qu’elle donne très peu d’éléments de
réponse à la question : comment se manifeste l’instabilité des ondes stationnaires ?
Une première étape pour répondre à cette question consiste à rechercher les cas où
l’onde stationnaire est instable par explosion. Précisément, on cherche à construire
une suite de données initiales (un) convergeant vers ϕω dans H1(R) et telle que la
norme H1(R) de la solution de (5) avec pour donnée initiale un explose en temps
fini. Notre résultat est le suivant.

Théorème 4. Soit γ 6 0, ω > γ2/4 et p > 5. Alors l’onde stationnaire eiωtϕω(x)
solution de (5) est instable par explosion.

Comme beaucoup de résultats mettant en évidence un phénomène d’explosion,
la preuve du Théorème 4 fait intervenir un résultat de type identité du viriel :

∂tt‖xu(t)‖2
2 = 8Q(u(t)) (6)

où Q(v) = ‖∂xv‖2
2 − γ

2
|v(0)|2 − p−1

2(p+1)
‖v‖p+1

p+1 pour v ∈ H1(R). Pour justifier les

calculs formels conduisant à (6), la plupart des preuves font intervenir la régularité
H2(R) du problème d’évolution. Cependant, dans le cas de (5), cette régularité fait
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défaut en raison de la présence de la masse de Dirac. Pour contourner cette difficulté,
nous prouvons (6) par une méthode d’approximation de la masse de Dirac par des
potentiels plus réguliers pour lesquels le résultat de viriel est connu.

Pour la preuve du Théorème 4, on se base sur la méthode introduite en 1981
par Berestycki et Cazenave [2]. Il s’agit de définir un ensemble de données initiales
générant chacune une solution explosive de (5) et de montrer qu’on peut prendre ces
données aussi proches de ϕω que désiré. Au cœur de la preuve de [2] est le fait que
l’état fondamental est un minimiseur de S sur la contrainte {Q(v) = 0}. Dans notre
cas, il est possible, mais long et délicat, de montrer que c’est encore vrai lorsque
5 < p < +∞, mais le cas p = 5 semble hors de portée. Alternativement, notre
méthode, qui consiste à introduire une seconde contrainte, permet de contourner
aisément cette difficulté.

Le Théorème 4 donne une caractérisation du phénomène d’instabilité lorsque
p > 5. Néanmoins, lorsque 1 < p < 5, il n’est pas difficile de montrer en utilisant
l’inégalité de Gagliardo-Nirenberg et les lois de conservation que les solutions sont
globales. En particulier, cela interdit tout phénomène d’instabilité par explosion.
Pour compléter l’étude analytique de (5), des simulations numériques réalisées par
Gadi Fibich et son équipe sont présentées à la fin du chapitre 2. Les résultats qu’ils
ont obtenus montrent notamment que l’instabilité du Théorème 4 peut se manifester
de deux manières différentes, éventuellement combinées : par dérive de la solution
en s’éloignant de la masse de Dirac, ou bien par un début d’explosion suivi d’une
forme d’oscillation autour d’un état stable.

En analysant la preuve du Théorème 4, on s’aperçoit que la méthode employée
n’est pas liée à la dimension 1 et simplifie pour une non-linéarité de type puissance
f(x, s) = |s|p−1s la preuve classique de [2] détaillée par Cazenave dans [6, section
8.2]. Or, dans [2], les auteurs ne se restreignent pas au cas des puissances et
considèrent une large classe de non-linéarités. Il s’avère que l’approche de la preuve
du Théorème 4 peut également s’étendre à des situations où la non-linéarité est
générale

iut + ∆u+ f(u) = 0 (7)

avec l’équation stationnaire correspondante

− ∆ϕ+ ωϕ = f(ϕ). (8)

On retrouve alors de façon plus simple le résultat de [2] en simplifiant légèrement
ses hypothèses. C’est le résultat principal du chapitre 3.

Théorème 5. On suppose que f vérifie certaines hypothèses, notamment que
la fonction h(s) := (sf(s) − 2F (s))s−(2+4/N) est strictement croissante sur
[0,+∞) et lims→0 h(s) = 0.
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Alors pour tout état fondamental ϕω de (8), l’onde stationnaire eiωtϕω(x) solution
de (7) est instable par explosion.

Outre l’introduction d’une double contrainte, l’un des ingrédients principaux de
notre preuve est l’utilisation des résultats de Jeanjean et Tanaka [20, 21] en 2003.
Ces résultats disent que, pratiquement sous les hypothèses de [3, 4], la fonctionnelle

S(v) :=
1

2
‖∇v‖2

2 +
ω

2
‖v‖2

2 −
∫

RN

F (v)dx

a une géométrie de col, c’est à dire que

Γ := {γ ∈ C([0, 1], H1(RN)), γ(0) = 0, S(γ(1)) < 0} 6= ∅, (9)

et c := inf
γ∈Γ

max
t∈[0,1]

S(γ(t)) > 0.

De plus, on a l’identité
m = c

entre le niveau de moindre énergie m et le niveau de col c.

La particularité essentielle de notre preuve est que nous ne résolvons jamais
explicitement de problème de minimisation. Nous utilisons juste les résultats de
Jeanjean et Tanaka pour faire le lien entre les différents problèmes de minimisation
que nous sommes amenés à considérer.

En collaboration avec Louis Jeanjean, nous avons cherché à savoir si les tra-
vaux [20, 21] ne pouvaient pas être exploités dans d’autres contextes, c’est l’objet
du quatrième chapitre de cette thèse. Ce chapitre est consacré à l’étude de ques-
tions d’instabilité pour l’équation de Klein-Gordon. Néanmoins, l’idée générale qui
traverse ce chapitre est que l’emploi de méthodes variationnelles récentes peut se
révéler fructueux dans les études de stabilité ou d’instabilité pour les équations de
Klein-Gordon ou Schrödinger comme pour d’autres équations ✓ à ondes solitaires ✔.

Nous illustrons l’utilisation des résultats de [20, 21] dans deux situations. Dans la
première, motivés par des travaux récents sur l’équation de Klein-Gordon [25, 26, 27],
nous établissons une caractérisation variationnelle des états fondamentaux comme
minimiseurs de S sur une grande famille de contraintes. L’équation d’évolution
considérée est l’équation de Klein-Gordon non linéaire avec une non-linéarité de
type puissance

utt − ∆u+ u = |u|p−1u

et l’équation stationnaire correspondante, pour ω2 < 1, est

− ∆ϕω + (1 − ω2)ϕω − |ϕω|p−1ϕω = 0. (10)
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Les travaux [25, 26, 27] présentent différents résultats d’instabilité par explosion en
temps fini ou infini. Chacune des preuves fait intervenir une ou plusieurs caractéri-
sations variationnelles des états fondamentaux de (10) comme minimiseurs de

S(v) :=
1

2
‖∇v‖2

2 +
1 − ω2

2
‖v‖2

2 −
1

p+ 1
‖v‖p+1

p+1

sur certaines contraintes Kα,β. La définition de ces contraintes est semblable à chaque
fois : pour un couple de réel (α, β), on pose

Kα,β := {v ∈ H1(RN) \ {0}
∣∣Kα,β(v) = 0}

où Kα,β(v) := ∂
∂λ
S(λαv(λβ · ))|λ=1 = 0.

Bien qu’elles suivent des schémas similaires, les preuves des résultats de minimi-
sation dans [25, 26, 27] soulèvent chacune des difficultés différentes, en particulier
pour l’élimination du paramètre de Lagrange. Au contraire, notre méthode donne
une preuve unifiée et courte pour une grande gamme de paramètres (α, β).

Théorème 6. Soit α, β ∈ R tels que
{

β < 0, α(p− 1) − 2β > 0 et 2α− β(N − 2) > 0
ou β > 0, α(p− 1) − 2β > 0 et 2α− βN > 0.

Soit ω ∈ (−1, 1) et ϕω un état fondamental de (10). Alors

S(ϕω) = min{S(v)
∣∣v ∈ Kα,β}.

L’idée de la preuve est la suivante : pour chaque v ∈ Kα,β, on construit un
chemin γ ∈ Γ (voir (9) pour la définition de Γ) tel que S atteint son maximum sur
γ en v. Cela permet d’en déduire que

c 6 min{S(v)
∣∣v ∈ Kα,β}.

On conclut en utilisant le fait que c = m = S(ϕω) et ϕω ∈ Kα,β.

Pour notre deuxième illustration, on considère une équation de Klein-Gordon
avec une non-linéarité générale

utt − ∆u = g(u). (11)

En 1985, Shatah [30] a montré en dimension N > 3 l’instabilité par explosion des
solutions stationnaires de (11) qui sont aussi des états fondamentaux de

− ∆ϕ = g(ϕ). (12)

Les hypothèses sur g sont quasiment celles nécessaires pour assurer l’existence
d’un état fondamental de (12). Nous montrons que le même type de résultat est
également valable lorsque N = 2.
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Théorème 7. Pour N = 2, on suppose que g vérifie certaines hypothèses, notam-
ment celles garantissant l’existence d’un état fondamental ϕ de (12). Alors ϕ vu
comme une solution stationnaire de (11) est instable par explosion.

L’une des différences principales entre le cas N = 2 et le cas N > 3 est liée à
l’identité de Pohozaev : toute solution v de (12) vérifie

N − 2

2
‖∇v‖2

2 = N

∫

RN

G(v)dx.

Lorsque N = 2, le membre de droite s’annule et on ne peut plus contrôler ‖∇v‖2
2.

Notre preuve permet de surmonter cette difficulté.
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Chapitre 1

An existence and stability result
for standing waves of nonlinear
Schrödinger equations

Abstract. We consider a nonlinear Schrödinger equation with a
nonlinearity of the form V (x)g(u). Assuming that V (x) behaves like
|x|−b at infinity and g(s) like |s|p−1s around 0, we prove the existence
and orbital stability of travelling waves if 1 < p < 1 + (4 − 2b)/N .

AMS Subject Classifications : 35J60, 35Q55, 37K45, 35B32

1.1 Introduction

This paper concerns the existence and orbital stability of standing waves for the
nonlinear Schrödinger equation

iut + ∆u+ V (x)g(u) = 0, (t, x) ∈ R × R
N , N > 3. (1.1)

Here u(t) ∈ H1(RN ,C), V is a real-valued potential and g is a nonlinearity satisfying
g(eiθs) = eiθg(s) for s ∈ R.

A solution of the form u(t, x) = eiλtϕ(x) where λ ∈ R is called a standing wave.
For solutions of this type with ϕ ∈ H1(RN ,R), (1.1) is equivalent to

− ∆ϕ+ λϕ = V (x)g(ϕ), ϕ ∈ H1(RN ,R). (1.2)
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1. Existence and stability for standing waves of NLS

We are interested in the existence of positive solutions for (1.2) for small λ > 0. In
addition we study the stability of the corresponding solutions of (1.1).

In the autonomous case, i.e. when V is a constant, we refer to the fundamental
paper of Berestycki and Lions [2] where sufficient and almost necessary conditions
are derived for the existence in H1(RN ,R) of a solution of (1.2). When (1.2) is non
autonomous, only partial results are known. A major difficulty to overcome is the
lack of a priori bounds for the solutions. In contrast to the autonomous case where
using dilations and taking advantage of Pohozaev identity is at the heart of the
results of [2], no such device is available when V is non constant. Accordingly, most
of the works dealing with existence require g to be of power type, i.e. g(ϕ) = |ϕ|p−1ϕ
for a p > 1, or to satisfy the so-called Ambrosetti-Rabinowitz superquadraticity
condition :

∃µ > 2 such that 0 6 µG(s) 6 g(s)s, ∀s > 0, where G(s) =

∫ s

0

g(t)dt.

In this paper we prove the existence of solutions of (1.2), for small λ > 0, under
the following assumptions (H1)-(H4) where 0 < b < 2 and 1 < p < 1 + 4−2b

N−2
,

(H1) there exists γ > 2N/{(N + 2) − (N − 2)p} such that V ∈ Lγ
loc(R

N);

(H2) lim
|x|→+∞

V (x)|x|b = 1;

(H3) there exists ε > 0 such that g : [0, ε] → R is continuous;

(H4) lim
s→0+

g(s)

sp
= 1.

Our approach is variational. Since only conditions around 0 are imposed on g,
a first step will be to suitably extend g on all R. This leads to study a modified
problem but, as we shall see, the solutions we obtain for the modified problem have
the property to converge to zero in the L∞(RN)−norm as λ decrease to zero. Thus,
for sufficiently small λ > 0, they correspond to solutions of (1.2).

To get a solution of the modified equation we still face a lack of a priori bounds.
To overcome this difficulty we borrow and further develop a method introduced by
Berti and Bolle in a paper [3] which studies nonlinear wave equations. This method,
roughly, make it possible to show the boundedness of Palais-Smale sequences at the
mountain pass level for a class of functionals having a geometry sufficiently close
to the one of the functional corresponding to the case g(ϕ) = |ϕ|p−1ϕ. It relies
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on penalizing the functional outside the region where one expects to find a critical
point. Our existence result is the following.

Theorem 1.1. Assume (H1)-(H4). Then, there exists λ0 > 0 such that for all
λ ∈ (0, λ0], (1.2) has a non-trivial solution ϕλ. Furthermore, ϕλ has the following
properties.

1. For all x ∈ R
N , ϕλ > 0.

2. When λ→ 0, ||∇ϕλ||L2(RN ) → 0 and ||ϕλ||L∞(RN ) → 0.

Since our solutions converge to zero in Ḣ1(RN ,R) and L∞(RN) as λ→ 0, 0 is a
bifurcation point of (1.2). With our approach we can (see Remark 1.9) obtain sharp
estimates on the Lp(RN)−bifurcation of our solutions as λ→ 0. We refer to [14, 21]
for previous bifurcations results.

Once the existence of solutions of (1.2) is proved we consider the stability of
the associated travelling waves. The study of the orbital stability of solutions of
(1.1) has seen the contributions of many authors. It is of particular significance
for physical reasons and we refer the reader to the introductions of [9, 20, 22] for
motivations of studying this problem. In the case V constant and g(u) = |u|p−1u,
Cazenave and Lions [5] proved the stability of the ground state solutions of (1.2)
when 1 < p < 1+ 4

N
and for any λ > 0. On the contrary, when 1+ 4

N
< p < 1+ 4

N−2
,

Berestycki and Cazenave [1] showed the instability of bounded states of (1.2) and
when p = 1 + 4

N
, Weinstein [24] proved that instability also holds. We also mention

[12] for a general stability theory for solitary waves of Hamiltonian systems.

In [5] both the autonomous character of (1.2) and the fact that g is homogeneous
are essential in the proofs. Also dealing with an homogeneous and to some extend
autonomous nonlinearity seems essential to use directly the results of [12] (see
nevertheless [18]). When (1.2) is non autonomous only partial results are known
so far (see [4, 8, 9, 13, 20, 22] and the references therein). Directly related to our
stability result is a recent work of de Bouard and Fukuizumi [6] where stability
of positive ground states of (1.2) is obtain for g(u) = |u|p−1u under the following
conditions on V :

(V1) V > 0, V 6≡ 0, V ∈ C(RN \ {0},R), V ∈ Lθ∗(|x| 6 1), where
θ∗ = 2N/{(N + 2) − (N − 2)p},

(V2) There exists b ∈ (0, 2), C > 0 and a > {(N + 2) − (N − 2)p}/2 > b such that∣∣(V (x) − |x|−b
)∣∣ 6 C|x|−a for all x with |x| > 1.
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Under these assumptions and if 1 < p < 1 + (4 − 2b)/(N − 2) the existence of
ground states solutions follows immediately from the existing literature. In [6] de
Bouard and Fukuizumi proved that the corresponding standing waves are stable if
1 < p < 1 + (4 − 2b)/N and λ > 0 is small.

Our stability result, Theorem 1.2, extends the result of [6]. If we do borrow some
arguments from this paper, new ingredients are necessary to derive Theorem 1.2. In
particular, the fact that we do not know if the solutions obtained in Theorem 1.1 are
ground states is a new major difficulty. To state our stability result we need some
definitions and preliminary results. First, to check that the local Cauchy problem is
well posed for (1.1), in addition to (H1)-(H4), we require on g

(H5) g ∈ C1(R,R);

(H6) there exist C > 0 and α ∈ [0, 4
N−2

) such that lim sup
|s|→+∞

|g′(s)|
|s|α 6 C.

Clearly (H5)-(H6) are sufficient to guarantee that the condition

|g(v) − g(u)| 6 C(1 + |v|α + |u|α)|v − u| for all u, v ∈ R

introduced in Remark 4.3.2 of [4] holds. By [4] we then know that the Cauchy
problem for (1.1) is locally well posed.

For v ∈ H1(RN ,C) we write v = v1 + iv2. The space H1(RN ,C) will be equipped
with the norm

||v|| =
√

||v||22 + ||∇v||22
where ||v||22 = |v1|22 + |v2|22 and ||∇v||22 = |∇v1|22 + |∇v2|22. Here and elsewhere
| · |p denotes the usual norm on Lp(RN ,R). We also define on L2(RN ,C) the scalar
product

〈u, v〉2 =

∫

RN

Re(u(x)v(x))dx.

Finally, let the energy functional E and the charge Q on H1(RN ,C) be given by

E(v) =
1

2
||∇v||22 −

∫

RN

V (x)G(v)dx and Q(v) =
1

2
||v||22

where G(z) =

∫ |z|

0

g(t)dt for all z ∈ C. It follows from [4] that
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Proposition 1.1. Assume (H1)-(H6). Then, for every u0 ∈ H1(RN ,C) there exist
Tu0 > 0 and a unique solution u(t) ∈ C([0, Tu0), H

1(RN ,C)) with u(0) = u0 satisfying

E(u(t)) = E(u0), Q(u(t)) = Q(u0), for all t ∈ [0, Tu0).

Finally we require a stronger version of (H4).

(H7) lim
s→0+

g′(s)

psp−1
= 1.

Now by stability we mean

Definition 1.2. Let ϕλ be a solution of (1.2). We say that the travelling wave
u(x, t) = eiλtϕλ(x) associated to ϕλ is stable in H1(RN ,C) if for all ε > 0 there exists
δ > 0 with the following property. If u0 ∈ H1(RN ,C) is such that ||u0 − ϕλ|| < δ
and u(t) is a solution of (1.1) in some interval [0, Tu0) with u(0) = u0, then u(t) can
be continued to a solution in [0,+∞) and

sup
t∈[0,+∞)

inf
θ∈R

||u(t) − eiθϕλ|| < ε.

Our result is the following

Theorem 1.2. Assume (H1)-(H7), 1 < p < 1 + 4−2b
N

, and let (ϕλ) be the family of

solutions of (1.2) obtained in Theorem 1.1. Then there exists λ̃ > 0 such that for
all λ ∈ (0, λ̃] the travelling wave eiλtϕλ(x) is stable in H1(RN ,C).

From Theorem 1.2 we see that, for λ > 0 small enough, stability only depends
on the behaviour of V at infinity and of g around zero. Indeed, as it is shown in
[10], when V (x) = |x|−b instability occurs for g(u) = |u|p−1u if p > 1 + 4−2b

N
. To our

knowledge, Theorem 1.2 is the first result to enlighten this fact.

For v ∈ H1(RN ,C) and λ > 0 let

Sλ(v) =
1

2
(||∇v||22 + λ||v||22) −

∫

RN

V (x)G(v)dx.

Under our assumptions it is standard to check that Sλ is C2. Our proof of Theorem
1.2 relies on the following stability criterion established in [12].
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1. Existence and stability for standing waves of NLS

Proposition 1.3. Assume (H1)-(H7) and let ϕλ be a solution of (1.2). If there exists
δ > 0 such that for every v ∈ H1(RN ,C) satisfying 〈ϕλ, v〉2 = 0 and 〈iϕλ, v〉2 = 0
we have

〈S ′′
λ(ϕλ)v, v〉 > δ||v||2,

then the standing wave eiλtϕλ(x) is stable in H1(RN ,C).

To check this criterion, following an approach laid down in [7], we first show, in
Subsection 1.3.1, that our solutions (ϕλ) properly rescaled converge in H1(RN) to
the unique positive solution ψ ∈ H1(RN ,R) of the limit equation

− ∆u+ u =
1

|x|b |u|
p−1u, u ∈ H1(RN ,R). (1.3)

Then we derive, see Subsection 1.3.2, some properties of ψ ∈ H1(RN ,R), in
particular we show that it is non-degenerate. Finally, in Subsection 3.3, we show
that the conclusion of Proposition 1.3 holds.

The paper is organized as follows. In Section 1.2 we establish Theorem 1.1 and
in Section 1.3 we prove Theorem 1.2. An uniqueness result which is necessary for
the proof of Theorem 1.2 is establish, using results of [26], in the Appendix.

Notations Throughout the article the letter C will denote various positive
constants whose exact value may change from line to line but are not essential
to the analysis of the problem. Also we make the convention that when we take a
subsequence of a sequence (un) we denote it again by (un).

1.2 Existence

This section is devoted to the proof of Theorem 1.1. For this we use a variational
approach and consequently a first step is to extend the nonlinearity g outside of
[0, ε]. Let H ≡ H1(RN ,R) be equipped with its standard norm | · |H . We consider
the modified problem

− ∆v + λv = V (x)f(v), v ∈ H (1.4)

where

f(s) =





g(ε) if s > ε
g(s) if s ∈ [0, ε]
0 if s 6 0.
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1.2 Existence

It is convenient to write (1.4) as

− ∆v + λv = V (x) (vp
+ + r(v)) , v ∈ H (1.5)

with v+ = max{v, 0} and r(s) = f(s) − sp
+.

To develop our variational procedure we rescaled (1.5) in order to eliminate λ > 0
from the linear part. For v ∈ H, let ṽ ∈ H be such that

v(x) = λ
2−b

2(p−1) ṽ(
√
λx). (1.6)

Clearly v ∈ H satisfies (1.5) if and only if ṽ ∈ H satisfies

− ∆ṽ + ṽ = Vλ(x)ṽ
p
+ + V (

x√
λ

)r̃(ṽ) (1.7)

where
r̃(s) = λ−

2−b
2(p−1)

−1r(λ
2−b

2(p−1) s) and Vλ(x) = λ−b/2V (x/
√
λ). (1.8)

A solution of (1.7) will be obtained as a critical point of the functional S̃λ : H → R

given by

S̃λ(v) =
1

2
|v|2H − 1

p+ 1

∫

RN

Vλ(x)v(x)
p+1
+ dx− R̃λ(v)

with R̃λ(v) =

∫

RN

λb/2Vλ(x)

(∫ |v|

0

r̃(t)dt

)
dx.

By (H1) we can fix a p′ ∈ (p, 1 + (4 − 2b)/(N − 2)) such that
2N/{(N + 2) − (N − 2)p′} < γ. The following estimate will be crucial through-
out the paper.

Lemma 1.4. Assume (H1)-(H4). Then for any q ∈ [1, p′] there exists C > 0 such
that for any λ > 0 sufficiently small and all v ∈ H,

∣∣∣∣
∫

RN

Vλ(x)|v(x)|q+1dx

∣∣∣∣ 6 C|v|q+1
H .

Proof. By the assumptions (H1)-(H2) there exists R > 0 such that

|V (x)| 6 2|x|−b, ∀ |x| > R and V ∈ Lγ(B(R)). (1.9)

Here B(R) = {x ∈ R
N : |x| < R}. We have

∣∣∣∣
∫

RN

Vλ(x)|v(x)|q+1dx

∣∣∣∣ 6

∣∣∣∣
∫

B(R)

Vλ(x)|v(x)|q+1dx

∣∣∣∣

+

∣∣∣∣
∫

RN\B(R)

Vλ(x)|v(x)|q+1dx

∣∣∣∣ . (1.10)
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1. Existence and stability for standing waves of NLS

By Hölder’s inequality,
∣∣∣∣
∫

B(R)

Vλ(x)|v(x)|q+1dx

∣∣∣∣ 6 |Vλ|Lθ(B(R)) |v|q+1
2∗ (1.11)

with θ = 2N/{(N + 2) − (N − 2)q}. But

|Vλ|θLθ(B(R)) = |Vλ|θLθ(B(
√

λR))
+ |Vλ|θLθ(B(R)\B(

√
λR))

(1.12)

and, since |Vλ|θLθ(B(
√

λR))
= λ−bθ/2+N/2 |V |Lθ(B(R)) with −bθ/2 + N/2 > 0, we can

assume that
|Vλ|Lθ(B(

√
λR)) 6 1. (1.13)

Also, from (1.9) it follows that Vλ(x) 6 2|x|−b on R
N\B(

√
λR). Thus

|Vλ|Lθ(B(R)\B(
√

λR)) 6 | 2

|x|b |Lθ(B(R)) 6 C, (1.14)

and ∣∣∣∣
∫

RN\B(R)

Vλ(x)|v(x)|q+1dx

∣∣∣∣ 6 C|v|q+1
q+1. (1.15)

Now, combining (1.10)-(1.15) and using Sobolev’s embeddings we get the required
estimate.

A first consequence of Lemma 1.4 is the following estimate on the “rest” R̃λ of
the functional S̃λ.

Lemma 1.5. Assume (H1)-(H4). Then there exist C > 0 and α > 0 such that for
all a > 0 there exists A > 0 such that

|R̃λ(v)| + |∇R̃λ(v)v| 6 C(a|v|p+1
H + λαA|v|p′+1

H ) (1.16)

for all λ > 0 sufficiently small and all v ∈ H.

Proof. From the definition of r and (H4), we see that for any a > 0 there exists
A > 0 such that

|r(s)| 6 a|s|p + A|s|p′ , ∀s ∈ R. (1.17)

This implies, see (1.8), that

|r̃(s)| 6 λ−b/2a|s|p + λ−b/2λαA|s|p′ , ∀s ∈ R (1.18)

with α =
(p′ − p)(2 − b)

2(p− 1)
> 0. As a consequence, for any v ∈ H,

|R̃λ(v)| 6
a

p+ 1

∫

RN

|Vλ(x)||v(x)|p+1dx+
λαA

p′ + 1

∫

RN

|Vλ(x)||v(x)|p
′+1dx
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1.2 Existence

and using Lemma 1.4 we get that

|R̃λ(v)| 6 C(a|v|p+1
H + λαA|v|p′+1

H ). (1.19)

Analogously, we can prove that

|∇R̃λ(v)v| 6 C(a|v|p+1
H + λαA|v|p′+1

H ). (1.20)

Combining (1.19) and (1.20) finishes the proof.

We shall obtain a critical point of S̃λ by a mountain pass type argument.
However, even though it is likely that S̃λ has a mountain pass geometry, showing
that the Palais-Smale sequences at the mountain pass level are bounded seems out
of reach under our weak assumptions on g. To overcome this difficulty we develop
an approach, inspired by [3], which consists in truncating the remainder term of S̃λ

outside of a ball centered at the origin and to show that, as λ > 0 goes to zero,
all Palais-Smale sequences at the mountain-pass level lie in this ball. Precisely, let
T > 0 be the truncation radius (its value will be indicated later) and consider a
smooth function ν : [0,+∞) → R such that





ν(s) = 1 for s ∈ [0, 1],
0 6 ν(s) 6 1 for s ∈ [1, 2],

ν(s) = 0 for s ∈ [2,+∞),
|ν ′|∞ 6 2.

For v ∈ H, we define

Ŝλ(v) =
1

2
|v|2H − 1

p+ 1

∫

RN

Vλ(x)v(x)
p+1
+ dx− R̂λ(v),

where R̂λ(v) = t(v)R̃λ(v) with t(v) := ν

( |v|2H
T 2

)
.

We have the following bounds on R̂λ(v) and ∇R̂λ(v)v

Lemma 1.6. Assume (H1)-(H4). Then there exists C > 0 such that for all a > 0,
there exists A > 0, satisfying for all v ∈ H

|R̂λ(v)| 6 C(aT p+1 + λαAT p′+1), (1.21)

|∇R̂λ(v)v| 6 C(aT p+1 + λαAT p′+1). (1.22)

Proof. Since t(v) = 0 for |v|H >
√

2T , (1.21) follows directly from Lemma 1.5. Also

∇R̂λ(v) = t(v)∇R̃λ(v)+ R̃λ(v)∇t(v) with ∇t(v)v = 2ν ′(
|v|2H
T 2

)
|v|2H
T 2

and thus we also

have (1.22).
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1. Existence and stability for standing waves of NLS

Lemma 1.7. Assume (H1)-(H4). Then there exists λ > 0 such that for all

λ ∈ (0, λ], Ŝλ has a mountain pass geometry. Also Ŝλ admits at the mountain
pass level c(λ) > 0 a critical point ϕ̃λ ∈ H \ {0} which is also a critical point for S̃λ.
Moreover there exists C > 0 such that |ϕ̃λ|H 6 C, ∀λ ∈ (0, λ].

Proof. Let us prove that Ŝλ has a mountain pass geometry for any λ > 0 sufficiently
small. Obviously, we have Ŝλ(0) = 0. Let a > 0. From Lemma 1.4 (used with q = p)
and Lemma 1.5 there exists A > 0 such that for v ∈ H

Ŝλ(v) >
1

2
|v|2H − C((1 + a)|v|p+1

H + λαA|v|p′+1
H ).

Thus, there exists δ > 0 small and m > 0 such that Ŝλ(v) > m > 0 for all v ∈ H
satisfying |v|H = δ, uniformly in λ if λ is small enough.

Now let ̟ ∈ C∞
0 (RN) \ {0} with ̟ > 0 and ̟ = 0 on B(1). Because of (H2),

there exists R > 0 such that

V (x) >
1

2|x|b if |x| > R.

Thus, for λ > 0 small enough

∫

RN

Vλ(x)̟(x)p+1dx >

∫

RN

1

2|x|b̟(x)p+1dx.

Defining ̟B := B̟ we observe that for B > 0 large enough R̂λ(̟B) = 0. Thus

letting D =
|̟|2H

2
and E =

∫
RN

1
2|x|b̟(x)p+1dx we have, for B > 0 large enough,

Ŝλ(̟B) 6 DB2 − EBp+1 < 0

for any λ > 0 sufficiently small.

Since Ŝλ has a mountain pass geometry, defining

c(λ) := inf
γ∈Γ

sup
s∈[0,1]

Ŝλ(γ(s))

where Γ := {γ ∈ C([0, 1], H) | γ(0) = 0, Ŝλ(γ(1)) < 0}, Ekeland’s principle gives the
existence of a Palais-Smale sequence at the mountain pass level c(λ). Namely of a
sequence (vn) ⊂ H such that

∇Ŝλ(vn) → 0, (1.23)

Ŝλ(vn) → c(λ). (1.24)
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1.2 Existence

Let us show that, if λ > 0 small enough, this Palais-Smale sequence lies, for n ∈ N

large, in the ball of H where Ŝλ and S̃λ coincide. We begin by an estimate on the
mountain pass level. For every t ∈ [0, 1] we have

Ŝλ(t̟B) 6 DB2t2 − EBp+1tp+1 + |R̂λ(t̟B)|.

Thanks to (1.21) and the definition of c(λ) this gives

c(λ) 6 W + C(aT p+1 + AλαT p′+1) (1.25)

with W = D
(

2D
(p+1)E

) 2
p−1 − E

(
2D

(p+1)E

) p+1
p−1

. Note that the constants W and C are

independent of T > 0 and of λ > 0 sufficiently small.

To prove that lim supn→∞ |vn|H < T we first show that (vn) is bounded
in H. Seeking a contradiction, we assume that, up to a subsequence,
|vn|H → +∞. Therefore, for n ∈ N large enough, we have |vn|2H > 2T 2 and thus

R̂λ(vn) = ∇R̂λ(vn)vn = 0. It follows that

2Ŝλ(vn) −∇Ŝλ(vn)vn =

(
1 − 2

p+ 1

)∫

RN

Vλ(x)(vn(x))p+1
+ dx.

Furthermore, since Ŝλ(vn) → c(λ), we can assume that Ŝλ(vn) 6 2c(λ) and we get
(

1 − 2

p+ 1

)∫

RN

Vλ(x)(vn(x))p+1
+ dx 6 4c(λ) + ‖∇Ŝλ(vn)‖|vn|H .

Consequently we have

|vn|2H = ∇Ŝλ(vn)vn +

∫

RN

Vλ(x)(vn(x))p+1
+ dx

6

(
1 +

p+ 1

p− 1

)
‖∇Ŝλ(vn)‖|vn|H + 4

(
p+ 1

p− 1

)
c(λ)

and therefore

|vn|H 6

(
1 +

p+ 1

p− 1

)
‖∇Ŝλ(vn)‖ + 4

(
p+ 1

p− 1

)
c(λ)|vn|−1

H .

Since the right member tends to 0 as n → ∞ we have a contradiction. Thus (vn)

stays bounded in H and, in particular, ∇Ŝλ(vn)vn → 0.

Let us now show that |vn|H < T for n ∈ N large. Note that, since Ŝλ (and
thus (vn)) depends on T , the value of T can not be changed. Still arguing by
contradiction, we assume that limn→∞ |vn|H ∈ [T,+∞). We have

Ŝλ(vn)− 1

p+ 1
∇Ŝλ(vn)vn =

(
1

2
− 1

p+ 1

)
|vn|2H−R̂λ(vn)+

1

p+ 1
∇R̂λ(vn)vn. (1.26)
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1. Existence and stability for standing waves of NLS

Then using (1.21)-(1.25) and passing to the limit in (1.26), we obtain

(
1

2
− 1

p+ 1

)
T 2

6 W + C(aT p+1 + AλαT 2⋆

).

At this point, choosing a > 0 sufficiently small, we see that if T 2 > 2(p+1)
p−1

W we

obtain a contradiction when λ > 0 is small enough. This proves that (vn) lies in the

region where S̃λ and Ŝλ coincide.

Now since (vn) ⊂ H is bounded we can assume that vn ⇀ v∞ weakly in H. To
end the proof we just need to show that vn → v∞ strongly in H. The condition
∇Ŝλ(vn) → 0 is just

− ∆vn + vn − Vλ(x)(vn)p
+ − V (

x√
λ

)r̃(vn) → 0 in H−1. (1.27)

Because of the decrease of V to 0 at infinity we have, in a standard way, that

Vλ(x)(vn)p
+ + V (

x√
λ

)r̃(vn) → Vλ(x)(v∞)p
+ + V (

x√
λ

)r̃(v∞) in H−1. (1.28)

Now let L : H → H−1 be defined by

〈Lu, v〉 =

∫

RN

(∇u∇v + uv)dx.

The operator L is invertible, therefore, from (1.27)-(1.28),

vn → L−1

(
Vλ(x)(v∞)p

+ + V (
x√
λ

)r̃(v∞)

)
.

By uniqueness of the limit, we have vn → v∞ in H and by continuity v∞ is a solution
of (1.7) at the mountain pass level c(λ). We set ϕ̃λ = v∞. At this point the lemma
is proved.

Lemma 1.8. Assume (H1)-(H4). The solutions of (1.7), obtained in Lemma 1.7
have, in addition, the following properties

(i) |ϕ̃λ|∞ 6 C, for a C > 0 independent of λ ∈ (0, λ],

(ii) for all x ∈ R
N , ϕ̃λ(x) > 0.

Proof. Starting from (1.4) and the change of variables (1.6) we see that our solutions
ϕ̃λ satisfy

− ∆ϕ̃λ + ϕ̃λ = λ−
2−b

2(p−1)
−1V (

x√
λ

)f(λ
2−b

2(p−1) ϕ̃λ). (1.29)
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We see from (H4) that |f(s)| 6 C|s|p for a C > 0, ∀s ∈ R. Thus

∣∣∣∣λ
− 2−b

2(p−1)
−1V (

x√
λ

)f(λ
2−b

2(p−1) ϕ̃λ)

∣∣∣∣ 6 C|Vλ(x)||ϕ̃λ|p (1.30)

with a C > 0, independent of λ ∈ (0, λ]. To obtain (i) we follow a bootstrap
argument. The crucial point is to insure that the estimates we get are independent
of λ ∈ (0, λ].

Let θ = 2N/{(N + 2) − (N − 2)p}. Assuming that ϕ̃λ ∈ Lq(RN) we claim that

(claim) Vλ|ϕ̃λ|p ∈ Lr(RN) with r = θq
θp+q

and is bounded in Lr(RN) as a function

of |ϕ̃λ|q only.

To see this we choose R > 0 such that |V (x)| 6 2|x|−b, ∀|x| > R and we write
R

N = B(
√
λR) ∪ (B(R)\B(

√
λR)) ∪ (RN\B(R)).

On R
N\B(R) since |Vλ(x)| 6 C, for a C > 0 we directly have

|Vλ||ϕ̃λ|p ∈ L
q

p (RN\B(R))

and thus, since Vλϕ̃
p
λ ∈ L1(RN \B(R)) and

q

p
> r, we have by interpolation

|Vλ||ϕ̃λ|p ∈ Lr(RN\B(R)).

On B(R)\B(
√
λR) we have |Vλ(x)| 6 2|x|−b with |x|−b ∈ Lθ(B(R)). Thus

∫

B(R)\B(
√

λR)

|Vλ(x)|r|ϕ̃λ|rpdx 6

(∫

B(R)

1

|x|bθ dx
) q

q+θp
(∫

B(R)

|ϕ̃λ|qdx
) θp

q+θp

6 C|ϕ̃λ|
θqp

q+θp
q .

On B(
√
λR) we have

∫

B(
√

λR)

|Vλ(x)|r|ϕ̃λ|rpdx 6

(∫

B(
√

λR)

|Vλ(x)|θdx
) q

q+θp
(∫

B(
√

λR)

|ϕ̃λ|qdx
) θp

q+θp

with
|Vλ|θLθ(B(

√
λR))

= λ−bθ/2+N/2 |V |θLθ(B(R)) → 0

and this proves our claim. Now since Vλ|ϕ̃λ|p ∈ Lr(RN) we have ϕ̃λ ∈ W 2,r(RN) and
thus ϕ̃λ ∈ Lt(RN) with t = Nr

N−2r
.
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1. Existence and stability for standing waves of NLS

It is now easy to check that, choosing q = 2∗, we have t > q and that the boot-
strap will give, in a finite number of steps, r > N

2
so that ϕ̃λ ∈ W 2,r(RN) ⊂ L∞(RN).

In addition, since for a C > 0, |ϕ̃λ|H 6 C,∀λ ∈ (0, λ] we have, for a C > 0,
|ϕ̃λ|2∗ 6 C,∀λ ∈ (0, λ] and by our claim the various constants of the Sobolev’s
embeddings are independent of λ ∈ (0, λ]. This proves (i).

For (ii), we argue as follows. Let ϕ = ϕ+ − ϕ− where ϕ+ = max{ϕ, 0} and
ϕ− = max{−ϕ, 0} and suppose that ϕ satisfy

−∆ϕ+ ϕ = V

(
x√
λ

)
f̃(ϕ)

with f̃ = 0 if s 6 0. We know that ϕ+, ϕ− ∈ H. Then, by multiplying by ϕ− and
integrating, we obtain

−
∫

RN

|∇ϕ−|2 − ϕ2
− = 0,

Therefore ϕ− = 0.

Now we can give the

Proof of Theorem 1.1. Taking into account Lemmas 1.7 and 1.8 all that remains to
show is that |ϕλ|H → 0 and |ϕλ|∞ → 0, as λ→ 0, when ϕλ is given by

ϕλ(x) = λ
2−b

2(p−1) ϕ̃λ(
√
λx).

Since 2−b
2(p−1)

> 0 we immediately get, from Lemma 1.8, that |ϕλ|∞ → 0 and this

proves, in particular, that ϕλ is solution of (1.2) when λ > 0 is small enough. Now,
since p < 1 + 4−2b

N
we see from direct calculations that |ϕλ|H → 0.

Remark 1.9. We deduce from the proof of Theorem 1.1 that (1.2) admit solutions
ϕλ ∈ H which satisfy, for any λ > 0 small enough,

|ϕλ|q 6 C|λ|
2−b

2(p−1)
− N

2q if 1 6 q <∞ and |ϕλ|∞ 6 C|λ|
2−b

2(p−1) .

These decay estimates should be compared with the ones obtained in Theorem 5.9
of [21]. The comparison suggests that using a rescaling approach, as in the present
paper, is fruitful to get the sharpest bifurcation estimates.

1.3 Stability

In this section we prove Theorem 1.2. The proof is divided into three steps. First
we prove the convergence in H of the solutions (ϕ̃λ) of the rescaled problem to the
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unique positive solution ψ ∈ H of the limit problem

− ∆ϕ+ ϕ =
1

|x|b |ϕ|
p−1ϕ, ϕ ∈ H. (1.31)

Existence for (1.31) is standard because of the compactness of the nonlinear term
and can, for example, be obtained by minimizing S under the constraint I(v) = 0
for v ∈ H\{0} where

S(v) =
1

2
|v|2H − 1

p+ 1

∫

RN

1

|x|b |v(x)|
p+1dx, (1.32)

I(v) = |v|2H −
∫

RN

1

|x|b |v(x)|
p+1dx. (1.33)

We know from [11] that positive solutions of (1.31) are radial. They also decay
exponentially at infinity. The uniqueness of ψ ∈ H follows from [26].

Secondly, we establish some additional properties of the limit problem. In
particular we prove that ψ ∈ H is non degenerate.

In the third step, after having translated the stability criterion in the rescaled
variables, we prove that it holds.

Notation Since in addition to (H1)-(H4) we now assume (H5)-(H7), we are
somehow in the case of the modified problem, and therefore we will use the same
notations. In particular, r will be now defined by

r(s) = g(s) − |s|p−1s.

1.3.1 A convergence lemma

We start with a key technical result.

Lemma 1.10. Assume (H1)-(H4). Let (vλ) ⊂ H be a bounded sequence in H and
q ∈ [1, p′]. Then we have, as λ→ 0,

∫

RN

∣∣∣∣
1

|x|b − Vλ(x)

∣∣∣∣ |vλ(x)|q+1dx→ 0.

Proof. For R > 0 we write
∫

RN

∣∣∣∣
1

|x|b − Vλ(x)

∣∣∣∣ |vλ(x)|q+1dx 6

∫

B(
√

λR)

∣∣∣∣
1

|x|b − Vλ(x)

∣∣∣∣ |vλ(x)|q+1dx

+

∫

RN\B(
√

λR)

∣∣∣∣
1

|x|b − Vλ(x)

∣∣∣∣ |vλ(x)|q+1dx.
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1. Existence and stability for standing waves of NLS

Let ε > 0 be arbitrary. Fixing R > 0 large enough we have

∣∣∣∣
1

|x|b − Vλ(x)

∣∣∣∣ 6
ε

|x|b for x ∈ R
N\B(

√
λR).

Thus
∫

RN\B(
√

λR)

∣∣∣∣
1

|x|b − Vλ(x)

∣∣∣∣ |vλ(x)|q+1dx 6 ε

∫

B(1)\B(
√

λR)

1

|x|b |vλ(x)|q+1dx

+ ε

∫

RN\B(1)

|vλ(x)|q+1dx

with, for θ = 2N/{(N + 2) − (N − 2)q},
∫

B(1)\B(
√

λR)

1

|x|b |vλ(x)|q+1dx 6 | 1

|x|b |Lθ(B(1))|vλ|q+1
2∗ 6 C

and ∫

RN\B(1)

|vλ(x)|q+1dx 6 |vλ|q+1
q+1 6 C.

Now,

∫

B(
√

λR)

∣∣∣∣
1

|x|b − Vλ(x)

∣∣∣∣ |vλ(x)|q+1dx 6

(
| 1

|x|b |Lθ(B(
√

λR)) + |Vλ|Lθ(B(
√

λR))

)
|vλ|q+1

2∗

and since

| 1

|x|b |Lθ(B(
√

λR)) → 0 and |Vλ|Lθ(B(
√

λR)) = λ−bθ/2+N/2 |V |Lθ(B(R)) → 0

as λ→ 0, this ends the proof.

Now the main result of this subsection is

Lemma 1.11. Assume (H1)-(H4). Then the solutions (ϕ̃λ)λ of the rescaled equation
(1.7) satisfy

lim
λ→0

|ϕ̃λ − ψ|H = 0.

Proof. We divide the proof into two steps. First, we prove that there exists
(µ(λ)) ⊂ R such that µ(λ) → 1 and (µ(λ)ϕ̃λ) is a minimizing sequence for

min{S(v), v ∈ H \ {0}, I(v) = 0}. (1.34)
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Secondly, using this information, we prove the convergence of (ϕ̃λ) to ψ.

We begin by showing that lim supλ→0 S(ϕ̃λ) 6 S(ψ). Let γ0 : [0, 1] → H be
such that γ0(t) := Ctψ, for a C > 0. Then, fixing C > 0 large enough, we have
S(γ0(1)) < 0 and S(ψ) = maxt∈[0,1] S(γ0(t)) as it is easily seen from the simple
“radial” behaviour of S.

Let ε > 0 be arbitrary. From Lemmas 1.5 and 1.10 we see that, for any λ > 0
small enough,

|Ŝλ(γ0(s)) − S(γ0(s))| 6 ε, ∀s ∈ [0, 1]

and since Ŝλ(ϕ̃λ) = c(λ) it follows that

S̃λ(ϕ̃λ) = Ŝλ(ϕ̃λ) 6 max
s∈[0,1]

Ŝλ(γ0(s)) 6 max
s∈[0,1]

S(γ0(s)) + ε = S(ψ) + ε.

Thus lim sup
λ→0

S̃λ(ϕ̃λ) 6 S(ψ). Now, using Lemmas 1.5 and 1.10, we have

lim
λ→0

|S(ϕ̃λ) − S̃λ(ϕ̃λ)| = 0

and we deduce that lim sup
λ→0

S(ϕ̃λ) 6 S(ψ).

Let us now show the existence of a sequence (µ(λ)) such that µ(λ) → 1 and
I(µ(λ)ϕ̃λ) = 0. Since ∇S̃λ(ϕ̃λ)ϕ̃λ = 0 we have

I(ϕ̃λ) = −
∫

RN

(
1

|x|b − Vλ(x)

)
|ϕ̃λ|p+1dx+ ∇R̃λ(ϕ̃λ)ϕ̃λ.

Thus by Lemmas 1.5 and 1.10, I(ϕ̃λ) → 0. Let µ(λ) :=

(
|ϕ̃λ|2H∫

RN
1

|x|b |ϕ̃λ|p+1dx

) 1
p−1

.

Then I(µ(λ)ϕ̃λ) = 0 and we have

|µ(λ)p−1 − 1| =
|I(ϕ̃λ)|∫

RN
1

|x|b |ϕ̃λ|p+1dx
.

From the mountain pass geometry and since ∇S̃λ(ϕ̃λ)ϕ̃λ = 0 the denominator stays
bounded away from 0 and since I(ϕ̃λ) → 0 we deduce that limλ→0 µ(λ) = 1. Thus,
by continuity of S, we have

lim sup
λ→0

S(µ(λ)ϕ̃λ) = lim sup
λ→0

S(ϕ̃λ) 6 S(ψ)

and since I(µ(λ)ϕ̃λ) = 0, (µ(λ)ϕ̃λ) is a minimizing sequence for (1.34).
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1. Existence and stability for standing waves of NLS

Now, using this information, we show the convergence of (ϕ̃λ) to ψ in H. Since
(µ(λ)ϕ̃λ) is bounded, there exists ϕ̃0 such that, up to a subsequence, µ(λ)ϕ̃λ ⇀ ϕ̃0

weakly in H. Clearly, the minimizing sequences of (1.34) are the minimizing
sequences of

min{|v|2H , v ∈ H \ {0}, I(v) = 0},

and since for v ∈ H such that I(v) < 0 there exists 0 < t < 1 such that I(tv) = 0,
(1.34) is also equivalent to

min{|v|2H , v ∈ H \ {0}, I(v) 6 0}.

If we assume that

|ϕ̃0|2H < lim sup
λ→0

|µ(λ)ϕ̃λ|2H = |ψ|2H (1.35)

since, as it can be prove in a standard way,

lim
λ→0

∫

RN

1

|x|b |µ(λ)ϕ̃λ|p+1dx =

∫

RN

1

|x|b |ϕ̃0|p+1dx

we get that

I(ϕ̃0) < lim sup
λ→0

I(µ(λ)ϕ̃λ) = 0.

Thus (1.35) contradicts the variational characterization of ψ ∈ H. We deduce that
µ(λ)ϕ̃λ → ϕ̃0 strongly in H. In particular ϕ̃0 is a minimizer of (1.34) and thus, by
uniqueness, ϕ̃0 = ψ.

1.3.2 Further properties of the limit problem

We define the self adjoint operator L1 : D(L1) ⊂ L2(RN) → L2(RN) by

L1 = −∆ + 1 − p
1

|x|bψ
p−1

where D(L1) = {v ∈ H2(RN) : |x|−bψp−1v ∈ L2(RN)}.

Proposition 1.12. If v ∈ D(L1) satisfies L1v = 0 then v = 0.

In the same spirit as Theorem 2.5 in [16], we performed a reduction of the problem
by proving that the kernel of L1 contains only radial functions.

Lemma 1.13. If v ∈ D(L1) satisfies L1v = 0 then v ∈ H1
rad(R

N).
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Before proving Lemma 1.13, we introduce some notations and recall some
properties of spherical harmonics.

Let Hk be the space of spherical harmonics of degree k

with dimHk = ak =

(
k

N + k − 1

)
−
(

k − 2
N + k − 3

)
for k > 2, a1 = N, a0 = 1.

For each k let {Y k
1 , . . . , Y

k
ak
} be an orthonormal basis of Hk. It is known that any

function v ∈ L2(RN) can be decomposed as follows

v =
+∞∑

k=0

ak∑

i=1

vk,i(|x|)Y k
i

(
x

|x|

)

where vk,i(r) :=

∫

SN−1

v(rθ)Y k
i (θ)dθ.

Proof. Our proof follows a method due to [19] which has also been used in [15].

Let v ∈ D(L1) be such that L1v = 0 and consider its decomposition by spherical

harmonics
∑+∞

k=0

∑ak

i=1 vk,i(|x|)Y k
i

(
x
|x|

)
. Since L1v = 0, the functions vk,i satisfy

v′′k,i +
N − 1

r
v′k,i + ( −1 +

p

rb
ψp−1)vk,i −

µk

r2
vk,i = 0 (1.36)

where µk = k(k+N−2). It is standard to show that vk,i ∈ C2(0,+∞), limr→0 vk,i(r)
and limr→0 rv

′
k,i(r) exist and are finite, and both vk,i and v′k,i decay exponentially at

infinity.

To prove the lemma it suffices to show that vk,i ≡ 0, ∀k > 1.

The function ψ(r) := ψ(|x|) satisfies

ψ′′ +
N − 1

r
ψ′ − ψ +

1

rb
ψp = 0, (1.37)

thus ψ ∈ C3(0,+∞) and differentiating (1.37) we get

ψ′′′ +
N − 1

r
ψ′′ − N − 1

r2
ψ′ − ψ′ +

p

rb
ψp−1ψ′ − b

rb+1
ψp = 0. (1.38)

Let 0 < r1 < r2 < +∞. Multiplying (1.36) by ψ′rN−1 and integrating over
(r1, r2) it follows that
∫ r2

r1

vk,ir
N−1(ψ′′′ +

N − 1

r
ψ′′ − ψ′ +

p

rb
ψp−1ψ′) − µkvk,ir

N−3ψ′dr + g(r2) − g(r1) = 0
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where g(r) := ψ′rN−1v′k,i − ψ′′rN−1vk,i. Using (1.38), we get

(N − 1 − µk)

∫ r2

r1

vk,ir
N−3ψ′dr +

∫ r2

r1

vk,ir
N−1 b

rb+1
ψpdr + g(r2) − g(r1) = 0. (1.39)

Because ψ′, ψ′′ decay exponentially at infinity (see the Appendix) we have g(r) → 0
as r → +∞. Since N > 3 we also have g(r) → 0 as r → 0.

Arguing by contradiction, we suppose vk,i 6≡ 0. Then, considering −vk,i instead
of vk,i if necessary, there exist 0 6 α < β 6 +∞ such that

(i) vk,i(r) > 0 in (α, β),

(ii) vk,i(α) = 0 if α 6= 0 and vk,i(β) = 0 if β 6= +∞,

(iii) v′k,i(α) > 0 if α 6= 0 and v′k,i(β) 6 0 if β 6= +∞.

It is standard to show that ψ′ < 0 (see [11]), thus we have g(α) 6 0 and g(β) > 0.
Therefore g(β) − g(α) > 0 and thanks to (1.39) we have

(N − 1 − µk)

∫ b

a

vk,ir
N−3ψ′dr +

∫ b

a

vk,ir
N−1 b

rb+1
ψb

6 0.

However, since ψ′ < 0 and N − 1 − µk 6 0, we should have

(N − 1 − µk)

∫ b

a

vk,ir
N−3ψ′dr +

∫ b

a

vk,ir
N−1 b

rb+1
ψb > 0.

This contradiction proves that vk,i ≡ 0 for all k > 1.

We are now in position to prove Proposition 1.12

Proof of Proposition 1.12. Our proof borrows some elements from [15] and [16].
Thanks to Lemma 1.13, it is enough to prove Proposition 1.12 for radial functions,
therefore we work in H1

rad(R
N).

For δ > 0 small, we consider the following perturbation of (1.31)

− ∆v + (1 + δe−|x|−1−|x|ψp−1)v =

(
1

|x|b + δe−|x|−1−|x|
)
vp

+, v ∈ H1
rad(R

N). (1.40)
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Solutions of (1.40) are positive and can be obtained by minimizing the functional
Sδ under the natural constraint Iδ(v) = 0 for v ∈ H1

rad(R
N) \ {0}, where

Sδ(v) =
1

2
|v|2H − 1

p+ 1

∫

RN

1

|x|bv
p+1
+ dx

−δ
(

1

p+ 1

∫

RN

e−|x|−1−|x|vp+1
+ dx− 1

2

∫

RN

e−|x|−1−|x|ψp−1v2dx

)
,

Iδ(v) = |v|2H −
∫

RN

1

|x|bv
p+1
+ dx

−δ
(∫

RN

e−|x|−1−|x|vp+1
+ dx−

∫

RN

e−|x|−1−|x|ψp−1v2dx

)
.

Here both Sδ and Iδ are defined on H1
rad(R

N) and it is standard to show that they
are of class C2.

We shall see in the Appendix that (1.40) has a unique positive radial solution for
δ > 0 small, and since ψ ∈ H satisfies (1.40), it is this unique solution. In particular,
ψ ∈ H solves

minimize Sδ(v) under the constraint Iδ(v) = 0 for v ∈ H1
rad(R

N) \ {0}.

We recall that the Morse index of Sδ at ψ is given by

IndexS ′′
δ (ψ) = max{dim V : V ⊂ H1

rad(R
N) is a subspace such that

〈S ′′
δ (ψ)h, h〉 < 0 for all h ∈ V \ {0}}.

We claim that Index S ′′
δ (ψ) 6 1. To see this let us show that 〈S ′′

δ (ψ)v, v〉 > 0 on the
subspace of co-dimension one {v ∈ H | ∇Iδ(ψ)v = 0}.

Let v ∈ H1
rad(R

N) be such that ∇Iδ(ψ)v = 0. Using the Implicit function
theorem, we see that there exist ε > 0 and a C2-curve φ : (−ε, ε) → H1

rad(R
N) such

that
φ(0) = ψ, φ′(0) = v and Iδ(φ(t)) = 0.

Thanks to the variational characterization of ψ, 0 is a local minimum of t 7→ Sδ(φ(t)),
and therefore d2

dt2
Sδ(φ(t))|t=0 > 0. But, since ∇Sδ(ψ) = 0, we have

0 6
d2

dt2
Sδ(φ(t))|t=0 = 〈S ′′

δ (ψ)v, v〉 .

At this point our claim is establish. Now seeking a contradiction we assume the
existence of v0 ∈ H1

rad(R
N) \ {0} such that L1v0 = 0. Let V := span{v0, ψ}. Since

〈L1ψ, ψ〉 = −(p− 1)

∫

RN

1

|x|bψ
p+1dx < 0
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and 〈L1v0, v〉 = 0 for all v ∈ H1
rad(R

N), we see that V is of dimension 2 and that,
for all h ∈ V , 〈L1h, h〉 6 0. Thus we have, for all h ∈ V \ {0},

〈S ′′
δ (ψ)h, h〉 = 〈L1h, h〉 − δ(p− 1)

∫

RN

ψp−1h2dx < 0

which implies that Index S ′′
δ (ψ) > 2. This contradiction ends the proof.

Lemma 1.14. [Spectral properties] The spectrum σ(L1) of L1 contains a simple
first eigenvalue −λ1 < 0 and σ(L1) \ {λ1} ⊂ (0,+∞). Thus if e1 ∈ H denote
an eigenvector associated to −λ1, such that |e1|2 = 1, then H can be decomposed
as H = E1 ⊕ E+ where E1 = span{e1}, E+ is the eigenspace corresponding to the
positive part of σ(L1) restricted to H and E1 ⊥ E+ (where ⊥ denote the orthogonality
in L2(RN)).

Proof. Since 〈L1ψ, ψ〉 < 0, the first eigenvalue −λ1 is negative, and it is standard to
show that −λ1 is simple. From Weyl’s theorem, we see that the essential spectrum
of L1 is in [1,+∞) and that the spectrum in (−λ1,

1
2
] contains only a finite number

of eigenvalues. Thanks to Proposition 1.12, the null-space of L1 is empty. Therefore
to prove the lemma it just remains to show that λ2 > 0 if it exists.

Arguing by contradiction, we suppose that the second eigenvalue is −λ2 < 0
with an associated eigenvector e2 and |e2|2 = 1. Since L1 is selfadjoint, we have
(e1, e2)2 = 0. Let µ, ν ∈ R. We have

〈L1(µe1 + νe2), µe1 + νe2〉 = −λ1µ
2 − λ2ν

2 < 0.

In other words, L1 is negative on a subspace of dimension 2. But, arguing
as in Proposition 1.12, we can prove that L1 is nonnegative on the subspace
{v ∈ H | ∇I(ψ)v = 0} of codimension 1, raising a contradiction.

Lemma 1.15. If v ∈ H satisfies (v, ψ)2 = 0 and 〈L1v, v〉 6 0, then v ≡ 0. Here
(·, ·)2 is the standard scalar product on L2(RN).

Proof. We introduce ψλ := λ
2−b

2(p−1)ψ(
√
λx). Since ψ is solution of (1.31), ψλ ∈ H

satisfies

− ∆ψλ + λψλ −
1

|x|bψ
p
λ = 0. (1.41)

Differentiating (1.41) with respect to λ gives for λ = 1

− ∆w + w − p

|x|bψ
p−1w = −ψ where w =

2 − b

2(p− 1)
ψ +

1

2
x · ∇ψ. (1.42)

- 36 -



1.3 Stability

Namely L1w = −ψ.

Let v ∈ H be such that v 6≡ 0 and (v, ψ)2 = 0. To prove Lemma 1.15 it suffices
to show that 〈L1v, v〉 > 0.

Using the orthogonal spectral decomposition H = E1 ⊕E+ we write v and w as

v = αe1 + ξ
w = βe1 + ζ

where ξ, ζ ∈ E+.

Therefore we have
〈L1v, v〉 = −α2λ1 + 〈L1ξ, ξ〉
〈L1w,w〉 = −β2λ1 + 〈L1ζ, ζ〉 . (1.43)

If α = 0, then ξ 6≡ 0 and 〈L1v, v〉 > 0 is satisfied. In the sequel, we suppose α 6= 0.
From the expression of w, we have

〈L1w,w〉 = −1

2

(
2 − b

p− 1
− N

2

)
|ψ|22 < 0. (1.44)

Also from (1.42) and (v, ψ)2 = 0, it follows that

0 = (ψ, v)2 = 〈L1w, v〉 = −αβλ1 + 〈L1ζ, ξ〉

and therefore

〈L1ζ, ξ〉 = αβλ1. (1.45)

Consequently, ζ 6≡ 0 since otherwise (1.45) would give β = 0, which leads to a con-
tradiction in (1.44). Since L1 > 0 on E+, the inequality 〈L1ζ, ξ〉2 6 〈L1ζ, ζ〉 〈L1ξ, ξ〉
holds. Combining (1.42)–(1.44) we obtain

〈L1v, v〉 = −α2λ1 + 〈L1ξ, ξ〉 > −α2λ1 +
〈L1ξ, ζ〉2
〈L1ζ, ζ〉

= −α2λ1 +
α2β2λ2

1

β2λ1 + 〈L1w,w〉

=
−〈L1w,w〉α2λ1

〈L1ζ, ζ〉
> 0.

This ends the proof.

Remark 1.16. Our proof of Lemma 1.15 is inspired by the work [13], which was
indicated to us by R. Fukuizumi. In Lemma 2.1 of [6] (see also Proposition 2.7 of
[25]) an alternative proof of Lemma 1.15 is given. Another proof of Lemma 1.15
relying on the fact that ψ is a local minimum of S on the sphere of corresponding
L2-norm can also be performed [17].
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1.3.3 Verification of the stability criterion

To prove Theorem 1.2 we shall use Proposition 1.3. Since the convergence result
holds in the rescaled variables it is convenient to express Proposition 1.3 in these
variables. For v ∈ H1(RN ,C), let ṽ ∈ H1(RN ,C) be defined by

v(x) = λ
2−b

2(p−1) ṽ(
√
λx).

Then we have

〈S ′′
λ(ϕλ)v, v〉 = λ1+ 2−b

p−1
−N

2

〈
S̃ ′′

λ(ϕ̃λ)ṽ, ṽ
〉
,

‖∇v‖2
2 + λ‖v‖2

2 = λ1+ 2−b
p−1

−N
2 ‖ṽ‖2

2,

〈ϕλ, v〉2 = λ1+ 2−b
p−1

−N
2 〈ϕ̃λ, ṽ〉2 ,

〈iϕλ, v〉2 = λ1+ 2−b
p−1

−N
2 〈iϕ̃λ, ṽ〉2 ,

where now by S̃λ we denote the extension of S̃λ from H to H1(RN ; C). Therefore, if
there exists δ > 0 such that for any v ∈ H1(RN ,C) satisfying 〈ϕ̃λ, ṽ〉2 = 〈iϕ̃λ, ṽ〉2 = 0
we have 〈

S̃ ′′
λ(ϕ̃λ)ṽ, ṽ

〉
> δ||ṽ||2, (1.46)

we have, for any v ∈ H1(RN ,C) satisfying 〈ϕλ, v〉2 = 〈iϕλ, v〉2 = 0,

〈S ′′
λ(ϕλ)v, v〉 > δ(‖∇v‖2

2 + λ‖v‖2
2). (1.47)

Clearly, for v ∈ H1(RN ,C) the norm
√

‖∇v‖2
2 + λ‖v‖2

2 is equivalent to the norm
||v|| and thus proving (1.46) suffices to check the assumptions of Proposition 1.3.

For v ∈ H1(RN ,C), let v1 = Rev and v2 = Imv. Then we have, after some
calculations, 〈

S̃ ′′
λ(ϕ̃λ)v, v

〉
=
〈
L̃1,λv1, v1

〉
+
〈
L̃2,λv2, v2

〉
,

with
〈
L̃1,λv1, v1

〉
= |v1|2H − p

∫

RN

Vλ(x)ϕ̃
p−1
λ |v1|2dx

−
∫

RN

Vλ(x)λ
−1+ b

2 r′
(
λ

2−b
2(p−1) ϕ̃λ

)
|v1|2dx,

〈
L̃2,λv2, v2

〉
= |v2|2H −

∫

RN

Vλ(x)ϕ̃
p−1
λ |v2|2dx

−
∫

RN

Vλ(x)λ
b
2

(
r̃(ϕ̃λ(x))

ϕ̃λ(x)

)
|v2|2dx.

In addition 〈ϕ̃λ, v〉2 = (ϕ̃λ, v1)2 et 〈iϕ̃λ, v〉2 = (ϕ̃λ, v2)2. Thus, to ends the proof of
Theorem 1.2 it is enough to prove the following lemma.
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Lemma 1.17. Assume (H1)-(H7). There exists λ̃ > 0 such that

(i) there exists δ1 > 0 such that
〈
L̃1,λv, v

〉
> δ1|v|2H for all v ∈ H satisfying

(v, ϕ̃λ)2 = 0, for all λ ∈ (0, λ̃];

(ii) there exists δ2 > 0 such that
〈
L̃2,λv, v

〉
> δ2|v|2H for all v ∈ H satisfying

(v, ϕ̃λ)2 = 0, for all λ ∈ (0, λ̃].

Proof. Seeking a contradiction for part (i), we assume that there exist (λj) ⊂ R
+

with λj → 0 and (vj) ∈ H such that

lim
j→∞

〈
L̃1,λj

vj, vj

〉
6 0,

|vj|H = 1, (vj, ϕ̃λj
)2 = 0.

Since (vj) ⊂ H is bounded, there exists v∞ ∈ H such that vj ⇀ v∞ weakly in H.
Let us prove that

lim
j→∞

∫

RN

Vλj
(x)λ

−1+ b
2

j r′
(
λ

2−b
2(p−1)

j ϕ̃λj

)
|vj|2dx = 0, (1.48)

lim
j→∞

∫

RN

Vλj
(x)ϕ̃p−1

λj
|vj|2dx =

∫

RN

1

|x|bψ
p−1|v∞|2dx. (1.49)

To prove (1.48) let ε > 0 be arbitrary. By (H7), we have lim
s→0+

r′(s)

sp−1
= 0.

Moreover, (|ϕ̃λj
|∞) is bounded and therefore, for any λ > 0 sufficiently small,

r′
(
λ

2−b
2(p−1)

j ϕ̃λj

)
6 Cελ

1− b
2

j . Thus

∣∣∣∣
∫

RN

Vλj
(x)λ

−1+ b
2

j r′
(
λ

2−b
2(p−1)

j ϕ̃λj

)
|vj|2dx

∣∣∣∣ 6 εC

∣∣∣∣
∫

RN

Vλj
(x)|vj|2dx

∣∣∣∣

and we conclude by Lemma 1.4. Clearly proving (1.49) is equivalent to show that,
as λ→ 0,

∫

RN

(
Vλj

(x) − 1

|x|b
)
ϕ̃p−1

λj
|vj|2dx→ 0, (1.50)

∫

RN

1

|x|b
(
ϕ̃p−1

λj
|vj|2 − ψp−1|v∞|2

)
dx→ 0. (1.51)

Since (|ϕ̃λj
|∞) is bounded, Lemma 1.10 shows that (1.50) holds. Now since |x|−b → 0

as |x| → ∞ to show (1.51) it suffices to show that, ∀R > 0,
∫

B(R)

1

|x|b
(
ϕ̃p−1

λj
|vj|2 − ψp−1|v∞|2

)
dx→ 0. (1.52)
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We write

∫

B(R)

1

|x|b ϕ̃
p−1
λj

|vj|2dx =

∫

B(R)

1

|x|b (ϕ̃
p−1
λj

− ψp−1)|vj|2dx

+

∫

B(R)

1

|x|bψ
p−1|vj|2dx.

Since ϕ̃λj
→ ψ in H, we have, up to a subsequence, |x|−bϕ̃p−1

λj
→ |x|−bψp−1 a.e. and

since

||x|−bϕ̃p−1
λj

| 6 C|x|−b ∈ L
N
2 (B(R)),

Lebesgue’s Theorem gives |x|−bϕ̃p−1
λj

→ |x|−bψp−1 in L
N
2 (B(R)). Also we have

|vj|2 ⇀ |v∞|2 weakly in L
N

N−2 (B(R)). At this point (1.52) follows easily.

Now, on one hand, from (1.48)-(1.49) we have

lim
j→∞

〈
L̃1,λj

vj, vj

〉
= 1 − p

∫

RN

1

|x|bψ
p−1|v∞|2dx. (1.53)

On the other hand, still by (1.48)-(1.49) and the weak convergence vj ⇀ v∞ in H
we have (v∞, ψ)2 = 0 and,

〈L1v∞, v∞〉 6 lim
j→∞

〈
L̃1,λj

vj, vj

〉
6 0 (by assumption)

which implies, according to Lemma 1.15, that v∞ ≡ 0. But this leads to a
contradiction in (1.53) and finishes the proof of (i). To prove (ii), since (i) holds, it
suffices to show that, for any ε > 0,

∫

RN

|Vλ(x)|λ
b
2

(
r̃(ϕ̃λ)

ϕ̃λ

)
|v|2dx 6 ε

when |v|H = 1 and λ > 0 is sufficiently small. Let ε > 0 be arbitrary. Since (|ϕ̃λ|∞)
is bounded, for λ > 0 small enough, we have from (1.8) that

r̃(ϕ̃λ)

ϕ̃λ

6 ελ
− b

2
j |ϕ̃λ|p−1.

Thus ∫

RN

|Vλ(x)|λ
b
2

(
r̃(ϕ̃λ)

ϕ̃λ

)
|v|2dx 6 εC

∫

RN

|Vλ(x)||v|2dx 6 εC

by Lemma 1.4 and we conclude.
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1.4 Appendix

Here, we prove the uniqueness of the non-zero solutions of (1.40). For this we use
results of [26].

It is known that solutions v of (1.40) are in C(RN) ∩ C2(RN \ {0}) and decay
exponentially at infinity. Also setting v = v(r), r = |x|, we have limr→0 rvr(r) = 0
(where vr = ∂v

∂r
) and v satisfies the ordinary differential equation

vrr +
N − 1

r
vr + g(r)v + h(r)vp

+ = 0 (1.54)

where g(r) = −(1 + δe−r−1−rψ(r)p−1) and h(r) = r−b + δe−r−1−r. For m ∈ [0, N − 2]
we define

G(r,m) = −rm+2δfr − α1r
m+1(1 + δf) + α2r

m−1,

H(r,m) = −
(
β +

2b

p+ 1

)
rm+1−b − 2δ

p+ 1
rm(r2 − 1)e−r−1−r − βrm+1δe−r−1−r,

where f := e−r−1−rψp−1, α1 := −2(N − 3−m), α2 := m(N − 2−m)(2N − 4−m)/2
and β := 2N − 4 −m− 2(m+ 2)/(p+ 1).

According to Theorem 2.2 of [26] to establish the uniqueness of the positive
solution of (1.54) it suffices to check the following conditions.

(A1) g and h are in C1((0,∞)),

(A2) r2−σg(r) → 0 and r2−σh(r) → 0 as r → 0+ for some σ > 0,

(C1) h(r) > 0 for all r ∈ (0,∞) and there exists r0 > 0 such that h(r0) > 0,

(C2) G(r,N − 2) 6 0 for all r ∈ (0,∞),

(C3) for each m ∈ [0, N − 2), there exists α(m) ∈ [0,∞] such that G(r,m) > 0 for
r ∈ (0, α(m)) and G(r,m) 6 0 for r ∈ (α(m),∞),

(C4) H(r, 0) 6 0 for all r ∈ (0,∞),

(C5) for each m ∈ (0, N − 2], there exists β(m) ∈ [0,∞) such that H(r,m) > 0 for
r ∈ (0, β(m)) and H(r,m) 6 0 for r ∈ (β(m),∞).

In (C3), by α(m) = 0 and α(m) = ∞ we mean that G(s,m) 6 0 and G(s,m) > 0,
respectively, for all s ∈ (0,∞). The analogous convention holds for (C5).
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The following lemma is useful to check (C1)-(C5). It was provided to us by K.
Tanaka [23].

Lemma 1.18. Let f(r) = e−r−1−rψ(r)p−1. Then f(r), fr(r) and frr(r) are bounded
on (0,+∞) and exponentially decaying at infinity.

Proof. First, we prove that there exist constants R0 > 0 and C > 0 such that

0 6 −ψr(r) 6 C2ψ(r) for all r ∈ [R0,∞). (1.55)

Let W (r) = 1 − r−bψ(r)p−1. Then ψ(r) satisfies

− ψrr(r) −
N − 1

r
ψr(r) +W (r)ψ(r) = 0 (1.56)

and defining R(r) and θ(r) by

rN−1ψ(r) = R(r) sin θ(r),

rN−1ψr(r) = R(r) cos θ(r)

it follows that θ(r) verifies

θr(r) = cos2 θ(r) −W (r) sin2 θ(r) +
N − 1

r
sin θ(r) cos θ(r). (1.57)

It is standard (see [11]) that ψr(r) < 0, ∀r ∈ (0,∞). Thus θ(r) ⊂ [π/2, π]. In
addition, since W (r) → 1 as r → ∞, the right hand side of (1.57) is negative
in a neighbourhood of π/2+ and positive in a neighbourhood of π−, for r > 0
sufficiently large. This shows that θ(r) stays, for r > 0 large, confined in a interval
[a, b] ⊂ (π/2, π). This implies (1.55). Now we have, for r > 0 large,

| ∂
∂r
ψ(r)p−1| = (p− 1)ψ(r)p−2|ψr(r)| 6 (p− 1)Cψ(r)p−1,

and we can easily deduce that fr(r) is exponentially decaying. Also, we have

∂2

∂r2
ψ(r)p−1 = (p− 1)ψ(r)p−2ψrr(r) + (p− 1)(p− 2)ψ(r)p−3ψr(r)

2.

The term (p−1)(p−2)ψ(r)p−3ψr(r)
2 can be treated as previously and thanks (1.56)

we have

ψ(r)p−2ψrr(r) = −N − 1

r
ψ(r)p−2ψr(r) +W (r)ψ(r)p−1,

which allows us to conclude that frr(r) is also exponentially decaying.

Finally, since ψ ∈ C([0,+∞)) ∩ C2((0,+∞)) and limr→0 rψr(r) = 0, it is clear
that f(r) and fr(r) are bounded on (0,+∞), and using the equation for ψ, we also
see that frr(r) is bounded on (0,+∞).
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The conditions (A1), (A2) and (C1) are clearly satisfied. For (C2), we have

G(r,N − 2) = −rN−1(δ(rfr(r) + 2f(r)) + 2).

Thanks to Lemma 1.18, t 7→ (rfr(r) + 2f(r)) is bounded on (0,+∞), therefore,
for δ > 0 small enough (C2) is verified. For (C3), we distinguish two cases. If
N − 3 −m > 0, then α1 < 0, α2 > 0 and we have

G(r,m) = rm+1(−rδfr(r) − α1δf(r) − α1) + α2r
m−1.

Thanks to Lemma 1.18, −rδfr(r) − α1δf(r) − α1 > 0 for δ > 0 small enough, and
consequently G(r,m) > 0 for all r ∈ (0,∞). If N − 3 −m 6 0 then α1 > 0, α2 > 0
and thus we have

∂

∂r

(
G(r,m)

rm+1

)
= −δfr(r) − rδfrr(r) − α1δfr(r) − 2α2r

−3 < 0

for δ > 0 sufficiently small. Thus (C3) also hold. Now

H(r, 0) = −
(
β +

2b

p+ 1

)
r1−b +

2δ

p+ 1
e−r−1−r − 2δ

p+ 1
r2e−r−1−r − βrδe−r−1−r.

We remark that β > 0 and that, for δ small enough,

2δ

p+ 1
e−r−1−r <

(
β +

2b

p+ 1

)
r1−b,

thus we see that (C4) holds. Let m ∈ (0, N − 2]. We have

H(r,m)

rm+1−b
= −

(
β +

2b

p+ 1

)
− δ

(
2(r − r−1)

p+ 1
+ β

)
rbe−r−1−r.

Since the function r 7→ [2(r − r−1)/(p + 1) + β]rbe−r−1−r is bounded, when
β + 2b/(p + 1) 6= 0 the sign of H(r,m) is constant for δ > 0 small enough. When
β + 2b/(p+ 1) = 0 we see that there exists β(m) := (−b+

√
b2 + 4)/2 such that the

function r → − 2δ
p+1

(r2 + b− 1) rb−1e−r−1−r is positive on (0, β(m)) and negative on

(β(m),∞). Therefore, in both cases H(r,m) satisfies (C5).
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les équations de Schrödinger et de Klein-Gordon non linéaires, C. R. Acad. Sci.
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6 (2005), pp. 1157–1177.

[7] M. Esteban and W. A. Strauss, Nonlinear bound states outside an insu-
lated sphere, Comm. Part. Diff. Equa., 19 (1994), pp. 177–197.

[8] G. Fibich and X. P. Wang, Stability of solitary waves for nonlinear
Schrödinger equations with inhomogeneous nonlinearities, Phys. D, 175 (2003),
pp. 96–108.

[9] R. Fukuizumi, Stability and instability of standing waves for nonlinear
Schrödinger equations, PhD thesis, Tohoku Mathematical Publications 25, June
2003.

[10] R. Fukuizumi and M. Ohta, Instability of standing waves for nonlinear
Schrödinger equations with inhomogeneous nonlinearities, J. Math. Kyoto Uni-
versity, 45 (2005), pp. 145–158.

[11] B. Gidas, W. M. Ni, and L. Nirenberg, Symmetry and related properties
via the maximum principle, Comm. Math. Phys., 68 (1979), pp. 209–243.

[12] M. Grillakis, J. Shatah, and W. A. Strauss, Stability theory of solitary
waves in the presence of symmetry. I, J. Func. Anal., 74 (1987), pp. 160–197.

[13] I. Iliev and K. Kirchev, Stability and instability of solitary waves for one-
dimensional singular Schrödinger equations, Differential and Integral Equa-
tions, 6 (1993), pp. 685–703.

[14] L. Jeanjean, Local conditions insuring bifurcation from the continuous spec-
trum, Math. Zeit., 232 (1999), pp. 651–674.

[15] Y. Kabeya and K. Tanaka, Uniqueness of positive radial solutions of semi-
linear elliptic equations in R
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Chapitre 2

Instability of bound states of a
nonlinear Schrödinger equation
with a Dirac potential

Abstract. We study analytically and numerically the stability
of the standing waves for a nonlinear Schrödinger equation with a point
defect and a power type nonlinearity. A main difficulty is to compute
the number of negative eigenvalues of the linearized operator around the
standing waves, and it is overcome by a perturbation method and con-
tinuation arguments. Among others, in the case of a repulsive defect, we
show that the standing wave solution is stable in H1

rad(R) and unstable in
H1(R) under subcritical nonlinearity. Further we investigate the nature
of instability: under critical or supercritical nonlinear interaction, we
prove the instability by blow-up in the repulsive case by showing a virial
theorem and using a minimization method involving two constraints. In
the subcritical radial case, unstable bound states cannot collapse, but
rather narrow down until they reach the stable regime (a finite-width in-
stability). In the non-radial repulsive case, all bound states are unstable,
and the instability is manifested by a lateral drift away from the defect,
sometimes in combination with a finite-width instability or a blowup
instability.
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2. Instability of NLS with a Dirac potential

2.1 Introduction

We consider a nonlinear Schrödinger equation with a delta function potential
{
i∂tu(t, x) = −∂xxu− γuδ(x) − |u|p−1u,
u(0, x) = u0,

(2.1)

where γ ∈ R, 1 < p < +∞ and (t, x) ∈ R
+ ×R. Here, δ is the Dirac distribution at

the origin. Namely, 〈δ, v〉 = v(0) for v ∈ H1(R).

When γ = 0, this type of equations arises in various physical situations in the
description of nonlinear waves (see [36] and the references therein); especially in
nonlinear optics, it describes the propagation of a laser beam in a homogeneous
medium. When γ 6= 0, equation (2.1) models the nonlinear propagation of light
through optical waveguides with a localized defect (see [5, 18, 21, 29] and the
references therein for more detailed considerations on the physical background). The
authors in [5, 18, 21, 22, 23, 32, 33] observed the phenomenon of soliton scattering
by the effect of the defect, namely, interactions between the defect and the soliton
(the standing wave solution of the case γ = 0). For example, varying amplitude
and velocity of the soliton, they studied how the defect is separating the soliton into
two parts : one part is transmitted past the defect, the other one is captured at
the defect. Holmer, Marzuola and Zworski [21, 22] gave numerical simulations and
theoretical arguments on this subject. In this paper, we study the stability of the
standing wave solution of (2.1) created by the Dirac delta.

A standing wave for (2.1) is a solution of the form u(t, x) = eiωtϕ(x) where ϕ is
required to satisfy

{
−∂xxϕ+ ωϕ− γδ(x)ϕ− |ϕ|p−1ϕ = 0,
ϕ ∈ H1(R) \ {0}. (2.2)

Before stating our results, we introduce some notations and recall some previous
results.

The space Lr(R,C) will be denoted by Lr(R) and its norm by ‖·‖r. When r = 2,
the space L2(R) will be endowed with the scalar product

(u, v)2 = Re

∫

R

uv̄dx for u, v ∈ L2(R).

The space H1(R,C) will be denoted by H1(R), its norm by ‖ ·‖H1(R) and the duality
product between H−1(R) and H1(R) by 〈·, ·〉. We write H1

rad(R) for the space of

- 48 -



2.1 Introduction

radial (even) functions of H1(R) :

H1
rad(R) = {v ∈ H1(R); v(x) = v(−x), x ∈ R}.

When γ = 0, the set of solutions of (2.2) has been known for a long time. In
particular, modulo translation and phase, there exists a unique positive solution,
which is explicitly known. This solution is even and is a ground state (see, for
example, [3, 6] for such results). When γ 6= 0, an explicit solution of (2.2) was
presented in [12, 18] and the following was proved in [11, 12].

Proposition 2.1. Let ω > γ2/4. Then there exists a unique positive solution ϕω,γ

of (2.2). This solution is the unique positive minimizer of

d(ω) =

{
inf {Sω,γ(v); v ∈ H1(R) \ {0}, Iω,γ(v) = 0} if γ > 0,
inf {Sω,γ(v); v ∈ H1

rad(R) \ {0}, Iω,γ(v) = 0} if γ < 0,

where Sω,γ and Iω,γ are defined for v ∈ H1(R) by

Sω,γ(v) =
1

2
‖∂xv‖2

2 +
ω

2
‖v‖2

2 −
γ

2
|v(0)|2 − 1

p+ 1
‖v‖p+1

p+1,

Iω,γ(v) = ‖∂xv‖2
2 + ω‖v‖2

2 − γ|v(0)|2 − ‖v‖p+1
p+1.

Furthermore, we have an explicit formula for ϕω,γ

ϕω,γ(x) =

[
(p+ 1)ω

2
sech2

(
(p− 1)

√
ω

2
|x| + tanh−1

(
γ

2
√
ω

))] 1
p−1

. (2.3)

The dependence of ϕω,γ on ω and γ can be seen in Figure 2.1. The parameter ω
affects the width and height of ϕω,γ: the larger ω is, the narrower and higher ϕω,γ

becomes, and vice versa. The sign of γ determines the profile of ϕω,γ near x = 0. It
has a “∨” shape when γ < 0, and a “∧” shape when γ > 0.

−5 5
0

2

x

φ
ω,γ

 

(a)

−5 5
0

2

x

(b)

Figure 2.1 - ϕω,γ as a function of x for ω = 4 (solid line)
and ω = 0.5 (dashed line). (a) γ = 1; (b) γ = −1. Here,
p = 4.
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2. Instability of NLS with a Dirac potential

Remark 2.2. (i) As it was stated in [11, Remark 8 and Lemma 26], the set of
solutions of (2.2)

{v ∈ H1(R) \ {0} such that − ∂xxv + ωv − γvδ − |v|p−1v = 0}

is explicitely given by {eiθϕω,γ| θ ∈ R}.

(ii) There is no nontrivial solution in H1(R) for ω 6 γ2/4.

The local well-posedness of the Cauchy problem for (2.1) is ensured by [6,
Theorem 4.6.1]. Indeed, the operator −∂xx − γδ is a self-adjoint operator on L2(R)
(see [1, Chapter I.3.1] and Section 2.2 for details). Precisely, we have

Proposition 2.3. For any u0 ∈ H1(R), there exist Tu0 > 0 and a unique solution
u ∈ C([0, Tu0), H

1(R))∩C1([0, Tu0), H
−1(R)) of (2.1) such that limt↑Tu0

‖∂xu‖2 = +∞
if Tu0 < +∞. Furthermore, the conservation of energy and charge holds, that is, for
any t ∈ [0, Tu0) we have

E(u(t)) = E(u0), (2.4)

‖u(t)‖2
2 = ‖u0‖2

2, (2.5)

where the energy E is defined by

E(v) =
1

2
‖∂xv‖2

2 −
γ

2
|v(0)|2 − 1

p+ 1
‖v‖p+1

p+1, for v ∈ H1(R).

(see also a verification of this proposition in [12, Proposition 1]).

Remark 2.4. From the uniqueness result of Proposition 2.3 it follows that if an
initial data u0 belongs toH1

rad(R) then u(t) also belongs toH1
rad(R) for all t ∈ [0, Tu0).

We consider the stability in the following sense.

Definition 2.5. Let ϕ be a solution of (2.2). We say that the standing wave
u(x, t) = eiωtϕ(x) is (orbitally) stable in H1(R) (resp. H1

rad(R)) if for any ε > 0
there exists η > 0 with the following property : if u0 ∈ H1(R) (resp. H1

rad(R))
satisfies ‖u0 − ϕ‖H1(R) < η, then the solution u(t) of (2.1) with u(0) = u0 exists for
any t > 0 and

sup
t∈[0,+∞)

inf
θ∈R

‖u(t) − eiθϕ‖H1(R) < ε.

Otherwise, the standing wave u(x, t) = eiωtϕ(x) is said to be (orbitally) unstable in
H1(R) (resp. H1

rad(R)).
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Remark 2.6. With this definition and Remark 2.4, it is clear that stability in
H1(R) implies stability in H1

rad(R) and conversely that instability in H1
rad(R) implies

instability in H1(R).

When γ = 0, the orbital stability for (2.1) has been extensively studied (see
[2, 6, 7, 36, 37] and the references therein). In particular, from [7] we know that
eiωtϕω,0(x) is stable in H1(R) for any ω > 0 if 1 < p < 5. On the other hand, it was
shown that eiωtϕω,0(x) is unstable in H1(R) for any ω > 0 if p > 5 (see [2] for p > 5
and [37] for p = 5).

In [18], Goodman, Holmes and Weinstein focused on the special case p = 3,
γ > 0 and proved that the standing wave eiωtϕω,γ(x) is orbitally stable in H1(R).
When γ > 0, the orbital stability and instability were completely studied in [12] :
the standing wave eiωtϕω,γ(x) is stable in H1(R) for any ω > γ2/4 if 1 < p 6 5, and
if p > 5, there exists a critical frequency ω1 > γ2/4 such that eiωtϕω,γ(x) is stable in
H1(R) for any ω ∈ (γ2/4, ω1) and unstable in H1(R) for any ω > ω1.

When γ < 0, Fukuizumi and Jeanjean showed the following result in [11].

Proposition 2.7. Let γ < 0 and ω > γ2/4.

(i) If 1 < p 6 3 the standing wave eiωtϕω,γ(x) is stable in H1
rad(R).

(ii) If 3 < p < 5, there exists ω2 > γ2/4 such that the standing wave eiωtϕω,γ(x) is
stable in H1

rad(R) when ω > ω2 and unstable in H1(R) when γ2/4 < ω < ω2.

(iii) If p > 5, then the standing wave eiωtϕω,γ(x) is unstable in H1(R).

The critical frequency ω2 is given by

J(ω2)(p− 5)

p− 1
=

γ

2
√
ω2

(
1 − γ2

4ω2

)−(p−3)/(p−1)

,

J(ω2) =

∫ +∞

A(ω2,γ)

sech4/(p−1)(y)dy, A(ω2, γ) = tanh−1

(
γ

2
√
ω2

)
.

The results of stability of [11] recalled in Proposition 2.7 assert only on stability
under radial perturbations. Furthermore, the nature of instability is not revealed. In
this paper, we prove that there is instability in the whole space when stability holds
under radial perturbation (see Theorem 2.1), and that, when p > 5, the instability
established in [11] is strong instability (see Definition 2.9 and Theorem 2.2).

Our first main result is the following.

- 51 -



2. Instability of NLS with a Dirac potential

Theorem 2.1. Let γ < 0 and ω > γ2/4.

(i) If 1 < p 6 3 the standing wave eiωtϕω,γ(x) is unstable in H1(R).

(ii) If 3 < p < 5, the standing wave eiωtϕω,γ(x) is unstable in H1(R) for any
ω > ω2, where ω2 is defined in Proposition 2.7.

As in [11, 12], our stability analysis relies on the abstract theory by Grillakis,
Shatah and Strauss [19, 20] for a Hamiltonian system which is invariant under a
one-parameter group of operators. In trying to follow this approach the main point
is to check the following two conditions.

1. The slope condition. The sign of ∂ω‖ϕω,γ‖2
2.

2. The spectral condition. The number of negative eigenvalues of the linearized
operator

Lγ
1,ωv = −∂xxv + ωv − γδv − pϕp−1

ω,γ v.

We refer the reader to Section 2.2 for the precise criterion and a detailed explanation
on how Lγ

1,ω appears in the stability analysis. Making use of the explicit form (2.3)
for ϕω,γ, the sign of ∂ω‖ϕω,γ‖2

2 was explicitly computed in [11, 12].

In [11], a spectral analysis is performed to count the number of negative
eigenvalues, and it is proved that the number of negative eigenvalues of Lγ

1,ω

in H1
rad(R) is one. This spectral analysis of Lγ

1,ω is relying on the variational
characterization of ϕω,γ. However, since ϕω,γ is a minimizer only in the space of
radial (even) functions H1

rad(R), the result on the spectrum holds only in H1
rad(R),

namely for even eigenfunctions. Therefore the number of negatives eigenvalues is
known only for Lγ

1,ω considered in H1
rad(R). With this approach, it is not possible to

see whether other negative eigenvalues appear when the problem is considered on
the whole space H1(R).

To overcome this difficulty, we develop a perturbation method. In the case
γ = 0, the spectrum of L0

1,ω is well known by the work of Weinstein [38] (see Lemma
2.21) : there is only one negative eigenvalue, and 0 is a simple isolated eigenvalue
(to see that, one proves that the kernel of L0

1,ω is spanned by ∂xϕω,0, that ∂xϕω,0

has only one zero, and apply the Sturm Oscillation Theorem). When γ is small,
Lγ

1,ω can be considered as a holomorphic perturbation of L0
1,ω. Using the theory of

holomorphic perturbations for linear operators, we prove that the spectrum of Lγ
1,ω

depends holomorphically on γ (see Lemma 2.22). Then the use of Taylor expansion
for the second eigenvalue of Lγ

1,ω allows us to get the sign of the second eigenvalue
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when γ is small (see Lemma 2.23). A continuity argument combined with the fact
that if γ 6= 0 the nullspace of Lγ

1,ω is zero extends the result to all γ ∈ R (see the
proof of Lemma 2.18). See subsection 2.2.3 for details. We will see that there are
two negative eigenvalues of Lγ

1,ω in H1(R) if γ < 0.

Remark 2.8. (i) Our method can be applied as well in H1(R) or in H1
rad(R), and

for γ negative or positive (see subsections 2.2.4 and 2.2.5). Thus we can give
another proof of the result of [12] in the case γ > 0 and of Proposition 2.7.

(ii) The study of the spectrum of linearized operators is often a central point when
one wants to use the abstract theory of [19, 20]. See [9, 13, 14, 15, 24] among
many others for related results.

The results of instability given in Theorem 2.1 and Proposition 2.7 say only that
a certain solution which starts close to ϕω,γ will exit from a tubular neighborhood of
the orbit of the standing wave in finite time. However, as this might be of importance
for the applications, we want to understand further the nature of instability. For
that, we recall the concept of strong instability.

Definition 2.9. A standing wave eiωtϕ(x) of (2.1) is said to be strongly unstable
in H1(R) if for any ε > 0 there exist uε ∈ H1(R) with ‖uε − ϕ‖H1(R) < ε and
Tuε

< +∞ such that limt↑Tuε
‖∂xu(t)‖2 = +∞, where u(t) is the solution of (2.1)

with u(0) = uε.

Our second main result is the following.

Theorem 2.2. Let γ 6 0, ω > γ2/4 and p > 5. Then the standing wave eiωtϕω,γ(x)
is strongly unstable in H1(R).

Whether the perturbed standing wave blows up or not depends on the perturba-
tion. Indeed, in Remark 2.30 we define an invariant set of solutions and show that
if we consider an initial data in this set, then the solution exists globally even when
the standing wave eiωtϕω,γ(x) is strongly unstable.

We also point out that when 1 < p < 5, it is easy to prove using the
conservation laws and Gagliardo-Nirenberg inequality that the Cauchy problem in
H1(R) associated with (2.1) is globally well posed. Accordingly, even if the standing
wave may be unstable when 1 < p < 5 (see Theorem 2.1), a strong instability cannot
occur.

As in [2, 37], which deal with the classical case γ = 0, we use the virial identity
for the proof of Theorem 2.2. However, even if the formal calculations are similar to
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2. Instability of NLS with a Dirac potential

those of the case γ = 0, a rigorous proof of the virial theorem does not immediately
follow from the approximation by regular solutions (e.g. see [6, Proposition 6.4.2],
or [16]). Indeed, the argument in [6] relies on the H2(R)–regularity of the solutions
of (2.1). Because of the defect term, we do not know if this H2(R)–regularity still
holds when γ 6= 0. Thus we need another approach. We approximate the solutions
of (2.1) by solutions of the same equation where the defect is approximated by a
Gaussian potential for which it is easy to have the virial theorem. Then we pass to
the limit in the virial identity to obtain :

Proposition 2.10. Let u0 ∈ H1(R) such that xu0 ∈ L2(R) and u(t) be the solution
of (2.1) with u(0) = u0. Then the function f : t 7→ ‖xu(t)‖2

2 is C2 and

∂tf(t) = 4Im

∫

R

ūx∂xudx, (2.6)

∂ttf(t) = 8Qγ(u(t)), (2.7)

where Qγ is defined for v ∈ H1(R) by

Qγ(v) = ‖∂xv‖2
2 −

γ

2
|v(0)|2 − p− 1

2(p+ 1)
‖v‖p+1

p+1.

Even if we benefit from the virial identity, the proofs given in [2, 37] for the
case γ = 0 do not apply to the case γ < 0. For example, the method of Weinstein
[37] in the case p = 5 requires in a crucial way an equality between 2E and Q
which does not hold anymore when γ < 0. Moreover, the heart of the proof of
[2] consists in minimizing the functional Sω,γ on the constraint Qγ(v) = 0, but the
standard variational methods to prove such results are not so easily applied to the
case γ 6= 0. To get over these difficulties we introduce an approach based on a
minimization problem involving two constraints. Using this minimization problem,
we identify some invariant properties under the flow of (2.1). The combination of
these invariant properties with the conservation of energy and charge allows us to
prove strong instability. We mention that related techniques have been introduced
in [26, 27, 28, 30, 39].

Remark 2.11. The case γ < 0, ω = ω2 and 3 < p < 5 cannot be treated with our
approach and is left open (see Remark 2.15). In light of Theorem 2.1, we believe that
the standing wave is unstable in this case, at least in H1(R) (see also [11, Remark
12]). When γ > 0, the case ω = ω1 and p > 5 is also open (see [12, Remark 1.5]).

Let us summarize the previously known and our new rigorous results on stability
in (2.1).
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(i) For both positive and negative γ, there is always only one negative eigenvalue
of the linearized operator in H1

rad(R) ([11], subsection 2.5). Hence, the standing
wave is stable in H1

rad(R) if the slope is positive, and unstable if the slope is
negative.

(ii) γ > 0. In this case the number of the negative eigenvalues of linearized operator
is always one in H1(R). Stability is determined by the slope condition, and
the standing wave is stable in H1

rad(R) if and only if it is stable in H1(R).
Specifically ([11, 12], subsection 2.4),

(a) 1 < p ≤ 5: Stability in H1(R) for any ω > γ2/4.

(b) 5 < p: Stability in H1(R) for γ2/4 < ω < ω1, instability in H1
rad(R) for

ω > ω1.

(iii) γ < 0. In this case the number of negative eigenvalues is always two
(Lemma 2.18) and all standing waves are unstable in H1(R) (Theorem 2.1
and Theorem 2.2). Stability in H1

rad(R) is determined by the slope condition
and is as follows ([11]):

(a) 1 < p ≤ 3: Stability in H1
rad(R) for any ω > γ2/4.

(b) 3 < p < 5: Stability in H1
rad(R) for ω > ω2, instability in H1

rad(R) for
γ2/4 < ω < ω2.

(c) 5 ≤ p: Strong instability in H1
rad(R) (and in H1(R)) for any γ2/4 < ω

(Theorem 2.2).

There are, however, several important questions which are still open, and which
we explore using numerical simulations. Our simulations suggest the following:

(i) Although an attractive defect (γ > 0) stabilizes the standing waves in the
critical case (p = 5), their stability is weaker than in the subcritical case, in
particular for 0 < γ ≪ 1.

(ii) Theorem 2.2 shows that instability occurs by blow-up when γ < 0 and p > 5.
In all other cases, however, it remains to understand the nature of instability.
Our simulations suggest the following:

(a) When γ > 0, p > 5, and ω > ω1, instability can occur by blow-up.

(b) When γ < 0, 3 < p < 5, and γ2/4 < ω < ω2, the instability in H1
rad(R) is

a finite-width instability, i.e., the solution initially narrows down along a
curve φω∗(t),γ, where ω∗(t) can be defined by the relation

max
x

φω∗(t),γ(x) = max
x

|u(x, t)|.

- 55 -



2. Instability of NLS with a Dirac potential

As the solution narrows down, ω∗(t) increases and crosses from the
unstable region ω < ω2 to the stable region ω > ω2. Subsequently, collapse
is arrested at some finite width.

(c) When γ < 0, the standing waves undergo a drift instability, away from the
(repulsive) defect, sometimes in combination with finite-width or blowup
instability. Specifically,

(c.i) When 1 < p ≤ 3 and when 3 < p < 5 and ω > ω2 (i.e., when the
standing waves are stable in H1

rad(R)), the standing waves undergo a
drift instability.

(c.ii) When 3 < p < 5 and γ2/4 < ω < ω2, the instability in H1(R) is a
combination of a drift instability and a finite-width instability.

(c.iii) When p ≥ 5, the instability in H1(R) is a combination of a drift
instability and a blowup instability.

(iii) Although when p = 5 and γ > 0, and when p > 5, γ > 0, and γ2/4 < ω < ω1

the standing wave is stable, it can collapse under a sufficiently large perturba-
tion.

We note that all of the above holds, more generally, for NLS equations with an
inhomogeneous nonlinearity [9] and with a linear potential [34].

The paper is organized as follows. In Section 2.2, we prove Theorem 2.1 and
explain how our method allows us to recover the results of [11, 12]. In Section 2.3,
we establish Theorem 2.2 and in Section 2.4 we prove Proposition 2.10. Numerical
results are given in Section 2.5.

Throughout the paper the letter C will denote various positive constants whose
exact values may change from line to line but are not essential to the analysis of the
problem.

2.2 Instability with respect to non-radial pertur-

bations

We use the general theory of Grillakis, Shatah and Strauss [20] to prove Theorem
2.1.

First, we explain how we derive a criterion for stability or instability for our
case from the theory of Grillakis, Shatah and Strauss. In our case, it is clear

- 56 -



2.2 Instability

that Assumption 1 and Assumption 2 of [20] are satisfied. The last assumption,
Assumption 3, will be check in subsection 2.2.2. We consider the bilinear form

S ′′
ω,γ(ϕω,γ) : H1(R) ×H1(R) → C

as a linear operator Hγ
ω : H1(R) → H−1(R). The spectrum of Hγ

ω is the set

{λ ∈ C such that Hγ
ω − λI is not invertible},

where I denote the usual H1(R) −H−1(R) isomorphism, and we denote

n(Hγ
ω) := the number of negative eigenvalues of Hγ

ω .

Having established the assumptions of [20], the next proposition follows from [20,
Instability Theorem and Stability Theorem].

Proposition 2.12. (1) The standing wave eiω0tϕω0,γ(x) is unstable if the integer
(n(Hγ

ω0
) − p(d′′(ω0)) is odd, where

p(d′′(ω0)) =

{
1 if ∂ω‖ϕω,γ‖2

2 > 0 at ω = ω0,
0 if ∂ω‖ϕω,γ‖2

2 < 0 at ω = ω0.

(2) The standing wave eiω0tϕω0,γ(x) is stable if (n(Hγ
ω0

) − p(d′′(ω0)) = 0.

Let us now consider the case γ < 0. It was proved in [11] that

Lemma 2.13. Let γ < 0 and ω > γ2/4. We have :

(i) If 1 < p 6 3 and ω > γ2/4 then ∂ω‖ϕω,γ‖2
2 > 0,

(ii) If 3 < p < 5 and ω > ω2 then ∂ω‖ϕω,γ‖2
2 > 0,

(iii) If 3 < p < 5 and γ2/4 < ω < ω2 then ∂ω‖ϕω,γ‖2
2 < 0,

(iv) If p > 5 and ω > γ2/4 then ∂ω‖ϕω,γ‖2
2 < 0.

Thus Theorem 2.1 follows from Proposition 2.12, Lemma 2.13 and

Lemma 2.14. If γ < 0, then n(Hγ
ω) = 2.

Remark 2.15. 1. Let γ < 0. In the cases 3 < p < 5 and ω < ω2 or p ≥ 5 it
was proved in [11] that ∂ω‖ϕω,γ‖2

2 < 0. From Lemma 2.14, we know that the
number of negative eigenvalues of Hγ

ω is n(Hγ
ω) = 2 when Hγ

ω is considered on
the whole space H1(R). Therefore n(Hγ

ω) − p(d′′(ω)) = 2 and this correspond
to a case where the theory of [20] does not apply. However, if we considerHγ

ω in
H1

rad(R), then it follows from [11] that n(Hγ
ω) = 1, thus n(Hγ

ω)− p(d′′(ω)) = 1.
Then, Proposition 2.12 applies and allows to conclude to instability in H1

rad(R)
(as it was done in [11]). But, with Remark 2.6, we can conclude that instability
holds on the whole space H1(R). This shows that, sometimes, to introduce
artificially a symmetry can be useful when one faces a case left open in [20].
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2. Instability of NLS with a Dirac potential

2. Note that the case ω = ω2 corresponds to ∂ω‖ϕω,γ‖2
2 = 0 (3 < p < 5) and

will not be treated here. In view of Theorem 2.1, we believe that the standing
wave is unstable in this case, at least in H1(R).

We divide the rest of this section into five parts. In subsection 2.2.1 we introduce
the general setting to perform our proof. In subsection 2.2.2, we study the spectrum
of Hγ

ω and prove that Assumption 3 of [20] is satisfied. Lemma 2.14 will be proved
in subsection 2.2.3. Finally, we discuss the positive case and the radial case in
subsections 2.2.4 and 2.2.5.

2.2.1 Setting for the spectral problem

To express Hγ
ω , it is convenient to split u in real and imaginary part : for

u ∈ H1(R,C) we write u = u1 + iu2 where u1 = Re(u) ∈ H1(R,R) and
u2 = Im(u) ∈ H1(R,R). Now we set

Hγ
ωu = Lγ

1,ωu1 + iLγ
2,ωu2

where the operators Lγ
1,ω, L

γ
2,ω : H1(R,R) → H−1(R) are defined for v ∈ H1(R) by

Lγ
1,ωv = −∂xxv + ωv − γvδ − pϕp−1

ω,γ v,

Lγ
2,ωv = −∂xxv + ωv − γvδ − ϕp−1

ω,γ v.

When we will work with Lγ
1,ω, L

γ
2,ω, the functions considered will be understood to

be real valued.

For the spectral study of Hγ
ω , it is convenient to view Hγ

ω as an unbounded
operator on L2(R), thus we rewrite our spectral problem in this setting. First, we
redefine the two operators Lγ

1,ω and Lγ
2,ω as unbounded operators on L2(R). We

begin by considering the bilinear forms on H1(R) associated with Lγ
1,ω and Lγ

2,ω by
setting for v, w ∈ H1(R)

Bγ
1,ω(v, w) :=

〈
Lγ

1,ωv, w
〉

and Bγ
2,ω(v, w) :=

〈
Lγ

2,ωv, w
〉
,

which are explicitly given by

Bγ
1,ω(v, w) =

∫
R
∂xv∂xwdx+ω

∫
R
vwdx−γv(0)w(0)−

∫
R
pϕp−1

ω,γ vwdx,
Bγ

2,ω(v, w) =
∫

R
∂xv∂xwdx+ω

∫
R
vwdx−γv(0)w(0)−

∫
R
ϕp−1

ω,γ vwdx.
(2.8)

Let us now consider Bγ
1,ω and Bγ

2,ω as bilinear forms on L2(R) with do-
main D(Bγ

1,ω) = D(Bγ
2,ω) := H1(R). It is clear that theses forms are bounded
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from below and closed. Then the theory of representation of forms by op-
erators (see [25, VI.§2.1]) implies that we define two self-adjoint operators

L̃γ
1,ω : D(L̃γ

1,ω) ⊂ L2(R) → L2(R) and L̃γ
2,ω : D(L̃γ

2,ω) ⊂ L2(R) → L2(R) by set-
ting

D(L̃γ
1,ω) := {v ∈ H1(R)|∃w ∈ L2(R) s.t. ∀z ∈ H1(R), Bγ

1,ω(v, z) = (w, z)2},
D(L̃γ

2,ω) := {v ∈ H1(R)|∃w ∈ L2(R) s.t. ∀z ∈ H1(R), Bγ
2,ω(v, z) = (w, z)2}.

and setting for v ∈ D(L̃γ
1,ω) (resp. v ∈ D(L̃γ

2,ω)) that L̃γ
1,ωv := w (resp. L̃γ

2,ωv := w),
where w is the (unique) function of L2(R) which satisfies Bγ

1,ω(v, z) = (w, z)2 (resp.
Bγ

2,ω(v, z) = (w, z)2) for all z ∈ H1(R).

For notational simplicity, we drop the tilde over L̃γ
1,ω and L̃γ

2,ω.

It turns out that we are able to describe explicitly Lγ
1,ω and Lγ

2,ω.

Lemma 2.16. The domain of Lγ
1,ω and of Lγ

2,ω in L2(R) is

Dγ = {v ∈ H1(R) ∩H2(R \ {0}); ∂xv(0
+) − ∂xv(0

−) = −γv(0)}

and for v ∈ Dγ the operators are given by

Lγ
1,ωv = −∂xxv + ωv − pϕp−1

ω,γ v,
Lγ

2,ωv = −∂xxv + ωv − ϕp−1
ω,γ v.

(2.9)

Proof. The proof for Lγ
2,ω being similar to the one of Lγ

1,ω we only deal with
Lγ

1,ω. The form Bγ
1,ω can be decomposed into Bγ

1,ω = Bγ
1,1 + Bγ

1,2,ω with
Bγ

1,1 : H1(R) ×H1(R) → R and Bγ
1,2,ω : L2(R) × L2(R) → R defined by

Bγ
1,1(v, z) =

∫
R
∂xv∂xzdx− γv(0)z(0),

Bγ
1,2,ω(v, z) = ω

∫
R
vzdx−

∫
R
pϕp−1

ω,γ vzdx.
(2.10)

If we denote by T1 (resp. T2) the self-adjoint operator on L2(R) associated with Bγ
1,1

(resp Bγ
1,2,ω), it is clear that D(T2) = L2(R) and

D(Lγ
1,ω) = D(T1).

Let v ∈ Dγ and w ∈ L2(R) be such that Bγ
1,1(v, z) = (w, z)2 for any z ∈ H1(R). If

z ∈ H1(R) is such that z(0) = 0, we have

Bγ
1,1(v, z) =

∫

R

∂xv∂xzdx =

∫

R

wzdx,
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therefore v ∈ H2(R \ {0}) and −∂xxv = w. Let z ∈ H1(R) be such that z(0) 6= 0.
On one hand, we have

Bγ
1,1(v, z) =

∫

R

∂xv∂xzdx− γv(0)z(0).

And on other hand

Bγ
1,1(v, z) = (w, z)2,

=

∫ 0

−∞
(−∂xxv)zdx+

∫ +∞

0

(−∂xxv)zdx,

= −z(0)∂xv(0−) +

∫ 0

−∞
∂xv∂xzdx+ z(0)∂xv(0+) +

∫ +∞

0

∂xv∂xzdx,

=

∫

R

∂xv∂xzdx+ z(0)(∂xv(0+) − ∂xv(0−).

Therefore
∂xv(0

+) − ∂xv(0
−) = −γv(0),

which ends the proof.

2.2.2 Verification of Assumption 3

To check [20, Assumption 3 ] is equivalent to check that the following lemma holds.

Lemma 2.17. Let γ ∈ R \ {0} and ω > γ2/4.

(i) The operator Hγ
ω has only a finite number of negative eigenvalues,

(ii) The kernel of Hγ
ω is span{iϕω,γ},

(iii) The rest of the spectrum of Hγ
ω is positive and bounded away from 0.

Our proof of Lemma 2.17 borrows some elements of [11]. In particular, (ii) in
Lemma 2.17 corresponds to [11, Lemma 28 and Lemma 31].

Proof of Lemma 2.17. We start by showing that (i) and (iii) are satisfied. We work
on Lγ

1,ω and Lγ
2,ω. The essential spectrum of T1 (see the proof of Lemma 2.16)

is σess(T1) = [0,+∞). This is standard when γ = 0 and a proof for γ 6= 0 can be
found in [1, Theorem I-3.1.4]. From Weyl’s theorem (see [25, Theorem IV-5.35]), the
essential spectrum of both operators Lγ

1,ω and Lγ
2,ω is [ω,+∞). Since both operators

are bounded from below, there can be only finitely many isolated eigenvalues (of
finite multiplicity) in (−∞, ω′) for any ω′ < ω. Then (i) and (iii) follow easily.
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Next, we consider (ii). Since ϕω,γ satisfies Lγ
2,ωϕω,γ = 0 and ϕω,γ > 0, the first

eigenvalue of Lγ
2,ω is 0 and the rest of the spectrum is positive . This is classical for

γ = 0 and can be easily proved for γ 6= 0, see [4, Chapter 2, Section 2.3, Paragraph
3]. Thus to ensure that the kernel of Hγ

ω is reduced to span{iϕω,γ} it is enough to
prove that the kernel of Lγ

1,ω is {0}. It is equivalent to prove that 0 is the unique
solution of

Lγ
1,ωu = 0, u ∈ D(Lγ

1,ω). (2.11)

To be more precise, the solutions of (2.11) satisfy

u ∈ H2(R \ {0}) ∩H1(R), (2.12)

−∂xxu+ ωu− pϕp−1
ω,γ u = 0, (2.13)

∂xu(0+) − ∂xu(0−) = −γu(0). (2.14)

Consider first (2.13) on (0,+∞). If we look at (2.2) only on (0,+∞), we see that
ϕω,γ satisfies

− ∂xxϕω,γ + ωϕω,γ − ϕp
ω,γ = 0 on (0,+∞). (2.15)

If we differentiate (2.15) with respect to x (which is possible because ϕω,γ is smooth
on (0,+∞)), we see that ∂xϕω,γ satisfies (2.13) on (0,+∞). Since we look for
solutions in L2(R) (in fact solutions going to 0 at infinity), it is standard that every
solution of (2.13) in (0,+∞) is of the form µ∂xϕω,γ, µ ∈ R (see, for example, [4,
Chapter 2, Theorem 3.3]). A similar argument can be applied to (2.13) on (−∞, 0),
thus every solution of (2.13) in (−∞, 0) is of the form ν∂xϕω,γ, ν ∈ R.

Now, let u be a solution of (2.12)-(2.14). Then there exists µ ∈ R and ν ∈ R

such that

u = ν∂xϕω,γ on (−∞, 0),

u = µ∂xϕω,γ on (0,+∞).

Since u ∈ H1(R), u is continuous at 0, thus we must have µ = −ν, that is, u is of
the form

u = −µ∂xϕω,γ on (−∞, 0),

u = µ∂xϕω,γ on (0,+∞),

u(0) = −µ∂xϕω,γ(0−) = µ∂xϕω,γ(0+) =
−µ
2
γϕω,γ(0).

Furthermore, u should satisfies the jump condition (2.14). Since ϕω,γ satisfies

∂xxϕω,γ(0−) = ∂xxϕω,γ(0+) = ωϕω,γ(0) − ϕp
ω,γ(0),

if we suppose µ 6= 0 then (2.14) reduces to

ϕp−1
ω,γ (0) =

4ω − γ2

4
.
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But from (2.3) we know that

ϕp−1
ω,γ (0) =

p+ 1

8
(4ω − γ2).

It is a contradiction, therefore µ = 0. In conclusion, u ≡ 0 on R, and the lemma is
proved.

2.2.3 Count of the number of negative eigenvalues

In this subsection, we prove Lemma 2.14. First, we remark that, as it was shown in
the proof of Lemma 2.17, 0 is the first eigenvalue of Lγ

2,ω. Thus n(Hγ
ω) = n(Lγ

1,ω),
where n(Lγ

1,ω) is the number of negative eigenvalues of Lγ
1,ω. Therefore, Lemma 2.14

follows from

Lemma 2.18. Let γ < 0 and ω > γ2/4. Then n(Lγ
1,ω) = 2.

Our proof of Lemma 2.18 is divided into two steps. First, we use a perturbative
approach to prove that, if γ is close to 0 and negative, Lγ

1,ω has two negative
eigenvalues (Lemma 2.23). To do this, we have to ensure that the eigenvalues and
the eigenvectors are regular enough with respect to γ (Lemma 2.22) to make use
of Taylor formula. It follows from the use of the analytic perturbation theory of
operators (see [25, 31]). The second step consists in extending the result of the first
step to any values of γ < 0. Our argument relies on the continuity of the spectral
projections with respect to γ and it is crucial, as it was proved in Lemma 2.17, that
0 can not be an eigenvalue of Lγ

1,ω (see [13, 14] for related arguments).

We fix ω > γ2/4. For the sake of simplicity we denote Lγ
1,ω by Lγ

1 and ϕω,γ by
ϕγ, and so on in this section.

Lemma 2.19. As a function of γ, (Lγ
1) is a real-holomorphic family of self-adjoint

operators (of type (B) in the sense of Kato).

Proof. We recall that Lγ
1 is defined with the help of a bilinear form Bγ

1 (see (2.8)).
To prove the holomorphicity of (Lγ

1) it is enough to prove that (Bγ
1 ) is bounded from

below and closed, and that for any v ∈ H1(R) the function Bγ
1 (v) : γ 7→ Bγ

1 (v, v)
is holomorphic (see [25, Theorem VII-4.2]). It is clear that Bγ

1 is bounded from
below and closed on the same domain H1(R) for all γ, thus we just have to check
the holomorphicity of Bγ

1 (v) : γ 7→ Bγ
1 (v, v) for any v ∈ H1(R). We recall the

decomposition of Bγ
1 into Bγ

1,1 and Bγ
1,2 (see (2.10)). We see that Bγ

1,1(v) is clearly
holomorphic in γ. From the explicit form of ϕγ (see (2.3)) it is clear that γ 7→ ϕp−1

γ (x)
is holomorphic in γ for any x ∈ R. It then also follows that γ 7→ Bγ

1,2(v) is
holomorphic.
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Remark 2.20. There exists another way to show that (Lγ
1) is a real-holomorphic

family with respect to γ ∈ R. We can use the explicit resolvent formula in [1],

(T1 − k2)−1 = (−∂xx − k2)−1 + 2γk(−iγ + 2k)−1(Gk(·), ·)Gk(·),

where k2 ∈ ρ(T1), Imk > 0, Gk(x) = (i/2k)eik|x|, to verify the holomorphicity.

The following classical result of Weinstein [38] gives a precise description of the
spectrum of the operator we want to perturb.

Lemma 2.21. The operator L0
1 has exactly one negative simple isolated first eigen-

value. The second eigenvalue is 0, and it is simple and isolated. The nullspace is
span{∂xϕ0}, and the rest of the spectrum is positive.

Combining Lemma 2.19 and Lemma 2.21, we can apply the theory of analytic
perturbations for linear operators (see [25, VII.§1.3]) to get the following lemma.
Actually, the perturbed eigenvalues are holomorphic since they are simple.

Lemma 2.22. There exist γ0 > 0 and two functions λ : (−γ0, γ0) 7→ R and
f : (−γ0, γ0) 7→ L2(R) such that

(i) λ(0) = 0 and f(0) = ∂xϕ0,

(ii) For all γ ∈ (−γ0, γ0), λ(γ) is the simple isolated second eigenvalue of Lγ
1 and

f(γ) is an associated eigenvector,

(iii) λ(γ) and f(γ) are holomorphic in (−γ0, γ0).

Furthermore, γ0 > 0 can be chosen small enough to ensure that, expect the two first
eigenvalues, the spectrum of Lγ

1 is positive.

Now we investigate how the perturbed second eigenvalue moves depending on
the sign of γ.

Lemma 2.23. There exists 0 < γ1 < γ0 such that λ(γ) < 0 for any −γ1 < γ < 0
and λ(γ) > 0 for any 0 < γ < γ1.

Proof of Lemma 2.23. We develop the functions λ(γ) and f(γ) of Lemma 2.22.
There exist λ0 ∈ R and f0 ∈ L2(R) such that for γ close to 0 we have

λ(γ) = γλ0 +O(γ2), (2.16)

f(γ) = ∂xϕ0 + γf0 +O(γ2). (2.17)
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From the explicit expression (2.3) of ϕγ, we deduce that there exists g0 ∈ H1(R)
such that for γ close to 0 we have

ϕγ = ϕ0 + γg0 +O(γ2). (2.18)

Furthermore, using (2.18) to substitute into (2.2) and differentiating (2.2) with
respect to γ, we obtain 〈

L0
1g0, ψ

〉
= ϕ0(0)ψ(0), (2.19)

for any ψ ∈ H1(R).

To develop λ0 with respect to γ, we compute (Lγ
1f(γ), ∂xϕ0)2 in two different

ways.

On one hand, using Lγ
1f(γ) = λ(γ)f(γ), (2.16) and (2.17) leads us to

(Lγ
1f(γ), ∂xϕ0)2 = λ0γ‖∂xϕ0‖2

2 +O(γ2). (2.20)

On the other hand, since Lγ
1 is self-adjoint, we get

(Lγ
1f(γ), ∂xϕ0)2 = (f(γ), Lγ

1∂xϕ0)2. (2.21)

Here we note that ∂xϕ0 ∈ D(Lγ
1) : indeed, ∂xϕ0 ∈ H2(R) and ∂xϕ0(0) = 0. We

compute the right hand side of (2.21). We use (2.9), L0
1∂xϕ0 = 0, and (2.18) to

obtain

Lγ
1∂xϕ0 = p(ϕp−1

0 − ϕp−1
γ )∂xϕ0,

= −γp(p− 1)ϕp−2
0 g0∂xϕ0 +O(γ2). (2.22)

Hence, it follows from (2.17) that

(Lγ
1f(γ), ∂xϕ0)2 = −(∂xϕ0, γg0p(p− 1)ϕp−2

0 ∂xϕ0)2 +O(γ2). (2.23)

Now, as it was remarked in [9, Lemma 28], it is easy to see that using (2.2) with
γ = 0 we get

L0
1(ωϕ0 − ϕp−1

0 ) = p(p− 1)ϕp−2
0 (∂xϕ0)

2, (2.24)

which combined with (2.23) gives

(Lγ
1f(γ), ∂xϕ0)2 = −γ

〈
L0

1g0, ωϕ0 − ϕp
0

〉
+O(γ2). (2.25)

Finally, with (2.19) we obtain from (2.25)

(Lγ
1f(γ), ∂xϕ0)2 = −γ(ωϕ0(0)2 − ϕ0(0)p+1) +O(γ2). (2.26)
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Combining (2.26) and (2.20) we obtain

λ0 = −ωϕ0(0)2 − ϕ0(0)p+1

‖∂xϕ0‖2
2

+O(γ).

It follows that λ0 is positive for sufficiently small |γ|, which in view of (2.16) ends
the proof.

We are now in position to prove Lemma 2.18.

Proof of Lemma 2.18. Let γ∞ be defined by

γ∞ = inf{γ̃ < 0; Lγ
1 has exactly two negative eigenvalues for all γ ∈ (γ̃, 0)}.

From Lemma 2.23, we know that γ∞ is well defined and γ∞ ∈ [−∞, 0). Arguing by
contradiction, we suppose γ∞ > −∞.

Let N be the number of negative eigenvalues of Lγ∞
1 . Denote the first eigenvalue

of Lγ∞
1 by Λγ∞ . Let Γ be defined by

Γ = {z ∈ C; z = z1 + iz2, (z1, z2) ∈ [−b, 0] × [−a, a], for some a > 0, b > |Λγ∞ |}.
From Lemma 2.17, we know that Lγ∞

1 does not admit zero as eigenvalue. Thus
Γ define a contour in C of the segment [Λγ∞ , 0] containing no positive part of the
spectrum of Lγ∞

1 , and without any intersection with the spectrum of Lγ∞
1 . It is easily

seen (for example, along the lines of the proof of [25, Theorem VII-1.7]) that there
exists a small γ∗ > 0 such that for any γ ∈ [γ∞ − γ∗, γ∞ + γ∗], we can define a
holomorphic projection on the negative part of the spectrum of Lγ

1 contained in Γ
by

Π(γ) =
−1

2πi

∫

Γ

(Lγ
1 − z)−1dz.

Let us insist on the fact that we can choose Γ independently of the parameter γ
because 0 is not an eigenvalue of Lγ

1 for all γ.

Since Π is holomorphic, Π is continuous in γ, then by a classical connectedness
argument (for example, see [25, Lemma I-4.10]), we know that dim(Ran Π(γ)) = N
for any γ ∈ [γ∞ − γ∗, γ∞ + γ∗]. Furthermore, N is exactly the number of negative
eigenvalues of Lγ

1 when γ ∈ [γ∞−γ∗, γ∞+γ∗] : indeed, if Lγ
1 has a negative eigenvalue

outside of Γ it suffice to enlarge Γ (i.e., enlarge b) until it contains this eigenvalue to
raise a contradiction since then Lγ∞

1 would have, at least, N + 1 eigenvalues. Now
by the definition of γ∞, Lγ∞+γ∗

1 has two negative eigenvalues and thus we see that
Lγ

1 has two negative eigenvalues for all γ ∈ [γ∞ − γ∗, 0[ contradicting the definition
of γ∞.

Therefore γ∞ = −∞.
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Remark 2.24. In [11, Lemma 32], the authors proved that there are at most two
negative eigenvalues of Lγ

1 in H1(R) using variational methods. In our present proof,
we can directly show that there are exactly two negative eigenvalues.

2.2.4 The case γ > 0

The proof of Lemma 2.18 can be easily adapted to the case γ > 0, and with Lemma
2.23 we can infer that Lγ

1 has only one simple negative eigenvalue when γ > 0. Since
n(Hγ) = n(Lγ

1), it follows that (in Lemmas 2.25, 2.26 and Proposition 2.27, there is
no omission of the parameter ω)

Lemma 2.25. Let γ > 0 and ω > γ2/4. Then the operator Hγ
ω has only one negative

eigenvalue, that is n(Hγ
ω) = 1.

When γ > 0, the sign of ∂ω‖ϕω,γ‖2
2 was computed in [12]. Precisely :

Lemma 2.26. Let γ > 0 and ω > γ2/4. We have :

(i) If 1 < p 6 5 and ω > γ2/4 then ∂ω‖ϕω,γ‖2
2 > 0,

(ii) If p > 5 and γ2/4 < ω < ω1 then ∂ω‖ϕω,γ‖2
2 > 0,

(iii) If p > 5 and ω > ω1 then ∂ω‖ϕω,γ‖2
2 < 0.

Here ω1 is defined as follows:

p− 5

p− 1
J(ω1) =

γ

2
√
ω1

(
1 − γ2

4ω1

)−(p−3)/(p−1)

,

J(ω1) =

∫ ∞

A(ω1,γ)

sech4/(p−1)(y)dy, A(ω1, γ) = tanh−1

(
γ

2
√
ω1

)
.

Then, using Lemma 2.25, Lemma 2.26 and Proposition 2.12, we can give an
alternative proof of [12, Theorem 1] (see also [11, Remark 33]). Precisely, we obtain :

Proposition 2.27. Let γ > 0 and ω > γ2/4.

(i) Let 1 < p 6 5. Then eiωtϕω,γ(x) is stable in H1(R) for any ω ∈ (γ2/4,+∞).

(ii) Let p > 5. Then eiωtϕω,γ(x) is stable in H1(R) for any ω ∈ (γ2/4, ω1), and
unstable in H1(R) for any ω ∈ (ω1,+∞).
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2.2.5 The radial case

Before we start to discuss the stability in the radial case, we mention the following
remarkable fact.

Lemma 2.28. The function f(γ) defined in Lemma 2.22 and corresponding to
the second negative eigenvalue of Lγ

1 can be extended to (−∞,+∞). Furthermore,
f(γ) ∈ H1(R) is an odd function, for each γ ∈ (−∞,+∞).

Proof. First, the extension of f to (−∞, 0] is easily deduce from the proof of Lemma
2.18 and [25, VII.§3.2]. The details are left to the reader.

Secondly, as it was observed in [9, 11], the eigenvectors of Lγ
1 are even or odd.

Indeed, let ξ be an eigenvalue of Lγ
1 with eigenvector v ∈ D(Lγ

1). Then clearly ṽ
with ṽ(x) = v(−x) is also an eigenvector associated to ξ. In particular, v and ṽ
satisfy both

−∂xxv + (ω − ξ)v − pϕp−1
γ v = 0 on [0,+∞),

thus there exists η ∈ R such that v = ηṽ on [0,+∞) (this is standard, see, for
example, [4, Chapter 2, Theorem 3.3]). If v(0) 6= 0, it is immediate that η = 1.
If v(0) = 0, then ∂xv(0+) 6= 0 (otherwise the Cauchy-Lipschitz Theorem leads to
v ≡ 0), and it is also immediate that η = −1. Arguing in a same way on (−∞, 0],
we conclude that v is even or odd, and in particular v is even if and only if v(0) 6= 0.

Finally, we prove the last statement only for the case γ < 0 since the case γ > 0
is similar. We remark that ∂xϕ0 is odd. Since limγ→0(f(γ), ∂xϕ0)2 = ‖∂xϕ0‖2

2 6= 0,
we have (f(γ), ∂xϕ0)2 6= 0 for γ close to 0, thus f(γ) cannot be even, and therefore
f(γ) is odd. Let γ̃∞ be

γ̃∞ = inf{γ̃ < 0; f(γ) is odd for any γ ∈ (γ̃, 0]}.

We suppose that γ̃∞ > −∞. If f(γ̃∞) is odd, by continuity in γ of f(γ), there exists
ε > 0 such that f(γ̃∞ − ε) is odd which is a contradiction with the definition of
γ̃∞, thus f(γ̃∞) is even. Now, f(γ̃∞) is the limit of odd functions, thus is odd. The
only possibility to have f(γ̃∞) both even and odd is f(γ̃∞) ≡ 0, which is impossible
because f(γ̃∞) is an eigenvector.

We can deduce the number of negative eigenvalues of Lγ
1 in the radial case from

the result on the eigenvalues of Lγ
1 considered in the whole space L2(R). Indeed,

Lemma 2.28 ensures that the second eigenvalue of Lγ
1 considered in the whole space

L2(R) is associated with an odd eigenvector, and thus disappears when the problem
is restricted to the subspace of radial functions. Furthermore, since ϕγ ∈ H1

rad(R)
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and 〈Lγ
1ϕγ, ϕγ〉 < 0, we can infer that the first negative eigenvalue of Lγ

1 is still
present when the problem is restricted to sets of radial functions. Recalling that
n(Hγ) = n(Lγ

1), we obtain.

Lemma 2.29. Let γ < 0. Then the operator Hγ considered on H1
rad(R) has only

one negative eigenvalue, that is n(Hγ) = 1.

Combining Lemma 2.29, Lemma 2.13 and Proposition 2.12, we recover the results
of [11] recalled in Proposition 2.7.

Alternatively, subsection 2.2.3 can be adapted to the radial case. All the function
spaces should be reduced to spaces of even functions, and Lemma 2.29 can also be
proved in this way.

2.3 Strong instability

This section is devoted to the proof of Theorem 2.2.

We begin by introducing some notations

M = {v ∈ H1
rad(R) \ {0};Qγ(v) = 0, Iω,γ(v) 6 0},

dM = inf{Sω,γ(v); v ∈ M },
where Sω,γ and Iω,γ are defined in Proposition 2.1 and Qγ in Proposition 2.10.

Our proof is divided in three steps.

Step 1. We prove that ϕω,γ is a minimizer of dM .

Because of Pohozaev identity Qγ(ϕω,γ) = 0 (see [3]), it is clear that dM 6 d(ω),
thus we only have to show dM > d(ω). Let v ∈ M . If Iω,γ(v) = 0, we have
Sω,γ(v) > d(ω), therefore we suppose Iω,γ(v) < 0. For α > 0, let vα be such that
vα(x) = α1/2v(αx). We have

Iω,γ(v
α) = α2‖∂xv‖2

2 + ω‖v‖2
2 − γα|v(0)|2 − α(p−1)/2‖v‖p+1

p+1,

thus lim
α→0

Iω,γ(v
α) = ω‖v‖2

2 > 0, and by continuity there exists 0 < α0 < 1 such that

Iω,γ(v
α0) = 0. Therefore

Sω,γ(v
α0) > d(ω). (2.27)
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Consider now
∂

∂α
Sω,γ(v

α) = α‖∂xv‖2
2 − γ

2
|v(0)|2 − p− 1

2(p+ 1)
α(p−3)/2‖v‖p+1

p+1. Since

p > 5 and Qγ(v) = 0, we have for α ∈ [0, 1]

∂

∂α
Sω,γ(v

α) > αQγ(v) −
γ

2
(1 − α)|v(0)|2 = −γ

2
(1 − α)|v(0)|2

and thus
∂

∂α
Sω,γ(v

α) > 0 for all α ∈ [0, 1], which leads to Sω,γ(v) > Sω,γ(v
α0). It

follows by (2.27) that Sω,γ(v) > d(ω), which concludes dM = d(ω).

Step 2. We construct a sequence of initial data ϕα
ω,γ satisfying the following

properties :
Sω,γ(ϕ

α
ω,γ) < d(ω), Iω,γ(ϕ

α
ω,γ) < 0 and Qγ(ϕ

α
ω,γ) < 0.

These properties are invariant under the flow of (2.1).

For α > 0, we define ϕα
ω,γ by ϕα

ω,γ(x) = α1/2ϕω,γ(αx). Since p > 5, γ < 0 and
Qγ(ϕω,γ) = 0, easy computations permit to obtain

∂2

∂α2
Sω,γ(ϕ

α
ω,γ)|α=1 < 0,

∂

∂α
Iω,γ(ϕ

α
ω,γ)|α=1 < 0 and

∂

∂α
Qγ(ϕ

α
ω,γ)|α=1 < 0,

and thus for any α > 1 close enough to 1 we have

Sω,γ(ϕ
α
ω,γ) < Sω,γ(ϕω,γ), Iω,γ(ϕ

α
ω,γ) < 0 and Qγ(ϕ

α
ω,γ) < 0. (2.28)

Now fix a α > 1 such that (2.28) is satisfied, and let uα(t, x) be the solution of
(2.1) with uα(0) = ϕα

ω,γ. Since ϕα
ω,γ is radial, uα(t) is also radial for all t > 0 (see

Remark 2.4). We claim that the properties described in (2.28) are invariant under
the flow of (2.1). Indeed, since from (2.4) and (2.5) we have for all t > 0

Sω,γ(u
α(t)) = Sω,γ(ϕ

α
ω,γ) < Sω,γ(ϕω,γ), (2.29)

we infer that Iω,γ(u
α(t)) 6= 0 for any t > 0, and by continuity we have Iω,γ(u

α(t)) < 0
for all t > 0. It follows that Qγ(u

α(t)) 6= 0 for any t > 0 (if not uα(t) ∈ M and
thus Sω,γ(u

α(t)) > Sω,γ(ϕω,γ) which contradicts (2.29)), and by continuity we have
Qγ(u

α(t)) < 0 for all t > 0.

Step 3. We prove that Qγ(u
α) stays negative and away from 0 for all t > 0.

Let t > 0 be arbitrary chosen, define v = uα(t) and for β > 0 let vβ be such that
vβ(x) = v(βx). Then we have

Qγ(v
β) = β‖∂xv‖2

2 −
γ

2
|v(0)|2 − β−1 p− 1

2(p+ 1)
‖v‖p+1

p+1,
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thus limβ→+∞Qγ(v
β) = +∞, and by continuity there exists β0 such that

Qγ(v
β0) = 0. If Iω,γ(v

β0) 6 0, we keep β0 unchanged; otherwise, we replace it

by β̃0 such that 1 < β̃0 < β0, Iω,γ(v
β̃0) = 0 and Qγ(v

β̃0) 6 0. Thus in any case we
have Sω,γ(v

β0) > d(ω). Now, we have

Sω,γ(v) − Sω,γ(v
β0) =

1 − β0

2
‖∂xv‖2

2 + (1 − β0
−1)

(
ω

2
‖v‖2

2 −
1

p+ 1
‖v‖p+1

p+1

)
,

from the expression of Qγ and β0 > 1 it follows that

Sω,γ(v) − Sω,γ(v
β0) >

1

2
(Qγ(v) −Qγ(v

β0)). (2.30)

Therefore, from (2.30), Qγ(v
β0) 6 0 and Sω,γ(v

β0) > d(ω) we have

Qγ(v) 6 −m = 2(Sω,γ(v) − d(ω)) < 0 (2.31)

where m is independent of t since Sω,γ is a conserved quantity.

Conclusion. Finally, thanks to (2.31) and Proposition 2.10, we have

‖xuα(t)‖2
2 6 −4mt2 + Ct+ ‖xϕα

ω,γ‖2
2. (2.32)

For t large, the right member of (2.32) becomes negative, thus there exists Tα < +∞
such that

lim
t→T α

‖∂xu
α(t)‖2

2 = +∞.

Since it is clear that ϕα
ω,γ → ϕω,γ in H1(R) when α→ 1, Theorem 2.2 is proved.

Remark 2.30. It is not hard to see that the set

I = {v ∈ H1(R);Sω,γ(v) < d(ω), Iω,γ(v) > 0}

is invariant under the flow of (2.1), and that a solution with initial data belonging
to I is global. Thus using the minimizing character of ϕω,γ and performing an
analysis in the same way than in [19], it is possible to find a family of initial data
in I approaching ϕω,γ in H1(R) and such that the associated solution of (2.1) exists
globally but escaped in finite time from a tubular neighborhood of ϕω,γ (see also
[10, 17] for an illustration of this approach on a related problem).

2.4 The virial theorem

This section is devoted to the proof of Proposition 2.10.
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For a ∈ N \ {0}, we define V a(x) = γae−πa2x2
. It is clear that

∫
R
V a(x) = γ and

V a ⇀ γδ weak-⋆ in H−1(R) when a→ +∞.

We begin by the construction of approximate solutions : for
{
i∂tu = −∂xxu− V au− |u|p−1u,
u(0) = u0,

(2.33)

and thanks to [6, Proposition 6.4.1], for every a ∈ N \ {0} there exists T a > 0 and
a unique maximal solution ua ∈ C([0, T a), H1(R)) ∩ C1([0, T a), H−1(R)) of (2.33)
which satisfies for all t ∈ [0, T a)

Ea(ua(t)) = Ea(u0), (2.34)

‖ua(t)‖2 = ‖u0‖2, (2.35)

where Ea(v) =
1

2
‖∂xv‖2

2 − 1

2

∫

R

V a|v|2dx − 1

p+ 1
‖v‖p+1

p+1. Moreover, the function

fa : t 7→
∫

R
x2|ua(t, x)|2dx is C2 by [6, Proposition 6.4.2], and

∂tf
a = 4Im

∫

R

uax∂xu
adx, (2.36)

∂ttf
a = 8Qa

γ(u
a) (2.37)

where Qa
γ is defined for v ∈ H1(R) by

Qa
γ(v) = ‖∂xv‖2

2 +
1

2

∫

R

x(∂xV
a)|v|2dx− p− 1

2(p+ 1)
‖v‖p+1

p+1.

Then, we find estimates on (ua). Let M > ‖u0‖H1(R) (an exact value of M will
be precise later). We define

ta = sup{t > 0; ‖ua(s)‖H1(R) 6 2M for all s ∈ [0, t)}. (2.38)

Since ua satisfies (2.33), we have

sup
a∈N\{0}

‖∂tu
a‖L∞([0,ta),H−1(R)) 6 C,

and thus for all t ∈ [0, ta) and for all a ∈ N \ {0} we get

‖ua(t) − u0‖2
2 = 2Re

∫ t

0

(ua(s) − u0, ∂tu
a(s))2ds 6 Ct (2.39)

where C depends only on M . Now we have

1

p+ 1
(‖ua‖p+1

p+1 − ‖u0‖p+1
p+1) =

∫ 1

0

Re

∫

R

(ua − u0)|sua + (1 − s)u0|pdx ds
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which combined with Hölder inequality, Sobolev embeddings, (2.38) and (2.39) gives

1

p+ 1
(‖ua‖p+1

p+1 − ‖u0‖p+1
p+1) 6 Ct1/2. (2.40)

Moreover, using (2.38), Sobolev embeddings, Gagliardo-Nirenberg inequality and
(2.39) we obtain ∣∣∣∣

∫

R

V a(|ua|2 − |u0|2)
∣∣∣∣ 6 Ct1/4. (2.41)

Combining (2.34), (2.35), (2.40) and (2.41) leads to

‖ua(t)‖2
H1(R) 6 M2 + C(t1/4 + t1/2) for all t ∈ [0, ta) and for all a ∈ N \ {0},

and choosing TM (depending only on M) such that C(T
1/4
M +T

1/2
M ) = 3M2 we obtain

for all a ∈ N \ {0} the estimates

‖ua‖L∞([0,TM ),H1(R)) 6 2M,
‖∂tu

a‖L∞([0,TM ),H−1(R)) 6 C.
(2.42)

In particular, it follows from (2.42) that TM 6 ta for all a ∈ N \ {0}.

Now we can pass to the limit : thanks to (2.42) there exists
u ∈ L∞([0, TM), H1(R)) such that for all t ∈ [0, TM) we have

ua(t) ⇀ u(t) weakly in H1(R) when a→ +∞, (2.43)

which immediately induces that when a→ +∞,

|ua(t)|p−1ua(t) ⇀ |u(t)|p−1u(t) weakly in H−1(R). (2.44)

In particular, thanks to Sobolev embeddings, we have

ua(t, x) → u(t, x) a.e. and uniformly on the compact sets of R,

and it is not hard to see that it permit to show

V aua ⇀ uγδ weak-⋆ in H−1(R). (2.45)

Since ua satisfies (2.33), it follows from (2.43), (2.44) and (2.45) that u satisfies (2.1).
Finally, by (2.5) and (2.35), we have

ua → u in C([0, TM), L2(R)),

thus, from Gagliardo-Nirenberg inequality and (2.42), we have

ua → u in C([0, TM), Lp+1(R)),

- 72 -



2.4 The virial theorem

and by (2.4) and (2.34) it follows that

ua → u in C([0, TM), H1(R)). (2.46)

We have to prove that the time interval [0, TM) can be extended as large as we
need. Let 0 < T < Tu0 and

M = sup{‖u(t)‖H1(R), t ∈ [0, T ]}.
If TM > T , there is nothing left to do, thus we suppose TM < T . >From (2.46)
we have ‖ua(TM)‖H1(R) 6 M for a large enough. By performing a shift of time of
length TM in (2.1) and (2.33) and repeating the first steps of the proof we obtain

ua → u in C([TM , 2TM), H1(R)).

Now we reiterate this procedure a finite number of times until we covered the interval
[0, T ] to obtain

ua → u in C([0, T ], H1(R)). (2.47)

To conclude, we remark that (2.6) follows from the same proof than [6, Lemma
6.4.3] (computing with ‖e−ε|x|2xu(t)‖2

2 and passing to the limit ε→ 0), thus we have

‖xu(t)‖2
2 = ‖xu0‖2

2 + 4

∫ t

0

Im

∫

R

u(s)x∂xu(s)dxds. (2.48)

From (2.36), Cauchy-Schwartz inequality and (2.42) we have

∂t

(
‖xua(t)‖2

2

)
6 C‖xua(t)‖2,

which implies that
‖xua(t)‖2 6 ‖xu0‖2 + Ct.

Since in addition we have

xua(t, x) → xu(t, x) a.e.,

we infer that
xua(t, x) ⇀ xu(t, x) weakly in L2(R).

Recalling that
∂xu

a → ∂xu strongly in L2(R)

we can pass to the limit in (2.48) to have

‖xua(t)‖2 → ‖xu(t)‖2.

On the other side, since we have (2.37) and (2.47), we get (2.7).

Remark 2.31. Our method of approximation is inspired of the one developed in [8]
by Cazenave and Weissler to prove the local well-posedness of the Cauchy problem
for nonlinear Schrödinger equations. Actually, slight modifications in our proof of
Proposition 2.10 would permit to give an alternative proof of Proposition 2.3.
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2. Instability of NLS with a Dirac potential

2.5 Numerical results

In this Section, we use numerical simulations to complement the rigorous theory on
stability and instability of the standing waves of (2.1). Our approach here is similar
to the one in [9]. In order to study stability under radial perturbations, we use the
initial condition

u0(x) = (1 + δp)ϕω,γ(x). (2.49)

In order to study stability under non-radial (asymmetric) perturbations, we use the
initial condition

u0(x) = ϕω,γ(x− δc), (2.50)

when δc is the lateral shift of the initial condition. In some cases (when the standing
wave has a negative slope and the linearized problem has two negative eigenvalues),
we use the initial condition

u0(x) = (1 + δp)ϕω,γ(x− δc). (2.51)

2.5.1 Stability in H1
rad(R)

Strength of radial stability

When γ > 0, the standing waves are known to be stable in H1
rad(R) for 1 < p ≤ 5.

The rigorous theory, however, does not address the issue of the strength of radial
stability. This issue is of most interest in the case p = 5, which is unstable when
γ = 0.

For δp > 0, it is useful to define

F (δp) = max
t≥0

{
maxx |u(x, t)| − maxx ϕω,γ

maxx ϕω,γ

}
(2.52)

as a measure of the strength of radial stability. Figure 2.2 shows the normalized
values maxx |u|/maxx ϕω,γ as a function of t, for the initial condition (2.49) with
ω = 4 and γ = 1. When p = 3, a perturbation of δp = 0.01 induces small oscillations
and F (0.01) = 1.9%. Therefore, roughly speaking, a 1% perturbation of the initial
condition leads to a maximal deviation of 2%. A larger perturbation of δp = 0.08
causes the magnitude of the oscillations to increase approximately by the same ratio,
so that F (0.08) = 15%. Using the same perturbations with p = 5, however, leads to
significantly larger deviations. Thus, F (0.01) = 8.8%, i.e., more than 4 times bigger
than for p = 3, and F (0.08) = 122%, i.e., more than 8 times than for p = 3.
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Figure 2.2 - maxx|u|/maxxϕω,γ as a function of t for
ω = 4, γ = 1, δp = 0.01 (dashed line) and δp = 0.08 (solid
line). (a) p = 3 (b) p = 5.

In [9, 35], Fibich, Sivan and Weinstein observed that the strength of radial
stability is related to the magnitude of slope ∂ω||ϕω,γ||22, so that the larger ∂ω||ϕω,γ||22,
the ”more stable” the solution is. Indeed, numerically we found that when ω = 4,
∂ω||ϕω,γ||22 is equal to 1.0 for p = 3 and 0.056 for p = 5.

Since when γ = 0, the slope is positive for p < 5 but zero for p = 5, for γ > 0
the slope is smaller in the critical case than in the subcritical case. Therefore, we
make the following informal observation:

Observation 2.1. Radial stability of the standing waves of (2.1) with γ > 0 is
“weaker” in the critical case p = 5 than in the subcritical case p < 5.

Clearly, this difference would be more dramatic at smaller (positive) values of γ.
Indeed, if in the simulation of Figure 2.2 with δp = 0.01 we reduce γ from 1 to 0.5
and then to 0.1, this has almost no effect when p = 3, where the value of F slightly
increases from 1.9% to 2.1% and to 2.5%, respectively, see Figure 2.3a. However, if
we repeat the same simulations with p = 5, then reducing the value of γ has a much
larger effect, see Figure 2.3b, where F increases from 8.9% for γ = 1 to 24% for
γ = 0.5. Moreover, when we further reduced γ to 0.1, the solution seems to undergo
collapse.1 This implies that when p = 5 and γ > 0, the standing wave is stable, yet
it can collapse under a sufficiently large perturbation.

1Clearly, one cannot use numerics to determine that a solution becomes singular, as it is always
possible that collapse would be arrested at some higher focusing levels.
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Figure 2.3 - maxx|u|/maxxϕω,γ as a function of t for
ω = 4, δp = 0.01, and γ = 1 (solid line), γ = 0.5 (dashed
line) and γ = 0.1 (dots). (a) p = 3 (b) p = 5.

Characterization of radial instability for 3 < p < 5 and γ < 0

We consider the subcritical repulsive case p = 4 and γ = −1. In this case, there
is threshold ω2 such that ϕω,γ is stable for ω > ω2 and unstable for ω < ω2. By
numerical calculation we found that ω2(p = 4, γ = −1) ≈ 0.82. Accordingly, we
chose two representative values of ω: ω = 0.5 in the unstable regime, and ω = 2 in
the stable regime.
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Figure 2.4 - maxx|u|/maxxϕω,γ as a function of t for
p = 4, γ = −1, δp = 0.001 (dashed line) and δp = 0.005
(solid line). (a) ω = 2; (b) ω = 0.5.

Figure 2.4a demonstrates the stability for ω = 2. Indeed, reducing the pertur-
bation from δp = 0.005 to 0.001 results in reduction of the relative magnitude of the
oscillations by roughly five times, from F (0.005) ≈ 10% to F (0.001) ≈ 2%. The dy-
namics in the unstable case ω = 0.5 is also oscillatory, see Figure 2.4b. However, in
this case F (0.005) = 79%, i.e., eight times larger than for ω = 2. More importantly,
unlike the stable case, a perturbation of δp = 0.001 does not result in a reduction of
the relative magnitude of the oscillations by ≈ 5. In fact, the relative magnitude of
the oscillations descreases only to F (0.001) = 66%.

In the homogeneous NLS, unstable standing waves perturbed with δp > 0 always
undergo collapse. Since, however, for p = 4 it is impossible to have collapse, an
interesting question is the nature of the instability in the unstable region ω < ω2.
In Figure 2.4b we already saw that max|u(x, t)| undergoes oscillations. In order
to better understand the nature of this unstable oscillatory dynamics, we plot in
Figure 2.5 the spatial profile of |u(x, t)| at various values of t. In addition, at each t
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we plot φω∗(t),γ(x), where ω∗(t) is determined from the relation

max
x

φω∗(t),γ(x) = max
x

|u(x, t)|.

Since the two curves are nearly indistinguishable (especially in the central region),
this shows that the unstable dynamics corresponds to ”movement along the curve
φω∗(t)”.

In Figure 2.6 we see that ω∗(t) undergoes oscillations, in accordance with the
oscillations of maxx |u|. Furthermore, as one may expect, collapse is arrested only
when ω∗(t) reaches a value (≈ 2.86) which is in the stability region (i.e., above ω2).

Observation 2.2. When γ < 0 and 3 < p < 5, the instability in H1
rad(R) is a

”finite width instability”, i.e., the solution narrows down along the curve φω∗(t),γ
until it ”reaches” a finite width in the stable region ω > ω2, at which point collapse
is arrested.

Note that this behavior was already observed in [9], Fig 19. Therefore, more
generally, we conjecture that

Observation 2.3. When the slope is negative (i.e., ∂ω||ϕω,γ||22 < 0 ), then the
symmetric perturbation (2.49) with 0 < δp ≪ 1 leads to a finite-width instability
in the subcritical case, and to a finite-time collapse in the critical and supercritical
cases.

−7 7
0

1.5

|u|

x

(a)

 

 

|u|

φ
ω*

−7 7
0

1.5

x

(b)

−7 7
0

1.5

x

(c)

−7 7
0

1.5

|u|

x

(d)

−7 7
0

1.5

x

(e)

−7 7
0

1.5

x

(f)

Figure 2.5 - |u(x, t)| (solid line) and φω∗(t)(x) (dots) as a
function of x for the simulation of Fig. 2.4b with δp = 0.005.
(a) t = 0 (ω∗ = 0.508) (b) t = 9 (ω∗ = 1.27) (c)
t = 10.69 (ω∗ = 2.86) (d) t = 12 (ω∗ = 1.43) (e)
t = 15 (ω∗ = 0.706) (f) t = 20 (ω∗ = 0.58).
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Figure 2.6 - ω∗ as a function of t for the simulation of
Fig 2.5.

Supercritical case (p > 5)

We recall that when γ > 0 and p > 5, the standing wave is stable for γ2/4 < ω < ω1

and unstable for ω1 < ω. When γ < 0 and p > 5 the standing wave is strongly
unstable under radial perturbations for any ω, i.e., an infinitesimal perturbation can
lead to collapse.
Figure 2.7 shows the behavior of perturbed solutions for p = 6 and ω = 1. As
predicted by the theory, when δp = 0.001, the solution blows up for γ = −1 and
γ = 0, but undergoes small oscillations (i.e., is stable) for γ = 1. Indeed, we found
numerically that ω1(p = 6, γ = 1) ≈ 2.9, so that the standing wave is stable for
ω = 1. However, when we increase the perturbation to δp = 0.1, the solution with
γ = 1 also seems to undergo collapse. This implies that when p > 5, γ > 0 and
ω < ω1 the standing wave is stable, yet it can collapse under a sufficiently large
perturbation. In order to find the type of instability for γ > 0 and ω > ω1, we solve
the NLS (2.1) with p = 6, γ = 1 and ω = 4. In this case, δp = 0.001 seems to lead to
collapse, see Figure 2.8, suggesting a strong instability for p > 5, γ > 0 and ω > ω1.
Therefore, we make the following informal observation:

Observation 2.4. If a standing wave of (2.1) with p > 5 is unstable in H1
rad(R),

then the instability is strong.
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Figure 2.7 - maxx |u(x, t)|/ maxx ϕω,γ as a function of t for
p = 6, ω = 1 and γ = −1 (dashed line), γ = 0 (dots), γ = +1
(solid line). (a) δp = 0.001 (b) δp = 0.1.
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Figure 2.8 - maxx |u(x, t)|/ maxx ϕω,γ as a function of t for
p = 6, ω = 4, γ = 1 and δp = 0.001.

2.5.2 Stability under non-radial perturbations

Stability for 1 < p < 5 and γ > 0

Figure 2.9 shows the evolution of the solution when p = 3, γ = 1, ω = 1 and δc = 0.1.
The peak of the solution moves back towards x = 0 very quickly (around t ≈ 0.003)
and stays there at later times. Subsequently, the solution converges to the bound
state φω∗=0.995. This convergence starts near x = 0 and spreads sideways, accom-
panied by radiation of the excess power ||u0||22 − ||φω∗=0.995||22 ∼= 2.00 − 1.99 = 0.01.
In Fig 2.10 we repeat this simulation with a larger shift of δc = 0.5. The overall
dynamics is similar: The solution peak moves back to x = 0, and the solution con-
verges (from the center outwards) to φω∗=0.905. In this case, it takes longer for the
maximum to return to x = 0 (at t ≈ 0.11), and more power is radiated in the pro-
cess (||u0||22 − ||φω∗=0.905||22 ∼= 2.00 − 1.81 = 0.19. We verified that the ”non-smooth”
profiles (e.g., at t = 0.2) are not numerical artifacts.
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Figure 2.9 - |u(x, t)| (solid line) and φω∗=0.995(x) (dashed
line) as a function of x. Here, p = 3, ω = 1, γ = 1 and
δc = 0.1.
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Figure 2.10 - Same as Fig 2.9 with δc = 0.5 and ω∗ = 0.905.

Drift instability for 1 < p ≤ 3 and γ < 0

Figure 2.11 shows the evolution of the solution for p = 3, γ = −1, ω = 1 and δc = 0.1.
Unlike the attractive case with the same parameters (Figure 2.9), as a result of this
small initial shift to the right, nearly all the power flows from the left side of the
defect (x < 0) to the right side (x > 0), see Figure 2.12a, so that by t ≈ 3, ≈ 90%
of the power is in the right side. Subsequently, the right component moves to the
right at a constant speed (see Fig 2.12b) while assuming the sech profile of the
homogeneous NLS bound state (see Fig 2.11 at t=8); the left component also drifts
away from the defect.

We thus see that

Observation 2.5. When 1 < p ≤ 3, the standing waves are stable under shifts
in the attractive case, but undergo a drift instability away from the defect in the
repulsive case.

We note that a similar behavior was observed in the subcritical NLS with a
periodic nonlinearity, see [9], Section 5.1.
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Figure 2.11 - |u(x, t)| (solid line) as a function of x. Here
p = 3, γ = −1, ω = 1 and δc = 0.1. Dotted line at t = 8 is√

2ω∗sech(
√

ω∗(x − x∗)) with ω∗ = 1.768 and x∗ ≈ 7.
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Figure 2.12 - (a) The normalized pow-
ers

∫∞
0 |u|2dx/

∫∞
−∞ |u0|2dx (solid line) and∫ 0

−∞ |u|2dx/
∫∞
−∞ |u0|2dx (dashed line), and (b) loca-

tion of max0≤x |u(x, t)| (solid line) and of maxx≤0 |u(x, t)|
(dashed line), for the simulation of Figure 2.11.

- 81 -



2. Instability of NLS with a Dirac potential

Drift and finite-width instability for 3 < p < 5 and γ < 0

In Figure 2.4b, Figure 2.5, and Figure 2.6 we saw that when p = 4, γ = −1, ω = 0.5,
and δp = 0.005, the solution undergoes a finite-width instability in H1

rad(R). In
Figures 2.13 and 2.14 we show the dynamics (in H1(R)) when we add a small shift
of δc = 0.1. In this case, the (larger) right component undergoes a combination of a
drift instability and a finite-width instability, whereas the (smaller) left component
undergoes a drift instability. Therefore, we make the following observation

Observation 2.6. When 3 < p < 5, γ2/4 < ω < ω2 and γ < 0, the standing waves
undergo a combined drift and finite-width instability.
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Figure 2.13 - u(x, t) as a function of x. Here p = 4, γ = −1,
ω = 0.5, δp = 0.005, and δc = 0.1
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Figure 2.14 - (a) The value, and (b) the location, of
the right peak max0≤x |u(x, t)| (solid line) and left peak
maxx≤0 |u(x, t)| (dashed line), for the simulation of Fig-
ure 2.13.

Drift and strong instability for 5 ≤ p and γ < 0

In Figures 2.15 and 2.16 we show the solution of the NLS (2.1) with p = 6, γ = −1
and ω = 1, for the initial condition (2.51) with δc = 0.2 and δp = 0.001. As predicted
by the theory, this strongly unstable solution undergoes collapse. Note, however,
that, in parallel, the solution also undergoes a drift instability. We thus see that

Observation 2.7. In the critical and supercritical repulsive case, the standing waves
collapse while undergoing a drift instability away from the defect.

Note that a similar behavior was observed in [9], Section 5.2.
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Figure 2.15 - |u(x, t)| as a function of x, at various values
of t. Here, p = 6, γ = −1, ω = 1, δc = 0.2 and δp = 0.001.
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Figure 2.16 - (a) maxx |u(x, t)|/ maxx ϕω,γ (b)
location of maxx |u(x, t)| and (c) The normal-
ized powers
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−∞ |u0|2dx (dashed line), for the solution of

Fig. 2.15.
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2.5.3 Numerical Methods

We solve the NLS (2.1) using fourth-order finite differences in x and second-order
implicit Crack-Nicholson scheme in time. Clearly, the main question is how to
discretize the delta potential at x = 0. Recall that in continuous case

lim
x→0+

∂xu(x) − lim
x→0−

∂xu(x) = −γu(0).

Discretizing this relation with O(h2) accuracy gives

u(2h) − 4u(h) + 3u(0)

2h
− −u(−2h) + 4u(−h) − 3u(0)

2h
= −γu(0),

when h is the spatial grid size. By rearrangement of the terms we get the equation

− u(2h) + 4u(h) + [2hγ − 6]u(0) + 4u(−h) − u(−2h) = 0. (2.53)

When we simulate symmetric perturbations (section 2.5.1), we enforce symmetry by
solving only on half space [0,+∞). In this case, because of the symmetry condition
u(−x) = u(x), (2.53) becomes

[2hγ − 6]u(0) + 8u(h) − 2u(2h) = 0.
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Chapitre 3

A note on Berestycki-Cazenave’s
classical instability result for
nonlinear Schrödinger equations

Abstract. In this note we give an alternative, shorter proof of the
classical result of Berestycki and Cazenave on the instability by blow-up
for the standing waves of some nonlinear Schrödinger equations.

3.1 Introduction

In 1981, in a celebrated note [1], Berestycki and Cazenave studied the instability of
standing waves for the nonlinear Schrödinger equation

iut + ∆u+ |u|p−1u = 0 (3.1)

where u = u(t, x) ∈ C, t ∈ R, x ∈ R
N and p > 1. A standing wave is a solution of

(3.1) of the form eiωtϕ(x) with ϕ ∈ H1(RN) and ω > 0. Thus ϕ is solution of

− ∆ϕ+ ωϕ = |ϕ|p−1ϕ, ϕ ∈ H1(RN). (3.2)

We say that ϕ ∈ H1(RN) is a ground state solution of (3.2) if it satisfies

S̃(ϕ) = inf{S̃(v); v ∈ H1(RN) \ {0} is a solution of (3.2) }

where S̃ is defined for v ∈ H1(RN) by

S̃(v) :=
1

2
‖∇v‖2

2 +
ω

2
‖v‖2

2 −
1

p+ 1

∫

RN

|v|p+1dx.
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3. On Berestycki-Cazenave’s instability result for NLS

In [1] it is shown that if 1 + 4
N
< p < 1 + 4

N−2
when N > 3 and 1 + 4

N
< p < +∞

when N = 1, 2, then any standing wave associated with a ground state solution ϕ
of (3.2) is unstable by blow up. More precisely, there exists (ϕn) ⊂ H1(RN) such
that ϕn → ϕ in H1(RN) and the corresponding maximal solution un of (3.1) with
un(0) = ϕn blows up in finite time.

The result and perhaps more the methods introduced in [1] still have a deep
influence on the field of instability for nonlinear Schrödinger and related equations.
In particular the idea of defining appropriate invariant sets and how to use them
to establish the blow-up. We should mention that in [1] more general nonlinearities
were considered. The paper [1] is only a short note which contains the main ideas
but no proofs. For the special nonlinearity |u|p−1u these proofs can be found in
[5]. For the general case it seems that the extended version [2] of [1] has remained
unpublished so far.

The aim of the present note is to present an alternative, shorter proof of the
result of [1] for general nonlinearities. Also the instability of the standing waves
is proved under slightly weaker assumptions. Before stating our result we need to
introduce some notations. Let g : R 7→ R be an odd function extended to C by
setting g(z) = g(|z|)z/|z| for z ∈ C \ {0}. Equation (3.1) now becomes

iut + ∆u+ g(u) = 0 (3.3)

and correspondingly for the ground states we have

− ∆ϕ+ ωϕ = g(ϕ). (3.4)

For z ∈ C let G(z) :=
∫ |z|

0
g(s)ds. We assume

(A0) The function g satisfies

(a) g ∈ C(R,R).

(b) lims→0
g(s)

s
= 0.

(c) when N > 3, lims→+∞ g(s)s−
N+2
N−2 = 0;

when N = 2, for any α > 0, there exists Cα > 0 such that |g(s)| 6 Cαe
αs2

for all s > 0.

(A1) The function h(s) := (sg(s)−2G(s))s−(2+4/N) is strictly increasing on (0,+∞)
and lims→0 h(s) = 0.

(A2) There exist C > 0 and α ∈ [0, 4
N−2

) if N > 3, α ∈ [0,∞) if N = 2, such that

|g(s) − g(t)| 6 C(1 + |s|α + |t|α)|t− s|
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for all s, t ∈ R. If N = 1 we assume that for every M > 0, there exists
L(M) > 0 such that

|g(s) − g(t)| 6 L(M)|s− t|
for all s, t ∈ R such that |s| + |t| 6 M.

Finally we define for v ∈ H1(RN) the functional

S(v) :=
1

2
‖∇v‖2

2 +
ω

2
‖v‖2

2 −
∫

RN

G(v)dx

and set
m := inf{S(v); v ∈ H1(RN) \ {0} is a solution of (3.4) }.

Our main result is

Theorem 3.1. Assume that (A0) − (A2) hold and let ϕ be a ground state solution
of (3.4), i.e. a solution of (3.4) such that S(ϕ) = m. Then for every ε > 0 there
exists u0 ∈ H1(RN) such that ‖u0 − ϕ‖H1(RN ) < ε and the solution u of (3.3) with
u(0) = u0 satisfies

lim
t→Tu0

‖∇u(t)‖2 = +∞ with Tu0 < +∞.

From [3, 4] we know that assumption (A0) is almost necessary to guarantee
the existence of a solution for (3.4). Assumption (A1) is a weaker version of the
assumption (H.1) in [1]. An assumption of this type, on the growth of g, is necessary
since it is known from [6] that when g(u) = |u|p−1u with 1 < p < 1 + 4

N
the

standing waves associated with the ground states are, on the contrary, orbitally
stable. Assumption (A2) is purely technical and is aimed at ensuring the local
well-posedness of the Cauchy problem for (3.3). It replaces assumption (H.2)
in [1]. Indeed, in [1] the authors were using the results of Ginibre and Velo
[8] for that purpose. Since [1] has been published, advances have been done
in the study of the Cauchy problem (see [5, 7] and the references therein). In
particular, under our condition (A2), for all u0 ∈ H1(RN) there exist Tu0 > 0 and
a unique solution u ∈ C([0, Tu0), H

1(RN)) ∩ C1([0, Tu0), H
−1(RN)) of (3.3) such that

limt→Tu0
‖∇u(t)‖2 = +∞ if Tu0 < +∞. Furthermore, the following conservation

properties hold : for all t ∈ [0, Tu0) we have

S(u(t)) = S(u0), (3.5)

‖u(t)‖2 = ‖u0‖2. (3.6)

Finally, if xu0 ∈ L2(RN), the function f : t 7→ ‖xu(t)‖2
2 is C2 and we have the virial

identity
∂ttf(t) = 8Q(u(t)), (3.7)
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where Q is defined for v ∈ H1(RN) by

Q(v) := ‖∇v‖2
2 −

N

2

∫

RN

(g(|v|)|v| − 2G(v))dx.

The proofs of instability in [1] and here share some elements, in particular
the introduction of sets invariant under the flow. The main difference lies in the
variational characterization of the ground states which is used to define the invariant
sets and how to derive this characterization.

In [1] it is shown that a ground state of (3.4) can be characterized as a minimizer
of S on the constraint

M := {v ∈ H1(RN) \ {0}, Q(v) = 0}.

To show this characterization, S is directly minimized onM . Additional assumptions
(see (H.1) in [1]) are necessary at this step to insure that the minimizing sequences
are bounded. Once the existence of a minimizer for S on M has been established,
one has to get rid of the Lagrange multiplier, namely to prove that it is zero. There,
a stronger version of (A0), requiring in particular g ∈ C1(R,R) and a control on g′(s)
at infinity, is necessary along with tedious calculations.

Having established that the ground states of (3.4) minimize S on M , Berestycki
and Cazenave show that the set

K := {v ∈ H1(RN), S(v) < m and Q(v) < 0}

is invariant under the flow of (3.3) and that one can choose in K an initial data,
arbitrarily close to the ground state, for which the blow-up occurs.

In our approach we characterize the ground states as minimizers of S on

M := {v ∈ H1(RN) \ {0};Q(v) = 0, I(v) 6 0},

where I(v) is defined for v ∈ H1(RN) by

I(v) := ‖∇v‖2
2 + ω‖v‖2

2 −
∫

RN

g(|v|)|v|dx

and correspondingly our invariant set is

{v ∈ H1(RN), S(v) < m,Q(v) < 0 and I(v) < 0}.

The dominant feature of our approach, which also explains why our assumptions
on g are weaker than in [1] is that we never explicitly solve a minimization problem.
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At the heart of our approach is an additional characterization of the ground states
as being at a mountain pass level for S. This characterization was derived in [10]
for N > 2 and in [11] for N = 1. We also strongly benefit from recent techniques
developed by several authors [12, 13, 14, 15, 16, 17] where minimization approches
using two constraints have been introduced.

3.2 Proof of Theorem 3.1

We first prove the existence of ground states and the fact that they correspond to
minimizers of S on the Nehari manifold.

Lemma 3.1. Assume that (A0) and (A1) hold. Then (3.4) admits a ground state
solution. Furthermore, the ground states solutions of (3.4) are minimizers for

d(ω) := inf
{
S(v); v ∈ H1(RN) \ {0}, I(v) = 0

}
.

Before proving Lemma 3.1, we prove a technical result.

Lemma 3.2. Assume that (A0) and (A1) hold. Then the nonlinearity g satisfies

g(s)

s
is increasing for s > 0. (3.8)

g(s)

s
→ +∞ as s→ +∞. (3.9)

Proof of Lemma 3.2. From the definition of h(s) we have

g(s)

s
= s4/Nh(s) +

2G(s)

s2
. (3.10)

Furthermore, for s > 0

∂

∂s

(
G(s)

s2

)
=
s(sg(s) − 2G(s))

s4
> 0 (3.11)

where the last inequality follows from (A1). Thus, combining (3.10), (3.11) and (A1)
we get (3.8) and (3.9).

Proof of Lemma 3.1. It follows from Lemma 3.2 that

(P) There exists s0 > 0 such that
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– if N > 2, then 1
2
ωs2

0 < G(s0);

– if N = 1, then 1
2
ωs2 > G(s) for s ∈ (0, s0),

1
2
ωs2

0 = G(s0) and ωs0 < g(s0).

Now, from [3, Théorème 1] and [4, Theorem 1] we know that the conditions (A0)
and (P) are sufficient to insure the existence of a ground state.

If v is a solution of (3.4), then S ′(v)v = I(v) = 0; therefore, to prove the lemma
it is enough to show that d(ω) > m. From [10, 11] we know that under (A0) and
(P) the functional S has a mountain pass geometry. More precisely, if we set

Γ := {χ ∈ C([0, 1], H1(RN));χ(0) = 0, S(χ(1)) < 0},

then Γ 6= ∅ and
c := inf

χ∈Γ
max
t∈[0,1]

S(χ(t)) > 0.

In addition it is shown1 in [10, 11] that

m = c.

Namely the mountain pass level c corresponds to the ground state level m. Now
it is well-known that (3.8) ensure that if v ∈ H1(RN) satisfies I(v) = 0 then
t 7→ S(tv) achieves its unique maximum on [0,+∞) at t = 1. Also (3.9) shows
that limt→+∞ S(tv) = −∞. From the definition of c, it implies that c 6 S(v) for all
v ∈ H1(RN) such that I(v) = 0. Hence we have

d(ω) > c,

and combined with the fact that m = c it ends the proof.

Now we investigate the behavior of the functionals under some rescaling

Lemma 3.3. Assume that (A0) and (A1) hold. For λ > 0 and v ∈ H1(RN), we

define vλ( · ) := λ
N
2 v(λ · ). We suppose Q(v) 6 0. Then there exists λ0 6 1 such that

(i) Q(vλ0) = 0,

(ii) λ0 = 1 if and only if Q(v) = 0,

(iii) ∂
∂λ
S(vλ) > 0 for λ ∈ (0, λ0) and ∂

∂λ
S(vλ) < 0 for λ ∈ (λ0,+∞),

(iv) λ 7→ S(vλ) is concave on (λ0,+∞),

(v) ∂
∂λ
S(vλ) = 1

λ
Q(vλ).

1In fact, the results of [10, 11] are proved only for real valued functions; however, it is not hard
to see that they can be extended to the complex case (see [9, Lemma 14]).
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Proof of Lemma 3.3. Easy computations lead to

∂

∂λ
S(vλ) =

1

λ
Q(vλ)

= λ

(
‖∇v‖2

2 −
N

2

∫

RN

λ−(N+2)
(
λ

N
2 g(λ

N
2 |v|)|v| − 2G(λ

N
2 v)
)
dx

)
,

and recalling from (A1) that the function h(s) := (sg(s)−2G(s))s−(2+4/N) is strictly
increasing on [0,+∞), (i), (ii), (iii) and (v) follow easily. To see (iv), we remark
that since

(
‖∇v‖2

2 −
N

2

∫

RN

λ−(N+2)
(
λ

N
2 g(λ

N
2 |v|)|v| − 2G(λ

N
2 v)
)
dx

)
< 0

on (λ0,+∞), we infer from (A1) that ∂
∂λ
S(vλ) is strictly decreasing on (λ0,+∞),

which implies (iv).

Proof of Theorem 3.1. We recall that

M = {v ∈ H1(RN) \ {0};Q(v) = 0, I(v) 6 0},

and define
dM := inf{S(v); v ∈ M }.

We proceed in three steps.
Step 1. Let us prove d(ω) = dM . Since the ground states ϕ satisfy
Q(ϕ) = I(ϕ) = 0, we have ϕ ∈ M . Combined with S(ϕ) = d(ω), this implies
dM 6 d(ω). Conversely, let v ∈ M . If I(v) = 0, then trivially S(v) > d(ω), thus we
suppose I(v) < 0. We use the rescaling defined in Lemma 3.3 : for λ > 0 we have

I(vλ) = λ2‖∇v‖2
2 + ω‖v‖2

2 −
∫

RN

λ−N/2g(λN/2|v|)|v|dx.

It follows from (A0)-(b) that limλ→0 I(v
λ) = ω‖v‖2

2 and thus by continuity there
exists λ1 < 1 such that I(vλ1) = 0. Thus S(vλ1) > d(ω). Now, from Q(v) = 0 and
(iii) in Lemma 3.3 we have

S(v) > S(vλ1) > d(ω),

hence dM = d(ω).

Step 2. For λ > 0, we set uλ := ϕλ. For λ > 1 close to 1, we have

S(uλ) < S(ϕ) and Q(uλ) < 0, (3.12)

I(uλ) < 0. (3.13)
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Indeed, (3.12) follows from (iii) and (v) in Lemma 3.3. For (3.13), we write

I(uλ) = 2S(uλ) +
2

N
Q(uλ) − 2

N
‖∇uλ‖2

2

6 2S(ϕ) +
2

N
Q(ϕ) − I(ϕ) − 2λ2

N
‖∇ϕ‖2

2

6
2(1 − λ2)

N
‖∇ϕ‖2

2 < 0.

Let u(t) be the solution of (3.3) with u(0) = uλ. We claim that the properties
described in (3.12), (3.13) are invariant under the flow of (3.3). Indeed, since from
(3.5) we have for all t > 0

S(u(t)) = S(uλ) < S(ϕ), (3.14)

we infer that I(u(t)) 6= 0 for any t > 0, and by continuity we have I(u(t)) < 0 for
all t > 0. It follows that Q(u(t)) 6= 0 for any t > 0 (if not u(t) ∈ M and thus
S(u(t)) > S(ϕ) which contradicts (3.14)), and by continuity we have Q(u(t)) < 0
for all t > 0. Thus for all t > 0 we have

S(u(t)) < S(ϕ), I(u(t)) < 0 and Q(u(t)) < 0.

Step 3. We fix t > 0 and define v := u(t). For β > 0, let vβ(x) := β
N
2 v(βx).

From Step 2 we have Q(v) < 0, thus from Lemma 3.3 there exists β0 < 1 such that
Q(vβ0) = 0. If I(vβ0) 6 0, we keep β0, otherwise we replace it by β̃0 ∈ (β0, 1) such

that I(vβ̃0) = 0. Thus in any case we have

S(vβ0) > d(ω) (3.15)

and Q(vβ0) 6 0. Now from (iv) in Lemma 3.3, we have

S(v) − S(vβ0) > (1 − β0)
∂

∂β
S(vβ)|β=1.

Thus, from (v) in Lemma 3.3, Q(v) < 0 and β0 < 1, we get

S(v) − S(vβ0) > Q(v).

Combined with (3.15), this gives

Q(v) 6 S(v) − d(ω) := −δ < 0 (3.16)

where δ is independent of t since S is a conserved quantity.

To conclude, it suffices to observe that thanks to (3.7) and (3.16) we have

‖xu(t)‖2
2 6 −4δt2 + Ct+ ‖xuλ‖2

2, (3.17)

and since the right hand side of (3.17) becomes negative when t grows up, we easily
deduce that Tuλ < +∞ and limt→T

uλ
‖∇u(t)‖2 = +∞.
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Chapitre 4

Instability for standing waves of
nonlinear Klein-Gordon equations
via mountain-pass arguments

Abstract. We introduce mountain-pass type arguments in the
context of instability for Klein-Gordon equations. Our aim is to illustrate
on two examples how these arguments can be useful to simplify proofs
and derive new results of orbital stability/instability. For a power-type
nonlinearity, we prove that the ground states of the associated stationary
equation are minimizers of the functional action on a wide variety of
constraints. For a general nonlinearity, we extend to the dimension
N = 2 the classical instability result for stationary solutions of nonlinear
Klein-Gordon equations proved in 1985 by Shatah in dimension N > 3.

4.1 Introduction

The aim of the present paper is to show how recent methods and results concerning
the variational characterizations of the ground states for elliptic equations of the
form

− ∆ϕ = g(ϕ), ϕ ∈ H1(RN ; C) (4.1)

can be used to study the orbital stability/instability of the standing waves of various
nonlinear equations such as Schrödinger equations, Klein-Gordon equations, gener-
alized Boussinesq equations, etc. Our work is motivated by recent developments (see
for instance [10, 16, 17, 18, 21, 22]) of the techniques introduced by Berestycki and

- 99 -



4. Instability via mountain-pass arguments

Cazenave [2] to prove the instability of standing waves for nonlinear evolution equa-
tions. We present our approach on two examples involving nonlinear Klein-Gordon
equations of the form

utt − ∆u+ ρu = f(u) (4.2)

where ρ > 0, u : R × R
N 7→ C and f : (0,+∞) 7→ R is extended to C by setting

f(z) = f(|z|)z/|z| for z ∈ C \ {0} and f(0) = 0.

A standing wave of (4.2) is a solution of the form eiωtϕω(x) for ω ∈ R and
ϕω ∈ H1(RN ; C). Thus ϕω satisfies

− ∆ϕω + (ρ− ω2)ϕω − f(ϕω) = 0. (4.3)

Clearly, (4.3) is of the form (4.1). From now on we write H1(RN) for H1(RN ; C).
The least energy level m is defined by

m := inf{S(v)
∣∣v ∈ H1(RN) \ {0}, v is a solution of (4.1)} (4.4)

where S : H1(RN) 7→ R is the natural functional (often called action) corresponding
to (4.1)

S(v) :=
1

2
‖∇v‖2

2 −
∫

RN

G(v)dx,

with G(s) :=
∫ |s|

0
g(t)dt. A solution ϕ ∈ H1(RN) of (4.1) is said to be a ground state,

or least energy solution, if

S(ϕ) = m.

The study of the existence for solutions of (4.1) goes back to the work of Strauss [25]
(see also [12]). The most general result in that direction is due to Berestycki and
Lions [5] for N = 1 and N > 3 and Berestycki, Gallouet and Kavian [3] for N = 2.

The assumptions of [3, 5] when N > 2 are :

(g0) g is continuous and odd,

(g1) if N > 3, −∞ < lim inf
s→0

g(s)

s
6 lim sup

s→0

g(s)

s
< 0,

if N = 2, −∞ < lim
s→0

g(s)

s
:= −ρ < 0,

(g2) if N > 3, lim
s→+∞

g(s)

s
N+2
N−2

= 0,

if N = 2, ∀α > 0 ∃Cα > 0 such that |g(s)| 6 Cαe
αs2 ∀s > 0.

(g3) there exists ξ0 > 0 such that G(ξ0) > 0.
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It is known that the assumptions (g0)-(g3) are almost optimal to insure the existence
of a solution for (4.1) (see [5, Section 2.2]). In [3, 5] it is proved that for N > 2 and
under (g0)-(g3) there exists a positive radial least energy solution ϕ of (4.1) when
the infimum in (4.4) is taken over the solutions belonging to H1(RN ,R). Moreover
it is easily deduce from the proofs in [3, 5] that this ϕ is still a least energy solution
of (4.1) when the infimum is, as in (4.4), taken over the set of all complex valued
solutions. See [11] for a proof of this statement along with a description of the
ground states as being of the form U = eiθŨ where θ ∈ R and Ũ is a real positive
ground state solution of (4.1).

In dimension N = 1, the assumptions in [5] are

(h0) g is locally Lipschitz continuous and g(0) = 0,

(h1) there exists η0 > 0 such that

G(s) < 0 for all s ∈ (0, η0), G(η0) = 0, g(η0) > 0

and it is proved in [5] that under (h0) the condition (h1) is necessary and sufficient
to guarantee the existence of a unique (up to translation) real positive solution of
(4.1). Here also, it can be shown (see [11]) that the least energy levels coincide for
complex and real valued solutions of (4.1).

Since the pioneer works [2, 9], it is known that the stability/instability of the
standing waves is closely linked to additional variational characterizations that the
associated ground states enjoy. Recently, in [13] for N > 2 and in [14] for N = 1,
Jeanjean and Tanaka showed that, under the conditions (g0)-(g3) for N > 2 and
basically (h0)-(h1) for N = 1, the functional S admits a mountain pass geometry.
Precisely they show that setting

Γ := {γ ∈ C([0, 1], H1(RN)), γ(0) = 0, S(γ(1)) < 0} (4.5)

one has Γ 6= ∅ and
c := inf

γ∈Γ
max
t∈[0,1]

S(γ(t)) > 0. (4.6)

Furthermore, they proved that
c = m,

namely that the mountain pass value gives the least energy level. In fact, the results
of [13, 14] are proved within the space H1(RN ,R) but it is straightforward to show,
see Lemma 4.14, that this equality also holds in H1(RN).

In this paper, we will show, by studying two specific problems, how the ideas
and methods developed in [13, 14] can be implemented in the context of instability
by blow-up for nonlinear Klein-Gordon equations.
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4. Instability via mountain-pass arguments

First, working with a nonlinearity of power type (f(s) = |s|p−1s) we find a set of
constraints on which the ground states are minimizers of S. In particular, this gives
an alternative, much simpler proof of results in [17, 21, 22] concerning the derivation
of an additional variational characterization of the ground states. Precisely, we prove

Theorem 4.1. Let α, β ∈ R be such that

{
β < 0, α(p− 1) − 2β > 0 and 2α− β(N − 2) > 0

or β > 0, α(p− 1) − 2β > 0 and 2α− βN > 0.
(4.7)

Let ω ∈ (−1, 1) and ϕω ∈ H1(RN) be a ground state solution of

−∆ϕω + (1 − ω2)ϕω − |ϕω|p−1ϕω = 0.

Then
S(ϕω) = min{S(v)

∣∣v ∈ H1(RN) \ {0}, Kα,β(v) = 0}
where

S(v) :=
1

2
‖∇v‖2

2 +
1 − ω2

2
‖v‖2

2 −
1

p+ 1
‖v‖p+1

p+1.

Kα,β(v) := 2α−β(N−2)
2

‖∇v‖2
2 + (2α−βN)(1−ω2)

2
‖v‖2

2 − α(p+1)−βN
p+1

‖v‖p+1
p+1.

The functional Kα,β is based on the rescaling vλ( · ) := λαv(λβ · ) for v ∈ H1(RN),
precisely, Kα,β(v) = ∂

∂λ
S(vλ)|λ=1. The main idea of the proof of Theorem 4.1 is to

use rescaled functions to construct for any v ∈ H1(RN) such that Kα,β(v) = 0 a
path in Γ attaining his maximum at v.

It is also of interest to consider a limit case of Theorem 4.1.

Theorem 4.2. Let α, β ∈ R be such that

{
β < 0, α(p− 1) − 2β > 0 and 2α− β(N − 2) = 0

or β > 0, α(p− 1) − 2β > 0 and 2α− βN = 0.
(4.8)

Let ω ∈ (−1, 1) and ϕω be a ground state solution of

−∆ϕω + (1 − ω2)ϕω − |ϕω|p−1ϕω = 0.

Then
S(ϕω) = min{S(v)

∣∣v ∈ H1(RN) \ {0}, Kα,β(v) = 0}.

Remark 4.1. Looking to the proofs of Theorems 4.1 and 4.2 one see that our
Theorems remain unchanged when (1 − ω2) is replaced by any m > 0. We choose
however to present our results in the setting of [17, 21, 22].
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For (α, β) = (N
2
, 1), Theorem 4.2 gives a simpler proof of a variational

characterization of the ground state proved by Berestycki and Cazenave [2] for
1 + 4

N
< p < 1 + 4

N−2
and by Nawa [19, Proposition 2.5] for p = 1 + 4

N
. This

characterization is at the heart of the classical result of Berestycki and Cazenave [2]
dealing with the instability of the ground states of nonlinear Schrödinger equations.

For our second direction of application we consider the instability of the station-
ary solutions of

utt − ∆u = g(u). (4.9)

In 1985, Shatah established in [23] that under the conditions (g0)-(g3) the radial
ground states solutions associated with the standing waves corresponding to ω = 0
are unstable when N > 3. Under stronger hypothesis, but in any dimension and for
non necessary radial solutions, Berestycki and Cazenave [2] had previously proved
that these ground states are unstable by blow up in finite time. In [23], instability
may occur by blow up in infinite time, in the sense that the H1(RN)-norm of a
solution starting close to a ground state goes to infinity when t → +∞. Here, we
show that the same result hold when N = 2.

We make the following hypothesis on the existence and properties of solutions
for (4.9).

Assumption H. For all (u0, v0) ∈ H1
rad(R

2) × L2
rad(R

2) there exist 0 < T 6 +∞
and u : [0, T ) × R

2 → C such that

• (u(0), ut(0)) = (u0, v0),

• u (resp. ut) is weakly continuous in H1
rad(R

2) (resp. L2
rad(R

2)),

• u satisfies (4.9) in the sense of distributions,

• E(u(t), ut(t)) 6 E(u0, v0) for all t ∈ [0, T ) ( energy inequality),

• if T < +∞, there exists (tn) ⊂ [0, T ) such that tn → T as n → +∞ and
limtn→T ‖u(tn)‖H1(R2) = +∞ (blow-up alternative),

The energy E is defined for u ∈ H1(RN) and v ∈ L2(RN) by

E(u, v) :=
1

2
‖v‖2

2 +
1

2
‖∇u‖2

2 −
∫

R2

G(u)dx.

In what follows, as above, we write H1
rad(R

N) (resp. L2
rad(R

N)) for the space of radial
functions of H1(RN) (resp. L2(RN)).
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4. Instability via mountain-pass arguments

Remark 4.2. When N > 3, Shatah claims that Assumption H holds under (g0)-
(g3) without any additional restrictions. For others dimensions, Assumption H is
known to hold under stronger assumptions on g, see, for example, [8, Chapter 6].
From now on a solution of (4.9) with initial data (u0, v0) will refer to a solution of
(4.9) with initial data (u0, v0) as given by Assumption H.

Our third main result is the following

Theorem 4.3. Assume N = 2, (g0)-(g3) and Assumption H. Let ϕ be a radial
ground state of (4.1). Then ϕ viewed as a stationary solution of (4.9) is strongly
unstable. Namely for all ε > 0 there exist uε ∈ H1(R2), Tε ∈ (0,+∞] and
(tn) ⊂ (0, Tε) such that ‖ϕ− uε‖H1(R2) < ε and limtn→Tε

‖u(tn)‖H1(R2) = +∞, where
u(t) is a solution of (4.9) with initial data (uε, 0).

It is still an open question to describe what happen in dimension N = 1. Indeed,
the use of the radial compactness lemma of Strauss (see Lemma 4.5) restricts our
proof to dimensions N > 2. A partial answer is given by the work of Berestycki and
Cazenave : for nonlinearities satisfying some additional assumptions (see [2, (H.3)]),
the stationary solutions are unstable.

We do hope that the methods developed in this paper will find other areas of
applications. In that direction, we mention the work [15] in which the variational
characterization c = m derived from [13, 14] is essential to get an alternative, more
general proof of the classical result of Berestycki and Cazenave [2] on the instability
by blow-up for nonlinear Schrödinger equations.

This paper is organized as follows. In Section 4.2 we prove Theorem 4.1 and
Theorem 4.2. In Section 4.3 we prove Theorem 4.3. The proof that the results of
[13, 14] extend to the complex case along with a technical lemma are given in the
Appendix.

4.2 Variational characterizations of the ground

states

In this section, we consider (4.3) with a power type nonlinearity :

− ∆ϕω + (1 − ω2)ϕω − |ϕω|p−1ϕω = 0 (4.10)

where 1 < p < 1 + 4/(N − 2) and |ω| < 1. For this nonlinearity it is known (see
[7, Section 8.1] and the references therein) that there exists a unique positive radial
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ground state ϕω ∈ H1(RN ,R) of (4.10) and that all ground states are of the form
eiθϕω(· − y) for some fixed θ ∈ R and y ∈ R

N . The standing waves eiωtϕω are
solutions of the nonlinear Klein-Gordon equation

utt − ∆u+ u = |u|p−1u (4.11)

and the natural functional associated with (4.10) becomes

S(v) :=
1

2
‖∇v‖2

2 +
1 − ω2

2
‖v‖2

2 −
1

p+ 1
‖v‖p+1

p+1.

Various results of instability for the standing waves of (4.11) were recently proved
in [17, 21, 22]. For instance, it was proved in [21] that for any 1 < p < 1+4/(N −2)
the standing wave associated with a ground state of (4.10) is strongly unstable by
blow up if ω2 6 (p− 1)/(p− 3) and N > 3. In [22], a result of strong instability was
showed for the optimal range of parameter ω in dimension N > 2 (namely |ω| < ωc,
where ωc was determined in [24]). In both cases, it is central in the proofs that the
ground states can be characterized as minimizers on constraints having all the form

Kα,β := {v ∈ H1(RN) \ {0}
∣∣Kα,β(v) = 0}

for some α, β ∈ R. Recall that the functional Kα,β is defined for v ∈ H1(RN) by

Kα,β(v) := ∂
∂λ
S(λαv(λβ · ))|λ=1

= 2α−β(N−2)
2

‖∇v‖2
2 + (2α−βN)(1−ω2)

2
‖v‖2

2 − α(p+1)−βN
p+1

‖v‖p+1
p+1.

For example, it is proved in [21] that the ground states are minimizer of S on Kα,β

for (α, β) = (1, 0) and (α, β) = (0,−1/N) (see [21, (2.1)]) whereas in [22], the values
of (α, β) considered are (α, β) = (N/2, 1) if p > 1 + 4/N (see [22, (2.11)]) and
(α, β) = (2/(p − 1), 1) if p < 1 + 4/N (see [22, (2.18)]). Recently, Liu, Ohta and
Todorova [17] extended the approach of [21] to the dimensions N = 1, 2. Once more,
a main feature of their proof is to minimize S on Kα,β, but this time with

α =
(p− 1) − (p+ 3)ω2

2(p− 1)ω2
, β = −1.

In [17, 21, 22], the proofs that the ground states are minimizers of S on Kα,β

follow similar schemes. First, one has to show the convergence of a minimizing
sequence to some function solving a Lagrange equation. After that, the difficulty is
to get rid of the Lagrange multiplier. For each choice of (α, β), long computations
are involved to prove that the Lagrange multiplier is 0 and to conclude that the
obtained function is in fact a solution of (4.10).

Our proof of Theorem 4.1 relies on the following lemma. We recall that Γ is
defined in (4.5).
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4. Instability via mountain-pass arguments

Lemma 4.3. Let α, β ∈ R satisfy (4.7). Then for all v ∈ Kα,β we can construct a
path γ in Γ such that

max
t∈[0,1]

S(γ(t)) = S(v).

Proof. Let v ∈ Kα,β. For all λ ∈ (0,+∞) we define vλ ∈ H1(RN) by
vλ( · ) := λαv(λβ · ). The idea is to construct the path such that γ(t) = vCt for
some C > 0.

The first thing to check is that we can extend γ at 0 by continuity. Namely, we
must show that under (4.7) we have limλ→0 ‖vλ‖H1(RN ) = 0. This is immediate if we
remark that

‖vλ‖2
H1(RN ) = λ2α−β(N−2)‖∇v‖2

2 + λ2α−βN‖v‖2
2,

and that (4.7) implies

2α− β(N − 2) > 0 and 2α− βN > 0.

The next step is to prove that λ → S(vλ) increases for λ ∈ (0, 1), attains its
maximum at λ = 1 and decreases toward −∞ on (1,+∞). We have

S(vλ) =
λ2α−β(N−2)

2
‖∇v‖2

2 +
(1 − ω2)λ2α−βN

2
‖v‖2

2 −
λ(p+1)α−βN

p+ 1
‖v‖p+1

p+1

and from easy computations it comes

λ−(2α−βN−1) ∂

∂λ
S(vλ) = λ2β 2α− β(N − 2)

2
‖∇v‖2

2 +
(2α− βN)(1 − ω2)

2
‖v‖2

2

−λα(p−1)α(p+ 1) − βN

p+ 1
‖v‖p+1

p+1.

Therefore, if α and β satisfy
{

β 6= 0 and α(p− 1) > 2β
or β = 0 and α(p− 1) > 0

(4.12)

then 



∂
∂λ
S(vλ) > 0 for λ ∈ (0, 1),

∂
∂λ
S(vλ) < 0 for λ ∈ (1,+∞),

limλ→+∞ S(vλ) = −∞.

Since α > 0 when β = 0 in (4.7) it is clear that (4.12) hold under (4.7).

Finally, choosing C large enough to have S(vC) < 0 and defining
γ : [0, 1] 7→ H1(RN) by

γ(0) := 0 and γ(t) := vtC

we have a path satisfying the conclusion of the lemma.
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Proof of Theorem 4.1. Let ϕω be a least energy solution of (4.10) for |ω| < 1. From
Lemma 4.14 we know that

c = m

where m is the least energy level and c the mountain pass value (see (4.4) and (4.6)
for the definitions of m and c). Since ϕω is a solution of (4.10), ϕω ∈ C1 and ϕω,
∇ϕω are exponentially decaying at infinity (see, for example, [7, Theorem 8.1.1]); in
particular, x.∇ϕω ∈ H1(RN), and

Kα,β(ϕω) =
∂

∂λ
S(λαϕω(λβ · ))

∣∣
λ=1

= 〈S ′(ϕω), αϕω + βx.∇ϕω〉 = 0.

Thus ϕω ∈ Kα,β and

min{S(v)
∣∣v ∈ Kα,β} 6 S(ϕω) = c. (4.13)

Conversely, it follows from Lemma 4.3 that

c 6 min{S(v)
∣∣v ∈ Kα,β}. (4.14)

To combine (4.13) and (4.14) finishes the proof.

We now turn to the proof of Theorem 4.2. It follows the same lines as for
Theorem 4.1 : find a path reaching its maximum on the constraint Kα,β and use the
equality c = m. The main difference is in the way we construct the path : we still
want to use the rescaled functions vλ, but their H1(RN)−norm does not any more
converge to 0 as λ → 0. This difficulty is overcome by gluing to {vλ}λ>λ0 a path
linking 0 to vλ0 for λ0 suitably chosen. The lemma is

Lemma 4.4. Let α, β ∈ R satisfy (4.8). Then for all v ∈ Kα,β we can construct a
path γ in Γ such that

max
t∈[0,1]

S(γ(t)) = S(v).

Proof. Let v ∈ Kα,β and vλ0(·) := λα
0 v(λ

β
0 · ) for some λ0 ∈ (0, 1) whose value will

be fixed later. Let C > 0 be such that S(vC) < 0 and consider the curves

Λ1 := {vλ

∣∣λ ∈ [λ0, C]},
Λ2 := {tvλ0

∣∣t ∈ [0, 1]}.

To get a path as desired, we will glue the two curves Λ1 and Λ2. It is clear that as in
the proof of Lemma 4.3, S attained its maximum on Λ1 at v. Thus the only thing
we have to check is that t 7→ S(tvλ0) is increasing on [0, 1].

We have

∂

∂t
S(tvλ0) = t(‖∇vλ0‖2

2 + (1 − ω2)‖vλ0‖2
2 − tp−1‖vλ0‖p+1

p+1).
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If β > 0 and α = βN/2 (see (4.8)), then λ0 → ‖vλ0‖2 is constant. If β < 0 and
α = β(N − 2)/2 then λ0 → ‖∇vλ0‖2 is constant. Moreover, we have in any case

lim
λ0→0

‖vλ0‖p+1
p+1 = 0.

Therefore, if λ0 ∈ (0, 1) is small enough we have

∂

∂t
S(tvλ0) > 0 for t ∈ (0, 1).

To define γ : [0, 1] 7→ H1(RN) by

{
γ(t) = Ct

λ0
vλ0 for t ∈ [0, λ0

C
)

γ(t) = vCt for t ∈ [λ0

C
, 1]

gives us the desired path.

Proof of Theorem 4.2. The proof is identical to the proof of Theorem 4.1 with
Lemma 4.3 replaced by Lemma 4.4.

4.3 Instability for a generalized nonlinear Klein-

Gordon equation

In this section, we consider the nonlinear Klein-Gordon equation with a general
nonlinearity

utt − ∆u = g(u). (4.15)

In [23], Shatah proved that for N > 3, under (g0)-(g3), the radial ground states
solutions of

− ∆ϕ = g(ϕ), ϕ ∈ H1(RN) (4.16)

viewed as stationary solutions of (4.15) are unstable in the sense of Theorem 4.3.

The restriction to N > 3 has its origin in, at least, two reasons.

First, one needs to control the decay in |x| of u(t, x) uniformly in t. This appears
in the proofs of Proposition 4.12 and Lemma 4.15. For this control, the following
compactness lemma due to Strauss [25] is used.

Lemma 4.5. Let N > 2 and v ∈ H1
rad(R

N). Then

|v(x)| 6 C|x| 1−N
2 ‖v‖H1(RN ) a.e.
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with C independent of x and u. In particular, the following injection is compact

H1
rad(R

N) →֒ Lq(RN) for 2 < q < 2⋆,

where 2⋆ = 2N
N−2

if N > 3 and 2⋆ = +∞ if N = 2.

Actually, to use this lemma only N > 2 is necessary.

A second reason for the restrictionN > 3 in [23] is found in the use of a constraint
based on Pohozaev’s identity to derive a variational characterization of the ground
states, to define an invariant set, and, most important, to choose suitable initial
data close to the ground states. Thanks to our approach, we arrive on this second
point to require only N > 2.

Our proof will make use of the following variational characterization of the ground
states.

Lemma 4.6. Let ϕ ∈ H1(R2) be a ground state of (4.16). Then

S(ϕ) = m = min
v∈P

S(v) (4.17)

where
P := {v ∈ H1(R2) \ {0}

∣∣P (v) = 0}

with P (v) :=

∫

R2

G(v)dx for v ∈ H1(R2).

This lemma was proved in [3] when v ∈ H1(RN ,R). It can trivially be extended
to v ∈ H1(RN), see [11].

Remark 4.7. The functional P is related to the so-called Pohozaev identity (see
[5, Proposition 1]) : for N > 1, any solution v ∈ H1(RN) of (4.16) satisfies

N − 2

2
‖∇v‖2

2 −N

∫

RN

G(v)dx = 0.

A main feature of the dimension N = 2 is that we lose the control on the
L2(RN)−norm of ∇v.

Remark 4.8. For N > 3, Shatah also showed that the radial ground states are
minimizers of S among all non trivial functions satisfying Pohozaev identity (see [23,
Proposition 1.5]). His method consists in proving that the minimization problem
has a solution and then to eliminate the Lagrange multiplier. In fact, as it is done
in [13, Lemma 3.1], a shorter proof can be performed by simply establishing a
correspondence with a minimization problem already solved in [5].
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The scheme of the proof is the following : first, define a set
I ⊂ H1

rad(R
2) × L2

rad(R
2) such that any solution of (4.15) with initial data in I

stays in I for all time and blows up, then prove that the ground states can be
approximated by functions in I.

Let I be defined by

I := {u ∈ H1
rad(R

2) \ {0}, v ∈ L2
rad(R

2)
∣∣E(u, v) < m,P (u) > 0}.

We begin by proving an equivalence between two variational problems.

Lemma 4.9. We have

m = min
v∈P

S(v) = min{T (v)
∣∣v ∈ H1(R2) \ {0}, P (v) > 0},

where T (v) :=
1

2
‖∇v‖2

2.

Proof. Let v ∈ H1(R2). If v ∈ P, then v satisfies T (v) = S(v) and thanks to
Lemma 4.6, T (v) > m. Suppose that P (v) > 0. For λ > 0, define vλ( · ) := λv(λ · ).
We claim that there exists λ0 < 1 such that P (vλ0) = 0. Indeed, by (g1)-(g2), for
all α > 0 there exists Cα > 0 such that for s > 0

g(s) 6
−ρs
2

+ 2sαCαe
αs2

.

We recall that ρ > 0 is given in (g1) by lims→0 g(s)s
−1 = −ρ. Therefore, for s > 0

we have

G(s) 6
−ρs2

4
+ Cα(eαs2 − 1)

and ∫

R2

G(vλ) 6
−ρ‖vλ‖2

2

4
+ Cα

∫

R2

(eαv2
λ − 1)dx. (4.18)

We remark that ‖vλ‖2
2 = ‖v‖2

2 and
∫

R2

(eαv2
λ − 1)dx = λ−2

∫

R2

(eαλ2v2 − 1)dx.

For λ < 1 we have

λ−2(eαλ2v2(x) − 1) < eαv2(x) − 1 for all x ∈ R
2,

and by Moser-Trudinger inequality (see [1, Theorem 8.25]) there exists α > 0 such
that (eαv2 − 1) ∈ L1(R2). Hence, Lebesgue’s Theorem gives

∫

R2

(eαv2
λ − 1)dx→ 0 when λ→ 0.
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Coming back to (4.18) this means that
∫

R2

G(vλ) < 0 for λ > 0 small enough,

and by continuity of P this proves the claim.

Now, we have

inf
u∈P

S(u) 6 S(vλ0) = T (vλ0) = λ2
0T (v) < T (v),

and the lemma is proved.

Next we prove that the set I is invariant under the flow of (4.15).

Lemma 4.10. Let (u0, v0) ∈ I, 0 < T 6 +∞ and u(t) a solution of (4.15) on [0, T )
with initial data (u0, v0). Then (u(t), ut(t)) ∈ I for all t ∈ [0, T ).

Proof. Let

t0 := inf

{t ∈ [0, T )

∣∣P (u(t)) 6 0} ∪ {+∞}

.

Assume by contradiction that t0 6= +∞ and consider (tn) ⊂ (t0, T ) such that tn ↓ t0
with P (u(tn)) 6 0. By Assumption H, u(tn) ⇀ u(t0) weakly in H1(R2). Thus we
have

T (u(t0)) 6 lim inf
n→+∞

T (u(tn)) 6 lim inf
n→+∞

[T (u(tn)) − P (u(tn))] . (4.19)

Moreover

lim inf
n→+∞

[T (u(tn)) − P (u(tn))] = lim inf
n→+∞

S(u(tn)) 6 lim inf
n→+∞

E(u(tn), ut(tn)) (4.20)

and by the energy inequality in Assumption H we get

lim inf
n→+∞

E(u(tn), ut(tn)) 6 E(u0, v0). (4.21)

Recalling that (u0, v0) ∈ I, we have

E(u0, v0) < m. (4.22)

Combining (4.19)-(4.22) gives
T (u(t0)) < m. (4.23)

Now, take (t̃n) ⊂ (0, t0) such that t̃n ↑ t0. By Lemma 4.16, v → P (v) is upper
weakly semi-continuous, thus

P (u(t0)) > lim sup
n→+∞

P (u(t̃n)) > 0. (4.24)

Now together (4.23) and (4.24) lead to a contradiction with Lemma 4.9.
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The following lemma is a key step in the proof.

Lemma 4.11. Let (u0, v0) ∈ I and u(t) an associated solution of (4.15) in [0, T ).
Then there exists δ > 0 such that P (u(t)) > δ for all t ∈ [0, T ).

Proof. Indeed, assume by contradiction that there exists a sequence (tn) such that
P (u(tn)) → 0 as n→ +∞. Then

T (u(tn)) = S(u(tn)) + P (u(tn))

6 E(u(tn), ut(tn)) + P (u(tn)).

By the energy inequality in Assumption H this implies

T (u(tn)) 6 E(u0, v0) + P (u(tn))

and thus
T (u(tn)) < m+ P (u(tn)) − ν (4.25)

with ν := m− E(u0, v0) > 0 since (u0, v0) ∈ I. For n large enough we have

0 6 P (u(tn)) < ν/2

and thus (4.25) gives

T (u(tn)) < m− ν

2
,

which contradicts the result of Lemma 4.9.

The proof of Theorem 4.3 relies on the following proposition.

Proposition 4.12. Let (u0, v0) ∈ I and u(t) an associated solution of (4.15) on
[0, T ). Then there exists (tn) ⊂ (0, T ) such that limtn→T ‖u(tn)‖H1(R2) = +∞,

Proof. The proof of Proposition 4.12 is similar to the proof of Theorem 2.3 in [23],
thus we just indicate the main steps. First, if T < +∞, the assertion of Proposition
4.12 is just the blow up alternative in Assumption H. Thus we suppose T = +∞
and, by contradiction, (‖u(t)‖H1(RN )) bounded. Following the line of the proof of
Theorem 2.3 in [23], it is not hard to see that there exists 0 < η < δ (where δ is
given by Lemma 4.11) such that

2

∫

R2

G(u) dx− η 6 − ∂

∂t
Re

∫

R2

θ(t, x)utx.∇udx (4.26)

where θ : [0,+∞) × R
2 7→ R is such that

|θ(t, x)| 6 Ct/ ln(t) (4.27)
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for all (t, x) ∈ [0,+∞) × R
2. To combine (4.26) and Lemma 4.11 gives

δ 6 − ∂

∂t
Re

∫

R2

θ(t, x)utx.∇udx. (4.28)

Hence, by integrating (4.28) we find

δt 6 −Re

∫

R2

θ(t, x)utx.∇udx+ Re

∫

R2

θ(0, x)v0 x.∇u0dx. (4.29)

Now, by (4.27) and (4.29) there exists C > 0 such that

ln(t)δ 6 C(1 + ‖∇u(t)‖2‖ut(t)‖2). (4.30)

But, thanks to the energy inequality ‖ut(t)‖2 is bounded, and ‖∇u(t)‖2 is bounded
by assumption, therefore, for t large enough we reach a contradiction in (4.30).

In dimensionN > 3, it is easily seen that for λ < 1 the dilatation of a ground state
ϕλ( · ) := ϕ( ·

λ
) gives a sequence of initial data in I converging to this ground state.

This property, combined with the equivalent of Proposition 4.12, gives immediately
the instability of the ground states in [23]. This is not the case any more in dimension
N = 2 where the dilatation ϕλ( · ) := ϕ( ·

λ
) leaves P and T invariant. To overcome

this difficulty, we borrow and adapt an idea of [6, Proposition 2] which consists in
using separately (and successively) a dilatation and a rescaling to get initial data in
I close to the ground states.

Lemma 4.13. Let ϕ ∈ H1(R2) be a ground state of (4.16). For all ε > 0 there
exists ϕε such that

‖ϕ− ϕε‖H1(R2) < ε, S(ϕε) < S(ϕ), P (ϕε) > 0.

Proof. For λ, µ > 0 consider ϕλ,µ( · ) := λϕ( ·
µ
). Then

∂

∂λ
S(ϕλ,µ) = λ2‖∇ϕ‖2

2 − µ2

∫

R2

g(λϕ)ϕdx.

To multiply (4.16) by ϕ and integrate gives us

‖∇ϕ‖2
2 =

∫

R2

g(ϕ)ϕdx.

Hence, for λ = 1 we get

∂

∂λ
S(ϕλ,µ)

∣∣
λ=1

= (1 − µ2)‖∇ϕ‖2
2.
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Thus, for all µ > 1, there exists λµ > 0 such that

∂

∂λ
S(ϕλ,µ) < 0 for λ ∈ (1 − λµ, 1 + λµ)

and therefore

S(ϕλ,µ) < S(ϕ) for λ ∈ (1, 1 + λµ). (4.31)

Now,
∂

∂λ
P (ϕλ,µ)λ=1 = µ2

∫

R2

g(ϕ)ϕdx = µ2‖∇ϕ‖2
2 > 0.

Thus, for all µ > 0, there exists Λµ such that

∂

∂λ
P (ϕλ,µ) > 0 for λ ∈ (1 − Λµ, 1 + Λµ)

and therefore

P (ϕλ,µ) > 0 for λ ∈ (1, 1 + Λµ). (4.32)

Finally, from (4.31)-(4.32), for λ, µ > 1 close enough to 1 we get the desired
result.

Proof of Theorem 4.3. Let ε > 0 and ϕε given in Lemma 4.13. Then (ϕε, 0) satisfies

E(ϕε, 0) = S(ϕε) < m and P (ϕε) > 0,

namely (ϕε, 0) ∈ I. Theorem 4.3 follows now from Proposition 4.12.

4.4 Appendix

Lemma 4.14. Let m denote the least energy level defined in (4.4) and c the
mountain pass level defined in (4.6). Then m = c.

Proof. In [13, Theorem 0.2] for N > 2 and [14, Theorem 1.2] for N = 1 it is shown
that when the class Γ is replaced by

Γ̃ := {γ ∈ C([0, 1], H1(RN ,R)), γ(0) = 0, S(γ(1)) < 0}

one has

c̃ := inf
γ∈Γ

max
t∈[0,1]

S(γ(t)) = m̃
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where m̃ is the least energy level among real valued solutions of (4.1). From [3, 5, 11]
we know that m̃ = m. Also trivially c 6 c̃. Now for each γ ∈ Γ we observe that
setting γ̃(t) = |γ(t)| one has

||∇γ̃(t)||22 6 ||∇γ(t)||22 and

∫

RN

G(γ̃(t))dx =

∫

RN

G(γ(t))dx.

Thus γ̃ ∈ Γ̃ and S(γ̃) 6 S(γ). This show that c̃ 6 c and ends the proof.

Now we prove the upper weakly semicontinuity of P . We begin by a convergence
lemma

Lemma 4.15. Let H ∈ C(R,R) be such that

(H1) For all α > 0 there exists Cα > 0 such that |H(s)| 6 Cα(eαs2 −1) for all s > 1,

(H2) H(s) = o(s2) when s→ 0.

Let (un) ⊂ H1
rad(R

2) be a sequence bounded in H1(R2) such that un → u a.e. Then
we have

H(un) → H(u) in L1(R2).

This lemma was proved in [4, Lemma 5.2], the extended version of [3]. We recall
it here for the sake of completeness.

Proof of Lemma 4.15. From the continuity of H we have H(un) → H(u) a.e. By a
theorem of Vitali (see, for example, [20, p 380]), it is enough to prove

(i) for each ε > 0 there exists R > 0 such that

∫

R2\{|x|<R}
H(un)dx < ε for all

n ∈ N,

(ii) for each ε > 0 there exists δ > 0 such that

∫

{|x−y|<δ}
H(un)dx < ε for all

y ∈ {x ∈ R
2 such that |x| < R} (equiintegrability).

Let ε > 0 be arbitrary chosen. From (H1)-(H2), for α > 0 there exists Cα > 0
such that for all s ∈ R

|H(s)| 6 αs2 + Cα(es2 − 1).

Thus, for any R > 0
∫

{|x|>R}
|H(un)| 6 α‖un‖2

2 + Cα

∫

{|x|>R}
(eu2

n − 1)dx.
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On one hand, since (un) is bounded in L2(RN) we can take α > 0 small enough such
that

α‖un‖2
2 <

ε

2
.

On the other hand, from Lemma 4.5 there exists C such that

Cα

∫

{|x|>R}
(eu2

n − 1)dx 6 Cα

∫

{|x|>R}
(eC|x|−1 − 1)dx

and for R > 0 chosen large enough we have

Cα

∫

{|x|>R}
(eC|x|−1 − 1)dx <

ε

2
.

Therefore, (i) is satisfied.

For (ii), we first remark that, by (H1) and Moser-Trudinger inequality, there
exists α > 0 and M > 0 such that

∫

{|x|<R}
H(un)dx 6

∫

{|x|<R}
eαu2

ndx < M for all n ∈ N

In particular, then H(un) is bounded in Lr(|x| < R) for any 1 < r < +∞. Hence
(ii) holds by de La Vallée Poussin equiintegrability lemma.

Lemma 4.16. The functional P (v) =
∫

RN G(v)dx is of class C1 and upper weakly
semi-continuous in H1(RN).

Proof. It is standard to show that under (g2), P ∈ C1(H1(RN),R). Now let vn ⇀ v
in H1(RN). Using (g1)-(g2), we can decompose G in

G(s) = −ρs2 +H(s)

where H satisfies the hypothesis of Lemma 4.15. Hence

∫

RN

H(vn)dx→
∫

RN

H(v)dx when n→ +∞.

Since v → −‖v‖2 is upper weakly semicontinuous, this conclude the proof.
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Résumé

Cette thèse porte sur l’étude des ondes stationnaires d’équations dispersives non linéaires, en particulier

l’équation de Schrödinger, mais aussi celle de Klein-Gordon. Les travaux présentés s’articulent autour de deux

questions principales : l’existence et la stabilité orbitale de ces ondes stationnaires.

L’existence est étudiée par des méthodes essentiellement variationnelles. En plus de la simple existence, on

met en évidence différentes caractérisations variationnelles des ondes stationnaires, par exemple en tant que points

critiques d’une certaine fonctionnelle au niveau du col ou au niveau de moindre énergie, ou encore en tant que

minimiseurs d’une fonctionnelle sur différentes contraintes.

Selon la puissance de la non-linéarité et la forme de la dépendance en espace, on démontre que les ondes

stationnaires sont stables ou instables. Lorsqu’elles sont instables, on met en évidence que dans certaines situations

l’instabilité se manifeste par explosion, tandis que dans d’autres les solutions sont globalement bien posées. En

plus des différentes caractérisations variationnelles des ondes stationnaires, les preuves des résultats de stabilité et

d’instabilité nécessitent de dériver des informations de nature spectrale. En particulier, dans la première partie de

cette thèse, on prouve un résultat de non-dégénérescence du linéarisé pour un problème limite. Dans la deuxième

partie, on localise la deuxième valeur propre du linéarisé par la combinaison d’une méthode perturbative et

d’arguments de continuation.

Mots clés : ondes stationnaires, stabilité orbitale, instabilité, instabilité par explosion, existence pour

les problèmes elliptiques, méthodes variationnelles, arguments de perturbation, méthodes spectrales, équation de

Schrödinger non linéaire, équation de Klein-Gordon non linéaire

Abstract

This thesis is devoted to the study of standing waves for nonlinear dispersive equations, in particular the

Schrödinger equation but also the Klein-Gordon equation. The works are organized around two main issues : existence

and orbital stability of standing waves.

The existence is essentially studied by the way of variational methods. We exhibit various variational

characterizations of standing waves, for example as critical points of some functional at the mountain pass level or

at the least energy level, or as minimizers of a functional under various constraints.

Depending on the strength of the nonlinearity and on the space dependency, we prove that stability or instability

holds for the standing waves. When instability holds, we show that, in some situations, instability occurs by blow

up, whereas in other cases the solutions are globally well-posed. In addition to the variational characterization of

waves, the study of stability leads us to derive spectral informations. In the first part of this thesis, we show a

nondegenerescence result for the linearized operator associated with a limit problem. In the second part, we localize

the second eigenvalue of the linearized by the mean of a combinaison of perturbation and continuation arguments.

Keywords : standing waves, orbital stability, instability, instability by blow up, existence for elliptic problems,

variational methods, perturbation arguments, spectral theory, nonlinear Schrödinger equation, nonlinear Klein-

Gordon equation
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