
HAL Id: tel-00256025
https://theses.hal.science/tel-00256025

Submitted on 14 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Identification des paramètres des modèles mécaniques
non-linéaires en utilisant des méthodes basées sur

intelligence artificielle
Anna Kucerova

To cite this version:
Anna Kucerova. Identification des paramètres des modèles mécaniques non-linéaires en utilisant des
méthodes basées sur intelligence artificielle. Sciences de l’ingénieur [physics]. École normale supérieure
de Cachan - ENS Cachan, 2007. Français. �NNT : �. �tel-00256025�

https://theses.hal.science/tel-00256025
https://hal.archives-ouvertes.fr

Identification of nonlinear mechanical model parameters based on

softcomputing methods

by

Anna Kučerová

A treatise submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Ecole Normale Supérieure de Cachan

&

České Vysoké Učenı́ Technické v Praze

Fakulta stavebnı́

Committee:

Prof. Drahomı́r Novák Vysoké Učenı́ Technické v Brně President

Prof. Tomaž Rodič Univerza v Ljubljani Opponent

Prof. Pierre Villon Université de Technologie de Compiègne Opponent

Delphine Brancherie, Ph.D. Université de Technologie de Compiègne Examiner

Jan Zeman, Ph.D. České Vysoké Učenı́ Technické v Praze Examiner

Prof. Hermann Matthies Technische Universität Braunschweig Examiner

Prof. Djordje Peric University of Wales, Swansea Examiner

Prof. Zdeněk Bittnar České Vysoké Učenı́ Technické v Praze Supervisor

Prof. Adnan Ibrahimbegović Ecole Normale Supérieure de Cachan Supervisor

Laboratoire de Mécanique et Technologie (ENS CACHAN/CNRS/UMR 8095)

27 Noverber 2007

To my brother

ACKNOWLEDGMENTS

First of all, I would like to express my deepest gratitude to Prof. Ing. Zdeněk Bittnar, DrSc.

for his support and patience not only during the entire course of the work on this thesis but also

during my whole studies.

I would like also to express my deep and sincere gratitude to my supervisor in France,

Prof. Adnan Ibrahimbegović from Laboratoire de mécanique et technologie de Ecole Nor-

male Supérieure de Cachan, for his personal guidance, understanding, stimulating suggestions

and encouragement throughout all my Ph.D. studies.

I would like to give my thanks to Ing. Jan Zeman, Ph.D. and Ing. Matěj Lepš, Ph.D. for their

inspiration during my research as well as for very thorough proof-reading of my manuscripts.

I wish also to thank other colleagues who have given me valuable comments and advice. Par-

ticularly, I would like to thank Delphine Brancherie, Ph.D., Ing. Zuzana Vitingerová, Ing. Sergey

Melnyk and Ing. Jan Skoček for close cooperation on many issues mentioned in this research

work.

Most importantly, I would like to thank my parents, my boyfriend Jan and friends for their

never ending encouragement and support that help me to attain the goal I have set for myself

and for the opportunity to fully concentrate on my study.

This work was supported by the research project CEZ MSM 6840770003 and by a grant

GAČR 103/05/H506. The financial support provided by France, particularly, Le Centre Na-

tional des Oeuvres Universitaires et Scolaires (CNOUS) within the frame of bilateral agreement

of Ph.D. studies under co-tutelle is gratefully acknowledged.

Last but not least, parts of this work were produced under the support of CTU grants

CTU 0501511 and CTU 0613511.

TABLE OF CONTENTS

List of Figures v

List of Tables x

Chapter 1: Introduction 1

1.1 Motivation and objectives . 1

1.2 Preliminary notes and definitions . 3

Chapter 2: Forward mode of an inverse analysis 7

2.1 Meta-model of computation model . 8

2.2 Meta-model of error function . 10

2.3 Interpolation tools . 12

2.4 Approximation tools . 13

Chapter 3: Inverse mode of an inverse analysis 15

3.1 Artificial neural networks . 16

3.2 Artificial neural network training . 22

3.3 Design of experiments . 25

3.3.1 Training data preparation . 26

3.3.2 Selection of input data . 29

I Description of proposed identification methods 32

Chapter 4: Forward mode methods 33

4.1 Genetic algorithms . 34

4.1.1 SADE algorithm . 35

4.1.2 GRADE algorithm . 37

4.1.3 CERAF strategy . 40

4.1.4 Comparison of proposed genetic algorithms 42

4.2 Radial Basis Function Network . 45

Chapter 5: Inverse mode methods 50

5.1 Multi-layer perceptron . 51

5.2 Training algorithms . 53

5.2.1 Back-propagation training . 54

5.2.2 Comparison of back-propagation training and SADE algorithm training 54

5.3 Input parameter randomization and stochastic sensitivity analysis 56

II Applications of parameters identification methodologies 58

Chapter 6: Optimal design and optimal control 59

6.1 Model problem: geometrically exact 2D beam 60

6.2 Optimal design . 63

6.3 Optimal control . 64

6.4 Solution procedure . 65

6.4.1 Diffuse approximation based gradient methods 65

6.5 Numerical examples . 67

6.5.1 Optimal control of a cantilever structure in the form of letter T 67

6.5.2 Optimal control of a cantilever structure in form of letter I 71

6.5.3 Optimal control of deployment of a multibody system 74

6.5.4 Optimal design of shear deformable cantilever 76

6.6 Summary . 79

Chapter 7: Parameters identification of continuum-discrete damage model capa-

ble of representing localized failure 80

7.1 A brief description of the identified model . 82

7.2 Tensile test . 83

7.3 Three-point bending test . 84

7.3.1 Identification of elastic parameters . 85

7.3.2 Identification of hardening parameters 86

7.3.3 Identification of softening parameters 87

7.4 Identification procedure verification . 89

7.5 Summary . 91

Chapter 8: Identification of microplane model M4 parameters 93

8.1 Microplane model M4 for concrete . 93

8.2 Sequential identification - verification . 95

8.2.1 Uniaxial compression test . 96

8.2.2 Hydrostatic compression test . 101

8.2.3 Triaxial compression test . 105

8.3 Application to measured data - validation . 108

8.3.1 Uniaxial compression test . 109

8.3.2 Hydrostatic compression test . 110

8.3.3 Triaxial compression test . 114

8.4 Summary . 117

Chapter 9: Conclusions 119

Bibliography 122

Appendix A: List of functions applied for genetic algorithms testing 132

A.1 Mathematical formulation of test functions . 132

A.2 Graphical ilustration of test function with one or two variables 136

Appendix B: Objective function contours corresponding to problem of optimal con-

trol of B letter structure 139

LIST OF FIGURES

2.1 Forward mode of identification process using model approximation 9

2.2 Forward mode of identification process using error function approximation . . 10

3.1 Schema of McCulloch-Pitts neuron . 18

3.2 Approximation of data by multi-layer perceptron with different topology. . . . 23

3.3 Distribution of 10 points for two variables by latin hypercube sampling. 27

3.4 Samples distribution for 23 full factorial design. 27

3.5 Samples distribution for (a) 23−1 and for (b) 23−2 fractional factorial designs. . 28

3.6 Example of data with two variables original variables x, y and new variables

x′, y′ obtained by PCA. 29

3.7 Positive linear correlations between 1000 pairs of numbers. 30

4.1 Geometrical meaning of simplified differential operator in SADE algorithm . . 37

4.2 Geometrical meaning of simplified differential operator in GRADE algorithm . 38

4.3 Histograms of number of function calls obtained from 1000 runs of GRADE

algorithm . 46

4.4 An interpolation using RBFN . 47

5.1 Scheme of inverse analysis procedure . 52

5.2 Neural network architecture . 52

5.3 Log-sigmoid activation function . 53

5.4 A function used for testing: f(x) = 0.2x sin(20x) + 0.5. 55

5.5 An error function in the estimation of neural network weights during an opti-

mization process. 56

5.6 An error distribution in the approximation of f(x) = 0.2x sin(20x) + 0.5. . . . 56

6.1 Initial and deformed configuration of the 3D geometrically exact beam. 61

6.2 T letter cantilever: Initial, final and intermediate configurations 68

6.3 T letter cantilever: Gradient method iterative computation on a grid. 69

6.4 T letter cantilever: contour of the objective function. 70

6.5 I letter cantilever: initial, final and intermediate configurations 72

6.6 I letter cantilever: 100 different solutions . 73

6.7 Multibody system deployment: initial, final and intermediate configurations. . . 74

6.8 Multibody system deployment: convergence of iterative chromosome populations 75

6.9 Shear deformable cantilever beam optimal design : initial and deformed shapes 76

7.1 Tensile loading test: (a) Load-deflection diagram (b) Evolution of lateral con-

traction. 84

7.2 Three-point bending test: (a) Load-deflection diagram (b) Evolution of expan-

sion of specimen. 85

7.3 Displacements measured to evaluate the expansion ∆l = v2 − v1 of the specimen. 86

7.4 Objective function F1: (a) Whole domain (b) Detail close to optimal value. . . 86

7.5 Measurements for objective function F2 definition. 87

7.6 Objective function F2: (a) Whole domain (b) Detail close to optimum. 88

7.7 Displacement measured to express crack opening defined as v4 − v3. 88

7.8 Comparison of diagrams with and without the spring of crack (a) Load-deflection

diagram (b) Evolution of difference between chosen local displacements during

the loading. 89

7.9 Objective function F3: (a) Whole domain (b) Detail close to optimal value. . . 89

7.10 Comparison of load-deflection diagrams: (a) Hardening parameters (b) Soften-

ing parameters. 91

8.1 Concept of microplane modelling . 94

8.2 Uniaxial test. (a) Experiment setup, (b) Finite element mesh, (c) Deformed mesh 96

8.3 Bundle of simulated stress-strain curves for uniaxial compression test 97

8.4 Sensitivity evolution for uniaxial compression test 97

8.5 Bundle of simulated stress-strain curves for uniaxial compression with fixed

values of Young’s modulus, Poisson’s ratio and k1 parameter and one (bold

black) measured stress-strain curve . 99

8.6 Evolution of Pearson’s correlation coefficient during the loading test for fixed

values of E, ν and k1 parameters . 99

8.7 k2 parameter as a function of the stress σ12 (corresponding to ǫ = 0.0011) . . . 100

8.8 The c20 parameter as a function of a stress (σ81) at the end of simulations 100

8.9 Quality of ANN predictions of c20 parameter 101

8.10 Evolution of ANN’s errors during the training in prediction of c20 parameter . . 101

8.11 Hydrostatic test. (a) Experiment setup, (b) Initial and deformed finite element

mesh, (c) Stress-strain curves . 102

8.12 Evolution of Pearson’s correlation coefficient during the hydrostatic compres-

sion test for loading (left) and unloading (right) branch 102

8.13 k4 parameter as a function of a strain of a peak 103

8.14 k3 parameter as a function of a position of the end of an elastic stage 103

8.15 Evolution of ANN’s errors during the training process in prediction of (a) k3

parameter and (b) k4 parameter . 104

8.16 Quality of ANN prediction of (a) k3 parameter and (b) k4 parameter 104

8.17 Relations of k3 and k4 parameters . 105

8.18 Comparison of original simulation and simulation for predicted k3 and k4 pa-

rameters . 105

8.19 Triaxial compression test. (a) Experiment setup, (b) Initial and deformed mesh

at the end of hydrostatic loading, (c) Initial and deformed mesh at the end of

total loading . 106

8.20 Bundle of simulated stress-strain curves for triaxial compression test 106

8.21 Evolution of Pearson’s correlation coefficient during the triaxial compression test 107

8.22 k2 parameter as a function of the stress value σ29 107

8.23 Quality of ANN prediction of k2 parameter. 108

8.24 Evolution of ANN’s errors during the training in prediction of k2 parameter . . 108

8.25 Comparison of original simulation and simulation for predicted parameters of

triaxial compression test . 109

8.26 Bundle of simulated stress-strain curves for uniaxial compression and one (bold

black) measured stress-strain curve under zoom 110

8.27 Comparison of measured data and results of final simulation. 110

8.28 Comparison of measured data and results of 70 simulations of hydrostatic com-

pression test. 111

8.29 Detail in comparison of measured data and results of 70 simulations of hydro-

static compression test. 111

8.30 Relations of k3 and k4 parameters for measured data, black curve correspond to

first ANN trained to predict k3 parameter with four inputs. 113

8.31 Relations of k3 and k4 parameters for measured data, black curve correspond to

second ANN trained to predict k3 parameter with five inputs. 113

8.32 Comparison of measured data and simulated diagrams of hydrostatic compres-

sion test for predicted parameters. 114

8.33 Comparison of measured data and results of 70 simulation of triaxial compres-

sion test. 115

8.34 Comparison of measured data and results of 70 simulation of triaxial compres-

sion test for new interval given for k2 parameter. 115

8.35 Comparison of measured data and simulated diagrams of hydrostatic compres-

sion test for predicted parameters. 116

B.1 Multibody system deployment: contours of the cost function in different sub-

spaces. 140

B.2 Multibody system deployment: contours of the cost function in different sub-

spaces. 141

LIST OF TABLES

2.1 Review of some meta-model techniques . 11

4.1 Parameter setting for SADE algorithm . 37

4.2 Comparison of number of objective functions, where GRADE algorithm was

fastest for given values of CL parameter and radioactivity 39

4.3 Comparison of number of objective functions, where GRADE algorithm found

optimum in more than (a) 95% or (b) 99% cases for given values of CL param-

eter and radioactivity . 39

4.4 Parameter settings for GRADE algorithm . 40

4.5 Parameter setting for GRADE algorithm . 42

4.6 Comparison of results of investigated methods. SR = success rate, ANFC =

average number of function calls, N = number of variables 43

4.7 Overall reliability-based comparison of investigated methods. 43

4.8 Comparison of convergence rate . 44

4.9 Comparison of results of investigated methods. SR = success rate, ANFC =

average number of function calls, N = dimension of the problem 49

6.1 T letter cantilever: performance of GRADE algorithm and method based on

RBFN interpolation . 70

6.2 T letter cantilever: impact of EP parameter to simultaneous solution procedure. 71

6.3 T Letter cantilever : solution statistics . 71

6.4 I letter cantilever: GRADE algorithm performance 72

6.5 I letter cantilever: GRADE algorithm performance 73

6.6 Results of GRADE algorithm for 5D task . 75

6.7 Shear deformable cantilever optimal design : thickness admissible values . . . 77

6.8 Shear deformable cantilever optimal design : computation statistics 77

6.9 Shear deformable cantilever optimal design : computation statistics 78

6.10 Shear deformable cantilever optimal design : simultaneous computation statistics 78

7.1 Main ingredients of the continuum damage model 82

7.2 Main ingredients of the discrete damage model 83

7.3 Limits for the model parameters. 83

7.4 Parameter’s values for reference simulation. 85

7.5 Summary of reliability study. 90

7.6 Influence of stopping precision on accuracy of identified parameters. 90

8.1 Bounds for the microplane model parameters 95

8.2 Pearson’s coefficient as a sensitivity measure of individual parameters to the

peak coordinates [ǫ,σ] of stress-strain curves 98

8.3 Neural network architectures . 98

8.4 Errors in the estimated parameters obtained from ten independent tests 98

8.5 Neural network architectures for hydrostatic test 104

8.6 Pearson’s coefficient as a sensitivity measure of individual parameters to the

peak coordinates [ǫ,σ] of stress-strain curves 106

8.7 Description of two neural networks trained to predict k3 parameter 112

8.8 Error in ANN’s predictions relative to the definition interval of the parameters

in [%]. 112

8.9 Comparison of errors of predicted simulations. 114

8.10 Error in ANN’s predictions relative to the definition interval of the k2 parameter

in [%]. 116

8.11 Comparison of errors of predicted simulations. 117

8.12 Final status of M4 identification project . 117

Chapter 1

INTRODUCTION

There are many methods for

predicting the future. For example,

you can read horoscopes, tea

leaves, tarot cards, or crystal balls.

Collectively, these methods are

known as ’nutty methods’. Or you

can put well-researched facts into

sophisticated computer models,

more commonly referred to as ’a

complete waste of time’.

Scott Adams

Preface

The problem of inverse analysis occurs in many engineering tasks and, as such, attains several

different forms and can be solved by a variety of very distinct methods. In this thesis, we present

an overview of two basic philosophies of the inverse analysis aimed, in particular at parameters

estimation with utilization of soft-computing methods. Practical aspects will be shown in de-

tail on several identification tasks, where parameters of highly non-linear material models are

searched for.

1.1 Motivation and objectives

A variety of engineering tasks nowadays lead to an inverse analysis problem. Generally, the aim

of an inverse analysis is to rediscover unknown inputs from the known outputs. In common en-

gineering applications, a goal is to determine the initial conditions and properties from physical

experiments or, equivalently, to find a set of parameters for a numerical model describing the

experiment.

When new numerical model is developed, the identification process is necessary for validat-

ing of proposed model to fit the experimental data. This process become a challenge especially

Introduction 2

in cases of complex nonlinear numerical models applied to simulate an experiment on structures

undergoing the heterogeneous stress field such as three-point bending test, tensile test (in case

of presence of localized failure) or nano-indentation.

Once the numerical model is validated, another use of identification method is on demand

when new values of model parameters should be found to fit experimental measurements on

new material. Such identification process is supposed to be performed repeatedly for any new

measurement and therefore, the emphasis is in this case put on the efficiency of chosen identi-

fication method.

The numerical model able to correctly simulate the experiment together with a robust and

effective identification method are essential tools for a structural modelling and reliability as-

sessment. A description of a complex methodology for statistical and reliability analysis of con-

crete structures using nonlinear mechanical models and artificial intelligence based identifica-

tion tools is presented in [Novák et al., 2007] and one particular application to fiber-reinforced

concrete facade panels is presented in [Keršner et al., 2007].

In overall, there are two main philosophies to solution of identification problems. A for-

ward (classical) mode/direction is based on the definition of an error function of the difference

between outputs of the model and experimental measurements. A solution comes with the min-

imum of this function. This mode of identification could be considered as more general and

robust and therefore, it is usually applied in numerical model validation.

The second philosophy, an inverse mode, assumes the existence of an inverse relationship

between outputs and inputs. If such relationship is established, then the retrieval of desired

inputs is a matter of seconds and could be easily executed repeatedly.

Nowadays, the most often method used for identification of model parameters in engineering

practice is, however, the trial-and-error method. One reason is a lack of the literature summa-

rizing the identification methodologies suitable for model parameters identification.

The main goals of the present work could be written as follows:

i) suggest a basic classification and notation of methods suitable for model parameters iden-

tification;

ii) provide a guide for the best choice of the type of algorithm most suitable for a particular

application;

iii) develop new methods suitable for identification;

iv) enhance understanding of several nonlinear mechanical constitutive models both in terms

of their domain of application and in terms of sensitivity of their parameters;

v) test the proposed identification methods in the framework of several constitutive models

with inelastic behavior.

Introduction 3

1.2 Preliminary notes and definitions

As mentioned previously, the problem of an inverse analysis can be formulated based on the ex-

istence of an experiment E, which, physically or virtually, connects the known inputs (parame-

ters) xE to the desired outputs (measurements) yE . Formally, this can be written as

yE = E(xE). (1.1)

Then, the problem of an inverse analysis is defined as a search for unknown inputs xE from

the known outputs yE , i.e. inversely to the experiment E. In common engineering applications,

the experiment E is usually simulated by some virtual model M . Often, the model is a pro-

gram based on numerical methods such as the finite element method. Such a model M usually

does not describe a real experiment E exactly, but in our work it is considered as a “good”

approximation and therefore we can write

M ≈ E; (1.2)

yM = M(xM). (1.3)

This step is important from the economy point of view, where the cost of the evaluation

of the model M is assumed to be by an order of magnitude smaller than the cost of the physical

experiment E.

Input parameters xM of a theoretical model should not necessarily correspond to physical

parameters xE . Phenomenological models use often some parameters without physical inter-

pretation. Usually, an experimentalist does not know the physical parameters accurately. Let us

also note, that the number of theoretical model input parameter is usually smaller that ten, i.e.
∥
∥xM

∥
∥ < 10. (1.4)

Theoretical models are usually constructed to describe some real experiment in order to ob-

tain equivalent outputs (measurements). Therefore the output parameters yM of a theoretical

model usually correspond to that one from the experiment yE . The identification process should

be completed by the validation based on comparing modelled outputs yM with the experimental

ones yE in order to judge, whether the model parameters were found correctly and accurately

enough. To comment the number of output parameters let us note that the measurements could

vary in time τ , could be performed in a number of measuring points P and could be stored for

different experiments, considering different boundary conditions C. The outputs are usually

measured with respect to time in discrete points T and including different measuring points P
and different experiments C. Therefore, the number of outputs could be quite large and could

reach tens or hundreds components, i.e.
∥
∥yM

∥
∥ =

∥
∥yE

∥
∥ = T × P × C ≈ 100. (1.5)

It could be interesting to introduce here following two basic definitions in accordance with

[Babuska and Oden, 2004]:

Introduction 4

Verification: The process of determining if a computational model obtained by discretiz-

ing a mathematical model of a physical event and the code implementing the computa-

tional model can be used to represent the mathematical model of the event with sufficient

accuracy.

Validation: The process of determining if a mathematical model of a physical event rep-

resents the actual physical event with sufficient accuracy.

The authors in [Babuska and Oden, 2004] accepted that philosophically absolute validation

and verification may be impossible, but validation and verification relative to a specific series

of tests and preset tolerances may be perfectly legitimate as a basis for making decisions.

In the continuum mechanics, the goal of verification processes to assess the difference be-

tween results produced by the computational model and the mathematical model. These types

of errors arise in two basic ways and needs two corresponding categories of verification:

i) The code may not be a reliable and accurate implementation of the discretized model –

code verification, a province of software engineering, is needed.

ii) The discretized model may not be an accurate representation of the mathematical model

– solution verification is needed, which involves a posteriori error estimation.

If a code is free of error, the verification processes are by no means done: the error in the nu-

merical values of the event or events of interest due to discretization remains to be quantified. If

this error due to discretization can be quantified, estimated, or bounded in some way and judged

to be acceptable by the analyst, then what remains to be assessed is the validity of the theory

(i.e. the mathematical model), a goal of the validation process. “Thus, quantifying discretization

error, a principal goal of verification processes, is in general, a necessary prelude to the valida-

tion processes, as to do otherwise could lead to an entanglement of modelling and discretization

error and obviate the entire validation exercise” [Babuska and Oden, 2004].

In the field of model parameters identification, the meaning of verification and validation is

a little bit different and could be stated as follows:

Verification: The process of determining whether the identification method is able to re-

find the model parameters xM from the outputs yref of the reference simulation done for

any choice of original inputs xref .

Validation: The process of determining whether the identification method is able to find

the model parameters xM corresponding to the experimental outputs yE .

In general, there could be two steps of identification method verification:

Introduction 5

1. Verification I: comparing the reference model inputs xref with the identified ones xM ;

2. Verification II: comparing the reference model outputs yref with the identified ones yM

and one step of validation: comparing the experimental outputs yE with the identified ones

yM .1

In engineering practice, nevertheless, the model parameters identification often takes part in

the process of mathematical model verification and validation. In these cases it is quite difficult

to judge whether the errors are caused by the incorrectness of the mathematical model or by

the incorrectness of identification procedure. We propose the following order of verification

and validation:

1. code verification, a province of software engineering;

2. solution verification is needed, which involves a posteriori error estimation;

3. identification method verification I + II, once the computational model is verified, the iden-

tification method should be theoretically able to refind parameter’s values corresponding

to reference simulations exactly;

4. model validation, comparing the outputs from the model simulation with the experimen-

tal outputs. Such a step typically involves a certain identification procedure used to fit

the experimental data. To suppress this aspect, the optimization procedure needs to be

extremely robust and therefore very computationally expensive;

5. identification method validation, we consider this method to be computationally efficient

and not producing significant additional errors when the outputs yref from reference sim-

ulation are replaced with experimental ones yE in comparison with the identified outputs

yM .

This work focuses on identification methods which are verified and validated together with

models proposed by other authors. All the employed models are a priory supposed to be verified

and validated.

Other source of the error are, unfortunately, almost always the experimental data itself. The

problem of estimating, controlling, and quantifying experimental error goes also together with

model validation and identification procedure validation. On the one hand, there are the appa-

ratusis needed to make measurements and supply input to a program of physical tests, while on

the other hand, there are devices and possibly technicians that can record and interpret the ob-

served output. In analogy to the verification processes, the apparatusis must be calibrated to

1 Recall, that physical experimental inputs x
E are practically always unknown.

Introduction 6

and lead to accuracies regarded as acceptable by the experimentalist. In the analogy to vali-

dation, confidence that the experiment itself measures accurately the event of interest must be

established.

Nevertheless, in practice, the engineers usually work with modelling some measurements

affected by noise. There are many regularization procedures to overcome the noise in measured

data during identification procedure, such as the Tikhonov regularization etc. Some examples

of regularization based techniques applied in parameters identification could be found e.g. in

[Iacono et al., 2006, Mahnken and Stein, 1996] or [Maier et al., 2006]. Therefore, this aspect

of identification procedure is omitted in the sequel.

As a conclusion let us repeat the main source of error in the identification procedure:

i) noise in experimental measurements;

ii) inaccuracy of mathematical model or its numerical implementation;

iii) incompetence of an identification method.

In this work, two different modes in identification procedure are distinguished: a forward

mode of an inverse analysis leading to an optimization problem is described in following chap-

ter; an inverse mode of an inverse analysis based on determination of an inverse model is dis-

cussed in Chapter 3. Chapters 4 and 5 contain detailed description of several proposed methods

applicable to forward and inverse mode of an inverse analysis, respectively, supplemented with

results on representative mathematical tests. Chapters 6 to 8 presents the applications of pro-

posed identification methodologies to optimal design, optimal control and parameters identifi-

cation of two non-linear material models. The conclusion and final remarks are given in Chapter

9.

Chapter 2

FORWARD MODE OF AN INVERSE ANALYSIS

I do not fear computers. I fear the

lack of them.

Isaac Asimov

Based on the above-mentioned statements, the forward (classical) mode/direction of an in-

verse analysis is defined as a minimization of an error function F (x) defined as the difference

between the outputs of the model yM and the output of the experiment yE , i.e.

min F (x) = min ‖yE − M(x)‖. (2.1)

A solution xM comes with the minimum of this function and if F (xM) > 0, the remaining

error is caused by inaccuracy of a model or by some noise in measured data.

The problem (2.1) has been classically solved by gradient-based optimization methods.

Nowadays, the model M is usually hidden in a program which is limited by license conditions,

compact code etc. and therefore, the knowledge of derivatives is missing even if the function is

differentiable. Hence, the soft-computing methods can be successfully applied here. Methods

in the spirit of the simulated annealing method [Ingber, 1993, Vidal, 1993] with one solution

in time or evolutionary algorithms [Goldberg, 1989, Michalewicz, 1999] with a ’population’

of solutions are usually used.

The main advantage of this approach is that the forward mode is general in all possible

aspects and is able to find an appropriate solution if such exists. This statement is confirmed

with special cases like

a) A problem of a same value of outputs y for different inputs x, i.e. existence of several

global optima. This case leads to a multi-modal optimization [Mahfoud, 1995b] but is

solvable by an appropriate modification of an optimization algorithm, cf. Section 4.1.3.

b) There are different outputs y for one input x. This is the case of stochastic and prob-

abilistic calculations as well as experiments polluted with a noise or an experimental

error. This obstacle can be tackled e.g. by introduction of stochastic parameters for

outputs or by a regularization of the objective function, see e.g. [Iacono et al., 2006,

Mahnken and Stein, 1996] or [Maier et al., 2006].

Forward mode of an inverse analysis 8

c) There is more than one experiment for one material. This task can be handled as a multi-

objective optimization problem, see e.g. [Coello, 2004, Coello, 2000, Miettinen, 1999].

One disadvantage of the forward mode, following the definition, is a fact that the computa-

tionally expensive search should be repeated for any change in data, e.g. even for small change

in an experimental setup. This feature handicaps the forward mode from an automatic and

frequent usage. The opposite is true for the second mode of an inverse analysis presented later.

The other disadvantage of the forward mode is the need for a huge number of error function

evaluations. This problem can be managed by two approaches, which are based on:

a) parallel decomposition and parallel implementation;

b) computationally inexpensive approximation or interpolation method.

The parallel decomposition is based on an idea of the so-called implicit parallelism, i.e.

the independence of any two solutions x. This can be utilized by a global parallel model

[Cantú-Paz, 2001], where the main (master, root) processor/computer controls the optimiza-

tion process while the slave processors compute the expensive evaluations of the model M .

Thanks to the independency of solutions, nearly linear speed-up can be reached until a high

number of processors.

The second methodology is based on reducing the number of simulations of a complex

model M . A similar idea used already in Equation (1.3) is employed here in two different pos-

sible implementations: meta-modelling (or so called surrogate modelling) of a computational

model or meta-modelling of an error function, described in following two sections. The most

often tools applied here could be categorized into three groups described in Sections 2.3 and 2.4.

2.1 Meta-model of computation model

One possibility to reduce the number of simulations of a complex mechanical model M is to

estimate a model M̃ similar to the model M , i.e.

M̃ ≈ M (2.2)

whereas M̃ should be computationally much cheaper than M . Then the optimization process

could be started using the cheap model M̃ instead of M . Moreover, since the approximative

model M̃ is determined, it could be used again when identifying parameters corresponding to

new measurements. A scheme of such form of forward identification is shown in Figure 2.1 and

the consecutive steps of this methodology are described below.

Forward mode of an inverse analysis 9

Figure 2.1: Forward mode of identification process using model approximation

Step 1 Approximative model M̃ estimation: This step is computationally very demanding. Usu-

ally an artificial neural network is applied and trained to approximate original compu-

tational model. For neural network training, a certain number of simulations by orig-

inal model are needed, appropriate topology of neural network should be determined

and training process must be performed in order to minimize the error between response

of model M̃ and the original model M . More details about such process could be found

in Chapter 3, since approximative model estimation is very close to inverse model esti-

mation.

It is worth mentioning that the outputs y often represent some diagram or curve (load-

deflection diagram etc.) which could be defined as a vector of discrete points coordinates

with tens to hundreds of components. The model inputs x usually represents just several

model parameters. Therefore the approximative model M̃ should describe a mapping

from several inputs to tens or hundreds outputs, what could be quite complicated task for

e.g. a artificial neural network.

Step 2 Optimization of model M̃ for experimental or reference simulated data. For given outputs

either from experiment yE or from reference simulation yref , an optimization process is

started in order to find corresponding inputs xM into the model M̃ .

Step 3 Verification I consists of execution of optimization process in Step 2 for some refer-

ence couple of data [xref ,yref]. Then the identified inputs xM should be compared with

the original input data xref as the first step of identification procedure verification.

Step 4 Verification II: For identified input data xM a simulation by computational model should

be performed and the outputs yM should be then compared with the reference outputs

xref as the second step of verification.

Step 5 Validation: consists again of execution of optimization process in Step 2, but here for

experimental data yE . Then the identified inputs xM should be used for a simulation by

computational model M and the obtained outputs yM should be compared with the ex-

perimental outputs yE .

Forward mode of an inverse analysis 10

To conclude this variant of forward approach implementation, some of its typical features

are listed bellow:

i) the largest inconvenience is the complicated estimation of an approximative model M̃ ,

especially considering the complexity of mapping from several inputs to tens or hundreds

of outputs;

ii) the biggest advantage is the establishment of the approximative model M̃ , that could be

used for parameter identification for any new measurements;

iii) the optimization process necessary for parameter estimation should be started again for

any new measurements.

2.2 Meta-model of error function

As it was already mentioned at the beginning of this chapter, the forward approach leads to

an optimization process, where some error function is defined as

F =
∥
∥yE − M(x)

∥
∥ . (2.3)

In other words the error is the difference between the outputs from experiment yE and the out-

puts yM from a model M . The second possibility to reduce the number of simulations of

a complex mechanical model M is to estimate an approximative error function F̃ similar to

the error function F , i.e.

F̃ ≈ F. (2.4)

It is again assumed that F̃ is cheaper to evaluate than F , since its evaluation will not include

an expensive simulation by model M . A scheme of such kind of forward approach implemen-

tation is shown in Figure 2.2. The consecutive steps of this implementation are almost the same

Figure 2.2: Forward mode of identification process using error function approximation

as in the previous case, excepts several details, which are mentioned bellow:

Forward mode of an inverse analysis 11

i) Step 1 consist of determination of an approximative function F̃ of the error function F .

This could be done in the same way as a determination of an approximative model M̃ .

The difference is in the mapping, since the inputs remains the same, but the number of

outputs here decreases usually to one value of error function. In particular cases, sev-

eral objectives could be included while defining the error function, hence, several criteria

could lead to multi-objective formulation of the error function. Finally, the determination

of approximative error function F̃ is much more easier than determination of approxima-

tive model M̃ ;

ii) the biggest disadvantage is that this formulation usually leads to a multi-modal opti-

mization problem, especially in cases, where several criteria are accumulated in a single-

objective function using weighting approaches;

iii) other disadvantage is that the approximative error function needs to be established again

for any new measurements, nevertheless, some expensive simulations by computation

model M once performed could be used again for the determination of a new approxima-

tion .

Since the difference between the usage of meta-model M̃ of a computational model M and

meta-model F̃ of an error function F is only in details, the terms meta-model M̃ and model M
will cover both cases in following sections for the sake of simplicity.

Table 2.1: Review of some meta-model techniques

Forward mode of an inverse analysis 12

Some meta-model techniques, which could be found in literature, are listed in Table 2.1.

A brief description of some meta-model tools are described in following sections. More de-

tails with some examples and applications of meta-modelling can be found in [Jin, 2003],

[Simpson et al., 2001] or [Queipo et al., 2005]. Some comments about design of experiments,

which should precede any meta-model establishment, are gathered in Section 3.3.

2.3 Interpolation tools

The first group of tools, let us call it interpolation tools, are used to interpolate the model M
using sampled design points carefully chosen by some type of design of experiments, where the

values of model M̃ are equal to values of model M , i.e. ỹM(x̃M) ≡ yM(xM). The advantage

here is, that in general, near any design point the interpolation is supposed to be more precise

than some general approximation. Therefore, some iterative techniques are usually applied in

order to add more design points in the area where the global optimum is supposed to be located.

Other typical feature of interpolation methods listed bellow is the fact, that the interpolation

is established without any knowledge of an inner structure of the model M .

i) Kriging is named after the pioneering work of D. G. Krige1, and was formally devel-

oped by Matheron [Matheron, 1963]. More recent publication with the theoretical details

could be found in [Jin, 2003]. Some engineering applications of Kriging modelling are

presented e.g. in [Varcol and Emmerich, 2005]. The Kriging method in its basic formula-

tion estimates the value of a function (response of a model) at some unsampled location as

the sum of two components: the polynomial model and a systematic departure represent-

ing low (large scale) and high frequency (small scale) variation components, respectively.

Hence, these models (Ordinary Kriging) suggest estimating deterministic functions as

fp(x) = µ(x) + ε(x), (2.5)

where fp(x) is the unknown function of interest, µ(x) is a known polynomial function

and ε(x) is the realization of a normally distributed Gaussian random process with mean

zero, variance σ2 and non-zero covariance.

ii) Radial Basis Function Network (RBFN) have been developed for the interpolation of

scattered multivariate data. The method uses linear combinations of radially symmetric

functions based on the Euclidean distance or other metric, to approximate given func-

tion (or response of a given model). More details about this model are written in Sec-

tion 3.1 and one particular implementation with some “mathematical” objective func-

tion are described in Section 4.2. Some engineering applications could be also found

in [Nakayama et al., 2004] and [Karakasis and Giannakoglou, 2004]. An application in

identification domain is published in [Kucerova et al., 2007].

1 a South African mining engineer

Forward mode of an inverse analysis 13

iii) Genetic programming could be possibly used as an interpolation tool, if the equality of

the meta-model M̃ and the computational model M in the design points is imposed.

The theory of genetic programming could be found in [Koza, 1992]; an application in

parameters identification is published in [Toropov and Yoshida, 2005].

2.4 Approximation tools

The approximation tools includes, in general, also the interpolation tools. Nevertheless, we

distinguish these groups of tools since for approximation tools there is no implicit condition,

that the value of meta-model should be equal to the value of the original model in all design

points as it is defined for interpolation tools. The optimum of the meta-model will have with

high probability different value from the original model. Moreover, it is not clear how to include

this discrepancy into identification procedure (contrary to the interpolation approach).

The approximation tools could be divided into two groups according to the knowledge about

the original model M utilized during the choice of meta-model M̃ :

a) High and low fidelity models assumes that, for a physical model M , there is a less ac-

curate physical model M̃ , which is computationally less expensive than the model M .

This situation occurs in cases where, for one physical phenomenon, there are two or

more describing theories, e.g. wave vs. particle theories. More often, there are cases,

where different topologies, geometries, a different number of finite elements, a simple

or a difficult model, a 2D or a spatial model etc. for a studied problem can be used.

Some engineering applications of this method could be found in [González et al., 2004]

or [Wang et al., 2002].

b) Meta-models determined without any insight into the physical model applies approxima-

tion tools like:

i) Response surface methods (RSM) is described differently by different authors. My-

ers and Montgomery [Myers and Montgomery, 1995] state that RSM “is a collection

of statistical and mathematical techniques useful for developing, improving, and op-

timizing process. It also has important application in the design, development, and

formulation of new products, as well as in the improvement of existing product de-

signs”. The ’collection of statistical and mathematical techniques’ of which these

authors speak refers to the design of experiments (Section 3.3), least squares regres-

sion analysis, response surface model building and model exploitation.

Response surfaces are typically second-order polynomial models; therefore, they

have limited capability to model accurately nonlinear functions of arbitrary shape.

Obviously, higher-order response surfaces can be used to model a nonlinear design

space; however, instabilities may arise or too much sample points will be necessary

in order to estimate all of the coefficients in the polynomial equation, particularly in

high dimensions. Hence, many researchers advocate the use of a sequential response

Forward mode of an inverse analysis 14

surface modelling approach using move limits or a trust region approach. An appli-

cation of RSM in engineering design is presented in [Lee and Hajela, 2001] and an

application in parameter identification is published in [Toropov and Yoshida, 2005].

ii) Multi-layer perceptron (MLP) is a variant of artificial neural network. It is com-

posed of neurons (single-unit perceptrons) which are multiple linear regression mod-

els with a nonlinear (typically sigmoidal) transformation on their output. These

neurons are in this case organized in several layer, where each neuron is connected

with all neurons in previous and following layer. More details about this procedure

could be found in Section 3.1. An application of forward identification using MLP

is presented in [Pichler et al., 2003].

iii) Also the methods included in previous section could be used as approximative tools,

but some modifications to their typical implementations are needed.

One of the possible ways to solve inconsistency among models and their meta-models can be

a multi-objective formulation. For instance, [Quagliarella, 2003] uses an error between model

and meta-model and error between meta-model and experiments as a two independent objec-

tives.

Some combinations of forward and inverse mode of an inverse analysis are also possible,

one example is published e.g. in [Most et al., 2007].

Chapter 3

INVERSE MODE OF AN INVERSE ANALYSIS

Everything should be made as

simple as possible, but not one bit

simpler

Albert Einstein

The second philosophy, an inverse mode, assumes an existence of an inverse relationship

between outputs and inputs, i.e. there is an inverse model M INV associated to the model M ,

which fulfils the following equation:

x = M INV (y) (3.1)

for all possible y. Generally, this inverse model does not need to exist. Nevertheless, we assume

that the inverse model can be found sufficiently precise on some closed subset of the definition

domain. Next, we will limit our attention to an approximation of the inverse relationship, not its

exact description. A quality of this approximation is easy to measure since a pair x, y obtained

using Equation (3.1) should also fulfill the Equation (??). Final usage of this methodology is

trivial because a desired value xM can be obtained by simple insertion yE into Equation (3.1).

The main advantage is clear. If an inverse relationship is established, then the retrieval

of desired inputs is a matter of seconds even if executed repeatedly. This can be utilized for

frequent identification of one model. On the contrary, the main disadvantage is an exhausting

search for the inverse relationship.

Further obstacles are the existence problems for the whole search domain and inability to

solve the problem of a same value of outputs y for different inputs x, i.e. existence of several

global optima.

The case of different outputs y corresponding to one input x introduced by stochastic and

probability calculations or by experiments polluted with a noise or an experimental error can

be tackled e.g. by introduction of stochastic parameters for outputs [Lehký and Novák, 2005,

Fairbairn et al., 2000].

Another case, when there is more than one experiment for one material, can be handled

by sequential, cascade or iterative processes. As a solution, different approximation tools are

applied. Nowadays, artificial neural networks have became the most frequently used methods.

Inverse mode of an inverse analysis 16

Since the inverse mode is based on an approximation of the inverse model, the other problem

concern the accuracy of inverse model predictions. It could be solved in following ways:

i) Taking into account an expert guess. This brings the possibility to reduce the inputs do-

main when preparing design points for the inverse model development. That leads to

better accuracy of the inverse model in the vicinity of the expert guess and probably also

near the desired inputs xM corresponding to measurements yE . Nevertheless this ap-

proach suppose the existence of a competent expert with wide experience with the model

as well as the experiment. This approach is published e.g. in [Novák and Lehký, 2006].

ii) Cascade neural networks suppose the possibility to identify the individual inputs xi in

a sequential way, where the predictions of some inputs identified in the first step could be

used as known during the development of inverse model in next steps in order to reduce

the complexity of the approximated relationship. Particular applications of this methodol-

ogy to parameters identification are presented e.g. in [Waszczyszyn and Ziemianski, 2005]

or in [Kučerová et al., 2007].

iii) Sequential refining consists also of several sequential steps as the previous case. Nev-

ertheless, in this case in all steps all inputs x remains to be identified. The predictions

from previous steps are used only to reduce the design space and the inverse model is

determined using new design points from narrower design space around the supposed so-

lution. An application of such procedure to the parameters identification is published e.g.

in [Most et al., 2007].

All these methodologies lead to better accuracy of inverse model predictions. Nevertheless,

the inverse relation becomes accurate only near the inputs xM corresponding to the particular

measurements yE . Therefore such inverse model M INV could not be applied again for new

measurements. Hence, the principal advantage of the inverse approach is more or less lost.

3.1 Artificial neural networks

Artificial neural networks (ANN) are powerful computational systems consisting of many sim-

ple processing elements connected together to perform tasks analogously to biological brains.

The field goes by many names, such as connectionism, parallel distributed processing, neuro-

computing, natural intelligent systems, machine learning algorithms, and artificial neural net-

works.

In most cases, an ANN is an adaptive system that changes its structure based on external or

internal information that flows through the network during the learning (training) phase.

The first neuron model was proposed already in 1940s and since that there were a lot of

developments and paper published in the field (see e.g. [Haykin, 1998] or [Hertz et al., 1991]).

A brief history of the ANNs is following:

Inverse mode of an inverse analysis 17

1942 McCulloch and Pitts proposed the McCulloch-Pitts neuron model, a crude approximation

to real neuron that performs a simple summation and thresholding function on activation

levels.

1949 Hebb published his book The Organization of Behavior, in which the Hebbian learning

rule was proposed.

1958 Rosenblatt introduced the simple single layer networks now called Perceptrons.

1969 Minsky and Papert’s book Perceptrons demonstrated the limitation of single layer percep-

trons, and almost the whole field went into hibernation.

1982 Hopfield published a series of papers on Hopfield networks.

1982 Kohonen developed the Self-Organizing Maps that now bear his name.

1986 The back-propagation learning algorithm for multi-layer perceptrons was rediscovered

and the whole field took off again.

1990s The sub-field of Radial Basis Function Networks was developed.

2000s The power of Ensembles of Neural Networks and Support Vector Machines becomes

apparent.

ANN are a powerful technique to solve many real world problems. They have the ability to

learn from experience in order to improve their performance and to adapt themselves to changes

in the environment. In addition to that they are able to deal with incomplete information or

noisy data and can be very effective especially in situations where it is not possible to define

the rules or steps that lead to the solution of a problem. Their simple implementation and

massive parallelism makes them very easy and efficient to use.

Existing papers suggest different categorization for Neural Networks. Following list repre-

sents one possible view on that subject and may vary from other publications.

Clustering A clustering algorithm explores the similarity between patterns and places

similar patterns in a cluster. Best known applications include data compression and data

mining.

Classification/Pattern recognition The task of pattern recognition is to assign an in-

put pattern (like handwritten symbol) to one of many classes. This category includes

algorithmic implementations such as associative memory. Typical application are speech

recognition, hand-writing recognition, sonar signals.

Function approximation The tasks of function approximation is to find an estimate of

the unknown function f subject to a noise. Various engineering and scientific disciplines

require different function approximation.

Inverse mode of an inverse analysis 18

Prediction/Dynamical Systems The task is to forecast some future values of a time-

sequenced data. Prediction has a significant impact on decision support systems. Predic-

tion differs from function approximation by considering a time factor. Here the system

is dynamic and may produce different results for the same input data based on system

state (time). Famous applications are predicting stocks, shares, currency exchange rates,

climate, weather, airline marketing tactician.

Perhaps the greatest advantage of ANNs is their ability to be used as an arbitrary function

approximation mechanism which ’learns’ from observed data. However, using them is not so

straightforward and a relatively good understanding of the underlying theory is essential. Once

the model, cost function and learning algorithm are selected appropriately the resulting ANN

can be extremely robust.

A basic unit of any ANN is an artificial neuron, firstly proposed by McCulloch and Pitts.

The schema of the McCulloch-Pitts neuron (also known as a threshold logic unit) is shown

in Figure 3.1. A set of synapses (i.e. connections) brings in activations from other neurons.

Figure 3.1: Schema of McCulloch-Pitts neuron

A processing unit sums the inputs (y1...yN), and then applies a non-linear activation function

(i.e. squashing/transfer/threshold function). An output line (x1...xN) transmits the result to

other neurons.

We can connect any number of McCulloch-Pitts neurons together in any way we like. An ar-

rangement of one input layer of McCulloch-Pitts neurons feeding forward to one output layer of

McCulloch-Pitts neurons is known as a perceptron. In this way it can be considered the simplest

kind of a feedforward network.

Perceptrons can be trained by a simple learning algorithm that is usually called the delta

rule. It calculates the errors between calculated output and sample output data, and uses this to

create an adjustment to the weights, thus implementing a form of gradient descent.

Single-unit perceptrons are only capable of learning linearly separable patterns; the proof

that it was impossible for a single-layer perceptron network to learn an XOR function is shown

in [Minsky and Papert, 1969]. The authors also conjectured (incorrectly) that a similar result

would hold for a multi-layer perceptron network. Although a single threshold unit is quite

limited in its computational power, it has been shown that networks of parallel threshold units

can approximate any continuous function from a compact interval of the real numbers into

the interval [−1, 1]. This very recent result can be found in [Auer et al., 2005].

Inverse mode of an inverse analysis 19

Many more powerful neural network variations are possible – we can vary the architecture

and/or the activation function and/or learning algorithm. Some representative and often used

types of ANNs are listed bellow:

The feedforward neural network

This network consist of one input layer, one output layer, and one or more hidden layers of

processing units. In this network, the information moves in only one direction, forward, from

the input nodes, through the hidden nodes and to the output nodes. There are no cycles or loops

in the network, no feed-back connection. Mostly used example is a multi-layer perceptron

(MLP) with a sigmoid transfer function and gradient descent method of training called Back-

Propagation Learning Algorithm.

The universal approximation theorem can be stated as:

Let ϕ(·) be a non-constant, bounded, and monotone-increasing continuous function. Then

for any continuous function f(y) with y = {yi ∈ [0, 1] : i = 1, . . . , I} and ε > 0, there exists

an integer J and real constants {αj, bj, wjk : j = 1, . . . , J, k = 1, . . . , I} such that

F (y1, . . . , yI) =
J∑

j=1

αjϕ

(
I∑

k=1

wjkyk − bj

)

(3.2)

is an approximate realization of f(·), that is

‖F (y1, . . . , yI) − f(y1, . . . , yI)‖ < ε (3.3)

for all x that lie in the input space.

Clearly this applies to an multi-layer perceptron with J hidden units, since ϕ(·) can be

a sigmoid, wjk, bj can be hidden layer weights and biases, and αj can be output weights. It

follows that, given enough hidden units, a two layer multi-layer perceptron can approximate

any continuous function.

Applications of multi-layer perceptron could be found in [Weigend and Gershenfeld, 1994]

concerning time series prediction; in [le Cun et al., 1989] for written zip code recognition. Ap-

plications to computational mechanics could be found in [Yagawa and Okuda, 1996] or in more

recent papers [Novák and Lehký, 2006] and [Waszczyszyn and Ziemiański, 2006].

Radial basis function network (RBFN)

RBFN are powerful techniques for interpolation in multidimensional space. A radial basis

function (RBF) is a function which has built into a distance criterion with respect to a center.

RBFN have two layers of processing: In the first, input is mapped onto each RBF in the “hidden”

Inverse mode of an inverse analysis 20

layer. The RBF chosen is usually a Gaussian. In regression problems the output layer is then

a linear combination of hidden layer values representing mean predicted output.

RBF networks have the advantage of not suffering from local minima in the same way as

multi-layer perceptrons. This is because the only parameters that are adjusted in the learn-

ing process are the linear mapping from hidden layer to output layer. Linearity ensures that

the error surface is quadratic and therefore has a single easily localizable minimum. Solution to

the regression problem can be found in one matrix operation.

Intuitively, we can easily understand why linear superpositions of localized basis functions

are capable of universal approximation. More formally:

Hartman, Keeler & Kowalski in [Hartman et al., 1990] provided a formal proof of this

property for networks with Gaussian basis functions in which the widths {σj} are treated

as adjustable parameters.

Park & Sandberg in [Park and Sandberg, 1991, Park and Sandberg, 1993] showed that

with only mild restrictions on the basis functions, the universal function approximation

property still holds.

As with the corresponding proofs for MLPs, these are existence proofs which rely on

the availability of an arbitrarily large number of hidden units (i.e. basis functions). How-

ever, they do provide a theoretical foundation on which practical applications can be based with

confidence.

RBF networks have the disadvantage of requiring good coverage of the input space by radial

basis functions. RBF centers are determined with reference to the distribution of the input data,

but without reference to the prediction task. As a result, representational resources may be

wasted on areas of the input space that are irrelevant to the learning task. A common solution

is to associate each data point with its own center, although this can make the linear system to

be solved in the final layer rather large, and requires shrinkage techniques to avoid overfitting.

Associating each input datum with a RBF leads naturally to kernel methods such as Support

Vector Machines and Gaussian Processes (the RBF is the kernel function). All three approaches

use a non-linear kernel function to project the input data into a space where the learning prob-

lem can be solved using a linear model. Like Gaussian Processes, and unlike SVMs, RBF

networks are typically trained in a Maximum Likelihood framework by maximizing the prob-

ability (minimizing the error) of the data under the model. SVMs take a different approach to

avoiding overfitting by maximizing instead a margin. RBF networks are outperformed in most

classification applications by SVMs. In regression applications they can be competitive when

the dimensionality of the input space is relatively small.

One successful real-world application of RBFN detects epileptiform artifacts in EEG record-

ings, for full details see [Saastamoinen et al., 1998]. Some applications to engineering problems

could be found in [Nakayama et al., 2004] or [Karakasis and Giannakoglou, 2004].

Inverse mode of an inverse analysis 21

Kohonen self-organizing network

This network invented by Teuvo Kohonen [Kohonen, 1982] uses a form of unsupervised learn-

ing. A set of artificial neurons learns to map points in an input space to coordinates in an output

space. The input space can have different dimensions and topology from the output space, and

the SOM will attempt to preserve these.

Recurrent network

While a feedforward network propagates data linearly from input to output, recurrent networks

also propagate data from later processing stages to earlier stages, i.e. they contain at least one

feed-back connection.

Hopfield network

It is a recurrent neural network in which all connections are symmetric. Invented by John Hop-

field in 1982 (see [Hopfield, 1982]), this network guarantees that its dynamics will converge. If

the connections are trained using Hebbian learning then the Hopfield network can perform as

robust content-addressable memory, resistant to connection alteration.

Stochastic neural networks

They differ from a typical neural network in the fact that it introduces random variations into

the network. In a probabilistic view of neural networks, such random variations can be viewed

as a form of statistical sampling, such as Monte Carlo sampling.

Fuzzy neural networks

Fuzzy methods are used to enhance the learning capabilities or the performance of a neu-

ral network. This can be done either by creating a network that works with fuzzy inputs

[Narazaki and Ralescu, 1991] or by using fuzzy rules [Halgamuge et al., 1994] to change the

learning rate. Some engineering applications were published in [Rajasekaran et al., 1996] or

[Waszczyszyn and Ziemianski, 2005]. These approaches are not to be confused with neuro-

fuzzy approaches, where neural network is usually used to determine the parameters of a fuzzy

system.

A variety of other types of ANNs could be found in literature.

Inverse mode of an inverse analysis 22

3.2 Artificial neural network training

There are numerous tradeoffs between learning algorithms. Almost any algorithm will work

well with the correct hyperparameters for training on a particular fixed dataset. However se-

lecting and tuning an algorithm for training on unseen data requires a significant amount of

experimental investigations.

There are three major learning paradigms, each corresponding to a particular abstract learn-

ing task. These are supervised learning, unsupervised learning and reinforcement learning.

Usually any given type of network architecture can be employed in any of those tasks. We will

focus here on the supervised learning which is used for training feedforward neural networks or

radial basis function networks usually applied in an inverse analysis.

In the supervised learning, given a set of example pairs (x,y),x ∈ X,y ∈ Y, the goal is to

find a model M INV in the allowed class of functions that matches the examples. In other words,

to infer the mapping implied by the data; the cost function is related to the mismatch between

our mapping and the data and it implicitly contains prior knowledge of the problem domain.

In all but the simplest cases, however, the direct computation of the weights is intractable.

Instead, we usually start with random initial weights and adjust them in small steps until the re-

quired outputs are produced.

A commonly used cost function E(wij) is the mean-squared error which tries to minimize

the average error between all the network’s output units, M INV (y)j and all the target values xj

over all the example pairs p, i.e.

E(wij) =
1

2

∑

p

∑

j

(
M INV (y)j − xj

)2
, (3.4)

where i coincide with the number of neurons in the last hidden layer adjacent to the output

layer. The minimization of this cost function using the gradient descent for the feedforward

neural network leads to the well-known backpropagation algorithm. Many other minimiza-

tion algorithms could be applied. A variety of methods based on mathematical programming

are implemented in Matlab Neural Network Toolbox including the backpropagation algorithm,

conjugate gradient algorithms, quasi-Newton algorithms, Levenberg-Marquardt algorithm and

line search routines. Other interesting algorithms for ANN training are evolutionary algorithms,

which have the ability to deal with the multi-modality of cost function appearing in feedforward

neural networks.

There are two important aspects of the network’s operation to consider:

Learning The network must learn relation between inputs and outputs from a set of train-

ing pairs so that these training pairs are fitted correctly.

Generalization After training, the network must also be able to generalize, i.e. correctly

fit test pairs it has never seen before.

Inverse mode of an inverse analysis 23

Usually we want our neural networks to learn well, and also to generalize well. If an ANN

is not trained well even on training data, it is called as under-fitting or under-learning of ANN.

The red line in Figure 3.2 is an example of such case. Sometimes, the training data may contain

errors (e.g. noise in the experimental determination of the input values, or incorrect classifica-

tions). In this case, learning the training data perfectly may make the generalization worse, this

case is called as a over-fitting or over-learning of neural network. This case is represented by

the black line in Figure 3.2. There is an important tradeoff between learning and generalization

or under-fitting and over-fitting that arises quite generally. In Figure 3.2, an example is shown

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

y

x

2 neurons in hidden layer
6 neurons in hidden layer
37 neurons in hidden layer
original data

Figure 3.2: Approximation of data by multi-layer perceptron with different topology.

of two-layer perceptron applied on one relatively simple task of approximation the relation be-

tween one input and output. Three different topologies were examined with two, six and 37

neurons in hidden layer. Conjugate-gradient method were used as a training algorithm. From

the Figure 3.2 it is clearly visible that too few hidden units leave high training and generaliza-

tion errors due to under-fitting. Too many hidden units result in low training errors, but make

the training unnecessarily slow, and result in poor generalization unless some other technique

(such as regularization) is used to prevent over-fitting. Virtually all “rules of thumb” you hear

about are actually nonsense. A sensible strategy is to try a range of numbers of hidden units and

see which works best.

To prevent under-fitting we need to make sure that:

i) the network has enough hidden units to represent to required relationship;

ii) we train the network for long enough so that the sum squared error cost function is suffi-

ciently minimized.

Inverse mode of an inverse analysis 24

To prevent over-fitting we can:

i) stop the training early – before it has had time to learn the training data too well;

ii) restrict the number of adjustable parameters the network has – e.g. by reducing the num-

ber of hidden units, or by forcing connections to share the same weight values.1

iii) add some form of regularization term to the error function to encourage smoother network

mappings;

iv) add noise to the training patterns to smear out the data points.

We usually want to optimize our network’s training procedures to result in the best gen-

eralization, but using the testing data to do this would clearly be cheating. What we can do

is assume that the training data and testing data are drawn randomly from the same data set,

and then any sub-set of the training data that we do not train the network on can be used to

estimate what the performance on the testing set will be, i.e. what the generalization will be.

The portion of the data we have available for training that is withheld from the network training

is called the validation data set, and the remainder of the data is called the training data set.

This approach is called the hold out method.

Often the availability of training data is limited, and using part of it as a validation set is not

practical. An alternative is to use the procedure of cross-validation. In K-fold cross-validation

we divide all the training data at random into K distinct subsets, train the network using K − 1
subsets, and test the network on the remaining subset. The process of training and testing is then

repeated for each of the K possible choices of the subset omitted from the training. The average

performance on the K omitted subsets is then our estimate of the generalization performance.

This procedure has the advantage that it allows us to use a high proportion of the available

training data (a fraction 1 − 1/K) for training, while making use of all the data points in esti-

mating the generalization error. The disadvantage is that we need to train the network K-times.

Typically K ∼ 10 is considered reasonable.

Perhaps the most obvious way to prevent over-fitting in our models (i.e. neural networks)

is to restrict the number of free parameters they have. The simplest way we can do this is to

restrict the number of hidden units, as this will automatically reduce the number of weights. We

can use some form of validation or cross-validation scheme to find the best number for each

given problem. An alternative is to have many weights in the network, but constrain certain

groups of them to be equal. If there are symmetries in the problem, we can enforce hard weight

sharing by building them into the network in advance. In other problems we can use soft weight

sharing where sets of weights are encouraged to have similar values by the learning algorithm.

Neural networks are often set up with more than enough parameters for over-fitting to oc-

cur, and so other procedures have to be employed to prevent it. During the training process,

1 Forcing connections to share the same weight values could be done by adding an appropriate term to the

error/cost function. This method can be seen as a particular form of regularization.

Inverse mode of an inverse analysis 25

the error on the unseen validation and testing data sets, however, will start off decreasing as

the under-fitting is reduced, but then it will eventually begin to increase again as over-fitting

occurs. The natural solution to get the best generalization, i.e. the lowest error on the test set, is

to use the procedure of early stopping. One simply trains the network on the training set until

the error on the validation set starts rising again, and then stops. That is the point at which we

expect the generalization error to start rising as well. One potential problem with the idea of

stopping early is that the validation error may go up and down numerous times during training.

The safest approach is generally to train to convergence (or at least until it is clear that the val-

idation error is unlikely to fall again), saving the weights at each epoch, and then go back to

weights at the epoch with the lowest validation error.

Adding noise or jitter to the inputs during training is also found empirically to improve

network generalization. This is because the noise will “smear out” each data point and make

it difficult for the network to fit the individual data points precisely, and consequently reduce

over-fitting. The gradient descent weight updates can then be performed with an extended back-

propagation algorithm based on a standard Tikhonov regularizer minimizing curvature.

The approaches all work well, and which we choose will ultimately depend on which is most

convenient for the particular problem in hand. Unfortunately, there is no overall best approach!

3.3 Design of experiments

In principle, we can just use any raw input-output data to train our networks. However, in

practice, it often helps the network to learn appropriately if we carry out some preprocessing of

the training data before feeding it to the network.

We should make sure that the training data is representative – it should not contain too many

examples of one type at the expense of another. On the other hand, if one part of pairs is easy

to learn, having large numbers of pairs from that part in the training set will only slow down

the over-all learning process.

Beside the decision concerning a choice of training pairs for an ANN, we should pay atten-

tion also to a proper choice of ANN’s input vector. Once we deal with developing an inverse

model M INV to a computational mechanical model M , the model outputs representing some

experimental measurements become the inputs into the inverse model M INV . When we trans-

form these measurements into an input vector, the size of this vector could be very huge and

then also the topology of ANN become very huge and the training process become quite com-

plicated. In the input vector, nevertheless, one can usually find a lot of highly correlated values,

which do not bring any new information.

The methodologies used for stratified choice of representative data in order to determine

the relationship between input factors x affecting a process and the output of that process

y are collectively known as design of experiments (DOE). Some methods are described in

[Montgomery, 2005] and are mostly based upon the mathematical model of the process.

Inverse mode of an inverse analysis 26

For the purposes of the inverse analysis, there are two main tasks to be solved by the DOE:

1) choice of representative data (pairs) for ANN’s training;

2) choice of important inputs to ANN.

3.3.1 Training data preparation

The choice of representative data for ANN’s training could be governed by a particular group

of methods of DOE called sampling methods. Several of them are listed bellow. The first three

following methods take part in a group of quasi-random numbers generators, whereas last two

methods are deterministic approaches.

Monte Carlo methods

Monte Carlo methods are sampling methods based on generating random vectors (points) with

the defined statistical distribution for each variable. For solution of most of problems a lot

of simulations are needed, e.g. thousands or millions in order to represent desired statistical

distributions.

Latin hypercube sampling

This method was first described in [McKay et al., 1979] and [Iman and Conover, 1980] and till

now it is probably the most popular example of sampling method, which is independent of the

mathematical model of a problem. Comparing to the Monte Carlo methods, LHS needs much

less simulations to represent correctly desired statistical distribution of each variable.

When sampling a function of N variables, the range of each variable is divided into M
equally probable intervals. M sample points are then placed to satisfy the Latin hypercube re-

quirements; note that this forces the number of divisions, M , to be equal for each variable. Also

note that this sampling scheme does not require more samples for more dimensions (variables);

this independence is one of the main advantages of this sampling scheme. Another advantage

is that random samples can be taken one at a time, remembering which samples were taken so

far.

It is possible to distinguish two main LHS methods: the random LHS method and the opti-

mal LHS designs. The random LHS method uses random sampling to get each point, whereas

the optimal LHS methods use more structured approaches with the aim of optimizing the uni-

formity of the distribution of the points. An example of random LHS design is shown in Figure

3.3. Several different criteria and/or optimization methods were proposed for optimal LHS,

such as:

Inverse mode of an inverse analysis 27

Figure 3.3: Distribution of 10 points for two variables by latin hypercube sampling.

i) maximizing entropy [Shewry and Wynn, 1987];

ii) integrated mean-squared error [Sacks et al., 1989];

iii) maximization of the minimum distance between points [Johnson et al., 1990];

iv) criterium based on potential energy of the points proposed in [Audze and Eglais, 1977]

and developed in [Toropov et al., 2007];

v) minimizing correlation by the simulated annealing proposed in [Novák et al., 2003].

Factorial design

Such design consists of two or more factors, each with discrete possible values or ”levels”. All

factors should have the same number of levels. Factorial design (called also as full factorial

design) choose the samples combining all levels for all factors. Each combination of a single

level selected from every factor is present once. An example of 23 is shown in Figure 3.4.

Figure 3.4: Samples distribution for 23 full factorial design.

Inverse mode of an inverse analysis 28

This design is usually applied in cases considering only two levels, where the number of

samples N is equal to 2k with k defining the number of factors. Also for higher numbers of

factors, the number of samples becomes too high to be logistically feasible, e.g. for k = 10 :
210 = 1024.

Fractional factorial design

Fractional factorial design consists of a carefully chosen subset (fraction) of the experimental

runs of the full factorial design. The subset is chosen so as to exploit the sparsity-of-effects

principle to expose information about the most important features of the problem studied, while

using a fraction of the effort of the full factorial design in terms of experimental runs and

resources.

Fractional designs are expressed using the notation lk−p, where l is the number of levels

of each factor investigated, k is the number of factors investigated, and p describes the size of

the fraction of the full factorial used. Formally, p is the number of generators, assignments as

to which effects or interactions are confounded, i.e., cannot be estimated independently of each

other (see below). A design with p such generators is a l−p fraction of the full factorial design.

For example, a 25−2 design is 1/4 of a two level, five factor factorial design. Rather than

the 32 runs that would be required for the full 25 factorial experiment, this experiment requires

only eight runs. The samples distributions for 23−1 and for 23−2 fractional factorial design are

shown in Figures 3.5a and 3.5b, respectively.

(a) (b)

Figure 3.5: Samples distribution for (a) 23−1 and for (b) 23−2 fractional factorial designs.

In practice, one rarely encounters l > 2 levels in fractional factorial designs, the methodol-

ogy to generate such designs for more than two levels is much more cumbersome.

More details about factorial designs could be found e.g. in [Montgomery, 2005].

Inverse mode of an inverse analysis 29

3.3.2 Selection of input data

Principal component analysis

Principal components analysis (PCA) is a technique used to reduce multidimensional data sets

to lower dimensions for analysis. Depending on the field of application, it is also named the dis-

crete Karhunen-Loève transform (or KLT, named after Kari Karhunen and Michel Loève),

the Hotelling transform (in honor of Harold Hotelling), or proper orthogonal decomposition

(POD).

Figure 3.6: Example of data with two variables original variables x, y and new variables x′, y′

obtained by PCA.

PCA involves a mathematical procedure that transforms a number of (possibly) correlated

variables into a (smaller) number of uncorrelated variables called principal components. The first

principal component accounts for as much of the variability in the data as possible, and each

succeeding component accounts for as much of the remaining variability as possible. An exam-

ple of data with two variables original variables x, y and new variables x′, y′ obtained by PCA

is shown in Figure 3.6.

The mathematical technique used in PCA is eigen analysis: we solve for the eigenvalues and

eigenvectors of a square symmetric matrix with sums of squares and cross products. The eigen-

vector associated with the largest eigenvalue has the same direction as the first principal com-

ponent. The eigenvector associated with the second largest eigenvalue determines the direction

of the second principal component. The sum of the eigenvalues equals the trace of the square

matrix and the maximum number of eigenvectors equals the number of rows (or columns) of

this matrix. For more details about this method, see [Jolliffe, 2002].

Inverse mode of an inverse analysis 30

Correlation coefficients

Other possibility is to keep original data and calculate the correlation between each variable

from input vector and each component from output vector. For that purpose some correlation

coefficient could be used. It is a number between −1 and 1 which measures the degree to which

two variables are linearly related. If there is perfect linear relationship with positive slope

between the two variables, we have a correlation coefficient of 1; if there is positive correlation,

whenever one variable has a high (low) value, so does the other. If there is a perfect linear

relationship with negative slope between the two variables, we have a correlation coefficient of

−1; if there is negative correlation, whenever one variable has a high (low) value, the other has

a low (high) value. If the variables are independent then the correlation is 0, but the converse

is not true because the correlation coefficient detects only linear dependencies between two

variables.

Some examples of correlation and corresponding graphical visualization is shown in Figure

3.7. The data are graphed on the lower left and their correlation coefficients listed on the upper

Figure 3.7: Positive linear correlations between 1000 pairs of numbers.

right. Each square in the upper right corresponds to its mirror-image square in the lower left,

the ”mirror” being the diagonal of the whole array. Each set of points correlates maximally with

itself, as shown on the diagonal (all correlations = +1).

A number of different coefficients are used for different situations. The best known is

the Pearson product-moment correlation coefficient, which is obtained by dividing the co-

variance of the two variables by the product of their standard deviations. Despite its name, it

was first introduced by Francis Galton.

If we have a series of n measurements of x and y written as xi and yi where i = 1, 2, . . . , n,

then the Pearson product-moment correlation coefficient can be used to estimate the correlation

of x and y. The Pearson coefficient is also known as the “sample correlation coefficient”.

It is especially important if x and y are both normally distributed. The Pearson correlation

Inverse mode of an inverse analysis 31

coefficient is then the best estimate of the correlation of x and y . The Pearson correlation

coefficient is written as:

cor =

∑
(xi − x̄)(yi − ȳ)

√∑
(xi − x̄)2

∑
(yi − ȳ)2

, (3.5)

where x̄ and ȳ are the sample means of x and y.

Pearson’s correlation coefficient is a parametric statistic, and it may be less useful if the un-

derlying assumption of normality is violated. Non-parametric correlation methods, such as Chi-

square, Point biserial correlation, Spearman’s ρ and Kendall’s τ may be useful when distribu-

tions are not normal; they are a little less powerful than parametric methods if the assumptions

underlying the latter are met, but are less likely to give distorted results when the assumptions

fail.

In statistics, Spearman’s rank correlation coefficient ρ, named after Charles Spearman, is

a non-parametric measure of correlation – that is, it assesses how well an arbitrary monotonic

function could describe the relationship between two variables, without making any assump-

tions about the frequency distribution of the variables. Unlike the Pearson product-moment

correlation coefficient, it does not require the assumption that the relationship between the vari-

ables is linear, nor does it require the variables to be measured on interval scales; it can be used

for variables measured at the ordinal level. In principle, ρ is simply a special case of the Pear-

son product-moment coefficient in which the data are converted to rankings before calculating

the coefficient.

Part I

Description of proposed identification

methods

32

Chapter 4

FORWARD MODE METHODS

Statistics, you can prove anything

with statistics.

Sir Humphrey Appleby

Recall that the forward mode of an inverse analysis is defined as a minimization of an er-

ror function F (X) defined by the equation (2.1). The main advantage of this approach is that

the forward mode is general in all possible aspects and is able to find an appropriate solution

if such exists. Sometimes it is also important to find a solution with a given or high accu-

racy (e.g. in cases of sequential identification, where the errors in starting steps accumulate in

the following steps). This could be also easily done by this approach.

This chapter consists of two sections concerning optimization algorithms successfully ap-

plied at several engineering tasks. The first section deals with genetic algorithms, which are

usually applied as very robust optimization methods. In Section 4.1.3 a novel niching strategy

is presented, which enables in combination with a genetic algorithm to solve with almost 100%

reliability a lot of very complex multi-modal and high-dimensional problems. Nevertheless,

such algorithms seems to be very expensive when solving a rather smooth functions with small

number of local extremes.

The second section presents a method aimed to decrease a number of objective function

evaluations based on formation of cheap interpolation functions. In particular, the proposed

method combines the radial basis function network (RBFN) as an interpolation function with

the optimization by the genetic algorithm GRADE describe in Section 4.1.2. This methodology

is not able to solve generic multi-modal, high-dimensional problems, but is very efficient for

optimization of almost smooth functions with small number of local extremes.

As a principal disadvantage of both proposed methodologies remains the fact that the com-

putationally expensive search should be repeated for any change in data, e.g. even for small

change in an experimental setup. This feature handicaps the forward mode from an automatic

and frequent usage. The opposite is true for the second mode of an inverse analysis presented

in Chapter 3.

Forward mode methods 34

4.1 Genetic algorithms

At present, genetic algorithms belong to the most modern and most popular optimization meth-

ods available. They follow an analogy of processes that occur in living nature within the evo-

lution of live organisms during a period of many millions of years. The principles of genetic

algorithms were first proposed by J. H. Holland [Holland, 1975]; the books of D. E. Goldberg

[Goldberg, 1989] and Z. Michalewicz [Michalewicz, 1999] are the most popular publications

that deal with this topic. Genetic algorithms have been successfully used to solve optimiza-

tion problems in combinatorics (see [Grefenstette, 1987]) as well as in different engineering

tasks, see for example [Ibrahimbegović et al., 2004, Lepš and Šejnoha, 2003, Lepš, 2005] or

[Rafiq and Southcombe, 1998].

Unlike the traditional gradient optimization methods, genetic algorithms operate on a set of

possible solutions (“chromosomes”), called a “population”. In the basic scheme, chromosomes

are represented as binary strings. This kind of representation seems to be very convenient for

optimization problems in combinatoric area (e.g., the travelling salesman problem). Neverthe-

less, we usually deal with the real-valued parameters in engineering and scientific problems.

The mapping of real values onto binary strings usually used within standard genetic algorithms

may cause serious difficulties. As a result, this concept of optimization leads to an unsatisfac-

tory behavior, characterized by a slow convergence and an insufficient precision, even in cases

where the precision is especially in focus. Of course, the development of genetic algorithms

has brought several proposals to solve these difficulties to optimize problems on real domains

using binary algorithms.

Another possibility is to develop a genetic algorithm (or other evolutionary algorithm) that

operates directly on real values [Michalewicz, 1999]. In this case, the crucial problem is how to

construct genetic operators. One of them is to use so-called differential operators that are based

on determining mutual distances of chromosomes – which are real vectors instead of binary

strings in this approach.

In the first Section of this Chapter, a differential genetic algorithm SADE developed at CTU

in Prague several years ago [Hrstka and Kučerová, 2000] is described. A detailed comparison

of this algorithm with the differential evolution proposed in [Storn and Price, 1995, Storn, 1996,

Storn, WWW], a standard binary genetic algorithm and an extended binary genetic algorithm

is presented in the [Hrstka and Kučerová, 2004]. Another comparison of the SADE algorithm

with a real-valued augmented simulated annealing (RASA), an integer augmented simulated

annealing (IASA) and also differential evolution on two mathematical and two engineering

problems can be found in [Hrstka et al., 2003].

The results of test computations on twenty mathematical functions show definitely that for

the optimization of multi-modal but still continuous problems on real domains the evolutionary

methods based on real encoding and differential operators approve themselves much better

than traditional binary genetic algorithms, even when extended by sophisticated improvements.

The real encoded algorithms produced better results both in simple cases, where they have

reached much better (several times) convergence rates as well as in the complicated cases,

Forward mode methods 35

where the obtained results were very satisfactory from the reliability point of view, even for

functions where binary algorithms have failed completely.

The next interesting result is that the SADE algorithm has approximately the same reliabil-

ity as the binary algorithm extended by several, rather sophisticated, improvements. The SADE

algorithms reached more then 95% of successful runs on 17 functions, extended binary algo-

rithm on 15 functions. The reliability of a differential evolution is somehow fluctuating (95%

reliability only for 11 functions) and the standard binary algorithm does not show satisfactory

behavior except the most simple cases. Nevertheless, the differential evolution seems to be

the most effective (the fastest optimization method). For other cases, the SADE method was

the fastest one. The binary algorithm has never reached the best convergence rate with this test

computations.

During last few years some modifications and simplifications were proposed to the SADE

algorithm and the new version called GRADE algorithm is described in very details in Section

4.1.2 and the comparison with SADE algorithm is presented in Section 4.1.4.

Although the outstanding ability of genetic algorithms to find global optima of multi-modal

functions (functions which have several local extremes) is usually cited in the GA literature,

it seems that both the binary genetic algorithms and the real coded ones tend to premature

converge and to fall into local extremes, mainly in high dimensional cases. To overcome this

difficulty, the so-called CERAF strategy was proposed and is described in Section 4.1.3.

4.1.1 SADE algorithm

This method was proposed as an adaption of the differential evolution after relatively long

time of development. Its aim was to formulate a method which is able to solve optimization

problems on real domains with a high number of variables (it was tested on problems with up

to 200 variables). This algorithm combines the features of the differential evolution with those

of the traditional genetic algorithms. It uses the simplified differential operator, but contrary

to the differential evolution, the SADE method uses the algorithmic scheme very similar to the

standard genetic algorithm:

1. As the first step, the initial population is generated randomly and the objective function

value is assigned to all chromosomes in the population. The size of the population is de-

fined as the number of variables of objective function multiplied by parameter pop rate.

2. Several new chromosomes are created using the mutation operators - the mutation and the

local mutation (their total number depends on the value of a parameter called radioactivity
– it gives the mutation probability).

3. Another new chromosomes are created using the simplified differential operator; the whole

amount of chromosomes in the population is now doubled.

Forward mode methods 36

4. The objective function values are assigned to all newly created chromosomes.

5. The selection operator is applied to the double-sized population. Hence, the amount of

individuals is decreased to its original value.

6. Steps 2-5 are repeated until a stopping criterion is reached.

Next, we describe the introduced operators in more detail. Let xi(g) be the i-th chromosome

in a generation g,

xi(g) = (xi1(g), xi2(g), . . . , xin(g)), (4.1)

where n is the number of variables of the objective function. Now, the genetic operators can be

written as follows:

mutation – If a certain chromosome xi(g) was chosen to be mutated, a random chromosome

xRP is generated and the new chromosome xk(g + 1) is computed using the following

relation:

xk(g + 1) = xi(g) + MR(xRP − xi(g)), (4.2)

where MR is a parameter called mutation rate,

local mutation – If a certain chromosome was chosen to be locally mutated, all its coordinates

are altered by a random value from a given (usually very small) range,

crossing-over – Instead of traditional cross-over, the SADE method uses the simplified differ-

ential operator taken from the differential evolution1, which can be written as

xk(g + 1) = xp(g) + CR(xq(g) − xr(g)), (4.3)

where xp(g), xq(g) and xr(g) are three randomly chosen chromosomes and CR is pa-

rameter called cross rate. Figure 4.1 shows the geometrical meaning of this operator.

selection – this method uses modified tournament strategy to reduce the population size: two

chromosomes are randomly chosen, compared and the worse is rejected. Therefore,

the population size is decreased by one. This step is repeated until the population reaches

its original size2.

The detailed description of the SADE algorithm and the tests documentation for high-

dimensional problems can be found in the article [Hrstka and Kučerová, 2000] and the source

codes in C/C++ can be downloaded from the web-page [Hrstka, WWW].

A parameter setting of the SADE algorithm remains unchanged for all our computations

(Section 4.1.4 results as well as [Hrstka and Kučerová, 2004] comparison) and it is shown in

Table 4.1.

1 Contrary to the binary genetic algorithm the real encoded method may generate chromosomes outside the given

domain. In our implementation, this problem is solved by returning these individuals to the feasible domain

boundary.
2 Contrary to the traditional tournament strategy, this approach can ensures that the best chromosome will not be

lost even if it was not chosen to any tournament.

Forward mode methods 37

Figure 4.1: Geometrical meaning of simplified differential operator in SADE algorithm

Parameter Value

pop rate 10

CR 0.2

MR 0.5

local mutation range 0.25%

radioactivity 0.2

Table 4.1: Parameter setting for SADE algorithm

4.1.2 GRADE algorithm

The modifications of the SADE algorithm have two principal motivations:

– To increase the convergence rate (i.e. the speed of convergence) of the algorithm for

smooth objective functions with just one optimum;

– To reduce the number of external parameters of the algorithm and their influence on

the algorithm’s behavior, because their values are usually set up simply by trial-and-error

method.

The GRADE algorithm has the same scheme as the SADE algorithm except the following

modifications:

– Elimination of the “local mutation” operator;

– The parameter MR is no more constant, but for each new chromosome created by muta-

tion is randomly chosen from interval 〈0, 1〉;

– The relation defining the crossing-over operator is modified in the following way:

xk(g + 1) = max(xq(g);xr(g)) + CR(xq(g) − xr(g)). (4.4)

Forward mode methods 38

Only two chromosomes xq(g) and xr(g) are randomly chosen from the current popu-

lation. Vector of their difference is reduced by CR parameter and contrarily to SADE

algorithm added to the better one of the two chromosomes.

(a) (b)

Figure 4.2: Geometrical meaning of simplified differential operator in GRADE algorithm

Figure 4.2 shows two possible geometrical meanings of this operator: Figure 4.2a for

the case, that chromosome xq(g) is better than xr(g) and Figure 4.2b for the case, that

chromosome xr(g) is better than xq(g).3 It could be remarkable that by this operator,

a new chromosome is created either somewhere between its parents (see Figure 4.2a) or

out of them but in the direction of the better one (i.e. in the sense of a numerical gradi-

ent, see 4.2b). We have tried also the possibility of cross-over operator, where the new

chromosome was created only between its parents or only in the sense of gradient. Both

these variants achieve much worse results when solving the set of twenty test problems

reported below.

– The CR parameter is no more constant, but randomly chosen from interval 〈0, CL〉,
where CL is new parameter of the algorithm, but its influence is supposed to be lower

than that one of the CR parameter.

Finally, the GRADE algorithm has only three parameters: pool rate, radioactivity and CL
parameter. The pool rate parameter was in all previous applications always set to 10, because

this value was already approved either by differential evolution or by SADE algorithm. There-

fore, we were especially interested in an influence of radioactivity and CL parameter values.

We have tested different settings of these parameters for solving twenty mathematical func-

tions taken from [Andre et al., 2000] and used also in the article [Hrstka and Kučerová, 2004]

for comparison of the SADE algorithm with differential evolution and two other binary genetic

algorithms. Definitions of these functions are presented in Appendix A. The algorithm was

started 100 times for each objective function and the number of objective function calls were

counted till the optimum was found with given accuracy.

3 It is worth mentioning that both presented algorithms are implemented as algorithms for maximization, therefore

better chromosome is the one with higher value of objective function.

Forward mode methods 39

The first comparison stored in Table 4.2 shows the number of objective function, where

the algorithm with the given setting was fastest (i.e. had the highest convergence rate or the low-

est number of objective functions calls).

Convergence rate

radioactivity
0.1 0.2 0.3 0.4 0.5

0.1 0 0 1 1 1

0.3 0 0 0 0 0

CL 0.5 1 2 2 2 2

1.0 1 1 2 1 1

2.0 2 0 0 0 0

Table 4.2: Comparison of number of objective functions, where GRADE algorithm was fastest

for given values of CL parameter and radioactivity

Another comparisons are presented in Tables 4.3a and 4.3b. This one is focused on the reli-

ability of the algorithm, because sometimes and only for some objective functions the algorithm

did not find the optimum before 2000000 function calls. Such case was considered as a failure.

The number of objective functions where the reliability of the algorithm was higher than 95% or

99%, respectively (i.e. the algorithm failed in less than 5% or 1% runs, respectively) is shown

in Tables 4.3a and 4.3b, respectively.

Reliability > 95%

radioactivity
0.1 0.2 0.3 0.4 0.5

0.1 16 15 17 17 17

0.3 17 17 17 17 17

CL 0.5 17 17 17 17 17

1.0 18 18 18 18 17

2.0 18 18 18 18 18

Reliability > 99%

radioactivity
0.1 0.2 0.3 0.4 0.5

0.1 14 15 15 15 15

0.3 14 13 15 16 16

CL 0.5 14 17 17 16 17

1.0 17 18 17 17 16

2.0 16 18 18 17 17

(a) (b)

Table 4.3: Comparison of number of objective functions, where GRADE algorithm found

optimum in more than (a) 95% or (b) 99% cases for given values of CL parameter and

radioactivity

These studies are presented to give the reader an idea about the meaning and influence of

the radioactivity and CL parameter and it should be helpful for the choice of appropriate

values of these parameters for a given objective function.

Table 4.2 shows, that a better convergence rate was obtained especially for CL = 0.5 or

for higher values of CL parameter with smaller values of radioactivity. Contrarily, Tables

Forward mode methods 40

4.3a and 4.3b show that better reliability of the algorithm is achieved for higher values of CL
parameter and radioactivity in the range from 0.2 to 0.3.

The GRADE algorithm tends to create a cluster of individuals at a limited sub-area that

moves through the domain. As a consequence, if the cluster is deadlocked in a local extreme,

it is necessary to wait until the mutation gives a chance to escape to another sub-area with

better values. Of course, the probability of this effect is not high and it highly depends on

the radioactivity. Also the speed of convergence to such a cluster depends on CL parameter.

As a simple conclusion we can say that for highly multi-modal functions (i.e. with high

number of local extremes) it is better to set higher value of CL parameter and radioactivity
around 0.2 or 0.3, otherwise CL = 0.5 could be used for functions with lower number of local

extremes to increase the speed of convergence of the algorithm.

A parameter setting of GRADE algorithm for our computations presented in Chapter 4.1.4

is shown in Table 4.4.

Parameter Value

pop rate 10

CL 1.0

radioactivity 0.2

Table 4.4: Parameter settings for GRADE algorithm

4.1.3 CERAF strategy

As already shown in the previous section, the GRADE algorithm tends to create clusters of

chromosomes. This behavior somehow resembles gradient optimization methods, however,

with several differences: First, it operates with more than one possible solution at a time, there-

fore it is able to better locate the sub-area with the desired solution. Secondly, since the changes

of individuals are determined from their mutual distances, this method is able to adapt the step

size to reach an optimal solution.

However, each time this method is caught in a local extreme, it has no chance to escape

unless a mutation randomly finds a sub-area with better values. But the probability of this effect

is small, especially for the high-dimensional problems. If the gradient optimization methods are

applied, this case is usually resolved by so-called multi-start principle. It consists of restarting

the algorithm many times with different starting points. Similarly, any type of a genetic algo-

rithm could be restarted many times. Nevertheless, the experience shows that there are functions

with so-called deceptive behavior, characterized by a high probability that the restarted algo-

rithm would fall again into the same local extreme rather than focus on another sub-area.

Generally speaking, there are several solutions to this obstacle. All of them are based on

the leading idea of preventing the algorithm from being trapped in the local extreme that has

Forward mode methods 41

been already found and to force the algorithm to avoid all of these. As the most natural way,

we tried some penalization that deteriorates the objective function value in the neighborhood

of all discovered local extremes. When the shape of a penalization function is not determined

appropriately, new local extremes appear at the boundary of a penalization function activity

area. As an alternative, so called niching strategies are proposed to overcome the multi-modality

of the objective functions, see [Mahfoud, 1995a] or [Mahfoud, 1995b].

In [Hrstka and Kučerová, 2004], one particular niching strategy, the CERAF4 method was

proposed. It produces areas of higher level of “radioactivity” in the neighborhood of all previ-

ously found local extremes by increasing the mutation probability (i.e. ceraf radioacitivity)

in these areas many times (usually we set this probability directly to 100%). The radius of

the radioactivity area (an n-dimensional ellipsoid) is set to a certain percentage of the domain –

we denote it as RAD. The time of stagnation that precedes the markup of a local extreme and

the initiation of a radioactive zone are another parameters of the method. The quiet parameter

define the number of generations, while the best found value has not changed more than half of

a precision parameter defined for a given objective function.

Similarly to the living nature, the radioactivity in the CERAF method is not constant in

time but decreases in an appropriate way: each time some individual is caught in that zone

and mutated, the radioactivity zone range is decreased by a small value (in our implementa-

tion, the radius of the radioactive zone is multiplied by the parameter called deact rate); this

recalls the principle of disintegration of a radioactive matter. During the numerical experiments

it turned up that the chromosomes created by the mutation parameter should not affect the ra-

dioactivity zone range. The radioactive area never disappears completely, so the chromosomes

can never find the marked local extreme again.

Hereafter, the algorithmic scheme of the GRADE method is supplied with several steps of

the CERAF method. It determines whether some individuals got into any of the discovered

“radioactive zones” and if so, mutates them with a high level of probability. Moreover, when

the algorithm stagnates too long, it declares a new radioactivity area:

1. As the first step, the initial population is generated randomly and the objective function

value is assigned to all chromosomes in the population.

2. Several new chromosomes are created using the mutation operator (their total number

depends on the value of a parameter called radioactivity – it gives the mutation proba-

bility).

3. Another new chromosomes are created using the modified differential operator; the whole

amount of chromosomes in the population is now doubled.

4. If any radioactive zone already exists, each chromosome caught in a radioactive area is,

with a high probability depending on parameter called ceraf radioactivity, subjected to

the mutation operation.

4 Abbreviation of the French expression CEntre RAdioactiF - the radioactivity center.

Forward mode methods 42

5. Depending on the number of chromosomes created by cross-over operator and simulta-

neously determined in the previous step, the ranges of radioactive zones are appropriately

decreased.

6. The objective function values are assigned to all newly created chromosomes.

7. The selection operator is applied to the double-sized population. Hence, the amount of

individuals is decreased to its original value.

8. The number of stagnating generations is determined and if it exceeds a given limit, the ac-

tual best solution is declared as the center of the new radioactive area.

9. Steps 2-8 are repeated until a stopping criterion is reached.

Extensive test computations have shown that this methodology can be considered as a

universal technique capable of solving any multi-modal optimization problem provided that

the method that is running underneath (i.e. the algorithm that generates new chromosomes) has

a sufficient ability to find new possible solutions. In our case, the GRADE algorithm works as

the “exploration” method.

For the purpose of the algorithm performance testing presented in the following section,

the CERAF method parameters were set to values stored in Table 4.5.

Parameter Value

ceraf radioacitivity 1.0

RAD 0.25

deact rate 0.995

quiet 100

Table 4.5: Parameter setting for GRADE algorithm

4.1.4 Comparison of proposed genetic algorithms

In this section we present a comparison of the proposed methods. All of them were started 1000
times on 20 mathematical functions and the number of successful runs5 and the average number

of function calls necessary to find the optimum with a given precision are listed in Table 4.6.

The overall reliability-based comparison is given in Table 4.7 (values represent the number

of objective functions, where the algorithm achieved more than 95% or 99% successful runs).

Table 4.8 shows the comparison of all methods from the convergence rate point of view (×
marks the cases, where the method reached the optimum at the shortest time).6

5 Runs, where the optimum was found before 2, 000, 000 function calls
6 If the difference among results of algorithms were smaller than 5%, × mark was distributed to all of them.

Forward mode methods 43

Test function N SADE GRADE GRADE+CERAF

SR % ANFC SR % ANFC SR % ANFC

F1 1 100.0 61 100.0 61 100.0 60

F3 1 100.0 87 100.0 97 100.0 94

Branin 2 100.0 668 100.0 371 100.0 368

Camelback 2 100.0 306 100.0 223 100.0 222

Goldprice 2 100.0 634 100.0 360 100.0 358

PShubert1 2 100.0 1518 100.0 5501 100.0 1844

PShubert2 2 100.0 1043 100.0 1403 100.0 970

Quartic 2 100.0 534 100.0 341 100.0 339

Shubert 2 100.0 682 100.0 649 100.0 654

Hartman1 3 100.0 478 100.0 319 100.0 320

Shekel1 4 100.0 7719 100.0 33776 100.0 3434

Shekel2 4 100.0 4595 100.0 13522 100.0 2638

Shekel3 4 100.0 4127 100.0 10857 100.0 2650

Hartman2 6 71.2 57935 60.8 165622 100.0 10284

Hosc45 10 100.0 7759 100.0 2265 100.0 2274

Brown1 20 91.1 160515 100.0 209214 100.0 195250

Brown3 20 100.0 60554 100.0 36339 100.0 36429

F5n 20 94.4 26786 99.8 7197 100.0 7259

F10n 20 66.4 227577 70.3 90687 98.2 289702

F15n 20 97.5 48533 99.4 23358 100.0 24894

Table 4.6: Comparison of results of investigated methods. SR = success rate, ANFC = average

number of function calls, N = number of variables

Reliability SADE GRADE GRADE+CERAF

> 95% 16 18 20

> 99% 15 18 19

Table 4.7: Overall reliability-based comparison of investigated methods.

Several interesting facts are immediately evident when comparing these results:

i) Comparing the results in Table 4.8 with the graphical illustration of test functions pre-

sented in Appendix A.2 we can conclude that for smooth objective functions with one

or just several local extremes the GRADE algorithm achieved better convergence rate

than the SADE algorithm. Number of GRADE algorithm parameters is smaller than of

the SADE algorithm, so we can note, that all motivations for creating the GRADE algo-

rithm were fulfilled.

ii) The single GRADE algorithm achieved success rate more than 99% for 18 test functions,

while the SADE algorithm achieved such success only for 15 test functions. Hence, it is

Forward mode methods 44

Test function SADE GRADE GRADE+CERAF

F1 × × ×
F3 ×
Branin × ×
Camelback × ×
Goldprice × ×
PShubert1 ×
PShubert2 ×
Quartic × ×
Shubert × × ×
Hartman1 × ×
Shekel1 ×
Shekel2 ×
Shekel3 ×
Hartman2 ×
Hosc45 × ×
Brown1 ×
Brown3 × ×
F5n × ×
F10n ×
F15n ×
Summary 5 12 15

Table 4.8: Comparison of convergence rate

possible to designate the GRADE algorithm as a better algorithm also from the reliability

point of view.

iii) The GRADE algorithm extended by the CERAF strategy has achieved the 100% success

for all function except for F10n function, where it has achieved a success in 98.2% of

runs.

iv) In 10 cases the number of function calls is approximatively the same for the single

GRADE algorithm as for the GRADE algorithm extended by the CERAF strategy; in

those cases the CERAF technology was not even activated because the simple algorithm

found the global extreme itself.

v) For the F10n function the success has been significantly improved from 70.3% to 98.2%,

however, at the cost of slowing down the convergence. Indeed, we consider the reliability

of the method of greater value than the speed. These are the cases where the algorithm

extended by the CERAF method was able to continue searching even after the previous

simple method has been caught in a local extreme hopelessly.

vi) In 5 cases the computation of the GRADE algorithm was even accelerated by the CERAF

method, while the reliability was not decreased; in two particular cases (the Hartman 2

Forward mode methods 45

and F5n function) the reliability was even increased from 60.8% and 99.8% to 100%,

respectively. This may appear as a paradox, because the CERAF method needs long

periods of stagnation and repeated optimum searching. The acceleration comes from

the fact that the method does not have to wait until the random mutation hits an area with

better values, but it is forced to start searching in a different location.

Note: According to [Wineberg and Christensen, 2007] we have tried more reliable statisti-

cal comparison than only that one based on mean values of function calls. The authors propose

to take at least the variance into account or better to use e.g. the Student t test of hypotheses of

equal means of two normal distributions. Nevertheless, Figure 4.3 shows histograms of number

of function calls obtained from 1000 runs of GRADE algorithm for several test functions and it

is clearly visible that number of function calls are far from being normally distributed. For such

case, the authors propose a non-parametric test based on ranked data7 under the condition that

the ranks are already normally distributed. We have tried to calculate the ranks for first objec-

tive function and we applied Jarque-Bera test of hypothesis, if a sample comes from a normal

distribution with unknown mean and variance. Already for this first objective function the test

has shown than even ranks are not normally distributed. Therefore even non-parametric test

cannot be applied for our comparison of the number of function calls.

Moreover it seems that for different test functions or different optimization algorithms we

can obtain different distributions of the number of function calls and therefore neither confi-

dence interval nor variance can be applied to our results.

4.2 Radial Basis Function Network

In Section 2 we presented several methods for forward mode of an inverse analysis. As exam-

ples of one type of these methods, two genetic algorithms were described in previous Section

with an extension by niching strategy to increase their reliability and robustness. As a big

disadvantage of proposed genetic algorithms, nevertheless, remains high number of objective

functions evaluations needed to find a solution. Especially for rather smooth functions with

only a limited number of extremes, genetic algorithms will be too expensive in comparison

with gradient methods. In this section we propose one interpolation method to reduce number

of objective function evaluations based on interpolation of error function as described in Sec-

tion 2.2. A particular implementation applies radial basis function network (RBFN) as proposed

e.g. in [Nakayama et al., 2004, Karakasis and Giannakoglou, 2004].

The need for interpolation is crucial here, because new model M̃ , except for already com-

puted values Ỹ M(X̃M) ≡ Y M(XM), does not correspond to the model M and therefore

the model M̃ is assumed to be unreliable. To obtain a sufficiently accurate interpolation of

the model M , an iterative process is usually used: starting with M̃k from known values (pairs

XM
k ,Y M

k), the minimum X̃M of the error function f(X) = ‖Y E − M̃k(X)‖ is found using

7 Two other techniques with similar results are commonly seen: Wilcoxon’s Rank-Sum test or Mann-Whitney

U test. All are nearly equivalent and the test is often called the “Mann-Whitney-Wilcoxon test” by statisticians.

Forward mode methods 46

F1 PShubert1

0 50 100 150 200
0

10

20

30

40

50

Number of function calls

N
um

be
r

of
 o

cc
ur

en
ce

s

0 1 2 3 4 5 6

x 10
4

0

10

20

30

40

50

60

70

Number of function calls

N
um

be
r

of
 o

cc
ur

en
ce

s
Brown3 F5n

2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

Number of function calls

N
um

be
r

of
 o

cc
ur

en
ce

s

0 0.5 1 1.5 2

x 10
4

0

1

2

3

4

5

6

Number of function calls

N
um

be
r

of
 o

cc
ur

en
ce

s

Figure 4.3: Histograms of number of function calls obtained from 1000 runs of GRADE algo-

rithm

multi-modal optimization (this step should by computationally inexpensive thanks to the cheap

model M̃), correct values of the model M are computed by Y M
k+1 = M(X̃M) and these new

values are added to the set of already computed pairs. This procedure is repeated until the min-

imum of the error function F (X) = ‖Y E − M(X)‖ is reached. A subscript k is used to

describe a number of iterations. Finally, the problem is to minimize a number of evaluations

of the expensive model M . Individual iterative procedures proposed by different authors, see

e.g. [Nakayama et al., 2004, Kucerova et al., 2007], differ in the details of how the algorithm is

implemented.

Our implementation of RBFN is based on an analogy with artificial neural networks, but

differs in several points: RBFN is created only with one layer of neurons, it has a specific type

of a transfer function and the training of this network leads to the solution of a linear system

of equations. The novelty in our approach is the use of the evolutionary algorithm GRADE

described in previous Section to find the global maximum of the RBFN interpolation.

Forward mode methods 47

RBFN replace the objective function F (x) by an interpolation F̃ (x) defined as a sum of

radial basis functions multiplied by synaptic weights, see Figure 4.4, or

Figure 4.4: An interpolation using RBFN

F (x) ≈ F̃ (x) =
N∑

i=1

bi(x)wi , (4.5)

where x is a vector of unknowns, bi(x) is a basis function associated with the i-th neuron, wi is

a weight of the i-th neuron and N is the total number of neurons creating the network. The basis

function bi has the most often used “Gaussian” shape given by

bi(x) = e−‖x−ci‖2/r , (4.6)

where ci is a vector of the center coordinates for the i-th basis function and r is a normalizing

factor set to

r =
dmax

D
√

DN
, (4.7)

where dmax is the maximal distance within the domain and D is the number of dimensions.

Synaptic weights are computed from the condition

F (ci) = F̃ (ci), (4.8)

imposing the equality of the interpolation F̃ and objective function F values yi in all neurons.

This leads to a minimization problem in the form:

min
N∑

i=1

[(yi −
N∑

j=1

bj(ci)wj)
2 + λiw

2
i] . (4.9)

where λi is a regularization factor set to 10−7. The solution of (4.9) leads to a system of linear

equations determining the values of synaptic weights w.

At this point, the RBFN interpolation of the objective function is created and the above-

mentioned evolutionary algorithm GRADE is used to locate the ’approximate’ global optima. In

the next step, to improve the quality of interpolation, three new points are added into the neural

network:

Forward mode methods 48

1. The optimum of previous interpolation,

2. A random point

3. Another point in the descent direction defined by optima found in two previous steps.

Some other methods of the choice of new points were tested in [Kučerová et al., 2005]. The de-

tailed description of individual steps of proposed procedure follows:

1. Create initial neurons8

2. Compute parameters of basis functions dmax and r,

3. Repeat next steps until stopping criteria are met

4. Compute objective function values in new neurons

5. Compute values of basis functions bi(ci) and output weights wi,

6. Find a maximum using the evolutionary algorithm GRADE,

7. Add three new points using the differential method.

A more detailed description of the method is available in [Kučerová et al., 2005].

To show the abilities of the proposed method, another comparison is presented in Table 4.9.

The same set of twenty multi-modal functions was used again as in previous section. The com-

plete list of these functions can be found in Appendix A. The proposed algorithm is compared

with previously described genetic algorithm GRADE and its combination with CERAF strategy.

Again, the statistics over one thousand runs was computed to tackle random circumstances.

The optimization process was stopped after 300 cycles (equals to 900 evaluations + evaluation

of initial neurons) or if the maximum was found with the given precision. Otherwise, the opti-

mization run was marked as unsuccessful.

To conclude this section we present several remarks:

i) From the Table 4.9 it is obvious that the proposed combination of RBFN and evolutionary

algorithm cannot be aimed at optimization of multi-modal functions (i.e. F3, PShubert1–

2, Shubert, Shekel1–3), because the reliability for these cases is very low.

8 In our implementation we choose initial neurons in all corners of given domain for objective function plus one

neuron is chosen in the center of the domain.

Forward mode methods 49

Test function N GRADE GRADE+CERAF GRADE+RBFN

SR % ANFC SR % ANFC SR % ANFC

F1 1 100.0 61 100.0 60 100.0 23

F3 1 100.0 97 100.0 94 96.7 159

Branin 2 100.0 371 100.0 368 100.0 43

Camelback 2 100.0 223 100.0 222 100.0 61

Goldprice 2 100.0 360 100.0 358 11.6 472

PShubert1 2 100.0 5501 100.0 1844 2.1 466

PShubert2 2 100.0 1403 100.0 970 2.5 530

Quartic 2 100.0 341 100.0 339 100.0 77

Shubert 2 100.0 649 100.0 654 18.0 506

Hartman1 3 100.0 319 100.0 320 99.9 63

Shekel1 4 100.0 33776 100.0 3434 0.0 -

Shekel2 4 100.0 13522 100.0 2638 0.0 -

Shekel3 4 100.0 10857 100.0 2650 0.0 -

Hartman2 6 60.8 165622 100.0 10284 97.7 163

Table 4.9: Comparison of results of investigated methods. SR = success rate, ANFC = average

number of function calls, N = dimension of the problem

ii) On the other hand, the ability of the proposed algorithm to solve problems with a smaller

number of local minima and rather smooth shape (i.e. F1, Branin, Camelback, Quartic,

Hartman1–2) is remarkable.

iii) The proposed methodology in our particular implementation is also not well-suited to op-

timization of high-dimensional objective function, because the number of initial neurons

is defined as

N = 2D + 1, (4.10)

where N is the total number of neurons and D is the number of dimensions. Then, for e.g.

D = 10 the initial number of neurons N is equal to 1024 and solving corresponding sys-

tem of 1024 linear equation should not be already negligible comparing to computational

time necessary to evaluate the objective function. Therefore we calculated the compara-

tive statistics only for first 13 objective functions with number of dimensions smaller or

equal to six.

iv) Other computations has shown that the CERAF strategy brings no effect to the combina-

tion of RBFN and GRADE algorithm.

Chapter 5

INVERSE MODE METHODS

Simplicity is the most deceitful

mistress that ever betrayed man.

Henry Adams

The philosophy of an inverse mode assumes existence of an inverse relation between outputs

and inputs, i.e. there is an “inverse” model M INV associated to the model M , which fulfils

the equation (3.1). The main advantage is the possibility to find desired inputs for new measured

outputs repeatedly by a simple and cheap evaluation of M INV . On the contrary, the main

disadvantage is an exhausting search for the inverse relationship. Nowadays, artificial neural

networks have became the most frequently used tools applicable in inverse model determination.

The Chapter 3 contains a brief description of several methods appropriate for inverse model

determination including artificial neural networks, design of experiments and also some notes

concerning the ANN’s training.

In this chapter we will describe the implementation of a multi-layer perceptron in parameters

identification.

Individual steps of the identification procedure involve:

Step 1 Setup of a virtual and/or real experimental test used for the identification procedure and

saving the measurements yE .

Step 2 Formulation of an appropriate computational model M . Input data to the model coin-

cide with the parameters to be identified.

Step 3 Randomization of input parameters. Input data are typically assumed to be random

variables uniformly distributed on a given interval. A representative set of input vectors

XM
Train =

(
xM

1 ,xM
2 , . . . ,xM

ntr

)
is carefully chosen for ANN training following design of

experiments methodology. Another set of input vectors XM
Test =

(
xM

1 ,xM
2 , . . . ,xM

nte

)
is

randomly chosen for ANN testing. ntr and nte denote the number of training and testing

samples, respectively.

Inverse mode methods 51

Step 4 Training and testing data sets preparation. The computation model M is applied to sim-

ulate the experiment E for all training and testing input vectors in order to obtain corre-

sponding output vectors YM
Train =

(
yM

1 ,yM
2 , . . . ,yM

ntr

)
and YM

Test =
(
yM

1 ,yM
2 , . . . ,yM

nte

)
,

respectively, where yM
i = M(xM

i).

Step 5 Stochastic sensitivity analysis using the Monte Carlo-based simulation. This provides us

with relevant model parameters which can be reliably identified from the computational

simulation. Usually this step is performed by calculation the correlation between inputs

XM
Train to the computation model and corresponding outputs YM

Train.

Step 6 Definition of topology of an ANN used for the identification procedure.

Step 7 Training of the ANN, i.e. developing of M INV . Some optimization algorithm is ap-

plied to appropriately setup values of synaptic weights of ANN by minimizing the error

function (3.4) for training pairs (x,y)M ∈ (X,Y)M
Train.

Step 8 Verification I of the ANN with respect to the computational model. This step is usu-

ally performed by comparing the ANN’s prediction of model input parameters X̃M
Test =

(
x̃M

1 , x̃M
2 , . . . , x̃M

nte

)
, where x̃M

i = M INV (yM
i), with the original one XM

Test for unseen

testing (or reference) data.

Step 9 Verification II of the ANN with respect to the computational model. In this step, a com-

putation model should be evaluated for predicted values X̃M
Test in order to obtain cor-

responding model outputs ỸM
Test. Then the outputs ỸM

Test could be compared with the

original one YM
Test. This step is not necessary, but is utmost recommended.

Step 10 Validation of the ANN with respect to the experiment. Trained ANN M INV is eval-

uated for experimental data yE in order to obtain corresponding input values x̃E =
M INV (yE) to the computation model M . The model M is then evaluated for obtained

inputs x̃E and results ỹE = M(x̃E) are compared with original measured data yE .

For clarity, the scheme of such identification procedure is displayed in Figure 5.1, which could

be easily compared with schemes 2.1 and 2.2.

The following sections contain a detailed description of several methods suitable for inverse

mode of identification.

5.1 Multi-layer perceptron

Multi-layer perceptron is a particular type of artificial neural network, which is usually applied

for the parameter identification of non-linear mechanical models [Tsoukalas and Uhrig, 1997].

More precisely, we use a fully connected two-layer perceptron with bias neurons, see Figure 5.2.

In accordance with the universal approximation theorem, such neural network can approximate

any continuous function.

Inverse mode methods 52

Figure 5.1: Scheme of inverse analysis procedure

Figure 5.2: Neural network architecture

The neural network is created to map the input vector, i.e. model output parameters yM =
(y1, y2, . . . yN0

) on a target vector, i.e. model input parameters xM = (x1, x2, . . . xNL
). There

are L = 2 layers denoted as l1, lL, where l1 is one hidden layer and lL is the output layer. l0
represent the ANN’s inputs and it is not counted in the number of ANN’s layers. The i-th layer li
has Ni neurons denoted as ni,1, ni,2, . . . ni,Ni

. Each layer except the output layer has the bias

neuron ni,0. The connections are described by the weights wl,i,j , where l = 1, 2 . . . L denotes

a layer, i = 0, 1 . . . Nl−1 is the index number of a neuron in the preceding layer l − 1 (i = 0
for bias neurons) and j = 1, 2 . . . Nl is the index number of a neuron in the layer l. The output

Ol,j of the neuron nl,j is then defined as

Ol,j = fact

(
Nl−1∑

i=0

Ol−1,i . wl,i,j

)

, l = 1, 2 . . . L, j = 1, 2 . . . Nl , (5.1)

O0,j = yM
j , j = 1, 2 . . . N0 , (5.2)

Ol,0 = 1, l = 0, 1 . . . L − 1 , (5.3)

Inverse mode methods 53

where fact is an activation function. In our implementations we use the log-sigmoid activation

function, which has the following form:

fact(Σ) =
1

(1 + e−αΣ)
, (5.4)

where α is the gain of the fact. The value α = 0.5 is used in all reported calculations. The impact

of α parameter is visible in Figure 5.3. Finally, the neural network is propagated as follows:

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

Σ

α=1.0

α=0.5

α=0.2

Figure 5.3: Log-sigmoid activation function

1. Let l = 1.

2. Calculate Ol,i for i = 1, 2 . . . Nl.

3. l = l + 1.

4. If l < L go to 2, else OL = x̃M is the network’s approximation of target vector xM .

5.2 Training algorithms

Behavior of a neural network is determined by a preceding training process. It consists of find-

ing the synaptic weights, which have influence on the response of a neural network, depending

on the different components of an input signal. The training of a neural network itself could

be considered as an optimization process, because it can be seen as a minimization of neural

network output error defined as

E(wl,i,j) =
1

2

NL∑

i=1

(xi − x̃i)
2 . (5.5)

Inverse mode methods 54

The most often used training algorithm for feed-forward layered neural networks is back-

propagation algorithm. Other possibility is e.g. to use a genetic algorithm. One comparison

of back-propagation training algorithm and training by genetic algorithm SADE described in

Section 4.1.1 was presented in [Drchal et al., 2003].

5.2.1 Back-propagation training

More specifically, the momentum [Tsoukalas and Uhrig, 1997] version of back-propagation

was used to speed up the convergence. A short description of the method is following. Note,

that the error connected with the output of the neuron nl,i is denoted as el,i. The algorithm could

be written in following form:

1. for i = 1, 2 . . . NL−1 calculate eL−1,i = α .OL−1,i . (1 − OL−1,i) . (Ti − OL−1,i). Set

l = L − 1.

2. el−1,i = α . Ol−1,i . (1 − Ol−1,i) .
(
∑Nl

j=1 wl,i,j . el,j

)

for each neuron i in (l − 1)th layer.

3. l = l − 1.

4. While l > 1 go to 2.

5. All the weights are adjusted: wl,i,j = wl,i,j + ∆wl,i,j + µ . ∆w′
l,i,j , where ∆wl,i,j =

η . el,j . Ol−1,i . The term ∆w′
l,i,j stands for the value from the previous training iteration,

η is the learning constant, and µ is the momentum coefficient. The typical values were

η = 0.5 and µ = 0.9.

5.2.2 Comparison of back-propagation training and SADE algorithm training

The performance of two proposed algorithms was tested on a following simple problem. The func-

tion

f(x) = ax sin(bx) + c (5.6)

was used to generate a sequence of points x1, x2, . . . xn:

x1 = a random number from training interval ,

xi = xi−1 + d , i = 2, 3, . . . n , d is a constant , (5.7)

i.e., all the points are equidistant and the sequence starts in a random point. The network input

vector was created as I = (f(x1), f(x2), . . . f(xn−1)), the next sequential point f(xn) was

expected on the output. Typically, two input points (n = 3) was used. The situation is depicted

in Figure 5.4.

Inverse mode methods 55

0.2 0.4 0.6 0.8
x

0.3

0.4

0.5

0.6

f(
x)

input points

approximated
point

Figure 5.4: A function used for testing: f(x) = 0.2x sin(20x) + 0.5.

The two–layer neural network had two inputs, three neurons in the hidden layer and one neu-

ron in the output layer, and, in addition, bias neurons. The output error according to Equation

(5.5) is

E(wl,i,j) =
1

2
(xn − x̃n)2 . (5.8)

The constants were set a = 0.2, b = 20, c = 0.5 in order to avoid the necessity of normal-

ization (the network output ranges from 0 to 1). Other parameter values were also tested and

the results were similar.

We compared both optimization methods in 100 runs of testing computations, each starting

from a new random generator seed. Each run comprised 300,000 iterations. The value of an er-

ror function was saved every 1000th iteration. The minimum, maximum, and average values

of the error function (calculated from 100 testing runs) are shown in the Figure 5.5 for both

the SADE and the backpropagation method. The graph shows that the SADE training clearly

outperforms the backpropagation. The Figure 5.6 shows the distribution of the error in f(x)
approximation on the interval 〈0.1; 0.9〉.

The test results have shown that the SADE training is a fully capable method of training

a neural network. The number of iterations needed to achieve the same output error is signif-

icantly lower than with the backpropagation. Also the minimal output error is by about three

orders lower, which could be explained by the genetic optimization’s higher resistance to fall

into local extremes.

Inverse mode methods 56

0 50000 1e+05 1.5e+05 2e+05 2.5e+05 3e+05
iteration

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

er
ro

r

BP-training

GA-training

Figure 5.5: An error function in the estimation of neural network weights during an optimization

process.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
x

-0.02

-0.01

0

0.01

0.02

er
ro

r

error in an approximation by GA-trained NN

error in an approximation by BP-trained NN

Figure 5.6: An error distribution in the approximation of f(x) = 0.2x sin(20x) + 0.5.

5.3 Input parameter randomization and stochastic sensitivity analysis

The novelty of the identification approach proposed in [Novák and Lehký, 2006] is a systematic

use of small-sample Monte Carlo simulation method for generation of neural network training

sets as well as stochastic sensitivity analysis.

The Latin Hypercube Sampling (LHS) method [Iman and Conover, 1980] is used to gener-

ate particular realization of input variables as it enables to minimize the amount of simulations

needed to reliably train a neural network. Moreover, the Simulated Annealing optimization

Inverse mode methods 57

method available in the software package FREET [Novák et al., 2003] is used to maximize

the statistical independence among individual samples.

Once we deal with developing an inverse model M INV to a computational mechanical

model M , the model outputs representing some experimental measurements become the inputs

into the inverse model M INV . In civil engineering, the measurements are usually represented

by some diagrams (e.g. load-deflection curves). The question arise how to transform a diagram

into the input vector for an ANN. A diagram is usually defined in a discrete points, hence, one

possibility is to include the coordinates of all known points. In such case, however, the topology

of ANN will be very huge and the training process will become quite complicated. Moreover,

there is usually a lot of neighboring points which are highly correlated between each other and

therefore a group of them bring the same information as just one of them. Hence, it is quite

useful to choose only a set of “interesting” points.

One possibility to reduce number of ANN’s inputs is a so-called principal component analy-

sis described in Section 3.3. In our applications, nevertheless, we have not got so good results as

by a “intuitive choice by hand” driven by results from stochastic sensitivity analysis. To inves-

tigate the influence of individual parameters to a structural response we use a Pearson product

moment correlation coefficient defined by equation (3.5). Note that the correlation coefficient

is normalized as −1 6 cor 6 1, where higher absolute values indicate statistical dependence of

the random output variable x on the random input variable y.

Part II

Applications of parameters identification

methodologies

58

Chapter 6

OPTIMAL DESIGN AND OPTIMAL CONTROL

The most exciting phrase to hear in

science, the one that heralds new

discoveries, is not ’Eureka!’ (I

found it!) but ’That’s funny...’

Isaac Asimov

Modern structures should often be designed to withstand very large displacements and ro-

tations and remain fully operational. Moreover, the construction phase has also to be mastered

and placed under control, with trying to precisely guide the large motion of a particular com-

ponent of the total structural assembly. Ever increasing demands to achieve more economical

design and construction thus require that the problems of this kind be placed on a sound theo-

retical and computational basis, such as the one explored in this work. Namely, optimization

methods can be called upon to guide the design procedure and achieve desired reduction of me-

chanical and/or geometric properties. Similarly, the control methods are employed to provide an

estimate of the loads and the minimal effort in placing the structure, or its component, directly

into an optimal (desired) shape. Either of these tasks, optimal design or optimal control, can

formally be presented as the minimization of the chosen objective function specifying precisely

the desired goal. The main difference between two procedures concerns the choice of the vari-

ables defining the objective function: the design variables are typically related to the mechanical

properties (e.g. Young’s modulus) or geometry of the structure (e.g. particular coordinates in

the initial configuration), whereas the control variables are related to the actions (e.g. forces)

applied on the structure in order to place it into desired position. Rather then insisting upon this

difference and treating the optimal design and optimal control in quite different manners (as

done in a number of traditional expositions on the subject), the work presented in this Chapter

focus on their common features which allow a unified presentation of these two problems and

the development of a novel solution procedure applicable to both problems. The latter implies

that the nonlinear mechanics model under consideration of geometrically exact beam has to be

placed on the central stage and one should show how to fully master the variation in chosen

system properties or loads in order to achieve the optimal goal.

Although this thesis deals mostly with identification of nonlinear material models, the al-

gorithms proposed in Chapter 4 were also successfully applied in optimal design and optimal

control of structures undergoing large rotations as will presented in this Chapter.

The main task is to show how to find the corresponding initial configuration and the corre-

Optimal design and optimal control 60

sponding set of multiple load parameters in order to recover a desired deformed configuration or

some desirable features of the deformed configuration as specified more precisely by the objec-

tive function. The model problem chosen to illustrate the proposed optimal design and optimal

control methodologies is the one of geometrically exact beam. The 2D version is employed in

following computations. The 3D version together with the optimal design and optimal control

formulations could be found in [Ibrahimbegović et al., 2004].

First, a non-standard formulation of the optimal design and optimal control problems is

presented, relying on the method of Lagrange multipliers in order to make the mechanics state

variables independent from either design or control variables and thus provide the most general

basis for developing the best possible solution procedure. Three different solution procedures

are then explored, one based on the diffuse approximation of response function and gradient

method, the second one based on genetic algorithm and the third one consists of an iterative

approximation of the objective function based on radial basis function network. A number of

numerical examples are given in order to illustrate both the advantages and potential drawbacks

of each of the presented procedures.

6.1 Model problem: geometrically exact 2D beam

This Chapter concerns the formulation of a model problem: an initially deformed geometrically

exact 2D beam with a non-linear kinematics (see [Ibrahimbegović and Frey, 1993]).

The Marquerr’s hypothesis is applied in order to describe an initially deformed beam and

Timoshenko’s hypothesis is incorporated to take into account the shear deformation. The pre-

sented formulation is obtained by a linearization of Reissner’s beam theory. According to

[Ibrahimbegovic et al., 1991], the initial deformation is deduced from a formulation for a straight

by an isometric transformation. When (g1,g2) are supposed to be a basis vectors of a reference

orthogonal coordinate system, then basis vectors of a local coordinate system of a deformed

beam (ĝ1, ĝ2) can be defined as:

[
ĝT

1

ĝT

2

]

=

[
cos α sin α
− sin α cos α

] [
gT

1

gT

2

]

, (6.1)

where α is an initial rotation of a cross-section of a deformed unloaded beam.

Generalized deformation is described according to the Reissner theory. In the local rotated

coordinate system with the rotation of the system (ĝ1, ĝ2) one obtain an axis n orthogonal to

the cross-section and the other axis t in the plane of the cross-section, see Figure 6.1. Then

[
nT

tT

]

=

[
cos ψ sin ψ
− sin ψ cos ψ

] [
ĝT

1

ĝT

2

]

=

[
cos (α + ψ) sin (α + ψ)
− sin (α + ψ) cos (α + ψ)

] [
gT

1

gT

2

]

, (6.2)

where ψ is a rotation of cross-section resulting by the loading.

Taking into account large displacements, in the position vector in the deformed configura-

Optimal design and optimal control 61

v

u

α + ψ

t, ζ n, s

ϕ0

α
y

x
L

l ✲✛ ❍❍❥✟✟✙

ĝ1

ĝ2

g2

g1

❞

❞

t t

✏✏✏✏✏✏✶
✻

✲
✻

✲

❆
❆

❆❑

✟✟✟✯

❇
❇

❇❇▼

✏✏✏✶
✻

✲

Figure 6.1: Initial and deformed configuration of the 3D geometrically exact beam.

tion can be defined as

ϕ = ϕ0 + ζt =

(
x + u
y + v

)

+ ζ

(
− sin(α + ψ)
cos(α + ψ)

)

, (6.3)

where x and y are the coordinates of the initial configuration of the beam, u and v are the com-

ponents of the displacement in the global coordinate system and ζ is a coordinate along the axis

orthogonal to the beam’s cross-section.

The gradient of deformation could be defined as

F =

[
dx
ds

+ du
ds

− ζ dψ
ds

cos(α + ψ) − sin(α + ψ)
dy
ds

+ dv
ds

− ζ dψ
ds

sin(α + ψ) cos(α + ψ)

]

, (6.4)

where s is a coordinate along the axis of the deformed beam.

Then the gradient of deformation could be decomposed in

F = RU; R =

[
cos(α + ψ) − sin(α + ψ)
sin(α + ψ) cos(α + ψ)

]

(6.5)

and using the measure of deformation H = U − I, where U = RTF, its non-zeros components

are obtained

H11 = Σ − ζK ; H21 = Γ , (6.6)

where Σ, K, Γ are measures of a generalized deformation defined by Reissner in the form

Σ = cos(α + ψ)

(
dx

ds
+

du

ds

)

+ sin(α + ψ)

(
dy

ds
+

dv

ds

)

− 1 ,

Γ = − sin(α + ψ)

(
dx

ds
+

du

ds

)

+ cos(α + ψ)

(
dy

ds
+

dv

ds

)

, (6.7)

K =
dψ

ds
.

The matrix notation of the Equation (6.7) leads to

Σ = ΛT (h(u) − n) = ΛTh(u) − e1 , (6.8)

Optimal design and optimal control 62

where

Σ =

Σ
Γ
K

 , Λ =

cos(α + ψ) − sin(α + ψ) 0
sin(α + ψ) cos(α + ψ) 0

0 0 1

 ,

h(u) =

dx
ds

+ du
ds

dy
ds

+ dv
ds

dψ
ds

 , n = Λe1, e1 =

1
0
0

 .

Using the following constitutive laws

N = (EA)Σ, V = (GA)Γ, M = (EI)K (6.9)

the vector of internal forces N becomes

N = CΣ = CΛT (h(u) − n), (6.10)

where

NT = (N, V,M)T , C = diag(EA, GA, EI),

and section area A and moment of inertia I are supposed to be constant during the loading.

To define a weak form of equilibrium equation, the expression of a virtual deformation is

needed

δΣ = δ
[
ΛTh(u) − e1

]

= δΛTh(u) + ΛT δh(u)

= ΛT (Wh(u)δψ + d(δu)) , (6.11)

where

W =

0 1 0
−1 0 0
0 0 0

 , d(δu) =

dδu
ds

dδv
ds

dδψ
ds

 , δu =

δu
δv
δψ

 .

The resulting equilibrium equation could be stated as follows

G(u, δu) =

∫

L

(
δΣTN

)
ds

︸ ︷︷ ︸

Gint

−
∫

L

δuT f extds

︸ ︷︷ ︸

Gext

= 0 , (6.12)

where f ext is a vector of extern forces applied to the structure.

Then the internal virtual work becomes

Gint(u, δu) =

∫

L

(
(d(δu) + Wh(u)δψ)TΛCΛT (h(u) − n)

)
ds . (6.13)

The finite element approximation at the previous relation is developed in detail e.g. in

[Kučerová, 2003].

Optimal design and optimal control 63

6.2 Optimal design

The optimal design suppose the choice of mechanical properties of structure and optimization

of a geometrical properties such as thickness of beams or initial configuration of a structure.

The loading is supposed to be given. Then the optimal design leads to the minimization of

the objective function J(·), which defines desired properties of a structure. Such objective

function is not a function only of design variables d defining the geometry of a structure, but it

is a function also of displacements and rotations of a structure u.

The traditional approach defines the optimization procedure Ĵ(·) of such a problem as

Ĵ(d) = min J(u(d), d) ; u(d) : G(u(d), δu) = 0 . (6.14)

The main advantage of such approach is a small number of optimized variables including

only design variables. The components of deformation are obtained for any set of design vari-

ables as a result of an iterative solution of a weak form of equilibrium equation. Once calculated

components of deformation are then used together with design variables for evaluation of ob-

jective function. Disadvantage of this approach is the constraint imposing the fulfilment of the

equilibrium equation of any admissible solution, i.e. a time-consuming iterative solution of

equilibrium equations for each set of design variables.

The simultaneous solution of the presented optimization task is based on application of the

Lagrange multipliers inserted into the weak form of equilibrium equations instead of virtual

displacements and rotations:

G(u,λ) =

∫

L

(
(d(λ) + Wh(u)λψ)TΛCΛT (h(u) − n)

)
ds , (6.15)

where λ = (λu, λv, λψ)T .

Optimal design then leads to an unconstrained minimization problem as

max
∀λ

min
∀(u,d)

L(u,d; λ), (6.16)

where Lagrangian L(·) is defined as

L(u,d; λ) = J(u,d) + G(u,d; λ). (6.17)

The main difference of (6.16) with respect to constrained minimization problem in (6.14)

pertains to the fact that state variables u and design variables d are now considered independent

and they can be iterated upon (and solved for) simultaneously. Nevertheless, the number of

optimized variables is significantly increased, since they include not only design and state vari-

ables but also all Lagrange multipliers. On the other hand, no time-consuming iterative solution

of equilibrium equation is anymore needed.

Optimal design and optimal control 64

Karush-Kuhn-Tucker optimality condition (see e.g. [Luenberger, 1984]) associated with the

minimization problem in (6.16) can be written as

0 = rT
u δu =

(
∂L(·)
∂u

)T

δu =

(
∂J(u,d)

∂u

)T

δu + λTKδu , (6.18)

0 = rT
d δd =

(
∂L(·)
∂d

)T

δd =

(
∂J(u,d)

∂d

)T

δd + λT ∂f int(u,d)

∂d
δd , (6.19)

0 = rT
λ δλ =

(
∂L(·)
∂λ

)T

δλ =
[
f int(u,d) − f ext

]T
δλ , (6.20)

where K is a tangent stiffness matrix.

In Equations (6.18), (6.19) and (6.20), ru, rd, rλ are residual vectors of optimization prob-

lem. Then the optimization procedure can be defined as:

min
∀(u,d,λ)

rT r ; r(u,d; λ) = (ru, rd, rλ). (6.21)

6.3 Optimal control

The optimal control problem studied herein concerns the quasi-static external loading sequence

which is chosen to bring the structure directly towards an optimal or desired final state, which

may involve large displacements and rotations. More precisely, we study the mechanics prob-

lems where introducing the pseudo-time parameter ’t’ to describe a particular loading program

is not enough and one also needs to employ the control variables c. The latter contributes

towards the work of external forces, which can be written as

Gext(c; δu) :=

∫

l

δuTF0cds , (6.22)

where F0 contains the (fixed) distribution of the external loading to be scaled by the chosen

control.

The traditional approach to optimal control again suppose the iterative solution of equilib-

rium equation for any chosen set of control variables c to obtain corresponding state variables

u. The optimization procedure Ĵ(·) then leads to following formulation

Ĵ(c) = min J(u(c), c) ; u(c) : G(u(c), δc) = 0 , (6.23)

which is an equivalent to the formulation of optimal design in (6.14).

Also here, the application of Lagrange multipliers leads to the simultaneous formulation of

optimal control

max
∀λ

min
∀(u, c)

L(u, c; λ), (6.24)

L(u, c; λ) = J(u, c) + G(u, c; λ), (6.25)

Optimal design and optimal control 65

which could be easily compared with the simultaneous formulation of optimal design in Equa-

tion (6.16).

Some differences could be found in expressions of Karush-Kuhn-Tucker optimality condi-

tion:

0 = rT
λ δλ =

(
∂L(·)
∂λ

)T

δλ :=
[
f int(u, c) − F0c

]T
δλ , (6.26)

0 = rT
u δu =

(
∂L(·)
∂u

)T

δu :=

(
∂J(u, c)

∂u

)T

δu + λTKδu , (6.27)

0 = rT
c δc =

(
∂L(·)
∂c

)T

δc :=

(
∂J(u, c)

∂c

)T

δc − λTF0δc . (6.28)

The resulting optimization procedure could be described in an equivalent way as in the case

of optimal design:

min
∀(u, c,λ)

rT r ; r(u, c; λ) = (ru, rd, rλ). (6.29)

6.4 Solution procedure

Three solution procedures are employed for solving this class of problems of optimal design

and optimal control. One optimization method is represented by the proposed GRADE genetic

algorithm described in Section 4.1.2. Second proposed procedure is based on a metamodelling

of the objective function by radial basis function network presented in Section 4.2. Third em-

ployed methodology is based on diffuse approximation of the objective function and gradient

based optimizer presented e.g. in [Villon, 1991] and briefly summarized in the next paragraph.

6.4.1 Diffuse approximation based gradient methods

The first solution procedure is a sequential one, where one first computes grid values of the

objective function and then carry out the optimization procedure by employing the approximate

values interpolated from the grid. It is important to note that all the grid values provide the

design or control variables along with the corresponding mechanical state variables of displace-

ments and rotations which must satisfy the weak form of equilibrium equation. In other to

ensure this requirement, for any grid value of design or control variables one also has to solve

associated nonlinear problem in structural mechanics.

The main goal of the subsequent procedure is to avoid solving these nonlinear mechan-

ics problems for other but grid values, and simply assume that the interpolated values of the

objective function will be ”sufficiently” admissible with respect to satisfying the equilibrium

equations. Having relaxed the equilibrium admissibility requirements we can pick any conve-

nient approximation of the objective function, which will simplify the subsequent computation

Optimal design and optimal control 66

of the optimal value and thus make it much more efficient. These interpolated values of the

objective function can be visualized as a surface (yet referred to as the response surface) try-

ing to approximate sufficiently well the true objective function. The particular method which

is used to construct the response surface of this kind is the method of diffuse approximations

(see [Villon, 1991] or [Breitkopf et al., 2002]). By employing the diffuse approximations the

approximate value of the objective function Ĵappr is constructed as the following quadratic form

Ĵappr(x) = c + xTb +
1

2
xTHx (6.30)

where c is a constant reference value, b = (bi) ; bi = ∂Ĵappr

∂xi
is the gradient and H = [Hij] ; Hij =

∂2Ĵappr

∂xi∂xj
is the Hessian of the approximate objective function. In (6.30) above variables x should

be replaced by either design variables d for the case of an optimal design problem or by control

variables ν in the case when we deal with an optimal control problem.

We further elaborate on this idea for a simple case where only 2 design or control variables

are used, such that x = (x1, x2)
T . For computational proposes in such a case one uses the poly-

nomial approximation typical of diffuse approximation (see [Breitkopf et al., 2002]) employing

the chosen quadratic polynomial basis p(x) and a particular point dependent coefficient values

a(x)

Jappr(x) = pT (x)a(x) ; pT (x) = [1, x1, x2, x
2
1, x1x2, x

2
2] ; a(x) = [a1(x), a2(x), . . . , a6(x)]

(6.31)

By comparing the last two expressions one can easily conclude that

c = a1 ; b =

(
a2

a3

)

; H =

[
a4

a5

a5

a6

]

(6.32)

The approximation of this kind is further fitted to the known, grid values of the objective func-

tion; J(xi), i = 1, 2, . . . , n, trying to achieve that the point-dependent coefficients remain

smooth when passing from one sub-domain to another. This can be stated as the following

minimization problem:

a(x) = arg min
∀a∗

f(a∗,x) ; f(a∗,x) :=
1

2

n∑

i=1

W (x,xi)
[
J(xi) − pT (xi)a

∗]2
(6.33)

where W (x,xi) are the weighting functions associated with a particular data point x, which are

constructed by using a window function ρ(·) based on cubic splines according to

W (x,xi) = ρ

(‖ x − xi ‖
r(x)

)

; ρ(s) := 1 − 3s2 + 2s3 ; r(x) = max
k

[dist(x,xk)] (6.34)

with xk(x), k = 1, . . . n + 1 (= 7 for the present 2-component case) as the closest grid nodes

of the given point x. We can see that the weighting functions W (·) in (6.33) and (6.34) above

Optimal design and optimal control 67

take a unit value at any of the closest grid nodes xi and vanish outside the given domain of

influence. While the former assures the continuity of the coefficients a(x), the latter ensures

that the approximation remains local in character. Similar construction can be carried out for

higher order problems, which requires an increased number of closest neighbors in the list.

By keeping the chosen point x fixed and considering the coefficients a of diffuse approxi-

mation as constants, the minimization of f(·) amounts to using the pseudo-derivative of diffuse

approximation (see [Villon, 1991]) in order to compute x yielding the minimum of Japp(x)
according to

0 =
n∑

i=1

p(xi) W (x,xi)(Ji − pT (xi)a) (6.35)

which allows us to write a set of linear equations

a(x) = (PWPT)−1PWj

P = [p(x1),p(x2) . . .p(xn)] ; j = (J(x1), J(x2), . . . , J(xn)) (6.36)

W = diag (W (x1,x),W (x2,x), . . . ,W (xn,x))

We note in passing that the computed minimum value of Ĵappr does not necessarily provide the

minimum of the true objective function, which also has to satisfy the equilibrium equations;

however, for a number of applications this solution can be quite acceptable. If the latter is

not sufficient, we ought to explore an alternative solution procedure capable of providing the

rigorously admissible value of any computed minima of the objective function, by carrying out

the simultaneous solution of the objective function minimization and the equilibrium equations.

The proposed procedure is based on genetic algorithm as described next.

6.5 Numerical examples

This section several illustrative examples dealing with the coupled problems of mechanics and

either optimal control or optimal design are presented. The computations are carried out by

using a mechanics model of 2D geometrically exact beam developed either within the MATLAB

environment for diffuse approximation based solution procedure or within the C++ computer

code for GRADE algorithm and RBFN based meta-model.

6.5.1 Optimal control of a cantilever structure in the form of letter T

This example is concerned with the optimal control problem of deploying initially curved can-

tilever beam in the final configuration which takes the form of letter T. See Figure 6.2 for initial

and final configurations indicated by thick lines and a number of intermediate deformed config-

urations indicated by thin lines. The chosen geometric and material properties are as follows:

The diameter of the circular curved part and the length of the flat part of the cantilever are both

Optimal design and optimal control 68

-10 -5 0 5 10 15 20
-5

0

5

10

15

20

Initial shape

Final shape

F
M

EA = 12000

cGA = 5000

EI = 1000

Figure 6.2: T letter cantilever: Initial, final and intermediate configurations

equal to 10; the beam cross-section is a unit square; the chosen values of Young’s and shear

moduli are 12000 and 6000, respectively.

The deployment is carried out by applying a vertical force F and a moment M at the end of

the curved part of the cantilever. In other words the chosen control is represented by a vector

c = (F,M)T . The desired shape of the cantilever which takes the form of letter T corresponds

to the values of force F = 40 and moment M = 205. The optimal control problem is then

defined as follows. The objective function is defined by imposing the desired shape only on

displacement degrees of freedom with

J(c) =
1

2

∫

L

‖u(c) − ud‖2ds (6.37)

which is further recast in the discrete approximation setting as

Jh(c) =
1

4

nel∑

e=0

2∑

a=1

le
(
ue

a(c) − ud
a

)T (
ue

a(c) − ud
a

)
(6.38)

where ue
a(c) are computed and ud

a are desired nodal displacements. Note that no condition

is imposed through the objective function on either rotational degrees of freedom or control

vector, which nevertheless introduces no difficulties in solving this problem.

The first solution is obtained by the diffuse approximation based gradient method. The

calculation of the objective function is first carried out for all the ’nodes’ of the following grids:

5× 5; 10× 10; 15× 15 and 20× 20. The gradient type procedure is then started on the grid and,

thanks to the smoothness of the diffuse approximation base representation of the approximate

value of the objective function, converged with no difficulty in roughly 20-40 iterations. The

Optimal design and optimal control 69

iterative values obtained in the gradient method computations are for different grids shown in

Figure 6.3. Grid is constructed for the following interval of values of force and moment:

F ∈ 〈10, 60〉 ; M ∈ 〈175, 225〉.

10 15 20 25 30 35 40 45 50 55 60
175

180

185

190

195

200

205

210

215

220

225
F approchée

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

X0

X

X

X

X X X X X X X X X XXXXXXXXXXXXXXXXXXXXXXXXXXO

10 15 20 25 30 35 40 45 50 55 60
175

180

185

190

195

200

205

210

215

220

225
F approchée

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

X0

X

X

X

XX X X X X X X X X X X XXXXXXXO

Grid (5 × 5) Grid (10 × 10)

Solution : F = 60.000
M = 205.26

Solution : F = 59.073
M = 204.91

38 evaluations of AD 38 evaluations of AD

10 15 20 25 30 35 40 45 50 55 60
175

180

185

190

195

200

205

210

215

220

225
F approchée

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

X0

X

X
X

X

X X X X X X X X XXXXXXXO

10 15 20 25 30 35 40 45 50 55 60
175

180

185

190

195

200

205

210

215

220

225
F approchée

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

X0

X

X

X

X
X X X X X XXXXXXO

Grid (15 × 15) Grid (20 × 20)

Solution : F = 51.218
M = 204.95

Solution : F = 47.444
M = 204.97

19 evaluations of AD 15 evaluations of AD

Figure 6.3: T letter cantilever: Gradient method iterative computation on a grid.

Note that all different choices of the grid can result in different solutions, since none of the

solutions of this kind will satisfy the equilibrium equations.

Quite large difference between known optimal solution and solutions of response surface

could be explained by different influence of each control variable to value of objective function,

see Figure 6.4. All used grids weren’t able to describe small influence of force F .

Optimal design and optimal control 70

10
20

30
40

50
60

170

180

190

200

210

220

230
−25

−20

−15

−10

−5

0

force F

moment M

ne
ta

tiv
e

co
nt

ro
l f

un
ct

io
n

J

10
20

30
40

50
60

170

180

190

200

210

220

230
−0.025

−0.02

−0.015

−0.01

−0.005

0

force F

moment M

ne
ga

tiv
e

co
nt

ro
l f

un
ct

io
n

J

Whole scale of values. More detailed about value of optimum.

Figure 6.4: T letter cantilever: contour of the objective function.

The second solution method used for this problem employs the GRADE algorithm (see

Section 4.1.2) and the third solution method applies the interpolation of the objective function

based on radial basis function network iteratively improved by adding new points in the vicinity

of predicted optimum (see Section 4.2 for more details). The same admissible intervals were

used like in the previous case for the control variables, force and moment. The computations

are stopped when the first value of the objective function J 6 10−7 is found.

In order to be able to look into statistics, one hundred runs are performed with each one

converging to the exact solution. The results for both proposed methodologies are written in

Table 6.1.

Algorithm Average number of function calls

GRADE 512.4

RBFN + GRADE 104.2

Table 6.1: T letter cantilever: performance of GRADE algorithm and method based on RBFN

interpolation

The second solution procedure applied to the same example is so-called simultaneous so-

lution of mechanics equilibrium and optimal control equations, written explicitly in (6.26) to

(6.28). The total number of unknowns in this case is equal to 44, with 2 control variables (the

force and the moment), 21 components of nodal displacements and rotations and 21 Lagrange

multiplier. The minimization problem is defined by Equation (6.29). The solution efficiency

of the proposed simultaneous procedure depends on the chosen upper and lower bounds of the

admissible interval and the initial guess for the solution. For example, the mechanics state vari-

ables are chosen as these featuring in the desired beam shape, ud, and the bounds are controlled

by the chosen parameter EP according to

u ∈
[
(1 − EP)ud, (1 + EP)ud

]
(6.39)

Optimal design and optimal control 71

The results of optimization for four different values of EP parameter are presented in Table

6.2. For each value of EP parameter, one hundred of parameters were executed and stopped

after 2, 000, 000 of function evaluations.

EP Minimum Maximum Average

F 0.05 36.982 40.648 39.761

0.02 39.219 40.420 39.894

0.005 39.536 40.327 39.986

0.001 39.880 40.089 39.998

M 0.05 199.01 207.80 204.27

0.02 201.86 205.82 204.54

0.005 204.27 205.48 204.85

0.001 204.73 205.16 204.98

−rT r 0.05 -120.44 -3.10 -20.94

0.02 -35.908 -1.698 -11.427

0.005 -16.754 -0.565 -3.699

0.001 -1.1357 -0.0686 -0.4233

Table 6.2: T letter cantilever: impact of EP parameter to simultaneous solution procedure.

Finally, the Lagrange multipliers could be solved from (6.27) where the adopted values for

u and c are chosen. One hundred computations are performed with EP parameter equal to

0.0001. All computations are stopped when −rT r > −0.01. EP parameter is set to 0.00001.

Table 6.3 summarizes the statistics of this computation.

Minimal Maximal Mean Value

F 39.973 40.034 40.000

M 204.96 205.05 205.00

number of evaluations of J(·) 14720 201480 37701

Table 6.3: T Letter cantilever : solution statistics

We can see from Table 6.3 that the proper choice of the bounds can force the algorithm to

always converge to the same solution. The latter is the consequence of using the simultane-

ous solution procedure which assures that the computed solution also satisfies the equilibrium

equations.

6.5.2 Optimal control of a cantilever structure in form of letter I

In the second example we deal with a problem which has a multiple solution and its regularized

form which should restore the solution uniqueness. To that end, a cantilever beam is used very

much similar to the one studied in the previous example, except for a shorter straight bar with

length equal 2. The cantilever is controlled by a moment M and a couple of follower forces

Optimal design and optimal control 72

which follow the rotation of the cross-sections to which they are attached. The initial and final

configuration, which is obtained for a zero couple and a moment M = 205.4 are shown in

Figure 6.5, along with a number of intermediate configurations.

-10 -5 0 5 10 15 20
-5

0

5

10

15

20

EA = 12000
cGA = 5000
EI = 1000

Final shape

Initial shape F

F
M

Shape after 50% of loading

M

F

F

M

el.1

el.2

el.3

el.4

Figure 6.5: I letter cantilever: initial, final and intermediate configurations

The first computation is performed with the objective function identical to the one in (6.38),

imposing only the minimum of difference between the desired and the computed deformed

shape, with no restriction on control variables. The computation is carried out by using the

GRADE genetic algorithm starting with random values within the selected admissible intervals

for the force couple and moment according to

F ∈ 〈0, 20〉 ; M ∈ 〈0, 230〉
The algorithm performance is illustrated in Table 6.4.

Minimum Maximum Mean Value

Number of fitness calls 180 640 359.8

Table 6.4: I letter cantilever: GRADE algorithm performance

A number of different solutions have been obtained with different computer runs which

were performed (see Figure 6.6). However, all these solutions remain in fact clearly related

considering that the applied moment and the force couple play an equivalent role in controlling

the final deformed shape. It can be shown for this particular problem that any values of force

and moment which satisfy a slightly perturbed version (because of the straight bar flexibility)

of the force equilibrium

F · h + M = M̄ = 205.4

Optimal design and optimal control 73

will be admissible solution, thus we have infinitely many solutions for the case where only the

final shape is controlled by the choice of the objective function.

0 50 100 150 200
moment M

0

50

100

fo
rc

e
F

results of GRADE algorithm
linear regression for results values: F = 102.63 - 0.49989.M

Figure 6.6: I letter cantilever: 100 different solutions

In order to eliminate this kind of problem we can perform a regularization of the objective

function, by requiring not only that the difference between computed and final shape be mini-

mized but also that control variables be as small as possible. Namely, with a modified form of

the objective function

Jh(ûa(c), c) =
1

4

nel∑

e=0

2∑

a=1

le
(
ûa(c) − ud

a

)T (
ûa(c) − ud

a

)
+ αcTc (6.40)

where α is a chosen weighting parameter specifying the contribution of the control. We set a

very small value α = 10−9 and choose the convergence tolerance to 10−12 and carry out the

computation for yet a hundred times. Whereas a more stringent value of the tolerance requires

somewhat larger number of objective function evaluation, the result in each of the runs remains

always the same, given as

F = 68.466 ; M = 68.526

and the found optimal value of the objective function is J = 1.4078631.10−5.

Minimum Maximum Mean Value

Number of fitness calls 820 16320 1758.8

Table 6.5: I letter cantilever: GRADE algorithm performance

Optimal design and optimal control 74

6.5.3 Optimal control of deployment of a multibody system

The optimal control procedure of the deployment problem of a multibody system is studied in

this example. In its initial configuration the multibody system consists of two flexible compo-

nent (with EA = 0.1, GA = 0.05 and EI = 103) each 5 units long connected by the revolute

joints (see [Ibrahimbegović and Mamouri, 2000]) to a single stiff component (with EA = 1,

GA = 0.5 and EI = 105) of the length equal to 10, which are all placed parallel to horizontal

axis. In the final deployed configuration the multibody system should take the form of a letter

B with the stiff component being completely vertical and two flexible component considerably

bent. The deployment of the system is controlled by five control variables, three moments M1,

M2 and M3, a vertical V and a horizontal force H . See Figure 6.7.

0 5 10
-2

0

2

4

6

8

10

12

V

H

M

M

M

1

2

3

Initial shape

Shape after 20% of loading

Final shape

EA
cGA
EI

EA
cGA
EI

}
{ 2

1
1

1

2
2

EA = 1.01
cGA = 1.0
EI = 1.05

EA = 0.1
cGA = 5.0
EI = 1000.0

1
1

2

2

2

Figure 6.7: Multibody system deployment: initial, final and intermediate configurations.

The objective function in this problem is again chosen as the one in (6.38), which controls

that the system would find the configuration as close as possible to the desired configuration.

The desired configuration of the system corresponds to the values of forces H = 0.04, V =
−0.05 and moments M1 = 0.782, M2 = −0.792 and M3 = 0.792. The solution is computed

by using the GRADE algorithm and starting with the random choice in the interval of interest

defined as

H ∈ 〈0.025; 0.05〉, V ∈ 〈−0.06;−0.035〉, M1 ∈ 〈0.6; 0.9〉,
M2 ∈ 〈−0.9;−0.65〉, M3 ∈ 〈0.6; 0.85〉.

The solution of the problem is typically more difficult to obtain with an increase in the num-

ber of control variables, one of the reasons being a more irregular form of the objective function.

In that sense, an illustrative representation of the objective function contours in different sub-

spaces of control variables are given in Appendix B.

Optimal design and optimal control 75

The convergence tolerance on objective function is chosen equal to 10−6. The GRADE

algorithm performance is presented in Table 6.6.

Minimum Maximum Mean Value

Number of fitness calls 1900 117850 20632.0

Table 6.6: Results of GRADE algorithm for 5D task

G1:J=0.0091823 G4:J=0.0071823

G26:J=1.3302e-05 G43:J=1.1839e-05

Figure 6.8: Multibody system deployment: convergence of iterative chromosome populations

One can notice the order of magnitude of increase in objective function evaluation, which

is brought about by a more elaborate form of the objective function (see Figures B.1 and B.2).

However, the latter is not the only reason. In this particular problem the role of moments in

the list of control variables is much more important than the role of the horizontal and vertical

forces in bringing the system in the desired shape. This affects the conditioning of the equations

to be solved and the slow convergence rate of the complete system is in reality only the slow

convergence of a single or a couple of control components. The latter is illustrated in Figure

6.8, where we provide the graphic representation of iterative values for computed chromosomes,

where every chromosome is represented by a continuous line. We can note that the population

Optimal design and optimal control 76

of optimal values of moments converges much more quickly than the force values which seek

a large number of iteration in order to stabilize. Another point worthy of further exploration is

the best way to accelerate the convergence rate in the final computational phase.

6.5.4 Optimal design of shear deformable cantilever

Last example is focused on an optimal design problem which considers the thickness optimiza-

tion of a shear deformable cantilever beam, shown in Figure 6.9.

-200 0 200 400 600 800 1000 1200
-100

-80

-60

-40

-20

0

20

40

F = 1000

E = 75000
G = 50000
c = 5/6

b = 30

imposed mass: Mo = 30000

he

ρ = 1/30

h h h h1 2 3 4

Figure 6.9: Shear deformable cantilever beam optimal design : initial and deformed shapes

The beam axis in the initial configuration of the cantilever and the thickness is considered as

the variable to be chosen in order to assure the optimal design specified by a objective function.

In the setting of discrete approximation, four beam elements are chosen each with a constant

thickness hi, which results with four design variables d ≡ h = (h1, h2, h3, h4). The beam

mechanical and geometric properties are: Young’s modulus E = 75000, shear modulus G =
50000, rectangular cross section b × hi with width b = 30 and mass density ρ = 1/30. The

latter is needed for computing the total mass of the beam M =
∫

L
ρbh(s)ds to be used as the

corresponding limitation on the computed solution assuring reasonable values of the optimal

thickness under the free-end vertical force F = 1000. In order to assure a meaningful result

the computations are performed under chosen value of mass limitation is M0 = 30000. Other

limitations are also placed on the admissible values of the thickness for each element.

The first computation is performed by using the diffuse approximation based response func-

tion and the sequential solution procedure. The objective function is selected as the shear energy

Optimal design and optimal control 77

of the beam and problem is cast as maximization of the shear energy, with

J(u(d)) = max
G(u∗(d∗),·)=0

J(û∗(d∗)) ; J(u∗) =

∫

L

1

2
GAγ2ds (6.41)

where γ is the shear strain component. The bounds on thickness values are chosen as shown

in Table 6.7. The diffuse approximation computations on the grid are started from an initial

Thickness h1 h2 h3 h4

Min 30 30 15 15

Max 60 60 35 35

Table 6.7: Shear deformable cantilever optimal design : thickness admissible values

guesses for thickness h0 = (55, 50, 30, 20). It took 11 iterations to converge to solution given

as

h = (45.094, 40.074, 19.832, 15.000)

The corresponding value of shear energy for this solution is Jappr = 16.3182; we recall it is

only an approximate solution, since the computed value does not correspond to any of the grid

nodes.

The same solution is next sought by using GRADE algorithm. The genetic algorithm is

executed 100 times, leading to the computational statistics reported in Table 6.8.

Minimum Maximum Mean Value

nb. of comput. J(·) 120 3400 674.8

Table 6.8: Shear deformable cantilever optimal design : computation statistics

The algorithm yielded two different solutions, both essentially imposed by the chosen bounds;

Namely, out of 100 runs, 57 converged to h = (60, 30, 15, 15), with the corresponding value

of J = 17.974856, whereas 43 settled for h = (30, 60, 15, 15) with a very close value of

J = 17.926995. Hence, each of two solutions leads to an improved value of the objective

function.

The second part of this example is a slightly modified version of the first one, in the sense

that the mechanics part of the problem is kept the same and only a new objective function is

defined seeking to minimize the Euclidean norm of the computed displacement vector, i.e.

J(u(d)) = max
G(u∗(d∗),·)=0

J(û∗(d∗)) ; J(u∗) =
1

2

∫

L

‖u − x‖2ds (6.42)

Such a choice of the objective function is made for being well known to result with a well-

conditioned system expressing optimality conditions. Indeed, the same type of sequential so-

lution procedure using diffuse approximation of objective function now needs only a few itera-

tions to find the converged solution, starting from a number initial guesses. The final solution

value is given as

h = (42.579, 35.480, 26.941, 15.000)

Optimal design and optimal control 78

.

In the final stage of this computation the solution of this problem is recomputed by using the

genetic algorithm. The admissible value of the last element thickness is also slightly modified

by reducing the lower bound to 5 (instead of 15) and higher bound to 25 (instead of 35) in order

to avoid the optimal value which is restricted by a bound. The first solution to this problem

is obtained by using again the sequential procedure, where the GRADE genetic algorithm is

employed at the last stage. The computed value of the displacement vector norm for found

solution is 623808 and mass M is 30062. The computations are carried out a hundred times

starting from random initial values. The statistics of these computations are given in Table 6.9.

Minimum Maximum Mean Value

h1 43.772 43.807 43.790

h2 35.914 35.949 35.932

h3 26.313 26.346 26.328

h4 14.184 14.210 14.197

nb. of comput. J(·) 1440 9960 3497

Table 6.9: Shear deformable cantilever optimal design : computation statistics

The same kind of problem is now repeated by using the simultaneous solution procedure,

where all the optimality condition are treated as equal and solved simultaneously resulting with

four thickness variables, 15 displacement and rotation components and as many Lagrange mul-

tipliers as unknowns. The latter, in fact, is eliminated prior to solution by making use of opti-

mality condition in (6.18). The chosen upper and lower bounds of the admissible interval are

chosen as

u ∈ [(1 − EP)up, (1 + EP)up] (6.43)

where the guess for the displacement up is obtained by solving mechanics problem with the

values of thickness parameters given in Table 6.9. The limitation on total mass is added to the

objective function. The choice of GRADE algorithm parameters is given as PR = 20, CL = 2
and ’radioactivity’ equal to 0.1. The computation is stopped with a fairly loose tolerance, which

allows to accelerate the algorithm convergence but does not always lead a unique solution. Yet,

the results in Table 6.10 show that standard deviation indeed remains small, or that the solution

is practically unique.

Minimum Maximum Mean Value

h1 43.782 43.794 43.789

h2 35.925 35.935 35.930

h3 26.315 26.324 26.319

h4 14.197 14.202 14.200

nb. of comput. rT r 111340 968240 313006

Table 6.10: Shear deformable cantilever optimal design : simultaneous computation statistics

Optimal design and optimal control 79

6.6 Summary

The approach advocated herein for dealing with a coupled problem of nonlinear structural

mechanics and optimal design or optimal control, which implies bringing all the optimality

conditions at the same level and treating all variables as independent rather than considering

equilibrium equations as a mere constraint and state variables as dependent on design or control

variables, is fairly unorthodox and rather unexplored. For a number of applications the proposed

approach can have a great potential. In particular, the problems of interest to this work concern

the large displacements and rotations of a structural systems. The key ingredient of such an

approach pertains to geometrically exact formulation of a nonlinear structural mechanics prob-

lem, which makes dealing with nonlinearity description or devising the solution schemes much

easier then for any other model of this kind. The model problem of the geometrically exact

beam explored in detail herein is not the only one available in this class. We refer to work in

[Ibrahimbegović, 1994] for shells or to [Ibrahimbegović, 1995] for 3D solids, with both mod-

els sharing the same configuration space for mechanics variables as 2D beam. The latter also

allows to directly exploit the presented formulation and the solution procedures of a coupled

problem of nonlinear mechanics, for either shells or 3D solids, and optimal control or optimal

design.

Three different solution procedures are presented herein; the first one, which exploits the

response surface representation of the true objective function followed by a gradient type solu-

tion step, leads to only an approximate solution. Although the quality of such a solution can

always be improved by further refining the grid which serves to construct the response surface,

the exact solution is never computed unless the minimum corresponds to one of the grid points.

Moreover, the higher number of optimized variables increases extremely the number of grid

points necessary to construct the approximation, which makes the application of such solution

procedure impossible.

The second solution procedure employs the interpolation of the objective function based on

radial basis function networks and significantly outperforms the approximation based method-

ology in the efficiency point of view as well as in the accuracy of found optimum. Nevertheless,

also this procedure is limited in application to problems with only a several optimized variables.

The third solution procedure applies the GRADE algorithm and is able to solve optimality

conditions and nonlinear mechanics equilibrium equations. Although the number of optimized

variables is in this case very high, the methodology does deliver the exact solution, nevertheless

often only after the appropriate care is taken to choose the sufficiently close initial guess and

to select the admissible intervals of all variables accordingly. Probably the best method in that

sense is the combination of sequential and simultaneous procedure, where the first serves to

reduce as much as possible the admissible interval and provide the best initial guess, whereas

the second furnishes the exact solution.

Chapter 7

PARAMETERS IDENTIFICATION OF CONTINUUM-DISCRETE

DAMAGE MODEL CAPABLE OF REPRESENTING LOCALIZED

FAILURE

The more original discovery, the

more obvious it seems afterwards.

Arthur Koestler

This Chapter deal with the parameters identification of a relatively simple model capable of

describing the behavior of a massive structure until the point of localized failure. The model

contains all the ingredients for taking into account both the diffuse damage mechanism, which

leads to the appearance of microcracks, as well as the failure process characterized by the prop-

agation of macrocracks. Perhaps the most important advantage of the proposed model is the

fact that all its parameters have a clear physical interpretation and can be straightforwardly

visualized in terms of the shape of a stress-strain diagram. In addition, influence of each pa-

rameter is dominant only for a specific, easily recognizable, stages of material behavior. This

kind of a priori knowledge has a potential to greatly simplify the model calibration and will be

systematically used throughout the chapter.

The emphasis is put on the identification of the model parameters from experimental mea-

surements made on a structural level. Generally speaking, the complexity of the identification

procedure is determined by the choice of experimental setup. Solely from the identification

point of view, the simplest experiment to execute is the uniaxial tensile test. In this case, the

strain field stays mostly homogeneous during the whole procedure and the global response rep-

resented by the load-displacement diagram is very similar to the stress-strain curve for one

material point; see Section 7.2 for more details. The model parameters can then be directly

determined from the shape of the load-displacement curve. Such a uniform loading is, how-

ever, very difficult if not impossible to impose in a laboratory test, especially for quasi-brittle

materials. Therefore, other testing techniques are often used in experimental practice.

The three-point bending test, in particular, is considered to be much simpler to perform and

its results to be well-reproducible. Therefore, we focus on the identification procedure for the

proposed model parameters directly from results of three-point bending test. Main difficulty is

in this case imposed by heterogeneity of the stress and the strain fields, which is present since

the very start of the experiment. The macro-scale measurements provide the load-deflection

curve that integrates data from different parts of the specimen experiencing different regimes

Parameters identification of continuum-discrete damage model capable of representing

localized failure 81

of (in)elastic behavior. For that reason, the possibility of a simple determination of model

parameters from load-deflection curve is lost and an advanced calibration procedure needs to

be applied.

To take advantage of the model specific structure, already mentioned above, the identifica-

tion procedure should be divided into three sequential stages discussed in detail in Section 7.3.

From the algorithmic point of view, the material calibration can then be understood as a sequen-

tial optimization problem. Such approach has two main advantages: first, solving three simpler

identification steps in a batch form is typically much more efficient then the full-scale prob-

lem; second, it allows to use only a subset of simulations for initial stages of an identification

process.

A variety of techniques is available to identify material parameters via optimization meth-

ods, see e.g. [Mahnken, 2004, and reference therein]. The gradient-based methods are usually

considered to be the most computationally efficient optimization algorithms available and as such

have been successfully used in a variety of identification problems [Mahnken and Stein, 1996,

Iacono et al., 2006, Maier et al., 2006]. For the current model, however, analytic determination

of sensitivities is fairly difficult, mainly due to the history dependency of the model as well as

complex interaction of individual parameters. The accuracy of numerical approximation to the

’exact’ sensitivities, on the other hand, is driven by the choice of pseudo-time step used in nu-

merical simulations. Clearly, to reduce the computational time, the pseudo-time step should be

used as large as possible. Therefore, the response-based objective function will not be smooth

and gradient-based methods are unlikely to be very successful.

As an alternative, techniques of soft-computing can be employed for optimization of com-

plex objective functions. For example, evolutionary algorithms have been successfully used for

solution of identification problems on a level of material point [Furukawa and Yagawa, 1997,

Pyrz and Zairi, 2007] or on a level of simple structures [Ibrahimbegović et al., 2004, Lepš, 2005].

For the current case, however, complexity of the optimization can be attributed rather to its non-

smooth character than to the appearance of multiple optima; the family of problems where evo-

lutionary algorithms are the most successful methods. This opens the way to more specialized

tools, which deliver higher efficiency when compared to usually time-consuming evolutionary

algorithms, see Chapter 2.

The approach adopted in the present work is based on an adaptive smoothing of the ob-

jective function by artificial neural networks (see e.g. [Waszczyszyn and Ziemiański, 2006] or

[Pichler et al., 2003] for alternative ANN-based solutions to identification problems). In partic-

ular, the approximated model is provided by the Radial Basis Function Network, described in

Section 4.2, dynamically evolved by minima located by a real-encoded genetic algorithm, de-

scribed in Section 4.1.2. The proposed sequential numerical strategy is systematically verified

in Section 7.4 with attention paid to a detailed assessment of the proposed stochastic algorithm

reliability.

Parameters identification of continuum-discrete damage model capable of representing

localized failure 82

7.1 A brief description of the identified model

In the present section, we give a brief description of the model on which the identification pro-

cedure is based. For the readers interested in more details, the complete description of the model

is given in [Brancherie and Ibrahimbegovic, 2007].

As already mentioned, the proposed model is capable of taking into account two different

types of dissipation (the main principles are given in [Ibrahimbegovic, 2006]):

• a bulk dissipation induced by the appearance of uniformly distributed microcracks. This

bulk dissipation is taken into account by the use of a classical continuum damage model;

• a surface dissipation induced by the development of macrocracks responsible for the col-

lapse of the structure. As presented in [Brancherie and Ibrahimbegovic, 2007], this phase

is taken into account by the use of a strong discontinuity model. The surface dissipation

is taken into account by the introduction of a traction/displacement jump relation.

Therefore, two different models are involved in the constitutive description: the one associ-

ated with the bulk material and the one associated with the displacement discontinuity. Both are

built on the same scheme considering the thermodynamics of continuous media and interfaces.

The key points of the construction of each of the two models are summarized in Table 7.1

and Table 7.2.

Helmholtz energy ψ̄(ε̄,D, ξ̄) = 1
2
ε̄ : D

−1
: ε̄ + Ξ̄(ξ̄)

Damage function φ̄(σ, q̄) =
√

σ : De : σ
︸ ︷︷ ︸

||σ||De

− 1√
E

(σf − q̄)

State equations σ = D
−1

: ε̄ and q̄ = − d
dξ̄

Ξ̄(ξ̄)

Evolution equations Ḋ = ˙̄γ ∂φ̄
∂σ

⊗ ∂φ̄
∂σ

1
||σ||De

; ξ̄ = ˙̄γ ∂φ̄
∂q̄

Dissipation 0 6 D̄ = 1
2

˙̄ξ(σ̄f − K̄ξ̄)

Table 7.1: Main ingredients of the continuum damage model

For the discrete damage model, the isotropic softening law is chosen as:

¯̄q = ¯̄σf

[

1 − exp

(

−
¯̄β
¯̄σf

¯̄ξ

)]

(7.1)

In Tables 7.1 and 7.2 the variables ˙̄γ, ˙̄̄γ1 and ˙̄̄γ2 denote Lagrange multipliers induced by the use

of the maximum dissipation principle. Moreover, ¯̄u denotes the displacement jump on the sur-

face of discontinuity. Finally, D and ¯̄Q correspond to the damaged compliance of the continuum

and discrete model, respectively.

Parameters identification of continuum-discrete damage model capable of representing

localized failure 83

Helmholtz energy ¯̄ψ(¯̄u, ¯̄Q, ¯̄ξ) = 1
2
¯̄u · ¯̄Q−1 · ¯̄u + ¯̄Ξ(¯̄ξ)

Damage functions ¯̄φ1(tΓs
, ¯̄q) = tΓs

· n − (¯̄σf − ¯̄q)
¯̄φ2(tΓs

, ¯̄q) = |tΓs
· m| − (¯̄σs − ¯̄σs

¯̄σf

¯̄q)

State equations tΓs
= ¯̄Q−1 · ¯̄u and ¯̄q = −∂ ¯̄Ξ

∂ ¯̄ξ

Evolution equations
˙̄̄

Q = ˙̄̄γ1
1

tΓs ·n
+ ˙̄̄γ2

1
|tΓs ·m| ;

˙̄̄
ξ = ˙̄̄γ1 + ¯̄σs

¯̄σf

˙̄̄γ2

Dissipation 0 6
¯̄D = 1

2

˙̄̄
ξ(¯̄σf − ¯̄K ¯̄ξ)

Table 7.2: Main ingredients of the discrete damage model

E ∈ (25.0, 50.0) GPa

ν ∈ (0.1, 0.4)

σ̄f ∈ (1.0, 5.0) MPa

K̄ ∈ (10.0, 10000.0) MPa
¯̄σf ∈ (σ̄f+0.1, 2σ̄f) MPa
¯̄β ∈ (0.1¯̄σf , 10.0¯̄σf) MPa/mm

Table 7.3: Limits for the model parameters.

Note that in a three-point bending or a uniaxial tensile test, the simulated response is almost

independent of the limit tangential traction ¯̄σs. Therefore, its value was set to 0.1¯̄σf . With such

simplification, there are six independent material parameters to be identified:

• the elastic parameters: the Young modulus E and the Poisson ratio ν;

• the continuum damage parameters : the limit stress σ̄f and the hardening parameter K̄;

• the discrete damage parameters : the limit normal traction ¯̄σf , and the softening parameter
¯̄β.

The limits of realistic values for each parameter are shown in the Table 7.3. Note that in our

identification methodology we do not suppose to have an expert capable of giving the initial

estimate of material parameters values, as in e.g. [Iacono et al., 2006, Novák and Lehký, 2006,

Maier et al., 2006]. Therefore, the bounds on model parameters were kept rather wide.

7.2 Tensile test

The simplest possibility to identify material parameters for a particular concrete is to perform

a uniaxial tensile test. In this case, the stress and strain fields within the specimen would re-

main homogeneous until the final localized failure phase, and the behavior on the structural

level is very close to the response of a material point. The load-displacement diagram consist

Parameters identification of continuum-discrete damage model capable of representing

localized failure 84

of three easily recognizable parts, as shown in Figure 7.1a: the first one corresponding to the

elastic response of the material, the second one describing the hardening and the third part the

softening regime. The calibration of model parameters can be carried out to follow the same

pattern: first, Young’s modulus E and Poisson’s ratio ν are determined from the elastic part

of the load-displacement diagram, followed by the limit stress σ̄f and the hardening parame-

ter K̄ identification from the part of the diagram corresponding to the hardening regime and,

finally, the limit normal traction ¯̄σf and the softening parameter ¯̄β are estimated from the soft-

ening branch. Note that for Poisson’s ratio identification, one additional local measurement

is needed to complement the structural load-displacement curve, namely the measurement of

lateral contraction of the specimen, see Figure 7.1b.

0 0.1 0.2 0.3 0.4
Prescribed displacement (mm)

0

50

100

150

200

250

300

L
oa

d
(N

/m
m

)

Elastic

Hardening
Softening

0 0.1 0.2 0.3 0.4
Prescribed displacement (mm)

-0.02

-0.015

-0.01

-0.005

0

L
at

er
al

 c
on

tr
ac

tio
n

(m
m

) Elastic + Hardening

Softening

(a) (b)

Figure 7.1: Tensile loading test: (a) Load-deflection diagram (b) Evolution of lateral contrac-

tion.

Although this kind of calibration procedure is robust and accurate [Kučerová et al., 2006],

the experiment dealing with a simple tension test is rather difficult, if not impossible, to per-

form in a well-reproducible way. For that reason, we turn to study the possibility of parame-

ter estimates by using three-point bending tests, which is much simpler to practically perform

in a laboratory.

7.3 Three-point bending test

In the case of a three-point bending test the global response of a specimen represented by the load-

deflection (L-u) diagram for the structure cannot be simply related to three-stage material re-

sponse with elastic, hardening and softening part (see Figure 7.2a). Nevertheless, we assume

that it will be still possible to employ the three-stage approach developed for the uniaxial ten-

sile experiment. Similarly to the previous case, the solution process will be divided into the

optimization of elastic, hardening and softening parameters in the sequential way. Each step is

described in detail in the rest of this section.

Due to lack of experimental data, a reference simulation with parameters shown in Table 7.4

will be used to provide the target data. These are the same values as considered for simulation

Parameters identification of continuum-discrete damage model capable of representing

localized failure 85

0 0.05 0.1 0.15 0.2 0.25
Prescribed deflection (mm)

0

20

40

60

80

100

120

L
oa

d
(N

/m
m

)

0 0.05 0.1 0.15 0.2 0.25
Prescribed displacement (mm)

0

0.05

0.1

0.15

0.2

E
xp

an
si

on
 o

f
sp

ec
im

en
 (

m
m

)

(a) (b)

Figure 7.2: Three-point bending test: (a) Load-deflection diagram (b) Evolution of expansion

of specimen.

E = 38.0 GPa

ν = 0.1

σ̄f = 2.2 MPa

K̄ = 1000.0 MPa
¯̄σf = 2.35 MPa
¯̄β = 23.5 MPa/mm

Table 7.4: Parameter’s values for reference simulation.

presented in [Brancherie and Ibrahimbegovic, 2007].

7.3.1 Identification of elastic parameters

In the elastic range, Young’s modulus and Poisson’s ratio are determined using a short simula-

tions describing only the elastic response of a specimen. Similarly to the uniaxial tensile test,

the elastic behavior is represented by the linear part of load-deflection diagram. To identify both

elastic parameters this information needs to be supplemented with an additional measurement.

In particular, we propose to include the specimen expansion ∆l defined as the relative horizon-

tal displacements between the left and the right edge of the specimen (as indicated by arrows in

the Figure 7.3), or in other words ∆l = v2 − v1. The reference expansion-deflection curve is

shown in Figure 7.2b.

The objective function F1 applicable for the determination of elastic parameters can be

defined as follows:

F1 = (Lref (u) − L(u))2w1 + (∆lref (u) − ∆l(u))2w2 ; u = 0.01mm (7.2)

The load L and the expansion ∆l are quantities depending not only on displacement u, but

also on the values of material parameters. In particular, at the beginning of the loading regime

(where u = 0.01mm), the important parameters are only Young’s modulus and Poisson’s ration,

Parameters identification of continuum-discrete damage model capable of representing

localized failure 86

890 20 890
50

0

20
0

12
5

12
5

u

L

v v1 2

Figure 7.3: Displacements measured to evaluate the expansion ∆l = v2 − v1 of the specimen.

because the other parameters are not yet activated. The quantities with index ref correspond

to the values taken from the reference diagram. The corresponding value of weights w1 and

w2 were calculated using 30 random simulations to normalize the average value of each of

summation terms in (7.2) to one. It is worth noting that all the quantities in the objective

function are evaluated for the prescribed deflection u = 0.01 mm, which allows the simulation

to be stopped after reaching this value. Therefore, the first optimization stage is computationally

very efficient.

For the sake of illustration, the shape of objective function F1 is shown in the Figures 7.4a

and 7.4b. As shown in this figure, the objective function remains rather wiggly in the neighbor-

hood of the optimal value.

30
40

50

0.1
0.2

0.3

0

5

10

E (GPa)ν (−)
36 38 40

0.1

0.15
0

0.05

0.1

0.15

0.2

E (GPa)ν (−)

(a) (b)

Figure 7.4: Objective function F1: (a) Whole domain (b) Detail close to optimal value.

7.3.2 Identification of hardening parameters

Once we have successfully determined Young’s modulus and Poisson’s ratio, we can continue

towards the estimate of the elastic limit stress σ̄f (representing a threshold of elastic behavior)

and the hardening parameter K̄. In the spirit of the uniaxial tensile test the limit stress will be

related to the limit displacement ūf at the end of the linear part of the load-deflection diagram.

The hardening parameter K̄ will then govern the slope of the diagram in the hardening regime.

Parameters identification of continuum-discrete damage model capable of representing

localized failure 87

0 0,05 0,1 0,15 0,2 0,25
Prescribed displacement (mm)

0

20

40

60

80

100

120

L
oa

d
(N

/m
m

)

Limit stress 1000 MPa
Limit stress 2.2 MPa

0,03 0,04

36

38

40

42

44

46

48

50

uf

1

s

zoom

Figure 7.5: Measurements for objective function F2 definition.

In our particular case, the slope s̄ is approximated as a secant determined from two distinct

points, see Figure 7.5. There are two contradictory requirements for that choice: first, the points

should not be too close to ūf to ensure that numerical errors due to pseudo-time discretization

do not exceed the impact of K̄ parameter; second, they should be close enough to ūf to ensure

that the specimen does not enter the softening regime and ¯̄σf will not be reached. If the second

requirement is fulfilled the corresponding objective function depends only on values of the

elastic limit stress σ̄f and the hardening parameter K̄, because Young’s modulus and Poisson’s

ratio are fixed on the optimal values determined during the previous optimization stage. The

particular choice of objective function adopted in this work is

s̄ = (L(ūf + 0.01mm) − L(ūf + 0.005mm))/0.005mm (7.3)

leading to the objective function in form

F2 = (ūf,ref − ūf)
2 w3 + (s̄ref − s̄)2 w4. (7.4)

To keep this optimization step efficient, the simulations should again be restricted to a lim-

ited loading range, where the limit displacement can be related to the value of ūf,ref from the

reference diagram. Note that during optimization process, there is no guarantee that σ̄f will be

exceeded when subjecting the specimen to the limit displacement. Such a solution is penalized

by setting the objective function value to 10 × N , where N = 2 is the problem dimension, see

Figure 7.6a. Moreover, as documented by Figure 7.6b, the objective function is now substan-

tially noisier than for the elastic case and hence more difficult to optimize.

7.3.3 Identification of softening parameters

The last stage of identification involves the discrete damage parameters: the limit normal trac-

tion ¯̄σf and the softening parameter ¯̄β. Variable ¯̄σf represents a limit of hardening of material

Parameters identification of continuum-discrete damage model capable of representing

localized failure 88

1
2

3
4

5

0

5000

10000
0

10

20

σ̄f (MPa)
K̄ (MPa) 1.5

2
2.5

3

0
1000

2000
0

0.2

0.4

0.6

σ̄f (MPa)
K̄ (MPa)

(a) (b)

Figure 7.6: Objective function F2: (a) Whole domain (b) Detail close to optimum.

and the appearance of a macroscopic crack. Determination of displacement ¯̄uf corresponding

to this event, however, is rather delicate. The most straightforward method is based on the

comparison of the reference curve with a simulation for a very high value of ¯̄σf . The point

where these two curves start to deviate then defines the wanted value of ¯̄uf , see Figure 7.8a.

A more reliable possibility could be based on a local optical measurement in the vicinity of

notch [Claire et al., 2004] or acoustic emission techniques [Chen and Liu, 2004]. In our com-

putations we consider local measurements of notch upper corners displacements v3 and v4, see

Figure 7.7. As demonstrated by graph 7.8b, the ’local’ value of ¯̄uf corresponds to the ’global’

quantity rather well.

890 20 890

50
0

20
0

v v3 4

Figure 7.7: Displacement measured to express crack opening defined as v4 − v3.

After the specimen enters the softening regime, the shape of both local and global curves is

fully governed by the softening parameter ¯̄β. Therefore, its value can be fitted on the basis of

the load corresponding to the deflection for which the softening is sufficiently active. This leads

to the last objective function in the form

F3 = (¯̄uf,ref − ¯̄uf)
2 w5 + (Lref (u) − L(u))2 w6 ; u = 0.15mm. (7.5)

Since all the other parameters are already fixed on the values determined during the previous

optimization steps, this objective function depends again only on two parameters: the limit

normal traction ¯̄σf and the softening parameter ¯̄β.

By analogy to the procedure described in the previous section, the penalization is applied to

Parameters identification of continuum-discrete damage model capable of representing

localized failure 89

0 0,05 0,1 0,15 0,2
Prescribed deflection (mm)

0

20

40

60

80

100

120

L
oa

d
(N

/m
m

)

Limit normal traction 1000.0 MPa
Limit normal traction 2.35 MPa

uf 0 0,05 0,1 0,15 0,2
Prescribed deflection (mm)

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

D
if

fe
re

nc
e

be
tw

ee
n

lo
ca

l d
is

pl
ac

em
en

ts
 (

m
m

)

Limit normal traction 1000.0 MPa
Limit normal traction 2.35 MPa

uf

(a) (b)

Figure 7.8: Comparison of diagrams with and without the spring of crack (a) Load-deflection

diagram (b) Evolution of difference between chosen local displacements during the loading.

the cases where the specimen does not reach the softening regime until the end of simulations.

This effect is well-visible from the surface of the objective function shown in Figure 7.9.

2.5
3

3.5
45

10
0

10

20

¯̄σf (MPa)
¯̄β/¯̄σf (mm−1) 2.2

2.4
2.6

8

9

10
0

0.5

1

¯̄σf (MPa)
¯̄β/¯̄σf (mm−1)

F
3
(

)

(a) (b)

Figure 7.9: Objective function F3: (a) Whole domain (b) Detail close to optimal value.

7.4 Identification procedure verification

When assessing the reliability of the proposed identification procedure a special care must be

given to stochastic nature of the optimization algorithm. The analysis presented herein is based

on the statistics of 100 independent optimization processes, executed for each objective func-

tion. The termination criteria were set to:

• the number of objective function evaluations exceeded 155;

• the value of objective function smaller than a stopping precision was found.

Parameters identification of continuum-discrete damage model capable of representing

localized failure 90

F Stopping precision Successful runs Maximal number Average number

of F ’s evaluation of F ’s evaluation

F1 10−3 100 32 16

F2 10−2 94 140 29

F2 10−3 80 140 47

F3 10−2 92 140 37

F3 3.10−3 76 143 47

Table 7.5: Summary of reliability study.

Parameter Stopping precision on F Average error [%] Maximal error [%]

E 10−5 0.41 1.23

ν 10−5 0.16 2.20

σ̄f 10−2 0.87 2.58

K̄ 10−2 0.78 2.49

σ̄f 10−3 0.30 0.59

K̄ 10−3 0.49 1.54
¯̄σf 10−2 0.47 1.32
¯̄β 10−2 2.34 12.21
¯̄σf 3 × 10−3 0.33 0.67
¯̄β 3 × 10−3 0.26 2.68

Table 7.6: Influence of stopping precision on accuracy of identified parameters.

A particular optimization process was marked as ’successful’, when the latter termination con-

dition was met. Note that since the reference simulation instead of experimental data are used,

the optimum for every objective function is equal to zero. Results of the performance study are

summarized in Table 7.5 showing the success rate related to a stopping precision together with

the maximum and average number of function evaluations.

Moreover, the different values of stopping precision allow us to investigate the relation

between the accuracy of identified parameters and the tolerance of the objective function value.

Table 7.6 shows a concrete outcome of such an analysis, where the maximal and average errors

are calculated relatively to the size of the interval given by limit values for each parameter.

The results show that the maximal error for the elastic parameters E and ν is less than 3%,

which is sufficient from the practical point of view. This is also documented by Figure 7.10,

where no deviation of the reference and resulting curves is visible in the elastic range. For the

hardening stage (parameters σ̄f and K̄) a similar precision is unfortunately not sufficient as

shown by Figure 7.10a. Increasing the stopping precision to 10−3 reduces the error on parame-

ters roughly by 50%, which is sufficient to achieve almost perfect fit of the reference curve.

Finally, a similar conclusion holds for the parameters ¯̄σf and ¯̄β describing the softening

part of the experiment. The stopping precision equal to 10−2 is too coarse to achieve sufficient

precision on parameters and needs to be reduced to 3 × 10−3. The effect of increased accuracy

Parameters identification of continuum-discrete damage model capable of representing

localized failure 91

is then well visible in Figure 7.10b. This step completes the verification of the algorithm.

0 0,05 0,1 0,15 0,2 0,25
Prescribed deflection (mm)

0

20

40

60

80

100

120

L
oa

d
(N

/m
m

)

Reference curve
Stopping precision 0.01
Stopping precision 0.001

0 0.05 0.1 0.15 0.2 0.25
Prescribed deflection (mm)

0

20

40

60

80

100

120

L
oa

d
(N

/m
m

)

Reference curve
Stopping precision 0.01
Stopping precision 0.003

(a) (b)

Figure 7.10: Comparison of load-deflection diagrams: (a) Hardening parameters (b) Softening

parameters.

7.5 Summary

We have proposed a sound identification procedure for material parameters of the constitutive

model for representing the localized failure of massive structures. The most pertinent conclu-

sions can be stated as follows:

i) The sequential identification approach employed for the uniaxial tensile test can be ex-

tended to the three-point bending test. The resulting algorithm is very straightforward and has a

clear link with the structure of the constitutive model. Moreover, each of three stages uses only

a part of the test simulation, which leads to substantial computational time savings.

ii) Due to the physical insight into the model, it was possible to construct simple objective

functions F1, F2 and F3 with a high sensitivity to the relevant parameters. This led to non-

smooth and non-convex objective functions, which were optimized by robust soft-computing

methods.

iii) The proposed identification procedure was verified on 100 independent optimization

processes executed for each objective function. In the worst case, the reliability of the algorithm

is 76% due to very small number of objective functions calls set in the termination condition.

From our experience with evolutionary algorithms [Hrstka et al., 2003], such a result is rather

satisfactory.

iv) As a result of a sequential character of the identification procedure, the errors in identi-

fied parameters accumulate. Therefore, the values need to be determined with higher accuracy

then usually required in applications (i.e. 5%) and achievable by neural network-based inverse

analysis [Kučerová et al., 2007].

Parameters identification of continuum-discrete damage model capable of representing

localized failure 92

v) The major difficulty of the proposed methods is to properly identify the three stages of

structural behavior. From the point of view of method verification, where the reference load-

deflection diagram is not noisy, the problem was successfully resolved. To fully accept the

procedure, however, the experimental validation of the method appears to be necessary and will

be subject of a future work.

Chapter 8

IDENTIFICATION OF MICROPLANE MODEL M4 PARAMETERS

He who never made a mistake

never made a discovery.

Samuel Smiles

Concrete is one of the most frequently used materials in Civil Engineering. Nevertheless, as

a highly heterogeneous material, it shows very complex non-linear behavior, which is extremely

difficult to describe by a sound constitutive law. As a consequence, numerical simulation of

response of complex concrete structures still remains a very challenging and demanding topic

in engineering computational modelling.

One of the most promising approaches to modelling of concrete behavior is based on the

microplane concept, see, e.g., [Jirásek and Bažant., 2001, Chapter 25] for general exposition

and [Bažant and Caner, 2005] for the most recent version of this family of models. It leads

a fully three-dimensional material law that incorporates tensional and compressive softening,

damage of the material, supports different combinations of loading, unloading and cyclic load-

ing along with the development of damage-induced anisotropy of the material. As a result,

the M4 variant of the microplane model introduced in [Bažant et al., 2000] is fully capable

of predicting behavior of real-world concrete structures once provided with proper input data,

see e.g. [Němeček and Bittnar, 2004, J. Němeček and Bittnar, 2005] for concrete engineering

examples. The major disadvantages of this model are, however, a large number of phenomeno-

logical material parameters and a high computational cost associated with structural analysis

even in a parallel implementation [J. Němeček and Bittnar, 2002]. Although the authors of the

model proposed a heuristic calibration procedure [Bažant et al., 2000, Part II], it is based on the

trial-and-error method and provides only a crude guide for determination of selected material

parameters. Therefore, a reliable and inexpensive procedure for the identification of these pa-

rameters is required. This Chapter present the sequential identification of microplane model

parameters. More precisely, cascade neural networks (see Chapter 3) are developed in order to

identify all dominant model parameters.

8.1 Microplane model M4 for concrete

In contrary to traditional approaches to constitutive modelling, which is based on description

via second-order strain and stress tensors at individual points in the (x, y, z) coordinate sys-

Identification of microplane model M4 parameters 94

tem, the microplane approach builds the descriptions on planes of arbitrary spatial orientations

– so-called microplanes, related to a macroscopic point, see Figure 8.1. This allows to for-

mulate constitutive equations in terms of stress and strain vectors in the coordinate system

(l,m,n) associated with a microplane oriented by a normal vector n. The general proce-

dure of evaluation of a strain-driven microplane model response for a given “macroscopic”

strain tensor ε(x) can be described as follows: (i) for a given microplane orientation n normal

“macroscopic” strain tensor ε(x) is projected onto the normal “microstrain” vector ε(n) and

the shear microstrains ε(m) and ε(l), (ii) the normal and shear microstresses σ(n), σ(m) and

σ(l) are evaluated using microplane constitutive relations, (iii) the “macroscopic” stress ten-

sor σ(x) is reconstructed from the microscopic ones using the principle of virtual work, see,

e.g., [Jirásek and Bažant., 2001, Chapter 25] for more details. In the particular implementation,

28 microplanes with a pre-defined orientation on the unit hemisphere is used to evaluate the

response of the model.

Figure 8.1: Concept of microplane modelling

To close the microplane model description, the appropriate microplane constitutive relation

must be provided to realistically describe material behavior. The model examined in the current

work is the microplane model M4 [Bažant et al., 2000]. The model uses volumetric-deviatoric

split of the normal components of the stress and strain vectors, treats independently shear com-

ponents of a microplane and introduces the concept of “boundary curves” to limit unrealisti-

cally high values predicted by earlier version of the model. As a result, the strain-to-stress map

ε(x) 7→ σ(x) is no longer smooth, which complicates the formulation of consistent tangent

stiffness matrix [J. Němeček and Bittnar, 2002] and, subsequently, gradient-based approaches

to material model parameters identification.

In overall, the microplane model M4 needs eight parameters to describe a certain type

of concrete, namely: Young’s modulus E, Poisson’s ratio ν, and other six parameters (k1, k2,

k3, k4, c3, c20), which do not have a simple physical interpretation, and therefore it is difficult to

determine their values from experiments. The only information available in the open literature

are the bounds shown in the Table 8.1.

In the present work, the computational model of a structure is provided by the object-

oriented C++ finite element code OOFEM 1.5 [Patzák and Bittnar, 2001, Patzák, WWW]. Spa-

tial discretization is performed using linear brick elements with eight integration points. The

Identification of microplane model M4 parameters 95

Parameter Bounds

E ∈ 〈20.0, 50.0〉 GPa

ν ∈ 〈0.1, 0.3〉
k1 ∈ 〈0.00008, 0.00025〉
k2 ∈ 〈100.0, 1000.0〉
k3 ∈ 〈5.0, 15.0〉
k4 ∈ 〈30.0, 200.0〉
c3 ∈ 〈3.0, 5.0〉

c20 ∈ 〈0.2, 5.0〉

Table 8.1: Bounds for the microplane model parameters

arc-length method with elastic stiffness matrix is used to determine the load-displacement curve

related to the analyzed experiment.

8.2 Sequential identification - verification

This section summarizes the individual steps of M4 material model identification. Follow-

ing the heuristic calibration procedure suggested in [Bažant et al., 2000, Part II], we examine

three specific experimental tests: (i) uniaxial compression, (ii) hydrostatic test and (iii) triaxial

test. Advantage of these tests is their simplicity and availability in most experimental facilities.

Moreover, authors in [Bažant et al., 2000] claim that these experiments are sufficient to deter-

mine all parameters of the microplane model M4. The results presented in this section can be

understood as a verification of this claim.

The large number of identified parameters complicates the development of a universal in-

verse model capable to predict all these parameters with sufficient precision. Therefore, the

cascade neural networks are created in a sequential way, where the previously predicted param-

eters are

i) either used as inputs to neural network created in following step;

ii) or fixed on the predicted values for simulations performed in order to prepare the training

data for neural network in following step.

Each neural network is obtained by the procedure described in Chapter 5. More precisely,

a fully connected two-layer perceptron with bias neurons is applied to map discrete values

from stress-strain diagrams to microplane model parameters. Log-sigmoid functions defined

by Equation (5.4) are consider as activation function in all neurons. The genetic algorithm

GRADE (see Section 4.1.2 extended by CERAF strategy (see Section 4.1.3) is used for training

the networks.

Identification of microplane model M4 parameters 96

The error function optimized in the ANN’s training process is defined as

E(wl,i,j) = max
ntr

{∥
∥xM − x̃M

∥
∥
}

, (8.1)

for all following calculations. ntr denotes the number of training pairs.

Training samples are generated by Latin Hypercube Sampling and optimized by Simulated

Annealing in order to minimize the correlation among all samples. Those methods are im-

plemented in FREET software [Novák et al., 2003]. Relevant values chosen from stress-strain

diagram as ANN’s inputs are chosen by hand, but with respect to the results of stochastic sensi-

tivity analysis. For the latter one, the Pearson product-moment correlation coefficient defined by

Equation (3.5) is evaluated between the discrete values of stresses (or strains) and corresponding

values of microplane model parameters.

8.2.1 Uniaxial compression test

The most common experiment used for the determination of concrete parameters is the uniaxial

compression test on cylindrical concrete specimens. In particular, the cylinder with a radius

equal to 75 mm and the height of 300 mm is used. The set-up of the experiment, the finite

element mesh as well as the deformed configuration predicted by the computational model are

shown in Figure 8.2.

(a) (b) (c)

Figure 8.2: Uniaxial test. (a) Experiment setup, (b) Finite element mesh, (c) Deformed mesh

The LHS sampling procedure has been used to determine the set of 30 simulations resulting

in a “bundle” of stress-strain curves shown in Figure 8.3. The evolution of stochastic sensitivity

during the loading process is depicted in Figure 8.4. The results indicate that the most sensitive

parameters are Young’s modulus E, the coefficient k1, Poisson’s ratio ν (especially for the initial

stages of loading) and, for the later stages of loading, the coefficient c20. Therefore, one can

expect that only these parameters can be reliably identified from this test.

Identification of microplane model M4 parameters 97

-0,002 0 0,002 0,004 0,006 0,008 0,01
0

20

40

60

80

100

120

[M
Pa

]
σ

εx[-] zε [-]

Figure 8.3: Bundle of simulated stress-strain curves for uniaxial compression test

-0,002 0 0,002 0,004 0,006 0,008 0,01

-0,5

0

0,5

1

co
r

[-
]

k1
k2
k3
k4
c3
c20
E
nu

εε x z
[-] [-]

Figure 8.4: Sensitivity evolution for uniaxial compression test

Moreover, the impact of individual parameters on a position of a peak of stress-strain curves

is computed. The results of a sensitivity analysis using Pearson’s product moment correlation

coefficient of peak coordinates [ǫ,σ] are listed in Table 8.2. Results indicate particularly strong

influence of the k1 parameter, which hopefully allows its reliable determination.

Based on the results of sensitivity analysis, the neural network training can be performed

using a nested strategy. First, Young’s modulus E with sensitivity ≈ 1 in the initial stage is

easily identified. To this end, the following ANN’s inputs are chosen: the values of stresses

σz,1, σz,2 and σz,3 in the first three points of axial strain with extremal Pearson’s correlation

coefficient. The hidden layer contains two neurons only; the output layer consists of one neuron

corresponding to the predicted value of Young’s modulus E. For the ANN training the GRADE

algorithm is used and calculation is stopped after 1,000,000 iterations of the algorithm.

The two-layer ANN trained using the GRADE algorithm is also used for the identification

of other microplane model parameters. In Table 8.3 network’s architectures and the choice of

input values for the identification of each microplane parameter are presented.

The results of the identification for an independent set of ten stress-strain curves using the

Identification of microplane model M4 parameters 98

Pearson’s coefficients

Parameter ǫ σ
k1 0.968 0.709

k2 0.025 0.008

k3 0.015 0.030

k4 0.021 0.074

c3 -0.019 -0.020

c20 0.158 0.041

E 0.004 0.684

ν 0.129 0.000

Table 8.2: Pearson’s coefficient as a sensitivity measure of individual parameters to the peak

coordinates [ǫ,σ] of stress-strain curves

Parameter ANN’s layout Input values

k1 4 - 2 - 1 σx,2, σz,peak, ǫz,peak, prediction of E
k2 4 - 2 - 1 σz,20, σz,peak, ǫz,peak, prediction of E
k3 4 - 2 - 1 σz,20, σz,peak, ǫz,peak, prediction of E
k4 4 - 2 - 1 σz,20, σz,peak, ǫz,peak, prediction of E
c3 4 - 2 - 1 σz,20, σz,peak, ǫz,peak, prediction of E
c20 4 - 3 - 1 σx,100, σz,20, prediction of E, prediction of k1

E 3 - 2 - 1 σz,1, σz,2, σz,3

ν 4 - 3 - 1 σx,1, σx,2, prediction of E, prediction of k1

Table 8.3: Neural network architectures

proposed strategy are shown in Table 8.4.

Parameter Absolute error Relative error [%]

average maximal average maximal

k1 2.058e-06 4.678e-06 1.34 2.76

k2 138.9 318.7 38.92 179.62

k3 2.679 5.283 33.96 102.33

k4 52.70 91.70 48.33 107.17

c3 1.675 2.278 37.66 47.09

c20 0.7547 1.4168 26.70 56.69

E 229.3 594.5 0.74 1.79

ν 0.006447 0.010361 2.93 4.72

Table 8.4: Errors in the estimated parameters obtained from ten independent tests

Note that obtained errors are in a close agreement with the results of sensitivity analysis.

Except E, ν and k1, the parameters of the model are identified with very high error values.

Therefore, additional simulations are needed to obtain these values reliably.

Identification of microplane model M4 parameters 99

0 0,001 0,002 0,003 0,004 0,005 0,006 0,007 0,008
[-]

0

5

10

15

20

25

30

[M
Pa

]

ε

σ

Figure 8.5: Bundle of simulated stress-strain curves for uniaxial compression with fixed values

of Young’s modulus, Poisson’s ratio and k1 parameter and one (bold black) measured stress-

strain curve

At this point we have to fix already well-identified parameters to the optimized values and

perform simulations for the rest of parameters. To minimize computational time, values for

one uniaxial measurement presented later in Section 8.3.1 were used. Corresponding values

predicted by previously learned neural networks were Young’s modulus E = 32035.5 MPa

and k1 = 0.000089046. Poisson’s ratio is set to ν = 0.2 as a usual value of a wide range of

concretes. Next, 40 new simulations varying the rest of unknown parameters are computed.

From this suite, only 34 solutions are valid, i.e. these solutions were able to reach the desired

value of axial strain ε = 0.008. The bundle of resulting curves is shown in Figure 8.5. Note

that the black bold curve represents measured data. The evolution of Pearson’s correlation

coefficient during the experiment is shown in Figure 8.6.

0 0,001 0,002 0,003 0,004 0,005 0,006 0,007 0,008
[-]

-0,2

0

0,2

0,4

0,6

0,8

1

co
r

[-
]

k2
k3
k4
c3
c20

ε

Figure 8.6: Evolution of Pearson’s correlation coefficient during the loading test for fixed values

of E, ν and k1 parameters

The sensitivity shows very high influence of k2 parameter at the beginning of the loading.

If we inspect Figure 8.7, it is clear that the k2 parameter influences the stress-strain curve only

on a very narrow interval and hence the parameter k2 cannot be identified from this test (the au-

Identification of microplane model M4 parameters 100

22,3 22,35 22,4 22,45 22,5 22,55 22,6
[MPa]

0

200

400

600

800

1000

k2
 [

-]

σ12

Figure 8.7: k2 parameter as a function of the stress σ12 (corresponding to ǫ = 0.0011)

thors of the microplane model indeed proposed k2 to be estimated from the triaxial compression

test). We are more interested in fitting data in the post-peak part. For post-peak curves, sensi-

tivity analysis shows especially growing influence of c20 parameter. This can be demonstrated

by a relation between the c20 parameter and a value of a stress (σ81) at the end of our simula-

tions, where the correlation coefficient reaches the value 0.904429. This relation is graphically

illustrated in Figure 8.8.

10 12 14 16 18 20
[MPa]

1

2

3

4

5

c2
0

[-
]

σ81

Figure 8.8: The c20 parameter as a function of a stress (σ81) at the end of simulations

It is clearly visible that this relation is highly non-linear and any simple regression of this

data is hardly possible. We applied the ANN with 3 input neurons chosen to get the best pre-

diction of parameters based on post-peak curves. Therefore, one input value is a stress value at

the peak σpeak and the other two inputs are stress values σ61 and σ81 corresponding to strains

ǫ = 0.006 and ǫ = 0.008, respectively. Two neurons in the hidden layer were used. Qual-

ity of ANN prediction is demonstrated in Figure 8.9. In particular, the exact prediction of the

searched value corresponds to a point lying on the axis of the first quadrant. Values of predicted

parameters are normalized here to the interval 〈0.15, 0.85〉. Dashed parallel lines bound a 5%
relative error related to the size of the parameter’s interval. Clearly, the identification procedure

works with an error which does not exceed the selected 5% tolerance.

Identification of microplane model M4 parameters 101

0,2 0,3 0,4 0,5 0,6 0,7 0,8
c20 - real values

0,2

0,3

0,4

0,5

0,6

0,7

0,8

c2
0

-
pr

ed
ic

te
d

va
lu

es

training data
testing data

Figure 8.9: Quality of ANN predictions of c20 parameter

0 1e+06 2e+06 3e+06 4e+06 5e+06
number of iterations

0,001

0,01

0,1

1

A
N

N
’s

 e
rr

or
s

average error on training data
maximal error on training data
average error on testing data
maximal error on testing data

Figure 8.10: Evolution of ANN’s errors during the training in prediction of c20 parameter

The attention is also paid to the over-training of the ANN. To control this aspect, the evolu-

tion of errors in ANN’s predictions during the training process on the training and testing data

are monitored (see Figure 8.10). Recall that if the errors on the testing set are much higher than

on the training set, we suppose such an ANN to be over-trained. Even though this seems to be

the case of the current ANN, we attribute such a behavior to the fact that there are more training

data (in our case 25) then 11 neural weights optimized by the algorithm. Also note that the

typical restarting of the optimization process caused by the multi-modal optimization strategy

CERAF presented in Section 4.1.3, is clearly visible in Figure 8.10.

8.2.2 Hydrostatic compression test

The next independent test used for the identification problem is the hydrostatic compression test,

where a concrete cylinder is subjected to an increasing uniform pressure. Axial and two lateral

deformations (in mutually perpendicular directions) are measured. The experimental setup is

shown in Figure 8.11a–b. Again, to improve identification precision, the parameters E, ν and

k1 are supposed to be fixed to the previously identified values. The “bundle” of stress-strain

Identification of microplane model M4 parameters 102

curves obtained using the LHS sampling for 70 samples is depicted in Figure 8.11c and the

corresponding sensitivity evolution in Figure 8.12. Note that the maximal value of a hydrostatic

pressure for all these tests is 427.5 MPa.

(a) (b)

0 0,05 0,1 0,15 0,2 0,25
[-]

0

100

200

300

400

500

[M
Pa

]
σ

ε

(c)

Figure 8.11: Hydrostatic test. (a) Experiment setup, (b) Initial and deformed finite element

mesh, (c) Stress-strain curves

-1 -0,5 0 0,5 1
cor [-]

0

100

200

300

400

500

[M
Pa

]

k2
k3
k4
c3
c20

-1 -0,5 0 0,5 1
cor [-]

0

100

200

300

400

500

σ

Figure 8.12: Evolution of Pearson’s correlation coefficient during the hydrostatic compression

test for loading (left) and unloading (right) branch

The sensitivity information reveal that this test can be used to identify parameter k3 from

the loading branch while a combination of loading and/or unloading data can be used for k4

parameter identification. Moreover, the correlation between the strain at the peak of curves and

k4 parameter is so high that one can expect their relation to be almost linear. This is, however,

not the case as illustrated by Figure 8.13 showing the value of k4 parameter as a function of

a strain ε. In spite of a high value of the correlation coefficient equal to 0.958586, the noise of

these data seems to be very high and a use of a linear regression introduces a high error in k4

parameter prediction.

To identify the k3 parameter, which shows high correlation near to the end of elastic stage,

Identification of microplane model M4 parameters 103

0 0,05 0,1 0,15 0,2 0,25
[-]

0

50

100

150

200

k4
 [

-]

points of simulated curves with = 427.5 MPa
linear regression: k4 = 9.0373 + 1060.9

ε

ε
σ

peak

Figure 8.13: k4 parameter as a function of a strain of a peak

0 10 20 30 40 50 60 70 80
[MPa]

5

6

7

8

9

10

11

12

13

14

15

k3
 [

-]

0 0,001 0,002 0,003 0,004 0,005
[-]

5

6

7

8

9

10

11

12

13

14

15

points of simulated curves at the end of elasticity

σ εyield yield

Figure 8.14: k3 parameter as a function of a position of the end of an elastic stage

we evaluate the correlation coefficient between this parameter and a position of the end of an

elastic stage. k3 and ǫyield correlation is 0.95078 and k3 and σyield = 0.951873. In Figure 8.14,

values of k3 parameter as a function of these coordinates are presented. The discrete values

of ǫyield are caused by the size of a time step at the beginning of simulations. The noise in

data is very high again and it is not possible to reliably use a linear regression. Because all

other parameters have very small correlation, we suppose that the noise of the parameter k3 is

caused by k4 parameter and vice-versa. In other words, these noises could be caused by some

level of correlation between the parameters k3 and k4. Hence we decided to apply an artificial

layered neural network again. The first 60 simulations prepared by the LHS method were used

for training and remaining (randomly chosen) 10 simulations for testing. Particular choice of

input values as well as architectures of ANN’s is shown in Table 8.5. To eliminate unknown

correlation between parameters k3 and k4, their values are used also as inputs into ANNs.

The architectures of ANNs were chosen manually to get the best precision in predictions and

also to avoid the over-training of the ANN’s. Therefore, it is possible to show the evolution of

ANN’s errors (see Figure 8.15) during the training. A training process with 5000000 iterations

Identification of microplane model M4 parameters 104

Parameter ANN’s layout Input values

k3 5 - 2 - 1 k4, ǫyield, ǫload,2, ǫload,5,ǫpeak

k4 3 - 2 - 1 k3, ǫpeak, ǫunload,4

Table 8.5: Neural network architectures for hydrostatic test

0 1e+06 2e+06 3e+06 4e+06 5e+06
number of iterations

0,001

0,01

0,1

1

A
N

N
’s

 e
rr

or

average error on training set
maximal error on training set
average error on testing set
maximal error on testing set

0 1e+06 2e+06 3e+06 4e+06 5e+06
number of iterations

0,001

0,01

0,1

1

A
N

N
’s

 e
rr

or

average error on training set
maximal error on training set
average error on testing set
maximal error on testing set

(a) (b)

Figure 8.15: Evolution of ANN’s errors during the training process in prediction of (a) k3

parameter and (b) k4 parameter

takes approximately 20 minutes. Quality of ANN’s predictions is demonstrated in Figure 8.16.

Values of predicted parameters are again normalized into the interval 〈0.15, 0.85〉.

0,2 0,3 0,4 0,5 0,6 0,7 0,8
k3 - real value

0,2

0,3

0,4

0,5

0,6

0,7

0,8

k3
 -

 p
re

di
ct

io
n

testing data
training data

0,2 0,3 0,4 0,5 0,6 0,7 0,8
k4 - real value

0,2

0,3

0,4

0,5

0,6

0,7

0,8

k4
 -

 p
re

di
ct

io
n

training data
testing data

(a) (b)

Figure 8.16: Quality of ANN prediction of (a) k3 parameter and (b) k4 parameter

In this way, two ANNs or, in other words, two implicit functions are prescribed. One defines

a value of k3 parameter depending on a value of k4 parameter and some other properties of

a stress-strain curve, the second define a value of k4 parameter depending on a value of k3

parameter and some other properties of a stress-strain curve. Once we get some ”measured” data

and we fix all properties of a stress-strain curve, we get a system of two non-linear equations for

k3 and k4. We can solve this system, e.g., graphically. Both relations are depicted in Figure 8.17

for one independent stress-strain curve (k3 = 7.84293, k4 = 155.551). Their intersection

defines searched parameters, k3 = 8.15687 and k4 = 154.072 in this particular case. The

precision of the proposed strategy is visible in comparison of corresponding stress-strain curves,

see Figure 8.18. Note, that E, ν and k1 were the same as in previous section and remaining

parameters, i.e. k2, c3 and c20, were chosen randomly.1

1 Theoretically, the value of c20 is known in this stage from the previous identification step. Nevertheless, the

Identification of microplane model M4 parameters 105

0 0,2 0,4 0,6 0,8
k3 [-]

0

0,2

0,4

0,6

0,8

k4
 [

-]

k4 parameter as a function of k3 parameter
k3 parameter as a function of k4 parameter

Figure 8.17: Relations of k3 and k4 parameters

0 0,05 0,1 0,15 0,2 0,25
[-]

0

100

200

300

400

500

[M
Pa

]

original simulation
simulation for predicted parameters

ε

σ

Figure 8.18: Comparison of original simulation and simulation for predicted k3 and k4 param-

eters

8.2.3 Triaxial compression test

The last experiment, used for the purpose of parameter identification, is a triaxial compression

test. To this end, a specimen is subjected to the hydrostatic pressure σH . After the peak value of

σH is reached, the axial stress is proportionally increased. The “excess” axial strain ε = εT−εH ,

where εT and εH denote the total and hydrostatic axial strain, is measured as a function of the

overall stress σ. The test setup is shown in Figure 8.19.

At this point, we assume that parameters E, ν, k1, k3 and k4 are known from previous

identifications2. Next, 70 simulations (60 training and 10 testing) of the triaxial compression test

are computed by varying three remaining parameters k2, c3 and c20. The bundle of stress-strain

numerical simulation of the unidirectional experiment takes substantially more time to complete, see Section 8.4

for an example, and therefore the independence of c20 allows us to proceed with the inverse analysis even though

the first phase is not finished.
2 i.e. E = 32035.5 MPa, ν = 0.2, k1 = 0.000089046, k3 = 8.15687 and k4 = 154.072.

Identification of microplane model M4 parameters 106

(a) (b) (c)

Figure 8.19: Triaxial compression test. (a) Experiment setup, (b) Initial and deformed mesh at

the end of hydrostatic loading, (c) Initial and deformed mesh at the end of total loading

curves for σH = 34.5 MPa is shown in Figure 8.20 together with the evolution of Pearson’s

correlation coefficient during the experiment in Figure 8.21.

0 0,005 0,01 0,015 0,02 0,025 0,03 0,035 0,04
[-]

0

50

100

150

200

[M
Pa

]

ε

σ

Figure 8.20: Bundle of simulated stress-strain curves for triaxial compression test

Pearson’s coefficient

Parameter ǫ σ
k2 0.585 0.791

c3 -0.067 -0.088

c20 0.664 0.329

Table 8.6: Pearson’s coefficient as a sensitivity measure of individual parameters to the peak

coordinates [ǫ,σ] of stress-strain curves

In addition, the correlation coefficient between microplane parameters and stress and strain

values of peaks is computed. These results are shown in Table 8.6. It is visible that maximal

correlation is between k2 parameter and the value of the stress σ29 corresponding to the strain

Identification of microplane model M4 parameters 107

0 0,005 0,01 0,015 0,02 0,025 0,03 0,035 0,04
[-]

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

co
r

[-
]

k2
c3
c20

ε

Figure 8.21: Evolution of Pearson’s correlation coefficient during the triaxial compression test

equal to ǫ29 = 0.01276. This correlation is 0.88956 and at the same time, the correlation

between these σ29 values and c20 parameter is very small, therefore c20 parameter does not

influence the relation between k2 parameter and σ29. Figure 8.22 shows that only small values

of c20 parameter disturb this relation. In particular, points related to the c20 parameter smaller

then 1 lead to oscillatory dependence.

99 99,5 100 100,5 101 101,5 102
[MPa]

0

200

400

600

800

1000

k2
 [

-]

c20 > 1
c20 < 1

σ29

Figure 8.22: k2 parameter as a function of the stress value σ29

Because the highest correlation for k2 parameter is again at the beginning of the loading and

after our experiences in identification parameters from the uniaxial compression test, we were

again afraid of small significance of k2 parameter to the shape of curves. Also σ29 does not

seem to be significant. Therefore we made several short computations with randomly chosen

fixed value of c20 parameter to filter out its influence. We have got a bundle of curves showing

similar spread of values as curves in Figure 8.20. Therefore, it can be concluded that these

differences are probably caused by k2 parameter only and a neural network for k2 parameter

identification can be designed. Because the bundle of curves varies mostly in the post-peak part

and we would like to get a predictor capable to fit this part of a curve properly, we use σpeak and

σ100 as input values. The latter one correspond to the end of our simulations, where ǫ = 0.044.

We also add the third input value – σ29 – because of its small correlation with c20 parameter.

Identification of microplane model M4 parameters 108

Two neurons in the hidden layer were used. Quality of the ANN prediction is demonstrated in

Figure 8.23. Under- and over-fitting issues were again checked by errors evaluations during the

training process, see Figure 8.24.

0,2 0,3 0,4 0,5 0,6 0,7 0,8
k2 - real values

0,2

0,3

0,4

0,5

0,6

0,7

0,8
k2

 -
 p

re
di

ct
ed

 v
al

ue
s

training data
testing data

Figure 8.23: Quality of ANN prediction of k2 parameter.

0 1e+06 2e+06 3e+06 4e+06 5e+06
number of iterations

0,01

0,1

1

A
N

N
’s

 e
rr

or

average error on training data
maximal error on training data
average error on testing data
maximal error on testing data

Figure 8.24: Evolution of ANN’s errors during the training in prediction of k2 parameter

Almost perfect precision of the proposed strategy is visible in comparison of corresponding

stress-strain curves for k2 = 748.857 and its prediction equal to 767.777 and randomly chosen

parameters c20 and c3, see Figure 8.25.

8.3 Application to measured data - validation

In previous sections, we have shown that the proposed methodology is able to identify all but

one (c3) parameters from computer-simulated curves. To demonstrate the applicability of the

proposed procedure, a real simulation should be examined.

However, only limited experimental data from uniaxial compression tests are available to

author which leaves us with only one uniaxial stress-strain curve to be identified. Other mea-

Identification of microplane model M4 parameters 109

0 0,005 0,01 0,015 0,02 0,025 0,03 0,035 0,04
[-]

0

50

100

150

200

[M
Pa

]

original data
simulation

ε

σ

Figure 8.25: Comparison of original simulation and simulation for predicted parameters of

triaxial compression test

surements from hydrostatic compression test and triaxial compression test are available in liter-

ature, e.g. in [Bažant et al., 2000, PartII].

In this section will be shown the results of proposed identification strategy applied to mea-

sured data. Since the measurements from different loading tests are obtained for different con-

cretes, this Section does not represent a validation of proposed identification strategy in general,

but only the validation of application of particular inverse models.

8.3.1 Uniaxial compression test

As was mentioned previously in Section 8.2.1, Young’s modulus E = 32035.5 MPa, Poisson’s

ratio ν = 0.2 and k1 = 0.000089046 are predicted by the neural network for a particular real

measurement. Next, 30 simulations are computed varying the parameter c20, see Figure 8.5.

If we zoom into the loading part of a stress-strain curve, it is clear, that the real measurement

is far from all simulated data, see Figure 8.26. This part is influenced by high correlation

of k2 parameter and therefore, it is clear that the k2 parameter cannot be obtained from this

test. Finally we applied trained ANN to predict the c20 parameter for the measured data and the

obtained values was c20 = 5.27065. This value is out of the interval specified for this parameter,

but it is not surprising since it is visible in Figure 8.5 that measured data somewhat deviate from

the simulated bundle of curves. The final comparison of measured data and a simulation for

predicted values of E, ν, k1 and c20 parameters is shown in Figure 8.27. The rest of unknown

parameters are same as in previous sections.

Identification of microplane model M4 parameters 110

0,0009 0,001 0,0011 0,0012 0,0013 0,0014
[-]

21

21,5

22

22,5

23

23,5

24

[M
Pa

]

ε

σ

Figure 8.26: Bundle of simulated stress-strain curves for uniaxial compression and one (bold

black) measured stress-strain curve under zoom

0 0,002 0,004 0,006 0,008
[-]

0

5

10

15

20

25

30

[M
Pa

]

measured data
simulation

σ

ε

Figure 8.27: Comparison of measured data and results of final simulation.

8.3.2 Hydrostatic compression test

Experimental data from hydrostatic compression test could be found e.g. in [Bažant et al., 2000,

Part II]. These data are obtained by authors Green and Swanson (1973). The stress-strain dia-

gram represent the relation of hydrostatic pressure σ and axial deformation ε. The results from

simulation perform for microplane model parameters obtained by trial-and-error method are

there also available in comparison with measured data. Since we suppose that values of Young’s

modulus, Poisson’s ratio and k1 parameter could be reliably obtained from identification of uni-

axial compression test (these results are nevertheless not available for the concrete observed

here), the values of these parameters are taken directly from the article [Bažant et al., 2000,

Part II]. The goal is then to identify values of parameters k3 and k4.

For neural network training, 60 simulations were performed using the data generated by

FREET software [Novák et al., 2003] and 10 independent simulations for randomly chosen pa-

rameters were prepared for ANN’s testing. The bundle of resulting stress-strain diagrams could

be compared with measured data in Figure 8.28.

Identification of microplane model M4 parameters 111

0 0,05 0,1 0,15 0,2 0,25
[-]

0

100

200

300

400

500

[M
Pa

]

simulations
measured data

σ

ε

Figure 8.28: Comparison of measured data and results of 70 simulations of hydrostatic com-

pression test.

0 0,002 0,004 0,006 0,008 0,01 0,012
[-]

0

20

40

60

80

100

120

[M
Pa

]

simulations
corrected measured data
measured data

σ

ε

Figure 8.29: Detail in comparison of measured data and results of 70 simulations of hydrostatic

compression test.

In Figure 8.29 is shown in detail the elastic part of stress-strain diagrams. It is clearly

visible, that all the simulations are equal in the elastic part, i.e. there no influence of k3 or k4

parameter in this stage of loading, which is governed by Young’s modulus, Poisson’s ratio and

k1 parameter. It is also visible that their values were probably established such that the obtained

simulations cross the first point in experimental data. The second point is nevertheless remote

from all simulations. This is caused probably by the noise in experimental data or by an error in

experiment. Therefore this point in experimental data was manually “corrected” as it is shown

in Figure 8.29.

For k4 parameter, the same ANN was trained as described in Section 8.2.2. The inputs to

ANN for prediction of k3 parameter were chosen in a little bit different way in order to put

more importance to the shape of post-elastic loading part of stress-strain diagram. Two neural

networks were trained with the inputs and the topology described in Table 8.7. Both neural

networks have among the inputs the value of k4 parameter and values of deformation at the

end of the loading and at the end of the elastic part of the diagram. For the first ANN is then

Identification of microplane model M4 parameters 112

Topology Inputs

ANN1 4 + 2 + 1 k4, ǫpeak, ǫyield, ǫload,25

ANN2 5 + 2 + 1 k4, ǫpeak, ǫyield, ǫload,16, ǫload,36

Table 8.7: Description of two neural networks trained to predict k3 parameter

parameter Training data Testing data

Average error Maximal error Average error Maximal error

k3 1.40 2.59 1.71 3.07

k4 1.51 2.52 1.21 2.13

Table 8.8: Error in ANN’s predictions relative to the definition interval of the parameters in [%].

added the value of deformation in the middle of the loading part of the diagram, whereas for the

second ANN are added two values of deformation corresponding to 1/3 and 2/3 of the maximal

load. Therefore, the second ANN puts more impact on the shape of loading part of the diagram

than the first one.

The errors in predictions for training and testing data are noted in Table 8.8. The Table

contains the errors corresponding to first ANN trained for k3 parameters. The errors of the

second network were a negligibly higher, hence it is not necessary to present them.

Two neural networks obtained to predict k3 and k4 parameters with inputs taken from mea-

sured data represent system of two non-linear equations, which could be solved graphically.

Relation given by neural network for k4 prediction with all inputs fixed to values obtained from

measured diagram except the input value of k3 parameter, which states as variable, is shown in

Figure 8.30. The relation depicted in this Figure is defined in similar manner by first neural net-

work trained to predict k3 parameter. The intersection of presented curves defines the predicted

values of k3 and k4 parameters corresponding to measured data, in this case it is k3 = 12.34 and

k4 = 98.19.3

Figure 8.31 then shows equivalent relations for k3 and k4 parameters, but here obtained by

second neural network trained to predict k3 parameter. Values of predicted parameters are in

this case: k3 = 11.20 and k4 = 91.85.

In both cases, the predicted values differs from values stated by authors in [Bažant et al., 2000],

where k3 = 9 and k4 = 82. The comparison of measured data with simulated diagrams ob-

tained for parameters given in [Bažant et al., 2000] and for two couples of parameters predicted

by neural networks is depicted in Figure 8.32.

It is not so easy to judge which predicted simulation really better correspond to measured

data. Simulation proposed in [Bažant et al., 2000] relatively well fit the measured data at the

end of elasticity and at the end of loading. Nevertheless, there is a significant error in the

middle of the loading part of the diagram. Simulation corresponding to first the prediction of k3

3 Relations between k3 and k4 parameters is in Figure 8.30 shown in normalized intervals (0.15; 0.85).

Identification of microplane model M4 parameters 113

0 0,2 0,4 0,6 0,8
k4 [-]

0

0,2

0,4

0,6

0,8

1

k3
 [

-]

k3=ANN(k4)
k4=ANN(k3)

Figure 8.30: Relations of k3 and k4 parameters for measured data, black curve correspond to

first ANN trained to predict k3 parameter with four inputs.

0 0,2 0,4 0,6 0,8
k4 [-]

0

0,2

0,4

0,6

0,8

1

k3
 [

-]

k3=ANN(k4)
k4=ANN(k3)

Figure 8.31: Relations of k3 and k4 parameters for measured data, black curve correspond to

second ANN trained to predict k3 parameter with five inputs.

parameter relatively well fit the measured data in the middle of the loading diagram and is worse

near the end of elasticity and the end of the loading. Simulation corresponding to the second

prediction of k3 parameter could represent a compromise between the previous simulations. To

show some more objective comparison of presented simulations, the error between measured

data and simulated curves could be evaluated as a sum of differences between deformation

values in discrete points corresponding to measured data, i.e.

E =
N∑

i

|ǫi − ǫ̃i|, (8.2)

where N is a number of measured points, ǫi corresponds to measured deformation correspond-

ing to the i-th measured point and ǫ̃i corresponds to simulated deformation corresponding to the

i-th measured point. Values of the error defined by Equation 8.2 are written in Table 8.9.

From the comparison presented in Table 8.9 it is clearly visible, that simulations performed

Identification of microplane model M4 parameters 114

0 0,02 0,04 0,06 0,08 0,1
[-]

0

100

200

300

400

500

[M
Pa

]

measured data
simulation proposed by Bazant
simulation for prediction by NN1
simulation for prediction by NN2

σ

ε

Figure 8.32: Comparison of measured data and simulated diagrams of hydrostatic compression

test for predicted parameters.

Prediction Error E
trial-and-error [Bažant et al., 2000] 0.0975

ANN1 0.0556

ANN2 0.0602

Table 8.9: Comparison of errors of predicted simulations.

for parameters predicted by both neural networks fit the measured data better than the simula-

tion done for parameters obtained by trial-and-error method presented in [Bažant et al., 2000].

Moreover, in Figure 8.32 it is also visible, that simulations predicted by neural networks are

handicapped because of simplification of microplane model M4 implementation to OOFEM

software. This simplification disables the simulated curves to be non-linear in unloading part of

diagram and that leads to higher error of these simulations in this part of diagram.

8.3.3 Triaxial compression test

Similarly to the hydrostatic compression test, also for triaxial compression test we can use

measured data from literature, e.g. in [Bažant et al., 2000, Part II]. These data are obtained

by Balmer (1949). Again, the presented measured data are accompanied by the simulation

performed by the authors of [Bažant et al., 2000] for parameters values established by trial-

and-error method. The triaxial compression test is supposed to be the last experiment needed

to identify parameters, which could be identified by uniaxial or hydrostatic compression test,

i.e. k2 parameter. Therefore, Young’s modulus, Poisson’s ratio, k1, k3 and k4 parameters are

supposed to be known and their values are taken form [Bažant et al., 2000].

Five different measurements for triaxial compression test are available in [Bažant et al., 2000,

Part II] corresponding to five different levels of hydrostatic pressure σH applied to specimens

(σH ∈ {34.5, 68.9, 103.4, 137.9, 172.4} MPa).

Identification of microplane model M4 parameters 115

For neural network training, 60 simulations were performed using the data generated by

FREET software [Novák et al., 2003] and 10 independent simulations for randomly chosen pa-

rameters were prepared for neural network testing. The bundle of resulting stress-strain dia-

grams could be compared with measured data in Figure 8.33.

0 0,01 0,02 0,03 0,04
[-]

0

100

200

300

400

500

600
[M

Pa
]

simulations
measured data

ε

σ

Figure 8.33: Comparison of measured data and results of 70 simulation of triaxial compression

test.

In Figure 8.33 it is clearly visible, that measured data are remote from all simulated curves.

It could be caused by wrong limits for k2 parameter, i.e. k2 ∈ (100; 1000). New simulations

were performed for k2 ∈ (100; 2000). From Figure 8.34, it is nevertheless visible, that the

higher values of k2 parameter have not a significant impact to the shape of stress-strain diagram.

0 0,01 0,02 0,03 0,04
[-]

0

50

100

150

200

[M
Pa

]

measured data
simulations for k in (100;2000)
simulations for k in (100;1000)

2

2

ε

σ

Figure 8.34: Comparison of measured data and results of 70 simulation of triaxial compression

test for new interval given for k2 parameter.

Another reason for the difference between measured data and the bundle of simulated curves

could probably be attributed to incorrect values of fixed parameters, i.e. Young’s modulus,

Identification of microplane model M4 parameters 116

parameter Training data Testing data

Average error Maximal error Average error Maximal error

k2 2.63 5.82 2.37 6.23

Table 8.10: Error in ANN’s predictions relative to the definition interval of the k2 parameter in

[%].

Poison’s ratio, k1, k3 or k4 parameter. Nevertheless, the goal of this Section is not to identify

these parameters from triaxial compression test.

A neural network with the same architecture as proposed in Section 8.2.3 was trained on

simulated data and then applied to predict value of k2 parameter for measured data. Errors of

ANN’s predictions on training and testing samples are written in Table 8.10.

The prediction of the neural network for measured data is k2 = 1193. It is not surprising,

that the neural network needs to extrapolate for measured data and its prediction exceed the

limit given for k2 parameter. Nevertheless, layer neural networks are in general states as a

good approximators, but they are week in extrapolation. Moreover, in this case it is a question,

whether it is possible to find appropriate value k2 parameter to fit measured data, since it is

probable that more important error is hidden in values of other parameters.

Figure 8.35 shows the comparison of measured data, simulation given in [Bažant et al., 2000,

Part II] and simulation for parameter value predicted by neural network.

0 0,01 0,02 0,03 0,04
[-]

0

100

200

300

400

500

600

[M
Pa

]

measured data
simulation given in [Bazant et al.,2000]
simulation for predicted parameter by ANN

ε

σ

Figure 8.35: Comparison of measured data and simulated diagrams of hydrostatic compression

test for predicted parameters.

Similarly to previous Section, the errors between measured data and simulated curves could

be calculated. Resulting values for all five experiments corresponding to different levels of

hydrostatic pressure σH are written in Table 8.11.

Errors in Table 8.11 are very similar for both simulations. It is possible to conclude, that

Identification of microplane model M4 parameters 117

σH [MPa] [Bažant et al., 2000] ANN’s predictions

34.5 742 780

68.9 2288 2298

103.4 3255 3245

137.9 4080 4030

172.4 5930 5775

Table 8.11: Comparison of errors of predicted simulations.

even for input data not captured by the training set, the neural network was able to predict

reasonable value for k2 parameter and resulting simulation is comparable with that one obtained

by trial-and-error method.

8.4 Summary

In this Chapter, an example of the engineering problem, which is difficult to be solved by tra-

ditional procedures, was solved using soft computing methods. Particularly, cascade neural

networks were used to estimate required microplane material model parameters in a sequen-

tial way. As the training procedure, the genetic algorithm-based method GRADE extended by

CERAF strategy was used. A number of needed simulations is reduced by the application of

the Latin Hypercube Sampling method accompanied by the optimization by Simulated Anneal-

ing. The sensitivity analysis shows not only the influence of individual parameters but also

approximately predicts the errors produced by neural networks.

Parameter Test ANN’s topology ANN’s inputs

E Uniaxial compression 3 + 2 + 1 σz,1, σz,2, σz,3

ν Uniaxial compression 4 + 3 + 1 σx1
, σx2

, E, k1

k1 Uniaxial compression 4 + 2 + 1 σx,2, σz,peak, ǫz,peak, E
k2 Triaxial loading 3 + 2 + 1 σpeak, σ29, σ100

k3 Hydrostatic loading 5 + 2 + 1 k4, ǫyield, ǫload,2, ǫload,5, ǫpeak

k4 Hydrostatic loading 3 + 2 + 1 k3, ǫpeak, ǫunload,4

c3 × ×
c20 Uniaxial compression 3 + 2 + 1 σpeak, σ61, σ81

Table 8.12: Final status of M4 identification project

Results, see Table 8.12, confirm the claims made by authors [Bažant et al., 2000] of the

microplane M4 model on individual parameters fitting. Only the parameter c3 remains unde-

termined but the parameter c3 should be almost constant for the wide range of concretes and

our computations confirm almost zero impact of this parameter on stress-strain curves. The

Section 8.2 contains the verification of entire identification procedure of all microplane model

parameters. Nevertheless the validation of the complete process could not done, since the exper-

imental data for all three loading test performed on one concrete are not available to the author.

Identification of microplane model M4 parameters 118

Therefore, the validation demonstrated in Section 8.3 was done only for particular identification

steps.

The rather severe disadvantage of the microplane model, and also of the proposed method-

ology, is an extreme demand of computational time. A suite of 30 uniaxial tests consumes

approximately 25 days on a single processor PC with the Pentium IV 3400 MHz processor and

3 GB RAM. If we run tests in parallel on 7 computers, the needed time is less than 4 days.

The hydrostatic and triaxial tests are less demanding, by running in parallel on 7 computers the

required time is less than one day for each test.

Because the identification procedure consists of developing cascade neural networks, the

most of created inverse model should be recalculated for any new measured data. Fortunately,

the most time consuming simulations of uniaxial compression test necessary for training of

first three neural networks predicting Young’s modulus, Poisson’s ratio and k1 could be used

repeatedly for any new measurement. Then the proposed methodology still needs to compute

30 uniaxial tests to properly identify c20 parameter and a set of 30 hydrostatic and triaxial tests

to fit k3, k4 and k2. This drawback will be the subject of future work.

In Section 8.3.2 was presented the comparison of measured data with simulation obtained by

trial-and-error method given in [Bažant et al., 2000] and with two simulations obtained for pre-

dicted parameters by neural networks. The errors evaluated as a difference between measured

data and simulated curves are written in Table 8.9 and show that both simulations performed for

predicted parameters fit the measured data better than the simulation obtained by trial-and-error

method.

Section 8.3.3 shows the case, were the neural network need to extrapolate and is able to pre-

dict reasonable values even for remote input data which are comparable with that one obtained

by trial-and-error method.

Chapter 9

CONCLUSIONS

Success is the ability to go from

one failure to another with no loss

of enthusiasm.

Sir Winston Churchill

The proposed thesis brings an insight into procedures of inverse analysis based on soft-

computing methods suitable for parameters identification. To describe problems, which are

usually encountered in engineering practice as well as science, basic notation and classification

is introduced. Namely, two basic modes of an inverse analysis are described: a forward mode

leading to an optimization of an error function and an inverse mode leading to an inverse model

development. Many applications of soft-computing methods applied to parameters identifica-

tion in literature are mentioned.

An overview of optimization methods suitable for forward mode of identification is pre-

sented in Chapter 2. As a most robust and reliable methods could be considered evolutionary

algorithms. Results presented in Chapter 4 has shown that genetic algorithms are very robust

and very reliable methods especially in combination with some niching strategy. Also from

the point of view of accuracy, the genetic algorithms will overcome other optimization methods,

since they are able to find the optimum with any given precision. The principal disadvantage of

these methods is, nevertheless, a huge number of objective function evaluations.

Chapter 4 contains the detailed description of two proposed genetic algorithms: the SADE

algorithm and the GRADE algorithm and their comparison in optimization of a set of twenty

mathematical objective functions. A niching strategy CERAF was also introduced to enhance

mentioned genetic algorithms in order to solve multi-modal objective functions. The combi-

nation of GRADE algorithm with the CERAF strategy was found very robust, reliable and

efficient in comparison with the SADE algorithm. Only SADE algorithm was chosen to be

compared with GRADE algorithm, since other comparisons of SADE algorithm were pub-

lished elsewhere, see [Hrstka and Kučerová, 2004] for comparison of SADE algorithm with

the differential evolution, a standard binary genetic algorithm and an extended binary genetic

algorithm or see [Hrstka et al., 2003] for comparison of SADE algorithm with a real-valued

augmented simulated annealing (RASA), an integer augmented simulated annealing (IASA)

and also differential evolution on two mathematical and two engineering tasks. From these two

previous comparisons, the SADE algorithm was chosen as a most suitable algorithm for engi-

neering tasks. One important aspect was also the small number of extern parameters of SADE

Conclusions 120

algorithm in comparison with all the other algorithms.

An example of genetic algorithms application is presented in Section 5.2. The SADE al-

gorithm is applied to artificial neural network training and is compared with more traditional

method of backpropagation. The results have shown that a genetic algorithm clearly outper-

forms the backpropagation training, mainly because of genetic optimization’s higher resistance

to fall into local extremes. Two engineering applications of SADE algorithm to optimization

of periodic unit cell for unidirectional fiber composite and to optimal design of reinforced con-

crete beam are published in [Hrstka et al., 2003]. An application of GRADE algorithm to op-

timal design and optimal control of structure undergoing large displacements and rotations is

presented in Chapter 6. As a most recent application of GRADE algorithm could be mentioned

the optimization of statistically equivalent periodic unit cell for an asphalt mixture presented in

[Valenta et al., 2007].

If the objective function has only a limited number of local extremes, some meta-model

of the function could be constructed and optimized instead of the original objective function

in order to reduce the number of time-consuming objective function evaluations. One particu-

lar methodology based on interpolation of the error function by radial basis function network

with adaptive refining is proposed in Section 4.2 and compared with the GRADE algorithm

extended by CERAF strategy in optimization of a set of twenty mathematical functions. Pro-

posed methodology could be considered as a very efficient optimization method for objective

function with a limited number of local extremes and with small number of variables (< 10).

Also higher requirements on the optimum accuracy could significantly increase the number of

objective function evaluations as documented in Section 7.4, but the possibility to predefine

the desired precision is still in a particular way maintained.

One application of the proposed methodology to the problems of optimal design and op-

timal control is presented in Chapter 6 together with the applications of GRADE algorithm

and gradient based diffuse approximation. In agreement with the results presented in Chapter

4.2, the RBFN interpolation based methodology clearly outperformed the GRADE algorithm

in case of traditional formulation of optimal control, where only two variables were optimized.

In was also shown, that gradient based diffuse approximation is very efficient method in giving

the preliminary guess of the optimum. Nevertheless, the retrieval of the optimum with higher

accuracy extremely increase the number of function calls and even GRADE algorithm become

more efficient. In the case of simultaneous formulation of optimal design leading to optimiza-

tion of design variables together with state variables, the number of optimized variables was too

high and only GRADE algorithm was successfully applied.

The second application of the RBFN interpolation based methodology to parameters iden-

tification of continuum-discrete damage model capable of representing localized failure is pre-

sented in Chapter 7. Due to the physical insight into the model, it was possible to construct

simple objective functions F1, F2 and F3 with a high sensitivity to the relevant parameters. This

led to non-smooth and non-convex objective functions. Moreover, the optima need to be deter-

mined with higher accuracy then usually required in applications (i.e. 5%) in order to enable the

sequential character of the identification procedure. With all these requirements, the optimiza-

tion became quite complex task, nevertheless, it was successfully solved by proposed RBFN

Conclusions 121

interpolation based method.

A group of the most effective optimization methods is represented by deterministic gradient-

based methods. Nevertheless, these methods are very limited in application. They are suitable

for smooth objective functions with no local extremes. There are a lot of applications in lit-

erature, where some regularization technique is applied on objective function originally non-

smooth in order to enable the application of gradient-based method. The problem of local

extremes is usually solved by incorporation of an initial guess of an expert in order to choose

the starting point in the vicinity of a global optimum. Several examples of gradient-based op-

timization applied to material models identification are presented e.g. in [Iacono et al., 2006,

Mahnken and Stein, 1996, Maier et al., 2006] or [Ibrahimbegovic et al., 2005].

All previously mentioned methods are optimization methods suitable for forward mode of

an inverse analysis. The main features common for these methods are the certain possibility

to control the precision of the optimum and the necessity to carry out the whole identification

process for any new measurements. Only meta-modelling of a computational model leads to

the identification methodology, where only a cheap optimization needs to be executed for new

measurements and the time-consuming development of the meta-model is performed only once.

An example of this identification methodology is presented e.g. in [Pichler et al., 2003].

The inverse mode of an inverse analysis leads to the development of an inverse model to

the mechanical model and it has similar properties as a forward mode based on metamodelling

of the computational model. An overview of the methodologies suitable for such a mode of

identification is presented in Chapter 3. Once the inverse model is established, it could be used

repeatedly for any new measurement by a simple evaluation of the inverse model. From the im-

plementation point of view, this approach is very simple to use, because only a limited number

of simulations by the mechanical model is needed as a first step of a inverse model development

and there is no need to link any optimization algorithm to the code of the mechanical model.

Nevertheless, the precision of the inverse model is fixed and usually not very high.

Last proposed methodology represents an example of such approach and is described in

Chapter 5 in very detail. Particularly, a multi-layer perceptron is applied for inverse model de-

velopment, Latin Hypercube sampling extended by simulated annealing is used for training data

preparation and stochastic sensitivity based on Pearson product moment correlation coefficient

taken into account for the choice of appropriate MLP’s inputs. The application of the proposed

methodology on parameters identification of microplane model is presented in Chapter 8.

BIBLIOGRAPHY

[Andre et al., 2000] Andre, J., Siarry, P., and Dognon, T. (2000). An improvement of the stan-

dard genetic algorithm fighting premature convergence in continuous optimization. Advances

in Engineering Software, 32(1):49–60.

[Audze and Eglais, 1977] Audze, P. and Eglais, V. (1977). New approach for planning out of

experiments. Problems of Dynamics and Strengths, 35:104–107.

[Auer et al., 2005] Auer, P., Burgsteiner, H., and Maass, W. (2005). A learning rule for very

simple universal approximators consisting of a single layer of perceptrons. submitted for

publication.

[Babuska and Oden, 2004] Babuska, I. and Oden, J. T. (2004). Verification and validation in

computational engineering and science: basic concepts. Comput. Methods Appl. Mech. En-

grg., 193:4057–4066.

[Bažant and Caner, 2005] Bažant, Z. and Caner, F. (2005). Microplane model M5 with kine-

matic and static constraints for concrete fracture and anelasticity. Part I: Theory, Part II:

Computation. Journal of Engineering Mechanics-ASCE, 131(1):31–40, 41–47.

[Bažant et al., 2000] Bažant, Z. P., Caner, F. C., Carol, I., Adley, M. D., and Akers, S. A.

(2000). Microplane model M4 for concrete. Part I: Formulation with work-conjugate de-

viatoric stress, Part II: Algorithm and calibration. Journal of Engineering Mechanics,

126(9):944–953,954–961.

[Brancherie and Ibrahimbegovic, 2007] Brancherie, D. and Ibrahimbegovic, A. (2007). Novel

anisotropic continuum-discrete damage model capable of representing localized failure. part

i: theoretic formulation and numerical implementation. Computers & Structures. Submitted

for publication.

[Breitkopf et al., 2002] Breitkopf, P., Knopf-Lenoir, C., Rasineux, A., and Villon, P. (2002).

Efficient optimization strategy using hermite diffuse approximation. In Mang, H., editor,

Proceedings of Fifth World Congress on Computational Mechanics, Vienna, Austria.

[Cantú-Paz, 2001] Cantú-Paz, E. (2001). Efficient and Accurate Parallel Genetic Algorithms.

Kluwer Academic Publishers.

[Chen and Liu, 2004] Chen, B. and Liu, J. (2004). Experimental study on ae characteristics of

three-point-bending concrete beams. Cement and Concrete Research, 34:391–397.

Bibliography 123

[Claire et al., 2004] Claire, D., Hild, F., and Roux, S. (2004). A finite element formulation to

identify damage fields: the equilibrium gap method. Int. J. Numer. Meth. Engng, 61:189–

208.

[Coello, 2000] Coello, C. A. C. (2000). Constraint-handling using an evolutionary multiobjec-

tive optimization technique. Civil Engineering and Environmental Systems, 17:319–346.

[Coello, 2004] Coello, C. A. C. (2004). List of references on evolutionary multiobjective opti-

mization. http://www.lania.mx/∼ccoello/EMOO/EMOObib.html.

[Drchal et al., 2003] Drchal, J., Kučerová, A., and Němeček, J. (2003). Using a genetic algo-

rithm for optimizing synaptic weights of neural networks. CTU Report, 7(1):161–172.

[Fairbairn et al., 2000] Fairbairn, E. M. R., Ebecken, N. F. F., Paz, C. N. M., and Ulm, F.-J.

(2000). Determination of probabilistic parameters of concrete: solving the inverse problem

by usign artificial neural networks. Computers & Structures, 78(1–3):497–503.

[Furukawa and Yagawa, 1997] Furukawa, R. and Yagawa, G. (1997). Inelastic constitutive pa-

rameter identification using an evolutionary algorithm with continuous individuals. Interna-

tional Journal for Numerical Methods in Engineering, 40:1071–1090.

[Goldberg, 1989] Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and Ma-

chine Learning. Addison-Wesley.

[González et al., 2004] González, L. F., Whitney, E. J., Périaux, J., Sefrioui, M., and Srini-

vas, K. (2004). Multidisciplinary aircraft conceptual design and optimisation using a robust

evolutionary technique. In [Neittaanmäki et al., 2004].

[Grefenstette, 1987] Grefenstette, J. (1987). Genetic algorithms and their applications. In

Grefenstette, J., editor, Proceedings of the Second International Conference on Genetic Al-

gorithms and their Applications. Lawrence Erlbaum Associates.

[Halgamuge et al., 1994] Halgamuge, S. K., Mari, A., and Glesner, M. (1994). Fast perceptron

learning by fuzzy controlled dynamic adaption of network parameters. In Fuzzy Systems in

Computer Science, pages 129–139. Vieweg, Braunschweig.

[Hartman et al., 1990] Hartman, E. J., Keeler, J. D., and Kowalski, J. M. (1990). Layered neural

networks with Gaussian hidden units as universal approximations. Neural Computation,

2(2):210–215.

[Haykin, 1998] Haykin, S. (1998). Neural Networks: A Comprehensive Foundation. Prentice

Hall, 2nd edition.

[Hertz et al., 1991] Hertz, J., Krogh, A., and Palmer, R. (1991). An Introduction to the Theory

of Neural Computation. Addison Wesley.

Bibliography 124

[Holland, 1975] Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. MIT

Press.

[Hopfield, 1982] Hopfield, J. J. (1982). Neural networks and physical systems with emergent

collective computational abilities. Proc. of the National Academy of Science, USA, 79:2554–

2558.

[Hrstka, WWW] Hrstka, O. (WWW). Homepage of SADE.

http://klobouk.fsv.cvut.cz/∼ondra/sade/sade.html.

[Hrstka and Kučerová, 2000] Hrstka, O. and Kučerová, A. (2000). Searching for optimization

method on multidimensional real domains. In Contributions to Mechanics of Materials and

Structures, volume 4 of CTU Reports, pages 87–104. Czech Technical University in Prague.

[Hrstka and Kučerová, 2004] Hrstka, O. and Kučerová, A. (2004). Improvements of real coded

genetic algorithms based on differential operators preventing the premature convergence.

Advances in Engineering Software, 35(3–4):237–246.

[Hrstka et al., 2003] Hrstka, O., Kučerová, A., Lepš, M., and Zeman, J. (2003). A competitive

comparison of different types of evolutionary algorithms. Computers & Structures, 81(18–

19):1979–1990.

[Iacono et al., 2006] Iacono, C., Sluys, L. J., and van Mier, J. G. M. (2006). Estimation of

model parameters in nonlocal damage theories by inverse analysis techniques. Computer

Methods in Applied Mechanics and Engineering, 195(52):7211–7222.

[Ibrahimbegović, 1994] Ibrahimbegović, A. (1994). Stress resultant geometrically nonlinear

shell theory with drilling rotations - part 1: a consistent formulation. Comput. Methods

Appl. Mech.Eng., 118:265–284.

[Ibrahimbegović, 1995] Ibrahimbegović, A. (1995). Finite element implementation of reiss-

ner’s geometrically nonlinear beam theory: three dimensional curved beam finite elements.

Comput. Methods Appl. Eng., 122:10–26.

[Ibrahimbegovic, 2006] Ibrahimbegovic, A. (2006). Mécanique non linéaire des solides

déformables : Formulation théorique et résolution numérique par éléments finis. Lavoisier,

Paris, France.

[Ibrahimbegović and Frey, 1993] Ibrahimbegović, A. and Frey, F. (1993). Finite element anal-

ysis of linear and non-linear planar deformations of elastic initially curved beams. Interna-

tional Journal for Numerical Methods in Engineering, 36:3239–3258.

[Ibrahimbegovic et al., 1991] Ibrahimbegovic, A., Frey, F., Fonder, G., and Massonnet, C.

(1991). A variational formulation of shallow shells. In Onate, E. e. a. e., editor, Finite

elements in the 1990’s, pages 68–79. Springer, Berlin. A Book dedicated to O. C. Zienkei-

wicz.

Bibliography 125

[Ibrahimbegovic et al., 2005] Ibrahimbegovic, A., Grešovnik, I., Markovič, D., Melnyk, S.,

and Rodič, T. (2005). Shape optimization of two-phase inelastic material with microstruc-

ture. Engineering Computations, 22(5/6):605–645.

[Ibrahimbegović et al., 2004] Ibrahimbegović, A., Knopf-Lenoir, C., Kučerová, A., and Vil-

lon, P. (2004). Optimal design and optimal control of structures undergoing finite rotations

and elastic deformations. International Journal for Numerical Methods in Engineering,

61(14):2428–2460.

[Ibrahimbegović and Mamouri, 2000] Ibrahimbegović, A. and Mamouri, S. (2000). On rigid

components and joint constraints in nonlinear dynamics of flexible multibody systems im-

ploying 3D geometrically exact beam model. Comp. Methods Appl. Mech. Eng., 188:805–

831.

[Iman and Conover, 1980] Iman, R. L. and Conover, W. (1980). Small sample sensitivity analy-

sis techniques for computer models, with an application to risk assessment. Communications

in Statistics - Theory and Methods, 9(17):1749–1842.

[Ingber, 1993] Ingber, L. (1993). Simulated annealing: Practice versus theory. Mathematical

and Computer Modelling, 18(11):29–57.

[J. Němeček and Bittnar, 2005] J. Němeček, P. Padevět, B. P. and Bittnar, Z. (2005). Effect

of transversal reinforcement in normal and high strength concrete columns. Materials and

Structures, 38(281):665–671.

[J. Němeček and Bittnar, 2002] J. Němeček, B. Patzák, D. R. and Bittnar, Z. (2002). Mi-

croplane models: computational aspects and proposed parallel algorithm. Computers &

Structures, 80(27–30):2099–2108.

[Jin, 2003] Jin, Y. (2003). A comprehensive survey of fitness approximation in evolutionary

computation. Soft Computing Journal, 9(1):3–12.

[Jirásek and Bažant., 2001] Jirásek, M. E. and Bažant., Z. P. (2001). Inelastic Analysis of Struc-

tures. John Wiley & Sons.

[Johnson et al., 1990] Johnson, M., Moore, L., and Ylvisaker, D. (1990). Minimax and max-

imin distance designs. J. Statist. Plann. Inverence, 26:131–148.

[Jolliffe, 2002] Jolliffe, I. T. (2002). Principal Component Analysis. Springer–Verlag, 2nd

edition.

[Karakasis and Giannakoglou, 2004] Karakasis, M. K. and Giannakoglou, K. C. (2004). On

the use of surrogate evaluation models in multi-objective evolutionary algorithms. In

[Neittaanmäki et al., 2004].

Bibliography 126

[Keršner et al., 2007] Keršner, Z., Novák, D., Řoutil, L., and Podroužek, J. (2007). Stochastic

nonlinear analysis of concrete structures - Part II: Application to fiber-reinforced concrete fa-

cade panels. In Kanda, Takada, and Furuta, editors, Applications of Statistics and Probability

in Civil Engineering: Proceedings of the 10th International Conference, London. Taylor &

Francis Group.

[Kohonen, 1982] Kohonen, T. (1982). Self-organized formation of topologically correct feature

maps. Biological Cybernetics, 43:59–69.

[Koza, 1992] Koza, J. R. (1992). Genetic Programming: On the Programming of Computers

by Means of Natural Selection. MIT Press.

[Kucerova et al., 2007] Kucerova, A., Brancherie, D., Ibrahimbegovic, A., Zeman, J., and Bit-

tnar, Z. (2007). Novel anisotropic continuum-discrete damage model capable of representing

localized failure of massive structures. part ii: identification from tests under heterogeneous

stress field. Computers & Structures. submitted for publication.

[Kučerová, 2003] Kučerová, A. (2003). Optimisation de forme et contrle de chargement des

structures elastique soumis de rotations finis en utilisant les algorithmes gntiques. Master’s

thesis, Ecole Normale Supérieure de Cachan, France.

[Kučerová et al., 2006] Kučerová, A., Brancherie, D., and Ibrahimbegović, A. (2006). Material

parameter identification for damage models with cracks. In Proceedings of the Eighth Inter-

national Conference on Computational Structures Technology, pages on CD–ROM. Civil-

Comp Press Ltd.

[Kučerová et al., 2005] Kučerová, A., Lepš, M., and Skoček, J. (2005). Large black-box func-

tions optimization using radial basis function networks. In Topping, B. H. V., editor, Pro-

ceedings of Eighth International conference on the Application of Artificial Intelligence to

Civil, Structural and Environmental Engineering, pages pages on CD–ROM, Stirling, United

Kingdom. Civil-Comp Press.

[Kučerová et al., 2007] Kučerová, A., Lepš, M., and Zeman, J. (2007). Back analysis of mi-

croplane model parameters using soft computing methods. CAMES: Computer Assisted

Mechanics and Engineering Sciences, 14(2):219–242.

[le Cun et al., 1989] le Cun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hub-

bard, W., and Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recog-

nition. Neural Computation, 1(4):541–551.

[Lee and Hajela, 2001] Lee, J. and Hajela, P. (2001). Application of classifier systems in im-

proving response surface based approximations for design optimization. Computers & Struc-

tures, 79:333–344.

[Lehký and Novák, 2005] Lehký, D. and Novák, D. (2005). Probabilistic inverse analysis:

Random material parameters of reinforced concrete frame. In Ninth International Con-

ference on Engineering Applications of Neural Networks, EAAN2005, Lille, France, pages

147–154.

Bibliography 127

[Lepš, 2005] Lepš, M. (2005). Evolutionary Algorithms and Intelligent Tools in Engineering

Optimization, chapter Single and Multi-Objective Optimization in Civil Engineering, pages

320–341. Southampton: WIT Press.

[Lepš and Šejnoha, 2003] Lepš, M. and Šejnoha, M. (2003). New approach to optimization of

reinforced concrete beams. Computers & Structures, 81(18–19):1957–1966.

[Luenberger, 1984] Luenberger, D. (1984). Linear and nonlinear programming. Addison-

Wesley Publ.

[Mahfoud, 1995a] Mahfoud, S. W. (1995a). A comparison of parallel and sequential niching

methods. In Eshelman, L., editor, Proceedings of the Sixth International Conference on

Genetic Algorithms, pages 136–143, San Francisco, CA. Morgan Kaufmann.

[Mahfoud, 1995b] Mahfoud, S. W. (1995b). Niching methods for genetic algorithms. PhD

thesis, University of Illinois at Urbana-Champaign, Urbana, IL, USA.

[Mahnken, 2004] Mahnken, R. (2004). Encyclopedia of Computational Mechanics Part 2.

Solids and Structures, chapter Identification of Material Parameters for Constitutive Equa-

tions. John Wiley & Sons, Ltd.

[Mahnken and Stein, 1996] Mahnken, R. and Stein, E. (1996). Parameter identification for

viscoplastic models based on analytical derivatives of a least-squares functional and stability

investigations. International Journal of Plasticity, 12(4):451–479.

[Maier et al., 2006] Maier, G., Bocciarelli, M., Bolzon, G., and Fedele, R. (2006). Inverse

analyses in fracture mechanics. International Journal of Fracture, 138:47–73.

[Matheron, 1963] Matheron, G. (1963). Principles of geostatistics. Econ Geol, 58:1246–66.

[McKay et al., 1979] McKay, M. D., J., B. R., and Conover, W. J. (1979). A comparison of

three methods for selecting values of input variables in the analysis of output from a computer

code. Technometrics, 21:239–245.

[Michalewicz, 1999] Michalewicz, Z. (1999). Genetic Algorithms + Data Structures = Evolu-

tion Programs. Springer-Verlag, 3rd edition.

[Miettinen, 1999] Miettinen, K. (1999). Nonlinear Multiobjective Optimization. Kluwer Aca-

demic Publishers, Dordrecht.

[Minsky and Papert, 1969] Minsky, M. and Papert, S. (1969). Perceptrons. MIT Press, Cam-

bridge, MA.

[Montgomery, 2005] Montgomery, D. C. (2005). Design and Analysis of Experiments. John

Wiley and Sons, 6th edition.

Bibliography 128

[Most et al., 2007] Most, T., Hofstetter, G., Hofmann, M., Novák, d., and Lehký, D. (2007).

Approximation of constitutive parameters for material models using artificial neural net-

works. In Topping, B. H. V., editor, Proceedings of the Ninth International Conference on

the Application of Artificial Intelligence to Civil, Structural and Environmental Engineering.

Civil-Comp Press.

[Myers and Montgomery, 1995] Myers, R. H. and Montgomery, D. C. (1995). Response sur-

face methodology: Process and Product Optimization Using Designed Experiments. John

Wiley and Sons, New York, NY.

[Nakayama et al., 2004] Nakayama, H., Inoue, K., and Yoshimori, Y. (2004). Approximate

optimization using computational intelligence and its application to reinforcement of cable-

stayed bridges. In [Neittaanmäki et al., 2004].

[Narazaki and Ralescu, 1991] Narazaki, H. and Ralescu, A. L. (1991). A synthesis method for

multi-layered neural network using fuzzy sets. In IJCAI-91: Workshop on Fuzzy Logic in

Artificial Intelligence, pages 54–66, Sydney.

[Neittaanmäki et al., 2004] Neittaanmäki, P., Rossi, T., Korotov, S., Oñate, E., Périaux, P., and

Knörzer, D., editors (2004). European Congress on Computational Methods in Applied

Sciences and Engineering (ECCOMAS 2004), Jyväskylä.

[Novák and Lehký, 2006] Novák, D. and Lehký, D. (2006). ANN inverse analysis based on

stochastic small-sample training set simulation. Engineering Applications of Artificial Intel-

ligence, 19(7):731–740.

[Novák et al., 2007] Novák, D., Vořechovský, M., Lehký, D., Bergmeister, K., Pukl, R., and

Červenka, V. (2007). Stochastic nonlinear analysis of concrete structures - Part I: From

simulation of experiment and parameter identification to reliability assessment. In Kanda,

Takada, and Furuta, editors, Applications of Statistics and Probability in Civil Engineering:

Proceedings of the 10th International Conference, London. Taylor & Francis Group.

[Novák et al., 2003] Novák, D., Vořechovský, M., and Rusina, R. (2003). Small-sample prob-

abilistic assessment - software FREET. In Proceedings of 9th International Conference on

Applications of Statistic and Prabability in Civil Engineering - ICASP 9, pages 91–96, San

Francisco, USA. Millpress, Rotterdam.

[Němeček and Bittnar, 2004] Němeček, J. and Bittnar, Z. (2004). Experimental investiga-

tion and numerical simulation of post-peak behavior and size effect of reinforced concrete

columns. Materials and Structures, 37(267):161–169.

[Park and Sandberg, 1991] Park, J. and Sandberg, I. W. (1991). Universal approximation using

radial-basis-function networks. Neural Computation, 3(2):246–257.

[Park and Sandberg, 1993] Park, J. and Sandberg, I. W. (1993). Approximation and radial-

basis-function networks. Neural Computation, 5(3):305–316.

Bibliography 129

[Patzák, WWW] Patzák, B. (WWW). Homepage of OOFEM.

http://www.oofem.org.

[Patzák and Bittnar, 2001] Patzák, B. and Bittnar, Z. (2001). Design of object oriented finite

element code. Advances in Engineering Software, 32(10–11):759–767.

[Pichler et al., 2003] Pichler, B., Lackner, R., and Mang, H. (2003). Back analysis of model

parameters in geotechnical engineering by means of soft computing. International Journal

for Numerical Methods in Engineering, 57(14):1943–1978.

[Pyrz and Zairi, 2007] Pyrz, M. and Zairi, F. (2007). Identification of viscoplastic parameters

of phenomenological constitutive equations for polymers by deterministic and evolutionary

approach. Modelling Simul. Mater. Sci. Eng., 15:85–103.

[Quagliarella, 2003] Quagliarella, D. (2003). Airfoil design using Navier-Stokes equations and

an asymmetric multi-objective genetic algorithm. In Bugeda, G., Désidéri, J.-A., Périaux,

J., Schoenauer, M., and Winter, G., editors, Evolutionary Methods for Design, Optimization

and Control: Applications to Industrial and Societal Problems, Eurogen 2003. International

Center for Numerical Methods in Engineering (CIMNE).

[Queipo et al., 2005] Queipo, N. V., Haftka, R. T., Shyy, W., Goel, T., Vaidyanathan, R., and

Tucker, P. K. (2005). Surrogate-based analysis and optimization. Progress in Aerospace

Sciences, 41:1–28.

[Rafiq and Southcombe, 1998] Rafiq, M. Y. and Southcombe, C. (1998). Genetic algorithms in

optimal design and detailing of reinforced concrete biaxial columns supported by a declara-

tive approach for capacity checking. Computers & Structures, 69:443–457.

[Rajasekaran et al., 1996] Rajasekaran, S., Febin, M. F., and Ramasamy, J. V. (1996). Artificial

fuzzy neural networks in civil engineering. Computers & Structures, 61(2):291–302.

[Saastamoinen et al., 1998] Saastamoinen, A., Pietilä, T., Värri, A., Lehtokangas, M., and

Saarinen, J. (1998). Waveform detection with rbf network – application to automated eeg

analysis. Neurocomputing, 20:1–13.

[Sacks et al., 1989] Sacks, J., Shiller, S. B., and Welch, W. J. (1989). Designs for computer

experiments. Technometrics, 34:15–25.

[Shewry and Wynn, 1987] Shewry, M. and Wynn, H. (1987). Maximum entropy design. J.

Appl. Statist., 14(2):165–170.

[Simpson et al., 2001] Simpson, T. W., Peplinski, J. D., Koch, P. N., and Allen, J. K. (2001).

Metamodels for computer-based engineering design: survey and recommendations. Engi-

neering with Computers, 17:129–150.

[Storn, 1996] Storn, R. (1996). On the usage of differential evolution for function optimization.

In NAPHIS 1996, pages 519–523. Berkeley.

Bibliography 130

[Storn, WWW] Storn, R. (WWW). Homepage of Differential Evolution.

http://www.icsi.berkeley.edu/∼storn/code.html.

[Storn and Price, 1995] Storn, R. and Price, K. (1995). Differential Evolution : A simple and

efficient adaptive scheme for global optimization over continuous spaces. Technical Report

TR-95-012, University of Berkeley.

[Toropov and Yoshida, 2005] Toropov, V. and Yoshida, F. (2005). Parameter identification of

materials and structures, chapter Application of advanced optimization techniques to param-

eter and damage identification problems, pages 177–263. SpringerWienNewYork.

[Toropov et al., 2007] Toropov, V. V., Bates, S. J., and Querin, O. M. (2007). Generation of

extended unifrom latin hypercube design of experiments. In Topping, B., editor, Proceedings

of the Ninth International Conference of the Application of Artificial Intelligence to Civil,

Structural and environmental Engineering. Civil-Comp Press, Stirling, Scotland.

[Tsoukalas and Uhrig, 1997] Tsoukalas, L. H. and Uhrig, R. E. (1997). Fuzzy and neural

aproaches in engineering. John Wiley, New York.

[Valenta et al., 2007] Valenta, R., Šejnoha, J., and Šejnoha, M. (2007). Construction of a sta-

tistically equivalent periodic unit cell for an asphalt mixture. In Topping, B. H. V., editor,

Proceedings of The Eleventh International conference on Civil, Structural and Environmen-

tal Engineering Computing, pages on CD–ROM. Civil-Comp Press.

[Varcol and Emmerich, 2005] Varcol, C. M. and Emmerich, T. M. (2005). Metamodel-assisted

evolution strategies applied in electromagnetic compatibility design. In Evolutionary and

Eterministic Methods for Design, Optimization and Control with Applications to Industrial

and Societal Problems EUROGEN 2005. FLM, Munich.

[Vidal, 1993] Vidal, R. V. V., editor (1993). Applied Simulated Annealing, volume 396 of

Lecture Notes in Economics and Mathematical Systems. Springer-Verlag.

[Villon, 1991] Villon, P. (1991). Contribution à l’optimisation. PhD thesis, Université de

Technologie de Compiègne, Compiègne, France.

[Wang et al., 2002] Wang, J., Periaux, J., and Sefrioui, M. (2002). Parallel evolutionary algo-

rithms for optimization problems in aerospace engineering. Journal of Computational and

Applied Mathematics, 149:155–169.

[Waszczyszyn and Ziemianski, 2005] Waszczyszyn, Z. and Ziemianski, L. (2005). Parame-

ter identification of materials and structures, chapter Neural networks in the identification

analysis of structural mechanics problems, pages 265–340. SpringerWienNewYork.

[Waszczyszyn and Ziemiański, 2006] Waszczyszyn, Z. and Ziemiański, L. (2006). Neurocom-

puting in the analysis of selected inverse problems of mechanics of structures and materials.

Computer Assisted Mechanics and Engineering Sciences, 13(1):125–159.

Bibliography 131

[Weigend and Gershenfeld, 1994] Weigend, A. S. and Gershenfeld, N. A. (1994). Time Series

Prediction: Forecasting the Future and Understanding the Past. Addison Wesley.

[Wineberg and Christensen, 2007] Wineberg, M. and Christensen, S. (2007). Genetic and evo-

lutionary computation conference. In Proceedings of the 2007 GECCO conference compan-

ion on Genetic and evolutionary computation, pages 3765–3791. ACM Press New York, NY,

USA.

[Yagawa and Okuda, 1996] Yagawa, G. and Okuda, H. (1996). Neural networks in computa-

tional mechanics. CIMNE.

Appendix A

LIST OF FUNCTIONS APPLIED FOR GENETIC ALGORITHMS

TESTING

The following set of mathematical test functions was taken from the article [Andre et al., 2000]

and the same set of functions was also applied for the comparison of genetic algorithms pub-

lished in the article [Hrstka and Kučerová, 2004].

A.1 Mathematical formulation of test functions

• F1:

f(x) = 2(x − 0.75)2 + sin(5πx − 0.4π) − 0.125 (A.1)

where

0 6 x 6 1

• F3:

f(x) = −
5∑

j=1

[j sin[(j + 1)x + j]] (A.2)

where

−10 6 x 6 10

• Branin:

f(x, y) = a(y − bx2 + cx − d)2 + h(1 − f) cos x + h (A.3)

where

a = 1, b = 5.1/4π2, c = 5/π, d = 6,

h = 10, f = 1/8π,−5 6 x 6 10, 0 6 y 6 15

• Camelback:

f(x, y) =

(

4 − 2.1x2 +
x4

3

)

x2 + xy + (−4 + 4y2)y2 (A.4)

where

−3 6 x 6 3,−2 6 y 6 2

List of functions applied for genetic algorithms testing 133

• Goldprice:

f(x, y) = [1 + (x + y + 1)2(19 − 14x + 3x2 − 14y + 6xy + 3y2)] ·
[30 + (2x − 3y)2(18 − 32x + 12x2 + 48y − 36xy + 27y2)]

(A.5)

where

−2 6 x 6 2,−2 6 y 6 2

• PShubert 1 and 2:

f(x, y) =

{
5∑

i=1

i cos[(i + 1)x + i]

}

·
{

5∑

i=1

i cos[(i + 1)y + i]

}

+

β[(x − 1.42513)2 + (y + 0.80032)2] (A.6)

where

−10 6 x 6 10,−10 6 y 6 10,

for PShubert1: β = 0.5 for PShubert2: β = 1.0

• Quartic:

f(x, y) =
x4

4
− x2

2
+

x

10
+

y2

2
(A.7)

where

−10 6 x 6 10,−10 6 y 6 10

• Shubert:

f(x, y) =

{
5∑

i=1

i cos[(i + 1)x + i]

}

·
{

5∑

i=1

i cos[(i + 1)y + i]

}

(A.8)

where

−10 6 x 6 10,−10 6 y 6 10

• Hartman 1:

f(x1, x2, x3) = −
4∑

i=1

cie
−

P

3
j=1

aij(xi−pij)
2

(A.9)

where

0 6 xi 6 1, i = 1, . . . , 3

x = (x1, . . . , x3), pi = (pi1, . . . , pi3), ai = (ai1, . . . , ai3)

List of functions applied for genetic algorithms testing 134

i aij ci pij

1 3.0 10.0 30.0 1.0 0.36890 0.1170 0.2673

2 0.1 10.0 35.0 1.2 0.46990 0.4387 0.7470

3 3.0 10.0 30.0 3.0 0.10910 0.8732 0.5547

4 0.1 10.0 35.0 3.2 0.03815 0.5743 0.8828

• Shekel 1,2 and 3:

f(x) = −
m∑

i=1

1

(x − ai)T (x − ai) + ci

(A.10)

where

0 6 xj 6 10,

for Shekel1: m = 5, for Shekel2: m = 7, for Shekel3: m = 10

x = (x1, x2, x3, x4)
T , ai = (ai1, ai2, ai3, ai4)

T

i aij ci

1 4.0 4.0 4.0 4.0 0.1

2 1.0 1.0 1.0 1.0 0.2

3 8.0 8.0 8.0 8.0 0.2

4 6.0 6.0 6.0 6.0 0.4

5 3.0 7.0 3.0 7.0 0.4

6 2.0 9.0 2.0 9.0 0.6

7 5.0 5.0 3.0 3.0 0.6

8 8.0 1.0 8.0 1.0 0.7

9 6.0 2.0 6.0 2.0 0.5

10 7.0 3.6 7.0 3.6 0.5

• Hartman 2:

f(x1, . . . , x6) = −
4∑

i=1

cie
−

P

6
j=1

aij(xi−pij)
2

(A.11)

where

0 6 xj 6 1, j = 1, . . . , 6

x = (x1, . . . , x6), pi = (pi1, . . . , pi6), ai = (ai1, . . . , ai6)

i aij ci

1 10.00 3.00 17.00 3.50 1.70 8.00 1.0

2 0.05 10.00 17.00 0.10 8.00 14.00 1.2

3 3.00 3.50 1.70 10.00 17.00 8.00 3.0

4 17.00 8.00 0.05 10.00 0.01 14.00 3.2

i pij

1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886

2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991

3 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650

4 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

List of functions applied for genetic algorithms testing 135

• Hosc 45:

f(x) = 2 − 1

n!

n∏

i=1

xi (A.12)

where

x = (x1, . . . , xn), 0 6 xi 6 i, n = 10

• Brown 1:

f(x) =

[
∑

i∈J

(xi − 3)

]2

+

∑

i∈J

[10−3(xi − 3)2 − (xi − xi+1) + e20(xi−xi+1)] (A.13)

where

J = {1, 3, . . . , 19},−1 6 xi 6 4, 1 6 i 6 20, x = (x1, . . . , x20)
T

• Brown 3:

f(x) =
19∑

i=1

[(x2
i)

(x2
i+1

+1) + (x2
i+1)

(x2
i +1)] (A.14)

x = (x1, . . . , x20)
T ,−1 6 xi 6 4, 1 6 i 6 20

• F5n:

f(x) = (π/20) ·
{

10 sin2(πy1) +
19∑

i=1

[(yi − 1)2 · (1 + 10 sin2(πyi + 1))] + (y20 − 1)2

}

(A.15)

where

x = (x1, . . . , x20)
T ,−10 6 xi 6 10, yi = 1 + 0.25(xi − 1)

• F10n:

f(x) = (π/20) ·
{

10 sin2(πx1) +
19∑

i=1

[(xi − 1)2 · (1 + 10 sin2(πxi+1))] + (x20 − 1)2

}

(A.16)

where

x = (x1, . . . , x20)
T ,−10 6 xi 6 10

• F15n:

f(x) = (1/10) ·
{

sin2(3πx1) +
19∑

i=1

[(xi − 1)2(1 + sin2(3πxi+1))] + (1/10)(x20 − 1)2[1 + sin2(2πx20)]

}

(A.17)

where

x = (x1, . . . , x20)
T ,−10 6 xi 6 10

List of functions applied for genetic algorithms testing 136

A.2 Graphical ilustration of test function with one or two variables

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

−10 −8 −6 −4 −2 0 2 4 6 8 10
−15

−10

−5

0

5

10

15

20

F1 F3

−5
0

5
10

0

5

10

15
−350

−300

−250

−200

−150

−100

−50

0

−5

0

5

10

0

5

10

15
−10

−8

−6

−4

−2

0

Branin Branin - detailed

List of functions applied for genetic algorithms testing 137

−3
−2

−1
0

1
2

3

−2

−1

0

1

2
−200

−150

−100

−50

0

50

−3
−2

−1
0

1
2

3

−2

−1

0

1

2
−16

−14

−12

−10

−8

−6

−4

−2

0

2

Camelback Camelback - detailled

−2

−1

0

1

2

−2

−1

0

1

2
−12

−10

−8

−6

−4

−2

0

x 10
5

−2
−1.5 −1

−0.5 0
0.5

1 1.5
2

−2

−1

0

1

2
−1000

−900

−800

−700

−600

−500

−400

−300

−200

−100

0

Goldprice Goldprice - detailled

PShubert1 PShubert1 - detailled

List of functions applied for genetic algorithms testing 138

PShubert2 PShubert2 - detailled

−10

−5

0

5

10

−10

−5

0

5

10
−3000

−2500

−2000

−1500

−1000

−500

0

500

−10

−5

0

5

10

−10

−5

0

5

10
−100

−80

−60

−40

−20

0

20

Quartic Quartic - detailled

Shubert Shubert - detailled

Appendix B

OBJECTIVE FUNCTION CONTOURS CORRESPONDING TO

PROBLEM OF OPTIMAL CONTROL OF B LETTER STRUCTURE

An illustrative representation of the objective function contours in different subspaces of

control variables are given in following figures.

Objective function contours corresponding to problem of optimal control of B letter

structure 140

0.025
0.03

0.035
0.04

0.045
0.05

−0.06

−0.055

−0.05

−0.045

−0.04

−0.035
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

force H

force V

co
nt

ro
l f

un
ct

io
n

J

0.025

0.03

0.035

0.04

0.045

0.05

−0.06
−0.055

−0.05
−0.045

−0.04
−0.035
−0.01

−0.009

−0.008

−0.007

−0.006

−0.005

−0.004

−0.003

−0.002

−0.001

0

force Hforce V

co
nt

ro
l f

un
ct

io
n

J

H − V subspace H − V subspace

0.025
0.03

0.035
0.04

0.045
0.05

0.6

0.8

1
−30

−25

−20

−15

−10

−5

0

force H

moment M1

co
nt

ro
l f

un
ct

io
n

J

0.025
0.03

0.035
0.04

0.045
0.05

0.6

0.8

1
−0.05

−0.04

−0.03

−0.02

−0.01

0

force H

moment M1

co
nt

ro
l f

un
ct

io
n

J

H − M1 subspace H − M1 subspace

−0.06
−0.055

−0.05
−0.045

−0.04
−0.035

0.6

0.8

1
−30

−25

−20

−15

−10

−5

0

force Vmoment M1

co
nt

ro
l f

un
ct

io
n

J

−0.06
−0.055

−0.05
−0.045

−0.04
−0.035

0.6

0.8

1
−0.1

−0.09

−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

force V

moment M1

co
nt

ro
l f

un
ct

io
n

J

V − M1 subspace V − M1 subspace

Figure B.1: Multibody system deployment: contours of the cost function in different subspaces.

Objective function contours corresponding to problem of optimal control of B letter

structure 141

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

−0.9

−0.85

−0.8

−0.75

−0.7

−0.65
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

moment M1

moment M2

co
nt

ro
l f

un
ct

io
n

J

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
−0.9

−0.85

−0.8

−0.75

−0.7

−0.65

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

moment M1

moment M2

ne
ga

tiv
e

co
nt

ro
l f

un
ct

io
n

J

M1 − M2 subspace M1 − M2 subspace

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.6

0.8

1
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

moment M3
moment M1

co
nt

ro
l f

un
ct

io
n

J

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.5

0.6

0.7

0.8

0.9

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

moment M3moment M1

ne
ga

tiv
e

co
nt

ro
l f

un
ct

io
n

J

M1 − M3 subspace M1 − M3 subspace

−0.9
−0.85

−0.8
−0.75

−0.7
−0.65

0.5

0.6

0.7

0.8

0.9

−100

−80

−60

−40

−20

0

moment M2

moment M3

co
nt

ro
l f

un
ct

io
n

J

−0.9
−0.85

−0.8
−0.75

−0.7
−0.65

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

−1

−0.8

−0.6

−0.4

−0.2

0

moment M3
moment M2

co
nt

ro
l f

un
ct

io
n

J

M2 − M3 subspace M2 − M3 subspace

Figure B.2: Multibody system deployment: contours of the cost function in different subspaces.

