
HAL Id: tel-00258717
https://theses.hal.science/tel-00258717v1

Submitted on 25 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spectral and Spatial Methods for the Classification of
Urban Remote Sensing Data

Mathieu Fauvel

To cite this version:
Mathieu Fauvel. Spectral and Spatial Methods for the Classification of Urban Remote Sensing
Data. Signal and Image processing. Institut National Polytechnique de Grenoble - INPG; Université
d’Islande, 2007. English. �NNT : �. �tel-00258717�

https://theses.hal.science/tel-00258717v1
https://hal.archives-ouvertes.fr


Spectral and Spatial Methods for

the Classification of

Urban Remote Sensing Data

Doctoral Thesis

Mathieu FAUVEL

Thesis Supervisors: Jocelyn CHANUSSOT and Jon Atli BENEDIKTSSON

Grenoble Institute of Technology

Faculty of Engineering - University of Iceland

November 2007





Spectral and Spatial Methods for the Classification
of Urban Remote Sensing Data

by
Mathieu Fauvel.

Thesis committee:

M. Henri MAÎTRE Chair

M. Grégoire MERCIER Referee

M. Sebastiano B. SERPICO Referee

M. Albert BĲAOUI Examiner

M. Jordi INGLADA Examiner

M. Johannes R. SVEINSSON Examiner

M. Jocelyn CHANUSSOT Supervisor

M. Jon A. BENEDIKTSSON Supervisor



iv



Contents

Introduction 5

I Feature Extraction 11

1 Spectral Feature Extraction 13

1.1 High-dimensional space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 Dimensionality reduction: feature selection – feature extraction . . . . . . . . . . . . . . . 16
1.3 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.1 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.2 Reducing the dimensionality using PCA . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.3 Computing the PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 Kernel PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.1 PCA in the feature space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4.2 KPCA in the input space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4.3 Computing the KPCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.5.1 KPCA vs Traditional Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.5.2 Selection of the kernel parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 Spatial Feature Extraction 31

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 Theoretical Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3 Geodesics transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4 Morphological tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5 Ordering relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.6 Morphological Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.6.2 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.6.3 Classification using the MP-DMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7 Area Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.7.1 Self-complementary area filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.7.2 Extracting the inter-pixel dependency . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.8 Extension to multi-valued image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

II Classification 47

3 Support Vector Machines 49

3.1 Linear Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

v



vi Contents

3.1.1 Introduction to the classification problem . . . . . . . . . . . . . . . . . . . . . . . 51

3.1.2 Linear support vector machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1.3 Application to synthetic remote-sensing data analysis . . . . . . . . . . . . . . . . 55

3.2 Non-linear SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Multi-class SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Review of application of SVM for remote-sensing data analysis . . . . . . . . . . . . . . . 60

3.5 Test Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5.1 Small training sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5.2 Fitting the parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6 Comparison to standard classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.6.1 University Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.6.2 Pavia Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.7 Beyond the SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Advanced SVM for remote-sensing data classification 75

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Transferability of the hyperplane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2.1 Morphological Profiles as space-invariant feature vectors . . . . . . . . . . . . . . . 77

4.2.2 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.3 Knowledge transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Merging spatial and spectral information through a kernel formulation . . . . . . . . . . . 83

4.3.1 Kernel formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.2 Extension to hyperspectral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.4 General comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

III Data Fusion 95

5 Decision Fusion 97

5.1 Fuzzy set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.1.1 Fuzzy set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.1.2 Class representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 Information Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2.2 Confidence measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2.3 Combination operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3 The Fusion scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.4.1 First test image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4.2 Second test image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4.3 Comparison with other combination rules . . . . . . . . . . . . . . . . . . . . . . . 112

5.5 Application to the fusion of SVM classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.5.1 Decision Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.5.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119



Contents vii

6 Multisource data 121

6.1 Spatial and spectral feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.1.1 Spectral and spatial data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.1.2 Fusion scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.1.3 Feature reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.2.1 Data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.2.2 University Area data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.2.3 Pavia Center data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.2.4 Comparison with spectro-spatial SVM . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Conclusions 139

IV Appendix 141

A Kernel Methods 143

A.1 Mathematical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
A.1.1 Vector space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
A.1.2 Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

A.2 From feature space to Kernel feature space . . . . . . . . . . . . . . . . . . . . . . . . . . 148
A.3 The Representer Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
A.4 The minimal enclosing hypersphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
A.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

B Assessing the accuracy 157

C Data Set 159

C.1 Hyperspectral data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
C.1.1 ROSIS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
C.1.2 HYDICE data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

C.2 Panchromatic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
C.2.1 IKONOS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
C.2.2 PLEIADES data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Index 171

Bibliography 173



viii Contents



Acknowledgements - Remerciements

I have done my Phd during the years 2004-2007, at both the GIPSA-lab and the University of Iceland,
under the supervision of Jocelyn Chanussot and Jon Atli Benediktsson. During that period I received a
lot of help and motive from family, friend and colleague (some of them become friend). Choosing who
I would like to first thank is not easy. I should start by thanking Jocelyn Chanussot, that gives me the
opportunity to do that thesis in a perfect environment for research, from Grenoble to Reykjavik through
Denver and Barcelona. Similarly, I thank Jon Atli Benediktsson for his support and motivation during
my stay at the University of Iceland and the last months of the thesis. I also thank Jocelyn and Jon for
making them-self available whenever I needed. Working with them was a very pleasant and educational
experience. I hope our collaboration will continue.

I thank Henri Maître for accepting to preside the committee and for its interest to my work. I
would like to address my acknowledgements to Jordi Inglada and Johannes R. Sveinsson for their helpful
comments and their criticisms. Thanks to Albert Bĳaoui for its astrophysician analyze of my work. For
reading deeply my thesis, I would to like thank Sebastiano B. Serpico and Grégoire Mercier, the reviewers
of my thesis. I also thank Grégoire for all the discussions we had, and hope for another ones. Maybe at
a Starbucks?

Now, the following will be in french, sorry. English returns for the introduction!
Mes remerciements vont ensuite vers les personnes que j’ai été contraint de fréquenter quotidiennement

au GISPA-lab: en premier lieu, les habitants des boxs, Matthieu et Seb, sans qui je n’aurai sûrement
pas survécu aux chaleurs infernales des étés Grenoblois (vive la clim et le pastis). Je tiens à témoigner
ma sincère amitié envers Caroline, Grégoire et encore Matthieu, j’espére que les chemins de randonnées
ou de ski de fond ne nous éloignerons pas trop. Merci à Cédric, dit le Suricate des Sables, pour cette
année passée trop vite. Merci aussi à Cédric, l’autre, pour ses précieux conseils et sa disponibilité et à
Julien pour son calme, même après avoir quitté les boxs. Merci à tous ceux qui font du GIPSA-lab un
endroit agréable: Barbara, Pierre, Moussa et son iphone, Nicolas, Jérôme, Bidou et les autres que j’oublie
sûrement.

En dehors du labo, ces trois dernières années, j’ai aussi patiné derrière une balle. Je voudrais en
profiter pour remercier mes compagnons de galère, avec qui j’ai passé une grande parties de mes week
end dans les trains, hôtels et salles polyvalentes des quatre coins de la France : Claude, Lionel, Tony,
Pierre, Bertrand, Johan, Dédé, Bib, Constant, Lydie, les Gillet, les Rousset, les Lapicerella ainsi que tous
les jeunes qui ont bien voulu me subir en tant qu’entraîneur.

Merci à mes parents, toujours là aux moments importants, à mes grand parents pour m’avoir nourri
exclusivement à base de canard. Merci aussi à Tantine, Cousine et Hubert pour leur aide précieuse. A
tous les Marmouyet, ils sont nombreux à force, merci pour vos encouragements.

Enfin, merci à celle qui m’a supporté, avec mon autisme, ma thèse et mon hockey et qui est restée
malgré tout. A deux, ce fut plus facile.

Mathieu

1



2 Contents



Introduction

3





Introduction 5

THE classification of optical urban remote-sensing data has become a challenging problem, due to
recent advances in remote sensor technology. Spatial resolution is now as high as 0.75 meter for

several satellites, e.g., IKONOS, QUICKBIRD, and soon PLEIADES: For the same location, a panchro-
matic image with 0.75-meter spatial resolution and multispectral data with 3-meter spatial resolution
are available. Hyperspectral sensors can simultaneously collect more than a hundred spectral bands of
an area, with increasing spatial resolution, e.g. 1.5 meter for airborne sensors. The problem of detecting
or classifying urban areas in remotely-sensed images with lower spatial resolution has now become the
even bigger problem of analysing such urban areas. Figure 0.1 presents two data sets, with low and high
spatial resolution respectively. In the left-hand image, the city of Reykjavik can be made out, but the
structures of the city are not identifiable. The right-hand image represents one small section from the
left-hand image, with ten times higher resolution.

Thanks to the finer resolution, urban structures are now accessible: Road, building, house, green space,
bridge, car, and so on can be discerned visually. Furthermore, the high spectral resolution allows detailed
physical analysis of the structures. An example of hyperspectral ROSIS data is given in Figure 0.2; for
each set of data a very detailed description of the urban structures is possible, while using the three bands
it is easier to distinguish the vegetation and man-made constructions.

The detection and classification of such structures have many application [94]:

• Mapping and tracking: Classification algorithms can be used to create thematic maps, to follow
the evolution of urban area growth. At a coarse level, it is possible to extract the city network to
evaluate the connections between each zone of the city (suburbs, center, etc.). Change detection
can be carried out over a number of years to analyze the way a city evolves.

• Risk management: By identifying residential, commercial, and industrial areas, it is possible to
analyze the sensitivity of the different areas of a city to natural risks. A geophysical analysis makes
it possible to obtain more accurate knowledge of where geological hazards might occur. After a
natural (or other) disaster, remote sensing of urban areas can be used to guide the assistance effort.

• Social problems: By analyzing the spatial arrangement of the city: dense areas, open areas, etc.
The distribution of critical services (e.g. hospitals, schools) can also be studied.

• Ecological problems: A major problem in urban area is preserving open spaces, which can be readily
detected using, e.g., multispectral data from IKONOS or QUICKBIRD.

Remote-sensing data are characterized by the dual nature of the information they provide: they can
be viewed as a collection of spectra (the spectral domain) where each pixel is a vector and the components
are the reflectance values at a certain wavelength; or they can be regarded as a collection of images (the
spatial/image domain) acquired at different wavelengths.

First attempts to analyze urban area remote-sensing data used existing methodologies – techniques
developed for land remote sensing, based on signal modeling [80]. Each pixel-vector is regarded as a
signal, and signal-based processing algorithms are applied, mostly based on statistical modeling. The
traditional approach for classifying remote-sensing data may be summed up as [81]: from the original
data set, a feature reduction/selection step is performed according to the classes under consideration,
then classification is carried out using these extracted features. When dealing with a small training set,
an iterative procedure is usually applied, by adding semi-labelled samples to the training set according to
certain criteria (un-labelled samples that are labelled after the first classification step). Another possible
modification is the inclusion of contextual information: the classification algorithm uses not just the
pixel itself, but also its neighbors. Markov Random Fields (MRF) are usually used within a statistical
framework [86]. A survey of the current techniques for the analysis of remotely-sensed data can be found
in [108].

Surprisingly, few classification algorithms exploit the spatial information contained in the remote-
sensing data, the reason being the usually low resolution of the data. However, high spatial resolution
data contain a lot of contextual information: for a given pixel we can extract the size, shape, and gray-
level distribution of the structure to which it belongs. This information will not be the same if the pixel
belongs to a roof or to a green area. This is also a way to discriminate various structures made of the same
materials. If spectral information alone is used, the roofs of a private house and of a larger building will be
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(a) (b)

Figure 0.1: Satellite images: (a) Spot3 data of the Reykjavik area, Iceland – spatial resolution 10 m; (b)

IKONOS data for part of central Reykjavik – spatial resolution 1 m.

detected as the same type of structure. But using additional spatial information – the size of the roof, for
instance – it is possible to classify these into two separate classes. Consequently, a joint spectral/spatial
classifier is needed to classify urban remote-sensing data better. Landgrebe and co-workers were probably
the first to propose a joint classifier, the well-know ECHO [80]. Later, Landgrebe and Jackson proposed
an iterative statistical classifier based on MRF modelling [68]. However, MRF modelling suffers from
the high spatial resolution: neighboring pixels are highly correlated and the standard neighbor system
definition does not contain enough samples to be effective. Unfortunately, a larger neighbor system
entails intractable computational problems, thereby limiting the benefits of conventional MRF modelling.
Furthermore, algorithms involving MRF-based strategies traditionally require an iterative optimization
step, such as simulated annealing, which is extremely time consuming. Yet the use of spatial information
does result in improved classification accuracy and ought to be considered.

Benediktsson et al. have proposed using advance morphological filters as an alternative way of per-
forming joint classification [8]. Rather than defining a crisp neighbor set for every pixel, morphological
filters make it possible to analyze the neighborhood of a pixel according to the structures to which it
belongs. This approach has given good results for various urban data sets [8, 28, 7]. But the construction
of the features vector, the morphological profile (MP), can result in a high-dimensional vector where the
spectral information is not fully exploited. The problems arising for classification of the MP are the same
as those for hyperspectral data: the curse of dimensionality.

When the data is represented by a vector in a vector space of high dimensionality – say more than
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(a) (b) (c)

Figure 0.2: ROSIS data: (a) Band 20 (b) Band 60 (c) Band 90.

50 – theoretical and practical problems arise. Major instances are the difficulties of statistical estimation
(aggravated by the relatively small size of the training set), the Hughes phenomenon, and redundancy in
the vector component information. More details are given at the start of Chapter 1, but problems (which
are not specific to urban areas) related to the dimensionality of the features vector have to be handled
carefully because of the requirement to add contextual information to the original spectral information.
However, traditional approaches such as statistical and neural methods may fail with high-dimensional
data, and hence not be appropriate for use where spatial information is included.

The problem of dimensionality has traditionally been tackled by the use of Features Extraction (FE)
algorithms [80, 49]. Standard unsupervised techniques are Principal Component Analysis (PCA), Inde-
pendent Component Analysis (ICA); supervised ones include Discriminant Analysis Feature Extraction
(DAFE), Decision Boundary Feature Extraction (DBFE), and Non-parametric Weighted Feature Extrac-
tion (NWFE) [80, 67]. It is preferable to use supervised transformations because the projection into
the subspace minimizes a classification error criterion. However, the performance of such methods is
closely related to the quality of the reference or training set. Consequently, unsupervised methods are
of interest, but since the criterion to minimize is not related to the classification error, the projection
is not optimal for the purpose of classification. However, the aim of feature-reduction algorithms is not
necessarily classification, but also representation. Several unsupervised algorithms are used to find a sub-
space to represent hyperspectral data, for visualization or processing. The latter is very interesting, since
many image-processing algorithms are only defined for mono-valued images. Using feature-reduction
algorithms, it is possible to extract mono-valued images and, for instance, apply suitable algorithms to
extract spatial information [7].

Analyzing remote-sensing data over urban areas presents multiple difficulties:

• The large size of the data is a problem,
• The ground truth is limited,
• Spatial/contextual information is needed,
• The extraction of the spatial information is difficult.

Another difficulty lies in the evolution in the properties of the data itself: spectral and spatial resolutions
have increased a great deal since the ’70s, as well as the area covered by the sensor, and the magnitude of
each spectral value – from the original 8-bits to 16-bits now. Hence algorithms well suited to a certain type
of data will not necessarily be suitable for another type of data. For instance, one particular statistical
model may hold good for a given sensor, but may be unsuitable for another sensor. The increasing
complexity of remote-sensing data may explain why no significant improvement in classification accuracy
for satellite image classification has been reported for quite some time [128]. This ought to encourage
the use of a methodology that is based on sensor-invariant assumptions.

One very common assumption is the Gaussian assumption that assumes the data exhibit a Gaussian
distribution [80]. This lies at the very foundation of the popular Gaussian Maximum Likelihood classifiers.
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However, this assumption is not necessarily satisfied for all data sets – for instance, the Morphological
Profile or multi-source data are examples of non-Gaussian data. Another sensor-based assumption is
traditionally made when the user defines a fixed neighborhood for every pixel. A pixel’s neighbors
depend both on the structures to which it belongs and on the spatial resolution of the image.

One other consequence of the evolution in sensors is the availability of several data sets for the
same area. In the ’90s, Benediktsson and co-workers showed that the use of several sources increased
classification accuracy [6, 10, 9, 13, 11]. There is a need for a general framework for incorporating the
different sources into the classification process. Two approaches can be adopted, depending on whether
the multi-source data is used before classification or after. The first deals with the sources themselves
while the latter deals with the classifier outputs. If we consider the spatial information as another
information source, spatial and spectral data fusion is possible.

The work presented in this thesis is an attempt to propose tools and methodologies that do not use
either of the two previous assumptions and solve the problem of joint classification of remote-sensing
data over urban areas. As a priority, classification should be achieved using both the spectral and spatial
information available. Hence the spatial information extraction process should be sensor-independent,
implying an adaptive methodology for analyzing the inter-pixel dependency of the image. Then the
classification process should not involve sensor-dependent modeling. To assess the effectiveness of the
method, we use various data sets: very high spatial resolution panchromatic data from two different
sensors (IKONOS and PLEIADES) were used, as well as three different hyperspectral data sets, two
from airborne sensors and one from a satellite sensor.

This work is divided into six chapters:

1. The first chapter of this thesis addresses the problem of feature extraction. A non-linear unsu-
pervised feature-extraction algorithm is proposed to overcome the limitations of traditional PCA.
The objective is to reduce the dimension of the data without any ground truth for classification
using conventional classifiers that are adversely affected by dimensionality.

2. For analyzing data in the spatial domain, algorithms working on the structures of the image, such
as Mathematical Morphology, seem very appropriate: they are able to analyze structures regardless
of size. The morphological profile [101, 8] makes sensor-independent analysis possible in the spatial
domain, though a degree of refinement is still possible taking the sensor’s spatial resolution into
account. In Chapter 2, the morphological profile is reviewed, together with its extension to the
multi-spectral case. Because of inherent properties of the morphological filters, the morphological
profile is unable to provide a full description of the scene. Moreover, morphological filters do not
exist1 for multi-dimensional images. An alternative approach based on self-complementary filters is
proposed. The objective is to overcome the limitations of the morphological profile, without losing
its advantages. The proposed filter makes it possible to analyze image structures independently
of their local contrast.

3. The Support Vector Machine (SVM) is presented in Chapter 3 as a classifier suited to the problem
of classification of remote-sensing data. It is robust to the dimensionality of the data and has good
generalization performance, even in the situation of a limited training set. Moreover, classification
does not involve any assumptions about data distribution. Its superiority over standard classifiers
(statistical and neural) is studied using simulated and real data sets. Then several training proce-
dures are investigated. In each case, SVM outperforms others classifiers in terms of classification
accuracy.

4. Chapter 4 deals with the transferability of the decision function obtained by the SVM. As explained
in the previous paragraph, the spectral characteristics of classes may change between two sensors,
and also between two different locations – due to variations in illumination, for example. Thus
the decision function obtained for a given data set may be not suitable for a new data set. In
this work, we propose constructing the decision function using spatial features, which should be
invariant for urban area, and constructing an invariant decision function.

1With exactly the same properties as for flat images.
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Using the spatial features proposed in Chapter 2, a joint spectral/spatial classification based on
SVM is proposed, the spectro-spatial SVM. A kernel formulation is suggested for such a purpose.

5. Decision fusion is addressed in Chapter 5. One way to improve the classification of urban area data
is to take advantage of several existing classifiers. A framework is proposed that can handle several
classifiers with various type of output. Fuzzy set and fuzzy logic are used to deal with uncertainty
and the conflictual situations that may ensue. A specific application for an SVM-based classifier
is then proposed.

6. Another way to use the spatial and spectral information by means of multi-source fusion is proposed
in Chapter 6. Spectral and spatial information are seen as two separate sources. The fusion scheme
proposed is in two steps: first, a supervised feature-reduction algorithm is used to remove possible
redundancy, and then feature vectors are constructed by concatenation of the extracted spatial
and spectral information.

These chapters are organized into three parts, each containing two chapters. Part 1 relates to feature
extraction, whether in the spectral or spatial domain. Part 2 is devoted to the classification algorithms,
especially the SVM, and to the inclusion of the spatial information. Part 3 deals with data fusion. Two
levels of data fusion are investigated: at decision level and at data level. Finally, the work ends with
some conclusions and prospects.

Kernel methods presented in Chapters 1, 3, and 4 use the so-called ‘kernel trick’. An overview of kernel
method theory is given in Appendix A. The equivalence between a positive semi-definite function and
an inner product in Reproducing Kernel Hilbert Space is detailed. Then the ‘Representer Theorem’ is
stated with its proof. We give a practical example of the ‘kernel trick’ to compute the smallest enclosing
hypersphere. Appendix B explains how the accuracies are computed in this thesis. The confusion matrix
is presented and accuracy estimators are summarized: overall accuracy (OA), average accuracy (AA),
and the Kappa coefficient. In the final appendix, all of the data used in this work are presented, together
with their training and testing sets.
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Chapter 1

Spectral Feature Extraction

Abstract

The chapter deals with spectral feature extraction for hyperspectral data. Problems occurring with high-

dimensional space are first briefly explained and the nature of feature extraction algorithms based on signal

theory are presented. Starting from some limitations of the state-of-the-art algorithms, an unsupervised

non-linear feature extraction algorithm, namely kernel principal component analysis, is detailed. Then,

experiments on real hyperspectral data are conducted for the purpose of classification. Two different

classifiers, a neural network and a linear support vectors machine, are used to classify the data using the

extracted features. Experimental results show the effectiveness of the non-linear approach, which makes

it possible to extract more informative features. Furthermore, it is found that the extracted features make

the classification problem more linearly separable.
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IN THE SPECTRAL DOMAIN, pixels are vectors where each component contains specific wavelength
information provided by a particular channel [23]. The size of the vector is related to the number of

bands that the sensor can collect. For hyperspectral data, 200 or more spectral bands of a same scene
may be available, while for multispectral images about ten bands are accessible, and for panchromatic
images, only one.

With increasing dimensionality of the data in the spectral domain, theoretical and practical problems
arise. The idea of the dimension is intuitive, driven by experiments in one-, two- or three-dimensional
space, and geometric concepts that are self-evident in these spaces do not necessarily apply in higher-
dimensional space [80, 75]. For example, normally-distributed data have a tendency to concentrate in
the tails, which seems to be contradictory with its bell-shaped density function. For the purpose of
classification, these problems are related to the curse of dimensionality. In particular, Hughes showed
that with a limited training set, beyond a certain limit, the classification accuracy decreases as the
number of features increases [66]. This is paradoxical, since with a higher spectral resolution one can
discriminate more classes and have a finer description of each class, but the data complexity leads to
poorer classification.

To mitigate this phenomenum, feature selection / extraction is usually performed as pre-processing
to hyperspectral data analysis [80]. Such processing can also be performed for multispectral images, to
enhance class separability or to remove a certain amount of noise.

In the following discussion, some well-known problems of hyperspectral data in the spectral domain
are discussed (1.1), then the bases of feature selection are presented (1.2). Limitations of the state-of-the-
art methods are highlighted and a non-linear version of Principal Component Analysis is presented (1.4).
Experiments on the classification of real hyperspectral data are presented (1.5).

1.1 High-dimensional space

In this section, classic problems encountered in high-dimensional space are presented. Theoretical and
experimental research sheds some light on these. A great deal of material can be found in [66, 70, 75] and
a survey of high-dimensionality data analysis is given in [43]. The main results are expounded without
the mathematical formulation, but an understanding of these concepts is essential in order to be able to
analyze hyperspectral data:

1. The second-order statistic plays an important role in classification: it has been shown that when
the dimensionality increases, considering only the variance of multivariate data led to significantly
better classification results than considering only the mean [70, 82].

2. In high-dimensional space, normally-distributed data tend to concentrate in the tails, while uniformly-
distributed data tend to the corners (the ‘concentration of measure’ phenomenon [43]).

3. Hughes effect: with a limited number of training samples, there is a classification accuracy penalty
as the number of features increases beyond a certain point [66].

4. It has been proved that for good estimation of the parameters, the required number of training
samples is linearly related to the dimensionality for a linear classifier and to the square of the
dimensionality for a quadratic classifier [59].

From 2, the local neighborhood is very likely to be empty, making statistical estimation difficult and 1
is difficult to satisfy in a practical situation. Four suggests that the number of available training samples
should increase with dimensionality, but in general this is not possible, especially with remote-sensing
data, and this problem leads to 3. Hopefully, since high-dimensional spaces are mostly empty, the multi-
variate data can usually be represented in lower-dimensional space without losing significant information
in terms of class separability. Furthermore, the projected data tend to be normally distributed [62, 41],
thus enable the use of a conventional classifier based on the Gaussian assumption. Based on these con-
siderations, several feature selection methods were proposed [80]. In the next section, we present some
of the bases for dimensionality reduction.
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1.2 Dimensionality reduction: feature selection – feature ex-

traction

Dimensionality reduction is a technique aimed at reducing the dimensionality of data by mapping
them onto another space of a lower dimensions, without discarding any meaningful information. Fur-
thermore, meaningful information is defined according to the final processing: classification, detection,
representation, and so on. Feature selection is the technique of selecting a subset of relevant features,
while feature extraction is a method of combining features – both in order to obtain a relevant represen-
tation of the data in a lower-dimensional space. Such strategies were initially designed in accordance with
both the specific characteristics of the remote sensors and the objectives (e.g. agricultural or geological
context), such as the Tasseled Cap or the NDVI [80]. However, each transformation is sensor-dependent
and the physical analysis associated with each transformation can be untractable for hyperspectral data.

Transformations based on statistical analysis have already proved to be useful for classification, de-
tection, identification, or visualization of remote-sensing data [23, 109, 76, 135]. Two main approaches
can be defined:

1. Unsupervised feature extraction: The algorithm works directly on the data without any ground-
truth. Its goal is to find another space of lower dimension for representing the data.

2. Supervised feature extraction: Training set data are available and the transformation is performed
according to the properties of the training set. Its goal is to improve class separability by projecting
the data onto a lower dimensional space.

Supervised transformation is in general well suited to pre-processing for the task of classification,
since the transformation improves class separation. However, its effectiveness is correlated with how
well the training set represents the whole data set. Moreover, this transformation can be extremely
time-consuming. The unsupervised case does not focus on class discrimination, but looks for another
representation of the data in a lower-dimensional space, satisfying some given criterion. For Principal
Component Analysis (PCA), the data are projected into a subspace that minimizes the reconstruction
error in the mean square sense. Note that both the unsupervised and supervised cases can be also divided
into linear and non-linear algorithms.

PCA plays an important rôle in the processing of remote-sensing images. Even though its theoretical
limitations for hyperspectral data analysis have been pointed out [84, 80], in a practical situation the
results obtained using PCA are still competitive for the purpose of classification [72, 85]. The advantages
of PCA are its low complexity and the absence of parameters. However, PCA only considers the second-
order statistic, which can limit the effectiveness of this method. Section 1.4 presents a non-linear version
of PCA, namely Kernel Principal Component Analysis (KPCA), which considers higher-order statistics.

1.3 Principal Component Analysis

1.3.1 Principles

PCA is a classic technique in statistical data analysis. It aims to de-correlate the variables x1, . . . , xn
of a given random vector x ∈ R

n. The variables of the projected vector y = Ptx are uncorrelated with
the other variables. This means that its covariance matrix Σy = E [ycytc] is diagonal, where yc is the
centered vector y. The computation of the covariance matrix can be written as:

Σy = E

[
(y−my) (y−my)

t
]

= E

[
(Ptx−Ptmx) (Ptx−Ptmx)

t
]

= PtE
[
(x−mx) (x−mx)

t
]

P

= PtΣxP.

(1.1)
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Figure 1.1: Covariance matrix for two hyperspectral data sets acquired using the same sensor.

Σx is a real-valued symmetric matrix of finite dimension. By the spectral theorem, Σx can be diag-
onalized by an orthogonal matrix M (Mt = M−1) : M−1ΣxM = Σy (from (1.1)). By identification,
P is an orthonormal matrix which is found by solving the eigenvalues (λ) problem with unitary norm
condition on the eigenvectors (v):

λv = Σxv

‖v‖2 = 1.
(1.2)

It turns out that P consists of the set of all eigenvectors v of Σx, with one eigenvector per column.

1.3.2 Reducing the dimensionality using PCA

The eigenvalues obtained represent the variance of the variable y, i.e., var(yi)= λi. They are stored
in decreasing order λ1 > λ2 · · · > λn and 〈eλi , eλj 〉Rn = δij 1. Feature reduction is performed using the
following postulate: the greater the variance, the greater the contribution to the representation. Thus,
variables associated with high eigenvalues need to be considered and should remain after feature reduction.
The problem lies in selecting sufficient principal components so that the reconstruction error is low. It
can be shown [67] that the error in reconstruction, in the mean square sense, of x using only the k first
principal components is

MSE =
n∑

i=k+1

λi. (1.3)

Therefore, k is chosen in order to make the MSE fall below a given threshold tpca, usually 5% or 10%
of the total variance:

∑n
i=k+1 λi∑n
i=1 λi

≤ tpca. (1.4)

Note this strategy is optimal for the purpose of representation [59]. As said in Section 1.2, PCA is an
unsupervised algorithm which objective is to represent the data in a lower dimensional space withtout
discarding meaningful information. It do not use a criterion which is related to the classification error.

1δij =

{
1 if i = j

0 if i 6= j
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1.3.3 Computing the PCA

The PCA is related to the diagonalization of the auto-correlation matrix of the initial random vector,
which is estimated as:

Σx = E

[
(x−mx) (x−mx)

t
]
≈ 1

ℓ− 1

ℓ∑

i=1

(
xi −mx

) (
xi −mx

)t
(1.5)

and the mean value is estimated:

mx = E(x) ≈ 1

ℓ

ℓ∑

i=1

xi (1.6)

where ℓ is the number of observed data. Algorithm 1 presents a pseudo code for PCA.
This algorithm was applied in [135], where the authors derived the NDVI by means of PCA using the

near-infrared and red IKONOS bands. In their experiments, the statistical processing made a physical
interpretation possible. However, in general, such interpretation is difficult with hyperspectral data.

Figures 1.1(a) and 1.1(b) present the covariance matrices for two hyperspectral data sets. Solving the
eigenvalues problem (1.2) yields the results reported in Table 1.1. Regarding the cumulative eigenvalues,
in each case three principal components reach 95% of total variance. After PCA, the dimensionality of the
new representation of University Area data set is 3 and for the Pavia Center data set, 2. This means that
using second-order information, the hyperspectral data can be reduced to a two- or three-dimensional
space. But, as experiments in Section 1.5 will show, hyperspectral richness is not fully handled using only
the mean and variance/covariance of the data, and more advanced algorithms need to be used, bearing
in mind the two advantages of PCA: low complexity and absence of parameters. In the next section,
a non-linear version of PCA is presented. The non-linearity is introduced in order to take higher-order
statistics into account.

Table 1.1: PCA: Eigenvalues and cumulative variance in percentages for the two hyperspectral data sets.

Pavia Center University Area

Component % Cum. % % Cum. %

1 70.24 70.24 58.32 58.32

2 26.07 96.31 36.10 94.42

3 2.81 99.12 4.44 98.86

4 0.32 99.34 0.30 99.16

Algorithm 1 Principal Component Analysis

1: mx = 1
ℓ

∑ℓ
i=1 xi

2: xc = x−mx

3: Σx =
1

ℓ− 1

∑ℓ
i=1 xic(x

i
c)
t

4: Solve: λv = Σxv subject to ‖v‖2 = 1

5: Project on the first k principal components: xpc =
[
v1 . . . vk

]t
x

1.4 Kernel PCA

In recent years, several non-linear versions of PCA have been investigated [67, 42]. Traditionally, these
have been based on a degree of non-linear processing/optimization in the input space. The one discussed
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(a) First principal component (b) Second principal component

Figure 1.2: First two principal components, Pavia Center data set.
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(a) First principal component (b) Second principal component

Figure 1.3: First two principal components, University Area data set.

in this thesis is based on non-linear mapping to a feature space where the original PCA algorithm is then
applied [113]. The complexity of the overall processing is reduced thanks to kernel methods that make
it possible to compute the inner product in a feature space by means of a kernel function in the input
space [111, 118, 93]. A brief presentation of kernel method theory can be found in Appendix A.

1.4.1 PCA in the feature space

To capture higher-order statistics, the data can be mapped onto another space H:

Φ : R
n → H
x 7→ Φ(x).

(1.7)

Φ is a function that may be non-linear, and the only restriction on H is that it must have the structure
of a reproducing kernel Hilbert space (RKHS), not necessarily of finite dimension. In the following, the
dot product in the RKHS is denoted by 〈., .〉H and its associated norm by ‖.‖H.

The main idea behind the mathematical formulation is that the data are mapped onto a subspace of
H spanned by Φ(x1), . . . ,Φ(xℓ). As a result, we are looking at solutions (eigenvectors) generated by the
projected samples (see the Representer Theorem [110] in Appendix A).

To apply the kernel trick, we must first rewrite the PCA in the feature space in terms of inner prod-
uct [113]. Considering that the data are centered in the feature space (we will show how in Section 1.4.2)
the estimate of the covariance matrix ΣΦ(x) is:

ΣΦ(x) =
1

ℓ− 1

ℓ∑

i=1

Φ(xi)Φ(xi)t (1.8)
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and the eigenvalues problem is:

λvΦ = ΣxvΦ

‖vΦ‖H = 1.
(1.9)

Combining (1.8) and (1.9) leads to:

λvΦ =

(
1

ℓ− 1

ℓ∑

i=1

Φ(xi)Φ(xi)t
)

vΦ

=
1

ℓ− 1

ℓ∑

i=1

〈Φ(xi),vΦ〉HΦ(xi).

(1.10)

Clearly, vΦ now lies within the span of Φ(x1), . . . ,Φ(xℓ):

vΦ =
ℓ∑

i=1

αiΦ(xi). (1.11)

Substituting (1.11) into (1.10):

λ

ℓ∑

i=1

αiΦ(xi) =
1

ℓ− 1

ℓ∑

i=1

〈
Φ(xi),

ℓ∑

j=1

αjΦ(xj)

〉

H

Φ(xi)

λ
ℓ∑

i=1

αiΦ(xi) =
1

ℓ− 1

ℓ∑

i=1

j=1

αj〈Φ(xi),Φ(xj)〉HΦ(xi).

(1.12)

Putting (1.12) into
∑ℓ
m=1〈.,Φ(xm)〉H:

λ
ℓ∑

i=1

m=1

αi〈Φ(xi),Φ(xm)〉H =
1

ℓ− 1

ℓ∑

i=1

j=1

m=1

αj〈Φ(xi),Φ(xj)〉H〈Φ(xi),Φ(xm)〉H. (1.13)

Defining K as an ℓ× ℓ matrix by Kij := 〈Φ(xi),Φ(xj)〉H and α as the vector generated from αi, (1.13)
can be written as:

λKα =
1

ℓ− 1
K2α. (1.14)

Thus to find the eigenvectors, one has to find α by solving (1.14). However, it has been shown in [113, 112]
that it is sufficient to solve the following eigenvalue problem for non-zero eigenvalues:

λα =
1

ℓ− 1
Kα. (1.15)

To prove this [113], consider that eigenvectors lying in the subspace spanned by the projected sample are
only of interest. Let us denote the set of solutions of (1.14) by S1

α
and the set of solutions of (1.15) by

S2
α

. Since K is real and symmetric, its eigenvectors ψi, i ∈ [1, ℓ], form an orthonormal basis in H and
we have νiψ

i = Kψi and α =
∑ℓ
i=1 aiψ

i. (1.14) can then be rewritten as:

λK

ℓ∑

i=1

aiψ
i =

1

ℓ− 1
K2

ℓ∑

i=1

aiψ
i

λ

ℓ∑

i=1

aiKψ
i =

1

ℓ− 1

ℓ∑

i=1

aiK
2ψi

(ℓ− 1)λ
ℓ∑

i=1

aiνiψ
i =

ℓ∑

i=1

aiν
2
i ψ
i.

(1.16)
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So for S1
α

:

S1
α

:=

{
α =

ℓ∑

i=1

aiψ
i

∣∣∣∣∀i : (λ(ℓ− 1) = νi) ∨ (νi = 0) ∨ (ai = 0)

}
. (1.17)

Following the same reasoning, for S2
α

:

S2
α

:=

{
α =

ℓ∑

i=1

aiψ
i

∣∣∣∣∀i : (λ(ℓ− 1) = νi) ∨ (ai = 0)

}
. (1.18)

Clearly S2
α
⊂ S1

α
and S1/2

α can be define as the set of solutions of (1.14) that are not solutions of (1.15):

S1/2
α

:=

{
α =

e∑

i=1

aiψ
i

∣∣∣∣∀i : νi = 0

}
(1.19)

where e is the number of eigenvectors corresponding to zero eigenvalue (e < ℓ). For all α ∈ S1/2
α

Kα = 0

∀i :
ℓ∑

j=0

Kijαj = 0

∀i :
ℓ∑

j=0

〈Φ(xi),Φ(xj)〉Hαj = 0

∀i : 〈Φ(xi),
ℓ∑

j=0

αjΦ(xj)〉H = 0

∀i : 〈Φ(xi),vΦ〉H = 0.

(1.20)

This result shows that all eigenvectors of ΣΦ(x) corresponding to eigenvectors with zero eigenvalues of K

are irrelevant, because they are orthogonal to the subspace of H spanned by the projected sample. So
the resolution of (1.15) gives the whole solution of (1.9). The normalization condition in (1.9) becomes:

〈vpΦ,v
p
Φ〉H = 1〈

ℓ∑

i=1

αpiΦ(xi),
ℓ∑

i=j

αpjΦ(xj)

〉

H

= 1

〈αp,Kαp〉H = 1

λp 〈αp,αp〉H = 1

‖αp‖H =
1

λp
.

(1.21)

Thus, the eigenvalue problem (1.9) is solved by:

λα = Kα

‖α‖H =
1

λ

(1.22)

and the projection onto the kth principal component:

Φkkpc(x) = 〈vΦ(x),Φ(x)〉H

= 〈
ℓ∑

i=1

αkiΦ(xi),Φ(x)〉H

=
ℓ∑

i=1

αki 〈Φ(xi),Φ(x)〉H.

(1.23)
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1.4.2 KPCA in the input space

As shown in the previous section, the PCA in the feature space consists of diagonalizing the square
symmetric matrix K composed of all possible inner products of the set of mapped samples. This type of
matrix is called a Gram Matrix:

K =




〈Φ(x1),Φ(x1)〉H 〈Φ(x1),Φ(x2)〉H . . . 〈Φ(x1),Φ(xℓ)〉H
〈Φ(x2),Φ(x1)〉H 〈Φ(x2),Φ(x2)〉H . . . 〈Φ(x2),Φ(xℓ)〉H

...
...

. . .
...

〈Φ(xℓ),Φ(x1)〉H 〈Φ(xℓ),Φ(x2)〉H . . . 〈Φ(xℓ),Φ(xℓ)〉H



. (1.24)

Thanks to the kernel property, the inner product in the feature space can be derived in the input space
using kernel function. Details can be found in appendix A. K is therefore called the Kernel Matrix:

K =




k(x1,x1) k(x1,x2) . . . k(x1,xℓ)

k(x2,x1) k(x2,x2) . . . k(x2,xℓ)
...

...
. . .

...

k(xℓ,x1) k(xℓ,x2) . . . k(xℓ,xℓ)



. (1.25)

Using K, the non-linearity is included in the kernel function and mapping is no longer necessary.
All computations are done in the input space, while PCA is performed implicitly in the feature space.
Projection on the first KPCs can also be done in the input space, using the kernel function in (1.23).

However, in the previous section we have assumed that the data are centered in H. This can be done
in the feature space:

Φc(x
i) = Φ(xi)− 1

ℓ

ℓ∑

k=1

Φ(xk) (1.26)

but to be applied directly in the input space, it needs to be done in terms of dot product [113]:

kc(x
i,xj) = 〈Φc(xi),Φc(xj)〉H

= 〈Φ(xi)− 1

ℓ

ℓ∑

k=1

Φ(xk),Φ(xj)− 1

ℓ

ℓ∑

k=1

Φ(xk)〉H

= 〈Φ(xi),Φ(xj)〉H −
1

ℓ

ℓ∑

k=1

〈Φ(xi),Φ(xk)〉H −
1

ℓ

ℓ∑

k=1

〈Φ(xk),Φ(xj)〉H +
1

ℓ2

ℓ∑

k=1

m=1

〈Φ(xk),Φ(xm)〉H

= k(xi,xj)− 1

ℓ

ℓ∑

k=1

k(xi,xk)− 1

ℓ

ℓ∑

k=1

k(xk,xj) +
1

ℓ2

ℓ∑

k=1

m=1

k(xk,xm) (1.27)

The equivalent formula in matrix form is [112]:

Kc = K− 1ℓK−K1ℓ + 1ℓK1ℓ (1.28)

where 1ℓ is a square matrix such as (1ℓ)ij = 1
ℓ . Finally, KPCA is performed in the input space following

Algorithm 2.
Dimensionality reduction is performed the same way as in PCA. When the kernel matrix is diago-

nalized, the first k kernel principal components, corresponding to a set level of cumulative variance, are
retained. In general, KPCA provides more kernel principal components than in PCA; furthermore, one
may even obtain more kernel principal components than the initial dimension of the data (since the kernel
matrix is generally of a higher dimension than the covariance matrix). But this property is of no interest
when considering KPCA for feature extraction.
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Algorithm 2 Kernel Principal Component Analysis

1: Compute K using (1.25)
2: Center K using (1.27)
3: Solve: λα = Kα subject to ‖α‖2 = 1

λ

4: Project on the first k kernel principal components: Φkpc(x) =
[
Φ1
kpc(x) . . . Φkkpc(x)

]t

Φkkpc(x) =
ℓ∑

i=1

αki k(x
i,x)

1.4.3 Computing the KPCA

To compute the KPCA, it is first necessary to choose the kernel function to build the kernel matrix.
For experimental purposes, the RBF kernel (A.13) was used:

k(x,y) = exp

(
−‖x− y‖2

2σ2

)
. (1.29)

As explained in Appendix A, the width σ of the exponential has to be tuned correctly to fit the data
properly. Two strategies can be adopted:

1. Use a fixed σ and tune it according to some general characteristics, e.g., the number of bands.
2. Perform a certain amount of processing to find an appropriate value, e.g., fit σ equal to the radius

of the minimal enclosing hypersphere (see Appendix A).

Both these strategies have been investigated in this thesis. The first one was motivated by the good
performance of such a setting for the purpose of classification. The second strategy was based on the fact
that the kernel matrix emphasizes the similarity between samples (the kernel matrix is sometimes called
the similarity matrix [118]). Still from [118], a good kernel matrix is a matrix where clusters appear;
the worst case is a diagonal matrix. To be sure that each sample is able to influence its neighbors in the
spectral domain, the exponential kernel should be large enough for samples belonging to the same cluster
to form blocks in the kernel matrix. In the introduction we stated that normally-distributed N (0, 1)
data have a tendency to concentrate in the tails; it has been proved moreover that the expected norm of
such variables is equal to the square root of the dimension [43]. This means that the dimension of the
space grows faster than the mean distance between samples. Thus the strategy of setting σ equal to the
dimension does not seem to be appropriate. It ought to be better to estimate the support of the samples.
In this thesis, we have investigated the use of the minimal enclosing hypersphere. The main motivation
is its relative computational simplicity and the possibility of using it in conjunction with kernel methods.
An algorithm to compute the radius RS and center CS of the hypersphere is given in Appendix A. Note
that we are only interested in the radius, as we tuned 2σ2 to be equal to the radius.

To verify this assumption empirically, we generated 100 samples from three different multi-dimensional
Gaussian distributions, for several dimensionalities of the data. We have computed the kernel matrix
using two different values of sigma, one equal to the number of variables and one equal to the radius of
the minimal hypersphere. The results are reported in Figure 1.4. It is clear that when the dimensionality
increased, tuning σ as a function of the radius yields the best results; in Figure 1.4(j) three clusters can
be readily identified, each of them corresponding to one Gaussian distribution.

Figures 1.5 and 1.6 present the first Kernel PC (KPC) obtained with σ tuned according to the radius
and Table 1.2 shows the variance and cumulative variance for the two data sets. The kernel matrix was
constructed using 5000 randomly-selected samples. For the Pavia Center data set, the radius of the
minimal enclosing hypersphere was 9.47 and 9.03 for the University Area data set. From the table, it can
be seen that more kernel principal components are needed to achieve the same amount of variance than
in the conventional PCA. For the University data set, the first 11 KPCs are needed to achieve 95% of the
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Table 1.2: KPCA: Eigenvalues and cumulative variance in percent for the two hyperspectral data sets.

Pavia Center University Area

Component % Cum. % % Cum. %

1 45.97 45.97 32.52 32.52

2 21.44 61.41 26.73 59.25

3 14.95 82.36 16.85 76.10

4 4.83 87.19 4.04 80.14
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Figure 1.4: Comparison of the kernel matrix for two σ tuning strategies. The dimensions of the samples

were 2, 10, 50, 100, and 500 respectively. The first 100 were generated from the same distribution, then

the next 100 samples, and so on.

variance and only 8 for the Center data set. This may be an indication that more information is extracted
with the KPCA. Experiments will show whether this information is useful or not for classification.

1.5 Experiments

In this section, experiments in feature reduction for the classification of hyperspectral data are pre-
sented. In the first experiment, KPCA is compared with PCA and a supervised feature-reduction algo-
rithm, namely Decision Boundary Feature Extraction. In a second experiment, the influence of the σ
parameter in kernel matrix construction is investigated in accordance with the scheme proposed in the
previous section.

1.5.1 KPCA vs Traditional Methods

1.5.1.1 Objectives

In this experiment [48], we have compared KPCA with PCA and a linear supervised feature extraction
method, DBFE, as pre-processing for the classification of hyperspectral data using a neural network. We
first recall briefly what DBFE is, and then present the experimental results.
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(a) First kernel principal component (b) Second kernel principal component

Figure 1.5: First two kernel principal components, Pavia Center data set.
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(a) First kernel principal component (b) Second kernel principal component

Figure 1.6: First two kernel principal components, University Area data set.

The principle of DBFE is to extract discriminantly informative features from the decision boundary
between two classes [83, 80]. Under Bayes’ theorem, the decision boundary is

x : {p(w1)p(x|w1) = p(w2)p(x|w2)} . (1.30)

where p(wi) is the appearance probability for the class i and p(x|wi) is the conditional probability of x

to belong to wi. From equation (1.30), x ∈ w1 if p(w1)p(x|w1) > p(w2)p(x|w2).
In [83, 80], the authors have defined discriminant informative features as features that change the

position of x across the decision boundary. It can be proved that every discriminant informative feature
is normal to the decision boundary at at least one point. By denoting as n(x) the unit normal vector to
the decision boundary at point x, they defined the Decision Boundary Feature Matrix (DBFM) [83]:

ΣDBFE =
1

Q

∫

S

n(x)n(x)tp(x)dx. (1.31)

The rank of the DBFM of classification problem is equal to the intrinsic discriminant dimension. Hence
the eigenvectors of the DBFM corresponding to non-zero eigenvalues are the necessary feature vectors
to achieve the same classification accuracy as in the original space [80]. The authors of [83, 80] have
generalized the DBFE to a multiclass case and propose an algorithm for a neural network classifier,
which was used in their experiments.

Such an algorithm is specially designed for the classification problem. But the efficiency of the
algorithm is very closely related to the training set. In the following experiments, we deliberately used a
limited number of training samples in order to investigate this phenomenon [48].

Our test images are from the ROSIS 03 sensor, the number of bands is 103 with spectral coverage
from 0.43 through 0.86µm. The image area is 610 by 340 pixels. PCA and KPCA were applied on these
data. The kernel function used was the RBF kernel, where the parameter γ was set to 100. The kernel
matrix was computed with 5000 pixels, selected at random. For PCA, 95% of the total eigenvalue sum
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Table 1.3: Overall classification accuracy in percentage for the experiments in 1.5.1.2.

PCA KPCA DBFE All

No. of feat. 1 2 3 1 2 3 4 5 6 7 28 8 26 103

Testing 37.7 69.9 73.1 37.3 66.0 72.4 73.1 74.4 74.9 74.5 55.1 64.1 43.4 27.3

Training 39.7 71.2 74.1 39.4 66.6 75.3 76.8 77.9 79.1 78.1 59.9 68.2 43.6 30.4

is achieved with the first three components, while with KPCA 28 components are needed. However, the
total number of components with PCA is equal to the number of channels, while with KPCA it is equal
to the size of the kernel matrix, i.e., the number of samples used, which is significantly higher.

1.5.1.2 Experiments

In this experiment, the previously-extracted features were used as input to a back-propagation neural
network classifier with one hidden layer. The number of neurons in the hidden layer is twice the number
of outputs, i.e., the number of classes. The training set consisted of 3921 pixels with labels. 9 classes
were used in the classification: asphalt, meadow, gravel, tree, sheet metal, bare soil, bitumen, brick, and
shadow. A quarter of the labeled samples were used for training, the others samples were used for testing.
The results were compared with classification of the full spectrum and DBFE-transformed features.

The results are listed in Table 1.3. The classification of the full spectrum demonstrate the Hughes
phenomenon: the number of training samples (980) was too small compared with the dimensionality of
the data (103), leading to poor classification accuracy: 27.3%. Classification using 1 principal component
yielded slightly better results for PCA and KPCA. For PCA, with 3 principal components (corresponding
to 95% of the total variance) the overall classification accuracy on the test set is 73.1%; adding more bands
does not significantly improve classification accuracy, and adding too many bands worsened classification,
as predicted by the Hughes phenomenon. For KPCA, classification accuracy reached 74.5% with 7
features, corresponding to 81.02% of the variance. For 6 to 10 bands, the results remained nearly equal
(≈ 74.5%), and then decreased if the number of bands was increased further. For DBFE, with 8 features,
corresponding to 62.2% of the total variance, classification is slightly worse than with two principal
components, while with 26 features, corresponding to 95% of the variance criterion, classification accuracy
is worse still. Nevertheless, with more training samples, DBFE ought to yield better results [8, 80]. The
classification map obtained using 8 KPCs is shown in figure 1.7(a).

Using the first principal components from KPCA improved the classification accuracy slightly, but
unlike PCA, 95% does not seem to be the optimum value of variance yielding best classification accuracy.
In these experiments, 80% of the variance yielded the best results.

In this experiment, the parameter of the kernel was set at approximately the inverse of the number
of bands. In the following experiment, we investigate automatic tuning of this value.

1.5.2 Selection of the kernel parameter

In the previous section, the kernel parameter was set empirically to the number of bands. In this
section we propose estimating the distribution of the data in the input space by considering the radius of
the minimal enclosing hypersphere, and tuning the kernel parameter accordingly. As seen in Section 1.4
for high-dimensional space this strategy performs better than using the number of dimensions. But that
conclusion was subject to the Gaussianity of the data.

Now we are going to test this assumption on real hyperspectral data, where Gaussianity is not nec-
essarily satisfied. For each data set, KPCA was performed with two σ values. Then the KPCs were
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(a) (b)

Figure 1.7: Classification map obtained (a) using a neural network and the first 8 KPCs and (b) from

the first 11 KPCs with a linear SVM. Class descriptions: asphalt, meadow, gravel, tree, sheet metal, bare

soil, bitumen, brick, shadow.

classified using a linear SVM. The classification results are still compared to those obtained with PCA.
To speed up the processing, we only consider the first 103 (or 102) KPCs, i.e., the cumulative variance
is computed on 103 (or 102) features. For each KPCA we only use the 95% of the cumulative variance.
Details of the linear SVM are given in Chapter 3. Classification results2 are given in Table 1.4: κ is the
kappa coefficient of agreement, which is the percentage of agreement corrected by the amount of agree-
ment that might be expected due to chance alone, AA is the average of class classification accuracies and
OA is the percentage of pixels correctly classified.

The radius found for the University Area data set was 9.03, and 9.48 for the Pavia Center data set.
In terms of the results, it seems that classification accuracies are similar with both σ values. Only the
number of bands corresponding to 95% of the total variance changes. The PC-based classification yields
the worst results. When using a linear classifier, it is clear that the non-linear dimensionality reduction
performed by the KPCA helps in classification. The classification map obtained with 11 KPCs for the
University Area is shown in Figure 1.7(b).

1.6 Concluding remarks

In this chapter, the problem of the high dimensionality of the hyperspectral data has been addressed.
A non-linear version of PCA is used to reduce the dimensionality for the purpose of classification. When a
linear classifier is used, Kernel PCA provides more relevant features, as shown in the second experiment.

2Training and testing sets for this experiments were not the same as in the previous experiments.
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Table 1.4: Classification results for the University Area and Pavia Center data sets.

University Area Pavia Center

No. of feat. κ AA OA No. of feat. κ AA OA

2σ2 = Rs 11 62.04 79.36 69.91 8 94.63 90.71 96.20

2σ2 = 103 (or 102) 4 62.73 75.01 71.43 4 94.02 90.32 95.76

PCA 3 56.42 73.51 65.52 2 82.08 78.83 86.93

By relevant, we mean that in this feature space, the classes considered are more linearly separable.
However, when a non-linear classifier is used, the differences with conventional PCA are slight, and the
resulting improvement in classification accuracy is due more to the dimensionality reduction than to a
greater number of linearly-separable features.

The problem of tuning the kernel parameter has been also considered by looking at the minimal
enclosing hypersphere. Even though this approach appears worthwhile with synthetic data sets, on
real hyperspectral data no significant differences have been seen for the purpose of classification. Our
conclusions are that, just as for classification using SVM, there is no one optimal value for the kernel
parameter, but a wide range of values over which the algorithm yields simialr results.

In this section, feature reduction has been addressed for the purpose of classification only. But a large
number of image processing algorithms can be only applied to a single-band image, and hence feature
reduction can be helpful in extracting one band from multi- or hyperspectral data.
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Spatial Feature Extraction

Abstract

Spatial feature extraction from remote-sensing images is discussed in the following chapter. Spatial

information in the context of remote sensing is defined. Then, Mathematical Morphology is presented as

an important tool for the analysis of the spatial organization of an image. Basic and advanced morpho-

logical filters are discussed, such as opening and closing by reconstruction. Based on these filters, the

Morphological Profile and its derivative are introduced as a methodology for extracting information about

the shapes, sizes, and structures present in the image. Experimental results on a panchromatic image con-

firm the usefulness of the approach. However, due to the inherent properties of the Morphological Profile,

some structures in the image are not processed. In this thesis, self-complementary filters are proposed to

analyze all the structures in the image. Comparisons are made with the Morphological Profile. Finally,

the problem of multi-valued images is addressed by mean of spectral feature reduction.

Contents

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Theoretical Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Geodesics transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Morphological tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5 Ordering relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6 Morphological Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6.2 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6.3 Classification using the MP-DMP . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7 Area Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.7.1 Self-complementary area filters . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.7.2 Extracting the inter-pixel dependency . . . . . . . . . . . . . . . . . . . . . . . 45

2.8 Extension to multi-valued image . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

31



32 Chapter 2. Spatial Feature Extraction



2.1. Introduction 33

THE previous chapter presented algorithms to extract useful informative features from the spectral
domain. This chapter discusses the extraction of spatial information, mainly using Mathematical

Morphology. The primary processing is based on advanced morphological concepts which are detailed
in the first section. We give the definition of Morphological Profile and then propose an alternative
approach.

2.1 Introduction

With recent remote sensors, the acquired images now have very fine spatial resolution. Thus useful
information could be extracted in the image domain. We usually talk about contextual information or
inter-pixel dependency. This information can be modeled as the dependency between a pixel and its
neighbors. According to this dependency, it is possible to define structures, which are connected sets of
pixels with high dependency. For a remote sensing application, the structures are objects of high interest.

For image segmentation, two well-known approaches exist: find the boundary between structures (i.e.

detect transitions), or find sets of pixels that share the same characteristics (i.e. detect similitude). When
attempting to classify, the second approach is better suited, since we are not interested in the boundaries
between regions, but in the regions themselves. Thus the contextual information needs to be extracted
into structures and between structures. Figure 2.1 present some typical structures present in remote
sensing data over a lightly built-up area.

Mathematical Morphology provides a well-established theory for analyzing the spatial relationship
between sets of pixels [115, 116]. Readers will find a review of Mathematical Morphology applications
in remote sensing in [122]. Advanced Mathematical Morphology operators can extract a great deal of
structural information, such as:

• direction
• contrast
• size
• texture
• shape
• . . .

In what follows, we recall the concept of the morphological profile and the derivative of it that we use
to extract information about the size, shape, and contrast of the structures in the image [101, 8]. Then
we present its extension to multi-valued images. The limitations of the morphological profile are also
discussed. We then propose another approach, based on a self-complementary filter. The aim of this is to
simplify the image to remove structures that are irrelevant for classification. In our approach, irrelevant
structures are defined as structures that do not satisfy an area criterion, thus leading to the use of an
area self-complementary filter [121].

2.2 Theoretical Notions

Mathematical Morphology is a theory for non-linear image processing. It aims to analyze spatial
relationship between pixels. In this section, basics notions of Mathematical Morphology are presented.
Readers interesting in Mathematical Morphology can find additional material in [120, 115, 116].

In image analysis, data are represented in discrete space Z
n, and an image f is a mapping of a subset

Df of Z
n.

f : Df ⊂ Z
n → {0, . . . , fmax} (2.1)

where fmax is the maximum value of the image. In the following we only consider flat images, i.e Df ⊂ Z
2.

With Mathematical Morphology, objects of interest are viewed as a subsets of the image; then several
sets of known size and shape (such as disk, square or line) can be used to characterize their morphology.
These sets are called Structuring Element (SE). SE has always an origin, which is generally the symmetric
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Figure 2.1: Example of structural information: large, light, rectangular structure – small, circular, tex-

tured structure – long, thin, dark structure . . .

center. It allows the positioning of the SE at a given pixel x of f , i.e, its origin coincides with x. Example
of SE are given in figure 2.2.

(a) Line (b) Square (c) Discrete Disk

Figure 2.2: Example of SE.

For binary images (fmax = 1), Mathematical Morphology are mainly based on set operators such
as union, intersection, complementation and translation: SE is positioning on each pixel x and a set
operators is applied between the set which x belongs to and SE. For grey tone images, intersection ∩ of
two sets becomes the infimum ∧ and the union ∪ becomes supremum ∨. For two images f and g and a
given pixel x: (f ∧ g)(x) = min[f(x), g(x)] and (f ∨ g)(x) = max[f(x), g(x)].

Definition 2.1 (Graph and Subgraph) The graph G of image f is the set of points (x, t) such that

x ∈ Df and t = f(x):

G(f) =
{

(x, t) ∈ Z
2 × Z|t = f(x)

}
. (2.2)

The subgraph SG is the set of points (x, t) lying below the graph:

SG(f) =
{

(x, t) ∈ Z
2 × Z|t ≤ f(x)

}
. (2.3)

Figure 2.3 present an image and its graph. The two fundamental morphological operators are the erosion

and the dilation.
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(a) Original (b) Graph

Figure 2.3: Example of graph.

Definition 2.2 (Erosion) The erosion ǫB(f) of an image f by a structuring element B is defined as:

ǫB(f) =
∧

b∈B

f−b. (2.4)

Where fb is the translation by vector b of f , i.e., fb(x) = f(x − b). The eroded value at a given pixel
x is the minimum value of the image in the window defined by the SE when its origin is at x. It shows
where the SE fits the objects in the input image.

Definition 2.3 (Dilation) The dilation δB(f) of an image f by a structuring element B is defined as:

δB(f) =
∨

b∈B

f−b. (2.5)

The dilated value at a given pixel x is the maximum value of the image in the window defined by the SE
when its origin is at x. It shows where the SE hits the objects in the input image. The erosion and the
dilation are dual transformations with respect to the complementation:

ǫB(f) = [δB([f ]c)]c (2.6)

where [ ]c is the complementation operator: [f ]c(x) = fmax − f(x). This property shows the dual effect
of erosion and dilation. When erosion expands dark objects, dilation shrinks them (and vice-versa for
clear objects). Moreover, clear (respectively dark) structures that cannot contain the SE are removed by
erosion (dilation). Hence, both erosion and dilation are non-invertible transformation. Figure 2.4 shows
examples of erosion and dilation. These two operators are the basic tools of Mathematical Morphology.
The next operators, opening and closing, are a combination of erosion and dilation.

Definition 2.4 (Opening) The opening γB(f) of an image f by a SE B is defined as the erosion of f

by B followed by the dilation with the SE B1.

γB(f) = δB [ǫB(f)]. (2.7)

The idea to dilate the eroded image is to recover most structures of the original image, i.e., structures
that were not removed by the erosion.

1The true definition is with the transposed SE B̌. Transposition of B corresponds to its symmetric set with respect to

its origin. For simplicity, we only consider SE whose origin is also the symmetric center, so B̌ = B
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(a) Dilation (b) Erosion

Figure 2.4: Dilation and erosion of image 2.3(a) with a disk of radius 3 pixels.

(a) Opening (b) Closing

Figure 2.5: Opening and closing of image 2.3(a) with a disk of radius 3 pixels.

Definition 2.5 (Closing) The closing φB(f) of an image f by a SE B is defined as the dilation of f

by B followed by the erosion with the SE B.

φB(f) = ǫB [δB(f)]. (2.8)

Figure 2.5 shows result of closing and opening of an image by a disk with a radius of 3 pixels. It can be
seen that structures of size less than the SE are totally removed. Even opening and closing are powerful
operators, their major drawback is that their are not connected filters. It can be seen in figure 2.5 that
many structures have merged, for example the two bright buildings have merged into one, see 2.5(b).
To avoid that problem, geodesic morphology and reconstruction can be use. Reconstruction filters are
connected filters and they have been proved to do not introduce discontinuities. Reconstruction filters [38]
are based on geodesic morphology.

2.3 Geodesics transforms

Morphological geodesics transforms are morphological operators that use non-Euclidean geodesic dis-
tance.
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Definition 2.6 (Geodesic dilation) The geodesic dilation δ
(1)
g (f) of size 1 consists in dilating a marker

f with respect to a mask g:

δ(1)
g (f) = δ(1)(f) ∧ g. (2.9)

The geodesic dilation of size n is obtained by performing n successive geodesic dilations of size 1.

Definition 2.7 (Geodesic erosion) The geodesic erosion ǫ
(1)
g (f) is the dual transformation of the

geodesic dilation.

ǫ(1)
g (f) = ǫ(1)(f) ∨ g. (2.10)

Definition 2.8 (Reconstruction) The reconstruction by dilation (erosion) of a marker f with respect

to a mask g consists of repeating a geodesic dilation (erosion) of size one until stability, i.e, δ
(n+1)
g (f) =

δ
(n)
g (f) (ǫ

(n+1)
g (f) = ǫ(n)

g (f)).

Recg(f) = δ(n)
g (f), (2.11)

Rec∗g(f) = ǫ(n)
g (f). (2.12)

With definition 2.8, it is possible to define connected transformation that satisfy the following as-
sertion: if the structure of the image cannot contain the SE then it is totally removed, else it is totally

preserved. These operators are called opening/closing by reconstruction.

Definition 2.9 (Opening-Closing by reconstruction) The opening by reconstruction of an image f

is defined as the reconstruction by dilation of f from the erosion of size n of f . Closing by reconstruction

is defined by duality.

γ
(n)
R = Recf (ǫ

(n)(f)), (2.13)

φ
(n)
R = Rec∗f (δ

(n)(f)). (2.14)

Figure 2.6 shows results of opening and closing by reconstruction. It can be clearly seen that these
transformations introduce less noise than classical opening-closing. Shapes are preserved and structures
still present after transformation are of a size greater than or equal to the SE. The use of opening and
closing by reconstruction allowed to characterize morphological characteristics of structures present in
the image. In addition, to determine size or shape of all objects present in an image, it is necessary to
use a range of different SE size. This concept is called Granulometry [120].

2.4 Morphological tools

Based on the previously presented filters, many morphological tools can be developed. Formally, a
morphological filter is an increasing and idempotent operation [120, 38]. The increasingness property
ensures that the ordering relation between is preserved and idempotence property roughly means that
the operation yields the same result whether it is done only once or several times. The Granulometry is
based in the iteration of opening or closing, and the Alternating Sequential Filter (ASF) are based on
the alternating use of opening and closing filters.

Definition 2.10 (Granulometry) A Granulometry Φλ is defined by a transformation having a size

parameter λ and satisfying the three following axioms:

• Anti-extensivity: the transformed image is less than or equal to the original image.

• Increasingness: the ordering relation between image is preserved.
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(a) Opening by reconstruction (b) Closing by reconstruction

Figure 2.6: Opening and closing by reconstruction with a disk of radius 3 pixels.

• Absorption: the composition of two transformations Φ of different size λ and ν will give always the

result of transformation with the biggest size:

ΦλΦν = ΦνΦλ = Φmax(λ,ν). (2.15)

Granulometries are typically used for the analysis of the size distribution of structures in images. Classical
granulometry by opening is build by successive opening operation of an increasing size. By doing so, image
is progressively simplified. Using connected operators, like opening by reconstruction, no shape noise is
introduced.

Anti-Granulometry is defined with the same axioms as granulometry and by replacing anti-extensivity

axiom by extensivity.

Definition 2.11 (Alternating Sequential Filter (ASF)) An ASF is the sequential combination of

opening and closing of an increasing size.

ASFi = γ1φ1 . . . γiφi. (2.16)

As granulometry, ASF can be seen as a tool to analyze the size distribution of structure. But contrary to
the granulometry, ASF analyze both the bright and dark structures. Obviously, an ASF beginning with
an opening would not give the same result than an ASF beginning with a closing:

γ1φ1 . . . γiφi 6= φ1γ1 . . . φiγi. (2.17)

2.5 Ordering relation

Precisely, Mathematical Morphology is defined on a lattice which is a partially ordered set in which
every pair of elements has an unique supremum and an infimum. A partially ordered set X is a set
satisfying, x, y, z ∈ X :

1. x ≤ x

2. x ≤ y and y ≤ x iif y = x

3. if x ≤ y and y ≤ z then x ≤ z.

Totally ordered set is a partially ordered set where x ≤ y or y ≤ x. For images with Df ⊂ Z
2, scalar

ordering relation is used, the supremum and infimum are respectively, fmax and 0. For non-flat images,
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there is no way to define unambiguous supremum and infimum values:
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When dealing with multi- or hyperspectral images, pixels are represented by vectors. Direct use of
Mathematical Morphology on such data is not possible due to the loss of unambiguous ordering relation.
Several solution can be used. One, based on dimension reduction using a bĳective function, is proposed
in Section 2.8.

2.6 Morphological Profile

2.6.1 Definition

The morphological profile (MP) was proposed by M. Pesaresi and J. A. Benediktsson, in [101], for
the segmentation of high-resolution remotely-sensed images. It is based on two morphological tools:

1. Geodesic transform.
2. Granulometry and anti-granulometry.

Geodesic operators were used, owing to their connectedness property and their ability to preserve original
shapes in the processed image. The use of different sizes for the structuring element (SE), leading to
granulometry, was motivated by the necessity of exploring all sizes of structure within the image [101].

An MP is made up of an opening profile (OP) and a closing profile (CP). The OP at pixel x of image
f is defined as an n-dimensional vector:

OPi(x) = γ(i)
R (x), ∀i ∈ [0, n] (2.19)

where γ(i)
R is the opening by reconstruction using an SE of size i and n is the total number of openings.

Further, the CP at pixel x of image f is defined as an n-dimensional vector:

CPi(x) = φ(i)
R (x), ∀i ∈ [0, n] (2.20)

where φ(i)
R is the closing by reconstruction using an SE of size i. Clearly we have CP0(x) = OP0(x) = f(x).

By collating the OP and the CP, the MP of image f is defined as the (2n+ 1)-dimensional vector:

MP (x) = {CPn(x), . . . , f(x), . . . , OPn(x)} (2.21)

MPi(x)





= CPn−i(x) if 0 ≤ i < n
= f(x) if i = n

= OPi(x) if n < i ≤ 2n.

(2.22)

The Derivative of the Morphological Profile (DMP) is defined as the 2n-dimensional vector equal to the
discrete derivative of MP.

DMPi(x) =MPi−1(x)−MPi(x) (2.23)

Information provided by the MP-DMP is both spatial and radiometric. For a given pixel, the fact the
DMP is centered should signify that the pixel belongs to a structure that is small compared to the SE
used to derive the DMP. On the other hand, an unbalanced DMP (to the left or right) should indicate
that the pixel belongs to a large structure. Further, the imbalance of the profile indicates whether the
pixel belong to a structure that is darker (left side) or lighter (right side) than the surrounding ones.
Finally, the amplitude of the DMP yields information about the local contrast of the structure.
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Closing − Original − Opening 

(b) SE: line with θ = −135◦.

(c) SE: disk.

(d) SE: line with θ = 45◦.

Figure 2.7: MP with different SE. The MP were built with a line of length {3,12,21} for two orientation

and a disk of radius {2,8,12}, respectively.

2.6.2 Construction

To construct the MP-DMP, we first have to choose the structuring element (SE) for the open-
ing/closing by reconstruction. The spatial characteristics of this SE will determine the information
contained in the MP. For example, if a line of n pixels with a direction θ is used as the SE, linear struc-
tures of the same direction θ will be preserved and thus will be removed at the end of the MP-DMP,
i.e., for an opening with a large SE. From the point of view of classification point of view, it is better
to use an isotropic SE to get more information – e.g., considering roads, we would like to have the same
MP whatever the orientation of the road. One possible isotropic SE is the discrete disk. Examples of
MP-DMP using different SEs are shown in figures 2.7 and 2.8. In figure 2.7(b), the SE was a line with
θ = 135◦, which is almost perpendicular to the direction of the two light buildings, while in figure 2.7(d),
θ = 45◦ which is almost in the same direction. For the first MP we can clearly see that the buildings
disappear in the opening part of the MP, while in the other profile they are preserved. When a disk is
used, figure 2.7(c), we get a more homogeneous MP where small structures are removed first and then
larger structures.

2.6.3 Classification using the MP-DMP

The MP and DMP can be used for the automatic detection of structures in the images [117, 103, 102].
For classification, the MP-DMP are regarded as feature vectors, where each class has a typical MP-
DMP. Thus classification can be performed using any standard algorithms [8, 53]. Another possible
interpretation is to regard the DMP as a possibility distribution and use fuzzy logic to classify pixels [27].
In the following we are only going to consider the MP-DMP as feature vectors, so if they were constructed
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(a) SE: line with θ = 135◦.

(b) SE: disk.

(c) SE: line with θ = 45◦.

Figure 2.8: DMP with different SE. The DMP is derivative of the MP. Clear structures indicate when

they disappear in the MP.

using n openings/closings by reconstruction, then:

MP (x) ∈ R
2n+1 and DMP (x) ∈ R

2n. (2.24)

MP was applied first to panchromatic data to extract information about the size, shape, and local contrast
of the structures [8]. Classification was performed using a neural network.

We present here some results using support vectors machines. The data used is an IKONOS panchro-
matic image from Reykjavik, Iceland. It is 975 × 639 with 1-m spatial resolution. We concentrated on
six information classes, see Table 2.1, as in the original experiments [8, 53]. Full description of the data
set is provided in Appendix C. The MP was constructed using 15 openings/closings with a disk as SE.
Its radius was 2, 4, . . . , 30. Results of the experiment are listed in Table 2.2.

In terms of classification accuracy, using the original image alone, Figure 2.1, does not make it possible
to distinguish between streets and residential lawns. Only the shadows are correctly classified. The MP
and DMP provide information that makes it possible to discriminate between streets and residential
lawns. The best overall and average accuracies were achieved using the MP. The DMP does not contain
the original gray levels, but only the spatial information. Using the DMP improves classification accuracy
slightly, whereas it is greatly improved when using both the spatial and the spectral information, i.e.,
the MP.

This experiment confirms the usefulness of the MP over the use of the original image alone. However,
the necessity of looking at a range of sizes of SE may result in redundancy in the MP. A greater problem,
however, is the inherent nature of the opening/closing operators. This point is discussed in the next
subsection and another approach is detailed.
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Table 2.1: IKONOS Reykjavik image: Training and testing sets.

Class Samples

No Name Train Test

1 Small Building 1526 34155

2 Open area 7536 25806

3 Shadows 1286 43867

4 Large Building 2797 39202

5 Street 3336 30916

6 Residential Lawns 5616 35147

Total 22.097 209.093

Table 2.2: Classification accuracy for the IKONOS image.

OA AA K 1 2 3 4 5 6

Gray-level 42.87 44.59 31.02 40.79 58.37 85.50 25.82 0 57.04

MP 50.84 51.74 40.80 63.89 28.60 71.56 22.36 72.47 51.65

DMP 44.51 43.36 32.83 63.74 33.78 28.56 17.67 67.30 49.13

Self-com. Area 48.46 49.76 37.50 33.52 70.24 89.94 24.73 0.88 79.27

2.7 Area Filtering

Geodesic opening and closing filters are interesting because they preserve shapes. However, they
cannot provide a complete analysis of urban areas because they only act on the extrema of the image.
Moreover, some structures may be darker than their neighbors in some parts of the image, yet brighter
than their neighbors in others. Although this problem can be partially addressed by using an alter-
nate sequential filter [28], the MP, which conventionally processes extrema, thus provides an incomplete
description of the inter-pixel dependency.

In [121], P. Soille has proposed using self-complementary filters2 to analyze all the structures of an
image, local extrema, be they minima or maxima, as well as regions with intermediate grey levels. This
only assumes that any given structure of interest corresponds to one set of connected pixels. Based on an
area criterion, a flat zone filter is proposed to remove small structures. This kind of filter is well suited to
the analysis of panchromatic images: the very high spatial resolution results in excessively detailed data
containing many irrelevant structures (e.g., cars on the road).

As will be detailed in the following, the area self-complementary filter is not a morphological filter,
since the increasingness property no longer holds. Thus the strategy used with the MP cannot be directly
applied. In this work, we proposed another approach to extract the contextual information. The idea is
to build an adaptive neighbors systems for each pixel [51].

Standard methods for the analysis of spatial information in panchromatic images usually define the
neighborhood of each pixel by a fixed set such as 3×3 squares[21, 17]. This strategy fails when considering
pixels that belong to the border of a structure: the fixed shape neighborhood then includes pixels from
different features. For example, as shown in figure 2.9.(a), the classification of the marked pixel (roof)
may be influenced by neighboring pixels actually belonging to the street.

It is clear that a pixel’s neighbors depend on the structure to which it belongs. Thus a neighborhood

2The definition of self-complementary filter is given Section 2.7.1 page 43.
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(a) (b) (c)

Figure 2.9: Inter-pixel dependency estimation.

system using a fixed shape or size is unable to define the neighborhood system correctly. In this work,
we propose using advanced morphological tools to define the neighbors. The idea is to define neighbors
in a structure meaning. We consider that is important to look at neighboring pixels that belong to the
same structure. Furthermore, we think that the same inter-pixel dependency exists between pixels of the
same structure, even if such structures are disjoint in the image. For example, roads of the same type
have the same texture everywhere in the image. Hence for classification we need to look at the spectrum
of a pixel, but also at the neighbors belonging to same structure as the considered pixel.

To solve this problem, an adaptive neighborhood has to be defined for each pixel. Furthermore,
assuming that relevant structures have a sufficient area, this adaptive neighborhood should include a
large number of pixels. Hence we propose defining the neighborhood of one given pixel as the resulting
connected zone of the self-complementary area filter. This procedure is illustrated in figure 2.9. Fig-
ure 2.9.(b) is the area filtering of figure 2.9.(a). It is partitioned into flat zones and each flat zone belongs
to a single structure in the original image. All the pixels belonging to one given flat zone are regarded as
neighbors. Lastly, the inter-pixel dependency information is extracted from the original image by using
the previously-defined set of neighbors (for every pixel, the neighborhood is defined as the flat zone to
which it belongs). Figure 2.9.(c) highlights the neighborhood associated with the marked pixel. It is
obviously more homogeneous and spectrally-consistent than the square shown in figure 2.9.(a).

2.7.1 Self-complementary area filters

Definition 2.12 (Complementariness) Two operators Ψ and Θ are complementary if and only if:

Ψ(f) = Θ([f ]c). (2.25)

A self-complementary operator is defined as an operator whose complementary operator is itself [120]:

Ψ = CΨ. (2.26)

Area self-complementary filters have been introduced to extend area opening and closing to all the
structures of the image, not just its local extrema [121]. It is a two-step algorithm, involving:

1. Labelling all the flat zones that satisfy the area criterion λ [120],
2. Growing the labelled flat zones until an image partition is reached [2].

Better image structure preservation is achieved by iterating the algorithm until the desired size is obtained,
e.g., let f be the image to process, then Ψλ(f) = Ψλ(Ψλ−1(. . . (Ψ2(f)))), where λ is the minimum size
of the remaining flat structures.

Figure 2.10 shows the results of area filtering using different value for the area parameter.
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(a) Original Image (b) Filtered Image, λ = 5 (c) Filtered Image, λ = 10

(d) Filtered Image, λ = 20 (e) Filtered Image, λ = 30 (f) Filtered Image, λ = 40

(g) Neighbors set for (c) (h) Neighbors set for (e) (i) Neighbors set for (f)

Figure 2.10: Area self-complementary filtering and corresponding neighbors set. In images (g), (h), and

(f), each color corresponds to a set of neighbors.
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2.7.2 Extracting the inter-pixel dependency

Once the neighborhoods have been defined for every pixel, spatial information can be estimated. In
view of the small average size of the neighbors set (about 50 pixels, in order to preserve the smallest
structures of interest), computing high-order statistics may not be appropriate. As can be seen from
Fig. 2.9.(b), the neighbors sets do not have spatial orientation related to the actual structure to which
they belong. As a result, computing some shape descriptors for the neighborhoods may not be useful
either. Hence for each pixel x, we propose simply computing the median value of the neighbors set Ωx :

Υx = med(Ωx). (2.27)

The pseudo-code of the process is given in Algorithm 3.
Now, every pixel of the panchromatic image is characterized by its original gray-level (the spectral

information) and by its inter-pixel dependency (the spatial information). The easiest way to use both
pieces of information is to build a stack vector. This strategy was used for the morphological profile [8].
However, a strategy that makes it possible to control the amount of each type of information ought to
be preferable [21, 91]. This can easily be achieved using an appropriate kernel formulation. This point is
addressed in Chapter 4.

For comparison with MP-DMP, experiment were performed on the same IKONOS image. Results are
reported in Table 2.2. In terms of the global accuracy values (OA, AA, and κ), the approach proposed
performs slightly worse than the morphological one. The result are degraded by the ‘street’ class. This
is consistent with the fact that we did not extract information about the size of the structures, but only
about the grey-level distribution of pixels contained within the flat zone. More comments about this
strategy are given in chapter 4.

Note that other spatial information can be extracted, such as a ‘texture’ feature. This feature should
be as uncorrelated as possible to the spectral feature. The best features should be gray-level independent
and isotropic.

All the methodologies presented – MP-DMP and area filter – act on a single-band image. Multi-valued
images such as multi- or hyperspectral data also have meaningful spatial information. Nevertheless,
extracting contextual information is more difficult, and we are faced in particular with the problem of an
ordering relation for vector-valued pixels.

Algorithm 3 Adaptive Neighbors Extraction

Require: Original Image, λ
1: λtp = 2
2: while λtp ≤ λ do

3: Label flat zones and keep only those which satisfy the area criterion λtp
4: Grow the selected flat zone until the entire image has been processed
5: λtp = λtp + 1
6: end while

7: for all the remaining flat zones do

8: Compute the median value of the gray-level pixel, in the original image, that belong to the same
flat zone

9: end for

2.8 Extension to multi-valued image

Extension of morphological tools to non-flat images is not straightforward. As presented in Section 2.5,
the ordering relation no longer holds. Two strategies can be employed:

1. Attempt to extend filters to non-flat images,
2. Reduce the dimension of the data to obtain a one-dimensional image.
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The first approach is certainly more promising in terms of image filtering results. However, to extend
morphological filtering to multi-valued images, theoretical considerations would have to be taken into
account that are beyond the scope of this thesis. Interested readers will find material about multi-valued
images and morphological processing in [26, 29, 60, 79].

By confining our considerations to the problems of classification, a simpler approach based on the
second strategy was used in [98, 7] where principal component analysis was used to reduce the dimension-
ality of hyperspectral data. The PCA was used to extract representative images since PCA is optimal
for representation in mean square errors sense.

Finally the extension of the MP is straightforward: the first few principal components are used to
build several MPs. Then, the MPs are stacked together to form the extended morphological profile [7].
Following the same scheme, the neighbors sets are defined on the first principal component, and are then
generalized onto each data band. Experiments adopting these strategies are conducted in Chapter 4.

2.9 Conclusion

In this chapter, the data analysis was performed in the spatial space. Based on mathematical mor-
phology, spatial features about shape, size, and local contrast were extracted for both panchromatic and
hyperspectral data. Limitations of the conventional approach have been pointed out, and an area self-
complementary filter was proposed to deal with intermediate regions. An adaptive definition of neighbors
for each pixel is proposed.

Moreover, it is clear that correlation may exist between adjacent pixels and thus pixels should not
be assumed to be independent when classifying pixels in the spectral domain. However, this assumption
is still widely used in the classification of remote-sensing data. In the next part of this thesis, emphasis
will be placed on the use of a joint classifier, using both spatial and spectral information. Support vector
machines will also be addressed in particular.
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Chapter 3

Support Vector Machines

Abstract

Support Vectors Machines for the classification of remote-sensing data are reviewed in this chapter.

The SVMs have good capabilities for handling problems related to the classification of remote-sensing

data: robustness to dimensionality, good generalization ability, and a non-linear decision function. These

properties are discussed in the chapter and simulated experiments are given. Then experiments on real

data are presented and several problems are addressed: the selection of the kernel parameters, the training

of SVMs, and multi-class strategy. Based on our experiments, very good classification accuracies are

possible using a standard formulation of the SVM, and an improvement in terms of processing time is

possible using training strategy based on gradient descent.
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THIS CHAPTER is devoted to the classification of remote-sensing data. In the first chapter, several
problems related to the potential high dimensionality of the data were presented. The first strategy

was to reduce the dimensionality so as to be able to apply existing classifiers. However, the problem
of combining spatial and spectral information still remains. Some strategies do exist in the remote-
sensing literature [68, 107], mostly based on Markov random field theory [86], but the problem is still not
completely addressed: dimension reduction is still needed, and normal Markov modeling may suffer as a
result of the very high spatial resolution.

Since the beginning of 21st century, classifiers based on statistical learning theory have shown remark-
able abilities to deal with both high-dimensional data and a limited training set [126, 127]. One of the
best-known methods is undoubtedly the Support Vector Machines (SVM) [126, 127, 64, 112, 39]. SVM
have found applications in many pattern recognition problems: text categorization [22, 71], hand-written
character recognition [126, 127], image classification [33] and bio-informatics [114].

Naturally, SVMs have been investigated for the analysis of remote sensing data purposes. In [61],
SVMs were used to classify species from AVIRIS hyperspectral data. Comparison with conventional
classifiers confirmed the good performance of the SVMs. In [54, 90], the authors have compared SVMs
favorably to more advanced classifiers like neural networks, discriminant analysis, and decision trees. In
all cases, SVMs outperformed the other classifiers. Multisource classification, where statistical modeling
is not usually possible, is also addressed in [63].

The main properties of an SVM classifier can be summarized as [127]:

1. Distribution-free classification approach,
2. Training step is reduced to a convex optimization problem,
3. Linear classifier in some feature space,
4. Non-linear classifier in the input space.

The remainder of this chapter is organized as follows. In the first section, the SVM is introduced,
along with its theoretical background. Emphasis is placed on the interest of this notion for remote-sensing
applications. Next, as for principal component analysis, the commonly-used non-linear SVM is presented
using kernel methods. Then we review some existing approaches using the SVM for remote-sensing
data analysis. Working from the basis of existing results, we then attempt to answer some of the usual
questions: the choice of kernel, parameters selection, and training strategy. Experimental results are
presented in the last section.

3.1 Linear Classifier

3.1.1 Introduction to the classification problem

The SVM belongs to the family of classification algorithms that solve a supervised learning problem:
given a set of samples with their corresponding classes, find a function that assigns each sample to its
corresponding class. The aim of statistical learning theory is to find a satisfactory function that will
correctly classify training samples and unseen samples, i.e., that has a low generalization error. The
basic setting of such a classification problem is as follows. Given a training set S:

S =
{

(x1, y1), . . . , (xℓ, yℓ)
}
∈ R

n × {−1, 1} (3.1)

generated i.i.d. from an unknown probability law P(x, y) and a loss function L, we want to find a function
f from a set of functions F that minimizes its expected loss, or risk, R(f):

R(f) =

∫

S

L(f(x), y)dP(x, y). (3.2)

Unfortunately, since P(x, y) is unknown, the above equation cannot be computed. However, given S, we
can still compute the empirical risk, Remp(f):

Remp(f) =
1

ℓ

ℓ∑

i=1

L(f(xi), yi) (3.3)
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Figure 3.1: Example of (3.5). The circle represents the minimum error upper bound.

and try to minimize that. This principle is called Empirical Risk Minimization (ERM) and is employed
in conventional learning algorithms, e.g., neural networks. The law of large numbers ensures that if f1
minimizes Remp, we have

Remp(f1) −→ R(f1) (3.4)

as ℓ tends to infinity. But f1 is not necessarily a minimizer of R. So the minimization of (3.3) could
yield an unsatisfactory solution to the classification problem. An example, arising from the No free lunch

theorem [130], is that given one training set it is always possible to find a function that fits the data with
no error but which is unable to classify a single sample from the testing set correctly.

To solve this problem, the classic Bayesian approach consists of selecting a distribution a priori for
P(x, y) and then minimizing (3.2). In statistical learning, no assumption is made as to the distribution,
but only about the complexity of the class of functions F . The main idea is to favor simple functions, to
discard over-fitting problems, and to achieve a good generalization ability [93]. One way of modeling the
complexity is given by the VC1 theory [126]: the complexity of F is measured by the VC dimension h,
and the structural risk minimization (SRM) principle allows to select the function f ∈ F that minimizes
an upper bound error [126, 127]. Hence, the upper bound is defined as a function depending on Remp
and h. For example, given a set of functions F with VC dimension h and a classification problem with a
loss function L(x, y) = 1

2 |y − f(x)|, then for all 1 > η > 0 and f ∈ F we have [126, 127]:

R(f) ≤ Remp(f) +

√
h
(
ln( 2ℓ
h ) + 1

)
− ln(η4 )

ℓ
(3.5)

with probability of at least 1− η and for ℓ > h. Following VC theory, the training step of this classifier
should minimize the right terms of the inegality 3.5. Figure 3.1 shows an toy example of (3.5). Other
bounds can be found for different loss functions and measures of complexity in [126].

In the following, we are going to present one particular class of function that leads to a linear decision
function and the definition of the SVM classifier.

1Vapnik-Chervonenkis
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Figure 3.2: (a) Linear classification with separating hyperplane, (b) Margin of the canonical separating

hyperplane.

3.1.2 Linear support vector machines

Definition 3.1 (Linear decision function) A linear decision function f is a function from a vector

space X to the real space R with the following form, with w ∈ X and b ∈ R:

f(x) = 〈w,x〉X + b. (3.6)

The decision boundary ker(f) = {x|f(x) = 0} leads to the definition of the separating hyperplane. Linear
classifiers g are derived by considering the sign of such a function to solve problem (3.1): y = g(x) =
sgn (f(x)).

Definition 3.2 (Separating hyperplane) Given a supervised classification problem (3.1), a separating

hyperplane H(w, b) is a linear decision function that separate the space into two half-spaces, each half-

space corresponding to the given class, i.e., sgn (〈w,xi〉X + b) = yi for all samples from S.

We have the equivalence between the linear classifier (functional viewpoint) and the separating hyperplane
(geometrical viewpoint).

Definition 3.3 (Canonical separating hyperplane) A canonical separating hyperplane verifying:

min
x∈X

(|〈w,x〉X + b| = 1) . (3.7)

Every separating hyperplane can be transformed into a canonical one, since the decision boundary of a
hyperplane is defined up to a multiplicative constant:

〈w,x〉X + b = 0 ⇐⇒ 〈w
q
,x〉X +

b

q
= 0, q 6= 0. (3.8)

In the following, we will only consider real n-dimensional vector space X = R
n. For remote-sensing

applications, n usually represents the number of spectral bands that the sensor can collect, e.g., for
panchromatic data n = 1, for multispectral data n ∈ [4, 10] and for hyperspectral data n≫ 10.

On the assumption that the data are linearly separable, the learning problem is to find the parameters
(w, b). As can be seen from Figure 3.2.(a), several separating hyperplanes can be acceptable. Following
the VC theory, we want to find the hyperplane that minimizes the upper bound of the risk (3.5). For
the class of separating hyperplanes, the VC dimension can be estimated by the margin [119], where the
margin is defined as the minimum distance of a training sample from the decision boundary, be correctly
classified or not.
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The margin can be computed as follows (see Figure 3.2.(b)): consider the canonical hyperplane and
the samples that are the closest to the hyperplane; the margin is given by the distance between these two
samples (x+ − x−) projected onto the unitary vector normal to the hyperplane: 〈 w

‖w‖ ,x+ − x−〉 = 2
‖w‖ .

So canonical hyperplanes have their margin equal to twice the inverse of ‖w‖. And so finally the link
between the margin and the VC dimension h is [126, 93]:

h ≤ min
(
‖w‖2R2, n

)
+ 1 (3.9)

where R is the radius of the smallest hypersphere around the data (see A.4).
Lastly, the learning strategy is to minimize the right terms of (3.5):

• The empirical risk: by constraining the hyperplane parameters to give perfect classification of the
training set, i.e., yi

(
〈w,xi〉Rn + b

)
≥ 1, ∀i ∈ 1, . . . , ℓ.

• The complexity term: this is a monotonically increasing function of the variable h. So it can
be minimized by considering h and (3.9), where R is fixed by the training samples. Thus the
complexity term is minimized by minimizing ‖w‖2 [93].

This is a constraint quadratic optimization problem we need to solve:

minimize
〈w,w〉Rn

2
subject to yi

(
〈w,xi〉Rn + b

)
≥ 1, ∀i ∈ 1, . . . , ℓ.

(3.10)

It is usually solved using Lagrange multipliers [18]. The Lagrangian:

L(w, b,α) =
〈w,w〉Rn

2
+
ℓ∑

i=1

αi
(
1− yi

(
〈w,xi〉Rn + b

))
(3.11)

have to be minimized with respect to the variables w, b and maximized with respect to αi. At the optimal
point, the gradient vanishes:

∂L

∂x
= w−

ℓ∑

i=1

αiyix
i = 0, (3.12)

∂L

∂b
=

ℓ∑

i=1

αiyi = 0. (3.13)

From ( 3.12), we can see that w lives in the subspace spanned by the training samples: w =
∑ℓ
i=1 αiyix

i.
By substituting (3.12) and (3.13) into (3.11), we get the dual quadratic problem, with only one variable
αi:

max
α
g(α) =

ℓ∑

i=1

αi −
1

2

ℓ∑

i,j=1

αiαjyiyj〈xi,xj〉Rn

subject to 0 ≤ αi
ℓ∑

i=1

αiyi = 0.

(3.14)

When this dual problem is optimized, we obtain αi and hence w. This leads to the decision rule:

g(x) = sgn

(
ℓ∑

i=1

αiyi〈x,xi〉Rn + b

)
. (3.15)

The constraints assume that the data are linearly separable. For real applications, this might be too re-
strictive, and this problem is traditionally solved by considering soft margin constraints: yi

(
〈w,xi〉Rn + b

)
≥
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1+ξi which allow some training errors during the training process and use an upper bound of the empirical

risk
ℓ∑

i=1

ξi. The optimization problem changes slightly to:

minimize
〈w,w〉Rn

2
+ C

ℓ∑

i=1

ξi

subject to yi
(
〈w,xi〉Rn + b

)
≥ 1− ξi, ∀i ∈ 1, . . . , ℓ

ξi ≥ 0, ∀i ∈ 1, . . . , ℓ.

(3.16)

C is a constant controlling the number of training errors. The Lagrangian becomes

L(w, b, ξ,α,β) =
〈w,w〉Rn

2
+
ℓ∑

i=1

αi
(
1− ξi − yi

(
〈w,xi〉+ b

))
−
ℓ∑

i=1

βiξi + C
ℓ∑

i=1

ξi (3.17)

and the dual problem:

max
α
g(α) =

ℓ∑

i=1

αi −
1

2

ℓ∑

i,j=1

αiαjyiyj〈xi,xj〉Rn

subject to 0 ≤ αi ≤ C
ℓ∑

i=1

αiyi = 0.

(3.18)

Ultimately, the only change from (3.14) is the upper bound values of αi. Considering the Karush-Kuhn-
Tucker conditions at optimality [18]





1− ξi − yi
(
〈w,xi〉+ b

)
≤ 0

αi ≥ 0

αi
(
1− ξi − yi

(
〈w,xi〉+ b

))
= 0

ξi ≥ 0

βi ≥ 0

βiξi = 0

∂L

∂x
= w−

ℓ∑

i=1

αiyix
i = 0

∂L

∂b
=

ℓ∑

i=1

αiyi = 0

∂L

∂ξi
= −αi − βi + C = 0

(3.19)

it will be seen that the third condition requires that αi = 0 or
(
1− ξi − yi

(
〈w,xi〉+ b

))
= 0. This means

the solution α is sparse and only some of the αi are non zero. Thus w is supported by some training
samples – those with non-zero optimal αi. These are called the support vectors.

3.1.3 Application to synthetic remote-sensing data analysis

In the first chapter, problems related to the dimensionality of the representation space were addressed
by means of feature reduction. The principal problem was the statistical estimation, owing to the reduced
training set. The SVM involves margin maximization, which can be regarded as a geometric rather than
a probabilist approach2. Therefore, no statistical estimate is needed. To aid understanding, we can
reformulate the SVM principles from a geometric viewpoint:

2Note that the bound presented in the previous subsection holds in probability.
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• The optimal hyperplane that separates the classes is found by considering the local configuration of
the data in the dimensional space. This exploits the emptiness property of high-dimensional space.

• Through the optimality condition, we can expect the SVM to have good generalization ability, even
in the situation of a limited training set.

To illustrate these properties, we have performed toy experiments. First, data with a Gaussian distri-
bution were generated in R

2. Then we constructed decision functions for three classifiers, where µ is a
mean vector and Σ a covariance matrix:

1. Minimum distance to the mean classifier : Samples are assigned to whichever class has the smallest
Euclidean distance to its mean. The decision boundary is

{
x|2xT (µ− − µ+) + (µT+µ+ − µT−µ−) = 0

}
. (3.20)

2. The SVM classifier : We use the soft margin formulation. The decision boundary is
{

x|
ℓ∑

i=1

αiyi〈xi,x〉+ b = 0

}
. (3.21)

3. Quadratic Bayesian classifier : Under the Gaussian assumption and with the same covariance
matrix, the decision boundary is

{
x|
(
(µ+ − µ−)TΣ−1

)
x− 1

2
(µT+Σ−1µ+ − µT−Σ−1µ−) = 0

}
. (3.22)

All these classifiers are linear and thus lead to a separating hyperplane. Two of them were based on
statistical modeling, and one is the SVM. Two clusters were considered, linearly separable, and 100
samples per class were used for training, then 1,000 samples per class for testing. The different decision
boundaries can be seen in Figure 3.3. The classification results are illustrated in Figure 3.4. Clearly, the
last two classifiers perform better, which is not surprising since the minimum distance classifier is really
a naive classifier. The SVM performs as well as the Bayesian classifier (which was implemented with the
true a priori for the probability distribution). This first experiment shows that even if no a priori about
the distribution was used, SVM performs very well.

The use of Gaussian data was not arbitrary since remote-sensing data are often assumed to have
Gaussian distribution [80]. But in the case of hyperspectral data, they are many more than 2 dimensions.
To test the behavior of SVM in the ”high dimensional space / small training set” situation, we conducted
a second experiment. Multivariate Gaussian data were generated with increasing dimension, and classi-
fication was performed using the same three classifiers, but with a fixed training set of 40 samples per
class. For each dimension, 100 experiments with 1,000 test samples per class were performed and the
mean results are plotted in Figure 3.5. Again, the minimum distance classifier performs the worst, and as
in the previous experiment, the SVM and Gaussian classifiers perform equally well for low and moderate
dimensions. But, above a certain dimension (≈ 28), classification accuracy decreases for the Gaussian
classifier. The problem is related to the estimated covariance matrix, which becomes badly conditioned
and hence not invertible. Unlike the other classifiers, SVM does not suffer from the dimensionality and
performs perfect classification.

These two experiments reveal some properties of SVM that render it suitable for remote-sensing appli-
cations. However, it is well known that classes of interest in remote sensing are partially overlapped [109].
Hence the choice of a linear function may not be optimal. Hopefully, the use of kernel methods will make
it possible to have both the effective linear training model and the powerful discriminant ability of a
non-linear model.

3.2 Non-linear SVM

Through the use of kernel methods, it is possible to build a non-linear SVM in a very elegant way. It
should be noted that all the SVM training algorithms and decision rules are expressed in terms of inner
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Figure 3.3: Toy example: Two Gaussian clusters. Black circles: support vectors. Black line: decision

boundary minimum distance classifier, green line: SVM, magenta line: Bayesian classifier.
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Figure 3.4: Toy example: Two Gaussian clusters. Classification accuracies for the three classifiers. The

percentages below the graphs are the overall classification accuracy.
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Figure 3.5: Toy example: Two Gaussian clusters in high-dimensional space. Blue line: minimum distance

classifier, Green line: Gaussian classifier, Red line: SVM. The line shows the mean classification accuracy

and the bar is the standard deviation over 100 experiments.
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product. Just as with PCA, the kernel trick can be applied here too – see appendix A for details. The
inner product in (3.18) is replaced by a kernel function (〈xi,xj〉 ⇒ k(xi,xj)) :

max
α
g(α) =

ℓ∑

i=1

αi −
1

2

ℓ∑

i,j=1

αiαjyiyjk(x
i,xj)

subject to 0 ≤ αi ≤ C
ℓ∑

i=1

αiyi = 0.

(3.23)

Now, the SVM is a non-linear classifier in the input space R
n, but is still linear in the feature space – the

space induced by the kernel function. The decision function is simply:

g(x) = sgn

(
ℓ∑

i=1

αiyik(x,x
i) + b

)
(3.24)

Classic kernels were those used in the SVM literature; see appendix A for a description of kernels:

• Polynomial kernel

k(x, z) = (〈x, z〉X + q)p (3.25)

• RBF kernel

k(x,y) = exp

(
−‖x− y‖2

2σ2

)
. (3.26)

To illustrate the effectiveness of non-linear SVM, we performed another experiment. We generated
data with two clusters, one Gaussian cluster with zero mean and one cluster with ring distribution with
zero mean, see Figure 3.6. Linear classifiers cannot handle this sort of data set. For the experiments, we
use a polynomial kernel with p = 2 and q = 0 with the SVM. The minimum distance classifier can also
be kernelized, since it can be expressed in terms of inner product. For the Bayesian classifier, we made
the assumption of two Gaussian clusters, with identical means but different covariance. This leads to the
following decision rules:

1. Minimum distance to the mean classifier :


x|2
ℓ

ℓ/2∑

i,k=1

〈xi,xk〉2 − 2

ℓ

ℓ/2∑

j,l=1

〈xj ,xl〉2 − 2

ℓ

ℓ∑

m=1

ym〈xm,x〉2 = 0



 . (3.27)

2. The SVM classifier :
{

x|
ℓ∑

i=1

αiyi〈xi,x〉2 + b = 0

}
. (3.28)

3. Quadratic Bayesian classifier :
{

x|xT
(
Σ−1

+ − Σ−1
−

)
x + log

(
det(Σ+)

det(Σ−)

)
= 0

}
. (3.29)

The decision functions are plotted in Figure 3.6. The Bayesian classifier is unable to classify the
data correctly. In this situation, the Gaussian assumption is not verified and thus the classification is
not optimal. The SVM classifier fits the ellipsoidal geometry of the data well, which is not true for the
minimum distance classifier. It is important to note that if the SVM performs better than the Bayesian
classifier, it is because the Gaussian assumption does not hold and the data are linearly separable in the
feature space induced by the polynomial kernel.

This poses the problem of kernel selection. Which kernel should we use for the classification of remote-
sensing data? In the following, we see that classic kernels already perform well but, by including some a

priori, adapted kernels could provide better results.
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Figure 3.6: Fictional example: Two non-linearly separable clusters. Black circles: vectors. Black line:

decision boundary minimum distance classifier, green line: SVM, magenta line: Bayesian classifier.

3.3 Multi-class SVM

SVMs are designed to solve binary problems where the class labels can only take two values, e.g., ±1.
For a remote-sensing application, several classes are usually of interest. Various approaches have been
proposed to address this problem. They usually combine a set of binary classifiers. Two main approaches
were originally proposed for an m-class problem [112].

• One Versus the Rest: m binary classifiers are applied on each class against the others. Each
sample is assigned to the class with the maximum output.

• Pairwise Classification: m(m−1)
2 binary classifiers are applied on each pair of classes. Each

sample is assigned to the class getting the highest number of votes. A vote for a given class is
defined as a classifier assigning the sample to that class.

Pairwise classification has proven to be more suitable for large problems [65]. Even though the number
of classifiers used is larger than for the one versus the rest approach, the whole classification problem is
decomposed into much simpler ones.

Others strategies have been proposed within the remote-sensing community, such as hierarchical trees
or global training [90, 54]. However, classification accuracies were similar, or worse, and the complexity of
the training process is increased. Therefore, we have used the two classic approaches in our experiments.

3.4 Review of application of SVM for remote-sensing data anal-

ysis

Before presenting the results of using SVM on real data sets, we will first review the principal articles
dealing with the same problem. We focused our attention on the training problem and the dimensionality
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of the data.

The training of an SVM in a remote-sensing context has been addressed mainly by Foody and co-
workers [54, 57, 58]. They first investigated the behavior of SVMs with small training sets [54] and
compared the results with other classic classifiers. However, their experiments were carried out using
multispectral images where the three most informative feature bands were extracted and used as the
input to the classifiers. Hence the suitability of SVM for solving the ’High dimensional space / small
training set’ problem was not totally analyzed3. In [57, 58], particular attention was paid to the design
of the training set. Foody has shown that a training set might be well suited for a given classifier,
while unsuitable for another classifier [55]. For a statistical classifier, training pixels should be as pure
as possible, while with SVMs, training pixels should be at the boundary between classes in the features
space [57]. Experiments using SVM classifiers have validated this idea. Pursuing the same idea, Foody
has shown that the training set can be reduced when considering several one-class classifiers instead of a
multi-class classifier [58].

In this thesis, we assume that the training set is provided with the data, and thus we cannot influence
its design. The problem to be considered therefore is how well or badly the classifier works with a reduced
training set? Readers especially interested in the design of training set are invited to refer to Foody’s
work.

In [20], several neural networks were compared to the SVM for the classification of hyperspectral
data. The robustness of SVMs was demonstrated and the best results were obtained using a non-linear
SVM. Thus the superiority of the SRM over the ERM was confirmed for remote-sensing applications.
Melgani and Bruzzone have compared several approaches for the classification of multi-class remote-
sensing problems [90]. As we concluded in the previous section, the simpler the approach, the better the
results. Still in [90], SVMs were also positively compared to K-nn and RBF classifiers, where the data
have higher dimensionality than the data used in [20] (200 bands as against 128 bands). Note that RBF
classifiers and SVM were studied in [126, 127], where the authors noted the favorable behavior of the
SVM, from both a theoretical and a practical point of view.

However, although these experiments do highlight the favorable behavior of the SVM with high-
dimensional data, they used a full training set, and we do not really know what the results would have
been if a smaller training set had been used. Furthermore, we do not know which kernel was used.
In [20], the polynomial kernel performs better, while in [90] it is the Gaussian kernel. This motivated the
experiments below (3.5.1): several kernels were used to classify hyperspectral data with full dimensionality
and with a very small training set. Details are given in the next section.

One other point has not been addressed: the selection of the model or the kernel parameters. Cross-
validation is often used, which can result in very lengthy processing. Several strategies have been devel-
oped, mostly based on an upper error bound [31]. One particularly interesting approach used gradient
descent to fit the model. The main problem is that the error bound holds in limit or in probability and
sufficient training samples may be needed to obtain a satisfactory estimate of the error bound. Thus in a
second experiment 3.5.2 we tested a strategy developed by Chapelle et al. [36] for fitting the model when
the training set contains very few parameters. This approach was also compared to cross validation.

3.5 Test Kernels

The preceding section’s short review discussed existing experiments conducted with SVMs. In our
opinion, some aspects of classic SVMs for the classification of remote-sensing data have not been addressed
yet. We propose to investigate some of these next. First, training on high-dimensional data with a
reduced training set was assessed. We compared three kernels: the polynomial kernel, the Gaussian
kernel and the SAM kernel. The last kernel has been used to handle multispectral remote-sensing data
characteristics [92]; we will introduce it briefly at the beginning of section 3.5.1. In the second experiment,
we proposed using another training approach to fit the kernel parameter based on Chapelle’s work [31].

3Note that in this configuration, the other classifiers also performed well with limited training sets.
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3.5.1 Small training sets

The Spectral Angle Mapper (SAM) was introduced to measure similarity between spectral signatures
for identification of spectra [76]. SAM is a scale-invariant metric that has been used in many remote-
sensing problems and it has been shown to be robust against variations in spectral energy [76]. This
metric α focuses on the angle between two vectors:

α(xi,xj) = arccos

( 〈xi,xj〉
‖xi‖ . ‖xj‖

)
. (3.30)

As mentioned in [76], Euclidean distance is not scale invariant; however, due to atmospheric attenu-
ation or variation in illumination, spectral energy can be different for two samples even if they belong to
the same class and distance, suggesting that SAM would be preferable. To introduce the scale-invariance
assumption into the kernel, we first have to write the RBF kernel as [112] k(xi,xj) = f(d(xi,xj)) where
d is a metric on R

n and f is a function on R
+
0 . For the Gaussian RBF, f(t) = exp(−γt2), t ∈ R

+
0 ,

and d(xi,xj)) =
∥∥xi − xj

∥∥, i.e., the Euclidean distance. Changing the Euclidean distance to the SAM
distance leads to the spectral kernel

k(xi,xj) = exp
(
−γα(xi,xj)2

)
. (3.31)

This kernel was originally introduced by Mercier et al. in [92] for the classification of multispectral images.
As far as we are aware, no analysis has been carried out using this type of kernel on hyperspectral data.

In the following experiment, kernels are compared for the classification of hyperspectral data with
limited training samples [47]. The data used in the experiments are very high resolution hyperspectral
data. The image used is the right-hand part of Pavia Center, Italy. It is 492× 1096 pixels and contains 102
spectral bands. Training and test sets are listed in Table 3.1, see Appendix C for a complete description of
the data. Small training sets were randomly extracted from the training set and were composed of 10, 20,
40, 60, 80, and 100 pixels per class respectively. The pairwise multi-class strategy classifiers were trained
with each of these training subsets and then evaluated using the entire test set. These experiments were
repeated five times (with five independent training subsets) and the mean accuracy values were reported.
Three kernels were tested: the polynomial kernel, the Gaussian, and the SAM-based kernel. During
each training process, the kernel parameter σ, p and the penalty term C were adjusted to maximize the
estimated overall accuracy, which was computed using fivefold cross-validation [112]. The SVM training
was computed using the LIBSVM library [24] and the program was modified to include SAM kernel.

Table 3.2 summarizes the results obtained using the polynomial, Gaussian, and SAM RBF kernels.
These values were extracted from the confusion matrix [109]. SVM generalizes very well: with only 10
training pixels per class over 90% accuracy is achieved by all kernels. It is also clear that the classification
accuracy correlates with training set size. But the difference in terms of accuracy is fairly small: for
instance, with the Gaussian RBF kernel, the OA obtained with only 10 training pixels per class is
only 2.7% lower than the OA obtained with the complete training set. However, the computation time
(including optimum parameter selection, training, and classification) takes only about 10 minutes with
10 training pixels, compared to over 12 hours with the full training set.

Regarding the polynomial and the Gaussian RBF kernel, the results are very similar. However, the
Gaussian RBF performs better with very small training sets. The use of the SAM kernel gives slightly
degraded classification results in terms of the AA, OA, and the Kappa coefficient. One explanation lies
in the fact that urban scenes are less sensitive to spectral variations than agricultural areas, with weeds
at various stages of development and different layers casting shadows. Another reason is because the
SAM kernel does not use the energy of each pixel-spectrum (its norm). Differences between classes are
in the shape of the pixel-spectrum (may be regarded as the angle) and the energy of the pixel-spectrum
(its norm). Using the polynomial or Gaussian kernels, both kinds of information are used:

(〈x,y〉+ 1)p = (‖x‖ ‖y‖ cos(θ) + 1)p

exp
(
−γ‖x− y‖2

)
= exp

(
−γ
(
‖x‖2 + ‖y‖2 − 2〈x,y〉

))

= exp
(
−γ
(
‖x‖2 + ‖y‖2 − 2‖x‖ ‖y‖ cos(θ)

))
(3.32)
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Table 3.1: Information classes and training/test samples for the right-hand part of Pavia Center data

set.

Class Samples

No Name Train Test

1 Water 745 65278

2 Trees 785 6508

3 Meadow 797 2900

4 Brick 485 2140

5 Soil 820 6549

6 Asphalt 816 7555

7 Bitumen 808 6479

8 Tile 223 3122

9 Shadow 195 2165

Total 5536 103504

Figure 3.7 shows the classification map obtained for all three kernels with only 10 pixels per class.

3.5.2 Fitting the parameters

Find the optimum parameters for the SVM is not a straightforward task. The values of the kernel
parameters can have a considerable influence on the learning capacity, an example is given in Appendix A.
Fortunately, even though their influence is significant, their optimum values are not critical, i.e., there is
a range of values for which the SVM performs equally well. Figure 3.8 shows cross-validation results for
the Gaussian and polynomial kernels. They both clearly show a plateau of values that gives the same
cross-validation accuracies.

One drawback of cross-validation parameter selection is that the SVM needs to be trained several
times, e.g., for two parameters where 10 values are tested, 500 training cycles have to be performed with
5-fold cross validation for each binary classifier. Where more than two parameters are considered, it
becomes intractable, even for small-scale problems.

One possible approach is to consider some a-priori: if we consider that the data are linearly separable
in the feature space, we can set C to a high value to impose no training errors, or at least very few. Some
pre-processing on the data range could also be done: stretch the data between −1 and 1. This can be
useful for the Gaussian kernel because it limits the range of values to be tested for the σ parameters.
This strategy was successfully applied in our experiments: we stretched the data between −1 and 1, set
C = 200, and tested this set of values for σ2 ={0.125,0.25,0.5,1,2,4}. We compared the classification
accuracies with those obtained with a larger range of values; 21 values were tested for each parameter,
see Figure 3.8. No significant differences were found in term of classification accuracy, while the training
time was clearly much shorter when fewer parameters were tested.

Another approach has been developed by Chapelle [36, 31] and Keerthi[74]. They consider the case
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(a) (b)

(c) (d)

Figure 3.7: (a) Original hyperspectral image, three-channel color composite. (b) Thematic map produced

using Gaussian RBF kernel (c) Spectral RBF kernel and (d) polynomial kernel with 10 training pixels

per class.



3.5. Test Kernels 65

Table 3.2: Classification accuracies for several training set size [47].

Training Set Size 10 20 40 60 80 100 All

Gaussian

OA 93.85 94.51 94.51 94.71 95.36 95.29 96.45

AA 88.76 91.00 92.66 92.04 93.24 93.39 95.08

κ 0.90 0.91 0.92 0.91 0.92 0.92 0.94

Poly

OA 92.34 92.77 94.20 94.07 94.29 94.81 96.03

AA 87.87 88.91 91.74 92.41 92.31 93.35 94.91

κ 0.87 0.88 0.90 0.90 0.90 0.91 0.93

SAM

OA 93.32 93.87 93.79 94.23 94.40 94.54 95.56

AA 86.36 88.64 91.26 91.67 91.89 92.61 94.26

κ 0.89 0.90 0.90 0.90 0.90 0.91 0.93

of a soft-margin non-linear SVM with quadratic penalization (ξ2 in (3.16))

max
α
g(α) =

ℓ∑

i=1

αi −
1

2

ℓ∑

i,j=1

αiαjyiyj k̃(x
i,xj)

subject to 0 ≤ αi
ℓ∑

i=1

αiyi = 0

(3.33)

where k̃(xi,xj) = k(xi,xj) +
δij
C

, for details see [31] page 65. An error bound related to (3.9) is derived,

the radius margin bound, which is a function of the kernel parameters. The minimization of this function
yields the optimum parameters for the SVM. If we denote the parameter vector by p and the upper error
bound by T , we have

T (p) := ‖w‖2R2. (3.34)

where

‖w‖2 = 2
ℓ∑

i=1

αi −
ℓ∑

i,j=1

αiαjyiyj k̃(x
i,xj)

R2 =
ℓ∑

i=1

βik̃(x
i,xi)−

ℓ∑

i,j=1

βiβj k̃(x
i,xj)

(3.35)

In the case of the Gaussian kernel, p = [C, σ2] and k̃(xi,xi) = 1 + 1/C.

The kernel parameters p have to minimize T . The computation of the gradient of T requires the
gradients of ‖w‖2 and R2. These depend on optimum αi, which is also dependent on p. Chapelle has
proven that since ‖w‖2 and R2 are computed via an optimization problem, the gradient of αi does not
enter into the computation of their gradients [35]:

grad (T (p)) =




∂T

∂C
∂T

∂σ2


 =




∂‖w‖2

∂C
R2 +

∂R2

∂C
‖w‖2

∂‖w‖2

∂σ2
R2 +

∂R2

∂σ2
‖w‖2


 . (3.36)
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Figure 3.8: Cross validation grid for (a) Gaussian kernel and (b) polynomial kernel. C is tuned for both

kernel, σ for the Gaussian kernel and p for the polynomial kernel (q=1).

where

∂‖w‖2

∂C
=

ℓ∑

i=1

αi
C2

∂‖w‖2

∂σ2
= −

ℓ∑

i,j=1

αiαjyiyj
‖xi − xj‖2

2σ4
k̃(xi,xj)

∂R2

∂C
= −

ℓ∑

i=1

βi(1− βi)
C2

∂R2

∂σ2
= −

ℓ∑

i,j=1

βiβj
‖xi − xj‖2

2σ4
k̃(xi,xj)

(3.37)

Details of the derivatives can be found in [36, 74, 31]. Using a conventional gradient descent algorithm, it
is possible to find kernel parameters with fewer SVM training cycles than with cross-validation training.
Moreover, it is possible to evaluate many kernel parameters, for example with one σ2 per dimension:

k(x,y) = exp

(
−‖x− y‖2

2σ2

)
(3.38)

= exp

(
−
n∑

m=1

(xm − ym)2

2σ2
m

)
(3.39)

To evaluate the benefit of this type of bound, we performed two experiments. First, we compared the
classification accuracies for 4 different training strategies, all with a Gaussian kernel:

1. Cross validation of a L1 SVM, ξi,
2. Cross validation of a L2 SVM, ξ2i ,
3. Gradient descent with two parameters p = [C, σ2],
4. Gradient descent with n+ 1 parameters p = [C, σ2

1 , . . . , σ
2
n].

Then the influence of the size of the training set was investigated. The results of the first experiment
are reported in Table 3.4. We used the One Versus All strategy for solving the multi-class problem. To
better see the influence on each individual training process, we did not apply the winner takes all rule
at the end of each individual classification, hence the results can be regarded as 9 binary classification
problems. To assess the effectiveness of the gradient approach, we compared the number of optimizations
during the training rather than training processing time, because of the differences in the algorithms (the
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standard SVM program is highly optimized). The data used in the experiments are very high-resolution
hyperspectral data. The image used is ‘University Area’, Italy. It is 340 × 610 pixels and contains 103
spectral bands. Training and test sets are listed in Table 3.3, see appendix C for a complete description
of the data.

Regarding the classification accuracies in Table 3.4, the best results were achieved using cross-
validation training. Both L1 and L2 versions gave similar results. However, when considering the number
of optimizations performed, the best results were achieved with the gradient strategies. In particular,
when only two parameters need to be set, the number of optimizations for the gradient is half the number
for cross- validation. Surprisingly, the use of multivalued σ does not provide better results. However, it
would not be possible to fit parameters for this type of kernel using cross-validation.

To investigate the influence of training set size, we performed experiments on the same data set, but
with the training set reduced to 10 pixels per class, randomly selected. For each class, the experiment
was repeated 20 times, and the mean and standard deviation values are plotted in Figure 3.9. As with
the entire training set, the different training strategies lead to roughly comparable results. The mean
classification accuracies are 90.34%, 90.65%, and 91.12% for the multivalued gradient, the classic gradient,
and the cross validation (with L1 SVM) respectively. Since L1 and L2 SVM performed similarly, we have
only reported results for the most standard SVM. It is interesting to note that with the multivalued
gradient, there are 104 parameters to tune (C, σ1, . . . , σ103), and only 90 samples for the training. There
is a grave risk of over-fitting! However, in terms of classification accuracy, the SVM still performs well.
Considering training time, with such a small training set, optimization takes less than 1 second with any
of the strategies.

To conclude, the gradient-based training produced remarkable results in terms of classification accu-
racies compare to cross-validation. It made it possible to fit many kernel parameters, with no over-fitting.
Complex kernels are now conceivable in practical situations. However, as can be seen from the two pre-
vious experiments, a more specific kernel does not always yield more accurate results, and the kernel still
needs to be chosen carefully.

Table 3.3: Information classes and training-test samples for the University Area data set.

Class Samples

No Name Train Test

1 Asphalt 548 6641

2 Meadow 540 18649

3 Gravel 392 2099

4 Tree 524 3064

5 Metal Sheet 265 1345

6 Bare Soil 532 5029

7 Bitumen 375 1330

8 Brick 514 3682

9 Shadow 231 947

Total 3921 42776
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Table 3.4: Classification accuracies in percenatage and number of optimizations for the University Area
data set, for several training strategies.

Training Method Cross-validation L1 Cross-validation L2 Gradient Gradient Multi.

Class % No. of Optim. % No. of Optim. % No. of Optim. % No. of Optim.

1 96.12 30 96.13 30 94.68 19 94.88 56

2 87.23 30 86.49 30 79.05 16 78.31 35

3 97.80 30 97.82 30 97.08 20 97.33 22

4 96.85 30 96.44 30 94.56 14 94.40 9

5 99.74 30 99.87 30 99.21 2 99.21 2

6 87.24 30 87.41 30 87.72 18 85.39 28

7 98.75 30 98.80 30 98.76 17 98.54 20

8 96.54 30 96.41 30 96.68 19 96.81 30

9 99.96 30 99.96 30 99.93 11 99.99 12

Mean value 95.58 30 95.48 30 94.19 15 93.87 24
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Figure 3.9: Classification accuracy for each class with a small training set: 10 samples per class. Red

lines are the results for the multivalued gradient, blue lines are for the single gradient, and the green lines

are for cross-validation. The bars indicate the standard deviations over the 20 experiments. Horizontal

axis is the corresponding class and the vertical axis is the overall accuracies.
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3.6 Comparison to standard classifier

In this section, we compare SVM classification to others standard classifiers: a Maximum Likelihood
(ML) classifier with a Gaussian assumption and a back-propagation neural network (NN) classifier with
one hidden layer. DBFE was applied for the maximum likelihood, while for the neural network PCA
and independent component analysis (ICA) were used [67]. Due to the high dimensionality of the data,
without feature reduction the neural network training was intractable. For the statistical classification
and feature extraction, the MultiSpec program was used [80], and the neural network was programmed
using Matlab via the Neural Network toolbox [97].

Experiments on hyperspectral data are reported, since the dimensionality of such data is probably the
main difficulty for existing classifiers. The problem of panchromatic data is more related to the extraction
of informative spatial features, and this issue will be addressed in the next chapter.

Experiments were performed on two different data sets. A complete description of the data set is
given in Appendix C. In the following discussion, readers are invited to refer to the appendix for the
description of the data.

Classification accuracy was assessed using overall accuracy (OA), which is the number of correctly-
classified samples divided by the number of test samples, and the average accuracy (AA), which represents
the average of class classification accuracy. For all experiments, an SVM with a Gaussian kernel was used
and the parameters were fitted using cross-validation. From previous considerations 3.5.2, the parameter
C was set at 200 and σ2 was chosen from {0.5, 1, 2, 4} by five-fold cross-validation.

Two sets of moderate hyperspectral data were analyzed. The first one contains 103 bands and the
second one 102 bands. The spatial resolution is 1.3 meter per pixel. Both data sets are described in
appendix C, in the ROSIS data section. Testing and training sets are also detailed.

3.6.1 University Area

Maximum Likelihood classifier based on the Gaussian assumption was applied on the entire data set
and on the features extracted using DBFE based on 99% of the variance. The neural classifier was applied
on the first three principal components, corresponding to 95% of the cumulative variance. From these
three principal components, three independent components were extracted and classified by the neural
classifier. Finally the SVM with a Gaussian kernel was used to classify the entire data set. Results are
reported in Table 3.5. For the first experiment, two multi-class strategies were used: the One vs. All and
the One vs. One approach.

First of all, regarding the results from SVM classifiers, no significant differences between multiclass
classification strategies are found. This confirms the conclusions drawn in [65]. For the next experiment,
we shall only be referring to results obtained using the One vs. All approach.

Clearly, the SVM classifier outperforms all the other classifier in terms of classification accuracy. The
Maximum Likelihood needs DBFE to perform correctly and achieves an overall accuracy of 77.9%. The
neural network performs similarly with the features extracted using PCA or ICA; note that adding more
features does not improve the results significantly, and adding too many features produces a reduction
in the OA. The overall accuracy for the PCA+NN is 66.7% against 71.7% using the ICA+NN, while the
average accuracy is 77.6% for the PCA+NN against 76.7% for the ICA+NN. The SVM classifier achieves
an OA of 80.1% and AA of 88.3%.

Classification maps are shown in Figure 3.10. Visual inspection of the thematic map reveals that the
results provided by the ML are subject to severe noise. The neural network yields less noisy results. The
thematic map provided by the SVM is less noisy than the others.

3.6.2 Pavia Center

Maximum likelihood was applied on the entire data set and on the features extracted using DBFE
based on 99% of the variance. As with the University Area, three principal and independent components
were classified with the neural network. The SVM with a Gaussian kernel was used to classify the entire
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Figure 3.10: (a) False color original image of University Area, (b) Classification map using maximum

likelihood, (c) Classification map using DBFE + ML, (d) Classification map using PCA+NN, (e) Clas-

sification map using ICA+NN, and (f) Classification map using SVM.
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Table 3.5: Classification accuracies in percentage for the University Area for several classifiers.

Classifier ML ML NN NN SVM 1 vs. All SVM 1 vs. 1

FE - DBFE PCA ICA - -

Features 103 31 3 3 103 103

1 66.8 72.9 71.4 70.1 80.6 83.7

2 61.8 71.4 56.7 73.4 68.5 70.3

3 47.8 65.5 53.1 61.7 73.1 70.3

4 97.7 97.6 98.0 96.1 97.5 97.8

5 100.0 100.0 99.6 99.5 99.5 99.4

6 82.1 91.2 57.5 35.8 94.8 92.3

7 51.3 82.0 80.9 72.5 91.5 91.6

8 79.1 82.2 81.2 82.0 91.9 92.6

9 26.5 90.8 99.7 99.4 97.0 96.6

OA 68.5 77.9 66.7 71.7 80.1 81.0

AA 68.1 83.7 77.6 76.7 88.3 88.3

data set. Results are reported in Table 3.6. In accordance with our previous conclusions, we have only
reported the results for the One vs. All multi-class strategy.

From the table, the SVM performs better than the other classifiers in terms of classification accuracy.
The overall accuracy is 98.1% and the average accuracy is 95.8%. The maximum likelihood classifier
achieved an overall test accuracy of 93.8% with the entire data set and 94.5% with the extracted features.
The neural classifier performs similarly with the principal and independent components.

Classification maps are shown in Figure 3.11. As with the University Area data set, the ML classifier
yields a noisy thematic map. The neural and SVM classifiers yield more homogeneous thematic maps.

3.7 Beyond the SVM

In the first part of this chapter, we reviewed the basics of SVM. Based on statistical learning theory,
SVM implements a strategy to learn from the data and to prevent over-fitting. Based on a geometric
approach rather than on probabilistic modeling, SVMs possess several properties that make them well
suited for the analysis of remote-sensing data. They are not impaired by the dimensionality of the
data and they have good generalization ability, even in the situation of a reduced training set. In
Section 3.5, experiments have been carried out to first demonstrate the effectiveness of the SVM, and
then propose an alternative model selection for the classification of remote-sensing data. Experiments
on real hyperspectral data sets confirm the superiority of SRM (SVM) over ERM (neural network) and
conventional statistical classifiers.

Many theoretical advances have been made, on the optimization problem [16] and on the problem for-
mulation [32]. Semi-supervised learning has been investigated successfully and represents a very promising
methodology for remote-sensing applications: unlabelled samples are used to fit the separating hyper-
plane [34] better. Direct application of such techniques to remote-sensing data can be found in [37, 19].
Several strategies for semi-supervised classification of remote-sensing data, in particular using SVM, are
detailed in [89]. Very promising results are being achieved, in particular for knowledge transfer.

All the methods presented work with only the spectral information. But as we have seen in the first
part of the thesis, the spatial information is highly informative. Not much research has been done on
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Figure 3.11: (a) False color original image of Pavia Center, (b) Classification map using maximum

likelihood, (c) Classification map using DBFE + ML, (d) Classification map using PCA+NN, (e) Clas-

sification map using ICA+NN, and (f) Classification map using SVM.
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Table 3.6: Classification accuracies in percentage for the Pavia Center for several classifiers.

Classifier ML ML NN NN SVM

FE - DBFE PCA ICA -

Features 102 28 3 3 102

1 92.0 91.5 95.7 97.1 99.1

2 91.3 92.0 81.8 90.2 90.8

3 96.6 97.7 92.9 84.1 97.4

4 81.8 86.9 72.7 80.6 87.5

5 95.2 95.6 91.0 85.1 94.6

6 85.9 94.4 93.6 94.1 96.4

7 95.6 96.4 80.4 84.4 96.5

8 99.4 99.3 98.3 98.4 99.5

9 79.6 92.3 99.6 99.3 100.0

OA 93.8 94.5 94.5 95.5 98.1

AA 90.8 94.0 89.6 90.4 95.8

inlcuding such information in SVM formulation in contrast to statistical approaches. In the next chapter,
several approaches dealing with the use of both type of information will be presented. In particular, a novel
approach to knowledge-transfer is proposed, based on the spatial information rather than the spectral
information, and an SVM-based strategy is proposed to include both spatial and spectral information
throughout the classification process.
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Chapter 4

Advanced SVM for remote-sensing

data classification

Abstract

Advanced SVMs for the classification of remote sensing data are investigated in this chapter. First

we study the transferability of the decision function for the classification of remote-sensing images from

different locations acquired with the same sensor. Rather than using the spectral information as in a tra-

ditional knowledge transfer system, we proposed using morphological information to construct the SVM’s

decision function. Experimental results show the approach appropriate for urban area remote-sensing data

classification. Then, joint classification using both spatial and spectral information is addressed in the

second the part of this chapter. Based on the adaptive neighborhood proposed in Chapter 2, both types of

information are merge using kernel formulation and classification is performed using the SVM. Compari-

son is made of the proposed approach with the Extended Morphological Profile in the experimental section

for both hyper-spectral and panchromatic data.
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4.1 Introduction

In Chapter 3 we discussed the suitability of SVM to analyze remote-sensing data. A great deal
of work in the remote-sensing community concerns the standard uses of SVM: for the classification of
certain types of data, spectra identification or regression, event detection, and so on. The theoretical
evolution of the SVM into semi-supervised learning theory [34] has been investigated by Bruzzone and
co-workers [19, 37, 89]. This was applied to the knowledge transfer problem: using unlabeled samples
from the new data set, the semi-supervised SVM modifies the position of the separating hyperplane to
fit the new data set better. The feature used for classification was the original spectral information. In
the next section, we propose solving the problem in a different way: we suggest using features that are
mainly invariant and hence are different from spectral features. For urban area data, we propose using
spatial features. Using invariant features, no additional training step are needed and good classification
accuracies are achieved [50].

In section 4.3, we address the problem of using spatial information for the classification of remote-
sensing data. This problem has been studied using a statistical approach with the Markov Random Field
(MRF) theory [86, 68, 107]. The contextual inter-pixel dependency definition from MRF was extended to
SVM in [21] and [17] where spatial information was modeled as the gray-level distribution in a fixed-size
window around a given pixel. The results confirm the usefulness of such modeling, but it suffers from the
same problem as MRF: border effects and spatial resolution. Following on from this work, we propose to
use the adaptive neighborhood system defined in Chapter 2 to solve both these problems. Experimental
results confirm the benefits of such an approach.

4.2 Transferability of the hyperplane

For some applications, such as emergency response or Earth survey, the speed and accuracy of the
algorithm are a critical issue. The main shortcoming of conventional methods is the need for a training
step for each new data set, involving potentially tedious manual labeling. Recent works have discussed
the possibility of knowledge transfer for classification algorithms. In [105, 106], the authors exploited an
existing classifier to construct a new classifier for a novel problem. This task, very difficult because of
the variation of the class characteristics in the spectral domain, is tackled by using a Binary Hierarchical
Classifier where an update step is added when using a new data set. Another similar approach using
transductive SVMs is found in [19].

For the analysis of urban areas with VHR data, the features used for classification are extracted
from the structures within the image. In order to apply knowledge transfer for the classification of this
type of data, it is necessary to extract features that do not change over time or space. For man-made
constructions, shape, size, texture, or orientation are possible features that ought to be almost invariant.

Using the Morphological Profile (MP) and its derivative (DMP) [8], information about the shape,
size, and local contrast of the structures present in the image can be extracted. We have proposed using
the MP as an invariant features vector for the classification of VHR data for dense urban areas [50].
For classification, a support vector machines (SVM) classifier with Gaussian kernel has been used. This
classifier has exhibited good performance for urban data analysis [51].

Even with the same remote sensor, differences in illumination result in images with different radio-
metric information. This point is also discussed, and several histogram-based algorithms are used and
their influence on the knowledge transfer is addressed.

4.2.1 Morphological Profiles as space-invariant feature vectors

As detailed in Chapter 2, MPs contains local spatial information. To achieve a good estimate of the
spatial information, the MP has to be correctly constructed. Hence the shape and size of the SE have
to be properly chosen. Traditionally, the disk is used. It has the property of being isotropic, i.e., the
property of being independent of direction. The number of openings/closings and the step size of the
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Figure 4.1: Mean Morphological Profile for panchromatic images. The horizontal axis represent the

morphological profile component MPi and the vertical axis represent the value of MPi(x) in gray level.

’+‘ correspond to the class road, ’∗‘ correspond to the class shadow, ’−‘ correspond to the class building,

and ’.‘ correspond to the class open area.

SE have to be chosen to cover all the structure in the image. In our applications, we chose the following
parameters:

• SE: disk,
• Initial size: R=2 pixels,
• Number of openings/closings: 15,
• Step: 2.

This results in an MP of size 31 for each pixel. This seems to be sufficiently accurate for VHR data.

Then we estimated a typical profile for each class. The MP has been computed for our test images.
Using some labeled pixels we can have several profiles. A typical profile is estimated by taking the mean
profile of all the referenced profiles. In view of the high number of samples, this seems to be a good
estimate. We have tried other statistical value estimates, like median, but the mean value gave good
results. In this thesis, we are only going to report the results obtain using the mean profile.

Figure 4.1 shows the mean MP for three images and for four classes, namely: road, building, shadow,
and open area. Images 1 and 2 were extracted from the same panchromatic image, for two different
locations. Image 3 is extracted from another panchromatic image, acquired using the same sensor. The
data sets are described briefly in Section 4.2.4 and a complete description can be found in C.

4.2.2 Scaling

Prior to construction of the MP, three different scalings were used, to analyze their influence on the
transferability. Considering an image I, I(x) a pixel, Imin / Imax the lowest / highest values, respectively
of I, µI and σ2

I the mean and variance of I, and HI the histogram of I, the scaling algorithms were:

1. Histogram stretching: The pixel values were stretched into [0, 1],

I ′(x) =
I(x)− Imin
Imax − Imin

. (4.1)

2. Standardization of the histogram: remove the mean and fix unitary variance,

I ′′(x) =
I(x)− µI
σI

. (4.2)

3. Histogram equalization: linearization of the histogram:

I ′′′(x) = I(x)

∫ x

0

HI(z)dz. (4.3)
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Figure 4.2: Spatial knowledge transfer principle. For the two clusters, some variation in the spectral

information may occur for different images. Owing to some invariant spatial information, the optimal

separating hyperplane is still able to classify the clusters correctly.

4.2.3 Knowledge transfer

A feature vector of size 31 is associated with each pixel. Every pixel now lies in a vector space of
dimension 31. The localization of pixels within the space is defined by both its gray level and spatial
information. As presented in the introduction, the pixel spectral information can change between different
images. But the spatial characteristics of the class should be invariant: a building is still bigger than a
road, or a road is always longer than an open area. The localization of a pixel in the vector space for
a same class but for different images should be the same since most of the features are invariant. Thus
the separating hyperplane found using these features can be used for discrimination of the same classes
for different images. This is illustrated in Figure 4.2. Even if some spectral variation occurs, the decision
boundary remains the same.

In the next experiment, we implemented the following strategy, empirical but nonetheless effective.
For a given data set, a hyperplane that separates the data in the feature space was found using a classic
SVM training process. This decision function was then used to classify data from another data set without
any training process.

4.2.4 Experiments

Experiments were conducted on various panchromatic images. For each image, the MP is computed
and classification is performed using the SVM with a Gaussian SVM and the parameters are tuned
using by a 5-fold cross-validation. Two series of experiments were conducted, with and without scaling,
respectively. Results are presented in the next two sections.

The data set consists of three panchromatic images extracted from simulated PLEIADES images
provided by CNES (satellite to be launched in 2008). The spatial resolution is 0.75 meter per pixel. All
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Table 4.1: Information classes and training/test samples for the three images.

Image 1 Image 2 Image 3

train test train test train test

Road 780 2450 393 905 864 1665

Building 845 2293 355 1005 172 1327

Shadow 798 2588 518 1104 136 446

Open Area 1738 3886 96 583 343 1776

Total 4161 11217 1362 3597 1515 5212

Table 4.2: Classification accuracy for Image 1.

Grayscale MP

Training set Orig. Im. 2 Im. 3 Orig. Im. 2 Im. 3

Class 1 85.63 82.67 34.73 94.86 78.13 30.77

Class 2 91.71 89.43 79.50 91.41 22.26 79.55

Class 3 93.00 85.30 76.92 88.25 76.92 76.92

Class 4 86.43 77.74 55.84 97.39 65.35 65.52

Average 89.20 83.79 62.50 92.98 60.66 63.03

images are urban areas. Uncorrelated training and test set were built for each image, see Table 4.1. A
complete description of the data is given in the Appendix C. Image 1 corresponds to Toulouse 1, Image 2
corresponds to Toulouse 2 and Image 3 corresponds to Perpignan. For simplicity, we shall refer to these
henceforth as Image 1, 2 and 3.

4.2.4.1 MP versus grayscale information

In the first experiments, we compared the knowledge transfer with and without MP. The optimal
separating hyperplane was constructed using the original gray values and features vector induced by
the MP. Results are reported in Tables 4.2, 4.3 and 4.4. The row ‘Training set’ indicates with which
hyperplane the data were classified, e.g., ‘Orig.’ indicates classification was done using the hyperplane
found with the original training set, while ‘Im. 2’ indicates classification was done using the hyperplane
found with the training set from the second image.

From the Tables 4.2, 4.3 and 4.4, we can see that for two images extracted from the same data set
(Im. 1 and 2), the grayscale information leads to better classification results. Moreover, the results are
not that different, e.g. 88.83% → 87.75% in Table 4.3, whereas they are clearly worse when the MP is
used.

When considering images extracted from two different data sets (Im. 1 and 3, Im. 2 and 3), the
results are better with the MP. In these cases, the radiometric information has changed and the spatial
information included in the MP contributes to the knowledge transfer.

4.2.4.2 Influence of scaling

As explained in Section 4.2.2, different histogram-based transformations were tested, prior to con-
struction of the MP. For the sake of clarity, we only report results of knowledge transfer for images
extracted from two different data sets (as described in the previous section, radiometric information is
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Table 4.3: Classification accuracy for Image 2.

Grayscale MP

Training set Orig. Im. 1 Im. 3 Orig. Im. 1 Im. 3

Class 1 79.32 81.04 38.92 90.18 77.98 25.16

Class 2 96.50 88.76 71.06 83.81 70.89 72.06

Class 3 87.76 95.07 69.30 93.80 69.30 69.30

Class 4 88.54 86.40 69.11 93.63 83.79 83.79

Average 88.83 87.75 54.59 90.33 75.49 62.57

Table 4.4: Classification accuracy for Image 3.

Grayscale MP

Training set Orig. Im. 1 Im. 2 Orig. Im. 1 Im. 2

Class 1 71.04 58.32 55.45 79.21 67.72 68.05

Class 2 78.41 81.63 56.98 81.58 61.11 25.46

Class 3 91.65 71.66 71.52 94.95 91.44 91.44

Class 4 85.74 54.40 55.66 84.63 64.31 65.95

Average 81.71 66.65 59.90 85.09 71.15 64.98

sufficient for images extracted from a single data set). Results are presented in Tables 4.5, 4.6 and 4.7.
Im. a← Im. b means that image a is classified by the optimal hyperplane found with the image b training
set. Results in brackets are the classification accuracies obtained with the original training set.

From the tables, all the radiometric corrections led to improved classification accuracies, linear scaling
and standardization providing the best results, while equalization seems to perform worse. Equalization
stretches the data artificially, according to the cumulative histogram. But the cumulative histogram is
too image-dependent, and hence may not be appropriate for knowledge transfer.

The best results were obtained with linear scaling: when image 3 is classified with the optimal
hyperplane found with image 1 (2), the final classification accuracy is 86.47% (74.74%) as against 71.15%
(64.98%) without scaling.

It is interesting to note that the best knowledge transfer occurs with the images that have the largest
training sets. The SVM training algorithm found the samples that support the separating hyperplane,
and consequently, with a larger training set, more discriminative samples can be extracted. An algorithm
has been proposed by Bruzzone et al. [19] based on this principle. An optimal hyperplane is found and
is updated by adding/removing a number of support vectors found using unlabeled samples.

4.2.4.3 Discussion

Transferability of spatial features for the classification of urban area has been discussed. Morphological
processing was used to extract invariant features and support vector machines were used to classify the
data. For two images extracted from the same data set, radiometric information performs well, leading to
good classification performance. However, the classes were defined at a coarse level: building, road. . . If
finer definition is desired, spatial definition should contribute to knowledge transfer. For two images
extracted from two different data sets, MP with linear scaling of the data gave promising results. More
advanced SVM algorithms should help classification. In particular, semi-supervised SVM needs to be
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Table 4.5: Classification accuracy with linear-scaled data.

Im. 3←Im. 1 Im. 3←Im. 2 Im. 1←Im. 3

Class 1 80.14 (80.23) 79.98 (80.23) 65.49 (94.49)

Class 2 87.20 (85.25) 88.16 (85.25) 75.92 (96.38)

Class 3 91.44 (96.33) 76.88 (96.33) 81.97 (93.72)

Class 4 87.13 (81.19) 53.94 (81.19) 59.71 (88.85)

Average 86.47 (85.75) 74.74 (85.75) 70.77 (93.36)

Table 4.6: Classification accuracy with standardized data.

Im. 3←Im. 1 Im. 3←Im. 2 Im. 1←Im. 3

Class 1 76.38 (76.17) 68.91 (76.17) 60.88 (92.99)

Class 2 91.15 (82.73) 83.78 (82.73) 80.89 (95.35)

Class 3 81.81 (66.72) 69.45 (86.72) 78.87 (93.93)

Class 4 74.00 (81.60) 62.20 (81.60) 64.94 (86.13)

Average 80.83 (76.80) 71.08 (76.80) 71.40 (92.1)

Table 4.7: Classification accuracy with equalized data.

Im. 3←Im. 1 Im. 3←Im. 2 Im. 1←Im. 3

Class 1 81.61 (80.33) 63.54 (80.33) 35.17 (92.95)

Class 2 87.77 (85.26) 63.16 (85.26) 79.10 (95.23)

Class 3 86.78 (95.58) 72.17 (95.58) 84.54 (93.73)

Class 4 74.65 (83.55) 53.01 (83.55) 61.79 (92.51)

Average 85.20 (86.18) 62.97 (86.18) 65.15 (93.60)
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investigated [34]. Current research is now focusing on normalization of the MP rather than the initial
image, and comparing its influence on classification results.

4.3 Merging spatial and spectral information through a kernel

formulation

In Chapter 2, a novel approach was proposed for extracting spatial information for each pixel. It is
based on a self-complementary area filter. If we consider a one-dimensional image, for each pixel we have
its radiometric information x and its inter-pixel dependency Υx. In the following, we detail our strategy
of using both types of information, then we extend this approach to hyperspectral data. Comparisons
are made with the Extended Morphological Profile.

4.3.1 Kernel formulation

Camps-Valls et al. [21] studied different composite kernels for hyperspectral image classification. They
extracted spatial information from a square window centered on the pixel. From their experiments, the
weighted kernel that allows a trade-off between the spatial and spectral information seems to provide the
best results. The authors proposed using a statistical estimate of inter-pixel dependency, the mean and
standard deviation, as the spatial information. The use of that type of information in addition provides
equivalent results, but using the weighted kernel, classification accuracy was increased by about 10%. But
in terms of the final classification map, many pixels at structure boundaries were misclassified, though
the structures were more homogeneous. This phenomenon is due to the square window: the beneficial

effect is the homogeneous regions and the negative effect is the mis-classified pixels at boundaries. A
weighted kernel is also successfully applied in [91]: The authors have performed wavelet-based multi-scale
decomposition, to model local texture. Then this textural information was included in the processing by
means of weighted kernels.

Another approach was proposed by Bovolo et al. in [17]. Rather than including spatial information
with the kernel definition, inter-pixel dependency was modeled as the mean of pixel gray values in a
pixel’s neighborhood system. Then this information was included directly in the training process as new
constraints for the optimization problem. However, only the inter-pixel dependency of the support vectors
was used for the final classification. This approach was designed to cope with noisy training sets. When
considering clean training sets, it is of limited interest, owing to the high correlation between adjancy
pixels.

The approach proposed attempts to exploit the weighted kernel and the adaptive neighbors systems
proposed previously [51]. The weighted kernel can be constructed thanks to kernel properties. It is pos-
sible to define kernels that use both kinds of information without running into intractable computational
problems. Rules for kernel construction can be found in [112] and in Appendix A. We used the linearity
property to construct the new kernel:

if k1 and k2 are kernels, and µ1, µ2 ≥ 0, then µ1k1 + µ2k2 is a kernel.

Using the previous property, we defined the spectro-spatial kernel K as:

Kλγ,µ : R
n × R

n → [0, 1]

(x, z) 7→ µkspectγ (x, z) + (1− µ)kspatγ (x, z)

0 ≤ µ ≤ 1, 0 ≤ λ, 0 ≤ γ.

(4.4)

From our experiments [47], we defined the spectral kernel as:

kspectγ : R
n × R

n → [0, 1]

(x, z) 7→ exp

(
−‖x− z‖2

2γ2

)
.

(4.5)
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The spatial kernel is defined as follows:

kspatγ : R
n × R

n → [0, 1]

(x, z) 7→ exp

(
−‖Υx −Υz‖2

2γ2

)
.

(4.6)

For pixels belonging to the same set, the spatial information is the same. By proceeding in this way,
we hope to obtain more homogeneous labeled zones in the final classification. The weighting factor µ
controls the amount of the spatial and spectral information in the final kernel. It is tuned during the
training process, as the parameter γ.

4.3.2 Extension to hyperspectral

As proposed in Section 2.8, the neighbors system is defined on the first principal component and
generalized to each band. Thus Υ is a vector of same dimension as the original pixel-vector. Using a
kernel function, the extension is immediate.

4.3.3 Experimental results

In this section, we compare the proposed approach to the MP and the EMP. For the first experiment,
we provide a detailed analysis of the method and of the results obtained. Then a comparison is made. A
complete description of the data set is given in the appendix C. In the following, readers are invited to
refer to the appendix for the description of the data.

Classification accuracy was assessed using overall accuracy (OA), which is the number of correctly-
classified samples divided by the number of test samples, average accuracy (AA), which represents the
average of class classification accuracy, and the kappa coefficient of agreement (κ), which is the percentage
agreement corrected by the level of agreement that could be expected due to chance alone. These criteria
were used to compare classification results and were computed using the confusion matrix. Furthermore,
the statistical significance of differences was computed using McNemar’s test, which is based upon the
standardized normal test statistic [56]:

Z =
f12 − f21√
f12 + f21

(4.7)

where f12 indicates the number of samples classified correctly by classifier 1 and incorrectly by classifier
2. The difference in accuracy between classifiers 1 and 2 is said to be statistically significant if |Z| > 1.96.
The sign of Z indicates whether classifier 1 is more accurate than classifier 2 (Z > 0) or vice-versa
(Z < 0).

SVM was used for all the experiments, and the parameters were fitted using cross-validation. Three
SVM parameters need to be tuned: C the penalty term, γ the width of the Gaussian kernel, and µ
the weighting factor in K. From previous considerations in Section 3.5.2, C did not have a strong
influence on the classification results when set higher than 10. For all the experiments, it was set at
200. The two other parameters were set using five-fold cross-validation, σ2 ∈ {0.5, 1, 2, 4} and µ ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. The SVM algorithm was implemented using a modified version of
LIBSVM [24]. When using the Gaussian kernel, only the σ2 value was tuned. Each original data set was
scaled between [−1, 1] using a band-wise range-stretching algorithm. The multi-class approach used was
‘One vs. All’, since this allows tuning of µ independently for each class.

4.3.3.1 Hyperspectral data set

University Area The first data set is the ’University Area’. This is composed of several man-made
structures: buildings, roads, etc. and many classes of vegetation: grass, trees, bare soil. The original false
color image can be seen in Figure 4.3 and details about the training and testing sets in Appendix C. For
the classification, nine classes were defined, namely: trees, asphalt, bitumen, gravel, metal sheet, shadow,
bricks, meadow, and soil.
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Comparison to original SVM For this experiment, we first investigated the influence of the
parameter λ on the definition of the neighborhood set. We tried several values for λ ranging from 2 to 40.
Results of the classification are given in Table 4.8. Regarding the variation in the classification results,
it seems that the parameter λ has a variable influence on the classification accuracies for each class. To
explain this, three situations can be identified:

1. The spectral information is sufficient to discriminate the sample, and this spectral information is
not noisy, so additional information is not needed (classes 9 and 5).

2. The size of the structure to which the sample belongs is:

• large; when area filtering is performed, the sample is directly merged into a structure of a
size larger than λ. This leads to better discrimination of the class concerned (classes 1, 7,
and 8).

• small; when area filtering is performed, the sample may be merged into another structure.
For example, when considering the class Tree, this may be merged with class Meadow. This
leads to poorer discrimination of the class concerned (class 4).

3. The class is highly textured and area filtering smoothes the structure. This leads to better dis-
crimination of the class concerned (classes 2, 3, and 6).

According to the results in Table 4.8, the proposed approach outperforms the classic SVM. The
statistical significance of differences in classification accuracy is reported in Table 4.9. The proposed
classifier yields better results than those from the classic SVM. Kernel parameters found after the training
step are given in Table 4.10. The value of µ confirms that a spatial kernel is useful for discrimination, since
small values of µ are selected during the training process (corresponding to the inclusion of more spatial
than spectral information). It is worth noting that too high a value of λ does not help classification; it
makes area filtering too strong, thereby removing too many relevant structures.

From this first experiment, it emerges that adding neighbors for classification improved the final
results for some classes but not for all. Regarding the nature of the classes, the optimum neighborhood
system and the ratio between spatial and spectral information seem to be different for each class and
need to be tuned during the training process.

Figure 4.3 shows a false color of the original image and classification maps using the original kernels
and the proposed kernel.

Comparison to EMP Principal component analysis was applied to the data. The first three com-
ponents were retained and morphological processing was applied. For each component, 4 opening/closings
with a disk as SE and an increment of 2 were computed. Thus the EMP was a vector with 27 components.
For the SVM, a Gaussian kernel was used. The parameters were fitted in the same manner as the classic
kernel in the previous experiment.

Results are listed in Table 4.8. The statistical difference is Z = 27.69. From the table, the proposed
approach performs better in terms of classification accuracy than the EMP. However, for the Asphalt class
the EMP produces better classification. This class correspond to the roads in the image, which are clearly
fine, linear structures. Examining the thematic map Figure 4.3.(c), the roads seem to be better identified
and more ‘continuous’ than in Figure 4.3.(d). The morphological profile extracts information about the
shape and size of the structure, while the median value of the adaptive neighborhood is more an indication
of the gray level distribution of the structure, hence it is not surprising that the MP performs best for that
class. Note that both spectro-spatial approaches perform better for that class than the use of spectral
information alone. In terms of classes with no typical shape such as meadow, gravel, or bare soil, the
proposed approach outperforms the EMP in terms of classification accuracy. The adaptive neighborhood
fits such structures better, and the value extracted from these structures helps in the discrimination (the
smoothing effect describe above).

In the next experiment, an image of a dense urban area is classified. According to the considerations
mentioned above, the EMP ought to be the best at dealing with this type of data.
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(a) (b)

(c) (d)

Figure 4.3: (a) False color original image of University Area. (b) Classification map using the RBF

kernel. (c) Classification map using the EMP. (d) Classification map using the proposed kernel where

λ = 30.
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Table 4.8: Classification accuracies for University Area data set. The best results for each class are

reported in bold face. ∆ is the difference between the best Kn and the original kernel. Kn means that

classification was performed using the proposed kernel and area filtering of size n.

Classifier RBF EMP K
2

K
5

K
10

K
15

K
20

K
25

K
30

K
35

K
40 ∆

1 80.64 93.33 80.41 80.08 82.39 83.25 84.57 86.32 84.36 84.57 86.13 5.68

2 68.47 73.40 72.28 72.27 75.17 72.28 76.38 76.32 78.52 75.18 75.16 10.05

3 73.80 52.45 76.51 77.13 81.71 87.04 90.61 89.71 84.80 85.52 85.90 16.81

4 97.49 99.31 96.44 96.64 94.19 94.94 95.07 94.61 96.87 94.84 97.65 0.16

5 99.49 99.48 99.11 99.26 99.41 96.51 99.48 98.29 99.88 99.63 99.63 0.39

6 94.83 61.90 95.29 94.33 97.26 95.67 96.88 94.09 95.61 98.31 97.87 3.48

7 91.50 97.67 93.38 94.51 89.70 91.50 94.14 93.91 95.56 96.17 93.83 4.67

8 91.88 95.17 92.07 92.67 96.14 94.46 94.70 95.84 95.44 95.30 95.79 4.26

9 97.04 92.29 95.04 94.83 95.56 92.29 93.56 93.24 97.78 96.73 97.25 0.74

OA 80.13 79.83 81.89 81.85 84.04 82.79 85.33 85.22 86.11 84.90 85.28 4.26

AA 88.33 85.00 88.95 89.09 90.17 89.77 91.71 91.37 91.98 91.80 92.14 3.19

κ 75.19 74.15 77.27 77.23 79.86 78.36 81.45 81.29 82.35 80.93 81.42 5.12

Pavia Center The second data set is an image of a dense urban area, the ’Pavia Center’. We want
to investigate the usefulness of the spectro-spatial approach when a large number of structured objects
are present in the image. The original false color image can be seen in Figure 4.4 and details about the
training and testing sets are given in appendix C. For the classification, nine classes were defined, namely:
water, tree, meadow, brick, soil, asphalt, bitumen, tile, and shadow.

Comparison to original SVM For the second data set, classification accuracies were already
very good. For convenience, only the best results have been reported, with comparison to the original
results, see Table 4.11. Following analysis of the parameter λ, we can say that classes 1, 2, 8, and 9 are
separable using only the spectral information and adding spatial information does not help significantly
in discrimination. Structures belonging to class 4 are merged together during the area filtering, and this
leads to better discrimination. Textured classes (3, 5, and 7) are also better separated. However, in this
image, class 6 corresponds to narrow streets, and the area filtering impairs classification of this type of
structure. Nevertheless, in the final analysis OA, AA and κ are improved with the proposed kernel, and
the results are statistically different Z=8.82.

Figure 4.4 presents the false color original image and classification maps using the original kernels
and the proposed kernel.

Comparison to EMP The EMP was constructed following the same scheme as before. It com-
prised 27 features, and classification was performed using an SVM with a Gaussian kernel. Classification
accuracies are reported in Table 4.11. The statistical difference is Z = -15.81, which means that the EMP
performs better in this case. In terms of the global accuracy from the table, the EMP gave a slightly
better result.

Regarding the class-specific accuracies, the same conclusions can be drawn as in the previous exper-
iments. The class Asphalt is better classified with the EMP than with the approach proposed, while
the class Meadow is discriminated better with the adaptive neighborhood. This confirms our conclusion
above. The class Tile was already well classified using spectral information, hence no significant difference
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(a) (b)

(c) (d)

Figure 4.4: (a) False color original image of Pavia Center. (b) Classification map using the RBF kernel.

(c) Classification map using the EMP. (d) Classification map using the proposed kernel where λ = 20.
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Table 4.9: Statistical Significance of Differences in Classification (Z) for the University Area data set.

rbf K
02

K
05

K
10

K
15

K
20

K
25

K
30

K
35

K
02 10.26

K
05 10.14 -0.38

K
10 22.66 15.51 15.86

K
15 15.29 5.17 5.43 -8.75

K
20 28.97 22.71 23.84 9.30 16.17

K
25 29.98 21.40 22.41 8.20 15.05 -1.06

K
30 33.30 26.84 27.66 14.37 20.11 5.85 7.35

K
35 27.33 18.55 18.89 5.98 13.6 -2.96 -2.26 -10.96

K
40 29.38 21.03 21.58 8.54 15.17 0.34 0.46 -7.12 3.78

Table 4.10: Kernel parameter found by 5-fold cross-validation for University Area data set (λ = 30).

Class 1 2 3 4 5 6 7 8 9

µ 0.3 0.1 0.1 0.1 0.9 0.5 0.1 0.2 0.4

γ 0.5 1 0.5 0.5 1 1 1 0.5 4

is found between EMP and the approach proposed, even this class corresponds to most of the roofs in
the image.

Figure 4.4 shows the thematic map obtained using the EMP.

Washington DC Mall The last hyperspectral data set is ‘Washington DC Mall’. Some parts of the
image represent a dense urban area and some parts of the image represent vegetation area. The spatial
resolution was lower, but it contains more spectral bands, see appendix C for more details, in particular
for the training and testing set. Since the spatial resolution is lower, the structures are not as well defined
as for the previous data set. This could disrupt the filtering. For the classification seven classes were
defined, namely: roof, road, grass, tree, trail, water, and shadow.

Comparison to original SVM As the spatial resolution is lower, the parameter λ needs to be
tuned to a lower value than in the previous experiments. We tested a range of values from 3 to 15. For
all values, the OA was over 98.40% and not statistically different; the best κ value enabled us to choose
4 as the optimal value. The labeled data are relatively small and so it is difficult to produce statistically
different results. However, regarding the results from the Table 4.12, the spectro-spatial approach leads
to a improvement in classification accuracy. The statistical significance of the difference Z is 2.66.

In terms of the class-specific accuracies, the biggest improvement with the spectro-spatial approach
is obtained for class 5, Tree, while class 2, corresponding to roads, is classified slightly worse.

Comparison to EMP The EMP comprised 27 features, resulting from the MP of the first three
principal components. Classification was performed using the Gaussian SVM. Classification accuracies
are reported in Table 4.12. The difference in classification is not statistically significant (Z=1.75).

Using the EMP, the shadow class is clearly classified worse than with the other two approaches. For
this type of spatial resolution data, the square SE of radius 2 fails to fit many of the shadow structures,
which are thus deleted at the start of the morphological processing: hence the spatial characteristic is



90 Chapter 4. Advanced SVM for remote-sensing data classification

Table 4.11: Classification accuracies for Pavia Center data set for the standard SVM, the EMP and the

proposed approach.

OA AA κ 1 2 3 4 5 6 7 8 9

RBF 98.06 95.76 97.25 99.08 90.81 97.44 87.49 94.56 96.43 96.54 99.48 100

K
20 98.43 97.13 97.79 99.15 90.04 98.12 94.00 99.45 95.82 98.15 99.47 99.93

EMP 98.95 97.72 98.51 99.82 90.94 95.50 99.07 99.06 97.99 97.49 99.62 99.97

Table 4.12: Classification accuracies for Washington DC data set for the standard SVM, the EMP and

the proposed approach.

OA AA κ 1 2 3 4 5 6 7

RBF 98.32 98.14 97.58 96.95 99.28 100 100 92.02 99.92 92.78

K
4 98.96 98.48 98.50 98.28 97.60 100 100 99.75 99.92 93.81

EMP 98.33 96.79 97.59 97.29 99.28 99.43 99.84 98.27 99.92 83.41

estimated poorly. Considering the Road classification, the EMP performs better than the spectro-spatial
approaches.

Figure 4.5 shows the thematic map obtained using the EMP.

4.3.3.2 Panchromatic data

In these experiments, we sought to confirm the results obtained for the hyperspectral data set and
test the spectro-spatial approach on very high spatial resolution.

IKONOS data The first data set is the IKONOS data ‘Reykjavik 1’. Experimental results were given
in Chapter 2, page 42. The very high spatial resolution requires the λ value to be higher than in the
previous experiments. In this experiment λ=40.

Comparison to original SVM Globally, accuracy has improved using the spectro-spatial SVM.
The OA was 42.87% using gray level information alone, while it is 48.46% using the approach proposed.
The classification accuracy for the classes Open area and Shadow has improved, from 58.37% to 70.24%
and 85.50% to 89.94 % respectively. However, Residential lawns and Streets cannot be differentiated
using the spectro-spatial approach, since no information about the size of the structure is added into the
classification process.

Comparison to MP The MP leads to better classification accuracy: the Kappa coefficient is
40.80, as against 37.50 for the spectro-spatial SVM. In terms of the class-specific accuracy, the MP allows
differentiation between Street and Residential lawn, while Open area and Shadow are classified better
with the spectro-spatial SVM.

PLEIADES data [51] The second panchromatic data set was the PLEIADES data ‘Toulouse 1 and
2’. A full description of the data and the testing and training sets can be found in appendix C. For both
data sets, the MP was constructed using 15 geodesic openings/closings, the structuring element being a
disk of size 2, 4 . . . 30.
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(a) (b) (c) (d)

Figure 4.5: (a) False color original image of Center. (b) Classification map using the RBF kernel. (c)

Classification map using the EMP. (d) Classification map using the proposed kernel where λ = 20.
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Table 4.13: Parameter µ found by cross-validation for Toulouse 1

Class Road Building Shadow Open Area

Toulouse 1 0.3 0.6 0.1 0.4

Toulouse 2 0.6 0.6 0.4 0.9

Table 4.14: Classification accuracies in percentage for the PLEIADES data Toulouse 1 and 2. λ = 45
for the standard SVM, the EMP and the proposed approach.

Toulouse 1 Toulouse 2

SVM SS SVM MP + SVM SVM SS SVM MP + SVM

OA 76.99 82.25 80.58 71.34 77.54 83.74

AA 75.53 80.91 78.55 63.75 73.01 81.49

κ 68.33 75.80 73.14 60.39 69.22 77.90

Road 70.69 77.31 82.42 95.47 93.15 85.64

Building 86.09 93.86 48.03 99.64 100.00 93.91

Shadow 60.97 64.15 85.52 59.90 62.89 74.73

Open area 84.35 88.32 98.15 0 36.02 65.69

Comparison to original SVM Classification accuracy is reported in Table 4.14. The optimum
value for λ = 45 was found heuristically during the training step.

In terms of the three global classification accuracy estimates (OA, AA, and κ), the approach proposed
led to an improvement in classification. Except for one class for the second data set, the simultaneous
use of spatial and spectral information invariably leads to better discrimination of the different classes.

In Table 4.13, the values of µ for each binary sub-problem are reported. For the first data set, the
spatial information is weighted heavier than the spectral information, while for the second data set the
usage seems to be more balanced. This tends to prove that the amount of each kind of information in
fact needs to be carefully tuned during the training process and should not be set to the same value for
all classes.

Figure 4.6 shows the original image and the thematic maps obtained using the original kernel and the
proposed kernel.

Comparison with the MP As with the spectro-spatial SVM, the MP leads to an improvement of
the classification in terms of accuracy. For the first data set, the spectro-spatial kernel performs better,
while the MP performs better for the second data set.

As with the hyperspectral data sets, the MP performs better for the structured classes: Road and
Building, while the spectro-spatial approach performs better for Shadow and Open area.

Figure 4.6 presents the thematic map obtained using the MP.

4.3.4 General comments

The proposed approach outperforms the classic Gaussian radial basis kernel. Some remarks are
discussed below:

• Area filtering: Used as a pre-processing step, this filter provides a simplified image where relevant
structures are still present and details are removed. However, too high a value for λ may eliminate
small structures, such as trees in the ‘University Area’ data experiment or narrow streets in the
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(a) (b)

(c) (d)

Figure 4.6: (a) False color original image of Toulouse 1, (b) Classification map using the RBF kernel,

(c) Classification map using the MP, (d) Classification map using the proposed kernel where λ = 45.
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‘Pavia Center’ data experiment. This parameter needs to be chosen carefully. Despite the fact the
filter is not a connected filter, since the the values of λ are always low, the output is consistent with
the initial image. In future works, a method for definig a connected filter needs to be addressed.

• Multiband extension: Due to the problem that there is no ordering relation between vector-
valued pixels, direct extension of the area filter is not possible. The proposed approach was extended
to hyperspectral data by considering the first principal component. This methodology had been
successfully applied when using morphological filtering for the purpose of classification. In our
experiments, the results confirm the interest of this scheme.

• Spectro-spatial kernel: This formulation allows a compact definition of the classification algo-
rithm. Thus very few parameters need to be tuned during the training stage. From these experi-
ments, the values of γ does not seem to have a strong influence on the overall results (≈ 1−2%) when
the data are scaled between [−1, 1]. The relative proportions of spatial and spectral information
has a stronger influence in the final classification.

• λ value: In the approach proposed, this parameter was selected globally, i.e., all the classes share
the same value. But in terms of class classification accuracy, see Table 4.8, it can clearly be seen
that the optimum value of λ is class-dependent. Hence in future work λ ought to be included in
the training process and selected for each class independently.

• Spectro-spatial SVM vs. EMP + SVM: Regarding the experimental results, both approaches
lead to improved classification in terms of accuracy. The spectro-spatial approach performs better
for peri-urban areas, while the EMP leads to better results for very dense urban areas. However, the
results are highly correlated to class definition: when considering classes according to geometrical
characteristics (size or shape) the EMP performs better, but when considering classes according
to textural or spectral characteristics, the spectro-spatial approach leads to better classification.
Hence the method needs to be chosen in accordance with the data and the classes defined.

4.3.5 Discussion

A novel approach using spatial and spectral information has been presented. Defining a weighted
kernel allows it to be applied with low complexity. A key point is the definition of the spatial neighborhood
and spatial information. In this thesis, we use the median value as an estimation of the inter-pixel
dependency within a structure. Experiments have yielded good results in terms of classification accuracy.
Comparison was made with the EMP. The proposed approach appears to perform better when the image
area is not a dense urban area (University Area and Washington DC), while the EMP performs better for
dense urban areas (Pavia Center). This is due to the morphological processing, which extracts geometrical
information about the structure, while the proposed approach extracts only information about its gray-
level distribution.

This result is not however surprising, as explained in the experiment. One possible extension lies
in the definition of new spatial information. The median value does not provide information about the
shape, size, or homogeneity of the neighborhood set. Other parameters could be extracted, thus leading
to another definition of the spatial kernel. For instance, textural information could be extracted. In [88], a
method for the estimation of the characteristic scale at each pixel was proposed. Such type of information
needs also to be included in the classification process.
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Chapter 5

Decision Fusion

Abstract

The following chapter deals with the problem of the fusion of several classifier outputs. The aim of

decision fusion is to obtain a more reliable classification map using several classifiers, each one having

its own advantages. The following work is based on fuzzy logic, which is presented at the beginning of

the chapter. Then information fusion theory is reviewed and the fusion framework is detailed. It is

based on the estimation of the local confidence of each classifier by modeling the classifier outputs using

a fuzzy set. Global confidence is defined consistent with the per-class performance of each classifier. The

fusion is performed according to the local and global confidence. Experimental results are given for two

panchromatic images. A dedicated fusion approach is then proposed for the SVM where the distance to

the hyperplane is used a measure of the reliability of sources.
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IN THE second part of the thesis, we have dealt with many classification algorithms: maximum
likelihood, neural network, and particular attention was paid to support vector machines. These

algorithms were applied to different inputs: spectral features, spatial features, morphological profile, etc.
All these different methods have their own characteristics and advantages. Neural network and SVM have
the advantage that no prior information about the distribution of the input data is needed. However, if
an accurate multivariate statistical model can be determined, statistical methods should provide better
classification accuracies than neural networks. Classifiers based on possibilistic models do not need any
training and class definitions can be achieved using linguistic variables [27]. Furthermore, computation
time is usually shorter with statistical approaches than neural methods or SVM.

For a given data set, performance in terms of overall and by class classification accuracies usually
depends on the classes considered, i.e. on their spectral and spatial characteristics. For instance, methods
based on morphological filtering are well suited to classifying structures with a typical spatial shape, like
man-made constructions. On the other hand, algorithms based on spectral information perform better
for the classification of vegetation and soils. As a consequence, we advocate using several approaches and
trying to capitalize on the strengths of each algorithm. This concept is called decision fusion[6]. Decision
fusion can be defined as the process of fusing information from several individual data sources after each
data source has undergone a preliminary classification. For instance, Benediktsson and Kanellopoulos [6]
proposed a multi-source classifier based on a combination of several neural/statistical classifiers. The
samples are first classified using two classifiers (a neural network and a multi-source classifier); every
sample with results that agree is assigned to the corresponding class. Where there is a conflict between
the classifiers, a second neural network is used to classify the remaining samples. The main limitation
of this method is the need for large training sets to train the different classifiers. In [69], Jeon and
Landgrebe used two decision fusion rules to classify multi-temporal Thematic Mapper data. Recently,
Lisini et al. [87] proposed combining sources according to their class accuracies. In the present study,
the decision fusion rule is modeled using fuzzy data fusion rules. Fuzzy-based fusion techniques have
already been applied in various decision fusion schemes. For instance, Tupin et al. [125] combined several
structure detectors to classify SAR images using the Dempster-Shafer theory. Chanussot et al. [30]
proposed several strategies to combine the output of a line detector applied to multi-temporal images.
Also dealing with multi-temporal SAR images, Amici et al. [3] investigate the usefulness of fuzzy and
neuro-fuzzy techniques to fuse the multi-temporal information for monitoring flooded areas.

For data fusion-based classification methods, two main categories can be defined: The fusion of
features or information prior to classification, and the fusion of decisions post-classification. Both these
approaches are addressed in the thesis. Decision fusion is investigated below; feature fusion will be
addressed in the following chapter.

In this chapter, we propose a general framework for aggregating the results from different classifiers.
Conflicting situations, where the different classifiers disagree, are resolved by estimating the point-wise
accuracy and modeling the global reliability for each algorithm [132]. This leads to the definition of an
adaptive fusion scheme ruled by these reliability measures. The proposed algorithm is based on fuzzy
sets and possibility theory. Then this framework is used as a basis for the fusion of SVM classifiers with
different inputs.

The framework of the problem addressed is modeled as follows: For a given data set, n classes are
considered, andm classifiers are assumed to be available. For an individual pixel, each algorithm provides
an output of a membership degree for each of the considered classes. The set of these membership values
is then modeled as a fuzzy set, and the corresponding degree of fuzziness determines the point-wise
reliability of the algorithm. The overall accuracy is defined manually for each class after a statistical
study of the results obtained with each classifier used separately. Hence the fusion is performed by
aggregating the different fuzzy sets provided by the different classifiers. It is adaptively ruled by the
reliability information and does not require any further training. The decision is postponed until the end
of the fusion process in order to take best advantage of each algorithm and enable more accurate results
in conflicting situations.

This chapter is organized as follows. Fuzzy set theory and measures of fuzziness are briefly presented
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in Section 5.1. Section 5.1.2 presents the model for the output of each classifier in terms of a fuzzy set.
The problem of information fusion is next discussed in Section 5.2. The proposed fusion scheme is detailed
in Section 5.3 and experimental results are presented in Section 5.4. Then the framework is modified for
application to SVM classifiers, and experiments on hyperspectral data are presented. Finally, conclusions
are drawn.

5.1 Fuzzy set theory

Traditional mathematics assigns a membership value of 1 to elements that are members of a set,
and 0 to those that are not, thus defining crisp sets. However, fuzzy set theory deals with the concept
of partial membership of a set, using real-valued membership degrees ranging from 0 to 1. Fuzzy set
theory was introduced in 1965 by Zadeh as a means of modeling the vagueness and ambiguity in complex
systems [133]. It is now widely used to process imprecise or uncertain data [77, 124]. In particular, it
offers an appropriate framework for handling the output of any given classifier for further processing,
since this does not usually come in binary form and includes a degree of ambiguity. In this section, we
first recall general definitions and properties of fuzzy sets. Then, we detail the model used for representing
the classifier output.

5.1.1 Fuzzy set theory

5.1.1.1 Definitions

Definition 5.1 (Fuzzy subset) A fuzzy subset1 F of a reference set U is a set of ordered pairs F =
{(x, µF (x)) | x ∈ U}, where µF : U → [0, 1] is the membership function of F in U .

Definition 5.2 (Normality) A fuzzy set is said to be normal if and only if: max µF (x) = 1.

Definition 5.3 (Support) The support of a fuzzy set F is defined as:

Supp(F ) = {x ∈ U | µF (x) > 0}.

Definition 5.4 (Core) The core of a fuzzy set is the (crisp) set containing the points with the largest

membership value (1). It is empty if the set is non-normal.

5.1.1.2 Logical operations

Classical Boolean operations extend to fuzzy sets [133]. With F andG two fuzzy sets, classic extensions
are defined as follows:

Equality The equality between two fuzzy sets is defined as the equality of their membership functions:

µF = µG ⇔ ∀x ∈ U, µF (x) = µG(x). (5.1)

Inclusion The inclusion of one set within another is defined by the inequality of their membership
functions:

µF ⊂ µG ⇔ ∀x ∈ U, µF (x) ≤ µG(x). (5.2)

Union The union of two fuzzy sets is defined by the maximum of their membership functions:

∀x ∈ U, (µF ∪ µG) (x) = max {µF (x), µG(x)} . (5.3)

1For convenience, we will use the term fuzzy set instead of fuzzy subset in the following, where a fuzzy set F is described

by its membership function µF .
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Intersection The intersection of two fuzzy sets is defined by the minimum of their membership func-
tions:

∀x ∈ U, (µF ∩ µG) (x) = min {µF (x), µG(x)} . (5.4)

Complement The complement of a fuzzy set F is defined by:

∀x ∈ U, µF (x) = 1− µF (x). (5.5)

5.1.1.3 Measures of fuzziness

Fuzziness is an intrinsic property of fuzzy sets. To measure to what degree a set is fuzzy, and thus
estimate the corresponding ambiguity, several definitions have been proposed [40] [134]. Ebanks [45]
proposed defining the degree of fuzziness as a function f with the following properties:

1. ∀F ⊂ U , if f(µF ) = 0 then F is a crisp set
2. f(µF ) is maximum if and only if ∀x ∈ U, µF (x) = 0.5

3. ∀(µF , µG) ∈ U2, f(µF ) ≥ f(µG) if ∀x ∈ U




µG(x) ≥ µF (x) if µF (x) ≥ 0.5

µG(x) ≤ µF (x) if µF (x) ≤ 0.5

4. ∀F ∈ U, f(µF ) = f(µF ). A set and its complement have the same degree of fuzziness
5. ∀(µF , µG) ∈ U2,f(µF ∪ µG) + f(µF ∩ µG) = f(µF ) + f(µG)

Derived from probability theory and classic Shannon entropy, De Luca and Termini [40] defined a
fuzzy entropy satisfying the above five properties:

HDTE(µF ) = −K
n∑

i=1

(
µF (xi) log2(µF (xi)) + (1− µF (xi)) log2(1− µF (xi))

)
. (5.6)

Bezdeck [96] proposed an alternative measure of fuzziness based on a multiplicative class.

Definition 5.5 (Multiplicative Class) A multiplicative class is defined as:

H∗(µF ) = K
n∑

i=1

g(µF (xi)), K ∈ R+ (5.7)

where g(µF ) is defined as:




g(t) = g̃(t)− min
0≤t≤1

g̃(t)

g̃(t) = h(t)h(1− t)
(5.8)

and h is a concave increasing function on [0, 1]:

h : [0, 1]→ R2,∀x ∈ [0, 1] h′(x) > 0 and h′′(x) < 0. (5.9)

The multiplicative class makes it possible to define various measures of fuzziness, where different
choices of g lead to different behaviors. For instance, let h : [0, 1] → R+ be h(t) = tα, 0 < α < 1. The
function h satisfies the required conditions for the multiplicative class, and the function:

HαQE(µF ) =
1

n2−2α

n∑

i=1

µF (xi)
α(1− µF (xi))

α (5.10)

is a measure of fuzziness, α−Quadratic entropy. Rewriting (5.10) as:




HαQE(µF ) =
1

n

n∑

i=1

SαQE(µF (xi))

SαQE(µF (xi)) =
µF (xi)α(1− µF (xi))α

2−2α

(5.11)
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Figure 5.1: Influence of parameter α on SαQE

Table 5.1: Degree of fuzziness for different fuzzy sets computed using α−Quadratic entropy

α = 0.01 0.25 0.5 0.75 0.99

HαQE(µF (x)) = atan(x) 0.959 0.600 0.394 0.271 0.196

HαQE(µF (x)) = x 0.967 0.725 0.549 0.423 0.333

HαQE(µF (x)) = U(x) 0 0 0 0 0

HαQE(µF (x)) = 0.5 0.993 0.840 0.707 0.594 0.503

we can analyze the influence of parameter α (see Figure 5.1): the measure becomes more and more
selective as α increases from 0 to 1. With α close to 0, all the fuzzy sets have approximately the same
degree of fuzziness and the measure is not sensitive to changes in µF , whereas with α close to 1, the
measure is highly selective, with the degree of fuzziness decreasing rapidly when the fuzzy set differs from
µF = 0.5. Consequently, an intermediate value such as α = 0.5 usually provides a good trade-off [96].

Examples of fuzzy sets and their fuzziness values are given in Figure 5.2 and Table 5.1, respectively.
For the binary set, fuzziness is null with respect to condition 1 above. Condition 2 is fulfilled, since
the fuzziness is maximum for µF (x) = 0.5. In respect of condition 3, the fuzzy set with the arctan
membership function has a lower fuzziness than the fuzzy set with the linear membership function.

5.1.2 Class representation

An n-class classification problem is considered, for which m different classifiers are available. For a
given pixel x, the output of classifier i is the set of numerical values:

{µ1
i (x), µ

2
i (x), . . . , µ

j
i (x), . . . , µ

n
i (x)} (5.12)

where µji (x) ∈ [0, 1] (after a normalization, if required) is the membership degree of pixel x to class j
according to classifier i. The higher this value, the more likely it is that the pixel belongs to class j (if a
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Figure 5.2: Example of four fuzzy sets with different degrees of fuzziness.

single classifier is used, the decision is taken by selecting the class j maximizing µji (x): classselected(x) =
argmaxj(µ

j
i (x))). Depending on the classifier, µji (x) can be of a different nature: probability, posterior

probability at the output of a neural network, membership degree at the output of a fuzzy classifier, etc.
In all cases, the set πi(x) = {µji (x), j = 1, ..., n} provided by each classifier i may be considered as a fuzzy
set.

To sum up: For every pixel x, m fuzzy sets are computed, one for each classifier. This set of fuzzy
sets constitutes the input for the fusion process:

{π1(x), π2(x), . . . , πi(x), . . . , πm(x)}. (5.13)

Two conflicting sets are represented in Figure 5.3: for this pixel, trusting the first classifier (on the left),
class number 4 would be selected, whereas if we trust the second classifier (on the right), it would be
class number 5. The handling of such conflicting situations is the central issue that needs to be addressed
by the fusion system. In fact, the fusion of non-conflicting results is of little interest in our case: though
it might increase our confidence in the corresponding result, it certainly won’t change the final decision,
and hence won’t improve classification performance. On the contrary, in the case of conflicting results,
at least one classifier is wrong, and the fusion gives a chance to correct this and improve classification
performance. Fuzzy set theory provides various combination operators for aggregating these fuzzy sets,
which are discussed in the next section.

5.2 Information Fusion

After briefly recalling the basics of data fusion, in this section we discuss the problem of measuring the
confidence of individual classifiers. We end by proposing an adaptive fusion operator. In the following,
we denote the fuzzy set i by πi and the number of sources by m.
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Figure 5.3: Example of two conflicting sets π for a given pixel x

5.2.1 Introduction

Data fusion consists of combining information from several sources in order to improve the deci-
sion [15]. As previously mentioned, the most challenging issue is to solve conflicting situations where
some of the sources disagree. Numerous combination operators have been proposed in the literature.
They can be classified into three different kinds, depending on their behavior [95]:

• Conjunctive combination: This corresponds to severe behavior. The resulting fuzzy set is necessar-
ily smaller than the initial sets and the core is included in the initial cores (it can only decrease).
The largest conjunctive operator is the fuzzy intersection (5.4) leading to the following fuzzy set:

π∧(x) =
N⋂

i=1

πi(x). T-norms are conjunctive operators. They are commutative, associative, increas-

ing, and have πi(x) = 1 as a neutral element (i.e. if π2(x) = 1 then π∧(x) = π1(x)∩π2(x) = π1(x)).
They satisfy the following property:

π∧(x) ≤ min
i∈[1,m]

πi(x). (5.14)

• Disjunctive combination: This corresponds to indulgent behavior. The resulting fuzzy set is neces-
sarily larger than the initial sets and the core contains the initial cores (it can only increase).
The smallest disjunctive operator is the fuzzy union (5.3), leading to the following fuzzy set:

π∨(x) =
N⋃

i=1

πi(x). T-conorms are disjunctive operators. They are commutative, associative, in-

creasing, and have πi(x) = 0 as neutral element. They satisfy the following property:

π∨(x) ≥ max
i∈[1,m]

πi(x). (5.15)

• Compromise combination: This corresponds to intermediate cautious behaviors. T (a, b) is a com-
promise combination if it satisfies:

min(a, b) < T (a, b) < max(a, b). (5.16)

For the purpose of illustration, we can consider the following imaginary problem. To estimate how old
a person is, two estimates are available, each modeled by a fuzzy set. These fuzzy sets are represented in
Figure 5.4.a - note that they are highly conflicting. From these two sources of information, we want to
classify a person into one of the three following classes: young (under 30), middle aged (between 30 and
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65), or old (over 65). To illustrate the three possible modes of combination, we aggregate the information
using the min operator (T-norm), the max operator (T-conorm), and the three different compromise
operators. The results are shown in Figure 5.4. The decision is taken by selecting the class corresponding
to the maximum membership.

Conjunctive combination Figure 5.4.b shows the result obtained with the min operator, i.e. the
less severe conjunctive operator. It is a unimodal fuzzy set. This fuzzy set is sub-normalized, but this
problem could be solved using π′∧(x) = π∧(x)

supx(π∧(x)) but this would not change the shape of the result.
In this case, the decision would be middle aged, which is not compatible with any of the initial sources.
The sources here disagree strongly and the conjunctive fusion does not help classification. To sum up:
conjunctive operators are not suited for conflicting situations.

Disjunctive combination Figure 5.4.c shows the result obtained with the max operator, i.e., the less
indulgent disjunctive operator. The resulting membership function is multi-modal and all the maxima
are of equal amplitude. Again, no satisfactory decision can be made.

Compromise combination Three different operators of this type are discussed, all based on measuring
the conflict between sources, defined as 1− C with:

C(π1, π2) = sup
x

min(π1(x), π2(x)). (5.17)

These three compromise combination operators have been proposed by D. Dubois and H. Prade in [104].
Bloch has classified these operators as Contextual Dependant (CD) Operators [14] - where context may
be, e.g., a conflict between the sources, knowledge about reliability of a source, or a degree of spatial
information. These operators have been proposed in possibility theory [44] but they can also be used
in fuzzy set theory for combining membership functions [14]. Being able to adapt to the context, these
operators are more flexible and hence yield interesting results. The first operator considered (5.18):

π(x) =





max
(

min(π1(x),π2(x))
C(π1,π2) ,min(max(π1(x), π2(x)), 1− C(π1, π2))

)
if C(π1, π2) 6= 0

max(π1(x), π2(x)) if C(π1, π2) = 0
(5.18)

adapts its behavior as a function of the conflict between the sources [14]:

• it is conjunctive if the sources have low conflict
• it is disjunctive if the sources have high conflict
• it behaves in a compromise way in the event of partial conflict

Figure 5.4.d shows the result obtained using operator (5.18). The corresponding decision (middle aged)
is still not satisfactory.

In this case, some information on source reliability needs to be included, and the most reliable source(s)
should be favored in the fusion process. Different situations may be considered [14]:

• It is possible to assign each source a numerical degree of reliability.
• A subset of sources is reliable, but we do not know which one(s).
• The relative reliability of the sources are known, but with no quantitative values. However, priorities

can be defined between the sources.

The following two adaptive operators are examples of prioritized fusion operator [104].

π(x) = min (π1(x),max (π2(x), 1− C(π1, π2))) (5.19)

π(x) = max (π1(x),min (π2(x), C(π1, π2))) . (5.20)

For both operators, when C(π1, π2) = 0, π2 contradicts π1 and only the information provided by π1 is
retained. In this case, π2 is considered as a specific piece of information while π1 is viewed as a fuzzy
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Figure 5.4: Examples of combination operators: (a) shows the distribution of the two possibilities, (b)

and (c) show the result of the min and the max operators, respectively. (d), (e) and (f) show the results

of the three compromise operators presented in (5.18), (5.19) and (5.20), respectively.

default value. Assuming π1 is more accurate than π2, we get the result shown in Figure 5.4.e and f,
permitting a satisfactory decision.

To sum up: conjunctive and disjunctive combination operators are ill-suited to handling conflicting
situations. These situations need to be solved using CD operators incorporating reliability information.

5.2.2 Confidence measurement

5.2.2.1 Point-wise accuracy

For a given pixel and a given classifier, we propose interpreting the degree of fuzziness of the fuzzy set
πi(x) defined in (5.12) as a point-wise measure of the accuracy of the method. We intuitively consider that
the classifier is reliable if one class has a high membership value while all the others have a membership
value close to zero. Conversely, when no one membership value is significantly higher than the others,
the classifier is unreliable and too much account should not be take of the results it provides in the final
decision. In other words, uncertain results are obtained when the fuzzy set πi(x) has a high degree of
fuzziness - the highest degree being reached for uniformly distributed membership values.

To reduce the influence of unreliable information and thus improve the relative weight of reliable
information, we weight each fuzzy set by:





wi =

m∑

k=0,k 6=i

HαQE(πk)

(m− 1)
m∑

k=0

HαQE(πk)

m∑

i=0

wi = 1

(5.21)



5.2. Information Fusion 107

π1 π2

w1 ∗ π1 w2 ∗ π2

Figure 5.5: Normalization effects. This figure shows two fuzzy sets (π1 and π2) with different fuzziness

(HαQE(π1) = 0.51, HαQE(π2) = 0.97, w1 = 0.65 and w2 = 0.35). The normalization effect is shown on

the right. The influence of classifier 2 is reduced more by w2 than classifier 1 is reduced by w1.

where α = 0.5, HαQE(πk) is the fuzziness value of source k, and m is the number of sources. When
a source has a low fuzziness value, wi is close to 1 and it affects corresponding fuzzy set only slightly.
Figure 5.5 illustrates the effects of this normalization.

5.2.2.2 Overall accuracy

Over and above the adaptation to the local context described in the previous paragraph, we can also
use prior knowledge regarding the performance of each classifier. This knowledge is modeled for each
classifier i and for each class j by a parameter f ji . Such overall accuracy can be determined by a separate
statistical study on each of the classifiers used. If, for a given class j, the user considers that the results
provided by classifier i are satisfactory, parameter f ji is set to one. Otherwise, it is set to zero. Since this
decision is binary, we assume that for each class there is at least one method ensuring satisfactory global
reliability.

5.2.3 Combination operator

Numerous combination rules have been proposed in the literature, from simple conjunctive or disjunc-
tive rules, such as min or max operators, to more elaborate CD operators, such as those defined by (5.19)
and (5.20) where the relative reliability of each source is used. However, using these operators sources
always have the same hierarchy and the fusion scheme does not adapt to the local context. In [46], we
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propose the following extension:

µjf (x) = max
(

min
(
wiµ

j
i (x), f

j
i (x)

)
, i ∈ [1,m]

)
(5.22)

where f ji is the overall confidence of source i for class j, wi is the normalization factor defined in (5.21),
and µji is an element of the fuzzy set πi defined in (5.12). This combination rule ensures that only
reliable sources are taken into account for each class (pre-defined coefficients f ji ), and that the fusion
also automatically adapts to the local context by favoring the source that is locally the most reliable
(weighting coefficients wi).

5.3 The Fusion scheme

We present here the complete proposed fusion scheme. In the first step, each classifier is applied
separately (but no decision is taken). In the second step, the results provided by the different algorithms
are aggregated. The final decision is taken by selecting the class with the largest resulting membership
value.

The fusion step is organized as follows:
For each pixel :

1. Separately build the fuzzy set πi(x) = {µ1
i (x), µ

2
i (x), . . . , µ

j
i (x), . . . , µ

n
i (x)} for each classifier i,

with n classes.
2. Compute the fuzziness value HαQE(πi) for each fuzzy set πi(x).
3. Normalize data using wi defined in (5.21).
4. Apply operator (5.22).
5. Select the class corresponding to the highest resulting membership value.

The block diagram of the fusion process is given in Figure 5.6. Note from this that the range of the fuzzy
sets is rescaled before the fusion step in order to combine data with the same range. This is achieved
using the following range stretching algorithm:

• for all πi(x) = {µ1
i (x), . . . , µ

j
i (x), . . . , µ

n
i (x)}, compute :

– M = max
j,x

[
µji (x)

]
,

– m = min
j,x

[
µji (x)

]
,

– for all µji (x), compute :

∗ µji (x) =
µji (x)−m
M −m .

5.4 Experimental Results

In this section, we present the application of the proposed general fusion scheme to improving classifi-
cation results using remote-sensing images from urban areas. The proposed approach was applied to two
very high-resolution IKONOS panchromatic images from Reykjavik, Iceland. Six classes were considered
in each case, namely: large buildings, houses, large roads, streets, open areas, and shadows. Each image
consists of a single channel with 1m resolution.

Two classification algorithms were used: a conjugate gradient neural network [8] and a fuzzy classi-
fier [27]. Both consist of two steps. The first step is feature extraction by morphological filters and the
second step is the actual classification, using either a neural network or a fuzzy possibilistic model. The
classification accuracies for the different classifiers were compared to determine the global confidence in
the fusion process. The inputs to the fusion process were the posterior probabilities from the outputs
of the neural network and the membership values for the fuzzy classifier. These inputs are displayed as
images in Figure 5.7.
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Figure 5.6: Block diagram of the fusion method

Table 5.2: Confidence indices for image 1

Neural Network Fuzzy Logic

Large Buildings 0 1

Houses 0 1

Large Roads 1 1

Streets 1 0

Open Areas 0 1

Shadows 0 1

5.4.1 First test image

The first test image (976× 640 pixels) is shown in Figure 5.8.a. Table 5.3 shows the test accuracies
for the two classifiers. In order to test the generalization ability of the classifiers, independent samples
were used for training and testing. See Appendix C for a full description of the training and testing
sets. Starting from the class classification accuracies, the global reliabilities were set as follows: the
neural network classifier gave higher accuracies than the fuzzy classifier for the classes ’streets’ and ’large
roads’. However, for the other four classes, the fuzzy classifier outperformed the neural network in terms
of accuracies. In the fusion, we defined the indices of confidence in a binary manner according to the
accuracies. For a given class, full confidence was given to the best classifier, i.e. the one with the highest
classification accuracy. Then, if the accuracy of the other classifier was close to the highest (by 5%),
full confidence was granted to that classifier too. Otherwise, the confidence index was set to zero. The
confidence values are listed in Table 5.2.

The accuracy obtained for the final classification is given Table 5.3. The overall accuracy increased
from 40.3% for the neural network and 52.1% for the fuzzy classifier to 59.1% using fusion. Small
houses and larger buildings were classified similarly with the fuzzy classifier but the ’streets’ classification
accuracy improved from 9.8% to 55.7% with the use of the neural network information. The classification
accuracies for shadows and open area also improved, from 83.3% and 52.2% respectively to 86.6% and
60.9% respectively. On the other hand, the classification accuracy for large roads reduced from 59.1% to
43.7%. Both the original and classified images are shown in Figure 5.8.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.7: Possibility maps. (a) and (c) represent the membership maps given by the neural network

respectively for the classes buildings and houses. (b) and (d) represent the membership maps given by

the fuzzy classifier for the classes buildings and houses. (e), (f), (g), and (h) are the stretched versions

of the four images above using the algorithm given in Section 5.3.
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Table 5.3: Test accuracies in percentages for Image 1

% Neural Network Fuzzy Logic Fusion

Large Buildings 26.2 47.6 47.4

Houses 33.4 67.8 67.4

Large Roads 59.1 58.8 43.7

Streets 55.6 9.8 55.7

Open Areas 30.9 52.2 60.9

Shadows 32.7 83.3 86.6

OA 40.3 52.1 59.1

AA 39.7 53.3 60.3

Table 5.4: Confidence indices for Image 2

Neural Network Fuzzy Logic

Large Buildings 1 0

Houses 0 1

Large Roads 1 1

Streets 1 0

Open Areas 1 1

Shadows 0 1

The results of the first experiment illustrate the complementary behaviors of the fuzzy and neural
network classifiers. Even though overall accuracy is higher with the fuzzy classifier, the neural classifier
performs better in terms of accuracy for the classes ’large roads’ and ’streets’. Note that these accuracy
figures were obtained using manual ground truth where each pixel in the original image was labeled.
Since no pre- or post-processing was done, the accuracies should be interpreted in a relative rather than
an absolute way.

5.4.2 Second test image

The second test image is 700× 630 pixels. Table 5.5 shows the test accuracies for the two classifiers used
in the second experiment. The global reliability was defined in the same way as in the first experiment.
The confidence indices are listed in Table 5.4.

The test accuracies for the final classification are given in Table 5.5. As this shows, the overall
accuracy increased from 57.0% for the neural network and 43.1% for fuzzy classifier to 75.7% after fusion.
With fusion, classification accuracy for open areas increased from 46.5% to 73.7%. ’Streets’ and ’Open
Areas’ classification accuracies were similar for the fuzzy classifier and the neural network. The biggest
improvement after fusion was achieved in the classification of large roads, where the classification accuracy
improved from 0.0% to 94.2%. Furthermore, the overall road (’Large roads’ + ’Streets’) classification
accuracy increased from 41.5% to 58.6%. But at the same time, the classification accuracy for streets
reduced from 83.6% to 22.7%. Both the original and classified images are shown in Figure 5.8.
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Table 5.5: Test accuracies in percentage for Image 2

% Neural Network Fuzzy Logic Fusion

Large Buildings 89.6 26.3 94.8

Houses 29.9 42.8 33.8

Large Roads 0 0 94.2

Streets 83.6 77.4 22.7

Open Areas 46.5 44.9 73.7

Shadows 43.7 98.7 90.4

OA 57.0 43.1 75.7

AA 48.9 48.4 68.3

5.4.3 Comparison with other combination rules

In this subsection we compare the results provided by the proposed operators with other combination
rules. Where possible, we use the accuracy measurement previously defined in Section 5.2.2. For the min
and max operators we compute experiments with and without point-wise accuracy information. We do
the same for the operator (5.18). Conflict was computed for both cases. For operators (5.19) and (5.20),
the less accurate classifier was chosen as the less accurate classifier based on the overall test accuracy.

The results obtained are given in Table 5.6 and Table 5.7. As can be seen from the tables, our
proposed method outperformed the other combination rules in terms of accuracy. It can be seen that the
classification accuracy for streets is still not satisfactory. None of the combination rules were able to use
the information provided by the neural network.

For the max operator, the point-wise accuracy information improved the classification accuracy as
compared to fusion using the max operator without point-wise accuracy information. This was due to the
normalization effect: the unreliable information was reduced thanks to operator (5.21). Conversely, point-
wise accuracy information impaired the classification using the min operator. Here, unreliable information
was reduced by operator (5.21) and was unfortunately able to be selected. Adaptive operators (5.18) and
(5.20) seemed to perform better with point-wise accuracy information, the overall accuracy for operators
(5.18) and (5.20) increased from 36.7% and 39.5% to 42.9% and 42.5%, respectively. No significant
changes were noted for the operator 5.19.

From these experiments, it can be concluded that if no information is available on source reliability,
point-wise accuracy can be used to significantly improve the fusion. However, knowledge about the
global reliability of each classifier seems to be more useful. Finally, to investigate the influence of the
contextual information, two additional experiments were conducted. In each experiment, we removed
one type of contextual information and compared the results in terms of classification accuracy to those
obtained using both types of contextual information. For the global information, if we set its values to
1 for both classifiers and all classes, operator (5.22) becomes the simple max operator using point-wise
accuracy information; this experiment was already performed in the previous paragraph. For the point-
wise accuracy information, all wi were set to 1 and only the global information was retained. Results
are listed in Table 5.8. From these experiments, it is clear that both types of contextual information are
needed to achieve good classification in terms of accuracy.

The results of these further experiments demonstrate the need to control the fusion process. Without
information about conflict, accuracy, and confidence, accuracies are generally worse than before fusion.
While the point-wise accuracy is easy to compute and is independent of the classifiers, global accuracy is a
critical problem with this method. More development is needed to allow them to be defined automatically.
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Table 5.6: Test accuracies in percentages for different combination rules without point-wise accuracy

measurement of Image 1

% Max Min Operator (5.18) Operator (5.19) Operator (5.20)

Large Buildings 31.6 42.8 32.7 47.8 39.6

Houses 68.2 67.2 65.1 67.6 64.3

Large Roads 66.4 68.0 66.4 59.4 69.6

Streets 2.1 5.9 2.1 7.2 4.2

Open Areas 9.1 9.1 9.1 8.3 13.1

Shadows 52.8 81.1 52.8 84.4 53.5

OA 37.0 43.0 36.7 42.6 39.5

AA 38.4 45.7 38.0 46.1 40.7

Table 5.7: Classification accuracies in percentages for different combination rules with point-wise accuracy

measurement of Image 1

% Max Min Operator (5.18) Operator (5.19) Operator (5.20)

Large Buildings 48.4 40.8 48.4 47.8 47.6

Houses 70.2 55.6 70.2 67.8 67.3

Large Roads 59.7 71.6 59.7 59.4 59.7

Streets 6.1 7.2 6.1 7.2 6.8

Open Areas 8.1 9.7 8.1 8.3 8.4

Shadows 84.2 70.9 84.2 84.3 84.1

OA 42.9 40.5 42.9 42.7 42.5

AA 46.1 42.6 46.1 46.2 45.7

Table 5.8: Classification accuracies in percentages for operator (5.22) with different types of contextual

information

% Point-wise accuracy Global accuracy Both accuracies

Large Buildings 48.4 42.9 47.7

Houses 70.2 67.2 67.4

Large Roads 59.7 64.5 43.7

Streets 6.1 4.9 55.7

Open Areas 8.1 37.0 60.9

Shadows 84.2 92.8 86.6

OA 42.9 49.5 59.1

AA 46.1 51.5 60.3
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(a) (b)

(c) (d)

Figure 5.8: Test images and results; (a) Original IKONOS image 1, (b) image 1 classification results, (c)

Original IKONOS image 2, (d) image 2 classification results.
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5.5 Application to the fusion of SVM classifiers

The previous framework was applied to a fuzzy logic classifier and a neural classifier. Both were using
the same features vector, the morphological profile. When dealing with panchromatic data, MPs yield
better results, whatever the specific classes considered, than the single raw band. However, this is not
true when the original data set is hyperspectral data. In that case, the original spectral data was able to
yield better results for some classes, while the EMP was able to perform better for other classes.

For data fusion, the best situation is where the classifiers have complementary results. In the fol-
lowing we proposed fusing the results obtained by separate use of the spectral data and the Extended
Morphological Profile. Each data set was processed by SVM classifiers. SVMs were chosen because they
are good at handling remote-sensing data, see Chapter 3 and 4. The results from each classifier are
aggregated according to the inherent characteristics of the SVM outputs:

• outputs are not bounded,
• outputs are signed numbers.

Conventional fuzzy fusion operators such as T-norm, T-conorm, or symmetrical sum [14] are unable to
handle signed data. For the fusion, we need to define operators that use the sign information. Note
that algorithms do exist to provide probability output with SVMs [119]. But this involves adding an
optimization step to the SVM training, and can be highly time-consuming. In this thesis, we suggest
three different operators that can handle the standard SVM output. First, a modified version of the
max operator, namely the absolute maximum decision rule, is applied. Secondly, classifier agreement is
suggested. Agreement is seen as the probability of the outputs of each classifier. And thirdly, a rule
based on majority voting, initially used for multi-class SVM, is investigated.

5.5.1 Decision Fusion

As explained in the previous chapter, the SVM decision function returns the sign of the distance to
the hyperplane. For the fusion scheme, it is more useful to have access to the confidence of the classifier
rather than the final decision [46], as detailed in the previous section. With SVMs, it is possible to get the
distance from the hyperplane by a simple change in the decision functions. For a given sample, the greater
the distance from the hyperplane, the more reliable the label. This is the basis of the one-against-all

strategy [112]. For the combination process, we choose this distance to fuse. We consider that the most
reliable source is the one that gives the greatest absolute distance.

In this approach, we first used the absolute maximum decision rule. For an m-source problem
{S1, S2, . . . , Sm} and for a pairwise classification mutli-class strategy, where S1

ij = d1ij is the distance
provided by the first SVM classifier which separates class i from j, this decision rule is defined as follows:

Sf = AbsMax(S1, . . . , Sm) (5.23)

where AbsMax is the set of logical rules:

if(
∣∣S1
∣∣ >

∣∣S2
∣∣ , . . . , |Sm|) then S1

else if(
∣∣S2
∣∣ >

∣∣S1
∣∣ , . . . , |Sm|) then S2

...

else if(|Sm| >
∣∣S1
∣∣ , . . . ,

∣∣Sm−1
∣∣) then Sm.

(5.24)

The second operator considered takes classifier agreement into account. Each distance is multiplied
by the maximum membership probability2 associated with the two classes considered. Then the absolute
maximum is used to fuse the results. The probabilities are simply computed by [131]:

pi =
2

m(m− 1)

m∑

j=0,j 6=i

I(dij) (5.25)

2It is the probability for a class to be selected at the end of the process.
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where I is the indicator function I(x) = 1 if x ≥ 0 else I(x) = 0. For the fusion, the absolute distance is
used as in (5.23), where source Sk is weighted by the corresponding pk:

Sf = AbsMax
(
max(p1i , p

1
j )S

1, . . . ,max(pmi , p
m
j )Sm

)
. (5.26)

The third operator is the one used to combine binary classifiers in the one-versus-one strategy. If we
have two SVM classifiers, and apply each of them on a dataset with the same number p of classes, each
classifier builds p(p− 1)/2 binary classifiers, see Section 3.3 page 60, and uses majority voting. Thus, we
propose constructing a new set of classifiers containing p(p−1) classifiers. Then, we apply a conventional
majority voting scheme.

Finally, fusion is performed as follows. First, for each classifier, we extract the distance from the
hyperplane for each sample. Then the data are fused using one of the three operators. For the operators
based on absolute maximum, majority voting is performed. For all the operators, the class having the
highest number of votes is selected as the winner.

5.5.2 Experiment

The proposed approach has been tested on real hyperspectral data. The University data set was
used, see appendix C. The original image is shown in Fig. 5.9.(a). Three principal components were
selected and the morphological profile was built using 10 openings/closings by reconstruction. The image
was first classified using the spectral data (103 bands) and then using the EMP (63 bands). Gaussian
kernels were used for each experiment. The parameters (C, γ) of the SVM were tuned using five-fold
cross validation. The results were combined according to the classification scheme previously defined. The
accuracies in terms of classification are listed in Table 5.9. The overall accuracy (OA) is the percentage of
correctly classified pixels, whereas the average accuracy (AA) represents the average of the individual class
accuracies. The coefficient Kappa is another criterion traditionally used in remote-sensing classification
to measure the degree of agreement, and takes into account the correct classification that might have
been obtained ’by chance’ by weighting the measured accuracies. Per Class classification accuracy has
also been reported. The classification map for the absolute maximum fusion operator is presented in
Fig. 5.9.(b).

As can be seen from the table, the fusion step using absolute maximum improves classification ac-
curacies. The highest overall accuracy, as well as the highest average accuracy and the highest Kappa
value, were achieved when the absolute maximum and probability were used conjointly. By comparing
the global accuracies (OO, OA, Kappa), it is clear that the use of probabilities does not help a great
deal in the fusion process in these experiments. The use of the majority voting rule does not improve the
results compared to those obtained with the EMP. Regarding the per class accuracies, it is interesting to
note that the normalized absolute maximum rule provided the best per class results in only three cases.
However, all the accuracies are over 82%, and the accuracy is close to the highest obtained accuracy
for all classes. In terms of computing time, majority voting is the combination rule that leads to the
shortest processing, while the absolute maximum approach requires slightly more time. Assessing the
probabilities increases the computing time.

It is important to highlight the complementarity of the two initial results. From the table, the
classifiers have complementary ability for class 1, 2, 3 and 7. After the fusion, the results have improved
significantly for these classes: during the fusion step, the reliable information has been selected.
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Table 5.9: Classification accuracies in percentages for SVM classification using the spectral data, the

EMP, and for the three fusion operators.

Spect. PCA+EMP Abs. Max. A.M.+Prob. Maj. Vot.

OA 80.99 85.22 89.56 89.65 86.07

AA 88.28 90.76 93.61 93.70 88.49

Kappa 76.16 80.86 86.57 86.68 81.77

Class 1 83.71 95.36 93.18 93.02 93.98

Class 2 70.25 80.33 83.89 83.96 85.34

Class 3 70.32 87.61 82.13 82.23 64.94

Class 4 97.81 98.37 99.67 99.67 99.67

Class 5 99.41 99.48 99.48 99.41 99.48

Class 6 92.25 63.72 91.21 91.83 61.55

Class 7 91.58 98.87 96.99 97.22 93.01

Class 8 92.59 95.41 96.39 96.41 98.83

Class 9 96.62 97.68 99.58 99.58 99.58
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(a) (b)

Figure 5.9: Rosis University Area. (a) false color original image, (b) classification map after fusion
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5.6 Conclusion

The fusion of several classifiers has been considered in the classification of panchromatic remote-
sensing data from urban areas. Considering first the general situation where two classifiers are classifying
the same data set, we suggest a complementary use of different classifiers. The proposed method is based
on a fuzzy combination rule. Two measures of accuracy are used in the combination rule: the first, based
on prior knowledge, defines global reliabilities, both for each classifier and for each class. The second
automatically estimates the point-wise reliability of the results provided by each classifier, and thus makes
it possible for the fusion rule to be adapted to the local context. The proposed approach does not require
any training and takes only about 1 minute of computation time for each image using a Pentium 4 PC.
Furthermore, no prior assumptions are needed in terms of data modeling (e.g. Bayes theory, possibility
theory, etc.) prior to data fusion. The experimental results obtained show that the complementary use
of different classifiers leads to a significant improvement in global classification accuracies. The overall
accuracy was improved by about 7% in the first experiment and 18% in the second experiment. Another
application of such methodology can be found in [49]. A key feature of the framework presented is its
generality for decision level fusion. Though only two classifiers were used in the chapter, additional
algorithms could easily be added to the process. For instance, specialized algorithms such as street
detectors could be employed, without increasing errors in building detection. This generalization also
holds good for the inclusion of multi-source data such as multi-spectral or multi-temporal images. One
algorithm could be used on each image and fusion could then be performed using the results computed on
each image. In this approach, α-Quadratic entropy was chosen for the fuzziness evaluation because the
sensitivity of that measurement can be modified with the value of α. Several other measurements could
be used, e.g. fuzzy entropy [40]. One limitation of the proposed approach is the use of binary values for
the global confidence. With fuzzy confidence, the combination rule could be rewritten with T-conorm

and T-norm, which are less indulgent and less severe than max and min respectively. Moreover, the use
of the T-conorm and T-norm would make a finer definition of global accuracy possible.

A second methodology has then been presented: Decision fusion for an SVM classifier. In this case,
the input features were complementary and were classified using the same algorithm. Three operators
based on the main characteristics of the SVM outputs were proposed. The operators were based on the
assumption that the absolute distance from a hyperplane gives meaningful information about classifier
agreement. In experiments, the proposed approach outperformed each of the individual classifiers in terms
of overall accuracies. The use of the absolute maximum operator led to a significant improvement in terms
of classification accuracy. It is noteworthy that other operators are able to use sign as an informative
feature. The classic mean or MYCIN rules [14] are examples of possible operators. Unfortunately, for a
two-source problem, such operators have the same influence on the sign of the fused data as the absolute
maximum. Thus in our case majority voting led to the same results. In this experiment, only one type
of kernel was used. One possible extension of the proposed method would be to include other sources
using different kernels. Polynomial kernels, which are known to perform well on complex data, could be
investigated. The good performance of the proposed combination scheme is interesting because it does
not use information about the global reliability of the source. One topic for future research is the use of
a more advanced fusion scheme that takes into account the performance of the classifiers. Another field
for investigation is the use of upper error bound, such as the radius margin bound, to estimate the global
reliability of each binary SVM classifier.
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Chapter 6

Multisource data

Abstract

Multi-source data for the classification of remote-sensing images is addressed in this chapter. Multi-

source data are seen as the aggregation of several information sources from the same location, e.g. spectral

data and spatial/textural data. This approach is proposed to overcome traditional approaches that are

mainly based on either spectral data or spatial data alone. In this chapter, spectral features are extracted

from the hyper-spectral data by an appropriate Feature Extraction algorithm and spatial data are extracted

using the Extended Morphological Profile, still with a Feature Extraction algorithm. Then a stacked vector

is built. Classification is performed using an SVM classifier and the stacked vector is used as an input

vector. Experiments are conducted on two hyper-spectral data sets and the results obtained confirm the

usefulness of such an approach.
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THE EXTENDED morphological profile EMP has been primarily designed for classification of urban
structures, and it does not fully utilize the spectral information in the data. As has been concluded

in the preceding chapters, the use of spectral information can be critical for classification of non-structured
information in urban areas, e.g. vegetation or soil classes. In Chapter 4 we have proposed another
methodology for improved extraction of spatial information from non-structured classes. However, its
performances for structured classes was slightly worse than those obtained using the EMP.

In this chapter, we propose adopting a data fusion strategy to overcome the shortcoming of the EMP.
It is based on multi-source data classification [6, 63]: The combination of the spectral data and the EMP
by means of a stack vector.

Multi-source data may be regarded as part of data fusion theory, since data with different charac-
teristics are combined. With the development of remote sensors, such data are readily accessible: radar
data, optical data, and elevation data of a given area can be used together to improve classification
accuracy. A great deal of work has been done within the remote-sensing community and has offered
enhanced capabilities for classifying target surfaces. In [12, 13], Benediktsson et al. have successfully
used multi-source data comprising Landsat MSS and ancillary topographic data such as elevation, slope
and aspect for classification. For the particular situation of forest classification, it was demonstrated that
significant improvements can be made by using multi-source approaches [73, 129]. For the above papers,
classification was performed using a neural network, since no accurate statistical model was available. A
statistical multi-source classifier was developed by Solberg et al. to classify optical data from Landsat TM
and multi-temporal SAR data from ERS-1 [123]. The fusion algorithm was based on the model described
by Benediktsson and Swain [11]. More recently, SPOT and elevation data were used as an input to a
Generalized Positive Boolean Function classifier for landslide classification. Experimental results have
shown improvement when using fused input [25]. The problem under consideration here concerns the
fusion of information extracted from the original data, i.e. operations are performed to extract useful
information from a single data set. For our application, we are only considering one data set, whether it
is hyperspectral or not, and the additional sources are obtained by some form of spatial processing, e.g.

morphological profile.
When classifying multi-source data, it was preferable to use neural classifiers, since statistical ap-

proaches lack an accurate model of the data. In the previous chapter, the superiority of SVM, imple-
menting Structural Risk Minimization, over the neural classifier, implementing Empirical Risk Minimiza-
tion, has been detailed. Hence in the following experiments the SVM with a Gaussian kernel was used,
see Chapter 3 for details of the algorithm. Note that SVM has already been applied for multi-source
classification in [63], where several different formats for coding the output were investigated. Here once
again, the best results were obtained using the one-against-all and one-against-one multi-class strategies.

The remainder of this paper is organized as follows. The features used are described and the proposed
fusion scheme is detailed. The studies of their characteristics suggested the use of some feature-reduction
algorithms. Some standard algorithms are briefly recalled. Then experiments are presented.

6.1 Spatial and spectral feature extraction

6.1.1 Spectral and spatial data

Multi-band data, especially hyperspectral data, contain a great deal of information about the spectral
properties and the land cover of the data. Tighter definition of the classes is possible for a greater number
of classes. Based on the spectral signatures of the classes, many advanced pixel-based classifiers have been
proposed: SVM, Neural Network, and so on. However, these did not use the spatial content of the image,
and the resulting thematic maps sometimes look noisy (salt and pepper classification noise). Approaches
involving Markov Random Field (MRF) and Monte Carlo optimization have been proposed. These used
contextual information. The main drawback of this type of algorithm is the computing time, which can be
extended even for small data sets. In view of the high dimensionality of recent acquired data, in both the
spectral and spatial domains, computationally light algorithms are of interest. The Morphological Profile
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Table 6.1: Properties of spectral and spatial data

Hyperspectral data EMP

ր Fine physical description ր Geometrical information

ր Directly accessible ∼ Needs to be extracted

∼ Redundancy ∼ Redundancy

ց No spatial information ց Reduced spectral information

(see Chapter 2) has been proposed as an alternative way of exploiting spatial information. Compared to
the MRF-based classifiers, the MP and its extension into multi-valued image EMP offers the possibility
of making use of geometrical information (shape, size, etc.) and performs well on many types of data
(panchromatic, multi-spectral, and hyper-spectral data). However, as stated in the introduction, one
shortcoming of this approach is that it fails to make full use of the spectral information in the data, and
consequently several approaches based on the MP/EMP have been proposed in order to fully exploit the
spatial and spectral information [1, 52, 100].

Table 6.1 sums up the properties of these types of data. The first main consideration is the complemen-
tary nature of the data. As will be shown in the experiments, this has an incidence on the discrimination
abilities of such data. The fusion of two types of information should clearly result in an improvement in
classification accuracy.

The second consideration is the potential redundancy in each feature set - see [80] for spectral features
and [7] for spatial features. Hence feature extraction (FE) algorithms may be of interest. Note that we
are not looking for improved classification accuracy, but rather increased processing speed, since SVM
performs well with high-dimensional data. In this work, we investigate two commonly used FE algorithms:
the Decision Boundary Feature Extraction (DBFE) and the Non-parametric Weighted Feature Extraction
(NWFE) [80]. These algorithms will be described briefly in the following subsection.

6.1.2 Fusion scheme

The method proposed is based on data fusion of the morphological information and the original
data: first, an extended morphological profile is created based on the PCs from the hyperspectral data.
Secondly, feature extraction is applied on the morphological data and the original hyperspectral data.
Finally, the extended morphological profile after feature extraction and the feature-extracted vector from
the original data are concatenated into one stacked vector and then classified by the SVM.

Figure 6.1 illustrates the data fusion scheme when using DBFE as the feature-reduction algorithm.
Note that in this work we have only been extracting morphological information, but it is equally possible
to use other processing to extract other types of spatial information and include this into the stacked
vector.

PCA DBFE

DBFE

+ SVM Classified data

Original data

EMP

Figure 6.1: Proposed data fusion scheme.
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6.1.3 Feature reduction

In this section, we briefly recapitulate the feature-extraction algorithms used in our experiments.
DBFE has already been described in greater detail in Chapter 1, page 25.

6.1.3.1 DBFE

It was shown in [83] that both discriminantly informative features and redundant features can be
extracted from the decision boundary between two classes. The features are extracted from the decision
boundary feature matrix (DBFM). The eigenvectors of the DBFM corresponding to non-zero eigenvalues
are the feature vectors necessary to achieve the same classification accuracy as in the original space. The
efficiency of the DBFE is related to the training set and it can be computation-intensive.

6.1.3.2 NWFE

To overcome the limitations of the DBFE, Kuo and Landgrebe [78] proposed non-parametric weighted
feature extraction. NWFE is based on Discriminant Analysis Feature Extraction, by focusing on samples
near the eventual decision boundary. The main ideas of NWFE are assigning different weightings to each
sample in order to compute local means, and defining non-parametric ’between’ and ’within’ class scatter
matrix [80].

Many experiments have shown the effectiveness of these approaches in the classification of hyper-
spectral data [80]. They are usually applied to the spectral data, but Benediktsson and co-workers have
successfully applied them to the EMP [7].

6.2 Experiments

6.2.1 Data set

For these experiments, we used the two ROSIS data sets (see Appendix C). For each data set, we
compare the classification accuracies obtained using either spectral features, morphological features, or
the fused features. We also investigate the influence of feature reduction.

The classification accuracy was assessed using overall accuracy (OA), which is the number of correctly-
classified samples divided by the number of test samples; average accuracy (AA), which represents the
average of the class classification accuracies; and the coefficient of agreement (κ), which is the percentage
agreement corrected by the degree of agreement that might be expected due to chance alone. These
criteria were computed using the confusion matrix and were used to compare classification results.

Feature extraction was performed using MultiSpec [80] while the morphological operations were per-
formed using Matlab and Image Toolbox. Classification was performed using the LIBSVM through its
Matlab interface [24]. The one-vs.-one multi-class approach was used in these experiments.

6.2.2 University Area data set

Classification was performed independently using the spectral information or the extended morpho-
logical profile. The confusion matrices are reported in Tables 6.2 and 6.3. In terms of global accuracy,
both approaches perform equally well, with the spectral approach showing a slight advantage. Note that
this is consistent with the characteristics of the scene: the University Area is a mixture of some man-made
structures and natural materials. So morphological information is not as useful as it might be in a very
dense urban area. Examining the class-specific accuracy closely, we can see from the tables that the
classes for which each approach performs well are complementary, e.g. the spectral approach performs
better for classes 3, 6, 9 while the EMP approach performs better for classes 1, 2, 7, 8. So we need to
look at these classes after fusion to see if the best information was used, i.e. if classification accuracy
improves.
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Table 6.2: Confusion Matrix for classification of the University Area data set using the original

hyperspectral data (103 bands). Global accuracies: OA = 79.48%, AA = 88.14%, and κ = 74.47%.

Ref. Classification Data

Classes 1 2 3 4 5 6 7 8 9 Prod. acc.

1 5594 26 110 17 14 13 359 498 0 84.36

2 0 12346 0 2088 0 4181 0 34 0 66.20

3 27 7 1511 0 0 3 2 549 0 71.99

4 0 24 0 3003 10 27 0 0 0 98.01

5 0 0 3 1 1338 0 0 0 3 99.48

6 13 163 1 48 104 4683 0 17 0 93.12

7 103 0 0 1 0 0 1213 13 0 91.20

8 40 10 205 4 0 19 7 3397 0 92.25

9 21 0 11 0 0 0 0 0 915 96.62

Table 6.3: Confusion Matrix for classification of the University Area data set using the EMP (27

bands). Global accuracies: OA = 79.14%, AA = 84.30%, and κ = 73.25%.

Ref. Classification Data

Classes 1 2 3 4 5 6 7 8 9 Prod. acc.

1 6266 8 8 146 0 1 33 169 0 94.49

2 55 13581 0 1869 0 3143 0 1 0 72.82

3 3 3 1117 8 0 0 4 964 0 53.21

4 5 17 0 3030 0 11 0 0 1 98.89

5 0 0 0 1 1339 0 0 0 5 99.55

6 41 1920 1 99 82 2872 0 14 0 58.10

7 44 0 5 1 0 0 1278 2 0 96.09

8 8 9 148 9 0 0 0 3508 0 95.27

9 0 0 83 0 0 0 0 0 864 91.23

We performed the experiment using the concatenated vector. The vector was constructed from the
103 spectral bands and the 27 features from the EMP. The vector was used directly as an input to
the SVM. The classification results are reported in Table 6.4. The global accuracy has improved. The
κ is 79.13%, as against 74.47% for the spectral approach and 73.25% for the EMP. In terms of the
class-specific accuracy, the classification accuracies for classes 1, 7, 8 have improved compared to both
individual approaches, and all of the classes are better classified than the worst case of the individual
approaches.

Feature reduction was applied to the morphological data and original data before concatenation. Then
the stacked vector was classified by the SVM. The κ is plotted on Fig. 6.2 using several values for the
DBFE and NWFE variance criterion. Best results are obtained with 95% and 80% of the variance criteria
for DBFE and NWFE respectively. Using 95% of the variance criteria with DBFE, the hyperspectral
data is reduced to 27 features and the EMP to 10 features. With NWFE and 80%, 7 features were
extracted from the hyperspectral data and 6 from the EMP. The confusion matrices are reported in
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Table 6.4: Confusion Matrix for classification of the University Area data set using the original

hyperspectral data and the EMP (130 bands). Global accuracy: OA = 83.53%, AA = 89.39%, and

κ = 79, 13%.

Ref. Classification Data

Classes 1 2 3 4 5 6 7 8 9 Prod. acc.

1 6321 0 30 61 0 1 36 181 1 95.32

2 6 13699 0 528 0 4416 0 0 0 73.45

3 2 3 1383 6 0 0 3 702 0 65.88

4 1 18 0 3039 0 0 0 0 6 99.18

5 0 0 0 1 1338 0 0 1 5 99.47

6 397 304 4 30 56 4232 0 6 0 84.15

7 34 0 1 0 0 0 1293 2 0 97.21

8 9 7 122 1 0 4 0 3539 0 96.11

9 1 0 59 0 0 0 0 0 887 93.66

Table 6.5: Confusion Matrix for classification of the University Area data set using DBFE features

corresponding to 95% of the variance (37 bands). Global accuracy: OA = 87.97%, AA = 89.43%, and

κ = 84.40%.

Ref. Classification Data

Classes 1 2 3 4 5 6 7 8 9 Prod. acc.

1 6029 8 50 96 0 4 224 220 0 90.92

2 1 16021 0 830 0 1797 0 0 0 85.90

3 34 0 1215 7 0 0 3 840 0 57.88

4 4 8 0 3040 0 12 0 0 0 99.21

5 0 0 0 0 1338 0 0 1 6 99.47

6 3 595 0 123 13 4291 0 4 0 85.32

7 57 0 3 2 0 0 1266 2 0 95.18

8 12 5 124 8 0 4 0 3529 0 95.84

9 1 0 45 0 0 0 0 0 901 95.14

Tables 6.5 and 6.6. Classification maps for the different approaches are shown in Fig. 6.3.

In terms of the class-specific accuracy, the DBFE approach improves the classification of class 2,
while class 3 is classified worse than with full hyperspectral data and EMP. However, DBFE outperforms
the independent classification using the spatial or spectral information. In this test, it yields the best
classification results. Similar comments may be made for the results obtained with NWFE. However, the
number of features needed to achieve the same accuracy is significantly lower for the NWFE approach.
Since the SVM is linearly related to the dimensionality of the data, lower-dimensional data increased
the speed of the training process. Furthermore, if we were using a statistical classifier, e.g. a Gaus-
sian maximum likelihood classifier, the benefit of such a reduction in the dimensionality could be more
significant.

The different results for the University Area data are summarized in Table 6.7.
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Figure 6.2: κ values for several cumulative variance values for the DBFE and the NWFE applied to the

University Area data set.

Table 6.6: Confusion Matrix for classification of the University Area data set using NWFE features

corresponding to 80% of the variance (13 bands). Global accuracies: OA = 87.59%, AA = 88.93%,

and κ = 83.89%.

Ref. Classification Data

Classes 1 2 3 4 5 6 7 8 9 Prod. acc.

1 5756 6 214 76 1 4 229 345 0 86.80

2 20 16217 0 880 0 1529 0 3 0 86.95

3 11 7 1328 8 0 0 6 739 0 63.26

4 0 28 0 3019 1 16 0 0 0 98.53

5 0 0 0 0 1339 0 0 1 5 99.88

6 88 614 1 78 80 4155 0 13 0 82.62

7 23 0 12 0 0 0 1285 10 0 96.61

8 3 7 140 15 0 4 1 3512 0 95.38

9 6 0 83 0 0 0 0 0 858 90.60

6.2.3 Pavia Center data set

For the second test, the scene is a very dense urban area. Morphological information should be useful
for discrimination here. SVM classification was applied to the original hyperspectral data and the EMP.
The confusion matrices are given in Tables 6.8 and 6.9. It can be seen that the SVM classifier achieved
excellent global accuracy. The morphological-based classification shows a slight advantage, as class 4 is
classified better. The other classes are equally well classified. Thus the data fusion needs to improve the
classification of that class, while maintaining very good results for the others classes.
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Table 6.7: University Area. Summary of the class-specific test accuracies in percentages for SVM

classification.

Spectral DMP Spec. DMP DBFE 95% NWFE 80%

OA 79.48 79.14 83.53 87.97 87.59

AA 88.14 84.30 89.39 89.43 88.93

κ 74.47 73.25 79.13 84.40 83.89

Class 1 84.36 94.50 95.33 90.92 86.80

Class 2 66.20 72.82 73.46 85.91 86.95

Class 3 71.99 53.22 65.89 57.88 63.26

Class 4 98.01 98.89 99.18 99.22 98.53

Class 5 99.48 99.55 99.48 99.48 99.88

Class 6 93.12 58.11 84.15 85.32 82.62

Class 7 91.20 96.09 97.22 95.19 96.61

Class 8 92.26 95.27 96.12 95.84 95.38

Class 9 96.62 91.24 93.66 95.14 90.60

Table 6.8: Confusion Matrix for classification of the Pavia Center data set using the original hyper-

spectral data (102 bands). Global accuracy: OA = 97.67%, AA = 95.60%, and κ = 96.71%.

Ref. Classification Data

Classes 1 2 3 4 5 6 7 8 9 Prod. acc.

1 64880 0 0 0 0 481 587 23 0 98.30

2 0 6932 665 0 0 0 0 1 0 91.23

3 0 65 2990 0 35 0 0 0 0 96.76

4 0 0 0 2375 267 7 31 5 0 88.45

5 0 2 19 282 6187 0 90 4 0 96.97

6 0 0 0 53 2 8909 231 54 0 96.32

7 0 0 0 119 7 140 6996 25 0 96.00

8 1 0 0 143 19 60 32 42569 2 99.39

9 1 1 0 0 0 0 0 0 2861 99.93

We performed the experiment using the concatenated vector. The vector was constructed from the 102
spectral bands and the 27 features from the EMP. The vector was used directly as an input to the SVM.
The classification results are reported in Table 6.10. Almost every individual class-specific accuracy has
improved, especially class 4. This results in a slight improvement in the global accuracy. However, the
results are already very high, and so the differences in terms of classification accuracy are less statistically
significant than with the University Area data set.

Feature reduction was applied on the morphological data and original data before concatenation.
Then the stacked vector was classified by the SVM. The κ is plotted on Fig. 6.4 using several values
for the DBFE and NWFE variance criterion. Best results are obtained with 99% variance criterion for
both DBFE and NWFE. Using 99% of the variance with DBFE, the hyperspectral data is reduced to
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Table 6.9: Confusion Matrix for classification of the Pavia Center data set using the EMP (27 bands).

Global accuracy: OA = 98.69%, AA = 97.69%, and κ = 98.15%.

Ref. Classification Data

Classes 1 2 3 4 5 6 7 8 9 Prod. acc.

1 65366 0 0 0 0 494 111 0 0 99.08

2 0 6961 635 0 0 0 0 2 0 91.61

3 0 82 2972 0 36 0 0 0 0 96.18

4 0 0 0 2642 34 0 6 3 0 98.39

5 0 0 6 11 6511 0 18 38 0 98.89

6 0 0 0 5 3 9061 149 30 0 97.97

7 0 0 0 12 6 135 7133 1 0 97.88

8 0 0 0 33 31 28 18 42715 1 99.74

9 0 0 0 0 0 0 0 16 2847 99.44

Table 6.10: Confusion Matrix for classification of the Pavia Center data set using the original hy-

perspectral data and the EMP (129 bands). Global accuracy: OA = 99.69%, AA = 98.07%, and κ

= 98.15%.

Ref. Classification Data

Classes 1 2 3 4 5 6 7 8 9 Prod. acc.

1 65089 0 0 0 0 881 1 0 0 98.66

2 0 7106 479 0 1 0 0 12 0 93.52

3 0 8 2965 0 36 0 0 0 0 95.95

4 0 0 0 2652 25 0 5 3 0 98.77

5 0 1 6 9 6546 0 18 4 0 99.42

6 0 0 0 8 1 9096 129 14 0 98.35

7 0 0 0 7 1 119 7157 3 0 98.21

8 0 0 0 12 28 33 15 42738 0 99.79

9 2 0 0 0 0 0 0 0 2861 99.93

51 features and the EMP to 15 features. With NWFE and 99% of the variance criterion, 44 features
were extracted from the hyperspectral data and 20 from the EMP. The confusion matrices are reported
in Tables 6.11 and 6.12.

Neither of the feature extraction algorithm (DBFE or NWFE) leads to better results. But the
same classification accuracy is achieved with many less features - nearly half - thus reducing the total
training and classification time. In this experiment, NWFE provides the best results when almost all
the cumulative variance is used, the reverse of the situation in the previous experiment. Classification
maps for the different approaches are shown in Fig. 6.5. Visually, the thematic map produced with the
NWFE features seems less noisy than with the DBFE features, especially in the top left-hand corner,
which represents a particularly dense urban area.

The different results for the Pavia Center data are summarized in Table 6.13.
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Table 6.11: Confusion Matrix for classification of the Pavia Center data set using DBFE features

corresponding to 99% of the variance (66 bands). Global accuracy: OA = 98.65%, AA = 97.30%, and

κ = 98.19%.

Ref. Classification Data

Classes 1 2 3 4 5 6 7 8 9 Prod. acc.

1 65424 24 10 0 0 48 370 95 0 99.17

2 0 6838 750 0 0 0 0 10 0 88.99

3 0 84 2983 0 23 0 0 0 0 96.53

4 0 1 0 2656 19 0 7 2 0 98.91

5 0 5 1 8 6536 0 12 22 0 99.27

6 0 0 1 4 0 9105 131 7 0 98.45

7 0 0 0 13 0 138 7135 1 0 97.91

8 0 2 0 10 39 16 13 42744 2 99.80

9 0 100 0 0 0 0 0 26 2737 98.59

Table 6.12: Confusion Matrix for classification of the Pavia Center data set using NWFE features

corresponding to 99% of the variance (64 bands). Global accuracy: OA = 98.87%, AA = 97.95% and

κ = 98.41%.

Ref. Classification Data

Classes 1 2 3 4 5 6 7 8 9 Prod. acc.

1 65449 0 0 0 0 522 0 0 0 99.20

2 0 7027 570 0 0 0 0 1 0 92.48

3 0 93 2990 0 7 0 0 0 0 96.76

4 0 0 0 2673 3 0 8 1 0 99.55

5 0 0 1 9 6567 1 3 3 0 99.74

6 0 0 1 10 2 9128 107 0 0 98.70

7 0 0 0 8 0 108 7171 0 0 98.40

8 0 0 0 14 44 63 0 42705 0 99.71

9 67 0 0 0 0 0 0 21 2775 96.92

6.2.4 Comparison with spectro-spatial SVM

In this section, we draw comparisons with the results obtained using the spectro-spatial SVM ap-
proach. The classification accuracies are summarized in Table 6.14. The multi-source approach performs
better in terms of classification accuracy with both data sets. For the University Area data set, best
class-specific accuracies were obtained with the multi-source data, expect for two classes (3 and 6). In
these cases, it seems that the morphological information perturbs the classification process; as a result,
the AA is higher for the SS SVM. This phenomenon does not occur with the Pavia Center data set.

Regarding the thematic maps obtained with both approaches, the one produced using the SS SVM is
less noisy than the one using the multi-source approach.

Note that the slight difference between the accuracies obtained in this chapter and in Chapter 4 are
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Table 6.13: Pavia Center. Summary of the class-specific test accuracies in percentages for SVM clas-

sification.

Spectral DMP Spec. DMP DBFE 99% NWFE 99%

OA 97.67 98.69 99.69 98.65 98.87

AA 95.60 97.69 98.07 97.30 97.95

κ 96.71 98.15 98.15 98.10 98.41

Class 1 98.35 99.08 98.66 99.17 99.21

Class 2 91.23 91.62 93.52 90.00 92.49

Class 3 96.76 96.18 95.95 96.54 96.76

Class 4 88.45 98.40 98.77 98.92 99.55

Class 5 96.97 98.81 99.42 99.27 99.74

Class 6 96.32 97.98 98.36 98.45 98.70

Class 7 96.01 97.89 98.22 97.91 98.41

Class 8 99.40 99.74 99.79 99.81 99.72

Class 9 99.93 99.44 99.93 98.60 96.93

due to the multi-class strategies.

6.3 Conclusion

From the previous experiments, it is not clear which of the feature extraction methods should be used
for the fusion of morphological and spectral features. From a theoretical point of view, NWFE originated
because of some inherent problems with DBFE [80]. Hence, it is preferable to use NWFE, especially
when only a small training set is available.

The full stacked vector contains a great deal of redundancy, as it is well known there is redundancy
in the hyperspectral data [80] as well as in the EMP [7]. This is confirmed by the experiments. SVM is
known to be robust to dimensionality, so the need for feature reduction might be called into question.
However, lower-dimensional data reduced processing time, which can be crucial for some applications.
More importantly, it has been proven that SVM can be affected by dimensionality in cases where many
of the features are irrelevant [31]. By construction, the stacked vector may contain the same information
many times over, and in the end feature extraction step is needed to ensure correct classification for all
data sets (the usefulness of feature reduction in the classification of remote-sensing data using SVM was
assessed in [5]).

Favorable performance has been obtained using the multi-source approach compared to the SS SVM
in terms of classification accuracy. However, the thematic map obtained with the multi-source data is
more noisy than with the SS SVM. Some elementary post-processing could overcome the problem.

In conclusion, in terms of the other results obtained using fusion of morphological and spectral infor-
mation, the results presented outperformed those from our previous experiments [99, 100]. Furthermore,
for the data sets under consideration, the multi-source approach yields the best results obtained in this
thesis.
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Table 6.14: Summarized classification accuracies for SS SVM and the Data fusion approach for the

University Area and the Pavia Center.

University Area Center Center

SS SVM Data Fusion SS SVM Data Fusion

OA 86.11 87.97 98.43 99.69

AA 91.98 89.43 97.13 98.07

κ 82.35 84.40 97.79 98.15

1 84.36 90.92 99.15 98.66

2 78.52 85.91 90.04 93.52

3 84.30 57.88 98.12 95.95

4 96.87 99.22 94.00 98.77

5 99.88 99.48 99.45 99.42

6 95.61 85.32 95.82 98.36

7 95.56 95.19 98.15 98.22

8 95.44 95.84 99.47 99.79

9 97.78 94.14 99.93 99.93
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(a) (b)

(c) (d)

Figure 6.3: ROSIS University Area: Classification map obtained using SVM from: (a) original hyper-

spectral data, (b) EMP, (c) 37 DBFE features, and (d) 13 NWFE features. Classification accuracies are

reported in Tables 6.2, 6.3, 6.5, and 6.6.
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Figure 6.4: κ values for several values of the cumulative variance for DBFE and NWFE applied to the

Pavia Center data set.
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(a) (b)

(c) (d)

Figure 6.5: ROSIS Pavia Center area: Classification map obtained with SVM from: (a) original hyper-

spectral data, (b) EMP, (c) 66 DBFE features, and (d) 64 NWFE features. Classification accuracies are

reported in Tables 6.8, 6.9, 6.11 and 6.12.
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THE CLASSIFICATION of remote-sensing data over urban areas was addressed in this thesis. The
objective was to propose a methodology to include the spatial information into the classification

process in an appropriate way. Two general strategies have emerged from the present work, both yielding
satisfactory results in terms of classification accuracy.

For the first strategy, we propose a two step approaches:

1. The first step consists of extracting the spatial information in the remotely-sensed data. We have
assumed that the spatial organization of the image is required to be viewed in a structural sense.
Hence, Mathematical Morphology was a natural choice as an image processing tool. The concept
of the Morphological Profile has demonstrated a good capability for extracting useful spatial in-
formation. However, it does have certain theoretical limitations. An alternative concept, based on
self-area filtering was proposed for extracting radiometric information about the structures in the
image. The problem of multi-dimensional data has been tackled by the use of first principal com-
ponents. We use the fact that PCA minimizes reconstruction error under the L2 norm to extract
representative images from the data and perform the spatial analysis on these extracted feature.
For the purpose of classification, this approach represents a good trade-off between complexity
and efficiency.

2. The second step consists of classifying the data using the extracted spatial and spectral features.
The use of support vector machines provides a solution to the problem of dimensionality related to
hyperspectral data and the small training set size. For the Morphological Profile, a stacked vector
is created using the extracted spatial feature. For the spectro-spatial SVM, we define a kernel that
uses both the spectral and spatial information. In addition, a weighting parameter that controls
the influence of each type of information is included in the proposed kernel. Experimental results
exhibit excellent accuracies and complementary behavior of the two classification approaches. The
morphological approach extract more informative geometrical features than the one based on self-
complementary filter. Thus the morphological approach is better suited for dense urban area. On
the other hand, the approach based on a self-complementary filter is better suited for peri-urban
areas.

The second strategy is based on data fusion. We first investigated the fusion of the output from
several classifiers and proposed a framework based on fuzzy logic. In this scenario, fusion is performed
after a separate classification. Good results in terms of classification accuracy are obtained compared to
the results obtained with each individual classifier. A special attention has been focused on the fusion of
several SVM classifiers, for which a specific fusion scheme has been proposed.
The final chapter dealt with multi-source data. Spatial and spectral features from the same area are
considered as two separate data sets. Data fusion is then performed prior to classification. The objective
here was to include more spectral information in the Extended Morphological Profile.

In terms of classification accuracy, both strategies lead to improved results. It is interesting to note
that the best results for each strategy are almost equal. Some conclusions may thus be drawn:

• For the Morphological Profile:

– Experimental results with data fusion confirm that spectral information needs to be included
in the feature vector (for multi-valued data).

– Morphological Profile is better suited to very dense urban areas, due to the connectedness
property.

• For the spectro-spatial SVM:

– The adaptive neighbor definition is suitable to remote-sensing images.
– Information other than the median value needs to be extracted from the neighbors set.

• For the data fusion:

– Better results are obtained when fusing classifier outputs with complementary inputs.
– Data fusion of classifier outputs seems the most promising.

There are many possible perspectives for pursuing this work. First of all, the PCA used to extract
representative images could be changed to a more advanced algorithm. As seen in Chapter 1, Kernel PCA
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may be one possibility. The definition of image processing algorithms that can be applied to multi-valued
data is certainly one point that needs to be addressed in the future.
Possible evolutions for the spectro-spatial SVM are the definition of new spatial information, such as
textural features. Training time could be reduced using the radius margin bound.
The transferability of the hyperplane should be improved by the use of semi-supervised learning. A closer
look at the feature space induced by the kernel function may provide an elegant solution to this particular
problem.
Data fusion at a decision level has been validated as a useful method of aggregating several decision
results. For reasons of practicality, the experiments presented in this thesis used a limited number of
sources, and there is a need to evaluate the approach using many more classifiers. In particular, class
specific classifiers (road or building detector) and global classifiers should be aggregated together.

As a final conclusion to this thesis, the conjoint use of spectral and spatial information with an
appropriate classification scheme, whether that is the SVM or data fusion, provides good analysis of the
urban area that is still not perfect, but is exploitable and helpful for analysts. Key points are that analyst
intervention is minimized during processing, and that the methodology can be applied to many types of
optical data.
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KERNEL METHODS have been successfully applied to various algorithm, ranging from classi-
fication, regression, estimation [93, 111]. . . They are based on reproducing kernel Hilbert spaces

(RKHS) theory where RKHS are special case of Hilbert space. From this theory, it is possible to analyze
various data structures in their original representation (vectors, matrix, strings, probabilities. . . ) with
the theoretical framework of Hilbert spaces. Many algorithms can take benefit of kernel methods and
the most famous one is surely the Support Vector Machines (SVM). Others well-know methods have
used RKHS with success: principal and independent component analysis, Fisher discriminant, maximum
likelyhood...In this thesis, we have presented the Kernel Principal Component Analysis and the SVM.
Both take advantage of the kernel trick.

All this methods share the same property: they can be formulated with inner product. Their kernelized

version is just found by substituting the inner product by a kernel function, the kernel trick is related to
this substitution.

The remainder of this appendix is organized as follow. Some mathematical background are review
in the first section. Then the main theorem is presented in the second section. Generalized representer
theorem is then discussed in the third section. A synthetic example is given as a conclusion.

A.1 Mathematical background

In this section, basics of functional analysis will be presented. For the following we note X any given
set made of vector and K any given field (e.g. R or C) made of scalar. Vectors should be considered as
elements of X , which can be sample, set, function . . .

A.1.1 Vector space

Definition A.1 (Vector space) A vector space over the field K is a set X together with two laws: the

vector addition and the scalar multiplication, which satisfy the following properties:

• Vector addition: x, y and z belong to X .

1. Commutativity: x + y = y + x

2. Associativity: (x + y) + z = x + (y + z)
3. Identity element: x + 0 = x (0 is called the zero vector)
4. Inverse element: x + (−x) = 0

• Scalar multiplication: a and b belongs to K.

1. Distributivity: (a+ b)(x + y) = ax + bx + ay + by
2. Associativity: a(bx) = (ab)x
3. Identity element: 1x = x

Definition A.2 (Inner product) An inner product is a map 〈., .〉X : X × X → K satisfying the fol-

lowing axioms:

1. Conjugate symmetry: 〈x,y〉X = 〈y,x〉X
2. Sesquilinearity: 〈ax + by, cz + dw〉X = ac̄〈x, z〉X + ad̄〈x,w〉X + bc̄〈y, z〉X + bd̄〈y,w〉X
3. Non-negativity: 〈x,x〉X ≥ 0
4. Positive definiteness: 〈x,x〉X = 0⇔ x = 0

The standard inner product in the Euclidean space, x ∈ R
n and n ∈ N, is called the dot product:

〈x,y〉Rn =
∑n
i=1 xiyi.

Definition A.3 (Pre-Hilbert Space) A pre-Hilbert space is a vector space X over the field K (either

real R or complex C number) endowed with a inner product. It can be of any dimension, even non-finite.

Definition A.4 (Norm) A norm is a real-valued function ‖.‖X over X which satisfy the following prop-

erties, for x, y ∈ X :
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1. ‖x‖X ≥ 0
2. ‖x‖X = 0⇔ x = 0

3. ‖ax‖X = |a|.‖x‖X
4. ‖x + y‖X ≤ ‖x‖X + ‖y‖X

Definition A.5 (Normed vectors space) A normed vector space (X , ‖.‖X ) is a vector space X to-

gether with a norm ‖.‖X .

To each inner product, it is possible to associate a norm: ‖x‖X =
√
〈x,x〉X . The norm induces a

notion of distance between two vectors x and y: d(x,y) = ‖x − y‖X . Therefore, a vector space endows
with a distance is called a metric vector space (X , d). Every normed vector spaces are metric vector
spaces. However, the converse is not true:

pre-Hilbert vector space⇒ normed vector space⇒ metric vector space. (A.1)

Definition A.6 (Cauchy sequence) A sequence (xi)i∈N in a metric vector space (X , d) is said to be

a Cauchy sequence if for all ǫ ∈ R
+
∗ it exits n ∈ N such as for all p, q ≥ n we have d(xp,xq) ≤ ǫ. Note

that all convergent sequences are Cauchy sequences but the converse is not true in general.

Definition A.7 (Complete vector space) A metric vector space (X , d) is said to be complete if any

Cauchy sequences converge to an element in X . This property is linked to the distance d. X can be

complete for a given d but non complete for another d′.

For any metric vector space, it is possible to construct a complete metric vector space. Especially,
every pre-Hilbert vector space can be completed to a Hilbert vector space.

Definition A.8 (Hilbert vector space) An Hilbert vector space (H, 〈., .〉H) is a normed vector space

complete for the distance stemming from its inner product. Or straightforwardly, an Hilbert space is a

complete pre-Hilbert space.

Hilbert space are the generalization of Euclidean and Hermitian space to infinite dimension. Theory of
linear functions over an Hilbert space is very well developed. Fourier transform is defined over an Hilbert
space, as the Quantic Theory. In the following section A.1.2, we need two classical properties of Hilbert
space. The first is the Cauchy-Schwarz inequality:

∀x,y ∈ (H, 〈., .〉H), |〈x,y〉H| ≤ ‖x‖H‖y‖H (A.2)

where‖x‖H =
√
〈x,x〉H. The second one is the Riesz representation theorem:

Theorem A.1 (Riesz representation theorem) For all linear continuous form f on (H, 〈., .〉H), there

is an unique y in H such as:

∀x ∈ H, f(x) = 〈y,x〉H. (A.3)

Suppose Φx is linear form over an functional Hilbert space such as:

Φx : H → K
f → f(x)

(A.4)

then according to the previous theorem states, an unique functional gx exists such as :

Φx(f) = 〈gx, f〉H. (A.5)

Some remarks should be made about the completion of pre-Hilbert space forming by a class of func-
tions [4]. The completion theorem says that the completion of metric vector space is always possible by
adding the limits of Cauchy sequences, if necessary. However, the completed space will not necessarily
form a class of functions and when considering the special case of functional vector space one has to look
for the functional completion theorem.
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Theorem A.2 (Functional Completion) Let H be the class of K-valued functions defined in X , and

H forms a pre-Hilbert vector space. There exist a functional completion if and only if:

1. ∀x ∈ X , f ∈ H : |f(x)| ≤Mx‖f‖
2. (fi)i∈N a Cauchy sequence of H: ∀x, lim

m→∞
fm(x) = 0⇒ lim

m→∞
‖fm‖ = 0

A.1.2 Kernels

In the following we restrict the field K to R or C.

Definition A.9 (Positive semi-definiteness) A K-valued function k : X × X → K on a vector space

is said to be positive semi-definite if, and only if:

1. ∀(x,y) ∈ X × X , k(x,y) = k(y,x)
2. ∀n ∈ N,∀ξ1, . . . , ξn ∈ K,∀x1, . . . ,xn ∈ X ,∑ni,j=1 ξ̄iξjk(x

i,xj) ≥ 0

Properties of positive semi-definite functions (PSDF):

1. If (X , 〈., .〉X ) is an Hilbert space, then 〈., .〉X is PSDF.
2. If g : X → K then k(x,y) = g(x)g(y) is PSDF.
3. If k1 and k2 are PSDF, and with λ1, λ2 ∈ R

+ then λ1k1 + λ2k2 is also PSDF.
4. If k1 and k2 are PSDF then k1.k2 is also PSDF.
5. if k1 is PSDF then k = exp(k1) is also PSDF.

The PSDF can be seen a generalization of inner product. Every inner product is clearly a PSDF. In
general, PSDF does not have the linearity property of inner product but the Cauchy-Schwarz inequality
is somewhat preserved, since we have [110]:

|k(x,y)|2 ≤ k(x,x).k(y,y). (A.6)

Definition A.10 (Kernel) A K-valued function k : X ×X → K is called a kernel on X if there exits a

K-Hilbert vector space (H, 〈., .〉H) and a map Φ : X → H such as:

∀x,y ∈ X : k(x,y) = 〈Φ(y),Φ(x)〉H (A.7)

Usually, X is called the input space, H the feature space and Φ the feature map.

Definition A.11 (Reproducing kernel) H is vector space of K-valued functions over X and (H, 〈., .〉H)
its associated Hilbert vector space (f ∈ H, ‖f‖H =

√
〈f, f〉H). The kernel k is a reproducing kernel of H

if :

1. ∀x and y ∈ X , k(·,y) ∈ H:

k(·,y) : X → K
x 7→ k(x,y)

(A.8)

2. ∀x ∈ X and ∀f ∈ H : f(x) = 〈f, k(·,x)〉H
Especially, we have the reproducing property: k(x,y) = 〈k(·,y), k(·,x)〉H (f = k(·,y)).

An Hilbert vector space where a reproducing kernel exists is called a reproducing kernel Hilbert space

(RKHS). Roughly speaking, a RKHS is smaller than a general Hilbert space.
Properties of reproducing kernel [4] :

1. If k exists, it is unique.
2. A reproducing kernel exists if, and only if, for all x the linear form

Φx : H → K
f 7→ f(x)

(A.9)

is a continuous linear form.
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3. A reproducing kernel is a PSDF
4. Every sequence (fi)i∈N which converges strongly to a function f , converges also at every point

(point-wise convergence):

lim
i→∞

‖fi‖H = ‖f‖H ⇒ lim
i→∞
fi(x) = f(x), ∀x ∈ X (A.10)

Proof :

1. Let k and k′ be two reproducing kernels on H, for all x ∈ X :

‖k(·,x)− k′(.,x)‖H = 〈k(·,x)− k′(.,x), k(·,x)− k′(.,x)〉H
= 〈k(·,x), k(·,x)〉H − 〈k(·,x), k′(.,x)〉H − 〈k′(.,x), k(·,x)〉H + 〈k′(.,x), k′(.,x)〉H
= k(x,x)− k′(x,x)− k(x,x) + k′(x,x)

= 0.

(A.11)

So k = k′ for all x ∈ X .
2. On one hand, if k exists :

|Φx(f)| = |f(x)| = |〈f, k(·,x)〉H|
|f(x)| ≤ ‖f‖H‖k(·,x)‖H
|f(x)| ≤

√
k(x,x)‖f‖H.

(A.12)

the linear form Φx is continuous.
On the other hand, if Φx is continuous, by the representation theorem of Riesz it exists gx ∈ H
such as Φx(f) = 〈gx, f〉H = f(x). Then gx = k(·,x) is a reproducing kernel since gx belongs to H
and has the reproducing property.

3. By definition we have k(x,y) = 〈k(·,y), k(·,x)〉H = 〈k(·,x), k(·,y)〉H = k(y,x). Thanks again to
the reproducing property, the second condition of positive semi-definiteness can be rewritten as

n∑

i,j=1

ξ̄iξj〈k(·,xj), k(·,xi)〉H

=

〈
n∑

j=1

ξjk(·,xj),
n∑

i=1

ξik(·,xi)
〉

H

= ‖
n∑

i=1

ξik(·,xi)‖2
H

≥ 0.

(A.13)

The converse of this property is at the very basis of kernel methods. It leads to theorem (A.3) that
will be stated latter.

4. ∀x ∈ X , |fi(x)− f(x)| = |〈k(·,x), fi− f〉H| ≤ ‖fi− f‖
√
k(x,x). So if strong convergence in norm

holds (limi→∞ ‖fi− f‖H = 0) then point-wise convergence also (limi→∞ |fi(x)− f(x)| = 0, for all
x ∈ X ).

A.2 From feature space to Kernel feature space

In the previous section, we have shown that input space and feature space could be linked with
a kernel function, see definition A.10. Furthermore, particular kernels have been presented leading to
special Hilbert space. In that configuration, we have seen that every reproducing kernels are also positive
semi-definite functions. Moore and Aronszajn have proved that the converse is true [4].
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Theorem A.3 (Moore and Aronszajn) To every positive semi-definite function k there corresponds

one and only one RKHS admitting k as a reproducing kernel.

The proof is based on the construction of such an Hilbert space with a given positive semi-definite
function k. For this, suppose we have a given non-empty set X and k : X × X → K a positive semi-
definite function. We have to show 1) k is a kernel and 2) the Hilbert space associated to k is an RKHS,
i.e., k is a reproducing kernel (the unicity is enclosed in the existence, see property 1 of reproducing
kernel).

We can consider the set H0 of linear K-valued functions such as :

f :=
p∑

i=1

αik(·,xi)|xi ∈ X , αi ∈ K and p ∈ N. (A.14)

It is easy to show that H0 is a vector space. The next point is to construct pre-Hilbert space and then

try to apply the completion theorem. We endow H0 with the functional
(
g :=

∑q
j=1 βjk(·,yj)

)
:

〈f, g〉H0
:=

p,q∑

i,j=1

αiβ̄jk(y
j ,xi). (A.15)

First we can see that for q = 1 and β = 1 (g = k(·,y)) we have:

〈f, g〉H0
=
p∑

i=1

αik(y,x
i) = f(y) = 〈f, k(·,y)〉H0

(A.16)

and the reproducing property (p = 1 and α = 1, f = k(·,x)):

〈k(·,x), k(·,y)〉H0
= k(y,x). (A.17)

Lets show 〈·, ·〉H0
defines a inner product in H0 (the number in the list are related to those of defini-

tion A.2):

1. 〈g, f〉H0
=
p,q∑

i,j=1

ᾱiβjk(xi,yj) =
p,q∑

i,j=1

αiβ̄jk(xi,yj) =
p,q∑

i,j=1

αiβ̄jk(y
j ,xi) = 〈f, g〉H0

2. h =
r∑

k

γkk(·, zk). To prove the linearity for the first variable, consider

• 〈f, g〉H0
+ 〈h, g〉H0

=
p,q∑

i,j=1

αiβ̄jk(y
j ,xi) +

r,q∑

k,j=1

γkβ̄jk(y
j , zk) =

p,q,r∑

i,j,k=1

(αi + γk)β̄j(k(y
j ,xi) + k(yj , zk))

= 〈f + h, g〉H0

• 〈λf, g〉H0
=
p,q∑

i,j=1

λαiβ̄jk(y
j ,xi) = λ〈f, g〉H0

With the conjugate symetry, we have the sesquilinearity.

3. 〈f, f〉H0
=

p∑

i,j=1

αiᾱjk(x
j ,xi) ≥ 0 since k is PSDF.

4. Using the previous property, for λ ∈ K we have : 〈f − λg, f − λg〉H0
≥ 0. Following the same

flow as the classical Cauchy-Schwarz proof, we get: |〈f, g〉H0
| ≤

√
〈f, f〉H0

√
〈g, g〉H0

. Using
equation (A.16) we can see: |f(x)| = |〈f, k(·,x)〉H0

| ≤
√
〈f, f〉H0

√
k(x,x). If 〈f, f〉H0

= 0 then
f(x) = 0 for all x, so f = 0.

We have shown that H0 with the inner product (A.15) is a pre-Hilbert space. We note ‖ · ‖H0
the

norm associated to the inner product 〈·, ·〉H0
. We now use the completion theorem to complete H0 to an

Hilbert space. Since we are dealing we reproducing kernel, every functions in H0 can be written in terms
of inner product and kernel function. So we have for every functions x:

|f(x)| ≤
√
k(x,x)‖f‖H0

. (A.18)
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Now we have to verify the second condition by considering Cauchy sequence (fm)m∈N inH0. The previous
equation (A.18) does not help us and we need to rewrite the norm of fm in inner product formulation,
to use the explicit expression of fm, see equation (A.14):

‖fm‖2
H0

= 〈fm, fm〉H0

=
p∑

i,j=1

αiᾱjk(x
j ,xi)

=
p∑

j=1

ᾱj

p∑

i=1

αik(x
j ,xi)

=
p∑

j=1

ᾱjfm(xj)

(A.19)

so if for all x in X , fm(x) converges to f(x) = 0 then ‖fm‖ converges to zero. This satisfy the second
condition of the completion theorem, i.e., H0 can be completed to obtain a complete Hilbert space H.

Finally, the PSDF is a reproducing kernel since:

1. It satisfies the definition A.11 in the above constructed Hilbert space H
2. It maps X to H:

Φ : X → H
x 7→ k(·,x)

(A.20)

and we have the equality: k(x,y) = 〈k(·,y), k(·,x)〉H.

The major consequence of this theorem is that it allows the use of functional theory over Hilbert spaces
for a various classes of problems. The main issue is to define the kernel function. This is classically done
by combining classical kernels with above given rules. However, optimal solution should be found using
specific kernel associated to a specific problem. Another crucial point is that the mapping is implicitly
done while all the operations are done in the input space. In the following we present two classical kernels
widely used in kernel based algorithm.

Definition A.12 (Polynomial Kernel) If x,y ∈ X , q ∈ R
+ and p ∈ N

+, the polynomial kernel is

defined as

k(x,y) = (〈x,y〉X + q)p . (A.21)

It corresponds to the inner product in a
(
n+p
p

)
dimensional vector space, where n is the dimension of X ,

and each component is made of monomial up to degree p. For example, consider the following polynomial
kernel k:

k : R
2 × R

2 → R

(x,y) 7→ (〈x,y〉R2 + 1)2

7→ (x1y1 + x2y2 + 1)2

7→ (x1y1)2 + (x2y2)2 + 2x1y1 + 2x2y2 + 2x1x2y1y2 + 1

7→ 〈Φ(x),Φ(y)〉R6

(A.22)

where Φ(x) =
[
x2

1 x
2
2

√
2x1

√
2x2

√
2x1x2 1

]
and dim(Φ(x)) =

(
2+2

2

)
= 6. Its components are monomials

made of the original vector’s component.

Definition A.13 (Radial Basis Functions Kernel (RBF)) For x,y ∈ X , σ ∈ R
+, the RBF kernel

is defined as:

k(x,y) = exp

(
−‖x− y‖2

2σ2

)
(A.23)
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The parameter σ controls the smoothness of the function. When σ is set to large value, the kernel function
tends to a very flat functions. The value controls how the neighbors in the input space are taking into
account. It is illustrated in the figure A.2. We have considered the functions f define in the feature space
with RBF:

f(x) =
p∑

i=1

αi exp

(
−‖x− xi‖2

2σ2

)
(A.24)

This function represent an density estimator in the input space. For the figure A.2, we have generated
data from an additive mixture of two Gaussian. It can be seen from the figure that with a too small or
too big value of σ, the estimation is not accurate. This is relatively important since when using the RBF
kernel one has to choose a proper σ value. This issue is investigated in section 1.4 for the KPCA.

To conclude this section, some discussion about the feature space induce by the kernel function should
be done. If we consider a polynomial kernel function of degree 2 with q = 0. We can easily see that the
corresponding mapping is :

Φ : R
2 → R

3

x = (x1, x2) 7→ Φ(x) = (x2
1, x

2
2,
√

2x1x2)
(A.25)

Then if we look at the associated feature space we see that the R
3 is not totally span by the Φ(x), since

the third dimension is linked with the first ones. The figure A.1 represent the square [−3; 3]× [−3; 3] in
R

2 mapped onto R
3 by Φ. The remaining question is does the solution of our problem live in the spanned

space? If not, we cannot access to it or only partially. Hopefully, the representer theorem gives us the
condition to apply kernel methods.

A.3 The Representer Theorem

Theorem A.4 (The Representer Theorem [64, 110]) Let k be a positive semi-definite function on

X , a training set (xi, yi) ∈ X × Y made of ℓ elements, gemp : (X × Y × K)ℓ → R ∪∞ be any arbitrary

cost function and greg : K → [0,∞[ a strictly monotonically increasing function. Define H the RKHS

induced by k; then any f ∈ H minimizing the regularized risk :

Rreg = gemp
(
(xi, yi, f(x

i))i∈{1,...,ℓ}
)

+ greg (‖f‖H) (A.26)
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Figure A.1: A view of the kernel feature space in the feature space.
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(c) σ = 0.10

−4
−2

0
2

4
6

8

−2

0

2

4

6

8

10
0

0.2

0.4

0.6

0.8

1

(d) σ = 0.50
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(e) σ = 1.00
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(f) σ = 5.00

Figure A.2: Influence of σ on density estimation for a mixture of two Gaussian, from [64].
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admits a representation of the form :

f =
ℓ∑

i=1

αik(·,xi) α ∈ K (A.27)

Proof : Let first write the kernel map:

Φx : X → H
x 7→ Φx = k(·,x).

(A.28)

Using the reproducing property, the evaluation of Φx is done using k: Φx(y) = k(y,x) = 〈Φx,Φy〉H.
Given the training set, any f ∈ H can be decomposed into a part that lives in the spanned space and a
part u which is orthogonal to it (〈Φxi ,u〉H = 0, ∀i ∈ {1, . . . , ℓ}) :

f =
ℓ∑

i=1

αiΦxi + u. (A.29)

Still using the reproducing property, the evaluation of f is:

f(xj) = 〈
ℓ∑

i=1

αiΦxi + u, k(·,xj)〉H

= 〈
ℓ∑

i=1

αiΦxi + u,Φxj 〉H

=
ℓ∑

i=1

αi〈Φxi ,Φxj 〉H

(A.30)

which does not depend on u. So the functional gemp is independent of u. For the second term

greg

(
‖∑ℓi=1 αiΦxi + u‖H

)
, using the orthogonality it can be rewritten greg

(√
‖∑ℓi=1 αiΦxi‖2

H + ‖u‖2
H

)
,

finally using the strict monotonic of greg, we have:

√√√√‖
ℓ∑

i=1

αiΦxi‖2
H + ‖u‖2

H ≥
∥∥∥∥∥

ℓ∑

i=1

αiΦxi

∥∥∥∥∥
H

(A.31)

greg (‖f‖H) ≥ greg

(∥∥∥∥∥

ℓ∑

i=1

αiΦxi

∥∥∥∥∥
H

)
. (A.32)

The equality holds for u = 0. So, setting u = 0 does not change gemp while strictly reducing greg, thus
any minimizer must have u = 0. Combining (A.29) and (A.28) we finally have:

f =
ℓ∑

i=1

αik(·,xi) (A.33)

which proves the Representer Theorem.
We will give two machine learning algorithms that satisfy the Representer Theorem, the Kernel

Principal Component Analysis and the Support Vector Machines, both were used in this thesis.
KPCA: The PCA in the feature space is an unsupervised linear feature extraction by a functional f
that produce unit empirical variance’s outputs, greg is a strictly monotonically increasing function:

gemp
(
(xi, yi, f(x

i))i∈{1,...,ℓ}
)

=





0 if
1

ℓ

ℓ∑

i=1


f(xi)− 1

ℓ

ℓ∑

i=j

f(xj)




2

= 1

∞ otherwise.

(A.34)
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SVM: The SVM is two-class {−1; 1} classification problem, which try to maximize the margin ‖f‖. Here

gemp
(
(xi, yi, f(x

i))i∈{1,...,ℓ}
)

=
ℓ∑

i=1

max
(
0, 1− yif(xi)

)
(A.35)

and the regularizer

greg = λ‖f‖2. (A.36)

A.4 The minimal enclosing hypersphere

In this section, we present an example taking benefit of the kernel methods. Suppose we have samples
in some Euclidean space xi ∈ R

n,∀i ∈ [1, ℓ], and a positive semi-definite real-valued kernel k that maps
R
n → H such as x 7→ Φ(x). We want to find the smallest hypersphere S(CS ,RS) that contains Φ(x),

i.e., we want to find the center CS such as the radius is minimal:

min
Cs

(RS) = min
Cs

(
max
i

(
‖Φ(xi)− CS‖H

))
(A.37)

The previous equation (A.37) can be rewritten as:

min
Cs

(
R2
S

)
= min

Cs

(
max
i

(
〈Φ(xi)− CS ,Φ(xi)− CS〉H

))

= min
Cs

(
max
i

(
〈Φ(xi),Φ(xi)〉H + 〈CS , CS〉H − 2〈Φ(xi), CS〉H

))

= min
Cs

(
max
i

(
‖Φ(xi)‖2

H − 2〈Φ(xi), CS〉H
)

+ ‖CS‖2
H

)
.

(A.38)

We can identify with equation (A.26):

greg(‖CS‖H) = ‖CS‖2
H (A.39)

and

gemp
(
(xi, yi, CS(xi))i∈{1,...,ℓ}

)
= max

i

(
‖Φ(xi)‖2

H − 2〈Φ(xi), CS〉H
)
. (A.40)

From the Representer Theorem we can say that Cs admits a representation of the form:

Cs =
ℓ∑

i=1

βik(·,xi). (A.41)

The above problem can be considered as a constraint optimization problem (note now the Representer
Theorem does not applied anymore):

minR2
S

subject to ‖Φ(xi)− CS‖2
H −R2

S ≤ 0,∀i ∈ [1, ℓ]
(A.42)

Its associated Lagrangian is (βi ∈ R
+)

L(RS , CS ,β) = R2
S +

ℓ∑

i=1

βi
(
‖Φ(xi)− CS‖2

H −R2
S

)
. (A.43)

According to the Lagrange theory, L has to be minimized with ratio to the primal variable RS , CS
and to be maximized with ratio to the dual variable β (the Lagrange multipliers). The objective and
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the constraint functions are convex and differentiable. We can write the Karush-Kuhn-Tucker (KKT)
optimality conditions [18]:





∂L

∂Rs
= 2Rs +

ℓ∑

i=1

βi(−2Rs) = 0

∂L

∂Cs
= −2

ℓ∑

i=1

βi(Φ(xi)− CS) = 0

‖Φ(xi)− CS‖2
H −R2

S ≤ 0, ∀i ∈ [1, ℓ]

βi ≥ 0, ∀i ∈ [1, ℓ]

βi
(
‖Φ(xi)− CS‖2

H −R2
S

)
= 0, ∀i ∈ [1, ℓ]

(A.44)

From the first equalities, we have
∑ℓ
i=1 βi = 1 and Cs =

∑ℓ
i=1 βiΦ(xi). The Lagrangian can be rewritten

as:

L(RS , CS ,β) =
ℓ∑

i=1

βi〈Φ(xi),Φ(xi)〉H − 2
ℓ∑

i=1

βi〈Φ(xi), CS〉H +
ℓ∑

i=1

βi〈CS , CS〉H

=
ℓ∑

i=1

βi〈Φ(xi),Φ(xi)〉H − 2
ℓ∑

i,j=1

βiβj〈Φ(xi),Φ(xj)〉H +
ℓ∑

i,j=1

βiβj〈Φ(xi),Φ(xj)〉H

=
ℓ∑

i=1

βi〈Φ(xi),Φ(xi)〉H −
ℓ∑

i,j=1

βiβj〈Φ(xi),Φ(xj)〉H.

(A.45)

We finally have the dual formulation of the problem. Neither of the primal variables appear in the
Lagrangian. The min-max problem is reduced to a maximization problem:

max
β
G(β) =

ℓ∑

i=1

βi〈Φ(xi),Φ(xi)〉H −
ℓ∑

i,j=1

βiβj〈Φ(xi),Φ(xj)〉H

subject to βi ≥ 0
ℓ∑

i=1

βi = 1.

(A.46)

This can be directly done in the input space using the kernel: k(xi,xj) = 〈Φ(xi),Φ(xj)〉H:

max
β
G(β) =

ℓ∑

i=1

βik(x
i,xi)−

ℓ∑

i,j=1

βiβjk(x
i,xj)

subject to βi ≥ 0
ℓ∑

i=1

βi = 1.

(A.47)

The KKT conditions say also that the duality gap is null, i.e., optimal L̃ is equal to optimal G̃, and
the last equality of (A.44) implies: L̃ = R2

S . Finally, solving in the input space the convex constraint
optimization problem (A.47) provides the hypersphere parameters : (RS , CS).

As numerical experiments, we generated 200 samples from a two dimensional Gaussian N (µ, σI) with

µ =
[
0.65, 0.65

]t
and σ = 0.1. The minimal enclosing hypersphere were computed in the feature space

induces by a polynomial kernel of degree 2, see (A.25). The intersection of the hypersphere and the kernel
feature space was computed. Results are presented in figure A.3. The radius found in the input space
was 0.29 while in the feature space it was 0.50. Note that the radius is the Euclidean distance between
the center of the hypersphere and the more distant projected element, it is not the geodesic distance
along the surface defined by the kernel feature space.
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Figure A.3: Intersection of the kernel feature space and the minimal enclosing hypersphere: The blue

point is the center Cx, the green stars are the intersection of the kernel feature space with the hypersphere

and the red cross are the initial sample xi.

A.5 Conclusions

Basics of kernel methods have been reviewed. The equivalence between a positive semi-definite func-
tion and reproducing Hilbert space has been stated with the Moore and Aronszajn’s theorem. The
problem of feature space and kernel feature space has been addressed with the Representer Theorem.

These theorems have very important practical consequences: if on a given set we can define a positive
semi-definite function, we can use all algorithms which can be stated in an inner product form. More,
the definition of a suitable kernel for our problem can improve the performance of many algorithm.

The example given in the previous section presents the classical work-flow to use kernel method: first
express the problem in inner product form and then define the kernel functions. We chose to present
the minimal enclosing hypersphere because of its applications to many kernel based algorithms. In this
thesis, we have used it to estimate kernel’s parameter in the KPCA, and to estimate errors bounds in
the SVM. Furthermore, the optimization problem is very similar to the SVMs one.
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Assessing the accuracy

THE ESTIMATION of the classification accuracy is based on the confusion matrix. From that matrix
it is possible to evaluate the exactitude of a given classification map by comparison to the reference

map. Several estimates, from global estimation to specific estimation are extracted from the confusion
matrix. They are detailed in the following as well as the confusion matrix.

Definition B.1 (Confusion matrix) In the field of artificial intelligence, a confusion matrix is a vi-

sualization tool typically used in supervised learning . Each column of the matrix represents the instances

in a predicted class, while each row represents the instances in an actual class. One benefit of a confusion

matrix is that it is easy to see where the system is confusing ( i.e., commonly mis-labelling one class as

another).

An example of confusion matrix is given Table B.1 for a 3-classes problem. Ci represents the class i
and Cij is the number of pixels assign to the class j by the classifier which are referenced as class i.

Definition B.2 (Overall Accuracy) The overall accuracy (OA) is the percentage of correctly classified

pixels:

OA =

∑Nc
i Cii∑Nc
ij Cij

× 100. (B.1)

Definition B.3 (Class Accuracy) The Class Accuracy (or producer’s accuracy) (CA) is the percentage

of correctly classified pixels for a given class.

CAi =
Cii∑Nc
j Cij

× 100. (B.2)

Definition B.4 (Average Accuracy) The average accuracy (AA) is the mean of class accuracy for all

the classes.

AA =

∑Nc
i CAi
Nc

× 100. (B.3)

An OA or an AA is closed to 100% (0%) means that the classification accuracy is almost perfect
(wrong). When a referenced set is unbalanced, the OA may not be representative of the true performance
of the classifier. For instance, if a class has very few number of referenced pixels, its influence will be
very low in the computation of the OA, while it will be more influent in the AA since the mean is done
the number of classes rather than the whole number of pixels. Strong difference between OA and AA
may indicate that a specific class is wrongly classified with a high proportion.

Definition B.5 (Kappa Coefficient) The Kappa Coefficient (κ) is a statistical measure of agreement.

It is the percentage agreement corrected by the level of agreement that could be expected due to chance

157
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Table B.1: Confusion Matrix, N is the number of referenced pixel and Nc is the number of classes.

Percentage Classification Data

Reference Data C1 C2 C3 Row Total Producer’s Accuracy

C1 C11 C12 C13

∑Nc

i
C1i

C11∑Nc

i
C1i

C2 C21 C22 C23

∑Nc

i
C2i

C22∑Nc

i
C2i

C3 C31 C22 C33

∑Nc

i
C3i

C33∑Nc

i
C3i

Column Total
∑Nc

i
Ci1

∑Nc

i
Ci2

∑Nc

i
Ci3 N

User’s Accuracy
C11∑Nc

i
Ci1

C11∑Nc

i
Ci2

C33∑Nc

i
Ci3

alone. It is generally thought to be a more robust measure than simple percent agreement calculation since

κ takes into account the agreement occurring by chance.

κ =
Po − Pe
1− Pe

Po = OA

Pe =
1

N2

Nc∑

i

Ci·C·i

Ci· =
Nc∑

j

Cij

C·i =
Nc∑

j

Cji

(B.4)

Total agreement is achieved if κ = 1 while there are no agreement when κ ≤ 0.
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THIS chapter is dedicated to the description of the data used in this thesis. To avoid repetition, all
the information are sum up in the following. Two types of remote sensing data were available: one

very high resolution panchromatic real IKONOS image, two very high resolution panchromatic simulated
PLEIADES images and three hyperspectral real data set. Each data set was acquired over urban area.
Next, spectral coverage, spatial resolution, training and testing set are given.

C.1 Hyperspectral data

C.1.1 ROSIS data

Airborne data from the ROSIS-03 (Reflective Optics System Imaging Spectrometer) optical sensor are
used for the experiments. The flight over the city of Pavia, Italy, was operated by the Deutschen Zentrum
fur Luft- und Raumfahrt (DLR, the German Aerospace Agency) in the framework of the HySens project,
managed and sponsored by the European Union. According to specifications the number of bands of the
ROSIS-03 sensor is 115 with a spectral coverage ranging from 0.43 to 0.86µm. The spatial resolution is
1.3m per pixel. Two data set were available: the University area and the Pavia Center.

C.1.1.1 University Area

The original data set is 610 by 340 pixels. Some channels (12) have been removed due to noise. The
remaining 103 spectral dimensions are processed. Nine classes of interest are considered, namely: trees,
asphalt, bitumen, gravel, metal sheet, shadow, bricks, meadow and soil. The image was acquired around
the Engineering School at the University of Pavia. False color image is presented in Figure C.1.(a) and
the available testing set in Figure C.1.(b). Testing and training set are detailed in Table C.1.

C.1.1.2 Pavia Center

The second ROSIS data set is the center of Pavia. The Pavia center image was originally 1096 by
1096 pixels. A 381 pixel wide black in the left part of image was removed, resulting in a “two part”
image. This “two part” image is 1096 by 715 pixels. Some channels (13) have been removed due to noise.
The remaining 102 spectral dimensions are processed. Nine classes of interest are considered, namely:
water, tree, meadow, brick, soil, asphalt, bitumen, tile and shadow. False color image is presented in

Table C.1: Information classes and training-test samples for the University Area data set.

Class Samples

No Name Train Test

1 Asphalt 548 6641

2 Meadow 540 18649

3 Gravel 392 2099

4 Tree 524 3064

5 Metal Sheet 265 1345

6 Bare Soil 532 5029

7 Bitumen 375 1330

8 Brick 514 3682

9 Shadow 231 947

Total 3921 42776
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(a) (b)

Figure C.1: ROSIS University Area: (a) three-channel color composite and (b) available reference data:

asphalt, meadow, gravel, tree, metal sheet, bare soil, bitumen, brick and shadow.
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Table C.2: Information classes and training-test samples for the Pavia Center data set.

Class Samples

No Name Train Test

1 Water 824 65971

2 Tree 820 7598

3 Meadow 824 3090

4 Brick 808 2685

5 Bare Soil 820 6584

6 Asphalt 816 9248

7 Bitumen 808 7287

8 Tile 1260 42826

9 Shadow 476 2863

Total 7456 148152

Table C.3: Information classes and training-test samples for the Washington DC Mall data set.

Class Samples

No. Name Train Test

1 Roof 40 3794

2 Road 40 376

3 Trail 40 135

4 Grass 40 1888

5 Tree 40 365

6 Water 40 1184

7 Shadow 40 57

Total 280 6929

Figure C.2.(a) and the available testing set in Figure C.2.(b). Testing and training set are detailed in
Table C.2.

C.1.2 HYDICE data

Airborne data from the HYDICE sensor (Hyperspectral Digital Imagery Collection Experiment) was
used for the experiments. The HYDICE was used to collect data from flightline over the Washington
DC Mall. Hyperspectral HYDICE data originally contained two hundred and ten bands in the 0.4-2.4µm
region. Noisy channels have been removed and the set consists of 191 spectral channels. It was collected in
August 1995 and each channel has 1280 lines with 307 pixels each. Seven information class were defined,
namely: roof, road, grass, tree, trail, water and shadow. False color images is presented in Figure C.3.(a)
and the available testing set in Figure C.3.(b). Testing and training set are detailed in Table C.3.
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(a) (b)

Figure C.2: ROSIS Pavia Center: (a) three-channel color composite and (b) available reference data:

water, trees, meadow, brick, soil, asphalt, bitumen, tile and shadow.
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(a) (b)

Figure C.3: HYDICE Washington DC Mall: (a) three-channel color composite and (b) available reference

data: roof, road, trail, grass, tree, water and shadow.
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(a) (b)

Figure C.4: IKONOS Reykjavik 1 (a): grayscale panchromatic image and (b) available reference data:

large building, small building, street, residential lawn, open area and shadow.

C.2 Panchromatic data

C.2.1 IKONOS data

Two IKONOS data from Reykjavik, Iceland set were used. They are very high resolution panchromatic
images of 1m resolution with a spectral coverage from 0.45 to 0.90 µm . Six classes were considered in
each case, namely: large building, small building, residential lawn, street, open area and shadow.

C.2.1.1 Reykjavik 1

The first IKONOS images is 975 by 639 pixels. Original data and testing set are in Figure C.4. Testing
and training set are detailed in Table C.4.

C.2.1.2 Reykjavik 2

The first IKONOS images is 700 by 630 pixels. Original data and testing set are in Figure C.5. Testing
and training set are detailed in Table C.5.
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Table C.4: Information classes and training-test samples for the IKONOS Reykjavik 1 data set.

Class Samples

No Name Train Test

1 Small Building 1526 34155

2 Open area 7536 25806

3 Shadows 1286 43867

4 Large Building 2797 39202

5 Street 3336 30916

6 Residential Lawns 5616 35147

Total 22.097 209.093

(a) (b)

Figure C.5: IKONOS Reykjavik 2 (a): grayscale panchromatic image and (b) available reference data:

large building, small building, street, residential lawn, open area and shadow.

Table C.5: Information classes and training-test samples for the IKONOS Reykjavik 2 data set.

Class Samples

No Name Train Test

1 Small Building 1963 6213

2 Open area 6068 28144

3 Shadows 2619 10610

4 Large Building 5599 29768

5 Street 2489 11940

6 Residential Lawns 4103 12066

Total 22.741 98.701
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Table C.6: Information classes and training-test samples for the PLEIADES Toulouse 1, Toulouse 2 and

Perpignan data set.

Toulouse 1 Toulouse 2 Perpignan

train test train test train test

1 780 2450 393 905 864 1665

2 845 2293 355 1005 172 1327

3 798 2588 518 1104 136 446

4 1738 3886 96 583 343 1776

Total 4161 11217 1362 3597 1515 5212

C.2.2 PLEIADES data

The data set consists of three panchromatic images extracted from simulated PLIEADES images
provided by CNES (satellite to be launched in 2008). The spatial resolution resolution is 0.75 meter by
pixel. All images are urban areas. Four classes were considered in each case, namely: building, street,
open area and shadow.

C.2.2.1 Toulouse 1

The image consists in 886 by 780 pixels. It has been acquired over the city of Toulouse, France.
Original data and testing set are in Figure C.6. Testing and training set are detailed in Table C.6.

C.2.2.2 Toulouse 2

The image consists in 602 by 540 pixels. It has been acquired over the city of Toulouse, France.
Original data and testing set are in Figure C.7. Testing and training set are detailed in Table C.6.

C.2.2.3 Perpignan

The image consists in 732 by 746 pixels. It has been acquired over the city of Perpignan, France.
Original data and testing set are in Figure C.8. Testing and training set are detailed in Table C.6.
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(a) (b)

Figure C.6: PLEIADES Toulouse 1 (a): grayscale panchromatic image and (b) available reference data:

buildings, Road, Open Area and shadow.

(a) (b)

Figure C.7: PLEIADES Toulouse 2 (a): grayscale panchromatic image and (b) available reference data:

buildings, Road, Open Area and shadow.
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(a) (b)

Figure C.8: PLEIADES Perpignan (a): grayscale panchromatic image and (b) available reference data:

buildings, Road, Open Area and shadow.
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