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1.2 L’interféromètre d’intensité et l’hétérodyne . . . . . . . . . . . . . . . . . . . . . 3
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4.2 Altäır (α Aql) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
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4.4 Véga (α Lyr) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
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Chapitre 1

Introduction

1.1 Les débuts de l’interférométrie stellaire

La première application astronomique de l’interférométrie a été réalisée sur des étoiles brillan-
tes par Edouard Stéphan à l’Observatoire de Marseille vers 1873, suivant une idée énoncée par
Armand Hippolyte Louis Fizeau (Fig. 1.1) en 1867. Mais l’instrument utilisé étant de trop petite
taille (base de 65 cm), aucune étoile n’a pu être résolue. Fixant une limlite supérieure de 0,158”
au diamètre angulaire des étoiles observées, Stéphan a conclu très justement que “ce diamètre est
une très faible fraction du nombre précédent”. Le lecteur intéressé pourra consulter l’important
recueil d’articles historiques sur l’interférométrie stellaire réuni par Peter Lawson (Lawson 1997)
pour plus de détails sur ces observations.

Fig. 1.1 – Armand H. L. Fizeau (1819-1896) et Albert A. Michelson (1852-1931).

Utilisant un instrument beaucoup plus important installé sur le télescope de 100 pouces
du Mont Wilson (Californie), le physicien Albert Abraham Michelson (Fig. 1.1) et l’astronome
Francis G. Pease ont pu mesurer pour la première fois en 1920 le diamètre angulaire d’une étoile
autre que le Soleil, la supergéante rouge Bételgeuse (Michelson & Pease 1921). Cette étoile a pu
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être résolue par la base de 20 pieds (6,1 m) du montage périscopique utilisé (Fig. 1.2 et 1.3), car
elle présente la plus grande taille apparente de toutes les étoiles, avec un diamètre angulaire de
l’ordre de 47 millisecondes d’angle (mas) dans le domaine visible. Cette observation, réalisée à
l’œil le 13 décembre 1920, a été immédiatement suivie par une observation de Procyon. L’an-
nulation du constraste observée sur Bételgeuse a ainsi été confirmée par la présence de franges
contrastées sur Procyon avec le même réglage de l’instrument. Ceci a permis d’établir le diamètre
angulaire de Bételgeuse avec une précision remarquable (environ 10%). Les tailles angulaires de
plusieurs autres étoiles brillantes ont été mesurées par la suite avec ce même instrument, parmi
lesquelles αCet, αBoo, αTau, βGem, β Peg,... D’intéressantes mesures d’étoiles binaires ont
également été obtenues, confirmant en particulier l’orbite spectroscopique de l’étoile Mizar avec
une grande précision.

Fig. 1.2 – Montage utilisé par Michelson sur le télescope Hooker de 100 pouces du Mont Wilson
pour sa mesure du diamètre angulaire de Betelgeuse (figure tirée de Michelson & Pease 1921).

Fig. 1.3 – Instruments de 20 ft et de 50 ft installés par Michelson et Pease sur le Mont Wilson.

Peu après les observations du 20 ft, Pease a entrepris la construction d’un plus grand instru-
ment, cette fois dédié entièrement à l’interférométrie stellaire, d’une base de 50 ft (15,2m). Avec
le soutien de George E. Hale, cet instrument a été construit sur le Mont Wilson (Fig. 1.3), et a
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permis de confirmer le résultats obtenus avec le 20 ft. D’une utilisation délicate, il n’a cependant
pas permis les progrès augurés par l’augmentation de la longueur de la base interférométrique.
Après le succès “facile” du 20 ft, le manque de stabilité de l’instrument a rappelé que les lon-
gueurs d’onde optiques imposent des tolérances très serrées sur la conception mécanique des
interféromètres.

1.2 L’interféromètre d’intensité et l’hétérodyne

Dans les années 1960, l’interféromètre d’intensité construit par les astronomes britanniques
Robert Hanbury Brown (Fig. 1.4) et Richard Q. Twiss (Hanbury Brown & Twiss 1956) a amené
un regain d’intérêt pour l’interférométrie optique et la mesure du diamètre angulaire des étoiles.
Utilisant un principe novateur pour les longueurs d’onde optiques, l’interféromètre d’intensité
mesure la corrélation des temps d’arrivée des photons enregistrés pas deux télescopes séparés.
En pratique, les signaux des photomultiplicateurs montés sur chacun des deux télescopes sont
multipliés en temps réel, et la valeur moyenne du signal obtenu donne directement une mesure
de la cohérence spatiale de la source. Un avantage important de ce type d’instrument est qu’il
ne nécessite pas de former une image de bonne qualité de l’étoile. L’interféromètre d’intensité
(Fig. 1.4) construit à Narrabri (sud-est de l’Australie) est ainsi constitué de collecteurs de lumière
de grande taille mais de faible qualité optique. Grâce à cet instrument fonctionnant aux lon-
gueurs d’onde visibles, les diamètres angulaires de 32 étoiles (en particulier des étoiles chaudes)
ont pu être mesurés avec une précision remarquable, parfois même encore inégalée à ce jour
(Hanbury Brown, Davis & Allen 1974). La faible sensibilité intrinsèque de ce type d’instrument
a cependant fait préférer la technique de recombinaison de Michelson pour le développement des
interféromètres astronomiques ultérieurs.

Fig. 1.4 – Robert Hanbury-Brown et l’interféromètre d’intensité de Narrabri (Nouvelles-Galles
du Sud, Australie).

En parallèle de l’interférométrie d’intensité, une autre technique dérivée de l’interf́rométrie
radio (elle-même expérimentée dès 1948) a été mise en œuvre avec succès dès les années 1970
aux longueurs d’ondes infrarouges : l’interférométrie hétérodyne. La corrélation des signaux
des deux télescopes est obtenue après un changement de fréquence, ou hétérodynage, de l’onde
provenant de l’étoile. Ce changement de fréquence est obtenu par mélange de la lumière stellaire
avec un laser utilisé comme oscillateur local, le résultat étant un battement à une fréquence
typique de quelques centaines de MHz. L’avantage principal de l’interférométrie hétérodyne sur
l’interférométrie de Michelson est qu’elle permet le transport des signaux dans de simples cables
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Fig. 1.5 – L’interféromètre hétérodyne ISI (Mont Wilson, Californie).

électriques haute fréquence. Mais comme pour l’interférométrie d’intensité, le défaut principal
de l’interférométrie hétérodyne est sa faible sensibilité intrinsèque. La bande spectrale utile est
en effet d’une extrême étroitesse, en rapport avec celle du laser utilisé comme oscillateur local.
Outre les instruments développés en France à la fin des années 1970 (au CERGA en particulier,
voir Assus et al. 1979), l’instrument le plus représentatif de cette technique est l’Infrared Spatial
Interferometer installé sur le Mont Wilson (Fig. 1.5). Après avoir obtenu ses premières franges en
1988 sur Bételgeuse (Bester, Danchi & Townes 1990), cet instrument à trois télescopes a produit
d’intéressantes observations d’enveloppes circumstellaires d’étoiles évoluées. Une particularité
des télescopes utilisés est d’être installés dans des remorques de camion, et donc librement
déplaçables.

1.3 I2T, premier interféromètre à deux télescopes

C’est en 1974 que l’astronome français Antoine Labeyrie a réalisé la première recombinaison
directe de la lumière de deux télescopes séparés, grâce à l’Interféromètre à 2 Télescopes (I2T,
Labeyrie 1974), alors installé à Nice. D’une base maximale de 12 m et utilisant deux sidérostats
de 25 cm, cet instrument a permis de démontrer la faisabilité technique du transport, du retarde-
ment et de la recombinaison de la lumière collectée par deux télescopes distincts. Même si d’un
point de vue physique, le principe de cet instrument est identique à l’interféromètre construit par
Michelson 50 ans plus tôt, ce nouveau système permet en principe d’augmenter arbitrairement
la longueur de la base et le nombre de collecteurs. Cette flexibilité nouvelle a ouvert la voie
à l’équivalent optique du célèbre interféromètre radio Very Large Array (Nouveau-Mexique) et
est à l’origine du développement actuel des très grands interféromètres optiques VLTI, Keck,
CHARA,...

Le concept de l’I2T a été étendu par la suite à des télescopes de 1,5m de diamètre installés
dans des montures sphériques, sous la forme du Grand Interféromètre à 2 Télescopes (Fig. 1.6,
Mourard et al. 1994). I2T et GI2T ont été les premiers interféromètres à disperser spectralement
les franges d’interférence. On retrouve aujourd’hui cette dimension conjointe spatiale et spectrale
dans l’instrument AMBER du VLTI.
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Fig. 1.6 – Un des télescopes de l’I2T d’Antoine Labeyrie (photo : O. von der Lühe) et son
successeur le GI2T (photo : P. Lawson).

Fig. 1.7 – Vue de l’interféromètre PTI (Mont Palomar, Californie) et un des télescopes de IOTA
(Mont Hopkins, Arizona).

1.4 Mark III, PTI, IOTA, SUSI, NPOI, CHARA,...

A la suite des résultats obtenus par Antoine Labeyrie, de nombreux interféromètres stel-
laires ont été construits dans les années 1980 et 1990, offrant des bases de quelques mètres à
quelques centaines de mètres et des ouvertures collectrices de quelques cm à quelques dizaines
de cm. Fonctionnant en infrarouge proche (bandes H et K principalement) ou dans le visible
(Mark III, SUSI, NPOI), ces instruments ont permis la mesure d’un grand nombre d’étoiles
simples ou multiples, ainsi que les premières observations astrométriques par interférométrie.
Cette augmentation considérable du nombre d’instruments en activité, et donc du temps total
d’observation interférométrique sur le ciel, a apporté la première véritable moisson de résultats
scientifiques, avec à ce jour plusieurs centaines d’articles publiés.

En parallèle de la mise en service de ces interféromètres, il est intéressant de noter l’émergence
d’un concept particulier d’instrument de recombinaison basé sur des fibres optiques monomodes.
L’instrument FLUOR est le premier système de recombinaison utilisant cette technologie à avoir
réalisé des observations sur le ciel (Coudé du Foresto et al. 1992). D’abord installé sur le télescope
solaire McMath (Kitt Peak, Arizona), il a ensuite été utilisé au foyer de l’interféromètre IOTA
(Mont Hopkins, Arizona), avant d’être transporté sur CHARA (Mont Wilson, Californie), où il
se trouve actuellement. L’instrument VINCI (Sect. 1.6) a repris le concept de FLUOR dans le
cadre du VLTI.
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Fig. 1.8 – La coupole d’un des télescopes de 1m de l’interféromètre CHARA (Mont Wilson,
Californie) et une vue aérienne du NPOI, installé près de Flagstafff en Arizona (photo : USNO).

Fig. 1.9 – L’interféromètre Keck (photo NASA/JPL) et les quatre télescopes de 8m du VLTI.

1.5 Les premiers géants : Keck, VLTI et OHANA

L’extension des observations interférométriques aux objets faibles, en particulier les noyaux
actifs de galaxies et les exoplanètes, réclame simultanément de grandes surfaces collectrices et
des longueurs de base hectométriques. Dans ce but, deux très grands interféromètres ont été
imaginés dans les années 1980 : le VLTI (mode interférométrique du Very Large Telescope
européen) et l’interféromètre Keck. Plus récemment, un concept novateur basé sur l’utilisation
de fibres optiques a vu le jour, OHANA.

Le mode interférométrique des deux télescopes Keck (Fig. 1.9 à gauche) permet de combi-
ner la lumière collectée par les deux miroirs segmentés de 10 m de diamètre, séparés de 85 m.
L’objectif prioritaire de cet instrument est l’interférométrie à frange noire dans le domaine de
l’infrarouge thermique, qui permet d’annuler la lumière d’une étoile en la faisant interférer des-
tructivement. Il est alors possible d’observer le voisinage immédiat de cette étoile, en particulier
les exoplanètes et les disques circumstellaires.

Constitué de 4 télescopes principaux de 8 m de diamètre (Fig. 1.9 à droite) et de 4 télescopes
mobiles de 1,8 m, le VLTI est le plus grand interféromètre au monde par la surface collectrice.
Construit et mis en oeuvre par l’Observatoire Européen Austral (ESO), le VLTI a obtenu ses
premières franges le 17 mars 2001 entre deux sidérostats de 35 cm, et le 29 octobre 2001 avec
deux télescopes de 8 m, avec l’instrument de recombinaison VINCI (Sect. 1.6). Depuis lors, deux
instruments supplémentaires sont entrés en service : MIDI, un recombinateur à deux télescopes
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Fig. 1.10 – Elévation de la plate-forme du VLTI montrant les stations utilisables avec les
télescopes auxiliaires mobiles de 1,8m et les positions des grands télescopes de 8m (illustra-
tion ESO).

en infrarouge thermique (Leinert et al. 2003) et AMBER, un instrument à trois télescopes
simultanés fonctionnant en infrarouge proche (Petrov et al. 2000). Une caractéristique essentielle
du VLTI est sa flexibilité : il est possible de positionner les télescopes de 1,8 m sur un grand
nombre de stations (Fig. 1.10), de manière à obtenir une excellente couverture du plan des
fréquences spatiales, couramment appelé “plan (u,v)”. Ceci fait du VLTI un interféromètre
très bien adapté à l’imagerie interférométrique. Même si actuellement seul AMBER permet
d’utiliser trois télescopes à la fois, il est prévu pour la seconde génération d’instruments de
pouvoir recombiner simultanément les 8 télescopes de la plate-forme.

OHANA est un concept visant à réunir les plus grands télescopes du Mauna Kea (Hawaii)
à l’aide de fibres optiques monomodes. Proposé par Jean-Marie Mariotti en 1996 (Mariotti et
al. 1996), les premières franges ont été obtenues tout récemment entre les deux télescopes Keck
(Perrin et al. 2006). A terme, cet instrument permettra d’obtenir une combinaison unique de très
longues bases (jusqu’à 800 m) et de grandes ouvertures (4 à 10 m), le rendant particulièrement
adapté à l’observation des noyaux actifs de galaxies. La Fig. 1.11 montre une vue aérienne du
sommet du Mauna Kea, avec les télescopes concernés par le projet OHANA.

1.6 VINCI, le premier instrument du VLTI

Lors de ma thèse et de mon séjour post-doctoral à l’ESO Paranal, j’ai participé à la construc-
tion de l’instrument VINCI et j’ai développé le logiciel de traitement des données de cet instru-
ment. Je présente ci-après un article SPIE présentant cet instrument (Sect. 1.6.1), ainsi qu’un
article A&A décrivant le système de réduction des données (Sect. 1.6.2). Une description plus
détaillée de VINCI, en particulier de son logiciel de contrôle et de ses premières observations, se

7



Fig. 1.11 – Vue aérienne des télescopes concernés par le projet d’interféromètre OHANA.

trouve dans ma thèse (Kervella 2001), et n’est pas reprise dans le présent mémoire.
A l’origine conçu pour n’être qu’un simple instrument de test pour le VLTI, VINCI a

démontré une grande productivité scientifique. Plus de 30 articles référés ont été publiés, por-
tant sur ses quatre années d’observations régulières (2001-2004), et plusieurs résultats parti-
culièrement significatifs ont fait l’objet de communiqués de presse.
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1.6.1 Article SPIE : “VINCI, the VLTI Commissioning Instrument : status
after one year of operations at Paranal” (2002)

VINCI a été installé dans le laboratoire interférométrique du VLTI à Paranal à la fin de
l’année 2000, et a produit ses premières franges sur le ciel le 17 mars 2001. L’article reproduit ici
donne un compte-rendu des résultats obtenus avec cet instrument après une année d’utilisation
intensive en laboratoire et sur le ciel. En particulier, je décris un problème important de perte
de contraste instrumental qui a affecté le coupleur triple MONA à la mi-2001. Résolu par la
suite, ce problème a été causé par la contraction des cables entourant les fibres optiques du
fait du changement saisonnier de température (refroidissement de quelques degrés durant l’hiver
austral).

Fig. 1.12 – La console de commande du VLTI à l’Observatoire de Paranal, la nuit des premières
franges sur le ciel. (photo ESO)
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ABSTRACT

Installed at the heart of the Very Large Telescope Interferometer (VLTI), VINCI combines coherently the infrared light
coming from two telescopes. The first fringes were obtained in March 2001 with the VLTI test siderostats, and in
October of the same year with the 8 meters Unit Telescopes (UTs). After more than one year of operation, it is now
possible to evaluate its behavior and performances with a relatively long timescale. During this period, the technical
downtime has been kept to a very low level. The most important parameters of the instrument (interferometric
efficiency, mechanical stability,...) have been followed regularly, leading to a good understading of its performances
and characteristics. In addition to a large number of laboratory measurements, more than 3000 on-sky observations have
been recorded, giving a precise knowledge of the behavior of the system under various conditions. We report in this
paper the main characteristics of the VINCI instrument hardware and software. The differences between observations
with the siderostats and the UTs are also briefly discussed.

Keywords: infrared interferometry, VLTI, optical fibers, integrated optics, wavelets, commissioning.

1. INTRODUCTION

VINCI was the first interferometric instrument to be installed on Paranal. It is the result of a collaboration between the
Observatoire de Paris (LESIA) for the design and construction, the Max-Planck Institut für Extraterrestrische Physik
(Garching, Germany) for the infrared camera LISA, under the direction of the European Southern Observatory (ESO).
As the first interferometric instrument to be installed at ESO, it has been a great source of experience.

Figure 1. VINCI installed in the VLTI laboratory at Paranal.



2. PRINCIPLE OF VINCI

In its interferometric mode, VINCI operates mostly like FLUOR4, and produces interferograms modulated in optical
path difference from stellar sources. The trajectory of the beams in the stellar interferometer mode is detailed in Figure
2. After the beams have been transported through the VLTI optical trains and delay lines down to the laboratory, they
are folded onto the VINCI table, and then injected via fibers into an optical correlator, the MONA box. For a more
detailed description of the hardware design of VINCI, the interested reader is referred to Kervella et al.5.

Figure 2. VINCI in stellar interferometer mode.

3. HARDWARE PERFORMANCES IN THE LAB

3.1. Injection optics/mechanics

VINCI relies on an original design of its injection optics to focus the stellar light on the injection fiber heads. It is based
on an on-axis parabola, which is much less sensitive to small misalignments than the usual off-axis parabolas (FLUOR).
The images produced by this optical setup show little aberration, and the injection efficiency achieved on VINCI is very
consistent with the expected one. Using the motorized controls of the injection parabolas of VINCI, the positioning
repeatability of the star image on the fiber head has been measured to be better than 0.3 mm, for a fiber core diameter of
6.5 mm. The resulting flux losses are therefore kept to a low level (< 5%).

3.2. Triple coupler

The beam combiner used on VINCI has been designed and built by the Le Verre Fluoré company (France). This device
is based on single-mode fluoride glass fibers and couplers, and is operated in the photometric K band (2.0 – 2.4 mm).
The waveguides are used to filter out the spatial modes of the atmospheric turbulence. The principle of the MONA box
is shown on Figure 3. When used in Autotest mode, i.e. using an artificial light source located in the interferometric
laboratory, it produces the type of interferogram presented on Figure 4.

Figure 3. The fiber-based beam combiner of VINCI (MONA)



The fluoride glass fibers used in the MONA beam combiner do not maintain the polarization of the incoming stellar
light. Therefore, it is necessary to compensate for the polarization mismatch introduced by the input fibers inside the
MONA box, before the combination point. This is achieved using two motorized polarization controllers (Figure 3) that
can be individually adjusted. It is then possible to build a map of the instrumental contrast of the beam combiner in two
dimensions (Figure 5), and to localize the maximum contrast in Autotest. The procedure is slower when optimizing the
fringes contrast on sky, but the principle is the same.

Figure 4. Fringe packet obtained in Autotest and the corresponding power spectral density.

Figure 5. Map of the interferometric efficiency of MONA (in percentage of maximum)  as a function of the position of
the polarization controllers (arbitrary units).
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Figure 6. Decrease of the MONA interferometric efficiency in Autotest due to fiber cables contraction.

During the few months that followed first light with the siderostats (when interferometric efficiency was 87% on sky), a
loss of interferometric efficiency of the MONA box was observed, both in Autotest and on sky. This loss was difficult
to explain, but after some tests, it appeared that the polymer cables that are used to protect the fragile fluoride glass



fibers were to blame. The thermal expansion coefficient of these cables is larger than the one of the fibers themselves.
Therefore, when the temperature went down by a few degrees in the laboratory, the fibers suffered a mechanical stress
that caused a severe birefringence (Figure 6). The separation of the two polarizations on the final interferograms (Figure
7) produced a very strong loss of contrast, and a strange double-peaked power spectral density (Figure 8) characteristic
from the superimposition of the two polarizations fringe packets offset in OPD. This problem was solved by changing
the path of the fiber cables, adding curves, therefore giving more space to the fibers inside the cable. After this repair,
the contrast of the fringes obtained on sky went back to 70%.

Figure 7. Series of interferograms obtained in
Autocollimation mode showing the double peak feature

characteristic of birefringence.

Figure 8. Average power spectral density of the
interferograms presented on Figure 7 showing

birefringence effect.

3.3. Output stage

The four fiber outputs of VINCI are imaged on four LISA camera photosites. The optics used for this purpose include
an off-axis parabola to produce a collimated beam from the MONA fiber bundle, and an achromatic doublet located
inside the camera dewar to focus the four images on the detector. The HAWAII detector used in LISA has the
particularity to distributes part of the light falling on a single pixel over the four pixels located above, below, left and
right of the target pixel. This process of diffusion causes a loss of 42% of the incoming signal from the target pixel7.

It has been shown experimentally that the percentage of incoming flux that is actually read out of a single pixel of LISA
is more than 39% of the total light, for each of the four signals. This yields an optical fiber imaging efficiency of at least
67%. The LISA camera has the possibility to read 2x2 or 3x3 pixels windows, but there is no gain in signal to noise
ratio compared to a single pixel, as the gained flux is compensated by the additional readout noise.

3.4. Overall Photometric transmission of VINCI

When used in stellar interferometer mode, VINCI uses a very simple optical configuration (Figure 2), with only four
mirror reflections for each arm before the injection in the optical fibers. The output of the four signals from MONA on
the LISA camera has more optical elements (off-axis parabola, camera window,...). The main sources of flux loss are
listed in Table 1. It is important to emphasize that the atmospheric turbulence is not considered here, and the average
efficiency of the light injection is lower than the 78% stated here when observing on sky. The total photometric
efficiency of VINCI (6.3%) is defined here as the average number of photons recorded on the four windows of LISA
compared to the total number of incoming photons from the two interferometer arms.

Table 1. Photometric transmission of VINCI.

Optical element Transmission
Input mirrors (4) 0.92
Fiber injection (ideal case) 0.78
Transmission of MONA 0.87
LISA window + cold doublet + K filter 0.48
Energy in one LISA pixel 0.39
Quantum efficiency LISA (K) 0.62
TOTAL 0.063



3.5. Commissioning tasks

VINCI has performed a number of commissioning measurements on the VLTI infrastructure. The detailed description
of the results of these tests is beyond the scope of this paper but for example, one can mention the verification of the
performances of the delay lines using a K-band laser, and the measurement of the piston through relatively fast (>30
Hz) tracking of the fringes (Di Folco et al.6). Another role played by VINCI during the passed year has been to track the
fringes on each new baseline commissioned, in order to constrain the optical path difference model of the VLTI. This
was successfully achieved on four baselines up to now (16m, 46m, 66m and 103m long), and will be pursued in the next
years with the test siderostats to commission the numerous baselines of the Paranal platform. For further information on
the VLTI commissioning, the interested reader is referred to Schöller et al.10.

4.  INFRARED CAMERA

The infrared camera used in VINCI (called LISA) is built around an engineering-grade 1024x1024 pixels HAWAII
array (Rockwell) presenting a large number of cosmetic and functional defects (dead quadrant, dead and hot pixels,...).
As we are using only four pixels of the array, these defects fortunately do not affect our measurements.

4.1. Readout noise

Controlled by a standard IRACE controller (Meyer et al.3), the detector has shown a relatively low readout noise level,
especially when using multiple A/D conversion. Figure 9 shows a map of the 64x64 pixels lower left part of the
quadrant used in LISA, where grey scale coding corresponds to the readout noise level for single A/D conversion. The
scale is linear from 0 to 25 e-, the white positions corresponding to dead or hot pixels. The readout noises of the four
pixels used in VINCI are 12 e- (PA), 9 e- (PB), 11 e- (I1), 16 e- (I2), in single-conversion mode. By using multiple A/D
conversion of the pixel readouts, they are reduced by a factor of two, at the cost of a 20% lower maximum frequency.

Figure 9. Noise map of LISA. Figure 10. Histogram of LISA readout noises

4.2. Modulation transfer function

When recording a modulated signal, any memory effect on the detector can reduce the measured amplitude. This effect,
harmful to the instrumental visibility of the fringes, was studied specifically in VINCI by checking the response of the
detector to a chopped signal. Located very close to a single-mode fiber, the chopping wheel produced a shut-off time of
330 ms, shorter than a single frame of the detector, read at a frequency of 2544 Hz. The incoming signal can therefore
be considered as a square modulated wave. The frequency response (modulation transfer function) of the camera is then
deduced from the ratio of the output signal (Figure 11) to the input wave power spectra. The resulting modulation
transfer function is presented on Figure 12 compared to a perfect integrator. The conclusion of these tests were that
LISA camera behaves nearly like a perfect integrator (deviation of less than 10% at 1.2 kHz).
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Figure 11. Chopped output signal of LISA. Figure 12. Modulation transfer function of LISA
(peaks), compared to a perfect integrator (curve).

5. SOFTWARE STRUCTURE

5.1. Observation preparation

As with the other instruments of the VLT Observatory, the preparation of the observations is based on a several phases.
Phase 1 concerns the initial proposal sent to the selection committee. Once the observation program has been accepted,
then the astronomers are invited to prepare their observations in details during the Phase 2. This is done using a Java-
based program called P2PP (Phase 2 Proposal Preparation tool). This program allows to define precisely the parameters
of the observations (number of interferograms to be recorded, exposure time,...). The product of P2PP is a series of
Observation Blocks (OBs) that are sent to Paranal, where they are executed by the Observing Software (OS).

The preparation of an interferometric observation is more complex than with a single-dish telescope. The changes in
length and orientation of the projected baseline during the night (supersynthesis) create particular configurations that
can either limit the observability of the object or produce interesting modulations of the actual spatial frequency of the
observation. To prepare the observations, a prototype set of observation preparation tools (visibility calculator and
exposure time calculator) is available on the ESO web site, at the following internet address:

http://www.eso.org/observing/etc/doc/indexdev.html.

5.2. Fringes detection

The first step for the recording of data is to detect the presence of the fringes in the OPD range scanned by the VINCI
piezo mirror (up to 300 mm). Two methods are used in VINCI to detect the fringes: the quicklook, and the peak integral.

The quicklook method is taken directly from the FLUOR instrument. This method allows both to detect and center the
fringe packet in the scanned range. During the observations, a simple fringe packet centroid locator algorithm is applied
to the data provided by LISA. The principle is to detect the pixels in the photometrically calibrated interferogram that
have an intensity above a user-defined number of times the noise level (typically 7). The fringe packet center (in OPD)
is measured with a precision of about one fringe (2 mm) after each scan and the resulting error is fed back to the VLTI
delay lines as an OPD offset. This capability, called fringe coherencing, ensures that the residual OPD is less than a
coherence length despite possible instrumental drifts. The correction rate (once per scan, i.e. up to about 50 Hz) is too
slow to remove efficiently the differential piston mode of the turbulence.

The peak integral is based on the incoherent accumulation of the fringe peak in the power spectral density of several
interferograms. Each OPD position is scanned for a number of times (typically 10 to 100), and the detection occurs
when the peak goes above a predefined level above the background noise level of the PSD. When the fringes are
detected, it is not possible with this method to know their position inside the interferogram. This detection method is
used to search for very faint fringes, that escape the classical detection using the quicklook. In practice, both detection



methods are used in parallel, to benefit both from the centering capability of the quicklook and of the sensitivity of the
peak integral.

A third fringe detection method is currently being investigated, based on the wavelets transformation. This should make
it possible to obtain a better sensitivity to faint fringes, while keeping the coherencing capability (fringe packet
centering).

6. DATA PROCESSING

6.1. Fourier transform processing

When the turbulent beams are spatially filtered by the single-mode waveguides, their random phase corrugations are
transformed into intensity fluctuations which are monitored by the photometric signals coming out of MONA. It is then
possible to correct each interferogram from these fluctuations and produce highly stable fringe visibility measurements
that are independent of the spatial modes of the atmospheric turbulence.

Squared coherence factors |µ|2 (modulus of the complex coherence factor between the two beams) are computed from
the normalized energy of the fringe signal in the power spectra of each corrected interferogram, and averaged over a
series of a few hundred scans to reduce the statistical noise. The interested reader can find a detailed description of this
Fourier transform-based processing algorithm in Coudé du Foresto et al.1.

6.2. Wavelets transform processing

When dealing with the classical Fourier transform (FT) and especially with a quadratic estimator like |µ|2

(corresponding to the energy of the spectral density located at the fringe frequency) the debiasing step is critical and
may completly spoil the compution of |µ|2. Among all biases, several are easely removed (white noise), like photon
noise and detector noise. Other biases like the ones introduced by photometric fluctuations, differential piston or
instrumental spikes are almost impossible to remove using the classical Fourier analysis, therefore requiring a time-
frequency approach.

The most direct method for this purpose is the continuous wavelet transform (WT) using the Morlet wavelet (gaussian
envelope times plane wave function). The main advantage of this wavelet is that it looks like the VINCI interferograms.
It is thus extremely efficient to locate in both time and frequency domains the energy of the fringes. Such an approach,
allows to compute the energy of the fringe packet without adding biases that are located outside of the fringe packet in
OPD (optical path difference, also time domain) but that are located at the fringes frequency.

Figure 13 illustrates the advantage of the WT compared to the FT. The recorded photometry is very low a few microns
from the beginning of the interferogram. The calibration of the interferogram by the photometry (division by 

† 

PA .PB )
strongly amplifies the noise in the low photometry region (Figure 13b). In the Fourier domain, the effect is spread over
all frequencies and recovering the visibility becomes difficult. In wavelets analysis (the WT of the calibrated
interferogram is presented on Figure 13c), the amplified noise is not taken into account since the energy is only
integrated locally in the OPD and frequency domain as seen on Figure 13d (thick curve).

The wavelets analysis has also the remarkable ability to identify interferograms affected by atmospheric piston,
therefore allowing to remove them during the data processing (Segransan9). Thanks to the efficient rejection of the
noise in the WT, it is also possible to detect fringes in very low signal to noise conditions. It is foreseen in the near
future to implement a dedicated WT based algorithm for the real-time detection of the fringes during the observations.
A WT module has been added to the VINCI data reduction software based on the work from Segransan8,9 in addition to
the classical FT algorithm.



  

(a) (b)

(c) (d)

Figure 13. Compared integration of the fringe power between Fourier and Wavelets methods, on VINCI data obtained
with UT1-UT3. Figure 13a shows the raw signals I1, PA and PB. Figure 13b is the calibrated interferogram. On Figure

13d, the Fourier power spectral density is the thin line, and the wavelets spectrum (Figure 13c) projected along the
frequency axis is the thicker, gaussian shaped curve.

6.3. Calibration and Data analysis

The analysis of the processed fringes data is done using a toolbox programmed in IDL. This interface allows the user to
select the interferograms based on a combination of criteria, such as the photometric signal to noise ratio or the strength
of the piston effect. From the processed data files, this software outputs calibrated visibility values that can then be
compared to an astrophysical model of the observed target or directly used to derive its angular size.

7. ON-SKY OBSERVATIONS

7.1. Siderostats

On-sky interferometric observations with the siderostats have been going on continuously at Paranal since the first
fringes obtained on March 19, 2001. The first series of interferograms recorded with the VLTI at this occasion is
presented on Figure 14 (time is from bottom to top, one line per interferogram). The fringes were tracked and centered
by VINCI, therefore removing part of the atmospheric piston.



Figure 14. First interference fringes of the VLTI on a Hya, X axis is OPD (one fringe equals 2.2 mm), Y axis is the scan
number in the series (about 90 seconds of data in total)

30%

40%

50%

60%

70%

80%

90%

100%

0:00 1:12 2:24 3:36 4:48 6:00 7:12 8:24 9:36 10:48
UT (2002-06-26)

In
te

rf
er

om
et

ri
c 

ef
fi

ci
en

cy

v337Car
Tet Cent
58 Hya
56 Aql
70 Aql

Figure 15. Interferometric efficiency of VINCI and the VLTI test siderostats on sky (66 m baseline, June, 2001)

Over a long timescale, the interferometric efficiency of the MONA beam combiner has evolved substantially, due to the
sensitivity of the MONA couplers to temperature (see the discussion in Sec. 3.2). Nethertheless, on a timescale of one
night, the interferometric efficiency measured on-sky has been stable, as shown on Figure 15. The excess efficiency
visible on the two series of transfer functions computed from the q Cen data comes apparently from an overestimation
of the a priori angular size of this star taken from a calibrators catalog. The average interferometric efficiency over this
night was 69 ± 2 % (q Cen data excluded).

7.2. Unit telescopes

After the first fringes with the VLTI test siderostats obtained in March 2001, the first recombination of the light from
two 8-meter telescopes of Paranal was achieved in October of the same year. Interference fringes between the star light
collected by the telescopes Antu (UT1) and Melipal (UT3), separated by 102.5 meters, were recorded by VINCI. One
major surprise of these first observations was that the flux injected in the optical fibers of VINCI was much more stable
that initially expected (Figure 16). The common view of the injection of a multi-speckle star image in an optical fiber
was initially that a single moving speckle is injected at a time, and that the flux can be completely lost between
speckles. In reality, it was observed that light is present on LISA more than 95% of the time.

The interferometric transfer function of the VLTI/VINCI during the first UT1-UT3 commissioning run was measured to
be 61%. It should be stressed here that the positions of the polarization controllers of MONA were not optimized, and
this value is therefore not optimal and not comparable to the transfer function obtained on the siderostats.



Figure 16. Raw interferogram of z Geminorum obtained with UT1-UT3

A number of stars were observed during the four runs of commissioning with the UTs. The faintest object on which
fringes were acquired was the main sequence star HD 112282. Observed under Paranal median seeing conditions (0.6 to
0.7” at l=0.5 mm), it was possible to track the fringes efficiently on this K=7.7 unresolved star, with a signal to noise
ratio better than 10 on the interferometric channels, yielding a limiting magnitude better than K=9. A relatively precise
value of the transfer function of the interferometer could even be derived from this observation.

7.3. Precision vs. magnitude

The visibility estimators used for the processing of the data of VINCI are quadratic (Coudé du Foresto et al.1 and
Segransan9), and therefore the final precision of the measurement is expected to be proportional to the correlated
magnitude CorrK of the object, defined as the following:
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where magK is the photometric magnitude of the star and m2 is the squared coherence factor. Using the observations
obtained on sky with the siderostats, it was possible to quantify the precision achievable with VINCI as a function of the
correlated magnitude (Figure 17).
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Figure 17. Accuracy of VINCI visibility measurements with the VLTI test siderostats.

The precision does not increase for the brightest sources because of the atmospheric piston effect, not yet corrected on
the VLTI by a fringe tracker. Once the FINITO fringe tracker will be installed, the removal of the fringe motion will
allow to reach a much better precision. Laboratory measurements at Paranal without piston and in photon shot noise
limited regime produced relative precisions (FT estimator) better than 0.05% on the visibility values for 100
interferograms. This value should be the limit of precision achievable with the FT based quadratic visibility estimators.



7.4. Observed stars

During the commissioning of the VLTI, a number of objects have been observed, with the siderostats or with the 8-
meter telescopes UT1 and UT3. The list of all observed targets is presented in Table 2. Most of the stars listed have
been observed several times, and the number of fringe files is indicated after the name of the object. See also:

http://www.eso.org/projects/vlti/instru/vinci/vinci_data_sets.html

Table 2. Stars observed with VINCI until February 2002.

8. INTEGRATED OPTICS

During a seven nights run on the VLTI (July 17-23, 2002) done in collaboration between ESO and LAOG (Observatoire
de Grenoble, France), we tested on VINCI an integrated optics two-telescopes beam combiner, IONIC.

Figure 18. Fringes obtained on Altair (H=0.25) with the IONIC beam combiner installed on VINCI

This type of component had already been tested on sky at the IOTA interferometer in November 2000 (Berger et al.1).
For this first run at Paranal, the installation of IONIC was realized without any modification of the optical setup of
VINCI and only minor software changes were required (due to the single interferometric output of the component while
the usual beam combiner MONA has two such outputs). The faintest star observed so far with the siderostats is HD 720
with an H magnitude of 3.1. It is currently difficult to determine the maximum reachable magnitude due to the



mismatch in numerical aperture between the H band optical fibers of IONIC and VINCI feeding optics (optimized for
fluoride glass fibers). To obtain the maximum transmission, it would require to change the injection optics of VINCI to
adapt them to the numerical aperture of the IONIC fibers (0.12 compared to 0.23 for MONA fibers).
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Figure 19. Interferometric efficiency measured on sky with the IONIC component installed on the VLTI.

Fringes were obtained on sky in the H band (1.5-1.8 mm), and their visibility was estimated with a relative accuracy of
about 1%. The IONIC component interferometric efficiency previously measured at LAOG is 90% for unpolarized
light. As shown on Figure 19, the interferometric efficiency of VLTI+IONIC measured on sky was better than 80% on
the star a Ind (uniform disk angular diameter of 3.28 ± 0.04 mas, effective wavelength of 1.58 mm).

9. CONCLUSION

After the first fringes obtained with the VLTI test siderostats and the 8 meters Unit Telescopes, VINCI has
demonstrated a high productivity, both in terms of commissioning results and scientific observations of stars. It has
recently been opened to proposals from the European astronomical community. While new algorithms are being
developed to exploit fully the potential in precision of this instrument (wavelet transform,...), the promising results
obtained with the IONIC beam combiner open up exciting new perspectives of multiple telescopes beam combination
(Kern et al.11), using the technology and experience gained from VINCI.
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1.6.2 Article A&A : “Data reduction methods for single-mode optical in-
terferometry - Application to the VLTI two-telescopes beam combiner
VINCI” (2004)

Je présente dans cet article le système de réduction des données que j’ai développé pour
VINCI. Il reprend le principe décrit par Coudé du Foresto et al. (1997), en améliorant la précision
de l’estimation du facteur de cohérence carré µ2 (aussi appelé “visibilité instrumentale”). Ceci
est obtenu grâce à l’utilisation combinée de la transformation en ondelettes (qui permet de
mieux localiser dans l’espace et les fréquences l’énergie modulée des franges) et d’un processus
de sélection raisonnée des meilleurs interférogrammes. L’algorithme s’est révélé particulièrement
efficace pour l’analyse des mesures obtenues à très faible visibilité. Je donne un exemple d’ap-
plication de ces méthodes à une mesure de visibilité utilisée dans notre étude de l’étoile αCen
(voir aussi la Sect. 3.2.1).

Fig. 1.13 – Premières franges d’interférence obtenues le 29 octobre 2001 entre deux des télescopes
de 8 m du VLT, UT1 et UT3, sur une base au sol de 102 m. L’étoile observée est la Céphéide
ζ Gem. (illustration ESO)
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Abstract. The interferometric data processing methods that we describe in this paper use a number of innovative techniques.
In particular, the implementation of the wavelet transform allows us to obtain a good immunity of the fringe processing to false
detections and large amplitude perturbations by the atmospheric piston effect, through a careful, automated selection of the
interferograms. To demonstrate the data reduction procedure, we describe the processing and calibration of a sample of stellar
data from the VINCI beam combiner. Starting from the raw data, we derive the angular diameter of the dwarf star αCen A.
Although these methods have been developed specifically for VINCI, they are easily applicable to other single-mode beam
combiners, and to spectrally dispersed fringes.

Key words. techniques: interferometric – methods: data analysis – instrumentation: interferometers

1. Introduction

Although interferometric techniques are now used routinely
around the world, the processing of interferometric data is still
the subject of active research. In particular, the corruption of the
interferometric fringes by the turbulent atmosphere is currently
the most critical limitation to the precision of the ground-based
interferometric measurements.

Installed at the Very Large Telescope Interferometer
(VLTI), the VINCI instrument coherently combines the in-
frared light coming from two telescopes in the infrared H
and K bands. The first fringes were obtained in March 2001
with the VLTI Test Siderostats, and in October 2001 with the
8 m Unit Telescopes (UTs). To reduce the large quantity of
data produced by this instrument, we have developed innova-
tive interferometric data analysis methods, using in particular
the wavelet transform. We have appplied them successfully to
a broad range of interferometric observations obtained with
very different configurations of the VLTI (0.35 m siderostats,
8 m Unit Telescopes, 16 m to 140 m baselines, K and H band
observations).

Since the first fringes of VINCI, more than 800 nights of
observations have been conducted with this instrument. This
allowed us to record a large number of individual star observa-
tions, under extremely different atmospheric and instrumental

� Appendices A, B and C are only available in electronic form at
http://www.edpsciences.org

conditions. The data processing methods that are described in
the present paper were successfully applied to all these config-
urations, and consistently provided reliable and precise results.
This gives us good confidence that they are efficient and robust,
and can be generalized to other interferometric instruments.

Our goal in this paper is to give a step by step descrip-
tion of the processing of the VINCI data, from the raw data
to the calibrated visibility. To illustrate this processing, we se-
lected from the commissioning data a series of observations of
a bright star and its calibrator, αCen A and θCen respectively
(Sect. 3). A complete overview of the data analysis work flow is
presented in Fig. 1. It can be used as a reference to follow the
logical progression of this paper. The photometric calibration
of the interferograms is described in Sects. 4 and 5. The criteria
for the selection of the interferograms are detailed in Sect. 6,
and the computation of the visibility values and associated er-
rors is given in Sect. 7. A number of quality controls is applied
to the reduced data; they are described in Sect. 8. The calibra-
tion of the visibility is illustrated in Sect. 9. We demonstrate
in particular the computation of the statistical and systematic
errors on the visibility values.

2. Instrument description

2.1. The VLT Interferometer and VINCI

The Very Large Telescope Interferometer (VLTI, Glindemann
et al. 2000, 2003a,b; Schöller et al. 2003) has been operated
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Fig. 1. Overview of the VINCI data analysis work flow. The shaded
area delimits the processing executed automatically by the instrument
data pipeline. The hatched area (lower right) covers the astrophysical
interpretation of the measured visibility, not adressed in the present
paper.

by the European Southern Observatory on top of the Cerro
Paranal, in Northern Chile since March 2001. In its current
state of completion, the light coming from two telescopes can
be combined coherently in VINCI, the VLT Interferometer
Commissioning Instrument (Fig. 2), or in the MIDI instrument
(Leinert et al. 2000). In December 2002, MIDI obtained its first
fringes at λ = 8.7 µm between the two 8 m Unit Telescopes
Antu (UT1) and Melipal (UT3). Another instrument, AMBER
(Petrov et al. 2000) will soon allow the simultaneous recombi-
nation of three telescope beams (its first observations are sched-
uled for 2004).

Fig. 2. View of the VINCI instrument installed in the VLTI interfero-
metric laboratory. The MONA beam combiner is the visible above the
center of the image (white box), with its optical fiber inputs and out-
puts. The beams coming from the VLTI Delay Lines enter the optical
table from the bottom of the picture.

Fig. 3. Principle of the VINCI instrument.

A detailed description of the VINCI instrument, including
its hardware and software design, can be found in Kervella
et al. (2000). Figure 3 shows the setup of VINCI. The two
beams enter the instrument from the bottom of the figure, after
having been delayed by two optical delay lines (Derie 2000).
Once the stellar light from the two telescopes has been in-
jected into the optical fibers (injections A and B), it is re-
combined in the MONA triple coupler. VINCI is based on the
same principle as the FLUOR instrument (Coudé du Foresto
et al. 1998), and recombines the light through single-mode flu-
oride glass optical fibers that are optimized for K band opera-
tion (λ = 2.0−2.4 µm). It uses in general a regular K band filter,
but can also observe in the H band (λ = 1.4−1.8 µm) using an
integrated optics beam combiner (Berger et al. 2001). The first
observations with this new generation coupler installed at the
VLTI focus have given promising results (Kervella et al. 2003a;
Kern et al. 2003).

2.2. Beam combination

The central element of VINCI is its optical correlator (MONA),
based on single-mode fluoride glass fibers and couplers.
It was designed and built specifically for VINCI by the
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Fig. 4. Principle of the MONA beam combiner.

company Le Verre Fluoré (France). The waveguides are used
to filter out the spatial modes of the atmospheric turbulence.
In the couplers, the fiber cores are brought very close to each
other (a few µm) and the two electric fields interfere directly
with each other by evanescent coupling of the electromagnetic
waves. Motorized polarization controllers allow the matching
of the beam polarizations, in order to obtain the best possible
interferometric transfer function.

The general principle of the MONA box is shown in Fig. 4.
MONA contains three couplers: two side couplers (that pro-
vide two photometric outputs PA and PB to monitor the effi-
ciency of the stellar light injection in the optical fibers) and
a central coupler that is used for the beam combination. The
latter provides two complementary interferometric outputs I1

and I2. The four output fibers are eventually arranged on a
125 µm square and imaged onto an infrared camera (LISA),
built around a HAWAII detector. Only four small windows, of
one pixel each, are read from the detector to increase the frame
frequency and reduce the readout noise.

The Optical Path Difference (OPD) between the two beams
is modulated by a mirror mounted on a piezo translator.
This modulation allows one to sweep through the interference
fringes (at zero OPD), that appear as temporal modulations
of the I1 and I2 intensities on the detector. While the OPD is
scanned, the four output signals are sampled at a few kHz. The
four resulting time sequence signals (two photometric and two
interferometric) are then available for processing. The interfer-
ogram acquisition rate can be set between 0.1 Hz (faint objects)
and 20 Hz (bright targets).

2.3. Coherencing

During the observations, a simple fringe packet centroiding
algorithm is applied in near real-time to the raw data. The
fringe packet center is localized with a precision of about one
fringe (2 µm) after each scan and the resulting error is fed
back to the VLTI delay lines as an OPD offset. This capability,
called fringe coherencing, ensures that the residual OPD is less
than a coherence length despite possible instrumental drifts.
Still, the correction rate (once per scan, i.e. a few Hz) is too
slow to remove the differential piston mode of the turbulence.
A fringe tracking unit is anticipated for the VLTI (FINITO, Gai
et al. 2003) that will remove the differential piston and stabilize
the interference pattern at the sub-fringe level (fringe cophas-
ing), thus enabling longer integration times for the scientific
instrument.

Table 1. Relevant parameters of θCen and αCen A.

θCen αCen A

HD 123139 HD 128620

mV 2.1 –0.0

mK –0.1 –1.5

Spectral type K0IIIb G2V

Teff (K)a 4980 5790

log ga 2.75 4.32

[Fe/H]a 0.03 0.20

θUD (mas)b 5.305 ± 0.020 8.314 ± 0.016

a Teff , log g and [Fe/H] from Cayrel de Strobel et al. (2001) and Morel
et al. (2000), respectively for θCen and αCen A.
b Measured diameters from Kervella et al. (2003b).

3. The selected sample data sets

3.1. Targets

To illustrate the processing of the VINCI data on representa-
tive files, we have chosen two series of interferograms obtained
respectively on a calibrator star, θCen, and a target of scien-
tific interest, αCen A, on the intermediate length E0-G1 base-
line (66 m ground length). θCen was chosen from the Cohen
et al. (1999) catalogue. These authors compiled a grid of cali-
brator stars whose angular diameter is typically known with a
relative precision better than 1%. Bordé et al. (2002) recently
revised this catalogue specifically for its application to long
baseline interferometry.

The observations of αCen A and θCen discussed here
were carried out with the two 0.35 m test siderostats of the
VLTI. Both stars are bright, but θCen is significantly smaller
than αCen A, therefore its visibility is higher. The relevant
properties of θCen and αCen are reported in Table 1. The an-
gular diameter of αCen A was measured for the first time by
Kervella et al. (2003b), based on a series of observations that
include the two data sets discussed here.

The file names and characteristics of the two se-
lected data sets are given in Table 2, to allow the in-
terested reader to retrieve them from the ESO Archive
(http://archive.eso.org/).

3.2. Acquisition parameters and data structure

Following the standard procedure used with VINCI, a se-
ries of 500 interferograms was obtained on each object.
The two data sets were taken on July 15, 2002, starting
at UT times 01:32:32 for θCen, and 02:33:09 for αCen A.
The piezo mirror scanning speed was set to 650 µm/s, giv-
ing a fringe frequency of 297 Hz. This intermediate speed is
used commonly for the operation of VINCI with the VLTI Test
Siderostats. The LISA camera frequency was set to 1.5 kHz in
order to obtain a sampling of 5 points per fringe. The choice
of the scanning speed (hence the sampling rate of the camera)
is the result of a compromise between the photometric SNR
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Fig. 5. The raw signals I1, I2, PA and PB, for one interferogram obtained on θCen. The original signals have been translated vertically respec-
tively by +90, +40, +40 and 0 ADUs for clarity.

Table 2. Sample data sets. N is the number of scans.

File name Target Type N

VINCI.2002-07-15T01:30:12.042 θCen Off 100

VINCI.2002-07-15T01:30:53.273 θCen A 100

VINCI.2002-07-15T01:31:36.505 θCen B 100

VINCI.2002-07-15T01:32:31.645 θCen On 500

VINCI.2002-07-15T02:30:49.318 αCen A Off 100

VINCI.2002-07-15T02:31:30.046 αCen A A 100

VINCI.2002-07-15T02:32:10.840 αCen A B 100

VINCI.2002-07-15T02:33:08.661 αCen A On 500

and the phase perturbations of the atmosphere (dominant at low
scanning speed). The VINCI instrument allows one to scan up
to a fringe frequency of 680 Hz (camera frequency of 3.4 kHz).
This extreme speed is useful in the case of observations with
the 8 m Unit Telescopes to reduce the influence of the photo-
metric fluctuations on the interference fringes (multi-speckle
regime). Figure 5 shows the raw signals of one interferogram
obtained on θCen. This is the second scan in the series of 500,
and it is of average quality in terms of injected flux stabil-
ity. The photometric fluctuations are clearly visible in all four
channels, while the interference fringes are located close to the
center of the scan. The fringes are naturally in phase opposition
between the two channels I1 and I2.

Each star observation consists of four files (batches), that
each contain a series of acquisitions (scans) of the four sig-
nals coming out of MONA, with four different configurations
of the instrument. The first three batches are used for the cali-
bration of the camera background and instrument transmission,
and usually contain 100 scans. The fourth batch contains the
fringes. They are recorded in the following sequence:

1. Off-source: the two injection parabolas of VINCI are dis-
placed in order to remove the star image from the single-
mode fiber head.

2. Beam A: the A injection parabola is brought back to the
position where the star light is injected in the optical fiber,
while B is still off.

3. Beam B: symmetrically, only the beam B is injected in the
MONA beam combiner, while A is off. The Beam A and
Beam B sequences are used in the computation of the κ ma-
trix (Sect. 4.1).

4. On-source: both beams are injected into MONA, and
interference can occur. This last series usually con-
tains 500 scans and is used to compute the squared co-
herence factor µ2 (the interferometric observable, defined
in Sect. 6.2).

4. Preliminary steps

4.1. Computation of the κ matrix

To properly calibrate the photometric fluctuations of the
interferometric signals I1 and I2 using the two photometric out-
puts PA and PB, it is necessary to know precisely the coeffi-
cients linking the intensities of these four outputs. The relation-
ships between the four channels can be approximated, within a
very good precision (Coudé du Foresto et al. 1997), by the fol-
lowing expressions:

I1 = κ1,A PA + κ1,B PB (1)

I2 = κ2,A PA + κ2,B PB. (2)

The κ coefficients correspond to the differential gains between
the four channels of VINCI. They include the coupling ra-
tios of the MONA box, the coupling efficiency of each fiber
to the physical pixels of the infrared camera, and the differen-
tial quantum efficiency between these pixels. Due to the chro-
matic transmission of the couplers, the color of the observed
object plays a role in the κ coefficients, and they also tend to
evolve due to the slow motion of the fiber spots on the LISA
detector. It is therefore necessary to measure these coefficients
(the κ matrix) immediately before each star observation. Each
pair of κ coefficients is computed simultaneously using a clas-
sical χ2 minimization algorithm with two variable parameters.
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Table 3. κ coefficients measured for θCen and αCen A.

θCen αCen A

κ1A 0.7569 ± 0.0061 0.7576 ± 0.0037

κ1B 4.1231 ± 0.0160 4.1877 ± 0.0120

κ2A 1.3089 ± 0.0054 1.2790 ± 0.0044

κ2B 2.4855 ± 0.0143 2.4735 ± 0.0061

The errors on the estimation of the κ coefficients are derived
from the residual dispersion of the measurement points around
the linear model.

Table 3 gives the κ coefficients derived for the θCen
and αCen observations. The small differences between the
κ values for the two stars may come from the slightly differ-
ent colors of these objects, or from a small variation of the
alignment of the output spots on the LISA infrared camera pix-
els between the two observations (they are separated in time
by ∆t � 1 h).

Ideally, the κ coefficients should be balanced between the
four outputs in order to maximize the efficiency of the interfer-
ence, and simultaneously to give high SNR photometric signals
for the calibration of the interferograms. The observed inbal-
ance (that can reach up to a factor 5 in the selected sample
batches) is due to the fact that the unexpectedly fast aging of
the three optical couplers in the MONA box has increased sig-
nificantly their sensitivity to temperature. This effect cannot be
corrected on the coupler itself, and causes a slow (timescale
of months) but large amplitude evolution of the κ matrix. Due
to the very different time scales of these variations (months)
and of the scientific observations (hours), this sensitivity is ex-
pected to have no significant impact on the observations other
than a uniform and moderate reduction of the quality of the
LISA signals.

4.2. Fringe localization

The first step of the processing is to trim the long interfero-
gram to restrict it to a shorter segment, where the fringes are
centered. The detection of the fringes is then achieved with
the Quicklook signal QL, that is computed using the simple
formula:

QL = I1 − a I2 (3)

where a is given by

a =

∑N
i=1 I1(i) I2(i)∑N

i=1 I2
1(i)

(4)

where N is the number of samples of the raw signals I1 and I2.
This operation attenuates the photometric fluctuations and in-
creases the SNR of the fringes. Once the fringes are local-
ized precisely by detecting the maximum of the wavelet power
spectral density (WPSD) of the QL, the four raw signals are
trimmed accordingly. If the fringes have been found too close
to the edge of the interferogram, the scan is discarded to avoid
any bias of the data. In addition, if a large amplitude jump of the

Fig. 6. Photometric calibration of the I1 signal. The raw I1 signal is
the black line in the upper part of the plot, the photometric calibration
signal κ1APA − κ1BPB is the superimposed grey line, and the result of
the subtraction is the lower curve.

position of the fringe packet is detected between two consecu-
tive scans (more than 20 µm), a strong piston effect is suspected
and the scan is rejected (see also Sect. 6).

5. Photometric calibration

5.1. General principle

The photometric calibration of the interferograms produced
by VINCI is achieved using the two photometric control sig-
nals PA and PB and the κ-matrix. The calibration is computed
separately for the I1 and I2 channels using the following for-
mulae (see Coudé du Foresto et al. 1997 for their derivation):

I1 cal =
1

2
√
κ1,A κ1,B

I1 − κ1,APA − κ1,BPB

[
√

PA PB]Wiener
(5)

I2 cal =
1

2
√
κ2,A κ2,B

I2 − κ2,APA − κ2,BPB

[
√

PA PB]Wiener
· (6)

The subscript “Wiener” designates optimally filtered signals
(Sect. 5.2). This process allows one first to subtract the photo-
metric fluctuations that were introduced in the interferometric
channels by the turbulent atmosphere (calibration), and then
to normalize the resulting signals to the geometrical mean of
the two photometric channels P =

√
PA PB. As an example of

calibration, the subtraction of κ1,APA + κ1,BPB from the origi-
nal I1 is presented in Fig. 6. The Wiener filtering of P, essential
to avoid numerical instabilities, is described in the next para-
graph (Sect. 5.2). After the normalization, I1 cal and I2 cal are
apodized at their extremities, to prevent any edge effect during
the numerical wavelet transform.

5.2. Low pass filtering of photometric signals

The normalization by the P signal is a critical step of the cali-
bration. If P presents too low values (“zero crossing”), the di-
visions of Eqs. (5) and (6) will amplify the noise of the numer-
ator. This is the reason why the PA and PB signals have to be
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Fig. 7. Average power spectral density of the PA and PB signals as

measured on θCen. From top to botton: P̃A
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, noise model ÑA
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filtered, to improve their SNRs. This is achieved using Wiener
filters, that allow one to optimally filter the raw signal and to
reject the detector noise. They are computed from the average
power spectral density (PSD) of the photometric fluctuations
of PA and PB using only the on-source spectra. We use the
classical definition of the Wiener filter Wx as computed from
the signal Px and the noise Nx (with x = A or B, the Fourier
transform being represented by the ∼ notation):

Wx =
P̃x

2 − Ñx
2

P̃x
2
· (7)

As shown in Fig. 7 (θCen data), we estimate the PSD of the
noise directly from the PSD of the signal by assuming that the
photon shot noise and detector noise are constant with respect
to frequency (white noise). The contribution from the photo-
metric fluctuations is visible at low frequencies. Considering
the high frequency part of the spectrum, we extrapolate the
level of the PSD background to the lower frequencies. Due to
the high SNR of the averaged PSD, the estimation of the back-
ground is precise enough to reconstruct WA and WB. The first
frequency for which the signal becomes smaller than the noise
marks the practical limit of the Wiener filter, and the higher
frequency values are set to zero. This method is more efficient
than estimating the noise PSD from the off-source batch, as it
directly takes into account the presence of photon shot noise,
that also has to be removed. The resulting Wiener filters are
presented in Fig. 8. The filtering of the photometric channels
by these filters gives a clean P signal, as shown in Fig. 9.

5.3. Alternative normalization methods

If the SNR of the photometric channels PA and PB reaches too
low values over the scan length, we choose to normalize the
interferograms simply by averaging P over the fringe length,
instead of using the Wiener filtered signal. This allows us to
significantly reduce the amplification of the noise due to the
normalization division. The limit between the two regimes is
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Fig. 8. Wiener filters computed from θCen photometric signals
(Fig. 7). WA is the upper line, and WB the lower line.

Fig. 9. Photometric normalization signal P (thick line), with the
Wiener filtered PA (dashed line) and PB channels (thin line). P is the
geometric mean of the two filtered photometric channels.

usually set to 5 times the readout noise. For interferograms that
present very low photometric signal over the fringe packet it-
self, we discard the scan as a significant bias can be expected on
the modulated power. Both averaging and Wiener filtering are
almost equivalent on the final calibrated interferograms, with
a slight advantage to the Wiener filtering when the photomet-
ric fluctuations are important (as in the UT observations for
example).

5.4. Interferogram subtraction

After their calibration, we subtract the two interferograms I1 cal

and I2 cal, in order to cancel the residual photometric fluctua-
tions due to the uncertainty in the estimation of the κ coef-
ficients. This subtraction has proven to significantly enhance
the immunity of the interferograms to the contamination com-
ing from the photometric fluctuation background. Figure 10
shows the calibrated and normalized interferometric signal I1 cal



P. Kervella et al.: Data reduction methods for optical interferometry 1167

Fig. 10. From top to bottom: I1 normalized interferogram (black),
I2 normalized interferogram (grey), and the result I of the subtraction
of these two signals. For clarity, the I1 and I2 signals are shifted verti-
cally by +2 and +1, respectively. The correlated noise has disappeared
in the combined signal and the fringe packet appears more clearly.

and I2 cal, together with I the result of the subtraction of these
two signals defined as:

I =
I1 cal − I2 cal

2
· (8)

The combined signal I is used for the integration of the fringe
power to derive the visibility (Sect. 7). The advantage of us-
ing I instead of using separately I1 cal and I2 cal for the inte-
gration of the fringe power is that all the correlated noise be-
tween the two signals is eliminated by the subtraction, while the
fringes, perfectly opposed in phase, are amplified. This allows
us to eliminate the residual photometric fluctuations as well as
part of the noise introduced during the photometric calibration.

6. Interferogram selection

6.1. Piston effect

The photometric calibration of the interferograms compensates
for the incidence of wavefront corrugation across each sub-
pupil of the interferometer, however it does not help remove

the random phase walk (differential piston) between the two
subapertures.

The differential piston, considered as a time-dependent
OPD error x(t), can be locally expressed by a polynomial devel-
opment around a reference time t0 (corresponding, for example,
to the middle of the acquisition sequence):

x(t) = x0 + ẋ (t − t0) + ẍ (t − t0)2 + ... (9)

The effect of the OPD perturbation on the interferogram, and
its consequence on the coherence factor measurement, depends
on the order:

– Zeroth order: The constant term x0 can be seen as a global
offset of the fringe packet. It is detected and corrected
by the QL algorithm which centers the fringe packet in
the middle of the interferogram.

– First order: The first order of the piston ẋ changes the
fringe velocity and induces a simple frequency shift in the
PSD. It modifies the fringe peak position, but acts only
as a homothetic compression or expansion of the fringe
packet along the OPD direction. The first order piston has
no immediate effect on the fringe visibility. However, if the
shifting speed ẋ of the fringe packet is too high, it can re-
sult in an undersampling of the fringes that will affect the
visibility.

– Second and higher orders: Any term of order two (ac-
celeration) and beyond breaks the linear relationship in the
scan between time and OPD, and consequently the Fourier
relationship which is at the basis of the visibility calcula-
tion, distorting the shape of the fringe peak. This introduces
a non-linear, seeing induced multiplicative noise on the vis-
ibility measurements, which is the dominant noise source
for strong signals (bright, unresolved objects).

Detailed studies of the properties of atmospheric piston can
be found for example in Linfield et al. (2001) and Di Folco
et al. (2002). When a dedicated fringe tracking instrument be-
comes available on the VLTI (e.g. FINITO, Gai et al. 2003),
most of the piston will be actively removed by a servo loop. It
remains to be checked how the residuals will still limit the final
visibility precision.

6.2. Quality control of the interferograms

The goal of the interferometric data processing is to extract the
squared visibility V2 of the fringes. The intermediate step to
this end is to measure the squared coherence factor µ2 of the
stellar light. This instrument dependent quantity characterizes
the fraction of coherent light present in the total flux of the tar-
get. It is calibrated using observations of a known star, as de-
scribed in Sect. 9. To avoid any bias on µ2, we have to reject the
interferograms that do not contain fringes (false detections), or
whose fringes are severely corrupted by the atmospheric tur-
bulence (photometrically or by the piston effect). The selection
procedure is in practice similar to a shape recognition process.

For this purpose, we measure in the wavelet power spec-
tral density (WPSD) the properties of the fringe peak both in
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the time and frequency domains, and we subsequently com-
pare them with the expected properties of a reference interfero-
gram of visibility unity, derived from the spectral transmission
of the instrument. In this paper, we will refer interchangeably to
the “time domain” or “optical path difference (OPD) domain”
for the WPSD, as they are linearly related through the scan-
ning speed of the VINCI piezo mirror that is used to modulate
the OPD. The fringe peak is first localized in frequency by the
maximum of the WPSD, and then the full width at half maxi-
mum is computed along the two directions: time and frequency.
As the fringe packet has been recentered before the calibration,
its position in the time domain is zero. Three parameters are
then checked for quality:

– peak width in the time domain (typically ±50% around the
theoretical value is acceptable);

– peak position in the frequency domain (±30%);
– peak width in the frequency domain (±40%).

In principle, the variation of the fringe contrast over the spec-
tral band should also be taken into account to create the the-
oretical reference interferogram. But in practice, as long as
the visibility of the fringes does not cancel out for a wave-
length located inside the spectral band of the observations, the
shape of the interferogram remains very close to theoretical
fringes of visibility unity. However, when the fringe visibility
goes down to zero for a wavelength pertaining to the observa-
tion band, the fringe packet appears split in two parts in the
time domain. Such a deviation from the “single packet” case
can cause misidentifications, and eventually induce a bias on
the derived µ2 value, as some valid interferograms would be
rejected. In this case, one should use a dedicated broadband
model to predict the reference interferogram, taking into ac-
count the expected angular size of the target. The selection cri-
teria should then be adapted to match this reference (increased
peak width, presence of two maxima in the WPSD,...). An al-
ternative is to directly adapt the basis functions of the wavelet
transform so that they match the predicted interferograms. We
have not implemented these methods in our current process-
ing algorithm, whose validity is thus limited to the cases when
the visibility is above zero for all wavelengths in the observa-
tion band. If this condition is not realized, then the interfero-
gram selection should be disabled, or at least the selection cri-
teria should be made significantly less stringent, in particular
regarding the fringe peak width.

Figure 11 shows two examples of interferogram WPSD,
one of them being affected by atmospheric piston. The differ-
ence in terms of fringe peak shape is clearly noticeable, and
leads to the rejection of the corrupted interferogram (bottom
figure). This selection process has shown a very low false de-
tection rate, and rejects efficiently the interferograms that are
affected by a strong piston effect. However, limited piston of
order two (and above) is not identified efficiently. The problem
here is that the relevant properties for the estimation of the sec-
ond order piston are currently difficult to measure with a suffi-
cient SNR from the data, as they are masked by the order 1 pis-
ton. We expect that the introduction of the FINITO fringe
tracker in 2004 will allow us to derive an efficient metric to
reject the interferograms affected by a high order piston effect.

Fig. 11. Wavelet power spectral densities of processed interfero-
grams (σ represents the wave number, i.e. the inverse of the wave-
length). The upper figure shows the WPSD of a good quality interfer-
ogram: the energy is well confied in the fringe power peak. The bottom
WPSD is affected by strong atmospheric piston: a significant part of
the fringe power is spread outside of the theoretical fringe peak, both
in time and frequency domains. The isocontours delimit 77% and 76%
of the total modulated power, respectively.

After the fringe power integration (described in Sect. 7), we fil-
ter out the scans which µ2 deviates by more than 3σ from the
median of the full batch of interferograms (usually 500 scans).
This step prevents the presence of very strong outliers, which
can appear due to the division introduced by the normalization
of the interferograms (introduction of Cauchy statistics).

6.3. Immunity to selection biases

An essential aspect of the parameters used for the quality con-
trol of the fringe peak properties is that they are largely inde-
pendent of the visibility of the fringes, and therefore do not
create selection biases. In particular, the integral of the fringe
peak (directly linked to the visibility) or its height are never
considered in the selection. The parameters chosen in Sect. 6.2
clearly depend on the photometric SNR, but are independent of
the visibility of the fringes, thanks to the calibration procedure
described in Sect. 5.

The upper part of Fig. 12 demonstrates this independence
in the difficult case of the batch of interferograms obtained
on αCen A. Despite the very low visibility of the fringes, no
systematic deviation is visible for low photometric SNR val-
ues, as the dispersion is symmetric around the mean value.
The same plot for θCen (Fig. 12 bottom) does not show any
deviation either. A further discussion of the properties of the
histogram of these measurements can be found in Sect. 8.3.
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Fig. 12. Squared coherence factor µ2 as a function of the photo-
metric signal on the fringe packet, for the sample batches obtained
on αCen A (top) and θCen (bottom). The dashed lines show the mean
value of the series derived using the bootstrap technique.

This means that the quality control described in this paragraph
is not linked to the observable, and thus does not introduce a
selection bias. Its effect in the case of the θCen and αCen A
observations is discussed in Sect. 8.3.

A critical case is when the visibility is extremely low. In
this situation, the fringe peak will tend to blend in with the
noise, which tends to make it appear broader and slightly dis-
placed. Therefore, low-visibility data are more likely to be re-
jected than high-visibility data. This can introduce a bias to-
wards higher µ2 for low-visibility observations: a scan with a
+1σ deviation is accepted, but a scan with a −1σ deviation
is more likely to be rejected as it fails the selection criteria.
However, in this situation, the risk is high to fail to reject the
spurious spikes that are created in the calibrated interferograms
due to the division by the P signal (Sect. 5). Without the selec-
tion procedure, the modulated power of these calibration arte-
facts will be integrated in the final µ2 value. As this power is es-
sentially random, but always positive, these misidentifications
would then result in a strong positive bias on the final µ2 value.
For this reason, and in spite of the potential rejection of a small

part of the valid interferograms, the application of the selection
procedure results in a more reliable estimate of µ2, even for the
very low visibility fringes. In any case, the careful examination
of the statistical properties of the µ2 histogram (see Sect. 8),
and in particular of its skewness, allows us to detect a possible
selection bias.

7. Visibility computation

7.1. Wavelet power spectral density

Once the interferogram has been calibrated and normalized, the
squared coherence factor µ2 is measurable as the average mod-
ulated energy of the interference fringes over the batch. It is
computed by integrating the power peak of the interferograms
in the average WPSD (see also Appendix A and Sect. 7.2.1).
The WPSD is a two dimensional matrix, examples of which
are shown in Fig. 11. For all wavelet transforms, we use the
Morlet wavelet, which is defined as a plane wave multiplied by
a Gaussian envelope. It closely matches the shape of the inter-
ferometric fringe packet. When computing a classical PSD, the
interferogram is projected on a base of sine and cosine func-
tions, which are not localized temporally. This means that the
information of the position of the fringe packet is not used,
and that the noise of the complete interferogram contributes to
the measured power. On the other hand, the wavelet transfor-
mation projects the interferogram on a base of wavelets that
are localized both in time and frequency, making full use of
the localized nature of the modulated energy. As discussed in
Appendix A, the modulated energy of the signal is conserved
by the wavelet transform in the same way as through the clas-
sical Fourier transform.

7.2. Estimation of the squared coherence factor µ2

7.2.1. Fringe power integration

The average power spectral density of the αCen A sam-
ple batch, computed using the wavelet transform, is shown
in Fig. 13. To obtain this 1D spectrum from the original
2D WPSD matrices, we first project the WPSD matrix of each
interferogram on the frequency axis, by integrating it over the
fringe packet length (time axis). From this we obtain a series of
one-dimensional vector PSDs, similar to the Fourier PSD but
with a reduced noise. Before the averaging, we recenter each
fringe peak using the frequency position information derived
from the selection of the interferograms (Sect. 6). This step al-
lows us to confine more tightly the energy of the peak, which is
displaced by the first order piston effect. This reduces the influ-
ence of piston on the final µ2 value. The co-added 1D spectrum
is the signal used for the final power integration to estimate
the µ2 of the star.

The integration of the fringe power is typically done
over 100 pixels in the time domain (20 fringes), and from 2000
to 8000 cm−1 in the frequency domain (see also Sect. 8.1).
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Fig. 13. Average WPSD of the αCen A observation. The original two-
dimensional matrix has been integrated over the fringe packet length
in the time domain. The resulting projection on the wave number axis
allows one to visualize clearly the noise contribution. The subtracted
noise model is shown by the dashed line. The final WPSD (thick line)
shows no bias in spite of the large brightness of the star and very low
squared coherence factor of the fringes (µ2 ≈ 0.3%).

7.2.2. Removal of the WPSD background

The power in the fringe peak is contaminated by three additive
components:

– the photon shot noise;
– the detector noise;
– the residual photometric fluctuations.

To estimate the modulated power of the fringes, it is essential
to precisely remove these contributions from the PSD of the
interferograms.

Perrin (2003) has developed an analytical treatment of the
photon shot noise based on its particular properties (Poisson
statistics). The photon shot noise is perfectly white, as it is cre-
ated from a purely random process. However, due to the cal-
ibration and normalization process of the interferograms, its
translation onto the final interferometric signal I could in the-
ory deviate from this property and show a dependence with
frequency. Such an effect has not been observed in practice
on the VINCI data, and the uniform subtraction of the photon
noise background from the PSD of the I signal has proven to
be very efficient. A good example of the “whiteness” of the
photon shot noise of the processed fringes can be found in
Wittkowski et al. (2004), where a very bright star (mK = −0.6)
was observed with the two 8 m telescopes UT1 and UT3 (B =
102.5 m). In spite of the extremely large flux on the VINCI de-
tector (100 m2 collecting optics) and the very low visibility of
the fringes (V2 � 10−2), the resulting PSD background is white,
therefore validating our photon shot noise removal method un-
der the most demanding conditions.

In order to fully justify our background removal procedure,
we still have to verify the “whiteness” of the detector noise,
whose statistics and frequency structure depends on the type
of detector and readout electronics used. The infrared camera
of VINCI (LISA) is based on a HAWAII array, which is read

using an IRACE controller (Meyer et al. 2000). As only four
pixels of the 1024 × 1024 array are actually used, an engineer-
ing grade detector was chosen for the instrument. It presents a
large quantity of dead and hot pixels, and therefore it was nec-
essary to thoroughly check its noise characteristics. This was
achieved during extensive laboratory testing, and is also ver-
ified automatically for each observation. It appeared that the
LISA detector noise is perfectly white, without any significant
electronic interference signature.

This satisfactory behavior of the detector and photon shot
noises allows us to remove them simultaneously by subtracting
to the µ2 value of each interferogram an average of its WPSD at
high frequency, measured outside of the domain of frequency
of the interferometric fringes. To correct for potential resid-
uals of the photometric calibration, we fit a linear model of
the residual background to the average WPSD of the interfer-
ograms in the batch. In this procedure, we allow for a limited
slope of the background model, in order to correct a possible
residual power from photometry. Thanks to the averaging of
a large number of scans, the noise on the average WPSD is
very low, and the fitting procedure is very precise. Most of the
time, and even for the most important fluctuation cases (Unit
Telescopes in multispeckle mode), the contribution of the resid-
ual photometric noise is totally negligible on the combined in-
terferogram I obtained from the subtraction of the calibrated
signals I1 cal and I2 cal (Eq. (8)).

An illustration of the background quality is presented in
Fig. 13. The WPSD background noise appears perfectly white,
even at the very enlarged scale used to visualize the very small
fringe peak of αCen A (µ2 ≈ 0.3%). In particular, no “color”
or electronic interference (“pickup”) are present.

7.3. Estimation of the statistical error

To compute the statistical error on the µ2 estimation, we inte-
grate separately the fringe power in each WPSD of the batch,
correct the detector and photon shot noise biases individually,
and use a weighted bootstrapping technique on this set of mea-
surements. Our sample is made of N pairs (µ2

i , wi) where µ2
i is

the squared coherence factor obtained by integrating the WPSD
of the scan of rank i in the series and wi is its associated weight.
It is defined as the average level of the photometric signal P
over the fringe packet length (20 fringes in the K band) mul-
tiplied by the inbalance between the two photometric chan-
nels PA and PB:

wi =
min(PA,i, PB,i)

max(PA,i, PB,i)

(√
PA,iPB,i

)
Fringes

. (10)

It characterizes well the clarity of the total photometric signal
that contributes to the formation of the fringes. The final disper-
sion of the µ2 values is reduced by this weighting. The detailed
description of the weighted bootstrapping method used for the
computation of the error bars is given in Appendix B.

The bootstrapping technique has the important advantage
of not making any assumption on the type of statistical distribu-
tion that the data points follow. In particular, it is more reliable
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than the classical approach that assumes a Gaussian distribu-
tion of the measurements. Skewness and other deviations from
a Gaussian distribution are automatically included in the error
bars, which can be asymmetric.

The statistical dispersion of VINCI measurements shows
two regimes: for bright stars the precision is limited by the pis-
ton and photon shot noise, while for the fainter objects, the
main contributor to the dispersion is the detector noise of the
camera, and the precision degrades rapidly. A discussion of
the different types of noise intervening in the visibility mea-
surements can be found for instance in Colavita (1999) and
Perrin (2003). The µ2 measurements discussed in this paper
have a relative statistical precision of ±3.00% for αCen A,
and ±0.53% for θCen. The lowest relative statistical disper-
sion σ(µ)/µ reached up to now on the coherence factor with
VINCI is in the 2% range. Under good conditions, this trans-
lates into a bootstrapped statistical error of less than ±0.1%
on µ for 5 min of observations.

8. Post-processing quality control

After a batch of interferograms is processed, several quality
controls are performed in order to detect any problem in the
resulting visibility values and statistical error bars. This step
is essential to ascertain the quality of the interferometric data,
as it can vary depending on the atmospheric conditions (e.g.
seeing, coherence time) and on the general behavior of the in-
strument (e.g. injection of the stellar light in the optical fibers,
beam combiner properties, polarization mismatch of the two
beams).

8.1. Power peak integration boundaries

A potentially damaging effect of the atmospheric piston on the
visibility of the fringes is that it tends to move the position of
the fringe peak, and to spread it over a wider frequency range. If
the frequency boundaries for the integration of the fringe peak
are set too tight, the result could be that part of the modulated
power is not taken into account, creating a bias. These bound-
aries are automatically changed as a function of the ground
baseline length to account for the increased piston strength on
longer baselines. They are not modified as a function of the
projected baseline, and are thus identical for scientific targets
and calibrators.

To check for the presence of such an effect, we measure the
fringe peak shape in the WPSD. More precisely, we estimate its
central wave number, full width at half maximum, as well as the
limit wave numbers for which the background level is reached.
Using these extended limits, we integrate the fringe power and
compare this value to the one obtained with the user-specified
wave number limits. If a discrepancy is found at a significant
level, the batch is considered dubious and can be rejected after
further examination.

8.2. Histogram properties

As the noise sources acting on the µ2 values have normal statis-
tics, it is expected that the distribution of the µ2 values over

Table 4. Reasons for the rejection of θCen and αCen A interfero-
grams during the processing. The lower part of this table corresponds
to the selection criteria related to the atmospheric piston effect.

Reason θCen αCen A

Photometry too low 77 24

Large OPD jump 13 47

Fringes at edge 6 27

Fringe packet width 1 47

Fringe peak position 3 40

Fringe peak width 5 33

Outliers (3σ) 9 5

Total number of rejected scans 114/500 223/500

the batch is also normal. Although the bootstrapping procedure
used to compute the µ2 error bars is not sensitive to the type of
distribution, a large skewness or kurtosis would betray a prob-
lem in the calibration of the interferograms that could even-
tually bias the final µ2 value. The relevant parameters for this
verification are the skewness coefficient s (third moment of the
distribution) defined as:

s =
N∑

i=1

(µ2
i − µ2)3

(N − 1)σ3
(11)

and the kurtosis coefficient k (fourth moment):

k =
N∑

i=1

(µ2
i − µ2)4

(N − 1)σ4
− 3 (12)

where µ2
i are the squared coherence factor values, σ the stan-

dard deviation, µ2 the unweighted average, and N the number
of scans. The skewness characterizes the presence of a “tail”
on the histogram. A large value of s is therefore a symptom
of a potential bias problem in the distribution, as a significant
number of values are either too large or too small compared
to the average value of the sample. A positive kurtosis coeffi-
cient means a distribution more peaked than the normal one.
However, it should be stressed that the kurtosis is not a very
robust parameter to assess if the sample is drawn from a nor-
mal distribution. It requires a large number of sample values
to be relevant, and it is very sensitive to the presence of out-
liers. Therefore, it should only be used in conjunction with
other statistical tests. A range of ±0.5 can be considered ac-
ceptable for k. When random samples are drawn from a normal
population, the resulting skewness coefficients will fall into the
range ±0.18, with a probability of 90%. We therefore choose
this value as an acceptable range.

8.3. Application to θCen and αCen A

Table 4 gives the reasons for the rejection of the interferograms
of the θCen and αCen A batches. In the case of αCen A, a
larger number of interferograms are rejected due to the very
low visibility of the fringes.



1172 P. Kervella et al.: Data reduction methods for optical interferometry

Table 5. Statistical properties of the θCen and αCen A sample
batches. The values obtained when disabling the selection of the in-
terferograms based on their piston properties are given in brackets for
comparison.

θCen αCen A

Reduced scans 386 (395) 277 (391)

Average µ2 (%) 8.995 (8.999) 0.3180 (0.2949)

Stat. error (1σ) 0.048 (0.050) 0.0095 (0.0142)

Rel. error σ/µ2 0.53% (0.56%) 3.00% (4.81%)

Skewness s +0.023 (+0.013) −0.007 (+0.160)

Kurtosis k +0.164 (+0.062) +0.044 (−0.042)

Fig. 14. Histogram of the µ2 values obtained on θCen. No significant
skewness is present.

The measured statistical properties of the processed inter-
ferograms of θCen and αCen A are given in Table 5. The val-
ues in brackets were obtained by disabling the piston selection
of the interferograms (based on the fringe packet width, and on
the position and width of the fringe peak in the power spectrum
of the interferogram). The comparison of the selected vs. non-
selected versions of the data processing shows that the piston
selection has a positive effect on the dispersion of the measure-
ments. For θCen, the difference is minimal between the two
kinds of processing. In particular, the total number of processed
interferograms is almost identical for the two cases. However,
for αCen A, the difference is clearly noticeable, as the final er-
ror bars are 60% larger when the selection is disabled, in spite
of a total number of processed scans approximately 40% larger.
The skewness of the histogram is also much larger in this case
(by a factor of 20). This clearly shows the advantage of the
fringe selection procedure, in particular for the rejection of the
calibration artefacts (false detections) in the very low visibility
case (see also Sect. 6.3).

In the case of θCen (Fig. 14) and αCen A (Fig. 15), no
skewness is present. For θCen, a small positive kurtosis k ≈
0.16 is detected, meaning that the distribution is slightly too
peaked (leptokurtic, as opposed to a platykurtic distribution
that is too flat). However, it is easily inside the acceptable
range (±0.5), and this property is taken into account in the boot-
strapped error bars.

Fig. 15. Histogram of the µ2 values obtained on αCen A.

9. Visibility calibration

9.1. Principle

The data reduction software of VINCI yields accurate estimates
of the squared modulus of the coherence factor µ2, which is
linked to the squared object visibility V2 by the relation:

V2 =
µ2

T 2
(13)

where T 2 is the response of the system to a point source,
also called transfer function (hereafter TF), interferometric ef-
ficiency, or system visibility. It is measured by bracketing the
science target with observations of calibrator stars whose V2

is supposed to be known a priori. The accuracy of our knowl-
edge of the calibrator angular diameter, and the precision with
which we estimate its µ2 are therefore decisive for the final
quality of the scientific target observation. Typically, the scien-
tific targets are bracketed by calibrator observations, so as to be
able to verify the stability of the TF. In this respect, the VLTI
has often proved to be stable at a scale of a few percent over
several nights. Nevertheless, and to guarantee the quality of the
VINCI data, calibrators are regularly observed during the night,
before and after each scientific target.

9.2. Interferometric transfer function estimation

9.2.1. Transfer function model

By nature, the interferometric TF is affected by a large num-
ber of parameters: atmospheric conditions (seeing, coherence
time), polarization (incidence of the stellar beams on the
siderostat mirrors), spectrum of the target, etc. These effects
combine to make T 2 a stochastic variable, that can evolve over
a wide range of timescales. In order to estimate its value and
uncertainty on a particular date at which it was not directly
measured (e.g. during the observation of a scientific target), it
is necessary to use a model of its evolution. Such a model relies
necessarily on an hypothesis, for instance that the value of T 2

is constant between two (or more) calibrator observations, that
it varies linearily, quadratically, or any higher order model. Let
us now evaluate the most suitable type of TF model for the ob-
servations with VINCI.

As a practical example, Fig. 16 shows the evolution
of T 2 over one night of observations, with a typical sampling
rate of one measurement every 15 min. This series of 27 ob-
servations was obtained during the night of 29 May 2003 on
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Fig. 16. Evolution of the transfer function T 2 during one night (2002-
05-29) on the E0-G0 baseline of the VLTI (16 m in ground length).
Each symbol corresponds to a different star.

the E0-G0 baseline (16 m ground length). A number of dif-
ferent stars with known angular diameters were observed,
covering spectral types in the G-K range. During these ob-
servations, spread over 8 h, the seeing evolved from 1.0 to
2.0 arcsec, the altitude of the observed objects was distributed
almost uniformly between 25 and 80 degrees, and the azimuth
values covered 15 to 90 degrees (N = 0, E = 90). Due to this
broad range of conditions, this series represents a worst case in
terms of TF stability. As a reminder, under normal conditions, a
calibrator is selected as close as possible to the scientific target,
in time, position and spectral type.

Over the whole night, the overall stability is satisfactory,
with a dispersion of σtot = 0.64% around the average value
of T 2 = 41.75%. In order to estimate the external disper-
sion σext of the transfer function over the night (due to the at-
mosphere and instrumental drifts), we can subtract the average
of the intrinsic variances σ2

i of the T 2
i values σ2

int from the total
variance σ2

tot:

σ2
ext = σ

2
tot − σ2

int. (14)

The average precision of each individual T 2 measurement in
our sample night is σint = 0.21%. This gives an external dis-
persion of σext = 0.60%. In this particular case, the external
dispersion is thus dominant over the internal measurement er-
rors, by a factor of almost three.

From this example, we can conclude that the rate of one
measurement every 15 min is insufficient to sample the fluctu-
ations of the TF. Due to this, we do not gain in precision by in-
terpolating the TF values using a high order model (quadratic,
splines,...). In the current state of the VLTI (siderostat observa-
tions), the most adequate model for the estimation of the TF is
thus a constant value between the observations of the calibra-
tors. The 1.8 m Auxiliary Telescopes will soon allow us to sam-
ple the TF with a much higher rate, of the order of 1 min, and
higher order models of the TF variations could become neces-
sary. As we are dominated by the external dispersion σext, the
uncertainty on the TF has to be estimated from the dispersion
of the individual T 2 measurements obtained before and after

the scientific target, without averaging of their associated error
bars.

9.2.2. Refinement of the transfer function model

Under good and stable conditions, the random dispersion of T 2

introduced by the atmosphere can be very low between two
consecutive observations of a calibrator. In this case, we want
to evaluate the true uncertainty on the model T 2 by comparing
the hypothesis of stability to the calibrator observations, and
subsequently refine the hypothesis used to estimate the error
bar on T 2.

The observational strategy chosen with VINCI is to
record several series of interferograms consecutively for each
calibrator observation (typically three), over a period of
about 15 min. To decide if the atmospheric and instrumental
conditions are stable over this period, we compute the follow-
ing χ2 expression:

χ2
tot =
∑

i

(T 2
i − T 2)2

σ2
stat,i

(15)

where T 2
i are the consecutive estimates of the TF obtained on

the calibrator, σ2
stat,i the statistical error of each measurement,

and T 2 the weighted average of the T 2
i values (using the in-

verse of the statistical variance as weights). If the resulting χ2

is small (less than 3), then the hypothesis that the TF is constant
is probably true: the T 2

i values can be averaged and the global
statistical error bar reduced accordingly. If not, then this hy-
pothesis cannot be made, and a realistic approach is to consider
as the true measurement error of the average TF the standard
deviation of the T 2

i sample.
When several series of interferograms are obtained on the

same calibrator and the conditions described above are verified,
the resulting estimates of the TF can be averaged in order to re-
duce the attached statistical error bar. However, the systematic
error introduced by the a priori uncertainty on the angular size
of one calibrator cannot be reduced by repeatedly observing
this star, but only by combining the TF measurements obtained
on independent objects.

9.3. Application to the sample observation of αCen A

In the case of the observations described in this paper, θCen
was observed one hour before αCen A. Assuming a UD an-
gular diameter of θUD = 5.305 ± 0.020 mas (Kervella et al.
2003b), and taking into account the spectrum of the source and
the bandwidth averaging effect (also called bandwidth smear-
ing, see e.g. Davis et al. 2000), we expect a squared visibil-
ity of V2

theo = 0.1796 and a 1σ systematic uncertainty σsyst =

±0.0027 for the 65.929 m projected baseline (weighted average
over the interferogram series). As we observed an instrumen-
tal coherence factor of µ2 = 0.08995 ± 0.00048, the transfer
function T 2 is estimated to be:

T 2 =
0.08995 [±0.00048]stat

0.1796 [±0.0027]syst
· (16)
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Using the relations detailed in Appendix C to compute the error
bars of the ratio µ2/T 2, we obtain

T 2 = 0.5010 [±0.0027]stat [±0.0077]syst. (17)

As we consider here only one calibrator observation, we can-
not estimate the external dispersion of T 2, and we consider only
the internal statistical and systematic error bars. As a remark,
this T 2 value is not identical to the one computed in Sect. 9.2.1,
as it was obtained more than one month later. The VINCI cou-
pler is known to be sensitive to long term temperature varia-
tions (over a timescale of weeks), an effect that can explain the
observed difference.

The squared visibility value of αCen A is then:

V2
αCen = 0.00635 [±0.00019]stat [±0.00010]syst. (18)

The uncertainty on this value is dominated by the statistical er-
ror, despite the importance of the systematic error on the value
of T 2. The average baseline of this measurement is 61.470 m,
and we can now deduce the uniform disk model angular diame-
ter of αCen A, θUD = 8.305±0.024 mas, which is very close to
the published value of θUD = 8.314± 0.016 mas from Kervella
et al. (2003b). This computation takes into account the wave-
length averaging effect due to the broadband K filter of VINCI
as described by Kervella et al. (2003b).

10. Conclusion

We have described the data reduction methods that are used
on VINCI, the VLTI Commissioning Instrument. In particu-
lar, we detailed the photometric calibration of the interferomet-
ric signals, followed by the normalization of the fringes, and
the subtraction of the two calibrated interferograms. Due to
the efficient spatial filtering provided by the single-mode op-
tical fibers, this procedure provides a clean calibration of the
fringes, and allows us to derive the squared coherence factor µ2

with high accuracy. Combined with observations from a cali-
brator star, it yields the squared visibility V2. This value can be
interpreted physically through the use of a dedicated model of
the observed object. Applying the data reduction methods de-
scribed in this paper to sample data from αCen A yields a real-
istic value of its uniform disk angular diameter. Our procedures
can easily be adapted to other single mode interferometric in-
struments. In particular, they can be generalized to spectrally
dispersed fringes and to a multiple beam recombiner using the
integrated optics technology (Kern et al. 2003). Such a device
could allow the simultaneous recombination of the beams from
the four 8 m Unit Telescopes and four Auxiliary Telescope of
the VLTI in a compact instrument.
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Appendix A: The wavelet transform

The wavelet transform belongs to the class of time-
frequency transforms which are powerful tools to study non-
stationary processes such as turbulent flows in fluid mechanics.
Wide band coaxial interferograms recorded through a turbulent
atmosphere can be strongly distorted due to the differential pis-
ton effect and fast photometric fluctuations. In this context, the
wavelet transform is an efficient tool to study and analyse the
interferograms recorded from the ground.

The continuous wavelet transform (hereafter CWT) is de-
fined by:

W (s, τ) =
1√

s

∫ +∞
−∞

f (t)ψ∗
( t − τ

s

)
dt (A.1)

where f (t) is the signal defined as a function of time, ψ (t) the
chosen wavelet function, ψ∗ its complex conjugate, s the scale,
and τ the translation.

For the present application of the CWT to interferometry,
we have chosen to use the Morlet wavelet, that is defined as
a Gaussian envelope multiplied by a plane wave (Goupillaud
et al. 1984; Farge 1992):

ψ (η) = exp (i2πν0η) exp (−η2/2) (A.2)

where η is the non dimensional time parameter and ν0 is the non
dimensional frequency. Initially used for the analysis of seis-
mic signals, the Morlet wavelet is a good approximation of the
fringe pattern produced by VINCI. The data processing meth-
ods presented here make extensive use of this particular wavelet
for the recognition and localization of the fringes (Sect. 4.2)
and subsequently for the integration of the modulated power of
the interference fringes (Sect. 7). Figure A.1 shows the shape
of the imaginary part of the Morlet wavelet assuming typical
parameters for the processing of data from the MONA beam
combiner (K band).

If we now express the CWT in the Fourier domain
(Eq. (A.3)), it appears clearly that the CWT is a filtered ver-
sion of the signal for different sets of filters:

W(s, τ) =
√

s
∫ +∞
−∞

f̂ (ν) ψ̂∗ (sν) ei 2πντ dν. (A.3)

Since the CWT is simply a convolution between the sig-
nal f (t) and expanded/contracted versions of the wavelet func-
tion (Eq. (A.1)), the Morlet wavelet is very efficient to analyse
wide-band coxial interferograms. The CWT of an interfero-
gram using the Morlet wavelet is a complex quantity and its
maximum energy is found for the wavelet that is most similar
to the recorded interferogram.

The CWT using the Morlet wavelet is not orthogonal but
since it relies on a set of filtered versions of the signal with
strong redundancy, the original signal can easily be recon-
structed (Farge 1992; Perrier 1995). The energy properties of
Wavelets are similar to the ones of the Fourier analysis, with
the equivalent of the Parseval theorem (Perrier 1995). We have
therefore the equivalence of the two following expressions of
the energy E of the signal:

E =
1

2 Cψ

∫ +∞
0

∫ +∞
−∞
|W(s, τ)|2 ds

s2
dτ (A.4)

Fig. A.1. VINCI interferometric fringes (upper curve, from a pro-
cessed interferogram of θCen) and the Morlet wavelet function imag-
inary part (bottom curve).

E =
∫ +∞
−∞

∣∣∣∣ f̂ (ν)
∣∣∣∣2 dν (A.5)

with the coefficient Cψ defined as:

Cψ =

∫ +∞
−∞
|ψ (s ν)|2

ν
dν. (A.6)

As a consequence, we are able to recover the modulated energy
of the original signal (the interferometric fringes) by integrat-
ing its wavelet power spectrum over the time and frequency
regions where the interferogram is present.

Compared to the classical Fourier analysis, such an ap-
proach allows to minimize the biases due to both the white and
colored (frequency dependent) noises. Thanks to its localiza-
tion both in time and frequency, the Morlet wavelet is better
suited to the study of interferometric fringe packets than the
classical Fourier base functions (sine and cosine), as the noise
present outside of the fringe packet in the scan is excluded from
the integrated power. The interested reader will find a more de-
tailed treatment of the wavelet transform in Daubechies (1992),
Farge (1992), Perrier (1995) and Mallat (1999).

Appendix B: Computation of weighted
bootstrapped error bars

Originally developed by Efron (1979), the bootstrap analysis,
also called sampling with replacement, consists of construct-
ing a hypothetical, large population derived from the original
measurements and estimate the statistical properties from this
population. This technique allows us to recover the original dis-
tribution characteristics without any assumption on the proper-
ties of the underlying population (e.g. Gaussianity). An intro-
duction to bootstrap analysis can be found in Efron (1993) and
Babu (1996).

Our implementation of the bootstrapping technique draws,
with repetition, a large number M of samples containing N ele-
ments from the original set of measurements (µ2

i , wi), also N el-
ements in length. µ2

i designates the squared coherence factor
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associated with the scan of rank i in the series, and wi is its
associated weight. The result of this drawing is an N × M ma-
trix of (µ2

k, j, wk, j) pairs (1 ≤ k ≤ N; 1 ≤ j ≤ M). The fact
that the same element of the original data set can be repeated
several times in the drawing is essential, as it allows us to cre-
ate independent samples. Typically, several thousand samples
are obtained from the original data, which contains a few hun-
dred µ2 values. The weighted average values µ2

k are computed
for each of the N drawings:

µ2
j =

1(∑N
k=1 wk, j

) N∑
k=1

wk, jµ
2
k, j. (B.1)

The resulting ensemble [µ2
j ] (M elements) is sorted in ascend-

ing order, and reindexed with the percentiles of the rank of each
value in the set:

µ2
0/M , ..., µ

2
j/M, ..., µ

2
M/M. (B.2)

The 16% lower and upper values are discarded, and the new
extremes values of this vector give the limits of the 68% confi-
dence interval:

µ2
min = µ

2
0.16 ; µ2

max = µ
2
0.84. (B.3)

This is the probabilistic definition of 1σ error bars, and we
therefore obtain the σ+ and σ− asymmetric error bars through:

σ+ = µ
2
max − µ2 ; σ− = µ2 − µ2

min (B.4)

where µ2 is the weighted average of the original sample [µ2
i ]

using the weights [wi]. The same process can be applied using
2.5−97.5% percentile limits to obtain the error bars equivalent
to 2σ, and 0.5−99.5% for 3σ.

Alternatively, one can derive the bootstrapped varianceσ2
BS

directly from the µ2
k ensemble:

σ2
BS =

1
M

M∑
j=1

(
µ2

j − µ2
)2
. (B.5)

The internal bias bBS of the population is given by:

bBS = µ
2
j − µ2. (B.6)

This bias is naturally taken into account in the computation of
the confidence interval limits as described above.

Appendix C: Statistical and systematic errors
of the ratio of µ2 and T2

In the expression of T 2 of Eq. (16), we have to separate the
contributions from the systematic uncertainty on the calibrator
knowledge, and the statistical error of the instrumental mea-
surement of µ2. While these two terms contribute to the global
uncertainty on the squared visibility V2, their nature is funda-
mentally different. While it is possible to reduce the statistical
error by averaging several measurements, the systematic un-
certainty originating in the calibrator diameter error bar will
not be changed. This last term is therefore a fundamental lim-
itation to the absolute precision of the visibility measurement.

This limit can be reduced by using several calibrators, or by
selecting very small stars as calibrators. We then benefit from
the fact that the visibility function V2(B, θ) for a stellar disk is
nearly flat when the star is not significantly resolved, and the
resulting systematic error on V2 remains small.

Considering a symmetric error bar on the assumed angular
diameter of the calibrator, the resulting error bar on the V2 es-
timate is in general not exactly symmetric, due to the non lin-
earity of the visibility function. In practice, asymmetric error
bars are easily manageable numerically. However, in order to
simplify the notations in the present discussion, we make the
assumption that this asymmetry is negligible.

The estimation of the two kinds of error contributions relies
on an approximation of the Cauchy statistical law characteris-
tics. When dividing two normal statistical variables x and y of
respective means and standard deviations (x, σ2

x) and (y, σ2
y),

the resulting ratio x/y follows a Cauchy statistics that has,
strictly speaking, no defined mean value. It is therefore nec-
essary to make an approximation for the case when σy 	 y.
In this case, a second order approximation of the mean z and
variance σ2

z of z = x/y is given by Browne (2002):

z =
x
y

1 + σ2
y

y2

 (C.1)

σ2
z =

x2

y2

σ2
x

x2
+
σ2
y

y2
− σ

4
y

y4

 · (C.2)

It is not possible to obtain a meaningful average value of the ra-
tio x/y if the standard deviation σy of the denominator y is not
small compared to its average value. As a remark, the average
value of x/y is in general different from x/y.

The average value of the transfer function T 2 and its asso-
ciated statistical error bars are computed by replacing in for-
mulas (C.1) and (C.2) the values of (x, σ2

x) and (y, σ2
y) by the

following terms:

x→
[
µ2
]
θCen

σ2
x → [σstat]2

θCen (C.3)

y→
[
V2

theo

]2
θCen

σ2
y → 0. (C.4)

Similarly, the systematic error is computed using the
replacements:

x→
[
µ2
]
θCen

σ2
x → 0 (C.5)

y→
[
V2

theo

]2
θCen

σ2
y → [σtheo]2

θCen . (C.6)

Applying this computation to the numerical values found
for θCen, we find:

T 2 = 0.5009 [±0.0027]stat [±0.0077]syst. (C.7)

The uncertainty on this value is dominated by the systematic
error. The only remaining calibration step is now to divide
the µ2 value obtained on αCen A by the T 2 value. Again, we
have to separate the two contributions on the error by replacing
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in the above formulas the mean values and standard deviations
of x and y by the following terms for the statistical error:

x →
[
µ2
]
αCen

σ2
x → [σstat]2

αCen (C.8)

y→ T 2 σ2
y → [σstat]2

T 2 (C.9)

while the systematic error is computed using

x →
[
µ2
]
αCen

σ2
x → 0 (C.10)

y→ T 2 σ2
y →
[
σsyst

]2
T 2
. (C.11)

We obtain the calibrated squared visibility of αCen A:

V2
αCen = 0.00635 [±0.00033]stat [±0.00010]syst. (C.12)



1.7 Résultats astrophysiques avec VINCI

Je décris dans ce mémoire l’application de l’interférométrie optique à l’étude de trois types
d’étoiles : les Céphéides (Chapitre 2), les étoiles de la séquence principale (Chapitre 3), et
les étoiles en rotation rapide (Chapitre 4). Je montre qu’une utilisation judicieuse de mesures
interférométriques, spectrographiques et photométriques permet de cerner précisément les pro-
priétés physiques de ces objets. Les informations apportées par l’interférométrie sont précieuses,
car inaccessibles aux autres techniques, mais elles sont également parcellaires. Contrairement à la
pupille connexe d’un télescope classique, un interféromètre ne peut échantillonner qu’un domaine
restreint de fréquences spatiales. Grâce à la mise en oeuvre conjointe de plusieurs méthodes d’ob-
servation sur un même objet, il est possible d’obtenir des contraintes physiques beaucoup plus
fortes que celles apportées par chaque technique considérée séparément. C’est cette utilisation
de l’interférométrie en synergie avec différents moyens d’observation qui constitue l’originalité
principale de mon travail.

1.7.1 Céphéides

Il est possible de mesurer la distance des Céphéides les plus brillantes avec une excellente
précision, d’une manière quasi-géométrique, en combinant des mesures interférométriques et
spectrographiques. De telles mesures de distance sont particulièrement importantes pour cette
classe d’étoiles variables, car très peu de Céphéides sont suffisamment proches pour qu’une
mesure précise de parallaxe trigonométrique soit possible. Les distances ainsi déterminées per-
mettent d’étalonner la célèbre relation Période-Luminosité (P–L). Cette relation est régulièrement
utilisée pour estimer la distance de galaxies lointaines (jusqu’à 100Mpc), et joue un rôle im-
portant dans l’échelle des distances cosmologiques. L’incertitude actuelle sur l’étalonnage du
point zéro de la relation P–L est de l’ordre de 10%. Notre programme de mesure de distances
par interférométrie nous permettra à terme d’améliorer considérablement cette précision, notre
objectif étant d’arriver à mieux que 1%. Au total, ce sont près de 40 étoiles Céphéides que nous
prévoyons d’observer à l’aide des interféromètres VLTI (notamment avec l’instrument AMBER)
et CHARA (instrument FLUOR). Je présente au Chapitre 2 l’état d’avancement actuel de ce
grand programme.

Au cours de nos premières observations avec les instruments VINCI et MIDI du VLTI d’une
part, et FLUOR sur CHARA d’autre part, nous avons mis en évidence pour la premire fois l’exis-
tence d’enveloppes circumstellaires à l’échelle de quelques rayons stellaires autour des Céphéides
δCep, Polaris et `Car. Pour l’instant limitées à ces trois étoiles, les enveloppes de Céphéides
pourraient en réalité être très répandues. Dans le but de caractériser ces enveloppes, j’ai initié
en 2006 avec Antoine Mérand une recherche de la signature de la perte de masse des Céphéides
dans la raie à 21 cm de l’hydrogène neutre, à l’aide du grand radiotélescope de Nançay.

1.7.2 Etoiles naines

L’intérêt principal de l’interférométrie pour la physique stellaire est de permettre la mesure
directe de deux observables fondamentales : le diamètre angulaire et la répartition de lumière
de l’étoile (assombrissement centre-bord, enveloppes circumstellaires, binarité,...). Lorsque ces
informations sont combinées avec la parallaxe, il devient possible de contraindre à la fois la struc-
ture interne de l’étoile (grâce à son diamètre photosphérique) et sa structure atmosphérique (par
l’analyse de l’assombrissement centre-bord). Au delà de ces deux observables, dans le cas de l’ob-
servation d’étoiles binaires, l’interférométrie utilisée en combinaison avec la spectroscopie permet
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de déterminer l’orbite et d’estimer la distance, la masse, le rayon et le rapport de luminosité des
étoiles.

Pour les étoiles naines, la mesure interférométrique du rayon permet de contraindre de
manière décisive les modèles numériques, et ainsi de sonder l’intérieur de ces étoiles. Là en-
core, l’interférométrie n’est pleinement utile que combinée à d’autres techniques d’observations,
en particulier les mesures astérosismiques réalisées par spectrographie. J’ai réalisé dès 2003 la
première utilisation conjointe de ces deux techniques, appliquée à l’étude de αCen A et B (article
présenté au Chapitre 3). Ce travail a en particulier permis de confirmer les masses déterminées
par Thévenin et al. (2002) et de contraindre leur état évolutif (âge, structure interne,...). A titre
de remarque, notre confirmation d’une masse de seulement 0.907M� pour αCenB, plus faible
d’environ 30 masses de Jupiter par rapport à la masse astrométrique de Pourbaix et al. (2002)
nous a conduit à rechercher par imagerie classique et optique adaptative la présence d’un com-
pagnon substellaire orbitant autour de cette étoile. J’ai présenté le résultat de cette recherche
dans un article soumis à A&A (non reproduit dans ce mémoire).

Au delà des étoiles de type solaire, j’ai également contribué à l’étude des naines de très faible
masse, avec notamment la première mesure directe de la taille de Proxima, qui ne dépasse pas
1,5 fois celle de Jupiter. Nos observations ont également permis l’étalonnage des relations de
brillance de surface des étoiles naines, très utiles pour estimer précisément la taille angulaire des
étoiles hors de portée de mesures interférométriques directes.

1.7.3 Rotateurs rapides

Les étoiles en rotation rapide présentent des spectres très particuliers, avec un élargissement
considérables des raies par effet Doppler. L’effet de la vitesse de rotation, parfois extrêmement
rapide, peut aussi être observé directement sur la déformation de la photosphère. Ceci nécessite
bien sûr de résoudre spatialement la surface des étoiles, et est donc une application idéale pour
l’interférométrie optique à longue base. Dès 2002, alors que les d’observations interférométriques
de rotateurs rapides étaient encore rares, j’ai réalisé une série de mesures avec VINCI de l’étoile
Achernar (αEri). Présentant parfois la raie Hα de l’hydrogène en émission, cette étoile de type
spectral B3Vpe est connue pour être en rotation très rapide. Nous avons mis en évidence un
aplatissement considérable de l’étoile, grâce à l’obtention de son “profil interférométrique”. Je
présente ces résultats à la Sect. 4.3.

Nous avons également observé deux autres étoiles en rotation rapide : Altäır et Véga. Pour
cette dernière étoile, l’orientation très particulière de l’axe polaire, presque aligné avec la ligne
de visée, donne une signature spectrale minime de la rotation, alors que l’étoile tourne pourtant
à une vitesse proche de sa limite de dislocation. L’assombrissement centre-bord anormal que
nous avons mesuré nous a permis d’estimer à la fois la vitesse de rotation, l’aplatissement réel
et la distribution spectrale d’énergie équatoriale et polaire de Véga.

Tout dernièrement, des observations plus poussées avec VINCI ont montré que l’étoile
Achernar possède une enveloppe circumstellaire allongée selon son axe polaire. Cette détection
confirme la présence de deux phénomènes distincts dans l’environnement proche des étoiles Be :
un disque équatorial (épisodes Be) et une enveloppe polaire entretenue par le vent stellaire rapide
provenant des pôles surchauffés de l’étoile (effet Von Zeipel).
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Chapitre 2

Les Céphéides

Fig. 2.1 – Portraits de personnalités importantes de l’étude des Céphéides : de gauche à droite
John Goodricke (1764-1786), Henrietta Swan Leavitt (1868-1921, photo AAVSO), Harlow Sha-
pley (1885-1972) et Edwin Hubble (1889-1953).

Quelques acteurs importants de l’étude des Céphéides :
– John Goodricke (1764-1786) découvre la variabilité photométrique de δ Cephei (en

1784), mais aussi d’Algol et de nombreuses autres étoiles. Il propose d’expliquer la varia-
bilité d’Algol par la présences éclipses mutuelles. Sourt-muet depuis son enfance, membre
de la Royal Society, il disparâıt à l’âge de 22 ans des suites d’une pneumonie.

– Henrietta Leavitt (1868-1921) découvre en 1912 la relation Période-Luminosité des
Céphéides (Fig. 2.2), ainsi que plus de 2400 étoiles variables, soit la moitié de toutes
celles connues à l’époque.

– Harlow Shapley (1885-1972) explique en 1916 la variation des Céphéides par leur pul-
sation, et étalonne le point zéro de la relation P–L.

– Edwin Hubble (1889-1953) mesure en 1926 les distances des galaxies NGC 6822, puis
Messier 31 et 33, grâce à l’observations de la variation photométrique de Céphéides de ces
galaxies. En 1929, il établit la loi d’expansion de l’Univers qui porte son nom.

– Arthur Eddington (1882-1944) décrit en 1941 le mécanisme physique de la pulsation
des Céphéides (le κ-mécanisme).

– Walter Baade (1893-1960) sépare en 1956 les Céphéides en deux groupes distincts (W
Vir, δ Cep), possédant chacun leur propre relation P–L.

– Allan Sandage (1926-) introduit la relation Période-Luminosité-Couleur des Céphéides
en 1958, et présente, avec G. Tammann, une valeur de H0 relativement basse d’environ
50 km/s/Mpc.

– Wendy Freedman (1957-) conclut en 2001 le Hubble Key Project de mesure de H0, qui
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Fig. 2.2 – Découverte de la relation Période–Luminosité des Céphéides par Henrietta Swan
Leavitt (figure tirée de Leavitt & Pickering 1912), sur la base de 25 variables observées dans le
Petit Nuage de Magellan. La période est en échelle linéaire à gauche et en échelle logarithmique
à droite.

s’appuie largement sur les Céphéides jusqu’à des distances supérieures à 100Mpc.

Cette célèbre classe d’étoiles variables est utilisées depuis près d’un siècle comme “chan-
delle standard” pour mesurer les distances extragalactiques jusqu’à environ 20 Mpc (Freedman
et al. 2001). La propriété particulière de ces étoiles est d’avoir une luminosité intrinsèque di-
rectement proportionnelle à leur période (en grandeurs logarithmiques). La relation Période–
Luminosité (P–L ci-après) prend classiquement la forme suivante

Mλ = aλ(logP − 1) + bλ (2.1)

avec Mλ la magnitude absolue de l’étoile, P sa période de pulsation, aλ la pente de la relation et
bλ son ordonnée à l’origine (on parle aussi de ”point zéro”), définies pour une longueur d’onde
particulière λ.

L’étalonnage des relation P–L est purement empirique, basé sur l’observation. Le principe
de la détermination de la pente aλ est simple : en observant un ensemble de Céphéides situées
à la même distance de l’observateur (par exemple dans les nuages de Magellan), et on l’obtient
directement par un ajustement lináire des magnitudes apparentes moyennes mesurées dans la
bande photométrique choisie. L’ordonnée à l’origine bλ est par contre beaucoup plus difficile à
déterminer. Physiquement, bλ correspond à la magnitude absolue d’une Céphéide possédant une
période de variation de 10 jours (avec la définition de l’Eq. 2.1). La mesure de bλ réclame de
connâıtre la magnitude absolue d’un nombre suffisant de Céphéides, c’est-à-dire d’avoir leurs
distances, par une méthode indépendante de la relation P–L. Plusieurs méthodes peuvent être
employées pour estimer la distance d’une Céphéide, et ainsi étalonner bλ :

– Parallaxe trigonométrique (Hipparcos, HST) : cette méthode purement géométrique
est naturellement la plus directe. Cependant, les Céphéides sont des étoiles rares dans la
Galaxie, et ces mesures sont trés difficiles du fait de leur grande distance, même pour les
plus proches.

– Céphéides dans les amas ouverts : dans une association de Céphéides avec des étoiles
naines, il est possible d’obtenir la magnitude absolue par ajustement de la position ver-
ticale de la séquence principale dans le diagramme Hertzsprung-Russell. Cette méthode
relativement imprécise et affectée d’une erreur systématique de l’ordre de 0,2 mag.
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Fig. 2.3 – Walter Baade (1893-1960) et Adriaan Wesselink (1909-1995) (photos Mt Wilson
Observatory et Smits, respectivement).

– Méthode Baade-Wesselink : c’est la méthode la plus généralement employée. Son prin-
cipe est développé à la section suivante.

2.1 La méthode Baade-Wesselink

Inventée indépendamment par Baade (1926) et Wesselink (1946), la méthode portant au-
jourd’hui leurs deux noms permet de calculer, à partir d’observations spectroscopiques et pho-
tométriques, le rayon d’une étoile pulsante.

D’une part, le flux et les variations de température donnent le rapport du rayon instantané
de l’étoile R(t) à son rayon initial R(0) selon la formule suivante, où la température effective est
supposée constante pour simplifier :

R(t)
R(0)

=
L(t)
L(0)

= 10−0,4[m(t)−m(0)] (2.2)

Avec L(t) la luminosité de l’étoile à l’instant t et L(0) sa luminosité initiale.
D’autre part l’intégration de la courbe de vitesse pulsationnelle vp(t) donne l’amplitude

linéaire de la pulsation au cours du temps R(t) :

R(t)−R(0) = −
∫ t

0
vp(t).dt (2.3)

Le signe négatif provient de la convention de définition de la vitesse pulsationnelle (et de la
vitesse radiale) : elle est positive pour un éloignement de la source (donc une contraction de
l’étoile pour une Céphéide). Le rayon initial R(0) est déduit immédiatement en résolvant le
système constitué par les équations 2.2 et 2.3.

Pour obtenir la distance de l’étoile, il reste à estimer son diamètre angulaire. Il peut être
obtenu essentiellement de deux manières :

– La brillance de surface : Il s’agit de la méthode classique. On utilise la couleur de l’étoile
et sa magnitude apparente pour en déduire son diamètre angulaire. Ces trois grandeurs
sont en effet liées par le fait que l’étoile rayonne pratiquement comme un corps noir. J’ai
réalisé un étalonnage des relations de brillance de surface pour les Céphéides, qui est
présenté à la Sect. 2.1.3.
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– La mesure directe par interférométrie : depuis la mise en service des grands in-
terféromètres optiques et infrarouges, il est maintenant possible de mesurer directement
le diamètre angulaire des Céphéides proches. Ceci permet une application plus simple et
directe de la méthode Baade-Wesselink (BW), qui me passe pas par une estimation de la
température effective de l’étoile. Je présente une application pratique de cette méthode
utilisant des données de l’instrument VINCI à la Sect. 2.1.1.

D’une manière générale, l’approche cohérente et exhaustive des différents aspects de la méthode
BW que j’ai organisée a pour but final de réaliser un étalonnage interférométrique du point
zéro de la relation P–L avec une précision de 1%. L’obtention de ce résultat passe par une
connaissance approfondie de l’atmosphère des Céphéides.
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2.1.1 Article A&A : “Cepheid distances from infrared long-baseline interfe-
rometry – I. VINCI/VLTI observations of seven Galactic Cepheids”
(2004)

Ce premier article de notre série rapporte les mesures interférométriques de sept Céphéides
australes obtenues à l’aide de l’instrument VINCI du VLTI. En utilisant la méthode Baade-
Wesselink interférométrique, nous avons pu déduire la distance et le rayon de quatre de ces
étoiles, pour lesquelles la variation de diamètre angulaire est clairement détectée. Pour les trois
autres étoiles de notre échantillon, nous avons obtenu un rayon moyen, et déduit leur distance
à partir d’une relation période-rayon pré-existante.

Fig. 2.4 – Les télescopes UT2 (Kueyen) et UT3 (Melipal) du VLT (Cerro Paranal, Chili).
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Abstract. We report the angular diameter measurements of seven classical Cepheids, X Sgr, ηAql, W Sgr, ζ Gem, βDor, Y Oph
and �Car that we have obtained with the VINCI instrument, installed at ESO’s VLT Interferometer (VLTI). We also present
reprocessed archive data obtained with the FLUOR/IOTA instrument on ζ Gem, in order to improve the phase coverage of
our observations. We obtain average limb darkened angular diameter values of θLD[X Sgr] = 1.471 ± 0.033 mas, θLD[ηAql] =
1.839 ± 0.028 mas, θLD[W Sgr] = 1.312 ± 0.029 mas, θLD[βDor] = 1.891 ± 0.024 mas, θLD[ζ Gem] = 1.747 ± 0.061 mas,
θLD[Y Oph] = 1.437±0.040 mas, and θLD[�Car] = 2.988±0.012 mas. For four of these stars, ηAql, W Sgr, βDor, and �Car, we
detect the pulsational variation of their angular diameter. This enables us to compute directly their distances, using a modified
version of the Baade-Wesselink method: d[ηAql] = 276+55

−38 pc, d[W Sgr] = 379+216
−130 pc, d[βDor] = 345+175

−80 pc, d[�Car] =
603+24

−19 pc. The stated error bars are statistical in nature. Applying a hybrid method, that makes use of the Gieren et al. (1998)
Period-Radius relation to estimate the linear diameters, we obtain the following distances (statistical and systematic error bars
are mentioned): d[X Sgr] = 324± 7± 17 pc, d[ηAql] = 264± 4± 14 pc, d[W Sgr] = 386± 9± 21 pc, d[βDor] = 326± 4± 19 pc,
d[ζ Gem] = 360 ± 13 ± 22 pc, d[Y Oph] = 648 ± 17 ± 47 pc, d[�Car] = 542 ± 2 ± 49 pc.

Key words. techniques: interferometric – stars: variables: Cepheids – stars: oscillations

1. Introduction

For almost a century, Cepheids have occupied a central role
in distance determinations. This is thanks to the existence of
the Period–Luminosity (P–L) relation, M = a log P + b, which
relates the logarithm of the variability period of a Cepheid to
its absolute mean magnitude. These stars became even more
important since the Hubble Space Telescope Key Project on the
extragalactic distance scale (Freedman et al. 2001) has totally
relied on Cepheids for the calibration of distance indicators to
reach cosmologically significant distances. In other words, if
the calibration of the Cepheid P–L relation is wrong, the whole
extragalactic distance scale is wrong.

There are various ways to calibrate the P–L relation. The
avenue chosen by the HS T Key-Project was to assume a dis-
tance to the Large Magellanic Cloud (LMC), thereby adopt-
ing a zero point of the distance scale. Freedman et al. (2001)
present an extensive discussion of all available LMC distances,
and note, with other authors (see e.g. Benedict et al. 2002), that

Send offprint requests to: P. Kervella, e-mail: pkervell@eso.org
� Tables 3 to 10 are only available in electronic form at
http://www.edpsciences.org

the LMC distance is currently the weak link in the extragalactic
distance scale ladder. Another avenue is to determine the zero
point of the P–L relation with Galactic Cepheids, using for in-
stance parallax measurements, Cepheids in clusters, or through
the Baade-Wesselink (BW) method. We propose in this paper
and its sequels (Papers II and III) to improve the calibration of
the Cepheid P–R, P–L and surface brightness–color relations
through a combination of spectroscopic and interferometric ob-
servations of bright Galactic Cepheids.

In the particular case of the P–L relation, the slope a is
well known from Magellanic Cloud Cepheids (e.g. Udalski
et al. 1999), though Lanoix et al. (1999) have suggested that
a Malmquist effect (population incompleteness) could bias this
value. On the other hand, the calibration of the zero-point b
(the hypothetic absolute magnitude of a 1-day period Cepheid)
requires measurement of the distance to a number of nearby
Cepheids with high precision. For this purpose, interferometry
enables a new version of the Baade-Wesselink method (BW,
Baade 1926; Wesselink 1946) for which we do not need to
measure the star’s temperature, as we have directly access to
its angular diameter (Davis 1979; Sasselov & Karovska 1994).
Using this method, we derive directly the distances to the four
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nearby Cepheids ηAql, W Sgr, βDor and �Car. For the remain-
ing three objects of our sample, X Sgr, ζ Gem and Y Oph, we
apply a hybrid method to derive their distances, based on pub-
lished values of their linear diameters.

After a short description of the VINCI/VLTI instrument
(Sect. 2), we describe the sample Cepheids that we selected
(Sect. 3). In Sects. 4 and 5, we report our new observations
as well as reprocessed measurements of ζ Gem retrieved from
the FLUOR/IOTA instrument archive. Section 6 is dedicated
to the computation of the corresponding angular diameter val-
ues, taking into account the limb darkening and the bandwidth
smearing effects. In Sects. 7 and 8, we investigate the applica-
tion of the BW method to our data, and we derive the Cepheid
distances.

We will discuss the consequences of these results for the
calibration of the Period-Radius (P–R), Period-Luminosity (P–
L) and Barnes-Evans relations of the Cepheids in forthcoming
papers (Papers II and III).

2. Instrumental setup

The European Southern Observatory’s Very Large Telescope
Interferometer (Glindemann et al. 2000) is in operation on
Cerro Paranal, in Northern Chile since March 2001. For
the observations reported in this paper, the beams from two
Test Siderostats (0.35 m aperture) or two Unit Telescopes
(8 m aperture) were recombined coherently in VINCI, the
VLT INterferometer Commissioning Instrument (Kervella
et al. 2000, 2003a). We used a regular K band filter (λ =
2.0−2.4 µm) that gives an effective observation wavelength of
2.18 µm for the effective temperature of typical Cepheids (see
Sect. 6.4 for details). Three VLTI baselines were used for this
program: E0-G1, B3-M0 and UT1-UT3 respectively 66, 140
and 102.5 m in ground length. Figure 1 shows their positions
on the VLTI platform.

3. Selected sample of Cepheids

Despite their brightness, Cepheids are located at large dis-
tances, and the H satellite (Perryman et al. 1997)
could only obtain a limited number of Cepheid distances with a
relatively poor precision. If we exclude the peculiar first over-
tone Cepheid αUMi (Polaris), the closest Cepheid is δ Cep, lo-
cated at approximately 250 pc (Mourard et al. 1997; Nordgren
et al. 2000). As described by Davis (1979) and Sasselov &
Karovska (1994), it is possible to derive directly the distance
to the Cepheids for which we can measure the amplitude of
the angular diameter variation. Even for the nearby Cepheids,
this requires an extremely high resolving power, as the largest
Cepheid in the sky, �Car, is only 0.003′′ in angular diameter.
Long baseline interferometry is therefore the only technique
that allows us to resolve these objects. As a remark, the medium
to long period Cepheids (D ≈ 200 D�) in the Large Magellanic
Cloud (LMC) (d ≈ 55 kpc) are so small (θ ≈ 30 µas) that they
would require a baseline of 20 km to be resolved in the K band
(5 km in the visible). However, such a measurement is highly
desirable, as it would provide a precise geometrical distance to
the LMC, a critical step in the extragalactic distance ladder.

Fig. 1. Layout of the three baselines used for the VINCI/VLTI
Cepheids observations, UT1-UT3 (102.5 m), E0-G1 (66 m) and B3-
M0 (140 m).

Mourard (1996) has highlighted the capabilities of the
VLTI for the observation of nearby Cepheids, as it provides
long baselines (up to 202 m) and thus a high resolving power.
Though they are supergiant stars, the Cepheids are very small
objects in terms of angular size. A consequence of this is
that the limit on the number of interferometrically resolvable
Cepheids is not set by the size of the light collectors, but by
the baseline length. From photometry only, several hundred
Cepheids can produce interferometric fringes using the VLTI
Auxiliary Telescopes (1.8 m in diameter). However, in order to
measure accurately their size, one needs to resolve their disk
to a sufficient level. Kervella (2001a) has compiled a list of
more than 30 Cepheids that can be measured from Paranal us-
ing the VINCI and AMBER (Petrov et al. 2000) instruments.
Considering the usual constraints in terms of sky coverage, lim-
iting magnitude and accessible resolution, we have selected
seven bright Cepheids observable from Paranal Observatory
(latitude λ = −24 deg): X Sgr, ηAql, W Sgr, βDor, ζ Gem,
Y Oph and � Car. The periods of these stars cover a wide range,
from 7 to 35.5 days. This coverage is important to properly con-
strain the P–R and P–L relations. To estimate the feasibility of
the observations, the angular diameters of these stars were de-
duced from the BW studies by Gieren et al. (1993). For ζ Gem
and ηAql, previously published direct interferometric measure-
ments by Nordgren et al. (2000), Kervella et al. (2001b) and
Lane et al. (2002) already demonstrated the feasibility of the
observations. The relevant parameters of the seven Cepheids of
our sample, taken from the literature, are listed in Table 1.

4. Interferometric data processing

4.1. Coherence factors

We used a modified version (Kervella et al. 2003c) of the stan-
dard VINCI data reduction pipeline, whose general principle
is based on the original algorithm of the FLUOR instrument
(Coudé du Foresto et al. 1997, 1998a). The VINCI/VLTI com-
missioning data we used for this study are publicly available
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Table 1. Relevant parameters of the observed sample of Cepheids, sorted by increasing period.

X Sgr η Aql W Sgr β Dor ζ Gem Y Oph � Car
HD 161592 HD 187929 HD 164975 HD 37350 HD 52973 HD 162714 HD 84810

mV
a 4.581 3.942 4.700 3.731 3.928 6.164 3.771

mK
b 2.56 1.966 2.82 1.959 2.11 2.682 1.091

Sp. Type F5-G2II F6Ib-G4Ib F4-G2Ib F4-G4Ia-II F7Ib-G3Ib F8Ib-G3Ib F6Ib-K0Ib
π (mas)c 3.03 ± 0.94 2.78 ± 0.91 1.57 ± 0.93 3.14 ± 0.59 2.79 ± 0.81 1.14 ± 0.80 2.16 ± 0.47

Min Teff (K) 5670 5400 5355 5025 5150
Mean Teff (K)d 6150 5870 5769 5490 5430 5300 5090
Max Teff (K) 6820 6540 6324 6090 5750
Min log g 1.86 1.25 1.72 1.60
Mean log ge 2.14 1.49 1.82 1.83 1.50 1.50 1.50
Max log g 2.43 1.73 2.02 2.06
[M/H]e 0.04 0.05 −0.01 −0.01 0.04 0.05 0.30

T0 (JD-2.452 × 106) f 723.9488 519.2477 726.8098 214.2153 210.7407 715.4809 290.4158
P (days)g 7.013059 7.176769 7.594904 9.842425 10.150967 17.126908 35.551341

Intensity profilesh

a1 +0.7594 +0.8816 +0.8002 +0.7969 +0.8713 +0.8549 +0.8500
a2 −0.4530 −0.7418 −0.5135 −0.4596 −0.6536 −0.5602 −0.4991
a3 +0.0347 +0.3984 +0.1583 +0.1341 +0.3283 +0.2565 +0.2113
a4 +0.0751 −0.0778 +0.0109 +0.0082 −0.0610 −0.0437 −0.0340

a mV from Barnes et al. (1987) for X Sgr, from Barnes et al. (1997) for ηAql, from Moffett & Barnes (1984) for W Sgr and ζ Gem, from
Berdnikov & Turner (2001) for β Dor and � Car, and from Coulson & Caldwell (1985) for Y Oph.

b mK from Welch et al. (1984) for X Sgr, and W Sgr, from Laney & Stobie (1992) for βDor, Y Oph, and �Car, from Ducati et al. (2001) for
ζ Gem, from Barnes et al. (1997) for ηAql.

c Parallaxes from the H catalogue (Perryman et al. 1997).
d From Kiss & Szatmàry (1998) for ζ Gem and ηAql, Bersier et al. (1997) for W Sgr, and Pel (1978) for X Sgr and βDor.
e From Andrievsky et al. (2002), Cayrel de Strobel et al. (1997, 2001), and Pel (1978), except for log g of Y Oph.
f Reference epoch T0 values have been computed near the dates of the VINCI observations, from the values published by Szabados (1989a).
g P values from Szabados (1989a). The periods of ηAql, ζ Gem and W Sgr are known to evolve. The values above correspond to the T0

chosen for these stars.
h Four-parameters intensity profiles from Claret (2000) in the K band, assuming a microturbulence velocity of 4 km s−1 and the average

values of Teff and log g.

through the ESO Archive, and result from two proposals of our
group, that were accepted for ESO Periods 70 and 71.

The goal of the raw data processing is to extract the value of
the modulated power contained in the interferometric fringes.
This value is proportional to the squared visibility V2 of the
source on the observation baseline, which is in turn directly
linked to the Fourier transform of the light distribution of the
source through the Zernike-Van Cittert theorem.

One of the key advantages of VINCI is to use single-mode
fibers to filter out the perturbations induced by the turbulent at-
mosphere. The wavefront that is injected in the fibers is only the
mode guided by the fiber (Gaussian in shape, see Ruilier 1999
or Coudé du Foresto 1998b for details). The atmospherically
corrupted part of the wavefront is not injected into the fibers
and is lost into the cladding. Due to the temporal fluctuations
of the turbulence, the injected flux changes considerably dur-
ing an observation. However, VINCI derives two photometric
signals that can be used to subtract the intensity fluctuations
from the interferometric fringes and normalize them con-
tinuously. The resulting calibrated interferograms are practi-
cally free of atmospheric corruption, except the piston mode

(differential longitudinal delay of the wavefront between the
two apertures) that tends to smear the fringes and affect their
visibility. Its effect is largely diminished by using a sufficiently
high scanning frequency, as was the case for the VINCI obser-
vations.

After the photometric calibration has been achieved, the
two interferograms from the two interferometric outputs of the
VINCI beam combiner are subtracted to remove the residual
photometric fluctuations. As the two fringe patterns are in per-
fect phase opposition, this subtraction removes a large part
of the correlated fluctuations and enhances the interferomet-
ric fringes. Instead of the classical Fourier analysis, we imple-
mented a time-frequency analysis (Ségransan et al. 1999) based
on the continuous wavelet transform (Farge 1992). In this ap-
proach, the projection of the signal is not onto a sine wave
(Fourier transform), but onto a function, i.e. the wavelet, that
is localised in both time and frequency. We used as a basis the
Morlet wavelet, a gaussian envelope multiplied by a sine wave.
With the proper choice of the number of oscillations inside
the gaussian envelope, this wavelet closely matches a VINCI
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interferogram. It is therefore very efficient at localizing the sig-
nal in both time and frequency.

The differential piston corrupts the amplitude and the shape
of the fringe peak in the wavelet power spectrum. A selection
based on the shape of fringe peak in the time-frequency do-
main is used to remove “pistonned” and false detection inter-
ferograms. Squared coherence factors µ2 are then derived by
integrating the wavelet power spectral density (PSD) of the
interferograms at the position and frequency of the fringes.
The residual photon and detector noise backgrounds are re-
moved by making a least squares fit of the PSD at high and low
frequency.

4.2. Calibrators

The calibration of the Cepheids’ visibilities was achieved us-
ing well-known calibrator stars that have been selected in the
Cohen et al. (1999) catalogue, with the exception of ε Ind. This
dwarf star was measured separately (Ségransan et al. 2004) and
used to calibrate one of the ηAql measurements. The angular
diameters of 39 Eri A, HR 4050 and HR 4546 (which belong to
the Cohen et al. 1999 catalogue) were also measured separately,
as these stars appeared to give a slightly inconsistent value of
the interferometric efficiency.

For 39 Eri A and HR 4546, the measured angular diame-
ters we find are θUD = 1.74 ± 0.03 and 2.41 ± 0.04 mas, re-
spectively. These measured values are only 2σ lower than the
Cohen et al. (1999) catalogue values of θUD = 1.81 ± 0.02 and
2.53 ± 0.04 mas. A possible reason for this difference could
be the presence of faint, main sequence companions in orbit
around these two giant stars. The additional contribution of
these objects would bias the diameter found by spectrophotom-
etry towards larger values, an effect consistent with what we
observe. For HR 4050, we obtained θUD = 5.18±0.05 mas, only
+1σ away from the catalogue value of θUD = 5.09± 0.06 mas.
The characteristics of the selected calibrators are listed in
Table 2. The limb-darkened disk (LD) angular diameters of
these stars were converted into uniform disk values using linear
coefficients taken from Claret et al. (1995). As demonstrated by
Bordé et al. (2002), the star diameters in the Cohen et al. (1999)
list have been measured very homogeneously to a relative pre-
cision of approximately 1% and agree well with other angular
diameter estimation methods.

The calibrators were observed soon before and after the
Cepheids, in order to verify that the interferometric efficiency
(IE) has not changed significantly during the Cepheid obser-
vation itself. In some cases, and due to the technical nature
of commissioning observations, part of the Cepheid observa-
tions could not be bracketed, but only immediately preceded
or followed by a calibrator. However, the stability of the IE
has proved to be generally very good, and we do not ex-
pect any significant bias from these single-calibrator observa-
tions. Some observations included several calibrators to allow a
cross-check of of their angular sizes. The calibrators were cho-
sen as close as possible in the sky to our target Cepheids, in or-
der to be able to observe them with similar airmass. This selec-
tion has taken into account the constraints in terms of limiting
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Fig. 2. Average wavelets power spectral density of 302 interferograms
obtained on X Sgr on JD = 2 452 768.8462. No background or bias
is present. The integration of the fringes modulated power is done
between 2000 and 8000 cm−1.

magnitude and sky coverage imposed by the VLTI siderostats
and delay lines. The IE was computed from the coherence
factor measurements obtained on the calibrators, taking into
account the bandwidth smearing effect (see Sect. 6.4) and a
uniform disk angular diameter model. This calibration process
yielded the final squared visibilities listed in Tables 3 to 9.

5. Data quality

5.1. General remarks

Due to the fact that we used two types of light collectors
(siderostats and UTs) and several baselines (from 66 to 140 m
in ground length), the intrinsic quality of our data is relatively
heterogeneous. In this section, we discuss briefly the charac-
teristics of our observations of each target. One particularity of
our measurements is that they have all been obtained during
the commissioning period of the VLTI, during which technical
tasks were given higher priority. In particular, the long baseline
B3-M0 was only available during a few months over the two
years of operations of the VLTI with VINCI. The UT1-UT3 ob-
servations were executed during two short commissioning runs
and it was not possible to obtain more than one or two phases
for the observed stars (βDor and ζ Gem). However, the very
large SNR values provided by the large aperture of the UTs,
even without high-order adaptive optics, gave high-precision
visibility measurements.

The VINCI processing pipeline produces a number of out-
puts to the user for the data quality control, including in partic-
ular the average wavelet power spectral density (WPSD) of the
processed interferograms. This is an essential tool to verify that
no bias is present in the calibrated and normalized fringe power
peak. Figure 2 shows the average WPSD of a series of 302
interferograms obtained on X Sgr. No bias is present, and the
residual background is very low. The power integration being
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Table 2. Relevant parameters of the calibrators.

Name mV mK Sp. Type Teff(K) log g π (mas)a θLD(mas)b θUD(mas)c

χ Phe HD 12524 5.16 1.52 K5III 3780 1.9 8.76 ± 0.64 2.77 ± 0.032 2.69 ± 0.031
39 Eri A HD 26846 4.90 2.25 K3III 4210 2.2 15.80 ± 0.95 1.79 ± 0.031∗ 1.74 ± 0.030∗

ε Ret HD 27442 4.44 1.97 K2IVa 4460 2.3 54.84 ± 0.50 1.95 ± 0.049 1.90 ± 0.048
HR 2533 HD 49968 5.69 2.10 K5III 3780 1.9 6.36 ± 0.92 1.93 ± 0.020 1.87 ± 0.019
HR 2549 HD 50235 5.00 1.39 K5III 3780 1.9 3.60 ± 0.56 2.25 ± 0.036 2.18 ± 0.035
γ2 Vol HD 55865 3.77 1.52 K0III 4720 2.6 23.02 ± 0.69 2.50 ± 0.060 2.44 ± 0.059
6 Pup HD 63697 5.18 2.62 K3III 4210 2.2 12.87 ± 0.71 1.88 ± 0.039 1.83 ± 0.038
HR 3046 HD 63744 4.70 2.31 K0III 4720 2.6 14.36 ± 0.48 1.67 ± 0.025 1.63 ± 0.024
HR 4050 HD 89388 3.38 0.60 K3IIa 4335 2.3 4.43 ± 0.49 5.32 ± 0.050∗ 5.18 ± 0.048∗

HR 4080 HD 89998 4.83 2.40 K1III 4580 2.5 16.26 ± 0.56 1.72 ± 0.020 1.68 ± 0.019
HR 4526 HD 102461 5.44 1.77 K5III 3780 1.9 3.97 ± 0.61 3.03 ± 0.034 2.94 ± 0.033
HR 4546 HD 102964 4.47 1.56 K3III 4210 2.2 7.03 ± 0.72 2.48 ± 0.036∗ 2.41 ± 0.035∗

HR 4831 HD 110458 4.67 2.28 K0III 4720 2.6 17.31 ± 0.65 1.70 ± 0.018 1.66 ± 0.018
χ Sco HD 145897 5.25 1.60 K3III 4210 2.2 7.43 ± 0.91 2.10 ± 0.023 2.04 ± 0.022
70 Aql HD 196321 4.90 1.21 K5II 3780 1.9 1.48 ± 0.91 3.27 ± 0.037 3.17 ± 0.036
7 Aqr HD 199345 5.50 2.00 K5III 3780 1.9 5.42 ± 0.99 2.14 ± 0.024 2.08 ± 0.023
ε Ind HD 209100 4.69 2.18 K4.5V 4580 4.5 275.79 ± 0.69 1.89 ± 0.051∗ 1.84 ± 0.050∗

λGru HD 209688 4.48 1.68 K3III 4210 2.2 13.20 ± 0.78 2.71 ± 0.030 2.64 ± 0.029
HR 8685 HD 216149 5.41 1.60 M0III 3660 1.4 2.95 ± 0.69 2.07 ± 0.021 2.01 ± 0.020

a Parallaxes from the H catalogue (Perryman et al. 1997).
b Catalogue values from Cohen et al. (1999), except for ε Ind, HR 4050, HR 4546 and 39 Eri A.
c Linear limb darkening coefficients factors from Claret et al. (1995).
∗ The angular diameters of ε Ind, HR 4050, HR 4546 and 39 Eri A have been measured separately with VINCI.

done between 2000 and 8000 cm−1, the complete modulated
power of the fringes is taken into account without bias.

5.2. X Sgr, W Sgr and Y Oph

X Sgr was observed 8 times on the B3-M0 baseline (140 m
ground length), using exclusively the two 0.35 m Test
Siderostats (TS). The projected baseline length varied between
118.4 and 139.7 m, and the observed squared visibilities were
confined between V2 = 56.9 and 71.1%. Thanks to its decli-
nation of δ = −28 deg, X Sgr culminates almost at zenith over
Paranal (−24 deg), and all the observations were obtained at
very low airmasses. It is located on the sky near two other
Cepheids of our sample, Y Oph and W Sgr, and these three
stars share the same calibrator, χ Sco. The average signal to
noise ratio (SNR) was typically 2 to 5 on the photometric out-
puts of VINCI, and 4 to 6 on the interferometric channels, for a
constant fringe frequency of 242 Hz. A total of 4977 interfero-
grams were processed by the pipeline. The same remarks apply
to W Sgr and Y Oph, as they have almost the same magnitude
and similar angular diameters. The number of processed inter-
ferograms for these two stars was 4231 and 2182, respectively,
during 9 and 4 observing sessions.

5.3. ηAql

ηAql was observed once on the E0-G1 baseline (66 m) and
10 times on the B3-M0 baseline (140 m ground length). The
total number of processed interferograms is 5584. The SNRs

were typically 4 and 7 on the photometric and interferomet-
ric outputs at a fringe frequency of 242 to 272 Hz. Due to its
northern declination (δ = +1 deg) and to the limits of the TS, it
was not possible to observe ηAql for more than two hours per
night, therefore limiting the number of interferograms and the
precision of the measurements.

5.4. βDor

βDor is a difficult target for observation with the TS, as it is
partially hidden behind the TS periscopes that are used to di-
rect the light into the VLTI tunnels. This causes a partial vi-
gnetting of the beams and therefore a loss in SNR. The data
from the TS are thus of intermediate quality, considering the
brightness of this star. It is located at a declination of −62 deg,
relatively close to �Car, and therefore these two stars share
some calibrators. In addition to the 5 observations with the TS,
four measurements were obtained during three commissioning
runs on the UT1-UT3 baseline. A total of 8129 interferograms
were processed, of which 5187 were acquired with the 8 m Unit
Telescopes (96 min spread over four nights were spent on βDor
using UT1 and UT3).

5.5. ζ Gem

At a declination of +20 deg, ζ Gem is not accessible to the TS
due to a mechanical limitation. This is the reason why this star
was observed only on two occasions with UT1 and UT3, for
a total of 3857 interferograms, obtained during 41 min on the
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Fig. 3. Squared visibilities obtained on �Car on JD = 2 452 742.712
(dashed line) and 2 452 763.555 (solid line), respectively at pulsation
phases 0.722 and 0.308. The two UD visibility models correspond to
θUD = 2.801 and 3.075 mas, and take the bandwidth smearing effect
into account. The first minimum of the visibility function (that never
goes down to zero) occurs for baselines of approximately 199 and
181 m, for an effective wavelength of 2.18 µm.

target. The average on-source SNRs were typically 50 for the
interferometric channels and 30 for the photometric signals, at
a fringe frequency of 694 Hz.

The data obtained using the FLUOR/IOTA instrument are
described in Kervella et al. (2001b). They were reprocessed us-
ing the latest release of the FLUOR software that includes a
better treatment of the photon shot noise than the 2001 version.
As the baseline of IOTA is limited to 38 m, the visibility of the
fringes is very high, and the precision on the angular diameter
is reduced compared to the 102.5 m baseline UT1-UT3.

5.6. �Car

As for βDor, the observation of �Car (δ = −62 deg) is made
particularly difficult by the vignetting of the TS beams. Thanks
to its brightness (K ≈ 1) the SNRs are 15–20 on the interfer-
ometric channels, and 10–15 on the photometric signals, us-
ing the TS and a fringe frequency of 242 Hz. One observation
was obtained on the E0-G1 baseline (66 m ground length), and
19 measurements on the B3-M0 baseline. �Car is the most
observed star in our sample, with a total of 22 226 processed
interferograms. Its average diameter of approximately 3 mas
makes it an ideal target for observations with baselines of 100
to 200 m. On the B3-M0 baseline, we achieved projected base-
lines of 89.7 to 135.0 m, corresponding to V2 values of 8 to
42%. This range is ideal to constrain the visibility model and
derive precise values of the angular diameter.

Figure 3 shows the squared visibility points obtained at two
phases on �Car. The change in angular diameter is clearly vis-
ible. Thanks to the variation of the projected baseline on sky,
we have sampled a segment of the visibility curve.
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Fig. 4. Average intensity profiles computed from the four-parameter
approximations of Claret (2000) for X Sgr (thin line) and �Car (thick
line), using the parameters listed in Table 1.

6. Angular diameters

The object of this section is to derive the angular diameters of
the Cepheids as a function of their pulsational phase. We dis-
cuss the different types of models that can be used to compute
the angular diameter from the squared visibility measurements.

6.1. Uniform disk angular diameters

This very simple, rather unphysical model is commonly used
for interferometric studies as it is independent of any stellar
atmosphere model. The relationship between the visibility V
and the uniform disk angular diameter (UD) is:

V(B, θUD) =
∣∣∣∣∣2J1(x)

x

∣∣∣∣∣ (1)

where x = πB θUD/λ is the spatial frequency. This function can
be inverted numerically to retrieve the uniform disk angular
diameter θUD.

While the true stellar light distributions depart significantly
from the UD model, the UD angular diameters θUD given in
Tables 3 to 9 have the advantage that they can easily be con-
verted to LD values using any stellar atmosphere model. This
is achieved by computing a conversion factor θLD/θUD from the
chosen intensity profile (see e.g. Davis et al. 2000 for details).

6.2. Static atmosphere intensity profile

The visibility curve shape before the first minimum is almost
impossible to distinguish between a uniform disk (UD) and
limb darkened (LD) model. Therefore, it is necessary to use
a model of the stellar disk limb darkening to deduce the pho-
tospheric angular size of the star, from the observed visibility
values. The intensity profiles that we chose were computed by
Claret (2000), based on model atmospheres by Kurucz (1992).
They consist of four-parameter approximations to the function
I(µ)/I(1), where µ = cos θ is the cosine of the azimuth of a
surface element of the star. They are accurate approximations
of the numerical results from the ATLAS modeling code. The
analytical expression of these approximations is given by:

I(µ)/I(1) = 1 −
4∑

k=1

ak

(
1 − µ k

2

)
. (2)

The ak coefficients are tabulated by Claret (2000) for a wide
range of stellar parameters (Teff, log g,...) and photometric
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bands (U to K). The ak values for each Cepheid are given in
Table 1 for the K band, and the intensity profiles I(µ)/I(1) of
X Sgr and �Car are shown in Fig. 4.

The limb darkening is directly measurable by interferom-
etry around the first minimum of the visibility function, as
demonstrated by several authors on giant stars (Quirrenbach
et al. 1996; Wittkowski et al. 2001). Unfortunately, even for
�Car observed in the K band, this requires a baseline of more
than 180 m that was not available for the measurements re-
ported here. It is intended in the near future to measure directly
the LD of a few nearby Cepheids, using the shorter wavelength
bands of AMBER (Petrov et al. 2000) and the longest baselines
of the VLTI (up to 202 m).

6.3. Changes of limb darkening with phase

As shown by Marengo et al. (2002), the atmosphere of the
Cepheids departs from that of a non-variable giant with identi-
cal Teff and logg, due in particular to the presence of energetic
shock waves at certain phases of the pulsation.

However, this effect is enhanced at visible wavelengths
compared to the infrared, and appears to be negligible in the
case of the VINCI observations. Marengo et al. (2003) have de-
rived in the H band a relative variation of the limb darkening
coefficient k = θUD/θLD of only 0.2%. This is below the pre-
cision of our measurements and is neglected in the rest of this
paper. Furthermore, the VINCI/VLTI measurement wavelength
being longer (2.18µm) than the H band, the LD correction is
even smaller, as is its expected variation.

From the results of Marengo et al. (2003) it appears clearly
that the interferometers operating at infrared wavelengths are
ideally suited for Cepheid measurements that aim at calibrating
the P–R and P–L relations. On the other hand, as pointed out
by these authors, the visible wavelength interferometers should
be favored to study the dynamical evolution of the atmosphere
(including the limb darkening) during the pulsation. The geo-
metrical determination of the pulsation parallax is almost inde-
pendant of the adopted atmosphere model in the K band, while
this is not the case at shorter wavelengths.

6.4. Visibility model and limb darkened angular
diameters

The VINCI instrument bandpass corresponds to the K band
filter, transparent between λ = 2.0 and 2.4 µm. An important
effect of this relatively large spectral bandwidth is that several
spatial frequencies are simultaneously observed by the interfer-
ometer. This effect is known as bandwidth smearing (Kervella
et al. 2003b).

To account for the bandwidth smearing, the model visibil-
ity is computed for regularly spaced wavenumber spectral bins
over the K band, and then integrated to obtain the model vis-
ibility. In this paper, we assume that the limb darkening law
does not change over the K band. This is reasonable for a hot
and compact stellar atmosphere, but is also coherent with the
range of visibilities measured on the Cepheids of our sam-
ple. If necessary, this computation can easily be extended to
a wavenumber dependant I(µ, σ) intensity profile. Following

Davis et al. (2000), using a Hankel integral, we can derive the
visibility law V(B, θLD, σ) from the intensity profile:

V =
1
A

∫ 1

0
I(µ)J0

(
πBσθLD

√
1 − µ2

)
µ dµ (3)

where σ is the wavenumber:

σ = 1/λ (4)

and A is a normalization factor:

A =
∫ 1

0
I(µ)µ dµ. (5)

The integral of the binned squared visibilities is computed nu-
merically over the K band and gives the model V2 for the pro-
jected baseline B and the angular diameter θLD through the
relation:

V2(θLD, B) =
∫

K
[V(B, θLD, σ) T (σ)]2 dσ (6)

where T (σ) is the normalized instrumental transmission
defined so that∫

K
T (σ) dσ = 1. (7)

We computed a model of T (σ) by taking into account the in-
strumental transmission of VINCI and the VLTI. It was first
estimated by considering all known factors (filter, fibers, at-
mospheric transmission,...) and then calibrated on sky based
on several observations of bright stars with the 8 meter UTs
(see Kervella et al. 2003b for more details). This gives, for
our sample of Cepheids, a measurement wavelength of 2.179±
0.003 µm. The variation of effective temperature between the
stars of our sample and over the pulsation does not change this
value by more than ±0.001 µm. The uncertainty on the effec-
tive wavelength of the measurement translates to a 0.15% un-
certainty on the measured angular diameters. Considering the
level of the other sources of error (statistical and systematic),
the effect on our angular diameter results is negligible.

The V2(θLD, B) model is adjusted numerically to the ob-
served (B,V2) data using a classical χ2 minimization process to
derive θLD. A single angular diameter is derived per observation
session, the fit being done directly on the set of V2 values ob-
tained during the session. The systematic and statistical errors
are considered separately in the fitting procedure, to estimate
the contribution of the uncertainty of the calibrator diameter on
the final error bar.

Each observation session was generally executed in less
than 3 h, a short time compared to the pulsation periods of the
Cepheids of our sample. Therefore, we do not expect any phase
induced smearing from this averaging.

6.5. Measured angular diameters

The derived angular diameters are given in Tables 3 to 9 for
the seven Cepheids of our sample. Two error bars are given for
each angular diameter value:

– one statistical uncertainty, computed from the dispersion of
the V2 values obtained during the observation;
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– one systematic uncertainty defined by the error bars on the
calibrator stars a priori angular sizes.

While the statistical error can be diminished by repeatedly ob-
serving the target, the systematic error is not reduced by aver-
aging measurements obtained using the same calibrator.

The reference epochs T0 and periods P for each Cepheid
are given in Table 1. N is the number of batches (500 in-
terferograms) recorded during the corresponding observing
session. For each angular diameter, the statistical and sys-
tematic calibration errors are given separately, except for the
FLUOR/IOTA measurements of ζ Gem, for which the system-
atic calibration error is negligible compared to the statistical
uncertainty.

7. Linear diameter curves

For each star we used radial velocity data found in the lit-
erature. Specifically, we collected data from Bersier (2002)
for ηAql, �Car, and βDor; from Bersier et al. (1994) for
ζ Gem; from Babel et al. (1989) for W Sgr. All these data have
been obtained with the CORAVEL radial velocity spectro-
graph (Baranne et al. 1979). We also obtained data from Evans
& Lyons (1986) for Y Oph and from Wilson et al. (1989) for
X Sgr.

In theory, the linear diameter variation could be determined
by direct integration of pulsational velocities (within the as-
sumption that the τ = 1 photosphere is comoving with the at-
mosphere of the Cepheid during its pulsation). However these
velocities are deduced from the measured radial velocities by
the use of a projection factor p. The Cepheid’s radii determined
from the BW method depend directly from a good knowledge
of p. Sabbey et al. (1995) and Krockenberger et al. (1997) have
studied in detail the way to determine the p-factor. We used a
constant projection factor p = 1.36 in order to transform the ra-
dial velocities into pulsation velocities. Burki et al. (1982) have
shown that this value is appropriate for the radial velocity mea-
surements that we used.

8. Cepheids parameters

8.1. Angular diameter model fitting and distance
measurement

From our angular diameter measurements, we can derive both
the average linear diameter and the distance to the Cepheids.
This is done by applying a classical χ2 minimization algorithm
between our angular diameter measurements and a model of
the star pulsation. The minimized quantity with respect to the
chosen model is

χ2 =
∑

i

(θLD observ(φi) − θLD model(φi))2

σobserv(φi)2
(8)

where φi is the phase of measurement i. The expression of
θLD model(φi) is defined using the following parameters:

– the average LD angular diameter θLD (in mas);
– the linear diameter variation ∆D(φi) (in D�);

– the distance d to the star (in pc).

The resulting expression is therefore:

θLD model(φi) = θLD + 9.305

(
∆D(φi)

d

)
[mas]. (9)

As ∆D(φi) is known from the integration of the radial velocity
curve (Sect. 7), the only variable parameters are the average
LD angular diameter θLD and the distance d. From there, three
methods can be used to derive the distance d, depending on
the level of completeness and precision of the angular diameter
measurements:

– Constant diameter fit (order 0): the average linear diam-
eter D of the star is supposed known a priori from previ-
ously published BW measurements or P–R relations (see
Sect. 8.2). We assume here that ∆D(φ) = 0. The only re-
maining variable to fit is the distance d. This is the most
basic method, and is useful as a reference to assess the level
of detection of the pulsational diameter variation with the
other methods.

– Variable diameter (order 1): we still consider that the av-
erage linear diameter D of the star is known a priori, but we
include in our model the radius variation derived from the
integration of the radial velocity curve. This method is well
suited when the intrinsic accuracy of the angular diameter
measurements is too low to measure precisely the pulsation
amplitude (ζ Gem, X Sgr and Y Oph). The distance d is the
only free parameter for the fit.

– Complete fit (order 2): the average LD angular diame-
ter θLD and the distance d are both considered as vari-
ables and adjusted simultaneously to the angular diame-
ter measurements. In the fitting process, the radius curve is
matched to the observed pulsation amplitude. Apart from
direct trigonometric parallax, this implementation of the
BW method is the most direct way of measuring the dis-
tance and diameter of a Cepheid. It requires a high preci-
sion angular diameter curve and a good phase coverage. It
can be applied directly to our ηAql, W Sgr, βDor and �Car
measurements.

8.2. Published linear diameter values

In this section, we survey the existing linear diameter determi-
nations for the Cepheids of our sample, in order to apply the
order 0 and 1 methods to our observations.

A large number of BW studies have been published, using
both visible and infrared wavelength observations. For ζ Gem
and ηAql, the pulsation has been resolved using the Palomar
Testbed Interferometer (Lane et al. 2000, 2002), thererefore
giving a direct estimate of the diameter and distance of these
stars. Table 10 gives a list of the existing diameter estimates for
the Cepheids of our sample from the application of the classical
BW method (“B-W” section of the table).

From the many different P–R relations available, we chose
the Gieren et al. (1998) version, as it is based on infrared colors
for the determination of the temperature of the stars. Compared
to visible colors, the infrared colors give a much less dispersed
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Table 11. Order 0. Cepheid average angular diameters and distances
derived from the VINCI interferometric measurements, assuming a
constant diameter model (∆D = 0), The average diameter D is taken
from Gieren et al. (1998). Two error bars are given in brackets for the
angular diameter: the statistical dispersion and the calibration system-
atics. The uncertainty mentioned for the distance d is the quadratic
sum of the statistical, calibration and P–R a priori diameter errors,
the last two being systematic in nature. The three types of errors are
also reported separately in brackets. The results for � Car are men-
tioned only for completeness, but are not meant to be used for further
analysis, as our observations are inconsistent with a constant diameter
model.

Star θLD0 (mas) d0 (pc) χ2
0

X Sgr 1.471 ± 0.033[0.013 0.031] 324 ± 18[3 7 17] 0.38

η Aql 1.856 ± 0.028[0.009 0.026] 261 ± 14[1 4 14] 3.98

W Sgr 1.348 ± 0029[0.011 0.027] 376 ± 22[3 8 21] 0.90

βDor 1.926 ± 0.024[0.014 0.020] 319 ± 20[3 2 19] 1.31

ζ Gem 1.747 ± 0.061[0.025 0.056] 360 ± 25[5 12 22] 0.51

Y Oph 1.459 ± 0.040[0.023 0.033] 638 ± 50[10 14 47] 0.16

(�Car) 3.071 ± 0.012[0.004 0.011] 524 ± 49[1 2 49] 23.2

Table 12. Order 1. Cepheid angular diameters and distances, assum-
ing the average diameter D of Gieren et al. (1998). The diameter vari-
ation curve ∆D(φ) is integrated from the radial velocity curve. Only
the distance is ajusted by the fitting procedure. The error bars on d are
given as in Table 11.

Star θLD1 (mas) d1 (pc) χ2
1

X Sgr 1.461 ± 0.033[0.013 0.031] 326 ± 18[3 7 17] 1.36

η Aql 1.839 ± 0.028[0.009 0.026] 264 ± 14[1 4 14] 0.40

W Sgr 1.312 ± 0029[0.011 0.027] 386 ± 22[3 8 21] 0.42

βDor 1.884 ± 0.024[0.014 0.020] 326 ± 20[3 2 19] 0.23

ζ Gem 1.718 ± 0.061[0.025 0.056] 366 ± 25[5 12 22] 0.88

Y Oph 1.437 ± 0.040[0.023 0.033] 648 ± 51[10 15 47] 0.03

�Car 2.977 ± 0.012[0.004 0.011] 542 ± 49[1 2 49] 0.71

P–R relation. Indeed, this relation has a very good intrinsic pre-
cision of the order of 5 to 10% for the period range of our sam-
ple. Moreover, it is identical to the law determined by Laney &
Stobie (1995). The compatibility with the individual BW diam-
eter estimates is also satisfactory. The linear diameters deduced
from this P–R law are mentioned in the “E P–R” sec-
tion of Table 10. We assume these linear diameter values in the
following.

8.3. Angular diameter fitting results

The results of both constant and variable diameter fits for the
seven Cepheids of our sample are listed in Tables 11 to 13.
ηAql, W Sgr, βDor and �Car gave results for all fitting meth-
ods, while X Sgr, ζ Gem and Y Oph were limited to order 1
models. For X Sgr, the order 1 fit is less adequate than the

Table 13. Order 2. Cepheid average angular diameters and distances
determined through the application of the modified BW method. The
only input is the diameter variation curve ∆D(φ) derived from the inte-
gration of the radial velocity. The distance and average angular diam-
eter are ajusted simultaneously. The statistical and systematic errors
on d are listed separately in brackets.

Star θLD2 (mas) d2 (pc) χ2
2

ηAql 1.839 ± 0.028[0.009 0.026] 276+55
−38 [55 6

38 4] 0.43

W Sgr 1.312 ± 0.029[0.011 0.027] 379+216
−130 [216 11

130 7 ] 0.48

βDor 1.891 ± 0.024[0.014 0.020] 345+175
−80 [175 5

80 2 ] 0.25

�Car 2.988 ± 0.012[0.004 0.011] 603+24
−19 [24 3

19 2] 0.49
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Fig. 5. Order 0 model fit for X Sgr.

order 0, considering the quality of our measurements of this
star. This is shown by the fact that the χ2 is significantly higher
for the order 1 fit (1.36) than for the order 0 (0.38).

In the case of �Car, the fit of a constant diameter results in a
very high χ2 value. This means that the average diameters θUD0

and θLD0 should not be used for further analysis. The pulsation
curve of this star is not sampled uniformly by our interfero-
metric observations, with more values around the maximum
diameter. This causes the larger diameter values to have more
weight in the average diameter computation, and this produces
a significant positive bias. This remark does not apply to the
orders 1 and 2 fitting methods.

As a remark, no significant phase shift is detected at a level
of 2.5 × 10−4 (14 min of time) between the predicted radius
curve of �Car and the observed angular diameter curve. The
values of P and T0 used for the fit are given in Table 3.

Figures 5 to 11 show the best models for each star, together
with the VINCI/VLTI angular diameter measurements for the
seven Cepheids of our sample. Figure 12 gives an enlarged
view of the maximum diameter of �Car.
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Fig. 6. Order 2 model fit for ηAql. The superimposed angular diameter
variation curve (thin line) is derived from the integration of the radial
velocity curve.
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Fig. 7. Order 2 model fit for W Sgr.
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Fig. 8. Order 2 model fit for βDor.
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Fig. 9. Order 0 model fit for ζ Gem. The crosses represent the
FLUOR/IOTA data, and the two points are UT1-UT3 observations
with VINCI.
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Fig. 10. Order 1 model fit for Y Oph.
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Fig. 11. Order 2 model fit for �Car.
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Fig. 12. Detail of Fig. 11 showing the angular diameter curve of �Car
around the maximum diameter.

9. Discussion

9.1. Limb darkening of ηAql and ζ Gem

From the NPOI (Armstrong et al. 2001; Nordgren et al. 2000),
PTI (Lane et al. 2002) and VINCI/VLTI measurements, we
know the average UD angular diameters of ηAql and ζ Gem
at several effective wavelengths with high precision. Table 14
gives the angular diameter values and the corresponding wave-
lengths. Claret’s (2000) linear limb darkening parameters u
were used to compute the expected conversion factors ρ =
θLD/θUD. To read the u table, we have considered the closest pa-
rameters to the average values for ηAql and ζ Gem in Table 1,
and we computed ρ using the formula from Hanbury Brown
et al. (1974):

ρ =

√
1 − u/3

1 − 7u/15
· (10)

For the NPOI observation (λeff ≈ 0.73 µm), we have chosen an
intermediate value of u between the R and I bands.

We note that the value of θLD for ηAql that we derive for
the NPOI observation, θLD = 1.73 ± 0.04 mas, is not identi-
cal to the LD angular diameter originally given by Armstrong
et al. (2001), θLD = 1.69 ± 0.04 mas. There is a 1σ differ-
ence, that may be due to the different source of limb dark-
ening coefficient that these authors used for their modeling
(Van Hamme 1993).

The resulting θLD values for the three observations are
compatible at the 2σ level, but there is a slight trend that
points towards an underestimation of the limb darkening ef-
fect at shorter wavelengths, or alternatively its overestimation
at longer wavelengths. Considering that the limb darkening is
already small in the infrared, the first hypothesis seems more
plausible. Marengo et al. (2002, 2003) have shown that the
Cepheids limb darkening can be significantly different from
stable giant stars, particularly at visible wavelengths. This
could explain the observed difference between the 0.73µm
and K band diameters of ηAql and ζ Gem, the latter being

Table 14. Average UD angular diameter of ηAql and ζ Gem from the
litterature, and the associated conversion factor ρ = θLD/θUD from the
linear limb darkening coefficients of Claret (2000). References: (1)
Armstrong et al. (2001) and Nordgren et al. (2000), (2) Lane et al.
(2002), (3) this work.

Ref. λ (µm) θUD (mas) ρ θLD (mas)

ηAql
(1) 0.73 1.65 ± 0.04 1.048 1.73 ± 0.04
(2) 1.65 1.73 ± 0.07 1.024 1.77 ± 0.07
(3) 2.18 1.80 ± 0.03 1.021 1.84 ± 0.03

ζ Gem
(1) 0.73 1.48 ± 0.08 1.051 1.56 ± 0.08
(2) 1.65 1.61 ± 0.03 1.027 1.65 ± 0.03
(3) 2.18 1.70 ± 0.06 1.023 1.75 ± 0.06

probably closer to the true LD diameters, thanks to the lower
limb darkening in the infrared.

In the case of ηAql, another explanation could be that
the measurement at visible wavelengths is biased by the blue
companion of ηAql. However, it is 4.6 mag fainter than the
Cepheid in the V band (Böhm-Vitense & Proffitt 1985, see also
Sect. 9.2), and therefore should not contribute significantly to
the visibility of the fringes.

9.2. Binarity and other effects

As demonstrated by several authors (see Szabados 2003 for a
complete database), binarity and multiplicity are common in
the Cepheid class. Evans (1992) has observed that 29% of the
Cepheids of her sample have detectable companions.

Our sample of Cepheids contains four confirmed binary
Cepheids, out of a total of seven stars. As it is biased towards
bright and nearby Cepheids, this large fraction is an indica-
tion that many Cepheids currently believed to be single could
have undetected companions. X Sgr (Szabados 1989b), ηAql
(Böhm-Vitense & Proffitt 1985), and W Sgr (Böhm-Vitense &
Proffitt 1985; Babel et al. 1989) are confirmed members of bi-
nary or multiple systems. ζ Gem is a visual binary star (Proust
et al. 1981), but the separated companion does not contribute
to our observations. Y Oph was once suspected to be a binary
(Pel 1978), but Evans (1992) has not confirmed the companion,
and has set an upper limit of A0 on its spectral type.

The physical parameters of the companions of ηAql and
W Sgr have been derived by Böhm-Vitense & Proffitt (1985)
and Evans (1991), based on ultraviolet spectra. The latter has
derived spectral types of B9.8V and A0V, respectively. The or-
bital parameters of the binary W Sgr were computed by Babel
et al. (1989) and Albrow & Cottrell (1996). Based on IUE spec-
tra, Evans (1992) has set an upper limit of A0 on the spectral
type of the companion of X Sgr.

The difference in V magnitude between these three
Cepheids and their companions is ∆MV ≥ 4.5. The ∆MK is
even larger due to the blue color of these stars, ∆MK ≥ 5.7.
Therefore, the effect on our visibility measurements is negligi-
ble, with a potential bias of ∆V2 ≤ 0.5%. For example, this
translates into a maximum error of ±11 µas on the average
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angular diameter of ηAql, (a relative error of ±0.6%), that
is significantly smaller than our error bars (±1.5%). In the K
band, the effect of the companions of the other Cepheids is also
negligible at the precision level of our measurements. However,
the presence of companions will have to be considered for fu-
ture measurements with angular diameter precisions of a few
µas. In this respect, long-period Cepheids, such as �Car, are
more reliable, as their intrinsic brightness is larger than the
short-period pulsators, and therefore they dominate their po-
tential companions even more strongly.

Fernie et al. (1995b) have found that the amplitude of the
light curve of Y Oph has been decreasing for a few decades. A
similar behavior has been observed only on Polaris (e.g. Evans
et al. 2002). The uncertainty on our θLD measurements has not
allowed us to detect unambiguously the pulsation of this star,
but it is clearly an important target for future observations us-
ing the Auxiliary Telescopes (1.8 m) of the VLTI in order to
estimate its parameters with high precision.

Interestingly, Gieren et al. (1993) have studied the im-
pact of binary Cepheids on their determination of the period-
luminosity relation using 100 Cepheids, and they conclude that
it is negligible. This is due to the very large intrinsic luminosity
of the Cepheids that overshine by several orders of magnitude
most of the other types of stars.

10. Conclusion and perspectives

We have reported in this paper our long-baseline interfer-
ometric observations of seven classical Cepheids using the
VINCI/VLTI instrument. For four stars (ηAql, W Sgr, βDor
and �Car), we were able to apply a modified version of the
BW method, resulting in an independent estimate of their dis-
tance. For all stars, we also derived their distances from lower
order fitting methods, that use an a priori estimate of their lin-
ear diameter from the P–R relation of Gieren et al. (1998). We
would like to emphasize that the order 0/1 and order 2 error
bars are different in nature, and they should be treated differ-
ently in any further use of these results. While the order 2 error
bars can be treated as statistical (i.e. reduced by averaging),
the order 0/1 methods errors are dominated by the systematic
uncertainty introduced by the a priori estimation of the linear
radius. The respective contributions of the statistical and sys-
tematic uncertainties are given separately in Tables 11 and 12.
These values assume a constant value of the p-factor of 1.36,
and can be scaled linearly for other values.

We will use these distances in Paper II, together with pre-
viously published measurements, to calibrate the zero points
of the Period-Radius and Period-Luminosity relations. In
Paper III, we will calibrate the surface brightness–color rela-
tion, with a particular emphasis on the evolution of �Car in
this diagram over its pulsation. These three empirical relations
are of critical importance for the extragalactic distance scale.

The direct measurement of the limb darkening of nearby
Cepheids by interferometry is the next step of the interfer-
ometric study of these stars. It will allow a refined model-
ing of the atmosphere of these stars. This observation will be
achieved soon using in particular the long baselines of the VLTI
equipped with the AMBER instrument, and the CHARA array

for the northern Cepheids. Another improvement of the inter-
ferometric BW methow will come from radial velocity mea-
surements in the near infrared (see e.g. Butler & Bell 1997).
They will avoid any differential limb darkening between the in-
terferometric and radial velocity measurements, and therefore
make the resulting distances more immune to limb darkening
uncertainties.
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Table 3. VINCI/VLTI angular diameter measurements of X Sgr.

JD Stations Baseline Phase θUD (mas) θLD (mas) N χ2
red Calibrators

(m) ± stat. ± syst. ± stat. ± syst.

2 452 741.903 B3-M0 138.366 0.560 1.458 ± 0.048 ± 0.032 1.495 ± 0.049 ± 0.033 2 0.66 χ Sco
2 452 742.885 B3-M0 137.432 0.700 1.511 ± 0.058 ± 0.034 1.549 ± 0.059 ± 0.035 3 0.52 χ Sco
2 452 743.897 B3-M0 137.903 0.844 1.415 ± 0.055 ± 0.034 1.451 ± 0.057 ± 0.035 3 0.08 χ Sco
2 452 744.868 B3-M0 139.657 0.983 1.460 ± 0.051 ± 0.029 1.497 ± 0.052 ± 0.030 2 0.09 χ Sco
2 452 747.848 B3-M0 139.530 0.408 1.499 ± 0.213 ± 0.038 1.537 ± 0.219 ± 0.039 1 - χ Sco
2 452 749.832 B3-M0 139.084 0.691 1.429 ± 0.099 ± 0.034 1.465 ± 0.101 ± 0.034 2 0.35 χ Sco
2 452 766.811 B3-M0 138.853 0.112 1.393 ± 0.070 ± 0.036 1.428 ± 0.071 ± 0.037 4 0.09 χ Sco
2 452 768.877 B3-M0 128.228 0.406 1.413 ± 0.016 ± 0.028 1.449 ± 0.016 ± 0.029 6 0.62 χ Sco

Table 4. Angular diameter measurements of ηAql.

JD Stations Baseline Phase θUD (mas) θLD (mas) N χ2
red Calibrators

(m) ± stat. ± syst. ± stat. ± syst.

2 452 524.564 E0-G1 60.664 0.741 1.746 ± 0.100 ± 0.074 1.792 ± 0.103 ± 0.076 3 0.08 70 Aql
2 452 557.546 B3-M0 137.625 0.336 1.877 ± 0.098 ± 0.037 1.931 ± 0.101 ± 0.038 1 - ε Ind
2 452 559.535 B3-M0 138.353 0.614 1.806 ± 0.037 ± 0.027 1.857 ± 0.038 ± 0.027 1 - 7 Aqr, ε Ind
2 452 564.532 B3-M0 136.839 0.310 1.809 ± 0.043 ± 0.031 1.860 ± 0.045 ± 0.032 3 0.42 7 Aqr, ε Ind
2 452 565.516 B3-M0 138.495 0.447 1.871 ± 0.017 ± 0.027 1.924 ± 0.017 ± 0.028 3 0.13 7 Aqr
2 452 566.519 B3-M0 137.845 0.587 1.861 ± 0.023 ± 0.026 1.914 ± 0.024 ± 0.026 5 0.23 7 Aqr
2 452 567.523 B3-M0 137.011 0.727 1.802 ± 0.027 ± 0.030 1.853 ± 0.028 ± 0.030 2 0.62 7 Aqr
2 452 573.511 B3-M0 136.303 0.561 1.884 ± 0.053 ± 0.022 1.938 ± 0.054 ± 0.022 1 - λGru, HR 8685
2 452 769.937 B3-M0 139.632 0.931 1.647 ± 0.026 ± 0.018 1.693 ± 0.026 ± 0.018 3 0.06 χ Sco
2 452 770.922 B3-M0 139.400 0.068 1.791 ± 0.041 ± 0.027 1.842 ± 0.042 ± 0.028 3 0.15 χ Sco
2 452 772.899 B3-M0 138.188 0.343 1.880 ± 0.044 ± 0.026 1.934 ± 0.046 ± 0.027 3 0.16 7 Aqr

Table 5. Angular diameter measurements of W Sgr.

JD Stations Baseline Phase θUD (mas) θLD (mas) N χ2
red Calibrators

(m) ± stat. ± syst. ± stat. ± syst.

2 452 743.837 B3-M0 137.574 0.571 1.408 ± 0.096 ± 0.038 1.447 ± 0.099 ± 0.039 1 - χ Sco
2 452 744.915 B3-M0 137.166 0.713 1.292 ± 0.088 ± 0.034 1.327 ± 0.090 ± 0.035 2 0.04 χ Sco
2 452 749.868 B3-M0 139.632 0.365 1.262 ± 0.141 ± 0.040 1.297 ± 0.145 ± 0.041 1 - χ Sco
2 452 751.866 B3-M0 139.538 0.628 1.320 ± 0.174 ± 0.041 1.357 ± 0.179 ± 0.042 1 - χ Sco
2 452 763.888 B3-M0 131.830 0.211 1.284 ± 0.019 ± 0.029 1.319 ± 0.020 ± 0.030 4 0.73 χ Sco
2 452 764.856 B3-M0 135.926 0.339 1.355 ± 0.021 ± 0.021 1.393 ± 0.021 ± 0.022 4 0.76 χ Sco
2 452 765.880 B3-M0 132.679 0.473 1.313 ± 0.022 ± 0.025 1.349 ± 0.023 ± 0.026 4 1.43 χ Sco
2 452 767.867 B3-M0 132.637 0.735 1.208 ± 0.073 ± 0.039 1.241 ± 0.075 ± 0.040 3 0.01 χ Sco
2 452 769.914 B3-M0 120.648 0.005 1.240 ± 0.055 ± 0.034 1.274 ± 0.056 ± 0.035 2 0.33 χ Sco

Table 6. Angular diameter measurements of βDor.

JD Stations Baseline Phase θUD (mas) θLD (mas) N χ2
red Calibrators

(m) ± stat. ± syst. ± stat. ± syst.

2 452 215.795 U1-U3 89.058 0.161 1.842 ± 0.036 ± 0.074 1.896 ± 0.036 ± 0.074 3 0.03 χ Phe, γ2 Vol
2 452 216.785 U1-U3 89.651 0.261 1.954 ± 0.026 ± 0.040 2.011 ± 0.026 ± 0.040 7 0.10 γ2 Vol
2 452 247.761 U1-U3 83.409 0.408 1.921 ± 0.045 ± 0.039 1.977 ± 0.045 ± 0.039 5 0.40 ε Ret
2 452 308.645 U1-U3 75.902 0.594 1.844 ± 0.027 ± 0.071 1.897 ± 0.027 ± 0.071 5 1.01 HD 63697
2 452 567.827 B3-M0 134.203 0.927 1.793 ± 0.039 ± 0.049 1.848 ± 0.039 ± 0.049 1 - HR 2549
2 452 744.564 B3-M0 89.028 0.884 1.730 ± 0.064 ± 0.032 1.780 ± 0.064 ± 0.032 2 0.09 HR 3046, 4831
2 452 749.514 B3-M0 98.176 0.387 1.921 ± 0.106 ± 0.029 1.978 ± 0.106 ± 0.029 3 0.11 HR 3046
2 452 750.511 B3-M0 98.189 0.488 1.864 ± 0.065 ± 0.039 1.919 ± 0.065 ± 0.039 2 0.24 HR 3046
2 452 751.519 B3-M0 95.579 0.591 1.954 ± 0.169 ± 0.030 2.012 ± 0.169 ± 0.030 3 0.03 HR 3046
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Table 7. VINCI/VLTI and FLUOR/IOTA angular diameter measurements of ζ Gem. No systematic calibration error is given for FLUOR/IOTA
values (negligible compared to the statistical uncertainty). The baseline is given for the VINCI/VLTI observations (in m), while the spatial
frequency (in italic) is listed for the measurements obtained with FLUOR, expressed in cycles/arcsec.

JD Stations B, SF Phase θUD (mas) θLD (mas) N χ2
red Calibrators

± stat. ± syst. ± stat. ± syst.

2 452 214.879 U1-U3 82.423 0.408 1.677 ± 0.030 ± 0.051 1.725 ± 0.031 ± 0.052 8 0.25 39 Eri
2 452 216.836 U1-U3 72.837 0.600 1.712 ± 0.057 ± 0.067 1.760 ± 0.058 ± 0.069 6 0.28 39 Eri, γ2 Vol
2 451 527.972 IOTA-38m 84.870 0.739 1.606 ± 0.334 1.651 ± 0.343 1 - HD 49968
2 451 601.828 IOTA-38m 83.917 0.014 1.709 ± 0.086 1.795 ± 0.088 3 0.02 HD 49968
2 451 259.779 IOTA-38m 83.760 0.318 2.040 ± 0.291 2.144 ± 0.299 1 - HD 49968
2 451 262.740 IOTA-38m 84.015 0.610 1.692 ± 0.273 1.767 ± 0.281 2 0.13 HD 49968
2 451 595.863 IOTA-38m 83.790 0.427 1.391 ± 0.284 1.306 ± 0.292 2 1.72 HD 49968
2 451 602.764 IOTA-38m 85.010 0.107 1.867 ± 0.216 1.962 ± 0.222 2 0.02 HD 49968

Table 8. Angular diameter measurements of Y Oph.

JD Stations Baseline Phase θUD (mas) θLD (mas) N χ2
red Calibrators

(m) ± stat. ± syst. ± stat. ± syst.

2 452 742.906 B3-M0 139.569 0.601 1.427 ± 0.115 ± 0.034 1.472 ± 0.119 ± 0.035 2 0.10 χ Sco
2 452 750.884 B3-M0 139.057 0.067 1.380 ± 0.100 ± 0.034 1.423 ± 0.103 ± 0.035 2 0.41 χ Sco
2 452 772.831 B3-M0 139.657 0.349 1.443 ± 0.051 ± 0.025 1.488 ± 0.053 ± 0.026 3 0.22 χ Sco
2 452 782.186 B3-M0 129.518 0.168 1.402 ± 0.027 ± 0.037 1.445 ± 0.028 ± 0.038 4 0.30 χ Sco

Table 9. Angular diameter measurements of �Car.

JD Stations Baseline Phase θUD (mas) θLD (mas) N χ2
red Calibrators

(m) ± stat. ± syst. ± stat. ± syst. HR

2 452 453.498 E0-G1 61.069 0.587 2.958 ± 0.039 ± 0.102 3.054 ± 0.041 ± 0.105 4 0.01 4050
2 452 739.564 B3-M0 130.468 0.634 2.786 ± 0.073 ± 0.042 2.891 ± 0.076 ± 0.043 2 0.03 4526
2 452 740.569 B3-M0 128.821 0.662 2.879 ± 0.017 ± 0.042 2.989 ± 0.018 ± 0.044 7 0.77 4526
2 452 741.717 B3-M0 96.477 0.694 2.893 ± 0.025 ± 0.028 2.993 ± 0.026 ± 0.029 5 0.28 4526
2 452 742.712 B3-M0 99.848 0.722 2.801 ± 0.034 ± 0.042 2.899 ± 0.035 ± 0.043 5 0.09 4526
2 452 743.698 B3-M0 99.755 0.750 2.667 ± 0.071 ± 0.015 2.758 ± 0.074 ± 0.016 2 0.08 4831
2 452 744.634 B3-M0 114.981 0.776 2.698 ± 0.031 ± 0.012 2.794 ± 0.032 ± 0.013 6 0.73 4831
2 452 745.629 B3-M0 115.791 0.804 2.584 ± 0.094 ± 0.017 2.675 ± 0.097 ± 0.017 2 0.01 3046, 4546, 4831
2 452 746.620 B3-M0 116.828 0.832 2.679 ± 0.023 ± 0.039 2.775 ± 0.023 ± 0.040 5 0.65 3046, 4546
2 452 747.599 B3-M0 120.812 0.860 2.606 ± 0.122 ± 0.025 2.699 ± 0.127 ± 0.026 3 0.70 4546, 4831
2 452 749.576 B3-M0 124.046 0.915 2.553 ± 0.075 ± 0.011 2.645 ± 0.077 ± 0.012 4 1.18 4546
2 452 751.579 B3-M0 122.555 0.971 2.657 ± 0.027 ± 0.017 2.753 ± 0.028 ± 0.017 4 1.16 3046, 4831
2 452 755.617 B3-M0 112.185 0.085 2.867 ± 0.109 ± 0.013 2.970 ± 0.113 ± 0.013 1 - 4831
2 452 763.555 B3-M0 120.632 0.308 3.077 ± 0.008 ± 0.031 3.194 ± 0.009 ± 0.033 6 1.02 4546
2 452 765.555 B3-M0 119.629 0.365 3.094 ± 0.011 ± 0.031 3.212 ± 0.011 ± 0.033 6 1.19 4546
2 452 766.550 B3-M0 120.005 0.393 3.092 ± 0.011 ± 0.032 3.210 ± 0.011 ± 0.033 7 0.99 4546
2 452 768.566 B3-M0 115.135 0.450 3.075 ± 0.010 ± 0.034 3.188 ± 0.011 ± 0.035 7 0.46 4546
2 452 769.575 B3-M0 113.082 0.478 3.075 ± 0.018 ± 0.011 3.189 ± 0.018 ± 0.012 3 0.03 3046, 4831
2 452 770.535 B3-M0 121.152 0.505 3.044 ± 0.019 ± 0.009 3.160 ± 0.020 ± 0.009 2 0.20 3046, 4831
2 452 771.528 B3-M0 122.014 0.533 3.021 ± 0.017 ± 0.010 3.136 ± 0.017 ± 0.010 3 0.88 4831
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Table 10. Published linear diameter estimates, expressed in D�.

X Sgr η Aql W Sgr β Dor ζ Gem Y Oph � Car

I
Kervella et al. (2001b)∗ 63+35

−19
Lane et al. (2002) 61.8 ± 7.6 66.7 ± 7.2
Nordgren et al. (2000)∗ 69+28

−15 60+25
−14

B-W
Bersier et al. (1997) 56.0 ± 2.9 89.5 ± 13.3
Fouqué et al. (2003) 48.1 ± 1.1 201.7 ± 3.0
Krockenberger et al. (1997) 56.8 ± 2.3 69.1+5.5

−4.8
Laney & Stobie (1995) 63.5 ± 1.8 92.2 ± 3.2 180.1 ± 4.5
Moffett & Barnes (1987)a 47.8 ± 4.5 52.8 ± 3.8 60.8 ± 7.6 62.6 ± 11.5
Moffett & Barnes (1987)b 49.6 ± 4.6 54.8 ± 3.9 63.1 ± 7.8 64.9 ± 11.9
Sabbey et al. (1995)c 42.2 ± 4.1 62.7 ± 3.1 61.8 ± 3.5
Sabbey et al. (1995)d 66.6 ± 4.9 65.8 ± 3.2 64.4 ± 3.6
Sachkov et al. (1998) 74 ± 10
Taylor et al. (1997) 179.2 ± 10.4
Taylor & Booth (1998) 67.8 ± 0.7
Turner & Burke (2002) 52.6 ± 8.9 53.8 ± 1.9
Sasselov & Lester (1990) 67 ± 6 62 ± 6

M B–W (overall σ) 52.5 (11.4) 59.9 (5.7) 57.0 (3.4) 65.8 (7.2) 65.3 (9.8) 92.2 (-) 180 (-)

E P–R
Gieren et al. (1998) 51.2 ± 2.6 52.1 ± 2.7 54.4 ± 2.9 66.0 ± 3.9 67.6 ± 4.0 100.1 ± 7.3 173.1 ± 15.8

∗ ζ Gem values were derived from Kervella et al. (2001b) and Nordgren et al. (2000) using the H parallaxes. ηAql was taken from
Nordgren et al. (2000)

a Assuming a constant p–factor.
b Assuming a variable p–factor.
c Bisector method.
d Parabolic fit method.
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2.1.2 Article A&A : “II. Calibration of the period-radius and period–luminosity
relations” (2004)

L’étalonnage de la relation Période–Luminosité est l’objectif principal de notre grand pro-
gramme d’observations interférométriques de Céphéides. Il est prévu d’observer à terme 40
Céphéides par interférométrie (instruments VINCI, AMBER et FLUOR/CHARA) pour étalonner
le point zéro de la relation P–L avec une précision de 1%. Dans cet article, je présente les pre-
miers résultats obtenus à partir des mesures interférométriques existantes, notamment celles
obtenues avec l’instrument VINCI (article reproduit à la Sect. 2.1.1). Je présente également
un étalonnage original de la relation Période-Rayon, qui est d’une grande importance pour
contraindre les modèles numériques de pulsation.

Fig. 2.5 – Les télescopes UT1, UT2 et UT3 du VLT, vers l’Ouest.
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Abstract. Using our interferometric angular diameter measurements of seven classical Cepheids reported in Kervella et al.
(2004, A&A, 416, 941 – Paper I), complemented by previously existing measurements, we derive new calibrations of the
Cepheid period–radius (P–R) and period–luminosity (P–L) relations. We obtain a P–R relation of log R = [0.767±0.009] log P+
[1.091± 0.011], only 1σ away from the relation obtained by Gieren et al. (1998, ApJ, 496, 17). We therefore confirm their P–R
relation at a level of ∆(log R) = ±0.02. We also derive an original calibration of the P–L relation, assuming the slopes derived
by Gieren et al. (1998) from LMC Cepheids, αK = −3.267 ± 0.042 and αV = −2.769 ± 0.073. With a P–L relation of the form
Mλ = αλ (log P−1)+βλ, we obtain log P = 1 reference points of βK = −5.904±0.063 and βV = −4.209±0.075. Our calibration
in the V band is statistically identical to the geometrical result of Lanoix et al. (1999, MNRAS, 308, 969).

Key words. stars: variables: Cepheids – cosmology: distance scale – stars: oscillations – techniques: interferometric

1. Introduction

The period–luminosity (P–L) relation of the Cepheids is the ba-
sis of the extragalactic distance scale, but its calibration is still
uncertain at a ∆M = ±0.10 mag level. Moreover, it is not ex-
cluded that a significant bias of the same order of magnitude af-
fects our current calibration of this relation. On the other hand,
the period–radius relation (P–R) is an important constraint to
the Cepheid models (see e.g. Alibert et al. 1999).

Traditionally, there have been two ways to calibrate the
P–L relation. For Cepheids in clusters one can use main se-
quence fitting, assuming that the main sequence is similar to
that of the Pleiades. This method has been questioned how-
ever, following the release of H data (e.g., Pinsonneault
et al. 1998; but see also Pan et al. 2004; Robichon et al. 1999).
Another route to the P–L relation is the Baade-Wesselink (BW)
method where one combines photometry and radial velocity
data to obtain the distance and radius of a Cepheid. Recent
applications of the BW method to individual stars can be
found for instance in Taylor et al. (1997) and Taylor & Booth
(1998), while the calibration of the P–R and P–L relations us-
ing BW distances and radii is demonstrated in Gieren et al.
(1998, hereafter GFG98). A requirement of this method is a
very accurate measurement of the Cepheid’s effective temper-
ature at all observed phases, in order to determine the angular
diameter. Interferometry allows us to bypass this step and its
associated uncertainties by measuring directly the variation of

angular diameter during the pulsation cycle. As shown by
Kervella et al. (2004, hereafter Paper I) and Lane et al. (2002),
the latest generation of long baseline visible and infrared in-
terferometers have the potential to provide precise distances
to Cepheids up to about 1 kpc, using the interferometric
BW method (see Sect. 2).

The main goal of the present paper is to explore the ap-
plication of this technique to the calibration of the P–R and
P–L relations, and to verify that no large bias is present in the
previously published calibrations of these important relations.
Our sample is currently too limited to allow a robust determi-
nation of the P–L relation, defined as Mλ = αλ(log P − 1) + βλ,
that would include both the slope αλ and the log P = 1 refer-
ence point βλ. However, if we suppose that the slope is known
a priori from the literature, we can derive a precise calibration
of βλ. In Sect. 3, we present our determination of the P–R re-
lation using new angular diameter values from Paper I, as well
as previously published interferometric and trigonometric par-
allax measurements. Section 4 is dedicated to the calibration
of the P–L relation reference points βλ in the K and V bands.
The consequences for the LMC distance are briefly discussed
in Sect. 4.5.

2. Cepheid distances by interferometry
We have obtained angular diameter measurements for seven
Cepheids with the VLT interferometer (Kervella et al. 2004,
Paper I). These K-band measurements were made with the
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VINCI instrument (Kervella et al. 2003) fed by two 0.35 m
siderostats. Several baselines were used, ranging from 60 m
to 140 m. Our measurements, described in detail in Paper I,
have a typical precision of 1 to 3%. This is good enough to ac-
tually resolve the pulsation of several Cepheids; in other words
we can follow the change in angular diameter. We have com-
bined these measurements with radial velocity data and derived
a radius and distance for four Cepheids of our sample. For the
remaining three stars, we were able to derive their mean angu-
lar diameters, but the pulsation remained below our detection
threshold. This sample was completed by previously published
measurements obtained with other instruments.

In the present work, we have retained the limb darkened
(LD) angular diameters θLD provided by each author. Marengo
et al. (2002, 2003) have shown that the LD properties of
Cepheids can be different from those of stable stars, in partic-
ular at visible wavelengths. For the measurements obtained us-
ing the GI2T (Mourard et al. 1997) and NPOI (Nordgren et al.
2000), the LD correction is relatively large (k = θLD/θUD �
1.05), and this could be the source of a bias at a level of a 1
to 2% (Marengo et al. 2004). However, in the infrared, the cor-
rection is much smaller (k � 1.02), and the error on its absolute
value is expected to be significantly below 1%. The majority
of the Cepheid interferometric measurements was obtained in
the H and K bands (FLUOR/IOTA, PTI, VLTI/VINCI), and
we believe that the potential bias introduced on our fits is sig-
nificantly smaller than their stated error bars. The final an-
swer about the question of the limb darkening of Cepheids will
come from direct interferometric observations, that will soon
be possible with the AMBER instrument (Petrov et al. 2000)
of the VLTI.

The radial velocity data were taken from Bersier (2002).
They have been obtained with the CORAVEL spectrograph
(Baranne et al. 1979). This instrument performs a cross-
correlation of the blue part of a star’s spectrum (3600−5200 Å)
with the spectrum of a red giant. A Gaussian function is then
fitted to the resulting cross-correlation function, yielding the
radial velocity.

In Paper I, we have applied three distinct methods (orders 0,
1 and 2) to derive the distances d to seven Galactic Cepheids
from interferometric angular diameter measurements. Not all
three methods can be used to derive the distance for every star,
depending on the level of completeness and precision of the
available angular diameter measurements:

– Order 0: constant diameter model.
This is the most basic method, used when the pulsation of
the star is not detected. The average linear diameter D of the
star is supposed to be constant and known a priori, e.g. from
a previously published P–R relations (such as the relation
derived by GFG98). Knowing the linear and angular radii,
the only remaining variable to fit is the distance d.

– Order 1: variable diameter model.
We still consider that the average linear diameter of the star
is known a priori, but we include in our angular diameter
model the radius variation curve derived from the integra-
tion of the radial velocity of the star. This method is well
suited when the intrinsic accuracy of the angular diameter

measurements is too low to measure precisely the pulsa-
tion amplitude. The distance d is the only free parameter
for the fit.

– Order 2: interferometric BW method.
The interferometric variant of the BW method (Davis 1979;
Sasselov et al. 1994) combines the angular amplitude of
the pulsation measured by interferometry and the linear dis-
placement of the stellar photosphere deduced from the in-
tegration of the radial velocity curve to retrieve the distance
of the star geometrically. This method is also called “paral-
lax of the pulsation”. In the fitting process, the radius curve
is matched to the observed angular diameter curve, using
both the distance and linear diameter as variables. Apart
from direct trigonometric parallax, this method is the most
direct way of measuring the distance of a Cepheid. It re-
quires a high precision angular diameter curve and a good
phase coverage.

The order 0/1 methods, on one hand, and 2 on the other hand,
are fundamentally different in their assumptions, and the dis-
tance estimates are affected by different kinds of errors. While
the order 2 method errors are due to the interferometric mea-
surement uncertainties (mostly statistical), the order 0/1 dis-
tances carry the systematic error bars of the assumed P–R rela-
tion. As they are fully correlated for all stars in the sample, they
cannot be averaged over the sample. In particular, the order 0/1
diameters cannot be used to calibrate the P–R relation, as they
assume this relation to be known a priori.

Due to its stringent requirements in terms of precision,
the interferometric BW method (order 2) was applied success-
fully up to now to five Cepheids only: �Car (Paper I), βDor
(Paper I), ηAql (Paper I; Lane et al. 2002), W Sgr (Paper I) and
ζ Gem (Lane et al. 2002). However, it is expected that many
more stars will be measurable with the required precision in
the near future (see Sect. 5).

3. Period–radius relation

3.1. Method

The period–radius relation (P–R) of the Cepheids takes the
form of the linear expression:

log R = a log P + b. (1)

In order to calibrate this relation, we need to estimate directly
the linear radii of a set of Cepheids. We have applied two meth-
ods to determine the radii of the Cepheids of our sample: the
interferometric BW method, and a combination of the average
angular diameter and trigonometric parallax. While the first
provides directly the average linear radius and distance, we
need to use trigonometric parallaxes to derive the radii of the
Cepheids for which the pulsation is not detected. We applied
the H parallaxes (Perryman et al. 1997) to all the or-
der 0/1 measurements, except δCep, for which we considered
the recent measurement by Benedict et al. (2002). Table 1 lists
the Cepheid linear radii that we obtain.
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Table 1. Weighted averages of the interferometric mean angular diameters θLD and of the geometric distances d to nearby Cepheids (bold
characters). These values were used to compute the linear radii given in the last two columns. The individual measurements used in the
averaging process are also given separately for each star. References: (1) Mourard et al. (1997); (2) Nordgren et al. (2000); (3) Lane et al.
(2002); (4) Mozurkewich et al. (1991); (5) Paper I; (6) Benedict et al. (2002); (7) Perryman et al. (1997).

Star P (d) log P Ref. θLD θLD (mas) Ref. d d (pc) R (R�) log R

δ Cep 5.3663 0.7297 1.521 ± 0.010 274+12
−11 44.8+1.9

−1.8 1.651+0.018
−0.018

(1) 1.60 ± 0.12

(2) 1.52 ± 0.01

(6) 273+12
−11

(7) 301+64
−45

X Sgr 7.0131 0.8459 1.471 ± 0.033 330+148
−78 52.2+23

−12 1.717+0.161
−0.118

(5) 1.471 ± 0.033

(7) 330+148
−78

η Aql 7.1768 0.8559 1.791 ± 0.022 308+27
−24 59.3+5.3

−4.6 1.773+0.037
−0.035

(2) 1.69 ± 0.04

(3) 1.793 ± 0.070 (3) 320+32
−32

(5) 1.839 ± 0.028 (5) 276+55
−38

(7) 360+175
−89

W Sgr 7.5949 0.8805 1.312 ± 0.029 400+210
−114 56.4+30

−16 1.751+0.184
−0.146

(5) 1.312 ± 0.029 (5) 379+216
−130

(7) 637+926
−237

β Dor 9.8424 0.9931 1.884 ± 0.024 323+68
−42 65.4+14

−8.6 1.816+0.083
−0.061

(5) 1.884 ± 0.024 (5) 345+175
−80

(7) 318+74
−50

ζ Gem 10.1501 1.0065 1.688 ± 0.022 362+37
−34 65.6+6.7

−6.3 1.817+0.042
−0.044

(2) 1.55 ± 0.09

(3) 1.675 ± 0.029 (3) 362+38
−38

(4) 1.73 ± 0.05

(5) 1.747 ± 0.061

(7) 358+147
−81

Y Oph 17.1269 1.2337 1.438 ± 0.051 877+2100
−360 136+325

−56 2.132+0.531
−0.231

(5) 1.438 ± 0.051

(7) 877+2100
−360

� Car 35.5513 1.5509 2.988 ± 0.012 597+24
−19 191.2+7.6

−6.0 2.281+0.017
−0.014

(5) 2.988 ± 0.012 (5) 603+24
−19

(7) 463+129
−83

We can use the results from both order 0/1 and 2 meth-
ods at the same time, as the obtained linear radii obtained in
this way are fully independent on each other. On one hand
(BW method), we obtain them considering the amplitude of
the pulsation and the radial velocity curve, while on the other
hand, they are derived from the average angular diameter and
the trigonometric parallax. As the amplitude of the pulsation
and the average diameter values are distinct observables, these
two methods can be used simultaneously in the fit.

3.2. Calibration results

Figure 1 shows the distribution of the measured diameters on
the P–R diagram, based on the values listed in Table 1. When

we choose to consider a constant slope of a = 0.750 ± 0.024,
as found by GFG98, we derive a zero point of b = 1.105 ±
0.017 ± 0.023 (statistical and systematic errors). As a compar-
ison, GFG98 have obtained a value of b = 1.075 ± 0.007, only
−1.6σ away from our result. The relations found by Turner
& Burke (2002) and Laney & Stobie (1995) are very similar
to GFG98, and are also compatible with our calibration within
their error bars.

Fitting simultaneously both the slope and the zero point to
our data set, we obtain a = 0.767 ± 0.009 and b = 1.091 ±
0.011. These values are only ∆a = +0.7σ and ∆b = +1.2σ
away from the GFG98 calibration. Considering the limited
size of our sample, the agreement is very satisfactory. On the
other hand, the slopes derived by Ripepi et al. (1997) and
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Fig. 1. Period–radius diagram deduced from the interferometric ob-
servations of Cepheids listed in Table 1. The thin dashed line repre-
sents the best-fit P–R relation assuming the slope of GFG98, log R =
0.750 [±0.024] log P + 1.105 [±0.017 ± 0.023]. The solid line is
the best-fit relation allowing both the slope and zero point to vary,
log R = 0.767 [±0.009] log P + 1.091 [±0.011].

Table 2. Period–radius relations, assuming an expression of the form
log R = a log P + b. For the fitting of b alone, the slope has been
assumed as known a priori from GFG98. In this case, its error bar
translates to a systematic uncertainty on the b value derived from the
fit (given in brackets). References: (1) GFG98; (2) Turner & Burke
(2002); (3) This work.

Ref. Fit a ± σstat b ± σstat [±σsyst]

(1) 0.750 ± 0.024 1.075 ± 0.007

(2) 0.747 ± 0.028 1.071 ± 0.025

(3) b only 1.105 ± 0.017 [±0.023]

(3) a, b 0.767 ± 0.009 1.091 ± 0.011

Krockenberger et al. (1997), both around 0.60, seem to be sig-
nificantly too shallow.

4. Period–luminosity relation

4.1. Distance estimates

For the order 0 and 1 methods (Paper I), we used an a priori
P–R relation (from GFG98) to predict the true linear diameter
of the Cepheids of our sample. This relation relies on the mea-
surement of the photometric flux, effective temperature (clas-
sical BW method) and radial velocity. The apparent magnitude
also intervenes in the computation of the absolute magnitude,
and therefore we cannot use these distance estimates to cal-
ibrate the P–L relation without creating a circular reference.
For this reason, we have considered only the distances obtained
using the interferometric BW method (order 2) for our P–L re-
lation calibration, complemented by the Benedict et al. (2002)
trigonometric parallax of δCep.

Table 3. Apparent magnitudes and extinctions in the K and V bands
for the Cepheid whose distances have been measured directly by in-
terferometry. (B − V)0 is the mean (B − V) index as reported in the
online database by Fernie et al. (1995). The EB−V values were taken
from Fernie (1990). The extinctions in the K and V bands are given
respectively in the “AK" and “AV" columns, in magnitudes.

Star (B − V)0 EB−V mK AK mV AV

δCep 0.66 0.09 2.31 0.03 3.99 0.30

ηAql 0.79 0.15 1.97 0.04 3.94 0.49

W Sgr 0.75 0.11 2.82 0.03 4.70 0.36

βDor 0.81 0.04 1.96 0.01 3.73 0.15

ζ Gem 0.80 0.02 2.11 0.01 3.93 0.06

�Car 1.30 0.17 1.09 0.05 3.77 0.58

Table 4. Absolute magnitudes of Cepheids measured exclusively us-
ing the interferometric Baade-Wesselink method, except for δCep,
whose parallax was taken from Benedict et al. (2002). The same error
bars apply to the K and V band absolute magnitudes. The Cepheid
periods are listed in Table 1. References: (1) Lane et al. (2002);
(2) Benedict et al. (2002); (3) Paper I.

Star Ref. d ±σ MK MV ±σ
δCep (2) 273 +12

−11 –4.90 –3.49 +0.09
−0.09

ηAql (1) 320 +32
−32 –5.60 –4.08 +0.23

−0.21

ηAql (3) 276 +55
−38 –5.28 –3.76 +0.32

−0.39

W Sgr (3) 379 +216
−130 –5.10 –3.56 +0.91

−0.98

βDor (3) 345 +175
−80 –5.74 –4.10 +0.57

−0.89

ζ Gem (1) 362 +38
−38 –5.69 –3.92 +0.24

−0.22

�Car (3) 603 +24
−19 –7.86 –5.72 +0.07

−0.08

4.2. Absolute magnitudes

The average apparent magnitudes in V and K of δCep were
computed via a Fourier series fit of the data from Moffett &
Barnes (1984) and Barnes et al. (1997) for the K band and
Barnes et al. (1997) for the V band. The sources for the other
apparent magnitudes are given in Paper I (Table 1). Following
Fouqué et al. (2003), the extinction Aλ has been computed us-
ing the relations:

Aλ = Rλ EB−V (2)

RV = 3.07 + 0.28 (B− V)0 + 0.04 EB−V (3)

RK = RV/11 � 0.279. (4)

The resulting extinction values are listed in Table 3, and the
final absolute magnitudes Mλ of the Cepheids of our sample
are listed in Table 4.

4.3. Calibration of the P–L relation

We have considered for our fit the P–L slope measured on
LMC Cepheids. This is a reasonable assumption, as it can be
measured precisely on the Magellanic Clouds Cepheids, and in
addition our sample is currently too limited to derive both the
slope and the log P = 1 reference point simultaneously.
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Table 5. Period–luminosity relation intercept βK for a 10 days period
Cepheid (log P = 1), in the K band. We assume an expression of the
form MK = αK (log P− 1)+ βK . The slope value is taken from GFG98
(αK = −3.267 ± 0.042). The systematic error corresponds to the un-
certainty on the GFG98 slope.

Ref. βK ±σstat ±σsyst

GFG98 −5.701 ±0.025

This work, all stars −5.904 ±0.063 ±0.005

Without δCep and �Car −5.956 ±0.191 ±0.006

Table 6. Period–luminosity relation intercept βV (log P = 1) in the
V band, derived using the GFG98 slope (αV = −2.769 ± 0.073).

βV ±σstat ±σsyst

GFG98 −4.063 ±0.034

LPG99 −4.21 ±0.05

This work, all stars −4.209 ±0.075 ±0.001

Without δCep and �Car −4.358 ±0.197 ±0.010

Recently, Fouqué et al. (2003) have revised the P–L slopes
derived from the large OGLE2 survey (Udalski et al. 1999),
and obtain values of αV = −2.774 ± 0.042 and αK = −3.215 ±
0.037. These values are consistent within their error bars with
LPG99 (αV = −2.77 ± 0.08), GFG98 (αV = −2.769 ± 0.073,
αK = −3.267 ± 0.042) and Sasselov et al. (1997; αV = −2.78 ±
0.16). Considering this consensus, we have chosen to use the
slope from GFG98 to keep the consistence with the P–R rela-
tion assumed in Paper I.

Tables 5 and 6 report the results of our calibrations of the
P–L relations, and the positions of the Cepheids on the P–L di-
agram are shown in Figs. 2 and 3. The final log P = 1 refer-
ence points are given in bold characters in Tables 5 and 6. Our
calibrations differ from GFG98 by ∆bK = +0.20 mag in the
K band, and ∆bV = +0.14 mag in V , corresponding to +3.0
and +1.8σ, respectively. The sample is dominated by the high
precision �Car and δCep measurements. When these two stars
are removed from the fit, the difference with GFG98 is slightly
increased, up to +0.25 and +0.30 mag, though the distance
in σ units is reduced (+1.3 and +1.5). From this agreement,
�Car and δCep do not appear to be systematically different
from the other Cepheids of our sample.

It is difficult about conclude firmly to a significant discrep-
ancy between GFG98 and our results, as our sample is currently
too limited to exclude a small-statistics bias. However, if we as-
sume an intrinsic dispersion of the P–L relationσPL � 0.1 mag,
as suggested by GFG98, then our results point toward a slight
underestimation of the absolute magnitudes of Cepheids by
these authors. On the other hand, we obtain precisely the same
log P = 1 reference point value in V as Lanoix et al. (1999,
using parallaxes from H). The excellent agreement be-
tween these two fully independent, geometrical calibrations of
the P–L relation is remarkable.

Fig. 2. Period–luminosity diagram in the K band using only interfer-
ometric BW distances and the δCep parallax listed in Table 4. The
solid line represents the best-fit P–L relation using the slope derived
by GFG98 (classical least-squares fit: the individual measurements are
weighted by the inverse of their variance).

Fig. 3. Period–luminosity diagram in the V band (slope from GFG98).

4.4. P–L relation slopes in the Galaxy and in the LMC

The question of the difference in slope between the Galactic
and LMC Cepheid P–L relations has recently been discussed
by Fouqué et al. (2003) and Tammann et al. (2003). These au-
thors conclude that the Galactic slopes are significantly steeper
than their LMC counterparts. For example, Tamman et al.
(2003) obtain αV [Gal] = −3.14 ± 0.10, while Fouqué et al.
(2003) derive αV [Gal] = −3.06 ± 0.11 and αV [LMC] =
−2.774 ± 0.042.

However, our fit is largely insensitive to the precise value
assumed for the P–L relation slope. Considering the steeper
Tammann et al. (2003) slope, we obtain a best fit log P = 1
absolute magnitude of βV = −4.211 ± 0.075 ± 0.001, identical
to the calibration obtained using the GFG98 slope. The small
systematic error bar that we obtain on βV (corresponding to
the ±0.10 error on αV ) shows the weakness of the correlation
between α and β in our fit. However, the reduced χ2 of the fit
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is significantly larger with this steeper slope (χ2
red = 1.25) than

with the LMC slope from GFG98 (χ2
red = 0.53).

4.5. The distance to the LMC

The apparent magnitudes in V and K of a 10 day period
Cepheid in the Large Magellanic Cloud (LMC) derived by
Fouqué et al. (2003) from the OGLE Cepheids are ZPK =

12.806 ± 0.026 and ZPV = 14.453 ± 0.029. These authors as-
sumed in their computation a constant reddening of E(B−V) =
0.10 for all the LMC Cepheids they have used (more than 600).
Our calibrations of the Galactic Cepheids P–L relations in K
and V thus implies LMC distance moduli of µK = 18.71 ± 0.07
and µV = 18.66 ± 0.08, respectively.

From a large number of photometric measurements of
LMC and SMC Cepheids obtained in the framework of the
EROS programme, Sasselov et al. (1997) have shown that
a δµ correction has to be applied to the LMC distance modulus
to account for the difference in metallicity between the LMC
and the Galactic Cepheids. They have determined empirically
a value of:

δµ = µtrue − µobserved = −0.14 ± 0.06 (5)

this correction has been questioned by Udalski et al. (2001),
based on Cepheid observations in a low metallicity galaxy
(IC 1613), and its amplitude is still under discussion (Fouqué
et al. 2003).

Averaging our K and V band zero point values (without
reducing the uncertainty, that is systematic in nature), we obtain
a final LMC distance modulus of µ0 = 18.55 ± 0.10. This value
is only +0.8σ away from the µ0 = 18.46 ± 0.06 value obtained
by GFG98, and −1σ from the µ0 = 18.70 ± 0.10 value derived
of Feast & Catchpole (1997). It is statistically identical to the
LMC distance used by Freedman et al. (2001) for the HST Key
Project, µ0 = 18.50 ± 0.10. Alternatively, if we consider the
smaller metallicity correction of δµ = 0.06 ± 0.10.

5. Conclusion and perspectives

We have confirmed in this paper the P–R relation of GFG98 and
Turner & Burke (2002), to a precision of ∆(log R) = ±0.02. We
also derived an original calibration of the P–L relations in K
and V , assuming the slopes from GFG98 that were established
using LMC Cepheids. Our P–L relation calibration yields a dis-
tance modulus of µ0 = 18.55 ± 0.10 for the LMC, that is sta-
tistically identical to the value used by Freedman et al. (2001)
for the HST Key Project. We would like to emphasize that this
result, though encouraging, is based on six stars only (seven
measurements, dominated by two stars), and our sample needs
to be extended in order to exclude a small-number statistical
bias. In this sense, the P–L calibration presented here should
be considered as an intermediate step toward a final and robust
determination of this important relation by interferometry.

While our results are very encouraging, the calibration of
the PR and PL relations as described here may still be affected
by small systematic errors. In particular the method relies on
the fact that the displacements measured through interferome-
try and through spectroscopy (integration of the radial velocity

curve) are in different units (milli-arcseconds and kilometers
respectively) but are the same physical quantity. This may not
be the case. The regions of a Cepheid’s atmosphere where the
lines are formed do not necessarily move homologously with
the region where the K-band continuum is formed. This means
that the two diameter curves may not have exactly the same
amplitude; there could even be a phase shift between them.
As discussed in Sect. 2, the limb darkening could also play
a role at a level of �1%. A full exploration of these effects is
far beyond the scope of this paper. We can nevertheless put
an upper bound on the systematic error that could result from
this mismatch. Our PL relation can be compared to that derived
from Cepheids in open clusters, whose distances are obtained
via main sequence fitting. The two distance scales are in excel-
lent agreement (Gieren & Fouqué 1993; Turner & Burke 2002).
These distances are consistent with a Pleiades distance modu-
lus of 5.56; if anything they are slightly larger.

The availability of 1.8 m Auxiliary Telescopes (Koehler
et al. 2002) on the VLTI platform in 2004, to replace the current
0.35 m Test Siderostats, will allow to observe many Cepheids
with a precision at least as good as the observations of �Car
reported in Paper I (angular diameters accurate to 1%). In ad-
dition, the AMBER instrument (Petrov et al. 2000) will ex-
tend the VLTI capabilities toward shorter wavelengths (J and
H bands), thus providing higher spatial resolution than VINCI
(K band). The combination of these two improvements will ex-
tend significantly the accessible sample of Cepheids, and we
expect that the distances to more than 30 Cepheids will be
measurable with a precision better than ±5%. This will pro-
vide a high precision calibration of both the log P = 1 refer-
ence point (down to ±0.01 mag) and the slope of the Galactic
Cepheid P–L. As the galaxies hosting the Cepheids used in the
Key Project are close to solar metallicity on average (Feast
2001), this Galactic calibration will allow us to bypass the
LMC step in the extragalactic distance scale. Its attached un-
certainty of ±0.06 due to the metallicity correction of the
LMC Cepheids will therefore become irrelevant for the mea-
surement of H0.
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2.1.3 Article A&A : “III. Calibration of the surface brightness-color rela-
tions” (2004)

Les relations reliant la couleur et la brillance de surface des étoiles sont très utiles pour
l’application de la version classique de la méthode Baade-Wesselink. Elles permettent d’obtenir
une estimation précise du diamètre angulaire à partir de simples mesures photométriques dans
deux bandes différentes. Je donne dans cet article un étalonnage empirique de ces relations
basé uniquement sur des mesures interférométriques de Céphéides. Les relations basées sur une
combinaison des magnitudes visibles (B et V ) et infrarouge (bandes H et K) sont les moins
dispersées et donnent les meilleures estimations.

Fig. 2.6 – Les télescopes UT1, UT2 et UT3 du VLT, vers le Nord. La partie supérieure du
bâtiment de recombinaison interférométrique du VLTI est visible à droite.
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Abstract. The recent VINCI/VLTI observations presented in Paper I have nearly doubled the total number of available
angular diameter measurements of Cepheids. Taking advantage of the significantly larger color range covered by these ob-
servations, we derive in the present paper high precision calibrations of the surface brightness-color relations using exclu-
sively Cepheid observations. These empirical laws make it possible to determine the distance to Cepheids through a Baade-
Wesselink type technique. The least dispersed relations are based on visible-infrared colors, for instance FV (V − K) =
−0.1336±0.0008 (V − K) + 3.9530±0.0006. The convergence of the Cepheid (this work) and dwarf star (Kervella et al. 2004c)
visible-infrared surface brightness-color relations is strikingly good. The astrophysical dispersion of these relations appears
to be very small, and below the present detection sensitivity.

Key words. stars: variables: Cepheids – cosmology: distance scale – stars: oscillations – techniques: interferometric

1. Introduction

The surface brightness (hereafter SB) relations link the emerg-
ing flux per solid angle unit of a light-emitting body to its color,
or effective temperature. These relations are of considerable as-
trophysical interest for Cepheids, as a well-defined relation be-
tween a particular color index and the surface brightness can
provide accurate predictions of their angular diameters. When
combined with the radius curve, integrated from spectroscopic
radial velocity measurements, they give access to the distance
of the Cepheid (Baade-Wesselink method). This method has
been applied recently to Cepheids in the LMC (Gieren et al.
2000) and in the SMC (Storm et al. 2004)

The accuracy that can be achieved in the distance esti-
mate is conditioned for a large part by our knowledge of
the SB relations. In our first paper (Kervella et al. 2004a,
hereafter Paper I), we presented new interferometric measure-
ments of seven nearby Cepheids. They complement a num-
ber of previously published measurements from several opti-
cal and infrared interferometers. We used these data in Paper II
(Kervella et al. 2004b) to calibrate the Cepheid Period–Radius
and Period–Luminosity relations. Nordgren et al. (2002) de-
rived a preliminary calibration of the Cepheid visible-infrared

� Table 3 is only available in electronic form at
http://www.edpsciences.org

SB relations, based on the three stars available at that time
(δ Cep, η Aql and ζ Gem). In the present Paper III, we take
advantage of the nine Cepheids now resolved by interferom-
etry to derive refined calibrations of the visible and infrared
SB relations of these stars.

2. Definition of the surface brightness relations

By definition, the bolometric surface flux f ∼ L/D2 is lin-
early proportional to T 4

eff, where L is the bolometric flux of the
star, D its bolometric diameter and Teff its effective tempera-
ture. In consequence, F = log f is a linear function of the stel-
lar color indices, expressed in magnitudes (logarithmic scale),
and SB relations can be fitted using for example the following
expressions:

FB = a0 (B − V)0 + b0 (1)

FV = a1 (V − K)0 + b1 (2)

FH = a2 (B − H)0 + b2 (3)

where Fλ is the surface brightness. When considering a per-
fect blackbody curve, any color can in principle be used to ob-
tain the SB, but in practice the linearity of the correspondence
between log Teff and color depends on the chosen wavelength
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bands. The index 0 designates the dereddened magnitudes, and
will be omitted in the rest of the paper. The ai and bi coeffi-
cients represent respectively the slopes and zero points of the
different versions of the SB relation. Historically, the first cal-
ibration of the SB relation based on the (B − V) index was
obtained by Wesselink (1969), and the expression FV (V − R)
is also known as the Barnes-Evans (B-E) relation (Barnes &
Evans 1976). The relatively large intrinsic dispersion of the
visible light B-E relations has led to preferring their infrared
counterparts, in particular those based on the K band magni-
tudes (λ = 2.0−2.4 µm), as the color-Teff relation is less af-
fected by microturbulence and gravity effects (Laney & Stobie
1995). The surface brightness Fλ is given by the following ex-
pression (Fouqué & Gieren 1997):

Fλ = 4.2207 − 0.1 mλ0 − 0.5 log θLD (4)

where θLD is the limb darkened angular diameter, i.e. the
angular size of the stellar photosphere.

3. Selected measurement sample

3.1. Interferometric observations

Following the direct measurement of the angular diame-
ter of δCep achieved by Mourard et al. (1997) using the
Grand Interféromètre à 2 Télescopes (GI2T), Nordgren et al.
(2000) obtained the angular diameters of three additional
Cepheids (ηAql, ζ Gem and αUMi) with the Navy Prototype
Optical Interferometer (NPOI). These last authors also con-
firmed the angular diameter of δCep. Kervella et al. (2001)
then determined the average angular size of ζ Gem, in the
K band, from measurements obtained with the Fiber Linked
Unit for Optical Recombination (FLUOR), installed at the
Infrared Optical Telescope Array (IOTA). Simultaneously,
the Palomar Testbed Interferometer (PTI) team resolved for
the first time the pulsational variation of the angular diame-
ter of ζ Gem (Lane et al. 2000) and ηAql (Lane et al. 2002). In
Paper I, we have more than doubled the total number of mea-
sured Cepheids with the addition of X Sgr, W Sgr, βDor, Y Oph
and 	Car, and new measurements of ηAql and ζ Gem. These
observations were obtained using the VLT INterferometer
Commissioning Instrument (VINCI), installed at ESO’s Very
Large Telescope Interferometer (VLTI).

Including the peculiar first overtone Cepheid αUMi
(Polaris), the number of Cepheids with measured angular diam-
eters is presently nine. The pulsation has been resolved for five
of these stars in the infrared: ζ Gem (Lane et al. 2002), W Sgr
(Paper I), ηAql (Lane et al. 2002, Paper I), βDor and 	Car
(Paper I). The total number of independent angular diameter
measurements taken into account in the present paper is 145, as
compared to 59 in the previous calibration by Nordgren et al.
(2002). More importantly, we now have a significantly wider
range of effective temperatures, an essential factor for deriving
precise values of the slopes of the SB-color relations.

To obtain a consistent sample of angular diameters, we
have retained only the uniform disk (UD) values from the lit-
erature. The conversion of these model-independent measure-
ments to limb darkened (LD) values was achieved using the

Table 1. Limb darkening corrections k = θLD/θUD derived from the
linear limb darkening coefficients determined by Claret (2000). The
kR coefficients were used for the GI2T measurements, kR/I for
the NPOI, kH for the PTI, and kK for VINCI/VLTI and FLUOR/IOTA

Star kR kR/I kH kK

αUMi 1.046
δCep 1.051 1.046
X Sgr 1.020
ηAql 1.048 1.024 1.021
W Sgr 1.021
βDor 1.023
ζ Gem 1.051 1.027 1.023
Y Oph 1.024
	Car 1.026

linear LD coefficients u from Claret (2000), and the conver-
sion formula from Hanbury Brown et al. (1974). These coef-
ficients are broadband approximations of the Kurucz (1992)
model atmospheres. They are tabulated for a grid of temper-
atures, metallicities and surface gravities and we have chosen
the models closest to the physical properties of the stars. We
have considered a uniform microturbulent velocity of 2 km s−1

for all stars. The conversion factors k = θLD/θUD are given for
each star in Table 1. Marengo et al. (2002, 2003) have shown
that the LD properties of Cepheids can be different from those
of stable stars, in particular at visible wavelengths. For the
measurements obtained using the GI2T (Mourard et al. 1997)
and NPOI (Nordgren et al. 2000), the LD correction is rela-
tively large (k = θLD/θUD � 1.05), and this could be the source
of a bias at a level of 1 to 2% (Marengo et al. 2004). However,
in the infrared the correction is much smaller (k � 1.02), and
the error on its absolute value is expected to be significantly
below 1%. Considering the relatively low average precision of
the currently available measurements at visible wavelengths,
the potential bias due to limb darkening on the SB-color rela-
tions fit is considered negligible.

3.2. Photometric data and reddening corrections

We compiled data in the BVRI and JHK filters from different
sources. Rather than try to use the largest amount of data from
many different sources, we decided to limit ourselves to data
sets with high internal precision, giving smooth light curves, as
we wanted to fit Fourier series to the photometric data. These
Fourier series were interpolated to obtain magnitudes at the
phases of our interferometric measurements. The R band mag-
nitudes were only available in sufficient number and quality
for three stars: αUMi, βDor and 	Car. Overall, the number
of stars and photometry points per band are the following: B
and V: 9 stars, 145 points; R: 3 stars, 35 points; I: 8 stars,
119 points; J: 6 stars, 127 points; H: 5 stars, 100 points; K:
8 stars, 128 points. We took the periods from Szabados (1989,
1991) to compute phases.

The BVRI band magnitudes are defined in the Cousins
system. There is no widely used standard system in the in-
frared (JHK). We used three sources of data: Wisniewski &
Johnson (1968) in the Johnson system, Laney & Stobie (1992)
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in the SAAO system, and Barnes et al. (1997) in the CIT sys-
tem. There is a large body of homogeneous and high quality
data for Cepheids (Laney & Stobie 1992) in the SAAO system
(Carter 1990). Furthermore, many stars in the list of Laney &
Stobie are going to be observed with the VLTI in the near fu-
ture. For convenience, we thus decided to transform all pho-
tometry into this system, using transformation relations in
Glass (1985) and Carter (1990).
αUMi: For this low amplitude variable (∆mV � 0.1), we

considered its average photometry, as we have only an aver-
age angular diameter measurement by Nordgren et al. (2000).
The B and V magnitudes were taken from the  cata-
logue (Perryman et al. 1997), the R and I bands are from Morel
& Magnenat (1978), and the K band is from Ducati (2002).
δCep: We used BVI data from Moffett & Barnes (1984)

Barnes et al. (1997) and Kiss (1998). The JHK data of Barnes
et al. (1997) have been transformed to the SAAO system.

X Sgr: Optical data come from Moffett & Barnes (1984),
Berdnikov & Turner (2001a), Berdnikov & Turner (1999),
Berdnikov & Turner (2000), and Berdnikov & Caldwell (2001).
ηAql: We used BVI data from Barnes et al. (1997), Kiss

(1998), Berdnikov & Turner (2000), Berdnikov & Turner
(2001a), Berdnikov & Caldwell (2001), and Caldwell et al.
(2001). The JHK data are from Barnes et al. (1997). They have
been transformed to the SAAO system using formulae given in
Carter (1990).

W Sgr: We used optical data from Moffett & Barnes
(1984), Berdnikov & Turner (1999), Berdnikov & Turner
(2000), Berdnikov & Turner (2001a), Berdnikov & Turner
(2001b), Berdnikov & Caldwell (2001), and Caldwell et al.
(2001).
βDor: We used BVRI data from Berdnikov & Turner

(2001a), Berdnikov & Turner (2000), Berdnikov & Turner
(2001b), and Berdnikov & Caldwell (2001). In the infrared we
used the data in Laney & Stobie (1992).
ζGem: We used BVI data from Moffett & Barnes (1984),

Shobbrook (1992), Kiss (1998), Berdnikov & Turner (2001a),
Berdnikov & Turner (2001b), and Berdnikov & Caldwell
(2001). In the JK bands we used data from Johnson, trans-
formed using formulae in Glass (1985).

Y Oph: In the optical we used data from Moffett & Barnes
(1984) and Coulson & Caldwell (1985). In the infrared we used
the data in Laney & Stobie (1992).
	Car: We used BVRI from Berdnikov & Turner (2001a),

and Berdnikov & Turner (2000). Infrared data are from Laney
& Stobie (1992).
The extinction Aλ (Table 2) was computed for each star and
each band using the relations:

Aλ = Rλ E(B − V) (5)

where we have (Fouqué et al. 2003; Hindsley & Bell 1989 for
the R band):

RB = RV + 1 (6)

RV = 3.07 + 0.28 (B− V) + 0.04 E(B− V) (7)

RR = RV − 0.97 (8)

Table 2. Pulsation parameters (T0 is the Julian date of the reference
epoch, P is the period in days) and color excesses (from Fernie 1990)
for the Cepheids discussed in this paper. (B − V)0 is the mean dered-
dened (B − V) color as reported in the online database by Fernie et al.
(1995).

Star T0 (JD) P (days) (B − V)0 E(B − V)
αUMi 2 439 253.230 3.972676 0.598 –0.007
δCep 2 436 075.445 5.366341 0.657 0.092
X Sgr 2 452 723.949 7.013059 0.739 0.197
ηAql 2 445 342.479 7.176769 0.789 0.149
W Sgr 2 452 519.248 7.594904 0.746 0.111
βDor 2 452 214.215 9.842425 0.807 0.044
ζ Gem 2 442 059.774 10.15097 0.798 0.018
Y Oph 2 452 715.481 17.12691 1.377 0.655
	Car 2 452 290.416 35.55134 1.299 0.170

RI = 1.82 + 0.205 (B− V) + 0.0225 E(B− V) (9)

RJ = RV/4.02 (10)

RH = RV/6.82 (11)

RK = RV/11. (12)

4. General surface brightness relations

The data that we used for the SB-color relation fits are pre-
sented in Table 3, that is available in electronic form at
http://www.edpsciences.org/. The limb darkened angu-
lar diameters θLD were computed from the uniform disk val-
ues available in the literature, using the conversion coefficients
k = θLD/θUD listed in Table 1. The BVRIJHK magnitudes
are interpolated values, corrected for interstellar extinction (see
Sect. 3.2).

The resulting SB relation coefficients are presented in
Table 4, and Fig. 1 shows the result for the FV (V − K) relation.
The other relations based on the V band surface brightness FV

are plotted in Fig. 2. The smallest residual dispersions are ob-
tained for the infrared-based colors, for instance:

FB = −0.1199±0.0006 (B − K) + 3.9460±0.0007 (13)

FV = −0.1336±0.0008 (V − K) + 3.9530±0.0006. (14)

The reduced χ2 of all the visible-infrared SB relations fits is
below 1.0, meaning that the true intrinsic dispersion is unde-
tectable at the current level of precision.

In the present paper, no error bars have been considered in
the reddening corrections. This is justified by the low sensi-
tivity of the visible-infrared SB relations to the reddening, but
may create biases in the purely visible SB relations (based on
the B − V index for instance). However, the maximum ampli-
tude of these biases is expected to be significantly below the
residuals of the fits σλ listed in Table 4.

In an attempt to refine the reddening coefficients, we ten-
tatively adjusted their values in order to minimize the disper-
sion of the fitted SB relations. We confirm the results of Fernie
(1990) for most stars, but we find higher color excesses for
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Table 4. Surface brightness relations using BVRIJHK based colors: Fλ(Cλ −C1) = aλ(Cλ −C1)+ bλ. The 1σ errors in each coefficient are given
in superscript, multiplied by 1000 to reduce the length of each line, i.e. −0.29442.4 stands for −0.2944 ± 0.0024. The standard deviation of the
residuals σ is listed for each SB relation, together with the reduced χ2 of the fit and the total number of measurements Nmeas taken into account
(photometric data were unavailable for some stars).

Cλ ↓ C1 → B V R I J H K
aB −0.29442.4 −0.19781.6 −0.18000.9 −0.14010.8 −0.12240.7 −0.11990.6

bB 3.88131.1 3.87190.9 3.92830.6 3.92970.8 3.94230.8 3.94600.7

σB/χ
2
red 0.017/1.20 0.008/0.46 0.015/1.41 0.015/0.65 0.014/0.63 0.015/0.75

Nmeas 145 34 119 127 100 128
aV 0.19561.8 −0.378910.0 −0.30772.4 −0.17591.4 −0.13791.0 −0.13360.8

bV 3.88280.9 3.85162.2 3.96170.7 3.94070.7 3.94900.7 3.95300.6

σV/χ
2
red 0.017/1.75 0.014/0.75 0.016/0.89 0.015/0.57 0.014/0.58 0.015/0.70

Nmeas 145 34 119 127 100 128
aR 0.09941.1 0.28688.0 −1.289426.4 −0.22403.2 −0.14581.6 −0.13861.5

bR 3.87460.6 3.85541.7 4.32482.9 3.95320.7 3.94260.6 3.94300.6

σR/χ
2
red 0.008/0.72 0.015/1.10 0.060/1.19 0.006/0.12 0.005/0.14 0.005/0.18

Nmeas 34 34 34 34 34 34
aI 0.08080.6 0.21051.9 1.806738.4 −0.28547.1 −0.17132.6 −0.16302.0

bI 3.93040.4 3.96420.5 4.61024.3 3.93231.7 3.94910.9 3.95480.8

σI/χ
2
red 0.015/2.23 0.016/1.37 0.089/1.35 0.013/0.34 0.010/0.40 0.013/0.50

Nmeas 119 119 34 101 74 102
aJ 0.03990.6 0.07531.1 0.12432.2 0.18775.3 −0.298810.2 −0.26146.8

bJ 3.92950.6 3.94030.6 3.95360.5 3.93351.2 3.96791.7 3.97221.3

σJ/χ
2
red 0.015/0.89 0.015/0.86 0.006/0.20 0.013/0.54 0.015/0.21 0.016/0.29

Nmeas 127 127 34 101 100 127
aH 0.02230.5 0.03750.8 0.04601.1 0.07001.8 0.20607.2 −2.3858309.8

bH 3.94220.6 3.94870.5 3.94280.4 3.94800.7 3.97101.2 4.06538.4

σH/χ
2
red 0.014/0.77 0.014/0.74 0.005/0.22 0.010/0.62 0.015/0.35 0.029/0.03

Nmeas 100 100 34 74 100 100
aK 0.01970.5 0.03310.7 0.03891.1 0.06181.4 0.17044.7 2.7121354.8

bK 3.94580.5 3.95240.5 3.94350.4 3.95390.5 3.97670.9 4.09709.6

σK/χ
2
red 0.015/0.94 0.015/0.92 0.005/0.28 0.012/0.80 0.016/0.51 0.034/0.03

Nmeas 128 128 34 102 127 100

Fig. 1. Linear fit of FV (V − K) (upper part) and the corresponding
residuals (lower part). The fitted coefficients are given in Table 4.

X Sgr (�0.38) and W Sgr (�0.29), and a slightly lower value
for Y Oph (�0.54). However, these numbers should be consid-
ered with caution, as our method relies on the assumption that
all Cepheids follow the same SB relations. Considering that we
cannot verify this hypothesis based on our data, we did not use
these coefficients for the fits presented in this section.

5. Specific surface brightness relations

For ζ Gem, ηAql and 	Car, the pulsation is resolved with a
high SNR (Paper I; Lane et al. 2002). Therefore we can derive
specific SB relations over their pulsation cycle, and compare
them to the global ones derived from our complete sample. In
particular, the slope may be different between these Cepheids
that cover a relatively broad range in terms of linear diameter
and pulsation period. We have limited our comparison to the
FV (V − K) relations, which give small dispersions. The best fit
SB relations are the following:

– ηAql (σ = 0.011):

FV = −0.1395±0.0013 (V − K) + 3.9634±0.0004. (15)

– ζ Gem (σ = 0.016):

FV = −0.1098±0.0011 (V − K) + 3.9134±0.0002. (16)
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Fig. 2. Surface brightness FV relations as a function of color. The error bars have been omitted for clarity, and the fitted models are represented
alternatively as solid and dashed lines. From left to right, using the colors: (V − B), (V − I), (V − J), (V − H) and (V − K). The zero-axis
intersection does not happen at the same point for all relations.

– 	Car (σ = 0.004):

FV = −0.1355±0.0010 (V − K) + 3.9571±0.0004. (17)

– All stars (σ = 0.015):

FV = −0.1336±0.0008 (V − K) + 3.9530±0.0006. (18)

As shown in Fig. 3, the agreement between the extreme period
ηAql (P = 7 days), 	Car (P = 35.5 days) and the average of
all stars is good. The difference observed for ζ Gem could come
from the relatively large dispersion of the measurements of this
star. The poor infrared photometry available for this star could
also explain part of this difference.

This result is an indication that SB-color relations for
Cepheids do not depend strongly on the pulsation period of
the star. Going into finer detail, it appears that the slope of the
FV (V − K) relation of ηAql is slightly steeper than the slope
of the same relation for 	Car. This could be associated with
the larger surface gravity of ηAql, but the difference remains
small.

6. Comparison with previous calibrations

Welch (1994) and Fouqué & Gieren (1997, FG97) proposed
a calibration of the SB relations of Cepheids based on an ex-
trapolation of the corresponding relations of giants. The latter
obtained the following expression for FV (V − K):

FV (FG97) = −0.131±0.002 (V − K) + 3.947±0.003 (19)

to be compared with the relation we obtained in the present
work:

FV (V − K) = −0.1336±0.0008 (V − K) + 3.9530±0.0006. (20)

The agreement between these two independent calibrations is
remarkable, with a less than 2σ difference on both the slope
and the zero point.

Nordgren et al. (2002, N02) achieved a similar calibration
using a larger sample of 57 stars observed with the NPOI, and

Fig. 3. Specific FV (V −K) relation fits for ηAql, ζ Gem and 	Car. The
error bars have been omitted for clarity.

find consistent results. In addition, they compared these re-
lations with the ones obtained from interferometric measure-
ments of three classical Cepheids (δCep, ηAql, ζ Gem). They
obtained:

FV (N02) = −0.134±0.005 (V − K) + 3.956±0.011. (21)

This calibration is statistically identical to our result within less
than 1σ, but part of the interferometric and photometric data
used for the fits is common with our sample.

Several other calibrations of the SB relations for giants have
been proposed in recent years, thanks to the availability of in-
terferometric measurements. Van Belle (1999a, VB99) used a
sample of 190 giants and 67 carbon stars and Miras measured
with the PTI (Van Belle et al. 1999b), IOTA (e.g. Dyck et al.
1998) and lunar occultation observations (e.g. Ridgway et al.
1982) to calibrate the FV (V − K) relation of giant and super-
giant stars. This author obtained an expression equivalent to:

FV (VB99) = −0.112±0.005 (V − K) + 3.886±0.026. (22)
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Though the slope and zero point are significantly different from
our values, the maximum difference in predicted surface bright-
ness FV over the whole color range of the Cepheids of our sam-
ple (1.0 ≤ V − K ≤ 2.4) is less than 0.05, only twice the formal
error on the zero point. The agreement is thus reasonably good.

7. Comparison with the surface brightness
relations of dwarf stars

From the interferometric measurement of the angular diam-
eters of a number of dwarfs and subgiants, Kervella et al.
(2004c) calibrated the SB-color relations of these luminosity
classes with high accuracy. The residual dispersion on the zero-
magnitude limb darkened angular diameter was found to be be-
low 1% for the best relations (based on visible and infrared
bands). This corresponds to a dispersion in the surface bright-
ness F of the order of 0.05% only. The metallicities [Fe/H]
of the nearby dwarfs and subgiants used for these fits cover
the range −0.5 to +0.5, but no significant trend of the SB with
metallicity was detected in the visible-infrared SB relations.

The question of the universality of the SB-color relations
can now be adressed by comparing the stable dwarf stars and
the Cepheids. The stars of these two luminosity classes repre-
sent extremes in terms of physical properties, with for instance
linear photospheric radii between 0.15 and 200 R� and effec-
tive gravities between log g = 1.5 and 5.2, a range of three
orders of magnitudes. Figure 4 shows the positions of dwarfs
and Cepheids in the FV (B − V) diagram. It appears from this
plot that stable dwarfs tend to have lower SB than Cepheids
above (B − V) � 0.8. The difference is particularly strong in
the case of 	Car, whose surface brightness FV is significantly
larger than that of a dwarf with the same B−V color. A qualita-
tive explanation for this difference is that for the same temper-
ature (spectral type), giants are redder than dwarfs. This can be
understood because there is more line blanketing in the super-
giant atmospheres, due to their lower surface gravity and lower
gas density (more ion species can exist).

Figure 5 shows the same plot for the FV (V −K) relation. In
this case, the SB relations appear very close to linear for both
dwarfs and Cepheids. It is almost impossible to distinguish the
two populations on a statistical basis. For instance, we have:

FV (Dwarf) = −0.1376±0.0005 (V − K) + 3.9618±0.0011 (23)

FV (Ceph.) = −0.1336±0.0008 (V − K) + 3.9530±0.0006. (24)

Over the full (V − K) color range of our Cepheid sample, the
difference in surface brightness predicted by these relations is
always:

FV (Dwarf) − FV (Ceph.) ≤ 0.005. (25)

From this remarkable convergence we conclude that the
V − K dereddened color index is an excellent tracer of the ef-
fective temperature. Kervella et al. (2004c) have shown that the
visible-L band color indices are even more efficient than those
based on the K band, and lead to extremely small intrinsic dis-
persions of the SB-color relations, down to ±0.002. High preci-
sion photometric measurements of Cepheids in the L band are

Fig. 4. Comparison of the positions of the Cepheids (solid dots) and
dwarfs (open squares) in the FV (B − V) diagram. The lower part of
the figure shows an enlargement of the Cepheid color range.The error
bars have been omitted for clarity.

unfortunately not available at present, and we therefore recom-
mend obtaining data in this band, to reach the smallest possible
SB relation dispersions.

8. Conclusion

Taking advantage of a large sample of interferometric ob-
servations, we were able to derive precise calibrations of
the SB-color relations of Cepheids. The astrophysical disper-
sion of the visible-infrared SB relations is undetectable at the
present level of accuracy of the measurements, and could be
minimal, based on the SB relations obtained for nearby dwarfs
by Kervella et al. (2004c). The visible-infrared SB-color
relations represent a very powerful tool for estimating the dis-
tances of Cepheids. The interferometric version of the Baade-
Wesselink method that we applied in Paper I is currently lim-
ited to distances of 1–2 kpc, due to the limited length of the
available baselines, but the infrared surface brightness tech-
nique can reach extragalactic Cepheids, as already demon-
strated by Gieren et al. (2000) and Storm et al. (2004) for the
Magellanic Clouds. The present calibration increases the level
of confidence in the Cepheid distances derived by this method.
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Fig. 5. Comparison of the positions of the Cepheids (solid dots) and
dwarfs (open squares) in the FV (V − K) diagram. The dashed line
represents the best fit SB-color relation for dwarf stars and the solid
line for Cepheids. The lower part of the figure is an enlargement of the
Cepheid color range.
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Table 3. Interferometric and photometric data used in the present paper. The references for the interferometric measurements are: Nordgren
et al. (2000, N00), Mourard et al. (1997, M97), Nordgren et al. (2002, N02), Lane et al. (2002, L02), and Kervella et al. (2004a, K04). JD is
the Julian date of the measurement, λ the interferometric measurement wavelength (in µm), φ the phase, θUD the uniform disk and θLD the limb
darkened angular diameters (in mas). The magnitudes are corrected for interstellar extinction (see Sect. 3.2).

Star Ref. JD λ φ θLD B0 V0 R0 I0 J0 H0 K0

αUMi N00 avg 0.74 avg 3.284 ± 0.021 2.66 1.99 1.55 1.23 − − 0.49
δCep M97 2 449 566.6000 0.67 0.032 1.376 ± 0.620 3.60 3.25 − − 2.51 2.27 2.22
δCep M97 2 449 572.5000 0.67 0.132 1.534 ± 0.767 3.87 3.40 − − 2.56 2.27 2.21
δCep M97 2 449 642.3000 0.67 0.139 1.440 ± 0.567 3.89 3.41 − − 2.56 2.27 2.21
δCep M97 2 449 643.3000 0.67 0.325 2.070 ± 0.431 4.33 3.68 − − 2.63 2.28 2.21
δCep M97 2 449 541.6000 0.67 0.374 1.776 ± 0.504 4.42 3.74 − − 2.66 2.28 2.22
δCep M97 2 449 569.5000 0.67 0.573 1.660 ± 0.504 4.71 3.93 − − 2.76 2.36 2.28
δCep M97 2 449 570.5000 0.67 0.759 1.324 ± 0.841 4.83 4.05 − − 2.87 2.49 2.40
δCep M97 2 449 640.3000 0.67 0.766 1.797 ± 0.462 4.82 4.04 − − 2.87 2.49 2.40
δCep M97 2 449 571.5000 0.67 0.945 1.671 ± 0.431 3.70 3.33 − − 2.58 2.34 2.30
δCep N02 2 450 788.6300 0.74 0.754 1.621 ± 0.063 4.83 4.05 − − 2.87 2.48 2.40
δCep N02 2 450 994.9100 0.74 0.193 1.705 ± 0.094 4.02 3.48 − − 2.58 2.27 2.21
δCep N02 2 450 995.9300 0.74 0.383 1.485 ± 0.115 4.44 3.75 − − 2.66 2.29 2.22
δCep N02 2 450 996.9700 0.74 0.577 1.548 ± 0.220 4.71 3.94 − − 2.76 2.37 2.29
δCep N02 2 450 997.9300 0.74 0.756 1.422 ± 0.115 4.83 4.05 − − 2.87 2.48 2.40
δCep N02 2 450 998.9300 0.74 0.942 1.328 ± 0.125 3.72 3.35 − − 2.59 2.35 2.30
δCep N02 2 451 007.9600 0.74 0.625 1.590 ± 0.105 4.78 4.00 − − 2.81 2.40 2.32
δCep N02 2 451 008.9200 0.74 0.804 1.391 ± 0.084 4.72 3.99 − − 2.86 2.49 2.41
δCep N02 2 451 009.9600 0.74 0.998 1.548 ± 0.073 3.56 3.22 − − 2.52 2.29 2.24
δCep N02 2 451 010.9200 0.74 0.177 1.610 ± 0.073 3.98 3.46 − − 2.57 2.27 2.21
δCep N02 2 451 011.9100 0.74 0.361 1.537 ± 0.073 4.40 3.72 − − 2.65 2.28 2.21
δCep N02 2 451 012.9000 0.74 0.546 1.569 ± 0.073 4.66 3.90 − − 2.73 2.34 2.27
δCep N02 2 451 088.8100 0.74 0.691 1.380 ± 0.125 4.83 4.05 − − 2.85 2.45 2.36
δCep N02 2 451 089.7800 0.74 0.872 1.527 ± 0.073 4.27 3.73 − − 2.76 2.44 2.38
δCep N02 2 451 093.7600 0.74 0.614 1.475 ± 0.021 4.77 3.98 − − 2.80 2.39 2.31
δCep N02 2 451 097.7800 0.74 0.363 1.537 ± 0.052 4.40 3.72 − − 2.65 2.28 2.21
δCep N02 2 451 098.8500 0.74 0.562 1.694 ± 0.063 4.69 3.92 − − 2.75 2.36 2.28
X Sgr K04 2 452 741.9033 2.18 0.560 1.487 ± 0.058 4.88 4.17 − 3.44 − − −
X Sgr K04 2 452 742.8848 2.18 0.700 1.541 ± 0.067 4.91 4.21 − 3.45 − − −
X Sgr K04 2 452 743.8965 2.18 0.844 1.443 ± 0.065 4.48 3.94 − 3.20 − − −
X Sgr K04 2 452 744.8676 2.18 0.983 1.489 ± 0.059 4.02 3.62 − 3.08 − − −
X Sgr K04 2 452 747.8477 2.18 0.408 1.528 ± 0.217 4.65 4.00 − 3.34 − − −
X Sgr K04 2 452 749.8324 2.18 0.691 1.457 ± 0.104 4.92 4.21 − 3.46 − − −
X Sgr K04 2 452 766.8110 2.18 0.112 1.420 ± 0.078 4.18 3.70 − 3.15 − − −
X Sgr K04 2 452 768.8768 2.18 0.406 1.441 ± 0.032 4.65 4.00 − 3.34 − − −
ηAql N02 2 450 638.8600 0.74 0.990 1.959 ± 0.084 3.48 3.02 − 2.51 2.23 1.95 1.90
ηAql N02 2 450 640.8800 0.74 0.271 1.781 ± 0.094 3.93 3.27 − 2.61 2.26 1.89 1.82
ηAql N02 2 450 641.8600 0.74 0.408 1.938 ± 0.084 4.24 3.47 − 2.73 2.33 1.93 1.85
ηAql N02 2 450 997.8300 0.74 0.008 1.697 ± 0.199 3.48 3.02 − 2.51 2.22 1.94 1.89
ηAql N02 2 450 998.8800 0.74 0.154 1.781 ± 0.063 3.86 3.23 − 2.60 2.26 1.92 1.84
ηAql N02 2 451 007.8800 0.74 0.408 1.917 ± 0.063 4.24 3.47 − 2.73 2.33 1.93 1.85
ηAql N02 2 451 008.9100 0.74 0.552 1.603 ± 0.210 4.53 3.66 − 2.89 2.43 1.99 1.90
ηAql N02 2 451 009.8500 0.74 0.683 1.771 ± 0.084 4.66 3.80 − 3.00 2.51 2.08 2.00
ηAql N02 2 451 010.8400 0.74 0.821 1.456 ± 0.084 4.25 3.55 − 2.87 2.49 2.12 2.04
ηAql N02 2 451 011.8400 0.74 0.960 1.509 ± 0.073 3.52 3.05 − 2.54 2.25 1.97 1.92
ηAql N02 2 451 012.8700 0.74 0.104 1.603 ± 0.105 3.73 3.16 − 2.57 2.24 1.92 1.86
ηAql L02 2 452 065.4200 1.64 0.764 1.694 ± 0.011 4.53 3.73 − 2.98 2.53 2.13 2.05
ηAql L02 2 452 066.4140 1.64 0.903 1.694 ± 0.017 3.75 3.22 − 2.65 2.34 2.03 1.97
ηAql L02 2 452 067.4050 1.64 0.041 1.735 ± 0.041 3.54 3.05 − 2.52 2.22 1.93 1.87
ηAql L02 2 452 075.3830 1.64 0.153 1.783 ± 0.028 3.86 3.23 − 2.60 2.26 1.92 1.85
ηAql L02 2 452 076.3840 1.64 0.292 1.843 ± 0.014 3.95 3.28 − 2.61 2.26 1.89 1.82
ηAql L02 2 452 077.3720 1.64 0.430 1.867 ± 0.022 4.30 3.51 − 2.76 2.35 1.94 1.86
ηAql L02 2 452 089.3500 1.64 0.099 1.757 ± 0.019 3.71 3.15 − 2.56 2.24 1.92 1.86
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Table 3. continued.

Star Ref. JD λ φ θLD B0 V0 R0 I0 J0 H0 K0

ηAql L02 2 452 090.3540 1.64 0.239 1.842 ± 0.020 3.92 3.26 − 2.61 2.26 1.90 1.83
ηAql L02 2 452 091.3460 1.64 0.377 1.807 ± 0.023 4.14 3.41 − 2.69 2.30 1.92 1.84
ηAql L02 2 452 095.3600 1.64 0.936 1.605 ± 0.050 3.59 3.10 − 2.58 2.28 1.99 1.94
ηAql L02 2 452 099.3370 1.64 0.490 1.844 ± 0.026 4.44 3.60 − 2.83 2.40 1.97 1.88
ηAql L02 2 452 101.3290 1.64 0.768 1.672 ± 0.038 4.51 3.72 − 2.97 2.53 2.13 2.05
ηAql L02 2 452 103.2930 1.64 0.042 1.697 ± 0.041 3.54 3.05 − 2.52 2.22 1.93 1.87
ηAql L02 2 452 105.3000 1.64 0.321 1.842 ± 0.025 3.99 3.31 − 2.63 2.27 1.90 1.82
ηAql L02 2 452 106.2830 1.64 0.458 1.860 ± 0.016 4.38 3.56 − 2.79 2.37 1.95 1.86
ηAql L02 2 452 107.3020 1.64 0.600 1.853 ± 0.028 4.59 3.71 − 2.93 2.46 2.02 1.93
ηAql L02 2 452 108.3080 1.64 0.740 1.744 ± 0.033 4.60 3.77 − 3.00 2.54 2.13 2.04
ηAql L02 2 452 116.2760 1.64 0.851 1.650 ± 0.024 4.07 3.43 − 2.79 2.44 2.09 2.02
ηAql K04 2 452 524.5643 2.18 0.741 1.782 ± 0.124 4.60 3.77 − 3.00 2.54 2.13 2.04
ηAql K04 2 452 557.5462 2.18 0.336 1.916 ± 0.105 4.03 3.34 − 2.64 2.28 1.90 1.83
ηAql K04 2 452 559.5346 2.18 0.614 1.843 ± 0.045 4.60 3.73 − 2.94 2.46 2.03 1.94
ηAql K04 2 452 564.5321 2.18 0.310 1.846 ± 0.053 3.97 3.30 − 2.62 2.26 1.89 1.82
ηAql K04 2 452 565.5155 2.18 0.447 1.910 ± 0.032 4.35 3.54 − 2.78 2.36 1.95 1.86
ηAql K04 2 452 566.5185 2.18 0.587 1.900 ± 0.034 4.57 3.70 − 2.92 2.45 2.01 1.92
ηAql K04 2 452 567.5232 2.18 0.727 1.839 ± 0.040 4.63 3.79 − 3.00 2.54 2.12 2.04
ηAql K04 2 452 573.5114 2.18 0.561 1.923 ± 0.057 4.54 3.67 − 2.90 2.43 2.00 1.91
ηAql K04 2 452 769.9372 2.18 0.931 1.681 ± 0.031 3.61 3.12 − 2.59 2.29 2.00 1.95
ηAql K04 2 452 770.9222 2.18 0.068 1.828 ± 0.049 3.61 3.09 − 2.54 2.23 1.92 1.86
ηAql K04 2 452 772.8988 2.18 0.343 1.919 ± 0.051 4.04 3.35 − 2.65 2.28 1.90 1.83
W Sgr K04 2 452 743.8373 2.18 0.571 1.438 ± 0.103 5.43 4.59 − 3.78 − − −
W Sgr K04 2 452 744.9149 2.18 0.713 1.319 ± 0.094 5.55 4.72 − 3.91 − − −
W Sgr K04 2 452 749.8676 2.18 0.365 1.289 ± 0.147 5.00 4.32 − 3.59 − − −
W Sgr K04 2 452 751.8659 2.18 0.628 1.348 ± 0.179 5.52 4.66 − 3.86 − − −
W Sgr K04 2 452 763.8884 2.18 0.211 1.311 ± 0.035 4.75 4.15 − 3.51 − − −
W Sgr K04 2 452 764.8766 2.18 0.341 1.383 ± 0.030 4.88 4.24 − 3.55 − − −
W Sgr K04 2 452 765.8802 2.18 0.473 1.341 ± 0.033 5.24 4.46 − 3.71 − − −
W Sgr K04 2 452 767.8671 2.18 0.735 1.234 ± 0.083 5.52 4.71 − 3.91 − − −
W Sgr K04 2 452 769.9137 2.18 0.005 1.266 ± 0.064 4.35 3.92 − 3.42 − − −
βDor K04 2 452 215.7953 2.18 0.161 1.884 ± 0.082 4.21 3.46 3.13 2.73 2.30 1.91 1.86
βDor K04 2 452 216.7852 2.18 0.261 1.999 ± 0.048 4.40 3.58 3.22 2.80 2.34 1.92 1.86
βDor K04 2 452 247.7611 2.18 0.408 1.965 ± 0.060 4.76 3.81 3.42 2.97 2.45 1.99 1.93
βDor K04 2 452 308.6448 2.18 0.594 1.886 ± 0.076 4.73 3.85 3.46 3.03 2.53 2.11 2.04
βDor K04 2 452 567.8272 2.18 0.927 1.834 ± 0.063 4.02 3.39 3.09 2.73 2.35 2.01 1.95
βDor K04 2 452 744.5645 2.18 0.884 1.770 ± 0.072 4.12 3.47 3.16 2.79 2.39 2.03 1.98
βDor K04 2 452 749.5139 2.18 0.387 1.965 ± 0.110 4.71 3.78 3.39 2.95 2.43 1.98 1.91
βDor K04 2 452 750.5111 2.18 0.488 1.907 ± 0.076 4.83 3.91 3.48 3.04 2.52 2.05 1.98
βDor K04 2 452 751.5186 2.18 0.591 1.999 ± 0.172 4.74 3.86 3.47 3.04 2.53 2.10 2.04
ζ Gem N02 2 451 098.9800 0.74 0.477 1.566 ± 0.221 5.06 4.11 − 3.19 2.65 − 2.13
ζ Gem N02 2 451 229.8300 0.74 0.368 1.461 ± 0.231 4.95 4.02 − 3.10 2.59 − 2.08
ζ Gem N02 2 451 232.7200 0.74 0.652 1.619 ± 0.053 4.82 3.96 − 3.18 2.67 − 2.18
ζ Gem N02 2 451 233.7100 0.74 0.750 1.514 ± 0.063 4.61 3.85 − 3.10 2.63 − 2.18
ζ Gem L02 2 451 605.2260 1.64 0.349 1.720 ± 0.015 4.91 4.00 − 3.08 2.58 − 2.08
ζ Gem L02 2 451 206.2410 1.64 0.044 1.719 ± 0.048 4.32 3.65 − 2.92 2.48 − 2.07
ζ Gem L02 2 451 214.1920 1.64 0.827 1.845 ± 0.062 4.46 3.77 − 3.05 2.58 − 2.16
ζ Gem L02 2 451 615.1800 1.64 0.330 1.783 ± 0.032 4.88 3.97 − 3.06 2.57 − 2.07
ζ Gem L02 2 451 617.1670 1.64 0.525 1.629 ± 0.029 5.04 4.10 − 3.21 2.67 − 2.15
ζ Gem L02 2 451 618.1430 1.64 0.622 1.575 ± 0.008 4.89 4.00 − 3.19 2.67 − 2.18
ζ Gem L02 2 451 619.1680 1.64 0.723 1.590 ± 0.018 4.67 3.88 − 3.12 2.64 − 2.18
ζ Gem L02 2 451 620.1690 1.64 0.821 1.627 ± 0.029 4.47 3.77 − 3.06 2.58 − 2.16
ζ Gem L02 2 451 622.1980 1.64 0.021 1.717 ± 0.047 4.30 3.64 − 2.93 2.48 − 2.07
ζ Gem L02 2 451 643.1610 1.64 0.086 1.707 ± 0.012 4.37 3.68 − 2.91 2.48 − 2.05
ζ Gem L02 2 451 981.1820 1.64 0.386 1.730 ± 0.014 4.98 4.04 − 3.12 2.60 − 2.09
ζ Gem L02 2 451 982.1640 1.64 0.482 1.679 ± 0.021 5.06 4.11 − 3.20 2.65 − 2.13
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Table 3. continued.

Star Ref. JD λ φ θLD B0 V0 R0 I0 J0 H0 K0

ζ Gem L02 2 451 983.2010 1.64 0.584 1.631 ± 0.022 4.96 4.05 − 3.21 2.67 − 2.17
ζ Gem L02 2 451 894.3870 1.64 0.835 1.662 ± 0.020 4.45 3.76 − 3.05 2.57 − 2.16
ζ Gem L02 2 451 895.3690 1.64 0.932 1.672 ± 0.014 4.32 3.66 − 2.98 2.52 − 2.11
ζ Gem K04 2 452 214.8787 2.18 0.408 1.715 ± 0.059 5.01 4.07 − 3.14 2.62 − 2.10
ζ Gem K04 2 452 216.8357 2.18 0.600 1.751 ± 0.088 4.93 4.03 − 3.21 2.67 − 2.18
ζ Gem K04 2 451 527.9722 2.12 0.739 1.643 ± 0.334 4.63 3.86 − 3.11 2.63 − 2.18
ζ Gem K04 2 451 601.8285 2.12 0.014 1.748 ± 0.086 4.30 3.64 − 2.93 2.48 − 2.08
ζ Gem K04 2 451 259.7790 2.12 0.318 2.087 ± 0.291 4.85 3.95 − 3.05 2.57 − 2.06
ζ Gem K04 2 451 262.7400 2.12 0.610 1.730 ± 0.273 4.91 4.02 − 3.20 2.67 − 2.18
ζ Gem K04 2 451 595.8520 2.12 0.426 1.423 ± 0.284 5.03 4.08 − 3.15 2.63 − 2.11
ζ Gem K04 2 451 602.7640 2.12 0.107 1.910 ± 0.216 4.40 3.69 − 2.91 2.48 − 2.05
Y Oph K04 2 452 742.9056 2.18 0.601 1.462 ± 0.120 4.93 4.10 3.86 3.29 2.96 2.58 2.52
Y Oph K04 2 452 750.8842 2.18 0.067 1.414 ± 0.106 4.26 3.64 3.50 3.00 2.77 2.49 2.44
Y Oph K04 2 452 772.8308 2.18 0.349 1.478 ± 0.057 4.75 3.95 3.72 3.16 2.86 2.50 2.43
Y Oph K04 2 452 786.8739 2.18 0.168 1.436 ± 0.046 4.45 3.76 3.59 3.07 2.79 2.48 2.42
	Car K04 2 452 453.4978 2.18 0.587 3.035 ± 0.109 4.73 3.46 2.89 2.41 1.72 1.16 1.06
	Car K04 2 452 739.5644 2.18 0.634 2.859 ± 0.084 4.73 3.48 2.91 2.42 1.74 1.19 1.09
	Car K04 2 452 740.5691 2.18 0.662 2.954 ± 0.046 4.72 3.47 2.92 2.42 1.75 1.22 1.12
	Car K04 2 452 741.7171 2.18 0.694 2.969 ± 0.038 4.71 3.46 2.93 2.42 1.77 1.24 1.15
	Car K04 2 452 742.7009 2.18 0.722 2.874 ± 0.054 4.69 3.45 2.94 2.43 1.80 1.27 1.18
	Car K04 2 452 743.6985 2.18 0.750 2.737 ± 0.073 4.66 3.44 2.94 2.44 1.81 1.30 1.21
	Car K04 2 452 744.6336 2.18 0.776 2.769 ± 0.033 4.62 3.43 2.92 2.43 1.82 1.31 1.22
	Car K04 2 452 745.6285 2.18 0.804 2.652 ± 0.095 4.53 3.39 2.88 2.41 1.81 1.32 1.23
	Car K04 2 452 746.6198 2.18 0.832 2.749 ± 0.045 4.40 3.33 2.81 2.37 1.79 1.31 1.23
	Car K04 2 452 747.5988 2.18 0.860 2.674 ± 0.125 4.22 3.23 2.73 2.30 1.74 1.29 1.21
	Car K04 2 452 749.5763 2.18 0.915 2.620 ± 0.076 3.82 2.96 2.53 2.13 1.63 1.23 1.15
	Car K04 2 452 751.5785 2.18 0.972 2.726 ± 0.032 3.62 2.79 2.40 2.01 1.54 1.15 1.08
	Car K04 2 452 755.6166 2.18 0.085 2.942 ± 0.110 3.78 2.85 2.44 2.01 1.51 1.06 0.98
	Car K04 2 452 763.5551 2.18 0.309 3.157 ± 0.032 4.31 3.13 2.63 2.15 1.53 1.01 0.92
	Car K04 2 452 765.5545 2.18 0.365 3.175 ± 0.033 4.43 3.19 2.69 2.21 1.56 1.02 0.93
	Car K04 2 452 766.5497 2.18 0.393 3.173 ± 0.033 4.48 3.25 2.72 2.23 1.57 1.04 0.95
	Car K04 2 452 768.5663 2.18 0.450 3.155 ± 0.036 4.60 3.35 2.78 2.29 1.62 1.07 0.98
	Car K04 2 452 769.5746 2.18 0.478 3.155 ± 0.021 4.65 3.39 2.81 2.32 1.64 1.08 1.00
	Car K04 2 452 770.5353 2.18 0.505 3.124 ± 0.021 4.69 3.41 2.84 2.35 1.66 1.10 1.01
	Car K04 2 452 771.5281 2.18 0.533 3.100 ± 0.019 4.72 3.43 2.86 2.38 1.69 1.12 1.03
	Car K04 2 452 786.6200 2.18 0.957 2.700 ± 0.064 3.64 2.82 2.42 2.03 1.56 1.17 1.09
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2.1.4 Lettre ApJ : “The angular size of the Cepheid ` Car : a comparison of
the interferometric and surface brightness techniques” (2004)

Cette Lettre compare les prédictions de diamètre angulaire obtenues par la technique de la
brillance de surface aux mesures interférométriques directes de la Céphéide brillante `Carinae.
Les deux méthodes sont en excellent accord l’une avec l’autre sur la plus grande partie du cycle de
pulsation, avec cependant une déviation significative près de la phase de diamètre minimum. Cet
effet pourrait être dû à la présence d’ondes de choc importantes lors du rebond de l’atmosphère
de l’étoile.

Fig. 2.7 – Vue du camp de base de l’Observatoire de Paranal depuis la plate-forme du VLT.
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ABSTRACT

Recent interferometric observations of the brightest and angularly largest classical Cepheid, Carinae, with�
ESO’s Very Large Telescope Interferometer have resolved with high precision the variation of its angular diameter
with phase. We compare the measured angular diameter curve to the one that we derive by an application of the
Baade-Wesselink–type infrared surface brightness technique and find a near-perfect agreement between the two
curves. The mean angular diameters of Car from the two techniques agree very well within their total error�
bars (1.5%), as do the derived distances (4%). This result is an indication that the calibration of the surface
brightness relations used in the distance determination of far-away Cepheids is not affected by large biases.

Subject headings: Cepheids — distance scale — stars: distances — stars: fundamental parameters —
stars: oscillations — techniques: interferometric

On-line material: color figures

1. INTRODUCTION

Cepheid variables are fundamental objects for the calibration
of the extragalactic distance scale. Distances of Cepheids can
be derived in at least two different ways: by using their ob-
served mean magnitudes and periods together with a period-
luminosity relation, or by applying a Baade-Wesselink (BW)
type technique to determine their distances and mean diameters
from their observed variations in magnitude, color, and radial
velocity. This latter technique has been dramatically improved
by the introduction of the (near-)infrared surface brightness
(IRSB) method by Welch (1994) and later by Fouqué & Gieren
(1997), who calibrated the relation between the V-band surface
brightness and near-infrared colors of Cepheids. For this pur-
pose, they used the observed interferometric angular diameters
of a number of giants and supergiants bracketting the Cepheid
color range. This method has been applied to a large number
of Galactic Cepheid variables, for instance by Gieren et al.
(1997, 1998) and Storm et al. (2004).

Applying the surface brightness relation derived from stable
stars to Cepheids implicitly assumes that the relation also ap-
plies to pulsating stars. The validity of this assumption can now
be addressed by comparing direct interferometric measure-
ments of the angular diameter variation of a Cepheid to the
one derived from the IRSB technique. It has recently been
shown by Kervella et al. (2004, hereafter K04) that the Very
Large Telescope Interferometer (VLTI) on Paranal is now in a
condition not only to determine accurate mean angular diam-
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eters of nearby Cepheid variables, but to follow their angular
diameter variations with high precision. Using the Palomar
Testbed Interferometer, Lane et al. (2000, 2002) resolved the
pulsation of the Cepheids z Gem and h Aql as early as 2000,
but the comparison that we present in this Letter is the first in
which error bars on the derived distance and linear diameter
are directly comparable at a few percent level between the
interferometric and IRSB techniques.

The star that we discuss in this Letter, Car, is the brightest�
Cepheid in the sky. Its long period of about 35.5 days implies
a large mean diameter, which together with its relatively short
distance makes it an ideal target for resolving its angular di-
ameter variations with high accuracy. In this Letter, we compare
the interferometrically determined angular diameter curve of

Car with that determined from the IRSB technique, and we�
demonstrate that the two sets of angular diameters are in ex-
cellent agreement. On the basis of the available high-precision
angular diameter and radial velocity curves for this star, we
also derive a revised value of its distance and mean radius.

Several authors (Sasselov & Karovska 1994; Marengo et al.
2003, 2004) have pointed out potential sources of systematic
uncertainties in the determination of Cepheid distances using the
interferometric BW method. In particular, imperfections in the
numerical modeling of Cepheid atmospheres could lead to biased
estimates of the limb darkening and projection factor. We discuss
the magnitude of these uncertainties in the case of Car.�

2. INTERFEROMETRIC OBSERVATIONS

The interferometric observations of Car were obtained with�
the VLTI (Glindemann et al. 2000), using its commissioning
instrument VINCI (Kervella et al. 2000, 2003) and 0.35 m test
siderostats. This instrument recombines the light from two tele-
scopes in the infrared K band (2.0–2.4 mm), at an effective
wavelength of 2.18 mm. A detailed description of the interfer-
ometric data recorded on Car can be found in K04.�

The limb-darkening (LD) models used to derive the pho-
tospheric diameters from the fringe visibilities were taken from
Claret (2000). The correction introduced on the uniform disk
(UD) interferometric measurements by the LD is small in the
K band: for Car, we determine . Con-� k p v /v p 0.966UD LD
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TABLE 1
Angular Diameter Measurements of Car�

Julian Date Phase
vLD

(mas) Uncertainties

2452453.498 . . . . . . 0.618 3.054 � 0.113 [0.041, 0.105]
2452739.564 . . . . . . 0.665 2.891 � 0.087 [0.076, 0.043]
2452740.569 . . . . . . 0.693 2.989 � 0.047 [0.018, 0.044]
2452741.717 . . . . . . 0.726 2.993 � 0.039 [0.026, 0.029]
2452742.712 . . . . . . 0.754 2.899 � 0.056 [0.035, 0.043]
2452743.698 . . . . . . 0.781 2.758 � 0.076 [0.074, 0.016]
2452744.634 . . . . . . 0.808 2.794 � 0.035 [0.032, 0.013]
2452745.629 . . . . . . 0.836 2.675 � 0.098 [0.097, 0.017]
2452746.620 . . . . . . 0.864 2.775 � 0.046 [0.023, 0.040]
2452747.599 . . . . . . 0.891 2.699 � 0.129 [0.127, 0.026]
2452749.576 . . . . . . 0.947 2.645 � 0.078 [0.077, 0.012]
2452751.579 . . . . . . 0.003 2.753 � 0.033 [0.028, 0.017]
2452755.617 . . . . . . 0.117 2.970 � 0.113 [0.113, 0.013]
2452763.555 . . . . . . 0.340 3.194 � 0.034 [0.009, 0.033]
2452765.555 . . . . . . 0.396 3.212 � 0.034 [0.011, 0.033]
2452766.550 . . . . . . 0.424 3.210 � 0.035 [0.011, 0.033]
2452768.566 . . . . . . 0.481 3.188 � 0.037 [0.011, 0.035]
2452769.575 . . . . . . 0.509 3.189 � 0.022 [0.018, 0.012]
2452770.535 . . . . . . 0.536 3.160 � 0.022 [0.020, 0.009]
2452771.528 . . . . . . 0.564 3.136 � 0.020 [0.017, 0.010]
2452786.620 . . . . . . 0.989 2.727 � 0.064 [0.012, 0.063]

Note.—The statistical and systematic calibration uncertainties
are in brackets.

sidering the magnitude of this correction, a total systematic
uncertainty of �1% appears reasonable. However, until the LD
of a sample of Cepheids has been measured directly by inter-
ferometry, this value relies exclusively on numerical models
of the atmosphere. This is expected to be achieved in the next
years using, for instance, the longest baselines of the VLTI (up
to 202 m) and the shorter J and H infrared bands accessible
with the AMBER instrument (Petrov et al. 2000).

The LD correction is changing slightly over the pulsation of
the star because of the change in effective temperature, but
Marengo et al. (2003) have estimated the amplitude of this
variation to less than 0.3% peak to peak in the H band (for the
10 day period Cepheid z Gem). It is even lower in the K band
and averages out in terms of rms dispersion. As a consequence,
we have neglected this variation in the present study.

The limb-darkened angular diameter measurements are listed
in Table 1. Two error bars are given for each point, corre-
sponding, respectively, to the statistical uncertainty (internal
error) and to the systematic error introduced by the uncertainties
on the assumed angular diameters of the calibrator stars (ex-
ternal error). The phases given in Table 1 are based on the new
ephemeris derived in § 4. These measurements were obtained
during the commissioning of the VLTI, and part of them is
affected by relatively large uncertainties (3%–5%) due to in-
strumental problems. However, the precision reached by VINCI
and the test siderostats on this baseline is of the order of 1%
on the angular diameter, as demonstrated around the maximum
diameter phase.

3. THE IRSB TECHNIQUE

The IRSB technique has been presented and discussed in
detail in Fouqué & Gieren (1997, hereafter FG97). In brief,
the angular diameter curve of a given Cepheid variable is de-
rived from its V light and color curve, appropriately cor-V�K
rected for extinction. It is then combined with its linear dis-
placement curve, which is essentially the integral of the radial
velocity curve. A linear regression of pairs of angular diameters
and linear displacements, obtained at the same pulsation phases,
yields both the distance and the mean radius of the star.

While there are several sources of systematic uncertainty in
the method, as discussed in Gieren et al. (1997), one of its
great advantages is its strong insensitivity to the adopted red-
dening corrections and to the metallicity of the Cepheid (Storm
et al. 2004). With excellent observational data at hand, indi-
vidual Cepheid distances and radii can be determined with an
accuracy of the order of 5% if the adopted K-band surface
brightness–color relation is correct.

A first calibration of this relation coming directly from inter-
ferometrically determined angular diameters of Cepheid varia-
bles was presented by Nordgren et al. (2002, hereafter N02).
They found a satisfactory agreement with the FG97 calibration,
within the combined 1 j uncertainties of both surface brightness–
color calibrations. Considering more closely the results from
N02, an even better agreement is found between the F (V�K)V

relations before the zero point if forced between the different
colors. Before this operation, N02 found the relation

F p (3.956 � 0.011) � (0.134 � 0.005)(V�K) (1)V 00

that translates, after forcing the zero point to the average of
the three selected colors, to the relation

F p (3.941 � 0.004) � (0.125 � 0.005)(V�K) . (2)V 00

On the other hand, FG97 obtain

F p (3.947 � 0.003) � (0.131 � 0.003)(V�K) . (3)V 00

From this comparison, it appears that the slope initially deter-
mined by N02 for is significantly different both fromF (V�K)V

their final value and from the FG97 relation. This difference
could cause a bias because of the averaging of the multicolor
zero points. Although small in absolute value, such a bias is
of particular importance for Car because of its relatively large�

color.V�K
Another argument in favor of the FG97 surface brightness

relation is that it relies on a sample of 11 Cepheids with periods
of 4–39 days, while the relations established by N02 were
derived from the observations of only three Cepheids with
periods of 5–10 days. Such short-period Cepheids are signif-
icantly hotter than Car ( days), and a local difference� P p 35.5
of the slope of the IRSB relations cannot be excluded. For
these two reasons, we choose to retain the FG97 calibration
for our analysis of the Cepheid Car in the following section.�

4. DIAMETER AND DISTANCE

4.1. Angular Diameter

We have combined the photometric data from Pel (1976)
and Bersier (2002) to construct the V-band light curve for

Car. The two data sets are spanning almost 30 years and�
allow an improved determination of the period of this variable.
We find days. The time of maximum V lightP p 35.54804
has been adopted from Szabados (1989), who give a value of

, which is also in good agreement with theT p 2440736.2300

more recent data. The resulting light curve is shown in Fig-
ure 1. The K-band light curve is based on the data from Laney
& Stobie (1992) and is also shown in Figure 1. The colorV�K
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Fig. 1.—Radial velocity curve of Car (top panel ) using data from Taylor�
et al. (1997) shifted by �1.5 km s�1 (circles) and from Bersier (2002; tri-
angles). The K-band photometric measurements (middle panel ) were taken
from Laney & Stobie (1992). We have relied on Pel (1976; circles) and Bersier
(2002; triangles) for the V-band data.

Fig. 2.—Photometric angular diameters plotted against phase for our best-
fitting distance. The solid curve represents the integrated radial velocity curve
of Car for the adopted distance. [See the electronic edition of the Journal�
for a color version of this figure.]

Fig. 3.—Interferometrically determined angular diameters, plotted against
phase ( filled circles) with the angular diameters derived with the IRSB method
overplotted (crosses). In the top right corner a typical error bar for the surface
brightness method data is shown. [See the electronic edition of the Journal
for a color version of this figure.]

curve that is needed by the IRSB method has been constructed
on the basis of the observed V-band data and a Fourier fit to
the K-band data as described in Storm et al. (2004).

For the radial velocity curve we have used the data from
Taylor et al. (1997) and Bersier (2002). Using the new ephem-
eris from above we detected a slight offset of 1.5 km s�1 be-
tween the two data sets. We choose to shift the Taylor et al.
(1997) data set by �1.5 km s�1 to bring all the data on the
well-established CORAVEL system of Bersier (2002). We note
that the exact radial velocity zero point is irrelevant as the
method makes use of relative velocities. The combined radial
velocity data are displayed in Figure 1.

The application of the IRSB method has followed the pro-
cedure described in Storm et al. (2004). We have adopted the
same reddening law with and , a red-R p 3.30 R p 0.30V K

dening of (Fernie 1990), and a projection fac-E(B�V ) p 0.17
tor, p, from radial to pulsational velocity of p p 1.39 �

(Hindsley & Bell 1986; Gieren et al. 1993).0.03 log P p 1.343
As discussed by Storm et al. (2004), we only consider the points
in the phase interval from 0.0 to 0.8 (phase zero is defined by
the V-band maximum light). We have applied a small phase
shift of �0.025 to the radial velocity data to bring the pho-
tometric and radial velocity–based angular diameters into
agreement. We note that a similar phase shift can be achieved
by lowering the systemic velocity by 1.5 km s�1 .

The angular diameter curve obtained from the photometry
has been plotted in Figure 2, together with the linear displace-
ment curve. The photometric and interferometric diameter
curves are directly compared in Figure 3, where they are plotted
as a function of phase. With these data we can compute the
average angular diameters obtained from each technique. For
the IRSB, we find an average limb-darkened angular diameter

mas, and for the interferometric mea-v p 2.974 � 0.046LD

surements we find mas. The agreementv p 2.992 � 0.012LD

between these two values is strikingly good. This is a serious
indication that the calibration of the surface brightness–color
relation (FG97), based on nonpulsating giant stars, does apply
to Cepheids.

4.2. Distance

The surface brightness method yields a distance of 560 �
pc and a mean radius of R,. The corresponding6 R p 179 � 2

mean absolute V magnitude is mag, andM p �5.57 � 0.02V

the distance modulus is . The error(m � M) p 8.74 � 0.050

estimates are all intrinsic 1 j random errors. In addition to these
random errors, a systematic error of the order of 4% should
be taken into account, as discussed by Gieren et al. (1997).
The final IRSB values are thus pc andd p 560 � 23 R p

R,. Compared to Storm et al. (2004), we find a sig-179 � 7
nificantly (0.24 mag) shorter distance modulus for Car. This�
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can be explained by the use in the present Letter of the new
and superior radial velocity data from Taylor et al. (1997) and
Bersier (2002).

K04 found pc, using the interferometric angular�24d p 603�19

diameters and a subset of the radial velocity data used here.
To make the comparison more relevant, we determined the
distance and radius using the same data (interferometric di-
ameters from Table 1 and radial velocity from Taylor et al.
1997 and Bersier 2002; see above), the same ephemeris, and
the same projection factor (see § 4.1). Using the method of
K04, we find a distance and a linear radius�24d p 566 R p�19

R,. This is in excellent agreement with the values ob-�8182�7

tained from the IRSB method.
This 6% difference in the distances based on interferometric

diameters (603 pc for K04 vs. 566 pc here) has two major causes.
First, the p-factor used in the present Letter is ∼1.3% smaller than
in K04. The choice of the reference used for the p-factor has
currently an impact of a few percents on its value. This indicates
that the average value of the p-factor for a given Cepheid is
currently uncertain by at least a similar amount, and this systematic
error translates linearly to the distance determination.

Second, the use of a different—and superior—data set for
the radial velocity makes the radius curve different from K04.
In particular the amplitude is smaller here than in K04 by ∼3%.
This is likely due to the more complete phase coverage that
we have here and possibly also to a different choice of spectral
lines to estimate the radial velocity. This amplitude difference
translates linearly on the distance through the BW method.

5. CONCLUSION

The main point of our Letter is to show that with a consistent
treatment of the data, the internal accuracy of both methods
(IRSB or interferometry) is extremely good: the angular di-
ameter variation observed using the VLTI agrees very well
with that derived from the version of the IRSB tech-F (V�K)V

nique as calibrated by FG97. For all the interferometric mea-
surements, the corresponding IRSB angular diameter at the
same phase lies within the combined 1 j error bars of the two
measurements (Fig. 3). Even more importantly, the mean an-
gular diameter of the Cepheid as derived from both independent

sets of angular diameter determination are in excellent agree-
ment, within a few percents.

Unfortunately, this is not equivalent to say that the Cepheid
distance scale is calibrated to a 1% accuracy. We have drawn
attention to remaining sources of systematic errors that can
affect Cepheid radii and distances up to several percents. As
an illustration of these sources, K04 obtain a distance d p

pc for Car, while we obtain pc from the�24 �24603 � d p 566�19 �19

same interferometric data.
We have already shown that most of the 6% difference

(equivalent to 1.3 j) can be explained by the use of different
radial velocity data and projection factor. Another thing to con-
sider is the phase interval used. K04 used measurements over
the whole pulsation cycle whereas in the IRSB technique, one
avoids the phase interval 0.8–1 (Fig. 2). During that phase
interval, which corresponds to the rebound of the atmosphere
around the minimum radius, energetic shock waves are created.
As discussed by Sabbey et al. (1995), they produce asymmetric
line profiles in the Cepheid spectrum. Recent modeling using
a self-consistent dynamical approach also shows that the

photosphere may not be comoving with the atmospheret p 1
of the Cepheid during its pulsation, at the 1% level (N. Nardetto
et al. 2004, in preparation). Such an effect would impact the
p-factor, modify the shape of the radial velocity curve, and thus
bias the amplitude of the radius variation, possibly up to a level
of a few percents. As the BW method (either its classical or
its interferometric versions) relies linearly on this amplitude, a
bias at this level currently cannot be excluded.

The interferometric BW method is currently limited to dis-
tances of 1–2 kpc because of the limited length of the available
baselines. The IRSB technique, on the other hand, can reach
extragalactic Cepheids as already demonstrated by Gieren et
al. (2000) for the Large Magellanic Cloud and by Storm et al.
(2004) for the Small Magellanic Cloud. Using high-precision
interferometric measurements of Car and other Cepheids, it�
will be possible to calibrate the IRSB method down to the level
of a few percents. From the present comparison, we already
see that this fundamental calibration will be very similar to the
calibration found by FG97 and N02.

W. P. G. acknowledges support for this work from the Chi-
lean FONDAP Center for Astrophysics 15010003.
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2.2 Le facteur de projection : un point clef

La méthode BW (classique et interférométrique) a été appliquée avec succès à un grand
nombre d’étoiles pulsantes, en particulier des Céphéides. Elle est cependant limitée par la
précision des modèles d’atmosphère stellaire utilisés pour dériver la variation ∆R de rayon
à partir des variations de vitesse radiale. La conversion de la vitesse radiale observée (intégrée
sur le disque) en vitesse pulsante est en effet rendue délicate par la dynamique interne complexe
de l’atmosphère, l’assombrissement centre-bord, et les variations de température effective de
l’étoile.

Actuellement, l’ensemble de ces inconnues se trouve rassemblé dans un facteur multiplicatif
reliant la vitesse radiale (mesurée sur les spectres) à la vitesse pulsationnelle (celle de la photo-
sphère de l’étoile) appelé facteur de projection (ou p-facteur). L’Eq. 2.3 formulée cette fois sur
la base de la vitesse radiale mesurée sur le spectre devient la suivante :

R(t)−R(0) = −
∫ t

0
vr(t) p(t) dt (2.4)

En général, p est supposé constant au cours de la pulsation, mais il est probable que cette
approximation n’est plus valable à l’échelle de quelques pourcents. Une conséquence importante
est que les distances déterminées par la méthode BW sont linéairement liées au facteur de
projection choisi. Par ricochet, toutes les estimations de distances extragalactiques basées sur la
relation P–L des Céphéides (qui est étalonnée par la méthode BW) sont donc également liées
linéairement au p-facteur.

Jusqu’à présent, le choix du facteur de projection était arbitraire : le plus souvent fixé à
1,36, en référence au travail de modélisation simplifiée de Burki, Mayor & Benz (1982). Ce
facteur n’ayant jamais été mesuré directement, un biais potentiellement important ne pouvait
pas être exclu. Pour améliorer cette situation, nous avons abordé l’étude de la question du
facteur de projection à la fois de manière théorique (modélisation numérique), et de manière
observationnelle (interférométrie et spectroscopie). Les premiers résultats dans ces directions sont
présentés dans les articles A&A reproduits dans les Sect. 2.2.1, 2.2.2 et 2.2.3. Nous rapportons
en particulier la première mesure directe d’un facteur de projection, sur la Céphéide prototype
δCep.
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2.2.1 Lettre A&A : “The projection factor of δ Cephei – A calibration of the
Baade-Wesselink method using the CHARA Array” (2005)

Grâce aux très longues bases interférométriques du réseau de télescopes CHARA et à la
grande précision de mesure de l’instrument de recombinaison FLUOR, nous avons obtenu la
première mesure directe d’un facteur de projection, celui de δCep. Nous avons utilisé pour cela
l’excellente mesure de parallaxe trigonométrique obtenue par Benedict et al. (2002) à l’aide de
l’interféromètre FGS du Hubble Space Telescope. La connaissance de la distance de l’étoile nous a
permis d’inverser la méthode Baade-Wesselink pour déterminer non plus la distance et le rayon,
mais directement le p-facteur.

Fig. 2.8 – La table optique de l’instrument FLUOR installé dans le laboratoire de recombinaison
de CHARA (Mont Wilson, Californie).
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Abstract. Cepheids play a key role in astronomy as standard candles for measuring intergalactic distances. Their distance is
usually inferred from the period–luminosity relationship, calibrated using the semi-empirical Baade-Wesselink method. Using
this method, the distance is known to a multiplicative factor, called the projection factor. Presently, this factor is computed using
numerical models – it has hitherto never been measured directly. Based on our new interferometric measurements obtained
with the CHARA Array and the already published parallax, we present a geometrical measurement of the projection factor of a
Cepheid, δ Cep. The value we determined, p = 1.27 ± 0.06, confirms the generally adopted value of p = 1.36 within 1.5 sigmas.
Our value is in line with recent theoretical predictions of Nardetto et al. (2004, A&A, 428, 131).
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1. Introduction

Cepheid stars are commonly used as cosmological distance
indicators, thanks to their well-established period–luminosity
law (P−L). This remarkable property has turned these su-
pergiant stars into primary standard candles for extragalac-
tic distance estimations. With intrinsic brightnesses of up to
100 000 times that of the Sun, Cepheids are easily distinguished
in distant galaxies (up to about 30 Mpc distant). As such, they
are used to calibrate the secondary distance indicators (super-
novae, etc...) that are used to estimate even larger cosmologi-
cal distances. For instance, the Hubble Key Project to measure
the Hubble constant H0 (Freedman et al. 2001) is based on the
assumption of a distance to the LMC that was established pri-
marily using Cepheids. Located at the very base of the cosmo-
logical distance ladder, a bias on the calibration of the Cepheid
P−L relation would impact our whole perception of the scale
of the Universe.

1.1. Period–luminosity calibration

The P−L relation takes the form log L = α log P + β, where L
is the (absolute) luminosity, P the period, α the slope, and β

� Table 3 is only available in electronic form at
http://www.edpsciences.org

the zero point. The determination of α is straightforward: one
can consider a large number of Cepheids in the LMC, located
at a common distance from us. Calibrating the zero-point β is
a much more challenging task, as it requires an independent
distance measurement to a number of Cepheids. Ideally, one
should measure directly their geometrical parallaxes, in order
to obtain their absolute luminosity. Knowing their variation pe-
riod, β would then come out easily. However, Cepheids are rare
stars: only a few of them are located in the solar neighborhood,
and these nearby stars are generally too far away for precise
parallax measurements, with the exception of δ Cep.

1.2. The Baade-Wesselink method

The most commonly used alternative to measure the distance
to a pulsating star is the Baade-Wesselink (BW) method.
Developed in the first part of the 20th century (Baade 1926;
Wesselink 1946), it utilizes the pulsational velocity Vpuls. of the
surface of the star and its angular size. Integrating the pulsa-
tional velocity curve provides an estimation of the linear radius
variation over the pulsation. Comparing the linear and angular
amplitudes of the Cepheid pulsation gives directly its distance.
The most recent implementation (Kervella et al. 2004) of the
BW method makes use of long-baseline interferometry to mea-
sure directly the angular size of the star.
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Unfortunately, spectroscopy measures the apparent radial
velocity Vrad., i.e. the Doppler shift of absorption lines in the
stellar atmosphere, projected along the line of sight and inte-
grated over the stellar disk. This is where p, a projection factor,
has to be introduced, which is defined as p = Vpuls./Vrad.. The
general BW method can be summarized in the relation:

θ(T ) − θ(0) = −2
p
d

∫ T

0

(
Vrad.(t) − Vγ

)
dt (1)

where d is the distance, p the projection factor, θ the angu-
lar diameter and Vγ the systematic radial velocity. There are in
fact many contributors to the p-factor. The main ones are the
sphericity of the star (purely geometrical) and its limb darken-
ing (due to the stellar atmosphere structure). A careful theo-
retical calculation of p requires modeling dynamically the for-
mation of the absorption line in the pulsating atmosphere of
the Cepheid (Parsons 1972; Sabbey et al. 1995; Nardetto et al.
2004).

Until now, distance measurements to Cepheids used
a p-factor value estimated from numerical models. Looking
closely at Eq. (1), it is clear that any uncertainty on the value
of p will create the same relative uncertainty on the distance
estimation, and subsequently to the P−L relation calibration.
In other words, the Cepheid distance scale relies implicitly on
numerical models of these stars. But how good are the mod-
els? To answer this question, one should confront their pre-
dictions to measurable quantities. Until now, this comparison
was impossible due to the difficulty to constrain the two vari-
ables θ(T ) and d from observations, i.e. the angular diameter
and the distance.

Among classical Cepheids, δ Cep (HR 8571, HD 213306)
is remarkable: it is not only the prototype of its kind, but also
the Cepheid with the most precise trigonometric parallax cur-
rently available, obtained recently using the FGS instrument
aboard the Hubble Space Telescope (Benedict et al. 2002). This
direct measurement of the distance opens the way to the direct
measurement (with the smallest sensitivity to stellar models)
of the p factor of δ Cep, provided that high-precision angular
diameters can be measured by interferometry.

2. Application of the BW method to δ Cep

To achieve this goal, interferometric observations were un-
dertaken at the CHARA Array (ten Brummelaar et al.
2003; ten Brummelaar et al. 2005), in the infrared K′ band
(1.95 µm ≤ λ ≤ 2.3 µm) with the Fiber Linked Unit
for Optical Recombination (Coudé du Foresto et al. 2003)
(FLUOR) using two East-West baselines of the CHARA Array:
E1-W1 and E2-W1, with baselines of 313 and 251 m respec-
tively. Observations took place during summer 2004 for E2-W1
(seven nights between JD 2 453 216 and JD 2 453 233) and Fall
2004 for E1-W1 (six consecutive nights, from JD 2 453 280
to JD 2 453 285). The pulsation phase was computed using
the following period and reference epoch (Moffett & Barnes
1985): P = 5.366316 d, T0 = 2 453 674.144 (Julian date), the
0-phase being defined at maximum light in the V band. The
resulting phase coverage is very good for the longest baseline

Table 1. Calibrators with spectral type, uniform disk angular diameter
in K band (in milliarcsecond) and baseline (Mérand et al. 2005).

S. type UD diam. (mas) Baseline

HD 2952 K0III 0.938 ± 0.013 W1-E1

HD 138852 K0III-IV 0.952 ± 0.012 W1-E1

HD 139778 K1III: 1.072 ± 0.014 W1-E2

HD 186815 K2III 0.713 ± 0.009 W1-E2

HD 206349 K1II-III 0.869 ± 0.011 W1-E1, W1-E2

HD 206842 K1III 1.214 ± 0.016 W1-E2

HD 214995 K0III: 0.947 ± 0.013 W1-E1

HD 216646 K0III 1.051 ± 0.015 W1-E1, W1-E2

HD 217673 K1.5II 1.411 ± 0.020 W1-E2

(E1-W1), while data lack at minimum diameter for the smaller
one (E2-W1)

The FLUOR Data reduction software (DRS)
(Coudé du Foresto et al. 1997), was used to extract the
squared modulus of the coherence factor between the two in-
dependent apertures. All calibrator stars were chosen in a
catalogue computed for this specific purpose (Mérand et al.
2005) (see Table 1). Calibrators chosen for this work are all
K giants, whereas δ Cep is a G0 supergiant. The spectral type
difference is properly taken into account in the reduction,
even though it has no significant influence on the final result.
The interferometric transfer function of the instrument was
estimated by observing calibrators before and after each δ Cep
data point. The efficiency of CHARA/FLUOR was consistent
between all calibrators and stable over the night around 85%.
Data that share a calibrator are affected by a common system-
atic error due to the uncertainty of the a priori angular diameter
of this calibrator. In order to interpret our data properly, we
used a specific formalism (Perrin 2003) tailored to propagate
these correlations into the model fitting process. Diameters are
derived from the visibility data points using a full model of the
FLUOR instrument including the spectral bandwidth effects
(Kervella et al. 2003). The stellar center-to-limb darkening is
corrected using a model intensity profile taken from tabulated
values (Claret 2000) with parameters corresponding to δ Cep
(Teff = 6000 K, log g = 2.0 and solar metallicity). The limb
darkened (LD) angular diameter comes out 3% larger than its
uniform disk (UD) counterpart.

The theoretical correction for LD has only a weak influ-
ence on the p-factor determination, since that determination is
related to a diameter variation. For example, based on our data
set, a general bias of 5% in the diameters (due to a wrongly esti-
mated limb darkening) leads to a bias smaller than 1% in terms
of the p-factor. Differential variations of the LD correction
during the pulsation may also influence the projection fac-
tor: comparison between hydrodynamic and hydrostatic simu-
lations (Marengo et al. 2003) showed negligible variations. An
accuracy of 0.2% on the angular diameters for a given baseline
is required to be sensitive to dynamical LD effects. This is close
to, but still beyond, the best accuracy that we obtained on the
angular diameter with a single visibility measurement: 0.35%
(median 0.45%).
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Fig. 1. Radial velocity smoothed using splines. A. Radial velocity data
points, as a function of pulsation phase (0-phase defined as the max-
imum of light). This set was extracted using a cross-correlation tech-
nique (Bersier et al. 1994). The solid line is a 4-knot periodic cubic
spline fit. B. Residuals of the fit.

Among the various sets of measurements of the radial ve-
locity Vrad.(t) available for δ Cep, we chose measurements from
Bersier et al. (1994) and Barnes et al. (2005). These works offer
the best phase coverage, especially near the extrema, in order
to accurately estimate the associated photospheric amplitude.
In order not to introduce any bias due to a possible mismatch
in the radial velocity zero-point between the two data sets, we
decided to reduce them separately and then combine the result-
ing p-factor. An integration over time is required to obtain the
photospheric displacement (see Eq. (1)). This process is noisy
for unequally spaced data points: the radial velocity profile was
smoothly interpolated using a periodic cubic spline function.

Fitting the inferred photospheric displacement and ob-
served angular diameter variations, we adjust three parame-
ters: the mean angular diameter θ, a free phase shift φ0 and
the projection factor p (see Fig. 1). The mean angular diame-
ter is found to be 1.475 ± 0.004 mas (milliarcsecond) for both
radial velocity data sets. Assuming a distance of 274 ± 11 pc
(Benedict et al. 2002), this leads to a linear radius of 43.3 ±
1.7 solar radii. The fitted phase shift is very small in both cases
(of the order of 0.01). We used the same parameters (Moffett &
Barnes 1985) to compute the phase from both observation sets
and considering that they were obtained more than ten years
apart, this phase shift corresponds to an uncertainty in the pe-
riod of approximately five seconds. We thus consider the phase
shift to be reasonably the result of uncertainty in the ephemeris.

The two different radial velocity data sets lead to a consoli-
dated value of p = 1.27 ± 0.06, once again assuming a distance
of 274 ± 11 pc. The final reduced χ2 is 1.5. The error bars ac-
count for three independent contributions: uncertainties in the
radial velocities, the angular diameters and the distance. The
first was estimated using a bootstrap approach, while the oth-
ers were estimated analytically (taking into account calibration
correlation for interferometric errors): for p, the detailed error
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Fig. 2. p-factor determination. A. Our angular diameter measurements
(points). Crosses correspond to the medium baseline (E2-W1), while
circles correspond to the largest baseline (E1-W1). The continuous
line is the integration of the 4-knots periodic cubic spline fitted to
the radial velocities (Fig. 1). Integration parameters: θ = 1.475 mas,
p = 1.269 and d = 274 pc. B. Residuals of the fit.

Table 2. Best fit results for p, with the two different radial velocity
sets. The third line is a weighted average of the two individual mea-
surements. Fourth and fith lines are the detailed quadratic contribu-
tion to the final error bar. Last line gives the final adopted value with
the overall error bar. References are: (1) Bersier et al. (1994); and
(2) Barnes et al. (2005).

p ± σVrad. 1.269 ± 0.008 ref. (1)

1.280 ± 0.012 ref. (2)

p ± σVrad. 1.273 ± 0.007 consolidated

σinterf. ±0.020

σdist. ±0.050

p 1.27 ± 0.06

is p = 1.273 ± 0.007Vrad. ± 0.020interf. ± 0.050dist.. The error is
dominated by the distance contribution (see Table 2).

3. Discussion

Until now, the p-factor has been determined using models: hy-
drostatic models (Burki et al. 1982) produced the generally
adopted value, p = 1.36. First attempts were made by Sabbey
et al. (1995) to take into account dynamical effects due to the
pulsation. They concluded that the average value of p should
be 5% larger than in previous works (1.43 instead of 1.36)
and that p is not constant during the pulsation. Because they
increased p by 5%, they claimed that distances and diame-
ters have to be larger in the same proportion. More recently
Nardetto et al. (2004) computed p specifically for δ Cep using
dynamical models. Different values of p were found, whether
one measures diameters in the continuum or in the layer where
the specific line is formed. In our case, broad band stellar inter-
ferometry (angular diameters are measured in the continuum)
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these authors suggest p = 1.27 ± 0.01. Concerning the vari-
ation of p during the pulsation, they estimate that the error in
terms of distance is of the order of 0.2%, smaller than what we
would have been able to measure with our interferometric data
set. While our estimate, p = 1.27 ± 0.06, is statistically com-
patible with this recent work, marginally with the widely used
p = 1.36, and not consistent with the former value p = 1.43
at a 2σ level. We note that Gieren et al. (2005) have recently
derived an expression of the p-factor as a function of the period
that predicts a value of 1.47 ± 0.06 for δCep. While this value
is in agreement with the modeling by Sabbey et al. (1995), is
is slightly larger than the present measurement (by 2.4σ). As a
remark, Gieren et al. obtain a distance of 280 ± 4 pc for δ Cep,
that is slightly larger than Benedict et al.’s (2002) value 274 ±
11 pc assumed in the present work. Assuming this new distance
estimation with our data would result in a p-factor of 1.30 ±
0.06, bringing the agreement to 2σ only.

Our geometrical determination of the p-factor, p = 1.27 ±
0.06, using the IBW method is currently limited by the error
bar on the parallax (Benedict et al. 2002). Conversely, assum-
ing a perfectly known p-factor, the uncertainty of the stellar
distance determined using the same method would have been
only 1.5%, two-times better than the best geometrical parallax
currently available. The value we determined for p is statisti-
cally compatible with the value generally adopted to calibrate
the Cepheid P−L relation in most recent works. It is expected
that the distance to approximatively 30 Cepheids will be deter-
mined interferometrically in the near future using particularly
the CHARA Array and the VLT Interferometer (Glindemann
2005). In order not to limit the final accuracy on the derived
distances, theoretical p-factor studies using realistic hydrody-
namical codes is necessary. With a better understanding of the
detailed dynamics of the Cepheid atmospheres, we will be in
a position to exclude a p-factor bias on the calibration of the
P−L relation, at a few percent level.
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2.2.2 Article A&A : “Self consistent modelling of the projection factor for
interferometric distance determination” (2004)

Cet article présente une approche numérique de la question du facteur de projection des
Céphéides. Nous avons utilisé pour cela un modèle autocohérent des oscillations de l’étoile δCep,
qui nous a permis d’étudier l’évolution d’une raie spectrale parmi les plus significatives de cette
étoile au cours de son cycle de pulsation. Notre conclusion principale est que différentes valeurs du
p-facteur doivent être utilisées selon la méthode d’extraction de la vitesse radiale (gaussienne,
minimum de la raie,...), mais aussi de manière plus inattendue selon la méthode de mesure
interférométrique (large bande, monochromatique,...).

Fig. 2.9 – Deux chariots mobiles des lignes à retard de CHARA.
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Abstract. The distance of galactic Cepheids can be derived through the interferometric Baade-Wesselink method. The interfer-
ometric measurements lead to angular diameter estimations over the whole pulsation period, while the stellar radius variations
can be deduced from the integration of the pulsation velocity. The latter is linked to the observational velocity deduced from
line profiles by the so-called projection factor p. The knowledge of p is currently an important limiting factor for this method
of distance determination. A self-consistent and time-dependent model of the star δ Cep is computed in order to study the
dynamical structure of its atmosphere together with the induced line profile. Different kinds of radial and pulsation velocities
are then derived. In particular, we compile a suitable average value for the projection factor related to different observational
techniques, such as spectrometry, and spectral-line or wide-band interferometry. We show that the impact on the average pro-
jection factor and consequently on the final distance deduced from this method is of the order of 6%. We also study the impact
of a constant or variable p-factor on the Cepheid distance determination. We conclude on this last point that if the average value
of the projection factor is correct, then the influence of the time dependence is not significant as the error in the final distance is
of the order of 0.2%.

Key words. stars: atmospheres – stars: distances – stars: oscillations – stars: variables: Cepheids

1. Introduction

The period–luminosity (P–L) relation of the Cepheids is the
basis of the extragalactic distance scale, but its calibration is
still uncertain at a ∆M = ±0.10 mag level. In order to cal-
ibrate this relation, two procedures have been recently con-
sidered, both based on the Baade-Wesselink method (hereafter
BW), with distances deduced from the ratio of radius to angular
variations.

The first method is the near-infrared surface brightness
method introduced by Welch (1994), and later by Fouqué &
Gieren (1997). The angular diameter variation is photometri-
cally inferred from calibrations of the V light and (V −K) color
curves, and compared to the radius variation obtained spectro-
scopically. In the second method, called the interferometric ver-
sion of the Baade-Wesselink method (hereafter IBW), the an-
gular diameter variation is directly measured through the latest
generation of long-baseline interferometers in the visible and
in the IR, and then again compared to radius variations in order
to derive distances (Kervella et al. 2004a; Lane et al. 2002) and
then calibrate the P–L relation (Kervella et al. 2004b).

Both methods are in perfect agreement on the angular di-
ameter, with a discrepancy of less than 1.5% (Kervella et al.
2004c). However, a difficulty remains in the derivation of the
radius variation. The radius displacement is obtained through
the integration of the pulsation velocity curve, hereafter called
vpuls. But when one measures radial velocities from line pro-
files, hereafter called vrad, they include the integration in two
directions over the surface, through limb-darkening, and over
the radius, through velocity gradients in line forming regions.
Moreover, both the limb-darkening and velocity gradients de-
pend on the pulsation phase, as already pointed out by Marengo
et al. (2003). Therefore, the knowledge of the projection factor,
defined as vpuls = p ∗ vrad, is of crucial importance for deriv-
ing a correct estimate of the radius variation curves from the
integration of the pulsation velocity curve.

1.1. Previous work

The problem of the projection factor has been first stud-
ied by Eddington (1926), Carroll (1928) and Getting (1935).
These authors consider both effects of limb-darkening and
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atmospheric expansion at constant velocity on the line profile.
These studies led to a p-value of 24

17 = 1.41, which was used for
several decades in the Baade-Wesselink method.

Later, Van Hoof & Deurinck (1952) showed that when the
natural width of the line is much smaller than the shift induced
by the Doppler effect, the resulting profile must be distorted,
and the p-factor can be measured from the convolution of the
static line profile with this distortion function. Parsons (1972),
using a model atmosphere with uniform expansion, numeri-
cally determined p-values between 1.31 and 1.34 depending
on the width of the line.

Karp (1973, 1975) introduced a velocity gradient within the
line forming regions and computed the emerging flux for both
weak and strong lines. Weak lines, appear asymmetrical simi-
lar to the ones obtained by Van Hoof & Deurinck (1952), while
the distortion for the stronger lines is mainly due to the veloc-
ity gradient within the atmosphere. Albrow & Cottrell (1994)
determine values for p larger by 10% than those obtained by
Parsons (1972), a difference interpreted as due to the use of a
different limb-darkening law. Indeed, the p-factor depends on
many parameters, such as the wavelength (p is larger in the in-
frared, Sasselov & Lester 1990), or the effective temperature of
the star (Hindsley & Bell 1986; Montañés Rodriguez & Jeffery
2001).

From an observational point of view, Burki et al. (1982)
determined p = 1.36 from the measure of the centroid of the
correlation profile, a value which has been widely used in spec-
troscopy.

Finally, since p is determined both through geometrical ef-
fects and atmospheric dynamics, which change during the pul-
sation cycle, it should itself vary with the pulsation phase. In
particular, Sabbey et al. (1995) showed that this effect on p can
increase the BW radius by about 6%.

1.2. This work

We apply for δ Cep a nonlinear self-consistent hydrodynamical
model (Fokin 1990). In addition, radiative transfer is consid-
ered in the outer layers to produce a realistic atmosphere model.
The derived quantities have been found to be in good agree-
ment with observations for different classes of pulsators such as
RR Lyrae (Fokin & Gillet 1997), RV Tauri (Fokin 2001), post-
AGB (Jeannin et al. 1997), BL Herculis (Fokin & Gillet 1994)
and more recently βCephei stars (Fokin et al. 2004). In par-
ticular, this model has already been used in the case of δ Cep
(Fokin et al. 1996). Our model has some limitations (no con-
vection, no adaptive grid), but is able to reproduce the main
observational characteristics such as the presence of shocks or
the correct shape and amplitude of the velocity curve. Thus we
are confident that our model is valid for our study, and that the
results are consistent.

The influence of the projection factor on the distance deter-
mination of Cepheids can be safely studied in the context of the
IBW method. The main objectives of this paper are, firstly, to
have an idea of the best value of the p-factor for interferometric
observations, and to compare it with the generally used value of
p = 1.36, and secondly, to quantify the impact of a constant or

time-dependent projection factor on the distance determination
of the star.

The paper is organized as follows. In Sect. 2 we describe
our model of the prototype of the Cepheids, δCep, constrained
from observational parameters referenced in the literature. In
Sect. 3, we define the radial and pulsation velocities consid-
ered in the following. Section 4 deals essentially with the study
of the projection factor and Sect. 5 concerns the impact of the
choice of a time-varying p-factor on the distance determina-
tion. Finally, Sect. 6 presents the conclusions of this work.

2. The model of δCep

The model needs only 4 input parameters: the luminosity (L),
the effective temperature (Teff), the mass (M) and the chemical
composition (X and Y). The model is run until it reaches its
limit cycle (for δ Cep this is the fundamental mode). Radiative
transfer in the line is then solved in the frame of this hydro-
dynamical model to provide line profiles (Fokin 1991). For the
present study, which is a first step, we have arbitrarily consid-
ered the metallic line Fe I 6003.012 Å. Therefore, we can com-
pare the velocity in a given mass zone (vpuls) with the velocity
measured from the synthetic line profile (vrad). The latter was
determined by two methods: measuring the velocity associated
with the pixel at the minimum of the line profile (hereafter
called profile minimum), and the Gaussian method in which
we fit the whole profile with a Gaussian function. Note that
theoretical variations follow the usual convention in which the
pulsation phase φ = 0 corresponds to maximum luminosity.

Since the main stellar quantities of δCep (HD 213306) are
still uncertain, we tried several sets of luminosity L, effective
temperature Teff and mass M in order to get suitable obser-
vational quantities such as the pulsation period, the average
radius of the star, bolometric and radial velocity curves, and
line profiles. This leads to the following set for the 106-zone
model: M = 4.8 M�, L = 1995 L�, Teff = 5877 K. This latter
is in agreement with the one measured by Fernley et al. (1989).
Mass and luminosity are related through the M–L relation of
Chiosi et al. (1993):

log
L
L�
= −0.015 + 3.14Y − 10.0Z + 3.502 log

M
M�
+ 0.25

where Y = 0.28 and Z = 0.02 correspond to typical Pop. I
chemical composition. The inner boundary has been fixed at
about T = 1.0×106 K, corresponding to about 16% of the pho-
tospheric radius, so the model envelope with the atmosphere
contains about 7% of the stellar mass. The atmosphere itself
contains about 1.0×10−7 of the total stellar mass. In the hydro-
dynamical model we used the OPAL92 opacity table. Note that
in the following line transfer calculation for each chosen phase
we used the snapshots of the pulsating atmosphere given by the
nonlinear model. In addition, we used the relevant frequency-
dependent atomic opacities both in the continuum and in the
line.

We started the hydrodynamical calculations with an ini-
tial velocity profile with a value of 25 km s−1 at the sur-
face. At the limit cycle the pulsation period is 5.419 days,
very close (1%) to the observational value deduced by
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Fig. 1. Difference between the theoretical radial velocity curves mea-
sured by the profile minimum method (vrad|min) and the Gaussian fitting
method (vrad|gauss). The small difference induces a bias in the determi-
nation of the p-factor. The horizontal line is the zero velocity in the
stellar rest frame.

Szabados et al. (1980). Bolometric and radial velocity ampli-
tudes are respectively ∆mbol = 0.85 mag and ∆V = 35 km s−1.
The relative radius amplitude at the surface is ∆R/R = 10%.
The mean photospheric radius is about R = 43.5 R�, in agree-
ment with interferometric and parallax measurements obtained
by Mourard et al. (1997), Nordgren et al. (2000) and Benedict
et al. (2002).

We then generated a series of snapshots of the atmospheric
structure (about 60 per pulsation period) and after the line
profile computation we deduced the radial velocity variations.
For all phases we assume the same microturbulence velocity
of 1 km s−1, and we neglect the rotation (v sin i ∼ 5 km s−1,
Breitfellner & Gillet 1993).

3. Velocities

To study the projection factor, we now define different radial
and pulsational velocities.

3.1. The radial velocity

Theoretical line profiles deduced from the δCep model are
used to determine apparent radial velocities considering ei-
ther the minimum of the profile or the Gaussian fit. The maxi-
mum velocity difference between these two methods reaches
about 0.7 km s−1 during extrema phases (φ = 0.7−0.8 and
φ = 0.9−0.1), see Fig. 1. We will show later that such a differ-
ence is not negligible for the projection factor determination.

3.2. The pulsation velocity

The projection factor may have different definitions depending
on the pulsating layer considered. From a spectroscopic point
of view, one considers the gas velocity associated to the opti-
cal barycenter of the line forming region. However, the instru-
ments, spectrograph and interferometer, do not probe the same

layers of the star. For instance, with the IBW method, the layers
that are seen by the interferometer depend on the spectral reso-
lution. Indeed, a wide spectral band will rather probe the con-
tinuum (photospheric) region. Conversely, in a specific line, the
visibility function is the Fourier transform of the image of the
star in the considered line. Thus different cases, corresponding
to each type of observation, have to be considered.

Firstly, for spectroscopic observations the gas velocity is
that of the line-forming layers. However this region may rep-
resent an appreciable fraction of the height of the atmosphere.
Sabbey et al. (1995) determined the layer corresponding to the
optical center of gravity of the line from contribution functions.
In our case, we consider the standard definition in which the
line core is formed at an optical depth of τ = 2/3. Hence, we
use the definition:

vpuls(s) = v

(
τl =

2
3

)
(1)

where τl is the optical depth at the center of the line and “(s)”
means “Spectroscopy”.

Secondly, for interferometric observations in one particular
line, it is better to consider the velocity of optical layers cor-
responding to an optical depth of τl = 2/3. It is not the gas
velocity that is considered here but the velocity of the optical
layer deduced from the pulsation model, defined by:

vpuls(il) =
∂R(τl = 2/3)

∂φ
(2)

where “(il)” is for “Interferometry in one Line”.
Similarly, for interferometric observations in a wide band,

the most appropriate pulsation velocity is the one associated to
the photospheric layer that corresponds, by definition, to τ =
2/3 in the continuum:

vpuls(ic) =
∂R(τc = 2/3)

∂φ
(3)

where “(ic)” is for “Interferometry in the Continuum”.
Note that we consider here the continuum next to the line.

Figure 2 represents the different pulsation velocities defined
above. These three pulsation velocity curves are different by
a maximum of 5% during the extrema phases, because the at-
mosphere is not co-moving. The asymmetry in the profile is
maximum during the phases of extrema of the radial velocity
curve, thus there should be a large velocity gradient between
the different layers.

4. The projection factor

4.1. Combination of radial and pulsation velocities

It is now possible to combine the radial velocities (two cases)
with the pulsation velocities (three cases) to derive the projec-
tion factor. Figures 3a–c shows the three pulsation velocities
together with the radial velocity using the Gaussian method.
Note that the estimators of radial and pulsation velocities, in (s)
and (il) cases, are supposed to probe the same part of the star,
the line forming region. In other words the two curves should
cancel at the same phase respectively in Figs. 3a and 3b, which
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Fig. 2. Pulsation velocities vs. phase. The dashed curve shows the ve-
locity of the photospheric layer (τ = 2/3 in the continuum), the dot-
dashed curve the velocity of the layer corresponding to τ = 2/3 in the
spectral center of the line and the dotted curve the gas velocity corre-
sponding to τ = 2/3 in the line. The horizontal line is the zero velocity
in the stellar rest frame.

is actually the case with a good precision (φ ∼ 0.4). This is an
indication that our estimator of the optical barycenter τ = 2/3
is correct. The result should have been the same considering
the profile minimum as the velocity curve cancels at the same
phase (see φ = 0.4 in Fig. 1). However, we note in Fig. 3c
that the zero point of the photospheric velocity is at a slightly
later phase. This is the result of asynchronous motions in the
atmosphere.

All these curves, with their amplitude and shape, will have
an impact on the projection factor and its variation over the
pulsation. In the following section we compute a suitable av-
erage value of the projection factor for each case, considering
two estimators which are not simply the average of the ratio
of pulsation to radial velocities. In Sect. 5, we consider more
specifically the time dependence of the projection factor.

4.2. Two estimators of p

To determine a constant projection factor, we cannot simply
consider the mean value of the ratio of the pulsation to ra-
dial velocities. Due to the non-comoving character of the at-
mospheric motions, this would lead to a ratio of physical quan-
tities close to zero (φ ∼ 0.4) but not exactly at the same phase,
whatever the case considered in Fig. 3. Consequently, two more
suitable tests were used to estimate a constant value of p. The
first consists in applying a classical χ2 minimization algorithm
between the quantity vrad.pconst and the considered pulsation ve-
locity (hereafter estimator 1):

χ2 =
∑

i

(vrad(φi).pconst − vpuls(φi))2

σpuls(φi)2
(4)

where σpuls(φi) is the statistical error in the pulsation velocity,
arbitrarily fixed to a reasonable value of 1 km s−1, in order to
evaluate the corresponding error on p. The phases φi, in this
case, are sampled following the snapshots of the model. Here,

Fig. 3. Radial velocity curve deduced from the theoretical line profiles
by the Gaussian method together with a) the gas velocity correspond-
ing to τ = 2/3 in the line forming region according to Eq. (1), b) the
τ = 2/3 “optical layer” velocity according to Eq. (2), c) the velocity
of the photospheric layer (τ = 2/3 in the continuum, see Eq. (3)).

vrad is the radial velocity deduced from either the profile mini-
mum or the Gaussian fit, and vpuls is related to Eqs. (1)–(3).

The second estimator of the p-factor is directly based on
the radius variation of the star, obtained either by integration
of the radial velocity or directly by the position of the layer as
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Table 1. Optimal constant values for the p-factor for different cases
of interest. vrad|gauss and vrad|min are the radial velocity deduced from
theoretical line profiles using the Gaussian and minimum method re-
spectively. Estimator (1) and (2) of the constant projection factor cor-
respond to Eqs. (4) and (5) respectively. In each case the pulsational
velocity vpuls and radius ∆Rpuls used are indicated.

Estimator 1 Estimator 2

vpuls(s) = v(τl = 2/3) ∆Rpuls(s) =
∫
v(τl = 2/3)

vrad|gauss 1.35 ± 0.01 1.32 ± 0.01

vrad|min 1.31 ± 0.01 1.30 ± 0.01

vpuls(il) =
∂R(τl = 2/3)

∂φ
∆Rpuls(il) = ∆R(τl = 2/3)

vrad|gauss 1.33 ± 0.01 1.32 ± 0.01

vrad|min 1.30 ± 0.01 1.29 ± 0.01

vpuls(ic) =
∂R(τc = 2/3)

∂φ
∆Rpuls(ic) = ∆R(τc = 2/3)

vrad|gauss 1.28 ± 0.01 1.27 ± 0.01

vrad|min 1.24 ± 0.01 1.24 ± 0.01

provided by the radius of the mass zone involved. Hence, the
quantity defined by

∫
vrad.pconst is compared with the pulsating

radius (hereafter estimator 2):

χ2 =
∑

i

( ∫
vrad(φi).pconst − ∆Rpuls(φi)

)2
σpuls(φi)2

(5)

where σpuls(φi) is the statistical error in the pulsation radius,
fixed to 0.1 R� to obtain the same uncertainty in the p-factor for
both estimators. The quantity vrad is the same as in estimator 1.
The radius variation ∆Rpuls may be either:

∆Rpuls(s) =

∫
v(τl = 2/3) (6)

or

∆Rpuls(il) = ∆R(τl = 2/3) (7)

or

∆Rpuls(ic) = ∆R(τc = 2/3), (8)

with each case corresponding theoretically to the integration of
Eqs. (1)–(3). However, note that for Eqs. (7) and (8) the radius
variations are deduced directly from the model. An integration
algorithm was used to derive Eq. (6). We also define Rpuls =

Rpuls + ∆Rpuls for each case.

4.3. Results and discussion

Table 1 lists the computation results for the twelve cases con-
sidered, leading to the following conclusions.

Firstly, the p-factors obtained considering the two estima-
tors differ by 2% in extreme cases. This is expected for two
reasons. On the one hand, the two minimized quantities are dif-
ferent, so it is expected that the associated p-factor values will
also be different. On the other hand, when the radius is fitted,
the estimator may be less sensitive to velocity variation shapes.

Secondly, these results indicate a systematic shift of
0.02–0.04 (or 3%) in p-values between the radial velocities
associated with the Gaussian and the profile minimum meth-
ods. This is logically linked to the systematic difference in ve-
locity curves, as shown in Fig. 1. Therefore it is important to
choose the p-factor value that corresponds to the method that
was used to estimate the projected velocity. In addition, it is
best to use the method that is least sensitive to velocity gra-
dients and marginal effects, in order to obtain a value for the
p-factor that is generally applicable. That is why in the follow-
ing discussions, we consider only the radial velocity deduced
from the Gaussian method.

Thirdly, the difference between the pulsation layers con-
sidered should be related to the different observational tech-
niques, as we pointed out in Sect. 3. For spectroscopic mea-
surements of the gas velocity within the line, the recommended
value is p = 1.35, which is close to the classical value of
p = 1.36 (Burki et al. 1982). In this case, one should prefer-
ably consider the first estimator since one has to deal with the
pulsation velocity of the gas to account for the atmosphere
dynamics. Conversely, for interferometric observations in a
“photospheric” line, the best value is p = 1.32, and one should
consider the second estimator (this result will be confirmed in
the next section). For broadband interferometric observations,
one should use a lower value of p = 1.27. These results indicate
that an error of 6% can be made if one takes the usual value of
p = 1.36 regardless of the observational method used.

Finally, an initial error of 1 km s−1 in the pulsation velocity,
or 0.1 R� in the pulsation radius, leads to a final statistical error
in the p-factor of about 0.01 for both estimators.

5. The effect of a constant projection factor
on distance determination

The IBW method combines interferometric and spectrometric
observations to deduce the distance of the star (see Kervella
et al. 2004a). In the previous section we have obtained dif-
ferent average values for p, considering different kinds of ve-
locities and estimators. We now study the influence of the
time-dependence of p on distance determination. Since the def-
inition of p involves phase-dependent factors, p itself should be
time-dependent. This is illustrated in Fig. 4 which shows the
quantity vpuls− pconst ∗ vrad. As it has already been pointed out in
Sect. 4.2, plotting the p-factor against the phase is misleading
as the ratio of pulsation to radial velocities is not representative
when these quantities are close to zero (φ ∼ 0.4). Moreover, in
the framework of the IBW method, the quantity of interest is
the pulsation velocity rather than the projection factor itself.

On the one hand, we simulate angular diameters θobs, fixing
arbitrarily the distance of the star (d = 275 pc) and using the
radius variations provided by the pulsation model:

θobs(φi) = 9.305

(
Rpuls(φi)

275

)
[mas] (9)

where Rpuls (in R�) is one of the three quantities:

Rpuls(s) =

∫
v(τl = 2/3) (10)
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Fig. 4. The quantity vpuls − 1.35 ∗ vrad versus the phase in the case of
Fig. 3a: vpuls is the gas velocity corresponding to τ = 2/3 in the line
formation region according to Eq. (1), and vrad is the radial veloc-
ity curve deduced from the theoretical line profiles by the Gaussian
method. p = 1.35 is the optimum value obtained from the estimator 1,
as described in Sect. 4.2

Fig. 5. Simulated angular diameter points deduced from Eq. (9) with
Rpuls(ic) = R(τc = 2/3). Each point is shown with its arbitrary the-
oretical error bar of 0.01 mas. This curve simulates interferometric
observations used in the IBW method.

or

Rpuls(il) = R(τl = 2/3) (11)

or

Rpuls(ic) = R(τc = 2/3), (12)

as provided by the integration of Eqs. (1)–(3). The phases φi are
sampled from the snapshots of the model. Figure 5 shows the
simulated angular diameter curve considering Rpuls(ic) = R(τc =

2/3).
On the other hand, the IBW method is used as follows.

Firstly, a radial velocity curve is derived from the synthetic
spectra considering both the Gaussian fit and the minimum pro-
file methods. Then, a constant value for the p-factor is chosen
corresponding to one of the twelve cases of Table 1. Finally,

Table 2. Distance results corresponding to the mean p-factor results of
Table 1. The different expressions of the radius refer to Eqs. (10)–(12)
respectively and correspond to the quantity used in the Eq. (9) of the
simulated angular diameters.

Estimator 1 Estimator 2

Rpuls =
∫
v(τl = 2/3)

vrad|gauss 279.6 ± 7.2 274.6 ± 7.2

vrad|min 278.2 ± 7.2 274.8 ± 7.2

Rpuls = R(τl = 2/3)

vrad|gauss 278.2 ± 7.2 274.6 ± 7.2

vrad|min 276.9 ± 7.2 274.7 ± 7.2

Rpuls = R(τc = 2/3)

vrad|gauss 276.0 ± 7.2 274.9 ± 7.2

vrad|min 274.6 ± 7.2 274.8 ± 7.2

the integration of the pulsation velocity deduced from the ra-
dial velocity and the projection factor leads to an estimation of
the radius variation of the star. This leads to an angular varia-
tion curve:

θmodel(φi) = θ + 9.305

(
∆R(φi)

d

)
[mas], (13)

where ∆R(φi) =
∫
vrad(φi).pconst. Finally, applying a classi-

cal χ2 minimization algorithm, we fit both the average angu-
lar diameter θ and the distance d to the star. The minimized
quantity is:

χ2 =
∑

i

(θobs(φi) − θmodel(φi))2

σobs(φi)2
· (14)

The values for σobs(φi) are arbitrarily fixed to 0.01 mas which
is a realistic value considering the measurement precision
achieved recently by long-baseline interferometers (see Fig. 5).

Table 2 gives the computed distances using the p-factors
shown in Table 1. The mean angular diameters obtained cor-
respond to the anticipated values of θobs = 1.471 mas for the
(ic) case and θobs = 1.476 for (s) and (il) cases. The statistical
errors obtained are around 0.001 mas.

Since p is constant, we have ∆R ∼ ∆Rpuls, and any depar-
ture from the predefined distance (275 pc) is the result of the
time-dependence of the projection factor or the choice of the
estimator: there is no model effect. It appears that the com-
puted and reference distances are closer for estimator 2. Thus,
estimator 2 provides projection factors less biased than those
provided by estimator 1 in the frame of the IBW method.

An important conclusion is that for the best p-factor value,
the systematic error in the derived distance does not exceed
0.2%, independent of the radial and pulsation velocities con-
sidered. This important result indicates that a time-dependent
p-factor is not required at the moment since the final error of
0.2% is well below our best estimation of recent distance de-
termination.

Finally, note that the initial uncertainty of 0.01 mas in the-
oretical angular diameters leads to a final statistical error in the
distance of 7.2 pc.
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6. Conclusion

A self-consistent nonlinear model for δ Cephei was generated
reproducing the main observational features of this star.

On the basis of this model we studied the effect of the pro-
jection factor which links radial and pulsation velocity on the
IBW method for distance determination. Two methods were
considered for deriving the radial velocity curve: a Gaussian fit
and the profile-minimum method. Similarly, three pulsation ve-
locities were defined corresponding to different regions of the
stellar atmosphere: two concern the line forming region, while
the third corresponds to the photosphere. These three pulsation
velocities are linked to different observational techniques such
as spectrometry and wide-band or spectral-line interferometry.
An important result of this study is the very weak influence of
the time-dependence of the p-factor on distance determination.
The choice of a constant p-factor instead of one that is time-
dependent gives a systematic error in the final distance of the
order of 0.2%, which is below the best estimations of current
distance determination. More important, the projection factor
should be chosen depending on the observational techniques
used. For spectroscopic observations, if we use the Gaussian
method to derive the radial velocity, we propose p = 1.35.
For wide-band interferometry, the best value is p = 1.27, and
for interferometric observations in a specific (metal) line it is
p = 1.32. Note that this latter value has been determined for
a given line: considering lines formed in other atmospheric re-
gions should lead to different values. An extensive study of this
dependence, outside the scope of the present paper, is currently
in progress.

Note also that these values have been determined for δ Cep.
The generalization of our results to other classical Cepheids
will require the study of a larger sample of stars. The AMBER
instrument (Petrov et al. 2000) will also permit observations in
one particular line with a good resolution (“Interferometry in
one Line”). Cepheids are bright sources and observations in an
absorption line of their atmospheres appears feasible in terms
of signal to noise ratio of as long as one can use large tele-
scopes and adaptive optics. It will be then possible to compare
the same layer of the star with interferometry and spectrometry.
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2.2.3 Article A&A : “High resolution spectroscopy for Cepheids distance
determination – I. Line asymmetry” (2006)

L’analyse des spectres à haute résolution est une des deux composantes de la méthode Baade-
Wesselink. Elle permet d’extraire la vitesse radiale, qui est ensuite utilisée, après intégration
et correction par le facteur de projection, pour estimer la variation de rayon de l’étoile. Nous
présentons dans cet article une première analyse de spectres à très haute résolution (R = 120 000)
obtenus avec le spectrographe HARPS (installé sur le télescope de 3,6 m de l’ESO). Dans cet
article, nous examinons l’évolution de l’asymmétrie d’une raie spectrale au cours de la pulsa-
tion pour neuf Céphéides de périodes variées. Nous mettons en évidence une dépendance de la
vitesse de rotation de l’étoile avec la période ainsi qu’un important décalage systématique de
l’asymmétrie pour les étoiles à longue période.

Fig. 2.10 – Dôme du télescope de 3,6m de l’ESO à l’Observatoire de La Silla (photo ESO).
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ABSTRACT

Context. The ratio of pulsation to radial velocity (the projection factor) is currently limiting the accuracy of the Baade-Wesselink
method, and in particular of its interferometric version recently applied to several nearby Cepheids.
Aims. This work aims at establishing a link between the line asymmetry evolution over the Cepheids’ pulsation cycles and their
projection factor, with the final objective to improve the accuracy of the Baade-Wesselink method for distance determinations.
Methods. We present HARPS�� high spectral resolution observations (R = 120 000) of nine galactic Cepheids: R Tra, S Cru, Y Sgr,
β Dor, ζ Gem, Y Oph, RZ Vel, � Car and RS Pup, having a good period sampling (P = 3.39d to P = 41.52d). We fit spectral
line profiles by an asymmetric bi-Gaussian to derive radial velocity, Full-Width at Half-Maximum in the line (FWHM) and line
asymmetry for all stars. We then extract correlations curves between radial velocity and asymmetry. A geometric model providing
synthetic spectral lines, including limb-darkening, a constant FWHM (hereafter σC) and the rotation velocity is used to interpret these
correlations curves.
Results. For all stars, comparison between observations and modelling is satisfactory, and we were able to determine the projected
rotation velocities and σC for all stars. We also find a correlation between the rotation velocity (Vrot sin i) and the period of the star:
Vrot sin i = (−11.5 ± 0.9) log (P) + (19.8 ± 1.0) [km s−1]. Moreover, we observe a systematic shift in observational asymmetry curves
(noted γO), related to the period of the star, which is not explained by our static model: γO = (−10.7± 0.1) log (P)+ (9.7± 0.2) [in %].
For long-period Cepheids, in which velocity gradients, compression or shock waves seem to be large compared to short- or medium-
period Cepheids we observe indeed a greater systematic shift in asymmetry curves.
Conclusions. This new way of studying line asymmetry seems to be very promising for a better understanding of Cepheids atmosphere
and to determine, for each star, a dynamic projection factor.

Key words. techniques: spectroscopic – stars: atmospheres – stars: oscillations – stars: variables: Cepheids – stars: distances

1. Introduction

Long-baseline interferometers currently provide a new quasi-
geometric way to calibrate the Cepheid Period-Luminosity re-
lation. Indeed, it is now possible to determine the distance of
galactic Cepheids up to 1kpc with the Interferometric Baade-
Wesselink method, hereafter IBW method (see for e.g. Sasselov
& Karovska 1994; and Kervella et al. 2004, hereafter Paper I).
Interferometric measurements lead to angular diameter estima-
tions over the whole pulsation period, while the stellar radius
variations can be deduced from the integration of the pulsa-
tion velocity. The latter is linked to the observational veloc-
ity deduced from line profiles by the projection factor p. In
this method, angular and linear diameters have to correspond
to the same layer in the star to provide a correct estimate of the
distance.

� Tables 3–5 are only available in electronic form at
http://www.edpsciences.org
�� High Accuracy Radial velocity Planetary Search project developed
by the European Southern Observatory.

The spectral line profile, in particular its asymmetry, is crit-
ically affected by the dynamical structure of Cepheids’ atmo-
sphere: photospheric pulsation velocity (hereafter Vpuls), velocity
gradients, limb-darkening, turbulence and rotation. Thus, radial
velocities measured from line profiles, hereafter Vrad, include the
integration in two directions: over the surface, through limb-
darkening, and over the radius, through velocity gradients. All
these phenomena, except the rotation, are supposed to vary with
the pulsation phase. However, they are currently merged in one
specific quantity, generally considered as constant with time: the
projection factor p, defined as Vpuls = pVrad.

The interferometric definition of the projection factor is of
crucial importance in the IBW method, as it can induce a bias
of up to 6% on the derived distance (Nardetto et al. 2004;
Mérand et al. 2005). Otherwise, the limb-darkening is also re-
quired to derive a correct estimation of the angular diameter
of the star. With the latest generation of long-baseline interfer-
ometers, studying its phase-dependence is of crucial importance
(Marengo et al. 2002, 2003; Nardetto et al. 2006).

Line asymmetry was first observed for short-period cepheids
by Sasselov et al. (1989). Then, Sasselov et al. (1990) studied

Article published by EDP Sciences and available at http://www.edpsciences.org/aa or http://dx.doi.org/10.1051/0004-6361:20054333
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Table 1. Observed sample of Cepheids sorted by increasing period.

Name HD Pa T a
0 Nb. Nb. of mV

b

[days] [days] of spectra cycles
R TrA 135592 3.38925 2 451 649.96 14 15 6.66
S Cru 112044 4.68976 2 451 645.64 12 3 6.60
Y Sgr 168608 5.77338 2 451 650.92 17 10 5.74
β Dor 37350 9.84262 2 451 643.54 49 3 3.75
ζ Gem 52973 10.14960 2 451 641.78 50 3 3.90
Y Oph 162714 17.12520 2 451 653.32 7 4 6.17
RZ Vel 73502 20.40020 2 451 633.58 10 3 7.08
� Car 84810 35.551341 2 452 290.4158 118 2 3.74
RS Pup 68860 41.51500 2 451 644.22 15 3 7.03

a For � Car, the reference Julian date (T0) and the pulsation period (P) used to compute the phase are from Szabados (1989). For others stars we
used ephemeris from Berdnikov et al. (2001).
b The visible magnitude (mV) is from Berdnikov et al. (2000).

the impact of the asymmetry on radius and distances determi-
nations. The link between line profiles asymmetry and the pro-
jection factor has been studied by Albrow et al. (1994). Finally,
an error analysis of the IBW method is given in Marengo et al.
(2004).

We present here a new original study of the line asymmetry
using the very high spectral resolution of HARPS (R = 120 000).
We have observed 9 galactic Cepheids with periods ranging from
P = 3.39 d to P = 41.52 d. Radial velocity, full-width at half-
maximum (hereafter FWHM) and line asymmetry are presented
for all stars in Sect. 2.

Section 3 deals with modelling and Sect. 4 with observations
interpretation. Through a geometric model different definitions
of the projection factor are proposed and compared in order to
find the best procedure. Then the model is used to interpret ob-
servational radial velocity and asymmetry correlation curves. A
set of parameters is thus derived for all stars. Taking into account
the whole sample of stars we discuss general properties and in
particular the period-dependencies.

2. HARPS observations

2.1. Journal of observations

HARPS is a spectrometer dedicated to the search for extrasolar
planets by means of radial velocity measurements. It is installed
at the Coudé room of the 3.6 m telescope at La Silla. The res-
olution is R = 120 000 and the average Signal to Noise Ratio
we obtain over all observations in the continuum (292 spectra)
is 300 per pixel. The observed sample of Cepheids is presented
in Table 1.

We have used the standard ESO/HARPS pipe-line reduction
package with a special attention for the normalization process.
We have noted on metallic line profiles of all stars a good repro-
duction from cycle-to-cycle. Therefore, spectra for a given star
have been recomposed into an unique cycle.

Using Kurucz models (1992) we have identified
about 150 unblended spectral lines. This first study considers
only the unblended metallic line Fe i 6056.005 Å.

2.2. A new estimator of the radial velocity, FWHM
and asymmetry: the bi-Gaussian

Several methods have been used to measure radial velocities
of Cepheids, each having advantages and drawbacks. Among
these methods there is the line minimum (usually determined
via a parabolic fit to a few pixels near the bottom of the line) a

Gaussian fit (obviously not adequate for asymmetric lines), the
line centroid, determined from the integration of the line profile
(requires high Signal/Noise ratio), and the line bisector where
one measures the width of the line at one or several depths. Our
bi-Gaussian approach combines advantages of methods useful
for low S/N data while providing information usually associated
with high resolution and high S/N data (asymmetry).

Radial velocity, full width at half-maximum (FWHM) and
asymmetry have been derived simultaneously applying a clas-
sical χ2 minimization algorithm between the observed line pro-
file (S (λ)) and a modelled spectral line profile ( f (λ)). The corre-
sponding reduced χ2 is:

χred
2 =

1
N − ν

N∑
i=0

(S (λi) − f (λi))2

σ(λi)2
(1)

with N the number of pixel in the spectral line, ν the number
of degrees of freedom and σ(λi) = SNR ∗ f (λi) is the statistical
uncertainty associated to each pixel. SNR is the estimate of the
Signal to Noise Ratio in the continuum.

The analytic line profile is defined by:

f (λ) = 1 − D exp

(
4 ln 2(λ − λm)2

(FWHM(1 + A))2

)
if λ > λm (2)

and

f (λ) = 1 − D exp

(
4 ln 2(λ − λm)2

(FWHM(1 − A))2

)
if λ < λm (3)

with four free parameters:

– D, the depth of the line. This quantity has no dimension;
– λm, the wavelength associated to the minimum of the line

(in Å). The corresponding radial velocity is noted RVm;
– FWHM is the Full-Width at Half-Maximum in the line, also

in Å;
– A is the asymmetry as a percentage of the FWHM.

The 4 ln 2 factor is to obtain a correct definition of the FWHM.
Forcing asymmetry to zero in this minimization process is equiv-
alent to fitting a Gaussian to the line profile. In this case we can
derive another type of radial velocity noted RVg.

There are different ways to define the line asymmetry (see
e.g. Sasselov et al. 1990; Sabbey et al. 1995). The advantage of
the bi-Gaussian method is that it offers the possibility to derive
statistical uncertainties directly from the minimization process.
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Fig. 1. Spectral line evolution of β Dor together with the modelled bi-
Gaussian (bold). Line asymmetry is clear. The vertical line at the top
corresponds to a differential flux of 0.3. Pulsation phases are given on
the right of each profile.

Moreover, all parameters (RVm, FWHM, D and A) are fitted si-
multaneously leading to a very consistent set of information. The
largest reduced χ2 we obtain with this method is of about 10 cor-
responding to a SNR of 438, but in most cases we have a re-
duced χ2 � 1 or 2 corresponding to a SNR ranging from 75
to 350. That means that our analytic model is well suited to the
data quality. We note also that the reduced χ2 is not sensitive to
the spectral line resolution.

As an example, Fig. 1 presents line profile variation for βDor
together with the analytic spectral line profile. We find that
the asymmetry is insensitive to the choice of the continuum.
However, this one has to be correctly defined to derive correct
values of the FWHM and line depth D.

Another radial velocity definition, the centroid veloc-
ity (RVc) or, the first moment of the spectral line profile, has
been estimated as:

RVc =

∫
line
λS (λ)dλ∫

line
S (λ)dλ

· (4)

Tables 3−5 present the resulting values of RVg, RVm, RVc,
FWHM, D, A, SNR and χ2

red together with the corresponding un-
certainties computed from the fitting method.

2.3. Radial velocity

As indicated in the previous section, we can derive three types of
radial velocity: the velocity associated to the Gaussian fit (RVg),
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Fig. 2. β Dor radial velocities obtained with different method: RVm

(points), RVg (squares), and RVc (crosses). Statistical uncertainties
at ±1σ are indicated but too small to be visualized. We can therefore
see the impact of the choice of the method in the case of a very asym-
metric line (Fig. 1).

the line minimum (RVm) and the barycenter of the spectral
line (RVc). Figure 2 shows these radial velocity curves obtained
in the case of βDor. Figure 3 represents for each star of our sam-
ple, the RVm variation (arbitrary shifted). The solid lines are the
interpolated curves using a periodic cubic spline function. This
function is calculated either directly on the observational points
(e.g. β Dor) or using arbitrary pivot points (e.g. RZ Vel). In the
latter case, a classical minimization process between observa-
tions and the interpolated curve is used to optimize the position
of the pivot points. All the interpolated curves presented in this
study are derived using one of these two methods. The only ex-
ception is Y Oph (too few points) for which we performed a
linear interpolation.

2.4. The Full-Width at Half-Maximum in the line

Figure 4 presents the FWHM curve as a function of phase for
all stars. We note that the largest FWHM values are obtained for
the maximum contraction velocities. RS Pup, the longest period
Cepheid of our sample, seems to present an important compres-
sion or shock wave signature. Figure 5 presents line profile vari-
ation for this star. Unfortunately the phase coverage is not very
good, but we can clearly see a strong increase of the FWHM
at φ = 0.83. Such phenomenon has been already detected in
β Cepheids (Fokin et al. 2004).

2.5. Asymmetry

Figure 6 shows the asymmetry variation for all stars. Generally
speaking, the shape of the aymmetry curve is similar to the shape
of the velocity curve RVm.

As already mentioned in Sect. 2.3, the radial velocity accord-
ing to the choice of the method considered is sensitive to the line
asymmetry. Figure 7 shows the correlation between the differ-
ences of radial velocity (∆V = RVm − RVg) and the asymmetry
of the line. We have only presented here the case of � Car and
RS Pup. Each star presents a similar behavior. A typical differ-
ence in velocity of about 4 km s−1 can be obtained for an asym-
metry of 40% in extreme cases (Y Sgr and R TrA). The rela-
tion between the radial velocity difference and the asymmetry
is certainly affected by star characteristics (rotation, FWHM,
velocity gradients) present in the line asymmetry. In particular
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50

km
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Fig. 3. Radial velocity curves (RVm). Curves have been arbitrarily
shifted vertically. The horizontal lines are the zero velocity in the stellar
rest frame. Largest velocities are for receding motion.

RS Pup signature is certainly affected by strong velocity gradient
effects. The fact that the RVm and RVg radial velocities present
such differences as a function of the pulsation phase is an addi-
tional difficulty concerning an average projection factor and its
time-dependence determination. With the centroid estimator of

1A

Fig. 4. FWHM versus phase for all stars. Curves have been arbitrar-
ily shifted vertically. The horizontal lines correspond to a zero FWHM.
Note the particular case of RS Pup, which may present the signature of
an important compression or shock wave. RS Pup has the longest period
of our sample.

the radial velocity (RVg − RVc or RVm − RVc) results are quite
similar.

In next sections, we summarize all observational results in
correlation diagrams between radial velocity and asymmetry.
These correlations are interpreted using the geometric model
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Fig. 5. FeI 6056.005 Å spectral line evolution of RS Pup. The vertical
line at the top corresponds to a differential flux of 0.2. We note the
broadening of the line at φ = 0.83 which could be the signature of a
strong velocity gradient (compression or shock wave).

in order to determine some physical parameters of our stars
and to obtain information about dynamical effects in Cepheids
atmosphere.

3. A toy model

We consider a limb-darkened pulsating star in rotation with an
one-layer atmosphere. Our model has four parameters:

– the limb-darkening of the star: we consider a linear law
for the continuum-intensity profile of the star defined by
I(cos (θ)) = 1 − uV + uV cos (θ), where uV is the limb-
darkening of the star in V band (Claret et al. 2000). Its value
is about 0.7 for Cepheids. θ is the angle between the normal
of the star and the line-of-sight;

– the projected rotation velocity Vrot sin i, where i is the angle
between the line-of-sight and the rotation axis (in km s−1);

– the pulsation velocity (in km s−1);
– the width of the spectral line (in Å), hereafter named σC.

It is the FWHM of the line with no pulsation nor rotation
velocities. It is supposed to be constant with the pulsation
phase.

The velocity field is a combination of pulsation and rotation ve-
locities. Through the Doppler effect, this field can be transposed

10
0%

Fig. 6. Asymmetry against phase for all stars. Curves have been arbitrar-
ily shifted vertically. The horizontal lines correspond to an asymmetry
of zero.

into wavelengths, and weighted by the surface brightness (limb-
darkening) to obtain the weighting of the spectral line. We have
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Fig. 7. Difference between the radial velocity obtained with the line
minimum and the Gaussian fit methods as a function of the asymmetry
in the case of � Car and RS Pup. Statistical uncertainties are provided
for each point. Arrows indicate the direction and the origin φ = 0 of
the curves. These relations are not linear and certainly affected by star
characteristics (rotation, FWHM, velocity gradients...).

then to convolve it with the intrinsic profile to obtain the syn-
thetic spectral line profile. The weighting or the synthetic spec-
tral line profile are presented in different cases in Fig. 8.

We now consider a pulsation velocity curve defined by:

Vpuls(φi) = Vmax cos (2πφi) (5)

with a typical value for the maximal pulsation velocity of Vmax =
30 km s−1. This relation which is a poor approximation of the
pulsation velocity curve is only used for the projection fac-
tors determination (see below). It has no incidence on the re-
sults (see Sect. 4.1). From the synthetic spectral line profiles,
we perform a bi-Gaussian fit to derive the four parameters de-
scribed in Sect. 2.2: D, λm, FWHM and A. Then we derive the
RVm, RVg, RVc velocities, and the corresponding radial velocity-
asymmetry correlation curves (hereafter RV-A plot). In Fig. 10,
the RV-A plots are represented for different values of the σC
and rotation parameters. The limb-darkening (considered as con-
stant with the pulsation phase) has a very small effect in the
weighting of the line profile and thus practically no impact on
the RV-A plot. Applying a classical minimization process be-
tween the pulsation and radial velocities, we have also derived
for each set of parameters the corresponding constant projection
factors: pm =

Vpuls

RVm
, pg =

Vpuls

RVg
and pc =

Vpuls

RVc
.

Firstly, we note that the σC of the line and the rotation have
different effects on the slope and/or shape of the correlation
curves.

Secondly, correlation curves are slightly different from one
definition of radial velocity to another. But the interesting point
is that the RVc velocity does not depend of σC and/or rotation.

Fig. 8. The weighting or the synthetic spectral line profile in differ-
ent cases, considering a) the pulsation velocity, b) the limb-darkening,
c) the rotation and, d) an intrinsic width for the line (σC).
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Fig. 9. The projection factor corresponding to the centroid velocity (pc)
as a function of the limb-darkening parameter (uV ). Dots are the results
from the toy model and the solid line corresponds to the linear approxi-
mation (χ2 � 10−5).

This behavior is clearly seen on diagrams 10b and 10d: the cen-
troid projection factor pc is constant with the σC and the ro-
tation while the Gaussian and the minimum projection factors,
pg and pm, are varying. For the Cepheids of our sample the cen-
troid projection factor ranges from pc = 1.40 (uV = 0.64; R TrA)
to pc = 1.38 (uV = 0.75; � Car), through the following relation:

pc = −0.18uV + 1.52 (6)

This relation is a linear approximation from the geometrical
model (see Fig. 9). Note that the geometrical model does not
contain the physics of the pulsations, and thus the relation may
not hold when instead of uV a more realistic limb-darkening (tak-
ing into account hydrodynamic effects) is used. In particular, hy-
drodynamic effects can result in a much larger limb-darkening,
especially at the wavelengths corresponding to spectral line (see
e.g. Marengo et al. 2003).
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Fig. 10. Results of the geometric model of pulsating star. a), b) The radial velocity-asymmetry correlation curves for different σC, with no rotation
and no limb-darkening (uniform disk). Points, squares and crosses correspond respectively to the RVm, RVg and RVc radial velocities. For clar-
ity RVg and RVm are represented only for σC = 0.1 Å. The solid lines are the interpolated curves using a cubic spline function. The corresponding
projection factors are represented on diagram b). c), d) Same plots but for different values of the rotation. The σC and the limb-darkening are
respectively of 0.25 Å and 0.7. These RV-A plot are used to interpret HARPS observations.

This behavior is of great importance in the context of the
IBW method. Indeed, the community has often used the pc =
1.36 value of the projection factor (Burki et al. 1982) using the
Gaussian method instead of the centroid method. As seen here,
and already pointed out by Burki et al. (1982), this estimator is
biased by the rotation velocity, even if Cepheids are supposed to
be slow rotators, and also by the σC. We thus recommend the
centroid based methods (spectral observable and p-factor) for
the analysis of Cepheid radial velocities. For the present work,
we have therefore chosen the RVc definition of the radial ve-
locity. Even though this requires substantial S/N, its advantages
outweigh the drawback of spending more telescope time to ac-
quire the data.

4. Interpretation

4.1. Methodology

Modeling results obtained in the previous section are now help-
ful to elaborate a strategy in a comparison of observations and
models.

Firstly, the effective temperature Teff and the surface grav-
ity log g have been used to derive the intensity profile of stars
through linear limb-darkening coefficients uV of Claret et al.
(2000) (see Table 2).

Secondly, we determine the projection factor pc using
Eq. (6). The pulsation velocity is then derived through Vpuls =
pcRVc, where RVc is the observational radial velocity corrected
from the heliocentric velocity given in Table 2. The pulsation
velocity Vpuls and the projection factor pc (see Table 2) obtained
are not physically realistic, because our model does not include
dynamical effects and in particular velocity gradients in the at-
mosphere, nevertheless this procedure imposes the surimposi-
tion of observational and modelled radial velocity curves RVc.
Moreover, as a very good agreement is observed for each phase
(better than 1%), it validates the use of a constant projection fac-
tor (pc). We find also that the poor description of the pulsation
velocity (Eq. (5)) used to derive pc has no incidence on the re-
sulting modelled RVc curve. By this procedure, we can thus con-
centrate only on the asymmetry, making the interpretation easier.
Note that Nardetto et al. (2004) already gave an indication of the
impact of velocity gradients on the projection factor, and thus on
the distance determination, in the case of δ Cep (about −6%). In
Table 2, we also indicate for each star the corresponding projec-
tion factors pg and pm for comparison.

Thirdly, σC and Vrot sin i are determined together from the
observational RV-A and FWHM curves. We first consider the
minimum of the observational FWHM curve to obtain an indi-
cation on the value of σC. We then find the rotation which gives
the best slope and shape for the RV-A curve. But as the rotation
has also an impact on the FWHM (about 0.02 Å), we have then
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Table 2. Optimized parameters obtained for each sample Cepheid through the confrontation of HARPS observations with our geometric model.

stars R TrA S Cru Y Sgr β Dor ζ Gem Y Oph RZ Vel l Car RS Pup
Period 3.38925 4.68976 5.77338 9.84262 10.14960 17.12520 20.40020 35.551341 41.51500
mean Teff

a[K] 6354 5995 5350 5490 5727 5907 5537 5091 5143
mean log(g)a 2.0 1.9 1.0 1.8 1.5 1.5 1.5 1.5 0.4
ub

V 0.6371 0.6541 0.7194 0.6999 0.6721 0.6514 0.6970 0.7541 0.7121
vγ

c [km s−1] −13.2 −7.1 −2.5 7.4 6.9 −6.6 24.1 3.6 22.1

σd
C [Å] 0.29 0.27 0.27 0.23 0.23 0.20 0.23 0.25 0.30

Vrot sin ie [km s−1] 15 10 16 6 6 4 3 7 <1
pm =

Vpuls

RVm
1.13 1.23 1.10 1.23 1.23 1.23 1.26 1.23 1.31

pg =
Vpuls

RVg
1.28 1.31 1.26 1.32 1.32 1.33 1.34 1.31 1.36

pc =
Vpuls

RVc
1.40 1.40 1.39 1.39 1.40 1.40 1.39 1.38 1.39

γe
O [%] 3.3 0.7 2.0 0.2 −2.4 – −3.2 −6.9 −6.5
γgC [%] 3.1 4.3 0.4 2.9 0.5 – 1.4 1.2 0.6
γh

O−C [%] 0.2 −3.6 1.6 −2.7 −2.9 – −4.6 −8.2 −7.1
a Teff[K] and log (g), deduced from Gieren et al. (1998) for R TrA, S Scu, Y Oph and RZ Vel. For Y Sgr, β Dor, ζ Gem, � Car, and RS Pup these
quantities have taken from Cayrel de Strobel et al. (1997, 2001).
b uV from Claret et al. (2000).
c vγ from Galactic Cepheid database (online: http://www.astro.utoronto.ca/DDO/research/cepheids).
d Uncertainty on σC is of about 0.02 Å.
e Uncertainty on Vrot sin i is of about 1 km s−1.
f γO [%] is the averaged value of the observational asymmetry curves. The associated statistical uncertainties are of the order of 0.3%.
g γC [%] is the averaged value of the computed asymmetry curves.
h γO−C [%] is the average value of the O−C asymmetry curve.

to slightly readjust σC accordingly. By this process we finally
find the best and unique values for σC and Vrot sin i.

The uncertainties on Vrot sin i and σC, associated to the min-
imization process, were estimated to be respectively 1 km s−1

and 0.02 Å. Similar uncertainties are found if one considers sev-
eral metallic lines. Note however that our toy model is too simple
to provide secure and precise values of the rotation, which is the
most interesting parameter. In particular the broadening of the
spectral line due to the macro-turbulence can certainly affect our
rotation values (Bersier & Burki 1996). Nevertheless our prin-
cipal and first objective is to probe the dynamical effects by a
direct comparison of our static model with observations.

4.2. Observations versus modelisation

We now apply our methodology to each Cepheid of our sample.
Results are indicated in Table 2. RV-A plot are represented in
Figs. 11 and 12. Note that RV-A plot deduced from the model
have been shifted in asymmetry to match the observations (this
point is discussed in next section). For R TrA and Y Sgr, we
can notice a very small slope for the RV-A plot and a very large
value for the observational FWHM. It indicates a large rota-
tional velocity Vrot sin i and a properly small value for σC (see
Figs. 10a,c). Thus, the corresponding Gaussian and minimum
projection factors (pg and pm) are lower than for others stars
(see Figs. 10b,d). Conversely, for Y Oph and RZ Vel the RV-A
plot have relatively large slope while the observational FWHM
is typical (about 0.3). This has a direct consequence on the rota-
tion, which is then very small, and on the projection factors (pg
and pm) which are then relatively large. Comparatively, S Cru,
β Dor and ζ Gem can be considered as intermediate cases. For
� Car and RS Pup, we obtain an atypical RV-A plot which is
greatly shifted in asymmetry. For RS Pup, we obtain a specific
RV-A plot characterized by a strong curvature which can be in-
terpreted by our geometric model as a very slow rotation ve-
locity Vrot sin i < 1 km s−1. Note that atypical points which are
observed at the top of the RV-A plot are certainly due to

dynamical effects since they corresponds to phases of outwards
acceleration.

4.3. Discussion

As observed in the particular case of � Car and RS Pup, an im-
portant systematic shift in asymmetry can be present between
observations and models. We define respectively γO and γC the
averaged value of the observational and computed asymmetry
curves [in %]. Note that the phases are sampled in the same
way for data and model. Results are indicated in Table 2. We
have also calculated for each star the residuals between the ob-
servational and computed asymmetry curves, noted O−C curves
(Fig. 13). We define γO−C, the average value of these residual
curves. These O−C asymmetry curves contain the whole dynam-
ical information present in the observational asymmetry, mainly:
the limb-darkening variation in the spectral line and with the pul-
sation phase, the micro- and macro- turbulence, velocity gradi-
ent and temperature effects. For R TrA, S Cru, Y Sgr, RZ Vel and
RS Pup, we note a bump in the O−C asymmetry curves which is
approximately linked to the cross of the compression wave just
after the maximum contraction velocity (see Fig. 3). However
β Dor, ζ Gem and � Car do not present such bump, which may
be interpreted as the presence of a very small compression wave.
In the case of Y Oph the phase sampling seems insufficient to
conclude. Consistent hydrodynamical model would be helpful
to confirm these results.

γO, γC and γO−C are represented as a function of the pulsation
period in Fig. 14a. The open squares represent γC. We want to
emphasize here that our model produces asymmetry curves with
non-zero average value. Indeed, it is a natural consequence of the
shape of the observational radial velocity curve used to derive
the pulsation velocity. We find a similar behavior for all stars
independently of the period.
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Fig. 11. Radial velocity (RVc) – asymmetry correlation curves for R TrA, S Cru, Y Sgr, β Dor, ζ Gem, Y Oph, RZ Vel and � Car. Dots and bold
curves correspond respectively to observations and models. The statistical uncertainties are indicated. Note that RV-A plot deduced from the model
have been shifted in asymmetry. The small plot on each diagram correspond to the comparison of the observational (dots) and model (bold curve)
FWHM.

The shifts obtained on the observational asymmetry
curves (γO) show a very interesting linear dependence with the
logarithm of the pulsation period:

γO = (−10.7 ± 0.1) log (P) + (9.7 ± 0.2) [in %] . (7)

Moreover we note that the dependence of γO−C with the pulsa-
tion period is very similar to the one of γO. We can conclude

that this behavior is related to the dynamical effects in the at-
mosphere, which are not taken into account in our toy model.
This can be explained by the fact that long-period Cepheids have
extended atmosphere and consequently strong velocity gradient
(see for example the case of RS Pup mentioned above). Thus, the
line forming region can be seriously perturbed leading to a sys-
tematic shift in asymmetry (Albrow & Cottrell 1994). However,
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Fig. 12. Same as Fig. 11 but for RS Pup. RS Pup seems to be a non-
rotating star as requested by the shape of its RV-A curve. Note also
atypical points in observational RV-A plot, which can certainly be in-
terpreted through the presence of a strong compression or shock wave
in the stellar atmosphere.

Fig. 13. Difference of the Observational and Computed asymmetry
curves (O−C curves) for each stars. Curves are arbitrarily shifted. The
horizontal dotted lines corresponds to a zero asymmetry for each star.

such an interpretation remains tricky and needs confirmation.
Forthcoming hydrodynamical models are likely to bring out im-
portant insight in this field.

Fig. 14. a) Average values of the observational (black circles) and
computed (open squares) asymmetry curves, together with the γO−C

(filled squares) average values as a function of the pulsation period.
b) Dependence of the projected rotation velocity with the pulsation
period.

From results of Table 2, it appears also that the projected
rotational velocity varies as a function of the pulsation period
(Fig. 14b). We obtain the following relationship:

Vrot sin i = (−11.5 ± 0.9) log (P) + (19.8 ± 1.0) [in km s−1]. (8)

The projected rotation is an important parameter which can be
used, for example, to study evolution of Cepheids together with
their mass loss. However, note again that our toy model does not
include the physics of the pulsations and it is also very difficult
to separate the rotation and macroturbulence effects in the result-
ing broadening of the spectral line. Thus this relation has to be
considered very carefully as it is certainly model dependent.

5. Conclusion

We have presented HARPS high spectral resolution (R =
120 000) observations of nine galactic Cepheids having a good
period sampling (P = 3.39d to P = 41.52d). We fit spectral line
profile with an asymmetric bi-Gaussian to derive radial velocity,
FWHM and line asymmetry for all stars. The presence of a very
important compression or shock wave in the case of RS Pup,
the longest period Cepheid of our sample has been identified.
We have also translated the measured spectroscopic quantities
into meaningful correlation curves between radial velocity and
asymmetry.

A simple geometric model providing synthetic spectral lines,
including limb-darkening, the σC and the projected rotation ve-
locity is then used to interpret these correlations curves.

Firstly, we find that the centroid projection factor (pc) is in-
dependent of σC and the rotation velocity. This projection factor
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is thus certainly the best one to use in the context of the Baade-
Wesselink method.

Secondly, we find for each stars an optimized set of
parameters which allows to reproduce observational radial ve-
locity – asymmetry correlation curves. In particular, we find a
dependence of the derived projected rotation velocities with the
period of the star: Vrot sin i = (−11.5 ± 0.9) log (P) + (19.8 ±
1.0) [in km s−1].

Finally, by comparing the outputs of our static models and
the observed quantities, we gain access to dynamical effects.
In particular, we found that long-period Cepheids with strong
velocity gradient, like RS Pup, have a systematic shift in their
asymmetry curve. We thus derived a linear relation between the
observational shift in asymmetry and the logarithm of the period:
γO = (−10.7± 0.1) log (P) + (9.7± 0.2) [in %]. A detailed inter-
pretation of these empirical relation is very difficult, but forth-
coming hydrodynamical models are likely to bring out important
insight in this field.

In conclusion, line asymmetry, which contains most of the
physics involved in Cepheid atmosphere, is an important tool.
But additional hydrodynamical considerations together with a
multi-lines study are now required to have a better understanding
of the dynamical processes present in Cepheid atmosphere and
in particular to determine realistic projection factors including
velocity gradients.
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Table 3. HARPS observations results for R TrA, S Cru and Y Sgr.

JDc phase Cy. Sp. RVg RVm RVc FWHM D A S NR χ2
red

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)
R TrA

202.53 0.09 14 1 –26.74 ± 0.07 –29.88 ± 0.17 –25.43 ± 1.16 0.467 ± 0.009 0.14 –30.3 ± 2.7 231 2.0
206.53 0.27 15 1 –17.70 ± 0.05 –19.71 ± 0.13 –16.92 ± 0.91 0.452 ± 0.005 0.17 –19.5 ± 1.5 224 1.6
152.65 0.37 1 2 –11.18 ± 0.03 –10.41 ± 0.08 –11.39 ± 0.56 0.449 ± 0.002 0.19 7.4 ± 0.8 241 1.6
203.55 0.39 14 1 –10.08 ± 0.04 –9.06 ± 0.11 –10.47 ± 0.71 0.447 ± 0.003 0.18 9.9 ± 1.1 257 1.1
156.65 0.55 2 2 –0.98 ± 0.04 2.20 ± 0.09 –2.15 ± 0.52 0.460 ± 0.005 0.19 30.4 ± 1.3 209 1.0
204.52 0.67 14 1 3.29 ± 0.06 6.70 ± 0.15 2.02 ± 0.74 0.492 ± 0.008 0.17 30.6 ± 2.0 207 1.4
150.65 0.78 1 2 2.26 ± 0.04 5.89 ± 0.09 0.89 ± 0.50 0.534 ± 0.005 0.16 29.9 ± 1.1 255 1.3
201.54 0.79 14 1 1.34 ± 0.06 4.64 ± 0.14 0.30 ± 0.74 0.524 ± 0.007 0.16 27.5 ± 1.6 247 1.7
154.65 0.96 2 2 –24.46 ± 0.05 –26.46 ± 0.13 –23.76 ± 0.79 0.481 ± 0.004 0.12 –18.3 ± 1.4 241 1.2
205.54 0.98 15 1 –25.60 ± 0.08 –28.18 ± 0.19 –24.71 ± 1.24 0.503 ± 0.007 0.12 –22.8 ± 2.1 243 1.4

S Cru

207.46 0.03 3 1 –21.58 ± 0.05 –23.61 ± 0.13 –20.47 ± 1.01 0.386 ± 0.005 0.16 –23.6 ± 2.0 230 1.5
151.56 0.11 1 1 –19.32 ± 0.05 –21.43 ± 0.12 –18.20 ± 0.93 0.375 ± 0.005 0.18 –25.6 ± 2.0 214 1.4
203.49 0.18 3 2 –15.82 ± 0.03 –17.26 ± 0.07 –14.98 ± 0.50 0.344 ± 0.002 0.21 –19.0 ± 1.0 224 1.7
156.63 0.19 1 1 –15.65 ± 0.04 –16.90 ± 0.10 –15.07 ± 0.52 0.281 ± 0.004 0.19 –19.8 ± 1.9 221 2.4
152.63 0.34 1 1 –6.94 ± 0.02 –7.08 ± 0.06 –6.54 ± 0.46 0.306 ± 0.001 0.26 –2.1 ± 0.8 255 1.9
153.57 0.54 1 1 4.61 ± 0.03 5.87 ± 0.08 4.21 ± 0.62 0.351 ± 0.002 0.26 16.5 ± 1.1 209 2.5
205.47 0.60 3 1 7.09 ± 0.03 8.77 ± 0.06 6.44 ± 0.59 0.386 ± 0.002 0.26 19.9 ± 0.9 269 2.5
154.64 0.76 1 1 13.40 ± 0.05 15.66 ± 0.12 12.48 ± 1.06 0.454 ± 0.005 0.23 22.5 ± 1.4 181 1.6
206.48 0.82 3 1 12.07 ± 0.04 14.42 ± 0.09 11.17 ± 0.59 0.469 ± 0.004 0.20 22.4 ± 1.0 285 1.5
150.63 0.91 1 1 –9.32 ± 0.14 –10.19 ± 0.35 –8.58 ± 1.37 0.412 ± 0.008 0.17 –10.1 ± 3.7 87 1.4
202.49 0.97 3 1 –19.91 ± 0.05 –21.62 ± 0.12 –19.05 ± 0.70 0.401 ± 0.004 0.15 –19.2 ± 1.5 287 2.0

Y Sgr

204.63 0.12 10 2 –16.53 ± 0.06 –20.47 ± 0.15 –15.07 ± 0.86 0.485 ± 0.011 0.15 –36.4 ± 3.0 160 1.1
152.80 0.14 1 2 –15.07 ± 0.04 –18.08 ± 0.09 –14.02 ± 0.56 0.488 ± 0.004 0.16 –27.2 ± 1.3 251 1.4
205.67 0.30 10 1 –6.93 ± 0.05 –8.45 ± 0.12 –6.56 ± 0.65 0.472 ± 0.003 0.19 –13.7 ± 1.1 244 2.6
149.80 0.62 1 2 9.37 ± 0.04 12.58 ± 0.09 8.13 ± 0.62 0.467 ± 0.005 0.21 30.5 ± 1.3 178 1.0
202.65 0.77 10 2 18.50 ± 0.04 23.46 ± 0.09 16.08 ± 0.71 0.565 ± 0.007 0.19 39.5 ± 1.4 231 1.5
150.79 0.79 1 2 18.31 ± 0.03 23.31 ± 0.08 15.98 ± 0.61 0.581 ± 0.006 0.18 38.5 ± 1.1 270 1.8
156.83 0.84 2 2 13.31 ± 0.04 18.07 ± 0.11 11.56 ± 0.63 0.626 ± 0.007 0.16 33.2 ± 1.2 255 1.6
203.65 0.95 10 2 –14.27 ± 0.04 –16.27 ± 0.11 –13.47 ± 0.50 0.530 ± 0.003 0.13 –16.5 ± 1.0 288 1.4
151.75 0.96 1 2 –15.22 ± 0.05 –17.50 ± 0.12 –14.51 ± 0.61 0.517 ± 0.004 0.13 –19.1 ± 1.2 254 1.1

(a) JDc, average Julian date of observation defined by JDc = JD − 2 453 000 [in days].
(b) phase, averaged pulsation phase of observation. For ephemeris see Table 1.
(c) Cy., pulsating cycle of the star corresponding to observation.
(d) Sp., number of spectra associated to observation. Results corresponding to these spectra are averaged.
(e) RVg, Gaussian fit radial velocity and the associated error barre [in km s−1].
(f) RVm, minimum radial velocity derived from the bi-Gaussian fit [in km s−1].
(g) RVc, radial velocity corresponding to the first moment of the spectral line [in km s−1].
(h) FWHM, Full-Width at Half-Maximum derived from the bi-Gaussian fit [in Angstroms].
(i) D, line depth derived from the bi-Gaussian fit [no dimension]. Errors bars are not indicated but of the order of 10−4.
(j) A, asymmetry derived from the bi-Gaussian fit [in percentage].
(k) S NR, observational spectral line signal to noise ratio.
(l) χ2

red, reduced χ2 factor corresponding to the bi-Gaussian fit.



N. Nardetto et al.: High resolution spectroscopy for Cepheids distance determination. I., Online Material p 3

Table 4. HARPS observations results for β Dor, ζ Gem, Y Oph, and RZ Vel. See Table3 for legend.

JDc phase Cy. Sp. RVg RVm RVc FWHM D A S NR χ2
red

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

β Dor

21.68 0.02 1 4 1.70 ± 0.01 0.99 ± 0.02 2.17 ± 0.14 0.286 ± 0.001 0.23 –11.3 ± 0.4 345 3.7
31.64 0.03 2 3 1.35 ± 0.01 0.68 ± 0.02 1.64 ± 0.12 0.275 ± 0.001 0.23 –11.0 ± 0.4 404 2.4
32.68 0.14 2 3 –5.16 ± 0.01 –6.59 ± 0.03 –4.33 ± 0.19 0.318 ± 0.001 0.24 –20.3 ± 0.6 298 2.1
23.64 0.22 1 4 –0.73 ± 0.01 –1.42 ± 0.01 –0.19 ± 0.11 0.280 ± 0.001 0.30 –11.4 ± 0.2 423 4.9
33.61 0.23 2 3 0.15 ± 0.01 –0.49 ± 0.02 0.71 ± 0.12 0.275 ± 0.001 0.31 –11.0 ± 0.3 443 7.9
34.64 0.33 2 2 9.67 ± 0.01 9.90 ± 0.02 9.68 ± 0.22 0.253 ± 0.001 0.36 4.1 ± 0.3 330 2.5
15.62 0.40 1 3 16.16 ± 0.01 16.85 ± 0.02 15.85 ± 0.28 0.261 ± 0.001 0.35 12.3 ± 0.4 262 2.4
25.68 0.42 2 3 18.10 ± 0.01 18.80 ± 0.02 17.86 ± 0.24 0.273 ± 0.001 0.33 11.8 ± 0.3 399 3.3
35.64 0.44 3 2 19.09 ± 0.01 19.87 ± 0.02 18.80 ± 0.35 0.290 ± 0.001 0.33 12.3 ± 0.4 337 2.0
16.67 0.51 1 3 24.95 ± 0.01 26.53 ± 0.02 24.41 ± 0.38 0.347 ± 0.001 0.28 20.5 ± 0.4 352 3.2
26.59 0.52 2 2 25.48 ± 0.01 27.09 ± 0.02 24.91 ± 0.34 0.359 ± 0.001 0.27 20.2 ± 0.3 473 4.9
36.64 0.54 3 2 26.61 ± 0.01 28.52 ± 0.04 25.83 ± 0.54 0.388 ± 0.001 0.26 22.1 ± 0.5 336 2.2
17.69 0.61 1 3 27.57 ± 0.02 30.11 ± 0.04 26.60 ± 0.51 0.457 ± 0.002 0.22 24.8 ± 0.5 303 2.2
37.64 0.64 3 2 25.54 ± 0.02 27.46 ± 0.04 24.86 ± 0.45 0.473 ± 0.001 0.20 18.0 ± 0.5 409 3.1
28.67 0.73 2 3 11.09 ± 0.01 11.09 ± 0.03 11.15 ± 0.20 0.401 ± 0.001 0.21 0.1 ± 0.3 456 2.7
29.63 0.83 2 4 2.24 ± 0.01 1.65 ± 0.02 2.60 ± 0.12 0.343 ± 0.001 0.23 –7.9 ± 0.2 472 6.5
30.59 0.92 2 3 2.36 ± 0.01 1.71 ± 0.02 2.77 ± 0.12 0.286 ± 0.001 0.24 –10.5 ± 0.3 455 5.0

ζ Gem

32.70 0.04 2 3 –3.82 ± 0.02 –5.04 ± 0.04 –3.05 ± 0.33 0.313 ± 0.001 0.27 –18.2 ± 0.7 196 2.9
33.62 0.14 2 3 –4.67 ± 0.01 –6.02 ± 0.02 –3.55 ± 0.19 0.292 ± 0.001 0.31 –21.9 ± 0.4 330 7.7
23.65 0.15 1 4 –4.00 ± 0.01 –4.89 ± 0.02 –3.35 ± 0.13 0.276 ± 0.001 0.31 –15.0 ± 0.3 338 4.2
34.65 0.23 2 3 1.53 ± 0.01 1.23 ± 0.02 1.97 ± 0.15 0.248 ± 0.001 0.37 –5.7 ± 0.3 334 6.0
35.65 0.34 2 3 9.44 ± 0.01 9.73 ± 0.02 9.41 ± 0.18 0.239 ± 0.001 0.39 5.8 ± 0.3 299 2.6
25.69 0.35 1 3 10.86 ± 0.01 11.22 ± 0.03 10.84 ± 0.35 0.256 ± 0.001 0.37 6.6 ± 0.4 195 1.9
15.71 0.37 1 3 12.29 ± 0.01 12.81 ± 0.02 12.12 ± 0.25 0.259 ± 0.001 0.38 9.4 ± 0.3 253 1.6
36.66 0.43 2 2 17.10 ± 0.01 17.87 ± 0.03 16.92 ± 0.46 0.304 ± 0.001 0.34 11.7 ± 0.5 255 2.3
26.60 0.44 2 3 17.69 ± 0.01 18.53 ± 0.02 17.48 ± 0.29 0.308 ± 0.001 0.33 12.4 ± 0.3 353 3.1
16.69 0.46 1 3 19.06 ± 0.02 20.11 ± 0.04 18.71 ± 0.50 0.324 ± 0.001 0.31 14.6 ± 0.6 189 1.4
37.66 0.53 3 2 21.81 ± 0.01 23.27 ± 0.03 21.40 ± 0.45 0.397 ± 0.001 0.28 16.4 ± 0.4 341 3.1
17.70 0.56 1 3 21.79 ± 0.01 23.25 ± 0.02 21.35 ± 0.33 0.439 ± 0.001 0.27 14.9 ± 0.2 446 3.1
28.68 0.62 2 2 16.11 ± 0.02 16.81 ± 0.06 16.02 ± 0.59 0.449 ± 0.001 0.24 7.0 ± 0.6 243 1.4
29.64 0.74 2 2 6.25 ± 0.03 5.98 ± 0.07 6.53 ± 0.53 0.372 ± 0.001 0.26 –3.3 ± 0.8 169 1.7
30.60 0.84 2 3 1.64 ± 0.01 1.06 ± 0.02 2.09 ± 0.16 0.321 ± 0.001 0.28 –8.5 ± 0.3 407 7.2
31.64 0.94 2 3 0.49 ± 0.01 –0.13 ± 0.02 0.98 ± 0.15 0.282 ± 0.001 0.28 –10.2 ± 0.3 372 8.3
21.70 0.96 1 5 0.18 ± 0.01 –0.54 ± 0.03 0.59 ± 0.15 0.271 ± 0.001 0.27 –12.1 ± 0.5 229 2.3

Y Oph

216.75 0.29 4 1 –9.75 ± 0.02 –9.83 ± 0.05 –9.72 ± 0.46 0.205 ± 0.001 0.32 –1.9 ± 1.1 189 1.2
201.63 0.41 4 1 –4.48 ± 0.03 -4.31 ± 0.08 –4.57 ± 0.43 0.202 ± 0.002 0.31 4.0 ± 1.8 119 1.4
150.78 0.44 1 1 –3.15 ± 0.02 –2.87 ± 0.04 –3.37 ± 0.27 0.223 ± 0.001 0.33 5.9 ± 0.7 262 2.9
203.65 0.53 4 1 0.57 ± 0.02 1.06 ± 0.04 0.20 ± 0.22 0.238 ± 0.001 0.31 9.7 ± 0.7 296 4.3
152.80 0.56 1 1 1.37 ± 0.02 1.80 ± 0.04 1.09 ± 0.24 0.244 ± 0.001 0.30 8.3 ± 0.7 297 3.8
154.75 0.67 1 1 2.89 ± 0.03 3.30 ± 0.07 2.47 ± 0.41 0.263 ± 0.001 0.27 7.4 ± 1.1 208 3.6
156.71 0.79 1 1 –1.85 ± 0.04 –1.62 ± 0.10 –2.13 ± 0.63 0.259 ± 0.002 0.26 4.1 ± 1.6 142 2.5

RZ Vel

204.44 0.00 3 1 13.05 ± 0.23 12.50 ± 0.58 14.39 ± 4.04 0.588 ± 0.012 0.14 –4.4 ± 4.0 76 1.3
205.44 0.05 3 1 –0.47 ± 0.07 –3.76 ± 0.16 0.69 ± 0.78 0.457 ± 0.009 0.16 –32.0 ± 2.7 210 1.5
206.44 0.10 3 1 –1.90 ± 0.08 –6.21 ± 0.17 –0.30 ± 0.96 0.459 ± 0.016 0.17 –42.7 ± 4.9 162 2.5
150.49 0.36 1 1 18.65 ± 0.01 18.46 ± 0.03 18.76 ± 0.38 0.219 ± 0.001 0.38 –3.9 ± 0.5 309 7.8
152.51 0.46 1 1 28.82 ± 0.01 28.83 ± 0.02 28.61 ± 0.60 0.231 ± 0.001 0.41 0.8 ± 0.5 205 2.8
154.50 0.55 1 1 45.64 ± 0.02 47.66 ± 0.05 44.86 ± 1.46 0.369 ± 0.002 0.32 24.7 ± 0.9 239 3.2
156.49 0.65 1 1 43.14 ± 0.05 43.91 ± 0.14 42.87 ± 2.31 0.526 ± 0.003 0.23 6.4 ± 1.1 178 1.8
201.44 0.86 3 1 39.12 ± 0.04 39.87 ± 0.09 38.93 ± 1.45 0.411 ± 0.002 0.24 8.1 ± 1.0 224 2.7
202.45 0.90 3 1 29.54 ± 0.06 29.84 ± 0.15 29.26 ± 1.09 0.483 ± 0.003 0.14 2.8 ± 1.2 271 1.2
203.44 0.95 3 1 13.05 ± 0.23 12.50 ± 0.58 14.39 ± 4.04 0.588 ± 0.012 0.14 –4.4 ± 4.0 76 1.3
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Table 5. HARPS observations results for � Car and RS Pup. See Table 3 for legend.

JDc phase Cy. Sp. RVg RVm RVc FWHM D A SNR χ2
red

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

� Car

37.65 0.02 1 7 –13.40 ± 0.01 –15.70 ± 0.02 –12.19 ± 0.18 0.416 ± 0.001 0.26 –25.4 ± 0.3 354 3.5
40.63 0.10 1 5 –12.24 ± 0.01 –14.22 ± 0.02 –11.10 ± 0.17 0.362 ± 0.001 0.31 –25.2 ± 0.3 333 3.6
47.69 0.30 1 2 –1.57 ± 0.01 –2.51 ± 0.02 –0.61 ± 0.24 0.274 ± 0.001 0.42 –16.4 ± 0.4 275 7.5
48.62 0.33 1 2 –0.01 ± 0.01 –0.76 ± 0.01 0.59 ± 0.10 0.257 ± 0.001 0.40 –13.7 ± 0.2 438 10.3
49.67 0.36 1 2 1.79 ± 0.01 1.09 ± 0.02 2.34 ± 0.13 0.260 ± 0.001 0.40 –12.7 ± 0.3 374 6.0
15.72 0.40 1 3 4.92 ± 0.00 4.33 ± 0.01 5.42 ± 0.12 0.276 ± 0.001 0.40 –10.2 ± 0.2 405 7.0
51.68 0.41 2 4 5.23 ± 0.00 4.62 ± 0.01 5.75 ± 0.13 0.274 ± 0.001 0.39 –10.4 ± 0.2 352 6.0
16.69 0.43 1 3 6.64 ± 0.01 6.13 ± 0.02 7.15 ± 0.21 0.289 ± 0.001 0.39 –8.3 ± 0.3 293 5.6
52.64 0.44 2 2 6.93 ± 0.01 6.30 ± 0.02 7.42 ± 0.18 0.285 ± 0.001 0.39 –10.3 ± 0.3 376 5.4
17.71 0.46 1 3 8.46 ± 0.01 8.11 ± 0.01 8.86 ± 0.15 0.300 ± 0.001 0.38 –5.5 ± 0.2 444 8.7
53.69 0.47 2 2 8.70 ± 0.01 8.31 ± 0.02 9.00 ± 0.18 0.288 ± 0.001 0.37 –6.3 ± 0.3 390 5.0
54.67 0.50 2 2 10.36 ± 0.01 10.18 ± 0.02 10.52 ± 0.22 0.296 ± 0.001 0.35 –2.9 ± 0.3 340 4.7
55.70 0.53 2 2 11.99 ± 0.01 12.04 ± 0.02 12.08 ± 0.20 0.316 ± 0.001 0.35 0.6 ± 0.2 418 4.5
20.84 0.54 1 3 14.11 ± 0.01 14.65 ± 0.03 13.93 ± 0.35 0.335 ± 0.001 0.33 7.4 ± 0.4 218 2.2
56.70 0.55 2 2 13.46 ± 0.01 13.75 ± 0.02 13.42 ± 0.25 0.331 ± 0.001 0.34 4.0 ± 0.3 378 4.2
21.85 0.57 1 3 15.01 ± 0.01 15.66 ± 0.02 14.76 ± 0.22 0.358 ± 0.001 0.32 8.3 ± 0.2 379 3.6
57.70 0.58 2 2 14.82 ± 0.01 15.35 ± 0.02 14.67 ± 0.27 0.347 ± 0.001 0.34 7.0 ± 0.3 384 3.7
58.71 0.61 2 2 16.00 ± 0.01 16.83 ± 0.02 15.70 ± 0.27 0.365 ± 0.001 0.33 10.5 ± 0.3 412 5.3
23.66 0.62 1 4 16.98 ± 0.01 17.92 ± 0.02 16.55 ± 0.20 0.388 ± 0.001 0.31 11.1 ± 0.2 428 3.5
24.85 0.66 1 4 17.94 ± 0.01 19.15 ± 0.02 17.43 ± 0.22 0.389 ± 0.001 0.30 14.0 ± 0.2 374 3.6
25.87 0.69 1 4 18.52 ± 0.01 19.63 ± 0.02 18.00 ± 0.19 0.404 ± 0.001 0.30 12.4 ± 0.2 492 4.2
26.85 0.71 1 5 19.03 ± 0.01 20.27 ± 0.02 18.50 ± 0.24 0.426 ± 0.001 0.31 13.4 ± 0.2 436 5.9
28.69 0.77 1 5 20.12 ± 0.01 21.26 ± 0.02 19.50 ± 0.22 0.426 ± 0.001 0.29 12.2 ± 0.2 433 3.1
29.65 0.79 1 5 20.33 ± 0.01 21.61 ± 0.02 19.63 ± 0.23 0.445 ± 0.001 0.29 13.2 ± 0.2 439 4.7
30.80 0.83 1 7 19.76 ± 0.01 20.83 ± 0.01 19.05 ± 0.19 0.450 ± 0.001 0.28 11.0 ± 0.1 446 6.6
31.66 0.85 1 5 17.77 ± 0.01 18.65 ± 0.02 17.15 ± 0.24 0.458 ± 0.001 0.27 8.9 ± 0.2 391 5.3
32.72 0.88 1 5 11.81 ± 0.01 12.17 ± 0.02 11.51 ± 0.20 0.481 ± 0.001 0.24 3.4 ± 0.2 431 3.8
33.63 0.91 1 5 3.92 ± 0.01 3.06 ± 0.03 4.31 ± 0.20 0.483 ± 0.001 0.23 –8.2 ± 0.2 371 4.1
34.67 0.93 1 5 –4.93 ± 0.01 –6.89 ± 0.02 –3.99 ± 0.15 0.460 ± 0.001 0.24 –19.5 ± 0.2 486 8.3
35.66 0.96 1 7 –9.85 ± 0.01 –11.93 ± 0.02 –8.81 ± 0.14 0.434 ± 0.001 0.24 –21.8 ± 0.2 421 6.0
36.65 0.99 1 6 –12.39 ± 0.01 –14.56 ± 0.02 –11.29 ± 0.21 0.423 ± 0.001 0.24 –23.4 ± 0.3 327 2.8

RS Pup

56.68 0.02 1 1 3.58 ± 0.03 1.58 ± 0.07 4.33 ± 0.41 0.433 ± 0.003 0.20 –20.1 ± 0.9 347 2.1
58.69 0.07 1 1 5.31 ± 0.03 3.78 ± 0.07 5.94 ± 0.46 0.395 ± 0.002 0.23 –17.1 ± 0.9 277 2.0
60.68 0.12 1 1 7.95 ± 0.02 6.97 ± 0.05 8.50 ± 0.42 0.370 ± 0.001 0.26 –11.0 ± 0.7 315 2.3
62.67 0.17 1 1 10.99 ± 0.02 10.28 ± 0.05 11.48 ± 0.55 0.343 ± 0.001 0.29 –8.5 ± 0.7 258 2.8
64.68 0.22 1 1 14.21 ± 0.01 13.70 ± 0.04 14.55 ± 0.41 0.307 ± 0.001 0.32 –6.8 ± 0.5 328 3.2
66.66 0.26 1 1 17.46 ± 0.01 16.96 ± 0.03 17.96 ± 0.58 0.296 ± 0.001 0.36 –6.9 ± 0.5 308 3.8

150.48 0.28 3 1 18.43 ± 0.01 17.89 ± 0.03 18.96 ± 0.64 0.317 ± 0.001 0.37 –6.5 ± 0.5 310 2.9
152.49 0.33 3 1 21.56 ± 0.02 21.15 ± 0.04 21.79 ± 0.59 0.269 ± 0.001 0.34 –6.9 ± 0.7 249 7.2
154.49 0.38 3 1 24.80 ± 0.02 24.38 ± 0.05 25.12 ± 0.89 0.271 ± 0.001 0.36 –6.9 ± 0.7 211 3.0
156.48 0.43 3 2 27.90 ± 0.01 27.52 ± 0.04 28.12 ± 0.67 0.264 ± 0.001 0.34 –6.5 ± 0.6 202 4.1
48.61 0.83 1 1 47.56 ± 0.04 50.66 ± 0.09 46.52 ± 1.69 0.499 ± 0.004 0.24 27.3 ± 1.1 239 3.3
51.64 0.90 1 1 30.44 ± 0.11 25.29 ± 0.27 31.52 ± 2.02 0.955 ± 0.010 0.12 –22.6 ± 1.6 249 2.6
52.63 0.93 1 1 16.40 ± 0.12 12.85 ± 0.30 18.39 ± 1.97 0.681 ± 0.012 0.13 –22.8 ± 2.5 173 1.3
54.66 0.97 1 1 5.26 ± 0.05 2.97 ± 0.13 6.07 ± 0.71 0.479 ± 0.005 0.17 –20.9 ± 1.5 247 1.0
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Fig. 2.11 – Enveloppe circumstellaire de la Céphéide RSPup (image DSS).

2.3 L’environnement circumstellaire des Céphéides

2.3.1 Des indices convergents...

Plusieurs observations indiquent que les Céphéides sont de bonnes candidates pour présenter
des enveloppes circumstellaires : la présence de matière au voisinage de RSPup, la perte de masse
observée par spectrographie, et l’excès infrarouge de certaines étoiles. Je développe ces différents
indices ci-après, dans le but de positionner nos observations interférométriques récentes, qui sont
rapportées dans les articles présentés dans les Sect. 2.3.2 et 2.3.3.

Matière circumstellaire

Avant notre travail sur `Car, on ne connaissait qu’une seule Céphéide présentant une en-
veloppe circumstellaire (ECS), RSPup (Fig. 2.11). Une autre de ces étoiles, SUCas est située
à proximité d’une nébuleuse, mais l’association physique est incertaine. Le mécanisme ayant
conduit à la formation des coquilles autour de RS Pup est actuellement inconnu. Deasy (1988)
a proposé plusieurs scenarios relatifs à l’évolution de l’étoile avant la séquence principale, ou
bien à de la perte de masse episodique au cours de plusieurs traversées de la bande d’instabilité
classique. Havlen (1972) et Szabados (2003) remarquent qu’il est improbable que RS Pup soit la
seule Céphéide associée à une nébuleuse, mais du fait de la très grande luminosité intrinsèque
de ces étoiles, elles sont très difficiles à détecter par imagerie classique.

Perte de masse

Sur la base de photométrie infrarouge du satellite IRAS et de spectres IUE dans l’ultraviolet,
Deasy (1988) a mis en évidence de la perte de masse sur plusieurs Céphéides. Le taus le plus élevé
est attribué par cet auteur à RS Pup (10−6M�.yr−1). The taux est très significatif, et explique
la structure en “bulles” qui a été creusée par l’étoile dans le milieu interstellaire environnant.
ζ Gem est aussi citée comme présentant un vent stellaire important, induisant un taux de perte
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de masse de ' 10−10M�.yr−1, plusieurs ordres de grandeur plus faible que RSPup. Pour cet
auteur, `Car montre aussi une perte de masse significative, avec un taux de l’ordre de trois fois
plus élevé que ζ Gem. Böhm-Vitense & Love (1994) obtiennent même une valeur beaucoup plus
grande, de ' 2.10−5M�.yr−1, encore plus élevée que RSPup. Ils suggèrent également que la
composante fixe (non pulsante) de la raie Hα observée en absorption est causée par une ECS
d’une taille de l’ordre de 1000 UA. A la distance de `Car (570 pc, cf. Sect. 2.1.4), cela correspond
à une extension angulaire de 0.5”.

Excès infrarouge

Plusieurs Céphéides ont montré un excès infrarouge modéré lié à la présence de matière
circumstellaire. Un tel excès de flux dans l’infrarouge moyen est caractéristique d’un environ-
nement relativement chaud situé près de l’étoile. Deasy (1988) a observé un excès du rapport
F (60µm)/F (12µm) dans les mesures du satellite IRAS sur plusieurs Céphéides brillantes, par-
mis lesquelles : α UMi (faible excès), SU Cas (très important), ` Car (faible), β Dor (important),
S Mus (important), RS Pup (très important). Il est aussi intéressant de noter la détection par
IRAS d’une émission infrarouge étendue autour de X Pup, située à seulement ' 1 kpc de RSPup.
Toujours sur la base de données IRAS, McAlary & Welch (1986) ont étudié un large échantillon
de Céphéides à la recherche d’un excès infrarouge. Ils ont obtenu une détection claire pour
RSPup et SUCas.
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2.3.2 Article A&A : “Extended envelopes around Galactic Cepheids. I. ` Carinae
from near and mid-infrared interferometry with the VLTI” (2006)

Cet article rapporte notre découverte d’une enveloppe autour de `Car. Il s’agit de la première
mise en évidence de matière circumstellaire autour d’une Céphéide par interférométrie. Une seule
autre Céphéide (RS Pup) est clairement associée à une nébuleuse circumstellaire (visible à grande
distance de l’étoile). Nos observations à l’aide des instruments VINCI et MIDI montrent que cet
environnement possède une dimension caractéristique de l’ordre de quelques rayons stellaires,
et une contribution au flux total de l’étoile de quelques pourcents en bande K. En infrarouge
moyen (bande N), il semble dominer l’émission de l’étoile elle-même.

Fig. 2.12 – Une des lignes à retard du VLTI.
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ABSTRACT

We present the results of long-baseline interferometric observations of the bright southern Cepheid �Carinae in the infrared N (8−13 µm)
and K (2.0−2.4 µm) bands, using the MIDI and VINCI instruments of the VLT Interferometer. We resolve in the N band a large circumstellar
envelope (CSE) that we model with a Gaussian of 3 R� (≈500 R� ≈ 2−3 AU) half width at half maximum. The signature of this envelope is
also detected in our K band data as a deviation from a single limb darkened disk visibility function. The superimposition of a Gaussian CSE
on the limb darkened disk model of the Cepheid star results in a significantly better fit of our VINCI data. The extracted CSE parameters in the
K band are a half width at half maximum of 2 R�, comparable to the N band model, and a total brightness of 4% of the stellar photosphere. A
possibility is that this CSE is linked to the relatively large mass loss rate of �Car. Though its physical nature cannot be determined from our
data, we discuss an analogy with the molecular envelopes of RV Tauri, red supergiants and Miras.

Key words. Cepheids – techniques: interferometric – stars: circumstellar matter – stars: individual: � Car

1. Introduction

Cepheids are commonly used as distance indicators, thanks
to their well-established Period-Luminosity (P–L) law.
Discovered almost one century ago, this empirical relation
relates the absolute brightness of a Cepheid to its variation
period. Measuring the period and apparent brightness of a
Cepheid thus gives its distance. As they are intrisically very
bright stars, and can be observed in distant galaxies, this re-
markable property has turned these yellow supergiant stars into
primary standard candles for extragalactic distance estimations.

The calibration of the P–L zero point itself relies essen-
tially on the Baade-Wesselink (BW) method. This classical
method (Baade 1926; Wesselink 1946) establishes the dis-
tances to Cepheids by determining simultaneously the change
in linear and angular size over the pulsation. The linear size
change is obtained from an integration of spectrographic ra-
dial velocity measurements, while the change in angular size
can be obtained either from surface brightness considerations
(classical method) or directly by interferometry. One potential
weakness of the BW technique is that it relies implicitely on the
asumption that the star radiates as a blackbody (surface bright-
ness method) or can be resolved directly as a single, “naked”
star (interferometric BW method). A deviation from these hy-
potheses, caused for instance by the presence of a circumstel-
lar envelope (CSE), can lead to a bias in the resulting distance
estimation.

We present here an interferometric investigation of the
close environment of the bright southern Cepheid �Car
(HD 84810, HR 3884). As it is the brightest Cepheid in the
sky, it was extensively studied using a variety of techniques.
For instance, applications of the classical and interferometric
BW method to this star can be found in Taylor et al. (1997)
and Kervella et al. (2004c). We present in Sect. 2 our interfer-
ometric observations that were obtained using the VINCI and
MIDI instruments of the VLTI. Section 3 is dedicated to the in-
terpretation of the measured visibilities in terms of simple flux
distribution models. In Sects. 4 and 5, we discuss the different
physical processes that are likely to play a role in the forma-
tion of a CSE around �Car, and we compare it to two variable
star classes related to Cepheids (RV Tauri and Miras) that are
known to host dusty environments.

2. Observations

2.1. VINCI

2.1.1. Raw data acquisition and processing

The European Southern Observatory’s Very Large Telescope
Interferometer (VLTI; Glindemann et al. 2004) has been op-
erated on top of the Cerro Paranal, in Northern Chile since
March 2001. For the new observations reported in this paper,
the light coming from two test siderostats (0.35 m aperture)
or two 8 m Unit Telescopes (UTs) was recombined coherently

Article published by EDP Sciences and available at http://www.edpsciences.org/aa or http://dx.doi.org/10.1051/0004-6361:20053603
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in VINCI, the VLT INterferometer Commissioning Instrument
(Kervella et al. 2000; Kervella et al. 2003). We used a regu-
lar K band filter (λ = 2.0−2.4 µm), and processed the data
using the standard VINCI data reduction software version 3.0
(Kervella et al. 2004a). As part of our programme of Cepheid
observations by interferometry, we have observed �Car in
January-February and April-May 2003. These measurements,
obtained using the VLTI test siderostats on the B3-M0 base-
line (140 m ground length, ≈125 m projected on the sky), were
already reported in Kervella et al. (2004b, hereafter Paper I).

During the early VLTI commissioning (Jan.−Feb. 2002),
additional visibility measurements of �Car were obtained us-
ing the 8 m Unit Telescopes UT1 and UT3 (102 m ground
length, ≈85 m projected), and with the test siderostats on the
short E0-G0 baseline (16 m ground length, ≈14.5 m projected).
The Unit Telescopes were not equipped at the time with adap-
tive optics systems (seeing limited regime). These new data are
listed in Tables 1 and 2. The reference Julian date epoch (T0 =

2 452 290.4158) and pulsation period (P = 35.551341days)
used to compute the phase are taken from Szabados (1989), and
are identical to Paper I. The calibrators were chosen from the
Cohen et al. (1999) catalogue (Table 3). As demonstrated by
Bordé et al. (2002), the star diameters in this list have been es-
timated homogeneously to a relative precision of 1% and agree
well with other angular diameter estimation methods.

2.1.2. Medium vs. long baselines: a discrepancy?

A first indication that a simple stellar disk model is not the
most adequate for �Car comes from the comparison of the ob-
servations obtained using the medium (UT1-UT3, ≈85 m) and
long (B3-M0, ≈125 m) baselines. In order to derive angular di-
ameters from the VINCI visibilities, we used the limb darken-
ing model from Claret (2000), in the same way as described in
Paper I. Figure 1 shows the evolution of the limb darkened an-
gular diameter of �Car as a function of phase. The solid curve
is the result of the fit of the integrated radial velocity curve of
this star to the B3-M0 data only (as described in Paper I). It ap-
pears clearly that the new angular diameter measurements from
the UT1-UT3 baseline, represented as open squares, are larger
by 3σ than those obtained with the siderostats.

We now examine the possible calibration or instrumental
causes for this difference. It is improbable that it comes from an
incorrect estimation of the angular diameter of the calibrators,
as two different reference stars were used for the UT measure-
ments (HR 4080 for phase 0.376 and HR 4831 for phase 0.490),
with consistent results. Moreover, HR 4831 was also used for
part of the siderostat observations (Table 2) with no detectable
bias compared to other calibrators. The calibrators were all
chosen from the catalogue by Bordé et al. (2002). This is a
filtered version of the reference work by Cohen et al. (1999)
that was adapted specifically for interferometry. All these cali-
brators are believed to be single stars, and do not show infrared
excess.

It is also unlikely that a systematically different behavior
between the siderostats and the UTs can create such a dif-
ference. Firstly, previous observations demonstrated a good

Table 1. Squared visibilities of �Car in the K band from VINCI. The
stations of the new measurements are marked in bold characters. The
calibrators are given in italic characters. The stated Julian date JD0

is JD−2.452 106. The azimuth is counted in degrees clockwise from
North (N = 0 deg, E = 90 deg), and B is the projected baseline in me-
ters. The pulsation phase φ is computed using the P and T0 parameters
from Szabados (1989).

JD0 φ B (m) Az. V2± stat± syst (%)

E0-G0 HR 4546

792.486 0.122 14.560 19.03 95.32 ± 3.97 ± 0.05

792.499 0.123 14.308 21.32 98.82 ± 3.68 ± 0.05

792.545 0.124 13.316 27.30 93.28 ± 3.91 ± 0.05

792.576 0.125 12.644 29.50 99.20 ± 6.14 ± 0.04

792.582 0.125 12.533 29.74 102.08 ± 6.63 ± 0.04

792.587 0.125 12.433 29.94 94.12 ± 6.53 ± 0.04

793.544 0.152 13.287 27.42 97.95 ± 2.83 ± 0.04

793.555 0.152 13.048 28.32 97.24 ± 2.68 ± 0.04

793.560 0.153 12.930 28.71 95.72 ± 2.75 ± 0.04

B3-M0 HR 4546

765.523 0.364 125.951 75.96 9.64 ± 0.41 ± 0.49

765.528 0.364 125.063 77.50 10.89 ± 0.54 ± 0.55

765.534 0.364 124.029 79.24 11.46 ± 0.72 ± 0.58

765.575 0.365 115.637 91.95 16.57 ± 0.63 ± 0.85

765.580 0.366 114.483 93.59 18.73 ± 1.68 ± 0.96

765.588 0.366 112.611 96.21 17.62 ± 0.46 ± 0.91

U1-U3 HR 4080

303.772 0.376 84.682 45.25 38.28 ± 0.73 ± 0.28

303.775 0.376 84.399 45.81 38.80 ± 0.78 ± 0.28

303.776 0.376 84.254 46.10 40.13 ± 0.86 ± 0.29

303.778 0.376 84.023 46.55 37.58 ± 0.72 ± 0.27

B3-M0 HR 4546

766.516 0.392 126.748 74.53 9.52 ± 0.50 ± 0.49

766.521 0.392 125.889 76.07 12.08 ± 0.86 ± 0.62

766.526 0.392 125.045 77.53 11.36 ± 0.94 ± 0.58

766.544 0.393 121.582 83.16 12.24 ± 0.45 ± 0.62

766.576 0.394 114.779 93.17 16.23 ± 0.56 ± 0.80

766.581 0.394 113.604 94.82 17.47 ± 0.63 ± 0.86

766.586 0.394 112.390 96.52 17.72 ± 0.66 ± 0.87

agreement between these two types of light collectors for well-
known stars (see e.g. Di Folco et al. 2004). Secondly, the vis-
ibility measurements being differential in nature (between the
Cepheid and its calibrator), the existence of a “telescope type”
bias would require a differential effect between the star and
its calibrator. This is unlikely as the brightness and colors are
chosen to be similar. The main difference between UTs and
siderostats is the pupil size (8 m vs. 0.35 m). The field of view
coupled in the single-mode fibers is 1.5′′ with the siderostats
(i.e. limited by the diffraction), and of the order of 1′′ with
the UTs in the K band (limited by the atmospheric seeing, see
Guyon 2002 for details). Given the characteristic size of the
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Table 2. Continued from Table 1.

JD0 φ B (m) Az. V2± stat± syst (%)

B3-M0 HR 4546

768.523 0.448 124.548 78.38 11.66 ± 0.50 ± 0.58

768.528 0.448 123.683 79.81 13.28 ± 1.31 ± 0.66

768.536 0.449 122.082 82.38 12.85 ± 1.59 ± 0.64

768.581 0.450 112.204 96.78 18.42 ± 0.55 ± 0.81

768.591 0.450 109.878 100.01 19.75 ± 0.52 ± 0.87

768.599 0.450 107.804 102.89 21.07 ± 0.60 ± 0.93

768.607 0.451 105.748 105.77 23.35 ± 0.60 ± 1.03

B3-M0 HR 3046, HR 4831

769.570 0.478 114.286 93.86 17.31 ± 0.69 ± 0.27

769.574 0.478 113.127 95.49 17.83 ± 0.75 ± 0.27

769.580 0.478 111.834 97.29 18.66 ± 0.74 ± 0.29

U1-U3 HR 4831

307.822 0.490 75.924 59.76 46.98 ± 1.06 ± 0.35

307.823 0.490 75.666 60.12 47.33 ± 0.88 ± 0.35

307.825 0.490 75.342 60.58 47.26 ± 0.84 ± 0.35

307.827 0.490 74.989 61.07 48.13 ± 0.91 ± 0.36

B3-M0 HR 3046, HR 4831

770.533 0.505 121.671 83.02 13.30 ± 0.56 ± 0.18

770.538 0.505 120.634 84.62 14.24 ± 0.61 ± 0.20

source of a few mas, this small difference cannot be the cause
of a significant bias.

This systematic difference between the visibility data ob-
tained on the B3-M0 and UT1-UT3 baselines is therefore un-
likely to have an instrumental origin. In Sect. 3, we present
a model of �Car surrounded by a circumstellar environment
(CSE) that can reproduce the data from both medium and
long baselines, as well as the shorter (≈14.5 m projected)
E0-G0 data.

2.2. MIDI

2.2.1. Raw data acquisition and processing

The MIDI observations of �Car were obtained on the night
of 8−9 April 2004, using the UT2-UT3 baseline of the VLTI.
This baseline has a ground length of 46.6 m, but due to the low
declination of �Car and its calibrator, the projected baseline
was 40.0 m. The raw data were processed using the MIDI Data
Reduction Software developed by the Paris Observatory and
distributed by the JMMC1 in order to extract first the in-
strumental squared coherence factors and then the calibrated
squared visibilities V2(λ). As MIDI operates in the diffraction
limited regime of the UTs, the effective field of view diam-
eter is equal to approximately 0.26′′ at λ = 10 µm. This is
much larger than the typical angular size of the star and of
its CSE (≈10 mas) discussed in Sect. 3. Perrin et al. (2005b)
describe the steps to calibrate the MIDI data carried out by the
software. This software also outputs the spectra of the source

1 Jean-Marie Mariotti Center (http://mariotti.fr).

and calibrator over the N band. The presence of a strong ozone
atmospheric absorption band over the range λ = 9.3−10.0 µm
(Lord 1992) can make the visibilities unreliable in this wave-
length domain, as the photometric calibration is made more dif-
ficult by the lower flux level.

2.2.2. Spectral energy distribution

The absolutely calibrated spectrum of �Car presented in Fig. 2
was obtained by dividing the average observed with MIDI by
the average spectrum of its calibrator HR 3187, and then
multiplying the result by the absolutely calibrated template
spectrum of HR 3187 given by Cohen et al. (1999). The agree-
ment with the IRAS spectrum obtained on this star (Volk &
Cohen 1989) is satisfactory. At the date of the MIDI obser-
vations (JD = 2 453 104.6), the pulsation phase of �Car was
φ = 0.901: the star was just starting its inflation phase, shortly
after its minimum diameter (φ = 0.89).

While �Car is rising towards maximum light in the vis-
ible (φ = 1.00 by definition), it is almost at minimum light
in the K band. Using the temperature scale from Kiss &
Szàtmary (1998), with B − V photometry and the color excess
from Fernie (1990), we derive Teff = 5500 K for phase 0.901.
Together with the extrapolated VINCI LD angular diameter for
this phase (θLD � 2.70 mas), we obtain the blackbody spec-
trum represented as a solid curve in Fig. 2. It is in excellent
agreement with the IRAS observations, as well as with the
MIDI spectrum. In the infrared, the photometry of a Cepheid
is essentially determined by its change in apparent size, as
opposed to the visible where its effective temperature plays
the leading role. For instance, the amplitude of the photomet-
ric variation of �Car in the K band is ∆mK = 0.32, corre-
sponding to a �16% amplitude in terms of angular size. This
is consistent with the pulsation amplitude of 18% measured
with VINCI (Paper I). The small remaining difference between
the IRAS and MIDI spectra can be explained by a pulsational
variation of the radius of �Car between the two observations.
Unfortunately, the date at which the IRAS spectra were ob-
tained is not available in the IRAS LRS catalogue, and we can-
not compute the phase to check this hypothesis.

2.2.3. Calibration

The calibrator star used for the MIDI observations, HR 3187,
was selected from the Cohen et al. (1999) catalogue, as the
VINCI calibrators. This star is unresolved by the interferom-
eter at the wavelengths sampled by MIDI (8−13µm), with an
angular diameter of only 2.4 mas (Table 3).

Figure 3 shows the result of the calibration of the �Car ob-
servations using two different calibration hypotheses. In this
figure, Cal1 and Cal2 refer to the first and second series of ob-
servations of HR 3187, while Sci1 and Sci2 refer to the first
and second series of �Car (Table 4). The first hypothesis is
to consider the average transfer function (TF) of the inter-
ferometer over all calibrator observations, and apply it to all
observations of �Car. In the second case, Cal1 is associated
with Sci1 and Cal2 with Sci2. These two calibration choices
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Table 3. Relevant parameters of the calibrators of �Car (F6Ib-K0Ib), taken from Bordé et al. (2002).

HR HD mV mK mN Sp. Type Teff(K) log g π (mas)a θLD(mas)b θUD K(mas)c

HR 3046 HD 63744 4.70 2.31 2.42 K0III 4720 2.6 14.36 ± 0.48 1.67 ± 0.025 1.63 ± 0.024

HR 3187 HD 67582 5.04 2.04 2.24 K3III 4250 2.4 2.63 ± 0.51 2.39 ± 0.062 2.32 ± 0.061

HR 4080 HD 89998 4.83 2.40 2.44 K1III 4580 2.5 16.26 ± 0.56 1.72 ± 0.020 1.68 ± 0.019

HR 4546 HD 102964 4.47 1.56 1.67 K3III 4210 2.2 7.03 ± 0.72 2.48 ± 0.036d 2.41 ± 0.035d

HR 4831 HD 110458 4.67 2.28 2.39 K0III 4720 2.6 17.31 ± 0.65 1.70 ± 0.018 1.66 ± 0.018
a Parallaxes from the Hipparcos catalogue (Perryman et al. 1997).
b Catalogue values from Cohen et al. (1999).
c Linear limb darkening coefficients factors from Claret et al. (1995).
d The angular diameter of HR 4546 has been measured separately with VINCI.

Fig. 1. Limb darkened disk angular diameter of �Car deduced from
VINCI observations on the B3-M0 siderostat baseline (filled squares)
and the UT1-UT3 baseline (open squares). The solid curve is the best-
fit model from Paper I, using the siderostat data only.

simply result in a vertical shift of the V2(λ) spectrum, leav-
ing its shape qualitatively the same (rising from short to long
wavelengths). This shows that independent of the calibration
hypothesis, �Car is significantly resolved by the interferome-
ter. In the following, we have chosen to keep the association
Cal1-Sci1 and Cal2-Sci2, as the target and calibrator observa-
tions are slightly closer in time in this case. Qualitatively, the
choice of the first hypothesis (average TF over the night) would
have resulted in slightly lower visibilities, meaning that the ob-
ject would appear even more resolved.

3. Model fitting

3.1. K band model

We model the visibility curve using a limb darkened disk (LD)
representing the star, and a superimposed Gaussian shape rep-
resenting the CSE. The stellar disk has only one parameter,
the LD angular diameter (θLD), while the Gaussian shape has
a variable full width at half maximum (FWHM) DCSE K and
total intensity ICSE K, normalized to the stellar brightness at
center. The limb darkening profile for the star is taken from

Fig. 2. Absolutely calibrated MIDI (thick curve) and IRAS LRS spec-
tra (thin solid and dotted curves) of �Car, using HR 3187 as a spec-
trophotometric standard star. The theoretical spectrum of a blackbody
with T = 5500 K and an angular diameter of 2.70 mas is superimposed
for reference (solid curve).

Claret (2000), considering the physical parameters of �Car de-
tailed in Paper I (Teff, log g, ...). The visibility model is com-
puted taking into account the bandwidth smearing effect (Davis
et al. 2000; Kervella et al. 2004a) that is due to the broadband
operation of VINCI. This is one of the simplest models to ac-
count for the contribution of a diffuse CSE, together with the
photospheric emission from the star itself. Radiative transfer
is not modeled at this stage. The model is purely geometric to
ease the interpretation of the measured visibility points. The
resulting V2(DCSE K, ICSE K, B) model is adjusted numerically
to the observed (B,V2)i data using a classical χ2 minimiza-
tion process. Figures 4 and 5 show the best fit model to the
VINCI data.

For this fitting process, we considered only the VINCI
measurements obtained between phases 0.36 and 0.51 on the
B3-M0 baseline (≈125 m). We limited our selection to this
range as it covers the phases of the intermediate baseline ob-
servations with the UTs. This way, we can separate the pul-
sation of the star from the presence of a CSE, and study the
spatial light distribution of the star for a given phase of its pul-
sation. The data obtained on the E0-G0 baseline (≈14.5 m) are
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Fig. 3. Result of different calibration hypotheses for �Car (see text for
explanation). The shaded area corresponds to an atmospheric absorp-
tion feature of ozone (λ = 9.3−10.0 µm, Lord 1992), where the data
can be unreliable.

Table 4. Journal of MIDI observations of �Car on the UT2-UT3 base-
line. JD1 is defined as JD−2 453 104 (pulsation phase φ = 0.901). B is
the projected baseline length, Alt. the altitude of the star and PA is the
position angle of the projected baseline (N = 0◦, E = 90◦).

UTC JD1 Target Alt. (◦) B (m) PA (◦)

01:25:47 0.559 �Car 52.07 40.85 48.52

01:26:40 0.560 �Car 52.07 40.82 48.68

01:27:33 0.561 �Car 52.07 40.79 48.84

01:48:28 0.575 HR 3187∗ 56.60 38.95 58.75

01:49:21 0.576 HR 3187 56.60 38.89 58.85

01:50:14 0.577 HR 3187 56.60 38.83 58.95

02:08:35 0.589 �Car 51.11 39.22 56.25

02:09:28 0.590 �Car 51.11 39.18 56.41

02:10:21 0.591 �Car 51.11 39.14 56.57

02:28:55 0.603 HR 3187 49.98 35.92 63.40

02:29:48 0.604 HR 3187 49.98 35.85 63.50

02:30:41 0.605 HR 3187 49.98 35.78 63.60
∗ These data show a deficit in terms of photometry, and were not

used in the calibration process.

not affected by the pulsation phase, as the K band photosphere
remains largely unresolved on this short baseline (V2 � 98%),
and these data are thus sensitive only to extended emission.

We obtain the model parameters listed in Table 5. In terms
of stellar radii, the CSE reaches RCSE K = 1.9 ± 1.4 R� or
330 ± 270 R�, in the K band (assuming R� = 179 R� from
Kervella et al. 2004c). The large uncertainty on this radius is
due to the relative lack of interferometric data for baselines
between 15 and 75 m. The main constraint is the deficit, in
term of visibilities, at baselines between 75 and 85 m. The to-
tal brightness of this environment represents 4% of the stellar
brightness. The LD size of �Car considering only the B3-M0
baseline measurements is θLD = 3.093 ± 0.009 mas, only 0.6%

Fig. 4. Observed squared visibilities of �Car with VINCI, and best fit
model composed of a Gaussian CSE superimposed on a limb darkened
disk (solid curve). The dashed curve is a simple uniform disk model fit
to the B3-M0 siderostat data only (longest baseline). The data obtained
with the UTs are marked with open squares, while the siderostat data
are represented by filled squares.

away in terms of angular diameter from the best fit model with
a CSE. Therefore, the results in terms of average diameter and
distance reported by Kervella et al. (2004c) are not modified by
the presence of this CSE.

3.2. N band model

From the VINCI observations in the K band reported in Paper I,
we know that the angular diameter of the star at pulsation phase
φ = 0.901 is θLD � 2.70 mas. This is beyond the resolution
capabilities of MIDI on the UT2-UT3 baseline, and the squared
visibility spectrum V2(λ) should therefore appear as the thin
solid curve in Fig. 6 (top). The presence of a significant slope
and squared visibilities as low as 80% at λ = 8 µm however
shows that a CSE is resolved by the interferometer.

Fitting the data with a Gaussian model results in an average
FWHM of DCSE N = 8 ± 3 mas. In this fitting process, the error
bars of each V2(λ) value were not averaged, as it is currently not
possible to separate the systematic and statistical contributions
to these errors. We therefore chose this conservative approach
to avoid underestimating the final error bars. The apparent size
of the CSE appears to vary slightly over the N band, with a
maximum size between 8 and 11 µm.

While the CSE appears to be relatively faint in the K band,
it becomes much more visible in the N band, even dominating
the star itself. The typical size of the CSE is similar in the two
bands with a half FWHM of about 2−3 R�.

4. Nature of the CSE of �Car

4.1. Circumstellar matter

Only one Cepheid is currently known to be associated with a
CSE, RS Pup. Another Cepheid, SU Cas, appears to be located



628 P. Kervella et al.: Extended envelopes around Cepheids. I. � Carinae

Fig. 5. Enlargements of Fig. 4 showing the squared visibility measure-
ments obtained. Top: short E0-G0 siderostat baseline. Bottom: inter-
mediate UT1-UT3 baseline.

Table 5. Best fit model parameters for the VINCI data in the K band.
The adjusted model is the superimposition of a limb darkened disk
representing the stellar photosphere and a Gaussian representing
a CSE. θLD is the LD angular diameter of the star, DCSE K is the FWHM
of the Gaussian (in mas), and ICSE K is the ratio of the CSE brightness
to the stellar brightness in the K band.

θLD (mas) DCSE K (mas) ICSE K Reduced χ2

3.11 ± 0.03 5.8 ± 4.5 4.2 ± 0.2% 0.65

close to a nebula, but the association is uncertain. The mech-
anism for the formation of the RS Pup shells is currently un-
known. Deasy (1988) has proposed several scenarios, rang-
ing from an evolution of the star before its Cepheid phase
to mass loss during multiple crossings of the instability strip.
As pointed out by Havlen (1972) and Szabados (2003), it is
unlikely that RS Pup is the only existing Cepheid-nebula as-
sociation. The detection of such nebulae is made particularly
difficult by the large intrinsic brightness of the Cepheids them-
selves. They are extremely bright supergiants, and therefore
they largely outshine their close environment, including pos-
sible associated nebulae.

Fig. 6. Calibrated squared visibility V2(λ) of �Car using the UT2-
UT3 baseline (40 m projected length). The dashed curve is the best
fit Gaussian model with a FWHM of rCSE(N) = 8 ± 3 mas. The thin,
almost linear solid curve close to 100% represents the visibility func-
tion of the K band photosphere of �Car (θLD = 2.70 mas), at the phase
of the MIDI observations (φ = 0.901).

4.2. Mass loss

Based on IRAS photometry and IUE ultraviolet spectra,
Deasy (1988) has identified mass loss in a number of Cepheids.
The highest mass loss is attributed by this author to RS Pup
(10−6 M� yr−1). This level is very significant, and explains the
“bubble” structures that have been carved by this star in the in-
terstellar medium. ζ Gem is also quoted as exhibiting evidence
of stellar wind in its ultraviolet spectra, inducing a mass loss
of �10−10 M� yr−1, several magnitudes smaller than RS Pup.
�Car shows also a significant mass loss, with a rate about three
times as large as ζ Gem. Böhm-Vitense & Love (1994) even
obtained a much higher value of �2 × 10−5 M� yr−1 for this
star, even larger than RS Pup. They suggest that the fixed (non
pulsating) Hα absorption feature that they detect is caused by
a CSE with a size of the order of 1000 AU. At the distance
of �Car (570 pc, Kervella et al. 2004c), this corresponds to an
angular extension of 0.5′′. In addition, they detect “blobs” of
OI emission up to a distance of several arcseconds from the
star. The MIDI observations are sensitive to the central, hotter
part of this CSE. Finally, these authors suggest in their con-
clusions that the mass loss rate may be larger for long period
Cepheids than for short periods. This is also the conclusion of
Willson (1988) based on theoretical pulsation computations:
larger mass stars are associated with more mass loss: �Car,
with P = 35.5 days, is thus a prime candidate for a bright CSE.

4.3. Infrared excess

A number of Cepheids have shown moderate infrared excesses
that are related to the presence of circumstellar matter. An ex-
cessive brightness at mid-infrared wavelengths is character-
istic of a relatively warm, dusty environment. Deasy (1988)
compared the IRAS excess ratios F(60 µm)/F(12 µm) to pre-
dicted values for several bright Cepheids. Interestingly, an
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extended infrared emission is identified around X Pup, located
only �1 kpc from RS Pup, and probably associated with the
same nebula. Using IRAS data in the mid-IR, McAlary &
Welch (1986) have studied a broad sample of Cepheids in or-
der to detect infrared excesses. They obtained a clear detection
in the case of RS Pup and SU Cas (two classical Cepheids).
For �Car however, we confirm their conclusion that no signif-
icant mid-IR excess is present in �Car from our N band spec-
trum presented in Sect. 2.2.2.

Depending on its composition and temperature, the contri-
bution from the CSE in the mid-IR could be small, especially as
it may essentially diffuse the K band light from the star itself.
Such a limited excess may well have remained below the sen-
sitivity limit of the photometric detection methods. Moreover,
this IR excess could be variable due to the change in effective
temperature of the star, and the propagation of shock waves in
the CSE around the minimum diameter phase. A cold tempera-
ture could for instance result in an excess at even longer wave-
lengths than the mid-infrared sampled with MIDI, up to the
millimetric domain. No IR excess has been found with IRAS
down to 60 µm, but Cepheids have never been studied at longer
wavelengths.

The Gaussian model that we use in Sect. 3 for the CSE
of �Car should not be considered as physically realistic. In par-
ticular, it is clear that dust cannot exist within several radii of
the star itself, as it would be sublimated. Nevertheless, we have
chosen this simplified distribution in order to fit our limited
data set with the smallest possible number of parameters. In
order to establish the true geometry of the CSE, we plan to ob-
tain in the future more visibility measurements over a broader
range of spatial frequencies, as well as closure phases to search
for deviations from central symmetry.

4.4. Polarization

Bastien et al. (1988) measured a significant fraction of polar-
ized flux on �Car with 1.58±0.01% in the visible, at a position
angle of 99.8 ± 0.2 deg. These authors noted that this polariza-
tion level is exactly the same as what was found by Serkowski,
Matthewson & Ford (1975), 18 years before. A quick search
through the catalogue compiled by Heiles (2000) reveals that
several nearby Cepheids show a significant level of polariza-
tion (Table 6). Some fainter Cepheids located further away are
known to present larger polarizations, but the fraction of the po-
larization introduced by the interstellar dust becomes uncertain.

Polyakova (1990) proposed that the observed polarization
of Cepheids may be caused by the presence of a CSE that is 20
to 30% larger in the equatorial direction than along its pole. It
would be interesting to measure interferometrically the shape
of the CSE, using for instance the AMBER instrument (Petrov
et al. 2000) to test this hypothesis.

5. Envelopes around stars related to Cepheids

5.1. The RV Tauri star AC Her

According to the General Catalogue of Variable Stars
(Kholopov et al. 1998), variables of the RV Tauri class are

Table 6. Fraction of polarized flux (p) for bright Cepheids. This list is
limited to Cepheids brighter than mV = 6.0 at maximum present in the
catalogue assembled by Heiles (2000), apart from RS Pup. The color
excess E(B − V) reported by Fernie (1990) is given for each star, and
the p values larger than 1% are marked in bold characters.

Star mV E(B − V) p ± σ(p) (%)

FF Aql 5.2 0.22 0.620 ± 0.006

η Aql 3.5 0.15 1.685 ± 0.003

RT Aur 5.0 0.05 0.490 ± 0.120

U Car 5.7 0.28 0.560 ± 0.100

v382 Car 3.8 – 0.510 ± 0.100

v399 Car 4.6 – 1.425 ± 0.090

� Car∗ 3.3 0.17 1.580 ± 0.010

SU Cas 5.7 0.29 1.853 ± 0.036

δ Cep 3.5 0.09 0.440 ± 0.083

BG Cru 5.3 0.05 0.660 ± 0.035

X Cyg 5.8 0.29 0.410 ± 0.120

DT Cyg 5.6 0.04 0.280 ± 0.120

β Dor 3.5 0.04 0.440 ± 0.035

ζ Gem 3.6 0.02 0.110 ± 0.100

ω Gem 5.1 – 0.090 ± 0.120

T Mon 5.6 0.21 0.320 ± 0.120

Y Oph 5.9 0.66 1.340 ± 0.120

MY Pup 5.5 0.06 0.400 ± 0.035

RS Pup 7.0 0.45 0.440 ± 0.100

S Sge 5.2 0.13 0.689 ± 0.009

W Sgr 4.3 0.11 0.775 ± 0.016

X Sgr 4.2 0.20 1.708 ± 0.232

Y Sgr 5.2 0.21 0.220 ± 0.120

AH Vel 5.5 0.07 0.100 ± 0.100

T Vul 5.4 0.06 0.220 ± 0.120
∗ The value of p for �Car is taken from Bastien et al. (1988).

pulsating yellow supergiants having spectral types F-G at max-
imum visible light and K-M at minimum. Their light curve
shows alternating deep and shallow minima with a period
(measured between one deep minimum and the next) of 30
to 150 days and an amplitude of 3 to 4 mag in the vis-
ible. RV Tau stars are particularly interesting as they seem
to be intermediates between Cepheids and Mira variables.
They are included in the broad group of “Type II Cepheids”
(Wallerstein 2004). They are generally surrounded by dust
shells that have been studied by several authors, including for
instance Gherz (1972) and Jura (1986). On the theoretical side,
Moskalik & Buchler (1991) have shown that an RV Tau-like
pulsational behavior can be observed in long period Cepheids
(P = 25−40 days), based on numerical models of Cepheids.

Shenton et al. (1992) have analyzed multi-wavelength
photometry and spectroscopy of the short period RV Tauri
star AC Her, from the ultraviolet to the infrared. This star
is especially interesting as it pulsates with a very regular
“double period” of 75.4 days, meaning that the time between
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two consecutive minima (37.7 days) is close to the period of
�Car (35.6 days). However, it is clearly less massive, as Bono
et al. (1997) give a probable mass below 1 M� for AC Her,
compared to M�Car ≈ 13 M� (Caputo et al. 2005). In addi-
tion, AC Her was confirmed to be a binary star with a separa-
tion of 1.4 AU by Van Winckel et al. (1998) from radial veloc-
ity data. These authors also deduce an effective temperature of
5500 ± 250 K for the primary, comparable to �Car (�5100 K).
AC Her also presents a very strong millimetric continuum flux
(Van der Veen et al. 1994) that indicates the presence of large
dust grains. Its spectrum shows a clear infrared excess in the
N band, including a strong silicate emission feature between 8
and 12 µm (see e.g. Molster et al. 2002). Jura et al. (2000)
have obtained mid-IR adaptive optics images of AC Her and
detected two compact sources separated by 0.6′′. These authors
conclude that the best model to explain these observations is
an edge-on ring of dust with a radius of 300 AU. However, this
result was not confirmed by Close et al. (2003), who exclude
any extended emission from high Strehl ratio AO images in
the mid-IR domain. Exploring longer wavelengths, De Ruyter
et al. (2005) have considered the spectral energy distribution
of six bright RV Tau stars up to the millimetric domain in or-
der to characterize the properties of the circumstellar dust. In
the case of AC Her, they obtain a best-fit dust model consisting
of a shell with an inner radius of 50 R� and an external radius
of 900 R�, and a total mass of the order of 3 × 10−5 M�.

While �Car does not present the same infrared excess as
AC Her, and is significantly more massive, its physical prop-
erties place it at an interesting location in the H−R diagram
close to the dusty pulsating RV Tau stars. By analogy with this
class of stars, a significant millimetric excess could be present
in the spectrum of �Car. Unfortunately, to our knowledge, there
are no millimetric observation of this star (or of any classical
Cepheid) in the literature.

5.2. Mira stars and red supergiants

Recent observations making use of interferometers and com-
bined with spectroscopic data have shed new light on the at-
mospheric structure of Miras and red supergiants, and on the
interplay between atmospheric structure and dust formation. It
is therefore interesting to compare Cepheids to these stars.

Cepheids and Miras undergo regular and large amplitude
pulsations with comparable photospheric velocities of a few
10 km s−1. Pulsations are efficient to expand the atmospheric
volume and increase the scale height, making the atmosphere
of these stars much more extended than for static objects.

Pulsations are mandatory in our current understanding of
these objects to levitate material high enough in the atmo-
sphere to allow for dust to condensate and drive the mass loss.
Cepheids, as yellow supergiants, are very luminous and natu-
rally have extended atmospheres. The driving mechanism for
mass loss in red supergiants could be the production of acous-
tic energy by large convective cells as supported by Josselin
& Plez (2003). Because they pulsate and they are supergiants,
Cepheids can potentially use the two mechanisms to lose mass:
pulsation and convection.

Perrin et al. (2004a,b, 2005a) have shown that the struc-
ture of the atmosphere of Mira stars and of the red supergiants
Betelgeuse and µCep share some similarities. In both cases,
a warm molecular layer with H2O and CO was described at
a short distance from the photosphere, at about 2 R� for Mira
stars and 1.4 R� for red supergiants. The temperatures are also
quite similar, of the order of 2000 K. Simultaneous model-
ing of interferometric and spectroscopic data by Weiner (2004)
and Ohnaka (2004b) for Mira stars and by Ohnaka (2004a) for
red supergiants confirmed the presence of water vapor in the
molecular layer. Recently, Verhoelst et al. (2005) have shown
that a consistent view of both interferometric and spectroscopic
data of Betelgeuse requires the presence of corondum in the
layer, thus providing a seed for silicate dust nucleation. A sim-
ilar structure could exist around �Car.

As a simple experiment, the properties of the CSE of �Car
can be extrapolated to that of Betelgeuse. Assuming thermal
equilibrium in the atmosphere of Betelgeuse and assigning a
fixed and common distance to all molecules in the atmosphere,
a radial temperature law can be derived. The photosphere ra-
diates a flux proportional to R2

� T 2
� of which a fraction e−τl

is absorbed by the layer. As a very crude approximation it is
assumed that τl does not vary with wavelength. Because of
thermal equilibrium, the layer radiates a flux proportional to
(1 − e−τl) R2

l T 2
l . Equating parameters to the values derived in

Perrin et al. (2004a) yields τl = 1.94. Using this same optical
depth for a hypothetical layer around �Car yields a distance at
which the temperature drops to 2000 K of 3.1 R�. Should the
atmospheric contents detected with the interferometric K and
N band measurements be water vapor, temperatures of 2000 K
or less are required to produce a significant opacity. This sim-
ple experiment shows that the parameters derived in this paper
for the CSE of �Car a priori make sense physically, and are
likely to be in agreement with what could be a general scheme
for evolved stars.

One may now wonder at what characteristic distance
sillicate dust could condensate, i.e. at what distance does the
temperature drop below 1000 K. With the same rationale on
thermal equilibrium and assigning an optical depth of 1 to
the dust layer, the dust condensation radius order of magni-
tude is 21 R�, corresponding to 30 mas at the distance of �Car.
Given the resolution of MIDI during the observation, such a
structure should have been detected if it exists. The current ob-
servations thus point towards a rather poor dusty environment
around �Car, a conclusion compatible with the absence of an
infrared excess for the star.

6. Conclusion

Based on combined observations in the near and mid infrared
domains with the VINCI and MIDI instruments of the VLTI,
we have detected a circumstellar envelope around the massive
Cepheid �Car. Its typical size is 2−3 R�, and its contribution to
the total near-infrared flux is 4%. Extended dusty environments
are known to be present around other types of variable stars re-
lated to Cepheids that are located near �Car in the Hertzsprung-
Russell diagram. The physical process that created the CSE
could be linked to the relatively large mass loss rate of �Car
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that could be enhanced by pulsation and convection. Although
our data are still insufficient to study the nature of this CSE, a
molecular layer could be a plausible explanation for our obser-
vations, by analogy with red supergiants and Miras.

Acknowledgements. Based on observations collected with the VLT
Interferometer, Cerro Paranal, Chile, in the framework of the ESO pro-
grammes 071.D-0425 and 073.D-0142. This research has made use of
the SIMBAD database at CDS, Strasbourg (France).
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2.3.3 Article A&A : “II. Polaris and δ Cep from near-infrared interferometry
with CHARA/FLUOR” (2006)

Notre détection d’une enveloppe autour de `Car a démontré pour la première fois la présence
de matière au voisinage immédiat de cette étoile. Nous rapportons dans cet article nos ob-
servations interférométriques de Polaris et δCep à l’aide de l’instrument CHARA/FLUOR.
Nous avons établi que ces deux Céphéides possèdent des enveloppes similaires à celle de `Car.
Ceci indique que des enveloppes circumstellaires existent probablement autour de nombreuses
Céphéides, sinon de la majorité d’entre elles.

Fig. 2.13 – Coucher de Soleil depuis l’Observatoire du Mont Wilson.
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ABSTRACT

We present the results of long-baseline interferometric observations of the classical Cepheids Polaris and δ Cep in the near infrared
K′ band (1.9−2.3 µm), using the FLUOR instrument of the CHARA Array. Following our previous detection of a circumstellar
envelope (CSE) around � Car (Kervella et al. 2006), we report similar detections around Polaris and δ Cep. Owing to the large data
set acquired on Polaris, in both the first and second lobes of visibility function, we have detected the presence of a circum-stellar
envelope (CSE), located at 2.4±0.1 stellar radii, accounting for 1.5±0.4% of the stellar flux in the K band. A similar model is applied
to the δ Cep data, which shows improved agreement compared to a model without CSE. Finally, we find that the bias in estimating
the angular diameter of δ Cep in the framework of the Baade-Wesselink method (Mérand et al. 2005b) is of the order of 1% or
less in the K band. A complete study of the influence of the CSE is proposed in this context, showing that at the optimum baseline
for angular diameter variation detection, the bias is of the order of the formal precision in the determination of the δ Cep pulsation
amplitude (1.6%).

Key words. stars: variables: Cepheids – stars: circumstellar matter – stars: individual: Polaris (α Ursae Minoris) –
stars: individual: δ Cephei – techniques: interferometric – techniques: high angular resolution

1. Introduction

Using low resolution interferometry (e.g. small baselines at
which the star is under resolved) in the near infrared and mid-
infrared, we recently reported the discovery of a circumstel-
lar envelope (CSE) around the 35 day period Cepheid � Car
(Kervella et al. 2006). The presence of this feature may disturb
the application of the classical Baade-Wesselink (BW) method,
which aims at determining distances by measuring simultane-
ously the variations of angular and linear diameters.

Stellar interferometry has demonstrated a capability to mea-
sure precise Cepheid distances and the calibration zero point
of the their Period-Luminosity relation (Kervella et al. 2004a).
With the recent calibration of the BW method, thanks to the
direct p-factor measurement by interferometry (Mérand et al.
2005b), it is now mandatory to study the Cepheid center-to-limb
darkening (CLD) and the possible presence of CSEs in order to
constrain two of the last sources of possible bias in the interfero-
metric BW method. A morphological model is required in order
to derive the angular diameter from a single baseline visibility
measurement. If the assumed CLD differs from the actual one,
or if the circumstellar emission is present, the derived angular
diameters can be biased, possibly leading to a biased distance
estimation in the BW method.

Following our recent study of � Car, we present in this
work near infrared observations of Polaris (α UMi, HR 424,

� Table 4 is only available in electronic form at the CDS via
anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/453/155

HD 8890) and complementary observations of δ Cep (HR 8571,
HD 213306) using the FLUOR (Fiber Link Unit for Optical
Recombination) beam combiner installed at the CHARA (Center
for High Angular Resolution Astronomy) Array. Polaris is the
brightest Cepheid in the northern skies and offers the best op-
portunity to measure the CLD and detect the presence of a CSE.
A great amount of data was collected, 65 calibrated data points
using 4 different baselines (projected length from 19 to 246 m),
to disentangle the CLD and CSE characterization from the pos-
sible close companion and radial pulsation detection. We show
that these two latter effects have not been detected in our dataset,
whereas the presence of a CSE is mandatory to explain a visibil-
ity deficit observed at V2 ∼ 50%, as in � Car.

We also present complementary observations of the Cepheid
δ Cep with medium baselines (B ≈ 150 m), following our deter-
mination of its p-factor using very long baselines (Mérand et al.
2005b). The final characteristics of the CSEs detected around
Polaris and δ Cep are qualitatively in agreement with what has
been found for � Car.

Finally, we present a formal analysis of the bias introduced
to the BW method in presence of the CSE.

2. Observational setup

2.1. CHARA/FLUOR

Observations were undertaken in the near infrared (K′ band,
1.9 ≤ λ ≤ 2.3 µm) at the CHARA Array (ten Brummelaar
et al. 2005) using FLUOR, the Fiber Linked Unit for Optical
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Recombination (Coudé du Foresto et al. 2003). The FLUOR
Data reduction software (DRS) (Coudé du Foresto et al. 1997;
Kervella et al. 2004b), was used to extract the squared modulus
of the coherence factor between the two independent apertures
from the fringe pattern.

2.2. Baselines

The baselines were chosen according to the Polaris and δ Cep
angular sizes (approximately 3 and 1.5 mas, respectively), wave-
length of observation and desired spatial resolution. Polaris must
be observed at i) low spatial resolution (V2 ∼ 50%) in order to
detect the CSE and the possible faint companion, ii) high resolu-
tion (in the first lobe of the visibility profile, near the first null) in
order to detect the pulsation with optimum sensitivity and iii) at
the top of the second lobe in order to measure the CLD. This led
to the choice of CHARA baselines i) S1-S2 (b = 33 m), E1-E2
(b = 66 m), ii) W2-E2 (b = 156 m) and iii) W1-E2 (b = 251 m).
Concerning δ Cep, the only requirement for the complemen-
tary data was to reach V2 ∼ 50%, where the CSE is believed
to be easily detectable. This criteria led to projected baselines
of roughly 150 m, corresponding to W2-E2 and S2-W2 at the
CHARA Array. These latter baselines were chosen with similar
length but different orientation, in order to investigate possible
asymmetry in the CSE, if present.

2.3. Calibrators

Calibrator stars were chosen in two different catalogs: B02
(Bordé et al. 2002) for stars larger than 2.0 mas in diameter
and M05 (Mérand et al. 2005a) for stars smaller than 2.0 mas
using criteria defined in this latter work (see Table 1). We used
calibrators from B02 for baselines smaller than 100 m, while for
larger baselines we used calibrators from M05. The two cata-
logs are very similar by their characteristics: M05 is an extension
of B02 using the very same procedure to estimate angular diam-
eters. Therefore no trend is expected when using data calibrated
with stars coming from these two catalogs.

3. Observations of Polaris

3.1. Context

Polaris has the largest angular size of all northern population I
Cepheids. This star is therefore the best candidate for CLD mea-
surements using an interferometer.

Because Polaris lies near the North celestial pole, the pro-
jected baseline remains almost constant in length while varying
in position angle during the night (see Fig. 1).

3.2. Expected hydrostatic CLD profile

Claret (2000) tabulated limb darkening coefficients from hy-
drostatic ATLAS models. If we use the following parameters
Teff = 6000 K, log g = 2.5 and solar metallicity, we get in the
database the following LD coefficients for the K band:

a1 = 0.6404, a2 = −0.1182, a2 = −0.2786, a4 = 0.1802

describing the center to limb variations:

I(µ)/I(1) = 1 −
4∑

k=1

ak

(
1 − µk/2

)
. (1)

Table 1. Calibrators used for the observations. “SP” stands for spec-
tral type. Uniform Disk diameters, given in mas, are only intended for
computing the expected squared visibility in the K band.

SP UD diam. Baseline Notes
HD 5848 K2 II-III 2.440±0.064 S1-S2 B02, 1
HD 5848 K2 II-III 2.440±0.064 E1-E2 B02, 1
HD 81817 K3 III 3.260±0.085 – –
HD 139669 K5 III 2.890±0.035 – –
HD 222404 K1 III-IV 3.290±0.051 – –
HD 83550 K2 III 1.160±0.015 W2-E2 M05, 1
HD 91190 K0 III 1.330±0.018 – –
HD 118904 K2 III 1.411±0.018 – –
HD 176527 K2 III 1.721±0.024 – M05, 2
HD 218452 K5 III 2.080±0.024 – –
HD 162211 K2 III 1.598±0.020 S2-W2 M05, 2
HD 165760 G8 III 1.500±0.020 – –
HD 207130 K1 III 1.331±0.017 – –
HD 217673 K1 II 1.411±0.020 – –
HD 9022 K3 III 1.050±0.014 W1-E2 M05, 1
HD 42855 K3 III 0.803±0.010 – –
HD 217673 K1 II 1.411±0.020 – –
HD 206842 K1 III 1.214±0.016 – M05, 2

Notes: B02 refers to Bordé et al. (2002) catalog; M05 to Mérand et al.
(2005a) catalog; 1 refers to Polaris observations and 2 refers to δ Cep
ones.
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Fig. 1. u−vmap, in meters. Up is north and right is east. Each data point
lies on a circle corresponding to the baseline because of the near-polar
position in the sky of Polaris.

It is necessary to take into account the bandwidth smearing.
Once the monochromatic visibility v(σ, b) is computed from the
intensity profile I(µ)/I(1) for a given wavenumber σ = 1/λ
and baseline b, the wide-band squared visibility is obtained by
computing:

V2
FLUOR(b) =

∫
T 2

r (σ) (B(σ)/σ)2 v2(σ, b) dσ∫
T 2

r (σ) (B(σ)/σ)2 dσ
(2)

where B(σ)/σ is the black body Planck function, in number of
photons per unit of time, frequency and surface area for the ef-
fective temperature of the star (since FLUOR uses a detector that
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Table 2. Best fit model parameters for Polaris and its CSE. θ� is the
stellar angular diameter (mas), α the CLD coefficient, θs the shell an-
gular diameter (mas), w the shell width (mas) and Fs/F� the relative
brightness (Fig. 3). Last column tabulates the reduced χ2. Only param-
eters with error bars (lower scripts) have been fitted. The first line is the
hydrostatic model; the second line is the adjusted CLD; the model of
the last line includes a shell.

θ� α θs w Fs/F� χ2

3.152±0.003 0.16 – – – 4.5
3.189±0.005 0.26±0.01 – – – 2.5
3.123±0.008 0.16 7.5±0.2 0.5 1.5±0.4% 1.4
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Fig. 2. Results of fit for different models. Squared visibility with respect
to baseline. Solid line is the hydrostatic CLD from Claret (2000), dotted
line is a fitted power law CLD while the dashed line is the hydrostatic
model surrounded by the shell (see Table 2 for the models parameters).
Note that solid and dotted line overlap in the main panel, the S1-S2 and
E1-E2 small panels.

measures the flux as a number of photons); Tr is the chromatic
instrumental transmission, which has been measured internally
(a standard atmospheric transmission model is also applied).

The only parameter adjusted in the fit is the angular diameter
of the star, which is found to be θ� = 3.152 ± 0.003 mas. The
corresponding reduced χ2 is 4.5 (Table 2). Note that we take
into account the correlations between error bars of different data
points. These correlations come from the multiple use of a single
calibrator in the dataset. They are properly treated according to
the formalism developed by Perrin (2003).

In Fig. 2, we display the data points and the models. The
solid line corresponds to the hydrostatic CLD model for Polaris
from Claret (2000). It appears that the model fails to reproduce
the data in the second lobe (see W1-E1 baseline) and marginally
intermediate baselines (E1-E2), where V2 ∼ 50%.

3.3. Adjusted center-to-limb variation

Because the second lobe is not well reproduced by the hydro-
static model, a simple way to improve the model is to adjust
the strength of the CLD. Indeed, the CLD profile changes the
scale of the first lobe (not its shape) and the height of the second

lobe. For this purpose we chose a single parameter CLD law, the
power law: I(µ)/I(1) = µα (Michelson & Pease 1921; Hestroffer
1997). The hydrostatic model computed from Claret coefficients
for Polaris corresponds to α = 0.16. Even using a single pa-
rameter CLD model compared to the 4-parameters Claret’s law,
corresponding V2 only differ at most by 10−3 (relative) in the
first two lobes. We therefore prefer to use a single parameter
CLD law (the power law), for the sake of simplicity.

The best fit, adjusting α as a free parameter, leads to θ� =
3.189±0.005 mas and α = 0.26±0.01; the reduced χ2 is then 2.5
(Table 2, second line). Based on the χ2, the fit is significantly bet-
ter: the hydrostatic CLD led to χ2 of 4.5. The CLD is stronger
than predicted by hydrostatic models and the corresponding an-
gular diameter is thus larger, as expected. However, before trying
to interpret this result in terms of photospheric characteristics,
one should notice that this model still fails to fit the mid-first
lobe (see E1-E2 panel in Fig. 2, dotted line, which actually over-
laps with the solid line). The measured V2 data are lower than
computed for a limb darkened disk. A change in CLD affects
primarily the second lobe (higher spatial frequencies), and only
the scale of the first lobe. In order to change the shape of the
first lobe, one has to invoke something larger that Polaris itself
to disturb the lower spatial frequencies. Thus, we think that this
strong CLD is not realistic.

3.4. Companion and pulsation

When seeking possible explanations for the departure
around V2 ∼ 50%, two obvious possibilities must be con-
sidered before invoking a CSE: Polaris is a pulsating star and a
spectroscopic-astrometric binary as well (Wielen et al. 2000).
We shall now show that neither of these two hypotheses can
explain the discrepancy in the first lobe.

If the departure detected at V2 is believed to be due to the
companion, it should vary with the position angle angle of the
projected baseline. Our sampled range in projection angle is
quite large and densely populated for E1-E2 (Fig. 1). However
the departure does not change significantly with respect to pro-
jection angle of the baselines. As seen in Fig. 2: the V2 recorded
using E1-E2 are consistent within their errors. Because our typi-
cal V2 precision is of the order of 3%, the companion must be as
faint as 1.5% of the main star flux, or less (in the K band), in or-
der to remain undetected by CHARA/FLUOR. Moreover, based
on non detection in UV and X-ray, Evans et al. (2002) estimate
that the companion mass is between 1.7 and 1.4 solar masses.
Thus, this star is most likely a main sequence star of similar spec-
tral type (but lower luminosity) to Polaris. Wielen et al. (2000),
in their study of the astrometric orbit, conclude that the differ-
ence in magnitude between the two components is ∆V = 6.5
from which we deduce, because of the similarity in spectral type,
∆K ≈ 6.5. This corresponds to a flux ratio of 2.5 × 10−3 which
translates into an interferometric V2 modulation twice as large,
5 × 10−3 or half a percent.

According to the latest radial velocity surveys, the radial pul-
sation of Polaris is of the order of 0.4% in diameter (Moskalik
& Gorynya 2005). In the case of FLUOR, for which the rela-
tive error in squared visibility (σV2/V2) is almost constant, the
most effective baseline to search for diameter variations maxi-
mizes the following criterion: for a given baseline b and angular
diameter θ, a diameter increase of δθ should lead to the max-
imum relative increase in squared visibility δV2/V2. Thus, the
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optimum baseline maximizes (in absolute value) the dimension-
less quantity Af , which we call the amplification factor:

Af =
∂V2(b, θ)
∂θ

θ

V2(b, θ)
· (3)

If the angular diameter θ increases by the very small amount δθ,
then, the visibility increases by δV2/V2 = Af × δθ/θ. If we com-
pute Af for the four projected baselines for which Polaris has
been observed, we get −0.1, −1, −11.5 and −3.7 for S1-S2,
E1-E2, W2-E2 and W1-E2 respectively. Note that Af is neg-
ative in the first lobe: an increase in diameter leads to a de-
crease in visibility, a well known effect of the Fourier transform.
Our best baseline to detect the pulsation on Polaris is W2-E2
with an amplification factor of −11.5. Our relative average cali-
brated V2 uncertainty is of the order of 3.5% for this baseline,
thus we should be able to detect a 0.3% pulsation amplitude
within one sigma (respectively 1% within 3 sigmas), assuming
good phase coverage. In our case, data were recorded on three
nights within a week. Because the pulsation is almost a multiple
of 1 day (P ≈ 3.97 days), it was not possible to explore more
than three different epochs, one quarter phase apart. Fitting a
uniform non-pulsating disk to W2-E2 data leads to a reduced χ2

of 1.05, which means the pulsation was not detected due to poor
phase coverage or because its amplitude was slightly shallower
than expected (0.5%).

3.5. CSE model

We demonstrated that neither the companion nor the pulsation
can be detected in our dataset. These phenomena cannot explain
the visibility departure we observed at V2 ∼ 50% and can be
therfore neglected.

Following the study on � Car, we shall now explore the pos-
sible presence of a CSE around Polaris. We will adopt a ring-like
model for the CSE. The image of the object, as seen by the in-
terferometer, is supposed to be a limb-darkened star, surrounded
by a ring. Note that the ring does not represent a flat disk, it
is the two dimensional projection of the surrounding shell. This
model contains five parameters (see Fig. 3): the star angular di-
ameter (θ�), its limb darkening coefficient (α), the ring mean
diameter (θs), its width (w) and the flux ratio between the two
components Fs/F�. Apart from a star surrounded by a ring, this
model can reproduce a single star (Fs/F� = 0) or a star with an
uniformly bright environment (θs − w = θ�).

3.6. Results

The number of parameters (5) is too large compared to our
dataset. Not that we do not have enough data points, but be-
cause these data points are bundled in four sets, one for each
baseline. This is due to the particular position of Polaris in the
sky (near the pole) and because our model is centro-symmetric.
We choose to fix the center to limb darkening coefficient to the
value predicted by hydrostatic models (α = 0.16). Moreover,
we also realized that the ring width does not play a significant
role in the minimization: we fixed this parameter to different
values, from 0.01 mas (very sharp ring) to 1 mas (diluted ring)
and always obtained results for the other parameters within one
sigma error bar. This is probably due to our lack of spatial res-
olution, which prevented us to actually resolve the ring width.
Finally, only three parameters were adjusted: the stellar angular
diameter, the shell angular diameter and its flux ratio. The best
model is a CSE accounting for 1.5 ± 0.4% of the stellar flux and

Flux ratio
α

w

sθ

*
θ

Fig. 3. Our simple CSE model: a star and a ring, as seen by the interfer-
ometer. The star (in the center) is characterized by its angular diameter
θ� and CLD coefficient α (darker means brighter), whereas the shell is
characterized by its angular diameter θs, width w and flux ratio.

7.6 ± 0.2 mas in angular diameter, whereas the stellar angular
diameter is 3.123 ± 0.008 mas. The reduced χ2 is 1.4 (Table 2).

Interestingly, though the CLD has the same as before (α =
0.16, solid line in the same figure), the second lobe is lower than
in the model without an envelope: the shell lowers the second
lobe. This can be explained easily: since the shell is completely
resolved at these baselines (its own visibility is extremely low), it
only contributes as an uncorrelated flux and reduces the visibility
by a factor F�/(Fs + F�) where F� and Fs are the total fluxes of
the two components (star and shell respectively).

3.7. Influence of the CLD

The CLD cannot be constrained from our data, not because they
are not sensitive to it (we do have data in the second lobe),
but rather owing to the limited number of free parameters the
u − v coverage authorizes. In terms of least square minimiza-
tion, the reduced χ2 is already close to its reasonable minimum.
Adding a free parameter does not improve the fit – worse, it
complicates the minimization algorithm and the error bar esti-
mations. The only thing allowed, is to explore changes in the
fixed value for the CLD parameter.

The χ2 does not change much but it is still interesting to
watch the behavior of the free parameters. The main effect of
changing the CLD is to change the stellar diameter accordingly.
Indeed, this is just a well known effect of the limb darkening, as
the equivalent uniform disk diameter remains the same. The sec-
ond lobe changes slightly, as expected: increasing the strength
of the CLD lowers the second lobe. More interestingly, the flux
ratio between the CSE and the star changes significantly. We
previously noted that the shell would lower the second lobe. If
the CLD lowers it too, the shell does not have to be as bright to
compensate the effects of a shallow CLD. Yet it is not possible
to let the shell disappear completely: the V2 deficit still has to be
fitted. Furthermore, the size of the shell does not change, since it
is not constrained by the second lobe but by the position (in term
of baseline) of the deficit at low spatial frequencies.
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Therefore it is not possible to draw conclusions regarding
Polaris’ intrinsic CLD. We chose not to constrain this parame-
ter and fixed it to a plausible value. Firstly, the quality of the fit
is good enough (as judged by χ2) to conclude that this value is
compatible with our data set. Secondly, our model is not realistic
enough that we can hope measuring the CLD with good accu-
racy. However, we suggest that the CLD of Polaris is probably
consistent with the value expected from hydrostatic simulations.

3.8. Nature of the ring

We tested our best fit geometry with a physical model, such as
the one used by Perrin et al. (2004) for Mira stars: this model
is a simple radiative transfer calculation for a single layer shell
surrounding a star. The shell is a self emitting black body, like
the star itself. This type of model and our ring model lead to
similar geometries for the object, as seen by the interferometer.
In the model described by Perrin et al. (2004), the shell tem-
perature can be computed using a simple radiative equilibrium
model, such as presented in Ireland et al. (2005). Using silicate
opacities (Suh 1999) and a black body spectrum for the Cepheid
(Teff ≈ 6000 K), we found an equilibrium temperature of the
order of 2500 K at 3 stellar radii, which does not allow silicate
dust grains to survive. Based on this test, the observed circum-
stellar emission is unlikely to be due to thermal emission from a
silicate dust shell. This conclusion does not apply to Mira stars
(Teff ≈ 2800 K), for which the equilibrium temperature is much
lower for a shell at the same distance.

3.9. Conclusion

A model consisting in a limb darkened star surrounded by a shell
is an important improvement compared over the simple darkened
disk model. The first lobe visibility deficit, for E1-E2 baseline,
is understood to be due to the presence of a CSE consisting of
a dim ring 2.4 ± 0.1 times larger than the star itself. The width
of the ring is not known, and can be either thin or extended.
However, the flux ratio between the CSE and the star is accu-
rately known and does not depends on the width of the adopted
ring: 1.5 ± 0.4%. It is not possible to well constrain the intrinsic
CLD of the star. However, our choice of a CLD computed from
hydrostatic model (Claret 2000), combined with a CSE lead to a
model consistent with the interferometric data.

4. Observations of δ Cep

4.1. Additional observations

In a recent study, we observed δ Cep (Mérand et al. 2005b)
and applied the Baade-Wesselink (BW) method to the interfer-
ometric V2 measurements. These measurements were obtained
at very long baselines, between 235 and 315 m where 0.02 ≤
V2 ≤ 0.15. This range was chosen from among the whole dataset
because it maximized the amplification factor criterion. The re-
maining data, acquired at medium baselines, did not contribute
significantly to the angular diameter determination; moreover,
their phase coverage was poor.

It was not possible to even suspect the presence of a shell
based only on the longest baseline observations. Considering
the experience with Polaris (above) and previously with � Car,
it appears the the CSE is only detectable using a combination
of several different spatial frequencies. Thus, we here combine
the sparse medium baseline data acquired on δ Cep in 2004 with
more recent observations, obtained in 2005, at baselines where

Table 3. Best fit model parameters for δ Cep and its CSE. θ� is the stel-
lar angular diameter (mas), α the CLD coefficient, θs the shell angular
diameter (mas), w the shell width (mas) and Fs/F� the relative bright-
ness (Fig. 3). Last column tabulates the reduced χ2. Only parameters
with error bars (lower scripts) have been fitted. Note that in the second
line, θs/θ�, α, w and Fs/F�, are set to the values found for Polaris (see
Table 2).

θ� α θs w Fs/F� χ2

1.480±0.002 0.16 – – – 1.9
1.476±0.003 0.16 3.54 0.5 1.5% 1.1

the CSE should show up clearly, if it exists: V2 ≈ 50%. We
shall also use the data set presented in Mérand et al. (2005b)
in order to have consistent spatial frequency coverage between
V2 ≈ 50% and the first visibility minimum. The purpose of these
observations was to detect the presence of a CSE and study the
impact on the angular diameter estimation.

4.2. Disentangling the CSE from the pulsation

In order to disentangle the presence of the CSE from the visibil-
ity time-modulation caused by the angular radial pulsation θ(φ),
we define the pseudo baseline Bθ0 as:

Bθ0 = B
θ0
θ(φ)

(4)

where θ(φ), the angular diameter variation, is known from our
previous BW study, which combined very long baseline obser-
vations with high precision radial velocity measurements. If the
squared visibility data are plotted with respect to Bθ0 , they will
match the profile of a star with an angular diameter of θ0. The
choice of θ0 is arbitrary, and does not change the conclusions
of the following discussion: we will use θ0 = 1.475 mas, the
average angular diameter we reported in our precedent work
(Mérand et al. 2005b).

4.3. CSE Model

It should be possible, in principle, to fit to δ Cep data a
CSE model similar to the one we used for Polaris. However,
we realize that the lack of data at the shortest baselines, where
V2 ≈ 90%, leads to large uncertainty on the CSE size. Indeed,
the estimation of this size relies on the determination of the
shape of the V2 departure from the single star model. Even if
the departure is obvious at V2 ≈ 50% compared to longer base-
lines, one needs data at short baselines, where V2 approaches
unity. While data collected at medium baselines compared to
long baselines determine the lower limit for the CSE size, the
comparison between short baselines and medium baselines leads
to an upper limit.

Owing of the incompleteness of the δ Cep data set, com-
pared to Polaris, we must use a simpler model, especially con-
cerning the size of the CSE. As a first approximation, we choose
to adopt the Polaris model, scaled to the appropriate angular di-
ameter. Compared to parameter values given in Table 2, only θ�
is adjusted, while θs/θ� is fixed to the value found for Polaris. In
parallel, we will fit the angular diameter using a the CLD model
adopted in Mérand et al. (2005b). The important result will
lie in the difference between the two stellar angular diameter
estimates.

The results of the fit (Table 3), as well as the visibility
data points with respect to the pseudo baseline, are presented
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Fig. 4. All δ Cep squared visibility data with respect to the pseudo base-
line Bθ0=1.475 mas. The limb darkened disk fit appears as a continuous line,
while the rescaled Polaris model appears as a dashed line. Both mod-
els are fitted to the whole data set, while the rescaling function (pseudo
baseline) only affects the longest baselines (B1.475 mas > 200 m).

in Fig. 4. The revised diameter, using the CSE model, is
θCLD+CSE = 1.476 ± 0.003 mas (χ2 = 1.1) to be compared to
θCLD = 1.480 ± 0.002 mas (χ2 = 1.93) with no CSE. The quan-
tity of interest is the diameter bias β:

β =
θCLD − θCLD+CSE

θCLD+CSE
· (5)

For our case, considering the whole data set, we found β statisti-
cally compatible with 0. This means that omitting the CSE in the
morphological model used to derive the angular diameter from
our complete δ Cep dataset does not lead to a bias.

It is interesting to note that the Polaris model fits exactly
the δ Cep data without any modifications, except for the angular
scale.

4.4. CSE symmetry and variability

Two different aspects of the δ Cep CSE can now to be studied:
its possible asymmetry and possible relative brightness change
during the pulsation phase. The first aspect requires a study
at different baseline projection angles of the visibility deficit
at V2 ≈ 50%, whereas the second requires a good phase cover-
age. Our data set contains data at V2 ≈ 50% with a baseline pro-
jection angle range of ninety degrees and with excellent phase
coverage (considering our data were acquired at five different
epochs).

In order to estimate the possible asymmetry or variability,
we should consider the deficit between the measured visibility
and that expected from the limb darkened model: V2 − V2

CLD at
B1.5 mas ∼ 140 m (lower left sub-plot in Fig. 4). This deficit is
plotted with respect to the baseline projection angle and pulsa-
tion phase in Fig. 5. At our level of precision, the CSE seems to
be symmetric and stable through the pulsation. A more elaborate
model is thus not justified.

A similar examination of the Polaris measurements leads to
the same conclusion – the Polaris CSE appears symmetric and
constant in time.
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Fig. 5. δ Cep visibility deficit V2−V2
CLD with respect to baseline projec-

tion angle (upper panel) and pulsation phase (lower panel). The dashed
line represents a constant deficit. Neither an asymmetry nor a variability
of the CSE is detected.

5. Consequences for the Baade-Wesselink method

5.1. De-biasing the stellar diameter measurement

Interferometric angular diameter measurements are always
model dependent. In the case of stars without shells, it is nec-
essary to correct for the CLD. In the case of single baseline ob-
servations of Cepheids, if a shell has to be taken into account
the correction is no longer straightforward and depends on what
baseline is used.

To understand this, we should evaluate the multiplicative
bias introduced when measuring an angular diameter using a sin-
gle baseline and not allowing for the presence of the CSE. This
approach differs from the previous section, where we considered
the whole δ Cep data set. Most Cepheid studies have not bene-
fited from a similarly extensive coverage of spatial frequencies:
e.g. Kervella et al. (2004a) or Mérand et al. (2005b). In these
latter cases, in order to optimize the use of observing time, in-
terferometric observations were recorded over a very restricted
range of baselines.

Let us call V2
CLD(b) the squared visibility of the star without

the shell when observed at the baseline b, and V2
CLD+CSE(b) for

the star with the CSE, at the same baseline. Then, the bias β(b)
in diameter is, at the first approximation:

β(b) =
θCLD − θCLD+CSE

θCLD+CSE
(6)

=
V2

CLD(b) − V2
CLD+CSE(b)

V2
CLD+CSE(b)

× 1
Af(b)

(7)

where Af(b) is the amplification factor as defined previously.
Note that β is negative: V2

CLD > V2
CLD+CSE and Af < 0. In order
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Fig. 6. Bias introduced when determining a Cepheid angular diameter
using a single V2 measurement at a given baseline and not taking into
account the presence of the CSE, as a function of projected baseline
(solid line). The dashed line is the formal error when deriving the angu-
lar diameter from a single V2 measurement, assuming a 3% error on that
measurement. The angular size chosen for this example is the average
angular size of δ Cep and its CSE parameters (Table 3). The δCep diam-
eter measurements, which took place between 235 and 313 m baselines
(gray band), are biased at most at the 1% level, slightly lower than the
formal error.

to compare this bias with respect to the formal error in the diam-
eter estimation, we should compute the precision on the angular
diameter σθ/θ, for a given error in squared visibility σV2/V2:

σθ/θ =

∣∣∣∣∣∣
σV2/V2

Af(b)

∣∣∣∣∣∣ · (8)

Here, the V2
CLD+CSE and V2

CLD are essentially equivalent. For nu-
merical application, we will consider the typical result we ob-
tained for Mérand et al. (2005a): σV2/V2 = 0.03.

Figure 6 shows −β for the δ Cep CSE parameters reported in
Table 3. Our Baade-Wesselink observations used angular diame-
ters determined at baselines ranging from 235 to 313 m (Mérand
et al. 2005b). At such baselines, it appears that the bias is at
most of the order of −1%, whereas the diameter formal error is
slightly larger. One should notice this is not the case at the short-
est baselines, where the bias exceeds the formal error.

5.2. Distance estimation bias

It is important to take into account this bias when applying the
BW pulsation parallax method. Indeed, any multiplicative bias
in angular diameter will lead to a multiplicative bias in distance,
by the same amount. The pulsation parallax equation is (Mérand
et al. 2005b):

θ(φ) − θ0 = −2
p
d

∫ φ
0

Vrad.(t) dt (9)

where d is the distance, p the projection factor, θ the angular di-
ameter, Vrad. the radial velocity, in the spectroscopic sense – note
that we assume that the systematic velocity has been subtracted.
The fitted parameters in this equation are θ0 and d when deter-
mining the distance and assuming a given value for p (Kervella
et al. 2004a) or θ0 and p when knowing the distance and deter-
mining p (Mérand et al. 2005b). In the case of a multiplicative
bias 1 + β on the diameter, the projection factor is biased by the
same amount, whereas the distance is biased by 1/(1 + β).

In the case of δCep, the angular diameter was at most overes-
timated by a factor 1.01. Since the star appears larger than it ac-
tually is, our formal distance would have been under-estimated.

In the case of our previous study, d has been fixed to the estima-
tion of Benedict et al. (2002), d = 274 ± 11 pc. We evaluated p,
the projection factor, instead (Eq. (9)). Our value p = 1.27±0.06,
should at most be revised to the lower value of 1.26 ± 0.06.

In future high precision interferometric BW observations, it
will be necessary to determine and allow for the CSE bias. The
best choice, in terms of spatial resolution, will be to observe in
the first visibility lobe near the first minimum, in order to maxi-
mize the amplification factor. These observations will lead to the
best formal angular diameter precision and the lowest bias due
to the shell.

This conclusion relies on what we think the CSE looks like
in the near-infrared K band. However, it seems likely that the
CSE effects on the interferometric angular diameter estimation
are less important at shorter wavelengths.

6. Conclusion and discussion

After � Car, we report the interferometric detection in the
near infrared of circumstellar emission around two additional
Cepheids: Polaris and δ Cep. Polaris was studied in detail and
we were able to apply a simple CSE model consisting in a star
limb darkened according to hydrostatic models, surrounded by
a dim (1.5 ± 0.4% of the stellar flux), 2.4 ± 0.1 stellar diame-
ters CSE. This model also explains the deficit in the visibility
profile detected for δ Cep. The three Cepheids have quite differ-
ent characteristics: Polaris has a small amplitude and a short pe-
riod; δ Cep has a large amplitude, short period whereas � Car has
a large amplitude and long period. The (limited) measurements
are consistent with similar circumstellar emission geometries in
the three cases studied.

We computed the bias due to the presence of the CSE in the
Baade-Wesselink method framework. The bias, in terms of dis-
tance, is smallest when the largest first-lobe baselines are used
(V2 ≈ 3%), and is at most 1%, under the current error contribu-
tion of interferometric measurements (Mérand et al. 2005b).

The presence of CSEs, with similar characteristics, around
all Cepheids for which sufficient interferometric data are avail-
able, raises the possibility that this is a widespread phe-
nomenon. Possible mass loss from Cepheids has been reviewed
by Szabados (2003): slight infrared excesses have been detected
for almost all Cepheids observed by IRAS, independently of the
pulsating period. These observational constraints lead to a mass
loss rate of the order of 10−10 to 10−8 M� yr−1.

Mass loss is expected for Cepheids. This is a consequence of
the theoretical Cepheid mass deficit. The deficit is the ratio be-
tween two different mass estimates: the evolutionary mass and
the pulsational mass. The first, Me, is derived from the Mass-
Luminosity (M − L) relation computed from evolutionary nu-
merical codes; the second, Mp, is derived using the Period-Mass-
Radius relation (P-M-R), computed from non-linear pulsation
numerical codes. The ratio Mp/Me is known to be smaller than
unity. Even if the problem has been known for a long time and
partially solved by refinements in numerical codes (Cox 1980),
recent numerical investigations led to Mp/Me ≈ 0.9 for galac-
tic Cepheids (Bono et al. 2001). According to these authors,
this discrepancy between Me and Mp might be explained by
the fact that evolutionary codes do not take into account mass
loss in the He-burning phase (post main sequence). The phase
lasts 25 My For a 5 M� Cepheid and 2.5 My for a 11 M�, assum-
ing a 10% mass loss, a rough calculation leads to mass loss rates
of the order of what is deduced from IRAS measurements.

The direct detection of CSEs around Cepheids at distances
of only a few stellar radii is a confirmation that these stars are
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experiencing substantial mass loss. The three Cepheids are sig-
nificantly different one from another: we have three different
periods (∼4, ∼5.4 and ∼35 days), thus different masses; differ-
ent pulsation amplitude (<1% for Polaris and ∼15% for � Car
and δ Cep). This phenomenon cannot be neglected in future
Cepheid studies, presumably having implications for evolution-
ary and pulsational codes, or while determining distances using
the BW method.
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2.4 Projets de recherche

2.4.1 Etalonnage de l’échelle de distance des Céphéides

Le projet d’étalonnage interférométrique du point zéro de la relation P–L par interférométrie
va se poursuivre par un programme important (60 h) inscrit dans le temps garanti de l’équipe
AMBER, avec les télescopes auxiliaires du VLTI. Faisant partie de l’équipe proposante, je prévois
de contribuer à l’obtention et à la réduction de ces observations. Elles seront complétées par des
demandes dans le temps ouvert du VLTI. La conclusion de ce grand programme est prévue en
2009, avec la publication de notre nouvel étalonnage des relations Période-Luminosité, Période-
Rayon et du facteur de projection des Céphéides proches.

Au total, une quarantaine de Céphéides sont résolvables avec AMBER et les plus longues
bases du VLTI (Kervella 2001). Elles fourniront une base solide pour l’application de la méthode
BW interférométrique et l’étalonnage de la relation P–L. La question de la mesure directe du
facteur de projection est également à mon programme, avec en particulier une approche coor-
donnée entre les mesures de parallaxe HST-FGS en cours de l’équipe de F. Benedict (Université
du Texas) et des observations interférométriques avec les interféromètres CHARA et VLTI. En
complément de ces mesures, je prévois de poursuivre l’analyse des données obtenues avec le spec-
trographe HARPS sur dix Céphéides brillantes, de manière à identifier les meilleures observables
pour mesurer la vitesse radiale de la photosphère. L’absence de biais dans les mesures spectro-
scopiques de vitesse radiale est un facteur d’une importance égale à la précision des mesures
interférométriques pour obtenir une mesure juste de la distance.

2.4.2 Spectro-interférométrie avec MIDI et AMBER

Nos observations de l’enveloppe de `Car en infrarouge moyen avec l’instrument MIDI du
VLTI ont été décisives pour confirmer la présence de matière autour de cette étoile. Nous pro-
jetons dans les prochaines années de développer l’étude des enveloppes des Céphéides dans
l’infrarouge moyen avec MIDI. Une extension dans le domaine millimétrique est également en-
visagée, par exemple à l’aide de l’interféromètre de l’IRAM, pour les Céphéides les plus proches
et les plus brillantes. A titre exploratoire, des observations de Polaris et δCep dans la raie de
l’hydrogène neutre à 21 cm ont été réalisées en 2006 avec le radiotélescope de Nançay.

AMBER est un instrument spectro-interférométrique qui permet d’obtenir des mesures de
visibilité et de cloture de phase en fonction de la longueur d’onde pour les bandes JHK et avec
trois résolutions spectrales (R = 30, 1 500, et 10 000, voir Petrov et al. 2000 pour plus de détails).
Ce recombinateur est donc très bien adapté à l’étude de la dynamique interne de l’atmosphère
des Céphéides au cours de leur pulsation. `Car est en particulier une cible de choix, car elle
présente le plus grand diamètre angulaire de toutes les Céphéides ce qui rend sa résolution par
le VLTI plus facile. En étudiant par exemple le comportement de la raie Brγ de l’hydrogène,
il sera possible de sonder les mouvements de matière dans l’atmosphère, ainsi que la rotation
de l’étoile. La géométrie de la répartition de la matière autour de l’étoile pourra également être
étudiée, avec notamment une grande sensibilité à une éventuelle asymmétrie par la cloture de
phase.
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Chapitre 3

La séquence principale

La classe des naines est de loin la plus nombreuse de l’Univers. Alors qu’elles réalisent la
fusion de l’hydrogène en leur coeur, les étoiles de la séquence principale se trouvent dans une
configuration relativement stable, qu’elles conservent pendant la majeure partie de leur existence.
Le meilleur exemple d’une telle étoile est bien sûr le Soleil, mais la séquence principale recouvre
en réalité une très grande variété d’étoiles. Par exemple, les naines massives en rotation rapide
dont il sera question au Chapitre suivant appartiennent aussi à la séquence principale, tout
comme les minuscules naines rouges de la Sect. 3.1. La taille de ces étoiles est naturellement
très variable, et l’interférométrie permet de mesurer avec précision cette caractéristique physique
fondamentale. En combinaison avec des mesures astérosismiques, il est possible de construire des
modèles numériques très bien contraints, qui permettent d’étudier la structure et l’état évolutif
des étoiles de manière raffinée (Sect. 3.2). La structure même de l’atmosphère des étoiles de type
solaire comme αCen B est maintenant accessible, comme le montre notre article reproduit à la
Sect. 3.3. Enfin, les étoiles naines, par leur relative stabilité sont d’excellents étalons pour les
observations interférométriques. Je présente à la Sect. 3.4 les relations de brillance de surface
obtenues grâce aux observations obtenues avec le VLTI. Elles permettent d’estimer le diamètre
angulaire des étoiles naines et sous-géantes avec une incertitude de seulement 1% à partir de
simple photométrie large bande.

3.1 Les étoiles de très faible masse

Les naines rouges les moins massives sont particulièrement importantes car elles se situent à
l’interface entre les étoiles et les naines brunes. Présentant une structure interne essentiellement
convective, elles permettent d’étudier ce mode de transport de l’énergie de manière raffinée.
Par ailleurs, leur densité élevée implique une équation d’état de la matière les composant bien
spécifique. La Fig. 3.1 montre la relation masse-rayon tirée des modèles de Baraffe et al. (1998)
pour deux âges discincts : 400 millions d’années pour la courbe en tireté et 5 milliards pour la
courbe continue. Les mesures que nous avons obtenues avec le VLTI, et qui sont rapportées à
la Sect. 3.1.1, confirment que les modèles sont satisfaisants pour les étoiles les moins massives.
Il est intéressant de noter sur cette figure que l’on approche avec Proxima de la limite de
dégénérescence : le gaz constituant l’étoile offre une résistance à la compression supérieure à
celle d’un gaz parfait. Ceci explique pourquoi les étoiles et les planètes géantes comme Jupiter
ont une taille similaire, alors que leur masse est extrêmement différente.
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Fig. 3.1 – La partie gauche de cette figure montre la relation masse-rayon des quatre naines de
très faible masse que nous avons mesurées à l’aide de l’instrument VINCI du VLTI. Le triangle
indique la position de Jupiter. La partie droite montre la taille comparée de quelques étoiles
mesurées avec VINCI, de Jupiter et du Soleil.
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3.1.1 Lettre A&A : “First radius measurements of very low mass stars with
the VLTI” (2003)

Dans cette lettre, nous rapportons la mesure du diamètre angulaire de quatre naines de faible
masse à l’aide de l’instrument VINCI du VLTI. En complétant les mesures existantes, notamment
vers les plus faibles masses avec Proxima, ces nouvelles mesures ont permis de confirmer que les
modèles de structure stellaire sont globalement satisfaisants. Une légère tendance à sous-estimer
les rayons semble cependant apparâıtre pour les étoiles de masse intermédiaire.

Fig. 3.2 – La plate-forme du VLT et le Soleil couchant sur le Pacifique, photographiés depuis le
site du télescope VISTA.
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Abstract. We present 4 very low mass stars radii measured with the VLTI using the 2.2 µm VINCI test instrument. The
observations were carried out during the commissioning of the 104-meter-baseline with two 8-meter-telescopes. We measure
angular diameters of 0.7–1.5 mas with accuracies of 0.04–0.11 mas, and for spectral type ranging from M0V to M5.5V. We
determine an empirical mass-radius relation for M dwarfs based on all available radius measurements. The observed relation
agrees well with theoretical models at the present accuracy level, with possible discrepancy around 0.5–0.8 M� that needs to be
confirmed. In the near future, dozens of M dwarfs radii will be measured with 0.1–1% accuracy, with the VLTI, thanks to the
improvements expected from the near infrared instrument AMBER. This will bring strong observational constraints on both
atmosphere and interior physics.

Key words. stars: low-mass, brown dwarfs – stars: fundamental parameters – techniques: interferometric

1. Introduction

Mass, radius, luminosity and chemical composition are the ba-
sic physical properties of a star. For a given mass and chem-
ical composition, theory can predict most of the stellar phys-
ical parameters at a given age. Accurate stellar mass, radius
and luminosity measurements thus provide a crucial test of
our understanding of stellar physics. To be relevant, these pa-
rameters must be determined with an accuracy of the order
of 1% (Andersen 1991).The previously rather noisy Mass-
Luminosity relation for M dwarfs has recently been greatly
improved (Delfosse et al. 2000; Ségransan et al. 2003). By
contrast, the empirical Mass-Radius relation remains poorly
constrained, since it is based on the observations of just two of
the three known M-type eclipsing binaries, plus three M dwarfs
radii measured at the Palomar Testbed Interferometer (PTI)
with accuracies of 2–4% (Lane et al. 2001).

In this paper we present direct angular diameter mea-
surements of four M dwarfs with spectral types ranging
from M0V to M5.5V obtained with the Very Large
Telescope Interferometer (VLTI) and two 8-meter-telescopes
(Glindemann et al. 2001). The first two sections describe
the observations and the data reduction. The third section
presents the visibility calibration and the angular diameter
determination. In the last section we compare presently known
M dwarfs radiis and masses to theoretical models.

Send offprint requests to: D. Ségransan,
e-mail: Damien.Segransan@obs.unige.ch
? Based on observations made with the European Southern

Observatory telescopes and obtained from the ESO/ST-ECF Science
Archive Facility.

2. Observations

Gl887, Gl205 and Gl191 were observed during the first com-
missioning run of the VLTI with 8-meter-telescopes in early
November 2001, on the second and third nights after the “first
fringes” with these telescopes. The observations of Gl551 were
obtained in February 2002.

VINCI is the commissioning instrument of the VLTI
(Kervella et al. 2000). It uses single-mode optical fibers
to recombine the light from two telescopes of the Paranal
Observatory, and modulates the optical path difference around
its zero position to produce interference fringes. This recom-
bination scheme was first used in the FLUOR instrument
(Coudé du Foresto et al. 1998) and produces high precision vis-
ibility values, thanks to the efficient spatial filtering of the in-
coming beams and to the photometric monitoring of the filtered
wavefronts.

Transfer function calibrators (Table 1) were selected based
on their spectral type, distance to the target and known diameter
(Cohen et al. 1999). Calibration tests show that a ±1σ shift
in the calibrator angular diameter values modify the measured
M dwarf radii by less than 0.8σ.

The M dwarfs science targets and their calibrators were ob-
served in series of a few hundred interferograms, recorded at
a frequency of 500–700 Hz. Due to many down times asso-
ciated with the technical commissioning of the array, the ob-
servations of calibrator stars were not possible to the extent
usually required to monitor extensively the transfer function.
Nevertheless, the calibration measurements proved sufficient to
estimate the transfer function with a good accuracy. The global
interferometric efficiency of the VLTI mostly depends on two
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Table 1. Calibrators and instrumental+atmospherical transfer func-
tion. Calibrator uniform disk angular diameters come from Cohen
et al. (1999). Internal error and external error on the transfer function
are given for each calibrator. Fomalhaut angular diameter was redeter-
mined using the VLTI. (*) calibrator was not used due low visibilities
or poor accuracy on their diameters.

Spec. D T 
Targets Calib. Type θUD[mas] |Ta+i|2 σtot (σstat/σcal)
GJ205 39-Eri K3III 1.81 ± 0.02 0.478 0.005 (.002/.005)

HD36167∗ K5III 3.55 ± 0.06 0.486 0.037 (.006/.036)
GJ887 HR8685 M0III 2.01 ± 0.02 0.448 0.005 (.003/.004)

Fomalhaut∗ A3V 2.13 ± 0.06 0.433 0.013 (.004/.013)
GJ191 39-Eri K3III 1.81 ± 0.02 0.420 0.005 (.004/.004)

Gam02 Vol∗ K0III 2.45 ± 0.06 0.411 0.014 (.006/.013)
GJ551 HD110458 K0III 1.6 ± 0.02 0.509 0.006 (.004/.004)

parameters: the atmospheric coherence time, which varies over
timescales sometimes as short as a few minutes, and the in-
strumental efficiency which changes over timescales of a week.
Our effective calibration rate oversamples the instrumental ef-
ficiency variations by orders of magnitude, but risks undersam-
pling the atmospheric coherence time. Fortunately, the Paranal
observatory site is heavily monitored, and we could rely on
continuous measurement of the atmospherical coherence time
(Sandrock et al. 2000) to discard data intervals when the coher-
ence time changed significantly between the observation of the
calibrators and science targets.

3. From fringes to visibilities

We used a customised version of the VLTI/VINCI data reduc-
tion pipeline, whose general principle is based on the origi-
nal FLUOR algorithm (Coudé du Foresto et al. 1997). Despite
the high modulation frequency of the fringes, many recorded
interferograms present a differential piston signature, as well
as strong photometric fluctuations. The latter are expected for
large apertures without adaptive optics correction, as individual
speckle come in and out of the fiber input aperture. To over-
come the noise amplification caused by low photometry data
points, which could strongly bias the resulting visibilities, in-
terferograms were calibrated by the average value of the pho-
tometry over the fringe packet. The two calibrated output inter-
ferograms were then subtracted to remove residual photometric
fluctuations (Kervella, in prep).

In parallel to the FLUOR algorithm, based on Fourier anal-
ysis, we implemented a time-frequency analysis (Ségransan
et al. 1999) based on the continuous wavelet transform (Farge
1992). Instead of the projection onto a sine wave of the Fourier
transform, the wavelet transform decomposes it onto a func-
tion, ie. the Wavelet, that is localised in both time and fre-
quency. We use as a basis the Morlet Wavelet, a Gaussian en-
veloppe multiplied by sine wave. With the proper choice of the
number of oscillations inside the Gaussian envelope, the Morlet
wavelet closely matches a VINCI interferogram. It is there-
fore extremely efficient at localizing the signal in both time and
frequency.

Fig. 1. Wavelet Spectral density of a pistonned interferogram. The ef-
fect of strong differential piston is to distort the interferogram fringe
peak in the time-frequency space. Part of the interferogram’s energy is
spread out in both time and frequency, preventing a good measurement
of the total energy.

As illustrated in Fig. 1, differential piston strongly affects
the amplitude and the shape of the fringe peak in the wavelet
power spectrum. We therefore select on the shape of fringe
peak in the time-frequency domain to efficiently reject “pis-
tonned” interferograms. We then derive visibilities from the
wavelet spectral density, after removing the residual photon and
detector noise.

4. Angular diameter and limb darkening

Stellar angular diameters are usually quoted for both a uniform
disk and a limb-darkened disk, though only the latter is directly
comparable to actual stellar models. The monochromatic visi-
bility of a limb darkened disk is (Davis et al. 2000):

Vλ =

∫ 1

0
dµI (µ) µJ0

(
πBθLD/λ

(
1 − µ2

)1/2)

∫ 1

0
dµI (µ)

(1)

where I (µ) is the surface brightness, J0 is the zeroth order
Bessel function, B the projected baseline, λ the wavelength,
and θLD the limb darkened diameter (in radian).

The VINCI instrument has no spectral resolution, and a
bandpass defined by a K

′
filter (2–2.3 µm). For marginally

resolved disks (Bθ/λ << 1), Eq. (1) remains approximately
valid for polychromatic measurements, with λ then being the
effective wavelength of the system. It differs from the mean
wavelength of the filter through the wavelength-dependency of
fiber coupling, combiner transmission, and the stellar spectrum.
Since interferograms are Fourier transforms of the instrumental
bandpass, they provide, in principle, an accurate measurement
of the effective wavelength, obtained as the average barycen-
ter of the fringe peak in the spectral density space. We com-
puted such effective wavelengths for each star and compared
them to the one given by the VINCI instrument modelisation
(λeff = 2.195 ± 0.010 µm). Our estimations of λeff present a
large scatter which is due to atmosperical differential piston
and photometric fluctuations. We thus used the VLTI/VINCI
effective wavelength provided by ESO and the effective tem-
perature of each star to compute an accurate λeff for each target
and calibrator.
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Fig. 2. Measured visibilities (data points) and best-fit model (curves,
Eq. (2)) for GJ 205 (plain), GJ887 (dots), Gl191 (short dash), and
Gl191 (long dash).

Due to their relatively short baselines, and limited uv-
coverage, these observations cannot discriminate between an
unphysical uniform star and a more realistic slightly larger
limb-darkened star. To correct for limb-darkening, we therefore
have to use a theoretical limb-darkening law. We adopt the non-
linear limb-darkening coefficients from Claret (2000), Eq. (2),
based on atmospheric models from Allard et al. (1997). We use
gravities and effective temperatures from Baraffe et al. (1998)
isochrones at 5 Gyr (Table 2) to select the apropriate entry in
the Claret (2000) tables.

I (µ) = I (1)

1 −
4∑

k=1

ak

(
1 − µk/2

) · (2)

In Eq. (2), the ak are the limb-darkening coefficients and µ =
cos(γ), with γ the angle between the line of sight and the emer-
gent ray. The limb-darkening correction that we apply is in
principle model-dependent. Fortunately, it is also quite small
for M dwarfs, only 1–2% (Table 2). The correction itself is at
best marginally relevant at our current accuracy level for indi-
vidual diameters, and its theoretical uncertainties can for now
be safely neglected. Future observations with longer baselines,
at shorter wavelengths, and with a more accurate calibration,
will need to consider the issue more carefully, but they will
also directly measure the limb-darkening law for the closest
M dwarfs.

5. Mass-radius relation

An accurate empirical mass-radius relation is an essential con-
straint on stellar interior structure, evolutionnary models and
atmospheric physics. The interior structure is largely deter-
mined by the equation of state, whose derivation for very low
mass stars, brown dwarfs, and planets involves the complex
physics of strongly correlated and partially degenerated quan-
tum plasma (Chabrier & Baraffe 2000).

To obtain the empirical mass-radius relation we need to
convert angular diameter into linear radius, which is eas-
ily done thanks to accurate HIPPARCOS parallaxes for all
sources, and we need accurate masses. For these single stars
masses can only be estimated, from IR photometric measure-
ments and accurate mass-luminosity relations. Fortunately, the
K-band mass-luminosity relation has very little intrinsic dis-
persion for M dwarfs. We estimated the masses of the stars
listed in Table 2 using an update (Ségransan et al. 2003) of
the (Delfosse et al. 2000) empirical K band mass-luminosity
relation, now based on 27 accurate masses and luminosities.
The data dispersion around the average empirical relation cor-
responds to a mass error of ∼5%. Masses and radii are summa-
rized in Table 2.

Figure 3 compares the empirical radii & masses with 5 Gyr
and 1 Gyr theoretical isochrones from Baraffe et al. (1998). The
Baraffe et al. (1998) models reproduce the observation fairly
well in the sampled range, between 0.65 and 0.12 M�. At a
more detailed level though, one notices that the models under-
estimate the radii for YY Gem, V818 Tau and GJ 205, with
masses in the 0.5–0.65 M� range. The discrepancy is highly
significant for the eclipsing binaries, as extensively discussed
by Torres & Ribas (2002) and is more marginal for long base-
line interferometry data. There is an indication in Fig. 3 that
the model reproduces the observations well below 0.5 M�, and
only become discrepant above that value. If real, this suggests
that the shortcomings of current models have to be searched in
the energy transport (convection description, opacities), rather
than in the equation of state (EOS). As their mass decreases,
stars at the bottom of the main sequence have increasingly
simple transport properties (they are fully convective below
∼0.3 M�), and an increasingly correlated and degenerate EOS.
EOS shortcomings are therefore expected to show up most
prominently at the lowest masses, and transport problems at
higher masses. That result obviously needs confirmation from
additional data points and from more accurate measurements,
but the consistency between the eclipsing binary and the re-
solved single stars is comforting, as these two datasets were
obtained through completely independent methods.

In addition to providing physical radii, the angular radii
can be combined with integrated flux measurement to obtain
the effective temperature from the Stefan-Boltzmann law. Up
to now that process has typically been inversed, to derive radii
for stars whose effective temperatures were obtained from com-
parison with model spectra (e.g. Leggett et al. 2000). Amongst
the sources in Table 2, only GJ 699 has an integrated flux mea-
surement (Leggett et al. 2000), and we thus have to rely on the
bolometric correction polynomial fit of (Leggett et al. 2000) to
estimate it for the other targets.

In spite of these increased uncertainties on the bolometric
flux, the resulting effective temperatures have fairly small error
bars (Table 2). With increasingly precise direct angular radii,
and with integrated flux measurements for all targets, this test
can become a very discriminating validation of model atmo-
spheres, with potential accuracies at the ∼1% level on both
Teff and log(g). The present diameter measurements, which
have similar precisions to those obtained at PTI (Lane et al.
2001), have been obtained during the commissioning phase of
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Table 2. Measured angular diameter for the target stars. The uniform disk diameters for GJ 699, GJ 15A, GJ 411, GJ 380, GJ 105A are from
Lane et al. (2001). For consistency with our measurements, we recomputed their limb darkened diameters, masses and radii. The masses for Gl
380 and Gl105A are based on the Baraffe et al. (1998) M-L relation, with an arbitrary 5% error bar.

Spectral P & M L D, K  (models) D [mas] R [R�] A. .
Object Type MK M/M� g Teff a1 a2 a3 a4 θUD θLD σθ R σR Teff σTeff g σg
GJ205 M1.5V 5.09 0.631 ± 0.031 4.70 3894 1.11 −1.11 0.92 −0.31 1.124 1.149 0.11 0.702 0.063 3520 170 4.54 0.06
GJ887 M0.5V 5.79 0.503 ± 0.025 4.80 3645 1.61 −2.35 2.00 −0.68 1.366 1.388 0.04 0.491 0.014 3626 56 4.76 0.03
GJ191 M1V 7.08 0.281 ± 0.014 4.98 3419 1.76 −2.72 2.39 −0.82 0.681 0.692 0.06 0.291 0.025 3570 156 4.96 0.13
GJ551 M5.5V 8.80 0.123 ± 0.006 5.19 3006 1.94 −2.80 2.39 −0.81 1.023 1.044 0.08 0.145 0.011 3042 117 5.20 0.23
GJ699 M4V 8.21 0.158 ± .008 5.11 3193 1.87 −2.88 2.54 −0.88 0.987 1.004 0.04 0.196 0.008 3163 65 5.05 0.09
GJ15A M2V 6.27 0.414 ± .021 4.87 3541 1.66 −2.48 2.14 −0.73 0.984 1.000 0.05 0.383 0.02 3698 95 4.89 0.06
GJ411 M1.5V 6.33 0.403 ± .020 4.88 3533 1.67 −2.50 2.16 −0.73 1.413 1.436 0.03 0.393 0.008 3570 42 4.85 0.03
GJ380 K7V 4.77 0.670 ± .033∗ 4.65 4106 1.09 −1.01 0.83 −0.28 1.268 1.155 0.04 0.605 0.02 – – 4.70 0.03

GJ105A K3V 4.17 0.790 ± .039∗ 4.56 4603 0.86 −0.53 0.38 −0.13 0.914 0.936 0.07 0.708 0.05 – – 4.63 0.05

Fig. 3. Comparison between observational radii & masses measure-
ments and the theoretical mass-radius relation. The solid and dashed
curves are the 5 Gyr and 0.4–1 Gyr theoretical isochrones of Baraffe
et al. (1998), which do not differ much over the present mass range.
The filled circles are radius measurements from this paper, the open
circles are PTI measurements by Lane et al. (2001), and the dots are
masses and radii of three eclipsing binaries (Metcalfe et al. 1996;
Torres & Ribas 2002; Ribas 2002). The error bars and the residuals
from the model are shown at the bottom of the figure.

the VLTI interferometer, with a recombiner that was specified
to validate and debug the interferometer, and not for an opti-
mum scientific output. With the improvements expected from
the near infrared scientific recombiner, AMBER (Petrov et al.
2001), from adaptive optics on the unit telescopes, the VLTI
will measure dozens of M dwarfs with 0.1–1% accuracy. This
will bring very strong observational constraints on models of
both stellar interiors and atmospheres.
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3.2 Interférométrie et astérosismologie

Dans l’article rapportant nos mesures interférométriques à haute précision de αCen A et
B (reproduit à la Sect. 3.2.1), je présente le premier rapprochement de l’interférométrie et de
l’astérosismologie.

Ces deux techniques sont remarquablement complémentaires pour l’étude des intérieurs et de
l’évolution stellaires, par la nature même de leurs observables. L’astérosismologie permet ainsi
d’accéder, via la grande séparation ∆ν0, à la densité de l’étoile. Une mesure interférométrique du
diamètre angulaire couplée à la parallaxe donne le rayon photosphérique, et donc le volume de
l’étoile (la parallaxe Hipparcos est très précise pour les étoiles proches considérées). On obtient
ainsi, par une simple multiplication, une excellente estimation de la masse de l’étoile.

Par ailleurs, la connaissance du diamètre linéaire de l’étoile se traduit dans le diagramme
Hertzsprung-Russell par une “boite d’incertitude” beaucoup plus petite que les contraintes ha-
bituelles de température effective et de flux bolométrique. Ceci permet une estimation précise
de l’âge et de l’état évolutif de l’étoile par cette nouvelle contrainte. Nous avons aussi appliqué
cette méthode à Procyon (Sect. 3.2.2), δ Eri, ξHya et η Boo (Sect. 3.2.3).
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3.2.1 Article A&A : “The diameters of α Centauri A and B. A comparison
of the asteroseismic and VINCI/VLTI views” (2003)

Grâce à une bonne adaptation de la longueur des bases utilisées pour les observations de
αCenA et B rapportées dans cet article, nous avons pu obtenir des mesures de leurs diamètres
angulaires d’une précision remarquable : respectivement 0,2 et 0,6%. Couplés aux mesures sis-
miques existantes, les diamètres obtenus nous ont permis de conclure que αCenB a une masse
relativement faible de 0,91M�. Les mesures de visibilité de αCen A et B présentées dans cet
article (Fig. 6 et 7) ont été reproduites en couverture du journal A&A.

Fig. 3.3 – Un des télescopes unitaires de 8m du Very Large Telescope.
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Abstract. We compare the first direct angular diameter measurements obtained on our closest stellar neighbour,αCentauri,
to recent model diameters constrained by asteroseismic observations. Using the VINCI instrument installed at ESO’s VLT
Interferometer (VLTI), the angular diameters of the two main components of the system,αCen A and B, were measured with
a relative precision of 0.2% and 0.6% respectively. Particular care has been taken in the calibration of these measurements,
considering that VINCI is estimating the fringe visibility using a broadband K filter. We obtain uniform disk angular diameters
for αCen A and B ofθUD[A] = 8.314± 0.016 mas andθUD[B] = 5.856± 0.027 mas, and limb darkened angular diameters
of θLD[A] = 8.511± 0.020 mas andθLD[B] = 6.001± 0.034 mas. Combining these values with the parallax from S¨oderhjelm
(1999), we derive linear diameters ofD[A] = 1.224± 0.003 D� andD[B] = 0.863± 0.005 D�. These values are compatible
with the masses published by Th´evenin et al. (2002) for both stars.

Key words. techniques: interferometric – stars: binaries: visual – stars: evolution – stars: oscillations –
stars: fundamental parameters – stars: individual:αCen

1. Introduction

The αCentauri triple star system is our closest stellar neigh-
bour. The main components are G2V and K1V solar-like stars,
while the third member is the red dwarfProxima (M5.5V).
αCen A (HD 128620) and B (HD 128621) offer the unique
possibility to study the stellar physics at play in conditions
just slightly different from the solar ones. Their masses bracket
nicely the Sun’s value, while they are slightly older. In spite
of their high interest, proximity and brightness, the two main
components have never been resolved by long baseline stel-
lar interferometry, due to their particularly southern position in
the sky. We report in this paper the first direct measurement
of their angular diameters. As a remark, the angular diameter
of Proximahas also been measured recently for the first time
(θLD = 1.02± 0.08 mas) using two 8-meters Unit Telescopes
and the VINCI instrument (S´egransan et al. 2003).

More than fourty years after the discovery of the so-
lar seismic frequencies by Leighton (1960), and Evans &
Michard (1962), solar-likep oscillations have been identified
on αCen A & B by Bouchy & Carrier (2001, 2002) with the
CORALIE fiber-fed spectrograph. Today, asteroseismic fre-
quencies have been detected in several additional stars. All

Send offprint requests to: P. Kervella,
e-mail:pierre.kervella@eso.org

these observations provide constraints, on one hand on stellar
interior studies, and on the other hand on macroscopic stellar
parameters like mass and radius. Several binary systems like
αCen (see Morel et al. 2001 for references) have been cali-
brated using spectro-photometryconstraints. Recently,αCen A
has been calibrated using photometry, astrometry, spectroscopy
and asteroseismic frequencies (Th´evenin et al. 2002). These
authors derived the age of the couple, the initial helium abun-
danceYi , and the radii of both stars. This calibration was based
on stellar evolution models computed using the CESAM code
(Morel 1997). One of the main results of this calibration was to
constrain the masses of both stars, and in particular the mass of
B. It had to be diminished by 3%, compared to the mass pro-
posed by Pourbaix et al. (2002), leading to a smaller diameter
of the star B. The high precision interferometric measurements
of the angular diameters ofαCen A and B with VINCI/VLTI
are a direct test of these refined models.

2. Depscription of the instrument

2.1. The VLT Interferometer and VINCI

The European Southern Observatory’s Very Large Telescope
Interferometer (Glindemann et al. 2000) is operated on top
of the Cerro Paranal, in Northern Chile, since March 2001.
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In its current state of completion, the light coming from
two telescopes can be combined coherently in VINCI, the
VLT Interferometer Commissioning Instrument (Kervella et al.
2000, 2003a), or in the mid-infrared instrument MIDI (Leinert
et al. 2000). A three ways beam combiner, AMBER (Petrov
et al. 2000), will soon be installed in addition to these instru-
ments. VINCI uses in general a regularK band filter (λ =
2.0−2.4 µm), as this was the case for ourαCen observations,
but can also be operated in theH band (λ = 1.4−1.8 µm) using
an integrated optics beam combiner (Berger et al. 2001). The
K band setup effective wavelength changes slightly, depend-
ing on the spectral type of the observed target, between 2.174
and 2.184µm for 3000≤ Teff ≤ 100 000 K. ForαCen A and B,
λeff = 2.178± 0.003µm (see Sect. 3.3 for details).

2.2. Interferometer configuration

We used as primary light collectors the two 0.35 m Test
Siderostats of the VLTI. After being delayed by the VLTI op-
tical delay lines, the stellar light was recombined in the in-
terferometric laboratory using the VINCI instrument. A large
number of baselines are accessible on the Cerro Paranal sum-
mit. Two of them were used for this study: E0-G0 and E0-G1,
respectively of 16 and 66 meters ground length. The 16 m
baseline observations were obtained during the early commis-
sioning phase, from two days to a few weeks after the first
fringes in March 2001. At the time, the effective aperture of
the siderostats was limited to 0.10 m due to the unavailabil-
ity of optical beam compression devices. Later in 2001, their
installation allowed to recover the full 0.35 m primary mirror
aperture of the siderostats, and all the 66 m baseline observa-
tions reported here were done with the full mirror. The shorter
16 m baseline is useful in the case ofαCen A to determine
unequivocally the position of the 66 m measurements on the
visibility curve, but does not bring a significant contribution to
the final angular diameter precision (see Sect. 7).

2.3. Visibility calibration

During observations, the interferometric efficiency (visibility
produced by the system when observing a point source) varies
slowly over a timescale of hours. This means that the scientific
target observations have to be calibrated periodically using ob-
servations of a star with a known angular diameter. The data
reduction software of VINCI yields accurate estimates of the
squared modulus of the coherence factorµ2, which is linked to
the object visibilityV by the relationship

V2 =
µ2

T2
(1)

whereT is the interferometric efficiency.T is estimated by
bracketing the science target with observations of calibrator
stars whoseV is supposed to be known a priori. The preci-
sion of our knowledge of the calibrator’s angular diameter is
therefore decisive for the final quality of the calibrated visi-
bility value. For our observations, we have applied a constant
transfer functionT2 between calibrator stars. This assumption

has been validated during routine VLTI observations. A de-
tailed description of the calibration observations can be found
in Sect. 4.

3. Data processing

3.1. Data processing algorithm

We used a customized version of the standard VINCI
data reduction pipeline (Kervella et al. 2003b), whose gen-
eral principle is based on the original FLUOR algorithm
(Coudé du Foresto et al. 1997). The two calibrated output inter-
ferograms are subtracted to remove residual photometric fluc-
tuations. We implemented in this code a time-frequency anal-
ysis (Ségransan et al. 1999) based on the continuous wavelet
transform (Farge 1992). Instead of the projection of the sig-
nal onto a sine wave of the Fourier transform, the wavelet
transform decomposes it onto a function, i.e. the wavelet, that
is localised in both time and frequency. We used as a basis
the Morlet wavelet, a Gaussian envelope multiplied by a sinus
wave. With the proper choice of the number of oscillations in-
side the Gaussian envelope, the Morlet wavelet closely matches
a VINCI interferogram. It is therefore very efficient at localiz-
ing the signal in both time and frequency.

3.2. Data quality control

In spite of the relatively high modulation frequency of the
fringes (296 Hz for the 66m baseline measurements), a frac-
tion of the recorded interferograms present a differential pis-
ton signature between the two apertures. This is due to the
relatively low coherence time observed at Paranal (1–4 ms
atλ = 500 nm). These interferograms are rejected in the VINCI
data processing by comparing the frequency of the measured
fringe peak with the expected frequency from the K band filter
of VINCI. If the measured fringe frequency is different by more
than 20% from the expected frequency, the interferogram is ig-
nored. The fringe packet extensions in the time and frequency
domains are also used for the selection. This process allows to
keep only the best quality interferograms and reduces the final
dispersion of the visibilities. Finally, we rejected the observa-
tions that presented an abnormally low photometric signal to
noise ratio, that is a typical symptom of an inaccuracy in the
pointing of the siderostats.

The total numbers of selected and processed interferograms
are 7854 onαCen A (2427 on the 66 m baseline and 5427
on the 16 m baseline) and 1833 onαCen B (66 m baseline
only). For the calibration of theαCen observations, we pro-
cessed 2998 interferograms ofθCen. Several calibrators (in-
cludingθCen) were used for the 16 m baseline measurements
of αCen A, for a total of 8059 processed interferograms. The
separate measurement ofθCen was achieved using 1750 inter-
ferograms of this star and 789 interferograms of the secondary
calibrator 58 Hya.

After the processing of a series of interferograms (100
to 500 scans), the mean squared coherence factor is derived
from the average wavelets power spectral density of the se-
lected interferograms. Figure 1 shows the average wavelets



P. Kervella et al.: The diameters ofαCen A & B 1089

0.0E+00

1.0E-04

2.0E-04

3.0E-04

4.0E-04

5.0E-04

6.0E-04

7.0E-04

0 2000 4000 6000 8000
Wavenumber (cm^-1)

N
or

m
al

iz
ed

 w
av

el
et

s 
P

S
D

10000

Fig. 1. Wavelets power spectral density (PSD) of a processed series
of 418 interferograms obtained onαCen A, before (thin line) and af-
ter (thick line) recentering of the fringe peak and subtraction of the
background noise (dashed line).

power spectral density (PSD) of 418 processed interferograms,
summed over the time extent of the fringe packet to obtain a
one dimensional vector. In spite of the very low visibility of
the fringes ofαCen A on the 66 m baseline (V2 ' 1%), the
fringe peak is well defined.

The noise background (residual detector and photon shot
noise) is estimated directly from the higher and lower frequen-
cies of the average PSD of the interferogram, and then sub-
tracted. As shown in Fig. 1, the subtraction is very efficient and
gives a clean final PSD. The individual interferogram PSDs are
summed after recentering of the fringe peak maximum, to re-
duce the power spread due to piston effect. This avoids that en-
ergy is lost in the integration process and allows a more precise
estimation of the background level. We have chosen not to use
the background removal method described by Perrin (2003),
as we are simultaneously removing both the photon shot noise
and detector noise contributions.

In Fig. 1, the recentered and background corrected fringe
peak is shifted slightly towards higher wavenumber values due
to the variation ofαCen A visibility over theK band. For sim-
plicity reasons, the data reduction software assumes a fixed
wavelength of 2.195µm of the fringe peak maximum for the
recentering process for all stars, but the exact target value has
no effect on the final visibility.

3.3. Instrumental transmission

3.3.1. Transmission model

When using VINCI, the observations are carried out using a full
K band filter, accepting the star light from 2.0 to 2.4µm. In or-
der to obtain a precise fit of the calibrated visibilities measured
on sky, we computed the transmission of the interferometer tak-
ing into account the atmospheric transmission (Lord 1992), the
fluoride glass optical fibers, theK band filter and the quantum
efficiency of the HAWAII detector. This gave us a first approx-
imation of the transmission of the interferometerF0(λ).

Table 1. Determination of the transmission correction slopeγ of
the VINCI/VLTI combination as observed on bright stars with two
8-meters telescopes.

Peak position (µm) γ (µm−1)
α PsA 2.198± 0.002 1.140
HR 8685 (1) 2.190± 0.003 0.911
HR 8685 (2) 2.202± 0.008 1.119
γ2 Vol 2.198± 0.007 1.076
ε Eri 2.197± 0.010 1.065
39 Eri 2.196± 0.010 1.076

Weighted average 1.076± 0.081

3.3.2. On-sky calibration

The instrumental uncertainties led us to compare directly this
theoretical VINCI/VLTI transmission model to the real trans-
mission of the system on sky. This has been achieved through
the precise estimation of the effective wavenumber of a se-
ries of bright stars observations obtained with VINCI and two
8 meters Unit Telescopes (Table 1). A multiplicative slopeγ
(expressed inµm−1) is superimposed to the theoretical trans-
missionF0(λ) in order to match the observed average position
of the PSD fringe peak. It is the only variable adjusted to match
the observations. The photometric signal to noise ratio of the
UTs observations being very high, we obtain a good precision
on the average fringe peak frequency and thus on the estimation
of γ, as shown in Table 1. The total photometric transmission
of the interferometerF(λ) is then given by:

F(λ) = γ(λ − λ0) F0(λ). (2)

The reference wavelengthλ0 was set arbitrarily to 1.90 µm
in our computation, but has no influence on the transmis-
sion calibration.F(λ) is not normalized and gives only rel-
ative transmission values over theK band, but the absolute
transmission is not needed to derive the model visibilities. It
should be stressed that the sensitivity of the final angular di-
ameter toγ is low, a ±0.08 µm−1 change of this parameter
resulting only in a±0.010 mas change onθUD for αCen A,
and±0.007 mas for B. These uncertainties were quadratically
added to the final errors of the UD and LD angular diameter
values given further in this paper. As a remark, we can also ex-
press this as a±0.003µm uncertainty on the average value of
λeff = 2.178µm that we derive fromF(λ) for αCen A and B.

3.3.3. Discussion

The observations ofαCen have been obtained with the
siderostats, that have a slightly different optical setup than
the UTs. There are 26 reflections for the UTs configuration
in each arm of the interferometer, compared to 20 for the
siderostats. Out of these, 15 mirrors are common between the
two configurations. The remaining difference is therefore be-
tween the additional 11 reflections of the UTs and the addi-
tional 5 reflexions of the siderostats. Even assuming a very con-
servative mismatch of 1% between the extreme wavelengths
reflectivity of each mirror of the UT train compared to the
siderostats, we obtain a relative difference onγ of only 3%
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Fig. 2. Model PSD ofαCen A fringes for a zero baseline, including
the spectrum of the star, atmosphere, fluoride glass fibers,K band fil-
ter, detector quantum efficiency and the correction functionF1(λ) (see
Sect. 3.3). A total precipitable water vapor of 3.0 mm (median for
Paranal) is assumed for this plot. The curve forα Cen B is almost
identical.

that is significantly less than our quoted statistical uncertainty
(7.5%). We have therefore considered this diffference negligi-
ble in our study.

A possible reason for the observed wavelength drift is the
aging of the 20 mirror coatings necessary to bring the star light
into the VINCI instrument (for each of the two beams). This
process may have affected differentially the reflectivity of one
end of theK band compared to the other. A difference in reflec-
tivity of only 1% between the two extreme wavelengths will re-
sult in an 18% difference on the final transmission, after 20 mir-
rors (siderostats configuration). Also, the transmission curves
provided by the manufacturer of the fiber optics used in VINCI
do not have a sufficient precision to constrain accurately the
instrument transmission model, and an error of several tens of
percent is not to be excluded. To a lesser extent, the engineering
grade HAWAII infrared array used in VINCI may have a quan-
tum efficiency curve differing from the science grade versions
by several percent. Finally, the MONA triple coupler used to
recombine the light has also shown some birefringence during
laboratory tests. This effect could result in a shift of the effec-
tive observation wavelength.

To secure the internal wavelength calibration of VINCI it-
self, crucial for the accuracy of the estimation ofγ, we have ob-
tained laboratory fringes with aK band laser (λ = 2.304µm).
This gave us a precise wavelength reference to verify the scan-
ning speed and the camera acquisition frequency.

3.3.4. Source spectrum

In addition to the constant term of the instrumental trans-
mission, the shape of the source spectrum for each star was
taken into account using its effective temperature. We com-
puted synthetic spectra forα Cen A and B using Kurucz mod-
els, but considering the absence of any large absorption fea-
ture in theK band, we did not include spectral features in our

Fig. 3. Model (black line) and observed (grey line) PSDs ofαCen A
fringes on the 66m baseline (61 m projected). The visibility loss for
larger wavenumbers is clearly visible. The observed Fourier PSD,
smoothed by the differential piston, shows the expected asymmetry.
The on-sky and model vertical scales are arbitrary.

Fig. 4. Model (black line) and observed (grey line) PSDs ofαCen B
fringes on the E0-G1 baseline.αCen B being significantly less re-
solved than A, the squared visibility is more uniform over theK band
than forα Cen A (Fig. 3). The asymmetry of the power spectrum is
therefore smaller, though still present. The on-sky and model vertical
scales are arbitrary.

final transmission model. The simulated spectrum ofαCen A
fringes for a zero baseline is shown in Fig. 2.

3.4. Bandwidth smearing

An important effect of the relatively large spectral bandwidth
of the VINCI filter is that several spatial frequencies are ob-
served simultaneously by the interferometer. This effect is
calledbandwidth smearing. In the case ofαCen A, it is par-
ticularly strong as the visibilities are close to the first minimum
of the visibility function, and this effect cannot be neglected.
With a 60 m projected baseline, the short wavelength edge of
the K band (λ ' 2.0 µm) is already at the null of visibility,
while theV2 for the long wavelength edge (λ ' 2.4 µm) is still
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Table 2.Calibration observations ofθCen and 58 Hya. The expected visibilities given in this table include the bandwidth smearing effect. The
resulting interferometric efficiencies assumed for the calibration of theαCen andθCen observations are given in bold characters, with the
corresponding statistical and systematic error bars for each observing session. The calibrated visibilities can be found in Table 3 forθCen, and
in Tables 5 and 6 forαCen A andαCen B.

JD Scans B (m) Azim. µ2 (%) ExpectedV2 (%) IE (µ2/V2, %) Target(s)
− 2 450 000 (N = 0) ± stat. err. ± syst. err. ± stat.± syst.

52.08± 0.69± 0.63 θCen
2452.63024 45 65.2509 161.90 30.72± 0.75 58.90± 0.71 52.17± 1.27± 0.63 58 Hya
2452.63324 166 65.2011 162.55 31.56± 0.74 58.95± 0.71 53.54± 1.25± 0.64 58 Hya
2452.64109 269 65.0719 164.26 30.66± 0.31 59.08± 0.71 51.91± 0.52± 0.62 58 Hya
2452.64527 256 65.0047 165.18 30.73± 0.37 59.15± 0.71 51.95± 0.62± 0.62 58 Hya

52.13± 0.69± 0.63 θCen
2452.67563 53 64.5970 174.54 31.42± 0.77 59.56± 0.70 52.77± 1.29± 0.62 58 Hya
2462.53152 389 65.7824 153.61 8.58± 0.17 18.13± 0.28 47.33± 0.93± 0.72 θCen
2462.60245 88 65.8892 168.69 8.63± 0.15 18.01± 0.27 47.94± 0.86± 0.73 θCen

47.51± 0.49± 0.72 αCen A,αCen B
2462.60554 283 65.8801 169.39 8.46± 0.21 18.02± 0.27 46.97± 1.18± 0.72 θCen
2465.56068 94 65.9551 161.27 8.67± 0.14 17.93± 0.27 48.33± 0.80± 0.74 θCen
2465.56377 355 65.9541 161.93 8.58± 0.24 17.93± 0.27 47.87± 1.31± 0.73 θCen
2465.57390 241 65.9413 164.14 8.98± 0.50 17.95± 0.27 50.06± 2.80± 0.77 θCen
2465.57838 317 65.9320 165.13 8.85± 0.29 17.96± 0.27 49.31± 1.64± 0.75 θCen

48.64± 1.50± 0.76 αCen A,αCen B
2465.65159 69 65.8006 1.99 9.35± 0.44 18.11± 0.28 51.66± 2.43± 0.79 θCen
2470.56229 87 65.9373 164.59 9.01± 0.13 17.95± 0.27 50.19± 0.73± 0.77 θCen
2470.56609 386 65.9289 165.43 9.00± 0.05 17.96± 0.27 50.09± 0.30± 0.77 θCen
2470.57010 341 65.9188 166.32 9.06± 0.15 17.97± 0.27 50.44± 0.83± 0.77 θCen
2470.57433 348 65.9073 167.27 8.73± 0.14 17.99± 0.27 48.53± 0.77± 0.74 θCen

49.97± 0.87± 0.76 αCen A,αCen B

above 1%. The photons at the null of visibility have interfered
destructively. Therefore, the fringe peak becomes very asym-
metric in the PSD of the interferograms. As shown in Figs. 3
and 4, the observed and model PSDs agree well in general
shape. The on-sky power spectrum is blurred by the differential
piston and therefore appears “smoothed”, but the characteristic
asymmetry for low visibilities is clearly visible.

3.5. Baseline smearing

When the aperture of the light collectors is a significant frac-
tion of the baseline, an effect similar to the bandwidth smear-
ing appears on the visibility measurements. It comes from the
fact that the baselines defined between different parts of the
two primary mirrors cover a non-zero range of lengths and ori-
entations. Therefore, several spatial frequencies are measured
simultaneously by the beam combiner. In the case of the E0-
G0 baseline (16 m) observations ofαCen A, the effective aper-
ture was 0.10 m, and therefore the ratio of the primary mir-
ror diameter to the baseline was onlyD/B ≈ 0.6%. For the
E0-G1 baseline (66 m), this ratio is similar due to the larger
0.35 m apertures. Even in the difficult case of theαCen A
observations, this effect accounts at most for a relative shift of
the visibility of 0.1%, to be compared to our relative systematic
calibration error of 1.5%. In the case ofαCen B, we expect at
most a 0.05% shift, for a relative systematic calibration error
also of 1.5%. We have therefore neglected this effect in the rest
of our study.

4. Calibration observations

The calibration of the interferometric efficiency (IE) of the in-
terferometer is a critical step of the observations. We present
in Table 2 the measurements that we obtained on the calibra-
tors and the corresponding values of theIE for the three nights
of observations of theαCen pair (JD= 2 452 462-70) on the
E0-G1 baseline, and the separate night used to measureθCen
(JD= 2452452).

The primary calibratorθCen is located at a distance of
24 degrees from theαCen pair, mostly in declination, while
only 9 degrees separateθCen and the secondary calibrator
58 Hya. During the observations, the largest difference between
the altitudes ofθCen andαCen happens at the crossing of the
meridian, and is approximately 24 degrees (respective altitudes
of about 55 and 80 degrees at Paranal). The airmasses of the
two stars at meridian crossing are 1.25 and 1.03 respectively
for αCen andθCen. The difference is even smaller in the case
of 58 Hya andθCen. As we obtained the E0-G1 baseline ob-
servations close to the meridian crossing, we do not expect any
significant variation ofIE due to the difference of airmass be-
tween the calibrators and the scientific targets.

5. The primary calibrator θCentauri

The most important calibrator for the 66 meters baseline mea-
surements is the giant starθCen (K0III). This calibrator was
chosen for its stability and brightness in the list of stan-
dard stars compiled by Cohen et al. (1999) and verified by
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Table 3.θCen squared visibilities.

JD B (m) Azim. V2 (%)
− 2 450 000 (N = 0) ± stat.± syst.

E0-G1
2452.60644 65.9464 163.49 17.74± 0.69± 0.21
2452.60943 65.9413 164.15 17.86± 0.36± 0.22
2452.61396 65.9318 165.15 17.72± 0.34± 0.21
2452.61906 65.9193 166.28 18.08± 0.29± 0.22
2452.65518 65.8220 174.54 18.20± 0.38± 0.22
2452.65855 65.8156 175.32 18.25± 0.40± 0.22
2452.66275 65.8088 176.30 18.08± 0.38± 0.22
2452.66685 65.8037 177.26 18.13± 0.39± 0.22
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Fig. 5. Detail of θCen squared visibilities and uniform disk model.
The continuous line is the UD diameter fit (5.305± 0.020 mas), and
the dotted lines represent the limits of the±1σ error domain.

Bordé et al. (2002). This choice is critical in the sense that
any departure of the true visibility of the calibrator from the
assumed model will contaminate the calibrated visibility of the
scientific target. This is the reason why one should avoid to use
as calibrators pulsating variables (such as many M type giants,
Cepheids,...), double or multiple stars, magnetically active ob-
jects (photospheric spots) or fast rotators (ellipticity of the star
disk). The properties of all the stars listed in the Cohen et al.
(1999) catalogue have been checked carefully and their diam-
eters are believed to be constant to a very good accuracy. In
addition,θCen is not classified as double, variable or active
in any catalogue, and is a slow rotator (V sini = 1.2 km s−1,
Glebocki et al. 2000).

Unfortunately, the typical 1% precision of the Cohen et al.
(1999) catalogue on the angular diameters, though very good
in itself, is not sufficient due to the large size of this star and
the correspondingly low visibility on the 66 meters baseline.
After the first processing of ourαCen data, it appeared that the
error bars on the final angular diameters were dominated by the
systematic uncertainty on the angular size ofθCen. Therefore,
we reduced additional archived data obtained onθCen on
a separate night, using the secondary calibrator 58 Hya and
the 66 meters baseline. 58 Hya has a much smaller angular di-
ameter thanθCen and therefore provides a precise calibration

Table 4. Parameters of the primary (θ Cen) and secondary (58 Hya)
calibrators.

θCen 58 Hya
HD 123139 HD 130694

mV 2.06 4.42
mK −0.10 1.13
Spectral type K0IIIb K4III
Teff (K)a 4980 4040
Measurementλ (µm) 2.181 2.181
logg a 2.75 1.85
θLD (mas)b 5.46± 0.058 3.22± 0.035
θUD (mas)c 5.33± 0.057 3.12± 0.034
MeasuredθUD (mas) 5.305± 0.020

a Teff and logg from Cayrel de Strobel et al. (1997).
b Catalogue value from Cohen et al. (1999).
c Linear limb darkening from Claret (2000).

of the interferometric efficiency. The calibrated squared visibil-
ity values obtained onθCen are listed in Table 3, and the angu-
lar diameter fit is shown in Fig. 5. The parameters for both stars
and the measured uniform disk (UD) angular diameter ofθCen
are presented in Table 4. The VINCI/VLTI angular diameter
found for this star agrees very well with the Cohen et al. (1999)
value, while reducing significantly its uncertainty.

6. Calibrated visibilities

The list of the observations ofα Cen A and B, with the re-
sulting calibrated squared visibilities, is presented in Tables 5
and 6. The azimuth of the projected baseline is counted clock-
wise (cw) from north, and corresponds to the baseline ori-
entation as seen from the star. Two error bars are given for
eachV2 value:

– one statistical error bar, computed from the dispersion of
the visibility values obtained during the observation,

– one systematic error bar defined by the uncertainty on the
knowledge of the calibrator angular size.

While the statistical error can be diminished by repeatedly ob-
serving the target, the systematic error cannot be reduced by av-
eraging measurements obtained using the same calibrator. This
is taken into account in our model fitting by checking that the
final uncertainty of the fit is larger than the systematic errors of
each measured visibility value. This conservative approach en-
sures that we are not underestimating the systematic calibration
errors.

7. Angular diameters

7.1. Uniform disk

Due to the spectrum shape variation with baseline described
in Sect. 3.4, the classical monochromatic uniform disk (UD)
model visibility curve is not applicable and can lead to very
large UD size errors for low visibilities. We therefore adopted
a direct fitting method in the broadband regime. For this
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Fig. 6. Overview of theαCen andθCen squared visibilities and UD
models. From bottom to top:αCen A, αCen B andθCen (primary
calibrator). The angular diameter ofθCen was measured using 58 Hya
as secondary calibrator.

Fig. 7. Detail ofαCen A squared visibility. The continuous line is the
uniform disk diameter fit (8.314± 0.016 mas), and the dotted lines
represent the limits of the±1σ error domain. The visibility curve never
goes to zero due to the bandwidth smearing effect.

Fig. 8. Detail ofαCen B squared visibility. The continuous line is the
uniform disk diameter fit (5.856± 0.027 mas), and the dotted lines
represent the limits of the±1σ error domain.

Table 5.αCen A squared visibilities, expressed in percents.

JD B (m) Azim. V2 (%)
− 2 450 000 (N = 0) ± stat.± syst.

E0-G0
1988.78108 15.9201 64.95 78.99± 1.48± 2.81
1988.78380 15.9071 65.79 79.61± 1.46± 2.83
1988.78652 15.8930 66.62 79.82± 1.42± 2.84
1988.78901 15.8793 67.39 79.80± 1.47± 2.84
1995.76493 15.9058 65.86 80.15± 1.03± 0.66
1996.63335 15.7916 24.31 78.66± 1.10± 0.42
1996.63970 15.8129 26.48 82.19± 1.12± 0.44
1996.64733 15.8390 29.06 80.33± 1.29± 0.43
1996.65492 15.8650 31.61 81.49± 1.15± 0.44
1996.67842 15.9399 39.40 80.87± 1.10± 0.43
1996.68327 15.9532 40.99 79.40± 1.10± 0.43
2001.80688 15.3644 83.76 80.71± 1.94± 0.05
2001.80954 15.3273 84.59 82.77± 2.69± 0.04
2002.70376 16.0062 52.80 78.76± 0.74± 0.05
2002.70640 16.0057 53.63 80.01± 1.07± 0.05
2003.83537 14.8150 94.44 82.49± 1.10± 0.05
2003.83780 14.7695 95.22 82.01± 1.80± 0.04
2003.84099 14.7088 96.25 85.30± 1.28± 0.05
2003.84356 14.6589 97.08 83.64± 1.77± 0.04

E0-G1
2462.55258 59.2848 150.05 1.132± 0.051± 0.017
2462.55613 59.4391 150.91 1.139± 0.032± 0.017
2462.56087 59.6365 152.05 1.099± 0.031± 0.017
2462.56493 59.7975 153.04 1.054± 0.029± 0.016
2465.61044 61.2943 166.21 0.626± 0.035± 0.010
2470.58454 61.0497 163.19 0.758± 0.052± 0.012
2470.60337 61.4043 167.84 0.624± 0.023± 0.010
2470.60778 61.4696 168.93 0.637± 0.033± 0.010

Table 6.αCen B squared visibilities.

JD B (m) Azim. V2 (%)
− 2 450 000 (N = 0) ± stat.± syst.

E0-G1
2462.58356 60.4413 157.57 17.02± 0.36± 0.26
2462.58697 60.5443 158.40 17.01± 0.23± 0.26
2462.59047 60.6453 159.26 16.80± 0.77± 0.26
2462.59490 60.7665 160.35 16.05± 0.68± 0.24
2465.62682 61.5409 170.27 16.76± 1.05± 0.26
2470.62033 61.6208 172.05 14.94± 0.44± 0.23
2470.62342 61.6500 172.82 15.59± 0.42± 0.24
2470.62783 61.6866 173.92 16.70± 0.44± 0.25

Table 7. Uniform disk angular diameters ofαCen A and B in
theK band derived from the VINCI/VLTI observations.

α Cen A α Cen B
θUD (mas) 8.314± 0.016 5.856± 0.027

purpose, the PSD of the stellar fringes is computed numer-
ically over the K band using 10 nm spectral bins. We take
here into account the total transmission of the interferometer
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and the visibility of the fringes for each wavelength. The to-
tal power is then integrated and gives a numerical broadband
visibility function VK

2(B, θUD) whereB is the projected base-
line, andθUD the UD angular diameter. To derive theαCen
UD diameters, we make a classicalχ2 minimization between
our (B,VK

2) measurements and theVK
2(B, θUD) function while

changing the value ofθUD.
Figure 6 shows the complete visibility curve of the UD

model fit to theαCen data, together with the primary calibra-
tor θCen. The detail of the visibility curve ofαCen A shown
in Fig. 7 demonstrates that the visibility never goes down to
zero for any baseline, due to the bandwidth smearing effect.
The minimum squared visibility is 0.15%, for a baseline length
of aproximately 66.5 m. Figure 8 shows an enlargement of the
visibility points obtained onαCen B. The final UD angular di-
ameters for the two stars and the corresponding effective wave-
lengths are given in Table 7.

7.2. Limb darkened angular diameters

In this section, we describe two methods to compute the LD
angular diameter: through a conversion factor (classical ap-
proach), and through a visibility fit taking directly the limb
darkening into account.

7.2.1. LD/UD conversion factor

The simplest approach to retrieve the limb darkened diame-
ter from an interferometric UD measurement goes through the
computation of the conversion factorρ defined by:

ρ =
θLD

θUD
(3)

ρ is deduced from stellar atmosphere luminosity profiles that
are computed using radiative transfer modeling codes. These
profiles are published in tables as a function of the wavelength
band (e.g. Claret 2000). One limitation of the description of
the LD visibility curve of the star by a single parameter is that
it assumes that the visibility curve of the UD and LD models
have the same intrinsic shape. This is not exactly the case near
and especially after the first minimum of the visibility function.
However, this approximation is satisfactory for compact stellar
atmospheres such as the ones ofαCen stars. Hanbury Brown
et al. (1974) have shown that the linear limb darkening coeffi-
cient u can be translated into the conversion factorρ through
the approximate formula:

ρ =

√
1− u/3

1− 7u/15
· (4)

These authors quote a maximum error of±0.2% for this ap-
proximate formula, that is in general very satisfactory, but for
the particular case ofαCen A, this uncertainty is comparable
to our final error bar on the UD diameter. Different values of
linear limb darkening conversion factors are given in Table 8,
based on successive versions of the Claret et al. models (1995,
1998, 2000). Except for the older Claret (1995) values, that do

Table 8. Linear LD/UD conversion factors forαCentauri. The as-
sumed physical parameters to match Claret’s (2000) grid are the clos-
est ones to those of Th´evenin et al. (2002).

Model from Claret (2000) α Cen A α Cen B
Teff (K) 5750 5250
log(g) (cm s−2) 4.5 4.5
log(M/H) (dex) 0.2 0.2
VT (km s−1) 2.0 2.0
Reference ρA ρB

Claret et al. (1995) 102.047% 102.299%
Claret (1998) 102.388% 102.723%
Claret (2000) 102.355% 102.635%

not take metallicity and turbulence velocity into account, the
two other results are very close to each other.

In order to account for a possible systematic error in the de-
termination of the limb darkening parameter, we allow a±0.1%
uncertainty to propagate into the computation of the limb dark-
ened diameter ofαCen. It should be noted that the coefficients
for both stars originate from the same Kurucz’s model atmo-
sphere computations of Claret (2000), and are therefore likely
to have a good intrinsic consistency.

7.2.2. Limb darkened disk visibility fit

Hestroffer (1997) has chosen another approach by computing
the analytical expression of the visibility function for a single-
parameter power law intensity profileIλ(µ) = µα (with α ≥ 0)
whereµ = cos(θ) is the cosine of the azimuth of a surface ele-
ment of the star. This simplification allows this author to derive
the analytical expression of the visibility function correspond-
ing to a power law limb darkened disk:

Vν(x) = Γ(ν + 1)
Jν(x)
(x/2)ν

(5)

wherex = πBθ/λ is the spatial frequency,ν = α/2+1, andJν(x)
is the Bessel function of the first kind. As the intensity profiles
produced by the most recent atmosphere models are close to
power laws, as shown in Fig. 9, the power law fitting procedure
gives good results. Claret (2000) has computed a four param-
eters law that aproximates very well the most recent Kurucz
models for observations in theK band. Using this law gives a
value ofα = 0.1417 forαCen A andα = 0.1598 forαCen B.

The final precision onρ is better than with the previous
linear approximation, but as for the conversion coefficient ap-
proach presented in Sect. 7.2.1, we propagate an uncertainty
of ±0.1% to the final LD angular diameter to account for a pos-
sible bias.

Practically, the fit is achieved on the calibrated visibilities
listed in Tables 5 and 6 by a classicalχ2 minimization proce-
dure. The product of this fit is directly the LD angular diameter
of the star, without the intermediate step of the uniform disk
model.
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Fig. 9. Intensity profile ofαCen A from the four-parameters limb
darkening law of Claret (2000) (dashed line) and the corresponding
α = 0.1417 power law.

Table 9.Summary of limb-darkened angular diameters from different
computation methods. Both methods are based on the Claret (2000)
coefficients. The fitting results using the analytical Hestroffer (1997)
formula are assumed in the rest of this paper.

LD computation method α Cen A (mas)
Hanbury Brown et al. (1974) 8.517± 0.021
Hestroffer (1997) analytical 8.511± 0.020

α Cen B (mas)
Hanbury Brown et al. (1974) 6.010± 0.030
Hestroffer (1997) analytical 6.001± 0.034

7.3. Rotational distortions

As the VINCI/VLTI measurements have been obtained mostly
at the same azimuth (roughly N-S), a possible source of bias
could be the presence of flattening on the stellar disks due to
rotational distortion. The estimated equatorial rotation periods
for α Cen A and B are 22 and 41 days respectively (Morel
et al. 2000), bracketing the solar value. The corresponding
small rotational velocities rule out any flattening at a signif-
icant level, and therefore no correction has been applied to
our measurements.

7.4. Summary of angular diameter values

Table 9 gives the limb darkened angular diameters derived from
the LD/UD conversion factors and from the analytical LD vis-
ibility function (Hestroffer 1997). This last method is assumed
in the following sections. All values take the bandwidth smear-
ing effect into account.

8. Comparison of asteroseismic
and interferometric linear diameters

8.1. Parallax from the literature

To convert the angular diameter into a linear value, it is nec-
essary to know the parallax of the star. TheαCen system be-
ing very nearby (D = 1.3 pc), the precision on the measure-
ment of its trigonometric parallax is potentially very good.
Unfortunately, some discrepancies have appeared between
the most recently published values (Table 10). In particular, the
original Hipparcos parallax (Perryman et al. 1997) and the
value by Pourbaix et al. (1999) are significantly different from
the reprocessing of theHipparcosdata by S¨oderhjelm (1999),
by more than 3σ. A difficulty with the Hipparcos satellite

Table 10.Parallax values ofαCen from the litterature.

Value (mas) Author
750 Heintz (1958, 1982)

749± 5 Kamper & Wesselink (1978)
750.6± 4.6 Demarque et al. (1986)
742.1± 1.4 Perryman et al. (1997)
737.0± 2.6 Pourbaix et al. (1999)
747.1± 1.2 Söderhjelm (1999)

measurement is due to the large brightness of theαCen pair.
The light from one of the stars possibly contaminated the mea-
surement on the other, leading to a systematic bias that may
not have been propagated properly to the final error bars. In
Sect. 8.2, we adopt the parallax value from S¨oderhjelm (1999),
who took this effect into account.

As a remark, the semi-major axis of the orbit of the two
starsa = 17.59 ± 0.03 AU (Pourbaix et al. 1999) is totally
negligible compared to the distanceD to the couple (a/D =
0.006%), therefore the two stars can be considered at the same
distance.

8.2. Linear diameters

Considering the parallax of 747.1± 1.2 mas from S¨oderhjelm
(1999), it is now possible to compute the linear diameters
of αCen A and B (in solar units) from the two LD angular di-
ameters determined interferometrically. They are found to be:

D[A] = 1.224± 0.003D� (6)

D[B] = 0.863± 0.005D� (7)

and can be compared to the linear diameters proposed by
Thévenin et al. (2002):

D[A] = 1.230± 0.003D� (8)

D[B] = 0.857± 0.007D� (9)

The theoretical diameters are only+1.3σ and -0.7σ away from
the observed values. Both interferometric diameters and those
deduced from the photometric calibration constrained by aster-
oseismic frequencies therefore agree very well.

These two model diameters are derived using the CESAM
code, and are defined as the radii at which the temperature in
the atmosphere is equal to the effective temperature of the star.
Computing the layer where the continuum at 2.2µm is formed
leads to temperatures close toTeff, therefore the CESAM diam-
eters can be directly compared to those measured by the VLTI
at 2.2µm.

8.3. Self consistent parallax

From our angular diameter measurements and the asteroseis-
mic diameter estimations, we can also derive directly the paral-
lax of the couple. The simple formula linking the limb darkened
angular diameterθLD (in mas), the linear diameterD (in D�)
and the parallaxπ (in mas) is:

θLD = 9.305× 10−3 D π. (10)
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Table 11.Parallax ofα Cen from VINCI/VLTI and asteroseismologi-
cal observations, and the corresponding self-consistent stellar param-
eters. Linear diameters are taken from the asteroseismology study by
Thévenin et al. (2002).

Derived parallax 745.3± 2.5 mas
αCen A αCen B

VINCI LD size (mas) 8.511± 0.020 6.001± 0.034
Model LD size (mas) 8.530± 0.035 5.943± 0.052
VINCI diameter (D�) 1.227± 0.005 0.865± 0.006
Model diameter (D�) 1.230± 0.003 0.857± 0.007

A least squares fit is computed between the LD angular diam-
eters from the VLTI and the linear diameters from Th´evenin
et al. (2002). We find an optimal parallax of 745.3± 2.5 mas,
that differs slightly from the originalHipparcosvalue by+1.1σ
(Perryman et al. 1997), from Pourbaix et al. (1999) by+2.3σ,
and from S¨oderhjelm (1999) by only−0.7σ. The resulting val-
ues of angular and linear diameters are given in Table 11. The
difference between theoretical and linear diameters for the self-
consistent parallax is limited to+0.5σ and−0.9σ, respectively
for αCen A and B.

8.4. Ratio of αCen A and B radii

Contrary to the linear diameters themselves, their ratio is inde-
pendent of the actual parallax of the system. Therefore, part of
the systematic uncertainties can be removed by using this ob-
servable as a comparison basis between the observations and
the models. ForαCen A and B, we have access to a very good
quality parallax, and the uncertainty introduced there is rela-
tively small. On the other hand, when measuring a farther dou-
ble or multiple star, the parallax may be unknown, or known
only with a bad precision. In this case, comparing the ratio of
the stellar diameters will give much stronger constraints to the
stellar structure models than the individual values. This tech-
nique is also applicable to the interferometric measurement of
stars in clusters, within which the distance can be assumed to
be uniform. From the limb-darkened values listed in Table 9,
we obtain the following ratio between the angular diameters
of αCen A and B:

θLD[A]
θLD[B]

= 1.418± 0.009. (11)

This value can be compared to the ratio of linear radii from the
Thévenin et al. (2002) models that is:

R[A]
R[B]

= 1.435± 0.014. (12)

We therefore find a slight diameter excess ofαCen B at a level
of 1.0σ.

8.5. Masses and evolutionary models

As emphasized by Th´evenin et al. (2002), the seismological
analysis gives strong constraints on masses and on the age of

Fig. 10.HR diagram ofαCen B. The line on the right corresponds to a
mixing length ofλ = 0.96 and a mass of 0.909M�, the line on the left
corresponds to the values published in Th´evenin et al. 2002 (λ = 0.98,
0.907M�).

the system when combined with spectro-photometric mea-
surements. To achieve this, one derives from the set of os-
cillation frequencies, one “large” and two “small” frequency
spacings. The large frequency spacing is a difference between
frequencies of modes with consecutive radial ordern: ∆ν`(n) ≡
νn,` − νn−1,`. In the high frequency range, i.e. large radial or-
ders,∆ν` is almost constant with a mean value∆ν0, strongly
related to the mean density of the star, i.e. to the mass and the
radius. The small separations are very sensitive to the physical
conditions in the core of the star and consequently to its age.
These frequencies measured for the star A have largely forced
the spectro-photometric calibration to decrease the masses of
the stellar systemαCen, leading to the following values:MA =

1.100± 0.006M� andMB = 0.907± 0.006M� (Thévenin et al.
2002) close to those adopted by Guenther & Demarque (2000)
and Kim (2000). The mass of the B component departs sig-
nificantly by 3% from the value published by Pourbaix et al.
(2002).

Using the orbital properties of the binary and also spectro-
velocimetric curves, Pourbaix et al. (2002) have derived the
masses of each components (MA = 1.105± 0.007M�, MB =

0.934 ± 0.006M�). We note that Thoul et al. (2003) have
recently proposed a model of the binary system using these
masses and spectro-photometric constraints different from that
of Thévenin et al. (2002). They were able to reproduce the seis-
mic frequencies ofαCen A, but the model they propose does
not take into account the helium and heavy elements diffusion.

Because the interferometric diameter ofα Cen B is a lit-
tle larger than those deduced from the CESAM model, we ex-
plored the possibility to decrease this difference by changing
the mixing length of the B model fromλ = 0.98 toλ = 0.96,
and by increasing the mass of the star from 0.907 to 0.909M�.
These modifications do not change the calibration ofαCen A.
We took care in this process to keep the star B in its error box
on the HR diagram (Fig. 10). It results from this new mass
a diameter that is closer to the interferometric one: 0.863D�
or 5.999± 0.050 mas (parallax from S¨oderhjelm 1999). The
effective temperature is found to be 5262 K, identical to the
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adopted spectroscopic oneTeff = 5260 K. Our results con-
firm that the mass of the B component is probably close
to 0.907M�, as reported by Th´evenin et al. (2002). A simi-
lar exercice is not possible if we adopt the mass of 0.934M�
derived by Pourbaix et al. (2002).

9. Conclusion

We have determined the angular diameters ofαCen A and B
using the VINCI/VLTI instrument, to a relative precision
of 0.2% and 0.6%, respectively. The low values of theαCen A
visibilities allowed us to match our statistical visibility error
to the calibration uncertainty. This is an optimal situation for
the angular diameter measurement, that would not have been
feasible with a higher visibility. Calibrating with a fainter and
smaller unresolved star would also not have been efficient, as
we would have degraded significantly our statistical precision.
There is still a compromise, as the low visibilities ofαCen A
imply a slightly degraded statistical precision, but E0-G1 has
proved to be a well suited baseline for the simultaneous mea-
surement of the angular diameters ofαCen A and B.

The comparison of these interferometric diameters with
the values derived using asteroseismic constraints shows a
good agreement when adopting the parallax determined by
Söderhjelm (1999). In particular, our diameters are compat-
ible with the masses proposed by Th´evenin et al. (2002) for
both stars. In the near future, asteroseismic observations of the
large frequencies spacing∆ν` of αCen B will complete the cal-
ibration of this binary system. Simultaneously, the very long
baselines of the VLTI (up to 200 m) will allow us to measure
directly the limb darkening of these two stars, and therefore
derive the photospheric diameter without using a stellar atmo-
sphere model. This work demonstrates that the combination of
the interferometry and asteroseismology techniques can pro-
vide strong constraints on stellar masses and other fundamental
parameters of stars.
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3.2.2 Article A&A : “The diameter and evolutionary state of Procyon A.
Multi-technique modeling using asteroseismic and interferometric con-
straints” (2003)

Procyon est une étoile d’une importance toute particulière, car elle est régulièrement utilisée
comme étalon photométrique. Nous présentons dans cet article notre mesure de diamètre angu-
laire de cette étoile à l’aide de l’instrument VINCI. La modélisation de cette étoile à l’aide du
code CESAM, contrainte en particulier par le rayon mesuré et les fréquences sismiques, nous a
permis de conclure que Procyon possède une masse d’environ 1,4 M� et un âge de 2,3 milliards
d’années.

Fig. 3.4 – L’instrument VINCI, installé dans le laboratoire interférométrique à Paranal (photo
prise en 2001, alors qu’AMBER et MIDI n’étaient pas encore installés).
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Abstract. We report the angular diameter measurement obtained with the VINCI/VLTI instrument on the nearby star Procyon A
(αCMi A, F5IV–V), at a relative precision of±0.9%. We obtain a uniform disk angular diameter in theK band ofθUD =

5.376± 0.047 mas and a limb darkened value ofθLD = 5.448± 0.053 mas. Together with the parallax, this gives
a linear diameter of 2.048± 0.025D�. We use this result in combination with spectroscopic, photometric and asteroseismic
constraints to model this star with the CESAM code. One set of modeling parameters that reproduces the observations within
their error bars are an age of 2314 Myr, an initial helium mass fractionYi = 0.301 and an initial mass ratio of heavy elements to
hydrogen (ZX )i = 0.0314. We also computed the adiabatic oscillation spectrum of our model of Procyon A, giving a mean large

frequency separation of∆ν0 ≈ 54.7µHz. This value is in agreement with the seismic observations by Marti´c et al. (1999, 2001).
The interferometric diameter and the asteroseismic large frequency spacing together suggest a mass closer to 1.4M� than to
1.5M�. We conclude that Procyon is currently ending its life on the main sequence, as its luminosity class indicates.

Key words. stars: individual:αCMi – stars: fundamental parameters – stars: evolution – techniques: interferometric

1. Introduction

Procyon A (αCMi, HD 61421, HIP 37279) is among the
brightest stars in the sky and is easily visible to the naked
eye. This made it an ideal target for a number of spectro-
photometric calibration works. It is also a visual binary star
(ADS 6251A) classified F5 IV–V, with a white dwarf (WD)
companion orbiting the main component in 40 years. The in-
fluence of this massive companion on the apparent motion of
Procyon was discovered by Bessel (1844). Girard et al. (2000)
have measured precisely the orbit of the pair, and obtained
masses of 1.497± 0.037 M� and 0.602± 0.015 M�, respec-
tively for ProcyonA and B. It has also been an asteroseismic
target since a decade and Martic et al. (1999 and 2001 here-
after M99 and M01) have measured a large frequency spac-
ing of respectively 55 and 54µHz. These asteroseismic obser-
vations provide strong constraints on stellar interior models,
and on macroscopic stellar parameters like mass and radius.
Comparing the direct interferometric measurements of this star
to its model diameter is therefore important to cross-validate
both approaches.

Matching Procyon’s position in the HR diagram has been
recognized as of great difficulty by Guenther & Demarque
(1993, hereafter GD93). The reason is the poorly known mass

Send offprint requests to: P. Kervella,
e-mail:Pierre.Kervella@eso.org

and metallicityZ of the star. We note that among the com-
puted models only their modelb is close to the mean large
frequency spacing measured by M99–M01. Because numerous
new studies and observational constraints (like the direct di-
ameter) exist today, we re-examine the status of Procyon A in
helium contentY and in age. We first review and present the
adopted fundamental parameters of Procyon A in Sect.2, part
of them being used for the limb-darkening in Sect. 3, where
we present our new interferometric observations and the asso-
ciated data processing. In Sect. 4, we detail several models of
Procyon computed with the CESAM code (Morel 1997). These
models are constrained using the spectroscopic effective tem-
perature and the linear diameter value that we derived from the
VINCI /VLTI observations. Thus, we avoid to fit the luminosity
for which bolometric corrections are rather uncertain for stellar
luminosity class IV–V. A study of the asteroseismic frequencies
is then presented in Sect. 5, before the conclusion.

2. Fundamental parameters

Physical properties of ProcyonA are well known thanks to the
carefully measured orbit of the system and accurate-
 parallax. Its mass has been recently measured by Girard
et al. (2000) atMA = 1.497± 0.037M�, adopting a parallax of
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283.2± 1.5 mas. This mass is computed using a large number
of observations of inhomogeneous quality. The same authors,
when they limit their observation sample to the excellent im-
ages obtained with the WFPC2, foundMA = 1.465±0.041M�.
If we replace the parallax used by Girard et al. (2000) by the
parallax from the catalogue, 285.93 ± 0.88 mas,
the sum of the masses of the binary decreases by 2.9%.
Consequently, masses become respectivelyMA = 1.42 ±
0.04M� for ProcyonA andMB = 0.575 ± 0.017M� for the
white dwarf ProcyonB. Allende Prieto et al. (2002, hereafter
AP02), using the parallax of ProcyonA, have esti-
mated its mass to be 1.42±0.06M�. From these works, we can
conclude that the mass of Procyon is probably between 1.4 and
1.5 M�. Consequently, we investigate these two values in our
study. The other adopted stellar parameters are summarized in
Table 1.

The bolometric luminosity is given by Steffen (1985)
log(L?/L�) = 0.85 ± 0.06. The photospheric properties of
Procyon have been carefully studied by AP02, who derived an
effective temperatureTeff = 6512 K. This value is based on
the angular diameter measured in the visible by the Mark III
optical interferometer (Mozurkewich et al. 1991). Detailed 3D
stellar atmosphere simulations have led AP02 to correct this
value ofTeff by 80 K. Following their results, we adoptTeff =

6530± 50 K in our computations with a surface gravity of
logg = 3.96± 0.02. It is interesting to notice that over the last
twenty years, the effective temperature estimates for Procyon
are spread between 6545 and 6811 K (Cayrel et al. 1997).
Adopting a color index ofB − V = 0.421 and using the cal-
ibration by Alonso (1996) we findTeff = 6551 K which is very
close to the value proposed by AP02.

The iron abundance at surface of [Fe/H] = −0.05 ±
0.03 dex with respect to the solar one is also taken from AP02.
Therefore we adopt for the modeling of the internal structure
of ProcyonA a chemical mixture which is calculated from the
iron abundance using the approximation:

[Fe/H]s ≡ log
(ZFe
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mixture of Grevesse & Noels (1993) then
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� = 0.0245. As

we shall see in Sect. 4, we adopt at the age of Procyon A a sur-
face abundance

(
Z
X

)
s
= 0.0217±0.0017. Note that this adopted

error bar of AP02 is very small. Because the white dwarf (WD)
Procyon B has already experienced the AGB phase, it is not
excluded that material coming from this star can have con-
taminated the narrow surface convection layer of Procyon A.
However, there is no evidence of such an effect in the published
table of abundances of ProcyonA (Steffen 1985). Enriched el-
ements like “s” or other elements coming from ProcyonB dur-
ing its post-AGB phase do not seem to have migrated as gas or
dust in the atmosphere of Procyon A. The mass transfer during
this short period of the WD progenitor life could not exceed
the accretion of the wind passing close to the star. Therefore,

Table 1. Relevant parameters ofαCMi (Procyon) and its calibra-
tor αCMa (Sirius). For Sirius, see also Kervella et al. (2003d).

αCMi αCMa
HD 61421 HD 48915

mV 0.34 −1.47
mK −0.65 −1.31
Spectral Type F5IV–V A1Vm
M(M�) 1.42± 0.04 2.12± 0.02
Teff (K) 6530± 50 9900± 200
logg 3.96 4.30
[Fe/H] −0.05± 0.03 0.50± 0.20
v sini 3.16± 0.50 16.0± 1.0
πa (mas) 285.93± 0.88 379.22± 1.58
θUD (mas) 5.376± 0.047 5.94± 0.02b

θLD (mas) 5.448± 0.053 6.04± 0.02b

a Parallax values from (Perryman et al. 1997).
b SiriusθUD andθLD are taken from Kervella et al. (2003d).

except if the two stars have filled their Roche lobe, the mass of
ProcyonA has only been changed by a negligible amount.

The projected rotational velocity of Procyon A has been
determined by many authors who derived values smaller
than 5.0 km s−1. Considering in particular the value proposed
by AP02, v sini = 3.2 ± 0.5 km s−1, we conclude that
Procyon A is a slow rotator and we neglect the rotational ve-
locity in our modeling of its internal structure. The semi-major
axis of the Procyon orbit beingα ' 4.′′5 (Girard et al. 2000),
the distance between the two companions amounts to'16.
The tidal interaction between the two components is therefore
negligible.

3. Interferometric angular diameter

3.1. Instrumental setup and data processing

The European Southern Observatory’s Very Large Telescope
Interferometer (Glindemann et al. 2000) is operated on top of
the Cerro Paranal, in Northern Chile, since March 2001. The
observations reported here were done with two test siderostats
(0.35 m aperture) and the VINCI beam combiner (Kervella
et al. 2000, 2003a). The Procyon visibility measurements were
all obtained on the B3–D3 baseline, 24 m in ground length. We
used a regularK band filter (λ = 2.0−2.4 µm) for these obser-
vations. The effective wavelength changes slightly depending
on the spectral type of the observed target. For Procyon, we
estimateλeff = 2.178± 0.003µm. This error bar adds quadrat-
ically a relative systematic uncertainty of 0.15% on the final
limb darkened angular diameter error bar.

The raw data processing has been achieved using an
improved version of the standard data reduction pipeline
(Kervella et al. 2003c), whose general principle is similar to
the original FLUOR algorithm (Coud´e du Foresto et al. 1997).
The two calibrated output interferograms are subtracted to re-
move residual photometric fluctuations. Instead of the classi-
cal Fourier analysis, we implemented a wavelet based time-
frequency analysis (S´egransan et al. 1999). The output of the
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Fig. 1.Squared visibility measurements obtained on Procyon and best
fit model (solid line).

processing pipeline is a single value of the squared coherence
factor µ2 for each series of 500 interferograms and the boot-
strapped error bar.

3.2. Visibility calibration

Sirius was chosen as the calibrator for Procyon observations
as its limb darkened (LD) angular diameter has been measured
recently with high precision by Kervella et al. (2003d), using
VINCI and the 66m E0-G1 baseline. Table 1 gives the rele-
vant parameters of Procyon and Sirius. The interferometric ef-
ficiency (IE) of the instrument was estimated from theµ2 values
obtained on Sirius a short time before and after Procyon (typ-
ically 15 min). Thanks to the very high SNR of the Sirius in-
terferograms, we were able to obtain very small relative errors
on the IE values, typically 0.2% for a series of 500 interfero-
grams. The error bar on the angular diameter of Sirius is treated
as a systematic error in the calibration process, and is therefore
not averaged for multiple observations. For the visibility fit,
we took into account simultaneously the limb darkening and
the bandwidth smearing, as described in Kervella et al. (2003b,
2003d).

Our February 2003 observation campaign of Procyon
resulted in a total of 53 calibratedV2 measurements,
from 23 256 processed interferograms. In the calibration pro-
cess, we separated clearly the statistical and systematic error
contributions. This is essential to avoid underestimating the fi-
nal error bars of the fit. The latter corresponds to the uncer-
tainty on the angular diameter of Sirius. In spite of the fact that
the angular size of Sirius is larger than Procyon’s, the small
error on its measured value (±0.3%) translates into a small cal-
ibration error. As a consequence, the global error on the angular
size of Procyon is dominated by the statistical contribution by a
factor of two compared to the systematic calibration error: the
uncertainty on the angular size of Sirius is not limiting our final
precision. The visibility points as a function of the projected
baseline are presented in Fig. 1, and their residual scattering
around the best fit model in Fig. 2.
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Fig. 2. Scattering of the Procyon measured visibilities around the best
fit V2 model. The plotted error bars are the quadratic sum of the sta-
tistical and systematic contributions.
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Fig. 3. Intensity profile of Procyon, from the four parameters law of
Claret (2000).

3.3. Limb darkened angular diameter and linear size

The intensity profileI (µ)/I (1) that we chose for Procyon was
computed by Claret et al. (2000), based on the ATLAS9 model
atmospheres (Kurucz 1992). It is a four parameters law:

I (x)/I (1) = 1−
4∑

k=1

ak

(
1− x

k
2

)
(2)

which coefficients area1 = 0.5089, a2 = 0.0822, a3 =

−0.3978, anda4 = 0.1967. The parameterx = cos(θ) is the co-
sine of the azimuth of a surface element of the star. The result-
ing profile is shown in Fig. 3. AP02 have identified an influence
of the convective granulation of Procyon on its limb darkening
at visible wavelengths. Though, the amplitude of this effect is
already very small atλ = 1.0µm, and we neglect it for our
observations atλ = 2.2µm.

We obtain directly the LD angular diameter of Procyon
from a classicalχ2 minimization,θLD = 5.448± 0.053 mas.
Using a simple uniform disk model, we find a value ofθUD =

5.376± 0.047 mas.
We can compare the LD value with the previously pub-

lished interferometric measurements, listed in Table 2. Our
value ofθLD is compatible with previous measurements, that
were all obtained using visible wavelength observations. It is
also in excellent agreement with the average of all published
values. From the VINCI/VLTI value of θLD and the-
 parallax, we deduce a linear diameter of 2.048±0.025D�.
Computing the average of all publishedθLD values, we obtain
a linear radius ofR? = 2.047± 0.020R� for Procyon A, statis-
tically identical to our result.

4. Modeling

The modeling of Procyon A is based on the matching of
spectroscopic effective temperature, surface metallicity and
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Table 2. Interferometric measurements of the angular diameter of
Procyon A from the literature.

Instrument λ (µm) θUD (mas) θLD (mas)

Intensity interf.a 0.45 5.10± 0.16 5.41± 0.17
Mark IIIb 0.80 5.26± 0.05
Mark IIIb 0.45 5.14± 0.05
Mark III c 0.80 5.46± 0.08
NPOIc 0.74 5.19± 0.04 5.43± 0.07
VINCI /VLTI 2.18 5.38± 0.05 5.45± 0.05

Average value 5.445± 0.035

a Hanbury Brown et al. (1974).
b Mozurkewich et al. (1991).
c Nordgren et al. (2001).

interferometric radius by a “satisfactory” evolutionary model
for a given mass. The constraint betweenR? andTeff within
their error bars is illustrated in Fig. 4 by the hatched parallelo-
gram, while the constraint between theTeff andL? is illustrated
by the dashed rectangle. That emphazises the advantage of the
use of the measuredR? instead of theL? which depends of
photometric calibrations and bolometric corrections.

Table 3 shows the characteristic and initial modeling pa-
rameters of the star. The ordinary assumptions of stellar mod-
eling are made, i.e. spherical symmetry, no rotation, no mag-
netic field and no mass loss. The relevant nuclear reaction
rates are taken from the NACRE compilation by Angulo
et al. (1999). The equation of state adopted is taken from
Eggleton et al. (1973), and the opacities are from the OPAL
database (Iglesias & Rogers 1996), using the Grevesse &
Noels (1993) mixture. The microscopic diffusion is described
using the formalism of Burgers (1969) with the resistance coef-
ficients of Paquette et al. (1986). We take into account the radia-
tive diffusivity as recommended by Morel & Th´evenin (2002),
that limits the efficiency of the microscopic diffusion in outer-
layers of stars with intermediate masses. The atmosphere is re-
stored using Hopf’s law (Mihalas 1978). The definition of the
radius of the star is the bolometric radius, whereT(R?) = Teff.
In the convection zones the temperature gradient is computed
according to the MLTCM convection theory with a mixing
length parameter ofΛ = 1 (Canuto & Mazzitelli 1991, 1992).

Following the discussion of Sect. 2 we investigate the sen-
sitivity of our models to a variation of the mass of Procyon in
the range 1.4 to 1.5M�. We obtained a “satisfactory” modela
(Fig. 4), detailed in Table 3, which reaches the hatched paral-
lelogram corresponding to an age of 2314 Myr. Its evolution-
ary state corresponds closely to the end of the main sequence,
when the convective core has disappeared owing to the exhaus-
tion of the hydrogen at center. We present in Fig. 5 the varia-
tion for modela of Xs,Ys and of [Fe/H]s as a function of the
age. From the ZAMS until about 1 Gyr, due to the gravitational
settling, the surface abundances of helium and heavy elements
(resp.hydrogen) decrease (resp. increases). After 1 Gyr, the
density in the envelope decreases due to the enlargement of ra-
dius. This leads to an increase of the radiative mixing, with the

Fig. 4.Evolutionary tracks in the HR diagram of models of Procyon A
(see Table 3). Dashed rectangle delimits the uncertainty domain for
luminosity and effective temperature, while the hatched area delimits
the uncertainty domain for effective temperature and the interferomet-
ric radius.

Fig. 5.Changes with respect to time forXs, Ys and [Fe/H]s for modela
of Procyon.

consequence of a dredge-up which increases (resp.decreases)
Ys and [Fe/H]s (resp. Xs) at the surface.

We also computed a “satisfactory” modelb without micro-
scopic diffusion in order to estimate its effect on the age of the
star and we found that suppressing the diffusion increases the
age by∼400 Myr. The evolutionary state of this model is
the beginning of H burning in a shell.

Following the prescriptions of Schaller et al. (1992) we
have computed additional models that include overshooting
of the convective core of radiusRco over the distanceOv =

A min(Hp,Rco). It has been impossible to find a “satisfactory”
model reaching the narrow hatched area of the HR diagram
with parametersA > 0.03.

Finally, we computed a modelc with Girard et al. (2000)
mass: 1.50M� and find an age of 1.3 Gyr without overshoot.
We also computed a model with an overshoot of 0.15 in agree-
ment with Ribas et al. (2000) for stars of mass lower than
1.5M� resulting in a model which increases the age of the star
to 1.55 Gyr.
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Table 3.Procyon A models (without overshoot, see text) lying within
uncertainty box in the diagram. The subscripts “i ” and “s” respec-
tively refer to initial values and surface quantity at present day. “c”
refers to the central value.

Model a b c

m/M� 1.42 1.42 1.50
Yi 0.3012 0.2580 0.345
Ys 0.2209 0.2580 0.202(

Z
X

)
i

0.03140 0.0218 0.0450(
Z
X

)
s

0.02157 0.0218 0.0220
diffusion yes no yes
Xc 0.00051 0.00000 0.2180
age (Myr) 2 314 2 710 1 300
Teff (K) 6524 6547 6553
logg 3.960 3.967 3.994
[Fe/H]i +0.107 –0.051 +0.264
[Fe/H]s –0.055 –0.051 –0.043
log(L/L�) 0.8409 0.8405 0.8390
R/R� 2.0649 2.0495 2.0420
∆ν0 (µHz) 54.7 55.4 56.4

The parameters for all models are listed in Table 3. Figure 4
shows the corresponding evolutionary tracks in the dia-
gram. We note that our models fit the value of logg = 3.96
proposed by AP02.

5. Asteroseismology

Asteroseismic observations of ProcyonA have been reported
by M99 and M01 and indicate an excess of power around
1 milliHertz with a probable frequency spacing of 54 to 55µHz.

The narrow convective envelope of the star we consider
may stochastically excite solar-like oscillations. As in the Sun,
these oscillations will have quasi equidistant frequencies at
given degree.

For all the models, we have computed a set of adiabatic fre-
quencies of the normal modes for degrees` = 0, 1, 2, 3. The set
of frequencies of modela are given in the frequency range 450
to 1600µHz in Table 4.

The large frequency spacing is defined as the difference be-
tween frequencies of modes with consecutive radial ordern:
∆ν`(n) ≡ νn,` − νn−1,`. In the high frequency range, i.e. large
radial orders,∆ν` is almost constant with a mean value∆ν0,
strongly related to the mean density of the star. The com-
puted frequencies are fitted to the following asymptotic relation
(Berthomieu et al. 1993):νn,` = ν0 + ∆ν`(n− n0) + a`(n− n0)2.
With n0 = 21, ` = 0 and radial ordern between 17 and 26 we
obtain an estimate of the mean large difference∆ν0.

The mean large spacing of modela is 54.7 µHz which
fits well observational predictions of M99 & M01 (∆ν0 ∼
54−55µHz). For the modelc, the mean large spacing is found
to be 56.4µHz, significantly different from the observed value.
A mass as large as 1.5M� for Procyon A seems therefore im-
probable. Adopting the VINCI/VLTI radius, and looking at the
scaling of Kjeldsen & Bedding (2003),

∆νosc∼ 134.9

√
m/M�

(R?/R�)3
(µHz), (3)

Table 4. Asteroseismic frequencies (µHz) of Procyon A for modela.
The “?” correspond to “g” modes which are presents in the frequency
domain due to the evolutionary state of the star.

` = 0 ` = 1 ` = 2 ` = 3 n

485.35 513.36 532.31 551.46 8
– – – 597.20 ?

537.93 563.43 585.90 605.61 9
591.09 615.78 638.60 657.72 10
643.23 666.79 689.80 708.98 11
694.17 717.44 741.00 760.87 12
745.32 769.15 793.75 814.22 13
798.11 822.24 847.62 868.87 14

– – 896.38 – ?

852.14 876.76 904.48 923.72 15
906.98 931.22 957.38 978.12 16
961.42 985.26 1011.19 1031.92 17

– – – 1075.73 ?
1015.27 1038.85 1065.03 1086.34 18
1069.16 1092.64 1119.00 1140.31 19
1123.16 1146.76 1173.64 1195.27 20
1177.86 1201.57 1228.79 1250.68 21
1233.05 1256.82 1284.20 1306.18 22
1288.46 1312.09 1339.65 1361.81 23
1343.91 1367.55 1395.21 1417.43 24
1399.42 1422.95 1450.65 1472.94 25
1454.83 1478.24 1506.00 1528.39 26
1510.12 1533.53 1561.40 1583.89 27

the most straightforward way to decrease∆ν0 is to decrease the
mass of Procyon A.

Because the luminosityL is in relation withTeff and with
the radiusR through the formulaL/L� = (R/R�)2(Teff/T�eff)

4

we find from Eq. (3) the expression of the mean large spacing
as a function ofL andTeff ,

∆νosc∼ 134.9

√
m/M�

(L/L�)3/4(T/Teff)3
(µHz) . (4)

From this formula it is easy, if needed, to estimate the deriva-
tives of the mean large spacing with respect to the mass, the
effective temperature and the luminosity. To estimate the de-
pendance between∆νosc andZi we have computed a modified
modela with ∆Zi = 0.001 and found a variation in the par-
allelogram error box of:∆Teff = 22 K, ∆L/L = 0.008, and
∆age = 33 Myr. There were no significant changes withZi of
∆νosc as can be expected from Eq. (3).

6. Discussion and conclusions

We have reported in this paper our modelisation of ProcyonA
based on observations by long-baseline interferometry and as-
teroseismology. The use of the measured stellar diameter al-
lows to reduce significantly the error bar on the luminosity of
the star, as it does not require any bolometric corrections. This
advantage has been demonstrated in this study and in the mod-
eling of Sirius by Kervella et al. (2003d).

Our model shows that using the given set of parameters and
given physics, Procyon A is currently finishing to burn its cen-
tral hydrogen, and is at the phase where the convective core
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is disappearing. The error on the measured radius gives a nar-
row uncertainty of 10 Myr on the deduced age. Provencal et al.
(2002) have discussed the cooling time of the WD ProcyonB
and found that the progenitor ended its lifetime 1.7 ± 0.1 Gyr
ago. We derive an age of 2314 Myr for ProcyonA. Subtracting
the cooling age of the WD companion to our determination
of the age of Procyon A leads to a lifetime of 614 Myr for
the progenitor of ProcyonB. This indicates that the mass of
the progenitor is approximately 2.5M�. This value yields a
mass of∼0.57 M� for the core of the corresponding Thermal-
Pulsating-AGB star (forZ = 0.020) (Bressan et al. 1993),
which is the minimum possible value for the final mass of the
WD (see also Jeffries 1997). This estimate of 0.57M� agrees
very well with the mass of ProcyonB that we deduced from
Girard et al. (2000). We note that the age obtained with modelc
is younger than the cooling age of Procyon B. This argument
suggests a mass lower than 1.5M� for Procyon A and strength-
ens the asteroseismology results.

Further progress on the modeling of Procyon will be possi-
ble when the accuracy on the flux of the star is improved to less
than 1%. Waiting for such accuracy, the uniqueness of the so-
lutions resulting from computed models fitting a narrow box in
the HR diagram will come from future detailed asteroseismic
studies. For example, other linear combinations of frequencies
such as the small frequency spacings (see e.g. Gough 1991)
will constrain the age and the mass of the star. We therefore
encourage observers to progress on the asteroseismology of
this star.

Large uncertainties also come from the adopted chemical
abundance mixtureZs which is still rather uncertain. Only a few
chemical element abundances are measured today and most of
them with a low accuracy. This uncertainty onZs is the largest
source of error on the estimated initial helium contentYi and
on the age of Procyon. Thus, we recommend that surface abun-
dances should be derived from 3D atmosphere studies, in par-
ticular for oxygen and other important donors of electrons.
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3.2.3 Article A&A : “VLTI/VINCI diameter constraints on the evolutionary
status of δ Eri, ξ Hya, η Boo” (2005)

Avec la mesure du diamètre angulaire de ces trois étoiles possédant des mesures de fréquences
astérosismiques, nous avons été en mesure d’estimer précisément leur état évolutif par la modélisation.
Dans le cas de l’étoile géante ξHya, qui est dans une phase d’évolution rapide hors de la séquence
principale, la contrainte apportée par la mesure du diamètre permet d’estimer l’âge de cette étoile
avec une incertitude formelle de seulement 100 000 ans.

Fig. 3.5 – Les quatre télescopes de 8m du Very Large Telescope.
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Abstract. Using VLTI/VINCI angular diameter measurements, we constrain the evolutionary status of three asteroseismic
targets: the stars δ Eri, ξ Hya, η Boo. Our predictions of the mean large frequency spacing of these stars are in agreement
with published observational estimations. Looking without success for a companion of δ Eri, we doubt its classification as an
RS CVn star.

Key words. stars: evolution – stars: fundamental parameters – techniques: interferometric

1. Introduction

After two years of operation, the commissioning instrument
VINCI of the VLTI has provided valuable stellar diameter mea-
surements. Among the impact of these diameters are the studies
of main sequence stars, where diameters combined with aster-
oseismic frequencies can be used to constrain evolutionary sta-
tus and mass. Several papers have been published (Ségransan
et al. 2003; Kervella et al. 2003a,b; 2004a; Di Folco et al.
2004) with important results on stellar fundamental parameters
prior to the use of the dedicated VLTI light combiner AMBER
(Petrov et al. 2003). The aim of the present paper is to com-
plete previous studies using VINCI to measure the diameter of
three subgiant and giant stars that are among selected astero-
seismic targets for ground-based observations and space mis-
sions: δ Eri, ξ Hya, η Boo. We perform a preliminary study of
their evolutionary status by constraining their mass, their he-
lium content and their age. One of the purposes of this paper
is to show that in the future, the use of stellar diameters will
be a significant constraint for evolutionary models for given
input physics. We first describe the characteristics of each of
the three stars (Sect. 2) and then we present diameter measure-
ments (Sect. 3) for each star. We construct evolutionary models
satisfying spectro-photometric observable constraints and we
compare asteroseismic large frequencies with measured ones.
We present these models (Sect. 4) and we draw some conclu-
sions on the classification and fundamental parameters of the
three stars.

2. Global characteristics of the stars

The first part of Table 1 presents the observational data of the
three stars. The second part of this table summarizes some input
parameters and output data of the models.

2.1. δ Eri

δ Eri (HD 23249, HR 1136, HIP 17378) has been thoroughly
studied by photometry and spectroscopy and is classified as
a K0 IV star (Keenan & Pitts 1980). It belongs to the group
of the nearest stars with an accurate Hipparcos parallax of
110.58 ± 0.88 mas (Perryman et al. 1997). The star has been
classified as a weakly active and X-ray soft source (Huensch
et al. 1999) after a lengthy search for its activity. Wilson &
Bappu (1957) concluded that the possible detection of emis-
sion in the H&K lines is “exceedingly weak” – so weak that it
is questionable. It took more than 20 years to inconclusively de-
tect its activity with Copernicus, revealing a weak emission in
MgII (Weiler & Oegerle 1979). Fisher et al. (1983) tried to de-
tect a periodic variation in the photometric data and concluded
that, if it exists, the amplitude is below ±0.02 mag with a pe-
riod of 10 days. They suggested that δ Eri could be classified
as an RS CVn star. An RS CVn is defined as a F-G binary star
having a period shorter than 14 days, with chromospheric activ-
ity and with a period of rotation synchronized with its orbital
period (Linsky 1984), giving the star high rotational velocity
inducing strong activity. This is in contrast with the low level
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Table 1. Observable characteristics of the stars and best model reproducing them. The subscripts “ini” and “surf” respectively refer to initial
values and current surface quantities. Note that the presented errors of VLTI/VINCI angular diameters are the statistical ones followed by the
systematical ones. Note also that D/D� is equal to R/R�.

δ Eri ξ Hya η Boo

V 3.51 ± 0.02 3.54 ± 0.01 2.68 ± 0.01
BC −0.24 ± 0.01 −0.26 ± 0.01 −0.06 ± 0.01
Teff(K) 5074 ± 60 5010 ± 100 6050 ± 150
L/L� 3.19 ± 0.06 60.7 ± 4.1 8.95 ± 0.20
[Fe/H]surf 0.13 ± 0.08 −0.04 ± 0.12 0.24 ± 0.07
log g 3.77 ± 0.16 2.93 ± 0.30 3.66 ± 0.20
θLD(mas) 2.394 ± 0.014 2.386 ± 0.009 2.200 ± 0.027

±0.025 ±0.019 ±0.016
D/D� 2.33 ± 0.03 10.3 ± 0.3 2.68 ± 0.05
π(mas) 110.58 ± 0.88 25.23 ± 0.83 88.17 ± 0.75
∆ν0(µHz) 43.8 ± 0.3 7.1 40.47 ± 0.05

δ Eri δ Eri ξ Hya ξ Hya η Boo η Boo
diffusion no diffusion diffusion no diffusion diffusion no diffusion

M/M� 1.215 1.215 2.65 2.65 1.70 1.70
Age of the ZAMS (Myr) 20.14 20.06 2.724 2.719 12.68 12.67
Age (from ZAMS) (Myr) 6194. 6196. 509.52 505.34 2738.5 2355.
Yini 0.28 0.28 0.275 0.275 0.260 0.260
[Z/X]ini 0.148 0.148 0.00 0.00 0.367 0.367
Teff(K) 5055. 5066. 5037. 5034. 6050. 6090.
L/L� 3.176 3.230 61.23 61.0 8.944 8.978
R/R� 2.328 2.337 10.30 10.30 2.728 2.697
log g 3.788 3.785 2.835 2.832 3.796 3.806
Ysurf 0.266 0.28 0.274 0.275 0.228 0.260
[Z/X]surf 0.123 0.148 0.00 0.00 0.303 0.367
MCZ(M�) 0.729 0.727 0.608 0.596 0.9994 0.9994
RCZ(R�) 0.475 0.475 0.422 0.417 0.8388 0.8505
∆ν0(µHz) 45.27 44.91 7.23 7.28 41.91 42.47

of activity detected for δ Eri making doubtful its classification
as an RS CVn star. δ Eri has a projected rotational velocity of
v sin i = 1.0 km s−1 (de Meideros & Mayor 1999) and the hy-
pothetical RS CVn classification forces us to conclude that the
binary is seen pole-on therefore explaining the lack of photo-
metric variation and also of any variation of the radial velocity
(Santos et al. 2004). To reveal the presence of a close compan-
ion around δ Eri, we set several VLTI/VINCI observations at
different baselines (see Sect. 3).

We estimate its bolometric luminosity L�/L� = 3.19±0.06
using the Alonso et al. (1999) empirical bolometric corrections
(BC, BC = −0.24± 0.01 for giants, this is the dominant source
of uncertainty on the luminosity). We adopt the Santos et al.
(2004) values for the effective temperature Teff = 5074± 60 K,
logarithmic surface gravity log g = 3.77±0.16 and surface iron
abundance [Fe/H] = 0.13±0.03. These parameters are different
from – but within the error bars of – the parameters proposed
by Pijpers (2003) for this star, except the metallicity which is
0.24 dex higher. Bouchy & Carrier (2003) have measured a
mean large frequency spacing of 43.8 µHz that we will try to
reproduce with our model. We recall that the large frequency
spacing is defined as the difference between frequencies of

modes with consecutive radial order n: ∆νl(n) = νn,l − νn−1,l. In
the high frequency range, i.e. large radial orders, ∆νl(n) is al-
most constant with a mean value strongly related to the square
root of the mean density of the star. To obtain the mean large
frequency separation, we average over l = 0−2.

2.2. ξ Hya

ξ Hya (HD 100407, HR 4450, HIP 56343) is a giant star
(G7 III) which has been considered by Eggen (1977) as a spu-
rious member of the Hyades group because it departs slightly
from the regression line of giant stars in the colour diagrams
(b − y, R − I) and (M1, R − I) of that stellar group.

Its Hipparcos parallax is 25.23 ± 0.83 mas. We estimate its
bolometric luminosity L�/L� = 60.7 ± 4.1 using BC (BC =
−0.26 ± 0.01) from Alonso et al. (1999). We adopt the spec-
troscopic parameters derived by Mc William (1990): effec-
tive temperature Teff = 5010 ± 100 K, log g = 2.93 ± 0.30
and [Fe/H] = −0.04 ± 0.12. These parameters are differ-
ent from – but within the error bars of – the parameters
adopted by Frandsen et al. (2002) for this star. The star be-
longs to the HR diagram at the lowest part of the giant branch
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corresponding to an evolved star with a mass around 3 M�.
Using a set of CORALIE spectra, Frandsen et al. (2002) de-
tected solar-like oscillations suggesting radial modes with the
largest amplitudes almost equidistant around 7.1 µHz. That im-
portant detection opens the possibility of better constraining the
model of this star for which the mass is not well-known.

2.3. η Boo

η Boo (HD 121370, HR 5235, HIP 67927) is a subgiant (G0 IV)
spectroscopic binary (SB1) studied recently by Di Mauro et al.
(2003, 2004) and Guenther (2004). Its Hipparcos parallax is
88.17±0.75 mas. Having large overabundances of Si, Na, S, Ni
and Fe, it has been considered as super-metal-rich by Feltzing
& Gonzales (2001). We adopt here a luminosity L�/L� =
8.95 ± 0.20 using BC (BC = −0.06 ± 0.01, this is the domi-
nant source of uncertainty on the luminosity) from Vandenberg
& Clem (2003) for this subgiant, with an effective tempera-
ture Teff = 6050 ± 150 K representing the average of five ef-
fective temperature determinations in the [Fe/H] catalogue of
Cayrel de Strobel et al. (2001) and the spectroscopic log g =
3.66±0.20 and [Fe/H] = 0.24±0.07 from Feltzing & Gonzales
(2001). These parameters are different from – but within the er-
ror bars of – the parameters adopted by Di Mauro et al. (2003,
2004) for this star. Asteroseismic observations of δ Eri have
been reported by Carrier et al. (2005) with ∆ν0 = 39.9±0.1 µHz
and by Kjeldsen et al. (2003) with ∆ν0 = 40.47 ± 0.05 µHz.

3. Diameter interferometric measurements

3.1. VINCI and the VLTI

The European Southern Observatory’s Very Large Telescope
Interferometer (Glindemann et al. 2000) has been oper-
ated on top of the Cerro Paranal, in Northern Chile since
March 2001. For the observations reported in this work, the
light coming from two telescopes (two 0.35 m test siderostats
or VLT/UT1-UT3) was combined coherently in VINCI, the
VLT Interferometer Commissioning Instrument (Kervella et al.
2000). We used a regular K band filter (λ = 2.0−2.4 µm) for
these observations.

3.2. Data reduction

We used an improved version of the standard VINCI data re-
duction pipeline (Kervella et al. 2004b), whose general prin-
ciple is based on the original FLUOR algorithm (Coudé du
Foresto et al. 1997). The two calibrated output interferograms
are subtracted to remove residual photometric fluctuations.
Instead of the classical Fourier analysis, we implemented a
time-frequency analysis (Ségransan et al. 1999) based on a con-
tinuous wavelet transform.

The atmospheric piston effect between the two telescopes
corrupts the amplitude and the shape of the fringe peak in
the wavelet power spectrum. As described in Kervella et al.
(2004b), the properties of the fringe peaks in the time and fre-
quency domains are monitored automatically, in order to re-
ject from the processing the interferograms that are strongly
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Fig. 1. Squared visibility measurements obtained on δEri. The solid
line is a limb darkened disk model with θLD = 2.394 ± 0.014 ±
0.025 mas (statistical and systematic errors).

affected by the atmospheric piston. This selection reduces the
statistical dispersion of the squared coherence factors (µ2) mea-
surement, and avoids biases from corrupted interferograms.
The final µ2 values are derived by integrating the average
wavelet power spectral density (PSD) of the interferograms at
the position and frequency of the fringes. The residual photon
and detector noise backgrounds are removed using a linear least
squares fit of the PSD at high and low frequency. The statisti-
cal error bars on µ2 are computed from the series of µ2 values
obtained on each target star (typically a few hundred interfero-
grams) using the bootstrapping technique.

3.3. Measured visibilities and angular diameters

The visibility values obtained on δEri, ξHya and ηBoo are
listed in Tables 2 to 5, and plotted in Figs. 1 to 3.

The calibration of the visibilities obtained on δEri and
ηBoo was done using well-known calibrator stars that were se-
lected from the Cohen et al. (1999) catalogue. The uniform disk
(UD) angular diameter of these stars was converted into a limb
darkened value and then to a K band uniform disk angular di-
ameter using the recent non-linear law coefficients taken from
Claret et al. (2000). As demonstrated by Bordé et al. (2002),
the star diameters in this list have been measured very homo-
geneously to a relative precision of approximately 1%.

The VINCI instrument has no spectral dispersion and its
bandpass corresponds to the K band filter (2–2.4 µm). It is thus
important to compute the precise effective wavelength of the in-
strument in order to determine the angular resolution at which
we are observing the targets. The effective wavelength differs
from the filter mean wavelength because of the detector quan-
tum efficiency curve, the fiber beam combiner transmission and
the object spectrum. It is only weakly variable as a function of
the spectral type.

To derive the effective wavelength of our observations, we
computed a model taking into account the star spectrum and the
VLTI transmission. The instrumental transmission of VINCI
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Table 2. δ Eri squared visibilities.

Julian Date Stations N B (m) Az. (deg) V2 ± stat ± syst Calibrator
2 452 682.528 B3-D1 74 22.638 14.95 0.9941 ± 0.0712 ± 0.0014 δ Lep
2 452 682.541 B3-D1 460 21.963 14.63 0.9740 ± 0.0140 ± 0.0014 δ Lep
2 452 682.545 B3-D1 281 21.735 14.55 0.9639 ± 0.0264 ± 0.0014 δ Lep
2 452 682.607 B3-D1 140 16.514 14.78 1.0242 ± 0.0632 ± 0.0014 δ Lep
2 452 682.612 B3-D1 340 15.954 14.99 1.0045 ± 0.0321 ± 0.0014 δ Lep
2 452 682.618 B3-D1 133 15.285 15.27 0.9987 ± 0.0715 ± 0.0013 δ Lep
2 452 671.562 B3-D1 233 22.437 14.84 0.9960 ± 0.0409 ± 0.0031 δ Lep
2 452 671.567 B3-D1 95 22.164 14.71 0.9442 ± 0.0697 ± 0.0029 δ Lep
2 452 671.574 B3-D1 210 21.749 14.55 0.9623 ± 0.0474 ± 0.0030 δ Lep
2 452 671.631 B3-D1 397 17.152 14.59 1.0042 ± 0.0501 ± 0.0014 δ Lep
2 452 671.635 B3-D1 206 16.756 14.71 1.0331 ± 0.0604 ± 0.0014 δ Lep
2 452 671.651 B3-D1 237 14.947 15.44 1.0023 ± 0.0588 ± 0.0014 δ Lep
2 452 672.553 B3-D1 401 22.756 15.02 0.9465 ± 0.0164 ± 0.0014 δ Lep
2 452 672.567 B3-D1 426 22.013 14.65 0.9585 ± 0.0153 ± 0.0014 δ Lep
2 452 672.603 B3-D1 379 19.478 14.26 0.9911 ± 0.0235 ± 0.0014 δ Lep
2 452 672.607 B3-D1 237 19.086 14.28 1.0134 ± 0.0540 ± 0.0015 δ Lep
2 452 673.567 B3-D1 236 21.898 14.60 0.9780 ± 0.0322 ± 0.0014 δ Lep
2 452 673.579 B3-D1 264 21.130 14.39 0.9940 ± 0.0264 ± 0.0015 δ Lep
2 452 673.609 B3-D1 441 18.693 14.31 1.0197 ± 0.0253 ± 0.0015 δ Lep
2 452 674.527 B3-D1 262 23.527 15.78 0.9718 ± 0.0294 ± 0.0014 δ Lep
2 452 674.557 B3-D1 415 22.253 14.75 0.9757 ± 0.0241 ± 0.0015 δ Lep
2 452 674.562 B3-D1 405 22.003 14.64 0.9833 ± 0.0249 ± 0.0015 δ Lep
2 452 674.566 B3-D1 314 21.756 14.55 0.9778 ± 0.0281 ± 0.0015 δ Lep
2 452 675.547 B3-D1 432 22.640 14.95 0.9731 ± 0.0213 ± 0.0014 δ Lep
2 452 676.557 B3-D1 383 21.997 14.64 0.9674 ± 0.0203 ± 0.0014 δ Lep
2 452 676.561 B3-D1 402 21.734 14.55 0.9813 ± 0.0201 ± 0.0015 δ Lep
2 452 676.565 B3-D1 259 21.474 14.47 0.9678 ± 0.0338 ± 0.0014 δ Lep
2 452 676.590 B3-D1 447 19.612 14.26 0.9883 ± 0.0227 ± 0.0014 δ Lep
2 452 676.602 B3-D1 328 18.603 14.32 0.9453 ± 0.0318 ± 0.0013 δ Lep
2 452 677.543 B3-D1 480 22.582 14.92 0.9651 ± 0.0283 ± 0.0014 δ Lep
2 452 677.547 B3-D1 445 22.366 14.80 0.9695 ± 0.0294 ± 0.0014 δ Lep
2 452 677.551 B3-D1 256 22.137 14.70 0.9283 ± 0.0407 ± 0.0013 δ Lep
2 452 677.587 B3-D1 267 19.633 14.26 1.0093 ± 0.0407 ± 0.0015 δ Lep
2 452 677.598 B3-D1 381 18.695 14.31 1.0013 ± 0.0384 ± 0.0015 δ Lep
2 452 677.603 B3-D1 287 18.286 14.36 1.0432 ± 0.0455 ± 0.0015 δ Lep
2 452 678.537 B3-D1 230 22.746 15.02 1.0024 ± 0.0382 ± 0.0014 δ Lep
2 452 678.548 B3-D1 121 22.186 14.72 0.9746 ± 0.0520 ± 0.0014 δ Lep
2 452 678.559 B3-D1 168 21.531 14.49 0.9900 ± 0.0492 ± 0.0014 δ Lep
2 452 678.584 B3-D1 422 19.649 14.26 1.0167 ± 0.0354 ± 0.0011 δ Lep
2 452 678.593 B3-D1 150 18.893 14.29 1.0966 ± 0.0618 ± 0.0012 δ Lep
2 452 679.561 B3-D1 402 21.184 14.40 0.9800 ± 0.0353 ± 0.0014 δ Lep
2 452 679.566 B3-D1 278 20.892 14.35 1.0211 ± 0.0435 ± 0.0015 δ Lep
2 452 683.578 B3-D1 374 19.065 14.28 0.9596 ± 0.0152 ± 0.0012 δ Lep
2 452 683.582 B3-D1 449 18.708 14.31 0.9900 ± 0.0147 ± 0.0013 δ Lep
2 452 683.586 B3-D1 283 18.316 14.36 0.9378 ± 0.0232 ± 0.0012 δ Lep
2 452 683.593 B3-D1 269 17.654 14.48 0.9915 ± 0.0274 ± 0.0013 δ Lep
2 452 683.598 B3-D1 250 17.167 14.59 0.9693 ± 0.0290 ± 0.0012 δ Lep
2 452 683.602 B3-D1 261 16.783 14.70 0.9154 ± 0.0274 ± 0.0012 δ Lep
2 452 684.516 B3-D1 296 22.937 15.15 0.9431 ± 0.0287 ± 0.0014 δ Lep
2 452 684.527 B3-D1 400 22.396 14.82 0.9473 ± 0.0220 ± 0.0014 δ Lep
2 452 684.562 B3-D1 439 20.148 14.27 0.9859 ± 0.0225 ± 0.0013 δ Lep
2 452 684.579 B3-D1 415 18.747 14.30 0.9882 ± 0.0232 ± 0.0013 δ Lep
2 452 685.587 B3-D1 206 17.669 14.47 1.0318 ± 0.0277 ± 0.0013 δ Lep

and the VLTI was first modeled taking into account all known
effects and then calibrated based on several bright reference
star observations with the UTs (see Kervella et al. 2003b, for
details).

Taking the weighted average wavelength of this model
spectrum gives an effective wavelength of λeff = 2.178 ±
0.003 µm for δEri, ξHya and ηBoo. The visibility fits were
computed taking into account the limb darkening of the stellar
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Table 3. δEri squared visibilities (continued from Table 2).

Julian Date Stations N B (m) Az. (deg) V2 ± stat ± syst Calibrator
2 452 524.854 E0-G1 350 65.689 307.62 0.7271 ± 0.0400 ± 0.0054 70 Aql, 31 Ori
2 452 524.858 E0-G1 336 65.583 307.23 0.7720 ± 0.0464 ± 0.0057 70 Aql, 31 Ori
2 452 524.863 E0-G1 239 65.450 306.79 0.7729 ± 0.0521 ± 0.0057 70 Aql, 31 Ori
2 452 524.890 E0-G1 452 64.342 303.74 0.7467 ± 0.0329 ± 0.0055 70 Aql, 31 Ori
2 452 524.895 E0-G1 456 64.115 303.16 0.7561 ± 0.0336 ± 0.0056 70 Aql, 31 Ori
2 452 524.899 E0-G1 452 63.877 302.56 0.7579 ± 0.0332 ± 0.0056 70 Aql, 31 Ori
2 452 555.889 B3-M0 312 132.444 27.46 0.2742 ± 0.0150 ± 0.0055 δ Phe
2 452 555.893 B3-M0 275 131.275 27.44 0.2769 ± 0.0168 ± 0.0056 δ Phe
2 452 556.810 B3-M0 200 139.144 30.60 0.2477 ± 0.0152 ± 0.0067 δ Phe
2 452 556.817 B3-M0 395 139.500 30.10 0.2294 ± 0.0113 ± 0.0062 δ Phe
2 452 556.822 B3-M0 373 139.635 29.80 0.2370 ± 0.0117 ± 0.0064 δ Phe
2 452 564.830 B3-M0 146 138.416 28.23 0.2047 ± 0.0228 ± 0.0019 HR 8685
2 452 567.762 B3-M0 236 137.272 32.21 0.2245 ± 0.0153 ± 0.0044 HR 8685
2 452 577.789 B3-M0 173 138.926 28.46 0.2248 ± 0.0314 ± 0.0070 45 Eri, HR 2549
2 452 577.794 B3-M0 187 138.426 28.23 0.2156 ± 0.0289 ± 0.0067 45 Eri, HR 2549
2 452 213.776 UT1-UT3 73 101.996 232.98 0.4883 ± 0.0203 ± 0.0102 χ Phe
2 452 213.777 UT1-UT3 332 102.056 232.83 0.5207 ± 0.0138 ± 0.0109 χ Phe
2 452 213.791 UT1-UT3 69 102.374 231.76 0.5089 ± 0.0172 ± 0.0106 χ Phe
2 452 213.793 UT1-UT3 312 102.394 231.65 0.5044 ± 0.0150 ± 0.0105 χ Phe
2 452 578.723 B3-M0 269 135.965 33.09 0.2393 ± 0.0257 ± 0.0063 τCet
2 452 578.740 B3-M0 169 138.202 31.51 0.2520 ± 0.0246 ± 0.0066 τCet
2 452 578.745 B3-M0 74 138.752 31.02 0.2133 ± 0.0307 ± 0.0056 τCet
2 452 585.799 B3-M0 298 134.322 27.55 0.2608 ± 0.0134 ± 0.0071 τCet
2 452 601.810 B3-M0 206 116.676 28.41 0.3674 ± 0.0290 ± 0.0082 τCet
2 452 602.728 B3-M0 123 138.193 28.15 0.2183 ± 0.0241 ± 0.0056 τCet
2 452 602.742 B3-M0 396 136.193 27.73 0.2412 ± 0.0174 ± 0.0062 τCet
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Fig. 2. Squared visibility measurements obtained on ξHya. The solid
line is a limb darkened disk model with θLD = 2.386 ± 0.009 ±
0.019 mas (statistical and systematic errors).

disk of each stars. We used power law intensity profiles derived
from the limb darkening models of Claret (2000) in the K band.

The resulting limb darkened diameters for the three pro-
gram stars are given in Table 1. The statistical error bars were
computed from the statistical dispersion of the series of µ2 val-
ues obtained on each star (typically a few hundred), using the
bootstrapping technique. The systematic error bars come from
the uncertainties on the angular diameters of the calibrators that
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Fig. 3. Squared visibility measurements obtained on ηBoo. The solid
line is a limb darkened disk model with θLD = 2.200 ± 0.027 ±
0.016 mas (statistical and systematic errors).

were used for the observation. They impact the precision of the
interferometric transfer function measurement, and thus affect
the final visibility value. Naturally, these calibration error bars
do not get smaller when the number of observations increases,
as the statistical errors do. The detailed methods and hypothe-
sis used to compute these error bars are given in Kervella et al.
(2004b).

Article published by EDP Sciences and available at http://www.edpsciences.org/aa or http://dx.doi.org/10.1051/0004-6361:20042075



258 F. Thévenin et al.: δ Eri, ξ Hya, η Boo

Table 4. ξ Hya squared visibilities.

Julian Date Stations N B (m) Az. (deg) V2 ± stat ± syst Calibrators
2 452 681.743 B3-D1 333 23.650 27.39 0.9539 ± 0.0376 ± 0.0008 α Crt
2 452 681.747 B3-D1 460 23.727 26.48 0.9520 ± 0.0305 ± 0.0008 α Crt
2 452 681.751 B3-D1 343 23.801 25.51 0.9281 ± 0.0334 ± 0.0007 α Crt
2 452 681.777 B3-D1 452 23.995 20.50 0.9555 ± 0.0304 ± 0.0008 α Crt
2 452 681.781 B3-D1 332 23.989 19.60 0.9383 ± 0.0337 ± 0.0008 α Crt
2 452 681.785 B3-D1 427 23.975 18.89 0.9424 ± 0.0305 ± 0.0008 α Crt
2 452 682.729 B3-D1 354 23.407 29.82 0.9560 ± 0.0251 ± 0.0009 α Crt
2 452 682.752 B3-D1 295 23.846 24.85 0.9519 ± 0.0280 ± 0.0009 α Crt
2 452 682.792 B3-D1 297 23.904 17.19 0.9420 ± 0.0317 ± 0.0007 α Crt
2 452 682.801 B3-D1 403 23.773 15.47 0.9351 ± 0.0237 ± 0.0007 α Crt
2 452 760.583 B3-M0 350 138.521 60.37 0.2383 ± 0.0058 ± 0.0069 α Crt
2 452 760.600 B3-M0 343 136.690 63.11 0.2520 ± 0.0061 ± 0.0073 α Crt
2 452 760.605 B3-M0 391 135.918 63.96 0.2568 ± 0.0059 ± 0.0075 α Crt
2 452 760.635 B3-M0 433 129.762 68.49 0.2971 ± 0.0058 ± 0.0077 α Crt
2 452 760.640 B3-M0 388 128.458 69.20 0.2978 ± 0.0061 ± 0.0077 α Crt
2 452 760.645 B3-M0 284 127.037 69.92 0.3221 ± 0.0071 ± 0.0084 α Crt
2 452 761.624 B3-M0 429 131.833 67.24 0.2714 ± 0.0063 ± 0.0097 51 Hya
2 452 761.628 B3-M0 303 130.716 67.94 0.2787 ± 0.0077 ± 0.0100 51 Hya
2 452 761.665 B3-M0 421 119.296 73.16 0.3592 ± 0.0063 ± 0.0131 51 Hya
2 452 761.671 B3-M0 402 117.300 73.87 0.3681 ± 0.0067 ± 0.0135 51 Hya
2 452 761.675 B3-M0 340 115.485 74.49 0.3727 ± 0.0087 ± 0.0136 51 Hya
2 452 762.604 B3-M0 470 135.192 64.66 0.2554 ± 0.0021 ± 0.0092 51 Hya
2 452 762.609 B3-M0 454 134.296 65.44 0.2600 ± 0.0022 ± 0.0094 51 Hya
2 452 762.614 B3-M0 386 133.310 66.21 0.2689 ± 0.0049 ± 0.0097 51 Hya
2 452 762.623 B3-M0 441 131.274 67.59 0.2771 ± 0.0027 ± 0.0100 51 Hya

Table 5. η Boo squared visibilities.

Julian Date Stations N B (m) Az. (deg) V2 ± stat ± syst Calibrators
2 452 760.684 B3-M0 131 134.046 64.22 0.3167 ± 0.0187 ± 0.0119 α Crt
2 452 760.696 B3-M0 50 136.318 63.31 0.3227 ± 0.0415 ± 0.0121 α Crt
2 452 763.693 B3-M0 187 137.132 62.88 0.3095 ± 0.0092 ± 0.0064 µ Vir

3.4. Search for a companion to δ Eri

δEri is classified as an RS CVn variable (Kholopov et al. 1998),
and has shown a small amplitude photometric variability (mV =

3.51 to 3.56). Fisher et al. (1983) have also reported photomet-
ric variations with an amplitude ∆mV = 0.02 over a period of
10 days. This small amplitude and the apparent absence of pe-
riodic radial velocity modulation lead these authors to propose
that δEri is a close binary star seen nearly pole on (i ≤ 5 deg).
Following this idea, we can suggest three hypotheses to explain
the observed photometric variations:

1. The main star is ellipsoidal. This would result in a modu-
lation of its projected surface along the line of sight during
its rotation. This deformation would be caused by the close
gravitational interaction of the main star with the unseen
companion.

2. The companion creates a hot spot on the hemisphere of the
main star that is facing it. It is changing in apparent surface
when the system rotates, probably synchronously.

3. The pole of the main component has a dark spot that
changes in apparent surface during the rotation of the star.

The period of the photometric variations, if attributed to the
presence of an orbiting companion, allows us to deduce the

distance between the two components through Kepler’s third
law. At the distance of δEri, this corresponds to an angular
separation of approximately 9 mas, easily resolvable using the
moderately long baselines of the VLTI. Using the B3-D1 sta-
tions of the VLTI, we have taken advantage of the fact that
the azimuth of the projected baseline is almost constant for
observations of δEri to monitor the evolution of its visibility
over a period of 13 nights. The projected length is also very
well suited to the expected separation. Our interferometric data
(Fig. 4) does not show any systematic deviation from the uni-
form disk model fit obtained using the longer baselines, at a
level of 0.2 ± 0.3%, consistent with zero. From these measure-
ments, we conclude that no companion is detected at a level of
about ±2% of the luminosity of the primary star. This result is
consistent with the fact that δEri does not deviate significantly
from the surface-brightness relations determined by Kervella
et al. (2004c).

4. Models and results

In order to obtain a rapid estimate of the improvements brought
by the new interferometric constraints on the radius on the de-
termination of the mass and age of the three stars, we have
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Fig. 4. Observed deviation of the squared visibilities of δEri (B3-
D1 baseline only) with respect to the visibility model of a θUD =

2.394 mas uniform disk model. The dashed line represents the aver-
age deviation over all observations (0.21%).

calculated evolutionary stellar models that we compare to ob-
servations. In these models we have adopted a given set of stan-
dard input physics and the observational parameters described
in Sect. 2 and Table 1. We do not intend to examine in detail
the effects on the uncertainties of the details of the models (en-
velope, convection, overshooting or other extra mixing) on the
results presented here.

The parameters used to construct our CESAM (Morel
1997) evolutionary models are summarized in Table 1. The
convection is described by Canuto & Mazitelli’s theory (1991,
1992) and the atmospheres are restored on the basis of Kurucz’s
atlas models (1992). The other input physics are identical to
those adopted for the star Procyon (see Kervella et al. 2004a).
The adopted metallicity Z/X, which is an input parameter for
the evolutionary computations, is given by the iron abundance
measured in the atmosphere with the help of the following ap-
proximation: log

(
Z
X

)
� [Fe/H] + log

(
Z
X

)
�. We use the solar

mixture of Grevesse & Noels (1993):
(

Z
X

)
� = 0.0245.

The evolutionary tracks are initialized at the Pre-Main
Sequence stage. Note that the age is counted from the ZAMS.
In CESAM, the ZAMS is defined as the stage of the end of the
Pre-Main Sequence where the gravitational energy release is
equal to the nuclear one. We have computed models with and
without microscopic diffusion of chemical species.

To fit observational data (effective temperature Teff , lu-
minosity L and surface metallicity [Z/X]surf) with correspond-
ing results of various computations, we adjust the main stellar
modeling parameters: mass, age and metallicity. In figures rep-
resenting the zoom of HR diagram (Figs. 6, 8, 10 and 12), the
(rectangular) error boxes are derived from the values and accu-
racies of the stellar parameters quoted in Table 1. The present
(new) values of radii, presented in this paper, select sub-areas
in these error boxes and hence the new measures of diameters
are used to discriminate between our models (see Table 1). Our
best model is the one that satisfies first the luminosity and ra-
dius constraint and second the effective temperature constraint.
On the zooms of the HR diagrams (see Figs. 6, 8, 10 and 12),

the measured radius and its confidence interval appear as
diagonal lines. We notice that the addition of the radius mea-
surement reduces significantly the uncertainty domain, and in
some cases tightens the allowed range for ages by a factor of
three (see below). We have computed models that include over-
shooting of the convective core (radius Rco) over the distance
Ov = Aov min(Hp,Rco) where Rco is the core radius, following
the prescriptions of Schaller et al. (1992).

4.1. δ Eri

First, we adopt an initial helium content similar to the Sun,
Yini = 0.28 and [Z/X]ini = 0.148, both stars having similar ages
and abundances (this will be confirmed hereafter).

Then, with mass and metallicity as free parameters, we
have computed a grid of evolutionary tracks in order to repro-
duce observational data. Our best model without diffusion and
without overshooting gives M = 1.215 M� and an age (from
the ZAMS) of 6196 Myr. Our best model with diffusion and
an overshooting value of Aov = 0.15 in agreement with the re-
sults of Ribas et al. (2000) gives M = 1.215 M�, an age (from
the ZAMS) of 6194 Myr and a diameter of D = 2.328 D�. See
Figs. 5 and 6.

The mean large frequency splitting found for our best
model is 45.27 µHz. This result is in agreeement within two
per cent with the value of 43.8 µHz of the mean large frequency
splitting reported by Carrier et al. (2003).

4.2. ξ Hya

We have computed a grid of evolutionary tracks (with and
without diffusion) in order to reproduce observational data.
Hence, we derived the following parameters: M = 2.65 M�,
Yini = 0.275 and [Z/X]ini ≡ 0.0. Our best model with diffu-
sion and an overshooting value of Aov = 0.20 in agreement
with the results of Ribas et al. (2000) gives us an age (from
the ZAMS) of 509.5 Myr and a diameter of D = 10.3 D�. To
improve the modeling, a better precision of the diameter is re-
quired as it is the case for the two other stars discussed in this
paper, for which the accuracy is better by an order of magni-
tude. See Figs. 7 and 8.

Solar-like oscillations of that star were discovered by
Frandsen et al. (2002) with a mean spacing of 7.1 µHz; see also
Teixeira et al. (2003). From our model, we computed a value of
7.2 µHz similar to the theoretical value presented by Frandsen
et al. or Teixeira et al.

4.3. η Boo

Concerning the values of Teff and its corresponding uncer-
tainty, we have chosen conservative values based upon vari-
ous determinations: Feltzing & Gonzales (2001) gives Teff =

6000 ± 100 K whereas Cayrel de Strobel (2001) gives a range
between 5943 and 6219 K . We notice that DiMauro et al. adopt
Teff = 6028 ± 45 K but in our study, we take advantage of the
constraint given by the new diameter value which reduces the
uncertainty as shown in Figs. 10 or 12.
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Fig. 5. Evolutionary tracks in the H-R diagram for δ Eri from label “A”
(0 Myr) to label “G” (6000 Myr), shown by upper case letters and
squares with time steps of 1000 Myr; from label “h” (6100 Myr) to
label “j” (6300 Myr), shown by lower case letters and triangles with
time steps of 100 Myr.

Fig. 6. Zoom of the evolutionary tracks in the H-R diagram for δ Eri
from label “a” (6140 Myr) to label “j” (6230 Myr), shown by lower
case letters and triangles with time steps of 10 Myr (except label “G”
at 6200 Myr shown by an upper case letter and a square). Our best
model is close to label “f” at 6194 Myr (see Table 1).

In a first attempt to characterize this star, DiMauro et al.
(2003) limit the range of mass between 1.64 M� and 1.75 M�.
Guenther (2004) adopted in his conclusion a mass of 1.706 M�
with an initial chemical composition: Xini = 0.71 , Yini = 0.25
and Zini = 0.04. In the present study, we have computed a
grid of models and it appears that the best fitting parame-
ters are M = 1.70 M� with an initial chemical composition
Xini = 0.70, Yini = 0.26 and Zini = 0.04. A first set of mod-
els have been computed with the simplest available reliable
physics (and therefore without diffusion, as probably done by
the previously cited authors). A second set of models have
also been computed with improved physics. Thus, we include

Fig. 7. Evolutionary tracks in the H-R diagram for ξ Hya from la-
bel “A” (0 Myr) to “F” (500 Myr), shown by upper case letters and
squares with time steps of 100 Myr; from label “g” (502 Myr) to “p”
(511 Myr), show by lower case letters and triangles with time steps of
1 Myr.

Fig. 8. Zoom of the evolutionary tracks in the H-R diagram for ξ Hya.
from label “a” (509.2 Myr) to “g” (509.8 Myr), shown by lower case
letters and triangles with time steps of 0.1 Myr. Our best model is
close to label “d” at 509.5 Myr (see Table 1).

convective overshooting (with Aov = 0.15, see previous discus-
sion), diffusion and radiative diffusivity (see Morel & Thévenin
2002) which controls diffusion of chemical elements in inter-
mediate mass stars. The two sets of results give similar results
except for the ages: the age of the best model with diffusion
(2738.5 Myr) is higher than the age of the best model without
diffusion (2355.0 Myr).

As shown, for example, in Fig. 10, without the constraint
given by the diameter, the age would range from 2295 Myr
(between label “b” and label “c”) to 2410 Myr (close to la-
bel “n”), with a derived uncertainty of 115 Myr. For a given
set of input physics, the constraint on diameter reduces the un-
certainty on the age by about a factor of three: the age would
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Fig. 9. Evolutionary tracks in the H-R diagram for η Boo (model with-
out diffusion) from label “A” (0 Myr) to “E” (2000 Myr), shown by
upper case letters and squares with time steps of 500 Myr; from la-
bel “f” (2200 Myr) to “o” (2650 Myr), shown by lower case letters
and triangles with time steps of 50 Myr (except label “L” at 2500 Myr
shown by an upper case letter and a square).

Fig. 10. Zoom of the evolutionary tracks in the H-R diagram for
η Boo (model without diffusion) from label “a” (2280 Myr) to “n”
(2410 Myr), shown by lower case letters and triangles with time steps
of 10 Myr (except labels “C” at 2300 Myr and label “M” a 2400 Myr
shown by an upper case letters and squares). Our best model is close
to label “h” at 2350 Myr (see Table 1).

be ranging from 2323 Myr (close to label “e”) to 2370 Myr
(close to label “j”), corresponding to a (reduced) uncertainty of
47 Myr (Figs. 9–12). Note that our model for η Boo with dif-
fusion (Figs. 11 and 12) has the star in a very short-lived phase
of evolution (which is, of course, possible but with a small, but
non zero, probability).

5. Concluding remarks

We have measured with the instrument VLTI/VINCI the angu-
lar diameters of three subgiant and giant stars and used them

Fig. 11. Evolutionary tracks in the H-R diagram for η Boo (model
with diffusion) from label “A” (0 Myr) to label “F” (2500 Myr), shown
by upper case letters and squares with a time step of 500 Myr; la-
bel “g” at 2700 Myr shown by a triangle; from label “h” (2750 Myr)
to label “k” (2900 Myr), shown by lower case letters and triangles with
a time step of 50 Myr.

Fig. 12. Zoom of the evolutionary tracks in the H-R diagram for η
Boo (model with diffusion) from label “a” (2738 Myr) to label “g”
(2744 Myr), shown by lower case letters and triangles with time steps
of 1 Myr (except label “C” at 2740 Myr shown by a square); from la-
bel “H” (2745 Myr) to label “K” (2760 Myr), shown by upper case let-
ters and squares with time steps of 5 Myr. Our best model is between
label “a” (at 2738 Myr) and label “b” (at 2739 Myr) (see Table 1).

as an additive constraint to the spectro-photometric and aster-
oseismic ones to perform a study of the stellar evolutionary
status.

Owing the position of the three stars in the HR diagram, the
determination of the modeling parameters, in particulary the
age, is very sensitive to the input physics, due to the rapidity of
the stellar evolution compared to the size of the error boxes.

With our input physics and observational constraints, δ Eri
is a star at the end of the subgiant phase (M = 1.215 M�) with
an age of 6.2 Gyr. We attempt without success to detect a close
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companion forcing us to conclude that the classification of δ Eri
as an RS CVn star is doubtful.
ξ Hya has been constrained with success with a model

adopting a mass of 2.65 M� and an age of 510 Myr.
η Boo is a subgiant slightly more evolved than Procyon

with a similar age of 2.7 Gyr. With a mass of at M = 1.7 M�
(similar to the mass adopted by Di Mauro et al. 2003), we were
able to reproduce the VLTI/VINCI radius. We notice that be-
cause of the short evolutionary time scales of a model crossing
rather large error boxes, the results of the models – in partic-
ular the age – are very sensitive to the input physics (for in-
stance, the core mixing. Some progress in the asteroseismic ob-
servations is now required to better constrain the evolutionary
state of giant stars for which the frequency spacings (Bouchy
& Carrier 2003; Bedding & Kjeldsen 2003) are still relatively
imprecise. The improvement of the angular diameter estima-
tions in the future will further tighten the uncertainty domain
in the HR diagram, especially as detailed modeling of the at-
mosphere will be required. This improvement will naturally
require a higher precision on the parallax value to derive the
linear diameters.
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3.3 Assombrissement centre-bord

L’assombrissement centre-bord (ACB) est une des caractéristiques observationnelles les plus
importantes des atmosphères stellaires. ll s’agit cependant d’un effet particulièrement difficile à
mesurer directement sur les étoiles autres que le Soleil (Fig. 3.6), car il se manifeste comme une
faible modulation de la visibilité interférométrique avec la fréquence spatiale ou la longueur de
la base utilisée (Fig. 3.3).

Pourtant, une bonne connaissance de l’ACB est indispensable pour traduire correctement
des visibilités interférométriques en une mesure de diamètre angulaire photosphérique. Jusqu’à
présent, on utilise en général les résultats de modèles numériques d’atmosphère du type de ceux
de Kurucz (1992). Même s’ils ont donné de bons résultats pour les étoiles géantes mesurées par
interférométrie (voir par exemple l’étude de la géante rouge ψPhe par Wittkowski et al. 2004),
le cas des étoiles naines n’est pas aussi bien étudié.

La raison à cela est essentiellement la petite taille des étoiles de la séquence principale.
Avec les interféromètres existant actuellement (B ≤ 330 m), et pour des étoiles plus petites
angulairement que 2mas, il est très difficile d’atteindre une résolution angulaire suffisante pour
se trouver dans la partie de leur courbe de visibilité sensible à l’ACB : le second lobe. Si la mesure
de la taille d’une étoile demande typiquement un seul élément de résolution de l’interféromètre
sur le disque de l’étoile, la mesure de l’ACB en réclame au minimum 2, ce qui implique une
longueur de base deux fois plus grande. Il faut comprendre que la limite de 2 mas donnée ci-
dessus correspond à la taille apparente du Soleil à une distance de seulement 4,5 parsec. Dans
un tel volume restreint, le nombre d’étoiles accessible à une mesure interférométrique d’ACB
est naturellement assez faible. Les étoile naines les plus favorables pour ce type d’étude sont
αCen A et B (Sect. 3.3.1).

Une discussion de l’ACB de l’étoile naine Véga est présentée à la Sect. 4.4. Elle est dissociée
de ce chapitre sur les étoiles de la séquence principale car l’ACB de Véga est fortement affecté
par la rotation de l’étoile.

Fig. 3.6 – Photographie du Soleil en lumière blanche montrant son assombrissement centre-bord
(crédit photo : P. Hyndman).
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Fig. 3.7 – Fonction de visibilité interférométrique d’une étoile de type solaire d’un diamètre
angulaire de 2 mas, en bande K, avec et sans prise en compte de son assombrissement centre-
bord (modèle linéaire avec u = 0, 28).
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3.3.1 Article A&A : “The limb darkening of α Cen B. Matching 3D hydro-
dynamical models with interferometric measurements” (2006)

Nous avons obtenu avec VINCI une mesure de la visibilité de αCen B dans le second lobe
de sa fonction de visibilité, ainsi que des observations supplémentaires dans le premier lobe par
rapport à notre article de 2003 (Sect. 3.2.1). Dans le but d’améliorer notre connaissance de l’ACB
de cette étoile, nous avons calculé un modèle hydrodynamique tridimensionnel (3D hydro) de
la partie supérieure de l’atmosphère stellaire. Le résultat de cette modélisation est comparé aux
mesures interférométriques, ainsi qu’à un modèle 1D plus simple de type Kurucz (1992). Même
si la quantité et la précision des données n’est pas encore suffisante pour conclure, l’approche
3D hydro reproduit mieux les observations que l’approche 1D classique.

Fig. 3.8 – Au premier plan, un sidérostats de test du VLTI (35cm de diamètre), et en arrière
plan les trois grands télescopes UT2, UT3 et UT4. Le bâtiment du laboratoire interférométrique
est visible à droite.
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ABSTRACT

For the nearby dwarf star αCen B (K1 V), we present limb-darkening predictions from a 3D hydrodynamical radiative transfer model of its
atmosphere. We first compared the results of this model to a standard Kurucz’s atmosphere. Then we used both predictions to fit the new
interferometric visibility measurements of αCen B obtained with the VINCI instrument of the VLT Interferometer. Part of these new visibility
measurements were obtained in the second lobe of the visibility function, which is sensitive to stellar limb-darkening. The best agreement is
found for the 3D atmosphere limb-darkening model and a limb-darkened angular diameter of θ3D = 6.000 ± 0.021 mas, corresponding to a
linear radius of 0.863 ± 0.003 R� (assuming π = 747.1 ± 1.2 mas). Our new linear radius agrees well with the asteroseismic value predicted
by Thévenin et al. (2002, A&A, 392, L9). In view of future observations of this star with the VLTI/AMBER instrument, we also present
limb-darkening predictions in the J, H, and K bands.

Key words. instrumentation: interferometers – stars: atmospheres

1. Introduction

Limb-darkening (hereafter LD) is a well-known effect in stel-
lar physics. Its manifestation is a non-uniform brightness of the
disk, whose edges appear fainter than the center. This effect oc-
curs because of the decrease in the source function outwards in
the atmosphere. The disk center then shows deeper and warmer
layers, whereas the edges show higher and cooler material. This
means that analysis of the intensity Iλ(µ) at different latitudinal
angles µ = cos θ provides information on the temperature vari-
ation with depth in the external layers of the star. This is there-
fore an excellent constraint for testing atmospheric models, to
validate or invalidate assumptions used to derive these mod-
els (like NLTE/LTE), and to provide suggestions for improving
the input physics (equation-of-state and/or opacities in partic-
ular). The center-to-limb variation of the Sun has been known
for many years and been measured for numerous µ and λ (e.g.
Pierce & Slaughter 1977; Neckel & Labs 1994; Hestroffer &
Magnan 1998) leading to a plethora of theoretical works that
have improved our knowledge of the external layers of the Sun.

Traditionally, analysis of solar and stellar LD is made by
adopting an approximated law for Iλ(µ), generally a polyno-
mial expansion in µ that are either linear or non-linear (see
e.g. Claret 2000, for recent developments) and with coeffi-
cients determined from 1D atmospheric models, like ATLAS

(Kurucz 1992) or Phoenix (Hauschildt 1999). However, in spite
of the detailed physics included in these codes, their 1D na-
ture is a limitation for deriving realistic emergent intensities.
Indeed, these codes contain free parameters, like the well-
known mixing length parameter, which are injected artificially
in order to reproduce the properties of the turbulent convec-
tion at the stellar surface. As a consequence, the comparison
between these 1D models and observations depends on the in-
put parameters, which thereby creates an important source of
uncertainties. Moreover, convection is by nature a 3D process.
Its manifestation is the presence of bright granules and dark
intergranular lanes. Reducing it to a 1D process, i.e. ignoring
horizontal flows and temperature inhomogeneities, changes the
pressure scale height, the location of the surface, and there-
fore also the emergent intensity (see e.g. Allende-Prieto et al.
2004; and Asplund et al. 2000a, for a comparison of multi-
dimensional simulations).

The precise measurements of the center-to-limb variation
achieved nowadays require realistic stellar atmospheric models
that take all the complexity of the stellar surface into account,
and motivates the use of the new generation of 3D radiative
hydrodynamical (hereafter RHD) simulations.

In this paper we propose a study of αCen B (HD128621),
a nearby K1V dwarf star. It is part of a visual triple star
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system whose brightest component, αCen A (HD128620), is
a G2V dwarf. Both theoretical and observational considera-
tions motivated the selection of this star in the present work.
From the interferometric point of view, the proximity (1.3 pc)
of the star is a rare opportunity for interferometric measure-
ments, since most of the nearby dwarfs have angular diameters
that are too small to be measured. Our interest in this star grew
recently since our new measurements provided data points in
the second lobe of the visibility function, which is sensitive to
the LD of the star. From a theoretical point of view, this star
is important for various reasons. In particular, recent detection
of solar-like oscillations in αCen A and B (Bouchy & Carrier
2001, 2002; Carrier & Bourban 2003) have led several authors
(e.g. Morel et al. 2000; Thévenin et al. 2002; Thoul et al. 2004;
Eggenberger et al. 2004) to build evolution models of these two
stars that are strongly constrained by the measured frequency
spacings. The result is a better, but still debated, determination
of the fundamental parameters of the system.

In Sect. 2, we report the new interferometric measurements
of αCen B obtained since 2003 using the VINCI instrument.
Section 3 describes our 3D simulations to derive self-consistent
stellar limb-darkening of αCen B. They are subsequently used
to compute visibility curves in the near-infrared (Sect. 4) in
order to interpret our measurements in terms of stellar angular
diameter and to discuss the agreement between the 3D limb-
darkening model and our second lobe visibility measurements.
We also use our simulations to predict future observations (J,
H, and K bands) that will be made with the next generation of
instruments of the VLTI, such as the new AMBER instrument
(Petrov et al. 2000; Robbe-Dubois et al. 2004).

2. New interferometric observations

A total of 37 new interferometric measurements of αCen B
were obtained in 2003 on two baselines, D1-B3 (24 m in
ground length) and B3-M0 (140 m), using the VINCI instru-
ment (Kervella et al. 2000; Kervella et al. 2003a). The points
obtained on the longer baseline are located in the second lobe
of the visibility function of αCen B, whose shape depends on
the limb-darkening. We obtained 1000 interferograms on the
B3-M0 baseline in two series. Out of these, 534 were pro-
cessed by the VINCI pipeline. The B3-M0 baseline observa-
tions are made difficult by the very low V2 of the interferomet-
ric fringes, less than 2%. However, Fig. 1 shows an example of
the power spectral density of these very low visibility fringes
where no bias is present. On the D1-B3 baseline, we recorded
17 500 interferograms in 35 series (15 141 processed). These
new measurements were added to the V2 values obtained on the
E0-G1 baseline and have already been published in Kervella
et al. (2003b, hereafter Paper I). The resulting squared visibili-
ties are listed in Tables 2 and 3.

We used several stars from the Cohen et al. (1999) cat-
alog as calibrators to estimate the point source response of
the interferometer. They were observed immediately before or
after αCen B. On the D1-B3 baseline, we used HD 119193
(θUD = 2.03 ± 0.022 mas), 58 Hya (θUD = 3.13 ± 0.030 mas)
and HD 112213 (θUD = 3.14 ± 0.025 mas). Approximately one
third of the measurements were obtained with each of these
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Fig. 1. The average wavelet power spectral density (WPSD) of 299 in-
terferograms of αCen B obtained on JD 2 452 770.6605 (11 May
2003). In spite of the very low visibility (V2 = 1.38%), subtraction of
the background noise (dotted line) from the processed fringe’s power
peak (dashed line) leaves no residual bias on the final WPSD (solid
line). The power integration is done between wave numbers 1970 and
7950 cm−1.

calibrators. On the B3-M0 baseline, we relied on HR 4831
(θUD = 1.66 ± 0.018 mas), whose small size results in a low
systematic uncertainty on the calibrated V2 values. The angu-
lar diameter estimates from Cohen et al. (1999) have been ver-
ified by Bordé et al. (2002) as reliable within their stated error
bars. The squared visibilities were derived using the processing
methods described in Kervella et al. (2004). As an example,
the calibration sequence used for the longest baseline B3-M0
is presented in Table 1.

3. Simulation of a 3D atmosphere

In order to model the intensity profile of αCen B, we per-
formed realistic, time-dependent, 3D radiative hydrodynamical
simulations of its surface. The emerging intensity of the atmo-
spheric model in different directions was used to build theoret-
ical monochromatic limb-darkening profiles for various wave-
lengths covering the spectral domains of interest for the VINCI
and AMBER instruments (in the 1.0−2.4µm range).

3.1. The stellar atmosphere modelling

The numerical code used for this work belongs to a new gener-
ation of 3D atmospheric codes developed for the study of solar
(e.g. Stein & Nordlund 1989, 1998) and stellar (e.g. Nordlund
& Dravins 1990; Asplund et al. 2000; Allende-Prieto et al.
2002; Ludwig et al. 2002) granulation and line formations
(e.g. Asplund et al. 2000a,b,c, 2004, 2005). The code solves
the non-linear, compressible equations of mass, momentum,
and energy conservation on a Eulerian mesh. The 3D radiative
transfer was solved at each time step along different inclined
rays for which we assumed local thermodynamical equilibrium
(LTE). We considered 10 latitudinal µ points and 4 longitudi-
nal ϕ points, and checked that a finer grid in (µ, ϕ) does not
change the properties of the model. Realistic equation-of-state
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Table 1. Calibration sequence of αCen B on the B3-M0 baseline (140 m ground length). The expected visibilities V2
theo given in this table

include the bandwidth smearing effect. The interferometric efficiency given in italics corresponds to the value assumed for the calibration of
these particular αCen B observations (see Tables 2 and 3). The HR 4831 data marked with (∗) were taken 2 h before αCen B, and are listed to
show the stability of the IE, but were not used for the IE estimation.

JD Scans B (m) Azim. µ2± stat. (%) V2
theo± syst. (%) IE ± stat. ± syst. (%) Target

2 452 770.5474 365 139.309 49.24 29.37 ± 0.39 49.93 ± 0.80 58.83 ± 0.79 ± 0.94∗ HR 4831∗

2 452 770.5523 316 139.131 50.51 29.38 ± 0.51 50.06 ± 0.80 58.70 ± 1.02 ± 0.93∗ HR 4831∗

2 452 770.5572 296 138.913 51.77 30.05 ± 0.67 50.19 ± 0.80 59.88 ± 1.34 ± 0.95∗ HR 4831∗

2 452 770.6368 405 128.934 71.28 32.05 ± 0.35 55.48 ± 0.75 57.78 ± 0.62 ± 0.77 HR 4831
2 452 770.6419 408 127.841 72.49 31.60 ± 0.36 56.01 ± 0.74 56.42 ± 0.64 ± 0.74 HR 4831
2 452 770.6469 392 126.698 73.69 32.72 ± 0.36 56.54 ± 0.73 57.87 ± 0.64 ± 0.74 HR 4831
2 452 770.6605 299 133.838 59.85 0.791 ± 0.039 57.36 ± 0.82 ± 0.74 αCen B
2 452 770.6656 235 133.277 61.33 0.777 ± 0.082 57.36 ± 0.82 ± 0.74 αCen B

Table 2. αCen B squared visibilities.

JD B (m) Azim. V2± stat. ± syst. (%)
D1-B3
2 452 720.9141 20.891 108.36 81.24 ± 3.03 ± 0.09
2 452 720.9081 21.095 106.30 83.40 ± 2.80 ± 0.09
2 452 725.8927 21.152 105.72 80.48 ± 1.83 ± 0.04
2 452 720.9029 21.270 104.52 83.89 ± 2.66 ± 0.09
2 452 725.8878 21.315 104.05 79.99 ± 1.81 ± 0.04
2 452 725.8828 21.479 102.36 80.95 ± 1.84 ± 0.04
2 452 720.8627 22.462 91.40 83.75 ± 3.84 ± 0.10
2 452 725.8408 22.669 88.80 79.26 ± 2.54 ± 0.06
2 452 725.8358 22.786 87.24 78.79 ± 2.52 ± 0.06
2 452 720.8489 22.799 87.08 82.95 ± 3.88 ± 0.10
2 452 725.8306 22.903 85.63 79.32 ± 2.54 ± 0.06
2 452 720.8434 22.921 85.36 82.06 ± 3.76 ± 0.10
2 452 726.8032 23.375 77.99 77.19 ± 0.64 ± 0.07
2 452 703.8642 23.405 77.43 80.79 ± 2.25 ± 0.05
2 452 726.7983 23.452 76.49 78.82 ± 0.60 ± 0.07
2 452 703.8599 23.470 76.13 80.05 ± 2.23 ± 0.05
2 452 726.7933 23.525 74.96 77.69 ± 0.59 ± 0.07
2 452 703.8555 23.534 74.77 81.05 ± 2.23 ± 0.05
2 452 723.7937 23.627 72.58 77.60 ± 0.93 ± 0.10
2 452 723.7885 23.688 71.00 77.11 ± 0.86 ± 0.10
2 452 723.7835 23.741 69.46 78.76 ± 0.81 ± 0.10
2 452 723.7521 23.953 59.81 78.42 ± 0.77 ± 0.10
2 452 703.8019 23.970 58.32 79.61 ± 2.50 ± 0.05
2 452 723.7469 23.970 58.20 78.20 ± 0.83 ± 0.10
2 452 704.7984 23.971 58.09 81.26 ± 0.98 ± 0.05
2 452 703.7979 23.980 57.06 80.38 ± 2.46 ± 0.05
2 452 704.7940 23.982 56.70 81.38 ± 0.97 ± 0.05
2 452 723.7419 23.982 56.63 77.93 ± 0.55 ± 0.10
2 452 709.7555 23.985 48.87 82.93 ± 3.59 ± 0.10
2 452 704.7896 23.989 55.34 80.51 ± 1.01 ± 0.05
2 452 716.7402 23.990 50.10 77.55 ± 3.22 ± 0.08
2 452 709.7596 23.991 50.19 81.43 ± 3.55 ± 0.10
2 452 726.7251 23.994 53.95 76.95 ± 0.90 ± 0.08
2 452 716.7448 23.994 51.55 76.31 ± 3.22 ± 0.08
2 452 709.7640 23.994 51.57 77.31 ± 3.73 ± 0.09

(including ionization, dissociation, and recombination) and
opacities (Uppsala opacity package, Gustafsson et al. 1975)
were used. The line-blanketing was taken into account through

Table 3. αCen B squared visibilities (continued).

JD B (m) Azim. V2± stat. ± syst. (%)
E0-G1∗

2 452 462.5836 60.441 157.57 17.02 ± 0.36 ± 0.26
2 452 462.5870 60.544 158.40 17.01 ± 0.23 ± 0.26
2 452 462.5905 60.645 159.26 16.80 ± 0.77 ± 0.26
2 452 462.5949 60.767 160.35 16.05 ± 0.68 ± 0.24
2 452 465.6268 61.541 170.27 16.76 ± 1.05 ± 0.26
2 452 470.6203 61.621 172.05 14.94 ± 0.44 ± 0.23
2 452 470.6234 61.650 172.82 15.59 ± 0.42 ± 0.24
2 452 470.6278 61.687 173.92 16.70 ± 0.44 ± 0.25
B3-M0
2 452 770.6605 133.838 59.85 1.379 ± 0.07 ± 0.02
2 452 770.6656 133.277 61.33 1.356 ± 0.14 ± 0.02

∗ E0-G1 measurements reported by Kervella et al. (2003b).

the opacity binning technique (Nordlund 1982). In the present
simulation we considered a Cartesian grid of (x, y, z) = 125 ×
125 × 82 points. The geometrical sizes are 6 × 6 Mm for the
horizontal directions and 5 Mm for the vertical one. The di-
mensions of this domain are large enough to include a suf-
ficiently large number of granules (n ≥ 20) simultaneously,
which prevents statistical bias. A periodic boundary condition
was applied for the horizontal directions, and transmitting ver-
tical boundaries were used at the top and bottom of the do-
main. The base of the domain was adjusted to have a nearly
adiabatic, isentropic, and featureless convective transport. The
upper boundary was placed sufficiently high in the atmosphere
so that it does not influence the property of the model.

A detailed description of the current version of the code
used in this paper may be found in Stein & Nordlund (1998).
Unlike 1D hydrostatic models that reduce all hydrodynamics
to a single adjustable parameter, the present simulations were
done ab initio by solving the complete set of RHD equations in
a self-consistent way. All the dynamics and turbulence of the
model came naturally from the equations of physics. Nothing
was adjusted, such as the convective flux in the MLT formal-
ism. The diagnostic made by such RHD simulations is, there-
fore, much more realistic than the 1D models. We emphasize
that the realism of these 3D simulations has been intensively
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Table 4. limb-darkening I(λ, µ) for various wavelengths over the JHK range.

λ (µm) / µ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1.050 0.4434 0.5745 0.6453 0.7069 0.7605 0.8087 0.8527 0.8932 0.9311 0.9667 1.0000
1.270 0.4646 0.6017 0.6738 0.7347 0.7860 0.8310 0.8711 0.9074 0.9406 0.9715 1.0000
1.650 0.4838 0.6752 0.7487 0.8039 0.8462 0.8812 0.9110 0.9369 0.9601 0.9811 1.0000
2.000 0.5442 0.7063 0.7707 0.8202 0.8585 0.8905 0.9178 0.9417 0.9630 0.9825 1.0000
2.200 0.5729 0.7220 0.7817 0.8283 0.8646 0.8950 0.9211 0.9439 0.9645 0.9831 1.0000
2.400 0.5968 0.7353 0.7912 0.8352 0.8698 0.8988 0.9239 0.9458 0.9656 0.9836 1.0000

Fig. 2. Snapshot of the disk-center (µ = 1) intensity emerging at the
stellar surface at a representative time.

checked for solar line formations (e.g. Asplund et al. 2000b,c,
2004), helioseismology (e.g. Rosenthal et al. 1999), and also
for stellar line formations (e.g. Allende-Prieto et al. 2002).

The adopted atmospheric parameters are those of Morel
et al. (2000), i.e. Teff = 5260 K, log g = 4.51 and
[Fe/H] = +0.2. The simulation was run for a few hours of stel-
lar time that covered several convective turn-over times. The
result is a 3D, time-dependent box representing the stellar sur-
face. A snapshot of the disk-center surface intensity is repre-
sented in Fig. 2. The structure of our model is similar to the one
obtained by Nordlund & Dravins (1990) but is even more real-
istic, since the present version of the code solves compressible
equations of hydrodynamics and uses more grid-points, which
allows a better treatment of the turbulence.

3.2. 3D limb-darkening

The monochromatic surface intensity was computed for var-
ious latitudinal µ and longitudinal ϕ directions at the stellar
surface. The limb-darkening Iλ(µ) was obtained by horizon-
tal (x, y), longitudinal and time averages of the surface in-
tensity. For the time average, we considered a sequence of
2 hours of stellar time. The results are plotted in Fig. 3 for
the two extreme wavelengths of our spectral domain, 1.0 and
2.4 µm. For comparison, we overplot limb-darkening obtained
from a 1D ATLAS9 model for the same wavelengths and

for the same stellar fundamental parameters. It appears that
3D RHD produces a less significant center-to-limb variation
than a 1D static model. The departure from a 1D model in-
creases with decreasing wavelengths. Such behavior was also
found by Allende Prieto et al. (2002) for Procyon. However,
in the case of α Cen B, the departure from 1D to 3D limb-
darkening is smaller, as a consequence of a less efficient con-
vection in K dwarfs as compared to F stars.

The reason the emergent intensity differs between 1D and
3D models is that the properties of the superadiabatic and sur-
face convective layers cannot be described well by the mixing
length formalism, whatever parameter we choose. The temper-
ature inhomogeneities (granulation) together with the strong
sensitivity of the opacity (H−) to the temperature make the
warm ascending flows more opaque than they would be for a
homogeneous 1D model. This purely 3D effect, added to the
contribution of the turbulent pressure, pushes the location of
the surface to lower densities. The temperature gradient in these
regions is steeper than in the 1D case (see Nordlund & Dravins
1990). Since the continuum is formed in these layers, the emer-
gent intensity is different.

The correction due to 3D simulations (a few percents)
is small but not negligible with respect to the precision ob-
tained by the new generation of interferometric instruments
like VINCI or AMBER. This improvement is essential for de-
riving an accurate angular diameter of the star. We report our
limb-darkening predictions in Table 4 for a series of contin-
uum wavelengths between 1.0 and 2.4µm, corresponding to the
JHK range accessible to the AMBER instrument.

4. Visibility model and angular diameter
of αCen B

In this section, we describe the application of our 3D limb-
darkening models to the interpretation of the VINCI measure-
ments of αCen B.

4.1. Limb-darkened disk visibility model

In the simple case of a centro-symmetric star such as αCen B,
the visibility function measured using a broadband inter-
ferometric instrument such as VINCI is defined by three
wavelength-dependent functions:

1. The spectral energy distribution S (λ) of the star, ex-
pressed in terms of photons (VINCI uses a photon counting
detector).
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Fig. 3. Normalized monochromatic center-to-limb variation Iλ(µ)/Iλ(1) of the surface intensity obtained by 3D RHD simulations of α Cen B
as a function of µ for two different wavelengths: 1 µm (left panel) and 2.4 µm (right panel), which correspond to the extreme limits of the
spectral domain we have considered in this paper. The solid lines represent the 3D RHD limb-darkening, whereas the dashed lines represent
limb darkening derived from 1D ATLAS atmospheric models. In both case, the symbols � represent the values extracted from both 1D (white)
and 3D (black) simulations.

2. The wavelength-dependent intensity profile of the star:
I(λ, µ)/I(λ, 1).

3. The spectral transmission T (λ) of the instrument, including
the atmosphere, all optical elements and the detector quan-
tum efficiency.

Out of these three functions, T (λ) is known from the concep-
tion of the instrument, as well as from calibrations obtained on
the sky (see Kervella et al. 2003b, for details). The spectral en-
ergy distribution of the star S (λ) can be measured directly using
a spectrograph or taken from atmospheric numerical models.

From the 3D RHD simulations presented in Sect. 3, we ob-
tained intensity profiles for ten distinct wavelengths over the
K band (chosen in the continuum). For each of these pro-
files, ten values of µ were computed. The resulting 10 × 10
element 2D table I(λ, µ)/I(λ, 1) was then interpolated to a
larger 60 × 50 element table, with a 10 nm step in wavelength
(over the 1.90−2.50µm range) and a 0.02 step in µ. This in-
terpolation preserves the smooth shape of the intensity pro-
file function well. This procedure was also used to build the
I(λ, µ)/I(λ, 1) table based on the 1D Kurucz model. The origi-
nal sample (10 × 20) was interpolated to the same final grid as
the 3D model.

We can derive the monochromatic visibility law Vλ(B, θ)
from the monochromatic intensity profile I(λ, µ) using the
Hankel integral:

Vλ(B, θ) =
1
A

∫ 1

0
I(λ, µ)J0

(
π B θLD

λ

√
1 − µ2

)
µ dµ, (1)

where B is the baseline (in meters), θ the limb darkened an-
gular diameter (in radians), J0 the zeroth order of the Bessel
function, λ the wavelength (in meters), µ = cos θ the cosine of
the azimuth of a surface element of the star, and A the normal-
ization factor:

A =
∫ 1

0
I(λ, µ) µ dµ. (2)

To obtain the visibility function observed by VINCI in broad-
band, we have to integrate this function taking the transmission
of the instrument and the spectral energy distribution of the star
into account:

VK(B, θ) =

∫
K

[Vλ(B, θ) T (λ) S (λ)]2 λ2 dλ∫
K

[T (λ) S (λ)]2 λ2 dλ
· (3)

Note the λ2 term that is necessary, as the actual integration
of the squared visibility by VINCI over the K band is done
in the Fourier conjugate space of the optical path difference
(expressed in meters), and is therefore done in wavenumber
σ = 1/λ. This corrective term ensures that the integration of
the star’s spectrum is done precisely in the same way as in the
instrument.

This formulation is very general, as it does not make any
particular assumption about the spectrum of the star or about
the wavelength dependence of its intensity profile I(λ, µ).

4.2. Fit of the interferometric data and angular
diameter of αCen B

Considering the model discussed in Sect. 4.1, we now derive
the limb-darkened angular diameter θLD of αCen B. It is ob-
tained by a standard χ2 analysis of the data. We define the re-
duced χ2 of our fit by

χ2
red =

1
N − n

N∑
i=1

⎛⎜⎜⎜⎜⎝V2
i − V2

model

σi

⎞⎟⎟⎟⎟⎠
2

, (4)

where n is the number of variables (n = 1 for our fit), N the
total number of measurements, i the index of a particular mea-
surement, and σi the standard deviation of the measurement
with index i.

The χ2 minimization was computed for three center-to-limb
models: uniform disk (UD), 1D ATLAS, and 3D RHD. In each
case, the broadband square visibility curve V2

K(B, θ) is shown in
Figs. 4 and 5. In addition to the purely statistical error, we must
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Fig. 4. Overview of αCen B squared visibilities. The continuous line
represents the broadband, limb darkened disk visibility model derived
from the 3D RHD with θ3D = 6.000 mas.

also take two systematic error sources into account: the cali-
bration uncertainty and the wavelength uncertainty. The cali-
bration uncertainty comes from the errors on the a priori an-
gular sizes of the five calibrators that were used for the VINCI
observations. It amounts to 0.012 mas on the final angular di-
ameter. The wavelength uncertainty comes from the imperfect
knowledge of the transmission of VINCI, in particular of its
fluoride glass optical fibers. This transmission was calibrated
on the sky (Paper I), and the uncertainty on this measurement
is estimated to be 0.15%. As it impacts linearly on the an-
gular diameter value, it corresponds to 0.009 mas. These two
systematic factors add up quadratically to the 0.013 mas sta-
tistical uncertainty and result in a total error of 0.021 mas on
the angular diameters of αCen B. The best fit angular diame-
ter that we derive using our 3D limb-darkening model is θ3D =

6.000±0.021 mas. The 1D model produces a slightly larger di-
ameter, θ1D = 6.017 ± 0.021 mas, and the UD disk produces
naturally a much smaller diameter, θUD = 5.881 ± 0.021 mas.

There is no significant difference between the three models
in the first lobe of visibility. However, different amplitudes of
the second lobe were observed. While the UD model produces
higher visibilities, the 1D limb-darkened model leads to visi-
bilities that are slightly too low compared to our observations.
Overall, the 3D model leads to a slightly better agreement with
observations.

As expected, the difference 3D/1D is rather small, since we
are working in the near-infrared (K-band) and with a dwarf star.
It is nonetheless comparable to σstat and therefore significant.

4.3. Linear diameter

Assuming the parallax value of Söderhjelm (1999), π = 747.1±
1.2 mas1, we found a linear radius of 0.863 ± 0.003 R� which
agrees with results presented in Paper 1. We estimated that the

1 One should note that there is a rather broad distribution of parallax
values for αCen in the literature, as discussed in Paper I. While the
value from Söderhjelm (1999) is the result of a careful reprocessing
of the Hipparcos data, the possibility of a bias beyond the stated 1σ

adopted uncertainty in Teff (=50 K) leads to an error of about
0.0003 R�, i.e. ten times smaller than the derived uncertainties.
From the 1D analysis, we derived a radius of 0.865± 0.003 R�,
larger than the radius found by the RHD approach by about
1σstat. In addition to the corrections it provides, the use of
3D simulations was also motivated by the absence of adjustable
parameters, which is not the case for 1D models.

This slightly smaller linear radius obtained from 3D RHD
simulations, compared with the one derived from 1D ATLAS
model, supports the suggestion of a smaller mass (M =

0.907 M�, Kervella et al. 2003) rather than the larger one
(M = 0.934 ± 0.007 M�) proposed by Pourbaix et al. (2002).
However, stellar evolution models are sensitive to many param-
eters, and a smaller radius does not always lead to a smaller
mass. More investigations are thus needed before we can reach
a definite conclusion about the mass of α Cen B. In this con-
text, our improved radius provides an additional constraint on
asteroseismic diagnostics.

5. Conclusion

In this paper we improve determination of the radius of αCen B
in two respects. Firstly, we report the first interferometric mea-
surements in the second lobe of visibility. Secondly, in or-
der to derive a reliable value of the angular diameter of the
star, we performed realistic 3D RHD simulations of the sur-
face of α Cen B. By comparison with observations, we found
a radius of 0.863 ± 0.003 R�. The correction provided by the
3D approach is small but significant (especially in the K band
probed with VINCI), since it provides a radius that is smaller
by roughly 1σstat compared with what can be obtained by
1D models. Moreover, the use of 3D RHD is preferable since
it does not introduce adjustable parameters to describe convec-
tion. We also emphasize that for hotter A−F stars the correction
due to 3D analysis will be larger than for αCen B. We have
shown that even for a K-dwarf like α Cen B, though it is small,
the correction obtained by the use of RHD simulations should
not be neglected for very high precision interferometric mea-
surements. In the next few years, the combination of high visi-
bility precision and long baselines will require the use of real-
istic theoretical models of the stellar limb-darkening to extract
the true photospheric angular diameter of the observed stars
from the observed visibilities. Conversely, observations beyond
the first minimum of the visibility function will directly sample
the light distribution on the surface of the stars, therefore pro-
viding constraints for the atmosphere structure models. Future
observations with the VLTI will allow to sample tightly the sec-
ond lobe of the visibility function of several solar analogs (in-
cluding αCen A and B), and therefore to derive their intensity
profiles with high accuracy. Comparisons between our theoret-
ical predictions of limb-darkening and the future observations
made by AMBER will be an excellent test of our modelling
of the surface of αCen B. Indeed, AMBER will provide new
interferometric data that will contain much more information

error cannot be completely excluded, in particular, due to the extreme
brightness and binarity of αCen.
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Fig. 5. Close-up views of the squared visibilities of αCen B in the lower part of the first lobe (left panel) and the second lobe (right panel).
The continuous line represents the broadband, limb darkened disk visibility model derived from the 3D RHD with θ3D = 6.000 mas. The
dashed lines correspond to results obtained from the 1D ATLAS model with θ1D = 6.017 mas. The upper dotted curve is a UD model with
θUD = 5.881 mas.

compared with VINCI. There will be two major advantages
with AMBER:

– It will provide a wavelength dependence of the visibility
([1.9−2.4] µm) therefore allowing differential studies of
limb-darkening as a function of wavelength.

– AMBER can simultaneously combine the light from three
telescopes and therefore measure the closure phase. This
gives an advantage to determining the angular size of the
star when observing in the minima of the visibility function.

These improvements will lead to better constrained angular di-
ameters of αCen A and B and, therefore, to high precision mea-
surement of the ratio of the linear radii of A and B, independent
of the parallax.

Acknowledgements. We thank Vincent Coudé du Foresto for impor-
tant remarks that led to improvements at an early stage of this pa-
per. We thank the anonymous referee for constructive remarks. These
interferometric measurements were obtained using the VLTI (ESO
Paranal, Chile), and were retrieved from the ESO/ST-ECF Archive
(Garching, Germany). LB thanks the CNES for financial support and
Å. Nordlund for providing his RHD code. We also thank Claude Van’t
Veer for providing the ATLAS model.

References

Allende Prieto, C., Asplund, M., Garcia Lòpez, R. J., & Lambert, D. L.
2002, ApJ, 567, 544

Allende Prieto, C., Asplund, M., & Fabiani Bendicho, P. 2004, A&A,
423, 1109

Asplund, M., Nordlund, Å., Trampedach, R., & Stein, R. F. 1999,
A&A, 346L, 17

Asplund, M., Ludwig, H.-G., Nordlund, Å., & Stein, R. F. 2000a,
A&A, 359, 669

Asplund, M., Nordlund, Å., Trampedach, R., Allende Prieto, C., &
Stein, R. F. 2000b, A&A, 359, 729

Asplund, M., Nordlund, Å., Trampedach, R., & Stein, R. F. 2000c,
A&A, 359, 743

Asplund, M., Grevesse, N., Sauval, A. J., Allende Prieto, C., &
Kiselman, D. 2004, A&A, 417, 751

Asplund, M., Grevesse, N., Sauval, A. J., Allende Prieto, C., &
Blomme, R. 2005, A&A, 431, 693

Bordé, P., Coudé du Foresto, V., Chagnon, G., & Perrin, G. 2002,
A&A, 393, 183

Bouchy, F., & Carrier, F. 2001, A&A, 374, L5
Bouchy, F., & Carrier, F. 2002, A&A, 390, 205
Carrier, F., & Bourban, G. 2003, A&A, 406, 23
Claret, A. 2000, A&A, 363, 1081
Cohen, M., Walker, R. G., Carter, B., et al. 1999, AJ, 117, 1864
Eggenberger, P., Charbonnel, C., Talon, S., et al. 2004, A&A, 417, 235
Gustafsson, B., Bell, R. A., Eriksson, K., & Nordlund, Å. 1975, A&A,

42, 407
Hauschildt, P. H., Allard, F., & Baron, E. 1999, ApJ, 512, 377
Hestroffer, D., & Magnant, C. 1998, A&A, 333, 338
Kervella, P., Coudé du Foresto, V., Glindemann, A., & Hofmann, R.

2000, SPIE, 4006, 31
Kervella, P., Gitton, Ph., Ségransan, D., et al. 2003a, SPIE, 4838, 858
Kervella, P., Thévenin, F., Ségransan, D., et al. 2003b, A&A, 404,

1087 (Paper I)
Kervella, P., Ségransan, D., & Coudé du Foresto, V. 2004, A&A, 425,

1161
Kurucz, R. L. 1992, The Stellar Populations of Galaxies, IAU Symp.,

149, 225
Ludwig, H., Allard, F., & Hauschildt, P. H. 2002, A&A, 395, 99
Morel, P., Provost, J., Lebreton, Y., Thévenin, F., & Berthomieu, G.

2000, A&A, 363, 675
Neckel, H., & Labs, D. 1994, SoPh, 153, 91
Nordlund, Å. 1982, A&A, 107, 1
Nordlund, Å., & Dravins, D. 1990, A&A, 228, 155
Petrov, R. G., Malbet, F., Richichi, A., et al. 2000, SPIE, 4006, 68
Pierce, A. K., & Slaughter, C. D. 1977, SoPh, 51, 25
Pourbaix, D., Nidever, D., McCarthy, C., et al. 2002, A&A, 386, 280
Robbe-Dubois, S., Petrov, R. G., Lagarde, S., et al. 2004, SPIE, 5491,

1089
Rosenthal, C. S., Christensen-Dalsgaard, J., Nordlund, Å., Stein, R. F.,

& Trampedach, R. 1999, A&A, 351, 689
Stein, R. F., & Nordlund, Å. 1989, ApJ, 342, L95
Stein, R. F., & Nordlund, Å. 1998, ApJ, 499, 914
Söderhjelm, S. 1999, A&A, 341, 121
Thévenin, F., Provost, J., Morel, P., et al. 2002, A&A, 392, L9
Thoul, A., Scuflaire, R., Noels, A., et al. 2003, A&A, 402, 293



3.4 La brillance de surface des étoiles naines

La brillance de surface d’une étoile est une grandeur particulièrement intéressante à étalonner,
car elle se conserve avec la distance (en l’absence d’extinction) : lorsque la distance est doublée,
sa surface apparente est divisée par quatre, comme son flux apparent. Par définition, la brillance
de surface bolométrique d’une étoile f est liée à sa température effective Teff par f ' L/R2 ' T 4

eff

(avec R le rayon bolométrique de l’étoile et L son flux bolométrique). Exprimée en valeur lo-
garithmique, F = log f est donc une fonction linéaire des indices de couleur. Fouqué & Gie-
ren (1997) donnent la définition suivante de la brillance de surface à la longueur d’onde λ :

Fλ = 4, 2207− 0, 1mλ − 0, 5 log θLD (3.1)

La constante est simplement une normalisation au flux bolométrique solaire (f�) et à la magni-
tude absolue solaire (Mbol�) :

4, 2207 = 0, 1Mbol� + 1 + 0, 25 log
4f�
σ

(3.2)

Une conséquence de cette conservation est que le diamètre angulaire d’une étoile peut être calculé
à partir de seulement deux magnitudes mesurées dans deux bandes distinctes. Ceci est très utile
pour estimer a priori la taille angulaire des étoiles d’étalonnage utilisées en interférométrie. Les
relations entre la brillance de surface et une combinaison de magnitudes visible et infrarouge
sont en particulier très faiblement dispersées. La Fig. 1 de l’article reproduit à la Sect. 3.4.1
montre une des meilleures relations, basée sur la couleur B − L.
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3.4.1 Article A&A : “The angular sizes of dwarf stars and subgiants. Surface
brightness relations calibrated by interferometry” (2004)

Je présente dans cet article une analyse de l’ensemble des mesures interférométriques exis-
tantes d’étoiles naines et sous-géantes, dans le but de réaliser un étalonnage des relations couleur-
brillance de surface pour ces classes d’étoiles. Plus de la moitié de ces mesures proviennent
d’observations réalisées avec l’instrument VINCI du VLTI. Les relations les plus adaptées à la
prédiction de diamètres angulaires sont obtenues pour les indices de couleur visible-infrarouge :
leur dispersion intrinsèque est inférieure à 1%. Il est intéressant de noter que ces relations ont
éte utilisées très récemment avec succès par Bouchy et al. (2005) pour préciser les propriétés de
l’étoile HD189733 occultée par une planète de 1,15 MJ . L’accord avec les observations du transit
de la planète est excellent.

Fig. 3.9 – Deux des charriots mobiles des lignes à retard du VLTI. Leur longueur totale est
d’environ 2m.
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Abstract. The availability of a number of new interferometric measurements of Main Sequence and subgiant stars makes it
possible to calibrate the surface brightness relations of these stars using exclusively direct angular diameter measurements.
These empirical laws make it possible to predict the limb darkened angular diameters θLD of dwarfs and subgiants using
their dereddened Johnson magnitudes, or their effective temperature. The smallest intrinsic dispersions of σ ≤ 1% in θLD

are obtained for the relations based on the K and L magnitudes, for instance log θLD = 0.0502 (B − L) + 0.5133 − 0.2 L or
log θLD = 0.0755 (V − K) + 0.5170 − 0.2 K. Our calibrations are valid between the spectral types A0 and M2 for dwarf stars
(with a possible extension to later types when using the effective temperature), and between A0 and K0 for subgiants. Such
relations are particularly useful for estimating the angular sizes of calibrators for long-baseline interferometry from readily
available broadband photometry.

Key words. stars: fundamental parameters – techniques: interferometric

1. Introduction

The surface brightness (hereafter SB) relations link the emerg-
ing flux per solid angle unit of a light-emitting body to its color,
or effective temperature. These relations are of considerable as-
trophysical interest, as a well-defined relation between a partic-
ular color index and the surface brightness can provide accurate
predictions of the stellar angular diameters. Such predictions
are essential for the calibration of long-baseline interferometric
observations. We propose in the present paper new and accurate
calibrations of the SB-color relations of dwarfs and subgiants
based on direct interferometric measurements of nearby mem-
bers of these two luminosity classes. Our primary purpose is to
establish reliable relations that can be used to predict the angu-
lar sizes of calibrator stars for long-baseline interferometry.

After defining the surface brightness relations (Sect. 2),
we discuss in Sect. 3 the sample of measurements that we
selected for our calibrations (interferometric and photometric
data). Section 4 is dedicated to the calibration of the empirical
SB relations, relative to the color indices and to the effective

� Tables 3–6 are only available in electronic form at
http://www.edpsciences.org

temperature, for stars of spectral types A0 to M2. We also de-
rive inverse relations to estimate the effective temperature from
broadband photometry and angular diameter measurements. As
the established relations are intended to be used primarily to
predict angular diameters, we discuss in Sect. 5 their associ-
ated errors in this context. In Sect. 6, we search for a possible
instrumental bias linked to one of the five interferometric in-
struments represented in our sample. Numerous versions of the
SB relations have been established in the literature, mostly for
giants and supergiants, and we discuss them in Sect. 7. Main
Sequence stars are potentially very good calibrators for long-
baseline interferometry, and we discuss this particular applica-
tion of our SB relations in Sect. 8.

2. Direct and inverse surface brightness relations

By definition, the bolometric surface flux f ∼ L/D2 is linearly
proportional to T 4

eff, where L is the bolometric flux of the star,
D its bolometric diameter and Teff its effective temperature.
In consequence, F = log f is a linear function of the stellar
color indices expressed in magnitudes (logarithmic scale), and
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SB relations can be fitted using (for example) the following
expressions:

FB = a0 (B − V)0 + b0 (1)

FV = a1 (V − K)0 + b1 (2)

FH = a2 (B − H)0 + b2 (3)

where Fλ is the surface brightness. When considering a perfect
blackbody curve, any color can in principle be used to obtain
the SB. The index 0 designates the dereddened magnitudes, and
the ai and bi coefficients represent respectively the slopes and
zero points of the different versions of the SB relation. The par-
ticular expression of the SB relation FV (V−R) is also known as
the Barnes-Evans (B-E) relation, and is historically the first ver-
sion to have been calibrated empirically (Barnes et al. 1976).
However, the relatively large intrinsic dispersion of the visible
B-E relation has led many authors to prefer its infrared coun-
terparts, in particular those based on the K band magnitudes
(λ = 2.0−2.4 µm), as infrared wavelengths are less affected by
interstellar extinction. The surface brightness Fλ is given by the
following expression (Fouqué & Gieren 1997):

Fλ = 4.2207 − 0.1 mλ0 − 0.5 log θLD (4)

where θLD is the limb darkened angular diameter, i.e. the angu-
lar size of the stellar photosphere.

The linear expressions of the SB can be inverted easily to
predict angular diameters, and give linear relations such as:

log θLD = c1 (V − K) + d1 − 0.2 V (5)

for the FV (V − K) inversion. We have in this example:

c1 = −2 a1 (6)

d1 = 2 (4.2207− b1). (7)

In the present paper, we will refer to both the direct and inverse
relations as “SB relations”.

3. Selected measurement sample

3.1. Angular diameters

Over the past two years, sixteen new angular diameter mea-
surements of nearby Main Sequence and subgiant stars were
obtained with the VLT Interferometer (Glindemann et al.
2000, 2003a,b) equipped with the fiber-based beam com-
biner VINCI (Kervella et al. 2000, 2003a). To complement
this sample, we have searched the literature, and added to
our list the measurements related to the stars of luminosity
classes IV and V. Most of the visible and infrared interferome-
ters are represented in our sample, with measurements from the
NII (Narrabri Intensity Interferometer, Hanbury Brown et al.
1967), the Mk III (Shao et al. 1988), the PTI (Palomar Testbed
Interferometer, Colavita et al. 1999) and the NPOI (Navy
Prototype Optical Interferometer, Armstrong et al. 1998). Our
findings originally included a few lunar occultation measure-
ments, but they were rejected as they were related to variable

or multiple stars, or their precision was not sufficient to give
them any weight in the fitting process.

To obtain a consistent sample of limb darkened (LD) angu-
lar diameters we have retained solely the uniform disk (UD)
values from the literature. The conversion of these model-
independent measurements to LD values was achieved using
the linear LD coefficients u from Claret (2000), and the conver-
sion formula from Hanbury Brown et al. (1974a). These coef-
ficients are broadband, single-parameter approximations of the
Kurucz (1992) model atmospheres. They are tabulated for a
grid of temperatures, metallicities and surface gravities and we
have chosen the closest models to the physical properties of the
stars. We have considered a uniform microturbulent velocity of
2 km s−1 for all stars. This single source for limb darkening
corrections ensures the self-consistency of our final sample.

3.2. Photometry

All the apparent magnitudes that we have retained from the
literature are expressed in the Johnson system. When avail-
able, we have preferentially kept the uncertainties given by
the original authors, otherwise we adopted arbitrarily a conser-
vative error bar. The U band magnitudes were obtained from
Morel et al. (1978) and Mermilliod (1986), and we adopted a
±0.02 error. The B, V , R and I bands were obtained from sev-
eral online catalogues available through VIZIER (Ochsenbein
et al. 2000), and we also adopted a ±0.02 uncertainty. For the J
to L infrared bands, references are not so easy to find, as many
bright stars are unfortunately absent from the recent infrared
surveys, like 2MASS (Cutri et al. 2003) or DENIS (Fouqué
et al. 2000). We have relied on the VIZIER database to obtain
the infrared magnitudes of our sample of stars. In some cases,
the references we used are 30 years old, but many of them have
small and reliable uncertainties. The original references of the
measurements are given in the footnotes of Table 3.

3.3. Data selection

The SB relations rely on the assumption that stars behave like
black bodies, i.e. that their colors are mainly governed by their
effective temperature. A severe deviation from this assumption
will cause a discrepancy between the actual flux per surface
unit and the temperature of the star.

For instance, if there is a second, unresolved star near the
main object, its additional flux will bias the spectral energy dis-
tribution. For this reason, we have rejected the binary and mul-
tiple objects for which separate photometry of the components
is not available.

The presence of warm material in the circumstellar environ-
ment can also create an excess at infrared wavelengths. While
this signature is most useful for identifying the stars surrounded
by protoplanetary disks, it creates a bias in the measured color
of the star. Some of the stars we selected are surrounded by
debris disks (ε Eri, αPsA, τCet, βLeo), but the contribution of
the circumstellar material is negligible, even in the infrared J
to L bands. The material surrounding these stars is very cold
and radiates mostly in the far infrared domain. We have rejected
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the measurement of βPic from Di Folco et al. (in preparation),
due to its large uncertainty (�10%) and to the relatively high
density of its edge-on circumstellar disk that could cause sig-
nificant extinction.

The fast rotating stars can deviate significantly from the
black body assumption. As demonstrated by the VINCI ob-
servations of the nearby Be star αEri (Domiciano de Souza
et al. 2003), the photosphere of these objects can be deformed
by their fast rotation. This creates differential limb darkening
between the pole and the equator which appear to have dif-
ferent effective temperatures. This makes it particularly diffi-
cult to define the true photometric solid angle subtended by
these objects. In addition, many fast rotating stars go through
episodes of mass loss, that are likely to create a warm circum-
stellar environment. The presence of such hot material around
the star will create a bias in the flux and color of the star. For
these reasons, we have chosen to reject the known fast rotators
(v sin i ≥ 100 km s−1) and the Be stars from our list.

The very low mass stars Proxima (GJ 551, M5.5V) and
Barnard’s star (GJ 699, M4V) have been excluded from our
fitting procedures for three reasons. The first is that because
of their very low effective temperatures the molecular absorp-
tion bands dominate their spectra and lead to a significant dis-
crepancy with the hotter stars. Second, these stars are variable,
presenting occasional flares that make it difficult to estimate
their magnitudes. Third, they present chromospheric activity
that could bias their magnitudes in the U to V colors. However,
we have kept these two stars on the SB relation figures for
comparison.

The spectroscopic and eclipsing binaries are less useful for
the estimation of the surface brightness relation, as it is in gen-
eral impossible to measure separately the magnitudes of these
stars with the required precision. For this reason, we have not
included in our sample the angular diameter measurements ob-
tained by spectroscopic or photometric methods. For the in-
terested reader, a rather complete compilation of the measure-
ments using these techniques can be found in the CADARS
catalogue by Pasinetti-Fracassini et al. (2001).

3.4. Final sample

We report in Tables 1 and 2 the complete set of measurements
that we have considered for our fit. In this table, the angular
diameters θUD (uniform disk) and θLD (limb-darkened disk) are
expressed in milliarcseconds (mas). The limb darkening con-
version coefficient k = θLD/θUD was computed for each star
based on the tables of Claret (2000). When a physical param-
eter was not available in the literature, it has been estimated
approximately, and appears in italic characters. The observa-
tion wavelength λ is given as either the name of the photo-
metric band (V , H, K) or the actual wavelength in µm. The
error bar in the angular diameter of the Sun (G2V) has been
set arbitrarily to ±0.1%. The parallaxes are from the Hipparcos
catalogue (Perryman et al. 1997), except the αCen value that
was taken from Söderhjelm (1999), who derived it from repro-
cessed Hipparcos data. The interferometer used for each mea-
surement is indicated in the “Instr.” column.

4. Surface brightness relations

4.1. Fitting procedure

For each angular diameter measurement θLD, and based on the
observed apparent magnitudes mλ, we have computed the sur-
face brightness Fλ in all bands, using the definition of Eq. (4).
The resulting Fλ values were then fitted relative to the colors
(C0 − C1), using a linear model. This fit was achieved using a
classical χ2 minimization taking into account the errors in both
the colors and Fλ. The minimized quantity, using the slope a
and zero point b as variables, is the reduced χ2 expression:

χ2
red(a, b) =

1
N − 2

N∑

i=1

[
(F0)i − a (C0 −C1)i − b

]2
(σF i)2 + a2 (σC i)2

(8)

where we have:

– N the total number of measurements in our sample;
– (F0)i the surface brightness of star i in band C0;
– (C0−C1)i the color of the star of index i computed between

bands C0 and C1;
– σC i the 1σ error bar in the chosen color of star i;
– σF i the 1σ error bar in the surface brightness F0.

The 1σ errors σa and σb are subsequently estimated from the
best fit values a and b by solving numerically the expression:

χ2
red(a + σa, b + σb) = χ2

red(a, b) + 1. (9)

The solutions of this equation correspond to an elliptic contour,
due to the correlation between the a and b variables. It has to be
projected on the a and b axis to give the errors. The residuals
∆Fi = Fi − Fmodel are used to estimate the intrinsic dispersion
σint(F) of the surface brightness relation from:

σ2
int(F) =

1
N

N∑

i=1

[
(∆Fi)2 − (σF i)2

]
. (10)

This process gives a total number of 72 (a, b) best fit pairs, with
their associated errors (σa, σb), and the intrinsic dispersionσint

of the data around the best fit model.
From there, we can invert these relations easily to obtain

their angular diameter counterparts:

log θLD = c (C0 −C1) + d − 0.2 C0. (11)

The slopes and zero points are computed from the (a, b) pairs
through:

c = −2 a, σc = 2σa (12)

d = 2 (4.2207− b), σd = 2σb (13)

and the intrinsic dispersions σint(log θLD) are given by:

σint(log θLD) = 2σint(Fλ). (14)

The same method was used for the fits using the effective
temperature, except that no error bar was considered on the
Teff values from the literature (equal weighting), and we used
a second degree polynomial model instead of a linear one.
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Table 1. Angular diameters of dwarf stars (luminosity class V) measured by long-baseline interferometry (apart from the Sun). They are
expressed in mas, and Teff is in K. “Ref.1" designates the reference used for Teff , log g and [Fe/H]. When unavailable, the metallicity has been
set arbitrarily to the solar value. “Ref.2" designates the reference used for each angular diameter measurement (expressed in mas). The errors
are given in superscript close to each value.

Star Spect. π (mas) Ref.1 Teff log g [Fe/H] Instr. Ref.2 λ θUD k θLD

αLyr A0V 128.930.55 (a, e) 9522 3.98 −0.33 PTI (8) K 3.240.01 1.012 3.280.01

αLyr A0V 128.930.55 (a, e) 9522 3.98 −0.33 NII (1) V 3.080.07 1.046 3.220.07

αLyr A0V 128.930.55 (a, e) 9522 3.98 −0.33 Mk III (4) 0.8 3.150.03 1.028 3.240.03

αLyr A0V 128.930.55 (a, e) 9522 3.98 −0.33 Mk III (4) 0.55 3.000.05 1.046 3.130.05

αCMa A A1V 379.211.58 (b) 9800 4.30 0.40 NII (16) V 5.600.07 1.045 5.850.07

αCMa A A1V 379.211.58 (b) 9800 4.30 0.40 VLTI (9) K 5.940.02 1.012 6.010.02

αCMa A A1V 379.211.58 (b) 9800 4.30 0.40 Mk III (4) 0.8 5.820.11 1.027 5.980.11

βLeo A3V 90.160.89 (g) 8570 4.26 0.20 VLTI (10) K 1.430.03 1.015 1.450.03

βLeo A3V 90.160.89 (g) 8570 4.26 0.20 NII (1) V 1.250.09 1.052 1.310.09

α PsA A3V 130.080.92 (g) 8760 4.22 0.43 NII (1) V 1.980.13 1.050 2.080.14

α PsA A3V 130.080.92 (g) 8760 4.22 0.43 VLTI (10) K 2.200.02 1.014 2.230.02

αCen A G2V 747.101.20 (k) 5790 4.32 0.20 VLTI (13) K 8.310.02 1.024 8.510.02

Sun G2V 5770 19192600.1%

τCet G8V 274.180.80 (i) 5400 4.55 −0.40 VLTI (10) K 2.030.03 1.024 2.080.03

GJ 166 A K1V 198.250.84 (a) 5073 4.19 −0.31 VLTI (15) K 1.600.06 1.029 1.650.06

αCen B K1V 747.101.20 (k) 5260 4.51 0.23 VLTI (13) K 5.860.03 1.026 6.010.03

ε Eri K2V 310.740.85 (a) 5052 4.57 −0.15 VLTI (10) K 2.090.03 1.027 2.150.03

GJ 105 A K3V 138.721.04 (a) 4718 4.50 −0.07 PTI (12) H,K 0.910.07 1.032 0.940.07

GJ 570 A K4V 169.311.67 (a) 4533 4.79 0.02 VLTI (15) K 1.190.03 1.030 1.230.03

ε Ind A K4.5V 275.490.69 (b) 4500 4.50 −0.10 VLTI (15) K 1.840.02 1.030 1.890.02

GJ 380 K7V 205.230.81 (a) 3861 4.68 −0.93 PTI (12) H,K 1.270.04 1.018 1.290.04

GJ 191 M1V 255.120.86 (b) 3524 4.87 −0.50 VLTI (14) K 0.680.06 1.016 0.690.06

GJ 887 M0.5V 303.890.87 (f) 3645 4.80 0.00 VLTI (14) K 1.370.04 1.018 1.390.04

GJ 205 M1.5V 175.721.20 (b) 3626 4.80 0.60 VLTI (14) K 1.120.11 1.020 1.150.11

GJ 15 A M2V 280.261.05 (a) 3721 5.00 −1.40 PTI (12) H,K 0.980.05 1.017 1.000.05

GJ 411 M1.5V 392.520.91 (h) 3620 4.90 −0.20 PTI (12) H,K 1.410.03 1.019 1.440.03

GJ 699 M4Ve 549.301.58 (a) 3201 5.00 −0.90 PTI (12) H,K 0.990.04 1.018 1.000.04

Proxima M5.5V 772.332.42 (f) 3006 5.19 0.00 VLTI (14) K 1.020.08 1.030 1.050.08

– Ref.1 for Teff , log g and [Fe/H]:(a) Cenarro et al. (2001); (b) Cayrel de Strobel et al. (1997); (c) Allende Prieto et al. (2002); (d) Gray et al.
(2001); (e) Thévenin & Idiart (1999); (f) Ségransan et al. (2003); (g) Erspamer & North (2003); (h) Cayrel de Strobel et al. (2001); (i) Di
Folco et al. (in preparation); (j) Morel et al. (2001); (k) Morel et al. (2000).

– Ref.2 for angular diameters:(1) Hanbury Brown et al. (1974b); (2) Kervella et al. (2004a); (3) Nordgren et al. (2001); (4) Mozurkewich
et al. (2003); (5) Thévenin et al. (in preparation); (6) Boden et al. (1998); (7) Nordgren et al. (1999); (8) Ciardi et al. (2001); (9) Kervella
et al. (2003b); (10) Di Folco et al. (in preparation); (11) Nordgren et al. (2001); (12) Lane et al. (2001); (13) Kervella et al. (2003c); (14)
Ségransan et al. (2003); (15) Ségransan et al. (in preparation); (16) Davis et al. (1986).

We minimized numerically the following χ2
red expression using

a, b, c as variables:

χ2
red(a, b, c) =

1
N − 3

N∑

i=1

[Fi − Fmodel(Teff)i]2

σ2
F

(15)

where

Fmodel(Teff)i = a
(
log Teff

)2
i + b

(
log Teff

)
i + c. (16)

The errors in each of the a, b and c coefficients were not com-
puted, as the correlations existing between these coefficients
make it very difficult to determine them accurately. This is jus-
tified by the fact that the astrophysical dispersion of the mea-
surements is largely dominant over the 1σ fitting errors of the
model, and the systematic errors in these coefficients can thus
be considered negligible. The inversion of the resulting Teff

based relations is straightforward. With an expression of the
form:

log θLD = d(log Teff)2 + e(log Teff) + f − 0.2Cλ (17)

we have by definition:

d = −2 a, e = −2 b (18)

f = 2 (4.2207− c). (19)

As in the previous case based on colors, the intrinsic dis-
persions σint(log θLD) of the angular diameter relations are
given by:

σint(log θLD) = 2σint(F). (20)

In some cases, we could derive only upper limits of the intrinsic
dispersion σint, as it was found to be smaller than the average
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Table 2. Angular diameters of subgiant stars (luminosity class IV) measured by interferometry. The references and notations are given in
Table 1.

Star Spect. π (mas) Ref.1 Teff log g [Fe/H] Instr. Ref.2 λ θUD k θLD

γGem A0IV 31.122.33 (b) 9260 3.60 −0.12 NII (1) V 1.320.09 1.047 1.380.09

αCMi A F5IV-V 285.930.88 (c) 6530 3.96 −0.05 VLTI (2) K 5.380.05 1.019 5.480.05

αCMi A F5IV-V 285.930.88 (c) 6530 3.96 −0.05 NPOI (11) V 5.190.04 1.057 5.490.04

αCMi A F5IV-V 285.930.88 (c) 6530 3.96 −0.05 Mk III (4) 0.8 5.320.08 1.039 5.530.08

αCMi A F5IV-V 285.930.88 (c) 6530 3.96 −0.05 Mk III (4) 0.55 5.300.11 1.057 5.600.11

ηBoo G0IV 88.170.75 (a) 6003 3.62 0.25 VLTI (5) K 2.150.03 1.022 2.200.03

ηBoo G0IV 88.170.75 (a) 6003 3.62 0.25 Mk III (4) 0.8 2.180.02 1.044 2.270.03

ηBoo G0IV 88.170.75 (a) 6003 3.62 0.25 Mk III (4) 0.55 2.130.03 1.063 2.260.03

ηBoo G0IV 88.170.75 (a) 6003 3.62 0.25 NPOI (11) V 2.170.06 1.064 2.310.06

ζ Her A G0IV 92.640.60 (j) 5820 3.85 0.04 Mk III (4) 0.8 2.260.05 1.045 2.360.05

ζ Her A G0IV 92.640.60 (j) 5820 3.85 0.04 Mk III (4) 0.55 2.130.03 1.065 2.270.03

ζ Her A G0IV 92.640.60 (j) 5820 3.85 0.04 NPOI (11) V 2.370.08 1.065 2.520.09

µHer G5IV 119.050.62 (a) 5411 3.87 0.16 Mk III (4) 0.8 1.860.04 1.049 1.950.04

µHer G5IV 119.050.62 (a) 5411 3.87 0.16 Mk III (4) 0.55 1.810.03 1.070 1.930.03

βAql G8IV 72.950.83 (a) 5041 3.04 −0.04 NPOI (7) V 2.070.09 1.075 2.230.10

ηCep K0IV 69.730.49 (a) 5013 3.19 −0.19 NPOI (7) V 2.510.04 1.064 2.670.04

δEri K0IV 110.580.88 (a) 4884 3.40 −0.11 VLTI (5) K 2.330.03 1.027 2.390.03

Fig. 1. Linear fit of the surface brightness relation log ZMLDB(B − L)
(upper part), and the corresponding residuals (lower part). The intrin-
sic dispersion in the relation is ±0.004 on log ZMLD, equivalent to a
systematic error of less than 1% in the predicted angular diameters.
The open circles designate GJ 699 and Proxima, which were excluded
from the fitting procedure.

error of the measurements (in such cases, Eq. (10) gives a nega-
tive value for σ2

int). For these relations, such as log θLD(Teff, L),
we conclude that the intrinsic dispersion is undetectable at our
level of sensitivity.

4.2. Angular diameter relations based on colors

The SB relations for UBVRIJHKL colors are listed in Table 4.
They take the form:

log θLD(C0,C1) = cλ(C0 −C1) + dλ − 0.2 C0 (21)

where C0 and C1 are any two distinct colors of the Johnson
system. In many cases, the dependence of the zero magnitude
limb darkened angular diameter (ZMLD), defined for C0 = 0,
as a function of the color is not linear in reality. Thus, the linear
model that we fit does not represent the observations well. In
this case, we have added a note “nl” after the obtained residual
dispersion. The non-linear relations should preferably not be
used for predictions, though the stated dispersions include the
non-linearity.

In theory, there should be a perfect diagonal symmetry be-
tween the dispersions listed in Table 4. In reality, the symmetry
is only approximate, because C0 and C1 are not symmetric in
the expression of log θLD(C0,C1). Therefore, an increased dis-
persion of the apparent magnitudes in one band C1 will be re-
flected preferentially in the θLD(C0,C1) dispersion, rather than
in θLD(C1,C0). For this reason, we provide both versions in
Table 4, including the quasi-symmetric pairs. The best relations
based on the K band (showing residual dispersions below 1%
on the angular diameter θLD) are the following:

log θLD = 0.0535 (B− K) + 0.5159 − 0.2 K (22)

log θLD = 0.0755 (V − K) + 0.5170− 0.2 K, (23)

and the best relations for the L band are:

log θLD = 0.0412 (U − L) + 0.5167 − 0.2 L (24)

log θLD = 0.0502 (B− L) + 0.5133− 0.2 L (25)

log θLD = 0.0701 (V − L) + 0.5139 − 0.2 L (26)

log θLD = 0.1075 (R− L) + 0.5128− 0.2 L. (27)
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Fig. 2. Johnson B band ZMLDB relations as a function of color. The errors bars have been omitted for clarity, and the fitted models are
represented alternatively as solid and dashed lines. From left to right, using the colors: (B − U), (B − V), (B − R), (B − I), (B − J), (B − H),
(B − K), (B − L). A clear non-linearity is visible on the (B − U) based relation.

These expressions are valid at least over the range of colors
defined by our sample (Tables 1 and 2). In terms of spectral
types, the angular diameter predictions can be considered reli-
able between A0 and M2 for dwarfs, and between A0 and K0
for subgiants. There are indications (Fig. 1) that the infrared
relations are valid down to the spectral type M4V of GJ 699,
but show some discrepancy for the M 5.5V star Proxima. The
established relations are likely to be valid also for subgiants of
spectral types later than K0IV, but this cannot be verified from
our sample. It should be stressed that they are applicable only
to single stars, and the presence of a non-resolved stellar com-
panion contributing a significant fraction of the measured flux
will bias the predicted angular diameters. As more than half
of the Main Sequence stars are binary or multiple stars, care
should be taken in the application of these relations.

4.3. Angular diameter relations based on effective
temperatures

Table 5 gives the best fit model coefficients for the relations
θLD(Teff,Cλ), defined as:

log θLD = d (log Teff)2 + e (log Teff) + f − 0.2 Cλ. (28)

The smallest residuals are obtained for the relations based
on Teff and the K or L magnitudes, with an upper limit on the
1σ dispersion of 1.0% (the true dispersion is undetectable from
our data):

log θLD = 0.8470 x2 − 7.0790 x + 15.2731− 0.2 K

log θLD = 0.6662 x2 − 5.6609 x + 12.4902− 0.2 L,

where x = log Teff. The range of validity of the Teff based rela-
tions is 3600–10 000 K for dwarfs, and 4900–9500K for sub-
giants. As shown in Fig. 3, there are indications that the infrared
relations are valid for dwarfs with Teff down to ∼3000 K.

Fig. 3. Second degree polynomial fit of ZMLDL(log Teff) (upper
part) and the corresponding residuals (lower part). The coefficients
are given in Table 5, and correspond to a relation of the form
log ZMLDL = d(log Teff)2 + e(log Teff)+ f . The open circles designate
GJ 699 and Proxima, which were excluded from the fit (see Sect. 3.3),
though they are consistent with the model within their error bars.

4.4. Teff (θLD ,mλ) relations

By inverting the relations established in Sect. 4.3, it is possible
to predict the effective temperature of the observed stars based
on their angular diameter and broadband magnitude in a single
band. As in the previous sections, we assume zero interstel-
lar extinction, and the relations are valid only for dereddened



P. Kervella et al.: The angular sizes of dwarf stars and subgiants 303

Fig. 4. ZMLDλ relations as a function of the effective temperature. The error bars have been omitted for clarity, and the fitted models are
represented alternatively as solid and dashed lines. From top to bottom, using the zero magnitude reference colors U, B, V , R, I, J, H, K and L.

magnitudes. The formulation of the Teff(θLD,mλ) laws is easily
derived analytically. From Eq. (28), we obtain log Teff through
the expression:

log Teff =
−√4d log θLD + 0.8d Cλ + e2 − 4d f − e

2d
(29)

that can be rewritten as

log Teff = −
√
g log θLD + h Cλ + i + j (30)

where

g =
1
d
, h =

0.2
d
, (31)

i =
e2

4d2
− f

d
, j =

−e
2 d
· (32)

The intrinsic dispersion of the log Teff relations can be approx-
imated from the intrinsic dispersion of the log θLD relations, as
we have σint(log θLD) � 1:

σint(log Teff) = 0.5
√
g σint(log θLD). (33)

The corresponding coefficients and dispersions are given in
Table 6. The K band relation presents the smallest intrinsic
dispersion (σ ≤ 0.60%), corresponding to a systematic uncer-
tainty of less than 40 K in the predicted temperature of a G2V
star:

log Teff = 4.1788− √1.1806 logθLD + 0.2361 K − 0.5695.

However, we would like to stress that the uncertainty in the
measured apparent magnitudes can easily be dominant, as a
±0.03 error in K will translate into a ±1.7% error in Teff , nearly
three times as large as the intrinsic dispersion.

Considering that photometry at an absolute level of ±0.01
is not available for all stars, the Teff predictions from different
bands can be averaged, taking carefully into account the sta-
tistical and systematic errors of each relation used, in order to
reach the intrinsic dispersion level. In addition, such an averag-
ing process should not be done for stars affected by interstel-
lar or circumstellar extinction, as it will affect differently each
photometric band.

Fig. 5. Residuals of the fit of ZMLDL(L, B − L) as a function of the
metallicity [Fe/H] of the star. Dwarfs are represented by open squares,
and subgiants by solid dots. No correlation is visible among the stars
of our sample.

4.5. Metallicity

A possible source of natural dispersion of the SB relations is
the presence of deep absorption lines in the spectra of the stars.
This effect is stronger for stars that have a high metal content.
However, as shown in Fig. 5, there is no clear evidence of a
correlation between the residuals of the least dispersed rela-
tion θLD(L, B − L) and the metallicity [Fe/H]. This is an in-
dication that our SB relations are valid at least for metallici-
ties between −0.5 and +0.5 dex, and probably also for lower
values. The two metal-deficient stars of Fig. 5 are GJ 15 A
([Fe/H] = −1.40 dex) and GJ 699 ([Fe/H]= −0.90 dex, not in-
cluded in our fits). For typical stars of the solar neighborhood
our relations are thus always applicable.
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5. Sources of uncertainty in the predicted
diameters

Several observational and astrophysical sources of uncertainty
add up to create the total error in the predicted angular
diameters:

– Intrinsic dispersion of the empirical relation: as discussed
above, the best relations have intrinsic dispersions below
1%. It should be stressed that their predictions cannot be
averaged to reduce this systematic uncertainty. However,
the predictions from independent colors (such as V − K
and B − L) can be averaged to reduce the statistical un-
certainty in the predictions due to the errors in the photo-
metric measurements. In this process, the systematic uncer-
tainties of each relation cannot be reduced and have to be
carefully taken into account. This is essential as the calibra-
tions have been obtained for all colors from the same sam-
ple of stars, and the resulting systematic errors are therefore
highly correlated.

– Uncertainties in the apparent magnitudes: combining the
high precision magnitudes available in the visible with
the infrared magnitudes produced by the 2MASS and
DENIS surveys should make it possible to retrieve the
visible-infrared color indices with a precision better than
±0.02 mag. However, we would like to stress that the uncer-
tainty in the apparent magnitude measurements can easily
be the largest contributor to the predicted angular diame-
ter errors. The true errors in the photometric measurements
have to be estimated accurately in order to obtain reason-
able uncertainties in the predicted angular sizes.

– Interstellar extinction and circumstellar matter: for the
sample of nearby stars that was considered for our fits,
the interstellar extinction is negligible: apart from γGem at
32 pc, all stars are located closer than 15 pc. However, our
SB relations are strictly valid only for extinction-corrected
magnitudes. The uncertainty in the assumed color excess
E(B− V) (for instance) will translate into an additional un-
certainty in the dereddened magnitudes. The presence of a
significant amount of circumstellar matter around the star
will also affect its spectral properties, and can be difficult
to detect.

6. Comparison between interferometers

The residuals of the fits of the least dispersed relations (based
on infrared colors) allow us to examine if systematic discrepan-
cies are detectable between the five interferometers represented
in our sample. For each instrument we have computed the av-
erage residuals of its measurements, and the 1σ error resulting
from the averaging of their respective errors. The results are
presented in Table 7.

We observe that the average residuals are below 1.5% in
terms of ZMLD for all instruments. In addition, all the devi-
ations are below 1σ, and can therefore be fully explained by
random statistical dispersion. As a remark, the agreement be-
tween the VLTI/VINCI results and the Mk III is remarkable,
with no systematic deviation detectable at a level of a few
tenths of a percent. This is especially encouraging as these two

instruments are observing at very different wavelengths (visible
and K band, respectively).

This comparison exercise relies implicitly on the assump-
tion that the considered ZMLD0(C0−C1) relations are applica-
ble to each instrument’s subsample of stars, down to the preci-
sion of each individual measurement. This may not be the case
for all stars, but the agreement that we observe is a worst case,
and the true agreement is in any case very satisfactory.

7. Previous calibrations and other luminosity
classes

Previous calibrations of the SB relations for dwarfs have been
derived by Di Benedetto (1998) and Van Belle (1999a). These
two authors relied on the limited sample of hot dwarfs observed
with the Narrabri intensity interferometer (Hanbury Brown
et al. 1974a,b). The agreement of our calibration with the work
by Van Belle (1999a) is satisfactory within 1σ for the (V,V−K)
relation, but there is a difference of about 2σ in the slope of the
(B, B−K) relation. As the fit obtained by this author is based on
a small range of colors, we attribute this moderate discrepancy
to an underestimation of the true error bar in the slope, even in
the restricted quoted range of validity (−0.6 ≤ B − K ≤ +2.0).

Several calibrations of the SB relations for giants have been
proposed in recent years, thanks to the availability of a number
of direct interferometric measurements of this class of stars.
Van Belle (1999a) used a sample of 190 giants, complemented
by 67 carbon stars and Miras measured with the PTI (Van Belle
et al. 1999b), IOTA (e.g., Dyck et al. 1998) and lunar oc-
cultation observations (e.g., Ridgway et al. 1982) to calibrate
the FV (V − K) relation of giant and supergiant stars. Welch
(1994) and Fouqué & Gieren (1997) proposed a calibration
of the SB relations of Cepheids based on an extrapolation of
the corresponding relations of giants. Among the supergiants,
Cepheids occupy a particular place. The observations of these
variable stars by interferometry, intended primarily to study
their pulsation, have resulted in the measurement of several of
these objects (Mourard et al. 1997; Lane et al. 2000; Nordgren
et al. 2000; Kervella et al. 2001; Lane et al. 2002; Kervella
et al. 2004b). Based on these observations, Nordgren et al.
(2002) have established dedicated SB relations for Cepheids,
and they find a satisfactory agreement with previous works.
From these studies, it appears that the SB relations found for
giants and supergiants are similar to the ones determined in the
present paper for dwarfs and subgiants, especially their visible-
infrared versions. This means qualitatively that any two stars of
class I–V with similar magnitudes in two bands will present ap-
proximately the same angular diameters.

8. Main Sequence stars as calibrators
for long-baseline interferometry

8.1. The need for small and nearby calibrators

Interferometric observations are generally based on interleaved
observations of a scientific target and a calibrator. The angu-
lar size of the calibrator is supposed to be known a priori, and
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Table 7. Comparison between interferometers. The average residuals of the fits of ZMLDB and ZMLDV for the K and L based colors are given
together with the corresponding 1σ error bars. All values are expressed in percents of the ZMLD values. All the residuals are compatible with
zero within their 1σ error bars.

Instrument N ∆ZMLDB(B − K) ∆ZMLDV (V − K) ∆ZMLDB(B − L) ∆ZMLDV (V − L)

PTI 5 +0.48 ± 0.89% +0.82 ± 0.94% +0.63 ± 0.89% +0.89 ± 0.93%
NII 5 +1.02 ± 1.42% +1.03 ± 1.46% +1.03 ± 1.58% +1.02 ± 1.63%
Mk III 11 −0.11 ± 0.56% −0.12 ± 0.57% −0.06 ± 0.64% −0.11 ± 0.66%
NPOI 5 −1.20 ± 1.20% −1.23 ± 1.24% −1.23 ± 1.24% −1.39 ± 1.53%
VLTI/VINCI 16 −0.05 ± 0.49% −0.07 ± 0.51% −0.07 ± 0.51% −0.11 ± 0.68%

the observed fringe contrast is used to estimate the instrumen-
tal transfer function (also called system visibility). The cat-
alogue of calibrators assembled by Cohen et al. (1999), and
customized to interferometry by Bordé et al. (2002), consists
mainly of K giants with angular diameters of about 2 mas.
While this size is well adapted to short baseline observations
(up to a few tens of meters in the infrared), these stars are too
large angularly to serve as calibrators for the hectometric base-
lines of the VLTI, the CHARA array (McAlister et al. 2000)
or the NPOI (Armstrong et al. 1998). In addition, it is foreseen
that shorter wavelengths will be implemented on the VLTI than
the K band currently accessible with VINCI. For instance, the
AMBER instrument (Petrov et al. 2000) will allow observa-
tions in the J band. The two-fold increase in angular resolu-
tion will naturally require significantly smaller calibrators than
those in the Cohen et al. (1999) catalogue.

A fundamental problem with distant stars is that the redden-
ing corrections are uncertain. This means that it is highly de-
sirable to use nearby stars as calibrators, located within a few
tens of parsecs. In this respect, giant stars are not well suited
due to their large linear dimensions, but dwarfs and subgiants
are ideally suited to provide small and well-defined calibrators.

Another advantage of Main Sequence stars is that their
strong surface gravity results in a compact atmosphere and a
well-defined photosphere. Their disk appears sharper than that
of the giants, for which the precise definition of the limb dark-
ened disk angular diameter at a level of less than 1% can be dif-
ficult, in particular for the later spectral types. As an example, a
discussion of the M4III giant ψPhe can be found in Wittkowski
et al. (2004).

8.2. Calibration precision vs. brightness

It is possible to estimate the maximum angular size of cali-
brator stars in order to obtain a given relative precision in the
calibration of the interferometric efficiency. Figure 6 shows
the achievable precision in the interferometric efficiency using
the (B, B − L) relation determined in Sect. 4.2 (σ ≤ 1.0%),
as a function of the angular diameter of the calibrator star,
for four different baselines (100, 200, 400 and 800 m), in the
H band. These baselines are representative of the existing or
foreseen interferometers (Keck, PTI, VLTI, CHARA, NPOI
and OHANA, sorted by increasing maximum baseline). The
horizontal scale of Fig. 6 can be adapted for other wavelengths
or other baselines by scaling it linearly while maintaining con-
stant the B/λ ratio.

Fig. 6. Precision achievable in the measurement of the interferometric
efficiency as a function of the angular diameter of the calibrator, pre-
dicted using the (B,B − L) SB relation (≤1.0% dispersion). From left
to right, the curves refer to baselines of 800, 400, 200 and 100 m, in
the H band.

If we now set a limit of 0.5% on the acceptable system-
atic uncertainty in the interferometric efficiency, we can com-
pute the apparent magnitude of the Main Sequence calibrators
that should be used as a function of their color. The result is
presented in Fig. 7 as a function of the B − H color, for dif-
ferent baseline lengths and interferometric observations in the
H band. From this figure, it can be concluded that suitable cal-
ibrators for extremely long baseline observations will have to
be faint. Let us consider the example of the OHANA interfer-
ometer (original idea proposed by Mariotti et al. 1996), whose
longest foreseen baseline is 800 m. The H band magnitude of
the calibrators necessary to obtain a relative systematic visibil-
ity error of 0.5% will be between mH = 6 and 8, depending
on the spectral type. This is rather faint, even for large aperture
light collectors, but it is feasible with OHANA.

As an alternative, it is possible to build (through time
consuming observations) a secondary network of brighter and
larger calibrators based on the small angular diameter ones, but
there will always be a limitation attached to the fact that cali-
brators have to be observed in the first lobe of their visibility
function. For OHANA, this sets a hard limit of �0.5 mas on the
calibrator angular size, and even ≤0.4 mas to obtain a visibil-
ity of at least 0.3. This corresponds to apparent magnitudes of
mH = 5 to 7 in the H band, one magnitude brighter than the
primary network.
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Fig. 7. Apparent magnitude in the H band of the calibrators suitable
for obtaining a relative precision of 0.5% in the calibration of the in-
terferometric efficiency, as a function of the B − H color. From top to
bottom, the curves refer to baselines of 800, 400, 200 and 100 m, in
the H band.

For the longest baseline of the VLTI (200 m), calibrator
magnitudes between mH = 3 and 5 will be sufficient, clearly in
the accessible domain of the AMBER beam combiner (Petrov
et al. 2000) with the 1.8 m Auxiliary Telescopes (Koehler et al.
2002). The creation of a secondary network of calibrators
should therefore not be necessary.

It should be stressed that the present conclusions regard-
ing magnitudes are not limited to dwarf stars, as giants and su-
pergiants follow comparable surface brightness relations. This
means that the magnitude ranges defined above will be almost
the same for other luminosity classes. A decisive advantage of
dwarfs is that for the same apparent magnitude, they will be
much closer than the more luminous classes, and therefore sig-
nificantly less affected by interstellar extinction.

8.3. Example of diameter prediction

As a practical application, we have chosen the two stars
51 Peg A (HD 217014) and HD 209458 A. The former hosts
the first planet discovered around a solar type star (Mayor
& Queloz 1995), and the latter presents planetary transits
(Charbonneau et al. 2000). We selected these two stars because
they have been observed extensively using different techniques
and did not show any large amplitude photometric variability.
They therefore represent good examples of stable, well known
stars, and are ideal candidates for the prediction of their angular
size using the SB relations determined in the present paper.

Table 8 presents the predicted angular diameters of the two
stars for the (V, V − K) version of the SB relation. The mV

magnitudes are from Hipparcos (Perryman et al. 1997) for both
stars, with an arbitrary error bar of ±0.01, while the K band
infrared magnitudes were taken from Ducati et al. (2002) for
51 Peg A, and from the 2MASS catalogue (Cutri et al. 2003)
for HD 209458 A.

For 51 Peg A, we obtain a predicted angular diameter of
θLD = 0.689 ± 0.011 mas. The corresponding value for
HD 209458 A is θLD = 0.228 ± 0.004 mas. These angular sizes

Table 8. Photometry (upper part) and predicted limb darkened angular
diameters θLD (lower part) of the planet-hosting stars 51 Peg A and
HD 209458 A.

51 Peg A HD 209458 A

mV 5.50 ± 0.01 7.65 ± 0.01
mK 3.97 ± 0.01 6.31 ± 0.03
θLD(K, V − K) 0.689 ± 0.011 mas 0.228 ± 0.004 mas

can be translated into linear radii using the Hipparcos paral-
laxes (Perryman et al. 1997), π51 Peg A = 65.10 ± 0.76 mas and
πHD 209458 A = 21.24 ± 1.00 mas. We obtain R51 Peg A = 1.138 ±
0.023 R� and RHD 209458 A = 1.154±0.059 R�. HD 209458 A is a
particularly interesting object, as Brown et al. (2001) have been
able to estimate directly its linear radius through the deconvo-
lution of the light curve of the transit. They obtain a value of
RHD 209458 A = 1.146 ± 0.050 R�, in remarkable agreement with
our (K, V − K) prediction. The bulk of the ±5% uncertainty
comes from the error in the Hipparcos parallax, the relative er-
ror in the angular size being only ±2%.

The direct measurement of the angular diameter of
51 Peg A is within the capabilities of the existing very long
baseline interferometers (several hundred meters), but this is
not true for HD 209458 A. Its 0.228 mas size would require
baselines of more than 800 m to be resolved at visible wave-
lengths (several kilometers in the infrared). Such baselines are
not presently available or scheduled. And even so, the calibra-
tion of these observations would be extremely difficult, as the
calibrator would have to be very faint. More generally, care-
fully calibrated surface brightness relations are currently the
only method to estimate precisely (±1%) the angular size of
solar type stars fainter than mV = 7.

9. Conclusion

The laws that we established between the angular size and
broadband colors (or effective temperature) are strictly empiri-
cal. Our best relations present a very small intrinsic dispersion,
down to less than 1%. They can be used to predict the angu-
lar sizes of A0–M2 dwarfs and A0–K0 subgiants from sim-
ple, readily available broadband photometry. On the one hand,
Gray et al. (2003) have recently published an extensive survey
of the spectral properties of nearby stars within 40 pc, includ-
ing estimates of their effective temperatures. On the other hand,
several large catalogues (2MASS, DENIS,...) provide high pre-
cision magnitudes of these stars in the infrared. From the cross-
comparison of these sources, the SB relations determined in the
present paper make it possible to assemble a catalogue of cali-
brators for interferometry that will be practically unaffected by
interstellar extinction, multiplicity or circumstellar material bi-
ases. These resulting angular diameter predictions will provide
a reliable basis for the calibration of long-baseline interfero-
metric observations.
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Table 3. Apparent magnitudes of the dwarf stars (upper part) and subgiants (lower part) of our sample. The uncertainty adopted for each
apparent magnitude value is given in superscript.

Star mU
(a) mB

(b) mV
(b) mR

(c) mI
(c) mJ

(d) mH
(d) mK

(d) mL
(d)

αLyr 0.030.02 0.030.02 0.030.02 0.040.02 0.030.02 0.000.02 0.000.01 0.000.01 0.000.01

αCMa A −1.510.02 −1.460.02 −1.460.02 −1.460.02 −1.450.02 −1.340.03 −1.320.03 −1.320.02 −1.360.03

βLeo 2.300.02 2.220.02 2.140.02 2.080.02 2.060.02 2.020.01 1.990.09 1.860.09 1.860.09

α PsA 1.310.02 1.250.02 1.160.02 1.100.02 1.080.02 1.060.05 1.050.06 0.990.03 1.010.07

αCen A 0.920.02 0.700.02 −0.010.02 −1.160.02 −1.390.09 −1.500.02 −1.550.09

Sun(e) −25.980.02 −26.120.02 −26.750.02 −27.120.02 −27.480.02 −27.860.02 −28.200.02 −28.220.02

τCet 4.430.02 4.220.02 3.500.02 2.880.01 2.410.01 2.110.01 1.730.01 1.660.01 1.640.01

GJ 166 A 5.690.02 5.250.02 4.430.02 3.720.01 3.270.01 2.910.03 2.460.01 2.390.02 2.300.02

αCen B 2.860.02 2.210.02 1.330.02 −0.010.02 −0.490.09 −0.600.02 −0.630.09

ε Eri 5.190.02 4.610.02 3.730.02 3.010.02 2.540.02 2.230.03 1.750.03 1.670.01 1.600.05

GJ 105 A 7.580.02 6.810.02 5.830.02 4.990.02 4.460.02 4.070.03 3.520.03 3.450.03 3.430.03

GJ 570 A 7.880.02 6.820.02 5.710.02 4.720.02 4.180.02 3.820.02 3.270.02 3.150.02 3.110.02

ε Ind A 6.740.02 5.750.02 4.690.02 3.810.02 3.250.02 2.830.02 2.300.02 2.180.02 2.120.02

GJ 380 9.230.02 7.940.02 6.590.02 5.360.02 4.560.02 3.980.03 3.320.03 3.190.03 3.110.03

GJ 191 11.640.02 10.400.02 8.860.02 5.770.02 5.270.02 5.050.02 4.860.02

GJ 887 9.990.02 8.830.02 7.350.02 4.200.02 3.600.02 3.360.02 3.200.02

GJ 205 10.630.02 9.440.02 7.970.02 6.530.02 5.390.02 4.770.02 4.060.02 3.860.02 3.830.02

GJ 15 A 10.880.02 9.630.02 8.070.02 6.720.02 5.530.02 4.860.03 4.250.03 4.020.02 3.870.03

GJ 411 10.130.02 9.000.02 7.490.02 5.980.02 4.760.02 4.130.03 3.560.03 3.350.03 3.200.03

GJ 699 12.570.02 11.280.02 9.540.02 7.710.02 6.100.02 5.300.02 4.770.02 4.520.02 4.180.02

Proxima 14.560.02 13.020.02 11.050.02 8.680.02 6.420.02 5.330.02 4.730.02 4.360.03 4.040.02

γGem 1.970.02 1.920.02 1.920.02 1.860.02 1.870.02 1.870.02 1.830.02 1.850.03 1.870.09

αCMi A 0.820.02 0.790.02 0.370.02 −0.050.02 −0.280.02 −0.400.03 −0.600.03 −0.650.03 −0.680.03

ηBoo 3.460.02 3.260.02 2.680.02 2.240.02 1.950.02 1.670.02 1.390.01 1.350.01 1.300.02

ζ Her A 3.670.02 3.460.02 2.810.02 2.300.02 1.980.02 1.770.01 1.420.01 1.380.01 1.300.06

µHer 4.570.02 4.170.02 3.420.02 2.890.02 2.510.02 2.130.01 1.800.01 1.740.01 1.720.02

βAql 5.070.02 4.580.02 3.720.02 3.060.02 2.570.02 2.190.02 1.700.01 1.650.02 1.610.02

ηCep 4.960.02 4.350.02 3.430.02 2.760.02 2.270.02 1.800.05 1.220.02 1.170.09

δEri 5.130.02 4.460.02 3.540.02 2.820.02 2.320.02 1.950.01 1.490.02 1.400.01 1.360.02

– References:
(a) Morel et al. (1978); Mermilliod (1986).
(b) Morel et al. (1978); Hoffleit & Warren (1991); Perryman et al. (1997).
(c) Morel et al. (1978); Bessell et al. (1998); Ducati et al. (2002).
(d) Glass (1974); Glass (1975); Mould & Hyland (1976); Morel et al. (1978); Leggett (1992); Ducati et al. (2002); Kidger & Martín-Luis

(2003); the 2MASS catalogue (Cutri et al. 2003).
(e) We refered to Colina et al. (1996) for the apparent magnitudes of the Sun.
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Table 4. Surface brightness relations using UBVRIJHKL based colors to obtain the limb darkened angular diameter θLD (in mas) as a function
of the magnitude and color of the star through: log θLD(C0,C1) = cλ(C0 −C1) + dλ − 0.2 C0. The residual dispersions are given in percents of
the LD angular diameter. The 1σ errors in each coefficient are given in superscript, multiplied by 1000 to reduce the length of each line, i.e.
0.58223.2 stands for 0.5822±0.0032. When the data depart significantly from our linear fit and present a detectable non-linearity, the dispersion
is mentioned in italic characters, and we have added the note “nl”. The dispersions smaller than 5% are mentioned in bold characters: they
mark the relations that are the most suitable for predicting stellar angular sizes.

C0 ↓ C1 → U B V R I J H K L

cU 1.270111.8 0.58223.2 0.39251.7 0.31781.1 0.28051.0 0.25090.8 0.24370.8 0.24070.8

dU 0.66077.9 0.55324.5 0.53933.5 0.53843.1 0.53513.0 0.52062.9 0.52172.7 0.51842.9

σU 57.8% nl 17.9% nl 10.6% nl 7.88% nl 5.05% nl 3.06% 2.76% 1.92%

cB −1.092310.4 0.90956.9 0.47712.2 0.35571.4 0.30291.0 0.26300.8 0.25380.7 0.25010.9

dB 0.65427.0 0.48891.1 0.51160.1 0.52350.1 0.52420.1 0.51341.0 0.51580.1 0.51330.1

σB 59.2% nl 9.17% nl 4.75% nl 4.98% nl 3.07% 1.89% ≤1.00% ≤1.00%

cV −0.38462.3 −0.70837.4 0.79008.4 0.45502.9 0.35472.0 0.28931.6 0.27531.4 0.26941.4

dV 0.55133.4 0.48895.7 0.52176.4 0.53324.0 0.53103.6 0.51483.2 0.51752.9 0.51463.1

σV 18.0% nl 9.18% nl 8.53% nl 8.30% nl 4.75% 1.85% 1.01% ≤1.00%

cR −0.19661.0 −0.27921.7 −0.58425.1 0.74046.4 0.46473.2 0.34052.5 0.31581.9 0.30411.8

dR 0.53512.4 0.51093.0 0.52514.7 0.55705.2 0.53924.0 0.51193.8 0.51583.1 0.51443.3

σR 11.1% nl 5.02% nl 8.63% nl 14.5% nl 8.43% nl 2.88% 2.05% 2.52%

cI −0.12100.7 −0.15871.1 −0.26092.0 −0.59987.6 0.907919.8 0.43186.0 0.38334.5 0.37074.6

dI 0.53511.9 0.52072.3 0.52962.8 0.54164.7 0.52337.6 0.50894.4 0.51403.7 0.50974.0

σI 8.30% nl 5.34% nl 8.73% nl 12.1% nl 10.8% nl 5.83% nl 3.84% 3.30%

cJ −0.08180.6 −0.10430.9 −0.15811.4 −0.28423.2 −0.719816.9 0.628016.0 0.521410.6 0.48409.4

dJ 0.53251.9 0.52162.2 0.52762.4 0.52993.2 0.51976.5 0.49905.8 0.50664.9 0.50784.8

σJ 5.13% nl 3.12% 4.98% 7.26% nl 10.9% nl 10.44% nl 5.86% nl 4.08%

cH −0.05130.5 −0.06250.6 −0.08920.9 −0.13761.8 −0.22904.0 −0.431212.1 1.874758.8 1.171427.7

dH 0.51891.6 0.51381.8 0.51451.9 0.51382.3 0.50932.9 0.50134.4 0.53527.5 0.52716.2

σH 2.67% 1.24% 1.12% 2.06% 5.53% nl 10.31% nl 17.2% nl 13.0% nl

cK −0.04400.4 −0.05350.6 −0.07550.8 −0.11441.4 −0.18052.8 −0.31927.4 −1.704055.1 3.085733.9

dK 0.52021.6 0.51591.6 0.51701.7 0.51681.9 0.51492.3 0.50893.4 0.53367.0 0.62583.6

σK 2.58% ≤1.00% ≤1.00% 1.60% 3.67% 5.87% nl 17.6% nl 26.9% nl

cL −0.04120.5 −0.05020.6 −0.07010.8 −0.10751.4 −0.16962.9 −0.28266.4 −0.984324.1 −2.8950115.7

dL 0.51671.7 0.51331.8 0.51391.9 0.51282.1 0.51012.5 0.50813.3 0.52455.4 0.530912.4

σL ≤1.00% ≤1.00% ≤1.00% ≤1.00% 2.43% 3.61% 13.1% nl 26.3% nl

Table 5. SB relations using the magnitude Cλ and the effective tem-
perature Teff of the star to obtain the limb darkened angular diameter
θLD (in mas): log θLD(Teff ,Cλ) = d(log Teff)2 + e log Teff + f − 0.2 Cλ.
The 1σ residual dispersions are given in percents of the LD angular
diameter.

Cλ σ d e f

U 5.93% 5.6391 −46.4505 96.0513
B 6.33% 3.6753 −30.9671 65.5421
V 5.90% 3.0415 −25.4696 53.7010
R 4.76% 2.1394 −18.0221 38.3497
I 2.28% 0.9847 −8.7985 19.9281
J 1.19% 0.9598 −8.3451 18.5204
H 1.38% 1.1684 −9.6156 20.2779
K ≤1.00% 0.8470 −7.0790 15.2731
L ≤1.00% 0.6662 −5.6609 12.4902

Table 6. Teff(θLD,mλ) relations to obtain the effective temperature:
log Teff = −

√
g log θLD + h Cλ + i + j. The 1σ residual dispersions are

given in percents of the effective temperature Teff (expressed in K).

Cλ σ g h i j

U 1.19% 0.1773 0.0355 −0.0703 4.1186
B 1.57% 0.2721 0.0544 −0.0850 4.2128
V 1.61% 0.3288 0.0658 −0.1249 4.1870
R 1.57% 0.4674 0.0935 −0.1848 4.2120
I 1.13% 1.0155 0.2031 −0.2788 4.4675
J 0.60% 1.0419 0.2084 −0.3975 4.3472
H 0.63% 0.8559 0.1712 −0.4230 4.1149
K ≤0.60% 1.1806 0.2361 −0.5695 4.1788
L ≤0.60% 1.5010 0.3002 −0.6977 4.2486



3.5 Projets de recherche

La précision des mesures interférométriques de diamètre angulaire des étoiles proches n’est
plus aujourd’hui la limite à l’établissement de contraintes de rayons pour les modèles d’évolution.
En effet, la précision des parallaxes Hipparcos (≈ 1 mas) est le facteur limitant pour calculer le
rayon linéaire au delà des étoiles les plus proches (d ≥ 10 pc). Dès lors, il n’est pas opportun
de chercher des précisions sur le diamètre angulaire inférieures au pourcent pour contraindre le
rayon linéaire.

En attendant les missions spatiales d’astrométrie SIM et GAIA, il reste cependant très utile
de mesurer l’assombrissement centre-bord, de manière à valider le plus précisément possible les
modèles d’atmosphère. En particulier, les modèles tridimensionnels hydrodynamiques sont très
prometteurs, mais demandent une vérification observationnelle. Je projette de réaliser ce travail
sur plusieurs étoiles naines proches, mais également sur d’autres classes de luminosité.

L’étude des étoiles déficientes en métaux est actuellement dans une période de fort développement,
à la fois sur le plan de la modélisation, mais aussi par de nouvelles observations astérosismiques.
Je prévois de contribuer à l’étude de ces étoiles par la mesure de la taille angulaire, et éventuellement
de l’assombrissement centre-bord, de plusieurs de ces étoiles. Il est en effet possible qu’elles ne
suivent pas les relations de brillance de surface établies sur les étoiles de métallicité solaire.
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Chapitre 4

Les étoiles en rotation rapide

Fig. 4.1 – Portraits de personnalités importantes de l’étude des étoiles en rotation rapide :
Christiaan Huygens (1629-1695), Leonhard Euler (1707-1783), Ernst Hugo Von Zeipel (1873-
1959) et Otto Struve (1897-1963).

Beaucoup des astres qui nous sont familiers sont presque parfaitement sphériques. La Terre,
la Lune, le Soleil présentent des formes indiscernables de sphères parfaites sauf à les mesurer avec
précision à l’aide d’instruments. La forme de la sphère est le résultat d’un équilibre rassurant,
et est perçue comme une image de la perfection. Pourtant, partout dans l’Univers, la rotation
privilégie un axe de l’espace au détriment des deux autres, et brise ainsi l’équilibre et la symétrie
de la sphère. Dans notre propre système solaire, les planètes géantes Saturne et Jupiter subissent
une importante déformation de leur globe, du fait de leur courte période de rotation. Qu’en est-il
des étoiles présentant des vitesses équatoriales de rotation cent fois, ou même deux-cent fois plus
rapides que celle du Soleil ?

4.1 La rotation des masses fluides

4.1.1 Une question ancienne

L’étude de la rotation des masses fluides est un domaine très ancien, mais où les progrès
ont été relativement lents. La raison en est que ce problème physique est simple dans son
traitement approché (équilibre hydrostatique, densité uniforme,) mais devient peu à peu d’une
grande complexité avec la prise en compte des phénomènes physiques les plus fins (rotation
différentielle, transfert du rayonnement,). La progression générale des connaissances scientifiques
au cours des quatre siècles passés a permis une remarquable amélioration de notre compréhension
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des phénomènes astrophysiques en jeu dans les étoiles en rotation, parallèlement aux progrès
en mathématiques et physique. Un historique détaillé se trouve dans les livres de Jean-Louis
Tassoul (1978; 2000), dont je reprend ici les dates importantes.

C’est en 1610 que Galilée (1564-1642) a mesuré pour la première fois la période de rotation du
Soleil, en interprétant correctement le passage des taches solaires sur le disque de notre étoile. A
la fin du XIXème siècle, William de Wiveleslie Abney (1843-1920) a compris que l’élargissement
des raies spectrales de certaines étoiles est causé par leur rotation rapide sur elle-même. Du fait
de l’effet Doppler, les raies spectrales formées dans la partie du disque qui s’approche de nous
sont décalées vers le bleu, et inversement vers le rouge pour la partie qui s’éloigne. Comme le
spectre de l’étoile est la somme de la contribution de toutes les parties visibles du disque, les
raies apparaissent élargies. La première moitié du XXème siècle a permis de généraliser cette
explication à une grande variété d’étoiles simples ou binaires, notamment grâce à l’amélioration
des spectrographes.

Sur le plan théorique, dès la fin du XVIIème siècle, Isaac Newton (1643-1727) a calculé
l’ellipticité du globe terrestre en rotation avec l’hypothèse d’homogénéité. Pour ce problème
particulier, il a obtenu la relation :

Γ =
Req −Rpol

Rpol
=

5
4
C

P
(4.1)

avec Req et Rpol les rayons équatorial et polaire, C la force centrifuge, et P le poids. Peu après,
Christiaan Huygens (1629-1695) a étendu ce calcul au cas d’une masse ponctuelle produisant
un champ de gravitation dépendant inversement du carré de la distance, et entourée de matière
non pesante en rotation uniforme de corps solide (on parlera plus tard d’hypothèse de Roche).
Les équipotentielles présentent alors un aplatissement relatif de

Γ =
1
2
C

P
(4.2)

Au XVIIIème siècle, plusieurs grands mathématiciens ont travaillé sur la question de la forme
théorique du géöıde terrestre, dont Alexis-Claude Clairaut (1713-1765), Colin Maclaurin (1698-
1746) et surtout Leonhard Euler (1707-1783). Pour cela, ils ont établi les fondements de l’hy-
drostatique, plus tard développés par Pierre-Simon de Laplace (1749-1827) et Adrien Marie Le-
gendre (1752-1833) peu avant la Révolution française. Les mathématiciens Carl Gustav Jacobi
(1804-1851) et Joseph Liouville (1809-1882) ont ensuite démontré que les formes axi-symétriques
ne sont pas les seuls équilibres possibles pour un corps en rotation.

Au début du XXème siècle, le domaine a connu un renouveau important sous l’impulsion
de Aleksandr Mikhailovich Liapunov (1857-1918) et Henri Poincaré (1854-1912), qui ont établi
la théorie générale de l’équilibre et de la stabilité des formes ellipsöıdales. Cette théorie a été
particulièrement approfondie car on a cru un temps qu’elle permettait d’expliquer la formation
des étoiles binaires. Après la première guerre mondiale, James Jeans (1877-1946) a construit une
série de modèles pour différentes degrés de condensation centrale (des polytropes), conduisant
Otto Struve (1897-1963) a proposer que les étoiles Be sont des étoiles en rotation uniforme rapide
à la limite de disloquation, et entourées d’un anneau de matière gazeuse. En même temps que
ces découvertes sur la physique des masses fluides en rotation, de grands progrès étaient faits sur
l’explication du transport de l’énergie dans les étoiles, conduisant David Milne (1896-1950) puis
Subrahmanyan Chandrasekhar (1910-1995) à construire les premiers modèles physiques complets
de polytropes déformés pas la rotation. En 1924, Ernst Hugo Von Zeipel (1873-1959) a établi un
théorème important donnant la quantité d’énergie émise en un point de la photosphère d’une
étoile en rotation de corps solide. Arthur Eddington (1882-1944) en a déduit l’existence d’une
circulation de matière entre le pôle et l’équateur d’une telle étoile, la circulation méridienne.
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Fig. 4.2 – L’équilibre d’une étoile en rotation (voir notations dans le texte).

Avec l’amélioration considérable des moyens d’observation, et en particulier l’apparition
des détecteurs électroniques à la fin du XXème siècle, de nouvelles questions sont apparues.
Des différences sont ainsi apparues entre les modèles des étoiles chaudes (en particulier des
types spectraux O et B) et les observations, en particulier concernant les abondances en hélium
et en azote. Le raffinement des modèles d’évolution a aussi fait apparâıtre l’influence de la
rotation sur le trajet suivi par l’étoile dans le diagramme Hertzprung-Russell. Sa durée de vie
en particulier peut être augmentée de plus d’un quart du fait du mélange introduit par la
circulation méridienne. Partant d’une évolution conditionnée essentiellement par la masse M de
l’étoile et sa composition chimique Z, il est ainsi apparu indispensable d’introduire une variable
supplémentaire : la vitesse angulaire de rotation Ω.

La richesse et la complexité des phénomènes physiques en jeu dans les étoiles en rotation ont
abouti à différents modèles numériques reproduisant de mieux en mieux les contraintes issues
de l’observation. Pourtant, tous les processus à l’œuvre dans les étoiles en rotation ne sont pas
encore bien connus. Le transport du moment cinétique en général et le rôle de la turbulence en
particulier sont encore des domaines de recherche très actifs. L’évolution de la prise en compte
de la rotation différentielle est à ce titre remarquable : la plupart des modèles numériques
considèrent encore comme hypothèse de départ la rotation de corps solide. La raison en est
qu’il est pour l’instant très difficile de contraindre la rotation interne de l’étoile sur la base des
mesures spectroscopiques seules.

Comme nous le verrons plus loin, les observations interférométriques récentes permettent
maintenant de mesurer la forme de la photosphère des étoiles. Ceci nous a permis de montrer
que la rotation de corps solide ne permet pas d’expliquer l’aplatissement extrême d’Achernar
(Sect. 4.3). C’est un pas vers la construction de nouveaux modèles plus raffinés et une meilleure
compréhension du transport de moment cinétique dans les étoiles.

4.1.2 L’équilibre d’une étoile en rotation

Une étoile est une masse de gaz chaud en équilibre sous l’effet de deux forces antagonistes
(Fig. 4.2) : la gravitation, qui tend à la contracter par le poids (P ), et la pression qui tend à
la dilater (résultante R). La surface apparente de l’étoile, la photosphère, est une surface où
cet équilibre est réalisé, avec la condition supplémentaire que l’opacité du gaz soit suffisamment
faible pour que les photons émis par l’étoile s’en échappent en ligne droite. Dans une étoile en
rotation, la force centrifuge crée une composante supplémentaire C dans cet équilibre. Son effet
est équivalent à une diminution de la gravité locale, variable avec la latitude. Ceci crée un écart
à la sphéricité avec une augmentation du rayon de l’étoile à l’équateur.

Le Soleil est une étoile en rotation lente : à l’équateur, il effectue un tour sur lui-même en
26 jours environ. De ce fait, la force centrifuge introduite par la rotation est très faible par
rapport à la gravité : seulement C = 0, 006 N contre P = 274 N pour le poids d’une masse de
1 kg à l’équateur, soit un rapport de C/P = 0.002%. La moitié de ce rapport donne un ordre de
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grandeur de l’aplatissement réel très faible de notre étoile (approximation de Huygens) :

Γ� =

[
Req −Rpol

Rpol

]
�

= 0, 001% (4.3)

soit moins de 10 km ! Nous avons utilisé cette approximation pour illustrer ce calcul approché
car la masse des étoiles en général, et des plus massives en particulier, est très concentrée près
de leur centre. En réalité, la période de rotation du Soleil est différente aux pôles et à l’équateur
et il existe un champ magnétique non-homogène, rendant l’explication théorique complète de
l’aplatissement très complexe, mais l’ordre de grandeur est correct.

Reprenons maintenant l’approximation de Huyghens (4.2) :

Γ =
Req −Rpol

Rpol
=

1
2
C

P
(4.4)

On peut la réécrire sous la forme suivante

Γ =
1
2

Ω2R

GM/R2
=

(
3

8πG

)
Ω2

ρ
(4.5)

avec Ω la vitesse angulaire de rotation (supposée uniforme), G la constante universelle de gra-
vitation, R le rayon à l’équateur, M la masse de l’étoile et ρ = 3M/(4πR3) sa densité moyenne
(aplatissement faible). Pour une même vitesse angulaire, l’aplatissement est donc inversement
proportionnel à la densité de l’étoile considérée.

Avec un rayon équatorial de 12R�, la force de gravitation de Achernar est beaucoup moins
importante : P = 12 N pour une masse de 1 kg. Par contre, on estime la vitesse équatoriale de
Achernar à 290 km/s (compte tenu de l’angle de projection), ce qui donne une force centrifuge
colossale de C = 10N sur cette même masse. Le demi-rapport des deux forces est de 1/2 C/P =
44% soit une valeur proche du rapport d’aplatissement Γ(Achernar) = 56% obtenu grâce aux
mesures interférométriques. Il est intéressant de remarquer que la force résultante totale sur la
masse de 1 kg est de seulement 2 N, ce qui signifie que la matière située à l’équateur d’Achernar
peut très facilement s’en échapper sous l’effet d’une éruption stellaire. Ceci explique que Achernar
soit parfois entourée de matière diffuse, lors des épisodes Be (le spectre de l’étoile présente alors
des raies spectrales en émission). Altäır, plus petite se contente d’un rapport 1/2 C/P = 17%,
là encore proche de la valeur réellement observée de Γ(Altair) = 14%.

4.1.3 Deux exemples de rotateurs rapides proches de nous : Saturne et Ju-
piter

Saturne en tête, les planètes géantes du système solaire donnent un exemple de déformation
rotationnelle analogue à celle des étoiles en rotation rapide. Saturne boucle un tour sur elle-
même en 10,5 h, ce qui cause un aplatissement de ΓY = 11%. Jupiter tourne encore plus vite,
en seulement 9,9 h, mais son aplatissement est plus faible : ΓX = 7%. La vitesse lineaire à
l’équateur de Saturne est de 9,9 km/s, contre 12,6 km/s pour Jupiter. Ces chiffres sont bien sûr
très inférieurs à ce qu’on observe par exemple pour Altäır (v sin i ≈ 200 km/s, R = 1, 8R�),
mais Saturne est en fait un assez bon analogue d’Altäır : sa période de rotation (PY ≈ 10, 5 h)
est tout à fait comparable à la période de rotation supposée d’Altäır (PAltair ≈ 10 h).

La masse d’Altäır est de 1, 7M�, son rayon équatorial de 1, 9R�, et son rayon polaire de
1, 7R� ce qui lui confère une densité moyenne de ρAltair ≈ 30% ρ�. La densité moyenne de
Saturne est de 690 kg/m3, et celle du Soleil est de 1 400 kg/m3, soit ρY ≈ 50% ρ�. Du fait de sa
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Fig. 4.3 – Photographies de Saturne et Jupiter montrant leur déformation rotationnelle. L’image
de gauche a été obtenue par le télescope Hubble lors du passage de la Terre dans le plan des
anneaux, qui est aussi le plan équatorial de la planète. On distingue clairement l’aplatissement
polaire très important : Γ = 11%. Jupiter (photo de droite, obtenue par la sonde européenne
Ulysses), malgré sa rotation plus rapide que celle de Saturne, présente un aplatissement moins
important (Γ = 7%) du fait de sa plus grande densité. Les cercles tangents à l’équateur et aux
pôles de la planète ont été tracés pour mieux visualiser la déformation (photos NASA).

plus grande densité, l’aplatissement ΓY = 11% de Saturne est un peu plus faible que celui mesuré
pour Altäır, Γ(Altair) = 14%. Ceci est dû à l’influence proportionnellement plus importante de
la gravité comparée à la force centrifuge. Le même calcul pour la planète Jupiter donne une
densité plus forte (ρX = 94% ρ�), et un aplatissement plus faible (ΓX = 7%). L’aplatissement
différent des deux planètes est clairement visible sur la Fig. 4.3.

Cette analogie entre les étoiles en rotation rapide et les planètes géantes a cependant ses
limites. La première est bien entendu que les planètes gazeuses sont des objets de masses beau-
coup plus faibles : Saturne par exemple, ne représente que 0.03% de la masse du Soleil. Par
ailleurs, le champ magnétique par unité de masse est beaucoup plus intense pour les planètes
joviennes que pour les étoiles comme Altäır ou Achernar. La présence de ce champ magnétique
tend à uniformiser la rotation de la planète, alors que la rotation différentielle semble jouer un
rôle important dans les étoiles massives. Enfin, la matière constituant les étoiles et les planètes
géantes, si elle est relativement semblable en composition (essentiellement de l’hydrogène et de
l’hélium) est dans un état physique très différent : un plasma dans les étoiles, mais un gaz, un
liquide ou même un solide (hydrogène métallique) pour Jupiter et Saturne. Les effets mécaniques
de la rotation rapide sont ainsi similaires entre étoiles et planètes, mais la comparaison fine de
leurs formes réclame la mise en œuvre de modèles spécifiques.

4.2 Altäır (α Aql)

4.2.1 Observations interférométriques et modélisation

Les premières observations interférométriques de Altäır obtenues par van Belle et al. (2001)
à l’aide du Palomar Testbed Interferometer (PTI) ont montré un aplatissement de Γ = 14%. La
partie gauche de la Fig. 4.4 montre les mesures et le meilleur modèle obtenu par ces auteurs. Il
est à noter que les observations du PTI ont été obtenues essentiellement selon deux azimuths,
et elles ne permettent pas de déterminer à elles seules l’aplatissement de l’étoile (par le fit d’une
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ellipse par exemple) et son orientation sur le ciel. C’est pourquoi il a été nécessaire à ces auteurs
de prendre en compte les données spectrales et de faire des hypothèses sur l’étoile pour aboutir
à ce modèle. A contrario, nos observations de Achernar présentées à la Sect. 4.3 ont permis de
déterminer de manière directe à la fois la forme de l’étoile et son orientation sur le ciel.

A la suite de ces premiers résultats, des observations obtenues par Ohishi et al. (2004)
avec l’interféromètre à trois télescopes NPOI (Navy Prototype Optical Interferometer) ont per-
mis de détecter la présence d’un excès de lumière au pôle de l’étoile dû à l’effet Von Zeipel
(Fig. 4.4 à droite). Pour l’instant, ces observations sont encore trop parcellaires pour permettre
de contraindre suffisamment les modèles, mais elles sont en accord avec les prévisions.

Fig. 4.4 – Modèles de Altäır obtenus par Van Belle et al. (2001, à gauche) et Ohishi et al. (2004,
à droite).

L’aplatissement de Altäır relativement modéré est convenablement reproduit par les modèles
faisant l’hypothèse de Roche, même si nous avons montré dans l’article joint (Sect. 4.2.2) que
des différences inexpliquées existent entre les observations en infrarouge et dans le visible. Cette
étoile possède une masse relativement faible (1,7M�) et une vitesse équatoriale de rotation
limitée à v sin i ≈ 225 km/s. La faible inclinaison de son axe de rotation sur la ligne de visée
(mesurée par interférométrie) indique que cette vitesse projetée est proche de la vitesse réelle.
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4.2.2 Article A&A : “Gravitational darkening of Altair from interferometry”
(2005)

Cette article présente une synthèse de mesures interférométriques existantes et nouvelles
(obtenues avec VINCI en bandes H et K) de l’étoile en rotation rapide Altäır. Il s’agit de
la première étude de ce type confrontant des données obtenues en visible et en infrarouge. Il
apparâıt quelques différences significatives entre ces deux domaines de longueur d’onde, mais
leur explication est encore incertaine. Cette étoile présente un assombrissement gravitationnel
dû à l’effet Von Zeipel compatible avec la théorie classique.

Fig. 4.5 – Paysage du Cerro Paranal (Chili).
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ABSTRACT

Interferometric observations have revealed that the rapid rotator Altair is a flattened star with a non-centrally symmetric intensity distribution.
In this work we perform for the first time a physically consistent analysis of all interferometric data available so far, corresponding to three
different interferometers operating in several spectral bands. These observations include new data (squared visibilities in the H and K bands
from VLTI-VINCI) as well as previously published data (squared visibilities in the K band from PTI and squared visibilities, triple amplitudes,
and closure phases in the visible between 520 nm and 850 nm from NPOI). To analyze these data we perform a χ2 minimization using an
interferometry-oriented model for fast rotators, which includes Roche approximation, limb-darkening, and von Zeipel-like gravity-darkening.
Thanks to the rich interferometric data set available and to this physical model, the main uniqueness problems were avoided. As a result, we
show that the observations can only be explained if Altair has a gravity-darkening compatible with the expected value for hot stars, i.e., the
von Zeipel effect (Teff ∝ g0.25).

Key words. techniques: high angular resolution – techniques: interferometric – methods: data analysis – stars: rotation –
stars: individual: Altair

1. Introduction

Altair (α Aql, HR 7557, HD 187642) is a bright (V = 0.77),
rapidly rotating A7IV-V star, which has been studied by many
authors. For example, Buzasi et al. (2005) recently detected
several oscillating frequencies in Altair and proved that this
star is a variable of the δ Scuti type, as expected by its loca-
tion within the instability strip. Several basic physical param-
eters of Altair are summarized by Buzasi et al. (2005) in their
introduction. One important characteristic of Altair is its fast
rotation. Spectroscopic and interferometric observations indi-
cate a veq sin i value between 190 km s−1 and 250 km s−1 (Abt
& Morrell 1995; van Belle et al. 2001; Royer et al. 2002;
among others); most recently Reiners & Royer (2004) deter-
mined veq sin i = 227 ± 11 km s−1 from spectroscopy.

Theories foresee that such a high rotation velocity can
lead to many modifications in the physical structure of a
star like Altair. In particular, the star is expected (1) to be
oblate because of a strong centrifugal force and (2) to ex-
hibit gravity-darkening (after the seminal work of von Zeipel
1924). These theoretically expected modifications are now
measured by modern observing techniques, notably those
based on long baseline interferometry. See, for example,

Domiciano de Souza et al. (2003) for the case of another
rapidly rotating star (Achernar).

For Altair, van Belle et al. (2001) measured the rota-
tional flattening projected onto the sky-plane using the Palomar
Testbed Interferometer (PTI, Colavita et al. 1999). By adopting
an equivalent limb-darkened ellipse model these authors de-
rived major and minor axes of 2a = 3.461 ± 0.038 mas and
2b = 3.037±0.069 mas, respectively, which means an axial ra-
tio of a/b = 1.140±0.029. van Belle et al. (2001) used a Roche
model (solid body rotation and mass M concentrated in a point
at the center of the star) without gravity-darkening to analyze
their observations of Altair. However, even with this relatively
simplified model their analysis encountered several uniqueness
problems caused by the limited coverage of spatial frequencies
(observations inside the first visibility lobe only) and spectral
information (only one broadband near-IR filter used). The im-
portant issue of uniqueness problems in interferometric studies
of rapidly rotating stars is discussed by Domiciano de Souza
et al. (2002).

More recently, Ohishi et al. (2004) used the Navy Prototype
Optical Interferometer (NPOI, Armstrong et al. 1998) to ob-
serve Altair. In particular, they obtained closure phases and
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squared visibilities around the first minimum. These observa-
tions suggest that Altair is not only oblate but also that it is
a gravity-darkened star with a non-centrally symmetric inten-
sity distribution. The nature of these data largely diminishes
the uniqueness problems associated with the analysis of rapid
rotators.

Even though the observations indicate that Altair is an
oblate and gravity-darkened star, previous works did not adopt
physically consistent models including these two effects. In the
present work we use our interferometry-oriented model for fast
rotators (Domiciano de Souza et al. 2002) to perform a χ2 mini-
mization including all interferometric data available up-to-date:
new squared visibilities in the H and K bands from the Very
Large Telescope Interferometer (VLTI, e.g., Glindemann et al.
2003); (2) squared visibilities in the K band from PTI; and (3)
squared visibilities, triple amplitudes, and closure phases in the
visible from NPOI.

In Sect. 2 we summarize the observations used here,
and in Sect. 3 we describe the adopted model, which in-
cludes Roche approximation, a limb-darkening law compat-
ible with Altair’s effective temperature distribution, and a
von Zeipel-like gravity-darkening law. In Sect. 4 we present
the main results of our χ2 analysis of the interferometric data.
A critical discussion of our results is given in Sect. 5, while the
conclusions of this work are summarized in Sect. 6.

2. Interferometric observations

The first attempt to measure the geometrical deformation of
Altair was carried out with the Narrabri intensity interferometer
(Hanbury Brown 1974). However, these observations remained
too marginal to allow unambiguous conclusions to be drawn
by the Australian group. Recent observations by at least three
modern interferometers have resulted in several high-quality
measurements becoming available. In the following section we
briefly describe the three interferometric data sets (one new and
two previously published and analyzed) used in this work to
constrain a number of unknown physical parameters of Altair.

2.1. VLTI-VINCI near-IR observations

We first describe the new near-IR observations of Altair per-
formed with the VLTI. These new data were obtained with two
test siderostats (0.35 m aperture) and the VINCI1 instrument
(Kervella et al. 2000 and Kervella et al. 2003a). The visibil-
ity measurements were all recorded on the E0-G1 baseline of
the VLTI (ground length of 66 m). We combined the stellar
light using a classical fiber-based triple coupler (MONA) for
the K band observations, and an integrated optics beam com-
biner (IONIC, Lebouquin et al. 2004) in the H band. Standard
K (2.0 < λ < 2.4 µm) and H (1.5 < λ < 1.8 µm) band
filters were used for these observations. The effective wave-
length of the observations changes slightly depending on the
spectral type of the observed target. For Altair, we determined
λeff = 2.176 ± 0.003 µm and λeff = 1.633 ± 0.003 µm, respec-
tively in the K and H bands.

1 V(LT) IN(terferometer) C(ommissioning) I(nstrument).

The raw data processing has been achieved using a wavelet-
based algorithm, integrated in an automated data reduction
pipeline (Kervella et al. 2004a). The general principle is sim-
ilar to the original FLUOR algorithm (Coudé du Foresto
et al. 1997), but instead of the classical Fourier analysis, we im-
plemented a wavelet-based time-frequency analysis (Ségransan
et al. 1999). The two calibrated output interferograms are sub-
tracted to correct for residual photometric fluctuations. The
output of the pipeline is a single value of the squared coher-
ence factor µ2 for each series of 500 interferograms and the
associated bootstrapped error bar. We obtained a total of 5500
interferograms of Altair in the K band and 4500 in the H band,
among which 2749 and 1949 were reduced by the pipeline, re-
spectively. All the VINCI data were obtained between July and
September 2002. The final normalized squared visibilities V2

and other observational information are given in Table 1.
We used three stars as calibrators for the K band obser-

vations (24 Cap, χ Phe, and 70 Aql) and one for the H band
(α Ind). These stars were selected from Cohen et al. (1999)
for their stability, and we took their sizes from the Bordé
et al. (2002) catalogue. To obtain their equivalent uniform-disk
diameters, we applied the broadband limb-darkening correc-
tions provided by Claret (2000a), based on the ATLAS models
(Kurucz 1992). In absence of data in the literature, the metal-
licity of the calibration stars was taken as solar. Note, how-
ever, that in the H and K bands the influence of metallicity on
the limb-darkening is very weak. The relevant properties of the
calibrators used for VINCI observations are listed in Table 2.

The choice of the calibrators is an important step for prepar-
ing interferometric observations, since significant departures of
their actual visibilities from the expected model can propagate
into biases on the calibrated visibilities of the scientific target.
Among the possible reasons for such departures, binarity (or
multiplicity in general) and deviations from spherical symme-
try (due, for instance, to fast rotation or gravitational interac-
tion) are the most critical. All stars in the Cohen et al. (1999)
catalogue were carefully scrutinized by these authors for the
presence of companions and are currently regarded as single
stars. With respect to fast rotation, the value of veq sin i is only
available for one star, 70 Aql, which is also the most sensi-
tive star to potential deformations as it is a bright giant. With
veq sin i = 1.9 km s−1, log g ≈ 1.9, and a radius of ≈200 R�, a
first order approximation of its flattening ratio (Roche model)
is given by the following relation (e.g. Domiciano de Souza
et al. 2002):

Req

Rp
= 1 +

v2eqReq

2GM
< 1 + 10−4. (1)

The effect of the rotation on the shape of this star is therefore
taken as negligible. Measurements of the projected rotational
velocities are not available for the other calibrators of our sam-
ple, but as they are giant stars, we assume that they are small
enough so that their rotational deformation can be neglected.
Our four calibrators are significantly resolved by the interfer-
ometer, but the a priori uncertainty on their angular diameters
was carefully propagated to the final error bars on the calibrated
squared visibilities of Altair. The errors in the calibrated V2
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Table 1. VLTI-VINCI observations of Altair performed in the H and K bands.

H band
Date Projected Position Calib. Stat. Syst. Total Uniform disc Calibrator
(JD) Baseline (m) Anglea (deg) V2 V2 error V2 error V2 error diameter (mas)

2 452 477.655 62.110 139.77 0.388 ±0.022 ±0.008 ±0.023 3.22 ± 0.09 α Ind
2 452 477.659 61.702 139.97 0.403 ±0.023 ±0.009 ±0.024 3.18 ± 0.10 α Ind
2 452 479.561 65.950 140.66 0.336 ±0.023 ±0.006 ±0.023 3.23 ± 0.09 α Ind
2 452 479.706 55.760 144.48 0.464 ±0.027 ±0.009 ±0.028 3.26 ± 0.12 α Ind
2 452 482.726 52.131 148.77 0.510 ±0.052 ±0.012 ±0.054 3.28 ± 0.24 α Ind
2 452 483.645 61.490 140.08 0.401 ±0.024 ±0.006 ±0.024 3.20 ± 0.10 α Ind
2 452 484.699 54.905 145.37 0.539 ±0.042 ±0.010 ±0.043 2.99 ± 0.18 α Ind
2 452 485.594 64.851 139.08 0.371 ±0.032 ±0.008 ±0.033 3.15 ± 0.13 α Ind
2 452 485.598 64.627 139.07 0.358 ±0.032 ±0.008 ±0.033 3.21 ± 0.13 α Ind

K band
Date Projected Position Calib. Stat. Syst. Total Uniform disc Calibrator
(JD) Baseline (m) Angle (deg) V2 V2 error V2 error V2 error diameter (mas)

2 452 469.722 57.285 143.05 0.656 ±0.017 ±0.016 ±0.023 3.18 ± 0.13 24 Cap
2 452 469.755 53.065 147.53 0.685 ±0.015 ±0.017 ±0.023 3.26 ± 0.14 24 Cap
2 452 469.763 51.957 149.02 0.696 ±0.017 ±0.017 ±0.024 3.26 ± 0.15 24 Cap
2 452 531.587 52.790 147.89 0.645 ±0.072 ±0.007 ±0.072 3.52 ± 0.44 χ Phe
2 452 531.592 52.204 148.67 0.632 ±0.076 ±0.007 ±0.076 3.64 ± 0.47 χ Phe
2 452 531.596 51.624 149.49 0.663 ±0.076 ±0.007 ±0.076 3.49 ± 0.48 χ Phe
2 452 536.511 60.454 140.68 0.605 ±0.028 ±0.008 ±0.029 3.28 ± 0.15 70 Aql
2 452 536.543 56.759 143.52 0.636 ±0.031 ±0.008 ±0.032 3.32 ± 0.18 70 Aql
2 452 536.547 56.226 144.03 0.701 ±0.033 ±0.008 ±0.034 2.98 ± 0.20 70 Aql
2 452 536.578 52.212 148.66 0.713 ±0.049 ±0.009 ±0.050 3.14 ± 0.33 70 Aql
2 452 536.582 51.738 149.33 0.643 ±0.043 ±0.008 ±0.043 3.60 ± 0.27 70 Aql

a 0◦ is North and 90◦ is East.

Table 2. Relevant parameters of the calibrators used for VINCI observations of Altair.

Name 24 Cap χ Phe 70 Aql α Ind
HD number HD 200914 HD 12524 HD 196321 HD 196171

mV 4.5 5.2 4.9 3.1
mK 0.5 1.3 1.2 0.9
Sp. type M0.5III K5III K5II K0III
Teff (K)a 3630 3780 3780 4720
log ga 1.4 1.9 1.9 2.6
[Fe/H]c – – – 0.0
veq sin i (km s−1)d – – 1.9 –
�LD (mas)a 4.43 ± 0.05 2.77 ± 0.03 3.27 ± 0.04 3.28 ± 0.03
�UD (mas)b 4.30 ± 0.05 2.69 ± 0.03 3.17 ± 0.04 3.20 ± 0.03

a From Cohen et al. (1999).
b Limb-darkened disc diameters �LD converted to uniform disc diameters �UD using the linear limb-darkening coefficients from

Claret (2000a).
c From Cayrel de Strobel et al. (1997, 2001).
d From Glebocki et al. (2000).

(statistical, systematic, and total) are also listed in Table 1. The
uncertainties in V2 are dominated by the statistical errors.

2.2. PTI near-IR observations

Another data set used in this paper was obtained with PTI
and was previously reported and analyzed by van Belle
et al. (2001, hereafter vB2001). This data set corresponds to

27 measurements of V2 on Altair performed in the K band for
two distinct baselines (ground lengths of 85 m and 110 m).

2.3. NPOI visible observations

The third data set used in this work, which was previ-
ously reported and analyzed by Ohishi et al. (2004, hereafter
ONH2004), corresponds to interferometric observations in the
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visible obtained with NPOI. These observations of Altair were
recorded simultaneously using three baselines forming a tri-
angle (ground lengths of 30, 37, and 64 m), allowing measure-
ments of V2, triple amplitudes, and closure phases. In this work
we use the NPOI observations of Altair performed on May
25 2001 (see Table 2 of ONH2004), which consist of 7 scans
(Hummel et al. 1998). We use 18 spectral channels covering
wavelengths from 520 to 850 nm; the data for λ = 633 nm are
not used because they contain light from the metrology laser,
and the data for λ = 618 nm are not used because they are not
available for all NPOI observables.

3. Modeling Altair

3.1. Model of a rotating star

Since previous interferometric observations (vB2001 and
ONH2004) indicate that Altair’s flattening is compatible with
uniform rotation, in this paper we adopt the classical Roche
model. This model is described in more detail, for exam-
ple, by Domiciano de Souza et al. (2002), who developed an
interferometry-oriented model for rapid rotators. Once the sur-
face equipotential (Ψ) and the corresponding local effective
surface gravity (g(θ) = |∇Ψ|, where θ is the colatitude) in the
Roche approximation are defined, the local effective tempera-
ture is given by the following von Zeipel-like gravity-darkening
law (e.g. Collins 1965):

Teff (θ) = Tp

(
g (θ)
gp

)β
(2)

where Tp and gp are the polar effective temperature and gravity,
respectively. In this paper we adopt two theoretical limits for
the gravity-darkening coefficient β, namely, β = 0.25 for hot
stars with radiative external layers (von Zeipel 1924) and β =
0.08 for cold stars with convective external layers (Lucy 1967).

To compute our models of Altair the code BRUCE
(Townsend 1997) is used to obtain a stellar grid (�25 500 vis-
ible points) for the local values of effective temperature and
gravity, velocity field, projected surface, and surface normal di-
rection.

3.2. Intensity maps

Because of the geometrical deformation and gravity-darkening,
the intensity maps are highly dependent on the inclination of
the rotation axis i (Domiciano de Souza et al. 2002). In order
to evaluate the intensity maps for Altair we first used Kurucz
(1992) model atmospheres2 as input for the SYNSPEC code
(Hubeny 1988 and Hubeny & Lanz 1995) to generate a grid of
synthetic specific intensities normal to the surface (I(µ = 1, λ),
where µ and λ have their usual meanings). This grid corre-
sponds to different values of Teff and log g in steps of 250 K
and 0.5 dex, respectively. To be consistent with recent spectro-
scopic observations the grids of I(µ = 1, λ) were calculated for
microturbulent velocity vmicro = 2 km s−1 and solar abundance,

2 From Dr. R. L. Kurucz model atmospheres and references
publicly available at http://kurucz.harvard.edu/grids/

except for 14 elements between C and Cu (Erspamer & North
2002, 2003).

Since interferometric observations of Altair were per-
formed within wide spectral bands, we integrated I(1, λ) over
the corresponding spectral channel/band to obtain a grid of in-
tegrated intensities normal to the surface I(1). Before perform-
ing this integration we multiply I(1, λ) by the atmospheric and
instrumental transmissions. Because the computation of I(1)
influences the calculations of interferometric observables, we
present further details of this integration procedure in Sect. 3.3.

Once I(1) is defined, we can obtain the intensity at every
µ (I(µ)) through an appropriate limb-darkening law. Accurate
modeling of limb-darkening is crucial to determine precise
stellar diameters, in particular for rapidly rotating stars where
we expect a non-uniform surface brightness distribution. To
model Altair we adopted the four-parameter non-linear limb-
darkening law proposed by Claret (2000a,b):

I(µ)
I(1)
=1 − a1(1 − µ 1

2 ) − a2(1 − µ) − a3(1 − µ 3
2 ) − a4(1 − µ2) (3)

where tabulated values of a1, a2, a3, and a4 are given by Claret
for 12 commonly used photometric bands. For Altair we used
those for the H and K bands to simulate PTI and VLTI-VINCI
observations and those for the V (for λ ≤ 600 nm) and R (for
λ > 600 nm) bands to simulate NPOI observations.

Claret (2000a,b) argues that Eq. (3) is valid across the
whole HR diagram, which is, in fact, an important requirement
for a consistent modeling of Altair since this star could present
an effective temperature distribution in the transition range be-
tween hot (radiative envelope) and cold (convective envelope)
stars (e.g., Panzera et al. 1999).

Finally, we can now define the intensity maps I(r), i.e.,
the visible stellar surface brightness distribution on the two-
dimensional sky-plane at a position r. To obtain I(r) we thus
perform a linear interpolation of the predefined grids of inte-
grated intensities I(1) and the limb-darkening coefficients a1,
a2, a3, and a4, for each visible point of the stellar grid.

3.3. Complex visibilities

Once the intensity map is defined, the computation of complex
visibilities is straightforward. Normalized complex visibilities
V( f ) are obtained by the numerical counterpart of the follow-
ing equation (for further details see Domiciano de Souza et al.
2002):

V( f ) = |V( f )| eiφ( f ) =
Ĩ( f )

Ĩ(0)
(4)

where |V | and φ are the visibility amplitude and phase, Ĩ( f )
is the Fourier transform of the intensity map I(r), and f
is the spatial frequency coordinate associated with r. From
Eq. (4) we can directly obtain the interferometric observables:
squared visibilities V2, triple amplitudes |V1| |V2| |V3|, and clo-
sure phases φ1+φ2+φ3. These observables are functions of the
spatial frequency f , and the indices 1, 2, and 3 denote the three
interferometric baselines in a triangular configuration.

For each pair of telescopes, f is given by the ratio be-
tween the vector baseline projected onto the sky Bproj and the
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effective wavelength λeff of the considered spectral channel:
f = Bproj/λeff. This dependence of the spatial frequency on λeff

is responsible for an observational effect known as bandwidth
smearing (e.g., Kervella et al. 2003b; and Wittkowski et al.
2004). Indeed, the wide spectral coverage in the H (� 0.3 µm)
and K (�0.4 µm) bands implies that several spatial frequen-
cies are simultaneously observed by the interferometer (VLTI-
VINCI and PTI in our case).

To account for the bandwidth smearing in the near-IR we
divided the H and K bands into N = 20 spectral sub-channels
and computed the stellar intensity distributions I j integrated
over each spectral sub-channel j. The corresponding Fourier
transforms Ĩ j are then calculated, and the final normalized
squared visibilities in the H and K bands are given by:

V2
IR band =

N∑
j=1

∣∣∣Ĩ j(Bproj/λeff, j)
∣∣∣2

N∑
j=1

∣∣∣Ĩ j(0)
∣∣∣2

· (5)

The bandwidth smearing is negligible for the relatively narrow
spectral channels of the NPOI observations.

4. Results from the χ2 analysis

In this section we perform a χ2 analysis to constrain a number
of unknown physical parameters in our model for Altair from
the available interferometric observations.

We investigate two test models corresponding to the the-
oretical limits for the gravity-darkening parameter β, namely,
0.08 (convective atmospheres) and 0.25 (radiative atmo-
spheres). To obtain a mean effective temperature compati-
ble with previous works (between �7500 K and �8000 K; see
for example Esparmer & North 2003, vB2001; and Ferrero
et al. 1995) the adopted polar temperatures Tp for the test mod-
els are 8000 K and 8500 K, corresponding to β = 0.08 and 0.25,
respectively. The chosen stellar mass M = 1.8 M� is given by
Malagnini & Morossi (1990). Other slightly different mass es-
timates exist since determining the mass of a single star, partic-
ularly a rapid rotator, is not a simple task, but the main results
of this work do not critically depend on this value. We adopted
the projected equatorial velocity veq sin i = 227 km s−1 deter-
mined by Reiners & Royer (2004) from high spectral resolu-
tion observations. Their value is compatible with other recent
measurements of veq sin i within their error bars (e.g. vB2001;
and Royer et al. 2002).

In addition to the fixed physical parameters described
above, the equatorial radius Req (or the polar one Rp) is also
needed to calculate the models of Altair. However, Req is
related to the equatorial angular diameter �eq by means of
the stellar distance (d = Req/�eq = 5.143 ± 0.025 pc from
Hipparcos; Perryman et al. 1997). Since �eq is one important
output from our interferometric data analysis, Req has to be up-
dated accordingly to each �eq value tested during the χ2 min-
imization procedure. To avoid calculating a large number of
models we performed a preliminary χ2 minimization using a
fixed Req in order to constraint the range of �eq close to the

Fig. 1. Reduced χ2 (χ2/d.o.f.) as a function of the stellar inclination
i computed from all interferometric observations described in Sect. 2
for the two test models (radiative and convective limits for the gravity-
darkening). These values correspond to the best equatorial angular di-
ameter �eq and major axis orientation η for a given i. Models with
β = 0.25 (solid curve) are preferred compared to models with β = 0.08
(dashed curve). The minimum χ2/d.o.f. (χ2

min/d.o.f. = 7.3) is obtained
for β = 0.25 and i = 55◦. Further physical parameters for this best
model from all data (BMAD) and the corresponding error bars are
given in Table 3, together with the results of other χ2 analyses.

minimum χ2. In the final χ2 analysis, �eq (and the correspond-
ing Req) varies with steps of 0.01 mas within a range corre-
sponding to the uncertainty in �eq. Since this uncertainty is
rather small (<∼2%), Req could be kept constant without intro-
ducing any significant changes in our modeling and results.

Additionally, the major axis orientation (position angle) on
the sky-plane η is allowed to vary in steps of 3◦. The inclination
of the rotation axis i can vary between 40◦ and 90◦ (steps of 5◦).
For i < 40◦ the equatorial rotation velocity becomes higher
than 90% of the critical limit (vcrit) leading to unrealistically
low equatorial temperatures as a consequence of the von Zeipel
effect.

We thus have two test models (corresponding to β = 0.08
and β = 0.25) with three free parameters (i, �eq, and η) for our
χ2 analysis whose results are presented below.

4.1. Analysis of all data
We present the results of our χ2 analysis applied to all available
interferometric data on Altair (cf. Sect. 2). This consists of 47
near-IR V2 observations (VLTI-VINCI and PTI) together with
630 visible observations (NPOI). Figure 1 shows the reduced
χ2 (χ2/d.o.f., where the degree of freedom (d.o.f.) is 674) as
a function of the inclination i computed from all interferomet-
ric observations for the two test models. The values in Fig. 1
correspond to the best �eq and η for a given i.

An important result seen in Fig. 1 is that all models with
a gravity-darkening coefficient for hot stars (β = 0.25) are
preferred, i.e., have lower χ2 in comparison to models with a
gravity-darkening coefficient for cold stars (β = 0.08). This
is model-dependent but still the first direct determination of
the gravity-darkening coefficient for a rapid rotator, obtained
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V2 at 30 m V2 at 37 m V2 at 64 m

Fig. 2. Squared visibilities V2 and corresponding errors versus the wavelength for the seven NPOI scans (see Sect. 2). Solid curves correspond
to theoretical values obtained from our best model from the χ2 analysis of all interferometric data (BMAD; see also Fig. 1). Plots for scans 2 to
7 were progressively shifted for better visualization.

thanks to a physically coherent modeling dedicated to stellar
interferometry.

The minimum χ2/d.o.f. is χ2
min/d.o.f. = 7.3 obtained for an

inclination i = 55◦ ± 8◦. This best model obtained from the χ2

analysis of all data is hereafter refereed as BMAD (best model
for all data). All free parameters (�eq, η, and i) and uncertainties
corresponding to the BMAD are given in Table 3 together with
some selected dependent parameters. In Table 3 we also list the
results from additional χ2 analyses described in the following
sections.

In order to avoid an underestimation of the uncertainties
on the free parameters, we computed the limits of the confi-
dence domain by searching for the region between χ2/d.o.f.
and χ2/d.o.f. + 1. We used the reduced χ2 and not the total χ2

as we found it difficult to account for possible correlations be-
tween the error bars on each measurement, in particular for the
NPOI data. By adopting χ2/d.o.f., we chose the conservative
approach to consider that all measurements are fully correlated
with each other, i.e. that their error bars cannot be diminished
by averaging in the fitting process. This means that our derived
error bars may be overestimated, but this will avoid an over-
interpretation of the data.

In Figs. 2 and 3 we compare the five NPOI observables (V2

for three baselines, triple amplitudes, and closure phases) with

the corresponding theoretical values derived from the BMAD.
We note in particular that, although the uncertainties in the clo-
sure phases are quite small (<∼0.03 rad), there is a rather good
agreement between the observed closure phases and those ob-
tained from the BMAD (solid curves). Clearly, models with
β = 0.08 (plotted as dashed curves for comparison) cannot re-
produce these data, leading to χ2/d.o.f. > 75 in Fig. 1. In Fig. 4
we compare the theoretical squared visibilities V2 from the
BMAD with the observed V2 and corresponding errors from
VLTI-VINCI (H and K bands) and PTI (K band), as described
in Sect. 2.

Considering all these distinct interferometers, observables,
wavelengths, and baselines (lengths and position angles),
Figs. 2 to 4 show a good general agreement between obser-
vations and the BMAD, particularly for the closure phases.
However, some discrepancies between theoretical and ob-
served V2 exist, leading to a relatively a high χ2

min/d.o.f.(=7.3).
This issue is discussed hereafter.

4.2. Analysis of selected data subsets

The high χ2
min/d.o.f. obtained in the last section from the anal-

ysis of all interferometric data is partially due to an underesti-
mation of long-term errors for the NPOI visibility amplitudes.
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Triple Amplitude Closure Phase

Teff map (BMAD)

Temperature (K)
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T max =  8499.9 K

T min =  6508.8 K

Inclination = 55.0°

Rpole/Req = 0.81

Fig. 3. Triple amplitudes |V1| |V2| |V3|, closure phases φ1 + φ2 + φ3, and corresponding errors versus the wavelength for the seven NPOI scans
(Sect. 2). Solid curves correspond to theoretical values obtained from our best model from the χ2 analysis of all interferometric data (BMAD;
see also Fig. 1). The closure phase is very sensitive to the stellar intensity distribution. Therefore, a comparison between a strong (β = 0.25;
solid curves) and a weak (β = 0.08; dashed curves) gravity-darkened model shows that a highly non-uniform surface brightness distribution is
mandatory to reproduce the observed closure phases. Note that the closure phases have small error bars (<∼0.03 rad). Plots for scans 2 to 7 were
progressively shifted for better visualization. The picture in the right is the effective temperature map for the BMAD (Table 3).

This calibration problem is clearly present in Figs. 2 and 3 as
a scatter of the observed V2 and triple amplitudes relative to
the model. The observations for a given scan are shifted in the
same direction for all wavelengths. On the other hand, the clo-
sure phase is a more stable interferometric observable, being
unaffected by this calibration problem as shown by the excel-
lent agreement between observation and model in Fig. 3.

We have thus performed another χ2 analysis including only
the (7 scans)*(18 wavelengths) closure phases from NPOI,
together with the 47 near-IR V2 from PTI and VINCI. The
χ2/d.o.f. behavior is similar to that seen in Fig. 1, but the
minimum reduced χ2 is now >∼2 times smaller than before,
namely, χ2

min/d.o.f. = 3.2. In agreement with the analysis of
all data presented in the last section, we obtained β = 0.25 and
i = 55◦ ± 14◦. Further physical parameters for this best model
determined from the near-IR V2 and closure phases (BMIRCP)
are given in Table 3.

Even though this analysis showed that χ2
min/d.o.f.(=3.2)

diminishes when the NPOI V2 and triple amplitudes are re-
moved, the value obtained indicates that some non negligible
discrepancies between model and observations still exist. Such

discrepancies come from the fact that the near-IR V2 for the
BMAD and the BMIRCP systematically underestimate the ob-
servations from PTI and VINCI, as we can see in Fig. 4.

Because these near-IR V2 include data from two distinct in-
terferometers using different calibrators, one can hardly invoke
some kind of calibration problem, such as those found on the
NPOI data. These low theoretical near-IR V2 seem to be due to
the rather large equatorial angular diameter deduced from the
χ2 minimization, namely, �eq = 3.83±0.06 mas for the BMAD
and �eq = 3.88±0.08 mas for the BMIRCP (Table 3). To inves-
tigate this point we performed two additional χ2 analyses: one
for the (7 scans)*(18 wavelengths) closure phases alone (NPOI
data) and another for the 47 near-IR V2 alone (VLTI-VINCI
and PTI data). These results are also summarized in Table 3.

Our analysis result in χ2
min/d.o.f. = 1.4 for the best model

for the closure phases alone (BMCP). The χ2/d.o.f. behavior is
once more similar to that seen in Fig. 1, resulting in β = 0.25
and i = 50◦ ± 12◦. The derived equatorial diameter (�eq =

3.88±0.03 mas) is compatible with those from the two previous
analyses (BMAD and BMIRCP).
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Fig. 4. Squared visibilities V2 (triangles) and corresponding error bars from VLTI-VINCI (H and K bands) and PTI (K band; baselines 85 m and
110 m) as described in Sect. 2. The abscissa is an index (integer number) to label each group of V2 data. The crosses correspond to theoretical
V2 obtained from the model with minimum χ2 (best model; cf. Fig. 1). The abscissas of the V2 data are slightly shifted to the right compared to
those of the theoretical V2 for better visualization.

Table 3. Input and derived parameters obtained from a χ2 minimization procedure applied to several data sets: all data (BMAD), near-IR V2

and closure phases (BMIRCP), closure phases alone (BMCP), and near-IR V2 alone (BMIR). There is no uncertainty associated to β and Tp

because they define two test models based on theoretical limits for the gravity darkening (see text for details). Selected dependent parameters
for the best models are also listed.

Fixed input parameters BMAD BMIRCP BMCP BMIR
veq sin i (km s−1) 227 227 227 227

M (M�) 1.8 1.8 1.8 1.8
i (deg) – – – 50◦

(β,Tp (K)) – – – (0.25, 8500)

Results of the χ2 analyses BMAD BMIRCP BMCP BMIR

χ2
min/d.o.f. 7.3 3.2 1.5 0.50

(β,Tp (K)) a (0.25, 8500) (0.25, 8500) (0.25, 8500) –
i (deg) 55◦ ± 8◦ 55◦ ± 14◦ 50◦ ± 12◦ –

2a = �eq (mas) 3.83 ± 0.06 3.88 ± 0.08 3.88 ± 0.03 3.44 ± 0.05
Req

b ( R�) 2.117 ± 0.035 2.145 ± 0.045 2.145 ± 0.020 1.902 ± 0.029
η (deg) 92◦ ± 6◦ 62◦ ± 17◦ 95◦ ± 23◦ 113◦ ± 12◦

Dependent parameters BMAD BMIRCP BMCP BMIR
Teq (K) 6509 6483 6171 6453
veq ( km s−1) 277 277 296 296
veq/vcrit(%) 76% 76% 80% 77%

frot (cycles/day) 2.585 2.552 2.729 3.077
2b = �max

p (mas) 3.29 3.33 3.32 2.99
a/b = �eq/�max

p 1.164 1.165 1.169 1.149
Req/Rp 1.237 1.240 1.275 1.243

a Theoretical limit preferred compared to (β,Tp (K))= (0.08, 8000).
b From �eq and Hipparcos distance (d = 5.143 ± 0.025 pc).

Before analyzing the near-IR V2 alone, we should note that
since VLTI-VINCI and PTI data correspond to observations in
the first visibility lobe far from the first minimum and in a lim-
ited range of baseline position angles, this analysis suffers from
a significant uniqueness problem (Domiciano de Souza et al.
2002). This means, in particular, that the stellar inclination can-
not be derived from these data. Thus, we fixed β = 0.25 and

i = 50◦, compatibly with the values derived for the BMCP.
The obtained χ2

min/d.o.f. is 0.50 for the best model for the
near-IR V2 alone (BMIR). As expected, the derived equatorial
diameter is significantly smaller (�eq = 3.44 ± 0.05 mas) than
all previous analyses, which included visible data from NPOI.

Figure 5 shows the fit to the closure phase for the BMCP
(solid curves in the left panel) and the fit to the near-IR V2
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Closure Phase (visible)

V2 (near-IR)

Fig. 5. The left panel shows the closure phases φ1 + φ2 + φ3 and corresponding errors versus the wavelength for the seven NPOI scans (Sect. 2).
Solid curves correspond to theoretical values obtained from our best model from the χ2 analysis of closure phases alone (BMCP; see Table 3).
Dashed curves correspond to the theoretical closure phases obtained by fixing i = 50◦, �eq = 3.44 mas, and η = 113◦. These parameters were
derived from the χ2 analysis of near-IR V2 alone (BMIR). The solid curves provide a much better fit to the observed closure phases because
they correspond to an angular equatorial diameter larger (�eq = 3.88 mas) than the value for the dashed curves (�eq = 3.44 mas). On the other
hand, a model (BMIR) with �eq = 3.44 mas nicely fits the near-IR V2 as shown in the right panel (see also Fig. 4).

for the BMIR (right panel). Individually, these fits are rather
good as one can see in Fig. 5 and also as indicated by the
corresponding χ2

min/d.o.f. (1.4 for the BMCP and 0.5 for the
BMIR). However, it is clear that the large �eq from the analy-
ses including the closure phases cannot fit the near-IR V2 (as
already shown in Fig. 4).

Conversely, the smaller �eq derived from the near-IR V2

alone (BMIR) cannot fit the closure phases. This is shown as
dashed curves in Fig. 5 (left panel), where we plotted the theo-
retical closure phases obtained by a model with fixed i = 50◦,
β = 0.25, �eq = 3.44 mas, and η = 113◦ (values from the
BMIR). Although this model certainly leads to a high χ2, we
note that models with β = 0.08 and free i, �eq, and η, lead to
an even higher χ2. Thus, the identification of the von Zeipel
effect on Altair (Teff ∝ g0.25), which is the main result of this
work, is not affected or hampered by this discrepancy between
the angular sizes derived from the visible and near-IR data.

In the following section we investigate this discrepancy and
discuss some physical consequences of our results, in particular
concerning the von Zeipel effect.

5. Discussion

5.1. The size of Altair

The results described in the last section and summarized
in Table 3 reveal a discrepancy between the stellar angular
diameters required to fit the visible and near-IR interferometric
data. This discrepancy also appears when we compare the re-
sults obtained in the visible by ONH2004 (NPOI data) and in
the K band by vB2001 (PTI data).

To investigate this issue we estimate the angular size of
Altair using an independent method: the average surface bright-
ness. Using the surface brightness relations from Kervella
et al. (2004b), we can derive the mean equivalent limb-
darkened angular diameter of Altair using only its photometric
properties (Table 4). We adopted the apparent magnitudes in
the visible and near-IR from Hipparcos (Perryman et al. 1997),
Morel & Magnetat (1978), Ducati (2002), and the recent
infrared catalogue from Kidger & Martín-Luis (2003). The er-
ror bars from the original authors on the apparent magnitudes
are given for each band, except for the U, R, and I bands, where
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Table 4. Apparent and absolute magnitudes of Altair, using the Hipparcos parallax (π = 194.45 ± 0.94 mas).

U B V R I J H K L
mλ 1.07 0.99 0.77 0.62 0.48 0.327 0.228 0.205 0.20
σ(mλ) 0.05 0.01 0.01 0.05 0.05 0.009 0.008 0.005 0.01
Mλ 2.51 2.43 2.21 2.06 1.92 1.77 1.67 1.65 1.64

a conservative 0.05 mag error has been assumed. No interstellar
extinction is taken into account for this nearby star (d � 5 pc).

We obtain consistent limb-darkened disk angular diameters
for all the visible-infrared colors, with, for instance, �LD(B, B−
L) = 3.258 ± 0.034 mas. Considering the Hipparcos parallax
of π = 194.45 ± 0.94 mas (distance d = 5.143 ± 0.025 pc),
this translates into a photometric equivalent linear radius of
1.801 ± 0.021 R�. Erspamer & North (2003) obtain an effec-
tive temperature of Teff = 7550 K, averaged over the disk of
Altair. The �LD(Teff,mλ) relations from Kervella et al. (2004b)
give the same LD angular diameter using the H, K, and L
apparent magnitudes.

Let us compare the photometric-average angular size de-
rived above (�LD(B, B−L) = 3.258±0.034mas) with an equiv-
alent angular disk diameter leading to the same area of the stel-
lar surface projected onto the sky-plane �̄ obtained from our
models. For BMIR we obtain �̄ = 3.20 mas, while for BMAD,
BMIRCP, and BMCP we obtain �̄ between 3.53 and 3.58 mas.
This comparison points towards a smaller size of Altair since
there is a better agreement between the sizes estimated by the
surface brightness method and by the χ2 analysis including
near-IR V2 alone, with the latter still being slightly smaller.

From the present data it is not possible to determine
whether the discrepancy between the stellar angular diameters
in the visible and near-IR has a physical or an instrumental ori-
gin. Bias in the wavelength calibration could lead to a larger or
smaller size since it affects the spatial frequency. Previous com-
parisons between stellar angular diameters measured by NPOI
and other interferometers show no sign of systematic differ-
ences (Nordgren et al. 2001). On the other hand, the large an-
gular size in the visible could also be explained, for example,
by an extended emission only seen in the visible. To further
investigate the origin of this discrepancy, more precise interfer-
ometric observations of Altair are required, preferably in the
near-IR at the second visibility lobe and/or with phase clo-
sures. These observations should be made in such a way that
the quality and the nature of the data in the visible and near-IR
are similar and, thus, better comparable. Such observations are
expected to be performed with the instrument VLTI-AMBER
(e.g., Petrov et al. 2003).

5.2. Rotation and gravity darkening laws

In the present paper we consistently adopted the Roche ap-
proximation and a von Zeipel-like gravity-darkening (Eq. (2)).
Nevertheless, other more subtle possibilities exist and should
be considered in the future when more precise interferometric
observations of Altair will be available.

For example, our results indicate that the effective tem-
perature at Altair’s equator could be low enough that the star

presents convection in its external equatorial regions (Teq �
6500 K for the models with minimum χ2). Such low Teq re-
quires a gravity-darkening exponent β � 0.08 (Lucy 1967;
Claret 2000c), so that a latitudinal dependent β parameter
should be more convenient for Altair (e.g., a continuous vari-
ation from the radiative limit β = 0.25 to the convective limit
β = 0.08 between the poles and the equator). The hypothesis
of a convective equatorial region is supported by several works
showing that Altair has a chromosphere and a corona, possibly
linked to subphotospheric convective zones (e.g., Ferrero et al.
1995).

Other possibilities for a variable parameter β or even for an
alternative gravity-darkening law is the presence of differen-
tial rotation (e.g., Connon Smith & Worley 1974; Kippenhahn
1977). Although Reiners & Royer (2004) found no signatures
of external latitudinal-dependent differential rotation in Altair,
we think that one cannot exclude internal differential rotation
and/or external differential rotation not detected by the Fourier
transform method used by those authors. In fact, the method
used by Reiners & Royer (2004) is not very sensitive to differ-
ential rotation laws where polar regions rotate faster than layers
closer to the equator (anti solar-like or negative differential
rotation; e.g., Reiners & Schmitt 2002).

Interestingly enough, Stoekley (1968) found evidence of
an anti-solar-like differential rotation in Altair. The presence
of negative surface differential rotation is in fact compatible
with the hypothesis of a convective equatorial region. For such
cool regions, characteristic of F and later type stars, it is possi-
ble that some braking mechanism (magnetic effects and/or vis-
cosity due to the onset of convection) could act preferentially
close to Altair’s equator, slowing these regions relative to those
closer to the poles.

This important issue concerning the presence of differen-
tial rotation in Altair, and the corresponding gravity-darkening
law, should be investigated in the future by additional studies,
preferably with distinct and complementary techniques. For ex-
ample, Domiciano de Souza et al. (2004) proposed a technique
to detect both solar-like and anti-solar-like differential rotation
by combining high angular resolution with high spectral res-
olution (differential interferometry). The forthcoming VLTI-
AMBER will be able to operate in a differential interferometry
mode in the near-IR (e.g., Petrov et al. 2003).

5.3. Inclination and rotation frequency

The results presented in Sect. 4 suggest an intermediate incli-
nation for Altair (see Table 3). These results seem to disagree
with the analysis from Reiners & Royer (2004), which points
towards higher inclinations (i > 68◦ on a 1σ level). However,
this discrepancy disappears if we consider 2σ confidence
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levels in the results from Reiners & Royer (2004), which im-
plies i > 45◦. Additionally, Stoeckley (1968) derived an in-
clination angle between 30◦ and 50◦ from the analysis of line
profiles of Mg  4481 and Ca  3934, which is in agreement
with our results as well.

It is important that further studies investigate how subtle
effects, such as differential rotation and gravity-darkening, in-
fluence the interferometric observables and, in particular, the
line profiles. It would thus be possible to consistently combine
interferometry and spectroscopy in order to determine the stel-
lar inclination more precisely.

Once i, Req, and veq sin i are known, the rotation frequency
can be determined, in the uniform rotation approximation, by:

frot =
1

Prot
=

(veq sin i)

2πReq(sin i)
· (6)

The rotation frequencies computed from the equation above
and corresponding to our χ2 analyses are listed in Table 3.
Recently, Buzasi et al. (2005) detected several pulsation modes
in WIRE (Wide-field InfraRed Explorer) observations, indi-
cating that Altair is a low-amplitude δ Scuti star. The au-
thors suggest that the two low-frequency modes found ( f1 =
2.570 ± 0.020 cycles/day and f2 = 3.526 ± 0.020 cycles/day)
may be associated with the stellar rotation frequency.

The theoretical frot values listed in Table 3 suggest that
the frequency f1 measured by Buzasi et al. (2005) is a bet-
ter candidate for frot. However, more precise measurements
should be acquired before we can unambiguously identify f1 =
2.570 ± 0.020 cycles/day as the rotation frequency of Altair.

5.4. On the age of Altair

This work, along with previous ones, has proven that long base-
line interferometry is a powerful technique for studying rapidly
rotating stars. In particular, this technique can provide impor-
tant clues to the many unanswered questions concerning the
structure and evolution of rapid rotators. For example, placing
an intermediate-mass star like Altair in its evolutionary history
is an interesting but difficult task requiring as much information
as possible.

The age of a star can be derived using different indica-
tors. Lachaume et al. (1999) have used five different meth-
ods to study main-sequence stars in the solar neighborhood:
isochrones in the HR diagram, rotation, calcium emission lines,
kinematics in the Galaxy, and iron abundance. Unfortunately,
due to Altair’s rapid rotation, its spectral lines are very broad,
and this prevents the application of the Ca emission line and
kinematic methods. The rotational velocity of a hot, fast rota-
tor is not an accurate indicator of its age, because of the un-
certainties on the initial rotational velocity and on the braking
mechanisms possibly present.

To estimate the age of Altair, we took advantage of the re-
cent models from Girardi et al. (2002). We read the tables of
these authors for the following parameters: [Fe/H] = −0.34,
Teff = 7550 K, log g = 4.13 (Erspamer & North 2003),
and Z = 0.008. We adopted the absolute magnitudes pre-
sented in Table 4, derived using the parallax from Hipparcos

(Perryman et al. 1997): π = 194.45 ± 0.94 mas. The bolomet-
ric magnitude was estimated using the corrections provided by
Girardi et al. (2002). The best fit of the models with the ob-
served absolute magnitudes of Altair is obtained for an age be-
tween 1.2 and 1.4 Gyr.

The relatively old age of Altair suggests that it has kept
a high rotation velocity for a long time, well into its lifetime
on the main sequence. It does not seem that an efficient brak-
ing mechanism is acting to slow down the rotation velocity of
this intermediate-mass star. Altair was searched for the pres-
ence of a debris disk by Kuchner et al. (1998) in the mid-
infrared, without success. The absence of a disk could be one
of the factors that prevented an efficient slow down of the star
by magnetic coupling or turbulent friction. In any case we be-
lieve that further studies should be performed on the evolution
of an intermediate-mass and fast rotating star such as Altair.

6. Summary and conclusions

We performed a physically consistent analysis of all available
interferometric data on Altair using our interferometry-oriented
model for fast rotators. This model includes Roche approxima-
tion, limb-darkening from Claret (2000a,b), and a von Zeipel-
like gravity-darkening law, as described in Sect. 3 and also by
Domiciano de Souza et al. (2002). The rich observational set
analyzed here includes new data from VLTI-VINCI (V2 in the
H and K bands), as well as published data from PTI (V2 in the
K band) and NPOI (V2, triple amplitudes, and closure phases
in the visible between 520 nm and 850 nm).

In particular, and as already pointed out by ONH2004, the
presence of gravity-darkening in Altair is revealed by the NPOI
observations showing (1) a non-zero V2 in the first minimum
and (2) a smooth variation of the closure phase between 0 and
π rad. Thanks to our interferometry-oriented model we were
able, for the first time, to provide a physical interpretation of
all observations from NPOI, PTI, and VLTI-VINCI combined.
In particular, we could show that Altair exhibits a gravity-
darkening compatible with the theoretically expected value for
hot stars (von Zeipel effect): Teff ∝ g0.25.

Moreover, with the parameters and models considered here
we were able to show that the observations of Altair are bet-
ter reproduced by models with an intermediate inclination
(between 40◦ and 65◦ including the error bars).

Our analysis also reveals a possible discrepancy between
visible and near-IR angular diameters derived from the data
that should be further investigated by visible and near-IR obser-
vations of high quality, preferably within the second visibility
lobe and/or with closure phases.

Further observations should also be performed to inves-
tigate the presence of differential rotation on Altair and the
corresponding gravity-darkening laws. Precise interferometric
observations in the near-IR, allowing us to study differential
rotation in particular (Domiciano de Souza et al. 2004), are
soon expected for the VLTI spectro-interferometer AMBER
(e.g., Petrov et al. 2003).
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Fig. 4.6 – Modèle numérique d’Achernar obtenu par Domiciano et al. (2003) sur la base de
l’hypothèse de Roche : vitesse de rotation uniforme et masse concentrée au centre de l’étoile. Le
modèle est visualisé de gauche à droite pour des inclinaisons de 0 (plan équatorial), 30, 60 et
90 degrés (vue polaire). L’aplatissement minimum mesuré à l’aide du VLTI est représenté par
l’ellipse superposée à la vue équatoriale (illustration de gauche).

4.3 Achernar (α Eri)

4.3.1 Observations avec le VLTI

Nous avons observé l’étoile Achernar (αEri, HD10144) en 2002-2003 à l’aide de l’instru-
ment VINCI du VLTI. Le détail de ces observations est présenté dans la Lettre (Domiciano et
al. 2003) et l’Article (Kervella & Domiciano 2006) que nous avons publiés dans A&A, et qui
sont reproduits Sect. 4.3.3 et 4.3.4, respectivement.

Achernar est l’étoile la plus brillante (mV = 0, 50) et la plus proche représentante de la classe
des étoiles Be, avec une distance de seulement d = 44pc (Perryman et al. 1997). Ces étoiles de
types spectraux B présentent des épisodes durant lesquels la raie Hα apparâıt en émission dans
leur spectre. Dans le but de mesurer la déformation rotationnelle de cette étoile, nous avons tiré
partie de l’effet de supersynthèse dû à la rotation terrestre pour mesurer sa taille angulaire selon
une large gamme d’azimuths (Fig 2 de la Lettre reproduite à la Sect. 4.3.3).

L’analyse des observations supplémentaires obtenues avec les grands télescopes de 8m du
VLTI nous a par ailleurs permis de mettre en évidence la présence d’une enveloppe circumstellaire
allongée selon la direction des pôles de l’étoile (Sect. 4.3.4).

4.3.2 La nécessité de la rotation différentielle

Achernar est une étoile beaucoup plus massive (6M�) et grosse (12R� à l’équateur) qu’Altäır.
Ceci conduit à une densité moyenne très faible d’environ 10 kg/m3, soit moins de 1% de celle
du Soleil ! Il est donc attendu que son aplatissement rotationnel soit important. Cependant,
l’aplatissement observé est tel qu’il est impossible à expliquer dans le cadre d’une rotation uni-
forme(Fig. 4.6).

Il apparâıt donc indispensable d’introduire dans la modélisation la rotation différentielle.
Mais comme nous n’avons pas d’information directe sur le profil de la vitesse de rotation in-
terne par l’observation de la surface de l’étoile, il est très difficile de définir le type de loi à
utiliser. En considérant des hypothèses simples sur la loi de rotation interne différentielle, Jack-
son et al. (2004) ont construit des modèles d’Achernar en utilisant comme contraintes le profil
interférométrique obtenu avec le VLTI (Fig. 4.7). Leurs modèles sont basés sur l’hypothèse que
l’étoile est en équilibre hydrostatique entre la gravitation et la force centrifuge. Du fait de la
rotation ultra-rapide du cœur de l’étoile, les aplatissements obtenus peuvent être extrêmes sans
que l’étoile n’atteigne la vitesse critique et ne se disloque. Les formes obtenues permettent de
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Fig. 4.7 – Quelques modèles numériques d’Achernar obtenus par Jackson et al. (2004) sur la
base d’un profil de vitesse de rotation interne non uniforme. L’observateur est situé à gauche de
l’illustration. Tous ces modèles sont compatibles avec les résultats interférométriques du VLTI,
mais posent des problèmes pour l’interprétation du spectre de l’étoile.

reproduire l’aplatissement record de Γ = 56% observé par le VLTI, mais ne reproduisent pas les
profils des raies spectrales de l’étoile.

En mesurant précisément la forme de la photosphère de l’étoile, ainsi que la répartition de
lumière à sa surface, il est possible de contraindre les modèles de manière suffisamment forte
pour en déduire la loi de rotation interne. Pour conclure sur la forme tridimensionnelle réelle
d’Achernar, et donc sa loi de rotation interne, il est donc nécessaire d’obtenir la carte précise de
la répartition de lumière sur l’étoile. Les observations actuelles à deux télescopes n’ont permis
de reconstituer que le profil de l’étoile, mais Achernar sera bientôt une cible privilégiée pour le
nouvel instrument AMBER du VLTI. Combinant la lumière de trois télescopes simultanément,
il permettra de mesurer directement l’effet Von Zeipel sur cette étoile, une clé pour explorer la
structure interne de cette étoile hors du commun.
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4.3.3 Lettre A&A : “The spinning-top Be star Achernar from VLTI-VINCI”
(2003)

Nos observations de l’étoile Be Achernar (αEri) avec VINCI ont mis en évidence un aplatis-
sement considérable de son disque apparent, au-delà de ce que prévoient les modèles de rotation
basés sur l’hypothèse de corps solide. Ceci nous amène à conclure à la présence probable de
rotation différentielle à l’intérieur de cette étoile. Nous examinons également la possibilité de
présence d’un disque circumstellaire lors de nos observations, avec pour conclusion que celle-ci
est improbable du fait de l’absence d’émission dans la raie Hα.

Fig. 4.8 – Le laboratoire interférométrique du VLTI début 2001, avec l’instrument VINCI au
premier plan.
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Abstract. We report here the first observations of a rapidly rotating Be star,α Eridani, using Earth-rotation synthesis on the
Very Large Telescope (VLT) Interferometer. Our measures correspond to a 2a/2b = 1.56± 0.05 apparent oblate star, 2a and 2b
being the equivalent uniform disc angular diameters in the equatorial and polar direction. Considering the presence of a circum-
stellar envelope (CSE) we argue that our measurement corresponds to a truly distorted star sinceα Eridani exhibited negligible
Hα emission during the interferometric observations. In this framework we conclude that the commonly adopted Roche approx-
imation (uniform rotation and centrally condensed mass) should not apply toα Eridani. This result opens new perspectives to
basic astrophysical problems, such as rotationally enhanced mass loss and internal angular momentum distribution. In addition
to its intimate relation with magnetism and pulsation, rapid rotation thus provides a key to the Be phenomenon: one of the
outstanding non-resolved problems in stellar physics.

Key words. techniques: high angular resolution – techniques: interferometric – stars: rotation – stars: emission-line, Be –
stars: individual: Achernar

1. Introduction

The southern star Achernar (α Eridani, HD 10144, spectral
type B3Vpe) is the brightest Be star in the sky. A Be star is de-
fined as a non-supergiant B type star that has presented episodic
Balmer lines in emission (Jaschek et al. 1981), whose origin is
attributed to a CSE ejected by the star itself. Physical mech-
anisms like non-radial pulsations, magnetic activity, or bina-
rity are invoked to explain the CSE formation of Be stars in
conjunction with their fundamental property of rapid rotation.
Theoretically, rotation has several consequences on the star
structure (Cassinelli 1987). The most obvious is the geometri-
cal deformation that results in a larger radius at the equator than
at the poles. Another well established effect, known as grav-
ity darkening or the von Zeipel effect for hot stars (von Zeipel
1924), is that both surface gravity and emitted flux decrease
from the poles to the equator. Although well studied in the liter-
ature, the effects of rotation have rarely been tested against ac-
curate enough observations (Reiners & Schmitt 2003; van Belle
et al. 2001), a gap bridged by our interferometric observations
of Achernar.

Send offprint requests to: A. Domiciano de Souza,
e-mail:Armando.Domiciano@obs-azur.fr

2. Observations and data processing

Dedicated observations of Achernar have been carried
out during the ESO period 70, from 11 September to
12 November 2002, with quasi-uniform time coverage, on the
VLT Interferometer (VLTI, Glindemann et al. 2003) equipped
with the VINCI beam combiner (Kervella et al. 2003a). This
instrument recombines the light from two telescopes in the
astronomicalK band, which is centered at 2.2µm and cov-
ers 0.4µm. The observable measured by VINCI is the squared
coherence factorµ2 of the star light. It is derived from the raw
interferograms after photometric calibration using a wavelet
based method (S´egransan et al. 1999). The reduction procedure
is detailed by Kervella et al. (2003b) and has successfully been
applied to dwarf stars observations with the VLTI (S´egransan
et al. 2003). The instrumental value ofµ2 is then calibrated
through the observation of stable stars with known angular di-
ameters. The calibrators chosen for Achernar are presented in
Table 1. The final product of the processing is the squared
visibility V2 of the object for each baseline projected on the
sky (Bproj). V2 is directly related to the Fourier transform of the
brightness distribution of the object via the Zernike-Van Cittert
theorem. For these observations, two interferometric baselines
were used, 66 m (E0-G1; azimuth 147◦, counted from North
to East) and 140 m (B3-M0; 58◦), equipped with 40 cm
siderostats (Fig. 1 left). Their orientations are almost perpen-
dicular to each other giving an excellent configuration for the
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L48 A. Domiciano de Souza et al.: The spinning-top Be star Achernar from VLTI-VINCI

Fig. 1. VLTI ground baselines for Achernar observations and their
corresponding projections onto the sky at different observing times.
Left: Aerial view of VLTI ground baselines for the two pairs of 40 cm
siderostats used for Achernar observations. Color magenta represents
the 66 m (E0-G1; azimuth 147◦, counted from North to East) and
green the 140 m (B3-M0; 58◦). Right: Corresponding baseline pro-
jections onto the sky (Bproj) as seen from the star. Note the very effi-
cient Earth-rotation synthesis resulting in a nearly complete coverage
in azimuth angles.

detection of stellar asymmetries. Moreover, Earth-rotation has
produced an efficient baseline synthesis effect (Fig. 1, right).
A total of more than 20 000 interferograms were recorded on
Achernar, and approximately as many on its calibrators, cor-
responding to more than 20 hours of integration. From these
data, we obtained 60 individualV2 estimates, at an effective
wavelength ofλeff = 2.175± 0.003µm.

3. Results

The determination of the shape of Achernar from our set ofV2

is not a straightforward task so that some prior assumptions
need to be made in order to construct an initial solution for
our observations. A convenient first approximation is to de-
rive from eachV2 an equivalent uniform disc (UD) angu-
lar diameter�UD from the relationV2 = |2J1(z)/z|2. Here,
z = π �UD (α) Bproj (α) λ−1

eff , J1 is the Bessel function of the
first kind and of first order, andα is the azimuth angle ofBproj

at different observing times due to Earth-rotation. The appli-
cation of this simple procedure reveals the extremely oblate
shape of Achernar from the distribution of�UD(α) on an el-
lipse (Fig. 2). Sinceα, Bproj(α), andλeff are known much bet-
ter than 1%, the measured errors inV2 are associated only to
the uncertainties in�UD. We performed a non-linear regres-
sion fit using the equation of an ellipse in polar coordinates.
Although this equation can be linearized in Cartesian coor-
dinates, such a procedure was preferred to preserve the orig-
inal, and supposedly Gaussian, residuals distribution as well
as to correctly determine the parameters and their expected
errors. We find a major axis 2a = 2.53 ± 0.06 milliarcsec
(mas), a minor axis 2b = 1.62 ± 0.01 mas, and a minor-
axis orientationα0 = 39◦ ± 1◦. Note that the correspond-
ing ratio 2a/2b = 1.56± 0.05 determines the equivalent star

Fig. 2.Fit of an ellipse over the observed squared visibilitiesV2 trans-
lated to equivalent uniform disc angular diameters. EachV2 is plotted
together with its symmetrical value in azimuth. Magenta points are
for the 66 m baseline and green points are for the 140 m baseline.
The fitted ellipse results in major axis 2a = 2.53± 0.06 milliarcsec,
minor axis 2b = 1.62± 0.01 milliarcsec, and minor axis orientation
α0 = 39◦±1◦ (from North to East). The points distribution reveals an
extremely oblate shape with a ratio 2a/2b = 1.56± 0.05.

oblateness only in a first-order UD approximation. To interpret
our data in terms of physical parameters of Achernar, a consis-
tent scenario must be tailored from its basic known properties,
so that we can safely establish the conditions where a coherent
model can be built and discussed.

4. Discussion

Achernar’s pronounced apparent asymmetry obtained in this
first approximation, together with the fact that it is a Be star,
raises the question of whether we observe the stellar photo-
sphere with or without an additional contribution from a CSE.

For example, a flattened envelope in the equatorial plane
would increase the apparent oblateness of the star if it were
to introduce a significant infrared (IR) excess with respect
to the photospheric continuum. Theoretical models (Poeckert
& Marlborough 1978) predict a rather low CSE contribution
in the K band especially for a star tilted at higher inclina-
tions, which should be our case as discussed below. Indeed,
Yudin (2001) reported a near IR excess (difference between
observed and standard color indices in visible andL band
centered at 3.6µm) to be E(V − L) = 0.m2, with the same
level of uncertainty. Moreover, this author reports a zero in-
trinsic polarization (p∗). These values are significantly smaller
than mean values for Be stars earlier than B3 (E(V − L) >
0.m5 and p∗ > 0.6%), meaning that the Achernar’s CSE is
weaker than in other known Be stars. Further, an intermediate
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Table 1.Relevant parameters of the calibrators of Achernar.�UD is the
equivalent uniform disc angular diameter. The value of�UD for δ Phe
andχ Phe is based on spectrophotometry (Cohen et al. 1999), while
that for α PsA was measured separately with the VLTI and should
appear in a forthcoming publication from one of us (E.F.).

Name Spec. type λeff Baseline �UD

(µm) (m) (mas)

δ Phe K0IIIb 2.181 140 2.18± 0.02
α PsA A3V 2.177 140 2.20± 0.07
χ Phe K5III 2.182 66 2.69± 0.03

angular diameter of our elliptical fit (Fig. 2) is compatible with
the �UD = 1.85 ± 0.07 mas measured by Hanbury-Brown
(1974) in the visible, in contrast to what is expected if the enve-
lope were to contribute to our present IR observations. Finally,
Chauville et al. (2001) report no emission in the Hγ line. Since
the emission in Hγ and in the continuum are both formed
roughly in the same layer of the CSE (Ballereau et al. 1995),
the contribution from the nearby environment of the star should
be considered below the limit of detection.

Of course, being classified as a Be star, Achernar can
enhance the strength of its CSE due to episodic mass ejec-
tions, which are generally witnessed by increased Balmer line
emission (e.g. de Freitas Pacheco 1982). This possibility was
checked against a Hα spectrum (Leister & Janot-Pacheco 2003)
taken in October 2002, during our VLTI-VINCI campaign pre-
senting a photospheric absorption profile. To be sure that we
observed a quiescent Achernar we synthesized a Hα profile
from our model (Domiciano de Souza et al. 2002) compared to
the observed line. We estimated the emission to be at most 3%
across the whole line. Such an upper limit would correspond
to a CSE emitting at most 12% of the photospheric contin-
uum flux, due to free-free and free-bound emission (Poeckert
& Marlborough 1978).

Thus, we assume hereafter that the observed asymmetry of
Achernar mainly reflects its true photospheric distortion with a
negligible CSE contribution. Under this assumption, and using
the Hipparcos distance (d = 44.1 ± 1.1 pc; Perryman et al.
1997), we derive an equatorial radiusReq = 12.0 ± 0.4 R�
and a maximum polar radiusRmax

pol = 7.7± 0.2 R�, respectively
from 2a and 2b obtained from the elliptical fit on�UD(α). From
simple geometrical considerations the actual polar radiusRpol

will be smaller thanRmax
pol for polar inclinationsi < 90◦,

while Req is independent ofi.
Based on these conclusions we applied our interferometry-

oriented code (Domiciano de Souza et al. 2002) to Achernar.
This code includes radiation transfer, the von Zeipel law (Teff ∝
g0.25

eff , Teff andgeff being the effective temperature and gravity,
respectively), and the Roche approximation (e.g. Roche 1837;
Kopal 1987). In this approximation and noting that the stel-
lar rotation must be kept smaller than its critical value, the
adopted projected equatorial velocityVeqsini = 225 km s−1

(Slettebak 1982) implies thati > 46◦. At this limit Teff andgeff

both attain zero at the equator, and the surface equipotential
first derivatives become discontinuous. Therefore we chose
to explore a parameter space between the representative limit

Fig. 3. Comparison of ratios of squared visibility curves between the
polar and equatorial directionsV2

pol/V
2
eq. The black solid curve corre-

sponds toV2
pol/V

2
eq for the elliptical fit on Achernar’s data, together

with the corresponding uncertainties. Simply speakingV2
pol/V

2
eq some-

how reflectsReq/Rmax
pol , since interferometry is sensitive to the Fourier

transform of the stellar brightness distribution. The colored region rep-
resents our attempt attain the black curve with our model for Achernar
within the physically reasonable solutions A (orange; upper limit)
and B (red; lower limit). This failure to reproduce the observations
is a strong and direct indication that uniform rotation does not apply
to rapidly rotating stars.

solution models A (i = 50◦) and B (i = 90◦). Table 2 sum-
marizes the corresponding sets of fundamental parameters.
Figure 3 clearly shows that the solutions enclosed between the
models A and B cannot reproduce the observed highly oblate
ellipse. We also checked, with negative result, whether the sit-
uation would improve significantly by varying the fundamental
parameters of Achernar in a physically reasonable range (mass
±1 M�, Tpol ± 2000 K,Veqsini ± 25 km s−1).

Thus, in absence of Hα emission making a CSE con-
tribution unlikely to reproduce the observed oblateness, the
classical assumption of Roche approximation becomes ques-
tionable. Deviations from this gravitational potential and the
presence of differential rotation, both intimately related to the
internal angular momentum distribution, should be investi-
gated. Indeed, several differential rotation theories predict sur-
face deformations stronger than that of uniform rotation by
considering that the angular velocity increases towards the stel-
lar center. Two interesting examples are “shellular” rotation
(Zahn 1992) and laws with angular momentum constant on
cylinders (Bodenheimer 1971). In this context our result on
Achernar’s surface distortion should also impact other internal
mechanisms like meridional circulation, turbulence, transport
and diffusion of the chemical elements and angular momentum,
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Table 2. Fundamental parameters for two limit solution models of
Achernar. From the fixed parameters and in the Roche approxima-
tion, the minimum polar inclination isimin = 46◦ whereVeq = Vcrit =

311 km s−1 and Req = 1.5 Rpol. In addition to these parameters we
adopted a linear limb darkening coefficient from Claret (2000) com-
patible with the variable effective temperature and gravity over the
stellar surface. The equatorial effective temperature is much lower
than the polar one due to the von Zeipel effect.

Fixed parameters Adopted value Comments

Tpol 20 000 K ∼B3V star

Mass 6.07M� Harmanec (1988)

Veqsini 225 km s−1 Slettebak (1982)

Req 12.0R� this work

Model dependent Values for Values for

parameters Model A Model B

Teq 9500 K 14 800 K

i 50◦ 90◦

Vcrit 304 km s−1 285 km s−1

Veq 0.96Vcrit 0.79Vcrit

Rpol 8.3R� 9.5R�

increase of mass loss with rotation as well as anisotropies in
the mass ejection and wind density from rotating stars (Maeder
1999; Maeder & Meynet 2000).

Finally, the highly distorted shape of Achernar poses the
question of Be stars rotation rate. As argued by several au-
thors (e.g. Cassinelli 1987; Owocki 2003) the formation of
out-flowing discs from Be stars remains their central puzzle,
where rapid rotation is the crucial piece. Struve’s (1931) orig-
inal vision of a critically rotating star, ejecting material from
its equator, has been discarded in the past by observing that
Be stars rotate at most 70% or 80% of their critical velocity
(typically ∼500 km s−1 for a B0V star). However, this statisti-
cally observed limit might be biased by the fact that close to
or beyond such velocities the diagnosis of Doppler-broadened
spectral lines fails to determine the rotation value due to grav-
ity darkening (Owocki 2003; Townsend 1997). We believe that
only direct measures of Be star photospheres by interferome-
try can overcome the challenge to prove whether these objects
rotate close, to a few percent, of their critical velocity or not.
This have a profound impact on dynamical models of Be stars
CSE formation from rapid rotation combined to mechanisms
like pulsation, radiation pressure of photospheric hot spots, or
expelled plasma by magnetic flares.
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Ségransan, D., Kervella, P., Forveille, T., & Queloz, D. 2003, A&A,

397, L5
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4.3.4 Article A&A : “The polar wind of the fast rotating Be star Acher-
nar. VINCI/VLTI interferometric observations of an elongated polar
envelope” (2006)

L’analyse d’observations supplémentaires de Achernar obtenues avec les grands télescopes de
8 m du VLTI et VINCI a permis de mettre en évidence une enveloppe circumstellaire allongée
selon la direction des pôles de l’étoile. Il s’agit de la première détection de l’émission “free-free”
créée par le vent stellaire rapide expulsé des calottes polaires de l’étoile, surchauffées par l’effet
Von Zeipel.

Fig. 4.9 – Coucher de Soleil à Paranal (photo R. Petrov).
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ABSTRACT

Context. Be stars show evidence of mass loss and circumstellar envelopes (CSE) from UV resonance lines, near-IR excesses, and the
presence of episodic hydrogen emission lines. The geometry of these envelopes is still uncertain, although it is often assumed that
they are formed by a disk around the stellar equator and a hot polar wind.
Aims. We probe the close environment of the fast rotating Be star Achernar at angular scales of a few milliarcseconds (mas) in the
infrared, in order to constrain the geometry of a possible polar CSE.
Methods. We obtained long-baseline interferometric observations of Achernar with the VINCI/VLTI beam combiner in the H and
K bands, using various telescope configurations and baseline lengths with a wide azimuthal coverage.
Results. The observed visibility measurements along the polar direction are significantly lower than the visibility function of the
photosphere of the star alone, in particular at low spatial frequencies. This points to the presence of an asymmetric diffuse CSE
elongated along the polar direction of the star. To our data, we fit a simple model consisting of two components: a 2D elliptical
Gaussian superimposed on a uniform ellipse representing the distorted photosphere of the fast rotating star.
Conclusions. We clearly detected a CSE elongated along the polar axis of the star, as well as rotational flattening of the stellar
photosphere. For the uniform-ellipse photosphere we derive a major axis of θeq = 2.13 ± 0.05 mas and a minor axis of θpol =
1.51 ± 0.02 mas. The relative near-IR flux measured for the CSE compared to the stellar photosphere is f = 4.7 ± 0.3%. Its angular
dimensions are loosely constrained by the available data at ρeq = 2.7 ± 1.3 mas and ρpol = 17.6 ± 4.9 mas. This CSE could be linked
to free-free emission from the radiative pressure driven wind originating from the hot polar caps of the star.

Key words. techniques: high angular resolution – techniques: interferometric – stars: emission-line, Be – stars: mass-loss –
stars: rotation – stars: individual: Achernar

1. Introduction

The southern star Achernar (αEridani, HD 10144) is the bright-
est of all Be stars (V = 0.46 mag). Depending on the author (and
the technique used) the spectral type of Achernar ranges from
B3-B4IIIe to B4Ve (e.g., Slettebak 1982; Balona et al. 1987).
The estimated projected rotation velocity v sin i ranges from 220
to 270 km s−1 and the effective temperature Teff from 15 000
to 20 000 K (e.g., Vinicius et al. 2006; Rivinius, priv. comm.;
Chauville et al. 2001). The difficulty in deriving these parame-
ters more precisely is a direct consequence of the rapid rotation
of Achernar. Such rapid rotation (≥80% of the critical velocity)
induces mainly two effects on the star structure: a rotational flat-
tening and a gravity darkening, which can be described by the
von Zeipel effect (von Zeipel 1924).

Domiciano de Souza et al. (2003, hereafter D03) measured
the apparent rotational flattening of Achernar using the Very
Large Telescope Interferometer (VLTI). They showed that the
flattening ratio measured on this star cannot be explained in the
Roche approximation, especially when taking the von Zeipel
effect into account. Recently, this effect was revealed in two
other rapidly rotating stars thanks to interferometric observa-
tions: Altair (A7V, Ohishi et al. 2004; Domiciano de Souza et al.
2005) and Regulus (B7V, McAlister et al. 2005).

Rapid rotation and gravity darkening seem to be impor-
tant keys to explaining the two-component circumstellar en-
vironment (CSE) of Be stars: (1) a dense (particle densities
N � 1011−1012 cm−3), high mass-loss (�10−8 M�/yr) and low
radial velocity (�10−100 km s−1) equatorial envelope and (2) a
rarefied (N � 109 cm−3), low mass-loss (�10−10 M�/yr)
and fast (�1000 km s−1) polar wind (e.g. Damineli Neto &
de Freitas Pacheco 1982; Waters et al. 1987, and references
therein). This picture of a two-component CSE is based on many
observations of Be stars performed in the past few decades. For
example, optical/IR data have shown emission lines and IR ex-
cesses that essentially probe the denser regions of the CSE (e.g.
Waters 1986; Dougherty et al. 1994), while UV resonance lines
of highly ionized species can probe regions of lower density (e.g.
Snow 1981; Peters 1982). Gehrz et al. (1974) showed that the
near-IR excess measured in Be stars is due to free-free radiation.

The disk-like shape of the dense equatorial CSE has been
directly measured by interferometric observations in the radio
and optical/IR (e.g. Dougherty & Taylor 1992; Stee et al. 1995;
Quirrenbach et al. 1997). In a recent work, Tycner et al. (2005)
explore the relationship between the angular size of the Hα emit-
ting region (measured by interferometry) and the net Hα emis-
sion measured spectroscopically for seven Be stars. They find an
interesting correlation between the two quantities, which they
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Table 1. Relevant parameters of the calibrators used for VINCI observations of Achernar (continued in Table 2).

Name α PsA χ Phe HR 1318 α Ind HR 37 HR 2305 δPhe
HD number HD 216956 HD 12524 HD 26846 HD 196171 HD 787 HD 44951 HD 9362
mV 1.2 5.2 4.9 3.1 5.3 5.2 4.0
mK 1.0 1.3 2.3 0.9 1.8 2.3 1.7
Sp. type A3V K5III K3III K0III K5III K3III K0IIIb
Teff (K)a 8760 3780 6210 4720 3780 4250 4660
log ga 4.2 1.9 2.2 2.6 1.9 2.4 2.9
v sin i (km s−1)c 85 – 20 – 2 20 –
θLD (mas)a 2.23 ± 0.07 2.77 ± 0.03 1.86 ± 0.02 3.28 ± 0.03 2.52 ± 0.03 1.81 ± 0.03 2.24 ± 0.02
θUD (mas)b 2.19 ± 0.07 2.69 ± 0.03 1.81 ± 0.02 3.20 ± 0.03 2.45 ± 0.03 1.76 ± 0.03 2.18 ± 0.02

a From Cohen et al. (1999) or Bordé et al. (2002), except αPsA which angular size was measured by Di Folco et al. (2004). b Linear limb darkening
coefficients from Claret et al. (1995) or Claret (2000). c The projected rotational velocities were taken from the catalogue compiled by Glebocki
et al. (2000).

attribute to an optically thick emission proportional to the ef-
fective area of the emitting disk. Because the equatorial disks
are denser (�100 times) than the polar winds and because the
free-free emissivity is proportional to the density squared, the
equatorial disk dominates the near-IR continuum emission when
it is present.

However, it is still not clear if this free-free radiation comes
only from the equatorial envelope or if it can also be formed,
at least partially, in the polar wind. Modern high angular res-
olution techniques have the resolving power and sensitivity re-
quired to map the spatial distribution of the near-IR emission.
In the present paper we investigate this issue by using all avail-
able interferometric observations of Achernar obtained with the
VINCI/VLTI near-IR instrument (Sect. 2). These observations
were performed during a phase where the equatorial disk was
nearly absent. The adopted analytical model is presented in
Sect. 3 and our results discussed in Sect. 4.

2. Interferometric observations

2.1. Instrumental setup and observations

The European Southern Observatory’s VLTI (Glindemann et al.
2000, 2004) has been in operation on top of the Cerro Paranal, in
Northern Chile since March 2001. For the observations reported
in this paper, the light coming from two test siderostats (0.35 m
aperture) or two Unit Telescopes (8 m aperture) was recombined
coherently in VINCI, the VLT INterferometer Commissioning
Instrument (Kervella et al. 2000, 2003). We used either a K band
(λ = 2.0−2.4 µm) or H band (λ = 1.4−1.8 µm) filter, depend-
ing on the beam combiner. In the K band, we relied on the
MONA beam combiner, based on fluoride glass optical fibers,
while in the H band, we employed the IONIC integrated op-
tics beam combiner (Berger et al. 2001; Kervella et al. 2003;
Lebouquin et al. 2004). A total of nine VLTI baselines were
used for this program, including five out of the six possible Unit
Telescope baselines. Considering the transmission of the instru-
ment and the average effective temperature of Achernar, the ef-
fective wavelength of our observations was λ = 2.175 µm in the
K band and λ = 1.631 µm in the H band. The uncertainty on
these wavelengths (≈0.2%) is negligible compared to the accu-
racy of our measurements.

2.2. Data processing and calibration

The raw data processing was achieved using a wavelet-based
algorithm, integrated in an automated data reduction pipeline
(Kervella et al. 2004a). The general principle is similar to the

original FLUOR algorithm (Coudé du Foresto et al. 1997), but
instead of the classical Fourier analysis, we implemented a
wavelet-based time-frequency analysis (Ségransan et al. 1999).
The output of this pipeline is a single value of the squared coher-
ence factor µ2 for each series of 500 interferograms and the as-
sociated bootstrapped error bar. We obtained a total of 49 500 in-
terferograms of Achernar in the K band and 9500 in the H band,
among which 32 394 and 3029 were reduced by the pipeline, re-
spectively. The lower proportion of processed interferograms in
the H band is explained by the fact that only one interferometric
output is available in the IONIC component, instead of two for
the MONA beam combiner. In both cases, two photometric out-
puts are present. This resulted in a total of 99 squared visibility
measurements in the K band, and 19 in the H band, with their
associated statistical and calibration uncertainties.

We used a number of calibrators taken mainly from the
Bordé et al. (2002) catalogue, which is an adaptation of the
Cohen et al. (1999) catalogue for interferometric observations.
The observations of these stars were used to estimate the point
source response of the interferometer immediately before or
after the Achernar observations. Their properties are listed in
Tables 1 and 2. The choice of the calibrators is an important step
in the preparation of interferometric observations, as significant
departures of their actual visibilities from the expected model
can propagate into biases on the calibrated visibilities of the sci-
entific target. Among the possible reasons for such departures,
binarity (or multiplicity) and deviations from sphericity (due,
for instance, to fast rotation or gravitational interaction) are the
most critical. All stars in the Bordé et al. (2002) catalogue were
carefully scrutinized by these authors for the presence of com-
panions, and are currently regarded as single stars. With respect
to fast rotation, the values of v sin i are generally low for all our
calibrators. Spectroscopic measurements of the projected rota-
tional velocities are missing for some of our calibrators; but as
they are giant stars, we assume that they are small and, therefore,
that the deformation of these stars can be neglected.

One of our calibrators, αPsA (Fomalhaut), is a moderately
fast rotating dwarf (A3V, v sin i ≈ 85 km s−1, from Glebocki
et al. 2000). We considered carefully the visibilities that were
computed using this calibrator, and they show no deviation from
the other measurements, in particular those calibrated by δPhe
that were obtained on the same baseline. Moreover, Di Folco
et al. (2004) have measured the angular diameter of this star
along the same projected baseline azimuth as during our obser-
vations of Achernar. Therefore, we do not expect any difference
in terms of angular diameter. In any case, we considered a con-
servative ±0.07 mas (±3%) uncertainty on the asumed angular
diameter of αPsA.
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Table 2. Relevant parameters of the calibrators used for VINCI obser-
vations of Achernar (continued from Table 1). The references are the
same as in Table 1.

Name ε Ind A αCet υCet
HD number HD 209100 HD 18884 HD 12274
mV 4.7 2.5 4.0
mK 2.2 –1.7 0.0
Sp. type K4.5V M1.5IIIa K5/M0III
Teff (K) 4500 3730 –
log g 4.5 – –
v sin i (km s−1) 1 – –
θLD (mas)a 1.89 ± 0.02 – –
θUD (mas)b 1.84 ± 0.02 11.6 ± 0.40 5.3 ± 0.5

a The angular diameter of ε Ind A was measured by Kervella
et al. (2004b). b The uniform disk angular sizes of αCet and υCet
were taken from Dyck et al. (1998) and Richichi & Percheron (2005),
respectively.

The resulting calibrated squared visibilities are listed in
Tables 3a–d. For each measurement, the calibrator is listed. No
systematic deviation of the visibility was observed for any of our
calibrators at a 1σ level.

3. Model fitting

3.1. Polar and equatorial visibilities

In order to define a plausible model for the light distribution of
Achernar, we examine here the shape of the polar and equa-
torial visibility functions. The orientation of the minor axis of
Achernar on the plane of the sky relative to the North was ob-
tained by D03 using a subset of the data discussed in the present
paper. Using a simplified analysis of the dependence of the
equivalent uniform disk angular diameter with the azimuth of the
projected baseline, they obtained an orientation of the minor axis
of Achernar (assumed to be the polar axis) of α0 = 39 ± 1◦ east
of North.

To visualize the polar visibility function of Achernar, we ex-
tracted the interferometric measurements with azimuth angles
between 10◦ and 70◦, i.e. �±30◦ from the sky-projected polar
axis of the star. As shown in Fig. 2 (left), it appears that the dis-
tribution of the measured visibilities does not follow that of a
uniform disk, and there is a clear deficit of visibility at low spa-
tial frequencies. Fitting a simple uniform disk model (through
a classical least-square minimization) to these data leads to
θUD = 1.78 mas, but the reduced χ2 of 6.2 is characteristic of
a poor fit. The deficit of visibility at low spatial frequencies is
typical of the presence of an extended, incoherent source that
is already resolved by the interferometer on the short baselines.
In other words, a diffuse and extended envelope appears to be
present along the polar axis of the star.

The equatorial visibility function can be evaluated by re-
stricting our sample to the visibility measurements obtained in
the azimuth range α1 = 129 ± 30◦. As shown in Fig. 1, we do
not have as many measurements at high spatial frequencies along
this range of azimuth, due to the limitations in the available VLTI
baselines during commissioning. Figure 2 (right) shows the dis-
tribution of squared visibilities observed in this azimuth range as
a function of the spatial frequency. In this case, the fit of a simple
uniform disk model with θUD = 2.38 mas produces satisfactory
results with a reduced χ2 of only 0.6. In this case, we conclude
that we do not detect any significant diffuse envelope along the
equatorial plane of the star.

Fig. 1. Coverage of the (u, v) plane for the VINCI observations of
Achernar. The K band observations (MONA beam combiner) are repre-
sented using circles (open for siderostat observations, solid for the Unit
Telescopes), and the H band observations are represented using crosses.
The scales are in units of B/λ, expressed in cycles/arcsec.

3.2. Star-envelope model description

As discussed in Sect. 3.1, it appears that a diffuse envelope,
confined to the direction of its polar axis, is present around
Achernar. In order to study the flux contribution of this envelope,
we need to define a simple model to fit the observed visibility
data. For this purpose, we considered the following components:

– the stellar photosphere is represented by a uniform ellipse.
The parameters are the equatorial and polar angular sizes θeq
and θpol and the azimuth orientation of the equatorial axis on
the sky α1;

– the diffuse envelope is represented by a bidimensional ellip-
tical Gaussian. It is parametrized by its full widths at half
maximum (FWHM) along the polar and equatorial axes of
the star ρpol and ρeq, and its integrated flux relative to the
stellar flux f . We make the assumption that its principal axes
are aligned with the principal axes of the stellar photosphere.

Using a simple uniform ellipse model is naturally a very sim-
plified approximation of the photospheric light distribution of
Achernar. In reality, the rapid rotation of the star causes signif-
icant brightening of the polar caps of the star as a consequence
of its flattening. Though numerical models can accurately pre-
dict the distribution of light on the photosphere of uniformly
rotating stars (see e.g. Domiciano de Souza et al. 2002), the
underlying Roche approximation is not necessarily verified for
Achernar. In particular, Jackson et al. (2004) show that stellar
models of Achernar including differential internal rotation re-
sult in better agreement with the interferometric profile obtained
by D03. Though there are good prospects for differential rota-
tion being constrained observationally by spectro-interferometry
(Domiciano de Souza et al. 2004), the current uncertainties on
the light distribution of the photosphere lead us to prefer the sim-
ple approach of a uniform ellipse. We also make the hypothesis
that the axes of the envelope are aligned with the principal axes
of the stellar photosphere. Due to the limited coverage of our
data set in terms of azimuth angle at intermediate baselines, we
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Fig. 2. Left: squared visibilities V2 measured on Achernar and corresponding to projected baseline azimuth angles around the polar direction
(values between 10◦ and 70◦). Right: V2 corresponding to projected baseline azimuth angles around the equatorial direction (values between 100◦
and 160◦). The solid squares and crosses represent K and H band data, respectively. The solid curves represent theoretical V2 along the pole (left)
and the equator (right) obtained from the 2D fit of our two-component model (Sect. 3) to all measured V2 (Tables 3a–d. Note also the V2 outliers
along the polar direction, which were not included in the fit (see text for details).

Table 3. (a) Squared visibilities of Achernar in the K band from VINCI,
ordered by increasing azimuth angle of the projected baseline. The cal-
ibrators are named using their HR number, when no Bayer designation
is available. The stated Julian date JD0 is JD− 2.452×106. The azimuth
is counted in degrees clockwise from North (N = 0 deg, E = 90 deg),
and B is the projected baseline in meters. The squared visibilities are
followed in subscript by the statistical and calibration uncertainties.

JD0 Cal. Stations B (m) Az. V2 (%)
548.551 αPsA B3-M0 139.44 7.3 45.7±1.5±4.1

546.558 αPsA B3-M0 139.48 7.9 42.7±4.4±3.3

548.555 αPsA B3-M0 139.46 8.7 46.3±1.5±4.2

548.560 αPsA B3-M0 139.48 10.2 44.4±1.5±4.0

547.595 αPsA B3-M0 139.61 20.2 45.9±2.1±3.8

545.604 αPsA B3-M0 139.69 21.2 50.6±1.6±2.4

547.600 αPsA B3-M0 139.63 21.8 45.0±2.1±3.7

545.608 αPsA B3-M0 139.70 22.6 52.6±1.6±2.5

547.605 αPsA B3-M0 139.65 23.3 46.5±2.2±3.8

545.613 αPsA B3-M0 139.72 24.0 51.7±1.5±2.5

216.589 1318 U1-U3 95.29 24.2 67.9±1.1±0.5

216.592 1318 U1-U3 95.15 24.8 66.6±1.3±0.5

545.622 αPsA B3-M0 139.72 26.7 49.7±1.5±2.4

545.626 αPsA B3-M0 139.72 28.0 48.7±2.2±2.3

534.712 χ Phe U1-U2 44.61 29.6 87.3±1.6±0.4

545.632 αPsA B3-M0 139.70 29.9 51.3±2.2±2.4

534.714 χ Phe U1-U2 44.56 30.1 89.3±1.6±0.4

575.637 37, 2305 U1-U3 93.34 31.3 73.2±2.8±1.3

213.654 χ Phe U1-U3 91.22 36.9 76.3±2.2±1.6

213.655 χ Phe U1-U3 91.12 37.2 77.4±2.3±1.6

213.658 χ Phe U1-U3 90.79 37.9 72.4±2.2±1.5

213.660 χ Phe U1-U3 90.62 38.3 75.2±2.0±1.6

534.749 χ Phe U1-U2 43.54 38.7 88.9±2.1±0.4

213.663 χ Phe U1-U3 90.28 39.0 72.3±2.0±1.5

534.750 χ Phe U1-U2 43.48 39.1 84.3±1.5±0.4

534.752 χ Phe U1-U2 43.40 39.6 85.4±1.6±0.4

556.635 δPhe B3-M0 139.20 39.8 59.2±4.1±1.7

214.664 1318 U1-U3 89.89 39.9 68.8±1.7±0.5

534.755 χ Phe U1-U2 43.32 40.2 82.9±1.7±0.4

214.667 1318 U1-U3 89.60 40.5 66.2±1.6±0.5

556.642 δPhe B3-M0 139.02 41.7 55.3±4.0±1.6

213.675 χ Phe U1-U3 88.92 41.8 72.6±2.0±1.5

214.675 1318 U1-U3 88.69 42.2 70.2±1.7±0.5

556.646 δPhe B3-M0 138.88 42.9 54.3±3.8±1.6

213.691 χ Phe U1-U3 87.05 45.1 73.5±2.2±1.5

Table 3. (b) Squared visibilities of Achernar in the K band from VINCI
(continued from Table 3a).

JD0 Cal. Stations B (m) Az. V2 (%)

533.711 ε Ind U1-U4 129.75 45.7 41.3±1.2±1.4

533.713 ε Ind U1-U4 129.70 46.1 41.0±0.9±1.4

533.715 ε Ind U1-U4 129.64 46.8 41.0±0.9±1.4

533.717 ε Ind U1-U4 129.57 47.4 42.4±0.9±1.4

550.685 δPhe B3-M0 137.86 49.2 49.8±3.4±1.4

550.688 δPhe B3-M0 137.64 50.3 53.9±3.6±1.5

550.697 δPhe B3-M0 137.09 52.5 51.5±1.6±1.4

534.898 χ Phe U2-U3 39.87 54.7 89.5±2.4±0.4

534.900 χ Phe U2-U3 39.68 55.0 89.9±1.8±0.4

534.902 χ Phe U2-U3 39.44 55.4 89.3±1.8±0.4

534.904 χ Phe U2-U3 39.18 55.9 91.0±1.9±0.4

556.696 δPhe B3-M0 135.77 56.9 50.9±2.2±1.4

556.701 δPhe B3-M0 135.32 58.2 50.3±2.1±1.3

556.705 δPhe B3-M0 134.87 59.5 51.1±2.2±1.4

550.733 δPhe B3-M0 133.55 62.6 52.1±2.0±1.5

590.625 δPhe B3-M0 133.37 63.0 51.6±0.8±1.3

550.736 δPhe B3-M0 133.15 63.5 52.9±1.8±1.5

590.629 δPhe B3-M0 132.83 64.2 49.7±0.7±1.2

550.741 δPhe B3-M0 132.55 64.7 53.7±1.8±1.5

569.691 δPhe B3-M0 132.25 65.3 49.6±1.1±1.2

945.621 αPsA E0-G0 15.95 65.4 92.5±3.2±0.1

590.634 δPhe B3-M0 132.12 65.6 49.5±0.8±1.2

554.735 αPsA B3-M0 131.85 66.1 48.4±1.9±2.0

569.695 δPhe B3-M0 131.58 66.6 49.7±1.1±1.2

945.625 αPsA E0-G0 15.93 66.7 91.5±3.3±0.1

590.639 δPhe B3-M0 131.41 66.9 50.4±0.8±1.3

569.700 δPhe B3-M0 130.94 67.8 49.6±1.7±1.2

579.677 δPhe B3-M0 130.22 69.1 54.8±4.4±1.1

579.682 δPhe B3-M0 129.41 70.4 49.7±4.5±1.0

579.687 δPhe B3-M0 128.57 71.8 48.7±4.7±1.0

555.761 δPhe B3-M0 127.04 74.1 48.7±1.9±1.0

555.765 δPhe B3-M0 126.16 75.4 49.7±3.3±1.0

577.707 δPhe B3-M0 125.74 75.9 50.1±3.4±1.3

577.712 δPhe B3-M0 124.67 77.4 49.8±3.4±1.3

577.717 δPhe B3-M0 123.75 78.6 50.3±3.4±1.3

552.786 αPsA B3-M0 123.47 79.0 49.7±4.2±3.6

533.781 χ Phe U2-U4 89.03 84.0 64.6±2.9±1.2

533.783 χ Phe U2-U4 88.98 84.5 64.8±2.5±1.2

555.798 δPhe B3-M0 118.90 84.6 49.7±3.5±1.0
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Table 3. (c) Squared visibilities of Achernar in the K band from VINCI
(continued from Table 3b).

JD0 Cal. Stations B (m) Az. V2 (%)
533.786 χ Phe U2-U4 88.91 85.2 63.6±2.6±1.1

533.788 χ Phe U2-U4 88.83 85.8 62.9±2.5±1.1

555.802 δPhe B3-M0 117.78 85.9 50.3±2.8±1.0

579.754 δPhe B3-M0 113.06 91.2 52.6±4.0±0.8

579.759 δPhe B3-M0 111.82 92.6 52.0±4.0±0.8

629.580 αCet B3-C3 7.37 93.1 98.2±2.7±0.0

579.763 δPhe B3-M0 110.48 94.0 52.0±4.3±0.8

629.585 αCet B3-C3 7.31 94.7 102.1±3.4±0.0

544.865 χ Phe B3-M0 108.80 95.8 50.2±3.8±2.4

544.869 α PsA B3-M0 107.50 97.2 49.5±3.2±2.4

544.873 α PsA B3-M0 106.17 98.6 48.2±3.4±2.3

535.631 χ Phe E0-G1 43.57 111.5 88.7±4.6±0.5

535.642 χ Phe E0-G1 45.32 114.0 89.2±5.7±0.5

538.646 χ Phe E0-G1 47.10 116.7 85.1±4.7±0.4

538.651 χ Phe E0-G1 47.74 117.7 82.9±6.1±0.4

535.673 χ Phe E0-G1 49.58 120.7 79.8±4.3±0.4

535.678 χ Phe E0-G1 50.24 121.8 80.9±8.6±0.4

662.575 αCet E0-G0 18.82 122.1 102.0±4.3±5.3

535.686 χ Phe E0-G1 51.24 123.6 78.7±4.6±0.4

662.579 υCet E0-G0 18.65 123.6 100.9±6.0±2.5

528.781 χ Phe E0-G1 58.21 140.2 81.1±2.5±0.6

528.785 χ Phe E0-G1 58.49 141.1 79.0±1.8±0.6

528.790 χ Phe E0-G1 58.76 142.1 76.1±2.4±0.6

528.820 χ Phe E0-G1 60.41 149.0 75.2±2.2±0.7

528.824 χ Phe E0-G1 60.60 150.0 75.7±2.8±0.7

Table 3. (d) Squared visibilitiess of Achernar in the H band from
VINCI, equipped with the IONIC integrated optics beam combiner.

JD0 Cal. Stations B (m) Az. V2 (%)
475.861 α Ind E0-G1 52.48 126.0 70.8±4.3±1.6

475.870 α Ind E0-G1 53.39 127.8 71.1±4.8±1.6

477.781 α Ind E0-G1 42.26 109.7 78.7±3.9±1.7

477.785 α Ind E0-G1 42.98 110.7 77.4±3.7±1.7

479.941 α Ind E0-G1 59.78 146.1 65.3±5.2±1.4

479.944 α Ind E0-G1 59.95 146.8 66.0±5.4±1.4

479.949 α Ind E0-G1 60.19 147.9 65.3±5.1±1.4

482.791 α Ind E0-G1 45.98 115.0 76.6±7.3±1.7

482.824 α Ind E0-G1 50.39 122.1 72.5±7.0±1.6

482.827 α Ind E0-G1 50.80 122.8 78.4±7.1±1.8

483.718 α Ind E0-G1 34.05 98.7 82.0±4.4±1.8

483.722 α Ind E0-G1 34.83 99.7 77.5±4.1±1.7

483.727 α Ind E0-G1 35.78 101.0 80.1±4.6±1.7

483.831 α Ind E0-G1 51.56 124.2 71.9±7.2±1.7

483.835 α Ind E0-G1 52.05 125.1 70.9±3.8±1.7

483.839 α Ind E0-G1 52.51 126.0 72.0±4.2±1.7

484.767 α Ind E0-G1 43.17 110.9 75.3±6.4±1.4

484.771 α Ind E0-G1 43.72 111.7 79.3±5.7±1.4

485.887 χ Phe E0-G1 57.36 137.5 72.3±6.5±1.2

choose this approach in order to reduce the number of fitted pa-
rameters, and therefore improve the stability of the convergence
of the χ2 minimization.

3.3. Photospheric visibility function

The visibility function of a uniform ellipse can be derived from
the classical visibility function of a circular uniform disk with an
angular diameter θUD:

VUD(u, v) =
2 J1(x)

x
(1)

where x = π θUD

√
u2 + v2, with u and v the spatial frequency co-

ordinates in units of B/λ. In order to obtain the visibility function
of the ellipse, we use a rotation of the (u, v) axes and a scaling of
the (u, v) variables:

u′ = u cosα1 + v sinα1 v′ = −u sinα1 + v cosα1. (2)

The visibility of the uniform ellipse with a major axis θeq, a mi-
nor axis θpol, and a major axis orientation relative to the u axis α1
is therefore:

Vstar(u, v, θeq, θpol, α1) =
2 J1(x′)

x′
(3)

where x′ = π
√
θ2eq u′2 + θ2pol v

′2.

3.4. Envelope visibility function

As in Sect. 3.3, we can obtain the visibility function of an ellipti-
cal Gaussian brightness distribution from the circularly symmet-
ric case for which we have

VGauss(u, v) = exp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣−
(
π ρ
√

u2 + v2
)2

4 ln 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4)

where ρ is the FWHM. In the elliptical case, we therefore obtain

Venv(u, v, ρeq, ρpol, α1) = exp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−

(
π
√
ρ2

equ′2 + ρ2
polv
′2
)2

4 ln 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5)

with the same expression of u′ and v′ as in Sect. 3.3, as we as-
sume that the axes of the Gaussian envelope are aligned with the
axes of the photosphere. The indexes “eq” and “pol” refer to the
equator and pole of the central star.

3.5. Extracted parameters

Combining the visibility expressions presented in Sects. 3.3
and 3.4, we obtain the following expression for our simple model
of an elongated ellipse with a superimposed Gaussian envelope:

Vmodel(u, v, θeq, θpol, ρeq, ρpol, α1, f ) =
Vstar + f Venv

1 + f
· (6)

To derive the six free parameters of our model, we proceed
through a classical χ2 minimization process, with

χ2
tot(θeq, θpol, ρeq, ρpol, α1, f ) =

∑
i

[
V2

i − V2
model(ui, vi, ...)

]2
σ2

i

(7)

where V2
i is one of the VINCI squared-visibility measurements,

and σ2
i its associated total variance. The expression of the re-

duced χ2 is:

χ2
red =

χ2
tot

Nobs − d.o.f.
(8)

where Nobs is the number of individual observations and
d.o.f. = 6 the numbers of degrees of freedom, considering that
we fit a total of six parameters.

The minimum χ2
red of 0.79 is reached for the parameters

listed in Table 4. This low value is characteristic of a good corre-
spondence of our model to the interferometric data. The best-fit
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Table 4. Best fit parameters (and corresponding uncertainties) of our
simple model consisting in a Gaussian elliptical envelope superimposed
on a uniform ellipse representing the central star. The fit was computed
on our complete H and K band data set.

θeq 2.13 ± 0.05 mas stellar equatorial angular size
θpol 1.51 ± 0.02 mas stellar polar angular size
α1 131.6 ± 1.4 deg azimuth of the stellar equator
ρeq 2.7 ± 1.3 mas envelope FWHM along stellar equator
ρpol 17.6 ± 4.9 mas envelope FWHM along stellar pole
f 4.7 ± 0.3% relative (envelope to star) near-IR flux

Fig. 3. Graphical representation of the best-fit model intensity distribu-
tion of Achernar. The relative flux contributions from the star and the
envelope are not to scale. This illustration should not be considered as
a true image of the star.

visibility function is a two-dimensional V2(u, v) map. Figure 2
shows the cuts of this best-fit V2(u, v) map along the stellar pole
and the equator (solid curves). Note that the rapid visibility de-
crease observed at low spatial frequencies in the polar direction
is reproduced well by the presence of the elongated polar enve-
lope in the model.

A graphical representation of the star and its polar envelope
based on the best-fit parameters is presented in Fig. 3. We em-
phasize that this figure is not a true image of the star, but only
the representation of the best-fit light distribution with the a pri-
ori hypothesis that the star can be described by a uniform el-
lipse surrounded by an elliptical Gaussian envelope aligned with
its principal axes. This intensity distribution reproduces the ob-
served visibilities well, but several others could also fit. In partic-
ular, we cannot determine if the envelope is symmetric relative
to the star, due to the baseline orientation ambiguity of 180◦.

3.6. Excluded data points

In the fitting process, we chose to exclude the four data points
obtained on the UT1-UT4 baseline (see Table 3b). With a posi-
tion angle of ≈46 deg for the projected baseline, they correspond
to a measurement that is almost aligned with the pole of the star
(α0 = 41.6± 1.4 deg). Although they satisfy the data quality cri-
teria that we applied to the other data points, they are located
6−7σ away from the best-fit model. It should be noted that the
114 remaining data points are in excellent agreement with our

CSE model, and the residuals of the fit present satisfactory sta-
tistical properties (see Sect. 3.7).

An instrumental origin for these outliers cannot be formally
excluded, especially as these data points were obtained on the
very first night of VLTI operations of the UT1-UT4 baseline.
However, no particular technical problem was reported, and the
other stars observed on this night showed consistent results. As
we could not distinguish these measurements from the rest of our
data, we chose to publish them all together for the sake of homo-
geneity. A possible astrophysical cause for these low visibilities
would be a stellar eruption that could have suddenly increased
the CSE brightness and/or angular extension.

3.7. Comparison with other models and residuals of the fit

In order to assess the level of adequation of our star+CSE model
to the data, we also tried to fit them with two simpler models:
a circular uniform disk and a uniform ellipse. The residuals for
each of the three models are presented in Fig. 4 as a function
of the projected baseline azimuth angle. We obtained in the first
case a uniform disk angular diameter of θUD = 1.78 mas, with
the large χ2

red of 4.9 characteristic of a bad fit. Fitting a uniform
ellipse results in the following best-fit values: θeq = 2.31 mas,
θpol = 1.68 mas, and α1 = 135.7◦. Again, the χ2

red of 3.2 shows
poor agreement of this model to our data. It thus appears that
our star+Gaussian CSE model is a much better fit to our data set
(χ2

red = 0.79) than the models without CSE.
As shown in Fig. 4 (bottom), the residuals of our star+CSE

fit appear to be homogeneous with respect to azimuth angle.
Similarly, we do not detect any significant residual either with
respect to projected baseline length or with time (Fig. 5). The
H and K band data sets do not show any systematic devia-
tion, which justifies a posteriori our combined treatment of these
two data sets. Due to the relatively small number of measure-
ments in the H band and their lower accuracy compared to the
K band, their influence on the best-fit parameters is very limited.
However, they are overall in excellent agreement with the best-
fit model, with a specific reduced χ2 of only 0.2. Considering the
limited amount of H band data, we currently cannot investigate
the wavelength dependence of the CSE properties, but additional
observations with the AMBER instrument of the VLTI in the J
and H bands will soon allow such studies. It should be noted that
interferometric observations of the bright B0IVpe star γCas in
the visible have shown that the apparent size of this star can vary
considerably with wavelength (Stee et al. 1998). The scatter ap-
pears to be slightly larger along the polar direction than along the
equator of the star (Fig. 5, top). This could be caused by devia-
tions from our simple star-CSE model on small angular scales.
For instance, the presence of clumps in the CSE could create this
apparent instability of the visibility function. However, our data
set is still too limited to constrain their properties significantly.

4. Nature of the CSE of Achernar

4.1. Total extension

As listed in Table 4, the angular sizes of the axes of the
photosphere ellipse (θeq and θpol) are well constrained, as is
the flux ratio f = 4.7 ± 0.3% between the star and the
polar envelope. However, the angular dimensions of the en-
velope itself are poorly constrained. In particular, as visible
in Fig. 2, we lack very short baseline measurements to esti-
mate the total extension of the envelope in the polar direction.
Considering our data, it could be much more extended than the
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Fig. 4. Residuals of the visibility fit in units of V2 standard deviation σ,
as a function of azimuth angle, for a uniform disk (top), a uniform el-
lipse (middle), and our uniform ellipse with CSE model (bottom). The
H band data are shown with crosses. The four outliers (open diamonds)
were not included in the fit. The dashed and dot-dashed lines represent,
respectively, the polar and equatorial directions of the models, including
a uniform ellipse.

derived ρpol = 17.6 ± 4.9 mas, which should be considered as a
lower limit. The angular extension of the envelope in the equa-
torial direction is also rather poorly constrained by our data, but
appears to be small, and could be approximately the size of the
star itself.

4.2. Photospheric flattening ratio

From the fit of our two-component model, we obtained a photo-
spheric major- over minor-axis ratio of θeq/θpol = 1.41 ± 0.04,
while D03 measured a value of 1.56 ± 0.05, using part of the

Fig. 5. Residuals of the visibility fit as a function of projected baseline
length (top) and date of observation (bottom). The symbols are the same
as in Fig. 4.

current data set. The 2.3σ difference between these two val-
ues can be explained by the difference in adopted model be-
tween these two approaches. D03 estimated the uniform disk
equivalent angular diameter for each available azimuth and fit-
ted an ellipse on the resulting values. In the present work, we
directly fitted our two-component model to the visibilities in the
(u, v) plane. In addition, D03 used a single-disk model that does
not take the presence of the envelope into account.

Both approaches are valid and have their limitations and ad-
vantages. The important point where the main objective con-
cerns the study of the flattening of the star is to compare the
results to a physically realistic model including (at least) rota-
tional deformation and gravity darkening, as was done by D03.
In a future work we intend to perform a complete astrophysical
analysis of the available interferometric and spectroscopic data
on Achernar, including rotational effects (flattening and grav-
ity darkening) and the CSE, both in the polar and equatorial
directions.

4.3. Infrared free-free emission

From the measured flattening ratio, the polar temperature of
Achernar could be higher than 20 000 K. In this context, the
radiation pressure reaches very high values. As was demon-
strated in the case of the luminous blue variable star ηCarinae
by Van Boekel et al. (2003), a stellar wind ejected from the
poles can have a detectable signature in the interferometric vis-
ibilities in the near infrared. Recently, Meilland et al. (2006)
showed that an elongated polar wind should be included with



1066 P. Kervella and A. Domiciano de Souza: The polar wind of Achernar

a thin disk in order to explain the near-IR VLTI/AMBER (e.g.,
Petrov et al. 2003) observations of αArae, another Be star that
is very similar to Achernar (rotation velocity, spectral type).
Although the central stars are similar, one important difference is
that αArae presented hydrogen lines in strong emission during
the interferometric observations, while they were absent from
the spectrum of Achernar. Both stars show an elongated polar
wind responsible for a free-free and free-bound near-IR contin-
uum emission, while only one of them (αArae) shows a dense
equatorial disk (resolved by VLTI/AMBER) where hydrogen
emission lines are formed. This indicates that a significant (in
terms of size and near-IR emission) polar wind exists indepen-
dently if the star is in a normal B or in a Be phase; i.e., the polar
wind does not seem to be completely related to the existence of
a denser equatorial envelope.

In the hypothesis that the observed polar CSE near-IR emis-
sion is mostly caused by free-free radiation, we can roughly es-
timate the mean electron density as ne � 2−3×1010 cm−3 for the
H and K bands. This value was obtained from the free-free emis-
sivity (e.g. Allen 1973) by considering an electron temperature
of 20 000 K (the result does not depend strongly on this value)
and by using the CSE parameters derived in this work (Table 4).

In a recent paper, Vinicius et al. (2006) estimated the
2.2 µm continuum emission based on a residual emission de-
tected in the Hα absorption profile measured contemporane-
ously to the VINCI/VLTI campaign on Achernar. They proposed
an explanation for the strong flattening measured on Achernar
(Domiciano de Souza et al. 2003) by adopting the hypothesis
that the residual Hα emission and the associated near-IR con-
tinuum emission are formed in the remaining equatorial disk.
However, considering the results from the present work, a sig-
nificant fraction of the near-IR emission appears to originate in
the polar envelope.

5. Conclusion

We have detected a diffuse circumstellar envelope around the
bright Be star Achernar, which accounts for approximately 5%
of the flux of the star in the near-IR (H and K bands). This enve-
lope presents clear asymmetry with a significantly larger exten-
sion along the polar direction of the star. The photosphere of the
star itself is distorted by the fast rotation with a larger equatorial
angular diameter. The elongation of the CSE points to a signif-
icant polar wind, most probably powered by the hot tempera-
ture at the stellar poles (von Zeipel effect). Its total extension is
loosely constrained by our observations, and it could reach large
distances from the star. It appears that a complete astrophysical
model able to simultaneously explain all observations (spectro-
scopic and interferometric) of Achernar is required. We are also
confident that spectro-interferometric observations of Achernar
with the VLTI/AMBER instrument will bring new insight into
the gravity darkening, actual shape and relative intensity of the
central star and its immediate circumstellar environment.
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4.3.5 Article Pour La Science “Les étoiles, déformées par leur rotation”
(2005)

Cet article grand public a pour objectif de diffuser l’idée que les étoiles, et notamment les
étoiles chaudes, peuvent présenter des déformations importantes dues à leur rotation. Pour ce
faire, je fais le point sur les mesures interférométriques existantes d’étoiles en rotation rapide. Ce
domaine étant en évolution rapide, je présente également les perspectives d’observation futures
sur ces objets étonnants.

Fig. 4.10 – L’observatoire de Paranal, sous la conjonction de trois planètes : Vénus au centre,
Mercure en bas et Saturne à gauche (photo S. Guisard).
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4.4 Véga (α Lyr)

4.4.1 Une géométrie particulière

Véga (A0V) est une étoile particulièrement importante car elle est restée longtemps la
référence du système des magnitudes astronomiques. Les observations obtenues par Peterson
et al. (2004) à l’aide de l’interféromètre NPOI (Fig. 4.11) ne montrent pas d’aplatissement du
disque visible de cette étoile. La raison de cette absence de déformation est que la configuration
géométrique de cette étoile naine (type spectral A0V) est très particulière : vue presque parfaite-
ment par le pôle (inclinaison de 5◦ seulement sur la ligne de visée), son profil apparâıt circulaire.
Seule la répartition de la lumière à sa surface indique sa rotation rapide, car elle présente un
profil d’assombrissement à l’équateur caractéristique de l’effet Von Zeipel. Grâce à ces mesures,
on estime qu’elle tourne sur elle-même avec une vitesse équatoriale réelle de 230 km/s, et un
aplatissement réel de Γ = 24%.

Fig. 4.11 – Modèle de Véga, construit à partir des observations de l’interféromètre NPOI enre-
gistrées par Peterson et al. (2004). Cette étoile est vue pratiquement par le pôle.

4.4.2 Observations récentes avec CHARA

Grâce à des observations obtenues avec l’interféromètre CHARA et l’instrument FLUOR,
nous avons pu mesurer avec précision le profil d’assombrissement centre-bord de Véga. Du fait
de l’orientation particulière de Véga sur le ciel, ces observations permettent d’étudier l’effet
Von Zeipel sans être gêné par l’incertitude sur l’orientation de l’étoile. La Fig. 4.12 montre le
modèle d’assombrissement centre-bord et rotationnel de Véga obtenu à l’aide des observations de
CHARA. La grande précision de ces mesures permet de montrer que l’assombrissement centre-
bord n’est pas celui d’une étoile normale de ce type spectral sans rotation, et un modèle incluant
la rotation explique les observations de manière satisfaisante.
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Fig. 4.12 – Modèle de Véga obtenu à l’aide des observations de l’interféromètre CHARA. Le
Soleil est représenté en haut à droite pour donner l’échelle. Véga est par ailleurs entourée d’un
disque de débris, probablement contenu dans son plan équatorial (figure du bas).
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4.4.3 Article ApJ : “First results from the CHARA array. VII. Long-baseline
interferometric measurements of Vega consistent with a pole-on, ra-
pidly rotating star” (2006)

Les observations obtenues à l’aide de l’interféromètre CHARA ont mis clairement en évidence
un assombrissement centre-bord anormal pour l’étoile Véga. Une modélisation adaptée a permis
de conclure que l’effet Von Zeipel, caractéristique d’une rotation rapide de l’étoile, est la cause
de ce phénomène. Nous avons pu déduire de ce modèle les paramètres physiques principaux de
l’étoile (inclinaison, vitesse de rotation équatoriale,...).

Fig. 4.13 – Le télescope UT1 du VLT (photo Y. Bresson).
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ABSTRACT

We have obtained high-precision interferometric measurements of Vega with the CHARA Array and FLUOR
beam combiner in the K 0 band at projected baselines between 103 and 273 m. The measured visibility amplitudes
beyond the first lobe are significantly weaker than expected for a slowly rotating star characterized by a single
effective temperature and surface gravity. Our measurements, when compared to synthetic visibilities and synthetic
spectrophotometry from a Roche–von Zeipel gravity-darkened model atmosphere, provide strong evidence for the
model of Vega as a rapidly rotating star viewed very nearly pole-on. Our best-fitting model indicates that Vega is
rotating at�91% of its angular break-up rate with an equatorial velocity of 275 km s�1. Together with the measured
v sin i, this velocity yields an inclination for the rotation axis of 5�. For this model the pole-to-equator effective
temperature difference is�2250 K, a value much larger than previously derived from spectral line analyses. A polar
effective temperature of 10,150 K is derived from a fit to ultraviolet and optical spectrophotometry. The synthetic and
observed spectral energy distributions are in reasonable agreement longward of 140 nm, where they agree to 5% or
better. Shortward of 140 nm, themodel is up to 10 times brighter than observed. Themodel has a luminosity of�37 L�,
a value 35% lower thanVega’s apparent luminosity based on its bolometric flux and parallax, assuming a slowly rotating
star. Our model predicts the spectral energy distribution of Vega as viewed from its equatorial plane, and it may be
employed in radiative models for the surrounding debris disk.

Subject headinggs: methods: numerical — stars: atmospheres — stars: fundamental parameters (radii, temperature) —
stars: individual (Vega) — stars: rotation — techniques: interferometric

Online material: machine-readable table

1. INTRODUCTION

The bright star Vega (� Lyr, HR 7001, HD 172167, A0 V) has
been a photometric standard for nearly 150 years. Hearnshaw
(1996) describes Ludwig Seidel’s visual comparative photometer
measurements, beginning 1857, of 208 stars reduced to Vega as
the primary standard. Today precise absolute spectrophotometric
observations of Vega are available from the far-ultraviolet to the
infrared (Bohlin & Gilliland 2004). The first signs that Vega may
be anomalously luminous appeared in the 1960s after the cal-
ibration of the H� equivalent width to absolute visual magni-
tude [W H�ð Þ-MV ] relationship (Petrie 1964). Millward&Walker
(1985) confirmedPetrie’s findings using better spectra and showed
that Vega’sMV is 0.5 mag brighter than the mean A0 V star based
on nearby star clusters. Petrie (1964) suggested the anomalous
luminosity may indicate that Vega is a binary; however, the in-
tensity interferometer measurements by Hanbury Brown et al.
(1967) found no evidence for a close, bright companion, a result
later confirmed by speckle observations (McAlister 1985). A faint

companion cannot be ruled out (Absil et al. 2006), although the
presence of such a companion would not solve the luminosity
discrepancy. Hanbury Brown et al. (1967) also noted on the basis
of their angular diameter measurements that Vega’s radius is 70%
larger than that of Sirius. Recent precise interferometric mea-
surements showVega’s radius (R ¼ 2:73 � 0:01 R�; Ciardi et al.
2001) to be 60% larger than that of Sirius (R ¼ 1:711 � 0:013R�,
M ¼ 2:12 � 0:06 M�; Kervella et al. 2003), while the mass-
luminosity and mass-radius relations for Sirius, L/L� ¼
(M /M�)4:3�0:2 and R/R� ¼ (M /M�)

0:715�0:035, yield a radius for
Vega only �12% larger.
Since the work of von Zeipel (1924a, 1924b), it has been

expected that in order for rapidly rotating stars to achieve both
hydrostatic and radiative equilibrium, these stars’ surfaces will
exhibit gravity darkening, a decrease in effective temperature from
the pole to the equator. In the 1960s and 1970s considerable ef-
fort (see, e.g., Collins 1963, 1966; Hardorp & Strittmatter 1968;
Maeder & Peytremann 1970; Collins & Sonneborn 1977) was
put into the development of models for the accurate prediction of
colors and spectra from the photospheres of rapidly rotating
stars. These early models showed that in the special case in which
one views these stars pole-on, they will appear more luminous
than nonrotating stars, yet have very nearly the same colors and
spectrum. The connection between Vega’s anomalous properties
and the predictions of rapidly rotating model atmospheres was
made by Gray (1985, 1988), who noted that Vega must be nearly
pole-on and rotating at 90% of its angular breakup rate to account
for its excessive apparent luminosity. Gray (1988) also noted that
Vega’s apparent luminosity is inconsistant with its measured
Strömgren color indices, whichmatch those of a dwarf, while the
apparent luminosity suggests an evolved subgiant.
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Another anomalous aspect of Vega is the flat-bottomed ap-
pearance of many of its weak metal lines observed at high spec-
tral resolution and very high signal-to-noise ratio (>2000;Gulliver
et al. 1991). The modeling by Elste (1992) showed that such flat-
bottomed or trapazoidal profiles could result from a strong center-
to-limb variation in the equivalent width of a line coupled with
a latitudinal temperature gradient on the surface of the star. Soon
after, Gulliver et al. (1994) modeled these unusual line profiles
together withVega’s spectral energy distribution (SED) and found
a nearly pole-on (i ¼ 5N5), rapidly rotating (Veq ¼ 245 km s�1)
model to be a good match to these data.

Since the detection in the infrared of Vega’s debris disk
(Aumann et al. 1984), much of the attention paid to Vega has
been focused in this regard (see, e.g., Su et al. 2005). However,
not only has Vega’s disk been spatially resolved, but photosphere
has been as well. This was done first by Hanbury Brown et al.
(1967), although attempts to measure Vega’s angular diameter
go back to Galileo (Hughes 2001). Recent interferometric mea-
surements of Vega show nothing significantly out of the ordinary
when compared to standard models for a slowly rotating A0 V
star (Hill et al. 2004; v sin i ¼ 21:9 � 0:2 km s�1). Specifically,
uniform disk fits to data obtained in the first lobe of Vega’s
visibility curve, from the Mark III interferometer (Mozurkewich
et al. 2003) at 500 and 800 nm and from the Palomar Testbed
Interferometer (PTI; Ciardi et al. 2001) in the K band, show the
expected progression due to standard wavelength-dependent
limb darkening: 3:00 � 0:05 mas (500 nm), 3:15 � 0:03 mas
(800 nm), and 3:24 � 0:01 (K band). In addition, the first lobe
data in the optical from the Navy Prototype Optical Interferom-
eter (NPOI) yield 3:11 � 0:01 mas (�650 nm; Ohishi et al.
2004), consistent with this picture. Ciardi et al. (2001) note small
residuals in their angular diameter fits that may be due to Vega’s
disk.

Triple amplitude data from NPOI in May 2001 (Ohishi et al.
2004) sample the second lobe of Vega’s visibility curve, where a
gravity-darkening signature should be unambiguous. However,
these data show the signature of limb darkening expected for a
nonrotating star, as predicted by ATLAS9 limb-darkening mod-
els (van Hamme 1993). Most recently, a preliminary analysis
of second-lobe NPOI data from 2003 October (Peterson et al.
2004) indicate that Vega is indeed strongly gravity darkened,
a result inconsistent with Ohishi et al. (2004). Peterson et al.
(2006) note that the NPOI Vega data are difficult to analyze due
to detector nonlinearities for such a bright star. Peterson et al.
(2006) do see a strong interferometric signal for gravity darken-
ing from the rapid rotator Altair with an angular break-up rate
90% of critical. Since a similar rotation rate is expected for Vega
on the basis of its apparently high luminosity (Gray 1988;Gulliver
et al. 1994), a strong gravity darkening is expected for Vega as
well.

There is clearly a need for additional high spatial resolution
observations of Vega’s photosphere to confirm the hypothesis of
Gray (1988), confirm the 2003 NPOI observations, and test the
theory of von Zeipel. We have employed the long baselines of
the Center for High Angular Resolution Astronomy (CHARA)
Array (ten Brummelaar et al. 2005) on Mount Wilson, together
with the capabilties of the spatially filtered Fiber Linked Unit for
Optical Recombination (FLUOR; Coudé du Foresto et al. 2003),
as a means to probe the second lobe of Vega’s visibility curve at
high precision and accuracy in the K band. Our Vega campaign,
part of the commissioning science (McAlister et al. 2005;Mérand
et al. 2005b; van Belle et al. 2006) for the CHARA Array, ob-
tained visibility data on baselines between 103 and 273 m that
clearly show the signature of a strongly gravity darkened, pole-on,

rapidly rotating star. In this paper we present these data and a
detailed modeling effort to fit both our inteferometric data and the
archival data of Vega’s spectral energy distribution.

We introduce our observations in x 2. Sections 3, 4, and 5 de-
scribe the construction and fitting of one- and two-dimensional
synthetic brightness distributions to our interferometic data and
archival spectrophotometry. A discussion of our results follows
in x 6. We conclude with a summary in x 7.

2. OBSERVATIONS

Our interferometric measurements were obtained using the
CHARA Array in the infrared K 0 band (1.94–2.34 �m) with
FLUOR. Our observations were obtained during six nights in the
late spring of 2005 using four telescope pairs, E2-W2, S1-W2,
E2-W1, and S1-E2 with maximum baselines of 156, 211, 251,
and 279 m, respectively. The FLUOR Data Reduction Software
(Kervella et al. 2004; Coudé du Foresto et al. 1997) was used to
extract the squared modulus of the coherence factor between the
two independent telescope aperatures.We obtained 25 calibrated
observations of Vega, which are summarized in Table 1. The
(u, v) -plane sampling is shown in Figure 1.

The calibrator stars were chosen from the catalog of Mérand
et al. (2005a). The CHARA Array’s tip-tilt adaptive optics sys-
tem operates at visual wavelengths. Vega is sufficiently bright that
it was necessary to reduce the gain on the tip-tilt detector system
while observingVega and return the gain to the nominal setting for
the fainter calibrator stars. Calibrators chosen for this work are all
K giants: HD 159501 (K1 III), HD 165683 (K0 III), HD 173780
(K3 III), HD 176567 (K2 III), and HD 162211 (K2 III). The
spectral type difference between the calibrators and Vega does not
significantly influence the final squared visibility estimate. The
interferometric transfer function of CHARA/FLUOR was esti-
mated by observing a calibration star before and after each Vega
data point. In some cases a different calibrator was used on either
side of the Vega data point (see Table 1). The inteferometric ef-
ficiency of CHARA/FLUOR was consistent between all calibra-
tors and stable over each night at �85%.

3. ONE-DIMENSIONAL MODEL FITS

Under the initial assumption that Vega’s projected photo-
spheric disk is circularly symmetric in both shape and intensity, we
have fit three models to the CHARA/FLUOR data set: (1) a uni-
form disk, where the intensity, assumed to be Planckian [I kð Þ ¼
B TeA ¼ 9550 K; kð Þ], is independent of �, the cosine of the
angle between the line-of-sight and the surface normal; (2) an
analytic limb-darkening law, I �; kð Þ ¼ B TeA ¼ 9550 K; kð Þ��;
and (3) a PHOENIX (Hauschildt et al. 1999) model radiation
field with stellar parameters [TeA ¼ 9550 K, log (g) ¼ 3:95] con-
sistent with the slowly rotating model that Bohlin & Gilliland
(2004) show to be a good match to Vega’s observed SED. The
computation of the synthetic squared visibilities from these mod-
els takes into account the bandwidth smearing introduced by the
nonmonochromatic FLUOR transmission (see x 4.2.1 below).

Figure 2 shows the synthetic squared visibilities from the three
models in comparison with the CHARA/FLUOR data. The uni-
formdisk angular diameterwe derive (�UD ¼ 3:209 � 0:003mas)
is not consistentwithCiardi et al. (2001; �UD ¼ 3:24 � 0:01mas).
We find this is most likely because we do not assume a flat spec-
trum across the K 0-band filter. Regardless, this uniform disk
model is poor fit (�2

� ¼ 38) because it neglects limb darkening.
The limb darkening expected for a slowly rotating star should be
well predicted by the PHOENIX model, but this model is also a
poor fit (�2

� ¼ 20, �LD ¼ 3:259 � 0:002 mas). The second lobe
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data indicate that Vega is significantly more limb darkened com-
pared to this model. The nonphysical I �ð Þ ¼ �� model yields a
much better fit (�2

� ¼ 1:5) and a significantly larger angular diam-
eter �LD ¼ 3:345 � 0:006 (� ¼ 0:341 � 0:013), which suggests
the limb-darkening correction in the K 0 band is�2.5 times larger
(4.2% vs. 1.6%) than expected for a slowly rotating Vega.
Absil et al. (2006) report that a small fraction ( f ¼ 1:29% �

0:16%) of Vega’sK 0-band flux comes from an extended structure,

TABLE 1

CHARA/FLUOR K 0
-Band Vega Measurements

No. Julian Date Telescope Pair

u

(m)

v

(m)

Projected Baseline

(m)

Position Angle

(deg)

V 2

(;100)
�V 2

total

(;100) Calibration Star(s) HD Number

1................ 2,453,511.261 E2-W2 �98.941 23.114 101.606 �76.85 21.1531 0.8846 176527

2................ 2,453,511.313 E2-W2 �127.859 �0.092 127.859 89.95 6.2229 0.2019 176527, 173780

3................ 2,453,511.347 E2-W2 �139.876 �18.250 141.062 82.56 2.6256 0.0742 173780

4................ 2,453,511.374 E2-W2 �144.773 �33.322 148.558 77.03 1.3567 0.0417 173780

5................ 2,453,512.266 E2-W2 �103.834 20.146 105.770 �79.02 18.2301 0.1976 159501

6................ 2,453,512.269 E2-W2 �106.062 18.698 107.698 �80.00 16.7627 0.1710 159501

7................ 2,453,512.277 E2-W2 �110.513 15.601 111.609 �81.96 14.4223 0.1493 159501

8................ 2,453,512.284 E2-W2 �114.716 12.396 115.384 �83.83 12.2229 0.1336 159501

9................ 2,453,512.291 E2-W2 �118.435 9.291 118.799 �85.51 10.3873 0.1168 159501

10.............. 2,453,512.345 E2-W2 �140.179 �18.907 141.448 82.31 2.6399 0.0741 173780

11.............. 2,453,512.349 E2-W2 �141.068 �20.951 142.615 81.55 2.3968 0.0676 173780

12.............. 2,453,512.356 E2-W2 �142.577 �24.954 144.744 80.07 2.0041 0.0591 173780

13.............. 2,453,516.258 E2-W1 �141.950 88.392 167.221 �58.08 0.1040 0.0059 159501

14.............. 2,453,516.343 E2-W1 �224.986 25.325 226.407 �83.57 1.2148 0.0521 159501, 165683

15.............. 2,453,517.248 E2-W1 �132.597 92.319 161.569 �55.15 0.2426 0.0194 159501, 173780

16.............. 2,453,517.288 E2-W1 �180.244 67.502 192.469 �69.46 0.5913 0.0314 173780

17.............. 2,453,517.342 E2-W1 �225.788 24.193 227.080 �83.88 1.1066 0.0670 173780

18.............. 2,453,519.225 E2-S1 �169.006 �165.745 236.716 45.55 1.1361 0.0414 159501

19.............. 2,453,519.252 E2-S1 �168.472 �183.482 249.095 42.55 0.9120 0.0344 159501

20.............. 2,453,519.285 E2-S1 �161.265 �205.029 260.851 38.18 0.6047 0.0259 159501

21.............. 2,453,519.316 E2-S1 �147.913 �224.292 268.673 33.40 0.5079 0.0238 159501

22.............. 2,453,522.270 E2-S1 �163.306 �200.735 258.773 39.13 0.5911 0.0427 159501

23.............. 2,453,522.306 E2-S1 �148.868 �223.205 268.295 33.70 0.4518 0.0241 159501

24.............. 2,453,522.336 E2-S1 �131.105 �239.777 273.279 28.67 0.3788 0.0199 159501

25.............. 2,453,538.206 W2-S1 56.624 202.948 210.699 15.59 0.9303 0.0682 162211

Fig. 1.—Sampling of the u; vð Þ-plane for the CHARA/FLUOR Vega data
set. The diamonds represent the monochromatic sampling at 2.0 �m within the
K 0 band. In theK 0 band, the CHARAbaselines E2-W2, E2-W1, E2-S1, andW2-
S1 sample the lower first lobe, first null, and second lobe of Vega’s visibility
curve. Two-telescope observations have a 180� ambiguity in the position angle,
therefore we plot two coordinates, (u; v) and (�u; �v), for each of the 25 data
points. These (u; v) points overlay a model for Vega’s two-dimensional mono-
chromatic Fourier appearance. This squared visibility model is a Fast Fourier
Transform (displayed with a logarithmic stretch) of a synthetic intensity map of
Vega in the plane of the sky (see Fig. 3).

Fig. 2.—Best-fit one-dimensional, symmetric models in comparison with the
CHARA/FLUOR data set. The dotted line is a bandwidth-smeared uniform disk
(�2

� ¼ 38, �UD ¼ 3:209 � 0:003 mas) The dashed line is a bandwidth-smeared
PHOENIX model atmosphere with parameters consistent with a slowly rotating
Vega [TeA ¼ 9550 K, log (g) ¼ 3:95, �2

� ¼ 20, �LD ¼ 3:259 � 0:002 mas], and
the solid line a bandwidth-smeared analytic limb-darkening model, I �ð Þ ¼ ��

(�2
� ¼ 1:5, �LD ¼ 3:345 � 0:006mas,� ¼ 0:341 � 0:013). If extended emission

in the K 0 band is present at the 1.3% level in the Vega system, these best angular
diameters are systematically high by �3 � (see text).
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most likely Vega’s debris disk. In order to gauge the significance
of this extra flux on the photospheric parameters derived above,
the synthetic squared visibilities are reduced by an amount equal
to the square of fraction of light coming from the debris disk. At
long baselines, the visibility of the debris disk is essentially zero
such that

V 2
obs ¼ 1� fð ÞVphotosphere þ f Vdisk

� �2 ð1Þ
� 0:974V 2

photosphere:

The revised fits to V 2
photosphere are �UD ¼ 3:198 � 0:003 (�2

� ¼
38) for the uniform disk, �LD ¼ 3:247 � 0:002 (�2

� ¼ 19) for
the PHOENIX model, and �LD ¼ 3:329 � 0:006 (� ¼ 0:328 �
0:013, �2

� ¼ 1:4) for the I �ð Þ ¼ �� model. The effect of remov-
ing the extended emission is to reduce the best-fit angular diameter
for all three models by�3 �; the correction for extended emission
is therefore significant.

4. TWO-DIMENSIONAL MODEL CONSTRUCTION

In order to physically interpret the strong limb darkening
we find for Vega, we have adapted a computer program written
by S. Cranmer (2002, private communication) from Cranmer &
Owocki (1995) that computes the effective temperature and sur-
face gravity on the surface of a rotationally distorted star, spe-
cifically a star with an infinitely concentrated central mass under
uniform angular rotation, a Roche–von Zeipel model. This azi-
muthally symmetric model is parameterized as a function of the
colatitude given the mass, polar radius, luminosity, and fraction
of the angular break-up rate.

Each two-dimensional intensity map is characterized by five
variables: �equ , the angular size of the equator, equivalent to the
angular size as viewed exactly pole-on; ! ¼ �/�crit , the fraction
of the critical angular break-up rate; T

pole
eA , the effective temper-

ature at the pole; log gð Þpole , the effective surface gravity at the
pole; and  , the position angle of the pole on the sky measured
east from north.

Given these input parameters, along with the measured trig-
onometric parallax �hip ¼ 128:93 � 0:55 mas (Perryman et al.
1997), and the observed projected rotation velocity, v sin i ¼
21:9 � 0:2 km s�1 (Hill et al. 2004), the parameterization of the
intensity maps begins with

Requ ¼ 107:48
�equ
�hip

; ð2Þ

with the equatorial radius in solar units and both �equ and �hip in
milliarcseconds. It follows from a Roche model (Cranmer &
Owocki 1995; eq. [26]) that the corresponding polar radius is

Rpole ¼
!Requ

3 cos
�þcos�1 !ð Þ

3

h i
and the stellar mass is

M ¼
gpoleR

2
pole

G
; ð4Þ

where G is the universal gravitational constant. The luminosity
is then

L ¼
�� T

pole
eA

� �4
gpole

; ð5Þ

where � is the Stefan-Boltzman constant and � is the surface-
weighted gravity (Cranmer & Owocki 1995; eqs. [31] and [32]),
expressed as a power series expansion in !,

� � 4�GM 1:0� 0:19696!2 � 0:094292!4 þ 0:33812!6
�
� 1:30660!8 þ1:8286!10 � 0:92714!12Þ: ð6Þ

The ratio of the luminosity to � provides the proportional
factor between the effective temperature and gravity for von
Zeipel’s radiative law for all colatitudes # :

TeA #ð Þ ¼ L

��
g #ð Þ

� �	
¼ T

pole
eA

g #ð Þ
gpole

" #	
; ð7Þ

where the gravity darkening parameter, 	, takes the value 0.25
in the purely radiative case (no convection). The effective tem-
perature difference between the pole and equator,�TeA, may be
expressed in terms of T

pole
eA and ! :

�TeA ¼ T
pole
eA � T

equ
eA ¼ T

pole
eA 1� !2


 2
� 8

27

!

� 		" #
; ð8Þ

where


 ¼ 3 cos
�þ cos�1 !ð Þ

3

� �
:

The effective gravity as a function of # is given by

g #ð Þ ¼ gr #ð Þ2þ g# #ð Þ2
h i1=2

; ð9Þ

gr #ð Þ ¼ �GM

R #ð Þ2
þ R #ð Þ � sin #ð Þ2; ð10Þ

g# #ð Þ ¼ R #ð Þ�2 sin # cos #; ð11Þ

where gr and g# are the radial and colatitudinal components of
the gravity field. The colatitudinal dependence of the radius is
given by

R #ð Þ ¼ 3
Rpole

! sin #
cos

�þ cos�1 ! sin #ð Þ
3

� �
! > 0ð Þ ð12Þ

and angular rotation rate is related to the critical angular rotation
rate8 by

� ¼ !�crit ¼ !
8

27

GM

R3
pole

 !1=2

: ð13Þ

At the critical rate (! ¼ 1), Requ ¼ 1:5Rpole . The inclination
follows from

i ¼ sin�1 v sin i

Vequ

� 	
; ð14Þ

8 There is a typographical error in eq. (5) of Collins (1963), which is not in the
paper’s erratum (Collins 1964): !2

c ¼ GM /Re should be !
2
c ¼ GM /R3

e , where !c

the critical angular rate and Re is the equatorial radius at the critical rate.
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where the equatorial velocity is

Vequ ¼ Requ�: ð15Þ

4.1. Building the Intensity Maps

For each wavelength k (185 total wavelength points: 1.9–
2.4 �m in 0.005 �m steps, with additional points for H i and He i
profiles calculated in non-LTE), an intensity map is computed as
follows: TeA #ð Þ and log gð Þ#ð Þ are evaluated at 90 # points from
0� to 90� þ i. At each # there are 1024 longitude ’ points from
0� to 360� to finely sample the perimeter of the nearly pole-on
view. For Vega’s nearly pole-on orientation, the relatively high
resolution in ’ reduces numerical aliasing when the brightness
map is later interpolated onto a uniformly gridded rectangular
array as described below.

Each set of spherical coordinates [R #ð Þ, #, ’] is first trans-
formed to rectangular (x, y, z) coordinates with the Interactive
Data Language (IDL) routine POLEREC3D.9 Next, the z-axis of
the coordinate system is rotated away from the observer by an
angle equal to the inclination i (using the IDL routine ROT_3D)
and then the (x, y)-plane is rotated by an angle equal to  , the po-
sition angle (east of north) of the pole on the sky (using the IDL
routine ROTATE_XY).

At each point in the map, the cosine of the angle between the
observer’s line of sight and the local surface normal is

� x; yð Þ ¼ � #; ’; ið Þ

¼ 1

g #ð Þ

�
� gr #ð Þ sin # sin i cos ’þ cos # cos ið Þ

� g# #ð Þ sin i cos ’ cos #� sin # cos ið Þ
�
: ð16Þ

The intensity at each point x; yð Þ is interpolated from a grid of
170 spherical, hydrostatic PHOENIX (vers. 13.11.00B) stellar
atmosphere models (Hauschildt et al. 1999) spanning 6500 to
10,500 K in TeA and 3.25 to 4.15 in log gð Þ:

Tj ¼ 6500þ 250j K; j ¼ 0; 1; : : : ; 16f g;
log glð Þ ¼ 3:25þ 0:1l; l ¼ 0; 1; : : : ; 9f g:

Four radiation fields, I k; �ð Þ evaluated at 64 angles by PHOENIX,
are selected from themodel grid to bracket the local effective tem-
perature and gravity values on the grid square,

Tj < TeA #ð Þ < Tjþ1;

gl < g #ð Þ < glþ1:

The intensity vectors Ik �ð Þ are linearly interpolated (in the log)
at � x; yð Þ around the grid square,

I 00k ¼ Ik Tj; gl; � x; yð Þ
� 


;

I 10k ¼ Ik Tjþ1; gl; � x; yð Þ
� 


;

I11k ¼ Ik Tjþ1; glþ1; � x; yð Þ
� 


;

I 01k ¼ Ik Tj; glþ1; � x; yð Þ
� 


:

Next, the intensity is bilinearly interpolated at the local TeA and
log gð Þ for each x; yð Þ position in the map:

Ik x; yð Þ ¼ Ik TeA x; yð Þ; g x; yð Þ; � x; yð Þ½ �
¼ 1� að Þ 1� bð ÞI 00k þ a 1� bð ÞI 10k

þ abI11k þ 1� að ÞbI 01k ð17Þ

where

a ¼ TeA x; yð Þ � Tj
� �

= Tjþ1 � Tj
� 


;

b ¼ g x; yð Þ � gl½ � glþ1 � gl
� 


:

Finally, a Delaunay triangulation is computed (using the IDL
routine TRIGRID) to regrid the intensity map Ik x; yð Þ, originally
gridded in# and’, onto a regular 512 ; 512 grid of points in x and
y. The coordinates x and y have the units of milliarcseconds and
correspond to offsets in right ascension and declination on the sky
(��, �� ) relative to the origin, the subsolar point.

4.2. Synthetic Squared Visibility Computation

Due to the lack of symmetry in the synthetic intensity maps,
we evaluate a set of discrete two-dimensional Fourier transforms
in order to generate a set of synthetic squared visibilities com-
parable to the CHARA/FLUOR observations. The first step is
to compute the discrete Fourier transform for each wavelength at
each of the spatial frequency coordinates u; vð Þ corresponding
to the projected baseline and orientation of each data point (see
Table 1). Themean u; vð Þ coordinates for each data point, in units
of meters, are converted to the corresponding spatial frequency
coordinates uk ; vkð Þ in units of cycles per arcsecond for each
wavelength kk . The Fourier transform

V 2
k u; vð Þ ¼

Z 1

�1

Z 1

�1
SkIk x; yð Þe i2� uxþvyð Þ dx dy

� �2
ð18Þ

is approximated by the integration rule of Gaussian quadrature
(e.g., Stroud & Secrest 1966; Press et al. 1992):

V 2
k (uk ; vk) �

XN
i¼1

Ai

XN
j¼1

AjSkIk(xi; yj) cos 2�(uk xiþ vk yj)
� �( )2

þ
XN
i¼1

Ai

XN
j¼1

AjSkIk(xi; yj)sin 2�(uk xiþ vk yj)
� �( )2

;

ð19Þ

where Sk is the wavelength discretized value of the instrument
sensitivity curve Sk, and Ai, Aj and xi, yj are the weights and
nodes of the quadrature, respectively. For our square grid, the
x- and y-coordinate nodes and weights are indentical. The two-
dimensional Gaussian quadrature is performed with a version
of the IDL routine INT_2D modified to use an arbitrarily high
number of nodes. The intensity at wavelength k, Ik x; yð Þ, is in-
terpolated at xi; yj

� 

from the regular 512 ; 512 spacing to the

quadrature node points using the IDL routine INTERPOLATE
which uses a cubic convolution interpolation method employ-
ing 16 neighboring points. The synthetic squared visibility is
normalized to unity at zero spatial frequency by

V 2
k 0; 0ð Þ �

XN
i¼1

Ai

XN
j¼1

AjSkIk xi; yj
� 
" #2

: ð20Þ
9 The coordinate transformation routines used here are from the JHU/APL /

S1R IDL library of the Space Oceanography Group of the Applied Physics Lab-
oratory of Johns Hopkins University.
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We find N ¼ 512 provides the degree of numerical accuracy
sufficient in the case of a two-dimensional uniform disk (right
circular cylinder) to yield V 2 values in agreement with the an-
alytic result,

V 2
k uk ; vkð Þ ¼ 2J1 ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
k þ v2k

q� 	.
��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
k þ v 2k

q� 	� �2
; ð21Þ

where J1 is the first order Bessel function of the first kind, � is
the angular diameter of the uniform disk, and B is the projected
baseline, to better than 1% for V 2> 10�3. We use the IDL func-
tion BESELJ for our J1 computations. For V 2P10�4, near the
monochromatic first and second zeros, the numerical accuracy
of the quadrature deteriorates to 10% or worse. The bandwidth-
smeared V 2 minimum is at �10�3, so we find this quadrature
method yields squared visibilities which are sufficiently accu-
rate for our task, however observations with an even larger dy-
namic range (Perrin & Ridgway 2005) will require more accurate
methods.

To test the two-dimensional Gaussian quadrature method in
the case where no analytic solution is available, we computed the
two-dimensional fast Fourier transform (IDL routine FFT) of a
brightness map (see Fig. 3). First, we compared the results of the
two-dimensional FFT to the analytic uniform disk (eq. [21]. To
reduce aliasing we find it necessary to ‘‘zero-pad’’ the brightness
map. With 12-to-1 zero padding (the 512 ; 512 brightness map
placed at the center of a larger 6144 ; 6144 array of zeros), we
find the two-dimensional FFT has very similar accuracy to the
512-point Gaussian quadrature: better than 1% down to V 2 k
10�3 inside the second null. For the brightness map shown in
Figure 3, the two-dimensional FFT and Gaussian quadrature
methods agree to better than 0.5% down to V 2k10�3, inside the
second null. We find the computational time required to eval-
uate equation (19) at 25 uk ; vkð Þ points for 185 wavelengths is
�6 times faster than the evaluation of the 185 zero-padded two-
dimensional FFTs.

4.2.1. Bandwidth Smearing

Once we have computed V 2
k uk ; vkð Þ for the 185 wavelength

points, we proceed to compute the bandwidth-smeared average
squared visibility V B; k0ð Þ2,

V B; k0ð Þ2 ¼
R 1
0

V B; kð Þ2k2 dkR 1
0

V 0; kð Þ2k2 dk
: ð22Þ

This integral is performed by the IDL routine INT_TABULATED,
a five-point Newton-Cotes formula. The k2 term is included so
that the integral is equivalent to an integral over wavenumber
(frequency), where

k�1
0 ¼

R 1
0

k�1S kð ÞFk dkR 1
0

S kð ÞFk dk
ð23Þ

is the mean wavenumber. This simulates the data collection and
fringe processing algorithm used by FLUOR. In the discretized
integrand V B; kkð Þ2 is equivalent to V 2

k uk ; vkð Þ, where B ¼
206264:8kk u2

k þ v 2k
� 


1/2, with kk in units of meters and uk and
vk in units of cycles per arcsecond.

4.3. Synthetic Spectral Energy Distribution Construction

To construct synthetic SEDs for Vega from the Roche–von
Zeipel model, 170 radiation fields were computed from the same
model grid used to construct the K 0-band intensity maps. The

wavelength resolution is 0.05 nm from 100 to 400 nm, 0.2 nm
from 400 nm to 3 �m, and 10 nm from 3 to 50 �m. The higher
resolution in the ultraviolet is needed to sample the strong line
blanketing in this spectral region. From the resulting grid of
radiation fields, intensity maps are computed (see x 4.1), and the
flux is computed from

Fk ¼
Z �

0

Z 2�

0

� g #ð Þ
gr #ð Þ Ik R; #; ’ð ÞR #ð Þ2 sin #� #; ’; ið Þ d’ d#:

ð24Þ

This two-dimensional integral is performed with the IDL rou-
tine INT_TABULATED_2D (vers. 1.6), which first constructs a
Delaunay triangulation of points in the #; ’ð Þ-plane. For each
triangle in the convex hull (defined as the smallest convex poly-
gon completely enclosing the points), the volume of the tri-
angular cylinder formed by six points (the triangle in the plane
and three points above with heights equal to the integrand) is
computed and summed. For computing the flux from the inten-
sity maps, a coarser sampling in # and ’ (20 ; 40), relative to
that needed for the visibility computations, is sufficient for bet-
ter than 1% flux accuracy. The numerical accuracy was checked
by computing the SED of a nonrotating star (! ¼ 0) and com-
paring this to a single effective temperature SED from a one-
dimensional atmosphere. The interpolation and integration
errors result in a flux deficit of less than 0.7% at all wavelengths
relative to the one-dimensional model atmosphere.

5. TWO-DIMENSIONAL MODEL FITTING

5.1. Initial Parameter Constraints

The computation of each intensity map, the Fourier transforms,
and the bandwidth-smearing for each set of input parameters [�equ,
!,T pole

eA , log gð Þpole,  ] is too computationally expensive to com-
pute synthetic squared visibilities many hundreds of times as part

Fig. 3.—Synthetic brightness map ( linear stretch) of Vega for our best-fitting
parameters: ! ¼ 0:91, �equ ¼ 3:329 mas, T

pole
eA ¼ 10; 150 K, log (g)pole ¼ 4:10.

For this model, Vega’s pole is inclined 5� toward a position angle of 40�, with
the subsolar point marked with an ‘‘x.’’ The labeled intensity contours are rel-
ative to the maximum intensity in the map.
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of a gradient-search method over the vertices of a five-dimensional
hypercube. Therefore,wemust proceedwith targeted trial searches
to establish the sensitivity of �2

� to each parameter after first es-
tablishing a reasonable range of values for each parameter.

The parameter �equ is a physical angular diameter related to a
uniform disk fit by a scale factor depending on the degree of
gravity and limb darkening, which in turn depends on the param-
eters !, log gð Þpole , and T pole

eA , in order of importance. As shown
above, a limb-darkening correction of 4% is significantly larger
than the �1.5% value expected for a normal A0 V star at 2 �m
(Davis et al. 2000). The analytic limb-darkening model fit is
sufficiently good that we take �equ ¼ 3:36 mas as a starting value.
This corresponds to Requ ¼ 2:77 R� from equation (2).

Our starting value for ! is based on the assumption that Vega’s
true luminosity should be similar to that slowly rotating A0 V
stars. Vega has an apparent luminosity, assuming a single effec-
tive temperature from all viewing angles, of 57 L� based on its
bolometric flux and the parallax. In the pole-on rapidly rotating
case, we would see Vega in its brightest projection. According to
Millward &Walker (1985) the mean absolute visual magnitude,
MV , is 1.0 for spectral type A0 V. With a bolometric correction
of �0.3, this translates to L ¼ 37:7 L�. From equations (5) and
(6) we expect ! > 0:8 in order to account for the luminosity
discrepancy assuming a minimum polar effective temperature
of 9550 K, based on the nonrotating model fits to Vega’s SED
(Bohlin & Gilliland 2004). The range of effective temperatures
and surface gravities for the model atmosphere grid described in
x 4.1 sets our upper rotation limit at ! � 0:96. For ! > 0:8,
�TeA > 1300 K (see eq. [8]), and thus T pole

eA
must be greater than

9550 K to compensate for the pole-to-equator temperature gra-
dient and to reproduce the observed SED. So, given a mean ap-
parent TeA of 9550 K, a rough estimate of T

pole
eA is 9550 Kþ

1
2
�TeA ¼ 10;200 K. We therefore limit the polar effective tem-

perature to the range 10;050 K < T
pole
eA < 10;350 K.

The relationship between ! and the true luminosity, through
equations (5), (6), and (4), is independent of the polar surface
gravity; yet we can constrain log gð Þpole by assuming Vega fol-
lows the mass-luminosity relation we derive for the slowly rotat-
ing Sirius, L/L� ¼ M /M�ð Þ4:3�0:2

. Here we assumeVega’s rapid
rotation has no significant effect on its interior in relation to the
luminosity from nuclear reactions in its core. Assuming L ¼

37:7 L� from above, the mass-luminosity relation yields M ¼
2:3 � 0:1 M�. As ! increases, Rpole decreases relative to Requ,
therefore choosing M ¼ 2:2 M� and ! ¼ 0:8 provides a lower
limit of log gð Þpole¼ 4:0. For lower polar gravities, Vega’s mass
will be significantly lower than expected based on its luminos-
ity; nevertheless, we choose a range log gð Þpole values from 3.6
and 4.3 in order to check the effect of the gravity on our syn-
thetic visibilities and SEDs.
Finally, the position angle of Vega’s pole,  , should be im-

portant if Vega’s inclination is sufficiently high and its rotation
sufficiently rapid to produce an elliptical projection of the rota-
tionally distorted photosphere on plane of the sky. Previousmea-
surements (Ohishi et al. 2004; Ciardi et al. 2001) find no evidence
for ellipticity. Preliminary results from the NPOI three-telescope
observations of Peterson et al. (2004) suggest an asymmetric
brightness distribution with  ¼ 281�.

5.2. CHARA/FLUOR Data: Parameter Grid Search

For the grid search we compute the �2
� for a set of models

defined by �equ,!, T
pole
eA

, log gð Þpole , and , adjusting �equ slightly
(<0.3%) to minimize �2

� for each model (see below). Figure 4
shows a �2

� map in the !;  ð Þ-plane for a range of �equ values
withT pole

eA
¼ 10;250K, log (g) pole ¼ 4:1.Wefind a best fit of �2

� ¼
1:31 for parameters! ¼ 0:91, �equ ¼ 3:329mas, and ¼ 40

�
. A

direct comparison of this model with the squared visibility data is
shown in Figure 5.
The F-test provides a 1 � lower limit on ! at ’0.89. For

! < 0:89, the synthetic V 2 values are generally too high across
the second lobe because the model is not sufficiently darkened
toward the limb. Correspondingly, the upper limits on ! are con-
strained because the synthetic V 2 values are generally too low
across the second lobe, due to very strong darkening toward the
limb for !k 0:93. In addition, the upper limit on ! is a function
of  because the projected stellar disk appears sufficiently more
elliptical, even at low inclinations i ’ 5�, as the model star
rotates faster. The data from the nearly orthogonal E2-W1 and
E2-S1 baselines constrain models with ! > 0:92 to limited range
of position angles, but these data provide no constraint on  at
lower !-values where the star is less distorted, Requ /Rpole < 1:24.
As ! increases so does the darkening of the limb due to the

increasing larger pole-to-equator effective temperature differ-
ence. As a result, the best-fit �equ value increases with ! because

Fig. 4.—Contour plot of �2
� in the (!;  )-plane for T pole

eA ¼ 10; 250 K and
log (g)pole ¼ 4:1. The labeled contours denote the lower and upper 1� range,
and a 2 � contour, from the F test. The cross marks the best fit, �2

� ¼ 1:31, while
the brightest region has a �2

� ¼ 3:25 (see Fig. 6).

Fig. 5.—(a) CHARA/FLUOR V 2 data (error bars) plotted as a function of
projected baseline (for a range of azimuths, see Table 1) together with the best-
fitting Roche–von Zeipel synthetic squared visibilities. Model parameters:
! ¼ 0:91, �equ ¼ 3:329 mas, T

pole
eA ¼ 10; 250 K, log (g)pole ¼ 4:10. The best-fit

�2
� ¼ 1:31. (b) Deviations of the best-fit model from observed squared visibil-

ities. The dotted and dashed lines indicated the 1 and 2 � deviations.
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the effective ‘‘limb-darkening’’ correction increases. The best-fit
values for �equ and ! are therefore correlated. To establish this
correlation, we estimated the best-fitting �equ value for a given !
without recomputing the brightness map and Fourier compo-
nents. While each intensity map is constructed for a fixed �equ
value, we can approximate the squared visibilities for models
with slightly (<0.5%) larger or smaller �equ values as follows. A
small adjustment to V 2 due to a small adjustment in �equ, assum-
ing the physical model for the star is not significantly changed
and the model changes relatively slowly with wavelength, is
equivalent to computing V 2 at a larger (smaller) wavelength for
a larger (smaller) value of �equ. So, for a given projected baseline,
we linearly interpolate (in the log)V 2

k u; vð Þ at k ¼ kk �Bt/�equ
� 


, a
wavelength shift of 10 nm or less. Near the bandpass edges, the
instrument transmission drops to zero, so there is no concern
about interpolating outside of the wavelength grid with this
scheme. The V 2 normalization, equation (20), must be scaled
by the �Bt/�equ

� 
2
to compensate for the revised surface area of

the star. After one iteration, setting �equ ¼ �Bt , recomputing the
Fourier map and refitting the data, the best-fit �equ value is within
0.25% of that found with the estimated model V 2 values.

Figure 6a shows the �2
� values from Figure 4 projected on the

! axis, with a spread of values for the 18 position angles at each
!-value. This shows again that for the range 0:89 < ! < 0:92
there is no constraint on the position angle of the pole. The cor-
responding best-fit �equ values are shown in Figure 6b. The equa-
torial angular diameter is constrained to the range 3:32 mas <
�equ < 3:34 mas. The best fit to the CHARA/FLUOR data is in-
sensitive to T

pole
eA . This is because �TeA, which determines

the overall darkening, is quite sensitive to !, but T pole
eA is not (see

eq. [8]). Thus, we cannot usefully constrain T
pole
eA or  from

the CHARA/FLUOR data. As for the surface gravity, varying
log gð Þpole over what we consider the most probable range, 4:1 �
0:1, does not significantly effect the �2

� minimum. Models with
log gð Þpole values from 3.9 to 4.3 all fall within 1 � of the best fit.
The best-fit �equ values are essentially independent of T

pole
eA be-

tween 9800 and 10,450 K and weakly dependent on log gð Þpole

Fig. 6.—Constraints on model parameters from the CHARA/FLUOR data. (a) Reduced �2 values �2
� from the Roche-von Zeipel model fit to the squared visibility

data as a function the fraction of the critical angular break-up rate, ! ¼ �/�crit , for fixed values of the polar effective temperature T
pole
eA and polar surface gravity

log gð Þpole. The dashed line denotes the 1 � confidence region for! from the F test for 24 degrees of freedom relative to the best fit at�2
� ¼ 1:31. For each !,�2

� values are
plotted for 18 position angles  (0� to 170� in 10� steps; see Fig. 4). (b) Relationship between the best-fit equatorial angular diameter �equ at each ! for the range of
position angles. The dashed lines provide an estimate for the 1 � range in ! and the corresponding range in the equatorial angular diameter.

Fig. 7.—Contour plot of �2
� for the SED fits in the (!; T pole

eA )-plane. The !
range is limited to the 1 � range from CHARA/FLUOR fits (see Fig. 6). The
polar surface gravity is fixed at log (g)pole ¼ 4:1. The labeled contours denote
the 1 and 2 � regions from the F test. The cross marks the location of the best-fit
model, �2

� ¼ 8:7.
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between 3.8 and 4.3; all best-fit �equ values fall well within the
1 � range established in Figure 6.

5.3. Spectral Energy Distribution: Parameter Grid Search

Here we compare our synthetic SEDs to the absolute spectro-
photometry of Vega. Specifically, we compare our models to
the data-model composite SED10 of Bohlin & Gilliland (2004),
which includes International Ultraviolet Explorer (IUE ) data
from 125.5 to 167.5 nm, Hubble Space Telescope (HST ) Space
Telescope Imaging Spectrograph (STIS) data from 167.5 to
420 nm, and a specifically constructed Kurucz model shortward
of IUE and longward 420 nm to match and replace data cor-
rupted by CCD fringing in this wavelength region. To facilitate
this comparison, first the synthetic spectra were convolved to the
spectral resolution of the observations (k /�k ¼ 500), and then
both the data and convolved synthetic spectra were binned:
2.0 nm wide bins in the UV (127.5–327.5 nm, 101 bins) and
2.0 nm bins in the optical and near-IR (330.0–1008 nm, 340 bins)
for a total of 441 spectral bins.

Figure 7 shows the�2
� map in the ð!; T pole

eA Þ-plane. These two
parameters, apart from the angular diameter, most sensitively af-
fect the fit to the observed SED. There is a clear positive correlation
between ! and T

pole
eA . This makes sense if one considers that a

more rapidly rotating star will be more gravity darkened and re-
quire a hotter pole to compensate for a cooler equator in order to
match the sameSED. Following this correlation, it is expected that
a continuum of models from (! ¼ 0:89, T pole

eA ¼ 10;150 K) to
(! ¼ 0, T

pole
eA ¼ 9550 K) will provide a reasonable fit to the SED

since the nonrotatingATLAS12model ofKurucz fits the observed
SED quite well (Bohlin & Gilliland 2004). However, we did not
consider models with ! < 0:88 in the SED analysis because
such models are a poor match to the CHARA/FLUOR squared
visibility data set as shown above. In other words, although the
ATLAS12model provides a good fit to the observed SED, it fails
to predict the correct center-to-limb darkening for Vega.
The best-fit synthetic spectrum is shown in Figure 8. Con-

sidering the complexity of this synthetic SED relative to a single
TeA model, there is generally good agreement (�5%) between
our best-fit model and the data longward of 300 nm, apart from
larger mismatches at the Paschen and Balmer edges and in the
Balmer lines. Longward of 140 nm, the model agrees with the
observations to within�10%. At wavelengths below 140 nm, as
measured by the IUE, the data are up to a factor of 2 lower than
predicted. Our best fit yields �2

� ¼ 8:7. The overprediction be-
low 140 nm has only a small effect on the synthetic integrated
flux between 127.5 and 1008 nm, 2:79 ; 10�5 ergs cm�2 s�1,
which is within 1.2 � of the value derived from an integration of
the observed SED, (2:748 � 0:036) ; 10�5 ergs cm�2 s�1. The
equatorial angular diameter derived from this SED fit, �equ ¼
3:407 mas, differs from the best fit to the CHARA/FLUOR data,
�equ ¼ 3:329 mas, by 2.4%, a value within the uncertainty of the
absolute flux calibration.

6. DISCUSSION

The best-fit stellar parameters, based on the model fits to the
CHARA/FLUOR data and archival spectrophotometry in x 5,
are summarized in Table 2. As discussed in x 3, the effect of ex-
tended K 0-band emission in the Vega system, if unaccounted for,
is to increase the apparent angular diameter of Vega slightly,
by�0.3%. Correcting for this effect via equation (1), the best-fit
equatorial diameter is shifted systematically lower by 0.3% (0.01
mas) to the range 3:31 mas < �equ < 3:33 mas. We find that all
other parameters in Table 2 are uneffected by the extended emis-
sion within the error bars given. The best-fit range for the frac-
tion of the angular break-up rate, 0:89 < ! < 0:92, sensitive to

Fig. 8.—(a) Comparison between the SED of Bohlin & Gilliland (2004)
and our best-fitting (�2

� ¼ 8:7) rapidly rotating SED model for Vega: ! ¼ 0:91,
T

pole
eA ¼ 10; 150 K, and log (g)pole ¼ 4:10. Also shown are the differences be-

tween this model and the data in (b) the region at shorter wavelengths observed
by the IUE and (c) the region observed by the HST Space Telescope Imaging
Spectrograph at longer wavelengths. At wavenumbers 1/k < 2:38 �m�1 the
‘‘observed’’ SED is represented by a closely fitting Kurucz model spectrum (see
Bohlin & Gilliland 2004).

10 At ftp://ftp.stsci.edu /cdbs/cdbs2/calspec/alpha_lyr_stis_002.fits.

TABLE 2

Fundamental Stellar Parameters for Vega

Parameter Symbol Value Reference

Fraction of the angular break-up rate........................ ! 0.91 � 0.03 CHARA/FLUOR V 2 fit

Equatorial angular diameter (mas) ............................ �equ 3.33 � 0.01 CHARA/FLUOR V 2 fit

Parallax (mas) ............................................................ �hip 128.93 � 0.55 Perryman et al. (1997)

Equatorial radius (R�) ............................................... Requ 2.78 � 0.02 Eq. (2)

Polar radius (R�)........................................................ Rpole 2.26 � 0.07 Eq. (3)

Pole-to-equator Teff difference (K) ............................ �Teff 2250þ400
�300 Eq. (8)

Polar effective temperature (K)................................. T
pole
eA 10,150 � 100 Fit to spectrophotometry (Bohlin & Gilliland 2004)

Luminosity (L�) ......................................................... L 37 � 3 Eq. (5)

Mass (M�).................................................................. M 2.3 � 0.2 (L/L�) = (M/M�)
4.27�0.20 (from Sirius)

Polar surface gravity (cm s�2)................................... log (g)pole 4.1 � 0.1 Eq. (4)

Equatorial rotation velocity (km s�1) ....................... Vequ 270 � 15 Eqs. (13) and (15)

Projected rotation velocity (km s�1)......................... v sin i 21.9 � 0.2 Hill et al. (2004)

Inclination of rotation axis (deg)............................... i 4.7 � 0.3 Eq. (14)
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the amplitude of the second lobe, is unaffected by the extended
emission because the V 2 correction is quite small there,�V 2 <
0:0003, relative to the first lobe, where the correction is up to
20 times larger.

One parameter that stands out is our large pole-to-equator
effective temperature difference,�TeA ¼ 2250þ400

�300
K, relative to

previous spectroscopic and spectrophotometric studies of Vega
(Gulliver et al. 1994; Hill et al. 2004) for which �TeA falls into
the range 300 to 400 K. Our larger �TeA yields a much cooler
equatorial effective temperature, T

equ
eA ¼ 7900þ500

�400 K, than most
recently reported for Vega, 9330 K (Hill et al. 2004). The am-
plitude of the second-lobe visibility measurements as observed
by CHARA/FLUOR is well fit by strong darkening toward the
limb. In the context of the Roche-von Zeipel model, such dark-
ening requires a large pole-to-equator TeA gradient. Consequently,
we predict that Vega’s equator-on SED (that is, viewed as if i ¼
90� and integrated over the visible stellar disk; see eq. [24]) has a
significantly lower color temperature and overall lower flux, par-
ticularly in the midultraviolet where the flux is lower by a factor
of 5, as shown in Figure 9. A debris disk, aligned with Vega’s
equatorial plane as suggested by our nearly pole-on model for the
star and the recent observations of a circular disk in themid-IR (Su
et al. 2005), should see a significantly less luminous, cooler SED
than we see from the Earth. In the literature to date, modeling of
the heating, scattering, and emission of Vega’s dusty debris disk
has assumed an irradiating SED equal to the pole-on view of Vega
(see, e.g., Absil et al. 2006; Su et al. 2005). Our synthetic pho-
tospheric equatorial spectrum for Vega is tabulated in Table 3. It
should be interesting to investigate how our predicted equatorial
spectrum used in such modeling will affect conclusions regarding
the amount of dust and the grain-size distribution in the debris
disk.

Several of Vega’s fundamental stellar parameters (�TeA, Vequ, i)
we derive differ significantly from those derived by Gulliver
et al. (1994) and Hill et al. (2004) from high-dispersion spectros-
copy. Regarding �TeA, both spectroscopic studies find ! ’ 0:5,
while we find ! ¼ 0:91 � 0:03. These two !-values, along with

the corresponding T
pole
eA values, 9680 and 10,150 K, in equa-

tion (8), yield �TeA values of 350 and 2250 K. The reason the
!-values differ is at least partly linked to inconsistent parameters
used in the spectroscopic studies. As noted in Hill et al. (2004),
the Gulliver et al. (1994) study finds a low value for the polar
gravity, log (g)pole ¼ 3:75, which yields a mass for Vega of only
1.34 M� and an inclination inconsistent with the expected
equatorial velocity. The equatorial velocity of Hill et al. (2004),
Vequ ¼ 160 km s�1, is not consistent with their other param-
eters [! ¼ 0:47, log (g)pole ¼ 4:0,Requ ¼ 2:73R�, i ¼ 7N9]which
should yield instead Vequ ¼ 113 km s�1 and i ¼ 11N1. Values
of Vequ ¼ 160 km s�1 and i ¼ 7N9 are recovered if ! ¼ 0:65,
which corresponds to Vequ/Vcrit ¼ 0:47. It is possible to confuse
! with Vequ/Vcrit. The two are not equivalent:

! ¼ �

�crit

Vequ

Vcrit

¼ 2 cos
�þ cos�1 !ð Þ

3

� �
: ð25Þ

Fig. 9.—Left: Comparison between the SED from Bohlin & Gilliland (2004; IUE and HST observations supplemented by a slowly rotating model spectrum both
below 127.5 nm and longward of 420 nm) and two rapidly rotating models for Vega’s SED, one viewed from an inclination of 5� (nearly pole on) and one viewed from
an inclination of 90� (equator on), from an integration of two intensity maps via eq. (24) for these inclinations. Right: Comparison of the best-fit brightness distributions
for Vega with inclinations of 5� (top) and 90� (bottom). For the equator-on view, the poles appear 10% fainter than the pole-on view due to limb darkening.

TABLE 3

A Model Equatorial Photospheric Spectral Energy Distribution

for Vega from 1020.5 8 to 40 �m (R = 500)

Wavelength

(8)
(1)

Flux (Fk)
a

(ergs cm�2 s�1 8�1)

(2)

1.020500000000000E+03...................................... 1.68027E+03

1.021000000000000E+03...................................... 1.65680E+03

1.021500000000000E+03...................................... 1.62296E+03

1.022000000000000E+03...................................... 1.57629E+03

1.022500000000000E+03...................................... 1.51370E+03

Note.—Table 3 is published in its entirety in the electronic edition of the
Astrophysical Journal. A portion is shown here for guidance regarding its
form and content.

a The flux at a distance d from Vega in the equatorial plane is the flux from
col. (2) multiplied by the ratio Requ /d

� 
2
, the ratio squared of Vega’s equatorial

radius to the distance, or 2:78/dð Þ2 when d has the units of solar radii.
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For ! ¼ 0:65, the corresponding �TeA ¼ 757 K, not 350 K.
Therefore, there appears to be a mismatch between the Vequ and
�TeA values used in the most recent spectral analyses, and this
suggests the spectral data must be reanalyzed with a consistent
model. A. Gulliver (2006, private communication) confirms that
Hill et al. (2004) did confuse ! with Vequ/Vcrit, and this group is
now reanalyzing Vega’s high-dispersion spectrum. Our best-fit
value for !, derived from the interferometric data, is appealing
because, together with our derived polar effective temperature, it
yields a luminosity consistent with that of slowly rotating A0 V
stars. A more slowly rotating model for Vega will have a warmer
equator and an overall higher true luminosity too large for its
mass. Therefore, it seems that less rapidly rotating models for
Vega do not offer an explanation for the apparent overluminosity
with respect to its spectral type.

Our best-fit model, while it provides self-consistent parame-
ters within the Roche–von Zeipel context, has several discrep-
ancies, most notably producing too much flux below 140 nm
relative to the observed SED. The limitations of the LTE metal-
line blanketing for modeling Vega in the ultraviolet have recently
been explored byGarcı́a-Gil et al. (2005). They find that in theUV
the line opacity is generally systematically too large in LTE be-
cause the overionization in non-LTE is neglected. Our best model
flux below 140 nm is already too large, so a fully non-LTE treat-
ment is not expected to improve this discrepancy. The Wien tail
of Vega’s SED will be the most sensitive to the warmest colat-
itudes near the pole. In our strictly radiative von Zeipel model,
SEDswith T pole

eA < 10;050 K produce toomuch flux in the optical
and near-IR, so simply lowering T

pole
eA will not solve the problem;

the temperature gradient must differ from the TeA / g0:25eA rela-
tion. The equatorial effective temperature we derive, 7900 K,
may indicate that Vega’s equatorial region is convective. If so,
von Zeipel’s purely radiative gravity darkening exponent, 	 ¼
0:25, will not be valid near the equator. A more complex model,
in which the gravity darkening transitions from purely radiative
near the pole to partially convective near the equator, may be
the next approach to take. Such a temperature profile may allow
for a cooler T

pole
eA , reducing the flux discrepancy below 140 nm,

while still matching the observed optical and near-IR fluxes.
Such a gradient must also improve the match to the Balmer and
Paschen edges and the Balmer lines.

7. SUMMARY

We have demonstrated that a Roche–von Zeipel model atmo-
sphere rotating at 91% � 3% of the angular break-up rate pro-
vides a very good match toK 0-band long-baseline interferometric
observations of Vega. These observations sample the second lobe
of Vega’s visibility curve and indicate a limb-darkening correction

2.5 times larger than expected for a slowly rotating A0 V star. In
the context of the purely radiative von Zeipel gravity darkening
model, the second-lobe visibility measurements imply a �22%
reduction in the effective temperature from pole to equator. The
model predicts an equatorial velocity of 270 � 15 km s�1, which
together with the measured v sin i yields an inclination of i ’ 5�,
confirming the pole-on model for Vega suggested by Gray (1988)
to explainVega’s anomalous luminosity. Ourmodel predicts a true
luminosity for Vega of 37 � 3 L�, consistent with the mean lu-
minosity of A0 V stars fromW H�ð Þ-MV calibration (Millward &
Walker 1985). We predict that Vega’s spectral energy distribu-
tion viewed from its equatorial plane is significantly cooler than
viewed from its pole. This equatorial spectrum may significantly
impact conclusions derived from models for Vega’s debris disk
that have employed Vega’s observed polar-view spectral energy
distribution, rather than the equatorial one, which seems more
appropriate given our observations.
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4.5 Projets de recherche

Le domaine de l’étude des étoiles en rotation rapide par interférométrie est en développement
très rapide. Tous les interféromètres à longue base actuellement opérationnels possèdent un
grand programme d’observation de ces objets. Les déformations photosphériques spectaculaires
observées jusqu’à présent ont en effet soulevé nombre de questions sur la structure interne de
ces objets. Alors que pour les étoiles les moins massives, comme Altäır, le modèle de rotation
de corps solide (modèle de Roche) apparâıt satisfaisant, il est insuffisant pour expliquer les
observations d’Achernar, une étoile B plus massive.

L’introduction de la rotation différentielle n’est cependant pas aisée : comment définir la
loi de variation radiale ? La seule contrainte observationnelle envisageable pour l’instant est la
répartition de lumière à la surface de l’étoile, qui donne directement accès, via le théorème de Von
Zeipel, à la gravité effective, c’est-à-dire à la somme de la gravitation et de la force centrifuge.
Je prévois donc d’orienter mon travail vers une cartographie de la surface de plusieurs étoiles
Be proches, avec notamment des observations AMBER de Achernar. D’autre part, la mise en
évidence d’une enveloppe circumstellaire asymétrique autour d’Achernar implique que l’étude
de la répartition de lumière photosphérique passe aussi par une meilleure compréhension de
l’environnement proche des étoiles Be.
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Chapitre 5

Perspectives scientifiques

5.1 Une technique de spécialistes ?

L’interférométrie optique a largement évolué dans les années 1990, passant d’une technique
confidentielle, réservée à un petit nombre de spécialistes, à un moyen d’observation courant et
accessible à tous les astronomes. Ceci est particulièrement vrai depuis l’ouverture du VLTI, et la
première mise à la disposition d’une grande communauté de l’instrument VINCI, en 2001-2002.
Les instrumentalistes spécialistes d’interférométrie ont par ailleurs fait des efforts importants
pour rendre cette technique accessible, par des écoles de formation (Ecole d’été Michelson, Ecole
de Goutelas,...), ainsi que de nombreux séminaires et conférences. Le Centre Jean-Marie Ma-
riotti (JMMC), créé en 2000, permet aujourd’hui à tous les astronomes français de bénéficier du
soutien de spécialistes. Le JMMC développe également des outils logiciels pour la préparation
des observations (ASPRO) et la réduction des données (logiciel de réduction AMBER). Sur le
plan pratique, les interféromètres les plus avancés (VLTI, CHARA par exemple) permettent
une mise en oeuvre par un seul opérateur, voire même à distance. L’interférométrie stellaire
à longue base n’est donc plus aujourd’hui une technique de spécialistes, même si les données
interférométriques sont plus complexes à analyser que celles produites par un télescope mono-
lithique. Elles présentent par ailleurs la caractéristique de n’être en général interprétables que
dans une démarche d’ajustement d’un modèle aux résultats d’observation (sauf dans le cas de la
synthèse d’images). L’augmentation rapide du nombre de publications rapportant des résultats
d’observation témoigne de la vigueur de la recherche astronomique utilisant l’interférométrie
(Fig. 5.1).

5.2 Un nouvel outil pour la physique stellaire

L’observation des étoiles repose historiquement sur trois techniques :
– la photométrie, en bande large ou en bande étroite, incluant l’imagerie,
– la spectrographie et la spectrophotométrie,
– la polarimétrie et la spectropolarimétrie.

L”interférométrie permet d’enrichir ces techniques classiques en levant, au moins partiellement,
la dégénerescence spatiale de la mesure à petite échelle angulaire. Les trois techniques clas-
siques appliquées à la lumière collectée par un télescope monolithique ne permettent que des
mesures intégrées sur la tache de diffraction, qui est presque toujours beaucoup plus grande que
la taille angulaire des étoiles observées. Le passage à la haute résolution angulaire permis par
l’interférométrie permet de détailler la contribution de chaque partie de l’objet observé. Il est
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Fig. 5.1 – Evolution du nombre de publications rapportant des résultats d’observations obtenues
par interférométrie optique et infrarouge sur une période de 10 ans.

important de noter qu’un interféromètre est simplement une forme particulière de télescope, les
franges étant les images produites par ce télescope. Un interféromètre doit nécessairement ali-
menter un instrument d’un des trois types classiques pour réaliser des mesures physiques. VINCI,
comme beaucoup des instruments interférométriques existants, est apparenté à un “photomètre
interférométrique”, alors que AMBER et MIDI sont plutôt des “spectrographes interférométri-
ques”. Un exemple de “spectro-polarimètre interférométrique” est l’instrument GI2T-REGAIN,
fonctionnant en visible.

5.3 Combien d’étoiles mesurables ?

Les limitations de l’interférométrie sont, comme pour les télescopes monolithiques, liées à
la résolution angulaire qu’il est possible d’atteindre et à la sensibilité photométrique. Ces deux
paramètres imposent une limite au nombre de sources qu’il est possible de détailler. La courbe de
la Fig. 5.2 montre le nombre total d’étoiles en fonction de leur diamètre angulaire, estimé par les
relations de brillance de surface (Sect. 3.4). Sachant que le VLTI en bande H permet de résoudre
complètement une étoile d’une taille angulaire de 2 mas environ, 1000 étoiles sont en principe
résolvables, sur tout le ciel (environ les 2/3 sont observables depuis Paranal). La mesure de
l’assombrissement centre-bord nécessite au moins deux éléments de résolution sur la photosphère
de l’étoile, ce qui réduit l’échantillon mesurable à environ 200 étoiles. Ce chiffre relativement
faible est la conséquence du fait que l’interférométrie, contrairement à la spectroscopie par
exemple, est sensible à la distance des objets observés. Deux étoiles identiques dont l’une est 5
fois plus distante donneront le même spectre en posant 25 fois plus longtemps sur l’étoile la plus
lointaine. Par contre, pour une précision de mesure donnée, si l’étoile lointaine est non résolue,
poser plus longtemps une observation interférométrique ne permettra pas de la résoudre. Seule
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l’augmentation de la longueur de base, et donc du pouvoir de résolution, permettra de réaliser
cette mesure.

Fig. 5.2 – Nombre d’étoiles observables dont le diamètre angulaire est plus grand que la valeur
indiquée en abcisse (échantillon des étoiles plus brillantes que mV = 8 extrait du catalogue
Hipparcos).

Par ailleurs, si l’on souhaite estimer le rayon lineaire de l’étoile, il faut de plus une mesure
de distance. Un rayon linéaire est nécessaire par exemple pour modéliser les étoiles présentant
des oscillations de type solaire (voir Sect. 3.2). En croisant le catalogue Hipparcos avec les
relations de brillance de surface, il apparâıt que le nombre total d’étoiles “utiles” dans ce cadre
est relativement réduit (Fig. 5.3) et que les types spectraux accessibles ne couvrent pas tout le
diagramme de Hertzsprung-Russell (Figs. 5.4).

De ces calculs simples, il ressort que l’interférométrie est limitée à un nombre de sources
relativement faible avec les instruments actuels. Ceci met en lumière la nécessité d’imaginer
une nouvelle génération d’interféromètres pour pouvoir aborder l’observation d’une plus grande
variété d’objets célestes. Si la sensibilité des télescopes de 8m du VLTI n’est pour l’instant
pas limitante, la longueur de base maximale entre deux de ces télescopes (135 m) limite pour
l’instant la résolution accessible à environ 1mas.

5.4 La fiabilité, clef des grands réseaux

Les progrès technologiques permettent aujourd’hui de gérer les grands réseaux de télescopes,
comme le VLTI ou CHARA, avec une fiabilité remarquable. Il est intéressant de noter par
exemple que les derniers chiffres de la fiabilité du VLTI publiées par l’ESO font apparâıtre un
taux de disponibilité de 75% environ, à comparer aux 90% d’un télescope unitaire. Considérant
que le VLTI utilise au moins deux télescopes simultanément, des lignes à retard, et des instru-
ments complexes, la performance est plus qu’honorable ! La même évolution est visible pour les
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Fig. 5.3 – Nombre d’étoiles situées à moins de 22 pc en fonction de la précision atteignable sur
la mesure de leur rayon linéaire, par la combinaison de mesures AMBER de diamètre angulaire
(bande H, base de 200m) et de parallaxes Hipparcos.

autres interféromètres en opération : plus de fiabilité et plus de régularité dans l’obtention de
données, elles-mêmes de meilleure qualité.

Cette phase de consolidation des technologies est très importante pour préparer la prochaine
génération d’instruments du VLTI, le réseau OHANA et les missions d’interférométrie dans
l’espace comme DARWIN. Le niveau de complexité d’un réseau de 8 télescopes, à l’image du
VLTI, atteint un niveau tel que la fiabilité devient le point le plus critique de leur réalisation. Si
chacun des éléments du système (télescope, lignes à retard,...) n’atteint “que” 95% de fiabilité,
alors l’interféromètre ne sera opérationnel que la moitié du temps !

5.5 Vers le VLTI de seconde génération

Les premiers instruments du VLTI (VINCI, MIDI et AMBER) offrent dès aujourd’hui de
vastes possibilités, mais apparaissent limités en terme de nombre de télescopes utilisables si-
multanément (2 ou 3 seulement), de sensibilité (VINCI permet mK = 10), et de pouvoir de
résolution.

La première de ces limitations, le nombre de télescopes, est particulièrement gênante pour
l’observation des objets dont la répartition de lumière est complexe. Deux ou trois télescopes ne
permettent pas de reconstituer une véritable image (c’est-à-dire une carte de la répartition de
lumière indépendante d’un modèle), ce qui est clairement limitant par exemple dans le cas des
noyaux actifs de galaxie (NAG), ou des étoiles évoluées dont les enveloppes sont complexes.

La sensibilité des instruments de première géneration est modérément pénalisante pour
l’étude des exoplanètes, du centre de notre Galaxie, ou encore des NAG situés à des dis-
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Fig. 5.4 – Positions dans le diagramme Hertzsprung-Russell des 79 étoiles situées à moins de
22 pc dont le rayon peut être mesuré avec une précision meilleure que 1% en combinant des
mesures AMBER et Hipparcos. Les droites diagonales représentent les lieux de rayon linéaire
constant (isorayons).

tances intermédiaires (magnitudes supérieures à 12). Deux solutions peuvent être envisagées
pour améliorer la sensibilité : augmenter le flux lumineux utile, ou utiliser une référence de
phase extérieure pour augmenter le temps d’intégration. Sur le premier point, il est intéressant
de noter que la transmission totale du VLTI (incluant les instruments) est inférieure à 1%. Ce
chiffre est faible, mais il est le résultat attendu de la complexité optique de cet instrument.
Après plus de 20 réflexions, les faisceaux de lumière de l’étoile observée sont filtrés spatialement
(VINCI et AMBER), avant d’être recombinés. Malgré l’utilisation d’optiques adaptatives pour
les grands télescopes de 8m, les pertes dues au filtrage spatial des faisceaux restent considérables.

Pour augmenter le flux utile à l’interférométrie, il apparâıt souhaitable d’augmenter à la
fois la transmission du train optique, et la qualité optique des images (rapport de Strehl et
stabilité notamment). Ceci pourrait être envisagé grâce à un transport fibré des faisceaux, au
lieu de l’actuel transport par train optique de miroirs (le projet OHANA fait déjà appel à cette
technologie). Pour augmenter la qualité des images fournies par les télescopes, l’ajout d’une
optique adaptative spécifique corrigeant les hauts ordres de la turbulence apparâıt comme une
solution prometteuse, surtout aux longueurs d’ondes infrarouges. Même si la qualité actuelle de
la correction apportée par les systèmes d’optique adaptative MACAO du VLTI est en moyenne
de bonne qualité (rapport de Strehl de l’ordre de 50% sur une étoile de magnitude mV = 10), la
stabilité du flux concentré dans le filtre spatial reste encore perfectible. La qualité du suivi des
franges étant très dépendante de l’absence de passages à zéro du flux transmis par ce filtre, cet
aspect de la correction revêt une grande importance, peut-être sous-estimée lors de la conception
des systèmes d’optique adaptative. L’un des instruments envisagés actuellement pour la seconde
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géneration, GRAVITY, intègre d’ailleurs une optique adaptative dédiée.
Pour augmenter le pouvoir de résolution, la taille de la plate-forme de Paranal étant limitée

physiquement, il n’est pas possible d’étendre la longueur maximale des bases du VLTI au delà
des 200m actuels. Il est envisagé de placer un télescope sur une des montagnes proches du Cerro
Paranal pour augmenter la base au-delà du kilomètre. Il serait lié à la plate-forme du VLTI
par fibre optique. L’autre possibilité pour augmenter la résolution angulaire est de diminuer
la longueur d’onde. Ceci n’est pas identique à une augmentation de la longueur de base, car
la morphologie des objets observés change avec la longueur d’onde. Passer par exemple de
l’infrarouge au visible ne permet plus d’observer les enveloppes froides des étoiles évoluées.
Cependant, le domaine visible reste extrêmement prometteur car il permet d’accéder à la spectro-
interférométrie des raies photosphériques et chromosphériques. Plus généralement, il permet de
sonder efficacement la structure atmosphérique des étoiles grâce à l’assombrissement centre-bord,
plus important et donc plus facile à mesurer qu’en infrarouge.

5.6 L’interférométrie dans l’espace

Des projets d’interféromètres dans l’espace existent depuis plusieurs dizaines d’années, mais
le seul interféromètre optique dans l’espace à ce jour reste le Fine Guidance Sensor du télescope
spatial Hubble. Cet instrument, dont la courte base est limitée par la taille du miroir primaire
du télescope, est utilisé pour assurer le suivi du télescope lors des longues poses. Bien qu’il ne
s’agisse pas à proprement parler d’un instrument scientifique, sa grande précision astrométrique
sur un petit champ a permis d’obtenir une remarquable mesure de la parallaxe trigonométrique
de la Céphéide δCep (Benedict et al. 2002).

Fig. 5.5 – Vue d’artiste de la mission interférométrique SIM (illustration NASA/JPL).

Le projet spatial le plus avancé à ce jour est la mission d’astrométrie interférométrique SIM
(Fig. 5.5). Ce satellite utilisera une base de 9 m de longueur pour mesurer avec une précision
d’une microseconde d’angle (µas) l’écartement entre deux étoiles. Cette remarquable précision
rendra possible la détection astrométrique de planètes terrestres dans la zone habitable des
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étoiles proches (Catanzarite et al. 2006). En plus de cet objectif, SIM permettra de mesurer la
parallaxe, le mouvement propre et la taille angulaire d’un grand nombre d’étoiles (y compris au
voisinage du centre de notre Galaxie), ainsi que les orbites, et donc les masses, d’une grande
variété d’étoiles multiples. Le lancement de la mission SIM était prévu pour 2015, mais le
programme a été suspendu par la NASA en 2006.

Fig. 5.6 – Configuration de la future mission Darwin de recherche de la vie extraterrestre
(illustration tirée de Léger et al. 2007).

Darwin et sa contrepartie américaine TPF sont deux projets spatiaux de très grande enver-
gure destinés à mesurer directement le spectre en lumière réfléchie de planètes semblables à la
Terre orbitant autour d’autres étoiles. Le but ultime est d’y rechercher la signature de la vie
extraterrestre.

Du côté européen, le projet Darwin (Fig. 5.6) est très actif et a été proposé officiellement en
2007 comme future mission spatiale majeure de l’agence spatiale européenne (Léger et al. 2003)
pour la période 2015-2025. Il est soutenu par une large communauté internationale de chercheurs
(PI : A. Léger), et comporte dans sa version actuelle quatre tèlescopes de 2 m de diamètre et une
unité de recombinaison, les cinq vaisseaux volant en formation. La longueur des bases séparant
les télescopes pourra varier de 7 à 500m, pour une gamme de longueurs d’onde de 6 à 20µm.
L’infrarouge moyen est en effet le domaine de longueur d’onde où le contraste est le moins fort
entre la planète et son étoile (≈ 106, au lieu de ≈ 109 en visible). Darwin permettra de détecter
la lumière provenant de la planète en éteignant la lumière de l’étoile par interférence destructive.
Il est prévu d’observer 200 étoiles susceptibles de posséder des planètes de type terrestre pendant
une période de 5 ans. Darwin sera également capable de fonctionner en mode constructif, pour
permettre la synthèse d’images à très haute résolution angulaire.

Du côté américain, deux concepts pour TPF sont en cours d’étude : un interféromètre (TPF-
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I) et un coronographe (TPF-C). Le concept interférométrique repose sur trois télescopes de 3 m
de diamètre et une base centrale de recombinaison évoluant indépendemment dans l’espace.
Malheureusement, comme pour SIM, la décision a été prise en 2006 par la NASA de suspendre
le projet TPF sine die.

5.7 Un interféromètre sur la Lune ?

L’interférométrie présente cette particularité que les instruments sont naturellement très
modulaires. Ceci permet d’imaginer d’immenses réseaux de télescopes pour l’imagerie à très
haute résolution angulaire. Ce type d’instruments est cependant difficile à concevoir sur Terre,
car la présence de l’atmosphère est une limitation critique à la sensibilité (du fait des poses très
courtes nécessaires pour figer le piston), et au domaine de longueur d’onde accessible.

Plusieurs possibilités sont envisageables pour installer un futur réseau géant, par exemple
pour l’imagerie des exoplanètes : dans l’espace interplanétaire, sur la Lune, ou sur une autre
planète du système solaire ne possédant pas d’atmosphère dense. La première de ces possibi-
lités est déjà prévue pour SIM et Darwin/TPF. Des projets d’interféromètres lunaires existent
depuis déjà une vingtaine d’années (voir par exemple Arnold et al. 1996). La surface lunaire
apparâıt à plusieurs égards bien adaptée pour recevoir de grandes structures destinées à l’obser-
vation astronomique. La faible gravité permet d’alléger considérablement les édifices, alors que
le sol reste suffisamment porteur et stable pour éviter l’enfoncement et les dérives des télescopes.
Les sites les mieux adaptés sont ceux situés perpétuellement à l’ombre, en particulier près des
pôles (Fig. 5.7). Ils permettent d’éviter les importantes contraintes thermiques imposées par
les changements d’éclairement solaire. Plusieurs difficultés importantes existent cependant, et
rendent la surface lunaire peu attractive par rapport à un instrument en vol libre spatial. En
premier lieu, le déploiement des télescopes et l’installation des dispositifs de retardement des
faisceaux nécessite un niveau de précision et d’automatisation peu compatible avec les aléas de
la géographie lunaire. L’espace interplanétaire est à ce titre un milieu beaucoup plus prévisible
et facile à mâıtriser. D’autre part, la dépose d’équipement à la surface lunaire est un exercice dif-
ficile, qui demande en lui-même un système de contrôle complexe et surtout beaucoup d’énergie.
Le bénefice de la présence du sol lunaire comme support des structures est compensé aujour-
d’hui par le progrès des techniques de contrôle de position des satellites en vol libre. Enfin, le sol
lunaire étant constitué de poussière très fines, une contamination des optiques est pratiquement
inévitable dès le déploiement de l’instrument. Ces problèmes se posent d’ailleurs de la même
manière pour tous les satellites et les astéröıdes du système solaire. L’espace interplanétaire ap-
parâıt donc actuellement comme le meilleur endroit pour installer les futurs très grands réseaux
interféromètriques, au-delà de SIM et Darwin.
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Fig. 5.7 – Les pôles Nord et Sud lunaires, cartographiés par le radiotélescope d’Arecibo : de bons
sites pour un interféromètre optique géant ? (images Bruce Campbell/Arecibo Observatory).
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Annexe A

Encadrement de jeunes chercheurs

A.1 Stage de Melle Jessica GALLY (2006)

Niveau : Stage de Master 1 de l’Université Paris 6.
Durée : 2 mois (du 1er Juin au 31 Juillet 2006).
Titre : Mesure de la vitesse de rotation d’Altäır.
Contenu scientifique : On connâıt de nombreuses étoiles, en particulier les plus chaudes,

dont la période de rotation est de quelques heures seulement (contre 27 jours pour le Soleil). La
vitesse des ces étoiles à l’équateur atteint plusieurs centaines de kilomètres par seconde, créant
une force centrifuge énorme. Ceci provoque des déformations spectaculaires de leur surface. Une
des plus brillantes étoiles en rotation rapide est Altäır (α Aquilae). C’est une étoile naine plus
chaude que le Soleil et la treizième étoile la plus brillante du ciel. Le stage a consisté en une
mesure de la vitesse de rotation de l’étoile Altar par l’analyse d’un spectre de cette étoile obtenu
par le spectrographe UVES du VLT. Cette mesure a été réalisée par la transformation de Fourier
d’une raie spectrale du Mg II. Une extension à l’étoile en rotation lente Castor de même type
spectral a permis de caractériser la modification du profil de la raie étudiée par la rotation.

A.2 Stage de Melle Lucile PUPIER (2006)

Niveau : Première année de l’ENSPS (Strasbourg).
Durée : 1 mois (du 1er au 31 Juillet 2006).
Titre : Mesure de la vitesse de rotation de Céphéides.
Contenu scientifique : Les Céphéides sont des étoiles supergéantes pulsantes. Du fait de

leur très grande taille, leurs vitesses de rotation sont supposées faibles, mais elles échappent
encore à la mesure directe. La largeur considérable de leurs raies spectrales rend en effet difficile
la mesure du faible élargissement rotationnel qui lui est superposé. La pulsation des Céphéides
introduit de plus une importante asymétrie des raies, variable au cours de la pulsation. Ce stage a
permis de mesurer la vitesse de rotation de huit Céphéides brillantes, observées récemment avec
le spectrographe à haute résolution HARPS (R ≈ 100000). Les mesures ont été réalisées lors des
phases de maximum et minimum de diamètre des étoiles, de manière à minimiser l’asymétrie
due à la pulsation. Dans tous les cas, la position du premier minimum de la transformée de
Fourier d’une raie spectrale sélectionnée (du Fe I) a pu être déterminée avec précision, donnant
ainsi une mesure de la vitesse de rotation. Cette vitesse a également pu être retrouvée à d’autres
phases de la pulsation même en présence d’asymétrie.
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Annexe B

Résumé sur l’originalité des
recherches

L’originalité de mon travail est d’avoir diffusé l’interférométrie optique dans des domaines
de l’astrophysique où elle n’était pas encore utilisée, ou insuffisamment, en m’appuyant sur mon
expérience instrumentale.

Je pense tout d’abord à la modélisation des étoiles naines de la séquence principale. Pour
cette classe d’étoiles, la mesure du rayon fournit une contrainte majeure sur la masse, les autres
observables classiques prenant une importance secondaire. En pratique, la mesure du rayon
d’une étoile de type solaire avec une précision d’un pourcent nous permet d’estimer sa masse
avec une précision comparable. Utilisée en conjonction avec l’astérosismologie, l’interférométrie
stellaire nous permet d’estimer l’âge et la structure des étoiles avec une précision remarquable.
Les fréquences sismiques nous renseignent sur la structure interne de l’étoile, et le rayon permet
d’étalonner les paramètres d’ensemble comme la masse, la gravité de surface et la température
effective. J’ai réalisé en 2003 la première association de ces deux techniques pour étudier l’étoile
binaire α Centauri. A la suite de ce travail, j’ai participé à l’organisation scientifique d’un atelier
de recherche intitulé “Workshop on Interferometry and Asteroseismology”, qui s’est tenu fin
2005 à l’Université de Porto (Portugal), au cours duquel la complémentarité de ces techniques
est apparue extrêmement prometteuse.

Les étoiles Céphéides sont des objets classiques de l’astronomie, au sens où beaucoup de
recherches leur ont déjà été consacrées. On connâıt le mécanisme physique de leur pulsation
depuis 1941. Pourtant, alors que ce sujet paraissait “usé”, j’ai établi grâce à des observations
interférométriques que ces étoiles possédent des enveloppes circumstellaires, une découverte in-
attendue autour d’étoiles dont le fonctionnement paraissait simple et bien connu et qui sont une
des références de l’échelle des distances extragalactiques. Au sein d’une collaboration interna-
tionale, je poursuis actuellement leur étude par différentes techniques d’observation, avec pour
but de mieux comprendre les interactions entre la pulsation et les enveloppes.

Les étoiles en rotation rapide sont un autre exemple de l’apport de la haute résolution
angulaire. J’ai démontré en 2003 que l’étoile Achernar, en rotation très rapide, présente un
rapport d’aplatissement de plus de 1,5 (rapport de ses rayons polaire et équatorial). Les modèles
de rotation interne utilisés actuellement ne permettent pas d’expliquer cette déformation. Cela
signifie probablement que cette étoile possède une loi de rotation interne non uniforme. Cette
découverte soulève des questions fascinantes sur le transport visqueux de moment cinétique et
la turbulence, deux phénomènes clés en astrophysique. En 2006, j’ai mis en évidence le vent
stellaire émis par les pôles de cette étoile, causé par leur température extrême.
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L’interférométrie optique et infrarouge a ouvert ces dernières années un accès direct à des
résolutions angulaires encore inexplorées en astronomie. J’ai contribué par mes travaux à rendre
cette technique utile pour l’astrophysique. Autrefois réservée aux spécialistes, complexe et peu
productive scientifiquement, l’interférométrie est devenue en quelques années un outil de premier
plan pour la physique stellaire. Les collaborations que j’ai développées ont pris leur juste place
dans cette renaissance, qui se manifeste par une augmentation rapide du nombre de publications
référées (cf. Sect. 5). Avec la mise en service à leur plein potentiel de nouveaux instruments très
performants (VLTI, CHARA), cet essor est appelé à s’amplifier encore dans les années à venir.
Grâce à mon Habilitation à diriger les recherches, je souhaite accompagner ce développement
par la formation de jeunes chercheurs mâıtrisant à la fois les outils classiques de l’astronomie
observationnelle et l’interférométrie optique, ainsi que leur application à la physique stellaire.
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Résumé

L’interférométrie est une technique puissante pour l’étude des étoiles, car elle permet de
résoudre leur disque apparent. Je présente dans ce mémoire une application de l’interférométrie
à trois types d’étoiles : les Céphéides, les étoiles de la séquence principale et les étoiles en
rotation rapide. Les Céphéides sont une célèbre classe d’étoiles supergéantes pulsantes. Elles
sont largement utilisées comme étalons de distance, grâce à leurs relations période-luminosité.
L’interférométrie permet d’appliquer une version améliorée de la méthode Baade–Wesselink
pour mesurer la distance des Céphéides, et ainsi d’étalonner les relations période-luminosité.
Même si cette méthode est potentiellement très précise, plusieurs points sont critiques dans son
application, en particulier le facteur de projection. Les étoiles de la séquence principale (SP) sont
de loin la classe la plus nombreuse de l’Univers, toutes les étoiles passant la majorité de leur
existence sous forme de naines. J’ai utilisé l’interférométrie sur une large gamme d’étoiles de la
SP, depuis les étoiles de très faible masse (Proxima) jusqu’aux étoiles chaudes. En particulier, j’ai
réalisé la première utilisation combinée de contraintes interférométriques et astérosismiques pour
la modélisation des étoiles (α Centauri, etc...). Dans une troisième partie, je décris nos résultats
récents sur les étoiles en rotation rapide. Du fait de l’importante force centrifuge à l’équateur, la
photosphère de ces étoiles est déformée. L’interférométrie nous a permis d’observer directement
ces déformations sur trois étoiles brillantes en rotation rapide : Altäır (αAql), Achernar (αEri)
et Véga (αLyr).

Discipline : Astrophysique
Mots-clefs : interférométrie, étoiles, Céphéides, rotation stellaire, instrumentation, VLTI
Adresse : Observatoire de Paris, LESIA, 5 place Jules Janssen, 92195 Meudon Cedex

Abstract

Optical interferometry is a powerful technique for the study of stars in exquisite details,
by enabling the spatial resolution of their disks. I present three applications of this technique
to the study of different types of stars : Cepheids, main sequence stars, and fast rotators.
Cepheids are a famous class of supergiants that are widely used as standard candles for distance
measurements, through the period-luminosity (P–L) relations. Interferometry allows to apply
a refined version of the Baade–Wesselink method to estimate the distance to nearby Cepheids,
and therefore calibrate the P–L relations. While this method is promising and potentially very
precise, several points in its application are critical, in particular the projection factor. Main
sequence stars are by far the most numerous stellar class in the universe, as all stars spend
the majority of their life as dwarfs. I have applied interferometry to a broad range of main
sequence stars, from the very low mass Proxima to hot stars. In particular, I have realized the
first combination of interferometric and asteroseismic constraints for the modeling of stars (the
two components of α Centauri, as well as other stars). In a third part, I describe the recent
results that we have obtained on fast rotating stars. Due to the very strong centrifugal force
at the equator, the photosphere of these stars is strongly distorted. Interferometry allows to
observe these deformations, and I describe our observations of three bright, fast rotating stars :
Altair (αAql), Achernar (αEri) and Vega (αLyr).


