

Micro et nano-antennes adaptées à la microscopie champ proche et à l'imagerie haute résolution

Audrey FAHYS

Vendredi 7 décembre 2007

Institut FEMTO-ST Département d'Optique P.M. Duffieux

Plan

Microscopie en champ proche & Antennes

- les sondes
- les antennes
- les faisceaux de Bessel polarisés
- choix de l'antenne
- Techniques de fabrication
 - thermo-étirage & autres techniques
 - polissage & métallisation
 - usinage FIB
- Validation & Tests
 - caractérisation des nano-antennes
 - premiers tests en imagerie
- Conclusion & Perspectives

Plan

Microscopie en champ proche & Antennes

- les sondes
- les antennes
- les faisceaux de Bessel polarisés
- choix de l'antenne
- Techniques de fabrication
 - thermo-étirage & autres techniques
 - polissage & métallisation
 - usinage FIB
- Validation & Tests
 - caractérisation des nano-antennes

3

- premiers tests en imagerie
- Conclusion & Perspectives

Microscopie optique en champ proche

Détection : $|\mathbf{E}_x|^2$, $|\mathbf{E}_y|^2$ ou $|\mathbf{E}_z|^2$ $|\mathbf{H}_x|^2$, $|\mathbf{H}_y|^2$ ou $|\mathbf{H}_z|^2$ Combinaison des champs

Répondre à cette question

=> meilleure interprétation des images optiques champ proche

Discriminer E et H?

4

Elément clef : la sonde

Paramètres critiques :

► Dimension et qualité de l'extrémité

- résolution spatiale du microscope
- ► Angle d'ouverture du cône
 - efficacité d'émission ou de collection
- Reproductibilité de fabrication des pointes
 interprétation des images

Qu'est-ce qu'une antenne ?

Les antennes

Les antennes : exemples

Microscopie micro-onde en champ proche

Détection du champ électrique

Détection du champ magnétique

8

V. Agrawal & al., *APL* **71**, 2343 (1997).

Les antennes : exemples

Microscopie optique en champ proche

D. Fromm & al. *Nano Lett.* **4**, 957 (2004).

J.N. Farahani & al. PRL 95, 017402 (2005).

Détection du champ électrique

Configuration retenue

9

J.A. Veerman & al. *APL* **72**, 3115 (1998).

E. Devaux & al. *PRB* **62**, 10504 (2000).

Outils de caractérisation des sondes

1 Source : continuum

3

- Polarisations : radiale & orthoradiale
- Faisceaux de Bessel polarisés

Continuum

Faisceaux de Bessel

Faisceaux de Bessel polarisés

Choix de l'antenne

But : nanostructure à l'extrémité d'une sonde

Antenne Forme simple : anneau Dimensions réalistes

15

Plan

Microscopie en champ proche & Antennes

- les sondes
- les antennes
- les faisceaux de Bessel polarisés
- choix de l'antenne
- Techniques de fabrication
 - thermo-étirage & autres techniques
 - polissage & métallisation
 - usinage FIB
- Validation & Tests
 - caractérisation des nano-antennes

16

- premiers tests en imagerie
- Conclusion & Perspectives

Transposition à une échelle submicrométrique

Sonde :

- centrage de l'extrémité sur l'axe du cœur
- qualité de surface (faible rugosité)
- définition de l'extrémité (sublongueur d'onde)

Nanostructure annulaire :

- choix de la structure
- dimensions spécifiques
- usinage sur une surface non plane
- centrage de la structure sur l'axe du cœur

Techniques de préparation des sondes

Exemples de sondes

Usinage chimique

Pointe simple taper

R. Stöckle & al. **θ~20°**

Pointe double taper

T. Saiki & al. *APL* **75**, 160 (1999). *APL* **74**, 2773 (1999).

θ~90°

Sonde hybride

Microfabrication

G. Genolet & al. *RSI***72**, 3877 (2001).

Fabrication des sondes / antennes

Etapes de fabrication

Méthode de chauffage et étirage

Technique de polissage

Micro-axicon opérationnel ?

OUI

NON

Micro-axicon opérationnel

23

Contraintes et défis technologiques réalisés

Fabrication sur fibre optique d'un micro-axicon

- centrage de l'extrémité sur l'axe du cœur
- qualité de surface
- contrôle de l'angle d'ouverture
- contrôle du diamètre du cœur

Métallisation

3

Dépôt d'or : e = 115 nm

Images MEB

Collaboration : Jean-Yves Rauch, centrale MIMENTO.

Usinage FIB

Collaboration : Roland Salut, centrale MIMENTO.

Nano-antennes annulaires

Nano-antennes annulaires

Zoom sur l'extrémité :

$$d_{ext} = 1 \ \mu m$$

 $d_{int} = 400 \ nm$
 $e = 115 \ nm$

Images MEB (vues de face)

Contraintes et défis technologiques réalisés

Fabrication d'une nanostructure

- usinage à l'extrémité d'un micro-axicon fibré

- structure simple : l'anneau
- centrage de la structure
- dimensions spécifiques : submicrométriques

Plan

Microscopie en champ proche & Antennes

- les sondes
- les antennes
- les faisceaux de Bessel polarisés
- choix de l'antenne
- Techniques de fabrication
 - thermo-étirage & autres techniques
 - polissage & métallisation
 - usinage FIB
- Validation & Tests
 - caractérisation des nano-antennes

30

- premiers tests en imagerie

Conclusion & Perspectives

Montage de caractérisation

Etude théorique : simulations spectrales

M. Suarez & al., Opt. Comm. 270, 447 (2006)

Caractérisation (radiale)

Pointe diélectrique, $\lambda = 632$ nm

Image optique

Théorie

 $|{\bf E}_{\rm T}|^2$

Images identiques à toutes longueurs d'onde.

Non restitution de la composante longitudinale Accès à $|\mathbf{E}_T|^2$

Caractérisation (radiale)

Caractérisation (radiale)

Pointe A' $\lambda = 588 \text{ nm}$

Image optique

Profils d'intensité

Théorie

 $|{\bf E}_{\rm T}|^2$

Résumé : Polarisation radiale

Hors résonance \longrightarrow Détection de $|\mathbf{E}_{\mathsf{T}}|^2$

A la résonance \longrightarrow Détection de $|E_L|^2 \longrightarrow$ Mode plasmon

Caractérisation (orthoradiale)

Pointe A' $\lambda = 588 \text{ nm}$

Image optique

Profils d'intensité

Théorie

 $|\mathbf{H}_{\mathrm{T}}|^2$

Résumé : Polarisation orthoradiale

Application

Premiers tests

Premiers tests

Images optiques ($13 \times 13 \mu m^2$)

Plan

Microscopie en champ proche & Antennes

- les sondes
- les antennes
- les faisceaux de Bessel polarisés
- choix de l'antenne
- Techniques de fabrication
 - thermo-étirage & autres techniques
 - polissage & métallisation
 - usinage FIB
- Validation & Tests
 - caractérisation des nano-antennes

43

- premiers tests en imagerie
- Conclusion & Perspectives

- Intégration d'une nano-antenne à l'extrémité d'un micro-axicon fibré
- Discrimination de E et H
- Concordance avec la théorie
- Sonde fonctionnelle adaptée

Perspectives

- Modifier les paramètres de l'anneau
- Utilisation des sondes en condition
- SQUID

- Microscopie basse température
- Métamatériaux

Micro et nano-antennes adaptées à la microscopie champ proche et à l'imagerie haute résolution

MERCI DE VOTRE ATTENTION

