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M. Chérif AMROUCHE, Professeur, Université de Pau et des Pays de l’Adour
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Rapporteurs

M. Marco CANNONE

M. Jean GIROIRE, Professeur, Université de Technologie de Compiègne
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pour la confiance qu’il m’a accordée, ainsi que pour sa disponibilité, sa patience
et sa rigueur sans faille dans la direction de ce travail. Au-delà de son savoir,
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permis de bénéficier de bonnes conditions de travail et qui a en outre accepté de
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chaleureusement.
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Introduction

Le sujet de cette thèse est l’étude de certains problèmes aux limites elliptiques
linéaires intervenant en mécanique et en physique, dans la géométrie particulière
du demi-espace. De nombreux problèmes de la physique mathématique peuvent
être modélisés par des équations aux dérivées partielles dans un tel domaine.
C’est le cas en particulier de l’équation des ondes, de l’équation de Helmholtz
pour la pression acoustique, des équations de Maxwell pour le champ électro-
magnétique et des équations de Navier-Stokes en mécanique des fluides. L’étude
de ces problèmes célèbres passe par la résolution d’équations portant sur des
opérateurs différentiels linéaires de base. Au premier rang de ceux-ci, on trouve
l’opérateur de Laplace. En effet, l’équation de Laplace

∆u = f dans Ω,

avec une condition aux limites de type Dirichlet

u = g sur Γ,

ou de type Neumann
∂u

∂n
= g sur Γ,

a fait l’objet de nombreuses études tant en domaines bornés qu’en domaines
non bornés. Une différence essentielle entre le borné et le non borné tient dans
la description du comportement à l’infini des données du problème et de ses
solutions éventuelles pour le second cas. Le premier domaine non borné est
naturellement l’espace tout entier RN . Viennent ensuite les problèmes posés
dans un domaine extérieur, c’est-à-dire où Ω est le complémentaire d’un compact
de RN . Dans ce cas, la frontière est elle-même compacte et on peut utiliser une
partition de l’unité pour ramener le problème posé à la somme de deux problèmes,
l’un en domaine borné et l’autre dans RN . Avec le demi-espace, une nouvelle
difficulté apparâıt du fait que la frontière est non compacte. On se trouve ainsi
conduit à définir des espaces de traces permettant de décrire le comportement
à l’infini de leurs éléments. Cependant, la géométrie du demi-espace offre la
particularité d’un prolongement des fonctions harmoniques à tout l’espace par le
principe de réflexion établi par H.A. Schwarz. Cela permet donc là aussi d’utiliser
les résultats précédemment établis dans tout l’espace. Pour aborder ces problèmes
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4 Introduction

en domaines non bornés, plusieurs auteurs ont eu recours aux espaces Ĥ1, p
0 (RN)

obtenus par complétion de l’espace D(RN) par rapport à la norme ‖∇.‖Lp(RN ),
ou certains de leurs raffinements, ou encore aux espaces homogènes D1, p(RN)
des fonctions Lp

loc(R
N) à gradient dans Lp(RN). Les résultats obtenus dans ces

cadres fonctionnels sont toutefois comparables et présentent l’inconvénient de ne
rien dire du comportement à l’infini des données et des solutions. Une autre
approche est celle des espaces de Sobolev avec poids. Elle présente l’avantage de
donner des informations non seulement sur toutes les dérivées, mais aussi sur les
fonctions elles-mêmes. C’est ce cadre fonctionnel que nous adopterons ici.

Outre la description du comportement à l’infini des fonctions en jeu, il y a une
raison plus profonde qui impose l’adoption d’un cadre fonctionnel autre que celui
des espaces de Sobolev classiques utilisés en domaine borné. En effet, l’inégalité
de Poincaré, fondamentale pour la résolution de tels problèmes dans le cas borné,
n’est plus satisfaite dans ces géométries pour certains opérateurs classiques (voir
l’introduction du chapitre 2 pour l’opérateur biharmonique). Par contre dans
les espaces de Sobolev avec poids, on retrouve des inégalités de type Poincaré
comme conséquences naturelles d’une inégalité de Hardy ou d’une inégalité de
Hardy généralisée. Ces inégalités de Poincaré sont quant à elles au cœur de la
méthode variationnelle pour résoudre des problèmes aux limites faisant intervenir
des opérateurs elliptiques. Nous utiliserons une classe d’espaces de Sobolev avec
des poids logarithmiques (voir [5] et le chapitre 1), qui étendent ceux introduits
par B. Hanouzet (voir [33] et la remarque 1.2.1) et qui permettent d’exclure moins
de valeurs critiques que ces derniers.

Le demi-espace et l’espace entier sont donc les deux géométries entre lesquelles
nous ferons de fréquents allers et retours. Pour revenir à l’équation de Laplace
dans ces deux domaines, ou plus exactement tout d’abord à l’équation de Poisson
dans RN , nous nous sommes basés sur les résultats d’isomorphismes établis par
C. Amrouche, V. Girault et J. Giroire dans [5] et [6]. Concernant le demi-espace,
on trouve des résultats partiels dans des espaces de Sobolev avec poids, avec
notamment les travaux de V.G. Maz’ya, B.A. Plamenevskĭı et L.I. Stupyalis (voir
[38]) qui traitent du problème de Stokes et trouvent un champ de vitesses dans
W 1, 2

0 (R3
+) ouW 2, 2

1 (R3
+). Pour le même problème, N. Tanaka (voir [43]) obtient un

champ de vitesses dans Wm+2, 2
0 (R3

+) avec m > 0. Toujours dans le cas hilbertien,
T.Z. Boulmezaoud (voir [20]) a obtenu des résultats généraux, mais qui excluent
cependant la dimension deux à cause des valeurs critiques inhérentes aux poids
qu’il utilise (en fait les espaces de B. Hanouzet). Ces résultats ont été ensuite
généralisés en théorie Lp par C. Amrouche et S. Nečasová (voir [7, 8]) pour les
dimensions N > 2, avec la résolution de certains cas critiques au moyen de cette
classe d’espaces avec des facteurs logarithmiques dans les poids.

Nous venons de parler du système de Stokes et cela nous ramène au sujet de
cette thèse, après ce bref et très lacunaire état des lieux . . . Notre objectif est de
poursuivre ce travail de généralisation pour d’autres opérateurs elliptiques. Par
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généralisation, nous entendons un travail se développant suivant trois axes. Le
premier est de fournir des résultats en théorie Lp pour 1 < p < ∞, le second
est de réduire au mieux les valeurs critiques — sachant que certains résultats
peuvent encore être raffinés par l’emploi d’espaces adéquats, ce que nous n’avons
pas exploité — et le dernier est d’envisager des conditions aux limites singulières
et de chercher des solutions très faibles correspondantes. Notons d’ailleurs que
ce dernier axe est devenu peu à peu prépondérant dans ce travail et illustre toute
la richesse du raisonnement par dualité mis en œuvre dans ces questions.

Nous avons ainsi abordé dans un premier temps le problème biharmonique,
pour utiliser ensuite ces résultats dans le problème de Stokes. Là encore, bien
sûr, le terrain n’était pas vierge ! Citons, simplement pour la géométrie qui nous
intéresse, le travail de R. Farwig et H. Sohr (voir [28]) pour le système de Stokes.
Ces auteurs travaillent dans des espaces homogènes, mais utilisent un schéma
de démonstration dont nous nous sommes en partie inspirés pour les solutions
généralisées du problème de Stokes, en passant par la résolution d’un problème
biharmonique. Les preuves que nous donnons divergent ensuite notablement du
fait des cadres fonctionnels et des outils utilisés. Citons à nouveau un travail de
T.Z. Boulmezaoud (voir [21]) pour ces deux problèmes. Cet auteur commence par
résoudre le problème de Stokes par une méthode qui ne lui permet pas d’obtenir
des solutions généralisées et résout ensuite le problème biharmonique. Nous avons
cependant utilisé une caractérisation très intéressante qu’il donne du noyau de
l’opérateur de Stokes, que nous obtenons de manière différente en partant de celui
de l’opérateur biharmonique qui présente l’avantage de s’exprimer beaucoup plus
naturellement. Il semblerait donc que nos objectifs de généralisation aient été
atteints dans les trois axes évoqués précédemment.

Le découpage en différents chapitres de cette thèse retrace davantage l’ordre
chronologique du travail de recherche qu’il ne laisse parâıtre une unité logique
dans les questions abordées. En effet, on peut observer que certaines questions
similaires reviennent dans différents chapitres et auraient pu avantageusement
être traitées ensemble dans une partie autonome. Il s’agit en particulier des
lemmes donnant un sens à des traces de fonctions dans des cas singuliers. On
pourra toujours arguer que cela présente l’avantage pédagogique de la motivation
des questions au fil de leur apparition naturelle . . . Une raison plus prosäıque,
mais aussi plus véridique, est que ce découpage provient de la rédaction initiale
sous la forme d’articles autonomes pour différentes revues ! En fait la partie
délicate de ce travail de synthèse a plutôt été de donner une apparence d’unité
à l’ensemble en évitant les redondances. Nous avons en outre conservé la langue
anglaise dans laquelle ont été rédigés les articles, non par conviction politique
ou philosophique, mais pour une raison plus sordide de temps qui passe toujours
trop vite.

Le premier chapitre est naturellement dévolu aux notations, aux définitions
et propriétés des espaces fonctionnels et aux résultats fondamentaux sur lesquels
nous nous appuyons dans la suite. Il s’agit principalement des résultats sur les
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problèmes de Dirichlet et de Neumann pour laplacien dans le demi-espace, ainsi
que du lemme de traces. Tous ces résultats sont donnés sans démonstration et
nous renvoyons à la bibliographie pour les détails.

Dans le second chapitre, nous abordons le problème biharmonique. Nous
commençons par donner des résultats d’isomorphismes dans tout l’espace pour
l’opérateur biharmonique, en utilisant ceux établis pour le Laplacien dans [5] et
[6]. Ensuite, nous passons au problème biharmonique dans le demi-espace avec
des conditions aux limites portant sur u et ∂Nu, où u est la solution cherchée.
Après la caractérisation générale du noyau, nous étudions le problème homogène,
pour lequel nous donnons des solutions généralisées et un résultat de régularité,
puis nous passons enfin au problème non homogène pour lequel nous fournissons
un résultat portant sur les solutions généralisées. Ce chapitre a fait l’objet d’une
publication dans la revue Jounal of Differential Equations (voir [9]).

Le troisième chapitre porte sur les solutions fortes et un résultat de régularité
pour le même problème. Nous revenons ensuite au problème homogène, pour
lequel nous étudions le cas de conditions aux limites singulières et très singulières.
Nous obtenons deux résultats par des techniques de dualité, fournissant ainsi des
solutions faibles et très faibles de ce problème. Nous envisageons pour finir le cas
d’autres conditions aux limites. Ce chapitre a fait l’objet d’un article à parâıtre
dans le numéro de décembre de la revue Communication in Pure and Applied
Analysis (voir [11]). Ces deux derniers chapitres ont aussi fait l’objet d’une note
aux Comptes Rendus de l’Académie des Sciences (voir [10]).

Au quatrième chapitre, nous commençons l’étude du problème de Stokes avec
des conditions de Dirichlet. Nous envisageons tout le spectre des régularités,
pour fournir des solutions généralisées, fortes et très faibles, ainsi qu’un résul-
tat de régularité. Nous nous sommes cependant limités ici aux poids basiques
pour les comportements à l’infini, afin de dégager l’essentiel de la méthode. Ce
chapitre provient lui aussi d’un article rédigé en collaboration avec S. Nečasová
et à parâıtre dans la revue Jounal of Differential Equations (voir [12]).

Nous reprenons au cinquième chapitre le travail du précédent, mais pour tout
le spectre des poids et donc des comportements à l’infini possibles. Surgissent
alors naturellement la question du noyau dans sa généralité et les conditions
d’orthogonalité pour les données. La méthode utilisée précédemment pour les
solutions généralisées s’applique encore quand les poids considérés sont négatifs
et nous récupérons les poids positifs par dualité. Les résultats donnés ici englobent
ainsi ceux du précédent chapitre.

Au sixième chapitre, qui est aussi le fruit d’une collaboration avec S. Nečasová,
nous nous intéressons toujours au problème de Stokes, mais avec des conditions
de Navier (ou conditions de glissement) sur l’hyperplan frontière. Nous adaptons
la méthode utilisée pour les conditions de Dirichlet à ce cas. Les objectifs et le
plan sont les mêmes qu’au quatrième chapitre.

Le septième et dernier chapitre envisage un système de Stokes généralisé avec
un terme d’élasticité et différents paramètres, système que l’on rencontre dans
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la littérature sur le sujet (voir H. Beirão da Veiga, [17]). Les conditions aux
limites sont là aussi de type Navier. Après une étude préliminaire du problème
correspondant dans tout l’espace, qui suit de près celle du problème classique
effectuée par F. Alliot et C. Amrouche (voir [3]), nous montrons que la méthode
du précédent chapitre s’applique tout à fait à ce cas dans le demi-espace.

Nous ne serions pas tout à fait complets si nous ne parlions pas des ✭✭ oublis ✮✮

de ce travail et des perspectives qu’il nous ouvre encore. Pour les questions laissées
de côté, nous avons déjà cité la possibilité de combler les vides laissés par certaines
valeurs critiques en introduisant des espaces judicieux (voir la référence [6]). Il y
a aussi l’approche par les solutions fondamentales, avec par exemple en domaine
borné l’article fondateur de L. Cattabriga (voir [24]) et dans le demi-espace les
travaux de S. Ukai (voir [44]), puis plus récemment, ceux de M. Cannone, F.
Planchon et M. Schonbek (voir [23]), avec laquelle il conviendrait d’établir un
pont. Pour le travail en cours, il reste à généraliser aux poids quelconques le
problème de Stokes avec des conditions de Navier, ce qui ne doit pas poser de
problème. Quant aux perspectives, il faut voir comment utiliser ces résultats
pour le problème non linéaire de Navier-Stokes. Une approche possible est de
commencer par s’intéresser aux équations d’Oseen dans le demi-espace, sachant
que des résultats dans tout l’espace et en domaine extérieur ont déjà été obtenus
par C. Amrouche, H. Bouzit et U. Razafison. Il reste aussi tout le champ des
problèmes d’évolution dans cette géométrie.





Chapitre 1

Functional framework and known

results

1.1 Notations

For any real number p > 1, we always take p′ to be the Hölder conjugate of p,
i.e.

1

p
+

1

p′
= 1.

Let Ω be an open set of RN , N > 2. Writing a typical point x ∈ RN as x =
(x′, xN), where x′ = (x1, . . . , xN−1) ∈ RN−1 and xN ∈ R, we will especially look

on the upper half-space RN
+ = {x ∈ RN ; xN > 0}. We let RN

+ denote the closure
of RN

+ in RN and let Γ = {x ∈ RN ; xN = 0} ≡ RN−1 denote its boundary. Let
|x| = (x2

1 + · · · + x2
N)1/2 denote the Euclidean norm of x, we will use two basic

weights
̺ = (1 + |x|2)1/2 and lg ̺ = ln(2 + |x|2).

We denote by ∂i the partial derivative ∂
∂xi

, similarly ∂2
i = ∂i ◦ ∂i = ∂2

∂x2
i
, ∂2

ij =

∂i ◦ ∂j = ∂2

∂xi∂xj
, . . . More generally, if λ = (λ1, . . . , λN) ∈ NN is a multi-index,

then

∂λ = ∂λ1
1 · · · ∂λN

N =
∂|λ|

∂xλ1
1 · · · ∂xλN

N

, where |λ| = λ1 + · · · + λN .

In the sequel, for any integer q, we will use the following polynomial spaces:
— Pq is the space of polynomials of degree smaller than or equal to q;
— P∆

q is the subspace of harmonic polynomials of Pq;

— P∆2

q is the subspace of biharmonic polynomials of Pq;
— A∆

q is the subspace of polynomials of P∆
q , odd with respect to xN , or equiva-

lently, which satisfy the condition ϕ(x′, 0) = 0;
— N∆

q is the subspace of polynomials of P∆
q , even with respect to xN , or equiv-

alently, which satisfy the condition ∂Nϕ(x′, 0) = 0;
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with the convention that these spaces are reduced to {0} if q < 0.
For any real number s, we denote by [s] the integer part of s.
Given a Banach space B, with dual space B′ and a closed subspace X of B, we
denote by B′ ⊥ X the subspace of B′ orthogonal to X, i.e.

B′ ⊥ X = {f ∈ B′; ∀v ∈ X, 〈f, v〉 = 0} = (B/X)′.

Lastly, if k ∈ Z, we will constantly use the notation {1, . . . , k} for the set of
the first k positive integers, with the convention that this set is empty if k is
nonpositive.

1.2 Weighted Sobolev spaces

For any nonnegative integer m, real numbers p > 1, α and β, we define the
following space:

Wm, p
α, β (Ω) =

{

u ∈ D′(Ω); 0 6 |λ| 6 k, ̺α−m+|λ| (lg ̺)β−1 ∂λu ∈ Lp(Ω);

k + 1 6 |λ| 6 m, ̺α−m+|λ| (lg ̺)β ∂λu ∈ Lp(Ω)
}

,
(1.2.1)

where

k =

{

−1 if N
p

+ α /∈ {1, . . . ,m},

m− N
p
− α if N

p
+ α ∈ {1, . . . ,m}.

Note that Wm, p
α, β (Ω) is a reflexive Banach space equipped with its natural norm:

‖u‖W m, p
α, β (Ω) =

(

∑

06|λ|6k

‖̺α−m+|λ| (lg ̺)β−1 ∂λu‖
p

Lp(Ω)

+
∑

k+16|λ|6m

‖̺α−m+|λ| (lg ̺)β ∂λu‖
p

Lp(Ω)

)1/p

.

We also define the semi-norm:

|u|W m, p
α, β (Ω) =

(

∑

|λ|=m

‖̺α (lg ̺)β ∂λu‖
p

Lp(Ω)

)1/p

.

The weights in definition (1.2.1) are chosen so that the corresponding space satis-

fies two fundamental properties. On the one hand, D
(

RN
+

)

is dense in Wm, p
α, β (RN

+ ).

On the other hand, the following Poincaré-type inequality holds inWm, p
α, β (RN

+ ) (see
[7], Theorem 1.1): if

N

p
+ α /∈ {1, . . . ,m} or (β − 1)p 6= −1, (1.2.2)
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then the semi-norm | · |W m, p
α, β (RN

+ ) defines on Wm, p
α, β (RN

+ )/Pq∗ a norm which is equiv-

alent to the quotient norm,

∀u ∈ Wm, p
α, β (RN

+ ), ‖u‖W m, p
α, β (RN

+ )/Pq∗
6 C |u|W m, p

α, β (RN
+ ), (1.2.3)

with q∗ = inf(q,m−1), where q is the highest degree of the polynomials contained
in Wm, p

α, β (RN
+ ). Now, we define the space

◦

W
m, p
α, β (RN

+ ) = D(RN
+ )

‖·‖
W

m, p
α, β

(R
N
+ ) ;

which will be characterized in Lemma 1.3.1 as the subspace of functions with null
traces in Wm, p

α, β (RN
+ ). From that, we can introduce the space W−m, p′

−α,−β(RN
+ ) as the

dual space of
◦

W
m, p
α, β (RN

+ ). In addition, under the assumption (1.2.2), | · |W m, p
α, β (RN

+ )

is a norm on
◦

W
m, p
α, β (RN

+ ) which is equivalent to the full norm,

∀u ∈
◦

W
m, p
α, β (RN

+ ), ‖u‖W m, p
α, β (RN

+ ) 6 C |u|W m, p
α, β (RN

+ ). (1.2.4)

We will now recall some properties of the weighted Sobolev spaces Wm, p
α, β (RN

+ ).
We have the algebraic and topological imbeddings:

Wm, p
α, β (RN

+ ) →֒ Wm−1, p
α−1, β (RN

+ ) →֒ · · · →֒ W 0, p
α−m, β(RN

+ ) if
N

p
+ α /∈ {1, . . . ,m}.

When N
p

+ α = j ∈ {1, . . . ,m}, then we have:

Wm, p
α, β →֒ · · · →֒ Wm−j+1, p

α−j+1, β →֒ Wm−j, p
α−j, β−1 →֒ · · · →֒ W 0, p

α−m, β−1.

Note that in the first case, for any γ ∈ R such that N
p

+ α− γ /∈ {1, . . . ,m} and
m ∈ N, the mapping

u ∈ Wm, p
α, β (RN

+ ) 7−→ ̺γu ∈ Wm, p
α−γ, β(RN

+ )

is an isomorphism. In both cases and for any multi-index λ ∈ NN , the mapping

u ∈ Wm, p
α, β (RN

+ ) 7−→ ∂λu ∈ W
m−|λ|, p
α, β (RN

+ )

is continuous. Finally, it can be readily checked that the highest degree q of the
polynomials contained in Wm, p

α, β (RN
+ ) is given by

q =



















m−
(

N
p

+ α
)

− 1, if







N
p

+ α ∈ {1, . . . ,m} and (β − 1)p > −1,

or
N
p

+ α ∈ {j ∈ Z; j 6 0} and βp > −1,
[

m−
(

N
p

+ α
)]

, otherwise.

(1.2.5)
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Remark 1.2.1. In the case β = 0, we simply denote the space Wm, p
α, 0 (Ω) by

Wm, p
α (Ω). In [33], Hanouzet introduced a class of weighted Sobolev spaces with-

out logarithmic factors, with the same notation. We recall his definition under
the notation Hm, p

α (Ω):

Hm, p
α (Ω) =

{

u ∈ D′(Ω); 0 6 |λ| 6 m, ̺α−m+|λ| ∂λu ∈ Lp(Ω)
}

.

It is clear that if N
p

+ α /∈ {1, . . . ,m}, we have Wm, p
α (Ω) = Hm, p

α (Ω). The
fundamental difference between these two families of spaces is that the assump-
tion (1.2.2) and thus the Poincaré-type inequality (1.2.3), hold for any value of
(N, p, α) in Wm, p

α (Ω), but not in Hm, p
α (Ω) if N

p
+ α ∈ {1, . . . ,m}. ♦

1.3 The spaces of traces

In order to define the traces of functions of Wm, p
α (RN

+ ) (here we don’t consider
the case β 6= 0), for any σ ∈ ]0, 1[, we introduce the space:

W σ, p
0 (RN) =

{

u ∈ D′(RN); w−σu ∈ Lp(RN) and

∫

RN×RN

|u(x) − u(y)|p

|x− y|N+σp
dx dy <∞

}

,

(1.3.1)

where w = ̺ if N/p 6= σ and w = ̺ (lg ̺)1/σ if N/p = σ. It is a reflexive Banach
space equipped with its natural norm:

‖u‖W σ, p
0 (RN ) =

(

∥

∥

∥

u

wσ

∥

∥

∥

p

Lp(RN )
+

∫

RN×RN

|u(x) − u(y)|p

|x− y|N+σp
dx dy

)1/p

.

Similarly, for any real number α ∈ R, we define the space:

W σ, p
α (RN) =

{

u ∈ D′(RN); wα−σu ∈ Lp(RN),

∫

RN×RN

|̺α(x)u(x) − ̺α(y)u(y)|p

|x− y|N+σp
dx dy <∞

}

,

where w = ̺ if N/p + α 6= σ and w = ̺ (lg ̺)1/(σ−α) if N/p + α = σ. For any
s ∈ R+, we set

W s, p
α (RN) =

{

u ∈ D′(RN); 0 6 |λ| 6 k, ̺α−s+|λ| (lg ̺)−1 ∂λu ∈ Lp(RN);

k + 1 6 |λ| 6 [s] − 1, ̺α−s+|λ| ∂λu ∈ Lp(RN); |λ| = [s], ∂λu ∈ W σ, p
α (RN)

}

,
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where k = s−N/p−α if N/p+α ∈ {σ, . . . , σ+[s]}, with σ = s− [s] and k = −1
otherwise. It is a reflexive Banach space equipped with the norm:

‖u‖W s, p
α (RN ) =

(

∑

06|λ|6k

‖̺α−s+|λ| (lg ̺)−1 ∂λu‖
p

Lp(RN )

+
∑

k+16|λ|6[s]−1

‖̺α−s+|λ| ∂λu‖
p

Lp(RN )

)1/p

+
∑

|λ|=[s]

‖∂λu‖W σ, p
α (RN ).

We can similarly define, for any real number β, the space:

W s, p
α, β(RN) =

{

v ∈ D′(RN); (lg ̺)β v ∈ W s, p
α (RN)

}

.

We can prove some properties of the weighted Sobolev spaces W s, p
α, β(RN). We

have the algebraic and topological imbeddings in the case where N/p + α /∈
{σ, . . . , σ + [s] − 1}:

W s, p
α, β(RN) →֒ W s−1, p

α−1, β(RN) →֒ · · · →֒ W σ, p
α−[s], β(RN),

W s, p
α, β(RN) →֒ W

[s], p
α+[s]−s, β(RN) →֒ · · · →֒ W 0, p

α−s, β(RN).

When N/p+ α = j ∈ {σ, . . . , σ + [s] − 1}, then we have:

W s, p
α, β →֒ · · · →֒ W s−j+1, p

α−j+1, β →֒ W s−j, p
α−j, β−1 →֒ · · · →֒ W σ, p

α−[s], β−1,

W s, p
α, β →֒ W

[s], p
α+[s]−s, β →֒ · · · →֒ W

[s]−j+1, p
α−σ−j+1, β →֒ W

[s]−j, p
α−σ−j, β−1 →֒ · · · →֒ W 0, p

α−s, β−1.

If u is a function on RN
+ , we denote its trace of order j on the hyperplane Γ by:

∀j ∈ N, γju : x′ ∈ R
N−1 7−→ ∂j

Nu(x
′, 0).

Let us recall the following traces lemma due to Hanouzet (see [33]) and extended
by Amrouche-Nečasová (see [7]) to this class of weighted Sobolev spaces:

Lemma 1.3.1. For any integer m > 1 and real number α, the mapping

γ = (γ0, γ1, . . . , γm−1) : D
(

RN
+

)

−→
m−1
∏

j=0

D(RN−1),

can be extended to a linear continuous mapping, still denoted by γ,

γ : Wm, p
α (RN

+ ) −→
m−1
∏

j=0

Wm−j−1/p, p
α (RN−1).

Moreover γ is surjective and Kerγ =
◦

Wm, p
α (RN

+ ).
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1.4 The Laplace equation in RN
+

We shall now recall the fundamental results of the Laplace equation in the half-
space, with nonhomogeneous Dirichlet or Neumann boundary conditions. These
results have been proved by Boulmezaoud (see [20]) in the particular case where
p = 2 for N > 3, then generalized by Amrouche-Nečasová (see [7]) and Amrouche
(see [8]) in Lp theory for N > 2, with solutions of some critical cases by means of
logarithmic factors in the weight. Let us also quote the partial results of Maz’ya-
Plamenevskĭı-Stupyalis (see [38]) for the Stokes system in R3

+ with the velocity

obtained in W 1, 2
0 (R3

+) or W 2, 2
1 (R3

+), and those of Tanaka (see [43]) for the same

problem and the velocity vector field in Wm+2, 2
0 (R3

+) with m > 0.
Let us first recall the main result of the Dirichlet problem

(PD)

{

∆u = f in RN
+ ,

u = g on Γ,

with a different behaviour at infinity according to ℓ.

Theorem 1.4.1 (Amrouche-Nečasová [7]). Let ℓ ∈ Z such that

N

p′
/∈ {1, . . . , ℓ} and

N

p
/∈ {1, . . . ,−ℓ}. (1.4.1)

For any f ∈ W−1, p
ℓ (RN

+ ) and g ∈ W
1−1/p, p
ℓ (Γ) satisfying the compatibility condi-

tion

∀ϕ ∈ A∆
[1+ℓ−N/p′],

〈f, ϕ〉
W−1, p

ℓ (RN
+ )×

◦

W
1, p′

−ℓ (RN
+ )

= 〈g, ∂Nϕ〉W 1−1/p, p
ℓ (Γ)×W

−1/p′, p′

−ℓ (Γ)
,

(1.4.2)

problem (PD) admits a solution u ∈ W 1, p
ℓ (RN

+ ), unique up to an element of
A∆

[1−ℓ−N/p], and there exists a constant C such that

inf
q∈A∆

[1−ℓ−N/p]

‖u+ q‖W 1, p
ℓ (RN

+ ) 6 C
(

‖f‖W−1, p
ℓ (RN

+ ) + ‖g‖
W

1−1/p, p
ℓ (Γ)

)

.

The second recall deals with this problem for more regular data.

Theorem 1.4.2 (Amrouche-Nečasová [7]). Let ℓ ∈ Z and m > 1 be two integers
such that

N

p′
/∈ {1, . . . , ℓ+ 1} and

N

p
/∈ {1, . . . ,−ℓ−m}. (1.4.3)

For any f ∈ Wm−1, p
m+ℓ (RN

+ ) and g ∈ W
m+1−1/p, p
m+ℓ (Γ), satisfying the compatibility

condition (1.4.2), problem (PD) has a solution u ∈ Wm+1, p
m+ℓ (RN

+ ), unique up to
an element of A∆

[1−ℓ−N/p], and there exists a constant C such that

inf
q∈A∆

[1−ℓ−N/p]

‖u+ q‖W m+1, p
m+ℓ (RN

+ ) 6 C
(

‖f‖W m−1, p
m+ℓ (RN

+ ) + ‖g‖
W

m+1−1/p, p
m+ℓ (Γ)

)

.
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Concerning the Neumann problem

(PN)

{

∆u = f in RN
+ ,

∂Nu = g on Γ,

let us first recall the result for the weakest data.

Theorem 1.4.3 (Amrouche [8]). Let ℓ ∈ Z such that

N

p′
/∈ {1, . . . , ℓ} and

N

p
/∈ {1, . . . ,−ℓ+ 1}. (1.4.4)

For any f ∈ W 0, p
ℓ (RN

+ ) and g ∈ W
−1/p, p
ℓ−1 (Γ) satisfying the compatibility condition

∀ϕ ∈ N∆
[ℓ−N/p′],

〈f, ϕ〉
W 0, p

ℓ (RN
+ )×W 0, p′

−ℓ (RN
+ )

+ 〈g, ϕ〉
W

−1/p, p
ℓ−1 (Γ)×W

1−1/p′, p′

−ℓ+1 (Γ)
= 0,

(1.4.5)

problem (PN) admits a solution u ∈ W 1, p
ℓ−1(R

N
+ ), unique up to an element of

N∆
[2−ℓ−N/p], and there exists a constant C such that

inf
q∈N∆

[2−ℓ−N/p]

‖u+ q‖W 1, p
ℓ−1(RN

+ ) 6 C
(

‖f‖W 0, p
ℓ (RN

+ ) + ‖g‖
W

−1/p, p
ℓ−1 (Γ)

)

.

As for the Dirichlet problem, we can prove the following result:

Theorem 1.4.4. Let ℓ ∈ Z and m > 0 be two integers such that

N

p′
/∈ {1, . . . , ℓ} and

N

p
/∈ {1, . . . ,−ℓ−m}. (1.4.6)

For any f ∈ Wm, p
m+ℓ(R

N
+ ) and g ∈ W

m+1−1/p, p
m+ℓ (Γ) satisfying the compatibility con-

dition (1.4.5), problem (PN) has a solution u ∈ Wm+2, p
m+ℓ (RN

+ ), unique up to an
element of N∆

[2−ℓ−N/p], and there exists a constant C such that

inf
q∈N∆

[2−ℓ−N/p]

‖u+ q‖W m+1, p
m+ℓ−1(RN

+ ) 6 C
(

‖f‖W m−1, p
m+ℓ−1(RN

+ ) + ‖g‖
W

m−1/p, p
m+ℓ−1 (Γ)

)

.





Chapitre 2

Generalized solutions to the

biharmonic problem in RN & RN
+

2.1 Introduction

The purpose of this chapter is the resolution of the biharmonic problem with
nonhomogeneous boundary conditions

(P )











∆2u = f in RN
+ ,

u = g0 on Γ = RN−1,

∂Nu = g1 on Γ.

Since this problem is posed in the half-space, it is important to specify the be-
haviour at infinity for the data and solutions. We have chosen to impose such
conditions by setting our problem in weighted Sobolev spaces, where the growth or
decay of functions at infinity are expressed by means of weights. These weighted
Sobolev spaces provide a correct functional setting for unbounded domains, in
particular because the functions in these spaces satisfy an optimal weighted
Poincaré-type inequality. The weights chosen here behave at infinity as pow-
ers to |x|. The reason of this choice is given by the behaviour at infinity of the
fundamental solution EN to the biharmonic operator in RN . Let us recall for
instance that

E3(x) = c3 |x|, E4(x) = c4 ln |x|, E5(x) =
c5
|x|
,

and in particular if f ∈ D(RN), the convolution EN ∗f behaves at infinity as EN .
In this work, we shall consider more general data f ; and the solutions will have
a behaviour at infinity which will naturally depend on the one of data in RN

+ and
on the boundary.

Let us throw light on this functional framework in the L2 case. If we consider
Problem (P ) with homogeneous boundary conditions, i.e. g0 = g1 = 0, we can

17
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give the following variational formulation: For any given f ∈ V ′, find u ∈ V such
that

∀v ∈ V,

∫

RN
+

∆u∆v dx = 〈f, v〉V ′×V .

Which is the appropriate space V to use the Lax-Milgram’s lemma? We must
have firstly, for any v ∈ V, ∆v ∈ L2(RN

+ ) and secondly, the coercivity condition
for the bilinear form: (u, v) 7−→

∫

RN
+

∆u∆v dx.

According to 1.2.4, we have:

∀v ∈
◦

W
2, 2
0 (RN

+ ), ‖v‖W 2, 2
0 (RN

+ ) 6 C ‖∇2v‖
L2(RN

+ )
N2 .

Moreover,

∀v ∈
◦

W
2, 2
0 (RN

+ ), ‖∇2v‖
L2(RN

+ )
N2 = ‖∆v‖L2(RN

+ ),

hence the coercivity of the form. Consequently, Problem (P ) with g0 = g1 = 0 is

well-posed on V =
◦

W
2, 2
0 (RN

+ ). Which are the appropriate spaces of traces for the
complete problem? Thanks to Lemma 1.3.1,

u ∈ W 2, 2
0 (RN

+ ) ⇒ (γ0u, γ1u) ∈ W
3/2, 2
0 (RN−1) ×W

1/2, 2
0 (RN−1),

consequently we must take (g0, g1) ∈ W
3/2, 2
0 (RN−1)×W

1/2, 2
0 (RN−1) in the prob-

lem with nonhomogeneous boundary conditions.

Remark 2.1.1. If we consider the problem for the operator I + ∆2:

(Q)











u+ ∆2u = f in RN
+ ,

u = g0 on Γ,

∂Nu = g1 on Γ,

we have the following variational formulation with g0 = g1 = 0: For any given
f ∈ V ′, find u ∈ V such that ∀v ∈ V ,

∫

RN
+

u v dx+

∫

RN
+

∆u∆v dx = 〈f, v〉V ′×V .

This form satisfies naturally the coercivity condition on V = H2
0 (RN

+ ), where
H2

0 (RN
+ ) denotes here the classical Sobolev space of functions v ∈ H2(RN

+ ) such
that v = ∂Nv = 0 on Γ. For the nonhomogeneous problem, we must take
(g0, g1) ∈ H3/2(RN−1) ×H1/2(RN−1). ♦

Our analysis is based on the isomorphism properties of the biharmonic opera-
tor in the whole space and the resolution of the Dirichlet and Neumann problems
for the Laplacian in the half-space. This last one is itself based on the isomor-
phism properties of the Laplace operator in the whole space and also on the
reflection principle inherent in the half-space. Note here the double difficulty
arising from the unboundedness of the domain in any direction and from the
unboundedness of the boundary itself.
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2.2 The biharmonic operator in RN

In this section, we shall give some isomorphism results relative to the biharmonic
operator in the whole space. We shall rest on these for our investigation in the
half-space. At first, we characterize the kernel

K =
{

v ∈ W 2, p
ℓ (RN); ∆2v = 0 in R

N
}

.

Lemma 2.2.1. Let ℓ ∈ Z.

(i) If N
p
/∈ {1, . . . ,−ℓ}, then K = P∆2

[2−ℓ−N/p].

(ii) If N
p
∈ {1, . . . ,−ℓ}, then K = P∆2

1−ℓ−N/p.

Proof. Let u ∈ K. As we know that ∆2u = 0 and moreover u ∈ W 2, p
ℓ (RN) ⊂

S ′(RN), the space of tempered distributions, we can deduce that u is a polynomial
on RN . But according to (1.2.5), we know that the highest degree q of the
polynomials contained in W 2, p

ℓ (RN) is given by:

q =

{

1 − ℓ−N/p if N
p

+ ℓ ∈ {j ∈ Z; j 6 0},

[2 − ℓ−N/p] otherwise.

We can thus see the conditions of the statement appear precisely.

More generally, for any integer m ∈ N, we define the kernel

Km =
{

v ∈ Wm+2, p
m+ℓ (RN); ∆2v = 0 in R

N
}

.

The same arguments lead us to a result which includes the precedent, correspond-
ing then to case m = 0.

Lemma 2.2.2. Let ℓ ∈ Z and m ∈ N such that

(i) N
p
/∈ {1, . . . ,−ℓ−m}, then Km = P∆2

[2−ℓ−N/p].

(ii) N
p
∈ {1, . . . ,−ℓ−m}, then Km = P∆2

1−ℓ−N/p.

We can now formulate the first result of isomorphism in RN :

Theorem 2.2.3. Let ℓ ∈ Z. Under hypothesis (1.4.1), the following operator is
an isomorphism:

∆2 : W 2, p
ℓ (RN)/P∆2

[2−ℓ−N/p] −→ W−2, p
ℓ (RN) ⊥ P∆2

[2+ℓ−N/p′].
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Proof. Let us recall (see [5]) that under assumption (1.4.1), the operator

∆ : W 2, p
ℓ (RN)/P∆

[2−ℓ−N/p] −→ W 0, p
ℓ (RN) ⊥ P∆

[ℓ−N/p′] (2.2.1)

is an isomorphism. By duality, we can deduce that it is the same for the operator

∆ : W 0, p
ℓ (RN)/P∆

[−ℓ−N/p] −→ W−2, p
ℓ (RN) ⊥ P∆

[2+ℓ−N/p′]. (2.2.2)

If we suppose now that ℓ−N/p′ < 0, we can compose isomorphisms (2.2.1) and
(2.2.2) to deduce that the operator

∆2 : W 2, p
ℓ (RN)/P∆2

[2−ℓ−N/p] −→ W−2, p
ℓ (RN) ⊥ P∆

[2+ℓ−N/p′] (2.2.3)

is an isomorphism. By duality, we can deduce that the operator

∆2 : W 2, p
ℓ (RN)/P∆

[2−ℓ−N/p] −→ W−2, p
ℓ (RN) ⊥ P∆2

[2+ℓ−N/p′] (2.2.4)

is an isomorphism provided that we have −ℓ−N/p < 0.
To combine (2.2.3) and (2.2.4), it remains to be noted that if ℓ − N/p′ <

0, then we have P∆2

[2+ℓ−N/p′] = P∆
[2+ℓ−N/p′] = P[2+ℓ−N/p′]; and symmetrically, if

−ℓ−N/p < 0, we have P∆2

[2−ℓ−N/p] = P∆
[2−ℓ−N/p] = P[2−ℓ−N/p]. Moreover, if we note

that the reunion of those two cases covers all integers ℓ ∈ Z, we can deduce that
for any ℓ ∈ Z satisfying (1.4.1), the operator

∆2 : W 2, p
ℓ (RN)/P∆2

[2−ℓ−N/p] −→ W−2, p
ℓ (RN) ⊥ P∆2

[2+ℓ−N/p′] (2.2.5)

is an isomorphism.

We can establish now a result for more regular data, with two preliminary
lemmas.

Lemma 2.2.4. Let m > 1 and ℓ 6 −2 be two integers such that

N

p
/∈ {1, . . . ,−ℓ−m}, (2.2.6)

then the following operator is an isomorphism:

∆2 : Wm+2, p
m+ℓ (RN)/P∆2

[2−ℓ−N/p] −→ Wm−2, p
m+ℓ (RN).

Proof. We use here another isomorphism result (see [6]). Let m > 1 and ℓ 6 −1
be two integers. Under hypothesis (2.2.6), the Laplace operator

∆ : Wm+1, p
m+ℓ (RN)/P∆

[1−ℓ−N/p] −→ Wm−1, p
m+ℓ (RN), (2.2.7)

is an isomorphism. Then, replacing m by m − 1 and ℓ by ℓ + 1, we can obtain
that for m > 2 and ℓ 6 −2, under hypothesis (2.2.6), the operator

∆ : Wm, p
m+ℓ(R

N)/P∆
[−ℓ−N/p] −→ Wm−2, p

m+ℓ (RN), (2.2.8)
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is an isomorphism. Moreover (see [5]), for ℓ 6 −2, the operator

∆ : W 1, p
1+ℓ(R

N)/P∆
[−ℓ−N/p] −→ W−1, p

1+ℓ (RN)

if N/p /∈ {1, . . . ,−ℓ− 1},
(2.2.9)

is an isomorphism. Then, combining (2.2.8) and (2.2.9), we can deduce that for
m > 1 and ℓ 6 −2, under hypothesis (2.2.6), the operator

∆ : Wm, p
m+ℓ(R

N)/P∆
[−ℓ−N/p] −→ Wm−2, p

m+ℓ (RN), (2.2.10)

is an isomorphism. Replacing now m by m+1 and ℓ by ℓ−1 in (2.2.7), we obtain
that for m > 0 and ℓ 6 0, under hypothesis (2.2.6), the operator

∆ : Wm+2, p
m+ℓ (RN)/P∆

[2−ℓ−N/p] −→ Wm, p
m+ℓ(R

N), (2.2.11)

is an isomorphism. The lemma follows from the composition of isomorphisms
(2.2.10) and (2.2.11).

Lemma 2.2.5. Let m > 1 an integer such that

N

p′
6= 1 or m = 1,

then the biharmonic operator

∆2 : Wm+2, p
m−1 (RN)/P[3−N/p] −→ Wm−2, p

m−1 (RN) ⊥ P[1−N/p′]

is an isomorphism.

Proof. Let us note that it suffices to prove that the operator is surjective. Here
again, we compose two Laplace operators. We have the following isomorphism
(see [5]): for m ∈ N,

∆ : W 1+m, p
m (RN)/P[1−N/p] −→ W−1+m, p

m (RN) ⊥ P[1−N/p′]

if N/p′ 6= 1 or m = 0.
(2.2.12)

Replacing m by m− 1, we obtain that for m > 1, the operator

∆ : Wm, p
m−1(R

N)/P[1−N/p] −→ Wm−2, p
m−1 (RN) ⊥ P[1−N/p′]

if N/p′ 6= 1 or m = 1,
(2.2.13)

is an isomorphism. Composing with (2.2.11), for ℓ = −1, we obtain the result.

We can now give a global result for the biharmonic operator.

Theorem 2.2.6.
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(i) Let ℓ ∈ Z such that

N

p′
/∈ {1, . . . , ℓ+ 1} and

N

p
/∈ {1, . . . ,−ℓ− 1},

then the biharmonic operator

∆2 : W 3, p
ℓ+1(R

N)/P∆2

[2−ℓ−N/p] −→ W−1, p
ℓ+1 (RN) ⊥ P∆2

[2+ℓ−N/p′]

is an isomorphism.

(ii) Let ℓ ∈ Z and m > 2 be two integers such that

N

p′
/∈ {1, . . . , ℓ+ 2} and

N

p
/∈ {1, . . . ,−ℓ−m},

then the biharmonic operator

∆2 : Wm+2, p
m+ℓ (RN)/P∆2

[2−ℓ−N/p] −→ Wm−2, p
m+ℓ (RN) ⊥ P∆2

[2+ℓ−N/p′]

is an isomorphism.

Proof. For ℓ 6 −1, it’s clear that lemmas 2.2.4 and 2.2.5 exactly cover points (i)
and (ii). It remains to establish the theorem for ℓ > 0.

According to [5], for ℓ > 0, the following operator is an isomorphism:

∆ : W 1, p
ℓ+1(R

N) −→ W−1, p
ℓ+1 (RN) ⊥ P∆

[2+ℓ−N/p′]

if N/p′ /∈ {1, . . . , ℓ+ 1}.
(2.2.14)

For m > 1 and ℓ > 1, we also have the isomorphism:

∆ : Wm+1, p
m+ℓ (RN) −→ Wm−1, p

m+ℓ (RN) ⊥ P∆
[1+ℓ−N/p′]

if N/p′ /∈ {1, . . . , ℓ+ 1}.
(2.2.15)

Replacing m by m − 1 and ℓ by ℓ + 1, we deduce for m > 2 and ℓ > 0, the
isomorphism:

∆ : Wm, p
m+ℓ(R

N) −→ Wm−2, p
m+ℓ (RN) ⊥ P∆

[2+ℓ−N/p′]

if N/p′ /∈ {1, . . . , ℓ+ 2}.
(2.2.16)

Replacing m by m+ 1 and ℓ by ℓ− 1 in (2.2.15), we obtain for m > 1 and ℓ > 2,
the isomorphism:

∆ : Wm+2, p
m+ℓ (RN) −→ Wm, p

m+ℓ(R
N) ⊥ P∆

[ℓ−N/p′]

if N/p′ /∈ {1, . . . , ℓ}.
(2.2.17)
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And now replacing m by m+1 in (2.2.12), we obtain for m > 1, the isomorphism:

∆ : Wm+2, p
m+1 (RN)/P[1−N/p] −→ Wm, p

m+1(R
N) ⊥ P[1−N/p′]

if N/p′ 6= 1.
(2.2.18)

Finally, if we return to (2.2.7) with ℓ = −1 and m+ 1 instead of m, we have for
m > 1, the isomorphism:

∆ : Wm+2, p
m (RN)/P[2−N/p] −→ Wm, p

m (RN). (2.2.19)

Then, combining (2.2.17), (2.2.18) and (2.2.19), we obtain for m > 1 and ℓ > 0,
the isomorphism:

∆ : Wm+2, p
m+ℓ (RN)/P[2−ℓ−N/p] −→ Wm, p

m+ℓ(R
N) ⊥ P∆

[ℓ−N/p′]

if N/p′ /∈ {1, . . . , ℓ}.
(2.2.20)

It remains to justify the orthogonality condition to compose (2.2.20) with (2.2.14)
or (2.2.16), which will give us respectively the isomorphisms of points (i) and (ii).

Let f ∈ Wm−2, p
m+ℓ (RN) ⊥ P∆2

[2+ℓ−N/p′] with m > 1, then we have f ⊥ P∆
[2+ℓ−N/p′]

and according to (2.2.14) or (2.2.16), there exists u ∈ Wm, p
m+ℓ(R

N) such that ∆u =
f . We will show that u ⊥ P∆

[ℓ−N/p′]. Let ψ ∈ P∆
[ℓ−N/p′], we know that there exists

ϕ ∈ P[2+ℓ−N/p′] such that ψ = ∆ϕ, i.e. ϕ ∈ P∆2

[2+ℓ−N/p′].

(a) Case m = 1: u ∈ W 1, p
ℓ+1(R

N), f ∈ W−1, p
ℓ+1 (RN) ⊥ P∆2

[2+ℓ−N/p′].

Let us note that ψ ∈ W 0, p′

−ℓ (RN) and ϕ ∈ W 2, p′

−ℓ (RN), since N
p′
/∈ {1, . . . , ℓ}.

We also have the imbedding W 2, p′

−ℓ (RN) →֒ W 1, p′

−ℓ−1(R
N), since N

p′
6= ℓ + 1. Then,

we have ψ = ∆ϕ ∈ W−1, p′

−ℓ−1 (RN). This implies

〈u, ψ〉
W 1, p

ℓ+1(RN )×W−1, p′

−ℓ−1 (RN )
= 〈u,∆ϕ〉

W 1, p
ℓ+1(RN )×W−1, p′

−ℓ−1 (RN )

= 〈∆u, ϕ〉
W−1, p

ℓ+1 (RN )×W 1, p′

−ℓ−1(RN )

= 〈f, ϕ〉
W−1, p

ℓ+1 (RN )×W 1, p′

−ℓ−1(RN )

= 0.

(b) Case m > 2: u ∈ Wm, p
m+ℓ(R

N), f ∈ Wm−2, p
m+ℓ (RN) ⊥ P∆2

[2+ℓ−N/p′].

Since ℓ > 0, we have N
p

+ m + ℓ /∈ {1, . . . ,m}, therefore we can deduce the

chain of imbeddings Wm, p
m+ℓ(R

N) →֒ · · · →֒ W 1, p
ℓ+1(R

N). Moreover N
p′

6= ℓ + 2, then

we also have Wm−2, p
m+ℓ (RN) →֒ · · · →֒ W 0, p

ℓ+2(R
N) →֒ W−1, p

ℓ+1 (RN). After that, we
repeat the reasoning of case m = 1.

Then, we have u ∈ Wm, p
m+ℓ(R

N) ⊥ P∆
[ℓ−N/p′], and (2.2.20) shows us that there

exists z ∈ Wm+2, p
m (RN) such that ∆z = u. Thus it follows that the operator

∆2 : Wm+2, p
m+ℓ (RN)/P∆2

[2−ℓ−N/p] −→ Wm−2, p
m+ℓ (RN) ⊥ P∆2

[2+ℓ−N/p′]

is an isomorphism.
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2.3 Generalized solutions in RN
+

In this section, we shall deal with Problem (P ) in the half-space.
For any q ∈ Z, we introduce the space Bq as a subspace of P∆2

q :

Bq =
{

u ∈ P∆2

q ; u = ∂Nu = 0 on Γ
}

.

We shall establish the main theorem of this chapter:

Theorem 2.3.1. Let ℓ ∈ Z and assume that

N

p′
/∈ {1, . . . , ℓ} and

N

p
/∈ {1, . . . ,−ℓ}. (2.3.1)

For any f ∈ W−2, p
ℓ (RN

+ ), g0 ∈ W
2−1/p, p
ℓ (Γ) and g1 ∈ W

1−1/p, p
ℓ (Γ) satisfying the

compatibility condition

∀ϕ ∈ B[2+ℓ−N/p′],

〈f, ϕ〉
W−2, p

ℓ (RN
+ )×

◦

W
2, p′

−ℓ (RN
+ )

+ 〈g1,∆ϕ〉Γ − 〈g0, ∂N∆ϕ〉Γ = 0, (2.3.2)

problem (P ) admits a solution u ∈ W 2, p
ℓ (RN

+ ), unique up to an element of
B[2−ℓ−N/p], and there exists a constant C such that

inf
q∈B[2−ℓ−N/p]

‖u+ q‖W 2, p
ℓ (RN

+ ) 6

C
(

‖f‖W−2, p
ℓ (RN

+ ) + ‖g0‖W
2−1/p, p
ℓ (Γ)

+ ‖g1‖W
1−1/p, p
ℓ (Γ)

)

.

NB: (a) 〈g1,∆ϕ〉Γ denotes the duality bracket 〈g1,∆ϕ〉W 1−1/p, p
ℓ (Γ)×W

−1/p′, p′

−ℓ (Γ)
,

and 〈g0, ∂N∆ϕ〉Γ the duality bracket 〈g0, ∂N∆ϕ〉
W

2−1/p, p
ℓ (Γ)×W

−1−1/p′, p′

−ℓ (Γ)
.

(b) With hypothesis (2.3.1) on critical values, we find hypothesis (1.4.1) of
Theorems 1.4.1 and 2.2.3.

2.3.1 Characterization of the kernel

Let us denote by K the kernel of the operator

(∆2, γ0, γ1) : W 2, p
ℓ (RN

+ ) −→ W−2, p
ℓ (RN

+ ) ×W
2−1/p, p
ℓ (Γ) ×W

1−1/p, p
ℓ (Γ),

i.e.
K =

{

u ∈ W 2, p
ℓ (RN

+ ); ∆2u = 0 in R
N
+ , u = ∂Nu = 0 on Γ

}

.

The following characterization uses the reflection principle (see Farwig [27]).

Lemma 2.3.2. Let ℓ ∈ Z.
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(i) If N
p
/∈ {1, . . . ,−ℓ}, then K = B[2−ℓ−N/p].

(ii) If N
p
∈ {1, . . . ,−ℓ}, then K = B1−ℓ−N/p.

Proof. Given u ∈ K, we set

ũ(x′, xN) =

{

u(x′, xN) if xN > 0,

(−u− 2xN∂Nu− x2
N∆u)(x′,−xN) if xN < 0.

(2.3.3)

Then we have ũ ∈ S ′(RN) and we show that ∆2ũ = 0 in RN . We can deduce
that ũ, and consequently u, is a polynomial. Furthermore, u ∈ W 2, p

ℓ (RN
+ ) implies

that its maximum degree is the same as in Lemma 2.2.1.

More generally, for any m ∈ N, we denote by Km the kernel of the operator

(∆2, γ0, γ1) : Wm+2, p
m+ℓ (RN

+ ) −→ Wm−2, p
m+ℓ (RN

+ ) ×W
m+2−1/p, p
m+ℓ (Γ) ×W

m+1−1/p, p
m+ℓ (Γ),

i.e.
Km =

{

u ∈ Wm+2, p
m+ℓ (RN

+ ); ∆2u = 0 in R
N
+ , u = ∂Nu = 0 on Γ

}

.

Identical arguments lead us to the following result:

Lemma 2.3.3. Let ℓ ∈ Z and m ∈ N.

(i) If N
p
/∈ {1, . . . ,−ℓ−m}, then Km = B[2−ℓ−N/p].

(ii) If N
p
∈ {1, . . . ,−ℓ−m}, then Km = B1−ℓ−N/p.

We now introduce the two operators ΠD and ΠN , defined by:

∀r ∈ A∆
k , ΠDr =

1

2

∫ xN

0

t r(x′, t) dt,

∀s ∈ N∆
k , ΠNs =

1

2
xN

∫ xN

0

s(x′, t) dt.

So we obtain the second characterization of Km:

Lemma 2.3.4. Let ℓ ∈ Z and m ∈ N. Under hypothesis (2.2.6), we have

Km = B[2−ℓ−N/p] = ΠDA
∆
[−ℓ−N/p] ⊕ ΠNN

∆
[−ℓ−N/p]. (2.3.4)

Proof. A direct calculation with these operators yields the following formulas:

∀r ∈ A∆
k ,











∆ΠDr = r in RN
+ ,

∂NΠDr =
1

2
xNr in RN

+ ,

ΠDr = ∂NΠDr = 0 on Γ,

(2.3.5)



26 Chapitre 2. Generalized solutions to the biharmonic problem

and

∀s ∈ N∆
k ,















∆ΠNs = s in RN
+ ,

∂NΠNs =
1

2

(

xNs+

∫ xN

0

s(x′, t) dt

)

in RN
+ ,

ΠNs = ∂NΠNs = 0 on Γ.

(2.3.6)

Moreover, for any r ∈ A∆
k and s ∈ N∆

k , ΠDr ∈ Pk+2 and ΠNs ∈ Pk+2. Thus,
if r ∈ A∆

[−ℓ−N/p] and s ∈ N∆
[−ℓ−N/p], we can deduce that ΠDr ∈ B[2−ℓ−N/p] and

ΠNs ∈ B[2−ℓ−N/p].
Conversely, if we consider u ∈ B[2−ℓ−N/p], then we have ∆u ∈ P∆

[−ℓ−N/p]. Since

P∆
[−ℓ−N/p] = A∆

[−ℓ−N/p] ⊕N∆
[−ℓ−N/p], there exists (r, s) ∈ A∆

[−ℓ−N/p] ×N∆
[−ℓ−N/p] such

that ∆u = r + s in RN
+ . According to formulas (2.3.5) and (2.3.6), the function

z = u − ΠDr − ΠNs satisfies: ∆z = 0 in RN
+ and z = ∂Nz = 0 on Γ. The

function z belonging to A∆
[2−ℓ−N/p] ∩ N∆

[2−ℓ−N/p] = {0}, then u = ΠDr + ΠNs.

Furthermore, the sum (2.3.4) is direct, because if (r, s) ∈ A∆
[−ℓ−N/p] × N∆

[−ℓ−N/p]

such that ΠDr = ΠNs = u, then ∆u = r = s. That implies ∆u = 0 in RN
+ with

u = ∂Nu = 0 on Γ, hence u = 0 in RN
+ .

The following proposition clarifies the kernel B[2−ℓ−N/p] in the simplest cases.

Proposition 2.3.5. Let ℓ ∈ Z such that N
p
/∈ {1, . . . ,−ℓ}.

(i) If −ℓ−N/p < 0, then B[2−ℓ−N/p] = {0}.

(ii) If 0 < −ℓ−N/p < 1, then B[2−ℓ−N/p] = R x2
N .

Proof. If −ℓ − N/p < 0, then we have B[2−ℓ−N/p] ⊂ P1. Now, if ϕ ∈ P1 with
ϕ = ∂Nϕ = 0 on Γ, we necessarily have ϕ = 0. If 0 < −ℓ − N/p < 1, then

B[2−ℓ−N/p] = B2 =
{

ϕ ∈ P∆2

2 ; ϕ = ∂Nϕ = 0 on Γ
}

. Now, if ϕ ∈ P2 with ϕ =

∂Nϕ = 0 on Γ, a direct calculation shows that ϕ(x) = c x2
N , where c ∈ R.

Remark 2.3.6. This proposition yields an answer to important particular cases:

(i) If ℓ > 0 or (ℓ = −1 and N/p > 1), then B[2−ℓ−N/p] = {0}.

(ii) If ℓ = −1 and N/p < 1, then B[3−N/p] = B2 = R x2
N . ♦

2.3.2 The compatibility condition

We shall now show the necessity of condition (2.3.2) in Theorem 2.3.1.

Lemma 2.3.7. Let ℓ ∈ Z such that

N

p′
/∈ {1, . . . , ℓ}. (2.3.7)
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Let f ∈ W−2, p
ℓ (RN

+ ), g0 ∈ W
2−1/p, p
ℓ (Γ) and g1 ∈ W

1−1/p, p
ℓ (Γ). If problem (P )

admits a solution in W 2, p
ℓ (RN

+ ), then we have the compatibility condition:

∀ϕ ∈ B[2+ℓ−N/p′], 〈f, ϕ〉
W−2, p

ℓ (RN
+ )×

◦

W
2, p′

−ℓ (RN
+ )

+ 〈g1,∆ϕ〉Γ − 〈g0, ∂N∆ϕ〉Γ = 0,

where 〈g1,∆ϕ〉Γ denotes the duality bracket 〈g1,∆ϕ〉W 1−1/p, p
ℓ (Γ)×W

−1/p′, p′

−ℓ (Γ)
and

〈g0, ∂N∆ϕ〉Γ the duality bracket 〈g0, ∂N∆ϕ〉
W

2−1/p, p
ℓ (Γ)×W

−1−1/p′, p′

−ℓ (Γ)
.

Remark 2.3.8. By Proposition 2.3.5, if ℓ−N/p′ < 0 and particularly if ℓ 6 0, we
have B[2+ℓ−N/p′] = {0}. Thus there is no compatibility condition in these cases.
♦

Proof. So we assume that ℓ > 1. The first point is to justify the dualities in the
spaces of traces. Noting that under hypothesis (2.3.7), for any ϕ ∈ B[2+ℓ−N/p′],

we have ϕ ∈ W 3, p′

−ℓ+1(R
N
+ ) and also ϕ ∈ W 4, p′

−ℓ+2(R
N
+ ), we can deduce that ∆ϕ|Γ ∈

W
1−1/p′, p′

−ℓ+1 (Γ) and ∂N∆ϕ|Γ ∈ W
1−1/p′, p′

−ℓ+2 (Γ). It remains to verify the imbeddings

W
1−1/p′, p′

−ℓ+1 (Γ) →֒ W
−1/p′, p′

−ℓ (Γ), (2.3.8)

W
1−1/p′, p′

−ℓ+2 (Γ) →֒ W
−1−1/p′, p′

−ℓ (Γ). (2.3.9)

(i) To show (2.3.8), we break down this imbedding into

W
1−1/p′, p′

−ℓ+1 (RN−1) →֒ W 0, p′

−ℓ+1/p′(R
N−1), (2.3.10)

W 0, p′

−ℓ+1/p′(R
N−1) →֒ W

−1/p′, p′

−ℓ (RN−1), (2.3.11)

where (2.3.11) is equivalent by duality to

W
1/p′, p
ℓ (RN−1) →֒ W 0, p

ℓ−1/p′(R
N−1). (2.3.12)

Observe that (2.3.10) is satisfied if and only if N−1
p′

− ℓ+ 1 6= 1 − 1
p′

, i.e. N
p′
6= ℓ,

which is included in (2.3.7). Likewise (2.3.12) holds if and only if N−1
p

+ ℓ 6= 1
p′

,

i.e. N
p
6= −ℓ+ 1, which cannot happen for ℓ > 1.

(ii) Similarly, the imbedding (2.3.9) is equivalent to

W
1−1/p′, p′

−ℓ+2 (RN−1) →֒ W 0, p′

−ℓ+1+1/p′(R
N−1) (2.3.13)

W
1+1/p′, p
ℓ (RN−1) →֒ W 0, p

ℓ−1−1/p′(R
N−1). (2.3.14)

The imbedding (2.3.13) holds if and only if N
p′
6= ℓ−1, which is included in (2.3.7).

The imbedding (2.3.14) holds if and only if N
p
/∈ {−ℓ+ 1, −ℓ+ 2}. Since ℓ > 1,

it suffices that N
p
6= 1 for ℓ = 1. Assume that ℓ = 1 and N

p
= 1, then we have

N
p′

= N − 1 and thus B[2+ℓ−N/p′] = B[4−N ]. If N > 3, there is no compatibility
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condition because B[4−N ] = {0}. If N = 2, then we have p = p′ = 2 and N
p′

= 1,

but that is excluded by (2.3.7).

Now it is clear that for any u ∈ D
(

RN
+

)

we have

∀ϕ ∈ B[2+ℓ−N/p′],

∫

RN
+

ϕ∆2u dx =

∫

Γ

u∆∂Nϕdx
′ −

∫

Γ

∂Nu∆ϕdx′.

Let u ∈ W 2, p
ℓ (RN

+ ) and ϕ ∈ B[2+ℓ−N/p′]. Thanks to the density of D
(

RN
+

)

in

W 2, p
ℓ (RN

+ ), there exists a sequence (uk)k∈N ⊂ D
(

RN
+

)

such that uk → u in

W 2, p
ℓ (RN

+ ). Therefore ∆2uk → ∆2u in W−2, p
ℓ (RN

+ ), uk → u in W
2−1/p, p
ℓ (Γ) and

∂Nuk → ∂Nu in W
1−1/p, p
ℓ (Γ). Writing the previous formula for any uk, we obtain

by passing to the limit as k → ∞

∀ϕ ∈ B[2+ℓ−N/p′],
〈

∆2u, ϕ
〉

W−2, p
ℓ (RN

+ )×
◦

W
2, p′

−ℓ (RN
+ )

= 〈u, ∂N∆ϕ〉Γ − 〈∂Nu,∆ϕ〉Γ .

This proves the necessity of condition (2.3.2).

2.3.3 The homogeneous problem

Here we consider the homogeneous problem in RN
+ , i.e. f = 0, with standard

boundary conditions. Let the problem

(P 0)











∆2u = 0 in RN
+ ,

u = g0 on Γ,

∂Nu = g1 on Γ,

with g0 ∈ W
2−1/p, p
ℓ (Γ) and g1 ∈ W

1−1/p, p
ℓ (Γ).

Lemma 2.3.9. Let ℓ ∈ Z. Under hypothesis (2.3.1), for any g0 ∈ W
2−1/p, p
ℓ (Γ)

and g1 ∈ W
1−1/p, p
ℓ (Γ) satisfying the compatibility condition

∀ϕ ∈ B[2+ℓ−N/p′] , 〈g1,∆ϕ〉Γ − 〈g0, ∂N∆ϕ〉Γ = 0, (2.3.15)

problem (P 0) admits a solution u ∈ W 2, p
ℓ (RN

+ ), unique up to an element of
B[2−ℓ−N/p], with the estimate

inf
q∈B[2−ℓ−N/p]

‖u+ q‖W 2, p
ℓ (RN

+ ) 6 C
(

‖g0‖W
2−1/p, p
ℓ (Γ)

+ ‖g1‖W
1−1/p, p
ℓ (Γ)

)

.

Proof. Firstly, thanks to Lemma 2.3.4, note that condition (2.3.15) is equivalent
to both conditions

∀r ∈ A∆
[ℓ−N/p′], 〈g0, ∂Nr〉Γ = 0, (2.3.16)

∀s ∈ N∆
[ℓ−N/p′], 〈g1, s〉Γ = 0. (2.3.17)
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Consider the Dirichlet problem:

(R0)

{

∆ϑ = 0 in RN
+ ,

ϑ = g0 on Γ.

Since g0 ∈ W
2−1/p, p
ℓ (Γ) = W

1+1−1/p, p
1+(ℓ−1) (Γ), Theorem 1.4.2 holds with m = 1 and

ℓ − 1 instead of ℓ. Then hypothesis (1.4.3) becomes N
p′
/∈ {1, . . . , ℓ} and N

p
/∈

{1, . . . ,−ℓ}. Moreover compatibility condition (1.4.2) corresponds precisely to
(2.3.16). We can deduce that problem (R0) admits a solution ϑ ∈ W 2, p

ℓ (RN
+ ).

Consider now the Neumann problem:

(S0)

{

∆ζ = 0 in RN
+ ,

∂Nζ = g1 on Γ.

Theorem 1.4.4 holds with m = 0. Moreover compatibility condition (1.4.5) corre-
sponds precisely to (2.3.17). We can deduce that problem (S0) admits a solution
ζ ∈ W 2, p

ℓ (RN
+ ). So we can readily verify that the function defined by

u = xN ∂N(ζ − ϑ) + ϑ (2.3.18)

is a solution to (P 0). However we must show that u ∈ W 2, p
ℓ (RN

+ ). For this, we
remark that u satisfies

(T )

{

∆u = 2 ∂2
N(ζ − ϑ) in RN

+ ,

u = g0 on Γ,

with 2 ∂2
N(ζ − ϑ) ∈ W 0, p

ℓ (RN
+ ) and g0 ∈ W

2−1/p, p
ℓ (Γ).

(i) If N
p

6= −ℓ + 1, then we have the imbedding W 2, p
ℓ (RN

+ ) →֒ W 1, p
ℓ−1(R

N
+ ).

By (2.3.18), we deduce that u ∈ W 1, p
ℓ−1(R

N
+ ). Furthermore we have the following

Green formula:

∀r ∈ A∆
[ℓ−N/p′], 〈∆u, r〉

W−1, p
ℓ−1 (RN

+ )×
◦

W
1, p′

−ℓ+1(RN
+ )

= 〈u, ∂Nr〉W 1−1/p, p
ℓ−1 (Γ)×W

−1/p′, p′

−ℓ+1 (Γ)
,

i.e.

∀r ∈ A∆
[ℓ−N/p′],

〈

2 ∂2
N(ζ − ϑ), r

〉

W−1, p
ℓ−1 (RN

+ )×
◦

W
1, p′

−ℓ+1(RN
+ )

= 〈g0, ∂Nr〉Γ .

Thus the compatibility condition of problem (T ) is satisfied and thanks to The-
orem 1.4.4, it admits a solution y ∈ W 2, p

ℓ (RN
+ ), unique up to an element of

A∆
[2−ℓ−N/p]. So the function z = u− y ∈ W 1, p

ℓ−1(R
N
+ ) and satisfies

{

∆z = 0 in RN
+ ,

z = 0 on Γ.
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We can deduce that z ∈ A∆
[2−ℓ−N/p], i.e. u = y + r with r ∈ A∆

[2−ℓ−N/p] ⊂

W 2, p
ℓ (RN

+ ), which shows that u ∈ W 2, p
ℓ (RN

+ ).
(ii) If N

p
= −ℓ+ 1, the previous imbedding does not hold. Then we only have

W 2, p
ℓ (RN

+ ) →֒ W 1, p
ℓ−1,−1(R

N
+ ), with the introduction of a logarithmic weight in the

second space. By (2.3.18), we can deduce that u ∈ W 1, p
ℓ−1,−1(R

N
+ ). Furthermore

we have ℓ− N
p′
< 0, thus there is no compatibility condition for (T ) which admits

consequently a solution y ∈ W 2, p
ℓ (RN

+ ), unique up to an element of A∆
1 = R xN

which is included in W 2, p
ℓ (RN

+ ). The end of the proof is similar to the previous
case.

We can now extend this result to more regular data.

Lemma 2.3.10. Let ℓ ∈ Z and m > 1. Under hypothesis (1.4.6), for any g0 ∈

W
m+2−1/p, p
m+ℓ (Γ) and g1 ∈ W

m+1−1/p, p
m+ℓ (Γ), satisfying the compatibility condition

(2.3.15), problem (P 0) admits a solution u ∈ Wm+2, p
m+ℓ (RN

+ ), unique up to an
element of B[2−ℓ−N/p] with the estimate

inf
q∈B[2−ℓ−N/p]

‖u+ q‖W m+2, p
m+ℓ (RN

+ ) 6 C
(

‖g0‖W
m+2−1/p, p
m+ℓ (Γ)

+ ‖g1‖W
m+1−1/p, p
m+ℓ (Γ)

)

.

Proof. We strictly resume the proof of Lemma 2.3.9. In this case, we note that
g0 ∈ W

(m+1)+1−1/p, p
(m+1)+(ℓ−1) (Γ) and g1 ∈ W

m+1−1/p, p
m+ℓ (Γ), then we use Theorems 1.4.2

and 1.4.4. To show that u ∈ Wm+2, p
m+ℓ (RN

+ ), we must distinguish two cases. If
N
p
6= −ℓ−m + 1, then we have the imbedding Wm+2, p

m+ℓ (RN
+ ) →֒ Wm+1, p

m+ℓ−1(R
N
+ ). If

N
p

= −ℓ −m + 1, then we have Wm+2, p
m+ℓ (RN

+ ) →֒ Wm+1, p
m+ℓ−1,−1(R

N
+ ). In the second

case, we must remark that ℓ− N
p′
< 0, so there is again no compatibility condition

for (T ).

Note that we have the chain of imbeddings Wm+2, p
m+ℓ (RN

+ ) →֒ Wm+1, p
m+ℓ−1(R

N
+ ) →֒

· · · →֒ W 2, p
ℓ (RN

+ ) if and only if N
p
/∈ {−ℓ−m+1, . . . ,−ℓ}, and then Lemma 2.3.10

is a regularity result with respect to Lemma 2.3.9.

2.3.4 Existence of a solution to this problem

We come back to the general problem (P ) and Theorem 2.3.1. By Lemma 1.3.1,
there exists a lifting function ug ∈ W 2, p

ℓ (RN
+ ) of (g0, g1), i.e. ug = g0 on Γ and

∂Nug = g1 on Γ, such that

‖ug‖W 2, p
ℓ (RN

+ ) 6 C
(

‖g0‖W
2−1/p, p
ℓ (Γ)

+ ‖g1‖W
1−1/p, p
ℓ (Γ)

)

.

Set h = f − ∆2ug ∈ W−2, p
ℓ (RN

+ ) and v = u− ug, then problem (P ) is equivalent
to the following with homogeneous boundary conditions:

∆2v = h in R
N
+ , v = ∂Nv = 0 on Γ.
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Then, the compatibility condition (2.3.2) for Problem (P ) becomes:

∀ϕ ∈ B[2+ℓ−N/p′] , 〈h, ϕ〉
W−2, p

ℓ (RN
+ )×

◦

W
2, p′

−ℓ (RN
+ )

= 0. (2.3.19)

So, we can consider now the lifted problem

(P ⋆)











∆2u = f in RN
+ ,

u = 0 on Γ,

∂Nu = 0 on Γ,

where f ∈ W−2, p
ℓ (RN

+ ) and f ⊥ B[2+ℓ−N/p′].

Give at first a characterization of W−2, p
ℓ (RN

+ ):

Lemma 2.3.11. For any f ∈ W−2, p
ℓ (RN

+ ), there exists F = (Fij)16i, j6N ∈

W 0, p
ℓ (RN

+ )
N2

such that

f = div div F =
N

∑

i, j=1

∂2
ijFij,

with the estimate

N
∑

i, j=1

‖Fij‖W 0, p
ℓ (RN

+ ) 6 C ‖f‖W−2, p
ℓ (RN

+ ).

Proof. We know by Hardy’s inequality (1.2.4) that the norm and the semi-norm

in
◦

W
2, p′

−ℓ (RN
+ ) are equivalent, i.e. there exists a constant C such that

∀u ∈
◦

W
2, p′

−ℓ (RN
+ ),

‖∇2u‖
W 0, p′

−ℓ (RN
+ )

N2 6 ‖u‖ ◦

W
2, p′

−ℓ (RN
+ )

6 C ‖∇2u‖
W 0, p′

−ℓ (RN
+ )

N2 .

Let

T :
◦

W
2, p′

−ℓ (RN
+ ) −→ W 0, p′

−ℓ (RN
+ )

N2

u 7−→ ∇2u.

By the previous inequalities, T is a linear continuous injective mapping. We set

Ξ = T
( ◦

W
2, p′

−ℓ (RN
+ )

)

, equipped with the norm of W 0, p′

−ℓ (RN
+ )

N2

, and S = T−1 :

Ξ −→
◦

W
2, p′

−ℓ (RN
+ ). The mapping H ∈ Ξ 7−→ 〈f, SH〉

W−2, p
ℓ (RN

+ )×
◦

W
2, p′

−ℓ (RN
+ )

is a

linear functional on Ξ. Thanks to Hahn-Banach theorem, we can extend it to a
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linear functional on W 0, p′

−ℓ (RN
+ )

N2

denoted by Φ. Thanks to Riesz representation

theorem, we know that there exists F = (Fij) ∈ W 0, p
ℓ (RN

+ )
N2

such that

∀H = (hij) ∈ W 0, p′

−ℓ (RN
+ )

N2

, 〈Φ,H〉 =

∫

RN
+

Fij hij dx,

with Einstein convention of sumation on repeated indices. Particularly, if H ∈ Ξ,
we have

〈f, SH〉 =

∫

RN
+

Fij hij dx,

i.e.

∀u ∈
◦

W
2, p′

−ℓ (RN
+ ), 〈f, u〉 =

∫

RN
+

Fij ∂
2
iju dx.

We can deduce that

∀u ∈ D(RN
+ ), 〈f, u〉 =

〈

∂2
ijFij, u

〉

,

i.e. f = div div F = ∂2
ijFij.

Now we can establish a first isomorphism result in the half-space:

Proposition 2.3.12. Let ℓ ∈ Z. Under hypothesis (2.3.1), with 2+ℓ−N/p′ < 0
or 2 − ℓ−N/p < 0, the biharmonic operator

∆2 :
◦

W
2, p
ℓ (RN

+ )/B[2−ℓ−N/p] −→ W−2, p
ℓ (RN

+ ) ⊥ B[2+ℓ−N/p′]

is an isomorphism.

Proof. Let us first assume that 2 + ℓ − N/p′ < 0. Let f ∈ W−2, p
ℓ (RN

+ ). Then

by Lemma 2.3.11, we can write f = ∂2
ijFij with (Fij)16i, j6N ∈ W 0, p

ℓ (RN
+ )

N2

. If

we extend Fij to RN by 0, we obtain (F̃ij)16i, j6N ∈ W 0, p
ℓ (RN)

N2

, and thus f̃ =

∂2
ijF̃ij ∈ W−2, p

ℓ (RN) as extension of f such that ‖f̃‖W−2, p
ℓ (RN ) 6 C ‖f‖W−2, p

ℓ (RN
+ ).

By Theorem 2.2.3, there exists z̃ ∈ W 2, p
ℓ (RN) such that f̃ = ∆2z̃ in RN and

writing z = z̃|RN
+
, we have f = ∆2z in RN

+ , with z ∈ W 2, p
ℓ (RN

+ ), z|Γ ∈ W
2−1/p, p
ℓ (Γ)

and ∂Nz|Γ ∈ W
1−1/p, p
ℓ (Γ). Since B[2+ℓ−N/p′] = {0}, there is no compatibility

condition for Lemma 2.3.9 which asserts the existence of a solution v ∈ W 2, p
ℓ (RN

+ )
to the homogeneous problem

∆2v = 0 in R
N
+ , v = z and ∂Nv = ∂Nz on Γ. (2.3.20)

The function u = z − v answers to problem (P ⋆) in this case.
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So we have shown that if 2 + ℓ−N/p′ < 0, the operator

∆2 :
◦

W
2, p
ℓ (RN

+ )/B[2−ℓ−N/p] −→ W−2, p
ℓ (RN

+ )

is an isomorphism. Thus by duality we obtain the isomorphism

∆2 :
◦

W
2, p
ℓ (RN

+ ) −→ W−2, p
ℓ (RN

+ ) ⊥ B[2+ℓ−N/p′],

if 2 − ℓ−N/p < 0.

It remains to solve (P ⋆) if

2 + ℓ−N/p′ > 0 and 2 − ℓ−N/p > 0. (2.3.21)

It suffices to check the cases ℓ ∈ {−1, 0, 1}, outside which condition (2.3.21) does
not hold. For that, we establish a preliminary proposition:

Proposition 2.3.13. Let ℓ ∈ {−1, 0} such that N/p 6= 1 if ℓ = −1. For any
f ∈ W 0, p

ℓ (RN
+ ), there exists z ∈ W 4, p

ℓ (RN
+ ) such that ∆2z = f .

Proof. Under these hypotheses, consider the extension f̃ of f to RN by 0, so
f̃ ∈ W 0, p

ℓ (RN). Show at first that there exists z̃ ∈ W 4, p
ℓ (RN) such that ∆2z̃ = f̃ .

(a) If ℓ = −1, then f̃ ∈ W 0, p
−1 (RN) and we have N/p 6= 1. Thus Lemma 2.2.4

of isomorphism in RN holds with m = 2 and ℓ = −3, hence the existence of
z̃ ∈ W 4, p

−1 (RN) such that ∆2z̃ = f̃ .

(b) If ℓ = 0, then f̃ ∈ Lp(RN). Here again Lemma 2.2.4 holds with m = 2 and
ℓ = −2, hence the existence of z̃ ∈ W 4, p

0 (RN) such that ∆2z̃ = f̃ .

Then we come back to the restriction z = z̃|RN
+

for which we naturally have

∆2z = f in RN
+ .

Now, we can fill the gap of Proposition 2.3.12:

Proposition 2.3.14. Let ℓ ∈ {−1, 0, 1} such that

N

p′
6= 1 if ℓ = 1 and

N

p
6= 1 if ℓ = −1.

Then the biharmonic operator

∆2 :
◦

W
2, p
ℓ (RN

+ )/B[2−ℓ−N/p] −→ W−2, p
ℓ (RN

+ ) ⊥ B[2+ℓ−N/p′]

is an isomorphism.
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Proof. At first we will use Lemma 2.3.11 and Proposition 2.3.13 to solve (P⋆) for
ℓ ∈ {−1, 0}.

Let f ∈ W−2, p
ℓ (RN

+ ) with ℓ ∈ {−1, 0} verifying (2.3.1). By Lemma 2.3.11,

there exists F = (Fij)16i, j6N ∈ W 0, p
ℓ (RN

+ )
N2

such that f = div div F. It suffices to
apply Proposition 2.3.13 to all the components Fij of F to find U = (Uij)16i, j6N ∈

W 4, p
ℓ (RN

+ )
N2

such that ∆2U = F in RN
+ . Setting z = div div U, we obtain z ∈

W 2, p
ℓ (RN

+ ) such that ∆2z = f in RN
+ because the operators div and ∆ commute.

Thus we have z|Γ ∈ W
2−1/p, p
ℓ (Γ) and ∂Nz|Γ ∈ W

1−1/p, p
ℓ (Γ), and Lemma 2.3.9

asserts the existence of a solution v ∈ W 2, p
ℓ (RN

+ ) to problem (2.3.20), since we
have still B[2+ℓ−N/p′] = {0} (see Remark 2.3.8). Then the function u = z − v
answers again to problem (P⋆) for ℓ ∈ {−1, 0}.

Finally to solve the case ℓ = 1, we proceed by duality from the case ℓ = −1.
We have the isomorphism

∆2 :
◦

W
2, p
−1 (RN

+ )/B[3−N/p] −→ W−2, p
−1 (RN

+ ) if
N

p
6= 1,

hence, by duality, the operator

∆2 :
◦

W
2, p
1 (RN

+ ) −→ W−2, p
1 (RN

+ ) ⊥ B[3−N/p′] if
N

p′
6= 1,

is also an isomorphism.

Remark 2.3.15. It is also possible to solve directly the case ℓ = 1. The first
step is to extend Proposition 2.3.13 to ℓ = 1 with N/p′ 6= 1. Here we consider
the extension f̃ ∈ W 0, p

1 (RN) of f ∈ W 0, p
1 (RN

+ ) defined by:

f̃(x′, xN) =











f(x′, xN) if xN > 0,

0 if xN = 0,

−f(x′,−xN) if xN < 0.

Then we use Lemma 2.2.5 with m = 2, which asserts the existence of a function
z̃ ∈ W 4, p

1 (RN) such that ∆2z̃ = f̃ in RN , if N/p′ 6= 1 and f̃ ⊥ P∆
[1−N/p′]. There

are two cases: either N/p′ > 1, then P∆
[1−N/p′] = {0} and there is no condition on

f̃ ; or N/p′ < 1, then P∆
[1−N/p′] = P0 and we must have f̃ ⊥ P0. But N/p′ < 1

implies that W 0, p
1 (RN) →֒ L1(RN) and we have

∫

RN

f̃ dx = 0,

as a straightforward consequence of this extension of f . That exactly means that
f̃ ⊥ P0. Thus z = z̃|RN

+
∈ W 4, p

ℓ (RN
+ ) satisfies ∆2z = f in RN

+ .
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The second step is to resume the proof of Proposition 2.3.14 for ℓ = 1 with
N/p′ 6= 1. If N/p′ > 1, we have still B[3−N/p′] = {0}, so the same reasoning
holds; if N/p′ < 1, we know that B[3−N/p′] = R x2

N and Lemma 2.3.9 requires the
following compatibility condition for problem (2.3.20):

∀ϕ ∈ R x2
N , 〈∂Nz,∆ϕ〉Γ − 〈z, ∂N∆ϕ〉Γ = 0,

which boils down to
〈∂Nz, 1〉Γ = 0. (2.3.22)

But remember that f must satisfy the orthogonality condition for (P ⋆), i.e.
〈f, x2

N〉W−2, p
1 (RN

+ )×
◦

W
2, p′

−1 (RN
+ )

= 0 and moreover we have f = ∆2z in RN
+ ; thus

〈∆2z, x2
N〉W−2, p

1 (RN
+ )×

◦

W
2, p′

−1 (RN
+ )

= 0. It suffices to write the Green formula

〈

∆2z, x2
N

〉

W−2, p
1 (RN

+ )×
◦

W
2, p′

−1 (RN
+ )

= −
〈

∂Nz,∆x
2
N

〉

Γ
= −2 〈∂Nz, 1〉Γ ,

to see that (2.3.22) holds. ♦

To finish the proof of Theorem 2.3.1, it remains to combine Propositions 2.3.12
and 2.3.14, which provides the isomorphism

∆2 :
◦

W
2, p
ℓ (RN

+ )/B[2−ℓ−N/p] −→ W−2, p
ℓ (RN

+ ) ⊥ B[2+ℓ−N/p′],

for any ℓ ∈ Z verifying (2.3.1). This answers globally to problem (P ⋆) and thus
to general problem (P ) by means of the lifting function mentioned above.





Chapitre 3

Strong and very weak solutions

to the biharmonic problem in RN
+

3.1 Introduction

In the previous chapter, we established the existence of generalized solutions
to problem (P ), i.e. solutions which belong to weighted Sobolev spaces of type
W 2, p

ℓ (RN
+ ). Here, we are interested both in the existence of more regular solutions,

as for instance strong solutions which belong to spaces of type W 4, p
ℓ+2(R

N
+ ), and

singular solutions which belong to W 0, p
ℓ−2(R

N
+ ) in the case f = 0 with singular

boundary conditions. We also establish the existence of solutions which belong
to intermediate spaces as for example W 3, p

ℓ+1(R
N
+ ). To finish this study, in the

last section, we shall consider the biharmonic equation with different kinds of
boundary conditions.

3.2 Weak solutions, strong solutions, regularity

The purpose of this section is the study of solutions to the nonhomogeneous
problem (P ) for more regular data. We shall now establish a global result which
extends Theorem 2.3.1 to different types of data.

3.2.1 A global result in the nonhomogeneous case

Theorem 3.2.1. Let ℓ ∈ Z and m ∈ N and assume that

N

p′
/∈ {1, . . . , ℓ+ min{m, 2}} and

N

p
/∈ {1, . . . ,−ℓ−m}. (3.2.1)

37
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For any f ∈ Wm−2, p
m+ℓ (RN

+ ), g0 ∈ W
m+2−1/p, p
m+ℓ (Γ) and g1 ∈ W

m+1−1/p, p
m+ℓ (Γ) satisfy-

ing the compatibility condition

∀ϕ ∈ B[2+ℓ−N/p′],

〈f, ϕ〉
W−2, p

ℓ (RN
+ )×

◦

W
2, p′

−ℓ (RN
+ )

+ 〈g1,∆ϕ〉Γ − 〈g0, ∂N∆ϕ〉Γ = 0, (3.2.2)

problem (P ) admits a solution u ∈ Wm+2, p
m+ℓ (RN

+ ), unique up to an element of
B[2−ℓ−N/p], with the estimate

inf
q∈B[2−ℓ−N/p]

‖u+ q‖W m+2, p
m+ℓ (RN

+ )

6 C
(

‖f‖W m−2, p
m+ℓ (RN

+ ) + ‖g0‖W
m+2−1/p, p
m+ℓ (Γ)

+ ‖g1‖W
m+1−1/p, p
m+ℓ (Γ)

)

.

Proof. Note at first that if m = 0, we find Theorem 2.3.1. The kernel has been
globally characterized by (2.3.4). Let us recall that this kernel is reduced to {0}
if ℓ > 0 and symmetrically the compatibility condition (3.2.2) vanishes if ℓ 6 0.
Moreover under hypothesis (3.2.1), the imbeddings Wm−2, p

m+ℓ (RN
+ ) →֒ W−2, p

ℓ (RN
+ ),

W
m+2−1/p, p
m+ℓ (Γ) →֒ W

2−1/p, p
ℓ (Γ) and W

m+1−1/p, p
m+ℓ (Γ) →֒ W

1−1/p, p
ℓ (Γ) hold for all

ℓ > 1, hence the necessity of (3.2.2) for any m ∈ N. So it suffices to show
the existence of a solution. By Lemma 1.3.1, we can consider the problem with
homogeneous boundary conditions

(P ⋆)











∆2u = f in RN
+ ,

u = 0 on Γ,

∂Nu = 0 on Γ,

with f ⊥ B[2+ℓ−N/p′]. This orthogonality condition naturally corresponds to the
compatibility condition (3.2.2). We dealt with these questions in Chapter 2.

Let us now give the plan of the proof of the existence for m > 1:

(i) If ℓ 6 −2, we establish globally the existence of a solution.

(ii) If ℓ > −1 and m = 1, we show that by a direct construction.

(iii) If ℓ > −1 and m > 1, we show that by induction on m from the previous
case (m = 1), thanks to a regularity argument.

(i) Assume that ℓ 6 −2. Then hypothesis (3.2.1) is reduced to (2.2.6). Let
f ∈ Wm−2, p

m+ℓ (RN
+ ). Let us first suppose m > 2. We know that there exists a

continuous linear extension operator from Wm−2, p
m+ℓ (RN

+ ) to Wm−2, p
m+ℓ (RN) and thus

f̃ ∈ Wm−2, p
m+ℓ (RN) which extends f to RN . Then we use Theorem 2.2.6 to obtain

z̃ ∈ Wm+2, p
m+ℓ (RN) such that f̃ = ∆2z̃ in RN and thus f = ∆2z in RN

+ , with
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z = z̃|RN
+

∈ Wm+2, p
m+ℓ (RN

+ ). Then Proposition 2.3.10 asserts the existence of a

solution v ∈ Wm+2, p
m+ℓ (RN

+ ) to the homogeneous problem

∆2v = 0 in R
N
+ , v = z and ∂Nv = ∂Nz on Γ,

with z|Γ ∈ W
m+2−1/p, p
m+ℓ (Γ) and ∂Nz|Γ ∈ W

m+1−1/p, p
m+ℓ (Γ). We remark again that

B[2+ℓ−N/p′] = {0} because ℓ 6 0, thus there is no compatibility condition. Then
the function u = z − v answer to problem (P ⋆) in this case.

Let us now consider the case m = 1, i.e. f ∈ W−1, p
ℓ+1 (RN

+ ). As we did for

the distributions of W−2, p
ℓ (RN

+ ) in Lemma 2.3.11, we can show that there exists

F = (Fi)16i6N ∈ W 0, p
ℓ+1(R

N
+ )

N
such that f = div F =

∑N
i=1 ∂iFi, with the estimate

∑N
i=1 ‖Fi‖W 0, p

ℓ+1(RN
+ ) 6 C ‖f‖W−1, p

ℓ+1 (RN
+ ). Let us denote by F̃ ∈ W 0, p

ℓ+1(R
N)

N
the

extension by 0 of F to RN . Since N
p
/∈ {1, . . . ,−ℓ − 1}, by Theorem 2.2.6, there

exists Ψ̃ ∈ W 4, p
ℓ+1(R

N)
N

such that F̃ = ∆2Ψ̃ in RN . Setting ψ̃ = div Ψ̃ and

ψ = ψ̃|RN
+
, so we have ψ ∈ W 3, p

ℓ+1(R
N
+ ) and by Proposition 2.3.10, there exists

v ∈ W 3, p
ℓ+1(R

N
+ ) such that

∆2v = 0 in R
N
+ , v = ψ and ∂Nv = ∂Nψ on Γ.

The function u = ψ − v ∈ W 3, p
ℓ+1(R

N
+ ) is a solution to Problem (P ⋆) in this case.

(ii) Assume that ℓ > −1 and m = 1. Note that the distribution f ∈
W−1, p

ℓ+1 (RN
+ ) defines the linear functional L on A∆

[ℓ+2−N/p′] by

L : r 7−→ 〈f, r〉
W−1, p

ℓ+1 (RN
+ )×

◦

W
1, p′

−ℓ−1(RN
+ )
,

and introduce the inner product Φ on A∆
[ℓ+2−N/p′] ×A∆

[ℓ+2−N/p′] defined by

Φ : (µ, r) 7−→

∫

Γ

̺′−2ℓ−1−N/p+N/p′ ∂Nµ ∂Nr dx′.

Note that

r ∈ A∆
[ℓ+2−N/p′] ⇒ ̺′−ℓ−1+1/p′ ∂Nr ∈ Lp′(Γ),

and

µ ∈ A∆
[ℓ+2−N/p′] = A∆

[ℓ+2−N/p′+N/p−N/p] ⇒ ̺′−ℓ−1−N/p+N/p′+1/p ∂Nµ ∈ Lp(Γ).

Thus, thanks to Hölder inequality, Φ is well-defined. Then, there exists a unique
µ ∈ A∆

[ℓ+2−N/p′] such that

∀r ∈ A∆
[ℓ+2−N/p′], L(r) = Φ(µ, r),
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i.e.

∀r ∈ A∆
[ℓ+2−N/p′],

〈f, r〉
W−1, p

ℓ+1 (RN
+ )×

◦

W
1, p′

−ℓ−1(RN
+ )

=

∫

Γ

̺′−2ℓ−1−N/p+N/p′ ∂Nµ ∂Nr dx′.
(3.2.3)

Let us set ξ0 = ̺′−2ℓ−1−N/p+N/p′ ∂Nµ, then we have ξ0 ∈ W
1−1/p, p
ℓ+1 (Γ) and (3.2.3)

becomes

∀r ∈ A∆
[ℓ+2−N/p′],

〈f, r〉
W−1, p

ℓ+1 (RN
+ )×

◦

W
1, p′

−ℓ−1(RN
+ )

= 〈ξ0, ∂Nr〉W 1−1/p, p
ℓ+1 (Γ)×W

−1/p′, p′

−ℓ−1 (Γ)
.

(3.2.4)

That is precisely the compatibility condition of the Dirichlet problem

(Q)

{

∆ξ = f in RN
+ ,

ξ = ξ0 on Γ,

Thus, by Theorem 1.4.1 (replacing ℓ by ℓ + 1), problem (Q) admits a solution
ξ ∈ W 1, p

ℓ+1(R
N
+ ) under hypothesis (3.2.1). Here we shall use the characterization

(2.3.4) of Lemma 2.3.4:

B[2+ℓ−N/p′] = ΠDA
∆
[ℓ−N/p′] ⊕ ΠNN

∆
[ℓ−N/p′].

Since f ⊥ B[2+ℓ−N/p′], we have

∀r ∈ A∆
[ℓ−N/p′], 〈∆ξ,ΠDr〉

W−1, p
ℓ+1 (RN

+ )×
◦

W
1, p′

−ℓ−1(RN
+ )

= 〈f,ΠDr〉 = 0.

By a Green formula, we can deduce that

∀r ∈ A∆
[ℓ−N/p′], 〈ξ,∆ΠDr〉

W−1, p
ℓ−1 (RN

+ )×
◦

W
1, p′

−ℓ+1(RN
+ )

= 0,

because W 1, p
ℓ+1(R

N
+ ) →֒ W−1, p

ℓ−1 (RN
+ ) unless N

p
= −ℓ or N

p′
= ℓ. The second possibil-

ity is excluded by (3.2.1), and since ℓ > −1, the only problematic case is ℓ = −1.
But then [ℓ−N/p′] < 0 and the condition vanishes. Thus, we have

∀r ∈ A∆
[ℓ−N/p′], 〈ξ, r〉

W−1, p
ℓ−1 (RN

+ )×
◦

W
1, p′

−ℓ+1(RN
+ )

= 0,

which is the compatibility condition for the Dirichlet problem

(R⋆)

{

∆ϑ = ξ in RN
+ ,

ϑ = 0 on Γ.

Thus, by Theorem 1.4.2 (with m = 2 and replacing ℓ by ℓ − 1), problem (R⋆)
admits a solution ϑ ∈ W 3, p

ℓ+1(R
N
+ ) under hypothesis (3.2.1). Similarly we have

∀s ∈ N∆
[ℓ−N/p′], 〈∆ξ,ΠNs〉

W−1, p
ℓ+1 (RN

+ )×
◦

W
1, p′

−ℓ−1(RN
+ )

= 〈f,ΠNs〉 = 0,
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therefore as previously, we have

∀s ∈ N∆
[ℓ−N/p′], 〈ξ, s〉

W−1, p
ℓ−1 (RN

+ )×
◦

W
1, p′

−ℓ+1(RN
+ )

= 0,

which is the compatibility condition for Neumann problem

(S⋆)

{

∆ζ = ξ in RN
+ ,

∂Nζ = 0 on Γ.

As for problem (R⋆), we can show that (S⋆) admits a solution ζ ∈ W 3, p
ℓ+1(R

N
+ )

under hypothesis (3.2.1) according to Theorem 1.4.4 with m = 1. Then the
function defined by

u = xN ∂N(ζ − ϑ) + ϑ (3.2.5)

is a solution to (P ⋆). It remains to show that u ∈ W 3, p
ℓ+1(R

N
+ ).

If N
p

6= −ℓ, then we have the imbedding W 3, p
ℓ+1(R

N
+ ) →֒ W 2, p

ℓ (RN
+ ) therefore

u ∈ W 2, p
ℓ (RN

+ ). Moreover u satisfies the system

(T ⋆)

{

∆u = 2 ∂2
N(ζ − ϑ) + ξ in RN

+ ,

u = 0 on Γ,

with 2 ∂2
N(ζ − ϑ) + ξ ∈ W 1, p

ℓ+1(R
N
+ ). As for (R⋆), we know that problem (T ⋆) has

a solution y ∈ W 3, p
ℓ+1(R

N
+ ). We can deduce that u − y ∈ A∆

[2−ℓ−N/p] ⊂ W 3, p
ℓ+1(R

N
+ ),

i.e. u ∈ W 3, p
ℓ+1(R

N
+ ).

If N
p

= −ℓ, then we have necessary ℓ = −1 and moreover the imbedding

W 3, p
0 (RN

+ ) →֒ W 2, p
−1,−1(R

N
+ ) with ℓ − N

p′
= ℓ + N

p
− N = −N < 0, therefore no

compatibility condition for (T ⋆). So we can still deduce that u ∈ W 3, p
ℓ+1(R

N
+ ).

(iii) Assume that ℓ > −1 and m > 1. Consider f ∈ Wm−2, p
m+ℓ (RN

+ ) ⊥
B[2+ℓ−N/p′]. Remark at first that we have the imbedding

Wm−2, p
m+ℓ (RN

+ ) →֒ W−1, p
ℓ+1 (RN

+ ) if
N

p′
6= ℓ+ 2 or m = 1.

Then, thanks to the previous step, there exists a solution u ∈ W 3, p
ℓ+1(R

N
+ ) to

problem (P ⋆). Let us prove by induction that, under hypothesis (3.2.1),

f ∈ Wm−2, p
m+ℓ (RN

+ ) ⇒ u ∈ Wm+2, p
m+ℓ (RN

+ ). (3.2.6)

For m = 1, (3.2.6) is true. Assume that (3.2.6) is true for 1, 2, . . . ,m and suppose
that f ∈ Wm−1, p

m+1+ℓ(R
N
+ ). Let us prove that u ∈ Wm+3, p

m+1+ℓ(R
N
+ ). Let us first observe

that Wm−1, p
m+1+ℓ(R

N
+ ) →֒ Wm−2, p

m+ℓ (RN
+ ), hence u belongs to Wm+2, p

m+ℓ (RN
+ ) thanks to

the induction hypothesis. Now, for any i ∈ {1, . . . , N − 1},

∆(̺ ∂iu) = ̺∆∂iu+
2

̺
x.∇∂iu+

(

N − 1

̺
+

1

̺3

)

∂iu.
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Then let us set vi = 2
̺
x.∇∂iu +

(

N−1
̺

+ 1
̺3

)

∂iu. We can remark that vi ∈

Wm, p
m+ℓ(R

N
+ ) and moreover we can write

∆2(̺ ∂iu) = ∆(̺∆∂iu) + ∆vi,

with ∆vi ∈ Wm−2, p
m+ℓ (RN

+ ). It remains to see the first term, i.e.

∆(̺ ∂i∆u) = ̺ ∂if +
2

̺
x.∇∂i∆u+

(

N − 1

̺
+

1

̺3

)

∂i∆u.

We can see that ∆(̺ ∂i∆u) ∈ Wm−2, p
m+ℓ (RN

+ ), hence ∆2(̺ ∂iu) ∈ Wm−2, p
m+ℓ (RN

+ ).

Let us set zi = ̺ ∂iu and fi = ∆2zi ∈ Wm−2, p
m+ℓ (RN

+ ). A priori, we only have

zi ∈ Wm+1, p
m−1+ℓ(R

N
+ ). However, we know that γ0u = γ1u = 0, then we can deduce

that

γ0zi = (̺ ∂iu)|Γ = 0 and γ1zi = (∂N̺ ∂iu+ ̺ ∂2
iNu)|Γ = 0, since i 6= N.

Therefore
∆2zi = fi in R

N
+ , zi = ∂Nzi = 0 on Γ,

with fi ∈ Wm−2, p
m+ℓ (RN

+ ) →֒ W−2, p
ℓ (RN

+ ) under hypothesis (3.2.1). Moreover,
thanks to the Green formula, we have for any ϕ ∈ B[2+ℓ−N/p′]:

〈

∆2zi, ϕ
〉

W−2, p
ℓ (RN

+ )×
◦

W
2, p′

−ℓ (RN
+ )

=
〈

zi,∆
2ϕ

〉

◦

W
2, p
ℓ (RN

+ )×W−2, p′

−ℓ (RN
+ )

= 0.

So the orthogonality condition fi ⊥ B[2+ℓ−N/p′] is satisfied for the problem

(Qi)











∆2ζi = fi in RN
+ ,

ζi = 0 on Γ,

∂Nζi = 0 on Γ,

which admits, by the induction hypothesis, a solution ζi ∈ Wm+2, p
m+ℓ (RN

+ ), unique
up to an element of B[2−ℓ−N/p]. Thus zi − ζi ∈ B[2−ℓ−N/p], hence we can deduce

that zi ∈ Wm+2, p
m+ℓ (RN

+ ). Since zi = ̺ ∂iu, that implies

∀i ∈ {1, . . . , N − 1}, ∂iu ∈ Wm+2, p
m+1+ℓ(R

N
+ ) (3.2.7)

and consequently, for any (i, j, k) ∈ {1, . . . , N}2 × {1, . . . , N − 1},

∂3
ijk(∂Nu) = ∂3

ijN(∂ku) ∈ Wm−1, p
m+1+ℓ(R

N
+ ). (3.2.8)

Furthermore, (3.2.7) gives us

∀(i, j) ∈ {1, . . . , N} × {1, . . . , N − 1}, ∂2
i ∂

2
ju ∈ Wm−1, p

m+1+ℓ(R
N
+ ),
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which implies

∂4
Nu = f −

N
∑

i,j=1
(i,j) 6=(N,N)

∂2
i ∂

2
ju ∈ Wm−1, p

m+1+ℓ(R
N
+ ). (3.2.9)

Then combining (3.2.8) and (3.2.9), we obtain that ∇3(∂Nu) ∈ Wm−1, p
m+1+ℓ(R

N
+ )

N3

and knowing that ∂Nu ∈ Wm+1, p
m+ℓ (RN

+ ), we can deduce that ∂Nu ∈ Wm+2, p
m+1+ℓ(R

N
+ ),

because m > 1. Adding this last point to (3.2.7), we have ∇u ∈ Wm+2, p
m+1+ℓ(R

N
+ )

N
,

hence we can conclude that u ∈ Wm+3, p
m+1+ℓ(R

N
+ ).

3.2.2 Panorama of basic cases

The purpose of this part is to extract the basic cases included in Theorem 3.2.1.
We give them for the lifted problem (P ⋆). There is no orthogonality condition
in these cases because ℓ ∈ {−2,−1, 0}, hence B[2+ℓ−N/p′] = {0}. For m > 3, we
introduce the notation

⋆

W
m, p
ℓ (RN

+ ) =
{

u ∈ Wm, p
ℓ (RN

+ ); u = ∂Nu = 0 on Γ
}

.

Corollary 3.2.2. The following biharmonic operators are isomorphisms:

(i) For ℓ = 0

∆2 :
◦

W
2, p
0 (RN

+ ) −→ W−2, p
0 (RN

+ ).

∆2 :
⋆

W
3, p
1 (RN

+ ) −→ W−1, p
1 (RN

+ ), if N/p′ 6= 1.

∆2 :
⋆

W
4, p
2 (RN

+ ) −→ W 0, p
2 (RN

+ ), if N/p′ /∈ {1, 2}.

(ii) For ℓ = −1

∆2 :
◦

W
2, p
−1 (RN

+ )/B[3−N/p] −→ W−2, p
−1 (RN

+ ), if N/p 6= 1.

∆2 :
⋆

W
3, p
0 (RN

+ )/B[3−N/p] −→ W−1, p
0 (RN

+ ).

∆2 :
⋆

W
4, p
1 (RN

+ )/B[3−N/p] −→ W 0, p
1 (RN

+ ), if N/p′ 6= 1.

(iii) For ℓ = −2

∆2 :
◦

W
2, p
−2 (RN

+ )/B[4−N/p] −→ W−2, p
−2 (RN

+ ), if N/p /∈ {1, 2}.

∆2 :
⋆

W
3, p
−1 (RN

+ )/B[4−N/p] −→ W−1, p
−1 (RN

+ ), if N/p 6= 1.

∆2 :
⋆

W
4, p
0 (RN

+ )/B[4−N/p] −→ Lp(RN
+ ).
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Remark 3.2.3. Note that we have without any critical value, the isomorphism

∆2 :
⋆

W
3, p
0 (RN

+ )/B[3−N/p] −→ W−1, p
0 (RN

+ ). On the other hand, we have the iso-

morphism ∆2 : W 3, p
0 (RN

+ ) ∩
◦

W
2, p
−1 (RN

+ )/B[3−N/p] −→ W−1, p
0 (RN

+ ) only if N/p 6= 1,

which is necessary for the imbedding W 3, p
0 (RN

+ ) →֒ W 2, p
−1 (RN

+ ). Hence the speci-

ficity of spaces
⋆

W
m, p
ℓ (RN

+ ). ♦

3.2.3 What is new?

Recall the Boulmezaoud theorem on the biharmonic problem (see [21]), using the
spaces Hm, p

α (RN
+ ) instead of Wm, p

α (RN
+ ) (see Remark 1.2.1):

Theorem (Boulmezaoud [21]). Let ℓ ∈ Z and m ∈ N and assume that

N

2
/∈ {1, . . . , |ℓ| + 2}.

For any f ∈ Hm−1, 2
m+ℓ+1(R

N
+ ), g0 ∈ H

m+5/2, 2
m+ℓ+1 (Γ) and g1 ∈ H

m+3/2, 2
m+ℓ+1 (Γ) satisfying

the compatibility condition (3.2.2), problem (P ) has a solution u ∈ Hm+3, 2
m+ℓ+1(R

N
+ ),

unique up to an element of B[2−ℓ−N/2] and this solution continuously depends on
the data with respect to the quotient norm.

The most important point is about the regularity of data. In Theorem 3.2.1,
we can take f ∈ W−2, 2

ℓ (RN
+ ), g0 ∈ W

3/2, 2
ℓ (Γ) and g1 ∈ W

1/2, 2
ℓ (Γ), whereas the

lower level in Boulmezaoud theorem is for f ∈ H−1, 2
ℓ+1 (RN

+ ), g0 ∈ H
5/2, 2
ℓ+1 (Γ) and

g1 ∈ H
3/2, 2
ℓ+1 (Γ). The second point is about critical values which appear for all

the even dimensions. Particularly for the dimensions N = 2 or N = 4, the
Boulmezaoud theorem unfortunately does not give any answer to problem (P ),
whereas we can see in Corollary 3.2.2 that Theorem 3.2.1 gives solutions with f
in W−2, 2

0 (RN
+ ), W−1, 2

0 (RN
+ ) or L2(RN

+ ) . . . The last point concerns the underlying
functional setting of our work, which is that of Lebesgue spaces Lp(Ω), with
1 < p <∞.

3.3 Singular boundary conditions

The purpose of the second part of this chapter is now to find some solutions to
the homogeneous problem (P0) for singular boundary conditions. We suggest an
answer to this question through Theorems 3.3.4 and 3.3.5.

3.3.1 Extension of traces

In this section, we establish the existence of traces in special cases we shall use
for the study of singular boundary conditions.
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For any ℓ ∈ Z, we introduce the spaces

Y p
ℓ (RN

+ ) =
{

v ∈ W 0, p
ℓ−2(R

N
+ ); ∆2v ∈ W 0, p

ℓ+2(R
N
+ )

}

,

Y p
ℓ, 1(R

N
+ ) =

{

v ∈ W 0, p
ℓ−2(R

N
+ ); ∆2v ∈ W 0, p

ℓ+2, 1(R
N
+ )

}

.

They are reflexive Banach spaces equipped with their natural norms:

‖v‖Y p
ℓ (RN

+ ) = ‖v‖W 0, p
ℓ−2(RN

+ ) + ‖∆2v‖W 0, p
ℓ+2(RN

+ ),

‖v‖Y p
ℓ, 1(RN

+ ) = ‖v‖W 0, p
ℓ−2(RN

+ ) + ‖∆2v‖W 0, p
ℓ+2, 1(RN

+ ).

Lemma 3.3.1. Let ℓ ∈ Z such that

N

p′
/∈ {1, . . . , ℓ− 2} and

N

p
/∈ {1, . . . ,−ℓ+ 2}, (3.3.1)

then the space D
(

RN
+

)

is dense in Y p
ℓ (RN

+ ) and in Y p
ℓ, 1(R

N
+ ).

Proof. (i) We use an extension of the Riesz representation theorem to weighted
Sobolev spaces: Given T ∈

(

Y p
ℓ (RN

+ )
)′

, there exists a unique pair (u1, u2) ∈
(

Lp′(RN
+ )

)2
such that

∀ϕ ∈ Y p
ℓ (RN

+ ), 〈T, ϕ〉 =

∫

RN
+

u1 ̺
ℓ−2 ϕ dx+

∫

RN
+

u2 ̺
ℓ+2 ∆2ϕ dx. (3.3.2)

Let us suppose that T = 0 on D
(

RN
+

)

, thus on D(RN
+ ). Then we can deduce from

(3.3.2) that
̺ℓ−2 u1 + ∆2

(

̺ℓ+2 u2

)

= 0 in R
N
+ . (3.3.3)

We set v1 = ̺ℓ−2 u1 and v2 = ̺ℓ+2 u2, and we respectively denote by ṽ1 and ṽ2

the extensions by 0 of v1 and v2 to RN . We have for any ϕ ∈ D(RN),

∫

RN

ṽ1 ϕ dx+

∫

RN

ṽ2 ∆2ϕ dx =

∫

RN
+

v1 ϕ dx+

∫

RN
+

v2 ∆2ϕ dx = 0, (3.3.4)

according to the assumption on T , since ϕ|
RN

+
∈ D

(

RN
+

)

. Therefore we can deduce

that ṽ1 + ∆2ṽ2 = 0 in RN . We know that ṽ1 ∈ W 0, p′

−ℓ+2(R
N), then we also have

∆2ṽ2 ∈ W 0, p′

−ℓ+2(R
N). Moreover, we have the following Green formula: for any

ϕ ∈ D(RN),

〈

∆2ṽ2, ϕ
〉

W 0, p′

−ℓ+2(RN )×W 0, p
ℓ−2(RN )

=
〈

ṽ2,∆
2ϕ

〉

W 0, p′

−ℓ−2(RN )×W 0, p
ℓ+2(RN )

, (3.3.5)

and we know that P∆2

[2−ℓ−N/p] ⊂ W 4, p
ℓ+2(R

N) →֒ W 0, p
ℓ−2(R

N) under the hypothesis
N
p
/∈ {1, . . . ,−ℓ + 2}. Since D(RN) is dense in W 4, p

ℓ+2(R
N), we can deduce that
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(3.3.5) holds for any ϕ ∈ P∆2

[2−ℓ−N/p] and consequently that ∆2ṽ2 ⊥ P∆2

[2−ℓ−N/p].
Thanks to Theorem 2.2.6, with m = 2, −ℓ instead of ℓ and exchanging p and p′,
we can deduce that under hypothesis (3.3.1), we have ṽ2 ∈ W 4, p′

−ℓ+2(R
N). Since ṽ2

is an extension by 0, it follows that v2 ∈
◦

W
4, p′

−ℓ+2(R
N
+ ). Now, thanks to the density

of D(RN
+ ) in

◦

W
4, p′

−ℓ+2(R
N
+ ), we have the following Green formula:

∀ϕ ∈ Y p
ℓ (RN

+ ), ∀w ∈
◦

W
4, p′

−ℓ+2(R
N
+ ) ∩W 0, p′

−ℓ−2(R
N
+ ),

∫

RN
+

ϕ∆2w dx =

∫

RN
+

w∆2ϕ dx.
(3.3.6)

Then it suffices to come back to (3.3.2) and to use (3.3.6) with w = v2 which

belongs to
◦

W
4, p′

−ℓ+2(R
N
+ ) ∩W 0, p′

−ℓ−2(R
N
+ ), to obtain for any ϕ ∈ Y p

ℓ (RN
+ ):

〈T, ϕ〉 =

∫

RN
+

v1 ϕ dx+

∫

RN
+

v2 ∆2ϕ dx =

∫

RN
+

(

v1 + ∆2v2

)

ϕ dx = 0,

according to (3.3.3). Then we have proved that T = 0 on Y p
ℓ (RN

+ ), and the

Hahn-Banach theorem assures us that D
(

RN
+

)

is dense in Y p
ℓ (RN

+ ).

(ii) Likewise, we can prove the density of D
(

RN
+

)

in Y p
ℓ, 1(R

N
+ ). The differences

only concern the logarithmic factors in the weights.

Given T ∈
(

Y p
ℓ, 1(R

N
+ )

)′
, there exists a unique pair (u1, u2) ∈

(

Lp′(RN
+ )

)2
such

that

∀ϕ ∈ Y p
ℓ, 1(R

N
+ ), 〈T, ϕ〉 =

∫

RN
+

u1 ̺
ℓ−2 ϕ dx+

∫

RN
+

u2 ̺
ℓ+2 lg ̺∆2ϕ dx. (3.3.7)

Let us suppose that T = 0 on D
(

RN
+

)

, then we have

̺ℓ−2 u1 + ∆2
(

̺ℓ+2 lg ̺ u2

)

= 0 in R
N
+ . (3.3.8)

We set v1 = ̺ℓ−2 u1 and v2 = ̺ℓ+2 lg ̺ u2, and we respectively denote by ṽ1 and
ṽ2 the extensions by 0 of v1 and v2 to RN . We have the analog of identity (3.3.4)
for any ϕ ∈ D(RN). Therefore we can deduce that ṽ1 + ∆2ṽ2 = 0 in RN . We

know that ṽ1 ∈ W 0, p′

−ℓ+2(R
N), then we also have ∆2ṽ2 ∈ W 0, p′

−ℓ+2(R
N), whence the

analog of Green formula (3.3.5) where the duality of the right side is replaced

by W 0, p′

−ℓ−2,−1(R
N) ×W 0, p

ℓ+2, 1(R
N). Since P∆2

[2−ℓ−N/p] ⊂ W 4, p
ℓ+2, 1(R

N) →֒ W 0, p
ℓ−2(R

N) if
N
p
/∈ {1, . . . ,−ℓ+2}, we can deduce by density that this formula holds for any ϕ ∈

P∆2

[2−ℓ−N/p] and consequently that ∆2ṽ2 ⊥ P∆2

[2−ℓ−N/p]. Thanks to Theorem 2.2.6,

we can deduce that under hypothesis (3.3.1), we have ṽ2 ∈ W 4, p′

−ℓ+2(R
N). It follows

that v2 ∈
◦

W
4, p′

−ℓ+2(R
N
+ ). We also have the analog of Green formula (3.3.6) for any

w ∈
◦

W
4, p′

−ℓ+2(R
N
+ ) ∩W 0, p′

−ℓ−2,−1(R
N
+ ). The end of the proof is quite similar to the

previous case.
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Thanks to this density lemma, we can prove the following result of traces:

Lemma 3.3.2. Let ℓ ∈ Z. Under hypothesis (3.3.1), the mapping

(γ0, γ1) : D
(

RN
+

)

−→ D(RN−1)
2
,

can be extended to a linear continuous mapping

(γ0, γ1) : Y p
ℓ, 1(R

N
+ ) −→ W

−1/p, p
ℓ−2 (Γ) ×W

−1−1/p, p
ℓ−2 (Γ),

and we have the following Green formula:

∀v ∈ Y p
ℓ, 1(R

N
+ ), ∀ϕ ∈

⋆

W
4, p′

−ℓ+2(R
N
+ ),

〈

∆2v, ϕ
〉

W 0, p
ℓ+2, 1(RN

+ )×W 0, p′

−ℓ−2, −1(RN
+ )

−
〈

v,∆2ϕ
〉

W 0, p
ℓ−2(RN

+ )×W 0, p′

−ℓ+2(RN
+ )

= 〈v, ∂N∆ϕ〉
W

−1/p, p
ℓ−2 (Γ)×W

1/p, p′

−ℓ+2 (Γ)
− 〈∂Nv,∆ϕ〉W−1−1/p, p

ℓ−2 (Γ)×W
1+1/p, p′

−ℓ+2 (Γ)
.

(3.3.9)

Proof. Let us first remark that for any ϕ ∈
⋆

W
4, p′

−ℓ+2(R
N
+ ), we have

∆ϕ = ∂2
Nϕ and ∂N∆ϕ = ∂3

Nϕ on Γ.

Moreover, we always have the imbedding W 4, p′

−ℓ+2(R
N
+ ) →֒ W 0, p′

−ℓ−2,−1(R
N
+ ). So we

can write the following Green formula:

∀v ∈D
(

RN
+

)

, ∀ϕ ∈
⋆

W
4, p′

−ℓ+2(R
N
+ ),

∫

RN
+

ϕ∆2v dx−

∫

RN
+

v∆2ϕ dx =

∫

Γ

v ∂N∆ϕ dx′ −

∫

Γ

∂Nv∆ϕ dx′.
(3.3.10)

In particular, if ϕ ∈ W 4, p′

−ℓ+2(R
N
+ ) and such that ϕ = ∂Nϕ = ∂2

Nϕ = 0 on Γ, we
have

∣

∣

∣

∣

∫

Γ

v ∂N∆ϕ dx′
∣

∣

∣

∣

6 ‖v‖Y p
ℓ, 1(RN

+ ) ‖ϕ‖W 4, p′

−ℓ+2(RN
+ )
.

For all g ∈ W
1−1/p′, p′

−ℓ+2 (Γ), thanks to Lemma 1.3.1, there exists a lifting function

ϕ0 ∈ W 4, p′

−ℓ+2(R
N
+ ) such that ϕ0 = ∂Nϕ0 = ∂2

Nϕ0 = 0 on Γ and ∂3
Nϕ0 = g on Γ,

satisfying moreover

‖ϕ0‖W 4, p′

−ℓ+2(RN
+ )

6 C ‖g‖
W

1−1/p′, p′

−ℓ+2 (Γ)
,

where C is a constant not depending on ϕ0 and g. Then we have
∣

∣

∣

∣

∫

Γ

v g dx′
∣

∣

∣

∣

6 ‖v‖Y p
ℓ, 1(RN

+ ) ‖ϕ0‖W 4, p′

−ℓ+2(RN
+ )

6 C ‖v‖Y p
ℓ, 1(RN

+ ) ‖g‖W
1−1/p′, p′

−ℓ+2 (Γ)
.

Thus
‖γ0v‖W

−1/p, p
ℓ−2 (Γ)

6 C ‖v‖Y p
ℓ, 1(RN

+ ).
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Therefore, the linear mapping γ0 : v 7−→ v|Γ defined on D
(

RN
+

)

is continuous for

the norm of Y p
ℓ, 1(R

N
+ ). Since D

(

RN
+

)

is dense in Y p
ℓ, 1(R

N
+ ), γ0 can be extended by

continuity to a mapping γ0 ∈ L
(

Y p
ℓ, 1(R

N
+ ); W

−1/p, p
ℓ−2 (Γ)

)

.

To define the trace γ1 on Y p
ℓ, 1(R

N
+ ), we consider ϕ ∈ W 4, p′

−ℓ+2(R
N
+ ) such that

ϕ = ∂Nϕ = ∂3
Nϕ = 0 on Γ. In this case, we have

∣

∣

∣

∣

∫

Γ

∂Nv∆ϕ dx′
∣

∣

∣

∣

6 ‖v‖Y p
ℓ, 1(RN

+ ) ‖ϕ‖W 4, p′

−ℓ+2(RN
+ )
.

For all g ∈ W
2−1/p′, p′

−ℓ+2 (Γ), thanks to Lemma 1.3.1, there exists a lifting function

ϕ0 ∈ W 4, p′

−ℓ+2(R
N
+ ) such that ϕ0 = ∂Nϕ0 = ∂3

Nϕ0 = 0 on Γ and ∂2
Nϕ0 = g on Γ,

satisfying moreover

‖ϕ0‖W 4, p′

−ℓ+2(RN
+ )

6 C ‖g‖
W

2−1/p′, p′

−ℓ+2 (Γ)
,

where C is a constant independent of ϕ0 and g. Once again, the linear mapping
γ1 : v 7−→ ∂Nv|Γ, defined on D

(

RN
+

)

is continuous for the norm of Y p
ℓ, 1(R

N
+ ), and

it can be extended by continuity to a mapping γ1 ∈ L
(

Y p
ℓ, 1(R

N
+ ); W

−1−1/p, p
ℓ−2 (Γ)

)

.
To conclude this proof, we can deduce the formula (3.3.9) from (3.3.10) by

density of D
(

RN
+

)

in Y p
ℓ, 1(R

N
+ ).

Remark 3.3.3. Note that the logarithmic factors are unnecessary in the case
where N

p′
/∈ {ℓ − 1, ℓ, ℓ + 1, ℓ + 2}, because the imbedding W 4, p′

−ℓ+2(R
N
+ ) →֒

W 0, p′

−ℓ−2(R
N
+ ) holds. So we can replace the space Y p

ℓ, 1(R
N
+ ) by Y p

ℓ (RN
+ ) in the lemma,

with a Green formula without logarithmic factors, i.e. where the first term of the
left side is replaced by 〈∆2v, ϕ〉

W 0, p
ℓ+2(RN

+ )×W 0, p′

−ℓ−2(RN
+ )

. ♦

3.3.2 Very weak solutions

We now come back to the homogeneous problem, and we consider here singular
boundary conditions. Let g0 ∈ W

−1/p, p
ℓ−2 (Γ) and g1 ∈ W

−1−1/p, p
ℓ−2 (Γ), we search

u ∈ W 0, p
ℓ−2(R

N
+ ) solution to the problem

(P 0)











∆2u = 0 in RN
+ ,

u = g0 on Γ,

∂Nu = g1 on Γ.

Let us first remark that if u ∈ W 0, p
ℓ−2(R

N
+ ) verifies (P 0) under hypothesis (3.3.1),

then it belongs to Y p
ℓ, 1(R

N
+ ) and thanks to Lemma 3.3.2, γ0u ∈ W

−1/p, p
ℓ−2 (Γ) and

γ1u ∈ W
−1−1/p, p
ℓ−2 (Γ), which gives a sense to (P 0).
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Theorem 3.3.4. Let ℓ ∈ Z. Under hypothesis (3.3.1), for any g0 ∈ W
−1/p, p
ℓ−2 (Γ)

and g1 ∈ W
−1−1/p, p
ℓ−2 (Γ) satisfying the compatibility condition

∀ϕ ∈ B[2+ℓ−N/p′] , 〈g1,∆ϕ〉Γ − 〈g0, ∂N∆ϕ〉Γ = 0, (3.3.11)

problem (P 0) has a solution u ∈ W 0, p
ℓ−2(R

N
+ ), unique up to an element of B[2−ℓ−N/p],

with the estimate

inf
q∈B[2−ℓ−N/p]

‖u+ q‖W 0, p
ℓ−2(RN

+ ) 6 C
(

‖g0‖W
−1/p, p
ℓ−2 (Γ)

+ ‖g1‖W
−1−1/p, p
ℓ−2 (Γ)

)

.

Proof. Let K−2 denote the kernel of the operator associated to this problem. We
can observe that problem (P 0) is equivalent to the formulation:

(Q)

{

Find u ∈ Y p
ℓ, 1(R

N
+ )/K−2 such that for any v ∈

⋆

W
4, p′

−ℓ+2(R
N
+ ),

〈u,∆2v〉
W 0, p

ℓ−2(RN
+ )×W 0, p′

−ℓ+2(RN
+ )

= 〈g1,∆v〉Γ − 〈g0, ∂N∆v〉Γ ,

where we have used the Green formula (3.3.9) of Lemma 3.3.2.

Now, let us solve problem (Q). For any f ∈ W 0, p′

−ℓ+2(R
N
+ ) ⊥ B[2−ℓ−N/p], accord-

ing to Theorem 3.2.1, with m = 2, −ℓ instead of ℓ and exchanging p and p′, the
problem

(P ⋆)











∆2v = f in RN
+ ,

v = 0 on Γ,

∂Nv = 0 on Γ,

admits a unique solution v ∈ W 4, p′

−ℓ+2(R
N
+ )/B[2+ℓ−N/p′], under hypothesis (3.3.1).

Moreover, v satisfies the estimate

‖v‖
W 4, p′

−ℓ+2(RN
+ )/B[2+ℓ−N/p′]

6 C ‖f‖
W 0, p′

−ℓ+2(RN
+ )
,

where C denotes as usual a generic constant not depending on v and f . Consider
the linear form T : f 7−→ 〈g1,∆v〉Γ − 〈g0, ∂N∆v〉Γ defined on W 0, p′

−ℓ+2(R
N
+ ) ⊥

B[2−ℓ−N/p]. We have for any q ∈ B[2+ℓ−N/p′],

|T (f)| =
∣

∣

∣
〈g1,∆(v + q)〉Γ − 〈g0, ∂N∆(v + q)〉Γ

∣

∣

∣

6 C ‖v + q‖
W 4, p′

−ℓ+2(RN
+ )

(

‖g0‖W
−1/p, p
ℓ−2 (Γ)

+ ‖g1‖W
−1−1/p, p
ℓ−2 (Γ)

)

.

Thus

|T (f)| 6 C ‖v‖
W 4, p′

−ℓ+2(RN
+ )/B[2+ℓ−N/p′]

(

‖g0‖W
−1/p, p
ℓ−2 (Γ)

+ ‖g1‖W
−1−1/p, p
ℓ−2 (Γ)

)

6 C ‖f‖
W 0, p′

−ℓ+2(RN
+ )

(

‖g0‖W
−1/p, p
ℓ−2 (Γ)

+ ‖g1‖W
−1−1/p, p
ℓ−2 (Γ)

)

.

Hence T is continuous on W 0, p′

−ℓ+2(R
N
+ ) ⊥ B[2−ℓ−N/p], and according to Riesz rep-

resentation theorem, there exists a unique u ∈ W 0, p
ℓ−2(R

N
+ )/B[2−ℓ−N/p] such that

T (f) = 〈u, f〉
W 0, p

ℓ−2(RN
+ )×W 0, p′

−ℓ+2(RN
+ )

. This means that u is a solution to problem (Q)

and K−2 = B[2−ℓ−N/p].
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3.3.3 Intermediate boundary conditions

To be comprehensive and also for the Stokes system, it remains to solve (P 0)

for the data g0 ∈ W
1−1/p, p
ℓ−1 (Γ) and g1 ∈ W

−1/p, p
ℓ−1 (Γ). So, we fill the gap between

generalized solutions of Theorem 2.3.1 and very weak solutions of Theorem 3.3.4.
We could also call these solutions “very weak” and the ones of Theorem 3.3.4,
“very very weak”. . .

Theorem 3.3.5. Let ℓ ∈ Z such that

N

p′
/∈ {1, . . . , ℓ− 1} and

N

p
/∈ {1, . . . ,−ℓ+ 1}. (3.3.12)

For any g0 ∈ W
1−1/p, p
ℓ−1 (Γ) and g1 ∈ W

−1/p, p
ℓ−1 (Γ) satisfying the compatibility con-

dition (3.3.11), problem (P 0) has a solution u ∈ W 1, p
ℓ−1(R

N
+ ), unique up to an

element of B[2−ℓ−N/p], with the estimate

inf
q∈B[2−ℓ−N/p]

‖u+ q‖W 1, p
ℓ−1(RN

+ ) 6 C
(

‖g0‖W
1−1/p, p
ℓ−1 (Γ)

+ ‖g1‖W
−1/p, p
ℓ−1 (Γ)

)

.

Remark 3.3.6. We can give a very quick proof of this result by interpolation
between the previous case and the regular case, i.e. g0 ∈ W

2−1/p, p
ℓ (Γ) and g1 ∈

W
1−1/p, p
ℓ (Γ). But the problem with this reasoning is that we must combine

the critical values of hypotheses (2.3.1) and (3.3.1), and then we obtain two
supplementary values with respect to (3.3.12). Thus we shall give a direct proof
similar to the singular case, with however some new arguments. ♦

For any ℓ ∈ Z, we introduce the space

Y 1, p
ℓ, 1 (RN

+ ) =
{

v ∈ W 1, p
ℓ−1(R

N
+ ); ∆2v ∈ W 0, p

ℓ+2, 1(R
N
+ )

}

.

It’s a reflexive Banach space equipped with it’s natural norm:

‖v‖Y 1, p
ℓ, 1 (RN

+ ) = ‖v‖W 1, p
ℓ−1(RN

+ ) + ‖∆2v‖W 0, p
ℓ+2, 1(RN

+ ).

We also define the subspace of Y 1, p
ℓ, 1 (RN

+ )

◦

Y
1, p
ℓ, 1(R

N
+ ) =

{

v ∈
◦

W
1, p
ℓ−1(R

N
+ ); ∆2v ∈ W 0, p

ℓ+2, 1(R
N
+ )

}

.

Lemma 3.3.7. Let ℓ ∈ Z. Under hypothesis (3.3.12), the space D
(

RN
+

)

is dense

in Y 1, p
ℓ, 1 (RN

+ ).

Proof. Let P be an extension operator mapping W 1, p
ℓ−1(R

N
+ ) into W 1, p

ℓ−1(R
N). For

any continuous linear form T ∈
(

Y 1, p
ℓ, 1 (RN

+ )
)′

, there exists a unique pair (u1, u2) ∈

W−1, p′

−ℓ+1 (RN) ×W 0, p′

−ℓ−2,−1(R
N
+ ) such that for any v ∈ Y 1, p

ℓ, 1 (RN
+ ),

〈T, v〉 = 〈u1, Pv〉W−1, p′

−ℓ+1 (RN )×W 1, p
ℓ−1(RN )

+

∫

RN
+

u2 ∆2v dx.
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Moreover, since T depends only on v and not on the restriction of Pv to RN
− , the

support of u1 is contained in RN
+ .

Thanks to the Hahn-Banach theorem, it suffices to show that any T which
vanishes on D

(

RN
+

)

is actually zero on Y 1, p
ℓ, 1 (RN

+ ). Indeed for any Ψ ∈ D(RN), we
have

〈u1,Ψ〉 +
〈

ũ2,∆
2Ψ

〉

= 〈u1, Pψ〉 +

∫

RN
+

u2 ∆2ψ dx = 0,

where ũ2 is the extension by 0 of u2 to RN and ψ = Ψ|
RN

+
. It follows that

∆2ũ2 = −u1 in R
N .

Thus we have ∆2ũ2 ∈ W−1, p′

−ℓ+1 (RN). Since ũ2 ∈ W 0, p′

−ℓ−2,−1(R
N
+ ), we also have

∆2ũ2 ⊥ P∆2

[2−ℓ−N/p]. Now, thanks to Theorem 2.2.6, we can deduce that under

hypothesis (3.3.12), we have ũ2 ∈ W 3, p′

−ℓ+1(R
N). It follows that u2 ∈

◦

W
3, p′

−ℓ+1(R
N
+ ).

By density of D(RN
+ ) in

◦

W
3, p′

−ℓ+1(R
N
+ ), there exists a sequence (ϕk)k∈N ⊂ D(RN

+ )

such that ϕk → u2 in
◦

W
3, p′

−ℓ+1(R
N
+ ). Thus for any v ∈ Y 1, p

ℓ, 1 (RN
+ ), we have

〈T, v〉 = lim
k→∞

{

〈

−∆2ϕ̃k, Pv
〉

+

∫

RN
+

ϕk ∆2v dx

}

= lim
k→∞

{

−

∫

RN
+

v∆2ϕk dx+

∫

RN
+

ϕk ∆2v dx

}

= 0.

Thus T is identically zero.

Lemma 3.3.8. Let ℓ ∈ Z. Under hypothesis (3.3.12), the mapping

γ1 : D
(

RN
+

)

−→ D(RN−1),

can be extended to a linear continuous mapping

γ1 : Y 1, p
ℓ, 1 (RN

+ ) −→ W
−1/p, p
ℓ−1 (Γ),

and we have the following Green formula:

∀v ∈
◦

Y
1, p
ℓ, 1(R

N
+ ), ∀ϕ ∈

⋆

W
3, p′

−ℓ+1(R
N
+ ),

〈

∆2v, ϕ
〉

W 0, p
ℓ+2, 1(RN

+ )×W 0, p′

−ℓ−2, −1(RN
+ )

−
〈

v,∆2ϕ
〉

◦

W
1, p
ℓ−1(RN

+ )×W−1, p′

−ℓ+1 (RN
+ )

= −〈∂Nv,∆ϕ〉W−1/p, p
ℓ−1 (Γ)×W

1/p, p′

−ℓ+1 (Γ)
.

(3.3.13)
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Proof. Since we always have the imbedding W 3, p′

−ℓ+1(R
N
+ ) →֒ W 0, p′

−ℓ−2,−1(R
N
+ ), we

can write the following Green formula:

∀v ∈ D
(

RN
+

)

, ∀ϕ ∈
⋆

W
3, p′

−ℓ+1(R
N
+ ),

∫

RN
+

ϕ∆2v dx+

∫

RN
+

∇v.∇∆ϕ dx = −

∫

Γ

∂Nv∆ϕ dx′.
(3.3.14)

This implies that

∣

∣

∣

∣

∫

Γ

∂Nv∆ϕ dx′
∣

∣

∣

∣

6 ‖v‖Y 1, p
ℓ, 1 (RN

+ ) ‖ϕ‖W 3, p′

−ℓ+1(RN
+ )
.

For all g ∈ W
1−1/p′, p′

−ℓ+1 (Γ), thanks to Lemma 1.3.1, there exists a lifting function

ϕ0 ∈ W 3, p′

−ℓ+1(R
N
+ ) such that ϕ0 = ∂Nϕ0 = 0 on Γ and ∂2

Nϕ0 = g on Γ, satisfying
moreover

‖ϕ0‖W 3, p′

−ℓ+1(RN
+ )

6 C ‖g‖
W

1−1/p′, p′

−ℓ+1 (Γ)
,

where C is a constant not depending on ϕ0 and g. Then we have

∣

∣

∣

∣

∫

Γ

g ∂Nv dx′
∣

∣

∣

∣

6 ‖v‖Y 1, p
ℓ, 1 (RN

+ ) ‖ϕ0‖W 3, p′

−ℓ+1(RN
+ )

6 C ‖v‖Y 1, p
ℓ, 1 (RN

+ ) ‖g‖W
1−1/p′, p′

−ℓ+1 (Γ)
.

Therefore

‖γ1v‖W
−1/p, p
ℓ−1 (Γ)

6 C ‖v‖Y 1, p
ℓ, 1 (RN

+ ).

Thus the linear mapping γ1 : v 7−→ ∂Nv|Γ defined on D
(

RN
+

)

is continuous for

the norm of Y 1, p
ℓ, 1 (RN

+ ). Since D
(

RN
+

)

is dense in Y 1, p
ℓ, 1 (RN

+ ), γ1 can be extended

by continuity to a mapping γ1 ∈ L
(

Y 1, p
ℓ, 1 (RN

+ ); W
−1/p, p
ℓ−1 (Γ)

)

.

By density of D
(

RN
+

)

in Y 1, p
ℓ, 1 (RN

+ ), we can generalize the formula (3.3.14) to

any v ∈ Y 1, p
ℓ, 1 (RN

+ ). Furthermore, thanks to the of D(RN
+ ) in

◦

W
1, p
ℓ−1(R

N
+ ), we have

for any v ∈
◦

W
1, p
ℓ−1(R

N
+ ) and ϕ ∈ W 3, p′

−ℓ+1(R
N
+ ),

〈∇v,∇∆ϕ〉
W 0, p

ℓ−1(RN
+ )×W 0, p′

−ℓ+1(RN
+ )

=
〈

v,∆2ϕ
〉

◦

W
1, p
ℓ−1(RN

+ )×W−1, p′

−ℓ+1 (RN
+ )
.

So we obtain the Green formula (3.3.13).

Proof of Theorem 3.3.5. The first step is to reduce to zero the boundary condition
on u in Problem (P 0). Let us consider the problem

(R0)

{

∆w = 0 in RN
+ ,

w = g0 on Γ.
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Thanks to (2.3.4), we know that B[2+ℓ−N/p′] = ΠDA
∆
[ℓ−N/p′] ⊕ ΠNN

∆
[ℓ−N/p′], thus

the compatibility condition (3.3.11) on (P 0) implies

∀r ∈ A∆
[ℓ−N/p′], 〈g0, ∂Nr〉W 1−1/p, p

ℓ−1 (Γ)×W
−1/p′, p′

−ℓ+1 (Γ)
= 0,

which is the compatibility condition on (R0). Thus, according to Theorem 1.4.1,
problem (R0) admits a solution w ∈ W 1, p

ℓ−1(R
N
+ ) under hypothesis (3.3.12). It

follows that w ∈ Y 1, p
ℓ, 1 (RN

+ ), and thus γ1w = h1 ∈ W
−1/p, p
ℓ−1 (Γ). Let us set v =

u− w, then problem (P 0) is equivalent to the following

∆2v = 0 in R
N
+ , v = 0 and ∂Nv = g1 − h1 on Γ. (3.3.15)

Let K−1 denote the kernel of the operator associated to this problem. We can
observe that Problem (3.3.15) is equivalent to the formulation:

(Q)

{

Find v ∈
◦

Y
1, p
ℓ, 1(R

N
+ )/K−1 such that for any ϕ ∈

⋆

W
3, p′

−ℓ+1(R
N
+ ),

〈v,∆2ϕ〉 ◦

W
1, p
ℓ−1(RN

+ )×W−1, p′

−ℓ+1 (RN
+ )

= 〈g1 − h1,∆ϕ〉Γ ,

where we have used the Green formula (3.3.13) of Lemma 3.3.8.

Now, let us solve Problem (Q). For any f ∈ W−1, p′

−ℓ+1 (RN
+ ) ⊥ B[2−ℓ−N/p], ac-

cording to Theorem 3.2.1, with m = 1, −ℓ instead of ℓ and exchanging p and p′,
the problem

(P ⋆)











∆2z = f in RN
+ ,

z = 0 on Γ,

∂Nz = 0 on Γ,

admits a unique solution z ∈ W 3, p′

−ℓ+1(R
N
+ )/B[2+ℓ−N/p′], under hypothesis (3.3.12).

Moreover, v satisfies the estimate

‖z‖
W 3, p′

−ℓ+1(RN
+ )/B[2+ℓ−N/p′]

6 C ‖f‖
W−1, p′

−ℓ+1 (RN
+ )
.

Consider the linear form T : f 7−→ 〈g1 − h1,∆z〉Γ. We can show that it is

continuous on W−1, p′

−ℓ+1 (RN
+ ) ⊥ B[2−ℓ−N/p]. Then, according to the Riesz repre-

sentation theorem, there exists a unique v ∈
◦

W
1, p
ℓ−1(R

N
+ )/B[2−ℓ−N/p] such that

T (f) = 〈v, f〉 ◦

W
1, p
ℓ−1(RN

+ )×W−1, p′

−ℓ+1 (RN
+ )

. This means that v is a solution to Problem

(Q) and K−1 = B[2−ℓ−N/p].

3.4 Other boundary conditions

The last part of this chapter is devoted to the biharmonic equation with other
kinds of boundary conditions. These results will be useful in the next chapters
concerning the Stokes problem with different types of boundary conditions.
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I. Conditions on u and ∆u

The biharmonic equation with boundary conditions on u and ∆u

(Q)











∆2u = f in RN
+ ,

u = g0 on Γ,

∆u = g1 on Γ.

Theorem 3.4.1. Let ℓ ∈ Z. Under hypothesis (2.3.1), for any f ∈ W−1, p
ℓ (RN

+ ),

g0 ∈ W
3−1/p, p
ℓ (Γ) and g1 ∈ W

1−1/p, p
ℓ (Γ) satisfying the compatibility condition

∀ϕ ∈ A∆2

[1+ℓ−N/p′],

〈f, ϕ〉
W−1, p

ℓ (RN
+ )×

◦

W
1, p′

−ℓ (RN
+ )

− 〈g1, ∂Nϕ〉Γ − 〈g0, ∂N∆ϕ〉Γ = 0,
(3.4.1)

problem (Q) admits a solution u ∈ W 3, p
ℓ (RN

+ ), unique up to an element of

A∆2

[3−ℓ−N/p], with the estimate

inf
q∈A∆2

[3−ℓ−N/p]

‖u+ q‖W 3, p
ℓ (RN

+ ) 6

C
(

‖f‖W−1, p
ℓ (RN

+ ) + ‖g0‖W
3−1/p, p
ℓ (Γ)

+ ‖g1‖W
1−1/p, p
ℓ (Γ)

)

.

The kernel

We must characterize the kernel of the operator

(∆2, γ0, γ0∆) : W 3, p
ℓ (RN

+ ) −→ W−1, p
ℓ (RN

+ ) ×W
3−1/p, p
ℓ (Γ) ×W

1−1/p, p
ℓ (Γ).

Since N
p
/∈ {1, . . . ,−ℓ}, we know that P[3−ℓ−N/p] ⊂ W 3, p

ℓ (RN
+ ). Let u be a function

of this kernel and set

ũ(x′, xN) =

{

u(x′, xN) if xN > 0,

−u(x′,−xN) if xN < 0.

Thus we have ũ ∈ S ′(RN) and we show that ∆2ũ = 0 in RN . We can deduce
that ũ, and consequently u, is a polynomial. By identification in the half-space
xN < 0, we obtain that u is odd with respect to xN . Conversely it is clear that
any polynomial u odd with respect to xN verifies u = ∆u = 0 on Γ. Furthermore
u ∈ W 3, p

ℓ (RN
+ ) implies that its degree is at the most [3 − ℓ − N/p]. So we have

characterized this kernel as the space of biharmonic polynomials, odd with respect
to xN , of degree smaller than or equal to [3−ℓ−N/p]. We denote it by A∆2

[3−ℓ−N/p].
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The compatibility condition

Problem (Q) admits a solution u in W 3, p
ℓ (RN

+ ) only if the condition (3.4.1) is sat-
isfied, where 〈g1, ∂Nϕ〉Γ and 〈g0, ∂N∆ϕ〉Γ respectively denote the duality brackets
〈g1, ∂Nϕ〉W 1−1/p, p

ℓ (Γ)×W
−1/p′, p′

−ℓ (Γ)
and 〈g0, ∂N∆ϕ〉

W
3−1/p, p
ℓ (Γ)×W

−2−1/p′, p′

−ℓ (Γ)
.

Note that if ℓ 6 0, then A∆2

[1+ℓ−N/p′] = {0} and thus there is no compatibility

condition. Let us now remark that if ϕ ∈ A∆2

[1+ℓ−N/p′], then ϕ ∈ W 2, p′

−ℓ+1(R
N
+ ) and

thus ∂Nϕ|Γ ∈ W
1−1/p′, p′

−ℓ+1 (Γ) →֒ W
−1/p′, p′

−ℓ (Γ). But we also have ϕ ∈ W 4, p′

−ℓ+3(R
N
+ )

and thus ∂N∆ϕ ∈ W
1−1/p′, p′

−ℓ+3 (Γ) →֒ W
−2−1/p′, p′

−ℓ (Γ). This gives a sense to (3.4.1).
As in the previous chapter, for the generalized solutions, in Lemma 2.3.7, we can
verify that these imbeddings hold under hypothesis (2.3.1) for ℓ > 1 and we can
prove in a similar fashion the necessity of condition (3.4.1).

Proof of Theorem 3.4.1

Let us first consider the Dirichlet problem

∆v = f in R
N
+ , v = g1 on Γ,

which admits a solution v ∈ W 1, p
ℓ (RN

+ ), if the following compatibility condition
is satisfied (see Theorem 1.4.1):

∀ϑ ∈ A∆
[1+ℓ−N/p′], 〈f, ϑ〉

W−1, p
ℓ (RN

+ )×
◦

W
1, p′

−ℓ (RN
+ )

− 〈g1, ∂Nϑ〉Γ = 0. (3.4.2)

Then, we must solve the second Dirichlet problem

∆u = v in R
N
+ , u = g0 on Γ,

which admits a solution u ∈ W 3, p
ℓ (RN

+ ), if the following compatibility condition
is satisfied (see Theorem 1.4.2):

∀ψ ∈ A∆
[−1+ℓ−N/p′], 〈v, ψ〉

W 1, p
ℓ (RN

+ )×W−1, p′

−ℓ (RN
+ )

− 〈g0, ∂Nψ〉Γ = 0. (3.4.3)

Now, let us show that the compatibility condition (3.4.1) of problem (Q) implies
the conditions (3.4.2) and (3.4.3). Condition (3.4.1) must be satisfied for any
ϕ ∈ A∆2

[1+ℓ−N/p′], thus for any ϑ ∈ A∆
[1+ℓ−N/p′], and then it is reduced to

〈f, ϑ〉
W−1, p

ℓ (RN
+ )×

◦

W
1, p′

−ℓ (RN
+ )

− 〈g1, ∂Nϑ〉Γ = 0,

i.e. precisely the condition (3.4.2). Now, note that by (3.4.1), v satisfies

∀ϕ ∈ A∆2

[1+ℓ−N/p′],

〈∆v, ϕ〉
W−1, p

ℓ (RN
+ )×

◦

W
1, p′

−ℓ (RN
+ )

− 〈v, ∂Nϕ〉Γ − 〈g0, ∂N∆ϕ〉Γ = 0.
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It remains to write for such a ϕ, the Green formula

〈∆v, ϕ〉
W−1, p

ℓ (RN
+ )×

◦

W
1, p′

−ℓ (RN
+ )

= 〈v,∆ϕ〉
W 1, p

ℓ (RN
+ )×W−1, p′

−ℓ (RN
+ )

+ 〈v, ∂Nϕ〉Γ ,

to deduce the condition

∀ϕ ∈ A∆2

[1+ℓ−N/p′], 〈v,∆ϕ〉
W 1, p

ℓ (RN
+ )×W−1, p′

−ℓ (RN
+ )

− 〈g0, ∂N∆ϕ〉Γ = 0.

If we finally remark that any ψ ∈ A∆
[−1+ℓ−N/p′] can be written ψ = ∆ϕ with

ϕ ∈ A∆2

[1+ℓ−N/p′], we exactly find the condition (3.4.3).

Remark 3.4.2. Problem (Q) is ill-posed for f ∈ W−2, p
ℓ (RN

+ ). However, if f = 0,
we can consider less regular boundary conditions g0 and g1. ♦

Regularity of solutions to Problem (Q)

To complete Theorem 3.4.1, we can give a result for different types of data.

Theorem 3.4.3. Let ℓ ∈ Z and m > 1 be two integers and assume that

N

p′
/∈ {1, . . . , ℓ+ 1} and

N

p
/∈ {1, . . . ,−ℓ−m}. (3.4.4)

For any f ∈ Wm−1, p
m+ℓ (RN

+ ), g0 ∈ W
m+3−1/p, p
m+ℓ (Γ) and g1 ∈ W

m+1−1/p, p
m+ℓ (Γ) sat-

isfying the compatibility condition (3.4.1), problem (Q) admits a solution u ∈
Wm+3, p

m+ℓ (RN
+ ), unique up to an element of A∆2

[3−ℓ−N/p], with the estimate

inf
q∈A∆2

[3−ℓ−N/p]

‖u+ q‖W m+3, p
m+ℓ (RN

+ ) 6

C
(

‖f‖W m−1, p
m+ℓ (RN

+ ) + ‖g0‖W
m+3−1/p, p
m+ℓ (Γ)

+ ‖g1‖W
m+1−1/p, p
m+ℓ (Γ)

)

.

It can be readily checked that the kernel is unchanged under the hypothesis
N
p
/∈ {1, . . . ,−ℓ −m}. We also keep the compatibility condition (3.4.1) and the

proof of the existence of a solution is similar to that employed for Theorem 3.4.1
by means of Theorem 1.4.2 for the two Dirichlet problems.

II. Conditions on ∂Nu and ∂N∆u

The biharmonic equation with boundary conditions on ∂Nu and ∂N∆u

(R)











∆2u = f in RN
+ ,

∂Nu = g0 on Γ,

∂N∆u = g1 on Γ.
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Theorem 3.4.4. Let ℓ ∈ Z and assume that

N

p′
/∈ {1, . . . , ℓ} and

N

p
/∈ {1, . . . ,−ℓ+ 1}. (3.4.5)

For any f ∈ W 0, p
ℓ (RN

+ ), g0 ∈ W
2−1/p, p
ℓ−1 (Γ) and g1 ∈ W

−1/p, p
ℓ−1 (Γ) satisfying the

compatibility condition

∀ϕ ∈ N∆2

[ℓ−N/p′], 〈f, ϕ〉
W 0, p

ℓ (RN
+ )×W 0, p′

−ℓ (RN
+ )

+ 〈g1, ϕ〉Γ + 〈g0,∆ϕ〉Γ = 0, (3.4.6)

problem (R) admits a solution u ∈ W 3, p
ℓ−1(R

N
+ ), unique up to an element of

N∆2

[4−ℓ−N/p], with the estimate

inf
q∈N∆2

[4−ℓ−N/p]

‖u+ q‖W 3, p
ℓ−1(RN

+ ) 6

C
(

‖f‖W 0, p
ℓ (RN

+ ) + ‖g0‖W
2−1/p, p
ℓ−1 (Γ)

+ ‖g1‖W
−1/p, p
ℓ−1 (Γ)

)

.

The kernel

We must characterize the kernel of the operator

(∆2, γ1, γ1∆) : W 3, p
ℓ−1(R

N
+ ) −→ W−1, p

ℓ−1 (RN
+ ) ×W

2−1/p, p
ℓ−1 (Γ) ×W

−1/p, p
ℓ−1 (Γ).

Let u be a function of this kernel and set

ũ(x′, xN) =

{

u(x′, xN) si xN > 0,

u(x′,−xN) si xN < 0.

Here again, ũ ∈ S ′(RN) and we show that ∆2ũ = 0 in RN . We can deduce
that ũ, and consequently u, is a polynomial. By identification in the half-space
xN < 0, we obtain that u is even with respect to xN . Conversely it is clear
that any polynomial u even with respect to xN verifies ∂Nu = ∂N∆u = 0 on Γ.
Furthermore u ∈ W 3, p

ℓ−1(R
N
+ ) implies that its degree is at the most [4 − ℓ−N/p].

So we have characterized this kernel as the space of biharmonic polynomials, even
with respect to xN , of degree smaller than or equal to [4 − ℓ−N/p]. We denote
it by N∆2

[4−ℓ−N/p].

The compatibility condition

Problem (R) admits a solution u in W 3, p
ℓ−1(R

N
+ ) only if the compatibility condition

(3.4.6) is satisfied, where 〈g1, ϕ〉Γ and 〈g0,∆ϕ〉Γ respectively denote the duality
brackets 〈g1, ϕ〉W−1/p, p

ℓ−1 (Γ)×W
1−1/p′, p′

−ℓ+1 (Γ)
and 〈g0,∆ϕ〉W 2−1/p, p

ℓ−1 (Γ)×W
−1−1/p′, p′

−ℓ+1 (Γ)
.

The arguments are exactly the same as in the other cases.
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Proof of Theorem 3.4.4

We solve this case in the same way that the precedent, but this time by two
successive Neumann problems.

∆v = f in R
N
+ , ∂Nv = g1 on Γ,

which admits a solution v ∈ W 1, p
ℓ−1(R

N
+ ), if the following compatibility condition

is satisfied (see Theorem 1.4.3):

∀ϑ ∈ N∆
[ℓ−N/p′], 〈f, ϑ〉

W 0, p
ℓ (RN

+ )×W 0, p′

−ℓ (RN
+ )

+ 〈g1, ϑ〉Γ = 0. (3.4.7)

Then
∆u = v in R

N
+ , ∂Nu = g0 on Γ,

which admits a solution u ∈ W 3, p
ℓ−1(R

N
+ ), if the following compatibility condition

is satisfied (see Theorem 1.4.4):

∀ψ ∈ N∆
[−2+ℓ−N/p′], 〈v, ψ〉

W 1, p
ℓ−1(RN

+ )×W−1, p′

−ℓ+1 (RN
+ )

+ 〈g0, ψ〉Γ = 0. (3.4.8)

Here again the compatibility condition (3.4.6) of problem (R) implies the condi-
tions (3.4.7) and (3.4.8). On the one hand condition (3.4.6) must be satisfied for
any ϑ ∈ N∆

[ℓ−N/p′], and that gives (3.4.7).

On the other hand if we introduce the equations ∆v = f in RN
+ and ∂Nv = g1

on Γ, in condition (3.4.6); with the Green formula

〈∆v, ϕ〉
W−1, p

ℓ−1 (RN
+ )×W 1, p′

−ℓ+1(RN
+ )

= 〈v,∆ϕ〉
W 1, p

ℓ−1(RN
+ )×W−1, p′

−ℓ+1 (RN
+ )

− 〈∂Nv, ϕ〉Γ ,

and the remark that any ψ ∈ N∆
[−2+ℓ−N/p′] can be written ψ = ∆ϕ with ϕ ∈

N∆2

[ℓ−N/p′], then we obtain (3.4.8).

Regularity of solutions to Problem (R)

To complete Theorem 3.4.4, we can give a result for different types of data.

Theorem 3.4.5. Let ℓ ∈ Z and m ∈ N. Under hypothesis (1.4.6), for any

f ∈ Wm, p
m+ℓ(R

N
+ ), g0 ∈ W

m+3−1/p, p
m+ℓ (Γ) and g1 ∈ W

m+1−1/p, p
m+ℓ (Γ) satisfying the

compatibility condition (3.4.6), problem (R) admits a solution u ∈ Wm+4, p
m+ℓ (RN

+ ),

unique up to an element of N∆2

[4−ℓ−N/p], with the estimate

inf
q∈N∆2

[4−ℓ−N/p]

‖u+ q‖W m+4, p
m+ℓ (RN

+ ) 6

C
(

‖f‖W m, p
m+ℓ(R

N
+ ) + ‖g0‖W

m+3−1/p, p
m+ℓ (Γ)

+ ‖g1‖W
m+1−1/p, p
m+ℓ (Γ)

)

.

It can be readily checked that the kernel is unchanged under the hypothesis
N
p
/∈ {1, . . . ,−ℓ −m}. We also keep the compatibility condition (3.4.6) and the

proof for the existence is similar to that employed in Theorem 3.4.4 by means of
Theorem 1.4.4 for the two Neumann problems.
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III. Conditions on ∆u and ∂N∆u

Consider now the problem

∆2u = f in R
N
+ , ∆u = g0 and ∂N∆u = g1 on Γ.

Let us first note that these boundary conditions do not satisfy the complementing
condition by Agmon-Douglis-Nirenberg (see [2]). Thus this problem is ill-posed.
Indeed, if we set v = ∆u, we obtain

∆v = f in R
N
+ , v = g0 and ∂Nv = g1 on Γ,

i.e. a Laplace equation with both Dirichlet and Neumann boundary conditions.





Chapitre 4

The Stokes system with Dirichlet

boundary conditions

4.1 Introduction

The purpose of this chapter is the resolution of the Stokes system with nonhomo-
geneous Dirichlet boundary conditions. In the sequel, we will denote it by (SD)
(for Stokes system with Dirichlet conditions):

(SD)







−∆u + ∇π = f in RN
+ ,

div u = h in RN
+ ,

u = g on Γ = RN−1,

with data and solutions which live in weighted Sobolev spaces, expressing at the
same time their regularity and their behavior at infinity. We will naturally base
on the previously established results on the harmonic and biharmonic operators.
We will also concentrate on the basic weights because they are the most usual
and they avoid the question of the kernel for this operator and symmetricaly the
compatibility condition for the data. In the next chapter, we will complete these
results for the other types of weights in this class of spaces.

Among the first works on the Stokes problem in the half-space, we can cite
Cattabriga. In [24], he appeals to the potential theory to explicitly get the velocity
and pressure fields. For the homogeneous problem (f = 0 and h = 0), for
instance, he shows that if g ∈ Lp(Γ) and the semi-norm |g|

W
1−1/p, p
0 (Γ)

<∞, then

∇u ∈ Lp(RN
+ ) and π ∈ Lp(RN

+ ).
Similar results are given by Farwig-Sohr (see [28]) and Galdi (see [30]), who

also have chosen the setting of homogeneous Sobolev spaces. On the other
hand, Maz’ya-Plamenevskĭı-Stupyalis (see [38]), work within the suitable setting
of weighted Sobolev spaces and consider different sorts of boundary conditions.
However, their results are limited to the dimension 3 and to the Hilbertian frame-
work in which they give generalized and strong solutions. This is also the case
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of Boulmezaoud (see [21]), who only gives strong solutions. Otherwise, always in
dimension 3, by Fourier analysis techniques, Tanaka considers the case of very reg-
ular data, corresponding to velocities which belong to W

m+3, 2
2 (R3

+), with m > 0
(see [43]).

Let us also quote, for the evolution Stokes or Navier-Stokes problems, Fujigaki-
Miyakawa (see [29]), who are interested in the behaviour in t → +∞; Borchers-
Miyakawa (see [19]) and Kozono (see [35]), for the LN -Decay property; Ukai (see
[44]), for the Lp-Lq estimates and Giga (see [31]), for the estimates in Hardy
spaces.

4.2 The Stokes system in the whole space

Here again, this study requires to extend some problems in the half-space to the
whole space. On the Stokes problem in RN ,

(S) : −∆u + ∇π = f and div u = h in R
N ,

let us recall the fundamental results on which we are based in the sequel. First,
for any k ∈ Z, we introduce the space

Sk =
{

(λ, µ) ∈ Pk × P∆
k−1; div λ = 0, −∆λ + ∇µ = 0

}

.

Concerning the generalized solutions, we have the following result:

Theorem 4.2.1 (Alliot-Amrouche [3]). Let ℓ ∈ Z and assume that

N/p′ /∈ {1, . . . , ℓ} and N/p /∈ {1, . . . ,−ℓ}.

For any (f , g) ∈
(

W
−1, p
ℓ (RN) ×W 0, p

ℓ (RN)
)

⊥ S[1+ℓ−N/p′], problem (S) admits a

solution (u, π) ∈ W
1, p
ℓ (RN)×W 0, p

ℓ (RN), unique up to an element of S[1−ℓ−N/p],
with the estimate

inf
(λ, µ)∈S[1−ℓ−N/p]

(

‖u + λ‖
W

1, p
ℓ (RN ) + ‖π + µ‖W 0, p

ℓ (RN )

)

6 C
(

‖f‖
W

−1, p
ℓ (RN ) + ‖g‖W 0, p

ℓ (RN )

)

.

We also have the following result for more regular data:

Theorem 4.2.2 (Alliot-Amrouche [3]). Let ℓ ∈ Z and m > 1 be two integers and
assume that

N/p′ /∈ {1, . . . , ℓ+ 1} and N/p /∈ {1, . . . ,−ℓ−m}.
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For any (f , g) ∈
(

W
m−1, p
m+ℓ (RN) ×Wm, p

m+ℓ(R
N)

)

⊥ S[1+ℓ−N/p′], problem (S) ad-

mits a solution (u, π) ∈ W
m+1, p
m+ℓ (RN) ×Wm, p

m+ℓ(R
N), unique up to an element of

S[1−ℓ−N/p], with the estimate

inf
(λ, µ)∈S[1−ℓ−N/p]

(

‖u + λ‖
W

m+1, p
m+ℓ (RN ) + ‖π + µ‖W m, p

m+ℓ(R
N )

)

6 C
(

‖f‖
W

m−1, p
m+ℓ (RN ) + ‖g‖W m, p

m+ℓ(R
N )

)

.

Note that if we suppose ℓ = 0, then S[1−N/p′] = P [1−N/p′] × {0} and the
orthogonality condition (f , g) ⊥ S[1−N/p′] is equivalent to f ⊥ P [1−N/p′].

4.3 Singular boundary conditions

The way we will take to solve the Stokes system is based on the existence of very
weak solutions to homogeneous problems with singular boundary conditions. The
first one is the biharmonic problem: find u ∈ W 1, p

ℓ−1(R
N
+ ) solution to the problem

(P ) : ∆2u = 0 in R
N
+ , u = g0 and ∂Nu = g1 on Γ,

where g0 ∈ W
1−1/p, p
ℓ−1 (Γ) and g1 ∈ W

−1/p, p
ℓ−1 (Γ) are given. This question has been

solved in the previous chapter by Theorem 3.3.5 (the intermediate boundary
conditions).

Remark 4.3.1. In this chapter, we will particularly interested in the case ℓ = 1.
In this case, the compatibility condition (3.3.11) of Theorem 3.3.5 concerns the
polynomials in B[3−N/p′]. For the arguments to come about the compatibility
conditions, let us recall that if N > p′, then B[3−N/p′] = {0} and if N 6 p′, then
B[3−N/p′] = B2 = R x2

N . ♦

We will also need a result of this type about the Neumann problem for the
Laplacian: find u ∈ W 0, p

ℓ−2(R
N
+ ) satisfying the problem

(Q) : ∆u = 0 in R
N
+ , ∂Nu = g on Γ,

where g ∈ W
−1−1/p, p
ℓ−2 (Γ).

Theorem 4.3.2 (Amrouche [8]). Let ℓ ∈ Z and assume that

N/p′ /∈ {1, . . . , ℓ− 2} and N/p /∈ {1, . . . ,−ℓ+ 2}. (4.3.1)

For any g ∈ W
−1−1/p, p
ℓ−2 (Γ) satisfying the compatibility condition

∀ϕ ∈ N∆
[ℓ−N/p′], 〈g, ϕ〉

W
−1−1/p, p
ℓ−2 (Γ)×W

2−1/p′, p′

−ℓ+2 (Γ)
= 0, (4.3.2)
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problem (Q) admits a solution u ∈ W 0, p
ℓ−2(R

N
+ ), unique up to an element of

N∆
[2−ℓ−N/p], with the estimate

inf
q∈N∆

[2−ℓ−N/p]

‖u+ q‖W 0, p
ℓ−2(RN

+ ) 6 C ‖g‖
W

−1−1/p, p
ℓ−2 (Γ)

.

With the same arguments as for Theorem 4.3.2, we can prove an intermediate
result for this problem:

Theorem 4.3.3. Let ℓ ∈ Z and assume that

N/p′ /∈ {1, . . . , ℓ− 1} and N/p /∈ {1, . . . ,−ℓ+ 1}. (4.3.3)

For any g ∈ W
−1/p, p
ℓ−1 (Γ) satisfying the compatibility condition (4.3.2), problem

(Q) admits a solution u ∈ W 1, p
ℓ−1(R

N
+ ), unique up to an element of N∆

[2−ℓ−N/p],
with the estimate

inf
q∈N∆

[2−ℓ−N/p]

‖u+ q‖W 1, p
ℓ−1(RN

+ ) 6 C ‖g‖
W

−1/p, p
ℓ−1 (Γ)

.

Now, we will establish a similar result about the Dirichlet problem for the
Laplacian with very singular boundary conditions: find u ∈ W−1, p

ℓ−2 (RN
+ ) satisfying

the problem
(R) : ∆u = 0 in R

N
+ , u = g on Γ,

where g ∈ W
−1−1/p, p
ℓ−2 (Γ).

Theorem 4.3.4. Let ℓ ∈ Z. Under hypothesis (4.3.1), for any g ∈ W
−1−1/p, p
ℓ−2 (Γ)

satisfying the compatibility condition

∀ϕ ∈ A∆
[1+ℓ−N/p′], 〈g, ∂Nϕ〉W−1−1/p, p

ℓ−2 (Γ)×W
2−1/p′, p′

−ℓ+2 (Γ)
= 0, (4.3.4)

problem (R) admits a solution u ∈ W−1, p
ℓ−2 (RN

+ ), unique up to an element of
A∆

[1−ℓ−N/p], with the estimate

inf
q∈A∆

[1−ℓ−N/p]

‖u+ q‖W−1, p
ℓ−2 (RN

+ ) 6 C ‖g‖
W

−1−1/p, p
ℓ−2 (Γ)

.

Firstly, we must give a meaning to traces for a special class of distributions.
We introduce the spaces

Yℓ(R
N
+ ) =

{

v ∈ W−1, p
ℓ−2 (RN

+ ); ∆v ∈ W 0, p
ℓ+1(R

N
+ )

}

,

Yℓ, 1(R
N
+ ) =

{

v ∈ W−1, p
ℓ−2 (RN

+ ); ∆v ∈ W 0, p
ℓ+1, 1(R

N
+ )

}

.

They are reflexive Banach spaces equipped with their natural norms:

‖v‖Yℓ(R
N
+ ) = ‖v‖W−1, p

ℓ−2 (RN
+ ) + ‖∆v‖W 0, p

ℓ+1(RN
+ ),

‖v‖Yℓ, 1(RN
+ ) = ‖v‖W−1, p

ℓ−2 (RN
+ ) + ‖∆v‖W 0, p

ℓ+1, 1(RN
+ ).
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Lemma 4.3.5. Let ℓ ∈ Z. Under hypothesis (4.3.1), the space D
(

RN
+

)

is dense
in Yℓ(R

N
+ ) and in Yℓ, 1(R

N
+ ).

Proof. For every continuous linear form T ∈
(

Yℓ(R
N
+ )

)′
, there exists a unique pair

(f, g) ∈
◦

W
1, p′

−ℓ+2(R
N
+ ) ×W 0, p′

−ℓ−1(R
N
+ ), such that

∀v ∈ Yℓ(R
N
+ ), 〈T, v〉 = 〈f, v〉 ◦

W
1, p′

−ℓ+2(RN
+ )×W−1, p

ℓ−2 (RN
+ )

+

∫

RN
+

g∆v dx. (4.3.5)

Thanks to the Hahn-Banach theorem, it suffices to show that any T which van-
ishes on D

(

RN
+

)

is actually zero on Yℓ(R
N
+ ). Let us suppose that T = 0 on D

(

RN
+

)

,
thus on D(RN

+ ). Then we can deduce from (4.3.5) that

f + ∆g = 0 in R
N
+ ,

hence we have ∆g ∈
◦

W
1, p′

−ℓ+2(R
N
+ ). Let f̃ ∈ W 1, p′

−ℓ+2(R
N) and g̃ ∈ W 0, p′

−ℓ−1(R
N)

be respectively the extensions by 0 of f and g to RN . Thanks to (4.3.5), it is

clear that f̃ + ∆g̃ = 0 in RN , and thus ∆g̃ ∈ W 1, p′

−ℓ+2(R
N). Now, thanks to the

isomorphism results for the Laplace operator in RN (see [6]), we can deduce that

g̃ ∈ W 3, p′

−ℓ+2(R
N), under hypothesis (4.3.1). Since g̃ is an extension by 0, it follows

that g ∈
◦

W
3, p′

−ℓ+2(R
N
+ ). Then, by density of D(RN

+ ) in
◦

W
3, p′

−ℓ+2(R
N
+ ), there exists

a sequence (ϕk)k∈N ⊂ D(RN
+ ) such that ϕk → g in

◦

W
3, p′

−ℓ+2(R
N
+ ). Thus, for any

v ∈ Yℓ(R
N
+ ), we have

〈T, v〉 = 〈−∆g, v〉 ◦

W
1, p′

−ℓ+2(RN
+ )×W−1, p

ℓ−2 (RN
+ )

+ 〈g,∆v〉 ◦

W
3, p′

−ℓ+2(RN
+ )×W−3, p

ℓ−2 (RN
+ )

= lim
k→∞

{

〈−∆ϕk, v〉 ◦

W
1, p′

−ℓ+2(RN
+ )×W−1, p

ℓ−2 (RN
+ )

+ 〈ϕk,∆v〉 ◦

W
3, p′

−ℓ+2(RN
+ )×W−3, p

ℓ−2 (RN
+ )

}

= lim
k→∞

{

−

∫

RN
+

ϕk ∆v dx+

∫

RN
+

ϕk ∆v dx

}

= 0,

i.e. T is identically zero.
For the density of D

(

RN
+

)

in Yℓ, 1(R
N
+ ), the only difference in the proof concerns

the logarithmic factors in the weights, with g ∈ W 0, p′

−ℓ−1,−1(R
N
+ ).

Thanks to this density lemma, we can prove the following result of traces:

Lemma 4.3.6. Let ℓ ∈ Z. Under hypothesis (4.3.1), the trace mapping γ0 :

D
(

RN
+

)

−→ D(RN−1), can be extended to a linear continuous mapping

γ0 : Yℓ(R
N
+ ) −→ W

−1−1/p, p
ℓ−2 (Γ) if N/p′ /∈ {ℓ− 1, ℓ, ℓ+ 1},

(

resp. γ0 : Yℓ, 1(R
N
+ ) −→ W

−1−1/p, p
ℓ−2 (Γ) if N/p′ ∈ {ℓ− 1, ℓ, ℓ+ 1}

)

.
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Moreover, we have the following Green formula

∀v ∈ Yℓ(R
N
+ ), ∀ϕ ∈ W 3, p′

−ℓ+2(R
N
+ ) such that ϕ = ∆ϕ = 0 on Γ,

〈∆v, ϕ〉
W 0, p

ℓ+1(RN
+ )×W 0, p′

−ℓ−1(RN
+ )

− 〈v,∆ϕ〉
W−1, p

ℓ−2 (RN
+ )×

◦

W
1, p′

−ℓ+2(RN
+ )

= 〈v, ∂Nϕ〉W−1−1/p, p
ℓ−2 (Γ)×W

2−1/p′, p′

−ℓ+2 (Γ)

(4.3.6)

(

resp. the Green formula for v ∈ Yℓ, 1(R
N
+ ), where the first term of the left-hand

side is replaced by 〈∆v, ϕ〉
W 0, p

ℓ+1, 1(RN
+ )×W 0, p′

−ℓ−1, −1(RN
+ )

)

.

Proof. Firstly, let us remark that for any ϕ ∈ W 3, p′

−ℓ+2(R
N
+ ), the boundary condition

ϕ = ∆ϕ = 0 on Γ is equivalent to ϕ = ∂2
Nϕ = 0 on Γ. Moreover, if N/p′ /∈

{ℓ − 1, ℓ, ℓ + 1}, we have the imbedding W 3, p′

−ℓ+2(R
N
+ ) →֒ W 0, p′

−ℓ−1(R
N
+ ). So we can

write the following Green formula:

∀v ∈ D
(

RN
+

)

, ∀ϕ ∈ W 3, p′

−ℓ+2(R
N
+ ) such that ϕ = ∆ϕ = 0 on Γ,

∫

RN
+

ϕ∆v dx−

∫

RN
+

v∆ϕ dx =

∫

Γ

v ∂Nϕ dx′.
(4.3.7)

Since ∆ϕ = 0 on Γ, we have the identity
∫

RN
+

v∆ϕ dx = 〈v,∆ϕ〉
W−1, p

ℓ−2 (RN
+ )×

◦

W
1, p′

−ℓ+2(RN
+ )
.

This implies
∣

∣

∣
〈v, ∂Nϕ〉W−1−1/p, p

ℓ−2 (Γ)×W
2−1/p′, p′

−ℓ+2 (Γ)

∣

∣

∣
6 ‖v‖Yℓ(R

N
+ ) ‖ϕ‖W 3, p′

−ℓ+2(RN
+ )
.

By Lemma 1.3.1, for any µ ∈ W
2−1/p′, p′

−ℓ+2 (Γ), there exists a lifting function ϕ ∈

W 3, p′

−ℓ+2(R
N
+ ) such that ϕ = 0, ∂Nϕ = µ and ∂2

Nϕ = 0 on Γ, satisfying

‖ϕ‖
W 3, p′

−ℓ+2(RN
+ )

6 C ‖µ‖
W

2−1/p′, p′

−ℓ+2 (Γ)
,

where C is a constant not depending on ϕ and µ. Then we can deduce that

‖γ0v‖W
−1−1/p, p
ℓ−2 (Γ)

6 C ‖v‖Yℓ(R
N
+ ).

Thus the linear mapping γ0 : v 7−→ v|Γ defined on D
(

RN
+

)

is continuous for

the norm of Yℓ(R
N
+ ). Since D

(

RN
+

)

is dense in Yℓ(R
N
+ ), γ0 can be extended by

continuity to a mapping still called γ0 ∈ L
(

Yℓ(R
N
+ ); W

−1−1/p, p
ℓ−2 (Γ)

)

. Moreover,

we also can deduce the formula (4.3.6) from (4.3.7) by density of D
(

RN
+

)

in
Yℓ(R

N
+ ). To finish, note that if N/p′ ∈ {ℓ− 1, ℓ, ℓ+ 1}, we only have the imbed-

ding W 3, p′

−ℓ+2(R
N
+ ) →֒ W 0, p′

−ℓ−1,−1(R
N
+ ), hence the necessity to introduce the space

Yℓ, 1(R
N
+ ) and the corresponding Green formula with logarithmic factors for these

three critical values.
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Proof of Theorem 4.3.4. We can observe that solve problem (R) is equivalent to
find u ∈ Yℓ(R

N
+ ) if N/p′ /∈ {ℓ − 1, ℓ, ℓ + 1}

(

resp. u ∈ Yℓ, 1(R
N
+ ) if N/p′ ∈

{ℓ− 1, ℓ, ℓ+ 1}
)

, satisfying

∀v ∈ W 3, p′

−ℓ+2(R
N
+ ) such that v = ∆v = 0 on Γ,

〈u,∆v〉
W−1, p

ℓ−2 (RN
+ )×

◦

W
1, p′

−ℓ+2(RN
+ )

= −〈g, ∂Nv〉W−1−1/p, p
ℓ−2 (Γ)×W

2−1/p′, p′

−ℓ+2 (Γ)
.

(4.3.8)

Indeed the direct implication is straightforward. Conversely, if u satisfies
(4.3.8) then we have for any ϕ ∈ D(RN

+ ),

〈∆u, ϕ〉
W−3, p

ℓ−2 (RN
+ )×

◦

W
3, p′

−ℓ+2(RN
+ )

= 〈u,∆ϕ〉
W−1, p

ℓ−2 (RN
+ )×

◦

W
1, p′

−ℓ+2(RN
+ )

= 0,

thus ∆u = 0 in RN
+ . Moreover, by the Green formula (4.3.6), we have

∀v ∈ W 3, p′

−ℓ+2(R
N
+ ) such that v = ∆v = 0 on Γ,

〈g, ∂Nv〉W−1−1/p, p
ℓ−2 (Γ)×W

2−1/p′, p′

−ℓ+2 (Γ)
= 〈u, ∂Nv〉W−1−1/p, p

ℓ−2 (Γ)×W
2−1/p′, p′

−ℓ+2 (Γ)
.

By Lemma 1.3.1, for any µ ∈ W
2−1/p′, p′

−ℓ+2 (Γ), there exists v ∈ W 3, p′

−ℓ+2(R
N
+ ) such

that v = 0, ∂Nv = µ, ∂2
Nv = 0 on Γ. Consequently,

〈u− g, µ〉
W

−1−1/p, p
ℓ−2 (Γ)×W

2−1/p′, p′

−ℓ+2 (Γ)
= 0,

i.e. u− g = 0 on Γ. Thus u satisfies (R).

Furthermore, for any f ∈
◦

W
1, p′

−ℓ+2(R
N
+ ) ⊥ A∆

[1−ℓ−N/p], according to Theorem

1.4.2, we know that there exists a unique v ∈ W 3, p′

−ℓ+2(R
N
+ )/A∆

[1+ℓ−N/p′] such that

∆v = f in R
N
+ , v = 0 on Γ,

with the estimate

‖v‖
W 3, p′

−ℓ+2(RN
+ )/A∆

[1+ℓ−N/p′]

6 C ‖f‖
W 1, p′

−ℓ+2(RN
+ )
,

where C denotes a generic constant not depending on v and f . Now, let us
consider the linear form T : f 7−→ −〈g, ∂Nv〉W−1−1/p, p

ℓ−2 (Γ)×W
2−1/p′, p′

−ℓ+2 (Γ)
defined on

◦

W
1, p′

−ℓ+2(R
N
+ ) ⊥ A∆

[1−ℓ−N/p]. Thanks to (4.3.4), we have for any q ∈ A∆
[1+ℓ−N/p′],

|Tf | =
∣

∣

∣
〈g, ∂N(v + q)〉

W
−1−1/p, p
ℓ−2 (Γ)×W

2−1/p′, p′

−ℓ+2 (Γ)

∣

∣

∣

6 C ‖g‖
W

−1−1/p, p
ℓ−2 (Γ)

‖v + q‖
W 3, p′

−ℓ+2(RN
+ )

6 C ‖g‖
W

−1−1/p, p
ℓ−2 (Γ)

‖v‖
W 3, p′

−ℓ+2(RN
+ )/A∆

[3−N/p′]

6 C ‖g‖
W

−1−1/p, p
ℓ−2 (Γ)

‖f‖
W 1, p′

−ℓ+2(RN
+ )
.
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Thus we have shown that T is continuous on
◦

W
1, p′

−ℓ+2(R
N
+ ) ⊥ A∆

[1−ℓ−N/p] and
then, according to Riesz representation theorem, there exists a unique u ∈
W−1, p

ℓ−2 (RN
+ )/A∆

[1−ℓ−N/p] such that Tf = 〈u, f〉
W−1, p

ℓ−2 (RN
+ )×

◦

W
1, p′

−ℓ+2(RN
+ )

. So we have

(4.3.8) and u is the unique solution to problem (R).

Similarly to the Neumann problem, we can give an intermediate result:

Theorem 4.3.7. Let ℓ ∈ Z. Under hypothesis (4.3.3), for any g ∈ W
−1/p, p
ℓ−1 (Γ)

satisfying the compatibility condition (4.3.4), problem (R) admits a solution u ∈
W 0, p

ℓ−1(R
N
+ ), unique up to an element of A∆

[1−ℓ−N/p], with the estimate

inf
q∈A∆

[1−ℓ−N/p]

‖u+ q‖W 0, p
ℓ−1(RN

+ ) 6 C ‖g‖
W

−1/p, p
ℓ−1 (Γ)

.

4.4 Generalized solutions to the Stokes system

We will establish a first result about the generalized solutions to (SD) in the
homogeneous case. The following proposition is quite natural and we can find
similar results in the literature although not expressed in weighted Sobolev spaces
(see e.g. Farwig-Sohr [28], Galdi [30], Cattabriga [24]). Moreover, we take up
some ideas in [28] and we considerably simplify the proof.

Proposition 4.4.1. For any g ∈ W
1−1/p, p
0 (Γ), the Stokes problem

−∆u + ∇π = 0 in R
N
+ , (4.4.1)

div u = 0 in R
N
+ , (4.4.2)

u = g on Γ, (4.4.3)

has a unique solution (u, π) ∈ W
1, p
0 (RN

+ ) × Lp(RN
+ ), with the estimate

‖u‖
W

1, p
0 (RN

+ ) + ‖π‖Lp(RN
+ ) 6 C ‖g‖

W
1−1/p, p
0 (Γ)

. (4.4.4)

Proof. (i) Firstly, we will show that system (4.4.1)–(4.4.3) can be reduced to three
problems on the fundamental operators ∆2 and ∆.

Applying the operator div to the first equation (4.4.1), we obtain

∆π = 0 in R
N
+ . (4.4.5)

Now, applying the operator ∆ to the same equation (4.4.1), we deduce

∆2u = 0 in R
N
+ . (4.4.6)

From the boundary condition (4.4.3), we take out

uN = gN on Γ, (4.4.7)
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and moreover div′ u′ = div′ g′ on Γ, where div′ u′ =
∑N−1

i=1 ∂iui.
Since div u = 0 in RN

+ , we also have div u = 0 on Γ; then we can write
∂NuN + div′ u′ = 0 on Γ, hence

∂NuN = − div′ g′ on Γ. (4.4.8)

Combining (4.4.6), (4.4.7) and (4.4.8), we get the following biharmonic problem

(P ) : ∆2uN = 0 in R
N
+ , uN = gN and ∂NuN = − div′ g′ on Γ.

Then, combining (4.4.5) with the trace on Γ of the N th component in the equa-
tions (4.4.1), we obtain the following Neumann problem

(Q) : ∆π = 0 in R
N
+ , ∂Nπ = ∆uN on Γ.

Lastly, if we consider the N − 1 first components of the equations (4.4.1) and
(4.4.3), we can write the following Dirichlet problem

(R) : ∆u′ = ∇′π in R
N
+ , u′ = g′ on Γ.

(ii) Now, we will solve these three problems.

Step 1: Problem (P ). Since g ∈ W
1−1/p, p
0 (Γ), we have gN ∈ W

1−1/p, p
0 (Γ)

and div′ g′ ∈ W
−1/p, p
0 (Γ). So (P ) is an homogeneous biharmonic problem with

singular boundary conditions, and we can apply Theorem 3.3.5 provided the
compatibility condition (3.3.11) is fulfilled. If 1 −N/p′ < 0, then B[3−N/p′] = {0}
and the condition vanishes. If 1 − N/p′ > 0, then B[3−N/p′] = R x2

N and this
condition is equivalent to

〈div′ g′, 1〉
W

−1/p, p
0 (Γ)×W

1/p, p′

0 (Γ)
= 0. (4.4.9)

Since D(RN−1) is dense in W
1/p, p′

0 (Γ), we know that there exists a sequence

(ϕk)k∈N ⊂ D(RN−1) such that ϕk → 1 in W
1/p, p′

0 (Γ), hence we can deduce

〈div′ g′, 1〉
W

−1/p, p
0 (Γ)×W

1/p, p′

0 (Γ)
= − lim

k→∞

∫

RN−1

g′ .∇ϕk dx′ = 0.

Thus the orthogonality condition is fulfilled and problem (P ) has a unique solu-
tion uN ∈ W 1, p

0 (RN
+ ), satisfying

‖uN‖W 1, p
0 (RN

+ ) 6 C
(

‖gN‖W
1−1/p, p
0 (Γ)

+ ‖ div′ g′‖
W

−1/p, p
0 (Γ)

)

6 C ‖g‖
W

1−1/p, p
0 (Γ)

. (4.4.10)

Step 2: Problem (Q). Since ∆2uN = 0 in RN
+ , we have ∆uN ∈ Y2(R

N
+ ) and also

∆uN ∈ Y2, 1(R
N
+ ), hence ∆uN |Γ ∈ W

−1−1/p, p
0 (Γ) by Lemma 4.3.6. Then we can

apply Theorem 4.3.2, provided the compatibility condition (4.3.2) is fulfilled, i.e.

∀ϕ ∈ N∆
[2−N/p′], 〈∆uN , ϕ〉W−1−1/p, p

0 (Γ)×W
2−1/p′, p′

0 (Γ)
= 0.
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Knowing that N∆
[2−N/p′] ⊂ P1, an argument similar to that of the condition (4.4.9)

in Step 1 gives us this relation. We can conclude that problem (Q) has a unique
solution π ∈ Lp(RN

+ ), satisfying

‖π‖Lp(RN
+ ) 6 C ‖∆uN‖W

−1−1/p, p
0 (Γ)

6 C ‖∆uN‖Y2(RN
+ ) = C ‖∆uN‖W−1, p

0 (RN
+ )

6 C ‖uN‖W 1, p
0 (RN

+ ) 6 C ‖g‖
W

1−1/p, p
0 (Γ)

. (4.4.11)

Step 3: Problem (R). By Step 2, we have ∇′π ∈ W−1, p
0 (RN

+ )
N−1

and moreover

g′ ∈ W
1−1/p, p
0 (Γ)

N−1
. Since A∆

[1−N/p′] = {0}, according to Theorem 1.4.1, we

know that problem (R) has a unique solution u′ ∈ W 1, p
0 (RN

+ )
N−1

, satisfying

‖u′‖
W 1, p

0 (RN
+ )

N−1 6 C
(

‖∇′π‖
W−1, p

0 (RN
+ )

N−1 + ‖g′‖
W

1−1/p, p
0 (Γ)

N−1

)

6 C
(

‖π‖Lp(RN
+ ) + ‖g′‖

W
1−1/p, p
0 (Γ)

N−1

)

6 C ‖g‖
W

1−1/p, p
0 (Γ)

. (4.4.12)

(iii) In order, we have found uN , π and u′, which satisfy (4.4.3) and partially
satisfy (4.4.1), i.e.

−∆u′ + ∇′π = 0 in R
N
+ .

It remains to show they satisfy (4.4.2) and the N th component of (4.4.1), i.e.

−∆uN + ∂Nπ = 0 in R
N
+ .

Consider such a pair (u, π) satisfying problems (P ), (Q) and (R). From the first
equations of (P ) and (Q), we obtain

∆(∆uN − ∂Nπ) = ∆2uN = 0 in R
N
+ .

Thanks to the boundary condition of (Q), we can deduce that the distribution
∆uN − ∂Nπ ∈ W−1, p

0 (RN
+ ) satisfies the following Dirichlet problem

∆(∆uN − ∂Nπ) = 0 in R
N
+ , ∆uN − ∂Nπ = 0 on Γ.

Then, according to Theorem 4.3.4, we necessarily have ∆uN − ∂Nπ = 0 in RN
+ .

Thus (u, π) completely satisfies (4.4.1).
Now, applying the operator div to (4.4.1), we get −∆ div u + ∆π = 0 in RN

+ ,
and by the main equation of (Q), i.e. (4.4.5), we obtain ∆ div u = 0 in RN

+ .
Moreover, from the boundary condition in (R), we get div′ u′ = div′ g′ on Γ.
Then, with the boundary condition in (P ), we can write

div u = div′ u′ + ∂NuN = div′ g′ − div′ g′ = 0 on Γ.
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So, we have

∆ div u = 0 in R
N
+ , div u = 0 on Γ,

with div u ∈ Lp(RN
+ ) and then by Theorem 4.3.7, we can deduce that div u = 0

in RN
+ , i.e. (4.4.2) is satisfied.

(iv) Finally, let us remark that the uniqueness of (u, π) is a consequence of the
uniqueness of the solutions to problems (P ), (Q) and (R). Moreover, the estimate
(4.4.4) is a consequence of the estimates (4.4.10), (4.4.11) and (4.4.12).

Now, we can solve the complete problem (SD). For this, we will show that it
can be reduced to an homogeneous problem, solved by Proposition 4.4.1.

Theorem 4.4.2. For any f ∈ W
−1, p
0 (RN

+ ), h ∈ Lp(RN
+ ) and g ∈ W

1−1/p, p
0 (Γ),

problem (SD) admits a unique solution (u, π) ∈ W
1, p
0 (RN

+ ) × Lp(RN
+ ), and there

exists a constant C such that

‖u‖
W

1, p
0 (RN

+ ) + ‖π‖Lp(RN
+ ) 6

C
(

‖f‖
W

−1, p
0 (RN

+ ) + ‖h‖Lp(RN
+ ) + ‖g‖

W
1−1/p, p
0 (Γ)

)

. (4.4.13)

Proof. Firstly, let us write f = div F, where F = (Fi)16i6N ∈ Lp(RN
+ )

N
, with the

estimate

‖F‖
Lp(RN

+ )
N 6 C ‖f‖

W
−1, p
0 (RN

+ );

and let us respectively denote by F̃ = (F̃i)16i6N ∈ Lp(RN)
N

and h̃ ∈ Lp(RN) the
extensions by 0 of F and h to RN . By Theorem 4.2.1, we know that there exists
(ũ, π̃) ∈ W

1, p
0 (RN) × Lp(RN) solution to the problem

(S̃) : −∆ũ + ∇π̃ = div F̃ and div ũ = h̃ in R
N ,

provided the condition div F̃ ⊥ P [1−N/p′] is fulfilled. If 1−N/p′ < 0, we obviously
have P [1−N/p′] = {0}, thus the condition vanishes. If 1−N/p′ > 0, then we have
P [1−N/p′] = RN and this condition is equivalent to

∀i = 1, . . . , N,
〈

div F̃i, 1
〉

W−1, p
0 (RN )×W 1, p′

0 (RN )
= 0.

This is exactly the same argument as for the condition (4.4.9) in the previ-
ous proof. Thus the orthogonality condition is fulfilled, hence the existence of
(ũ, π̃) ∈ W

1, p
0 (RN) × Lp(RN) solution to problem (S̃), satisfying

‖ũ‖
W

1, p
0 (RN ) + ‖π̃‖Lp(RN ) 6 C

(

‖ div F̃‖
W

−1, p
0 (RN ) + ‖h̃‖Lp(RN )

)

6 C
(

‖f‖
W

−1, p
0 (RN

+ ) + ‖h‖Lp(RN
+ )

)

. (4.4.14)
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Consequently, we can reduce the system (SD) to the homogeneous problem

(S♯) : −∆v + ∇ϑ = 0 and div v = 0 in R
N
+ , v = g♯ on Γ,

where we have set g♯ = g − ũ|Γ ∈ W
1−1/p, p
0 (Γ). Now, thanks to Proposition

4.4.1, we know that (S♯) admits a unique solution (v, ϑ) ∈ W
1, p
0 (RN

+ )×Lp(RN
+ ),

satisfying

‖v‖
W

1, p
0 (RN

+ )+‖ϑ‖Lp(RN
+ ) 6 C ‖g♯‖

W
1−1/p, p
0 (Γ)

6 C
(

‖f‖
W

−1, p
0 (RN

+ ) + ‖h‖Lp(RN
+ ) + ‖g‖

W
1−1/p, p
0 (Γ)

)

. (4.4.15)

Then, (u, π) = (v + ũ|RN
+
, ϑ + π̃|RN

+
) ∈ W

1, p
0 (RN

+ ) × Lp(RN
+ ) is solution to (SD)

and the estimate (4.4.13) is a consequence of the estimates (4.4.14) and (4.4.15).
Finally, the uniqueness of the solution to (SD) is a straightforward consequence
of Proposition 4.4.1.

Remark 4.4.3. In a forthcoming work, we will show that under hypotheses of
Theorem 4.4.2 and if besides f ∈ W

−1, q
0 (RN

+ ), h ∈ Lq(RN
+ ) and g ∈ W

1−1/q, q
0 (Γ),

for any real number q > 1, then the solution (u, π) given by Theorem 4.4.2
verifies moreover (u, π) ∈ W

1, q
0 (RN

+ ) × Lq(RN
+ ). ♦

4.5 Strong solutions & regularity for the Stokes

system

In this section, we are interested in the existence of strong solutions (and then
to regular solutions, see Corollaries 4.5.5 and 4.5.7), i.e. of solutions (u, π) ∈
W

2, p
ℓ+1(R

N
+ ) × W 1, p

ℓ+1(R
N
+ ). Here, we limit ourselves to the two cases ℓ = 0 or

ℓ = −1. Note that in the case ℓ = 0, we have W 2, p
1 (RN

+ ) →֒ W 1, p
0 (RN

+ ) and

W 1, p
1 (RN

+ ) →֒ Lp(RN
+ ). The proposition and theorem which follow show that the

generalized solution of Theorem 4.4.2, with a stronger hypothesis on the data, is
in fact a strong solution.

Proposition 4.5.1. Assume that N
p′

6= 1. For any g ∈ W
2−1/p, p
1 (Γ), the Stokes

problem (4.4.1)–(4.4.3) has a unique solution (u, π) ∈ W
2, p
1 (RN

+ ) ×W 1, p
1 (RN

+ ),
with the estimate

‖u‖
W

2, p
1 (RN

+ ) + ‖π‖W 1, p
1 (RN

+ ) 6 C ‖g‖
W

2−1/p, p
1 (Γ)

.

Proof. The arguments for the estimate are unchanged with respect to the proof
of Proposition 4.4.1. For the surjectivity and the uniqueness, note that we al-
ways have the imbedding W

2−1/p, p
1 (Γ) →֒ W

1−1/p, p
0 (Γ). By Proposition 4.4.1,

we can deduce that problem (4.4.1)–(4.4.3) admits a unique solution (u, π) ∈



4.5. Strong solutions & regularity for the Stokes system 73

W
1, p
0 (RN

+ )×Lp(RN
+ ), satisfying the estimate (4.4.4). Then, it suffices to go back

to the proof of Proposition 4.4.1 and to use the established results about prob-
lems (P ), (Q) and (R), to show that in fact (u, π) ∈ W

2, p
1 (RN

+ ) ×W 1, p
1 (RN

+ ).

In order, for problem (P ), according to Lemma 2.3.9, we find uN ∈ W 2, p
1 (RN

+ );

for problem (Q), thanks to Theorem 4.3.3, we find π ∈ W 1, p
1 (RN

+ ); for problem

(R), according to Theorem 1.4.2, we find u′ ∈ W 2, p
1 (RN

+ )
N−1

. Note that for these
three results, the condition N/p′ 6= 1 is always necessary.

Now, we can study the strong solutions for the complete problem (SD). As for
the generalized solutions, we will show that it is equivalent to an homogeneous
problem, solved by Proposition 4.5.1. The following theorem was established in
the case N = 3, p = 2, by Maz’ya-Plamenevskĭı-Stupyalis (see [38]).

Theorem 4.5.2. Assume that N
p′

6= 1. For any f ∈ W
0, p
1 (RN

+ ), h ∈ W 1, p
1 (RN

+ )

and g ∈ W
2−1/p, p
1 (Γ), problem (SD) admits a unique solution (u, π) which belongs

to W
2, p
1 (RN

+ ) ×W 1, p
1 (RN

+ ), with the estimate

‖u‖
W

2, p
1 (RN

+ ) + ‖π‖W 1, p
1 (RN

+ ) 6

C
(

‖f‖
W

0, p
1 (RN

+ ) + ‖h‖W 1, p
1 (RN

+ ) + ‖g‖
W

2−1/p, p
1 (Γ)

)

.

Proof. Here again, the arguments for the estimate are unchanged with respect
to the proof of Theorem 4.4.2. For the surjectivity and the uniqueness, note
that the imbedding W 0, p

1 (RN
+ ) →֒ W−1, p

0 (RN
+ ) holds if N/p′ 6= 1. Moreover, we

have W 1, p
1 (RN

+ ) →֒ Lp(RN
+ ) and W

2−1/p, p
1 (Γ) →֒ W

1−1/p, p
0 (Γ). Thus, thanks to

Theorem 4.4.2, we know that problem (SD) admits a unique solution (u, π) ∈
W

1, p
0 (RN

+ ) × Lp(RN
+ ), satisfying the estimate (4.4.13). To show that (u, π) ∈

W
2, p
1 (RN

+ ) ×W 1, p
1 (RN

+ ), we want to find an extension f̃ of f to RN , such that

the orthogonality condition for the extended problem to the whole space (S̃)
holds. To this end, we still can write f = div F. Indeed, if N/p′ 6= 1, for any
f ∈ W

0, p
1 (RN

+ ), the Dirichlet problem

∆w = f in R
N
+ , w = 0 on Γ,

admits a unique solution w ∈ W
2, p
1 (RN

+ ), according to Theorem 1.4.2. So, if

we consider F = ∇w ∈ W
1, p
1 (RN

+ )
N

, we have f = div F. Now, it suffices to
go back to the proof of Theorem 4.4.2. Here again, we know that there exists
a continuous linear extension operator from W 1, p

1 (RN
+ ) to W 1, p

1 (RN), so we get

f̃ = div F̃ ∈ W
0, p
1 (RN) and h̃ ∈ W 1, p

1 (RN), hence the extended problem (S̃),
which has, by Theorem 4.2.2, a solution (ũ, π̃) ∈ W

2, p
1 (RN)×W 1, p

1 (RN). Then,

we obtain the equivalent problem (S♯) with g♯ ∈ W
2−1/p, p
1 (Γ) and this problem

is solved by Proposition 4.5.1.
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Remark 4.5.3. To give a variant to this proof, we also can consider the extension
f̃ ∈ W

0, p
1 (RN) of f to RN defined by:

f̃(x′, xN) =

{

f(x′, xN) if xN > 0,
−f(x′, −xN) if xN < 0,

and h̃ ∈ W 1, p
1 (RN) an extension of h to RN . Then by Theorem 4.2.2, there exists

(ũ, π̃) solution to the problem

(S̃) : −∆ũ + ∇π̃ = f̃ and div ũ = h̃ in R
N ,

provided the orthogonality condition f̃ ⊥ P [1−N/p′] is fulfilled. Here again, if
1 −N/p′ < 0 this condition vanishes and if 1 −N/p′ > 0, we have

∀i = 1, . . . , N,

∫

RN

f̃ i(x
′, xN) dx = 0.

Thus the orthogonality condition holds. The rest of the proof is identical. ♦

Remark 4.5.4. Similarly to Remark 4.4.3, we could show that under hypothe-
ses of Theorem 4.5.2 and if moreover f ∈ W

0, q
1 (RN

+ ), h ∈ W 1, q
1 (RN

+ ) and

g ∈ W
2−1/q, q
1 (Γ), with an arbitrary real number q > 1, then the solution (u, π)

given by Theorem 4.4.2 verify, besides, (u, π) ∈ W
2, q
1 (RN

+ ) ×W 1, q
1 (RN

+ ). ♦

We will now establish a global regularity result of solutions to the Stokes
system (SD), which includes the case of strong solutions and which rests on
Theorem 4.4.2 and a regularity argument.

Corollary 4.5.5. Let m ∈ N and assume that N
p′

6= 1 if m > 1. For any

f ∈ W m−1, p
m (RN

+ ), h ∈ Wm, p
m (RN

+ ) and g ∈ W m+1−1/p, p
m (Γ), problem (SD) admits

a unique solution (u, π) ∈ W m+1, p
m (RN

+ ) ×Wm, p
m (RN

+ ), with the estimate

‖u‖
W

m+1, p
m (RN

+ ) + ‖π‖W m, p
m (RN

+ ) 6

C
(

‖f‖
W

m−1, p
m (RN

+ ) + ‖h‖W m, p
m (RN

+ ) + ‖g‖
W

m+1−1/p, p
m (Γ)

)

.

Proof. Since we have Wm−1, p
m (RN

+ ) →֒ W−1, p
0 (RN

+ ), Wm, p
m (RN

+ ) →֒ Lp(RN
+ ) and

W
m+1−1/p, p
m (Γ) →֒ W

1−1/p, p
0 (Γ), thanks to Theorem 4.4.2, we know that problem

(SD) admits a unique solution (u, π) ∈ W
1, p
0 (RN

+ ) × Lp(RN
+ ). We will show by

induction that

(f , h, g) ∈ W m−1, p
m (RN

+ ) ×Wm, p
m (RN

+ ) × W m+1−1/p, p
m (Γ)

⇒ (u, π) ∈ W m+1, p
m (RN

+ ) ×Wm, p
m (RN

+ ).
(4.5.1)

For m = 0, (4.5.1) is true. Assume that (4.5.1) is true for 0, 1, . . . ,m and suppose

that (f , h, g) ∈ W
m, p
m+1(R

N
+ ) × Wm+1, p

m+1 (RN
+ ) × W

m+2−1/p, p
m+1 (Γ). Let us prove
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that (u, π) ∈ W
m+2, p
m+1 (RN

+ ) ×Wm+1, p
m+1 (RN

+ ). Since Wm, p
m+1(R

N
+ ) →֒ Wm−1, p

m (RN
+ ),

Wm+1, p
m+1 (RN

+ ) →֒ Wm, p
m (RN

+ ) and W
m+2−1/p, p
m+1 (Γ) →֒ W

m+1−1/p, p
m (Γ), we know that

(u, π) ∈ W m+1, p
m (RN

+ ) ×Wm, p
m (RN

+ ) thanks to the induction hypothesis. Now,
for any i ∈ {1, . . . , N − 1}, we have

−∆(̺ ∂iu) + ∇(̺ ∂iπ)

= ̺ ∂if +
2

̺
x.∇∂iu +

(

N − 1

̺
+

1

̺3

)

∂iu +
1

̺
x ∂iπ.

Thus, −∆(̺ ∂iu) + ∇(̺ ∂iπ) ∈ W m−1, p
m (RN

+ ). Moreover,

div(̺ ∂iu) =
1

̺
x ∂iu + ̺ ∂ih.

Thus, div(̺ ∂iu) ∈ Wm, p
m (RN

+ ). We also have γ0(̺ ∂iu) = ̺′ ∂iγ0u = ̺′ ∂ig ∈

W m+1−1/p, p
m (Γ). So, by induction hypothesis, we can deduce that

∀i ∈ {1, . . . , N − 1}, (∂iu, ∂iπ) ∈ W
m+1, p
m+1 (RN

+ ) ×Wm, p
m+1(R

N
+ ).

It remains to prove that (∂Nu, ∂Nπ) ∈ W
m+1, p
m+1 (RN

+ ) ×Wm, p
m+1(R

N
+ ). For that, let

us observe that for any i ∈ {1, . . . , N − 1}, we have

∂i∂Nu = ∂N∂iu ∈ W
m, p
m+1(R

N
+ ),

∂2
Nui = −∆′ui + ∂iπ − fi ∈ Wm, p

m+1(R
N
+ ),

∂2
NuN = ∂Nh− ∂N div′ u′ ∈ Wm, p

m+1(R
N
+ ),

∂Nπ = fN + ∆uN ∈ Wm, p
m+1(R

N
+ ).

Hence, ∇(∂Nu) ∈ W
m, p
m+1(R

N
+ )

N
and knowing that ∂Nu ∈ W m, p

m (RN
+ ), we can

deduce that ∂Nu ∈ W
m+1, p
m+1 (RN

+ ), according to definition (1.2.1). Consequently,

we have ∇u ∈ W
m+1, p
m+1 (RN

+ )
N

. Likewise, we have ∇π ∈ W
m, p
m+1(R

N
+ ). Finally, we

can conclude that (u, π) ∈ W
m+2, p
m+1 (RN

+ ) ×Wm+1, p
m+1 (RN

+ ).

Now, we examine the basic case ℓ = −1, corresponding to f ∈ Lp(RN
+ ). More

precisely, we have the following result, corresponding to Theorem 4.5.2:

Theorem 4.5.6. For any f ∈ Lp(RN
+ ), h ∈ W 1, p

0 (RN
+ ) and g ∈ W

2−1/p, p
0 (Γ),

problem (SD) admits a solution (u, π) ∈ W
2, p
0 (RN

+ )×W 1, p
0 (RN

+ ), unique if N > p,
unique up to an element of (R xN)N−1 × {0} × R if N 6 p, with the following
estimate if N 6 p (eliminate (λ, µ) if N > p):

inf
(λ, µ)∈(R xN )N−1×{0}×R

(

‖u + λ‖
W

2, p
0 (RN

+ ) + ‖π + µ‖W 1, p
0 (RN

+ )

)

6

C
(

‖f‖Lp(RN
+ ) + ‖h‖W 1, p

0 (RN
+ ) + ‖g‖

W
2−1/p, p
0 (Γ)

)

.
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Proof. The idea is to go back to the proof of Theorem 4.4.2 and we will throw light
on the modifications. In contrast to Theorem 4.5.2, the extension f̃ of f is of no
importance because there is no orthogonality condition for the extended problem
(S̃) (see Theorem 4.2.2). Then, we get the reduced problem (S♯). Now, to solve
(S♯), this is the proof of Proposition 4.4.1. Problem (P ) yields a unique uN ∈
W 2, p

0 (RN
+ ), problem (Q) gives π ∈ W 1, p

0 (RN
+ ) unique up to an element of N∆

[1−N/p];

and (R) yields u′ ∈ W 2, p
0 (RN

+ )
N−1

unique up to an element of (A∆
[2−N/p])

N−1
. The

point (iii) of the proof is identical for all N and p (the kernels of the two Dirichlet
problems are always reduced to zero). The last point concerns the kernel of the
operator associated to this problem. If N > p, it is clearly reduced to zero and if
N 6 p, we have A∆

[2−N/p] = R xN and N∆
[1−N/p] = P[1−N/p] = R.

Thanks to the corresponding imbeddings, we can give a regularity result with
the same proof as Corollary 4.5.5.

Corollary 4.5.7. Let m ∈ N. For any f ∈ W m, p
m (RN

+ ), h ∈ Wm+1, p
m (RN

+ ) and

g ∈ W m+2−1/p, p
m (Γ), problem (SD) admits a solution (u, π) ∈ W m+2, p

m (RN
+ ) ×

Wm+1, p
m (RN

+ ), unique if N > p, unique up to an element of (R xN)N−1 × {0} ×R

if N 6 p, with the following estimate if N 6 p (eliminate (λ, µ) if N > p):

inf
(λ, µ)∈(R xN )N−1×{0}×R

(

‖u + λ‖
W

m+2, p
m (RN

+ ) + ‖π + µ‖W m+1, p
m (RN

+ )

)

6

C
(

‖f‖W
m, p
m (RN

+ ) + ‖h‖W m+1, p
m (RN

+ ) + ‖g‖
W

m+2−1/p, p
m (Γ)

)

.

4.6 Very weak solutions to the Stokes system

The aim of this section is to study the Stokes problem with singular data on
the boundary. At first, we must give a meaning to singular data for the Stokes
problem in the half-space. More precisely, we want to show that a boundary
condition of the form g ∈ W

−1/p, p
ℓ−1 (Γ) is meaningful. In mind of this paper,

we limit ourselves to the two cases ℓ = 0 or ℓ = 1, i.e. to g ∈ W
−1/p, p
−1 (Γ)

corresponding to a solution (u, π) ∈ W
0, p
−1 (RN

+ )×W−1, p
−1 (RN

+ ), or g ∈ W
−1/p, p
0 (Γ)

corresponding to (u, π) ∈ Lp(RN
+ ) ×W−1, p

0 (RN
+ ). In that way, for every ℓ ∈ Z,

we introduce the space

M ℓ(R
N
+ ) =

{

u ∈ W
2, p′

−ℓ+1(R
N
+ ); u = 0 and div u = 0 on Γ

}

.

Lemma 4.6.1. For any ℓ ∈ Z, we have the identity

M ℓ(R
N
+ ) =

{

u ∈ W
2, p′

−ℓ+1(R
N
+ ); u = 0 and ∂NuN = 0 on Γ

}

(4.6.1)



4.6. Very weak solutions to the Stokes system 77

and the range space of the linear mapping γ1 : M ℓ(R
N
+ ) → W

1/p, p′

−ℓ+1 (Γ), that is
the trace of the normal derivative, is

Zℓ(Γ) =
{

w ∈ W
1/p, p′

−ℓ+1 (Γ); wN = 0 on Γ
}

. (4.6.2)

Proof. Let u ∈ W
2, p′

−ℓ+1(R
N
+ ) such that u = 0 on Γ. Then div u = ∂NuN on Γ

and the identity (4.6.1) holds.
Moreover, it is clear that Im γ1 ⊂ Zℓ(Γ). Conversely, given w ∈ Zℓ(Γ), by

Lemma 1.3.1, there exists u ∈ W
2, p′

−ℓ+1(R
N
+ ) such that u = 0 and ∂Nu = w on Γ.

Since wN = 0 on Γ, we have u ∈ M ℓ(R
N
+ ) and w ∈ Im γ1.

For any open subset Ω of R, we also define the space

W
1, p′

−ℓ (div; Ω) =

[

{

v ∈ W
1, p′

−ℓ (Ω); div v ∈ W 1, p′

−ℓ+1(Ω)
}

if N
p′
6= ℓ,

{

v ∈ W
1, p′

−ℓ,−1(Ω); div v ∈ W 1, p′

−ℓ+1(Ω)
}

if N
p′

= ℓ;

which is a reflexive Banach space for the norm

‖v‖
W

1, p′

−ℓ (div; Ω)
=

[

‖v‖
W

1, p′

−ℓ (Ω)
+ ‖ div v‖

W 1, p′

−ℓ+1(Ω)
if N

p′
6= ℓ,

‖v‖
W

1, p′

−ℓ, −1(Ω)
+ ‖ div v‖

W 1, p′

−ℓ+1(Ω)
if N

p′
= ℓ;

and the following subspace of W
1, p′

−ℓ (div; RN
+ )

Xℓ(R
N
+ ) =





{

v ∈
◦

W
1, p′

−ℓ (RN
+ ); div v ∈

◦

W
1, p′

−ℓ+1(R
N
+ )

}

if N
p′
6= ℓ,

{

v ∈
◦

W
1, p′

−ℓ,−1(R
N
+ ); div v ∈

◦

W
1, p′

−ℓ+1(R
N
+ )

}

if N
p′

= ℓ.

Before continuing, let us give the reason of this slightly complicated definition.
This is the necessity of the imbedding M ℓ(R

N
+ ) →֒ Xℓ(R

N
+ ); well, if N/p′ = ℓ, we

do not have W 2, p′

−ℓ+1(R
N
+ ) →֒ W 1, p′

−ℓ (RN
+ ), but only W 2, p′

−ℓ+1(R
N
+ ) →֒ W 1, p′

−ℓ,−1(R
N
+ ).

Lemma 4.6.2. For any ℓ ∈ Z, the space D(RN
+ ) is dense in Xℓ(R

N
+ ).

Proof. Let v ∈ Xℓ(R
N
+ ) and ṽ the extension by 0 of v to RN , then we have

ṽ ∈ W
1, p′

−ℓ (div; RN).
We begin to apply the cut off functions φk, defined on RN for any k ∈ N, by

φk(x) =







φ

(

k

ln |x|

)

, if |x| > 1,

1, otherwise,

where φ ∈ C∞([0, ∞[) is such that

φ(t) = 0, if t ∈ [0, 1]; 0 6 φ(t) 6 1, if t ∈ [1, 2]; φ(t) = 1, if t > 2.
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Let us recall Lemma 7.1 in [5], which is the essential argument for the sequel:

For all x ∈ RN , such that |x| ∈ [e
k
2 , ek] with k > 2, and for all µ ∈ NN , we

have the estimate
|∂µφk(x)| 6

cµ
̺|µ| lg ̺

, (4.6.3)

where cµ is a constant independent of k.
We can deduce that

φk ṽ = ṽk →
k→∞

ṽ in W
1, p′

−ℓ (RN)

and
div(φk ṽ) = φk div ṽ + ṽ · ∇φk →

k→∞
div ṽ in W 1, p′

−ℓ+1(R
N).

Let us notice that the estimate (4.6.3) is optimal to show the convergence to zero

of the term v · ∇φk in W 1, p′

−ℓ+1(R
N).

Now, for any real number θ > 0 and x ∈ RN , we set ṽk, θ(x) = ṽk(x− θ eN).

Then ṽk, θ ∈ W
1, p′

−ℓ (div; RN) and supp ṽk, θ is compact in RN
+ , moreover

lim
θ→0

ṽk, θ = ṽk in W
1, p′

−ℓ (div; R
N).

Consequently, for any real number ε > 0 small enough, ρε ∗ ṽk, θ ∈ D(RN
+ ) and

lim
ε→0

lim
θ→0

lim
k→∞

ρε ∗ ṽk, θ = ṽ in W
1, p′

−ℓ (div; R
N),

where ρε is a mollifier.

Let X ′
ℓ(R

N
+ ) be the dual space of Xℓ(R

N
+ ), we introduce the spaces:

T ℓ(R
N
+ ) =

{

v ∈ W
0, p
ℓ−1(R

N
+ ); ∆v ∈ X ′

ℓ(R
N
+ )

}

,

T ℓ, σ(RN
+ ) =

{

v ∈ T ℓ(R
N
+ ); div v = 0 in R

N
+

}

,

which are reflexive Banach spaces for the norm

‖v‖T ℓ(R
N
+ ) = ‖v‖

W
0, p
ℓ−1(RN

+ ) + ‖∆v‖X′

ℓ(R
N
+ ),

where ‖ · ‖X′

ℓ(R
N
+ ) denotes the dual norm of the space X ′

ℓ(R
N
+ ).

Lemma 4.6.3. Let ℓ ∈ Z. Under hypothesis (4.3.3), the space D
(

RN
+

)

is dense
in T ℓ(R

N
+ ).

Proof. For every continuous linear form z ∈
(

T ℓ(R
N
+ )

)′
, there exists a unique

pair (f , g) ∈ W
0, p′

−ℓ+1(R
N
+ ) × Xℓ(R

N
+ ), such that

∀v ∈ T ℓ(R
N
+ ), 〈z,v〉 =

∫

RN
+

f · v dx+ 〈∆v, g〉X′

ℓ(R
N
+ )×Xℓ(R

N
+ ) . (4.6.4)
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Thanks to the Hahn-Banach theorem, it suffices to show that any z which van-
ishes on D

(

RN
+

)

is actually zero on T ℓ(R
N
+ ). Let us suppose that z = 0 on

D
(

RN
+

)

, thus on D(RN
+ ). Then we can deduce from (4.6.4) that

f + ∆g = 0 in R
N
+ ,

hence we have ∆g ∈ W
0, p′

−ℓ+1(R
N
+ ), g ∈

◦

W
1, p′

−ℓ (RN
+ ) and div g ∈

◦

W
1, p′

−ℓ+1(R
N
+ ). Let

f̃ ∈ W
0, p′

−ℓ+1(R
N) and g̃ ∈ W

1, p′

−ℓ (RN) be respectively the extensions by 0 of f and

g to RN . From (4.6.4), we get f̃ + ∆g̃ = 0 in RN , and thus ∆g̃ ∈ W
0, p′

−ℓ+1(R
N).

Now, according to the isomorphism results for ∆ in RN (see [6]), we can deduce

that g̃ ∈ W
2, p′

−ℓ+1(R
N), under hypothesis (4.3.3). Since g̃ is an extension by 0, it

follows that g ∈
◦

W
2, p′

−ℓ+1(R
N
+ ). Then, by density of D(RN

+ ) in
◦

W
2, p′

−ℓ+1(R
N
+ ), there

exists a sequence (ϕk)k∈N ⊂ D(RN
+ ) such that ϕk → g in W

2, p′

−ℓ+1(R
N
+ ). Thus, for

any v ∈ T ℓ(R
N
+ ), we have

〈z,v〉 = −

∫

RN
+

v · ∆g dx+ 〈∆v, g〉X′

ℓ(R
N
+ )×Xℓ(R

N
+ )

= lim
k→∞

{

−

∫

RN
+

v · ∆ϕk dx+ 〈∆v,ϕk〉D′(RN
+ )×D(RN

+ )

}

= 0,

i.e. z is identically zero.

We also can show that, under hypothesis (4.3.3),
{

v ∈ D
(

RN
+

)

; div v = 0
}

is

dense in T ℓ, σ(RN
+ ). To study the traces of functions which belong to T ℓ, σ(RN

+ ),
we set

W
0, p
ℓ (div; R

N
+ ) =

[

{

v ∈ W
0, p
ℓ−1(R

N
+ ); div v ∈ W 0, p

ℓ (RN
+ )

}

if N
p′
6= ℓ,

{

v ∈ W
0, p
ℓ−1(R

N
+ ); div v ∈ W 0, p

ℓ, 1 (RN
+ )

}

if N
p′

= ℓ;

and their normal trace are described in the following lemma:

Lemma 4.6.4. Let ℓ ∈ Z. The linear mapping

γeN
: D

(

RN
+

)

−→ D(RN−1)

v 7−→ vN |Γ,

that is the normal trace, can be extended to a linear continuous mapping

γeN
: W

0, p
ℓ (div; R

N
+ ) −→ W

−1/p, p
ℓ−1 (Γ),

Moreover, we have the Green formula:

∀v ∈ W
0, p
ℓ (div; R

N
+ ), ∀ϕ ∈ W 1, p′

−ℓ+1(R
N
+ ),

∫

RN
+

v · ∇ϕ dx+

∫

RN
+

ϕ div v dx = −〈vN , ϕ〉W−1/p, p
ℓ−1 (Γ)×W

1/p, p′

−ℓ+1 (Γ)
.

(4.6.5)
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Proof. Let us remember that the assumption N/p′ 6= ℓ is also necessary to have

the imbedding W 1, p′

−ℓ+1(R
N
+ ) →֒ W 0, p′

−ℓ (RN
+ ), which is underlying in the second term

of the Green formula. Now, if N/p′ = ℓ, this imbedding fails, but in that case

we have W 1, p′

−ℓ+1(R
N
+ ) →֒ W 0, p′

−ℓ,−1(R
N
+ ). That is the reason for the definition of the

space W
0, p
ℓ (div; RN

+ ).

Here again, we can show by truncation and regularization that D
(

RN
+

)

is dense

in both spaces W
0, p
ℓ (div; RN

+ ) and W
0, p
ℓ, 1(div; RN

+ ) as in Lemma 4.6.2. Note that
the estimate (4.6.3) is optimal for the second space.

(i) Assume that N/p′ 6= ℓ. Let v ∈ D
(

RN
+

)

and ϕ ∈ D
(

RN
+

)

, then formula

(4.6.5) obviously holds. Since D
(

RN
+

)

is dense in W 1, p′

−ℓ+1(R
N
+ ) and the mapping

γ0 : W 1, p′

−ℓ+1(R
N
+ ) −→ W

1/p, p′

−ℓ+1 (Γ)

ϕ 7−→ ϕ|Γ

is continuous, formula (4.6.5) holds for every v ∈ D
(

RN
+

)

and ϕ ∈ W 1, p′

−ℓ+1(R
N
+ ).

By Lemma 1.3.1, for every µ ∈ W
1/p, p′

−ℓ+1 (Γ), there exists ϕ ∈ W 1, p′

−ℓ+1(R
N
+ ) such that

ϕ = µ on Γ, with ‖ϕ‖
W 1, p′

−ℓ+1(RN
+ )

6 C ‖µ‖
W

1/p, p′

−ℓ+1 (Γ)
. Consequently,

∣

∣

∣
〈vN , µ〉W−1/p, p

ℓ−1 (Γ)×W
1/p, p′

−ℓ+1 (Γ)

∣

∣

∣
6 C ‖v‖

W
0, p
ℓ (div; RN

+ ) ‖µ‖W
1/p, p′

−ℓ+1 (Γ)
.

Thus
‖vN‖W

−1/p, p
ℓ−1 (Γ)

6 C ‖v‖
W

0, p
ℓ (div; RN

+ ).

Hence we can deduce that the linear mapping γeN
is continuous for the norm of

W
0, p
ℓ (div; RN

+ ). Since D
(

RN
+

)

is dense in W
0, p
ℓ (div; RN

+ ), the mapping γeN
can

be extended by continuity to γeN
∈ L

(

W
0, p
ℓ (div; RN

+ ); W
−1/p, p
ℓ−1 (Γ)

)

and formula

(4.6.5) holds for all v ∈ W
0, p
ℓ (div; RN

+ ) and ϕ ∈ W 1, p′

−ℓ+1(R
N
+ ).

(ii) The same arguments hold if N/p′ = ℓ.

It follows that the functions v from T ℓ, σ(RN
+ ) are such their normal trace vN

belongs to W
−1/p, p
ℓ−1 (Γ). Furthermore, for any v ∈ D

(

RN
+

)

we have the following
Green formula:

∀ϕ ∈ M ℓ(R
N
+ ),

∫

RN
+

∆v · ϕ dx =

∫

RN
+

v · ∆ϕ dx+

∫

Γ

v · ∂Nϕ dx′.

Let us now observe that the dual space Z ′
ℓ(Γ) of Zℓ(Γ) can be identified with the

space
{

g ∈ W
−1/p, p
ℓ−1 (Γ); gN = 0 on Γ

}

,

and moreover that ∂Nϕ sweeps Zℓ(Γ) when ϕ sweeps M ℓ(R
N
+ ). Thus, thanks

to the density of D
(

RN
+

)

in T ℓ(R
N
+ ), we can prove that the tangential trace of
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functions from T ℓ, σ(RN
+ ) belongs to W

−1/p, p
ℓ−1 (Γ). So, their complete trace belongs

to W
−1/p, p
ℓ−1 (Γ) and we have

∀ϕ ∈ M ℓ(R
N
+ ), ∀v ∈ T ℓ, σ(RN

+ ),

〈∆v,ϕ〉X′

ℓ×Xℓ
= 〈v,∆ϕ〉

W
0, p
ℓ−1×W

0, p′

−ℓ+1

+ 〈v, ∂Nϕ〉
W

−1/p, p
ℓ−1 ×W

1/p, p′

−ℓ+1

.
(4.6.6)

We now can solve the homogeneous Stokes problem with singular boundary con-
ditions. We will give separately the results for ℓ = 0 and ℓ = 1. The proofs
are quite similar and we will just detail the first case. The following proposi-
tion and corollary yield the existence of very weak solutions when the data are
singular, so extending Proposition 4.4.1. Note that W 1, p

0 (RN
+ ) →֒ W 0, p

−1 (RN
+ ) and

W
1−1/p, p
0 (Γ) →֒ W

−1/p, p
−1 (Γ) if N 6= p.

Proposition 4.6.5. Assume that N
p

6= 1. For any g ∈ W
−1/p, p
−1 (Γ) such that

gN = 0, the Stokes problem (4.4.1)–(4.4.3) has a unique solution (u, π) ∈
W

0, p
−1 (RN

+ ) ×W−1, p
−1 (RN

+ ), with the estimate

‖u‖
W

0, p
−1 (RN

+ ) + ‖π‖W−1, p
−1 (RN

+ ) 6 C ‖g‖
W

−1/p, p
−1 (Γ)

.

Proof. (i) We will first show that if the pair (u, π) ∈ W
0, p
−1 (RN

+ ) ×W−1, p
−1 (RN

+ )
satisfies (4.4.1) and (4.4.2), then we have u ∈ T 0, σ(RN

+ ) and thus the boundary
condition (4.4.3) makes sense. With this aim, thanks to Lemma 4.6.2, observe
that if π ∈ W−1, p

−1 (RN
+ ), then we have ∇π ∈ X ′

0(R
N
+ ) and

‖∇π‖X′

0(RN
+ ) 6 C ‖π‖W−1, p

−1 (RN
+ ),

So, we have ∆u ∈ X ′
0(R

N
+ ) and the trace γ0u ∈ W

−1/p, p
−1 (Γ).

(ii) Let us show that the problem (4.4.1)–(4.4.3) with gN = 0 is equivalent to
the variational formulation: Find (u, π) ∈ W

0, p
−1 (RN

+ ) ×W−1, p
−1 (RN

+ ) such that

∀v ∈ M 0(R
N
+ ), ∀ϑ ∈ W 1, p′

1 (RN
+ ),

〈u,−∆v + ∇ϑ〉
W

0, p
−1 (RN

+ )×W
0, p′

1 (RN
+ )

− 〈π, div v〉
W−1, p

−1 (RN
+ )×

◦

W
1,p′

1 (RN
+ )

= 〈g, ∂Nv〉
W

−1/p, p
−1 (Γ)×W

1/p, p′

1 (Γ)
.

(4.6.7)

(a) Let (u, π) be a solution to (4.4.1)–(4.4.3) with gN = 0; then the Green
formula (4.6.6) yields for all v ∈ M 0(R

N
+ ),

〈−∆u + ∇π,v〉X′

0×X0
= −〈u,∆v〉

W
0, p
−1 (RN

+ )×W
0, p′

1 (RN
+ )

−

− 〈g, ∂Nv〉
W

−1/p, p
−1 (Γ)×W

1/p, p′

1 (Γ)
− 〈π, div v〉

W−1, p
−1 (RN

+ )×
◦

W
1, p′

1 (RN
+ )

= 0.
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Moreover, using the density of the functions of D
(

RN
+

)

with divergence zero in

T 0, σ(RN
+ ), we obtain for all ϑ ∈ W 1, p′

1 (RN
+ ),

〈u,∇ϑ〉
W

0, p
−1 (RN

+ )×W
0, p′

1 (RN
+ )

= − 〈div u, ϑ〉Lp(RN
+ )×Lp′ (RN

+ ) −

− 〈uN , ϑ〉W−1/p, p
−1 (Γ)×W

1/p, p′

1 (Γ)
= 0.

So we show that (u, π) satisfies the variational formulation (4.6.7).
(b) Conversely, if (u, π) ∈ W

0, p
−1 (RN

+ ) ×W−1, p
−1 (RN

+ ) satisfies the variational
formulation (4.6.7), then taking v = 0, we have for any ϑ ∈ D(RN

+ ),

〈u,∇ϑ〉D′(RN
+ )×D(RN

+ ) = 〈− div u, ϑ〉D′(RN
+ )×D(RN

+ ) = 0,

hence div u = 0 in RN
+ . We can deduce that u ∈ W

0, p
−1 (div; RN

+ ) and thus

uN |Γ ∈ W
−1/p, p
−1 (Γ). Then, we can write for any ϑ ∈ W 1, p′

1 (RN
+ ),

〈u,∇ϑ〉
W

0, p
−1 (RN

+ )×W
0, p′

1 (RN
+ )

= 〈uN , ϑ〉W−1/p, p
−1 (Γ)×W

1/p, p′

1 (Γ)
= 0.

Therefore, by the traces lemma (Lemma 1.3.1), we have for any ϕ ∈ D(Γ),
〈uN , ϕ〉D′(Γ)×D(Γ) = 0, hence uN = 0 on Γ. In addition, taking ϑ = 0 in (4.6.7),

we have for any v ∈ D(RN
+ ),

〈u,−∆v〉D′(RN
+ )×D(RN

+ ) − 〈π, div v〉D′(RN
+ )×D(RN

+ ) = 0,

thus 〈−∆u + ∇π,v〉D′(RN
+ )×D(RN

+ ) = 0, i.e. −∆u+∇π = 0 in RN
+ . We deduce that

u ∈ T 0, σ(RN
+ ) and taking ϑ = 0 in (4.6.7), we finally get for any v ∈ M 0(R

N
+ ),

〈u, ∂Nv〉
W

−1/p, p
−1 (Γ)×W

1/p, p′

1 (Γ)
= 〈g, ∂Nv〉

W
−1/p, p
−1 (Γ)×W

1/p, p′

1 (Γ)
,

where ∂Nv sweeps Z0(Γ); hence u′ = g′ on Γ. So, we have shown that (u, π) is
a solution to problem (4.4.1)–(4.4.3).

(iii) Let us solve problem (4.6.7). According to Theorem 4.5.2, we know that

if N
p

6= 1, for all f ∈ W
0, p′

1 (RN
+ ) and ϕ ∈

◦

W
1, p′

1 (RN
+ ), there exists a unique

(v, ϑ) ∈ M 0(R
N
+ ) ×W 1, p′

1 (RN
+ ) solution to

−∆v + ∇ϑ = f and div v = ϕ in R
N
+ , v = 0 on Γ,

with the estimate

‖v‖
W

2, p′

1 (RN
+ )

+ ‖ϑ‖
W 1, p′

1 (RN
+ )

6 C
(

‖f‖
W

0, p′

1 (RN
+ )

+ ‖ϕ‖
W 1, p′

1 (RN
+ )

)

.

Then
∣

∣

∣
〈g, ∂Nv〉

W
−1/p, p
−1 (Γ)×W

1/p, p′

1 (Γ)

∣

∣

∣
6 C ‖g‖

W
−1/p, p
−1 (Γ)

‖v‖
W 2, p′

1 (RN
+ )

6 C ‖g‖
W

−1/p, p
−1

(

‖f‖
W

0, p′

1
+ ‖ϕ‖

W 1, p′

1

)

.
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In other words, we can say that the linear mapping

T : (f , ϕ) 7−→ 〈g, ∂Nv〉

is continuous on W
0, p′

1 (RN
+ )×

◦

W
1, p′

1 (RN
+ ), and according to the Riesz represen-

tation theorem, there exists a unique (u, π) ∈ W
0, p
−1 (RN

+ ) ×W−1, p
−1 (RN

+ ) which is

the dual space of W
0, p′

1 (RN
+ )×

◦

W
1, p′

1 (RN
+ ), such that

∀(f , ϕ) ∈ W
0, p′

1 (RN
+ )×

◦

W
1, p′

1 (RN
+ ),

T (f , ϕ) = 〈u,f〉
W

0, p
−1 (RN

+ )×W
0, p′

1 (RN
+ )

+ 〈π,−ϕ〉
W−1, p

−1 (RN
+ )×

◦

W
1, p′

1 (RN
+ )
,

i.e. the pair (u, π) satisfies (4.6.7).

We now can drop the hypothesis gN = 0.

Theorem 4.6.6. Assume that N
p

6= 1. For any g ∈ W
−1/p, p
−1 (Γ), the Stokes

problem (4.4.1)–(4.4.3) has a unique solution (u, π) ∈ W
0, p
−1 (RN

+ )×W−1, p
−1 (RN

+ ),
with the estimate

‖u‖
W

0, p
−1 (RN

+ ) + ‖π‖W−1, p
−1 (RN

+ ) 6 C ‖g‖
W

−1/p, p
−1 (Γ)

.

Proof. According to Theorem 4.3.3, we know that if N
p

6= 1, then there exists

ψ ∈ W 1, p
−1 (RN

+ ) unique up to an element of N∆
[2−N/p] solution to the following

Neumann problem:

∆ψ = 0 in R
N
+ , ∂Nψ = gN on Γ.

Let us set w = ∇ψ and g∗ = g − γ0w. Then w ∈ T 0, σ(RN
+ ) and

‖w‖T0(RN
+ ) = ‖w‖

W
0, p
−1 (RN

+ ) 6 C ‖g‖
W

−1/p, p
−1 (Γ)

.

Furthermore, g∗ satisfies the hypotheses of Proposition 4.6.5, hence the existence
of a unique pair (z, π) which satisfies

−∆z + ∇π = 0 and div z = 0 in R
N
+ , z = g∗ on Γ.

Then the pair (z+w, π) is the required solution. The uniqueness of this solution
is a straightforward consequence of Proposition 4.6.5.

Here is the corresponding results for the case ℓ = 1.

Proposition 4.6.7. For any g ∈ W
−1/p, p
0 (Γ) such that gN = 0, and g′ ⊥ RN−1

if N 6 p′, the Stokes problem (4.4.1)–(4.4.3) has a unique solution (u, π) ∈
Lp(RN

+ ) ×W−1, p
0 (RN

+ ), with the estimate

‖u‖Lp(RN
+ ) + ‖π‖W−1, p

0 (RN
+ ) 6 C ‖g‖

W
−1/p, p
0 (Γ)

.
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Proof. The two differences from the weight ℓ = 0 are the absence of critical value
(the reason is that here, the dual problem solved by Theorem 4.5.6 has no critical
value), and the orthogonality condition in the case N 6 p′ (which corresponds by
duality to the non-zero kernel in Theorem 4.5.6 if N 6 p). The rest of the proof
is similar.

Theorem 4.6.8. For any g ∈ W
−1/p, p
0 (Γ) such that g ⊥ RN if N 6 p′, the Stokes

problem (4.4.1)–(4.4.3) has a unique solution (u, π) ∈ Lp(RN
+ )×W−1, p

0 (RN
+ ), with

the estimate
‖u‖Lp(RN

+ ) + ‖π‖W−1, p
0 (RN

+ ) 6 C ‖g‖
W

−1/p, p
0 (Γ)

.

Remark 4.6.9. Let p > 1 be a real number. If p < N and r = Np/(N − p),

then we have W
1−1/p, p
0 (Γ) →֒ W

−1/r, r
0 (Γ). Indeed, by Theorem 1.4.4, for every

g ∈ W
1−1/p, p
0 (Γ), there exists u ∈ W 2, p

0 (RN
+ ) such that

∆u = 0 in R
N
+ , ∂Nu = g on Γ.

On the other hand, since the imbeddingW 2, p
0 (RN

+ ) →֒ W 1, r
0 (RN

+ ) holds, we deduce

that v = ∇u ∈ Lr(RN
+ ) and div v = 0 ∈ W 0, r

1 (RN
+ ), i.e. v ∈ W

0, p
1 (div; RN

+ ).
Moreover, as r′ 6= N , according to Lemma 4.6.4, we get γeN

v = ∂Nu|Γ = g ∈

W
−1/r, r
0 (Γ). Consequently, if g ∈ W

1−1/p, p
0 (Γ) →֒ W

−1/r, r
0 (Γ), Proposition 4.4.1

and Theorem 4.6.8 respectively yield the unique solutions (u, π) ∈ W
1, p
0 (RN

+ ) ×

Lp(RN
+ ) and (v, ϑ) ∈ Lr(RN

+ ) × W−1, r
0 (RN

+ ), which are identical thanks to the

Sobolev imbeddings W 1, p
0 (RN

+ ) →֒ Lr(RN
+ ) and Lp(RN

+ ) →֒ W−1, r
0 (RN

+ ). ♦



Chapitre 5

Behaviour at infinity in the

Stokes system

5.1 Introduction

This chapter is the continuation of the previous one in which we only dealt with
the basic weights. Here, we are interested in a whole scale of weights. This lead
us to be interested in the kernel of the operator associated to this problem and
symmetricaly in the compatibility condition for the data. The main results of
Chapter 4 will be naturally included in this one, but we will not discuss again
these particular cases. We will also base on the previously established results on
the harmonic and biharmonic operators.

5.2 Characterization of the kernel for the Stokes

operator

In this section, we will give two characterizations of this kernel, and we will ob-
serve that it does not depend on the regularity according to the Sobolev imbed-
dings. Let ℓ ∈ Z and m ∈ N and let us denote by Km, p

ℓ the kernel of the Stokes
operator, i.e.

Km, p
ℓ =

{

(u, π) ∈ W
m+1, p
m+ℓ (RN

+ ) ×Wm, p
m+ℓ(R

N
+ );

− ∆u + ∇π = 0 and div u = 0 in R
N
+ , u = 0 on Γ

}

and for any k ∈ Z, introduce the following polynomial space

SD
k =

{

(λ, µ) ∈ P
∆2

k × P∆
k−1;

− ∆λ + ∇µ = 0 and div λ = 0 in R
N
+ , λ = 0 on Γ

}

.

The first characterization uses the reflection principle. As preliminary result, we
will show how to get a reflection principle for the Stokes system from those of

85
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harmonic and biharmonic functions. Let us notice that R. Farwig gives these
formulas in [27], but without the method to get them. Let us especially quote
R.J. Duffin, who first established in [26] the continuation formula of biharmonic
functions in the three dimensional case and then analogous formulas for the Stokes
flow equations. Lastly, A. Huber extended in [34] this principle to polyharmonic
functions.

Lemma 5.2.1. Let (u, π) ∈ D
′(RN

+ ) ×D′(RN
+ ) satisfying

−∆u + ∇π = 0 and div u = 0 in R
N
+ , (ℵ)

then (u, π) ∈ C
∞(RN

+ ) × C∞(RN
+ ). In addition, if u = 0 on Γ, then there exists

an extension (ũ, π̃) ∈ D
′(RN) ×D′(RN) of (u, π) satisfying

−∆ũ + ∇π̃ = 0 and div ũ = 0 in R
N , (i)

which is given by

(⋆)







ũ′(x′, xN) =
(

− u′ + 2xN ∇′uN + x2
N ∇′π

)

(x′,−xN),
ũN(x′, xN) =

(

− uN − 2xN ∂NuN − x2
N ∂Nπ

)

(x′,−xN),
π̃(x′, xN) =

(

π − 2xN ∂Nπ − 4 ∂NuN

)

(x′,−xN),

for any (x′, xN) ∈ RN
− . Moreover, this extension is unique.

Proof. (1) Applying the divergence operator to the first equation in (ℵ), we obtain
∆π = 0 in RN

+ . Since π ∈ D′(RN
+ ), we can deduce that π ∈ C∞(RN

+ ) by Weyl’s
lemma (see e.g. Dautray-Lions [25], vol. 2, p 327, Proposition 1).

Likewise, applying the harmonic operator to the first equation in (ℵ), we get
∆2u = 0 in RN

+ . Since u ∈ D
′(RN

+ ), we still deduce (using two times the same
Proposition) that u ∈ C

∞(RN
+ ).

(2) For the uniqueness, let us consider (ũ1, π̃1) and (ũ2, π̃2) in D
′(RN) ×

D′(RN), which both extend (u, π) and satisfy (i). Let us set U = ũ2 − ũ1 and
Π = π̃2− π̃1. Then ∆2U = 0 in RN and thanks to the Proposition quoted before,
we can also deduce that U is analytic in RN . Since U = 0 in RN

+ , the continuation
analytic principle implies that in fact U = 0 in RN . The same argument holds
for Π.

(3) Now, let us assume the existence of an extension (ũ, π̃) ∈ D
′(RN)×D′(RN)

of (u, π) satisfying (i), and let us show the formulas (⋆).
(i) With the same arguments as in point (1), we can see that (ũ, π̃) ∈

C
∞(RN) × C∞(RN). In addition, we have ũ = 0 and div ũ = 0 on Γ, thus

∂N ũN = 0 on Γ. So, uN satisfies the following biharmonic problem

∆2uN = 0 in R
N
+ and uN = ∂NuN = 0 on Γ.

From the continuation formula of biharmonic functions (2.3.3) and replacing ∆uN

by ∂Nπ, we immediately get the formula (⋆) for uN .
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(ii) Let us set r̃ = 2 ũN − xN π̃ in RN and r = r̃|RN
+
. Then, it is easy to see

that ∆r̃ = 0 in RN and r̃ = 0 on Γ, hence

∆r = 0 in R
N
+ , r = 0 on Γ,

Thus, by the Schwarz reflection principle, we necessary have

r̃(x′, xN) = −r(x′,−xN) if xN < 0.

Since r̃ = 2 ũN − xN π̃ in RN
− , we can write, for any xN < 0,

xN π̃(x′, xN) =
[

2 (−uN − 2xN ∂NuN − x2
N ∂Nπ) + (2uN + xN π)

]

(x′,−xN),

=
(

− 4xN ∂NuN − 2x2
N ∂Nπ + xN π

)

(x′,−xN).

Hence, dividing by xN , we get the formula (⋆) for π.
(iii) Lastly, we also must have ∆ũ′ = ∇′π̃ in RN

− . Thus, for any xN > 0,

∆ũ′(x′,−xN) = ∇′π̃(x′,−xN),

=
(

∇′π + 2xN ∂N∇
′π − 4 ∂N∇

′uN

)

(x′, xN),

= ∆
(

− u′ − 2xN ∇′uN + x2
N ∇′π

)

(x′, xN).

Let us introduce the function ũ′
∗(x

′, xN) = ũ′(x′,−xN) in RN
+ . Then, we can

express the previous equality by

∆
(

ũ′
∗ + u′ + 2xN ∇′uN − x2

N ∇′π
)

= 0 in R
N
+ .

Moreover, we have
(

ũ′
∗ + u′ + 2xN ∇′uN − x2

N ∇′π
)

(x′, 0) = 0; and

∂N

(

ũ′
∗ + u′ + 2xN ∇′uN − x2

N ∇′π
)

(x′, 0)

=
(

− ∂N ũ′ + ∂Nu′ + 2∇′uN

)

(x′, 0) = 0.

Thus, ũ′
∗ = −u′ − 2xN ∇′uN + x2

N ∇′π in RN
+ . That is, for any xN > 0,

ũ′(x′,−xN) =
(

− u′ − 2xN ∇′uN + x2
N ∇′π

)

(x′, xN).

So, replacing xN by −xN , we get the formula (⋆) for u′.
(4) Conversely, to show that the extension (ũ, π̃) defined by the formulas (⋆)

belongs to C
∞(RN) × C∞(RN) and satisfies (i), we refer to the proof by Duffin

in [26]. It is very easy to see that in RN
− and the only serious difficulty is the

argument at the boundary.

Now, we can give the first characterization of the Stokes kernel.

Lemma 5.2.2. Let ℓ ∈ Z and m ∈ N.

(i) If N/p /∈ {1, . . . ,−ℓ−m}, then Km, p
ℓ = SD

[1−ℓ−N/p].
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(ii) If N/p ∈ {1, . . . ,−ℓ−m}, then Km, p
ℓ = SD

−ℓ−N/p.

Proof. Let (u, π) ∈ Km, p
ℓ . Using a weak formulation for the extension given by

formulas (⋆), we can show that in fact π̃ and ũ are respectively harmonic and
biharmonic tempered distributions in RN , thus polynomials. Moreover, according
to (1.2.5), the highest degree of the polynomials contained in Wm+1, p

m+ℓ (RN
+ ), is

given by

q =

{

−ℓ− N
p

if N
p

+ ℓ ∈ {j ∈ Z; j 6 0},
[

1 − ℓ− N
p

]

otherwise,

i.e. precisely the conditions of the statement.

We can be more specific about polynomials which build up this kernel. The
idea of this characterization is due to T.Z. Boulmezaoud (see [21]). We give it with
a completely different proof, based on the kernels of the Dirichlet and Neumann
problems for the Laplacian and the one of the biharmonic problem with Dirichlet
boundary conditions in the half-space.

Concerning the kernel of the biharmonic operator (∆2, γ0, γ1) in Wm+2, p
m+ℓ (RN

+ ),
we showed in Lemma 2.3.4 that it is characterized for any ℓ ∈ Z and m ∈ N,
under hypothesis N/p /∈ {1, . . . ,−ℓ−m}, by:

B[2−ℓ−N/p] = ΠDA
∆
[−ℓ−N/p] ⊕ ΠNN

∆
[−ℓ−N/p].

Moreover, thanks to the study of the very weak solutions for the singular bound-
ary conditions in Section 3.3, we extended these results to the two supplementary
cases m ∈ {−2, −1}.

We now can give the second characterization of the Stokes kernel in RN
+ :

Lemma 5.2.3. Let ℓ ∈ Z, m ∈ N and assume that N/p /∈ {1, . . . ,−ℓ−m}. Then
(u, π) ∈ Km, p

ℓ = SD
[1−ℓ−N/p] if and only if there exists ϕ ∈ A

∆
[1−ℓ−N/p] such that

u = ϕ −∇
(

ΠD div′ ϕ′ + ΠN∂NϕN

)

, (5.2.1)

π = − div ϕ. (5.2.2)

Proof. Given (u, π) ∈ Km, p
ℓ , then we also have div u = 0 on Γ and thus ∂NuN = 0

on Γ. Moreover ∆π = 0 in RN
+ and thus ∆2uN = 0 in RN

+ . So we get the following
biharmonic problem

∆2uN = 0 in R
N
+ and uN = ∂NuN = 0 on Γ.

Hence uN ∈ B[1−ℓ−N/p] and there exists (r, s) ∈ A∆
[−1−ℓ−N/p] × N∆

[−1−ℓ−N/p] such
that uN = ΠDr + ΠNs.

According to the properties of the operators ΠD and ΠN , (2.3.5) and (2.3.6),
we can deduce that ∂Nπ = ∆uN = r + s in RN

+ and thus π satisfies

∆π = 0 in R
N
+ and ∂Nπ = s on Γ.
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Then, there exists ψ ∈ N∆
[−ℓ−N/p] (see Theorems 1.4.3 and 1.4.4), such that

π = ψ +Ks in R
N
+ , (5.2.3)

where Ks(x) =
∫ xN

0
s(x′, t) dt.

So, we have ∆uN = r + s = ∂Nπ = ∂Nψ + s in RN
+ , thus r = ∂Nψ. Hence,

uN = ΠD∂Nψ + ΠNs in R
N
+ . (5.2.4)

From (5.2.3), we get for every i ∈ {1, . . . , N − 1},

∆ui = ∂iπ = ∂iψ + ∂iKs ∈ N∆
[−1−ℓ−N/p] ⊕A∆

[−1−ℓ−N/p]

= ∆ΠN∂iψ + ∆ΠD∂iKs.

Then, wi = ui − ΠN∂iψ − ΠD∂iKs satisfies

∆wi = 0 in R
N
+ and wi = 0 on Γ.

Hence the existence of ϕi ∈ A∆
[1−ℓ−N/p] (see Theorems 1.4.1 and 1.4.2), such that

wi = ϕi, i.e.
ui = ΠN∂iψ + ΠD∂iKs+ ϕi.

Thereby, writing ϕ′ = (ϕ1, . . . , ϕN−1), we get

div′ u′ = ΠN∆′ψ + ΠD∆′Ks+ div′ ϕ′

= −ΠN∂
2
Nψ − ΠD∂

2
NKs+ div′ ϕ′

= −
1

2
xN ∂Nψ −

1

2
(xN ∂NKs−Ks) + div′ ϕ′

= −
1

2
xN ∂Nψ −

1

2
(xN s−Ks) + div′ ϕ′.

In addition, by (5.2.4), we have

∂NuN = ∂NΠD∂Nψ + ∂NΠNs

=
1

2
xN ∂Nψ +

1

2

(

xN s+

∫ xN

0

s(x′, t) dt

)

=
1

2
xN ∂Nψ +

1

2
(xN s+Ks) .

Since div u = 0, we can deduce that div′ ϕ′ = −Ks and thus (5.2.3) can be
rewritten as π = ψ − div′ ϕ′. Now, if we set ϕN(x) = −

∫ xN

0
ψ(x′, t) dt, then we

have ψ = −∂NϕN and ϕN ∈ A∆
[1−ℓ−N/p]. So, we obtain π = − div ϕ, i.e. (5.2.2),

with ϕ = (ϕ′, ϕN) ∈ A
∆
[1−ℓ−N/p].

Coming back to the velocity field, we get for every i ∈ {1, . . . , N − 1},

ui = ϕi − ∂iΠN∂NϕN − ∂iΠD div′ ϕ′. (5.2.5)
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Likewise, for the normal component, (5.2.4) yields

uN = −ΠD∂
2
NϕN + ΠN∂NKs

=
1

2

(

ϕN − xN ∂NϕN

)

+
1

2
xN Ks

= ϕN −
1

2
xN ∂NϕN −

1

2
ϕN −

1

2
xN div′ ϕ′

= ϕN − ∂NΠN∂NϕN − ∂NΠD div′ ϕ′.

So, combining this with (5.2.5), we get u = ϕ −∇
(

ΠN∂NϕN + ΠD div′ ϕ′
)

, i.e.
the statement (5.2.1).

Conversely, we can readily verify that such a pair (u, π) belongs to Km, p
ℓ .

5.3 Generalized solutions

In this section, we will establish the central result on the generalized solutions to
the Stokes system in the half-space, with Theorem 5.3.2. We will be interested
in the existence of a solution (u, π) ∈ W

1, p
ℓ (RN

+ ) ×W 0, p
ℓ (RN

+ ) to (SD), for data

f ∈ W
−1, p
ℓ (RN

+ ), h ∈ W 0, p
ℓ (RN

+ ) and g ∈ W
1−1/p, p
ℓ (Γ). To avoid troubles with

the compatibility conditions, we will start with the study of the negative weights.
For this, as for the weight ℓ = 0 in Chapter 4, we will adapt a method used
by Farwig-Sohr in [28]. Then, we get back the positive weights by a duality
argument, and the compatibility condition naturally comes from the kernel of
the dual case.

First, we will establish the result for the homogeneous problem in the case of
negative weights:

Lemma 5.3.1. Let ℓ be a negative integer and assume that N/p /∈ {1, . . . ,−ℓ}.

For any g ∈ W
1−1/p, p
ℓ (Γ), the homogeneous Stokes problem

−∆u + ∇π = 0 in R
N
+ , (5.3.1)

div u = 0 in R
N
+ , (5.3.2)

u = g on Γ, (5.3.3)

has a solution (u, π) ∈ W
1, p
ℓ (RN

+ ) × W 0, p
ℓ (RN

+ ), unique up to an element of
SD

[1−ℓ−N/p], with the estimate

inf
(λ, µ)∈SD

[1−ℓ−N/p]

(

‖u + λ‖
W

1, p
ℓ (RN

+ ) + ‖π + µ‖W 0, p
ℓ (RN

+ )

)

6 C ‖g‖
W

1−1/p, p
ℓ (Γ)

.

Proof. The operator associated to this problem is clearly continuous, moreover its
kernel is known. If we show that it is surjective, then the final estimate will be a
straightforward consequence of the Banach Theorem. So, we only must prove the
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existence of a solution (u, π). The first point of this proof is strictely identical to
the one of the proof of Theorem 4.4.1, but we recall it for the convenience of the
reader. However, the arguments in the sequel are slightly different and we can see
here the importance of the assumption that ℓ is negative. In spite of the required
adaptations, this reasoning appears as a universal method for the solution to the
Stokes system in the half-space, even for the other types of boundary conditions,
as we will see in the next chapter.

(i) Firstly, we will show that system (5.3.1)–(5.3.3) can be reduced to a set of
three problems on the fundamental operators ∆2 and ∆.

Applying the operator div to the first equation (5.3.1), we obtain

∆π = 0 in R
N
+ . (5.3.4)

Now, applying the operator ∆ to the same equation (5.3.1), we deduce

∆2u = 0 in R
N
+ . (5.3.5)

From the boundary condition (5.3.3), we take out

uN = gN on Γ, (5.3.6)

and moreover div′ u′ = div′ g′ on Γ, where div′ u′ =
∑N−1

i=1 ∂iui.
Since div u = 0 in RN

+ , we also have div u = 0 on Γ; then we can write
∂NuN + div′ u′ = 0 on Γ, hence

∂NuN = − div′ g′ on Γ. (5.3.7)

Combining (5.3.5), (5.3.6) and (5.3.7), we get the following biharmonic problem

(P ) : ∆2uN = 0 in R
N
+ , uN = gN and ∂NuN = − div′ g′ on Γ.

Then, combining (5.3.4) with the trace on Γ of the N th component in the equa-
tions (5.3.1), we obtain the following Neumann problem

(Q) : ∆π = 0 in R
N
+ , ∂Nπ = ∆uN on Γ.

Lastly, if we consider the N − 1 first components of the equations (5.3.1) and
(5.3.3), we can write the following Dirichlet problem

(R) : ∆u′ = ∇′π in R
N
+ , u′ = g′ on Γ.

(ii) Next, we will solve these three problems.

Step 1: Problem (P ). Since g ∈ W
1−1/p, p
ℓ (Γ), we have gN ∈ W

1−1/p, p
ℓ (Γ)

and div′ g′ ∈ W
−1/p, p
ℓ (Γ), so (P ) is an homogeneous biharmonic problem with

singular boundary conditions. Since ℓ < 0, according to Theorem 3.3.5, we know



92 Chapitre 5. Behaviour at infinity in the Stokes system

that problem (P ) has a solution uN ∈ W 1, p
ℓ (RN

+ ), unique up to an element of
B[1−ℓ−N/p].

Step 2: Problem (Q). Since ∆2uN = 0 in RN
+ , according to an appropriate

trace result with Lemma 4.3.6, we can deduce that ∆uN |Γ ∈ W
−1−1/p, p
ℓ (Γ). As

ℓ < 0, according to Theorem 4.3.2, we know that problem (Q) has a solution
π ∈ W 0, p

ℓ (RN
+ ), unique up to an element of N∆

[−ℓ−N/p].

Step 3: Problem (R). Thanks to the previous result, we can deduce that

∇′π ∈ W−1, p
ℓ (RN

+ )
N−1

and moreover g′ ∈ W
1−1/p, p
ℓ (Γ)

N−1
. Since ℓ < 0, according

to Theorem 1.4.1, we know that problem (R) has a solution u′ ∈ W 1, p
ℓ (RN

+ )
N−1

,

unique up to an element of (A∆
[1−ℓ−N/p])

N−1
.

(iii) In order, we have found uN , π and u′, non-unique, which satisfy (5.3.3)
and partially satisfy (5.3.1), more precisely such that

−∆u′ + ∇′π = 0 in R
N
+ .

It remains to show we can choose them satisfying (5.3.2) and the N th component
of (5.3.1), i.e.

−∆uN + ∂Nπ = 0 in R
N
+ .

Consider such a pair (u, π) satisfying problems (P ), (Q) and (R). From the first
equations of (P ) and (Q), we obtain

∆(∆uN − ∂Nπ) = ∆2uN = 0 in R
N
+ .

Thanks to the boundary condition of (Q), we can deduce that the distribution
∆uN − ∂Nπ ∈ W−1, p

ℓ (RN
+ ) satisfies the Dirichlet problem

∆(∆uN − ∂Nπ) = 0 in R
N
+ , ∆uN − ∂Nπ = 0 on Γ.

Then, according to Theorem 4.3.4, we have ∆uN − ∂Nπ = µ ∈ A∆
[−1−ℓ−N/p].

Moreover, we can write µ = ∆ΠDµ, with ΠDµ = q ∈ B[1−ℓ−N/p]. So, setting
u∗N = uN − q, this time we get ∆u∗N − ∂Nπ = 0 in RN

+ , and besides u∗N is still
solution to problem (P ).

Note that π is unchanged with u∗N , because ∆q = µ = 0 on Γ.
Thus, if we set u∗ = (u′, u∗N), the pair (u∗, π) completely satisfies (5.3.1).
Next, as ∆π = 0 in RN

+ , we also have ∆ div u∗ = 0 in RN
+ . Moreover, from

the boundary condition in (R), we obtain div′ u′ = div′ g′ on Γ. Then, with the
boundary condition in (P ), we can write

div u∗ = div′ u′ + ∂Nu
∗
N = div′ g′ − div′ g′ = 0 on Γ.

So, we have div u∗ ∈ W 0, p
ℓ (RN

+ ), which satisfies the Dirichlet problem

∆ div u∗ = 0 in R
N
+ , div u∗ = 0 on Γ.
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Then, according to Theorem 4.3.7, we have div u∗ = ν ∈ A∆
[−ℓ−N/p]. If we take

for instance r(x) =
∫ x1

0
ν(t, x2, . . . , xN) dt, we have ν = ∂1r and thus ν = div r,

with r = (r, 0, . . . , 0). Setting u† = u∗ − r, we get div u† = 0 in RN
+ and,

as r ∈ A∆
[1−ℓ−N/p], we still have u†1 = u1 − r solution to the first component of

the equations (5.3.1) and (5.3.3). Consequently, the pair (u†, π) now completely
satisfies the problem (5.3.1)–(5.3.3).

Now, we can give the general result:

Theorem 5.3.2. Let ℓ ∈ Z and assume that

N/p′ /∈ {1, . . . , ℓ} and N/p /∈ {1, . . . ,−ℓ}. (5.3.8)

For any f ∈ W
−1, p
ℓ (RN

+ ), h ∈ W 0, p
ℓ (RN

+ ) and g ∈ W
1−1/p, p
ℓ (Γ), satisfying the

compatibility condition

∀ϕ ∈ A
∆
[1+ℓ−N/p′], 〈f −∇h, ϕ〉

W
−1, p
ℓ (RN

+ )×
◦

W
1, p′

−ℓ (RN
+ )

+

+ 〈div f , ΠD div′ ϕ′ + ΠN∂NϕN〉
W−2, p

ℓ (RN
+ )×

◦

W
2, p′

−ℓ (RN
+ )

+

+ 〈g, ∂Nϕ〉
W

1−1/p, p
ℓ (Γ)×W

−1/p′, p′

−ℓ (Γ)
= 0,

(5.3.9)

problem (SD) admits a solution (u, π) ∈ W
1, p
ℓ (RN

+ ) ×W 0, p
ℓ (RN

+ ), unique up to
an element of SD

[1−ℓ−N/p], and there exists a constant C such that

inf
(λ, µ)∈SD

[1−ℓ−N/p]

(

‖u + λ‖
W

1, p
ℓ (RN

+ ) + ‖π + µ‖W 0, p
ℓ (RN

+ )

)

6

C
(

‖f‖
W

−1, p
ℓ (RN

+ ) + ‖h‖W 0, p
ℓ (RN

+ ) + ‖g‖
W

1−1/p, p
ℓ (Γ)

)

.

Proof. (i) First, we still assume that ℓ < 0.

We write f = div F, where F = (Fi)16i6N ∈ W
0, p
ℓ (RN

+ )
N

, with the estimate

‖F‖
W

0, p
ℓ (RN

+ )
N 6 C ‖f‖

W
−1, p
ℓ (RN

+ ).

Let us respectively denote by F̃ = (F̃i)16i6N ∈ W
0, p
ℓ (RN)

N
and h̃ ∈ W 0, p

ℓ (RN)
the extensions by 0 of F and h to RN . By Theorem 4.2.1, we know that there
exists (ũ, π̃) ∈ W

1, p
ℓ (RN) ×W 0, p

ℓ (RN) solution to the problem

(S̃) : −∆ũ + ∇π̃ = div F̃ and div ũ = h̃ in R
N .

Consequently, we can reduce the system (SD) to the homogeneous problem

(S♯) : −∆v + ∇ϑ = 0 and div v = 0 in R
N
+ , v = g♯ on Γ,
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where we have set g♯ = g − ũ|Γ ∈ W
1−1/p, p
ℓ (Γ). Next, thanks to Lemma 5.3.1,

we know that (S♯) admits a solution (v, ϑ) ∈ W
1, p
ℓ (RN

+ ) × W 0, p
ℓ (RN

+ ). Then,

(u, π) = (v + ũ|RN
+
, ϑ+ π̃|RN

+
) ∈ W

1, p
ℓ (RN

+ ) ×W 0, p
ℓ (RN

+ ) is solution to (SD).

(ii) We now assume that ℓ > 0.

We will reason by duality from the case ℓ < 0. So, we have established that,
under hypothesis (5.3.8), the Stokes operator

T :
(

◦

W
1, p
ℓ (RN

+ ) ×W 0, p
ℓ (RN

+ )
)

/SD
[1−ℓ−N/p] −→ W

−1, p
ℓ (RN

+ ) ×W 0, p
ℓ (RN

+ )

(u, π) 7−→ (−∆u + ∇π, − div u)

is an isomorphism for any integer ℓ < 0 and real number p > 1. Thus, replacing
p by p′ and −ℓ by ℓ, we deduce that its adjoint operator

T ∗ :
◦

W
1, p
ℓ (RN

+ ) ×W 0, p
ℓ (RN

+ ) −→
(

W
−1, p
ℓ (RN

+ ) ×W 0, p
ℓ (RN

+ )
)

⊥ SD
[1+ℓ−N/p′]

is an isomorphism for any integer ℓ > 0 and real number p > 1, always under
hypothesis (5.3.8). Moreover, by a density argument, we can readily show that

T ∗(v, ϑ) = (−∆v + ∇ϑ, − div v).

So, we have proved that for any ℓ > 0, problem (SD) with g = 0 admits a unique
solution provided (f , h) ⊥ SD

[1+ℓ−N/p′].

Now, it remains to show that the general problem (SD) can be reduced to
the particular case with g = 0, by means of a lifting function; and then that the
orthogonality condition on the lifted problem is equivalent to the compatibility
condition (5.3.9).

First, by Lemma 1.3.1, there exists a lifting function ug ∈ W
1, p
ℓ (RN

+ ) of g,
i.e. ug = g on Γ, such that

‖ug‖W
1, p
ℓ (RN

+ ) 6 C ‖g‖
W

1−1/p, p
ℓ (Γ)

.

Set v = u − ug, then problem (SD) is equivalent to the following, with homoge-
neous boundary conditions:

(S⋆)







−∆v + ∇π = f + ∆ug in RN
+ ,

div v = h− div ug in RN
+ ,

v = 0 on Γ.

So, provided (f + ∆ug, −h + div ug) ⊥ SD
[1+ℓ−N/p′], we know that (S⋆) admits a

unique solution. This condition is written in the following way:

∀(λ, µ) ∈ SD
[1+ℓ−N/p′], 〈f , λ〉 + 〈∆ug, λ〉 − 〈h, µ〉 + 〈div ug, µ〉 = 0.
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Moreover, we have the Green formula

〈∆ug, λ〉
W

−1, p
ℓ (RN

+ )×
◦

W
1, p′

−ℓ (RN
+ )

=

∫

RN
+

ug · ∆λ dx+ 〈g, ∂Nλ〉Γ ,

=

∫

RN
+

ug · ∆λ dx+ 〈g′, ∂Nλ′〉Γ ,

because ∂NλN = 0 on Γ, according to the definition of the kernel. Next, we have
another Green formula

〈div ug, µ〉W0, p
ℓ (RN

+ )×W
0, p′

−ℓ (RN
+ )

= −

∫

RN
+

ug · ∇µ dx− 〈gN , µ〉Γ .

Finally, since −∆λ + ∇µ = 0, we have

∫

RN
+

ug · ∆λ dx−

∫

RN
+

ug · ∇µ dx = 0,

then we get a first formulation for this compatibility condition:

∀(λ, µ) ∈ SD
[1+ℓ−N/p′], 〈f , λ〉 − 〈h, µ〉 + 〈g′, ∂Nλ′〉Γ − 〈gN , µ〉Γ = 0.

Now, according to the characterization (5.2.1)–(5.2.2), we can replace each pair
(λ, µ) ∈ SD

[1+ℓ−N/p′] by
(

ϕ−∇(ΠD div′ ϕ′+ΠN∂NϕN), − div ϕ
)

, where ϕ belongs

to A
∆
[1+ℓ−N/p′]. Then we have

〈f , λ〉
W

−1, p
ℓ (RN

+ )×
◦

W
1, p′

−ℓ (RN
+ )

= 〈f , ϕ〉 − 〈f , ∇(ΠD div′ ϕ′ + ΠN∂NϕN)〉 ,

= 〈f , ϕ〉 + 〈div f , ΠD div′ ϕ′ + ΠN∂NϕN〉 ,

because (ΠD div′ ϕ′ + ΠN∂NϕN)|Γ = 0. Likewise,

〈h, µ〉
W

0, p
ℓ (RN

+ )×W
0, p′

−ℓ (RN
+ )

= 〈h, − div ϕ〉
W

0, p
ℓ (RN

+ )×W
0, p′

−ℓ (RN
+ )

= 〈∇h, ϕ〉
W

−1, p
ℓ (RN

+ )×
◦

W
1, p′

−ℓ (RN
+ )
.

Moreover, we can remark that on the one hand µ = −∂NϕN on Γ and on the
other hand, according to (2.3.5) and (2.3.6), we have ∂Nλ′ = ∂Nϕ′ on Γ, hence
the equivalent formulation:

∀ϕ ∈ A
∆
[1+ℓ−N/p′],

〈f −∇h, ϕ〉 + 〈div f , ΠD div′ ϕ′ + ΠN∂NϕN〉 + 〈g, ∂Nϕ〉Γ = 0,

i.e. the compatibility condition (5.3.9).
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5.4 Strong solutions and regularity

In this section, we are interested in the existence of strong solutions, i.e. of
solutions (u, π) ∈ W

2, p
ℓ+1(R

N
+ ) ×W 1, p

ℓ+1(R
N
+ ); and more generaly, in the regularity

of solutions to the Stokes system (SD) according to the data.

Theorem 5.4.1. Let ℓ ∈ Z and m > 1 be two integers and assume that

N/p′ /∈ {1, . . . , ℓ+ 1} and N/p /∈ {1, . . . ,−ℓ−m}. (5.4.1)

For any f ∈ W
m−1, p
m+ℓ (RN

+ ), h ∈ Wm, p
m+ℓ(R

N
+ ) and g ∈ W

m+1−1/p, p
m+ℓ (Γ), satisfy-

ing the compatibility condition (5.3.9), problem (SD) admits a solution (u, π) ∈
W

m+1, p
m+ℓ (RN

+ )×Wm, p
m+ℓ(R

N
+ ), unique up to an element of SD

[1−ℓ−N/p], and there exists
a constant C such that

inf
(λ, µ)∈SD

[1−ℓ−N/p]

(

‖u + λ‖
W

m+1, p
m+ℓ (RN

+ ) + ‖π + µ‖W m, p
m+ℓ(R

N
+ )

)

6

C
(

‖f‖
W

m−1, p
m+ℓ (RN

+ ) + ‖h‖W m, p
m+ℓ(R

N
+ ) + ‖g‖

W
m+1−1/p, p
m+ℓ (Γ)

)

.

We have already proved this result for ℓ = 0 and ℓ = −1 in the previous
chapter (see Corollaries 4.5.5 and 4.5.7). We will use similar arguments for the
other negative weights, with the aim of minimizing the set of critical values,
thanks to the known results on the harmonic and biharmonic operators in the
half-space. Then, for the positive weights, we will use a regularity argument to
avoid the compatibility conditions which would naturally appear in the auxiliary
problems with the previous method.

At first, we adapt Lemma 5.3.1 and its proof for more regular data.

Lemma 5.4.2. Let ℓ 6 −2 and m > 1 be two integers and assume that

N/p /∈ {1, . . . ,−ℓ−m}. (5.4.2)

For any g ∈ W
m+1−1/p, p
m+ℓ (Γ), the Stokes problem (5.3.1)–(5.3.3) has a solution

(u, π) ∈ W
m+1, p
m+ℓ (RN

+ ) ×Wm, p
m+ℓ(R

N
+ ), unique up to an element of SD

[1−ℓ−N/p], with
the corresponding estimate.

Proof. Point (i) is clearly unchanged with respect to the proof of Lemma 5.3.1.

Since g ∈ W
m+1−1/p, p
m+ℓ (Γ), according to Lemma 2.3.10, we know that under hy-

pothesis (5.4.2), problem (P ) has a solution uN ∈ Wm+1, p
m+ℓ (RN

+ ), unique up to an

element of B[1−ℓ−N/p]. Hence ∆uN |Γ ∈ W
m−1−1/p, p
m+ℓ (Γ), and then under hypothesis

(5.4.2), problem (Q) has a solution π ∈ Wm, p
m+ℓ(R

N
+ ), unique up to an element of

N∆
[−ℓ−N/p] (see Theorem 4.3.3, for m = 1; and Theorem 1.4.4, for m > 2). Hence

∇′π ∈ Wm−1, p
m+ℓ (RN

+ )
N−1

and then under hypothesis (5.4.2), problem (R) has a

solution u′ ∈ Wm+1, p
m+ℓ (RN

+ )
N−1

, unique up to an element of (A∆
[1−ℓ−N/p])

N−1
(see

Theorem 1.4.2). Likewise, point (iii) is unchanged with respect to the proof of
Lemma 5.3.1.
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Proof of Theorem 5.4.1. (i) Assume that ℓ 6 −2. The proof is quite similar to
the one of Theorem 5.3.2. Here again, the only question is the surjectivity of the
Stokes operator for such data. For that, we must simply replace Theorem 4.2.1
by Theorem 4.2.2 and Lemma 5.3.1 by Lemma 5.4.2 in the proof of the existence
of a solution for negative weights in Theorem 5.3.2.

(ii) Assume that ℓ > 0. We simply extend the regularity argument used in
Chapter 4 (see Corollaries 4.5.5 and 4.5.7) for the cases ℓ = 0 and ℓ = −1. Now,
the hypothesis (5.4.1) is reduced to

N/p′ /∈ {1, . . . , ℓ+ 1}. (5.4.3)

SinceN/p′ 6= ℓ+1, we have the imbeddingWm−1, p
m+ℓ (RN

+ ) →֒ W−1, p
ℓ (RN

+ ), moreover,

Wm, p
m+ℓ(R

N
+ ) →֒ W 0, p

ℓ (RN
+ ) and W

m+1−1/p, p
m+ℓ (Γ) →֒ W

1−1/p, p
ℓ (Γ) hold. So, thanks to

Theorem 5.3.2, we know that problem (SD) admits a unique solution (u, π) ∈
W

1, p
ℓ (RN

+ ) ×W 0, p
ℓ (RN

+ ). We will show by induction that

(f , h, g) ∈ W
m−1, p
m+ℓ (RN

+ ) ×Wm, p
m+ℓ(R

N
+ ) × W

m+1−1/p, p
m+ℓ (Γ)

⇒ (u, π) ∈ W
m+1, p
m+ℓ (RN

+ ) ×Wm, p
m+ℓ(R

N
+ ).

(5.4.4)

For m = 0, (5.4.4) is true. Now assume that (5.4.4) is true for 0, 1, . . . ,m

and suppose that (f , h, g) ∈ W
m, p
m+ℓ+1(R

N
+ ) × Wm+1, p

m+ℓ+1(R
N
+ ) × W

m+2−1/p, p
m+ℓ+1 (Γ).

Let us prove that (u, π) ∈ W
m+2, p
m+ℓ+1(R

N
+ ) × Wm+1, p

m+ℓ+1(R
N
+ ). Since we also have

the imbeddings Wm, p
m+ℓ+1(R

N
+ ) →֒ Wm−1, p

m+ℓ (RN
+ ), Wm+1, p

m+ℓ+1(R
N
+ ) →֒ Wm, p

m+ℓ(R
N
+ ) and

W
m+2−1/p, p
m+ℓ+1 (Γ) →֒ W

m+1−1/p, p
m+ℓ (Γ), according to the induction hypothesis, we can

deduce that the solution (u, π) ∈ W
m+1, p
m+ℓ (RN

+ ) × Wm, p
m+ℓ(R

N
+ ). Now, for any

i ∈ {1, . . . , N − 1}, we have

−∆(̺ ∂iu) + ∇(̺ ∂iπ)

= ̺ ∂if +
2

̺
x.∇∂iu +

(

N − 1

̺
+

1

̺3

)

∂iu +
1

̺
x ∂iπ.

Thus, −∆(̺ ∂iu) + ∇(̺ ∂iπ) ∈ W
m−1, p
m+ℓ (RN

+ ). Moreover,

div(̺ ∂iu) =
1

̺
x ∂iu + ̺ ∂ih.

Thus, div(̺ ∂iu) ∈ Wm, p
m+ℓ(R

N
+ ). We also have γ0(̺ ∂iu) = ̺′ ∂iγ0u = ̺′ ∂ig ∈

W
m+1−1/p, p
m+ℓ (Γ). So, by induction hypothesis, we can deduce that

∀i ∈ {1, . . . , N − 1}, (∂iu, ∂iπ) ∈ W
m+1, p
m+ℓ+1(R

N
+ ) ×Wm, p

m+ℓ+1(R
N
+ ).

It remains to prove that (∂Nu, ∂Nπ) ∈ W
m+1, p
m+ℓ+1(R

N
+ ) ×Wm, p

m+ℓ+1(R
N
+ ). For that,

let us observe that for any i ∈ {1, . . . , N − 1}, we have

∂i∂Nu = ∂N∂iu ∈ W
m, p
m+ℓ+1(R

N
+ ),

∂2
Nui = −∆′ui + ∂iπ − fi ∈ Wm, p

m+ℓ+1(R
N
+ ),

∂2
NuN = ∂Nh− ∂N div′ u′ ∈ Wm, p

m+ℓ+1(R
N
+ ),

∂Nπ = fN + ∆uN ∈ Wm, p
m+ℓ+1(R

N
+ ).
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Hence, ∇(∂Nu) ∈ W
m, p
m+ℓ+1(R

N
+ )

N
and knowing that ∂Nu ∈ W

m, p
m+ℓ(R

N
+ ), we can

deduce that ∂Nu ∈ W
m+1, p
m+ℓ+1(R

N
+ ), according to definition (1.2.1). Consequently,

we have ∇u ∈ W
m+1, p
m+ℓ+1(R

N
+ )

N
. Likewise, ∇π ∈ W

m, p
m+ℓ+1(R

N
+ ) and finally, we can

conclude that (u, π) ∈ W
m+2, p
m+ℓ+1(R

N
+ ) ×Wm+1, p

m+ℓ+1(R
N
+ ).

5.5 Very weak solutions

The aim of this section is to study the homogeneous Stokes system (5.3.1)–(5.3.3)
with singular data on the boundary. In Section 4.6, we gave a meaning to singular
data for the Stokes problem in the half-space. More precisely, we showed that a
boundary condition u = g ∈ W

−1/p, p
ℓ−1 (Γ) is meaningful. Next, we solved problem

(5.3.1)–(5.3.3) in the two cases ℓ = 0 or ℓ = 1. Here again, we will extend
these results to the other weights, introducing the question of the kernel and, by
duality, the compatibility condition in the proof. However, let us notice that we
introduced and proved some preliminary definitions and properties in Section 4.6
with a view to the general case, i.e. for all ℓ ∈ Z. So we will directly use them
in the proof of the following result which generalizes Theorems 4.6.6 and 4.6.8.
Here again the reasoning is quite similar.

Theorem 5.5.1. Let ℓ ∈ Z and assume that

N/p′ /∈ {1, . . . , ℓ− 1} and N/p /∈ {1, . . . ,−ℓ+ 1}. (5.5.1)

For any g ∈ W
−1/p, p
ℓ−1 (Γ), satisfying the compatibility condition

∀ϕ ∈ A
∆
[1+ℓ−N/p′], 〈g, ∂Nϕ〉

W
−1/p, p
ℓ−1 (Γ)×W

1/p, p′

−ℓ+1 (Γ)
= 0, (5.5.2)

problem (5.3.1)–(5.3.3) admits a solution (u, π) ∈ W
0, p
ℓ−1(R

N
+ ) × W−1, p

ℓ−1 (RN
+ ),

unique up to an element of SD
[1−ℓ−N/p], and there exists a constant C such that

inf
(λ, µ)∈SD

[1−ℓ−N/p]

(

‖u + λ‖
W

0, p
ℓ−1(RN

+ ) + ‖π + µ‖W−1, p
ℓ−1 (RN

+ )

)

6 C ‖g‖
W

−1/p, p
ℓ−1 (Γ)

.

Proof. Step 1: we assume that gN = 0.
(i) Let us first show that if the pair (u, π) ∈ W

0, p
ℓ−1(R

N
+ )×W−1, p

ℓ−1 (RN
+ ) satisfies

(5.3.1) and (5.3.2), then we have u ∈ T ℓ, σ(RN
+ ) and thus the boundary condition

(5.3.3) makes sense. With this aim, by means of the density of D(RN
+ ) in Xℓ(R

N
+ ),

observe that if π ∈ W−1, p
ℓ−1 (RN

+ ), then we have ∇π ∈ X ′
ℓ(R

N
+ ) and

‖∇π‖X′

ℓ(R
N
+ ) 6 C ‖π‖W−1, p

ℓ−1 (RN
+ ),

So, we have ∆u ∈ X ′
ℓ(R

N
+ ) and the trace γ0u ∈ W

−1/p, p
ℓ−1 (Γ).



5.5. Very weak solutions 99

(ii) Now, let us show that the problem (5.3.1)–(5.3.3) with gN = 0 is equivalent
to the variational formulation: Find (u, π) ∈ W

0, p
ℓ−1(R

N
+ )×W−1, p

ℓ−1 (RN
+ ) such that

∀v ∈ M ℓ(R
N
+ ), ∀ϑ ∈ W 1, p′

−ℓ+1(R
N
+ ),

〈u,−∆v + ∇ϑ〉
W

0, p
ℓ−1(RN

+ )×W
0, p′

−ℓ+1(RN
+ )

− 〈π, div v〉
W−1, p

ℓ−1 (RN
+ )×

◦

W
1,p′

−ℓ+1(RN
+ )

= 〈g, ∂Nv〉
W

−1/p, p
ℓ−1 (Γ)×W

1/p, p′

−ℓ+1 (Γ)
.

(5.5.3)

Indeed, let (u, π) be a solution to (5.3.1)–(5.3.3) with gN = 0; by means of the
Green formula (4.6.6), we get for all v ∈ M ℓ(R

N
+ ),

〈−∆u + ∇π,v〉X′

ℓ×Xℓ
= −〈u,∆v〉

W
0, p
ℓ−1(RN

+ )×W
0, p′

−ℓ+1(RN
+ )

−

− 〈g, ∂Nv〉
W

−1/p, p
ℓ−1 (Γ)×W

1/p, p′

−ℓ+1 (Γ)
− 〈π, div v〉

W−1, p
ℓ−1 (RN

+ )×
◦

W
1, p′

−ℓ+1(RN
+ )

= 0.

Moreover, using the density of the functions of D
(

RN
+

)

with divergence zero in

T ℓ, σ(RN
+ ), we obtain for all ϑ ∈ W 1, p′

−ℓ+1(R
N
+ ),

〈u,∇ϑ〉
W

0, p
ℓ−1(RN

+ )×W
0, p′

−ℓ+1(RN
+ )

= − 〈div u, ϑ〉
W 0, p

ℓ (RN
+ )×W 0, p′

−ℓ (RN
+ )

−

− 〈uN , ϑ〉W−1/p, p
ℓ−1 (Γ)×W

1/p, p′

−ℓ+1 (Γ)
= 0.

So we show that (u, π) satisfies the variational formulation (5.5.3). Conversely,
we readily prove that if (u, π) ∈ W

0, p
ℓ−1(R

N
+ )×W−1, p

ℓ−1 (RN
+ ) satisfies the variational

formulation (5.5.3), then (u, π) is a solution to problem (5.3.1)–(5.3.3).
(iii) Next, let us solve problem (5.5.3). By Theorem 5.4.1, we know that under

hypothesis (5.5.1), for all (f , h) ∈ W
0, p′

−ℓ+1(R
N
+ )×

◦

W
1, p′

−ℓ+1(R
N
+ ) ⊥ SD

[1−ℓ−N/p], there

exists a unique (v, ϑ) ∈ M ℓ(R
N
+ ) ×W 1, p′

−ℓ+1(R
N
+ )/SD

[1+ℓ−N/p′] solution to

−∆v + ∇ϑ = f and div v = h in R
N
+ , v = 0 on Γ,

with the estimate

‖(v, ϑ)‖
W

2, p′

−ℓ+1(RN
+ )×W 1, p′

−ℓ+1(RN
+ )/SD

[1+ℓ−N/p′]

6 C
(

‖f‖
W

0, p′

−ℓ+1(RN
+ )

+ ‖h‖
W 1, p′

−ℓ+1(RN
+ )

)

.

Consider the linear form T : (f , h) 7−→ 〈g, ∂Nv〉
W

−1/p, p
ℓ−1 (Γ)×W

1/p, p′

−ℓ+1 (Γ)
defined on

W
0, p′

−ℓ+1(R
N
+ )×

◦

W
1, p′

−ℓ+1(R
N
+ ) ⊥ SD

[1−ℓ−N/p]. According to (5.5.2), we have for any

ϕ ∈ A
∆
[1+ℓ−N/p′], or equivalently, for any (λ, µ) ∈ SD

[1+ℓ−N/p′],

|T (f , h)| =
∣

∣

∣
〈g, ∂N(v + ϕ)〉

W
−1/p, p
ℓ−1 (Γ)×W

1/p, p′

−ℓ+1 (Γ)

∣

∣

∣

6 C ‖g‖
W

−1/p, p
ℓ−1 (Γ)

‖v + ϕ‖
W 2, p′

−ℓ+1(RN
+ )
.
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Thus

|T (f , h)| 6 C ‖g‖
W

−1/p, p
ℓ−1 (Γ)

‖(v, ϑ)‖
W

2, p′

−ℓ+1(RN
+ )×W 1, p′

−ℓ+1(RN
+ )/SD

[1+ℓ−N/p′]

6 C ‖g‖
W

−1/p, p
ℓ−1 (Γ)

(

‖f‖
W

0, p′

−ℓ+1(RN
+ )

+ ‖h‖
W 1, p′

−ℓ+1(RN
+ )

)

.

In other words, T is continuous on W
0, p′

−ℓ+1(R
N
+ )×

◦

W
1, p′

−ℓ+1(R
N
+ ) ⊥ SD

[1−ℓ−N/p], and
according to the Riesz representation theorem, we can deduce that there exists
a unique (u, π) ∈ W

0, p
ℓ−1(R

N
+ )×W−1, p

ℓ−1 (RN
+ )/SD

[1−ℓ−N/p] which is the dual space of

W
0, p′

−ℓ+1(R
N
+ )×

◦

W
1, p′

−ℓ+1(R
N
+ ) ⊥ SD

[1−ℓ−N/p], such that

∀(f , h) ∈ W
0, p′

−ℓ+1(R
N
+ )×

◦

W
1, p′

−ℓ+1(R
N
+ ),

T (f , h) = 〈u,f〉
W

0, p
ℓ−1(RN

+ )×W
0, p′

−ℓ+1(RN
+ )

+ 〈π,−h〉
W−1, p

ℓ−1 (RN
+ )×

◦

W
1, p′

−ℓ+1(RN
+ )
,

i.e. the pair (u, π) satisfies (5.5.3) and the kernel of this operator is SD
[1−ℓ−N/p].

Step 2: we now can drop the hypothesis gN = 0.

For any g ∈ W
−1/p, p
ℓ−1 (Γ) ⊥ N∆

[ℓ−N/p′], according to Theorem 4.3.3, we know

that under hypothesis (5.5.1), there exists ψ ∈ W 1, p
ℓ−1(R

N
+ ) unique up to an element

of N∆
[2−ℓ−N/p], solution to the following Neumann problem:

∆ψ = 0 in R
N
+ , ∂Nψ = gN on Γ.

Besides, we immediately notice that the orthogonality condition g ⊥ N∆
[ℓ−N/p′] is

equivalent to the compatibility condition (5.5.2). Now, let us set w = ∇ψ and
g∗ = g − γ0w. Then w ∈ T ℓ, σ(RN

+ ), with the estimate

‖w‖T ℓ(R
N
+ ) = ‖w‖

W
0, p
ℓ−1(RN

+ ) 6 C ‖g‖
W

−1/p, p
ℓ−1 (Γ)

.

Furthermore, g∗ is such that g∗
N = 0, hence the existence of a unique pair (z, π)

which satisfies

−∆z + ∇π = 0 and div z = 0 in R
N
+ , u = g∗ on Γ.

Then the pair (z + w, π) is a solution to problem (5.3.1)–(5.3.3).



Chapitre 6

The Stokes system with Navier

boundary conditions

6.1 Introduction

The motion of a viscous incompressible fluid is described by the Navier-Stokes
equations, which are non-linear. The Stokes system is a linear approximation of
this model, available for slow motions. In the two previous chapters, we studied
this system in a half-space with the classical Dirichlet boundary conditions, which
correspond to an adhesion, or non-slip, condition of the fluid on the wall. But
recent developments in microfluidic and nanofluidic technologies have renewed
interest in the influence of surface roughness on the slip behavior of viscous fluids
(see Priezjev and Troian, [41]). This issue have been subjected to discussion for
over two centuries by many distinguished scientists who developed the founda-
tions of fluid mechanics, including Bernoulli, Coulomb, Navier, Couette, Poisson,
Stokes. There are two basic boundary conditions: Dirichlet boundary conditions
(non-slip boundary conditions) and slip boundary conditions (Navier condition).
It is intuitively clear that slip boundary conditions is much closer to the observed
reality than non-slip boundary conditions whenever the rate of flow is sufficiently
strong (turbulent regimes). However, there has been a common believe that
even if the Navier slip conditions were correct, the corresponding slip length is
likely to be small to influence the motion of macroscopic fluids. Recently, numer-
ous experiments and simulations as well as theoretical studies have shown that
the classical non-slip assumption can fail when the walls are sufficiently smooth.
Strictly speaking, the slip length characterizing the contact between a fluid and
a solid wall in relative motion is influenced by many different factors, among
which the intrinsic affinity and commensurability between the liquid and solid
molecular size as well as the macroscopic surface roughness caused by imper-
fections and tiny asperities play a significant role. The aim of this chapter is
to investigate the Stokes problem with this type of slip boundary conditions in

101
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weighted Sobolev spaces. These type of boundary conditions was recently studied
by Babin, Mahalov, Nicolaenko (see [14, 15, 16]) and by Bellout, Neustupa, Penel
(see [18, 40]).

For the stokes problem in a domain Ω of RN ,

−∆u + ∇π = f and div u = h in Ω,

there are several possibilities of boundary conditions.
The classical homogeneous Dirichlet (non-slip) conditions:

u|∂Ω = 0,

when ∂Ω is a fixed wall. This condition was suggested by Stokes in 1845.
The Navier (slip) conditions:

u · n|∂Ω = 0, (T · n)τ + ku = 0,

where T is the viscous stress tensor. For the incompressible isotropic fluid the
viscous stress tensor has a form

Tij(u) = −δij π + 2 ν eij,

where eij(u) = 1
2
( ∂ui

∂xj
+

∂uj

∂xi
).

Another boundary conditions (in the three dimensional case) we can find in
the literature can be expressed by the equations

curlu × n = 0,
u · n = 0.

In the half space the Navier conditions with k = 0 and previous boundary
conditions have the same form and can be written in

uN = 0, ∂Nu′ = 0 on Γ.

We would like to mention generalized impermeability boundary conditions,
which we can find in the work of Bellout, Neustupa and Penel [18, 40].

u · n|∂Ω = 0, curlu · n|∂Ω = 0, curl2 u · n|∂Ω = 0

on the fixed wall ∂Ω.
In this chapter, we will consider the Stokes system with nonhomogeneous

Navier boundary conditions. We will denote it by (SN) (for Stokes system with
Navier conditions):

(SN)

{

−∆u + ∇π = f and div u = h in RN
+ ,

uN = gN and ∂Nu′ = g′ on Γ,
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6.2 Generalized solutions

We will first establish the result about the generalized solutions to (SN) in the
homogeneous case. The method is similar to the one employed for the Dirichlet
conditions, but the auxiliary problems and the arguments for their resolution are
appreciably different.

Homogeneous case

Here, we assume that f = 0 and h = 0.

Proposition 6.2.1. For any gN ∈ W
1−1/p, p
0 (Γ) and g′ ∈ W

−1/p, p
0 (Γ)

N−1
such

that g′ ⊥ RN−1 if N 6 p′, the Stokes problem

−∆u + ∇π = 0 in R
N
+ , (6.2.1)

div u = 0 in R
N
+ , (6.2.2)

uN = gN on Γ, (6.2.3)

∂Nu′ = g′ on Γ, (6.2.4)

has a solution (u, π) ∈ W
1, p
0 (RN

+ ) × Lp(RN
+ ), unique if N > p, unique up to an

element of RN−1 × {0}2 if N 6 p, with the estimate

inf
χ∈RN−1×{0}

‖u + χ‖
W

1, p
0 (RN

+ ) + ‖π‖Lp(RN
+ )

6 C
(

‖gN‖W
1−1/p, p
0 (Γ)

+ ‖g′‖
W

−1/p, p
0 (Γ)

N−1

)

if N 6 p, and the same without χ if N > p.

Remark 6.2.2. Before giving the proof, let us notice that this problem is not
standard. Indeed, we find the velocity field u in W

1, p
0 (RN

+ ) with a boundary

condition ∂Nu′ = g′ ∈ W
−1/p, p
0 (Γ)

N−1
for its tangential components.

It is possible because ∆2u = 0 in RN
+ and thus ui ∈ Y 1, p

1, 1 (RN
+ ) (see page 50).

Hence, by Lemma 3.3.8, the trace of ∂Nui have a sense in W
−1/p, p
0 (Γ). ♦

Proof. (i) Firstly, we reduce system (6.2.1)–(6.2.4) to three problems on the fun-
damental operators ∆2 and ∆.

According to (6.2.2) and applying the operators div and ∆ to (6.2.1), we get
both ∆π = 0 and ∆2u = 0 in RN

+ .
From the boundary condition (6.2.3), we take out

∀i ∈ {1, 2, . . . , N − 1}, ∂2
i uN = ∂2

i gN on Γ.

In addition, from (6.2.4), we take out

∂2
NuN = ∂N(∂NuN) = ∂N(− div′ u′) = − div′ g′ on Γ,
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hence, the boundary condition

∆uN = ∆′gN − div′ g′ on Γ,

where ∆′ =
∑N−1

j=1 ∂2
j . So, we get the following biharmonic problem

(B) : ∆2uN = 0 in R
N
+ , uN = gN and ∆uN = ∆′gN − div′ g′ on Γ.

Moreover, we have two Neumann problems

(N1) : ∆π = 0 in R
N
+ , ∂Nπ = ∆uN on Γ,

(N2) : ∆u′ = ∇′π in R
N
+ , ∂Nu′ = g′ on Γ.

(ii) Now, we will solve these three problems.
Step 1: We deal with problem (B). Denoting zN = ∆uN , we can split our

problem in the following two Dirichlet problems:

∆zN = 0 in R
N
+ , zN = ∆′gN − div′ g′ on Γ, (6.2.5)

∆uN = zN in R
N
+ , uN = gN on Γ. (6.2.6)

Concerning (6.2.5), we notice that ∆′gN − div′ g′ ∈ W
−1−1/p, p
0 (Γ), then we

can apply Theorem 4.3.4 with ℓ = 2, provided condition (4.3.4) is satisfied, i.e.
in the present case

∀ϕ ∈ A∆
[3−N/p′], 〈∆′gN − div′ g′, ∂Nϕ〉W−1−1/p, p

0 (Γ)×W
2−1/p′, p′

0 (Γ)
= 0.

According to the degre of polynomials in A∆
[3−N/p′], this condition boils down to

g′ ⊥ (P[1−N/p′])
N−1, which is precisely the assumption of Proposition 6.2.1. Thus

problem (6.2.5) has a unique solution zN ∈ W−1, p
0 (RN

+ ).
Concerning (6.2.6), we can apply Theorem 1.4.1 with ℓ = 0 and without any

condition since A∆
[1−N/p′] = {0}. Thus problem (6.2.6) has a unique solution

uN ∈ W 1, p
0 (RN

+ ).

Step 2: We study now problem (N1). Since ∆uN ∈ W−1, p
0 (RN

+ ), it is nec-
essary to check that the trace γ0∆uN has meaning. From definitions of Yℓ(R

N
+ )

and Yℓ, 1(R
N
+ ) in Section 4.3, since ∆uN ∈ W−1, p

0 (Ω) and ∆2uN = 0, it follows
that ∆uN ∈ Y2(R

N
+ ) and ∆uN ∈ Y2, 1(R

N
+ ). Then, according to Lemma 4.3.6,

we have ∆uN ∈ W
−1−1/p, p
0 (Γ). Now we can apply Theorem 4.3.2, provided the

compatibility condition (4.3.2) is satisfied, i.e. in the present case

∀ϕ ∈ N∆
[2−N/p′], 〈∆uN , ϕ〉W−1−1/p, p

0 (Γ)×W
2−1/p′, p′

0 (Γ)
= 0.

But, according to the degre of polynomials in N∆
[2−N/p′], it is clear that in fact

this condition vanishes. It implies the existence of a unique solution π ∈ Lp(RN
+ )

to problem (N1).
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Step 3: Finally, we are dealing with problem (N2). We split it in two parts:

∆v′ = ∇′π in R
N
+ , ∂Nv′ = 0 on Γ, (6.2.7)

and

∆z′ = 0 in R
N
+ , ∂Nz′ = g′ on Γ. (6.2.8)

To solve (6.2.7), we introduce the auxiliary problem

∆w = π in R
N
+ , ∂Nw = 0 on Γ. (6.2.9)

Since we have π ∈ Lp(RN
+ ), we can apply Theorem 1.4.4 which yields a solution

w ∈ W 2, p
0 (RN

+ ), unique up to an element of N∆
[2−N/p], to problem (6.2.9). Next, it

suffices to put v′ = ∇′w to obtain a solution (non-unique) v′ ∈ W 1, p
0 (RN

+ )
N−1

to
problem (6.2.7).

For problem (6.2.8), with g′ ∈ W
−1/p, p
0 (Γ)

N−1
, we must use Theorem 4.3.3.

The compatibility condition is written in this case: g′ ⊥ (P[1−N/p′])
N−1. Thus it

is realized by the assumption of Proposition 6.2.1. So, this problem has a solution

z′ ∈ W 1, p
0 (RN

+ )
N−1

, unique up to an element of (P[1−N/p])
N−1.

Then, it is clear that the function u′ = v′ + z′ ∈ W 1, p
0 (RN

+ )
N−1

is solution to
problem (N2).

(iii) Conversely, it is necessary to show that from uN , π,u
′, we get a solution

(u, π) of the original problem (6.2.1)–(6.2.4).
From previous it is clear that

−∆u′ + ∇′π = 0 in RN
+ ,

uN = gN on Γ,
∂Nu′ = g′ on Γ.

It remains to prove that

−∆uN + ∂Nπ = 0 in R
N
+ (6.2.10)

and finally, the relation (6.2.2).
For (6.2.10), thanks to the first equations of (B) and (N1), we get

∆(∆uN − ∂Nπ) = ∆2uN = 0 in R
N
+ .

With the boundary condition of (N1), it follows that ∆uN − ∂Nπ satisfies the
problem

∆(∆uN − ∂Nπ) = 0 in R
N
+ , ∆uN − ∂Nπ = 0 on Γ.

Since ∆uN − ∂Nπ ∈ W−1, p
0 (RN

+ ), Theorem 4.3.4 shows that we necessarily have
∆uN − ∂Nπ = 0 in RN

+ .
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For (6.2.2), the boundary condition of (N2) implies ∂N div′ u′ = div′ g′ on Γ.
Besides, from the boundary conditions of (B), we get ∂2

NuN = − div′ g′ on Γ.
Then we have

∂N div u = ∂N div′ u′ + ∂2
NuN = div′ g′ − div′ g′ = 0 on Γ.

So, div u satisfies the problem

∆ div u = 0 in R
N
+ , ∂N div u = 0 on Γ.

Since div u ∈ Lp(RN
+ ), thanks to Theorem 4.3.2, we get div u = 0 in RN

+ .

(iv) Concerning the uniqueness question, we have notice that uN and π are
unique. Let u′ = (ui)16i6N−1 and u′

∗ = (u∗i )16i6N−1 be solutions to (N2), then

∆(ui − u∗i ) = 0 in RN
+ ,

∂N(ui − u∗i ) = 0 on Γ,

where ui − u∗i ∈ W 1,p
0 (RN

+ ). Thus, according to Theorem 1.4.3, we can deduce
that ui − u∗i ∈ N∆

[1−N/p]. It remains to remark that N∆
[1−N/p] = R if N 6 p, and

N∆
[1−N/p] = {0} if N > p.

Finally, the estimate of Proposition 6.2.1 is a straightforward consequence of
the Banach Theorem.

Nonhomogeneous case

Now, we can deal with the complete problem.

Theorem 6.2.3. Assume that N
p′

6= 1. For any f ∈ W
0, p
1 (RN

+ ), h ∈ W 1, p
1 (RN

+ ),

gN ∈ W
1−1/p, p
0 (Γ) and g′ ∈ W

−1/p, p
0 (Γ)

N−1
, satisfying the following compatibility

condition if N < p′:

∀i ∈ {1, . . . , N − 1},

∫

RN
+

fi dx = 〈gi, 1〉
W

−1/p, p
0 (Γ)×W

1/p, p′

0 (Γ)
, (6.2.11)

problem (SN) admits a solution (u, π) ∈ W
1, p
0 (RN

+ ) × Lp(RN
+ ), unique if N > p,

unique up to an element of RN−1 × {0}2 if N 6 p, with the estimate

inf
χ∈RN−1×{0}

‖u + χ‖
W

1, p
0 (RN

+ ) + ‖π‖Lp(RN
+ )

6 C
(

‖f‖
W

0, p
1 (RN

+ ) + ‖h‖W 1, p
1 (RN

+ ) + ‖gN‖W
1−1/p, p
0 (Γ)

+ ‖g′‖
W

−1/p, p
0 (Γ)

N−1

)

if N 6 p, and the same without χ if N > p.



6.2. Generalized solutions 107

Proof. We can give a proof quite similar to the one of the nonhomogeneous case
for the Stokes system with Dirichlet boundary conditions, by extension of the data
f and h to the whole space (see Section 4.4). But another way is to combine this
result with the homogeneous case for the Stokes system with Navier boundary
conditions. We will follow this one.

Firstly, we introduce the auxiliary problem

−∆z + ∇η = f in RN
+ ,

div z = h in RN
+ ,

z = 0 on Γ.
(6.2.12)

With the assumption N
p′
6= 1, according to Theorem 4.5.2, we know that problem

(6.2.12) admits a unique solution (z, η) ∈ W
2, p
1 (RN

+ ) × W 1, p
1 (RN

+ ). Thus we

can deduce that ∂Nz′|Γ ∈ W
1−1/p, p
1 (Γ)

N−1
. In addition, we can notice that we

have the imbeddings W 2, p
1 (RN

+ ) →֒ W 1, p
0 (RN

+ ) and W 1, p
1 (RN

+ ) →֒ Lp(RN
+ ) without

condition, whereas we have W
1−1/p, p
1 (Γ) →֒ W

−1/p, p
0 (Γ) only if N

p′
6= 1.

Indeed, we can break it down into

W
1−1/p, p
1 (Γ) →֒ W 0, p

1/p (Γ) and W 0, p
1/p (Γ) →֒ W

−1/p, p
0 (Γ).

The first one holds without condition and, by duality, the second one is equivalent

to W
1/p, p′

0 (Γ) →֒ W 0, p′

−1/p(Γ), which holds if N−1
p′

6= 1
p
, i.e. N

p′
6= 1.

So, (z, η) ∈ W
1, p
0 (RN

+ )×Lp(RN
+ ) and above all γ1z

′ ∈ W
−1/p, p
0 (Γ)

N−1
, which

allows us to consider the second auxiliary problem

−∆v + ∇ϑ = 0 and div v = 0 in RN
+ ,

vN = gN and ∂Nv′ = g′ − ∂Nz′ on Γ,
(6.2.13)

where g′ − ∂Nz′|Γ = g′ − γ1z
′ ∈ W

−1/p, p
0 (Γ)

N−1
. Then, we can apply Proposition

6.2.1, which yields (v, ϑ) ∈ W
1, p
0 (RN

+ ) × Lp(RN
+ ) solution to (6.2.13), provided

the orthogonality condition

∀ϕ′ ∈ R
N−1, 〈g′ − γ1z

′, ϕ′〉
W

−1/p, p
0 (Γ)

N−1
×W

1/p, p′

0 (Γ)
N−1 = 0 (6.2.14)

is satisfied if N < p′. Now, we must write this condition by only means of data.
It suffices to notice that we have for all ϕ ∈ RN−1 × {0},

∫

RN
+

f · ϕ dx =

∫

RN
+

(−∆z + ∇η) · ϕ dx

= 〈γ1z
′, ϕ′〉

W
−1/p, p
0 (Γ)

N−1
×W

1/p, p′

0 (Γ)
N−1 ,

to deduce that the condition (6.2.14) is written

∀ϕ′ ∈ R
N−1,

∫

RN
+

f ′ · ϕ′ dx = 〈g′, ϕ′〉
W

−1/p, p
0 (Γ)

N−1
×W

1/p, p′

0 (Γ)
N−1 ,
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that is, more simply, the compatibility condition (6.2.11).
Then, the pair (u, π) = (v + z, ϑ+ η) which belongs to W

1, p
0 (RN

+ )×Lp(RN
+ )

is a solution to (SN).
Finally, the uniqueness of solutions to (SN) is a straightforward consequence

of Proposition 6.2.1.

Remark 6.2.4. With these boundary conditions, it is not reasonable to consider
data (f , h) which belong to W

−1, p
0 (RN

+ ) × Lp(RN
+ ). Indeed, with such data we

get a solution to problem (6.2.12) in the space W 1, p
0 (RN

+ ) for the velocity field z

and we cannot give a sense to the trace of ∂Nz′ in that case. This limitation is
not due to the method employed here, but we find the same situation as in the
Neumann problem for the Laplacian in RN

+ (see Theorem 1.4.3). ♦

6.3 Strong solutions and regularity

In this section, we are interested in the existence of strong solutions, i.e. of
solutions (u, π) ∈ W

2, p
1 (RN

+ ) ×W 1, p
1 (RN

+ ), and next to get a general regularity
result. We start with the homogeneous problem.

Proposition 6.3.1. Assume that N
p′

6= 1. For any gN ∈ W
2−1/p, p
1 (Γ) and g′ ∈

W
1−1/p, p
1 (Γ)

N−1
such that g′ ⊥ RN−1 if N < p′, problem (6.2.1)–(6.2.4) admits

a solution (u, π) ∈ W
2, p
1 (RN

+ ) ×W 1, p
1 (RN

+ ), unique if N > p, unique up to an
element of RN−1 × {0}2 if N 6 p, with the estimate

inf
χ∈RN−1×{0}

‖u + χ‖
W

2, p
1 (RN

+ ) + ‖π‖W 1, p
1 (RN

+ )

6 C
(

‖gN‖W
2−1/p, p
1 (Γ)

+ ‖g′‖
W

1−1/p, p
1 (Γ)

N−1

)

if N 6 p, and the same without χ if N > p.

Proof. We have seen before that W
1−1/p, p
1 (Γ) →֒ W

−1/p, p
0 (Γ) if N

p′
6= 1. Moreover,

we have the imbedding W
2−1/p, p
1 (Γ) →֒ W

1−1/p, p
0 (Γ) without condition.

Then, from Proposition 6.2.1, we can deduce that problem (6.2.1)–(6.2.4)
admits a solution (u, π) ∈ W

1, p
0 (RN

+ ) × Lp(RN
+ ). Now, it suffices to go back to

the proof of Proposition 6.2.1 and to use the established results about problems
(B), (N1) and (N2), to show that in fact (u, π) ∈ W

2, p
1 (RN

+ ) ×W 1, p
1 (RN

+ ).

In order, for problem (B), according to Theorem 4.3.7, we find zN ∈ W 0, p
1 (RN

+ )

solution to the first problem (6.2.5), with the assumption g′ ⊥ (P[1−N/p′])
N−1; and

according to Theorem 1.4.2, we find uN ∈ W 2, p
1 (RN

+ ) solution to the second prob-

lem (6.2.6). For problem (N1), thanks to Theorem 4.3.3, we find π ∈ W 1, p
1 (RN

+ ).

For problem (N2), according to Theorem 1.4.2, we find u′ ∈ W 2, p
1 (RN

+ )
N−1

. Note
that for all these results, the condition N/p′ 6= 1 is always necessary.



6.3. Strong solutions and regularity 109

We now can give the result in the nonhomogeneous case.

Theorem 6.3.2. Assume that N
p′

6= 1. For any f ∈ W
0, p
1 (RN

+ ), h ∈ W 1, p
1 (RN

+ ),

gN ∈ W
2−1/p, p
1 (Γ) and g′ ∈ W

1−1/p, p
1 (Γ)

N−1
, satisfying the compatibility condition

(6.2.11) if N < p′, problem (SN) has a solution (u, π) ∈ W
2, p
1 (RN

+ )×W 1, p
1 (RN

+ ),
unique if N > p, unique up to an element of RN−1 × {0}2 if N 6 p, with the
estimate

inf
χ∈RN−1×{0}

‖u + χ‖
W

2, p
1 (RN

+ ) + ‖π‖W 1, p
1 (RN

+ )

6 C
(

‖f‖
W

0, p
1 (RN

+ ) + ‖h‖W 1, p
1 (RN

+ ) + ‖gN‖W
2−1/p, p
1 (Γ)

+ ‖g′‖
W

1−1/p, p
1 (Γ)

N−1

)

if N 6 p, and the same without χ if N > p.

Proof. The proof of Theorem 6.2.3 work in this case. It suffices to take the strong
result for Stokes system with Dirichlet boundary conditions, i.e. Theorem 4.5.2,
to solve (6.2.12); and Proposition 6.3.1 to solve (6.2.13).

Corollary 6.3.3. Let m > 1 be an integer and assume that N
p′
6= 1. For any f ∈

W m−1, p
m (RN

+ ), h ∈ Wm, p
m (RN

+ ), gN ∈ W
m+1−1/p, p
m (Γ) and g′ ∈ W

m−1/p, p
m (Γ)

N−1
,

satisfying the compatibility condition (6.2.11) if N < p′, problem (SN) admits a
solution (u, π) ∈ W m+1, p

m (RN
+ ) ×Wm, p

m (RN
+ ), unique if N > p, unique up to an

element of RN−1 × {0}2 if N 6 p, with the estimate

inf
χ∈RN−1×{0}

‖u + χ‖
W

m+1, p
m (RN

+ ) + ‖π‖W m, p
m (RN

+ ) 6

C
(

‖f‖
W

m−1, p
m (RN

+ ) + ‖h‖W m, p
m (RN

+ ) + ‖gN‖W
m+1−1/p, p
m (Γ)

+ ‖g′‖
W

m−1/p, p
m (Γ)

N−1

)

if N 6 p, and the same without χ if N > p.

Proof. Here again, we can refer to the proof of the regularity result for Stokes
system with Dirichlet boundary conditions, that is Corollary 4.5.5 on page 74.
The only change in the proof is about traces of the tangential components of the

velocity field. However, assuming that g′ ∈ W
m+1−1/p, p
m+1 (Γ)

N−1
, since γ0̺ = ̺′

and γ1̺ = 0, then we have γ1(̺ ∂iu
′) = ̺′ ∂iγ1u

′ = ̺′ ∂ig
′ ∈ W m−1/p, p

m (Γ), which
allows us to apply the induction hypothesis.

Remark 6.3.4. Another way to prove Corollary 6.3.3, is to resume the method
of Section 6.2, using the regularity results for harmonic, biharmonic and Stokes
(with Dirichlet boundary conditions) problems in the half-space. ♦
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6.4 Very weak solutions

The aim of this section is to study the homogeneous problem (6.2.1)–(6.2.4):

−∆u + ∇π = 0 and div u = 0 in RN
+ ,

uN = gN and ∂Nu′ = g′ on Γ,

with singular data on the boundary, that is more precisely with

g′ ∈ W
−1−1/p, p
−1 (Γ)

N−1
and gN ∈ W

−1/p, p
−1 (Γ).

The outline of the reasoning is the same as in the case of Dirichlet conditions
(Section 4.6), but we must write an adapted Green formula for the variational
formulation and thus find the good spaces with appropriate densities. We will
give the complete proof, points already seen at Section 4.6 excepted. Here again,
we will establish these preliminary definitions and properties with a view to the
general case, i.e. for all ℓ ∈ Z.

For every ℓ ∈ Z, we introduce

M ℓ(R
N
+ ) =

{

u ∈ W
2, p′

−ℓ+1(R
N
+ ); uN = 0, ∂Nu′ = 0 and div u = 0 on Γ

}

,

as a subspace of W
2, p′

−ℓ+1(R
N
+ ), equipped with the inherited norm. We also define

the space

Xℓ(R
N
+ ) =

[

{

v ∈ W
0, p′

−ℓ−1(R
N
+ ); div v ∈ W 1, p′

−ℓ+1(R
N
+ )

}

if N
p′
/∈ {ℓ, ℓ+ 1},

{

v ∈ W
0, p′

−ℓ−1,−1(R
N
+ ); div v ∈ W 1, p′

−ℓ+1(R
N
+ )

}

if N
p′
∈ {ℓ, ℓ+ 1};

which is a reflexive Banach space for the norm

‖v‖Xℓ(R
N
+ ) =

[

‖v‖
W

0, p′

−ℓ−1(RN
+ )

+ ‖ div v‖
W 1, p′

−ℓ+1(RN
+ )

if N
p′
/∈ {ℓ, ℓ+ 1},

‖v‖
W

0, p′

−ℓ−1, −1(RN
+ )

+ ‖ div v‖
W 1, p′

−ℓ+1(RN
+ )

if N
p′
∈ {ℓ, ℓ+ 1};

and the following subspace of Xℓ(R
N
+ )

◦

Xℓ (R
N
+ ) =





{

v ∈ W
0, p′

−ℓ−1(R
N
+ ); div v ∈

◦

W
1, p′

−ℓ+1(R
N
+ )

}

if N
p′
/∈ {ℓ, ℓ+ 1},

{

v ∈ W
0, p′

−ℓ−1,−1(R
N
+ ); div v ∈

◦

W
1, p′

−ℓ+1(R
N
+ )

}

if N
p′
∈ {ℓ, ℓ+ 1}.

Finally, let us we denote by X ′
ℓ(R

N
+ ) the dual space of

◦

Xℓ (R
N
+ ).

Lemma 6.4.1. For any ℓ ∈ Z, the space D(RN
+ ) is dense in

◦

Xℓ (R
N
+ ).
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Proof. For every continuous linear form J ∈ X ′
ℓ(R

N
+ ), there exists a unique pair

(f , g) ∈ W
0, p
ℓ+1(R

N
+ ) ×W−1, p

ℓ−1 (RN
+ ), such that

∀v ∈
◦

Xℓ (R
N
+ ), 〈J,v〉 =

∫

RN
+

f · v dx+ 〈g, div v〉
W−1, p

ℓ−1 (RN
+ )×

◦

W
1, p′

−ℓ+1(RN
+ )
. (6.4.1)

Thanks to Hahn-Banach theorem, it suffices to show that any J which vanishes

on D(RN
+ ) is actually zero on

◦

Xℓ (RN
+ ). Let us suppose that J = 0 on D(RN

+ ).
Then we can deduce from (6.4.1) that

f −∇g = 0 in R
N
+ ,

hence we have ∇g ∈ W
0, p
ℓ+1(R

N
+ ). Then, we can deduce that g ∈ W 1, p

ℓ+1(R
N
+ ). Now,

it is a standard density argument which allows us to see from (6.4.1) that J is
identically zero.

Next, we introduce the two spaces:

T ℓ(R
N
+ ) =

{

v ∈ W
0, p
ℓ−1(R

N
+ ); ∆v ∈ X ′

ℓ(R
N
+ )

}

,

T ℓ, σ(RN
+ ) =

{

v ∈ T ℓ(R
N
+ ); div v = 0 in R

N
+

}

,

which are reflexive Banach spaces for the norm

‖v‖T ℓ(R
N
+ ) = ‖v‖

W
0, p
ℓ−1(RN

+ ) + ‖∆v‖X′

ℓ(R
N
+ ),

where ‖ · ‖X′

ℓ(R
N
+ ) denotes the dual norm of the space X ′

ℓ(R
N
+ ).

We now can give the essential lemma, both to give a sense to the traces in
our singular problem, and for the duality reasoning on which is based the main
result.

Lemma 6.4.2. Let ℓ ∈ Z and assume that

N/p′ /∈ {1, . . . , ℓ− 1} and N/p /∈ {1, . . . ,−ℓ+ 1}. (6.4.2)

The linear mapping

(γeN
, γ′1) : D

(

RN
+

)

−→ D(RN−1)

v 7−→ (vN |Γ, ∂Nv′|Γ),

can be extended to a linear continuous mapping

(γeN
, γ′1) : T ℓ, σ(RN

+ ) −→ W
−1/p, p
ℓ−1 (Γ) ×

(

W
−1−1/p, p
ℓ−1 (Γ)

)N−1
.

In addition, we have the Green formula:

∀v ∈ T ℓ, σ(RN
+ ), ∀ϕ ∈ M ℓ(R

N
+ ),

〈∆v,ϕ〉
X′

ℓ(R
N
+ )×

◦

Xℓ(R
N
+ )

= 〈v,∆ϕ〉
W

0, p
ℓ−1(RN

+ )×W
0, p′

−ℓ+1(RN
+ )

−

− 〈∂Nv′,ϕ′〉
W

−1−1/p, p
ℓ−1 (Γ)×W

1+1/p, p′

−ℓ+1 (Γ)
+ 〈vN , ∂NϕN〉W−1/p, p

ℓ−1 (Γ)×W
1/p, p′

−ℓ+1 (Γ)
.

(6.4.3)



112 Chapitre 6. Stokes system with Navier conditions

Proof. (i) We start with the normal trace, that is the linear mapping

γeN
: D

(

RN
+

)

−→ D(RN−1)

v 7−→ vN |Γ,

Let us consider the space

W
0, p
ℓ (div; R

N
+ ) =

[

{

v ∈ W
0, p
ℓ−1(R

N
+ ); div v ∈ W 0, p

ℓ (RN
+ )

}

if N
p′
6= ℓ,

{

v ∈ W
0, p
ℓ−1(R

N
+ ); div v ∈ W 0, p

ℓ, 1 (RN
+ )

}

if N
p′

= ℓ;

which is a reflexive Banach space equipped with its natural norm

‖v‖
W

0, p
ℓ (div; RN

+ ) =

[

‖v‖
W

0, p
ℓ−1(RN

+ ) + ‖ div v‖W 0, p
ℓ (RN

+ ) if N
p′
6= ℓ,

‖v‖
W

0, p
ℓ−1(RN

+ ) + ‖ div v‖W 0, p
ℓ, 1 (RN

+ ) if N
p′

= ℓ.

As in Lemma 4.6.2, we can show by truncation and regularization that D
(

RN
+

)

is dense in W
0, p
ℓ (div; RN

+ ).

Moreover, by density of D
(

RN
+

)

in W 1, p′

−ℓ+1(R
N
+ ), we have

∀v ∈ D
(

RN
+

)

, ∀ϕ ∈ W 1, p′

−ℓ+1(R
N
+ ),

∫

RN
+

v · ∇ϕ dx +

∫

RN
+

ϕ div v dx = −

∫

Γ

vN ϕ dx′,

hence
∣

∣

∣

∣

∫

Γ

vN ϕ dx′
∣

∣

∣

∣

6 ‖v‖
W

0, p
ℓ (div; RN

+ ) ‖ϕ‖W 1, p′

−ℓ+1(RN
+ )
.

Let µ ∈ W
1/p, p′

−ℓ+1 (Γ). By Lemma 1.3.1, there exists ϕ ∈ W 1, p′

−ℓ+1(R
N
+ ) such that

ϕ = µ on Γ, with ‖ϕ‖
W 1, p′

−ℓ+1(RN
+ )

6 C ‖µ‖
W

1/p, p′

−ℓ+1 (Γ)
. Consequently,

∣

∣

∣

∣

∫

Γ

vN µ dx′
∣

∣

∣

∣

6 C ‖v‖
W

0, p
ℓ (div; RN

+ ) ‖µ‖W
1/p, p′

−ℓ+1 (Γ)
,

and thus

‖vN‖W
−1/p, p
ℓ−1 (Γ)

6 C ‖v‖
W

0, p
ℓ (div; RN

+ ). (6.4.4)

Hence we can deduce that γeN
is continuous for the norm of W

0, p
ℓ (div; RN

+ ) and,

since D
(

RN
+

)

is dense in W
0, p
ℓ (div; RN

+ ), the mapping γeN
can be extended by

continuity to γeN
∈ L

(

W
0, p
ℓ (div; RN

+ ); W
−1/p, p
ℓ−1 (Γ)

)

. That obviously answers to

the question of normal trace for the functions in T ℓ, σ(RN
+ ), since we have in this

space the inequality ‖v‖
W

0, p
ℓ (div; RN

+ ) 6 ‖v‖T ℓ(R
N
+ ).
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(ii) Next, we are interested in the trace of normal derivative of tangential
components, that is the linear mapping

γ′1 : D
(

RN
+

)

−→ D(RN−1)
N−1

v 7−→ ∂Nv′|Γ,

Firstly, the density of D
(

RN
+

)

in W
2, p′

−ℓ+1(R
N
+ ), yields the following Green formula:

∀v ∈ D
(

RN
+

)

, ∀ϕ ∈ M ℓ(R
N
+ ),

∫

RN
+

∆v · ϕ dx =

∫

RN
+

v · ∆ϕ dx−

∫

Γ

∂Nv′ · ϕ′ dx′ +

∫

Γ

vN ∂NϕN dx′.
(6.4.5)

According to (6.4.4), we can deduce the following estimate:

∣

∣

∣

∣

∫

Γ

∂Nv′ · ϕ′ dx′
∣

∣

∣

∣

6 C ‖v‖T ℓ(R
N
+ ) ‖ϕ‖

W 2, p′

−ℓ+1(RN
+ )
.

Let µ′ ∈ W
1+1/p, p′

−ℓ+1 (Γ)
N−1

. By Lemma 1.3.1, there exists ϕ ∈ W
2, p′

−ℓ+1(R
N
+ ) such

that ϕ = (µ′, 0) and ∂Nϕ = (0, − div′ µ′) on Γ — so we have div ϕ = 0 on Γ and
thus ϕ ∈ M ℓ(R

N
+ ) —, with ‖ϕ‖

W
2, p′

−ℓ+1(RN
+ )

6 C ‖µ′‖
W

1+1/p, p′

−ℓ+1 (Γ)
. Consequently,

∣

∣

∣

∣

∫

Γ

∂Nv′ · µ′ dx′
∣

∣

∣

∣

6 C ‖v‖T ℓ(R
N
+ ) ‖µ

′‖
W

1+1/p, p′

−ℓ+1 (Γ)
,

and thus
‖∂Nv′‖

W
−1−1/p, p
ℓ−1 (Γ)

6 C ‖v‖T ℓ(R
N
+ ).

Hence we can deduce that the linear mapping γ′1 is continuous for the norm of

T ℓ, σ(RN
+ ). In addition, we can show that the space

{

v ∈ D
(

RN
+

)

; div v = 0
}

is

dense in T ℓ, σ(RN
+ ). Therefore, the mapping γ′1 can be extended by continuity to

γ′1 ∈ L
(

T ℓ, σ(RN
+ ); W

−1−1/p, p
ℓ−1 (Γ)

)

.

To finish this proof, we also can deduce the formula (6.4.3) from (6.4.5) by
that last density.

We now can solve the homogeneous problem (6.2.1)–(6.2.4) with singular data
on the boundary. We will do it in two times. The first step is to consider
gN = 0, next we will remove this assumption. Here, we are only interested
in the case ℓ = 0 and then hypothesis (6.4.2) is reduced to N 6= p. Let us
notice that with this hypothesis, we have the imbeddings W 1, p

0 (RN
+ ) →֒ W 0, p

−1 (RN
+ )

and W
1−1/p, p
0 (Γ) →֒ W

−1/p, p
−1 (Γ), in addition W

−1/p, p
0 (Γ) →֒ W

−1−1/p, p
−1 (Γ) holds

without condition. It allows us to link the very weak solutions of this section to
the generalized solutions of Proposition 6.2.1.
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Proposition 6.4.3. Assume that N
p
6= 1. For any g′ ∈ W

−1−1/p, p
−1 (Γ)

N−1
such

that g′ ⊥ RN−1 if N 6 p′, the Stokes problem (6.2.1)–(6.2.4) with gN = 0 admits
a solution (u, π) ∈ W

0, p
−1 (RN

+ ) ×W−1, p
−1 (RN

+ ), unique if N > p, unique up to an
element of RN−1 × {0}2 if N < p, with the estimate

inf
χ∈RN−1×{0}

‖u + χ‖
W

0, p
−1 (RN

+ ) + ‖π‖W−1, p
−1 (RN

+ ) 6 C ‖g′‖
W

−1−1/p, p
−1 (Γ)

N−1

if N < p, and the same without χ if N > p.

Proof. (i) Given a pair (u, π) ∈ W
0, p
−1 (RN

+ ) ×W−1, p
−1 (RN

+ ) which satisfies (6.2.1)
and (6.2.2), then we have u ∈ T 0, σ(RN

+ ) and thus the boundary conditions (6.2.3)

and (6.2.4) makes sense. Indeed, observe that if π ∈ W−1, p
−1 (RN

+ ), we can write
for any ϕ ∈ D(RN

+ ),

〈∇π,ϕ〉
D

′(RN
+ )×D(RN

+ ) = −〈π, div ϕ〉D′(RN
+ )×D(RN

+ ) .

Consider the linear form:

J : ϕ 7−→ −〈π, div ϕ〉
W−1, p

−1 (RN
+ )×

◦

W
1, p′

1 (RN
+ )
,

defined on D(RN
+ ). Thanks to Lemma 6.4.1, we can extend J by density to

X0(R
N
+ ); moreover, we have:

|Jϕ| 6 ‖π‖W−1, p
−1 (RN

+ ) ‖ϕ‖X0(RN
+ ).

Hence J is continuous on X0(R
N
+ ) and by the Riesz representation theorem,

we can deduce that ∇π ∈ X ′
0(R

N
+ ). In addition, we have the following Green

formula:

∀ϕ ∈ X0(R
N
+ ),

〈∇π,ϕ〉
X′

0(RN
+ )×

◦

X0(RN
+ )

= −〈π, div ϕ〉
W−1, p

−1 (RN
+ )×

◦

W
1, p′

1 (RN
+ )
, (6.4.6)

with the estimate
‖∇π‖X′

0(RN
+ ) 6 ‖π‖W−1, p

−1 (RN
+ ).

Since ∇π ∈ X ′
0(R

N
+ ), we also have ∆u ∈ X ′

0(R
N
+ ), hence u ∈ T 0, σ(RN

+ ), and thus

we have both the trace γ0uN ∈ W
−1/p, p
−1 (Γ) and the trace γ1u

′ ∈ W
−1−1/p, p
−1 (Γ).

(ii) Let us show that the problem (6.2.1)–(6.2.4) with gN = 0 is equivalent to
the variational formulation: Find (u, π) ∈ W

0, p
−1 (RN

+ ) ×W−1, p
−1 (RN

+ ) such that

∀v ∈ M 0(R
N
+ ), ∀ϑ ∈ W 1, p′

1 (RN
+ ),

〈u,−∆v + ∇ϑ〉
W

0, p
−1 (RN

+ )×W
0, p′

1 (RN
+ )

− 〈π, div v〉
W−1, p

−1 (RN
+ )×

◦

W
1,p′

1 (RN
+ )

= −〈g′,v′〉
W

−1−1/p, p
−1 (Γ)×W

1+1/p, p′

1 (Γ)
.

(6.4.7)
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(a) Let (u, π) be a solution to (6.2.1)–(6.2.4) with gN = 0; then the Green
formulas (6.4.3) and (6.4.6) yield for all v ∈ M 0(R

N
+ ),

〈−∆u + ∇π,v〉
X′

0(RN
+ )×

◦

X0(RN
+ )

= −〈u,∆v〉
W

0, p
−1 (RN

+ )×W
0, p′

1 (RN
+ )

+

+ 〈g′,v′〉
W

−1−1/p, p
−1 (Γ)×W

1+1/p, p′

1 (Γ)
− 〈π, div v〉

W−1, p
−1 (RN

+ )×
◦

W
1, p′

1 (RN
+ )

= 0.

Moreover, using the density of the functions of D
(

RN
+

)

with divergence zero in

T 0, σ(RN
+ ), we obtain for all ϑ ∈ W 1, p′

1 (RN
+ ),

〈u,∇ϑ〉
W

0, p
−1 (RN

+ )×W
0, p′

1 (RN
+ )

= − 〈div u, ϑ〉Lp(RN
+ )×Lp′ (RN

+ ) −

− 〈uN , ϑ〉W−1/p, p
−1 (Γ)×W

1/p, p′

1 (Γ)
= 0.

So we show that (u, π) satisfies the variational formulation (6.4.7).
(b) Conversely, if (u, π) ∈ W

0, p
−1 (RN

+ ) ×W−1, p
−1 (RN

+ ) satisfies the variational
formulation (6.4.7), then taking v = 0, we have for any ϑ ∈ D(RN

+ ),

〈u,∇ϑ〉D′(RN
+ )×D(RN

+ ) = 〈− div u, ϑ〉D′(RN
+ )×D(RN

+ ) = 0,

hence div u = 0 in RN
+ . We can deduce that u ∈ W

0, p
−1 (div; RN

+ ) and thus

uN |Γ ∈ W
−1/p, p
−1 (Γ). Then, we can write for any ϑ ∈ W 1, p′

1 (RN
+ ),

〈u,∇ϑ〉
W

0, p
−1 (RN

+ )×W
0, p′

1 (RN
+ )

= 〈uN , ϑ〉W−1/p, p
−1 (Γ)×W

1/p, p′

1 (Γ)
= 0.

Therefore, by the traces lemma (Lemma 1.3.1), we have for any ϕ ∈ W
1/p, p′

1 (Γ),
〈uN , ϕ〉W−1/p, p

−1 (Γ)×W
1/p, p′

1 (Γ)
= 0, hence uN = 0 on Γ. In addition, taking ϑ = 0 in

(6.4.7), we have for any v ∈ D(RN
+ ),

〈u,−∆v〉D′(RN
+ )×D(RN

+ ) − 〈π, div v〉D′(RN
+ )×D(RN

+ ) = 0,

thus 〈−∆u + ∇π,v〉D′(RN
+ )×D(RN

+ ) = 0, i.e. −∆u+∇π = 0 in RN
+ . We deduce that

u ∈ T 0, σ(RN
+ ) and taking ϑ = 0 in (6.4.7), we finally get for any v ∈ M 0(R

N
+ ),

〈∂Nu′,v′〉
W

−1−1/p, p
−1 (Γ)×W

1+1/p, p′

1 (Γ)
= 〈g′,v′〉

W
−1−1/p, p
−1 (Γ)×W

1+1/p, p′

1 (Γ)
.

Moreover, as we saw at point (ii) in the proof of Lemma 6.4.2 on page 113, for

all µ′ ∈ W
1+1/p, p′

1 (Γ)
N−1

, there exists v ∈ M 0(R
N
+ ) such that v′ = µ′ on Γ;

consequently ∂Nu′ = g′ on Γ. So, we have shown that (u, π) is a solution to
problem (6.2.1)–(6.2.4).

(iii) Let us solve problem (6.4.7). According to Theorem 6.3.2, we know that

if N
p
6= 1, for all f ∈ W

0, p′

1 (RN
+ ) ⊥

(

(P[1−N/p])
N−1 × {0}

)

and ϕ ∈
◦

W
1, p′

1 (RN
+ ),
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there exists a unique (v, ϑ) ∈
(

M 0(R
N
+ ) ×W 1, p′

1 (RN
+ )

)

/
(

(P[1−N/p′])
N−1 × {0}2

)

solution to

−∆v + ∇ϑ = f and div v = ϕ in R
N
+ ,

vN = 0 and ∂Nv′ = 0 on Γ,

with the estimate

inf
χ∈(P[1−N/p′])

N−1×{0}
‖v + χ‖

W
2, p′

1 (RN
+ )

+ ‖ϑ‖
W 1, p′

1 (RN
+ )

6 C
(

‖f‖
W

0, p′

1 (RN
+ )

+ ‖ϕ‖
W 1, p′

1 (RN
+ )

)

.

Now, consider the linear form

T : (f , ϕ) 7−→ −〈g′, v′〉
W

−1−1/p, p
−1 (Γ)×W

1+1/p, p′

1 (Γ)
,

defined on
(

W
0, p′

1 (RN
+ )×

◦

W
1, p′

1 (RN
+ )

)

⊥
(

(P[1−N/p])
N−1 × {0}2

)

. Since g′ ⊥

(P[1−N/p′])
N−1, we have for any χ′ ∈ (P[1−N/p′])

N−1,

|T (f , ϕ)| =
∣

∣

∣
〈g′, v′ + χ′〉

W
−1−1/p, p
−1 (Γ)×W

1+1/p, p′

1 (Γ)

∣

∣

∣

6 C ‖v‖
W

2, p′

1 (RN
+ )/(P[1−N/p′])

N−1×{0}
‖g′‖

W
−1−1/p, p
−1 (Γ)

6 C
(

‖f‖
W

0, p′

1 (RN
+ )

+ ‖ϕ‖
W 1, p′

1 (RN
+ )

)

‖g′‖
W

−1−1/p, p
−1 (Γ)

.

Hence T is continuous on
(

W
0, p′

1 (RN
+ )×

◦

W
1, p′

1 (RN
+ )

)

⊥
(

(P[1−N/p])
N−1 × {0}2

)

,
and according to the Riesz representation theorem, we know that there exists a
unique (u, π) ∈

(

W
0, p
−1 (RN

+ ) ×W−1, p
−1 (RN

+ )
)

/
(

(P[1−N/p])
N−1 × {0}2

)

— which is

the dual space of
(

W
0, p′

1 (RN
+ )×

◦

W
1, p′

1 (RN
+ )

)

⊥
(

(P[1−N/p])
N−1 × {0}2

)

—, such
that

∀(f , ϕ) ∈
(

W
0, p′

1 (RN
+ )×

◦

W
1, p′

1 (RN
+ )

)

⊥
(

(P[1−N/p])
N−1 × {0}2

)

,

T (f , ϕ) = 〈u,f〉
W

0, p
−1 (RN

+ )×W
0, p′

1 (RN
+ )

+ 〈π,−ϕ〉
W−1, p

−1 (RN
+ )×

◦

W
1, p′

1 (RN
+ )
,

i.e. the pair (u, π) satisfies (6.4.7).

We now can drop the hypothesis gN = 0.

Theorem 6.4.4. Assume that N
p
6= 1. For any g′ ∈ W

−1−1/p, p
−1 (Γ)

N−1
such that

g′ ⊥ RN−1 if N 6 p′, and gN ∈ W
−1/p, p
−1 (Γ), the Stokes problem (6.2.1)–(6.2.4)
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admits a solution (u, π) ∈ W
0, p
−1 (RN

+ ) ×W−1, p
−1 (RN

+ ), unique if N > p, unique up
to an element of RN−1 × {0}2 if N < p, with the estimate

inf
χ∈RN−1×{0}

‖u + χ‖
W

0, p
−1 (RN

+ ) + ‖π‖W−1, p
−1 (RN

+ )

6 C
(

‖gN‖W
−1/p, p
−1 (Γ)

+ ‖g′‖
W

−1−1/p, p
−1 (Γ)

N−1

)

if N < p, and the same without χ if N > p.

Proof. According to Theorem 4.3.3, we know that if N
p

6= 1, then there exists

ψ ∈ W 1, p
−1 (RN

+ ) unique up to an element of N∆
[2−N/p] solution to the following

Neumann problem:

∆ψ = 0 in R
N
+ , ∂Nψ = gN on Γ.

Let us set w = ∇ψ and g′
∗ = g′ − ∂Nw′ on Γ. Then we have w ∈ T 0, σ(RN

+ ),

hence g′
∗ ∈ W

−1−1/p, p
−1 (Γ)

N−1
, with the estimate

‖w‖T0(RN
+ ) = ‖w‖

W
0, p
−1 (RN

+ ) 6 C ‖gN‖W
−1/p, p
−1 (Γ)

.

Moreover, g′
∗ satisfies the orthogonality condition of Proposition 6.4.3, hence the

existence of a pair (z, π) ∈ W
0, p
−1 (RN

+ ) ×W−1, p
−1 (RN

+ ) which satisfies

−∆z + ∇π = 0 and div z = 0 in R
N
+ ,

zN = 0 and ∂Nz′ = g′
∗ on Γ.

Then the pair (u, π) = (z + w, π) is the required solution. The uniqueness of
this solution is a straightforward consequence of Proposition 6.4.3.





Chapitre 7

A generalized Stokes system

7.1 Introduction

In this chapter we are interested in the study of systems of Stokes type

(Se
N)















−ν∆u − µ∇ div u + ∇π = f in RN
+ ,

λ π + div u = h in RN
+ ,

uN = gN on Γ,
∂Nu′ = g′ on Γ,

where the constants ν, µ and λ satisfy the assumptions ν > 0, λ > 0 and
µ + ν > 0. First, we can remark that the elasticity term −µ∇ div u in the
first equation vanishes by using the second equation in order to substitute div u.
However, the calculations made under the assumption µ 6= 0 will be useful in
studying some problems related to compressible fluids.

Naturally, it is also possible to see the classical Stokes system as the limit
case λ = 0 of this generalized problem. This point of view can be interesting in
numerical approximation (see H. Beirão da Veiga, [17]).

Since the previous chapter was dedicated to the classical Stokes system with
Navier condition, in the present one, we will assume that λ 6= 0. Besides, we will
use both the method elaborated in the previous chapters and the specificity of
this system — particularly for the very weak solutions —.

7.2 The generalized Stokes system in RN

As usual, our method requires the extension of problems given in the half-space
to the whole space. Then a necessary step is to consider the corresponding Stokes
system in RN :

(Se)

{

−ν∆u − µ∇ div u + ∇π = f in RN ,
λ π + div u = h in RN .

119



120 Chapitre 7. A generalized Stokes system

In this section, we adapt to this case, with minor modifications, the arguments
used by Alliot-Amrouche in [3] for the classical Stokes system.

Let us denote by T the corresponding operator:

T : (u, π) 7−→ (−ν∆u − µ∇ div u + ∇π, −λπ − div u).

7.2.1 Existence and uniqueness results

We assume that (f , h) = (0, 0) and we first consider the operator T defined on
the space of tempered distributions S

′(RN)×S ′(RN). Using the second equation
in order to substitute −λπ for div u in the first equation, we get

−ν∆u + (1 + λµ)∇π = 0 in R
N .

Applying the divergence operator to this equation, we obtain ∆π = 0 in RN .
Finally, applying the Laplacian to the same equation, we find ∆2u = 0 in RN .
So, π and u are respectively tempered harmonic and biharmonic distributions,
thus polynomials. Consequently, the kernel of T is quite similar to the kernel of
the classical Stokes operator: for any k ∈ Z, we introduce the space

Se
k =

{

(χ, q) ∈ P
∆2

k × P∆
k−1; λ q + div χ = 0, −ν∆χ − µ∇ div χ + ∇q = 0

}

,

and we have the following uniqueness result:

Lemma 7.2.1. Let ℓ ∈ Z, m ∈ N and assume that N/p /∈ {1, . . . ,−ℓ−m}, then
the kernel of T defined on W

m+1, p
m+ℓ (RN

+ ) ×Wm, p
m+ℓ(R

N
+ ) is the space Se

[1−ℓ−N/p].

Now, we are interested in the question of existence of solutions. Let (u, π) ∈
S

′(RN) × S ′(RN) be a pair solution to problem (Se). The second equation of
(Se) allows us to substitute h−λπ for div u in the first equation, then taking the
divergence of this one, we get

(

1 + λ (ν + µ)
)

∆π = div f + (ν + µ) ∆h. (7.2.1)

Besides, for the velocity field, we have

ν∆u = (1 + λµ)∇π − f − µ∇h. (7.2.2)

Thus, as for the classical Stokes system in RN , it suffices to solve these two
Poisson’s equations. Indeed, if (v, τ) verifies (7.2.1)–(7.2.2), then we get

−ν∆v − µ∇(h− λ τ) + ∇τ = f in S
′(RN), (7.2.3)

∆ div v = ∆(h− λ τ) in S ′(RN), (7.2.4)

and thus, div v − h+ λ τ = ϕ, where ϕ is a harmonic polynomial. So we can use
the following lemma proved in [3]:

Lemma 7.2.2. For any k ∈ N, P∆
k = div

(

P
∆
k+1

)

.

Therefore ϕ = div χ, where χ ∈ P
∆
k+1 and the pair (v − χ, τ) satisfies the

initial problem (Se).
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7.2.2 Generalized solutions

Theorem 7.2.3. Let ℓ ∈ Z and assume that

N/p′ /∈ {1, . . . , ℓ} and N/p /∈ {1, . . . ,−ℓ}. (7.2.5)

For any (f , h) ∈
(

W
−1, p
ℓ (RN) ×W 0, p

ℓ (RN)
)

⊥ Se
[1+ℓ−N/p′], problem (Se) admits a

solution (u, π) ∈ W
1, p
ℓ (RN)×W 0, p

ℓ (RN), unique up to an element of Se
[1−ℓ−N/p],

with the estimate

inf
(χ, q)∈Se

[1−ℓ−N/p]

(

‖u + χ‖
W

1, p
ℓ (RN ) + ‖π + q‖W 0, p

ℓ (RN )

)

6 C
(

‖f‖
W

−1, p
ℓ (RN ) + ‖h‖W 0, p

ℓ (RN )

)

.

Proof. We proceed in three steps. First we solve the case ℓ = 0, then we consider
the negative weights to avoid troubles with the compatibility conditions and last,
we obtain the solutions for positive weights by a duality argument.

(i) The Stokes operator

T :
(

W
1, p
0 (RN) × Lp(RN)

)

/Se
[1−N/p] −→

(

W
−1, p
0 (RN) × Lp(RN)

)

⊥ Se
[1−N/p′]

is an isomorphism.
The operator T is clearly continuous, moreover T is injective by Lemma 7.2.1,

then by the Banach Theorem, it remains to show that it is surjective. Let us
consider a pair (f , h) ∈

(

W
−1, p
0 (RN) ⊥ P [1−N/p′]

)

×Lp(RN), then div f belongs

to W−2, p
0 (RN). Moreover, for any ϕ ∈ P[2−N/p′], we have

〈div f , ϕ〉
W−2, p

0 (RN )×W 2, p′

0 (RN )
= 〈f , ∇ϕ〉

W−1, p
0 (RN )×W 1, p′

0 (RN )
= 0,

i.e. div f ∈ W−2, p
0 (RN) ⊥ P[2−N/p′] and the same argument holds for ∆h. Then,

according to the isomorphism1 (2.2.2) with ℓ = 0, there exists π ∈ Lp(RN)

solution to (7.2.1). Furthermore, for any ψ ∈ W 1, p′

0 (RN), 1 6 i 6 N ,

〈∂iπ, ψ〉W−1, p
0 (RN )×W 1, p′

0 (RN )
= −〈π, ∂iψ〉Lp(RN )×Lp′ (RN ) .

That implies ∂iπ ⊥ R if N/p′ 6 1, and the same argument holds for ∂ih. Thus,
according to the isomorphism (2.2.12) with m = 0, there exists u ∈ W 1, p

0 (RN)
solution to (7.2.2). In addition, as we have seen above, div u − h + λπ is a
harmonic polynomial. Since it belongs to Lp(RN), it is actually zero. So (u, π)
verifies T (u, π) = (f , −h), which proves the surjectivity of T .

(ii) For any ℓ < 0, the Stokes operator

T :
(

W
1, p
ℓ (RN) ×W 0, p

ℓ (RN)
)

/Se
[1−ℓ−N/p] −→ W

−1, p
ℓ (RN) ×W 0, p

ℓ (RN)

1Let us recall that the isomorphisms for the Laplacian are established in [5] and [6].
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is an isomorphism.
It is the same reasoning to solve the two Poisson’s equations (7.2.1) and (7.2.2),

but using this time successively the isomorphisms (2.2.2), and (2.2.9) with ℓ
instead of 1 + ℓ. Then, modifying these solutions with a polynomial constructed
by means of Lemma 7.2.2, we finally get a solution to (Se).

(iii) For any ℓ > 0, the adjoint operator of T ,

T ∗ : W
1, p
ℓ (RN) ×W 0, p

ℓ (RN) −→
(

W
−1, p
ℓ (RN) ×W 0, p

ℓ (RN)
)

⊥ Se
[1+ℓ−N/p′]

is an isomorphism.
We get it by duality, replacing −ℓ by ℓ and p′ by p. In addition, by a density

argument, we show that

T ∗(v, ϑ) = (−ν∆v − µ∇ div v + ∇ϑ, −λϑ− div v).

i.e. T is selfadjoint and the proof is complete.

7.2.3 Regularity of solutions

Theorem 7.2.4. Let ℓ ∈ Z and m > 1 be two integers and assume that

N/p′ /∈ {1, . . . , ℓ+ 1} and N/p /∈ {1, . . . ,−ℓ−m}. (7.2.6)

For any (f , h) ∈
(

W
m−1, p
m+ℓ (RN) ×Wm, p

m+ℓ(R
N)

)

⊥ Se
[1+ℓ−N/p′], problem (Se) ad-

mits a solution (u, π) ∈ W
m+1, p
m+ℓ (RN) ×Wm, p

m+ℓ(R
N), unique up to an element of

Se
[1−ℓ−N/p], with the estimate

inf
(χ, q)∈Se

[1−ℓ−N/p]

(

‖u + χ‖
W

m+1, p
m+ℓ (RN ) + ‖π + q‖W m, p

m+ℓ(R
N )

)

6 C
(

‖f‖
W

m−1, p
m+ℓ (RN ) + ‖g‖W m, p

m+ℓ(R
N )

)

.

Proof. For the negative weights, it is the same reasoning as for the generalized
solutions, but using the regularity results for the Laplacian: (2.2.10) if ℓ 6 −2,
or (2.2.13) if ℓ = −1, to solve (7.2.1); and (2.2.7) to solve (7.2.2). However, the
case N = p′ for ℓ = −1 and m > 2 is a critical value of the isomorphism (2.2.13),
then it require the use of a critical result on the Laplace operator to solve (7.2.1).
According to [6], the following Laplace operator is an isomorphism

∆ : W 1+m, p
m (RN)/P[1−N/p] −→ Xm−1, p

m (RN) ⊥ R

if N = p′, m > 1,
(7.2.7)

where the family of spaces X is defined as follows: for any m ∈ Z, ℓ ∈ N,

Xm+ℓ, p
ℓ (RN) =

{

u ∈ Wm, p
0 (RN); ∀λ ∈ N

N , 0 6 |λ| 6 ℓ,

xλ u ∈ W
m+|λ|, p
0 (RN); u ∈ Wm+ℓ, p

loc (RN)
}

,
(7.2.8)
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and its dual space is denoted by X−m−ℓ, p′

−ℓ (RN).
So, replacing m by m− 1 in (7.2.7), we get the isomorphism

∆ : Wm, p
m−1(R

N)/P[1−N/p] −→ Xm−2, p
m−1 (RN) ⊥ R if N = p′, m > 2,

which precisely fills the gap of isomorphism (2.2.13) for this critical value.
In addition, we can show that Xm−2, p

m−1 (RN) = Wm−2, p
m−1 (RN) ∩ W−1, p

0 (RN).

Since f ∈ W
m−1, p
m−1 (RN), we have div f ∈ Wm−2, p

m−1 (RN), and thanks to the

imbedding Wm−1, p
m−1 (RN) →֒ Lp(RN), we also have div f ∈ W−1, p

0 (RN), hence

div f ∈ Xm−2, p
m−1 (RN). In the same way, we have ∆g ∈ Xm−2, p

m−1 (RN), and thus we
are able to solve (7.2.1). The rest of the proof is quite similar.

For ℓ > 0, contrary to the generalized solutions, the duality reasoning fails,
however we can use a regularity argument similar to the one of Section 5.4 for
the classical system. We will develop it for the problem in the half-space.

7.3 Generalized solutions in RN
+

Where we come back to the half-space and to start, we are interested in the
homogeneous problem.

Proposition 7.3.1. For any gN ∈ W
1−1/p, p
0 (Γ) and g′ ∈ W

−1/p, p
0 (Γ)

N−1
such

that g′ ⊥ RN−1 if N 6 p′, the Stokes problem

−ν∆u − µ∇ div u + ∇π = 0 in R
N
+ , (7.3.1)

λπ + div u = 0 in R
N
+ , (7.3.2)

uN = gN on Γ, (7.3.3)

∂Nu′ = g′ on Γ, (7.3.4)

has a solution (u, π) ∈ W
1, p
0 (RN

+ ) × Lp(RN
+ ), unique if N > p, unique up to an

element of RN−1 × {0}2 if N 6 p, with the estimate

inf
χ∈RN−1×{0}

‖u + χ‖
W

1, p
0 (RN

+ ) + ‖π‖Lp(RN
+ )

6 C
(

‖gN‖W
1−1/p, p
0 (Γ)

+ ‖g′‖
W

−1/p, p
0 (Γ)

N−1

)

if N 6 p, and the same without χ if N > p.

Proof. First, let us notice a particular case, which is naturally included in this
result, but which requires a particular treatment. Indeed, if λµ = −1, we simply
get a Dirichlet problem for the Laplacian on the normal component of the velocity
field uN and a Neumann problem on its tangential components u′. Then, applying
Theorems 1.4.1 and 1.4.3, respectively for uN and u′, we find the orthogonality
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condition and the kernel of our statement. Moreover, we directly find the pressure
from the velocity field thanks to the second equation. In the sequel of the proof,
we will assume that λµ 6= −1.

(i) Reduction of system (7.3.1)–(7.3.4).
As for the question of the uniqueness in the whole space, we deduce from

(7.3.1) and (7.3.2) that we have both ∆π = 0 and ∆2u = 0 in RN
+ .

Then, we have ∆2uN = 0 in RN
+ and uN = gN on Γ.

Now, let us extract another boundary condition on ∆uN from this system.
From (7.3.2), we get

λ ∂Nπ + ∂N div u = 0 in R
N
+ , (7.3.5)

that we substitute in the N th component of (7.3.1), to obtain

λ ν∆uN + (1 + λµ) ∂N div u = 0 in R
N
+ .

We can deduce that

λ ν∆uN + (1 + λµ) (div′ g′ + ∂2
NuN) = 0 on Γ,

λ ν∆uN + (1 + λµ) (div′ g′ + ∆uN − ∆′uN) = 0 on Γ,
(

1 + λ (µ+ ν)
)

∆uN + (1 + λµ) (div′ g′ − ∆′gN) = 0 on Γ,

hence,

∆uN =
1 + λµ

1 + λ (µ+ ν)
(∆′gN − div′ g′) on Γ.

About the pressure, looking again at the N th component of (7.3.1), with (7.3.5),
we have

∂Nπ = ν∆uN − λµ ∂Nπ in R
N
+ ,

hence (since λµ 6= −1),

∂Nπ =
ν

1 + λµ
∆uN on Γ.

Finally, from (7.3.2), we also get

λ∇′π + ∇′ div u = 0 in R
N
+ ,

that we substitute in the tangential components of (7.3.1), to obtain

∆u′ =
1 + λµ

ν
∇′π in R

N
+ .

Let us denote by κ1 and κ2 the two constants κ1 = 1+λ µ
1+λ (µ+ν)

and κ2 = ν
1+λ µ

. So,
we have found the following three problems

(B) : ∆2uN = 0 in R
N
+ , uN = gN and ∆uN = κ1 (∆′gN − div′ g′) on Γ.
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(N1) : ∆π = 0 in R
N
+ , ∂Nπ = κ2 ∆uN on Γ,

(N2) : ∆u′ =
1

κ2

∇′π in R
N
+ , ∂Nu′ = g′ on Γ.

(ii) Solution of these three problems.
Since κ1 and κ2 are non-zero constants, it is clear that these problems have

exactly the same form as those of Section 6.2 for the classical Stokes system.

Therefore, we find uN ∈ W 1, p
0 (RN

+ ), π ∈ Lp(RN
+ ) and u′ ∈ W 1, p

0 (RN
+ )

N−1
with the

same orthogonality condition on g′, and the uniqueness of uN and π.
(iii) Conversely, to show that solving (B), (N1) and (N2), we get a solution

(u, π) to the original problem (7.3.1)–(7.3.4), we must make a few calculations.
The first equation of (N2) is written

−ν∆u′ + (1 + λµ)∇′π = 0 in R
N
+ . (7.3.6)

Thanks to the first equations of (B) and (N1), we get

∆
(

− ν∆uN + (1 + λµ) ∂Nπ
)

= 0 in R
N
+ .

In addition, the boundary condition of (N1) can be written

−ν∆uN + (1 + λµ) ∂Nπ = 0 on Γ.

Since −ν∆uN + (1 + λµ) ∂Nπ ∈ W−1, p
0 (RN

+ ), according to Theorem 4.3.4, we
necessarily have

−ν∆uN + (1 + λµ) ∂Nπ = 0 in R
N
+ . (7.3.7)

The boundary condition of (N2) implies ∂N div′ u′ = div′ g′ on Γ. Besides,
the boundary conditions of (B) yield

1

κ1

∆uN − ∆′gN = − div′ g′ on Γ,

∂2
NuN + λκ2 ∆uN = − div′ g′ on Γ,

hence, with the boundary condition of (N1),

∂2
NuN + λ ∂Nπ = − div′ g′ on Γ.

We can deduce

∂N div u = ∂N div′ u′ + ∂2
NuN on Γ,

= div′ g′ − div′ g′ − λ ∂Nπ on Γ,

that is

∂N(λπ + div u) = 0 on Γ.
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Moreover, from (7.3.6) and (7.3.7), we obtain div(−ν∆u) = 0 in RN
+ , hence

∆(λπ + div u) = 0 in R
N
+ .

Since λπ + div u ∈ Lp(RN
+ ), by Theorem 4.3.2, we get λπ + div u = 0 in RN

+ ,
that is the equation (7.3.2). Finally, substituting this last relation in (7.3.6) and
(7.3.7), we find the first equation (7.3.1) of our system.

(iv) Concerning the uniqueness — up to the constants, if N 6 p — for the
tangential components of the velocity field u′, we can still use the same argument
as for the classical Stokes system (see Section 6.2).

We now can deal with the nonhomogeneous problem.

Theorem 7.3.2. Assume that N
p′

6= 1. For any f ∈ W
0, p
1 (RN

+ ), h ∈ W 1, p
1 (RN

+ ),

gN ∈ W
1−1/p, p
0 (Γ) and g′ ∈ W

−1/p, p
0 (Γ)

N−1
, satisfying the following compatibility

condition if N < p′:

∀i ∈ {1, . . . , N − 1},

∫

RN
+

fi dx = ν 〈gi, 1〉
W

−1/p, p
0 (Γ)×W

1/p, p′

0 (Γ)
, (7.3.8)

problem (Se
N) admits a solution (u, π) ∈ W

1, p
0 (RN

+ ) × Lp(RN
+ ), unique if N > p,

unique up to an element of RN−1 × {0}2 if N 6 p, with the estimate

inf
χ∈RN−1×{0}

‖u + χ‖
W

1, p
0 (RN

+ ) + ‖π‖Lp(RN
+ )

6 C
(

‖f‖
W

0, p
1 (RN

+ ) + ‖h‖W 1, p
1 (RN

+ ) + ‖gN‖W
1−1/p, p
0 (Γ)

+ ‖g′‖
W

−1/p, p
0 (Γ)

N−1

)

.

if N 6 p, and the same without χ if N > p.

Proof. First, let us remark that the case λµ = −1 is naturally included in this
result. Indeed, the condition (7.3.8) is necessary to solve the Neumann problem
for the tangential components of the velocity field by means of Theorem 1.4.3.

In the general case, we introduce the Dirichlet problem

∆w = f in R
N
+ , w = 0 on Γ.

According to Theorem 1.4.2, it admits a unique solution w ∈ W
2, p
1 (RN

+ ). So, if we

consider F = (Fi)16i6N = ∇w ∈ W
1, p
1 (RN

+ )
N

, we have f = div F. Knowing that

there exists a continuous linear extension operator from W 1, p
1 (RN

+ ) to W 1, p
1 (RN),

we get f̃ = div F̃ ∈ W
0, p
1 (RN), h̃ ∈ W 1, p

1 (RN), and the extended problem

{

−ν∆z̃ − µ∇ div z̃ + ∇η̃ = f̃ in RN ,

λ η̃ + div z̃ = h̃ in RN .
(7.3.9)
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According to Theorem 7.2.4 with ℓ = 0 and m = 1, under hypothesis N
p′

6= 1,

problem (7.3.9) admits a solution (z̃, η̃) ∈ W
2, p
1 (RN) ×W 1, p

1 (RN), provided the
condition f̃ ⊥ P [1−N/p′] is fulfilled — indeed, Se

[1−N/p′] = P [1−N/p′] ×{0} —. But,

thanks to the relation f̃ = div F̃, we can see that this condition is always fulfilled.
Let us note z = z̃|

RN
+

∈ W
2, p
1 (RN

+ ) and η = η̃|
RN

+
∈ W 1, p

1 (RN
+ ), then we have

(z, η) ∈ W
1, p
0 (RN

+ ) × Lp(RN
+ ), γ0zN ∈ W

1−1/p, p
0 (Γ) and γ1z

′ ∈ W
−1/p, p
0 (Γ)

N−1
,

and we can introduce the auxiliary problem

−ν∆v − µ∇ div v + ∇ϑ = 0 and λϑ+ div v = 0 in RN
+ ,

vN = gN − zN and ∂Nv′ = g′ − ∂Nz′ on Γ.
(7.3.10)

where gN − zN |Γ ∈ W
1−1/p, p
0 (Γ) and g′ − ∂Nz′|Γ ∈ W

−1/p, p
0 (Γ)

N−1
. Then, we can

apply Proposition 7.3.1, which yields (v, ϑ) ∈ W
1, p
0 (RN

+ ) × Lp(RN
+ ) solution to

problem (7.3.10), provided the orthogonality condition

∀ϕ′ ∈ R
N−1, 〈g′ − γ1z

′, ϕ′〉
W

−1/p, p
0 (Γ)

N−1
×W

1/p, p′

0 (Γ)
N−1 = 0 (7.3.11)

is satisfied if N < p′. Now, to write this condition by only means of data of the
initial problem, it suffices to notice that we have for all ϕ ∈ RN−1 × {0},

∫

RN
+

f · ϕ dx =

∫

RN
+

(−ν∆z − µ∇ div z + ∇η) · ϕ dx

= ν 〈γ1z
′, ϕ′〉

W
−1/p, p
0 (Γ)

N−1
×W

1/p, p′

0 (Γ)
N−1 ,

hence we deduce that the condition (7.3.11) is written

∀ϕ′ ∈ R
N−1,

∫

RN
+

f ′ · ϕ′ dx = ν 〈g′, ϕ′〉
W

−1/p, p
0 (Γ)

N−1
×W

1/p, p′

0 (Γ)
N−1 ,

that is, the compatibility condition (7.3.8).

Then, the pair (u, π) = (v + z, ϑ+ η) which belongs to W
1, p
0 (RN

+ )×Lp(RN
+ )

is a solution to (Se
N).

Finally, the uniqueness of solutions to (Se
N) is a straightforward consequence

of Proposition 7.3.1.

7.4 Strong solutions and regularity

In this section, we are interested in the existence of strong solutions, i.e. of
solutions (u, π) ∈ W

2, p
1 (RN

+ ) ×W 1, p
1 (RN

+ ), and next to get a general regularity
result. We start with the homogeneous problem.
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Proposition 7.4.1. Assume that N
p′

6= 1. For any gN ∈ W
2−1/p, p
1 (Γ) and g′ ∈

W
1−1/p, p
1 (Γ)

N−1
such that g′ ⊥ RN−1 if N < p′, problem (7.3.1)–(7.3.4) admits

a solution (u, π) ∈ W
2, p
1 (RN

+ ) ×W 1, p
1 (RN

+ ), unique if N > p, unique up to an
element of RN−1 × {0}2 if N 6 p, with the estimate

inf
χ∈RN−1×{0}

‖u + χ‖
W

2, p
1 (RN

+ ) + ‖π‖W 1, p
1 (RN

+ )

6 C
(

‖gN‖W
2−1/p, p
1 (Γ)

+ ‖g′‖
W

1−1/p, p
1 (Γ)

N−1

)

if N 6 p, and the same without χ if N > p.

Proof. We have the imbeddings W
2−1/p, p
1 (Γ) →֒ W

1−1/p, p
0 (Γ) and, since N

p′
6= 1,

W
1−1/p, p
1 (Γ) →֒ W

−1/p, p
0 (Γ).

Then, from Proposition 7.3.1, we can deduce that problem (7.3.1)–(7.3.4)
admits a solution (u, π) ∈ W

1, p
0 (RN

+ ) × Lp(RN
+ ). Now, it suffices to go back to

the proof of Proposition 7.3.1 and to use the established results about problems
(B), (N1) and (N2), to show that in fact (u, π) ∈ W

2, p
1 (RN

+ ) ×W 1, p
1 (RN

+ ).

We now can give the result in the nonhomogeneous case.

Theorem 7.4.2. Assume that N
p′

6= 1. For any f ∈ W
0, p
1 (RN

+ ), h ∈ W 1, p
1 (RN

+ ),

gN ∈ W
2−1/p, p
1 (Γ) and g′ ∈ W

1−1/p, p
1 (Γ)

N−1
, satisfying the compatibility condition

(7.3.8) if N < p′, problem (Se
N) has a solution (u, π) ∈ W

2, p
1 (RN

+ ) ×W 1, p
1 (RN

+ ),
unique if N > p, unique up to an element of RN−1 × {0}2 if N 6 p, with the
estimate

inf
χ∈RN−1×{0}

‖u + χ‖
W

2, p
1 (RN

+ ) + ‖π‖W 1, p
1 (RN

+ )

6 C
(

‖f‖
W

0, p
1 (RN

+ ) + ‖h‖W 1, p
1 (RN

+ ) + ‖gN‖W
2−1/p, p
1 (Γ)

+ ‖g′‖
W

1−1/p, p
1 (Γ)

N−1

)

if N 6 p, and the same without χ if N > p.

Proof. The proof of Theorem 7.3.2 work in this case. It suffices to take the strong
result for generalized Stokes system in RN , i.e. Theorem 7.2.4, to solve (7.3.9);
and Proposition 7.4.1 to solve (7.3.10).

To finish, here is the corresponding regularity result.

Corollary 7.4.3. Let m > 1 be an integer and assume that N
p′
6= 1. For any f ∈

W m−1, p
m (RN

+ ), h ∈ Wm, p
m (RN

+ ), gN ∈ W
m+1−1/p, p
m (Γ) and g′ ∈ W

m−1/p, p
m (Γ)

N−1
,

satisfying the compatibility condition (7.3.8) if N < p′, problem (Se
N) admits a



7.5. Very weak solutions 129

solution (u, π) ∈ W m+1, p
m (RN

+ ) ×Wm, p
m (RN

+ ), unique if N > p, unique up to an
element of RN−1 × {0}2 if N 6 p, with the estimate

inf
χ∈RN−1×{0}

‖u + χ‖
W

m+1, p
m (RN

+ ) + ‖π‖W m, p
m (RN

+ ) 6

C
(

‖f‖
W

m−1, p
m (RN

+ ) + ‖h‖W m, p
m (RN

+ ) + ‖gN‖W
m+1−1/p, p
m (Γ)

+ ‖g′‖
W

m−1/p, p
m (Γ)

N−1

)

if N 6 p, and the same without χ if N > p.

Proof. The simplest way is to resume the proof of Theorem 7.3.2. First, we solve
the extended problem (7.3.9) by means of Theorem 7.2.4 for any integer m > 1;
next, for the homogeneous problem (7.3.10), we can use the regularity results on
the biharmonic and harmonic problems in the half-space to solve the auxiliary
problems (B), (N1) and (N2), following the method employed in the proof of
Proposition 7.3.1.

7.5 Very weak solutions

Influence of the parameter λ, the problem from another point of view

As we remarked at the begining of the chapter, if λ = 0, we find the classical
Stokes system which was the subject of the previous chapter. Now, if λ 6= 0, we
can totally uncouple the velocity field from the pressure in the main equation.

First, in the whole space, the system (Se) is clearly equivalent to

(Se)

{

−ν∆u − (µ+ 1
λ
)∇ div u = f − 1

λ
∇h in RN ,

π = 1
λ

(h− div u) in RN .

Denoting by A the operator −ν∆ − (µ + 1
λ
)∇ div, we can rewrite the main

equation more simply
Au = F in R

N , (7.5.1)

where F = f− 1
λ
∇h. Let us still notice that if λµ = −1, the operator A is nothing

else but the Laplacian. Hence, solving (Se) is equivalent to solve (7.5.1) — indeed,
knowing the velocity field, we immediately get the pressure π —, moreover, the
kernel of A is the velocity field’s part, uncoupled from the pressure, in the kernel
of T . So, we could express the results on system (Se), that is Theorems 7.2.3 and
7.2.4, in terms adapted to equation (7.5.1).

Next, in the half-space, we also can formulate the problem (Se
N) by means of

equation (7.5.1) combined with the boundary conditions, i.e.







Au = F in RN
+ ,

uN = gN on Γ,
∂Nu′ = g′ on Γ.

(7.5.2)
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Here again, we could give a version adapted to problem (7.5.2) for all the results
on (Se

N). Conversely, in this section, we will use the form (7.5.2) to study the
case of singular boundary conditions in the homogeneous problem. For that, we
need some preliminary results.

Traces and Green formula

For any ℓ ∈ Z, let us introduce the spaces

Uℓ(R
N
+ ) =

{

v ∈ W
0, p
ℓ−1(R

N
+ ); Av ∈ W

0, p
ℓ+1(R

N
+ )

}

,

Uℓ, 1(R
N
+ ) =

{

v ∈ W
0, p
ℓ−1(R

N
+ ); Av ∈ W

0, p
ℓ+1, 1(R

N
+ )

}

.

They are reflexive Banach spaces equipped with their natural norms:

‖v‖Uℓ(R
N
+ ) = ‖v‖

W
0, p
ℓ−1(RN

+ ) + ‖Av‖
W

0, p
ℓ+1(RN

+ ),

‖v‖Uℓ, 1(RN
+ ) = ‖v‖

W
0, p
ℓ−1(RN

+ ) + ‖Av‖
W

0, p
ℓ+1, 1(RN

+ ).

Lemma 7.5.1. Let ℓ ∈ Z and assume that

N/p′ /∈ {1, . . . , ℓ− 1} and N/p /∈ {1, . . . ,−ℓ+ 1}. (7.5.3)

The space D
(

RN
+

)

is dense in Uℓ(R
N
+ ) and in Uℓ, 1(R

N
+ ).

Proof. We give the proof for Uℓ, 1(R
N
+ ), but it is similar for the space Uℓ(R

N
+ ).

For every continuous linear form z ∈
(

Uℓ, 1(R
N
+ )

)′
, there exists a unique pair

(f , g) ∈ W
0, p′

−ℓ+1(R
N
+ ) × W

0, p′

−ℓ−1,−1(R
N
+ ), such that

∀v ∈ Uℓ, 1(R
N
+ ), 〈z,v〉 =

∫

RN
+

f · v dx+

∫

RN
+

g · Av dx. (7.5.4)

According to the Hahn-Banach theorem, it suffices to show that any z which
vanishes on D

(

RN
+

)

is actually zero on Uℓ, 1(R
N
+ ). Let us suppose that z = 0 on

D
(

RN
+

)

, thus on D(RN
+ ). Then we can deduce from (7.5.4) that

f + Ag = 0 in R
N
+ ,

hence we have Ag ∈ W
0, p′

−ℓ+1(R
N
+ ). Let f̃ ∈ W

0, p′

−ℓ+1(R
N) and g̃ ∈ W

0, p′

−ℓ−1,−1(R
N)

be respectively the extensions by 0 of f and g to RN . Thanks to (7.5.4), it is

clear that f̃ + Ag̃ = 0 in RN , and thus Ag̃ ∈ W
0, p′

−ℓ+1(R
N). Hence, according to

theorem 7.2.4 — for equation (7.5.1) —, we can deduce that g̃ ∈ W
2, p′

−ℓ+1(R
N),

under hypothesis (7.5.3). Since g̃ is an extension by 0, it follows that we have

g ∈
◦

W
2, p′

−ℓ+1(R
N
+ ). Then, by density of D(RN

+ ) in
◦

W
2, p′

−ℓ+1(R
N
+ ), there exists a
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sequence (ϕk)k∈N
⊂ D(RN

+ ) such that ϕk → g in
◦

W
2, p′

−ℓ+1(R
N
+ ). Thus we have, for

any v ∈ Uℓ, 1(R
N
+ ),

〈z,v〉 = −

∫

RN
+

Ag · v dx+

∫

RN
+

g · Av dx

= lim
k→∞

{

−

∫

RN
+

Aϕk · v dx+

∫

RN
+

ϕk · Av dx

}

= 0,

i.e. z is identically zero.

Thanks to this density lemma, we can prove the following result of traces:

Lemma 7.5.2. Let ℓ ∈ Z with (7.5.3).
(i) If N/p′ /∈ {ℓ, ℓ+ 1}, then the mapping

(γeN
, γ′1) : D

(

RN
+

)

−→ D(RN−1)

v 7−→ (vN |Γ, ∂Nv′|Γ),

can be extended to a linear continuous mapping

(γeN
, γ′1) : Uℓ, 1(R

N
+ ) −→ W

−1/p, p
ℓ−1 (Γ) ×

(

W
−1−1/p, p
ℓ−1 (Γ)

)N−1
.

In addition, we have the Green formula

∀v ∈ Uℓ(R
N
+ ), ∀ϕ ∈ W

2, p′

−ℓ+1(R
N
+ ) such that (ϕN , ∂Nϕ′) = 0 on Γ,

〈Av,ϕ〉
W

0, p
ℓ+1(RN

+ )×W
0, p′

−ℓ−1(RN
+ )

− 〈v, Aϕ〉
W

0, p
ℓ−1(RN

+ )×W
0, p′

−ℓ+1(RN
+ )

=

− ν 〈vN , ∂NϕN〉W−1/p, p
ℓ−1 (Γ)×W

1−1/p′, p′

−ℓ+1 (Γ)
+

+ ν 〈∂Nv′,ϕ′〉
W

−1−1/p, p
ℓ−1 (Γ)×W

2−1/p′, p′

−ℓ+1 (Γ)
−

− (µ+
1

λ
) 〈vN , div ϕ〉

W
−1/p, p
ℓ−1 (Γ)×W

1−1/p′, p′

−ℓ+1 (Γ)
.

(7.5.5)

(ii) If N/p′ ∈ {ℓ, ℓ + 1}, the same result holds with Uℓ, 1(R
N
+ ) instead of

Uℓ(R
N
+ ) and where 〈Av,ϕ〉

W
0, p
ℓ+1, 1(RN

+ )×W
0, p′

−ℓ−1, −1(RN
+ )

remplace the first term in the

Green formula.

Proof. (i) Case N/p′ /∈ {ℓ, ℓ+ 1}.

So, we have the imbedding W 2, p′

−ℓ+1(R
N
+ ) →֒ W 0, p′

−ℓ−1,−1(R
N
+ ), hence the following

Green formula:

∀v ∈ D
(

RN
+

)

, ∀ϕ ∈ W
2, p′

−ℓ+1(R
N
+ ) such that (ϕN , ∂Nϕ′) = 0 on Γ,

∫

RN
+

ϕ · Av dx−

∫

RN
+

v · Aϕ dx =

− ν

∫

Γ

vN ∂NϕN dx′ + ν

∫

Γ

∂Nv′ · ϕ′ dx′ −
(

µ+
1

λ

)

∫

Γ

vN div ϕ dx′.

(7.5.6)
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In particular, if ϕ ∈ W
2, p′

−ℓ+1(R
N
+ ) is such that ϕ = 0 and ∂Nϕ′ = 0 on Γ, we have

∣

∣

∣

∣

∫

Γ

vN ∂NϕN dx′
∣

∣

∣

∣

6
λ

1 + λ(µ+ ν)
‖v‖

Uℓ(R
N
+ ) ‖ϕ‖

W
2, p′

−ℓ+1(RN
+ )
.

Let g ∈ W
1−1/p′, p′

−ℓ+1 (Γ). By Lemma 1.3.1, there exists a lifting function ϕ ∈

W
2, p′

−ℓ+1(R
N
+ ) such that ϕ = 0, ∂Nϕ′ = 0 and ∂NϕN = g on Γ, satisfying moreover

‖ϕ‖
W

2, p′

−ℓ+1(RN
+ )

6 C ‖g‖
W

1−1/p′, p′

−ℓ+1 (Γ)
,

where C is a constant not depending on ϕ and g. Then we can deduce that
∣

∣

∣

∣

∫

Γ

vN g dx′
∣

∣

∣

∣

6 C ‖v‖
Uℓ(R

N
+ ) ‖g‖W

1−1/p′, p′

−ℓ+1 (Γ)
,

and thus
‖vN‖W

−1/p, p
ℓ−1 (Γ)

6 C ‖v‖
Uℓ(R

N
+ ).

Hence we can deduce that γeN
: v 7−→ vN |Γ defined on D

(

RN
+

)

is continuous for

the norm of Uℓ(R
N
+ ). Since D

(

RN
+

)

is dense in Uℓ(R
N
+ ), the mapping γeN

can be

extended by continuity to γeN
∈ L

(

Uℓ, 1(R
N
+ ); W

−1/p, p
ℓ−1 (Γ)

)

.

To define the trace γ′1 on Uℓ(R
N
+ ), we consider now ϕ ∈ W

2, p′

−ℓ+1(R
N
+ ) such

that ϕN = 0, ∂Nϕ′ = 0 and ν∂NϕN + (µ+ 1
λ
) div ϕ = 0 on Γ. Then, we have

∣

∣

∣

∣

∫

Γ

∂Nv′ · ϕ′ dx′
∣

∣

∣

∣

6
1

ν
‖v‖

Uℓ(R
N
+ ) ‖ϕ‖

W
2, p′

−ℓ+1(RN
+ )
.

Let g′ ∈ W
2−1/p′, p′

−ℓ+1 (Γ)
N−1

. By Lemma 1.3.1, there exists a lifting function ϕ ∈

W
2, p′

−ℓ+1(R
N
+ ) such that ϕ′ = g′, ϕN = 0, ∂Nϕ′ = 0 and ∂NϕN = −κ1 div′ g′ on Γ,

where κ1 = 1+λ µ
1+λ (µ+ν)

, satisfying moreover

‖ϕ‖
W

2, p′

−ℓ+1(RN
+ )

6 C ‖g‖
W

2−1/p′, p′

−ℓ+1 (Γ)
,

where C is a constant not depending on ϕ and g′. Then we can deduce that
∣

∣

∣

∣

∫

Γ

∂Nv′ · g′ dx′
∣

∣

∣

∣

6 C ‖v‖
Uℓ(R

N
+ ) ‖g

′‖
W

2−1/p′, p′

−ℓ+1 (Γ)
,

and thus
‖v′‖

W
1−1/p, p
ℓ−1 (Γ)

6 C ‖v‖
Uℓ(R

N
+ ).

Hence we can deduce that γ′1 : v 7−→ ∂Nv′|Γ defined on D
(

RN
+

)

is continuous for

the norm of Uℓ(R
N
+ ). Since D

(

RN
+

)

is dense in Uℓ(R
N
+ ), the mapping γ′1 can be

extended by continuity to γ′1 ∈ L
(

Uℓ(R
N
+ ); W

−1−1/p, p
ℓ−1 (Γ)

N−1)
.
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To finish, we also can deduce the formula (7.5.5) from (7.5.6) by density of

D
(

RN
+

)

in Uℓ(R
N
+ ).

(ii) Case N/p′ ∈ {ℓ, ℓ+ 1}.

Then the imbedding W 2, p′

−ℓ+1(R
N
+ ) →֒ W 0, p′

−ℓ−1(R
N
+ ) fails, and we only have

W 2, p′

−ℓ+1(R
N
+ ) →֒ W 0, p′

−ℓ−1,−1(R
N
+ ). To avoid these two supplementary critical val-

ues with respect to hypothesis (7.5.3), the idea is to define the space Uℓ, 1(R
N
+ )

with a logarithmic factor in the weight to replace the first term in the Green
formula (7.5.6) by the duality pairing 〈Av,ϕ〉

W
0, p
ℓ+1, 1(RN

+ )×W
0, p′

−ℓ−1, −1(RN
+ )

. The proof

is identical.

Homogeneous problem with singular boundary conditions

Our purpose is now to solve the homogeneous problem (7.3.1)–(7.3.4):

−ν∆u − µ∇ div u + ∇π = 0 and λπ + div u = 0 in RN
+ ,

uN = gN and ∂Nu′ = g′ on Γ,

with singular data on the boundary, that is more precisely with gN ∈ W
−1/p, p
−1 (Γ)

and g′ ∈ W
−1−1/p, p
−1 (Γ)

N−1
. Naturally, we will use the formulation

Au = 0 in R
N
+ ,

uN = gN and ∂Nu′ = g′ on Γ,
(7.5.7)

that is the homogeneous version of problem (7.5.2), for system (7.3.1)–(7.3.4).
As usual for the singular problems, the main tool is the Green formula (7.5.5),
established in Lemma 7.5.2, which allows us to get the variational formulation of
problem (7.5.2); then we can argue by duality to solve it.

Theorem 7.5.3. Assume that N
p
6= 1. For any g′ ∈ W

−1−1/p, p
−1 (Γ)

N−1
such that

g′ ⊥ RN−1 if N 6 p′, and gN ∈ W
−1/p, p
−1 (Γ), the Stokes problem (7.3.1)–(7.3.4)

admits a solution (u, π) ∈ W
0, p
−1 (RN

+ ) ×W−1, p
−1 (RN

+ ), unique if N > p, unique up
to an element of RN−1 × {0}2 if N < p, with the estimate

inf
χ∈RN−1×{0}

‖u + χ‖
W

0, p
−1 (RN

+ ) + ‖π‖W−1, p
−1 (RN

+ )

6 C
(

‖gN‖W
−1/p, p
−1 (Γ)

+ ‖g′‖
W

−1−1/p, p
−1 (Γ)

N−1

)

if N < p, and the same without χ if N > p.

Proof. Step 1: We assume that gN = 0.
(i) We can observe that problem (7.5.7) with gN = 0 is equivalent to the

following variational formulation: find u ∈ U0(R
N
+ ) — U0, 1(R

N
+ ) if N

p′
= 1 —
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satisfying

∀v ∈ W
2, p′

1 (RN
+ ) such that (vN , ∂Nv′) = 0 on Γ,

〈u, Av〉
W

0, p
−1 (RN

+ )×W
0, p′

1 (RN
+ )

= −ν 〈g′,v′〉
W

−1−1/p, p
−1 (Γ)×W

2−1/p′, p′

1 (Γ)
.

(7.5.8)

Indeed the direct implication is straightforward. Conversely, if u satisfies (7.5.8),
then we have for any ϕ ∈ D(RN

+ ),

〈Au,ϕ〉
W

0, p
1 (RN

+ )×W
0, p′

−1 (RN
+ )

= 〈u, Aϕ〉
W

0, p
−1 (RN

+ )×W
0, p′

1 (RN
+ )

= 0,

thus Au = 0 in RN
+ . Moreover, by the Green formula (7.5.5), we have

∀v ∈ W
2, p′

1 (RN
+ ) such that (vN , ∂Nv′) = 0 on Γ,

ν 〈g′,v′〉
W

−1−1/p, p
−1 (Γ)×W

2−1/p′, p′

1 (Γ)
= −ν 〈uN , ∂NvN〉W−1/p, p

−1 (Γ)×W
1−1/p′, p′

1 (Γ)
+

+ ν 〈∂Nu′,v′〉
W

−1−1/p, p
−1 (Γ)×W

2−1/p′, p′

1 (Γ)
−

−(µ+
1

λ
) 〈uN , div v〉

W
−1/p, p
−1 (Γ)×W

1−1/p′, p′

1 (Γ)
.

By Lemma 1.3.1, for any ζ ∈ W
1−1/p′, p′

1 (Γ), there exists v ∈ W
2, p′

1 (RN
+ ) such that

v = 0, ∂Nv′ = 0 and ∂NvN = ζ on Γ. Consequently,

〈uN , ζ〉W−1/p, p
−1 (Γ)×W

1−1/p′, p′

1 (Γ)
= 0,

i.e. uN = 0 on Γ. Likewise, for any ζ ′ ∈ W
2−1/p′, p′

1 (Γ)
N−1

, there exists v ∈

W
2, p′

1 (RN
+ ) such that v′ = ζ ′, vN = 0 and ∂Nv′ = 0 on Γ. Consequently,

〈∂Nu′, ζ ′〉
W

−1−1/p, p
−1 (Γ)×W

2−1/p′, p′

1 (Γ)
= 〈g′, ζ ′〉

W
−1−1/p, p
−1 (Γ)×W

2−1/p′, p′

1 (Γ)
,

i.e. ∂Nu′ = g′ on Γ.
(ii) Now, let us solve problem (7.5.8). According to Theorem 7.4.2 — adapted

to problem (7.5.2) —, we know that if N
p

6= 1, for all f ∈ W
0, p′

1 (RN
+ ) ⊥

(

(P[1−N/p])
N−1×{0}

)

, there exists a unique v ∈ W
2, p′

1 (RN
+ )/

(

(P[1−N/p′])
N−1×{0}

)

solution to

Av = f in R
N
+ ,

vN = 0 and ∂Nv′ = 0 on Γ,

with the estimate

inf
χ∈(P[1−N/p′])

N−1×{0}
‖v + χ‖

W
2, p′

1 (RN
+ )

6 C ‖f‖
W

0, p′

1 (RN
+ )
.
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Now, consider the linear form

J : f 7−→ −ν 〈g′, v′〉
W

−1−1/p, p
−1 (Γ)×W

1+1/p, p′

1 (Γ)
,

defined on W
0, p′

1 (RN
+ ) ⊥

(

(P[1−N/p])
N−1 × {0}

)

. Since g′ ⊥ (P[1−N/p′])
N−1, we

have for any χ′ ∈ (P[1−N/p′])
N−1,

|Jf | =
∣

∣

∣
〈g′, v′ + χ′〉

W
−1−1/p, p
−1 (Γ)×W

1+1/p, p′

1 (Γ)

∣

∣

∣

6 C ‖v‖
W

2, p′

1 (RN
+ )/(P[1−N/p′])

N−1×{0}
‖g′‖

W
−1−1/p, p
−1 (Γ)

6 C ‖f‖
W

0, p′

1 (RN
+ )

‖g′‖
W

−1−1/p, p
−1 (Γ)

.

Hence J is continuous on W
0, p′

1 (RN
+ ) ⊥

(

(P[1−N/p])
N−1 × {0}

)

, and thanks to
the Riesz representation theorem, we can deduce that there exists a unique u ∈
W

0, p
−1 (RN

+ )/
(

(P[1−N/p])
N−1 × {0}

)

, such that

∀f ∈ W
0, p′

1 (RN
+ ) ⊥

(

(P[1−N/p])
N−1 × {0}

)

,

Jf = 〈u,f〉
W

0, p
−1 (RN

+ )×W
0, p′

1 (RN
+ )
,

i.e. u satisfies (7.5.8).
Step 2: The general case (where we drop the hypothesis gN = 0).
According to Theorem 4.3.3, we know that if N

p
6= 1, then there exists ψ ∈

W 1, p
−1 (RN

+ ) unique up to an element of N∆
[2−N/p] solution to the following Neumann

problem:
∆ψ = 0 in R

N
+ , ∂Nψ = gN on Γ.

Let us set w = ∇ψ and g′
∗ = g′ − ∂Nw′ on Γ. Then we have Aw = 0, hence

w ∈ U0(R
N
+ ) — U0, 1(R

N
+ ) if N

p′
= 1 — and g′

∗ ∈ W
−1−1/p, p
−1 (Γ)

N−1
, with the

estimate
‖w‖

U0(RN
+ ) = ‖w‖

W
0, p
−1 (RN

+ ) 6 C ‖gN‖W
−1/p, p
−1 (Γ)

.

Moreover, g′
∗ satisfies the orthogonality condition of Theorem 7.5.3, hence the

existence of z ∈ W
0, p
−1 (RN

+ ) which satisfies

Az = 0 in R
N
+ ,

zN = 0 and ∂Nz′ = g′
∗ on Γ.

Then u = z + w ∈ W
0, p
−1 (RN

+ ) is the required solution.
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