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Résumé

Les méthodes de reconnaissance de la parole sont utilisables d'un point de vue pra-
tique a condition d'utiliser un microphone proche de la bouche et que l'environnement
ne soit pas perturbé. Dans ce cas, un � casque � est souvent utilisé pour maintenir
un petit microphone à proximité de la bouche. Si ce type de dispositif n'est pas util-
isé, il est nécessaire de faire attention à la distance entre le microphone et la bouche
du locuteur pour éviter de tenir compte du sou�e dû à la respiration. Il est donc
intéressant de développer des méthodes qui permettront au locuteur de ne pas de-
voir faire attention à la position de son microphone lors d'un discours. De plus, si le
microphone est placé loin du locuteur, le taux de reconnaissance de la parole décroît
rapidement en présence de bruits ou de phénomènes de ré�exion. Si la reconnais-
sance est utilisée pour commander un appareil, cet appareil peut également émettre
des sons. Ceux-ci seront alors considérés comme des bruits qui contribueront à la
diminution du taux de reconnaissance. Par conséquent, il est également nécessaire
de développer des méthodes de réduction de bruit et de dé-réverbération pour con-
cevoir des systèmes de reconnaissance de la parole e�caces.

C'est l'objet de cette thèse qui est constituée de six chapitres. Ceux-ci décrivent
quatre méthodes de traitement des signaux pour la reconnaissance de la parole
robuste dans un environnement réel.

Le chapitre 1 aborde la nécessité de la réduction de bruit. Il présente une analyse
bibliographique sur les travaux en reconnaissance de la parole et les caractéristiques
des méthodes à développer pour obtenir une reconnaissance robuste.

Le chapitre 2 propose une technique pour réduire les bruits constitués par les sons
émis par un appareil à commander. Pour réduire ces bruits, une méthode classique
de soustraction spectrale peut être utilisée. Cependant, la soustraction spectrale
ne donne pas de bons résultats si la fonction de transfert entre les haut-parleurs de
l'appareil et le microphone varie dans le temps. Un mécanisme d'adaptation est alors
proposé pour faire face à la variation temporelle de la fonction de transfert. Bien que
l'annulation adaptative de bruit (ANC) soit une méthode connue pour résoudre le
problème précédent, l'excès de soustraction peut provoquer une distorsion du signal
de parole estimé. En e�et, l'ANC coupe une partie du signal de parole dans le cas
où il y a une forte corrélation entre le signal produit par l'appareil à commander et
le bruit. Pour résoudre ce problème, le système proposé dans cette thèse, utilise la
structure harmonique des segments voisés que la méthode ANC conventionnelle ne
prend pas en compte.

Dans une première étape, la méthode proposée est l'extraction de la fréquence
fondamentale du signal reçu. Puis la fréquence fondamentale et le spectre du signal
sont utilisés pour classi�er le signal reçu en 3 types de segments :

• Segments voisés,
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• Segments non voisés,

• Segments sans parole.

Dans le cas de segments voisés, la structure harmonique de la parole cible est extraite
en utilisant la fréquence fondamentale. L'estimation de la structure harmonique est
soustraite du signal reçu puis le bruit présent dans le signal reçu par le microphone
est estimé. L'estimation du bruit est utilisée pour déterminer la fonction de trans-
fert qui permet l'analyse du cadre courant avec le bruit connu qui est directement
déterminé à partir de l'appareil à commander. Dans le cas de segments non-voisés,
le signal cible n'a pas de structure harmonique, mais les caractéristiques de la fonc-
tion de transfert acoustique entre l'appareil à contrôler et le microphone, tel entre
un poste de télévision et un microphone, ne varie pratiquement pas entre 2 trames
d'analyse consécutives. Les caractéristiques de la fonction de transfert de la trame
courante sont considérées comme étant les mêmes que celles obtenues pour l'analyse
de la trame précédente. Pour les segments sans parole, la méthode ANC conven-
tionnelle est utilisée.

Des résultats expérimentaux sont présentés dans ce chapitre. Ils montrent que la
méthode proposée donne de meilleurs résultats pour l'estimation du spectre et pour
la reconnaissance de la parole que la méthode de soustraction spectrale classique. Ce
résultat est vrai y compris dans des environnements acoustiques sévères caractérisés
par des rapports signal à bruit inférieurs à 9dB.

Le chapitre 3 propose une nouvelle technique de dé-réverbération en considérant les
caractéristiques fréquentielles des surfaces ré�échissantes. Les excès de soustraction
se produisent lorsque les caractéristiques fréquentielles des surfaces ré�échissantes
sont plates. En e�et, dans ce cas l'estimation du temps de réverbération donne un
résultat plus long que ce qu'il devrait être sur plusieurs bandes de fréquences. Pour
résoudre ce problème, il est nécessaire d'estimer le temps de réverbération en tenant
compte des caractéristiques fréquentielles de la ré�exion. La méthode proposée
dans cette thèse est une technique de dé-réverbération aveugle simple canal qui est
basée sur l'utilisation de la fonction d'auto-corrélation de séquences temporelles des
composantes fréquentielles.

Les étapes de cette technique sont les suivantes. La fonction d'auto-corrélation
pour chaque bande de fréquence est calculée en utilisant une série temporelle de
fréquences du spectre. Le temps de réverbération pour chaque bande de fréquence est
déterminé comme un retard temporel au-delà duquel la fonction d'auto-corrélation
devient su�samment petite. La fonction d'auto-corrélation jusqu'au temps de réver-
bération estimé est vue comme un a�aiblissement caractéristique de la ré�exion.
La dé-réverbération est réalisée en utilisant l'estimation du temps de réverbération
et le taux d'a�aiblissement dans le domaine fréquentiel. Il est supposé dans ces
travaux que le signal reçu est constitué de l'onde directe et de la somme des com-
posantes ré�échies. La technique proposée procède par soustraction des composantes
ré�échies une par une.
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En s'appuyant sur les performances obtenues sur des données simulées et réelles,
la méthode proposée s'avère capable d'estimer le temps de réverbération en fonction
de la fréquence et donne ainsi de meilleurs résultats que les méthodes convention-
nelles de dé-réverbération. Cette méthode a été appliquée à la commande vocale
d'un téléviseur (voir Appendice C.1 de la thèse). Les résultats de l'évaluation em-
ployant ce système prouve que le taux de reconnaissance de la parole est amélioré
dans les cas où le SNR = 0∼12dB. La reconnaissance de la parole est également
correctement réalisée même dans le cas où la distance entre le microphone et un
utilisateur serait de 50∼100cm.

Il est nécessaire de développer des méthodes qui peuvent estimer un signal de bruit
pour améliorer les performances de la technique décrite au chapitre 2. Les procédures
itératives ont besoin de temps de calcul importants pour réduire le bruit. Ainsi, le
système ne peut pas réaliser la reconnaissance de la parole en ligne, à moins que la
charge de traitement soit réduite. Hors, si le nombre maximum d'itérations est lim-
ité, la reconnaissance de la parole ne peut pas atteindre les meilleures performances.
Les chapitres 4 et 5 proposent des techniques de réduction de bruit permettant de
prendre en compte ces compromis.

Le chapitre 4 propose une technique permettant de solutionner le problème de
permutation qui apparaît lorsque l'on utilise l'Analyse en Composante Indépen-
dante (ICA) dans le domaine fréquentiel appliqué à la Séparation de Source Aveugle
(BSS). La méthode BSS tente de séparer les signaux mélangés en signaux source
sans information a priori. La méthode ICA dans le domaine fréquentiel donne
des performances intéressantes même dans le cas de signaux mélangés résultant
d'une convolution ou dans des cas de réverbération. Cependant, il existe une di�-
culté appelée � problème de permutation � lors de l'utilisation de la méthode ICA
dans le domaine fréquentiel. L'a�ectation d'une source identi�ée à chaque bande
de fréquence est nécessaire après la séparation, mais il est di�cile de disposer de
moyens e�caces pour cela. Di Persia propose une méthode ICA sans permutation
(PF - ICA) pour séparer les signaux provenant d'une convolution en signaux sources.
Cependant cette technique à un défaut, celui de devoir supposer une directivité com-
mune a toutes les bandes de fréquence. Il permet néanmoins d'éviter le problème
de permutation en rassemblant toutes les bandes de fréquence en un seul vecteur.
Une méthode ICA multi bandes (MB - ICA) est proposée dans cette thèse comme
une version modi�ée de PF - ICA. Elle e�ectue la séparation après avoir assemblée
un nombre dé�ni de bandes de fréquence adjacentes. MB - ICA peut faire face aux
caractéristiques fréquentielles locales et apporter une solution stable au problème
de permutation. Cependant, MB - ICA a un inconvénient : le nombre de bandes
de fréquence qui doivent être assemblées pour obtenir le meilleur résultat possible
dépend de l'environnement.

Le chapitre 5 propose une technique pour l'estimation du spectre de la parole en
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utilisant un �ltre particulaire et un microphone unique. Il existe dans la littérature
une méthode utilisant un �ltre particulaire pour estimer à la fois le bruit et le signal
de parole propre modélisé par un modèle à mélange de gaussiennes (GMM). Cepen-
dant, un point essentiel pour mettre en ÷uvre cette méthode est la construction
d'un GMM approprié. Un très grand nombre de données de parole est nécessaire
pour la construction de ce modèle. Le mélange de processus de Dirichlet (DPM) est
un modèle permettant le mélange d'une in�nité de distributions de probabilité et il
est possible de décider du nombre de distributions gaussiennes (ou autres densités
d'ailleurs) nécessaires. La méthode proposée dans cette thèse permet l'estimation
du bruit et du spectre de la parole sans avoir besoin de construire de GMM. Au
lieu d'utiliser un GMM, le modèle du spectre de la parole est basé sur un DPM. Un
processus de Dirichlet (DP) est une distribution de probabilité non paramétrique sur
un espace constitué de toutes les distributions possibles. Le DP est utilisé comme
une distribution a priori du DPM qui nous permet alors de mélanger un nombre
in�ni de distributions de probabilité. En utilisant un modèle basé sur l'utilisation
de DPM pour l'estimation du spectre de la parole, nous pouvons donc envisager de
développer une méthode pour une estimation adaptative du spectre. Lors de sa mise
en ÷uvre nous avons pu constater que nous obtenons une meilleure estimation du
bruit et un meilleur taux de reconnaissance de la parole que les méthodes conven-
tionnelles utilisant un GMM.

Le chapitre 6 conclue cette thèse et présente les perspectives de ces travaux.
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Abstract

Speech recognition technology reaches almost a practical level if we use a close
contact microphone in quiet environments. However, speech input using a close
contact microphone has a disadvantage, that is to say a headset must be put on
in order to keep a small microphone just in front of the mouth. If we do not use
a close contact microphone, we have to speak to a microphone paying attention to
the distance to the microphone in order to avoid breath pu� to the microphone.
So, it is desirable to develop a system which does not force users to pay attention
to microphone position during utterance. If microphones are located at a distant
position from a speaker, the speech recognition rate decreases drastically by noise
and re�ected waves. Furthermore, sometimes sounds emitted by the target system
itself turn into noise which also decreases the speech recognition rate. Hence, it
is necessary to develop noise reduction and dereverberation techniques for building
practical voice-controlled systems.

This dissertation consists of the following six chapters which describe four signal
processing techniques to achieve noise robust speech recognition in real environ-
ments.

Chapter 1 explains the necessity of noise reduction in speech recognition, and de-
scribes the past speech recognition researches and desirable signal processing tech-
niques for realizing the robust speech recognition.

Chapter 2 proposes a technique for reducing obstructive sounds emitted by the
target apparatus to be controlled. To reduce these sounds, the Spectral Subtraction
(SS) is a popular and possible means. However, the SS cannot give a satisfactory
performance in case temporal changes occur in the transfer functions between the
loudspeakers of the apparatus and the microphone. An adaptive scheme is intro-
duced to cope with time varying situations. Although the Adaptive Noise Canceller
(ANC) is available to solve this problem, the excess subtraction might cause dis-
tortion in the estimated speech signal since the ANC sometimes cuts a part of the
speech signal in case there is high correlation between the target signal and the noise
signal. To solve this problem, the proposed system uses the harmonic structure of
the voiced segments which the conventional ANCs do not directly take into account.

First, the proposed method extracts the fundamental frequency of the received
signal. Then, using the fundamental frequency and the frequency spectrum, the
system classi�es the received signal into three segment types: (1) voiced segments;
(2) unvoiced segments; and (3) non-speech segments. In case of voiced segments,
the harmonic structure of the target speech is extracted based on the fundamental
frequency. The estimated harmonic structure is subtracted from the received signal
and then the noise signal in the mixed signal received by the microphone is estimated.
The estimated noise signal is used for calculating the transfer characteristics for the

v



current analysis frame, together with the known noise which can be directly obtained
from the target apparatus. In case of unvoiced segments, however, the target signal
does not have harmonic structure, but the acoustic transfer characteristics from the
target system, such as a TV set, to the microphone does not di�er so much between
every two consecutive frames. The transfer characteristics in the current analysis
frame are assumed to remain the same as those obtained in the previous analysis
frame. For non-speech segments, the proposed method is designed to work as same
as the conventional ANCs.

Experimental results show that the proposed method realizes better frequency
spectra estimation and speech recognition rate than the conventional SS in acous-
tically severe environments characterized by Signal to Noise Ratio (SNR) less than
9dB.

Chapter 3 proposes a new dereverberation technique by considering the frequency
characteristics on re�ective surfaces. Over-subtraction occurs in the conventional
dereverberation in case �at frequency characteristics are assumed at re�ection on
surfaces because the reverberation time is estimated longer than actual values at sev-
eral frequency bins. To overcome this problem, it is required to estimate the actual
reverberation time by assuming the frequency characteristics of re�ection. Proposed
is a single channel blind dereverberation technique which was the auto-correlation
functions of the time sequences of the frequency components.

The procedure of this technique is described as follows: the auto-correlation
function for each frequency bin is calculated using a time series of frequency spectra.
The reverberation time for each frequency bin is determined as the time delay beyond
which the auto-correlation function gets enough small. The auto-correlation function
up to the estimated reverberation time is regarded as the decay characteristics of
the re�ection. Dereverberation is performed using the estimated reverberation time
and the decay rate in the frequency domain. It is assumed that the received signal
consists of the direct wave and the sum of re�ection components. The proposed
technique subtracts the re�ection components one by one.

From the performance on simulated and actual data, the proposed method proves
to be able to estimate the reverberation time as a function of frequency, and thus
yield better results than the conventional dereverberation methods. The proposed
method is applied to a voice-controlled TV system described in Appendix C.1. Eval-
uation results using this system shows that the speech recognition rate is improved
in the cases where SNR= 0∼12dB and the speech recognition was successful even
in case the distance between the microphone and a user is 50∼100cm.

It is required to develop a method that can estimate a noise signal for improving the
performance of the technique described in Chapter 2. Iterative procedures require
long processing time to reduce the noise. So, the system cannot achieve on-line
sequential speech recognition unless the processing load is reduced. However, if the
maximum iteration count is limited to be small, speech recognition cannot reach the
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best performance. From the point of this trade-o�, chapters 4 and 5 propose noise
reduction techniques expected in the future.

Chapter 4 proposes a technique to escape from the permutation problem which ap-
pears in the frequency-domain Independent Component Analysis (ICA) applied to
the Blind Source Separation (BSS). BSS tries to separate mixed signals into source
signals without knowing any a priori information. The frequency-domain ICA is
employed and gives fair performance even for convolutively mixed signals or rever-
berant cases. In the frequency-domain ICA, convolutional mixture is converted into
simple additive mixture in each frequency bin by converting the observed signals
into the frequency domain. However, there exists a tough issue called �permutation
problem� in frequency-domain ICA. Consistent assignment of source identi�cation
for each frequency bin is required after the separation for each frequency bin, but
we do not have any reliable means for that. Di Persia proposed the permutation-
free ICA (PF-ICA) for separating convolutively mixed signals into source signals
escaping from the permutation problem. This technique, however, has a defect that
it assumes a single directivity common to all frequency bins, though it can avoid
the permutation problem connecting all the frequency bins into one long vector. A
Multi-bin ICA (MB-ICA) is proposed here as a revised version of PF-ICA. It per-
forms separation after connecting a de�nite number of adjacent frequency bins. By
connecting adjacent frequency bins, MB-ICA can cope with local frequency char-
acteristics and stably solves the permutation problem. However, MB-ICA has a
drawback that the number of frequency bins to be connected for giving the best
result depends on the environment.

Chapter 5 proposes a technique to estimate speech spectrum using a particle �lter
with a single microphone. There is a method for estimating both noise signal em-
ploying particle �lter and clean speech signal employing a Gaussian Mixture Model
(GMM). However, an essential point of this technique is to construct an accurate
GMM in advance and huge number of speech data are required to construct the
model. Dirichlet Process Mixture is a model to mix in�nite probability distribu-
tions and it can decide the number of required Gaussian distributions. Proposed
is a technique to estimate noise and speech spectra without building the GMM.
Instead of the GMM, the speech spectrum is modeled based on a Dirichlet Process
Mixture (DPM). The Dirichlet Process (DP) is a non-parametric probability distri-
bution over a space consisting of all possible distributions. The DP is used as the
prior distribution of the DPM. As the DP is a generative model for in�nite distri-
butions, DPM allows us to mix the in�nite probability distributions. Using a model
based on DPM in the estimation process of the speech spectrum, it is expected to
develop a method to estimate the spectrum adaptively. In evaluation using speech
recognition, the proposed method realizes better noise estimation and achieves bet-
ter speech recognition rate than the conventional method using GMM.
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Chapter 6 concludes this dissertation and describes future works.
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概要

音声認識技術の向上により，比較的雑音の少ない環境において接話マイクロホンに
よる音声認識は，現在，ほぼ実用的なレベルに達している．しかし，接話マイクロ
ホンを用いる場合は，ヘッドセットマイクなどを常に身に着けていなければならず，
非常にわずらわしい．そのため，ユーザがマイクロホンに気を配ることなくシステ
ムを利用できるようにする必要がある．つまり，音声認識システムの実用化には，マ
イクロホンから離れた位置からのユーザ発話でも正しく認識できる必要がある．し
かし，話者から離れたところにマイクロホンを設置すると，認識対象音声のパワー
が小さくなり，周囲の雑音や壁や天井からの反射音の影響により音声認識率は大幅
に低下する．また，操作する対象の機器 (例えばTV)自体が音を発する場合はその
影響も受ける．それゆえ，実用的なシステムを構築するためには，雑音除去技術や
残響除去技術の導入が不可欠である．

本論文では，実環境において頑健に動作する音声認識のための信号処理技術につ
いて述べている．本論文は以下の６章から構成されている．

第１章は本論文の導入であり，これまでの音声認識研究および，音声認識率改善の
ための信号処理技術について述べている．

第２章は，音声により操作する対象機器自体が発する音を除去する技術について述
べている．TVのように，操作対象自体が音を発する機器を音声によって操作する
場合，機器自体の発する音が雑音となり音声認識率が低下する．このような問題に
対しては，操作対象自体が発する音は既知という条件の下で，適応ノイズキャンセ
ラを用いることができるが，話者の発話中においてもTV-マイクロホン間の伝達特
性が人の動きや室温，湿度の変化などにより変動する．また，TV音の場合，壁な
どからの反射音とシステム利用者の音声は相関が高いため，従来の適応ノイズキャ
ンセラでは十分な雑音除去性能が得られないという事情もある．そこで，従来の適
応ノイズキャンセラでは用いられていない音声の調波構造を考慮した雑音除去法を
開発することによりこの問題を解決する手法を提案している．
提案法では，入力信号をその振幅により認識対象音声が含まれる区間であるか，

そうでないかを判定する．そして認識対象音声が含まれる区間はさらにスペクトル
の特徴から有声音であるか，無声音であるかを判定する．有声音の区間に関しては
基本周波数を基に調波構造を推定し，推定した調波構造を入力信号から減算するこ
とによって，雑音信号を推定する．そして，この雑音の推定値と既知としている操
作対象自体が発する音を用いて伝達特性の学習が行われる．無声音の区間に関して
は，調波構造を用いることができないため，前フレームで推定した伝達特性を流用
し，雑音信号の推定を行う．認識対象音声が含まれない区間に関しては従来の適応
ノイズキャンセラと同じ動作をする．
提案法は，SN比が 0～9dBの環境において，従来の単純なスペクトルサブトラ

クション法やWienerフィルタと音声認識率を比較しても十分よいもしくは同程度
の性能を持つことを示している．ただし，SN比が 12dB以上の良い音響環境での音
声認識率は，改善の余地が無く，事実改善が認められない．
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第３章は，反射の周波数特性を考慮した反射音除去技術について述べている．第２
章の雑音除去法では，雑音源とマイクロホン間の伝達特性を考慮しているが，話者
とマイクロホン間の伝達特性を考慮していない．従来の反射音除去処理では，壁や
天井での反射の周波数特性が平坦であることを仮定した複数のマイクロホンによる
手法が用いられていた．しかし，これらの手法では，残響時間が真の値よりも長く
推定されることにより過剰な減算が起こる可能性があった．そこで，この問題を解
決するために，ここでは単一マイクロホンによる各周波数ビンでの自己相関関数を
基に，残響時間を周波数の関数として推定する手法を提案している．これにより壁
や天井での反射の周波数特性を考慮した反射音除去処理が可能になり，過剰な減算
を抑制することができる．シミュレーションおよび実際に収録した音声を用いて評
価を行ったところ，過剰な減算が抑制され，SN比が改善することが明らかになって
いる．また付録Bに示す音声操作によるTVシステムを用いて，音声認識率の評価
を行ったところ，SN比が 0～12dBの範囲で認識率の改善が得られ，マイクロホン
から 50～100cm離れた位置からの音声認識が可能であることが明らかになった．

第２章で述べた雑音除去技術を実現するためには，雑音のみの信号が得られなけれ
ばならない．また，逐次的な手法で精度良く雑音を除去するためには，伝達特性の学
習のために多くの時間を要する．そのため，システムは計算量を減らさない限り連
続的に音声認識をすることが困難である．しかし，逐次計算の繰り返し回数を制限
するなどで計算回数を減らすと音声認識率が低下する．以上のことより，第４，５
章では今後音声認識に期待される雑音除去技術を提案している．

第４章は，周波数領域での独立成分分析 (ICA)によるブランインド音源分離 (BSS)
で問題となるパーミュテーション問題を抑制する ICAの提案を行っている．BSSは
音源に関する事前情報が無い状況で，複数の音源からの音を波形レベルで分離する
技術である．BSSの手法の一つとして，ICAに基づく手法が近年盛んに研究されて
おり，瞬時 (畳み込みでない)混合に対しては十分な分離性能が得られている．また，
畳み込み混合に対処する方法としては周波数領域 ICAがある．これは信号を短時間
フーリエ変換により周波数領域に変換することによって，周波数ビン毎の瞬時混合
として ICAを適用するものである．しかし，BSSに周波数領域 ICAを適用した場
合，各チャネルの周波数ビンの入れ違いを正しく並び替える (パーミュテーション問
題を解決する)必要がある．しかし，いまだパーミュテーション問題の完全な解決に
は至っていない．Di Persiaらは，これまでに全周波数ビンを連結して 1本のベクト
ルと考えて分離を行うパーミュテーション・フリー ICA（PF-ICA）を提案してい
る．この手法では，分離された信号の周波数ビン間の入れ替わりが生じない利点が
あるが，分離行列の周波数特性を考慮することができないという欠点があった．そ
こで，筆者は，対象とする周波数ビンの前後数本の周波数ビンを連結することによっ
て，当該周波数ビンに関する分離行列を安定して求めるマルチビン ICA（MB-ICA）
を提案し，分離行列の周波数特性を考慮した分離ができるようにした．

第５章は，粒子フィルタを用いて単一マイクロホンで音声のスペクトルを推定する
手法について述べている．システムの実用化を考えると，少数のマイクロホンでシ
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ステムを実現することが望ましい．それゆえ，単一マイクロホンで雑音除去，およ
び残響除去を行う技術の研究が要請される．単一マイクロホンによって，粒子フィ
ルタを用いた雑音のスペクトルの推定と，ガウス混合モデル (GMM) を用いた音声
のスペクトルの推定法が開発されている．粒子フィルタは近年，計算機性能の向上
により普及したものであり，従来のカルマンフィルタが線形・ガウス型の状態空間
にしか適用できなかったものを，非線形・非ガウス型の状態空間にも適用できるよ
うに拡張したフィルタである．しかし，GMMを用いた手法は音声信号の追従性能
がGMMの学習精度に依存する．一方，音声のスペクトルのモデル化にGMMでは
なくディリクレ混合過程 (DPM)に基づくモデルを用いると，混合分布数をデータ
から自動的に得ることができるため，予めモデルを学習する必要がなくなり，より
柔軟なモデル化が可能になる．DPMとは，ディリクレ過程により生成された確率分
布の混合モデルであり，ディリクレ過程は混合する各要素の確率分布の確率分布を
表現するものであり，無限個の確率分布を生成するためのモデルである．また，状
態空間モデルに話者とマイクロホン間の伝達特性の影響を導入し，雑音除去ととも
に残響抑圧も行う手法も提案している．実環境音声・音響データベースに収録され
ている３種類の雑音データ，および４種類の SN比（0, 3, 6, 9dB）を用いて，DPM
に基づくモデルを用いた雑音除去法の評価を行っている．評価の結果， DPMに基
づくモデルを用いた提案手法がGMMによる手法よりも音声認識率を改善すること
を確認している．

第６章は，本論文のまとめおよび今後の課題について述べている．

xi
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Chapter 1

Introduction

Speech recognition technologies have achieved rapid advancement. The reason for it
is that the probability model, called Hidden Markov Model (HMM), was introduced
and large-scale corpora have been developed. HMM, which is now widely used in
speech recognition, was proposed in late 70s expressing the temporal and spatial
�uctuation of speech. The Defense Advanced Research Projects Agency (DARPA)
project began to use the HMM for speech recognition and to develop a common
large-scale corpus. Owing to promotion of this project, speech recognition tech-
nologies have achieved advancement. Before the project started, speech recognition
technologies could only cope with the word recognition for a speci�c speaker within
a closed task. Now, they can cope with more complicated tasks. As the results of
the research, current speech recognition technologies reach almost a practical level
in case of being used in quiet environments with a close contact microphone.

However, to use speech input with a close contact microphone forces us to in-
conveniently wear a headset that mounts a small microphone kept a �xed distance
to the mouth. So, it is required to develop a system which does not require users
to pay attention to the microphone in practical use. If microphones are allocated
in a position far from the speaker, the speech recognition rate decreases drastically
a�ected by noise and re�ected waves. In such environments, the reason why the
speech recognition performance decreases is that the acoustical environment dif-
fers from one in which the acoustic model was built. Moreover, precise detection
of speech segments also proves to be important for speech recognition in practical
applications.

If microphones are placed not near the speaker, speech recognition is severely
a�ected by noises and room acoustics. Moreover, we have to take the human factors
in their response into account for building a speech dialogue system.

Various techniques have been proposed to cope with noises and reverberation.

1
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There can be the following three types of processing schemes for improving the sit-
uation: i) extraction of feature parameters representing perceptual characteristics,
ii) removing noise and normalizing channel distortion and iii) adaptation to envi-
ronments.

i) extraction of feature parameters representing perceptual characteris-
tics
Techniques for feature extraction for speech recognition are studied to realize robust
extraction of speech features to the environmental changes. Recently mel frequency
cepstral coe�cients are widely used as feature parameters for speech recognition,
as they are robust to the environmental changes. Moreover, the Perceptual Linear
Prediction (PLP) [1], RASTA [2] and dynamic cepstrum [3] draw attentions as these
parameters take the auditory characteristics into account.

ii) removing additive noise and normalizing channel distortion
This processing can be classi�ed into the single microphone processing and multiple
microphone processing.

In single microphone cases, Spectral Subtraction (SS) [4], missing feature theory
[5] and Cepstral Mean Subtraction (CMS) [6] are generally used. SS detects noisy
segments and subtracts estimated power spectrum from the received signal estimat-
ing the noise power spectrum. In low signal-to-noise ratio (SNR) cases, however,
noise removal is di�cult. Moreover, in case the noise signal is non-stationary, it
becomes much more di�cult to estimate the noise spectrum precisely. The missing
feature theory is a method to recover information buried in noise, while the CMS can
normalize channel distortion. In the cepstrum domain, convolution is represented by
linear expression, so the e�ects of room acoustics are reduced by subtracting noise
cepstrum from the cepstrum of the observed signal.

In multiple microphone cases, we can use microphone array, multi-channel SS,
blind source separation and so forth. Two-channel SS estimates the frequency spec-
trum of the target source by subtracting noise spectrum estimated from two-channel
mixed signals. BSS (Blind Source Separation) is to separate mixed signals into each
source signal without knowing any a priori information. Microphone array process-
ing is a method for suppressing noise signals controlling the directivity of signal
enhancement with a multi-channel microphone system. To suppress noise signals
using a microphone array, the directions of the target and noise sources are detected
and directivity is formed by delay-and-sum among microphones in the frequency
domain. Cross-power Spectrum Phase Analysis (CSP) [7] is often used for estima-
tion of source direction. There are two types of microphone array, additive array
and subtractive array, for forming directivity. An additive array forms directivity
for target source direction and a subtractive array forms null directivity for noise
source.

iii) adaptation to environments
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Adaptation to environments means automatic modi�cation of the acoustic model
for speech data obtained in arbitrary acoustic environments in which speech recog-
nition is performed. Adaptation techniques are classi�ed into one of the following
three types: a) mapping onto a feature vector space, b) adaptation of the acoustic
model parameters and c) acoustic model composition and/or decomposition. The
�rst one, e.g. SPLICE [8], maps features of observed signal onto a feature vector
space for signals a�ected by noises and reverberation. The second one leads the
Maximal Likelihood Linear Regression (MLLR) and the Maximal a posteriori Esti-
mation (MAP). The last one, e.g. [9], [10], [11], [12], is a method which composes
an adapted acoustic model from noise HMMs and speech HMMs.

The objective of the research described in this dissertation is to develop signal
processing techniques for realizing a robust speech recognition. The dissertation
focused on the removing noise and reverberation for improving speech recognition.
Proposed in this dissertation are known noise reduction, a dereverberation technique
using a single microphone, BSS using Independent Component Analysis (BSS) and
single channel noise reduction based on a Dirichlet Process Mixture (DPM) model.

We want to develop user interface that is easy to use for everyone. Speech
recognition draws our attention as interface because speech is the most important
and convenient communication media for almost all people.

In case of using distant microphones, speech recognition rate decreases due to
noise, reverberation and, in some cases, the sound emitted by the target apparatus
to be controlled, such as a TV set. SS can be used to reduce the sounds emitted
by the target apparatus itself. However, SS cannot give satisfactory noise removal
performance under situations where the transfer functions between the loudspeakers
of the apparatus and the microphone is time variant.

Although Adaptive Noise Canceller (ANC) is available in time varying cases,
over-subtraction might cause distortion in the estimated speech signal if there is high
correlation between the target signal and the noise signal. Introduced in chapter
2 is an ANC using the harmonic structure of voiced speech segments which the
conventional ANCs have not directly taken into account. Sounds from the target
apparatus to be controlled can be removed as they are known to the system and
the transfer characteristics from the apparatus to the microphone can be calculated
by the proposed method in chapter 2. The sounds from the target apparatus to the
microphone can be calculated as convolution of the source sound and the transfer
characteristics of the path. While the re�ected speech uttered by the speaker should
be removed with some means of dereverberation for speech recognition. So, we
introduced dereverberation techniques shown in Chapter 3.

In Chapter 3, proposed is a technique in frequency domain using a single mi-
crophone. Over-subtraction occurs in conventional dereverberation in case �at fre-
quency characteristics are assumed on re�ective surfaces because the reverberation
time is estimated longer than actual values at several frequency bins. It is required
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to estimate the actual reverberation time assuming the frequency characteristics
of re�ection. Proposed is a single channel blind dereverberation technique using
auto-correlation functions on the time sequences of frequency components.

The procedure of this technique is described as follows: The auto-correlation
function for each frequency bin is calculated using a time series of frequency spec-
tra. The reverberation time for each frequency bin is determined as the time delay
beyond which auto-correlation function gets enough small. The auto-correlation
function up to the estimated reverberation time is regarded as the decay character-
istics of re�ection. Dereverberation is performed using the estimated reverberation
time and the decay rate in the frequency domain. It is assumed that the received
signal consists of the direct wave and the sum of the re�ection components. The
proposed technique subtracts the re�ection components one by one.

It is required to develop a method that can estimate a noise signal for improving
the performance of the method described in Chapter 2. It is hard for the system to
achieve on-line continuous/sequential speech recognition unless the processing load
is reduced. However, iterative procedures require long processing time to reduce
the noise. If we limit the maximum iteration count to be small, speech recognition
cannot reach the best performance. From the point of this trade-o�, a system should
introduce noise reduction techniques other than iterative methods.

BSS is a good means for noise removal in case we do not have any a priori in-
formation about source signals. BSS by independent component analysis (ICA)
is employed in Chapter 4. The frequency-domain ICA is employed for separating
convolutively mixed signals in reverberant cases. In the frequency-domain ICA, con-
volutional mixture is converted into simple additive mixture in each frequency bin,
by taking Fourier transform. However, there exists a di�culty called the �permu-
tation problem� in the frequency-domain ICA. The permutation problem requires
us correct assignment of source identi�cation for every frequency bins after separa-
tion for each frequency bin. There are many techniques proposed to cope with the
permutation problem, but the problem has not been completely solved yet. Di Per-
sia proposed a permutation-free ICA (PF-ICA) for separating convolutively mixed
signals into source signals without permutation errors. This technique has an ad-
vantage that it can avoid the permutation problem, but has a defect that it assumes
a single directivity common to all frequency bins. Multi-bin ICA (MB-ICA) is pro-
posed here as a revised version of PF-ICA. It performs separation after connecting
a de�nite number of adjacent frequency bins.

It is desirable for a more practical system to develop a method requiring only a
single microphone. Although ICA is a powerful means, it requires more than two
microphones.

In a single microphone case, it is necessary to estimate a noise signal precisely.
Currently, a particle �ltering is widely used in a speech recognition �eld due to
advancement of computer abilities. Speech and noise spectrum estimation technique
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with a single microphone is proposed in Chapter 5. There is a method for estimating
noise signal employing a particle �lter and for estimating speech spectrum employing
a Gaussian Mixture Model (GMM). However, an essential point of this technique
is to construct an accurate GMM in advance and huge number of speech data are
required to construct the accurate GMM. Dirichlet Process Mixture is a model
to mix in�nite probability distributions and it can decide the number of required
Gaussian distributions. Proposed is a technique to estimate the noise and speech
spectrum without building the GMM. Instead of the GMM, the speech spectrum is
modeled using a model based on Dirichlet Process Mixture (DPM). The Dirichlet
Process (DP) is a non-parametric probability distribution over a space of all possible
distributions. The DP is used as the prior distribution of the DPM. The DP is a
generative model for in�nite distributions. So, DPM allows us to mix the in�nite
probability distributions. By using a model based on the DPM in the estimation
process of the speech spectrum, we estimate this spectrum adaptively.





Chapter 2

Known noise reduction using

harmonic structure

2.1 Introduction

Our research objective is to realize an e�ective TV control system using speech
recognition which can operate in noisy environments. Even if we want to control
the TV set by voice, we do not want to use a close contact microphone, but rather
prefer using microphones placed somewhere from the speaker, not knowing nor being
aware of source location. In case of using distant microphones, however, the speech
recognition rate decreases making due to the sound that the TV set itself is emitting.

To reduce the e�ect of the TV sound, the spectral subtraction (SS) is a possible
means [4]. However, we cannot expect satisfactory performance from SS because of
temporal changes of the transfer functions between the loudspeakers of the TV set
and the microphone. So, we have to take an adaptive scheme to cope with the time
varying situation [20]. If there is high correlation between a target signal and a noise
signal, excess subtraction might cause distortion on the estimated speech signal since
the adaptive �lter sometimes functions to cut a part of the speech signal [21]. To
avoid this situation, the �lter coe�cients are updated only for non-speech segments.
The transfer function of the path from the source to the microphone might be easily
a�ected by disturbances in real environments [22]. Thus, in case �uctuation of the
transfer function occurs during speech segments, noise removal performance will be
degraded, resulting in serious decrease in speech recognition rate. So, adaptation is
required for modifying the �lter coe�cients even for speech segments.

We focused attention on the harmonic structure of voiced speech segments though
the conventional ANCs have not directly taken it into account [23], [24]. The techni-
cal objective of these research is how to accelerate the convergence speed of calculat-

7
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ing �lter coe�cients. So, introducing the harmonic structure and the fundamental
frequency into the noise reduction process, we can expect more satisfactory results
in noise reduction.

2.2 The method

In case we want to change TV channels, the TV set should be already ON and may
be emitting sounds from its loudspeakers. The microphone in the room inevitably
receives the sound from the TV set itself together with command speech which the
system has to recognize. In this case, however, the sound from the loudspeaker of
the TV set is completely known though the sound may be considerably modi�ed on
the way to the microphone. If we know the transfer characteristics of the path from
the TV set to the microphone including re�ections on the walls, ceiling, �oor and
furniture, we will be able to estimate the sounds from the TV set arriving at the
microphone. To estimate the transfer characteristics, we employ an ANC technique
using the harmonic structure of the command speech.

First, the system extracts the fundamental frequency of the command speech
which the system has to recognize. Secondly, the spectrum of the command sound
is estimated based on a harmonic structure model using the fundamental frequency.
We call the mechanism of these two steps the �Harmonic Structure Estimator�.
According to this processing, we can extract the command speech from the received
signal leaving the TV sound as extraction residuals. From the results, the transfer
characteristics from the TV set to the microphone can be iteratively estimated using
the TV sound even under existence of command speech. In the following section,
the algorithm of the conventional ANC is explained and, then, the above-mentioned
idea is formulated.

2.2.1 Conventional ANC

Figure 2.1 shows a scheme for conventional ANC using a digital �lter of �nite impulse
response (FIR). To reduce the noise n′(k) in the received signal x(k), we need to

Figure 2.1: A scheme of conventional ANC
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estimate the noise. The received noise is formulated as convolution of known noise
signal n(k) and the time varying impulse response of the path from the source to
the microphone approximated by an FIR �lter

ĥ(k) = [ĥ0(k), ĥ1(k), · · · , ĥN−1(k)]T

of length N , whose time varying coe�cients are estimated adaptively. The noise
signal received by the microphone is formulated as follows:

n̂′(tk) = ĥ(k)T n(k) (2.1)

where
n(k) = [n(tk), n(tk − 1), · · · , n(tk − N + 1)]T

and n(k) is a part of the noise signal or a k-th frame. Subtracting n̂′(tk) from the
received signal x(tk) yields the error signal

ϵ(tk) = x(tk) − n̂′(tk) = s(tk) + {n′(tk) − n̂′(tk)}

To estimate the �lter coe�cients, it is necessary to minimize

E[ϵ2(tk)] = E[s2(tk)] + E[{n′(tk) − n̂′(tk)}2]

+ 2E[s(tk){n′(tk) − n̂′(tk)}]

Then, to minimize E[ϵ2(tk)], E[ϵ2(tk)] is di�erentiated by hi as follows:

∂E[ϵ2(tk)]

∂hi

= −2n(tk − i){n′(tk) − n̂′(tk)} + 2s(tk)n(tk − i)

= −2n(tk − i){s(tk) + n′(tk) − n̂′(tk)}
= −2n(tk − i)ϵ(tk)

When the noise is stationary, the optimum �lter ĥopt can be realized as the Wiener
solution. TV sound, however, cannot be assumed to be stationary. So, the stochastic
gradient, least-mean-square (LMS) or normalized LMS algorithm are widely used
for updating the �lter coe�cients in case the noise is non-stationary. For example,
the LMS algorithm updates the �lter coe�cients as follows:

ĥ(k) = ĥ(k − 1) + µn(k)ϵ(tk) (2.2)

= ĥ(k − 1) + µn(k){s(tk) + n′(tk) − n̂′(tk)} (2.3)

where µ is a step size controller.

2.2.2 ANC using harmonic structure of voiced speech

Figure 2.2 shows the proposed scheme for ANC using harmonic structure of voiced
speech. The received noise can be alternatively thought to be obtained by subtract-
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Figure 2.2: The proposed scheme for ANC

ing the estimated speech signal ŝ(tk) from the received signal x(tk). We have:

ñ′(tk) = x(tk) − ŝ(tk)

Here, we design the �lter ĥ(k) so as to minimize the energy of the error of the
di�erence between n̂′ and ñ′. Subtracting n̂′(tk) from ñ′(tk) yields the error signal,

ϵ(tk) = ñ′(tk) − n̂′(tk)

= s(tk) + n′(tk) − ŝ(tk) − n̂′(tk)

= {s(tk) − ŝ(tk)} + {n′(tk) − n̂′(tk)}

So, mean square error is obtained as,

E[ϵ2(tk)] = E[{s(tk) − ŝ(tk)}2] + E[{n′(tk) − n̂′(tk)}2]

+2E[{s(tk) − ŝ(tk)}{n′(tk) − n̂′(tk)}]

Then, to minimize E[ϵ2(tk)], E[ϵ2(tk)] is di�erentiated by hi as follows:

∂E[ϵ2(tk)]

∂hi

= −2n(tk − i){n′(tk) − n̂′(tk)}

+2{s(tk) − ˆs(t)}n(tk − i)

= −2n(tk − i){s(tk) + n′(tk) − ˆs(tk) − n̂′(tk)}
= −2n(tk − i)ϵ(tk)

LMS algorithm updates the �lter coe�cients as:

ĥ(k) = ĥ(k − 1) + µn(k)ϵ(tk) (2.4)

= ĥ(k − 1) + µn(k){s(tk) + n′(tk) − ŝ(tk) − n̂′(tk)} (2.5)

Here, we explain how to estimate ŝ(tk). First, the system extracts the funda-
mental frequency in the received signal. Then, using the fundamental frequency and
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the frequency spectrum, the system classi�es the received signal into three segment
types: (1) voiced segments; (2) unvoiced segments; and (3) non-speech segments.

In case of voiced segments, Ŝ(jω, k) shows harmonic structure whose frequency
components at integer multiples of the fundamental frequency. We can put:

Ŝ(jω, k) =
P∑

p=1

apδ(ω − 2πpf0k) (2.6)

where ap denotes the amplitude of p-th harmonic component, P denotes the number
of harmonic components and f0k denotes the fundamental frequency of kth frame.
Assuming that the maximal amplitude of the signal expressed in Eq. (2.6) does
not exceed that of Ŝ(jω, k) at the same analysis frame. It leads to the following
de�nition of the amplitude ap

1,

ap =
max

0≤ν<N−1
x(tk + ν)

P
(2.7)

Equation (2.7) declares that ap is set to be the same value for all the harmonics in
a frame.

In case of unvoiced segments, Ŝ(jω, k) cannot be assumed to have harmonic
structure. Here, we assume that the transfer characteristics of consecutive two
frames do not di�er so much. So, we assume that the following frequency spectrum
N̂ ′(jω, k) can be described using the transfer characteristics of the previous analysis
frame.

N̂ ′(jω, k) = Ĥ(jω, k − 1)N(jω, k)

where N(jω, k) is the frequency spectrum of n(k). Hence, Ŝ(jω, k) is expressed as
follows:

Ŝ(jω, k) = X(jω, k) − N̂ ′(jω, k)

where X(jω, k) is the frequency spectrum of x(k).
In case of non-speech segments, we put:

Ŝ(jω, k) = 0

In any segment, ŝ(k) is obtained as Fourier Inverse Transform of Ŝ(jω, k). Here,
we focus on Eqs.(2.3) and (2.5). If ŝ(tk) in Eq. (2.5) is replaced with ŝ(tk) = 0,
Eqs.(2.3) and (2.5) are completely identical. It means that the proposed method
works same as conventional ANC for non-speech frames, and achieves better speech
recognition rate than that of conventional ANC assuming the harmonic structure
for voiced segments. The proposed method needs to classify the received signal into
three segment types. The problem, however, is not so critical.

1We consider some de�nitions of the amplitude, for example a linear prediction analysis. How-

ever, this simple de�nition provided the best result
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Finally, the signal for recognition is obtained according to the following proce-
dure. First, the frequency spectra X(jω, k) and N̂ ′(jω, k) are obtained as Fourier
Transforms of the received signal x(k) and n̂0(k), respectively. Then, subtracting
X(jω, k) from N̂ ′(jω, k) in the frequency domain yields S̃(jω, k), from which the
estimated source signal s̃(k) is obtained as Fourier Inverse Transform of S̃(jω, k).
s̃(k) is used for speech recognition.

2.3 Performance evaluation in a short reverberation

time environment

Preliminary experiments were carried out in a sound proof cabin. The assumed
situation is that the distance between a microphone and a loudspeaker, pretending
a user, is 50cm and the distance between a microphone and a TV set is 100cm.
Recording was made using the following speech and noise sources mixing them up
to obtain signal to noise ratios (SNR) 0, 6, 12 and 18 dB.

• Speech source

� Number of speech data: 50 utterances by four subjects (three males and
one female) each

� Contents of the utterance: TV controlling commands (i.e. �terebi keshite
(TV o�)�, �onryo agete (Volume up)�, �terebi Asahi (channel name)�,
�nyu:su (news)�, etc.)

� Recording procedure: Recording was made with a close contact micro-
phone in a sound proof cabin, where subjects were asked to repeat until
the utterance was correctly recognized

• Noise source

� Noise type: Mixture of speech on music

Compared are three speech recognition schemes: (1) without any preprocessing
in case of 0dB in SNR; (2) conventional Spectral Subtraction; and (3) the proposed
method. Speech recognition rate is employed to evaluate the performance. Results
of the preliminary experiment are shown in Fig. 2.3 where signi�cant improvement
by the proposed method is recognized. Figure 2.4 compares spectrograms of the
original speech signal, received signal, estimated signals obtained by SS, by con-
ventional ANC and by the proposed method. Spectral overreduction of harmonic
components observed in SS (see Fig. 2.4 (d)) may lower speech recognition rate.
Moreover, SS does not achieve enough noise reduction performance in the low fre-
quency region. So, the proposed method shows the best performance among the
three speech recognition schemes in the sound proof cabin. However, performance
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Figure 2.3: Speech recognition rate obtained by the preliminary experiment

in practical situations should be investigated to con�rm the e�ect of the proposed
method for practical use.

Figure 2.4: Comparison based on the spectrograms (a: the source signal, b: noise
signal, c: received signal, d: conventional SS, e: proposed method)
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2.4 Performance evaluation in a long reverberation

time environment

Recording condition

E�ect of the proposed method on speech recognition rate was evaluated in Living
Room Simulator (LS) and Ubiquitous Home (UH). Figures 2.5 and 2.6 show the
positions of the loudspeakers and microphone in each room. This situation assumes
that a system user utters TV control commands to the microphone placed on a
table. Temperature and humidity in these rooms are not controled so there is a
possibility that they randomly �uctuate.

Figure 2.5: Allocation of loudspeakers and microphone in the Living Room Simulator

Figure 2.6: Allocation of loudspeakers and microphone in the Ubiquitous Home

The reverberation times of the rooms were measured using a time-stretched
pulse as four times of the time duration required to decay 15dB in power instead of
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measuring the time duration required to decay 60dB, setting the loudspeakers and
microphones as depicted in Figs. 2.5 and 2.6. The reverberation time of LS is 313ms
and that of UH is 353ms. The reason why the measured reverberation time of UH
is longer than that of LS is thought to lie in the material di�erence of the surface of
the tables. Recording was made using the following speech data and noise sources
mixed up to obtain signal to noise ratios (SNR) 0, 3, 6, 9, 12, 15, 18, 21 and 24dB.
Speech data employed for evaluations are 100 utterances by 15 subjects (10 males
and 5 female) each, and other speci�cations are the same as those in the preliminary
experiment.

Table 2.1: Relationship between SNR and the volume of TV sound

distance between the loudspeaker and a microphone
volume 50cm 100cm

fairly large 5.6dB 1.4dB
a little bit large 7.2dB 3.0dB

normal 9.4dB 5.2dB

The relationship between SNR and the volume of TV sound was investigated
setting user's speech amplitude at ordinary level. Table 2.1 shows that SNR gets
worse as TV volume increases. Based on table 2.1, we have decided to focus our
research interest on the improvement of speech recognition rate under the situation
where SNR falls between 0dB to 9dB.

Experimental Set-up

A speech recognition decoder �Julian� is employed for the experiment [25]. Table 2.2
shows conditions of acoustic analysis for speech recognition. The vocabulary size of
the dictionary is 1342 and the number of grammatical rule is 14 (see Appendix A).

Experimental Results

We compare the speech recognition rate of the following two recognition schemes:
(1) without any preprocessing, (2) a conventional SS, and (3) the proposed method.
Figures 2.7 and 2.8 show the speech recognition rates for the data recorded in LS
and UH, respectively. The abscissa discriminates SNR, and the ordinate represents
speech recognition rate. We do not employ any adaptation techniques to environ-
ment, so the speech recognition rate in case ∞dB remains about 80%.

Speech recognition rates of the two environments show improvement in low SNR
cases by the proposed method. Degradation of speech recognition rates, however, is
observed in high SNR cases for both the environments. We will discuss the point in
the next section.



16
CHAPTER 2. KNOWN NOISE REDUCTION USING HARMONIC

STRUCTURE

Figure 2.7: Speech recognition rate in LS (left: without noise reduction, center:
conventional SS, right: proposed method)

Table 2.2: Conditions of acoustic analysis

Demension of analysis 25
Feature parameter mfcc

Window Hamming
Frame size 25 ms
Frame shift 10 ms

Sampling rate 16 ksamples/sec
Quantization bit 16 bits

2.5 Robustness of the proposed method

In this section, the robustness in detection errors of speech segments and in estima-
tion errors of fundamental frequency are discussed. The proposed method performs
noise reduction by detecting speech segments of the target speech estimating the
harmonic structure of voiced speech based on the fundamental frequency. So, per-
formance of noise reduction is degraded due to the detection errors of speech seg-
ments or the errors in estimating fundamental frequency. In general, it is di�cult
to extract the fundamental frequency of noisy speech. Hence, we discuss how much
accuracy of the speech interval detection and the fundamental frequency estimation
does it require to work correctly.
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Figure 2.8: Speech recognition rate in UH (left: without noise reduction, center:
conventional SS, right: proposed method)

Errors in detecting speech segments

Detection errors are classi�ed into (i) discriminating errors between speech and non-
speech, (ii) detection errors of unvoiced segments and (iii) detection errors of voiced
segments. The error rate of each error is shown in Fig. 2.9. From Fig. 2.9, it is

Figure 2.9: Comparion on detection error rate

clear that the error rate of detecting voiced segment is higher than the others. So,
this result shows that it is necessary to detect voiced segments accurately.

Necessity of modeling of unvoiced segments

In general, it can be said that unvoiced segments are di�cult to detect. To model the
speech signal more simply, we con�rm the speech recognition rate without detecting
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the unvoiced segments. That is to say, the system classi�es the received signal into
two segment types, voiced segment and non-speech segment. This result is shown
in Fig. 2.10. From Fig. 2.10, the di�erence between the speech recognition rate in

Figure 2.10: Comparison of the speech recognition rates between with and without
unvoiced segment detection

case with detecting unvoiced segments and without that, is a little bit and there is
no signi�cant di�erence. So, it is not necessary to detect the unvoiced segments.

Robustness in estimating the fundamental frequency

Firstly, fundamental frequency is estimated using clean speech. This estimation
result is regarded as the criterion for the comparison. Then we compare the fun-
damental frequency estimated from the received signal with its criterion and obtain
the accordance rate of fundamental frequency shown in Fig. 2.11.

Figure 2.11: Accordance rate of fundamental frequency on various SNRs
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Figure 2.11 shows the accordance rate in case where we accepted the di�erence
between the criterion and the fundamental frequency using the proposed method
within ±5 samples, one sample equals 15.625Hz. From Fig. 2.11, it is clear that the
accordance rate is about 30% in case where the SNR is between 0∼12dB, nevertheless
the speech recognition rate was improved by the proposed method. The reason why
we got this result is that the proposed method can work as the conventional ANC in
non-speech segments. That is, about the frames in which the fundamental frequency
is not estimated correctly, considering them as the non-speech segments, we can
expect the same performance with the conventional ANC at the worst. Whereas,
in case where the SNR is between 15∼24dB, speech recognition rate cannot be
improved by the proposed method though the accordance rate is about 50%.

Dependency of speech recognition rate on the accuracy of fun-
damental frequency estimation

To investigate the reason that speech recognition rate is not improved in the high
SNR, the dependent degree of speech recognition rate on the accuracy of the fun-
damental frequency estimation is checked. 9 males and 4 females are used for this
evaluation. Figure 2.12 shows the speech recognition rate which is obtained employ-

Figure 2.12: Speech recognition rate of the proposed method using fundamental
frequency estimated from both the original clean speech and the received signal

ing the proposed method using the fundamental frequency estimated from both the
clean speech and the received signal. From Fig. 2.12, it is clear that the speech
recognition rate is improved signi�cantly by the proposed method in case where the
SNR is 12, 18, 21, 24dB. That is, if we want to get better result in the high SNR
region, it is necessary to estimate fundamental frequency more correctly than the
above-mentioned evaluation.
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2.6 Comparison with the Wiener �lter

The proposed method performs an adaptive processing by the LMS algorithm. So,
we compare the proposed method with a Wiener �lter.

Wiener Filter

We assume the following signal model.

x(t) = s(t) + n(t) (2.8)

where x(t) is an observed signal, s(t) is a target signal and n(t) is a noise signal.
Wiener �lter gives the optimal estimation of the target signal. Wiener �lter can be
obtained by minimizing the mean square of the di�erence between the input and
the �lter output. The error spectrum of the target signal is de�ned as follows:

Es(f) = U(f)S(f) − S(f)

= (U(f) − 1)S(f)

where U(f) is the Wiener �lter's system function and S(f) is the spectrum of the
target signal. The error spectrum of the noise signal is de�ned as follows:

En(f) = U(f)N(f)

where N(f) is the spectrum of the noise signal. From the Parseval's theorem, the
mean square error between the input and the �lter output is proportional to the
integration of the power spectrum of the total error over all frequencies.∫ ∞

−∞
e2(t)dt ∝

∫ ∞

−∞
|Es(f) + En(f)|2df

=

∫ ∞

−∞
|(U(f) − 1)S(f)|2 + |U(f)N(f)|2df (2.9)

where we assume no-correlation between the target signal and the noise signal.
Wiener �lter U(f) is obtained by minimizing the error power by nullifying di�erential
of Eq. (2.9) with U(f). As a result, we have

U(f) =
|S(f)|2

|S(f)|2 + |N(f)|2
(2.10)

Comparison result

Figure 2.13 shows speech recognition rates of the proposed method and a Wiener
�lter.

From Fig. 2.13, you can see that the proposed method is more e�ective than the
Wiener �lter in the low SNR region, while a Wiener �lter is better than the proposed
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Figure 2.13: Comparison between the proposed method and Wiener �lter

method in the high SNR region, the di�erence is about 2%. From this result, using
the harmonic structure of the voiced speech, we can get the improvement of speech
recognition rate. These evaluations are performed o�ine. On the other hand, if we
apply the proposed method to the real environments, the SNR is estimated in the
noise segments and then according to the SNR, we should switch the methods.

2.7 Discussions and conclusions

Looking at the speech recognition rates for the speech data without any prepro-
cessing, recognition rate for SNR 12dB in UH, for example, shows about the same
value as that of the noise free case. So, speech recognition rate for SNR better than
12dB decreases. Moreover, we can observe that adding noise sometimes yields im-
provement in speech recognition of noise free speech. The tendency becomes clear
in high SNR cases in particular. We guess a possible reason that noise might hide
reverberation [26]. Con�rmation of this is left as future investigation.

Looking the recognition rates by the proposed method, the rate for SNR less
than 12dB in UH are higher than the rate without preprocessing.

We proposed a new algorithm for adaptive �ltering using harmonic structure of
voiced segments for reducing non-stationary known noise. The preliminary exper-
imental results show that the proposed method realizes better frequency spectra
estimation and speech recognition rate than the conventional SS. Moreover, e�ec-
tiveness of the proposed method is con�rmed in di�erent practical environments,
UH and LS. To get better improvement, we have to apply a dereverberation method
to the resultant signal of the proposed method [27].





Chapter 3

Speech dereverberation in the

frequency domain

3.1 Introduction

Performance of automatic speech recognition has reached a practical level in case
a close contact microphone is used in quiet environments. In practical situations,
however, speech recognition rate decreases drastically due to environmental noises
and re�ected waves. There can be two approaches for improving the speech recogni-
tion rate in actual environments as long as employing the same recognition engine.
One is signal manipulation on input signals and the other is introducing adaptation
techniques in the speech recognition process. The proposed method is an approach
classi�ed to the former.

Inverse �ltering of source-microphone transfer functions is widely employed for
suppressing the e�ects of re�ected waves [28], but this method cannot be adopted
to cases where the transfer functions from the source to microphones cannot be
obtained nor to time variant cases. Several methods of spectral subtraction have
been proposed to cope with these cases [29] [30] [31]. Yanagida et al. formulated
least-squares source sound separation introducing generalized convolutional inverse
matrices [32]. However, most of them require measurement of transfer functions
among sources and microphones.

Unoki et al. proposed a Modulation Transfer Function (MTF) based method,
which does not require measuring transfer functions [33], but a source signal and
transfer characteristics are modeled by MTF for recovering the power envelope of
the source wave from the received reverberant signal. Although the method requires
a procedure for estimating the reverberation time and path amplitude, no de�nite
method for determining them has been developed yet.

23
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Takiguchi et al. proposed an adaptive method which does not require transfer
functions [34]. The method, however, cannot yield su�cient improvement in case
the reverberation time is long [18].

Nakatani et al. proposed a method exploiting the harmonic features of voiced
speech [35]. Their method constitutes an inverse �lter based on a large number of
reverberant speech data. The method, however, takes a lot of time to design an
accurate inverse �lter. Hence, it is di�cult to put their method into practical uses.

There are some methods based on linear prediction analysis [36] [37]. These
methods, however, require obtaining linear prediction coe�cients of speech in ad-
vance.

The proposed methods, however, do not require transfer functions, inverse �lters
nor linear prediction coe�cients. We developed two di�erent methods for derever-
beration. One is a method in the time- and frequency-domains. The other is a
method in the frequency-domain.

3.2 A conventional method in the time domain

In this chapter, we assume an environment where one signal source exists. A signal
xi (t) received by microphone #i consists of several waves from the source including
a direct wave and re�ected waves and xi (t) is represented by convolution of source
signal s (t) and an impulse response of a set of paths from the source to microphone
#i. The signal xi (t) received by microphone #i can be expressed by the following
equation.

xi (t) = s (t) ∗ hi (t)

where * denotes convolution, hi (t) =
∑J

j=0 hij (t), where hij (t) represents the im-
pulse response of the j-th path from the source to microphone #i including the
direct path (j = 0).

The re�ected signal along the j-th path is assumed to have amplitude of a con-
stant decay rate αij (0 < αij ≤ 1) and a certain amount of delay time lij, that is,
the re�ected signal received by microphone #i from the source via the j-th path
is expressed as αijs (t − lij) assuming that all the paths are �at in frequency char-
acteristics. Here, dominant component of each impulse response is assumed to be
single re�ection, and waves of multiple re�ections are supposed to decay much more
compared with single re�ection waves. That is, the e�ect of re�ection waves is ex-
pected to be nulli�ed or almost reduced by removing single re�ection waves. Based
on this assumption, the following equation is expected to estimate the direct wave
αi0s (t − li0)

αi0s (t − li0) ≃ xi (t) −
J∑

j=1

αijs (t − lij) (3.1)

where J denotes the e�ective number of re�ected waves that reach microphone #i.
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We use the received signal with delay lij, as an aproximation of s (t − lij), thus

αi0s (t − li0) ≃ xi (t) −
J∑

j=1

αijx (t − lij)

In discrete form we have

αi0s (k − li0) ≃ xi (k) −
J∑

j=1

αijx (k − lij) (3.2)

where k denotes the k-th sample point and j denotes the path ID for the microphone
#i. In fact, however, lij should be written as lij/T , where T is a sampling interval,
we might employ lij unless we misunderstand. Here, we simply use lij to represent
time delay counted by sampling interval. The frequency characteristics of re�ective
surfaces are assumed to be �at [30].

Equation (3.2) is rewritten into an iterative form. The basic idea of the proposed
method is to remove re�ected signals one by one, so at the starting point of this
algorithm we set an initial value as follows:

x
(0)
i (k) = xi(k)

Let x
(j)
i (k) denote the received signal with the 1st through the j-th re�ected signals

removed. Then, x
(j)
i (k) is expressed as follows:

x
(j)
i (k) = xi(k) −

j∑
l=1

αilx(k − lil) (3.3)

From Eq. (3.3), we get a recursive form as follows:

x
(j)
i (k) = x

(j−1)
i (k) − αijx

(j−1)
i (k − lij) j = 1 . . . J (3.4)

ŝi (k) ≃ x
(J)
i (k)

where ŝi (k) is the estimated source signal, αi0 = 1 and li0 = 0.

3.2.1 Estimation of the delay time

As the auto correlation function (ACF) of the source signal itself is not �at even if
it is not a�ected by re�ection, ACF of the received signal, consisting of the direct
wave and re�ected waves, would show local peaks attributed to either re�ection or
local peaks of the ACF of the source signal itself. That is, even if the ACF of a
received signal shows a local peak at a particular time lag, the time lag cannot be
attributed to re�ection. A power-normalized ACF can be used in place of ACF to
avoid the above-mentioned problem.
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Figure 3.1: Estimation of time delays on ACF

The proposed method solves the problem using a certain number of microphones.
Figure 3.1 shows how to detect time delays for a three microphones case.

Assume that we want to remove a principal re�ection from the signal x1(k)
received by microphone #1. First, the average ACF R̄∗

1(τ) is calculated by averaging
ACFs of the signals received by microphones other than #1, i.e. microphones #2
and #3 for this case. The ACF of the source signal Rs(τ) is approximated by R̄∗

1(τ).
Furthermore, R̄∗

1(τ) is used later as the reference for estimating the path amplitude
α1j of the re�ected wave along the j-th path. Then, the di�erence between the ACF
R1(τ) of the signal x1(k) and R̄∗

1(τ) is calculated to extract the time delay that gives
the maximum value on R1(τ)− R̄∗

1(τ). The amount of delay due to re�ection would
be dependent on the relative position of microphones and walls. So, the time lag at
which R1(τ)− R̄∗

1(τ) gets large is thought to be the time di�erence between the j-th
re�ection path and the direct path. The delay time l1j of j-th path to microphone #1
is estimated by detecting the positive maximal value of the di�erence R1(τ)−R̄∗

1(τ).

3.2.2 Estimation of the decay rate

The proposed method requires estimation of two parameters. One is the delay time
lij and the other is the decay rate αij, where i and j denote the microphone ID
and the path ID, respectively. Explained in this section is how to estimate the
decay rate αij. The time delay lij obtained as described in the previous section and
the average ACF are used to estimate the decay rate. Here, R̄∗

i (τ) is assumed to
approximate Rs(τ), so it is used as the reference in the recursive procedure, which
will be explained soon, to estimate the decay rate by minimizing the di�erence
between Ri(τ) and R̄∗

i (τ) at the time delay lij. Figure 3.2 shows the algorithm for
estimating path amplitude.
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Figure 3.2: An algorithm to estimate the decay rate αij of the path #i

First, the initial value for the decay rate αij is set to be null. Then, the ACF of

the estimated signal, R̂i
(j)

(τ), is calculated based on x
(j)
i (k) expressed by Eq. (3.4).

Next, ∆Ri (lij) = R̂i
(j)

(lij) − R̄∗
i
(j−1)

(lij) is calculated, where R̂i
(j)

(lij) and

R̄∗
i
(j−1)

(lij) are the values of R̂i
(j)

(τ) and R̄∗
i
(j−1)

(τ), respectively, at the delay time
lij. If the di�erence ∆Ri (lij) is less than 10−6, then take the current αij to be the
decay rate for the j-th path, then the process goes to the next step. Otherwise,
the decay rate is increased to be checked further. Figure 3.3 explains the process of
reducing the di�erence on ACFs at lij. Convergence of this estimation algorithm is
shown in Appendix B.

3.2.3 Segmentation of the received signal

In our previous method [38], presumed re�ection waves are subtracted one by one
from the received wave in the time domain. The method, however, has di�culties
of over-subtraction in fricative and nasal segments because of poor power compared
with other phoneme segments. Over reduction sometimes occurs by waveform sub-
traction in case the received wave xi (k) is used as the source wave s (k) in Eq. (3.1)
even if both the delay time and decay rate are properly estimated. So, our previous
method could not make speech recognition rate satisfactory for speech signals picked
up in reverberant environments.

The proposed method is designed to detect fricative- or nasal-like segments in
input signals and leave them as they are to avoid over-subtraction. Fricatives and
nasals are detectable as they show power concentration in high and low frequency re-
gions, respectively. Temporal waveform subtraction is employed only for the speech
segment except fricative-like or nasal-like segments, and conventional spectral sub-
traction is exclusively employed for non-speech segments. To subtract re�ected
waves properly, the input signal is segmented into speech or non-speech segments.
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Figure 3.3: Explanatory sketch of the processing on ACFs

Explained below is how to partition a received signal into speech and non-speech
segments, and then, further partitioning of the speech segment into fricative-like or
nasal-like segments and the rest. First, a received signal is partitioned into a type of
segments (class �S�) whose short-term powers are larger than a threshold employed to
detect utterance initials, and the other type of segments (class �O�) whose short-term
powers are smaller than that. If the power spectrum of a segment of class �O� shows
the maximum value at frequency beyond 4kHz (assuming that the sampling rate
is 16ksamples/sec), the segment is classi�ed into class �F�, a fricative-like segment.
Then, a segment having its spectral peak in the low frequency region below 1kHz
with fundamental frequency below 400Hz is regarded as a segment of class �N�, a
nasal-like segment, because nasals are periodic and have power concentration in low
frequency regions. The rest of the input signal is regarded as non-speech segment,
or class �NS�. Following the partitioning procedure described above, each segment
in a received signal is classi�ed into one of classes S, O, F, N or NS as shown in Fig.
3.4.

3.2.4 The processing scheme

Figure 3.5 shows the processing scheme of the proposed method. Firstly, utterance
initials of speech signals are detected by a double threshold method. Then, Ri(τ),
the ACF of the signal xi(t) received by microphone #i is calculated. Next, lij, the



3.2. A CONVENTIONAL METHOD IN THE TIME DOMAIN 29

Figure 3.4: Segmentations of a received signal and their classi�cation into classes S,
O and F, N, NS

Figure 3.5: A processing scheme of removing re�ected waves. ( I : the number of
microphones, J : the number of re�ected waves to be removed)

delay time of the j-th path is estimated as the time lag τ that gives the maximum

value for ∆Ri (τ) = R̂i
(j)

(τ)− R̄∗
i
(j−1)

(τ), where R̄∗
i (τ) denotes an approximation of

the ACF of the source signal and R̂i
(j)

(τ) denotes the ACF of the estimated signal.
Then, the received signal is partitioned into segments of either large amplitude
segment �S� or small amplitude segment �O�, and then, �O� is further classi�ed
into fricative-like segment �F�, nasal-like segment �N� or non-speech segment �NS�.
Finally, the decay rate αij is obtained as the value that minimizes the di�erence
∆Ri (lij). Then the presumed re�ection wave is subtracted according to Eq. (3.4).
Proceed by increasing i ← i + 1 until i reaches I, then j ← j + 1 until j reaches J .
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3.2.5 Evaluations

Experimental set-up

Figure 3.6: The recording con�guration in the experimental living room

To investigate the performance of the proposed method, an experimental �living
room� having reverberation time 440ms is used as a reverberant room. One loud-
speaker and three microphones are used in this evaluation. Figure 3.6 shows the
con�guration of the loudspeaker and three microphones in the �living room�. The
parameter J is set for four according to a preliminary experiment using small data
set.

Speech data and conditions for speech recognition

Speech data played back for the evaluations are those recorded with a close contact
microphone in a sound proof cabin. The speech samples are 250 Japanese words
uttered by one female and four males. Contents of the speech data are commands
in Japanese for controlling TV sets. For example, �terebi oN (TV on)�, �chaN-neru
ichi (channel one)�, �nyuusu (news)� and so on. The vocabulary size is 99 and the
number of grammar rules is 13. Speech sounds are reproduced by the loudspeaker
and are sampled at 16ksamples/sec with 16bit accuracy. �Julian� is employed as the
speech recognition decoder [25].

Results

The frequency spectrum of the received signal xi (k) and that of the estimated
signal ŝi (k) are compared to evaluate the improvements in the sound quality and
recognition rate.
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Figure 3.7: Comparison of spectrograms. (Top: source signal, center: signal received
in the �living room�, bottom: estimated signal)

Figure 3.7 shows spectrograms of the source, the received and estimated signals.
As shown in Fig 3.7, re�ected waves are e�ectively removed around 0.2s and 1.0s
and fricative- and nasal-like sounds well remain not over-subtracted around 3.5s
and 0.6s. As the result of applying the proposed method to reverberant signals,
the source signal is approximately recovered from the reverberant signals. We can
also recognize that reverberation in non-speech segments is su�ciently removed.
Listening to the re�ection-removed signals, slight improvement in sound quality is
perceived.

Table 3.1: Comparison of speech recognition rates (%) recalculated employing the
majority decision among three microphone (∗ < 0.05, ∗∗ < 0.01)

speker without any processings proposed
M1 84 90
M2 67 88**
M3 82 82
M4 90 96
F1 76 86
Ave. 80 89*

Table 3.1 shows the speech recognition rate obtained by introducing the major-
ity decision among the speech recognition results of the three microphones. It is
improved by 9% from 80% to 89% by applying the proposed method to reverber-
ant signals. Signi�cant di�erence is recognized between speech recognition rates of
received signals and recovered signals only for speaker M2 among 5 speakers accord-
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ing to a sign test at 1% hazard rate. Moreover, signi�cant di�erence is recognized
between average speech recognition rates according to a t-test at 5% hazard rate.

3.2.6 Discussions and conclusions

The result of t-test using all 250 data between average speech recognition rates of
received raw signals and re�ection removed signals shows signi�cant di�erence at
5% hazard rate. So, it can be barely said that the proposed method well removes
re�ected waves and improves the speech recognition rate.

The current evaluation was carried out on the condition that a speaker, a loud-
speaker here, does not move. So, it is problematic whether a system can manage
moving speakers or not. The proposed method, however, estimates a re�ection wave
one by one. So, it is expected to be robust with respect to the movement of speakers.

To improve the recognition rate further, it would be necessary to re�ne the
method. For example, in the proposed method, we do not take the frequency char-
acteristics of re�ective surfaces into consideration, and furthermore, spectral sub-
traction is not applied to fricative-like or nasal-like segments. There exist further
re�ection waves that the present system cannot remove as the system deals with
only single re�ection.

Proposed is a method to remove re�ected waves from a signal received in a
reverberant room. The proposed method has solved some of the problems that
our previous method had. Problems improved or almost solved by the proposed
method are: unreliability in delay time estimation, approximation errors in esti-
mated source waves, and over-subtraction for fricative- and nasal-like segments.
Concretely speaking, delay time estimation is improved by majority decision on
ACFs, over-subtraction is suppressed for consonants such as fricative- and nasal-
like segments by classifying each speech segment into subcategories. Applying the
proposed method, the recognition rate is improved from 80% to 89%.

3.3 A new dereverberation method in the frequency

domain

The proposed method introduced in the previous section cannot cope with the fre-
quency characteristics. So, in this section, we introduce a method which can estimate
reverberation time and decay rate at each frequency bin.

3.3.1 Basis of dereverberation

A signal x(t) received by a microphone generally consists of several waves from a
source including the direct wave and re�ected waves. The signal x(t) from a source is
represented by convolution of source signal s(t) and impulse response h(t) consisting



3.3. A NEW DEREVERBERATION METHOD IN THE FREQUENCY

DOMAIN 33

of those for possible paths from the source to the microphone. The received signal
x(t) is expressed as:

x(t) = s(t) ∗ h(t) (3.5)

where * denotes convolution. Taking short term Fourier transform, Eq. (3.5) can
be rewritten as follows:

X(ωn, k) = S(ωn, k)H(ωn, k) (3.6)

where ωn denotes the n-th frequency bin and k denotes the frame ID. Here, H(ωn, k)
can be divided into the direct path component D(ωn, k) and the total sum of re�ec-
tion components R(ωn, k). So, Eq. (3.6) is rewritten as follows:

X(ωn, k) = S(ωn, k){D(ωn, k) + R(ωn, k)} (3.7)

The frequency spectrum X(ωn, k) at frequency ωn in frame k of the received signal
can be approximated by the convolution of the frequency spectrum S(ωn, k) with
αωn(k), the impulse response of the integrated propagation paths for frequency ωn.

X(ωn, k) ≃
Ln∑
l=0

αωn(l)S(ωn, k − l) (3.8)

where, Ln represents the time delay of n-th frequency bin and αωn(l) denotes the
decay by distance and re�ection characteristics at frequency ωn. Then, the compo-
nent for l = 0 in the summation for X(ωn, k) can be regarded as the direct path
component S(ωn)D(ωn) and the other components in X(ωn, k) can be regarded as
the total sum of re�ection components S(ωn)R(ωn). So, Eq. (3.8) can be rewritten
as follows:

X(ωn, k) ≃ αωn(0)S(ωn, k) +
Ln∑
l=1

αωn(l)S(ωn, k − l) (3.9)

Here, if we estimate the direct path component, Eq. (3.9) is rewritten as follows:

Ŝ(ωn, k) ≃ X(ωn, k) −
Ln∑
l=1

αωn(l)S(ωn, k − l) (3.10)

where, Ŝ(ωn, k) = αωn(0)S(ωn, k) denotes the direct path component. As the result
of this processing, the frequency spectrum of source signal is estimated.

3.3.2 Estimation of the reverberation time and decay rate

The auto-correlation function is employed for estimating the reverberation time and
decay rate for each frequency bin. The power spectrum of a received signal can be
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approximated by Eq. (3.8). So, the auto-correlation function of the received signal
is expressed as:

ϕXX(ωn, κ) =
M∑

m=0

log(X(ωn,m) + 1) log(X(ωn,m + κ) + 1)

≃
M∑

m=0

X(ωn,m)X(ωn,m + κ)

=
M∑

m=0

{(
Ln∑

l1=0

αωn(l1)S(ωn,m − l1)

)(
Ln∑

l2=0

αωn(l2)S(ωn, κ + m − l2)

)}
.

By separating the production of the inner
∑

into two cases, one for l1 = l2 − κ and
the other for l1 ̸= l2 − κ, the equation described above is rewritten as follows:

ϕXX(ωn, κ)

≃
M∑

m=0

(
Ln−κ∑
l=0

αωn(l)αωn(l + κ)S2(ωn,m − l)

)

+
M∑

m=0


 Ln∑

l1=0
l1 ̸=l2−κ

αωn(l1)S(ωn,m − l1)


 Ln∑

l2=0
l2 ̸=l1+κ

αωn(l2)S(ωn, κ + m − l2)




Here, if each component of S(·,m− l) is mutually independent or S(·,m− l1)S(·, κ+
m − l2) is enough smaller than S2(·,m − l), ϕXX(ωn, κ) can be approximated as:

ϕXX(ωn, κ) ≃
M∑

m=0

{(
Ln−κ∑
l=0

αωn(l)αωn(l + κ)S2(ωn,m − l)

)}
(3.11)

where we cannot obtain S(ωn, k), so we perform the above procedure as follows:

ϕXX(ωn, κ) = ξϕXX(ωn, κ)

≃
M∑

m=0

{(
Ln−κ∑
l=0

αωn(l)αωn(l + κ)S2(ωn,m − l)

)}
.

By normalizing Eq. (3.11) we get

ΦXX(ωn, κ) =

M∑
m=0

{(
Ln−κ∑
l=0

αωn(l)αωn(l + κ)S2(ωn,m − l)

)}
M∑

m=0

{(
Lmax∑
l=0

αωmax(l)αωmax(l)S
2(ωmax,m − l)

)}
= fn(ωn, κ)
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where ωmax = max
ωn

ϕXX(ωn, 0), fn(ωn, κ) denotes the frequency characteristics of the

auto-correlation function ΦXX(ωn, κ) for delay κ. However, ΦXX(ωn, κ) is nearly
zero for κ larger than Ln the reverberation time for the n-th frequency bin. The
e�ective reverberation time Ln for each frequency bin is assumed as the point beyond
which ΦXX(ωn, κ) is smaller than ϵ, where ϵ is an enough small value. Figure 3.8
shows an example of auto-correlation function.

Figure 3.8: An example of auto-correlation function

Moreover, ΦXX(ωn, κ) is regarded as the decay rate for delay κ for frequency ωn.

αωn(κ) = ΦXX(ωn, κ) κ = 1 · · ·Ln

Re�ected waves have a high correlation with the direct signal. The auto-correlation
of the received signal at each time lag represents the degree of similarity between
re�ected waves and the direct signal. So, the auto-correlation function up to the
estimated time delay can be regarded as the decay characteristics of re�ection.

3.3.3 Subtracting re�ected waves on the power spectrum

There should be clean frames having no e�ects of re�ection at the beginning of
utterance before the �rst re�ection reaches the microphone. Dereverberation can
be achieved by Eq. (3.10). A processing scheme for Eq. (3.10) is depicted in Fig.
3.9, where the abscissa corresponds to the time axis plotted frame by frame and the
ordinate symbolically represents amplitude at frequency ωn. Assume that the total
tick width over the time sequences of the amplitude component represents e�ective
reverberation time Ln. The gray bar in the upper half of this �gure represents the
direct component and black bars represent the re�ected wave components. The
lower half of this �gure shows the time sequences of the amplitude component after
subtracting the re�ected components of S(ωn, 0).

3.3.4 Performance evaluation

Two types of evaluation are carried out to con�rm the validity and e�ectiveness
of the proposed method. One is evaluation using simulated data and the other is
evaluation using actual data.
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Figure 3.9: Spectral subtraction on the time sequence of a frequency bin correspond-
ing to a certain frequency ωn.

Evaluation using simulated data

First, an evaluation in which the reverberation time can be estimated correctly by
the proposed method, is performed to con�rm the validity of the method.

Frequency characteristics shown in Fig. 3.10 are convolved with a swept sinu-
soidal signal for simulation. Figure 3.11 shows the spectrograms before and after
performing the proposed method.

Figure 3.10: The frequency characteristics assumed for integrated paths from a
source to a microphone for generating a received signal
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Figure 3.11: Spectrograms comparing on a swept sinusoidal signal (Top: simulated
reverberation characteristics, bottom: results of dereverberation)

From Fig. 3.11, the proposed method can reduce reverberation mainly for re-
�ected waves in the low frequency region. Figure 3.12 shows the estimated rever-
beration time by the proposed method.

Figure 3.12: The estimated reverberation time for the simulation data

Comparing of Figs. 3.10 and 3.12, the proposed method seems to be able to
estimate the longest reverberation time. On the other hand, the proposed method
tends to estimate too long reverberation time for the frequencies at which the re-
verberation time is short. This problem is caused by the correlation of the signal
itself.

Secondly performed is simulation to compare the proposed method with the
method that assumes �at frequency characteristics at re�ection on walls. Figure
3.13 shows the spectral comparison of the simulated data. Comparing (c) and (d)
in Fig. 3.13, you can see that the proposed method well suppresses over-subtraction
frequently observed in the conventional spectral subtraction. As an index for evalu-
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Figure 3.13: Performance comparison on spectrograms for the simulated data. (a:
Original speech, b: reverberant speech, c: dereverberated speech by the proposed
method, d: dereverberated speech by a conventional method assuming �at frequency
characteristics)

ating dereverberation performance, employed is segmental SNR de�ned as follows:

SNR(k) =

N−1∑
n=0

|S(ωn, k)|2

N−1∑
n=0

∣∣∣S(ωn, k) − Ŝ(ωn, k)
∣∣∣2 (3.12)

where, N denotes the number of frequency bins on the output of FFT. The average
segmental SNR of speech signal before processing is -2.4 dB. The average segmental
SNR of the speech signal processed by the proposed method is 0.7 dB, while that by
the conventional method assuming �at frequency characteristics is 0.5 dB. Figure
3.14 shows the estimated frequency characteristics of the reverberation time by the
two methods. Here, short term Fourier transform is performed under the condition
of 64 ms frame length and 4 ms shifting interval. From Fig. 3.14, the estimated
longest reverberation time is about 800 ms around 3 ∼ 3.5 kHz. The frequency
having the longest reverberation time in Fig. 3.14 corresponds to the frequency
having long lasting tails in Fig. 3.13 b). If we take the dotted line given by the
conventional method assuming �at frequency characteristics as the reverberation
time, it is clear that over-subtraction occurs because the estimated reverberation
time is too long.
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Figure 3.14: The stimated frequency characteristics of the reverberation time. (The
solid line represents the results obtained by the proposed method and the horizontal
dotted line is that obtained by the conventional spectral subtraction assuming �at
frequency characteristics.)

Figure 3.15: The pectrogram of the swept sinusoidal signal. (Top: Received, Bot-
tom: Processed by the proposed method)

Evaluation using actual data

Evaluation data are recorded in a small cabin (230 cm × 380 cm, H :218 cm). An
evaluation result for a swept sinusoidal signal is shown in Fig. 3.15, which shows
the spectrograms of the swept sinusoidal signal before and after processing. Figure
3.16 shows the frequency characteristics of the reverberation time estimated by the
proposed method.

From this �gure, the longest reverberation time is estimated as about 740 ms.
Comparing Fig. 3.15 with 3.16, the contour of estimated frequency characteristics
of the reverberation time is similar to the outline of the spectrogram of the swept
sinusoidal signal. So, we may be able to suppose that the frequency characteristics
are successfully estimated in case of actual data. To con�rm the performance of
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Figure 3.16: The estimated frequency characteristics of the reverberation time.

the proposed method, the reverberation curve is depicted in Fig. 3.17, from which
reverberation time appears to be 390 ms.

Figure 3.17: Reverberation curves. (Black: Received, Gray: Processed by the pro-
posed method)

On the other hand, the reverberation time is shortened to be 109 ms using the
proposed method. Figure 3.17 shows that the proposed method drastically reduces
the initial re�ections.

Next, Fig. 3.18 shows the processing result for the actual speech data.
The average SNR of these signals are -1.0 dB and -0.1 dB respectively. Figure

3.19 shows the estimation result of the reverberation time for the speech signal.

3.3.5 Discussions and conclusions

The proposed dereverberation method is adopted each frequency bin. The processing
expressed in Eq. (3.10) can be handled in a group within narrow frequency ranges as
the frequency characteristics are supposed to be similar within a narrow frequency
range. So, to get better dereverberation performance, we propose a scheme in which
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Figure 3.18: The spectrogram of an actual speech signal. (Top: received, Bottom:
processed by the proposed method)

Figure 3.19: The estimated frequency characteristics of the reverberation time for
the speech signal.

a certain number of adjacent frequency bins are collectively processed in succession
shifting along the frequency axis. That is to say, we introduce smoothing into the
proposed method. Figure 3.20 shows average segmental SNRs obtained for various
numbers for dividing the total frequency range.

From this �gure, the best performance seems to be obtained by the proposed
method at 4 to 64 separations in case of 1024-point FFT.

This technique is evaluated with a voice-controlled TV system shown in Ap-
pendix C.1. Data for this evaluation were recorded in a sound proof cabin usign a
close contact microhone. Four males and three females uttered 100 short phrases
of TV control commands. These speech data were played back in the Living Room
Simulator whose reverberation time is 313ms. Recorded speech and noise are added
on a computer making signal to noise ratio 0dB, 6dB, 12dB and 18dB. Figure 3.21
shows a speech recognition rate.

From Fig. 3.21, the proposed method can achieve improvement of the speech
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Figure 3.20: Average segmental SNRs obtained for several separation numbers of
the total frequency range.

Figure 3.21: Comparison on speech recognition rate

recognition rate in case of all SNRs. In case of ∞dB, the speech recognition rate
remains about 60% because any adaptation techniques are not employed and speech
data which is failed to detect a speech segment are counted as failures of speech
recognition.

This chapter proposed a single channel blind dereverberation method based on
auto-correlation functions of time sequences of frequency components on running
power spectra. The proposed method estimates the reverberation time and the fre-
quency characteristics of decay. So, the proposed method achieves dereverberation
without any preparatory measurement or a priori information. From the perfor-
mance evaluation on simulated data, the proposed method shows ability to estimate
the reverberation time almost correctly. Moreover, the proposed method yields
better results than the conventional spectral subtraction methods. From the perfor-
mance evaluation on actual data, the proposed method also shows better reduction
in the reverberation time. Introducing smoothing techniques is expected to lead to
further better results.



Chapter 4

Solving the permutation problem in

the frequency-domain ICA for BSS

4.1 Introduction

BSS (Blind Source Separation) is one of techniques for source separation. BSS is to
separate mixed signals into each source signal without using any a priori informa-
tion. Up to now, time domain ICA (Independent Component Analysis) [43] [44] is
the principal means for realizing BSS.

In early 80s, ICA was �rst used in the context of neural network modeling. ICA
is a statistical and a computational technique for revealing hidden factors underlying
random variables, measurements and signals. The model of ICA is represented as the
linear or nonlinear mixture of hidden factors, which is assumed to be non-Gaussian
variables and mutually independent. Moreover, the mixing process is also assumed
to be unknown. ICA can be seen as an extension to principal component analysis
and factor analysis. ICA is, however, a much more e�ective technique capable of
�nding hidden factors or signal sources even in the case where classical methods fail
completely. So, ICA can be applied to various types of application �elds, including
digital images and document databases, as well as economic indicators and psycho-
metric measurements. In many cases, the measurements are given as a set of parallel
signals or time series. The typical example is realizing the cocktail party e�ect. In
mid-90s, some research groups showed the e�ectiveness of ICA on realizing of the
cocktail party e�ect.

Time domain ICA is successful in case mixture is not convolutional. Though sep-
aration by time domain ICA is hard in reverberant environments, frequency-domain
ICA is employed and gives fair performance even in reverberant cases. In frequency-
domain ICA, convolutional mixture is converted into simple additive mixture in each

43



44
CHAPTER 4. SOLVING THE PERMUTATION PROBLEM IN THE

FREQUENCY-DOMAIN ICA FOR BSS

frequency bin by taking Fourier transform.
However, in frequency-domain ICA, there exists a tough issue called �permuta-

tion problem�. The permutation problem requires us correct assignment of source
identi�cation for every frequency bins after separation for each frequency bin. There
are many techniques proposed for coping with the permutation problem. Kurita et
al. [52] proposed to use directivity characteristics of each frequency bin. Ikeda et
al. [53] proposed to use the correlation between frequency bins. Sawada et al. [54]
proposed combining above-mentioned two techniques. Moreover, Sawada et al. [55]
proposed an improved technique using harmonic structure of voiced signal. Mukai
et al. [56] proposed a technique that estimates a speaker position using a near-�eld
model. However, the permutation problem has not been completely solved yet.

Di Persia et al. [57] [58] proposed permutation-free ICA (PF-ICA) for separating
convolutively mixed signals into source signals without permutation errors. This
technique has an advantage that it can avoid the permutation problem, but has a
defect that it assumes a single directivity common to all frequency bins.

In this chapter, multi-bin ICA (MB-ICA) is proposed as a revised version of PF-
ICA. It performs separation after connecting a de�nite number of adjacent frequency
bins. By connecting adjacent frequency bins, MB-ICA can cope with local frequency
characteristics and stably solves the permutation problem. That means MB-ICA can
manage versatile directivity of each frequency bin, so we can expect to obtain more
accurate separation result.

A method to avoid the permutation problem was proposed by Kim et al. [59].
This method extended an univariate cost function to a multivariate cost function to
avoid the permutation problem. A method to perform the ICA using the simultane-
ous processing of adjacent frequency bins was proposed by Robledo-Arnuncio et al.
[60]. The target of this method is to avoid degradation of learning performance of
separation matrices in case of short phrases. In this method, a method by Sawada
et al. [55] is used to cope with the permutation problem.

4.2 Basis of ICA in additive cases

We suppose a non-reverberant room in which P loudspeakers emit signals sp(t) re-
ceived by M microphones. The problem does not lost generality even if loudspeakers
are located at an equal distance from microphones. The received signals xm(t) are
represented with the following linear combination.

xm(t) =
P∑

p=1

hmpsp(t) m = 1, · · · ,M,

where hmp is unknown constant coe�cient that corresponds to the decay rate of the
path from source P to microphone m. The source signal sp(t) is also unknown. In
this situation, we want to estimate the source signals from the received signals. This
problem is called BSS.
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If we can obtain a separation matrix W consisting of coe�cients wpm, the source
signals can be obtained as follows:

yp(t) =
M∑

m=1

wpmxm(t) p = 1, · · · , P

The separation matrix W could be found as the (pseudo-)inverse of the matrix H
that consists of unknown mixing coe�cients hmp.

The problem is how to estimate the coe�cients wpm without knowing H. One
solution for this problem is to introduce statistical independence of source signals.
This method is called Independent Component Analysis (ICA). To estimate the sep-
aration matrix W by maximizing the independence of yp(t) that leads to estimation
of sp(t). However, a further requirement is necessary to realize estimation of W . It
is the requirement that the independent components must have non-Gaussian distri-
butions. If the source signals are Gaussian, the source and the mixed distributions
would be identical. So, it is impossible to infer the separation matrix from mixed
signals in that case.

Independence is a stronger property than uncorrelatedness. It is obvious that
Principal Component Analysis and Factor Analysis cannot separate a mixed signal
into independent signals. Uncorrelatedness, signifying zero covariance, is not enough
for realizing ICA but higher-order statistics are demanded.

Independence implies nonlinear uncorrelatedness, which means that any sep-
arated signals are uncorrelated and the separated signals obtained as nonlinear
transforms are also uncorrelated. The means to choose nonlinear functions are the
maximum likelihood method [61] [62] [63] [64] [65] and mutual information [66] [67].

Independent components maximize non-Gaussanity. Non-Gaussianity can be
measured by kurtosis, which is a higher-order cumulant. We can perform ICA by
maximizing kurtosis. This is based on the central limit theorem. The distribution
summing up some non-Gaussian distributions comes close to the Gaussian distribu-
tion. If an independent component is found, kurtosis gets maximum.

There are two ambiguities in the ICA model. One is amplitude ambiguity and
the other is order ambiguity. These ambiguities are induced by the fact that both
the source signals and the separation matrix are unknown.

4.3 Conventional frequency-domain ICA

Frequency-domain ICA performs separation,

Y (fn, k) = W (fn)X(fn, k)

where fn denotes n-th frequency bin and k represents the frame-ID, using a separa-
tion matrix W (fn) learned from M × I observation matrix consisting of time series
of n-th frequency bin

X(fn, k) = [X1(fn, k), X2(fn, k), · · · , XM(fn, k)]T
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obtained on k-th frame signal xm(k) received by M microphones by applying short
term Fourier Transform. Although there are several methods to obtain a separation
matrix W (fn), JADE [68] is employed here. A P × 1 vector of P source signals at
k-th frame is written as

S(fn, k) = [S1(fn, k), S2(fn, k), · · · , SP (fn, k)]T .

The mixing process of the signals is represented as follows:

X(fn, k) = H(fn)S(fn, k)

where H(fn) denotes the frequency characteristics of the mixing system. A vector
of P separated source signals at k-th frame is obtained as

Y (fn, k) = [Y1(fn, k), Y2(fn, k), · · · , YP (fn, k)]T .

ICA performs separation using independency among the separated source signals as
a criterion. So, there is a possibility that the independency can be maximized even if
rows of the separation matrix are permuted. That is to say, there is a possibility that
a frequency bin at frequency fn of a source signal Si substitutes other source signal
Sj at the same frequency. Conventional frequency-domain ICA needs to absolutory
cope with the permutation problem, but the problem has not been completely solved
yet.

4.4 Conventional methods to cope with the permu-

tation problem

There is a method to treat the permutation problem by calculating directivity for
each frequency bin and estimating the direction of noise sources [52]. The optimal
null, however, is not always formed for all frequency bins in the low frequency
region in particular [54]. On the other hand, Ikeda et al. proposed a method
using the correlation among frequency bins [53]. It is reasonable that frequency
components forming spectral envelopes have large correlation among the adjacent
frequency bins belonging to the same source. So, one decision strategy is to maximize
the summation of the correlation between the two adjacent frequency bins. This
strategy, however, cannot solve the permutation problem stably because once it
fails at one frequency bin, it continues failing to decide the permutation for the
subsequent frequency bins.

There can be a method which starts to decide the permutation from a frequency
bin for which separation performance is better than for other frequency bins. Nor-
mally, spectral components have large correlation among the adjacent frequency
bins belonging to the same source, but this method assumes the large correlation
even among distant frequency bins, so this method is not adequate.
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To solve the problem mentioned above, Sawada et al. proposed a method based
on the estimation of the directions of sources and the correlation among frequency
bins [54]. In this method, �rstly, directivity is calculated for each frequency bin.
Based on this result, the method decides the permutation of de�nite number of
frequency bins for which the permutation is decided with high reliability. Next, this
method decides the permutation for undetermined frequency bins by maximizing
the summation of the correlation between the neighboring frequency bins for which
permutation is already decided. This method cannot decide the permutation stably
in case reverberation time is long. The reason for the instability in long reverberation
cases is the di�culty in estimating the direction of noise sources in the low frequency
region.

To solve this problem, Sawada et al. proposed a method based on the harmonic
structure of voiced speech [55]. Speech signals have high correlation at the integer
multiples of the fundamental frequency. Using this feature, it can be expected to be
able to decide the permutation more accurately. These methods, however, still have
possibility to fail.

4.5 Permutation free ICA

In order to avoid the permutation problem, a smart method treating all the frequency
bins at one time is proposed by the authors [57] [58]. In this method, temporal
sequences of all frequency bins are connected together to form one long vector for
each received signal before applying ICA to a set of vectors at one time. Components
of a frequency bin are represented as the sequence of the spectral values along the
time axis at frequency fn on the series of short-time frequency spectrum of the signal
received by microphone m as follows:

Xm(fn) = [Xm(fn, 1), Xm(fn, 2), · · · , Xm(fn, I)].

Xm(fn) is a 1 × I vector and Xm(fn, k) is a scalar. Then, the connected form of
this sequence is expressed as a long column vector written as

Xm = [Xm(f1), Xm(f2), · · · , Xm(fN)]T .

where N is the number of frequency bins which is equal to (frame size)/2 + 1, I is
the total number of frames and Xm is a 1 × IN vector. Figure 4.1 shows structure
of a long vector Xm in PF-ICA.

Separation is executed on the set of M vectors. So, the separation process for
PF-ICA is represented as follows:

Y = WX

where X = [X1, X2, · · · , XM ]T and the matrix sizes of Y , W and X are P × IN ,
P × M and M × IN .
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Figure 4.1: Structure of a long vector for microphone m in PF-ICA

To obtain a separation matrix W using JADE, �rstly, an M × M covariance
matrix Rx of X is calculated, then a P ×M whitening matrix B is calculated using
Rx. Secondly, a P 2 × P 2 kurtosis matrix K of the whitened sequence Z = BX is
calculated, then P groups of the eigenvalues and eigenvectors of the kurtosis matrix
K, {λr, Dr|1 ≤ r ≤ P}, is selected from the eigenvalues and eigenvectors of the
kurtosis matrix K arranging in descending order, where λr is an eigenvalue and Dr

is P × P matrix which consists of P eigenvectors. Then, an independence criterion
is de�ned as the following fourth order cross-cumulant:

c(Vopt) =
∑

i,j,l=1···P

|Cum(Ai,A
∗
i ,Aj, A

∗
l )|2

where A is obtained separating the whitened sequence Z by the P × P matrix
Vopt. An optimum Vopt is estimated by minimizing c(Vopt), where (·)∗ denotes
the conjugation and the su�x for A corresponds to the source signal ID. In the
processing scheme of JADE, minimization of c(Vopt) is not realized directly. In-
stead of that, JADE estimates the optimum Vopt by joint diagonalization of a set
of P matrices N . Concretely, a set of P matrices N is de�ned representing as
N = {Nr = λrDr |1 ≤ r ≤ P}, where Nr is a P × P matrix, then the optimum Vopt

is estimated minimizing the following criterion by Givens transformation.

c(Vopt,N ) =
∑

r=1···P

|diag(V H
optNrVopt)|2

|diag(·)| represents the norm of diagonal components of matrix (·) and (·)H denotes
complex conjugate transposition. Finally, the separation matrix is obtained as W =
VoptB. After separation, a time signal of a frequency bin is extracted from the
corresponding part on the long separated vector.

PF-ICA does not need to sort frequency bins after separation because PF-ICA
executes separation on a set of all frequency bins. PF-ICA, however, cannot solve
the amplitude indeterminacy. So, to cope with this problem, �Minimal distortion
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principle [69]� is employed. Moreover, PF-ICA cannot cope with frequency char-
acteristics of separation directivity because PF-ICA estimates the only one P × M
separation matrix. That is, PF-ICA does not give the optimal separation results.

4.6 Multi-bin ICA

As explained above, PF-ICA uses a single separation matrix common to all frequency
bins, so it cannot express the di�erent directivity for each frequency. In order to
take directivity for each frequency into consideration, an idea is introduced into
the PF-ICA dividing the total frequency range into bands of considerable width
overlapping boundary regions. Vectors for separation are built placing time series of
the frequency bin in concern in the center of the corresponding vectors by placing
a marginal bins before and after the central bin. However, in case frequency bins
before or after the frequency bin in concern are not su�ciently available, processing
is done using only available bins. That is, the vector separated by Multi-bin ICA is
de�ned by connecting vectors Xm(fn). We have

· · ·
Xm(fa+1) = [Xm(f1), · · · ,

Xm(fa+1), · · · , Xm(f2a+1)]
T

Xm(fa+2) = [Xm(f2), · · · ,

Xm(fa+2), · · · , Xm(f2a+2)]
T

· · ·

where Xm(fa+1) is the vector having the center bin whose frequency ID is a + 1.
Separation is executed using a set of vectors having the same frequency components
at the center.

Y (fn) = W (fn)X(fn)

where X(fn) = [X1(fn),X2(fn), · · · ,XM(fn)]T and the sizes of Y (fn), W (fn)
and X(fn) are P × I(2a + 1), P × M and M × I(2a + 1), respectively, placing a
marginal bins before and after the central bin.

After separation, the central frequency bins of the vectors in concern are ex-
tracted for further processing. Figure 4.2 shows how to build the target vectors.
The lower half of Fig. 4.2 shows vectors for which the frequency in concern is f1, f2

and fN , respectively.

4.7 Evaluation

Evaluation Setup

Evaluation is carried out in an experimental cabin that represents both laterally
balanced and unbalanced situations. Loudspeakers and microphones are located as



50
CHAPTER 4. SOLVING THE PERMUTATION PROBLEM IN THE

FREQUENCY-DOMAIN ICA FOR BSS

Figure 4.2: Structure of vectors in MB-ICA

shown in Figs. 4.3 and 4.4.

Figure 4.3: Positioning of microphones and loudspeakers in an experimental cabin
(Environment 1)

In the environment shown in Fig. 4.3, the frequency characteristics of direction-
ality are almost the same for the both sides of the pair microphones. On the other
hand, in another environment Fig. 4.4, the frequency characteristics of directional-
ity are made di�erent by putting re�ective and absorbing objects. Interval of two
microphones is �xed to be 5cm for both the situations.

In environment 2, the frequency characteristics for each environment was mea-
sured to con�rm widely di�erent frequency characteristics of a mixing system ac-
cording to directions. Environment 1 was measured using a loudspeaker located at
position P3. Environment 2 was measured using a loudspeaker located at perpen-
dicular position of 100cm from the microphones. If the frequency characteristics of
a mixing system are greatly di�erent according to directions, there is a large dif-
ference between the frequency characteristics of two microphones. Figure 4.5 shows
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Figure 4.4: Positioning of microphones, loudspeakers and some objects in an exper-
imental cabin (Environment 2)

the di�erence between the frequency characteristics of two microphones measured
in environments 1 and 2. The di�erence between the frequency characteristics of
two microphones is calculated by the following equation.

∆Ĥ(fn) = 10 log(
|Ĥ1(fn)|
|Ĥ2(fn)|

) (4.1)

Ĥ1(fn) denotes the frequency characteristics of the mixing system measured by
microphone 1 and Ĥ2(fn) denotes that measured by microphone 2.

From Fig. 4.5, it is clear that the frequency characteristics of the mixing system
measured in environment 2 has a large di�erence according to directions. The phase
characteristics have the frequency dependency according to the di�erence of arrival
time between microphones. So, di�erence dependent on the direction in phase char-
acteristics measured in environment 1 are not small.

Source signals for evaluations are recorded in a sound proof cabin. Source data
are 10 short sentences uttered by one male and two females. Then, these source data
are emitted from the loudspeakers in the environments depicted in Figs. 4.3 and 4.4,
and 400 mixed data were made for each combination of loudspeakers (P1-2, P1-3,
P1-5, P1-8, P2-9, P3-10, P4-6, P5-7, P7-10, P8-10) in Fig. 4.3 and a combination
of loudspeakers (P'1-2) in Fig. 4.4. That is, in case of Fig. 4.3, the total number of
the evaluation data is 4000 mixed short sentences.

Table 4.1 shows the condition of acoustical analysis.
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Figure 4.5: Frequency characteristics di�erence between signals received by two
microphones

Table 4.1: Condition of acoustical analysis
Sampling rate 16000 samples/sec
Frame size 1024
Frame shift 512
Window Hamming

Results

Compared are three processing schemes: a conventional method using JADE em-
ploying correlation for resolving the permutation problem, PF-ICA and MB-ICA.
Parameter a for MB-ICA is set as 1, 2, 4, 8, 16, 32, 64, 128.

Signal to Noise Ratio (SNR), de�ned as follows, is employed for the evaluation
index of separation performance.

SNRi(k) =

N−1∑
n=0

|Si(fn, k)|2

N−1∑
n=0

∣∣∣Si(fn, k) − Ŷi(fn, k)
∣∣∣2 (4.2)

where i denotes the microphone ID, Si(fn, k) and Ŷi(fn, k) represent the spectrum
of a source signal and the spectrum of a separated signal, respectively.

Figures 4.6 and 4.7 show the separation results in the environment shown in
Figs. 4.3 and 4.4, respectively. The abscissas in Figs. 4.6 and 4.7 distingwish
the conventional ICA, PF-ICA and MB-ICAs of a = 1, 2, 4, 8, 16, 32, 64, 128.
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The ordinates in Figs. 4.6 and 4.7 show the average SNR for all combinations of
loudspeakers.

Figure 4.6: Segmental SNR for several versions of ICA in case of the environment
shown in Fig. 4.3

Figure 4.7: Segmental SNR for several versions of ICA in case of the environment
shown in Fig. 4.4

From Fig. 4.6, or the environment in which frequency characteristics of direction-
ality are almost the same, MB-ICA and PF-ICA yield almost the same separation
performance in case of a = 128. However, the separation performance gets nearer to
that obtained by the conventional method as parameter a for MB-ICA becomes the
smaller, while in environment having innegligible frequency characteristics, MB-ICA
yields the best separation results in case of a = 8.
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4.8 Discussions and conclusions

Generally, if the permutation problem is solved completely, the conventional ICA
would yield the best results. In fact, however, it would be impossible to solve
the permutation problem completely, so we got the results shown above. In case
frequency characteristics of directionality are uniform as the environment shown in
Fig. 4.3, PF-ICA is expected to give the best separation results, but such a situation
is rare in real environments. In Fig. 4.7, for environment shown in Fig. 4.4, which is
closer to actual environments, separation performance of PF-ICA is inferior to the
conventional ICA. Hence, in the environment of Fig. 4.4, frequency characteristics
have directionality and PF-ICA, having �xed directionality, cannot improve the
separation performance. On the other hand, it can be stated from Fig. 4.7 that MB-
ICA can yield the best separation performance in case of a = 8. In the scheme of
MB-ICA, vectors for separation are built placing the frequency bin in concern in the
center of the corresponding vectors accompanying a marginal bins before and after
the central bin. So, there are common frequency bins between the adjacent vectors
and the separation matrix for adjacent frequencies have similar characteristics. As
the result, it can be stated that MB-ICA can take the frequency characteristics of
directionality into consideration suppressing the permutation errors.

A type of frequency-domain ICA is realized by connecting adjacent frequency
bins to avoid the permutation problem. PF-ICA and MB-ICA of large a are proved
to yield better results than the conventional ICA in case frequency characteristics
of directionality do not drastically change, and MB-ICA of a = 8 gives the best
results in case frequency characteristics of directionality are di�erent as shown in
Fig. 4.4. However, as you can see in Fig. 4.7, the separation performance by MB-
ICA depends on parameter a. Parameter a for obtaining the best performance is
di�erent between Figs. 4.6 and 4.7. Hence, it can be said that the optimal value
for a depends on the directionality of frequency characteristics of the environment.
The decision of a is left for feature works.



Chapter 5

Estimation of speeh spectrum based

on the Dirichlet process mixture

model

5.1 Introduction

Currently, noise robustness is one of the most important problems for developing
the e�ective speech recognition systems in real environments. Several techniques
using array microphone are proposed, e.g. delay-and-sum array [14], Gri�th-Jim
array [73] etc. in order to improve speech recognition rate in real environments.
Moreover, as a di�erent approach, Independent Component Analysis [66] attracted
the interest in order to solve the Blind Source Separation problem.

On the other hand, S.F. Boll proposed Spectral Subtraction [4] as a technique
with a single microphone. In general, the techniques with a single microphone
demand the accurate noise estimation. It is not di�cult to accurately estimate the
noise sequence of stationary noise, e.g. white noise. However, many non-stationary
noises, e.g. TV set sound or human voice etc., exist in real environments. So, it is
di�cult to improve speech recognition rate using simple Spectral Subtraction.

To solve such problems, several estimation methods of non-stationary noises
based on a sequential EM (Expectation Maximization) algorithm are reported [45]
[46] [47] [48] that can e�ectively estimate noises. However, their computation costs
are expensive because frame by frame iterative estimation is required for the con-
vergence of noise parameters. Owing to the advancement of computer performance,
particle �lter-based sequential estimation methods [49] [50] have attracted attention
and been applied to various research �elds. The particle �ltering is a Bayesian esti-
mation method, whose main estimation framework is based on a sequential Monte

55
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Carlo method. Thus, the computational costs of the particle �lter are cheaper than
the sequential EM algorithm because iterative estimation is not always required.
Within the �eld of speech recognition, Fujimoto et al. proposed a noise estimation
technique based on a particle �ltering [51]. This technique consists of the following
two parts: one is a noise estimation based on particle �ltering and the other is a
minimum mean square error (MMSE) based estimation with a Gaussian Mixture
Model (GMM) of the speech. An essential point of this technique is to develop an
accurate GMM beforehand. To develop the accurate GMM it is necessary to use
huge number of speech data.

This chapter proposes a technique for the estimation of noise and speech spec-
trum without developing the GMM. Instead of the GMM, the speech spectrum is
modeled using a DPM [74]. The Dirichlet Process (DP) [75] is a non-parametric
probability distribution over the space of all possible distributions. The DP is used
as the prior of the DPM. The DP can be considered as the probability distribution
for the probability distribution of mixture components. The DP is a generative
model for in�nite distribution. So, DPM allows us to mix the in�nite probability
distribution. By using DPM in the estimation process of the speech spectrum, it is
expected to estimate the spectrum more �exibly.

There are several researches on the nonparametric density estimation using DPM
[76], [77]. Caron et al. [78] applied the DPM to the density estimation in the context
of dynamic models. Caron et al. can achieve the improvement of the performance
of standard algorithms when the noise pdfs are unknown. Hence, in case where the
speech spectra are unknown, we also expect to get better result than the standard
algorithms.

5.2 Theoretical concepts of Bayesian algorithms

The objective of the dynamic state estimation by the Bayesian approach is to con-
struct the posterior probability density function (pdf) p(nk|x1:k) based on the ob-
served sequence x1:k = {x1, x2, · · · , xk}, where xk stands for the measurement vector
at time k and nk stands for the state vector at time k. To de�ne the problem of
linear/nonlinear �ltering, the state evolves according to the following model:

nk = fk−1(nk−1, wk−1) (5.1)

where fk−1 is a known, linear/nonlinear function of the state nk−1 and of the process
noise wk−1. The measurement is related to the state via the measurement model:

xk = gk(nk, vk) (5.2)

where gk is a known, linear/nonlinear function and vk is measurement noise. The pdf
p(nk|x1:k) is obtained recursively via Eqs. (5.1) and (5.2) from the pdf p(nk−1|x1:k−1)
in the following two stages: prediction and update [49], [79].
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We suppose that the pdf p(nk−1|x1:k−1) is available. Firstly, at the prediction
stage, the prediction density p(nk|x1:k−1) of the state at time k can be obtained via
the following Chapman-Kolmogorov equation:

p(nk|x1:k−1) =

∫
p(nk|nk−1)p(nk−1|x1:k−1)dnk−1

where the pdf p(nk|nk−1) is de�ned by the Eq. (5.1). Secondly, at the update stage,
when the measurement xk is observed, the updated pdf can be obtained from the
prediction pdf via the following Bayesian rule:

p(nk|x1:k) = p(nk|xk, x1:k−1)

=
p(xk|nk, x1:k−1)p(nk|x1:k−1)

p(xk|x1:k−1)

=
p(xk|nk)p(nk|x1:k−1)

p(xk|x1:k−1)
(5.3)

where the normalizing constant

p(xk|x1:k−1) =

∫
p(xk|nk)p(nk|x1:k−1)dnk (5.4)

depends on the likelihood function p(xk|nk) de�ned by the Eq. (5.2). In general,
the pdfs given by Eqs. (5.3) and (5.4) cannot be determined analytically. In case
where the functions fk−1 and gk are linear and the pdf p(nk|x1:k) is Gaussian, an
optimal algorithm, Kalman �lter, can be formulated. In the other cases, we have
to use approximations or suboptimal Bayesian algorithms, Extended Kalman �lter,
Particle �lter. Brief descriptions of these algorithms are presented in the following
sections.

Kalman �lter

The Kalman �lter [49], [79] is assumed that the posterior pdf at every time is
Gaussian and the functions fk−1 and gk are linear. That is, Eqs. (5.1) and (5.2) can
be rewritten as:

nk = Fk−1nk−1 + wk−1

xk = Gknk + vk

where Fk−1 and Gk are the matrices de�ning the linear functions, wk−1 and vk are
mutually independent zero-mean White Gaussian whose covariances are Qk−1 and
Rk respectively. The Kalman algorithm, derived by Eqs. (5.3) and (5.4), can be
considered as the following recursive relationships:

p(nk−1|x1:k−1) = N (nk−1; n̂k−1|k−1,Pk−1|k−1)

p(nk|x1:k−1) = N (nk ; n̂k |k−1,Pk |k−1)

p(nk|x1:k) = N (nk ; n̂k |k ,Pk |k)
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where N (n;m,P) is a Gaussian density with argument n, the state, mean m and co-
variance P . The appropriate mean and covariance of the Kalman �lter are computed
as follows:

n̂k|k−1 = Fk−1n̂k−1|k−1

Pk|k−1 = Qk−1 + Fk−1Pk−1|k−1F
T
k−1

n̂k|k = n̂k|k−1 + Kk(xk − Gkn̂k|k−1)

Pk|k = Pk|k−1 − KkAkK
T
k

where
Ak = GkPk|k−1G

T
k + Rk

is the covariance matrix of xk − Gkn̂k|k−1, and

Kk = Pk|k−1G
T
k S−1

k

is the Kalman gain.

Extended Kalman �lter

In the real situations, the optimal �lter (i.e. Kalman �lter) is hard to use because
of the nonlinearity of the target state. Instead, we have to use approximations or
suboptimal Bayesian algorithms. In this section, we introduce the Extended Kalman
Filter (EKF) [49], [79].

The EKF can be applied for nonlinear function fk−1 and gk with additive noise.
So, Eqs. (5.1) and (5.2) can be rewritten as follows:

nk = fk−1(nk−1) + wk−1 (5.5)

xk = gk(nk) + vk (5.6)

Then, the nonlinear functions in Eqs. (5.5) and (5.6) are approximated by the �rst
term in their Taylor series expansion. The mean and covariance of the EKF are
computed as follows:

n̂k|k−1 = fk−1(n̂k−1|k−1)

Pk|k−1 = Qk−1 + F̂k−1Pk−1|k−1F̂
T
k−1

n̂k|k = n̂k|k−1 + Kk(xk − gk(n̂k|k−1))

Pk|k = Pk|k−1 − KkAkK
T
k

where

Ak = ĜkPk|k−1Ĝ
T
k + Rk

Kk = Pk|k−1Ĝ
T
k S−1

k
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F̂k−1 and Ĝk are the local linearization of functions fk−1 and gk respectively.

F̂k−1 =
∂fk−1

∂nk−1

∣∣∣∣
nk−1=n̂k−1|k−1

Ĝk =
∂gk

∂nk−1

∣∣∣∣
nk−1=n̂k|k−1

Unscented Kalman �lter

Unscented Kalman Filter (UKF) proposed by Julier [80] performs approximation of a
posteriori density by a Gaussian density. Unlike EKF, which approximates nonlinear
functions fk−1 and gk with linear functions, UKF approximates a probability density
with a set of weighted sample points chosen by a deterministic method. These points
are transformed by the nonlinear functions fk−1 and gk for obtaining an updated
probability density. This approximation is called as unscented transform.

Unscented transform

Unscented transform is a method permitting to calculate statistics of a random
variable which su�er nonlinear transformation [81] [82]. We consider a following
nonlinear system

y = f(x)

where x is a random variable with a mean µx and a covariance Pxx and y is a
random variable of statistics to be determined. Weighted sample points (Xi ,Wi)
are deterministically chosen so that they completely describe the true mean µx and
covariance Pxx. The nonlinear function f is applied to each sample point to obtain
a set of transformed points with the mean µy and covariance Pyy.

The probability density of a random variable x is approximated by 2n + 1
weighted sample points shown as

X0 = µx W0 =
κ

n + κ

Xi = µx +
(√

(n + κ)Pxx

)
i

Wi =
κ

2(n + κ)

Xi+n = µx −
(√

(n + κ)Pxx

)
i

Wi+n =
κ

2(n + κ)

where κ ∈ R,
(√

(n + κ)Pxx

)
i
is the i-th row of the matrix square root (n + κ)Pxx

and Wi is the weight of i-th sample point. Transformation procedure is shown as
follows:

1. Each sample point Xi is transformed by the nonlinear function f to obtain a
set of transformed sample points

Yi = f (Xi).
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2. The mean µy is given by the mean of transformed sample points

µy =
2n∑
i=0

WiYi .

3. The covariance matrix Pyy is given by

Pyy =
2n∑
i=0

Wi(Yi − µy)(Yi − µy)
T

Particle �lter

Particle �lter [49], [79] [83] is also a suboptimal �lter. The particle �lter can be
applied to nonlinear and nonGaussian problems. In this section, a particle �ltering
based on the sequential importance sampling is introduced. The fundamental idea
of the particle �lter is that the posterior density p(n0:k|x1:k) are approximated by
the particles generated from the importance density.

p(n0:k|x1:k) ≃
J∑

j=1

ω
(j)
k δ(n0:k − n

(j)
0:k)

where j is the particle ID, J is the total number of the particles, ω
(j)
k is the particle

weight, the particles consist of ω
(j)
k and n

(j)
0:k and δ(·) is a delta function. If the

samples n
(j)
0:k are drawn from an importance density q(n0:k|x1:k), then the weigth ω

(j)
k

is represented as follows:

ω
(j)
k ∝ p(n

(j)
0:k|x

(j)
1:k)

q(n
(j)
0:k|x

(j)
1:k)

(5.7)

∝ represents that the left term is proportional to the right term. p(n0:k|x1:k) is
written by the following recursive formula using the Bayesian rule.

p(n0:k|x1:k)

=
p(xk|n0:k, x1:k−1)p(n0:k|x1:k−1)

p(xk|x1:k−1)

=
p(xk|n0:k, x1:k−1)p(nk|n0:k−1, x1:k−1)p(n0:k−1|x1:k−1)

p(xk|x1:k−1)

=
p(xk|nk)p(nk|nk−1)

p(xk|x1:k−1)
p(n0:k−1|x1:k−1)

∝ p(xk|nk)p(nk|nk−1)p(n0:k−1|x1:k−1) (5.8)

If q(n0:k|x1:k) can be expressed by the following recursive formula

q(n0:k|x1:k) = q(nk|n0:k−1, x1:k)q(n0:k−1|x1:k−1) (5.9)
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then sample weight ω
(j)
k can be represented as the following recursive formula by

substituting Eqs. (5.8) and (5.9) into Eq. (5.7)

ω
(j)
k ∝ ω

(j)
k−1

p(xk|n(j)
k )p(n

(j)
k |n(j)

k−1)

q(n
(j)
k |n(j)

0:k−1, x1:k)

5.3 Problem statements

Now, we want to realize the speech recognition with a single microphone in noisy
and reverberant environments. In this problem, the accuracy of noise estimation
is one of the most important things. Therefore, we want to estimate not only a
speech spectrum but also a noise spectrum. Fujimoto et al. dealt with the noise
estimation problem using a particle �ltering and a speech spectrum estimation by a
GMM. However, by using DPM in the estimation process of the cspeech spectrum,
it is expected to estimate the speech spectrum more �exibly.

5.4 Conventional method using GMM

In this section, we ignore the e�ect of the re�ected waves. In the frequency domain,
we have the following relationship between speech S and noise signal N :

X = S + N

where X is an observed signal. Speech recognition is generally performed in the log
spectral domain. So, if we de�ne X = exp(x), S = exp(s) and N = exp(n), we can
get

exp(x) = exp(s) + exp(n)

log(exp(x)) = log(exp(s) + exp(n))

x = s + log(1 + exp(n − s))

where, x, s and n denote X, S and N in the log spectral domain respectively. The
above model has been proposed by Segura et al. in [84]. So, it is necessary to
consider the nonlinear relationship between the original speech spectrum and the
noise spectrum. In this conventional method, a particle �lter base noise estimation
is used.

Dynamic model for a conventional method

Conventional method based on the utilization of GMM proposed by Fujimoto et
al.. They employed the observed signal model proposed by Segura et al. for each



62
CHAPTER 5. ESTIMATION OF SPEEH SPECTRUM BASED ON THE

DIRICHLET PROCESS MIXTURE MODEL

particle as follows [84]:

xk = sk,rk

+ log(I + exp(nk − sk,rk
)) + vk (5.10)

= g(sk,rk
, nk) + vk

nk = nk−1 + wk−1 (5.11)

vk ∼ N (0, Σs,rk ),wk ∼ N (0, Σw)

where, k is a frame ID. A frame is a time interval for performing a short-term Fourier
transform. sk,rk

is modeled by a GMM representing as S =
∑
r

Ps,rN (µs,r , Σs,r) and

sk,rk
is generated as follows:

rk ∼ Ps

where rk is randomly chosen according to the mixture weight vector Ps for each
Gaussian distribution and then

sk,rk
∼ N (µs,rk , Σs,rk )

where, µs,rk
and Σs,rk

denote the mean vector and diagonal covariance matrix of the
rk-th Gaussian mixture component.

Conventional algorithm

The noise samples and noise covariance, call the parameters in the following, are
estimated by a particle �lter. When we use the word �the noise sample�, it is from
the application point of view not particle �ltering point of view. This particle
�lter consists of an EKF for parameter updating, a sample weight computation [49],
residual resampling and a Markov Chain Monte Carlo with Metropolis-Hastings
sampling [85] for random variable drawing. The speech spectrum s is estimated by
MMSE estimation. The initial noise sample is drawn as

n
(j)
0 ∼ N (µn , Σn)

Σ(j)
n0

= Σn

where, µn and Σn denote the mean vector and diagonal covariance matrix of initial
noise spectrum distribution respectively. µn and Σn are estimated by the �rst 5
frames of the observed signal with no speech spectrum in the observed signal.

The tracking performances of noise sequences depends on the accuracy of GMM.
In order to develop an accurate GMM, it takes very long time and needs huge volume
of data. It will be a problem for applying to various applications.

Polyak averaging and a switching dynamical system

In order to improve the performance of noise estimation, Fujimoto et al. employ a
Polyak averaging and a switching dynamical system [86]. In real situations, noise



5.4. CONVENTIONAL METHOD USING GMM 63

spectrum is not always random, so it is necessary to accurately model the noise
spectrum. The Polyak averaging is expressed as follows:

n
(j)
k = (1 − αp)n

(j)
k−1 + αpn̂k−1

+ αpβp(µ
(j)
n,t − n

(j)
k−1) + w

(j)
k−1

n̂k−1 = ΣJ
j=1ω

(j)
k n

(j)
k−1

µ
(j)
n,k =

1

Tp

Σk
s=k−Tp+1n

(j)
s−1

In real situations, the aspect of noise �uctuation is also time variant. So, parameters
for the Polyak averaging, αp, βp and Tp need to change according to time. To realize
this mechanism, a switching dynamical system is introduced leading to a Jump
Markov System. This switching dynamical system has several dynamical systems
with di�erent parameter settings, and switches suitable parameters for the next
frame according to the index of the current model m

(j)
k . The target model at the

next time instance is randomly selected according to the transition probability from
the current model m

(j)
k to the target model m

(j)
k+1. The transition probability is

de�ned as follows:
p(j)

mk,mk+1
= γ|m(j)

k+1−m
(j)
k |

where the range of γ is 0 ≤ γ ≤ 1. Also, the transition probability p
(j)
mk,mk+1 is

normalized as Σmk+1
p

(j)
mk,mk+1 = 1.

Parameter updating by Extended Kalman Filter (EKF)

To update the noise parameters an EKF is applied. This EKF is derived from the
Eqs. (5.10) and (5.11).

n
(j)
k|k−1 = (1 − αp)n

(j)
k−1 + αpn̂k−1

+ αpβp(µ
(j)
n,k − n

(j)
k−1) + w

(j)
k−1 (5.12)

n̂k−1 = ΣJ
j=1ω

(j)
k n

(j)
k−1

µ
(j)
n,k =

1

Tp

Σk
s=k−Tp+1n

(j)
s−1

Σ(j)
nk|k−1

= F
(j)
k−1Σ

(j)
nk−1

F
(j)T
k−1 + Σw (5.13)

K
(j)
k = Σ(j)

nk|k−1
G

(j)T
k [G

(j)
k Σ(j)

nk|k−1
G

(j)T
k + Σ

s,r
(j)
k

]−1

F
(j)
k−1 = αp(−1 + ω

(j)
k−1 +

βp

Tp

)

G
(j)
k =

∂

∂n
(j)
k|k−1

{
g(s

(j)

k,r
(j)
k

, n
(j)
k|k−1)

}
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n̂
(j)
k = n

(j)
k|k−1 + K

(j)
k

(
xk − g(s

(j)

k,r
(j)
k

, n
(j)
k|k−1)

)
(5.14)

Σ(j)
nk

= Σ(j)
nk|k−1

− K
(j)
k G

(j)
k Σ(j)

nk|k−1
(5.15)

Equations (5.12) and (5.13) are equations for the prediction and a Polyak averag-
ing [86] is employed. K

(j)
k is the Kalman gain. G

(j)
k is the linearization function.

Equations (5.14) and (5.15) are equations for the update.

Sequential importance sampling for particle �ltering

In the particle �ltering algorithm, a posteriori pdf p(n0:k|x0:k) is approximated by
Monte Carlo sampling as follows:

p(n0:k|x0:k) ≃ 1

J
ΣJ

j=1δ(n0:k − n
(j)
0:k)

≃ ΣJ
j=1ω

(j)
k p(n

(j)
0:k|x0:k)

In the sequential importance sampling, sample weight ω
(j)
k can be represented as the

following recursive formula

ω
(j)
k ∝ ω

(j)
k−1

p(n
(j)
k |n(j)

k−1)p(xk|n(j)
k )

q(n
(j)
k |n(j)

0:k−1, x0:k)
(5.16)

where q(·|·) is an importance density.
If it is assumed that the pdf p(n

(j)
k |n(j)

k−1) is equal to q(n
(j)
k |n(j)

0:k−1, x0:k), then the
expression of Eq. (5.16) can be rewritten

ω
(j)
k ∝ ω

(j)
k−1p(xk|n(j)

k )

where
p(xk|n(j)

k ) = N (xk ; g(s
(j )

k ,r
(j)
k

, n
(j )
k ), Σ

s,r
(j)
k

).

That is to say, Fujimoto et al. employed bootstrap �lter.

Residual resampling

After calculating sample weights, some of the samples become insigni�cant. These
samples will degenerate the estimation. So, residual resampling step [49] is intro-
duced after the weight calculation. In the residual resampling step, the samples are
generated by a resampling with replacement which is proportional to their weights.
This method can avoid degeneracy problem by discarding samples with insigni�cant
weights, and to maintain a constant number of samples.

The residual resampling can reduce the e�ects of degeneracy. However, it causes
the other problem which is the particles having high weights are selected many times.
As a result, this leads to a loss of diversity among the particles.
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Markov chain Monte Carlo step

After the residual resampling step, there is a possibility that most of particles have
a same value. To avoid the loss of diversity among the particles, Fujimoto et al.
introduced a Metropolis-Hasting (MH) sampling [85] in each sample. To simplify the
calculation, Fujimoto et al. assume that the importance distribution is symmetric.
So, the acceptance probability is given by

ν = min

{
1,

ω
∗(j)
k

ω
(j)
k

}

where ω
∗(j)
k denotes the sample weight computed by the MH sampling. The state

transition by MH sampling is derived as:

Φ
(j)
k =

{
Φ

∗(j)
k if u ≤ ν

Φ
(j)
k otherwise

where Φ
(j)
k = (ω

(j)
k , n̂

(j)
k , Σ

(j)
nk ), Φ

∗(j)
k is samples drawn by the MH sampling step, or

the outputs from EKF, and u is drawn from the uniform distribution 0 ≤ u ≤ 1.

5.5 Estimation of speech spectrum frommixed sound

based on DPM

We propose the modeling of the speech spectrum using DPM instead of GMM. By
introducing DPM, we expect more �exible estimation of speech spectrum. Because
DPM allows us to mix in�nite probability distribution. Moreover, DPM can adapt
automatically the number of Gaussian distributions needed. If we want to mix other
distributions than Gaussian, it is also possible.

Density estimation of the speech spectrum

We consider the speech spectrum distributed according to an unknown probability
density F

sk ∼ F (sk) (5.17)

We want to estimate this probability density F based on the known samples sk in the
baysian framework. We are interested in the probability density class representing
on the following mixture model

F (s) =

∫
Θ

f(s|θ)dG(θ) (5.18)

where θ ∈ Θ is a latent variable, f(·|θ) is the known mixture density and G is the
mixture distribution. The mixture distribution G is supposed to be unknown and
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to distribute according to P (G). G is called Random Probability Measure (RPM).
Equations 5.17 and 5.18 are reformulated as a following hierarchical form:

G ∼ P (G)

θk ∼ G
sk ∼ f(·|θk)

where G is a Random Probability Measure (RPM), P (·) is a priori distribution, θk

is called the latent variable, f(·|θk) is a mixed probability density function and sk is
a speech spectrum. In this model, the problem is how to de�ne a priori distribution.

In the parametric model framework, the random distribution G is considered
to be characterized by a parameter ϕ ∈ Φ with unknown �nite dimension. The
random density F belongs to a space of functions F of �nite dimension. The a
priori distribution is de�ned on ϕ and the hierarchical model is reformulated as
follows:

ϕ ∼ p(ϕ)

θk|ϕ ∼ G(·|ϕ)

sk|θk ∼ f(·|θk)

In some cases, however, to suppose the probability density taking the certain
parametric form limits the inference realized by such models. We are interested in
non parametric models which de�ne a priori distribution on the large space. The non
parametric models are de�ned as the parametric models with in�nite parameters.
In the non parametric models, the random distribution G belongs to a space of
functions F of in�nite dimension. In the Bayesian framework, it is supposed that
the RPM G is distributed according to a certain a priori distribution, that is, a
distribution on a set of probability distributions. We employ here the RPM following
a Dirichlet Process (DP) prior.

Dirichlet Processes

Ferguson et al. [75] de�ned two properties for the adequate a priori distribution for
P (·).

1. The support of the prior distribution should be large.

2. Posterior distribution given a sample of observation from the true probability
distribution should be manageable analytically.1

In [75], the authors introduced the DP as a probability measure on the space of
probability measures, which satis�es the above properties. A probability distribu-
tion G is drawn from DP (G0, α) where a probability measure G0 is de�ned on a

1This property lost the importance by the development of Monte Carlo Method.
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measurable space (Ω,A), α is a positive real number called scale factor. The Dirich-
let distribution is the unique distribution over the space of all possible distributions
on A and satis�es the following relation

(G(A1), · · · , G(Ak)) ∼ D(G0(A1), · · · , G0(Ak), α)

where D is a Dirichlet distribution and Ai ∈ A [79].
The DP is an extension of the Dirichlet Distribution to the continuous space.

Some properties of DP (conjugation and formation by the Polya urn model) are
similar to those of Dirichlet Distribution. The detail of the Dirichlet Distribution is
denoted in Appendix.

Many probability distributions can be obtained using urn models. The urn model
that corresponds to the Dirichlet distribution is the Polya urn model [87]. Polya
urn model is de�ned as follows: Consider a bag with α balls. Initially the number
of balls of color j is mj. We draw balls at random from the bag and at each step we
replace the ball that we drew by two same color balls. Then, the probability of the
obtaining a ball of color j at the ith step P (Xi = j) is represented as follows:

P (Xi = j|X1:i−1) =

mj +
i∑

k=1

δ(Xk = j)

α + i
.

A method for obtaining the Dirichlet process is to consider the limit of the
number of colors in the Polya urn model. Moreover, Blackwell et al. [87] showed
that the predictive distribution is given by the Polya urn model as follows

θk+1|θk ∼ α

α + k
G0 +

1

α + k

k∑
j=1

δ(θ − θj).

Dirichlet Process Mixture

It is now possible to reformulate the density estimation problem using the following
hierarchical model known as DPM [78]:

G ∼ DP (G0, α)

θk ∼ G
sk ∼ f(·|θk)

where the RPM G is the mixture distribution distributed according to DP (G0, α).
The latent variables θk are distributed according to G. f(·|θk) is a mixed proba-
bility density function. The following �exible model is adopted for the unknown
distribution F

F (s) =

∫
Θ

f(s|θ)dG(θ)

with θ ∈ Θ.
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Estimation of speech spectrum based on the Dirichlet process
mixture

In the Bayesian framework, our problem of estimating both a noise spectrum and a
speech spectrum, is equivalent to the determination of the probability p(n0:k, s1:k|x1:k).
A speech spectrum sk is supposed to be distributed according to a DPM of base
mixed distribution N (µk , Σk) and scale parameter α [78]. Instead of developing
an accurate GMM, we introduce the estimation of speech spectrum with the DPM
model which will adapt automatically the number of Gaussian laws to use for the
modeling of the speech spectrum.

The problem is now to determine the probability p(n0:k, θ1:k | x1:k), which can be
written as follows:

p(n0:k, θ1:k | x1:k) = p(n0:k | θ1:k, x1:k)p(θ1:k | x1:k)

where, θk consists of the mean vector µk and covariance matrix Σk of speech spectrum
and is drawn from the following Dirichlet process.

G ∼ DP (G0, α)

θk ∼ G

Then a speech spectrum is drawn from

sk ∼ f(·|θk)

A probability measure G0 denotes, a Normal-inverse Wishart base distribution which
is usually used when θk are a mean µk and a covariance Σk of Gaussian distribution:

G0 = NIW(µ0, κ0, ν0, Λ0)

with µ0, κ0, ν0, Λ0 the hyperparameters of the Normal-inverse Wishart. Sample from
the Normal-inverse Wishart distribution is represented as follows:

µ|Σ ∼ N (µ0,
Σ

κ0

)

Σ−1 ∼ W (ν0, Λ
−1
0 )

where N is a Gaussian distribution and W is the Wishart distribution. The pa-
rameters ν0 and Λ0 are the degree of freedom and the scale parameter of Wishart
distribution respectively. µ0 is the mean vector and κ0 is also a scale parameter.

As p(n0:k | θ1:k, x1:k) can be computed using the EKF de�ned by Fujimoto et al.
[51], we only need to estimate the probability p(θ1:k | x1:k) using a particle method.
At the k-th frame, it follows that p(nk, θ1:k | x1:k) is approximated through a set of
J particles by the following empirical distribution

PN(nk, θ1:k | x1:k) =
J∑

j=1

ω̃
(j)
k p(nk | θ

(j)
1:k, x1:k)



5.5. ESTIMATION OF SPEECH SPECTRUM FROM MIXED SOUND BASED

ON DPM 69

with
p(nk | θ

(j)
1:k, x1:k) ≃ N (n̂k |k(θ

(j )
1:k), Σ

(j )
nk|k

(θ
(j )
1:k)).

The parameters n̂k|k(θ
(j)
1:k) and Σ

(j)
nk|k(θ

(j)
1:k) are computed recursively for each particle

j using the EKF. On the other hand, the posterior p(θ
(j)
1:k | x1:k) is proportional to

p(θ
(j)
1:k−1 | x1:k−1) as follows:

p(θ
(j)
1:k | x1:k)

∝ p(θ
(j)
1:k−1 | x1:k−1)p(xk | θ

(j)
1:k, x1:k−1)p(θ

(j)
k | θ

(j)
1:k−1)

where

p(xk | θ
(j)
1:k, x1:k−1) = p(xk | θ

(j)
k , θ

(j)
1:k−1, x1:k−1)

= N (x̂k(θ
(j )
1:k), Σ̂

(j )
x (θ

(j )
1:k))

and

x̂k(θ
(j)
1:k) = s

(j)
k + log(I + exp(n

(j)
k − s

(j)
k ))

Σ̂x(θ
(j)
1:k) = G

(j)
k Σ(j)

nk
G

(j)T
k + Σs,k

G
(j)
k =

∂

∂n
(j)
k

{
s
(j)
k + log(I + exp(n

(j)
k − s

(j)
k ))

}
s
(j)
k ∼ N (µ

(j )
k , Σ

(j )
k )

Finally, sample weights are calculated using the following estimates

ω̃
(j)
k ∝ ω

(j)
k−1N (x̂k(θ

(j )
1:k), Σ̂x (θ

(j )
1:k))

because we chose the following importance distribution

q(θk|θ(j)
1:k−1, x1:k) = p(θk|θ(j)

1:k−1)

where p(θ
(j)
k | θ

(j)
k−1) is determined using the polya urn representation [78].

Introduction of reverberation and re�ection into the proposed
model

In this section, we introduce reverberation and re�ected waves into the proposed
model. In real situations, speech signals are a�ected by reverberation and re�ected
waves. Also, speech signals decays when microphones are located far from the
speakers. Let h denotes the transfer characteristics in the log spectral domain and
we assume a classical convolution in the time domain. We can get the following
equation as an observation equation.

xk = sk + hk + log(I + exp(nk − sk − hk)) + vk

= g(xk, nk, hk) + vk
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A transition equation for h
(j)
k is de�ned as follows:

h
(j)
k = h

(j)
k−1 + u

(j)
k−1

u
(j)
k−1 ∼ N (0, Σu)

EKF is modi�ed as follows:

n
(j)
k|k−1 = (1 − αp)n

(j)
k−1 + αpn̂k−1

+ αpβp(µ
(j)
n,k − n

(j)
k−1) + w

(j)
k−1

Σ(j)
nk|k−1

= F
(j)
k−1Σ

(j)
nk−1

F
(j)T
k−1 + Σw

h
(j)
k|k−1 = h

(j)
k−1 + u

(j)
k−1

Σ
(j)
hk|k−1

= Σ
(j)
hk−1

+ Σu

K
(j)
η,k = Σ(j)

ηk|k−1
G

(j)T
η,k S

(j) −1
k

S
(j)
k = G

(j)
n,kΣ

(j)
nk|k−1

G
(j)T
n,k + G

(j)
h,kΣ

(j)
hk|k−1

G
(j)T
h,k + Σk

F
(j)
k−1 = αp(−1 + ω

(j)
k−1 +

βp

Tp

)

G
(j)
η,k =

∂

∂η
(j)
k|k−1

{
g(Ψ(j))

}
η̂

(j)
k = η

(j)
k|k−1 + K

(j)
η,k

(
xk − g(Ψ(j))

)
Σ(j)

ηk
= Σ(j)

ηk|k−1
− K

(j)
η,kG

(j)
η,kΣ

(j)
ηk|k−1

where Ψ(j) = {s(j)
k , n

(j)
k|k−1, h

(j)
k|k−1} and η = [n|h]. In order to estimate nk, hk and

sk, it is necessary to determine the probability p(n0:k, h0:k, θ1:k | x1:k) which can be
decomposed as follows:

p(n0:k, h0:k, θ1:k | x1:k)

= p(n0:k | θ1:k, x1:k)p(h0:k | θ1:k, x1:k)p(θ1:k | x1:k)

p(n0:k | θ1:k, x1:k) and p(h0:k | θ1:k, x1:k) are calculated by the EKF respectively and
p(θ1:k | x1:k) is calculated by the particle �ltering which is shown in 5.5.

Detection of speech/non-speech segment

In the high SNR region, there was the possibility that the noise estimation perfor-
mance by the proposed method degrade [88]. We introduce detection of speech/non-
speech frame into the proposed method. Detection is performed based on the dis-
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tance de�ned as follows:

dsk
= (xk − (ŝk + log(1 + exp(n̂k − ŝk))))

2

dnk
= (xk − n̂k)

2

∆dk = dsk
− dnk

where ŝk and n̂k are the estimated speech spectrum and noise spectrum, respectively.
If ∆dk is larger than a threshold obtained from the average of ∆dk over �rst 5 frames,
the current frame is considered as the speech frame and modi�ed as follows:

ŝk = ŝk + ξ
√

dsk

n̂k = n̂k − ξ
√

dsk

In the reverse case, the signs of above equations are inverted. The proposed method
can �nally be represented as the following algorithm.

5.6 Simulation

Simulation Setup

We compare three processing schemes: �rst one is a method proposed by Fuji-
moto et al. [86] where Vector Taylor Series method and MMSE are not employed
(conventional)2, second one is the proposed method without considering transfer
characteristics and third one is the proposed method with considering transfer char-
acteristics. 3 Three types of data set are made for evaluations. First one is clean
speeches recorded in a sound proof cabin, second one is noisy speeches which are
arti�cially generated by adding three types of noises and third one is noisy reverber-
ant speeches which are arti�cially generated by convolving transfer characteristics
with the noisy speeches. Noise data are taken from �Sound Scene Database in Real
Acoustical Environment� [89]. We employ white noise, particle noise and shaver
noise. Then, these noises are arti�cially added to clean speeches with SNRs from 0
to 9dB. Transfer characteristics are simulated using the image method [90]. Rever-
beration time of the simulated data is about 500ms. 100 utterances uttered by four
males and two females are used for this evaluation. The contents of the utterances
are TV controlling commands, e.g. �volume up�, �turn o�� and so on. The total
number of evaluation data for each SNR is 3,600 short phrases.

GMM with 256 mixture distributions is trained using 500 utterances uttered by
3 males and 2 females.

2These processings require large processing costs, so we estimted the clean speech as ŝt =
ΣJ

j=1ω
(j)
t s

(j)
t after the particle �ltering step.

3We compared the proposed method with the Spectral Subtraction method. We cannot obtain

the improvement of the speech recognition rate.



72
CHAPTER 5. ESTIMATION OF SPEEH SPECTRUM BASED ON THE

DIRICHLET PROCESS MIXTURE MODEL

Initialization
j = 1, · · · , J

n
(j)
0 ∼ N (µn , Σn), h

(j)
0 = 0, ω

(j)
k = 1

J

end
k = 1, · · · , T

calculate µ0, Λ0

j = 1, · · · , J
if k == 1

θ
(j)
k ∼ NIW(µ0, κ0, ν0, Λ0)

else
θ

(j)
k ∼ p(θ

(j)
k |θ(j)

k−1)
end
s
(j)
k ∼ N (µ

(j )
k , Σ

(j )
k ) θ

(j)
k = {µ(j)

k , Σ
(j)
k }

switching dynamical system [86]
EKF
[x̂k(θ

(j)
1:k), Σ̂x(θ

(j)
1:k), n

(j)
k , Σ

(j)
nk , h

(j)
k , Σ

(j)
hk

]

= EKF (n
(j)
k−1, Σ

(j)
nk−1 , θ

(j)
k , h

(j)
k−1, Σ

(j)
hk−1

, xk)

calculate sample weights
ω̃

(j)
k ∝ ω

(j)
k−1N (x̂k(θ

(j )
1:k), Σ̂x (θ

(j )
1:k))

end
ΣJ

j=1ω̃
(j)
k = 1

Compute Neff =

{∑J
j=1

(
ω̃

(j)
k

)2
}−1

if Neff ≤ η, resample the particles and ω
(j)
k = 1

J

n̂k = ΣJ
j=1ω

(j)
k n

(j)
k , ŝk = ΣJ

j=1ω
(j)
k s

(j)
k

Detection of speech/non-speech frame
end

An acoustic model for speech recognition is developed using the Acoustical So-
ciety of Japan (ASJ) continuous speech corpus [91]. The training data are about
30,000 sentences uttered by 150 males and 150 females. The feature parameters for
the acoustic model is composed of 39 Mel Frequency Cepstral Coe�cients (MFCCs)
[92] with 13 MFCCs (with zero-th MFCC) and their �rst and second order deriva-
tives. At the feature extraction stage, Cepstral Mean Subtraction (CMS) [6] is
applied to each sentence.

The parameter α for DPM is di�erent according to the length of utterance.
Because, as the result of a preliminary experiment, it is clear that short phrases
can be recognized even if α is a small number, while in order to recognize the long
phrases, it is necessary that α is a large number.

We have no a priori information on the speech signal distribution. The value



5.6. SIMULATION 73

of the hyperparameters being not known a priori, a simple estimation process is
introduced. This estimation bases on the di�erence between the received signal and
the received signal estimated using the estimated speech spectrum at k − 1 and the
estimated noise spectrum at k. That is to say, at the time k, the speech spectrum
is estimated roughly as follows:

s̃
(j)
k = s

(j)
k−1 + ∆s(j) + z

(j)
k (5.19)

∆s
(j)
k = xk − x̂

(j)
k (s̄

(j)
k−1, n̄

(j)
k )

= xk − (s̄
(j)
k−1 + log(1 + exp(n̄

(j)
k − s̄

(j)
k−1)))

where n̄
(j)
k is obtained from the Polyak averaging [51], s̄

(j)
t is obtained from the aver-

age over the 5 past frames, z
(j)
k−1 ∼ N (0, Σz ) and x̂

(j)
k (·) is an estimated observation

signal given (·). ∆s(j) is determined from the past errors and the e�ect of the past
error decays according to the exponential function. Then, the mean vector and co-
variance matrix of these particles are calculated and we regard these values as µ0

and Λ0 of hyperparameters.

µ0 =
1

J
ΣJ

j=1s̃
(j)
k

Λ0 =

√
1

J
ΣJ

j=1(s̃
(j)
k − µk)2

Then κ0 = 1 and ν0 = 500 for our case.
Parameters for the particle �ltering is as follows: wk is set to Σw = 0.1, uk

is set to Σu = 0.0001 and zk is set to Σz = 1. The number of particles is 100.
Parameters for the Polyak averaging and feedback have four states respectively, e.g.
αp = {0.05, 0.1, 0.15, 0.2}, βp = {0.5, 1.0.1.5, 2.0} and Tp = {5, 10, 15, 20}. Moreover,
A parameter for the switching dynamical system is γ = 0.5 [86]. µN and ΣN are
calculated from the �rst 5 obserbed samples.

Results

Firstly, the noise and speech spectrum estimation results are shown. Figure 5.1
shows one example of the noise and speech spectrum estimation results by the pro-
posed method. The abscissa is the number of frame and the ordinate is the average
energy of �lter bank output in the log spectral domain. It is clear that the proposed
method can estimate the noise spectrum in case SNR is 3dB.

Figure 5.2 shows one example of the di�erence between the true noise spectrum
and the estimated noise spectrum. You can see that the conventional method fails
to estimate a noise spectrum at the start of phrase. On the other hand, the pro-
posed method works more badly than the conventional method at the end of phrase.
The reason is that the conventional method using GMM cannot estimate the sud-
den change of the noise spectrum. However, the proposed method using the DPM
permits a �exible noise spectrum estimation.
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Figure 5.1: Estimation result of the proposed method (in case where the noise signal
is a white noise and SNR is 3dB) ∗: received (observed) signal, ♢: true noise signal,
×: estimated noise signal, +: estimated clean signal

Figure 5.2: Di�erence average �lter bank output between an estimated noise spec-
trum and a true noise spectrum in case where the noise signal is a white noise and
SNR is 3dB (solid line: the method using GMM, dotted line: the proposed method)

Secondly, the speech recognition rates are compared. Evaluations are performed
using speech recognition decoder �Julian� [25]. Clean speeches are recorded in a
sound proof cabin using a close contact microphone. Table 5.1 shows the condition
of acoustical analysis.

Figures 5.3 and 5.4 show speech recognition rates in case we did not considered
the e�ect of the reverberation and the re�ected waves and we considered respectively.
In these tables, the speech recognition rate for three types of noise data (white noise,
shaver noise, particle noise) are shown. Moreover, for each noise data, there are
the speech recognition rates of three processing schemes (no processing, proposed
method using EKF, conventional method using GMM).

From these �gures, it can be seen that the speech recognition rates are improved
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Table 5.1: Condition of acoustical analysis
Sampling rate 16000 samples/sec
Frame size 512
Window size 400
Frame shift 160

Feature parameter 39 dimensional mfcc
(mfcc+C0+∆mfcc+∆C0

+∆∆mfcc+∆∆C0)
Cepstum coe�cient 24 dimension

Figure 5.3: Speech recognition rate for three recognition schemes and three noises
without reverberation (w: white noise, s: shaver noise, p: particle noise)

Figure 5.4: Speech recognition rate for three recognition schemes and three noises
with reverberation (w: white noise, s: shaver noise, p: particle noise)

using the proposed method in case where the SNRs are 0, 3 and 6dB. On the other
hand, in case the SNR is 9dB, the speech recognition rates are degraded except for
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the case of white noise. The reason why this degradation of speech recognition rate
is that the noise spectrum estimation performance degrades as shown in Fig. 5.5. In

Figure 5.5: Estimation result of the proposed method (in case where the noise signal
is a white noise and SNR is 9dB) ∗: received (observed) signal, ♢: true noise signal,
×: estimated noise signal, +: estimated clean signal

case SNR is 9dB, the noise signal power is small and the �uctuation of noise signal is
also small, while the �uctuation of clean speech is large. The EKF fails to estimate
a noise signal. As the result, the estimated noise spectrum becomes larger than the
true noise spectrum, on the other hand estimated speech spectrum becomes smaller
than the true speech spectrum. The speech recognition rate by the conventional
method is lower than even that with no processing. The reason is that the time
allocated to the GMM learning is not enough long. 4

In order to improve the speech recognition rate in 9dB SNR case, we employ
the UKF. It can be expected to estimate more accurately noise sequence applying
the UKF. As a result, we can expect to improve speech recognition rate. Figure 5.6
shows speech recognition rate for three processing schemes (no processing, proposed
method using the EKF and UKF).

In the evaluation using speech recognition, our proposed method can improve the
speech recognition rate in the SNRs 0dB, 3dB, 6dB and 9dB except for the particle
noise. In Fig. 5.7, we show noise spectrum estimation result using the UKF.

From this �gure, the proposed method using the UKF gives better estimation
result than that using the EKF.

4Although this is one reason, we obtained better speech recognition rate by employing the

conventional method with VTS and MMSE on the limited data set. The required processing time

became 10 times more than that of the convential method without VTS and MMSE.
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Figure 5.6: Speech recognition rate for three recognition schemes and three noises
without reverberation (w: white noise, s: shaver noise, p: particle noise)

Figure 5.7: Estimation result of the proposed method (in case where a noise signal is
a particle noise and SNR is 9dB) ∗: received (observed) signal, ♢: true noise signal,
×: estimated noise signal, +: estimated clean signal

5.7 Discussions and conclusions

In this chapter, we proposed a method for estimating both the speech spectrum using
DPM and noise spectrum using particle �ltering. Our proposed method realizes
better noise estimation accuracy than the method using the GMM. In the evaluation
using speech recognition, our proposed method using the EKF can improve the
speech recognition rate in the SNRs 0dB, 3dB, 6dB except for White noise. On the
other hand, in case of high SNR, estimation performance degrades. However, we
can obtain better speech recognition rate using the UKF than that using the EKF.
In the evaluation using speech recognition, our proposed method using UKF can
improve the speech recognition rate in the SNRs 0dB, 3dB, 6dB, 9dB except for the
particle noise.





Chapter 6

Conclusion

In this dissertation, we proposed four signal processing techniques for realizing a
robust speech recognition.

Chapter 2 solved the problem, when we cannot estimate the transfer function of
the path between a noise source and a microphone during a double talk, by using the
harmonic structure of voiced speech. We proposed an adaptive �ltering algorithm
using the harmonic structure of voiced segments to reduce non-stationary known
noise. The preliminary experiment showed that the proposed method improves
both frequency spectra and speech recognition rates in a sound proof cabin more
than the SS. Moreover, e�ectiveness of the proposed method was also con�rmed in
di�erent practical environments which reverberation time was long, UH and LS.

Chapter 3 solved the dereverberation problem proposing two dereverberation meth-
ods in the time- and frequency-domains. One is a method to remove re�ected waves
from the received signal in the time and frequency domains. The proposed method
solved some of the problems that our previous method had. Problems improved or
almost solved by the proposed method are: (1) the unreliability in the delay time
estimation, (2) the approximation errors in estimated source waves, and (3) the over-
subtraction for fricative- and nasal-like segments. Concretely speaking, the delay
time estimation was improved by the majority decision on ACFs, over-subtraction
is suppressed for consonants such as fricative- and nasal-like segments by classifying
each speech segment into subcategories. Applying the proposed method, the recog-
nition rate was improved from 80% to 89% for speech data each for four males and
one female.

The other method proposed in chapter 3 was a single channel blind dereverber-
ation method based on auto-correlation functions of time sequences of frequency
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components on running power spectra. The proposed method estimated the rever-
beration time and the frequency characteristics of decay. So, the proposed method
achieved dereverberation without any preparatory measurement or a priori infor-
mation. From the performance evaluation on simulated and actual data, the pro-
posed method showed ability to estimate the reverberation time almost correctly.
Moreover, the proposed method yielded better reduction results than conventional
spectral subtraction methods. Introducing smoothing techniques was expected to
lead to further better results.

Chapter 4 solved the permutation problem in the frequency-domain ICA (Inde-
pendent Component Analysis). Proposed was a type of frequency-domain ICA re-
alized by connecting adjacent frequency bins for separation processing to avoid the
permutation problem. The separation performance by MB-ICA (Multi Bin ICA)
depended on parameter a. In case where frequency characteristics of directionality
do not drastically change, PF-ICA (Permutation Free ICA) and MB-ICA of a large
value for a yields better result than the conventional ICA, while in case frequency
characteristics of directionality are diverse, MB-ICA of a = 8 gave the best results.
The optimal value for parameter a to obtain the best performance depended on
acoustic environments.

Chapter 5 solved the speech spectrum estimation problem using the Bayesian in-
ference. We proposed a method for estimating both the speech spectrum using
DPM (Dirichlet Process Mixture) and noise spectrum using the particle �ltering.
Our method realized better noise estimation than the method using GMM. In eval-
uation using speech recognition, our method using EKF (Extended Kalman Filter)
can improve the speech recognition rate in case of SNRs 0dB, 3dB, 6dB but not for
White noise case. On the other hand, in case of high SNR, the estimation perfor-
mance degraded. However, we can obtain better speech recognition rate using UKF
(Unscented Kalman Filter) than using EKF. In evaluation using speech recognition,
our method using UKF improved the recognition rate in cases of SNRs 0dB, 3dB,
6dB, 9dB but not for particle noise.

From evaluation results in Chapters 2, 3, 4 and 5, we saw that these methods gave
signi�cant improvement in SNR and speech recognition rate. So, the following issues
are left for the future works in order to apply these methods to practical use.

Future works

About the reduction of known noise, we need to employ an accurate estimation tech-
nique of the fundamental frequency. As seen in sections 2.5, the cepstrum method
gives unreliable estimation of fundamental frequency in noisy environments.

About the dereverberation method, we should apply the proposed dereverbera-
tion methods to ICA as a post processing. Currently, ICA achieves high separation
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performance. A remaining problem is dereverberation or deconvolution as the post-
processing of ICA.

About Independent Component Analysis, we should employ the natural gradient
learning for estimating the separation matrix. The parameter space of ICA is not
always Euclidean but has a Riemannian metric structure [93]. In such a case, the
steepest direction of the cost function is given by the natural gradient. In case the
utterance duration is enough long to learn a separation matrix, the natural gradient
learning gives better separation results than the other learning rules.

About the Bayesian inference, we should introduce a more precise jump Markov
system than it is. We have already introduced a switching dynamical system which
is same as jump Markov system. However, the state transition probability is de�ned
based only on the current state. In fact, we should take histories of the state
transition process into consideration.
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Appendix A

Grammer and vocabulary for speech

recognition

Table A.1 shows the grammer for speech recognition. �S� and �INPUT� in Table
A.1 denote nonterminal sysmbols, respectively and they are expanded as right-hand
side. Other symbols except for �S� and �INPUT�, e.g. �NS_B� and �TITLE� etc.,
are terminal sysmbols which are de�nded in vocabulary dictionary shown in Table
A.2.

Table A.1: Grammer for speech recognition
S : NS_B INPUT NS_E
INPUT : TITLE
INPUT : CHANNEL_NAME
INPUT : CHANNEL_NAME TV
INPUT : BANGOU CHANNEL
INPUT : BANGOU
INPUT : ZENGO NO CHANNEL
INPUT : ZENGO
INPUT : DENGEN ONOFF
INPUT : TV ONOFF
INPUT : ONOFF
INPUT : VOLUME UPDOWN
INPUT : COMMAND
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Table A.2: Example of vocabulary for speech recognition

% CHANNEL_NAME % CHANNEL % TITLE
NHK総合 チャンネル ∞のギモン
NHK教育 ＥＲＸ緊急救命室
毎日 % VOLUME ＥＴＶ特集
ABC 音量 ぐっさんの声が生まれた
関西 ぴったんこカン・カン
読売 % UPDOWN ぷぷっぴ１０
テレビ大阪 UP ぷぷっぴ１０　ウィークエンド
KBS京都 DOWN 『ぷっ』すま
NHK衛星第一 ぷるぷる　アンタッチャブル
NHK衛星第二 % ZENGO アートエンターテインメント　迷宮美術館

前 ああわが家
% TV あいくるしい
テレビ % NO アイシールド２１

の 愛してるぜベイベ★★
% BANGOU ＩＺＵＭＯ・猛き剣の閃記
1 % DENGEN 愛ってなに
2 電源 愛のエプロン
3 あいのり
4 %ONOFF アクターズ・スタジオ・インタビュー
5 ON あさイチ！
6 OFF 朝だ！生です旅サラダ
7 あさパラ！
8 % COMMAND あざーっす！
9 消音 あしたをつかめ・平成若者仕事図鑑
10
11 % NS_B
12 silB
34

% NS_E
silE



Appendix B

Convergence of the algorithm for

estimating the path amplitude

Shown in Appendix B is the convergence property of the algorithm for estimating
the path amplitude. Appendix is divided into four sections.

B.1 Characteristic properties of ∆Ri (lij)

The purpose of this section is to prove that the solution, or the estimated path
amplitude, of equation ∆Ri (lij) = 0, exists in the interval [-1,1] and the algorithm
described in 3.2.2 converges to the solution.

The �rst step of the algorithm is to estimate r̂i (k), the expected kth sampled
value for microphone #i whose principal reverberations are to be removed. Then,
its ACF R̂i (τ) at delay τ = lij is calculated, where R̂i (lij) is normalized by ACF at
null delay.

Next, calculated is the di�erence ∆Ri (lij) between R̂i (lij), the estimated ACF of
the signal received by microphone #i, and R̄∗

i (lij), the expected average for Ri (lij)
, and is expressed as follows:

R̂i(lij)− R̄∗
i (lij) =

N−1∑
k=0

(ri(k) − αijri(k − lij))(ri(k + lij) − αijri(k))

N−1∑
k=0

(ri(k) − αijri(k − lij))2

− R̄∗
i (lij) (B.1)
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=

α2
ij

N−2lij−1
P

k=0
ri(k)ri(k+lij)−αij(

N−lij−1
P

k=0
r2
i (k)+

N−2lij−1
P

k=0
ri(k)ri(k+2lij)+

lij−1
P

k=0
ri(k)ri(k+N−2lij))+Ri(lij)

α2
ij

N−lij−1
P

k=0
r2
i
(k)−2αij

N−lij−1
P

k=0
ri(k)ri(k+lij)+Ri(0)
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=
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<
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=
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=

;

1
Ri(0)

8

<

:

α2
ij

N−lij−1
P

k=0
r2
i
(k)−2αij

N−lij−1
P

k=0
ri(k)ri(k+lij)+Ri(0)
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=
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(B.3)

∆Ri(αij) =
Bα2

ij − (A + D + E)αij + Ri(lij/0)

Aα2
ij − 2Cαij + 1

− R̄∗
i (lij) (B.4)

where the average ACF R̄∗
i (τ) at τ = lij is independent of αij, so R̄∗

i (τ) can be
regarded as a constant, and (B.3) is normalized by the ACF at null delay to avoid
truncation errors, which may occur by calculation as there is a large di�erence
between absolute value A and others. Each component in (B.3) normalized by
Ri(0) is replaced with notations de�ned as follows:

A =
1

Ri(0)

N−lij−1∑
k=0

r2
i (k), B =

1

Ri(0)

N−2lij−1∑
k=0

ri(k)ri(k + lij)

C =
1

Ri(0)

N−lij−1∑
k=0

ri(k)ri(k + lij), D =
1

Ri(0)

N−2lij−1∑
k=0

ri(k)ri(k + 2lij)

E =
1

Ri(0)

lij−1∑
k=0

ri(k)ri(k + N − 2lij), Ri(lij/0) =
Ri(lij)

Ri(0)

where these are constants and satisfy the following inequalities

−1 ≤ A, B, C, D, E, Ri(lij/0), R̄∗
i (lij) ≤ 1

Substituting these constants into (B.3), we can obtain a simple form (B.4) for (B.3).
Here we introduce plausible conditions to prove that there exists a solution αij for
∆Ri (lij) = 0 within interval [-1,1].

A ≥ 0 because A is the squared sum of the input signal. Comparing the de�-
nitions of A and C, we can see that they are product sums over the same interval,
where A is a squared sum, while C is not. Based on the property of the ACF, we
have a relation between A and C as −1 < −A < C < A < 1. Similarly, we have a
relation between A and D + E as −1 < −A < D + E < A < 1, or 0 < A + D + E.
These inequalities yield C2 < A. Now, the denominator of (B.4) is concave as
quadratic coe�cient A is positive. The discriminant of the denominator of (B.4)
d = C2 − A is negative because C2 < A. So, the denominator of (B.4) has no
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Figure B.1: Function ∆Ri (αij) where (a) is in general and (b) in special case

solution taking positive values for any αij. It can be concluded that the function
∆Ri (αij) is continuous over all region for αij.

In the case of αij = 0, ∆Ri (0) becomes Ri(lij/0)− R̄∗
i (lij), and is positive because

Ri(lij/0) is larger than R̄∗
i (lij). lij has been chosen at which the di�erence between

the ACF of microphone #i and the average ACF is positive maximal. As αij goes
to ±∞, ∆Ri (αij) asymptotically reaches B/A − R̄∗

i (lij).

B.2 The shape of ∆Ri (αij) for −1 ≤ αij ≤ 1

Assuming that target sources are located apart from walls, lij the time delay that
yields the maximum di�erence between the ACF of the signal received by microphone
#i and the average ACF, is su�ciently larger than unity. This assumption leads to
inequalities A ≫ D + E, A ≫ B, A ≫ Ri(lij/0) and A ≫ C. Here, αij that gives
the extremum of the function ∆Ri (αij) is calculated as

αij =
B − ARi(lij/0)

A(A + D + E) − 2BC

±
√

(B − ARi(lij/0))2 − {A(A + D + E) − 2BC}{2CRi(lij/0) − (A + D + E)}
A(A + D + E) − 2BC

Considering relative values for αij and continuity of ∆Ri (αij), we can see that
∆Ri (αij) takes the shape shown in Fig. B.1(a) for the general case and (b) in
special case though (b) can be convex or concave.

B.3 Existence of a solution for αij between -1 and 1

Here, we will con�rm that the product ∆Ri(−1)Ri(1) is negative, in order to show
that a solution of the equation ∆Ri (αij) = 0 exists within the interval [-1,1],
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under situation that ∆Ri (αij) is continuous for −∞ ≤ αij ≤ ∞. The product
∆Ri(−1)Ri(1) yields

∆Ri(−1)∆Ri(1) =(
B + (A + D + E) + Ri(lij/0)

A + 2C + 1
− R̄∗

i (lij)

)(
B − (A + D + E) + Ri(lij/0)

A − 2C + 1
− R̄∗

i (lij)

)
Dividing denominators and numerators of the fraction part of the above equation
by A, we get the result expressed as

∆Ri(−1)∆Ri(1) =(
B
A

+ (1 + D
A

+ E
A
) + Ri(lij/0)

A

1 + 2C
A

+ 1
A

− R̄∗
i (lij)

)(
B
A
− (1 + D

A
+ E

A
) + Ri(lij/0)

A

1 − 2C
A

+ 1
A

− R̄∗
i (lij)

)

≃
(
0.5 − R̄∗

i (lij)
) (

−0.5 − R̄∗
i (lij)

)
where fractions B/A, C/A, (D+E)/A and Ri(lij/0)/A are approximately null and 1/A is
approximately unity. Let us consider that the product ∆Ri(−1)Ri(1) is dependent
on the average ACF R̄∗

i (lij). The product ∆Ri(−1)Ri(1) is a quadratic function of
the average ACF R̄∗

i (lij). Furthermore, the quadratic coe�cient is positive, so this
function is concave. Hence, if the average ACF R̄∗

i (lij) satis�es−0.5 < R̄∗
i (lij) < 0.5,

the product ∆Ri(−1)Ri(1) is negative.
On the other hand, it is obvious that A ≫ Ri(lij/0) and R̄∗

i (lij)−Ri(lij/0) < 0. So,
the average ACF R̄∗

i (lij) is approximately null at τ = lij and then it satis�es −0.5 <
R̄∗

i (lij) < 0.5. It can be concluded that a solution of the equation ∆Ri (αij) = 0
exists within the interval [-1,1].

B.4 Convergence of the proposed algorithm

Let us verify that the estimation algorithm converges to the solution of the equation
∆Ri (αij) = 0 that de�nitely exists within the interval [-1,1]. Here, we consider the
initial value for αij. It is clear that the extremum of the function ∆Ri (αij) exist
only once within the interval [-1,1]. So, we can easily make the algorithm converge
using Newton-Raphson method with zero initial value.



Appendix C

Voice-controlled TV system

C.1 System architecture

The TV control system [40] consists of following 6 Sub Systems (SSys.):

• Signal processing SSys.

• Speech recognition SSys.

• Dictionary management SSys.

• Retrieval SSys.

• Command conversion SSys.

• TV control SSys.

A structure of the TV control system is depicted in Fig. C.1. The signal processing
SSys. extracts speech segments, reduces noise and suppresses re�ected waves. The
processed signal is sent to the speech recognition SSys. �Julian� is employed as the
speech recognition SSys. here. A speech recognition result obtained by the speech
recognition SSys. is sent to the command conversion SSys. and the retrieval SSys.
according to the speech recognition result if necessary. A speech recognition result
is converted into a TV set activation command by the command conversion SSys.,
then sent to the TV control SSys. The behaviors of TV are controlled by the TV
control SSys. using TV activation commands. The TV program retrieval SSys. tries
to �nd them by TV programs based on a program title itself, a category name or
names of performers referring to stored information obtained from an online TV
program system. Retrieval results are sent to the TV control SSys. and the TV
control SSys. changes the channel if the retrieved program is currently available.
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Figure C.1: Structure of TV control system

A speech input device

Figure C.2 shows an input device for speech input for the TV control system. This
device is designed as a substitute for the conventional remote controller. It has four
microphones mounted on a line with 5cm spacing. It is designed to be put on a
table in front of a user expecting 50 ∼ 100cm distance to the user.

Figure C.2: Interface for speech input
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Signal processing SSys.

The signal processing SSys. processes detection of speech segments, estimation of the
signal arrival direction, delay-and-sum or phase-rotation and sum processing, known
noise reduction and dereverberation. These processes can be combined depending
on situations.

Speech recognition SSys.

Julius/Julian[25] developed by continuous speech recognition consortium is em-
ployed in the proposed system as the speech recognition decoder. The vocabulary
required for speech recognition here is restricted within that for controlling TV set
or TV program retrieval. The language model for speech recognition is described as
a �nite state automaton. Employed as the acoustic model for speech recognition is
a phoneme level HMM developed on clean speech data. A vocabulary dictionary is
updated periodically by a dictionary management SSys. referring to the online TV
program table, e.g. [41].

Dictionary management SSys.

The dictionary management SSys. consists of information extraction part, vocabu-
lary management part, command table generation part and TV program retrieval
database generation part.

i) Information extraction part
Information extraction part acquires information about TV programs from online
TV program tables available on Internet. ii) Vocabulary management part
The vocabulary management part creates the reading using �chasen ver.2.3.3� [42]
for each data obtained by the information extraction part. Then each reading is
converted to a sequence of phoneme and is added to the speech recognition dictio-
nary.

iii) Command generation part
A command table is referred to when a speech recognition result is to be changed into
a TV activation command. The command generation part modi�es the command
consisting of titles of TV program, broadcasting time, category name, names of
performers, channel number extracted by the information extraction part.

iv) TV program retrieval database generation part
TV program names are retrieved by referring to the TV program retrieval database.
A row of this database consists of titles of TV program, channel number, broadcast-
ing time, category name and names of performers.

Command conversion SSys.

The command conversion SSys converts a speech recognition result transferred from
a speech recognition SSys or a TV program retrieval result transferred from a re-
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trieval SSys into a TV activation command and sends them to the TV control SSys.

Retrieval SSys.

The retrieval SSys. performs and/or retrieval using genre names and performer
names. Moreover, this SSys. can re�ne search procedures. To perform the retrieval,
we modify the TV program retrieval database using information extracted by the
dictionary management SSys. The TV program retrieval database consists of a
program title, channel number, broadcasting time, genre, performers and so on.

TV control SSys.

The TV control SSys. controls a TV set with TV control commands transferred
from the command conversion SSys. The TV control SSys. selects the speci�ed TV
program and displays dialog boxes for showing the system status and/or retrieval
results. The dialog box for showing the system status shows the current processing
status of the system, e.g. waiting for a user command or during processing etc., to-
gether with speech recognition results, the name of the TV station, channel number
and sound volume. The other dialog box for retrieval shows the retrieval word and
retrieval results, or the number of TV programs matching with the retrieval word
and information about the TV program. Figure C.3 shows an example of the output
of the system.

The dialog box for showing the system status is placed at the upper left of Fig.
C.3 and the dialog box for retrieval is placed at the lower left of Fig. C.3.

Figure C.3: An expamle of screen shot of TV control system
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Supplements on statistics

D.1 Wishart distribution

Let x1:n = [xT
1 , · · · , xT

n ]T denote a n × p matrix which x1, · · · , xn ∈ Rp are drawn
according to

x1, · · · , xn ∼ N (0, Λ)

A p × p matrix A = xT
1:nx1:n follows a Wishart distribution.

A ∼ W(n, Λ)

where parameters n and Λ are a degree of freedom and a scale parameter, respec-
tively. The dimension of A (p× p) is not explicitly represented in the notation, but
it is determined by Λ. The Wishart distribution can de�ne a distribution on a set
of positive de�nite matrices. The probability density is represented by [94]

W(A; n, Λ) =

(
2

np
2 π

p(p−1)
4

p∏
i−1

Γ(
n + 1 − i

2
)

)−1

|Λ|−
n
2 |A|

n−p−1
2 exp

[
−1

2
trace(Λ−1A)

]
The mean of this distribution is

E[A] = nΛ

In case dimension p = 1, the Wishart distribution is the χ2 distribution.

D.2 Inverse Wishart distribution

Let Λ denote a p× p matrix and n ∈ N∗. A matrix Σ is distributed according to an
inverse Wishart distribution (Σ ∼ IW(·; n, Λ)) if Σ−1 is distributed according to a
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Wishart
Σ−1 ∼ W(n, Λ−1)

The probability density of Σ is given by [94]

IW(Σ; n, Λ) =

(
2

np
2 π

p(p−1)
4

p∏
i−1

Γ(
n + 1 − i

2
)

)−1

|Λ|−
n
2 |Σ|−

n−p−1
2 exp

[
−1

2
trace(ΛΣ−1)

]
The mean of inverse Wishart distribution is

E[Σ] =
Λ

(n − p − 1)

D.3 Normal inverse Wishart distribution

Let θ = (µ, Σ). θ follows a normal inverse Wishart distribution if µ and Σ follow a
normal Gaussian distribution

µ|Σ ∼ N (µ0,
Σ

κ0

)

where hyperparameters µ0 ∈ Rp and κ0 > 0 are known and �xed. Moreover, Σ
follows a inverse Wishart

Σ−1 ∼ W(ν0, Λ
−1
0 )

where hyperparameters ν0 > p and Λ0 ∈ Mp×p are known and �xed. We can simply
represent as follows:

θ = (µ, Σ) ∼ NIW(µ0, κ0, ν0, Λ0)

The distribution for θ is given by

p(θ) ∝ |Σ|−
ν0+p+2

2 exp

[
−1

2
trace(Λ0Σ

−1 − κ0

2
(µ − µ0)

T Σ−1(µ − µ0))

]

D.4 Dirichlet distribution

A Dirichlet distribution is a distribution on a set of discrete probabilities of the
dimension K. Let p0 denote a vector of the dimension k where ∀j = 1, · · · , K,
p0(j) ≥ 0 and ΣK

j=1p0(j) = 1. p0 de�nes a set of discrete probabilities of the
dimension K. Let α ≥ 0 denote a scalar coe�cient. The Dirichlet distribution
D(·; αp0) of a vector p0 and a scale parameter α is de�ned by

Pr(p|p0, α) = D(p; αp0) =
Γ(ΣK

j=1αp0(j ))∏K
j=1Γ(αp0(j ))

K∏
j=1

[p(j )]αp0(j )−1
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where p is a vector of the dimension K representing a set of discrete probabilities
(∀j = 1, · · · , K, p(j) ≥ 0 and ΣK

j=1p(j) = 1) and Γ is a gamma function1. The
vector p0 give the mean of a distribution

E[p(j)] = p0(j).

A parameter α is a factor regulating a variance around the mean

V ar[p(j)] =
(1 − p0(j))

(1 + α)
.

1In case the dimension K = 2, the Dirichlet distribution is equivalent to a beta distribution.





RESUMÉ DE LA THÈSE EN FRANÇAIS

Les technologies de la reconnaissance de la parole ont des performances acceptables
si l'on utilise un micro dans des environnements calmes. Si des micros se situent à
une position distante d'un locuteur, il faut développer des techniques de la soustrac-
tion de bruits et de réverbération. Une technique pour réduire des sons émis par
les appareils environnants est proposée. Bien que l'annulation adaptative du bruit
(ANC) soit une solution possible, l'excès de soustraction peut causer la distorsion
de la parole estimée. Le système proposé utilise la structure harmonique des seg-
ments vocaliques que les ANCs conventionnels n'a pas prise en compte directement.
La méthode de déréverbération conventionnelle provoque l'excès de soustraction car
on suppose que la caractéristique de fréquence, est plate. Il faut donc estimer le
temps réel de réverbération pour résoudre ce problème. On propose une méthode
de dé-réverbération aveugle utilisant un micro avec des fonctions d'auto-corrélation
sur la séquence de composants à chaque fréquence. Une technique pour échapper au
problème de permutation qui se provoque lorsqu'on utilise l'analyse en composantes
indépendantes (ICA) dans le domaine de fréquence, est également proposée : le
Multi-bin ICA. En�n, ce travail propose une technique pour estimer les spectres de
bruit et de parole sans développer de modèle de gaussienne à mélange (GMM). Le
spectre de la parole est modélisé à l'aide mélange de processus de Dirichlet (Dirichlet
Process Mixture : `DPM') au lieu du GMM.

RESUMÉ DE LA THÈSE EN ANGLAIS

Speech recognition technology reaches almost a practical level if we use a close con-
tact microphone in quiet environments. However, in case microphones are located
at a distant position from a speaker, it is necessary to develop noise reduction and
dereverberation techniques. A technique for reducing obstructive sounds emitted
by the target apparatus to be controlled is proposed. The proposed system uses
harmonic structure of voiced segments which conventional ANCs does not directly
take into account. A new dereverberation technique considering the frequency char-
acteristics on re�ective surfaces is also proposed. Over-subtraction occurs in con-
ventional dereverberation in case of �at frequency characteristics. So, it is required
to estimate the actual reverberation time assuming the frequency characteristics
of re�ection. Proposed is a single channel blind dereverberation technique using
auto-correlation functions on the time sequences of frequency components. A tech-
nique to escape from the permutation problem which appears in frequency-domain
Independent Component Analysis (ICA) is also proposed : the Multi-bin ICA (MB-
ICA). Finally, a technique to estimate speech spectrum using a particle �lter with
a single microphone is proposed. This technique consists in estimating noise and
speech spectra using a model based on Dirichlet Process Mixture (DPM) instead of
the Gaussian Mixture Model (GMM). It is thus expected to develop a method to
estimate the spectrum adaptively.


