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Spécialité : Mathématiques

présentée et soutenue par

Olivier SERMAN

ESPACES DE MODULES
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Membres du jury :

Arnaud BEAUVILLE Professeur à l’Université de Nice Directeur
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ESPACES DE MODULES DE FIBRÉS

ORTHOGONAUX SUR UNE COURBE

ALGÉBRIQUE

Olivier Serman

Résumé. — On étudie dans cette thèse les espaces de modules de fibrés
orthogonaux sur une courbe algébrique lisse.

On montre dans un premier temps que le morphisme d’oubli associant à
un fibré orthogonal le fibré vectoriel sous-jacent est une immersion fermée : ce
résultat repose sur un calcul d’invariants sur les espaces de représentations de
certains carquois.

On présente ensuite, pour les fibrés orthogonaux de rang 3 et 4, des résultats
plus concrets sur la géométrie de ces espaces, en accordant une attention par-
ticulière à l’application thêta.

Abstract (Moduli schemes of orthogonal bundles over an algebraic
curve)

We study in this thesis the moduli schemes of orthogonal bundles over an
algebraic smooth curve.

We first show that the forgetful morphism from the moduli space of orthog-
onal bundles to the moduli space of all vector bundles is a closed immersion:
this relies on an explicit description of a set of generators for the invariants on
the representation spaces of some quivers.

We then give, for orthogonal bundles of rank 3 and 4, some more concrete
results about the geometry of these varieties, with a special attention towards
the theta map.
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INTRODUCTION

L’objet de cette thèse est l’étude des espaces de modules de fibrés or-
thogonaux définis sur une courbe algébrique complexe C. Ces espaces ont
été construits en 1976 dans sa thèse par Ramanathan, qui a en fait plus
généralement établi l’existence d’espaces de modules grossier MG paramétrant
les fibrés G-principaux sur C pour tout groupe algébrique G semi-simple
connexe.

0.1. Espaces de modules de fibrés vectoriels

Dans le cas G = SLr, on retrouve l’espace de modules SUC(r) des fibrés
vectoriels de rang r et de déterminant trivial, dont la construction (menée à
bien grâce à des résultats fondateurs de Mumford, Narasimhan et Seshadri,
pour ne citer qu’eux) a constitué l’une des premières grandes réalisations de la
théorie de la géométrie invariante (qu’elle a d’ailleurs motivée). La géométrie
de ces espaces (qui fournissent des exemples non triviaux de variétés de grande
dimension) a fait depuis lors l’objet de nombreux travaux.

L’un des plus remarquables concerne sans aucun doute l’étude des sections
de leurs fibrés en droites, qui a tout récemment culminé avec la vérification par
Marian et Oprea de la dualité étrange (signalons au passage la preuve obtenue
indépendamment par Belkale, cf. [Bel]). Rappelons rapidement de quoi il s’agit
(on renvoie à l’excellent et toujours d’actualité [Bea95] pour les détails) :
Drézet et Narasimhan ont montré que le groupe de Picard Pic(SUC(r)) admet
pour générateur ample le fibré déterminant L, défini par le diviseur thêta
généralisé

ΘL = {E|h0(C,E ⊗ L) 6= 0}
associé à un fibré L ∈ Jg−1. L’étude des plongements projectifs de SUC(r)
passe donc par une bonne description des sections des puissances Lk de ce
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fibré déterminant. La dimension de ces espaces a été prédite par la formule de
Verlinde (prouvée indépendamment par Beauville–Laszlo et par Faltings).

Le cas k = 1 avait été obtenu plus tôt par Beauville, Narasimhan et
Ramanan, comme conséquence de l’existence d’une dualité naturelle entre
H0(SUC(r),L) et H0(Jg−1,O(rΘ)), où Θ désigne le diviseur thêta canonique
sur Jg−1. Cette dualité se réalise comme cas particulier de la construction
suivante : considérons l’application induite par le produit tensoriel

SUC(r) × UC(k, k(g − 1)) −→ UC(rk, rk(g − 1)),

où UC(k, d) désigne l’espace des fibrés vectoriels de rang k et degré d. L’image
inverse par ce morphisme du diviseur

Θrk = {E ∈ UC(rk, rk(g − 1))|h0(C,E) 6= 0}
définit un élément de H0(SUC(r),Lk)⊗H0(UC(k, k(g−1)),O(rΘk)). La dualité
étrange affirme que la dualité correspondante est parfaite (les deux preuves
citées plus haut utilisent la formule de Verlinde).

Cette dualité vient avec une description particulièrement intéressante des
applications SUC(r) 99K |Lk|∗ ; en particulier, on obtient pour k = 1 une
identification naturelle entre ϕL : SUC(r) 99K |L|∗ et l’application thêta

SUC(r) //___ |rΘ|

E
� // ΘE

où ΘE = {L ∈ Jg−1|h0(C,E ⊗ L) 6= 0} est, pour E générique, un diviseur
linéairement équivalent à rΘ.

Cette description de ϕL fournit, comme l’avaient déjà remarqué Narasim-
han et Ramanan, une approche privilégiée pour l’étude explicite de ces es-
paces en petit rang et petit genre. On peut citer ici (chronologiquement) les
résultats suivants, qui font apparâıtre dans ce contexte des variétés connues
des géomètres classiques :

– en genre 2, θ : SUC(2) −→ |2Θ| ≃ P
3 est un isomorphisme (voir [NR69]),

– en genre 3, θ : SUC(2) −→ |2Θ| ≃ P
7 est, pour une courbe non hyperellip-

tique, une immersion fermée sur une quartique, qui se trouve être la quartique
de Coble, i.e. l’unique quartique Q ⊂ |2Θ| singulière le long de l’image de
l’application de Kummer α ∈ J 7−→ Θα + Θ−α ∈ |2Θ| (voir [NR87]),

– pour toute courbe non hyperelliptique, θ : SUC(2) −→ |2Θ| est une im-
mersion fermée (voir [BV96] et [vGI01]),

– en genre 2, θ : SUC(3) −→ |3Θ| ≃ P
8 est un morphisme de degré 2, ramifié

le long d’une sextique S, dont l’hypersurface duale dans |3Θ|∗ est la cubique
de Coble, i.e. l’unique cubique C singulière le long de l’image du plongement
J1 −→ |3Θ|∗ (voir [Ort05], ou [Ngu07]).
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Il semble à l’heure actuelle difficile d’obtenir de nouveaux résultats dans ce
sens, même lorsque θ est un morphisme. Aussi est-il naturel d’entreprendre
l’étude des espaces de modules de fibrés G-principaux, en confrontant les
résultats obtenus aux résultats connus relatifs au cas des fibrés vectoriels.

0.2. Espaces de modules de fibrés G-principaux

On dispose maintenant de nombreux résultats relatifs aux espaces de mo-
dules MG de fibrés G-principaux. Les groupes de Picard de leurs composantes
connexes ont été décrits par Beauville, Laszlo et Sorger, ainsi que par Kumar
et Narasimhan : ces groupes sont, au moins lorsque G est presque simple, en-
core cycliques, engendrés par un fibré en droites ample LG, et ce générateur
peut en fait s’obtenir comme image inverse par un morphisme MG −→ MSLr

(associé à une représentation G −→ SLr) du fibré déterminant sur MSLr (il
faut tout de même mentionner ici une différence majeure : ces variétés ne
sont en général plus localement factorielles). On est ainsi à nouveau amené à
étudier les espaces de sections des puissances Lk

G. Leur dimension est encore
donnée par la formule de Verlinde.

Les groupes classiques ont naturellement fait l’objet d’une attention parti-
culière. On peut notamment citer les travaux sur MSpinr

menés par Oxbury,
Pauly et Ramanan, qui mettent en dualité l’espace des sections de LSpinr

et la
somme directe des espaces de fonctions thêta paires de niveau r sur toutes les
variétés de Prym associées à C. Les espaces de modules de fibrés symplectiques
ont quant à eux été récemment étudiés par Hitching dans sa thèse.

Les fibrés orthogonaux ont en fait été les premiers à être considérés, ce qui
peut au premier abord parâıtre (un peu) étonnant, dans la mesure où SOr

n’est ni simplement connexe, ni spécial au sens de Serre. C’est en réponse à la
question de savoir si la variété Md des sous-espaces linéaires de P

2g+1 de di-
mension d contenues dans le lieu de base d’un pinceau générique de quadriques
admettait une interprétation naturelle en termes de fibrés sur la courbe hy-
perelliptique C associée à ce pinceau(1) que Ramanan a été conduit à décrire
dans [Ram81] l’espace de modules des fibrés orthogonaux sur une courbe hy-
perelliptique munis d’un relèvement de l’involution hyperelliptique (voir aussi
[Bho84]).

L’étude algébrique des thêta-caractéristiques sur une courbe lisse C a été
menée par Mumford en partant de l’étude des familles de fibrés vectoriels sur C
munis d’une forme quadratique à valeurs dans le fibré canonique KC . Dans sa
thèse, Sorger a généralisé cette étude aux courbes (non nécessairement lisses)

(1)On savait déjà alors que Mg−1 s’identifie à la jacobienne de la courbe, et que Mg−2 est
isomorphe à l’espace SUC(2, 1) des fibrés vectoriels sur C de rang 2 et de déterminant fixé
de degré 1.
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tracées sur une surface, en construisant au passage, pour toute courbe de
Gorenstein, des espaces de modules de faisceaux quadratiques (semi-stables)
de multiplicité r.

Plus récemment, Beauville a étendu au cas des fibrés orthogonaux le résultat
de [BNR89] : plus précisement, la restriction de l’application thêta MSLr 99K

|rΘ| définie plus haut à l’espace de modules des fibrés orthogonaux est exac-
tement l’application rationnelle MSOr 99K |LSOr |∗ définie par le générateur
ample du groupe de Picard de MSOr .

0.3. Organisation de la thèse

Le premier chapitre rassemble quelques rappels (et donc, au passage, les
notations utilisées tout au long du texte) concernant les espaces de modules
de fibrés principaux sur une courbe.

On étudie dans la deuxième partie l’application naturelle reliant MSOr et
SUC(r). On y établit le résultat suivant :

Théorème. — Le morphisme d’oubli MOr −→ MGLr est une immersion
fermée.

Ce résultat, évident sur l’ouvert de stabilité régulière, requiert aux autres
points un calcul d’invariants relativement sophistiqué, mené en 2.2 : il s’agit
de comprendre les fonctions polynomiales sur l’espace des représentations d’un
carquois invariantes sous l’action d’un produit de groupes classiques. On ob-
tient ce résultat en adaptant la démarche adoptée par Le Bruyn et Procesi
pour résoudre le cas de l’action d’un produit de groupes linéaires.

Bien entendu, la même preuve s’applique au morphisme MSp2r
−→ MSL2r

,
qui est ainsi lui aussi une immersion fermée.

Pour décrire l’application MSOr −→ MSLr il ne reste plus qu’à étudier
l’application MSOr −→ MOr oubliant l’orientation. Lorsque r est impair,
c’est tout simplement un isomorphisme sur son image. En revanche, lorsque r
est pair, c’est un morphisme de degré 2 (sur son image) : un fibré orthogonal
(unitaire) de rang pair général admet deux orientations non-équivalentes.

La troisième partie rassemble quelques éléments relatifs à la structure locale
des espaces de modules de fibrés sur C : la traduction du problème d’invariant
donné par le théorème des slices étales de Luna en termes de représentations
de carquois suggère en effet de chercher du côté des travaux concernant les
algèbres de fonctions invariantes sur les espaces de représentations de certains
carquois. Néanmoins, on ne dispose de descriptions complètes que dans très
peu de cas, et de tels résultats semblent de plus en plus difficiles à obtenir.
On décrit ainsi dans cette partie la structure locale de MOr aux points où
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c’est le plus faisable, puis on complète l’étude de SUC(3) pour une courbe de
genre 2 commencée par Laszlo : c’est, en rang supérieur à 3, le seul cas où l’on
peut aujourd’hui obtenir, par cette méthode, une description locale exhaustive
de SUC(r) en termes de générateurs et relations d’un modèle affine(2). Cette
étude point par point donne le résultat suivant :

Théorème. — L’espace SUC(3) des fibrés vectoriels de rang 3 sur une courbe
de genre 2 est localement intersection complète.

Les quatrième et cinquième parties sont consacrées à l’étude explicite des
espaces de modules de fibrés orthogonaux en rang 3 et 4, en accordant une
attention particulière à l’application thêta. On utilise constamment les iso-
morphismes exceptionnels Spin3 ≃ SL2 et Spin4 ≃ SL2 × SL2.

Il résulte de [Ray82] que l’application thêta MSL3 99K |3Θ| est un mor-
phisme pour une courbe générique. On vérifie dans la quatrième partie que sa
restriction à MSO3 est toujours un morphisme. Pour une courbe de genre 2, on
obtient une description assez précise de chacune des composantes connexes de
MSO3 (l’essentiel de cette étude étant une reformulation des résultats contenus
dans [NR03]).

Le résultat le plus inattendu de la cinquième partie concerne la composante
connexe M+

SO4
de MSO4 constituée des fibrés topologiquement triviaux.

Théorème. — En rang 4, l’application thêta M+
SO4

−→ |4Θ| n’a pas de point
de base.

Au contraire, un argument (dû à Beauville) montre que, en genre 2, dix
des seize points de base dans MSL4 construits par Raynaud sont naturelle-
ment munis d’une structure quadratique (tandis que les six autres portent une
structure symplectique). Pauly a récemment montré qu’il n’y avait pas d’autre
fibré de rang 4 (de déterminant trivial) sans diviseur thêta. Ce résultat per-
met en particulier de déterminer le lieu de base de θ4 : MSO4 99K |4Θ|. On
retrouve ici ce résultat, en donnant une description directe du lieu de base de
la restriction de l’application thêta à la composante connexe M−

SO4
.

Le théorème précédent implique que l’application thêta M+
SO4

−→ |4Θ| est
un morphisme fini.

(2)La récente prébublication Drensky-La Scala (arXiv :0708.3583) montre que l’on ne com-
prend à l’heure actuelle que les éléments de degré minimal de l’idéal de relations sur lequel
repose l’étude de la structure locale de SUC(4) pour une courbe de genre 2 au voisinage
du fibré trivial, tandis que Benanti-Drensky, C. R. Acad. Bulg. Sci., 60 (2007), indique que
l’on est confronté au même problème lorsque l’on considère le voisinage du fibré trivial dans
SUC(3) pour une courbe de genre 3.
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Théorème. — Si C est une courbe de genre 2, l’application thêta M+
SO4

−→
|4Θ| est un morphisme fini sur son image de degré générique 2. Son image est
une sous-variété de dimension 6 et de degré 40.

L’appendice A présente la description des espaces de modules MSOr pour
une courbe elliptique. L’appendice B contient l’essentiel de ce dont on a eu
besoin au sujet des variétés abéliennes et des représentations de Heisenberg.
L’appendice C rappelle quant à lui les quelques éléments de cohomologie non-
abélienne dont on a eu l’usage au cours du texte. Si l’on s’appuie bien sûr sur
la référence [Gir71], ces résultats sont en fait essentiellement contenus dans
le mémoire de Frenkel, Bull. Soc. Math. France 85 (ou encore dans le cours
de Serre « Cohomologie galoisienne »).



CHAPTER 1

PRELIMINARIES

Throughout this thesis we fix a smooth projective curve C of genus g (> 2,

except in Appendix A) defined over an algebraically closed field k of charac-

teristic zero. All varieties are defined over k.

We will denote by Jd the Jacobian variety parametrizing line bundles of

degree d on C. Two values of d deserve a special attention: when d = 0,

we will write J instead of J0; when d = g − 1, the variety Jg−1 contains the

canonical theta divisor Θ, whose support consists of all line bundles having

non-zero sections. Some other notations and facts about Jacobian varieties

(used in Chapter 4 and Chapter 5) have been compiled in Appendix B.

1.1. Principal G-bundles

This section is aimed to collect rather quickly some old and well-known ma-

terial. Let us begin with some basic facts about G-bundles: the best reference

for the notion of principal bundles remains Serre’s seminar report [Ser]. We

briefly recall from it the definitions and basic constructions.

Let G be a reductive algebraic group.

Definition 1.1.1 (Principal G-bundle). — A principal G-bundle P → S

over a variety S is a variety with a right action of G locally trivial in the étale

topology: S admits an étale cover f : Y → S such that f∗P is isomorphic to

the trivial G-bundle Y ×G.

There is a natural way to associate to any G-bundle P on S and any quasi-

projective variety F acted on by G a fiber bundle over S:
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Definition 1.1.2 (Associated fiber bundle). — If G acts (from the left)

on a quasi-projective variety F , we define P (F ) = P ×G F to be the quotient

(P × F )/G, where G acts on P × F by (p, f) · g = (p · g, g−1 · f) (it is the

unique variety Q over which P × F is a G-bundle).

In particular, if ρ : G → G′ is a morphism, the associated bundle P (G′) is

naturally a G′-bundle: this is the extension of structure group of P from G to

G′, which will be also denoted by ρ∗P .

Conversely, if H is a subgroup G, we call reduction of structure group of P

from G to H a H-bundle Q together with an (G-)isomorphism Q(H) → P .

Lemma 1.1.3. — If P is a G-bundle, reductions of structure group of P from

G to a subgroup H are in a one-to-one correspondence with sections over X of

the associated fiber bundle P/H = P ×G G/H. Two sections give isomorphic

reductions of structure group if and only if they differ by a G-automorphism

of P .

The H-bundle associated to a G-bundle P and a section σ : X −→ P/H is

the pull-back (via σ) of P viewed as an H-bundle over P/H. We will thus

denote it by σ∗P .

Example 1.1.4. — We review here what principal bundles are for classical

groups.

(i) Giving a GLr-bundle P is exactly giving the associated rank r vector

bundle E = P (kr), and SLr-bundles correspond to vector bundles with trivial

determinant. A PGLr-bundle corresponds to a Severi-Brauer variety (this fol-

lows from the fact that PGLr is the group of automorphisms of the projective

space P
r−1).

(ii) In the case we are studying, we find that Or-bundles are precisely vec-

tor bundles E over S of rank r endowed with a non degenerate quadratic

form q : E → OS (which may advantageously be thought of as a symmetric

isomorphism E → E∗); we will therefore call them orthogonal bundles. An

SOr-bundle P is then an oriented orthogonal bundle P = (E, q, ω), the orien-

tation ω coming as a section of H0(S, detE) whose square is equal to 1 (which

means that q̃(ω) = 1, where q̃ is the quadratic form on detE induced by q).

(iii) In the same way, for even r, Spr-bundles are symplectic bundles, that

is vector bundles E with a symplectic form E ⊗ E −→ OS (or, equivalently,

with an antisymmetric isomorphism E −→ E∗).
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1.2. The moduli schemes MG over a curve

The problem of classifying principal G-bundles on the curve C has been

solved by Ramanathan in his thesis (published twenty years later in [Ram96]).

We recall here the precise definition of the moduli spaces, and the basic prop-

erties of these schemes.

1.2.1. As for vector bundles, the set of isomorphism classes of G-bundles

over C is not bounded. To get a moduli space for G-bundles, we thus need to

exclude some G-bundles. Ramanathan gave the right notion of semi-stability.

This is done by considerating the reductions of structure group of P to the

parabolic subgroups of G.

Definition 1.2.2 (Ramanathan). — A G-bundle P over C is semi-stable

(resp. stable) if, for every parabolic subgroup H ⊂ G, for every non trivial

character χ of H, and for every H-bundle P ′ whose associated G-bundle P ′(G)

is isomorphic to P , the line bundle χ∗P
′ satisfies deg(χ∗P

′) 6 0 (resp. < 0).

When G = SLr, this gives the classical notion of semi-stability for vector

bundles: a rank r vector bundle E of degree d is semi-stable (resp. stable) if

and only if

µ(F ) = deg(F )/ rk(F ) 6 µ = d/r

(resp. <) for every proper subbundle F ⊂ E. When G is the orthogonal group,

the situation remains as simple: an (oriented) orthogonal bundle is semi-stable

if and only if the preceding slope inequality holds for all isotropic subbundle

F (see [Ram75, Remark 3.1]). The correspondence between semi-stability of

an orthogonal bundle and semi-stability of its underlying vector bundle is as

good as we can hope:

Proposition 1.2.3 (Ramanan). — An orthogonal bundle P = (E, σ) is

semi-stable if and only if its underlying vector bundle E is semi-stable. It

is stable if and only if E is the direct sum of some mutually non-isomorphic

stable bundles.

Note that, in the general case, Ramanathan has proved that a G-bundle P

is semi-stable if and only if its adjoint (vector) bundle P ×G g is semi-stable.

1.2.4. We can now define what the coarse moduli scheme MG is. Let us con-

sider the functor FG which associates to any scheme S the set of isomorphism

classes of G-bundles P over S × C such that, for every s ∈ S, the fiber Ps is

a semi-stable G-bundle over C.
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Ramanathan has shown how to construct a coarse moduli scheme for this

functor. Recall first that in the vector bundle case, there is a coarse mod-

uli scheme (which is not projective when rank and degree are not coprime)

for stable vector bundle. To get a moduli scheme for all semi-stable vector

bundles (which is a compactification of the previous one), we need to identify

two semi-stable vector bundles when their Jordan-Hölder filtrations have the

same associated graded objects. Let us see how Ramanathan generalized this

equivalence relation to the case of G-bundles.

Definition 1.2.5 (Ramanathan). — If P is a G-bundle on C, a reduction

of structure group P ′ to a parabolic subgroup H ⊂ G is admissible if, for any

character χ on H which is trivial on the (neutral component of the) center of

G, the line bundle χ∗P
′ has degree zero.

Example 1.2.6. — For G = GLr, admissible reductions of structure group

of a vector bundle E correspond to filtrations 0 ⊂ E1 ⊂ · · · ⊂ El = E with

µ(Ei/Ei−1) = µ(E) (see [Ram96, Remark 3.4]). Jordan-Hölder filtrations of

E are thus “maximal” admissible reductions of structure group of E (note

that this means that the corresponding parabolic subgroup is minimal among

parabolic subgroups admitting an admissible reduction).

The corresponding assertion for orthogonal bundles will be explained in the

next chapter.

Proposition 1.2.7 (Ramanathan). — Let P be a semi-stable G-bundle on

C. There exists an admissible reduction of structure group σ of P to a parabolic

subgroup H such that, if p : H −→ L is the projection onto a maximal reductive

subgroup L of H, the L-bundle p∗σ
∗P is stable. The G-bundle j∗p∗σ

∗P (where

j is the inclusion L ⊂ G) depends only on P : we denote it grP .

1.2.8. Let us check that, when G = GLr, we indeed recover the Jordan-

Hölder graded object. We have just recalled that an admissible reduction σ of

structure group to a parabolic subgroup H associated to a flag 0 ⊂ V1 ⊂ · · · ⊂
Vl = kr is admissible if and only if the vector bundles Ei/Ei−1 have slope

µ(E) (where Ei = σ∗(E)(Vi)). What does the stability of p∗σ
∗P mean? If we

choose for the projection onto a maximal reductive subgroup the morphism

GLr −→ L =
∏

i

GL(Vi/Vi−1), the L-bundle p∗σ
∗P is the product of the

GL(Vi/Vi−1)-bundles Ei/Ei−1. The next lemma shows that this L-bundle is

stable if and only if every Ei/Ei−1 is a stable vector bundle, which occurs
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exactly for a Jordan-Hölder filtration (and grE is therefore the usual Jordan-

Hölder graded object, as expected).

Lemma 1.2.9. — Let (Ei)i=1,2 be two semi-stable (resp. stable) Gi-bundles.

Then the G1×G2-bundle E1×CE2 is also semi-stable (resp. stable). Moreover,

if E1 or E2 is strictly semi-stable, then the product E1 ×C E2 is strictly semi-

stable.

According to [Bor91, 11.14 (1)] any parabolic subgroup of G1 × G2 is a

product Γ = Γ1 × Γ2 where Γi is a parabolic subgroup of Gi. It follows that

maximal proper parabolic subgroups may be written Γ1 ×G2 or G1 × Γ2, Γi

being a maximal proper parabolic subgroup of Gi. Therefore the associated

bundle E/Γ is isomorphic to E1/Γ1 or E2/Γ2, and the lemma is a consequence

of the very definition of stability.

1.2.10. It can be shown that P and grP both appear in a one-parameter

family P over A
1 × C such that Pt is equal to P when t 6= 0 and to grP

when t = 0. In order to construct a moduli scheme for semi-stable G-bundles,

we therefore need to identify these two bundles: Ramanathan defined two G-

bundles to be equivalent if they share the same associated graded bundle. The

main result of [Ram96] can now be recalled.

Theorem 1.2.11 (Ramanathan). — The functor FG has a coarse moduli

space MG, whose closed points correspond bijectively to equivalence classes of

semi-stable G-bundles over C.

Remark 1.2.12. — The existence of these moduli spaces has been since then

proved for higher dimensional base varieties in arbitrary characteristic (see

[GLSS05]).

1.2.13. Let us briefly recall the main lines of the construction of MG (fol-

lowing [BLS98] or [BS02]). We fix a faithful representation ρ : G −→ SLN

and an integer M such that, for every G-bundle P , the rank N vector bundle

ρ∗P ⊗ OC(M) is generated by its global sections and satisfies H1(C, ρ∗P ⊗
OC(M)) = 0. This allows us to consider the functor RG which associate

to a scheme S the set of classes of pairs (P, α) consisting of a G-bundle P
over S×C (with semi-stable fibers) together with an isomorphism α : Oχ

S

∼−→
pS∗ (ρ∗P ⊗OC(M)) (where χ = N(M + 1 − g)). This functor, which is in-

troduced to relate G-bundles to vector bundles, is representable by a smooth

scheme RG, which will be refered to as a parameter scheme: RSLN
is indeed
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represented by a locally closed subscheme of the Hilbert scheme QuotN,NM

Oχ
C

,

and, if (U , u) denotes the universal pair on RSLN
, we see (using Lemma 1.1.3)

that RG is the RSLN
-scheme representing the functor of global sections of

U/G.

Simpson’s construction presents MSLN
as a (good) quotient RSLN

//Γ (for

sufficiently high M) by the natural action of Γ = GLχ. This action automati-

cally lifts to RG, and the structural morphism RG −→ RSLN
is Γ-equivariant.

A good quotient RG//Γ, if it exists, provides the desired coarse moduli space

for FG. According to [Ram96, Lemma 5.1], its existence follows from the one

of RSLN
//Γ.

Remark 1.2.14. — As Balaji and Seshadri have noticed, the morphism

MG −→ MSLN
is finite onto its image. It is therefore natural to ask for more

fine information about this morphism. In the next chapter, we answer this

question for the standard representations of SOr and Spr.

1.2.15. As in the case of vector bundles we know a great deal about the

properties of these schemes. The first fact to notice is that these schemes are

not necessarily connected: any G-bundle P has a topological type determined

by its degree δ(P ) ∈ π1(G) (which is defined as the image in H2
ét(C, π1(G)) of

the class of P ∈ H1
ét(C,G) via the connecting homomorphism deduced from

the exact sequence of groups 1 → π1(G) → G̃ → G → 1), and MG is the

disjoint union of the moduli spaces Mδ
G parametrizing equivalence classes of

G-bundles of given degree δ ∈ π1(G).

It follows from their construction as a GIT quotient of a smooth scheme that

each of these components is an irreducible, normal (even Cohen-Macaulay),

projective variety of dimension (g− 1) dimG+ dimZ(G). We also know that,

in general, they are not locally factorial.

We know from [BLS98, Proposition 7.4] that the Picard group Pic(Mδ
G) is

infinite cyclic when G is almost simple. In the sequel, we will denote by LMδ
G

(or Lδ
G) its ample generator. The question of giving a natural description of

this line bundle has also been studied in (loc. cit.). Recall first that the gener-

ator of the Picard group of MSLr had been previously described in [DN89].

This is the determinant line bundle LSLr , which is associated to the gener-

alized theta divisor ΘL = {E ∈ MSLr |H0(C,E ⊗ L) 6= 0} for any L ∈ Jg−1.

In the general case we first observe that every representation ρ : G −→ SLN

induces a morphism Mδ
G −→ MSLN

, so that the pull-back of LSLr defines a

line bundle on Mδ
G (called a determinantal line bundle). For a classical group,
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the ample generator of the Picard group is such a determinantal bundle (see

[BLS98, Proposition 12.4]).

1.3. Moduli spaces of orthogonal bundles

In this thesis, we will focus on the case G = SOr, which amounts to con-

sidering the moduli space of semi-stable orthogonal bundles of rank r with an

orientation. Let us now specialize to this case what has just been said for any

structure group G.

1.3.1. As we have just said, it is a normal projective variety, composed of two

connected components which are both irreducible and of dimension r(r−1)
2 (g−

1). The topological invariant distinguishing these two components has been

known for long: this is the second Stiefel-Whitney class w2 : H1
ét(C,SOr) −→

Z/2Z (originally defined for real orthogonal bundles), which satisfies the fol-

lowing property (see e.g. [Ser90]): for all orthogonal bundle (E, q) and all

theta-characteristic κ ∈ Jg−1 on C, we have

w2(E) ≡ h0(C,E ⊗ κ) + rh0(C, κ) mod 2.(1.3.1.1)

We will denote by M+
SOr

and M−
SOr

the two components of MSOr . The

first one is a quotient of the moduli MSpinr
of Spinr-bundles, while the second

one is a quotient of the twisted moduli space M−
Spinr

(see [BLS98, 2.3.c]).

1.3.2. These two varieties are not locally factorial: this has been shown first

in [LS97] (by constructing some pfaffian divisors which are not Cartier), and

it was then proved in [BLS98] that this is the case for every non simply

connected group G.

Moreover, the determinantal bundle induced by the standard representation

SOr −→ GL(kr) generates the Picard group, except when r = 4: when r > 7,

this is [BLS98, Proposition 12.4], and when r is equal to 3, 5 or 6 this is a

consequence of the exceptional isomorphisms Spin3 ≃ SL2, Spin5 ≃ Sp4 and

Spin6 ≃ SL4. When r = 4, the group SO4 is no longer almost simple, and

the Picard group of M±
SO4

has rank 2. We will go back to this more precisely

in Chapter 5.

1.3.3. We have recalled in the introduction how the theta map MSLr 99K

|rΘ| provides a somehow concrete description of the map MSLr 99K |LSLr |∗.
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We have also pointed out that this has been extended to the case of MSOr in

[Bea06a]. Let us give now more details on this result.

We consider the restriction, still denoted θ : MSOr 99K |rΘ|, of the theta

map through the morphism(1) MSOr −→ MGLr associated to the standard

representation of SOr.

Since the theta divisor ΘE ⊂ Jg−1 associated to a self-dual bundle E is

obviously fixed by the natural involution ι : L 7→ KC ⊗ L−1 of Jg−1, we see

that θ maps MSOr into the fixed locus of ι∗ in |rΘ|. This fixed locus is the

union |rΘ|+ ∪ |rΘ|− of the two eigenspaces of ι∗, and θ sends M+
SOr

in |rΘ|+
and M−

SOr
into |rΘ|−.

Theorem 1.3.4 (Beauville). — The theta map induces two canonical

isomorphisms (θ+)∗ :
(
H0(Jg−1,O(rΘ))+

)∗ −→ H0(M+
SOr

,L+
SOr

) and

(θ−)∗ :
(
H0(Jg−1,O(rΘ))−

)∗ −→ H0(M−
SOr

,L−
SOr

), which make the two

following diagrams commutative:

|L+
SOr

|∗

(θ+)∗

��

M+
SOr

ϕ
L

+
SOr

88qqqqqqqqqq

θ+
&&NNNNNNNNNNN

|rΘ|+

|L−
SOr

|∗

(θ−)∗

��

M−
SOr

ϕ
L
−

SOr

88qqqqqqqqqq

θ− &&NNNNNNNNNNN

|rΘ|−.

(1)This morphism sends an oriented orthogonal bundle P = (E, q, ω) to its underlying vector

bundle E: this is the forgetful morphism, which will be investigated in the next chapter.



CHAPTER 2

THE FORGETFUL MORPHISM

The variety MSOr is related to the moduli space MSLr of vector bundles

of rank r and trivial determinant on C through the forgetful map MSOr −→
MSLr which sends any SOr-bundle P to its underlying vector bundle E =

P (SLr). It is natural to ask whether this map is a closed embedding. In fact,

when r is even, it even fails to be injective, and it is therefore more convenient

to ask the same question about MOr −→ MGLr .

In the same way we consider the forgetful morphism MSp2r
−→ MSL2r

from the variety of symplectic bundles of rank 2r to the variety of all vector

bundles of the same rank with trivial determinant.

The main result of this chapter may be stated as follows:

Theorem. — (i) The forgetful map MOr −→ MGLr is an embedding.

(ii) When r is odd, MSOr −→ MSLr is again an embedding, while, when r

is even, it is a 2-sheeted cover onto its image.

(iii) The forgetful map MSp2r
−→ MSL2r

is also an embedding.

We give the full proof for the orthogonal case, and sketch the obvious mod-

ifications required by the symplectic one.

We consider in the first section the injectivity of MSOr −→ MSLr : this

comes down to an easy comparison of the equivalence relations between SOr-

bundles and vector bundles which define the closed points of the corresponding

moduli spaces. We then check that the tangent maps of MOr −→ MGLr

are injective. This differential point of view is much more involved: it relies

on Luna’s étale slice theorem, which naturally leads to the consideration of

representations of quivers. To carry our discussion to its end we need an

auxiliary result relative to the invariant theory of these representations for the
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action of a product of classical groups: this is the aim of the second section.

In the third one we show how this computation results in our main theorem.

2.1. About the injectivity of MSOr −→ MSLr

In this section we study the injectivity of the forgetful map MSOr −→
MSLr . The closed points of MG are in a one-to-one correspondence with the

set of equivalence classes of semi-stable G-bundles (cf. [Ram96]). When G =

SLr one easily recovers from this notion Seshadri’s definition of S-equivalence

for vector bundles.

The natural manner to study the injectivity of the forgetful morphism is to

proceed in the same way to link together equivalence between SOr-bundles and

S-equivalence between their underlying vector bundles. This will be carried

out in 2.1.2. Before this, we give another proof, which is far shorter, but has

the disadvantage to miss a precise description of what closed points of MSOr

are.

2.1.1. First proof, using Narasimhan-Seshadri’s theorem. —

2.1.1.1. Let us recall from [Ram96, 3.15] that the theorem of Narasimhan

and Seshadri remains true for principal G-bundles; more precisely, Ra-

manathan proved that any equivalence classe of semi-stable principal G-

bundles is characterized by a unitary G-bundle, unique up to isomorphism.

Recall that a unitary G-bundle is a bundle associated to a representation of

the fundamental group π1(C) of the curve in a maximal compact real subgroup

K of G in the following way (we only need to assume G to be semi-simple):

we associate to a representation ρ : π1(C) → K ⊂ G the semi-stable G-bundle

over C defined as C̃×π1(C)G, where C̃ → C is the universal cover of the curve

C.

When G = SLr, this is exactly the celebrated theorem of Narasimhan and

Seshadri (in this case, one may choose K to be the unitary group SUr, whence

the terminology). In this case we also know that unitary vector bundles are

polystable bundles, that is vector bundles which splits as the direct sum of

some stable vector bundles (having all the same slope).

In the orthogonal case, this theorem says that closed points of the moduli

space MSOr correspond to isomorphism classes of representations π1(C) →
SOr(R). Since SOr(R) ⊂ SUr, we see that any closed point corresponds (up

to isomorphism) to a unitary SOr-bundle P whose underlying vector bundle

P (SLr) is a polystable vector bundle.
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2.1.1.2. Two unitary SOr-bundles P and P ′ are sent to the same point of

MSLr if and only if they are both obtained from reduction of structure group

to SOr of the same polystable vector bundle E. Such a reduction amounts

to a section of E/SOr → C, and two of them give isomorphic SOr-bundles if

and only if they are conjugated by the action of AutSLr(E) on Γ(C,E/SOr).

Elements of Γ(C,E/SOr) correspond to isomorphisms ι : E
∼−→ E∗ such that

ι∗ = ι and det ι is the square of the trivialisation of detE inherited from the

SLr-torsor structure. The action of AutSLr(E) simply is

(f, ι) ∈ AutSLr(E) × Γ(C,E/SOr) 7→ f∗ιf.

Since E is polystable, AutGLr(E) acts transitively on the set Γ(C,E/Or)

of all symmetric isomorphisms from E onto E∗: indeed the Jordan-Hölder

filtration allows us to split E as

E =
⊕

i

(
F

(1)
i ⊗ V

(1)
i

)
⊕

⊕

j

(
F

(2)
j ⊗ V

(2)
j

)
⊕

⊕

k

(
(F

(3)
k ⊕ F

(3)
k

∗) ⊗ V
(3)
k

)
,

where V
(l)
i are finite-dimensional vector spaces and the F

(1)
i (resp. F

(2)
j , resp.

F
(3)
k ) are orthogonal (resp. symplectic, resp. non isomorphic to their dual)

mutually non isomorphic stable vector bundles, in such a way that any sym-

metric isomorphism E → E∗ is equivalent to the data of orthogonal (resp.

symplectic, resp. non degenerate) forms on each one of the V
(1)
i (resp. V

(2)
j ,

resp. V
(3)
k ). The action of

AutGLr(E) =
∏

i

GL(V
(1)
i ) ×

∏

j

GL(V
(2)
j ) ×

(∏

k

GL(V
(3)
k ) × GL(V

(3)
k )

)

on the set of these collections is obviously transitive.

Any two elements σ and σ′ of Γ(C,E/SOr) are then conjugate under the

action of AutGLr(E), by an automorphism whose determinant equals to ±1.

When r is odd −idE is an Or-isomorphism which exchanges the orientation,

and the action of AutSLr(E) on Γ(C,E/SOr) is transitive too. On the con-

trary when r is even this action fails to remain transitive. For example let

F be a vector bundle of rank r/2, non isomorphic to its dual, and consider

the two oriented orthogonal bundles F ⊕ F ∗ and F ∗ ⊕ F , equipped with the

standard hyperbolic pairing: these bundles cannot be SOr-isomorphic (in fact

any orthogonal automorphism of F ⊕ F ∗ must preserve the orientation). We

have proven so far:

Proposition 2.1.1.3. — When r is odd the map MSOr(k) −→ MSLr(k) is

injective; when r is even this is a finite map of degree 2.
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2.1.2. Closed points of MSOr . — We now give a more complete descrip-

tion of the closed points of MSOr .

2.1.2.1. Recall first the vector bundle case: every semi-stable vector bundle

E admits a Jordan-Hölder filtration, whose associated graded object gives a

polystable vector bundle, which characterizes the S-equivalence class of E. Ra-

manathan explained in [Ram96] what this notion becomes in the general case:

he associated to any semi-stable G-bundle P a graded object grP , obtained

from a suitable reduction of structure group of P to a parabolic subgroup of

G. Let us expose now with some details what it gives in the orthogonal case

(note that this has been known for long; for example see [Bho84]).

2.1.2.2. Parabolic subgroups of SOr. — If Q is a quadratic form on a r-

dimensional vector space V , any parabolic subgroup Γ of SO(Q) is the stabi-

lizer of an isotropic flag of V . If 0 = N0 ⊂ N1 ⊂ · · · ⊂ Nl is such a flag, then

its stabilizer Γ stabilizes 0 = N0 ⊂ N1 ⊂ · · · ⊂ Nl ⊂ N⊥
l ⊂ · · · ⊂ N⊥

1 ⊂ V

too. In a basis adapted to the first flag, in which Q is represented by a matrix

MatQ =




0 0 Idim Nl

0 MatQ′ 0

Idim Nl
0 0


 where MatQ′ is the matrix of the non de-

generate quadratic form Q′ induced on N⊥
l /Nl by Q, Γ must be a subgroup

of the group of matrices of the form

M =




A1 ∗ · · · ∗
0 A2

. . .
...

...
. . .

. . . ∗
0 · · · 0 Al

∗
...
...

∗

∗

0 · · · · · · 0 B ∗ · · · · · · ∗

0

0
...
...

0

tA1
−1 0 · · · 0

∗ tA2
−1 . . .

...
...

. . .
. . . 0

∗ · · · ∗ tAl
−1




,

where Ai ∈ GLri−ri−1 , B ∈ SO(Q′) (and ri = dimNi).

Hence, if P is a semi-stable SOr-bundle and E = P (SLr) its associated

vector bundle, a reduction of structure group σ of P to a parabolic subgroup

Γ defined by an isotropic flag 0 = N0 ⊂ N1 ⊂ · · · ⊂ Nl induces isotropic

subbundles Ei = σ∗E(Ni) ⊂ E of rank ri giving a filtration 0 = E0 ⊂ E1 ⊂
· · · ⊂ El ⊂ E⊥

l ⊂ · · · ⊂ E⊥
1 ⊂ E. But one knows how to construct such a
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filtration, with the extra conditions that Ei/Ei−1 is a stable bundle of degree

0 and E⊥
l /El a stable orthogonal bundle. By [Ram81, 4.5] the latter splits

as a direct orthogonal sum of mutually non-isomorphic stable bundles. The

graded object grE• is then precisely the Jordan-Hölder one, which is known

to characterize the point of MSLr corresponding to E.

2.1.2.3. A representative of the equivalence class of P as an orthogonal bundle

is given by the SOr-bundle grP obtained from a suitable reduction of structure

group of P to a parabolic subgroup of SOr (cf. [Ram96, 3.12]). Let us check

that the reduction σ attached to the above filtration satisfies the conditions

of (loc. cit.). Since any character χ on Γ is of the form M 7→ ∏
det(Ai)

αi ,

we see that deg(χ∗σ
∗E(k)) = 0 for every χ if and only if µ(Ei/Ei−1) = 0 for

i = 1, . . . , l: this means that σ definitely is an admissible reduction.

On the other hand, the unipotent radical Ru(Γ) of Γ is the unipotent part of

the (neutral component of the) intersection of all of its Borel subgroups. Since

these are the stabilizers of the flags adapted to the one giving Γ whose length

is maximal, Ru(Γ) is a subgroup consisting of matrices M with Ai = id for all

i and B = id. We deduce from the preceding a Levi decomposition of Γ, the

Levi component L being isomorphic to the product
∏

GLri−ri−1 × SOr−2rl
.

Let p : Γ → L be the projection on this Levi component. The required stability

of the L-bundle p∗σ
∗E is then a consequence of the stability of the successive

quotients Ei/Ei−1 together with Lemma 1.2.9

2.1.2.4. The class of P is therefore defined by the SOr-bundle grP =

p∗σ
∗P (SOr), and (grP )(SLr) is again the Jordan-Hölder graded object. This

gives another proof of the fact (proved in 2.1.1.1) that the underlying vector

bundle of a unitary SOr-bundle must be polystable. But, above all, this

provides the following explicit description of closed points of MSOr (which

has already been noticed and used, see for example [Bho84]): as we have

just seen, any semi-stable (oriented) orthogonal bundle P = (E, q) admits a

filtration 0 = E0 ⊂ E1 ⊂ · · · ⊂ El ⊂ E⊥
l ⊂ · · · ⊂ E⊥

1 ⊂ E such that Ei/Ei−1 is

a stable bundle of degree 0 and E⊥
l /El a stable (oriented) orthogonal bundle.

Whereas such a filtration is not unique, the associated graded (oriented)

orthogonal object

gr(P ) =

l⊕

i=1

(
(Ei/Ei−1) ⊕ (E⊥

i−1/E
⊥
i )

)
⊕ E⊥

l /El
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is uniquely defined (note that the summands (Ei/Ei−1) ⊕ (E⊥
i−1/E

⊥
i ) are en-

dowed with the hyperbolic (oriented) structure deduced from the isomorphisms

E⊥
i−1/E

⊥
i −→ (Ei/Ei−1)

∗). We then have:

Proposition 2.1.2.5. — Two semi-stable (oriented) orthogonal bundles are

equivalent if and only their associated graded objects are isomorphic (as (ori-

ented) orthogonal bundles).

Since the corresponding moduli spaces are known to parametrize equiva-

lence classes for this relation, this gives a precise description of the image of a

semi-stable orthogonal bundle.

2.1.3. A few words about non-abelian cohomology. — The distinc-

tion between the odd and even cases relies on the fact that the semi-direct

product 1 → SOr → Or → Z/2Z → 0 may be direct or not. Indeed, we have

recalled in C.3 a general way to compute the fibers of the map (of pointed sets)

H1
ét(C,SOr) −→ H1

ét(C,Or) (which forgets the orientation). These are exactly

the orbits under a natural action of H0(C,Z/2Z) = Z/2Z on H1
ét(C,SOr), for

which stabilizers are easy to describe: the stabilizer of an SOr-bundle P is

the image of the map AutOr(P ) → Z/2Z obtained by twisting the quotient

morphism Or → Z/2Z by P (with respect to the action of SOr by inner

automorphisms) and taking global sections.

When r is odd, the product 1 → SOr → Or → Z/2Z → 0 is direct, and

the map H1
ét(C,SOr) −→ H1

ét(C,Or) is automatically injective. But, as soon

as r is even, its section is no longer compatible with the action of SOr by

inner automorphisms; we have just chosen a bundle E = F ⊕ F ∗ such that

AutOr(E) = {id}, whence the lack of injectivity.

In view of 2.1.1.2 we can give the following complete description of

MSOr(k) −→ MOr(k):

Proposition 2.1.3.1. — A unitary orthogonal bundle P with trivial deter-

minant has two antecedents in MSOr if and only if every orthogonal bundle

F
(1)
i appearing in the splitting of its underlying vector bundle P (GLr) has even

rank.

This immediately results from the explicit description of the twisted map

AutOr(P ) → Z/2Z, which is nothing else than the determinant.

Note that such a discussion may be applied to any morphism MH −→ MG

deduced from an inclusion H ⊂ G, especially when H is a normal subgroup.
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2.2. Invariant theory of representations of quivers

Let me recall from [LBP90] the standard setting of representations of quiv-

ers: a quiver is just an oriented graph Q = (Q0, Q1) (by which we mean that

Q0 is a set of vertices {v1, . . . , vn}, and Q1 a collection of oriented arrows

a : vt(a) → vh(a) between these vertices). Here is a quiver having five vertices

(a number r on an arrow means that this arrow stands for r parallel arrows):

76540123v2

r22

��

r24

��
r23

��

r25

&&

r21

yy76540123v1r11

'' r14

++

r15

++

r12

99

r13

��

76540123v4 r44gg
r41

kk
r45 ++

r43

yy

r42

\\

76540123v5 r55gg

r51

kk

r53

tt

r54

kk

r52

ff

76540123v3
r33

EE

r32

KK

r34

99

r35

44

r31

\\

A representation V of Q associates to any vertex vi a vector space Vi, and

to any arrow a : vi → vj a linear map Vi → Vj between the corresponding

vector spaces. The vector α = (dimVi)i is called the dimension vector of V .

If α ∈ N
n is fixed, we denote by R(Q,α) the space of all representations of

Q of dimension α with Vi ≃ kαi . This carries a natural action of the group

GL(α) =
∏

GLαi
: (gi)i sends a representation (fa)a∈Q1 to the representation

(gh(a)fag
−1
t(a)).

We now turn our attention to some special quivers: let Q stand for a quiver

consisting of n = n1 + n2 + 2n3 vertices

s1, . . . , sn1 , t1, . . . , tn2 , u1, u
∗
1, . . . , un3 , u

∗
n3
,

and α ∈ N
n be an admissible dimension vector (that is a vector such that αtj

is even and αuk
= αu∗

k
). We define Γα to be the group

Γα =
∏

Oαsi
×

∏
Spαtj

×
∏

GLαuk
,
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which is actually thought here as a subgroup of GL(α) =
∏n

i=1 GLαi
via the

inclusions P ∈ GLαuk
7→ (P, tP−1) ∈ GLαuk

× GLαu∗
k

. The natural action of

GL(α) on the space R(Q,α) restricts to an action of Γα on R(Q,α).

Le Bruyn and Procesi have shown in (loc. cit.) that the algebra of polyno-

mial invariants k[R(Q,α)]GL(α) is generated by traces along oriented cycles in

the quiver Q. By considering some universal algebras, they reduce the general

case to the one of the quivers with one vertex and m arrows, which had been

solved by Procesi twenty-five years before. Following their path, we produce

here a set of generators for the algebra of invariants under the action of Γα.

The local study of the map MOr → MGLr made later heavily rests on this

description.

To achieve this goal, we need to adapt the main result of [Pro87] in our set-

ting (this is done in 2.2.2), which in turn requires to find first the ON × SpN ′

invariants of m matrices, which is the aim of 2.2.1. Note that it means that we

now deduce the general case from the case of the quivers having two vertices,

respectively acted upon by ON and SpN ′ , with exactly m arrows between any

two of them.

2.2.1. First fundamental theorem for ON × SpN ′. — In this section,

we first adapt the argument of [ABP73, Appendix 1], and then show how

it allows us to find a set of generators for the ON × SpN ′-invariants of m

matrices.

2.2.1.1. We will denote by Mn the space of n × n matrices. Let M be the

matrix
(

IN

0
0

JN′

)
, with J =

(
0
−I

I
0

)
; it represents a bilinear pairing, given as

the standard orthogonal sum of a quadratic form of rank N and a symplectic

form of rank N ′.

To prove the first main theorem of invariant theory for ON × SpN ′ , we

follow the proof of [ABP73]: Weyl’s original proof in the orthogonal (resp.

symplectic) case relies on the so-called Capelli’s identities, while the proof of

(loc. cit.) avoids such considerations. The key lemma becomes (note that

MN × MN ′ is identified with its image in MN+N ′):

Lemma 2.2.1.2. — Any polynomial function f : (MN × MN ′)(k) → k such

that f(BA) = f(A) for all B ∈ ON × SpN ′ may be written f : A 7→ F (tAMA)

with F a polynomial map on (MN × MN ′)(k) ⊂ MN+N ′(k).

In other words f factors through the application

π : A ∈ (MN × MN ′)(k) 7→ tAMA ∈ (MN × MN ′)(k).
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Let ΨN,N ′ be its image, which is nothing else than the product of the space

of symmetric N × N matrices and the space of antisymmetric N ′ × N ′

matrices. The restriction of π to GLN × GLN ′ identifies the open sub-

set Ψ◦
N,N ′ consisting of non-degenerate forms with the geometric quotient

(GLN × GLN ′)//(ON × SpN ′) (say by [MFK94, Proposition 0.2]). The

lemma then follows from the commutative diagram

(MN × MN ′)//(ON × SpN ′) π
// ΨN,N ′

(GLN × GLN ′)//(ON × SpN ′)

S

∼
π

// Ψ◦
N,N ′ ;

S

the restriction to (GLN × GLN ′)//(ON × SpN ′) of a map f defined on the

good quotient (MN ×MN ′)//(ON × SpN ′) must indeed be induced by a func-

tion of the form A ∈ GLN × GLN ′ 7→ F (tAMA)/H(tAMA) with F and H

two coprime polynomials defined on the affine space ΨN,N ′ . The equality

F (tAMA) = f(A)H(tAMA) finally ensures that H is invertible(1).

Remark 2.2.1.3. — We can give a quicker proof of the preceding lemma:

indeed, since we are considering here a product group acting on a prod-

uct factor by factor, we deduce that the quotient of the product (MN ×
MN ′)//(ON × SpN ′) is the product of the quotient (MN//ON )× (MN ′//SpN ′),

which is isomorphic (by [ABP73], for example) isomorphic to the space de-

noted by ΨN,N ′ in the proof. However, the first proof gives a direct proof of

the general case, avoiding the explicit construction of a local section used in

(loc. cit.).

2.2.1.4. We are now in a position to establish the first main theorem of in-

variant theory for ON × SpN ′ . Let us start with the case of multilinear in-

variants, again after [ABP73]. Let V be a vector space of dimension N +N ′

endowed with the non-degenerate bilinear form 〈· , ·〉 given by the matrix M .

So V = V1

⊥
⊕ V2, V1 being a quadratic space of dimension N and V2 a sym-

plectic space of dimension N ′.

Theorem 2.2.1.5. — Any linear ON × SpN ′-invariant morphism V ⊗2i → k

is a linear combination of products of the contractions v1⊗· · ·⊗v2i 7−→ 〈vl, vl′〉.

(1)The fact that the function ring of ΨN,N′ is factorial is crucial here: this explains

why we had to restrict ourselves to functions f : MN × MN′ → k rather than functions

MN+N′ → k, which would have require something like the factoriality of the ring of the

quotient MN+N′//ON × SpN′ .
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We give two proofs. Let ϕ : V ⊗2i → k be any linear ON × SpN ′-invariant

map, and consider the following polynomial function:

f : (A,ω) ∈ (EndV1 ⊕ EndV2) × V ⊗2i 7→ ϕ(Aω) ∈ k.

By the previous lemma there exists a polynomial F on (S2V ∗
1 ⊕Λ2V ∗

2 )×V ⊗2i,

linear in the second variable, such that f(A,ω) = F (tAMA,ω). This poly-

nomial certainly is invariant for the natural action of GL(V1) × GL(V2)

on (S2V ∗
1 ⊕ Λ2V ∗

2 ) × V ⊗2i: for any Γ ∈ GL(V1) × GL(V2), we have

F (tΓ−1tAMAΓ−1,Γω) = F (tAMA,ω).

The assertion results, by polarization, from the description of lin-

ear forms on V ∗
1
⊗a1 ⊗ V ⊗b1

1 ⊗ V ∗
2
⊗a2 ⊗ V ⊗b2

2 which are invariant for

the action of GL(V1) × GL(V2): F is an homogeneous function of de-

gree i in its first variable, which therefore arises from linear forms on

(S2V ∗
1 )⊗k ⊗ V ⊗2k

1 ⊗ (Λ2V ∗
2 )⊗i−k ⊗ V ⊗2i−2k

2 (via the projections (S2V ∗
1 ⊕

Λ2V ∗
2 )⊗i × V ⊗2i → (S2V ∗

1 )⊗k ⊗ V ⊗2k
1 ⊗ (Λ2V ∗

2 )⊗i−k ⊗ V ⊗2i−2k
2 , and, of

course, the diagonal embedding S2V ∗
1 ⊕ Λ2V ∗

2 → (S2V ∗
1 ⊕ Λ2V ∗

2 )⊗i). Since

ϕ(ω) = F (M,ω), one then just has to evaluate F on M .

Here is a second proof. We decompose V ⊗2i as the direct sum
⊕

(al)l∈{1,2}2i

(
Va1 ⊗ Va2 ⊗ · · · ⊗ Va2i

)

and remark that the linear invariants for the action of ON × SpN ′ on any

summand isomorphic to V ⊗k
1 ⊗V ⊗2i−k

2 are sums of products of linear invariants

for the action of ON on V ⊗k
1 with linear invariants for the action of SpN ′ on

V ⊗2i−k
2 . The result is then a consequence of the first fundamental theorems

for the orthogonal and symplectic groups, which are for example recalled from

Weyl’s book in [Pro76].

2.2.1.6. One easily deduces from the foregoing a family of generators for the

algebra of polynomial invariants under the diagonal action (by conjugation)

of ON × SpN ′ on MN+N ′(k)m: according to [Pro76, §7] it is enough to work

out the behaviour of the composition, the trace and the (right) adjunction

(denoted by A 7→ A∗ = M−1tAM) via the identification EndV ≃ V ⊗ V in-

duced by the bilinear pairing. More precisely we choose here the identification

v⊗ v′ 7→ 〈v′, ·〉v. If v = v1 + v2 ∈ V = V1 ⊕V2 (cf. 2.2.1.4), we call σ the invo-

lution of V defined by v1 ⊕ v2 7→ v1 − v2, which is the unique automorphism(2)

(2)This morphism, whose existence and uniqueness are obvious, may already have a name

(like left/right commutation map?); however, I did not find a trace of it in Bourbaki, Algèbre

IX.
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of V verifying 〈v, v′〉 = 〈σ(v′), v〉 = 〈v′, σ(v)〉. We have then the following

equalities

– (v ⊗ w) ◦ (u⊗ t) = 〈w, u〉v ⊗ t,

– tr(v ⊗ w) = 〈w, v〉,
– (v ⊗ w)∗ = σ(w) ⊗ v.

This relations allow us to translate the functions given in theorem 2.2.1.5

in a way leading to the following statement:

Theorem 2.2.1.7. — (i) Any ON × SpN ′-invariant function defined on

MN+N ′(k)m is a polynomial in the

(A1, . . . , Am) 7→ tr(Uj1M
2ε1Uj2M

2ε2 · · ·Ujk
M2εk),

with Uj ∈ {Aj , A
∗
j}, and εj ∈ {0, 1}.

(ii) The ring of ON × SpN ′-equivariant morphisms from MN+N ′(k)m to

MN+N ′(k) is generated as an algebra over k[MN+N ′(k)m]ON×SpN′ by the con-

stant function M2 and the elements (A1, . . . , Am) 7→ Aj and (A1, . . . , Am) 7→
A∗

j .

We follow Procesi’s proof. Let P be a polynomial on the space ofmmatrices,

homogeneous of degree d. We may fully polarize it to obtain a multilinear

ON × SpN ′-invariant function P̃ defined on the space (MN+N ′(k)m)⊕d such

that P = (1/m!)P̃ ◦ ∆ (this is known as Aronhold’s method). Now we know

from 2.2.1.5 that P̃ is a linear combination of functions of the form (where we

have identified (MN+N ′(k)m)⊕d with (V ⊗ V )md)

ϕτ : v1 ⊗ · · · ⊗ v2md 7→ 〈vτ(1), vτ(2)〉 · · · 〈vτ(2md−1), vτ(2md)〉

where τ ∈ S2md. Let us now rewrite this basic invariant as a map

(A1, . . . , Amd) ∈ (MN+N ′)md 7→ ϕτ ((Ai)i) ∈ k.

By linearity we restrict ourselves to decomposable matrices Ai = ui ⊗ vi

(with our choice about V ⊗ V
∼→ EndV this means Ai = ui

tviM). We may

write ϕτ ((ui ⊗ vi)i) as

〈w(1)
i1
, w̄

(1)
i2

〉〈σε1
2(w

(1)
i2

), w̄
(1)
i3

〉 · · · 〈σε1
l (w

(1)
il

), w̄
(1)
i1

〉〈w(2)
i1
, w̄

(2)
i2

〉 · · ·

where {w(a)
ij
, w̄

(a)
ij

} = {ur, vr} for exactly one r = ra,j , and εaj is equal to 0

or 1, depending on whether we have to switch w
(a)
ij

and w̄
(a)
ij+1

. We now just

have to focus on the expression 〈wi1 , w̄i2〉〈σε2wi2 , w̄i3〉 · · · 〈σεlwil , w̄i1〉. Using

the equalities recalled earlier, we successively obtain
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〈wi1 , w̄i2〉〈σε2wi2 , w̄i3〉 · · · 〈σεlwil , w̄i1〉
= 〈wi1 , w̄i2〉 · · · 〈σεl−1wil−1

, w̄il〉tr(w̄i1 ⊗ σεlwil)

= 〈wi1 , w̄i2〉 · · · 〈σεl−2wil−2
, w̄il−1

〉tr
(
(w̄i1 ⊗ σεl−1wil−1

) ◦ (w̄il ⊗ σεlwil)
)

= tr
(
(w̄i1 ⊗ wi1) ◦ (w̄i2 ⊗ σε2wi2) ◦ · · · ◦ (w̄il ⊗ σεlwil)

)
.

Using the identity vi ⊗ ui = (ui ⊗ σ(vi))
∗, we see that ϕτ is a product of

(multilinear) maps of the form

(A1, . . . , Adm) 7−→ tr(Ui1 · · ·Uil)

where Ui is either equal to Ai, M
2A∗

i , AiM
2 or M2A∗

iM
2.

Finally, P̃ is a map (A1, . . . , Adm) 7→ ∑
λτ

∏
tr(U

i
(a)
1

· · ·U
i
(a)
l

), and the first

part of the theorem is proved.

The second assertion follows exactly as in [Pro76]: we introduce a new

matrix variable X and consider the function tr(f(·)X) deduced from any

ON × SpN ′-equivariant morphism MN+N ′(k)m to MN+N ′(k). The first part

of the theorem expresses this invariant of m + 1 matrices as a polynomial

in the tr(M2εXUi1M
2ε1 · · ·UilM

2εlX) and the tr(M2εlU∗
il
· · ·M2ε1U∗

i1
M2εXX)

with coefficients in k[MN+N ′(k)m]ON×SpN′ . The non degeneracy of the trace

implies that f is a polynomial in the Ai, A
∗
i and M2. Since such a morphism

is equivariant, the theorem is proved.

Remark 2.2.1.8. — The fact that the only constant and equivariant func-

tions are linear combinations of Id and M2 is just a reformulation of the trivial

description of the centralizer of ON × SpN ′ in MN+N ′(k) (in particular, we

cannot avoid those M2 in the theorem).

Example 2.2.1.9. — In order to illustrate this statement, let me present

some decomposition of some invariant functions in terms of the generating

sets given in the theorem.

In the simplest case m = 1, we see that the ON × SpN ′-equivariant mor-

phism sending A to

(
A11 0

0 0

)
is obtained as 1

4(A+AM2 +M2A+M2AM2);

the polynomial A 7→ tr(A12A21) is given by 1
4

(
tr(A2) − tr(M2A∗M2A∗)

)
.

When m = 2, we can check that the polynomial (A,B) 7→ tr(B12A21) may

be written as 1
4

(
tr(BA) + tr(M2BA) − tr(BM2A) − tr(M2BM2A)

)
.

2.2.2. Extension of the main result of [Pro87]. — The main result

of [Pro87] asserts that, if R is a k-algebra with trace satisfying the n-th
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Cayley-Hamilton identities, then there exists a universal map R → Mn(A)

which induces an isomorphism R → Mn(A)GLn . In this section we state a

similar result dealing with algebras with a trace and an antimorphism of order

dividing 4.

Definition 2.2.2.1 ([Pro87]). — A k-algebra with trace is an algebra R

equipped with a k-linear endomorphism tr : R → R verifying the following

identities

– tr(a)b = b tr(b),

– tr(ab) = tr(ba),

– tr(tr(a)b) = tr(a)tr(b),

for all a, b ∈ R.

We will then call k-algebra with trace and antimorphism of order 4 an al-

gebra with trace equipped with an antimorphism τ : R → R of order 4 (from

now on we will write “of order 4” instead of “of order dividing 4”). When

R is the algebra MN+N ′(B) of all matrices with coefficients in a commuta-

tive ring B we choose τ to be the adjunction map (for the considered bi-

linear form) ι : A ∈ MN+N ′(k) 7→ M−1tAM (and tr is the “natural” trace

A 7→ Trace(A)IN+N ′). As soon as N or N ′ is zero, ι is in fact of order 2, and

we could restrict ourselves to algebras with anti-involution.

2.2.2.2. Let R be a k-algebra with trace and antimorphism of order 4, and

let j : R → MN+N ′(A) be the universal map corresponding to the functor of

trace preserving representations of R

XR,N+N ′ : B 7→ Homk(R,MN+N ′(B))

(cf. [DCPRR05, §2.2]; note that here the morphisms between algebras with

trace are supposed to preserve the traces(3)). The existence of this morphism

easily leads to the representability of the functor X̃R,N+N ′ which associates to

any commutative algebra B the set of all morphisms of k-algebras from R to

MN+N ′(B) preserving the antimorphisms. This functor is actually represented

(3)It seems useful to stress the following point, which remains quite vague in [Pro87]: when

dealing with an algebra with trace R, the universal couple (A, j) is not the same as the

universal couple corresponding to the algebra R without its trace (just consider the case of

the free algebra with trace built on exactly one variable). One way to construct the universal

morphism preserving traces is to present R as the quotient of a free algebra F with trace built

on xs, s ∈ Σ (without imposing any Cayley-Hamilton identity) and to repeat the begining

of the proof of Theorem 2.6 in (loc. cit.): this has been more carefully explained recently in

[DCPRR05].
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by a closed subscheme of XR,N+N ′ = Spec(A), still called X̃R,N+N ′ : the map

r ∈ R 7→ ιjτ3(r) ∈ MN+N ′(A) comes from a morphism t : A → A of order 4,

and the induced map j̃ : R→ MN+N ′(Ã) (where Ã is the quotient of A by the

action of t) is universal among the morphisms R → MN+N ′(B) commuting

with τ and ι (we use here the fact the rational antimorphism ι commutes with

any application MN+N ′(f) induced by a morphism f : B → B′).

The group ON × SpN ′ acts by conjugation on MN+N ′(B), inducing a right

action on Ã, hence an action of ON × SpN ′ on MN+N ′(Ã). The universal

map j̃ maps R to the algebra MN+N ′(Ã)ON×SpN′ of ON × SpN ′-equivariant

morphisms from X̃R,N+N ′ to MN+N ′(k) (cf. [Pro87, 1.2]).

2.2.2.3. Our purpose is to generalize the main theorem of (loc. cit.) to alge-

bras with trace and antimorphism of order 4. As usual, we start by studying

the free algebras in this category. Let us denote by T̃Σ
N,N ′ the free algebra

built on the generators (xs)s∈Σ, for any non necessarily finite set Σ: it is gen-

erated (as an algebra) by some elements xs, x
τ
s , x

τ2

s , x
τ3

s and the traces of all

their products. The corresponding universal morphism j̃ : T̃Σ
N,N ′ → MN+N ′(Ã)

sends xτa

s to ιa(ξ
(s)
l,l′ )l,l′ (note that the universal ring Ã is, once again, the ring

of generic (N +N ′) × (N +N ′) matrices k[ξ
(s)
l,l′ , s ∈ Σ, l, l′ = 1, . . . , N +N ′]).

Since MN+N ′(Ã) is naturally identified with the ring of polynomial functions

MN+N ′(k)I → MN+N ′(k), Theorem 2.2.1.7 provides a set of generators for the

ON × SpN ′-invariant subalgebra: if we denote by Λ = T̃Σ
N,N ′

tr∗ 〈y〉 the free

product (in the category of algebras with trace and antimorphism of order 4)

obtained by adding an indeterminate fixed by the antimorphism(4), then the

morphism Λ → MN+N ′(Ã)ON×SpN′ sending y to the matrix M2 is onto. This

allows us to state the following result:

Proposition 2.2.2.4. — If R is a k-algebra with trace and antimorphism of

order 4, then the map j̃ ∗ (M2) : R ∗ 〈y〉 → MN+N ′(Ã)ON×SpN′ is onto.

It is an immediate adaptation of Procesi’s proof: let me repeat here his

argument (this mainly amounts to adding some ˜ here and there). We

present R as a quotient of T̃ = T̃Σ
N,N ′ by an ideal Ĩ. Consider the ideal

B̃ĨB̃ ⊂ B̃ = MN+N ′(Ã), where Ã is the universal object associated to T̃ .

There must exist an ideal J̃ ⊂ Ã such that B̃ĨB̃ = MN+N ′(J̃), and the

morphism R −→ B̃/B̃ĨB̃ = MN+N ′(Ã/J̃) (induced by the universal morphism

(4)In fact we can avoid this last condition if we allow Λ to be only an algebra with trace.



2.2. INVARIANT THEORY OF REPRESENTATIONS OF QUIVERS 23

j̃ : T̃ → MN+N ′(Ã) associated to the free algebra) is the universal morphism

corresponding to R. Since ON × SpN ′ is linearly reductive, the diagram

T̃ ∗ 〈y〉
j̃∗(M2) // //

����

MN+N ′(Ã)ON×SpN′

����
R ∗ 〈y〉 j̃R∗(M2) // MN+N ′(Ã/J̃)ON×SpN′

implies that map j̃R ∗ (M2) is surjective onto the invariant algebra

MN+N ′(Ã/J̃)ON×SpN′ .

2.2.2.5. Let us now say a word about injectivity: since we do not have (as far

as I know) any nice description of the second main theorem of invariant theory

for ON × SpN ′ , there is no comfortable way to obtain a statement as neat as

Procesi’s result. We give here a proposition involving bijectivity of j̃, but the

condition on R is too badly expressed. Define ŨΣ
N,N ′ to be the quotient of

Λ = T̃Σ
N,N ′ ∗ 〈y〉 by the kernel of the surjective map Λ → MN+N ′(Ã)ON×SpN′

(this exactly amounts to imposing in Λ any polynomial identity given by the

second main theorem of invariant theory: in particular, even if N or N ′ is

zero, it seems that we may have to content ourselves with this kind of asser-

tion). The algebra ŨΣ
N,N ′ is thus exactly the algebra of ON × SpN ′-equivariant

polynomial maps from MN+N ′(k)Σ → MN+N ′(k).

Proposition. — If R is a quotient of ŨΣ
N,N ′, then the universal map j̃ : R→

MN+N ′(Ã)ON×SpN′ is an isomorphism.

We continue to recopy Procesi’s proof. The algebra T̃ appearing in the

proof of surjectivity must of course be replaced now by the algebra ŨΣ′

N,N ′ ,

where Σ′ is a set containing Σ such that Σ′ \ Σ is infinite (and, of course, the

ideal Ĩ has to be modified consequently). Consider an element a ∈ T̃ ∩ B̃ĨB̃,

and write it a =
∑
bkikb

′
k (with of course bk, b

′
k ∈ B̃ and ik ∈ Ĩ). Choose

a variable x which do not appear in a. Let us denote by r the Reynolds

operator. Recall from (loc. cit.) that it commutes with the trace. We have

then tr(ax) = tr(
∑
bkikb

′
kx) = tr(

∑
b′kxbkik). Applying r (and recalling that

ik is ON × SpN ′-invariant), we get tr(ax) = tr(
∑
r(b′kxbk)ik). By definition,

r(b′kxbk) is an linear polynomial in x invariant under the action of ON × SpN ′ ,

which implies according to 2.2.1.7 (identifying elements of Λ with their images
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in {MN+N ′(k)Σ
′ → Mn(k)}) that

r(b′kxbk) =
∑

l

sklxtkl +
∑

l

s′klτ(x)t
′
kl +

∑

l

tr(mklx)nkl

with skl, tkl, s
′
kl, t

′
kl, mkl and nkl independent of x.

Thus tr(ax) = tr(
∑

k,l tkliksklx+
∑

k,l τ
3(s′kl)τ

3(ik)τ
3(t′kl)x+

∑
k,l tr(nklik)mklx),

and, since tr(ax) = tr(bx) implies a = b for all a and b in T̃ independent of x,

a =
∑

k,l

tklikskl +
∑

k,l

τ3(s′kl)τ
3(ik)τ

3(t′kl) +
∑

k,l

tr(nklik)mkl ∈ Ĩ ,

as was to be proved.

Remark 2.2.2.6. — Note that this proof is not suited for positive charac-

teristic: even if we only need the surjectivity of j̃ to prove the forthcoming

main theorem 2.2.3.6, the characteristic zero assumption is already essential.

2.2.2.7. Carlos Simpson has suggested to me that this result could be im-

proved by replacing the matrix algebra by something more natural in this

picture. It seems that a somehow finer way to adapt Procesi’s work is to con-

sider the ortho-symplectic Lie superalgebra osp(N,N ′) defined by Kac, and to

introduce a notion of formal supertrace, on Z/2Z-graded algebras (the super-

trace on MN+N ′ would then be str :

(
A B

C D

)
7→

(
tr(A) 0

0 −tr(D)

)
). If

R is an algebra with supertrace, we can consider the functor of supertrace

preserving homomorphisms from R to osp(N,N ′)(B).

This would avoid those antimorphisms of order 4 and this extra variable

y; but this would eventually give a weakener result (since osp(N,N ′) is in

fact a subalgebra of MN+N ′), which would be insufficient for our purpose (we

will have to include the case of the orthogonal group operating on the space

of symmetric matrices: in a group-theoretic setting, we are concerned here

with a problem regarding (G× · · · ×G) /H, with H a strict subgroup of G).

Nevertheless, we could consider the supertrace on gl(N,N ′) equipped with our

antimorphism of order 4 (a “supertranspose”, or rather “superadjoint”, since

supertranspose already exists), and consider the functor of representations of

Z/2Z-algebras with supertrace and supertranspose respecting these data.

2.2.3. Generators for k[R(Q,α)]Γα. —
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2.2.3.1. Let us go back to the quiver Q, and the action of Γα on its represen-

tation space R(Q,α). We need here to adapt the map ι previously defined on

MN+N ′(k): ι still associates to a map its adjoint, but the bilinear pairing has

to be replaced by the one represented by a matrix of the form

Φ =




IN1 0 0

0 JN2 0

0 0
0 IN3

IN3 0


 ,

where N1 =
∑n1

i=1 αsi
, N2 =

∑n2
j=1 αtj , N3 =

∑n3
k=1 αuk

. We put N =

N1 +N2 +N3, and consider the decomposition of kN into pairwise orthogonal

subspaces kN1 ⊕ kN2 ⊕ k2N3 given by Φ. We are interested in representations

of Q adaptated to this decomposition (to be precise we mean here that the

fixed decomposition kN =
⊕
Vsi

⊕⊕
Vtj ⊕

⊕
(Vuk

⊕ Vu∗

k
) is adaptated to the

previous one).

Consider the quiver Q̃ obtained from Q by adding one new arrow

a∗ : σ(v′) → σ(v) for any arrow a : v → v′, where we called σ the invo-

lution of the set of vertices fixing the si and tj , and permuting uk and u∗k.

Let R be the path algebra of the opposite quiver Qop, and R̃ be the algebra

deduced from the path algebra of Q̃op by adding traces. There is quite a

natural way to endow R̃ with an antimorphism τ of order 4 whose action on

the idempotents (who are associated to the constant paths) comes from the

one of σ: τ fixes the esi
and etj , permutes euk

and eu∗

k
, while it sends an arrow

a to εa∗, where ε equals −1 if a starts from si, uk or u∗k and ends at tj , and 1

otherwise (we will see in a second why we need these weird signs).

Note that representations of R̃ of dimension α commuting with τ and ι

adapted to the previous decomposition correspond bijectively to representa-

tions of R of the same dimension adapted to this decomposition: a representa-

tion of R̃ respecting the antimorphisms must associate a dual arrow a∗ to the

adjoint morphism corresponding to a (up to a sign). This allows us to identify

R(Q,α) with the subspace of R(Q̃, α) consisting of all representations which

preserve the preceding antimorphisms.

Remark 2.2.3.2. — If we had omitted the minus signs in the definition of

τ , we would have found that morphisms R̃→ MN (k) commuting with τ and ι

should map R̃ into the ι2-fixed subspace of MN (k), which consits of all matrices

of the form




M11 0 M13

0 M22 0

M31 0 M33


, so that we would have missed any arrow
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between a symplectic vertex and the non-symplectic one. The definition of τ

had been guided by the behaviour of ι2. In particular, we could replace τ by

the antimorphism sending a to εa∗, with ε =
√
−1 if and only if a is an arrow

between a symplectic vertex tj and a non-symplectic one.

2.2.3.3. We apply now the argument of [LBP90, §3]: the strategy is to es-

tablish a convenient relation between the subspace of R(Q̃, α) consisting of all

representations preserving the antimorphisms and a subspace of X̃
eR,N

(k).

To do this, let us consider first the algebra S̃n defined as the quotient of

k[esi
, etj , euk

, eu∗

k
] by the ideal generated by the relations e2v = ev, evev′ = 0 if

v 6= v′,
∑

v ev = 1. This algebra is contained in R̃. The restriction of τ to this

algebra is exactly the antiinvolution described in 2.2.3.1, and we have a fairly

nice description of X̃
eSn,N

: its closed points correspond to ”complete families

of projectors” (pv)v∈Q1 , such that psi
and ptj are selfadjoint, while the adjoint

of puk
is pu∗

k
. We see (say as in 2.2.3.2) that these projectors split as some

sums pv = por
v +psy

v of two projectors por
v : kN → kN1+2N3 and psy : kN → kN2 .

This description (and an easy exercice using Witt’s theorem) results in the

following decomposition:

X̃
eSn,N

=
⋃

σ,ω

X̃σ,ω ,

where σ and ω range over pairs of admissible vectors in N
n such that

∑
σj =

N1 + 2N3 and
∑
ωj = N2, the component X̃σ,ω being isomorphic to

(
ON1+2N3×SpN2

)
/
(∏(

Oσsi
×Spωsi

)
×

∏(
Oσtj

×Spωtj

)
×

∏(
GLσuk

×GLωuk

))
.

It induces a decomposition of X̃
eR,N

as the union
⋃

σ,ω ̟
−1X̃σ,ω, where

̟ : X̃
eR,N

→ X̃
eSn,N

is the map induced by the inclusion S̃n ⊂ R̃. If we

call Ãσ,ω the affine ring of the component corresponding to a pair of ad-

missible vectors like above, we get a decomposition of the universal algebra

Ã =
∏
Ãσ,ω associated to R̃. Since ON1+2N3 × SpN2

acts separately on each

summand of MN (Ã) =
∏

MN (Ãσ,ω), there is a splitting R̃/ ker j̃ =
∏
R̃σ,ω,

where j̃ : R̃ → MN (Ã) is the universal map(5). Now, Proposition 2.2.2.4 tells

us that j̃ and y 7→ Φ2 =




IN1 0 0

0 −IN2 0

0 0 I2N3


 give a surjective morphism

from R̃σ,ω onto the invariant algebra MN (Ãσ,ω)ON1+2N3
×SpN2 . Note also that

(5)At his point we could have avoided this quotient by ker j̃ by having imposed at the begining

some relations (which are ker j̃!) in eR.
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the projection on R̃σ,ω of an idempotent ev has trace σv + ωv (we use that j̃

commutes with the traces, and that the image of ev in MN (Ãσ,ω) by j̃ is a

projector onto a subspace of the given dimension).

Let us concentrate on the component R̃σ,ω corresponding to the dimension

vectors σ and ω whose coordinate are σsi
= αsi

, σtj = 0, σuk
= αuk

, ωtj = αtj

and ωsi
= ωuk

= 0. For this component, the following lemma holds:

Lemma 2.2.3.4. — The morphism R̃σ,ω → MN (Ãσ,ω)ON1+2N3
×SpN2 induced

by j̃ is an isomorphism.

Indeed, our choice about σ and ω implies that Φ2 · j̃(ev) = ±j̃(ev)(= j̃(ev) ·
Φ2) for all v (in fact the sign is negative if and only if v is a symplectic vertex).

Since any element r ∈ R̃σ,ω may decomposed as r =
∑

v,v′ evrev′ , we see that

the image of R̃σ,ω∗〈y〉 is already contained in j̃(R̃σ,ω), which proves the lemma.

2.2.3.5. We decompose the identity matrix as the sum
∑

v uv, where uv is

the diagonal matrix with 1 in the block corresponding to v and 0 elsewhere.

We introduce the subfunctor X̃∗
eRσ,ω

: B 7→ {f : R̃σ,ω → MN (B)|f(ev) = uv},
which is represented by a closed subscheme X̃∗

eRσ,ω
of X̃

eRσ,ω ,N
, acted on by the

centralizer of the uv, which is exactly Γα. Let us remark that this subscheme

is in fact precisely the fiber of ̟ over the point p ∈ X̃σ,ω(k) defined by the uv,

and that the stabilizer of this point is Γα. This, together with the following

commutative diagram summing up the situation

X̃∗
eRσ,ω

� � //

� Γα

��

X̃
eRσ,ω ,N

� � //

̟ � ON1+2N3
×SpN2

��

X̃
eR,N

̟ � ON1+2N3
×SpN2

��

{p} � � // X̃σ,ω
� � // X̃

eSn,N
,

allows us to identify R̃σ,ω with the ring of Γα-equivariant maps ̟−1(p) =

X̃∗
eRσ,ω

→ MN (k): indeed, we deduce from the diagram that the latter is exactly

the ring of ON1+2N3×SpN2
-equivariant maps X̃

eRσ,ω ,N
→ MN (k), while Lemma

2.2.3.4 tells us that j̃ induces an isomorphism from the former onto this same

ring.

It is now great time to put in evidence the (trivial but crucial) fact that

the fiber ̟−1(p) is naturaly isomorphic to the subset of R(Q̃, α) consist-

ing of all the representations which preserve the antimorphisms, which has
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been previously identified with R(Q,α). The precedent discussion therefore

leads to an isomorphism between R̃σ,ω and the ring of Γα-equivariant mor-

phisms R(Q,α) → MN (k) (Le Bruyn and Procesi had obtained an isomor-

phism between the path algebra R (rather than its component Rα) endowed

with traces and Cayley-Hamilton relations and the ring of GL(α)-morphisms

R(Q,α) → MN (k) by imposing to R the extra (and apparently arbitrary)

relations tr(ei) = αi in R, which implies the emptyness of the components

̟−1(Xβ), β 6= α; we do not feel necessary to keep here this detail of their

proof). Taking traces, we get the expected result:

Theorem 2.2.3.6. — The algebra of polynomials on R(Q,α) invariant under

the action of
∏

Oαsi
×

∏
Spαtj

×
∏

GLαuk
is generated by the functions

(fa)a 7→ tr(fãp · · · fã1),

where ãi is an arrow in the associated quiver Q̃ equals to either ai or ai
∗,

in such a way that (ã1, . . . , ãp) forms an oriented path in that quiver and fãi

means fai
or its adjoint according to whether ãi is ai or ai

∗.

Remark 2.2.3.7. — (i) Donkin has given a characteristic free proof of the

result of Le Bruyn and Procesi, using the notions of good filtration and good

pairs. In the preprint [Lop06], Lopatin has followed this different approach

to obtain a characteristic-free proof of the preceding theorem.

(ii) The second main theorem of representation theory for this situation

seems to constitute a very difficult problem (finding a finite set of generators for

k[R(Q,α)]Γα is easy, but not really relevant); in fact, invariants for the action

of GLα are already quite uneasy to understand: Le Bruyn and Procesi’s proof

certainly gives some informations, but their assertion (”all relations among the

previously defined invariants and covariants can be deduced from the Cayley-

Hamilton polynomails for N by N matrices”) does not seem to lend itself to

an effective description of the ideal of relations, even for very small quivers

(see 3.2.4).

2.2.3.8. It is now easy to deal with the case where we let the whole lin-

ear group act (by conjugation) above some of the unpaired vertices. If we

call r1, . . . , rn4 these vertices, we deduce from the quiver Q a new quiver Q′

as follows: Q′ has n4 new vertices r∗l , and one new arrow a′ : r∗l → σ(v)

(resp. a′ : σ(v) → r∗l ) for any arrow a : v → rl (resp. a : rl → v), where σ

is the involution of the set of vertices defined in 2.2.3.1. Let us also denote

α′ ∈ N
n1+n2+2(n3+n4) the admissible vector naturally deduced from any given
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admissible dimension vector α ∈ N
n1+n2+2n3+n4 . The group

Γα =
∏

Oαsi
×

∏
Spαtj

×
∏

GLαuk
×

∏
GLαrl

acts on R(Q,α) and R(Q′, α′) (the action of g ∈ GLαrl
on r∗l being f 7→

tg−1f tg), and the morphism R(Q,α) −→ R(Q′, α′) which sends a representa-

tion (fa)a of Q to the extended representation of Q′ which associates to a new

arrow a′ the adjoint of the map corresponding to a induces a Γα-equivariant

projection k[R(Q′, α′)] −→ k[R(Q,α)]. Now, our previous theorem provides a

generating family for the algebra of Γα-invariants of k[R(Q′, α)] in terms of the

associated quiver Q̃′ deduced from Q′. The group Γα being linearly reductive,

this has the following consequence:

Corollary 2.2.3.9. — The algebra of polynomials on R(Q,α) invariant un-

der the action of
∏

Oαsi
×

∏
Spαtj

×
∏

GLαuk
×

∏
GLαrl

is generated by

the functions

(fa)a 7→ tr(fãp · · · fã1),

where ãi is an arrow in the associated quiver Q̃′ equals to either ai or ai
∗,

in such a way that (ã1, . . . , ãp) forms an oriented path in that quiver and fãi

means fai
or its adjoint according to whether ãi is ai or ai

∗.

Note that two vertices rl and r∗l′ are never connected by a single arrow in

Q̃′.

2.3. Local study of the forgetful map

In order to simplify the local study of MSOr → MSLr it is convenient to

investigate separately the injective morphism MOr → MGLr and the natural

map from MSOr to the subscheme MO
Or

⊂ MOr consisting of all orthogonal

bundles with trivial determinant. This distinction seems to be quite valuable

since the direct differential study of MSOr would involve invariant theory

for special orthogonal groups, which is far more difficult to deal with (see

2.3.2). We show here that the former is an embedding, while the later is an

isomorphism (resp. a 2-sheeted cover) when r is odd (resp. even).

2.3.1. Differential behaviour of MOr → MGLr . —
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2.3.1.1. Let us now briefly point out the classical way to analyse the local

behaviour of MOr → MGLr . We have recalled in 1.2.13 that this application

arises as a quotient by the general linear group Γ = GLχ of an equivariant

map between two smooth parameter schemes ROr → RGLr . Luna’s étale slice

theorem and deformation theory then allow us to grasp the local structure of

these good quotients (cf. [KLS06, 2.5]): at any polystable vector bundle E,

MGLr is étale locally isomorphic to an étale neighbourhood of the origin in

the good quotient

Ext1(E,E)//AutGLr(E),

while MOr is, at any polystable orthogonal bundle P , étale locally isomorphic

to an étale neighbourhood of the origin in

H1(C,Ad(P ))//AutOr(P ),

where Ad(P ) stands for the vector bundle P ×Or sor associated to the adjoint

representation of Or, which is nothing else than the vector bundle of germs

of endomorphisms f of E such that σf + f∗σ = 0, where σ : E → E∗ is the

symmetric isomorphism given by the quadratic structure on E; in other words

the adjoint vector bundle Ad(P ) is canonically isomorphic to Λ2E∗.

Then, if P ∈ MOr is a polystable orthogonal bundle with associated vector

bundle E ∈ MGLr , the application MOr → MGLr coincides at P , through

the preceding local isomorphisms (in the étale topology), with the natural map

H1(C,Ad(P ))//AutOr(P ) → Ext1(E,E)//AutGLr(E)

at the origin. In particular the corresponding tangent maps are identified.

2.3.1.2. A more explicit description of the vector spaces H1(C,Ad(P ))

and Ext1(E,E) is then strongly needed in order to understand their quo-

tients; we show here that H1(C,Ad(P ))//AutOr(P ) is a closed subscheme of

Ext1(E,E)//AutGLr(E), which implies our main theorem.

According to 2.1.1.2 the orthogonal structure on the polystable vector bun-

dle E associated to any point q ∈ MOr gives rise to a splitting of E as a direct

orthogonal sum of the form

E =

n1⊕

i=1

E
(1)
i ⊕

n2⊕

j=1

E
(2)
j ⊕

n3⊕

k=1

E
(3)
k ,(2.3.1.2.1)

where each direct summand E
(a)
l may be written as

– E
(1)
i = F

(1)
i ⊗ V

(1)
i , where (F

(1)
i )i are mutually non isomorphic stable

orthogonal bundles and (V
(1)
i )i some quadratic vector spaces,
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– E
(2)
j = F

(2)
j ⊗ V

(2)
j , where (F

(2)
j )j are mutually non isomorphic stable

symplectic bundles and (V
(2)
j )j some symplectic vector spaces,

– E
(3)
k = (F

(3)
k ⊕ F

(3)
k

∗) ⊗ V
(3)
k , where (F

(3)
k )k are mutually non isomorphic

stable bundles such that F
(3)
k 6≃ F

(3)
k′

∗ and (V
(3)
k )k some vector spaces carrying

a non degenerate bilinear form.

Let us denote by ψ
(a)
l : F

(a)
l → F

(a)
l

∗ the duality isomorphism (when a = 1, 2),

and σ
(a)
l : E

(a)
l → E

(a)
l

∗ the symmetric isomorphism defined on E
(a)
l (note that

F
(3)
k ⊕ F

(3)
k

∗ has been tacitly endowed with the hyperbolic form).

The two isotropy groups are then easily identified: we find that

AutGLr(E) ≃
n1∏

i=1

GL(V
(1)
i ) ×

n2∏

j=1

GL(V
(2)
j ) ×

n3∏

k=1

(
GL(V

(3)
k ) × GL(V

(3)
k )

)
,

while AutOr(P ) ⊂ AutGLr(E) is isomorphic to the subgroup

n1∏

i=1

O(V
(1)
i ) ×

n2∏

j=1

Sp(V
(2)
j ) ×

n3∏

k=1

GL(V
(3)
k ),

where GL(V
(3)
k ) stands for its image in GL(V

(3)
k )×GL(V

(3)
k ) by the morphism

g 7→ (g, tg−1).

The space Ext1(E,E) splits into a direct sum of the spaces Ext1(E
(k)
i , E

(l)
j ),

and each of these summands is isomorphic to Ext1(F
(k)
i , F

(l)
j )⊗Hom(V

(k)
i , V

(l)
j )

when neither k nor l equals 3, or to a sum of summands of this form otherwise.

The isotropy groups act on each of those spaces via the natural actions of

GL(V ) × GL(V ′) on Hom(V, V ′).

An element ω =
∑
ω

(k,l)
i,j ∈ Ext1(E,E) ≃ ⊕

Ext1(E
(k)
i , E

(l)
j ) belongs

to the space H1(C,Ad(P )) if and only if ω
(k,k)
i,i ∈ H1(C,Λ2E

(k)
i

∗) ⊂
Ext1(E

(k)
i , E

(k)
i ) and, for (i, k) 6= (j, l), σ

(l)
j ω

(k,l)
i,j +ω

(l,k)
j,i

∗σ
(k)
i = 0. So, identify-

ing Ext1(E
(k)
i , E

(l)
j ) with its image in Ext1(E

(k)
i , E

(l)
j )⊕Ext1(E

(l)
j , E

(k)
i ) by the

application ω
(k,l)
i,j 7→ ω

(k.l)
i,j − σ

(k)
i

−1ω
(k,l)
i,j

∗σ
(l)
j , it appears that H1(C,Ad(P )) is

the subspace of Ext1(E,E) isomorphic to the direct sum

(2.3.1.2.2)
⊕

k


⊕

i

H1(C,Λ2E
(k)
i

∗) ⊕
⊕

i<j

Ext1(E
(k)
i , E

(k)
j )


⊕

⊕

k<l

⊕

i,j

Ext1(E
(k)
i , E

(l)
j ),
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each one of the diagonal summand being more precisely expressed as:

(2.3.1.2.3) H1(C,Λ2E
(1)
i

∗) =
(
H1(C,S2F

(1)
i

∗) ⊗ so(V
(1)
i )

)
⊕

(
H1(C,Λ2F

(1)
i

∗) ⊗ S2V
(1)
i

∗
)
,

(2.3.1.2.4) H1(C,Λ2E
(2)
j

∗) =
(
H1(C,Λ2F

(2)
j

∗) ⊗ sp(V
(2)
j )

)
⊕

(
H1(C,S2F

(2)
j

∗) ⊗ Λ2V
(2)
j

∗
)
,

(2.3.1.2.5) H1(C,Λ2E
(3)
k

∗) =
(
Ext1(F

(3)
k , F

(3)
k ) ⊗ gl(V

(3)
k )

)
⊕

(
H1(C,S2F

(3)
k

∗) ⊗ Λ2V
(3)
k

∗
)
⊕

(
H1(C,Λ2F

(3)
k

∗) ⊗ S2(V
(3)
k

∗)
)
⊕

(
H1(C,S2F

(3)
k ) ⊗ Λ2V

(3)
k

∗
)
⊕

(
H1(C,Λ2F

(3)
k ) ⊗ S2V

(3)
k

∗
)
,

where Ext1(F
(3)
k , F

(3)
k ) has been identified with its image in Ext1(F

(3)
k , F

(3)
k )⊕

Ext1(F
(3)
k

∗, F
(3)
k

∗) by the map ω 7→ ω − ω∗. Note that the dimensions of all

the extension spaces under consideration are trivially available.

Example 2.3.1.3. — In order to clarify a bit this discussion, let us fo-

cus a moment on the case of the trivial orthogonal bundle E = O ⊗ V

(V = kr quadratic space). In this situation, we have to understand the

algebra of AutOr(E) = Or-invariant polynomials defined on Ext1asym(E,E) ⊂
Ext1(E,E) ≃ (Mr(C))g. We easily check that this is the subspace of g-

tuples of antisymmetric matrices. On the other hand, the invariant algebra

k[(Mr(C))g]Or is already described in [Pro76]: it is generated by the functions

(M1, . . . ,Mg) 7−→ tr(Ai1 · · ·Ail)

where Aik ∈ {Mik ,
tMik}. The restriction of such a function to the set of

g-tuples of antisymmetric matrices is thus clearly GLr-invariant. This proves

the injectivity of the differential map at the trivial bundle.

In the same way we could see that the case of an orthogonal bundle (F (1) ⊗
V ) ⊕ (F (2) ⊗W ) already results from Theorem 2.2.1.7.

2.3.1.4. Let us come back to the general case. The pretty intricate situation

described in 2.3.1.2 suitably expresses itself in terms of representations of

quivers. Indeed let us consider the quiver Q whose set of vertices is

Q0 = {s(1)1 , . . . , s(1)n1
, s

(2)
1 , . . . , s(2)n2

, s
(3)
1 , s

(3∗)
1 , . . . , s(3)n3

, s(3
∗)

n3
},
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these vertices being connected by dim Ext1(F
(k)
i , F

(l)
j ) arrows from s

(k)
i to

s
(l)
j (where we have set F

(3∗)
i = F

(3)
i

∗). Next define α ∈ N
n1+n2+2n3 ac-

cording to the dimensions of the corresponding vector spaces V
(a)
l . There-

fore the AutGLr(E)-module Ext1(E,E) is exactly the GL(α)-module R(Q, α)

composed of all the representations of Q of dimension α, and the result

of [LBP90] recalled earlier provides us with a description of the algebra

k[Ext1(E,E)]AutGLr (E).

The inclusion H1(C,Ad(P )) →֒ Ext1(E,E) is an AutOr(P ) =
n1∏
i=1

O(V
(1)
i )×

n2∏
j=1

Sp(V
(2)
j )×

n3∏
k=1

GL(V
(3)
k )-equivariant application, so that we have an exact

sequence

k[Ext1(E,E)]AutOr (P ) → k[H1(C,Ad(P ))]AutOr (P ) → 0.

This sequence and the theorem 2.2.3.6 result in a set of generators for

the algebra k[H1(C,Ad(P ))]AutOr (P ), namely the (fa)a 7→ tr(fãp · · · fã1),

where fãi
stands for either fai

or its adjoint map. Now, according to

(2.3.1.2.2), H1(C,Ad(P )) is a subspace of R(Q, α) made up of represen-

tations having the following property: if fa : Vv → Vv′ denotes the map

associated to an arrow a : v → v′, then its adjoint map f∗a : V ∗
v′ → V ∗

v

is, up to the sign, the map associated to one of the arrows from v′ to

v. So the algebra k[H1(C,Ad(P ))]AutOr (P ) is generated by traces along

oriented cycles in the quiver Q. This exactly means that the application

k[Ext1(E,E)]AutGLr (E) → k[H1(C,Ad(P ))]AutOr (P ) is onto.

In view of what has been discussed in 2.3.1.1 this proves the injectivity of

the tangent map of MOr → MGLr at q = [P ] (note that no hypothesis on the

determinant of the orthogonal bundle P is needed in the previous discussion:

injectivity of the tangent map thus holds at any point of any component of

MOr). But we have shown in 2.1.1.2 that the map MOr(k) → MGLr(k) is

injective. This implies the following:

Theorem 2.3.1.5. — The forgetful map (E, q) ∈ MOr 7→ E ∈ MGLr is an

embedding.

One easily gets in the very same way the corresponding assertion relative

to the moduli of symplectic bundles:

Theorem 2.3.1.6. — The forgetful map MSp2r
→ MSL2r

is an embedding.
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The point is that any closed point of MSp2r
represents a polystable vector

bundle of the form

E =
⊕

i

(
F

(1)
i ⊗ V

(1)
i

)
⊕

⊕

j

(
F

(2)
j ⊗ V

(2)
j

)
⊕

⊕

k

(
(F

(3)
k ⊕ F

(3) ∗
k ) ⊗ V

(3)
k

)
,

where (F
(1)
i )i (resp. (F

(2)
j )j , resp. (F

(3)
k )k) is a family of mutually non iso-

morphic symplectic (resp. orthogonal, resp. not self-dual) bundles (which are

stable as vector bundles), and (V
(1)
i )i (resp. (V

(2)
j )j , resp. (V

(3)
k )k) a family

of quadratic (resp. symplectic, resp. endowed with a non-degenerate bilinear

pairing) vector spaces (F
(3)
k ⊕ F

(3) ∗
k being now equipped with the standard

symplectic form). Let us denote by σ : E → E∗ the resulting symplectic form

on E. The bundle Ad(P ) is now isomorphic to the bundle of germs of sym-

metric endomorphisms of E (that is endomorphisms verifying σf + f∗σ = 0),

and both the space H1(C,Ad(P )) and the considered isotropy groups can be

described in a manner analogous to that of 2.3.1.2 (one only has to switch the

factors Λ2F
(a)
l

∗ and S2F
(a)
l

∗, and of course to redefine in the obvious way ev-

ery map of the form Ext1(F, F ′) → Ext1(F, F ′)⊕Ext1(F ′∗, F ∗)). The theorem

2.2.3.6 then allows us to conclude again.

Remark 2.3.1.7. — It would be interesting to try to generalize this study

to the moduli of principal bundles over a singular curve.

2.3.2. About MSOr −→ MOr . —

2.3.2.1. We have recalled in 2.1.3 how to compute the fibers of the finite

morphism from MSOr onto MO
Or

= det−1(OC). A point [P ] ∈ MOr in

its image has two pre-images if and only if AutSOr(P ) →֒ AutOr(P ) is an

isomorphism, that is if and only if every orthogonal bundle F
(1)
i appearing in

the splitting (2.3.1.2.1) of E has even rank.

Luna’s theorem reduces once again the differential study of this appli-

cation to an invariant calculus: the tangent map of MSOr → MOr at

[P ] ∈ MSOr is indeed identified with that of H1(C,Ad(P ))//AutSOr(P ) →
H1(C,Ad(P ))//AutOr(P ) (at the origin).

Therefore, if r is odd, MSOr → MO
Or

is an isomorphism.

2.3.2.2. Let us consider now the even case. The morphism MSOr → MOr

is then a 2-sheeted cover, which is étale above the locus of points having two

antecedents. A branched point corresponds to an orthogonal polystable bundle

E containing at least one subbundle isomorphic to F
(1)
i ⊗ V

(1)
i where F

(1)
i is
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an orthogonal bundle of odd rank: we then have to understand the inclusion

k[H1(C,Ad(P ))]AutOr (P ) →֒ k[H1(C,Ad(P ))]AutSOr (P ).

It is easy to produce a primitive element for the generic extension (which is of

degree 2). First note that the vector space W obtained as the direct sum of

the V
(1)
i corresponding to the orthogonal bundles F

(1)
i of odd rank has even

dimension, and has an orthogonal structure inherited from the ones of the V
(1)
i .

The space composed of all the antisymmetric endomorphisms of W may be

identified with a direct summand of H1(C,Ad(P )), and mapping any element

ω ∈ H1(C,Ad(P )) to the pfaffian of the endomorphism of W induced by ω

then defines a function belonging to k[H1(C,Ad(P ))]AutSOr (P ) which is not

AutOr(P )-invariant; this function certainly generates the generic extension.

It is more difficult to give a convenient description of this algebra: in the

(simplest) case where P is isomorphic to O⊗V with V a quadratic vector space

of even dimension, we have to understand the action of AutSOr(P ) ≃ SOr

on H1(C,Ad(P )) ≃ H1(C,O) ⊗ so(V ). This can be solved again thanks

to Procesi’s trick (cf. 2.2.1.6): the computation has been carried out in

[ATZ95], and provides a set of generators for the k[H1(C,Ad(P ))]AutOr (P )-

algebra k[H1(C,Ad(P ))]AutSOr (P ) in terms of polarized pfaffians.

Let us finally mention that in the general case we can easily infer from the

main result of [Lop06] a family of generators for k[H1(C,Ad(P ))]AutSOr (P )

which are also obtained as polarized pfaffians.





CHAPTER 3

MORE ABOUT THE LOCAL STRUCTURE OF

MSOr
AND MSLr

In this chapter we present a few results concerning the local structure of

the moduli spaces of orthogonal bundles, and then use again the translation

into the quiver setting to get additional results regarding the study of moduli

of rank 3 vector bundles over a curve of genus 2 (as we have already noticed

in the introduction, this seems to be the only case where we can obtain, with

this method, a precise description at all points).

3.1. Informations about MSOr

3.1.1. The discussion held in 2.3.1.1 contains in fact a more precise statement,

related to the completed local rings of MOr and MGLr . Indeed, if q is a point

of MOr representing a polystable bundle P whose image in MGLr is a point

s = [E], we have the following commutative diagram, where the rings of the

second row are the completions of the local rings (of the involved algebras of

invariants) at the origin,

ÔMGLr , s

≀
��

// ÔMOr , q

≀

��(
k[Ext1(E,E)]AutGLr (E)

)
b

//
(
k[H1(C,Ad(P ))]AutOr (P )

)
b

.

(3.1.1.1)

This description of the completed local rings of MOr provides us with addi-

tional informations about the local structure of MOr , at least at the points

where the situation is not too bad (see [Las96] for the case of MGLr): the

more we know about the second main theorem of invariant theory for the

isotropy group of P , the easier our calculations will be.
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3.1.2. Let P be an orthogonal bundle whose underlying vector bundle is of

the form E = E1⊕E2, with E1 and E2 two non-isomorphic GL-stable orthog-

onal bundles. The description of the inclusion H1(C,Ad(P )) →֒ Ext1(E,E)

given in (2.3.1.2.2) here reduces to

H1(C,Ad(P )) = H1(C,Λ2E1
∗) ⊕ Ext1(E1, E2) ⊕ H1(C,Λ2E2

∗)

∩ ∩ ∩ ∩
Ext1(E,E) = Ext1(E1, E1) ⊕ Ext1(E1, E2) ⊕ Ext1(E2, E1) ⊕ Ext1(E2, E2);

the isotropy subgroup AutOr(P ), isomorphic to Z/2Z×Z/2Z, acts trivially on

H1(C,Λ2Ei
∗) and by multiplication by ±1 on Ext1(E1, E2) (while (α1, α2) ∈

AutGLr(E) ≃ Gm × Gm acts on Ext1(Ei, Ej) by αjα
−1
i ).

Let (X
(i)
k )k (resp. (Yl)l) be a basis of H1(C,Λ2Ei

∗)∗ (resp. Ext1(E1, E2)
∗ ⊂

H1(C,Ad(P ))∗). Then k[H1(C,Ad(P ))]AutOr (P ) is the subring of k[X
(i)
k , Yl]

generated by all the X
(i)
k and the products YlYl′ ; if V denotes the affine cone

over the Veronese variety P(Ext1(E1, E2)) ⊂ P
(
S2Ext1(E1, E2)

)
we get the

following isomorphism:

Spec(k[H1(C,Ad(P ))]AutOr (P ))
∼−→

(
H1(C,Ad(P1)) ⊕H1(C,Ad(P2))

)
× V.

Using the identification ÔMOr , q ≃
(
k[H1(C,Ad(P ))]AutOr (P )

)
b

we have the

following result:

Proposition 3.1.3. — The tangent space to MOr at a point [P ] given as

the direct sum E1 ⊕ E2 of two non-isomorphic stable orthogonal bundles is

isomorphic to

H1(C,Λ2E1
∗) ⊕H1(C,Λ2E2

∗) ⊕ (S2Ext1(E1, E2)),

and the multiplicity of MOr at this point is equal to 2r1r2(g−1)−1, where ri is

the rank of Ei.

Remark 3.1.4. — (i) The general case of a stable point q ∈ MOr is more

difficult: such a bundle corresponds to a vector bundle which splits as a di-

rect sum of n mutually non-isomorphic GLri
-stable orthogonal vector bundles.

We can use 2.2.3.6 to try to get some additional informations about the lo-

cal structure at q, for instance by computing the multiplicity at this point.

One can easily check that, if n = 3 (resp. 4) this multiplicity is equal to

2
∏

i<j

2rirj(g−1)−1 (resp. 8
∏

i<j

2rirj(g−1)−1).

(ii) It is not hard to deal with the case of an orthogonal (non stable) bundle

of the form F ⊕ F ∗ with F 6≃ F ∗: we see that MOr is, at such a point, étale
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locally isomorphic to Ext1(F, F )⊕S, where S is the affine cone over the Segre

variety

P(H1(C,Λ2F ∗)) × P(H1(C,Λ2F )) ⊂ P
(
H1(C,Λ2F ∗) ⊗H1(C,Λ2F )

)
.

(iii) Of course, we can give some similar results in the symplectic case.

3.2. Local description of SUC(3) for a curve of genus 2

Let C be a smooth irreducible projective curve of genus 2 over an alge-

braically closed field k of characteristic zero, and let SUC(3) be the moduli

space of rank 3 vector bundles over C with trivial determinant. Laszlo began

to investigate the local structure of this moduli space in [Las96, V]. We com-

pute here the local structure at any point of SUC(3). We will in particular

prove the following result:

Theorem 3.2.1. — The moduli space of rank 3 vector bundles over a curve

of genus 2 is a local complete intersection.

The notion of representations of quivers appears to be really helpful to un-

derstand the quotients given by Luna’s result. Although it may not be clear

in this section, where we could have given direct proofs avoiding such consid-

erations, this quiver setting was the very basic point which led to generating

sets for the coordinate rings of the quotients.

3.2.2. We know that, at a closed point representing a polystable bundle E,

the moduli space SUC(r) of rank r vector bundles with trivial determinant

is étale locally isomorphic to the quotient Ext1(E,E)0//Aut(E) at the ori-

gin, where Ext1(E,E)0 denotes the kernel of tr : Ext1(E,E) → H1(C,OC).

We thus have to understand the ring of invariants of the polynomial algebra

k[Ext1(E,E)0] = Sym(Ext1(E,E)0
∗
) under the action of Aut(E). Once again,

we decompose the polystable bundle E as the direct sum

E =

s⊕

i=1

Ei ⊗ Vi,(3.2.2.1)

where the Ei’s are mutually non-isomorphic stable bundles (of rank ri and

degree 0), and the Vi’s are vector spaces (of dimension ρi). Through this

splitting, our data become

Ext1(E,E) =
⊕

i,j

Ext1(Ei, Ej) ⊗ Hom(Vi, Vj),(3.2.2.2)
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endowed with the natural operation of Aut(E) =
∏

i

GL(Vi), which is

exactly the GL(α)-module R(Q,α) consisting of all representations of

Q of dimension α, where Q is the quiver with s vertices 1, . . . , s, and

dim Ext1(Ei, Ej) arrows from i to j, and α = (ρi)i=1,...,s. This identifies

the quotient Ext1(E,E)0//Aut(E) we have in mind with a closed subscheme

of R(Q,α)//GL(α). We have recalled in the Chapter 2 the fine description

found by Le Bruyn and Procesi of a family of generators for this algebra. But

we also need a precise description of the relations between these generators

(the second main theorem for invariant theory). Once we have a convenient

enough statement about these relations we can describe the completed local

ring of SUC(r) at E.

3.2.3. When r = 3 the decomposition (3.2.2.1) ensures that there are only

five cases to deal with, according to the values of the ri’s and ρi’s. We will

now consider these five cases one by one.

The case of a stable bundle is obvious, and the case r1 = 2, r2 = 1 is a special

case of the situation studied in [Las96, III]: SUC(3) is étale isomorphic at E

to a rank 4 quadric in A
9. Here quivers do not provide a shorter proof.

3.2.4. Let us look at the three other cases, where every Ei in (3.2.2.1) is

invertible. The generic case consists of bundles E which are direct sum of

3 distinct line bundles. It has already been performed in [Las96, V], but

may also be recovered in a more convenient fashion as an easy consequence of

[LBP90]: the generators of [Las96, Lemma V.1] then arise nicely as traces

along closed cycles in the quiver

(3.2.4.1)

•
2 �� //

��

•
2

qq
oo

��

•
2

DD

[[
CC

(note that a number r on an arrow means that there are r arrows with the

same tail and head). Since the dimension vector is α = (1, 1, 1), we can in fact

restrict ourselves to the quiver where the six loops have been removed, and a

family of generators is obtained by the three 2-cycles and the two 3-cycles. It

is easy too to infer from (3.2.4.1) the relation found by Laszlo; but, although
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[LBP90] gives a way to produce all the relations, this description turns out

to be quite inefficient even in the present case (note however that, in order to

conclude here, it is enough to remind that we know a priori the dimension of

Ext1(E,E)//Aut(E)).

In the remaining two cases we already know that the tangent cone at E

must be a quadric (in A
9) of rank 6 2 (see [Las96, V]). We give now more

precise statements.

3.2.5. Suppose that ρ1 = 2, i.e. that E = (L ⊗ V ) ⊕ L−2 where L is a line

bundle of degree 0 with L3 6≃ O and V a vector space of dimension 2. We

have to consider here the ring of invariant polynomials on the representation

space R(Q, (2, 1)) of the quiver Q

(3.2.5.1) •
//��

DD •
oo

��
ZZ

under the action of GL(V ) × Gm. Since the second vertex corresponds to

a 1-dimensional vector space it is enough to consider the quiver obtained by

deleting the two loops on the right, and in fact we are brought to the action

of GL(V ) on End(V ) ⊕ End(V ) ⊕ End(V )61 ⊂ End(V )⊕3, where End(V )61

denotes the space of endomorphisms of V of rank at most 1: this simply means

that

k[R(Q, (2, 1))]GL(V )×Gm ≃
(
k[R(Q, (2, 1))]Gm

)GL(V )
,

and that k[R(Q, (2, 1))]Gm gets naturally identified (as a GL(V )-module) with

End(V ) ⊕ End(V ) ⊕ End(V )61 ⊕ k ⊕ k, the last two summands being fixed

under the induced operation of GL(V ).

Let us now translate this discussion in a more geometric setting. Since

(3.2.2.2) identifies here Ext1(E,E) with
(
H1(C,O) ⊗ End(V )

)
⊕

(
H1(C,L−3) ⊗ V ∗

)
⊕

(
H1(C,L3) ⊗ V

)
⊕

(
H1(C,O) ⊗ k

)
,

we can identify the Aut(E)-module Ext1(E,E)0 with the GL(V )×Gm-module
(
H1(C,O) ⊗ End(V )

)
⊕

(
H1(C,L−3) ⊗ V ∗

)
⊕

(
H1(C,L3) ⊗ V

)
,

so that, up to the choices of some basis of the different cohomology spaces, any

element of Ext1(E,E)0 can be written (a1, a2, λ, v) ∈ End(V )⊕End(V )⊕V ∗⊕
V . The map (a1, a2, λ, v) 7→ (a1, a2, a3 = λ⊗v) ∈ End(V )⊕3 identifies the quo-

tient Ext1(E,E)0//Aut(E) with the closed subscheme of End(V )⊕3//GL(V )
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defined by the equation det a3 = 0. A presentation of the invariant algebra

k[End(V )⊕3]GL(V ) can be found in [Dre03] (note that another presentation

of this ring had been previously given in [For84]): if we let bi denote the

traceless endomorphism ai − 1
2tr(ai)id, this invariant ring is generated by the

following ten functions

(3.2.5.2)

ui = tr(ai) with 1 6 i 6 3, vij = tr(bibj) with 1 6 i 6 j 6 3,

w =
∑

σ∈S3

ε(σ)tr(bσ(1)bσ(2)bσ(3)),

subject to the single relation w2 + 18det(vij) = 0. We have thus obtained the

following result:

Proposition 3.2.6. — If E = (L⊗ V ) ⊕ L−2 with L3 6≃ O, then SUC(3) is

étale locally isomorphic at E with the subscheme of A
10 defined by the two

equations

X2
10 + 18(X4X5X6 + 2X7X8X9 −X6X

2
7 −X5X

2
8 −X4X

2
9 ) = 0

and X2
3 − 2X6 = 0

at the origin. Its tangent cone is a double hyperplane in A
9.

3.2.7. Suppose now that ρ1 = 3, i.e. that E = L ⊗ V where V is a vector

space of dimension 3 (and L a line bundle of order 3). By the same argument

as in [Las96, Proposition V.4] we know that the tangent cone at such a point

is a rank 1 quadric. But an explicit description of an étale neighbourhood

is available, thanks to [ADS06]. The space Ext1(E,E)0 is isomorphic to

H1(C,O)⊗End0(V ) and, if we fix a basis of H1(C,O), any of its element can

be written (x, y) ∈ End0(V ) ⊕ End0(V ). The ring of invariants k[H1(C,O) ⊗
End0(V )]GL(V ) is then generated by the nine functions tr(x2),tr(xy), tr(y2),

tr(x3), tr(x2y), tr(xy2), tr(y3), v = tr(x2y2)− tr(xyxy) and w = tr(x2y2xy)−
tr(y2x2yx); moreover the ideal of relations is principal, generated by an explicit

equation written in (loc. cit.):

(3.2.7.1) w2 = − 4

27
v3 + higher degree terms.

As a result of this case-by-case analysis, we conclude that SUC(3) is a local

complete intersection, which is the expected Theorem 3.2.1.
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3.2.8. This detailed study of the local structure of MSL3 could allow us to

express the tangent space at a point E in terms of the stable bundles given by

the Jordan-Hölder filtration. Such a description can in turn be used to find

the smallest very ample power of the determinant bundle LSL3 , in the spirit

of what has been done by Esteves and Popa in [EP04] on the smooth locus.

However, there is in this case an easier way to answer this question: since the

theta map is a finite morphism onto P
8 such that θ∗OMSL3

≃ OP8 ⊕OP8(−3),

we easily see that Ld
SL3

is very ample if and only if d > 3.

3.3. Application: local structure of S
Let now Θ be the canonical Theta divisor on the variety J1 which

parametrizes line bundles of degree 1 on C. It is known for long that the

theta map θ : SUC(3) −→ |3Θ| is a double covering. As we have already

recalled in the introduction, Angela Ortega has shown in [Ort05] that its

branch locus S ⊂ |3Θ| is a sextic hypersurface which is the dual of the Coble

cubic C ⊂ |3Θ|∗, where the Coble cubic is the unique cubic in |3Θ|∗ which is

singular along J1 |3Θ|−→ |3Θ|∗ (note that a different proof of this statement has

been given by Nguy˜̂en in [Ngu07]). The last part of this chapter is devoted

to the study of the local structure of the sextic S.

We know from [Ort05] that the involution σ associated to the double cov-

ering given by the theta map

θ : SUC(3) −→ |3Θ|

acts by E 7→ ι∗E∗, where ι stands for the hyperelliptic involution. The lo-

cal study of its ramification locus thus reduces to an explicit analysis of the

behaviour of σ through the étale morphisms resulting from Luna’s theorem.

Proposition 3.3.1. — The tangent cone at any singular point P of the sextic

S is described in the following table:

Type of the point P Tangent cone in A
8

F ⊕ L Rank 3 quadric

L1 ⊕ L2 ⊕ L3 Rank 1 quadric

L⊕ L⊕ L−2 Cubic hypersurface

L⊕ L⊕ L Triple hyperplane

Once again it comes down to a case-by-case investigation.
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3.3.2. When E is stable there is nothing to say. If E = F ⊕ L (with F a

stable bundle of rank 2 and L = (detF )−1) we have to understand the action

of the linearization of σ on

Ext1(E,E)0 ≃ Ext1(F, F ) ⊕ Ext1(F,L) ⊕ Ext1(L,F )

(note that we tacitly identify Ext1(F, F ) with its image in Ext1(F, F ) ⊕
H1(C,O) ⊂ Ext1(E,E) by the map ω 7→ (ω,−tr(ω))).

Since σ(E) = E, ι∗F ∗ must be isomorphic to F , and σ identifies Ext1(F,L)

and Ext1(L,F ); let us choose a basis X1, X2 of Ext1(F,L)∗, and call Y1, Y2

the corresponding basis of Ext1(L,F ). We need here to recall precisely from

[Las96] the explicit description of the coordinate ring of Ext1(E,E)0//Aut(E)

mentionned in 3.2.3: it is generated by k[Ext1(F, F )] and the four functions

uij = XiYj , subject to the relation u11u22 − u12u21 = 0.

It follows from our choice that σ maps uij to uji. Furthermore we claim

that σ acts identically on Ext1(F, F ): as a stable bundle, F corresponds to a

point of the moduli space U(2, 0), whose tangent space is precisely isomorphic

to Ext1(F, F ). The action of σ on this vector space is the linearization of

the one of F ∈ U(2, 0) 7→ ι∗F ∗. Using that U(2, 0) is a Galois quotient of

JC × SUC(2), our claim comes from the fact that σ is trivial on both JC and

SUC(2).

Since the coordinate ring of the fixed locus of σ in Ext1(E,E)0//Aut(E) is

the quotient of the one of Ext1(E,E)0//Aut(E) by the involution induced by

σ we may conclude that S is étale locally isomorphic at E to the quadric cone

in A
8 defined by X2

3 −X1X2 = 0.

3.3.3. Consider now the situation of 3.2.4: let us write E = L1 ⊕ L2 ⊕ L3

with Li 6≃ Lj if i 6= j. We have Ext1(E,E) ≃ ⊕
i,j Ext1(Li, Lj); let us choose

for i 6= j a non-zero element Xij of Ext1(Li, Lj)
∗ such that Xji corresponds

to Xij through the isomorphism Ext1(Li, Lj) ≃ Ext1(Lj , Li) induced by σ

and the natural isomorphisms ι∗L∗
i ≃ Li. It then follows from 3.2.4 (see

[Las96] for a complete proof) that the ring k[Ext1(E,E)0]
Aut(E) is generated

by k[ker(
⊕

i Ext1(Li, Li) → H1(C,O))] and the five functions Y1 = X23X32,

Y2 = X13X31, Y3 = X12X21, Y4 = X12X23X31, Y5 = X13X32X21, subject to

the relation Y4Y5 − Y1Y2Y3 = 0. One easily checks that the involution σ fixes

k[ker(
⊕

i Ext1(Li, Li) → H1(C,O))], Y1, Y2 and Y3, while it sends Y4 to Y5.

The fixed locus Fix(σ) is then defined by the equation Y4−Y5 = 0, so that S is

étale locally isomorphic to the hypersurface in A
8 defined by Z2

4 −Z1Z2Z3 = 0.

Its tangent cone is a double hyperplane.
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3.3.4. In the situation of 3.2.5 we have to make a more precise choice of

the non-zero elements of Ext1(L−2, L) and Ext1(L,L−2), so as to make them

correspond through σ and the natural isomorphism ι∗L∗ ≃ L; such a choice

ensures that σ operates on Ext1(E,E)0 in the following way:

(x, y, λ, v) ∈ End(V )⊕2 ⊕ V ∗ ⊕ V 7→ (tx, ty, tv, tλ),

so that we know how it acts on the generators of k[Ext1(E,E)0//Aut(E)] given

in (3.2.5.2): σ fixes ui, vij , and sends w to −w. This implies that the fixed

locus is defined by the equation w = 0. The sextic S is étale locally isomorphic

to the subscheme of A
9 whose ideal is generated by the two equations

X4X5X6 + 2X7X8X9 −X6X
2
7 −X5X

2
8 −X4X

2
9 = 0 and X2

3 − 2X6 = 0;

its tangent cone is therefore the cubic hypersurface of A
8 defined by

2X7X8X9 −X5X
2
8 −X4X

2
9 = 0.

3.3.5. We are now left with the last case, where E is of the form L ⊗ V

(with L3 = O): Ext1(E,E)0 is then isomorphic to H1(C,O) ⊗ End0(V ), and

σ acts by ω ⊗ a ∈ H1(C,O) ⊗ End0(V ) 7−→ ω ⊗ ta. This induces an action

on k[H1(C,O)⊗End0(V )]Aut(E) which fixes the first eight generators of 3.2.7,

and acts by −1 on the last one, namely w; the fixed locus is thus defined in

Ext1(E,E)0//Aut(E) by the linear equation w = 0.

The sextic S is then étale locally isomorphic to an hypersurface in A
8 de-

fined by an explicit equation: (3.2.7.1) shows that its tangent cone is a triple

hyperplane.





CHAPTER 4

ORTHOGONAL BUNDLES OF RANK 3 OVER

A GENUS 2 CURVE

In this chapter, we give elements of description of the moduli spaces of rank

3 orthogonal bundles over curves of genus 2. As we will see, this will be done

in a somehow computational way, which is not well suited in higher genus.

We also show that the theta map has no base point in M±
SO3

, for every curve,

which gives a new evidence towards [Bea06b, Conjecture 6.2] (Raynaud had

shown that there is no base point in the whole MSL3 only for a generic curve).

4.1. Preliminaries

4.1.1. The quotient maps. — The classical isomorphism between SO3

and PGL2 gives rise to a morphism

E ∈ MGL2 7−→ (End0(E),det) ∈ MSO3

which actually provides two J2-quotients π : M0
SL2

−→ M+
SO3

et π : M1
SL2

−→
M−

SO3
, where Md

SL2
≃ SU(2, d): this follows for instance from [MFK94,

Proposition 0.2], and the assertion about the target spaces results from the

formula for the Stiefel-Whitney class recalled in (1.3.1.1) and the equality

h0(End0(E) ⊗ κ) = deg(E) + h0(κ) mod 2 ([Bea91, 1.1.a)]).

We will therefore have to analyze the quotients of Md
SL2

by the natural

action of J2 by tensorisation.

4.1.2. The Picard groups. — We recall from [BLS98] some facts about

the Picard groups of the involved spaces, and the behaviour of the quotient

maps.

We have already said that the Picard group of each of the component M±
SO3

is infinite cyclic, generated by the determinant bundle L±
SO3

. The key point is
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that their pull-back to Md
SL2

are π∗L+
SO3

= L⊗4
SL2

and π∗L−
SO3

= L⊗2
M1

SL2

: this

is [BLS98, Proposition 10.1].

4.2. The theta map M+
SO3

−→ |3Θ|+ is a morphism

The aim of this section is to study the base locus of the theta map. [Ray82]

implies that the theta map MSL3 99K |3Θ| is a morphism for a generic curve

of any genus. For orthogonal bundles, this result can be improved:

Theorem 4.2.1. — The theta map θ+
3 : M+

SO3
−→ |3Θ|+ is a morphism for

every curve C.

We have to find a family of hyperplanes (Hi)i on |3Θ|+ such that the in-

tersection of their pull-back θ+
3
∗
Hi is empty (according to [Bea06a], it is

equivalent to produce divisors belonging to |L+
SO3

| with no common point).

This will be done with the help of [Bea91, §1], using the commutative diagram

MSL2

ϕ

''O
O

O
O

O
O

O

π

��
M+

SO3

θ+
3 //______ |3Θ|+

Consider, for any even theta-characteristic κ, the hyperplane(1) Hκ = {D ∈
|3Θ|+|κ ∈ D}. Its pull-back to M+

SO3
is the determinant divisor Θκ =

{(E, q)|h0(C,E ⊗ κ) > 1} (which is a divisor in view of [Bea06a], or else

in view of what follows). The quotient π (or rather its restriction to the sta-

ble locus Ms
SL2

⊂ MSL2) corresponds to the rank 3 vector bundle End0 on

Ms
SL2

× C, which is a universal family for traceless endomorphisms of stable

bundles (recall that its existence follows from Kempf’s descent lemma [DN89,

Théorème 2.3], applied to the rank 3 vector bundle End0(U), where U denotes

the universal rank 2 vector bundle defined on RSL2 × C, see 1.2.13). The

pull-back of Θκ to MSL2 therefore is the determinant divisor associated to

the vector bundle End0 ⊗ p∗Cκ.

This divisor has been considered in [Bea91, 1.6], where it is denoted D′
κ:

it admits a square root Dκ ∈ |L2
MSL2

| (which is in fact the pfaffian divisor

associated to κ constructed in [LS97]). This square root is the divisor of zeros

(1)This is indeed an hyperplane because κ must belong to every odd divisor linearly equivalent

to 3Θ, so that it cannot also belong to every even divisor in |3Θ|.
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of a section dκ of L2
SL2

, and [Bea91, Théorème 1.2] ensures that (dκ)κ even

forms a basis of H0(MSL2 ,L2
SL2

). Now, since it follows from [Ray82] that

LSL2 already is globally generated, the intersection of the determinant divisors

(π∗Θκ)κ even must be empty: ϕ is a morphism, and so does θ3.

4.2.2. The description of M+
SO3

as a quotient of MSL2 naturally leads us to

consider the theta map

θ2 : MSL2 −→ |2Θ|.
When C is non hyperelliptic, this is an embedding (see [BV96] and [vGI01]).

When C is hyperelliptic, θ2 factors through the action of the hyperelliptic

involution ι: the induced map MSL2/ι
∗ −→ |2Θ| is an embedding by [Bea88],

whose image admits an explicit description (see [DR77] and [vG88]).

The natural representation of the theta group G(OJg−1(2Θ)) in the space

of sections H0(Jg−1,OJg−1(2Θ)) induces an action of the 2-torsion subgroup

J2 ⊂ J on |2Θ|, such that the theta map is J2-equivariant. From [BNR89],

we know that the following diagram

PH0(MSL2 ,LSL2)

≀

��

MSL2

θ2
))SSSSSSSSSSSSSSSSSS

ϕ
L

55kkkkkkkkkkkkkkkk

|2Θ|

is commutative, which implies that the vertical isomorphism is J2 equivari-

ant (in fact this also results from the duality between H0(MSL2 ,LSL2) and

H0(Jg−1, 2Θ) described in [Bea88]).

Remark 4.2.3. — The fact that the same observations hold for any r enables

us to hope to get something about the geometry of the moduli space of PGLr-

bundles M0
PGlr

≃ MSLr/Jr as soon as we have precise enough informations

about the corresponding theta map. For example in genus 2 rank 3 we get

MSL3

θ3 //

J3π3

��

|3Θ|

J3

��
M0

PGL3

2:1 // |3Θ|/J3,
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where the quotient |3Θ|/J3 comes from the Heisenberg representation. Note

that we know that π∗3LMPGL3
is L3

SL3
.

4.2.4. When r = 2, the morphism L ∈ J 7−→ L ⊕ L−1 ∈ MSL2 induces an

isomorphism between H0(MSL2 ,LSL2) and H0(J, 2ϑ). We will identify these

two spaces via this isomorphism. In particular, we may view ϕL as a morphism

MSL2 −→ |2ϑ|∗.
We thus have at our disposal the explicit realization of the preceding action

given by the Heisenberg representation, as recalled in Appendix B: choos-

ing a theta-structure G(O(2ϑ)) ≃ H2 for (J, 2ϑ), induces a basis (Xb)b∈F
g
2

of

H0(J,O(2ϑ)) such that (t, a, α) ∈ H2 sends Xb to

(t, a, α) ·Xb = tα(a+ b)Xa+b.

It follows from B.2 that the fixed locus of η ∈ J2 \{O} consists of two linear

subspaces of dimension 2g−1 − 1.

We can also give a precise description of the fixed locus of η in MSL2 (see

[NR75]): if Nmη : JCη −→ J is the norm map associated to the 2-sheeted

cover πη : Cη = Spec(OC ⊕ η) −→ C, this fixed locus is the image of Nm−1
η (η)

by the push forward πη∗ : Nm−1
η (η) −→ SU(2). Since Nm−1(η) consists of two

connected components, both isomorphic to the Prym variety Pη, its image in

SU(2) is the union of two copies of the Kummer variety K(Pη) = Pη/ ± 1

associated to η.

The orthogonal bundle obtained from such a fixed point is of the form η⊕F ,

with F an orthogonal bundle of rank 2 with determinant η: indeed, the two

maps Pη −→ SU(2) −→ M+
SO3

send a line bundle L (with Nmη(L) = O)

defined on Cη to End0(πη∗L), and we have (for example by [Bea91, 1.3]) an

exact sequence 0 → πη∗OCη → End(πη∗L) → πη∗(L ⊗ σ∗ηL
−1) → 0, where ση

is the involution of the 2-sheeted cover. In fact, since L ⊗ σ∗ηL
−1 = L2 for

L ∈ ker(Nmη), this means that the following diagram

Nm−1
η (η)

πη∗ //

2Pη

��

SU(2)

��
Pη

// M+
SO3

(4.2.4.1)

is commutative (the bottom arrow is L 7−→ η ⊕ πη∗L).
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Proposition 4.2.5. — If C has genus > 3, the singular locus of M+
SO3

is

the union of the Kummer variety of J and of all the 22g − 1 Prym varieties

associated to C.

Since the ramification locus Z ⊂ MSL2 of the quotient morphism MSL2 −→
M+

SO3
has pure codimension 2g − 2, the purity theorem [SGA71, Théorème

X.3.1] implies that a point in the quotient M+
SO3

= MSL2/J2 is smooth only if

it does not belong to Z. Conversely, a point outside this fixed locus is smooth if

and only if it comes from a smooth point in MSL2 . The conclusion now follows

from the preceding discussion, together with the well-known description of the

singular locus of MSL2 .

Remark 4.2.6. — The proof of the last Proposition shows that the two

copies of the Prym variety Pη fixed by η ∈ J2 are conjugated by the action of

J2.

4.3. Description of M+
SO3

for a curve of genus 2

We concentrate now on the case of a curve of genus 2. The majority of what

follows has already been noticed in [NR03].

4.3.1. The moduli space M+
SO3

is the quotient of SU(2, 0) ≃ P
3 under the

action of J2 ≃ (Z/2Z)4 given as the projectivization of the Heisenberg repre-

sentation. It has been known for long that this quotient may be identified with

the Satake compactification of the moduli space A2(2) of principally polarized

abelian surfaces with level 2 structure, and that this quotient is isomorphic to

a quartic Q in P
4, which is dual to the Segre cubic (see [vdG82] or [DO88,

IX.4]). The commutative diagram

SUC(2)
∼ //

��

|2Θ| ≃ P
3

��

A2(2, 4)oo

��
M+

SO3
// Q ⊂ P

4 A2(2),oo

where A2(2, 4) parametrizes isomorphism classes of principally polarized

abelian surfaces with (level 2) theta structure, sums up the situation: the

square on the right is the object of the example in [DO88, IX.4], its bottom

arrow identifying the Satake compactification of A2(2) to Q by [vdG82, 5.2]

(or [DO88, VIII.7]).
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4.3.2. Another way to see this is to look at the following commutative dia-

gram

|2Θ|

π

��

ϕ

&&MMMMMMMMMMMMMM

M+
SO3 θ+

3

// |3Θ|+.

Let us remark that M+
SO3

is contained in the sextic along which MSL3 −→
|3Θ| is ramified: according to [Ort05], the involution associated to the theta

map is the morphism E 7→ ι∗E∗ (where ι denotes the hyperelliptic involution),

and, for a curve of genus 2, ι∗ acts trivially on SU(2,O), and hence on M+
SO3

.

The main result of Chapter 2 ensures that M+
SO3

−→ MSL3 is an embedding,

which implies that θ+
3 : M+

SO3
−→ |3Θ|+ is also an embedding. The morphism

ϕ is thus a finite map of degree 16 onto its image. The equality ϕ∗O|3Θ|+(1) =

O|2Θ|(4) then shows that this image must be a quartic in |3Θ|+ ≃ P
4.

Remark 4.3.3. — We can then recover some of the properties of this quartic:

according to (for example) [Hun96, §3.3], this hypersurface is singular along

15 lines. But we have seen in the proof of Proposition 4.2.5 that a singular

point in the quotient by J2 of the smooth variety MSL2 ≃ P
3 comes from

a point fixed by a non trivial element of J2. The singular locus is thus the

union of the 15 Kummer varieties Pη/± 1. Since any of these Prym has genus

1, we obtain in this way a bundle-theoretic description of the expected 15

rational curves of the singular locus of M+
SO3

. That they are lines follows

for example from 4.2.4.1, by noticing that the determinant bundle L+
SO4

pulls

back to O(2ϑη) via the 2-to-1 morphism Pη −→ M+
SO3

.

4.3.4. One can directly obtain the quartic M+
SO3

⊂ |3Θ|+ (as well as its

equation) from an explicit enough description of the ring of polynomial func-

tions on H0(J, 2ϑ) invariant for the action of the finite Heisenberg group H̃2:

the quotient M+
SO3

of MSL2 (identified to |2ϑ| = Proj(k[H0(J, 2ϑ)]) via ϕL,

see 4.2.4) by the action of H̃2 is automatically the homogeneous spectrum

associated to the corresponding invariant algebra.
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Mollien’s formula shows that the Poincaré series is

1

64

( 1

(1 − t)4
+

1

(1 + t)4
+

1

(1 − it)4
+

1

(1 + it)4
+

30

(1 − t2)2
+

30

(1 + t2)2

)
=

1 + t4 + t8 + t12

(1 − t4)4
,

from which we easily deduce that k[H0(J, 2ϑ)]
fH2 is can be generated by five

elements of degree 4, subject to a single quartic relation. Indeed, let us consider

the following five elements Yi, which generates the space of invariants of degree

4:

Y0 =
∏

b∈F2
2

Xb, Y1 = X2

(0
0)
X2

(1
0)

+X2

(0
1)
X2

(1
1)
, Y2 = X2

(0
0)
X2

(0
1)

+X2

(1
0)
X2

(1
1)
,

Y3 = X2

(0
0)
X2

(1
1)

+X2

(1
0)
X2

(0
1)

and Y4 = X4

(0
0)

+X4

(1
0)

+X4

(0
1)

+X4

(1
1)
.

Elimination theory (and a computer) tells us that the kernel of the correspond-

ing morphism k[Z0, . . . , Z4] → k[H0(J, 2ϑ)]
fH2 is a principal ideal. Since the

Poincaré series looks like the one of a quartic hypersurface in P
4 (up to the

graduation), we conclude that the Yi’s generate the ring of invariants, and that

the equation of the quartic hypersurface M+
SO3

⊂ |3Θ|+ ≃ Proj(k[Z0, . . . , Z4])

is

16Z4
0−4Z2

0Z
2
1−4Z2

0Z
2
2−4Z2

0Z
2
3 +Z2

1Z
2
2 +Z2

1Z
2
3 +Z2

2Z
2
3−Z1Z2Z3Z4+Z

2
0Z

2
4 = 0.

Note that general results of Stanley about Poincaré series ([Sta79]) show that,

in order to prove that the invariant ring is generated by the Yi, it is enough to

check that Y1, . . . , Y4 is a regular sequence: this implies that this invariant ring

is a free k[Y1, . . . , Y4]–module generated by 1 and three elements of degree 4, 8

and 12, which must of course be Y0 and its successive powers (but checking that

a given sequence is regular is not really easier than the previous elimination

computation).

Remark 4.3.5. — We can of coure easily find the 15 singular lines in terms

of this explicit description of M+
SO3

. For example, the line associated to an

element of H̃2 lying over (0, α) ∈ J2 ≃ F
2
2 × F̂2

2 with α non trivial is the line

defined by the 3 equations Z0 = Zi = Zj = 0.

Let us sum up now the main observations of this section:

Theorem 4.3.6. — If C is a curve of genus 2, the moduli space M+
SO3

of

topologically trivial rank 3 orthogonal bundles is isomorphic to the Satake com-

pactification of the moduli space of principally polarized abelian surfaces with
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level 2 structure. Moreover, the theta map is an isomorphism from this moduli

space onto the quartic hypersurface in |3Θ|+ defined (in suitable coordinates)

by the equation

16Z4
0−4Z2

0Z
2
1−4Z2

0Z
2
2−4Z2

0Z
2
3 +Z2

1Z
2
2 +Z2

1Z
2
3 +Z2

2Z
2
3−Z1Z2Z3Z4+Z

2
0Z

2
4 = 0.

4.3.7. Let us recall now how [vdG82, §6] allows us, via the modular in-

terpretation, to recover the Kummer variety of the curve from M+
SO3

. The

orthogonal bundle O⊕3 is, exceptionally in genus 2, a smooth point in the mod-

uli space(2)) and thus defines a principally polarized abelian surface endowed

with a level 2 structure. According to [vdG82, 6.1], its Kummer variety is

exactly the intersection of M+
SO3

(imbedded in |3Θ|+) with its tangent space

at the corresponding point, and it is easy to verify that the tangent space

at O⊕3 is exactly {O ⊕ F, F ∈ SU(2,O)} (see [NR03]), whose intersection

with M+
SO3

is the image of the Kummer surface of C. We conclude from the

preceding that the point O⊕3 defines (as a point in A2(2)) the jacobian of C

(with a certain level 2 structure).

Remark 4.3.8. — As explained in [vdG82], A2(2) contains an Humbert sur-

face, consisting of 10 surfaces, which all contains exactly 6 of the 15 lines of

the singular locus. They are in fact tangent hyperplane sections, isomorphic

to a quadric surface. On the other hand, we have recalled in 4.2 that we can

associate to every even theta-characteristic a (reduced) divisor Dκ on MSL2

such that the pull-back of the theta divisor Θκ satisfies π∗Θκ = 2Dκ.

There should be a correspondence between the 10 components of the Hum-

bert section in M+
SO3

⊂ P
4 and the 10 divisors Θκ (which could give some

informations on the rational map J1 99K |L+
SO3

|, whose base locus contains

the six odd theta-characteristic).

4.4. The theta map M−
SO3

−→ |3Θ|− is a morphism

In this section, we explain briefly why the theta map is, again, always a

morphism.

Proposition 4.4.1. — The theta map θ−3 : M−
SO3

−→ |3Θ|− is a morphism

for every curve.

(2)This results from the description of the singular locus of the quotient |2Θ|//J2, or else

from a direct computation of the ring of an étale neighborhood k[H1(O) ⊗ so3]
SO3 .
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The proof goes exactly as the one given for the other connected component

of MSO3 , based on the following diagram:

SU(2, 1)

π

��

ϕ

&&LLLLLLLLLLLLLLLLL

M−
SO3 θ−3

// |3Θ|−.

(4.4.1.1)

If κ is an odd theta characteristic, Θκ defines a divisor(3) in M−
SO3

. Its pull-

back to M1
SL2

is the determinant divisor associated to End0 ⊗ κ (note that in

this case End0 is the sheaf of traceless endomorphisms of the universal rank

2 bundle on M1
SL2

): it therefore admits as a square root the pfaffian divisor

Dκ ∈ |LM1
SL2

|, which is defined by a section dκ of LM1
SL2

. For every point

p ∈ C, [Bea91] constructs a morphism ϕp : SU(2, 1) −→ P(Λ2H0(J, 2ϑ)),

which is in fact, by (loc. cit.), Proposition 3.12, the projective morphism given

by some of the dκ’s. This shows that no point is contained in the intersection

of the pfaffian divisors (Dκ)κ odd: ϕ, and thus θ−3 , is a morphism.

4.5. Description of M−
SO3

in genus 2

4.5.1. We consider now the case of a curve C of genus 2, with hyperellip-

tic involution ι. The strategy to describe M−
SO3

is to use the very explicit

description of M1
SL2

given by Desale and Ramanan for hyperelliptic curves.

Here again computations become too difficult for curves of higher genus.

We first give an elementary way to show that the forgetful morphism is a

closed immersion.

Proposition 4.5.2. — The forgetful morphism M−
SO3

−→ MSL3 induces an

isomorphism onto θ−1(|3Θ|−).

Although it is an immediate consequence of the main result of Chapter 2

we give here a direct way to recover this statement. Every scheme appearing

in the diagram (4.4.1.1) has dimension 3, and all the morphisms are finite

(θ−3
∗O(1) being ample, θ−3 is quasi-finite). We also know that SU(2, 1) is

isomorphic to the intersection of two quadrics in P
5 (cf. [New68]), so that

(3)This is [LS97, 7.10] adapted to the odd component.
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Pic(SU(2, 1)) is generated by the restriction OSU(2,1)(1) of OP5(1), which ver-

ifies c1(OSU(2,1)(1))3 = 4. Finally the pull-back of LM−

SO3

by π is given in

[BLS98]: we have π∗LM−

SO3

= OSU(2,1)(2).

Since ϕ∗O|3Θ|−(1) = OSU(2,1)(2) we know that degϕ = 23.4, and the equal-

ity 16.deg θ−3 = degϕ then implies deg θ−3 = 2. But θ : MSL3 → |3Θ| is

already of degree 2.

Remark 4.5.3. — Following [Las96, V.5] we can find directly c1(LM−

SO3

)3,

hence another proof of 4.5.2: indeed it is enough to recall that the dualiz-

ing sheaf ωM−

SO3

is, according to [BLS98, §13], equal to L−1

M−

SO3

. Therefore

the Hilbert polynomial n 7→ P (n) = χ(M−
SO3

,Ln
M−

SO3

) satisfies the identity

P (n) = −P (−n− 1). The Kodaira vanishing theorem and the main result of

[Bea06a] then ensures that P (0) = 1 and P (1) = 4, from what we easily infer

the leading coefficient of P .

4.5.4. Let me recall now the explicit description of M1
SL2

given in [DR77]

(we use this description rather than Newstead’s for two reasons: [DR77]

gives a result for all hyperelliptic curves, and in genus 2 it actually provides

an explicit description of the embedding in terms of vector bundles, while

Newstead constructs a universal family on the intersection of the two quadrics):

let ξ be a fixed line bundle on C of degree 5, V =
∑
ξw the direct sum of the

fibers of ξ at the six Weierstrass points. Desale and Ramanan have constructed

a pencil of quadratic forms on V ∗ and a morphism ϕ : SU(2, ξ) → P(V ) which

associates to any vector bundle E of rank 2 and determinant ξ the hyperplane

of V defined as the image by the evaluation maps of the (−1)-eigenspace of

the involution of H0(C,E ⊗ ι∗E) induced by ι (see (loc. cit.), §5). Since the

restriction of every form of the pencil has rank 4 on such an hyperplane, ϕ

factorizes through the base locus of this pencil, and is actually an isomorphism

onto this subscheme.

Moreover the product G = J2 ×Z/2Z operates on both SU(2, ξ) and P(V ):

the normal subgroup J2 ⊂ G acts on SU(2, ξ) by tensorisation, while the

other elements of G acts by E 7→ ι∗E ⊗ ξ ⊗ β, with β a line bundle such

that β2 ≃ K−5
C ; on the other hand, G acts on P(V ) in the following way: an

element α ∈ G naturally corresponds to a partition W = S∪T of the set W of

Weierstrass points (so that elements of J2 ⊂ G correspond to partition with |S|
even), and the involution given by α is the one which fixes exactly P(

∑
w∈S ξw)

and P(
∑

w∈T ξw). The point is that ϕ is then G-equivariant, which allows us
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to give a fairly nice description of the quotient SU(2, ξ)/J2 ≃ M−
SO3

as a

subscheme of P(V )/J2.

Let us choose some coordinates (Xw)w∈W on P(V ) (in accordance with

the ξw, so that SU(2, ξ) is the intersection in P
5 of the two quadrics

∑
X2

w

and
∑
λwX

2
w, where (λw)w∈W is the ramification locus of C −→ P

1). The

quotient P(V )/J2 is easily seen to be isomorphic to the sextic hypersurface S in

the weighted projective space P(1, 1, 1, 1, 1, 1, 3) = Proj(k[Yw,Υ]) of equation

Υ2 − ∏
w Yw = 0: this follows from the fact that the operation of J2 on P(V )

comes from the action of a natural extension of J2 by µ2 on V . More precisely,

this extension is identified with the group of involutions in SL(V ) acting by

±1 on each ξw, and the invariant subalgebra of k[Xw] is generated by the

elements Yw = X2
w and Υ =

∏
w Xw.

Here is a commutative diagram which sums up the situation:

SU(2, ξ) � � //

��

P(V ) ≃ Proj(k[Xw])

��
M−

SO3

θ

��

SU(2, ξ)/J2
∼oo � � //

��

S ⊂ Proj(k[Yw,Υ])

���
�

�

|3Θ|− SU(2, ξ)/G � � //oo Proj(k[Zw]),

where Υ is an element of degree 3 in the graded algebra k[Yw,Υ] appearing

on the middle row. The vertical arrows on the right come from Yw 7→ X2
w

and Υ 7→ ∏
Xi, and Zw 7→ Yw. Since the choice of the Xw defines SU(2, ξ) in

P
5 as the intersection of the quadrics

∑
X2

w = 0 and
∑
λwX

2
w = 0, we have

obtained the expected explicit description:

Theorem 4.5.5. — The moduli space M−
SO3

is isomorphic to the subscheme

of the weighted projective space P(1, 1, 1, 1, 1, 1, 3) defined by the three equations
∑

w∈W

Yw = 0,
∑

w∈W

λwYw = 0, Υ2 −
∏

w∈W

Yw = 0.

We can of course deduce from these equations a description of M−
SO3

as an

hypersurface in P(1, 1, 1, 1, 3).

4.5.6. We also get a precise description of the theta map: the action of

G/J2 ≃ Z/2Z on M−
SO3

= SU(2, ξ)/J2 is exactly E 7→ ι∗E; since it commutes

with the theta map, it is the involution associated to θ3. This shows that

its ramification locus is defined in SU(2, ξ)/J2 ⊂ S by the hyperplane section
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Υ = 0: henceforth the branch locus in |3Θ|− is the union of six hyperplane

sections Πw, w ∈W , which meet in 15 lines Lw,w′ , w 6= w′; these lines in turn

meet in 20 points Pw,w′,w′′ labelled by the 3 points subsets of W , and there

are 4 points a line and 3 lines a point (this gives a new presentation of the

results of [NR03, §6]). Note that Lw,w′ is precisely the image of the closed

subspace of SU(2, ξ) fixed by the involution corresponding to the partition

W = {w,w′} ∪ (W \ {w,w′}). This subscheme is in fact the elliptic curve

Ew,w′ defined by the two quadrics
∑

w′′ 6=w,w′ X2
w′′ and

∑
w′′ 6=w,w′ λw′′X2

w′′ .

Let us finally remark that the pullback π∗Πw of Πw to SU(2, ξ) is defined

as the double hyperplane section X2
w = 0: the associated reduced scheme is

thus a Del Pezzo surface of degree 4.

4.5.7. Let us explain how the previous observations can be reinterpreted in

terms of orthogonal bundles. Note that we already knew from [Ort05] that

the involution of the 2-sheeted cover is E ∈ M−
SO3

7−→ ι∗E, so that the

ramification locus of θ is R = {E ∈ M−
SO3

| ι∗E ∼ E}: it is the intersection

of the Dolgachev sextic S ⊂ |3Θ| with |3Θ|−, and its singular locus is exactly

the one of M−
SO3

.

This locus cannot contain any strictly semi-stable SO3-bundle: indeed, such

a bundle must be topologically trivial. But we know how stable SO3-bundles

look like: they are either GL-stable (in which case the corresponding point in

M−
SO3

is smooth), or equal to a sum η ⊕ F , with η ∈ J2 and F an O2-bundle

(with determinant η). According to [Mum71], any rank 2 orthogonal bundle

of determinant η is the direct image via πη : Cη = Spec(O ⊕ η) −→ C of a

line bundle with trivial norm. The kernel of Nmη : JCη −→ JC consists of

two connected components of dimension 1, the neutral one being the Prym

variety Pη of Cη over C, which is the component where the Stiefel-Whitney

w2(η ⊕ πη∗(·)) vanishes. Let us consider the other component P ′
η. The map

L 7−→ η ⊕ πη∗(L) defines a morphism P ′
η −→ M−

SO3
, which commutes with

the involution L 7→ L−1; since P ′
η is an elliptic curve, its image in (the singular

locus of) R is a rational curve Lη. We have thus found the 15 singular lines

Lw,w′ lying in the intersection of the ramification locus of θ3 and the singular

locus of M−
SO3

(and the 20 points are η1 ⊕ η2 ⊕ (η1 ⊗ η2) with 〈η1, η2〉 = −1).

Remark 4.5.8. — We have in particular seen that a point of M−
SO3

is singu-

lar if and only if its underlying vector bundle is not stable, but also if and only if

it comes from a rank 2 bundle fixed by a non-zero α ∈ J2: we retrieve [Ort05,

Lemma 4.2]. They are bundles E such that End0(E) = ker(E∗ ⊗ E → O) is

unstable, i.e. contains a line bundle.
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4.5.9. We now turn our attention to their inverse images in M1
SL2

: we know

that the fixed locus Fix(η) ⊂ SU(2, ξ) is the image of Nm−1
η (η ⊗ ξ) by the

morphism πη∗. Using the isomorphism between Nm−1
η (η ⊗ ξ) and ker(Nmη

given by any line bundle ξ̃ on Cη with Nmη(ξ̃) = η ⊗ ξ, we see that the

orthogonal bundle obtained from a point F = πη∗(L⊗ ξ̃) (now with Nmη(L) =

O) fixed by η fits in the exact sequence

0 → η → End0(F ) → πη∗(L⊗ σ∗ηL
−1 ⊗ ξ̃ ⊗ σ∗η ξ̃

−1) → 0,

which implies the commutativity of the diagram

Nm−1
η (η ⊗ ξ)

��

πη∗ // SU(2, ξ)

��
P ′

η
// M−

SO3

where the vertical arrow on the left is L 7→ L2 ⊗ ξ̃−1 ⊗ σ∗η ξ̃
−1, and the bottom

one L 7→ η ⊕ πη∗L. Since the involution induced by ση exchanges the two

components of Nm−1
η (η⊗ ξ), we see that πη∗ is the trivial 2 cover of its image,

isomorphic to the elliptic curve Pη: this is the inverse image of the rational

curve Lη ⊂ M−
SO3

.

Proposition 4.5.10. — If w and w′ are two distinct Weierstrass points of

C, the subscheme Lη of M−
SO3

associated to the line bundle η = O(w−w′) is

the line Lw,w′.

We just have to compare the two descriptions of the singular locus we have

given: on the one hand we have described, for each η the fixed locus in SU(2, ξ)

of an element η ∈ J2, while, on the other hand, we have obtained a similar

statement for the action of J2 ⊂ G on P
5 (and hence on the image of SU(2, ξ)

in P
5) constructed in [DR77]. Since the embedding SU(2, ξ) −→ P

5 is equiv-

ariant for these actions, we deduce the precise correspondence between the two

descriptions from the identification between J2 and its image in G constructed

in (loc. cit.), Lemma 2.1: the order 2 line bundle η = O(w−w′) (for w 6= w′)

corresponds to the involution of P
5 acting by −1 on Xw and Xw′ , and by +1

elsewhere, so that the image Lη of P ′
η in M−

SO3
is covered by the elliptic curve

defined by Xw = Xw′ = 0. This is therefore the line Lw,w′ ⊂ M−
SO3

.

4.5.11. Of course, the six hyperplane sections Πw in M−
SO3

correspond to

the theta divisors Θκ: this follows from the fact that the supports of Θκ are
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obviously contained in the ramification locus of θ3, which has been shown to

be the union
⋃

Πw.

We can show that the correspondence between (Θκ)κ even and (Πw)w∈W is

the one we have in mind.

Proposition 4.5.12. — The determinant divisor Θκ in M−
SO3

associated to

the theta characteristic κ = O(w) corresponding to a Weierstrass point w is

exactly the hyperplane section Πw.

This easily follows from the last Proposition, by comparing the lines con-

tained in the two divisors. Obviously, Πw contains a line Lw′,w′′ if and only

if w ∈ {w′, w′′}. On the other hand, [Bea91, Lemma 1.5] shows that π−1Θκ

contains the elliptic curve lying over the line Lη if and only if h0(C, κ⊗η) 6= 0.

This immediately implies that ΘO(w) is equal to Πw.

Remark 4.5.13. — Coming back to the bundle-theoretic definition of the

action of G given in [DR77], we see that an orthogonal bundle E belongs

to Θκ if and only if it comes from a rank 2 vector bundle F fixed by the

involution F 7−→ ι∗F ⊗ ξ⊗K−3
C ⊗O(w). The preceding result implies that, if

F is a rank 2 bundle with determinant ξ ∈ J−1 over a curve of genus 2, then

h0(C, End0(F ) ⊗O(w)) 6= 0 if and only if F ≃ ι∗F ⊗ ξ ⊗O(w).

Let me finally mention the nice version of the following Torelli theorem,

already noticed in [Ngu07]:

Corollary 4.5.14. — A curve of genus 2 is completely determined by its

moduli space M−
SO3

.

Here is an explicit way to recover the curve from the moduli space M−
SO3

(motivated by the fact that the Prym varieties associated to C are 2-covers of

the lines contained in the branch locus): the branch locus R of the morphism

M−
SO3

−→ |L−
SO3

|∗ defined by the ample generator of the Picard group of

M−
SO3

defines 6 planes, 15 lines and 20 points. Choose first a point P among

these points. There are exactly 3 lines L, L′ and L′′ in R passing through P ,

and exactly 3 planes Π0, Π1 and Π∞ in R which do not contain P . Now, the

curve C is the hyperelliptic 2-cover of P
1 with branch locus {0, 1,∞, α, α′, α′′},

where α(j) is the image of P by the automorphism of L(j) sending the (unique)

intersection point with Πt to t (for t ∈ {0, 1,∞}).

Remark 4.5.15. — One can directly say that the six planes making the

branch locus of the morphism M−
SO3

−→ |L−
SO3

|∗ correspond to six points in
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|L−
SO3

| ≃ P
3. These six points determine a unique rational normal curve, and

the curve C is isomorphic to the 2-cover of this rational curve branched exactly

at these six points. Such a formulation is quite less satisfactory than the one

given above, since it misses a right interpretation of the rational map C −→
|L−

SO3
| as the morphism x ∈ C 7−→ Θx = {E ∈ M−

SO3
|h0(C,E⊗OC(x)) > 0}.

The fine investigation of the dual maps held in [Ngu07] provides another way

to give a geometric description of the Torelli result.





CHAPTER 5

ORTHOGONAL BUNDLES OF RANK 4 AND

THETA FUNCTIONS

In this chapter, we describe the moduli spaces of rank 4 orthogonal bundles

over C, giving a special attention to the theta map. The main result is that its

restriction to the component M+
SO4

of topologically trivial bundles is defined

everywhere, for every curve (it is somehow surprising, since an extra condition,

like the non-vanishing of the thetanulls, could have been expected here again).

Regarding the behaviour of the restriction to the other component, we only

get partial results.

5.1. Preliminaries

5.1.1. The quotient maps. — Our study relies on the basic isomorphism

between SO4 and (SL2×SL2)/µ2, deduced from the exceptional isomorphism

Spin4 ≃ SL2 × SL2. This isomorphism gives two natural morphisms

MSL2 ×MSL2

π

��

M1
SL2

×M1
SL2

π

��

(E1, E2)
_

��
M+

SO4
M−

SO4
(Hom(E1, E2),det)

which present each component of the moduli space we are investigating as a

quotient by J2 of the self-product of a moduli space of rank 2 vector bundles

with fixed determinant (recall that Md
SL2

is the moduli space of rank 2 vector

bundles with fixed determinant of degree d).

This results for example from some long exact sequence of nonabelian co-

homology: if we think rather of SO4 as the quotient of the group(1) G =

(1)We could also deduce this from the quotient SL2 × SL2 −→ SO4...
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{(g1, g2) ∈ GL2 × GL2|det(g1) = det(g2)} by its central subgroup k∗, we

get an exact sequence H1
ét(C,G) → H1

ét(C,SO4) → H2
ét(C, k

∗) = ∗ (see

C.5). Since the quotient G → SO4 is induced by the natural representa-

tion of GL2 × GL2 in M2(k), this implies that any SO4-bundle arises as the

sheaf of homomorphisms between two rank 2 vector bundles E1 and E2 with

det(E1) = det(E2). It is then enough to recall from [Bea91, 1.1.b)] that the

parity of h0 (C,Hom(E1, E2) ⊗ κ) then coincides with the one of deg(E1).

Another quotient will come into play: the isomorphism between PSO4 and

SO3 × SO3 induces two morphisms M±
SO4

−→ M±
SO3

× M±
SO3

, which are

quotients by the action J2 by tensorisation. We can express the image of an

oriented orthogonal bundle (E, q, ω) in terms of the two half-spin representa-

tions of SO4: if Λ2E = E1 ⊕E2 is the adjoint bundle of E, endowed with the

quadratic form Λ2q and the orientation Λ2ω, then (E, q, ω) is sent to (E1, E2)

with the induced quadratic structures(2).

5.1.2. The Picard groups. — We recall here what the Picard groups of

these different spaces are, and explain the behaviour of pull-backs via the

different quotient maps. We will denote by(3) L+
SO4

(resp. L−
SO4

) the determi-

nantal bundle obtained as the pull-back of LSL4 to M+
SO4

(resp. M−
SO4

) by

the forgetful morphism.

Let us recall first how to compute the Picard group of the two components

of MSO4 . An easy proof goes as follows: we compute the pull-back of LSL4

to Md
SL2

× Md
SL2

, which is done by pulling it back to the self product of

the parameter scheme RSL2 −→ Md
SL2

defined in 1.2.13. The morphism

RSL2 × RSL2 −→ MSL4 is exactly the morphism associated to the vector

bundle Hom
(
p∗1(E1), p

∗
2(E2)

)
on RSL2×RSL2×C, where Ei is a Poincaré bundle

on RSL2 × C (and pi the projections), so that the pull-back of LSL4 is the

inverse of detRf∗

(
Hom

(
p∗1(E1), p

∗
2(E2)

)
⊗ g∗L

)
, where L is a line bundle on

C of degree g − 1, and f and g the projections from RSL2 × RSL2 × C onto,

respectively, RSL2 ×RSL2 and C. The see-saw principle and the construction

of the determinant bundle on Md
SL2

implies the following two identities:

– π∗L+
SO4

= L2
SL2

⊠ L2
SL2

on MSL2 ×MSL2 ,

(2)We can also describe it in terms of the two rulings of the quadric surfaces defined by

the quadratic form: if PE1 × PE2 ⊂ PE is the family of rulings of the projective bundle

PE, (E, q, ω) is mapped to (End0(E1), End0(E2)) or (End0(E2), End0(E1)) (depending on

the orientation ω).
(3)Note that this is not inconsistent with the general definition of Lδ

G given p. 6, since that

definition suppose that G is almost simple.
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– π∗L−
SO4

= LSL2 ⊠ LSL2 on M1
SL2

×M1
SL2

.

This also results from the identities c1

(
Rf∗

(
Hom

(
p∗1(E1), p

∗
2(E2)

)
⊗ g∗κ

))
=

−2g∗
(
p∗1c2(E1) + p∗2c2(E2)

)
and c1

(
Rf∗(Ei ⊗ g∗κ

)
= g∗

(
p∗i c2(Ei)

)
given by

Grothendieck-Riemann-Roch Theorem, or from the now classical computa-

tion of the determinant line bundles based on the Dynkin index.

The Picard groups of M±
SO4

fit in the following exact sequences, induced

by the quotient map π:

0 → Pic(M+
SO4

) → Pic(MSpin4
) → Z/2Z × Z/4Z → 0,

0 → Pic(M−
SO4

) → Pic(M−
Spin4

) → Z/2Z → 0

(indeed, we know that L2 ⊠ L2, L4 ⊠ O and O ⊠ L4 descend from MSpin4
=

MSL2 ×MSL2 to M+
SO4

, while L2 ⊠ O cannot descend since it would imply

that L2
SL2

descend to M+
SO3

; in the same way we find that Pic(M−
SO4

) is

generated by L ⊠ L, L2 ⊠ O and O ⊠ L2).

It is also easy to describe the behaviour of the second quotient morphisms

M+
SO4

−→ M+
SO3

× M+
SO3

and M−
SO4

−→ M−
SO3

× M−
SO3

: the pullback of

L+
SO3

⊠ L+
SO3

to MSL2 × MSL2 is L4
MSL2

⊠ L4
MSL2

, which shows that the

square of the determinantal bundle L+
SO4

descends, but not the bundle itself;

and the pullback of L−
SO3

⊠L−
SO3

to M1
SL2

×M1
SL2

is L2
M1

SL2

⊠L2
M1

SL2

, which

again shows that the square of the determinantal bundle L−
SO4

descends, but

not the bundle itself.

5.2. The theta map M+
SO4

−→ |4Θ|+ is a morphism

The aim of this section is to establish that the theta map M+
SO4

99K |4Θ|+
has no base point (in genus 2, this is contained in the recent preprint [Pau07]):

using pfaffian divisors, we check that this is indeed a morphism (which means

in view of [Bea06a] that the line bundle L+
SO4

is indeed globally generated).

Let V be the space H0(MSL2 ,LSL2) of sections of the determinant bundle

on MSL2 . We will denote by ϕL the morphism MSL2 → PV given by |LSL2 |.
Beauville has proved in [Bea88] that this space is naturally isomorphic with

H0(J, 2ϑ) via the morphism induced by j : J −→ MSL2 , L 7−→ L ⊕ L−1 (in

other words, ϕL ◦ j : J −→ PV is identified to the morphism J −→ |2ϑ|∗
associated to the complete linear system |2ϑ|). We will in the sequel use this

isomorphism to identify these two spaces.
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5.2.1. Recall from [LS97, 7.10] that, for all theta-characteristic κ, there is

a (Cartier) divisor Θκ ⊂ M+
SO4

on M+
SO4

, which is the inverse image by θ of

the hyperplane Hκ ⊂ |4Θ|+ consisting of all divisors in Jg−1 passing through

κ (the point here is to ensure that this does not define the whole space).

Its inverse image by the quotient map π is thus an effective divisor Dκ with

O(Dκ) ≃ L2
SL2

⊠ L2
SL2

.

Since r is even, we can associate to any theta-characteristic κ a pfaffian di-

visor Θ̃κ, which provides a square root of the theta divisor Θκ on the regularly

stable locus M+, r
SO4

of M+
SO4

(see [LS97, 7.10]). More precisely, this divisor is

locally defined (on M+, r
SO4

) by a square root of an equation defining the divisor

Θκ.

These pfaffian divisors give the easiest way to analyze the base locus of

the theta-map: let us denote by D′
κ their pull-back to MSL2 × MSL2 . The

next proposition ensures that they define some Cartier divisors, which are

automatically linearly equivalent to LSL2 ⊠ LSL2 .

Proposition 5.2.2. — The product MSL2 ×MSL2 is locally factorial.

Since MSL2 is smooth in genus 2 we can suppose g > 3. Consider the

stable locus Ms
SL2

⊂ MSL2 , which is an open subset whose complementary

has codimension at least 2. Since MSL2×MSL2 is normal, the Proposition will

follow from the bijectivity of the natural morphism Pic(MSL2 ×MSL2) −→
Cl(MSL2 ×MSL2). The commutative diagram (see [DN89])

Pic(MSL2 ×MSL2)
//

��

Cl(MSL2 ×MSL2)

��
Pic(Ms

SL2
×Ms

SL2
) // Cl(Ms

SL2
×Ms

SL2
)

ensures that this is equivalent to the surjectivity of the restriction morphism

Pic(MSL2 × MSL2) −→ Pic(Ms
SL2

× Ms
SL2

). Since Pic(MSL2 × MSL2) is

isomorphic (by the see-saw principle) to Pic(MSL2)×Pic(MSL2), this results

from the following lemma (which has been shown to me by Arnaud Beauville):

Lemma 5.2.3. — If U and V are two smooth unirational varieties, we have

an isomorphism

Pic(U) × Pic(V )
∼−→ Pic(U × V ).

Choose a smooth compactification X (resp. Y ) of U (resp. V ) such that

X − U =
⋃

iEi with Ei ∈ Div(X) (resp. Y − V =
⋃

j Fj with Fj ∈ Div(Y )).

We have Pic(U) = Pic(X)/〈Ei〉 and Pic(V ) = Pic(Y )/〈Fj〉. Moreover, since
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X and Y are proper and unirational, the see-saw principle implies that the

natural map Pic(X)×Pic(Y ) −→ Pic(X ×Y ) is an isomorphism. The lemma

now follows from the isomorphism Pic(U×V ) = Pic(X×Y )/〈Ei×Y,X×Fj〉.

Remark 5.2.4. — We know from [BLS98, §13] that MSpinr
is not locally

factorial for r > 7. On the contrary, the exceptional isomorphisms imply that

it is locally factorial when r = 3, 5 or 6. Proposition 5.2.2 states that the

same holds when r = 4. It follows from [LS97, 13.5] that the quotient M+
SOr

is never locally factorial: this is the reason why pulling-back the divisors to

MSL2 ×MSL2 is relevant when studying the rank 4 case.

5.2.5. Let us consider the linear system

d ⊂ |LSL2 ⊠ LSL2 |

spanned by the D′
κ associated to the even theta-characteristics. The divisors

D′
κ come (via ϕL × ϕL) from some divisors on PV × PV which are linearly

equivalent to OPV (1) ⊠ OPV (1) (and invariant under the involution switching

the two factors); in other words, there is a commutative diagram

MSL2 ×MSL2

���
�

�

ϕL×ϕL // PV × PV

p

uuj j
j

j
j

j
j

j
j

d∗

where the map p : PV ×PV 99K d∗ may be defined in a very explicit way, which

we are now going to write down.

5.2.6. Since it is finite, the quotient map π induces a morphism between

divisor groups π∗ : Div(M+
SO4

) −→ Div(MSL2 ×MSL2), whose image consists

of divisors invariant under the (diagonal) action of J2. By 5.2.1, the pfaffian

divisorD′
κ is defined by a section sκ of LSL2⊠LSL2 , and its invariance property

implies that sκ must be an eigenvector for the natural action of the Mumford

group G(LSL2) on H0(MSL2 ,LSL2)⊗H0(MSL2 ,LSL2) induced by the diagonal

action of G(LSL2) on LSL2 ⊠ LSL2 : recall that G(LSL2), which lifts to LSL2

the action of J2 on MSL2 , naturally acts on V = H0(MSL2 ,LSL2). According

to what has been recalled in B.5, the induced representation (of weight 2) on

V ⊗V splits as a direct sum of one-dimensional non-isomorphic representations

V ⊗ V ≃
⊕

κ

k · ξκ,(5.2.6.1)
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where k · ξκ is the eigenspace corresponding to a character χκ ∈ X(G(LSL2))

of weight 2.

The decomposition (5.2.6.1) shows that any section sκ defining D′
κ must

be one of the ξκ′ (up to some scalars). Note that, if κ is odd, ξκ defines

an antisymmetric function on the tensor product, so that the corresponding

divisor on MSL2 ×MSL2 contains the diagonal ∆MSL2
; on the other hand, if

κ is even, the support of D′
κ cannot contain (O ⊕ O,O ⊕ O) (at least in the

case where C has no vanishing thetanull). Therefore D′
κ must correspond, for

κ even, to a sκ′ with κ′ even.

The following lemma checks that the expected correspondence actually

holds(4):

Lemma 5.2.7. — The divisor D′
κ ∈ d is the trace on MSL2 × MSL2 of

div(ξκ) ∈ |OPV (1) ⊠ OPV (1)|. In particular, d is identified with the linear

system consisting of all symmetric sections of OPV (1) ⊠ OPV (1).

We prove this by restricting these divisors to J × J , mapped into MSL2 ×
MSL2 via the product of the Kummer maps j : L ∈ J 7−→ L⊕L−1. Note that

we will abusively write here div(ξκ) for the divisor naturally defined by ξκ on

PV × PV as well as for its trace on J × J .

Let us consider the successive inverse images of Θκ ⊂ MSO4 (which is the

pull back via the forgetful morphism M+
SO4

−→ MSL4 of the theta divisor

Θκ ⊂ MSL4) trough the commutative diagram

J × J
j×j //

(m,d)

��

MSL2 ×MSL2

π

��

J × J //

j×j

��

M+
SO4

//_____

��

|4Θ|+

MSL2 ×MSL2

⊕ // MSL4

(5.2.7.1)

where (m, d) maps (L1, L2) to (L1 ⊗ L2, L1 ⊗ L−1
2 ).

The inverse image by ⊕ of the divisor Θκ ⊂ MSL4 is Θ
(2)
κ ×MSL2 +MSL2×

Θ
(2)
κ (where Θ

(2)
κ is the theta divisor {E ∈ MSL2 | h0(C,E⊗κ) > 1} ⊂ MSL2),

(4)Another proof would be to consider the translates (α, 1) · sκ as Beauville did in [Bea91]

with the translates of ξκ; rather than recopying his argument, we prefer the following proof

which uses it.
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which in turn pulls back via j×j to 2(T ∗
κΘ×J)+2(J×T ∗

κΘ) (where Tκ : J −→
Jg−1 is the translation by κ). Note that (T ∗

κΘ × J) + (J × T ∗
κΘ) is nothing

but the pfaffian divisor deduced from κ and the rank 4 orthogonal bundle

p∗13(P ⊕ P−1) ⊕ p∗23(P ⊕ P−1) on J × J × C (where P denotes a Poincaré

bundle on J × C).

Recall from [Bea91, A.5] that (m, d)∗ ((T ∗
κΘ × J) + (J × T ∗

κΘ)) is a divisor

defined by an explicit section ξκ ∈ H0(J ×J,OJ(2ϑ)⊠OJ(2ϑ)). We have thus

found that the equality 2 (j × j)∗D′
κ = 2div(ξκ) holds in Div(J × J).

The lemma now follows from the fact that j induces an isomorphism

j∗ : H0(MSL2 ,LSL2) −→ H0(J,O(2ϑ)): D′
κ is the restriction of the divisor on

PV × PV given by the section ξκ ∈ H0(PV × PV,OPV (1) ⊠ OPV (1)); to prove

the last part of the lemma, we just have to recall that the (ξκ)’s with κ even

form a basis of S2V .

Remark 5.2.8. — Let us remark that the linear independency of the D′
κ

directly follows from an easy description of the push-forward π∗(L⊠L). Indeed,

this coherent (and reflexive) sheaf splits, over the regularly stable locus, as the

direct sum of the pfaffian line bundles

π∗(LSL2 ⊠ LSL2)|Mr,+
SO4

≃
⊕

κ

Pκ;

to see this, we just have to notice that the choice of a linearization of L⊠L over

the regularly stable locus (say associated to any isomorphism L ⊠ L ≃ π∗Pκ)

induces a decomposition into invertible eigenbundles π∗(L⊠L) =
⊕

η∈X(J2) Lη,

with L0 ≃ Pκ and Lη ⊗ Lη′ ≃ Lηη′ ⊗ Pκ. The J2-action on MSO4 conjugate

the Lη, and the expected fact follows from the identity α∗Pκ ≃ Pα⊗κ (see

[BLS98, 5.5]). This implies that h0(Mr,+
SO4

,Pκ) = 1 for all κ, and that the

pfaffian divisors D′
κ ∈ |LSL2 ⊠ LSL2 | are linearly independent.

Note that this is a special case of [PR01, 8.2], which should be compared

to the decomposition 2J∗OJ(4ϑ) ≃ ⊕κOJ(T ∗
κΘ): if we add to the diagram of

the proof of 5.2.7 the commutative square

J
∆ //

2J

��

J × J

(m,d)
��

J
(id,O) // J × J

we get an identification between ker
(
Pic(Mr,+

SO4
) −→ Pic(MSL2 ×MSL2)

)

and ker(2∗J : Pic(J) → Pic(J)) (which is by the way the one of [BLS98, 5.2]).
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5.2.9. We have up to now introduced a linear system d defining a ratio-

nal map p : PV × PV 99K d∗ such that, set-theoretically, the inverse image

π−1(Bs(θ)) of the base locus of θ is contained in (ϕL × ϕL)−1(Bs(p)). The

following diagram may help to understand the situation:

PV × PV

p

���
�

�

MSL2 ×MSL2

ϕL×ϕL

66mmmmmmmmmmmm

π

��

//_____ d∗

M+
SO4

θ //______ |4Θ|+.

(5.2.9.1)

It is enough to check that p has no base point: but Lemma 5.2.7 says that p

is the projective morphism given by the subspace of all symmetric sections in

H0 (PV × PV,O(1) ⊠ O(1)). In other words, this is the composite of the Segre

embedding PV × PV −→ P(V ⊗ V ) and the projection P(V ⊗ V ) 99K d∗ ≃
P(S2V ) with center P(Λ2V ). Since the tensor λ⊗µ is not antisymmetric, the

Segre variety in P(V ⊗ V ) does not meet P(Λ2V ), and p is thus a morphism.

This implies the main result of this section:

Theorem 5.2.10. — For any curve C, the theta map M+
SO4

−→ |4Θ|+ has

no base point.

We therefore know that θ : M+
SO4

−→ |4Θ|+ is always finite onto its image.

We can in fact say more about p:

Proposition 5.2.11. — The image in P(S2V ) of the Segre variety is the quo-

tient of PV × PV by the involution σ switching the two factors, and p is the

quotient map. In particular, p is a finite morphism of degree 2 onto its image.

This quotient is indeed the projective homogeneous space

Proj
(⊕

d

H0
(
PV × PV,O(d) ⊠ O(d)

)σ∗
)
,

and we thus have to describe the σ∗-invariant polynomials in k[Xi, Yj ] of bide-

gree (d, d). We know from a theorem of Noether about invariants for actions

of finite groups (see for example [Wey39, VIII.15]) that the whole invariant

algebra k[Xi, Yj ]
σ∗

is generated by its elements of degree at most 2: more ex-

plicitely, this algebra is generated by the elements Xi+Yi and XiYj +XjYi. An
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immediate examination of the bigraduation shows that a σ∗-invariant polyno-

mial of bidegree (d, d) is contained in the subalgebra generated by the functions

XiYj +XjYi. This gives us an embedding (PV ×PV )/σ →֒ P(S2V ), such that

the quotient morphism PV × PV −→ P(S2V ) is exactly the projective mor-

phism defined by the linear system of all symmetric polynomials of bidegree

(1, 1) (note that it sends the closed point (λ, µ) defined by two linear forms

λ and µ on V to λ ⊗ µ + µ ⊗ λ ∈ (S2V )∗). But we have just seen that p is

precisely defined by this linear system, whence our assertion.

5.2.12. For later use, it may be useful to give the explicit equations for the

morphism p in some natural basis of the different spaces of sections. To do

this, we first choose an isomorphism between G(LSL2) and the Heisenberg

group H2 = k∗ × F
g
2 × F̂

g
2. The results recalled in Appendix B give us some

natural coordinates (Xb)b∈F
g
2

(resp. (Yb)b∈F
g
2
) on the first (resp. second) factor

of PV × PV , while Lemma 5.2.7 (and B.5) gives some natural coordinates

(Zκ)κ even on d∗. Through these choices, p becomes identified with the map

P
2g−1 × P

2g−1 99K P
N−1 (where N is 2g−1(2g + 1)) given by:

Zκ =
∑

b∈F
g
2

γ(b)XbYb+c(5.2.12.1)

where κ corresponds to (c, γ). Note that we can deduce deduce from

these equations another proof of the fact that p has no base point: the

vanishing of all the Zκ is equivalent to the equations XbYb′ + Xb′Yb =

0 for all b, b′ (use the easy identities
∑

γ

γ(a) =

{
2g if a = 0

0 otherwise
, and

∑

γ, γ(c)=1

γ(a) =

{
2g−1 if a ∈ {0, c}
0 otherwise

). This new system of polynomial equa-

tions is easy to solve.

5.3. A question about theta functions

5.3.1. The diagram (5.2.9.1) naturally invites us to ask whether there should

be an arrow d∗ −→ |4Θ|+ making the whole diagram commutative, so that

we would have a very explicit factorization of the theta map as the composite

of a (rational) map defined by a linear system d associated to LSL2 ⊠ LSL2

with a map d∗ 99K |4Θ|+ coming from a base point free system of quadrics

on d∗. Since this diagram has been obtained by writing precisely the inverse

image of the hyperplane sections Hκ ⊂ |4Θ|+, we need to know whether
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these hyperplane sections span
(
H0(Jg−1, 4Θ)+

)∗
. Unfortunately, we did not

manage to prove this.

We discuss here this condition, and we will explain in the next section how

to deduce from it the factorization.

Remark 5.3.2. — Geometrically, this condition means that no even divisor

D ∈ |4Θ|+ contains every even theta-characteristic.

According to [Bea06a], an equivalent way to express the condition is to

say that the linear system |L+
SO4

| is spanned by the generalized theta divisors

Θκ given by the even theta-characteristic κ. Let us formulate now a quite

optimistic conjecture:

Conjecture 5.3.3. — The linear system |L+
SO4

| is spanned by the theta divi-

sors Θκ associated to the even theta-characteristic κ.

As we will see, this holds in genus 2. In higher genus, it would not be too

surprising that it only holds for generic curves. In fact, the condition that

C has no vanishing thetanull may turn out to be enough: we will propose

another Conjecture, which is in this case a reformulation of the previous one.

5.3.4. It follows from (5.2.7.1) that it is enough(5) to prove the linear inde-

pendence of
(
2(T ∗

κΘ× J) + 2(J × T ∗
κΘ)

)
κ even

in |OJ(2ϑ) ⊠OJ(2ϑ)|. In other

words, if θκ denotes a non-zero section of H0(J, T ∗
κΘ), we have to verify that

the sections θ2
κ ⊗ θ2

κ, κ even, are linearly independent in H0(J × J, 2ϑ ⊠ 2ϑ).

Note that we know that the sections θ2
κ ⊗ θ2

κ′ span H0(J × J, 2ϑ ⊠ 2ϑ) (for

example since their linear span is invariant for the action of the theta group

G(2ϑ⊠ 2ϑ), whose representation in H0(J × J, 2ϑ⊠ 2ϑ) is irreducible).

If C has no vanishing theta-null, the morphism ∆∗ induced by the diagonal

embedding J →֒ J × J gives a surjective morphism onto the space H0(J, 4ϑ)+

of even fourth order theta functions, and the conjecture becomes:

Conjecture 5.3.5. — If (A, ϑ) is a principally polarized Abelian variety, the

fourth powers (θ4
κ)κ even

of the even theta functions of order 1 form a basis of

the space H0(A, 4ϑ)+ of even fourth order theta functions.

This means that the multiplication morphism
∑

κ even

H0(A, ϑκ)⊗4 −→ H0(A, 4ϑ)+

(5)This is even an equivalence when C has no vanishing theta-null.
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is an isomorphism (recall that ϑκ is here the symmetric theta divisor associated

to the theta-characteristic κ).

Remark 5.3.6. — Note that this together with [Bea06a] would give a nat-

ural pairing
(
H0(Jg−1, 4Θ)+

)∗ ∼−→ H0(J, 4ϑ)+. More precisely, this would

imply that the morphism

J
∆−→ J × J −→ M+

SO4

θ−→ |4Θ|+

which sends L to the divisor 2
(
T ∗

LΘ + T ∗
L−1Θ

)
in Jg−1 induces an isomor-

phism between spaces of global sections. The Wirtinger duality explained in

[Mum74] asserts that there is, for every theta-characteristic κ, a commutative

diagram

|2ϑ|∗

≀

��

J

ϕ
77oooooooooooooo

δκ ''OOOOOOOOOOOOOO

|2ϑ|
where δ is L 7→ T ∗

Lϑκ+T ∗
L−1ϑκ (and ϕ the Kummer map). This shows that the

Conjecture is implied (and equivalent when A has no zero theta-null) to the

following fact: there is no quadric hypersurface in |2ϑ|∗ containing the images

ϕ(α) of the line bundles α ∈ J2 where κ takes the value ε(κ).

5.3.7. Since the condition about Abelian varieties considered in Conjec-

ture 5.3.5 is an open in the moduli of Abelian varieties of dimension g,

finding one Abelian variety satisfying the conjecture would prove that it

generically holds. Since it is obviously true in genus 1, a natural attempt

is to consider a decomposable Abelian variety A = A′ × A′′. Unfortu-

nately, we easily see that the Conjecture fails for such a variety. Indeed, a

theta-characteristic on A is given as a couple (κ′, κ′′) of theta-characteristics

on A′ and A′′; it is even if and only if κ′ and κ′′ have the same par-

ity ε(κ′) = ε(κ′′). The direct sum
∑

κ even

H0(A, ϑκ)⊗4 is thus equal to

∑

κ′,κ′′|ε(κ)=ε(κ′′)

H0(A′, ϑ′κ′)⊗4 ⊗ H0(A′′, ϑ′′κ′′)⊗4, whose image by the multiplica-

tion map must be contained in H0(A′, 4ϑ′)+ ⊗ H0(A′′, 4ϑ′′)+: it cannot be

surjective.
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5.3.8. Another way to attack this question is to fix a theta structure for

(A, 2ϑ), and to use the addition formula to obtain the identity

θ2
κ[c

γ]
(x) =

∑

b∈F
g
2

γ(b)Xb(x)Xb+c(0),

where (Xb)b∈F
g
2

is the basis of H0(A, 2ϑ) described in B.2 (recall that the

notation κ
[
c
γ

]
is explained in B.4). This gives the decompositions

θ4
κ[c

γ]
=

∑

b,b′

γ(b+ b′)Xb+c(0)Xb′+c(0)XbXb′ ,

of all the θ4
κ in the natural basis XbXb′ of H0(J × J, 2ϑ⊠ 2ϑ).

Going further requires a fine knowledge of the algebraic spans of the theta

constants: a linear combination
∑

κ even λκθ
4
κ = 0 implies the 22g relations

∀b, b′ ∈ F
g
2,

∑

κ[c
γ] even

γ(b)γ(b′)ψb+c(0)ψb′+c(0)λκ[c
γ]

= 0.

The vanishing of all the λκ would thus follow from the non vanishing of one of

the 2g−1(2g + 1)× 2g−1(2g + 1) minors of this system, and such a determinant

is a polynomial of degree 2g(2g + 1) in the theta constants.

5.3.9. Let us explain now how we checked that the conjecture holds in genus

2. First note that another way to consider the question is to study the linear

dependence of the Dκ = π∗Θκ in |L2
SL2

⊠ L2
SL2

|. We know by the proof of

Lemma 5.2.7 that they correspond to the sections s2κ, which admit an explicit

description. In genus 2, MSL2 is isomorphic to PV ≃ P
3, and we are in fact

dealing with sections s2κ ∈ H0 (PV,O(2))⊗H0 (PV,O(2)) ≃ S2V ⊗S2V . These

10 sections are the squares of the following polynomials (see 5.2.12)

X0Y0 +X1Y1 +X2Y2 +X3Y3,

X0Y0 +X1Y1 −X2Y2 −X3Y3,

X0Y0 −X1Y1 +X2Y2 −X3Y3,

X0Y0 −X1Y1 −X2Y2 +X3Y3,

X0Y1 +X1Y0 +X2Y3 +X3Y2,

X0Y1 +X1Y0 −X2Y3 −X3Y2,

X0Y2 +X1Y3 +X2Y0 +X3Y1,

X0Y2 −X1Y3 +X2Y0 −X3Y1,

X0Y3 +X1Y2 +X2Y1 +X3Y0,

X0Y3 −X1Y2 −X2Y1 +X3Y0.
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We have to check whether these 10 elements of k[Xi, Yj ](2,2) are linearly in-

dependent. A brutal way to do this is to decompose these squares in the

standard basis of the space of polynomials of bidegree (2, 2) and to compute

the rank of the 10× 100 matrix we have found. With the help of a computer,

we found the expected rank.

Theorem 5.3.10. — For a curve of genus 2, the divisors Θκ for κ even span

|L+
SO4

|.

Remark 5.3.11. — a) We can of course try to use this method in higher

genus. We would obtain a 2g−1(2g + 1) ×
(
2g−1(2g + 1)

)2
matrix, whose rank

is expected to be maximal. The point is that the conjecture implies the inde-

pendence of the sections s2κ viewed in H0 (PV × PV,O(2) ⊗O(2)), while the

converse is true for a curve without vanishing thetanull : for such a curve, we

know from [Bea91] that the map

(ϕL×ϕL)∗ : H0 (PV × PV,O(2) ⊠ O(2)) −→ H0
(
MSL2 ×MSL2 ,L2

SL2
⊠ L2

SL2

)

is an isomorphism, whence our assertion.

We have been able to check in this way that the conjecture holds for curves

of genus 6 5 without vanishing thetanull.

b) It would also be interesting to begin by investigating the case of Jacobians

of hyperelliptic curves.

5.4. Description of the theta map on M+
SO4

for a curve of genus 2

In this section, we first explain how to get an explicit factorization of the

theta map for curves of any genus satisfying Conjecture 5.3.3. Then we show

how this description allows us to give a few results on the geometry of M+
SO4

for a curve of genus 2.

5.4.1. We are considering the morphism MSL2 ×MSL2 −→ |4Θ|+. Since it

satisfies π∗θ∗O|4Θ|+(1) ≃ L2
SL2

⊠ L2
SL2

, this morphism is entirely determined

by the corresponding map

(θ ◦ π)∗ :
(
H0(Jg−1, 4Θ)+

)∗ −→ H0(MSL2 ×MSL2 ,L2
SL2

⊠ L2
SL2

);

we have to understand the image of a basis of
(
H0(Jg−1, 4Θ)+

)∗
. For a curve

satisfying Conjecture 5.3.3, this space has a basis (Tκ)κ even such that the

linear form Tκ corresponds to the hyperplane Hκ.

We have seen earlier that Dκ = π∗θ∗(Hκ) is defined by the square s2κ of a

section sκ of LSL2 ⊠ LSL2 which is invariant for the involution τ : (E,E′) ∈
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MSL2 ×MSL2 7−→ (E′, E); in other words, sκ belongs to the invariant space

H0(MSL2 ×MSL2 ,LSL2 ⊠LSL2)
τ∗

, which is isomorphic to H0(d∗,Od∗(1)) (see

Lemma 5.2.7). The linear map (θ ◦ π)∗ thus fits in the commutative diagram

H0(d∗,Od∗(2))

µ

ttiiiiiiiiiiiiiiiiiiiiiiiiiii

H0(MSL2 ×MSL2 ,L2
SL2

⊠ L2
SL2

)
(
H0(Jg−1, 4Θ)+

)∗

s

OO

(θ◦π)∗
oo

where s is the isomorphism sending to Tκ to s2κ (up to a non zero scalar), and µ

is the multiplication map from H0(d∗,Od∗(2)) ≃ S2H0(MSL2 ×MSL2 ,LSL2 ⊠

LSL2)
τ∗

to H0(MSL2 ×MSL2 ,L2
SL2

⊠ L2
SL2

), which is nothing but the linear

map induced by the morphism MSL2 ×MSL2 −→ d∗.

This means that we have a commutative diagram

d∗

σ

��
MSL2 ×MSL2

θ //

77ppppppppppppppppppp

|4Θ|+

where σ : d∗ −→ |4Θ|+ is the projective morphism associated to the line bundle

Od∗(2) and the morphism s. More concretely, if we choose the global coordi-

nates (Tκ)κ even on |4Θ|+ (and the coordinates (Zκ)κ even on d∗ already used

in 5.2.12), this morphism is simply given by (Zκ) ∈ P
N+−1 7−→ (Z2

κ) ∈ P
N+−1,

where N+ = 2g−1(2g + 1) is the number of even theta-characteristics. Note

that σ is the quotient morphism of d∗ by the action of {±1}N+
.

5.4.2. We consider now the case of a curve of genus 2. In this case, θ2 is an

isomorphism from MSL2 onto |2Θ| ≃ P
3. The previous discussion shows that

the theta map θ : M+
SO4

−→ |4Θ|+ fits in the following diagram (we know from
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[Pau07] that the general theta map MSL4 99K |4Θ| is generically 30-to-1)

P
15

p

���
�

�

P
3 × P

3
ϕ //

��

(
�

55kkkkkkkkkkkkkkkkk

P
9

σ

��
M+

SO4

θ //

2:1
��

P
9 = |4Θ|+

� _

��
MSL4

θ

30:1
//_______ P

15 = |4Θ|

(5.4.2.1)

where ϕ is given by the 10 polynomials previously written in 5.3.9. We know

by 5.2.11 that P
3 × P

3 −→ Σ = ϕ(P3 × P
3) is exactly the quotient morphism

for the involution switching the two factors; since deg(ϕ) · deg(Σ) is equal to

the degree of the Segre variety in P
15, we see that ϕ is a 2-sheeted cover onto

a degree 10 variety in P
9.

Since (σ ◦ ϕ)∗O|4Θ|+(1) ≃ OP3(2) ⊠ OP3(2), the degree d of the image of

σ ◦ ϕ in P
9 satisfies the equality

deg(σ ◦ ϕ) · d = c1(OP3(2) ⊠ OP3(2))6

= 26 ·
(

6

3

)
,

and we also know a priori that deg(σ◦ϕ) is divisible by 25 (see (5.4.2.1)). With

a computer(6), we found points in P
9 with exactly 32 reduced points in their

fiber. This means that this degree is 32, and that the image of M+
SO4

in P
9

has degree 40. This also shows that θ : M◦
O4

−→ |4Θ|+ has generic degree 1,

where M◦
O4

is the connected component of MO4 containing the trivial bundle.

Theorem 5.4.3. — For a curve of genus 2, the theta map M◦
O4

−→ |4Θ|+
has generic degree 1. Its image is a subvariety of P

9 of dimension 6 and degree

40.

5.4.4. We can give a precise description of the singular locus of M+
SO4

. In

genus 2, MSL2 × MSL2 ≃ P
3 × P

3 is smooth, and a singular point in the

quotient M+
SO4

is the image of a point fixed by at least one element of J2 (and

(6)I should not omit to thank Samuel Boissière for the time he spent explaining to me how

to do this
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conversely, since the fixed locus has codimension > 2, every fixed point is sent

to a singular point).

Let us describe the components of SingM+
SO4

corresponding to an ele-

ment η ∈ J2. The fixed locus in MSL2 × MSL2 is the image of the product

Nm−1
η (η) × Nm−1

η (η) by the morphism (L,L′) 7−→ (πη∗L, πη∗L
′) (this is a

union of products P
1 × P

1 of two copies of the Kummer curve of the Prym

Pη). Its image in M+
SO4

is given by the following easy lemma:

Lemma 5.4.5. — Let L and L′ be two line bundles on the curve Cη associated

to a 2-torsion point η ∈ J2. Then there is an exact sequence

0 → πη∗(L
−1 ⊗ L′) → Hom(πη∗L, πη∗L

′) → πη∗(σ
∗
ηL

−1 ⊗ L′) → 0

where ση is the involution of the 2-sheeted cover Cη −→ C.

This is an immediate adaptation of the proof of [Bea91, Lemme 1.3]: we

deduce from the equality detπ∗ηπη∗L = L⊗σ∗ηL an exact sequence 0 → σ∗ηL→
π∗ηπη∗L→ L→ 0. We obtain the Lemma by applying Hom( · , L′) and πη∗.

In other words, there is a commutative diagram

Nm−1
η (η) × Nm−1

η (η)

(m,d)

��

(πη∗
,πη∗

)
// MSL2 ×MSL2

��
Nm−1

η (O) × Nm−1
η (O) // M+

SO4

where (m, d) maps (L,L′) to (L⊗ L′, L−1 ⊗ L′), and the bottom arrow sends

(L,L′) to πη∗L⊕ πη∗L
′.

Remark 5.4.6. — We can also give a concrete description of the image of

this singular locus in |4Θ|+. Consider the element η ∈ J2 which acts on each

factor of P
3 ×P

3 by the matrix diag(1, 1,−1,−1) (through the thetastructure,

η corresponds to (0, α) where α is a non trivial character of F
2
2). Its fixed locus

in P
3 ×P

3 is the disjoint union of 4 products P
1 ×P

1: if we denote by Vi,j the

closed subscheme of P
3 defined by the equations Xi = Xj = 0 (or Yi = Yj = 0),

this fixed locus is the union V01×V01∪V01×V23∪V23×V01∪V23×V23. These

4 components behave differently: we see (on the equations) that V01 × V01 is

mapped onto a P
2 ⊂ |4Θ|+ (and the restriction of ϕ is the the composition

of the morphism from P
1 × P

1 to its symmetric product variety P
2 followed

by the quotient morphism σ : (Ui) ∈ P
2 7−→ (U2

i ) ∈ P
2 ), while V01 × V23 is
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mapped in a P
3 (and ϕ restricts to the morphism P

1×P
1 →֒ P

3 −→ P
3, where

the second map is again the restriction of σ).

5.5. Base locus of θ : M−
SO4

99K |4Θ|− in genus 2

5.5.1. The exceptional isomorphism Spin4 ≃ SL2 × SL2 gives a quotient

M1
SL2

×M1
SL2

π

��

(E1, E2)
_

��
M−

SO4
(Hom(E1, E2),det)

where M1
SL2

is isomorphic to the variety SUC(2, 1) of stable bundles of rank

2 and determinant ξ ∈ J1. Since the pull-back π∗L−
SO4

is equal to LM1
SL2

⊠

LM1
SL2

, we cannot try to adapt the method used for studying the base locus

in M+
SO4

to simplify the description. However, we will treat the genus 2 case

by showing that the theta map M1
SL2

× M1
SL2

99K |4Θ|− is given by some

explicit sections of H0(M1
SL2

×M1
SL2

,L ⊠ L).

5.5.2. We now consider the case of a genus 2 curve. We first recall that we a

priori know 20 base points for θ : M−
SO4

99K |4Θ|−: Raynaud has constructed

in [Ray82] some rank 4 bundles on a curve of genus 2 without theta divi-

sor, which are now called “Raynaud bundles”. The following considerations,

which are due to A. Beauville (and have appeared in [Hit]), show that this

construction gives 16 distinct bundles, 10 of them being orthogonal bundles(7)

(it follows from Theorem 5.2.10 that their Stiefel-Whitney class must be non

trivial).

Recall that these bundles are obtained as restrictions via some suitable

embeddings C →֒ J of the Fourier-Mukai transform of the inverse of the

ample line bundle OJ(2ϑ). One way to get some more explicit data about

these bundles is to consider first their pull-back via 2J : let E be the Fourier-

Mukai transform F(O(2ϑ)−1), which is a rank 4 vector bundle on J such

that 2∗JE ≃ V ∗ ⊗ O(2ϑ) (which means that E is the quotient by J2 of the

bundle V ∗ ⊗ O(2ϑ)) and detE = O(2ϑ). The tensor product E ⊗ E is thus

isomorphic to the quotient of (V ∗ ⊗O(2ϑ))⊗(V ∗ ⊗O(2ϑ)) by J2. The natural

decomposition of the representation of the Mumford group on V ∗⊗V ∗ into one-

dimensional eigenspaces recalled in 5.2.6.1 induces a J2-isomorphism between

(7)Since these bundles must be stable, this will give 20 SO4-bundles...
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V ∗⊗V ∗⊗O(4ϑ) and 2∗J (⊕κO(T ∗
κΘ)), and the tensor product E⊗E thus splits

as the direct sum ⊕κO(T ∗
κΘ). This gives, for each theta characteristic κ, a

non degenerate bilinear form on E with values in O(T ∗
κΘ), which is symmetric

or skew-symmetric according to the parity of κ: in other words, there are two

isomorphisms

S2E ≃
⊕

κ even

O(T ∗
κΘ) and Λ2E ≃

⊕

κ odd

O(T ∗
κΘ).

Restrict now this bundle to the curve C via a symmetric embedding ικ : C →֒
J given by any theta characteristic κ. We get in this way a rank 4 vector

bundle Fκ = ι∗κE on C with determinant K2
C , which depends on the choice

of the theta characteristic κ: since the restriction of T ∗
κ′Θ to C is linearly

equivalent to κ′ ⊗ κ, we see that the vector bundle Fκ satisfies

Fκ ⊗ Fκ ≃ κ⊗
(⊕

κ′

κ′
)
.

It is therefore natural to consider the vector bundle Fκ ⊗ κ−1, and more gen-

erally the vector bundles Gκ,λ = Fκ ⊗κ−1 ⊗λ for all λ ∈ J4: the isomorphism

Gκ,λ ⊗Gκ,λ ≃
⊕

κ′

(
κ′ ⊗ κ−1 ⊗ λ2

)

shows that Gκ,λ carries a natural bilinear pairing, which is symmetric (resp.

skew-symmetric) when κ⊗ λ2 is even (resp. odd), and also that Gκ,λ ≃ Gκ,λ′

if and only if λ2 ≃ λ′2.

This gives 16 distinct “Raynaud bundles” in MSL4 , which are all self-dual:

10 are orthogonal bundles, and 6 are symplectic.

5.5.3. We use here again the explicit description of M1
SL2

that we have re-

called in 4.5.4: if ξ is a fixed line bundle on C of degree 5, we consider

VW =
∑
ξw the direct sum of the fibers of ξ at the six Weierstrass points.

There is a then a J2-morphism ϕ : SU(2, ξ) −→ PVW , where J2 acts on PVW

as follows: elements of J2 correspond to partitions W = S ∪ T of the set W

of Weierstrass points (with |S| even), and the involution of P(VW ) given by

an element of J2 associated to the partition W = S ∪ T is the one which fixes

exactly P(
∑

w∈S ξw) and P(
∑

w∈T ξw).

We now investigate the theta map M−
SO4

99K |4Θ|− by completing the

following diagram
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SU(2, ξ) × SU(2, ξ) � � ϕ×ϕ //

π

��

PVW × PVW

p

��
M−

SO4

θ //___________ |4Θ|−.
Since π∗θ∗O|4Θ|−(1) is equal to LM1

SL2
⊠ LM1

SL2
, it is enough to understand

the morphism p∗ which fits in the diagram

H0(SU(2, ξ),L) ⊗ H0(SU(2, ξ),L) VW ⊗ VW
∼

(ϕ×ϕ)∗
oo

H0(M−
SO4

,L−
SO4

)
?�

π∗

OO

(
H0(J1, 4Θ)−

)∗
.

θ∗
∼oo

p∗

OO

We see first that the image of π∗ is exactly the space of J2-invariants(8) in

H0(SU(2, ξ),L) ⊗ H0(SU(2, ξ),L) ≃ VW ⊗ VW , which is the vector space

spanned by the elements ξw ⊗ ξw. The dotted arrow is thus, in some global

coordinates on each PVw labelled by the Weierstrass points w ∈ W , the map

P
5 × P

5 99K P
5 given by

(
(Xw), (Yw)

)
7→ XwYw.

Now, since the closed subscheme SU(2, ξ) in PVW is exactly defined as the

intersection of the two quadrics
∑
X2

w = 0 and
∑
λwX

2
w = 0, we see that

the base locus of SU(2, ξ) × SU(2, ξ) 99K |4Θ|− is, set-theoretically, defined

by Xwi
= Xwj

= Xwk
= 0 = Ywi′

= Ywj′
= Ywk′

for each partition W =

{wi, wj , wk} ∪ {wi′ , wj′ , wk′}. Any of these partitions gives 16 points, lying in

the same J2-orbit. We have thus explicitely located the 20 Raynaud bundles(9),

and there are no other orthogonal bundle without theta divisor.

Finally, we can identify the scheme structure on the base locus of θ: indeed,

since

c1(L−
SL2

⊠ L−
SL2

)6 =

(
6

3

)
p∗1

(
c1(LSL2)

3
)
p∗2

(
c1(LSL2)

3
)

= 20 · 16,

(8)The fact that J2 acts on the tensor product H0(SU(2, ξ),L) ⊗ H0(SU(2, ξ),L) is a con-

sequence of the linearization of the action of J2 on SU(2, ξ) →֒ PVW described in 4.5.4.

We have seen there that this action of J2 lifts to an action of an extension of J2 by µ2 on

H0(SU(2, ξ),L) ≃ VW , whose diagonal action on the second tensor power factors through

J2.
(9)Note that the oriented orthogonal bundle corresponding to a 3 points subset I ⊂ W

and the oriented orthogonal bundle corresponding to its complement W \ I are isomorphic

orthogonal bundles, but carry opposite orientations.
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we see that the base locus must be reduced. We have thus proved the following

theorem, which is contained, as well as its symplectic counterpart [Hit], in

[Pau07].

Theorem 5.5.4. — When C is a curve of genus 2, the base locus B of the

theta map M−
SO4

//___ |4Θ|− is the zero-dimensional reduced scheme con-

sisting of the 20 Raynaud orthogonal bundles.

Since dimMSO4 > dim |4Θ|−, we automatically deduce the following corol-

lary:

Corollary 5.5.5. — The theta map M−
SO4

\ B −→ |4Θ|− is a surjective

dominant.

Remark 5.5.6. — It is now natural to try to give some informations about

its fibers.

It is easy at a point P defined by 5 coordinates hyperplanes, corresponding

to any set W ′ = W \ {w0} of 5 Weierstrass points. Since at most three

coordinates can simultaneously vanish at a point of SU(2, ξ), we can check

that the fiber (θ ◦ π)−1(P ) ⊂ SU(2, ξ) × SU(2, ξ) is the union of 80 elliptic

curves (whose j-invariant is available); its image in M−
SO4

is a connected nodal

curve, consisting of 20 rational curves. A detailed analysis shows that these

20 curves meet in 30 points, with 2 curves a point and 3 points a curve: this

fiber is thus a stable curve of genus 11.



APPENDIX A

ORTHOGONAL AND SYMPLECTIC BUNDLES

OVER AN ELLIPTIC CURVE

Moduli spaces of G-bundles over an elliptic curve C have been described

in [Las98](1) as a quotient of C ⊗X(T ) (where X(T ) is the character group

of a maximal torus T ⊂ G) by the action of the Weyl group WT (at least

the component containing the trivial bundle). In the case G = SOr, this

implies that M+
SOr

is isomorphic to P
r−1
2 when r is odd, and to the quotient

of C
r
2 by the Weyl group (Z/2Z)

r
2
−1

⋊ S r
2

when r is even. We give here an

elementary direct proof of this result: this is somehow instructive, as it shows

how orientation matters.

Proposition A.1. — Let C be an elliptic curve, and n > 1. The moduli

space M+
SO2l+1

is isomorphic to P
l, M−

SO2l+1
to P

l−1, M−
SO2l

to P
l−2 and

M+
SO2l

to the quotient of C l by (Z/2Z)l−1
⋊ Sl.

Every semi-stable bundle of degree zero on the elliptic curve C is S-

equivalent to a direct sum of invertible bundles. In particular, if (Ni)i=1,...,3

are the three non zero line bundles of order two, an orthogonal bundle E on

C with trivial determinant splits as follows:

– OC ⊕
l⊕

i=1

(
Li ⊕ L−1

i

)
if rk(E) = 2l + 1 and w2(E) = 1,

– N1 ⊕N2 ⊕N3 ⊕
l−1⊕
i=1

(
Li ⊕ L−1

i

)
if rk(E) = 2l + 1 and w2(E) = −1,

–
l⊕

i=1

(
Li ⊕ L−1

i

)
if rk(E) = 2l and w2(E) = 1,

(1)Their existence follows from [Ram96], even if Ramanathan states the result only for

higher genus.
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– OC ⊕N1 ⊕N2 ⊕N3 ⊕
l−2⊕
i=1

(
Li ⊕ L−1

i

)
if rk(E) = 2l and w2(E) = −1,

where the Li are line bundles on C. In all cases but the third one, the order

two line bundles allow us to adjust the determinant of an orthogonal isomor-

phism: in other words, any orthogonal bundle admits exactly one orientation

up to (orthogonal) isomorphism, and the orthogonal bundle is characterized

by the collection {M1, . . . ,Mk} whereMi ∈ {Li, L
−1
i }. This gives the expected

isomorphism, since Ck/
(
(Z/2Z)k

⋊ Sk is the k-th symmetric product of P
1,

which is isomorphic to P
k.

In the remaining case, a generic orthogonal bundle admits two unequivalent

orientations, so that M+
SO2l

is a quotient of C l by the action of (Z/2Z)l−1
⋊Sl

where (Z/2Z)l−1 acts on C × · · · × C by (a1, . . . , al) 7−→ (±a1, . . . ,±al with

an even number of minus signs, which finishes the proof of the proposition.

Of course, a complete proof would consist in defining morphisms from the

quotients of Ck to the corresponding moduli space, and checking that these

morphisms are isomorphisms. Note that, already in genus 1, it is more com-

fortable to consider moduli for Or-bundles: when r is even, we simply find

M+
Or

= P
r
2 .

Remark A.2. — In this case we can replace the description of the connected

components of MSOr in terms of the second Stiefel-Whitney class by the

following argument: Mumford’s invariance mod 2 theorem shows that the

parity of the numbers of copies of any order 2 line bundle contained in a fiber

of a family of orthogonal bundles on T ×C does not depend on t ∈ T (and, if

Ni appears an odd number of times, so do the two other nonzero bundles of

order 2, because detE = OC).

The same argument applies to MSp2r
, which is therefore isomorphic to P

r.

We could also write the forgetful morphism in this special case, and see that

it behaves in the same way (actually our proof does not use the hypothesis

g > 2; however, there are not many other analogies: for example, MSOr is

not equidimensional, as well as MGLr).



APPENDIX B

JACOBIAN VARIETIES AND HEISENBERG

REPRESENTATIONS

For the convenience of the reader, we repeat here the classical material

discussed in [Bea91, Appendice].

B.1. We have chosen to keep the notation Θ for the canonical theta divisor

{L ∈ Jg−1|h0(C,L) 6= 0} in Jg−1, and ΘL for the generalized theta divisor

with support {E ∈ MSLr |h0(C,E ⊗ L) 6= 0}. If L is a point in Jg−1, and

TL : J −→ Jg−1 the multiplication morphism, the pull back of Θ by this

multiplication map will therefore be denoted by T ∗
LΘ. To avoid introducing

too many capital Θ, we will write ϑ for a symmetric theta divisor on J (or on

a principally polarized Abelian variety A), and, following the now widespread

habit, we will abusively denote by 2ϑ the linear equivalence class of the double

of any symmetric theta divisor on J (or A).

B.2. If A is a principally polarized Abelian variety of dimension g, we will

denote by A2 the two-torsion subgroup of A, which is exactly the subgroup

of A whose action can be lifted to O(2ϑ). This group thus fits in an exact

sequence

1 → k∗ → G (O(2ϑ)) → A2 → 0

where G (O(2ϑ)) is the theta group (or Mumford group) consisting of pairs

(α, ϕ) with α ∈ A2 and ϕ : T ∗
αO(2ϑ)

∼−→ O(2ϑ). The natural representation

of G (O(2ϑ)) in H0 (A,O(2ϑ)) is its unique irreducible representation where k∗

acts by homotheties.

A level 2 structure is an isomorphism between the preceding theta group and

the level 2 Heisenberg groupH2 = k∗×F
g
2×F̂

g
2 (whose law is defined by (t, a, α)·

(s, b, β) = (tsβ(a), a + b, αβ). The group H2 thus acts on H0 (A,O(2ϑ)), and



86 APPENDIX B. JACOBIAN VARIETIES AND HEISENBERG REPRESENTATIONS

this vector space admits a unique (up to a scalar) basis (Xb)b∈F
g
2

such that

(t, a, α) ·Xb = tα(a+ b)Xa+b for all (t, a, α) ∈ H2, b ∈ F
g
2.

Note that we can easily describe the eigenspaces in H0 (A,O(2ϑ)) of any

η ∈ J2. Let us first observe that, for any η, η′ ∈ J2, we have

η̃η̃′ = 〈η, η′〉η̃′η̃
for any η̃, η̃′ ∈ H2 lying over η, η′ (where 〈·, ·〉 denotes the Weil pairing). The

two subspaces
(
H0 (A,O(2ϑ))

)±
η

fixed by η 6= O are thus conjugated under the

action of J2; in particular, they both have dimension 2g−1.

Remark B.3. — For computational purpose, it is useful to consider the finite

Heisenberg group H̃2, which is the kernel of the homomorphism h ∈ H2 7−→ h4

(see [Bea03]). This is an extension of A2 by µ4, and its representation in

H0 (A,O(2ϑ)) is its unique irreducible representation on which µ4 acts by

homotheties: everything works as well as with H2.

B.4. Theta characteristics of A are quadratic forms κ : A2 −→ {±1} associ-

ated to the Weil pairing 〈·, ·〉 : A2 ×A2 −→ {±1}. The group A2 acts (simply

transitively) on the set S(A) of theta characteristics by the rule

(η · κ) = (α 7−→ 〈η, α〉κ(α)) .

The parity of κ is defined by the value ε(κ) which κ takes 2g−1(2g + 1) times.

The parity of η · κ is ε(η · κ) = κ(η)ε(κ), and there are 2g−1(2g + 1) even and

2g−1(2g−1) odd theta-characteristics. Once a theta structure has been chosen,

every element (c, γ) ∈ F
g
2 × F̂

g
2 defines (through the isomorphism between the

theta group H2) a theta characteristic κ
[
c
γ

]
by the formula

κ

[
c

γ

]
(a, α) = γ(a)α(a+ c)

(recall that the theta structure identifies the Weil pairing with 〈(a, α), (b, β)〉 =

α(b)β(a)). The parity of this theta characteristic is given by the formula

ε(κ
[
c
γ

]
) = γ(c).

B.5. There is a one-to-one correspondence between characters of H2 of level

2 (which occur in the study of the representation of H2 in H0 (A,O(2ϑ)) ⊗
H0 (A,O(2ϑ))) and theta-characteristic, obtained by sending κ = κ

[
c
γ

]
to the

character

χκ[c
γ]

: (t, a, α) ∈ H2 7−→ t2γ(a)α(c).
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For every theta-characteristic κ
[
c
γ

]
, the element Qκ[c

γ]
∈ H0 (A,O(2ϑ)) ⊗

H0 (A,O(2ϑ)) defined by

Qκ[c
γ]

=
∑

b inF
g
2

γ(b)XbXb+c

is an eigenvector under theH2-action corresponding to the character χκ[c
γ]

. It is

symmetric or anti-symmetric (with respect to the involutionX⊗X ′ 7→ X ′⊗X)

according to the parity of χκ[c
γ]

.

These observations provide a complete description of the representation of

H2 in H0 (A,O(2ϑ)) ⊗ H0 (A,O(2ϑ)): this representation splits as the direct

sum of the (mutually non-isomorphic) one-dimensional representations of H2

of level 2. More precisely, when κ ranges over the set of even (resp. odd)

theta-characteristic, the elements Qκ[c
γ]

form a basis of S2H0 (A,O(2ϑ)) (resp.

Λ2H0 (A,O(2ϑ))).

Let us finally mention that these results can also be obtained in a more

intrinsic fashion, for which we refer to [Bea91, A.5]: we can associate to any

theta-characteristic κ a symmetric theta divisor ϑκ. If θκ is a non-zero section

of O(ϑκ) (well defined up to a scalar), then (x, y) 7→ θκ(x+y)θκ(x−y) defines

a section of O(2ϑ) ⊠ O(2ϑ), which is in fact collinear to Qκ.

Remark B.6. — Of course, for complex Abelian varieties, all of that may be

rephrased in terms of classical theta functions (see, for example, [Bea91, A.7]

– although some 2’s are missing).

B.7. It is now natural to investigate the multiplication morphism

µ : H0 (A,O(2ϑ)) ⊗ H0 (A,O(2ϑ)) −→ H0 (A,O(4ϑ))

by studying the image of the basis given by the sections Qκ (note that, for κ

odd, the antisymmetry of Qκ automatically implies the nullity of µ(Qκ)).

Its image must be contained in the space H0 (A,O(4ϑ))+ of sections of O(4ϑ)

which are invariant for the involution induced by the unique isomorphism

(−1)∗O(2ϑ)
∼−→ O(2ϑ). This space admits as a basis the family of sections

θκ(2·) (for κ even).

The addition formula implies that µ(Qκ) is collinear to θκ(0)θκ(2·). In

particular, this tells us that µ gives an isomorphism S2H0 (A,O(2ϑ))
∼−→

H0 (A,O(4ϑ))+ if and only if no thetanull θκ(0) (for κ even) vanishes.
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B.8. We now specialize the preceding discussion to the case of the Jacobian

variety J of the smooth curve C.

In this situation, the notion of theta-characteristic of J (hopefully) coincides

with the usual definition of theta-characteristic of C as square roots of the

canonical bundle KC : a line bundle κ on C satisfying κ2 ≃ KC indeed induces

a theta-characteristic η ∈ J2 7−→ (−1)h0(C,η⊗κ)+h0(C,κ), whose parity is the

one of h0(C, κ). We will thus identify the theta-characteristics of J with the

ones of C.

The divisor ϑκ on J associated to κ is just the pull-back T ∗
κΘ of the canonical

theta divisor Θ ⊂ Jg−1. The vanishing of the section θκ ∈ H0(J, ϑκ) at the

origin thus simply means that κ belongs to the support of Θ. In particular,

the morphism S2H0 (J,O(2ϑ))
∼−→ H0 (J,O(4ϑ))+ is an isomorphism if and

only if h0(C, κ) = 0 for all even theta-characteristic κ.



APPENDIX C

NONABELIAN COHOMOLOGY

We recall here from [Gir71, III.3] the few basic facts about nonabelian

cohomology that we have mentionned in this thesis.

LetX be any variety over k, and G any algebraic group. Recall that the first

cohomology space H1
ét(X,G) (which can be defined à la Čech) parametrizes

isomorphism classes of G-bundles over X: this is a naturally a pointed set, the

distinguished element corresponding to the trivial G-bundle on X.

We present here the long exact sequences of nonabelian cohomology which

can be associated to a subgroup H ⊂ G.

C.1. In the general case, there exists an exact sequence of pointed sets

∗ → H0(X,H) → H0(X,G) → H0(X,G/H)
δ→ H1

ét(X,H) → H1
ét(X,G)

where the connecting map δ is defined as follows: an element σ of H0(X,G/H)

may be viewed as a section of the trivial G-bundle on X mod H, and δ(σ) is

the H-bundle associated to this section by Lemma 1.1.3. The last assertion of

this lemma admits the following translation: H0(X,G) acts on H0(X,G/H),

and two sections in H0(X,G/H) have the same image by δ if and only if they

are conjugate by this action.

This exact sequence only gives the preimage of the pointed element of

H1
ét(X,H). Still, we can get some informations about the preimage of

any H-bundle P on X by considering the long exact sequence deduced

from the inclusion of twisted group sheaves PH →֒ PG obtained by twist-

ing H and G by P for the action of H by inner automorphisms. These

twisted group sheaves are nothing other than the sheaves of automorphisms

AutH(P ) and AutG (P (G)). Moreover, we can define a natural isomorphism
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θP : H1
ét(X,H)

∼−→ H1
ét(X,

PH) as follows(1): using the opposite group struc-

tures on H and PH allows us to consider P as an PH-bundle P o endowed with

a left action of H. If Q is an H-bundle, θP (Q) is the associated PH-bundle

Q ×H P o (in particular, θP sends the class of P to the trivial PH-bundle).

This isomorphism together with the exact sequence

∗ → H0(X, PH) → H0(X, PG) → H0(X, PG/PH)
δ→ H1

ét(X,
PH) → H1

ét(X,
PG)

allows us to describe the preimage of any H-bundle P .

However, this construction is not well suited for concrete computations: in

Proposition 2.1.2.5, we have rather used Lemma 1.1.3 to ensure that a semi-

stable vector bundle on a smooth curve C has at most one pre-image by the

morphism H1
ét(C,Or) −→ H1

ét(C,GLr). The previous exact sequence gives a

way to recover this result and to consider how it can be extended to the case

of any vector bundle. If P is an orthogonal bundle on C, the first step is

to understand the quotient sheaf AutGLr(P (GLr))/AutOr(P ) and its global

sections, which is not so easy.

C.2. When H is a normal subgroup of G, the cohomology set H1
ét(X,G/H)

makes sense, and the extended sequence of pointed sets

∗ → H0(X,H) → H0(X,G) → H0(X,G/H)
δ→ H1

ét(X,H) → H1
ét(X,G) → H1

ét(X,G/H)

is exact.

For any H-bundle P , the sequence of twisted group sheaves 1 → PH →
PG → G/H → 1 is exact: the quotient sheaf is always constant. The nice

point here is that the group H0(X,G/H) naturally acts on H1
ét(X,H): if

π : G −→ G/H denotes the quotient map, a section c ∈ H0(X,G/H) sends a

H-bundle P to the H-bundle P ×H π−1(c) (see [Gir71, Remarque III.3.3.2]).

Proposition C.3. — [Gir71, Proposition III.3.3.3] Two H-bundles have the

same associated G-bundle if and only if they are conjugate under the action

of H0(X,G/H).

The stabilizer in H0(X,G/H) of an H-bundle P is the image of the mor-

phism H0(X, PG) −→ H0(X,G/H) obtained by twisting by P the quotient map

G −→ G/H.

(1)This discussion requires to consider G-bundles for some group sheaves G.
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This reduces the description of the fiber of H1
ét(X,H) −→ H1

ét(X,G) con-

taining P to the study of the morphism AutH(P ) −→ AutG(P (G)) deduced

by twisting the inclusion H →֒ G by P (and taking global sections).

Remark C.4. — In this situation, we also have extra informations about

exactness at H1
ét(X,G): if Q is a G-bundle, the set of all G-bundles Q′ hav-

ing the same image Q/H ∈ H1
ét(X,G/H) is identified via the isomorphism

H1
ét(X,G)

∼−→ H1
ét(X,

QG) to the image of the morphism H1
ét(X,

QH) −→
H1

ét(X,
QG) (see [Gir71, Corollaire III.3.3.5]).

If we apply this to the exact sequence 1 → SOr → Or → {±1} → 1 on a

curve C, this only shows that H1
ét(C,Or) is the disjoint union of the sets of

isomorphism classes of Or-bundles with fixed determinant η ∈ J2, and that

any of these components is the isomorphic image of the set of H ′-bundles,

where H ′ is the kernel of the morphism AutOr(O ⊕ · · · ⊕ O ⊕ η) −→ Z/2Z.

C.5. When H is an Abelian group, we can go further: the second cohomology

space H2
ét(X,H) exist, and we can easily define à la Čech a connecting map

H1
ét(X,G/H) → H2

ét(X,H). The extended long sequence need not be exact,

but it is if we assume that H is central in G.

In this case, we can twist the different groups by any (G/H)-bundle R:

we obtain an exact sequence 1 → H → RG → R(G/H) → 1. The natu-

ral isomorphism H1
ét(X,G/H)

∼−→ H1
ét

(
X,R(G/H)

)
thus identifies the set of

G/H-bundles mapped to the image of R in H2
ét(X,H) with the image of the

boundary map H1
ét(X,

RG) → H1
ét

(
X,R(G/H)

)
. This way to compute the

fibers of H1
ét(X,G/H) → H2

ét(X,H) makes use of the set of RG-bundles.

Remark C.6. — When working on G-bundles over schemes, this situation

appears each time we consider the exact sequence 1 → π1(G) → G̃→ G→ 1.

Note that over smooth curves the previous description may be considerably

improved: see [BLS98, §2].
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Espaces de modules de fibrés orthogonaux sur une courbe
algébrique

On étudie dans cette thèse les espaces de modules de fibrés orthogonaux sur
une courbe algébrique lisse.

On montre dans un premier temps que le morphisme d’oubli associant à
un fibré orthogonal le fibré vectoriel sous-jacent est une immersion fermée : ce
résultat repose sur un calcul d’invariants sur les espaces de représentations de
certains carquois.

On présente ensuite, pour les fibrés orthogonaux de rang 3 et 4, des résultats
plus concrets sur la géométrie de ces espaces, en accordant une attention
particulière à l’application thêta.

Mots clés : schémas de modules, fibrés principaux, fibrés orthogonaux,
fonctions thêta généralisées, représentations de carquois.

Moduli schemes of orthogonal bundles over an algebraic curve

We study in this thesis the moduli schemes of orthogonal bundles over an
algebraic smooth curve.

We first show that the forgetful morphism from the moduli space of orthog-
onal bundles to the moduli space of all vector bundles is a closed immersion:
this relies on an explicit description of a set of generators for the invariants on
the representation spaces of some quivers.

We then give, for orthogonal bundles of rank 3 and 4, some more concrete
results about the geometry of these varieties, with a special attention towards
the theta map.

Key words: moduli schemes, principal bundles, orthogonal bundles, gener-
alized theta functions, quiver representations.
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