
HAL Id: tel-00264028
https://theses.hal.science/tel-00264028

Submitted on 13 Mar 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implementation of a language with strong mobility
Stephane Epardaud

To cite this version:
Stephane Epardaud. Implementation of a language with strong mobility. Computer Science [cs].
Université Nice Sophia Antipolis, 2008. English. �NNT : �. �tel-00264028�

https://theses.hal.science/tel-00264028
https://hal.archives-ouvertes.fr

Université de Nice - Sophia Antipolis UFR Sciences
École Doctorale Sciences et Technologies de l’Information et de la Communication

THÈSE

Présentée pour obtenir le titre de

Docteur en Sciences
de l’Université de Nice - Sophia Antipolis

Spécialité Informatique

par

Stéphane ÉPARDAUD

Mise en œuvre d’un langage
à mobilité forte

Thèse dirigée par Manuel SERRANO et Gérard Boudol
et préparée à l’INRIA Sophia, projet MIMOSA

Soutenue le 18 Février 2008 devant le jury composé de :

MM. Michel RIVEILL Président UNSA
Shriram KRISHNAMURTHI Rapporteur CS-BROWN
Jean-Bernard STEFANI Rapporteur INRIA
Manuel SERRANO Directeur de Thèse INRIA
Gérard BOUDOL Directeur de Thèse INRIA
Marc LACOSTE Examinateur FT R&D

Thanks

I love deadlines. I like the whooshing sound they make as they fly by.

– Douglas Adams

Many thanks to all the people who helped me during this thesis, especially my family and
the MIMOSA project. Not many thanks to my phone: my one and only embedded test
platform, how could you let me down?
Many grateful thank yous to the Merriam-Webster online [MW]: every language should be
documented (partly by dictionaries) and that documentation should be accessible for free
for everyone wishing to speak, read or write it. May all languages see the light and make
their grammar, vocabulary and other documentation available for free on paper or online.

Contents

1 Introduction 1

2 State of the art 5

2.1 The various forms of mobility . 5

2.2 Uses of mobility . 6

2.3 Differences between agent systems . 7

2.3.1 Language . 7

2.3.2 Memory models . 7

2.3.3 Scheduling . 7

2.3.4 Communication . 7

2.3.5 Data handling . 8

2.3.6 Security . 9

2.4 Why we would need yet another mobile agent language 9

3 Language 11

3.1 Origins of ULM . 11

3.1.1 Local thread scheduling . 11

3.1.2 Migration . 12

3.1.3 Non-determinism isolation . 13

3.2 Features . 14

3.2.1 Scheme embedding . 14

3.2.2 Threads . 15

3.2.3 Signals . 17

3.2.4 Suspension . 18

3.2.5 Weak Preemption . 21

3.2.6 The integration of weak preemption in Scheme 24

3.2.7 The interaction between when, watch and finally 26

3.2.8 Exceptions . 28

3.2.9 Migration . 30

3.2.10 References . 34

3.2.11 Mixins . 35

3.2.12 Modules . 46

3.3 Semantics . 50

3.3.1 Notation . 50

3.3.2 Evaluation . 50

3.3.3 Scheduling . 57

3.4 Implications of Migration . 60

v

CONTENTS

3.4.1 The parting of ways . 60
3.4.2 Things that need more work . 63

4 Implementation: Scheme 65
4.1 Two Virtual Machines . 65

4.1.1 Why a virtual machine? . 65
4.1.2 The first virtual machine . 67
4.1.3 Why two (3?) virtual machines? . 67
4.1.4 The Java VM . 69

4.2 Bytecode compilation and interpretation . 72
4.2.1 Some required introduction . 72
4.2.2 Constants . 75
4.2.3 Variable reference . 76
4.2.4 Variable affectation . 77
4.2.5 Conditional . 78
4.2.6 Invocation . 78
4.2.7 Abstraction . 82
4.2.8 let, let* and letrec . 84
4.2.9 Protection . 86
4.2.10 Strong preemption . 87
4.2.11 Miscellaneous bytecodes . 88

4.3 The OULM file format . 90
4.3.1 Overall Structure . 90
4.3.2 Header . 91
4.3.3 Constants . 91
4.3.4 Module Information . 92
4.3.5 Global Variables . 92
4.3.6 Function Descriptors . 93
4.3.7 Attributes . 93
4.3.8 Example . 95

5 Implementation: ULM 101
5.1 ULM bytecodes . 101

5.1.1 Thread creation . 101
5.1.2 Agent creation . 102
5.1.3 Suspension . 102
5.1.4 Weak preemption . 103
5.1.5 A word about bytecodes vs. primitives 104
5.1.6 Signal Creation . 104
5.1.7 Signal Emission . 104
5.1.8 Signal Awaiting . 104
5.1.9 Cooperation . 105
5.1.10 Migration . 105
5.1.11 References . 106

5.2 Migration . 107
5.2.1 Transporting agents . 107
5.2.2 The use of modules for agents . 108
5.2.3 What happens to data . 117

vi

CONTENTS

5.2.4 What happens to the bytecode . 117

5.3 Scheduling . 118

5.3.1 The End of Action phase . 119

5.3.2 Wait queues and their recycling . 122

5.3.3 Fast lanes for simple waits . 123

5.3.4 Planning weak preemption . 123

5.3.5 Minimal End Of Instant . 125

6 Native interface (s) 127

6.1 Syntax . 127

6.2 Bigloo backend modules . 128

6.3 Java backend modules . 129

6.4 Reentry . 131

6.4.1 Unifying protectors and exception handlers 133

7 Reactive Event Loop 137

7.1 Event loops and ULM . 137

7.1.1 Presentation of the event loop . 137

7.1.2 Why we need event loops . 137

7.2 The new signals . 140

7.2.1 The IO signal . 140

7.2.2 The timeout signal . 140

7.2.3 The idle signal . 141

7.3 Example . 141

7.3.1 Event Loop . 141

7.3.2 Reactive Event Loop . 144

7.4 Implementation . 145

7.4.1 Which REL signals are watched? . 146

7.4.2 The IO signals . 147

7.4.3 The timeout signals . 147

7.4.4 The idle signal . 148

7.4.5 Integration with the EOI . 148

7.4.6 Future improvements . 148

7.5 Integrating two event loops . 149

7.5.1 GTK . 150

7.5.2 Swing . 150

7.5.3 J2ME . 151

7.6 Conclusion . 152

8 Examples/Applications 153

8.1 Load balancing . 153

8.2 Agents for reconfiguration . 157

8.2.1 The motivations . 157

8.2.2 The departure airport . 158

8.2.3 The Fractal component transporter 162

vii

CONTENTS

9 Directions 169
9.1 Debug . 169

9.1.1 Debugging the compiler . 170
9.1.2 Debugging the VM . 171
9.1.3 Debugging ULM programs . 172

9.2 Other enhancements . 173
9.2.1 A global garbage collector . 173
9.2.2 Mixin enhancements . 173
9.2.3 Miscellaneous enhancements . 174

10 Conclusion 175

A LURC 183
A.1 Introduction . 183
A.2 Lurc features . 184

A.2.1 Different types of threads . 184
A.2.2 Cooperative deterministic scheduling 186
A.2.3 Signals . 187
A.2.4 Integrated syntax . 188
A.2.5 Control blocks . 189
A.2.6 Event loop integration . 192
A.2.7 Garbage Collector . 193
A.2.8 Modularity . 194

A.3 Implementation . 194
A.3.1 Threads . 194
A.3.2 Scheduling . 201
A.3.3 Syntactic sugar . 204

A.4 Related work . 209
A.4.1 POSIX threads . 209
A.4.2 Event loops . 209
A.4.3 GNU/Pth . 210
A.4.4 Fair Threads . 210
A.4.5 Reactive ML . 210
A.4.6 ULM . 210

A.5 Benchmarks . 211
A.5.1 Pthread and GNU/Pth . 211
A.5.2 LOFT and RML . 212
A.5.3 Cellular Automata . 214

A.6 Future directions . 214
A.6.1 Reactive Event Loop . 214
A.6.2 New semantics for SMP . 215

A.7 Conclusion . 216

viii

Chapter 1

Introduction

Getting an education was a bit like a communicable sexual disease. It made
you unsuitable for a lot of jobs and then you had the urge to pass it on.

– Terry Pratchett

This report, by its very length, defends itself against the risk of being read.

– Winston Churchill

Although computers have been around and connected for some times now, these last few
years have seen an explosion in the number of computing platforms available in many homes.
Not only is it typical for a household to possess several computers (sometimes as many as
a PC and a laptop per person), nowadays many home appliances and small devices have
become what we could describe as computing platforms, short of calling them full-fledged
computers. From modems to routers, used to connect the several traditional computers,
but also from game consoles and digital video recorders (DVRs) to mobile phones, which
are becoming more and more open as well as powerful.
All these devices which used to work on very closed and custom proprietary hardware
and software, now take the direction of using standard operating systems and become
open to the development of third-party software. The number of devices at home where a
user can (and will) install new software has grown substantially. In many cases the user
even expects similar programs to run on totally different hardware. See for example web
applications which are expected to host word processors or agendas with the same interface
on a computer, a mobile phone, or on game consoles (portable or not).
The example of web applications is especially illustrative of some of the problems raised
by such miscellaneous computing platforms. Due to their extremely varying hardware,
operating systems, software libraries, development and deployment methods, it is easier to
write web applications because most of these devices feature a web browser. This common
denominator allows web software developers to deploy applications written for standard
computers on any of these new devices (phones, DVRs) with minimal new development
based on the promise that web applications use features standard across every web browser.
In order to take advantage of features offered by the device outside of those offered by the
web browser, one has to write a custom application for the given device. For instance in
order to control the routing tables on a router, the sending of messages on a mobile phone,
the recording schedule of a VCR or the current playlist of a media center, one has to write

1

CHAPTER 1. INTRODUCTION

custom software on each of these devices. Each software will not only deal with different
libraries (controlling a router takes a different API than a media center) but also different
operating systems, programming languages, distribution and packaging means. There are
however efforts to standardise the development on these devices, for example by using a
Java platform such as J2ME on devices where the full-fledged J2SE platform is not (yet)
available.

If one were to need interaction between all these applications, on the other hand, one would
have to convert each of these applications into client/server applications, and presumably
have a central application to control everything. This is still the accepted pattern to this
day, and may explain the fact that these devices interact so little. But we can see many
examples of why it would be desirable to make these devices interact. When the network
goes down on the modem, the phone could send an SMS (short message system) to the house
occupants if they are not home at the time (this detection can be as simply as checking if
their mobile phones are in the house’s network). At the desired wake up time, the home
server could turn the laptop on, instruct the media player to play a nice song, then display
the list of shows recoded during the night on the laptop. If only writing such trivial (in the
sense that its expected behaviour is trivial) applications could be done as easily as writing
the small scripts written regularly to automate tasks to perform on standard computers...

We think that mobility is a good solution to these problems, and in particular a valid
alternative to the client/server solution. We would like to be able to write a simple program
which waits for a certain time before it migrates to the media player to instruct it to play
a song using the standard API available on this device, then migrate again on the DVR to
retrieve the list of recorded shows during the night, before it migrates again on the laptop
after it has been turned on, in order to display this list. The laptop user could then click
on some of these shows to instruct our mobile program, or agent , to transfer the videos on
the mobile phone or portable media player for later viewing during train commuting.

While all the above could be accomplished using a client/server approach, it would require
more work. Indeed, on each device we would need to design a server to handle incoming
requests for the local operations, then a library for the client so that it can invoke those
services on the server. While there are standard protocols to implement the required
communications between the client and the server, the fact that the list of operations has
to be defined on the server makes it much less flexible than by using migration. Because
an agent can come with its own code on the server, it can accomplish a much richer (if not
infinite) set of tasks than the limited operations made available by the server. Furthermore,
if some parts of our network would be protected by firewalls, remote services would fail or
have to be forwarded correctly by the firewall. With agents on the other hand, once the
agent would be authorised by the firewall, it could freely roam to the protected devices to
accomplish its task.

At the same time, in the industry, large numbers of networked computers have become
not only common, but standard. It is widely accepted that, with the proper software and
hardware architecture, scaling is done by mostly throwing hardware at the problem. This is,
of course, a derisory simplification on our part, but most very-large-scale web applications
are known for the enormous network of standard computers they require. In such contexts,
a lot of time and effort is spent in finding how to divide a computing task between several
computers, and how they will communicate to achieve these different parts.

Again we think that mobility is an adequate solution for such distributed applications. For
instance, upon arrival of a new request, a agent could start on a dispatching server, then

2

migrate to a data source server to gather the data needed for the response. The agent
would then migrate to a computing server to work on the gathered data before presenting
it to the user.
Exploiting the locality of resources and load distribution are only examples of the use of
agent mobility. There are many other areas in which agents can be used. But programming
with agents is very different from client/server applications and poses its own problems,
especially related to agent communication and their scheduling. We believe that parallelism,
be it on different computers, or of several agents on the same computer, is a model that
is, at the same time, desired and feared by programmers. It is well known that access and
modification of shared data between parallel programs (again, on one or several computers)
leads to data races and memory corruption unless the appropriate protections are taken by
every parallel program.
We believe programmers should be given some control over parallelism when it is possible
(on one computer), and be prevented from accessing shared data when it is not possible
to control parallelism (between separate computers). We also believe this requires special
support from the programing language itself, in order to ease the creation, migration and
scheduling of agents for the programmer.
To this end, we present ULM (Un Langage pour la Mobilité): a language with agent
mobility, aimed at easing the creation and mobility of agents, as well as offering logical
semantics to their local scheduling, and data isolation across the network.
In the second chapter, we present the state of the art on agent mobility. The language and
its features are presented in the third chapter, while the implementation of the language
is described in chapters four and five. The sixth chapter concentrates on the interfacing
between ULM and other languages, and chapter seven focuses on the use of ULM as an
alternative to event loops. In chapter eight we present some applications of ULM. We
finally present future directions and conclude in chapter nine.

3

Chapter 2

State of the art

Je ne suis ni pour, ni contre, bien au contraire.

– Coluche

Agent mobility has been the subject of much research [FPV98] and many implementations
of various mobility flavours have materialised. In this chapter we are going to introduce
the many subtleties of agent mobility.

2.1 The various forms of mobility

There are several forms of program mobility. When attempting to move a program from
one computer to another, the oldest and most obvious means is to copy the program from
one computer to another and start executing the program on the new location. This is
the crudest means of program mobility: where the program’s user has to consciously take
physical action to move one program from a location to another.

It is highly commonplace for computers to move programs automatically nowadays. For
example, most program installers nowadays automatically download the latest version of
the program they are installing from the internet. Even on web pages there are programs
that are downloaded from the web server to the web client, which then get executed on the
client. Even though the user is not conscious, or aware of this mobility, it is still happening.

Although the act of loading a program from a remote location can be seen as a form of
mobility, it can only be seen as a form of code mobility. In the cases described above, the
user (or a program) initiates the transfer of a program’s code and then proceeds to start
the transferred program. What is more commonly referred to as program mobility is the
decision of one program to move itself (or another running program) from one location to
another.

The distinction, more precisely, is that the program is being moved while it is running: it
does not need to be restarted on the new location. Usually when talking about mobility it
is meant that not only code is moved, but also the state of the running program (whether
automatically or not).

There are two types of mobility for running programs. Weak mobility refers to moving a
running program without its call stack (or continuation). For example, the program would
need to specify which function should be called after moving, with no possibility of staying
within the current function during migration. The ability to move a running program with

5

CHAPTER 2. STATE OF THE ART

its call stack (thus, being able to move in the middle of any computation) is called strong
mobility.

Traditionally, mobile programs are called agents, and the different locations on which they
can move are called sites, while the act of moving is actually called migrating .

2.2 Uses of mobility

Mobility has often been considered for widely differing solutions:

Distribution
In order to split the computational cost of a program, it is often divided into smaller
units of computation which can executed in parallel on different processors, often on
different computers. In this case mobility would allow such smaller units to move to
an idle computer to perform the computation.

Physical movement
Using mobility, a running program, such as a game or a mail reader, could move from
one computer to another in order to follow the physical movement of its user. This
can also be used in order to keep a program running while the hardware it is using
is being upgrade: by moving temporarily the program until the hardware has been
replaced.

Localised resources
Sometimes a resource can only be obtained from a location. For example in order to
use a device physically attached to one computer. A mobile agent could move to a
mobile phone in order to send a text message.

Resource proximity
When remote programs need to interact by communication, it may make sense to use
mobility to bring those programs on the same site for the duration of their exchange.

Deployment / resource management
Agents can be used for automatic deployment of programs on many sites. They can
also be used in order to manage resources on distant computers. For example an agent
can be used to locate a software component on one site, then move it to another site
to install and configure it.

Some of these properties can of course be combined: in Second Life [Lif] (an online game)
agents are used to represent persons or objects in a virtual world, while sites are used
to represent geographical locations of that virtual world. Those sites are then located
in different regions of the real world, so these agents are used for distribution, physical
movement and resource proximity.

Erlang [VWW96] is famously used in telephony systems to handle dynamic upgrades to
the systems without any downtime, by using weak migration to distribute the new code
and manage the systems. Automatic reconfiguration and monitoring of complex network
systems is also an area where agents can be found [TKT+07].

6

2.3. DIFFERENCES BETWEEN AGENT SYSTEMS

2.3 Differences between agent systems

Each agent system has its own unique set of features and solutions. They differ in several
key areas such as their language, scheduling, memory model, communication and data
handling. We will attempt to describe the various differences in each areas.

2.3.1 Language

Some languages have been extended in order to support agent mobility (Kali Scheme [CJK95],
Termite Scheme [Ger06], Aglets [LOKK97], Jocaml [CF99]), while other languages have
been created especially for mobility (Erlang, LSL, Obliq [Car95] [Car94]). Introducing mo-
bility in an existing language can be a hard task because mobility can have an impact on
many of the areas we describe here, including fundamental ones such as scheduling or the
memory model.
Because each language has different features, languages with support for continuations can
easily implement strong migration with only the proper communication features. Indeed, if
a program is able to copy a continuation from one site to another and then invoke it, it can be
seen as a form of strong migration (and for all intents and purposes it is strong migration).
This is indeed the approach taken by Termite Scheme, Kali Scheme and others [Sum00].
Stackless Python’s tasklets can also be called strong migration agents, in the sense that
their continuation can be serialised, and thus transmitted by the network to be resumed
remotely.
Mobility languages based on Java usually lack strong migration, but there are various
efforts to implement continuations in Java like Javaflow [Com] or Brakes [COR], or us-
ing a special Java Virtual Machine (JVM) [AAB+05] to implement strong migration for
Aglets [CFLQ06].

2.3.2 Memory models

In some models, agents are isolated from one another by having separate address space,
like processes. This is the case for Erlang, Termite and LSL. Other agents are more similar
to threads in that they share the memory address space, such as Aglets, Kali Scheme
and Obliq. The difference in memory model leads to differences in communication and
synchronisation between the agents which we will discuss below.

2.3.3 Scheduling

Just as there are several memory models, there are various types of scheduling for agents.
Agents with a separate memory model are usually scheduled asynchronously like processes.
Most shared memory agents are also scheduled asynchronously like threads (Aglets for
example). In the case of LSL, agents are event-oriented, and resemble automata, but it
is not clear how these agents are scheduled. Stackless Python’s tasklets can be scheduled
cooperatively or preemptively depending on the programmer’s choice.

2.3.4 Communication

Ideally, agents should be able to communicate together in order to form more complex
behaviour than possible with single agents. This communication usually involves synchro-
nisation between the agents, so we will talk about these two aspects at the same time.

7

CHAPTER 2. STATE OF THE ART

Mobile agents with a shared memory model usually use the shared memory for both syn-
chronisation and communication. For example in the case of asynchronous agents such as
Obliq and Kali Scheme, locks and condition variables are used for synchronisation between
agents while communication is done through shared memory.
Mobile agents without a shared memory model usually resort to channels or mailboxes
to communicate values and synchronise their scheduling. Jocaml [CF99], an extension to
Objective Caml [Cam] inspired by the Join-Calculus [FG96], uses channels for communi-
cation and synchronisation. In Jocaml, a channel is a bi-directional network-transparent
pipe created by agents or processes in order to listen to incoming messages and respond to
them. An agent can then locate a given channel in a naming service where channels are
registered, and communicate with the agent or process on the other end of the channel. A
channel is a many-to-one communication means. Stackless Python also uses synchronous
channels for its tasklets’ communications, but because there can be several listeners, it is a
many-to-many communication means.
Erlang, Termite Scheme and Aglets use mailboxes to communicate between agents. Ar-
guably, mailboxes are very similar to channels, with a few differences. In Erlang and Termite
Scheme for example, each agent is assigned a globally unique Pid (process identifier) which
can be used to send a message to the agent. Each message is sent asynchronously, and
queued in a mailbox until the agent decides to read the messages. The agent can decide to
read the messages at any point in its execution, and in any order, with the possibility of
selecting the message it wants to read first. By communicating Pids in the message, it is
possible to obtain synchronous communications between agents.

2.3.5 Data handling

When an agent migrated from one site to another, whether it is strong or weak migration,
usually the data used by the agent is affected by migration in one way or another. The
simplistic approach is to say that all the data that an agent needs to work on will be
migrated along with the agent so it can keep on working on it. This is a simplistic view
which poses many problems and the reality is that it is often much more fine-grained.
Agents without a shared memory model usually can migrate with all their data: since it
cannot be used by any other agent, it makes no sense to leave it behind. With shared
memory it becomes much harder to decide the best way to keep sharing data. If the same
data is shared by two agents on one site, and one agent migrates away, suppose the data is
copied during migration, if the two agents modify the data and then migrate back on the
same site, what sort of synchronisation can we expect from the two different instances of
data which used to be shared? This question has no perfect universal solution, and there
are many ways to handle the problem.
Obliq, for example, states that free variables (those defined outside of the agent) are trans-
formed into transparent network references upon migration. This means that two remote
agents would indeed keep on accessing a unique value across the network.
Sometimes it is not sufficient to know what should happen of variables or references after
migration, because it is possible to have the same instance of a data stored into different
variables or references of differing types. In some cases we also have to know what happens
to values, as opposed to variables or references.
In λdist [SY97] for example, it is possible to associate very fine-grained migration behaviour
on values themselves. In this system, a value can be marked to be copied during migration,
to always stay on the same location and be accessed remotely after migration, to move along

8

2.4. WHY WE WOULD NEED YET ANOTHER MOBILE AGENT LANGUAGE

with the agent and leave a remote reference on the departing site, to become undefined after
migration in the agent, to go with the agent and become undefined on the departing site,
or to be dynamically rebound after migration. This last example is called ubiquity : the
ability for a value (or a reference) to have a similar (or not) value on each site, which will
always be dynamically rebound after migration.
Kali Scheme has yet another view on the subject and proposes a notion of address space, in
which objects are allocated, and a special notion of proxies to these objects. A proxy object
points to a value in a given address space, but this value can be affected and read in any
other address space, without synchronisation. With this type of proxy, it is not possible to
remotely affect a value, one has to move to the proxied value’s address space to do so. On
the other hand, it enables a sort of ubiquity to remote values.

2.3.6 Security

Obviously, mobility poses security questions. Simply allowing any incoming agent to execute
any code can be a security problem. There are various possibilities to treat this problem:
it is possible to trust some agents depending on its origin (within a trusted network for
example), or based on some trusted signature of its code. It is possible to have a finer-
grained security as well: by limiting certain operations for agents with insufficient privileges,
or limiting their execution time.

2.4 Why we would need yet another mobile agent language

Many systems offer memory barriers across agents, whether they are located on the same
site or on different sites. While this ensures that there cannot be asynchronous modification
to shared data, notorious for causing problems, we believe the cost of not sharing memory
within the same site is too high to justify this solution. Indeed we would like our agents to
be able to communicate using shared memory on the same site, in a manner which is free
from asynchronous interferences.
Those systems which allow shared memory between agents often allow network references,
which is just another asynchronous way to share memory across sites. We believe on the
other hand that if we are to solve asynchronous interference locally, we cannot solve it
across sites, due to the very asynchronous nature of networks which can be disconnected.
Even though we want shared memory on a shared site, we want to prevent asynchronous
modifications across sites.
Finally, we believe that agent does not have to be asynchronous on a common site, and that
in fact we want to have a deterministic scheduling where agents have a fine-grained control
of the scheduling. We are not going to discuss the security aspects of agent systems.
In order to fulfill these goals and requirements, we present ULM: a language designed from
the start for mobile agents, with local deterministic scheduling and shared memory, and
isolation from remote interference (inherently asynchronous) to a few well-known locations.
The following chapter will describe the language, followed by the description of its imple-
mentation.

9

Chapter 3

Language

Si vous avez besoin de quelque chose, appelez-moi. Je vous dirai comment
vous en passer.

– Coluche

I think perhaps the most important problem is that we are trying to un-
derstand the fundamental workings of the universe via a language devised for
telling one another when the best fruit is.

– Terry Pratchett

The first things we have to do when presenting a new language is explain why it was created,
what it consists of and how it works. In this chapter we are going to explain the origins of
the ULM language, how and why it was created, what goals it is expected to accomplish.
Then we will introduce gently (using running examples) the features that make ULM a new
language. After such precautionary introduction to ULM, we will talk about the semantics
more formally, first of the local thread scheduling, then dive into how mobile agents handle
mobility.

3.1 Origins of ULM

ULM was introduced by Gérard Boudol [Bou04a] in 2004 as a programming model for
mobile agents in a GALS (Globally Asynchronous, Locally Synchronous) network. This
model provides threads, synchronisation mechanisms and mobile agents. One of the goals
of this model was to isolate non-determinism to the places where it cannot realistically be
avoided.
The local scheduling of threads in ULM is based on the work on Fair Threads by Frédéric
Boussinot [INR] which provide deterministic scheduling of threads in a dynamic language.
One of the goals of Fair Threads was to fix some of the problems programmers face when
dealing with threads. In this section we are going to introduce ULM’s programming model.

3.1.1 Local thread scheduling

One of those problems is the lack of semantics in thread scheduling. Very often thread
models come with no scheduling semantics, and it is up to the programmer to protect

11

CHAPTER 3. LANGUAGE

his code from scheduling interference. Fair Threads are scheduled deterministically. This
means that we can both predict the outcome of the scheduling, and that all executions of
the same code will be scheduled in the same way.
This is a very important property to have when writing code that uses threads: if the
semantics are clear enough, the programmer will know exactly how to write threads that
do what he wants.
The Fair in Fair Threads comes from the fact that the scheduler semantics guarantee that
any thread which wants to be scheduled will get scheduled in due time in a fair manner,
as long as the threads themselves play fair by cooperating as described below. To that end
the scheduling time is divided in a logical abstraction of time called instants. An instant
is a scheduling round where each thread is scheduled if it wants to and if it can.
The main communication and synchronisation means in Fair Threads is called a signal .
A signal is an object which can have two states: not emitted and emitted . Each signal
starts in the not emitted state. Threads can emit signals, thus changing the signal’s state
to emitted until the end of the instant, where each signal is reset to the not emitted state.
Threads can also wait for a signal to become emitted. If the signal has already been emitted
no waiting is done. Otherwise the thread is suspended until the first signal emission. Since
the signals are kept emitted for the entire instant and each thread is given a fair execution
slot during the instant, no thread can miss a signal emission.
The Fair Threads scheduling is called synchronous because of the time slicing with instants,
in which threads are scheduled sequentially. This scheduling is also called cooperative
because each thread has the responsibility to tell the scheduler when it is ok to schedule
another thread before it is given back some scheduled time. Synchronous cooperative
threads in the Fair Threads model are called reactive threads.
The fact that threads have to cooperate explicitly to allow the scheduling of other threads
could possibly be seen both as the main advantage and disadvantage of this model. It is
crucial for a thread to be able to decide when it wants to cooperate in order to keep a clear
flow of code, and at the same time it is crucial for threads to cooperate at all. Otherwise
the other threads’ scheduling will be blocked. The correct locations of cooperation points
and their frequency are some of the drawbacks we have to bear for the possibility to choose
their location.

3.1.2 Migration

Having a model that allows a programmer to write threads that behave according to de-
terministic and clear semantics is great, but this is not really new. What is new in ULM is
the integration between mobile agents and reactive threads.
Mobile agents are a special kind of thread that can move from one site to another. A site
is usually a computer, but we can also have several sites on one computer. Being able
to move a thread from one computer to another can be useful for all sorts of tasks: code
distribution, load balancing, execution of remote procedures on dedicated computers, the
list goes on and grows everyday as computers get cheaper and interconnected.
There are several kinds of mobility: being able to move code, being able to move data,
and being able to move both. Being able to move code around is nothing new: it can be
transferring a program from one computer to another, which was done using floppies even
when computers where not networked together. What is more interesting is when new code
is loaded from another computer into an already running program. But again this is not
new: dynamic loaders have been around for a while.

12

3.1. ORIGINS OF ULM

Being able to move data from one place to another is again not a novelty. But together
with being able to move code they provide the essential ingredients for thread mobility.
Threads are composed of exactly these two things: code, state and data. Specifically, the
state is the state of the thread and the data are whatever it needs to work on.

There are two kinds of thread mobility: weak and strong mobility. Weak mobility refers to
moving a thread’s code and data but not its state. A thread’s state holds the information
such as which function the thread is in, or what function it needs to return to. Generally a
thread state can be seen as its execution stack, its continuation, the local variables’ values,
the processor or virtual machine registers: whatever data indicating what the thread is
doing and has to do next.

Weak mobility generally involves saving the data that the thread needs to work on, saving
its code, and sending that data to be loaded somewhere else. Because the thread state is
lost, what the destination site will do is create a new thread, unpack the code, the data,
and start the thread on a function that was specified before the migration.

Strong mobility on the other hand packs the thread state along the code and data, so when
the thread is respawned on the destination site it picks up its execution with the same state
it was before it left. The thread’s current function stays the same, the local variables too,
it will return to the same functions, etc.

Weak mobility can be seen as giving up on the thread’s continuation, and invoking a function
on a remote site in a new thread. Actually it also does handy packing of data and several
other things, but as far as thread state is concerned that’s it. This is why generally the
thread’s stack has to be empty to allow migration. Either that or the thread’s continuation
is lost.

With strong migration it is not the case: function A can call function B, which will cause
migration before returning to function A.

3.1.3 Non-determinism isolation

We already explained the determinism of local thread scheduling, but what happens when
we integrate migration into the scheduling? Migration involves network communications, or
more generally communication between a site and another. Such communication is outside
the scope of a site. In the case of network communication, it is inherently non-deterministic:
links can fail, computers fail, and a single site cannot be responsible for or even know what
happens remotely in places it cannot control.

Since ULM aims at limiting non-determinism, migration has been adapted to play nicely
with the reactive thread model. All that happens within the instant is and remains de-
terministic. Agents should be sent and received by the scheduler between instants. This
means that agents are synchronous and deterministic up until the time they are frozen and
transported to another place where they become synchronous to the new site. For all other
threads watching the scene, any agents present in a given instant stay synchronous for the
entire instant.

As for what happens during the migration, nothing is guaranteed: two agents can leave one
site at the same end of instant, and arrive on different instants to the same remote site.

In networked computation it is also useful to be able to communicate values from one site
to another. But we have already shown how to communicate threads, which come with
whatever data they need to do the job, so actually communicating values can be done
this way. Any data communication supposed to happen within the instant between two

13

CHAPTER 3. LANGUAGE

sites should not be possible, as we already explained why inter-site communication is non-
deterministic. But to communicate a value to someone also means being able to give it to
someone: having some other thread somewhere waiting for that data.

This is usually done with network references, the equivalent of having a handle, a pointer to
a variable that is located on a different site. Allowing this sort of communication within the
instant would break ULM’s goal of isolating non-determinism. But allowing it between the
instants would not make much more sense: imagine two threads on different sites, trying
to read or write into a variable located on a third site. The local semantics cannot enforce
any ordering, any determinism over what happens somewhere else.

But network references are necessary nonetheless, which is why ULM has them, but with a
twist, so they are simply named references. References in ULM can point to data storage
locations which can be allocated either on a site (their storage is fixed) or on an agent (their
storage moves along with its agent). Whenever the reference points to a storage located on
the same site, we call it a local reference, and reading and writing to it is permitted. This
happens either when accessing a reference fixed to the local site, or located on an agent
which we already explained will be there for the entire instant. Whenever the reference
points to a storage located on a different site, we call it a remote reference, and any reading
or writing to it will suspend the thread until the reference becomes local. The suspension
happens whenever attempting to access a remote reference fixed to a remote site, or an
agent which is not on the local site. The unblocking occurs when either the suspended
thread is moved to the correct site, or when the remote reference comes to the local site.

ULM references may look strange at first, but it has the semantics of being able to point
to a remote variable, while at the same time ensuring that any concurrent read or write
to that variable is done by threads that are on the same site for the entire instant, and is
therefore deterministic.

3.2 Features

Now that we are familiar with the origins of ULM’s core model, we can take a look at
how we embedded it in a language. In this section we will describe what ULM programs
look like and consist in. We will do this by presenting every ULM feature in detail with
examples, while discussing the rationale for each feature.

3.2.1 Scheme embedding

Although ULM’s core model was presented for ML [SML], it was designed for any functional
language. For the purpose of studying the model’s introduction in a language we chose
Scheme [KCe98] as the target functional language. Scheme is well known for the small size
of both the core language and its interpreters, as well as being among the usual suspects
for experimentation on languages.

The target Scheme we chose was Revised5 Report on the Algorithmic Language Scheme
R5RS, although it was not our goal to support the full standard. Indeed we are building a
prototype language in order to study the impact of agent mobility in a functional language
as well as the benefits of the ULM core model. To that end we have chosen to implement
the minimum of R5RS as required by our study. This turned out to be most of R5RS, and
then some.

Whenever there was Scheme functionality needed we chose the R5RS specification of that

14

3.2. FEATURES

(ulm:thread

(let loop ()

(display "Ping ")

(ulm:pause)

(loop)))

(ulm:thread

(let loop ()

(display "Pong\n")
(ulm:pause)

(loop)))

Figure 3.1: Threads

functionality if it existed, or took from one of the many Scheme Request For Implementation
(SRFI)1 in order to have our language as standards-compliant as possible. Sometimes yet,

when a required functionality was defined neither in R5RS nor in any SRFI, or if it was,
but we were not satisfied with it, we chose to look at what Scheme’s future new standard
R6RS [SCD+] had to say about the matter. While it is not finished yet, and ULM did not
target it (it wasn’t even a draft when we started working on ULM), there is no doubt that
it will become the standard Scheme reference in the coming years, so it is worth looking at.
Aside from the Scheme primitives and libraries needed to host the ULM core model, our
work consisted in integrating the ULM primitives with Scheme. This implied figuring out
which Scheme primitives were affected by ULM, as well as the other way around.
It is beyond the scope of this dissertation to describe the Scheme language where ULM
does not affect it, therefore whenever standard Scheme language, primitives or functions
are used they will not be described. Scheme primitives that are affected by ULM will be
discussed further down this section.

3.2.2 Threads

We already discussed how ULM threads are cooperative and deterministic. We already dis-
cussed the notion of instants. We will now see our first ULM program and start illustrating
what can be done with ULM. The program in Figure 3.1 creates two threads that together
display the string “Ping Pong\n” forever.
In this program you can see the two first ULM primitives ulm:thread which creates a new
thread in which to evaluate its body, and ulm:pause2 which causes a thread to wait for the
next instant. In ULM, when a new thread is created, it gets automatically scheduled later
within the instant. Specifically it gets appended at the end of the list of threads that will
be scheduled next within the instant. This means that creating a thread is a non-blocking
operation.
In our example it means that each of the two threads is created and put in their creation
order at the end of the scheduler’s queue before any of them gets executed. In this specific
example, assuming no other thread has been created than the thread executing our example,
they will get executed when that thread terminates.

1A SRFI is a specification of functionality for Scheme grouped by theme: lists, exceptions...
2Although ulm:pause can be derived from other instructions, it has been promoted to a primitive because

it is a pillar of scheduling optimisation (which we describe in 5.3.1) and ongoing work on static analysis.

15

CHAPTER 3. LANGUAGE

In Scheme, expressions that are not in procedures are evaluated in what is called the
toplevel. In ULM, no expression can be evaluated outside a thread, so the toplevel is
actually evaluated in a primordial thread (one created by the system). This thread will
terminate when the toplevel evaluation is finished.
We already discussed the fact that threads have to relinquish the control to the sched-
uler before any other thread can be scheduled: this is the cooperation point. The first
cooperation point we see in this example is that when a thread terminates (the primordial
toplevel-executing thread here), it gets removed from the scheduler and the next thread to
be scheduled in the instant gets executed3.
To get back to our example, let us look at the body of each thread (they only differ by
the string they print). They enter an infinite loop where they display their string before
waiting for the next instant by calling ulm:pause. This is the second cooperation point:
when a thread waits for the next instant, it gets put in the list of threads to schedule at
the next instant (specifically at the end of that list).
Let us list the events we have just described:

1. The primordial thread is created.

2. The primordial executes the toplevel.

3. The first thread is created.

4. The second thread is created.

5. The primordial thread terminates.

6. The first thread is scheduled.

7. The first thread prints “Ping ”.

8. The first thread waits for the next instant.

9. The second thread is scheduled.

10. The second thread prints “ Pong\n”.

11. The second thread waits for the next instant.

Now we reach a point where there are no more threads to schedule during the current instant
(since both live threads are scheduled for the next instant). At this point the scheduler
enters the End Of Instant (EOI) phase. Several things happen during that phase, and
each will be described as we introduce new features. The first thing that happens at the
EOI relevant to our example is that the list of threads to be scheduled for the next instant
becomes the list of thread to schedule during the new instant that is started after the
EOI. It is important to note that the list keeps its ordering, which means that threads are
scheduled in the same order they waited for the next instant. More generally, threads in
ULM are always rescheduled in the order they cooperate.
Let us now look at what happens at that next instant, right after the first EOI:

1. EOI.

3We will discuss later what happens when there are no more such threads.

16

3.2. FEATURES

2. The first thread is scheduled.

3. The first thread prints “Ping ”.

4. The first thread waits for the next instant.

5. The second thread is scheduled.

6. The second thread prints “ Pong\n”.

7. The second thread waits for the next instant.

8. EOI.

9. ...

This is exactly the same scheduling that happened at the previous instant. In fact since
both threads are in infinite loops, the same scheduling will occur at each instant. This
means that the result of this program will consist in printing “Ping Pong\n” once per
instant for ever. The semantics of ULM’s scheduling make it easy to write threads that are
synchronised (one is always called before the other) in an intuitive way (creating them in
the proper order is enough).

3.2.3 Signals

In the previous example we have shown how two threads are synchronised by both waiting
for the next instant. This is enough for the second thread because at the next instant it
knows the first one will have been scheduled before itself. But this type of synchronisation
falls short of handling intra-instant synchronisation as well as being able to wait for several
instants.
This is where signals come in handy: they are the main synchronisation means of ULM.
As described earlier, signals have two states: non-emitted and emitted. They start as non-
emitted, and are reset to that state at each EOI. When emitted, they keep that state until
the EOI. With signals, threads can wait for a signal to become emitted (if it isn’t already),
whether that emission will be later in the same instant or in several instants.
Signals are created with ulm:signal, emitted with ulm:emit and waited for with ulm:await.
In order to introduce signals, let us take the previous example of two threads printing “Ping
Pong\n” and introduce a bug in Figure 3.2.
As far as both threads are concerned nothing changes except they now call our function disp

instead of display. Our function will randomly call (or not) ulm:pause to wait for the next
instant, before printing. So in fact this function may or may not skip instants. The result
is that sometimes the first thread skips an instant, resulting in the printing of “Pong\n”,
sometimes the second thread skips an instant (printing only “Ping ”), sometimes they
print “Ping Pong\n” correctly, and other times they both skip an instant before printing
correctly.
Thus our contract is broken. While it may seem unfair to introduce randomness consciously
in our program, we do that to illustrate that when calling functions it may or may not be
obvious what scheduling changes they introduce. Suppose that disp was defined in a
library written by a third-party, and that library implements non-blocking Input/Output
by cooperating instead of blocking. This is not a far-fetched idea, but it means that for
some external reasons we might skip instants, or not.

17

CHAPTER 3. LANGUAGE

(define (disp arg)

(if (= (random 2) 0)

(ulm:pause))

(display arg))

(ulm:thread

(let loop ()

(disp "Ping ")

(ulm:pause)

(loop)))

(ulm:thread

(let loop ()

(disp "Pong\n")
(ulm:pause)

(loop)))

Figure 3.2: Randomly skipping instants

In order to be sure that the first thread has been scheduled before the second thread in
such a case, we need signals. Let us rewrite the previous example using a signal emitted by
the first thread and awaited by the second as shown in Figure 3.3.

What we added here is that we create a signal named relay, which is emitted by the first
thread after printing, and awaited by the second before printing. Both threads still need
to call ulm:pause to switch instant in order to reset the signals. Otherwise the first thread
would never cooperate and try to emit the signal several times during the same instant
(only the first emission has any effect), and the second thread would wait several times in
the same instant for a signal that would stay emitted, thus not cooperating.

So now we are sure that the first thread has displayed its string before the second does,
but there still is a bug in there. It happens if the second thread takes several instants to
display, it means the first thread can redisplay its “Ping ” before the “Pong\n”. So we
have to use another signal so that the second thread can notify the first thread when it can
resume, as shown in Figure 3.4.

This time we use two signals, ping for the first thread to notify the second it can print, and
pong for the second thread to notify the first when it can print. This example is a good
example of why introduction of non-determinism in a thread can complicate the scheduling,
and how signals are an appropriate means to synchronise thread even in such a case.

3.2.4 Suspension

Now that we understand ULM’s scheduling and signals, we can look at the suspension
control block. In ULM it is possible to condition the evaluation of an expression on the
presence of a signal. It means that the expression will be suspended by the scheduler at
each instant until the given signal is present, or until the expression returns. This is done
with the ulm:when primitive, whose first argument is the signal to suspend on, and the
other arguments are expressions to evaluate only when the signal is emitted. The return
value of ulm:when is that of its last evaluated expression.

For example, we will try to have two threads printing a message on a different clock: one

18

3.2. FEATURES

; (disp arg) stays the same

(define relay (ulm:signal))

(ulm:thread

(let loop ()

(disp "Ping ")

(ulm:emit relay)

(ulm:pause)

(loop)))

(ulm:thread

(let loop ()

(ulm:await relay)

(disp "Pong\n")
(ulm:pause)

(loop)))

Figure 3.3: Using a signal

; (disp arg) stays the same

(define ping (ulm:signal))

(define pong (ulm:signal))

(ulm:thread

(let loop ()

(disp "Ping ")

(ulm:emit ping)

(ulm:await pong)

(ulm:pause)

(loop)))

(ulm:thread

(let loop ()

(ulm:await ping)

(disp "Pong\n")
(ulm:emit pong)

(ulm:pause)

(loop)))

Figure 3.4: Using two signals

19

CHAPTER 3. LANGUAGE

; this prints msg at every instant

(define (loop-print msg)

(let loop ()

(display msg)

(ulm:pause)

(loop)))

(define two (ulm:signal))

(define three (ulm:signal))

(ulm:thread

(ulm:when two

(loop-print "2 instants")))

(ulm:thread

(ulm:when three

(loop-print "3 instants")))

; emit the signals

(let loop ((i 1))

; every two instants

(if (= 0 (modulo i 2))

(ulm:emit two))

; every three instants

(if (= 0 (modulo i 3))

(ulm:emit three))

(ulm:pause)

(loop (+ i 1)))

Figure 3.5: Using suspension

will print at every three instants while the other will print every other instant. The code
is shown in Figure 3.5.
In this example we have delegated the infinite loop printing to the function loop-print.
We then have two signals: two is emitted by the primordial thread every two instants,
while three is emitted every three instants. We also have two threads, both entering a
suspension context4 on one signal, in which they call loop-print.
Let us trace what happens in this example:

1. The primordial thread creates two threads, emits no signal and cooperates.

2. The first thread starts and gets suspended on two.

3. The second thread starts and gets suspended on three.

4. End of instant 1.
4We use the word context to denote the list of preemption and suspension blocks in a thread’s dynamic

extent.

20

3.2. FEATURES

5. The primordial thread emits two and cooperates.

6. The first thread is resumed, enters print-loop, prints and cooperates.

7. End of instant 2.

8. The primordial thread emits three and cooperates.

9. The second thread is resumed, enters print-loop, prints and cooperates.

10. End of instant 3.

11. The primordial thread emits two and cooperates.

12. The first thread is resumed, prints and cooperates.

13. End of instant 4.

14. The primordial thread emits no signal and cooperates.

15. End of instant 5.

16. The primordial thread emits two, three and cooperates.

17. The first thread is resumed, prints and cooperates.

18. The second thread is resumed, prints and cooperates.

19. ...

One of the powerful features of the suspension primitive is that the code evaluated in its
body does not have to be modified to be scheduled according to the suspension signal: at
every new instant the body will wait again for the signal to be emitted. This allows us
to have the same function called from both threads behave differently depending on the
suspension context.
Now that we explained how the suspension primitive works, we can confess that ulm:await
can be defined in terms of ulm:when5:

(define (ulm:await sig)

(ulm:when sig #t))

As you can see waiting for a signal consists in entering a suspension block on that signal,
and as soon as it is emitted, return from the block with any value.

3.2.5 Weak Preemption

We now know how to suspend the evaluation of an expression at every instant, for example
to constrain a certain evaluation to the availability of a given resource. But what happens
when such a resource is determined to be absent for ever on? Sometimes suspending is not
enough and we would like to give up execution of a certain expression in the middle of its
evaluation. Moreover it would be nice if that expression did not have to be rewritten to
check every so often whether it should stop or not. On the other hand, we do not want the

5Even though for performance reasons we promoted it to a primitive in our implementations.

21

CHAPTER 3. LANGUAGE

(define sig (ulm:signal))

; enter weak preemption on sig

(ulm:watch sig

(print "one")

; trigger the preemption

(ulm:emit sig)

; wait for the end of instant to

; be preempted

(ulm:pause)

(print "two"))

(print "three")

Figure 3.6: Weak preemption

(define sig (ulm:signal))

(ulm:thread

(ulm:watch sig

(print "one")

(ulm:emit sig)

(print "two")))

Figure 3.7: Subjective weak preemption

traditional preemption wherein the system preempts unknowing threads at various random
(and often unexpected) places.

The second (and last) control block in ULM allows the programmer to solve all that. The
ulm:watch primitive takes a signal as first argument, and evaluates its body until it either
terminates normally, or until the end of the instant when the signal is emitted. If the signal
is emitted and the expression does not exit the preemption block before the end of the
instant, then the expression is given up and ulm:watch returns at the next instant. The
preemption primitive returns no value. Figure 3.6 shows an example of weak preemption:

This example will cause “one” and “three” to be printed, because when the thread reaches
the end of instant with ulm:pause it will be preempted by the weak preemption block
whose signal has been emitted.

The fact that the preemption takes place at the end of the instant of the signal emission is
called weak preemption. It is there because signals can be emitted by every thread, thus
preemption of a thread can be triggered either by the thread itself (subjective preemption),
or any other thread (objective preemption). The code in Figure 3.7 illustrates this:

In this example we create a signal and a thread. That thread enters a preemption block
on the signal where it prints, emits that signal and prints again. Let us suppose that
preemption should occur at the moment of the signal emission rather than at the end of
instant. This would be intra-instant preemption, or strong preemption. It would mean
emitting the signal would preempt the thread and cancel the second printing. But because

22

3.2. FEATURES

(define sig (ulm:signal))

(ulm:emit sig)

(ulm:thread

(ulm:watch sig

(print "one")

(ulm:emit sig)

(print "two")))

Figure 3.8: Objective weak preemption

any thread can emit the signal, let us see what happens if another thread emits the signal
as shown in Figure 3.8.

Now the primordial thread has emitted the signal before the new thread enters the preemp-
tion block. If we want to be consistent with the form of strong preemption we are trying
in this example, the body of the preemption block should not even be entered, since the
signal is already emitted. This makes for a different scheduling within the same instant
depending on when the signal was emitted.

This breaks the contract of instants and signals which specify that signals that get emitted
should be considered emitted for the entire instant, and makes it hard for the programmer to
understand the scheduling. When the end of instant is the only moment when preemption
takes place this problem is solved and the moment where a signal is emitted within an
instant does not modify the scheduling of preemption blocks.

It is important to understand how ULM’s weak preemption is different from both exceptions
(the traditional try/catch) and Pthread’s [IEE95] cancel. The usual exception mecha-
nisms does indeed allow a thread to preempt a certain evaluation, and would be equivalent
to the strong preemption we just described, but only the thread itself could preempt itself:
the preemption could not be triggered by others as can be done in ULM.

POSIX threads on the other hand do allow any thread to preempt one another (even
though the exact place where the preemption occurs is non-deterministic): POSIX calls it
canceling . The big difference with ULM is that canceling a thread in POSIX means giving
up the entire thread, there is no nesting of preemption blocks, it is only possible to kill a
thread, not merely making it give up on one expression.

Let us look now at a useful application of the preemption block. Suppose we want to
determine whether a certain signal has been emitted within the instant. Merely waiting
for it can only tell us that it was emitted if and when it is emitted. The waiting could
simply never return if the signal is not emitted. On the other hand we cannot rule out that
a signal has not been emitted until the next instant. Suppose we could tell that a signal
has not been emitted yet during the current instant: what stops a thread to emit it after
we have determined it hadn’t been emitted? An authoritative answer on the absence of
signal emission can only be given at the next instant, when we can go back and look at the
previous instant to say: that signal was never emitted. On the other hand emission of a
signal can be determined instantly, so we would like to write a function that either returns
#t within the instant if the given signal is emitted, or #f at the next instant if it isn’t.

In order to write such a function, we first need another function which executes an expression

23

CHAPTER 3. LANGUAGE

(define (ulm:now thunk)

(let ((kill (ulm:signal))) ; a local signal

(ulm:emit kill)

; entering a preemption block on an emitted signal guarantees

; its body will only be executed at most during this instant

(ulm:watch kill

(thunk))))

Figure 3.9: One-instant execution

(define (ulm:present sig)

(let ((ret #f)) ; our return value

(ulm:now

(lambda ()

; await the signal’s emission

(ulm:await sig)

; the signal was emitted during this instant

(set! ret #t)))

; ret is #t if that signal was emitted, otherwise it was left at #f

ret))

Figure 3.10: Signal presence check

for at most one instant. This is done with preemption by executing an expression in a
preemption block on a signal which we emit ourselves prior to entering the preemption block.
This is called a surefire preemption, because we know the preemption will be triggered unless
the expression terminates before the end of instant. This function is shown in Figure 3.9.

We can now write our ulm:present function to determine a signal’s presence during the
current instant, or its absence at the next. This function uses ulm:now to wait for the
signal we are testing during at most the current instant. If the signal is emitted during the
instant, we return #t. If it was not emitted and our wait for the signal was preempted by
ulm:now we return #f at the next instant. This function is shown in Figure 3.10.

3.2.6 The integration of weak preemption in Scheme

As promised, we discuss Scheme primitive when they interact directly with ULM’s primi-
tives, whether by being affected or by affecting them. Weak preemption is one of ULM’s
features which interacts directly with several Scheme primitives.

Subjective strong preemption with call/cc

Subjective preemption can be implemented in Scheme by using the traditional continuation
capture primitive call-with-current-continuation (call/cc for short). This primitive
allows the programmer to save the continuation at a given point and later invoke it. This
is a complex primitive whose interaction with the rest of Scheme is also complex, and this
is the only place where we will discuss it. When invoked within its dynamic extent, call/-
cc’s reified continuation has the effect of unwinding back to call/cc’s call location. This

24

3.2. FEATURES

is a form of strong subjective preemption. It is strong because the unwinding happens as
soon as the continuation is called (not at the end of instant), and it is subjective because
the thread which invokes the continuation is the one which will unwind. Because it is not
possible for a thread to force another thread to invoke a continuation, it is not possible to
do objective preemption with call/cc like we can do with ulm:watch. On the other hand
strong subjective preemption can be useful in some cases.
But call/cc also provides more than just strong subjective preemption: it allows contin-
uations to be invoked several times, or to escape the dynamic extent of call/cc. When
threads are involved things get bizarre though, because it may not be clear what happens
when a thread invokes the continuation of another thread. There has been studies on this
subject however [MGK03] and an intuitive implementation of a continuation in ULM could
be to save the preemption and suspension context on top of the traditional scheme continu-
ation and invoking another thread’s continuation would substitute the current continuation
(thus giving up on any pending preemption) with a copy of the other thread’s continuation,
possibly being blocked by suspension contexts.
But as a programmer, multi-shot continuations (continuations that can be called several
times) as well as continuations that replace the stack (as opposed to exception which only
unwind it) require a certain attention throughout the program. Each function has to
be aware that its execution can be saved and restored later, possibly by a new thread,
and certain dispositions have to be taken to keep the code working in such cases (using
dynamic-wind), when it is even possible at all.
We have not yet talked in detail about agents, but for now let us simply state they are a
special kind of thread. Entering a function as an agent and leaving it as a normal thread
does not seem like something simple to sort out, yet it would be possible using call/cc.
A solution to this particular problem could be to limit calls to continuations to the thread
(or agent) that created it, but then we are putting limits the use of call/cc.
We believe call/cc is too powerful for most programmers to yield safely. We also believe
that we can offer other ways to implement most of what it usually allows. In ULM threads do
not have to be implemented using continuations: they are part of the language. Coroutines
can be implemented using generators instead of continuations. Backtracking can be done
without call/cc using CPS (Continuation Passing Style). For all these reasons we decided
not to integrate it in ULM.

Strong subjective preemption without call/cc

We have seen earlier examples of why objective strong preemption leads to problems, but
since call/cc only allows strong subjective preemption, we have no problem anymore with
it being strong rather than weak. This is one feature we really like and cannot do with
ULM’s core model. Only a small part of call/cc’s features is needed to implement this
though: being able to unwind the stack to a given point just like exceptions. Bigloo [SW95]
has such a variant of call/cc called bind-exit. It takes one function as argument and
calls it with its current one-shot unwind-only continuation as argument.
This means that the continuation is only valid once, and within the dynamic extent of the
call to bind-exit. We have integrated this function in ULM, with the logical addition that
calling the continuation made available restores the preemption and suspension context
that was in place around the call to bind-exit, since it should mean the same thing as
letting it return normally.
While we integrated this function in ULM, we noticed that a mechanism was missing

25

CHAPTER 3. LANGUAGE

(define (with-input-from-file string thunk)

(let ((port (open-input-file string)))

(if (input-port? port)

(let ((old-input-port (current-input-port)))

(unwind-protect

(begin

; we modify the current input port by side-effect

(current-input-port-set! port)

(thunk))

(begin

; we restore the current input port before exiting

(current-input-port-set! old-input-port)

(close-input-port port))))

(error "with-input-from-file" "can’t open file" string))))

Figure 3.11: A safe with-input-from-file

from the core model: a feature called finally in many exception mechanisms, and called
dynamic-wind in Scheme. It refers to the ability to execute some expressions as we unwind
the stack as a result of preemption. dynamic-wind also allows to execute some expressions
as we restore a continuation that had been exited with call/cc, but this is a feature we do
not need. It is different from catch in exception mechanisms: it means that in the event of
preemption, we want to execute some code before the preemption goes all the way up the
stack.
dynamic-wind is not meant to block the preemption like catch or even as a final target for
preemption like ulm:watch, but as an obligatory passing point before leaving a function. It
is necessary in many places where a certain side-effect has to be cleaned up before exiting
the function, whether or not the function is exited normally or by being preempted.
In Bigloo the equivalent of dynamic-wind is called unwind-protect (because it only pro-
tects from unwinding) so we have kept that name in ULM. It is the equivalent to finally and
is called a protection block. An example of how Scheme’s with-input-from-file could
be implemented safely with regards to preemption is shown in Figure 3.11.
The semantics of strong subjective preemption in ULM follows logically: when unwinding
the stack because of strong subjective preemption (with bind-exit) the preemption and
suspension context is restored accordingly as we go up and execute all the protection blocks
until we exit the target preemption block. And when unwinding the stack as a result of weak
preemption the suspension and preemption contexts are also restored accordingly as we go
up, but all the protection blocks are called at the instant following the weak preemption
since preemption is decided at the EOI.

3.2.7 The interaction between when, watch and finally

Preemption, suspension and protection are quite straightforward by themselves, but when
they are combined they interact in ways which, although logical, are not necessarily intuitive
at first.
The first thing to understand about suspension is that when an expression is suspended it
is not only not scheduled: it is simply not taken into account by the scheduler. The code

26

3.2. FEATURES

(define s1 (ulm:signal))

(define s2 (ulm:signal))

(ulm:thread

(ulm:when s1

(ulm:await s2)))

; first instant

(ulm:emit s1)

(ulm:pause)

; second instant

(ulm:emit s2)

(ulm:pause)

; third instant

(ulm:emit s1)

Figure 3.12: Suspended waiting

(ulm:thread

(ulm:when s1

(ulm:when s2

#t)))

Figure 3.13: Suspended waiting (variant)

in Figure 3.12 illustrates that.

In this example we have two signals s1 and s2. We create a thread which will be waiting
on the latter in a suspension block on the former. During the first instant we emit s1 in
order to allow the thread to enter the suspension block and start waiting for s2, which is
not emitted during the first instant. At the second instant we do emit that signal, but
because s1 is not emitted at this instant, our thread is suspended and the emission of s2

has no effect at all on the thread. At the third instant we unfreeze our thread by emitting
s1 but it will still be waiting for s2.

When we consider the fact that ulm:await is derived from ulm:when, the previous thread
can be re-written as in Figure 3.13. It becomes clear that #t can only be returned during
instants where both signals are emitted.

Preemption blocks are also affected by suspension blocks: preemption can only be triggered
when the preemption block is not suspended. The example in Figure 3.14 illustrates a non-
suspended preemption.

On the other hand, because any expression within the dynamic extent of a suspended
ulm:when is ignored by the scheduler, if the preemption block is suspended at the instant
when preemption would occur, it simply does not occur, as shown in Figure 3.15.

Because the emission of s2 happens during an instant where the preemption block is sus-
pended on s1, the wait on s3 is never preempted and the thread is blocked forever.

Now if we mix protection into this example we get the last tricky example. In Figure 3.16
we emit s1, get into a preemption block on it, then into a suspension block on it before

27

CHAPTER 3. LANGUAGE

(ulm:emit s1)

; this is a sure preemption: we wait for

; at most 1 instant

(ulm:watch s1

(ulm:when s2

#t))

Figure 3.14: Non-suspended preemption

(ulm:thread

(ulm:when s1

(ulm:watch s2

(ulm:await s3))))

; fist instant: allow the thread to enter watch and await

(ulm:emit s1)

(ulm:pause)

; second instant: preempt the await ?

(ulm:emit s2)

(ulm:pause)

; third instant: nothing happened, the thread is still blocked

Figure 3.15: Suspended preemption

we enter a protection block where we wait for a non-emitted signal s2. At the end of the
first instant, the preemption is triggered and at the second instant the thread should get
out of the preemption block. For this it needs to execute all the protection blocks up until
the preemption target. In our case we have installed a protector which should print when
protected. But the trick is that this protector is under a suspension block on s1 which is
not present at the second instant. Therefore the protector will be suspended until s1 is
emitted again. This is logical since the protection block is inside the suspension block, even
though it is not obvious since it prevents us from getting out of the preemption.

3.2.8 Exceptions

We are now familiar with preemption (weak and strong) and protection in ULM. This means
we can talk about exceptions and errors, and for that we need to talk about standard Scheme
exceptions and errors (or lack thereof).

R5RS has a very loose meaning of what an error is, even though it mentioned throughout
the standard that errors should occur. SRFI-23 [23] (Error reporting mechanism) introduces
the error procedure which triggers an error, but does not specify what triggering means
except in the terms that it should be the same error triggering than produced by Scheme
internally (R5RS errors) and it should be displayed somehow to the user.

Suggestion is made in SRFI-23 that triggering an error could be implemented as raising an
exception of the error kind. Exceptions are yet another mechanism not described by R5RS,
although they are described in SRFIs 34 [34] (Exception Handling for Programs) and 35 [35]

28

3.2. FEATURES

; emit s1 so we wait for s2 at most one instant

(ulm:emit s1)

; surefire preemption

(ulm:watch s1

; we get in ok since s1 is emitted

(ulm:when s1

(unwind-protect

; this is what we protect

(ulm:await s2)

; and this is how we protect it

(print "preempted\n"))))

Figure 3.16: Suspended protector

(Conditions). The latter defines mechanisms for creating and composing exceptions (called
conditions), while the former describes the framework for installing exception handlers and
raising exceptions.

Traditional exceptions and handlers (by traditional we mean those used in today’s most
widespread languages) such as Java [JSGB00], C++ [Str00], C# [ECM01], Ruby [Rub] or
Python [Pyt] provide exceptions at the language level, and each invoke exception handlers
as the stack is unwound until the exception is caught. Exactly what we do with protection
blocks and preemption. But in SRFI-34 it is specified that handlers should be called in
the dynamic extent of the call that raised the exception. This means no stack unwinding.
This is actually more powerful than traditional exception handlers since it is possible to
treat the exception at the exact place where it occurred. And since Scheme provides stack
unwinding via other primitives (call/cc in Scheme and preemption in ULM) building on
SRFI-34’s definition of exception handling we can easily obtain traditional exceptions.

But SRFI-34 is vague concerning the continuation to raise (the function that raises excep-
tions) after it has invoked the exception handlers. Since it is possible that handlers do not
unwind, it is possible that calls to raise return and that does not seem like the most wanted
error treatment. For example, if error is defined as raising an exception of error type,
calling error can have no effect if the current handler decides not to do anything about
it, leading in continuing the evaluation of code that yielded the error, possibly because its
continuation was deemed impossible.

To that end, R6RS incorporates SRFIs 34 and 35 in the standard library, but defines that
should the current exception handler return to raise, a non-continuable exception is raised
again to the next exception handler, until one handler does not return, or the default handler
(specified as not returning from non-continuable exceptions) is reached. This makes more
sense in most cases where code raising an exception expect to unwind. In order to keep
the possibility of raising continuable exceptions, a new raise-continuable procedure has
been introduced, which allows handlers to return.

This is the dual system of exception handling we chose for ULM: handlers and raise pro-
cedures like R6RS, exceptions as defined by SRFI-35 and errors as defined by SRFI-23 by
raising non-continuable exceptions. On top of the procedure that installs a new exception
handler (with-exception-handler) we provide an equivalent procedure with-exception-
catcher which sets the handler’s continuation to that of the call to with-exception-

29

CHAPTER 3. LANGUAGE

catcher in order to facilitate creation of handlers that behave like traditional exception
catchers.

In terms of integration with ULM, because exception handlers do not unwind and excep-
tion catchers unwind using ULM’s strong preemption, they do not require any adaptation
themselves, or from ULM.

3.2.9 Migration

Now that we know everything6 about local thread scheduling, here comes the interesting
part7: migration.

Agents

We already discussed that we have a special kind of thread called an agent which can
migrate between sites at the EOI. Let us go into the details of what an agent is, and how it
differs from the threads we have already seen. The first difference we will see is that agents
have names. These names are provided by the system upon their creation, and they are
used to identify the agents for objective migration. In other words, an agent is not reified,
but can be uniquely identified by its name, which is convenient because name values allow
easy referencing to agents across sites without worrying about the location of the referenced
agent.

As we can see from the following example, agents are created with the ulm:agent special
form, which returns the new agent name, and takes an extra argument to ulm:thread,
which is the name of the variable which will receive the agent name in the agent’s body.
Agents are scheduled just like normal threads.

(define name

(ulm:agent (my-name)

(print "Agent’s name is: " my-name)))

Now that we know how to create agents, and how to get their names, let us use those names
to migrate the agents. We already discussed the fact that agents migrate from one site to
another between instants, that is: they leave one site at the end of an instant, and arrive
at their destination site at the beginning of one of the new site’s instant. Migration is
triggered by the ulm:migrate-to primitive which takes as first argument the name of the
target site, and as optional second argument the name of the agent to migrate (objective
migration). If such a name is not given it defaults to the current agent’s name (subjective
migration). An error is thrown if attempting subjective migration from a thread which is
not an agent8.

The name of the target site consists in a string denoting the target site’s address either as
a TCP host (name of IP address, with possibly a port number) or as a bluetooth address.

Let us suppose we have two ULM platforms, running on hosts A and B. Figure 3.17 shows
how we would send an agent to print from host A to B.

Since migration occurs at the end of instant, calling ulm:migrate-to only has the effect
of marking the current agent as a scheduled migration. It is a non-blocking operation, and

6Well, almost.
7If you thought the rest was already interesting, you’re in for a treat.
8Actually when we see migration groups in 3.2.9 we will revise this statement.

30

3.2. FEATURES

(ulm:agent (my-name)

(print "Agent is on host A")

(ulm:migrate-to "B")

(ulm:pause)

(print "Agent is on host B"))

Figure 3.17: Migration

that is why the agent has to wait for the next instant using ulm:pause in order to physically
move the agent to B, where it will return from ulm:pause to print.

Safe migration

Migration with ulm:migrate-to is all ULM’s core model defined for migrating a thread,
but this assumes that the transport was successful and that the other site was listening and
accepted our agent. This is clearly not enough since transport can never be safe: sockets
break, computers shut down, ULM platforms may not be running on the target site... This
type of migration is unsafe, and it can be a good thing sometimes. But some other times
we may want a safer type of migration.

There are two complementary things we need when we want to migrate safely: notification
of success or failure of the migration, and be able to instruct the ULM platform what to do
in case of failure. Because knowing that a migration failed is not enough: we also need to
choose the best course of action for recovery of the agent. In some cases losing the agent
during migration is not a problem, but in some other cases it might be necessary to restore
(we call this respawning) the agent on the departure site because we cannot afford to lose
it.

In order to handle these problems we added a new primitive ulm:safe-migrate-to which
takes two additional arguments to ulm:migrate-to: a timeout (in seconds9) and a boolean
to indicate whether or not to respawn the agent in case of failure. This primitive returns a
signal which will be used to indicate the success or failure of the migration. This signal is
special with regards to other signals for several reasons. Firstly it is emitted by the scheduler
itself at the beginning of an instant when the scheduler has determined the success or failure
of the migration in question. We call this type of signal spontaneous because it does not
need to be emitted by any thread. Secondly if this signal is waited for using ulm:await,
this primitive will return in case of migration success, and throw an exception in case of
migration failure.

Such an exception is not thrown if the signal is waited for using ulm:when as this primitive is
never leaf . We call a leaf primitive one on which a thread can be blocked at the end of instant
at the top of the call stack. So far we have seen only two such primitives: ulm:pause and
ulm:await, which both permit to change instants before they return. Although ulm:when

also makes it possible to change instants, we do not call it leaf because it may not be on
top of the call stack, as shown in Figure 3.18.

This illustrates that it is possible to be suspended in ulm:when in a leaf primitive which
has nothing to do with the suspension signal (we could even be waiting for yet another

9Traditionally, FairThreads like to represent time in instants instead of real time. We find network
timeouts to be easier to estimate in seconds than in instants, especially for interactive programes.

31

CHAPTER 3. LANGUAGE

(define sig (ulm:signal))

; emit the signal for the first instant

(ulm:when sig

; now skip an instant

(ulm:pause)

; we will never return from ulm:pause

)

Figure 3.18: ulm:when is not leaf

signal). If the previous example’s signal was a signal migration it would not be clear where
the exception should be triggered, since at the second instant we would be in ulm:pause

waiting for the signal emission. If the exception was to be thrown by ulm:pause because of
its suspension context, it might not be properly handled because it is not visually obvious
that ulm:pause could throw exceptions (it would be worse even if the leaf primitive in this
case was waiting for a second signal). On the other hand, throwing the exception at the
level of ulm:when would not make sense since it would ignore everything in the suspension
block. Whereas if a thread is waiting for that signal in a leaf primitive like (ulm:await)
it is obvious that should the exception be thrown, this place is the right place to have a
handler for it.

Figure 3.19 shows an example of how one might write a remote procedure call (RPC) which
will try to execute the procedure on fall-back sites should the first one become unavailable.

In this example we iterate over a list of sites to try to send our thunk to. To that end we
create an agent which will be sent to the first site to try. We use objective safe migration
to try send the agent to the first site, and we order the ULM platform to ditch the agent
in case of failure. We then install our exception handler and wait for the migration signal
to be emitted. In case of successful migration, the waiting completes and we return #t.
Otherwise an exception is thrown and caught by our handler which will try the next site
until they have all been tried.

In the case of subjective migration, it is interesting to note that it does not make much
sense to ask for safe migration without respawning, otherwise waiting on the migration
signal will succeed only in case of success, or never return in case of migration failure,
which really is the same as unsafe subjective migration. Figure 3.20 shows how one would
write a function which does safe subjective migration and returns #t in case of success, or
#f for failure (and obviously respawn).

Instructing an agent to migrate more than once in a given instant. Indeed, we take into
account the first migration order (that is, the destination and possibly other safe migration
parameters) and raise an error on subsequent calls to make the same agent migrate. If we
were to do otherwise, like for example, honour the last migration order within an instant,
we would not be able to instruct previous migration orders of the cancellation of their
migration orders. As such, there cannot be conflicting orders for migration for the same
agent (different sites, timeouts or respawn orders).

32

3.2. FEATURES

(define (rpc thunk sites)

; try every site

(let loop ((sites sites))

; if we run out of sites to try, we failed

(if (null? sites)

#f

; make an agent in order to send the thunk

(let* ((agent (ulm:agent (name)

; wait for arrival since we are migrated

(ulm:pause)

; now call the thunk on the new site

(thunk)))

; now get a signal for safe objective migration of our agent

(signal (ulm:safe-migrate-to (car sites) ; the site

10 ; timeout in ten seconds

#f ; no respawn

agent))) ; the agent to migrate

; now wait for success or failure

(with-exception-catcher

; the handler

(lambda (exc)

; migration failed: try a new site

(loop (cdr sites)))

; the body

(lambda ()

; if this does not throw it’s a success

(ulm:await signal)

; success

#t))))))

Figure 3.19: Remote procedure calls in ULM

33

CHAPTER 3. LANGUAGE

(define (ulm:migrate/wait site)

; trigger migration, and get its signal

(let ((signal (ulm:safe-migrate-to site

0 ; no timeout

#t))) ; we want respawn

; prepare to catch migration failure

(with-exception-catcher

(lambda (exc)

; failure

#f)

(lambda ()

(ulm:await signal)

; success

#t))))

Figure 3.20: Safe migration

Groups

Another difference between threads and agents is that in fact threads are attached to the
agent which created them (or the agent which created the thread which created them10).
In fact, each thread has a parent: if it is created by an agent, that agent becomes its parent.
If it is created by a thread, its parent is inherited. Threads that are created by the toplevel
have no parent. Agents have no parent.

Threads with no parent are called unmovable threads, whereas thread with an agent parent
are called linked threads. In fact they are linked to their agent parent, with which they form
a group. If the agent migrates to another site, the whole group migrates with it. This is a
useful feature since agents often need to have a group of threads with which they interact.
Together they form a coherent group of inter-dependent threads, which is why migrating
groups makes sense.

Figure 3.21 shows a rerun of our ping-pong example with one agent printing “Ping” and a
thread in its group printing “Pong”. Clearly they cannot function without each other, so
they are migrated together.

Because they migrate together at the end of instant, they would print “Ping Pong” on each
site they visit.

3.2.10 References

As previously discussed, it is possible in ULM to allocate a reference which will stay bound
even when either the reference handle, or the referenced data become remote. References
actually consist in a handle pointing to a memory slot in a memory store. Memory stores
come in two flavours: site stores (which are always fixed to their site) and agent stores
(which always follow the agent they belong to). This is the final difference between agents
and threads: agents carry their store, while threads use the store of their group (whether
from the agent parent or the site store for threads with no agent parent).

10...or the agent which created the thread which created the thread which...

34

3.2. FEATURES

(ulm:agent (name)

; create our auxiliary thread

(ulm:thread

(let loop

(print " Pong\n")
(loop)))

; and print ping

(let loop

(print "Ping")

; migrate at each instant

(ulm:migrate-to (random-site))

(loop)))

Figure 3.21: Ping-pong with agent groups

References are created using the ulm:ref primitive, which takes the initial reference data
as argument, and returns a new reference to a slot in a memory store as determined such: if
the caller is an agent or a thread grouped to an agent, that agent’s store is used, otherwise
the site’s store is used.
Accessing a reference’s data (dereferencing it) is done using the ulm:unref primitive, which
takes a reference as argument and returns the referenced data. Setting the reference’s data
is done using the ulm:ref-set! primitive, which takes a reference and the new data as
first and second arguments.
Both accessing and setting a reference’s data is a potentially blocking operation when the
reference’s memory store is located on a remote site. Figure 3.22 shows an example of how
references are used in a non-blocking way to return a value from a remote procedure call.
In this example, we create an agent which is sent by the caller thread to a remote site in order
to execute a thunk there and bring back its return value. In the previous RPC example, we
already saw how to send the agent to execute the thunk using objective migration. What
this new version shows is the combination of a reference and a signal to communicate the
thunk’s return value back to the caller thread. The reference is created using the caller
thread’s store, and affected by the agent once it has migrated back from the remote site.
The signal is also used by the agent in order to wake the caller thread which is waiting for
it, thus notifying completion of the RPC. Once that signal is sent by the returned agent,
and received by the calling thread, the thunk’s return value can be read from the reference
and returned to the caller.

3.2.11 Mixins

When it comes to user data types, R5RS Scheme does not offer offer anything. In fact
practically every Scheme implementation comes with its own set of user data type flavours,
from plain structures to object systems. SRFI 9 (Defining Record Types) [9] proposes a
standard way for defining user structures named records which are first-class and provide
accessor, modifier, predicate and constructor functions as well as instrospection.
This type of record is further expanded in SRFI 57 (Records) [57], which adds syntax such

as labels to access the record fields or function polymorphism for such records. R6RS defines
yet another type of record, with single inheritance among other features. Bigloo supports

35

CHAPTER 3. LANGUAGE

; execute the given thunk on the given dest site

(define (ulm:rpc dest thunk)

(let* ((sig (ulm:signal)) ; signal used to notify the agent’s return

(ret (ulm:ref #f)) ; the reference used to store the

; thunk’s return value

(here (ulm:site-address)) ; the current site address, so we can

; come back

; we create an agent to go to dest

(name (ulm:agent (name)

; at the next instant we will have been migrated

(ulm:pause)

; store the thunk’s result in a local variable because

; the reference would block here

(let ((store (thunk)))

; migrate back where we started

(ulm:migrate-to here)

(ulm:pause)

; the reference is not blocking anymore, pass

; the result

(ulm:ref-set! ret store)

; and notify the waiting thread

(ulm:emit sig))))

; make him move with no respawn

(gone (ulm:safe-migrate-to dest 0 #f name)))

; first check whether he’s gone, if this throws, we let the exception

; be thrown, the agent won’t respawn

(ulm:await gone)

; now await its return

(ulm:await sig)

; and return the thunk’s return value

(ulm:unref ret)))

Figure 3.22: Remote procedure call with a return value

36

3.2. FEATURES

<mixin-type-definition> ==> (define-mixin (<type-name> <argument-name> ...)

<mixin-spec> ...)

<mixin-spec> ==> (inherit <mixin-type-expr> <expr> ...)

| (var <name> <expr>)

| (meth (<name> <super-name> <this-name>

<argument-name> ...)

<expr> ...)

| (rename <old-name> <new-name>)

| (without <var-or-meth-name>)

<*name> ==> <identifier>

<mixin-type-expr> ==> <expr>

Figure 3.23: Mixin definition

structures (based on SRFI-9) and provides an object system with single inheritance, in-
trospection and method polymorphism. STklos [Gal] provides an object system based on
CLOS (Common Lisp Object System) [Ste84] which supports multiple inheritance and a
meta object protocol. PLT Scheme [Fla05] provides an object system based on classes,
mixins and traits [FKF98] [FFF06].

ULM was designed with Boudol’s mixins in mind [Bou01] as its object system, for which
Zimmer made a first implementation [Zim04]. These mixins are a type of object system
with multiple and parametrised inheritance: with mixins it is possible to define a mixin type
which inherits from another mixin type given at runtime, and to add, remove or rename
inherited methods or fields from such an inherited mixin type. It has been our work to
integrate mixins in ULM, find an appropriate implementation and provide an introspection
mechanism for runtime type checking.

Syntax

Mixin types are defined using the define-mixin form defined in Figure 3.23.

A mixin type definition introduces a new mixin type bound to the specified type name,
which is a global identifier. The mixin type can be parametrised by the specified argument
names, which will be bound and visible in the scope of the mixin upon instantiation. Mixin
inheritance is introduced by the inherit clause, which takes an expression which must
yield a mixin type and the values of the arguments expected by this mixin type.

Mixin fields consist in variables and methods. Variables are declared using the var clause,
which takes the name of the variable to bind in the mixin and the value to bind it to.
Methods are declared using the meth clause, which is similar to the (define (<name>

<argument-name> ...) <expr> ...) scheme form. Two extra variables are bound by
the system in the body of each mixin method: super, which is bound to the mixin’s super
type instance, and this which is bound to the current mixin’s instance.

Since a mixin type can inherit from several mixin types, the super type refers to the
type of mixin whose definition consists exclusively of the mixin clauses located before the
method: anything specified below that method will not be visible in that method’s super
type instance.

37

CHAPTER 3. LANGUAGE

(define p1 (new point 0 2))

p1.x

=> 0

(set! p1.x 3)

p1.x

=> 3

Figure 3.24: Using the point mixin

Fields (methods or variables) can be removed from the mixin type using the without clause,
and renamed using the rename clause. This is key to solving the traditional problems of
multiple-inheritance: method or field resolution. A field or method access always refers to
the latest definition of the field or method with that name. Every redefinition hides the
previous definition, which remains accessible only through the super type. If it is desirable
to keep two fields sharing a single name obtained through multiple-inheritance, the first
inherited field can be renamed, so that the second inherited field will not hide it.

Mixin types can be instantiated using the (new <mixin-type-expr> <expr> ...) syntax,
which takes the mixin type as first argument, and the values for the mixin type’s arguments
next.

Mixin fields can be accessed using the traditional object system’s “.” notation:

<mixin-instance-expr>.<field-name>

This notation can also be used for setting mixin variables:

(set! <mixin-instance-expr>.<variable-name> <expr>)

Examples

Here is how one would create the typical Point type using mixins:

(define-mixin (point x-init y-init)

(var x x-init)

(var y y-init))

This example defines the mixin type point, with two variables x and y, whose initial values
are arguments of the mixin type. Figure 3.24 shows how such a mixin instance would be
created and used.

Figure 3.25 shows how we could extend our point mixin type by creating a resettable point.

Mixins enable us to build entirely new and adaptable synchronisation mechanisms on top
of ULM signals. For example, it is possible to build a type of signal which can be unemitted
during the instant11. Traditionally, we call event any type of synchronisation object based
on ULM signals. Figure 3.26 shows how we would define the disappearing-signal type
of event, which can be emitted, awaited and unemitted.

As described in an unpublished paper by Boudol, we can create a valued event, which can
have a value associated with its emission. It is shown in Figure 3.27.

We can see from this valued event that only the last value emitted with set within an
instant will be returned by get. Also note that it is reset at each new instant since its

11A blasphemy in the synchronous world, and admittedly not a very useful one.

38

3.2. FEATURES

(define-mixin (resettable-point x-init y-init)

; inherit from point and pass the arguments along

(inherit point x-init y-init)

; the reset function

(meth (reset)

; reset the x and y variables to their initial values

(set! this.x x-init)

(set! this.y y-init)))

(define p2 (new resettable-point 0 2))

p2.x

=> 0

(set! p2.x 3)

p2.x

=> 3

(p2.reset)

p2.x

=> 0

Figure 3.25: Extending point mixin

(define-mixin (disappearing-signal)

(var signal (ulm:signal))

; this makes this event unemitted

(meth (unemit)

; simply make a new signal

(set! this.signal (ulm:signal)))

; emit this signal

(meth (emit)

(ulm:emit this.signal))

; wait for this event

(meth (await)

(ulm:await this.signal))

; tell us if this event has been emitted

; during the current instant

(meth (present?)

(ulm:present this.signal)))

(define p2 (new disappearing-signal))

(p2.emit)

(p2.present?)

=> #t

(p2.unemit)

(p2.present?)

=> #f

Figure 3.26: A dissapearing signal mixin

39

CHAPTER 3. LANGUAGE

(define-mixin (valued-event)

; our synchronisation means

(var signal (ulm:signal))

; this holds the associated value

(var content #f)

; emits this event with a value

(meth (set v)

; notify the emission

(ulm:emit this.signal)

; and save the value

(set! this.content v))

; gets the event value

(meth (get)

; await a value

(ulm:await this.signal)

; return it

this.content))

Figure 3.27: A valued event mixin

signal variable gets reset too. So this event will start each instant with no value. If we
want for the latest value to be preserved across instants, we could write it as in Figure 3.28.

As a last example, we will show how to build a multi-valued event mixin. This time we
want each value emitted on the event to be stored by the event, and getting the value will
yield the list of all values emitted during the current instant. Since the number of emission
per instant can only be determined at the end of instant, getting the list of values emitted
during an instant yields those values at the next instant.

This multi-valued event mixin overrides the set and get methods of the event mixin, and
adds an await method, which first waits for the emission of the event before calling get.

This mixin still uses a signal for event emission triggering and waiting, and the content

variable to store the list of values per instant. But this time, it contains a pair whose car

contains the current instant, and whose cdr contains the list of values emitted during this
instant. When we want to get the values emitted for the current instant with get, we start
by installing the content variable by calling the install-content private method. This
method will initialise the content variable for the current instant if it was not already
done. To differentiate instants, we use the ulm:instant function which returns a unique
number for each different instant. We then have to call ulm:present to see if this event’s
signal will be emitted during this instant. If it was emitted we skip to the next instant,
otherwise ulm:present will already have returned at the next instant. Because we always
end up at the next instant, we have to save the content variable before we skip instant,
because it is only meaningful for the current instant. At the next instant we can return the
list of values which were put in our content value via side-effect in set.

The set method consists in installing the content variable too, then modifying its cdr to
augment it with the new value. The await method simply awaits the event’s signal before
calling get so it should not return an empty list of values, but can wait several instants (or
infinitely) for this event to be emitted. The full mixin is shown in Figure 3.29.

40

3.2. FEATURES

(define-mixin (resilient-valued-event)

; inherit from valued-event

(inherit valued-event)

; add a boolean variable to remember emission

(var emitted #f)

; override set

(meth (set v)

; remember emission

(set! this.emitted #t)

; call the super-method

(super.set v))

; override get

(meth (get)

(if this.emitted

; return the latest value

this.content

; or await emission

(super.get))))

Figure 3.28: A resilient valued event mixin

Introspection

ULM mixins solve the problem of having user data structures, but the typing of such mixins
is a bit complex: Boudol’s mixins have a static typing based on the idea that two mixins
have the same type if they share the same fields and each has the same type, or a mixin A
is a subtype of mixin B is A has at least the same fields (with the same types) as B.

While this would be essential in a statically typed language, in Scheme it is not enough:
traditional scheme data types have some sort of typing information available at runtime,
whether a simple type predicate (such as pair?) or more complex forms of introspection.

Our contribution in this mixin model is the addition of first-class mixin types. While
Boudol’s mixin types are defined as combinations of lambdas, we add a layer formally
reifying mixin types in the same way Java classes are reified. Naturally, a mixin type is also
a mixin instance, and defining a mixin type (with define-mixin) defines a global variable
containing the mixin type instance.

The mixin type’s type is called mixin-type, and if we had a define-mixin-interface form
similar to define-mixin but without the variables’ initial values and methods’ body (which
are not relevant here), its interface would be as shown in Figure 3.30.

Mixin types have the list of types inherited by such a type, its name, the list of the type’s
fields, its constructor and a method that looks up a field by name. Field descriptors are also
mixins: mixin variables are described by the mixin-variable mixin type, and their methods
by mixin-method defined as shown in Figure 3.31.

In order to have some hierarchy, a base mixin type named mixin is defined, which contains
one variable containing the mixin instance’s type. All mixins inherit from this base type:

41

CHAPTER 3. LANGUAGE

; A multi-valued event mixin

(define-mixin (multi-valued-event)

(inherit valued-event)

; private method which clears every past emission values

; and sets up a values list for this instant, then returns it

(meth (install-content)

(unless (= (ulm:instant) (car this.content))

(set! this.content (cons (ulm:instant) ’())))

this.content)

; returns at the next instant the list of values emitted at

; this instant

(meth (get)

; save the list

(let ((content (this.install-content)))

; this returns #t during this instant, or #f at the next

(if (ulm:present this.signal)

(begin

; await the next instant before returning the values

(ulm:pause)

; return all the values

(cdr content))

(begin

; no value

’()))))

; returns the list of values emitted at the next instant of

; the first emission

(meth (await)

(ulm:await this.signal)

(this.get))

; emit a value

(meth (set val)

(let ((content (this.install-content)))

(set-cdr! content (cons val (cdr content)))

(ulm:emit this.signal)))

)

Figure 3.29: Event with multiple values

42

3.2. FEATURES

(define-mixin-interface mixin-type

; the list of inherited types

(var types)

; the name of this mixin type

(var name)

; the fields of this mixin type (variables and methods)

(var fields)

; the constructor which creates such mixin instances

(var constructor)

; method which gets a mixin field descriptor by name

(meth (get-field name)))

Figure 3.30: The mixin-type mixin

(define-mixin-interface mixin-variable

; this variable’s name

(var name))

(define-mixin-interface mixin-method

; this method’s name

(var name)

; this method’s arity

(var arity)

; #t if this method’s arity is fixed, #f if it can

; take more arguments

(var fixed))

Figure 3.31: Mixin field introspection

43

CHAPTER 3. LANGUAGE

(define-mixin-interface mixin

; this mixin’s type instance

(var type))

Since every mixin is guaranteed to inherit from the mixin type, every mixin instance has
a type field. This includes all the super instances available in methods. When defining a
mixin, the super instances in its methods cannot have the final full mixin’s type, because
super instances only see the mixin clauses located above the method. For such super
instances we have created a system of anonymous mixin types. To understand this, let us
look at the types of the mixins in Figure 3.32.

For each new method introduced within a mixin, a new type is created for the method’s
super instance. In theory, a new type should be created for every new mixin clause, but
since instances of those types are only visible in methods, it makes sense to simplify the
hierarchy by aggregating the super types located between methods. The output of our
example is shown in Figure 3.33.

We can see that for each new method, an anonymous super type is created, which has all
the fields defined above the method, and whose super types includes the the previously
inherited types. Each new anonymous super type inherits from the previous anonymous
super type, and the final type (foo here) inherits from the last anonymous super type.

With this system it is possible to describe every mixin type at runtime, including list
its variables, methods (since accessing them is dynamic, accessors and modifiers are not
necessary in the reflection system), get its constructor, name and list of inherited mixin
types.

Mixin type compatibility

In Scheme every value can be determined to be of a certain type with a predicate per data
type. The primitive mixin? returns #t if the given value is a mixin instance, but this is not
enough to know precisely what type of mixin it is. We have to explain how we can write a
predicate which returns #t if a given value is of a given mixin type.

Boudol’s static typing system for its mixins consists in comparing two mixin types to check
that they have the same interface: same variables and functions in the resulting instances.
This is necessary because inheriting from a mixin type is not enough to be a subtype of
it if we remove or rename some of its fields. Take the following example of crippled-point
which inherits from the point mixin type we defined earlier:

(define-mixin (crippled-point)

; inherit from the point mixin

(inherit point 0 0)

; but remove its x variable

(without x))

The crippled-point mixin inherits from point, yet is missing its x field, having only the y
field. Clearly it is not a subtype of point because it cannot be used as such: any access
to a crippled-point instance as a point will cause an error when accessing its missing x
field. This is why Boudol’s definition of mixin types and subtypes specify that a subtype
must have all the fields of the supertype, each with the same type. But this is not enough,
because it is easy to create two mixin types with the same fields while they are clearly not
of the same type:

44

3.2. FEATURES

; This function shows the mixin’s type name, its fields and super-types

(define (dump-type m)

(print "Mixin type name: " m.type.name)

(display " Mixin field names: ")

(for-each (lambda (t)

(display t.name " "))

m.type.fields)

(newline)

(display " Mixin super types names: ")

(for-each (lambda (t)

(display t.name " "))

m.type.types)

(newline))

; We define two mixins with no field

(define-mixin (A))

(define-mixin (B))

; And a mixin inheriting from A and B

; with accessors to get the super instances

(define-mixin (foo)

(meth (get-super1) super)

(inherit A)

(meth (get-super2) super)

(inherit B)

(meth (get-super3) super))

; Instantiate our mixin

(define f (new foo))

; Dump all super instances’ types

(dump-type (f.get-super1))

(dump-type (f.get-super2))

(dump-type (f.get-super3))

; And the instance’s type

(dump-type f)

Figure 3.32: Mixin introspection

45

CHAPTER 3. LANGUAGE

Mixin type name: $anonymous-mixin-foo1496

Mixin field names: type

Mixin super types names: mixin

Mixin type name: $anonymous-mixin-foo1497

Mixin field names: type get-super1

Mixin super types names: A $anonymous-mixin-foo1496

Mixin type name: $anonymous-mixin-foo1498

Mixin field names: type get-super2 get-super1

Mixin super types names: B $anonymous-mixin-foo1497

Mixin type name: foo

Mixin field names: get-super3 get-super1 get-super2 type

Mixin super types names: $anonymous-mixin-foo1498

Figure 3.33: Mixin introspection output

(define-mixin-interface hamburger

(meth (slice x)))

(define-mixin-interface resizable-array

(meth (slice x)))

Clearly the two have nothing in common but their interface is the same, yet in our view
they should not be of the same type. In order to clarify this, we state that mixin A has the
type B if its type field is B, is a subtype of B if and only if all the following conditions are
met:

1. A inherits from B directly or indirectly.

2. A contains all of B’s variables.

3. A contains all of B’s methods.

4. Those methods have the same arity in A and B.

We believe the addition of the inheritance constraint enforces the fact that subtyping has
to be conscious to the programmer, while the field compatibility checks are here to make
sure the subtyping was not destroyed. It is still possible for a mixin to remove and replace
an inherited method, but as long as the replaced method has the same arity, we believe it
is a natural method override done consciously by the programmer, and should not change
the mixin type’s compatibility with its super type.
The isa function takes an object and a mixin type as arguments and returns true if the
given object is of the same type or is a subtype of the given mixin type. We believe this is
enough to build predicates for all mixin types.

3.2.12 Modules

Our implementation of ULM supports code modularisation using modules. Every ULM
file has to be composed of exactly one module, whose name has to be unique. A module

46

3.2. FEATURES

<module-definition> ==> (module <module-name>

<module-spec> ...)

<module-spec> ==> (import <module-name> ...)

| (export <export-spec> ...)

| (extern <extern-spec> ...)

| (main <main-name>)

<export-spec> ==> <identifier>

| (<identifier> <argument-name> ...)

| (macro (<identifier> <argument-name> ...))

<extern-spec> ==> (<module-name> (<native-binding> ...)

<export-spec> ...)

<native-binding> ==> (<native-type> . <native-module>)

Figure 3.34: Module definition

consists of a name, a list of imported modules, a list of exported variables, a list of extern
native bindings, the name of the main function and a toplevel which consists of the module’s
body.

Modules are described using the module clause at the top of each module, defined as shown
in Figure 3.34.

The import clause lists the name of modules to be imported in this module: all the symbols
exported by those symbols will be visible from this module’s body. The export clause lists
the name of variables exported from this module. Each exported symbol can have three
forms: a symbol name to export a variable whose type is unknown, a function prototype to
export a function with an explicit prototype, or a macro prototype. All exported symbols
have to be defined within the module, with an appropriate type, and are imported read-only
by other modules.

The extern clause imports symbols from non-ULM sources, so-called native bindings. As
we will see in 4.1 ULM runs on several backends, so it is possible to specify which native
module (backend dependent) provides a given native module. As native modules are not
written in ULM, they do not provide the list of exported symbols or their type or prototype,
so they are specified for each imported native module. The native modules are explained
in detail in Chapter 6.

The main clause specifies the function which should be invoked if this module is the main
ULM module being executed, after the toplevel. With modules a symbol is looked up in
the given order: local variable, global variable, imported or native variable.

Modules are looked up, loaded and initialised at runtime (and compile time actually) just
in time, which means that if the symbol X is exported by the module B, which is imported
by the module A, the module B’s toplevel will be executed at the first attempted read of the
variable X. This clears most circular module dependencies and gets rid of unused module
initialisation costs.

Let us illustrate how we can create interdependent modules without any initialisation prob-
lem. Figure 3.35 shows a module foo which exports the function f and the mixins A and
B.

The module bar imported by the foo module is then shown in Figure 3.36. It exports the

47

CHAPTER 3. LANGUAGE

(module foo

(import bar)

(export A B f))

(print "Loading module foo")

(define (f x)

(if (> x 0)

(g (- x 1))

x))

(define-mixin (A)

(var f #f)

(meth (g x)

(print "A.g " x)

x))

(define-mixin (B)

(inherit C)

(meth (g x)

(print "B.g " x)

(super.g x)))

(print "Module foo loaded")

Figure 3.35: Interdependent modules: foo

48

3.2. FEATURES

(module bar

(import foo)

(export C g))

(print "Loading module bar")

(define (g x)

(if (> x 0)

(f (- x 1))

x))

(define-mixin (C)

(inherit A)

(meth (g x)

(print "C.g " x)

(super.g x)))

(print "Module bar loaded")

Figure 3.36: Interdependent modules: bar

function g and the mixin C.

We can see that the functions f and g are interdependent, while the B mixin inherits
from C which inherits from A, inheriting across interdependent modules. However, since
both modules’ toplevel only contain definitions, execution of either module will not trigger
the loading of the other. It is even possible to put non-definition expressions requiring
both modules in the toplevel of either one (not both) module’s toplevel. For example, by
appending this to either module:

(define t (new B))

(t.g 2)

Will result in both modules being loaded prior to B’s instantiation:

Loading module foo

Module foo loaded

Loading module bar

Module bar loaded

B.g 2

C.g 2

A.g 2

This works because in both cases, the other module will be fully loaded once we start
using its exported values. Of course, our module system has no solution in the case of two
variables needing each other’s value for their definition, but this is the same with or without
modules.

49

CHAPTER 3. LANGUAGE

3.3 Semantics

As we hope to have demonstrated by now, ULM provides a deterministic scheduling. In
this section we will describe ULM primitives as they have been integrated in Scheme. For
that we will use denotational semantics as traditionally used for Scheme. These semantics’
notations are based on Bigloo’s Fair Threads semantics [SBS04], based in turn on Queinnec’s

L.I.S.P. book [Que96] and on R5RS’s semantics.

3.3.1 Notation

In order to better apprehend these formal semantics (in all their Greek-friendly notation
beauty) we will start by describing how evaluating ULM code works.

Expressions are represented by the symbol π and are evaluated by the function ε. Since
all evaluation is done in a ULM thread, the evaluation function needs arguments which are
thread-specific, such as the thread’s current environment ρ, its current continuation κ, its
context ζ and store θ.

The thread’s context consists in the list of current suspension (when), and preemption
(watch) clauses, as well as clauses introduced by strong preemption (escape) and protection
(protect). The first clause in the context is the bottommost clause while the last one is
the topmost clause. There are two more clauses which are terminal because they can only
appear at the beginning of the context: those introduced by waiting on a reference (ref),
and waiting using ulm:await (which is represented as when too, since it is derived from it).
You can view this list of clauses as ULM’s dynamic context.

The thread’s current store represents either the current site’s store, or a store inherited by
an agent.

Aside from those arguments belonging to the current thread, two more arguments are
needed by the evaluator, which are given by the scheduler: the set of signals emitted at the
current instant σ and the set of stores present on the site during this instant Θ. These two
arguments are global (on one site, of course), and thus can be modified and visible by all
threads, so they are passed to the continuations with the evaluated value.

The evaluator function returns a list consisting of the thread state τ (composed of its
scheduling status, continuation, context and store), the two globals (signals and stores), a
list of new threads (T), and a list of migrations (M) to trigger. This is of course used by
the scheduler, which we will describe later in 3.3.3.

The list of abbreviations used in these semantics is shown in Figure 3.37.

The conditional evaluation is denoted with “π1 → π2, π3”, with π2 or π3 evaluated if π1 is
true or false respectively. The list concatenation is represented with “§”, the list difference
with “\”, obtaining the nth element (starting at 1) with “L↓n”, obtaining the list with the
nth first elements removed with “L†n”. The tuple reference to its nth member (starting at
1) is denoted with “T⇂n”. The boolean conjunction is denoted with “∧”, the disjunction
with “∨” and the complement with “¬”. Evaluator values are converted to ULM values
with the function “inValue”, while ULM values are converted to evaluator values of type t
with the notation “ε|t”.

3.3.2 Evaluation

The evaluation function ε evaluates a Scheme expression in a non-suspensive context. The
scheduler verifies that before evaluating an expression, and the evaluator does too before

50

3.3. SEMANTICS

π Expr

ν Identifier

η String

π Expr

θ Store

ς Signal

ε ∈ Value = Fun + Int + Cons + String + Bool + Signal + Ref + ...

ϕ ∈ Fun = Value × Signals × Stores × Ctx × Store × Cont → Value

κ ∈ Cont = Value × Signals × Stores → Value

ρ ∈ Env = Ident → Value

Ref = Value × Store

σ ∈ Signals = Signal*

Θ ∈ Stores = Store*

ζ ∈ Ctx = CClause*

ι ∈ CClause = When + Watch + Ref + Protect + Escape

When = when × Signal

Watch = watch × Signal × Cont

Ref = ref × Store

Protect = protect × Cont × Signals × Stores → Value

Escape = escape × Cont

T ∈ Threads = Thread*

τ ∈ Thread = ThrdStatus × Cont × Ctx × Store

ThrdStatus = pause + terminated + ready

M ∈ Migrations = Migration*

µ ∈ Migration = to × String × Store × Int × Bool × SigOrFalse

SigOrFalse = Signal + False

ω ∈ ThrdResult = Thread × Signals × Stores × Thread × Migration

Ω ∈ SchdResult = Threads × Signals × Stores × Threads × Migrations

ψ ∈ SigsAndThrds = Signals × Threads

ε : Expr → Env × Signals × Stores × Ctx × Store × Cont → ThrdResult

S : Thread → Signals × Stores × Threads × Migrations → SchdResult

Figure 3.37: Abbreviation used in the semantics

51

CHAPTER 3. LANGUAGE

entering a potentially suspensive context.

Standard Scheme

For a variable access, its value is fetched from the environment and passed to the continu-
ation with the signals and stores unchanged.

εJνKρσΘζθκ =
(κ (ρ ν) σ Θ)

For a quotation, the expression’s source code is passed to the continuation without evalu-
ation. The signals and stores are unchanged.

εJ(quote π)KρσΘζθκ =
(κ π σ Θ)

For a variable affectation we evaluate π, then assign that value to the variable ν. assign
modifies the environment, and throws an error if the variable is unknown.

εJ(set! ν π)KρσΘζθκ =
(εJπK ρ σ Θ ζ θ λεσ1Θ1.(κ (assign ν ρ) σ1 Θ1))

The conditional involves evaluating π, then if it evaluates to anything but the false value,
evaluate π1, otherwise evaluate π2. boolify returns false for the scheme value #f, true
otherwise.

εJ(if π π1 π2)KρσΘζθκ =
(εJπK ρ σ Θ ζ θ λεσ1Θ1.(boolify ε) → (εJπ1K ρ σ1 Θ1 ζ θ κ), (εJπ2K ρ σ1 Θ1 ζ θ κ))

For the sequence, we evaluate the first expression π1 before dropping its value and evalu-
ating the second expression π2. Of course, sequences of more than two expressions can be
composed as (begin π1 π2).

εJ(begin π1 π2)KρσΘζθκ =
(εJπ1K ρ σ Θ ζ θ λεσ1Θ1.(εJπ2K ρ σ1 Θ1 ζ θ κ))

The lambda creation involves capturing the current environment ρ and saving the name ν
and body π. To that end we create a function which will take the value we will use for ν (ε),
the globals, the dynamic context in which the lambda will be called, and the continuation of
the call. When that function will be applied it will evaluate π in the captured environment
ρ augmented with ν bound to ε with the continuation of the caller. We then wrap this
function as a scheme value and pass it to the continuation κ. Functions of different arities
can be obtained by composition, and are thus not described.

εJ(λ (ν) π)KρσΘζθκ =
(κ (inValue λεσ1Θ1ζ1θ1κ1.(εJπK ρ[ν/ε] σ1 Θ1 ζ1 θ1 κ1)) σ Θ)

The last purely Scheme rule is the function call. We start by evaluating π1 as the function

52

3.3. SEMANTICS

ϕ, then the argument π2 as ε. Then we unwrap ϕ to the function we created in the
abstraction rule, and call it by passing it ε, the globals, the dynamic environment and the
current continuation.

εJ(π1 π2)KρσΘζθκ =

(εJπ1K ρ σ Θ ζ θ λϕσ1Θ1.(εJπ2K ρ σ1 Θ1 ζ θ λεσ2Θ2.(ϕ|Function ε σ2 Θ2 ζ θ κ)))

With the protection block introduced by unwind-protect we see the first dynamic context
clause: protect. unwind-protect involves evaluating π1 into ε1, then evaluating π2 and
calling the continuation with ε1 when the evaluation of π1 is not preempted. If it is
preempted we have to evaluate π2 before unwinding.

This is done by evaluating π1 in a context augmented with a protect clause containing
a protector function. Should that evaluation be preempted, that function will be invoked
(in unwind-to which we describe later) with a new continuation κ3 and the two globals as
arguments. It will then evaluate π2 with the continuation κ3, which will likely keep on
unwinding. In both places where we evaluate π2 the context is stripped of the protection
clause.

εJ(unwind-protect π1 π2)KρσΘζθκ =

(εJπ1K ρ σ Θ 〈protect λκ3σ3Θ3.(εJπ2K ρ σ3 Θ3 ζ θ κ3)〉§ζ θ

λε1σ1Θ1.(εJπ2K ρ σ1 Θ1 ζ θ λε2σ2Θ2.(κ ε1 σ2 Θ2)))

The strong preemption primitive bind-exit evaluates π with a new local variable ν con-
taining an escaper function which unwinds to the continuation of bind-exit. To that
end we evaluate π with an environment augmented with ν bound to that escaper function
wrapped in a scheme value. When called, that function will invoke unwind-to with the list of
protection clauses contained in the dynamic extent between the call to the escaper function
and the call to bind-exit, as well as a continuation which involves invoking bind-exit’s
continuation κ with the value passed as argument to our escaper function.

εJ(bind-exit (ν) π)KρσΘζθκ =

(εJπK ρ[ν/(inValue λεσ1Θ1ζ1θ1κ1.(unwind-to (filter protect? ζ1\ζ)

λε2σ2Θ2.(κ ε σ2 Θ2)σ1))] σ Θ ζ θ κ)

The unwind-to evaluator function takes a list of protection clauses P, a final continuation κ
as well as the globals. If P is empty it invokes the final continuation κ, otherwise it invokes
the first clauses’ protector function with a continuation calling unwind-to with the next
protection clauses. Its effect is thus to call all protection clauses’ functions contained in P
and then calling κ.

unwind-to = λPκσΘ.P=∅ → (κ unspecified σ Θ),

((protect-func P↓1) λεσ1Θ1.(unwind-to P†1 κ σ1 Θ1) σ Θ)

53

CHAPTER 3. LANGUAGE

ULM primitives

The first, and simplest ULM primitive is the signal creation, which involves only creating
a new signal and passing it to the continuation κ.

εJ(ulm:signal)KρσΘζθκ =

(κ (new-signal) σ Θ)

Emitting a signal consists in evaluating π and adding it to the set of emitted signals σ1.

εJ(ulm:emit π)KρσΘζθκ =

(εJπK ρ σ Θ ζ θ λεσ1Θ1.(κ unspecified σ1§ε Θ1))

Entering a when control block involves evaluating π1 into a signal ε, then augmenting the
context ζ into ζ1 by adding a when clause with the signal ε. At this point the continuation
is to evaluate π2 with the new context ζ1. We store this continuation in κw. Before we
can invoke this continuation however, we test whether our signal ε is in the set of emitted
signals σ1. If it is, we invoke directly that continuation. If the signal hasn’t been emitted,
we have to yield to the scheduler, with the continuation κw and the new context ζ1.

εJ(ulm:when π1 π2)KρσΘζθκ =

(εJπ1K ρ σ Θ ζ θ λεσ1Θ1.let ζ1 = 〈when ε〉§ζ,

κw = λε2σ2Θ2.(εJπ2K ρ σ2 Θ2 ζ1 θ κ) in

ε∈σ1 → (κw unspecified σ1 Θ1), 〈〈ready κw ζ1 θ〉, σ1, Θ1, ∅, ∅〉)

Waiting for a signal with ulm:await is very similar to the suspension block, except that it
is always terminal : no expression is evaluated in a new context. We start by evaluating π
into the signal εs, then we create the continuation κa which should be evaluated when the
signal εs will be emitted. That continuation consists in checking if the signal is a signal
that was created for safe migration notification, and whether the migration in question
has been marked as failed with the predicate signal-failure? . If the signal signaled a failed
migration, we evaluate a call to a library function named ulm:raise-migr-error which
is in charge of raising a migration error using the exception mechanism library described
previously. Otherwise the continuation to ulm:await κ is called.

Like in the suspension primitive, before invoking κa we check whether the signal εs was
emitted. If it was κa is invoked immediately. Otherwise, we yield to the scheduler with the
context ζ augmented with a when clause with the signal εs. What is important to note here
is that this new context is not used for evaluation anywhere (contrary to the suspension
primitive): it is just used so that the scheduler knows when it can schedule us again.

εJ(ulm:await π)KρσΘζθκ =

(εJπK ρ σ Θ ζ θ λεsσsΘs.let κa = λεaσaΘa.(signal-failure? εs) →

(εJ(ulm:raise-migr-error)K ρ σa Θa ζ θ κ), (κ unspecified σa Θa) in

εs∈σs → (κa εs σs Θs), 〈〈ready κa 〈when εs〉§ζ θ〉, σs, Θs, ∅, ∅〉)

The preemption primitive consists in evaluating π1 into the signal ε, then evaluating the
body π2 with the context ζ augmented with a watch clause with the signal ε and the

54

3.3. SEMANTICS

ulm:watch continuation κ. The clause’s continuation will be used at the end of the instant
if the scheduler determines that the clause’s signal has been emitted.

εJ(ulm:watch π1 π2)KρσΘζθκ =

(εJπ1K ρ σ Θ ζ θ λεσ1Θ1.(εJπ2K ρ σ1 Θ1 〈watch ε κ〉§ζ θ κ))

The ulm:pause function (normally derived with ulm:when and ulm:watch) has been made
a primitive. It consists in yielding to the scheduler with the pause status which means that
this thread should not be scheduled again until the next instant.

εJ(ulm:pause)KρσΘζθκ =

〈〈pause κ ζ θ〉, σ, Θ, ∅, ∅〉

New threads inherit two things from their creator: the store θ and the context ζ. The
context is inherited using the function inherit-context into the new context ζ1. Then we
yield to the scheduler and give it the new thread, whose continuation consists in evaluating
π in the ζ1 context with a continuation of end-kont .

εJ(ulm:thread π)KρσΘζθκ =

let ζ1 = (inherit-context ζ) in

〈〈ready κ ζ θ〉, σ, Θ, 〈ready λεσ1Θ1.(εJπK ρ σ1 Θ1 ζ1 θ end-kont) ζ1 θ〉, ∅〉

The function inherit-context takes a context from a parent thread, and creates a new context
to be used by a child thread. Since it is not possible to unwind outside the dynamic extent
of a thread, all protect clauses are filtered out. For the same reason, all watch clauses’
continuations are replaced by end-kont so that inherited preemption terminates the new
thread. Suspension clauses on the other hand, are preserved as-is.

inherit-context = λζ.ζ=∅ → ∅, let ι = ζ↓1, ζ1 = ζ†1 in

(when? ι) → ι§(inherit-context ζ1),

(watch? ι) → 〈watch (watch-signal ι) end-kont〉§(inherit-context ζ1),

(inherit-context ζ1)

Every thread’s final continuation is end-kont and consists only in yielding to the scheduler
with a terminated status. Note that the thread’s store is not removed from Θ because
stores are present until the end of instant, so the scheduler will filter it out then.

end-kont = λεσΘ.〈〈terminated end-kont ∅ false〉, σ, Θ, ∅, ∅〉

Creating an agent differs in many ways from creating a thread. First we create a new
name for the agent in η, then we create a new store for it in θ1. We then yield to the
scheduler with a continuation that returns the new name to the caller. We also give the
scheduler that new agent, whose continuation consists in evaluating its body π with the
current environment ρ augmented with the variable ν bound to the new name η, an empty
context, the new store θ1 and the final continuation end-kont .

εJ(ulm:agent (ν) π)KρσΘζθκ =

55

CHAPTER 3. LANGUAGE

let η = (new-agent-name), θ1 = (new-store) in

〈〈ready λε1σ1Θ1.(κ η σ1 Θ1) ζ θ〉, σ, θ1§Θ,

〈ready λε2σ2Θ2.(εJπK ρ[ν/η] σ2 Θ2 ∅ θ1 end-kont) ∅ θ1〉, ∅〉

We create references by evaluating its initial value π into ε, then passing our continuation
a new reference with that value in the current store θ.

εJ(ulm:ref π)KρσΘζθκ =

(εJπK ρ σ Θ ζ θ λεσ1Θ1.(κ (new-ref θ ε) σ1 Θ1))

For dereferencing, we evaluate π into the reference ε, then we check whether its store is
currently present on the site by checking if it is in Θ1. If yes, we pass the reference’s value
to our continuation. If the reference’s store is not present, we yield to the scheduler with
a continuation of returning the reference’s content, and a context augmented with a ref

clause on the reference’s store. Just like for ulm:await that clause is terminal and no
evaluation will take place using it, it is there only for the scheduler to determine when to
schedule the thread back.

εJ(ulm:unref π)KρσΘζθκ =

(εJπK ρ σ Θ ζ θ λεσ1Θ1.(ref-store ε)∈Θ1 → (κ (ref-value ε) σ1 Θ1),

〈〈ready λε2σ2Θ2.(κ (ref-value ε) σ2 Θ2) 〈ref (ref-store ε)〉§ζ θ〉, σ1, Θ1, ∅, ∅〉)

Affecting a reference is very similar: we evaluate the reference π1 into ε1, the new value
π2 in ε2, then if the reference’s store is in Θ2, change reference’s value. Otherwise yield to
the scheduler with a new ref context on the reference’s store and a continuation that will
change the reference’s value when the store is there.

εJ(ulm:ref-set! π1 π2)KρσΘζθκ =

(εJπ1K ρ σ Θ ζ θ λε1σ1Θ1.(εJπ2K ρ σ1 Θ1 ζ θ λε2σ2Θ2.(ref-store ε1)∈Θ2 →

(κ (ref-value-set! ε1 ε2) σ1 Θ1),

〈〈ready λε3σ3Θ3.(κ (ref-value-set! ε1 ε2) σ3 Θ3) 〈ref ε1〉§ζ θ〉, σ2, Θ2, ∅, ∅〉))

Migration of the agent π2 to the site π1 is done by evaluating those to ε2 and ε1 respectively,
then yielding to the scheduler with a migration order. This migration order contains the
destination site ε1, the agent’s store we want to migrate (obtained from the 1:1 mapping
between agent names and stores), and a set of default values given only for safe migration:
we want no timeout (value of 0), no respawn and no signal emitted for notification.

εJ(ulm:migrate-to π1 π2)KρσΘζθκ =

(εJπ1K ρ σ Θ ζ θ λε1σ1Θ1.(εJπ2K ρ σ1 Θ1 ζ θ

λε2σ2Θ2.〈〈ready κ ζ θ〉, σ2, Θ2, ∅, 〈to ε1 (name->store ε2) 0 false false〉〉))

Subjective migration is very similar except the current store is used instead of obtaining it
from a argument.

εJ(ulm:migrate-to π1)KρσΘζθκ =

(εJπ1K ρ σ Θ ζ θ λε1σ1Θ1.〈〈ready κ ζ θ〉, σ1, Θ1, ∅, 〈to ε1 θ 0 false false〉〉)

56

3.3. SEMANTICS

Safe objective migration of the agent π4 to the site π1 with a timeout of π2 and a respawn
of π3 is done by evaluating them respectively to ε4, ε1, ε2 and ε3. We create a new
signal which we return to our continuation, and yield to the scheduler to give the order of
migration to the target site of the corresponding store, with the timeout, the respawn value
and the signal to emit when the migration is done.

εJ(ulm:safe-migrate-to π1 π2 π3 π4)KρσΘζθκ =
(εJπ1K ρ σ Θ ζ θ λε1σ1Θ1.(εJπ2K ρ σ1 Θ1 ζ θ λε2σ2Θ2.(εJπ3K ρ σ2 Θ2 ζ θ

λε3σ3Θ3.(εJπ4K ρ σ3 Θ3 ζ θ λε4σ4Θ4.let ς = (new-signal) in
〈〈ready λε5σ5Θ5.(κ ς σ5 Θ5) ζ θ〉, σ4, Θ4, ∅,
〈to ε1 (name->store ε4) ε2|Number (boolify ε3) ς〉〉))))

The safe subjective migration is the same except for the current store being used.

εJ(ulm:safe-migrate-to π1 π2 π3)KρσΘζθκ =
(εJπ1K ρ σ Θ ζ θ λε1σ1Θ1.(εJπ2K ρ σ1 Θ1 ζ θ λε2σ2Θ2.(εJπ3K ρ σ2 Θ2 ζ θ

λε3σ3Θ3.let ς = (new-signal) in
〈〈ready λε4σ4Θ4.(κ ς σ4 Θ4) ζ θ〉, σ3, Θ3, ∅,
〈to ε1 θ ε2|Number (boolify ε3) ς〉〉)))

3.3.3 Scheduling

The scheduling function skips over threads marked as waiting for the next instant with a
pause status.

SJ(pause κ ζ θ)KσΘT M =
〈〈pause κ ζ θ〉, σ, Θ, T, M〉

Terminated threads with a status of terminated are also skipped.

SJ(terminated κ ζ θ)KσΘT M =
〈〈terminated〉, σ, Θ, T, M〉

Threads marked as ready have their context tested for suspension using the suspensive?
function, which returns true if the given context is suspensive for the given sets of signals
and stores. If the thread should be suspended, it is skipped by the scheduler. Otherwise
its continuation is invoked and we reschedule the thread with the values it returned: its
new state, the new sets of signals and stores, any new thread we append to T, or migration
order we append to M. Rescheduling the returned thread until it is terminated or waiting is
done because thread creation or migration orders are not suspensive, and the thread should
therefore keep on being scheduled.

SJ(ready κ ζ θ)KσΘT M =
(suspensive? ζ σ Θ) → 〈〈ready κ ζ θ〉, σ, Θ, T, M〉,

let ω = (κ unspecified σ Θ) in (SJω⇂1K ω⇂2 ω⇂3 ω⇂4§T ω⇂5§M)

57

CHAPTER 3. LANGUAGE

The suspensive? function determines whether a context ζ should be suspended in the
presence of signals σ and stores Θ. If the context is empty, it is not suspensive, otherwise
we look at the first clause ι: if it is a when clause with a non-emitted signal the context
is suspensive, it is is a ref clause with a store not present in Θ the context is suspensive,
otherwise we look if the rest of the context ζ1 is suspensive.

suspensive? = λζσΘ.ζ=∅ → false, let ι = ζ↓1, ζ1 = ζ†1 in

(when? ι) → (when-signal ι)/∈σ∨(suspensive? ζ1 σ Θ),

(ref? ι) → (ref-store ι)/∈Θ∨(suspensive? ζ1 σ Θ),

(suspensive? ζ1 σ Θ)

The scheduler’s entry point is schedule-instant , which takes a list of threads to schedule
and an initial set of signals (those emitted during the instants) and schedules the current
instant. It starts by building the set of stores present for this instant into Θ, then invokes
the intra-instant scheduler function s-micro-instant . This function returns in ψ a list of
signals σ1 to emit at the next instant, and a list of thread T1 to schedule at the next
instant. If there are no more threads to schedule the scheduler terminates by calling exit ,
otherwise it recurses to schedule the next instant.

schedule-instant = λTσ.let* Θ = (map thread-store T), ψ = (s-micro-instant T σ Θ ∅),

σ1 = ψ⇂1, T1 = ψ⇂2 in T1=∅ → (exit), (schedule-instant T1 σ1)

The intra instant scheduling function iterates over each thread in T to schedule it with S
until the instant is finished. The instant is finished when instant-finished? returns true.
If the instant is done, we return the result of end-of-instant , which executes the actions
to do at the end of instant. If the instant is not finished we schedule each thread in T
using s-threads, which returns a list consisting of the threads’ new statuses, the new signal
environment, present stores, set of threads to create and migrations to trigger. Using these
results we recurse and reschedule all threads (together with the newly created threads) until
we reach the end of instant.

s-micro-instant = λTσΘM.(instant-finished? T σ Θ) → (end-of-instant T σ M),

let Ω = (s-threads T σ Θ ∅ M ∅) in (s-micro-instant Ω⇂1§Ω⇂4 Ω⇂2 Ω⇂3 Ω⇂5)

The s-threads function simply schedules each thread in T and builds up the sets Tn of new
threads to create, and M of migrations to trigger. It returns a list with the results of the
threads T scheduling, the new sets of signals σ and stores Θ, the threads created during
this round of scheduling Tn and migrations M.

s-threads = λTσΘTnMTs.T=∅ → 〈(reverse Ts), σ, Θ, Tn, M〉,

let Ω = (SJT⇂1K σ Θ Tn M) in (s-threads T†1 Ω⇂2 Ω⇂3 Ω⇂4 Ω⇂5 (cons Ω⇂1 Ts))

We deem an instant to be finished when each thread marked as ready is suspensive. The
other thread statuses terminated and pause are indeed not scheduled anymore.

instant-finished? = λTσΘ.∀τ∈T, (thread-ready? τ) →

58

3.3. SEMANTICS

(suspensive? (thread-context τ) σ Θ), true

During the end of instant we have many things to do. First we filter out the terminated
threads and change the statuses of pause to ready by calling next-ready on the threads
T. We then map those threads by preempting those that need to be, which gives us the
list of threads T1, ready for the next instant. We then invoke emigrate with these threads
and the migration orders M. This function will send the threads marked for migration and
return a list ψ of two values: the set of signals emitted during migration to notify success or
failure, and the list of threads which either did not migrate or failed to migrate and had to
be respawned. We then pass those two values to immigrate which incorporates immigrant
threads and add to the set of signals those that notify their successful migrations.

end-of-instant = λTσΘM.let* T1 = (preempt (next-ready T) σ Θ),

ψ = (emigrate M ∅ T1) in (immigrate ψ⇂1 ψ⇂2)

The preempt function simply maps preempt-t on each thread in T.

preempt = λTσΘ.(map λτ .(preempt-t τ σ Θ) T)

In order to preempt a thread, we have to look at its context ζ, and more precisely, the
context ζwatch of its outermost satisfied preemption clause (a satisfied preemption clause
is one for which the preemption signal was emitted). If no such context exists, the thread
τ is returned unchanged since it does not need to be preempted. Otherwise we extract the
satisfied preemption clause in ι and the list of protection clauses ζprotect which need to be
called between the thread’s current context and ι. We then change the thread’s continuation
to unwind all these protectors until it calls the preemption clauses’ continuation.

preempt-t = λτσΘ.let* ζ = (thread-context τ), ζwatch = (last-preempt ζ σ Θ false) in

¬ζwatch → τ , let* ι = ζwatch↓1, ζprotect = (filter protect? ζ\ζwatch) in

〈ready λεσ1Θ1.(unwind-to ζprotect (watch-kont ι) σ1 Θ1)〉

Determining the context of the outermost satisfied preemption is simple. If the context ζ is
empty, we return r, which holds the last satisfied preemption or false. Otherwise we extract
the inmost clause ι and check whether it is a satisfied preemption clause. In order to match,
it needs to be a preemption clause, whose signal has been emitted, and whose context ζ1 is
not suspensive (suspended preemption clauses are not preempted). If it matches we recurse
to ζ1 and keep the clause. It it does not match we recurse but keep the last matching
clause.

last-preempt = λζσΘr.ζ=∅ → r, let ι = ζ↓1, ζ1 = ζ†1 in

(watch? ι)∧(watch-signal ι)∈σ∧¬(suspensive? ζ1 σ Θ) →

(last-preempt ζ1 σ Θ ζ), (last-preempt ζ1 σ Θ r)

The next-ready function takes a list of threads T, filters out the terminated threads and
changes the status of pasue into ready so that threads waiting for the next instant become
eligible again for scheduling.

59

CHAPTER 3. LANGUAGE

next-ready = λT.(filter-map λτ .(thread-terminated? τ) → false,

¬(thread-pause? τ) → τ ,

〈ready (thread-kont τ) (thread-context τ) (thread-store τ)〉 T)

The emigration function emigrate takes a list of migration orders M, a set of signals to emit
at the next instant σ and the list of threads currently present T. If there are no migration
orders in M we return the set of signals σ and the list of threads T. Otherwise we extract
the first migration order into µ, make a list of threads in Tgroup which share the store we
are migrating θ, and attempt to send the group using the send function, which returns true
if the migration was successful, false otherwise. If the migration was successful, we recurse
with the rest of the migration orders, adding the migration signal marked as successful to
σ, and removing Tgroup from the list of threads T. If the migration was not successful we
recurse with the rest of the migration orders, adding the migration signal marked as failed
to σ, and removing Tgroup from the list of threads T only if we did not want to respawn
the failed migrators, otherwise we leave them in T so they can respawn.

emigrate = λMσT.M=∅ → 〈σ, T〉, let* µ = M⇂1, dest = µ⇂2, θ = µ⇂3,

timeout = µ⇂4, respawn = µ⇂5, sig = µ⇂6, Tgroup = (group θ T) in

(send dest Tgroup timeout sig) → (emigrate M†1 σ§(success sig) T\Tgroup),

(emigrate M†1 σ§(failure sig) respawn → T, T\Tgroup)

The immigration function immigrate takes a set of signals σ to emit at the next instant
and a list of threads T to schedule at the next instant. If there are no incoming agents
available it returns σ and T. Otherwise we receive incoming agents and their corresponding
migration signals into ψ. We then recurse by appending their migration signals marked as
successful into σ and the new threads to T. The actual implementation might block waiting
for new agents if T is empty, since there would be no thread to schedule and instead of
exiting the program it might be desirable to wait for new agents.

immigrate = λσT.(no-incoming?) → 〈σ, T〉, let ψ = (receive) in

(immigrate σ§(success ψ⇂1) T§ψ⇂2)

3.4 Implications of Migration

We now know everything about the language’s primitives and scheduling, but we still have
the gray area which is migration. The fact that a thread can leave one site for another
involves a process of serialisation on the departure site and integration on the target site
which is not straightforward to integrate in Scheme.

In this section we will be talking about how migrating threads part from their site, and
how they are integrated on the new site.

3.4.1 The parting of ways

When agents migrate from one site we expect them to arrive on the new site and keep
working. This is obvious, yet the question of how this is done involves the question: what

60

3.4. IMPLICATIONS OF MIGRATION

does an agent need to leave with in order to keep running when it arrives?
The semantics described in the previous section offers some hints about that: the evaluation
of an expression needs an environment, a context, a store, a set of signals and a set of present
stores. Obviously the sets of signals and present stores are global and belong to a site, so
they should not be migrated with the agents. In our semantics these globals are never
captured, and always obtained from the scheduler, so there is no need to worry about
them: the agents will get the local sets of signals and present stores from the target site’s
scheduler.
The context and the store are obviously something that belong to the agent which is
migrating in whole, and should thus be packed along with the agent.
The environment on the other hand is not obvious: it is inherited by new threads, yet
just like closures it is shared with the thread creator. Although the semantics does not
discriminate between the global variables (introduced in Scheme with toplevel define) and
local variables (the lambda arguments) we should make a distinction as this point in the
discussion.

Local variables

Local variables are those introduced by lambda arguments and let bindings. They are
those variables which are captured by functions and threads. Contrary to ML they are not
read-only and can be modified. Moreover modification of a local variable should be visible
to all those which captured its environment.
Since Boudol’s ULM paper describes its integration in an ML language with no global
variables, no module system and read-only local variables, it is assumed that local variables
are copied to the target site, and references describe the only read/write variables.
This is not the case in Scheme however, since local variables are not read-only. Making
every local variable a reference is not a practical solution for Scheme since it would mean
that after a migration, an agent’s captured local variables would all become blocking, even
for read-only access. We found this solution counter-intuitive, so we did not adopt it.
Some compile-time analysis could have marked the local variables which are in practice read-
only, and those which are modified. With this analysis we could have made all modifiable
variables into references a bit like in ML, but unlike in ML, creation and access to those
references would not be explicit, and differentiating visually which variable in the code is
read-only or a reference (which really means: which can block and which cannot) would be
hard. For all those reasons we chose not to do it this way.
The only problem with local variables and migration is the unification phase: what happens
when two agents capture the same variable and modify it after being parted by migration?
Then if these two agents rejoin the same site, what should happen with both instances of
the captured variable?
Since we want reference access to be explicit, and they already answer the unification
problem (with their blocking semantics), we chose to not make local variables potentially
blocking, and not worry about them being unifiable. Our answer then is to copy (and thus
duplicate) the captured environments when migrating, and never unify them even if they
get the chance.
This means that if a thread A and an agent B share a captured local variable ν, after B
migrates it will live with a copy ν1 which will still be modifiable by B, but even if both
threads come back to the same site, ν and ν1 will never be unified, and neither thread
will see the modifications made by the other. In practice this means that after migration

61

CHAPTER 3. LANGUAGE

a thread will be able to take as much as needed about the environment to be able to keep
running on the new site, which is what is intuitive.

Global variables

Global variables are different from local variables in two ways relevant to us: their values
are not captured, but can be obtained from the Scheme system by name (like a dictionary),
and they can be grouped by modules. Since Boudol’s ULM paper describes neither global
variables nor modules, we had to figure out what to do with them with regards to migration.

The fact that they can be obtained by name and are not captured means that after migration
it is possible to do dynamic rebinding : that is to say that if an agent was using a global
variable νA on site A, after it migrates to the site B it might want to use the global variable
νB in its stead.

The fact is that while it is possible to do dynamic rebinding of global variables, it may not
be what is wanted in all cases, for example when the global variable has no counterpart on
the destination site. To that end we decided to make it explicit which global variables are
supposed to be ubiquitous: have a counterpart present on all sites, and thus use dynamical
rebinding. Since global variables belong to modules in our implementation, and we can
expect generally modules to be a whole with global variables depending on one another, we
chose to make the distinction of ubiquity on the module level: a module is either ubiquitous
or not.

We thus redefine the module declaration as such:

<module-definition> ==> (module <module-name>

<module-spec> ...)

| (ubiq-module <module-name>

<module-spec> ...)

Modules declared with the module header are not ubiquitous, and any agent which uses
such a module’s global variable will migrate with a copy of that variable, exactly in the
same way as local variables are cloned on migration: there will be no unification later on.
On the other hand, global variables belonging to modules declared with the ubiq-module

header will be dynamically rebound to the module’s counterpart on the destination site.
All of ULM’s runtime library is defined in ubiquitous modules.

Ubiquitous values

Just like variables, some values behave differently during migration. Numbers, booleans
symbols for example, since they are unmodifiable values, can be seen as ubiquitous values:
upon arrival they are not deserialised as new values but are replaced by their local coun-
terparts. Pairs, vectors and strings on the other hand are not and they are cloned when
captured as part of the migration process.

ULM-specific values also have special migration semantics. Signals are ubiquitous values
because they are used as synchronisation mechanisms that must keep on working after
migration so that an agent can communicate with the site it visits. References are more
peculiar: since they are local only when the reference’s store is local, they can change status
when stores leave or join the site. They are also ubiquitous: two references to the same part
of a store are unified during immigration. Note that it is an interesting kind of ubiquity

62

3.4. IMPLICATIONS OF MIGRATION

since all references to the same part of a store represent the same reference on all sites,
even though it is local only to one site at a time (that which has its store).

3.4.2 Things that need more work

Like every language, ULM is not perfect (yet), and we have noticed some limitations we
would like to address in a future version of ULM.

Custom serialisers

Right now ULM knows how to serialise all the data types you can create in ULM, but for
some user-created data types (such as mixins or native/extern data) it would be preferable
to register custom serialisers and deserialisers which could be responsible to that data type’s
serialisation. This is a very popular feature of Java even though the language itself does
not support migration directly.

The practical aspects of such serialisation are complex, and not to be addressed lightly.
Because migration is done at the end of instant, and we are migrating the agent and
its threads, these threads cannot be the ones doing the serialisation. Similarly on the
arrival site the arriving threads cannot be used for deserialisation. So the serialisation
and deserialisation of special user structures (presumably mixins since that is the only
user-definable data structure) must be done in a special serialiser auxiliary thread.

The system could then invoke a registered serialiser/deserialiser function in this
thread. The serialiser function would take data structure and return a string or a vector
of bytes for the serialised data. The deserialiser would take a string or a vector of bytes
and return the deserialised object. An alternative would be to associate mixins to these
functions by marking mixins in need of special serialisation using inheritance as in Java:
mixins which inherit from a special serialisable mixin would be treated specially by the
system, which would then invoke the mixin’s serialise and deserialise methods. These
methods would serialise the current mixin in the case of serialisation, and for deserialisation
the mixin would be allocated by the system, and the deserialising method would fill up its
fields.

Should the serialisation or deserialisation fail from the serialiser thread, it would cause the
agent’s migration to fail and it would be handled as described earlier for network failures.
Since any ULM code can cooperate or wait on signals, doing so in the serialiser thread
would delay the migration, so it may make sense to create a serialiser thread per agent
migration, so that one agent’s serialising code could not delay other agents’ migration.

Of course, the system would have to provide functions which serialise and deserialise ULM
primitive data types, such as closures and environments, which may require a significant
modification of our serialisation process described in the next chapter.

We have not yet taken enough time to study this feature, but we have the feeling it is
feasible and it would be a nice addition if we can integrate it cleanly.

Custom ubiquitous values

Right now the system already knows which values are ubiquitous, but in some cases this is
not enough. One could create a constant value which should be ubiquitous. For example,
the base mixin hierarchy: we already described that each mixin type is itself a mixin value

63

CHAPTER 3. LANGUAGE

describing the mixin type. This makes for a lot of values which are common to all sites
which share the ubiquitous module of the base mixin types.
One solution we’re thinking of is to register such values to the system, where they would
be attributed a universal unique identifier (UUID) which would be used for unification.
Whether the user has to mark these ubiquitous values itself in the program, or whether
the compiler or runtime can automatically assign them in such a way that all sites would
assign them similarly, is unknown at this point. How one would annotate such values in
the code is also unknown.

Ubiquity failures

When we have successfully registered all ubiquitous modules and values, what should be-
come of an agent arriving on a site where the ubiquity is not preserved? If a ubiquitous
value or module is not present on the target site, because the programmer has failed to
make his ubiquitous modules available on each site, or if these ubiquitous modules are
out-of-date and don’t have the same interface. In such cases, what should happen?
A possibility is to declare the migration a failure, and notify the origin site of that failure (if
it is a safe migration, possibly respawning the agent back there). Another possibility would
be to make the agent wait for the arrival of the missing value or module. Since the agent
might be undeserialisable in such a case it might be possible to designate handlers for such
cases, which could be migrated (by safer means?) or be pre-installed on the site. Fixing the
problem of a missing module would however require a way for agents to migrate modules,
or to load them from means different from the site’s, like Java’s ClassLoader objects.
This is again an area which poses many questions and deserves some answers.

64

Chapter 4

Implementation: Scheme

Les détails font la perfection, et la perfection n’est pas un détail.

– Leonardo da Vinci

It is a mistake to think you can solve any major problems just with potatoes.

– Douglas Adams

In this chapter we leave the clear open skies of design and specifications for the misty
caves of implementation. As beautiful as the big picture can be, the inner workings of an
implementation can be equally beautiful in their own way, and definitely as interesting for
some.

In order to ease the process of delving into the implementation we have decided to separate
the presentation in two parts: the first relates to Scheme generally and is presented in this
chapter, while the second concentrates specifically on ULM and is presented in the next
chapter.

In this chapter we will start by describing the virtual machines that allow ULM programs
to run, followed by the bytecode used by these virtual machines and finally talk about the
bytecode is formatted after compilation.

4.1 Two Virtual Machines

ULM programs are compiled by a compiler written in Bigloo Scheme, into a bytecode format
we will describe in 4.2. This bytecode is then interpreted by a ULM virtual machine. In
this section we will explain why we are using not one but several virtual machines, and
what their differences are.

4.1.1 Why a virtual machine?

A language such as ULM, which supports thread creation, requires a specific implementation
that offers such threads. There are several ways to do that1. We have however a very strong
requirement: our threads have to be able to migrate from one computer to another, possibly
with very different architectures.

1Isn’t there always?

65

CHAPTER 4. IMPLEMENTATION: SCHEME

Should we compile ULM natively?

Compiling ULM to native code would make it hard on different levels. Firstly, the compiled
code itself would be difficult to migrate, since native code is known to be very unportable
since it is written specifically for an architecture’s processor instructions and operating
system interfaces. Secondly, native implementations of thread often use data structures
(usually the stack) which are not reified, and hard to examine and copy between computers.
There are ways around these problems of course, like recompiling the agent’s source code
at every site we migrate to, or annotating the runtime structures such that they would be
reifiable and copyable between machines, but this represents a huge effort to write such
systems for every possible architecture (even for only the most used architectures).

Compiling code to existing virtual machine bytecode such as Java or .NET would be easier,
since the bytecode is portable. On the other hand there is no stack reification on such
platforms, and even though there are ways to work around this [PCM+05] [AAB+05], the
fact that we want to be able to handle large numbers of ULM threads and agents means
that we have to give up on using those platforms’ threads, and therefore stacks. There is
little value in compiling ULM to Java or .NET bytecodes if we are not going to use the
virtual machine’s support for threads and stacks as we would have to implement all the
stack and memory handling ourselves.

Should we use the interpreter’s continuation?

In order to both be portable and concentrate on higher-level problems than architecture-
specific discrepancies, we have decided not to compile ULM to native code, but write a ULM
interpreter in a portable language. Even then, the requirement of being able to create and
migrate threads proved to be determinant.

Traditional academic Scheme interpreters are usually written in Scheme themselves, and
their simplest form consists in having an eval function, which evaluates an expression by
using recursion. For the sake of clarity, we will call the Scheme used to write the interpreter
the Host Scheme. What this means is that when we are evaluating the function f, which
invokes the function g, we are evaluating the body of g while evaluating the body of f by
recursion. If this recursion is not terminal2 the Scheme Host has to store information about
what is left to do in f after g returns.

Now depending on the Scheme Host this may be located in stack frames, or in continuation
functions. But while the idea would sound delightful (others would say weird), the Scheme
Host itself cannot be interpreted by another Scheme Host indefinitely. There has to be a
layer at the bottom of the interpreters, which is native code. Let us reduce the number of
layers to zero, and assume the Scheme Host is implemented in native code (of course it can
be written in Scheme and compiled into native code). If we have to look at the Scheme
Host’s stack it will be the native stack and we fall into the same problem we described
earlier. If the Scheme Host is using continuations, they are most likely also compiled into
native code and are thus equally hard to inspect. We do not want to rely on the Scheme
Host’s implementation to store data we need for migration, so we can rule out recursive
interpreters.

An other typical scheme interpreter in scheme will be written in Continuation Passing Style
(CPS), where the stack is not used for recursion, but the continuation of the interpreter is

2A terminal recursion is a recursion in which it is not necessary to return to the caller function after
returning from the callee.

66

4.1. TWO VIRTUAL MACHINES

built explicitly by constructing closures representing the continuations. This is, however,
still not a good solution for us since migrating a thread would mean migrating these Scheme
Host closures, which we already deemed to be implemented natively, and thus not portably.

What we need in order to support threads and migration in a ULM interpreter is for this
interpreter to handle the ULM continuation (to be able to save and restore it portably)
without resorting to the Scheme Host’s continuation.

Should we abstract our own continuations?

After having ruled out relying on the Scheme Host (or actually any Host language) to hold
continuations or stacks for ULM, we are left with the option to implement our own stack-
handling, and code-evaluating interpreter. There are several ways to do this, but in order
to abstract the underlying host language or architecture, to interpret a language with full
control on its evaluation and continuation, it is common to use a virtual machine (VM).

Virtual Machines consist in a loop iterating over bytecode to execute instructions which do
not require the Host’s stack. The bytecode is compiled from the original source code (ULM)
and is generally very portable. Since the virtual machine provides its own stack, registers,
we have a solution for migration: the interpreter knows how to create, inspect and install
all the data structures needed for migration without relying on the Host language.

The only thing left to do is find a Host language which is portable, in the sense that the
Virtual Machine will be able to run on as many architectures as possible.

4.1.2 The first virtual machine

While we could have adapted one of many Scheme VM for ULM, we felt it would make more
sense to start from (almost) scratch with support for threads and mobility at the very core
of our interpreter, then add features on top of this sound core. Indeed, such a fundamental
change as adding threads and mobility to a Scheme VM with a large feature-set may be
tedious and break the VM’s coherence in ways hard to foresee.

We started out with a simple academic compiler and virtual machine from Queinnec’s
L.I.S.P. [Que96], which supports standard Scheme primitives in a clear and straightforward
way. We chose as Scheme Host the Bigloo language so that our virtual machine and
compiler could be either compiled natively for best performance, or to Java or .NET for
good portability and fair performance.

Our work on the compiler has been to integrate ULM primitives, modules, integrate our
bytecode file format, support macros, add debugging information, (some) type-checking
and nicer error reporting. Some of these features are described in details in this chapter
and the following one.

Our work on the virtual machine has been a mirror of the work on the compiler (all the
compiler’s new features have to be supported by the VM), as well as supporting threads,
serialisation and migration, and adding many Scheme primitives to the runtime. This, and
several other features of what we call the Bigloo VM will be described in this chapter and
the following one.

4.1.3 Why two (3?) virtual machines?

At one point in the project we began wondering where ULM agents could go in places
other mobile agents have not gone before. FairThreads-type of cooperative threads have

67

CHAPTER 4. IMPLEMENTATION: SCHEME

always been touted as embeddable, because of the lightweight implementation and memory
footprint they require. ULM being based on such a model, we always had in mind that
ULM agents were light too, and could be useful on small embedded devices.

Targeting an embedded platform

In order to put our theory to the test, we set out to find an embedded platform we could
target. To this day, the most widespread portable embedded platform is probably Java 2
Micro Edition (J2ME), if simply for the fact that nearly all mobile phones on the planet
support it. The facts that in our offices we had several such phones with good support
for the platform, that an almost full-fledged Java runs on it, and that it is very open and
documented made it the platform of choice for our experiment.

We speculate that another very popular embedded platform (although less portable some-
how) is Linux on ARM, but we did not choose it for lack of the presence of such a platform
in our office (even though everyone has at least one at home in one way or another), made
it a more difficult target. At the end of our thesis, many newer ultra-portable computers
(PDA) are based on ARM and Linux, and newer phones are also expected to go in this
direction, so in the near future we can expect this platform to outgrow the number of J2ME
platforms. We are confident though that our Bigloo VM will be easy to port to such devices
with minimum changes (or none).

The J2ME platform

Since our first VM was written in Bigloo, and can be compiled to the Java backend, our
first attempt was to use the same VM for the J2ME platform. But while J2ME supports
the complete Java language, it does not support the complete runtime API. Far from it:
from the base API only the three packages java.io (with no filesystem support), java.-
lang (without ClassLoader) and java.util (prior to collections) are present. For those
not expert in the Java API, this means no network I/O, no reflection, no dynamic class
loading, and no collections.

Adding a J2ME backend to Bigloo

Historically the Java API has grown over the years, by adding features at every major
revision, and many projects which use Java and accept any version of the Java API use
various tricks to be able to work on older versions while benefiting from the newer versions’
improvements. Bigloo has such a capability: at runtime it is able to use codepaths which
vary depending on the Java API available. This is only possible in Java because classes are
loaded Just-In-Time, and method and variable references are also checked Just-In-Time.
This means that for an older version of Java, as long as we don’t execute the codepath
using the newer classes, methods or variables, there will be no problem.

Initially we set out to providing codepaths for J2ME, thereby avoiding the parts of the
Java API not available on that platform. This is more difficult than adding codepaths for
new features since we’re removing features that have been there since the first version of
Bigloo’s Java backend. But this turned out to be a non-possibility, since J2ME requires
the JARs to be verified in advance, which means that every codepath in the JAR will be
checked, and obviously the codepaths which use non-J2ME features would not be verifiable.

68

4.1. TWO VIRTUAL MACHINES

Pruning Bigloo’s runtime for J2ME

There is a simple solution to that problem: prune the offending codepaths from the JAR
at compile-time, thus making a special Bigloo runtime which could not work on anything
else than J2ME. At this point we noticed another problem: the device we were testing on
supports only JARs of up to 128 kilo-byte size. But Bigloo’s runtime JAR is 1 mega-byte,
and that does not account for the size of our ULM Virtual Machine JAR.

In order to make this fit, we also needed to trim the Bigloo runtime so that it would both
fit and leave enough space for our VM. Fortunately, there are entire parts of the Bigloo
runtime which make no sense on J2ME: files for instance have no equivalent in J2ME,
since there is no filesystem accessible from J2ME. Then there are many subsystems of the
Bigloo runtime which are not needed by our ULM VM: the evaluator, the parsers, many
I/O libraries, and within many subsystems we are not using every function.

It turns out that removing subsystems is not easy, as many are inter-dependant. We spent
several weeks attempting to prune the runtime of subsystems we did not need, but the size
gain was not enough. Then we turned to removing individual functions we did not need.
To that end we started looking at various JAR optimisers which offer the ability to traverse
all codepaths and prune unused methods and functions from a JAR. But ironically, work
undergone in Bigloo to reduce the runtime size in Java prevented us from using such a tool.

In Bigloo’s Java backend, modules are represented by Java classes, and global variables by
class fields. A straightforward implementation would represent Closures with a closure

Java class, with an invoke method which in turn invokes the proper Java method in which
the closure’s code would have been compiled. In short, every different closure in Bigloo
would be represented by a subclass of closure with a specific invoke method. But this
type of implementation was not used by Bigloo because it needs to generate the same
number of class files as there are closures in the Bigloo runtime, and having too many small
class files is bad for size. One of the reasons for this is that class files each have a constant
pool [LY99] and having less and larger class files removes many duplicate constants from
the pool, thus diminishing the total size of the JAR [BHV98] [Pug99] [RMH99].

In order to save space and reduce the number of class files produces by its Java backend,
Bigloo stores several closures in a single Java method by using a switch, and represents
closures with instances of a single closure class with an index pointing at the switch
entry representing its code [SS02]. This is very efficient in reducing the number of classes
produced, and thus the size of the runtime JAR, but it has the disadvantage that since every
closure has its code located in a single method (more precisely one method per closure arity)
all the programs we tested to remove unused code failed to remove the unused code in these
switches, even if they managed to remove the only closure instances that were pointing at
the switch entry.

At this point we felt that it would be difficult to attain the 128k limit on the code size with
the Bigloo runtime, especially when we had to add our VM to the equation, since both
were not written with such a small footprint in mind.

4.1.4 The Java VM

Since it was too hard to get our first virtual machine to work with the J2ME constraints,
we set out to write a new virtual machine directly targeted at J2ME. The process of writing
this new virtual machine, which has to execute the ULM bytecode with exactly the same
semantics as what we shall from now on call the Bigloo VM, involved porting some parts

69

CHAPTER 4. IMPLEMENTATION: SCHEME

of the VM, while rewriting some other parts and sometimes even completely rethink some
components.

Since it is hard to quantify the RAM use of our future VM on the J2ME device, we first
set out to not break the 128k limit on code size. To this end we attempted to reduce the
number of classes required for our VM to the bare minimum. In some cases this can be
easy: when using classes as modules for different units of logic, architecture can be pushed
back and we can merge several units of logic to a single class, even if we have to prefix some
methods with the unit name to help make a distinction.

Merging classes

For non hierarchical structures of data (such as classes with no parent class and no subclass),
we can also group them in the same class with a field used to differentiate between the types
of data they represent. For example, a type A with an integer field, and a type B with
a string field can be represented by a class C with an integer, string and boolean fields,
the boolean field being used to specify whether the instance of C is used as a type A or
B. This has the inconvenient of using extra RAM for the unused fields (since there is no
union specifier in Java like there is in C), and requires an extra check at runtime (accessing
the boolean field) to know the exact type of the object, but it does reduce the number of
classes. We used this trick in several places for internal data types, and for representing
symbols and keywords.

Flattening hierachies

This trick can also be used for some hierarchical structures of data by flattening the types.
For example, we have a type for threads (which have a parent), a type for agents (which
have no parent, but have children) and both types share many common fields such as
the stack. Architecturally, we should have an abstract super class VThread with common
fields such as the stack, with two subclasses Thread (with a parent field) and Agent (with
a children field). If we flatten everything, we get a VThread class with the common fields,
a parent and children fields, and a new boolean field telling us whether the VThread is a
Thread or an Agent. We can even save this boolean field by noting that Agent threads
have their parent set to null while non-agent Threads must have a non-null parent.

Representing primitives

Of course, in order to represent the virtual machine primitives, which are similar to how
Bigloo compiles closures in that an instance of each primitive has to map to some code, we
used the same trick as Bigloo. Each primitive is an instance of the Primitive class with
an index pointing to a switch where all the primitives’ code is written in the same method
(actually as in Bigloo a method by primitive arity). We will look at this in more detail as
the same framework is used for native modules which we describe in chapter 6.

VM Size success

At the end of our implementation, we have a VM JAR of 96k of Java code (once zipped) for
a total of 26 classes. This includes some extra classes required in order to be able to extend
the VM to run on a regular Java platform (J2SE). This leaves us 32k for ULM libraries.

70

4.1. TWO VIRTUAL MACHINES

Since the runtime takes 11k (in the JAR) in our experience it leaves enough space for agent
applications.

Different runtime strategies

The J2ME phone we used for development (a Nokia 6230) is listed as having 1m of heap size.
Because J2ME does not include any API to query the available or used memory, because
J2ME devices can be expected to have different Java implementations, and because they
are hard to instrument from a computer in order to determine empirically the memory
footprint of our ULM VM, it is hard to speculate about our memory footprint. One thing
is sure though: we should strive to have a low memory usage because 1m is not much
(especially compared with modern personal computers).

We know that we have some overhead due to the various tricks we used to limit the number
of classes in the VM. In order to compensate this overhead as well as prevent overall memory
usage, we changed some algorithms when writing the J2ME VM. For instance the scheduler
is not exactly the same as the Bigloo VM scheduler, which uses many caching techniques
and distributes the End Of Instant scheduling within the instant whenever possible. The
scheduler implementation in the J2ME VM is simpler, and closer to the semantics. The
module in charge of sending and receiving agents is also very different in order to reduce
the number of threads running at the same time.

Road bumps with J2ME

After all the effort undertaken to make the J2ME VM, we had many disappointments
with the J2ME emulators and the poor state of J2ME implementations on our mobile
device. First of all J2ME devices have two ways to communicate on the network: TCP/IP
and bluetooth. TCP/IP is done through the GPRS link to the phone service provider (and
every connection has to be paid for). Bluetooth on the other hand is akin to a serial wireless
interface, and can be used to communicate for free to an other phone or a computer with
bluetooth support. Of course we used bluetooth as our preferred agent migration link, since
we did not intend on paying for every migration.

Under linux though, the J2ME emulator provided by Sun provides only a virtual bluetooth
link, which does not work with the real bluetooth interface, so it was impossible to test
migration of agents using bluetooth on the emulator. Furthermore, testing on the phone
itself is hard because there is no remote debugger, and not even a console output to view
error messages. When something wrong happens, we see a stack trace (if we are lucky) on
the phone, with no line information. This is very frustrating and very time-consuming.

Our only means to know what is going on on the phone is to open a constant bluetooth
serial link between the phone and the computer in which we print debugging messages
while the VM is being executed. While that provided us with the minimum debugging
tool which is an output console, it bothers the bluetooth stack of the phone and the part
which negotiates the bluetooth channel (similar to the port number in TCP) stops working
when using such a debugging link. We know that the phone’s manufacturer is aware of the
issue, but there is no fix available, and we had to resort to various unportable tricks (in
the sense that other J2ME devices would not work anymore) to get bluetooth migration
working while debugging.

To further make the J2ME development interesting, we found that the phone in question
froze and rebooted every so often, even when executing exactly the same ULM programs

71

CHAPTER 4. IMPLEMENTATION: SCHEME

with no migration involves, in different invocations of the J2ME JVM.

The third VM, the J2SE VM

In order to ease the development process (sometimes to make it possible at all), we developed
a subclass of the J2ME ULM VM targeted at J2SE (the standard Java). This required the
use of subclasses for some components such as migration, because TCP/IP network and
bluetooth serial accesses in J2SE is radically different than in J2ME. J2SE also provided us
the means to add several Scheme primitives such as filesystem operations, and the ability
for our VM to load ULM modules directly from the filesystem, instead of having to pack
them in the same JAR as the VM on J2ME.

With this J2SE VM we were able to test and debug our VM on the local computer, which
made development much easier. Further along the project we realised that this J2SE VM
was useful for other types of embedded devices: those with linux or Windows Mobile Edition
which support a full J2SE while having a limited disk space (although much less constrained
with 32m and up). Although our Bigloo implementation would work on such platforms,
the J2SE VM still takes a lot less disk space.

4.2 Bytecode compilation and interpretation

Now that we have explained why we need not one but several virtual machines, we will
describe how we compile ULM to bytecodes and how they are interpreted. ULM’s byte-
codes as well as its compilation and interpretation are based on Queinnec’s bytecode in
L.I.S.P. [Que96]. Rather than describe formally or informally what is a boring list of virtual
machine structures and bytecode specifications, we have chosen to present, like Queinnec,
the 109 bytecodes and the virtual machine step by step, by showing how we compile each
Scheme3 primitive one after the other. Hopefully introducing each concept one at a time
will make the presentation less dense.

4.2.1 Some required introduction

In order to start introducing elements of compilation and execution for the ULM bytecode,
there are a few terms and structures we have to outline first. We have chosen to list here
several structures used in the VM, without explaining them in details yet, so that when
later we talk about changing, say, the current escaper , the reader will be able to look up
that the current escaper is a member of the thread structure.

Modules

As we have previously described, ULM code is organised in modules. Each module con-
tains a header that gives information about the module (name, imports, exports, ...) and
a toplevel of Scheme expressions to be evaluated when the module is loaded. From a
compilation and interpretation point of view, ULM modules are composed of:

� a name,

� an ubiquity attribute,

3And in the following chapter ULM primitives.

72

4.2. BYTECODE COMPILATION AND INTERPRETATION

� a list of imported modules,

� a list of exported symbols,

� a list of global variables (%GLOBALS),

� a list of constants (%CONSTANTS),

� a list of bytecodes,

� a list of function descriptors.

Once again, every one of these members will be described in details later in this section.

On the nature of the VM

The virtual machine’s work consists in iterating over bytecode while executing specific code
for each bytecode instruction. There are 109 bytecode instructions of fixed width. Some
of them are followed by up to two bytes of arguments. Each module has a sequence of
bytecode representing its toplevel forms and every function it contains. While iterating
over a module’s bytecode, the virtual machine increments a counter named the program
counter which points to the index of the next instruction to execute. For example, if the
VM reads a bytecode instruction which uses one byte argument, it will increase the program
counter by two before executing the instruction.

The virtual machine uses a stack to save values which will be later used by bytecode
instructions, or to save state at a given point of execution. Values are pushed on top of
this stack, or popped (the last pushed value is read and removed) from the stack in a last
in first out manner. The stack can contain any value of any size, all of which take one slot
in the stack. It is indexed starting at zero going up, and the first slot available in the stack
(at the top of the stack) is stored in the stack index . The stack is also used to push stack
frames when invoking some function. The index of the top of the last stack frame is stored
in the stack pointer . Stack frames and the stack pointer are described later in 4.2.6.

Aside from the stack, some instructions operate on specific structures and their members
(the current escaper of a thread for example), or on a few general-purpose registers.

Threads

Since every code in ULM is executed by a thread, it follows that the virtual machine has a
current thread variable, which holds all the information specific to a thread. That is, the
information which needs to be saved by the thread when it is not scheduled, such as these
members:

� A stack (%STACK),

� a stack pointer (%SP),

� a stack index (%SI),

� a program counter (%PC),

� a current module (%MOD),

73

CHAPTER 4. IMPLEMENTATION: SCHEME

� a current function (%FUN),

� a current environment (%ENV),

� a current escaper (%ESC),

� a current escaper’s return value (%ESCRET),

� a current protector (%PROT),

� a current context (%CTX).

Virtual Machine

The virtual machine contains the following members:

� A list of loaded modules

� Two general-purpose registers (%VAL and %ARG)

� A current thread

� The scheduler

On our notations

When presenting a bytecode instruction, we use the following format:

(FOO x y): N

Does some things.

Here we described that the instruction number N is named FOO, takes two byte arguments
x and y and whose execution by the VM consists in doing some things.

In the remainder of this section we will present elements of compilation to and execution
of these bytecodes. It is not our goal to describe the whole compiler of virtual machine
formally, but for some elements of compilation we found it useful to use a notation similar
to the denotational semantics notation we used earlier like such:

CJ(foo π1 π2)Kρt =

(FOO 2 3)§(CJπ1K ρ false)§(CJπ2K ρ false)

Which denotes that the foo form in ULM takes two arguments π1 and π2 and compiles it to
a sequence of bytecode containing the FOO instruction with 2 and 3 as its arguments, followed
by the compilation of π1 and that of π2. The compiler function named C takes a local
environment ρ containing a list of lists of lambda-variables, and a boolean t representing
the fact that an instruction is placed in tail-rec position or not. There are, of course, other
arguments used by the real ULM compiler, such as the current module, but we have chosen
to ignore them here for this informal description of the compiler.

74

4.2. BYTECODE COMPILATION AND INTERPRETATION

4.2.2 Constants

There are several predefined constants in Scheme: the boolean constants #t and #f, the
empty list ’(), numbers, characters and symbols. These are the immutable values in
Scheme. There are several mutable values which can appear in the source code, and are
then treated as constants which cannot be muted. These include strings, vectors and pairs
as introduced by the (quote ...) form.

All constant references affect the VAL register with the constant. There are a number of
bytecodes allocated for predefined constants:

(CONSTANT TRUE): 10

%VAL ← #t.

(CONSTANT FALSE): 11

%VAL ← #f.

(CONSTANT NIL): 12

%VAL ← ’().

(CONSTANT -1): 80

%VAL ← -1

(CONSTANT 0): 81

%VAL ← 0.

(CONSTANT 1): 82

%VAL ← 1.

(CONSTANT 2): 83

%VAL ← 2.

(CONSTANT 4): 84

%VAL ← 4.

Other numbers between 0 and 255 are compiled to:

(SHORT-NUMBER x): 79

%VAL ← x.

Other numbers outside of -1 to 255, as well as any other constant are added to the module’s
list of constants, assigned a number and compiled to:

(CONSTANT x): 9

%VAL ← %CONSTANTS[x].

75

CHAPTER 4. IMPLEMENTATION: SCHEME

4.2.3 Variable reference

In order to access a variable, we need to know which kind of variable it is. In ULM we
have local, global, imported and predefined variables, by order of lookup. Local variables
represent the lexical environment, which we refer to from now on simply as the environment,
stored in the current thread. The environment is represented by an ordered list of variables,
and a pointer to the parent environment. The toplevel’s environment is empty and has no
parent.
If the variable we are accessing is a local variable belonging to the current environment, it
is compiled to:

(SHALLOW-ARGUMENT-REF0): 1

(SHALLOW-ARGUMENT-REF1): 2

(SHALLOW-ARGUMENT-REF2): 3

(SHALLOW-ARGUMENT-REF3): 4

(SHALLOW-ARGUMENT-REF j): 5

%VAL ← value of %ENV’s first to jth variable.

If the variable we are accessing is a local variable belonging to a parent environment, it is
compiled to:

(DEEP-ARGUMENT-REF i j): 6

%VAL ← value of the jth variable of %ENV’s ith parent environment.

Global variables refer to non-imported variables defined at the toplevel environment with
(define ...). They are indexed by number within the current module. A reference to a
global variable from the current module is compiled to:

(GLOBAL-REF i): 7

%VAL ← %GLOBALS[i]

Global variables imported from other modules are referred to as imported variables. They
are referenced using the variable’s name and module name rather than by index, in order to
support separated compilation, since the imported module can be recompiled and the global
indexes altered. The variable’s name and its module’s names are compiled in a constant
of type ImportedField, added to the current module’s constant pool and it is compiled as
such:

(IMPORTED-REF i j): 6

%VAL ← value of the variable represented by the ImportedField stored as the
%CONSTANTS[i + (256 * k)]. If the imported variable’s module is not loaded
yet, it is loaded and initialised by the VM.

Predefined variables (the VM primitives) are referenced either by a few shortcut bytecodes,
or by name:

(PREDEFINED-CONS): 13

%VAL ← the cons primitive.

76

4.2. BYTECODE COMPILATION AND INTERPRETATION

(PREDEFINED-CAR): 14

%VAL ← the car primitive.

(PREDEFINED-CDR): 15

%VAL ← the cdr primitive.

(PREDEFINED-PAIR?): 16

%VAL ← the pair? primitive.

(PREDEFINED-SYMBOL?): 17

%VAL ← the symbol? primitive.

(PREDEFINED-EQ?): 18

%VAL ← the eq? primitive.

(NPREDEFINED x): 41

%VAL ← the primitive named by %CONSTANTS[x].

4.2.4 Variable affectation

Variable affectation is much simpler than reference, since only local and global variables
are mutable. By design, imported variables and primitives are immutable.

If the variable we are affecting is a local variable belonging to the current environment, it
is compiled to:

(SET-SHALLOW-ARGUMENT!0): 21

(SET-SHALLOW-ARGUMENT!1): 22

(SET-SHALLOW-ARGUMENT!2): 23

(SET-SHALLOW-ARGUMENT!3): 24

(SET-SHALLOW-ARGUMENT! j): 25

Sets the %ENV’s first to jth variable to %VAL.

If the variable we are affecting is a local variable belonging to a parent environment, it is
compiled to:

(SET-DEEP-ARGUMENT! i j): 26

Sets the jth variable of %ENV’s ith parent environment to %VAL.

If we are affecting a global variable (of the current module), it is compiled to:

(SET-GLOBAL! i): 27

%GLOBALS[i] ← %VAL.

77

CHAPTER 4. IMPLEMENTATION: SCHEME

4.2.5 Conditional

In order to compile a conditional, we compile the condition π1 to σ1 and the else branch
π3 into σ3. We then compile the then branch π2 into σ2, and append a JUMP instruction
so that at the end of this branch we skip the else branch unconditionally. The result of the
compilation is then the test σ1 followed by a JUMP-FALSE conditional jump which skips the
then branch if VAL is false, followed by the then branch σ2 and the else branch σ3.

Notice that all three expressions are compiled with the same environment. As for the tail-
recursive information, the test π1 is not tail-recursive, while both then and else branches
are tailrec if the conditional is.

CJ(if π1 π2 π3)Kρt =
let σ1 = (CJπ1K ρ false), σ3 = (CJπ3K ρ t), σ2 = (CJπ2K ρ t)§(goto #σ3) in

σ1§(jump-false #σ2)§σ2§σ3

goto = λn.n<256 → (SHORT-GOTO n), (LONG-GOTO n%256 n/256)

jump-false = λn.n<256 → (SHORT-JUMP-FALSE n), (LONG-JUMP-FALSE n%256 n/256)

The short jump is for jumps of less than 256 bytecodes:

(SHORT-GOTO i): 30

%PC ← %PC + i.

The long jump is for jumps of more than 255 bytecodes:

(LONG-GOTO i j): 28

%PC ← %PC + i + (256 * j).

The short conditional jump is for conditional jumps of less than 256 bytecodes:

(SHORT-JUMP-FALSE i): 31

%PC ← %PC + i iff %VAL = #f.

The long jump is for jumps of more than 255 bytecodes:

(LONG-JUMP-FALSE i j): 29

%PC ← %PC + i + (256 * j) iff %VAL = #f.

4.2.6 Invocation

In order to invoke a function, we need a structure to hold the argument values that the
caller is going to give the function. We call this structure the activation frame. It is in fact
an array which holds the argument values, and has a free slot which will contain a link to
the next activation frame. This link is not set at the invocation site, but within the closure
as we will see in 4.2.7. This linked list of activation frames is the lexical environment of
local variables.

78

4.2. BYTECODE COMPILATION AND INTERPRETATION

Compiling an application is straightforward: we compile the function πλ and push the result
to the stack with PUSH-VALUE for later use. We do the same for each argument value, then
when each argument has been pushed to the stack, we create an activation frame of the
correct size into VAL, and pop each argument value from the stack to their corresponding
place in the activation frame. This is done by the compiler function compile-args. Once
all argument values have been popped from the stack, we pop the function in the current
thread’s current function with POP-FUNCTION.

At this point the application compilation differs depending on the tail-recursive status t: if
this is a terminal call, we only need to jump to the function with FUNCTION-GOTO. Otherwise
the execution will have to come back to the current function after the function call, which
means that we have to save enough data so that the current thread can return to this
function after the call we are compiling. In order to come back, we need to save the current
environment, the PC, the current module and the current function4. This information
(except the environment for implementation reasons) is stored in the stack in stack frames.
A stack frame in ULM consists in the PC, function, module and pointer to the previous
stack frame, called the stack pointer . At every non tail-rec invocation we push a stack
frame and update the current thread’s stack pointer to point to the newest frame.

For non tail-rec invocations, we store the environment in the stack with PRESERVE-ENV,
then invoke the function with FUNCTION-INVOKE (which pushes a new stack frame), and
when we return from this function we restore the environment by popping it from the stack
with RESTORE-ENV. The compilation is thus as follows:

CJ(πλ π1 ... πn)Kρt =

let* σλ = (CJπλK ρ false), σargs = (compile-args (π1 ... πn) 0 ρ),

σapp = σλ§(PUSH-VALUE)§σargs§(POP-FUNCTION) in

t → σapp§(FUNCTION-GOTO),

σapp§(PRESERVE-ENV)§(FUNCTION-INVOKE)§(RESTORE-ENV)

compile-args = λLnρ.L=∅ → (allocate-frame n),

(CJL↓1K ρ false)§(PUSH-VALUE)§(compile-args L†1 n+1 ρ)§(pop-frame! n)

allocate-frame = λn.(= n 0) → (ALLOCATE-FRAME0), (= n 1) → (ALLOCATE-FRAME1),

(= n 2) → (ALLOCATE-FRAME2), (= n 3) → (ALLOCATE-FRAME3),

(ALLOCATE-FRAME n)

pop-frame! = λn.(= n 0) → (POP-FRAME!0), (= n 1) → (POP-FRAME!1),

(= n 2) → (POP-FRAME!2), (= n 3) → (POP-FRAME!3), (POP-FRAME! n)

Here are the relevant bytecodes:

(PUSH-VALUE): 34

4The trained reader will wonder why we need so save the module if it can be obtained by the current
function, since functions belong to a module. This is true, but fails for the toplevel, where there is a current
module but no current function.

79

CHAPTER 4. IMPLEMENTATION: SCHEME

%STACK[%SI] ← %VAL.
%SI ← %SI + 1.

(ALLOCATE-FRAME0): 50

(ALLOCATE-FRAME1): 51

(ALLOCATE-FRAME2): 52

(ALLOCATE-FRAME3): 53

(ALLOCATE-FRAME n): 55

%VAL ← a new activation frame for zero to n argument values.

(POP-FRAME!0): 60

(POP-FRAME!1): 61

(POP-FRAME!2): 62

(POP-FRAME!3): 63

(POP-FRAME! n): 64

Pops the last value from the stack into the first to nth argument value slot in the
activation frame located in %VAL.
%SI ← %SI - 1.

(POP-FUNCTION): 39

%SI ← %SI - 1.
%FUN ← %STACK[%SI].

(PRESERVE-ENV): 37

%STACK[%SI] ← %ENV.
%SI ← %SI + 1.

(RESTORE-ENV): 38

%SI ← %SI - 1.
%ENV ← %STACK[%SI].

The nature of what happens during invocation differs depending on what we are invoking.
Invoking a closure consists in installing its captured environment to the current thread’s
environment, and setting the PC and current module to the closure’s bytecode start and
its module. Invoking a primitive consists usually5 in executing the primitive’s code in the
VM, storing the returned value in VAL and calling the equivalent of the RETURN bytecode.
The last type of object it is possible to invoke is the escaper functions given by bind-exit,
they are described in 4.2.10.

All invocations are triggered by the same bytecodes:

5Some rare primitives behave differently, such as those which need to cooperate, described in 5.1.5.

80

4.2. BYTECODE COMPILATION AND INTERPRETATION

(FUNCTION-INVOKE): 45

For a closure invocation:
%STACK[%SI] ← %PC.
%STACK[%SI+1] ← %FUN.
%STACK[%SI+2] ← %MOD.
%STACK[%SI+3] ← %SP.
%SI ← %SI + 4.
%SP ← %SI.
%ENV ← %FUN.ENV.
%MOD ← %FUN.MOD.
%PC ← %FUN.PC.
For a primitive: %VAL ← result of applying %FUN.
For an escaper, see 4.2.10.

(FUNCTION-GOTO): 46

For a closure invocation:
%ENV ← %FUN.ENV.
%MOD ← %FUN.MOD.
%PC ← %FUN.PC.
For a primitive: %VAL ← result of applying %FUN.
For an escaper, see 4.2.10.

Here is an example of primitive invocation and imported function tail-rec invocation:

(module bla

(import r5rs))

(display 4)

(list 1 2 3)

Which would be compiled to the following:

81

CHAPTER 4. IMPLEMENTATION: SCHEME

Constant[0]: display

Constant[1]: ImportedField module: r5rs, variable: list

Bytecode[0]:(NPREDEFINED 0) [display]

Bytecode[2]:(PUSH-VALUE)

Bytecode[3]:(CONSTANT 4)

Bytecode[4]:(PUSH-VALUE)

Bytecode[5]:(ALLOCATE-FRAME1)

Bytecode[6]:(POP-FRAME!0)

Bytecode[7]:(POP-FUNCTION)

Bytecode[8]:(PRESERVE-ENV)

Bytecode[9]:(FUNCTION-INVOKE)

Bytecode[10]:(RESTORE-ENV)

Bytecode[11]:(IMPORTED-REF 1 0) [r5rs:list]

Bytecode[14]:(PUSH-VALUE)

Bytecode[15]:(CONSTANT 1)

Bytecode[16]:(PUSH-VALUE)

Bytecode[17]:(CONSTANT 2)

Bytecode[18]:(PUSH-VALUE)

Bytecode[19]:(SHORT-NUMBER 3)

Bytecode[21]:(PUSH-VALUE)

Bytecode[22]:(ALLOCATE-FRAME3) [stack contains: list 1 2 3]

Bytecode[23]:(POP-FRAME!2)

Bytecode[24]:(POP-FRAME!1)

Bytecode[25]:(POP-FRAME!0)

Bytecode[26]:(POP-FUNCTION)

Bytecode[27]:(FUNCTION-GOTO)

4.2.7 Abstraction

Lambdas are compiled and then assigned a number and stored in the module’s list of func-
tion descriptors. The code of the lambda itself is compiled as follows for fixed arguments:
we make a list of the argument names ν1 to νn into θ, which we prepend to the current
environment ρ into the environment ρ1. We then compile the lambda’s code π into σπ with
the environment ρ1.

We have seen that lambda applications build an unlinked activation frame with the argu-
ment values in VAL. The lambda’s code is then a check verifying the correct arity of that
activation frame with ARITY=?, an instruction which extends the captured environment
with the argument values, the body σπ followed by the RETURN instruction, which returns
to the caller.

Once that code is assigned a number and a slot in the current module’s function descriptor
list with the compiler function store-closure, the compilation of the lambda creation is the
CREATE-CLOSURE bytecode with the number of the function descriptor.

CJ(λ (ν1 ... νn) π)Kρt =

let* θ = (ν1 ... νn), ρ1 = θ§ρ, σπ = (CJπK ρ1 true),

σλ = (arity=? n)§(EXTEND-ENV)§σπ§(RETURN) in

(create-closure (store-closure σλ))

82

4.2. BYTECODE COMPILATION AND INTERPRETATION

arity=? = λn.(= n 0) → (ARITY=?0), (= n 1) → (ARITY=?1),

(= n 2) → (ARITY=?2), (= n 3) → (ARITY=?3), (ARITY=? n)

create-closure = λn.(CREATE-CLOSURE n%256 n/256)

As for variable arity closures, there are a few differences: the arity is checked with ARITY>=?,
which requires that at least all fixed arguments are given during invocation, then all addi-
tional arguments are packed into a list as the last argument’s value with PACK-FRAME!.

CJ(λ (ν1 ... νn . νr) π)Kρt =

let* θ = (ν1 ... νn νr), ρ1 = θ§ρ, σπ = (CJπK ρ1 true),

σλ = (ARITY>=? n)§(PACK-FRAME! r)§(EXTEND-ENV)§σπ§(RETURN) in

(create-closure (store-closure σλ))

(ARITY=?0): 71

(ARITY=?1): 72

(ARITY=?2): 73

(ARITY=?3): 74

(ARITY=? x): 75

Throws an exception unless the activation frame in %VAL has zero to x arguments.

(ARITY>=? x): 76

Throws an exception unless the activation frame in %VAL has x or more arguments.

(PACK-FRAME! x): 44

Replaces the xth slot of the activation frame in %VAL with a list containing all the
values from the slots x and up. This has the effect of taking all optional arguments
given to the invocation and packing them into a list as the lambda’s last argument.

(EXTEND-ENV): 76

Takes the activation frame stored in %VAL, assigns its next link to %ENV, then
stores the new activation frame in %ENV.

(RETURN): 43

%SP ← %STACK[%SI-1].
%FUN ← %STACK[%SI-2].
%MOD ← %STACK[%SI-3].
%PC ← %STACK[%SI-4].
%SI ← %SI - 4.

83

CHAPTER 4. IMPLEMENTATION: SCHEME

(CREATE-CLOSURE i j): 40

%VAL ← a new closure instance with the function descriptor in %CONSTANTS[i +

(j * 256)], capturing %ENV.

Here is an example of lambda abstraction:

(module bla)

(define (foo x)

x

(lambda y x))

Which would be compiled to the following (which is explained below):

FunctionDescriptor[0]: start: 6, length: 7

FunctionDescriptor[1]: start: 13, length: 9

Bytecode[0]:(CREATE-CLOSURE 0 0)

Bytecode[3]:(GLOBAL-SET! 0) [foo]

Bytecode[5]:(RETURN)

Bytecode[6]:(ARITY=?1)

Bytecode[7]:(EXTEND-ENV)

Bytecode[8]:(SHALLOW-ARGUMENT-REF0) [x]

Bytecode[9]:(CREATE-CLOSURE 1 0)

Bytecode[12]:(RETURN)

Bytecode[13]:(ARITY>=? 0)

Bytecode[15]:(PACK-FRAME! 0)

Bytecode[17]:(EXTEND-ENV)

Bytecode[18]:(DEEP-ARGUMENT-REF 1 0) [x]

Bytecode[21]:(RETURN)

This example illustrates not only lambda variable references, but also the fact that there is
an extra RETURN bytecode added at the end of each module’s toplevel. We did not present it
earlier in our examples because we did not define this bytecode until now, but every future
example will contain it. It is placed at the end of the toplevel bytecode in order for the
VM to both mark the end and stop executing the bytecode (otherwise the VM would start
running the first function’s bytecode), but also to return to the instruction which triggered
the module’s loading and toplevel execution.

In fact, there is also a FINISH bytecode prepended to each module’s bytecode. When the
main module is executed by the VM, we push an initial stack frame which returns to the
FINISH instruction. When the VM reaches this instruction it means the main module’s
toplevel is done, and the implicit thread should be terminated, and the next one should be
scheduled.

4.2.8 let, let* and letrec

The successive local variable declaration form let* is expanded prior to compilation to its
equivalent let form as such:

84

4.2. BYTECODE COMPILATION AND INTERPRETATION

1: (let* ((name1 value1)

2: ...

3: (nameN valueN))

4: expr)

1: (let ((name1 value1))

2: ...

3: (let ((nameN valueN))

4: expr))

The recursive local variable declaration form letrec is also expanded prior to compilation
to its equivalent let form as such:

1: (letrec ((name1 value1)

2: ...

3: (nameN valueN))

4: expr)

1: (let ((gensym1 #unspecified)

2: ...

3: (gensymN #unspecified))

4: (set! gensym1 value1)

5: ...

6: (set! gensymN valueN)

7: (let ((name1 gensym1)

8: ...

9: (nameN gensymN))

10: expr))

Named let forms are also expanded prior to compilation to its equivalent unnamed let

form:

1: (let loop ((name1 value1)

2: ...

3: (nameN valueN))

4: expr)

1: (let ((loop #unspecified))

2: (set! loop

3: (lambda (name1 ... nameN)

4: expr))

5: (loop value1 ... valueN))

The unnamed let form is then compiled similarly to a combination of application and
abstraction, but without the expense of building a closure: we evaluate all the variable
values into a new environment as we would do for the arguments given to a function,
then we extend the current environment to evalue the body. If the let is not tail-rec we
un-extend the environment after the body with UNLINK-ENV:

CJ(let ((ν1 π1) ... (νn πn)) π)Kρt =

let* σargs = (compile-args (π1 ... πn) 0 ρ), ρ1 = (ν1 ... νn)§ρ,

σbody = (CJπK ρ t) in

t → σargs§(EXTEND-ENV)§σbody,

σargs§(EXTEND-ENV)§σbody§(UNLINK-ENV)

(UNLINK-ENV): 33

%ENV ← %ENV.next.

Here is an example of local variable declaration:

(module bla)

(let ((foo 2))

foo)

Which would be compiled to the following:

85

CHAPTER 4. IMPLEMENTATION: SCHEME

Bytecode[0]:(CONSTANT 2)

Bytecode[1]:(PUSH-VALUE)

Bytecode[2]:(ALLOCATE-FRAME1)

Bytecode[3]:(POP-FRAME!0)

Bytecode[4]:(POP-FUNCTION)

Bytecode[5]:(EXTEND-ENV)

Bytecode[6]:(SHALLOW-ARGUMENT-REF0)

Bytecode[7]:(RETURN)

4.2.9 Protection

The protection introduced by (unwind-protect π1 π2) is the first primitive introducing
the dynamic environment in ULM.

The protection block specify that when π1 is evaluated, π2 is to be evaluated before leaving
the protection block, either after normal termination of π1 or its preemption. In the case of
normal termination, unwind-protect returns the value returned by π1 after π2 is evaluated.
In the case of preemption, unwind-protect does not return any value since the preemption’s
unwinding of the stack is resumed after π2 is evaluated.

In order to be able to return to the evaluation of π2 in the case of preemption, we need
to store some information in the protector structure. This includes the equivalent of a
stack frame: the stack pointer, the PC of the protection code, its module and function,
the current environment as well as the stack index (since the stack can be unwound by
preemption). We also store the next protector, and the eventual value returned by π1.

Protection blocks are represented at runtime by a linked list of protector structures stored
in the current thread’s current protector. Each time we enter a protection block we create a
new current protector in which we store the previous protector. When we leave a protection
block we remove the current protector and replace it with its previous protector. Thus at
any time the dynamic list of protectors is accessible through the current protector.

The compilation is then straightforward: we compile π1 and π2 into σ1 and σ2, then
the compiled form consists in pushing a new protector for the code located after σ1 with
PUSH-PROTECTOR, executing σ1, invalidate the current protector, store the returned value
and restore the previous protector with INVALIDATE-PROTECTOR, then execute σ2 before
either returning the stored value or resume preemption with POP-PROTECTOR:

CJ(unwind-protect π1 π2)Kρt =

let* σ1 = (CJπ1K ρ false), σ2 = (CJπ2K ρ false) in

(PUSH-PROTECTOR #σ1)§σ1§(INVALIDATE-PROTECTOR)§σ2§(POP-PROTECTOR)

(PUSH-PROTECTOR x): 253

%PROT ← a new protector.
%PROT.next ← the previous %PROT.
%PROT.SI ← %SI.
%PROT.SP ← %SP.
%PROT.PC ← %PC + x (representing the start of σ2).
%PROT.ENV ← %ENV.

86

4.2. BYTECODE COMPILATION AND INTERPRETATION

%PROT.MOD ← %MOD.
%PROT.FUN ← %FUN.
%STACK[%SI] ← %PROT.
%SI ← %SI + 1.

(INVALIDATE-PROTECTOR): 254

%PROT.VAL ← %VAL.
%PROT ← %PROT.next.

(POP-PROTECTOR): 252

%SI ← %SI - 1.
If we are in the course of stack unwinding, resume it.
Otherwise %VAL ← %STACK[SI].VAL.

4.2.10 Strong preemption

Strong preemption with (bind-exit (ν) π) makes it possible to preempt the execution of π
within its dynamic extent by calling the function ν. As was the case with unwind-protect

we need to be able to return from bind-exit through preemption, and so we have to
store enough state to do so. This is done with PUSH-ESCAPER by pushing the environment,
an escaper structure and a stack frame (with PC pointing after π) on the stack. The
environment of π is then augmented with that escaper structure as ν.
This escaper structure contains a stack index equal to the stack pointer we just updated.
The compilation of π is followed by RETURN, in order to pop the stack frame we created, and
POP-ESCAPER which pops the escaper from the stack and restores the environment. The
compilation is then as follows:

CJ(bind-exit (ν) π)Kρt =
let σ = (CJπK (ν)§ρ true) in (PUSH-ESCAPER #σ)§σ§(RETURN)§(POP-ESCAPER)

The invocation of the escaper involves storing the escaper as the current escaper (%ESC),
and its argument value as the escaper’s return value (%ESCRET), then unwinding. Un-
winding consists in invoking all the protectors whose stack index is greater than the es-
caper’s, then restoring the escaper’s stack index and calling the equivalent of RETURN to
return to the POP-ESCAPER of the bind-exit.

(PUSH-ESCAPER x): 251

%STACK[%SI] ← %ENV.
%STACK[%SI + 1] ← a new escaper.
%STACK[%SI + 2] ← %PC + x.
%STACK[%SI + 3] ← %FUN.
%STACK[%SI + 4] ← %MOD.
%STACK[%SI + 5] ← %SP.
%STACK[%SI + 1].SI ← %SI + 6.
%ENV ← a new activation frame with one slot.
%ENV.next ← the previous %ENV.
%ENV[0] ← %STACK[%SI + 1].
%SI ← %SI + 6.
%SP ← %SI.

87

CHAPTER 4. IMPLEMENTATION: SCHEME

(POP-ESCAPER): 250

%ENV ← %STACK[%SI - 2].
%SI ← %SI - 2.

4.2.11 Miscellaneous bytecodes

There are several Scheme primitives which are often called. For these we have assigned a
few bytecodes to speed up the calls. There is one primitive taking zero arguments:

(CALL0-newline): 88

%VAL ← (linebreak).

Then there are several primitive calls taking one argument which the compiler stores in the
%VAL register:

(CALL1-car): 90

%VAL ← (car %VAL).

(CALL1-cdr): 91

%VAL ← (cdr %VAL).

(CALL1-pair?): 92

%VAL ← (pair? %VAL).

(CALL1-symbol?): 93

%VAL ← (symbol? %VAL).

(CALL1-display): 94

%VAL ← (display %VAL).

(CALL1-print): 95

%VAL ← (print %VAL).

(CALL1-null?): 96

%VAL ← (null? %VAL).

(CALL1-eof-object?): 98

%VAL ← (eof-object? %VAL).

Then there are several primitive calls taking two arguments. For these the compiler stores
their first argument in %ARG and their second in %VAL:

(POP-ARG): 35

%SI ← %SI - 1.
%ARG ← %STACK[%SI].

(CALL2-cons): 100

%VAL ← (cons %ARG %VAL).

(CALL2-eq?): 101

%VAL ← (eq? %ARG %VAL).

88

4.2. BYTECODE COMPILATION AND INTERPRETATION

(CALL2-set-car!): 102

%VAL ← (set-car! %ARG %VAL).

(CALL2-set-cdr!): 103

%VAL ← (set-cdr! %ARG %VAL).

(CALL2-+): 104

%VAL ← (+ %ARG %VAL).

(CALL2--): 105

%VAL ← (- %ARG %VAL).

(CALL2-=): 106

%VAL ← (= %ARG %VAL).

(CALL2-<): 107

%VAL ← (< %ARG %VAL).

(CALL2->): 108

%VAL ← (> %ARG %VAL).

(CALL2-*): 109

%VAL ← (* %ARG %VAL).

(CALL2-<=): 110

%VAL ← (<= %ARG %VAL).

(CALL2->=): 111

%VAL ← (>= %ARG %VAL).

(CALL2-remainder): 112

%VAL ← (remainder %ARG %VAL).

When asked to do so, the compiler will include debugging information in the bytecode. This
is represented by the DEBUG bytecode which is output by the compiler at various places to
indicate that the following bytecodes originate from a given character index in the source
code.

(DEBUG x y): 255

Tells the VM that the following bytecode originates from the character number 256

* y + x in the module’s source file.

(FINISH): 20

Terminate the implicit thread and return to the scheduler.

89

CHAPTER 4. IMPLEMENTATION: SCHEME

4.3 The OULM file format

ULM’s bytecode is compiled into a file format called OULM . This format is based on Java’s
Class file format [LY99]. It was chosen instead of the SEXP-based format we used at first
(taken from Queinnec’s L.I.S.P. book [Que96]) at the time we implemented the J2ME VM
in order to save space by choosing both a more compact format, and one that could be read
in a Java VM without implementing a Scheme reader.

The following table describes the size in kilobytes of the whole ULM runtime as source
ULM files, as well as compiled to the old (SEXP-based) OULM format and the new OULM
format. The three sizes are shown in uncompressed and compressed form because our
runtime has to be compressed into a JAR file (using ZIP compression) for distribution on
J2ME devices. It is therefore relevant to compare both the uncompressed sizes for the
Bigloo VM distribution as well as the compressed sizes required for the J2ME VM.

Version Uncompressed zip

Source ULM 61.1 27.4
Old OULM 53.6 10.9
New OULM 24.9 11.5

This table shows that the uncompressed ULM installation size is greatly reduced with the
new bytecode format compared to both the old format and the source code. In zipped
form the new format is still better than the source code, but it is slightly larger than the
old format. This is not totally relevant because since the time we migrated to the new
format we added a few features and fixed a few bugs which required a slight growth in the
bytecode format size. On the other hand it could be argued that the SEXP format can be
compressed by ZIP slightly more efficiently than our OULM format.

While in retrospect the Java Class file format is not optimal for storage when size matters
(like on J2ME) [BHV98] [Pug99] [RMH99], it is a very simple format, well-known and
described in great detail, and by choosing it as base we can benefit from many research
done to improve it. In the end we did not have to compress the format further, by sharing
the constant pools, using Huffman-encoded bytecodes [LF05] or even grouping bytecodes
commonly grouped together, because we were left with enough room for our J2ME phone.

We will now describe the OULM bytecode format.

4.3.1 Overall Structure

Each ULM module is compiled to a single OULM file composed of several sections: Header,
Constants, ModuleInformation, Globals, FunctionDescriptors and Attributes. All
sizes are expressed in bytes, with a suffix of ’s’ for signed, ’u’ for unsigned, ’f’ for IEEE-
754 encoded floating numbers and ’p’ for a pointer to an entry in the constant pool. For
example, ’4u’ represents a 4-byte unsigned number, and ’8f’ an 8-byte floating number. All
data is stored in big-endian format.

The table in Figure 4.1 represents the various sections and fields of the OULM format, with
their size and their expected value:

90

4.3. THE OULM FILE FORMAT

Section Field Size Value

Header MagicNumber 4u 0xfeedabee
MajorVersion 2u 1
MinorVersion 2u 5

Constants ConstantsCount 2u The number of Constant fields
Constants ? The Constant list

ModuleInfo ModuleName 2p Index of the ModuleName constant
Modifiers 1u Modifiers for the module

GlobalVariables GlobalsCount 2u Number of Global fields
Globals ? The Global list

FunctionDescriptors FunDescCount 2u Number of FunDesc fields
FunDescs ? The FunDesc list

Attributes AttributesCount 2u Number of Attribute fields
Attributes ? The Attribute list

Table 4.1: OULM sections

4.3.2 Header

The Header section of the OULM format is composed of the MagicNumber field with the
0xfeedabee value, which is used to ensure the file is in the OULM format. After that
we have two fields: MajorVersion and MinorVersion denoting the version of the OULM
format for the rest of the file. The current version, which is the one we are describing here,
is 1.5.

4.3.3 Constants

The Constants section is composed of the ConstantsCount field and an ordered list of
Constant fields. The ConstantsCount field indicates the total number of Constant fields.
Each Constant field starts with a 1u ConstantType field which denotes the type of constant
being read. Each Constant field has a different format after the ConstantType, and is of
variable length. The constants are referred to by number in the bytecode. The list of
different Constant fields by type is shown in Figure 4.2.

Although Scheme does not usually constrain number representation sizes, we are bound to
the Java and Bigloo languages of our virtual machines and their representation of numbers.
J2ME does not provide the BigInteger, for unrestricted integer representation, and both
Bigloo and Java require their integers and floats to be in 32 or 64 bits. As a consequence,
our VM represents integers and floats in 32bits unless otherwise specified.

Character, String, Symbol and Keyword constants are represented in Unicode [Wes03], as

specified by R6RS. Except for the Character constant type which is represented by a 4u
unicode index, the string-like constants are stored using a 2u Length field for the string’s
number of characters, and the string encoded in the UTF-8 character set, in which each
Unicode character is stored in a variable-width format of one to four bytes.

The Vector constant data is stored using a 2u Length indicating the length of the vector,
followed by as many 2p Data fields pointing to entries in the constant pool for each vector
index. Pair constants are represented with two 2p fields Car and Cdr pointing to entries

91

CHAPTER 4. IMPLEMENTATION: SCHEME

Type ConstantType Data size Data

Integer 0 4s 32bit signed integer
Float 1 4f 32bit IEEE-745 floating number
Char 2 4u 32bit unsigned unicode character
Long 3 8s 64bit signed integer
Double 4 4f 64bit IEEE-745 floating number
String 5 2u + ? 2u (Length) + UTF-8 encoded string
Symbol 6 2u + ? 2u (Length) + UTF-8 encoded string
Keyword 15 2u + ? 2u (Length) + UTF-8 encoded string
Pair 7 2p + 2p 2p (Car) + 2p (Cdr)
Nil 8 0 No data needed for ’()

True 11 0 No data needed for #t

False 12 0 No data needed for #f

Unspecified 13 0 No data needed for #unspecified

Vector 14 2u + n*2p 2u (Length) + n*2p (Data)
ImportedField 9 2p + 2p 2p (ModuleName) + 2p (GlobalName)
ExternField 10 2p + 2p 2p (ModuleName) + 2p (GlobalName)

Table 4.2: OULM constants

in the constant pool.
ImportedField and ExternField represent extra-module global variable references and
native module references as introduced by the IMPORTED-REF bytecode. They contain two
2p fields ModuleName and VariableName pointing to the constants holding the module and
variable names, of the Symbol type.
The other True, False, Nil constants represent the #t, #f, and empty list values respec-
tively, while the Unspecified constant type represents the #unspecified value which is
used by some to return an unspecified value.

4.3.4 Module Information

The ModuleInformation section contains the ModuleName and Modifiers fields. The 2p
ModuleName field is an index to a Symbol entry in the constant pool containing the name
of the ULM module. The Modifiers field is a 1u bitset which can contain any binary
disjunction of the following values:

MOD DEBUG: 1

Set if the present module contains debug information.

MOD UBIQUITOUS: 2

Set if the present module is ubiquitous.

4.3.5 Global Variables

The GlobalsCount field denotes the number of global variables in the current module.
It is followed by an ordered list of Global fields. There are two types of Global fields:
GlobalVariable and GlobalMethod representing respectively a variable of unknown type

92

4.3. THE OULM FILE FORMAT

and a variable containing a function of known prototype. Each Global field starts with a 1u
GlobalType field denoting its type. Here is the list of the different Global fields by type:

Name GlobalType Data size Data

GlobalVariable 0 1u + 2p 1u (Mods) + 2p (Name)
GlobalMethod 1 1u + 2p + 1u 1u (Mods) + 2p (Name) + 1u (Arity)

Each type of Global field contains a 1u Mods (modifiers) field and a 2p Name field referencing
a Symbol constant containing its name. The Mods field contains a binary disjunction holding
information about the variable. The following value is used as a modifier for both types of
Global fields:

MOD EXPORTED: 1

Set if the global variable is exported.

The following modifiers are only relevant for the GlobalMethod type:

MOD DOTTED: 2

Set if the global function is of variable arity.

MOD MACRO: 4

Set if the global function is a macro.

The GlobalMethod field has an additional 1u Arity field representing its arity (in case of
variable arity, it represents the minimum number of arguments accepted).

4.3.6 Function Descriptors

Each lambda present in the ULM module is assigned a function descriptor during compila-
tion, used with the CREATE-CLOSURE bytecode. The FunctionDescriptors section is com-
posed of a 2u FunDescsCount field containing the number of function descriptors, followed
by an ordered list of FunDesc fields. Each FuncDesc field has the following components:

Name Size Contents

CodeOffset 4u The index of the function’s first bytecode
CodeLength 2u The number of bytecodes for the function

4.3.7 Attributes

The Attributes section is composed of a 2u AttributesCount field containing the number
of Attribute fields present in the module, followed by the list of Attribute fields. Each
Attribute field is composed of a 2p AttributeName field containing an index to a String
entry in the constant table, followed by a 4u AttributeLength field containing the length
of the remaining AttributeData field.

93

CHAPTER 4. IMPLEMENTATION: SCHEME

AttributeName AttributeLength AttributeData

Code ? The bytecodes
Main 2p 2p (Name)
SourceFile 2p 2p (File)
Extern ? 2p (Name) + 2u (MappingCount) + n (Mapping)
Debug ? 2u (DebugNamesCount) + n (DebugNames)

Table 4.3: OULM attributes

There are five predefined AttributeName values: Code, Main, SourceFile, Extern and
Debug. Future versions of the OULM format as well as users of the OULM format may
introduce new attributes as long as their AttributeLength field is correct. They will be
skipped by VM loaders which do not understand the new attributes. Their descriptions are
shown in Figure 4.3.
The Code Attribute contains the bytecode of the module in its AttributeData. The Main

Attribute contains a reference to the module’s main function name as a Symbol in the
constant pool. The SourceFile Attribute contains a reference to the module’s source file
as a String entry in the constant pool.
There is an Extern Attribute per extern module declared in the module header. This is
used to describe native modules. Each Extern Attribute contains a 2p Name field pointing
to a Symbol representing its name in the constant pool, a 2u MappingCount field denoting
the number of Mapping fields to follow, and a list of Mapping fields. Each Mapping field
represents a mapping between a ULM VM type and a native object representing the native
module we are describing. For example, the "org.foo.Bar" Java class may provide the
bar native module for the Java ULM VM backend, while it may be provided by the foobar
Bigloo module for the Bigloo ULM VM backend. Each Mapping field is thus composed of
a 2p Backend field pointing to the name of the backend as a Symbol entry in the Constant
Pool, and a 2p MapsTo field reference to the constant pool:

Name Size Contents

Backend 2p The backend
MapsTo 2p The mapping for this backend

The Debug Attribute is optional and contains the names of each local variable in the
source code. It is composed of a 2u DebugNamesCount field denoting the number of to-
tal DebugNames fields, and a list of DebugNames fields. The DebugNames field starts with a
1u DbgType field representing the type of local binding we are describing. Here is the list
of such types:

Name DbgType Data size Data

Closure 0 2u + 2u + ? 2u (FunDesc) + 2u (NamesCount) + 2p*n (Names)
Let 1 4u + 2u + ? 4u (Bytecode) + 2u (NamesCount) + 2p*n (Names)

94

4.3. THE OULM FILE FORMAT

(ubiq-module foo

(import r5rs)

(export (fu)

(bear . r))

(extern (bar

((bigloo . bar) (java . "org.foo.Bar"))

(gee a b)))

)

(define bla #f)

(define (fu)

(gee ’(2 . ()) #(3)))

(define (bear . r)

(let ((v 2))

(list? (cons v ’()))))

Figure 4.1: Example ULM program

The difference between both types of DebugType lies in how they associate a list of lo-
cal variable names to the local binding they represent. Closure are represented by a 2u
FunDesc field, while Let entries point to a 4u Bytecode offset. Both entries then have a 2u
NamesCount field denoting the number of local variables present in the binding, followed by
an ordered list of 2p Name fields referencing the names of the variables as Symbols in the
constant pool. Let and Closure bindings with no variables are not present in the Debug

Attribute.

4.3.8 Example

In order to illustrate the OULM file format, we will dissect an example ULM module
containing all the code needed to present every aspect of the format. The example is shown
in Figure 4.1.
This module is named foo, imports the r5rs module, exports the fu and bear variables
with their prototypes and uses a native module bar provided in Bigloo by the bar module
and in Java by the org.foo.Bar class, from which we import the gee function. Then we
define three global variables bla, fu and bear.
Using our compiler, we compile this module to the foo.oulm file, then we present the
compiled form section by section. There is nothing surprising in the Header section:

Header

MagicNumber: 0xfeedabee

MinorVersion: 1

MajorVersion: 5

The Constants section contains several constants present in the code:

95

CHAPTER 4. IMPLEMENTATION: SCHEME

1. An ExternField representing the gee variable of the bar native module.

2. A Cons representing the ’(2 . ’()) constant.

3. A Vector representing the #(3) constant.

4. An ImportedField representing the list? variable of the r5rs module.

5. Several other constants introduced by compilation, which are used in later sections.

Constants

ConstantsCount: 25

Constant[0]: ExternField: 4/5

Constant[1]: Cons: (6 . 7)

Constant[2]: Vector: #(8)

Constant[3]: ImportedField: 9/10

Constant[4]: Symbol: "bar"

Constant[5]: Symbol: "gee"

Constant[6]: Integer: 2

Constant[7]: Nil

Constant[8]: Integer: 3

Constant[9]: Symbol: "r5rs"

Constant[10]: Symbol: "list?"

Constant[11]: String: "Code"

Constant[12]: String: "SourceFile"

Constant[13]: String: "Extern"

Constant[14]: Symbol: "bigloo"

Constant[15]: Symbol: "java"

Constant[16]: String: "org.foo.Bar"

Constant[17]: String: "/home/stephane/src/ulm/foo.ulm"

Constant[18]: String: "Debug"

Constant[19]: Symbol: "r"

Constant[20]: Symbol: "v"

Constant[21]: Symbol: "foo"

Constant[22]: Symbol: "bla"

Constant[23]: Symbol: "fu"

Constant[24]: Symbol: "bear"

The ModuleInfo section contains the name of the module and information about debug
and ubiquity:

ModuleInfo

ModuleName: 21 (foo)

Modifiers: 11 (MOD DEBUG | MOD UBIQUITOUS)

The Globals section contains the three global variables we defined:

96

4.3. THE OULM FILE FORMAT

Globals

GlobalsCount: 3

Global[0]: GlobalVariable

Modifiers: 0

Name: bla

Global[1]: GlobalMethod

Modifiers: 1 (MOD EXPORTED)

Name: 23 (fu)

Arity: 0

Global[2]: GlobalMethod

Modifiers: 11 (MOD EXPORTED | MOD DOTTED)

Name: 4 (bear)

Arity: 0

Our source code’s two lambdas are described in the FunctionDescriptors section:

FunctionDescriptors

FunDescsCount: 2

FunDesc[0]: [CodeOffset: 24, CodeLength: 24]

FunDesc[1]: [CodeOffset: 48, CodeLength: 34]

We have four Attribute fields. The first one is the Code Attribute containing the module’s
bytecode:

Attributes

AttributesCount: 4

Attribute[0]: [AttributeName: Code, AttributeLength: 82]

This first section contains the toplevel:

0:(FINISH)

1:(PREDEFINED-FALSE)

2:(DEBUG 137 0) [char: 137]

5:(SET-GLOBAL! 0) [bla]

7:(CREATE-CLOSURE 0 0) [index: 0]

10:(DEBUG 154 0) [char: 154]

13:(SET-GLOBAL! 1) [fu]

15:(CREATE-CLOSURE 1 0) [index: 1]

18:(DEBUG 186 0) [char: 186]

21:(SET-GLOBAL! 2) [bear]

23:(RETURN)

The following corresponds to the function fu:

97

CHAPTER 4. IMPLEMENTATION: SCHEME

24:(ARITY=?1)

25:(EXTEND-ENV)

26:(DEBUG 168 0) [char: 168]

29:(IMPORTED-REF 0 0) [bar::gee]

32:(PUSH-VALUE)

33:(CONSTANT 1) [(2 . ())]

35:(PUSH-VALUE)

36:(CONSTANT 2) [#(3)]

38:(PUSH-VALUE)

39:(ALLOCATE-FRAME3)

40:(POP-FRAME!1)

41:(POP-FRAME!0)

42:(DEBUG 168 0) [char: 168]

45:(POP-FUNCTION)

46:(FUNCTION-GOTO)

47:(RETURN)

The following corresponds to the function bear:

48:(ARITY>=? 1)

50:(PACK-FRAME! 0)

52:(EXTEND-ENV)

53:(CONSTANT2)

54:(PUSH-VALUE)

55:(ALLOCATE-FRAME2)

56:(POP-FRAME!0)

57:(EXTEND-ENV) [let]

58:(DEBUG 220 0) [char: 220]

61:(IMPORTED-REF 3 0) [r5rs::list?]

64:(PUSH-VALUE)

65:(SHALLOW-ARGUMENT-REF0) [v]

66:(PUSH-VALUE)

67:(PREDEFINED-NIL)

68:(POP-ARG1)

69:(DEBUG 227 0) [char: 227]

72:(CALL2-cons)

73:(PUSH-VALUE)

74:(ALLOCATE-FRAME2)

75:(POP-FRAME!0)

76:(DEBUG 220 0) [char: 220]

79:(POP-FUNCTION)

80:(FUNCTION-GOTO)

81:(RETURN)

Then we have the SourceFile Attribute:

Attribute[1]: [AttributeName: SourceFile, AttributeLength: 2]

File: "/home/stephane/src/ulm/foo.ulm"

98

4.3. THE OULM FILE FORMAT

Follows the Extern Attribute, telling us that the bar native module is provided in
Bigloo with the Bigloo module bar and in Java with the class org.foo.Bar:

Attribute[2]: [AttributeName: Extern, AttributeLength: 12]

Name: bar

MappingCount: 2

Mapping[0]: Backend: bigloo, MapsTo: bar

Mapping[1]: Backend: java, MapsTo: "org.foo.Bar"

At last we have the Debug Attribute, telling us about the r variable of the bear

function, and the v variable of the let:

Attribute[3]: [AttributeName: Debug, AttributeLength: 30]

DebugNamesCount: 2

DebugName[0]: DebugNamesType: Closure, FunDesc: 1, NamesCount: 1

Name[0]: r

DebugName[0]: DebugNamesType: Let, Bytecode: 57, NamesCount: 1

Name[0]: v

99

Chapter 5

Implementation: ULM

One of the universal rules of happiness is: always be wary of any helpful
item that weighs less than its operating manual.

– Terry Pratchett

While the virtual machines, their bytecode and the OULM file format presented in the past
chapter could be used to implement any Scheme language, they have been built from the
start with the goal of hosting ULM primitives in Scheme. To that end, we have devised
several additional bytecodes, extensions to the OULM file format, and have added support
in the virtual machines for thread scheduling and migration.
In this chapter we present the compilation of ULM primitives into new bytecodes, then we
will talk about how migration works, and finally how we achieved a new kind of scheduling.

5.1 ULM bytecodes

The compilation of ULM primitives into bytecodes is presented using the same techniques
and notations as in Section 4.2 in the previous chapter.

5.1.1 Thread creation

Threads are represented as closures for practical reasons, although this is not visible to
the programmer. When creating a thread with (ulm:thread π), a new function descriptor
is allocated, containing the compilation of π followed by an instruction which is called
when the thread terminates DESTROY-THREAD. The compilation of a thread creation is then
CREATE-THREAD with the index of the function descriptor:

CJ(ulm:thread π)Kρt =
let* σ = (CJπK ρ true)§(DESTROY-THREAD), n = (store-closure σ) in

(CREATE-THREAD n%256 n/256)

(CREATE-THREAD i j): 140

Creates a thread whose code is represented by the function descriptor i + (j * 256),
by capturing %ENV. The thread will be scheduled later.

101

CHAPTER 5. IMPLEMENTATION: ULM

(DESTROY-THREAD): 145

Terminates the current thread and returns to the scheduler.

5.1.2 Agent creation

Agents are fairly similar to threads in their compilation, except that they take a name as
argument and return it to the caller:

CJ(ulm:agent (ν) π)Kρt =

let* ρ1 = (ν)§ρ, σ = (CJπK ρ1 true)§(DESTROY-THREAD), n = (store-closure σ) in

(CREATE-AGENT n%256 n/256)

(CREATE-AGENT i j): 140

Creates an agent whose code is represented by the function descriptor i + (j * 256),
by capturing %ENV extended with an activation frame containing the agent’s name
as its only argument value.
%VAL ← that name.
he agent will be scheduled later.

5.1.3 Suspension

The suspension introduced by (ulm:when π1 π2) involves suspending the execution of π2

at every instant until the signal π1 is emitted. This is represented in the scheduler by
the thread context’s list of preemption and suspension clauses. On the stack a suspension
context is represented using a special version of the protector structure: one that stores the
current thread’s context in order to restore it as we unwind the stack during preemption.

Compilation of the suspension primitive consists in compiling the signal π1 into σ1, then
entering the when context with ENTER-WHEN to execute π2 compiled into σ2, then leave the
when context with LEAVE-WHEN:

CJ(ulm:when π1 π2)Kρt =

(CJπ1K ρ false)§(ENTER-WHEN)§(CJπ2K ρ false)§(LEAVE-WHEN)

(ENTER-WHEN): 141

clause ← a new suspension clause.
clause.signal ← %VAL.
%PROT ← a new protector.
%PROT.SI ← %SI + 1.
%PROT.CTX ← %CTX.
%PROT.next ← the previous %PROT.
%STACK[%SI] ← %CTX.
%SI ← %SI + 1.
%CTX ← clause § %CTX.
Relinquishes control to the scheduler if the signal is not emitted.

102

5.1. ULM BYTECODES

(LEAVE-WHEN): 142

%CTX ← %STACK[%SI - 1].
%PROT ← %PROT.next.

5.1.4 Weak preemption

The weak preemption introduced by (ulm:watch π1 π2) involves preempting the execution
of π2 at the end of the instant where signal π1 is emitted. Like suspension, this is represented
in the scheduler by the thread context’s list of preemption and suspension clauses. On the
stack a suspension context is represented using a special version of the protector structure:
one that stores the current thread’s context in order to restore it as we unwind the stack
during preemption. The escaping mechanism is then exactly the same as that of strong
preemption.

Compilation of the weak preemption primitive consists in compiling the signal π1 into σ1,
then entering the watch context with ENTER-WATCH to execute π2 compiled into σ2, then
leave the watch context with RETURN and LEAVE-WATCH:

CJ(ulm:watch π1 π2)Kρt =

let σ1 = (CJπ1K ρ false), σ2 = (CJπ2K ρ false) in

σ1§(ENTER-WATCH #σ2)§σ2§(RETURN)§(LEAVE-WATCH)

(ENTER-WATCH x): 146

%STACK[%SI] ← %ENV.
clause ← a new preemption clause.
clause.signal ← %VAL.
clause.ESC ← a new escaper.
clause.ESC.SI ← %SI + 7.
%PROT ← a new protector.
%PROT.SI ← %SI + 7.
%PROT.CTX ← %CTX.
%PROT.next ← the previous %PROT.
%STACK[%SI + 1] ← clause.ESC.
%STACK[%SI + 2] ← %CTX.
%STACK[%SI + 3] ← %PC + x.
%STACK[%SI + 4] ← %FUN.
%STACK[%SI + 5] ← %MOD.
%STACK[%SI + 6] ← %SP.
%SI ← %SI + 7.
%SP ← %SI.
%CTX ← clause § %CTX.

(LEAVE-WATCH): 147

%CTX ← %STACK[%SI - 1].
%ENV ← %STACK[%SI - 3].
%SI ← %SI - 3.
%PROT ← %PROT.next.

103

CHAPTER 5. IMPLEMENTATION: ULM

5.1.5 A word about bytecodes vs. primitives

Each previously described ULM primitive has been assigned specific bytecodes because
they could not be implemented using virtual machine reified primitives. This means that
just like the Scheme conditionnal is not reified, ulm:thread, ulm:agent, ulm:when and
ulm:watch are not values but special forms.

The following ULM primitives have no conceptual reason to be assigned to bytecodes, which
is why ulm:signal, ulm:emit, ulm:await, ulm:pause, ulm:migrate-to and ulm:safe-

migrate-to are available as VM primitives (referred to by NPREDEFINED). But because they
are frequently invoked rather than passed around as values, they have been given bytecodes
too, which are described briefly here with no example.

5.1.6 Signal Creation

Signal creation with (ulm:signal) is very simple:

CJ(ulm:signal)Kρt =

(CREATE-SIGNAL)

(CREATE-SIGNAL): 143

%VAL ← a new signal.

5.1.7 Signal Emission

Signal emission with (ulm:emit π) consists in evaluating π into a signal and emitting it:

CJ(ulm:emit π)Kρt =

(CJπK ρ false)§(EMIT-SIGNAL)

(EMIT-SIGNAL): 144

Emits the signal in %VAL.

5.1.8 Signal Awaiting

Signal awaiting with (ulm:await π) consists in evaluating π into a signal and awaiting it:

CJ(ulm:await π)Kρt =

(CJπK ρ false)§(AWAIT-SIGNAL)

(AWAIT-SIGNAL): 156

Awaits the signal in %VAL. If the signal is already emitted, do nothing, otherwise,
yield to the scheduler.

104

5.1. ULM BYTECODES

5.1.9 Cooperation

Cooperation with (ulm:pause) simply cooperates:

CJ(ulm:pause)Kρt =
(PAUSE)

(PAUSE): 157

Cooperates until the next instant.

5.1.10 Migration

There are four forms of migration: unsafe subjective with (ulm:migrate-to πdest), unsafe
objective with (ulm:migrate-to πdest πagent), safe subjective with (ulm:safe-migrate-to
πdest πtimeout πrespawn) and safe objective with (ulm:safe-migrate-to πdest πtimeout
πrespawn πagent). They are each assigned a different bytecode, but their compilation is
straightforward: we push all but the last argument on the stack and the last argument in
VAL:

CJ(ulm:migrate-to πdest)Kρt =
(CJπdestK ρ false)§(MIGRATE-SELF)

(MIGRATE-SELF): 149

Marks the current agent for migration to the site in %VAL.

CJ(ulm:migrate-to πdest πagent)Kρt =
(CJπdestK ρ false)§(PUSH-VALUE)§(CJπagentK ρ false)§(MIGRATE-OBJ)

(MIGRATE-OBJ): 150

Marks the agent in %VAL for migration to the site in %STACK[%SI - 1].
%SI ← %SI - 1.

CJ(ulm:safe-migrate-to πdest πtimeout πrespawn)Kρt =
(CJπdestK ρ false)§(PUSH-VALUE)§(CJπtimeoutK ρ false)§(PUSH-VALUE)§

(CJπrespawnK ρ false)§(SAFE-MIGRATE-SELF)

(SAFE-MIGRATE-SELF): 154

Marks the current agent for migration to the site in %STACK[%SI - 2] with a respawn
order in %VAL, and a timeout in %STACK[%SI - 1].
%SI ← %SI - 2.
%VAL ← a new safe migration signal for the corresponding migration.

105

CHAPTER 5. IMPLEMENTATION: ULM

CJ(ulm:safe-migrate-to πdest πtimeout πrespawn πagent)Kρt =

(CJπdestK ρ false)§(PUSH-VALUE)§(CJπtimeoutK ρ false)§(PUSH-VALUE)§
(CJπrespawnK ρ false)§(PUSH-VALUE)§(CJπagentK ρ false)§(SAFE-MIGRATE-OBJ)

(SAFE-MIGRATE-OBJ): 155

Marks the agent in %VAL for migration to the site in %STACK[%SI - 3] with a
respawn order in %STACK[%SI - 1], and a timeout in %STACK[%SI - 2].
%SI ← %SI - 3.
%VAL ← a new safe migration signal for the corresponding migration.

5.1.11 References

Reference compilation is simple, but their execution in the VM uses a simple yet interesting
trick: when attempting to access or modify a remote reference, we reset the PC to the
current instruction before yielding to the scheduler. This means that the next time we will
be scheduled the access or modify bytecode will be re-executed (and certainly succeed if
we were rescheduled because the reference is now local) and the access or modification will
then complete.

Aside from creating a reference, which cannot block, dereferencing and affecting a reference
may block, and thus need to cooperate, which is why they cannot be implemented as VM
primitives because VM primitives cannot cooperate freely for various reasons described in
6.4. Therefore they have been assigned bytecodes and do not exist as VM primitives. For
consistency rather than implementation reasons, creating a reference has been assigned the
same treatement.

Making a reference with (ulm:ref π) is simple:

CJ(ulm:ref π)Kρt =

(CJπK ρ false)§(MAKE-REF)

(MAKE-REF): 151

%VAL ← a new reference in the current thread’s store to the data in %VAL.

Reference access with (ulm:unref π) is simple too, but since at runtime we reschedule the
instruction in case of remote reference, we need to avoid using the VAL signal, which is not
stored in the current thread but shared by the VM. So we save the reference on the stack.

CJ(ulm:unref π)Kρt =

(CJπK ρ false)§(PUSH-VALUE)§(UNREF)

(UNREF): 152

Looks at the reference stored at %STACK[%SI - 1].
If it is local:

106

5.2. MIGRATION

%VAL ← %STACK[%SI - 1].value.
%SI ← %SI - 1.
If it is remote:
%PC ← %PC - 1, then yields to the scheduler.

Reference modification with (ulm:ref-set! πref πdata) uses the same pattern:

CJ(ulm:ref-set! πref πdata)Kρt =
(CJπrefK ρ false)§(PUSH-VALUE)§(CJπdataK ρ false)§(PUSH-VALUE)§(REF-SET!)

(REF-SET!): 153

Looks at the reference stored at %STACK[%SI - 2].
If it is local:
%STACK[%SI - 2].value ← %STACK[%SI - 1].
%SI ← %SI - 2.
If it is remote:
%PC ← %PC - 1, then yields to the scheduler.

5.2 Migration

In order to be able to send an agent from one site to another, several things need to be done.
In this section we explain the transport mechanisms and serialisation process required for
agent migration.

5.2.1 Transporting agents

Here we describe how and when agents are sent through the network.

Transport mechanisms

ULM agents are sent through the network between instants, which means they leave at the
end of instant on one site, and arrive at the beginning of instant on the remote site. From a
transport layer point of view, this means there is data to be sent at the end of instant, and
to be received at the beginning of instant, through the network. But network transmissions
are insecure operations which take an indefinite amount of time to complete.
While sending agent data through the network, there is no reason why the scheduler should
be sending agents sequentially at the end of instant. Indeed, although the agents should
leave at the end of instant, there is no reason why we should mandate that they should
be received on the remote site before we start a new instant on the local site. Sending the
agents through the network is an operation which does not have to take time at the end
of instant, and delay the scheduling of a new instant. This is why all agents are sent on
the network in threads asynchronous to the ULM scheduler: they are started at the end of
instant, and can take all the time needed to perform their task before notifying the ULM
scheduler of their success or failure.
Receiving agents from the network poses a similar problem: reading an entire agent though
the network can take a long time and should not delay the beginning of the next instant.
It also poses a new problem: if the ULM scheduler only starts reading agents at the end

107

CHAPTER 5. IMPLEMENTATION: ULM

of instants, this means incoming connections during the instant would have to wait until
the end of instant to be accepted. This is a delay which may trigger timeouts on the
sending end, and is not acceptable if we can do better. Additionally, it would be hard
to decide the window of time during which the end of instant should accept incoming
connections. To solve this, incoming network connections are accepted asynchronously to
the ULM scheduler, so that agents are incorporated in the scheduler when they have been
fully read from the network.

Notifications to the ULM scheduler of outgoing agents success or failure, as well as fully-
read incoming agents, are buffered in a list which is checked by the ULM scheduler at the
end of instant. This is how the scheduler can send safe-migration signals and incorporate
immigrant agents.

Transport layers

We have two transport layers for ULM agents: TCP/IP and Bluetooth. Our use of TCP/IP
to transport agents is relatively standard: we use the TCP port number 1027 (unassigned
by IANA [IAN], the Internet Assigned Numbers Registry), although it is possible to specify
an incoming port number for the ULM VM, and a destination port number for all agent
migrations. ULM sites are referred to by host name or IP address with possibly a TCP
port number for TCP/IP transport in calls to ulm:migrate-to and ulm:safe-migrate-to.
TCP/IPv4 addresses are in the form NNN.NNN.NNN.NNN[:port] and TCP/IPv4 hostnames
are in the form fqdn[:port] with the default port number used unless given.

The second transport layer is Bluetooth, more specifically the RFCOMM layer, which is
a wireless serial connection. The RFCOMM layer has a concept of port number called
channels, for a total of 30 channels. For such a small amount of channels available, using
a fixed channel for ULM migration makes no sense, since every phone ships with several
channels already assigned for different tasks. To overcome this, Bluetooth uses the Service
Discovery Protocol (SDP) to associate services to channel numbers. When we want to start
listening for incoming Bluetooth connections, we ask the system to provide us with a free
channel. Then we connect to the local SDP server and associate the “ULM” service with
the channel number we obtained. In order to know which channel to use when sending
an agent to a remote Bluetooth device, we query the remote SDP server for the channel
associated with the “ULM” service, and use it for the connection. Bluetooth addresses are
in the form XX:XX:XX:XX:XX:XX with 12 hexadecimal numbers.

5.2.2 The use of modules for agents

Transporting an agent from one site to another requires not only a transport mechanism, but
also a transport format. A migrating agent consists in several aspects we discussed earlier:
its code, its continuation and its data. We already discussed the OULM file format, which
specifies a way to encapsulate some data (the constants) and ULM code. The continuation
consists in the thread stack, several runtime structures such as escapers, protectors and
the context amongst others. The data we need to save consists in data types which can be
created by ULM programs at runtime, including those which can exist as constants in ULM
source code (pairs, numbers, strings, vectors...) and those we can only create at runtime:
closures, primitives, mixin instances, references, signals, ports.

Representing a migrating agent also requires storing its bytecode, its list of global variables,
closures, and all the constants it requires. We can see that the OULM file format is a

108

5.2. MIGRATION

Name Size Contents

ValuesCount 2u The number of serialised values
Values ? * n The list of serialised values
AgentIndex 2p The agent’s index
GlobalsCount 2u The number of GlobalValue fields
GlobalValues 2p * n The indexes of each GlobalValue

Table 5.1: OULM Agent attribute

subset of what we need to represent migrating agents. We chose to create a module for
each departing agent in which to store all its code, required functions and globals, and
extend the OULM file format in order to add the missing information.

To that end we added an Agent attribute which specifies that the OULM file represents a
serialised agent. It contains the fields described in Table 5.1.

All serialised non-constant value is stored in a format similar to the Constant fields,
and their list is stored in the Values field. We call that list the agent value pool . The
AgentIndex then points to the value representing the agent we are migrating. It is followed
by a list of GlobalValue fields pointing to the values of each global variables defined in the
agent’s module.

In order to be able to differentiate references to constants from the constant pool and
values from the agent value pool (runtime vectors can contain constant values), the agent
value pool is indexed starting after the last constant. So if there are N constants in the
constant pool, the first agent value index is N. All indexes pointing from 0 to N-1 refer to
constants, while indexes greater than N refer to agent values. Note that since constants are
not modifiable, they cannot contain pointers to agent values, so constants remain contained
in the constant pool.

The agent value pool can contain all Constant types (although they will not contain
ImportedField and ExternField types) plus the new types defined in Table 5.2.

We are now going to describe each new ConstantType in details.

Threads

Due to architecture and implementation reasons, our Bigloo VM has two layers for repre-
senting threads: a layer used to represent any kind of Scheme thread represented with the
VMState constant type, and a layer representing the ULM-specific information regarding
scheduling of such threads represented with the Agent and Thread constant types.

The Thread constant type represents a ULM thread with the fields described in Table 5.3.

Note that the Thread constant type does not have a Parent field, this is because there is
exactly one agent per agent module, and every thread within the agent module is a child
of this agent. It is therefore easy to reassociate the agents and its children threads.

The Name field refers to a Symbol entry in the agent value pool. This name is not visible to
the user but it is there in case future versions will find a use for it. The VMState field points
to the thread’s VMState entry in the agent value pool. The WWCount field indicates how
many cells there are in the WWContext field to follow. The WWContext field is the thread’s
context, it contains an ordered list of WhenClause and WatchClause entries in the constant
value pool, which represents the suspension and preemption context. The LeafSignal field

109

CHAPTER 5. IMPLEMENTATION: ULM

Type ConstantType Data size Data

Agent 100 16 + ? An agent
Thread 101 10 + ? A thread
VMState 102 26 + ? A thread’s continuation and state
WhenClause 103 2 A suspension clause
WatchClause 104 4 A watch clause
LocalRef 105 4 A local reference
RemoteRef 106 4 A remote reference
Closure 107 6 A closure
Env 108 3 + ? An environment
Primitive 109 2 A primitive
Null 110 0 A non-value
Signal 111 2 A signal
SCMProtector 112 16 A Scheme protector
ULMProtector 113 6 An ULM protector
SCMEscaper 114 2 A Scheme escaper
ULMEscaper 115 2 An ULM escaper
InputPort 116 0 An input port
OutputPort 117 0 An output port
STDIN 118 0 The STDIN input port
STDOUT 119 0 The STDOUT input port
STDERR 120 0 The STDERR input port
Mixin 121 2 + ? A mixin instance

Table 5.2: OULM new constant types

Field Size Contents

Name 2p Its name
VMState 2p Its VMState index
WWCount 2u The number of WhenClause/WatchClause to follow
WWContext 2p * n A list of WhenClause/WatchClause
LeafSignal 2p A leaf signal or null
PreemptClause 2p A WatchClause or null

Table 5.3: OULM Thread constant type

110

5.2. MIGRATION

Field Size Contents

Name 2p Its name
VMState 2p Its VMState index
WWCount 2u The number of WhenClause/WatchClause to follow
WWContext 2p * n A list of WhenClause/WatchClause
LeafSignal 2p A leaf signal or null
PreemptClause 2p A WatchClause or null
RefCounter 2p A reference counter
RefSignal 2p The signal used for its references
MigrationSignal 2p A safe migration signal or null

Table 5.4: OULM Agent constant type

points to either a Signal entry or a Null entry in the agent value pool. If it is a signal,
it is the leaf signal the thread is waiting for using ulm:await, or a signal used internally
to represent waiting on a remote reference. If it is null, there is no leaf signal to wait
for. The PreemptClause field points to either a WatchClause (which should also be in the
WWContext field), or a Null entry. It points to a WatchClause if that preemption cell was
previously activated (on the departure site) and should be unwound to. It points to Null

if the thread has no pending preemption.

The Agent constant type has the same fields plus some additional ones at the end. It is
described in Table 5.4.

The common fields have already been discussed. The RefCounter field points to a counter
in the constant pool representing the number of references created by the agent. This is
used in order to assign unique names to references and could be implemented differently.
The RefSignal is the signal used internally to represent waiting on a remote reference:
each agent has such a signal, which is emitted at each instant for each present agent. If
a thread needs to wait on a remote reference, it will be waiting for the reference’s agent’s
signal as a leaf signal. The MigrationSignal points to either a Signal entry or a Null

entry. It will be non-null if this agent requested a safe migration, in which case it will point
to the signal that has to be emitted upon arrival in order to indicate migration success.

The VMState entry contains the low-level entries needed by the VM to execute threads. It
is described in Table 5.5.

The PC and SP fields contain respectively the thread’s program counter and stack pointer.
The StackCount field contains the number of stack entries to follow, while the Stack field
contains a list of stack entries. Note that it contains only meaningful entries in the stack:
those between zero and the StackIndex register, not all the blank space available for the
stack to grow. This space can be allocated by the arrival site. The other fields are exactly
as described earlier in the implementation of the VM, except for the Specifics field, which
contains a mapping between names and values and represents the thread-specific storage.

WWContext

The WhenClause entry represents a suspension clause and contains only one field represent-
ing the suspension signal. It is described in Table 5.6.

The WatchClause entry represents a preemption clause and contains the preemption signal

111

CHAPTER 5. IMPLEMENTATION: ULM

Field Size Contents

PC 2u The Program Counter
SP 2u The Stack Pointer
StackCount 2u The size of the stack
Stack 2p * n The stack
Env 2p Its environment
Fun 2p The current function
Module 2p The current module name
Protector 2p The current protector or null
Escaper 2p The current escaper or null
EscaperRet 2p Return value for the escaper or null
InputPort 2p The current input port
OutputPort 2p The current output port
ErrorPort 2p The current error port
SpecificsCount 2u The number of specifics
Specifics (2p + 2p) * n The thread-specific data

Table 5.5: OULM VMState constant type

Field Size Contents

Signal 2p The suspension signal

Table 5.6: OULM WhenClause constant type

112

5.2. MIGRATION

Field Size Contents

Signal 2p The preemption signal
Escaper 2p The escaper

Table 5.7: OULM WatchClause constant type

Field Size Contents

Value 2p The reference’s value
Name 2p Its unique name

Table 5.8: OULM LocalRef constant type

and its associated escaper. It is described in Table 5.7.

References

References can be either local or remote to the agent, and are represented respectively
by the LocalRef and RemoteRef entries. References use a unique Name field internally
to identify them. The LocalRef constant type contains the data of the reference. It is
described in Table 5.8.

The RemoteRef constant type on the other hand does not contain the reference’s value but
a signal which will be emitted when the remote reference becomes local. This is the signal
present in the agent which created the reference (or the site). It is described in Table 5.9.

Functions

There are two types of functions reified to the user: closures and primitives. Closures are
ULM functions represented by the Closure constant type. It is described in Table 5.10.

The FunDescIndex field contains the index of the function descriptor representing the
closure within its module. The Module field points to its module name, which can be either
the current agent module or an ubiquitous module. The Env field points to an Env entry
which describes the linked list of environments as such. The Env constant type is described
in Table 5.11.

The NextEnv points either to the next environment as an Env entry or to a Null entry if there
is no next environment. The Values field contains the list of values in this environment.

Primitives are represented by the Primitive constant type, which only contains their name
since primitives are ubiquitous values. The Primitive constant type is described in Table

Field Size Contents

Signal 2p The reference’s signal
Name 2p Its unique name

Table 5.9: OULM RemoteRef constant type

113

CHAPTER 5. IMPLEMENTATION: ULM

Field Size Contents

FunDescIndex 2u Its FunctionDescriptor index
Env 2p Its captured environment
Module 2p Its module name

Table 5.10: OULM Closure constant type

Field Size Contents

NextEnv 2p The next environment or null
ValuesCount 1u The number of argument values
Values 2p * n The list of argument values

Table 5.11: OULM Env constant type

5.12.

Null

Fields which can have a null value are represented using the Null constant type, which
contains no field.

Signals

Signals are represented using the Signal constant type, which contains a unique name field.
It is described in Table 5.13.

Protectors

Protectors are the data structures used to represent things to be done while unwinding the
stack in case of preemption. They come in two flavours: Scheme protectors represented by
the SCMProtector constant type, which is introduced by unwind-protect and the ULM
protectors represented by the ULMProtector constant type, which are in charge of restoring
the preemption/suspension context as we unwind the stack.

The SCMProtector constant type contains the following fields, which have been described
in the previous chapter. It is described in Table 5.14.

The ULMProtector constant type contains only the stack index, next protector and the
suspension/preemption clause which should be restored at the top of the context. It is
described in Table 5.15.

Field Size Contents

Name 2p The primitive’s name

Table 5.12: OULM Primitive constant type

114

5.2. MIGRATION

Field Size Contents

Name 2p The signal’s unique name

Table 5.13: OULM Signal constant type

Field Size Contents

StackIndex 2u The stack index
NextProtector 2p The next protector or null
SP 2u The Stack Pointer
PC 2u The Program Counter
Env 2p The environment
Module 2p The module
Fun 2p The FUN register
Ret 2p The protector’s return value

Table 5.14: OULM SCMProtector constant type

Field Size Contents

StackIndex 2u The stack index
NextProtector 2p The next protector or null
WWClause 2p The WhenClause/WatchClause to restore

Table 5.15: OULM ULMProtector constant type

115

CHAPTER 5. IMPLEMENTATION: ULM

Field Size Contents

StackIndex 2u The stack index

Table 5.16: OULM ULMEscaper and SCMEscaper constant types

Field Size Contents

FieldCount 2u The field count
Fields (2p + 2p) * n The fields

Table 5.17: OULM Mixin constant type

Escapers

Escapers are the data structure representing a target endpoint for unwinding. The SCMEscaper
represents the type of function given to bind-exit for escaping its body, while the ULMEscaper
is used internally to represent the endpoint of a weak preemption introduced with ulm:watch.
Both types of escapers contain only one field representing the stack index where the rest of
the escaping information is stored. Both constant types are described in Table 5.16.

Ports

Serialising a port correctly can be problematic. There are several types of input and output
ports in Scheme, such as console, file, network, procedure, or string ports among others.
A procedure port or a string port could be serialised easily, but console, file and network
ports refer to underlying I/O structures provided by the Operating System, which are most
often not serialisable. For example: a given file may or may not exist on different sites, a
network socket is not transportable since there is no support for relocating socket endpoints
in most network protocols. While we could transport the file along with the file port, or
leave a socket proxy for socket ports, these are not necessarily good solutions, and we have
not yet studied this problem. Until (if) we find a suitable solution, file and network ports
are serialised to closed ports represented by the InputPort and OutputPort constant types
which contain no fields.

At this time we do not support procedure and string ports, so they have no been assigned
constant types. We have several ubiquitous values to represent the standard input, output
and error ports as given by the system. These are console ports that cannot be serialised,
although it makes sense to map them to ubiquitous values so that printing to standard
output or reading from the standard input always works. They are represented using the
STDIN, STDOUT and STDERR constant types with no field.

Mixins

Mixins instances are represented by a list of field name/value associations using the Mixin

constant type. It contains the fields described in Table 5.17.

The Fields field is a list of 2p Name and 2p Value fields pointing to a Symbol entry for the
field’s name and its value.

116

5.2. MIGRATION

5.2.3 What happens to data

In order to pack everything that the agent needs into an agent module and in the OULM
format, we need to figure out exactly what data the agent needs. This is done by the
process of serialisation. During serialisation, we need to find all the data required by the
agent in order to complete its execution. We do this by traversing the agent’s root1 which
is the structure we use to represent the agent in the VM.
Indeed the agent contains its state, its stack, from which we can find all the functions re-
quired by its continuation and all values pushed on the stack. From the functions which do
not come from ubiquitous modules we can traverse their bytecode in order to find objects
which will be accessed by this bytecode, such as constants, global and imported refer-
ences, functions and predefined variables. From those functions we also find the captured
environments we need to serialise.
All the constant values we traverse, and all the constant references we find in the bytecode
we traverse are assigned a new constant index. We also assign constant indexes for imported
and extern references we find in the bytecode and those used by the OULM format (attribute
names, global names and module name).
All the non-constant values we traverse are also assigned a number used for the agent
value pool. This includes strings, symbols, keywords, pairs, vectors, the agent, its children
threads, its preemption and suspension clauses, the closures, environments, primitives,
signals, protectors, escapers, ports and mixin instances.
The ULM references are also assigned such a number, but they require special care. When
an agent leaves with a reference it owns, the reference will be serialised as a LocalRef

constant type, and the system will mark the reference object as being remote from now
on since the agent has left with it. Other threads which had a pointer to such references
will now see it as remote. Departure of remote references are not affected since it will stay
remote for both the agent and the departed site. Upon arrival, references local to an agent
should be merged with any remote reference representing the same reference which were on
the arrival site prior to the agent’s arrival. In the same way, any remote reference brought
by the agent which were pointing to a store local to the arrival site will be merged with
their local counterparts. In both cases the previously remote references are transformed to
local references. Arriving remote references pointing to stores not present on the arrival
site are left remote.
A related treatment is required for ubiquitous values such as signals, primitives and standard
ports. Ports representing the standard input, output and error are detected and serialised
as such. When arriving on a new site, these ubiquitous values are deserialised not as new
values but as their local counterpart. Primitives and standard ports should always have a
local counterpart, but for signals if they do not they are deserialised to a new signal value
(as long as the signal’s unique name is kept it will remain ubiquitous).

5.2.4 What happens to the bytecode

For every non-ubiquitous closure we traverse from the agent’s root, we need to absorb its
bytecode and function descriptor in the agent module we are building. We call this process
phagocyting . Closures which belong to ubiquitous modules are not phagocyted, they are
simply serialised, but their bytecode will be available on the remote site, and as such it is
not traversed either. For every phagocyted closure we need to add its function descriptor

1This concept of root is similar to that of garbage collectors.

117

CHAPTER 5. IMPLEMENTATION: ULM

and bytecode to our agent’s module, after which we traverse the bytecode and modify it if
needed.

As we traverse the bytecode of functions we traverse, we come across several bytecodes
which indicate that there is something new we should traverse and possibly serialise. For
example, when we come across bytecodes referencing global variables. We already discussed
that global variables are cloned and absorbed: this is where it is done. For each bytecode
accessing a global variable, we phagocyte this global variable by adding it to the agent’s
module. We give it a new index and replace the bytecode so that it will properly reference
the phagocyted global. We also serialise its value, which is stored in the Agent attribute.

Imported reference bytecodes pointing to ubiquitous modules are left alone, but those
pointing to non-ubiquitous modules are phagocyted as global variables: they are assigned a
new global variable slot, and the bytecode is changed from IMPORTED-REF to GLOBAL-REF.
Its value is also serialised.

Bytecodes such as CREATE-CLOSURE, CREATE-THREAD and CREATE-AGENT also trigger the
phagocyting of the function descriptor they refer to and the traversal of its bytecode.

Then there are various implementation artifacts which need to be corrected during bytecode
phagocytation: at runtime we apply some Just In Time modifications to some bytecodes
in order to speed up their execution when we reexecute them. This includes replacing
costly IMPORTED-REF bytecodes which reference a variable using its name and module’s
name by a CHECKED-IMPORTED-REF bytecode which uses the module’s index in the list of
loaded modules and the index of its global. A similar trick is applied to primitives which
are referenced by name but can be sped up using their local index. These and several other
local modifications to the bytecode are undone during phagocytation so that the serialised
bytecode remains portable.

Once everything has been traversed, serialised and phagocyted, the agent is packed in the
OULM format and sent to the remote site using TCP/IP or Bluetooth where it is unpacked,
unserialised and integrated to the scheduler.

Although serialisation and deserialisation would be nice to do asychronously as we do for
sending and reading on the network, we do not think it is easily doable nor productive
enough. Indeed we have seen that certain values have to be modified by serialisation and
deserialisation, and these modifications should not happen after the EOI when an agent
leaves or before the EOI when an agent comes. For example, references should not change
state (local/remote) within an instant. So serialisation and deserialisation is still done
sequentially at the EOI.

5.3 Scheduling

The scheduler we have shown in the Semantics section of the Language chapter is compli-
cated. Yet the semantics of the language are simple, though subtle, but the truth is that
they could be explained in just a few paragraphs of text. Very broadly we could say that
each thread is scheduled until every thread is waiting for the next instant or an absent
signal, at which point we do the end of instant phase, rinse and repeat .

This seems simple enough, yet there are several aspects of this type of scheduling which are
very inefficient: every thread needs to be considered by the scheduler several times during
an instant, even when it has already been determined as waiting. Signals have to be put in
a set every time they are emitted, then looked up in order to know whether they have been
emitted. The end of instant has to traverse every thread possibly several times in order to

118

5.3. SCHEDULING

prepare the next instant.

The mere fact that we are walking every thread several times at the end of instant introduces
a delay between instants proportional to the number of threads. As this delay grows, it
becomes noticeable by the programmers, who may be tempted to pack more and more
things to do within an instant, in order to change instants less often. In the case of many
threads doing graphical work, such as cellular automatas (a typical example of the use of
FairThreads [Bou04c]) where there are as many threads as cells (250 000 threads in our
benchmarks), the end of instant becomes visually noticeable and thus has the unpleasant
property of being annoying.

We have found several techniques to speed up scheduling, by following the idea that schedul-
ing time should not be proportional to the number of threads, but to the number of things
to care about while scheduling. This includes not spending time on threads we know cannot
be scheduled, putting the load of waking up threads on signal emission instead of between
each micro-instant, and scheduling preemption as soon as we can be certain it would hap-
pen at the end of instant. With the idea in mind that it is the emission of signals which
marks certain threads for scheduling or triggers preemption, we have spread the actions
previously done at the end of action or between micro-instants within the instants: during
signal emission which should be an action taking a time proportional to the effect the signal
emission will have.

These techniques have been experimented first in a C implementation of ULM’s primitives
without migration, called LURC (Lightweight ULM/Reactive in C). LURC is a C library
with support for several thread backends and ULM’s threads, signals, suspension, preemp-
tion and protection all with the same semantics as ULM without migration (and therefore
references). LURC is presented in detail in the Annex chapter of this dissertation because
its scheduling techniques have been ported to ULM’s scheduler, and it presents interesting
and unique aspects of thread implementation in C.

In this section we present the various implementation techniques we developed to spread
the scheduling cost during the instant and speed up scheduling wherever possible. It should
be noted that these optimisations could be used for a more traditional scheduling of the
end of instant, with little difference in speed or efficiency. Our goal was not necessarily
to produce the fastest ULM scheduler but the fastest ULM scheduler with the minimal
time spent in the EOI, thus increasing the chance that the time spent in the EOI would be
comparable to the time spent during thread cooperation within the instant.

As far as the scheduling semantics is involved, it should be noted that our scheduling
implementation greatly resembles in practise the semantics described earlier, but differs in
several parts. We have chosen to describe the traditional semantics earlier because they
are much more easy to grasp, but the scheduling is very inefficient in the light of several
techniques described in this section. We accept the slight difference in semantics because in
most cases the scheduling is similar, and when it differs, the actual scheduling is the same
for every execution of the same program, and follows an intuitive scheduling (for example:
the first thread to wait for a signal is the first to be notified).

5.3.1 The End of Action phase

The EOI (End Of Instant) phase has already been discussed several times: it is the phase
between instants where the scheduler has to do several things. This includes sending and
receiving migrating agents, triggering preemptions, pruning terminated threads, figuring

119

CHAPTER 5. IMPLEMENTATION: ULM

out which threads to schedule for the next instant and resetting every signal to the non-
emitted status.

In the hope of spreading the load incurred by this phase throughout the instant, we had
the intuition that there are several scheduling operations done at the EOI which should be
possible to do earlier. This is based on the simple observation that there are obvious cases
where a thread’s scheduling at the next instant is obvious in several cases. For example a
thread consisting of:

(ulm:thread

(let loop ()

(ulm:pause)

(loop)))

This is a flagrant case of unusefulness from the part of this thread, which does nothing
but skip instants using ulm:pause. Based on the semantics and the facts that this thread
has no suspension or preemption contexts, that this thread does not use signals or strong
preemption, and that this is an ininite loop, it is obvious that this thread will be scheduled
at the next instant. And we know this right from the moment it cooperates with ulm:pause.
Why should we spend time on this thread at the EOI when we know perfectly well what
its next instant’s scheduling will be as soon as it cooperates?

In fact cooperation with ulm:pause is special because it introduces the absolute certainty
that the thread will not be scheduled again during the current instant, and as such we know
the thread will not call any more ULM primitives until the end of instant. In fact, except
for eventual signals which may trigger its preemption at the EOI, its state cannot change
from its cooperation point until the EOI. For all these reasons, we call the point when a
thread cooperates with ulm:pause the thread’s End Of Action phase: a phase when we
can plan its next instant’s scheduling in most cases.

Take the following example of a thread reaching its EOA phase where we know what will
happen at the EOI with certainty:

(define kill (ulm:signal))

; emit it to trigger the preemption

(ulm:emit kill)

; execute this body for at most one instant

(ulm:watch kill

; this is executed

(print "one")

; we trigger the EOA

(ulm:pause)

; this is never reached

(print "two"))

; this is printed instead of "two"

(print "done")

The above example uses the ulm:now pattern in order to execute an expression for at most
one instant through the use of a surefire preemption: a preemption which we are certain
will be triggered. When the thread reaches its EOA, we know it is in a preemption block
with an emitted signal. Since the thread will not change state until the EOI, and signal
cannot be un-emitted, we know the preemption will take place at the EOI, and we also

120

5.3. SCHEDULING

know that since there is no other preemption, suspension or protection context that the
thread will be scheduled at the next instant and will resume at the point where it will print
“done”. This is a scheduling step which can be done as early as the EOA and does not
necessitate any waste of time at the EOI.

A similar observation can be made of threads in suspension blocks:

(define kiss (ulm:signal))

; emit it to get in the suspension

(ulm:emit kiss)

; execute this body unblocked for at most one instant

(ulm:when kiss

; this is executed

(print "one")

; we trigger the EOA

(ulm:pause)

; this is never reached

(print "two"))

In this example, once the thread reaches its EOA it will enter an infinite sleep until it is
kissed2 (that is, when the kiss signal is emitted). Although the scheduler may not know
that the signal is never going to be emitted, we know at the EOA that the thread will be
scheduled at the next instant only when the kiss signal is emitted. If there is a queue of
threads to execute when the signal is emitted in a future instant, that’s where we should
put this thread, and not look at it until that signal is emitted in a future instant. It is
interesting to note that since the thread reached its EOA in a suspension context, it means
the kiss signal was emitted, and therefore the queue we previously talked about, which
may have contained threads waiting for it, must has been cleared when the signal was
emitted earlier at this instant. We will talk more about that in 5.3.2.

There are many places in which the next instant’s scheduling of a thread can be determined
with certainty at its EOA. This is why we promoted ulm:pause to a primitive from this
derived form:

(define (ulm:pause)

; execute this body for at most one instant

(ulm:now

(lambda ()

; wait forever on a new signal which will

; never be emited

(ulm:await (ulm:signal)))))

Since ulm:now is based on ulm:watch and ulm:await on ulm:when, it is hard for the
scheduler to deduce the fact that the suspension signal will never be emitted and that the
thread will not be rescheduled during this instant. This is made explicit by promoting
ulm:pause to a primitive.

2Possibly by a prince on a white horse, but this is not relevant, nor is the fact that it does not seem to
be going to happen.

121

CHAPTER 5. IMPLEMENTATION: ULM

5.3.2 Wait queues and their recycling

If we want to have an efficient scheduling, and most synchronisation is based on signals,
we need efficient signals. The first thing we have to decide is how to efficiently determine
the status of a signal. The semantics we described earlier marks emitted signals by storing
them in a set of emitted signals. Although this set can be implemented by a hash table,
which has a fair lookup performance, it requires memory allocation for each emitted signal
and deallocation at each EOI to reset the signals.

A better technique has already been used for reactive signals for a while, in FairThreads
variations such as Junior and Sugarcubes [Sus01]. It consists in attributing a number to
each instant, and storing the current instant number in the signal during emission. This
way marking a signal as emitted consists in writing a number, and questioning its status
consists in comparing the signal’s number with the current instant’s. Switching to the
next instant consists in incrementing the current instant number, which has the side-effect
that each previously emitted signal becomes automatically non-emitted since their signal
number is out of date3.

FairThreads and its variations also used a system of wait queues, a system by which we
store the list of threads waiting for a signal in the signal itself. When emitting a signal with
ulm:emit it is then possible to examine this list of waiting threads and put it in the list of
threads to schedule later in the current instant. In the case of ULM however, things are
not so simple: a thread with several suspension clauses may be waiting for several signals
at once before it can be rescheduled. In order to wait on several signals at once it follows
that the thread should be located in each signal’s wait queue, and only be scheduled once
each signal has been emitted. This turns out to be complex: if we remove the thread of
each wait queue one the signal has been emitted, this means we have to put it back in
each wait queue at every instant. Now suppose the thread has all but one of its suspension
signals emitted, yet the last signal is not emitted before the EOI. This means it will be in
one signal’s wait queue at the EOI and has to be placed back in every other wait queue,
which means the scheduler spends time on an unscheduled thread.

Let us imagine another strategy: if we want to avoid any operation at the EOI to re-register
threads in their suspension signal’s wait queues, we should leave them in the wait queues
when each signal is emitted. But then determining whether a thread can run after a signal
emission requires examination of each of its suspension clauses to see if they have all been
emitted. It is hard to speed up using a counter for the number of signals the thread is
waiting for, because we would need to reset that number at each EOI. On the other hand,
if the thread is waiting for N signals, the cost of checking every remaining signal at each
signal emission is quadratic.

Because every suspension signal needs to be emitted in order to schedule a thread, we don’t
need to put that thread in every signal’s wait queue: only one suffices. Indeed, suppose
we register the thread only in the signal which will be emitted last (of all the thread’s
suspension signals): when the last signal is emitted we notice that all the signals have been

3The observant reader will notice that computer fixed-width integers loop if incremented too many times.
We have calculated that a system running today on a 64bit system using 64bit integers for instant numbers
with only one thread doing nothing but skipping instants will run for 25 years before the instant number
loops. We find this acceptable considering the machine has to run continuously on the same hardware for
25 years, which is very extreme. Of course this fails if we are able to upgrade the machine’s hardware
without shutting it down. If at all possible, we can use 128bit integers but one current 64bit hardware the
performance gain/cost may need to be reassessed.

122

5.3. SCHEDULING

emitted and can reschedule the thread. If on the other hand the thread is registered in one
of the signals which is not the last to be emitted, we can leave that signal’s wait queue and
register in one of the suspension signals not yet emitted. In the worst case we are quadratic
again, but in the best case we are linear.

The fact that a thread is registered in only one of its suspension signal also means we have
nothing to do at the EOI to re-register threads in wait queues: if the thread reaches the
EOI while waiting on a signal, it will have to wait for that signal at the next instant just
as well. If on the other hand the thread reaches the EOI and is not waiting on a signal, it
means the thread must have been scheduled, and therefore reached its EOA phase. During
its EOA we can plan its next instant’s scheduling because we know what to do: if it has
no suspension clauses, it will be running at the next instant, if it has it will be waiting for
any one of its suspension signals4.

Let us suppose a thread with at least one suspension signal which reaches its EOA. Note
that reaching the EOA implies the thread has been scheduled. If it has been scheduled
and has a suspension context, it means the thread is not in any wait queue anymore, since
we clear the wait queues when we emit signals. Because signals cannot be emitted twice
during an instant, it follows that each emitted signal has empty wait queues. This means
that we can put anything we want in these wait queues, they will not be examined until
we reach the next instant by incrementing the instant number, thereby resetting every
signal to non-emitted. This is a clear opportunity to register threads in their wait queues
for the next instant. This is how we recycle wait queues: prior to a signal’s emission it
contains threads waiting for the signal at the current instant, and after the signal’s emission
it contains threads waiting for that signal starting at the next instant. This is how we plan
future suspension for threads reaching their EOA.

5.3.3 Fast lanes for simple waits

We have shown how we can use wait queues for multiple signals suspension. The power of
nesting suspension clauses requires each wait queue to be traversed upon signal emission,
and for each thread further examination is required in order to find a potential next signal
to wait for. Yet in many of our programs we noticed that we were only waiting on leaf
signals using ulm:await. Since this primitive cannot be nested, it is much simpler than
ulm:when, and when a thread is waiting on a leaf signal with no suspension clause above it
we can do a much faster scheduling, since we know for sure that when the signal is emitted
the threads waiting for it will be scheduled (since they are only waiting on one signal).

To that end, threads waiting for a signal using ulm:await with no suspension clause are put
in a special queue in that signal, called the simple wait queue. Upon signal emission, that
queue is taken directly out of the signal and appended to the list of threads to schedule in
constant time. This guarantees a constant time for both waiting and emitting such simple
signal uses.

5.3.4 Planning weak preemption

Weak preemption and its associated protection clauses are much harder to plan ahead of
the EOI. There are some simple cases, several complicated cases and a few impossible cases

4This blatantly ignores the complexity that weak preemption and protection can introduce here, but
they are discussed below.

123

CHAPTER 5. IMPLEMENTATION: ULM

which we will present here. In many cases, planning the preemption is only half the work:
figuring out what will have to be done about the preemption is a whole lot of fun.

Surefire preemption at the EOA

The simplest case of planning weak preemption (ahead of the EOI) is when a thread reaches
its EOA with a surefire toplevel preemption. This is the case when a thread calls (ulm:now
(lambda () (ulm:pause))) with no other preemption or suspension context. In this func-
tion we emit a signal, then enter a weak preemption block where we call (eventually)
ulm:pause and reach the EOA. At this point we know the preemption will be triggered,
and the thread will be scheduled at the next instant, with the task of unwinding to the
ulm:watch call. We can then mark the preemption in the thread, and put it in the list of
threads to schedule at the next instant.

Marking preemption when emitting

Now let us take the same example, but with an unsure preemption:

(define kill (ulm:signal))

; enter an unsure preemption

(ulm:watch kill

(ulm:pause))

At this thread’s EOA it is harder to plan ahead because we don’t know if the kill signal
will be emitted later. At the next instant, the thread may or may not be preempted,
although it will be scheduled in both cases. We will put the thread in the list of threads to
schedule at the next instant, but we cannot mark the preemption as a sure thing. So we
use yet another queue in the signal: the preemption queue where each thread is registered
when it enters a preemption block on that signal.

Upon a signal emission, its preemption queue is traversed and each thread is checked.
We have to remember that if a thread has several triggered weak preemptions only the
outermost weak preemption is triggered. Indeed it does not make sense to trigger an inner
preemption block if an outer one is triggered too. To that end each preemption clause in
the thread’s context is assigned an increasing number, with the outermost clause having
zero and inner clauses greater than zero. So we only mark preemptions with the lowest
number, in order to mark only outer preemptions.

Planning weak preemptions for waiting threads

The remaining cases of weak preemption planning before the EOI are more complex and
involve a lot of special cases which are too obscure to delve into here, so we will only outline
them.

Whenever we emit a signal we traverse the list of threads this signal preempts. When such
a thread has already reached its EOA we have seen it is simple, but if the thread is to be
scheduled later, or if the thread is waiting, things get more complex. In fact if the thread is
to be scheduled later it can only relinquish the control by reaching its EOA (case we have
already described), or waiting for an absent signal. So the complex case is always how to
preempt a thread waiting for a signal before the EOI.

124

5.3. SCHEDULING

There are various techniques for planning a preemption on a waiting thread, and they de-
pend on various aspects of the thread waiting. Although we will not discuss our techniques
in detail here because they are slightly complex, we can successfully plan weak preemption
for waiting threads in several cases. For some cases though we have to resort to putting the
preempted thread in a list which will be examined at the EOI to take the proper action.

Conditional preemption and caching

We have now seen every case of activated preemption, but there are cases of unsure pre-
emptions: when we emit a preemption signal for suspended preemption clauses like this:

(define kill (ulm:signal))

; preempt at the next instant

(ulm:thread

(ulm:pause)

(ulm:emit kill))

(define wake (ulm:signal))

; enter the suspension context

(ulm:when wake

; enter the preemption

(ulm:watch kill

(ulm:pause)))

In this example we emit the preemption signal when the preemption block is suspended
because of wake’s absence at the second instant. This preemption is not taken into account
unless the wake signal is emitted later during the second instant. To that end we have a
suspended preemption field in the thread, where we mark any suspended preemption which
may be of interest later. Of course we only mark suspended preemptions if there are no
outer surefire preemption already marked. When we traverse the suspension signal’s wait
queue because of its emission later, we look at possible preemptions and promote them to
planned preemptions if their outer suspension clauses are all satisfied.

Many lookups, such as preemption marking, finding outer or inner suspension clauses, or
the number of satisfied suspension clauses are sped up by using clause numbers and caches
which are invalidated at each instant with the same technique as signals are reset: using
instant numbers.

Such aggressive planning of the next instant’s scheduling and preemption, as well as the
many uses of cache requires more memory per thread, although no memory is allocated
during the scheduling. We have reduced the number of such optimisations for the J2ME
VM to the cost of spending a little bit more time at the EOI for more cases of preemption,
because J2ME devices really come with low memory and it is more desirable to schedule
more threads slower than crash as soon as we create too many faster threads5.

5.3.5 Minimal End Of Instant

So far we have succeeded in planning each thread’s next instant’s scheduling before the EOI
except for the degenerate cases where we have to switch a thread’s wait queue as a result

5Ironically we would only cause the crash to occur faster by having a faster scheduling.

125

CHAPTER 5. IMPLEMENTATION: ULM

of preemption. The end of instant is reduced to treating the degenerated cases, serialising
outgoing agents and starting their emission on the network asychronously, deserialising
incoming agents and schedule them, then increment the instant number to automatically
reset every signal and cache, replace the list of threads to schedule now with the list of
threads to schedule at the next instant, then schedule the first thread.

126

Chapter 6

Native interface (s)

+++ Divide By Cucumber Error. Please Reinstall Universe And Reboot
+++

– Terry Pratchett

No, darling ! I’m sure they drive on the left over here in France.

– Famous last words

In many computer languages, there are ways to invoke code which belongs to a lower
level language, such as invoking assembly code from C, or C code from Java or Scheme.
There are several uses for such lower level code: sometimes a lower level language can be
optimised in ways the higher level compiler could not achieve, sometimes it is necessary
to operate on hardware, or interact with the OS, and sometimes it is just used to wrap a
useful library written in a different language. The means to access a lower level language
are often called the native interface because the lower level language often happens to be
the implementation, or native language of the higher level one.

We have developed a native interface in ULM, which we present here because it has some
interesting properties.

6.1 Syntax

Since we have several virtual machines for ULM, the lower level language to ULM can be
different between VMs. For instance it makes sense to make the native interface’s language
similar to that of the VM itself, because it has to communicate to the VM in order to create
and manipulate ULM types. So for the Bigloo VM the native interface would be Bigloo
Scheme, while the J2ME VM would target the Java language.

In order to call a native function from ULM, it has to be imported using the module’s
extern clause. This clause contains a list of native modules and for each of these modules,
the list and prototypes of their exported functions, plus backend -specific information (that
is, specific to the type of ULM VM used). Let us look at the following example:

127

CHAPTER 6. NATIVE INTERFACE (S)

(module fou

(extern (barre ((bigloo . barre) (java . "org.acme.barre"))

(f x y)

(g f L))))

(g (lambda (x) (f x 2)) ’(1 2 3))

This program shows a module fou importing a native module barre (the french spelling
equivalents of foo and bar1). This native module exports the f and g functions with the
prototypes (f x y) and (g f L), and supports two backends: Bigloo and Java. The
Bigloo backend will provide the barre module in a barre library, while the Java backend
will provide it in the org.acme.barre Java class. How these two backends provide native
modules for ULM, and how they can be created are described in the following two sections.

It is not necessary to give prototypes for native functions in an extern module clause, the
name of the imported variable is enough, but it is desirable to give prototypes in order to
have compiler warnings in case of misuse. It would be nice if we did not have to specify the
list of imported variables from a native module, but then we would have to either extract
that list from each (or at least one) backend, or implement a sort of header file for each
native module describing which variables it exports to ULM.

Extern variables imported from extern modules are then treated in the same way as variables
imported from other ULM modules: they are read-only.

6.2 Bigloo backend modules

Native modules for the Bigloo backend are written in Bigloo Scheme. For our last example,
here is how we would write the Bigloo module barre:

(module barre

; this is required for dynamic loading

(eval (export-exports))

(export (f x y)

(g f L)))

(define (f x y)

(+ (* 2 x) y))

(define (g f L)

(map (lambda (x)

; we cannot invoke f as a Bigloo procedure:

; it is a ULM type, so we use the invocation

; API from the ULM VM

(ulm-vm:invoke f x))

L))

This is a simple module exporting f and g. If we look into details, we notice that the Bigloo
VM uses the Bigloo numbers and lists to represent ULM numbers and lists, otherwise +, *

1Which we assure you has nothing to do with calling crazy a past (and now passed on) prime minister.

128

6.3. JAVA BACKEND MODULES

and map would not work on the values we get as arguments from the ULM VM. But because
the ULM VM does not represent ULM functions with Bigloo functions, they have to be
invoked via a special API exposed by the ULM VM. We could automagically wrap (or box)
ULM functions given to the Bigloo native layer, but this would be at the cost of traversing
every object passed as parameter to and possibly returned from native invocations, so we
prefer to make the call explicit. But let us not look into such sordid details anymore.

This Bigloo module is then compiled by Bigloo into ... well actually that’s a good question:
what is it compiled to? Bigloo also supports several backends: C, Java and .NET. Depend-
ing on which backend is used, the compilation will produce different files: object files for C,
class files for Java and portable object files for .NET. Since this code has to be loaded in the
Bigloo ULM VM later, it should be compiled to the same backend as the Bigloo ULM VM.
Furthermore it has to be packaged in a format which is loadable dynamically by the VM,
since we load modules just-in-time. The typical standard packaging for dynamic libraries
in C, Java and .NET are respectively a shared-object library (SO lib on most systems), a
Jar file and a DLL file. The compiled Bigloo module has to be packaged in the appropriate
format for the Bigloo ULM VM.

When the VM triggers an extern module load with the IMPORTED-REF bytecode for an
ExternField, such a package is looked up by the VM (in our example libbarre.so,
barre.jar or barre.DLL). Then it is loaded by the VM which uses the backend map-
pings to find the correct Bigloo module within the archive. In our example, the Bigloo VM
would load the barre Bigloo module.

The value of the referenced extern variable is then read by the Bigloo VM from the loaded
module, and automatically boxed as a ULM primitive value if the variable is a procedure.
This way, in ULM invoking that extern procedure is transparent (although it is less trans-
parent in the extern Bigloo procedure itself). On the other hand, if the Bigloo variable
contains a data structure containing Bigloo functions or any type of value not used in ULM,
those will not be boxed, so there is still room for improvement later.

6.3 Java backend modules

For the Java ULM VM, things are a bit different, because the underlying backend language
is more different from ULM than Bigloo Scheme. In order to define a ULM module and its
variables it takes a bit more effort in the Java VM:

129

CHAPTER 6. NATIVE INTERFACE (S)

1: // remember our module comes from org.acme.Barre

2: package org.acme;

3:

4: // import the ULM VM classes

5: import ulm.vm.*;

6:

7: // extend the NativeModule type

8: public class Barre extends NativeModule {
9:

10: // declare a number for each procedure

11: public final static int F = 1;

12: public final static int G = 2;

13:

14: // now instantiate a primitive for each procedure. the arguments are:

15: // ULM name, number, arity, variable-arity, and owner module to

16: // export the procedure

17: public final Primitive f = new Primitive("f", F, 2, false, this);

18: public final Primitive g = new Primitive("g", G, 2, false, this);

19:

20: // the constructor calls the super constructor with the "barre"

21: // symbol. this is the ULM name of this module

22: public Barre(){
23: super(Symbol.getSymbol("barre"));

24: }
25:

26: // Overload the invocation function for procedures of arity 2

27: public Object invoke(VirtualMachine vm, int index,

28: Object p1, Object p2){
29: switch(index){
30: case F:

31: int x = ULM.ULM TO INT(p1);

32: int y = ULM.ULM TO INT(p2);

33: return ULM.INT TO ULM(2*x + y);

34: case G:

35: Cons L = ULM.ULM TO CONS(p2);

36: Cons ret = Cons.nil;

37: while(L != Cons.nil){
38: ret = new Cons(vm.invoke(p1, L.car), ret);

39: L = (Cons)L.cdr;

40: }
41: return ret.reverse();

42: default:

43: return super.invoke(vm, index, p1, p2);

44: }
45: }
46: }

In order to define a native module, one has to create a subclass of ulm.vm.NativeModule,

130

6.4. REENTRY

whose constructor expects the ULM name of the module (line 23). The principle is the
same as discussed earlier for declaring ULM primitives in the J2ME VM: a primitive is an
instance of the ulm.vm.Primitive class with a pointer to its module, an index, a name
and an arity. Each primitive instance must have a different index in a given module. These
indexes are defined as global constants in lines 11 to 12 . We then create all the instances of
these primitives and store them in global variables (in case we need to access them directly
in this module) in lines 17 to 18 . The arguments given to the primitive constructor are:
its ULM name, index, arity, boolean for variable arity and owner module. This constructor
is in charge of registering the primitive in the current module, so they can be looked up by
the VM when accessed by name in the bytecode.

When such a primitive is invoked it is dispatched to its owner module, which then invokes
the invoke method corresponding to the primitive’s arity (there is one invoke methods
per given arity), where the primitive’s code is dispatched depending on the primitive index.
In our example, we have two primitives of arity 2. The code for the f native function is at
lines 30 to 33 and consists in unboxing the two number arguments to Java integers, then
performing some operation and boxing the result which is then returned.

The code for the g native function is at lines 34 to 41 and consists in unboxing the L (given
here as p2) argument to a pair (implemented with the ulm.vm.Cons class), and walking
this list pair by pair. While we traverse the list, we use the VM’s invoke method to invoke
the ULM function given as the f argument (here p1) on each element. All these results
are kept in a list which we then return once we have reversed it in order to preserve the
original list’s order.

The default case of the switch at line 43 , which invokes the super-method is here only to
throw an error if the implementer declared a primitive but forgot its code, or placed it in
the wrong invoke function.

This class is then loaded an instantiated by the VM when the barre native module needs
to be loaded. Since there is no ClassLoader in J2ME this class needs to be compiled and
placed in the same JAR as the VM on the mobile platform: it cannot be packaged in its own
JAR as is the case for the Bigloo VM with Java backend. Because J2ME does not support
reflection it is only possible to invoke a class’ constructor if it has no argument when loading
classes dynamically, as is the case for our native modules. This is why the VirtualMachine
instance used by the native module has to be given to each invoke method instead of being
given to the module’s constructor and stored for each invocation.

6.4 Reentry

In the previous examples, we have seen how native function are invoked from ULM, and we
have seen in the native function how to invoke ULM functions from the native code. But
this invocation of ULM code from native code hasn’t been explained. We have talked in
great length in a previous section why we use a virtual machine with no state stored in its
continuation in order to implement migration. We have to go back to that explanation to
understand why invoking ULM code from native code can be a problem in our VM.

When executing ULM code, the bytecode is devised precisely so that the VM will never
require to store information required by ULM threads in the VM’s continuation. This means
that the part of the VM where it iterates over bytecode and schedules threads is built as
a loop with no recursion: the VM’s stack never grows between one bytecode execution to
another. This is essential in order to be able to migrate threads and has already been

131

CHAPTER 6. NATIVE INTERFACE (S)

explained in the Implementation: Scheme chapter. It is also important because the VM
does not have to rely on native threads to store state for each ULM thread: they can all
be executed in the VM’s thread whose stack does not grow.

When the VM invokes a primitive, its stack does grow because it is using its native lan-
guage’s invocation mechanisms and we need the primitive to return to the bytecode loop in
order to return the return value of the primitive to the ULM program. The VM’s primitives
are devised so that it is guaranteed that each primitive returns to the VM without invoking
any ULM function. But it is desirable for user native modules to be able to invoke ULM
code from within their native functions. This is what we do in our g native function: we
invoke the f ULM function gotten as argument. In order to be able to invoke this ULM
function, the VM has to execute its bytecode: it has to enter the bytecode loop. Then it
has to return the function’s return value to the native function. Because the native function
wants to use the native language’s method invocation mechanism, this requires the use of
the native continuation: the stack in our case. When the VM invokes a native function, its
stack grows, if this function then invokes our VM’s bytecode loop again, the stack grows
again, and we have the bytecode loop in two call frames in the stack. This can be repeated
if the ULM function invokes another native method. Note that this is not the case for
the VM primitives where we take great care not to invoke ULM code and return from the
primitive without growing the VM’s stack.

Now suppose the ULM function foo invokes the native method g, which in turn invokes
the ULM function bar. We have two VM bytecode loop call frames in the VM’s stack.
Suppose now that the bar ULM function cooperates with another thread, which is then
installed as the current thread in the latest VM bytecode loop. It is now clear that this
second thread has call frames in the VM stack which belong to the other thread. Not only
can we not migrate this thread (it is not unreasonable to forbid threads with native call
frames to migrate), but if this thread returns from its current function, it will return to the
native function g which it never invoked because it was invoked by the other thread. This
is not reasonable at all.

We call the process of invoking VM bytecode from native code reentry : a thread leaves the
VM to invoke native code, then reenters the VM if that native code invokes ULM code. The
process of reentry is not a problem with no migration and if each ULM thread was executed
in its own native thread: the VM could then easily have several bytecode loop call frames
in its stack without the possibility of mixing up threads. But using a native thread per
ULM thread presupposes a mapping throughout the entire lifetime of each thread: if is not
possible to map a ULM thread to a native thread only when it invokes a native function.
We believe this is a waste of resources, since we would be wasting the resources of native
threads for every ULM thread which does not use reentry, which is more an exception than
the norm.

We have implemented a mechanism to fix this: we delegate native calls in another stack.
The VM never calls reentering native functions in its own stack, but delegates the call to
another thread. This other thread can then be created only when needed by the VM. It
will wait for the VM to signal a native call to be done, at which point it will invoke the
native function and the VM will wait for its return value. If at one point the native function
wants to reenter the VM, the auxiliary thread will signal the VM that it needs to invoke
ULM code. The VM will then place an appropriate call frame in the ULM thread’s stack
and invoke the appropriate reentry function without growing its stack. When the reentry is
done, the auxiliary thread is notified by the VM which gives it the function’s return value,

132

6.4. REENTRY

(a) Doing the reentry (b) Unwinding from reentry

Figure 6.1: Reentry

at which point it returns to the native call, which can then return to the VM by signaling
the VM thread and passing it the native function’s return value.

With this system it is possible to have several native calls and reentries per ULM thread:
in that case the same auxiliary thread’s stack is reused by the same ULM thread. Since the
VM never has any stack growth, and each ULM thread’s native calls are located in distinct
native threads, cooperation is no longer a problem. When an auxiliary thread returns to
the VM with an empty stack (no pending reentries left) it can be destroyed or kept around
to be recycled for another ULM thread when needed.

Upon migration, the scheduler checks each migrated ULM stack for the presence of reentry
stack frames, and aborts the migration of the agent if one of its thread (or itself) has
pending native calls.

6.4.1 Unifying protectors and exception handlers

Let us suppose an ulm1 ULM function making a native call to nat1, which in turn reenters
into the ulm2 ULM function which invokes the nat2 native function. The call stack is thus
ulm1 > nat1 > ulm2 > nat2. Now let us suppose that nat2 wants to unwind to nat1.
This can be done in a language-dependant manner: by throwing an exception in Java, or
via call/cc or bind-exit in Bigloo.

The resulting ULM and native stacks are shows in Figure 6.1 a. This figure represents the
stacks growing upwards, with a Bigloo native backend, where we use bind-exit in nat1

to unwind in nat2. The NATIVE mark in the ULM stack is the special stack frame to
indicate the VM must return to the thread’s native stack.

If we let this native unwinding be done without handling, we will allow unwinding ULM’s
ulm2 function without executing the protection blocks. Of course this is not what we want.
What we want is shown in Figure 6.1 b: we want any unwinding from the native stack
to unwind through the ULM stack and call the appropriate protectors. The techniques to
achieve this are very backend-dependent.

133

CHAPTER 6. NATIVE INTERFACE (S)

; function which intercepts any unwinding from f

(define (intercept f . args)

; use this flag to detect unwinding

(let ((unwinding-detected #t))

(unwind-protect

; compute (f args)

(let ((ret (apply f args)))

; if we arrive here there was no unwinding

(set! unwinding-detected #f)

; return a flag saying it is a normal return

(cons ’return ret))

; this is the protector

(if unwinding-detected

; if we detected unwinding, return a flag

; marking it

(cons ’unwind ’?)))))

Figure 6.2: Detection of unwinding

In the Java backend, the only way of unwinding is through exception throwing. When we
execute a native call from the VM, we install a catch-all exception handler to capture and
prevent any exception from unwinding. When such an exception is captured, the native
call returns to the VM, which then calls the protection blocks in ULM (in ulm2) until the
next native call frame (in nat1), where it resumes the throwing of that exception. If the
exception is not captured in the last native call frame (in nat1), it is transformed into an
ULM error and thrown as a non-continuable exception in ulm1.

Although we could choose to represent Java exceptions as ULM exceptions, which would be
thrown from native code to ULM code, it would break ULM’s system of exceptions, where
handlers are supposed to be called without any stack unwinding, whereas in Java exception
handlers only work with stack unwinding. Thus in order to reach the handler in nat1 we
would have to unwind past the ulm2 ULM function, which is not the expected behaviour.

In Bigloo, catching the unwinding is more complex: even if we forget call/cc (since we do
not support it in ULM it makes no sense to support it for our Bigloo native backend), we
have to handle calls to bind-exit made to unwind the stack. This means that when we
call a native Bigloo function, we have to prevent it from unwinding. Such unwinding can
be detected using unwind-protect as shown in Figure 6.2.

We use unwind-protect with a boolean variable in order to determine whether a function
call unwound the stack or returned normally. But detecting it is not enough: we need to
stop the unwinding from progressing. We can do this by ignoring the protection block by
exiting it with bind-exit as shown in Figure 6.3.

But this is still not enough: we need to be able to resume the unwinding if ulm2 unwinds
completely, and we reach the next native call frame nat1. Before aborting the protector’s
continuation (with bind-exit in our last example), we need to store that protector’s con-
tinuation so it can be used later. For instance when we are done unwinding from ulm2 we
need to start unwinding again in nat1. There is no alternative to call/cc this time, as
shown in Figure 6.4.

134

6.4. REENTRY

; function which intercepts any unwinding from f

(define (intercept f . args)

; calling exit will leave this function

(bind-exit (exit)

; use this flag to detect unwinding

(let ((unwinding-detected #t))

(unwind-protect

; compute (f args)

(let ((ret (apply f args)))

; if we arrive here there was no unwinding

(set! unwinding-detected #f)

; return a flag saying it is a normal return

(cons ’return ret))

; this is the protector

(if unwinding-detected

; if we detected unwinding, return a flag

; marking it, by ignoring the continuation

(exit (cons ’unwind ’?)))))))

Figure 6.3: Preventing the unwinding

; function which intercepts any unwinding from f

(define (intercept f . args)

; calling exit will leave this function

(bind-exit (exit)

; use this flag to detect unwinding

(let ((unwinding-detected #t))

(unwind-protect

; compute (f args)

(let ((ret (apply f args)))

; if we arrive here there was no unwinding

(set! unwinding-detected #f)

; return a flag saying it is a normal return

(cons ’return ret))

; this is the protector

(if unwinding-detected

; if we detected unwinding, capture the

; unwinding continuation

(call/cc (lambda (cont)

; return a flag marking the unwinding,

; by ignoring the continuation and saving

; it for later

(exit (cons ’unwind cont)))))))))

Figure 6.4: Detecting and delaying the unwinding

135

CHAPTER 6. NATIVE INTERFACE (S)

This way when we call a native function from ULM, we know whether it returned normally,
or if it tried to unwind. If it tried to unwind, we unwind until the next native call frame
nat1 where we resume the unwinding by calling the captured continuation. In theory, the
last native call frame cannot unwind further, since there is no further native call frame
which could have installed the unwinder.
For Bigloo exceptions handlers (those from SRFI-34), we have found no way to inter-
leave ULM exception handlers with Bigloo’s handlers. We can detect exceptions which are
thrown, but we cannot detect whether they will unwind, whether they are continuable (it
is a property of the exception throwing, not the exception), nor can we access the current
list of handlers in order to interleave exception ULM and Bigloo handlers.
For all these reasons we chose to not interleave Java or Bigloo exceptions with ULM code,
but represent them as unwinders instead and invoke protection blocks. If the native code
wants to throw ULM exceptions it is possible, but native exceptions are not wrapped
automatically.
As for the other way around: code which unwinds from ULM through native code, we
unwind through Java call frames by throwing an UnwindingException, and from Bigloo
call frames by using a more elaborate version of the unwinder we install with bind-exit

as previously described.

136

Chapter 7

Reactive Event Loop

I always avoid prophesying beforehand, because it is a much better policy to
prophesy after the event has already taken place.

– Winston Churchill

There are many similarities between ULM’s model of cooperative threads using signals for
synchronisation, and event loops. In fact, we can see event loops as a form of cooperative
scheduling. In this chapter we will describe the similarities and differences between event
loops and ULM’s model. We will explain why it is necessary to integrate some event loop
features in ULM, and how this is done. We will then proceed to show why we need ULM’s
scheduler to interact with various event loops, and how this can be done.

7.1 Event loops and ULM

7.1.1 Presentation of the event loop

An event loop is a form of cooperative scheduling without threads: it consists of a loop
which emits certain events when certain conditions are met. There are various types of such
event-triggering conditions but the most common ones are input/output (IO) notifications,
timeouts and idle notifications (an idle event is emitted when there are no other events to
emit).
Programs can register callback functions to events. These functions will then be called by
the event loop when their events are emitted. These functions have to be atomic, that is,
they have to complete and return to the event loop before any other action can be taken.
We can think of the event loop as the ULM scheduler, events as signals, and callbacks as
threads executing a function when a signal is emitted. The main difference is that the
callback functions are atomic whereas with ULM threads, we would not need to return to
the event loop, we could simply cooperate to it and resume execution where we left it at
the next instant.
Event loops and ULM are very similar, except that we think we can do more with ULM
threads than with atomic callback functions.

7.1.2 Why we need event loops

Event loops are commonly found in many languages whether they support real threads
(not mere event loop callbacks) or not. They are found in client/server programs which are

137

CHAPTER 7. REACTIVE EVENT LOOP

driven by input/output processing, and many graphical user interface (GUI) libraries.

Client/server example

Client/server programs use event loops in order to handle simultaneous blocking IO calls
without using threads. Suppose a program wants to handle incoming connections on two
sockets at the same time. It is not desirable to poll the sockets repeatedly in loop until one
of them shows an incoming connection, this is commonly accepted as a waste of computer
resources. In most systems there is a way to suspend the execution of a program until a
certain IO condition is met. In POSIX for example, the accept system call suspends the
execution of the program until there is an incoming connection in the specified socket. This
is one traditional example of blocking IO: a call to an IO function which blocks the caller
until completion of the IO operation. Most IO functions such as reading, writing, creating
files, sockets, pipes are blocking operations by default.

If we want to accept incoming connections on any of two sockets at the same time we
have to use another means. In ULM’s world of cooperative threads we would have another
problem with the same cause: any call to a blocking IO operation would block the current
thread but not cooperate, thus every other thread would be blocked too, which is clearly
not what we want. This is where asynchronous threads show their use: we could have two
asynchronous threads, each blocked while waiting on one socket without blocking the other
thread.

Using asynchronous threads to handle blocking IO calls is indeed the approach chosen by
Bigloo’s FairThreads library [SBS04]: it is possible to detach a cooperative thread from the
scheduler and make it asynchronous while it completes the blocking call without blocking
other cooperative threads. But what if we do not want the cost of asynchronous threads,
and their dangerous integration in the middle of deterministic cooperative threads. When
we want a deterministic execution this is the equivalent of having a wolf in sheep’s clothing1.

Back to our client/server example with two sockets, if we want to listen to two sockets at
once without asynchronous threads we have to use non-blocking IO calls. There are two
traditional ways of doing non-blocking calls. The first consists in informing the system we
want to perform a certain IO operation, which should not block, and the system will notify
the program later of the operation’s successful or unsuccessful completion. The other way
consists in waiting for the readiness of IO structures (sockets, files, pipes) before calling an
otherwise blocking IO call which will not block because it was ready for that call.

Doing non-blocking IO calls with delayed notification of completion is complex because
after each IO call the program cannot be sure of its success or failure, furthermore, the
delivery of completion status by the system is often asynchronous and can thus lead to
various related problems. Testing the readiness prior to IO calls is therefore the preferred
choice in many cases. This can be done with select in POSIX, which usually resides at
the core of any event loop.

To get back to our example again, in order to watch two sockets at once and respond to any
incoming connection, we would enter a loop where we call select by asking it to return
when there is any incoming connection on either of the two sockets. When this happens
we would accept the connection without blocking (since we know there is an incoming
connection waiting) and reply, then close the connection and loop.

This is precisely how event loops work: if we were to write our client/server program with

1Or to use a more actual analogy: a rottweiler play with children.

138

7.1. EVENT LOOPS AND ULM

an event loop, we would register the two sockets on the event loop, and associate any
incoming connection event to a callback function which would print the date. In ULM we
think a similar solution could be used in order to avoid the need for asynchronous threads
for blocking IO operations: if there was a way to register an IO event with the scheduler,
a signal could be emitted by the scheduler to notify of the event occurrence (incoming
connection for instance).

We also think that ULM’s use of threads would solve a common problem with event loops.
Suppose that instead of replying to incoming connections with the date, we would need
some sort of handshake between the client and the server. Each would have to write
and read from the socket several times in order to complete the handshake. Since these
operations can potentially block, in an event loop, we would register callback functions for
incoming/outgoing readiness. Since a callback function is atomic, it would not be able to
save state easily, and we would have to split the handshake sequence in many callbacks,
one for each step of the handshake. This is unpleasant work at best, one which would be
avoided if using cooperating threads which could just wait for the next emission of the event
signal at every step without blocking the other threads.

GUI example

The use of event loops in GUIs is slightly different than for client/server programs. In most
GUIs event loops are used to centralise operations which need to be done on the graphics
hardware, input devices and the logical components of the GUI. For example, the GUI’s
event loop would have a handler for mouse or keyboard activities, for the window manager’s
incoming requests to redraw parts of the GUI which have been hidden by another window,
and to queue any request for redrawing, or inserting new elements in the GUI.

Traditionally, GUIs do not require threads, which is why they usually function with event
loops. This conclusion [Ous96] was highly debated at the time when many new GUI libraries
appeared, but is nowadays widely accepted by the majority of GUI libraries in use. Suppose
a text editor window, used to write documents, with a blinking cursor. The GUI’s event
loop would have a timer event registered which would trigger the cursor’s colour to change
(white, black, white...) every second. Such a change of colour would then queue an idle
event which would trigger a redraw of the cursor to the graphics hardware when the event
queue has time for it. In the meanwhile there is an IO handler registered on the keyboard
which would trigger the insertion of a character, thus queueing another redraw request.
At the same time, the mouse is watched and external redraw requests by the system are
honoured.

GUIs usually do not require threads, but they do not forbid the program which uses them to
use threads. Some event-loop-based GUIs allow threads but forbid any thread outside the
event loop from doing any GUI operation (SDL for example) while others (GTK or Java’s
Swing) take the appropriate precautions from asynchronous threads, and queue most work
resulting from other threads’ calls in the event queue for later synchronous (and safe)
completion.

Anyone willing to write a GUI in ULM would thus surely need in addition to the IO signals
we described earlier, the timer and idle types of signals to be registered to and emitted by
the scheduler. Additionally, it may be an interesting research direction to design a GUI
which allows callbacks to be more complex than atomic callbacks (like threads), while still
retaining the safety of synchronous operations.

139

CHAPTER 7. REACTIVE EVENT LOOP

Type ConstantType Data size Data

IOSignal 121 5 An IO signal
TimeoutSignal 122 12 A timeout signal
IdleSignal 123 2 An idle signal

Table 7.1: OULM new constant types

Field Size Contents

Name 2p Its name
Port 2p Its port index
Events 1u The events to watch

Table 7.2: OULM IOSignal constant type

7.2 The new signals

In order to be able to write efficient client/server programs or GUIs without the need for
asynchronous threads, we have decided to integrate several features of event loops into
ULM in what we call the Reactive Event Loop (REL).

To that end, we have devised three types of signals which will be spontaneously emitted
by the scheduler at the beginning of instants (like safe migration signals) when certain
conditions are met. The IO signal will be emitted when an IO port becomes ready. The
timeout signal will be emitted when a certain timeout has elapsed. The idle signal will be
emitted when there are no other threads to schedule.

Each new type of signal is in fact a subtype of the normal ULM signal, which means they
can also be emitted by any thread (although that may not make much sense), waited for
and treated just like a plain signal. The only differences lies in the fact that they may be
spontaneously emitted by the scheduler, and that they are serialised using new constant
types described in Table 7.1.

7.2.1 The IO signal

A new IO signal is created with (rel:io-signal port events) which takes a Scheme port
and a bitfield specifying the events of interest on the given port. The events argument can
be a disjunction of rel:port-read for input events, rel:port-write for output events
and/or rel:port-exc for exceptional events (some types of sockets support this).

IO signals are serialised into the IOSignal constant type described in Table 7.2.

7.2.2 The timeout signal

A new timeout signal is created with (rel:timeout-signal secs usecs respawn) which
takes a number of seconds and micro-seconds, as well as a boolean respawn argument. The
signal will be emitted after the specified interval has elapsed, and if the respawn argument
is true, it will continue to be emitted after every interval.

140

7.3. EXAMPLE

Field Size Contents

Name 2p Its name
Seconds 2p Seconds index
uSeconds 2p uSeconds index
StartSeconds 2p Start seconds index
StartuSeconds 2p Start useconds index
Respawn 2p Respawn index

Table 7.3: OULM TimeoutSignal constant type

Field Size Contents

Name 2p Its name

Table 7.4: OULM IdleSignal constant type

Timeout signals are serialised into the TimeoutSignal constant type described in Table
7.3.
Note that we need to store the time at which we started to count the timeout interval. This
time is stored in seconds and microseconds relative to the beginning of the first of january
1970 in GMT so that it can be portable across sites.

7.2.3 The idle signal

A new idle signal is created with (rel:idle-signal). This signal will be emitted at the
beginning of instants where no thread is ready to be scheduled. Contrary to most other
types of signals, it makes sense to have only one idle signal per site, with a name common
across all sites, so that it will effectively be a ubiquitous value. Thus there is only one idle
signal returned by rel:idle-signal, shared by all threads across all sites.
Idle signals are serialised into the IdleSignal constant type described in Table 7.4.

7.3 Example

In order to demonstrate how more natural it is to program using the REL than with
traditional event loops, we are going to look at a simple typical client/server program. This
is the echo server: a server that waits for incoming connections on a server socket, and
when an incoming connection arrives, the server will read all the data from the client, then
write all the data back before closing the connection.

7.3.1 Event Loop

Our first version of the echo server will be written using a traditional event-loop. Callbacks
for IO activity can be registered using the (el:add-io-listener port type callback

data) function. The given callback function will be called by the event loop whenever
the given port is available for reading or writing, as selected by the given type argument
which can be el:port-read or el:port-write. The callback function will be called with

141

CHAPTER 7. REACTIVE EVENT LOOP

two arguments: the port on which there is activity, and the given data argument, which
is really the only place where we can store the state needed by the callback. The callback
function should return #t to stay registered in the event loop, or #f if it should be removed
from the event loop.

Once our main function start-server has created a server socket, and registered a callback
for incoming connections on this socket, it enters the event loop by calling (el:enter-loop),
which will wait for activity for all registered listeners until every listener is removed.

Our incoming-connection callback will accept the incoming connection and register an
incoming-message callback in order to read all the data from the client socket. Because
this data can come in several burst, the incoming-message callback will read all the data
available without blocking, and wait until activated again by the event loop for the remain-
ing data. The data we accumulate between each activation from the event loop is kept in
the data argument. This is how we store state between callback calls in event loops, which
we find not very intuitive.

When all incoming data has been read, we register a callback to be called when the socket
is available for writing, and keep this callback registered until all the data has been written.

Here is the full example:

; this is our main entry point.

(define (start-server)

; create a server socket listening on port 1234

(let ((socket (server-socket-open 1234)))

; in order to be notified on incoming connections

; we register a callback on read events

(el:add-io-listener socket el:port-read

; the callback function:

incoming-connection

; the callback data

#f))

; do the event loop

(el:enter-loop))

; this is our callback when there is an incoming connection

; on the server socket which is given as first argument.

; the second argument is not used.

(define (incoming-connection ssocket data)

; accept the incoming connection

(let ((client-socket (server-socket-accept ssocket)))

; register a listener for the incoming message

(el:add-io-listener client-socket el:port-read

; the callback:

incoming-message

; the callback data

’())

; return true so that the event loop keeps this callback activated

; for future incoming connections

#t))

142

7.3. EXAMPLE

; this is called when there is incoming data on the client socket.

; the data contains a pair whose car is the accumulated data read.

(define (incoming-message socket data)

; do a non-blocking read, so we read only what’s available

(let ((str (read-string-nb socket)))

; check if we have reached the end of the message

(if (eof-object? str)

(begin

; we are done reading, let’s write it back when we can

; by adding a "write" listener which will be called every

; time we can write on the socket without blocking

(el:add-io-listener socket el:port-write

; the callback:

outgoing-message

; the callback data:

data)

; return false so that this incoming-message listener is

; removed from the event queue

#f)

(begin

; add str to the data already read

(set-car! data (string-append (car data) str))

; return true so that the event loop keeps incoming-message

; registered for further read events

#t))))

; this is called when we can write on the client socket without

; blocking. the data contains a pair whose car is the remaining

; data to be written.

(define (outgoing-message socket data)

; do a non-blocking write, attempting to write all the data.

; it returns the number of characters successfully written

; until the socket would block.

(let ((n (write-string-nb socket (car data))))

; see if we wrote everything

(if (= n (string-length (car data)))

(begin

; we are done writing everything, remove this callback from

; the event loop by returning false after we close the socket

(socket-close socket)

#f)

(begin

; we wrote a part of the data, let’s remove that part

(set-car! data (substring (car data) n

(string-length (car data))))

; return true to instruct the event loop to keep this

; callback registered for further write availability

#t))))

143

CHAPTER 7. REACTIVE EVENT LOOP

The main thing we can see from this previous example is that the three loops (incoming
connection, incoming message, outgoing message) are scattered across several functions and
recursion cannot be used inside the loops (although admittedly we instruct the event loop
about future recursion with the callback’s return value).

7.3.2 Reactive Event Loop

Using the REL, we are able to write the echo server program using more traditional loops.
In ULM we would write the start-server function as a loop which starts a new thread for
each incoming connection. This thread would then loop over the incoming data, then loop
again over the outgoing data. The main difference with asynchronous threads here is that
each loop is in a suspension block on a REL signal. For instance, in the start-server loop,
this REL signal will be emitted every time there is data to be read on the server socket,
which means there is an incoming connection to be accepted. Whenever our suspension
block is not suspended, we can accept a connection.

Here is the full example:

; this is our main entry point.

(define (start-server)

; create a server socket listening on port 1234

(let* ((socket (server-socket-open 1234))

; in order to be notified on incoming connections

; we register a signal on read events

(ssig (rel:io-signal socket rel:port-read)))

; enter a suspension block on this signal

(ulm:when ssig

; loop over incoming connections.

; since we are in a suspension block, the fact that we are

; executing the next line means that the signal has been

; emitted and that there is an incoming connection, so the

; following line will not block

(let loop ((client-socket (server-socket-accept socket)))

; create a thread to handle the client connection

(ulm:thread

(handle-connection client-socket))

; cooperate to reset the signal

(ulm:pause)

; and loop for the next connection

(loop (server-socket-accept socket))))))

144

7.4. IMPLEMENTATION

; called in a thread for each client

(define (handle-connection socket)

; create one signal for incoming data, and one for outgoing data

(let* ((rsig (rel:io-signal socket rel:port-read))

(wsig (rel:io-signal socket rel:port-write))

; read all the incoming data in a suspended block on the

; read signal

(data (ulm:when rsig

(let loop ((data))

; do a non-blocking read, so we read only

; what is available

(let ((str (read-string-nb socket)))

; check if we have reached the end of the message

(if (eof-object? str)

; return the data

data

(begin

; cooperate to reset the signal

(ulm:pause)

(loop (string-append data str)))))))))

; now write the data back

(ulm:when wsig

(let loop ((data data))

; do a non-blocking write, attempting to write all the data.

; it returns the number of characters successfully written

; until the socket would block.

(let ((n (write-string-nb socket data)))

; see if we still have to write

(when (< n (string-length data))

; cooperate to reset the signal

(ulm:pause)

; remove the data already written

(loop (substring data n (string-length data)))))))))

We find that with the REL, we are able to write event-loop programs in a style much
closer to asynchronous thread programming, without the need for asynchronous threads.
This means that we are able to benefit from a more intuitive programming style while not
having to pay the price of asynchronous threads.

7.4 Implementation

REL signals are emitted at the beginning of instant, but each type of REL signal requires
a different method to determine emission. We will describe how we determine the set of
signals which have to be watched, emitted, and how the REL integrates with the end of
instant.

145

CHAPTER 7. REACTIVE EVENT LOOP

7.4.1 Which REL signals are watched?

Since ULM is a Scheme variant, it uses a garbage collector for its memory model, which
means that rel signals are not expected to be freed or terminated by the programmer. This
means that there may be many REL signals which are not used by the program anymore
(those not referenced anymore) on which the REL should not spend time.

Because the ULM VMs have to keep a mapping of signals, agents, references and modules
by name, and because of the unavailability of weak references on J2ME, there is a custom
GC procedure in the ULM VMs for signals (among others). We use this GC to determine
when the REL should stop watching the REL signals.

There is an optional optimisation by which the REL only watches REL signals which are
currently awaited by at least one thread. This means that the REL signals which are still
referenced but which no thread is currently waiting on, are not considered by the REL. This
has the implication that REL signals may take one extra instant to be delivered. Indeed
look at the following program:

; make an IO signal for a socket input

(define rel-sig (rel:io-signal socket rel:port-read))

(let loop ()

; wait for incoming data

(ulm:await rel-sig)

; non-blocking read

(let ((s (read-string-nb socket)))

(unless (eof-object? s)

(print s)

; reset the rel signal

(ulm:pause)

(loop))))

At the first instant, we await the IO signal, at the EOI the signal is emitted (we suppose
there is some data), at the second instant the thread reads and prints the data, then pauses
to reset the signal. At the third instant the IO signal is not considered by the REL because
nobody is waiting for it. Then the thread returns from ulm:pause and loops, starts awaiting
the IO signal, rinse and repeat.

It is important to understand why, if the REL only considers awaited signals, this IO signal
cannot be emitted at the third instant: because nobody is waiting for that IO signal at
the beginning of the third instant. This can cause some delay as the only thing our thread
will be able to do during the third instant is to await the signal, which can not be emitted
within the third instant because the REL is only considered during the EOI.

Had the REL considered every signal (not just those awaited), the third instant would have
begun with the IO signal (possibly) emitted by the REL and the thread would not have had
to wait for the fourth instant to read the data which was available at the third. Since this
may or not matter depending on the program, this optimisation is optional at run-time.
Note that the following variant of our example is faster in both cases:

146

7.4. IMPLEMENTATION

; make an IO signal for a socket input

(define rel-sig (rel:io-signal socket rel:port-read))

; only work when there is incoming data

(ulm:when rel-sig

(let loop ()

; non-blocking read

(let ((s (read-string-nb socket)))

(unless (eof-object? s)

(print s)

; reset the rel signal

(ulm:pause)

(loop)))))

Semantically it is the same code, but it is faster for two reasons. First the IO signal is always
marked in use as long as we do not exit the suspension block, so the REL always considers it.
Second, but this is a by-product of our previously-described End Of Action optimisations,
the thread is not scheduled between the return from ulm:pause and ulm:await because it
starts waiting for the rel-signal as soon as it calls ulm:pause.

7.4.2 The IO signals

The IO signals are treated differently depending on the type of port being watched. String
or procedure ports (currently not supported) are treated as if they are always ready for
input or output. File or socket ports are watched by watching their underlying native file
descriptors.
The implementation of how we watch native file descriptors differs on the various backends
we use: we use the POSIX layer for the Bigloo VM’s native backend, the NIO library of
Java for the Bigloo VM’s Java backend and our J2SE VM, and there is no support for the
J2ME VM. There is no support for files in J2ME, and the NIO library is not available on
that platform, so there is no way to ask for the readiness of several IO channels on J2ME,
therefore IO signals on file and socket ports on the J2ME VM are not supported.
For the POSIX layer we use the native file descriptors and select to watch them. select
takes a set of file descriptors to watch for input, output and exceptions, and a timeout
(more on the timeout later). When we want to test the readiness of our file and socket
ports, we call select with their underlying file descriptors and based on select’s return
values, we emit the associated IO signals.
On J2SE, we use the NIO package to watch sockets using a mechanism similar to select,
except that it is not possible to watch files, so on this backend IO signals for file ports are
not supported.

7.4.3 The timeout signals

The timeout signals start the countdown to their emission when they are created. To that
end we store the absolute time at which we started the countdown in each timeout signal.
When the REL decides to query the readiness of IO signals (for backends which support
it), it will call select or its Java NIO equivalent. Both of these functions take a timeout
as parameter. The value of this timeout is the shortest interval before we have to emit a
timeout signal (unless various conditions are met which we discuss in 7.4.5). This ensures

147

CHAPTER 7. REACTIVE EVENT LOOP

that if we start waiting for IO events to happen, we will stop waiting as soon as we have to
emit timeout signals. If there are timeout signals which are already elapsed when we call
select, we call it with the special timeout value telling it not to wait for IO signals and
just report the current readiness values.

7.4.4 The idle signal

The idle signal is determined after the other REL signals, because it is only emitted when
there are no other threads to schedule. This means that we have to look at the effect the
other REL signals have on waiting threads: if the other REL signals did not wake any
thread, and no other thread can be scheduled, we can emit the idle signal.

Note that it makes sense to consider (and emit) the idle signal only if it is being awaited,
otherwise we may spend many instants emitting a signal which has no effect instead of
passively waiting for agents or REL signals which would have an effect. If the idle signal is
considered, it has the effect of not causing select to wait.

7.4.5 Integration with the EOI

The REL is considered at the beginning of instant, after threads have migrated and immi-
grated. At this time the scheduler already knows if there is any thread to schedule. When
the REL is asked to determine the set of emitted REL signals, it will be instructed not
to wait if there is any thread to schedule. To summarise, the REL will not wait if any of
the following applies: there is any thread to schedule, there is an idle signal awaited, there
is any elapsed timeout. If asked to wait, it will set a timeout determined by the timeout
signals if there are any, or it will wait indefinitely for IO events.

Note that the addition of the REL cannot interfere with the various scheduling optimisations
we described previously. This is because REL signals are considered at the beginning of
instant, a phase which is before any thread has been scheduled yet, and the only thing the
REL does during this phase is emit signals, which works exactly as if a thread was emitting
them since we have already started the new instant.

It may happen that there are no REL signals, and no thread to schedule. In this case the
VM has an option to terminate. But the default behaviour is to wait for incoming agents
for further action. Because it is also meaningful to stop waiting for REL events in the case
of incoming agents, the wait for incoming agents has to be integrated with the REL wait.

ULM VMs which await incoming agents asynchronously to the scheduler have to be able
to stop any REL wait in progress to notify the scheduler of incoming agents. This is done
in the case of select by writing on a pipe which is always watched by the REL, in order
to notify select. For Java’s NIO it is done by calling the wakeup method of the object on
which select was called.

Although the J2ME VM does not have the equivalent of select, the REL is able to provide
timeout and idle events using sleep, and incoming agents are awaited in asychronous
threads which notify the REL’s sleep by interrupting it with interrupt.

7.4.6 Future improvements

On the native backend, POSIX’s select call is known not to scale well to large number
of connections. On several systems a better, faster, more scalable approach exists: epoll

on Linux, kqueue on FreeBSD or /dev/poll on Solaris. We think that making use of these

148

7.5. INTEGRATING TWO EVENT LOOPS

mechanisms instead of select would be straightforward for ULM, and it would actually
allow ULM to benefit from all their features. For example, it would be easy to register in
the set of watched file descriptors when creating the IO REL signal instead of rebuilding
the set for each select equivalent. Note that epoll is already used by J2SE internally as
of version 6.

There are other external asynchronous events which may be interesting for ULM to inte-
grate, such as POSIX signals. POSIX signals are usually integrated in an event loop by
associating them an internal pipe to notify any pending select call like we do for incoming
agents. This is one way ULM could implement POSIX signal integration. An simpler way
seems to be in the works at least on Linux, in the form of signalfd: a new system call
which maps a POSIX signal emission to an event on a file descriptor which can be used in
select/epoll. This would be perfect for integration in the REL.

The work on integrating asynchronous events and event loops on Linux may also improve
ULM’s handling of timeout signals. A new system call timerfd maps a timer event to a file
descriptor. The way the REL handles timeout signals is by calculating the closest timeout
on each call to select and again calculating all those which have been triggered after the
select call. Using timerfd and epoll it would be much easier and more efficient since all
the timeouts would be handled by the kernel.

7.5 Integrating two event loops

Although the REL makes it possible to build programs based on event loops while enhancing
them with the expressiveness of threads, we found we are still faced with the problem of
having to interact with third-party event loops.

Short of writing our own GUI library from scratch and using the REL (or not) as the main
loop of our library, we have to use third-party GUI libraries from ULM in order to display
graphical interfaces for our programs. This is done by writing a wrapper layer to these
libraries using ULM’s native interface. But when doing that we also have to deal with their
own event loop, and how it should integrate with the REL.

This is a common problem when having to integrate two event loops which both presuppose
they are the one and only main loop. Should the REL be executed in the idle callback of the
other event loop? Should the other event loop be executed in the idle instants, or at every
instant from the REL? Should we try to integrate the two by merging one another’s events
in one of the loops? Or should we simply have both loops coexist in separate threads?

Bigloo’s version of the FairThreads has a similar problem with its Biglook [GS02] GUI
library, and they decided to invoke the FairThreads scheduler within the idle callback of
their backend GUI libraries (GTK and Swing). Although it is not clear whether there is a
better alternative, it is clear that this is far from optimal, since the idle callback is always
executed, even for instants when there are no threads to schedule, thus wasting CPU cycles
constantly.

In ULM, because we have a variety of backends for our VMs, we have had to interact with
a number of different GUI libraries. Our Bigloo VM uses Biglook which in turn uses GTK
for the native backend, or Swing for the Java backend. Our J2SE VM also uses Swing,
while the J2ME VM uses the MIDP set of widgets. With this variety of GUI libraries, each
using their own version of an event loop, we have tried every possible way to make their
event loop and our REL interact nicely. We will present each GUI’s specificity and the
method used to integrate both loops for each case.

149

CHAPTER 7. REACTIVE EVENT LOOP

7.5.1 GTK

GTK is the GUI library used by Biglook for our Bigloo VM’s native backend. It has at its
core an event loop reified by an API allowing programmers to add new types of events (aside
from IO, idle and timeout events). It is possible to create a new type of event representing
the ULM scheduler: it would comprise the REL events as well as the incoming agents pipe
which would allow us to wait passively for REL events or incoming agents when there are
no threads to schedule. With such an ULM scheduler event registered in GTK’s event loop,
the loop would wait passively for things to do, and when it deems that there is work to
do in the ULM scheduler, it would invoke our scheduler function in order to schedule one
instant. Scheduling one instant at a time seems a good place for cooperation, because one
event loop iteration would coincide with an instant.
Our VM and scheduler, however, have not been written with the intent to schedule only
one instant then return. Once invoked, our VM expects the name of a main module, then
enters various loops and functions in order to execute this main module’s toplevel, main
function and schedule every other thread until termination when there are no more threads
to schedule and no REL event and incoming agent to wait for. It would require a lot of
work to change that2, so we decided to try another way.
Instead of calling the ULM scheduler from the GTK event loop, we decided to do it the
other way around. We create a ULM thread in charge of executing one iteration of the GTK
event loop at every instant if there is something to do in the GTK event loop. Determining
when the GTK event loop has work to do is not obvious, because the API it provides does
not allow introspection of registered events, which we could otherwise simply integrate as
REL events. The main IO event registered in the GTK event loop is the file descriptor
of the X server, which provides keyboard and mouse events to GTK. For the basic GUI
programs we were writing, these are the only meaningful events we expect to be registered
in the GTK event loop, so we decided to execute one iteration of the event loop every time
we had incoming data on the X server’s file descriptor (accessible from the standard GTK
API) using a REL IO signal.
By using this system we are sure that even callbacks registered for example for a button
widget, would be called from within the ULM thread executing the GTK event loop. Of
course with this system we will not call the GTK event loop for events other than the
mouse and keyboard events, but should we need to, we believe it would be easy to add the
introspection facilities to retrieve the list of events and integrate them in the REL.

7.5.2 Swing

Swing is the GUI toolkit used by J2SE, therefore it is used by Biglook’s Java backend for
our Bigloo VM, and by our J2SE VM. Getting the Swing event loop to be executed within
a ULM thread is not possible because its API does not allow this. Based on the available
API we found a way to both detect incoming Swing events and block the execution of its
event loop after every iteration.
Because it is possible to register a callback to be executed on the event loop, we created
a callback which blocks the event loop until it detects a new event to process. When it
does detect a new event, it notifies the REL using an IO signal. A ULM thread waits for
this signal to be emitted and orders our previous callback to unblock the event loop by
returning to it. We then add the callback again at the end of things to execute on the event

2Well, actually changing it is never the problem, getting it to work again once changed is the challenge.

150

7.5. INTEGRATING TWO EVENT LOOPS

loop in order to block it again, and awake the ULM thread which was waiting for the event
loop to be flushed.

Since the event loop keeps every event (and callbacks) in a FIFO we are guaranteed that
by returning from the blocking callback and registering it again, every event and callback
registered between the two will be executed by the event loop.

While this does not execute the Swing event loop from within a ULM thread, they are
synchronous to each other, which means we are able to treat any callback executed by the
event loop flushing (like button pressed actions) like a normal reentry from the native stack
as described in the previous chapter.

7.5.3 J2ME

The graphical toolkit in J2ME is very different from Swing, but the only difference for us is
that the event loop is not accessible at all. We know it is there, but there is no way for us
to access it, so we found no way to block it. On this platform we decided to let the ULM
VM and the GUI run in separate asynchronous threads and try something new. From a
ULM thread we can create and manage the GUI, provided it is only done from within ULM
threads, it is like sending a synchronous flow of modifications to an asynchronous thread
(the GUI’s event loop) which supports asynchronous modifications.

The execution of callbacks from the GUI on the other hand, cannot result in the execution
of ULM code from within the GUI’s event loop, otherwise we would have two asynchronous
threads executing the ULM VM. So we decided to introduce an asynchronous delivery of
ULM signals. If the GUI wishes to notify the ULM threads of an action (a button press),
it instructs the ULM scheduler to emit a signal, like every other external source of events,
at the beginning of the next instant.

For example, when a ULM thread creates a button, it creates a signal, which it associates
to the button’s press action. The thread can then wait for the signal, which will be emitted
by the GUI which will emit it asynchronously via the ULM scheduler.

This method guarantees that modifications to the GUI will be done synchronously, since
they are done in ULM, and that callback functions will be invoked in ULM threads correctly.

The only problem we found with this solution is when the user presses two buttons shortly
after one another, thus queueing two asynchronous signals which will may be emitted at
the same ULM instant, thus causing the execution two callbacks which may not be the
expected behaviour (for example in the case of a “OK” or “Cancel” dialog, we expect only
one choice to be made before the dialog disappears). In order to avoid that we can limit
the emission of asynchronous signals to one per ULM instant, but this only guarantees
that each asynchronous signals will be sent in sequence in different instants. This does not
guarantee that the first event’s callback will remove the dialog window in order to prevent
the user from sending the second event.

In an (single) event loop this is not possible: the first button press executes the callback
instantly, so if the dialog is then removed, the user cannot get enough time to press the
second button. This is because callbacks executed from the event loop effectively block the
handling of mouse and keyboard events, thus delaying the mouse click which would cause
the second button to be pressed until the button is gone.

151

CHAPTER 7. REACTIVE EVENT LOOP

7.6 Conclusion

With the Reactive Event Loop, we think it is easier to build more powerful event-loop-
based programs than with traditional event loops, thanks to the addition of cooperative
threads. The implementation of REL signals is already efficient but there is still room for
improvement. Unfortunately, short of building a GUI entirely in ULM, it is still relatively
hard to integrate efficiently the ULM scheduler with a third-party event loop such as comes
with GUI libraries.

152

Chapter 8

Examples/Applications

However beautiful the strategy, you should occasionally look at the results.

– Winston Churchill

Over the course of developing ULM, we have used ULM in several applications, ranging from
the ludicrous chase of fox and rabbit agents [Epa04] to more down-to-earth applications
which could be used for automatic reconfigurations of internet boxes. In this chapter we
will describe two ULM applications: the first one is academic and serves both as an example
and reminder of every ULM feature, while the second is a more industrial example of the
usefulness of ULM.

8.1 Load balancing

Load balancing, the act of distributing computing costs across a network of computers, is
a popular use for agent mobility [MMM02] [SSCJ98] [CSWD03]. In this section we will
present the full implementation of a load balancer without focusing on the mathematics of
balancing. We want to create a load balancer that will take a thunk and executes it by
sharing the computation cost across the network. Because this is a simplified example, we
will say that when there are too many such functions executed at once by our load balancer,
some of the computations are going to be sent to another site for completion.
The basic idea, of course, is to use agents to execute these computations, and create a
custom scheduler which will either allow these agents to spend an instant computing (using
suspension), or send them to another site (using migration). In order to start the balanced
computation of a thunk, we will have to create an agent which will execute this thunk in a
suspension context. This agent will then be registered within our load balancer scheduler
(a simple thread) which will decide which agents to unblock for one instant (by emitting
their suspension signal) and which agents to send away.
Because we want to be a little bit fair in how the agents are balanced, we will attribute a
counter to each agent, incremented when they are sent to another site, so that the agents
that have been migrated the most often will get a better chance of being executed.
Since we need to associate several properties with our agents, it makes sense to create a
mixin type for our agents, where we can store properties such as the agent’s name (used
for objective migration), migration counter and suspension signal.
Let us start by looking at the scheduler. We define a variable holding the maximum number
of computations running during an instant:

153

CHAPTER 8. EXAMPLES/APPLICATIONS

; the maximum number of agents running at once

(define max-agents 5)

Then we define a variable to hold the list of balanced agents, and two functions to register
and unregister an agent to our load balancer:

; the list of regulated agents

(define agents ’())

; register a regulated agent

(define (lb:register a)

(set! agents (cons a agents)))

; remove a regulated agent

(define (lb:unregister a)

(set! agents (remove a agents)))

Our custom scheduling function will be invoked by our load balancer at each instant. Its
task is to select the first max-agents agents that have been delayed the most in order to emit
their suspension signal so they can be executed during this instant. The remaining agents
will have their delay field increased, and will then be sent to a random site for balancing.
You may notice that we also emit an additional signal for those migrated agents: this is
used to awaken an auxiliary thread associated with each agent. This thread will wake up
in order to unregister the agent from this load balancer, and register it in the destination
site’s load balancer. This is required because the agent is suspended in the middle of a
computation and cannot accomplish this task.

; the custom scheduling function

(define (lb:schedule)

; sort them with the most delayed first

(let* ((agents (sort (lambda (a b) (> a.delay b.delay)) agents))

; take a sublist of max-agents length

(to-run (slice agents 0 max-agents))

; and those we delay

(to-delay (slice agents max-agents (length agents))))

; emit the suspension signal for each scheduled agent

(for-each (lambda (t) (ulm:emit t.susp)) to-run)

; increase the delay counter for those we delay, and migrate them

(for-each (lambda (t)

(set! t.delay (+ t.delay 1))

; send it to a random site

(ulm:migrate-to (random-site) t.name)

; wake its auxiliary thread up

(ulm:emit t.migrate))

to-delay)

))

The only thing left to do for our custom load balancing scheduler is to start a thread which
will balance the load at each instant:

154

8.1. LOAD BALANCING

; create the scheduler thread

(ulm:thread

(let loop ()

; schedule them at each instant

(lb:schedule)

(ulm:pause)

(loop)))

Our agent mixin will contain several field we have already seen, such as the suspension
signal, the delay counter, the agent name, and the auxiliary thread’s signal. The mixin
constructor will take only one argument: the thunk to balance.

; the balanced function mixin

(define-mixin (lb:balanced-function thunk)

; this is the suspension signal

(var susp (ulm:signal))

; this is the delay counter

(var delay 0)

; add a signal for the auxiliary thread

(var migrate (ulm:signal))

; this will hold the name of the agent

(var name #f)

We also need to store several other fields in our mixin: the origin site of the agent, so
that once the balanced computation is over, the agent can return back to its origin site to
communicate the return value of the thunk. That return value will also have to be stored
so it can be returned: we will store it in a reference because it has to be affected by the
agent, and read by the thread which ordered this balanced computation. Because the agent
can migrate, the only way to share a variable between agents on different sites is to use a
reference. In order for the thread which ordered the balanced computation to wait for the
result, we use another signal done which will be awaited by the thread, and emitted by the
agent once it is done and back:

; store our origin site

(var home (ulm:current-site))

; store the computation result in a reference

(var res (ulm:ref #f))

; this is emitted when the computation is done

(var done (ulm:signal))

We can now define the start method of our agent, which will start an agent, start its
auxiliary thread, register in the load balancer, then execute the thunk in a suspension
context. When the computation is done, the agent migrates back to its origin site, stores
the result in the res reference and notifies its completion by emitting the done signal:

155

CHAPTER 8. EXAMPLES/APPLICATIONS

; override the method which starts the computation

(meth (start)

; start in an agent

(ulm:agent (name)

; start the auxiliary thread

(this.start-auxiliary-thread)

; store the agent name

(set! this.name name)

; register it in our custom scheduler

(lb:register this)

; execute the thunk in the suspension context

(let ((res (ulm:when this.susp (thunk))))

; unregister the regulated function

(lb:unregister this)

; go back home

(unless (equal? (ulm:current-site) this.home)

(ulm:migrate-to this.home)

(ulm:pause))

; we can now store the result

(ulm:ref-set! this.res res)

; notify completion

(ulm:emit this.done))))

The auxiliary thread consists in a thread created by the agent, and therefore linked to it:
this thread will be migrated everywhere with the agent. This thread will loop infinitely
waiting for the scheduler to emit the migrate signal, so that the thread will unregister the
agent from the local load balancer, pause to get to the destination site, and register the
agent in the new load balancer. Because we want this thread to stop existing when the
agent is done, we execute this loop in a preemption context on the done signal, which is
emitted by the agent upon completion:

(meth (start-auxiliary-thread)

(ulm:thread

; stop doing all that when the agent is done

(ulm:watch (ulm:unref this.done)

(let loop ()

; await a migration signal

(ulm:await this.migrate)

; unregister locally

(lb:unregister this)

; wait for the objective migration to occur

(ulm:pause)

; register on the new site

(lb:register this)

(loop)))))

)

Our final function is the function which starts a balanced computation. Calling this function
with a thunk would cause this thunk to be balanced until it has emitted the done signal

156

8.2. AGENTS FOR RECONFIGURATION

and set its result value res. This function creates a balanced function mixin with the given
thunk, calls its start method and waits for its result, which it then returns:

(define (lb:run thunk)

; create a regulated function

(let ((rf (new lb:regulated-function thunk)))

; start it

(rf.start)

; wait for it

(ulm:await rf.done)

; return its result

(ulm:unref rf.res)))

We have seen the full code of the load balancer. The beauty of the above example is that
we have seen every single feature of ULM: suspension, preemption, agents, thread groups,
signals, references and mixins. What makes this approach original is how easy it is to create
custom schedulers with suspension: the thunk we are balancing does not have to be written
specially for load-balancing, it only has to be written so as to cooperate. The point is that
any function written for local threads would be able to be balanced using this system.

8.2 Agents for reconfiguration

During the course of this thesis, we developed a proof of concept for France Telecom.
The idea was to use ULM agents for automatic reconfiguration and delivery of software
components. We will present the motivations which led to the use of ULM agents, and
describe the two proof of concept applications which emerged as a result.

8.2.1 The motivations

The team at France Telecom we were in contact with worked on software components in
the Fractal [BCS02] model. More specifically they worked on the dynamic reconfigurations
of such components in several contexts. For example, France Telecom’s internet subsidiary
Orange rents an internet terminal called “LiveBox” to its subscribers. It would be in-
teresting if the firmware of this LiveBox could be remotely upgradable through software
component reconfiguration instead of by replacing the entire firmware at each upgrade.

There are several other contexts of use which they described through scenarios such as the
“traveller scenario”. It describes the journey of a traveler from his car while going to the
airport, until his arrival in a new country, as it relates for his mobile terminal . This term
refers to any mobile device used by the traveler, such as a mobile phone, smart phone,
PDA or laptop. In this scenario, upon arrival at the airport, the mobile terminal would
indicate parking availability and fares to the user. Within the airport terminal the device
would offer to do the flight check-in directly on the mobile terminal by choosing the flight
number and seats. Finally, upon arrival on the destination country, the mobile terminal
would check for any software components available which might be needed for this country,
such as a local communication protocol.

The “traveller scenario” may seem simple when described in such broad terms, but it
actually involves many complex steps and techniques. In our example, the mobile terminal
starts by receiving a simple message from the airport’s parking. The airport terminal then

157

CHAPTER 8. EXAMPLES/APPLICATIONS

asks the user a question: does he want to check-in via his terminal ? This involves more
than simple interaction between the airport and the user’s terminal: if the user chooses
to check-in, the check-in program will have to be downloaded and installed. Presumably
there could already be an older version of that program installed, which might have to
be upgraded. This program will then have to communicate with the airport to fulfill the
check-in process. Upon arrival, the mobile terminal will ask the airport for a list of required
components, download, install and configure them.

There are many ways to implement solutions for these requirements, but we have chosen
to concentrate on two phases of this scenario with different uses for ULM agents in each
phase. The first phase is the interaction with the departure airport. We have chosen to
show how easy it is for the airport to interact with the user using agents. The second
phase is the arrival, or more specifically the task of finding, transporting and installing new
components. In fact, in order to make the second phase more appealing in the absence of
GSM software components to transport on a device, we have chosen a different scenario
with similar requirements: an IRC (Intenet Relay Chat) client on the mobile terminal which
reconfigures its encryption components on each site it visits.

8.2.2 The departure airport

For the first phase of this application, we have chosen to demonstrate the usefulness of
ULM agents in the settings of a server (the airport) which wants to interact with a client
(the mobile terminal) which does not know how to interact with the server prior to their
encounter.

Choosing the mobile device

Ideally, we would have chosen a full-fledged remote terminal for this application, such as the
Nokia 770 used by France Telecom, but several limitations forbade us from doing so. Indeed
we have to be able to run an ULM VM on the device, and we were unable to do so. We
support J2ME, J2SE, C and .NET systems, but the Nokia 770 in question has very limited
beta support for both J2ME, J2SE and .NET virtual machines. As for C, building a version
of our ULM VM for this system requires the use of the QEmu emulator for ARM devices
in order to cross-compile our VM. But our VM uses asynchronous threads internally, and
QEmu does not support threads when emulating a process on an ARM processor on our
development machine. This, the very limited support and the fact that many development
solutions for this device are in their early stages meant that we would spend more time
getting ready for the device than solving problems with ULM.

We have therefore decided to use the Nokia phone we used to develop the J2ME ULM VM
for this application. This meant that the ULM VM would be fully functional, although
our support for Fractal components would be limited. Indeed, the implementations of
Fractal in Java (Julia [BCL+04] and AOKell [SPDC06] for example) require more features
than available in J2ME to dynamically load components. Indeed, J2ME platforms support
either of two sets of APIs: the CLDC (Connected Limited Device Configuration) and CDC
(Connected Device Configuration) profiles. The CLDC profile is available on virtually every
mobile phone and many mobile devices, but does not include the Java ClassLoader class,
which is required to load class dynamically in Java. Without this class it is impossible
to load a class from a Java VM if that class was not available from the start of the VM,
which means we cannot install classes after the VM’s start. The CDC profile on the other

158

8.2. AGENTS FOR RECONFIGURATION

hand, features this class, but this profile seems to have been forgotten over the years and
we could only find one single phone supporting it, which dates from several years ago and
is not available anymore.

In the absence of dynamic class loading, it is impossible for Java implementations of Fractal
to load components dynamically. We do not have this problem in ULM because we load
agents without using dynamic Java classes, but we do not have any Fractal implementation
in ULM, and while it may be possible to write one, it was not the purpose of this work.

On the other hand, the scenario we were trying to solve presented an interaction between
the server (airport) and client (mobile terminal) which we found we could solve easily in
ULM without the need for any Fractal components.

The interaction program

In this application, we phone client does not have any prerequisite program or library on
it aside from the necessary GUI library. All the logic is initiated and served by the server
airport. This server runs on a PC in the Bigloo ULM VM. The first step the server has to
accomplish is to detect any new client. This can be done simply because we communicate
with the client using Bluetooth, which supports scanning the nearby devices. Using the
REL and a native call which lists the nearby devices, we are able to write a crude detection
mechanism:

(module airport

(import srfi-1 gui reserv)

(native (bluetooth ((bigloo . bluetooth))

(list-devices))))

; check every second

(let ((sig (ulm:timeout-signal 1 0)))

(ulm:when sig

(let loop ((old-devices ’())

(new-devices (list-devices)))

; serve the newly detected devices

(for-each serve (lset-intersection equal? new-devices old-devices))

(ulm:pause)

(loop (lset-union equal? old-devices new-devices)

(list-devices)))))

; continued...

Of course a real system would be more complex and would only detect devices coming by
car (not by plane), and would clean the list of detected devices when the user leaves the
site for example. But this will be enough for our example. The serve function consists in
sending an agent to the device to notify the availability of parking space, then ask if the
user wants to check-in, and if yes, start the check-in procedure. Here it is:

159

CHAPTER 8. EXAMPLES/APPLICATIONS

; ...continued

; shortcut function for migration

(define (move site)

(ulm:migrate-to site)

(ulm:pause))

(define (serve device)

; send an agent there

(ulm:agent (name)

; go there

(move device)

; from then on, we are on the phone

(gui:message "Available parking on the 4th floor")

; offer the check-in

(if (equal? "Yes"

(gui:question "Do you want to check-in?"

’("Yes" "No")))

(do-checkin))))

; continued...

Naturally, a real system would actually have external input as to where there is available
parking. The gui module consists of several GUI functions available in a ubiquitous module
which is actually implemented on the phone itself. Its interface (on the server) is as follows:

(ubiq-module gui

(export (gui:message text)

(gui:question text choices)

(gui:input text)))

; Shows a message and returns when the user

; has clicked ’OK’

(define (gui:message text) #t)

; Asks a question, and displays a list of choices.

; The selected choice is returned

(define (gui:question text choices) #t)

; Asks the user to enter some text, returns it

(define (gui:input text) #t)

The do-checkin procedure consists in asking the reservation number, then going to the
reservation server (which may be different than the site which sends these agents) to invoke
the reserv:checkin function. This function takes at least one argument: the reservation
number. If the reservation is invalid or unknown, it returns a pair whose car is err and
whose cdr is the error description. If the reservation is valid and there is only one seat
left it returns a list whose car is seat and whose remaining elements describe the seat and
flight. If the reservation is valid but there are several seats to choose from it returns a

160

8.2. AGENTS FOR RECONFIGURATION

list whose car is seats and whose rest contains the list of available seats. Once the user
has chosen a seat, the agent has to re-invoke the reserv:checkin method with the chosen
seat as additional argument. The reserv module is ubiquitous and its implementation is
located on the reservation site whose address is in the reserv:site variable. Here is the
do-checkin procedure:

; ...continued

(define (do-checkin)

; save the device’s address

(define device (ulm:site-address))

; ask the reservation number

(let ((number (gui:input "Reservation number:")))

; go to the reservation site

(move reserv:site)

; try to check-in

(let loop ((res (reserv:checkin number)))

; move back to the device with the answer

(move dev)

(case (car res)

; display the error message and start over

((err)

(gui:message(cadr res))

(do-checkin))

; success: display information

((seat)

(gui:message (string-append

"Name: "

(list-ref res 1)

"\nFlight: "

(list-ref res 2)

"\nDescr: "

(list-ref res 3)

"\nSeat: "

(list-ref res 4)

)))

; we have to chose a seat

((seats)

(let ((seat (gui:question "Choose a seat" (cdr res))))

; check-in again with the chosen seat

(move reserv:site)

(loop (reserv:checkin number seat))))))))

We will not show here the contents of the reserv module since its content is neither good
enough as a reservation system, nor relevant to the use of agents for this situation. Its
interface is as follows:

161

CHAPTER 8. EXAMPLES/APPLICATIONS

(ubiq-module reserv

(export reserv:site

(reserv:checkin num . seat)))

(define reserv:site "...")

(define (reserv:checkin num . seat) #f)

Conclusion

While this program is only a proof of concept, it shows that it is relatively easy and
unexpensive in terms of lines of code to write applications in ULM which can interact with
devices without prior support from the device. Using traditional client/server architectures
on mobile phones, the user would have had to browse the airport’s website to find the
check-in program, install it, then run it to get the same result. On the other side, the
would have had to write two programs: one which runs on the client, the other which
answers the client’s requests.

Even if the airport decided to use a check-in program on its website (in the so-called Web
2.0 for example), the user would have had to be informed of the availability and location of
this website. Of course, accepting any agent on our mobile phone is not a perfect solution
either, and there should be a certain level of trust. Currently we use a system of trusted
signing certificates to sign outgoing agents and accept incoming ones. On top of that, a
simple question from the ULM VM to the user would suffice to know if the user is interested
in a trusted agent.

8.2.3 The Fractal component transporter

In order to demonstrate the possibilities of ULM to manage the dynamic reconfiguration of
components, we have implemented an IRC (Internet Relay Chat) application using Fractal
components.

The design

The problem we want to solve with ULM is the complex management of reconfiguration
and component selection. To that end, we designed an IRC clone which uses Fractal com-
ponents to encrypt the communications between the client and the server. The IRC client
is supposed to be on a mobile terminal which can move between several sites (for example:
home, office, area 51...), each with different requirements for security and encryption. This
IRC client, upon arrival on a new site, would send a ULM agent on the site’s server to ask
for the address of the local IRC server and a list of available encryption components.

Any communication with the local IRC server would have to be done using one of the
components listed locally. If the component is already installed on the IRC client, it is then
used for encryption when connecting to the IRC server. In the case that the client does not
have the component, the agent would use information gathered from the IRC client to find
a component compatible with the mobile device. If such a component is found, the agent
would transport its package back to the mobile device to install it so that the IRC would
be able to use it from then on.

162

8.2. AGENTS FOR RECONFIGURATION

We used the Julia implementation of Fractal components and the J2SE ULM VM. Our
initial intention was to use a mobile device such as a PDA or a smartphone, but as described
previously our attempts at running a JVM capable of loading classes dynamically on these
devices have been unsuccessful. In any case this does not deprecate our example as we can
use the IRC client on a laptop to transport it between sites.

The type of encryption component we used is called SecurityComponent and consists of
two methods for encryption and decryption (encrypt and decrypt) and a method used to
determine the component’s compatibility with a given Java implementation (J2ME, J2SE...)
and version. We simplify the compatibility issue by basing it on the type and version of
Java on the client, but many other factors could come in play such as the client’s FLOPS
(Floating Point Operation Per Second) or amount of RAM. The encryption is also overly
simplified and does not talk about algorithms, keys and other necessary features since it
was not the point of this example to implement full-blown Fractal encryption components.

Any implementation of such a component is then packaged into a JAR with a meta-
information file which lists the available component interfaces and their implementing
classes available in the JAR. On each site there is a ComponentManager object which can
load such JARs dynamically and register any interface and their implementations for later
instantiation and use. This manager also keeps track of the JAR size, which is used by the
agent to determine whether there is enough room on the client to install the component1.

We have implemented and packaged several encryption components with various require-
ments for Java support and varying JAR sizes, and have distributed them across the sites
so that the each site offered several encryption components to choose from, while each site
had a different set of unique components. Indeed it is unlikely that the user would need a
military-grade encryption component at home for social chatting.

The program

Aside from the fact that the client uses a Fractal component of the SecurityComponent

interface, there is little interest in presenting the many lines of code which comprises the
building and handling of the GUI. This GUI presents a site selector, which will initiate the
connection and configuration on the specified site. It also contains a list of values to choose
from in order to simulate client constraints such as Java type and versions, available disk
size, etc... There are an entry for the user to type text, one where he sees the text sent
from the server (from the other users), as well as a description of the security components
currently installed and used.

Whenever the user selects a new site, an agent is launched to that site. Because all the GUI
is done in Java we have decided to leave the Java event loop and the ULM scheduler in
separate asynchronous threads. In order to invoke ULM code from the native (Java) layer,
we use a new technique different from those presented in the REL chapter. The idea is that
we create a native module called Util which has a Java method called invokeULMFunction

which takes as arguments a ULM closure and its list of arguments. This function will spool
those invocation requests and emit an asynchronous signal on the ULM VM. This signal is
awaited by a normal ULM thread, which will then collect the spooled invocation requests,
and treat each one in a new ULM thread. When the function returns, the ULM thread will
notify the result to the caller of invokeULMFunction which will then return the collected

1This attribute was preferred over FLOPS or RAM numbers because on our J2ME phone we know the
disk space but ignore any FLOPS or RAM capabilities.

163

CHAPTER 8. EXAMPLES/APPLICATIONS

// called when selecting a new site

public void register(String site, VirtualMachine vm){
// wait for the asynchronous VM to load the native Util module

Util vmMod = (Util)vm.awaitModule(Symbol.getSymbol("util"));

// wait for the asynchronous VM to load the component-agent ULM module

Module agentMod = vm.awaitModule(Symbol.getSymbol("component-agent"));

// obtain the register closure

Closure f = (Closure)agentMod.getGlobal(Symbol.getSymbol("register"));

// build the list of arguments

Cons args = Cons.listify(new Object[]{site, "SecurityComponent",

this.availableSpace,

this.javaType,

this.javaVersion});
// invoke the function in a ULM thread

Object ret = vmMod.InvokeULMFunction(vm, f, args);

// check for failure

if(ret == R5RS.CONSTANT FALSE){
// treat the failure

notifyFailure();

}else{
// connect to the IRC server using the specified component

String server = ULM.ULM TO STRING(((Cons)ret).car);

String implementation = ULM.ULM TO STRING(((Cons)ret).cdr);

useComponent(implementation);

connectTo(server);

}
}

Figure 8.1: The invocation code

result.

When selecting a new site, we use the ULM VM API to load the Util module and
the component-agent module which contains the agent code. This agent is sent by the
register ULM function which expects as arguments the address of the site, the name of
the component interface to fetch and the available size and versions of the local Java. In
case of success, it returns a pair whose car is the address of the local IRC server and whose
cdr is the name of the security component implementation to use. In case of failure it
returns #f. The code of the invocation is shown in Figure 8.1.

The ULM module which interfaces with the local ComponentManager has the interface
shown in Figure 8.2.

This module is then used by our agent’s module, defined in Figures 8.3 and 8.4.

Conclusion

While this application is a simple proof of concept, it shows that ULM agents make it
possible to devise complex component-selection mechanisms. We can imagine that the agent
could check for suitable components on several component servers, should the first ones fail

164

8.2. AGENTS FOR RECONFIGURATION

(ubiq-module component-manager

(export (cm:list-component-impls interface)

(cm:get-jar interface impl)

(cm:get-jar-size interface impl)

(cm:instantiate-component interface impl)

(cm:isJavaSupported c javaType javaVersion)

(cm:install-jar data)

(cm:get-irc-server)

))

; lists the names of every registered component class

; which implements the given interface

(define (cm:list-component-impls interface) ...)

; gets a component packaged as a JAR in a vector

(define (cm:get-jar interface impl) ...)

; gets the component’s package’s size

(define (cm:get-jar-size interface impl) ...)

; instantiates a component

(define (cm:instantiace-component interface impl) ...)

; invokes the isJavaSupported method on the given

; SecurityComponent instance

(define (cm:isJavaSupported c javaType javaVersion) ...)

; installs the given jar in a vector and registers every

; component interface and implementation inside

(define (cm:install-jar data) ...)

; gets the address of the local IRC server

(define (cm:get-irc-server) ...)

Figure 8.2: The component manager interface

165

CHAPTER 8. EXAMPLES/APPLICATIONS

(module comp-agent

(import component-manager srfi-34)

(export (register server interface size jtype jversion)))

; returns #t if the given component implementation supports

; the given Java and fits in the given size

(define (fit-finder interface impl size jtype jversion)

(let* ((c (cm:instantiate-component interface impl))

(fit (cm:isJavaSupported c jtype jversion))

(csize (cm:get-jar-size interface impl)))

(and (<= csize size) fit)))

; finds the component with the given interface on the server:

; if the server lists an available component which we already have in

; here-components (the list of components available on the client), it is used.

; If not we try to find an acceptable component using fit-finder.

(define (get-component interface here-components size jtype jversion)

; get the list of components available on the server

(let* ((there-components (cm:list-component-impls interface))

; find any component already available on the client

(old (find (lambda (impl)

(member impl here-components))

there-components)))

; if we found one, return its name and the IRC server

(if old

(list ’old (cm:get-irc-server) old)

; if not, try to find a fit component

(let ((new (find (lambda (impl)

(fit-finder interface impl size

jtype jversion))

there-components)))

; if we find it, return its name, its JAR and the IRC server

(if new

(list ’new (cm:get-irc-server)

new (cm:get-jar interface new))

#f)))))

; continued...

Figure 8.3: The reconfiguration agent (1)

166

8.2. AGENTS FOR RECONFIGURATION

; ...continued

; registers on the server to find a suitable component implementation

(define (register server interface size jtype jversion)

; use an exception handler if the migration fails

(with-exception-catcher

(lambda (exc)

(print "got exception: " exc)

#f)

(lambda ()

; list the client-side components

(let* ((here-components (cm:list-component-impls interface))

; this is the safe-migration RPC which calls the given function

; on the server site

(ret (ulm:rpc

server

(lambda ()

(get-component interface here-components

size jtype jversion)))))

(case (car ret)

; we found a previously installed component

((old)

; ret := (old cm-server impl)

(cons (cadr ret) (caddr ret)))

; we found and brought a new component

((new)

; ret := (new cm-server impl data)

; we need to install it

(let ((impl (caddr ret))

(data (cddddr ret)))

(cm:install-jar data)

; return

(cons (cadr ret) impl)))

; we did not find anything

(else

#f))))))

Figure 8.4: The reconfiguration agent (2)

167

CHAPTER 8. EXAMPLES/APPLICATIONS

to produce suitable components. We can also imagine that in the lack of appropriate
component, the agent could come back to the client with a server-provided program (or
agent) which would handle the problem on the client side, via interaction with the user.
This way every site could have its own policy and methods of dealing with incompatible
clients.

168

Chapter 9

Directions

Now this is not the end. It is not even the beginning of the end. But it is,
perhaps, the end of the beginning.

– Winston Churchill

Throughout this dissertation, we have described the state of the ULM language, com-
piler and virtual machines. In the process we have sometimes talked about various future
modifications or improvements we would like to see, such as ubiquitous values or custom
serialisers. There are other improvements we think would be valuable, although we have
not discussed them yet because they were not directly relevant to the previous chapters. In
this chapter we will discuss these various missing features we have identified and start the
discussion on what might be missing.

9.1 Debug

When developing a new compiler and virtual machine, the very first thing one notices when
trying the first test programs is that both the compiler and the virtual machine are full of
bugs. Debugging a compiler and a VM is a hard task which is very different from debugging
other types of programs.

For example, the crash of the VM may indicate a bug in the VM itself, or in the compiler
which produced faulty bytecode. In order to ensure that a given ULM source file has been
compiled to a correct bytecode, one has to have the (rare) ability to read the bytecode,
make sense of it and come to the conclusion that it is a correct compilation. Even with the
use of automated test systems which compare source files and their resulting bytecode, one
has to certify the first correct bytecode which will serve for comparison.

Once we have ascertained that the compiler is not to blame, debugging the virtual machine
is no simple task as we have already explained it consists at its core of a loop which never
recurses and holds no information in its stack1. Traditional debuggers help programmers
by showing the location of a program crash by inspecting its stack to show the succession
of function calls which (possibly) led to the crash. In our case, any posthumous inspection
of the VM stack will yield absolutely no information on the events which led to the crash.
This information will have to be found elsewhere.

1And indeed our VMs are compiled into programs which use a stack for continuations.

169

CHAPTER 9. DIRECTIONS

After the tremendous task of certifying that the bytecode is correct and that the VM was
correct in its interpretation, the only suspect to the cause of the crash (or misbehaviour)
is the ULM program itself. Debugging the VM serves no purpose in this case, but the VM
has to allow a debugger to inspect the running program’s state so that the programmer
can debug his ULM program. Note that this is different from debugging the compiler and
the VM where it should be up to the VM and compiler programmer, not the casual ULM
programmer, to debug these programs. If there are many people working on the compiler
and VM, it is as important to have the proper tools to debug them: as important as debug
tools for the language programmer, since a correct compiler and VM are crucial.

9.1.1 Debugging the compiler

Although our compiler is very simplistic in the sense that it does not perform any code
optimisation, it is still complex enough to contain several bugs. These can easily be found
in the primitive compilations during development or introduction of new features, the many
macro expanders, or the various evolutions to the mixin system. The fact that the bytecode
format also changes as we find unforeseen limitations and various enhancements led to the
development of two separate tools to analyse an OULM file: the ulmp program which
analyses an OULM file formatting, and a disassembler named ulmd.

The OULM analyser

There are many reasons why we would want to look at an OULM file to see what it contains.
The main reason for us is to analyse it to make sure the OULM format is correct. Indeed
there are many places in the code where such a file format is created: the compiler, but also
the Bigloo and Java ULM VMs which produce such files when sending agents. Although
the Bigloo VM and the compiler share the OULM-producing code, it is not uncommon
when introducing a new version of the OULM file format to have discrepancies between the
two OULM writers and their corresponding reader code.

The second reason why we would want to examine OULM files is when sending agents.
Often it is useful to instruct the VM to dump the agent it sends to files prior to sending so
that they can be examined posthumously in the case of failure after migration. This is often
the only way to make sure that the serialisation process worked as expected and that every
data which was supposed to be taken along with the agent was indeed correctly identified
and serialised. For the casual ULM programmer it is also useful to identify problems such
as the size of data taken by an agent, in order to add or remove ubiquitous references if the
agent left with not enough or too much data.

In order to present the user with a useful view of OULM files, we have developed the ulmp

program, which takes a OULM file as parameter and dumps the contents of this file. In
fact the Example part of the description of the OULM file format in the Implementation
chapter is directly taken from the output of the ulmp program.

The disassembler

The ulmp program displays the various fields of the OULM file format, including the byte-
code displayed in a human-readable form by showing the bytecode names and pointing to
their arguments rather than displaying the bytes themselves. This is very efficient to debug
any problems in the file format or the encapsulation of agents and their data.

170

9.1. DEBUG

There are, however, reasons why we would prefer to inspect the bytecode content in a
higher-level form such as ULM itself. The process of producing higher-level code from its
lower-level compilation is called disassembly . In an agent system where agents can collect
closures (and their code) and global values from any site, it is key to any source-level
debugging (the process of debugging a program by looking at and reasoning from its source
code).

Indeed, it is possible (and very likely) that the source code from which originated an agent
on its departure site will be completely different from the agent code after a few migrations.
The process we have chosen for migration makes a new module from each migrating agent.
This involves the capture of any required functions (and their code) as well as global
variables from any number of modules external to the agent itself. This new module itself
may already have little in common with the code of the module which spawned the agent.
After a few migrations where the agent may have captured new code and data (which may
have been completely absent from the origin site) and possibly dropped unused code and
variables, the resulting agent module may be completely unrecognisable.

Should this new code crash after a few migration, the debugger would be incapable of
displaying its source code to the user. Short of carrying the source code of every procedure
captured by the agent during migration, disassembly is the only solution to present the
agent’s source code during debugging. To that end we have written the ulmd program
which takes an OULM file (such as produced during migration for debugging) and writes
its corresponding ULM code.

The process of writing a disassembler is very similar to that of the VM itself: we have to
loop over the bytecode and construct source code as we go instead of evaluating its result.
Although the disassembler is a mere thousand lines of code (it does share some code with
the Bigloo VM and compiler), it is a very interesting piece of machinery which mingles the
VM iteration and the compiler structure to produce source code from a bytecode which
was never intended to be reversed to its origin form. Unfortunately it is beyond the scope
of this thesis to describe it in detail here2.

We have successfully mapped every bytecode and every primitive compilation backwards
from bytecode to source code. After the strict uncompilation phase we apply a phase of
unexpanding to undo the macro expansions introduced during compilation. This macro
unexpansion is done by a process described at best as shaky but largely functional. Indeed
we are not able to unexpand user macros, but every macro expansion done by the compiler
(including those which result from several previous expansions) is able to be reversed by
our disassembler. With the compiler set to include the names of variables in the debugging
information, the whole ULM runtime (about 2300 lines of code) is successfully disassembled
to the exact source.

9.1.2 Debugging the VM

Due to the nature of the VM itself, the fact that it does not store state in its stack, it is
largely debugger-proof. Indeed, using a source-level debugger is in most cases useless since
a VM crash is closely tied to the bytecode it is executing, and in most cases debugging the
VM requires debugging the ULM source at the same time.

We have found no particular technique to help us find bugs in the VM, particularly in the
bytecode-execution loop itself. In fact once we have made sure the bytecode is correct using

2This is not unreasonable bearing in mind this dissertation’s length.

171

CHAPTER 9. DIRECTIONS

the bytecode dumper and disassembler, and we have studied the ULM program enough to
be confident that the VM is at fault, we turn on the debugging output on the VM and
spend hours reading the output. Follows an intricate analysis of the step-by-step debugging
output, along with a dump of the state of every VM structure (including ULM threads’
stacks) and register, and careful analysis of the ULM program and its bytecode.

There are several classes of programs which require specific debuggers, and we believe this
is one of them. We think the development of a debugger which could debug the VM and
the ULM program it is executing at the same time would help in this regard. On the other
hand, since the number and size of programs written in ULM is expected to be higher than
the code required by the VM to run these programs, one can expect that it would be more
useful to write a debugger for ULM programs and just make a functional VM using ad-hoc
means.

9.1.3 Debugging ULM programs

Once we are confident that the compiler and VM produce correct OULM files, with correct
bytecode and serialisation, and that the VM interprets them correctly, we are left with
ULM programs to blame for any remaining bugs. We are confident that the disassembler
would be key for any source-level debugger for ULM, but it is not sufficient. There are
several aspects of ULM which would need unique features from its debugger.

The fact that ULM code can crash on a remote site after an unknown time and number
of migrations causes problems is one specific aspect: a user wishing to debug an agent
would need support from the debugger to follow the agent remotely across every site it
visits. This can be done if the debugger supports a plugable remote interface, such as
Java’s JPDA [JPD] (Java Platform Debugger Architecture). One ULM debugger would
follow the agent by connecting to each successive VM it visits to keep on debugging it.

In order to debug an agent, one would use the ULM disassembler, but it could be extended
by adding information about the origins of each function and global variable. For example,
it could be useful to add data to the OULM file format which would receive a history of
migration data. It could map variables and functions to their origin site, module and line
of code. A history of the agent’s past migrations and travel itinerary could also be useful
for the debugging of an agent.

Debugging a whole site on the other hand would require features such as the inspection of
incoming and outgoing agents, the identification of loaded modules and their ubiquitous
property, as well as the identification and list of ULM references.

We have talked with the author of Bugloo [Cia03], a source-level debugger for Bigloo and
more specifically anything compiled to JVM bytecode. We have determined that it would
not be hard to integrate Bugloo and our Bigloo VM (with Java backend) and Java VMs to
efficiently debug ULM programs. At the same time we could use the various features Bugloo
offers for the debugging of Bigloo FairThreads: the visual tracing of thread scheduling and
signal emissions.

Currently the only support available in the ULM VMs for debugging includes a mere stack
dump on error, with the location of the error in the source file provided by the DEBUG

bytecodes inserted by the compiler.

172

9.2. OTHER ENHANCEMENTS

9.2 Other enhancements

We have already talked about enhancements with regards to ubiquitous values, custom
serialisers and missing module handling, but there are other enhancements we would like
to see in the future.

9.2.1 A global garbage collector

Although we have not talked about it until now, there is a key piece of ULM which is
still missing in the ULM implementation. We have already vaguely hinted at our custom
GC, which cleans unused agent modules and signals on a per-site basis. The fact that
we support references across sites is an entirely different problem: in order to determine
that a reference can be disposed, one has to ascertain that each ULM site and agent in
migration has stopped using that reference. This is called a global garbage collector : a GC
which requires each ULM site to synchronise on the network to perform a garbage collection
requiring data from each site at the same time. There are various ways to accomplish this,
each with different features, side-effects and limitations.
The confection and fine-tuning of any GC is already a complex task [LQP92] [KMY94] [LC97],
but we find that the implementation of a global GC is an even broader task which requires
a high level of expertise. On the other hand, the lack of such a GC is only noticed after
the creation of thousands of references by migrating agents, so it does not prevent us from
testing ULM in many test cases. This is why we have postponed its implementation for
later.

9.2.2 Mixin enhancements

There are several modifications which could be done on ULM mixins. For example, although
there are various ways to execute some code during the mixin’s instantiation, they are not
satisfactory. In some cases we need a constructor function to be called during instantiation.
Following the mindset of these mixins, we could add a new mixin clause such as init which
would contain a block of code to execute during the mixin instantiation where the super and
this variables are visible. There could be several such clauses, each would be executed in
order of appearance once the this instance has been completed (all variables and methods
added, removed or renamed and all inheritance done), and before it is returned by the new

operator.
This construction would allow inheriters to change the content of inherited variables in a
simpler way than presented in the Load Balancing example:

(define-mixin A

(var foo 2))

(define-mixin B

(inherit A)

(init

(set! this.foo 3)))

(define example (new B))

example.foo

=> 3

173

CHAPTER 9. DIRECTIONS

A better implementation for mixins would also be beneficial. Indeed right now mixins
are implemented using various compile-time expansions and using hashtables to represent
mixins at run-time. The use of a proper structure for mixins as well as appropriate support
in the compiler would allow to add a lexical lookup for this and super fields which would
allow us to remove most this and super qualifiers from mixin methods.

9.2.3 Miscellaneous enhancements

While we think the notion of migration group is essential, we find that the grouping could
be done by other means than thread creation by agents. For example, it may be useful for
an agent to create a thread outside its group3. It may also be desirable to dynamically link
and unlink threads to agents.
For optimisation and efficiency purposes, it may be interesting to provide support in the
VM (through new primitives for example) for functionality which would otherwise require
the creation and migration of agents. For example, we could provide a way to emit signals
on foreign sites without sending an agent there. Providing a simple interface for RPCs
(Remote Procedure Calls) by spawning a thread on a remote site to invoke a function,
rather than sending an agent and paying the cost of migration to do it.
Ubiquitous modules should be easier to write with an IDE. For example, when writing a
ubiquitous module whose implementation can only be meaningful on one site (for example a
phone’s GUI) we should have a tool to generate the module’s interface for the compilation
site. Alternatively it should be possible to import certain modules by instructing the
compiler that they are not available locally, but that certain variables are expected to come
from them. Deployment of such modules should be automatised, for example by using a
tool which sends and installs a module’s implementation to a specified site and generates,
sends and installs its interface to other specified sites. The addition of meaningful version
numbers for modules could also be useful, especially in for agents which may visit several
sites where ubiquitous modules may be out of synchronisation.

3It is currently only doable by creating an agent, which may incur an extra cost.

174

Chapter 10

Conclusion

On commence enfin à voir le bout du rouleau.

– Anonymous

For a moment, nothing happened.Then, after a second or so, nothing con-
tinued to happen.

– Douglas Adams

Throughout this dissertation, we have presented why and how we have implemented a new
language for mobile agents. We have presented several problems and how we solve them
with ULM. Finally we looked at what could be the future of ULM. At the end of this
dissertation, we hope to have demonstrated that ULM presents new and valid solutions to
the problems we have described.
Personally, after having used ULM for several years, I am convinced that the cooperative fair
threads scheduling is a model that does not solve every problem induced by thread program-
ming. Indeed it does solve what we see as the main problem of preemptive asynchronous
scheduling: the non-deterministic scheduling. Finding a bug induced by a scheduling which
is hardly reproducible is an impossible feat. The fact that ULM’s scheduling is replayable
helps a great deal in finding scheduling bugs.
Unfortunately our scheduling does not fix every problem, indeed it introduces a few specific
ones. Our biggest gripe is that it is unavoidable that any large ULM library will feature
cooperation points in hard-to-see locations. For instance, in a large program it is almost
impossible to know which function call might cooperate. This poses the instant skipping
problem: if one program expects to catch every emission of a signal (at every instant),
and this program skips an instant unknowingly through a random library call, some signal
emissions will be lost. Indeed we were confronted several times with skipped instants and
signal loss. This is a problem very specific to our type of scheduling, but it is relatively easy
to debug since the scheduling is replayable. On the other hand, instant skipping requires the
use of mutexes as a necessary precaution in several places, which was one of the problems
ULM’s scheduling set out to fix.
The second problem we face with cooperative scheduling is modularity. Since agents can be
written by different programmers, the injection of cooperation points in their program can
be unevenly distributed. This means that some agents might cooperate every few seconds
while others cooperate every minute. When these agents run at the same instants, this

175

CHAPTER 10. CONCLUSION

will likely result in one agent executing its task before the other. It is in fact trivial in
this model to abuse the scheduler to get more scheduling time than other agents. Indeed,
even with the best intention of programming fair agents, the fact that agents come from
different programs and programmers means their composition will never be fair.
After several years of playing with this fair cooperative scheduling I am convinced it is not
less painful than asynchronous thread programming, but that it is rather a different kind
of pain. I think this model of concurrency is suited for many different applications where
asynchronoucy is not desired, but in as many other applications it may be preferable to
use asynchronous threads. In any case it is a desirable model for those suited applications,
which we believe there are many of. It would be interesting to work on lessening the
problems induced by our thread model so that we could increase the usefulness of such
models.
As for ULM’s mobility features, I find that strong migration is much more intuitive than
weak migration. Our component distribution application illustrates how easy it is to write
agents for application installation as well as resource distribution. On the other hand, the
use of a custom language to write mobile agents implies that either a lot of existing libraries
have to be re-written for ULM, or that they have to be wrapped for ULM. While we have
made every effort to ease the interfacing between ULM and other languages, we have also
illustrated that it is never as easy as if the agent was written in the same language as the
libraries which the agent wants to work on.
Contrary to our approach, there are many mobile agent systems which build on existing
languages. By far the most popular one is Java, due to its relative open nature. Due to
restrictions in the Java runtime it is not possible to implement strong migration without a
custom runtime, but should such restrictions be lifted in a future version of Java (and there
is so much work on mobile Java agents that it seems plausible), we think the tremendous
popularity and library availability of Java would make it a better platform for mobile agents
if we want them to spread outside of the labs.
Our work on ULM has produced a functional (in the sense of working) language distributed
on our site at http://www.inria.fr/mimosa/Stephane.Epardaud/. We have invented a new
model of fair thread scheduling, explored the implications of stack delegation and the un-
winding of interleaved stacks, presented what we find a valid alternative to event loops,
and explored a few realistic uses for agent mobility. We hope these techniques have been
presented clearly and thoroughly enough to be used in other programs.

176

http://www.inria.fr/mimosa/Stephane.Epardaud/

Bibliography

[23] SRFI 23. Error reporting mechanism. http://srfi.schemers.org/srfi-23/

srfi-23.html.

[34] SRFI 34. Exception handling for programs. http://srfi.schemers.org/

srfi-34/srfi-34.html.

[35] SRFI 35. Exception handling for programs. http://srfi.schemers.org/

srfi-35/srfi-35.html.

[57] SRFI 57. Records. http://srfi.schemers.org/srfi-57/.

[9] SRFI 9. Defining record types. http://srfi.schemers.org/srfi-9/srfi-9.html.

[AAB+05] B. Alpern, S. Augart, S. M. Blackburn, M. Butrico, A. Cocchi, P. Cheng,
J. Dolby, S. Fink, D. Grove, M. Hind, K. S. McKinley, M. Mergen, J. E. B.
Moss, T. Ngo, and V. Sarkar. The jikes research virtual machine project: build-
ing an open-source research community. IBM Syst. J., 44(2):399–417, 2005.

[BCL+04] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and Jean-
Bernard Stefani. An open component model and its support in java. In Ivica
Crnkovic, Judith A. Stafford, Heinz W. Schmidt, and Kurt C. Wallnau, editors,
CBSE, volume 3054 of Lecture Notes in Computer Science, pages 7–22. Springer,
2004.

[BCS02] E. Bruneton, T. Coupaye, and J.-B. Stefani. Recursive and dynamic soft-
ware composition with sharing. In Proceedings of 7th ECOOP International
Workshop on Component-Oriented Programming (WCOP’02), Malaga (Spain),
June 2002.

[BHV98] Quetzalcoatl Bradley, R. Nigel Horspool, and Jan Vitek. Jazz: an efficient
compressed format for java archive files. In CASCON ’98: Proceedings of the
1998 conference of the Centre for Advanced Studies on Collaborative research,
page 7. IBM Press, 1998.

[Bou01] Gérard Boudol. The recursive record semantics of objects revisited. In
Proceedings of the 10th European Symposium on Programming Languages and
Systems, pages 269–283. Springer-Verlag, 2001.

[Bou03] Frédéric Boussinot. Concurrent programming with fair threads: The loft lan-
guage. Technical report, 2003.

177

http://srfi.schemers.org/srfi-23/srfi-23.html
http://srfi.schemers.org/srfi-23/srfi-23.html
http://srfi.schemers.org/srfi-34/srfi-34.html
http://srfi.schemers.org/srfi-34/srfi-34.html
http://srfi.schemers.org/srfi-35/srfi-35.html
http://srfi.schemers.org/srfi-35/srfi-35.html
http://srfi.schemers.org/srfi-57/
http://srfi.schemers.org/srfi-9/srfi-9.html

BIBLIOGRAPHY

[Bou04a] G. Boudol. ULM: a core programming model for global computing. In
Proceedings of ESOP 04, volume 2986 of Lecture Notes in Computer Science
(LNCS), pages 234–248. Springer-Verlag Heidelberg, 2004.

[Bou04b] Frédéric Boussinot. Fairthreads: mixing cooperative and preemptive threads in
c. Technical Report Research report 5039, INRIA, 2004.

[Bou04c] Frédéric Boussinot. Reactive programming of cellular automata. Technical
Report Research report 5183, INRIA, 2004.

[Bre88] Thomas M. Breuel. Lexical closures for c++. In C++ Conference Proceedings,
pages 293–304, Denver, CO, October 1988. USENIX.

[Cam] Objective Caml. Ocaml. http://caml.inria.fr/ocaml/index.en.html.

[Car94] Luca Cardelli. Obliq A language with distributed scope. Technical Report
Research Report 122, Digital Equipment Corporation, System Research Center,
Palo Alto, CA, March 1994.

[Car95] Luca Cardelli. A language with distributed scope. In Proceedings of the 22nd
ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 286–297. ACM Press, 1995.

[CF99] Silvain Conchon and Fabrice Le Fessant. Jocaml: Mobile agents for objective-
caml. In ASAMA ’99: Proceedings of the First International Symposium on
Agent Systems and Applications Third International Symposium on Mobile
Agents, page 22, Washington, DC, USA, 1999. IEEE Computer Society.

[CFLQ06] Giacomo Cabri, Luca Ferrari, Letizia Leonardi, and Raffaele Quitadamo. Strong
agent mobility for aglets based on the ibm jikesrvm. In SAC ’06: Proceedings
of the 2006 ACM symposium on Applied computing, pages 90–95, New York,
NY, USA, 2006. ACM.

[Cia03] Damien Ciabrini. Bugloo: A source level debugger for scheme programs com-
piled into jvm bytecode. In Proceedings of the International Lisp Conference
2003, 2003. http://www-sop.inria.fr/mimosa/fp/Bugloo.

[CJK95] Henry Cejtin, Suresh Jagannathan, and Richard Kelsey. Higher-order dis-
tributed objects. ACM Transactions on Programming Languages and Systems,
17(5):704–739, September 1995.

[Com] Apache Commons. Javaflow. http://commons.apache.org/sandbox/javaflow/.

[COR] CORRELATE. Brakes. http://www.cs.kuleuven.ac.be/~eddy/BRAKES/brakes.

html.

[CSWD03] Jiannong Cao, Yudong Sun, Xianbin Wang, and Sajal K. Das. Scalable load
balancing on distributed web servers using mobile agents. J. Parallel Distrib.
Comput., 63(10):996–1005, 2003.

[ECM01] ECMA. C# Language Specification. Number 334. ECMA, 2001. http://www.

ecma-international.org.

178

http://caml.inria.fr/ocaml/index.en.html
http://www-sop.inria.fr/mimosa/fp/Bugloo
http://commons.apache.org/sandbox/javaflow/
http://www.cs.kuleuven.ac.be/~eddy/BRAKES/brakes.html
http://www.cs.kuleuven.ac.be/~eddy/BRAKES/brakes.html
http://www.ecma-international.org
http://www.ecma-international.org

BIBLIOGRAPHY

[Eng00] Ralf S. Engelschall. Portable multithreading. In USENIX Annual Technical
Conference Proceedings, pages 239–250, San Diego, California, USA, June 2000.
USENIX. http://www.gnu.org/software/pth/.

[Epa04] Stéphane Epardaud. Mobile reactive programming in ULM. In Olin Shivers and
Oscar Waddell, editors, Proceedings of the Fifth ACM SIGPLAN Workshop on
Scheme and Functional Programming, pages 87–98, Snowbird, Utah, Septem-
ber 22, 2004. Technical report TR600, Department of Computer Science, In-
diana University. http://www.cs.indiana.edu/cgi-bin/techreports/TRNNN.cgi?
trnum=TR60.

[FFF06] Matthew Flatt, Robert Bruce Findler, and Matthias Felleisen. Scheme with
classes, mixins, and traits. In APLAS, pages 270–289, 2006.

[FG96] Cédric Fournet and Georges Gonthier. The reflexive cham and the join-calculus.
In POPL ’96: Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 372–385, New York, NY, USA,
1996. ACM.

[FKF98] Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. Classes
and mixins. In Conference Record of POPL 98: The 25TH ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San
Diego, California, pages 171–183, New York, NY, 1998.

[Fla05] Matthew Flatt. Inside PLT MzScheme. Rice University University of Utah,
300.3 edition, December 2005.

[FPV98] Alfonso Fuggetta, Gian Pietro Picco, and Giovanni Vigna. Understanding code
mobility. IEEE Trans. Softw. Eng., 24(5):342–361, 1998.

[Gal] Erick Gallesio. Stklos. http://www.stklos.org/.

[Ger06] Guillaume Germain. Concurrency oriented programming in termite scheme. In
ERLANG ’06: Proceedings of the 2006 ACM SIGPLAN workshop on Erlang,
pages 20–20, New York, NY, USA, 2006. ACM.

[GNU] GNU. Gnu compiler collection. http://gcc.gnu.org/.

[GS02] Erick Gallesio and Manuel Serrano. Biglook: a widget library for the scheme
programming language. In 2002 Usenix annual technical conference, June 2002.

[IAN] IANA. http://www.iana.org.

[IEE95] IEEE. IEEE 1003.1c-1995: Information Technology — Portable Operating
System Interface (POSIX) - System Application Program Interface (API)
Amendment 2: Threads Extension (C Language). 1995.

[INR] MIMOSA INRIA. Fairthreads. http://www-sop.inria.fr/mimosa/rp/

FairThreads.

[ISO99] ISO/IEC. ISO/IEC 9899 Programming languages – C. second edition edition,
December 1999.

179

http://www.gnu.org/software/pth/
http://www.cs.indiana.edu/cgi-bin/techreports/TRNNN.cgi?trnum=TR60
http://www.cs.indiana.edu/cgi-bin/techreports/TRNNN.cgi?trnum=TR60
http://www.stklos.org/
http://gcc.gnu.org/
http://www.iana.org
http://www-sop.inria.fr/mimosa/rp/FairThreads
http://www-sop.inria.fr/mimosa/rp/FairThreads

BIBLIOGRAPHY

[JPD] The java platform debugger architecture. http://java.sun.com/javase/

technologies/core/toolsapis/jpda/.

[JSGB00] Bill Joy, Guy Steele, James Gosling, and Gilad Bracha. The Java Language
Specification. Addison Wesley Professional, second edition, 2000.

[KCe98] R. Kelsey, W. Clinger, and J. Rees (eds.). Revised5 Report on the Algorithmic
Language Scheme. In Higher-Order and Symbolic Computation, volume 11 - 1,
August 1998.

[KMY94] Tomio Kamada, Satoshi Matsuoka, and Akinori Yonezawa. Efficient parallel
global garbage collection on massively parallel computers. In Supercomputing
’94: Proceedings of the 1994 ACM/IEEE conference on Supercomputing, pages
79–88, New York, NY, USA, 1994. ACM.

[LC97] Sylvain R. Y. Louboutin and Vinny Cahill. Comprehensive distributed garbage
collection by tracking causal dependencies of relevant mutator events. In
ICDCS ’97: Proceedings of the 17th International Conference on Distributed
Computing Systems (ICDCS ’97), page 516, Washington, DC, USA, 1997. IEEE
Computer Society.

[LF05] Mario Latendresse and Marc Feeley. Generation of fast interpreters for huffman
compressed bytecode. Sci. Comput. Program., 57(3):295–317, 2005.

[Lif] Second Life. Second life. http://www.secondlife.com.

[LOKK97] Danny B. Lange, Mitsuru Oshima, Günter Karjoth, and Kazuya Kosaka. Aglets:
Programming mobile agents in java. In WWCA ’97: Proceedings of the
International Conference on Worldwide Computing and Its Applications, pages
253–266, London, UK, 1997. Springer-Verlag.

[LQP92] Bernard Lang, Christian Queinnec, and José Piquer. Garbage collecting the
world. In POPL ’92: Proceedings of the 19th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 39–50, New York,
NY, USA, 1992. ACM.

[LY99] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Ad-
dison Wesley Professional, second edition, 1999.

[MGK03] Michael Sperber Martin Gasbichler, Eric Knauel and Richard A. Kelsey. How
to add threads to a sequential language without getting tangled up. In Scheme
Workshop 2003, November 2003.

[MMM02] A. Montresor, H. Meling, and A. Montresor. Messor: Load-balancing through
a swarm of autonomous agents, 2002.

[MP05] Louis Mandel and Marc Pouzet. Reactiveml, a reactive extension to ml. In ACM
International conference on Principles and Practice of Declarative Programming
(PPDP’05), Lisbon, Portugal, July 2005.

[MW] Merriam-Webster. http://www.m-w.com.

180

http://java.sun.com/javase/technologies/core/toolsapis/jpda/
http://java.sun.com/javase/technologies/core/toolsapis/jpda/
http://www.secondlife.com
http://www.m-w.com

BIBLIOGRAPHY

[Ous96] John Ousterhout. Why threads are a bad idea (for most purposes), January
1996.

[PCM+05] Greg Pettyjohn, John Clements, Joe Marshall, Shriram Krishnamurthi, and
Matthias Felleisen. Continuations from generalized stack inspection. In ICFP
’05: Proceedings of the tenth ACM SIGPLAN international conference on
Functional programming, pages 216–227, New York, NY, USA, 2005. ACM.

[Pug99] William Pugh. Compressing java class files. In PLDI ’99: Proceedings of
the ACM SIGPLAN 1999 conference on Programming language design and
implementation, pages 247–258, New York, NY, USA, 1999. ACM Press.

[Pyt] The Python programming language. http://www.python.org.

[Que96] Christian Queinnec. Lisp in Small Pieces. Cambridge University Press, 1996.

[RMH99] Derek Rayside, Evan Mamas, and Erik Hons. Compact java binaries for embed-
ded systems. In CASCON ’99: Proceedings of the 1999 conference of the Centre
for Advanced Studies on Collaborative research, page 9. IBM Press, 1999.

[Rub] The Ruby programming language. http://www.ruby-lang.org.

[SBS04] Manuel Serrano, Frédéric Boussinot, and Bernard Serpette. Scheme fair threads.
In PPDP ’04: Proceedings of the 6th ACM SIGPLAN international conference
on Principles and practice of declarative programming, pages 203–214, New
York, NY, USA, 2004. ACM Press.

[SCD+] Michael Sperber, William Clinger, R. Kent Dybvig, Matthew Flatt, Anton Van
Straaten, Richard Kelsey, William Clinger, Jonathan Rees, Robert Bruce Find-
ler, and Jacob Matthews. Revised6 Report on the Algorithmic Language
Scheme. http://www.r6rs.org/.

[SML] SML. Standard meta language of new jersey. http://www.smlnj.org/.

[SPDC06] Lionel Seinturier, Nicolas Pessemier, Laurence Duchien, and Thierry Coupaye.
A component model engineered with components and aspects. In Ian Gorton,
George T. Heineman, Ivica Crnkovic, Heinz W. Schmidt, Judith A. Stafford,
Clemens A. Szyperski, and Kurt C. Wallnau, editors, CBSE, volume 4063 of
Lecture Notes in Computer Science, pages 139–153. Springer, 2006.

[SS02] Bernard Paul Serpette and Manuel Serrano. Compiling scheme to jvm bytecode::
a performance study. In ICFP ’02: Proceedings of the seventh ACM SIGPLAN
international conference on Functional programming, pages 259–270, New York,
NY, USA, 2002. ACM Press.

[SSCJ98] Onn Shehory, Katia Sycara, Prasad Chalasani, and Somesh Jha. Agent cloning:
an approach to agent mobility and resource allocation. IEEE Communications
Magazine, 36(7):58–67, 1998.

[Ste84] Guy L. Steele. COMMON LISP: the language. 1984. With contributions by
Scott E. Fahlman and Richard P. Gabriel and David A. Moon and Daniel L.
Weinreb.

181

http://www.python.org
http://www.ruby-lang.org
http://www.r6rs.org/
http://www.smlnj.org/

BIBLIOGRAPHY

[Str00] Bjarne Stroustrup. The C++ Programming Language (Special 3rd Edition).
Addison-Wesley Professional, February 2000.

[Sum00] Eijiro Sumii. An implementation of transparent migration on standard scheme.
In Scheme and Functional Programming 2000, page 61, September 2000.

[Sus01] Jean-Ferdy Susini. L’approche réactive au dessus de Java: sémantique et
implémentation des SugarCubes et de Junior. PhD thesis, Thèse de doctorat
de l’ENSMP, September 2001.

[SW95] Manuel Serrano and Pierre Weis. Bigloo: A portable and optimizing compiler
for strict functional languages. In Static Analysis Symposium, pages 366–381,
1995.

[SY97] Tatsurou Sekiguchi and Akinori Yonezawa. A calculus with code mobility. In
Proceeding of the IFIP TC6 WG6.1 international workshop on Formal methods
for open object-based distributed systems, pages 21–36. Chapman & Hall, Ltd.,
1997.

[TKT+07] Anand R. Tripathi, Devdatta Kulkarni, Harsha Talkad, Muralidhar Koka,
Sandeep Karanth, Tanvir Ahmed, and Ivan Osipkov. Autonomic configura-
tion and recovery in a mobile agent-based distributed event monitoring system:
Research articles. Softw. Pract. Exper., 37(5):493–522, 2007.

[VWW96] Robert Virding, Claes Wikström, and Mike Williams. Concurrent programming
in ERLANG (2nd ed.). Prentice Hall International (UK) Ltd., Hertfordshire,
UK, UK, 1996.

[Wes03] Addison Wesley. The Unicode Standard: Version 4.0. Reading, Massashusetts,
August 2003.

[Zim04] P. Zimmer. Récursion généralisée et inférence de types avec intersection. PhD
thesis, Université de Nice Sophia Antipolis, France. INRIA Sophia Antipolis,
2004.

182

Appendix A

LURC

We have included an unpublished article written on a project related to ULM, named
“LURC: Multiple flavours of thread with common semantics”. It describes an implemen-
tation of a user-level thread library in C wich shares ULM’s reactive primitives.

Abstract

It is often hard to choose the most suited threading model for an application amongst the
many flavours of thread programming. Choices like preemptive versus cooperative, event-
driven or reactive with signals usually drive one’s adoption of a threading library. Yet
sometimes, one model does not fit all threads in an application. LURC attempts to give the
best of all models in a single unified scheduler, with semantics. It is a reactive cooperative
multi-threading user-space C library, from which threads can become asynchronous when
needed. LURC threads come in several flavours, each best suited for different needs, and
all abiding by the same semantics, with the goals of being light, fast, deterministic (as in
replayable) and customisable. In addition, event loop integration and a POSIX-like syntax
make it easy to port existing programs to, and integrated syntax allows a clearer mixing of
threading primitives into C syntax.

A.1 Introduction

When writing programs such as a Graphical User Interface, a client/server or an image pro-
cessing library, a programmer has to face the fact that not only threads are often necessary,
they are also complex. In a language such as C, which does not include threading support,
there are many threading models, and even more threading libraries. Once a lot of time is
spent in looking up the rough guides of each models and their libraries, the programmer
is then faced with choosing the one that best fits its particular needs. Asynchronous or
cooperative threads? Deterministic or non-deterministic scheduling? How do event loop
models fit within each model? And then there’s the question of efficiency and tuning to get
the most out of your threads. Event then, when all this has been sorted out, the syntax of
this threading model can be confusing: how does this fit in my language, why is this not
part of the language?
Needless to say there is a certainly threading model appropriate for each situation, but
finding one that is appropriate for every situation is a different matter. As we experience
with several models we begin to recognise the benefits and drawbacks of each model, and

183

APPENDIX A. LURC

we also come to wonder what exactly is the real difference between those models, and their
common ground? Processes have a higher context switch cost than threads in most cases,
error-prone asynchronous threads easily show random crashes due to differently scheduled
critical sections, while synchronous threads fail to benefit from multiple processors and event
loops callbacks have no real stack state. At the same time all those models have features we
want: we want multiple processor support, deterministic scheduling with semantics, perhaps
even non-determinism (as long as it does not impede on the deterministic threads), and
a way to integrate that pesky event loop that came with this or that library (try a GUI
without one).

LURC is our attempt at providing several features found in different threading models,
integrated in a way that makes sense. It is inspired by the FairThreads [INR] library, which
provides cooperative threads in two flavours: threads with a stack (backed by an underlying
POSIX [IEE95] Thread, aka Pthread), and automata threads with no stack. Their share a
common deterministic scheduler, from which stateful threads can escape (and come back)
and become fully asynchronous, thus benefiting from multiple processors or cores. Com-
munication between threads is done via objects called signals (more on that later), which
can be awaited and broadcast. ULM [Bou04a] is a programming model defining a set of
primitives for reactive and mobile programming, whose reactive side extends FairThreads
with new features such as expression-level suspension and weak preemption, as well as pro-
tection from preemption (think finally). LURC is based on our embedding of ULM in the
Scheme programming language [Epa04], without mobility, but with asynchronisation and
event loop integration.

LURC attempts to integrate several thread models in a C library, with an integrated syntax
presenting the thread primitives as an extension to the C language, within the ISO [ISO99]
C (or GCC [GNU] C for the syntax extensions) standard. LURC is designed as a lightweight
library with customisable features, based on a highly optimised scheduler, introducing sev-
eral novelties in reactive scheduling. It aims are being light and fast, adaptable to the user’s
need, whether on general purpose hardware, or on embedded platforms, while maintaining
a deterministic (replayable) scheduling. The rest of this paper is organised as follows. We
first present LURC’s features in detail, whose implementation details are revealed next.
We then present some related work, several benchmarks and future directions. Finally we
conclude.

A.2 Lurc features

This section presents LURC’s features.

A.2.1 Different types of threads

LURC supports four types of threads: two purely synchronous, the others able to switch
from synchronous to asynchronous. The common goal for synchronous threads is to be
executed by the Operating System within the same single native thread or process. This
can be achieved in two ways in LURC: either the threads share a common stack, and each
has to copy it back and forth in order to save (and restore) it when cooperating. Or each
thread has its own separate stack, and the program jumps from one to the other when
cooperating.

Copying the stack can be a costly operation for large stacks, but for small ones (threads

184

A.2. LURC FEATURES

with few function calls on the stack), it is a very small price to pay. The main advantage
is that since each synchronous thread is executed in the native process’ stack, the system
is responsible for growing it when needed, and each thread potentially has as much stack
as any other process (which the OS does a good job at delaying allocation for). The other
advantage is that for small stack usage, the space needed to save each thread’s stack is
very small, and thus a lot of threads can be created. These two advantages can easily be
overlooked, but they are key to creating large numbers of threads: one of our tests involves
the creation and scheduling of 200,000 threads with 150M of memory usage.

Having synchronous threads in a separate stack makes cooperation faster: there is no
memory that needs copying. The downside is that the initial stack size has to be set to a
sensible value. If every thread gets the same initial stack space as the native process, this
limits the number of threads we can create, since these stacks won’t be expendable by the
OS, or benefit from any other optimisation on size the OS can do. It is possible however
to use the mmap system call to resize an allocated stack, but on a 32-bit machine (which
still accounts for the majority of CPUs) the memory address space is limited, and using
mmap cannot change that. And if a thread stack cannot expand automatically and the
thread runs in too small a stack, reaching the top will cause the program to crash at very
unexpected places.

The last two types of threads start out as synchronous, but can be detached from the
cooperative scheduler and run into asynchronous-land, until it decides to reattach to the
scheduler and become synchronous again. These types of threads are not the default since
we believe asynchronisation should be an explicit step from the programmer that decides
to leave the safety of deterministic synchronous-land. We also believe that if programmers
choose to use a deterministic thread system, they realise that the places in an application
where threads need to be asynchronous are scarce. It comes at the cost of mapping
each detachable thread to a native asynchronous thread, which implies a limitation on
the number of detachable threads by the OS. The difference between these last two types
of threads lies in the way they behave when they are synchronous. One type is always
executed by its underlying Pthread, so its cooperation time (when relevant: i.e. when
attached and cooperative) is equal to a native mutex a condition variable notification, and
the underlying kernel context switch. The last type puts the underlying Pthread to sleep
when synchronous and is executed in exactly the same way than purely cooperative threads
with a separate stack, thus cooperation time is the same. For both asynchronous thread
types, the memory usage for the stack is similar to that of the underlying native thread.

Each type of thread has its own advantage: minimal memory usage for the first type,
fastest cooperation time for the second, and being able to become asynchronous for the
last two, one of which has faster cooperation time when attached. It is worth noting that
both synchronous thread types require no underlying Pthread, which can be handy in tight
corners such as embedded systems. All types of threads behave exactly similarly with
regards to the scheduling (when synchronous for the third type), so it is only a matter of
tuning what’s best for your application, or for each thread. With LURC these different
types of threads are able to run next to one another, under strict adherence to common
semantics. This provides a choice of implementation for each thread, while guaranteeing a
strictly similar behaviour.

As you can see from this example, it is possible to create different types of threads, in a
Pthread API fashion:

185

APPENDIX A. LURC

void thread_callback(void *args){

// Do something useful.

}

void start_threads(void){

lurc_thread_attr_t attr;

// Initialise the attributes.

lurc_thread_attr_init(&attr);

// Ask for a shared stack thread.

lurc_thread_attr_settype(&attr, LURC_THREAD_SYNC_COPY_TYPE);

// We want no pointer, no argument.

lurc_thread_create(NULL, &attr, &thread_callback, NULL);

// Now we want a detachable thread.

lurc_thread_attr_settype(&attr, LURC_THREAD_ASYNC_LOCK_TYPE);

// And start it.

lurc_thread_create(NULL, &attr, &thread_callback, NULL);

// Free the attributes.

lurc_thread_attr_destroy(&attr);

}

In a similar way to the Pthread API, the lurc thread attr t structure is used to hold
information regarding the initialisation of LURC threads, which is later passed on to
lurc thread create in order to create a new LURC thread. Here, after initialising this
structure, we set the thread type to LURC THREAD SYNC COPY TYPE (purely cooperative with
a shared stack), then call lurc thread create (the four arguments are: pointer to the new
thread, initialisation attributes, function to execute in the new thread and argument to
pass to that function) to create the new thread. We then proceed to create another thread
of type LURC THREAD ASYNC LOCK TYPE (asynchronous with locks), and free the resources
associated with attr. The two created threads will be started when the current thread
cooperates.

A.2.2 Cooperative deterministic scheduling

Cooperative scheduling is achieved by dividing the execution time into abstract time slices
called instants. During each instant each thread is allowed to react and can cooperate (with
lurc pause) with other threads by waiting for the next instant, or for a signal (more on
that below). The scheduling in LURC is said to be fair , in the sense that every thread which
wants to be executed (which is not waiting for a non-satisfied condition) is guaranteed to
be executed at each instant. Fairness also implies that each thread has the same priority
as every other, and ensures that there can be no thread starvation.

One of the greatest benefit of cooperative scheduling is that a deterministic behaviour can
be enforced by semantics. LURC shares the reactive semantics of ULM, which makes every
execution of a single program be scheduled in exactly the same predictable order. This is
both very useful for program design, because you know exactly how the threads are going
to be scheduled, and for debugging purposes, because a program cannot fail on random
occasions due to scheduling. The same program is guaranteed by the semantics to be
scheduled in exactly the same manner at every run: its execution is replayable (as far as
scheduling is concerned).

186

A.2. LURC FEATURES

The semantics of LURC is similar to ULM, with very few minor differences, and is thus
not presented in this paper. Indeed we believe that we can view detaching threads as ULM
agents who leave the scheduler for migration to a remote location, and attaching threads
as ULM agents who join the scheduler at the beginning of a new instant. When LURC
threads are detached, they can no longer use the cooperative API of LURC (cooperation or
control blocks)1, thus they can no longer interact with the cooperative threads (aside from
the inherent nature of shared memory) and can be considered as if no longer there.

The scheduler is entered by calling lurc main, which will then start all the created threads
and schedule them until they all are done:

void printer_callback(void *args){

char *name = (char*)args;

int n = 4;

while(n-- > 0){

printf("Thread[%s]: %d\n", name, n);

// Wait for the next instant.

lurc_pause();

}

}

void start_threads(void){

// Two threads of default type.

lurc_thread_create(NULL, NULL, &printer_callback, "A");

lurc_thread_create(NULL, NULL, &printer_callback, "B");

// Now schedule them and let them play.

lurc_main();

}

A.2.3 Signals

Signals in LURC are objects which start every instant in an non-emitted state and can
be changed to the emitted state exactly once during the instant. Threads can wait for
non-emitted signals, which can mean waiting across instants and is a potential cooperation
point (if the signal is non-emitted). Waiting for an already emitted signal simply returns
immediately without cooperation. Signals can be shared by multiple threads and are thus
visible by all. When a thread emits a signal (with lurc signal emit), all threads waiting
for it (with lurc signal await) will be awoken and allowed to resume execution within
the instant. The emitted state of a signal remains in effect until the next instant.

More complex event objects can be created using signals, in order to provide value associ-
ation, single-thread notification or even multiple emissions in a single instant. It was the
view of Gérard Boudol when creating ULM that the scheduler should concentrate on simple
signals and leave the conception of more complex cooperation mechanisms we call events
to the programmer. It is based on the idea that there are several orthogonal definitions of
events, all of which can be implemented with signals, so it is a feature of the scheduler not
to lock the programmer to a specific type of event, and to give him the means to create
whatever event type fits his needs. In section A.5 we give an example of how this proved
to be beneficial to us.

1This should however change in future versions of LURC as described in A.6.2.

187

APPENDIX A. LURC

In the following example, we use a signal to synchronise the two printers, so that the thread
which prints “World” will always print it after the thread which prints “Hello”. Doing so
ensures the scheduling we want, despite the fact that starting the world printer first would
schedule it before the other.

void hello_printer(void *args){

lurc_signal_t *relay = (lurc_signal_t*)args;

while(1){

printf("Hello ");

// Emit the relay signal.

lurc_signal_emit(relay);

// Wait for the next instant.

lurc_pause();

}

}

void world_printer(void *args){

lurc_signal_t *relay = (lurc_signal_t*)args;

while(1){

// Await the relay signal.

lurc_signal_await(relay);

printf("World\n");

// Wait for the next instant.

lurc_pause();

}

}

void start_threads(void){

// Create a signal.

lurc_signal_t relay;

lurc_signal_init(&relay, NULL);

// Create two threads of default type.

lurc_thread_create(NULL, NULL, &world_printer, &relay);

lurc_thread_create(NULL, NULL, &hello_printer, &relay);

// Now schedule them and let them play.

lurc_main();

}

A.2.4 Integrated syntax

It is not possible in C to extend the syntax and therefore, not possible to introduce new
statements for thread synchronisation. So in ISO C, if we want to execute a block of code
in a special way regarding its scheduling (we call these blocks control blocks, we have to use
a toplevel function for the block of code, and call a LURC library function by passing it a
pointer to this function. Aside from destructuring the code (what if the while statement
was a function call?), passing arguments to this toplevel function is always a problem.
In order to stay compatible with ISO C, LURC’s control blocks are available in the form of
library functions, taking pointers to functions and their arguments. But if LURC is used
with the GCC compiler it offers a set of GCC-specific preprocessing macros which emulate
a syntax extension to C, by providing inline control blocks, and by providing a way of
declaring thread callbacks (their starting function) with automated packing and unpacking
of arguments.

188

A.2. LURC FEATURES

The following control blocks will be shown with this integrated syntax, in order to illustrate
their usefulness. Remember that they are not necessary and are just a syntactic layer hiding
the calls to the real library functions.
If the programmer still needs to use function pointers, LURC provides a set of ISO CPP
macros named LURC CB*, which declare callback functions with automatic packing and un-
packing of arguments. For example, the LURC CB1(printer, char*, name){...} declares
a function which takes one argument of type char* named name, and several utility functions
such as printer thread or printer when, which expand into calls to lurc thread create

or lurc when with the proper argument packing. This reduces greatly the amount of code
the programmer has to write, and provides type-checking on callback arguments.

A.2.5 Control blocks

Control blocks are blocks of code whose behaviour depend on signals or scheduling. Since
thread synchronisation is central to multi-thread programming, we view these blocks as
though they were an extension to the C language, analogous to the for or if statements in
C.

Suspension

A suspension block is a block of C code which can only be executed during the instants
in which a given signal has been emitted. The block will be suspended at each beginning
of instant until the given signal is emitted before it can resume execution. The library
function is lurc when and its syntactic extension is LURC WHEN.
In the following example we have three threads: the first one prints its parameter string
at each instant. The second prints it every instant when the even signal is emitted: it is
suspended on this signal. The third thread emits the even signal every other instant, thus
resulting in the first thread printing at every instant while the third one prints every other
instant.

LURC_CB1(printer, char*, name){

while(1){

printf("Thread[%s]\n", name);

lurc_pause();

}

}

LURC_CB1(even, lurc_signal_t, sig){

// Print only when sig is emitted.

printer_when(&sig, "even");

}

LURC_CB1(even_emitter,

lurc_signal_t, sig){

while(1){

// Even instant.

lurc_signal_emit(&sig);

lurc_pause();

// Odd instant.

lurc_pause();

}

189

APPENDIX A. LURC

}

void start_threads(){

lurc_signal_t sig;

lurc_signal_init(&sig, NULL);

// Start a printer at every instant. Notice that the two first NULL args

// are the same as the two first lurc_thread_create arguments.

printer_thread(NULL, NULL, "always");

// Start a printer at every even instant.

even_thread(NULL, NULL, sig);

// And the emitter at even instants.

even_emitter_thread(NULL, NULL, sig);

}

Weak preemption

Weak preemption is a means to control when and how a block of code can be preempted,
akin to exception raising. A preemption block is a block of C code which can be halted
(terminated, given up) when a given signal is emitted. This means that since signals are
broadcast, threads can preempt themselves as well as other threads. However, preemption
in LURC happens at the End Of Instant (EOI: period of time when the scheduler is ter-
minating an instant and preparing to start the next one), and not right when the signal
is emitted. This means that preempted preemption blocks will always resume their execu-
tion after the preemption block at the next instant. Weak preemption is available as the
lurc watch function or the LURC WATCH syntactic extension.

Amongst other things, preemption blocks allow threads to get out of signal waiting, or
suspension blocks. In the following example we define a function exec up to 4 which is
meant to be executed by a thread, and will execute the given callback function (lurc cb t

is the type of callbacks in LURC) for at most 4 instants. This is done using preemption on
a signal emitted by another threads in 4 instants.

// Print every instant.

LURC_CB0(printer){

while(1){

printf("Alive\n");

lurc_pause();

}

}

// Emits sig in n instants.

LURC_CB2(timer, lurc_signal_t*, sig,

int, n){

// Wait for n instants.

while(n-- > 0){

lurc_pause();

}

// Then emit the signal.

lurc_signal_emit(sig);

}

// Executes cb for at most n instants.

190

A.2. LURC FEATURES

void exec_up_to(lurc_cb_t cb, int n){

// Create a signal for the preemption.

lurc_signal_t sig;

lurc_signal_init(&sig);

// Emit sig in n instants.

timer_thread(NULL, NULL, &sig, n);

// Preempt cb when sig is emitted.

LURC_WATCH(&sig){

cb();

}

}

// Now use all this.

void example(void){

// Print "Alive" for 3 instants.

exec_up_to(&printer, 3);

}

Protection

A protection block actually consists of two blocks of C code: a protected block, and a
protector block. The effect is similar to try/finally blocks in C++ or Java. The pro-
tected block will be executed normally, but if preemption causes it to be halted, the next
instant will start with execution of the protector block before propagating the preemption
further up. If no preemption happens and the protected block terminates normally, the
protector block is still executed. This makes sure that the protector block is always exe-
cuted, whatever happens in the protected block. Protection blocks come in the forms of the
lurc protect with function or the LURC PROTECT/LURC WITH/LURC END syntactic macros.

The next example illustrates the use for protector blocks by providing a protected read

function, used by threads wishing to read a file by blocks of 256 bytes each instant, while
making sure that preemption will not cause the file descriptor to stay open.

void protected_read(char *file){

FILE* f = fopen(file, "r");

// Do some protected reading on f.

LURC_PROTECT{

// Do some reading on f.

char buffer[256];

int n;

while((n = fread(buffer, sizeof(char), 256, f)) != 0){

// Do something.

printf("Read %d chars\n", n);

// And cooperate.

lurc_pause();

}

}LURC_WITH{

// We must close this file.

printf("Closing file\n");

fclose(f);

}LURC_END;

// Here we are sure f has been closed.

}

191

APPENDIX A. LURC

A.2.6 Event loop integration

An event loop is a form of cooperative scheduling where callbacks are called atomically upon
emission of an event by a single loop. The biggest limitation of event loops is callbacks
cannot keep state across activations, thus seriously limiting the analogy with cooperative
threads. Event loops on the other hand offer a way to transform most blocking function
calls into an event, which does not block the event loop. Event loops are commonly found
in client/server programs and graphical user interfaces, and often have to coexist with
threading systems because they cannot be easily removed. How they coexist often proves
to be problematic, even more so when the threading model is cooperative and both its
scheduler and the event loop insist in being the main loop.

We have chosen to integrate an event loop in order to avoid most causes for detaching
a thread: in FairThreads it is common to become asynchronous just to make a blocking
function call, in order not to block the cooperative scheduler. We feel the required under-
lying native thread is wasted for this purpose and can easily be replaced by an event loop
integration.

In order to integrate event loop based programs into cooperative programs, two special
types of signals have been introduced: input/output signals and timeout signals. These
signals are emitted automatically by the scheduler at the beginning of each instant when
their specific condition have been met: either when a file description has available data to
read (or data has been written), or when a given timeout has been reached

Because the event loop signals integrate well with the reactive signals approach, we call
the part of reactive scheduling dealing with such signals the Reactive Event Loop (REL).
REL signals are created like normal signals, but with a special type. There are four types
of signals in LURC: plain, Input/Output notification, timeout or idle. The type of signal
is specified upon signal initialisation via a lurc signal attr settype function call.

The following example illustrates how the REL can be used to read asynchronous data,
such as from sockets, by cooperating each time until a REL signal is emitted by the sched-
uler when data is available from the socket. As in the previous example, the function
protected read is meant to be called by a thread, and is preemption-safe.

void protected_read(int socket){

// Prepare a signal for this socket.

lurc_signal_attr_t attr;

lurc_signal_t sig;

// Initialise the attributes.

lurc_signal_attr_init(&attr);

// We want IO notification for read.

lurc_signal_attr_settype(&attr, LURC_SIGNAL_IO_TYPE, socket, LURC_EVT_READ);

lurc_signal_init(&sig, &attr);

lurc_signal_attr_destroy(&attr);

LURC_PROTECT{

// Do some protected reading on socket.

char buffer[256];

int n;

LURC_WHEN(&sig){

while((n = read(socket, buffer, 256)) > 0){

printf("Read %d chars\n", n);

// Cooperate to reset the signal.

192

A.2. LURC FEATURES

lurc_pause();

}

}

}LURC_WITH{

// Close the socket and signal.

printf("Closing down\n");

close(socket);

lurc_signal_destroy(sig);

}LURC_END

// Here we’re sure socket has been closed.

}

In order to minimise the effort required to do common blocking IO operations, LURC
provides a POSIX-like replacement API for several operations. Using this API is usually
better since LURC REL signals can be more efficiently managed by LURC and it does not
require a program to be rewritten to transform blocking IO calls into cooperation points
(aside from renaming calls like read to lurc io read for example). Here is the same example
as above but using LURC’s POSIX replacement API.

void protected_read(int socket){

LURC_PROTECT{

// Do some protected reading on socket.

char buffer[256];

int n = lurc_io_read(socket, buffer, 256);

printf("Read %d chars\n", n);

}LURC_WITH{

// Close the socket and signal.

printf("Closing down\n");

close(socket);

}LURC_END

// Here we’re sure socket has been closed.

}

This approach has several limitations however. The first one is that calls to potentially
blocking functions have to be replaced by their equivalent cooperating function in LURC.
This can be simple using a preprocessor macro to replace all the function calls in your
code. It can be trickier for third-party applications, through it is still possible to wrap the
corresponding system calls at runtime. Future LURC versions will provide this option.
A second limitation is that obviously the corresponding cooperating functions have to be
written, and possibly integrated in LURC. A number of them have already been defined,
and we plan to add more in the future for most common blocking IO functions such as DNS
calls (possibly using external libraries that support asynchronous calls to map them to our
REL).
The inner workings of the REL is further discussed in the Implementation section.

A.2.7 Garbage Collector

LURC does not require a Garbage Collector, but if an application wishes to use LURC
threads in combination with a GC (as is often the case when compiling a programming
language that requires a GC to C), the GC has to know the threading system in order
to collect the memory properly. This is usually done by extending the GC with support
for each known threading library, requiring inside knowledge of the inner workings of the
threading library in most cases, and thus being subject to implementation changes.

193

APPENDIX A. LURC

LURC supports GCs in general by providing an API for GCs to query LURC about where
thread stacks are and how to stop and restart them. This should be enough for any GC
implementation to work with LURC threads, since most GCs for C are limited to scanning
the thread stacks without knowledge of what is in there. We tested our API in practise
with the Boehm GC – probably the most used GC – by adding support for LURC, which
proved to be fairly simple and efficient. We think any GC can be extended in the same way
to support LURC threads.

A.2.8 Modularity

During the development of LURC we realised that each added feature greatly impacted with
the others. Suspension and preemption are very simple on their own, but implementing the
two features in a scheduler imposes a great deal of complexity, and performance is impacted,
even when only one of them is used at a time. Protection suffers from the same problem,
albeit less so, since protection without preemption makes no sense, and the combination
of suspension, preemption and protection only adds a slight overhead compared to the
previous two features.

A price is paid for each feature, even when it is not used, and we still want to have the
fastest possible implementation of each of the features previously presented, while accepting
the fact that some users will not have use for all the features. So we added the possibility
to enable or disable each feature separately when compiling LURC: each of suspension,
preemption, protection, detachable threads, the REL or the GC can be disabled and the
compiled code will be optimised in circumstance, leading to the best scheduling of the
wanted features. We feel it is very important if the LURC scheduler is to be used in
constrained systems that the price paid for the scheduling fits the feature requirements.

A.3 Implementation

LURC’s implementation is divided into two fairly independent parts: how threads are
implemented, and how they are scheduled. The first part of this section describes the
techniques used for creating the four types of threads LURC supports, and how context
switches work between those different threads. The second part describes the techniques
used to effectively minimise and distribute the scheduling algorithm between the context
switches. On top of that, we will discuss in a third part the syntactic sugar offered by
LURC to declare control blocks in C with no special preprocessing.

A.3.1 Threads

Having four kinds of threads aboard a single scheduler is no trivial task, but a necessary
one since no single thread type could satisfy efficiently the three goals we strive for in our
threads (speed, memory, detaching). Fortunately, both the thread creation and the context
switching are easy to abstract and separate from the scheduling, allowing the addition of
each new type of thread to have a very small impact on the scheduling code.

A note about native threads

We are going to describe how LURC threads are implemented. The first thing to know
is that LURC threads are not kernel-level threads. They are user-level threads, and thus

194

A.3. IMPLEMENTATION

rely on native (kernel-level) threads for execution. When there are no asynchronous LURC
threads, the native process will be executing every LURC thread as described below. When
there are asynchronous LURC threads, we rely on native threads in order to have asyn-
chronous threads of execution with a shared memory. This is done with Pthreads, which is
a portable threading API which gives us access to asynchronous threads on most platforms
(and indeed there are very few platforms which provide only synchronous Pthreads). Since
in Pthreads the native process (what a program runs in before starting any Pthread) is an
implicit Pthread we call it the Main Pthread. In order to simplify the following section
we call the native process the Main Pthread, regardless of whether or not there are any
Pthreads in play.

A note about stacks

The stack is an area of memory in which a thread will be executed. Local variables and
function parameters are allocated into it, and return addresses of functions are stored in it.
Usually a stack is just a chunk of memory allocated in the heap somewhere. The initial and
maximum sizes of a stack is set by the Operating System, but they usually are optimised
such that only the used portion of the stack is effectively mapped in memory, and so that
the minimum stack size is enough for most threads to avoid frequent remapping if the stack
should grow. On Linux for example, the stack is allocated at the top of the heap, and grows
downwards, while most heap allocation is done in the lower half of the heap. This means
that the OS can grow the stack fairly without restraint if needed. Pthread stacks (except
the Main Pthread, which because it is implicit, is at the top of the heap) are allocated in
the middle of the heap, next to one another, which means that their maximum sizes are
enforced. A Pthread stack usually is not lazily allocated, and can never grow past their
maximum size since they would collide with one another.

The size considerations when talking about stacks are very important: what initial, effective
and maximum sizes should be can play quite a large role in the performance of the thread.
Ideally one would allocate an initial stack of a fair yet small size, and grow the allocated
stack when needed, in order to keep the size and reallocation frequency low. But it is not
possible to resize a stack: in C when you want to resize a chunk of memory, you use realloc
which will try to increase the chunk’s size. Unless it would collide with another allocated
chunk, in which case realloc will move the chunk to an appropriate place in the heap and
return the new location. This is not acceptable for a stack, since all variables allocated
in the stack (local variables and function parameters) are accessed by address within this
stack. So moving the stack around would require walking the stack to update all those
addresses by the shift in stack location, which is clearly a complicated and costly feat in C.

While there are in some OSes (like Linux) ways to circumvent this limitation, by mapping
a chunk of memory to a certain virtual address (mmap) and being able to relocate the chunk
while keeping the old mapped addresses valid (mremap), this is not portable and does not
help so much because of memory space. Indeed if you allocate memory locations X to Y
for a thread stack, and then memory locations Y to Z for the next stack, even if the first
stack has been lazily allocated using mmap it cannot be remapped to a bigger size that would
collide with the address space of the second thread. It is possible to prevent that by leaving
enough space between each thread’s stack’s allocation, especially in a 64-bit address space.
But in a 32-bit address space (which usually has reserved bits) with the default value on
Linux for stacks (8M max) assuming we use all address space for thread stack allocation
that still makes for a limit of 256 threads.

195

APPENDIX A. LURC

(a) Starting the new thread (b) Cooperating: saving the stack

(c) Cooperating: restoring the stack (d) Cooperation done

Figure A.1: Creating a Synchronous Copy Thread

The Synchronous Copy thread (shared stacks)

This is the default type of thread in LURC. Since only one synchronous thread is executed
at a time, they are all executed by the same native process (that is, the process that called
lurc main described below). These threads run in the normal process’ stack, and when
not running the relevant portion of their stack is saved in the heap. Saving this thread’s
continuation (program counter and related CPU registers) is done using setjmp2, and the
switching to one of these thread done with longjmp. Its data structure consists of a jmp buf

(the thread’s continuation), and a block of memory to save its stack when it is cooperating.

The creation and cooperation of synchronous copy threads is illustrated in Figure A.1. It is
divided in four steps a to d , each featuring to the left the data structures used to represent
LURC threads, and to the right the native process’ stack located in the heap. In these
diagrams, the thunder-shaped arrow and label to the right of the stack indicates which
native process is executing in the stack. Since we will further talk about Pthreads, we
regard the native process as the main Pthread. The stack grows downwards, and thus the

2We do not use sigsetjmp merely because we handle signal masks elsewhere for implementation reasons.

196

A.3. IMPLEMENTATION

main function is located at the top of the execution stack.
LURC scheduling is done within the lurc main function. This function schedules every
LURC thread until they all terminate, at which point lurc main returns. Upon entering
this function, a continuation is saved (named j1 in the figure) which is used later on for
starting new threads. Then the first created thread is started. In diagram a, the thread
named LurcThreadSyncCopy1 is running. Its function c1 has been called by lurc main

and it has at one point of its execution called lurc pause in order to cooperate.
In order to save this thread’s state we need to save its stack and its continuation. This is
done by getting and saving the continuation j2 and the stack from the call to cb1 down to
this continuation. Once this is saved, we can jump to the next thread’s continuation. Here
we have a brand new thread named LurcThreadSyncCopy2. New threads have an initial
empty stack, and use the main continuation j1 in order to start it. Once we jump to this
continuation (we’re back in lurc main) we can start the new thread by calling its function
cb2 as shown in diagram b.
When this new thread wants to cooperate (back to the first thread in our example), it
will do as seen before and save its continuation (j3) and stack, then jump to the next
thread’s continuation. But the next thread has a saved stack, so before jumping we need
to restore it, and in that case it means growing the stack first to make sure there is enough
space to restore the stack. Growing the stack is done simply by using recursion to allocate
stack memory until there is enough space to restore the stack without overwriting over the
current function.
In diagram c the function grow stack has grown the stack enough and copies the first
thread’s stack over its upper stack, then jumps to the first thread’s continuation to resume
execution as shown in diagram d .
Of course, sometimes cooperation occurs between a large stack to a small stack and there
is no need to grow it, but cooperation always costs two memory copying operations: the
saving and the restoring. This technique is very old, and still used today by many threading
implementations (such as MzScheme Virtual Machine [Fla05]).
While this allows for a very large number of threads because the memory usage of each
thread is strictly limited to its stack usage and thread creation is not limited by address
space, it also means that all these threads share a common stack address space and cannot
communicate stack pointers with one another. We think it is a small price to pay when one
needs to have hundreds of thousands of threads running with minimal memory usage.

The Synchronous Jump thread (separate stacks)

This type of cooperative thread is executed in its own stack space, which thus has no need
to be saved and restored. Like the first type of LURC thread, it is executed by the main
process and its continuation is saved by setjmp. Its data structure consists of a jmp buf

(the continuation) and a block of memory for its stack. This block of memory is allocated
when creating the thread and spans its lifetime. The downside is that it cannot be resized
(since that would mean it could be relocated and stack variables’ addresses would become
invalid).
The technique for creating this type of thread has been illustrated by GNU/Pth [Eng00], by
using an alternate signal handler stack to bootstrap a block of memory into an executable
stack. The problem they solved was how to turn a block of memory into a stack we can
jump to, to start executing the thread’s code. The idea is that the current process sends
itself a signal, asking for the signal handler to be called on that new block of memory.

197

APPENDIX A. LURC

(a) Creating the first thread (b) Running the first thread

(c) Creating a second thread (d) Running the second thread

Figure A.2: Creating a Synchronous Jump Thread

The signal handler then saves the continuation and returns. Upon completion of the signal
handler code, the saved continuation can be used by the new thread to jump into its new
stack.

In diagram c we create a new thread of the same type, thus allocating a new stack for it
and getting an initial continuation of j3. Cooperating from the first thread to the second
is shown in diagram d . It consists simply in saving the continuation (j4) and jumping
to the new thread to start its function cb2. No memory copy operation is required when
cooperating to and from this type of thread.

The Asynchronous Locked threads

This is a type of thread that can become asynchronous, but starts out as synchronous Since
a thread’s stack cannot be relocated to a different address, if a thread starts executing in one
stack, this stack’s address can never change throughout its execution. The easiest and most
portable way to have a thread asynchronous is by using Pthreads as the underlying thread.
Pthreads also cannot have their stacks moved, thus if a thread is to be made asynchronous
at any time of its execution, it must be mapped to a Pthread during the whole time, even
while cooperative.

So this type of thread is always executed in a Pthread, and Pthread mutex locks and
condition variables are used to make sure that only one cooperative thread is executed at

198

A.3. IMPLEMENTATION

(a) Creating the thread (b) Saving the current thread

(c) Starting the new thread

Figure A.3: Creating an Asynchronous Jump Thread

the same time. Since in Pthreads the main process is also a Pthread, you can think of all
purely cooperative threads (the first two types) as executing in the main Pthread, while
detachable LURC threads execute each in their own Pthread.

Cooperating in and out of this type of thread is done using locks, and the continuation
does not need to be saved, nor does the stack. Becoming asynchronous is done simply by
removing the thread from the scheduler and cooperating to the next thread without waiting
for it to cooperate, and simply keep on executing asynchronously. Attaching on the other
hand requires grabbing a mutex to insert the thread into a list of threads to attach, to be
incorporated in the scheduler at the next instant.

Asynchronous Jump threads

This type of thread can also become asynchronous, but it differs with the lock type when
it is cooperative. The main idea is that for threads which are mainly cooperative and only
become asynchronous very few times, we want to improve the cooperation time. Like the
previous type of thread, we need a Pthread underneath the LURC thread, but instead of
doing the synchronous cooperation with Pthread locks, we put the Pthread in a stasis,

199

APPENDIX A. LURC

(a) Saving the continuation (b) Growing the stack

(c) Restoring the continuation

Figure A.4: Detaching an Asynchronous Jump Thread

while the main Pthread (the one that executes both purely cooperative types of threads)
goes in his stack to execute the thread, just like the Synchronous Jump type of thread.

Figure A.3 illustrates the process of creating such a thread. In diagram a, we have a
Synchronous Copy thread named SyncCopy1 which creates a thread of type Asynchronous
Jump named ASyncJump1. We do that by creating a Pthread in which we save a top
continuation we call the waiting continuation, then we grow the stack by using recursion
and stack allocation, in order to leave a fixed amount of space. This space will later be used
to put the Pthread in a stasis. After having left that space, we save a working continuation
j3 which will later be used as the entry point for the main Pthread, then the thread jumps
to the waiting continuation j2 in order to leave the working stack for the waiting stack . It
then enters the stasis by awaiting a Pthread condition variable. This thread is now ready
to be started when the current thread cooperates.

Its first activation is shown in diagram b, when the current thread cooperates to it by
jumping in its working continuation, and starting its entry function. From this time on,
the underlying Pthread will remain waiting in a stasis, while the main Pthread will jump
in and out of its working stack just as it does for the Synchronous Jump threads.

In Figure A.4 we present how detaching is done. In diagram a we start with our pre-

200

A.3. IMPLEMENTATION

vious scenario where the SyncCopy1 thread cooperated to our ASyncJump1 thread. The
latter thread now wants to detach from the scheduler and become asynchronous. It calls
lurc detach, which saves the working continuation j3, then jumps in the main continu-
ation j1 in order to get away from the ASyncJump1 stack. In diagram b it then signals
Pthread2 in order to awaken it from its stasis. From then on, the main Pthread cooperates
to the next synchronous thread, and the AsyncJump1 thread is asynchronous: after awak-
ening from the stasis it jumps back to the working continuation j3 and can thus return
from the lurc detach call in diagram c.
This is an interesting type of thread because it can be executed by two underlying native
threads in its lifetime. If we compare it to the Asynchronous Lock type, cooperation is
faster when attached, while attaching and detaching is probably a little more expensive.

A.3.2 Scheduling

What can we optimise ?

One of the goals of LURC is, of course, to have an efficient scheduling. Traditional
FairThread-like scheduling (of threads, not automata), involves two main scheduling places:
at the end of instant, and when emitting a signal. In only these two places is determined the
list of threads allowed to run, which means that cooperation consists simply in cooperating
to the next thread in the list (constant time), or entering the end of instant if there is none.
The end of instant is the phase where a lot of things happen: preempted threads get actually
preempted, attaching threads are inserted, signals are reset, REL signals are emitted and
threads are traversed in order to determine whether they will be scheduled or not. This
means that the time spent in this phase is proportional to the number of threads to preempt,
insert, and inspect for scheduling, as well as for signal to reset and emit.
Signals to reset is a phase already made costless in previous FairThread optimisations by
associating the emitted state of the signal with the instant number in which it was emitted.
Thus increasing the instant number automatically resets every signal.
Emitting signals from the REL cannot be optimised, since only the REL knows which
signals will be emitted, the only place we can make this faster is by emitting them all at
once instead of sequentially, at the cost of sanity in the emit function: we will see later
that scheduling takes mostly place there, making it a complex function. Constructing the
set of objects used during the REL evaluation (in our case, arguments to select) can be
cached efficiently and reconstructed only when modified.
Inserting attaching threads requires a mutex to make sure the list does not change while
incorporating them. Other than that it comes down to appending this list to the list of
threads to run (since detached threads cannot have a suspension/preemption context and
cannot be waiting for a signal, they must be runnable), which is constant.
So the only things left to optimise are preemption and inspection for runnable state. These
two things can be done at once, but it still means the traversal is proportional to the number
of threads inspected, which results in the end of instant having a cost of O(t+s) with t the
number of threads to inspect (all but those detached) and s the number of REL signals to
emit.

Introducing the End Of Action phase

As stated previously, scheduling happens primarily in the EOI phase, and when emitting
a signal. When emitting a signal we have to determine which threads are going to be

201

APPENDIX A. LURC

scheduled later within the instant as a result of the signal emission. On the other hand,
during the End Of Instant phase, we have to determine which threads are going to be
scheduled during the next instant.

Since the time spent in the EOI is proportional to the number of threads to examine, the
more you have threads, the more time the scheduler is going to take at the EOI. This means
that there will be a lag at the EOI when you have many threads running. What we propose
is to spread as much of the EOI scheduling as possible during the instant, by introducing
the concept of an End Of Action phase.

Suppose a thread wants to cooperate with lurc pause, which means it will be waiting for
the next instant. The semantics of lurc pause impose that the thread will not do anything
anymore during the current instant: it will not do a thing until the next instant, regardless
of whether preemption will apply at the EOI, or whether suspension clauses will cause it
not to be scheduled during the next instant. When a thread is done for an instant, we call
this time the EOA for this thread, and we try to schedule it for the next instant before the
EOI.

Indeed, for several situations we do not need to await the EOI to know what this thread
will be doing in the next instant. Suppose it does not have any preemption or suspension
context: at the EOI the scheduler will determine that the thread has to run at the next
instant. Guess what: we know it already! So we have a list of threads to schedule at the
next instant for sure, and threads reaching their EOA without any constraints (preemption
or suspension) will just append themselves in this list, which will be used as a starting point
when building the list of threads to run at the EOI, thus removing the need to examine
this thread at the EOI.

Now what happens at the EOA for a thread with preemption? Well, once again there
are some things we are certain of: if the preemption signal has already been emitted, the
thread will be preempted for sure (whether or not the protector clauses will be allowed to
run at the next instant due to suspension) and so we can already prepare the preemption
to see whether some protector clauses will have to be run or not, and what context (w.r.t.
suspension) this thread will have at the next instant. If this thread has no suspension
context for the next instant, we also put it in the list of thread to run at the next instant.

The other possibility when looking at a thread at the EOA with a preemption context is
when the preemption signal has not yet been emitted. We have no way of knowing whether
the signal will be emitted or not during the instant later on. So since we don’t know, we’ll
put it in the list of threads to run at the next instant too, and if that signal is emitted
later on, we’ll reconsider that choice. A thread for which we planned preemption can also
be re-preempted later on during the instant by a higher-level preemption clause. So when
emitting a signal which triggers preemption for a thread which has passed its EOA, we can
reconsider the preemption for the next instant.

An EOA for a thread which has a suspension context can be simple too: at the next
instant it will have to wait for its topmost suspension clause’s signal. Since the thread was
running until its EOA it means all its suspension clauses were satisfied, all those signals
were emitted, and so the list of threads waiting for them in the signal objects must be
empty, and will remain empty until the EOI when we determine which thread will have to
wait for which signals, and be put in the waiting lists. But wait, if this list is to remain
empty until the EOI, why don’t we fill it now? We use the waiting list of a signal in two
ways depending on whether the signal has been emitted or not: if the signal has not been
emitted yet (his emission counter is inferior to the current instant), the list consists of the

202

A.3. IMPLEMENTATION

Figure A.5: The End Of Action

threads waiting for the signal for this instant. If the signal has already been emitted, it
will not be emitted anymore during the instant, and so the list holds the threads waiting
for this signal, but only after the EOI, when the instant counter will be increased and
automagically shift this list from the second type of use to the first type.

In practise, we can already schedule threads with a suspension context for the next instant
when there are no preemption clauses above the topmost suspension clause. If there are
preemption clauses below and they are triggered between the EOA and the EOI, we simply
mark the thread so that it knows where to continue when it will be allowed to, but this does
not change its scheduling for the next instant. Now if there are preemption clauses above
the topmost suspension clause, either the preemption is assured (the signal has already
been emitted) and the thread is treated as a thread with preemption and no suspension
(the suspension clause would be preempted at the EOI anyways). And if the preemption
is not assured we assume it will be waiting for the suspension signal at the next instant,
and rely on the emission of the preemption signal to reconsider that case and cancel the
suspension.

The End Of Action phase is summarized in Figure A.5 .

The not-EOA cases

There are two more complex cases of scheduling before the EOI, the first one is for threads
which do not wait for the next instant, but wait for an absent signal. This is not a case of
EOA, since the thread might be awoken later during the instant. But there are only two
ways threads can reach the next instant: waiting for it with lurc pause which we already
covered, or by waiting for a signal not emitted during an instant. So this is the only case
left. What we do is assume the signal will never be emitted and treat the thread as if it
reached its EOA as described above. If the signal is emitted during the instant, we simply
cancel its scheduling for the next instant.

The second complex case is how to schedule threads which do not even get executed during

203

APPENDIX A. LURC

the instant, because they are waiting for an absent signal. The previous cases considered
the next instant scheduling at the EOA, but some threads do not have any of the action in
EOA. This is always threads waiting for a signal which does not get emitted, but we usually
don’t have to prepare their next instant’s scheduling, since they will still be awaiting the
same signal if it does not get emitted during this instant. In fact we don’t even look at
them if we don’t wake them up, or preempt them. But suppose a signal is emitted which
would preempt the thread’s waiting at the EOI: we are now looking at a thread exactly in
the first non-EOA case, and plan its next instant in the same way.

Unschedulable things left to do at the EOI

With the techniques presented here there is virtually nothing left at the EOI: all the schedul-
ing is done during signal emission or at the EOA. But there is one exception, which is twisted
enough not to happen often: when a thread is waiting for a signal, which will not be emitted
during the instant, and this waiting will be preempted at the EOI, but there is a suspension
clause above the preemption clause. Here is such an example:

This is far fetched and in our experience seldom happens, but we have no way to treat this:
at the EOI the thread will still be waiting for the bottom signal (the preempted wait), but
within the instant we already know it will not be waiting for it at the next instant, but
instead will be waiting for the top signal (the one above the preemption clause). We cannot
remove the thread from the bottom signal’s waiting list until the EOI since we don’t know
it will not be emitted, so at the EOI we have to remove it from this list and insert it in the
top signal’s waiting list. For that we have created a list of threads to visit at the EOI, in
which we put all threads that meet this criteria when emitting a preemption signal.

Aside from this rare case, the only things left to do at the EOI are: treat the special cases,
increment the instant number, treat the REL and incorporate the attaching threads. To
the best of our knowledge, the only things we could further remove from the EOI are the
REL and attaching threads, if we change the semantics and consider that external signals
can be emitted and threads can reattach during the instant, at the cost of increasing the
number of times we must call select and grab locks, which we do not think would be of
any benefit.

EOA scheduling: the conclusion

What our scheduler achieves in terms of scheduling is a minimal load at the EOI, by
spreading the scheduling as much as possible within the instant, and while this does not
reduce the complexity, it does spread it as much and as fairly as possible, in order to reduce
the EOI time to a minimum, so as to hide the impact of the scheduler’s implementation
from a program.

A.3.3 Syntactic sugar

Control blocks and macros

When introducing threads and control blocks in C, perhaps the most striking and painful
thing for the user is the syntax problem: there are no anonymous functions in C and so
every library function dealing with code control has to deal with function pointers. For
each new thread you start you have to declare a new function for its body, figure a way
to pass it parameters (no variable capture there to help you), and give pointers to this

204

A.3. IMPLEMENTATION

function when creating the thread. The same goes for control blocks: LURC is a C library
and as such, does not introduce new blocks similar to the if statement in C: you always
have to declare a function with the control block’s body, and pass a pointer to this function
to LURC in order to enter a new control block with this function as body.

This is both tedious, very frustrating to users, and makes both reading and writing code
cryptic at best. In ISO C there is no way to add new instructions to the language without
changing the compiler, but there is a way to use some macros to transform new instructions
into ISO C. However, using ISO macros there is no way to introduce control blocks in a
function: the only workaround would be to introduce the code needed to setup the control
block above it and the cleanup code below it, but that would expose some of the LURC
library internals and lead to a lot of code duplication.

What we really want is to transform this macro into something calling the equivalent library
function. This is not directly possible since blocks of code in C are not reified. But where
ISO C has shortcomings, GCC C offers new solutions. GCC has long had a set of extensions
to ISO C, which tend to be at the same time useful, widely used, and very often end up
in the next version of ISO C. Moreover, GCC is one of the most widely used C compiler,
and available in a wide range of Operating Systems. One of the particular extension of
GCC C is that of nested functions [Bre88], which allow functions to be defined inside other
functions, thus giving a name to a block of code, which will on top of that capture the
current environment and allow the nested function to use any variable declared in the
outside function. The only limitation is the lifespan of the inner function which ends when
the outside function returns, but this is good enough for us. The LURC WHEN macro can
thus be implemented as follows:

// Defining it thus.

#define LURC_WHEN(sig) \

auto void __gensym_function(void*); \

lurc_when(sig, &__gensym_function, NULL); \

auto void __gensym_function(void* __gensym_p)

// Allows us to call it thus.

LURC_WHEN(&signal){

printf("yeepee\n");

}

// Which expands in.

auto void __lurc_l112_function(void*);

lurc_when(sig, &__lurc_l112_function, NULL);

auto void __lurc_l112_function(void* __lurc_l112_p){

printf("yeepee\n");

}

The auto modifier for the function is required for nested functions, and declaring it before
defining it allows us to use it in the call to lurc when before it is defined by leaving the
control block which follows the macro call. The only name pollution introduced in user
code is the name of the nested function and its parameter, for which we use a crude gensym
macro to generate a unique name based on the line number, which is the best we could do
with C macros. The only restriction is that there is only one LURC WHEN per line, but we
prefer this limitation which will be detected at compilation by an error message (though
cryptic) rather than have an obtrusive syntax for our control blocks.

205

APPENDIX A. LURC

However this works for the suspension and preemption blocks, but the protection block
is more complex since it requires two nested functions, via two macro calls. Due to the
gensym generated names for those functions, the first macro call will not be able to declare
the second nested function since it does not know its name (line number), and the other
way around: the second macro call will not be able to call the first nested function because
it does not know its name (line again). So we are forced to use static names for both, and
in order to be able to use several protection blocks in a single C function, we put the whole
block in a nested C block, thus allowing us to both override previously declared nested
functions, and restricting their scope downwards. But this requires an extra third macro
call after the second block in order to close the block. The following explains how we did
it:

// Defining it thus.

#define LURC_PROTECT { \

auto void __lurc_fprotected_function(void*)

#define LURC_WITH \

auto void __lurc_fprotector_function(void*)

#define LURC_END lurc_protect_with(&__lurc_fprotected_function, NULL, \

&__lurc_fprotector_function, NULL); \

}

// Allows us to call it thus.

LURC_PROTECT{

printf("yeepee\n");

}LURC_WITH{

printf("ouch\n");

}LURC_END

// Which expands in.

{

auto void __lurc_fprotected_function(void*){

printf("yeepee\n");

}

auto void __lurc_fprotector_function(void*){

printf("ouch\n");

}

lurc_protect_with(&__lurc_fprotected_function, NULL,

&__lurc_fprotector_function, NULL);

}

While this is not exactly what we want (it requires an end tag) it is a decent compromise
because it allows us to use the normal (non syntactic) LURC API. Getting rid of the end
tag would require the injection of internal LURC code as part of the LURC PROTECT and
LURC WITH expansion, which we do not want.
The last place we’d want syntactic sugar is for creating threads. Ideally we could do the
following:

void start_threads(int n){

if(n > 0){

LURC_THREAD{

printf("Thread #%d\n", n);

}

206

A.3. IMPLEMENTATION

start_threads(n - 1);

}

}

We have decided against it for several reasons. First, this syntax requires environment
capture, so we could use the same trick as before and use macros expanding it thus:

void start_threads(int n){

if(n > 0){

auto void __lurc_l143_function(void*);

lurc_thread_create(NULL, NULL, &__lurc_l143_function, NULL);

auto void __lurc_l143_function(void* __lurc_l143_p){

printf("Thread #%d\n", n);

}

start_threads(n - 1);

}

}

But we’re faced with one problem: creating a thread does not start it, and therefore, we
may (and in this case will) exit from the start threads function before starting all these
new threads. Nested functions however, require that their containing function does not
return in order to work, so this would not work. The only way to make it work would be to
save the current stack when creating the threads, and so start these threads with an initial
stack containing the captured environment, and possibly much more. This means several
things: bigger memory impact, since these threads would have an initial stack remaining
throughout their entire lifespan, whether or not the captured environment is used. It also
means that the captured environment is not shared but duplicated, so if any of the creator
or created thread modifies a local variable, the other will not see it, thus differing from the
control blocks semantics where this would work. And last but not least, this would not
allow us to create detachable threads, since they require starting an underlying Pthread,
which cannot start with an initial stack. For all these reasons we have chosen to not allow
inline thread blocks and require each thread to start with a clean stack via the library
function call.
We should note that since these macros use GCC C features, they are only enabled when
using the GCC compiler. Moreover, as GCC’s nested functions sometimes require an ex-
ecutable stack, and some operating systems (or specific distributions of them) explicitly
disallow that, on these systems too our macros are not enabled. This is not too much of a
problem however since these macros merely use the standard LURC API to make the code
simpler. On those systems, the user will have to stick to the standard LURC API.

Passing arguments to callbacks

When we need to pass a pointer to some code in C, we usually use a function pointer,
and an associated void* argument in order to be able to pass it some data. This is the
case in LURC too, since LURC functions such as lurc thread have to take a function
pointer of a specified type, and we cannot write a lurc thread function for every type
of function pointer that could be passed to it. So limiting the prototype of this function
to void f(void*) is a good compromise, since all the possible needed arguments can be
packed in a structure whose pointer would be the void* argument.
Of course this is cumbersome as each function needs a structure definition for its packed
arguments, to unpack its arguments and each call to functions such as lurc thread needs

207

APPENDIX A. LURC

to pack them. On top of that it is very easy to pass the wrong structure as argument since
no checking is done at compile-time on argument types.

We have already shown in Section A.2.5 how we use macros such as LURC CB1 to declare
a callback that takes more than one argument and specifies their types. On top of that,
this macro generates several functions that call LURC functions such as lurc thread or
lurc when which take the correct number and types of arguments. This is possible with
the use of simple ISO C macros, with the slight annoyance that argument names and their
types have to be separated by commas, and their number has to be specified in the macro
name. We believe however these to be minor when compared to the benefits they offer.

Just syntactic sugar?

Here is an example of a function combining an array of signals into one using the or
combiner:

// A callback taking 3 arguments.

LURC_CB3(or_combiner,

lurc_signal_t*, kill,

lurc_signal_t*, ok,

lurc_signal_t*, sig){

LURC_WATCH(kill){

while(1){

lurc_await(sig);

lurc_signal_emit(ok);

lurc_pause();

}

}

}

lurc_signal_t *

combine_or(lurc_signal_t *kill, int n, lurc_signal_t **sigs){

lurc_signal_t *ok = lurc_signal("ok");

for(int i=0 ; i < n ; i++){

// This function is generated for the or_combiner callback up there.

or_combiner_thread(NULL, NULL, kill, ok, sigs[i]);

}

return ok;

}

void

when_or(int n, lurc_signal_t **sigs, lurc_cb_t cb, void *param){

lurc_signal_t *kill = lurc_signal("kill");

lurc_signal_t *ok = combine_or(kill, n, sigs);

LURC_PROTECT{

LURC_WHEN(ok){

cb(param);

}

}LURC_WITH{

lurc_signal_emit(kill);

lurc_signal_destroy(kill);

lurc_signal_destroy(ok);

}LURC_END

}

208

A.4. RELATED WORK

Combining a set of signals with or requires to launch one thread per signal, each waiting
continuously for one of the signal, and emitting the ok signal when their signal is emitted.
We need a kill signal to stop all those threads when the ok signal is not used anymore,
so each thread is preempted by this signal. Having this combined signal allows us to do a
when or function, which takes a set of signals and a callback, which it calls in a suspension
context on any of the signals. The protection block is used to stop the created threads and
deallocate the required signals when exiting from the callback.

This example illustrates all the syntactic sugar available in LURC. We think that this code
is clear to read, and intuitive to write, mostly thanks to the syntactic sugar, without which
the code would be much longer and verbose. In the end we feel that when it comes to
using a thread/scheduler system, syntax plays a large part in its acceptance. If code is
hard to write or/and read, the system will not be used, which is why we spent some effort
into this. But for those not willing to use GCC macros, they can simply be disabled and
since they only add sugar with no extra functionality, LURC retains the exact same set of
functionality with or without this sugar, which we feel is important.

A.4 Related work

Several C libraries offer multi-threading facilities. LURC is a mixture of several ideas found
in older libraries with its differences. Here are the most notable ones:

A.4.1 POSIX threads

POSIX threads are the most common type of threads on UNIX systems. They offer asyn-
chronous threads that run in parallel, mutex objects for critical sections, condition variables
for thread synchronisation, and good performance on most systems. Threads can only run
in an asynchronous way, thus always needing both a broad knowledge of all the threads
involved in the program and explicit protection of critical sections.

LURC offers synchronous threads as the default type of thread, but allows its threads to
become asynchronous (and back) if they need to, using POSIX threads for that purpose,
and thus giving the LURC thread to the POSIX thread scheduler during this period. We
believe the two layers are complementary and some behaviour simply cannot be done in a
cooperative way, even though in most cases it can.

A.4.2 Event loops

While this is not a typical threading model, event loop programming is the method of
choice for programming applications in which several parts of a program are allowed to
run concurrently, via an event scheduler. The analogy between an event loop and reactive
programming is a good one: the reactive instant is an event loop iteration, during which
reactive signals (or event loop events) are emitted to allow reactive threads (or event loop
callbacks) to execute.

The main difference however is that event loops are limited to callbacks without state
(the callback must terminate and exit every time it is called) whereas reactive threads can
cooperate in the middle of a computation, and thus keep a state between activations. More
than that, LURC integrates all event loop facilities via different types of signals and thus
event loop programming interacts alongside reactive programming in LURC.

209

APPENDIX A. LURC

A.4.3 GNU/Pth

GNU/Pth is a cooperative threads library written in C, aimed at being efficient and portable
on all UNIX systems. Like LURC, it features an Event Loop integration, and more types
of signals than LURC. However it has only one type of cooperative thread (those using a
different stack), and does not support asynchronisation. It also does not support control
blocks like suspension, preemption and protection.

A.4.4 Fair Threads

The FairThreads [Bou04b] library in C is something that LURC is very close from: it
features suspension, preemption and protection blocks, signals and even thread asynchroni-
sation. Fair threads are available in several languages, all with variations of syntax, features
and implementation, but with the same model in mind, and one that is very close to LURC.
Fair threads support two types of threads: threads with state, which are always mapped
to a native thread (most likely asynchronous Pthread) kept synchronous by the fair thread
scheduler and library. This allows them to become asynchronous as we do in LURC, but
has the disadvantage to be the default type of thread, even for threads we know will not be
made asynchronous, which imposes (for example) a limit on the number of threads. LURC
on the other hand supports two types of cooperative-only threads which do not require any
native thread.
The other type of thread is an automaton, which does not map onto a native thread, and
makes scheduling of several automata fairly efficient, but does not allow any state to be on
the heap when cooperating (for example, it is not possible to cooperate within a function
call). LURC on the other hand does not support automata threads: the main advantage of
not needing a stack to execute is also its main drawback since it is impossible to cooperate
within a function call. While we could have another type of LURC thread representing
automata, a difference in semantics between threads would arise, and it is not the path we
have chosen.
The most up-to-date version of FairThreads in C is called LOFT: a Language Over Fair-
Threads [Bou03]. It is a syntactic extension to C with reactive primitives.

A.4.5 Reactive ML

RML [MP05] is a syntactic extension to the OCAML language, similar to the FairThreads
and LOFT, but without FairThreads automata and with a type system integrated with the
reactive primitives.
In RML like in LOFT, the reactive layer and the ML layer are distinct, even though it
seems reactive code can be mixed with ML code in a reactive function (that is, a function
explicitly declared as reactive). No reactive code is allowed in pure ML functions. However
regular ML code in a reactive function is actually transformed into RML runtime function
calls (the if statement becomes a rml if function call), while the code is separated into
different functions at cooperation points. This avoids having to save a continuation like in
LOFT, but without real automata and an added cost at runtime.

A.4.6 ULM

Mainly inspired from FairThreads, ULM is a set of primitives for a reactive and mobile
language. ULM specifies the deterministic scheduling rules that apply to ULM threads,

210

A.5. BENCHMARKS

NPTL GNU/Pth
LURC

SC SJ AL AJ

Time
Scheduling A 3.6s 1.5s 1.6s 1.6s 2s 2s
Scheduling B 2s 1.5s 1.6s 1.6s 2s 2s
Scheduling C 27s 1:25m 12.1s 11.5s 29.3s 11.7s

Memory
Virtual 8m 14m 1.8m 8m 8.2m 8.2m
Residual 2m 2m 600k 1.9m 2.2m 2.2m

Table A.1: NPTL, GNU/Pth and LURC

and these primitives can be integrated in any language. LURC is based on that model,
minus mobility. We believe the Reactive primitives to be worth basing a threading library
on, as they allow a lot of derived functionality. Doing mobility in C is a whole different
problem than threading, and thus was not included in the goals of the LURC project.

A.5 Benchmarks

In order to verify our results regarding two of our main objectives: being light and fast,
we present several tests comparing LURC several other threading libraries. All tests have
been made on dual core intel hardware with 1gb of RAM, under linux 2.6.20 from the feisty
Ubuntu distribution.

A.5.1 Pthread and GNU/Pth

The first test compares the different types of LURC threads with the current Linux imple-
mentation of Pthread (NPTL) and the latest version of GNU/Pth (2.0.7). While GNU/Pth
and LURC have both a model of cooperative threads, NPTL has asynchronous threads.
What we wanted to test first is: can they be compared in terms of speed and memory us-
age? In order to stress the system on the number of threads and memory usage, we create
200 threads with a stack size of 32k and make them work for 50,000 iterations each. The
results are presented in Table A.1 for NPTL, Gnu/Pth and LURC’s Synchronous Copy,
Synchronous Jump, Asynchronousable Lock and Asynchronousable Jump thread types.

The time results are split in three scheduling strategies. The Scheduling A was done with no
constraint about scheduling: we just want to have the 200 threads do the 50,000 iterations
in any order. For the Scheduling B, we want each thread to do his 50,000 iterations in
one mutually exclusive step, before the next thread could do his iterations. For example,
given the threads A to Z doing iterations 1 to 10 the scheduling should be: A(1)...A(10)
... Z(1)...Z(10). And in Scheduling C the scheduling is further constrained so that each
thread iteration should be interleaved. Following on our example, the scheduling would be:
A(1)...Z(1) ... A(10)...Z(10).

For Scheduling A we notice that the default scheduling of GNU/Pth and LURC (which
we observe is the same) gets the job done faster than the preemptive scheduling of NPTL.
This proves that having cooperation between threads done at the right place can be faster
as trying to run everything at once. This is even more relevant when you know that
the test machine is a dual-core processor, so both GNU/Pth and LURC are using half
the processing power that NPTL is using. We also notice that GNU/Pth and LURC have

211

APPENDIX A. LURC

comparable performance, albeit lower for LURC’s Asynchronous threads (even though they
are not asynchronous in this test).
For Scheduling B we confirm that a well chosen cooperation point makes a difference for
NPTL, which attains comparable performance to both other threading systems. As we are
not aware of the semantics of GNU/Pth scheduling we are using the same system of mutex
and condition variable to enforce the scheduling we want for both NPTL and GNU/Pth.
In practise we observe that GNU/Pth’s default scheduling is the same LURC for this test,
and removing the mutex and condition variable has no time gain.
For Scheduling C it is clear that LURC is faster than both other systems. In fact what
is interesting is that for the Synchronous Copy the time spent copying the stack at each
cooperation is negligible. We also notice that both types of threads that jump to the next
thread (as opposed to requiring an OS context switch) are almost three times as fast as
the NPTL and LURC’s Asynchronous Lock thread types. The difference can be explained
by the cumulative costs of mutexes, condition variables and OS context switching. Since
cooperating in an Asynchronous Lock thread involves the same mechanisms as in NPTL
the performance is roughly the same. The time shown for the GNU/Pth test is actually
a run without a mutex and condition variable, because using the same mechanism as the
NPTL test here takes about 55 minutes. Instead of this mechanism, we noticed that the
actual behaviour of cooperating with pth yield in place of using a mutex and condition
variable produces the same scheduling as LURC (whose scheduling behaviour is enforced
by semantics), so we used this mechanism in the (realistic) hope that semantics can be
deducted from GNU/Pth for thread cooperation scheduling.
As for the virtual and residual memory usages, since all threads have the same stack size
of 32k they are all comparable except for LURC’s Synchronous Copy type which saves in
memory only the portion of the stack which is effectively used. And in such a test the
effective use of the stack is low, thus explaining the low space required to save the threads
which are not currently running.
We think these tests show that choosing a scheduling (when it is possible) can make a
difference. The random preemptive scheduling of NPTL is not better than a deterministic
scheduling for all applications, even with twice the CPU power. We also see that the Asyn-
chronous Jump scheduling when cooperative pays off in terms of time, and the Synchronous
Copy model of stack saving pays off in terms of memory.

A.5.2 LOFT and RML

We have also tested the closest reactive threading library: LOFT and RML. Although
the semantics of these three threading systems are very close, some differences will ex-
plain the results of these benchmarks. The most important difference between LURC and
RML/LOFT is that LURC is merely a library used in the C language, while LOFT and
RML are language extensions over respectively C and ML. Both LOFT and RML separate
strictly the reactive layer and the C/ML layer, which means that C or ML functions cannot
have reactive instructions such as cooperation. As we have already described in Section A.4,
both these languages compile their threads in a form of automaton that does not require
stack space, thus greatly reducing the cost in terms of memory.
In our first set of benchmarks, we have tested four use cases for cooperative threads: creating
a large number of threads (100000) interacting for a short time, making a small number of
threads (1000 first, then 300) cooperate with one another for a long time, and at last the
reversed waterfall. The reverse waterfall is a classic reactive test in which many threads

212

A.5. BENCHMARKS

LURC minimal LURC maximal
LOFT RML

SC SJ AL SC SJ AL

Number of threads
Mem 54360 NA NA 68460 NA NA 33184 30672

Time 23.694 NA NA 27.58 NA NA 121.99 54.624

Cooperation 1000
Mem 992 7464 NA 1172 7500 NA 668 1468
Time 21.772 33.644 NA 25.834 39.036 NA 6.93 49.49

Cooperation 300
Mem 552 2500 2944 700 2604 2996 ?? 1216
Time 6.382 7.064 27.398 7.102 10.326 27.896 2.44 13.428

Reverse Waterfall
Mem 1576 7684 NA 2016 8068 NA 1036 1540
Time 3.388 4.108 NA 3.37 4.588 NA 59.752 9.352

Table A.2: Miscellaneous benchmarks

are created, all linked together so that the last created thread will emit a signal which will
be propagated by all threads back to the first one.

In addition to RML and LOFT we have tested LURC in minimal and maximal configura-
tions: in the minimal configuration LURC is compiled with a strictly minimal set of features
in order to perform the benchmark, while in the maximal configuration all features are en-
abled. For each configuration we tested the three LURC thread types: Synchronous Copy,
Synchronous Jump and Asynchronous Lock (in synchronous mode of course). The results
are presented in Table A.2 with the emphasised numbers showing the best scores in mem-
ory usage in kilobytes (as residual memory, i.e. maximum memory really used as opposed
to allocated but unused memory) and execution time in seconds. For both measurements
lower is better.

The Not Applicable columns for LURC mean that the test did not succeed due to excessive
memory requirements of the underlying types of threads: for both SJ and AL threads we
have to allocate a stack with a fixed size, and creating so many threads requires too much
memory. It is worth noting that for the Cooperation 300 test the resident memory for SJ
and AL threads is around 3mb while the allocated memory hits the limit of 32bit addressing
at 2.4gb, which is why we were unable to create more than 300 AL threads, and only a bit
more SJ threads. The ?? mark for the LOFT Cooperation 300 memory test is due to a
measurement problem which prevented us from measuring the memory but based on the
Cooperation 1000 we can speculate that it would be the lowest.

Concerning LURC threads, we notice that there is only a small difference between the
minimal and maximal configurations, so while the scheduling code is much more complex
with every feature enabled, the price is not so great when these features are not used.
Another thing to note is that when threads have a very small stack (this is the case in all
four tests), cooperation time is not faster for SJ threads than SC threads, so the SC type
of thread really makes sense for small thread stacks.

Comparing now LURC to LOFT and RML, we notice that in minimal memory usage (the
SC threads are comparable to LOFT automata and RML continuations in that they don’t
allocate a fixed space for the stacks) LURC uses at most twice the memory of the best
score. This is not so bad, but nothing to be proud of. Concerning speed now LURC is
considerably faster for the first and fourth tests, and second to LOFT on the cooperation
test. This is where automata really pay off and LOFT annihilates other players in this test.

213

APPENDIX A. LURC

LURC LOFT RML

Avg 0.29 0.64 0.43
0-20% 0.08 0.15 0.13
20-40% 0.23 0.46 0.42
40-60% 0.40 0.81 0.72
60-80% 0.48 1.11 1.00
80-100% 0.61 1.46 1.40

Table A.3: Benchmarks Fredkin 500*500

A.5.3 Cellular Automata

For the second set of tests, we chose another well known benchmark for reactive threads:
the Fredkin cellular automata [Bou04c]. This automata has cells become alive when their 8
closest neighbours are in odd number, or die otherwise. This is done in a 500 by 500 grid, by
having each cell as a thread, which waits for its neighbours to notify it of their status. Each
reactive instant gives us a generation. The results of this test are presented in Table A.3
and presented as follows: for each threading system we present the average duration of an
instant, then the average instant duration depending on cell population (both in seconds).
This is meaningful because the more cells are active (not waiting) the more cooperation is
going to happen and the longest the instant will take to complete.

These results clearly show how LURC is faster for this type of application. The code base
for the three tests are strictly similar, but for the propagation of valued signals. LOFT
and RML both offer valued signals as part of their language, and a primitive that collects
them by notifying each thread every time a single value is emitted, which can be several
times in an instant. LURC does not support valued signals, and follows the path of ULM
in which valued signals can be built in an ad-hoc manner on top of plain signals, without
special support from the scheduler. The idea is that if a scheduler supports valued signals
it can only support one flavour of them, whereas there are many different uses for valued
signals, all of which can be built on top of plain signals.

This is probably what made the difference here: we were able to construct a valued signal
that does not aggregate values but just counts its number of emissions during the instant,
and delivers that value only once, at the next instant. Having an emission count is enough
for the Fredkin automata, where we just want to count the neighbours, and being awak-
ened only once per instant in order to count them is crucial to reducing the number of
cooperations.

A.6 Future directions

We present several areas where some work is needed in LURC, ranging from increasing
efficiency of the Reactive Event Loop with a different implementation, to designing new
semantics that would enable LURC to benefit from multiple processors or cores.

A.6.1 Reactive Event Loop

The REL in LURC is implemented by associating file descriptors or timeouts to LURC
signals. These signals are then collected together and used in a select call during the End

214

A.6. FUTURE DIRECTIONS

Of Instant phase. On several systems a better, faster, more scalable approach exists: epoll
on Linux, kqueue on FreeBSD or /dev/poll on Solaris. We think that making use of these
mechanisms instead of select is straightforward for LURC, and it would actually allow
LURC to benefit from all their features. For example, it would be easy to register in the
event set when creating the LURC REL signal instead of rebuilding the event set for each
select equivalent.
There are other external asynchronous events which would be interesting for LURC to
integrate, such as POSIX signals. POSIX signals are usually integrated in an event loop
by associating them an internal pipe and having a signal handler write on that pipe, so
that calls to select would be notified of the signal emission. This is one way LURC could
implement POSIX signal integration. An simpler way seems to be in the works at least on
Linux, in the form of signalfd: a new system call which maps a POSIX signal emission
to an event on a file descriptor. This would be perfect for integration in the REL.
The work on integrating asynchronous events and event loops on Linux may also improve
LURC’s handling of timeout signals. A new system call timerfd maps a timer event to a
file descriptor. The way LURC handles timeout signals is by calculating the closest timeout
on each call to select and again calculating all those which have been triggered after the
select call. Using timerfd and epoll it would be much easier and more efficient since all
the timeouts would be handled by the kernel.

A.6.2 New semantics for SMP

While working on adding LURC as a backend for STklos’ [Gal] threading library, we noticed
several drawbacks that should be addressed in future releases of LURC.
The first problem we encountered was that once you expose the possibility of detaching
a thread and becoming asynchronous, we are faced with a dilemma: in a way it makes
sense that the synchronous reactive API does not apply anymore, but that also means that
each library that has deal with scheduling now has to deal with two possibilities: was this
function called while synchronous, in which case it behaves this way, or was is called while
asynchronous, and it has to behave differently. For example, you cannot write a function
that waits for a LURC signal and expect it to work both synchronously and asynchronously.
What is possible right now is to check the status of the current thread and determine
whether it is synchronous or not, and behave accordingly, but that is a tedious task. We
asked ourselves the question of why the reactive API of LURC doesn’t make sense in an
asynchronous thread? There has to be a way to give it a meaning. For example mutex
locks: when a thread is asynchronous and has to work on data shared with other threads it
usually has to use mutex locks. But this also makes sense for synchronous reactive threads:
mutexes have to be used in case a call to a third-party function call triggers a cooperation
in the middle of a critical section. It is trivial in LURC to implement mutex locks using
LURC signals, but since LURC signals cannot be used while asynchronous, this is not good
enough.
We think we can give a meaning to all the reactive API of LURC even while asynchronous.
Our current view is that threads that detach themselves to become asynchronous should
automatically be assigned their own synchronous scheduler. Becoming asynchronous would
then mean creating a new synchronous zone, which runs asynchronously to other syn-
chronous zones. Much in the way that ULM offers thread migration between different
computers, we can treat these synchronous zones as synchronous places between which
threads could migrate. This does not isolate the data, because memory is still shared be-

215

APPENDIX A. LURC

tween the zones, but if we also implement ULM’s remote references we can then provide
a safe way to exchange data between asynchronous zones. ULM references are data cells
which are local to a location (in our case: a synchronous zone) or a thread, and whose
reading or writing blocks the caller thread until the caller thread migrates to the location,
or the thread to which it belongs comes on the same zone as the blocked thread.
So this means that when a thread becomes asynchronous, it automatically creates a new
synchronous zone between which synchronous threads can migrate. The semantics for
signal could be adapted in order to broadcast signals asynchronously between zones. For
example signals would still be emitted intra-instantaneously in the current zone, and sent
for emission in all other zones at the beginning of one of their local instant. In this way all
the reactive API of lurc makes sense both synchronously and asynchronously.
The other advantage of this idea is that this solves our second problem: we can now
take advantage of multiple processors easily while maintaining several totally deterministic
synchronous zones (say one on each processor or core), while also allowing communication
and thread migration between the zones.

A.7 Conclusion

We have presented LURC’s features, its implementation and examples illustrating its pos-
sibilities and ease of use. We think having several implementations for threads that coexist
under a deterministic semantics is a solution to balance the tradeoff between speed and
semantics, while leaving the choice for some threads to separate from the cooperative sched-
uler when they need to provides a good flexibility without sacrificing the determinism of the
other cooperative threads. We believe the set of features makes it easy to port applications
from other existing thread models, while remaining highly portable on most POSIX/GCC
platforms. We hope to have demonstrated that LURC applies not only to general purpose
hardware, but also the world of constrained devices such as embedded platforms, where
thread tuning can make a big difference in the adoption of a thread model. We also think
the syntactic extensions help a great deal by making threading features appear to be a
language extension which should have its place in C.
LURC is licensed under the GNU Public License, source and documentation are available
on its website at http://www.inria.fr/mimosa/Stephane.Epardaud/lurc/.

216

217

Résumé

Afin de résoudre les problèmes liés à l’intégration d’un nombre croissant d’appareils pro-
grammables, nous proposons un langage d’agents mobiles. Ces agents mobiles sont capables
de migrer d’un appareil ou ordinateur à l’autre afin d’exploiter au mieux ses ressources, ce
qui permet de profiter au mieux des capacités de chaque appareil à partir d’un unique
programme.
Ce langage est ULM: Un Langage pour la Mobilité. Nous présentons dans cette thèse
ses fonctionnalités, ses particularités, ainsi que sa mise en œuvre. ULM est un dérivé du
langage Scheme, auquel nous avons ajouté les fonctionnalités liées à la mobilité ainsi qu’à
l’interaction entre les agents mobiles. ULM possède un ensemble de primitives permettant
la création d’agents à mobilité forte, avec un ordonnancement coopératif déterministe, et
des primitives de contrôles telles que la suspension ou la préemption faible.
Nous présentons dans cette thèse l’intégration de ces primitives dans le langage Scheme,
ainsi que leur interaction et l’ajout de certaines nouvelles primitives telles que la préemption
forte ou la migration sûre. Nous présentons ensuite la sémantique dénotationnelle du lan-
gage et sa mise en œuvre au moyen d’un compilateur vers code-octet, et de deux machines
virtuelles: une écrite en Bigloo Scheme pour exécution sur des ordinateurs traditionnels,
l’autre écrite en Java ME pour les téléphones portables. Nous présentons ensuite l’utilisation
possible d’ULM comme remplacement de programmes écrits pour des boucles d’évènements,
l’interface entre ULM et des langages externes, quelques exemples d’utilisation d’ULM, puis
les travaux futurs avant de conclure.
Mots clefs: mobilité forte, agents, ordonnancement, langage, machine virtuelle, Scheme.

Abstract

In order to avoid the problems raised by the integration of a growing number of pro-
grammable home appliances, we propose a language with mobile agents. These mobile
agents are capable of migrating from one appliance or computer to another in order to
work on its local resources, which allows us to benefit from each appliance’s capabilities
from a single program.
This language is called ULM: Un Langage pour la Mobilité. We present in this dissertation
its features, its differences with other languages, as well as its implementation. ULM is
based on the Scheme language, to which we have added functionality linked with mobility
and the communication of mobile agents. ULM has a number of primitives allowing the
creation of strongly mobile agents, with a cooperative deterministic scheduling, and control
primitives such as suspension or weak preemption.
We present in this dissertation the integration of these primitives in the Scheme language,
as well as their interaction and the addition of new primitives such as strong preemption and
safe migration. We then present the denotational semantics, and its implementation with
a bytecode compiler and two virtual machines: one written in Bigloo Scheme for execution
on traditional computers, the other in Java ME for mobile phones. We present then the
possible use of ULM as a replacement for programs written for event loops, the interfacing
of ULM and external languages, a few examples of ULM applications, and future work
before we conclude.
Keywords: strong mobility, agents, scheduling, language, virtual machine, Scheme.

	Introduction
	State of the art
	The various forms of mobility
	Uses of mobility
	Differences between agent systems
	Language
	Memory models
	Scheduling
	Communication
	Data handling
	Security

	Why we would need yet another mobile agent language

	Language
	Origins of ULM
	Local thread scheduling
	Migration
	Non-determinism isolation

	Features
	Scheme embedding
	Threads
	Signals
	Suspension
	Weak Preemption
	The integration of weak preemption in Scheme
	The interaction between when, watch and finally
	Exceptions
	Migration
	References
	Mixins
	Modules

	Semantics
	Notation
	Evaluation
	Scheduling

	Implications of Migration
	The parting of ways
	Things that need more work

	Implementation: Scheme
	Two Virtual Machines
	Why a virtual machine?
	The first virtual machine
	Why two (3?) virtual machines?
	The Java VM

	Bytecode compilation and interpretation
	Some required introduction
	Constants
	Variable reference
	Variable affectation
	Conditional
	Invocation
	Abstraction
	let, let* and letrec
	Protection
	Strong preemption
	Miscellaneous bytecodes

	The OULM file format
	Overall Structure
	Header
	Constants
	Module Information
	Global Variables
	Function Descriptors
	Attributes
	Example

	Implementation: ULM
	ULM bytecodes
	Thread creation
	Agent creation
	Suspension
	Weak preemption
	A word about bytecodes vs. primitives
	Signal Creation
	Signal Emission
	Signal Awaiting
	Cooperation
	Migration
	References

	Migration
	Transporting agents
	The use of modules for agents
	What happens to data
	What happens to the bytecode

	Scheduling
	The End of Action phase
	Wait queues and their recycling
	Fast lanes for simple waits
	Planning weak preemption
	Minimal End Of Instant

	Native interface (s)
	Syntax
	Bigloo backend modules
	Java backend modules
	Reentry
	Unifying protectors and exception handlers

	Reactive Event Loop
	Event loops and ULM
	Presentation of the event loop
	Why we need event loops

	The new signals
	The IO signal
	The timeout signal
	The idle signal

	Example
	Event Loop
	Reactive Event Loop

	Implementation
	Which REL signals are watched?
	The IO signals
	The timeout signals
	The idle signal
	Integration with the EOI
	Future improvements

	Integrating two event loops
	GTK
	Swing
	J2ME

	Conclusion

	Examples/Applications
	Load balancing
	Agents for reconfiguration
	The motivations
	The departure airport
	The Fractal component transporter

	Directions
	Debug
	Debugging the compiler
	Debugging the VM
	Debugging ULM programs

	Other enhancements
	A global garbage collector
	Mixin enhancements
	Miscellaneous enhancements

	Conclusion
	LURC
	Introduction
	Lurc features
	Different types of threads
	Cooperative deterministic scheduling
	Signals
	Integrated syntax
	Control blocks
	Event loop integration
	Garbage Collector
	Modularity

	Implementation
	Threads
	Scheduling
	Syntactic sugar

	Related work
	POSIX threads
	Event loops
	GNU/Pth
	Fair Threads
	Reactive ML
	ULM

	Benchmarks
	Pthread and GNU/Pth
	LOFT and RML
	Cellular Automata

	Future directions
	Reactive Event Loop
	New semantics for SMP

	Conclusion

